

"Craig and Gwyn bring their insight and experience with WMI to explain how easy it is to write
powerful management applications through WMI on the .NET platform."—Andy Cheung,
Microsoft WMI Test Engineer

Windows Management Instrumentation (WMI) is an impressive technology that provides, for the
first time, an integrated approach to hardware and software management for the Windows operating
system. Developing WMI Solutions gives administrators and developers the skills necessary to take
advantage of the power of WMI with Windows 2000, XP, and .NET Server.

Developing WMI Solutions starts with an overview of the concepts behind systems management.
The authors then provide a synopsis of existing management architectures, as well as an explanation
of the architectural components of WMI and the tools provided by Microsoft for their use. Also
included is a WMI scripting boot camp for administrators using samples in VBScript, plus a series
of best practices that give scripts a professional edge.

You will find thorough coverage of such topics as:

• The Common Information Model (CIM)
• Developing CIM extended schemas
• Management-application development using C++ and COM for WMI
• MMC snap-in development using C++ and COM, presented as a tutorial
• WMI providers and the necessary C++ and COM skills needed to expose class schema
• Developing management applications using the .NET Framework—the first comprehensive

guide to the WMI classes in the System.Management namespace

Finally, developers will learn about the often undersold but extremely powerful high-performance
event-tracing mechanism available in Windows, which allows developers to expose detailed
information about operations in an application.
The companion Web site, located at http://www.wbem.co.uk, includes the complete set of code
examples found in the book, as well as updates and related articles.
Both a tutorial and a reference, Developing WMI Solutions is an essential companion for network
administrators, software developers, and team leaders looking to become proficient with WMI.

COPYRIGHT ..15

PREFACE...17

Who Is This Book for and What Is WMI? ...17

How to Approach This Book and What You Will Learn18

Acknowledgments ...21

CHAPTER 1. INTRODUCTION..22

Structure of the Book ...23

Pedagogical Elements ..24

Target Audience..24

Prerequisites...25

Terminology...25

Software Requirements ...25

Operating System Requirements...26

Hardware Requirements...26

Introducing WBEM..27

WBEM's Basic Objectives...27

Core Objectives ...27

The Central Information Store...27

The Common Information Model..28

Object Orientation and CIM ...28

Building an Information Model ..28

Structure of the Centralized Repository ..29

The Three-Tiered Model ...30

Acronyms and Terminology...31

Standards Bodies ..31

Motivation ..32

De Facto and de Jure Standards ...32

The Distributed Management Task Force (DMTF)33

The World Wide Web Consortium (W3C)35

Web-Based Enterprise Management (WBEM)36

Windows Management Instrumentation (WMI)..........................36

Common Information Model (CIM) ...36

Common Information Model (CIM) Repository...........................36

Managed Object Format (MOF) ..37

Simple Network Management Protocol (SNMP)37

Common Management Information Services (CMIS)..........37

Common Management Information Protocol (CMIP)...........37

Desktop Management Interface (DMI) ...38

eXtensible Markup Language (XML)..38

Hypertext Transfer Protocol (HTTP) ...38

Extended Schemas..39

WMI Scripting ..39

Summary ..39

TEN FAST FACTS: WEB-BASED ENTERPRISE
MANAGEMENT ..40

CHAPTER 2. EXISTING MANAGEMENT
FRAMEWORKS..41

The Need for a Universal Management Model42

The Simple Network Management Protocol44

A Simple Solution to a Complex Problem44

The SNMP Network Management Station......................................45

Relevant SNMP Standards ..47

Structure of an SNMP Message ...49

Communities...49

Event Notification: SNMP Traps and Informs51

The Management Information Base..52

SNMP Security ...55

Modus Operandi ...56

Advantages of the SNMP Protocol ..58

Disadvantages of the SNMP Protocol...58

The Desktop Management Interface ..59

The DMI Information Model: The Management Store.........61

Policy..62

Notification of Events ...62

DMI Security ...62

MIF Database Security...63

Management Interface Security ..63

Component Interface Security ..64

Security Indications..64

Advantages of the DMI...64

Disadvantages of the DMI...64

Summary ..65

TEN FAST FACTS: SNMP AND DMI.......................................67

CHAPTER 3. WINDOWS MANAGEMENT
INSTRUMENTATION...68

The Standard WBEM Components ...69

Installing WMI ..70

Core Components of WMI ..72

Windows Management Instrumentation..79

WMI Management Applications...82

Types of Providers..87

Event Handling ...89

Event Consumer ...90

WMI Security ..91

The WMI Query Language ...95

Summary ..103

TEN FAST FACTS: WINDOWS MANAGEMENT
INSTRUMENTATION...103

CHAPTER 4. A GUIDED TOUR OF THE COMMON
INFORMATION MODEL REPOSITORY104

Metadata...105

Dynamic and Static Data..106

Dynamic Data and the CIM Repository ...107

The Common Information Model..108

Namespaces...112

Using the CIMV2 Namespace...112

WMI Namespaces and the CIM repository113

Defining and Using Your Own Namespace115

Namespaces and Schemas ..115

Using Existing Schemas ...116

Subclassing and Instantiating Existing Classes in the
CIMV2 Namespace..116

Modifying Existing Classes ..117

MOF Class Declaration..118

Qualifiers ..119

Flavors ..120

Custom Qualifiers ..121

User-Defined Qualifiers ...122

Intrinsic Data Types...122

Instance Creation...123

A Compileable MOF File ..124

ActiveX Components..127

Let the Tour Begin!...128

The Class Explorer Explained...130

System Properties...135

Object and Property Qualifiers ...136

CIM Studio Functions ..139

Places of Interest within the CIM repository................................145

Tutorial: Creating a Namespace and Adding Classes,
Properties, and an Association ..148

The Wizards ..149

Summary ..150

TEN FAST FACTS: CIM REPOSITORY...................................150

CHAPTER 5. DEVELOPING CLASS SCHEMAS..............151

Schema Design and System Manageability152

Case Study: Client/Server E-mail Package154

The Unified Modeling Language...155

Learning the CIM Schema and Win32 Extended
Schemas...156

The Windows Installer and WMI ...158

Schema Design by Teams vs. by Single Developers........159

The Unified Modeling Language in Schema Design160

A Brief Introduction to UML Object Modeling.............................160

Interpreting the Common Model in UML...164

The Schema Design Road Map ..166

WMI Topology Design...169

Schema Design Phase...172

Representing the PostOffice Schema in UML197

Summary ..198

TEN STARTING SCHEMA DESIGN TIPS................................198

CHAPTER 6. METHOD DESIGN AND SCHEMA
CLASS POSITIONING..199

Properties vs. Methods ..199

Methods, Operations, and Functions ...200

Step 5: Define Methods ...201

Step 6: Check Schema Design ..213

Final Step: Positioning Classes ...217

Step-by-Step CIMV2 Namespace Class Positioning218

Putting Class Placement Theory into Practice222

Namespace and Schema Placement ..224

The Applications Namespace..225

MOF Creation and Testing ...230

Implementing the Schema: WMI API Calls vs. MOF Code
..231
Multilanguage Support..231

The Post Office Schema in MOF ...233

PO_PostOfficeHasSettings MOF File ...246

Testing ..248

Schema Deployment ..249

Summary ..249

SCHEMA DESIGN AND POSITIONING Q & A...............249

CHAPTER 7. DEVELOPING MANAGEMENT
APPLICATIONS ..250

Getting Started ...251

Object Paths Explained ...253

Getting an Object ...255

Enumerating Objects..256

Creating an Object..258

Updating Objects..261

Deleting an Object ..262

Performing Queries..264

Making Method Calls..266

Manipulating Object Properties..272

Manipulating Array Object Properties..277

Accessing Objects from Object Properties...................................278

Making Semisynchronous Calls ..281

Making Asynchronous Calls..285

WMI Error Messages ...288

Overview of Events ..289

Intrinsic Events ...291

Extrinsic Events ...292

Timer Events ..293

How to Subscribe to Events ..295

Writing Applications to Receive Semisynchronous Events
..297
Writing Applications to Receive Asynchronous Events ...299

More on Security ..302

Classes that Require Specific Security Privileges304

Localized Namespaces..307

Overview of High Performance Classes ...310

Writing Applications to Access High-Performance Data.310

Access High-Performance Enumerated Data313

Summary ..314

TEN FAST FACTS: DEVELOPING C++/COM
MANAGEMENT APPLICATIONS:..315

CHAPTER 8. DEVELOPING .NET MANAGEMENT
APPLICATIONS ..315

Getting Started ...316

Getting a Management Object..317

Enumerating Management Objects ...323

Creating a Management Object ..325

Updating Management Objects ...328

Deleting a Management Object ...329

Performing Queries..331

Making Method Calls..335

Manipulating Management Object Properties340

Manipulating Array Object Properties..344

Accessing Objects from Object Properties...................................345

Making Asynchronous Calls..347

Overview of Events ..351

Writing Applications to Receive Asynchronous Events ...352

Writing Applications to Receive Semisynchronous Events
..355
Managing Connections to WMI..357

Summary ..360

TEN FAST FACTS: DEVELOPING .NET
MANAGEMENT APPLICATIONS ..361

CHAPTER 9. DEVELOPING MMC SNAP-INS362

Snap-in Architecture ...363

Getting Started ...365

Snap-in Implementation Basics ...369

Let's Make a Snap-in ...372

Implementing IComponentData ..373

Implementing IComponent ..375

The Root Item and General Item Basics ..376

Adding Your Own Namespace Items...380

Adding Your Own Columns ...382

Adding Your Own Result Items..382

Setting Up and Handling Verbs ...387

Adding Your Own Menus ...389

Adding Your Own Toolbars..393

Adding Your Own Property Pages..395

Refocusing an Item's Property Sheet ..403

Adding Your Own Help...404

Primary (Standalone) Snap-in Registration406

More on How ATL Delegates Tasks to an Item.......................408

Renaming Items ..409

Drag and Drop ..410

Accessing Web Sites ...415

Displaying Custom Views ..416

Developing Extension Snap-ins ..419

Exchanging Information between Primary and Extension
Snap-ins ..423

Extension Snap-in Registration ...426

Making MMC Snap-ins Theme Aware ..428

Summary ..430

TEN FAST FACTS: DEVELOPING MMC SNAP-
INS ...431

CHAPTER 10. DEVELOPING WMI SCRIPTS FOR
ADMINISTRATORS ..432

Scripting, WMIC, and the CIM Studio..432

Administration and the WMI CIM Studio...433

Administration and the WMIC..433

Administration and Scripting ...433

Guiding Principles ...434

Prerequisites...434

Chapter Structure ..434

VBScript Boot Camp...435

JavaScript vs. VBScript ...435

Setting Up Your System for Scripting ..436

Scripting and Administration ...436

What Is the Windows Scripting Host? ...437

Scripts ...437

Scripting vs. Compiled Languages...438

BEST PRACTICE! SCRIPT SIGNING............................438

The Windows Scripting Host ..438

Your First Script...439

Indentation ..442

BEST PRACTICE! CODE INDENTATION442

Annotation ...442

BEST PRACTICE! CODE ANNOTATION..................443

Variants, Variables, and Constants ...443

Use Meaningful Variable Names..443

BEST PRACTICE! VARIABLE NAMING444

VBScript Functions...444

The WSH Object Model...444

Program Statements and Keywords ...445

The Option Explicit Statement ..447

BEST PRACTICE! VARIABLE DECLARATION..447

Connecting to a Local or Remote Namespace447

BEST PRACTICE! USING A PASSWORD AND
USERNAME TO ATTACH TO A NAMESPACE450

BEST PRACTICE! RETRIEVING LOCALE-
SPECIFIC INFORMATION ..450

Security Issues ...451

Deciding on the Level of Security Required455

BEST PRACTICE! CONNECTING TO A
NAMESPACE ..455

Data Input ..456

Error Detection ...457

BEST PRACTICE! USER/SCRIPT
INTERACTION ..461

Error Logging (NT/2000/XP Only) ...461

BEST PRACTICE! TRACKING UNATTENDED
SCRIPT BEHAVIOR..461

WMI Scripting Data Retrieval...462

BEST PRACTICE! USING INSTANCESOF ..463

Displaying Date and Time Values (XP Only)465

Retrieving Subsets of Instances ...466

BEST PRACTICE! USE THE GET METHOD468

BEST PRACTICE! USE SEMISYNCHRONOUS
CALLS TO EXECQUERY ...468

WMI Data Modification Scripting Example469

Data Deletion Scripting Example ...471

Data Creation Scripting Example...471

Association Traversal Using VBScript ..472

Executing Methods Using VBScript...473

Summary ..474

TEN FAST FACTS: SUMMARY OF VBSCRIPT
BOOT CAMP ...474

CHAPTER 11. WMI SCRIPTING AND WMIC..........475

Identifying the Correct Course of Action ...475

BEST PRACTICE! PROPERTIES VS.
METHODS...477

Script Deployment and Execution ...481

Script Execution Methods..483

Sending E-mail ...485

Setting Up Your System for Debugging and Testing488

Debugging Your Scripts ..490

Windows Management Instrumentation Command-line
(WMIC) ...493

Using WMIC ..493

Interactive Mode ...494

Configuring WMIC...496

Interacting with WMIC ...500

The WHERE Clause ...502

Verbs ..502

Adverbs..504

Looping WMIC Commands..504

Types of Output ...504

Aliases ..505

Creating or Modifying Aliases Using the CIM Studio510

Using WMIC in Noninteractive Mode ...511

BEST PRACTICE! USERNAMES AND
PASSWORDS ...513

Summary ..513

TEN FAST FACTS: WMIC TIPS ...513

CHAPTER 12. DEVELOPING WMI PROVIDERS..514

Where to Start ...517

Developing an Instance Provider ...517

Provider Registration..520

Provider Initialization ..523

Enumerating Objects..526

Getting an Object ...530

Deleting an Object ..534

Creating or Updating an Object ...536

Querying for Your Objects ..540

Instance Provider Registration ...542

Developing a Method Provider ...543

Executing Methods...544

Method Provider Registration ..549

Developing an Event Provider ..549

Firing Events...550

Event Provider Registration...557

Developing an Event Consumer Provider558

Handling Event Notifications...558

Permanent Event Consumer Provider Registration564

Developing a Property Provider ..564

Exposing Dynamic Properties ...566

Property Provider Registration ...568

Developing a Push Provider ...568

Pushing Data to the CIM Repository ..569

Push Provider Registration ..571

Security Considerations ..571

Summary ..574

TEN FAST FACTS: DEVELOPING WMI
PROVIDERS ...575

CHAPTER 13. HIGH-PERFORMANCE
INSTRUMENTATION ..575

Overview of Event Tracing ...577

Controlling Event Traces ..579

Developing an Event-Tracing Provider ..596

Analyzing Event-Trace Log Files ...611

Monitoring Real-Time Event-Tracing Sessions621

Providing and Analyzing Lightweight Events622

Summary ..625

TEN FAST FACTS: HIGH-PERFORMANCE
INSTRUMENTATION ..626

APPENDIX A. WMI EVENT SDK TOOLS627

APPENDIX B. WMI SERVER EXPLORER......................633

Manipulating Management Objects in the Server Explorer
..634

Subscribing for Event Notification in the Server Explorer
..640

GLOSSARY ...644

BIBLIOGRAPHY ...652

Copyright
Many of the designations used by manufacturers and sellers to distinguish their product are claimed
as trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases and special
sales. For more information, please contact:

U.S. Corporate and Government Sales

(800) 382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales

(317) 581-3793

international@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Tunstall, Craig.

Developing WMI solutions : a guide to Windows management instrumentation / Craig

Tunstall and Gwyn Cole.

p. cm.

ISBN 0-201-61613-0 (pbk : alk. paper)

1. Microsoft Windows (Computer file) 2. Operating systems (Computers) I. Cole, Gwyn. II. Title.

QA76.76.O63 T83 2002

005.4'469—dc21

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsontechgroup.com
http://www.awprofessional.com/

2002026084

Copyright © 2003 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher. Printed in the United States of America.
Published simultaneously in Canada.

For information on obtaining permission for use of material from this work, please submit a written
request to:

Pearson Education, Inc.

Rights and Contracts Department

75 Arlington Street, Suite 300

Boston, MA 02116

Fax: (617) 848-7047

Text printed on recycled paper

1 2 3 4 5 6 7 8 9 10—CRS—0605040302

First printing, November 2002

Preface
Windows Management Instrumentation (WMI) is an impressive technology. For the first time the
Windows operating system employs a unified technology to represent software and hardware
management. The power of WMI in systems management stretches virtually to every piece of
software and hardware. So regardless of whether you're a team leader, software engineer, or system
administrator, WMI will probably affect you.

Many applications written for Windows currently do not harness the power of a systems
management technology such as WMI: This is why we wrote this book. We want developers to
realize that making an application manageable is a key benefit, especially to system administrators.
Once system administrators and Information Technology (IT) support departments realize what can
be done with WMI, they will demand that applications expose WMI management interfaces. Not
only will system administrators be happy, but you'll also be able to harvest the wealth of
information available from WMI when building your own management applications. The other side
of the coin, apart from making an application manageable, is a "management application." A
management application is a program (like an MMC snap-in) or Web interface that can interact
with the system to gather, inspect, and manipulate the system's functionality or configuration. We
also want system administrators to realize what they can do in a system equipped with a technology
such as WMI and how they should go about automating routine tasks.

We are both very excited about WMI and hope to spread the word to help the computing world
become a more managed place.

Who Is This Book for and What Is WMI?
This book helps developers and system administrators understand Windows Management
Instrumentation (WMI). WMI is a technology built into Windows that enables organizations to
manage servers and user PCs connected to their networks. Systems management is becoming much
more important as organizational networks become more complex. Systems management is not
necessarily a new concept as existing protocols like Simple Network Management Protocol
(SNMP) and Desktop Management Interface (DMI) have been around for a while. What is new is
that it's been traditionally difficult to envisage a unified picture of the whole system.

Understanding the relationships between hardware and software in an organization's network is
equally important. The SNMP world took systems management only as far as the hardware, such as
routers. The DMI world took systems management only as far as the desktop. This led to the
definition of Web Based Enterprise Management (WBEM), a protocol/schema, by the Distributed
Management Task Force (DMTF). Microsoft adopted WBEM and WMI was born. WMI is an
implementation of the WBEM standard that is consistent with Microsoft's Total Cost of Ownership
(TCO) initiative. WMI brings the power of managing a Windows network to unprecedented levels.
For example, through WMI a system administrator can easily write a script that will identify the
Windows service packs that have been installed on all the machines in the network.

Administrators can easily develop scripts to perform routine tasks for their network, as well as
exploit powerful notification facilities inherent within WMI to identify problems before their users

experience them. For this level of system manageability to be made possible, the operating system,
devices, and application software need to be instrumented—hardware and software need to expose
their management interface through WMI. Hence, for developers, this book is important in learning
how to do this; for administrators, it is important in learning how to exploit this technology that
helps lower the TCO; and it is important to software team leaders in understanding the impact of
this new management model on development.

How to Approach This Book and What You Will Learn
Developers and system administrators, the primary target audience for this book, will benefit from it
in several ways. If you know nothing about systems management or WMI, don't worry—this book
will help you develop your skills and knowledge of WMI from the beginning. We also intend for
this book to be a reference, so if you want to develop a WMI provider in C++ to expose your
software management interface, you can go directly to Chapter 12. Likewise, if you want to get
system management information in your .NET application, you can go to Chapter 8. Let's have a
quick round-up of each chapter.

Chapter 1: Introduction

This chapter introduces the various concepts and terminology used in systems management, in
particular, WMI. The chapter highlights the necessity for a unified management standard such as
WBEM.

Chapter 2: Existing Management Frameworks

This chapter aims to introduce the goals of WBEM and systems management by examining two
existing management frameworks, SNMP and DMI. Still in widespread deployment, both are
introduced thoroughly from an architectural perspective and provide an introduction to the basic
principles and rationale behind systems management prior to WBEM. The chapter ends by
summarizing the characteristics considered desirable in a management framework and how they
relate to WBEM.

Chapter 3: Windows Management Instrumentation

This chapter covers a lot of ground to bring you up to speed with WMI. It covers installation and
the various components that make up the WMI toolset. It contains some detailed information on the
WMI architecture and the various interactions between WMI subsystems. It introduces essential
WMI vocabulary so that you can understand the WMI features from a high-level perspective. The
latter part of the chapter introduces some of WMI's powerful query language facilities, including
queries for data (management information), queries for events (notification of activity), and queries
against the class schema (understanding relationships between management information).

Chapter 4: A Guided Tour of the Common Information Model Repository

The chapter continues to help you understand the various class schemas and the WMI tools
provided by Microsoft. The class schemas describe virtually every aspect of a network, a computer,
and its operating system, as well as the installed software. The chapter includes an in-depth tutorial
that provides an extensive introduction to the skills you will need as either an administrator or a

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch12#ch12
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch08#ch08
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch01#ch01
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch02#ch02
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch03#ch03
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch04#ch04

developer using the Common Information Model (CIM). The chapter also covers in detail how all
the WMI building blocks fit together. It introduces namespaces, classes, properties, qualifiers,
flavors, and associations.

Chapter 5: Developing Class Schemas

From a development point of view, a class schema is the most important place to start to use a
standard management environment to manage your own software and hardware. Chapter 5, the first
of two chapters in which we discuss this, also is applicable to system administrators who wish to
understand more about interpreting a WMI class schema (perhaps for an administration script or
simply to obtain information from a user's PC). The chapter introduces schema design by
approaching a case study from a project life-cycle perspective that discusses all the stages of the
class schema development/design and offers lots of advice and tips along the way, right through to
deployment.

Chapter 6: Method Design and Schema Class Positioning

Chapter 6 continues to develop the case study begun in Chapter 5, focusing on interpreting and
approaching subtle differences in schema design, such as whether to use a particular method or the
WMI standard mechanism to create a management object. It offers advice about looking toward
future management requirements in designing classes and their positions within the schema, on
localizing schema, and on a number of other topics.

Chapter 7: Developing Management Applications

Accessing the WMI management environment can be achieved in a number of ways. The first of
the development-oriented chapters is aimed primarily at developers who need to use C++ and the
Component Object Model (COM) to obtain and manipulate information in the management
environment. Consider this example, one of the many reasons that you might want to do this: You
need access to the management environment so that you can develop a tool, perhaps a user interface
administration console, to manage your application's configuration. The chapter contains useful and
concise code samples to demonstrate how easy it is to use WMI. It also discusses a number of
topics, including event notification, security, and accessing high-performance classes.

Chapter 8: Developing .NET Management Applications

This chapter is on a similar level to Chapter 7, but focuses on how to use the classes in the .NET
Framework using C#. The .NET Framework from Microsoft effectively is a new execution
environment for applications. C# is a new programming language, ultimately designed to leverage
developer productivity. Through the code samples, you'll see how easy the .NET Framework makes
management applications development. Virtually every class in the .NET Framework is discussed
in detail.

Chapter 9: Developing MMC Snap-ins

The Microsoft Management Console (MMC) is Microsoft's response to the need for a consistent
user interface in which administrators can find all their management tools. The facility to have a
similar look and feel across the administrative user interface and the fact that all administration
tools can be found in one place mean that MMC helps administrators move toward a lower cost of
ownership. This tutorial-style chapter follows the C++ and COM developer through each stage of

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch05#ch05
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch05#ch05
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch06#ch06
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch06#ch06
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch05#ch05
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch07#ch07
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch08#ch08
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch07#ch07
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch09#ch09

MMC snap-in development. By the end of the chapter, you will see how to use WMI to access and
manipulate Windows Services in a user interface designed for administration. One of MMC's most
powerful features is the capability to develop and extend other snap-ins to add your own
administration facilities.

Chapter 10: Developing WMI Scripts for Administrators

This chapter is the first of two aimed primarily at the system administrator. It assumes that you have
very little, if any, experience in writing scripts and therefore starts at the beginning. It introduces the
tools available for system administration and progresses to the VBScript boot camp. The boot camp
introduces different types of problems you might experience and the techniques used to solve them.
It gives detailed instructions for installing the Windows Scripting Host to enable you to use the
chapter's sample scripts. By the end of the chapter, you'll learn how to develop your own scripts to
use WMI to access and manipulate the management environment.

Chapter 11: WMI Scripting and WMIC

This chapter builds on the lessons learned from Chapter 10. From a systems management
perspective (using a case study), you learn how to break down administration problems and solve
them using the scripting approach. It discusses remote script execution, because organizational
networks contain networked PCs. Windows Management Instrumentation Command-line (WMIC),
a new command-line tool that allows administrators to execute tasks and queries against the
management environment, exists in Windows XP. The chapter examines WMIC in detail and
provides a framework that would be useful for solving problems quickly using WMIC. There's also
advice on a number of topics, including how to debug scripts.

Chapter 12: Developing WMI Providers

This crucial chapter describes how software and hardware developers can write their own WMI
providers, the gateway for developers to expose their own class schema. The chapter assumes that
you have development skills in C++ and COM. It covers virtually all of the many types of providers
that can be developed. The chapter implements a very simple fruit basket WMI instance provider in
the beginning and progresses to method, event, permanent event consumer, property, and push
providers. This chapter provides a solid grounding in developing WMI providers. The source code
accompanying the book contains a WMI provider ATL-like framework for accelerating your
provider development, although the chapter does not explicitly discuss it.

Chapter 13: High-Performance Instrumentation

Finally, the book covers event tracing, a very little-known subject of the WMI toolset. Event tracing
is a powerful and high-performance method of instrumenting applications. It allows applications to
expose very detailed information about an operation or task. The operating system uses this
technology to expose activity in the Windows kernel, security subsystems, and numerous other
subsystems.

Where Can I Find the Sample Source Code and Scripts?

All the source code and scripts can be found at http://www.wbem.co.uk/, the Web site that
accompanies the book. This includes the MOF files, Visual C++ 6.0 projects, Visual Studio .NET
projects, and the VB Scripts. The projects for the sample code from Chapters 7 and 8 contain many

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch10#ch10
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch11#ch11
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch10#ch10
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch12#ch12
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch13#ch13
http://www.wbem.co.uk/
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch07#ch07
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch08#ch08

more short functions to demonstrate various aspects of accessing WMI. Check the sample projects
if you're not sure how to do something that is not explicitly covered by the chapters.

Glossary

New terms and acronyms are introduced throughout the book. The glossary summarizes these at the
end of the book.

Acknowledgments
Craig Tunstall

Writing this book has certainly been in equal parts both challenging and rewarding. The book was
started in the early days of WMI's deployment when it was available only as an optional add-on for
the Windows operating system. Since these early beginnings WMI has become an integral part of
the Windows operating system, though sadly not yet an integral part of many companies' enterprise
management solution. Both Gwyn and I feel that the world's desktops and networks would be better
and more highly managed if WMI received the widespread adoption it deserves. It is my hope that
this book goes some way toward encouraging such adoption.

I would first like to thank my parents, Christine and George, for their unfailing support,
encouragement, and belief in my abilities. I am indebted to my brother Ryan for without his
support, technical feedback, and encouragement this book probably would not have been written.

I would like to thank Gwyn for his enthusiasm, doing such an excellent job on his chapters, working
so hard, and providing a great sounding board for ideas. I would also like to thank Mark Priestley
and the Cavendish School of Computer Science at Westminster University, London, England, for
allowing me to introduce WMI to their students.

I would also like to thank the people who have collectively inspired, motivated, and supported me
throughout the production of the book.

Many thanks go to "Doc" Robinson for inspiring me to embrace academia and being a good friend.
I would like to thank Kit Ruparel and Gary Clarke for encouraging me in the early days. Thanks
also go to all of the reviewers, including Spencer Sturgeon, James Edelen, and Patrick Thompson,
for providing such concise feedback. A very big thank you is also owed to the people at Addison
Wesley, especially Stephane Thomas for being so supportive and patient throughout this project.

My grateful thanks go to Professor Mark d'Inverno, Professor Steve Winter, and Visiting Professor
Mike Luck for their encouragement, support, and enthusiasm.

Finally, I would like to thank Geoff Woods for consistently providing a thought-provoking forum
for lively debate; Ian Gallacher for his support, friendship, and sardonic wit; and Muiris, Dewi, and
family for their kindness and hospitality.

Gwyn Cole

One day Simon Robinson said to me, "Are you interested in coauthoring a book on WMI?"
Overwhelmed by the prospect, I said yes. A few days later I spoke with Craig and we agreed to go
ahead with what we hope to be an excellent and comprehensive discussion about developing
systems management solutions with WMI. So thanks to Simon for getting Craig and me together
and thanks to Craig (who had already completed six chapters) for getting me involved. It's been
such an excellent opportunity for me to share my knowledge of WMI with the wider world.

Writing a book like this takes a long time, so I would like to thank all my friends and family for
being patient. I haven't been around most of the time and have seen very little of you guys. In
particular, thanks to my parents. You have always encouraged me to further my horizons and have
provided me with the support I need. Thanks to my brother Steven and his wife, Joanne, for
providing me a way to escape every now again. It was very welcome to have a chat, a few beers,
and a laugh. Thanks to my friends who haven't seen much of me while I've been writing this book:
Mike G., Darryl, Danny, Scott, Beth, Adam, Graham, Nick, Phil, Christophe, Mike M., Mark S.,
Mark D., and Mark L. In addition, thanks to David and Anna Morley and family who have allowed
me to chill out at their place in the south of France every now and again.

A special thanks to the technical reviewers who gave me valuable feedback on my chapters: Patrick
Thompson, Andy Cheung, and Paul Westcott.

Thanks to the staff at Addison Wesley for getting the book through production on a tight schedule,
and especially to our editor, Stephane Thomas.

During my college and university years (a while ago now), one lecturer and friend took it upon
himself to encourage and guide me in the right direction. Although Brendan Riordan hasn't had any
direct input to this book, I would like to thank him for his inspiration.

Finally, a quick thanks to the great software engineers that I work with. Although you may not
know it, you've been very helpful to me in bouncing ideas around. Your questions often caused me
to go back and research specific aspects of systems management and WMI. Thanks to the Avaya
Unified Messenger development team and, in particular, Andy McMullan, Charles Cook, Michael
Wilson, Gareth Eley, and Paul Arnold. Also, a little thank you to Mark Coxon for helping me clear
my head with a couple of beers on the occasional Thursday night and thanks to Kim and Paula who
supplied the beer at Bar Yello.

Chapter 1. Introduction
Welcome to the world of Web-Based Enterprise Management (WBEM) and Windows Management
Instrumentation (WMI). The WBEM initiative and Microsoft's implementation of it represent an
improved and more complete approach to management of the Information Technology (IT)
corporate enterprise. The following chapters will introduce you to enterprise management from the
point of view of a software engineer, network administrator, or team leader. In studying this book
you will learn not only the rationale behind using WMI for systems management but also, more
importantly, how to make use of the tools it provides for the Windows operating system (OS),
including Windows XP and the .NET architecture.

The book is structured to provide you with a reference for your future WMI management
requirements. It is not a "beginners only" book, but more of a graduated path to enterprise

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/gloss#gloss58

management development. Throughout the book, we explore some existing management
frameworks and how they interact with WMI. Obviously, it is not possible within this book to
explore every legacy systems management technology and also go into great depth about the
WBEM initiative. However, we have selected a number of technologies that you currently will find
in the enterprise.

The book is arranged into chapters that cover the following topics:

• Why WBEM represents an evolutionary step for enterprise management
• How this initiative differs from past management frameworks
• How to write code for WMI
• How to write administrative scripts for this environment

We first explore the WBEM initiative and its model for managing enterprise systems. We then take
a look at the expertise behind its development and its rationale. We examine Microsoft's WMI. A
large percentage of the book discusses WMI's structure and the implementation of code based upon
it.

In the book, we use the term "WBEM" to refer to the conceptual enterprise management framework
defined by the Distributed Management Task Force (DMTF). We use the term "WMI" to refer to
the implementation of WBEM for the Windows operating system.

Structure of the Book
One of the most daunting tasks of writing this book was deciding how and in what order to
introduce all of the major concepts. The WBEM framework pulls together many different
technologies to achieve its goals and integrates with a number of existing management frameworks.
Understanding the relationships between these technologies is the key to understanding the WBEM
framework fully. In this first chapter we discuss the background of WBEM and introduce many of
the relevant technologies. We also introduce the organizations responsible for developing new
technologies for management and the World Wide Web, because this will help you develop a fuller
picture of the WBEM initiative. The first four chapters describe WBEM and enterprise management
in detail, as this is where all implementations, including Microsoft's WMI, draw their inspiration.
We also compare the DMTF's WBEM specification and its Microsoft implementation. Chapters 2
and 3 concentrate on defining the relationship between the technologies and their use in the
enterprise. Chapter 4 discusses Microsoft's extended schema, Win32. Chapters 5 and 6 examine in
depth the issues raised in designing your own extensions for the schema. Chapter 7 provides a
detailed introduction and overview for software developers who wish to write management
applications. Chapter 8 concentrates on the issues of writing code for .NET management
applications, and Chapter 9 covers writing code for the Microsoft Management Console. Chapter 10
is the first of two chapters dedicated to addressing the needs of administrators who wish to use
WMI. It introduces the basics of scripting in the form of a VBScript boot camp and provides the
reader with a series of examples for performing common administrative tasks in WMI. Chapter 11
examines how to write your own script for WMI and also takes a detailed look at the Windows XP
tool, WMIC. You don't have to be a programmer to understand this chapter, because basic use of
log-in scripts and batch files will be sufficient experience for you to start learning to write WMI
scripts. Chapter 12 introduces you to one of the most powerful aspects of Microsoft WMI: the
capability for developers to expose their own managed objects through a provider. Chapter 13 looks

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch02#ch02
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch03#ch03
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch04#ch04
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch05#ch05
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch06#ch06
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch07#ch07
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch08#ch08
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch09#ch09
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch10#ch10
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch11#ch11
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch12#ch12
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch13#ch13

at high-performance instrumentation and how it can be used to provide detailed trace information
and techniques to monitor system usage.

As mentioned previously, the Windows OS, which includes all variants of Windows from version
9x to Windows XP and Windows .NET, is our chosen operating system. Where relevant, we also
highlight any issues specific to writing code for each platform, especially those surrounding
Windows XP and the .NET architecture.

Pedagogical Elements
Our experience of learning new technologies has taught us that one of the main problems
developers encounter is making a quick connection between the concepts upon which the
technology is based and a practical implementation of code based around it. This book is written
with that objective in mind, and we aim to allow you to make the jump from conceptual schema to
practical example in as few steps as possible. To make this jump, it is necessary to take the time to
learn the WBEM framework. This, however, will pay off when you are required to apply your
knowledge of WBEM to real problems in the work environment. From a network administrator's
point of view, this approach also makes sense, as it will prove invaluable to know as much as you
can about the structure and purpose of WBEM, both to roll out WBEM compliant systems and to
support them.

We avoid making abstract references in the text to what is already a conceptual framework, because
this slows down learning. Instead, to speed up the cognitive process, we use real-world examples.

Target Audience
The book aims to satisfy the needs of the following people wishing to learn more about WBMI and
WMI:

• Visual C++ software engineers who wish to develop management applications and expose
management objects from their applications

• Visual Studio .NET software engineers who wish to develop .NET management applications
using the .NET Framework

• Software team leaders who wish to learn of the impact of the new management model on
development

• Systems administrators who wish to gain new skills (WMI Scripting and WMIC) and
improve their administrative skills

Some readers may not have written management applications before; the book aims to provide them
with some insight into what issues need to be addressed and which technologies are available. The
book also caters to the needs of other developers who may be familiar with management
frameworks such as Simple Network Management Protocol (SNMP) and Desktop Management
Interface (DMI) and builds upon their existing knowledge to introduce them to WMI.

Prerequisites
Throughout the book we deal with the object-orientated paradigm. We provide introductions and
tutorials for new subjects or concepts as they occur throughout the book so that readers new to this
area may grasp the essence of what is written; however, you will obviously be at an advantage if
you've encountered this topic before. The same can be said for the diagrams that use the Unified
Modeling Language (UML), but we will explain these as they occur.

The chapters that contain C++ code written using the Microsoft WMI Software Development Kit
(SDK) require you to be familiar with the Microsoft Developer Studio and Microsoft Visual C++
6.0 as a minimum. Chapter 8 ("Writing .NET Management Applications") also requires that you
have the .NET framework installed. Because the WMI framework uses code that is based upon the
Component Object Model (COM), you will also be at an advantage if you are familiar with
Distributed Component Object Model (DCOM). If you have never before worked with
COM/DCOM, you will find that we explain enough for you to understand the examples and to help
you to write your own WMI code. If you wish to delve further into COM, we recommend that you
read one of the excellent books available, such as Essential COM by Don Box.

Although not essential, it would be advantageous to have a basic knowledge of some existing
systems management tools, protocols, and client-server networking. If you are familiar with
management frameworks such as DMI and SNMP, you can skip the sections dedicated to
explaining them. We introduce these topics as they occur during the course of the book.

Terminology
In the first few chapters of the book, you will encounter many new acronyms and concepts that
pertain to WMI and systems management in general. We define new terms as they are mentioned
and introduce some common terms at the end of this chapter.

Software Requirements
The system requirements for developing the samples are much the same as those required for
installing and running the Visual C++ Developer Studio environment. All code examples included
in the book are written using Visual C++ Developer Studio and/or Visual Studio .NET.

To work with the examples given in the book, you will need the following software installed on
your system:

WMI VC++ Developer examples:

Microsoft Visual C++ 6.0 and/or Microsoft Visual Studio .NET

WMI Scripting Administration examples:

Microsoft Windows Scripting Host (WSH), included with Windows 98.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch08#ch08
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch08#ch08

General:

Microsoft Internet Explorer 4.01 and higher

Microsoft WMI SDK [download by going to the Microsoft Web site at
http://msdn.microsoft.com and typing WMI SDK in the search facility]

The bulk of the book covers Microsoft's implementation of the WBEM initiative, WMI. We take a
look at the Microsoft WMI framework and how it interacts with Windows. The WMI framework is
shipped as standard with Microsoft Windows 2000, Microsoft Windows XP, and Microsoft
Windows .NET server, but users of Microsoft Windows 95/98 or Microsoft Windows NT4 must
install the core or Software Development Kit (SDK) before working with the examples we provide.

Operating System Requirements
To develop the examples in the book, you will need a machine with a WMI SDK–supported
operating system. Table 1.1 highlights the operating systems that are supported by the WMI SDK.

Table 1.1. WMI-Supported Operating Systems Required

Operating System Required

Microsoft® Windows NT® version 4.0 Service Pack 3 or higher

Microsoft Windows 95® OSR2

Microsoft Windows 98®

Microsoft Windows Me®

Microsoft Windows .NET Server®

Microsoft Windows 2000 Professional and Server®

Microsoft Windows XP Professional and Server®

Microsoft Internet Explorer 4.01 or later is also required and can be downloaded at no cost from the
Microsoft Web site at http://www.microsoft.com/ie.

Microsoft's WMI SDK contains a collection of ActiveX components that are an invaluable tool for
both developers and administrators who wish to gain a better understanding of WMI and the data it
provides. The SDK also includes a vast collection of code samples for programmers and
administrators. These are installed as part of the WMI SDK under the %/Program
files/WMI/Samples directory.

Hardware Requirements
The hardware requirements for working with WMI are much the same as those for developing
software with Visual C++. The examples given in the book are designed to work with the Visual

http://msdn.microsoft.com/
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch01table01
http://www.microsoft.com/ie

C++ environment, but they could be altered to work with other C++ compilers with minor
modifications. The minimum computer configuration depends largely upon the Microsoft operating
system used.

Introducing WBEM
Having examined the basic order of the book and the requirements for developing the examples, we
introduce the source of WMI's inspiration, the Web-Based Enterprise Management initiative. By
understanding the purpose of WBEM, we can begin to understand what part WMI plays in
enterprise systems management and how it aims to provide the most comprehensive management
architecture currently available for the enterprise.

WBEM's Basic Objectives
The aim of the WBEM initiative was to produce an industry-wide standard for managing enterprise
systems across heterogeneous networks. Once defined, this standard could enable management of
different types of hardware and operating systems across an enterprise network. "Enterprise" refers
to the type of networks, computers, and software that support a large business organization. The
term typically refers to a large number of systems, connected by multiple Local Area Networks
(LANs) and Wide Area Networks (WANs), and, potentially, many sites. Managing these systems
has become over the years a complex and costly affair. You will see how the WBEM initiative is
designed to reduce administration and management overheads.

Core Objectives
The basic premises of Web-Based Enterprise Management can be defined as follows:

• To define a model for representing and classifying enterprise-wide management information
• To provide a way to share that information among various parties across heterogeneous

networks
• To remain independent of any proprietary operating system or network architecture

The Central Information Store
At the heart of the WBEM framework is an information model for managing data in a logical and
consistent manner. This centralized information model was one of the primary goals of the WBEM
initiative; while learning about the initiative, you will learn how WBEM uses the object-oriented
paradigm (model) to structure this model. It also adopts XML (eXtensible Markup Language) to
communicate this management information in a platform-independent manner. All of these
objectives are designed to overcome the shortfalls of existing management frameworks and make
WBEM one of the most comprehensive enterprise management solutions. As mentioned earlier,

Windows 95/98, Me, NT, 2000, XP, and .NET all utilize these core concepts in WMI and provide
access to a single source of detailed system information.

The Common Information Model
The WBEM information model mentioned earlier, the Common Information Model (CIM) is
referred to as "common" because it focuses on common aspects found in every enterprise.
Specialization of the CIM occurs in the form of extended schemas that are defined by vendors who
wish to represent the managed environment of their hardware and software products. Before
covering the concept of extended schemas, let's look a little closer at the CIM. The CIM represents
a way of storing all enterprise management system information so that it is accessible by all
WBEM-compliant systems. The CIM was designed using the object-oriented paradigm.

Object Orientation and CIM
Despite a slow takeoff since its introduction in 1967 in the Simula programming language, the
object-oriented paradigm has received a great deal of attention in recent years. Largely, this has
been because of the introduction and subsequent widespread popularity of C++, the object-oriented
version of C. It was the popularity of C++ that really enabled object orientation to gain a worldwide
audience. It quickly became known as the new panacea for analysis, design, and implementation of
large or complex systems. Whether this is indeed true may depend upon your personal experiences
and objectives, but when initially introduced, object orientation did represent a radical departure
from structured methods (in which data and function were separate) and mathematical methods or
knowledge-based systems. It is still one of the best approaches to systems development.

The object-oriented paradigm's strengths over traditional approaches included better representation
of concepts and a more flexible and complete view of the world. Object orientation could be
applied, using objects and classes, to analysis (OOA), design (OOD), and programming (OOP) of
complex systems. It also provided an extensible architecture that enabled changes to a system to be
implemented more quickly and easily. It is this characteristic of OO that provides the key to the
CIM's extensible model. This extensibility allows the CIM to be tailored to represent a particular
vendor's hardware or software product.

Building an Information Model
WBEM's core concept, the CIM is founded upon concepts introduced by the object-oriented
paradigm. The CIM is WBEM's central information model and is designed so that it can describe all
of the hardware, software, and network information found in an enterprise. The information it can
represent is useful to management applications administrators and, ultimately, to system
administrators. It may help you to imagine the CIM as a blueprint for an information store that
contains all the information relevant to a system, but it is not the actual store. The CIM is structured
as a series of classes that hold the data (properties), behavior (methods), and inheritance
characteristics (parents, or recursive structure and behavior) of the managed objects. In addition, it
contains special classes unique to the CIM schema that represent associations between classes. We

discuss these in more detail in a later chapter. A managed object, referred to as a management
object in .NET (for the purpose of our discussion we shall use the two terms interchangeably), is a
generic term for the software/hardware components on a WBEM-managed network or computer.

Structure of the Centralized Repository
The relationship between the CIM and object orientation means, in plain English, that the CIM
arranges management information into many different categories. Each category defines a specific
type of managed object in the enterprise, such as a network card, log in account or network
protocol, and so forth. Each of these specific categories can inherit a lot of information from parent
categories. The category that defines a hard disk, for example, would contain the properties that
define the disk, such as its size, make, and model. The class may also inherit more general
properties from its parent classes such as its device id, which uniquely identifies the device on the
system (that is, its hardware base address). The categories would also define the behavior (methods)
of the disk. They could define, for example, the type of tasks that the disk is able to perform, such
as Reset or PowerSave mode, and so forth. These categories are referred to within the CIM as
classes. A class, as defined in the CIM, consists of properties and methods that an object supports.
Each disk on a WBEM compliant system can create an instance of the class disk, filling in its own
details. An instance is an actual data representation of values for each of the properties of the class.

In WMI these classes and instances could be stored in the CIM repository so that any application
wishing to know about which disks are available (instance data) and what their properties are (class
information) could access it. (This information could be stored and retrieved in other ways using
instance and class providers, but we leave these for later in our discussion.)

In later chapters we refer to schema. A schema is defined by the DMTF as "a group of classes with
a single owner." The CIM schema is not an actual implementation of the structure for storing
enterprise management data. It can be imagined instead as more of a template from which the data
store can be designed. Implementations of the CIM schema and extended schema are referred to as
the CIM repository. In most cases, you will find that the CIM repository is a means to store class
(and, if necessary, static instance) information.The base classes of CIM define very general
characteristics of items found in the enterprise that build in detail with each step further down the
hierarchy. The extended schema build upon these generalizations and define an actual (or an aspect
of a) managed environment. The Win32 extended schema that defines the Windows operating
system is an example.The DMTF defines two models that consist of a number of classes that
represent the basic managed elements in the enterprise. These are the core model and the common
model and are collectively referred to as the CIM schema. The CIM schema is device independent
because it does not represent a particular environment and contains elements that are general to all.

Figure 1.1. Inheritance and the difference between class and instance data

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/gloss#gloss30
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/gloss#gloss34
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/gloss#gloss34
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/gloss#gloss25
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/gloss#gloss50

Before we look at the implementations of schemas, it is worth looking at the definition of an object
as defined by Grady Booch [1994, 83]:

An object has state, behavior, and identity; the structure and behavior of similar
objects are defined in their common class; the terms instance and object are
interchangeable.[1]

[1] Grady Booch (1994). Object-Oriented Analysis and Design with Applications, 2nd ed. Addison Wesley
Longman.

This definition holds true for objects instantiated in the CIM schema.

Inheritance can be defined as the relationship between classes. Classes inherit information from
parent classes, which can pass down their methods and properties. A class that does not have a
parent is the root class.

The Three-Tiered Model
The DMTF has applied the object-oriented methodology to the information found in a typical
managed environment and developed CIM into a multilayered model capable of storing
management information. It defines three layers to describe the managed environment (see Figure
1.2).

Figure 1.2. The Common Information Model has three tiers

The core model (2.4 is the latest version at the time of this writing) is very general and contains a
small number of classes, associations, and properties that are relevant to all areas of management. It
is a starting point from which to extend the common model. The common model is a collection of
models that represent five distinct management domains:

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch01fn01
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch01fig02
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch01fig02

• Systems

• Applications
• Networks
• Devices
• Users

We describe the semantics of each domain in later chapters; however, the five distinct areas
(management domains) are interrelated by associations and subclassing and are built on top of the
core model. These five domains are broken further into classes that represent specific aspects of
each.

The specialization of the common model is created by a series of extended schemas that are
submitted by individual vendors. Microsoft has created Win32, a schema that models their
Windows operating system environment. We take a closer look at Win32 and the three layers of
CIM in later chapters.

Recall that we defined managed objects as hardware or software components such as network
cards, disk drives, network routers, or gateways. Enterprise management is effectively the
discovery, control, and monitoring of these components (such as desktop PCs and their
components, network components, and so forth) across LANs and WANs and even the Internet.

Although the preceding points represent a cursory evaluation of the basic aspects of enterprise
management, they also represent the basis of the WBEM initiative. Over the course of the next
chapters we hope to familiarize you quickly with these core concepts and bring you up to date with
the history and rationale behind WBEM. Some of the technologies we discuss in detail in the
coming chapters, such as the CIM, were designed specifically for WBEM, and some, such as
COM/DCOM, have been designed by other organizations to address implementation-specific
issues. We also cover some legacy management frameworks, such as the Simple Network
Management Protocol (SNMP), that have been in existence for many years. When we have looked
at the history and design, we hope to teach you to write code that will enable you quickly to begin
to write professional management applications.

Acronyms and Terminology
Learning some of the more important acronyms and concepts that you will find throughout the rest
of the book may speed your understanding of the following chapters. Many of the terms bear a
relationship to standards bodies, so before examining them, let's have a look at some standards
bodies and the reasons that they exist.

Standards Bodies
Standards bodies exist to govern the development of standards. A standard can be defined as "a
documented agreement that contains precise criteria that are used consistently." These criteria
include rules, definitions, or guidelines. The members of a standards body ideally must be
governmental, industry, or academic leaders within the field that they wish to standardize.

Motivation
Why do we need standards bodies? Java encountered problems because Sun Microsystems and
Microsoft, commercially opposed companies, would not adhere to a single standard. Standards
bodies are intended to remove commercial interests from the development of standards and act as
neutral forums for discussion. They provide an environment in which ideas can be exchanged,
developed, and, in the final instance, agreed upon and published as a standard. The result of not
developing a standard within an open forum can lead to situations, as with Java, in which
inconsistencies occur between different vendors' implementations (for example, HTML).

De Facto and de Jure Standards
Two different types of standards, de facto and de jure, exist in industry. De facto standards are
driven by market forces and exist without formal ratification by a standards body. "Driven by
market forces" means that a product or way of doing something has become the most commonly
used and widespread within a given field. It is called the de facto standard by virtue of its
popularity. Obviously, large companies who release a product would all like to define the de facto
standard for that product. Problems arise when no clear market leader emerges and multiple
standards exist for the same product, leading to product inconsistencies and incompatibilities
between rival brands. An example is the use of slightly different mechanisms to achieve similar
goals by Microsoft and Netscape in their HTML extensions. The effects of differences in
implementation can polarize a market, which normally restricts the users' choices and is not
generally good for market growth. Such situations can occur when the market is populated by
several large product vendors, like Microsoft and Netscape, each of which holds large market
shares.

The second type of standard exists to avoid such complications and open the market to competition
based upon value-added products. De jure standards are official standards developed by standards
bodies. The literal translation of de jure from Latin is "exists in law." Here, this law is defined and
upheld by the standards bodies. De jure standards are developed so that they may be adopted and
followed by industry as a whole. De jure standards are not open to interpretation by individual
vendors: Vendors therefore must adhere to the specifications of the de jure standard. A concept can
conform to the standards defined in a de jure standard and also become, by virtue of its popularity, a
de facto standard. SNMP is an example of this.

To prevent multiple vendor-dependent implementations of a standard, we turn to a standards body
to develop a single universal standard. One of the largest and most internationally renowned
standards bodies is the International Organization for Standardization or ISO. (ISO, happily, means
"equal" in Greek.) The secret to the success of ISO is its membership. ISO is an umbrella
organization for 130 national standards bodies such as the American National Standards Institute
(ANSI) and the British Standards Institute (BSI). Each national standards body within ISO
represents the interests of its own country. A standard that has been endorsed by ISO has been
evaluated and accepted by everyone in the membership, thus giving it global acceptance. To date,
ISO has defined thousands of standards covering nearly all areas of technology, including, for
example, the software engineering quality standard ISO9001.

ISO is perhaps the most universally well-known organization of its type in the world. Within the
Internet also are standards bodies that define technologies specific to the Internet. One such body,
the Internet Engineering Task Force (IETF), oversees "the evolution of the Internet architecture and
smooth operation of the Internet." It has been responsible for defining hundreds of standards for the
protocols that proliferate across the Internet.

Submitting a proposal to ISO or the IETF can ensure widespread acceptance of a given standard and
also ensure that everybody develops products that conform to that single standard. The choice of
standards body to which to submit a standard depends largely on your chosen audience. Obviously,
Internet standards are better ratified by a body specifically set up for Internet-related issues. Part of
the CIM specification, the Directory Enabled Networks (DEN) specification, has been submitted to
ISO with the aim of gaining worldwide acceptance. We shall discuss the implications of this upon
DEN in a later chapter.

The objective of most bodies is to publish standards to which the wider community can adhere.
These groups are in place to oversee the development of standards and have no bias toward a
particular vendor. They generally organize themselves into working groups to tackle a particular
subject and are guided by a board. This structure is used by the Distributed Management Task Force
(DMTF), the standards body industry equivalent to the IETF.

The Distributed Management Task Force (DMTF)
The difference between the DMTF and the IETF is that the DMTF membership consists exclusively
of industry leaders with an interest in developing standards for their product marketplace. The
DMTF initially concerned itself with standards pertaining to personal computer desktop
management, but since being handed the WBEM initiative, they also encompass the enterprise.

The DMTF consortium was founded in May 1992 by a cooperative of eight companies: Digital
Equipment Corporation, Hewlett-Packard, IBM, Intel, Microsoft, Novell, SunSoft, and SynOptics.
It now comprises more than 200 commercial technology industry providers whose aim was to work
together to develop standards for the maintenance, support, and development of management
standards for PC products.

The fees paid by its members support the DMTF. Its vast industry support means that any
provisional standards received are viewed internally by a variety of industry-aware sources. After
the review process, they are able to suggest revisions to the standard or to endorse it. History has
shown that without such an open forum for discussion, industry standards are very hard to secure,
leading to different versions of the same standard. This kind of fragmentation is rarely in the
interest of the consumer and, in most cases, impedes market progress.

Members of the DMTF include the original team that worked on the initial WBEM initiative before
its handover; Microsoft is one of them. Board members of the DMTF include other such giants as
IBM/Tivoli Systems, Inc., Novell, and Symantec Corporation. This large volume of contributors
gives the DMTF a huge amount of resources and an invaluable amount of expertise.

The DMTF is broken into Technical Development Committees (TDC). Each committee is given a
charter—a list of objectives that the team must meet. The CIM TDC's charter is to define a common
information model based on object-oriented technologies for use in Web-based management. The
TDCs are broken into working groups, each with a charter that explains the objective of the group.

For an idea of the diversity of information that CIM holds, examine Figure 1.3, which shows the
working groups and their charters in the CIM TDC.

Figure 1.3. The DMTF working groups

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch01fig03

The WBEM initiative was designed to integrate existing management standards such as SNMP and
DMI. The time line in Figure 1.4 represents some key stages in the evolution of WBEM and shows
the introduction of the DMTF to the WBEM initiative.

Figure 1.4. Key stages in the evolution of the WBEM

The World Wide Web Consortium (W3C)
The World Wide Web Consortium (W3C) was founded in 1994 with the objective of developing
common protocols for the World Wide Web. The development of common protocols would enable
interoperability in the Internet, an environment that spans the globe. The W3C is an international
industry consortium jointly hosted by three academic institutions: the MIT Laboratory for
Computer Science in the USA, INRIA[2] in Europe, and Keio University in Japan. Its large
membership includes diverse companies such as Lucent Technologies, the British Broadcasting
Corporation, America Online, Inc., and American Express.

[2] Institut National de Recherche en Informatique et Automatique

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch01fig04
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch01fn02

Web-Based Enterprise Management (WBEM)
The WBEM initiative is based upon a set of management and Internet standard technologies
developed to unify the management of enterprise computing environments. Launched in 1996, its
aims were to develop an industry standard to allow administrators to use any Web technologies to
manage disparate systems, networks, and applications. WBEM is not a standard in itself: It is an
initiative that ties together existing standards with new technologies such as CIM and XML. (XML
and HTTP are two standards developed by the W3C that are of particular interest to us with respect
to WBEM.)

Windows Management Instrumentation (WMI)
The WMI, Microsoft's WBEM-compliant implementation, is a complete management infrastructure
for the Windows operating systems. It integrates WBEM's concept of a common information model
for management information into the Windows management framework.

WMI provides an application programming interface (API) for developers to access and submit data
to this central data store. It provides the capability to write simple scripts that can also perform
complex management tasks through the WMI scripting API. WMI also provides administrators with
a powerful remote administration tool that is capable of managing objects anywhere on an
enterprise network. The WMI framework caters for management applications that need to be
notified of events and managed objects that may need to notify a management application of that
event. It adds WMI code to the Windows Driver Model (WDM) to enable managed objects to
communicate with WMI from the driver level.

WMI offers a powerful set of services, including query-based information retrieval and event
notification. We shall explore WMI in detail in coming chapters.

Common Information Model (CIM)
The CIM defines a model that represents the manageable elements of the enterprise. It is a core
concept of the WBEM initiative and was defined by the DMTF. CIM also defines Managed Object
Format (MOF) files, a file format to represent classes and instances of that data.

Common Information Model (CIM) Repository
The CIM repository is the store that holds enterprise management information. It uses the CIM as a
template for structuring the data held in the repository, and it is implementation specific.

Managed Object Format (MOF)
The MOF is used to define the structure and contents of the CIM schema in human- and machine-
readable form. A MOF text file describes the class or instances of one or many managed objects.
The information held in the MOF can then be imported into the CIM repository. Plain text MOF
files can be read using a normal text view, such as Windows Notepad. We shall examine some
examples of MOF files and their structure in later chapters.

Simple Network Management Protocol (SNMP)
The SNMP is an open network management protocol designed to monitor and control network
components such as servers, gateways, and routers. SNMP is an Internet standard defined by the
IETF and is part of the TCP/IP suite of protocols. It was developed to transmit management
information stored in a repository called a management information base or MIB. MIBs are
managed by SNMP agents and reside on each of the managed objects such as the server or router.
Management stations issue queries to these agents across the network for system information.
SNMP agent software commonly is found integrated into popular brands of dedicated network
hardware such as routers.

SNMP is formally specified in a series of requests for comments (RFCs) submitted to the IETF.
Requests for comments are documents written about computing or computer communications that
usually refer to networking protocols, programs, concepts, or procedures. They can be written by
anybody and may be submitted directly to either the IETF or the RFC editor. They are not accepted
as a standard until they have been thoroughly reviewed and evaluated by the IETF, which then
releases them to the community at large as an RFC.

SNMP was defined formally in RFC 1157 in May 1990 and is used commonly in enterprise
networks to manage network components. In Chapter 2 we shall cover the SNMP management
framework and how it compares with the Microsoft WMI framework.

Common Management Information Services (CMIS)
The CMIS framework defines a set of messages and their structure and content for use with network
management. It also defines intelligent agents that reside upon the managed object. It is similar in
concept to SNMP but provides more functionality. This increased functionality has led to its being
somewhat more complex, which in turn means that it generates a greater overhead on system
resources. This is one of the reasons that it is less commonly found in the enterprise. A second
reason for its notable absence as a widespread industry standard is that it is designed to run over the
Open Standards Interconnect (OSI) network protocol stack, which also is not found commonly in
the enterprise. CMIS uses the Common Management Information Protocol to send information
across the network.

Common Management Information Protocol (CMIP)

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch02#ch02

Common Management Information Protocol (CMIP) is part of the OSI body of standards that
defines operations and notification services described in the CMIS standard.

CMIS/CMIP are mentioned here for historical reasons rather than for their relevance to our
discussion. Their lack of uptake within industry means that they are unlikely to be encountered by a
developer or an administrator—we have never worked anywhere they are used or met anyone who
has. The focus of this book is on the typical aspects of corporate enterprise management and
CMIS/CMIP, therefore, will not be mentioned further.

Desktop Management Interface (DMI)
The DMI acts as a layer of abstraction between administrators or managers and vendors. It separates
those who need to manipulate information from a multitude of products and from the vendors of
these products who wish to provide their own unique functionality.

The DMI is developed, maintained, and revised by the DMTF. Whereas the SNMP provided a
framework for managing components across a network, the DMI provides a framework based upon
managing the components on the desktop.

The DMI is

• Independent of a specific computer or operating system
• Independent of a specific management protocol
• Easy for vendors to adopt
• Useable locally—no network required
• Useable remotely using DCE/RPC, ONC/RPC, or TI/RPC
• Mappable to existing management protocols (for example, CMIP or SNMP)

We shall cover DMI in greater detail in Chapter 2.

eXtensible Markup Language (XML)
eXtensible Markup Language (XML) is fast becoming another key industry standard. The XML
language is a subset of Standard Generalized Mark-up Language (SGML) and is targeted at data
representation. It has been adopted by the DMTF as a means of representing the information stored
in CIM across networks. If, for example, we were working in a Windows environment, XML could
be imagined as the common language with which a Windows WMI management application would
communicate CIM management information to a non-Windows WBEM-compliant management
application (such as a Hewlett-Packard UNIX server).

Hypertext Transfer Protocol (HTTP)

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch02#ch02

Hypertext Transfer Protocol (HTTP) is one of the underlying protocols capable of transmitting
XML-managed information. You probably know it to be the transport protocol used to send HTML.
For now, all you need to know is that it is a very simple protocol that is understood by nearly all
networked platforms (especially those that use Web browser technology) and so is potentially of
great use in cross-platform communication.

Extended Schemas
The DMTF designed the CIM with extensibility in mind: The extended schemas are a specialization
of the common and core models of CIM. Vendors who wish to instrument their products have the
option to extend the common model to represent their environments. The new extension classes are
either derived from or added alongside existing classes. These extensions then are released to the
world community with the vendor's product. Microsoft, for example, has released its Win32
extended schema as part of Windows. We shall take a look at the Win32 extended schema and how
it models the Windows environment in coming chapters.

WMI Scripting
For many years, systems administration has been a reactive (crisis-driven) process in which errors
were dealt with only when the customer reported a fault. WMI provides a positive step towards
proactive systems administration that enables intelligent decisions to be made before the customer
is aware of a fault. WMI scripting is an API for accessing the WMI infrastructure. Developers or
administrators can use the Windows Scripting Host (WSH) or Microsoft Internet Explorer (IE) to
run their tailor-written scripts. WMI scripting provides a level of control over a network and its
components never before known by systems administrators. WMI scripts can be written to monitor
any WBEM-compliant hardware or software component and to react to changes in a managed
objects state to preempt failure.

Chapter 10 discusses WMI scripting in detail and may also prove valuable reading for developers,
as it provides an insight into the role of the system administrator (who most probably will be using
the code you write). We shall discuss the merits of using both the WSH and IE in this chapter.

Summary
During this chapter we have introduced and discussed the DMTF's initiative Web-Based Enterprise
Management (WBEM). The Web-based component of the initiative refers to the World Wide Web
(or Internet), which is the world's largest and most diverse network. It also refers to Web browser
and related technology such as ActiveX and Java. We shall look at their use as administrative tools
for the enterprise in future chapters. But why use Web technologies? Mainly, we use them because
they are freely available for most operating systems and are platform independent. Thus, the DMTF
stays true to its goal of not binding its standards or technology to one particular operating system or
vendor. Using this technology also provides a simple and familiar means of controlling and
administering across networks.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch10#ch10

Chapter 2 examines existing legacy management frameworks SNMP and DMI.

We end the chapter with Ten Fast Facts that sum up the basic points covered in the previous pages
to help you to remember the large number of new acronyms and the relationships among the
technologies drawn together by WBEM.

Ten Fast Facts: Web-Based Enterprise
Management

1. The WBEM initiative was originally conceived by five key industry players on
July 17th 1996:

BMC Software, Inc.: A leader in delivering Application Service
Assurance (ASA) solutions.

Cisco Systems, Inc.: A world-wide leader in networking for the
Internet.

Compaq Computer
Corporation:

A PC industry leader.

Intel Corporation: A leader in the development of microchips.

Microsoft Corporation: A leading software vendor.

2. The WBEM initiative was handed over to the DMTF on June 2, 1998, to gain a
broader base of industry acceptance.

3. The DMTF comprises more than 200 leading industry players. With the exception
of BMC Software, Inc., the board of the DMTF consists only of members of the
original initiative.

4. WMI is Microsoft's implementation of WBEM for its Windows range of operating
systems.

5. XML is maintained and developed by the W3C not the DMTF. It is the DMTF's
proposed means through which WBEM can convey CIM management information
in a standard format. It is not a communications protocol.

6. Existing popular management frameworks such as DMI and SNMP can be
integrated into WBEM/WMI.

7. The CIM and the MOF were designed specifically for the WBEM initiative. Their
development is managed by the DMTF.

8. The DMTF does not develop standards biased toward a particular vendor's
product. The standards that it defines in WBEM are targeted at the management
marketplace as a whole.

9. XML is a language designed to communicate structured information in a standard
way. One such type of information can be CIM management information. XML is
used by WBEM/WMI to convey CIM management information between WBEM-
compliant management applications, independent of operating system. For
example, a Windows XP Professional client can use XML to convey CIM-
compliant management information to a Unix client. For more information on this
topic refer to the DMTF website
(http://www.dmtf.org/standards/standard_wbem.php).

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch02#ch02
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/gloss#gloss12
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/gloss#gloss59
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/gloss#gloss66
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/gloss#gloss64
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/gloss#gloss3
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/gloss#gloss11
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/gloss#gloss39
http://www.dmtf.org/standards/standard_wbem.php

10. During the definition of WBEM, before handing over to the DMTF, the CIM was
referred to as the Hypermedia Management Schema (HMMS). The gap now filled
by XML was referred to initially as the Hypermedia Management Protocol
(HMMP). The DMTF changed these terms to CIM and XML, respectively.

Chapter 2. Existing Management Frameworks
In Chapter 1 we discussed the core concepts of the WBEM initiative and, briefly, some of the
existing enterprise management data gatherers, such as the Simple Network Management Protocol
(SNMP) and Desktop Management Interface (DMI). Chapter 2 further develops those definitions
and provides a more detailed overview of both SNMP and DMI. Although DMI is not a complete
enterprise management solution, it does play an important role in desktop management. Its
inclusion in our discussion is justified because of its popularity and because it manages one of the
most prominent components in the enterprise, the desktop computer. The same can be said for
SNMP, which manages the network-specific domain of the enterprise and has gained widespread
popularity among vendors. Consequently, it is safe to assume that you will encounter either or both
in some form in many corporate network/desktop managed environments. You can think of DMI
and SNMP as managing different parts of the whole enterprise management picture. We illustrate
them here to pave the way to introducing the general concepts behind systems management and,
subsequently, to lead to our introduction of WMI in Chapter 3. Our discussion outlines the relative
strengths and weaknesses of DMI and SNMP and highlights the ultimate need for WBEM. In
accordance with their strong market presence, both DMI and SNMP have been integrated into the
WBEM initiative to limit the cost implementing WBEM (that is, all existing management software
and component instrumentation do not have to be abandoned) and to smooth the integration
pathway between old and new technologies.

The universal acceptance of SNMP and DMI by customers and manufacturers has led to their
widespread deployment in industry. DMI's broad acceptance by personal computer manufacturers
means that management applications written to access DMI have a very good chance of being able
to predict and diagnose problems before they occur on a large cross section of hardware. If you
somehow could provide interaction between the hardware/software instrumentation provided by
DMI and the CIM repository, then you would provide access to yet another rich source of
management information. The same is true for the data collected by SNMP. Many existing network
devices, such as routers, have embedded SNMP compliance at the lowest level. These devices are
not capable of being managed easily by another protocol or framework. Failure to integrate with
these existing legacy management frameworks could prevent WBEM's widespread acceptance
across industry and lead to a slow uptake by industry.

With this in mind, the DMTF set about defining WBEM, mapping between these existing
management frameworks and paradigms. Microsoft also took this objective to heart in designing
WMI, which makes ample provision for integration with these existing management frameworks.
The focus of this chapter, therefore, is on the operation of both DMI and SNMP in relation to the
enterprise. As a software developer writing a management application, you may find much of your
effort expended on interconnecting new and old management frameworks.

As mentioned in Chapter 1, the premise of this book is to provide practical advice on WBEM. To
do that we use examples of development with Microsoft's WMI. WMI provides integration with

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch01#ch01
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch02
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch03#ch03
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch01#ch01

SNMP and DMI through a number of built-in providers. These providers ensure a layer of
abstraction between CIM and SNMP and DMI's legacy data instrumentation. We shall discuss the
concept of providers in detail in Chapter 3 and the development of your own providers in Chapter
12. By studying DMI and SNMP frameworks and the differences between them here, you will be
able to ascertain both the benefits and the complexities of switching to Microsoft's WMI
framework.

We shall examine the information models defined by DMI and SNMP to store management
information. As you will find, the WBEM initiative provides a solution that integrates (and in some
ways, ultimately replaces) these two management models.

If you are new to enterprise management, this chapter is for you. If you consider yourself an old
hand at enterprise management, then you probably can skip to the discussion of WMI in Chapter 3.

The Need for a Universal Management Model
The technological evolution of the modern day office has meant that in the past fifteen years an
effective revolution has taken place upon our desks. Although the paperless office is not yet a
widespread reality, most offices now are equipped with computers, networks, printers, and servers.
An entry-level computer is now capable of being useful for far more than simply typing letters or
entering data into a spreadsheet. It is capable of multitasking jobs, playing and recording compact
disc–quality sound, displaying digital television–quality images, or rendering high-quality 3D
graphics without the need for specialized or expensive hardware.

This revolution means that more and more personnel within a company are required to become at
least partly computer literate, which has led to growth in the size and complexity of networks and
the computers that populate them. The management complexity of individual machines and
networks has grown with their evolution in the workplace. Network administration has become a
complex task requiring knowledge of the relationships between various hardware and software
products and how they interact.

The complexity of managing these environments partly is because of the speed at which they have
grown but also because of the failure of the industry as a whole to agree on a single de facto
standard for managing the enterprise. In addition, until now no one has produced a de jure standard
to which all companies could adhere. Such a standard would help to reduce the cost of ownership
by easing the administrative process. A key objective of such an initiative would be to correlate
management data from multiple sources. Figure 2.1 shows a typical network management scenario.

Figure 2.1. A typical network management scenario

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch03#ch03
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch12#ch12
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch12#ch12
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch03#ch03
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch02fig01

Management applications, seen in Figure 2.1 running on machines A, B, and C, can gather
information from multiple sources, but the servers, routers, printers, and gateways generally mu
run tailor-made, "agent" software to communicate with the management application. Multiple
management applications may run from single or multiple machines to control and monitor multi
devices on a network, but interchange of information among them is minimal to nonexistent,
especially if they monitor information from different vendors. For example, remote administrati
of printers using the Data Link Control protocol allows status checks on network-aware printe
The management of network-aware printers typically require

st

ple

on
rs.

s a management application different
from that needed to manage the routers or servers. Because the printers use a management

stry. The point of the
examples is to demonstrate that these problems are not easily overcome using pre-WBEM
technology, NOT that they are impossible to overcome with it.

 is

n of

application and protocol different from the routers on the system, it means as well that neither
application can share its information with the other. This also means that no relationship can be
established between these managed objects on the system.

Note

The examples cited here are representative of current use in indu

For example, assume that an application running from Machine A attempts to send a document to
Printer W. The print queue is handled by and located on Server Y, which has reached full capacity
on its print queue volume (the disk partition on the server that holds the printer queue). Printer W
registered as connected to the network and ready to print, but the Server Y volume sends error
messages to users notifying them that it is full. This prevents anyone from printing, but the origi
the fault is not immediately apparent to the administrator. This is because the printer management
application is not aware of the relationship between the drive volume and the print queue and,
subsequently, cannot remedy the situation. If the system were WBEM compliant, the management
application could trigger the relevant defragmentation/purging program to reclaim wasted space
when the disk drops below 10 percent of available capacity. The management application could

then notify the administrator of the problem and notify users to forward the job to the queue of
another printer of equal capability that is not attached to the errant server. WBEM, therefore,
enables more intelligent management decisions to be made.

The point of these examples is to show that prior to WBEM it was very difficult to write enterprise
management applications that could gather information from every piece of manageable hardwar
or software in the enterprise. Products from different vendors would report management
information in different formats, each potentially using different network protocols. Even the
management information produced by printers would vary from vendor to vendor. These problem
prompted the DMTF to embark upon producing a management architecture to provide a more
complete picture of the enterprise, resulting in the WBEM initiative.

e

s

The Simple Network Management Protocol
Version 1 of the SNMP was designed in 1987 by the Internet Engineering Task Force (IETF) to
end and receive management and status information across networks. Although the name "Simple s

Network Management Protocol" suggests a network protocol (that is, a means to communicate
vices. The definition of
ose components that

connect LANs and direct information to and from adjoining networks. This definition has steadily

ation needs. (This
internetwork is not to be confused with the 1990s buzzword, the Internet, which normally is written

SN
com le
other IT d field has progressed phenomenally during the past decade, and SNMP's widespread
use has meant that the SNMP standards accordingly were revised. The most recent version of

NMP is version 3, which was ratified as a full standard in April 2002. Most current workplace
implementations of SNMP, however, are either SNMP version 1 or version 2c, because of the

cs common to those

n the two simple functions,
get and set (sometimes called the fetch-store paradigm). The get function retrieves a value from a

information), it defines an entire framework for managing internetwork de
internetwork devices today is flexible in the extreme, but initially meant th

grown with the popularity of SNMP to encompass nearly all network-related components such as
servers, routers, printers, bridges, and gateways. An internetwork is a large collection of networks
(usually LANs), connected by routers or gateways, that acts as a single network. Large businesses
normally have some form of internetwork that supports their enterprise inform

with an uppercase "I.") The SNMP framework, as we shall discover, allows administrators of an
enterprise internetwork to remotely control and monitor network-related components.

MP has undergone numerous revisions since its introduction to enable it to manage increasingly
p x networks and improve the security model. As you can imagine, networking with every

-relate

S

relative newness of the standard. Here we concentrate on the characteristi
implementations.

Note

Now that SNMP 3 has gained standardization from the IETF, we expect greater product
support for it.

A Simple Solution to a Complex Problem
The SNMP framework is called simple because its protocol is based upo

ma e vice.
The get and set functions work on a set of data stored on each SNMP agent.

To org logically separate entities. The
SN :

• gent.
•

ication
 a user-friendly front end to the

quirement
 stack is

 to define a layered

• The AppleTalk proto pple computers to
communicate.

• Novell's IPX/SPX protocol stack (RFC 1420) is commonly found on networks that have
Novell Netware servers acting as the central data store.

• The Open Systems Interconnect (OSI) protocol stack is defined by the ISO to represent an
international standard for the heterogeneous computer network architecture. This standard is
the one upon which most other commonly found protocols is based, but it was never
accepted by industry as a protocol stack in its own right. Its lack of popularity in industry
mainly is responsible for the failure of the management framework defined by CMIS/CMIP.

RFC means Request for Comments and is the term used by the IETF in defining a standards-related
specification. Each RFC starts life as an Internet draft and goes through a six-month period of
informal review. A draft that remains unchanged for more than six months without being put
forward for publication as a full-blown RFC is removed. A draft that has been considered by the
wider community and has met with their approval potentially can be placed on the standards track.
The first stage in the standards track is a proposed standard, the second stage is a draft standard, and
the final stage is a full Internet standard (referred to commonly as a standard). For more
information on this process, see RFC2026 at http://www.ietf.org

nag d device (that is, a network router) and the set function alters a value on a managed de

anize an SNMP-based network, the designers created two
MP topology defines the roles of a network management station and an SNMP agent as follows

The network management station manages and initiates management requests on the a
The SNMP agent responds to management stations' requests and can independently issue
traps.

The SNMP Network Management Station
An SNMP network management station is software that can run on any machine that has a network
connection and enough processor power, memory, and hard disk space to perform simple SNMP
management tasks. Independent software vendors provide a number of management appl
products that sit above the network management station to provide
information provided by the network management station (for example, a GUI). A core re
for running the network management station software is that an SNMP compliant protocol
installed on the host machine. A stack is a commonly-used network term
collection of protocols bound together to provide a set of functions (for example, transport, error
correction and notification, and so forth) to the applications that use them. Perhaps the most well-
known stack is TCP/IP, because of its widespread use over the Internet and on corporate LANs and
WANs. SNMP also has standards for use with the following protocols:

col stack (RFC 1419) is commonly used by A

.

SNMP 1 initially provided only for running SNMP over TCP/IP: You will find that most
implementations of the SNMP framework run over this protocol stack.

In Figure 2.2, notice that each SNMP agent comprises a Management Information Base (MIB)
component and an SNMP protocol engine. In SNMP 3, the protocol engine may support more than

one message processing model, thus creating a multilingual system that provides support for SNMP
1, SNMP 2c, and SNMP 3.

Figure 2.2. An SNMP-managed network

In Figure 2.2, the network management station software is running on a desktop computer using a
TCP/IP stack. The SNMP framework has been designed so that the bulk of the processing is done

s the hardware that
runs the SNMP agent to dedicate most of its CPU time to its assigned task, rather than analyzing
and
designe erful as they now are. A simple network router
was
protoco not
nearly

The
machin , on one that can display a GUI.

ement station and SNMP
agent on different machines, there is no reason that both entities cannot reside on a single machine.
The only l space,
and so forth.

An SNMP agent is software that resides upon the managed device. Typically, you find SNMP agent

on the network management station and not on the SNMP agent. This enable

 managing the SNMP protocol. Remember that when the initial SNMP framework was
d, processors were hardly a fraction as pow

 not powerful enough to dedicate large percentages of its processing time to interaction with the
l and still route packets efficiently. Today this is still a design concern, although it is

as big an issue as in the beginning.

 SNMP network management station software commonly is found upon a more powerful
e than the SNMP agent software and, preferably

Although the SNMP framework commonly implements a network manag

imiting factor is the resources of the host machines, that is, CPU, memory, disk

software integrated into most popular brands of network routers; some vendors even include agent
software for use with their servers. The SNMP agent software can field requests issued by the
network management station, and when required, it sets/gets information from the Management
Information Base (MIB), a local information store.

Relevant SNMP Standards
SNMP comprises three basic standards, each defined in RFCs by the IETF:

1. The Structure of Management Information (SMI) defined in RFC 1155. This document
specifies how to define managed objects.

2. The Simple Network Management Protocol standard (SNMP 1) defined in RFC 1157. This

at
the time of writing).

3. The Management Information Base (MIB) defined in RFC 1156 and RFC 1213 is a set of
standard managed devices for Internet devices.

Figure 2.3

describes how the SNMP protocol can be used to manage SMI defined objects. An
introduction to SNMP 3 can be found in RFC 2570 (the standard RFCs were not available

 shows how the relationships among the three can be defined.

Figure 2.3. The components and relationships between elements of SNMP

The SNMP protocol is responsible for packaging the queries and responses to and from agents and
network management stations into Protocol Data Units (PDUs). Within these PDUs are Object
Identifiers (OIDs) that refer to variables that both a management agent and an SNMP agent can
understand. OIDs conform to rules laid down by the SMI document. A collection or scheme
OIDs is a Management Information Base (MIB). We shall discuss the structure of an MIB i
moment, but first let's take a look at the role of PDUs.

In

 of
n a

Figure 2.4, you can see that the network management station forms a request and sends it to th
SNMP protocol stack. SNMP takes this information from the network management station and
creates a PDU, which it passes to the TCP/IP stack. The TCP/IP stack then encapsulates the PDU
into a User Datagram Packet (UDP) for connectionless transport. The data is further encapsulat
by IP before being passed to the Network Interface Card (NIC). The NIC encapsulates the data w
its own specific fields (such as network source and destination address) and passes the information
across the network cable.

Figure 2.4. An SNMP network management station (NMS) and SNMP agent interact

e

ed
ith

ing

SNMP was designed initially to use the UDP protocol to send information because of its speed and
efficiency. When communicating across multiple networks in which some links are slower than

ical in
its use of network resources than the Transmission Control Protocol, the connection-based
alte a ionless delivery service for any
info
overhe
a Nove ol is
inheren nd receiving information. It means that there is a chance
tha m hough, typically, most does. As well
as not guaranteeing arrival at its destination, the UDP protocol does not guarantee the order in

etwork. Using smaller chunks makes the
data easier to transmit and error check and places a more even load upon the network. Once the

 and running before sending the
information, nor does it inform the destination address that it wishes to send information to it. UDP
may seem like me
management information. However, to recap on the points made in the previous paragraphs, the
manifest characteristics of UDP do provide the following key advantages:

ot

others, network bandwidth and performance become important issues. UDP is more econom

rn tive in TCP/IP. UDP provides an unreliable, connect
rmation that it sends, which allows it to send and receive information with a very small

ad. The connectionless service provided by UDP is also offered in other protocol stacks such
ll's IPX protocol in their IPX/SPX stack. "Unreliable" does not mean that the protoc
tly flawed or is unfit for sending a

t so e information may not get through to its destination, alt

which the information will arrive. Network protocols work by breaking information down into
small, manageable chunks before sending it across the n

information has reached its destination, the data segments are reassembled into their original order
before being passed up the protocol stack to SNMP and, finally, to the application layer (the
network management station or SNMP agent software). The connectionless part of the protocol
refers to the fact that it does not verify that the destination host is up

a bad choice of protocol, considering the importance and urgency of so

• Very fast connection times. Unlike a connection-oriented protocol (that is, TCP), it does n
have to initiate a connection before sending data.

• Minimal use of network bandwidth. The destination address does not send out requests for
packets to be re-sent should a packet be lost en route, nor does it constantly poll the

s to verify that it is present on the network.

 SNMP message that is transmitted across the network consists of three components:

d to

destination addres

The designers of SNMP who developed the first release believed that the benefits of this type of
protocol far outweighed any potential drawbacks. This assumption was proved to be correct if only
by the popular acceptance of SNMP over UDP. Had this design feature been a problem, it
undoubtedly would have restricted the SNMP acceptance by the networking community as a whole.
Today the IETF has released standards that allow SNMP to run over many connection-oriented
protocols such as TCP, X.25, and ATM. It is the role of the network administrator to decide which
underlying protocol provides the best service to suit the needs of the network. A connection-
oriented protocol may be the preferred choice, for example, if the administrator wishes to control an
SNMP agent that is located on a particularly unreliable segment of the network.

Structure of an SNMP Message
Each

• Version number (SNMP 1, SNMP 2c, or SNMP 3)
• If SNMP 3, then a number of authorization and authentication fields as part of the new

view-based access control model (VACM) (see RFC 2272 for a complete definition of the
SNMP 3 message processing model and VACM.). If SNMP 1 or SNMP 2c, then a
community name (0–255 bytes).

• Data (a sequence of PDUs associated with the request)

The data is further encapsulated within the lower layers of the protocol stack before being passe
the NIC, which then sends the data across the network.

Figure 2.5 represents the basic structure of an SNMP message being sent using TCP/IP. You ca
see from the diagram that the original SNMP message is further encapsulated, first by the UDP
header and then by the IP header. If the administrator were using SNMP on a TCP/IP network wit
a connection-orien

n

h
ted protocol, UDP would be replaced with TCP.

Figure 2.5. The basic structure of an SNMP message over TCP/IP

There can be multiple PDUs in a single message. SNMP 3 introduces a number of new security-
related fields that replace the community name at the start of the SNMP message portion of the
packet.

Communities

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch02fig06

To
not bou citly by a one-to-one relationship. Instead, in SNMP 1 and SNMP 2c
the
the SN
therefo hey
sen s.
Think o etwork management stations that all pass
requests to a single SNMP agent using the same community name. Examples of community names

rol
l

same
defined a one-to-one relationship between agent and station, then it would have

reduced the flexibility and efficiency of the model. Network management stations are grouped into
ommunities by the agent software. Public and private are two of a standard set of groups available

to any SNMP implementation. Different communities are granted different levels of access
ut on the managed
ed to the public

make the framework as flexible as possible, network management stations and SNMP agents are
nd to each other expli

 agent maintains a community table. Each community table holds a list of valid communities that
MP agent allows to interact with the managed device. Network management stations,
re, must include a community name to validate their request with each message that t

d to an SNMP agent. The word community refers to the group of network management station
f community as referring to a collection of n

found commonly in SNMP implementation include public, private, and guest. In SNMP 3 this has
been updated to achieve better authentication and authorization with View Based Access Cont
(VACM), which determines whether or not access should be allowed to a managed object in a loca
MIB by a remote principal. It also uses a MIB to determine the access control for the agent and
make it possible for remote configuration to take place. Because of the relative newness of the
protocol, we shall concentrate on the more common security features found in SNMP 1 and SNMP
2c.

As mentioned earlier, a community is a group of network management stations that all use the
name. If SNMP had

c

depending on their needs. Access levels determine the tasks that can be carried o
object by a particular community. For example, read-only access could be assign
community, which would prevent all network management stations that were members of that
community from writing to any variables. When a network management station sends a request to a
particular SNMP agent, the agent immediately checks the community table to verify the network
management station's community name. Figure 2.6 provides a simple illustration of the SNMP
verification process. Network management stations can be allowed to manage any number of
SNMP agent devices across the network, providing there is an entry for the SNMP agent in their
community table.

Figure 2.6. Security verification in SNMP 1 and SNMP 2c using communities

Networ
require

1. stored

k management stations can communicate with numerous SNMP agents if the following
ments are met:

The network management station has the correct community name to access the data
on the SNMP agent.

2. The network management station has sent a request that holds the community name and, in
some cases, the correct IP address. The SNMP agent checks the details of the community
name (and the IP address) in the community table that it holds along with the MIB.

3. The community name specified by the network management station has the appropriate
access levels to perform the requested task.

This system, therefore, allows many network management stations to send requests to many SNMP
agents, assuming that they satisfy the security requirements. In addition, an SNMP agent can
communicate with many network management stations if the stations all specify legal community
names. In SNMP 1 the security requirements came in the form of a simple (0–255 octet) community
name. If an SNMP agent receives a request from a network management station that provides an
invalid community name, it simply drops the packet. In such an instance, it is possible to configure
a trap on the agent that sends a message to a predefined, authorized, network management statio
signalling the attempted access violation (an authenticationfailure trap). SNMP can be used to
manage network devices on the same network or on multiple networks that support an SNMP-
compliant protocol.

n

 Informs
 sent

t

trap for SNMP 1:

enterpriseSpecific, w t has occurred.

coldStart, which implies that the sending agent is reinitializing itself with significant
changes in its configuration, for example, after a reboot.

linkDown, which implies that a failure has occurred in one of the communication

The configuration of agents so that they generated and sent traps to a given network management
station was handled by packages supplied by the vendor of the SNMP management environment.
Typically, this application came in the form of an agent configuration program that allowed the user

Event Notification: SNMP Traps and
In SNMP 1, asynchronous notification of events was delegated to "traps." Traps were typically
by agents to network management stations to signal the occurrence of an asynchronous event and
were used to indicate that an event might require action, but did not convey the specific action tha
should take place. They also did not require any form of acknowledgment. It was the responsibility
of the network management station, upon receipt of the trap ("event"), to determine the best course
of action. An agent might generate any of the following seven predefined types of

hich implies that an enterprise-specific even

warmStart, which implies that the sending agent is reinitializing itself with no
changes in its configuration.

linkUp, which implies that one of the communication links of the sending agent has
been restored to normal running status.

links of the sending agent.

egpNeighborLoss, which implies that an EGP peer relationship of the sending
agent's EGP protocol has been lost.

authenticationFailure, which implies that an instance of authentication failure has
occurred at the sending agent.

to specify destination IP addresses (or network addresses pertinent to the protocol over which
SNMP was running) for use in response to one of the above errors. Vendor-defined traps also came
with agent software. These traps were designed to monitor events that were specific to particular
hardware or software supplied by the vendor. Compaq, which supplies agent software with a wide
numbe s one
such ve ir own
traps b efined
traps. In SNMP 2c, the concept of traps is slightly improved: They were augmented, not replaced,
so that when a management station receives an event it must then send an acknowledgment. These
improv be
program il it receives an acknowledgment. This mechanism is again
improved upon in the new security features of SNMP 3, which updates informs and traps so that
they ha

The Management Information Base
The IE mation model) for
holding ncompass
every p formation
defined er MIB was very general. The ITEF efforts resulted in a tree with individual data
items a

r of traps that monitor specific conditions that may arise upon their managed devices, i
ndor. Certain SNMP packages also provide the ability for administrators to define the

ased upon items in the MIB, although most administrators choose to use vendors' pred

ed traps are referred to as informs. This meant that the agent sending the event could
med to resend the inform unt

ve to originate from a valid user that is registered in the user database.

TF standards for SNMP defined a general information store (or infor
 information pertaining to managed objects on an internetwork that aimed to e
ossible nonproprietary managed aspect of an internetwork system. Thus, the in
 in the mast
s leaves, as demonstrated in Figure 2.7. Managed objects or data variables o
f the tree. The tree increases in detail as you progress down the hierarchy.

ccur at the leaf
nodes o

Figure 2.7. A partial MIB tree hierarchy

In Figure 2.7 you can see that each node has been assigned a numeric value, for example, ISO h
been assigned a value of 1. Each assigned value must be unique within its branch of the tree. T
unique value specifies a component within the MIB. For example, to specify the Interface
component of the MIB show

as
his

s
n in Figure 2.7, the SNMP path would be 1.3.6.1.1.2.1.2. Each value in

the SNMP path represents a specific node in each branch. The last nodes on any branch are leaf

ry

Eac M
the foll resent the general features of all internetwork devices and,
in m st

g system, networking software, and

nslation Group holds a table of mappings of physical-to-network
addresses.

The User Datagram Protocol holds a table of all UDP-related messages.

The Exterior Gateway Protocol (EGP) stores information pertaining to the EGP

 IETF.

nodes. Only leaf nodes can contain objects that possess values accessible to the network
management station.

Every managed device in an SNMP controlled network must maintain a set of values that represents
the structure of the MIB that it implements. A MIB is the branch of the tree that is relevant to the
managed device. The master MIB defined by the IETF is so comprehensive that it is obviously not
good use of resources to insist that each managed device on a network carry values for every ent
in the master MIB. In the case of a network router, the agent software would maintain the set of
values that represent the details of only the router MIB (a generic branch of the master MIB that
represents all routers settings). There are MIB branches that define practically all types of
internetwork devices.

h IB is further broken down into eight subsections that represent object groups, as shown in
owing list. The object groups rep

o cases, are mandatory.

The System Group contains a text definition of the managed device. This definition
includes, for example, the version type, operatin
so forth. The system group also contains the elapsed time since the network portion
of the device was initialized.

The Interfaces Group contains definitions of the available interfaces for receiving
and sending SNMP packets.

The Address Tra

The Internet Protocol Group holds all the statistics related to IP.

The Internet Control Message Protocol (ICMP) holds a table of all ICMP-related
messages. Among these are error messages relating to the network.

The Transmission Control Protocol (TCP) holds a table of all TCP-related
messages.

protocol.

If the semantics of one of these groups is applicable to an SNMP managed object, then it must
implement all items within that group in its MIB definition. For example, an SNMP managed object
must implement the EGP group within its MIB if, and only if, it uses the EGP protocol.

Central governing bodies are assigned to manage particular branches of the MIB tree by the
The ISO and DOD, who both manage branches in the trees that are related to fields in which they

are considered the authority, are examples. Each governing body allocates numbers to the subtre
within their hierarchy. Each subtree further defines a particular type of internetwork device.
Additions to these subtrees within the MIB must be registered with the assigned governing body for
that branch.

How do vendors specify the features that are particular to their specific pro

es

ducts? The MIB
definition includes experimental and private enterprise subtrees, which allow vendors to define

of

des,

SNMP requires that any device to be managed by SNMP must store a set of data values to represent

le,
ard

The tr
Manag formation (SMI) document (see RFC 1155) or MIB-II (see RFC 1213). Managed
obj s
objects together under a subtree. Each of these subtrees is referred to as a MIB. A managed device,
the o
Each su with an administrative authority that assigns a unique OID to the root of
the b
exampl and many others, which
are defined in various RFCs. To traverse the tree you specify a series of OIDs, each of which refers

 is minimalist to reduce the storage overhead of
maintaining the structure on each agent.

s. These private extensions were for use by
independent vendors who wished to customize the MIB to define their products further.

IB-

 of the
ould be a particular

vendor's network card or a disk controller: We use an Object Identifier to specify a particular object

characteristics of their own products. The experimental branches typically are used by the academic
community for research purposes: Industry defines its products under the private/enterprise node
the MIB. The branches developed beneath this node, unlike additions made beneath all other no
do not have to be centrally registered, thus creating a more flexible means of defining equipment
within the MIB.

the structure of the MIB that it supports. This allows network management stations to request
information from the SNMP agent and guarantees that they will receive a response. For examp
the vendor of an SNMP-compliant network card would provide SNMP agent software with the c
that stores a list of values that represent the MIB. Certain values within that MIB represent the
values specific to the network card. This enables any SNMP network management station to
interact predictably with the network card. The information stored on the SNMP agent is
implementation-dependent.

 s ucture of the MIB and the rules for defining MIBs conform to guidelines given in Structured
ement In

ect are defined and given places as nodes in the object tree. The master MIB tree places related

ref re, need only store its particular subtree and not the entire hierarchy from the root down.
btree is registered

 su tree. Any value assigned to objects below the root must be unique for their subtrees. For
e, currently MIBs define the TCP/IP protocol, the SNMP protocol,

to a branch farther down the tree. The standard MIB, to which all SNMP implementations must
conform, was designed with the following criteria in mind:

• Objects must be uniquely named. There can be no ambiguity when specifying for which
object your request is intended.

• Objects must be essential. The MIB design

• Abstract structure of the MIB must be universal. The MIB was designed to be of
universal use to all vendors and manufacturers.

• The standard MIB need maintain only a small number of objects. This is to reduce the
hardware requirements for maintaining the MIB.

• The MIB must allow for private extension

• Objects must be general and not too device-dependent to allow for extensions. If an
agent is to be SNMP manageable, then it is mandatory to implement the Internet MIB (M
II in RFC 1157).

SNMP agents receive requests to get and set (retrieve and change) a particular characteristic
managed object from network management stations. A managed object c

within the MIB hierarchy. An Object Identifier (OID) is a sequence of integer numbers that
represent a traversal of the tree hierarchy. It is important to realize that if your managed device

xperimental branch of the MIB,
de must be added to every network management stations' central

ll not

As mentioned previously, each SNMP request contains a community name that is a weak means of
authentication. By weak, we mean ercome easily by a malicious
user because the community name is not en

fing or I a techn a

at the illega chine s on machine B. T
al user ch source hine A to that of the ne
agement chine ith a packet sniffer (a p

ftware that r "sn k) or uses one of th
rd com names. Then t that will b
sed as were from a

community network managem
ations and a ble th ware. The commun

t of communities and their access rights to the SNMP agent's MIB. In some
 contains a list of IP addresses (assuming you

beneath SNMP) that map network management stations' network
to a particular community.

MP

e
 is not recognized, the request is

dropped. The SNMP agent ca ap that can notify a
predefined network managem wing list represents the
permissions available to a community:

• No Access. The SNMP community cannot write to or read SNMP objects on the managed
device.

• Read Only. The SNMP community can read only readable SNMP objects on the managed
device.

• Clear Statistics. The SNMP community can write to a limited set of MIB variables on the
managed device.

• Configure. The SNMP community can read readable SNMP objects on the managed device
and can write to writeable SNMP objects on the managed device.

Access privileges can range from No Access through administrative level read/write access by
setting the configure property to true. Read/write access provides the most control, because it
allows settings to be changed on the managed device. The agent software can be configured to

requires settings that can be specified only under the private or e
then the additions you have ma
MIB that you wish to communicate with your device. Without this information, the NMS wi
have prior knowledge of the properties exposed by your device.

SNMP Security

 that the authentication can be ov
crypted and IP addresses can be spoofed.

Spoo
privileged user. In SNMP, the target of spoofi

P spoofing is ique with which an illegal user assumes the identity of
ng would be a network management station. Imagine

th l user is on ma A and the network management station i he
illeg
man

anges the IP
station on ma

 address of outgoing packets on mac
B and captures a community name w

twork
iece of

so can intercept o iff" the packets transmitted over a networ e
standa
proces

munity
if they

 machine A can send requests to the SNMP agen
legitimate network management station.

e

A
st

 is the relationship between an SNMP agen
 community ta

t and a collection of
at is maintained by the SNMP agent soft

ent
ity

table contains a lis
implementations of SNMP, the community table also
are using the TCP/IP stack
addresses (that is, 192.142.190.10)

The SNMP agent, upon receiving the request, examines the table to determine whether the SN
message contains a valid community name. If the message passes the community verification
check, the agent examines the table to determine the access levels granted to that station. If th
message does not contain a valid community name or the IP address

n also contain an authenticationFailure tr
ent station of the illegal request. The follo

accept only requests from certain communities, which limits who has control of the device and the
level of control with which they are provided. In reality, community names act like passwords,
providing certain levels of access for communities.

SNMP 2 introduced a number efined in v1. Specifically, in
authenticating network management stations that send requests and restricting access to particular
variables, it provided a means to prevent intruders from gaining access to information carried along
the network and addresses the potential problem of a network management station accidentally

 The
User-Security Model (USM), which specifies security and authentication, allows you to encrypt
passwords and data at the packet le nd origin of the packet. The new
standard also includes timeliness indicators, data integrity checks, and encryption to protect against
threats such as spoofing, message stream modification, and disclosure and modification of
information. For more information on these details, refer to RFC 2574.

Modus Operandi
SNMP defines a number of operations that get and set data to and from an SNMP agent, as
demonstrated in Table 2.1

 of improvements to the security model d

crashing an agent by incorrectly setting a variable.

SNMP 3 implements improvements that address the security weaknesses in versions 1 and 2.

vel to help verify the integrity a

. The Flow column specifies the origin of the call. For example, A -> M
means that the agent issues the GetRequest command to the network management station. If the
request is completed successfully, the network management station returns the requested value, the

ith

M->A

Set SetRequest Sets a variable on an SNMP agent. M->A

 GetResponse Contains the erro tatus of SetRequest. A->M

unexpected event. A->M

M->A

ces. M->A

Tab

A: M

M:

GetResponse PDU, containing the original request with the error status field containing no error and
the value of the error-index field at zero. The network management station similarly responds w
the requested values to the GetNextRequest and SetRequest PDUs.

Table 2.1. SNMP Operations

Operation PDU Comment Flow

Get GetRequest Contains the values of the requested object instances.

GetResponse Retrieves a variable on an SNMP agent. A->M

r s

Trap Trap Signals the occurrence of an

Getnext GetNextRequest Retrieves object instances.

 GetResponse Contains the values of object instan

le Key:

SN P Agent software

 Network Management Station

The e G tRequest (see Figure 2.8) is sent by a network management station and received by an
 agent. The SNMP agent software then gets the requestSNMP ed item from the Management

Information Base (MIB) and returns the corresponding data value.

Figure 2.8. The GetRequest operation

The e S tRequest (see Figure 2.9) is sent by a network management station and received by an SNMP
age T
spec fie

nt. he SNMP agent then accesses the MIB and changes the value specified by set to the value
i d by the network management station.

Figure 2.9. The SetRequest operation

A trap (see Figure 2.10) is an asynchronous event that the SNMP agent software is configured to
trigger. For example, a trap can be activated to signal a network management station if an SNMP
agent is rebooted unexpectedly or if someone has tried illegally to issue a get/set command.

Figure 2.10. The SNMP trap

The GetNext operation (see Figure 2.11) is used to retrieve the next lexicographically located object
located in the MIB. By lexicographical, we mean that data is sorted according to the hierarchy
defined by the MIB an

d certain data values are next to one another according to this hierarchy. The
GetNext operation exploits the fact that related data is stored together in logically related sections of

nce of

management stations to retrieve extended information from the MIB that is specific to the managed

ique

the MIB. Possible uses of this function include retrieving a list of related data, such as a seque
entries from an IP routing table, from an SNMP agent. GetNext is also useful for network

device (for example, custom information defined under the enterprise branch of the MIB).

Figure 2.11. A simplified version of the functional block diagram (excluding features un
to DMI 2.0s)

Advantages of the SNMP Protocol
The SNMP protocol has many advantages, including the following:

ds

• It is lightweight use of an enterprise's bandwidth, CPU time, and disk space resources.
• It is simple to set up and use.
• It is relatively simple to implement.
• It is almost an industry-wide solution to systems management—implemented in many

hardware products.

• It is extensible. The protocol has been improved upon over time to meet the additional nee
of more complex networks (SNMP 2c and SNMP 3).

Disadvantages of the SNMP Protocol
Here are some disadvantages to the SNMP protocol:

• The first SNMP revision's simplistic management information model did not support a
modern network's detailed information requirements, but it was updated in SNMP 2c and
SNMP 3.

• The SNMP lacks cohesion with other management paradigms.
-03

• Information collected by the agents is distributed across the network to many nodes.
• Up-to-date information is not centrally maintained.
• Vendor-specific data cannot be published to the management community without providing

an updated MIB file.
• The MIB does not define behavioral characteristics of managed objects.

• Security flaws exist in many vendors' implementations (see CERT® advisory CA-2002
http://www.cert.org).

• New security extensions in SNMP 3 may place an additional processing burden upon
managed objects.

Wi th rk in mind, we next examine a
des p

he Desktop Management Interface
he

DMTF. Representing the DMTF's first initiative to reduce the complexity of desktop management
ase,

 and
ards,

s:

twork.

d
 room to grow

• Mappable to existing management and remoting protocols

But surely this overlaps with the SNMP frameworks objectives? Not really; the facility to remotely
access DMI is designed for the remote administration of desktop devices and not network-based
devices, as is SNMP.

networks. The DMI, however, is designed primarily for local desktop and server management.

Why do we need a framework for managing devices on our local machine? As the competition for
ong personal computer component manufacturers has increased, so has the

hey produce. Manufacturers constantly "value-add"—revise their

th e framework of SNMP for managing devices across a netwo
kto solution for management.

T
The Desktop Management Interface (DMI) is another specification defined and managed by t

for vendors and administrators, DMI came into existence in 1994. DMI version 1, the initial rele
defined a way to manage desktop components and servers while conforming to a consistent
nonproprietary open standard. DMI 2, released in April 1996, encompassed these open stand
defined a means of sending detailed management information across networks to a central site,
interacted with agents, and mapped information between SNMP and DMI. Most recently, DMI 2.0s,
released in June 1998, subsumes the work of DMI 2 and the errata and adds security extension
role-based authorization, security indications, logging, and authentication, which secure the
interactions between the DMI service provider, management applications, and component
instrumentation and protect management information from unauthorized access over the ne

The initial goals specified that DMI was:

• Independent of any specific operating system, hardware platform, or management protocol
• Easy for vendors to adopt
• Scalable, to accommodate a wide range of products from very simple to very complex an

extensible, to provide

In the last section we examined how SNMP manages networked devices across one or more

market share am
complexity of the devices t

products to add new features—with the ultimate hope of capturing a larger market share. This
 or server
rs. Each

anagement instructions further compounds the
stem with a multitude of different components, each providing

 for the system administrator. Simply
ion from these software and hardware devices is a complex task.

' perspective, defining proprietary instrumentation for each new product is a
ad. The introduction of DMI allows manufacturers to focus on producing a higher

uality product and leave the instrumentation and management to DMI.

ion is the exposure of management data and functions by a managed object.
 data provide management applications with status and configuration information and

constant movement has led to ever-increasing problems when trying to manage a desktop
 numerous software and hardware products built by different vendosystem that consists of

product that requires its own set of special m
roblem. Managing a symanagement p

different levels of instrumentation, has long been a problem
getting management informat

From the manufacturers
costly overhe
q

Instrumentat
Management
functions allow management applications to perform actions on the managed object.
Instrumentation, therefore, dictates the manageability of a product. Good device instrumentation
means good manageability.

DMTF defined a common interface to simplify the management of hardware or software: It
provided a layer of abstraction between the managed component and the administrator. The block
diagram in Figure 2.11 demonstrates the interface. The common interface, called the Service layer
in the first release of DMI, in version 2 was renamed the DMI service provider. On one side of the

MI service provider is the Component Interface (CI) and on the other is the Management Interface

 to reflect changes to the Management Interface that
enabled remote access to DMI via DCE/RPC (commonly found on Windows NT), ONC/RPC

d

D
(MI).

The name change in version 2 was partly

(implemented mainly on UNIX), and TI/RPC (also known as ONC+ RPC and found on AS/400 an
iSeries systems). RPC stands for Remote Procedure Call, a high-level protocol for client-server
interaction without concern for the underlying network architecture. In Figure 2.11, observe that the
DMI Service Provider and component instrumentation all reside within a single system (that is, a
desktop PC). RPC support enables access across a network for DMI management applications to
this instrumented data. You can see in

Figure 2.11 that DMI provides two choices of component
interface: the data block component interface and the procedural component interface. Both perform
essentially the same function: passing component instrumentation to the DMI service provider. The
Data Block component interface, introduced in DMI 1.0, was superseded by the Procedural
Component Interface in DMI 2.0. It is present still in DMI 2.0s to maintain backward compatibi
with legacy components.

lity

he procedural interface, in addition to being suitable for remoting via one of the supported RPC
mechanisms, is much friendlier to programmers and much less error-prone than the Data Block

DMI-compliant managed object, such as a network card, may use either
ommunicate management information.

T

component interface. A
component interface to c

Management applications use a layer called the Management Interface (MI) to communicate with
managed devices on the system. The DMI service provider effectively is sandwiched between the
application and the device and marshals requests to and from them. This level of abstraction shields
component vendors from decisions about management applications, allowing them to focus on
providing competitive management features and functionalities for their products.

For a product to be DMI compliant, it must first go through certification. This process can be
performed by the DMTF or by the manufacturer (using the self-certification guidelines provided
the DMTF). Some of the companies that have released DMI-compliant products include:

• 3COM, (DMI-compliant network cards)
• Compaq (DMI-

 by

compliant desktop and portable computers)
• Dell Computer Corporation (DMI-compliant desktop and portable computers)
• Fujitsu
• Hewlett-Packard

e

he
 aspects of that component. These settings are added to the MIF database, usually

during installation of the product. Each MIF file is headed by a component (see Figure 2.12

The DMI Information Model: The Management Store
The DMI model for desktop management defines a localized management repository that must
reside on each DMI-managed machine. This repository holds all management information
pertaining to the desktop system and is used by the service layer for storage and retrieval of
information. This store of information is the Management Information Format (MIF) database. Th
MIF is a simple text format with a prescribed grammar and syntax and is used to define components
and their manageable attributes. Vendors must provide an ASCII text MIF file that details t
manageable

). A
omponent can be a manufacturer's product, such as an internal modem. It is important to

understand that each MIF file can describe only one component, thus, it is not possible to describe a
ng in the same MIF file. Any number of
fine a collection of related manageable

c

modem and a hard disk under the same component headi
groups can be under each component heading. Groups de
attributes for the product being described. In the case of an internal modem, you may define a group
that defines the attributes for the onboard BIOS, such as whether or not it is Flash upgradeable. A
group that defines a single instance of the specified data is scalar; a group that defines multiple
instances of data is tabular.

Figure 2.12. Attribute presentation within the DMI Data Model

If we were to write a partial MIF file that detailed the Serial Number attribute of Group:Disk
Parameters from Component:Harddisk shown in Figure 2.12, it would appear as in Figure 2.13.

oup defines the settings of my local harddisk"
 Start Attribute
 Name = "SerialNumber"

er of this disk"

Policy
erformed on which objects by which roles. The policy is
Each row in the table represents a policy statement,

which grants or denies the privilege (role) of a management application to perform a DMI
rovider references the policy within the MIF database each time a

management application makes a request to perform a command upon an object. The policy
stateme ommand is carried out or rejected by the service
pro e

Notification of Events
 DMI-managed system. Indications can be defined
 of state for either a hardware or a software device.

Notification of events is passed up through the DMI provider layer by a DMI-managed object. The
ation, which is then passed to the event consumer. Event

consumers must first subscribe to receive a specific indication. Indications can also be passed to
ma they
have su l indications
to a m actly under
wh ci ut
less cri sent to a remote management application, thus
rese i

Figure 2.13 An excerpt from a MIF file to describe the attribute Group:Disk

Start Group
 Name = "Hard Disk"
 Class = "DMTF|HardDisk|001"
 ID = 1
 Description = "This gr

 ID = 1
 Description = "Serial numb
 Type = integer
 Access = Read-Only
 Value = FG192z
 End Attribute
End Group

The policy defines which actions can be p
stored within the MIF database as a table.

command. The DMI service p

nt for that object determines whether the c
vid r.

An indication signals a change of state within a
to notify a management application of a change

DMI provider layer then generates an indic

nagement applications that are located on remote machines (remote consumers) via RPC, if
bscribed to that event. To avoid wasteful use of network resources by passing al

 re ote consumer, the remote consumer must also provide a filter that determines ex
at rcumstances to pass on the indication. The event severity filter, for example, can filter o

tical events and prevent them from being
rv ng network resources.

DMI Security

The security mechanisms that DMI enforces are based upon those provided by the implementati
of RPC that is being used and the features supported by the operating system in use. W

on
indows XP,

for example, provides file-level security with its version of NTFS. It is therefore safe to assume that
r the resident OS, then the

ited
sec y in the
configu
model
comma
which
carry o
authori
manage
comma

M
The achines. It is a simple ASCII text file
tha
pol
ther
from
Inte c
pro e
file der
will
pro

 is the
entation.

Space limitations prevent our going into great detail. Briefly, however, the management application
must send the iden t) to the DMI
service provider (RPC server). The RPC server then checks the identity of the user and any
associated roles. A role specifies a name and a set of authorization permissions (privileges) that
accompany that role (for example, only the role of network administrator is allowed to change the
speed of the network card from 10Mbps to 100Mbps). DMI 2.0s introduces a number of new
features to Management Interface Security. In DMI 2.0s, when a management application registers
with the Service Provider, the service provider then authenticates the management application and
returns a list of roles associated with the user that invoked it. It also returns a management handle, a
unique identifier that allows the service provider to recognize the management application without
authenticating the user every time. For every subsequent call, the DMI 2.0s service provider can use
the management handle to authenticate the management application and allow tasks to be carried
out according to the permissions granted to the associated roles and the policy, which (again)
determines which commands can be performed on which objects by which roles.

if a malicious user could compromise the security model of RPC o
security of DMI would also be compromised. DMI 1 and DMI 2 do, however, provide lim

urit features (such as security indications) to notify management applications of changes
ration of DMI or illegal attempts to administer it. With the release of DMI 2.0s, the security

was enhanced and uses authentication to determine whether to perform or reject a DMI
nd. This decision is reached by considering a variety of factors that include the roles of

the user is a member and policy, which must contain an adequate level of permissions to
ut the command. Having retrieved adequate authorization, the DMI service provider
zes each subsequent command issued by the management application by referring to the
ment application role, the current contents of the service provider policy table, and the
nd parameters.

IF Database Security
 MIF database is located locally on all DMI-managed m

t contains definitions for all the managed objects on a system. The MIF database contains the
icy, which you will recall denotes which commands can be performed on which objects, and is

re a target for malicious aefo ttack. The MIF database is protected from unauthorized access
 D ent applications through security mechanisms built into the ManagemeMI managem nt

rfa e. File level security, however, is very much dependent upon the underlying features
vid d by the operating system. As mentioned earlier, Windows NT, for example, can provide
-level security to protect important files. If such facilities are available, the DMI service provi

e them to protect the MIF databa us se by allowing access to the file only to privileged
cesses.

Management Interface Security
The MI uses RPC authentication to authenticate the user of a management application, as this
only entrance for management applications to retrieve DMI management data and instrum

tity of the user invoking the management application (RPC clien

Component Interface Security
The component i rovider.
Possible security threats to this interface include software that behaves like component
instrumentation but, in fact, is not legitimate instrumentation. DMI, therefore, provides security

e

tures

dications
s if
d

.

I:

nterface interacts between managed devices and the DMI Service p

mechanisms to control registration of components to prevent such actions. DMI provides a group
that handles CI security, called SP Characteristics. Within that group is the Boolean attribute,
enable local security. When set to true, Component Interface Security is active. This means that
any component that tries to register with the DMI service provider through the Component Interface
must be a privileged process. A privileged process is one that has been executed by a user with
special privileges upon the host machine. In Windows NT, for example, a privileged user would b
a member of the Windows NT administrators' group. Any process executed by that user is a
privileged process. Again, the security mechanism in place varies according to the security fea
of the host operating system.

Security In
Security indications can be configured to send notification to authorized management application
a breach or attempted breach of security is detected. Security indications are fully configurable an
are defined in MIF format as special groups and classes with attributes that define what kind of
events should trigger an indication.

Advantages of the DMI
DMI has several advantages:

• It is hardware and platform independent.
• It is management protocol independent.
• It works with a variety of authentication and authorization mechanisms.
• It is usable with or without a network.
• It maps to existing management protocols such as SNMP

Disadvantages of the DMI
Here are some disadvantages to the DM

• It is dependent upon underlying operating system for security (for example, Windows
version 9x has no file level security—therefore, the DMI MIF file is exposed).

• It does not provide a cryptographic system to protect data from malicious users.
• It does not provide fully user-definable event notification (though indications provide

notification of certain types of events).

• It does not illustrate relationship between components outside of the desktop domain
through its information model.

Summary
Having examined the DMI and SNMP management frameworks, we have found that certain
common features exist in both. We can deem these common characteristics to be necessary
attributes for any management framework whether it be DMI, SNMP, or, as we shall discover,
WBEM. Furthermore, we can summarize their common features as follows:

Commo

ata and
to malicious
ystem to
ncements to

ing access
 as
 security is

r the MIF
tem.

 taken place
I provides

ing.
this is the

5.
6. , SNMP,

eworks.
trum of

th, and still

10. s made in IT

Anothe tiered
approa
inform any other
ma tion would like
to u arate
inform

n Elements for Management Frameworks

1. Security. Protects from malicious attack or accidental misuse. Management d
instrumentation have always been of potential interest to hackers and subject
attacks. At the most basic level, SNMP provides a basic, community-naming s
authenticate requests. The second version of SNMP adds further security enha
prevent illegal access to SNMP agents and to provide a mechanism for assign
permissions to certain nodes in the MIB. SNMP 3 introduces more features, such
password and packet-level encryption to help reduce the security threat. In DMI,
provided by roles, policies, and privileged processes. In DMI, file-level security fo
database is largely dependent upon the facilities provided by the host operating sys

2. Event notification. Alerts a management application that a certain event has
upon a managed object (that is, an external e-mail gateway has been reset). DM
indications, a mechanism for event notification. SNMP provides traps.

3. Dynamic data. Enables retrieval of management data that is constantly chang
4. Structured information store (information model) for static data. In SNMP,

MIB database and in DMI, it is the MIF data store.
Mechanism for device instrumentation.
Mechanism for control and management across a network. Examples are RPC
or DCOM, and so forth.

7. Comprehensive integration with legacy management application fram
8. Flexibility. The management framework must be able to work within a broad spec

environments.
9. Efficiency. It must make efficient use of network resources, such as bandwid

provide effective management.
Extensibility. Its structure and topology must take into account future advance
enterprise systems.

r common design feature that we have witnessed in both DMI and SNMP is a two-
ch to management data instrumentation. Both include provision for retrieving such
ation and a mechanism for forwarding it to management applications (or to

nagement data consumer). Problems arise, however, when a management applica
nderstand and represent both DMI and SNMP data. To do so would require two sep

ation parsers, one to understand DMI and one to understand SNMP (Figure 2.14).

Figure 2.14. A two-tiered approach to data instrumentation

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch03#ch03

As we shall discover, WBEM provides a three-tiered approach to data instrumentation (Figure
2.15). The third tier forms a layer of abstraction above the underlying management frameworks data
format.

Figure 2.15. A three-tiered approach to data instrumentation

Central to the retrieval of management information in DMI and SNMP is the information model
used to logically store management information. Both DMI and SNMP arrange their data in a
logically related format for quick storage and retrieval purposes. The structure (or data mo
their respective data stores, however, differs considerably. SNMP's information model was defin
by the IETF and managed by v

del) of
ed

arious governing bodies. It provides extensibility (as of SNMP 2c
and SNMP 3) through vendor-defined extensions that are not published to the community as a

e

nagement station will have no idea of their relevance to the
managed object.

 central MIF database. These MIF file syntax
and semantics are flexible enough to allow vendors easily to define any desktop component so that

 this data, and to maintain a
truly dynamic picture of the values of the data stored in their MIBs, management applications
constantly would have to poll all of the SNMP management agents. This is not particularly efficient

whole or governed by the central body. The downside of this mechanism is that a network
management station must have the MIB file supplied by the vendor that defines the extended
structure to know in detail about these extensions. Typically, this file is compiled to the central
network management stations' MIB. There is no way to request this information directly from th
managed object, and although you can use GetNext to retrieve the associated data values of these
extended attributes, the network ma

The DMI's data model consists of classifying managed devices as components, within which are
groups that consist of related attributes. The definition of DMI-managed objects is contained in
vendor-defined MIF files, which are then added to the

it may be added to DMI's central database. Again, vendors must supply a MIF file to define the
manageable aspects of their component.

Management information provided by an SNMP network is distributed across the network in the
MIBs of the managed devices (SNMP agents). To keep up to date with

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch02#ch02
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch02#ch02
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch02#ch02

from the point of view of CPU or network resources. In a DMI-managed machine, all the
management information is stored centrally in a MIF database that resides upon the host machine.
The MIF database is administered by the DMI service provider. Constantly updated values can be
accessed via the DMI service provider, which makes provision for data instrumentation.

The Need for a Unified Management Framework

Both SNMP and DMI are non-vendor-proprietary open standards for management. Each suppo
managing objects within its specific target environment: the desktop or the network. The weakne
of both approaches is in their management information models, which, respectively, hold only
information pertinent to network-managed devices or desktops and cannot define relationships wi
managed objects outside their domain.

Neither information model provides a mechanism with which to represent the sometimes co
relationships that exist between components in the whole enterprise. This makes it very difficult to
develop ma

rts
ss

th

mplex

nagement applications that can track a fault to its source based upon these relationships.
In addition, it has not been previously possible to communicate the structure as well as the content
f management information across the network.

WBEM initiative. The advantages of
tions written to take advantage of its

ry

1. Prior to WBEM, products from different vendors would report management

ole enterprise management
picture. DMI manages the desktop-specific aspect whereas SNMP manages the

ctions, get and set (sometimes called the fetch-store paradigm).
4. SNMP 3 addresses the security concerns of version 1 and 2c by introducing

station receives an event it must then send an acknowledgment. These improved

o

These limitations have been addressed by the DMTF with the
these additions will be seen mostly in the management applica
information model, CIM. These applications will be able to make intelligent decisions based upon
knowledge supplied by CIM about the objects that it manages. Microsoft implements these
standards in its management framework, WMI, which takes the best aspects of proprietary
Windows technology, such as COM/DCOM (to allow distributed management), and nonproprieta
technology, such as WBEM. As well as being WBEM-compliant and tightly integrated with the
Windows Driver Model, Microsoft supplies built-in providers that integrate WMI with both DMI
and SNMP.

Ten Fast Facts: SNMP and DMI

information in different formats, each potentially using different network
protocols. WBEM offers a mapping between DMI and SNMP and provides a
solution that integrates (and in some ways, ultimately replaces) them.

2. DMI and SNMP manage different parts of the wh

network-specific domain.
3. The SNMP framework is called "simple" because its protocol is based on the two

simple fun

authorization and authentication as part of the new view-based access control
model (VACM). See RFC 2272 for a complete definition.

5. In SNMP 1, asynchronous notification of events was delegated to "traps." In
SNMP 2c, the concept of traps is slightly improved so that when a management

traps are referred to as "informs." This mechanism is again improved upon in the
new security features of SNMP 3, which updates informs and traps so that they
have to originate from a valid user that is registered in the user database.

6. The DMI information model is called the Management Store. The SNMP

information model is called the Management Information Base (MIB). Events are
surfaced in SNMP using traps and informs, and in DMI using indications.

gration with SNMP through built-in providers. We shall
 of providers in detail in Chapter 3

7. WMI provides inte
discuss the concept and the development of
your own providers in Chapter 12.

8. SNMP is lightweight in its use of an enterprise's bandwidth, CPU time, and disk
space resources. It is also simple to set up and use, is relatively simple to

lement, and is almost an industry-wide solution to systems management. It is
been improved over time to meet the

9
d write to SNMP-

managed devices as well as surface SNMP traps. WMI providers are discussed in
more detail in Chapter 3

imp
also extensible and the protocol has
additional needs of more complex networks (SNMP 2c and SNMP 3).

. SNMP management information can be accessed in WMI using Microsoft's
SNMP Provider. The SNMP provider allows users to read an

 and Chapter 12. Microsoft does not currently supply a
provider for DMI management information.

NMP.

10. DMI is hardware- and platform-independent and is management-protocol
independent. It works with a variety of authentication and authorization
mechanisms and is usable with or without a network. DMI also maps to existing
management protocols such as S

Chapter 3. Windows Management
Instrumentation
As we discovered in Chapter 2, both SNMP and DMI provide adequate solutions for their particular
management domains. They provide event notification, dynamic and static management

e for holding management information.
They provide some degree of control over their managed objects and have security mechanisms in

In any enterprise environment, both DMI and SNMP typically coexist and provide management
ce of the two frameworks became more

commonplace in the enterprise, the DMTF made provisions for integrating them, and defined a

 the SNMP and
DMI prevented straightforward integration of the two frameworks, causing this attempt to provide

ement in recent years has been the escalating cost
nments. Despite attempts to instigate some degree

information retrieval, and define a logically related stor

place to prevent accidental misuse or abuse.

information for their particular domains. As the coexisten

mapping for DMI values into the values understood by SNMP. The aim was to allow systems
instrumented by the DMI to be remotely and uniformly managed using the SNMP. Thus, existing
SNMP-based management applications could be used to manage DMI-based systems as well as
SNMP devices. Unfortunately, a combination of technical incompatibilities between

interoperability to be time consuming and relatively costly in effort and knowledge.

The biggest problem facing enterprise manag
associated with the administration of such enviro
of interoperability between de facto management standards, the development of different
management frameworks for each domain of the enterprise created a highly complex and error-
prone administrative process.

These administrative problems, among other factors, led to a dramatic increase in the cost of
owning and maintaining a desktop computer in the enterprise. Indeed, the real cost of maintaining a
networked desktop computer in the enterprise goes far beyond its initial purchase. Maintenance,

ted with a typical desktop computer. Microsoft refers to these ongoing costs as
the total cost of ownership (TCO).

Manufacturers of enterprise products have long been aware that corporate custom
red d
upon to
most co

Micros AW)
init v lems and costs associated with complex administrative
env ative was to reduce the TCO of running and maintaining a
Wi passed a variety of technologies, including
Wi

When t ise
softwar ent.
All par e,
ind
would
develop
manage n
integra onal feature for
Windows 9x and NT4. In addition to conforming to the WBEM standards, Microsoft included a
number of Windows-s by the Windows
driver model) to provid the summation of

w indows Management Instrumentation. Microsoft used the close coupling of
MI w istent, open
cess t

(COM/
enterpri

The
e pri
lds a

compon

technical support, and hardware and software upgrades and configuration are only some of the
ongoing costs associa

ers wished to
uce these running costs. The DMTF was initially formed and a series of initiatives was embarke

 reduce these overheads. The Web-Based Enterprise Management Initiative (WBEMI) is its
mprehensive and ambitious solution to date.

oft, a member of the DMTF, also launched the Zero Administration for Windows (Z
iati e to show its commitment to the prob
ironments. The aim of the ZAW initi
ndows desktop computer in the enterprise. It encom
ndows policy-based management and, more important here, WMI.

he WBEM initiative was handed over to the DMTF, Microsoft, with many other enterpr
e and hardware technology-based companies, maintained an active role in its developm
ticipants in the development of the WBEM initiative worked toward providing an intuitiv

ustry-wide solution for centralizing the administration and management of the enterprise that
reduce running costs. Microsoft gained valuable experience from its involvement with the
ment of WBEM from the drafting phase to its publication, and used it as the core of their
ment architecture for the Windows range of operating systems. WMI was first shipped as a

l feature in Windows 2000, but it was available long before as an additi

pecific instrumentation features (such as those provided
e tighter cohesion with the Windows operating system,

which e now call W
W
ac

ith WBEM-compliant technologies to simplify instrumentation and provide cons
o management data. In WMI, we look at a variety of technologies, both proprietary
DCOM) and nonproprietary (XML and CIM), that have been drawn together to manage the
se.

Standard WBEM Components
Th
ho

mary component of the WBEM initiative is the Common Information Model (CIM), which
ll information pertinent to the enterprise. We briefly defined the CIM, a mandatory
ent of any WBEM compliant implementation, in Chapter 1. A distinction must be drawn
 the CIM schema as defined by the DMTF and the implementation of the schema by
ft. The DMTF CIM schema was a platform-independent blueprint from which people could

ent the CIM. The Microsoft implementation, based on the DMTF CIM schema, is the CIM
ry and its associated providers. The CIM repository is a physical implementation of the

s CIM.

between
Microso
implem
reposito
DMTF'

In addit
with an

ion to CIM, the DMTF specified a number of other basic framework elements for inclusion
y WBEM-compliant implementation.

The DMTF proposed that XML be used to represent CIM objects between management
applications across a heterogeneous network. Microsoft adhered to this in implementing WMI.
(Chapter 11 introduces WMIC, the administrative tool that provides the ability to output CIM
objects rmat, and offers a practical example.)

MOF fi ons in textual format. Any
WBEM-compliant im files to and from the

M,

 elements in its architecture.

Ins
Installing W mples provided to help you
understand its various components.

Note

Windows2000/Me/XP/.NET users are not required to perform the following steps as
WMI will already be installed as part of the operating system.

ce

in XML fo

les, also a mandatory component, define CIM object definiti
plementation must be able to import and export these

CIM repository.

The DMTF addressed integration with existing legacy management frameworks and documented
the process of mapping data from these frameworks into the CIM repository. Microsoft, which
supplies both an SNMP and a DMI provider to enable centralized control of both from within W
completed this work.

In addition to implementing these standard components, implementations of WBEM (a conceptual
vendor-neutral framework) must also use some proprietary technologies to bind them. Microsoft,
for example, uses the COM/DCOM paradigm to communicate between

talling WMI
MI will make it available for you to use and test the exa

The WMI core is shipped as an installable option on Windows 98, and is included as part of servi
pack 4 on Windows NT4. We recommend, however, that you download the latest version of WMI
from the Microsoft MSDN Web site, http://msdn.microsoft.com/, and use the search function to
locate the latest features in WMI Core.

Because WMI requires DCOM to work, WMI does not work on a Windows NT3.51 installation.

Installation Files

Microsoft provides two installation files for download from its Web site. One contains only the core
components; the other contains the WMI Software Development Kit (SDK). Many of the examples

 as follows:

in this book use components that are shipped as part of the SDK, so downloading the file containing
the SDK from Microsoft's site will be worthwhile, whether you are running Windows 9x, NT4, or
Windows 2000/XP/.NET. The WMI installable files are

Core (WMICORE.EXE) (approximately 6.5 Mb)

The core contains the components of WMI that become part of the operating system. System
administrators must install the core components on any potentially WMI-managed machine.

ired by

ository,

 this

not ideal, because it leaves the icon on display for inquisitive users. A more secure method of
initializing WMI on Windows 98 is to adjust the contents of the system registry, where all but the
most determined user fear to tread. You must also configure WMI on Windows 98 to accept remote
acce

To e es, perform
the following steps:

1. Start the registry editor program by clicking on the start menu, selecting Run... and then
type .

rt with

et to Y by default. The default setting for the
EnableRemoteConnect? value is N for W s and Y for Windows NT

cess the host machine via DCOM.
7. Modify the following entry in the system registry to use regedit to activate the automatic

ou
everal subkeys.

Double-click the WMI key and in the right pane locate the AutostartWin9X value. Double-
click t

WMI SDK (WMISDK.EXE) (approximately 12Mb)

The SDK contains all of the tools, examples, documentation, libraries, and header files requ
developers for working with WMI. System administrators may find some of the tools supplied with
the SDK interesting, as the SDK contains a number of utilities for navigating the CIM rep
which might be the quickest and most accessible way to learn in detail about WMI.

To start installation, double-click on either of the above and follow the on-screen instructions.

Configuring Windows 98 for WMI

Because Windows 98 does not support the concept of managed services, you must configure
operating system to initialize WMI automatically at start-up. The simplest of a number of options is
to place a shortcut to winmgmt.exe in the Windows startup folder. This solution, although simple, is

ss by changing certain settings in the DCOM registry.

nable automatic startup of WMI and remote administration on Windows 98 machin

regedit.exe
2. You should now be presented with an application window titled Registry Editor. The main

window is divided into two panes. The left pane contains a number of folders that sta
the word HKEY_. Each folder icon represents a key within the registry. Each key at the root
of the registry is a hive of the registry, hence its abbreviation, HiveKey. Select
HKEY_LOCAL_MACHINE and double-click on it to bring down a selection of subkeys.

3. Double-click the SOFTWARE key.
4. Double-click the Microsoft key.
5. Double-click the OLE key.
6. Two values, EnableDCOM and EnableRemoteConnect, should be listed in the right pane.

Set both of these values to Y by double-clicking each one and entering Y as their data
values. EnableDCOM already should be s

indows 98 system
systems. These settings enable remote machines to ac

start feature supported by WMI. First, go back to the left pane and scroll through it until y
locate the key WBEM. Double-click this key and you will be presented s

his entry and set its data value to one of the values in Table 3.1.

Table 3.1. AutoStartWin9x Registry Value Options

0 Do not automatically start Windows Management Service [default]. This starts

Value Description

Table 3.1. AutoStartWin9x Registry Value Options

Value Description

Winmgmt.exe only if and when a request is made. The Windows Management Service will
unload again after a set period of time. This setting is ideal if you don't anticipate your
machine having much interaction with WMI. This setting should not be used if you wish to

Start the Windows Management Service automatically after a system restart only if active
event consumers were registered with WMI. This option is ideal if you anticipate that the

ing events for active event consumers. If this is the case, then
 Management will check for active event consumers before the operating system

l start automatically
again when the operating system reload is complete, thus enabling it to continue forwarding

th
s option, the Windows Management Service remains loaded throughout every Windows

session, which creates a slightly higher resource overhead but speeds up responses to

is is the p r most configurations.

Optional Setting

, you can enable
WMI for remote administration. This will allow inister the
machine across the netwo ed by default, as the

nected either to a network or to an outside line for this function to work.
ciated with remote administration. WMI security and authentication

r Windows 98 are e-
click EnableAnonConnect

Hint

If you are familiar with the W try, you may prefer to go straight to the keys
mentioned by using t s are

HKEY_Local

and

HKEY_Local_Machine\SOFTWARE\Microsoft\WBEM

Core Compone

allow remote administration of WMI on the machines, as this setting does not start the
Windows Management Service at the request of remote machines.

Note: Events will not be forwarded to event consumers while the Windows Management
Service is in the unloaded state.

1

host machine will be provid
Windows
shuts down. If any are present, then Windows Management Service wil

events to these consumers.

2 Start Windows Management Service automatically every time the system starts up. Wi
thi

requests.

Note: Th referred setting fo

While in the HKLM\SOFTWARE\Microsoft\WBEM\WMI key in the registry
management applications to adm

rk or phone line using WMI. This setting is disabl
machine needs to be con
(Certain security issues are asso
issues fo discussed later in this chapter.) If you wish to enable this setting, doubl

ions settings and change the data value to 1.

indows regis
he Find function under the Edit menu. The key

_Machine\SOFTWARE\Microsoft\OLE

nts of WMI

When the core components of WMI have been installed, a number of executables, dynamic link
libraries (files that end with .dll), MOF, and XSL files will be placed in a directory called WBEM
that is located under the Windows system directory. In a Windows XP/.NET/2000/NT4 installation,
the path is %SystemRoot% installation, the path is
%SystemRoot%\system\wbem is advisable (although not
necessary) to add this insta e this will
simplify using the comman e

ture
managing the WMI archite
management infrastructure

The WMI SDK is somewhat larger and installs a number of programming samples and applications
to allow navigation, intera ore WMI
files (by default this directory is \Program Files\WMI).

In the first part of this cha WMI Core. We
nd u
elpf

tangible introduction to W
of the chapter, we explain

winMgmt.exe: The W

At the very center of the W of
functioning both as a standard W ice under

/.N
Information Model Object
Winmgmt) to reflect its pu ws more clearly. It resides under the
%SystemRoot%\system32\wbem directory on a Windows NT4.0/XP/2000/.NET installation or
%SystemRoot%\system\w ice on

indows NT4/XP/2000/.N e
s

as detailed at the start of th
example, started, paused, or
the computer management entation.

From here on, we ref
sake of simplicity and .exe running as a
service or as an executable on any of the compatible Windows operating systems.

The Windows Management Service acts as the focal point for all management applications set to
retrieve management data
(Providers are the mechanism through which we retrieve managed objects and are discussed later in
the chapter.) No interactio
Management Service, whi
type of system information, such as system resources, application performance, and so forth, which

\system32\wbem. On a Windows 98/Me
. For Windows 9x/Me/2000 users, it

llation path to your system environment path variable becaus
d-line driven executables supplied with WMI. The WMI cor

components are a mix of command line and GUI-based executables that assist in testing and
cture. This directory also contains the components that make up the
.

ction, and testing of WMI into a different directory from the c

pter, we examine the files that are installed as part of the
look at their purpose a
administrators and is h

se and how they help monitor and control WMI. This is useful for
ul for developers in testing code and tracking faults. It also serves as a
MI, behind which is the conceptual WMI framework. In the second part
 the WMI framework in detail.

indows Management Service

MI architecture is the executable winmgmt.exe. It is capable
indows executable (Windows 9x and Me) and as a serv

Windows NT/XP/2000 ET. The executable was referred to originally as the Common
 Manager, but the name was changed to Windows Management (or
rpose within Windo

bem on a Windows 9x/Me installation. When running as a serv
W
case with either Window

ET systems, winmgmt.exe is started automatically, but this is not th
 95 or Windows 98, in which special configuration settings must be made,
is chapter. On a Windows NT/XP/2000 installation, its state (for

stopped) can be monitored under the Services and Applications tab of
 snap-in tool, where it is listed as Windows Management Instrum

Note

er to winmgmt.exe as the Windows Management Service for the
 readability. This term will refer to winmgmt

from the CIM repository or from instrumented managed objects.

ns can take place with the CIM repository, except via the Windows
ch facilitates the gathering and manipulation of information about any

are represented as managed objects. When initialized as a service, it starts when the first
management application makes a call to connect and runs as long as management applications (or
any applications that are making requests) are using its services. When no calls are being made,

ows Management Se
e-clicked from withi

winmgmt.exe <optional command line parameters>

To retrieve a list of the op and
line. Figure 3.1

Wind
doubl

rvice eventually shuts down. It can be started from the command line or
n Windows Explorer.

tional command-line parameters type winmgmt /? from the comm
 shows the comm

Figure 3.1.

and line options for the Winmgmt executable.

The command-line options for the Winmgmt executable

mofcomp.exe: The Microsoft MOF Compiler

Another technology defined by the DMTF as part of the WBEM initiative is the Managed Object
Format or MOF. The MOF language was defined alongside the CIM so that descriptions of classes
and instances defined as part of CIM could be created in a simple ASCII (or Unicode) text format.
The MOF file provides a mechanism to import or export these definitions to or from a CIM
repository. You may recognize a similarity between MOF and Interface Definition Language (IDL),
because MOF's origins lie with IDL.OF, as its origins lay with IDL.

Once you have defined a MOF file (either by hand or by exporting the class and/or instance
definitions from the WMI CIM studio, as demonstrated in Chapter 4) you can use the MOF
compiler to add it to the local CIM repository. Microsoft provides a MOF file compiler,
mofcomp.exe (situated under the WBEM subdirectory), as one of the core components of WMI. It
is a command line executable: To compile a MOF file, you must go to a command line prompt and
type:

mofcomp <MOF filename>

Table 3.2 provides the additional command line parameters that are available.

ing a MOF file on a local or remote
machine and adding it to a CIM repository that could be located upon another machine on the

User Name

-check This option verifies correctness of the MOF syntax check only. This
ary and text MOF files. When the

MOF compiler is used in conjunction with this switch, it does not
connect to Windows Management Service nor does it update the CIM
repository with any values. It can only be used on its own.

Example:mofcomp -check <MOF filename>

 specifies

Example: mofcomp -n :root\CIMV2 <MOF filename>

nly updates an existing class within the CIM repository. If
no such class currently exists within the CIM repository, then this switch

mple: mofcomp -class:updateonly <MOF Filename>

es not change existing classes. This option only creates
ithin the CIM repository. If the class specified with the

MOF file already exists, then the compiler will return without making
any changes to the CIM repository.

mofcomp -class:createonly <MOF Filename>

s
ges taking place within the CIM repository.

r
encounters potential problems, then it will return without making

Use the following switches to log into WMI when compil

network.

-U:<UserName>

-P:<Password> Login password

-A:<Authority> Example: NTLMDOMAIN:Domain or KERBEROS

Example: mofcomp -u:Supervisor -p:LetMeIn -A:NT1 <MOF Filename>

Table 3.2. mofcomp Command-Line Options

Command-line option Description

switch checks the syntax on both bin

-N:<path> This option loads a MOF file into the namespace specified. If this switch
is not present, then the MOF file is added to the root/default namespace.
Alternatively, both these settings can be overridden if the MOF file
contains a #pragma namespace ("namespace path"), which
another namespace.

-class:updateonly This option o

tells the compiler to perform no action.

Exa
-class:createonly This option do

new classes w

Example:

Note: Using the two switches, updateonly and createonly, together result
in no chan

-class:safeupdate Use this switch to update a class that has children when you wish the
compiler to avoid possible problems with child classes. If the compile

Table 3.2. mofcomp Command-Line Options

Command-line option Description

changes to the CIM repository.

Note: If an instance of a child class exists then this operation will fail.

omp -class:safeupdate <MOF Filename>

-class:forceupdate Use this switch to add a new class regardless of any potential conflicts
with child classes. If an instance of a child class exists, however, this
operation will fail.

Example:

y,

nly <MOF Filename>

- This option does not change existing instances. This option will only
eate new instances within the CIM repository. If the class specified

with the MOF file already exists, then the compiler will return without
 CIM repository.

Example: mofcomp -instance:createonly <MOF Filename>

ary MOF file but does not add it to the CIM
repository.

Example: mofcomp -b:filename.bin <plain text MOF Filename>

dding in WMI
for WDM drivers. The use of binary MOF files in other contexts is not

 to the CIM repository. It requires the -B
switch.

 <MOF Filename>

piled during DB recovery.

Example: mofc

mofcomp -class:forceupdate <MOF Filename>

-
instance:updateonly

Use this option only to update an existing instance within the CIM
repository. If no such instance currently exists within the CIM repositor
then this switch tells the MOF compiler to perform no action.

Example: mofcomp -instance:updateo

instance:createonly cr

making any changes to the

-B:<destination
filename>

This option creates a bin

Note: Binary MOF files are intended primarily for embe

encouraged.
-WMI This switch is for use with binary MOF files. It is intended for use with

WMI for WDM and tells the MOF compiler to perform a syntax check
without adding the contents

Example: mofcomp -b:filename.bin -WMI
-AUTORECOVER This adds the MOF file to the list of files com
-AMENDMENT This can be used to split a MOF file into language-specific and language-

neutral versions.
-MOF: This loads a language-neutral MOF file.
-MFL: This loads a language-specific MOF file.

At present, WMI provides basic security features that determine access to the CIM repos
whole. Windows 9x or NT4 does not allow WMI to define permiss

itory as a
ions for individual classes,

instances, or namespaces. Windows 2000/XP/.NET does, however, introduce namespace-level
permissions. The username, password, and authority can all be set using the Security tab in the
WMI Microsoft Management Console (MMC) control snap-in, which you can see in Figure 3.2.

Figure 3.2. The WMI Control snap-in for Windows 2000/WinXP/.NET

The WMI Control

Filename: Wmimgmt.msc (Windows 2000/WinXP/.NET)

Wbemcntl (Windows 9x/Me)

Type: GUI-based tool

This Graphical User Interface (GUI)-based tool is released as part of Windows to help configure
WMI settings on a local or remote computer. It can be called from the Start/Run menu or command
prompt and can provide details on the currently installed version of WMI and its location and status,
as well as that of the current OS. The tool makes it possible to perform a manual backup or restore,
and can be used to modify the maximum size of log files, the level of detail entered in them, and the
logging directory. It enables an administrator to define authorized users and groups for specific
namespaces in WMI, allowing them to be assigned access permissions very similar in appearance
and operation to those assigned using the Windows NT user manager. Finally, it allows the
changing of the default namespace used for scripting (normally, root\cimv2).

Windows Management Instrumentation Tester

Filename: Wbemtest.exe

Type: GUI-based application

This GUI-based application (see Figure 3.3) enables the user to connect to a namespace and create,
delete, and enumerate classes or instances. It also provides an option to enter queries in WMI Query
Language (WQL) and execute methods. It can be a useful tool for developing WMI providers.

Figure 3.3. The Windows Management Instrumentation Tester

Automatic MOF Registration

Under the WBEM subdirectory, WMI has subdirectories that facilitate automatic registration of
MOF files. Any MOF files placed under this directory will be automatically compiled by
winmgmt.exe if it is running:

%Sys

Or fo

%SystemRoot%\system\wbem\mof

his directory also contains two subdirectories, good and bad, in which to store the MOFs after

temRoot%\system32\wbem\mof

r Windows 9x/Me:

T
they have been autoregistered. WMI monitors the wbem/mof subdirectory and compiles any MOF
files placed in it if WMI is running.

To compile MOF files, WMI uses mofd.dll, the dynamic link library that also is held under the
WBEM directory.

 file in either the good or the bad
n

I!) is malfunctioning. The

ing, such
aximum log size, and enabled/disabled.

m\wbem\repository\fs

ed index.btr.

The
exampl

Names
instanc gement environments. A Windows OS installation is an
example of a management environment (root\CIMV2), as is all of the management information for
the Mic

Win
As men ate
control and monitoring facilities, they do not represent accurately the data relationships between
ma e
ma
exist be

When the compilation is complete, WMI places the MOF
subdirectory, depending on the result of the compilation. To quickly check the outcome of a
automatic compilation, it is a good idea to check these directories for the results, because WMI does
not generate any visual results (although you can find a detailed account of the results in the log
files).

WMI Log Files

%SystemRoot%\system32\wbem\logs

Or for Windows 9x/Me:

%SystemRoot%\system\wbem\logs

The components of the WMI framework use the log files to catalog what is happening with WMI
over a period of time. They are a good source of information when troubleshooting if you suspect
WMI (or one of the components that you have written for WM
SystemRoot directory is the default directory in which WMI stores all logs. The WMI Control
(wmimgmt.msc), which is supplied as a core WMI component, can specify settings for logg
as the logging directory, m

WMI CIM Repository

%SystemRoot%\system32\wbem\repository\fs

Or for Windows 9x/Me:

%SystemRoot%\syste

This directory holds the CIM repository (objects.data) as well as an index file call

 wbem subdirectory also contains the standard providers that are shipped with WMI, for
e, cimwin32.dll, which is the standard Win32 provider shipped with WMI.

paces are defined as part of the CIM to differentiate among the groups of classes and
es that represent particular mana

rosoft Office applications (root\msapps10).

dows Management Instrumentation
tioned previously, although existing frameworks such as DMI and SNMP provide adequ

nag d objects from management domains other than their own. For example, most non-WMI
nagement applications are not aware inherently of any physical or logical relationship that may

tween an SNMP-managed object and a DMI-managed object. Using these legacy

manage
relation nd costly task. WMI provides a solution to these problems, as well as
def
enterpr
manage

Windo
guidelines and recommendations. As well as conforming to the DMTF's definitions, DMTF also

ber of Windows-specific extensions that provide a lower level of integration with the
Windows operating system. The extensions to the Windows Driver Model (WDM) that interface

f

nd read

 management information at this level.
2. Device Instrumentation development of software that can provide instrumentation for a

You must familiarize yourself with WMI's two central components that make up the management
infrastructure: winm ata, the CIM
central repository fo s that take place

IM re t d indows Management Servi e
.

The Basic Fr o

The diagram in Figure 3.4

ment frameworks to develop management applications that were aware of these
ships was a complex a

ining a model of the configuration, status, and operational aspects of a Windows-based
ise environment. Through its integration with the legacy frameworks, it provides
ment capability for non-Windows-based managed objects.

ws Management Instrumentation is an implementation of WBEM based upon the DMTF's

contains a num

directly with WMI, called WMI for WDM, are good examples. These extensions form a tight
cohesion between the WMI model and instrumented components, providing a very good level o
instrumentation.

Microsoft's COM/DCOM is the mechanism that allows communication between the various
components in the WMI architecture. The development of software to interact with WMI is in two
general areas:

1. Management Application development of software applications that access WMI a
or modify enterprise management data; WMI provides a number of ways of accessing
enterprise

hardware or software device; WMI refers to these software components as providers.

gmt.exe, the Windows Management Service, and object.d
r storing enterprise management information. All interaction

with the C pository mus o so via the W ce (winmgmt. xe) in a
variety of ways

amework f WMI

 show p are applications that
consume management data. Ty ons used by system
administrators to interact with the m

at co ati n e is respo
 direc y the CIM Object Manager).

ows M t Se s consum
itory t o , which r

 the di ed objects. They encompass
instance, event, method, and pr

ure ct

s the basic structure of WMI. At the to
pically, these are management applicati

anaged environment, but they can be applications, such as a
database, th
interfacing

llate inform
tly with the W

on. The WMI application programming i
indows Management Service (formerl

terfac nsible for

The Wind
CIM repos
bottom of

anagemen
or between da
agram, provide

rvice handles all interactions between the
a consumers and data providers.

e data
viders

ers and the
eside at the Data pr

 temporal or dynamic data from manag
operty providers.

Fig 3.4. An overview of the WMI archite ure

Data providers e e WMI to as the current status of a
CD-ROM drive door on a spec ement data is temporal in nature: A
request for such data requires a response within a limited time—otherwise, the data may become
invalid. When a ement application, for example, makes a request for such data, the Windows
Management Service initially looks for the information in the CIM repository. Classes and instances
in the CIM repository are registered as either static or dynamic. Dynamic classes and instances are
associated with specific providers, which are always called to retrieve the required value(s).

id e r me he
ent Se rwards ication. As you can
his kin tion by calling different kinds

of data provider fere hese providers later in the chapter.

Note

The only exceptions to this overhead are high-performance providers that use a shared
mory in are ementati

w den i erformance
oviders see Chapter 13

nabl retrieve dynamic management data, such
ific machine. Dynamic manag

 manag

The data prov
Managem
imagine, t

er returns th
rvice fo

etrieved value to the Windows Manage
 this information to the management appl
 incurs overhead, but WMI allows for this
nt situations. We discuss t

nt Service. T Windows

d of opera
s to suit dif

me
detail, ho
pr

terface and
ever, is hid

 loaded in-proc (short for in-process). This
 from the user. For more information on h

 impl
gh-p

on

.

The data consum gement applications—and data providers use Microsoft's COM/DCOM
to communicate with Windows Management Service. In general, most data providers and data
consumers comm a Windows Management Services, never directly. An exception is High-
Performance (Hi-Perf) providers that communicate between the provider and the consumer.

ers—mana

unicate vi

WMI Management Applications
ement is a hat use rmation t
 from one or more m a nt inform

gemen t.exe, which will retrieve the
information.

Management app tions attac
password and us ific that users see
only what they are authorized to see. Upon m ty requirements, a management
application has access to a wide range of management information, including a machine's resources,
performance, an ventory. In addition, management applications are able to administer
remotely across a network or a telephone line. Windows 98 installations require that WMI be
configured correctly. Windows XP is the exception: It enforces a higher level of security when

g from a chi m curity ac e
r you ccount o ne with WMI Control. WMI

Management applications are a

Access to mana nt information is available through either direct or indirect channels.

Direct Acces

Programmers can write applications that access management information directly through the WMI
API in C++ or in languages such as Java or Visual Basic that support the automation interface (a
COM/DCOM-specific term). Applications written this way do not require the services of an

diary, su MI

 Access

There are three ods for accessing WMI management information indirectly:

1. Use HTML web pages to interact with ISAPI. An indirect channel is available for WMI
managem formation by using HTML pages and a Web browser. The HTML is parsed

r API (ISAPI) la
mber ten W rver's ca
t it m act with

ISAPI is nda ors, including Process Software,
in conjun n with Mi on many popular World Wide Web
servers such as Apache for Windows and Microsoft's Internet Information Server (IIS).
Netscape Corporation has developed their own ISAPI equivalent for interfacing with the
Netscape of Web server products. They have named it NSAPI, and as yet no other
products have been developed that conform to this standard. As far at the authors are aware
no NSAP s have yet been written to interact with the Windows Management
Service.

icroso ides a se applicat
mation C-based applications such as

A manag
originates
managed object, a m

application

ana

n application or Windows service t
anaged objects. For WMI to retrieve man
t application must interact with

s info
geme

hat
ation from a

winmgm

h to the Windows Management Service subject to the usual security
ation of the underlying OS. This authentication ensures

eeting the securi

lica
ername ver

d system in

attachin
enabled fo

 remote ma
r user a

ne. To attach from a remote machine, re
n the target namespace. This can be do
lso able to register for events.

ote se cess must b

geme

s

interme

Indirect

ch as the W ActiveX controls.

meth

ent in
by the In
nu
tha

ternet Serve
of ISAPI ex
ay inter

yer that interacts with WMI. Microsoft provides a
sions (server applications) that extend a
 WMI.

rd developed by a number of vend
crosoft. ISAPI is available

eb se pability so

 an open sta
ctio

 suite

I extension

2. M
access the in

ft also prov
for

 an ODBC adapter that enables ODBC d
stored in the CIM. This means that ODB

taba ions to

Microsoft Excel and Microsoft Access can retrieve information from the CIM repository as
if it were a database.

3. Use ActiveX controls to access WMI. As part of the WMI SDK, Microsoft provides a
number of ActiveX con ct Manager using calls
directly e W
view and m nipulate ma
through a Web browser, although any ActiveX-compliant container application will work.

Providers

The Microsoft W ecture relies heavily upon the concept of providers that gather and supply
information from managed objects. Providers can be run as standalone executables, Windows

 or dyn brar tecture wo
gather amic m al-world" event notification.
are called upon when ormation that is not available

in the CIM repo CIM ses and instances that detail
all of the provid at service ce information from these provider classes, the
Windows Management Service passes requests to the appropriate provider. Microsoft supplies a
suite of standard providers for use with WMI. The standard providers, typically, retrieve
management inf on from a particular subsection of a managed domain such as the registry,
DMI, or SNMP.

Table 3.3

trols that enable access to the CIM Obje
MI APIs. These controls provide a GUI through which users can
nagement information. Typically, these controls are accessed

to the nativ
a

MI archit

services,
means of
Providers

amic link li
ing dyn

ies (DLLs). Without providers, the WMI a
anagement information or generating "re
 a management application requests inf
 repository maintains a number of clas

 WMI. Using instan

rchi uld have no

sitory. The
ers th

ormati

 lists the built-in providers supplied with WMI. The providers can request information
s an

Table 3.3 Providers

Provider) Preinstalled Namespace

DFS Provider Windows
er

Allows administrators to logically
group shares on multiple servers and
seamlessly combine them within a
single namespace. The file
dfs_desc.mof defines the Distributed
File System (DFS) provider classes.

Yes root\cimv2

erver
e the
s.

Provider er uted through a
network. The file route_desc.mof
defines the route provider classes.

Yes root\cimv2

Job Object
Provider

ws
.NET

Allows administrators to retrieve data
on named kernel job objects. The file
wmipjobj.mof defines the job object
provider classes.

Yes root\cimv2

Ping Provider Windows a
ding to

Yes root\cimv2

from WMI-managed object d can send instructions to them.

. Windows Operating System WMI

DescriptionPlatform(s

.NET Serv

Trustmon
Provider

IP Route

Windows
.NET S

Allows administrators to determin
trust relationships between domain

Allows administrators to ascertain how
IP packets are being ro

Yes root\cimv2

Windows
.NET Serv

Windo

Server[0]

Windows
XP

.NET
Allows administrators to determine if
destination address is respon

Table 3.3. Windows Operating System WMI Providers

Provider Platform(s) Description Preinstalled Namespace

er[0] requests using the standard ping
command. The file ping_desc.mof
defines the ping provider classes.

Policy
Provider er

Allows administrators to extend group
policy therefore permitting refinements
in the application of policy. The file

vider

Yes root\cimv2

Product
Activation
Provider

er[0]

Allows administrators to implement
Microsoft's anti-piracy technology. This
prevents product activation without first
establishing a valid association between
the hardware ID of the computer and
the product ID (PID). This is aimed at

Yes root\cimv2

Monitoring
Provider

dows

ws

dows

Windows

le
cimwin32.mof defines the performance
monitoring provider classes.

No root\cimv2

Performance
Counter
Provider

ws

dows
XP

ieve raw
performance counter data. The file
cimwin32.mof defines the performance
counter provider classes.

 root\cimv2

ws
XP

Windows

h power
management events. The file
cimwin32.mof defines the power
management event provider classes.

Serv

Windows
XP

Windows
.NET Serv

Windows
XP

system.mof defines the policy pro
classes.

Windows Windows
.NET
Serv

Windows
XP

reducing casual copying of software.

Allows administrators to retrieve
cooked data. Note Windows XP and
.NET users should use the Cooked
Counter provider. The fi

Performance Win
.NET

Windo
XP

Win
2000

NT

Windo
.NET

Win

Windows
2000

Allow administrators to retr

Power
Management

Windows
.NET

Allows administrators to monitor power
state changes surfaced throug

Yes root\cimv2

Event
Provider Windo

Windows
2000

Table 3.3. Windows Operating System WMI Providers

Provider Platform(s) Description Preinstalled Namespace

Session
Provider

Windows
.NET

Windows
XP

Windows
2000

Windows
NT

Allows administrators to manage
network connections and sessions. For
example, it is possible to monitor the
connections from a remote computer to
a shared local resource. The file
session_desc.mof defines the session
provider classes.

Yes root\cimv2

WDM
Provider

Windows
.NET

Windows
XP

ows
2000

Provides administrators with access to
management data supplied by WDM-
compliant hardware drivers.

Yes root\wmi

Windows

2000

Allows administrators to change
security settings on NTFS files, shares,
or directories. The file

rovider classes.

Yes root\cimv2

SNMP
r

Windows
management data generated by SNMP-
managed objects. To do this it defines

No root\cimv2

NT

Wind

Windows
NT

Active
Directory
Provider

Windows
.NET

Allows administrators to retrieve
management data from Active
Directory.

Yes

XP

Windows

root\cimv2

Security
Provider

Windows
.NET

Windows
XP

secrcw32_desc.mof defines the
security p

Windows
2000

Windows
NT

Provide .NET
Allows administrators to access

Table 3.3. Windows Operating System WMI Providers

Provider Platform(s) Description Preinstalled Namespace

NT

MIB and the WMI CIM classes.

System Windows Allows administrators to read and evoke
registry changes to data stored on local
or remote machines. It can also notify

No root\cimv2

NT

ce

ows

t\cimv2

cimv2

Windows
XP

the relationship between objects in the

Windows
2000

Windows

Registry
Provider

.NET

Windows
XP

Windows
2000

Windows
NT

administrators when changes occur in
the target registry.

View Provider Windows
.NET

Windows
XP

Windows
2000

Windows

Allows administrators to combine
existing instances of classes into a
single class. This functionality is not
restricted by the machine boundary or
namespace.

No Any
namespa

Windows
Installer
Provider

Windows
.NET

Windows
XP

Windows
2000

Allows administrators to retrieve
information held by the Windows
installer and provides access to installer
procedures remotely.

Yes

Wind
NT

roo

Win32
Provider

Windows
.NET

Windows

Provides administrators with Windows
system data such as the current settings
of environment variables or the
attributes of a logical disk.

Yes root\

Table 3.3. Windows Operating System WMI Providers

Provider Platform(s) Description Preinstalled Namespace

Counter .NET

ndows

lows administrators to retrieve
calculated ("cooked") performance data.

Yes root\cimv2

Dis
Provider XP

t the
amount of information a user stores on

Yes root\cimv2

vent Log Windows
XP

2000

Allows administrators to retrieve data
from the event log service. This
includes notification of events. The file
ntevt.mof contains the classes for the
event log provider.

Yes root\cimv2

rs.

 to

XP

Windows
2000

Windows
NT

Cooked Windows Al

Provider
Wi
XP

Windows
2000

k Quota Windows Allows administrators to restric

Windows
2000

Windows
NT

an NTFS volume. The file
diskquota_desc.mof defines the disk
quota provider classes.

E
Provider

Windows

Windows
NT

Types of Providers
Providers are further classified by the actions that they perform. At the most basic level, providers
can be classified as either event providers or data provide

Event Providers

Event providers generate notifications of an event. Once an event has been generated, it is passed
WMI, which attempts to match the event with one or more registered event consumers before
passing it on. Event consumers are applications that request notification of an event and then
perform an action in response to that specific event.

More than one event consumer can be registered to receive the same event, in which case WMI
passes notification to all of them. The example in Figure 3.5 has only a single event, a single
consumer provider, and a single event provider.

Figure 3.5. The simplified event consumer/event provider model

Data Providers

Data providers deal in management data. They enable a management application to retrieve or
modify dynamic instrumented data that must be generated on request. Data providers are further
classified as class, instance, method, or property providers. In Chapter 1, we briefly discussed the
CIM and how its structure is broken into classes that consist of properties and methods. A class that
contains values for its properties and methods is an instance of that class. Data from these p
is represented in the CIM repository.

roviders

Table 3.4 further defines the capabilities of each type of
provider.

Data providers also conform to a specific model that determines whether they store information in
the CIM repository or pass it directly to WMI. Table 3.5 outlines the three basic types of provider.

Table 3.4. Types of WMI Providers

type

Retrieves, modifies, deletes, and/or enumerates a provider-specific class. It can also
ry processing.

odifies, deletes, and/or enumerates the instances of system and/or

Property Retrieves and/or modifies individual property values.

Model Description

Provider Description

Class
support que

Instance Retrieves, m
provider-specific classes. It can also support query processing

Method Invokes methods for a provider-specific class.

Table 3.5. WMI Provider Classifications

Table 3.5. WMI Provider Classifications

Description

Supplies information directly to CIM repository

Model

Push

Push- Supplies information to CIM repository at startup and also periodically as and when it is

Event Handling

at startup. Used for data that does not
change frequently.

Verify needed. Used for data that does not change frequently.

Pull Supplies information directly to WMI and does not use the CIM repository. Used for
information that changes frequently.

As we saw in Chapter 2, when we described the operation of the management frameworks DMI and
SNMP, event notification plays a key role in managing any environment. Without notification o
critical or noncritical situations using events, a management app

f

lication would not be able to
accurately monitor the status of its managed objects. It also would have to poll a managed object

network resources and processor
cycles on the managed object and management application. To avoid this, both DMI and SNMP

otification uses the
best features of asynchronous and synchronous techniques and avoids the downfalls of each. We
discuss pter

repeatedly to determine its status. This would be wasteful of both

models support notification of asynchronous events (traps/informs in SNMP). The asynchronous
event notification mechanism is also part of WMI event-handling architecture. Asynchronous in the
context of WMI means that it is the responsibility of the management application initially to register
for event notification, but then it becomes the responsibility of the event provider to generate
notification of that event. The management application, once registered, can carry on its normal
administrative duties without having to check the managed object periodically. Synchronous event
notification would mean it was the responsibility of the management application to check
repeatedly to see if the event had occurred. Because of the asynchronous nature of events, WMI
provides two models of event subscription. WMI allows developers to subscribe for either
asynchronous or semi-synchronous notification of events. Semi-synchronous n

the two models in more detail when we develop examples of custom providers in Cha
12.

WMI's event notification mechanism works for both hardware- and software-instrumented

rt of the standard providers installed with WMI; for example, they allow you to define
events that refer to SNMP or Win32. In addition to the standard event providers, it is also possible
to code your ow s. Any event
generated by an event provider is passed to WMI, which in turn passes them to the appropriate
management applications for corrective action. Intrinsic, extrinsic, and timer events are the three
types of event that can occur within the WMI management framework.

Intrinsic Events

Microsoft defines intrinsic events in WMI as events that occur in response to changes in the
standard WMI data model. This refers to the CIM repository and its associated providers. An
intrinsic event can be the deletion, creation or modification of a class, an instance, or a namespace.
An intrinsic event allows the monitoring of a specific class or property within a class and
notification of changes or additions to those values. The event consumer uses a WMI Query

components. The event architecture in WMI centers on event providers. Event providers are
supplied as pa

n providers to enable event notification for your own managed object

Language (WQL) filter to define the conditions that trigger these events. For example, the consumer
may wish to be notified about new instances of a process to monitor the processes on a machine.

Extrinsic Events

An extrinsic event in WMI is one that occurs outside the standard WMI data model, that is, any
event that is not captured by the CIM repository or providers. Consequently, an extrinsic event must
be surfaced using an event provider. Microsoft refers to extrinsic events as "real world" events
because they typically take place on actual hardware- or software-managed components. MSDN
documentation cites a machine switching to standby mode as an example of an extrinsic event. The
conditions that trigger the event are defined by the event consumer (that is, a management
application) using a WQL filter.

Timer Events

Timer events are unlike intrinsic or extrinsic events because the event consumer must take explicit
action for them to occur. Timer events come in two varieties:

• Absolute timer events are triggered at a certain time.
• Interval timer events are triggered at regular intervals.

In order to receive a timer event, the event consumer must explicitly create within WMI an instance
of _IntervalTimerInstruction, _AbsoluteTimerInstruction, Win32_ LocalTime, or
Win32_UTCTime. The event consumer must then define and associate a WQL event filter and a
logical consumer to receive an event. Timer events are merely mechanisms for automating the

at

t Cons
nsumer
anagem

intermediary between an event consumer and an event provider, receiving and passing on relevant
 the re

providers and forwards event notification to them. Event consumers register with WMI to receive
g a ser look at filters toward the
r. provider operates or
t ty straction between the two

ing th
rs ca

rary Con

event consumer is one that receives notification of events only when it is active. It
does not receive events when it is no longer active, and it can cancel its registration for an event in

tration for temporary events in the CIM repository but instead
stores the information in memory. Should the CIM repository's host machine be rebooted, all record
of the temporary consumer will be lost.

delivery of events at a given time or time interval. WMI is responsible for forwarding the event
the time specified by the consumer.

Even umer
An event co
events. A m

is an application that registers with WMI to receive notification of certain
ent application is an example of a typical event consumer. WMI acts as an

notification to levant consumer. WMI matches registered consumers with responsible

notifications usin
end of this chapte

 WBEM Query Language filter. We shall take a clo
Event consumers register without knowing how the

whether the even pe is intrinsic or extrinsic. WMI acts as a layer of ab
parties, thus shield
Event consume

e event consumer from the implementation details of the event provider.
n be either permanent or temporary.

Tempo

A temporary

sumers

WMI. WMI does not store the regis

Imagine a Windows-based management application that displays the status and statistics (that is,
available space) of all the disks present on a host machine. The application would need to update i
statistics should the available disk space on the machine change while it is running. This
information, however, would not be important for an application that is not running. The temporary
consumer architecture is ideal for such a situation.

Permane

ts

nt Consumers

th
al" consumer, and the consumer

provider code (that is, the .dll or .exe file) as the "physical" consumer. Registrations of this type are
escribed as "persistent" because they remain in the CIM repository even if the host machine is

rebooted. They must be de-registered explicitly (that is, their registration entries must be removed

ses

ers are useful when a response to an event always is warranted and is a robust

ntation becomes greater than 10 percent,

 will then execute and perform its task.

o as WQL (pronounced
"Wequal" WQL
is a filter. viders)
use WQL. We discuss WQL later in this chapter.

WMI Security
WMI security is largely reliant upon the facilities provided by the host operating system. For this
reason, the local and remote security features of WMI are different on a Windows 98 machine from
those on a Windows NT4.0/2000/XP/.NET machine.

Security in WMI is based upon the concept of authentication, which has two stages:

The permanent event consumer architecture requires that the consumer explicitly be registered wi
the CIM repository. WMI describes this registration as the "logic

d

from the CIM repository) to remove them.

Whereas a temporary consumer only receives event notifications while it is active, a permanent
consumer, once registered, always receives event notifications, whether its state is active or
inactive. If an event takes place and a permanent consumer is not currently active, then WMI u
its registration information to locate the logical consumer and load the physical consumer before
forwarding the event.

Permanent consum
form of event delivery. Events concerning system housekeeping are good examples: Consider a
situation in which a disk defragmentation application is registered with WMI as a physical
permanent consumer. It registers to receive an event if the amount of fragmentation on the C: drive
increases to greater than 10 percent. Once registered, the application terminates. It is not required to
remain constantly resident in memory because it needs to perform its task only occasionally, when
disk fragmentation exceeds 10 percent. If the disk fragme
WMI will receive an event and look up the logical consumer in the repository. The logical
consumer is associated with an instance of a physical consumer. Having located the logical
consumer's entry, WMI will retrieve the details for the physical consumer and attempt to load it.
The disk defragmentation program

Management applications register for notification of events using WMI's subset of the Structured
Query Language (SQL, pronounced "Sequel"), which is referred t

). Each condition specified by the management application or event provider using
 Both management applications (event consumers) and managed objects (event pro

1. Users must have access to Windows systems resources, such as files and directories and the
privileges assigned to them. Users gain access by supplying a username, password, and
domain name that the host operating system validates. If users do not satisfy these
requirements, then they will not proceed to stage 2.

2. Users must have privileges granted at the user or group level to access the CIM repository
controlled by WMI. Users gain access by providing a user name, password, and domain.

Access to specific namespaces in WMI is dictated by permissions assigned to user and group
accounts with the help of the tool WMI Control. The permissions granted to accounts defined in the
Windows computer management snap-in determine access to the underlying Windows system
resources. Together they form WMI's security mechanism.

Authentication

User authentication is a username, password, and domain that the user who is attempting to access a
particular resource supplies. The authentication process then is handled by marshallers, who verify
the account and positively identify the user. Marshallers, based upon DCOM security, have no
knowledge of the permissions granted to the user within WMI.

WMI Permission Assignment Using WMI Control

The second part of WMI's security process is based upon the concept of permissions that provide
users with specific privileges to access parts of the CIM repository. WMI does not provide a
mechanism for assigning permissions to particular classes or instances. Instead, permissions can be
assigned only to the entire namespace and thus are called global permissions. For example,

d

nd access level to users or groups. To use this
GUI-based application to create users and groups with specific access permissions, first select the
Start/Run menu options and then type winmgmt.msc at the dialog window. Having started the snap-
in, select the Security tab, which, in Figure 3.6

currently it is not possible to assign read-only permissions to a particular instance of a network car
on an installation and to assign write access to all other entries. Microsoft supplies the Winmgmt
snap-in to assist in the task of assigning permissions a

, displays a list of namespaces.

I Control Security tab displaying the available namespaces Figure 3.6. The WM

Figure 3.7
permission

demonstrates how the namespace securi
s.

ty level can be set to allow or deny one or more

Figure 3.7. Setting the security options for group or user names

Table 3.6 details
9x/Me when acc

 the name
essing the

T

Model Descr

Full Write Allow sions within the
namespace.

Partial Write Allow the
names

Allow

Remote Enable Allows group or user remote access to namespace.

Read Security Allow

llow

Permissions
Allow s.

WMI Security on Wind

space permission types. These settings are relevant only to Windows
 namespace remotely (locally, users have full control).

able 3.6. WMI Namespace Permission Types

iption

Execute Methods Allows a group or user to execute methods within the namespace.

s a group or user full write/read/delete/execute permis

s a group or user full write permissions only to static objects within
pace.

Enable Account s group or user read access to WMI objects.

s group or user read-only access to WMI security information.

Edit Security A

Special

s read or write access to WMI security information.

s you to control inheritance on the namespace and/or its sub-namespace

ows 9x

On a Windows 98 installation, all local access to WMI is unauthenticated, that is, no password or
username is required. This is because of the basic security model of the operating system and not
because of WMI implementation differences between platforms. Windows 98 requires a password
and username only if a rem
enable authentication for r
implemented. User level security req
specified.

Share level security can pr e
m of authentication

The WMI Query
Central to the concept of r
data and class definitions, MI Query Language. WQL provides a

odification, deletion, or insertion of values in the CIM

r an informal introduction to the
a finitions that follow. (We shall look

in more de

ote connection is attempted, and only under limited circumstances. To
emote access to WMI on this platform, user level security must be

uires that a domain that can be used to identify users be

ovide remote access to WMI's resources; however, it does not enforc
 and is, therefore, not recommany for ended.

 Language
eceiving and generating event notification or retrieving instances of class
is the Microsoft-defined W

powerful mechanism through which a management application or data provider can define its
informational relationship with WMI. WQL is a subset of SQL92 and in its current release, supports
only read-only operations, not the m
repository.

To become
hierarchy

 familiar with WQL filters and their function and fo
nd structure of CIM, type in the examples in the de
tail at the structure and hierarchy of CIM in Chapter 4.) The WMI SDK provides the

anagemWindows M ent Instrumentation Tester (WMI Tester), which is a useful tool for trying out
WQL queries (and it has several other useful functions).

ecutable is under the WBEM directory beneath the
Windows system directory.

 double- le named WBEMtest.exe (in Windows XP, simply go to Start->Run
and type) to display the screenshot in Figure 3.8

The WMI Tester is part of the standard installation of the core components of WMI. If you have
successfully installed WMI, the WMI Tester's ex

Locate and click the fi
WBEMTest.exe .

Figure 3.8. The Windows Management Instrumentation Tester main dialog

The dimmed (not enabled) buttons indicate that you are not connected to WMI. To connect, click
the Connect … button on the top right. Your screen will display the dialog in

Figure 3.9.

Figure 3.9. The Connect dialog

Under Namespace, replace the text, root\default, with root\CIMV2 (see Figure 3.9). Leave the
Connection settings as they are and leave the User, Password, and Authority fields blank because

ou can specify an explicit path before the
namespace as follows:

\\127.0.0.1\root\CIMV2 or \\CraigsMachine\root\CIMV2

me or an IP address. This one, the

In Windows 2000/WinXP/.NET, the default is read access to the repository on your own machine.
er of the

MI remotely,
in which case you must specify a user, a password, and an authority. The authority must be defined

le components for the Windows OS.

Q

we will not require them for the following examples.

Note

To connect to WMI on another machine y

As you can see from the example, this can be either a machine na
local loopback address, connects to the host machine.

In Windows NT4.0, you should not encounter any restrictions if you are a memb
ays apply, however, when you access Wadministrator group. Security restrictions alw

with the WMI Control on the target machine.

Click the Connect button to return to the first screen; we have connected to WMI and the Win32
extended schema on our local machine. CIMV2, Microsoft's namespace, contains the Win32
extended schema that defines the manageab

On the right side of the bank of 14 buttons on the main dialog screen, find the button marked uery.
on for (If any of the buttons is not enabled, you have not logged into WMI correctly.) Click this butt

the dialog box in Figure 3.10.

Figure 3.10. The Query dialog

You can type WQL queries in the Query dialog box. The Query Type drop-down box specifies the
language type of query; at this stage, WQL is the only one available. The Retrieve class prototype
check box determines whether you would like additional class information returned with your
query.

The WQL is able to support three types of query: data, event, and schema. WMI refers to these
queries as filters because they retrieve only the information specified in the query and filter out
extraneous data.

all

Data Queries

aged

es a condition using a property as a value.

32_LogicalDisk in which the file system is specified as
FAT (we could easily have specified the file system as being NTFS).

eeSpace < 102400

Returns all instances of Win32_LogicalDisk in which the amount of free space left on
ve is less than 100 Kilobytes.

Sy

Ex

This example w he WinMgmt instance of class

t path

Data queries allow retrieval of instances of class and data associations through the following three
statements:

SELECT retrieves instances of a single class.

Syntax: SELECT * FROM <CLASSNAME>

Example: SELECT * FROM Win32_LogicalDisk

This example retrieves all instances from the CIM repository for class
Win32_LogicalDisk. This class represents the logical drives associated with a man
environment.

WHERE supports the SELECT statement. It specifi

Syntax: SELECT * FROM <CLASSNAME > WHERE PROPERTY=<VALUE>

Examples: SELECT * FROM Win32_LogicalDisk WHERE FileSystem = "FAT"

Returns all instances of Win

SELECT * FROM Win32_LogicalDisk WHERE Fr

the dri

SELECT * FROM Win32_LogicalDisk WHERE Compressed = TRUE

Retrieves all instances of Win32_LogicalDisk in which the drive is flagged as
compressed. WQL allows the substitution of TRUE and FALSE in place of 1 and 0 for
Boolean values.

ASSOCIATORS OF is used alone to retrieve all instances associated with a particular source
instance. The source instance is specified in the Object path, which must define a unique instance
(that is, class name and key).

ntax: ASSOCIATORS OF {Object Path}

ample: ASSOCIATORS OF {Win32_Service="WinMgmt"}

ill return the classes associated with t
Win32_Service (Windows Management Service—winmgmt.exe.)

The use of curly brackets around the object path is mandatory, and the objec

Syntax ect Path}

The njunction
with on

: ASSOCIATORS OF {Obj

should contain no spaces. Ignoring these rules will result in an error.

 ASSOCIATORS OF statement can include a WHERE clause that can be used in co
e or more of the keywords in Table 3.7.

Table 3.7. ASSOCIATORS OF Statement Keywords

rd Meaning

lass Indicates that the returned endpoints must be associated with
through the specified class or one of its derived classes.

Keywo

AssocC the source

ERE

ClassD he ClassDefsOnly keyword indicates that a result set of class definition
s.

mple: ASSOCIATORS OF {Win32_Service="WinMgmt"}WHERE

Requir ed
n

RE

Req ndpoints
ifier.

ERE

Res
name>

ssociated
pecified

}WHERE

Result must play
t. The role is
 property of

type ref.

Example: ASSOCIATORS OF {Win32_Service="WinMgmt"}WHERE

 in an

 specified property and must be

Example: ASSOCIATORS OF {Win32_Service="WinMgmt"}WH
AssocClass =CIM_Component

efsOnly T
objects is returned, rather than actual instances of the classe

Exa
ClassDefsOnly

edAssocQualifier The RequiredAssocQualifier keyword indicates that the return
endpoints must be associated with the source object through a
association class that includes the specified qualifier.

Example: ASSOCIATORS OF {Win32_Service="WinMgmt"}WHE
RequiredAssocQualifier = dynamic

uiredQualifier The RequiredQualifier keyword indicates that the returned e
associated with the source object must include the specified qual

Example: ASSOCIATORS OF {Win32_Service="WinMgmt"}WH
RequiredQualifier = dynamic

ultClass = <class The ResultClass keyword indicates that the returned endpoints a
with the source object must belong to or be derived from the s
class.

Example: ASSOCIATORS OF {Win32_Service="WinMgmt"
ResultClass = Win32_BaseService

Role The ResultRole keyword indicates that the returned endpoints
a particular role in their association with the source objec
defined by the specified property and must be a reference

ResultRole = Antecedent

Role The Role keyword indicates that the returned endpoints participate
association with the source object where the source object plays a
particular role. The role is defined by the

Table 3.7. ASSOCIATORS OF Statement Keywords

Keyword Meaning

a reference property of type ref.

}WHERE Role

REF R a particular source

Example: ASSOCIATORS OF {Win32_Service="WinMgmt"
= PartComponent

E ENCES OF is used alone to retrieve all association instances that refer to
instance.

Syntax: REFERENCES OF {Object Path}

Example: REFERENCES OF {Win32_Service="WinMgmt"}

This example retrieves all of the associations pertinent to the Windows Management
service.

The REFERENCES OF statement can include a WHERE clause that can be used in conjunction
with one or more of the keywords in Table 3.8.

Table 3.8. REFERENCES OF Statement Keywords

Example: REFERENCES OF {Win32_Service="WinMgmt"}WHERE

word indicates that the returned association objects must
belong to or be derived from the specified class.

Keyword Meaning

ClassDefsOnly The ClassDefsOnly keyword indicates that a result set of class definition
objects, rather than actual instances of the association classes, is returned.

ClassDefsOnly

RequiredQualifier The RequiredQualifier keyword indicates that the returned association objects
must include the specified qualifier. The RequiredQualifier keyword can be
used to include particular instances of associations in the result set.

Example: REFERENCES OF {Win32_Service="WinMgmt"}WHERE
RequiredQualifier = abstract

ResultClass The ResultClass key

Example: REFERENCES OF {Win32_Service="WinMgmt"}WHERE ResultClas
= Win32_BaseService

s

vent Queries

Role The Role keyword indicates that the returned associations are only those in
which the source object plays a particular role.

Example: REFERENCES OF {Win32_Service="WinMgmt"}WHERE Role =
GroupComponent

E

Event consumers and event providers, respectively, use event queries to tell WMI of the events in
which they are interested and the events that they provide. WMI pairs event consumers and event
providers by using their queries for comparison when an event is generated. Both permanent a
temporary event consumers use event queries to register their interest in certain events.

nd

Event queries use the SELECT statement (mentioned previously) in conjunction with an optional

A basic example of the use of WQL by an event consumer to receive notification of events from
class Win32_LogicalDisk is

2_LogicalDi

ery registers a consumer to receive notification in the eve f class
gicalDisk. If, for examp added a new disk drive to their machine

lDisk would be created as a new instance of class) then the consumer would be
 symbol used after S ts all elemen nd properties) from

_LogicalDisk.WQL does not support consumers th specify individual properties in
its place. For example, the following is not a valid event query:

his query will return instances of the Win32_LogicalDisk class only when less than 100K free

 that a time scale within which notification can take
be

2. a polling interval

The WITHIN clause must be used as follows:

SELECT * FROM Win32_LogicalDisk WITHIN 600.001 WHERE FreeSpace < 102400

The
specify very

WHERE clause to specify under what conditions to be notified of an event. The most basic event
query filter is

SELECT * FROM <EventClass>

SELECT * FROM Win3 sk

This qu nt of a new instance o
Win32_Lo le, users
(Win32_Logica
notified. The * ELECT represen ts (methods a
within Win32 at

SELECT Size,FileSystem FROM Win32_LogicalDisk

Although WQL will not reject the query, it will treat it as if it were a * symbol.

Appending the WHERE clause to this invalid query will narrow its scope. The WHERE clause can
allow a consumer to specify further conditions under which to be notified of an event:

SELECT * FROM Win32_LogicalDisk WHERE FreeSpace < 102400

T
space remains.

The WITHIN clause is appended to a filter so
place can be specified. The time is specified in seconds. The two types of time interval that can
specified are:

1. a grouping interval

When a consumer is interested in the changes to a class and an event provider is not available, the
WITHIN clause specifies a polling interval. A polling interval is given when a consumer registers
for an intrinsic event.

 interval is specified in seconds and is a real decimal value. It is not advisable, however, to
 small values because this creates overhead for CIM. If you specify a minuscule value

(such a
expens ding example generates only one notification instance
approximately every 10 minutes (not ignoring the .001 second).

IN < >

 event consumers. GROUP specifies the amount of time spent collecting events before sending an
otification of their occurrence.

 the GROUP clause. It
specifies the minimum or maximum number of events that should take place within the time

Schema Queries

Schema queries are used to request class information or schema associations and to specify the
classes and associations that class providers support. Microsoft normally does not recommend class
providers because of the overhead that they place on WMI every time a request is made for them.
Schema queries support the following statements:

SELECT retrieves a single class definition. It must be used in conjunction with the keyword
meta_class.

SELECT * FROM meta_class

This query retrieves all of the class definitions found in the current namespace. Like all other uses
of the SELECT clause, it can be combined with the WHERE clause to narrow the scope of the
query. In this case, however, the WHERE clause must be used in conjunction with two other special
keywords, __this and ISA, as follows:

SELECT * FROM meta_class WHERE __this "Win32_Service"

The __ statement identifies the target class for the query. The preceding query retrieves the class
definit trieve
the subclasses, you must use the following ISA clause:

s 0.001) with which CIM is not prepared to work, it can reject the value as being too
ive in terms of overhead. The prece

The GROUP clause is used in conjunction with the WITHIN clause:

SELECT * FROM Win32_LogicalDisk WHERE FreeSpace < 120000 GROUP
 WITH Interval in seconds

This query registers to receive event notification when the free space on an instance of
Win32_LogicalDisk falls below 120000 bytes. The time interval specified at the end of the query
determines a duration of time (in seconds) before passing the notification of all events of this type
to
aggregate n

The HAVING clause specifies a further condition in conjunction with

interval specified by the GROUP command. If the number of events does not satisfy the number
specified by the HAVING clause, notification is not passed to the event consumer.

SELECT * FROM Win32_LogicalDisk WHERE FreeSpace < 120000 GROUP
 WITHIN 600 HAVING NumberOfEvents > 10

In the above example, notification is sent to the consumer only if the number of events is greater
than 10 after a period of 10 minutes has elapsed since the first event. Event notification then takes
the form of a single aggregate event. NumberOfEvents is a member of the __AggregateEvent class
and represents the number of events combined to produce a single __AggregateEvent summary
event.

ion for class Win32_Service (not including any of its subclasses). If you wish also to re

SELECT * FROM meta_class WHERE __this ISA "Win32_Service"

ASSOCIATORS OF retrieves associated class definitions. The syntax and semantics of using the
ASSOCIATORS OF clause, except for a few minor differences, are the same as those for its use

s. The
wo

rements. We also examined the files and directories that

make WMI and the purposes of these elements.

Consider Chapter 3

with data queries. The ClassDefsOnly keyword is invalid and every schema query must end with
the keywords WHERE and SchemaOnly (in that order, though not necessarily consecutively).

ASSOCIATORS OF {Win32_Service}WHERE
 Role = GroupComponent SchemaOnly

This query returns a list of associated class definitions for the classes associated with
Win32_Service (the Windows NT service class) whose role is that of GroupComponent.

REFERENCES OF retrieves class definitions of classes that are referenced by the source clas
same conditions apply to this clause as to data queries except that each query must contain the t
keywords, WHERE and SchemaOnly.

REFERENCES OF {Win32_Service}WHERE
 ResultClass = Win32_BaseService SchemaOnly

Summary
This chapter has explored the basic framework of WMI, including the concepts of events, data
consumers, and data providers. We looked at the role that providers play in WMI and examined the
use of WQL in defining information requi

 a source for reference. You cannot expect to read and remember all of its
information in a single sitting. Instead, proceed to Chapter 4, in which we take a practical look at
the CIM, which we have already introduced as one of the most important and complex aspects of
the WBEM framework.

Ten Fast Facts: Windows Management

pertinent to the enterprise.
e heart of the WMI architecture and runs as
table depending upon the capability of the host

mation or generating "real-world" event notification.
rate notifications of an event. After an event has been

Instrumentation
1. The primary component and information model of the WBEM initiative is the

Common Information Model (CIM), which is designed to hold all information

2. The WinMgmt executable is at th
either a Windows service or execu
operating system.

3. Providers supply management information that can change. They can be run as
standalone executables, Windows services, or dynamic link libraries (DLLs).
Without providers, the WMI architecture would have no means of gathering
dynamic management infor

4. Event providers gene
generated, it is passed to WMI, which matches the event with registered event
consumers before passing it to the event consumers. Event consumers are

applications that request notification of an event and then perform an action in
response to that specific event.

5. Data providers deal in management data. They enable a management application
to retrieve or modify dynamic instrumented data that must be generated on
request. Data providers are further classified as class, instance, method, or
property providers.

6. Microsoft defines intrinsic events in WMI as events that occur in response to
he standard WMI data model. This refers to the CIM repository and its

associated providers.

take place on actual hardware- or software-managed components.
 can be either absolute or interval based. Absolute timer events are

triggered at a certain time. Interval timer events are triggered at regular intervals.

ly active, then WMI uses its registration information to locate the logical
consumer and load the physical consumer before forwarding the event.

he concept of receiving and generating event notification, instances of
class data, and class definitions is the Microsoft-defined WMI Query Language.

umers and event providers by using their
queries for comparison when an event is generated. Both permanent and

vent consumers use event queries to register their interest in certain
events. Schema queries are used to request class information or schema

changes in t

7. An extrinsic event in WMI is one that occurs outside the standard WMI data
model, that is, any event that is not captured by the CIM repository or providers.
Consequently, an extrinsic event must be surfaced using an event provider.
Microsoft refers to extrinsic events as "real world" events because they typically

8. Timer events

9. Event consumers can be either temporary or permanent. Whereas a temporary
consumer receives event notifications only while it is active, a permanent
consumer, once registered, always receives event notifications, whether its state is
active or inactive. If an event takes place and a permanent consumer is not
current

10. Central to t

Data queries allow retrieval of instances of class and data associations. Event
queries tell WMI of the events in which they are interested and the events that
they provide. WMI pairs event cons

temporary e

associations and to specify the classes and associations that class providers
support.

Chapter 4. A Guided Tour of the Common
Information Model Repository
Before we take a hands-on look at Microsoft's implementation of the Common Information Model
(CIM) repository, let us first examine its structure as defined by the DMTF. In the previous

• Classes that define the structure of the information held in the store
 define the relationships between elements in the repository

• Methods that define the behavior of the managed objects

chapters, you have gleaned an idea of the structure and purpose of the CIM. In simple terms, it
consists of the following four components:

• Associations that

• Properties that define individual characteristics of each managed object

Each of these components can have associated instances that hold the management data. They were
designed with the basic purpose of providing a platform-independen

t means of describing the

manageable aspects of all types of logical and physical components in the enterprise.

The objective of this chapter is not to describe every class, property, method, and association within

of
s that define the properties and

methods relevant to WMI's security model, the classes that define the WMI provider architecture,
f the CIM schema. By the end of the chapter, you should have a solid enough

knowledge of the structure of the repository to move through it with confidence.

. During
ok briefly at the Managed Object Format (MOF) so that

you can better understand some of the terminology used in the WMI CIM Studio. For a more
 syntax and semantics used in the MOF, you can refer to the platform SDK

documentation available from the MSDN Web site.

F does not supply a
downloadable version of WBEM that you can install as part of your operating system). It is the

f vendors such as Microsoft, Intel, or Hewlett-Packard to adhere to the DMTF's CIM
standard and produce their own physical implementations. Microsoft has done this for its range of

d

apter is to familiarize you with the CIM repository that is shipped with WMI.
This will serve two purposes: first, it will give you some idea of the vast array of information that

he

faced with the task of instrumenting your own product within the CIM repository or need to
elicit management information from the repository about managed objects. To explore the

ll use the tools supplied with the WMI SDK, so if you did not install the SDK
during your study of Chapter 3

the CIM schema and Win32 extended schema. First, this would not make particularly interesting
reading, and second, it would prove somewhat overwhelming as an introduction to the CIM.
Instead, the focus of this chapter is to examine the classes and associations that hold the elements
most interest to users of WMI. This includes the WMI system classe

and the classes o

We shall use Microsoft's WMI CIM Studio to look at the classes within the CIM repository
the course of the chapter, we also shall lo

complete list of the

Recall from the previous chapter that the CIM is a conceptual model for storing enterprise
management information—it is not a physical implementation (that is, the DMT

responsibility o

Windows operating systems. The CIM repository supplied as part of WMI is a data store structure
in accordance with the DMTF's CIM. It is supplied with any of Microsoft's WMI-compliant
operating systems (Windows 9x/2000/NT4.0/WinXp/.NET): It holds management information
structured in accordance with the CIM.

The aim of this ch

you can retrieve from the repository, and second, it will provide you with an introduction to t
structure and relationships of the existing classes. This knowledge will prove useful especially if
you are

repository, we sha
, you should do so now.

"Metad k word "meta-
" is a p r with HTML scripting, you will
have en
present is
"data th es data" or, more precisely, definitional data.

Admitt . We
know f CIM is described by a series of
classes and associations, and the elements contained therein (methods, properties, and references).

Metadata
ata" is a new term to those who are not familiar with data modeling. The Gree
refix that means "behind" or "hidden." If you are familia
countered the prefix in metatags. Metatags describe the characteristics of information
ed on a Web page (for example, to specify text displaying Bold or in Italics). Metadata
at describ

edly, this is a broad definition, so let us define metadata more fully in terms of the CIM
rom previous chapters that the information available from

These c fied as
metada

onstructs describe the data available to WMI client applications and are classi
ta, as you can see in Table 4.1.

Table 4.1. Metadata Examples

Property (metadata) Type (metadata) Value (instance data)

Model

Version Real32 1.64

String 1.23.54.244

e

mation

ry was

envisaged by the DMTF primarily, although not exclusively, as a store for metadata.

Dy
As el e data, it is important to

s the amount of free space left on a disk
ue

sist in other places, such as Active Directory, a database, the Internet, or
isk.

2. A WMI class can have properties that are retrieved from several sources, thus unifying

perty

String CD99A_EXPRESS

BIOSVersion

Read_errors Sint32 0

The information in the Property and Type columns is metadata, as it describes the information w
can retrieve, which is listed in the Value column. The Property and Type columns represent "data
about data." The information in the Value column is instance data—the data that metadata describe.
Metadata is a generic term and applies to a broad spectrum of data; for example, class infor
is metadata. Metadata also includes descriptive information about the context, quality and
condition, or characteristics of the data, such as WMI system classes and properties. It is important
to make the distinction between metadata and instance data because the CIM reposito

namic and Static Data
w l as understanding the distinction between metadata and instanc

understand that the data in WMI is categorized further as either dynamic or static. A simple rule of
thumb is that metadata is inherently static and instance data more often is dynamic. As with all
generalizations, however, there can always be exceptions to the rule.

Dynamic data is characterized by frequent change. Instance data commonly falls into this category,
because the values associated with instance data often change during a managed object's lifetime.
For example, the value assigned to a property that represent
partition is dynamic in nature, because during the day-to-day operation of the disk drive, the val
normally will change. Other reasons that the data may change include:

1. The data may per
simply a file on d

separate data sources into one logical means of accessing it and its relationships. For
example, the Win32_Service might obtain the Started property at run time and most of the
other properties from the registry.

Static data is slow or nonchanging data, such as class or association definitions or a static pro
value such as a BIOS version number (although these values can change if the BIOS is stored on
flash memory that can be reprogrammed) or a manufacturer's name. WMI class definitions often
fall into this category because the classes that define a managed object do not change with great
frequency.

Dynamic data (for example, the Read_errors value in the Value column in Table 4.1), is provided
externally by WMI providers. Static data and metadata are stored in

 the CIM repository.

ed

d,

remaining on the disk changes constantly during its day-to-day operation. Without a
mechanism for keeping track of these changes, management applications that requested information
on the amount of free sp The solution designed
by Microsoft is a WMI provider, a software com s for dynamic data with

tion that i ly co r 12

Dynamic Data and the CIM Repository
An important concept when retrieving dynamic (volatile) data is temporal correctness. For data to
be temporally correct, it must be valid in relation to the time of the original query. When a manag
object supports dynamic data, it is counterintuitive to import that information into the repository
with no means of updating it. Imagine that we are responsible for monitoring the amount of free
space on the disk drive partition of a network server. Because the network server is heavily utilize
the space

ace could end up retrieving out-of-date information.
ponent that reacts to request

informa s temporal rrect. (Chapte covers WMI providers in detail.) Figure 4.1
pl ecture w dy a, and Figure 4.2shows an exam e archit ithout using WMI providers for namic dat

e that

igure 4 mple to o ynamic data

demonstrates an architectur uses WMI providers.

F .1. Exa pology without any mechanism t supply d

MI with dynamic data Figure 4.2. Example topology in which product supplies W

Figure 4.2 shows a management application requesting instance or property data that is supplied
dynamically. In this example, class and association information is held statically in the CIM
repository. The example does not illustrate the surfacing of events or method invocation.

Figure 4.2 also demonstrates how WMI providers retrieve dynamic data directly from the manag
object to respond to the request. The Wind

ed
ows Management service then returns all of the requested

information to the client application. Although Figure 4.2 shows a preferred arrangement,
e storing instance information in the CIM repository, which even may be the p

 it does
not preclud referred
solution for situations in which the instance inform ion is not expected to change during the
lifetime of the managed object (that is, it is static). It is far more likely, however, that some

 track

In the current release of WMI, ociations) in the CIM
scribes loca t information pertaining to the host operating system. In

ay concern itself with distributed applications and
ement information CIM repository is capable

 information ot , although this is not
rred arrangemen

e Common
ssed in previous

s one, providi gure 4.3

at

information will change over the course of its lifetime. Therefore, WMI providers must keep
of these changes.

 the metadata (that is, the classes and ass
repository de
future releases, however, W

l managemen
MI technology m

manag from a variety of sources. Remember that the
of storing
the prefe

her than metadata from any source, local or otherwise
t for current products instrumented in WMI.

Th Information Model
As discu chapters, the CIM has three conceptual layers, each of which builds upon
the previou ng a greater level of detail. Notice in Fi that layer 3 is sometimes

re 4.3. The three layers of CIM

referred to as the "layer of extensibility."

Figu

The core and common models are referred to collectively as the CIM Schema.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch04fig04

The purpose of layering the model is to allow schema designers to view the model as a series of
logical progressions from which they can build. The CIM Schema represents the basic classes,
properties, methods, and associations of all potentially managed objects within an enterprise.

The Core Model

The core model defines a res and
between ma

The Common Mod

The common model defines a basic set of classes that represent specific areas of management
s

specific management are sent the network-, user-,
ystem-, support-, policy-, physical-, metrics-, interoperability-, events-, device-, and application-

specific aspects of the enterprise. (A number of submodels extend these models. For more

 number of very general classes to describe basic structu
relationships
independent of any product or im

nageable components in an environment. This information model is
plementation.

el

within the enterprise. The common model consists of a number of models, each of which represent
as. Currently the DMTF defines models that repre

s

information on the submodels, visit http://www.dmtf.org, the DMTF Web si
areas represented by classes in the common model are expected to increase o

te.) The number of
ver time, the better to

 classes must derive. Included as part of
this model are classes th d software features.

Networks Model

The networks model defines a series of classes, associations, methods, and properties that represent
the features of a network environment. Features that are common to a network environment include
protocols, services, and the topology of the network. Within the networks model, a number of
submodels define the classes, associations, methods, and properties that are specific to their
environment.

Devices Model

The devices model defines the physical and logical components that support the system. Examples
of classes defined as part of the devices model include CIM_POTS Modem, CIM_Processo
CIM_Printer, and CIM_DesktopMonitor.

ical

ct
al

 in an

represent the variety of advances in technology.

Systems Model

The systems model defines the basic characteristics associated with managed systems. A managed
system can be an operating system, a network system, or an application system. It defines the root
class CIM_ManagedSystemElement, from which all system

at define services, file systems, threads, processes, an

r,

Physical Model

The physical model is not to be confused with the devices model. Whereas the devices model
defines a set of classes that support the managed system, the physical model represents the phys
environment. You will find that the physical environment is of surprisingly little concern in the
managed environment. Under normal circumstances, you will not often need to come into dire
contact with a physical element within an environment but will instead interact with its logic
counterpart. Any manipulation of physical elements within the environment normally is a result of
manipulation of an associated logical object. For example, imagine an Ethernet network card

ISA slot of a personal computer running Windows XP. If you were to perform some action that
resulted in a series of packets being sent out of the card to the network, it you
(Transmit) LED on the netw

 might trigger the Tx
ork card to start blinking. This behavior was the result of the packet

being sent out of the card—the Tx LED cannot be addressed directly or polled for its status.

Because the physical model represents the physical aspects of a system, the classes it contains will
m (consider the differences in architecture of an

change to represent the advances in technology.

of
Indications,

s, policy administrators, and network administrators

he support model describes the object and transaction models for the exchange of knowledge
lated to support activities (Solutions) and the processing of Service Incidents. The object and

lem Resolution Standard or PRS.

User Model

f

classes to represent a unit of work and its associated metrics. For
example, a print job could be a unit of work and the number of pages to be printed could be the

etric.

Interop Model

differ considerably, depending upon the host syste
HP Mainframe and a desktop computer) and will

Applications Model

The applications model describes the details required to manage a set of software applications. The
diversity of software applications demands that the model must be flexible enough to describe
multiplatform or distributes applications. The applications model borrows heavily from the
application software life cycle. The application software life cycle describes the various states of a
software application from its initial purchase through its execution.

Event Model

The event model describes CIM Indications and how they are used to communicate occurrences
events in the CIM. It also describes the classes that enable clients to subscribe to CIM
including how to specify a desired mode of delivery. The Specification for CIM Operations over
HTTP defines the XML encoding for CIM Indications over HTTP.

Policy Model

The policy model enables application developer
to represent and manage policy across a variety of technical domains that include security,
networking, and system administration.

Support Model

T
re
transaction models are referred to as the Prob

The user model provides a set of relationships between the various representations of users, their
credentials, and the managed system elements that represent the resources and resource managers in
system user administration. Thus, the CIM user and security models added to the preexisting set o
requirements for the introduction of a "top" object class in the CIM core model.

Metrics Model

The metrics model defines

m

The interop model defines architectures and mechanisms that enable WBEM implementations to
interoperate in an open, standard manner, and addresses issues that prevent them from doing so.

In addition to these models is a number of submodels that include:

s the Logical Devices associated with data
storage.

CIM Device Submodel—Sensor Model. Defines additional properties and methods
ic Sensor.

bes additional aspects needed
 under multi-tasking operating systems.

art of the common model, although it is possible to extend from the core model. An
l

F's task
and

CIM Network Submodel—IPsec Policy Model. Defines a number of CIM
extensions that represent the IP security policy model.

CIM Submodel—Storage Model. Define

for the classes CIM_Sensor and CIM_Numer

CIM Device Submodel—Printer Model. Describes the management of the
functionality and protocols specific to printers.

CIM Submodel—Fault Tolerant Model. Defines a number of fault tolerant
extensions to the CIM model.

CIM System Submodel—Diagnostic Model. Descri
for successful diagnostics

The Extended Schemas

Vendors who wish to represent the manageable aspects of their hardware or software product as
part of the CIM define the extended schemas. Extended schemas typically derive from classes
defined as p
example of an extended schema is the mechanism with which operating system vendors can mode
the manageable aspects of their operating systems in the CIM. Microsoft uses the Win32 extended
schema to represent its Windows platform (Windows 98, NT4.0/2000/WinXP/.NET). The
management information you retrieve from WMI about the Windows environment typically will be
retrieved from the classes defined as part of the Win32 extended schema, because the majority of
CIM schema classes defined within the CIMV2 namespace are declared as abstract.

When designing the CIM, the DMTF envisaged a number of ways to implement it. Among the
proposed methods were:

• An application Data Base Management System (DBMS)
• A series of application objects that represent instances of CIM classes
• A structure to pass the instances of CIM between applications

Even from a brief look at the core, common, and extended schemas, it is clear that the DMT
in designing the CIM was complex. Because of its complexity, navigating the CIM repository
the query response times on such a large volume of information are design concerns. Too much
information to process can be as detrimental to the usability of an information model as not enough
information. In addition, a CIM repository might host multiple managed environments, such as
local and nonlocal devices. How can we rationalize them?

To overcome these problems, the DMTF developed namespaces, a mechanism for partitioning
sections of CIM into smaller logical groupings.

Namespaces
The purpose of a namespace is to group a set of classes and instances that relate to a particular
managed environment logically. The CIMV2 namespace, for example, groups a set of classes and

 environment. This philosophy would not
 forth) within the CIMV2 namespace. It would

cal
e namespace could lead to con b way to

n the two. Placing them in separate namespaces further clarifies the distinction
betwee ver,
you we
that yo erives its
name f

Using the CIMV2 Namespace
Table 4

instances that relate to aspects of the local Windows
support defining a network router (its classes, and so
be logical instead to define a router in the CIM repository by creating a new namespace and
populating it with the relevant router classes. To combine instances from both local and nonlo
elements in the sam fusion, ecause there is no immediate
distinguish betwee

n the nonlocal router's management environment and the local Windows host. If, howe
re defining the manageable aspects of a local internal modem, then it would be most likely
u would place your classes in the CIMV2 namespace. The CIMV2 namespace d
rom the DMTF's CIM schema that is the basis of its classes.

.2 lists an array of hardware- and software-managed objects that you might find in th
ise. The purpose of the table is to illustrate which devices most likely should app
 namespace and which should be placed elsewhere. With a technology as co

e
enterpr ear in the
CIMV2 mplex as WMI,
there is always a danger of over-simplifying the issues. For instance, in text we have ignored the
fact tha ory, but the
table sh
states w achine on the
networ

Device tion Namespace

Networ

Externa
modem

Custom
designe

NT4, and 9x.

database Machine A, n
 with

error-recovery and data
uilt in.

Requires a separate namespace
because the CIMV2 namespace
does not accommodate
distributed applications.

ax gateway Local Located on host machine. Runs
indows. Allows other
network to send faxes

using host machine's fax card.

CIMV2

t a managed object can appear in multiple namespaces in the same CIM reposit
ows when it is and is not appropriate to use the CIMV2 namespace. The Location field
here the device is located, either on the local host machine, or on another m

k.

Table 4.2. Likely Management Object Locations

Location Descrip

k card Local Network card residing on host
machine.

CIMV2

l

Local 56K modem attached to COM1. CIMV2

d

Local Simple standalone application
that runs on Windows 2000,

CIMV2

software
application

Distributed Distributed, A distributed database

application integrity/fault tolerance b

F
software
application

under W
users on

E-mail gateway Remote Located remotely on network.
Transmits all external email onto

A separate namespace is
required as the CIMV2

Table 4.2. Likely Management Object Locations

Device Location Description Namespace

TN. namespace merely represents
the local managed
environment.

Instrumented using the DMTF's
DMI management architecture.

ace is
required as this object does not
use or derive from the CIM
schema or object definitions.[*]

the PS

Network card Local Located on host machine. A separate namesp

Smart Array
SCSI controller

[*]card

Local Controls a RAID 5 array of hard
disk using the SNMP

protocol.

A separate namespace is
required as this object does not
use or derive from the CIM
schema or object definitions.[*]

[*] Products instrumented with e
instrumented as part of the C

ither SNMP or DMI can be represented by classes in the CIM repository. However, they cannot be
IMV2 namespace. This is because of architectural differences between the two management paradigms that

P or DMI deriving from those in the CIM schema. Instead, they must define classes in a separate
a custom schema. This dynamic or static

MP or DMI provider.

The DMTF specifies the following points as valid criteria for defining a namespace:

ging only specific objects, such as hubs
• To pre-structure groups of objects for optimized query speed

WMI Namespaces and the CIM repository
In a typical WMI installation, you will find a number of namespaces defined in the CIM repository.

d

prevent classes from either SNM
namespace that does not derive from the CIM schema, but instead illustrates itself using
information can then be provided to CIM-compliant applications using WMI's built-in SN

• To define chunks of management information (objects and associations) to limit
implementation resource requirements, such as database size

• To define views on the model for applications mana

The exact number of namespaces will depend largely upon the version of your operating system an
the applications or hardware on your machine. Figure 4.4 shows an example of the namespaces
found on an installation of XP. Windows

Figure 4.4. Example of namespaces found in a Windows XP installation

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch04list01
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch04list01

Table 4.3 provides a quick roundup of the namespaces found in a Windows XP installation.

Table 4.3. Windows XP Namespaces

el in the namespace hierarchy.

anageable aspects of the host system.

Defines miscellaneous application-specific data.

efault namespace (a good place to experiment with your own classes!).

ation for the Lightweight Directory Access
Protocol.

e
t

e networking.

ce suite of applications.

NetFrameworkv1 Defines class information for the .NET framework (.NET must be installed

ation.

SOP Defines resultant set of policy security-related classes for centralized
policy-based administration (Windows XP/.NET only).

Defines the WMI system security-related management information.

Subscription Defines consumer-related classes for triggering scripts in response to an

Namespace Description

Root The lowest lev

CIMV2 Defines the m

CIMV2\Applications

Cli Defines the default WMIC aliases (Windows XP only).

Def Dault

Directory Groups dir amespaces. ectory related n

nes management informDirectory\LDAP Defi

Microsoft Groups Microsoft technology–specific namespaces, for example, th
HomeNet subnamespace on Windows XP, which defines the managemen
information for hom

MSAPPS10 Defines class information for the Microsoft Offi

on the computer for this to be present).

Perfmonscriptexample Monitors performance of script-specific information.

Policy Defines policy-specific management inform

R

SECURITY

event and sending an e-mail (Windows XP/.NET only).

WMI Defines management information for the WMI for WDM provider.

Table 4.3. Windows XP Namespaces

Namespace Description

<namespace>\MS_XXX Defines locale-specific infor
defin

mation (e.g., MS_409 is the namespace that
es US English locale-specific information).

pace
espace, you effectively rid yourself of a number of the constraints of

popula pace.

You also create potentially m u must define everything from the
root up

Defining and Using Your Own Names
By using your own nam

ting a proprietary namespace, such as seeking permission from the owner of the names

ore work for yourself because yo
. As we see in Figure 4.5, the CIMV2 namespace contains a collection of classes f
hema as well as from the Win32 extended schema.

rom the
CIM sc

Figure 4.5. Namespaces and the CIM repository

If you decide to create a new namespace to define the manageable aspects of your environment, you
re not obliged to use or to derive from all (or any) of the classes defined in the CIM Schema or

Win32 extended schema. Indeed, as the CIM repository currently stands, a number of namespaces
 as the SNMP and DMI exist. Schema designers are required to
ith classes and associations that are pertinent to the managed

a

populated by legacy schemas such
populate their namespaces only w
environment under scrutiny. If, however, you decide not to derive from any of the classes in the
CIM schema, then you must question whether the object that you are defining belongs to the
enterprise modeled within the CIM. Remember that the CIM schema models the most basic
manageable aspects of the enterprise from which you can derive. (If you feel that a vital class that
will enable you to instrument your product is missing within the CIM schema, then you are
encouraged to e-mail the DMTF at cim@dmtf.org with a change request and open a channel of
discussion with them. For the Win32 extended schema, e-mail Microsoft at
wmgmts@microsoft.com.)

Namespaces and Schemas

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch04lev1sec15#ch04list03

Imagine a schema as a collection of classes aimed at instrumenting a particular management
environment. The scope of a schema can be as diverse or as specialized as the schema designer sees
fit, with the understanding that the objects defined within it are related. The DMTF designed the
CIM schema to represent the different manageable aspects of the enterprise. Within it are numerous

ple.

at

t,

ct. The CIM repository can
differentiate between these classes by examining the full object path of the class, which can include

oth the server and the namespace of the CIM repository.

lasses defined by the DMTF, Microsoft, or any other schema designer, then you must be
careful to adhere to the guidelines and context for their use. Indeed, by using the schemas defined

m which to derive your own classes. If
you do not adhere to these rules, there is the risk that the new classes you define may violate the

still in doubt, e-mail Microsoft at
wmgmts@microsoft.com

models that target specific aspects of that environment. The Network model, as it defines a group of
classes and associations that represent the enterprise network managed environment, is an exam
The Win32 extended schema then adds a further level of specialization to this by focusing on the
Windows platform. Because schemas are diverse, they contain a large amount of information th
may or may not be relevant to a particular managed environment. For example, a schema could
contain classes that define every type of microprocessor architecture available. In a real machine,
however, only a fraction of those classes may be relevant (perhaps only the x86). A namespace,
then, represents the real managed environment by hosting only these relevant classes.

A namespace is a logical abstraction of classes, associations, and instances that limits the visibility
and scope to suit a particular managed environment, such as the Windows OS. By limiting the
scope, we can improve response times, reduce the resource overhead for managing the environmen
and rationalize the amount of information presented to the end user. A namespace can contain many
different classes from many different schemas.

The classes defined within a schema, such as the Win32 extended schema, can be contained in one
or many namespaces of the same CIM repository without fear of confli

b

Using Existing Schemas
If you use c

by a third party, you can provide a set of building blocks fro

integrity of the schema, thus invalidating the entire class hierarchy. Put simply: your code won't
work. The schema designers normally detail the classes that can have subclasses and/or be
instantiated in their documentation. Microsoft provides this information in its WMI SDK and in the
MSDN platform SDK documentation. If you are

.

CIMV2 Namespace
 namespace, you must check with the schema designer for the

he

ls before you start designing your
classes and deriving them from existing schema.

Subclassing and Instantiating Existing Classes in the

If your product populates the CIMV2
conditions of its use when subclassing existing classes or creating instances of them. As part of t
WMI SDK, Microsoft provides a text file that details which classes may be subclassed or
instantiated and which may not. It is vital to check these detai

Modifying Existing s
odify existing classes within a, you

tain permission first fro s in which you must obtain
lude the addition ass or the addition of a
w class or associa 's CIMV2 namespace with

n classes, then you mus case any of your additional
conflict with the designe

ged Object Format

 and extended he structure of classes, properties,
s, and associations, initia written in the MOF defined by the DMTF.
 this chapter, we shall u M Studio to explore and modify the CIM
ry.

e the MOF language to de within the CIM in a textual format. As we
ee in the WMI CIM Stud way to modify the CIM repository, but it is
ial to have some knowle nd its semantics. MOF provides a basic

ing of the terminology you will encou ou use Microsoft's WMI CIM Studio to
rough the CIM reposito s you with a concept of the structures that
 the CIM.

iles can populate technol CIM. In other words, a MOF file exported
ows XP/.NET WM on a UNIX

inor
ifferences exist between Microsoft's and the DMTF's interpretation of the language. In reality, you
ay have to modify certain elements of the MOF file to remove Microsoft-specific qualifiers to

s.

To add classes, instances, or associations to the CIM repository, you first must specify the

ce as
cutable by using the –N switch. This approach is

limited, because you can specify only a single destination namespace for the entire MOF file.
espace as part of the MOF file. This option will override all others.

To do this use, the namespace compiler directive that follows:

or associations that follow this statement will be
destined for the local CIMV2 namespace.

ves that allow developers to set conditions that affect the
e locale, source, nonlocal, include, and

 Classe
If you wish to m the CIM schema or Win32 extended schem
must ob m the schema designer. Situation
permission inc
completely ne

 of a method or property to an existing cl
tion. If you decide to populate Microsoft

your ow t be careful to obtain permission in
classes r's plans for the namespace.

Mana

Beyond the CIM schemas, we look further at t
method lly through examples
Later in
reposito

se Microsoft's WMI CI

We us
shall s

fine object definitions
io, MOF is not the only

benefic dge of the MOF syntax a
understand
move th

nter when y
ry. In addition, it provide

make up

MOF f ogies that implement the
from a Wind

plementation of the CIM. Although this is
I installation theoretically would compile

the DMTF's intention, currently various mim
d
m
export to non-Microsoft platform

destination namespace of the objects that you wish to add. If you do not specify a destination
namespace, WMI will place all entries in the root/default namespace in the CIM repository. You
have several options for specifying a destination namespace. First, you can specify a namespa
a command-line switch for the MOF comp exe

Second, you can specify the nam
#pragma

#pragma namespace (destination namespace)

In the next example, any classes, instances,

#pragma namespace("\\\\.\\Root\\CIMV2")

The MOF includes various compiler directi
compilation process. Compiler directives includ
instancelocale.

#pragma locale(language_country) The locale directive tells the compiler which
language and country settings the MOF file will use. Remember that all MOF

ma source(<namespace type>://<namespace_handle>) Tells the compiler
on which CIM implementation to locate the metadata that follows. You can use this

ssociation instances. You also can use the source
qualifier on individual class and association instances.

mation between machines and to allow
 of objects. With this compiler directive, we can

ocated on a machine across the network from the current host
or instance, while compiling on host machine A, we could reference an

ld on a CIM-compliant repository on machine B on a different part
at is, #pragma

.

point onward. #pragma
 the compiler to use the locale that follows the directive for

ile. This, in effect, means that instances within the
a different locale from that declared for classes. We shall cover

how to declare instances using MOF later in this chapter.

You compile class definitions into the CIM repository.

re

keywords (such as "class," "instance," and "association") are always listed in
English. When not specified, the default value is en_US (language = english and
country = United States).

#prag

pragma on class instances or a

#pragma nonlocal(<namespace type>://<namespace_handle>) Tells the
ance in another CIM implementation. This allows compiler to reference an object inst

 management inforthe CIM to share
enterprise-wide identification
identify objects l
machine. F
object instance he
of the network (th
nonlocal("namespacetype://namespace_handle")) #pragma

he contents of the MOF file include("another.mof") Tells the compiler to insert t
given as a parameter into the current MOF file from this
instancelocale() Tells
instances declared in the MOF f
MOF file can have

Terminology checkpoint:

You import instance information into the CIM repository.

MOF Class Declaration
Declaring a class using MOF syntax is quite simple and not dissimilar from using C++. In Figu
4.6, we declare a fictitious class that represents some of the attributes of a CD-ROM drive. For the

cteristics Storage

]

y: DisableOverride ToSubClass]

sake of simplicity, we do not derive this class from any classes within the CIM schema or Win32
extended schema.

Figure 4.6 A MOF class declaration

[
 abstract,
 Description("This class defines the common chara
 devices")

class Storage
{
 [read, ke

 uint64 DeviceId;
 // DeviceId is an unsigned integer 8 bytes

 This declares the properties for the CD ROM.

};
class MySchema_CDROM: Storage
{

e; string ManufacturerNam
string Model;

 uint16 ReadSpeed;
tring BIOSVersion; s

 //
};

The class name is the domain of the properties or methods that it contains. In Figure 4.6, the
property DeviceId has a domain of class Storage and the property Model has the domain of
MySchema_CDROM. In the case of associations, which we discuss shortly, each reference has a range.
The range refers to the class to which the reference points.

Note

All keywords in MOF are case INSENSITIVE

In Figure 4.6, we declared the class CD_ROM as a subclass of class Storage. To compile correctly,
we must declare the class Storage before class CD_ROM.

We have declared four properties, ManufacturerName, Model, BIOSVersion, and ReadSpeed, as
part of the class. Property names must not co

ntain any spaces or underscores; otherwise, the

compilation process will fail. Also observe that we used the to place comments in the class

Qua
Qualifiers are the m ristics to any of the
elemen lasses,
and ass

•
•
• Manufacturer_Name could be assigned the value

•

r

I.

//
declaration. The compilation process ignores these comments.

lifiers
echanism in MOF through which we can assign characte

ts within a schema. These elements include methods, method parameters, properties, c
ociations. A qualifier has the following components:

A name (that is, description, abstract, read, write, …)
An intrinsic data type (that is, real32, string, uint16, …)
A value of the corresponding type (that is,
"Mitsubishi")
A scope, to determine whether the qualifier can be applied to classes, methods, properties,
and associations

• A flavor, to determine whether the qualifier can be inherited by subclasses or instances, o
can be overridden

The DMTF defines a number of standard qualifiers for use when working with any schema (which
are listed in the DMTF CIM Specification document). It is also possible to define your own
qualifiers. Microsoft defines a number of custom qualifiers as part of their implementation of WM
In Figure 4.7, we add default qualifiers and Microsoft-specific qualifiers to the class.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch04fig12

Figure 4.7 Example qualifiers

[
 Descript es"):
 ToSubClass,
 Locale(0x409),
 UUID("{BA46D060-7A6D-11d2-BC85-00104B2CF71C}")
]

 [read,
he BIOS revision of the CDROM"

ion("The CD_Rom class contains characteristics of CDROM driv

class MySchema_CDROM:Storage
{
 [write (true): ToSubClass]
 string ManufacturerName;
 [write (true): ToSubClass]
 string Model;
 [read,
 Description("This property contains the read speed of the CDROM"
 "Example: 32"): ToSubClass]
 uint16 ReadSpeed;

 Description("This property defines t
 "Example: 7.13.1200"): ToSubClass]
 string BIOSVersion;
};

Figure 4.7 shows the qualifiers listed in bold type. Always arrange qualifiers in blocks that
immediately precede the class, method, or property that they characterize, and always enclose the

ckets: []. For example:

 in Figure 4.7

blocks in square bra

[Description ("This is a legal qualifier block")]

The Description qualifier at the start of the class declaration is the qualifier name and

iption of the class from the CIM repository.

ld class
 a qualifier transmits its information, the

provides a simple text description of class MySchema_CDROM. You must enclose the text itself in
nd straight (nondirectional) quotation marks. Later, applications can use this textcurved brackets a

retrieve a descrto

Flavors
Qualifiers also are characterized by how they transmit the

o determine the rules by which
ir information from parent to chi

or from class to instance. T
MOF language defines special keywords called flavors. A colon always must precede qualifier
flavors, as in Figure 4.7, and immediately after the description text, a semicolon precedes the

his flavor indicates that every subclass of MySchema_CDROM inherits
ualifiers Description, Locale, and UUID. Figure 4.8

qua
the q

lifier flavor ToSubClass. T
 demonstrates some examples of flavors.

Other flavors include:

Figure 4.8 Example flavors

[Description("The CDRom class contains characteristics of CDROM drives"):
 ToSubClass, Locale(0x409),
 UUID ("{BA46D060–7A6D-11d2-BC85-00104B2CF71C}")]

EnableOverride. This indicates that the qualifier can be overridden by child classes.
The default value for this parameter is yes.

den by child

hat the qualifier is inherited by its child classes.

at the qualifier is propagated to instances.

n which it is

lue can be specified in multiple locales.

In designing the WBEM initiative, one of the goals of the DMTF was to provide technologies that
were powerful and flexible enough to
for e F
lang tom
qual the intrinsic data types defined

a designers can then use these qualifiers to represent specific
haracteristics unique to their schema. In Figure 4.8

DisableOverride. This indicates that the qualifier cannot be overrid
 no. classes. The default value for this is

ToSubClass. This indicates t

ToInstance. This indicates th

NotToInstance. This indicates that the qualifier is not propagated to instances. This
is the default.

NotToSubclass. This indicates that the qualifier is not propagated to derived classes.
This is the default.

Restricted. This indicates that the qualifier is only valid for the class i
erit this qualifier. declared. Child classes do not inh

Translatable. This indicates that the va

Custom Qualifiers

 serve an environment as diverse as the enterprise. The CIM,
xample, allows us to design specialized extensions using the extended schema. The MO
uage also follows this philosophy to some extent with the creation of user-defined or cus
ifiers, whose only constraint is that qualifiers conform to one of

in the MOF language. Schem
c , the Locale qualifier and UUID qualifiers are

not part of the default qualifiers defined by the
 which you will become accustomed in using WMI are

crosoft's dynamic providers for a class, instance,

 that

s

both custom qualifiers defined by Microsoft and are
DMTF. Examples of other qualifiers to
Dynamic and Provider, which specify the use of Mi
or property within the CIM repository.

The Locale qualifier is another Microsoft custom qualifier that provides WMI with a hex value
indicates the language and country of the class information that follows it. In this case, the locale ID
0x409 refers to US English. WMI can use this information to set specific information, such as date
and time formats, character-sorting order, and decimal separators, when reading the following clas
or instance information.

In Figure 4.7, you can also see that the MySchema_CDROM class uses another custom qualifier, UUID.
The UUID qualifier (which stands for Universally Unique IDentifier) assigns a unique 128-bit

ver should be the same. If you are familiar with COM, then
you will know UUIDs as the unique means of representing Class Identifiers (CLSIDs) and Interface

entifiers (IIDs). UUIDs also are referred to as GUIDs or Globally Unique Identifiers; the two
terms can be used interchangeably. The Microsoft Platform SDK supplies two executables,

value to each class. UUIDs are randomly generated 8-byte values, which are represented by a string
of hex values in the CIM repository. They are so random that no two UUIDs generated on two
different machines at the same time e

Id

http://msdn.microsoft.com/workshop/components/activex/packaging.asp

guidgen.exe and Uuidgen.exe, wh
these values automatically to identif

ich can generate these random values on request. WMI uses
y classes and events internally. Then the properties and methods

ock GUID Mapping control" method for WMI that maps these unique UUIDs to a two-

User-Defined Qualifiers
New qualifier types are declared at the start of a MOF file: They begin with the qualifier keyword.
The UUID qualifier, for example, could have been defined using MOF syntax similar to the
following:

qualifier UUID :string = null, scope (class);

This syntax declares the qualifier called UUID, assigns it type string, and gives it a default value of
zero. It then declares the qualifier to have a scope that affects only class declarations. Other settings
that could have been used here include property, method, and reference, which would have allowed
this qualifier to be used on these elements, also.

The read qualifier sets the property BIOSVersion to the read-only attribute. It then provides a
description for the BIOSVersion property. ToSubClass signifies that any subclasses will inherit the
BIOSVersion property.

within each class are referred to using a unique index value in conjunction with this UUID. The
advantage of using UUIDs/GUIDs is that they are locale independent, that is, they are represented
by the same binary value regardless of the locale setting. Microsoft developed a technique called the
"Data Bl
character ID within the driver. The driver understands the two-character IDs and therefore can
interact with WMI. This mapping between the ID and UUID also enables drivers to support custom
events, methods, and properties, which can be instrumented via WMI.

Intrinsic Data Types
In the example class, all of the properties are assigned one of the intrinsic data types. Table 4.4
shows the other property data types allowed in MOF format.

Table 4.4. Intrinsic Data Types

Intrinsic data type Description

boolean Boolean value (i.e. TRUE or FALSE, 1 or 0)

char16 Unicode Style 2-byte character

DATETIME e

object An instance of a class within CIM

<classname>ref A strongly typed reference

A string that contains the date and tim

real32 4-byte floating point value

real64 8-byte floating point value

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch04fig15

Table 4.4. Intrinsic Data Types

Intrinsic data type Description

sint64 8-byte signed integer

sint32

sint16 2-byte signed integer

sint8 1-byte signed integer

uint64 8-byte unsigned integer

uint32 4-byte unsigned integer

uint16 2-byte unsigned integer

uint8 1-byte unsigned integer

Array of … An array of any of the above data types

Instance creation can take place inition within a MOF file,
which we declared in the previous section. The only case in which this rule does not apply is if the
class definition already exists in the CIM repository within the target namespace. We create
instances of classes using the MOF statement

 of <classname>

create an instance of the CD_ROM class, we could use the declaration in Figure 4.9

4-byte signed integer

Instance Creation
 only after the corresponding class def

instance

Remember that MOF keywords are not case sensitive, so the case you use does not matter. To
.

Figure 4.9 Creating an instance of MOF

{
instance of MySchema_CDROM

 DeviceId = 18446744071574384224; //property inherited by class storage
 ManufacturerName = "Sambutsu";
 Model = "CD1F";
 BIOSVersion = "1.34.230";
 ReadSpeed = 64;
};

Aliasing

When writing MOF files, it sometimes is expedient to create an alias that refers to a specific objec
instance. This alias can be

t
 used later in conjunction with a variable that is a pointer to an object (for

example, the ref: keyword) to point to that specific object instance. If in the example in Figure 4.9
we declared an association class that referenced the CDROM class, we could use aliasing as in
Figure 4.10.

Figure 4.10 Using an alias in MOF

instance of MySchema_CDROM as $CDROM
{
 DeviceId = 18446744071574384224; //property inherited by class storage
 ManufacturerName = "Sambutsu";
 Model = "CD1F";
 BIOSVersion = "1.34.230";
 ReadSpeed = 64;
};
[association]
class MYAssociation
{
 M
 // Note that ordinarily this would not be a legal association as it does
 /
};
instance of MYAssociation

 CDDrive = $CDROM;
};

able MOF File
While examining the syntax ing examples is an
important part of the learning process, it is far more beneficial to gain practical experience through
typing and compiling your own examples. Type the following MOF file, which is based upon the
previous examples, and follow the instructions to compile it. After you are confident with this
process, then experiment and alter sections of the file to see the results.

In the example, we shall create our own namespace, to avoid cluttering any existing system
namespaces. Microsoft recommends using the root/default namespace in developing schemas,
although we shall create our own in this example.

e, you will need a simple ASCII text editor, such as Microsoft's WordPad or

ySchema_CDROM REF CDDrive;

/ not contain the minimum of two REF keywords.

{

A Compile
 and semantics of the MOF language by read

To write a MOF fil
Notepad.

If you have Microsoft Developer Studio, you can configure the settings under
Tools/Customize/Tools so the development environment will compile a MOF file for you. For more
information, see Microsoft's Learn WMI tutorial at
http://msdn.microsoft.com/downloads/sample.asp?url=/msdn-
files/027/001/574/msdncompositedoc.xml.

First, open your ASCII text editor or Developer Studio. Within the window, type the MOF text in
Figure 4.11.

Figure 4.11 A compilable MOF (part 1 of 2)

//Beginning of sample MOF file.
#pragma classflags("forceupdate")

") #pragma namespace ("\\\\.\\Root
instance of __Namespace
{
 Name = "Example1";
 };

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch02#ch02
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch02#ch02
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch02#ch02

The initial #pragma classflags("forceupdate") directive tells the compiler to update any
ting class definitions in the CIM repository that match those with the class definitions supplied

ue, a conflict exists between the child class's qualifier and the base class. In
rceupdate flag specified, WMI would remove the qualifier from the child

ith new settings.

adds new classes only. It fails if classes already exist in the

pace() (see Figure 4.12

exis
in this MOF file and to resolve conflicts where possible. The update process applies to properties,
methods, and qualifiers contained within a class. If the changes within a class are extensive, then it
is always better first to delete the existing class from the repository and then to compile the new
one. Be aware, however, that doing this deletes all child class definitions!

The CIM repository employs inheritance, which leads to some very real consequences when adding
new classes to the repository. For example, replacing an existing class in the hierarchy or changing
one of the qualifiers in an existing base class can have direct consequences to the later classes.

Consider a parent class, Storage, and a child class, CDROM. Imagine that the child class is defined
with the class qualifier Write set to true. If we try to add base class, Storage, with the class
qualifier, Read, set to tr
this instance, with the fo
class to make way for the base class. The only situation in which this would not occur is if the child
class has instances. If the specified flag were safeupdate, then the update would fail at that point
because of the conflict with the child class.

In addition to the forceupdate flag, a number of additional settings exist to resolve conflicts when
adding classes. You can combine these options, although you should avoid combining two options
that effectively cancel each other out, such as updateonly and createonly. The available options
follow.

forceupdate. Upon conflict with existing classes, override this option with new
settings. It fails if child classes have instances.

safeupdate. This option allows a safe update of the classes. Do not override existing
settings w

updateonly. This option updates existing classes only. It fails if the classes do not
already exist in the target namespace.

createonly. This option
repository.

The second #pragma names) tells the compiler to place any classes or
ment into the root namespace on the host machine. The instance

ew namespace instance. This
name

ss in the root namespace is a WMI system class that WMI uses to
mespaces held in the CIM repository. We have assigned the key property name a

 repository now has an additional namespace into which we shall

IM repository with the new namespace, Example1

instances following the state
declaration of type class __namespace tells the compiler to create a n

 namespace in the CIM repository with the value assigned to the tells WMI to create a new
property. The __namespace cla
store all the na
value of Example1. The CIM

ce our example classes. pla

Figure 4.12. The C

In Figure 4.13, this section of the MOF file starts by instructing the compiler to place all of the new
classes and instances into the newly created Example1 namespace. It does this by specifying
#pragma namespace ("\\\\.\\Root\\Example1"). In experimenting with new classes and
associations within the CIM repository, it is good practice to keep all example classes away from
the important systems management classes (such as those stored in the CIMV2 namespace) wh
they could accidentally cause problems. We do this by placing them in a separate namespace. When
you have tested them and are satisfied that they are correct, you can merge them back into your
target namespace (for example, the CIMV2 namespace).

ere

of 3)

s")

ce ID must be unique for each storage instance"):
 DisableOverride ToSubClass]

:

 [write (true): ToSubClass]
 string Manufactu
 [write (true): ToSubClass]
 string Model;
 [read(true), Description("This property contains the read speed of "

Figure 4.13 A compileable MOF (part 2

#pragma namespace ("\\\\.\\Root\\Example1")
[abstract,
 Description("This class defines common characteristics of Storage device
]
class MySchema_Storage
{
 [read, key,
 Description("The devi

 uint64 DeviceId;
 // Device Id is an unsigned integer 8 bytes
};
[Description("The CD_Rom class describes characteristics of CDROM drives ")
 ToSubClass
]
class MySchema_CDROM:MySchema_Storage
{

rerName;

 "the CDROM. Example: 32"): ToSubClass]
 uint16 ReadSpeed;
 [write, Description("This property defines the BIOS revision of the CDROM."
 "Example: 7.13.1200"): ToSubClass]
 string BIOSVersion;
};

The ne has a
single p d the key
propert fter the
instanc the value of
this pro uniquely
identify

Now ty

xt statement declares an abstract base class called MySchema_Storage. This class
roperty called DeviceId, which is declared as both a read-only property an
y. The read-only qualifier signifies that the value of the property cannot be changed a
e has been created. From the perspective of a client application, this means that
perty cannot be altered. This property also is flagged as a key value because it will
 instances of the class.

pe the code in Figure 4.14.

Figure 4.14 A compileable MOF (Part 3 of 3)

instan
{
 Dev
 Man
 Mod
 BIO
 Rea
}; // End of sample MOF File

The fin he instance
assigns

Now sa

C:\mof
Micros
Copyright (c) Microsoft Corp. 1997-2001. All rights reserved.
Parsing MOF file: myexample.mof

nd created an instance
of a class within the CIM repository.

f the WMI
Developer Studio to compile your sample MOF file into the CIM repository. We shall

ce of MySchema_CDROM

iceId = 384224; //property inherited by class storage
ufacturerName = "Sambutsu";
el = "CD1F";
SVersion = "1.34.230";
dSpeed = 64;

al section of the example declares a single instance of class MySchema_CDROM. T
 values to each of the properties and places them in the CIM repository.

ve the file as myexample.mof, go to a command-line prompt, and type the following:

comp myexample.mof
oft (R) 32-bit MOF Compiler Version 5.1.2600.0

MOF file has been successfully parsed
Storing data in the repository . . .
Done!
C:\

Congratulations! You have created your first namespace, added classes to it, a

Note

At this point, you could have used the MOF generator wizard that is part o

look at using the wizards in more detail in Chapter 5.

ActiveX Components
You must have Microsoft's WMI SDK installed to participate in the tour of the CIM repository. The
WMI SDK contains a collection of ActiveX components to help you administer and access WMI.
They install only as part of the WMI SDK: All are in wbemtool.cab file. (CAB, shorthand for
CABinet, is Microsoft's mechanism for compressing and packaging files. For more information, go
to http://msdn.microsoft.com/workshop/components/activex/packaging.asp.) You can unpack them
and use them independently in any compliant ActiveX container. Microsoft supplies the ActiveX

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch04fig24

controls as freely distributable components with the WMI SDK. You need Internet Explorer 4.01 or
later installed to run programs that come with the WMI SDK. Full details of the various ActiveX
controls are in the WMI SDK documentation.

You will find short cuts to these tools under the Start/All Programs/WMI SDK folder. This folder
contains useful utilities for administering and testing WMI. The ActiveX components all use the
WMI API to access WinMgmt.exe.

Let the Tour Begin!
To explore the CIM repository, we shall use the Microsoft WMI CIM Studio. This allows us to see
all the classes, properties, methods, and associations in the CIM repository in a navigable, graphical
format.

To start the WMI CIM Studio, click the Start/All Programs/WMI SDK/WMI CIM Studio icon.
After your default Web browser (which must support ActiveX controls) loads, it will display the
Connect to Namespace dialog box. Click the icon in the right corner that has the ToolTip, "Browse
for namespace." First, click the Connect button and click OK to log in as the current user. This

espace dialog. Now double-click the root namespace to display should display the Browse for Nam
the dialog in Figure 4.15.

Figure 4.15. Browsing and attaching to a namespace

aces available within the target machine's CIM reposiThis dialog displays all of the namesp tory. In

namespace e 4
the present case, the targ
from the

et machine is the lo
s listed in

cal host machine. (Your list of namespaces might differ
.15Figur .) Namespaces on each machine differ to some extent,

 installed. The namespace list in depending upon the application suites 5Figure 4.1 contains the
MSAPPS namespace, which was insta , you should now

ple1 c
r MOF file exampl t

we compiled earlier, we shall start our exploration of the repository here. When you click the OK

lled with Office 2000. From your list above
select the Exam
compiled the earlie

 namespace and lick OK. You created the Example1 namespace when you
e. Because we are familiar with the classes and instances tha

button, the WMI CIM Studio will browse the Example1 namespace in the CIM repository on your
local machine. Your display now should show the screen in Figure 4.16.

Figure 4.16. The WMI CIM Studio

When browsing among different namespaces in the CIM repository, sometimes you may be asked
to reenter your log on credentials. This occurs when the contents of a namespace has altered since

you last entered it.

The viewing area is in two panes: class explorer, on the left, displays class information and class
viewer, on the right, displays property, method, and association information, as well as instance
information. The icons in the top of the class explorer pane represent class-related functions
provided by the WMI CIM Studio, as described in Figure 4.17.

Figure 4.17. Class explorer functions

The class viewer pane in Figure 4.16 displays instance information as well as the properties,
methods, and associations in which a class participates. Figure 4.18 describes the icons in this pane.

Figure 4.18. Class viewer functions

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch04fig25

As is standard with the Windows user interface, any icons that currently are not available are
dimmed.

We shall discuss each of the wizard icons and their purposes at the end of the chapter.

The Class Explorer Explained
The class explorer contains a list of all the root classes that are part of our Example1 nam space.

 contains
four root classes, three of which are system classes. The __ double underscore prefix denotes WMI

 the Example1
namespace, the classes are prefixed with either __ (double underscore) or MySchema_. MySchema_

g

In the CIMV2 namespace, the majority of classes are prefixed by CIM_, Win32_, or __ (double
n

f the CIM schema. All the Win32_ classes belong to the Win32 extended
schema defined by Microsoft. All classes prefixed with a double underscore are WMI system

roperties also start with a double underscore, and are present in all classes, system or
otherwise. We examine the system classes and properties under the heading "Places of Interest

e
The presence of a plus sign next to any root class signifies the presence of child classes, and
clicking it allows navigation through the class hierarchy tree. The Example1 namespace

system classes. Remember that you cannot derive new classes from WMI system classes. The
naming convention for all nonsystem classes is schemaname_classname. In

prefixes the classes we defined in the previous example. It is important to adhere to the namin
convention for class visibility, although WMI does not enforce any type of checks in adding new
classes to the repository.

underscore) to indicate their schemas of origin. All the CIM_ classes belong to the definitions give
by the DMTF as part o

classes that define the activities of the CIM Object Manager (WinMgmt).

WMI system p

within the CIM Repository" later in

e

ly all cl n
es withi o

create instances of the

 this chapter.

Not

Near
class

asses defi
n Micros

ed as part of the DMTF's CIM schema are declared as abstract
ft's CIMV2 namespace. Because they are abstract, you cannot

m.

Two types of icon display next to the class names. The icons discriminate between classes that
define regular objects and classes that define association objects. Figure 4.19 shows the icons and
their definitions.

Figure 4.19. CIM Studio icon definitions

Associations

ns are a he
n mode d

Associatio
informatio

mong t
l define

 most important aspects of the CIM. They are unique also to any
so far for enterprise management. In Chapter 2, you learned that in fault
nagement paradigms, problems occurred because no relationship could
anaged de

diagnosis using existing ma
be defined easily between m vices in the information store. That is, it was difficult to

relation
came from different vendor
of a particular failure witho ovide
a powerful mechanism that can define the sometimes complex relationships between managed
objects, regardless of whether they are logical (a hard disk partition) or physical entities (a hard

define the ship between a hard disk and the controller card that hosted it, especially if they
s. Without this kind of information, it was difficult to establish the cause
ut expert knowledge of the system under scrutiny. Associations pr

disk). MOF signifies an association by placing the Association qualifier before the class definition.

Figure 4.20 shows an example association.

Figure 4.20 An example association

[association]
class MySchema_Association
{
 MyClass REF Antecedent;
 YourClass REF Descendent;
};

An association is a class that defines a relationship between two or more objects in one or more
namespaces. These relationships are vital in tracing faults in a managed environment, because their
purpose is to elucidate the connections between components in a system. An association also can
include standard properties and methods, although most commonly contain only references.

Association classes are typically t e keyword, which reads in MOF
ef:. T key the participants in the relationship. The joining of classes in
tion does not affect the interface of the class (for example, they are not given any special

or me

Key Propagation

he only classes to use the referenc
syntax as r
an associa

he ref: word defines

rights to access to the methods or properties of
properties

 the associated class, nor do they share nonkey
e only exception to this rule is if the association uses key propagation. thods). Th

Key propagation occurs in an association when key values from one or more referenced classes are
propagated to a single referenced class defined as weak. The weak class must define a property of
the same type as those propagated to participate successfully.

But when would we need e that a class defines the properties of a thread
running in a Windows system anagement application only in the

f the th n
would be unable to put the
association that contained a reference to class thread and class process. We then use key

gation to p
when we d i

which the thread belongs. o client applications viewing
sociation.

, when e
h pro e st

 Weak qu s

such a mechanism? Imagin
. The thread is relevant to a m

context o read's ow ing process. Without this information, the management application
 thread in context with the operating system. We could define an

propa
thus,

ass the ke
eclare an

y property of class process (that is, the process handle) to class thread,
nstance of our association, we can specify the thread and the process to
This information then would be available t

the as

As a result
under whic

 we retri
cess in th

ve instances of the association, we can identify which thread is running
 operating system. To mark the class in an association as weak, you mu

use the alifier. A Figure 4.21 demonstrates, you can declare only one reference per class
an associa

Figure 4.21 Example of k

MySchem

 [key,propagated("MySchema_Process.process_handle")]
 string p_handle
 string thread_handle;
 // etc.
}
class MySchema_Process

 [key]

}
[a
cl iation

All other classes in the association then propagate their key properties to the weak class, which must
agated qualifier to hold the propagated key values. The key

value of the k class then becomes valid only in the context of the other classes in the

within tion as weak.

ey propagation

class
{

a_Thread

;

{

 string process_handle;
 // etc.

ssociation]
ass MySchema_Assoc

{
 [weak]
 MySchema_Thread REF Thread;
 // The reference to the thread class has now been declared as weak
 MySchema_Process REF Process;
};

also declare a property using the Prop
wea

association. Figure 4.22 shows how to create an instantiation of the association class
Schema_Association using MOF language. My

Figure 4.22 Instance of an association

"1553";
",

MySchema_Process.process_handle = "1553";

instance of MySchema_Association
{
 Process = "MySchema_Process.process_handle =

hread = "MySchema_Thread.thread_handle = "12 T

}

Associations express the relationships between managed objects so that management applications
have a means of tra . Prior to CIM,
existing information models had no way to express the relat naged objects at
the data model level. Expert knowledge coded into the management application allowed it to
understand the relationships when calculating the relationships among managed objects.
Associations can now replace expert knowledge to traverse the class hierarchy when tracing a fault
to its source. This is one of the major new benefits of writing management applications with WMI.

Namespaces and Associations

It is possible to associate two classes from two different namespaces within the CIM repository;
however, WMI will recognize only the association from the side of the namespace that declared the
association. For example, if you instrumented a product in your own namespace in the CIM
repository and created associations in that namespace that referenced objects in the CIMV2
namespace, management applications that worked with information supplied from within the
CIMV2 namespace would be unaware of any associations between the instances in the CIMV2
namespace and your namespace.

In Figure 4.23

versing the CIM hierarchy when searching for related objects
ionships between ma

, two classes, ADevice and BDevice, reside in different namespaces. An association

ADevice
ns declared in the sample namespace that referenced class

AD

class, MyExample, resides in the Sample namespace and has references to both ADevice and
BDevice. This is, therefore, a cross-namespace association. A management application in this
scenario that works within the CIMV2 namespace and enumerates the associations of class
would not be aware any associatio
evice.

Figure 4.23. The cross namespace associations rule

The interpretation of each association class depends upon the client application. Microsoft has
defined a number of association classes that represent the relationships between Win32 components

 of CIM

bes two or

as part of the Win32 extended schema. Their relationships derive from three basic types
association class:

Component relationship. The component relationship in CIM descri
more related classes as GroupComponent and PartComponent. The Group

component can consist of many part components. The relationship can be imagined
as a containment in which the Group component object consists of many Part
component objects. An example within the Win32 schema is the association class
Win32_GroupUser that associates two classes, the Group component (class
Win32_GroupUser) and the Part component (class Win32_Account). The association
in this case defines the relationship between a Windows NT LAN Manager domain
group and individual users who are members of that group.

Dependency relationship. A dependency relationship defines an association where
one object, the dependent, is reliant upon another object, the antecedent. An exam le
of this type of association within the Win32 schema is the association class

on
t element. An example

association class within the Win32 extended schema is PrinterSetting,
which references two cl nterConfiguration.
The Win32_Printer class defines a printer and is an element. The
Win32_PrinterConfiguration class defines the settings for a printer and is

.

The class viewer in the right pane of Figure 4.16

p

Win32_DiskDriveToDiskPartition, which defines a dependency relationship
between a disk drive (class Win32_DiskDrive) and a partition on that disk drive
(class Win32_DiskPartition). In this association, the disk drive is the antecedent
and the partition is the dependent (that is, the drive partition is dependent upon the
drive for its existence).

Element-setting relationship. An element relationship defines the associati
between a managed element and the settings for tha

Win32_
asses, Win32_Printer and Win32_Pri

referenced as a setting.

The nature of each association class is interpreted differently depending upon the context of the
reference. These examples represent the associations defined as part of the Win32 extended schema
You can and should use these associations when you instrument your own product in the Windows
environment. You can also define additional forms of association within your own schema to
represent the special relationships between components in your own product.

 contains three tabs, Properties, Methods, and
ype, and Value, beneath each of

which is a series of corresponding properties and their values. As mentioned earlier, property names
that are system properties (that is, __DYNASTY).

Associations. Under the Properties tab are the headings Name, T

 start with a double underscore

An icon next to each property symbolizes certain core attributes of the property. Figure 4.24 sh
each icon and the property it represents.

Figure 4.24. CIM Studio property types

ows

System Properties
Earlier, we briefly mentioned WMI system classes. In conjunction with these classes, a number of
WMI system properties exist that are present in all classes within the CIM and extended schema.
The system properties allow WMI to maintain system information. System properties are not
available necessarily to all classes or instances at all times. If they are set to <empty>, they do not
apply to a particular object. In the WMI CIM Studio, they can be found in the class viewer pane
under the Properties tab. The WMI system property icon represents them. Table 4.5 represents all
available system properties and their description.

Table 4.5. WMI System Properties

Property Type Description
__Class CIM_STRING Contains the class name.
__Derivation CIM_STRING

array
Contains the class hierarchy of the current class or instance.
The first element is the immediate superclass and the last
element is the root class.

__Dynasty CIM_STRING Name of the top-level class from which this class or instance
is derived. When this class or instance is the top-level class,
the values of __Dynasty and __Class are the same.

__Genus CIM_SINT32 Used to distinguish between classes and instances. Set to
WBEM_GENUS_CLASS (1) for classes and
WBEM_GENUS_INSTANCE (2) for instances.

__NameSpace CIM_STRING Name of the namespace from which this class o instance
came.

__ CIM_STRING Full path to the class or instance, including server and

r

Path

Table 4.5. WMI System Properties

Property Type Description

__PropertyCount CIM_SINT32 Number of nonsystem properties defined for the class or
instance.

__RelPath CIM_STRING Relative path to the class or instance.
__Server CIM_STRING Name of the server supplying this class or instance.
__SuperClass CIM_STRING Name of the immediate parent class of the class or instance.

namespace.

All the system properties in Table 4.5 are read-only, with the exception of the _Class property,
which is read-only for instances but read/write for classes.

We follow our review of the user interface elements that make up the WMI CIM Studio with an
examination of the classes and instances within the hierarchy and familiarize ourselves with the
functions of the WMI CIM Studio.

Object and Property Qualifiers
First, click the plus sign (+) located next to class MySchema_Storage in the class explorer. This

s
e the mixture of local, inherited, and

system properties. MySchema_CDROM has inherited a single property from its parent class, DeviceId,
wh em
pro t
the s
entry in . Now move the mouse pointer into
the class viewer and click the right mouse button. The display presents a menu with two options,
Pro t display
shows

exposes the next branch in the class hierarchy, which contains the subclass MySchema_CDROM.
Highlight class MySchema_CDROM with a left mouse click. WMI CIM Studio displays the propertie
available within that class in the class viewer (right pane). Not

ich is also flagged as a key property. If you now click the value of the __Derivation syst
per y in the right pane (click the array button), the display presents a numerically ordered list of
 cla ses from which MySchema_CDROM derived. The immediate parent class is always the first

 the array and the last entry in the list is the superclass

per y Qualifiers and Object Qualifiers. Select the Object Qualifiers menu option and the
the window in Figure 4.25.

Figure 4.25. The Object qualifiers window for class MySchema_CDROM

The Object Qualifier menu option displays all of the qualifiers that apply to any instance of tha
particular class. Recall that qualifiers characterize named elements within the schema.

Qualifiers are values that provide additional information about classes, associations, indications,
methods, method parameters, triggers, instances, properties, or references.

All qualifiers have a name, type, value, scope, flavor, and default value. Qualifiers cannot be

t

fier can have any particular name for any given class, instance, or
_CDROM has one qualifier, Description, assigned to it. The Description

 4.6

duplicated, and only one quali
property. The class MySchema
qualifier simply provides a human-readable text description of the class.

Remember that we entered this description when we typed the example MOF file. Table lists

r pane. Double-click the left
mouse butto lists the qualifiers for
tha

Object
qualifi

Abstrac of the class

s.

d

applicable qualifiers.

Now point the mouse to any of the properties listed in the class viewe
n on any of these properties and another window will appear that

t property.

Table 4.6. Object Qualifiers

er

Type Description

t Boolean When set to TRUE this qualifier indicates that instances
cannot be created. By default this is set to FALSE.

Association Boolean When set to TRUE this qualifier indicates that the class is an association
class used to describe a relationship between two or more other classe

Classcontext String This qualifier indicates that the class has instances that are associate
with additional information dynamically supplied by a provider.

Table 4.6. Object Qualifiers

Object Type Description

 signals that instances of this class are

Dynpro in
 dynamically by a property provider. This is

Instanc

Locale
ed by Microsoft, for example.

 supplies
ic

Singleton Boolean When set to TRUE this qualifier indicates that only ONE instance of
this lass does not therefore require
a KEY property to iden
allowed.

teristics on a per-property basis.
default qualifiers applicable to the p h to define
 at this point, you can enter a name ualifier will

have no meaning to WMI or, more importantly, to your client applications unless you write the code

the Property qualifiers box th
rs of th not

this qualifier propagates to instances of the class. For example, it is possible to define a property
ther this qualifier

mple, if a property were assigned the Read qualifier but the
was not propagated to a derived class, then the property could

 The "O" flag indicates whether the qualifier can be overridden in
 had the read-only flag set, then it could be overridden in the

qualifier

Dynamic Boolean The Dynamic qualifier
dynamically created by a provider.

ps Boolean When set to TRUE this qualifier indicates that certain properties with
this instance are supplied
not the same as the Dynamic qualifier, which indicates that the instance
as a whole is generated by a provider.

eContext String This qualifier can be specified on instances that contain values provided
by dynamic property providers. The value is passed to the property
provider as an argument to IWbemPropertyProvider::GetProperty.

String This string specifies the locale of the object. This follows the naming
convention as defin

Provider String This string contains the name of the dynamic provider that
instances of this class. It must be used in conjunction with the Dynam
qualifier.

 class can exist at any one time. This c
tify its instance. Only the value TRUE is

Property qualifiers define charac
drop-down list of

 The WMI CIM Studio provides a
roperties within CIM. If you wis

your own qualifier and a type. Remember that this q

to interpret it.

Notice that between the Type and Value fields in ere are the letters "I,"
"C," and "O." These letters represent the flavo e qualifier. The "I" determines whether or

that is read-only as a class but writeable as an instance. The "C" determines whe
propagates to a derived class. For exa
"C" flag specified that the qualifier
revert to writeable in a child class.
a derived class. Thus, if a property
child class. Table 4.7 lists some of the property qualifiers.

Table 4.7. Property Qualifiers

Property
qualifier

Type Description

Dynamic Boolean When set to TRUE indicates that the property value is supplied by a
dynamic provider. This qualifier must be used in conjunction with the
Provider qualifier.

Implemented Boolean When set to TRUE indicates that a method has an implementation

Table 4.7. Property Qualifiers

Property Type Description

supplied by the provider.

Indexed Bo is indexed. Can be specified on properties of
classes to request that those properties be indexed. Only the value TRUE

Key Boolean When set to TRUE indicates that the property is a KEY property (i.e.,

 of NULL implies no limit.

ty is READ only.

Sta ethod that does not
e

Write

qualifier

olean Indicates that the property

is allowed.

used to identify an instance of the class).

Max sint32 Indicates the maximum number of values a given multivalued reference
can have. A value

Not_Null Boolean If set to TRUE indicates that this property must never be set to NULL

Read Boolean When set to TRUE indicates that the proper

tic Boolean For methods, indicates that the method is a class m
rties, idepend on any per-instance data. For prope ndicates that th

property is a class variable rather than an instance variable.

Boolean When set to TRUE indicates that this property can be WRITTEN to.

Figure 4.26. The Property qualifiers dialog window

CIM Studio Functions

Help for a Class

The help for class icon in the upper right corner of the WMI CIM Studio's class viewer provides a
textual description of the class currently selected in the class explorer. By clicking this icon, the
WMI CIM Studio retrieves all text entered as part of the description qualifier for the class and all of
its
desc

properties and methods. In developing the sample MOF file, we used the Description qualifier to
ribe the usage and purpose of both the class and its key property (see Figure 4.27).

Fig

[a
 d
]
class
{
 [

 uint
 // D
};

From th s icon
in the c .28

ure 4.27 MOF for storage class

bstract,
escription("This class defines the common characteristics Storage devices")

MySchema_Storage

 read, key,
 description("The device ID must be unique for each storage class

 instance"): DisableOverride ToSubClass]
64 DeviceId;
evice Id is an unsigned integer 8 bytes

e class explorer pane select the MySchema_Storage class. Now click the help for clas
lass viewer. The display will show the screen in Figure 4 .

Figure 4.28. The Help dialog for class MySchema_Storage

f the classes relevant to WMI exist in the CIMV2 namespace. Now that we are familiar with
s explorer and class viewer, we can spend the remainder of the CIM repository tour in this

Most o
the clas
namespace.

Br

Click t or
Names ck

owse for a Namespace

he browse for namespace button in the class explorer view. This brings up the Browse f
pace dialog box that greeted you when you first started the WMI CIM Studio. Double-cli

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch04fig36

the roo
clickin

t namespace to reveal all available namespaces and select the CIMV2 namespace before
g the OK button.

Se

The sea Studio can be a real time saver when you search for a
eeply embedded class in the repositories class hierarchy. Unfortunately, the early release contains
o wildcard capability that would enable you to search for possible classes of interest based on a

 for a class, click the binocular icon in the class explorer pane. Type
m (not case sensitive) in the Search for Class dialog box and click the OK

button (as in Figure 4.29

arch for a Class

rch facility within the WMI CIM
d
n
partial name. To search
Win32_ComputerSyste

).

Figure 4.29. The Search for Class dialog

The Win32_ComputerSystem class represents a computer system operating in a Win32
environment. For more information, click the help for class button. After the search is completed
successfully, the WMI CIM Studio should display the screen in Figure 4.30.

Figure 4.30. Search facility automatically goes to the class you select from the search results

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch12#ch12

The class ss viewer pane
displays a in the top of the
right pane, all available methods on this object will display. In the case of Win32_ComputerSystem,
the t the power
mo

The
Win32_ ciated (Figure 4.31

explorer pane now highlights class Win32_ComputerSystem, and the cla
 list of properties associated with that class. If you click the Methods tab

 me hod SetPowerState is available. If necessary, you can call SetPowerState to set
de (that is, standby, power save, and so forth).

n click the Associations tab to display a complete list of classes with which the
ComputerSystem class is asso).

Figure 4.31. The Associations view

As you can see from Figure 4.31, the Associations tab in the class viewer presents a lot of
information. Some of the information is available only by placing the mouse pointer over parts of
the any of the
classes erate all
of the a lay the
referen ove through
these d

Next, w

 display such as the type of relationship (similar to using ToolTips). Double-clicking
 referenced by an association (the classes on the right side of the display) will enum
ssociations for that class. Double-clicking the name of the association icon will disp
ces contained in that association. You can use the forward and back icons to m
isplays.

e examine instances of class Win32_ComputerSystem.

Instance Enumeration

lick the instance enumeration icon in the class viewer pane to display all of the instances of
lassWin32_ComputerSystem.These instances represent the currently active Win32 computer

ly one instance of
d values for that

C
C
systems available on the host machine. On a typical installation, there is always on
this class. Select this instance and double-click it to display all of the properties an
instance.

Change the View (System Properties and Inherited Properties)

In viewing property information in the class hierarchy, sometimes it is beneficial to filter the view
so that system properties or inherited properties are not displayed. This can simplify the number of
properties listed on the screen at one time. To filter the on-screen view, click the view icon in the
right hand pane and select the Property Filters … option. The display will show the screen in

ure Fig
4.32.

Figure 4.32. The Select Properties dialog

Checking and unchecking these two options allows you to simplify the number of properties shown
in the class viewer pane. For example, if you deselect both options, the class viewer pane displays
only the local properties for this class.

WQL Queries Tool

The
nam p

 WQL queries tool enables you to create, save, and execute WQL queries in the current
es ace. In the example in Figure 4.33, we entered a simple

es of the class
 query to retrieve all of the current

instanc eturns the list of currently available disks
on the system that hosts the namespace.

Win32_logicalDisk. This query r

Figure 4.33. The Query dialog box allows you to create, save, and execute WQL queries

http://www.dmtf.org/education/cimtutorial.php

Add a Class

With the Win32_ComputerSystem class highlighted in the class explorer pane, click the add class
icon in the same pane to display the dialog in Figure 4.34.

Figure 4.34. The Add Class dialog

Type MySchema_ExtendedComputerSystem as the new class name and click OK. This adds the
class ExtendedComputerSystem to the CIM repository. Because Win32_ComputerSystem is listed
as the Parent in the edit box, the new class will derive from it. After successfully adding the class to
the CIM repository, notice that it inherits a number of system and class properties from its parent
classes.

The schema name plus the class name is referred to as the fully qualified name. Note that when you
create a new class, its name must be unique within its schema. If it is not, WMI CIM Studio will
report an error when adding it to the CIM repository.

Create an Association

Creating an association class within the CIM repository is not dissimilar to creating a class. The
only difference is that the association object qualifier must be set to true and must contain two or
more references. To do this, you execute the following steps:

1. Highlight the new class MySchema_ExtendedComputerSystem in the class explorer.
2. Right-click in the class viewer pane and select the Object Qualifiers option from the menu.
3. Left-click under the name field to create a new qualifier. Select Association from the drop-

down list and make sure it is set to true (the default).
4. Click the OK button.
5. Use Browse for Namespace to select another namespace, then return to the CIMV2

namespace. The WMI CIM Studio now displays the class ExtendedComputerSystem as an
association.

Delete a Class or Association

Having created a new association with the fully qualified name, MySchema_Extended-
ComputerSystem, we can use the delete icon to delete it. To delete a class within the CIM schema,
highlight the target class in the class view with a left mouse click and click the delete icon. If the
class contains child classes, WMI CIM Studio will warn you that it will delete them, too, before it
carries out the task.

Delete a Property

WMI CIM Studio contains no icon for deleting properties. Instead, simply highlight the desired
property and press the delete key. The WMI CIM Studio will verify that you wish to delete the
property before it removes it from the class. Note that this function will fail if the class to which the
property belongs has children.

Add an Instance

To add an instance of a class to the current namespace, in the right pane, click the icon that looks
like the one in the heading of this paragraph. This creates a new blank instance of the currently
selected class from the class view. With the mouse, you can select properties within the class and
assign values to them. After you finish, click the save button to place the new instance in the CIM
repository.

Delete an Instance

Places of Interest within the CIM repository
First impressions of the CIM repository when viewing via the WMI CIM Studio can be quite
overwhelming. This especially is true for the CIMV2 namespace, which contains hundreds of

To delete an instance from the CIM repository, select the instance to be deleted by clicking the
enumerate instances icon. Double-click the instance and then select the delete instance button.

unfamiliar classes with seemingly no relationship to one another or even to
managed environment. To feel more comfortable with the structure of the C

elements within the
IM repository, we start

sses

resent

iew to select the CIMV2 namespace.

__Provider in the search field.

ider
vider

ng other things, the name of the

ing CoCreateInstance.)

To look at an example instance of class __Win32Provider, click the enumerate instances button in
ne

 instance
information on a wide variety of managed objects within the Win32 environment as well as
supporting methods on those see that key property
name has the value CIMWin32 and the CLSID has a value of {d63a5850-8f16-11cf-9f47-
00aa00bf345c}.

 relationship between the instances of class __Win32Provider and
 the following steps:

by exploring the classes that glue WMI together. In this exploration, we examine the system cla
that represent the core elements of WMI—the security and provider architectures. A series of
system classes that begin with the double underscore (__) prefix represent these characteristics.

The Provider Classes

The provider classes define the structure of the WMI provider framework. These classes are p
in all namespaces that have properties, methods, or events supplied by WMI providers.

We use the root/CIMV2 namespace to examine the provider classes, so click the browse for
namespace button in the class v

1. Click the search for class button in the class view and type
(Remember that it has a leading double underscore.) The system class __Provider is an
abstract class that contains the child system class __Win32Prov .

2. Double-left-click class __Provider to display __Win32Provider. The __Win32Pro
class defines a number of local properties that describe, amo
Win32 provider (which is a key property) and the CLSID of the provider. (If you are
familiar with COM, you know its relevance in call

the class viewer pane of WMI CIM Studio. Now double-click the CIMWin32 instance. This is o
of the standard instance and method providers installed with the WMI core. It provides

 objects. In examining its properties, we can

To gain a better idea of the
WMI's architecture, perform

1. Use the copy function within WMI Developer Studio to store the CLSID of CIMWin32.
(Select the value of CLSID with a single left mouse click and then select Copy from the
drop-down menu with a right mouse click).

2. Go to Start/Run and type regedit.exe. This will bring up the system registry editor. Next
in the left pane, highlight

,

y matching the CLSID of the CIMWin32. Beneath this key in

the registry is the subkey InProcServer32, which contains the path of the dll that hosts
ored in the CIM repository to locate

__Provider __Pro-
vid R is class serves as an abstract base class for the registration of different
typ o

HKEY_CLASSES_ROOT. Now select the Edit/Find menu option and
paste in the complete CLSID, including its brackets. Click the Find next button to start the
search, first making sure that only the Keys checkbox is checked. The registry editor should
now bring up the registry ke

CIMWin32. This shows that WMI uses the CLSID st
the file that hosts the Win32 provider.

At the same branch in the tree as system class is the system class
er egistration. Th
es f providers. Table 4.8 summarizes these classes.

Table 4.8. Provider System Classes

Property qualifier Description

Event provider __EventProviderRegistration

__MethodProviderRegistration

Property provider __PropertyProviderRegistration

lassProviderRegistration

fining namespace A

eries of default system classes that are present in every

hese classes are automatically created with every new namespace. Under the __System-Class we
er

 the instances of the __NAMESPACE class held in the root namespace, although

he

Method provider

Class provider __C

Instance provider __InstanceProviderRegistration

Permanent event consumer registration class __EventConsumerProviderRegistration

Both the class and instance provider derive from the intermediate abstract class
__ObjectProviderRegistration.

The Namespace Classes

Namespaces in the CIM repository are arranged in a hierarchy. At the base of the hierarchy tree is
the root namespace from which all other namespaces must branch. The hierarchy also allows
namespaces to be ordered logically in relation to one another. For example, if namespace A were a
specialization of namespace B, it would be logical to represent this by de
beneath namespace B in the hierarchy. Remember that we defined a namespace as a logically
related set of classes that represents a managed environment. The scope of this relationship is
entirely the responsibility of the designer of the namespace. Despite the fact that namespaces are
arranged in a hierarchy with root at the bottom, namespaces do not inherit any characteristics, such
as classes, from parent namespaces.

Held in the root\ namespace is a s
namespace:

__NotifyStatus A generic base class for provider-based errors.

__PARAMETERS The __PARAMETERS system class defines methods and passes input and output
arguments to a method provider.

__SystemClass The __SystemClass system class is the abstract base class from which all
system classes derive. Instances of this class cannot be created.

T
find the __NAMESPACE class that contains the instances that represent all the namespaces held und
the root namespace (for example, CIMV2).

We shall examine
every namespace will contain this class and, possibly, instances of it.

1. Use the browse for namespace icon to move to the root namespace.
2. Double-click the root class __SystemClass and highlight the __NAMESPACE class.
3. Click the instances button in the class viewer pane. This will display a series of instances,

each of which represents a separate namespace within the CIM repository hosted on the
machine. Note that the __NAMESPACE class contains a single, nonsystem property name. T

name property defines the name of each namespace and is the key for that class. Y
should n

our screen
ow display a view similar to the one in Figure 4.35.

Figure 4.35. Enumerating the __NAMESPACE class

Creat

To add class viewer
pane of edit
the val save button
in the c

Delet

Delete you
wish to in the
CIM re tains. Remember, however, that

store a backup copy of the CIM

can

te

he

on in the
Space.

espace with classes and associations, click the browse for
ick the root namespace to reveal all the available namespaces.

Notice that TestNameSpace is now among those listed. Select this namespace and click OK.
Notice that the new namespace has already had a number of system classes added to it.

e a Namespace

 a new namespace to CIM at this point, click the create instance button in the
 WMI CIM Studio. This creates a new instance of class __NAMESPACE. Now click and

ue of the key property Name. Type a name for your new namespace and click the
lass viewer to commit this instance to the CIM repository.

e a Namespace

a namespace by enumerating all instances of class __NAMESPACE, selecting the instance
 delete, and clicking the delete instance button. This removes the namespace from with
pository including all of the classes and instances that it con

this action is not easily reversible. (You would have to re
repository!)

Tutorial: Creating a Namespace and Adding Classes,
Properties, and an Association
Now that we have examined the concepts of namespaces, classes, properties, and instances, we
become more familiar with some of the tools of the trade. We already have used the WMI CIM
Studio to browse the contents of the CIM repository. Now we shall use the CIM repository to crea
a namespace and experiment by defining some classes, properties, and associations within that
namespace.

1. To start the tutorial, make sure that you are connected to the root namespace. Now select t
__SystemClass and double-click to reveal its subclasses.

2. Select the __NAMESPACE class in the class explorer and click the create instance butt
class viewer. Left-click the value field of the name property and enter TestName
Click the save icon to place the instance in the CIM repository.

3. Next we shall populate the nam
namespace icon, and double-cl

4. For the purpose of the tutorial, we shall add two simple classes and an association class tha
contains a reference to both of them. First, click the add class icon in the class explorer. Add
two root classes,

t

NewClassA and NewClassB, and leave the parent field in the Add Class
dialog empty. This will ensure that the classes are created at the root of the namespace.

5. In each class add a string property, name. In each case, name a key property as shown in
Figure 4.36. Left-click next to the property until you see a key icon appear or use the
Property Qualifier dialog box to add the Key qualifier.

Figure 4.36. Adding a key property

6. Click the add class icon again and create a new class, NewAssociation, taking care to leave
the parent field blank. R enu
to display the Obj name field to add a new
qualifier and select Association from the drop-down list. This is set to true by default. Click
the OK button to return to the class viewer pane. You will not see the association icon next
to NewAssociation until you leave the namespace and then return.

7. Now, we shall add two references to the association class, one for each of the new classes.
Left-click an empty row in the class viewer (make sure the Properties tab is selected) and
name the first reference antecedent. Now left-click the type field and select ref from the
drop-down list to make this a reference. A dialog box asking for a reference type will then
appear. Type NewClassA and click the OK button. Then make sure you click the save

on. Repeat this process for the second reference, this time calling it dependent and
assigning it a reference type of NewClassB. The naming convention for references in an

an

lassB is

assA but it is the responsibility of the WMI client to
interpret this information fully.

to
ace using the WMI CIM Studio.

Figure 4.37. The wizards available in the WMI CIM Studio

ight-click the class viewer and select the Object Qualifiers subm
ect Qualifiers window for the class. Left-click the

butt

association is purely arbitrary in WMI and the CIM repository, but client applications c
use this information to understand the nature of an association and the role a specific
managed object plays. The terms antecedent and dependent simply mean that NewC
somehow dependent upon NewCl

The Wizards
The wizards form the final part of any schema modification or design work. They enable you
export the classes and instances that you have added to a namesp

The MOF Generator

The MOF generator can generate MOF files from classes selected within the WMI CIM Studi
This is useful especially when you have used WMI CMI Studio to define classes for your project
and wish to export these classes into a MOF file. The MOF generator will also export instance
information with the class information.

o.

The MOF Compiler

F

The Provider Code Generator

The MOF compiler can compile a user-selected MOF file into the CIM repository. You can then
use the WMI CIM Studio to view the results of the compilation. Experiment by compiling the MO
file you developed in this chapter.

The provider code generator is a wizard that generates boilerplate code based upon the WMI
provider architecture. It allows the selection of classes from the WMI CIM Studio and then
generates generic code based upon those classes. In Chapter 12, we use the more flexible ATL-
based approach for writing providers and so shall not discuss the provider code generator further.

Summary
This chapter was intended to introduce you to the fundamentals of the CIM repository from a
practical standpoint. It offers merely an introduction to the CIM repository. Many concep
understand and tools with which to become familiar remain. Take time to review the chapter, and to

ts to

modify ter 5 and expand upon the examples to gain more confidence with the technology. In Chap ,
we use tudio and develop a set of classes to represent a
fictional software product within the CIM repository.

Ten Fast Facts: CIM Repository

layer.
4. The correct nomenclature for classes defined in the CIM is

 the wizards that are part of the WMI CIM S

1. The correct pronunciation for CIM (according to the folks at Microsoft) is "Sim."
2. The CIM repository is implementation dependent (that is, its implementation

differs from platform to platform).
3. Extensions to the schema are expected (although not required) to be made at or

below the extensibility

schemaname_classname. This also is known as the full class path of a given
class.

5. A full namespace object path consists of the server and namespace and is
formatted using either forward or backward slashes, as shown following:

\\Server\Namespace

//Server/Namespace

6. WMI CIM Studio will not allow you to create instances of a new class until you

10. The Comm tantly revised and updated. To reflect
F assigns version numbers to
er elements within the schema

rom the CIM schema) will result
ted (that is, from V2.2 to V3.0, and so

or

have specified at least one key property. The only exception is if the class is
defined as a singleton (using the singleton qualifier).

7. Multiple key properties within a single class are legal and are known as compound
keys.

8. You cannot derive a new class from a WMI system class.
9. A full object path includes a machine name, a namespace path, and a full class

path:

\\CraigsMachine\Root\CimV2:Win32_Service

This example points to class Win32_Service on machine CraigsMachine in the
root\CIMV2 namespace.

on Information Model is cons
these changes in the structure of the CIM, the DMT
each new release. Minor alterations to classes or oth
that have little or no impact on existing applications result in updating of the
minor version number (that is, after the period: V2.1, V2.2 … V2.6, and so forth).
Major alterations, such as those that could affect the functioning of existing
applications (for example, the removal of a class f
in the major version number being incremen
forth).

Chapter 5. Developing Class Schemas
In order to manage a product using WMI, we must provide a way of exposing its manageable
features to the outside world. To achieve this, the DMTF designed the Common Information Model
which provides a context for the interaction between data consumer and data provider. All
discussions so far have assumed that the information a managed object (i.e., a hardware device or
software

,

 application) wishes to supply is already defined in the CIM schema or Win32 extended
sche existing classes or association. What happens, however, if there are no classes in the
CIM schema or Win32 extended schema that represent your product?

In such a case, you are required to design a
association schema design and is the focus of this chapter.

ma by

nd implement your own classes, methods, and
s. This process is referred to as

A schema is an abstraction of something that exists in the real world. It is defined by a set of
classes/associations that represent the manageable aspects of managed object(s). Each of the classes
in a schema contains properties and methods. As you will recall, properties represent the
manageable

characteristics of a managed object, and methods allow actions to be performed on that
managed object. Associations represent the relationships that exist between managed objects.

Bot th
schema
standpo nd Microsoft documentation but rather
to provide an ordered approach to schema design within their constraints. We thoroughly
reco that you keep the DMTF and Microsoft material handy for reference. There is also a
wealth of good background material about the CIM to be found on the DMTF website at
http:

h e DMTF and Microsoft provide a great deal of information on the theoretical foundation of
 design; however, the goal of this chapter is to introduce these concepts from a practical
int. This chapter does not aim to replace the DMTF a

mmend

//www.dmtf.org (the CIM specification documents are a good place to begin). Both Micro
the DMTF provide in-depth coverage on the theory of schema design in their tutorials:

soft
and

• Search for the WMI tutorial on the MSDN Web site at http://msdn.microsoft.com/
• Search for the CIM tutorial on the DMTF Web site at

http://www.dmtf.org/education/cimtutorial.php

Chapter 5 is for all software engineers who are about to embark upon their first schema design. The

Schema design is a particularly mall steps for successful
completion. A detailed discussi ters of the book; therefore, we
do not list every rule and concept explicitly. Instead, the chapter provides an acceptable level of
detail in conjunction with other documentation suc t.

The le case study is an e-mail package with server and client components. The present
chap

main purpose of the chapter is to provide the schema developer with a road map of the steps for
schema design using practical examples. The various techniques and structure employed here are by
no means definitive (as the proverb goes, "There's more than one way to skin a rabbit") but can
provide a starting point from which to base your own approach.

complex process that involves many s
on easily could fill the remaining chap

h as that provided by the DMTF and Microsof

examp
ter and Chapter 6 forward the design, implementation, and testing of a schema an
his imaginary product.

d providers
for t

duct and is flexible enough to accommodate
known enhancements. Defining a schema requires of the designer a mixture of knowledge and
experience of the product ints of the CIM.
Although many rules and best practices constrain schema design, often more than one solution to a
particular problem becomes clear. As is the case with object-oriented software design, practice and
experience are often the only shortcuts to guide you in the direction of the more robust solution.

The present chapter and Chapter 6

Schema Design and System Manageability
The foundation of any well-managed product in WBEM and WMI is a well-defined schema that
represents the present management needs of that pro

 under scrutiny and the structure, rules, and constra

 present the basic steps required for successful schema design and
provide a framework within which to do it. Figure 5.1 offers an overview of the steps in
instrumenting a product in WMI.5. We divided this task into two chapters because of the inherent
complexity of schema design. Rather than list abstract rules and techniques, we use an imaginary
software product to teach by example, providing a real-world context for schema design. In any

case study, no matter how general its aims, the example may not demonstrate some specific issues
or problems. In such instances, we provide additional rules in highlighted boxes to help answer
questions that may arise when you approach your own schema design.

Figure 5.1. WMI product instrumentation life cycle overview

In these chapters, we define managed objects from schema design through schema deployment. We
ractice adding classes, properties, methods, and associations to the CIM repository. Later, in p

Chapter 12, we examine in detail how to write providers to supply information for these constructs.

The next section contains a brief description of a simple case scenario, with which we illustrate the
steps of schema design in CIM.

Case Study: Client/Server E-mail Package
In the case study, we assume the role of an independent software vendor (ISV) who wishes to
instrument a product under development in WMI for the Windows platform. The imaginary product
is a basic client-server email system whose target market is small businesses. The software will
allow users to send and receive e-mail internally (that is, on machines connected to the same
network as the e-mail server or on neighboring visible networks), with or without file attachments.
It is basic because it does not communicate with other e-mail post offices and does not make
provision for mobile users to dial in remotely over the PSTN (Public Switched Telephon

ail system—the post office—

• The Post Office must verify users when they attempt to log in to the e-mail system. The
verification must take th

e P ould enable valid users to send and receive mail with or without
ach en accounts held on the host Post Office.

• The P he sender if it cannot reach its destination
(that is, if

• The P

e
Network). The task is to instrument the server component of the e-m
with WMI. The Post Office component will reside on a Windows network server and run as a
Windows service.

The Post Office should conform to the following requirements:

e form of a username and a password.
• Th

att
ost Office sh
ments betwe
ost Office should return undelivered mail to t

 the destination address does not exist).
ost Office should be manageable under WMI.

Figure 5.2 illustrates the topology of our fictitious ailbags
ciated w

e-mail product and shows that the m
ith each user's e-mail account are centrally located on the E-Mail Server. asso

Figure 5.2. Client Server e-mail topology

Basic Functionality

Upon creating a user account, the Post Office creates a mailbag that resides on a hard disk partition
on the server. A mailbag is a simple sequential file that stores incoming mail in the order in which it
arrives, along with a header of a set length that contains flags that specify certain characteristics of
the e-mail message. Initially, sent e-mail resides in a special directory on the Post Office machine
until the user successfully logs into the e-mail client. After the user logs in, the client application

appings

The package has th rate:

• Windows server

vance of

g Language
l template of schemas to simplify the overall

uce UML static structure diagrams, first, to help you understand the
grams supplied by the DMTF and Microsoft, and second, so that you may document your own

schema design efficiently and consistently. The DMTF and Microsoft use the UML static structure
le under the UML umbrella)

requests all new mail from the Post Office. The server application moves all pending mail from one
directory and appends it to the destination user's mailbag. Each mailbag has a unique GUID value
with the suffix .bag to identify its owner. The Post Office server maintains a list of m
between the GUID and username.

System Requirements for Post Office E-mail

e following software and hardware requirements in order to ope

• 100 Gigabyte disk space partition for mailbags
• Network card (100mbits or 10mbits Ethernet or token ring)
• 512Mb RAM

Before we can develop the e-mail client/server case study, we must examine some fundamental
concepts of schema design. They include using the UML to model a schema and the rele
the application life cycle on its development.

The Unified Modelin
In schema design, UML is a too

velopment process. We introd
l to create a visua

de
iad

diagrams (which are about one-tenth of the total set of diagrams availab
to describe the CIM schema and Win32 extended schema.

The Object Management Group (http://www.omg.org) adopted the UML as a standard in 1997. The
UML is language independent and provides notation for inheritance, classes, properties, and
methods. We use it in schema design to convey the architecture of a schema and the relationships
between the elements that make up the schema. The DMTF and Microsoft, respectively, adopted it
as the preferred way to portray their CIM and Win32 extended schema.

Two po pular software packages, Rational Rose (http://www.rational.com) and Micros
p://www.microsoft.com

oft Visio
(htt), allow you to model using the UML rules. With these packages, you
can represent the classes in your schem
UM n
Mic s

Fu

For mo
dedicat

a design and provide a permanent record of your schema in
L otation. Another option is to design your schema with a word processing package, such as
ro oft Word, that has basic drawing functionality.

rther Reading in UML

re detail about UML than this chapter provides, we recommend that you invest in a book
ed to the subject. Among the numerous good books available that describe UML, two of the

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch05fig14

best are 00) and
The Un
(Addis
UML.
Softwa

Le r
Sc
The I dually
would t be strictly necessary. The bes iliarize
you el applications, services,
network
models. A basic ide through the CIM
efficiently. The two steps that

Study the Core Model and Common Model UML diagrams provided by the
DMTF

For all products, regardless of operating system, that wish to be represented in the
CIM, an excellent starting point is to study the CIM schema. These diagrams
visually represent the common model (networks, applications, devices, physical, and
services) and core model.[1]

 Practical Object-Oriented Design with UML, by Mark Priestley (McGraw-Hill 20
ified Modeling Language User Guide by Grady Booch, James Rumbaugh, and Ivar Jacobson
on Wesley Longman 1998), because of their practical, real-world approach to describing
Booch, Rumbaugh, and Jacobson, the creators of UML, are chief scientists at Rational
re Corporation. Full publication information is available in our bibliography.

a ning the CIM Schema and Win32 Extended
hemas

 C M schema and Win32 schema define hundreds of classes. To learn these classes indivi
take a great deal of time and no t approach is to fam

rs f with the basic models defined as part of the common model (
s, devices, and physical) and then learn the classes relevant to your product within those

a of these models and their purpose should allow you to move
follow describe a practical method of achieving this background.

[1] They can be downloaded from the DMTF Web site in Microsoft Visio .vsd format at the following URL:
http://www.dmtf.org/standards/. If you do not have Microsoft Visio installed on your computer, you can
download the free Web component viewer from http://www.microsoft.com/office/000/viewers.asp

Study the extended schema provided by your operating system vendor

After you have studied the CIM schema, then study the extended schema UML
diagrams provided by the vendor of your target operating system. In our case, this is
Microsoft and its Win32 extended schema. Use the Help feature of the WMI CIM
Studio while you move through the various namespaces. Microsoft provides WMI
CIM Studio as part of the WMI SDK. This approach provides both a visual
interpretation of the class hierarchy, inherited properties, and associations as well as
a description of the purpose of each class. Remember, however that the CIMV2
namespace contains only those classes pertinent to the management of the Windows
operating system, which is itself merely a subset of the classes defined by the CIM
schema. To obtain a complete picture of the classes available, you must work with
the UML diagrams provided by the DMTF on their Web site as well as the material
provided by Microsoft (assuming your product runs on the Windows operating
system). Use the Help button to display the description of classes and their properties

ou view their contents in the class viewer (right pane).

Psy

An i bark upon schema design is a large
amount of patience.

as y

chological Requirements

mportant mental requirement for anyone wishing to em

Schema s les associated with schema design and become moderately
familiar t f the CIM schema and extended schemas. This will help
you to d r d associations are or are not relevant to the design of
your product, but also will provide inspiration in designing your own classes and associations.

ithout doing so, you will not know where to position your own schema (be it in the CIM schema,
in the Win32 extended schema, or in a namespace on its own). You should also try to keep up to

he Microsoft and DMTF Web sites at the

de igners must learn the many ru
wi h the structure and purpose o
ete mine not only which classes an

W

date with any changes to these schemas by frequenting t
URLs given above.

Schema design is a complex and methodical process and is by no means trivial in relation to the
overall instrumentation of the project (which is why Chapters 5 and 6 are dedicated to it). It is vital
to the successful instrumentation of your product that your schema adequately defines the
manageable aspects of your product in accordance with the rest of the CIM and future
developments of your prod g night!

Schema Design Timescales

hema design is a tricky job. The amount of time
endant on the nature of the product being instrumented

crease with
 to

e

M
ing

uct. So put the coffee on—it is going to be a lon

Allocating a timescale for your first attempt at sc
needed to design a schema is very much dep
and the experience of the schema designers. The greater the management bias of the product (that
is, the more managing it requires), the more elements the repository must contain, and the longer
the schema design process. With experience, however, you will find future releases of your product
should have a lower schema design overhead because you can reuse elements of your initial design.
The speed at which you progress through the steps of schema design will also in
repetition and as your knowledge of schema design increases. A good approach is often to try
find an existing schema that looks like what you want and extend it. As Patrick Thompson,
Microsoft's schema guru, says, "If you find yourself inventing things from scratch then chances ar
you haven't understood the existing class structure and are busily wandering off into a vast and
trackless desert in which you will probably perish from exposure to the elements!" It is important to
appreciate that more or less every possibility is covered at some level of abstraction within the CI
schemas. If it is not at least a subclass of CIM_ManagedSystemElement then why are you model
it?

Software Application Life Cycle

When designing your schema, it is good practice to take into account in which of the four
application life cycle states the information in your schema will be available. Figure 5.3 represent
simplified version of the CIM specific software application life cycle, from left to right, in which
each box in bold represents one of the states available to an application (Deployable, Installable,

s a

tween states represent the available transitions from state to Executable, Executing). The lines be
state.

Figure 5.3. The software application life cycle

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch05fig15

N

The Executable state displays two similar transitions, uninstall and remove. The remove

ller (see next page).

In the c hat
represe he
applica ion
was in such
inform

The
The W ows
operati s, and
so forth all the

 such as
s the registry settings for it. It also

stores the features of the product and the elem
introdu Windows NT4.0
platform and Windows 9x. The Windows 2000 logo certification requirements state that all certified
softwar irements
are mo
Installe

The W your
produc M
schema n, and so
forth to ding your application installs

indows installer, you do not have to worry about these aspects.

 the latest version of Microsoft Office.
, then the Windows Installer will automatically locate and

or example, the thesaurus in Word) by first checking the

ote

transition means the application will not be advertised as installable on the system any
more. The capability of an application to advertise itself is a function provided by the
Windows Insta

ontext of the Post Office example, imagine a defined property, UsersLogged-On, t
nts the number of users currently logged onto our e-mail system. In the context of t
tion life cycle, this property would contain a value only when the Post Office applicat
the Executing state. When the e-mail Post Office was not in the Executing state,
ation would not be available to a management consumer.

Windows Installer and WMI
indows Installer handles installation and uninstallation of a product as part of the Wind
ng system, Microsoft Installer provider, and the Microsoft Installer classes, association
 (part of the Win32 schema), instrument it in WMI. It maintains a record of

applications stored on the client machine in the Windows Installer database file. The Windows
Installer provider (%SystemRoot%\system32\wbem\MSIProv.dll) supplies this information
directly from the Windows Installer database. The database stores a variety of information
the directories and files that belong to the application as well a

ents that make up those features. Despite being
ced with Windows 2000, it is also available as a service pack for the

e must install using a Windows Installer-based package (the Windows XP logo requ
re relaxed and do not specify this requirement). For more information on the Windows
r, see the Microsoft MSDN Web site under the platform SDK.

indows Installer classes expose such information as the version of the components of
t as well as the directory structure for your product, many of which derive from the CI
's application model. They also enable methods such as installation, re-installatio
 be carried out. Therefore, when designing your schema, provi

using the W

You can see an example of the Windows Installer in action in
If you select the install on first use option
install any features that are not present (f
installation state. Features installed on first use are said to be advertised (see application life cycle).
After a feature is installed, it is available immediately for use without restarting the application or
the operating system. Among the other notable changes is that files developed with the Windows
Installer install themselves using files with an *.msi suffix instead of the usual setup.exe file.

The CIMV2 namespace contains the classes defined as part of the MSI classes that represent the
Windows Installer provider. These classes are derived from the CIM schema's application model as
well as the Win32 extended schema. Such classes include Win32_IniFileSpecification, which

contains the .ini file information that an application needs to set up an .ini file, and
Win32_DirectorySpecification, which represents the directory layout for a product.[2]

[2] If you wish to study
%SystemRoot

 the Windows Installer classes in more detail, you can find the MOF file under the Windows system directory in
%\system32\wbem\MSI.MOF.

The Role ent
Software

Software can be either management-based or not management-based. At this point, it should be
clear that WMI is designed for applications from both realms. One of the objectives of WMI is to
drive down the Total Cost of Ownership (TCO) for products from both realms through unifying the
management architecture. This includes software applications at any state in the software
application life cycle.

Our theoretical example program, although not strictly a management product, still will expose
management information via WMI to improve its manageability. It is also possible to develop a
management application by creating an MMC snap-in. For more details, refer to Chapter 9

Note that existing applications not written with the Windows Installer will not have their
information stored in this database.

You can perform any function through WMI using the Windows Installer provider that you can
perform with the Windows Installer. For example, you can remotely or locally perform a product
reinstallation, upgrade, or uninstallation on any WMI-enabled client machine with WMI.

 of WMI with Standard Software Applications and Managem
 Applications

.

Schema Design by Teams vs. by Single Developers
The nature of the product also dictates whether a single person or a team can design the schema.
Whether you are part of a team or on your own, be aware of the following potential hazards:

• The CIM repository often offers more than one way to represent a product. Always
approach alternative designs with an open mind when they are proffered in team meetings.
When you look for the better solution, consider future enhancements to the product that may
affect the schema and needs of your customers.

• Too much arguing over minute detail or too much compromise can cause lengthy delays in
schema design. Be prepared to take a stand if the situation warrants it! Work in small teams
when possible and take design decisions as far as possible within the team before submitting
the design to a wider audience.

When Should I Commit My Design to UML?

r
ly use a

mixture of UML and MOF files to formalize their ideas.

 I Design a Schema w ut UML?

UML is a good tool to capture your schema design from the very start of development. As you
work progresses, so can the level of detail in your diagrams. Schema designers typical

Can itho

You can design and docu advisable. An
alternative is to use the W
advantage of this approach is that it provides a graphical front end for your work that can aid in

e ide
h of U

s
s

also are a permanent visual reco y
need to continue your work. UM
intricate relationships between e
syntax.

Membership in the DMTF e
into a Visio diagram.

he Unified Model
The UML is a collection of techn
Rumbaugh (collectively known a d in object-oriented analysis and

sign. Schema design and docu
techniques:

• Use Cases, with which we document the system requirements for schema.
ich we use in schema design to focus upon class structure, inheritance,
ncluding the relationships between classes in the schema. These models

UML notation does not represent qualifiers, namespaces, paths, and keys.

A Brief Introduction to UML Object Modeling
odeling represents the class structure, inheritance, and associations in schemas. The basic

on associated with object modeling is surprisingly simple. Each class in a UML diagram is
nding o

ment a schema without UML but it probably is not
MI CIM Studio to define new classes, properties, and so forth. The

interpretation. This is not th
the visual breadth and dept
design using flat documents to
quickly become unwieldy and difficult to interp

al approach if your schema grows in size or complexity, because
ML is very difficult to recreate. Similarly, if you document your

pecify classes and their relationships and so forth, they could
ret compared to UML diagrams. UML diagram

rd for other developers in the team and for developers who ma
L diagrams can represent a very clear and concise portrayal of the
lements in the schema to developers who are familiar with their

Note

ntitles you to a MofEditor tool that allows a MOF to be made

T ing Language in Schema Design
iques from its creators, Grady Booch, Ivar Jacobsen, and Jim
s "the three amigos"), that can ai

de mentation of the various steps commonly use two UML

• Object models, wh
and associations, i
also commonly are called static structure diagrams.

Note

UML notation can represent most of the main constructs in a schema (including classes,
properties, methods, associations, and aggregate associations) with several exceptions:

Object m
notati
represented by a rectangle, which, depe
compartmentalized further (

n the level of detail required, can be
Figure 5.4).

Figure 5.4. Class notation in UML

Note

A fourth compartment to represent events generated by the class may be added.

In the example, the class box is in compartments. By default the top compartment, "A" holds the
class nam (capital letter, center-aligned bold font), the next compartment ' "b" contains the
prop erations
(low

e
erties (lowercase, left-aligned), and the final compartment "c" holds the methods or op
ercase, left-aligned) for the class (Figure 5.5).

Figure 5.5. Default UML compartment names

Although this format is sufficient for schema design in CIM, the UML neither restricts the number
of compartments in a class box nor insists that each compartment have these meanings. UML also
flexible in its level of detail: When drawing classes, for example, you can suppress eith

is
er the

property or the method compartments if they are not required. An example class from our Post
Office schema using UML notation would appear as in Figure 5.6.

Figure 5.6. Class notation with properties and methods suppressed

In the example in Figure 5.7, we define a single class called PostOffice with two properties (Name
and Id and StartUp). Notice that we have also declared the
type of these properties (that is Name. It would also be possible to
specify Shutdown and StartUp if required.

es, default values, and methods shown

entifier) and two methods (Shutdown
string) and a default value for

 the signature for the methods

Figure 5.7. Class notation with properties, typ

In l ge rovided by the DMTF and Microsoft, the
ressed to simplify the notation and improve
al to create a diagram that includes this volume of

ar or complex UML diagrams such as those p
property and method compartments often are supp
readability. In addition, it is sometimes not practic
information and still will fit on a single page; that is, readability is as important as the level of
detail.

Inheritance Notation

In the example in Figure 5.8, the directional arrow denotes inheritance. DialinAccount and
LAN_Account are both subclasses of EmailAccount. As subclasses, they can inherit any properties,
methods, or associations that belong to class Email_account or to its superclasses.

Figure 5.8. Inheritance in UML

N

I

Associat n

Between the tw

ote

C M does not support multiple inheritance. The presence of an abstract class implies that
a subclass must be present.

io Notation

o classes, Mailbag and PostOffice, in the example in Figure 5.9, a connecting line
resents an association class.

Figure 5.9. Associations in UML

,
Contains, rep

The notation tells us that this association contains references to Mailbag and PostOffice. The
asterisk adjacent to Mailbag and the numeral 1 adjacent to PostOffice tell us that multiple
instances of class Mailbag can be associated with a single reference to class PostOffice. The
symbols describe the cardinality of the relationship. Table 5.1 lists other options in the notation for

ship Cardinality

0.n Specifies an optional many-valued reference where n is the upper limit.

Specifies a required many-valued reference.

cardinality.

Table 5.1. Relation

Notation Cardinality

* Specifies a many-valued optional reference.

1 Specifies a required, single-valued reference.

0 … 1 Specifies an single-valued optional reference.

1.n

It is possible, also, to indicate the role that each class in an association plays. For example, in Figure
5.10, class Father is associated with class Son in the association class Related. In addition to this
class Father assumes the role of parent in the associ

,
ation and class Son assumes that of the child.

Figure 5.10. Associations in UML

Aggregate Associations

An aggregation is a type of association: A diamond symbol at one end of the association indicates
that it is an aggregation. The term implies that an aggregation of other entities makes up a given
class (the parent). We could interpret the diagram in Figure 5.11 in plain English to mean "a
Mailbag is made up of many messages" or "many messages are part of a mailbag."

Figure 5.11. Aggregate associations in UML

In logical terms, this means that the CIM repository would host multiple instances of association
BelongsTo with each parent object possibly associated with multiple child objects.

Notice in Figure 5.12 that each of the connecting lines between the Mailbag and the Message
instances represents a separate instance of the aggregation in the CIM repository.

Figure 5.12. Instance association of aggregate relationship

To specify in the MOF language that an association is also an aggregate (Figure 5.13), we use the
Aggrega

tion and Aggregate qualifiers as well as the Association qualifier. The Aggregation

qualifier specifies that the association is an aggregate and the Reference qualifier, aggregate,
identifies the parent refer Component specifies

gedS nt (CIM_GroupComponent) can be made up of other
stem CIM_PartComponent).

reg

longsT

 REF

preting the Common Model in UML
examined the basic notation for UML object models, let us examine a real-world example,

del

ence. For example, the CIM association class CIM_
that a CIM_Mana ystemEleme

Elements (CIM_ManagedSy

Figure 5.13 Agg ate relationship association class

[aggregation, association]
Class PO_Be
{
 [key, aggregate] PO_Mailbag REF Bag;

o

 PO_Message
}

Letter;

Inter
Having
the Common Mo from the CIM schema (Figure 5.14). As mentioned earli

ir schema diagrams in UML format. It is perfectly accep
er, both the DMTF and

y the table to omit schema
or brevity wh ll

ass name for clarity. From the diagram, we can tell the following about class
stem

Microsoft suppl
names f
schema and cl

en you discuss long class names, although in this book we always use the fu

CIM_ManagedSy Element:

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch05table04

• The property and method compartments are suppressed for all classes except
CIM_ManagedSystemElement.

• The cardinality of associations and the role names for the endpoints have been suppressed.
• CIM_ManagedSystemElement contains five properties: CaptionDescription,

te follows the colon.
• A gedSystemElement can comprise many other .

ciati
CIM_Managed mond aggregate
symbol to represent the aggregation. It is important to understand that the aggregate symbol

 necessarily to a
single instance (that is, each instance is related to itself). A line that represents an

tion or aggregate and is attached to itself generally refers to different instances of the
 that

shes part of relationships between managed system elements. For example, the
s a child of and represents the fact

ndent on another

• Each may be associated with a class (see association

t can have a Configuration associated with it (see

 and

ystem.

TF documentation

InstallDa , Name, and Status. The type of each property
CIM_Mana

The asso
CIM_ManagedSystemElements

on class, CIM_Component, whose beginning and endpoint are both on
SystemElement, illustrates this. Notice the use of the dia

refers to multiple instances of class CIM_ManagedSystemElement and not

associa
same class. The abstract association class CIM_Component is a generic association
establi
association Win32_SystemProcesses i CIM_Component
that processes are part of a computer system.

• Each CIM_ManagedSystemElement may be depe
CIM_ManagedSystemElement (see association class CIM_Dependency)

CIM_ManagedSystemElement Setting
class tingCIM_ElementSet).

• Each CIM_ManagedSystemElemen
association class CIM_ElementConfiguration).

• has two immediate subclasses, CIM_ManagedSystemElement PhysicalElement
icalElementLog .

• Each CIM_ManagedSystemElement may be part of a S

Figure 5.14. The Common Model from the CIM schema

Source: DM

Note

The M
becaus

icrosoft and DMTF UML notation uses nonstandard color coding (not seen here
e we are in black and white!) to illustrate the differences between connecting lines

The Schema Design Road Map

in their object models. The meanings are as follows:

• Red represents associations
• Blue represents inheritanc
• Green represents aggregation

The schema design road map in Figure 5.15 represents the series of steps in designing a schema.
Performing all of the steps depends most on factors such as whether you define your schema from
scratch or update an existing schema. The road map shows the inputs each step requires and the
outputs each one produces.

Figure 5.15. The Schema Design Road Map

Basic Rules for Schema Design

Dec in of the managed object is a subtle challenge
tha c
provide in your schema. It is sometimes simpler to understand this concept by examining it from the

n from that of the provider.

y to comprehend who, ultimately, will need to interpret the information your schema
pped. As a simple rule of thumb, do not supply

inform ge a management consumer requesting it
under any circum ry confident that they can imagine all of the

ch the product will be managed. If a management data consumer never
of the information you supply, then that information literally is

useless and has no relevance in the schema.

id g upon the desired level of detail for the model
t fa es any schema designer. We refer to both the nature and the detail of the information you

point of view of the management data consumer tha

First, tr
supplies when your product is finished and shi

ation as part of your schema if you cannot envisa
stances. Schema designers must be ve

possible scenarios in whi
needs to interpret some (or all)

Second, always consider the functionality of a managed object at its most basic level. Consider
objects that have multiple roles within a managed system, such as a primary display adapte
also a three-dimensional accelerator card and MPEG capture board. It would not be in keeping wit
the ethos of object-oriented design (or the CIM) to represent all of these characteristics withi

r that is
h

n a
single class. Instead, try to break the object into its constituent roles and use whatever constructs
may be within the system.

ator Example

enting
WMI).

You ask the telephone operator for a specific company's number. The telephone operator returns the

Determined to get better service, you dial again, but before responding to your query the operator

ce in a schema when possible.

m resources to compute. The amount of CPU time or system
resource is the cost. An expensive item, in itself, can render a schema impractical or

f the host CIM repository.

properties,
iations, and methods provide such data, you can flag them

e the Lazy qualifier to flag properties
individually. Doing so allows management data consumers to specify in a request

 set the Large qualifier to TRUE.

Several months late n. This time, the
system is down and the telephone operator

hich excess of an hour to comple

3: C s

For examp u
in your sc ces, it might not be practical to

 necessary to represent each of these roles

Telephone Oper

To illustrate the point, imagine the following telephone operator scenario in which you, the
customer (representing a management data consumer), call the telephone operator (repres

details of every employee working for that company before returning the relevant number.

Rule 1: Providing too much information in a schema can reduce usability
nearly as much as providing too little.

Although some information may logically belong to a schema, this does not mean
that you automatically should include it. Lean is mean!

sits on the floor and does 50 sit-ups, followed by 50 push-ups. Breathlessly, the operator returns the
telephone number.

Rule 2: Avoid expensive computations or use the Expensive and Lazy qualifiers
to indicate their presen

Expensive computations are classes, properties, or methods that require excessive
CPU time or syste

unreliable to use and, worse still, affect other users o
Redundancy is permissible in situations where it avoids such overheads.

WMI provides a mechanism for filtering expensive data. If your
references, classes, assoc
with the Expensive qualifier. You can us

whether they wish to avoid retrieving any flagged elements. WMI ignores properties
marked with this qualifier by default in a WQL query. If classes or properties require
a large amount of storage space, they can

r, with all previous bad experiences behind you, you call agai
must plough through 50 volumes of telephone

directories, w may take in te.

Rule onsider the effect of resource-hungry

le, consider the theoretical maximum n
hema. If a class generates 10,000 instan

chema designs.

mber of instances for each class

enumerate all of them at once or to hold that much information in memory. Consider
the Post Office example: holding an instance for every message sent in the system
(detailing its size, destination, number of attachments, and so forth) could result in
the generation of thousands of instances in a relatively short time. This would affect
systems re a provider were supplying the
informatio onnection.

o
A multitude of w I ing upon the needs of the product
and the target env arly stage in schema design, consider the
management topo ade about the topology
could ultimately affect the way in which we desi a. In our fictitious project, the
workload is distributed between two teams of developers, one that will design and code the client

o p
aspects of WMI i ally, many different possible arrangements for a
product exist. He tions of WMI to instrument our fictitious
e-mail package. N anagement data consumers, WMI, and
providers interact

proac

In the first arrang

sources and performance, especially if
n dynamically across a low bandwidth c

WMI Top logy Design
ays exist to instrument a product in WM
ironment on which it will run. At this e
logy of your product. We do this now because decisions m

gn the schem

, depend

application and ne that will design and code the server a
s its architectural flexibility. Norm
re are only two examples of implementa
otice the different ways in which the m

.

plication. One of the most powerful

First Ap h

ement (Figure 5.16), all of the manage
itory located on the Post O

ment schema information is stored together
in a single CIM repos ffice. Therefore, all interactions between WMI and

n c
mail schema contains classes and associations for the e-ma hen
dynamic data is r ider
communicate across the network using the WMI API to th the
figure.

Figur to instr

WMI manageme t data consumers are via a single WMI

equired from the clients, we use prov

lient hosted by the Post Office. The E-
il client as well as the Post Office. W

s hosted on the client machines to
e Post Office machine as illustrated in

e 5.16. A centralized approach umenting the E-mail package

All interaction between a management data consumer and WMI is through a single point, the
machine that hosts the Post Office. Table 5.2 lists the pros and cons of this approach.

Table 5.2. Pros and Cons of the First Approach

Pros Cons

Single access point
management inform

 for all
ation

This means that there is a single point of failure. If the Post Office
machine suffered a network card failure, then no management

 Schema design must be coordinated between the teams—a

gement information (for example, surfacing events) to a
single machine could come simultaneously from up to 100 client

about the entire e-mail system requests would be channelled to or from client machines.

Note: If the Post Office service failed this would not prevent
interaction between WMI and the client machines, because WMI
operates as an independent service.

Easy-to-update future releases
of the schema as it will be
hosted upon a single machine

Potential network latency time when performing nonlocal requests
could affect the usability of schema.

potential complication when designing by committee.

 Mana

Table 5.2. Pros and Cons of the First Approach

Pros Cons

nodes. This potentially could overload the machine, impeding the
performance of the Post Office.

r, places an unknown d on the Post

e and p

Second App

In the decentralized approach (

When fielding management requests on behalf of both the clients
and/or serve CPU overhea
Office. This is unpredictabl otentially difficult to test.

roach

Figure 5.17), the Post Office (server) supplies management
posit s supply m

.

Figure 5.1 ing the e-mail package in WMI

information in the CIM r
own machines

e ory on its machine. Client anagement information on their

7. A decentralized approach to instrument

Manag
manage

ement data consumers must interact with each node in the e-mail architecture to elicit
ment information. Table 5.3 lists the pros and cons of this ap h. proac

Table 5.3. Pros and Cons of the Second Approach

Pros

Schem
individual teams working on client and
server.

ke place on each separate
machine.

int of failure. Management d us
client machine

Less potential for system overload.

ntralized approach ha
nt, the decentralized approach allows

nt-side application and the Post Office
elopers writing the applications can design the

schema, therefore separating the management needs of the Post Office from those of the e-mail

e current state of the whole environment. The advantages of this approach are
that it can supply the event stream to more than one server, and can recover gracefully

nagement information consumer would have to
st Office specific information for the whole system

ecific information. This does not preclude
 could add to our design later.

schema design steps. The
plete the step

in schema design. The output box provides a description of the type of output expected
from the step.

Step 1—Gather information

Cons

a design can be assigned to the Schema updates must ta

No single po ata consumers m t access each
individually to retrieve information.

Reduced network latency problem
(information will travel at most only one
hop).

Both approaches are feasible using WMI; however, the dece
advantages over its alternative. From a development viewpoi
schema design in two parts: a Client schema for the clie
schema for the server side. This means that the dev

s several key

client applications.

Note

A third approach exists that is a hybrid of the two described. You could use events to
forward management information to a central server that then maintains information
reflecting th

after a failure.

This chapter focuses on the design and implementation of the Post Office Schema using the
decentralized approach, under which a WMI ma
attach to the Post Office machine to retrieve Po
and to each individual e-mail client to retrieve client-sp

hich, theoretically, wethe use of the hybrid approach, w

Note

An input and output box accompanies each of the following
 of the sources of information needed to cominput box provides a description

Schema Design Phase
Schema design includes six phases. In this chapter, we focus on the initial four steps:

Step 2—Define system requirements, rules, and assertions

Step 3—Define classes and properties

Step 4—Define associations

In Chapter 6, we continue with the final two steps:

ep 1: Gather Information

Input

The information-g rces and sifting
out the manageme ich should

da nageable aspects of the product, is a good startin uch
s lly q
y nnai

these target users fo quirements for the new system, possible improvements to the
management of the existing system, and so on. An informal telephone conversation or e-mail query

 to

e
aged object and, ultimately, should be made available to management data

consumers.

Ascertain Your Management Data Consumers

ies.

• Desktop management, whose desktop support staff are dedicated to handling all aspects of
the desktop. ent part of our e-
mail package and not directly with th

infrast agement, who are dedicated to the handling of all aspects of
lu this area, a further
ep

 infr r n
performance, administer network servers, repair logical faults on a network, and so

Step 5—Define methods

Step 6—Check schema design

St

• Formal and informal questionnaire
• Requirements specification
• Additional documentation when available

Collate Management-Specific Information

athering phase involves taking information from a variety of sou
nt-specific details. The requirements specification document, wh

provide some gui nce on the ma g point for s
information. Other
target users of the s

ources of information could include formally and informa
stem to gather feedback on their wishes. A formal questio

r their re

uestioning the
re might ask

might elicit responses about the manageable aspects of the product. It is good practice in this step
record clearly and concisely the details of where you gathered your information, from whom, and
when. In this step, you should collate any source of information pertaining to the management of
your product. You can use this information to help determine the type of information that should b
exposed by your man

You must understand who is the target audience of the management data that your product suppl
The IT aspect of many organizations generally is in two key areas:

 In our example, they would be concerned with the desktop cli
e Post Office.

• Network ructure man
the network, inc
classification, d

ding network servers and routers. Within
ending upon the size of the organization, exists:

 level of

o LAN astructure, whose system administrator's aim is to monito etwork

forth.

o WAN/MAN infrastructure, whose administrator's aim is to manage the overall
infrastructure of the corporate network in which the lowest common element is a
network router between buildings. Each LAN in the corporate network is a node in
the overall network topology. The task of the routers is to enable information to
travel between sites to interdepartmental LANs.

Depending on the type of product you develop, you may need to correspond with one or all of these
sections within a company to gather a broad enough view of the information you will need to
supply in your schema.

• Client application users whose goal is to send and receive e-mails (not management biased)
ff whose goal is to help client application users to achieve

nistrators who administer accounts, manage the Post Office
–based requests from desktop support staff.

Client application u il and are not
management-focused. They do not interact directly

sources of inform

nistrators and/ d are possible
sources of information for t ent the key
features that we should instrum

The Post Office example is s
supports the product. Managem
vendors (ISV) or independent hardware vendors (IHV), depending upon the nature of the product,

ld b h

tep 1 will aid i g which information we need for Step 2.

Output

The output is a paper-based c taining a description of the management-specific
requirements for the system . The document should contain a record of the
sources of the information g h rmation was obtained, and a comprehensive
list of who or what will use u

stem Requirements, Rules, and Assertions

Input

 Step 1

Use Case Diagrams and

The first task in this step is to define Use Cases for our Post Office. Use Cases help us to attempt a
tem require n for the Post Office. To do this, we must

Three types of people will interact with our client/server e-mail system:

• Desktop managers and support sta
their goals

• LAN infrastructure system admi
housekeeping, and carry out Post Office

sers simply use the client application to send and receive e-ma
 with our Post Office and, therefore, are not

target ation.

System admi or esktop managers will manage our product, so they
r management needs and documhis step. Establish thei

ent through WMI.

 ba ed on the assumption that our end user is based in the fie
ent information consumers might be other independent software

ld and

in which case they wou e t e target audience for any questionnaire.

The work in S us n determinin

 do ument con
 from a variety of sources

 infoat ered, the date the
 yo r management data.

Step 2: Define Sy

• Output from

 Use Case Details

first draft of sys me ts, which in this instance is

consider the type of operations our system must perform based upon the documents produced in
Step 1.

The first part of defining ou Case diagram. To do this, first draw a
system boundary (a rectang a ired management function as an ellipse.
Outside of the system boun ry
these management functions. Note that these can
management data consumers.

Figure 5.18. Use Case diagram for the Post Office

r Use Case is to draw a Use
le) nd place within it each requ
da , we place actors (stick people) to represent objects that interact with

be people (as in our case) or any other kind of

The Use Case diagram shows us that there are two types of system user: Post Office administrators
(LAN infrastructure System administrators) and Desktop support staff. Table 5.4 lists the required

ions. h of th functions you
. For example, Figure 5.19

management funct
a

 For eac e management can provide further detail using
Use Case detail describes the managem

Office.

Table 5.4. Post Office Management Fun

Management
function

Description

Shutdown Post Places the Post Office in the executable state.

StartUp Post
Office

Places the Post Office in the executing state.

Lock/Unlock
account

Locks and unlock account.

ent function, Shutdown Post

ctions

Office

s an e-mail

Table 5.4. Post Office Management Functions

De

Display users'
details

Displays contact information for a specific use

s details on the Post Office.

Delete account Permanently rem from the Post

performance
Displays information about the number of e-ma

Create account Adds a new acco

Change password Changes the password on an existing account.

Configure Post
Office

Configure settings on the Post Office such as m ze
of attachment, number of successful login attem

Figure 5.19 Use Case details for management function Shutdown

[View full width]

Management
function

scription

r.

Update users'
details

Updates a user'

oves an account Office.

Check il messages processed, etc.

unt to the Post Office.

aximum message size, max si
pts, etc.

 Post Office

[Provide the name of the management function that this
describes.]
Use Case Detail: Shutdown Post Office
[Provide the name of the actors who will use this mana

 ice strator

[Define the constra r validity checks that must b

Use Case can begin. Refer to the software application life cycle to

a

Preconditions: PostOffice must be in the executing state.

ail he ice administrator

Inputs: Name of PostOffice to shut down
[Describe the changes that may occur as a result of this Use Case]
Postconditions: The PostOffice is in the executable state. The
 PostOffice no longer responds to c
 processes email.

[Provide details of the information that flows from th

outside world—in this case, it will be the management

e of e at th e as well]
Outputs: Result code that indicates whether
 accomplished successfully.

 Use Case detail

gement function]
Used By:

 PostOff

ints o

 admini

e in place before the

determine which st tes
are applicable as preconditions.]

[Provide the det s that t PostOff must supply for this
Use Case]

lient requests or

e system to the

data consumer. Do not
forget to note
the occurrenc vents is stag

 or not the task was

Note

W n that
WMI instrumentation will bring to end users. Sadly, Use Case actors normally do not

tions.

ill constrain our system. Remember when
specifying these to consider also th d to record them. Events form an
integral part of effectively managing a system. We can use the information gathered in Step 1 to
help determine our rules and assertions.

Rule

A rule is a principle governing the conduct of our system.

pplying this approach to the Post Office, we can define the rules in Table 5.5

e used nonstandard, "happy" stick people in the diagram to indicate the elatio

have emo

Perform these steps for each of the management functions included in the Use Case diagram.

Rules and Assertions

Next we must look at the rules and assertions that w
e occurrence of events an

s

A .

Table 5.5. Post Office Rules

should lock the account. It should also generate an event to
 attempted security breach has occurred. The
administrator unlocks the account.

e/she has supplied

then the Post Office should suspend the user's account and
vent the user from sending or receiving mail. All pending mail

nd is not added to the mailbag until housekeeping
has been performed (that is, the mailbag is <= 20 MB).

Note

Rules 1 and 3 generate events if their conditions are met. For example, if the user's
n

 at this stage to state any events that may occur as
part of your schema because you may need to define event classes for them later if they
ar

No. Rule

1. If a user attempts to log in to an e-mail account more than n times with an invalid username or
password, then the Post Office
signify that the account has been locked and an
account will remain locked until a Post Office

2. An e-mail client can only send or receive mail from the Post Office when h
a valid user name and password.

3. If a user's mailbag is > 20 MB,
regenerate an event. This will p

main in the intermediate directory awill re

4. If the total number of accounts on the Post Office > 99, then no more accounts may be added
to the Post Office.

mailbag exceeds the 20MB limit, then the administrator should receive notification via a
event telling him/her so. It is important

e extrinsic.

Assertions

An assertion is simply a positive statement (or declaration) of fact about some aspect of the system
being modeled.

For example:

"His/her current waist measurement is n"

(where n is a waist size in centimeters. Always specify units of measurement where appropriate).

Table 5.6 is the list of

Table 5.6. Post Office Assertions

1. The Post Office must expose a list of

ee

4. The Post Office must allow only a maximum of 100 e-mail accounts to be logged on the
system

ailbag per user.

6. A mailbag cannot exceed 20 M

he Post Offic ot accep chments gre

8. The Post Office must provide a users currently logged on.

9. The Post Office must monitor the amount of space left on the mailbag disk partition on the
Windows2000 server.

10. The Post Office should provide stics on the amount of messages being processed. A
processed message is one that is sent by the user, processed by the Post Office, and ultimately
placed in its destination mailba

11. The Post Office should log the total time in days, hours, and minutes that it has been running
since start-up.

12. Administrators should be able to shut down and restart the Post Office cleanly (that is, without
ail mess

13. Administrators should be able to add users to and remove users from the Post Office user list
while it is running.

inistrators be able t loc from the Post Office.

Output

ent that contains the following details:

 assertions for the Post Office system.

No. Assertions

 registered accounts.

last tim2. The Post Office m
system.

ust keep a record of the e each user successfully logged on the

3. The Post Office must provide a mapping betw n mailbag GUID IDs and user accounts.

 at once.

5. There can be only one m

B.

7. T e must n t atta ater than 2 MB.

list of

 stati

g.

active users losing e-m ages).

14. Adm should o lock and un k a user's account

Paper-based docum

• Management-specific rules and assertions for the product
• Use Case diagrams to provide details of usage
• Use Case details to provide detailed information on each management function

Input

ses and rules and assertions from Step 2

whitespaces allowed)

ook at the addition of object and property qualifiers in the next chapter.

Define Candidate Cla

andid sses, do w which are candidate classes?

l are cla s, and assertions
generated in Step 2. We call these nts candidate classes because we expect class and property

 be an iter s o peat the
es of Step r sentation of

our system. Also, do not be afraid to experiment by adding or removing classes from your schema
during this stage.

There are several ways to identify candidate classes. First, look at the Use Cases defined in Step 2.
 func y d are a of

ied management functions is to retrieve the user's details. We could provide a class called
UserDetails that contains information such as contact number, surname, first name, title, and so
forth.

ad the rules ertio defin ut any
asses and as

1. Is there is a definable set of instances for the class?
2. Is the object of relevance t gement data consumers you identified in Step 1?
3. Does it constitute part of t aged system you are modeling?

 uniqu rop
5. Is the class a singleton?
6. How are instances created and deleted?

Step 3: Define Classes and Properties

• Use Ca

Name Your Schema

Before defining classes and properties, it is good practice to define the name of the schema to which
they will belong. Choose a name that will be representative of the real-world object that it
characterizes, which in our case is the Post Office. We have chosen to use a short abbreviation to
improve readability. Therefore, the fully qualified class name for our PostOffice schema is:

PO_classname (no

MOF Qualifiers

We do not address the use of qualifiers until we have documented fully the meaning and purpose of
our classes. We l

sses

Next we define c ate cla but how e determine

To determine which e ements candidate
 eleme

sses, look to the Use Cases, rule

definition to
various stag

ative proce
3 until satis

s. Indeed, c
fied that ou

nsider it part of the design process to re
classes are an efficient and usable repre

The management
the identif

tions the escribe potential source of inspiration. For example, one

Second, re
possible cl

and ass
k:

ns you ed earlier. From the nouns, try to pick o

o the mana
he man

4. Is there a e key p erty or a compound key for the class?

Although this approach is, perhaps, overly simplistic, it is a good starting point from which to
define candidate classes. From the rules and assertions in Step 2, we can identify the candidate
classes for the Post Office schema in Table 5.7.

Table 5.7. Candidate Classes for the Post Office Schema

Candidate
class

Description Discussion

PostOffice The Post Offi represent
the notion of the e-mail server in our
client/server e-mail system. This class
will define the manageable aspects of

REQUIRED. See Use Case diagram from
Step 2.

UserDetails This class describes the contact details

title, etc.). The username is unique to
each person, whereas the surname is

REQUIRED. See Use Case diagram from

belongs to an EmailAccount.

rom

manageable characteristics of an
administ
Office.

ser inspection,
e this class,

ific manageable
g to an Administrator

account that do not apply to a normal

Client applications Inbox that displays

he Post Office schema
with the manageable

aspects of the Post Office. The Inbox is

. This class is

Message s each message
sent in the e-mail system. It describes

UNREQUIRED. Although it is
theoretically possible to model this

ce class will

a Post Office and will be central to our
schema. The name of the Post Office
must be unique; therefore, this could
be the key property.

of an account holder in our system
(phone number, first name, surname,

Step 2.

not forced to be.
EmailAccount The EmailAccount class describes the

details of an individual account
(username, password, date last logged
on, etc.). Once again, the username is
unique for each instance of this class.

REQUIRED. See Use Case diagram and
rules from Step 2.

Mailbag The Mailbag class describes the
manageable features and
characteristics of each mailbag that

REQUIRED. See Use Case diagram f
Step 2.

Administrator The Administrator class models the UNREQUIRED. Upon clo
Class User can subsum

rator's account on the Post because no spec
properties belon

account.
Inbox The Inbox class describes the

manageable characteristics of each
UNREQUIRED. T
is concerned only

all incoming e-mail. not directly relevant to the Post Office
and, therefore, does not need to be
modeled in the schema
more likely to appear in the E-mail client
application schema (not discussed here).

This class represent

Table 5.7. Candidate Classes for the Post Office Schema

characteristics such as the total size of
the messag
the destination address, the source
address
attachm

component of the e-mail system, is it

oes a management data consumer

Secondly, the resource overhead for

tem would be
prohibitive (running into the thousands in
a short space of time); therefore, we do
not need this class.

any factors can
 required as part of the overall schema.

Always refer back to the information gathered in Step 2 to determine whether a class is required to

Candidate
class

Description Discussion

e including attachments, desirable?

, and the number of
ents.

First, d
need this much information?

storing an instance of this class per
message sent in the sys

Along with the candidate classes, we include a description of their intended purpose and a
discussion on whether or not each class should be part of the Post Office schema. M
affect whether or not a candidate class is

represent some manageable aspect of your system. In Table 5.7, the classes Administrator and
InBox are irrelevant to the Post Office schema for the reasons listed in the discussion text.

Continue to define candidate classes, looking at the rules and assertions and Use Cases, until you
are satisfied that the list of candidate classes is complete.

eps, de even , are optional. If your schema
 expose type rmation b anagement data consumer does

not require them, you ca p them.

Define Events

Recall from previous chapters that ned two types of events in WMI: intrinsic and extrinsic.
trinsic or extrinsic ev

ether y ne fine any cl n the
type of event you wish to supply. In the rules and ass n conditions
specify that a result should be gen

ecause of some change of state of which WMI is aware, such as the creation
of an instance of a class defined in the CIM repository, regardless of whether that instance is
dynamic or static.

s take place outside the scope of the WMI and its managed objects, but in some way,

tion in the
ts rely upon two components to come to the surface successfully.

The next three st
does not need to

fining
 these
n ski

t classe
s of info

s, statistics, and settings
ecause your m

 we defi
The next action is defining any in
environment. Wh

ents that occur as part of your managed
asses during this step depends largely o
ertions defined in Step 2, certai

ou will ed to de

erated.

Intrinsic events occur b

Extrinsic event
still are relevant to the management of the system. Extrinsic events have nothing to do with
namespaces, classes, or instances; instead, they provide notification relevant to the management
environment. An example is an event to notify the administrator of a power fluctuation on the Post
Office server. Because WMI is not aware of extrinsic events and they have no representa
CIM repository, extrinsic even

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch05table19

First, an event provider must supply notification of the event (see Chapter 12 for more information)
and second, an event class definition (derived from __ExtrinsicEvent) must be defined in the
CIM repository. This class defines the information supplied in the occurrence of that event.

Note that not all types o . As soon as an event
occurs, the instance no longer exists.

Microsoft recommends using intrinsic events whenever possible: They are easy to implement
oes of k. Ou
refe at upon

instrumenting. Table 5.8

f event classes provide an enumerable set of instances

because the WMI d
matter of personal p

the bulk
rence th

 the wor
depends

r experience, however, suggests that it is more a
 factors such as the type of product you are

 broadly classifies intrinsic events.

Event Actions System class Description

Instance-
related

Creation

c

Deletion

__InstanceCreationEvent

__I eModi

__InstanceDeletionEvent

Generates events in response to
actions taking place on

Modification

Deletion

__C eatio

__ClassModificationEvent

__ClassDeletionEvent

actions taking place on classes.

Namespace-
rela d

Creation __NamespaceCreationEvent

spaceDeletionEvent

Generates events in response to
actions taking place on

amine the list of rules and assertions in Table 5.5

Table 5.8. Intrinsic Event Classifications

Modifi ation nstanc ficationEvent instances.

Class-related Creation lassCr nEvent Generates events in response to

te
Modification __NamespaceModificationEvent namespaces.

Deletion __Name

If we ex , we can see in Rule 1 and Rule 3 that
several conditions generate events.

an Rule 1: If a user attempts to log in to an e-mail account more than n times with
invalid username or password, then the Post Office should lock the account. It
should also generate an event to signify that the account has been locked and an
attempted security breach has occurred.

Rule 3: If a user's mailbag is > 20 MB, then the Post Office should suspend the
user's account and generate an event.

To determine whether these events are intrinsic, we can ask the following questions:

"Is the subject of the event represented in either our schema or in another
existing schema, such as the Win32 extended schema?"

In Rule 1, the purpose of the event is to notify event consumers if the status of an
account changes to locked. In the classes we have loosely defined so far, the status of

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch05table20

an account would be classified as part of class EmailAccount. Therefore, if the
status of an e-mail account changed, it would show up as part of this class. This
means that the event is part of our schema and, therefore, is intrinsic.

In Rule 2, the subject of the event is the size of the mailbag. Class MailBag provides

ss, or namespace-related event?"

this information and an intrinsic event could again surface.

"Is the event an instance, cla

Both events represent changes to instances that already exist. Therefore, they can be
classified as instance modifications, which Table 5.9 explains.

Table 5.9. Intrinsic Event Classifications

ptionDescri Class affected Type of event

Accoun

An eve e property
AccountSt u f an event filter to
indicate th h locked state.

sic instance
fication.

LargeMai a

An event g e s disk quota. The
property Ma an event filter to
determine e s its quota.

PO_Mailbag Intrinsic instance
modification.

bulk of the work is done by WMI when surfacing intrinsic events,
because it has to check each in ails and PO_MailBag and
compare them with every even ether certain conditions are

Fi

tLockedEvent.

nt generated if an account is locked. Th

PO_UserDetails Intrin
modi

at s can be used as part o
at t e account is in the

lB gEvent.

en rated if a mailbag exceeds it
ilbagSize can be used in

wh ther the mailbag exceed

Intrinsic Event Filter Example

The event queries that follow provide an example of constructing an event filter to subscribe for
notification of these events. The

stance modification of class PO_UserDet
t filter for that instance to determine wh

met.

In gure 5.20, the name property r r que ide
the event filter. You can provide this yourself as part of th y, WMI will

ne he SELECT
InstanceModificationEvent for instances of class PO_U fy the full

tify of an event if property

Figure 5.20 Event filter for locked accounts

// AccountLockedEvent intrinsic event query
instance of __EventFilter

Na 1d -a 820
 Query = "SELECT * FROM __InstanceModification
 \"PO_U D
 untSta ed\

 QueryLanguage = "WQL";

ep esents the uni ntifier WMI uses internally to identify
e event filter; alternativel

ge rate one for you. T statement tells WMI to look in system class
serDetails (always speci

class name in queries) and no AccountStatus has the value of locked.

{
 me = "{7ca44681-045f-1 1 e97-00c04fb68 }";

Event WHERE

TargetInstance ISA
TargetInstance.Acco

se
tu
rDetails\" AN
s = = \"Lock " ";

}

Event providers can notify WMI of both intrinsic and extrinsic events if they report changes to
dynamic data (that is, data not held in the CIM repository). Because the events are generated in
respo ider
must be used to forward the event to WMI. If you consider the relationship between static and
dynamic data and CIM repository, then it becomes clear that WMI would not be able to detect
changes in d er). Because of
this step, we

nse to extrinsic events, conditions of which the WMI had no knowledge, an event prov

ynamic data unless notified by a third party (that is, an instance provid
 identify two intrinsic instance modification events. Figure 5.21 shows the second one.

We did not need to define any event classes.

Figure 5.21

// Example of LargeMailBagEvent intrinsic event query
nstance of __EventFilter
{
 Name
 Quer
 TargetInstance ISA \"PO_MailBag\" AND
 Ta
 Quer
}

Define Statistical Classes

v StatisticalInformation class from which to derive classes describing
statistical information (Table 5.10

 Event filter for large mailbox accounts

i

 = "{7cb44683-045f-11d1-ae97-00c04fb63821}";
y = "SELECT * FROM __InstanceModificationEvent WHERE

rgetInstance.MailBagSize > 20000";
yLanguage = "WQL";

The CIM pro ides a CIM_
). Any classes that define statistical information shou

 this class. W o
Count, Us in

information do not have to evaluate statistical data and, conversely, applications intere
no

ate cla ption Base class
t CIM_Statistics

Finally, CIM does not map statistical information over time. Therefore, only a single instance of
,

they would subscribe for appropriate changes in the statistical classes and write the events to a log.
Classes such as the statistics cla ngle instance, use the class

es

The CIM provides base class CIM_Setting (Table 5.11

ld derive
from
Mail

e separate statistical information, such as the properties FailMailC
erLoggedCount, and UserLockCount, so that applications interested

unt,
 state
sted in

statistics do t have to access state information.

Table 5.10. Candidate Statistical Classes for the Post Office

ss DescriCandid
PostOfficeS ats Contains the statistics generated by the Post Office since

startup

each statistical class will exist at any time. Microsoft assumed that if people wanted historical data

sses, that can have a maximum of a si
qualifier, Singleton.

Define Settings Class

) from which to derive any classes that
define the settings for managed objects. In our example, the class Post Office defines several
properties that fall into this category, such as log in attempt count and maximum size of mailbag
(see Table 5.9).

Table 5.11. Candidate Settings Classes for the Po

Candidate class Descr Base class

st Office

iption

Table 5.11. Candidate Settings Classes for the Post Office

Candidate class Descr Base class
PostOfficeSettings Contains the settings for the PostOffice CIM_Setting

onta age specific se the P

Define Properties

Draw a table listing any proper es defined, including statistical and event-
ay c d tions from

ve definition for each class in the fi elp
you think more carefully about the purpose of each class and its role in the schema. You may decide
during this stage that certain pr are more suitable in another of the classes.
Repeat this process until you are sure that each p rty in the class is required so that there cannot
be any instance for which that property is null. Also, consider which properties might be unique and

After our first pass, we have nine classes and their candidate properties (Table 5.12

iption

MessageSettings C ins the mess ttings for ostOffice CIM_Setting

ties that all of the class
based classes, potentially m
not worry about creating an exhausti

ontain. Use the rules an asser Step 2 for guidance but do
rst draft. This step will h

operties from one class
rope

usable as keys.

). Refer once
again to the documentation generated in Step 2 to determine which properties are required as part of
each class. In addition, ask the tions for each property:

• Can you envisage a management consumer ever using the property?
• Does it have a definable
• Does the property belong to this class?

ses with Candidate Properties

Class ties
PostOffice • List of accounts on system?

• Number of user accounts created on Post Office

server

Post

User

• User's office phone number
• User's title (Mr., Miss, Mrs., Dr., etc.)
• Forename
• Surname

• GUID assigned to user's mailbag

Mailbag • Current size in Megs of mailbag file (including attachments)

following ques

• What is the type of the property?

 range?

Table 5.12. Post Office Clas

Candidate proper

• Post Office name
• List of account usernames that are locked out of system
• Space remaining on mailbag disk partition on Windows 2000
• Days, minutes, and hours Post Office has been running

OfficeSettings • Maximum number of log-on attempts allowed

Details • User name

• Position in company
• Office location

Table 5.12. Post Office Classes with Candidate Properties

Class

MessageSettings • Max size of message in KiloBytes
• Max size of an attachment in KiloBytes
• Max number of attachments permitted

EmailAccount • GUID of mailbag for user

• Current password

PostOfficeStats • FailedMailCount
• TotalMailCount

The properties define the manageable aspects of the system. After you are satisfied that the list is
more or less complete, then create individual tables to represent each class and its properties and
scrutinize them in more detail.

Class PO_PostOffice

Description: The PostOffice class represents the manageable aspects of our Post Office e-mail
server (Table 5.13

Candidate properties

• Unique GUID assigned to mailbag

• Date user last successfully logged on
• User name of account

• The current status of e-mail account (logged in, logged out, locked
out, suspended)

).

Table 5.13. Class PO_PostOffice Properties

Property name Data type Range Description
eStatus uint16 Stopped

Shutting down

Error

The current status of the post
office.

String Min chars 6 The PostOfficeName property
must be a unique alphanumeric

purposes. Must be a minimum
of 6 alphanumeric octet's
length. In future releases more
than one Post Office may be

PostOffic

Initializing

Running

PostOfficeName
(key)

Max chars 100 value used for identification

Table 5.13. Class PO_PostOffice Properties

Pro r

visible so the property value

Timezone

the day,

Office was started.

TotalMai

pe ty name Data type Range Description

must be unique.
StartTime DATETIME dd/mm/yy

hh:mm:ss

This property specifies
month, year, clock time, and
time zone in which the Post

lCount[*] uint64 Min 0 … Maintaining a
successfully de

Max millions!

count of e-mails
livered since

Post Office start-up.

FailedMailcount[*] uint64 Min 0 Maintain

Max millions! currently undelive

ing a record of how
mail messages are

red.
Fre

54,775,807!

olds the size in
aining on the
.

n object
the CIM

sents the
 mailbag
of

ility. It is
ve two

properties within a namespace
representing the same thing as

e

ray of Min 0 A list of usernames of those
who are currently locked out of

many e-

eSpace uint64 Min 0Kb A property that h

Max
2,036,8

Kb of space rem
mailbag partition

9,223,37
Note: Although a
already exists in
repository that repre
space remaining on the
partition, a major goal
schema design is usab
also permissible to ha

long as they do not reside
within the same class. The sam
rule applies to class objects.

AccountLock Ar
string

Max 100 the system.

AccountLockCount[*] uint8 Min 0

Max 100

The current number of users
locked out of the system.

RegisteredUsers Array of
string

Min 0 A list of usernames of those

Max 100
who are registered with the
PostOffice.

created on the Post Office.

Note: This is not to be confused
with active users. This property
merely contains the usernames
of all accounts that have been

Table 5.13. Class PO_PostOffice Properties

Property name Data type Range Description
LicenceCount uint8 Min 1

Max 100

The number of e-mail accounts
registered with this Post Office.

UserLoggedCount[*] uint8 Min 0 A count of the

Max 100

current users
logged in the system.

ove them to a statistics class, see PostOfficeStats. [*] These properties are statistically based; therefore we m

Discussion

In Table 5.13, we defined a FreeSpace property that already exists as part of Microsoft's Win32
extended schema in the class Win32_LogicalDisk. Should we instrument the same property twice
in the repository? In this case, yes, because although we wish generally to eradicate redundant
entries in the schema, it is valid to duplicate entries if doing so increases usability. In our case
useful for the end users of our schema to have a property that automatically exposes the amount of
remaining free disk space on the mailbag volume. This property will eliminate the necessity for the
administrator to find out upon which volume and server the mailbag resides and then look up the
amount of free space using

, it is

ass can
exist. It, therefore, does not require a key property and can use the class qualifier,

ton, to specify that no more than one instance of this class will ever exist.

A B

or the PostOfficeStatus property, we can use a valuemap and values qualifier. They are similar
 function to the enum operator in C++ and similarly map integer values to string literals. In MOF

class PO_PostOffice: PO_SoftwareFeature

, "Running", "Shutting down",
"Error"}:

 shall

to schema constructs in more detail in Chapter 6

Win32_LogicalDisk.

Note

Because only a single Post Office exists in our system, only one instance of this cl

Single

rief MOF Interlude

F
in
syntax, it would appear as follows:

{
 [read: ToInstance ToSubClass, description(".."): ToSubClass,
 valuemap {"1", "2", "3", "4", "5"}: ToSubClass ToInstance,
 values {"Stopped", "Initialising"

 ToSubClass ToInstance]
 uint16 PostOfficeStatus;

If, for example, the PostOfficeStatus property had an instance value of 3, this would denote that
the Post Office was in the Running state. If a valuemap is not included, CIM assumes that the index
value starts at zero by default, in which case, the Running state would have a value of 2. We
cover the assignment of qualifiers .

MOF Language Tip

When using the Description qualifier to describe your properties or classes, you can include

put] She said, "This will print the quotation marks as well"

Class PO_PostOff

ion eSettings class defines the settings for the Post Office (Table 5.14

quotation marks by using the backslash (\).

[input] description("She said, \"This will print the quotation marks
as well\"")

[out

iceSettings

Descript : The PostOffic).
s is a singleton.

Description: 5.15

This clas

Class PO_UserDetails

The user class (Table)
Office.

ass PO_PostOfficeSettings Properties

nam
type

ange Des

MaxFailedL

255
Det
the

. Cl

Property na an
Office Loc Min 0 chars User's work location (floor, desk number, etc.)

serName (key) String Min 6 chars

5 chars

Account user's name

Mrs.

Professor

Miss

Other

Official title of the account holder

 will contain the details of an account holder in the Post

Table 5.14. Cl

Property e Data R cription

ogon uint8 0 to ermines how many times a user can attempt to log on to
Post Office before the account is locked.

ass Table 5.15

me Data type R
ation Array of string

PO_UserDetails Properties

ge Description

Max

U

Max 1
Title String Mr.

Sir

Dr.

Table 5.15. Class PO_UserDetails Properties

erty name Data typeProp Range Description
ForeName String Min 2 chars

Max 50 chars

User's first name

Max 30 chars

rite (with the exception of the
or

UserDetails ls of
sis. If a problem occurs with a particular account, then the Post Office

stances of this class and contact the user. Note that an instance of this
r who has an account with the Post Office, giving a maximum of 100

Surname String Min 2 chars User's last name

Job Title String Min 2 chars

Max 40 chars

Clerk, Director, etc.

ContactNumber String Min 0 chars

Max 255 chars

User's office phone number

Discussion

Most of the properties in class UserDetails are both read and w
Username, which is read-only because it is a key value). This allows the Post Office administrat
to change and update these details in the CIM repository. Class provides the detai
each user on a per instance ba
administrator can access in
class will exist for each use
objects of this class at once.

Class PO_EmailAccount

Description: The e-mail account class (Table 5.16) contains the manageable aspects of an e-mail
account on the Post Office. An instance of this class should be created when an account is added to
the Post Office.

Table 5.16. Class PO_EmailAccount Properties

Property name Data
type

MailBagIdentifier String Max 255 GUID of mailbag for account.

LogonDate dateTime dd/mm/

hh:mm:

o

Username (key) String Min 6
chars

Max 15

 Range Description

chars

yy

ss

Date user last successfully logged on.

Timez ne

User name of account which serves as our key.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch06table02

Table 5.16. Class PO_EmailAccount Properties

 name Data
type

ge tion

Password String Min 6
chars

0
chars

AccountStatus String Logged

Logged

Locked

end

f the e-mail account. Note that
ng,

tain

Discussion

In the Post Office schema design, an obje y registered
aximum
associa

key property is the Username, which is un

Implementing a password property in the user class brings to light several concerns. First, should
we expose such sensitive information in the CIM repository? If so, what precautions can we take to

nformation
in the repository (excluding Windows 9x/Me). Second, WMI requires that users of the CIM

reading and writing from it. WMI
assigns these permissions on a per namespace basis to allow access to specified users or groups of

r common technique for storing sensitive information, such as passwords, is to define
the password property as write-only (using a property qualifier), ensuring that the existing value of

I

Finally, Table 5.17

Property Ran Descrip

chars

Max 2 0

 in The current status o

The current password for the account.

 out
the Post Office administrator can modify this setti
as can the Post Office (automatically) in cer
circumstances such as failed log-on attempts.

Susp ed

ct of class EmailAccount will exist for ever
user of the system (m
GUID of the mailbag

 100). It exposes su
ted with the

ch information as the user's log-on status, the
user, and the date of the user's last successful login. The
ique for each instance of the class.

protect it?

WMI imposes several layers of security on accessing data in the CIM repository. First, a user must
have a valid Windows user name and password and adequate permission to look at the i

repository must possess permission to perform actions such as

users. Anothe

the password cannot be surreptitiously acquired and the e-mail account violated, because WM
administrative users could change it but not view it. You could also put the password in the registry
and use standard registry protection techniques to secure it while using the registry provider to get it
into WMI.

 lists the meanings associated with the AccountStatus property.

Logged The account is currently inactive and logged out of the system.

Table 5.17. AccountStatus Property Values

Status Meaning

Logged in The account is currently active and logged in to the system.

Table 5.17. AccountStatus Property Values

Status Meaning

out

Locked The account has been locked, which means the user cannot log in and read e-mail
e-mail, or receive e-mail. This co

nly a Post Office ad

, send
ndition is normally imposed when a violation has

occurred. O ministrator can unlock the account.

 cannot send or receive e-mail
is status is normally enforced when the

ailbag class (Table 5.18

Suspended The account has been suspended, meanin
but can log in and read existing e-mail. Th

g that the user

mailbag exceeds 20 MB.

Class PO_Mailbag

Description: The m) represents the manageable aspects of a mailbag (that is
the sequential file) on our Post Office. It should be associated with each E-mail account object.

s).

 (key) String None defined Unique GUID for mailbag.

e e-mail system (every user must be associated with a mailbag).

me that, at maximum, WMI will hold 100 mailbag objects.

Table 5.18. Class PO_Mailbag Properties

Property name Data type Range Description
MailbagSize uint16 Min 0 Current size of mailbag file (units: megabyte

Max 20

MailIdentifier

Discussion

Remember that efficiency is a concern when designing a schema. Our mailbag class has an instance
for every registered user on th
Therefore, we can assu

Class PO_MessageSettings

Description: The message class (Table 5.19) represents the manageable aspects of all messages in
our e-mail system. A single instance of this class represents the settings for all messages sent and
received within the e-mail system. Because only one instance of this class ever will be created, it
does not require a key qualifier. A class that will never have more than one instance is a singleton.

eSettings Properties

Description

 (10
Megs)

Table 5.19. Class PO_Messag

Property name Data
type

Range

MaxMessageSize uint16 Min 0

Max 10,000

Max size of message including attachments
(units: kilobytes).

MaxAttachSize uint16 Min 0 Specifies the maximum size for each
attachment (units: kilobytes).

Table 5.19. Class PO_MessageSettings Properties

Property name Data
type

Range Description

Max 10,000
MaxAttachmentCount unit8 Min 0

Max 10

Max number of attachments permitted per
message.

ion

of this class is to allow the Post Office adm nfigure the characteristics of
 attachments sent within the system. Chan lues will have a direct impact

 of the Post Office when processing e ient applications.

fficeStats

he PostOfficeStats class (Table 5.20

Discuss

The purpose
messages and

inistrator to co
ges to these va

upon the operation -mails from cl

Class PO_PostO

Description: T) contains statistical information that will be
of interest to specialized parties, such as the Post Office administrator. Like all statistical-based
class IM, this class is a singleton.

Prop

Fail s

TotalMailCount uint64 Min 0

Max
millions

The total number of messages successfully
delivered.

The current number of users locked out of the

uint8 Min 0 A count of the current number of accounts logged
into the system.

Outpu

• L Object Models of classes
• ument containing detailed description of schema classes, properties, and associations

Ste

es in C

Table 5.20. Class PO_PostOfficeStats Properties

erty name Data
type

Range Description

edMailCount uint64 Min 0

Max
millions

The number of messages that the Post Office ha
failed to deliver.

AccountLockedCount uint8 Min 0

Max 100
system.

ActiveAccountCount

Max 100

t

UM
Doc

p 4: Define Associations

Input

tep 3 considered as endpoints
• Descriptions of the role of the various components in system defined in Step 2

es for your schema, you must
consider the associations in which the class objects are expected to participate. You can define

n32 schema) and our Post Office
schema or solely between classes defined as part of the Post Office schema. A class can participate

few associations as required.

between two instances of
lationship between two

sses, you enable features, such as inheritance, to play a part in the associated objects.

o

properties other than type Ref. Although DMTF originally discouraged this practice, many of the
ntain properties in addition to references.

Th

In a sce iations play an important role in
dia Chapter 4

• Classes defined in S

When you are confident that you have defined the classes and properti

associations between classes in existing schemas (such as the Wi

in as many or as

Furthermore, associations can define a relationship between two clas
sses, or between a class instance and a class. When you define a re

ses,
cla
cla

Always remember that the purpose of an association in CIM is to provide management data
consumers with a mechanism for tracking the relationships between managed objects in a managed
environment. Although, theoretically, it is possible to define an association with more than tw
references, officially it is not supported. It is also possible to define association classes with

Win32 schema associations actually do co

e Purpose of Associations

nario in which a managed object ceases to work, assoc
gnosing the source of the problem. Examples in , such as those of the hard disk and

log

If y d ronment,
you potentially decrease the manageability of the product. Now let us consider the steps in defining
associations.

PO_PostOffice

PO_Mailbag

PO_MessageSettings

 of each class listed, we can identify the candidate associations in Table

ical partition, illustrate this point.

ou o not adequately define the relationship between your managed object and its envi

Do any relationships exist between the classes defined in the schema so far and
any other classes?

The classes defined in our schema so far are as follows. Note that you need not
include every class in an association:

•
• PO_UserDetails
•
• PO_EmailAccount
• PO_PostOfficeSettings
•
• PO_PostOfficeStats

By examining the purpose
5.21. Note that we call each of the classes referenced in an association endpoints. The endpoints in

sed from either endpoint, except in
cial cases.

an association are bidirectional and the association can be traver
spe

Table 5.21. Candidate Associationsa

dpoint2 DescriptionNo. Endpoint1 En

1 PO_EmailAccount PO_Mailbag Each e-m
m

ail account has an associated
ailbag (see topology).

2 PO_UserDetails PO_EmailAccount Each EmailAccount object has user
details associated with it.

3 PO_PostOffice PO_EmailAccount Each Post Office administers many e-
mail accounts.

4 PO_PostOfficeStats PO_PostOffic e The Post Office object generates
statistical information.

5 PO_PostOfficeSettings PO_PostOffice The Post Office has an associated

6 ngs

number of settings.
PO_MessageSetti PO_PostOffice The Post Office has settings associated

with its messages.

ote: The mathematical notation N is used here to represent a relationship between two classes.

s, they are not

e association refers to a provider-based object, then the

?

le 5.22

Note

Cross-namespace associations are allowed, although, for several reason
recommended.

References to objects outside of the host association's namespace are
unaware of the reference because the relationship becomes unidirectional.

If a cross-namespac
relationship will not be included in any query results.

What is the cardinality of each class referenced in the association

Tab lists the types of cardinality between two references in an association.
Note that associations can contain more than two references, although because

Table 5.22. Association Cardinality

ardinality Example Required

is sometimes associated with only one Max(1)

Microsoft does not support this, our descriptions use only two classes, A and B.

C
MOF text

1:1 Each instance of class A is always associated with only one instance
of Class B.

Min(1),
Max(1)

1:Zero or 1 Each instance of Class A
instance of Class B.

1:Zero or Each instance of Class A can be associated with 1 or more instances —

Table 5.22. Association Cardinality

Cardinality Example Required
MOF text

Many of class B.

 of association in which each instance of Class A
 is sometimes referred to as the

 to be part-of Class A.

— Aggregation Very strong form
requires the existence of Class B. This
part-of relationship, where Class B is said

We can then provide list our association classes, their endpoints, and cardinality from Table 5.23.

Table 5.23. Association Endpoints

Ass ioc ation class[*] Reference Endpoints[**] Cardinality Description
PO_Ass

Mailbag (Dependent)
key

UserDetails
(Antecedent) key

1:1 Each e-mail account is
associated with a user.

(PartComponent) key

ro or

 1:1 The Post Office generates
statistical information.

(Settings) key

messages with settings.

PO_PostOfficeHasSettings PostOffice (Element)

ings) key

1:1 The Post Office has

iation

ociatedMailBag EmailAccount 1:1 Each e-mail a
(Antecedent) key

ccount has
only one mailbag.

PO_AccountUserDetails

EmailAccount
(Dependent) key

PO_PostOfficeAccounts PostOffice
(GroupComponent) key

EmailAccount

1:zero or
many

The Post Office has ze
many registered
EmailAccounts

PO_StatsForPostOffice PostOfficeStats (Stats)
key

PostOffice (Element)
key

PO_PostOfficeMsgSettings PostOffice (Element) 1:1
key

MessageSettings

The Post Office processes

key

PostOfficeSettings
(Sett

associated settings.

[*] Each assoc uses a compound key to uniquely identify it.

[**] Note that all of the references here are object-based.

Using the PO
current num L
data query, we can retrieve th at are currently in any of
the four allowed sta

ASSOCIATORS OF {PO_EmailAccount.AccountStatus ="Logged In"}
 WHERE AssocClass = PO_PostOfficeAccounts

The value AccountStatus can be changed to any of the states listed above.

We shall further classify ma design phase in Chapter 6

Note

_PostOfficeAccounts association, it is now possible to determine the
ber of users logged in, out, suspended, or locked. By constructing a WQ

e list of EmailAccount objects th
tes.

 these associations at the end of the sche when
we position our classes a

Does the

he purpo es are required in our
ociations other than those of type Ref. This is permitted, although not

ge raises the design issue of
r t ns references.

In our cas .

Representing the PostOffice Schema in UML
Now that we have defined the classes and associations in our schema, the final task in this chapter is

nd associations in the CIM repository.

association require any properties other than references?

T
ass

se of this step is to determine if any properti

encoura
whethe

d, in the design of an association because it
he association is, in fact, a class that contai

e, our associations do not require additional properties

to represent this visually using a UML diagram (Figure 5.22).

Figure 5.22. A UML object model of the Post Office schema system showing the classes and
associations. Note that we position our Post Office schema classes in the next chapter.

Output

ed docu

d d

Summary
In this chapter, we have discussed the first four steps involved with schema design, which included:

• Defining the management architecture of a product
 information gathering

• The use of the UML to represent schema constructs
rams

•

In Chapter 6

Paper-bas ment containing the following:

• Detaile
• UML Object Models of cl

escription of schema association classes
asses and associations

• The mechanisms for

• Interpreting UML diag
Use Cases and Use details

• Defining the rules and assertions pertinent to the management of your system
• Defining classes, properties, associations, and events

, we conclud of methods to represent
the behavior of our syste e also look at

 sc
classes, methods, roperties that we have designed are an efficient and usable

o in
2. Gather requirements information from as many sources as possible.
3. Generate clear concise documents at every stage of schema design.

e the schema design phase by looking at the design
m and adding qualifiers to each of our constructs. W

positioning our hema in the CIM repository. The final step in schema design is to check that the
associations, and p

representation of the system we are modeling.

Ten Starting Schema Design Tips
1. Learn t terpret UML static structure diagrams.

4. Learn and understand the CIM metamodel, because it will provide you with a
good understanding of the rules of class and association design.

5. Familiarize yourself with the Common model and Win32 extended schema.
6. Use the WMI CIM Studio to browse classes and retrieve descriptions of the

purpose of
7. Learn the MOF syntax and sem
8. Keep up to date with new revisions of the CIM schema and Win32 extended

schema by checking the DMTF and Microsoft Web sites regularly.
in schema design until you are satisfied that each is complete.
rther the project progresses, the more time and money it costs to

ema.
um and maximum values for properties where appropriate.

 each class (using the Help button).
antics.

9. Repeat each step
Remember, the fu
make changes to a sch

10. Always specify minim

Chapter 6. Method Design and Schema Class
Positioning
Now that we have defined the classes, properties, and associations for the Post Office schema, we

rd
ide upon you would like the managed object to exhibit and then
 behav in your schema. There are, however, several important
ions before doing this that directly affect the usability of the schema. Always remember

en ain source of interaction with
the outside world is through flexible WQL queries.

For example, imagine that we define a class, Person, that describes somebody's physical
characteristics. In aracteristics of height and weight, we use
two methods, GetHeight and GetWeight, to supply these values. Now imagine a scenario in which

dministrator of the system) decides to enumerate all of the instances of
Person rbitrary value assigned to weight or height. Theoretically, using WQL

struct a query as follows:

f
ur

lity of detecting or using the
properties in an event, because events are entirely query-based. Therefore, use only methods in
those conditions in whic ain focus of the first

pt

Properties
From the previou
powerful solution

shall examine the methods required. Superficially, this may appear to be a relatively straightforwa
task: Dec
assign this
considerat

 the type of behavior that
ior to specific classes with

that the key str gth of an information model like the CIM is that its m

stead of using properties to expose the ch

a data consumer (that is, an a
class based upon an a
the administrator could con

SELECT * FROM MySchema_Person WHERE GetHeight < 210 AND GetWeight >= 200

It should be obvious that this won't work! We cannot construct a query to enumerate instances o
MySchema_Person using height and weight as constraints because we are not exposing them in o
class as properties, only as methods. You also eliminate the possibi

h they will not limit the usability of a schema. The m
part of this cha er is examining where and when it is appropriate to use methods.

 vs. Methods
s example we can see that there are situations in which a property can be a more
 than a method. The advantage of using properties is that they are queryable,

which is in keeping with the aims of the CIM and information models in general. Conversely, there
are also situations in which a method is preferable to a property.

ple, con of our Post Office from
 stopped. State and allow the

ent data consumer to change this value from running to stopped, thus initiating a change
 th , would be in notifying the

caller that the operation was or was not successful. If we used a method, we could return a value
that signified the are easier to document and
understand from a user viewpoint in your schema than a schema construct, such as a property used
in conjunction w ods for behavior and properties for
state. You must use methods if more than one class must be updated at the same time.

Note

g is wrong with having properties that indicate the state of
a managed object. For example, Win32_Service has a read-only property called State.
Su t are not the preferred way to
evoke change upon a managed object.

ition for methods, we classify them according to the effect they

ome
 and GetPerson would be

If no keywords or special syntax differentiate between these two types of method, then why

to maintain for the developers who work with
your schema in the future. Table 6.1

For exam
running to
managem

sider a situation that requires us to change the state
 One possible solution would be to define a property called

of state within e Post Office. The problem with this approach, however

 outcome of the operation. In some situations, methods

ith a query. A good rule of thumb is to use meth

We do not suggest that anythin

ch properties can be used for informational purposes bu

Methods, Operations, and Functions
As well as the stock behavioral defin
have on the managed objects when run. To further make the distinction between the two types of
method, we refer to operations and functions.

Operations have some type of impact upon their environment, such as causing a change of state,
whereas functions, as a general rule, do not cause a change of state and often return a value of s
kind. In our example using class Person, the methods GetHeight
categorized as functions. They have no impact upon the state of the Person instance and can be
called repeatedly without causing a state change. No special keywords are required to differentiate
between the two, and apart from certain syntactic differences in the method signatures, the
differences are purely behavioral.

mention them?

The methods you define for your schema must conform to one or another of these sets of
characteristics. The biggest danger is that your method might exhibit a mixture of characteristics
from both. It is best to avoid this type of nonconformance because it can make your methods
unpredictable from a user's standpoint and harder

 provides a summary of the characteristics of operations and
functions.

method
ara

Table 6.1. Difference between Operations and Functions

Type of Ch cteristics Example

Ta ns

aracteristics Example

ble 6.1. Difference between Operations and Functio

Type of Ch
method

Operation Return a status value

Accept input values

Af
host o
within

Our Post Office schema could define two methods that
ese would return a status
ether or not the job was

s would change the state
to stopped and vice versa. fect the state of the

successful or not. These method
of the Post Office from running

bject or system
 which it resides

start and stop the Post Office. Th
value (i.e., uint32) to indicate wh

Function Return a result

Define output
parameters

Typically do not have
any side effects upon the

repeated calls to this function would not change the state
of the object or have any other side effects; it is used

host object or system
within which it resides

t Office schema, we could define a
 that returned the GUID

e
that this fundamentally differs from an operation because

simply to retrieve a value.

In Step 5, we define the candidate methods that should belong to our Post Office schema.

Step 5: Define Methods
Input

• Requirements Specification that details behavioral characteristics of managed objects
• Assertions and rules defined in Step 2.

Having briefly described the pros and cons of queries and methods, we can state the following
about using methods:

Note

Because WQL queries do not operate upon methods, their use, if inappropriate, can
constrain the type of queries supported by a schema. This, in turn, can inhibit the usability

 schema.

To x ge
of s te ject.

For example, in the Pos
function called GetUserGUID
associated with a specific username. The return type of
this function would be a string containing the GUID. Not

of the

ma imize the usability of the schema, it is advisable to use methods only when a major chan
ta needs to be initiated, normally as part of the life cycle of the ob

For example, in the existing CIMV2 schemas, the class
StartService, StopService, PauseService, and Res

 Win32_Service supports the methods
umeService. These state changes are

 as part of the life cycle of every Win32_service instance.

lly generate a response to a set query, although this would
er. Imagine that users of your schema always will form

cert n your schema. You can increase the usability of
the h e queries by providing, instead, a method that can be
call . equires you to have a very good understanding of how

required

Methods may be used also to automatica
typically be more suited to a view provid

ai types of queries to retrieve certain data from
 sc g of thesema if you automate the formin
ed Doing this at the present stage r

management data consumers will use the schema. You may make several iterations through the
design process before you can make any such design decisions.

As with the steps in Chapter 5, we first define a list of candidate methods, which represent the
behavior of our Post Office.

Candidate Methods

In Table 6.2, we list seven candidate methods for our schema. Among these is the candidate
function that returns the GUID assigned to GetMailBagIdentifer a user's account (recall that this
value forms the prefix of the mailbag' se users of the schema
have no control over this value (it Office) and management data

 undoubtedly would want to retrie it could be a candidate method as defined
in the second method rule mentioned in Table 6.2

s filename ending with .bag). Becau
is assigned internally by the Post

consumers ve this value,
. Admittedly, this is a simple example. Norm

ex queries; however, the discussion that follo

idate Post Office Methods

scription

ally,
 w pl ws holds

true.

nd

Meth
y

e

AddU This method adds a new user to the Post Office. This
ethod must be passed an object that contains the details
 the new user (username, name, contact details, etc.). It

must return a status code when completed that denotes the
uc

Remo h ser from the Post
e of the user (string) as a

parameter and returns a status code upon completion that
indi

Unlo

up

Lock h
status code upon completion that denotes the success or
failure of the operation.

StopPostOffice() Th rom
nn

you ould want to automate only more com

Table 6.2. Ca

od Method
categor

D

ser() Operation
m
of

s
veUser() Operation T

Office. It takes the usernam

cess or failure of the operation.

is method removes an existing u

cates the success or failure of the operation.

is method changes the status of an existing user's
count from locked to unlocked. It returns a status code
on completion that indicates the success or failure of
e operation.

ckUser() Operation Th
ac

th
User() Operation T

Operation

is method locks an existing user's account. It returns a

is method changes the state of the Post Office f
ru ing to stopped. It returns a status code upon

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch06table10

Table 6.2. Candidate Post Office Methods

Method Method Description

co
op

GetMailBagIdentifier() Fu ID assigned to a user's
account. If the value returned is zero then the operation
failed.

completion that indicates the success or failure of the

u er of
ass P

a me removed it from class PO_EmailAccount as a property). To do this, we
ll

Retrieving Information from the Post Office Schema

e

 our D
ername. Determining the GUID value would make it

s haps delete it, repair it, or restore a previous version
om ba

returns the EmailAccount object, if one exists, as follows:

LECT

Assu d an object, we could retrieve the GUID associated with the account
h is value were exposed only

rough a
ve

requ
MailBagIdentifier

Alter tement that returned instances
of PO PO_EmailAccount
specifying the property as the object path; otherwise the query would return every
insta

O
H

category

mpletion that indicates the success or failure of the
eration.

nction This method returns the GU

Note: This method is not a suitable candidate and is
therefore removed (see discussion below).

StartPostOffice() Operation This method changes the state of the Post Office from
running to stopped. It returns a status code upon

operation.

Yo may recall from our class design that the GUID property, MailBagIdentifier, is a memb
cl O_EmailAccount. Let us look at the advantages and disadvantages of exposing this value as

thod (assuming that we
sha look at a couple of possible scenarios in which this information will be retrieved.

Sc nario 1

In example, users of the Post Office schema decide that they need to recover the GUI
associated w
pos

ith an account by using only the us
ible to find the associated mailbag and per

fr ckup. With a Username (Tunstallc), it would be possible to construct a WQL data query that

SE * FROM PO_EmailAccount WHERE UserName="Tunstallc"

ming that the query returne
in t e contents of this instance under property MailBagIdentifier. If th
th
ha

 call to function GetMailBagIdentifier, then the management data consumer would
 to initiate a call to this method to retrieve the value. On this occasion, using a property would
ire less programming and fewer calls to WMI to read the value held in property

.

natively, we could construct a query using the Associators Of sta
ociated with class . We would constrain the query by _UserDetails ass

Username
nce associated with PO_EmailAccount.

ASS
 W

CIATORS OF {PO_EmailAccount.Username="Tunstallc"}
ERE AssocClass = PO_AccountUserDetails

This query would return the instance of class UserDetails (an endpoint in association
Details) that contains all of the user's personal details (see class definition for

e).

Sce

Imag
details. How would we go about doing this with our Post Office schema?

We c
comp MailBagIdentifier

If we fier value using the function GetMailBagIdentifier,
en th anually execute every GetGUID method
 each d a match! This is hardly in keeping

solution to supply the GUID.

eth

As you have with all previous stages in schema design, you should repeat the process until you are

prod cument the methods in more detail, explaining their roles

ist

First ffice schema. We shall do
n

Whe eir
func ement of an information model, their aim is

e

 the P
notio il server, but we may find it to be insufficient or too general to use as a host class
for the numerous methods that we have designed. A best practice, in such a case, is to define one or

s. The Post Office schema does not warrant
t examples of this technique can be

PO_A
mor

ccountUser
 information

nario 2

ine a situation in which the only value known is the GUID and we wish to retrieve the user's

ould construct a data query that searched through the instances of class EmailAccount
aring every value of the property with our desired GUID, as follows:

SELECT FROM * PO_EmailAccount WHERE
 MailBagGUID="1FBA60495EDD41ff82283F3A7FAF06EE"

 exposed only the MailBagIdenti
th
on

is query would not be valid and we would have to m
 EmailAccount object and compare the results to fin

with the usability ethos of CIM and leads us to conclude, in this case, that a method is not the best

M od Design

satisfied that the methods you have defined are a complete representation of the behavior of your
uct. After this is the case, you will do

in the system, their input and output param
ex

eters, and any preconditions or postconditions that must
for their successful initialization and completion.

, however we must assign our methods to classes within the Post O
this ow, before we describe the method signatures.

Assigning Methods to Host Classes

n positioning methods, it is sometimes judicious to further group methods according to th
tionality. Because methods typically are not an el

som times at odds with your schema design.

In ost Office schema, we have defined a basic class, PostOffice, that represents the general
n of an e-ma

more abstract classes as an interface for these method
such action because of the number of methods it supports, bu
found frequently in Microsoft's Win32 extended schema and the CIM Schema. An example is the
Win32_BaseService class that serves as an abstract superclass for the concrete classes,
Win32_Service and Win32_SystemDriver. Table 6.3 provides a list of methods for the Post Offi
Schema and their host classes.

ce

Table 6.3. Post Office Methods and Associated Host Class

Method Host class

Table 6.3. Post Office Methods and Associated Host Class

Method Host class
AddUser

Rem e

Sto o

Sta P ffice

Unl k EmailAccount

Loc c EmailAccount

te instances of their defining class. Both are provided for informational purposes only
and are not called automatically by the object manager when the object is created or

 call any of the constructor or
destructor methods defined for any parent class of original class. Both the Constructor and

r

Prope

After w
signatu

Definit

idered part of that signature.

N

A
ov erloading is the circumstance in which methods of the
a

Method Arguments

of the method signature (Figure 6.1

Post Office

Post Officeov User

pP stOffice Post Office

rt Post OostOffice

oc Account

kA count

Note

The Constructor and Destructor qualifiers can be used to define which methods create and
dele

deleted. Also, the object manager does not have to

Destructor qualifiers can act upon multiple instances or classes. For example, a Destructo
could delete association instances as well as instances of the class that defines the
Constructor. Both qualifiers are FALSE by default and cannot be used with the Static
qualifier.

rties and Parameter Classes

e define the methods for our schema and assign them each to a class, we must consider the
re for each method.

ion:

A method signature comprises a method name in conjunction with ordered
arguments and a return type. If the method is instantiable then the method body is
also cons

ote

lthough the order of the arguments is considered part of the method signature in CIM,
erloading is not permitted. Ov

s me name, in the same scope, differ only by the order and type of their arguments.

Several options for defining arguments are open to us at this point. The most common approach is
to define them explicitly as part).

Figure 6.1 Method arguments specified in method signature

 uint32 ExampleMethod(uint32 myparam1, boolean myparam2,

thod signature is perfectly adequate when a
ers are

ter

e
.

 of methods that take a large number of

If you are defining your method param espace, it is advisable to
make it a subclass of the abst terClass. Although this

tain any special properties, methods, or associations, placing it here ensures that
a will

u d parameter
base class. For our previous example, we could define a class as in Figure 6.2

class Person
{

 uint32 myparam3, uint8 myparam4, string myparam5);
}

Although defining method arguments as part of the me
small number of parameters is required, it can quickly become unwieldy if too many paramet
used. To overcome this problem, we use parameter classes to group sets of parameters, which can
then be passed to our methods. Parameter classes offer several key advantages over passing
multiple parameters.

Advantages of Parameter Classes

1. They are extensible without affecting existing applications. This means we can extend a
parameter class without breaking the method. We do this by deriving from our parame
class and then overriding its properties where needed.

2. They allow specification of default values.
3. They allow us to assign default values, referred to as initializers, to parameters when w

define our parameter class. This is not possible when we declare the parameters directly
4. They can be used to simplify the interface

parameters.

eter class within the CIMV2 nam
ract Microsoft class, Win32_MethodParame

class does not con
your schem
occ

a is consistent with existing schemas and so is easier to maintain. If your schem
py its own namespace, it would be judicious to define your own abstract metho

. We omit the
quali

Figu

[cla
class ExampleClassParams : Win32_MethodParameterClass

i fault value referred to
 r
o
i
i

 string myparam5 = 1911; // Another initializer
}

fiers for readability.

re 6.2 Method arguments specified through parameter class

ss qualifiers would go here]

{
 u nt32 myparam1 = 0; // Here we specify a de

 b

 // as an initialize
olean myparam2;

 u
 u

nt32 myparam3;
nt8 myparam4;

We could then define our method signature as in Figure 6.3.

Figure 6.3 Final method signature

class ExampleClass : AllClasses

 uint32 AddUser(ExampleClassParams MyObject);
}

{

Notice that the method AddUser takes a single argument of type ExampleClassParams. The
passed to the method will be an instantiation of this specifically tailored class defined to hol

 object
d the

Th
emplo

A point to consider during the design of your methods is that the CIM allows both polymorphism
and overriding. Commonly, you will not have to consider this until after you derive your classes
from

Poly ass an existing method and then change its
implementation, leaving the signature intact. This could be used with the Win32_Service class to
hange the implementation of the StopService() method. We could derive from class
Win32_Service and then use polymorphism to provide an alternate implementation of
StopService in our new class.

Over
subc
chan o
chan do
this ss property.

Note

This is contrary to C++ convention, in which you would specify whether or not a feature

n
of the Win32

association classes to derive from existing CIM association classes and, in doing so, to override the
ociation.

Alt to
use the e have successfully positioned our classes: How can you override a method if you
don't know
you must wait until you have positioned your classes before using these two techniques.

The Pos

parameters required by the method.

Method Overriding and Polymorphism

Caution

ese techniques can add substantial complexity to your model, so we advise caution in
ying them.

 classes in existing schemas such as Win32 or CIM.

morphism allows the schema designer to subcl

c

riding allows the schema designer to change a property or qualifier while implementing a
lass. In the Post Office schema, we could derive a new class from class PostOffice and
ge the data type of property LicenseCount from uint8 to data type uint16. We could als
ge the Maxvalue qualifier to increase the number of licenses allowed from 100 to 1000. To
we would specify the MOF qualifier Override in the subcla

of a class could be overridden in the parent class.

Many examples of overriding can be found in CIMV2 namespace, especially in the CIM associatio
classes that have been extended by Win32 classes. It is common practice for many

reference type of the parent ass

hough we have introduced these concepts at this stage in the schema design, we are not able
m until w

 which methods the parent class supports? Therefore, when designing your own schema,

t Office Schema Methods

In d
postcon

Why Define Preconditions and Postconditions?

Preconditions and postconditions describe how a method will behave at runtime. It is always good
pra
implem

• A precondition describes a set of circumstances that must be true for a method to execute. If
 method will not execute successfully.

• A postcondition describes a set of circumstances that must be true before exiting a method.

Host Class: PostOffice

iption: This method (see T

escribing each of our candidate methods in more detail, we include any preconditions and
ditions that may exist.

ctice to provide as much runtime information as possible at the design stage to aid the
entation. Preconditions and postconditions can be defined as follows:

the preconditions are not met, then the

If the postcondition fails, an error code should be returned.

Method AddUser

Descr able 6.4) adds a new user to the Post Office. The method takes an
parameter class NewUseobject of rParam (defined in Figure 6.4) especially for use with the meth

ed to including each of the parameters explicitly as part of the
sons we do this is because it makes the method design more
 it at a later date. Because class

od.
is approach, as oppos

method signature. Among the rea
flexible should we need to extend
we do not need to specify to which Post Office the

ents such as the presence of multiple Post Offices on the same machine.

Figure 6.4 Method parameter c ers

O_Met
{
 string Title; // Mr, Mrs, Dr etc..[*]

We adopt th

PostOffice will host the method,
user must be added. This approach also accounts

for any future developm

lass for new us

Class NewUserParam : P hodParameterClass

 string Forename; // Users first name[*]

 string Surname; // Users last name[*]

 string Jobtitle; // Director of finance etc..[*]

 string Username; [*] // PostOffice UserName
 string Password;
 string Contactnumber;

 // Password at startup
 // User office telephone number[*]

};

 used by the Post Office to create a new object of type UserDetails

Tabl

Preconditions The AddUser m username does
not already exist.

nly after the user has been added to the Post
Office. This indicates the successful creation of the following objects:

UserDetails class instance

[*] These fields will be

e 6.4. AddUser Method Specification

ethod can complete its actions only if an identical

Postconditions The method can exit successfully o

EmailAccount class instance

Table 6.4. AddUser Method Specification

Preconditions The AddUser method can complete its actions only if an identical username does

instance

serDetails association object

PostOfficeAccounts association object

fy these criteria, then the relevant error code must be
ed, as detailed below.
32 AddUser(NewUserParam object)

 Operation was completed successfully

 error—the method failed to add the user

ady exists

Notice that NewUserParam is subclassed under our own abstract parameter base class,
PO_ t
clas s

Me o

Ho C

is method (see Table 6.5

not already exist.

Mailbag class

AccountU

AssociatedMailbag association object

If the method does not satis
return

Method
signature

uint

Return codes 0:

1: Unknown

2: Username alre

3: Post Office reached maximum number of users

4: Invalid initialization parameters

Me hodParameterClass. This class provides a logical grouping for all future method parameter
se .

th d RemoveUser

st lass: PostOffice

Description: Th) removes an existing user from the Post Office. It requires
a single parameter, the username of the e-mail account to be removed. The rules and assertions
def d pable of carrying out this method while the
Pos

User Method Specification

Pre n n onl e exists and if the user is

Post method can successfully exit only once after the user has been removed from
the Post Office. To do this the following objects must be deleted:

ine in Step 2 state that the Post Office must be ca
t Office is running.

Table 6.5. Remove

co ditions The method ca y complete its actions if the usernam
not logged in to his or her account.

conditions The

EmailAccount object

Table 6.5. RemoveUser Method Specification

e method can only complete its actions if the username exists and if the user is
t logged in to his or her account.

AccountUserDetails association object

Method
signatu

uint32 RemoveUser(string UserName)

Return

iled to remove the user

: Invalid initialization parameter

Met ockAccount

Host C s

Description

Preconditions Th
no

Mailbag Object

UserDetails

AssociatedMailbag object

PostOfficeAccounts object

re

 codes 0: Success: the operation was completed successfully

1: Unknown error—method fa

2: Error: Username does not exist

3: Error: UserAccount currently active

4: Error

hod Unl

las : EmailAccount

: This method (see Table 6.6) changes a user's account from locked to unlocked. It
takes no parameters and returns a status value indicating the success or failure of the operation.

Table 6.6. UnlockAccount Method Specification

t it is currently in
the locked state.

Method LockAccount

Preconditions The method requires that the username specified is valid and tha

Postconditions The method can successfully exit only after the user's account has been unlocked.

Method
signature

uint32 UnlockAccount()

Return codes 0: Success: the operation was completed successfully

1: Unknown error—method failed to unlock the user

2: Error—User account was not locked

Host Class: EmailAccount

Description: This method (see Table 6.7) locks a user account, which prevents the user from
accessing mail or sending and receiv It requires no parameters and
returns a status value.

Pre-conditions

Post-condition

signature

Return codes

or—User's account already locked

Method Sto

Host class:

on: T

ing mail from that account.

Table 6.7. LockAccount Method Specification

 The method requires that the username specified is valid and that it is currently in
the unlocked state.

s The method can successfully exit only after the user's account has been locked.

Method uint32 LockAccount()

0: Success—Operation was completed successfully

1: Unknown error—method failed to lock the user

2: Err

pPostOffice

PostOffice

Descripti his method (see Table 6.8) takes a single parameter and places the Post Office i
o prevent users from sending or receiving e-mail. Note that this method does not
st Office losing state information and the PostOffice object is not destroyed as a
ccessful completion of this meth

n the
stopped state t
result in the Po
result of the su od.

Preconditions Office is currently in the running state.

sult
of shutting down (see rules and assertions in Step 2 for rule) unless the parameter
shutdo

Method
signature

uint32 StopPostOffice(uint8 shutdowntype)

Return codes 0: Success—the operation was completed successfully

1: Unknown error—method failed to stop Post Office

2: Error—Post Office was not in running state

3: Error—Users logged in cannot shut down

Table 6.8. StopPostOffice Method Specification

The method requires that the Post

Postconditions The method can successfully exit only after the following are true:

1. The Post Office has been placed in the Stopped state.

2. The Post Office has ensured that no users will lose e-mail messages as a re

wntype is set to 1.

The method takes a single integer value that determines how the Post Office should shut down. The
values and their meanings follow:

0—Shut down only if no users are currently logged in

1—Shut down forcibly regardless of whether users are logged in

A similar, more general, method already exists in the Microsoft Win32 schema under the
Win32_Service class. Because our Post Office, at its most fundamental level, is a service, it can be
stopped by executing the StopService method on its Win32_Service object. Why reinvent the
wheel—or create our own method?

The advantage of creating our own method is that it can take additional parameters should you need
them to shut down the Post Office. Although it is true that the Post Office will ultimately be coded
as a service running as part of the operating system, it is not always useful to view everything at this
level of abstraction. For example, we may wish to stop the currently executing Post O

y searching through a list of services under Win32_Service.

Host Class: PostOffice

Description: This m

ffice but
specify that the Post Office wait until all its users are logged out.

In addition, it is easier, arguably, for schema users to locate and stop a PostOffice object by looking
at the PostOffice class than b

Method StartPostOffice

ethod (see Table 6.9) takes no parameters and places the Post Office in the
running state, which allows u nd receive e-mail. This method call does not reset any

 default and is
 method.

Tabl

Preconditions The meth Office be in the stopped state.

Postconditions The method s in the running

Method
signature

uint32 S

Return codes 0: Succes completed successfully

1: Unkno

2: Error— was not in stopped state

Post Office Schema U

Now that we have defined our methods, we can draw up our UML diagram (Figure 6.5

sers to send a
values to their not a constructor. The same discussion applies to this method as the

e 6.9.

StopPostOffice

StartPostOffice Method Specification

od requires that the Post

 can exit successfully only after the Post Office i
state.

tartPostOffice()

s—the operation was

wn error—method failed to start Post Office

Post Office

ML Diagram with Methods

) including
methods and any parameter classes.

Figure 6.5. The Post Office UML object model (including methods and parameter class)

Output

Paper product.

ods designed, their signature,

• Optional UML diagrams of the schema including the methods.

Requ nts Specification document.

•
•

At th ons
with a is
able to do exactly what we speci the design life cycle. Although some
of the assert ecifics of the
Post Office, e still are able
to perform a general check that our design conforms to the requirements.

First, in Tab

• A document written in plain language describing the meth
purpose, and host class.

Step 6: Check Schema Design
Input

ireme

Rules and assertions defined in Step 2.
UML diagrams from all steps.

is point in our schema design, we compare our classes, properties, methods, and associati
 the rules and assertions we made during Step 2. This purpose is to verify that our schem

fied it would do at the start of
ions and rules we defined as part of Step 2, such as the implementation sp
 will undoubtedly fall outside the scope of the design work done so far, w

le 6.10, we shall compare the rules defined in Step 2 with our schema design. Second,
in Table 6.11, we shall compare our assertions with our design.

http://www.microsoft.com/PRODUCTS/servers/designed

Table 6.10. Post Office Rules

Post Office administrator unlocks the
account.

No. Rule Comparison

1. If a user attempts to log in to an e-
mail account more than n times with
an invalid username or password,
then the Post Office should lock the
account. It should also generate an
event to signify that the account has
been locked and an attempted
security breach has occurred. The
account will remain locked until a

Our design includes a property under class
PostOfficeSettings that holds the maximum numbe
of login attempts permitted. Users of the schema can
define and register an event filter to detect if an
account gets locked. The EmailAccount class contains
a status property that holds the current status of an
account.

r

2. An e-mail client can send or receive
mail from the Post Office only when

This rul
and is im

he/she has supplied a valid username
and password.

e falls outside the scope of the design phase
plementation-specific.

the user from sending or receiving
mail. Al
the inter

ormed
MB).

3. If a user's mailbag is > 100
megabytes, then the Post Office
should suspend the user's account and
generate an event. This will prevent

Our design defines a property under the Mailb

l pending mail will remain in
mediate directory and not be

added to the mailbag until
housekeeping has been perf
(i.e., the mailbag is <= 100

ag

e
exceedes a given value.

Instance. MailBagSize > 100000

 th
re

unts may be added to the Post

class that holds the current size of an account mailbag
including attachments. This can be used to construct
an event filter that notifies interested parties if the siz

i.e. SELECT * FROM __InstanceModificationEvent
WHERE

TargetInstance ISA PO_MailBag AND
Target

4. If the total number of accounts on
Post Office > 99, then no mo
acco

e

Office.

Our design stipulates that the maximum number o
mail account o

f e-
bjects per Post Office should never

exceed 100. This is stipulated as a precondition in the

.1

1. The Post Office must expose a list of

AddUser method.

1. Post Office Assertions Table 6

No. Assertions

 registered accounts.

 The list of registered accounts can
RegisteredUsers.

2. T
system

 be retrieved from Class PostOffice in property

he Post Office must keep a record of the last time each user successfully logged on the
.

 See class EmailAccount, property LogonDate.

3. The Post Office must provide a mapping between mailbag GUID IDs and user accoun

ts.

This information can be retrieved by looking up a user by UserName and then inspecting the
value held in property.

Table 6.11. Post Office Assertions

No. Assertions

4. The Post Office must allow a maximum of 100 e-mail accounts to be logged on to the system
at once.

 The number of users allowed on the Post Office is restricted by the method AddUser.

5. There can be only one mailbag per user.

 Our design stipulates that there is only one mailbag per user. See UML diagram.

6. A mailbag cannot exceed 20 megabytes.

 Not implemented in the design but will be implemented during the coding of the Post Office.

7. The Post Office must not accept attachments greater than 2 megabytes.

 Class MessageSettings/MaxAttachSize defines the maximum allowed size of an e-mail
attachment on our system.

8. The Post Office must provide a list of users currently logged on.

 Our design allows a list to be supplied using a WQL query. The class EmailAccount
contains an AccountStatus property that holds the current status of each account. We could
re

trieve this information using the following query:

[View full width]
SELECT * FROM PO_EmailAccount WHERE AccountStatus

9. The Post Office must monitor the amount of space left on the mailbag disk partition on the

= "Logged in"

Note: The AccountStatus property also keeps a record of the other states the account might
be in, such as locked or suspended.

Windows 2000 server.

 Although this is more of an implementation issue, the class PostOffice contains a
ree space left on a partition. Using a WQL

event filter, it would be possible to monitor the Mailbag partition to see if it dropped below a

an event.

es being processed. A
sed by the Post Office, and ultimately

FreeSpace property that holds the amount of f

certain threshold value.

i.e. SELECT * FROM __InstanceModificationEvent WHERE TargetInstance ISA
PO_PostOffice AND TargetInstance.FreeSpace < 10000

Note: This filter checks to see if space drops below 10 megabytes before triggering

10. The Post Office should provide statistics on the amount of messag
processed message is one that is sent by the user, proces
placed in its destination mailbag.

 Class PostOfficeStats provides this information.

 11. The Post Office should log the total time in days, hours, and minutes that it has been running
since startup.

 Our design incorporates the amount of time that the Post Office has been running since
startup. This value is reset when the Post Office is stopped. See PO_PostOfficeStartTime for

Table 6.11. Post Office Assertions

No. Assertions

ut

details.

12. Administrators should be able to shut down and restart the Post Office cleanly (i.e., witho
active users losing mail messages).

 We can see at this stage in our design that we have provided for starting and stopping the
Post Office. Whether or not we do so cleanly without active users losing messages cannot be

ods.

 users to and from the Post Office user list

determined until we write the associated code for these meth

13. Administrators s--hould be able to add and remove
while it is running.

 Provision has been made in the design for adding and removing users from the Post Office.
Again, run time requirements cannot be verified at this stage in design though they can
become -part of the

14. Administrators should be able to lock and unlock a user's account on the Post Office.

pre or post conditions.njnjn

The methods Loc
Post Office.

Rule Generation–Based UML Diagrams

Another final way of checking for conformance to requirements is to translate our UML diagrams
back into grammatical rules based upon the relationships between the classes. This involves
working with the documentation and diagrams generated in the previous steps to write down the
rules that your design enforces. After you have generated these rules, it is then a question of
comparing them with your original rules from Step 2.

From interpreting the UML diagrams generated during the design process, we can state the
following about our design, which then can again be compared with the rules and assertions from
Step 2.

• The Post Office can have a maximum of 100 accounts.
• Each e-mail account has only one mailbag.
• Each e-mail account has associated user details.
• Each Post Office has its own unique message settings.
• Each Post Office generates its own statistics.
• Each e-mail account has its own user details.
• And so forth.

Although this approach is by no means watertight, it does provide a documented way of going
through your schema design and verifying its structure and behavior. It also assumes that the rules
and assertions that you defined in Step 2 provide a clear specification of how the schema should
appear.

Final Considerations—Future Additions

Before signing off ts that will
directly or indirectly affect the functioning of your product. Changes in the operation of your

kUser and UnlockUser enable accounts to be locked and unlocked on the

your schema design, it is important to consider any developmen

product will affect the schema that has been designed to manage it. We include this step to future-
proof ourselves against any potential developments that could change aspects of the schema, thus
causing incompatibilit t Office schema we
could consider the following:

• Will a future release of our post office system be able to send and receive e-mail outside of
our single Post Office? What impact would this have upon our schema design?

• What type of advances in hardware or software design will take place that would change the
boundaries within which the product must operate? For example, not long ago machines had
only 30 megabyte hard disks and 2 megabytes of RAM. If your design is built around such
limitations (free RAM your
product has available), you could find in the near future that your design is inadequate. The
Y2K problem was an outstanding example!

• Will the Post Office be able to send and receive mail using e-mail protocols other than
SMTP (Simple M f this on our schema
design?

• Will the next release of the Post Office be able to handle more than 100 licensed users?
What effect will this have on our schema design? In our example, this could mean that the
usercount and any properties concerning the user count should be adjusted to take numbers
greater than 100: Currently, we use an uint8, but we could increase this to uint16 to support
greater numbers of accounts.

• Will the mailbag size restriction increase in future releases of the Post Office? Have we
accounted for such changes in our design?

• Will future releases of the e-mail product allow a single machine to host multiple Post
Offices? If so, what are the ramifications for our Post Office schema if multiple Post Offices
were hosted on a single repository?

What would be the impact upon our schema should the answer to any of these questions be true?
Use this phase to bring to light any possible desi

 one of the most complex in class and namespace
positioning, because of the available array of choices.

 from the relevant class, or, in special cases, might add them to the
 the owner of the schema

ating system and uses the
hema

ies between the old and the new. For example, in the Pos

that is, if you are using an uint8 property to expose how much

ail Transfer Protocol)? What are the ramifications o

gn frailties that may exist in your design, and then
make the necessary alterations.

Final Step: Positioning Classes
Having designed our classes, associations, properties, and methods, we position the classes in the
final step. The last stage of design is possibly

The Win32 extended schema contains some well-instrument products that do not require the
number of classes we defined for the Post Office schema. Your schema, at this point in the design,
might require merely that you add some properties to an existing class in the CIM or Win32
schemas. You can derive them
existing class. To add to an existing class, you must obtain approval from
before shipping your product. If your product runs on the Windows oper
CIMV2 namespace and classes in the Win32 schema, request approval from Microsoft's sc
validation team (wmgmts@microsoft.com). If the DTMF owns the class you wish to modif
request its approval (

y,
CIM@dmtf.org).

T ime schema
designers. With practice and increased familiarity with the CIM schema and Win32 extended
sc s.

T

he schema positioning process outlined here is in stages for the benefit of first-t

hema, you can omit many of the initial stage

he four categories in Table 6.12 represent choices you may make in positioning classes.

ing Stages

N

1.

 to be relevant to your product because it represents
ust derive from a

osoft's permission to add
 permission if you intend to modify one of

 you should check with Microsoft before shipping an

2. Your classes derive from existing CIM schema classes.

4. An identical class already exists; therefore, you need not augment the schema.

situation is ideal, although unlikely if your product is at all complex.

 this is your first attempt at schema positioning, your lack of familiarity with the CIM schema or
Win32 Schema classes will limit your understanding of the positioning stages. We will remedy this

gressing down the hierarchy to the more specific

g any

o Does your product fall under the core of any of the common models (Networking,
Applications, Systems, Physical, and so forth)?
Then, does your class represent the manageable characteristics of a logical element

Table 6.12. Schema Position

o. Description

Your classes derive from an extended schema such as the Win32 schema.

The Win32 extended schema is likely
extensions to the Common model that are OS specific. In most cases, you m
class that belongs to an extended schema. You do not need Micr
classes to the CIMV2 namespace, but you do need
the Win32 schema classes. In either case,
extension or modifying one of their classes.

3. Your classes do not derive from any schema class.

This

If

by starting with the most general classes and pro
ones.

Step-by-Step CIMV2 Namespace Class Positioning
The following steps take you through the process of class positioning. Your goal in positionin
class is to place it as close as possible to a leaf node (a class with no descendants).

1. Select a class from your schema.
2. Identify a general start point under which to classify the class and ask yourself fundamental

questions about the class:

o
(CIM_LogicalElement), that is, software, or of a physical element (CIM_Physical
Element), that is, a network cable?

Hint

Look first at the classes that belong to the core model, then to the Common model, and
then to the extended schemas for inspiration.

Note

If no class is relevant to the management application you are building, you probably have
not understood the CIM schema. Its abstract layers are so generic that they should cover
practically anything. If you are not dealing with a managed object, why is the element
part of a management application? If the element is neither logical nor physical, then you
are operating under very strange epistemic assumptions!

Next, create a new namespace (possibly under root/CIMV2/Applications) and place the class there.
End

or

App in the CIM schema and obtain
an implementation from Microsoft. Then, normalize your class and repeat Step 2.

Else proceed to the next step.

 and ask more specific questions until one of the following
occurs:

and

tion from
Microsoft (winmgmts@microsoft.com

 of Process.

ly to the DMTF (cim@dmtf.org) for the inclusion of the class

3. Progress down the hierarchy

a. There are multiple potential superclasses at the same level: Normalize your class
return to Step 2.

b. There exists a single superclass at this level: Repeat Step 3.
c. No suitable superclass exists: Proceed to the next step.

4. If the last relevant class belongs to the CIM schema, then apply for an implementa
), normalize, and start the process again with that

implementation in place. Return to Step 2.

Else proceed to the next step.

5. If the class belongs to the Win32 extended schema, then normalize your class and extend the
Win32 class (check Microsoft documentation to determine which classes in the CIMV2
namespace may or may not be extended). End of Process.

Extending the CIMV2 Namespace

Microsoft limits the CIM classes and associations within the CIMV2 namespace that it allows
schema extension designers to derive from or instantiate to gain Microsoft Windows BackOffice
logo certification. Table 6.13 lists the classes that can be subclassed.

Table 6.1 hat Can Be Sub3. Classes T classed

CIM_FRU The CIM_FRU class is a vendor-defined collection of products
e

ct at

Class Description

and/or physical elements that is associated with a product for th
purpose of supporting, maintaining, or upgrading that produ

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch06list05

Table 6.13. Classes That Can Be Subclassed

Class Description

the customer's location. FRU is an acronym for 'field replaceable
unit'.

for a product.

r

CIM_RedundancyGroup and its A collection of managed system elements that together indicate
ed components together provide redundancy.

 I2C

 information about our managed objects.

CIM_SupportAccess The CIM_SupportAccess class defines how to obtain assistance

CIM_MonitorResolution CIM_MonitorResolution describes the relationship between
horizontal and vertical resolutions, refresh rate, and scan mode fo
a desktop monitor.

subclasses that the aggregat
CIM_ManagementController Capabilities and management of a management controller. An

microcontroller is a type of management controller.

CIM_Statistics and its
subclasses

Defines any statistical

CIM_StorageError CIM_StorageError defines blocks of media or memory space that
are mapped 'out of use' due to errors. The key of the class is the
StartingAddress property of the bytes in error.

Table 6.14 lists associations that can be subclassed.

Table 6.14. Associations That Can Be Subclassed

Associations

All CIM_Product associations with the exception of the CIM_ProductSoftwareFeatures
association

All and associations CIM_FRU CIM_SupportAccess

atedSensor and its subclasses
SLoadedInNV

CIM_DeviceSAPImplementation

All CIM_Configuration associations

All CIM_Statistics associations

CIM_Realizes and most associations of the Physical Model (exception is the CIM_Container
association).
CIM_DeviceSoftware

CIM_Associ

CIM_BIO

CIM_StorageDefect

CIM_RedundancyComponent and its subclasses
CIM_ActsAsSpare

CIM_CollectionOfSensors

CIM_DeviceServiceImplementation

A number of classes do not allow direct instantiation and subclassing. These are high-level classes

rately)
• CIM_LogicalDevice
• ualComputerSystem
• CIM_Cluster
•

Ass

• CIM_ApplicationSystemSoftwareFeature
• CIM_ComponentCS
• CIM_HostedClusterService

ation about which CIM and Win32 classes can and cannot be

Normalization

s duplicate data, multiple inheritance,

n

s positioning because you will inherit new
 the parent classes after you place your class in

efined some of these characteristics in your class and will
have to normalize them before you position it in the hierarchy. Additionally, you may find that your

or classes that contain instances that are not local to the machine.

Classes

• CIM_ManagedSystemElement and CIM_LogicalElement (subclasses addressed separately)
• CIM_System and CIM_ComputerSystem (subclasses addressed sepa

 (subclasses addressed separately)
CIM_Virt

CIM_ClusteringService

ociations

• CIM_ClusterServiceAccessBySAP
• CIM_HostingCS
• CIM_ParticipatingCS
• CIM_DeviceAccessedByFile (n/a for Win32 environment)

IMPORTANT

For more detailed inform
subclassed see schema.txt, which is installed as part of the WMI SDK and resides in
./Program files/WMI/License/schema.txt.

The purpose of normalization is to avoid problems, such a
selective inheritance, and incorrect property placement. Any of these can reduce the efficiency and
usability of the schema extension. They also can make it difficult to correctly position your class i
an existing class hierarchy such as the CIM schema.

Normalization is particularly relevant during clas
properties, methods, associations, and qualifiers from
the hierarchy. You already may have d

class inherits irrelevant characteristics from its parent.[1]

[1] More information can be found on data modeling topics in J. P. Thom
Management (Van Nostrand Reinhold, 1989). Another good referenc

pson's Data with Semantics: Data Models and Data
e is William Kent's guide to normalization, "A simple guide to five

normal forms in relational database theory" from Communications of the AMC, 26:2, pp. 120–125, 1983.

CIMV2 Class Placement Objectives

 in most cases is to extend a Win32 class not a CIM schema class directly.
 not available then extend a CIM schema class.

af node as possible when placing your class.

• Your aim
• If a Win32 class is
• You should be as close towards a le

Remember

If your class does not appear to derive from a class in the CIM schema or Win32 schema

nsion to the CIM schema and then get an implementation in the
Win32 schema. Then you must derive from the Win32 class.

lace your class.

Use the PO_PostOffice class from our Post Office schema to practice the class placement steps.

To dete the core model and CIM schema. You will recall that
the core model and the Common model make up the CIM schema. In most cases, the core model
will be the
Common model. When you position schema classes, they must start somewhere, most commonly as

a level is to locate a model
within which our class fits. Note that in most cases you will not need to define a new root class

ider under which of major areas within the Common model in CIM we can place

you can

• Apply for an exte

• Create your own namespace in which to p

Putting Class Placement Theory into Practice

rmine the start point, we shall examine

 too general a start point for class positioning, so we can progress immediately to

a subclass of an existing class. The purpose of starting at the schem

because the CIM schema encompasses the most general aspects of the enterprise. (If the CIM
schema does not support your product at this level, then you should contact the DMTF about adding
a new class.)

First, we must cons
our class (Table 6.15).

Table 6.15. CIM Models

sents the manageable features of a network environment.
owever, does not add any features to this environment and

network specific.
odel.

Model Discussion

Networks The networks model rep
Our PostOffice class, h

re

generates no management information that could be viewed as
Therefore, we shall not be working with any of the classes from this m

Applications product, which may be any of
The applications model represents the set of details required to manage a software

 a range of products, from a simple stand-alone desktop
class fiapplication to a complex distributed application. Our PostOffice

 it defines a set of features for the Post Office
ts within

 software product.
ry point for our PostOffice class: The base class is

CIM_LogicalElement. For a detailed description of each class, use the WMI CIM
s in Visio

ed
tation,

PostOffice odel
nly be managed only in the context of the host operating system upon

this category because
he logical entThis is t

Studio help facility and DMTF documentation that includes UML diagram
format.

Systems The systems model defines the basic characteristics associated with manag
systems. Recall that a system is an entity, such as a router, server, or works

ironment. Our class does not fit this mthat stands alone in an env
because it can o
which it runs.

Table 6.15. CIM Models

al physical environment. In the CIMV2
n gathered
odel is not

 components that support the
system. Our software application is not a device and so does not fall under this
category.

lement.
MI CIM
ods, and

Model Discussion

Physical The physical model represents the actu
namespace, the CIM_PhysicalElement class holds much of the informatio
as part of this model. Because our product is purely software-based, this m

sign. relevant to our schema de

Devices The devices model defines the physical and logical

Following the earlier steps, we have an entry point in the applications model, CIM_LogicalE
We must now work through its subclasses, identifying possible parent classes. Use the W

perties, methStudio to inspect the descriptions of the applications model classes, their pro
associations, and its help facility (Figure 6.6) to retrieve descriptions of classes, methods, and
properties.

Figure 6.6. The help facility in WMI CIM Studio

The help facility in CIM Studio can provide useful information about individual classes in the CIM
schema and Win32 Schema. In this example, we have the description of the

 class. CIM_ManagedSystemElement

In the DMTF UML Application Model diagram
(http://www.dmtf.org/standards/cim_schema_v26.php), we can see are a number of direct CIM

ma descendants of CIM_LogicalElement (Table 6.16sche).

Description

device and/or SoftwareFeature. A service is a general-purpose object

Table 6.16. Post Office Class Positioning in the CIM Namespace

Class
CIM_Service A CIM_Service is a logical element that contains the information

 represent and manage the functionality provided by a necessary to

Table 6.16. Post Office Class Positioning in the CIM Namespace

to configure and manage the implementation of functionality. It is not

Class Description

the functionality itself.

Our class does not represent this characteristic.

n or
ugh

ntext of a product and propagates properties from the

CIM_SoftwareFeature The CIM_SoftwareFeature class defines a particular functio
f a product or application system … . It does so thocapability o

only in the co
CIM_Product class.

Our PostOffice class does not participate in this tightly bound
association with the CIM_Product class and therefore cannot derive
from here.

M_SoftwareFeature object into a set of individually manageable or
CIM_SoftwareElement Th

CI
e CIM_SoftwareElement class is used to decompose a

deployable parts for a particular platform.

This class is not directly relevant to the PostOffice class.

A CIM_System is a logical element that aggregates an enumerable set
 operates as a functional

, there is a well-
s whose instances must

CIM_System

of managed system elements. The aggregation
whole. Within any particular subclass of system
defined list of managed system element classe
be aggregated.

This class is not directly relevant to the PostOffice class.

invoke a
le to

es for use.

CIM_ServiceAccessPoint CIM_ServiceAccessPoint represents the ability to utilize or
cess points represent that a service is made availabservice. Ac

itiother ent

This class is not directly relevant to the PostOffice class.

e. When
 look to
oes not fit

CIM_LogicalElement
 of the
olution is

Our aim in iterating through the class hierarchy is to locate the subclass nearest a leaf nod
e can no longer classify our w PostOffice class under any of the available subclasses, we

the most suitable superclass and derive from that. In our example, the PostOffice class d
e as our superclass. under the CIM_SoftwareFeature class, so we tak

Because we shall not extend a Win32 class and the class CIM_Software feature is not one
classes to which Microsoft allows extensions in the CIMV2 namespace, the most salient s
to place the class in its own namespace.

Namespace and Schema Placement
In Chapter 4, we discussed namespaces and their relevance to holding informatio

 schema on a Windows platform, we face th
n about managed
ree choices, placing environments. When positioning our

our classes within the existing CIMV2 namespace, creating our own custom namespace, or a
mixture of the two. The choice we make depends wholly on the type of information we wish to add
to the CIMV2 namespace and whether or not we can derive from any of the existing classes without

ce.

 Windows 2000

d this rule for

ments (F1.5). For

ft.com/certification/default.asp

conflicting with Microsoft's plans for the namespa

Note

The Windows 2000 logo requirements state that all products written for
must use the Windows Installer to install and uninstall themselves. This means that

nt theregardless of your end choice of namespace, ultimately you must instrume
nt within the CIMV2 namespace. Microsoft relaxeapplication to some exte

Windows XP, although it still appears under the list of future require
detailed information on the logo requirements see:

http://msdn.microso (Windows 2000 and
WinXP)

http://www.microsoft.com/PRODUCTS/servers/designed (BackOffice)

Where does the management-specific information defined for our Post Office reside? Microsoft
tion: All
le,

 our application, it does
te a new namespace

ns namespace. This does not preclude using the CIMV2 namespace to
st certain classes from your schema and placing the remaining classes in your own namespace;

nclude classes
 data with

modates application management information that does not
ore and more

ct-
ation in

provides strict rules about class placement within the CIMV2 namespace for logo certifica
 might not meet Microsoft's requirements. In the Post Office exampof your schema classes

because the information we are going to supply in our schema is unique to
ns. The solution is to creanot apply generally to all other Win32 applicatio

under the CIMV2\Applicatio
ho
we shall consider the implications of this later. You can use the view provider to i
from the CIMV2 namespace in your namespace if you want to integrate your management
data available in the CIMV2 or any other namespace.

The Applications Namespace
The Applications namespace accom
follow Microsoft's guidelines for the CIMV2 namespace. Microsoft anticipates that m
products will use the CIMV2 namespace, creating their own subnamespaces to store produ

mspecific management information. Microsoft's Internet Explorer places management infor
ined in the CIMV2 namespace. its own namespace def Table 6.17 represents a few of the advantages

and disadvantages of using the Microsoft CIMV2 namespace and creating your own namespace.

e 6.17. Advantages and Disadvantages of Namespace Positioning

ry namespace

our

ules defined by Allows unrestricted usage (you are the owner) and is

Tabl

Using the CIMV2 namespace Using an Applications/proprieta

Easy for applications to access. Requires more thought about how you will depl
schema.

oy y

Must adhere to strict r

Table 6.17. Advantages and Disadvantages of Namespace Positioning

pace

 include

CIM classes into your namespace as and when needed.

Using the CIMV2 namespace Using an Applications/proprietary names

Microsoft for use of the CIMV2 easier to extend.
schema.

Many features implemented already Requires you to use the view provider to
using the Windows Installer and other classes/instances from other namespaces.
providers.

Note: You can import the DMTF definition of abstract

 All cross-namespace associations are unidirectional.[*]

[*] This is relevant if you compromise, positioning part of your classes in the CIMV2 n
elements that are unique to your product in a proprietary namespace. Cross-namespace

amespace and positioning specific management
 associations are allowed, but remember that they

are unidirectional from the direction of the association's host namespace.

Limitations of Multinamespace Class Positioning

Figure 6.7 is an arrangement of classes from the Post Office schema that demonstrates the

limitations of cross-namespace associations.

Figure 6.7. An arrangement of classes from the Post Office schema

In th in the
Post of
these classes to be positioned in the CIMV2 namespace). As a result of this positioning, some of the
association classes make cross-namespace associations to the classes based in the PostOffice
amespace. Although this approach is perfectly valid, it brings about certain considerations when

 this

e three examples that follow, we positioned some Post Office application-specific classes
Office namespace and the associations in the CIMV2 namespace (ignoring the suitability

n
constructing WMI queries. We use the Associators of or References of statement to illustrate
point.

Example 1. Executed in the CIMV2 Namespace

ASSOCIATORS OF

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch04table07

{\\MyMachine\root\CIMV2\applications\PostOffice:PO_UserDetails.Username="Tunstal
lc"}
 WHERE AssocClass=PO_AccountUserDetails

Example 2. Executed in the PostOffice Namespace

nd to association
uery
 the

e CIMV2).

mple 3. Executed in the PostOffice Namespace

n their
ssociation

ass
 fall

ning

e
 the Post

lems highlighted
.

ach of the classes in the Post Office schema, we
sition the classes as in Figures 6.8

Associators of (PO_UserDetails.Username="Tunstallc")
 WHERE AssocClass=PO_AccountUserDetails

The query in Example 1 would attempt to find all the endpoint objects bou
PO_AccountUserDetails with a PO_userdetails object that had a username of Tunstallc. The q
will work if you give the full class object path of the User Details object and run the query from
namespace that hosts the association class PO_AccountUserDetails (in this exampl

The query in Example 2 would fail to return any instances because the association class
PO_AccountUserDetails does not exist in the PostOffice namespace.

Exa

REFERENCES OF {PO_UserDetails="Tunstallc"}

The query in Example 3 would return no references because the CIMV2 namespace withi
respective association classes hosts them. This highlights the unidirectional problem of a
classes in which only the host namespace is aware of the association. In our example, cl
PO_UserDetails is unaware of any of the associations in which it may be involved if they
outside the scope of the PostOffice namespace.

Post Office Schema Namespace Positio

The Post Office schema will reside in a new namespace called PostOffice, placed beneath th
ng toroot/CIMV2/applications namespace. This is because not all of the classes belongi

 namespace and because of the probOffice schema can be positioned in the CIMV2
associationspreviously about cross-namespace

The Post Office Schema Class Positions

By repeating this class-positioning process for e
po , 6.9, 6.10, 6.11, 6.12 and 6.13.

Figure 6.8. Post Office schema settings classes

Figure 6.9. Post Office schema statistical classes

Figure 6.10. Post Office schema method parameter classes

Figure 6.11. Post Office schema dependency classes

Figure 6.12. Post Office schema managed element classes

Figure 6.13. Post Office schema element classes

 in Figure 6.10 is a new abstract base class that hosts the para
e CIMV

meter
2

PO_MethodParameterClass
classes specific to our Post Office schema. Had we placed our schema classes in th
namespace, we could have used the Win32_MethodParameter class.

PO_ManagedElement in Figure 6.12 is an abstract base class for the classes Mailbag, UserDetails,
 EmailAccount. It groups them together as manageable aspects of our Post Office application

e
and
that are unique to it. We cannot classify these classes under CIM_ManagedSystemElement, becaus
they represent objects outside the managed system domain and are, instead, a logical representation
of the managed elements in our Post Office.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch05#ch05

PO_SoftwareFeature in Figure 6.13 is a new abstract superclass for class PostOffice. Derived
pplication.

r

 repository, you must use qualifiers and flavors to

from class CIM_LogicalElement, it represents the manageable features of our software a
It contains several inherited properties and defines a single key name property that replaces ou
PostOffice name property.

Managed Object Format (MOF) Qualifiers and Flavors

Before you add your schema to the CIM
characterize your properties, classes, associations, and methods.

We have already assigned a type to the elements in our schema, but we must complete some
additional tasks before creating the code.

Decide which properties should be read-only and which should be read/write.

Decide which elements are key properties.

Decide which elements to flag as required properties

Decide which methods are constructors and destructors.

Always explicitly state Max and Min values for properties.

Explicitly state the upper length and minimum length of strings using MaxLen(n) and
Minvalue(n) where n is a natural number.

Decide which qualifiers to pass to ToInstance's and ToSubclasses.

Decide which classes are concrete/abstract.

Decide which classes are singletons.

Always specify a locale. If you do not, the MOF compiler will default to the locale of the
installation that hosts the CIM repository.

Provide clear descriptions for each class, property, method, and association using the Description

st Office schema MOF code, we must consider an
ents of

mers. Will the
e provided dynamically by a provider, will they be
xture of both apply? The means of supplying the

ong
f having

all elements (objects, classes,

qualifier.

MOF Creation and Testing
Before we can begin to write the first lines of Po
additional problem. Although at this early stage in development we have designed the elem
our schema, we have not considered how to supply them to management data consu
objects, classes, or properties in our schema b

ored within the CIM repository, or will a mist
elements affects the contents of the MOF file (the inclusion of the dynamic qualifier, am
others), but more important is the necessity for testing our schema properly, regardless o
made this decision. If we write our schema as static, meaning that

properties, and associations) are held within the CIM repository at this stage, we can test them
ult to add

F Code
It is listed in its

rstand

e certain techniques.

g MOF
will work

age,
r. From a
 CIM

nance of the
imple to update, is

dly. Considering the recovery aspect, if
 mark your MOF appropriately, WMI will remember it and recompile it if the repository

.
 the

F files registered for recovery under

n by

 CIM repository easily. The Studio
them to a

 because of
ls of performing these tasks in earlier chapters,

e an example.

before writing provider code. As you will see after we code our MOF file, it is not diffic
the dynamic qualifier after the provider code.

Implementing the Schema: WMI API Calls vs. MO
In the Post Office example, we provide the source code in the form of a MOF file.
entirety to provide you with the full source for the Post Office schema and to help you unde

he schema. The comments in shaded boxes are given to assist how the MOF language represents t
your interpretation of the code and to help you understand why we us

By using the WMI API, you can add schema constructs programmatically and avoid usin
ting this approach, however, assumes that your product files altogether. Exclusively adop

only on the Windows platform and that you don't require the multiplatform compatibility of the
MOF language. Experience also suggests that unless you are familiar with the MOF langu
writing directly via the WMI API could be overwhelming for a first-time WMI develope

nto thetesting perspective, it is far less labor intensive to write a MOF file and import it i
e WMI API. Mainterepository than to write a program that makes a series of calls to th

schema becomes overwhelming in the WMI API. In comparison, a MOF file is s
un
ou

derstood by other developers, and is version-control frien
y
becomes corrupted.

Tip

For WMI recompiling, mark your MOF file with the #pragma autorecover c
F file to the list of files that WMI will compile during recovery of

ommand
This adds the MO
repository. The registry holds the list of MO
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WBEM\CIMOM.

You can manually trigger a restore of the CIM repository with the wmimgmt.msc snap-i
moving to the Backup/restore tab.

With the WMI CIM Studio, you can add your schema to the
permits you to add classes, properties, and associations to a namespace and then export
MOF text file for editing and documentation. We do not use the WMI CIM Studio
limited space, because we reviewed the fundamenta
nd because the quickest way to learn the syntax of MOF is to read and typa

Multilanguage Support

Support for multiple languages is a key issue in developing any software applicatio
the CIM repository are no exception. This section describes how MOF f

n, and schemas
iles accommodate

 at the class level and the
he
t qualifier

ific information. If you use the Amendment qualifier, you
ation. In

gure 6.14

in
multilanguage support.

Begin by marking any locale-specific data using the Amendment qualifier
Amended qualifier flavor at the qualifier level. Items that may be locale specific include t

perties, methods, or associations. The Amendmendescriptions that are part of classes, pro
indicates that a class contains locale-spec
must also use the Locale qualifier to tell the compiler for which locale the class has inform
Fi , the MOF excerpt declares that class contains locale-specific

[description("The PostOffice class exposes management information pertinent
he
leton

ent, locale(0x409)]

ce that the Description qualifier for the class has the Amended qualifier flavor to signify that its

PO_PostOffice
information in US English (0x409).

Figure 6.14 Example of the amendment qualifier

to our PostOffice. It supplies all the main properties for monitoring t
PostOffice, its performance and the accounts on it. This class is a sing
in this release"): amended ToInstance, amendm
class PO_PostOffice: PO_SoftwareFeature
{

 ...

Noti
contents are locale specific.

In the MOF excerpt in Figure 6.15, we declare that the description for property StartTim
lass

e within
is global

qualifier.

bClass ToInstance, description
he StartTime property contains the start date and time of the current

 to requests from management information consumers. It
cale value, if

locale, WMI divides the information from a
-specific namespaces. When returning information to the

umer, it constructs a composite of data from both namespaces. This is an extremely powerful
gle

 an American and a Japanese office to access the CIM
uage.

r to
For

c PO_PostOffice is locale specific. Notice that the locale value assigned to the class
for all properties and methods within it unless it is overridden with another locale

Figure 6.15 Example of the amended qualifier

[
"T
read: ToSubClass ToInstance, required: ToSu

(
PostOffice session.") : amended ToSubClass]
DATETIME StartTime;

WMI uses this information in responding
determines the locale of the consumer and returns the information marked with that lo
it is available, from the repository. To determine the
sche
ons

ma into language-neutral and language
c
feature, especially considering that Windows can now support multiple languages on a sin
installation. This feature makes it feasible for
repository simultaneously, each retrieving management information in its respective lang

If you want your schema to be readable in a specific locale, use the DisplayName qualifie
specify the name of the property, method, class, or association in a locale-specific format.
example, we could append all of our manageable classnames, properties, methods, and association
names using the MOF excerpt in Figure 6.16.

Figure 6.16 Example of the DisplayName qualifier

[displayname("PostOffice (PO)") : amended,
tinent
 the

unts on it. This class is a
Instance, amendment, locale(0x409)]

s PO_PostOffice: PO_SoftwareFeature

ic

description("The PostOffice class exposes management information per
to our PostOffice. It supplies all the main properties for monitoring
PostOffice, its performance and the acco

d Tosingleton in this release"): amende
clas
{

 ...

Having defined which classes, properties, methods, and associations contain locale-specif
information, we can compile this information into the CIM repository.

Use the amendment pragma at the top of the MOF file, following the namespace pragma, to notify
the compiler that the file includes locale-specific information (see Figure 6.17).

Figure 6.17 Example of the amendment MOF compiler directive

\\Applications\\PostOffice")
ies U.S. English

uals

eate a language-specific schema that will reside immediately
ath the namespace specified by the namespace directive. In our example, this would create the

 use the
amendment directive to notify the MOF compiler that your MOF contains locale-specific

formation. You still must mark locale-specific classes and data using the AMENDMENT and
pt as follows:

stOfficeLS.mfl amendment:MS_409
Office.mof

OF file
utral one (which ends with mof). You must then use

m in the

F

#pragma namespace ("\\\\.\\Root\\CIMV2
ecif#pragma amendment("MS_409") // Sp

// The naming convention for these namespaces is ms_xxx where xxx eq
// the LCID hex digits after 0x...

This
ene

 directive tells the compiler to cr
b
localized namespace root\CIMV2\Applications\PostOffice\ms_409.

Important

WMI treats all of the amended classes placed in the locale-specific namespace (for
. This means that it is example, MS_409) as abstract, regardless of their initial definition

not possible to instantiate them in the localized namespace.

Instead of declaring the #pragma amendment ("ms_XXX") in your MOF file, you can

in
Amended qualifiers. Use the mofcomp -amendment directive from the command prom

C:\mofcomp -MOF:PostOfficeLN.mof MFL:Po
Post

This command places the output not in the CIM repository but in two files: a localized M
(which ends with mfl) and a language-ne
mofcomp without any special switches to compile these two files individually to place the

IM repository. C

The Post Office Schema in MO

Having completed the steps of schema design, we can create our Post Office schema in MOF
t at points of interest, although, because of its length and

ample from

f MOF Syntax Reminder

it qualifier flavors. Colons separate
flavors from their qualifiers. Square brackets enclose qualifiers and flavors before the property,

#pragma classflags("forceupdate")
// Create namespace for PostOffice under CIMV2/Applications

#pragm

instance of __Namespace
{
 Name = "PostOffice";
};

// Change focus to PostOffice namespace

#pragma namespace ("\\\\.\\Root\\CIMV2\\Applications\\PostOffice")

compiler to create separate MOF files: a locale-neutral
 two-step process.

F file and generate two output files: a locale-neutral version and

Step 2. Compile each of these files to add their contents to the CIM repository.

We offer more detail about this process at the end of the chapter.

We u irectly
from sses
from need their definitions before we declare our own classes. These classes do
not exist in the PostOffice namespace, so if we did not export them, we would generate a
compilation error.

//***

class CIM_ManagedSystemElement
{

format. The code is annotated throughou
the syntactical unfriendliness of the MOF language, you will want to download the ex
the Web site and use the text for reference only.

Brie

Remember that commas delimit qualifiers and spaces delim

class, association, or method to which they apply.

e.g. [Qualifier : flavor1 flavor2 , Qualifier 2: flavor1]

[Read: ToSubClass ToInstance, Description("Textual description"):
ToSubclass]

#pragma autorecover

a namespace ("\\\\.\\Root\\CIMV2\\Applications")

#pragma amendment("MS_409")

The amendment pragma tells the MOF
version and a locale-specific version. This means that compilation becomes a

Step 1. Compile the MO
one or more locale-specific versions.

sed the WMI CIM Studio's MOF Generator to export the class definitions that follow d
 the CIMV2 namespace and place them here. Because we derive some of the PostOffice cla
 these classes, we

//* Class: CIM_ManagedSystemElement
//* Derived from:
//***
[Abstract, Locale(1033): ToInstance, UUID("{8502C517-5FBB-11D2-AAC1-
 006008C78BC7}"): ToInstance]

 [MaxLen(64): ToSubClass, read: ToSubClass] string Caption;
 [read: ToSubClass] string Description;
 [Ma
 ToS
 [re
 [re
 "
 "Service"}: ToSubClass]
 str
};

//***
//* Class: PO_ManagedElement
//* De
//***
[Abstract, Locale(1033): ToInstance, UUID("{6131164E-FDF5-4085-8064-
 0A8
class
{
 [MaxLen(64): ToSubClass, read: ToSubClass] string Caption;
 [read: ToSubClass] string Description;
};

//***
//* Class: CIM_LogicalElement
//* Derived from: CIM_ManagedSystemElement
//***
[Abstract, Locale(1033): ToInstance, UUID("{8502C518-5FBB-11D2-AAC1-
 006008C78BC7}"): ToInstance]
class CIM_LogicalElement : CIM_ManagedSystemElement
{
};

//***
//* Class: PO_SoftwareFeature
//* Derived from: CIM_LogicalElement
//***
[Locale(1033): ToInstance, UUID("{E527D7F2-E3D4-11d2-8601-
 0000F8102E5F}"): ToInstance, abstract]
class PO_SoftwareFeature : CIM_LogicalElement
{
 [read: ToSubClass, key, override("Name"), Maxlen(256): ToSubClass]
 string Name = NULL;
};

t ref Dependent;
};

//***

ppingStrings{"MIF.DMTF|ComponentID|001.5"}: ToSubClass, read:
ubClass] datetime InstallDate;
ad: ToSubClass] string Name;
ad: ToSubClass, MaxLen(10): ToSubClass, ValueMap{"OK", "Error",
Degraded", "Unknown", "Pred Fail", "Starting", "Stopping",

ing Status;

rived from:

4BF8957FB}"): ToInstance]
PO_ManagedElement

//***
//* Class: CIM_Dependency
//* Derived from:
//***
[Association: DisableOverride ToInstance ToSubClass, Abstract,
 LOCALE(0x409): ToInstance, UUID("{8502C53A-5FBB-11D2-AAC1-
 006008C78BC7}"): ToInstance]
class CIM_Dependency
{
 [read: ToSubClass] CIM_ManagedSystemElement ref Antecedent;
 [read: ToSubClass] CIM_ManagedSystemElemen

//* Class: C
//* Derived

IM_ElementSetting
from:

//***

//* Class: CIM_Setting

 e
 e
};

//***
//* l
//* e
//***

ad: ToSubClass] string Description;
 [read: ToSubClass, MaxLen(64): ToSubClass] string Caption;

{
 [read: ToSubClass] CIM_StatisticalInformation ref Stats;

**

[Abstract, Association: DisableOverride ToInstance ToSubClass,
 LOCALE(0x409): ToInstance, UUID("{8502C577-5FBB-11D2-AAC1-
 006008C78BC7}"): ToInstance]
class CIM_ElementSetting
{
 [read: ToSubClass] CIM_ManagedSystemElement ref Element;
 [read: ToSubClass] CIM_Setting ref Setting;
};

//*************************************

//* Derived from:
//**
[Abstract, LOCALE(0x409): ToInstance, UUID("{8502C572-5FBB-11D2-AAC1-
 006008C78BC7}"): ToInstance]
class CIM_Setting
{
 [read: ToSubClass, MaxLen(256): ToSubClass] string SettingID;

[r ad: ToSubClass, MaxLen(64): ToSubClass] string Caption;
[r ad: ToSubClass] string Description;

 C ass: CIM_StatisticalInformation
 D rived from:

[Abstract, LOCALE(0x409): ToInstance, UUID("{956597A1-7D80-11D2-AAD3-
 006008C78BC7}"): ToInstance]
class CIM_StatisticalInformation
{
 [read: ToSubClass, MaxLen(256): ToSubClass] string Name;
 [re

};

//***
//* Class: CIM_Statistics
//* Derived from:
//***
[Abstract, Association: DisableOverride ToInstance ToSubClass,
 LOCALE(0x409): ToInstance, UUID("{956597A3-7D80-11D2-AAD3-
 006008C78BC7}"): ToInstance]
class CIM_Statistics

 [read: ToSubClass] CIM_ManagedSystemElement ref Element;
};

//*************
//* Class: PO_MethodParameterClass
//* Derived from:
//***
[Abstract, LOCALE(0x409): ToInstance, UUID("{6AF1A338-5671-4d3d-8A12-
 0532E9D0C97F}"): ToInstance]
class PO_MethodParameterClass
{
};

//***
// THE FOLLOWING CLASSES ARE ALL PART OF THE POSTOFFICE SCHEMA
//***

//***
//* Class: PO_PostOffice
//*
//*

The

 Derived from: PO_SoftwareFeature
**

 UUID qualifier has been included in the class definitions for completeness. WMI
does not require that you supply this value in your class definitions and will generate one
automatically on your behalf if you do not. The value must be unique. It is used by WMI
to identify classes.
[Description("The PostOffice class exposes management information

s class.

se it
ature.

he PostOfficeStatus
 property contains the current status of the PostOffice.") :

mended]

uint16 PostOfficeStatus;

version
 of the PostOffice."): ToSubClass amended, Minvalue(6): ToSubClass

d: ToSubClass ToInstance, Required: ToSubClass ToInstance,
 Description("The PostOfficeName property contains the version of the

 pertinent to our PostOffice. It supplies all the main properties
 for monitoring the PostOffice, its performance and the accounts on
 it. This class is a singleton in this release"): amended,
 UUID("{6F0DD128-6546-4636-9DDC-C1F86692616B}") : ToInstance,
 AMENDMENT, LOCALE(0x409)]

The AMENDMENT class qualifier specifies that locale-specific information is held in thi
The Locale qualifier specifies the class has been localized for US English (0x409).

class PO_PostOffice:PO_SoftwareFeature
{

You will notice that class PO_PostOffice does not contain a key property. This is becau
inherits the key property name from its parent class PO_SoftwareFe

[Read: ToInstance ToSubClass, Description("T

 ToSubClass amended,
 valuemap {"1","2","3","4","5"}: ToSubClass ToInstance,
 values {"Stopped","Initialising","Running","Shutting down","Error"}:
 ToSubClass ToInstance A

[Read: ToSubClass ToInstance, Required: ToSubClass ToInstance,
 Description("The PostOfficeVersion property contains the

 ToInstance ,
 Maxlen(100): ToSubclass ToInstance]
string PostOfficeVersion;

[Rea

 PostOffice."):
 ToSubClass amended, Minvalue(6): ToSubClass ToInstance,
 Maxlen(100): ToSubclass ToInstance]
string PostOfficeName;

[Read: ToSubClass ToInstance, Required: ToSubClass ToInstance,
 Description("The StartTime property contains the start date and time
 of the current PostOffice session."): ToSubclass amended]
datetime StartTime;

[Write: ToSubClass ToInstance, Required: ToSubClass ToInstance,
 Description("The MaxFailLogon property stipulates the maximum logon

 this case, it is

[Read: ToSubClass ToInstance, Description("The UserCount
 property indicates the number of registered users on the PostOffice."):

ance, Description("The UserLogged array
 property holds the usernames of those currently logged in to the

[Read: ToSubClass ToInstance, Description("The UserLoggedCount
 property counts the number of users logged on the PostOffice."):
 ToSubClass amended, MinValue(1) : ToSubClass ToInstance, Maxlen(100):
 ToSubclass ToInstance]
uint8 UserLoggedCount[];

[Description("The AddUser method adds a user to the PostOffice. It
 returns the following status values:\n0 : Operation was completed
 successfully\n1 : Unknown error - the method failed to add the user\n2
 : Error: Username already exists\n3 : Error: PostOffice reached
 maximum number of users\n4 : Error: Invalid initialisation
 parameters"): ToSubClass amended, Values {"Success", "Unknown error",
 "Error: Username exists",
 "Error : Max number of users exceeded",
 "Error: Invalid initialisation parameters"}: Amended ToSubclass]
uint32 AddUser([in, Id(0)] NewUserParam object);

The In qualifier specifies this parameter as an input parameter. The Id(0) qualifier uniquely tags
each parameter in a method. WMI automatically assigns an Id value if one is not given.

[Description("The RemoveUser method removes a user from the

 Operation was completed successfully\n1 : Error: Unknown error - the method
 failed to remove the user\n2 : Error: Username does not exist\n3 :

urrent Active\n4 : Error: Invalid initialisation
Class amended, Values{"Success", "Unknown error",

 attempts."):ToSubClass amended, Maxvalue(100) : ToSubclass]
uint8 MaxFailLogon;

[Read: ToSubClass ToInstance, Description("The FreeSpace property
 stipulates the amount of freespace left on the mailbag partition."):
 ToSubClass amended, Units("Kilobytes"): ToSubclass ToInstance]
uint64 FreeSpace;

Notice the Units qualifier that describes the property values units of measurement. In
measured in KB.

 ToSubClass amended, MinValue(1): ToSubClass ToInstance, Maxlen(100):
 ToSubclass ToInstance]
uint8 UserCount;

[Read: ToSubClass ToInst

 PostOffice."): ToSubClass amended, MinValue(1): ToSubClass
 ToInstance, Maxlen(100): ToSubclass ToInstance]
string UserLogged[];

Now we define the methods that belong to class PostOffice. The method descriptions that follow
are reformatted to make them more readable. Note that the MOF compiler will flag an error if you
attempt to compile text strings that contain a carriage return.

 PostOffice. It returns the following status values:\n0 :

 Error: UserAccount C
 parameters "): ToSub
 "Error: Account does not exist", "Error: Account Active",

 "Error: Invalid initialisation parameters"}: Amended ToSubclass]
uint32 RemoveUser([in,id(0)] string Username);

Note

When the Post Office is installed, a single PostOffice object will be created. This
ethod places it in the running state, allowing users to use it to send

es the PostOffice in the
lowing status values:\n0 : Success -

s completed successfully\n1 : Unknown error - the
not in stopped
wn error",

stopped state"}:

lized information. In this case
9 (see locale qualifier declared with

the class). This information is placed in a language-specific child namespace and merged with the

ailed to shutdown\n2 : Error: PostOffice
 was not running"): ToSubClass, Values{"Success", "Unknown error",

 in running state"}: Amended ToSubclass]
, id(0), Description("Shutdowntype can be
 or 1.\n A value of zero means shut down only

ed in\n A value of one means shut
dless of whether users are logged in")] uint8

********** **

s, user name and password."):
 amended,

2F-FBE3E0A25857}") : ToInstance,

 property contains the unique value assigned to this accounts

ss amended]
r;

StartPostOffice m
and receive e-mail.

[Description("The StartPostOffice
 running state. It returns the fol

 method plac

 the operation wa
 PostOffice failed to start\n2 : Error: PostOffice was

ded, Values{"Success", "Unkno state"): ToSubClass amen
 "Error: PostOffice not in
 Amended ToSubclass]
uint32 StartPostOffice();

The Amended qualifier flavor indicates that the qualifier conta
0
ins loca

the description is written in English and belongs to locale 0x4

language-neutral version when requested. On an American installation, typically /MS_409 would
hold this locale-specific information.

[Description("The StopPostOffice method places the PostOffice in the
 stopped state. It takes a single parameter, Shutdowntype, that
 specifies how the PostOffice shuts down. It returns the following
 status values:\n0 :
 Success - the operation was completed successfully\n1 :
 Unknown error - the PostOffice f

 "Error: PostOffice not
nt32 StopPostOffice([inui

 assigned a value of 0
 if no users are currently logg
 down forcibly regar
 shutdowntype);
};

//**
//* Class: PO_EmailAccount
//* Derived from:
//*

**************** **

[Description("The EmailAccount class exposes management information
 about each user of our system. It supplies all the main properties
 about each including the accounts statu

 UUID("{E8415E1E-5E11-4f5e-8F
 AMENDMENT, LOCALE(0x409)]
class PO_EmailAccount: PO_ManagedElement
{

 [Read: ToSubClass ToInstance, Description("The MailBagIdentifier

 mailbag."): ToSubCla
 string MailBagIdentifie

 [Read: ToSubClass ToInstance, Description("The LogonDate property
 contains the date and time this account was successfully
 accessed."): ToSubClass amended]
 datetime LogonDate;

 [Key: ToSubClass ToInstance DisableOverride, Read: ToSubClass
 ToInstance, Description("The UserName property contains the date and
 time this account was successfully accessed."): ToSubClass amended]

By specifying the password property Read(false), we ensure that nobody can read the password
rators to

[ToSubClass ToInstance,
 Description("The UserName property contains the date and time this
 account was successfully accessed."): ToSubClass amended]
str g

[Read: ToSubClass ToInstance, Description("The AccountStatus string

rs ocked "):

[Description("The UnLockAccount method unlocks a users account on the

 fai
 ToS
 Acc
 Ame
 u
};

//****
//* Cl
//* De
//****

[
 and exposes statistical management information about the PostOffice.
 It
 mon
 abi
 LOC
 UUID("{C83E84AE-318F-4dae-B91C-19EB12E143DC}"): ToInstance,
 Sin

 string UserName;

for the user's account. The password property is writeable, however, which allows administ
change the password when required.

Read(False): ToSubClass ToInstance,Write:

in Password;

 property contains the current status of the account.\n Acceptable
 values are: \n Logged In\n Logged Out\n Locked\n Suspended"):
 ToSubClass amended]
string AccountStatus;

// Now we define the methods for class PO_EmailAccount

[Description("The LockAccount method locks a users account on the
 PostOffice. It returns the following status values: \n0 : Operation
 was completed successfully\n1 : Error: Unknown error - the method
 failed to lock the user \n2 : Error: Use account already l
 ToSubClass amended, Values{"Success", "Unknown error",
 "Error: Account already locked"}: Amended ToSubclass]
uint32 LockAccount();

PostOffice. It returns the following status values:\n0 : Operation
was completed successfully\n1 : Error: Unknown error - the method

led to unlock user \n2 : Error: Users account not locked"):
ubClass amended, Values{"Success", "Unknown error", "Error:
ount not locked"}:
nded ToSubclass]

int32 UnLockAccount();

ass: PO_PostOfficeStats
rived from: CIM_StatisticalInformation

Abstract(false),Description("The PostOfficeStats class is a singleton

is of special interest to management data consumers that wish to
itor performance of the Post Office in terms of message processing
lity and delivery failures."): amended ToSubClass, AMENDMENT,
ALE(0x409),

gleton : ToInstance ToSubclass]

We must declare that this class is a singleton bcause it does not contain a key value. Without
specifying this, WMI CIM Studio will not allow us to instantiate it.

ticalInformation

r destination address since startup. "): amended
 ToSubClass]

SubClass ToInstance, Description("The TotalMailCount

 ToSubClass]
 uint64 TotalMailCount;

maintains a count of the total number of accounts locked at
 the present time."): amended ToSubClass]

fice. It is here that management data consumers can

ss PO_MessageSettings:CIM_Setting
{

e MaxMessageSize
 on
 in

 kilobytes"): amended ToSubClass, Units("Kilobytes"):ToSubClass

ize;

es"):
 Amended ToSubClass, Units("Kilobytes"): ToSubClass ToInstance]

mitted per
 email on the PostOffice. "): amended ToSubClass]

Class PO_PostOfficeStats:CIM_Statis
{

 [Read: ToSubClass ToInstance, Description("The FailedMailCount
 property contains the total number of emails that have failed to
 reach thei

 uint64 FailedMailCount;

 [Read: To
 property contains the total number of emails successfully delivered
 since startup."): amended

 [Read: ToSubClass ToInstance, Description("The AccountLockedCount
 property

 uint8 AccountLockedCount;

 [Read: ToSubClass ToInstance, Description("The ActiveAccountCount
 property maintains a count of the total number of users currently
 logged in"): amended ToSubClass]
 uint8 ActiveAccountCount;
};

//**

ageSettings//* Class: PO_Mess
//* Derived from: CIM_MessageSetting
//***

[Singleton: ToInstance ToSubclass, Description("The MessageSettings
 class is a singleton and contains the settings for messages sent on
 our PostOf
 configure the message settings for our PostOffice. "): amended
 ToSubClass,AMENDMENT, LOCALE(0x409),
 UUID("{340B7585-BD27-48d7-9A0F-4BD6E20A8951}") : ToInstance]
Cla

 [Write: ToSubClass ToInstance, Description("Th
 property contains the maximum permitted size of a message sent
 the PostOffice. The value includes attachments and is measured

 ToInstance]
 uint16 MaxMessageS

 [Write: ToSubClass ToInstance, Description("The MaxAttachSize
 property contains the maximum permitted size of an individual
 attachment on the PostOffice. The value is measured in kilobyt

 uint16 MaxAttachSize;

 [Write: ToSubClass ToInstance, Description("The MaxAttachmentCount
 property contains the maximum number of attachments per

 uint8 MaxAttachmentCount;
};

Office. It is of special interest to
t wish to ascertain the size of a users

 E75849FF0560}") : ToInstance]

 current size of the mailbag for a particular user on the
 PostOffice. The unit of measurement is megabytes"): amended

ass, Units("Megabytes"): ToSubClass ToInstance]

mailbag on the PostOffice. "): amended ToSubClass]
 string MailBagIdentifier;

/***
/* Class: PO_PostOfficeSettings
//* Derived from: CIM_Setting

**

[Singleton: ToInstance ToSubClass, Description("The PostOfficeSettings

 ToSubClass ToInstance, Description("The MaxFailedLogon

//* Class: PO_UserDetails

nagement information
PostOffice. It contains a values

s phone number, location, title

//***
//* Class: PO_Mailbag
//* Derived from: PO_ManagedElement
//***

[Description("The Mailbag class exposes management information about
 the mailbag files on the Post
 management data consumers tha
 mailbag and the GUID associated with their mailbag."): amended
 ToSubClass, AMENDMENT, LOCALE(0x409),UUID("{F9828C0E-AEC6-40ec-877C-

Class PO_Mailbag: PO_ManagedElement
{

 [Read: ToInstance ToSubClass, Description("The MailbagSize property
 states the

 ToSubCl
 uint16 MailbagSize;

 [Key: ToSubClass ToInstance DisableOverride, Read:ToSubClass
 ToInstance, Description("The MailIdentifier property contains the
 GUID assigned to a

};

/
/

//*************************

 class is a singleton and exposes management information pertinent to
 the PostOffice. It contains a single value that dictates the maximum
 number of logon attempts allowed"): amended ToSubClass, AMENDMENT,
 LOCALE(0x409), UUID("{8571C9CA-1E6E-4f9a-8ACE-60C574F25CFE}") :
 ToInstance]
Class PO_PostOfficeSettings: CIM_Setting
{

The Write qualifier declares the MaxFailLogon property value as read/write.

 [Write:
 property specifies the maximum number of logon attempts permitted to
 users of the PostOffice. The range is between 0 and 255."): amended
 ToSubClass]
 uint8 MaxFailedLogon;
};

//************************************

//* Derived from: PO_ManagedElement
//***

 Description("The UserDetails class exposes ma[
 pertinent account holders on the
 that describe contact details such a
 etc.."): amended ToSubClass, AMENDMENT, LOCALE(0x409),
 UUID("{78687D99-6758-49c5-A090-6ADC8CB9D181}") : ToInstance]

class PO_UserDetails:PO_ManagedElement

lass ToInstance, Description("The title property
):ToInstance

 ToSubClass]

 [Write:ToSubClass ToInstance, Description("The surname contains the
en(32): ToInstance

nce ToSubClass, Description("The jobtitle contains
ToInstance

):

 amended ToSubClass, Maxlen(16): ToInstance ToSubClass]
 string UserName; //PostOffice UserName

rd"): amended ToSubClass,Maxlen(16): ToInstance

 ToSubClass,Maxlen(32):

/* Derived from: PO_MethodParameterClass
//***

The NewUserParam class is a parameter
 class used in calls to PostOffice method adduser ."): amended

ss ToInst iption("The title property

r etc..

:ToSubClass ToInstance, Description("The surname contains the
 users last name"): amended ToSubClass, Maxlen(32): ToInstance
 ToSubClass]

{

 [Write: ToSubC
 contains the title"): amended ToSubClass, Maxlen(32

 string Title;// Mr, Mrs, Dr etc..

 [Write:ToSubClass ToInstance, Description("The forename contains the
 users first name"): amended ToSubClass,Maxlen(32): ToInstance
 ToSubClass]
 string ForeName;// Users first name

 users last name"): amended ToSubClass,Maxl
 ToSubClass]
 string SurName;// Users last name

 [Write: ToInsta
 the users job title"): amended ToSubClass,Maxlen(64):
 ToSubClass]
 string JobTitle;// Director of finance etc..

 [key: ToInstance ToSubClass DisableOverride, Write: ToInstance
 ToSubClass, Description("The Username contains the users name"

 [Write: ToInstance ToSubClass, Description("The password contains
 the users passwo
 ToSubClass]
 string Password; // Password at startup

 [Write: ToInstance ToSubClass, Description("The ContactNumber
 contains the users contact number"): amended
 ToInstance ToSubClass]
 string ContactNumber;//User office telephone number*
};

//***
//* Class: PO_NewUserParam
/

[Abstract(false),Description("

 ToSubClass, AMENDMENT, LOCALE(0x409): ToInstance,
 UUID("{BE56E4DD-8BEA-4016-9B97-A09D17DE71A1}") : ToInstance]
Class PO_NewUserParam: PO_MethodParameterClass
{

 [Write: ToSubCla ance, Descr
 contains the title"): ToSubClass, Maxlen(32):ToInstance ToSubClass]
 string Title;// Mr, Mrs, D

 [Write:ToSubClass ToInstance, Description("The forename contains the
 users first name"): amended ToSubClass,Maxlen(32): ToInstance
 ToSubClass]
 string ForeName;// Users first name

 [Write

 string SurName;// Users last name

 [Write: ToInstance ToSubClass, Description("The jobtitle contains
 the users job title"): amended ToSubClass,Maxlen(64): ToInstance
 ToSubClass]
 string JobTitle;// Director of finance etc..

 [Write: ToInstance ToSubClass, Description("The Username contains
 the users name"): amended ToSubClass,Maxlen(16): ToInstance
 ToSubClass]
 string UserName; //PostOffice UserName

e password contains
stance

ce ToSubClass, Description("The ContactNumber
sers contact number"): amended ToSubClass,Maxlen(32):

office telephone number*

ns for the PostOffice schema

iatedMailbag relationship defines the
g"):
00-4D97-

: CIM_Dependency

 [read : ToSubclass, key : ToInstance ToSubclass DisableOverride,

ails relationship defines the
rDetails and EmailAccount"):
nce,

 UUID("{04428CAD-30D3-4841-B94B-435890C708B3}") : ToInstance]

{

 : ToInstance ToSubclass DisableOverride,

ion("Th [Write: ToInstance ToSubClass, Descript

 the users password"): amended ToSubClass,Maxlen(16): ToIn
 ToSubClass]
string Password; // Password at startup

 [Write: ToInstan

 contains the u
 ToInstance ToSubClass]
 string ContactNumber;//User
};

***********************************//**********************
//
// Now we define the associatio
//
//*************************************

//***

ag//* Class: PO_AssociatedMailb
//* Derived from: CIM_Dependency

************************//*************************

[Description ("The Assoc
 dependency relationship between class EmailAccount and Mailba
 amended ToSubClass, LOCALE(0x409): ToInstance ,UUID("{37186F

 474c-882A-C816378D949E}") : ToInstance]
class PO_AssociatedMailbag
{

 Override("Antecedent") : ToSubclass]
 PO_EmailAccount Ref Antecedent = NULL;

 [read : ToSubclass,key : ToInstance ToSubclass DisableOverride,
 Override("Dependent") : ToSubclass]
 PO_Mailbag Ref Dependent = NULL;
};

//***
//* Class: PO_AccountUserDetails
//* Derived from: CIM_Dependency
//**

Det[Description ("The AccountUser
 dependency relationship between class Use
 amended TosubClass,LOCALE(0x409): ToInsta

class PO_AccountUserDetails: CIM_Dependency

 [read : ToSubclass,key

 Override("Dependent") : ToSubclass]

rride,

 Element;

 [read : ToSubclass,key : ToInstance ToSubclass DisableOverride,
 Override("Setti
 PO_MessageSettings Ref Setting;
};

//***
//* Class: PO_StatsForPostOffice
//* Derived from: CIM_Statistics

ption ("The StatsForPostOffice relationship
stical relationship between class PostOfficeStats and

x409) : ToInstance,

bclass DisableOverride,

[Description ("The PostOfficeHasSettings relationship specifies the

 PO_UserDetails Ref Dependent;

 [read : ToSubclass,key : ToInstance ToSubclass DisableOve
 Override("Antecedent") : ToSubclass]
 PO_EmailAccount Ref Antecedent;
};

//***
//* Class: PO_PostOfficeMsgSettings
//* Derived from: CIM_ElementSetting
//***

[Description ("The PO_PostOfficeMsgSettings relationship defines the
 relationship between class PostOffice and MessageSettings"): amended
 ToSubClass, LOCALE(0x409): ToInstance ,
 UUID("{358B159A-D3E1-4aa7-80CC-16750727C281}") : ToInstance]
class PO_PostOfficeMsgSettings: CIM_ElementSetting
{

 [read : ToSubclass,key : ToInstance ToSubclass DisableOverride,
 Override("Element") : ToSubclass]
 PO_PostOffice Ref

ng") : ToSubclass]

//***

[Abstract(false),Descri
 defines the stati
 PostOffice"): amended ToSubClass,Locale(0
 UUID("{3918547B-4A68-4817-9B7D-6EB319BC4F7F}") : ToInstance]

cs class PO_StatsForPostOffice: CIM_Statisti
{

 [read : ToSubclass,key : ToInstance ToSubclass DisableOverride,
 Override("Stats") : ToSubclass]
 PO_PostOfficeStats Ref Stats;

 [read : ToSubclass,key : ToInstance ToSu
 Override("Element") : ToSubclass]
 PO_PostOffice Ref Element;
};

//***
//* Class: PO_PostOfficeHasSettings
//* Derived from: CIM_ElementSetting
//***

 element-setting relationship between classes of type
 PostOffice and PostOfficeSetting"): amended ToSubClass, Locale(0x409) :
ToInstance,
 UUID("{B669107D-6B17-453a-B097-9CA844A57990}") : ToInstance]
class PO_PostOfficeHasSettings: CIM_ElementSetting
{

 [read : ToSubclass,key : ToInstance ToSubclass DisableOverride,
 Override("Element") : ToSubclass]
 PO_PostOffice Ref Element;

 [read : ToSubclass,key : ToInstance ToSubclass DisableOverride,
 Override("Setting") : ToSubclass]
 PO_PostOfficeSettings Ref Setting;

 and EmailAccount"): amended ToSubClass, Locale(0x409) : ToInstance,

cla
{

oSubclass,key : ToInstance ToSubclass DisableOverride,
("Antecedent") : ToSubclass]

 PO_PostOffice Ref Antecedent;

};

Before we can test our schema, we must import it into the CIM repository. In this instance, we shall
and line executable to compile it. Because we have used the Amendment

c information, we need to perform two steps to successfully import

In the first step, we generate two separate MOF files, a language-neutral file (*.mof)

at the
ng return.

–MOF:PostOfficeLN.mof –MFL:PostOfficeLS.mfl

};

//**************************
//* Class: PO_PostOfficeAccounts
//* Derived from: CIM_Dependency
//***

[Description ("The PostOfficeAccounts relationship specifies the
 antecedent-depejndent relationship between classes of type PostOffice

UUID("{3A9BB2B4-8790-444f-8AFA-C5109A3D14A7}") : ToInstance]
ss PO_PostOfficeAccounts:CIM_Dependency

 [read : T
 Override

 [read : ToSubclass,key : ToInstance ToSubclass DisableOverride,
 Override("Dependent") : ToSubclass]
 PO_EmailAccount Ref Dependent;

//*** END OF POSTOFFICE SCHEMA MOF FILE

PO_PostOfficeHasSettings MOF File

use the mofcomp comm
qualifier to specify locale-specifi
our schema.

Step 1.

and a language-specific version (*.mfl).

Syntax:

Mofcomp –MOF: <language neutral mof file> -MFL: <language specific
mof file>
 <Master MOF>

In the case of the Post Office, we would specify our two output files by typing the following
command prompt and pressi

C:\MOFS\Mofcomp
PostOffice.mof

Note that it is important to specify the file names for both the MOF and MFL. Failure to do so wi
result in the mof compiler not generating any files.

Note

The MOFcompiler button that is part

ll

of the WMI CIM Studio does not support
F files with the amendment pragma. In this case, you must use the

p to create locale-neutral and locale-specific

 file (PostOfficeLN.mof), and the
 Nothing has been placed in the CIM repository, and we

plete the second step to import our Post Office schema.

ple, go to the command line and type the following:

e Post Office schema in the CIM
uits of your labor, start up the WMI CIM

d move to the root\CIMV2\Applications\PostOffice namespace, where you
should see the screen in Figure 6.18

compilation of MO
command-line executable version of mofcom
MOF/MFL files.

After the compiler has completed a successful run, the source directory should contain three files:
the original MOF file, a language-neutral v

uage-specific version (PostOffice.mfl).
ersion of the MOF

lang
must com

Step 2.

The second step simply is to compile the two MOF files into the CIM repository.
Note that if this is your first time to compile files, you must compile the language-
neutral MOF file (*.mof) before compiling the language-specific file (*.mfl) to avoid
compilation errors. In our exam

C:\Mofcomp PostOfficeLN.mof

Then type:

C:\Mofcomp PostOfficeLS.mfl

This action should have successfully placed th
repository. If you are anxious to see the fr
Studio an

.

Figure 6.18. The root/CIMV2/Applications/PostOffice namespace

The compilation process has also created a subnamespace, ms_409, that contains all of the
language-specific qualifiers, such as our class and property descriptions.

Also, note that if you highlight any of the classes in the class view (left pane) and then click the
help button, you will see a description of the class and its members. These details came from the
description qualifiers included in the MOF file.

You also can examine the associations and methods in which each class participates by clicking the
b in the right pane.

sting

eries or dummy method invocations using either the
system32/wbem/wbemtest.exe). The WMI

 this task because it allows you to save your queries for each
neficial because it can assist concurrent development of your WMI

client team can code against the du ider team
ment is not

y the users of t
provide you with guidance about the type of tests you should perform upon your schema. As you

st that we should test

Associations tab and the Methods ta

Te
Testing at this stage in schema development typically revolves around the creation of static class
instances of your schema, populated with dummy realistic data. Then it is possible to test your
schema by constructing a series of WQL qu
WMI CIM Studio or the WMI Tester (%systemroot%/
CIM Studio is slightly better for

mespace. This approach is bena
projects. For example, the mmy data while the prov
writes the provider until it is ready to replace the static data. In that way, client develop
delayed and the provider should slot into place.

The feedback provided b he schema during the requirements phase should also

construct the WQL queries, imagining yourself in the position of the person using the schema
sometimes can be useful. In the Post Office schema, our requirements sugge
the following aspects of our design:

• Are we able to start the Post Office and shut it down using the schema?

• Can we retrieve user's details from the schema by providing a MailbagIdentifier?
• Can we add users and delete users?
• Can we determine how many accounts have been created?

ail users are currently logged on?• Can we determine which e-m

ts your requirements, as
defined in Step 1 of the life cycle, and can be carried out independent of those developing other

han to commit to an early schema design and then have to alter your
code.

Schema Deployment
ain options. The first option is to add your schema to

r,
ond,

Chapters 5

• Can we determine the size of a user's mailbag?

This is a quick and easy way to assess whether or not the schema mee

parts of the project. It is far less costly and time-consuming to test your schema using static
instances with dummy data t

Schema deployment in WMI consists of two m
the target namespace programmatically using the WMI API. This is not the ideal solution, howeve
because potentially it can become very complex to maintain if your schema evolves. The sec
more commonly adopted, option is to add your schema by using MOF files, which have the
advantage of being relatively simple to interpret, maintain, and deploy as part of the installation of
your managed product.

Summary
That concludes our introduction to schema design. In and 6, we have looked at many

gh your first attempts at schema design. With

tude of
 potential to omit one or more of them. We hope that the

hances of this and will give you a reasoned,
hapter is by no means

r Post Office's management information dynamically requires a
a can be supplied dynamically, we examine the

techniques and best practices to guide you throu
practice, you will gain your own set of best practices and no doubt will establish a good idea of

me of the potential pitfalls. Mainly, schema design is complex because of the multiso
intermediate steps in performing it and the
basic framework presented here will reduce the c
methodical approach to designing your schema. The MOF file in this c
complete: To supply any of ou
provider. So that the components of the schem
writing of providers in depth in Chapter 12. In Chapter 7 we concentrate on the other side of the

on, developing management applications. management equati

Schema Design and Positioning Q & A
Doesn't the Win32 extended schema provided by Microsoft supply all of the classes I
need to instrument my product? Surely I can merely populate these classes with
instances and find my product represented in the CIM repository!

In most cases, the Win32 extended schema certainly provides a starting point from which
to derive your own classes. It is designed to represent the general aspects of the Windows

Win32 system. If, however, you had designed your own modem and were instrumenting

32-bit environment. In many cases, though, it most probably will not fully encompass the
specific manageable aspects of your product. For example, Microsoft has defined a class
called Win32_POTSModem that represents a "Plain Old Telephone Service Modem" on a

it in the CIM repository, you could derive from this existing class, adding the unique
manageable elements of your product to the new class (after all, it's these added features
that differentiate your product from the competition).

asses in the CIMV2 namespace perfectly represents the
management needs of my product. Can I instrument that class?

No, this is not permitted within the CIMV2 namespace.

cepts of an e-mail account user, an application

er the relevant superclass.

Wi
pro
exa

operating system level, the Post Office would be a service
hine. However, we are instrumenting the product from the point

umers, that is, system administrators. The consumers'
 different layer of abstraction, not merely as a service

 manageable qualities with which they can interact. If
s a service, would it still perform the same function

 administrators? The answer is yes, despite that the
fy it not as

s that can be managed.

One of the abstract CIM cl

My product encompasses the con
running as a service, and an e-mail delivery system. How can I derive from a class
that encompasses all of these?

The simple answer is that you should break the management of your product into its
constituent roles and define these varying elements under separate classes. These classes
then can be positioned within the hierarchy und

My product seems to fit equally well under two superclasses at the same level in the
hierarchy. How should I decide which one to pick?

In a situation like this, you should normalize your class further and attempt to position it
again.

The PostOffice class in our example could be viewed as a Win32 service because it
will run as a service on Windows NT platforms (see last chapter) and also as an
application in its own right. Which is the correct interpretation when trying to place
it in an existing schema?

th the vast array of classes available in CIM and the extended schema, one potential
blem when positioning classes is viewing them at the correct layer of abstraction. For
mple, in our case, the PostOffice class could be viewed as either a specialization of

the class Win32_service that has the manageable characteristics of a service (that is, it is
controlled by the service control manager and can start, stop, pause, and so forth) or as a
separate software feature.

The first school of thought would lead us to classify Post Office as derived from class
Win32_Service. At the

ning on the local macrun
of view of management data cons
view of the Post Office will be at a
but as an application that exhibits
we did not write the Post Office a

om the point of view of systemfr
system views it differently. Therefore, the correct approach would be to classi
a service, but as a software application, specifying the feature

Chapter 7. Developing Management
Applications

With schema design and provider development complete, the next step is to learn to write
applications to administer the managed objects. Typically, client-side applications will provide a
presentation layer for the managed objects. The presentation layer usually includes creating and
deleting setting properties, and calling m management objects, getting and ethods.

s 2000 service will typically retrieve
this configuration to decide whether it should perform debug logging.

at you can manage

For example, let's assume that you have created a class for managing the debug-logging
configuration of your Windows 2000 service. A client-side application will allow you set the
properties that will enable debug logging, and your Window

This chapter focuses on the COM APIs that allow you to interact with WMI so th
your objects. Later, in Chapter 9, we will focus on how you can write an MMC snap-in to provide a

anaged objects.

e Template
are that managed objects can be created, updated,

deleted, enum ou can manipulate the properties on objects, execute methods,
vents. In this chapter, we discuss in detail how you can write
ment objects. We discuss issues such as flag parameters to give you

apter, you should
on. The first half

 half covers more

e debug logging example, to enable debug logging
n machine A and machine B, you must connect to machine A, set the appropriate properties, and

achine B and do the same for that machine. Let us look at some code that connects

HRESULT hr = S_OK;

strNamespace("\\\\.\\root\\CIMV2");
CComPtr<IWbemServices> spServices;

//
hr = spLoc->ConnectServer(bstrNamespace, NULL, NULL, 0,

nt access to system-level objects.

presentation layer for your m

This chapter assumes your familiarity with C++ programming, COM, and the Activ
Library (ATL). It also assumes that you are aw

erated, and queried. Y
and subscribe to receive WMI e
applications to manage manage
a complete guide to making WMI calls in your applications. By the end of this ch

d applicatibe knowledgeable about virtually every key aspect of writing a manage
of this chapter covers the basics, probably enough for most people; the second
advanced topics.

In this chapter we use the terms "management object," "managed object," "object," and "instance"
interchangeably.

Getting Started
The first thing you must do is connect to the WMI service. The WMI architecture is based on
manipulating objects in a single namespace. In th
o
then connect to m
to WMI.

CComPtr<IWbemLocator> spLoc;
hr = spLoc.CoCreateInstance(CLSID_WbemLocator);

CComBSTR b

Connect to CIM

 NULL, 0, 0, &spServices);

// Switch the security level to IMPERSONATE so that the provider
// will gra
hr = CoSetProxyBlanket(spServices, RPC_C_AUTHN_DEFAULT,
 RPC_C_AUTHZ_NONE, NULL, RPC_C_AUTHN_LEVEL_CALL,
 RPC_C_IMP_LEVEL_IMPERSONATE, NULL, EOAC_NONE);

The first call we make is to get a WMI locator interface from the Windows 2000/XP WMI service
This is always the first operation you will do. The

.

process within SVCHOST.

The WMI locator interface looks like this:

// must be zero

ich
ormat the string in the following way:

In the previous code sample, "\\." specifies the current machine, although we could have specified
The

string to connect to the CIMV2 namespace on MACHINE_A would look like:

locale for retrieving localized class
meter starts with "MS_"

glish and "MS_407"
espace. If a

h and German, you will see subnamespaces "ms_409" and
ized namespaces use amended qualifiers, which we discuss later in

t localized, then you should pass NULL.

 WMI calls within dynamic providers. We discuss this in

IWbemLocator interface is our gateway to
connect to any namespace on any machine. This, of course, assumes that the namespace exists and
that the machine has the WMI service. Under Windows 2000, the WMI service runs in a process
called WinMgmt.exe under the local system account. Under Windows XP, WMI is a service

interface IWbemLocator
{
HRESULT ConnectServer(
 const BSTR strNetworkResource,
 const BSTR strUser,
 const BSTR strPassword,
 const BSTR strLocale, // MS_409 for example
 LONG lSecurityFlags,
 const BSTR strAuthority, // Security authority
 IWbemContext *pCtx, // Used in calls within provider
 IWbemServices **ppNamespace); // Your link to the WMI world
};

The first parameter, strNetworkResource, specifies both the machine and the namespace to wh
to connect. F

\\<machine name>\<namespace>

"\\MACHINE_A" to connect to a specific machine. The "root\CIMV2" specifies the namespace.
connect

\\MACHINE_A\root\CIMV2

The strLocale parameter allows you to specify the
information, such as class or property descriptions. The format of this para
and you append the Win32 LCID locale identifier in hex. "MS_409" is U.S. En

 of this parameter makes sense only when you have a localized namis German. Inclusion
namespace is localized in U.S. Englis

 Local"ms_407", respectively.
 chapter. If the namespace is nothe

Use the pCtx parameter only to make
Chapter 12.

The final parameter, ppNamespace, is virtually everything you will need when you access
e IWbemServices interface for:

tances
MI class

management objects. You will need th

• Getting, deleting, and updating WMI ins
• Enumerating all instances of a specific W

s • Performing WQL querie
• Subscribing to events

Before you can use the IWbemServices interface, you must set up the proxy's security context by
calling , which allows you to specify the authentication and impersonation

may
 you

must ensure that you use the correct security context. In this chapter, we assume that you will not be
s is why we call CoSetProxyBlanket instead. We will

discuss security in greater detail later in the chapter.

this chapter demonstrate how to use the IWbemServices interface. First,

e call
 turn out to be
s of instances. Most

of the code samples in this chapter use the synchronous approach to describe the steps

nd immediately returns. You must implement
IWbemObjectSink, which WMI will use to send all instances and other progress information

y be a little

aches.

IWbemObjectSink call returns an IWbemCallResult

terms "object paths" or "object reference"
mentioned regularly. Understanding object paths is important because it is your way to ask WMI for

nce specifically. This can be
easily explained with an example from file systems. The following string represents a path to a

If you provide this path to the file system (using the appropriate APIs), the file system can provide

CoSetProxyBlanket
details of the user's security context. If you do not call CoSetProxyBlanket, then you may
experience access-denied errors from the WMI provider. This is the case when accessing
management objects from the Win32 providers supplied with Windows 2000/XP. Providers
make calls to system-level APIs and/or make security checks against an ACL, and, therefore,

able to call CoInitializeSecurity; thi

All the code samples in
let's examine the three ways that you can make method calls.

1. Synchronous. This performs an operation, and the thread stays blocked until th
completes. Depending on the operation, a synchronous method call can
lengthy, especially when performing queries and enumerating large set

necessary to code your own applications. It is a good starting point.
2. Asynchronous. This starts an operation a

back to you. For example, IWbemObjectSink's Indicate method passes an instance found
during a query back to you. This mechanism may be a little harder to use and involves the
development of more code. Asynchronous development usually involves writing
applications with multiple threads and determining program flow ma
unpredictable. We cover this in more detail later in the chapter.

3. Semisynchronous. This combines parts of the synchronous and asynchronous appro
It allows you to make a call and return immediately without having to provide an
implementation of . Instead, the
interface for you to poll and gather the results of the operation, such as a query. This solves
the problem of thread blockage and the use of multiple threads with no additional code. We
cover this in more detail later in the chapter.

Object Paths Explained
Throughout the rest of this chapter, you will see the

a management object that you want, and it is also WMI's way of providing you a reference about a
particular object.

An object path is a string that can reference either a class or object insta

particular file:

C:\MyDocuments\MyLetter.doc

you with a file handle that you can later use either to read or to write to. This concept is the same
for object paths.

An object path can be either a fully qualified path or a relative path. The format for a fully
path is:

 qualified

\\mach

"GWCOLE",Name=
 "Administrator"

ll
 refer to a class with multiple key properties as a

compound key.

Relative object paths omit the machine and namespace names. The format for a relative object path

All e
examples). The following data types use strings: strings, dates and times, and object references. Key
pro t

Win32_

All bjects. Let us look at how you
can refer to classes, which is useful when you wa

u will see later, static method calls require class
will find more on method calls later. The format for

a fu

\\machine\namespace:classname

n32_VideoController

aths are a bit friendlier than fully qualified paths. The format for a relative

sname

Finally, this is an example of a relative reference to the Win32_VideoController class:

ine\namespace:classname.keyproperty1=value,keyproperty2=value

In the following two examples, the first references a user account and the second references a
shared directory.

\\GWCOLE\root\CIMV2:Win32_UserAccount.Domain=

\\GWCOLE\root\CIMV2:Win32_Share.Name="C$"

Notice that a dot separates the class name from the first key property and that a comma separates a
subsequent key properties. We collectively

is:

classname.keyproperty1=value,keyproperty2=value

The same object path examples above would look like this as relative object paths:

Win32_UserAccount.Domain="GWCOLE",Name="Administrator"
Win32_Share.Name="C$"

Using relative object paths is easiest in most cases because you specified the machine and
namespace during the initial connection to WMI (using the ConnectServer call).

 key properties that use a string data type need to be enclosed in quotation marks (as in the abov

per ies that are numbers follow the equals operator, as in this example:

DMAChannel.DMAChannel=2

 the examples so far have been references to actual management o
nt to gather information about a class (such as

enumerating the defined properties). As yo
references, rather than an object reference. You

lly qualified path to a class is:

Here is an example referencing the Win32_VideoController class on a particular machine:

\\GWCOLE\ROOT\CIMV2:Wi

As before, relative class p
path to a class is:

clas

Win32_VideoController

Object paths are not case sensitive, and they must not contain spaces except inside string literals.

ich management object you're after. For example, if you decide to gain
 of a shared directory on a machine, GetObject is the operation you

n access to a management object, you need a valid object path.
he Win32_Share class in the CIMV2 namespace, you will see

it has one key property, "Name". If you expect the C$ shared directory on a machine to exist,

other

Getting an Object
Getting an object is one of the most basic operations to perform. This kind of operation is especially
useful when you know wh

ess to some propertiesacc
should perform. Before you can gai

e is an example: If you look at tHer
that
you can get a management object that represents the shared directory. You need to generate an
object path that includes the one and only key value, Win32_Share.Name="C$", and call
GetObject.

You may also get an object path from a property. WMI includes a data type that can reference
objects; this is an object reference. Association classes include properties that are objec

ies and pass the object refere
t references
nce (which

GetObject

ode illustrates how to get the path of a shared directory:

n32_Share.Name=\"C$\"");

ctory object
tance;
rPath, WBEM_FLAG_RETURN_WBEM_COMPLETE,

ulating object properties will be covered later in the
e used.

he object path
t

to make an association. You may read one of these propert
is a string) straight into the call. Either way, as long as you have a valid object path, you
will be able to access the management object.

The following c

CComBSTR bstrPath("Wi

// Get the shared dire
CComPtr<IWbemClassObject> spIns

 spServices->GetObject(bsthr =
 NULL, &spInstance, NULL);

// Get a property from the object
CComVariant var;
hr = spInstance->Get(CComBSTR("Path"), 0, &var, 0, 0);

_tprintf(_T("Win32_Share.Name=\"C$\" path is %ls\n"), V_BSTR(&var));

The above example merely retrieves the path of the shared directory and outputs it to the screen.
WBEM_FLAG_RETURN_WBEM_COMPLETE means complete the entire call before returning (implied by
default because it has a value of zero). Manip
chapter, as will other flags that can b

A portion of the interface looks like this: IWbemServices

interface IWbemServices

{
HRESULT GetObject(

strObjectPath, // T const BSTR
lFlags, LONG // How to obtain the objec

 IWbemContext *pCtx, // Used in provider
 IWbemClassObject **ppObject, // The managed object

**ppCallResult); // Don't use this for now IWbemCallResult

};

The strObjectPath parameter lets you pass the object path of the management object to which

gs that

synchronous calls, will be covered later in the chapter.

, which

lete some task; you
ve this by

_Share class. You could perform the following query to

st of objects, and
 enumerate the objects in

ow is the name of the class you would like to

r a given class is one of the easiest ways to discover what management
sses in CIM Studio (which comes as a developer

ee what
pter 4

you'd like to gain access.

The lFlags parameter specifies how the GetObject call should be made. More advanced fla
be passed, such as WBEM_FLAG_RETURN_IMMEDIATELY, which allows you to perform can

semi

The ppObject out-parameter returns the management object specified in the strObjectPath
parameter. All management objects are represented through an IWbemClassObject interface
provides access to all the properties as defined in the management class.

Enumerating Objects
In some cases, you will want a complete list of all management objects of a given class. Suppose
you have a user interface that allows the user to select a shared directory to comp

ould want to display a list of all the available shared directories. You can achiew
enumerating all the instances of the Win32
achieve the same result:

SELECT * FROM Win32_Share

However, performing a query involves processing the query, obtaining a li
mparing the query against each object. In this case, it is more efficient toco

a class. To perform an enumeration, all you need to kn
enumerate.

Enumerating objects fo
objects are available. When you move through cla
tool in the Platform SDK), one of the first things you do is to look at a list of instances to s
can be managed. Review Cha 's quick introduction to CIM Studio. You may also want to

 closely mimics the IWbemServices
ent applications.

d directories:

;

 &uNumOfInstances);

check out wbemtest, another WMI SDK tool that very
ing your manageminterface. It can be useful in develop

The following code sample illustrates how to obtain a list of share

// Get list of objects for the Win32_Share class
ct> spEnumInst; CComPtr<IEnumWbemClassObje

hr = spServices->CreateInstanceEnum(CComBSTR("Win32_Share"),
 WBEM_FLAG_SHALLOW, NULL, &spEnumInst);

bool bFinished = false;
while (!bFinished)
{
 // Get the Win32_Share instance
 ULONG uNumOfInstances = 0;
 CComPtr<IWbemClassObject> spInstance
 HRESULT hrNext = spEnumInst->Next(10000, 1, &spInstance,

 if (hrNext == WBEM_S_FALSE)
 bFinished = true;
 else if (hrNext == WBEM_S_NO_ERROR)
 {
 // Get properties from the Win32_Share instance

et(CComBSTR("__RELPATH"), 0,
);

t(CComBSTR("Path"), 0, &varPath, 0, 0);

sed to gain access to every
 interface and the

e code
stanceEnum to return only an
k check is done to determine

e and if there are, some output is made. Notice that
LPATH e: _RELPATH is the relative path of the object. WMI has

many system-provided properties for classes and instances; we discuss these in more detail later in

 const BSTR // Class name to enumerate

ss parameter specifies the name of the class you want to enumerate and is returned in
the ppEnum out-parameter. You can specify how the enumerator should be built based on the

eter. For instance, if the class you want to enumerate is a base (or abstract) class

 CComVariant varRelPath;
 hr = spInstance->G
 &varRelPath, 0, 0

 CComVariant varPath;
 hr = spInstance->Ge

 _tprintf(_T(" %ls path is %ls\n"), V_BSTR(&varRelPath),
 V_BSTR(&varPath));
 }
}

The CreateInstanceEnum call creates an enumerator that can be u
stance of that class. The enumerator is returned in an IEnumWbemClassObjectin

Next method call provides access to an IWbemClassObject interface (that is, an instance). Th
sample specified , which inWBEM_FLAG_SHALLOW structed CreateIn
numerator that has the instances of the Win32_Share class. A quice

whether there are more instances to retriev
 was specified as a property nam__RE

the chapter. The output of this on our machine produces the following:

Win32_Share.Name="C$" path is C:\
Win32_Share.Name="IPC$" path is
Win32_Share.Name="ADMIN$" path is C:\WINNT

A portion of the IWbemServices interface looks like this:

interface IWbemServices
{
HRESULT CreateInstanceEnum(

 strClass,
 LONG lFlags, // WBEM_FLAG_SHALLOW
 IWbemContext *pCtx, // Used in providers
 IEnumWbemClassObject **ppEnum); // Your Enumerator
};

The strCla

lFlags param
(introduced in Chapter 5), then you might want to use WBEM_FLAG_DEEP instead of

 provide instances not only
 us have a look at an

ple. Suppose you want to see all security accounts on your system. If you use CIM Studio (see

WBEM_FLAG_SHALLOW to build your enumerator. This will cause WMI to
the base class but also of all its derived classes in the enumerator. Letof

exam
Figure 7.1) to look at the CIMV2 schema, you will see that the Win32_Account is a base class for
Win32_SystemAccount, Win32_Group, and Win32_UserAccount classes. If you call
CreateInstanceEnum for the Win32_Account ass and specify WBEM_FLAG_DEEP, you will get an

r that will contain all instances of Win32_SystemAccount, Win32_Group, and
 cl

enumerato
Win32_UserAccount.

Figure 7.1. Win32_Account class hierarchy

To recap, the following call will provide only an enumerator of all the instances of the
Win32_SystemAccount class.

CComPtr<IEnumWbemClassObject> spEnumInst;
ccount"),

ically is used when

D_ONLY is one of them; its
y is faster and requires

one or Reset methods. If you do not need to

d by default (because it has the value zero). This flag
numerator is released. In practice, the

erating has a very large collection
 being returned by
chronous version,

sync. (A forward-only enumerator can save some memory, but it typically
large collection of instances.) Other flags will be

ate management objects, you need to take into account how, if at
all, those objects can be created. This applies equally to how you foresee the creation of your own

n

hr = spServices->CreateInstanceEnum(CComBSTR("Win32_SystemA
 WBEM_FLAG_SHALLOW, NULL, &spEnumInst);

This call will provide an enumerator of all the instances of the Win32_SystemAccount,
Win32_Group, and Win32_UserAccount classes. Note that WBEM_FLAG_DEEP typ
ll instances of classes derived from a base class are required. a

CComPtr<IEnumWbemClassObject> spEnumInst;
hr = spServices->CreateInstanceEnum(CComBSTR("Win32_Account"),
WBEM_FLAG_DEEP, NULL, &spEnumInst);

Other flags can be specified in the paramlFlags eter. WBEM_FLAG_FORWAR
se produces a forward-only enumerator. This type of enumerator generallu

less memory; however, you won't be able to call the Cl
that you specify this flag on all your calls. use Clone or Reset, we recommend

The WBEM_FLAG_BIDIRECTIONAL is implie
means that WMI will retain pointers to instances until the e

stances are not released immediately. If the class you are enumin
of instances, you may experience WBEM_E_OUT_OF_ MEMORY
reateInstanceEnum. In this case, you should use the asynC
CreateInstanceEnumA
won't be enough of a saving if you expect a very
discussed later in the chapter.

Creating an Object
When writing applications to cre

management objects when designing your schema. Creating a shared directory on a machine is a
example of creating an object. There are three ways to look at the creation of objects.

1. Use the standard mechanism provided by WMI through IWbemServices.
2. Use a method such as Create. The Win32_Share class does this.
3. You cannot create instances at all, as in the case of the Win32_ComputerSystem class.

First Point

When creating instances in the standard mechanism, you need to spawn an uncommitted instance
 IWbemServices

nce before
ing it to PutInstance. Key properties identify an object explicitly and are required to access it

ty if it dis t
 be

g

 DATETIME DatePublished;

};

 be set are BookTitle and AuthorName. This means that the other
cially if you

this danger is
e remaining two

rs.

ave the
 qualifier.

.
would need to set up a method call and then execute it. The next time you enumerate the

Win32_Share class, the new instance will be listed as part of the collection. Let us look again at the

ample_Book

 DATETIME DatePublished;
 uint8 NumberOfChapters;

ring BookTitle,
y,

based on the class definition, set your properties, and call PutInstance on the
 interface. (The code sample later in this section illustrates this process.)

Generally, you are required to set all the key properties on the newly spawned insta
pass
in the future. In some cases, the provider may assign a value to a key proper covers tha
one does not exist, but this is not common. It is considered best practice that the key properties
set when you create your management objects. To see what this means, let us look at the followin
class:

class Sample_Book
{
 [key] string BookTitle;
 [key] string AuthorName;
 string Summary;

 uint8 NumberOfChapters;

The only properties that have to
properties need not be set to create a valid instance. This can pose some danger, espe

, decide that you also require Summary and NumberOfChapters properties. However
thnot so bad if you control the source code in the provider. You simply ensure that

e required properties are set; otherwise PutInstance could return something lik
WBEM_E_INVALID_OBJECT. Of course, this isn't guaranteed with other provide

WM
supportsCreate

I classes that support the standard mechanism of creating management objects h

Second Point

To clearly state what information is required to create an instance, some classes use a method to
create an instance. This is the case with the Win32_Share class, which has a method called Create
You first

Sample_Book class, this time with a method to create an instance:

class S
{
 [key] string BookTitle;
 [key] string AuthorName;
 string Summary;

 [static, implemented] boolean Create([in] st
 [in] string AuthorName, [in] string Summar
 [in] uint8 NumberOfChapters);
};

As it is clear to see, the Create method requires both Summary and NumberOfChapters values, as
well as the key values. Also, notice that the method returns a boolean value to indicate whether the
method succeeded. (You could instead return a uint32 if you want to return a HRESULT.

However, remember that the method can be called from scripting environments where HRESULT
may not be the most suitable return value.) Here are other reasons that you might want a method for
the creation of instances:

s

1. The key values are not known in advance and are generated by the provider.
 into the method for more context information

ve one or more out-parameters (other than the return value).

d creates instances.

f

. We discuss calling

ClassObject> spClass;

// Set some properties on the object

ce->Put(CComBSTR("AuthorName"), 0, &varAuthor, 0);

 Management

Sample_Book
al operations such as setting and

getting properties can be performed. Next, we do exactly that, setting all the properties (as long as

2. You may want to have specific flags passed
when creating the instance.

3. You may want to recei

If you find that a method exists for the creation of instances, it may contain the Constructor
qualifier to signify that the metho

Third Point

Instances cannot be created for some classes, as in the case of the Win32_ComputerSystem class. I
you think about it, it does not make sense to have more than one instance of this class. You may
find with your own schema that you cannot create instances and the only supported operations
allowed are to update, enumerate, and perform queries.

Example

Let's examine how you might create an object with the standard mechanism
methods on classes later in the chapter.

// Get class so we can spawn an instance of it
CComPtr<IWbem
hr = spServices->GetObject(CComBSTR("Sample_Book"), 0,
 NULL, &spClass, NULL);

// Make new object
CComPtr<IWbemClassObject> spInstance;
hr = spClass->SpawnInstance(0, &spInstance);

CComVariant varBookTitle("Developing WMI Solutions");
hr = spInstance->Put(CComBSTR("BookTitle"), 0, &varBookTitle, 0);

CComVariant varAuthor("Gwyn Cole");
hr = spInstan

CComVariant varSummary("A cool book on Windows
 Instrumentation");
hr = spInstance->Put(CComBSTR("Summary"), 0, &varSummary, 0);

CComVariant varNumOfChapters(int(11));
hr = spInstance->Put(CComBSTR("NumberOfChapters"), 0,
 &varNumOfChapters, 0);

// Commit to create instance in WMI
hr = spServices->PutInstance(spInstance, WBEM_FLAG_CREATE_ONLY,
 NULL, NULL);

The first task is to spawn an uncommitted instance based on the class definition. Calling
SpawnInstance does this for the class in this case. We call this an uncommitted
instance because it has not yet been passed to WMI and norm

we include the key pro e been set, use the
i interfac PutInstance. The provider will
h s fr ance and do whatever the provider needs to do to

the in

ha awnIns look

ce lassO

 LONG lFlags,
 IWbemClassObject **ppNewInstance);
};

nInstance ret wIns in the new instance,
r pr to be s s par g to be 0.

ethod looks like this:

ce ervic

 Pu e(
Cla *p

 LONG lFlags,
 IWbemContext *pCtx, // Used in providers

ppCallResult

m ance pI
kind of put-operation that must be performed.

AG_ MI t tances. If you
already had an instance with identical key pro
WBEM_E_ALREADY_EXISTS. If we had used WBEM_FLAG_CREATE_OR_UPDATE instead, the

nc uld n a
AG_ ONLY in

WBEM_FLAG_UPDATE_ONLY tion.

lag ter ha _RETU you will receive an
llR terfac the ter. This allows you to

m h

An example of creating an object with a method will be demonstrated later in the chapter when we

n requirement when
writing applications. As with creating instances, there are three options: to use the standard

cause
you still make a call to PutInstance. The general process is to get your instance, change the

perties) of the new instance. After all the properties hav
e to pass the instance to WMI by calling IWbemServ

extract all t
ces
e propertie om the inst physically

create stance.

This is w t the Sp tance method s like:

interfa IWbemC bject
{
HRESULT SpawnInstance(

 // must be zero
 // New instance

When Spaw urns, the ppNe tance out-parameter will conta
ready fo operties et. The lFlag ameter is documented as havin

The PutInstance m

interfa
{

IWbemS es

HRESULT
 IWbem

tInstanc
ssObject Inst, // Instance to create/update

 // Create/update flags

 IWbemCallResult **
};

); // Don't use this for now

The uncom itted inst is passed in the nst parameter. The lFlags parameter specifies the
 In the code sample, we used

WBEM_FL CREATE_ONLY, which tells W hat this operation can create only ins
perties, the PutInstance call would fail with

PutInsta e call wo
CREATE_

ot have failed and
 when you do not

n update would have been attempted. Use
tend for the instance to be updated accidentally. We

 in the next sec
WBEM_FL
cover updating instances such as

If the lF s parame
esult

s WBEM_FLAG
e pointer from

RN_IMMEDIATELY set, then
ppCallResult out-parameIWbemCa in

perform se isynchronous calls. We discuss t is later in the chapter.

discuss WMI method calls.

Updating Objects
Updating existing management objects with new property values is a commo

mechanism to update, to use a method to update, and tobe unable to update at all. The standard
mechanism for updating instance property values is very similar to creating a new instance be

properties, and call the PutInstance method. The following code sample changes a property valu
the book instance we created earlier:

e on

// Get the Sample_Book object we want
stance;

stance, NULL));

omVariant varNumOfChapters(int(12));
 0, &

 Commit to update instance in WMI
nstance(spInstance, WBEM_FLAG_UPDATE_ONLY,

number of chapters
ll the other property values remained unaffected. However, notice the flags

e call: This time WBEM_FLAG _UPDATE_ONLY was specified. The
Y already existing instance. If the
id not exist, the PutInstance method would return WBEM_E_NOT_FOUND.

tever is
n

ribed in the
us section. For example, the Win32_Share class has a method called SetShareInfo in which

rties, can be changed. The
Change and

 the standard mechanism of updating management objects have the

ts. For instance,

updating
thod to

delete at all.

n32_VideoController class, it makes no sense to delete instances.
o remove the instance would involve physically removing the video

// Generate the object path
CComBSTR bstrPath = _T("Sample_Book.BookTitle=\" Developing WMI
 Solutions\", AuthorName=\"Gwyn Cole\"");

CComPtr<IWbemClassObject> spIn
hr = spServices->GetObject(bstrPath, 0, NULL, & spIn

// Change the number of chapters
CC
hr = spInstance->Put(CComBSTR("NumberOfChapters"),
 varNumOfChapters, 0);

//
hr = spServices->PutI
 NULL, NULL);

As you can see, updatin
perty for this book; a

g an instance is straightforward. We changed only the
pro
parameter in the PutInstanc

 will allow only for an update to anWBEM_FLAG_UPDATE_ONL
le_Book instance dSamp

Using WBEM_FLAG_CREATE_OR_UPDATE instead would have allowed the provider to do wha
ate the instance, even if it had to create it. Use WBEM_FLAG_UPDATE_ONLY inecessary to upd

situations where you do not want accidental creation of instances.

Some
revio

 classes use methods to update instances with very similar reasons to those desc
p
the description of the shared directory, together with some other prope
Win32_Service class is another example: It has two methods to update an instance,
ChangeStartMode.

WMI classes that support
supportsUpdate qualifier.

Deleting an Object
When writing applications, you will occasionally want to delete management objec
you might want to remove access to an already existing shared directory, which would involve
deleting the instance of the shared directory management object. As with creating and
instances, you have three options: to use the standard mechanism to delete, to use a me
delete, and to be unable to

For some classes, such as the Wi
This is a hardware device, and t

. controller from your computer

The easiest method of removing instances is to use the standard mechanism to delete an object. All
you need is a valid object path and to make a call to DeleteInstance. WMI classes that support the

ilable. Here are some reasons that you
might want a method for the deletion of instances:

ing the instance.
2. You may want to receive one or more out-parameters other than the return value.

ists for the deletion of instances, then you can expect the standard
pends on the provider.

ok class, this time with a method to delete an instance:

BookTitle;

e([in] string BookTitle,
 [in] string AuthorName, [in] string Summary,

the key properties of the class? How will

static s in
 Delete method can be called only relative to the management

Deleting an instance is a very easy operation with the standard mechanism. You need only to pass
an object pa Let us
remove the

ne
ST

olut e\"");

Dele
= sp NULL, NULL));

e Dele

erfa

standard mechanism of deleting management objects have the supportsDelete qualifier.

In some classes, you may find that a deletion method is ava

1. You may want to have specific flags passed into the method for more context information
when delet

If you find that a method ex
mechanism to fail. This de

Let us look again at the Sample_Bo

class Sample_Book
{
 [key] string
 [key] string AuthorName;
 string Summary;
 DATETIME DatePublished;
 uint8 NumberOfChapters;

 [static, implemented] boolean Creat

 [in] uint8 NumberOfChapters);
 [implemented] boolean Delete();
};

Did you observe that the Delete method does not include
the Delete method know which book to delete? The key reason is that the Delete method is an
object method and is relative to the management object. The Create method was defined with the
static qualifier, which defines it as a class method. This effectively means the method can be
called without reference to any instances of the class. The qualifier is the same concept a
object-oriented programming. The
object.

th to DeleteInstance and the provider will attempt to remove the instance.
 instance that we created earlier: Sample_Book

// Ge
CComB

rate the object path
R bstrPath = _T("Sample_Book.BookTitle=\" Developing WMI

 S

ions\", AuthorName=\"Gwyn Col

//
hr

te Sample_Book
Services->DeleteInstance(bstrPath, 0,

Th teInstance method looks like this:

int
{

ce IWbemServices

HRESULT
 const BSTR

 DeleteInstance(
strObjectPath, // Object path to DELETE

 LONG lFlags, // Usually zero
 IWbemContext *pCtx, // Used in providers

emCallResult **ppCallResult); // Not needed for now

The strO ifies the object path of the management object to delete. When
teI
nce

careful not to hold onto an object (an IWbemClassObject pointer) and later delete the object while
still holding a reference to the instance. This will result in unpredictable behavior.

meter allows just one flag, WBEM_FLAG_RETURN_IMMEDIATELY, which is used when

ms of gaining access to managed objects.
The reason is that it allows great flexibility in specifying exactly what you want. When writing your

ly find that you must perform queries that fall into one of two
categories:

1. You need context-relative information.
2. You nee

 examp xt-relative information, suppose that a task requires a security principle
se wing

ECT * FR AIN_A"

is query w A. You can also use a
 improve perform
roper need all

operties identifier) to
 some

N_A"

hes
provement can vary from

se WMI
alls CreateInstanceEnumAsync for a complete list of all the instances together with all the

property values set. WMI then processes each instance and if the instance matches the query, WMI
tor that is output to the caller.
 providers support query

 IWb
};

bjectPath parameter spec
Dele
insta

nstance is called, the provider will verify that the object path does reference a valid
and then it will attempt to remove it permanently. When writing your applications, be

The lFlags para
executing semisynchronous calls.

Performing Queries
Performing queries is one of the most popular mechanis

own applications, you will inevitab

d to improve performance.

For an le of conte
(that is, a u
WQL query:

r) from a particular domain. A user interface application could formulate the follo

SEL OM Win32_UserAccount WHERE Domain="DOM

Th ould provide you with a full list of all the users in DOMAIN_
query to
for all p

ance by specifying the properties you require. The above example asked
ties from the Win32_UserAccount class (that is, the SELECT *). You do not

the pr
perform

 if you simply want to display a list of users and use the SID (security
 task. You can revise the query to ask specifically for the display name and SID.

SELECT FullName, SID FROM Win32_UserAccount WHERE Domain="DOMAI

This query would return only the FullName and SID property values for each instance that matc
the query (WHERE Domain="DOMAIN_A"). However, the performance im
provider to provider. WMI providers do not have to support query optimization, in which ca
c

copies the instance and the required properties to the query enumera
The bottom line is that the speed of queries is dependent on whether
optimization in their implementation.

Performing queries is in some ways similar to enumeration. When we dealt with enumeration
earlier in the chapter, you learned that you could get all of the instances of a specific class and

access the instances through an enumerator (IEnumWbemClassObject). When performing queries,
you still end up with an enumerator that allows you to enumerate all of the instances
your query.

that match

For more information on all the different types of queries that can be performed, review Chapter 3
n.

es that have been

ue");

numInst;
_T("WQL")), bstrQuery,
RETURN_IMMEDIATELY, NULL,

tance;

 // Get properties from the object

yName")), 0, &varName, 0, 0);

 _tprintf(_T(" %ls\n"), V_BSTR(&varName));

urned

 if there are, some output (the display name of the service) is made.

ks like this:

 const BSTR strQueryLanguage, // Must be 'WQL'

WbemClassObject **ppEnum); // Results from query
};

The strQueryLanguage parameter specifies the type of query to perform. The current
implementation of WMI supports only "WQL".

and the Platform SDK documentatio

The following code sample illustrates how to obtain a list of Windows Se
arted:

rvic
st

CComBSTR bstrQuery("SELECT * FROM Win32_Service WHERE Started=tr

// Execute query
CComPtr<IEnumWbemClassObject> spE
hr = spServices->ExecQuery(CComBSTR(
 WBEM_FLAG_FORWARD_ONLY | WBEM_FLAG_
 &spEnumInst);

bool bFinished = false;
while (!bFinished)
{
 // Get the instance
 ULONG uNumOfInstances = 0;
 CComPtr<IWbemClassObject> spIns
 HRESULT hrNext = spEnumInst->Next(10000, 1, &spInstance,
 &uNumOfInstances);

 if (hrNext == WBEM_S_FALSE)
 bFinished = true;
 else if (hrNext == WBEM_S_NO_ERROR)
 {

 CComVariant varName;
 hr = spInstance->Get(CComBSTR(_T("Displa

 }
}

In this code sample, the ExecQuery call performs the query (if it is valid) and creates an enumerator
that can be used to gain access to every instance that matches the query. The enumerator is ret
in an IEnumWbemClassObject interface. It does a quick check to ensure that there are more
instances to retrieve, and

The ExecQuery method loo

interface IWbemServices
{
HRESULT ExecQuery(

 const BSTR strQuery, //The WQL query to perform
 LONG lFlags, // How to perform the query
 IWbemContex *pCtx, // Used in providers
 IEnum

The strQuery parameter is the query that you wish to perform. If the query i
get an enumerator in the ppEnum out-parameter that you can use to gain acces

s successful, you will
s to each management

stances, WBEM_E_ OUT_OF_MEMORY

MI has some system-provided properties that are automatically included in
erties are __SUPERCLASS, __DYNASTY, __RELPATH, __DERIVATION,
, and . The meaning and purpose of these properties are discussed

object. If the query is invalid or the class specified is not found, ExecQuery will return
WBEM_E_INVALID_QUERY or WBEM_E_NOT_FOUND, respectively.

Several flags can be specified in the lFlags parameter. WBEM_FLAG_FORWARD_ONLY, which
produces a forward-only enumerator, is one of them.

If the query you are processing has a very large collection of in
may be returned by ExecQuery. In this case, you must use the asynchronous version,
ExecQueryAsync.

As mentioned earlier, W
every object. These prop

, __SERVER __NAMESPACE __PATH
in Chapter 3. We mention these now because, depending on the type of query you perform, these

ay not be set.

rts with SELECT *, you can be assured that all the system-provided
e following case:

If you perform any query that specifies specific properties in the SELECT statement, then the system-
ailable, as in the following case:

OM Win32_UserAccount WHERE Domain="DOMAIN_A"

system-provided properties may or m

If you perform any query that sta
erties will be available for you, as in thprop

SELECT * FROM Win32_UserAccount WHERE Domain="DOMAIN_A"

provided properties will not be av

SELECT FullName, SID FR

All is not lost; you can instruct WMI to include the system-provided properties that can identify the
location of a management object. To do this, you need to specify WBEM_FLAG_ENSURE_LOCATABLE
when calling ExecQuery. The resulting instances in the returned enumerator will include
__RELPATH, __SERVER, __NAMESPACE, and __PATH.[1]

[1] by specifying the system properties in the SELECT statement, although it is much easier
NSURE_LOCATABLE flag.

vided properties being available. The

 Note that you can achieve the same result
simply to use the WBEM_FLAG_E

There are occasions when you depend on the system-pro
MMC snap-in in Chapter 9 will demonstrate the use of system-provided properties when creating

.

xtended
Extended WQL offers additional SELECT clauses such as DISTINCT, JOIN, and

EPART. The WBEM_FLAG_PROTOTYPE allows you to obtain a class definition in the result set

So far in this chapter, you have seen a few occasions in which you might want or need to make
ethods for the creation and deletion

and updating management objects in the user interface

Microsoft Systems Management Server implements an extended version of WQL called E
WQ
DAT

L.

that uses the JOIN clause.

Making Method Calls

method calls. For instance, you saw that we could have called m

of our class.Sample_Book Other examples include changing the configuration of
m). You may discover in your own

shared directories

es, and in this case methods are the
 creating, changing, and deleting instances, we urge you to use

these types of operations where possible. However,
ations:

sed into the method for more context information

lue.
rrors you'd like to return. You

ype for the

ces at the same time.

2. Calling methods on objects

 Let

mplemented] void foo();
};

The class has a static method that takes no parameters and returns (effectively meaning no

l.
e passed a class reference, Sample_Class. The second parameter is the name of

the method you want to call—in this case, foo. Let us revise our method declaration:

oval of the static qualifier. The
 any instances of the

erence. With the
 must now use an object reference. Let us look at the following code:

Class.Name=\"Gwyn\""),

and Windows Services (as well as starting and stopping the
hema designs that you need to add behavior to your classsc

answer. Although we see methods for
the standard mechanisms provided by WMI for
exceptions are appropriate when you find yourself in one or more of the following situ

1. You may want to have specific flags pas
eleting instances. when creating and d

2. You may want to receive one or more out-parameters other than the return va
3. None of the WMI HRESULTs accommodate the types of e

can define the method return value so that you can return an appropriate data t
errors you would like to pass back to the caller.

4. You may want to create multiple instan

Calling methods fall into two categories:

1. Calling static methods on classes

To illustrate making method calls in detail, we shall use a fictitious class with a method called foo
and decorate the method with different parameters so that you can gain a clear understanding.
us look at this declaration:

class Sample_Class
{
 [key] string Name;
 [static, i

void
return value). So let us see what code is needed to make this method call:

hr = spServices->ExecMethod(CComBSTR("Sample_Class"), CComBSTR("foo"),
 0, NULL, NULL, NULL, NULL);

That's it! The first parameter provides a class or object context of the method you would like to cal
In the above case, w

class Sample_Class
{
 [key] string Name;
 [implemented] void foo();
};

Not much difference. The only change we made was the rem
static qualifier meant that the method could be called without reference to

at happened in the code sample: We passed a class refclass. This is exactly wh
bove change to foo, wea

hr = spServices->ExecMethod(CComBSTR("Sample_
 CComBSTR("foo"), 0, NULL, NULL, NULL, NULL);

Simple. As you can see, an object reference was passed instead. Unfortunately, methods that take
foo to

o obtain the return value
h returns an

lassObject
IWbemClassObject

n. All method calls use this interface to pass back the
e return value exists in a property called

. Let's see some code

value

ke the Delete method call on the
Win32_Share class. Finally, let's make our foo method take an in- and out-parameter.

cla
{
 [key] string Name;

Developing code to pass method in-parameters is significantly more involved. To prepare the
ethod's in-parameters requires access to the method declaration (made from the class definition).

You will need to spawn a brand new instance of the method in-parameter definition so that
 passed to the ExecMethod call and the
s see some code:

// Get the methods in-parameters

no parameters and have no return value are not practical for most purposes. So let's extend
turn a value: re

class Sample_Class
{
 [key] string Name;
 [implemented] string foo();
};

From a code perspective, things start getting more involved. We now need
h parameter, whic

 t
from the ExecMethod call. This is the purpose of the sixt
IWbemClassObject interface. But, you're probably asking yourself, isn't the IWbemC

t instances? The best way to visualize the interface used for representing objec
interface is as a container for useful informatio
method out-parameters as well as the return value. Th
ReturnValue, hence none of your method out-parameters can use this name

: that retrieves our string return value on foo

CComBSTR bstrMethod("foo");
CComBSTR bstrObject("Sample_Class.Name=\"Gwyn\"");

CComPtr<IWbemClassObject> spOutParams;

thod, 0, NULL, NULL, hr = spServices->ExecMethod(bstrObject, bstrMe
 &spOutParams, NULL);

// Inspect out-parameters for return
CComVariant varReturnValue;

s->Get(L"ReturnValue", 0, &varReturnValue, 0, 0); hr = spOutParam

_tprintf(_T("\n %ls::%ls returned %ls\n"), bstrObject, bstrMethod,
 V_BSTR(&varReturnValue));

The above code now has all the information you will need to ma

ss Sample_Class

 [implemented] string foo([in] uint32 inparam, [out] boolean outparam);
};

m

parameter values can be set. Finally, the in-parameters are
provider will extract the parameters for the operation. Let'

CComBSTR bstrMethod("foo");
CComBSTR bstrObject("Sample_Class.Name=\"Gwyn\"");
CComBSTR bstrClass("Sample_Class");

// Get the class definition so we can get access to the method in-parameters
CComPtr<IWbemClassObject> spClass;
hr = spServices->GetObject(bstrClass, 0, NULL, &spClass, NULL);

CComPtr<IWbemClassObject> spInParamsDefinition;
hr = spClass->GetMethod(bstrMethod, 0, & spInParamsDefinition, NULL);

// Spawn an instance of the in-parameters for our use
CComPtr<IWbemClassObject> spInParams;

0, &spInParams);

//
CCo
hr = s

//
CCo t
hr = s

utParams->Get(L"ReturnValue", 0, &varReturnValue, 0, 0);

//

//
CCo
hr

// out

As with out-param
IWb so if the method
you a ing that all the
parame

Win32_ Share class. Here is an almost
e Win32_Share class:

are: CIM_LogicalElement

tatic, implemented] uint32 Create([in] string Path, [in] string Name,
 [in, ValueMap {"0", . . . }, Values {"Disk Drive", . . . }] uint32 Type,

,

hr = spInParamsDefinition ->SpawnInstance(

Setup required in-parameters for method
mVariant varInParam(int(12345));

pInParams->Put(L"inparam", 0, & varInParam, 0);

Execute method
mP r<IWbemClassObject> spOutParams;

pServices->ExecMethod(bstrClass, bstrMethod, 0, NULL, spInParams,
 &spOutParams, NULL);

// Inspect out-parameters for return value
CComVariant varReturnValue;
hr = spO

ReturnValue contained in V_BSTR(&varReturnValue)

Inspect the methods out-parameters (other than the method return value)
mVariant varOutParam;

pOutParams->Get(L"outparam", 0, & varOutParam, 0, 0); = s

param value contained in V_BOOL(&varOutParam)

eters, all in-parameters are contained within an instance of the
emClassObject interface. Each property corresponds to a method parameter,
 pl n to call has six parameters, then you will have to set six properties (assum

ters are required and are not optional).

To provide a more serious code sample and introduce some other issues that you most likely will
have to deal with, we shall create a shared directory with the
complete declaration of th

class Win32_Sh
{
 [read] string Name;
 [read] boolean AllowMaximum;
 [read] uint32 MaximumAllowed;
 [read] string Path;
 . . .

 [s

 [in] uint32 MaximumAllowed,
 [in, optional] string Description,
 [in, optional] string Password,
 [in, optional] Win32_SecurityDescriptor Access);

 [implemented] uint32 SetShareInfo([in, optional] uint32 MaximumAllowed
 [in, Optional] string Description,
 [in, optional] Win32_SecurityDescriptor Access);

 [implemented] uint32 Delete();
};

Let's focus on the Create method. It has seven in-parameters, Path, Name, Type, Max
escription

imumAllowed,
rward to

age for a directory, you will see the user interface
 method's parameter types and declarations in

ognize, such as
 parameter is an exception: It passes a

nded for use in method parameters usually are
inherited from .

arations use qualifiers to provide more context information. The [in] qualifier
specifies that the parameter is an in-parameter and [optional] means that it is not required. The

 "0", "1", "2", "3",

rint Queue Admin", "Device Admin", "IPC Admin"

Values ValueMap e to work out what the Type parameter
meter is 0 (in integer form), specifies "Disk Drive" and 1 specifies

aid the

); // Method to call
s to

rom the class
spClass;

Ptr<IWbemClassObject> spInParamsDefinition;
hr = spClass->GetMethod(bstrMethod, 0, & spInParamsDefinition, NULL);

// Setup required in-parameters for method
CComVariant varName("Temp");

D , Password, and Access. Each of these parameters should be straightfo
understand; if you look at the sharing property p

rs. Let's discuss the Createthat map to these paramete
detail.

First, you will see that mo
g and uint32. The Access

st parameters take standard types that you already rec
strin
Win32_SecurityDescriptor object. Classes inte

Win32_MethodParameterClass

All parameter decl

ValueMap qualifier specifies the values that are valid for the property or parameter. The full
ValueMap declaration that follows shows various integers' values that are valid for the Type
parameter.

ValueMap
{

 "2147483648", "2147483649", "2147483650", "2147483651"
}

What do these values mean or represent? That is the role of the Values qualifier, which provides a
textual description of the values in the ValueMap. Here is the full Values declaration:

Values
{
 "Disk Drive", "Print Queue", "Device", "IPC",
 "Disk Drive Admin", "P
}

Using the and qualifiers, it is possibl
means or should be. The para
"Print Queue" and so on. You should use these types of qualifiers in your own schema to

nderstanding of your method parameters and class properties. u

The code that follows calls a static method to create a shared directory:

CComBSTR bstrMethod("Create"
CComBSTR bstrClass("Win32_Share"); // The class the method belong

/ Get the class definition so we can get access to the method f/
CComPtr<IWbemClassObject>
hr = spServices->GetObject(bstrClass, 0, NULL, &spClass, NULL);

Get the methods in-parameters //
CCom

// Spawn an instance of the in-parameters for our use
CComPtr<IWbemClassObject> spInParams;
hr = spInParamsDefinition ->SpawnInstance(0, &spInParams);

hr = spInParams->Put(L"Name", 0, &varName, 0);

CComVariant varPath("C:\\Temp");
hr = spInParams->Put(L"Path", 0, &varPath, 0);

CComVariant varType(int(0));
hr = spInParams->Put(L"Type", 0, &varType, 0);

CComVariant varReturnValue;

e

eters to create a shared directory. The Type parameter has a value of 0 (integer), if
you recall, and this, according to the qualifier, will specify "Disk Drive". We finally pass
the
method meter
nam

Let's lo

 // Must be zero
 IWbemClassObject **ppInSignature, // In-params definition

e

is that GetMethod can be called only if the IWbemClassObject instance
d return a

 a definition of
rs and the out-parameters of a method. The wszName parameter specifies the

ppInSignature and ppOutSignature out-parameters contain the
re not interested in either ppInSignature or ppOutSignature then

eter. In the code sample above, we ignored
eter is documented as having to be 0.

// The class or object ref
 // The name of the method

ng // How to make the call

// Execute method
CComPtr<IWbemClassObject> spOutParams;
hr = spServices->ExecMethod(bstrClass, bstrMethod, 0, NULL,
 spInParams, &spOutParams, NULL);

// Inspect out-parameters for return value

hr = spOutParams->Get(L"ReturnValue", 0, &varReturnValue, 0, 0);

_tprintf(_T("\n %ls::%ls returned %d\n"), bstrClass, bstrMethod,
 V_I4(&varReturnValue));

Most of the details were discussed in earlier code, so we will focus on the new information. W
completed only the required parameters (that is, parameters that don't have the optional attribute
set) for two reasons: first, to keep the code sample small and second, we needed to fill in only the
required param

Values
 in-parameters to the ExecMethod call and we get the out-parameters through spOutParams. If a

 being called returns a value other than , then you will always get an out-paravoid
ed "ReturnValue".

ok at the GetMethod method call:

interface IWbemClassObject
{
HRESULT GetMethod(
 LPCWSTR wszName, // Name of the method
 LONG lFlags,

 IWbemClassObject **ppOutSignatur); // Out-params definition
};

A key point to notice
represents the definition of a class. If this were an object, GetMethod woul
WBEM_E_ILLEGAL_OPERATION error. Ultimately, GetMethod allows you to obtain
both the in-paramete
name of the method. Both the

 you aparameter definitions. If
 can simply pass NULL to ignore the paramyou

ppOutSignature. The lFlags param

Next, the ExecMethod method looks like this:

interface IWbemServices
{
HRESULT ExecMethod(

ath, const BSTR strObjectP
 const BSTR MethodName,
 lo lFlags,

 IWbemContext *pCtx, // Used in providers
 IWbemClassObject *pInParams, // The in-parameters

 IWbemClassObject ** // The out-parameters
allResult **ppCallResult); // Not used for now . . .

meter is either a class reference for static methods

TURN_IMMEDIATELY, which you use
 you want to execute a semisynchronous call. We discuss semisynchronous calls later in the

pter.

ter. If the method does not have any in-parameters, then you can simply pass
.

t-parameters, you will receive them through ppOutParams when ExecMethod
eters, you can simply pass NULL.

As you already have seen, setting and getting property values is one of the most common operations
 far

eved. We have been
careful, however, to use strings or integers to aid understanding. In the next couple of sections, we

ill cover in more detail how to get and set properties of different data types. Let's quickly recap
the calls made earlier that involve getting and setting property values. The following call was made

ment object. Notice that it uses the Put

The next call was made in the section where you saw how to obtain a management object. Notice

te that calling Put will
change the property of the instance in memory, but will not persist the change to the real object in
WMI. T rd, let's
examin methods in the IWbemClassObject interface.

, // Name of the property
 LONG // Must be zero

ppOutParams,
 IWbemC
};

As mentioned already, the strObjectPath para
or an object reference for object methods.

The lFlags parameter allows only one flag, WBEM_FLAG_RE
when
cha

If a method has in-parameters, you must supply your in-parameters (as already discussed) in the
pInParams parame
NULL

If a method has ou
returns. If you wish to ignore the out-param

Manipulating Object Properties

performed when writing management applications. Throughout nearly all of the code samples so
in this chapter, you've seen properties being set and property values being retri

w

in the section in which you saw how to create a manage
method call.

CComVariant varNumOfChapters(int(11));
hr = spInstance->Put(CComBSTR("NumberOfChapters"), 0, &
 varNumOfChapters, 0);

that it uses the Get method call.

CComVariant var;
hr = spInstance->Get(CComBSTR(_T("Path")), 0, &var, 0, 0);

Both of these code samples either are getting a value or setting a value. No

o persist the change requires a call to PutInstance. To move this discussion forwa
e the Put and Get

interface IWbemClassObject
{
HRESULT Put(
 LPCWSTR wszName

lFlags,

 VARIANT *pVal, // Val
vtType

ue of property to set
 CIMTYPE); // The CIM type, info in variant anyway

// Name of the property

 anyway
 // Info about the origin of the property

zName
ject

face pointer represents method parameters, then the wszName parameter specifies the name of

 refer to them. The data type definitions all start with

cifies the type contained

ESULT Get(HR

 LPCWSTR wszName,
 LONG lFlags, // Must be zero
 VARIANT *pVal, // Value of property obtained
 CIMTYPE *pvtType, // The CIM type, info in variant
 LONG *plFlavor);
};

If the IWbemClassObject interface pointer represents a management object, then the ws
parameter specifies the name of a property in the class. If, however, the IWbemClassOb
inter
the parameter.

The lFlags parameter is documented as having to be 0.

In the case of Put, the pVal parameter is the property value to set, and for Get, the pVal parameter
is the property value obtained from the object. The variant contains the type and value of the
property. In addition, there are also separate integer declarations that describe the CIM data types;
the vtType and pvtType parameters
CIM_xxxx, where xxxx is the name of the data type. The vtType parameter is used when creating
properties in a class. You can use the WMI API to create classes in the WMI repository, but this
topic is beyond the scope of this book. The pvtType out-parameter spe
within pVal. Generally, you will probably end up ignoring the pvtType parameter because all the
information you need is contained within the variant. Table 7.1 describes all the CIM data types and
the variant mapping used.

Table 7.1. CIM Data Type to Variant Mappings

Data type VT type CIM type Comment
sint8 VT_I2 CIM_SINT8 Signed 8-bit integer.
sint16 VT_I2 CIM_SINT16 Signed 16-bit integer.
sint32 VT_I4 CIM_SINT32 Signed 32-bit integer.
sint64 VT_BSTR CIM_SINT64 Signed 64-bit integer in string form. The string

follows the hexadecimal or decimal format according
to the American National Standards Institute (ANSI)
C rules.

uint16 VT_I4 CIM_UINT16 Unsigned 16-bit integer.

 according

real32 VT_R4 CIM_REAL32 32-bit floating point number.
real64 VT_R8 CIM_REAL64 64-bit floating point number.
uint8 VT_UI1 CIM_UINT8 Unsigned 8-bit integer.

uint32 VT_I4 CIM_UINT32 Unsigned 32-bit integer.
uint64 VT_BSTR CIM_UINT64 Unsigned 64-bit integer in string form. The string

follows the hexadecimal or decimal format
to the ANSI C rules.

Table 7.1. CIM Data Type to Variant Mappings

Data type VT type CIM type Comment

 value.

e the format designed
DMTF).

VT_UNKNOWN CIM_OBJECT Represents an object. Query for the
nterface to gain access to the

ect path string. See the discussion earlier in the
chapter about object paths.

-bit Unicode character.
g VT_BSTR CIM_STRING Unicode character string.

 data types. Arrays are
accessed using SAFEARRAYs.

ine where the property originated. If you do not care
NULL. The flavor of the property can be local,

roperties, the plFlavor parameter will contain WBEM_
. This applies to __SUPERCLASS, __DYNASTY, __RELPATH,

ties.

vor parameter will contain WBEM_FLAVOR_ORIGIN_LOCAL if the property is at a local
the most derived property in the class; for example, the

ll of
 class.

D if the property is

spClass;
,
 NULL);

ties in the class
spClass->BeginEnumeration(WBEM_FLAG_NONSYSTEM_ONLY);

boolean VT_BOOL CIM_BOOLEAN Boolean
DATETIME VT_BSTR CIM_DATETIME All dates and times in WMI us

by the Distributed Management Task Force (
object

IWbemClassObject i
object properties.

object VT_BSTR CIM_REFERENCE An obj
ref

char16 VT_I2 CIM_CHAR16 16
strin

[array] VT_ARRAY |
*

CIM_FLAG_ARRAY An array of any of the above

The plFlavor parameter can be used to determ
ou simply pass where the property originated, then y

inherited, or system-provided.

For all system-provided p
FLAVOR_ORIGIN_SYSTEM
__DERIVATION, __SERVER, __NAMESPACE, and __PATH proper

The plFla
level. For classes, a local property is
Win3
which

2_Share class has AccessMask, AllowMaximum, MaximumAllowed, Path, and Type, a
 are declared within the

The plFlavor parameter will contain WBEM_FLAVOR_ORIGIN_PROPAGATE
 from a parent (or super) class. The following code sample enumerates all the property inherited

definitions for the class: Win32_Share

// Get the class definiti
ComPtr<IWbemClassObject>

on
C
hr = spServices->GetObject(CComBSTR("Win32_Share")

_FLAG_RETURN_WBEM_COMPLETE, NULL, & spClass, WBEM

tart enumerating the proper// S
r = h

BSTR bstrName; CCom
CComVariant varValue;

Flavor = 0; LONG l
while (spClass->Next(0, &bstrName, &varValue, 0, &lFlavor) ==
 WBEM_S_NO_ERROR)
{
 CComBSTR bstrFlavor;

 switch (lFlavor)

e WBEM_FLAVOR_ORIGIN_SYSTEM: bstrFlavor = _T("system-provided");

");

e WBEM_FLAVOR_ORIGIN_LOCAL: bstrFlavor = _T("local"); break;

rintf(_T(" %ls is %ls\n"), bstrName, bstrFlavor);

 // Free these before we get the next property details

on and call Next until it returns
WBEM_S_NO_MORE_DATA (this signifies that you reached the end of the enumeration). You should

 information.

AllowMaximum is local

stallDate is inherited

e are
e, and

Element.

ider for the class. Code similar to the previous
 a Win32_Share class instead of class definition, produces the

ed
owMaximum is local

 {
 cas
 break;

_T("inherited case WBEM_FLAVOR_ORIGIN_PROPAGATED: bstrFlavor =
 break;
 cas
}

 _tp

 bstrName.Empty();
 varValue.Clear();
}
hr = spClass->EndEnumeration();

This code conveniently introduced you to the enumeration of properties. As you can see, it is
straightforward; all you need to do is start the enumerati

always call EndEnumeration when you have finished with an enumeration operation. In the code
sample, we used WBEM_FLAG_NONSYSTEM_ONLY, but other flags can be passed into
BeginEnumeration. See the Platform SDK documentation for more

Let's get back to property flavors. The preceding code produces the following output:

AccessMask is local

Caption is inherited
cription is inherited Des

In
MaximumAllowed is local
Name is inherited
th is local Pa

Status is inherited
Type is local

You can now see proof that AccessMask, AllowMaximum, MaximumAllowed, Path, and Typ
eclared locally within the Win32_Share class. Caption, Description, InstallDate, Namd
Status are inherited from CIM_ManagedSystem

For instance, local properties are those set by the prov
enumeration, except for an instance of
following output:

AccessMask is inherit
All
Caption is local
Description is local
InstallDate is inherited
MaximumAllowed is inherited
Name is local
Path is local
Status is local
Type is local

You can now see that the provider for the Win32_Share class has set the inherited class properties
ption, Name, and Status (as well as most of its local properties). The properties

AccessMask, InstallDate, and MaximumAllowed were inherited from the class declaration,
ecause the provider did not set their values.

ore unusual property data types. We assume that you are
tring (VT_BSTR) and sint32 (VT_I4). The types we think

 be

se formats designed by the DMTF. Each format is a fixed-length string that contains fields for

Caption, Descri

b

Now let's turn our focus to some of the m
comfortable with such data types as a s
need more explanation are arrays, object, and DATETIME. The array and object data types will
covered later in the chapter, so let's discuss DATETIME.

The DATETIME data type can represent either a date and time or an interval. Both types are strings
that u
each type of time specification. The string format for the date and time specification is:

yyyymmddHHMMSS.mmmmmmsUUU

Table 7.2 describes each field.

Table 7.2. DATETIME Field Descriptions for Absolute Date/Time

pported range.

1 through 12).

Two-digit minute in the hour (00 through 59).

ber of microseconds in the second (000000 through 999999).
s Plus sign (+) or minus sign (–) to indicate a positive or negative offset from Universal

inutes that the originating time zone deviates

Each of the nine fields either must be completed or ignored and replaced with asterisks. Here are

2005
y: 12:30 pm

only: July 2005
onds

*.***** +060 // date & time: 4 July 2005–12:30 pm,
ime

dddddddHHMMSS.mmmmmm:000

Field Comment
yyyy Four-digit year (0000 through 9999). Providers can restrict the su
mm Two-digit month (0
dd Two-digit day of the month (01 through 31).
HH Two-digit hour of the day using the 24-hour clock (00 through 23).
MM

SS Two-digit number of seconds in the minute (00 through 59).
mmmmmm Six-digit num

Time Coordinates (UTC).
UUU Three-digit offset indicating the number of m

from UTC.

some examples:

20050704******.********* // date only: 4 July
********1230**.********* // hours & minutes onl
200507********.********* // year & month
20050704123029.********* // date & time: 4 July 2005–12:30 pm 29 sec
200507041230*
 // 1 hour ahead of universal t

The string format for the interval time specification is:

d

Table 7.3 describes each field.

Table 7.3. DATETIME Field Descriptions for Interval Times

Field Comment
dddddddd Eight digits representing a number of days (00000000 through 99999999).
HH Two-digit hour of the day using the 24-hour clock (00 through 23).
MM Two-digit minute in the hour (00 through 59).
SS Two-digit number of seconds in the minute (00 through 59).
mmmmmm Six-digit number through 999999).
:000 Interval times always have a trailing :000 as the last four characters.

00000002030756.000000:000 // interval: 2 days, 3 hours, 7 minutes & 56 sec
te
econds

00000000000000.500000:000 // interval: 500 milliseconds (half a second)

Man
When writin the property

ased property. The purpose of the code sample is

 |

hr = spClass->Get(CComBSTR(_T("__DERIVATION")), 0, &var, 0, 0);

// var.vt is VT_ARRAY | VT_BSTR

// C
long
long
hr = SafeArrayGetUBound(V_ARRAY(&var), 1, &lUpper);
hr = SafeArrayGetLBound(V_ARRAY(&var), 1, &lLower);

long lNumOfElems = lUpper—lLower + 1;

// Gain access to the SAFEARRAY

 of microseconds in the second (000000

All five fields must be completed. Here are some examples of interval times:

00000000000100.000000:000 // interval: every minu
00000000000015.000000:000 // interval: every 15 s

ipulating Array Object Properties
g your applications, you more than likely will have to use arrays to obtain

values you are after. You might need to use arrays to get your own array-based property values in
your own schema design. As mentioned in the last section, you can have an array of any CIM data
type. You can represent binary data as an array of uint8.

Let's examine some code that accesses an array-b
to list the derivation hierarchy for a class, in this case Win32_PhysicalMemory. The
__DERIVATION system-provided property is declared as an array of strings (that is, VT_ARRAY
VT_BSTR).

// Get the class definition
CComPtr<IWbemClassObject> spClass;
hr = spServices->GetObject(CComBSTR("Win32_PhysicalMemory"),
 WBEM_FLAG_RETURN_WBEM_COMPLETE, NULL, & spClass, NULL);

// Get a property from class definition
VARIANT var; VariantInit(&var);

alculate the number of elements
 lUpper = 0;
 lLower = 0;

BSTR HUGEP *pbstrArray;
hr = SafeArrayAccessData(V_ARRAY(&var), (void**)&pbstrArray);

_tprintf(_T(" Derivation:\n"));
for (int nIndex = 0; nIndex < lNumOfElems; nIndex++)
{
 _tprintf(_T(" %ls\n"), pbstrArray[nIndex]);
}

hr = SafeArrayUnaccessData(V_ARRAY(&var));
VariantClear(&var);

You should be reasonably familiar with the above code. We have obtained the class definition and
requested the system-provided property __DERIVATION. The variant of the property contains the

e the appropriate API calls to access the array directly. The output of
 the inheritance hierarchy for the Win32_PhysicalMemory class.

icalMemory
 CIM_Chip
 CIM_PhysicalComponent
 CIM_PhysicalElement

SystemElement

rties is also to a
e VARIAN

ts fr bject Properties
ou

 integ
li

took pt
t

ined as a

{

 Sample_BookSummary Summary;
 DATETIME DatePublished;
 uint8 NumberOfChapters;
};

SAFEARRAY and so we us
the above example produces
Win32_PhysicalMemory first inherits from CIM_PhysicalMemory, and that inherits from
CIM_Chip, and so forth.

Derivation:
 CIM_Phys

 CIM_Managed

Saving array-based prope straightforward. Create your SAFEARRAY and bind it
VARIANT. Ensure that th
to .

T's vt (variant type) member is set correctly when passing it
Put

Accessing Objec om O
When writing your applications, y will occasionally have to access properties or method
parameters that are not strings,
already seen an example of this ear

ers, or arrays, but in fact are complete objects. You have
er in the chapter. The Access in-parameter for the

Win32_Share Create method a Win32_SecurityDescriptor object. To explain the conce
ies (or method parameters) more fully, we extend the of embedding objects within proper

Sample_Book class that was introduced earlier in the chapter.

Here is the Sample_Book class with a small change. The Summary property no longer is def
string data type. Instead, we encapsulate the summary string within a new class called
Sample_BookSummary.

class Sample_Book

 [key] string BookTitle;
 [key] string AuthorName;

As you can see, the Summary property is defined now as an object of type Sample_BookSummary
(effectively a new data type). Let's see what the Sample_BookSummary class looks like:

class Sample_BookSummary
{
 string BookSummary;
};

All we have done is move the string describing the summary of the book into another class (through
the BookSummary property). To visualize the sample code better, let's create an instance of the
Sample_Book. Here is the MOF code that does this (also, notice that the Summary property is a new

tle = "Developing WMI Solutions";
 AuthorName = "Craig Tunstall & Gwyn Cole";
 Numb
 Summary = instance of Sample_BookSummary

Management Instrumentation";

l: The disadvantage of this approach is that it
ing and forming

his sample code obtains the instance we created:

\"Developing WMI Solutions\","\

object
CComVariant varObject;
hr = spInstance->Get(CComBSTR(_T("Summary")), 0, &varObject, 0, 0);

// QueryInterface for the property's object interface
CComQIPtr<IWbemClassObject> spSummaryObject = V_UNKNOWN(&varObject);

instance):

instance of Sample_Book
{
 BookTi

erOfChapters = 12;

 {
 BookSummary = "A cool book on Windows

 };
};

Now let's view some sample code that obtains this object (Sample_Book) and accesses a property
that is an also an object (Sample_BookSummary). When designing your own schemas you might
want to employ this technique. However, be carefu
limits your capability to query and form associations. The capability of query

ociations on your managed objects is a key benefit, and you should try to keep your options open ass
for future schema revisions.

T

CComBSTR bstrPath =
 "Sample_Book.BookTitle=
 "AuthorName=\"Craig Tunstall & Gwyn Cole\"";

// Get the Sample_Book object
CComPtr<IWbemClassObject> spInstance;
hr = spServices->GetObject(bstrPath, WBEM_FLAG_RETURN_WBEM_COMPLETE,
 NULL, &spInstance, NULL);

// Get the property which is an

// Get property from embedded object
CComVariant varSummary;
hr = spSummaryObject->Get(CComBSTR(_T("BookSummary")), 0, &varSummary,
 0, 0);

_tprintf(_T(" BookSummary is'%ls'\n"), V_BSTR(&varSummary));

Most o btain
the Sum lighted the code that actually extracts the embedded object in
bold font. The Summary property variant is of type VT_UNKNOWN. This means we have a valid

ace to ask for an interface that
can provide access to the properties of the object. This is what the ATL class CComQIPtr does. Use

 calling the Get and Put methods,
xt: We call Get to retrieve the BookSummary property from the embedded object. The

dows Management Instrumentation'

ts that have properties with embedded objects is a little more involved. You may
se your schema uses embedded

issimilar to creating
 get the class definition

spawn an instance of it. The spawned instance represents the object that
value. You set all your properties on the spawned instance

overs the creation of objects. In that
sect stance in which we declared the Summary property as using a
string d ple_Book
instanc e MOF
code. W

// Get class so we can spawn an instance of it
CComPt
hr = spServices->GetObject(CComBSTR("Sample_Book"), 0,NULL,
 &spClass, NULL);

CComVariant varBookTitle("Developing WMI Solutions");

nce->Put(CComBSTR("AuthorName"), 0, &varAuthor, 0);

ComVariant varNumOfChapters(int(11));
r = spInstance->Put(CComBSTR("NumberOfChapters"), 0,

;

eate the object for the Summary property

bemClassObject> spSummaryObject;
hr = spBookSummaryClass->SpawnInstance(0, &spSummaryObject);

// Set property on embedded object
CComVariant varSummary("A cool book on Windows Management

f this code sample should be straightforward by now. We get the object we want and o
mary property value. We high

IUnknown interface pointer with which you can call QueryInterf

the IWbemClassObject interface to get and set property values by
as we do ne
code outputs:

BookSummary is 'A cool book on Win

Creating objec
need to create objects like this in your own applications becau
property objects. The process of creating embedded property objects is not d

s, which was covered earlier in the chapter. The general process is toinstance
and (this is the crucial part)
you will use when you set the property

re calling Put. befo

Let's extend the code sample from the earlier section that c
ion, we created a Sample_Book in

ata type. Now with the revised Sample_Book class definition, let's recreate the Sam
e. The following code will do the same task as the MOF complier did earlier with th
e have highlighted the code we shall discuss in bold font:

r<IWbemClassObject> spClass;

// Make new object
CComPtr<IWbemClassObject> spInstance;
hr = spClass->SpawnInstance(0, &spInstance);

// Set some properties on the object

hr = spInstance->Put(CComBSTR("BookTitle"), 0, &varBookTitle, 0);

CComVariant varAuthor("Craig Tunstall & Gwyn Cole");
hr = spInsta

C
h
&varNumOfChapters,0)

// We're going to cr
// First get the definition of the Sample_BookSummary class
CComPtr<IWbemClassObject> spBookSummaryClass;
hr = spServices->GetObject(CComBSTR("Sample_BookSummary"), 0, NULL,
 &spBookSummaryClass, NULL);

// Make new Sample_BookSummary object
CComPtr<IW

 Instrumentation");
hr = spSummaryObject->Put(CComBSTR(_T("BookSummary")), 0, &varSummary, 0);

// Finally, encapsulate object in variant and set the Summary property
CComVariant varSummaryObject(spSummaryObject);
hr = spInstance->Put(CComBSTR(_T("Summary")), 0, &varSummaryObject, 0);

// Commit to create instance in WMI
hr = spServices->PutInstance(spInstance, WBEM_FLAG_CREATE_ONLY,
 NULL, NULL);

Creating an instance and creating an instance for a property is virtually the same sort of code: You
get the class definition, spawn an instance of the class, and set your properties. The only difference
between saving object instances and saving property objects is:

1. When you create a management object, you save (commit) it by calling PutInstance.
 management

object.

e parameter objects in either the in-parameters or the out-parameters,
to that demonstrated earlier.

 of the method call.
on, especially if the call you are making is

stead, but this is a little harder
dditional implementation of the

ynchronous calls in the next section.

Semisynchronous calls aim to solve both of these problems. They reduce code complexity by not

 an IWbemCallResult
esult of the

2. Other methods return an IEnumWbemClassObject enumerator. This enumerator also can be
n it times out.

t,

1. Make your IWbemServices method call passing WBEM_FLAG_RETURN_IMMEDIATELY into the
ish to make a semisynchronous call.

2. When you create a property object, you save (commit) it by calling Put on the

When you call methods that us
then you will need to write similar code

Making Semisynchronous Calls
All the examples in this chapter so far have been making synchronous calls to WMI. The main
problem with making synchronous calls is that the thread blocks for the duration
This can decrease the responsiveness of your applicati
lengthy. A solution to this problem is to make asynchronous calls in

implement. You have to handle multiple threads and provide an ato
IWbemObjectSink interface. We shall cover as

having to deal with multiple threads and without having to implement an IWbemObjectSink
interface.

You can make two types of semisynchronous calls:

1. Some of the methods on the IWbemServices interface return
interface. This interface can be polled when you are ready to deal with the r
operation. The IWbemCallResult interface is implemented by WMI.

polled for the results of the operation by using the Next method call whe

Let's look at the methods that return an IWbemCallResult interface first. They include GetObjec
PutInstance, DeleteInstance, and ExecMethod. To make a semisynchronous call, follow this
process:

lFlags parameter. This specifies that you w

2. You have to pass the address of an IWbemCallResu
parameter. This will communicate the call progress

lt pointer into the ppCallResult out-
when you poll it.

GetCallStatus calls on the ppCallResult interface pointer until it returns

tring

GetResultObject GetResultServices

GetObject. In this example, we get an
vice:

me=\"Fax\""));

et object
_tprintf(_T(" Making call to GetObject()\n"));

T hrStatus = S_OK;
do

imeout is 100 ms

100, &hrCallResult);

ERROR)

 // Get object instance from call as there should be one now . . .

GetObject() call complete
Win32_Service.Name="Fax" path is C:\WINNT\system32\faxsvc.exe

3. Make
WBEM_S_NO_ERROR. When WBEM_S_NO_ERROR is returned, it means that there is a valid result
for you to grab in the GetResultObject, GetResultServices, or GetResultS
methods.

4. You can now make a call to , , or
GetResultString, depending on the IWbemServices call made.

Let's see how you might make a semisynchronous call to
instance that represents the Windows 2000 Fax ser

CComBSTR bstrPath;
bstrPath = (_T("Win32_Service.Na

// G

CComPtr<IWbemCallResult> spCallResult;
hr = spServices->GetObject(bstrPath, WBEM_FLAG_RETURN_IMMEDIATELY,
 NULL, NULL, &spCallResult);

HRESUL

{

 // Has the call finished yet? My poll t
 HRESULT hrCallResult = S_OK;
 hrStatus = spCallResult->GetCallStatus(

 _tprintf(_T(" IWbemCallResult::GetCallStatus(timeout=100ms, 0x%X)")\
 _T(" returned 0x%X\n"), hrCallResult, hrStatus);

 if (hrStatus == WBEM_S_NO_ERROR && hrCallResult == WBEM_S_NO_
 {

ect() call complete\n")); _tprintf(_T(" GetObj

 CComPtr<IWbemClassObject> spInstance;
 hr = spCallResult->GetResultObject(WBEM_INFINITE, &spInstance);

 // Get a property from the object
 CComVariant var;
 hr = spInstance->Get(CComBSTR(_T("PathName")), 0, &var, 0, 0);

 _tprintf(_T(" Win32_Service.Name=\"Fax\" path is %ls\n"),
 V_BSTR(&var));
 }
} while (hrStatus != WBEM_S_NO_ERROR);

We've highlighted in bold each of the four steps we outlined earlier. The code produces the
following output:

Making call to GetObject()
IWbemCallResult::GetCallStatus(timeout=100ms, 0x8004100A) returned 0x40004
IWbemCallResult::GetCallStatus(timeout=100ms, 0x8004100A) returned 0x40004
IWbemCallResult::GetCallStatus(timeout=100ms, 0x8004100A) returned 0x40004
IWbemCallResult::GetCallStatus(timeout=100ms, 0x0) returned 0x0

As you can see, the call to GetCallStatus timed out and we went back to try again and again until
the call reported that it had completed. The HRESULT reported from GetCallStatus is
WBEM_S_TIMEDOUT. When a time-out occurs, the HRESULT reported from GetCallStatus's out-
parameter is under Windows 2000. Windows XP returns

hronous call has not

 timeout in milliseconds
 returned instance

// timeout in milliseconds
 BSTR *pstrResultString); // object path of new object

ould be used in all cases, because it is the primary source to discover
turned HRESULT from the initial call. You can

tObject or ExecMethod, then you must call
IWbemClassObject for the completed operation. When the

 the returned IWbemClassObject will be the desired object instance.
 completes the returned IWbemClassObject will be the out-parameters

ethod call that also includes the ReturnValue property.

IWbemLocator::ConnectServer. The real difference
between OpenNamespace and ConnectServer is that you can open namespaces relative to the

f a newly created instance.
This is especially useful if the provider assigns or generates a unique value for a key property.

eEnum
. To make a semisynchronous call with either of these functions, you have to follow

this process:

WBEM_E_CRITICAL_ERROR
, which is what you would expect, because the semisyncWBEM_S_NO_ERROR

completed.

Let's look at the interfaces we have seen and discuss them in more detail. Here is the
IWbemCallResult interface:

interface IWbemCallResult
{
HRESULT GetCallStatus(
 LONG lTimeout, // timeout in milliseconds
 LONG *plStatus); // returned HRESULT from call

HRESULT GetResultObject(
 LONG lTimeout, //
 IWbemClassObject **ppResultObject); //

HRESULT GetResultServices(
 LONG lTimeout, // timeout in milliseconds
 IWbemServices **ppServices); // returned namespace

HRESULT GetResultString(
 LONG lTimeout,

};

The GetCallStatus method w
whether the call has completed and to obtain the re
make the time-out as short or as long as you like; you probably will need to experiment to find a
happy medium for keeping your application responsive.

If you are making calls with either Ge
GetResultObject to gain access to the
GetObject call completes,

en the ExecMethod callWh
of the m

If you are making calls to OpenNamespace, then you will need to call GetResultServices to gain
access to the IWbemServices interface for the newly opened namespace. We have not discussed
OpenNamespace because it is similar to

current namespace by passing a relative namespace reference.

If you are making calls to PutInstance, then you might want to call GetResultString.
GetResultString is a way for the provider to return an object path o

Having reviewed the IWbemCallResult interface, let's focus on the other semisynchronous
methods that return an IEnumWbemClassObject enumerator. They include CreateInstanc
and ExecQuery

1. Make your IWbemServices method call passing WBEM_FLAG_RETURN_IMMEDIATELY into the
lFlags parameter. This specifies that you wish to make a semisynchronous call.

ll
nd,

, WBEM_S_FALSE when you get to the end of the enumerator.

list of

");

nce
 0;

Object> spInstance;
>Next(100, 1, &spInstance,

d 0x%X\n"), hrNext);

ect

 0);

intf(_T(" %ls\n"), V_BSTR(&varName));

ion of the

meout=100ms) returned 0x40004

2. You can now call Next on your returned enumerator. If the time-out expires, you wi
receive WBEM_S_TIMEDOUT. If it is successful, you will receive WBEM_S_NO_ ERROR a
finally

In fact, there is barely any difference between synchronous and semisynchronous calls. The only
differences in making them are to add WBEM_FLAG_RETURN_IMMEDIATELY to the lFlags parameter
and to add additional logic to check for WBEM_S_TIMEDOUT. The following code displays a
running Windows 2000/XP Services:

// Get list of running services
CComPtr<IEnumWbemClassObject> spEnumInst;
CComBSTR bstrQuery("SELECT * FROM Win32_Service WHERE Started=true

// Perform query
hr = spServices->ExecQuery(CComBSTR(_T("WQL")), bstrQuery,

LL, WBEM_FLAG_BIDIRECTIONAL | WBEM_FLAG_RETURN_IMMEDIATELY, NU
 &spEnumInst);

bool bFinished = false;
while (!bFinished)
{

 // Get the object insta

nces = ULONG uNumOfInsta
CComPtr<IWbemClass

 HRESULT hrNext = spEnumInst-
 &uNumOfInstances);

FALSE) if (hrNext == WBEM_S_
 bFinished = true;
 else if (hrNext == WBEM_S_TIMEDOUT)
 {

" IEnumWbemClassObject::Next(timeout=100ms) ")\ _tprintf(_T(
 _T("returne

 }
 else
 {

// Get properties from the obj
 CComVariant varName;

hr = spInstance->Get(CComBSTR(_T("DisplayName")), 0, &varName, 0,

_tpr
 }
}

We have highlighted in bold the two steps we outlined earlier. The code produces a port
following output:

...

...
rint Spooler P
Telephony
istributed Link Tracking Client D
Windows Time

ice World Wide Web Publishing Serv
 IEnumWbemClassObject::Next(ti

 IEnumWbemClassObject::Next(timeout=100ms) returned 0x40004
Windows Management Instrumentation
Windows Management Instrumentation Driver Extensions

From
instan

 this output, you can deduce that we had to poll twice before we successfully got an object
ce of the WMI service. The 0x40004 HRESULT is WBEM_S_TIMEDOUT.

hile the operation is in
progress.

ink. The
agement objects and handle call status
jects asynchronously typically are

Making Asynchronous Calls
The main benefit of accessing management objects asynchronously is that an operation can be
started and, if necessary, be cancelled later. This enables an application to be optimized for
performance more easily and solves the problem of thread blockage w

Developing asynchronous access to management objects requires the development of a s
sink's whole purpose is to monitor the delivery of man
notifications. Applications that access management ob
multithreaded and therefore require that the sink be thread safe. The drawbacks of writing
asynchronous applications are that it is more difficult to determine the sequence of operations
between threads and you must develop a sink for each type of operation.[2]

[2] We do not recommend reusing an existing instance of a sink for multiple asynchronous operations. Use one sink instance for one
asynchronous operation.

Calling an asynchronous m ration and returns immediately. It reports the
nk until the asynchronous operation completes. To demonstrate this,

ple in which we obtained a list of Windows Services that

HRESULT Indicate(

e asynchronous

n asynchronous call is a little different. It has no enumerator, because each instance is
obtained when WMI delivers it to your sink through the method. The query will continue

ethod starts the desired ope
results of the operation to the si
we shall reimplement the earlier code sam
had already started.

Let's see what the sink interface looks like:

interface IWbemObjectSink
{

 LONG lObjectCount, // Number of objects returned
 IWbemClassObject **ppObjArray); // Array of objects

HRESULT SetStatus(
 LONG lFlags, // Call status
 HRESULT hResult, // Call result or progress
 BSTR strParam, // For PutInstanceAsync only
 IWbemClassObject *pObjParam); // For complex error/status
};

The Indicate method is called when WMI has management objects that satisfy th
operation. To draw a parallel to what you've seen already, let's review what was involved with a
semisynchronous query. When an ExecQuery call completes, an enumerator is returned that
contains the result set for the query. Each instance can be obtained by iterating through the
enumerator. A

Indicate
until it completes or it is cancelled.

The lObjectCount parameter is the number of objects contained within the ppObjArray parameter.
The

The SetStatus method allows WMI to notify you with call status information. This is critical in

 is complete. When WBEM_STATUS_COMPLETE is set, the hResult parameter
contains the result of the completed call. The flag may or may not be set,

PROGRESS is set, the hResult parameter contains both the progress and total.
 a percentage, although

ed in HIWORD(hResult) and usually
the total number of instances, but again, this depends on the provider.

ot necessarily support the delivery of progress information and so the
_SEND_STATUS is not set when making
s will be called only once.

 are making calls to , then you might want to inspect the strParam
ows the provider to return an object path of a newly created instance.

e for a key property. The
 method on the

bout the error or
ful especially where the error and/or status simply cannot be

en writing your own providers, keep this in mind if you want to
her

rties on the instance can be inspected for the desired
ormation.

tput some information to the

CAL_SECTION m_csLock; // We need to be thread safe
 // An internal flag for call completion

c:

sLock);

mine if the query is complete

bool bRetVal = false;

ppObjArray parameter contains the instances returned by WMI.

determining when the call completes. The lFlags parameter can be either WBEM_STATUS_COMPLETE
or WBEM_STATUS_PROGRESS. The WBEM_STATUS_COMPLETE is obvious; this flag is set when the
asynchronous operation

WBEM_STATUS_PROGRESS
depending on whether the asynchronous method call had specified WBEM_FLAG_SEND_STATUS.
When WBEM_STATUS_
The progress value is contained in LOWORD(hResult) and usually represents

s depends on the provider. The total value is containthi
represents

All WMI providers do n
WBEM_FLAG_SEND_STATUS may be ignored. If the WBEM_FLAG
n asynchronous method call, it is guaranteed that SetStatua

If you PutInstanceAsync
arameter. This parameter allp

This is especially useful if the provider assigns or generates a unique valu
ent of this functionality for a semisynchronous call is the GetResultStringequival

IWbemCallResult interface.

The pObjParam parameter allow
atus of an operation. This is use

s the provider to return very rich information a
st
encapsulated in an HRESULT. Wh
provide richer information to the client. The pObjParam parameter works like any ot
IWbemClassObject instance. Prope
information. Making asynchronous calls is the only means of getting at this rich inf

Let's look at a code sample. It does nothing very interesting except ou
console window:

class CQuerySink : public IWbemObjectSink
{

e: privat
 CRITI
 bool m_bIsComplete;

ublip
 CQuerySink(): m_lRefCount(0), m_bIsComplete(false)
 {

InitializeCriticalSection(&m_c
 }

erySink() ~CQu
 {

Section(&m_csLock); DeleteCritical
 }

 // Helper function to deter

bool IsComplete()
 {

 EnterCriticalSection(&m_csLock);
 bRetVal = m_bIsComplete;
 LeaveCriticalSection(&m_csLock);

 return bRetVal;

 }

 //... ...
 /

 /

&varName, 0, 0);

 _tprintf(_T("
 }
 return WBEM_S_NO_ERROR;
 }

 m_bIsComplete = true;
 LeaveCriticalSe
 }
 else if (lFlags == WBEM_STATUS_PROGRESS)
 {
 // You could also check LOWORD(hResult) for progress info
 // and check HIWORD(hResult) for the total.
 _tprintf(_T(" Call still in-progress\n"));
 }

 return WBEM_S_NO_ERROR;
 }
};

In your own applications, you would perform something more interesting for both the Indicate
and SetStatus methods. An example would be to set a progress bar position in a user interface
application with the LOWORD(hResult) during an WBEM_ STATUS_PROGRESS notification. However,
this is possible only if the provider publishes the progress in the LOWORD(hResult) and the total in
the HIWORD(hResult). Most providers do not know how many management objects there will be in
advance, so setting a progress bar may not be possible.

 // IUnknown method implementations skipped for brevity

/...

/ IWbemObjectSink methods
 STDMETHOD(Indicate)(long lObjectCount, IWbemClassObject** apObjArray)
 {
 HRESULT hr = S_OK;

 for (int nIndex = 0; nIndex < lObjectCount; nIndex++)
 {
 // Get properties from a Win32_Service object
 CComVariant varName;
 hr = apObjArray[nIndex]->Get(CComBSTR(_T("DisplayName")), 0,

 %ls\n"), V_BSTR(&varName));

 STDMETHOD(SetStatus)(long lFlags, HRESULT hResult, BSTR strParam,
 IWbemClassObject* pObjParam)
 {
 if (lFlags == WBEM_STATUS_COMPLETE)
 {
 _tprintf(_T(" Call complete, returned HRESULT 0x%X\n"), hResult);

 EnterCriticalSection(&m_csLock);

ction(&m_csLock);

Asynchronous calls typically will be made in a multithreaded environment, so let's examine how
you might execute a task by using another thread to perform a query. The following code sample is
not very interesting; it merely spawns a new thread for a new task.

HANDLE hThread = HANDLE(_beginthread(ThreadGetWin32Sevices, 0, 0));

Next, let's look at the ThreadGetWin32Sevices function that is used for the thread execution:

void ThreadGetWin32Sevices(void *param)
{

 CoInitializeEx(NULL, COINIT_MULTITHREADED);
 HRESULT hr = S_OK;

 // Connecting to WMI skipped for brevity
 //... ...
 //...

 CComBSTR bstrQuery("SELECT * FROM Win32_Service WHERE Started=true");

 CQuerySink *pSink = new CQuerySink;
 hr = spServices->ExecQueryAsync(CComBSTR(_T("WQL")), bstrQuery,
 WBEM_FLAG_BIDIRECTIONAL, NULL, pSink);

 while(!pSink->IsComplete())
 Sleep(50);

 CoUninitialize();
}

hread. A message pump is necessary for

proxy calls to make it back on the sink. The lack essage pump would cause the thread to

 are quite similar to ExecQuery. The only difference is
bject enumerator, an IWbemObjectSink

ynchronous method calls require an IWbemObjectSink

ation for HRESULTs and, in
at can be used to

errors to a

tErrorCodeText and
.

le code that retrieves the strings:

The first task we performed was to create a multithreaded apartment. A single-threaded apartment is
not very useful if we don't have a message pump in our t

 of a m
hang. The next step was to connect to WMI and start an asynchronous query by calling
ExecQueryAsync.

The method parameters for ExecQueryAsync
at instead of receiving an IEnumWbemClassOth

implementation is passed. All as
implementation.

WMI Error Messages
On occasion, it is useful to provide more meaningful error inform

SULTs. There is a COM interface provided by WMI thparticular, for WMI HRE
get both the facility and the error strings. This typically would be used when displaying
user.

It consists of one interface, IWbemStatusCodeText, that has two methods, Ge
GetFacilityCodeText. Both methods take a HRESULT and return a string

Here is samp

void DisplayError(HRESULT hrDesc)

 CComPtr<IWbemStatusCodeText> spError;

 _tprintf(_T("\n%ls HRESULT 0x%X is: %ls"), bstrFacility, hrDesc, bstrError);

layError(WBEM_E_PROVIDER_NOT_CAPABLE);
DisplayError(STG_E_WRITEFAULT);

Produce the following output:

Wbem HRESULT 0x80041003 is: Access denied
: Invalid object path
: Invalid query

Overview of Events

ce

vider delivers it to
WMI. Figure 7.2

{
 HRESULT hr = S_OK;

 hr = spError.CoCreateInstance(CLSID_WbemStatusCodeText);

 CComBSTR bstrError;
 hr = spError->GetErrorCodeText(hrDesc, 0, 0, &bstrError);

 CComBSTR bstrFacility;
 hr = spError->GetFacilityCodeText(hrDesc, 0, 0, &bstrFacility);

}

The following calls:

DisplayError(WBEM_E_ACCESS_DENIED);
DisplayError(WBEM_E_INVALID_OBJECT_PATH);

playError(WBEM_E_INVALID_QUERY); Dis
Disp

DisplayError(HRESULT_FROM_WIN32(ERROR_FILE_NOT_FOUND));

Wbem HRESULT 0x8004103A is
Wbem HRESULT 0x80041017 is
Wbem HRESULT 0x80041024 is: Provider is not capable of the attempted
 operation
Storage HRESULT 0x8003001D is: A disk error occurred during a write
 operation.
Win32 HRESULT 0x80070002 is: The system cannot find the file specified.

One of the most powerful features in WMI is that it has the capability to deliver events when
something interesting happens. "Something interesting" might include notification when disk spa
runs low on a machine. The event mechanism employed by WMI is based on a publish and
subscribe approach. An event is published when either a client or an event pro

 shows the events being published to WMI and applications subscribing for event
notifica events
in which they are interested. For example, a management application may want to capture System

tion. Event notification opens the possibility for one or more applications to react to

Event Log activity so that it can analyze specific events and raise potential problems immediately.

Figure 7.2. WMI event interaction

An application can subscribe to receive one or more events. Events are delivered to the application
if the published event satisfies the subscribed event query.

nges

ility

There are three types of events: intrinsic, extrinsic, and timer.

1. Intrinsic events occur in response to changes to namespaces, classes, and instances. Cha
to instances are the most useful event notifications.

2. Extrinsic events are custom-defined events. These types of events allow you great flexib
in your own applications to deliver specialized events.

3. Timer events are events that WMI delivers using preconfigured information.

No events are delivered unless an application asks WMI for event notifications. An application that
requests events from WMI is an event consumer. There are two types of event consumers:
temporary event consumers and permanent event consumers. The following sections cover
temporary event consumers in detail.

Temporary event consumers are applications (clients or Windows services) that subscribe to WMI
for event notification. All event subscriptions use a WQL event query, which enables an event
consumer to specify precisely what events to deliver.

Permanent event consumers offer a more robust event delivery and are implemented as COM
servers (local or in-proc). When an event is delivered to a permanent event consumer, WMI calls
CoCreateInstance (if it has not already been created from a previous event delivery) followed by
passing the event to the consumer. These types of consumers are very powerful if you think about
the possibilities! Permanent event consumers are discussed in detail in Chapter 12.

Note

Key properties are meaningless in an event class. You cannot use normal enumeration
nces of an event class; you can access them only through an techniques to address insta

event consumer.

The WMI SDK comes with a few tools that you can use to test and develop event queries for your
applications. The WMI Event Registration facility (which comes as a developer tool in the Platform
SDK) can create event registrations, including timer instructions. These event registrations will
used by the Event Viewer consumer application (when loaded) to make the event subscriptions. The
Event Viewer allows you to visualize the events as and when they occur. If you need quick raw
access to test your event query

 be

, use wbemtest, which is installed with Windows XP and very
closely mimics the IWbemServices interface.

In the
types of data: namespaces, classes, and instances. All intrinsic events follow a

or deletion, and finally an event for modification

Let's examine the different kinds of events.

Intrinsic Events
As already mentioned, intrinsic events occur in response to specific types of changes to data.
CIM, there are three
common pattern: an event for creation, another f
(Table 7.4).

dificationEvent Notifies a consumer when a class is modified.
stanceCreationEvent Notifies a consumer when a class instance is

.

consumer when an instance is deleted.
ent Notifies a consumer when an instance is modified.

Notifies a consumer when a namespace is created.

Notifies a consumer when a namespace is deleted.
nEvent Notifies a consumer when a namespace is modified.

at most applications either commit changes to management objects or respond to
agement object changes, you will find that the __InstanceModificationEvent will become

__Event

Table 7.4. Intrinsic Event Classes

Intrinsic class Comment
__ClassCreationEvent Notifies a consumer when a class is created.
__ClassDeletionEvent Notifies a consumer when a class is deleted.
__ClassMo

__In
created

__InstanceDeletionEvent Notifies a

__InstanceModificationEv

__NamespaceCreationEvent

__NamespaceDeletionEvent

__NamespaceModificatio

Giv
man

en th

one of your best friends. Every time an instance changes, you will get one of these events (if you
subscribe for it, of course). The __InstanceCreationEvent also is very useful, as you will see
later when we subscribe for new Windows event log events.

All event classes ultimately inherit from the CIM class , as you can see in Figure 7.3.

Figure 7.3. WMI event classes

Source: CIM Studio

The __InstanceModificationEvent class is derived from the __InstanceOperat
he __InstanceOperationEvent class has only one property, TargetInstance. T

ionEvent class.
he T

TargetInstance property represents a copy of the managed object[3] that was created,
anged.

deleted, or

[3] is of type object, which means that any WMI object can be represented.

__InstanceModificationEvent PreviousInstance. This is a
ect before it was changed.

anceOperationEvent

extrinsic events.
offer a customized environment

vent. To obtain more
ke CIM Studio and

gh the derived classes. You will see something like Figure 7.4

ch

TargetInstance

class __InstanceOperationEvent: __Event
{
 object TargetInstance;
};

The class adds another property,
copy of the managed obj

class __InstanceModificationEvent: __Inst
{
 object PreviousInstance;
};

Extrinsic Events
Events that have nothing to do with namespaces, classes, or instances are called
WMI providers can publish both intrinsic and extrinsic events that
for new types of events. All extrinsic events are derived from __ExtrinsicE

mation about the extrinsic event classes in your namespace, use a tool liinfor
rate throuite __ExtrinsicEvent

under Windows 2000.

Figure 7.4. WMI extrinsic event classes

As you can see, there are three extrinsic event classes: __EventQueu
_ConsumerFailureEvent, and Win32_PowerManagementEvent. T

eOverflowEvent,
he first two event classes are _

system-defined classes, [4] so there is really only on
n32_PowerManagementEvent. Windows XP, on

e custom event class,
 the other hand, publishes around 100 extrinsic

ity, the Service Control Manager, and some event traces
Wi
events that include events for provider activ
from the Operating Systems event tracer (as covered in Chapter 13).

[4] The reasons that the system event classes are not intrinsic are (1) they have nothing to do with n
(2) the classes are used by the WMI event generator, which can be viewed as a specialized event pr

amespaces, classes, or instances, and
ovider. This is why they ultimately

derive from __ExtrinsicEvent.

 extrinsic event:

{
",
ume Automatic"

rManagementEvent class description is:

The Win32_PowerManagementEvent class represents power management events
 changes. These state changes are associated with either

ent (APM) or the Advanced Configuration and Power
stem management protocols.

roperty contains one of the values specified in the ValueMap, which can be
rpreted into a human-readable form with the strings in the Values qualifier. We introduced

his is an excellent example of an extrinsic event. It has nothing to do with namespaces, classes,
nd instances (that is, intrinsic events), but it completely defines a new event within the managed

Let's look at the Win32_PowerManagementEvent

class Win32_PowerManagementEvent: __ExtrinsicEvent
{
 [read,
 ValueMap
 {
 "4", "7", "10", "11", "18"
 },

alues V

 "Entering Suspend", "Resume from Suspend
nge", "OEM Event","Res "Power Status Cha

 }
] uint16 EventType;

 [read] uint16 OEMEventCode;
};

The Win32_Powe

resulting from power state
the Advanced Power Managem
Interface (ACPI) sy

Source: CIMV2 namespace in Windows XP

Th
inte

e EventType p

Values and ValueMaps earlier in the chapter. If the EventType property has the value 11 ("OEM
Event"), then the OEMEventCode property will contain the specific power management code
provided by the original equipment manufacturer.

T
a
environment.

Timer Events

Timer events are a specialized kind of intrinsic event. WMI uses preconfigured event timers within
the repository to generate timer events. There are two types of timers, absolute and interval.
Absolute timers specify a specific time in the future. Interval timers are continuously generated a
are specified in milliseconds. Configuring w

nd
hen timer events get generated is called a timer

instruction.

As can be seen from the class hierarchy in Figure 7.5, there are two tim
reating instances of __AbsoluteTimerInstruction an

er instruction classes.
d __IntervalTimerInstruction set up

C
absolute and interval timer instructions, respectively.

Figure 7.5. WMI timer instruction classes

To examine the timer classes, let's first look at the __TimerInstruction base class:

rInstruction: __EventGenerator

 [key] string TimerId;

ust be unique), and the
 skip the delivery of the event if it is unable

oks like this:

hapter.
The __IntervalTimerInstruction class looks like this:

erInstruction: __TimerInstruction

[abstract] class __Time
{

 boolean SkipIfPassed = FALSE;
};

The TimerId property specifies the name of the timer instruction (this m
SkipIfPassed property indicates whether WMI should
to deliver it at the appropriate time. The default setting for this is false, which instructs WMI that it
must deliver the event, even if delivery time has passed. If this property is set to true, the event will
not occur if WMI was unable to generate the event at the appropriate time. The
__AbsoluteTimerInstruction class lo

class __AbsoluteTimerInstruction: __TimerInstruction
{
 [not_null] DATETIME EventDateTime;
};

The EventDateTime property specifies an exact time for the delivery of the event. The DATETIME
property must be a fully qualified date-time value. WMI will not generate an absolute timer event
based on a partially completed DATETIME. DATETIME properties are covered earlier in the c

class __IntervalTim
{
 [not_null, units("milliseconds")] uint32 IntervalBetweenEvents;
};

The IntervalBetweenEvents property represents the interval between events.

To set up timer instructions requires new instances of either __AbsoluteTimerInstruction or

wing MOF code will cause WMI to
lute timer event at 7:57 P.M. on January 31, 2005 (GMT):

instance of __AbsoluteTimerInstruction

l if your application is supposed to perform a task at a specific
delivered, the application could alter the

other predetermined time for the same task.

enerate interval timer events. The following MOF code will cause
I to fire an interval timer event every two seconds:

{

erval timer events may be useful if your application is supposed to perform a task at regular
 data to
interval

cribe to Events
bes for them. All

onstrate what an event query looks like, let's

CT * FROM __InstanceModificationEvent WITHIN 5 WHERE TargetInstance

e
e CD-ROM drive). If the CD-ROM drive door opens and closes, two events

The next piece of information the event query requ e event
consumer is subscribin
__InstanceModificationEvent. Most intrinsic event queries must specify how often WMI should
poll the provider to determine if there are any changes to the management objects. This is the reason
for the WITHIN clause. The query instructs WMI to poll all the CD-ROM drives every 5 seconds for

__IntervalTimerInstruction, depending on the type of timer you want to set up. For example,
let's instruct WMI to generate an absolute timer event. The follo
fire an abso

{
 TimerId = "MyAbsoluteTimer";
 SkipIfPassed = FALSE;
 EventDateTime = "20050131195700.000000+000";
};

An absolute timer event may be usefu
time. Once the time has passed and the event
EventDateTime property to fire at an

Next, let's instruct WMI to g
WM

instance of __IntervalTimerInstruction

 TimerId = "MyIntervalTimer";
SkipIfPassed = FALSE;

 IntervalBetweenEvents = 2000;
 };

Int
intervals. Suppose you have a distributed application that manages its own replication of

a regular activity would benefit from an other servers (perhaps every 10 minutes). Such
er. tim

How to Subs
As mentioned earlier, no events will

ent subscriptions use a WQL event query. To dem
 be delivered unless an event consumer subscri

ev
subscribe to be notified when a CD-ROM drive management object changes:

SELE
 ISA "Win32_CDROMDrive"

The query asks to be notified for any changes to any Win32_CDROMDrive management object (ther
may be more than on
will fire as each operation caused a change to the managed object. All event queries should start
with SELECT *, because WMI does not support event queries that specify properties in the SELECT
statement. If properties are specified, WMI ignores them and treats the query as SELECT *.

ires is the type of event to which th
g. The query asked to be notified for the intrinsic event,

modification changes. Next, the event query needs to know what object class it should monitor:
This is the purpose of the ISA operator. The operator requests notification of events for any

vent class.

 TargetInstance.MediaLoaded = true

ery 30 seconds and requests an event
 loaded.

lly useful
ibed for. To view the event registrations, use a

 class
ent event provider has only one

nagementEvent

ManagementEvent. The
ed:

creation events to event consumers for every new event
trinsic event,

Subscribing to timer events is similar to subscribing for intrinsic and extrinsic events. Delivery of
 class. The class looks like this:

 string TimerId;
 uint32 NumFirings;

enerated this event. The
 property is the number of times the event occurred before a notification was delivered

ISA
cla cified class. The ess deriving from the spe TargetInstanc is a property on the e

Let's review the query: It requests notification every 5 seconds for any instance modification events
for all instances that are members of any class deriving from the Win32_CDROMDrive class.

To make queries more specific, the query can include other WQL operators (like AND, OR, and so
forth) to narrow the events that will be delivered to event consumers. Consider the following event
query:

SELECT * FROM __InstanceModificationEvent WITHIN 30 WHERE
 TargetInstance ISA "Win32_CDROMDrive" AND

This query instructs WMI to poll all the CR-ROM drives ev
notification if the CD-ROM drive has changed and has media

All WMI event providers regist
hen determining what event queries can be subscr

er the events they can publish. This information is especia
w
tool such as CIM Studio to enumerate the instances of the __EventProviderRegistration
and inspect the EventQueryList property. The power managem
vent query registered, which is: e

SELECT * FROM Win32_PowerMa

Notice that this event provider publishes an extrinsic event, Win32_Power
indows event log event provider also has only one event query registerW

SELECT * FROM __InstanceCreationEvent WHERE
 TargetInstance ISA "Win32_NTLogEvent"

This event query will cause WMI to fire
added to the Windows event log service. Notice that this event provider publishes an in
InstanceCreationEvent. __

all timer events uses the __TimerEvent

class __TimerEvent: __Event
{

};

The TimerId property specifies the name of the timer instruction that g
NumFirings
to the consumer. The following event query subscribes for event notification from one of the timers
we created earlier in the chapter.

SELECT * FROM __TimerEvent WHERE TimerId = "MyIntervalTimer"

Virtually all timer event queries will look like this one. To subscribe to other timers involves
specifying a different timer instruction name for the TimerId value.

To try out the various types of event subscriptions, go to Appendix A for a short tutorial on the
WMI SDK event tools. If you are using Microsoft Visual Studio.NET, then Appendix B covers a
short tutorial on using the WMI server explorer, which includes support for making event
subscriptions.

s

m
onous event notification is not possible because of the

nature of events. Events get delivered to the consumer at any time after the event query is
r.

standard

CComPtr<IEnumWbemClassObject> spEnumInst;

 // As this is a test console application, this allows the user to

vent do we have?

R(_T("__CLASS")), 0, &varClass, 0,0);

Writing Applications to Receive Semisynchronou
Events
There are two choices for event notification: polling for the event deliveries yourself or having the
delivered to you asynchronously. Synchr

registered. Both semisynchronous and asynchronous calls are discussed earlier in the chapte

Let's see some sample code that uses one of the queries discussed earlier to subscribe for event
notification. We want to discuss only the highlighted sample code; the rest of the code is
semisynchronous polling on an enumerator, which is included for completeness.

// Register event query for the events we want
CComBSTR bstrEventQuery("SELECT * FROM __InstanceModificationEvent "\
 "WITHIN 5 WHERE TargetInstance ISA \"Win32_CDROMDrive\"");

hr = spServices->ExecNotificationQuery(CComBSTR("WQL"), bstrEventQuery,
 WBEM_FLAG_RETURN_IMMEDIATELY | WBEM_FLAG_FORWARD_ONLY,
 NULL, &spEnumInst);

bool bFinished = false;
while (!bFinished)
{
 ULONG uNumOfInstances = 0;
 CComPtr<IWbemClassObject> spInstance;
 HRESULT hrNext = spEnumInst->Next(1000, 1, &spInstance,
 &uNumOfInstances);

 // terminate the event subscription (when the spEnumInst is released)
 if (_kbhit())
 {
 _getch();
 bFinished = true;
 }
 if (hrNext == WBEM_S_TIMEDOUT)
 {
 _tprintf(_T(" IEnumWbemClassObject::Next(timeout=1000ms)\n"));
 }
 else
{

 // What type of e
 CComVariant varClass;

ComBST hr = spInstance->Get(C

 // Get the object (created, changed or deleted) of the

;
t(CComBSTR(_T("TargetInstance")), 0,

mQIPtr<IWbemClassObject> spObject = V_UNKNOWN(&varType);

 // What type of object was changed?

ery in the preceding sample code instructs WMI to poll all the CD-ROM drives every
-ROM drives.

cationQuery.

ct enumerator. If there are no events to deliver, the Next call will time out,
d (if at all). The

code outputs the following result; notice the event polling in action.

of event was delivered (we're
 class name of the instance

 // Only WQL is supported
const BSTR // Your event query

flags

IEnumWbemClassObject **);

ion. The current
ts only WQL.

 the event query for the events for which you want to receive
ifications. If the event query subscription is successful, you will get an enumerator in the ppEnum

elivered. To cancel the event

 // intrinsic event
 CComVariant varType
 hr = spInstance->Ge

; &varType, 0, 0)

 CCo

 CComVariant varTypeClass;
 hr = spObject->Get(CComBSTR(_T("__CLASS")), 0, &varTypeClass, 0, 0);

 _tprintf(_T("Received a %ls event of type %ls\n"),
 V_BSTR(&varClass), V_BSTR(&varTypeClass)
 }
 }

The event qu
5 seconds, and to send an event notification if there are any changes to any of the CD

To subscribe for semisynchronous event notification requires a call to ExecNotifi
his method instructs WMI to send event notifications through the returned T

IEnumWbemClassObje
requiring you to make another call to Next; this is done until an event is delivere

IEnumWbemClassObject::Next(timeout=1000ms)
Recieved a __InstanceModificationEvent event of type Win32_CDROMDrive
IEnumWbemClassObject::Next(timeout=1000ms)
IEnumWbemClassObject::Next(timeout=1000ms)

When an event is received, the preceding code determines what kind
expecting only __InstanceModificationEvent) and then obtains the

at was modified. In a real application, you would extract one or more properties from the changed th
object in and formulate an appropriaTargetInstance te response to the event.

Let's see what the ExecNotificationQuery method looks like:

interface IWbemServices
{
HRESULT ExecNotificationQuery(
 const BSTR strQueryLanguage,

strQuery,
 long lFlags, // Semisynchronous
 IWbemContext *pCtx, // Used in providers

ppEnum // Your access to the events
};

The strQueryLanguage param
plementation of WMI suppor

eter specifies the type of event query subscript
im

The strQuery parameter specifies
not
out-parameter that you poll to access the events when they are d
subscription, release the returned enumerator in the ppEnum out-parameter.

The lFlags parameter must specify both WBEM_FLAG_RETURN_IMMEDIATELY and
icationQuery will fail. These flags
n only a forward-only enumerator.

rd-only
umerator.

s Events
en, you must supply a custom implementation of

emObjectSink vent, your sink will be called. Asynchronous
thod calls are discussed earlier in the chapter.

nd
ailable

class CEventSink : public IWbemObjectSink

Index < lObjectCount; nIndex++)

 CComVariant varTypeClass;
(_T("__CLASS")), 0,

ls event of type %ls\n"),
R(&varTypeClass));

 return WBEM_S_NO_ERROR;

am,
 IWbemClassObject* pObjParam)
 {

WBEM_FLAG_FORWARD_ONLY. If you don't, the call to ExecNotif
isynchronous call and returspecify that you want to make a sem

Remember that you will not be able to call the Clone or Reset methods on the forwa
en

Writing Applications to Receive Asynchronou
As with all the other asynchronous calls you've se

. Whenever WMI delivers an eIWb
me

Use asynchronous event subscription if you want event notifications delivered in the backgrou
using another thread. The thread that performs the event query subscription is immediately av
to perform other tasks.

The following asynchronous sink is a reimplementation of the semisynchronous example given in
the previous section.

{
public:
 CEventSink() {}
 ~CEventSink() {}

 // IUnknown methods skipped for brevity . . .

 STDMETHOD(Indicate)(long lObjectCount, IWbemClassObject** apObjArray)
 {
 HRESULT hr = S_OK;

 for (int nIndex = 0; n
 {
 // Get properties from the object
 CComVariant varClass;
 hr = apObjArray[nIndex]->Get(CComBSTR(_T("__CLASS")), 0,
 &varClass, 0, 0);

 CComVariant varType;
 hr = apObjArray[nIndex]->Get(CComBSTR(_T("TargetInstance")),
 0, &varType, 0, 0);

 CComQIPtr<IWbemClassObject> spObject = V_UNKNOWN(&varType);

 hr = spObject->Get(CComBSTR
 &varTypeClass, 0, 0);

 _tprintf(_T(" Received a %
 V_BSTR(&varClass), V_BST
 }

 }

 STDMETHOD(SetStatus)(long lFlags, HRESULT hResult, BSTR strPar

 if (lFlags == WBEM_STATUS_COMPLETE)
 {
 _tprintf(_T(" Call complete, returned HRESULT 0x%X\n"),
 hResult);
 }

 return WBEM_S_NO_ERROR;
 }
};

You probably will have noticed the similarities of this sink to the one provided earlier in the
rface: It can be applied to

 is cancelled,
r the lFlags parameter

res the following steps:

ueryAsync with the event query and a pointer to the sink.

urity. When you call
rd of the event registration together with the
it is time for WMI to deliver an event, it makes

t up on the client to accept
ch the client and will be

time with access denied. In a production system, it is not practical to
 every machine. Figure 7.6

chapter. This demonstrates the flexibility of the IWbemObjectSink inte
fferent operations that deliver objects or events. When an asynchronous event querydi

WMI will call the method passing SetStatus WBEM_STATUS_COMPLETE fo
nd WBEM_E_CALL_CANCELLED in the hResult parameter. a

To make an asynchronous event subscription requi

1. Create an instance of the
2. Call ExecNotificationQ

sink.

Unfortunately, this is not the whole story. We must also consider DCOM sec
ExecNotificationQueryAsync, WMI keeps a reco

nk that WMI will use to deliver the events. When si
a call to the sink's Indicate method. If DCOM security has not been se

ever reacalls from another COM server, such as WMI, then the call will n
rejected by the COM run
reconfigure all the client DCOM security settings on summarizes what

lem

happens.

Figure 7.6. DCOM client callback prob

To overcome this problem, the event sink must be placed in an unsecured apartment. An unsecured
rate process (a local COM server) that turns off DCOM security when it is

partment with your local sink and you get back a new
hen WMI

apartment is a sepa
loaded. You provide the unsecured a
unsecured sink. The unsecured sink is then passed to WMI for event notification. W

delivers an event, it is delivered through the unsecured apartment, which allows any incoming
e calls to the client's local sink (Figure 7.7method calls. The unsecured apartment delegates th).

Figure 7.7. DCOM client callback solution

You might have come across this DCOM problem in which client callbacks cannot be made from
the server in your own software solutions. Unfortunately, the unsecured apartment only wor
WMI interfaces, more specifically, IWbemObjectSink.

ks with

t:

CComPtr<IUnsecuredApartment> spSink;

known> spStubUnk;
hr = spSink->CreateObjectStub(pSink, &spStubUnk);

C
/
CComBSTR bstrEventQuery("SELECT * FROM __InstanceModificationEvent "\
 "WITHIN 5

The following code sample demonstrates how to subscribe asynchronously for event notifications.
The highlighted portions represent the code necessary to create and use an unsecured apartmen

// Create sink for events
CEventSink* pSink = new CEventSink;

// Create DCOM middle-man

hr = spSink.CoCreateInstance(CLSID_UnsecuredApartment, NULL,
 CLSCTX_LOCAL_SERVER);

// Make the sink accessible to DCOM
CComPtr<IUn

ComQIPtr<IWbemObjectSink> spStubSink = spStubUnk;
/ The event query

 WHERE TargetInstance ISA \"Win32_CDROMDrive\"");

//
hr s
 bstr

..
... .
..

// Cancel registered event query
hr

Aft cured
apartm eateObjectStub
Cre face for the
unsecu ll can
be called correctly. To cancel the event subscription, you will have to call CancelAsyncCall,
pas

Let's lo

interface IUnsecuredApartment
{
HRE L
 I
 I
};

The d apartment. If the
call is s

Mor
e samples in this chapter have assumed that CoInitializeSecurity cannot be called.

e did this on purpose, because it is not possible to call CoInitializeSecurity when developing
MC snap-ins: An interface has been marshalled by the time the snap-in is called. That is why we

ocess, you may find it easier to call CoInitializeSecurity

Register the event query for the event notification we want
= pServices->ExecNotificationQueryAsync(CComBSTR("WQL"),

EventQuery, WBEM_FLAG_SEND_STATUS, NULL, spStubSink);

... ..

= spServices->CancelAsyncCall(spStubSink);

er you create the sink, you need to place it into an unsecured apartment. Load the unse
ent local COM server and call Cr . You supply the local sink and

ateObjectStub returns a new unsecured sink. You will need to call QueryInter
red IWbemObjectSink so that ExecNotificationQueryAsync and CancelAsyncCa

sing in the unsecured sink used in making the event subscription.

ok at the IUnsecuredApartment interface:

SU T CreateObjectStub(
Unknown * // Your local sink
Unknown **ppStub); // Your new unsecured sink

pObject,

 pObject parameter is your local sink that you wish to place into an unsecure
uccessful, you will receive a new unsecured sink in the ppStub out-parameter.

e on Security
All the cod
W
M
called CoSetProxyBlanket in the early part of the chapter; this sets the correct client security
context on the proxy. The IWbemServices is the only interface that requires the proxy security
context to be set.

If you are the sole owner of a pr
(which can be called only once per process). Calling CoInitializeSecurity sets the client
security context for all DCOM calls to WMI and other DCOM services you may use. If you are
developing a DLL, however, it is safer to call CoSetProxyBlanket, because you will have no idea
whether the process that you are joining has already marshalled an interface.[5]

[5]

ty and CoSetProxyBlanket. The parameters you
pass here also depend on what the providers require to do their work.

 Our aim for this section is to provide you with enough information for practical use. For a more detailed discussion on security, we
recommend reading Programming Windows Security by Keith Brown (ISBN 0-201-604426).

In particular, we want to discuss the authentication level and impersonation level parameters that
can be passed into both CoInitializeSecuri

Authentication is the process by which one principle (your client) proves its identity to another
principle (ultimately the WMI provider). To specify what type of authentication you want requi
one of the RPC_C_AUTHN_LEVEL_xxx values. In most cases, all you will need is
RPC_C_AUTHN_LEVEL_CONNECT. This value requires the client to prove its identity on the first
connection with WMI, which is usually adequate for most interactions. Supplying
RPC_C_AUTHN_LEVEL_CALL causes the client to prove its identity on every WMI call it makes.
Alternatively, you can use RPC_C_AUTHN_LEVEL_DEFAULT, which allows DCOM to use its no
security blanket negotiation algorithm (under Windows 2000/XP) to choose the authentication
level. Under Windows NT 4.0, this value defaults to RPC_C_AUTHN_CONNECT. Check the MSD
documentation for more information on the other RPC_C_AUTHN_LEVEL_xxx values.

res

rmal

N

In addition to the authentication level, you also supply the authentication capabilities. The

ext.

e

r CoSetProxyBlanket will be used for the
proxy's security context.

Cloaking is a means to track principle identities when making DCOM calls. The most flexible
is set

when it makes DCOM calls within the thread. If you use this flag, then you should specify the
PC_C_AUTHN_LEVEL_CALL flag to authenticate the user's identity on every call to WMI.

imitations on a principle on another machine within your security
of impersonation you will allow requires one of the

er machine will

 a task that results in another

 context to another machine, which can make
calls on your beh entials can be
passed to an unli r behalf (and
can be audited). This level of impersonation is dangerous if the provider is not trustworthy.

Let's also consider the connection options that affect security. Earlier in the chapter, we introduced
you to the IWbemLocator::ConnectServer method call. Let's recapitulate the method:

interface IWbemLocator
{
HRESULT ConnectServer(
 const BSTR strNetworkResource,
 const BSTR strUser,
 const BSTR strPassword,

capabilities we discuss specify what security context to use when making calls to WMI. A security
token is attached to each process. A security token is like a handle to a principle's security cont
You can alter a security token to represent another principle. By default, threads do not have
security tokens and any calls on a thread in the end use the process security token. You can overrid
this behavior and assign the desired security token within a thread. The
EOLE_AUTHENTICATION_CAPABILITIES values can specify how the thread security token is
assigned to DCOM proxies. The EOAC_NONE flag ignores the thread token and always uses the
process security token. When you use the EOAC_STATIC_CLOAKING flag, the thread security token
that is assigned when calling CoInitializeSecurity o

capabilities flag is EOAC_DYNAMIC_CLOAKING. This flag uses whatever thread security token

R

Impersonation specifies the l
context. To specify the type
RPC_C_IMP_LEVEL_xxx values. RPC_C_IMP_LEVEL_IMPERSONATE allows WMI and the providers to
perform tasks on your behalf. Ultimately, this means that you can access any local executive objects
for which you have access permission. Any calls made by a WMI provider to anoth
result in an access denied error. This level of impersonation does not allow your security context to
be passed to anybody else. As we mentioned earlier, providers can dictate the minimum
impersonation level. Consider the following: If a provider performs
WMI call to another machine on the network, then your security context needs to be passed. This is
called delegation, and it requires the RPC_C_IMP_LEVEL_DELEGATE flag. Delegation is a form of
impersonation that allows WMI to pass your security

alf. However, there is a down side to delegation. Your security cred
mited number of other machines that then can perform tasks on you

 const BSTR strLocale, // MS_409 for example
 LONG lSecurityFlags, // must be zero
 const BSTR strAuthority, // Security authority
 IWbemContext *pCtx, // Used in calls within provider
 IWbemServices **ppNamespace); // Your link to WMI
};

When making a connection to a different machine, you can include the strUser and strPassword
parameters to specify the user credentials with which to connect. For local connections, you must
pass NULL, which effectively uses the currently logged-on user credentials. You may need to
complete these parameters if you do not want to use the currently logged-on user for a connection to
another machine. The strUser parameter can also include the domain of the user/principle, for
example, DOMAIN_A\User_A.

If you need to use Kerberos security authentication or if you need to use a different NTLM domain
to authenticate the user credentials, then you must complete the strAuthority parameter. In most

omain security authority of the currently
ust pass a string formatted like this:

" ", in which > is the principle of the machine to

MI class, Win32_NTLogEvent, which

rivileges {"SeSecurityPrivilege"}
]

 string SourceName;

cases, you simply may pass NULL to use the default d
logged-on user. To use Kerberos authentication, you m
Kerberos:<principle name> <principle name

authenticate against. To use NTLM authentication for a specific domain, you will need to pass a
string formatted like this: "NTLMDOMAIN:<domain name>", where <domain name> is the domain to
authenticate against. If you specify this parameter, do not include domain information in the
strUser parameter.

Classes that Require Specific Security Privileges
All the classes so far have not required any special security privileges to access instance data.
However, you will more than likely come across classes that fall into this category in your own
applications. A good example is the Windows event log W
requires that the SeSecurityPrivilege be set when accessing instance data. Let's have a look at
the class:

[
 dynamic,
 provider("MS_NT_EVENTLOG_PROVIDER"),
 EnumP

class Win32_NTLogEvent
{
 [key] uint32 RecordNumber;
 [key] string Logfile;
 uint32 EventIdentifier;
 uint16 EventCode;

 ...
};

The EnumPrivileges qualifier contains an array of strings that represent the privilege names of the
privileges that must be set on the thread that wants to access the event log instance data.

Here's some pseudocode of the steps required to correctly set up the security token on the current

e
WMIImpersonateClassPrivilege n outline of

ent"));

eges

lf(); // Revert to process security context

ly outline that you set up your thread security token with the correct privileges,
ss security token. The
g events from WMI.

 LPCTSTR lpszClass)

n)

mpersonation);

 Get the token just created
bRes = OpenThreadToken(GetCurrentThread(),

 TOKEN_QUERY | TOKEN_ADJUST_PRIVILEGES, TRUE, &hToken);

(CComBSTR(lpszClass),
 WBEM_FLAG_RETURN_WBEM_COMPLETE, NULL, &spClass, NULL);

 hr = spClass->GetQualifierSet(&spQualifiers);

thread.

Get a security token for the thread and create one if necessary

Get the WMI class definition and inspect the EnumPrivileges qualifier

While (not end of qualifier list)
{
 Create a valid token privilege using the privilege name in list
 Adjust the token privilege
}

Set-up the IWbemServices proxy blanket with the thread security token

To ease the process of setting up the correct privileges, here are two helper functions to do just th
job: and WMIRevertToSelf. The following gives a
how to use these helper functions:

// Connect to WMI

WMIImpersonateClassPrivilege(spServices, _T("Win32_NTLogEv

// Do something interesting with spServices that requires privil

WMIRevertToSe

This should clear
and when the privileged operation is complete, to revert back to the proce

subscribe to Windows event lofollowing code is necessary if you plan to

HRESULT WMIImpersonateClassPrivilege(IWbemServices* pServices,

{
 USES_CONVERSION;
 HRESULT hr = S_OK;

 // Do we have a token on this thread?
 HANDLE hToken = NULL;
 BOOL bRes = OpenThreadToken(GetCurrentThread(),
 TOKEN_QUERY | TOKEN_ADJUST_PRIVILEGES, TRUE, &hToken);

 if (!bRes && !hToke
 {
 // Create a copy of the process token
 ImpersonateSelf(SecurityI

 //

 }

 // Get the class so that we can inspect the class qualifiers
 CComPtr<IWbemClassObject> spClass;
 hr = pServices->GetObject

 // Get qualifier set
 CComPtr<IWbemQualifierSet> spQualifiers;

 // Get the EnumPrivileges array
 VARIANT var; VariantInit(&var);
 hr = spQualifiers->Get(L"EnumPrivileges", 0, &var, NULL);

 // Calculate the number of elements
 long lUpper = 0;
 long lLower = 0;
 hr = SafeArrayGetUBound(V_ARRAY(&var), 1, &lUpper);
 hr = SafeArrayGetLBound(V_ARRAY(&var), 1, &lLower);

{0};
 tpEnable.PrivilegeCount = 1;

n);

y settings
WINNT, RPC_C_AUTHZ_NONE,

LL,

 if (RevertToSelf() == FALSE)

 long lNumOfElems = lUpper—lLower + 1;

 // Gain access to the SAFEARRAY
 BSTR HUGEP *pbstrArray;
 hr = SafeArrayAccessData(V_ARRAY(&var), (void**)&pbstrArray);

 for (int nIndex = 0; nIndex < lNumOfElems; nIndex++)
 {

 // Construct the desired privilege
 TOKEN_PRIVILEGES tpEnable =

 tpEnable.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;

 LookupPrivilegeValue(NULL, OLE2T(pbstrArray[nIndex]),
 &tpEnable.Privileges[0].Luid);
 // Set new privileges
 bRes = AdjustTokenPrivileges(hToken, FALSE, &tpEnable, 0,
 NULL, NULL);
 }

 hr = SafeArrayUnaccessData(V_ARRAY(&var));
ariantClear(&var); V

 CloseHandle(hToke

 // Set the proxy blanket to use the new securit

AUTHN hr = CoSetProxyBlanket(pServices, RPC_C
 NULL, RPC_C_AUTHN_LEVEL_CALL, RPC_C_IMP_LEVEL_IMPERSONATE, NU

_CLOAKING); EOAC_STATIC

 return hr;
}

HRESULT WMIRevertToSelf()
{
 HRESULT hr = S_OK;

 hr = HRESULT_FROM_WIN32(GetLastError());

 return hr;
}

This code assumes that you will use static cloaking for the IWbemServices DCOM proxy. You
might want to make this a parameter if you plan to use different types of authentication identity
tracking (that is, static or dynamic cloaking, and so forth).

Localized Namespaces
All the MOF examples you've seen throughout this chapter have provided very little information

art from the names of the classes
 meaning. At most, properties have

leges

er
so

et's see an exam
description qualifiers in a class definition.

"\\\\.\\root")

k";};

e("\\\\.\\root\\WMIBook")

ail system"):amended

 name of the user"):amended]

n("Telephone extension number of the user"):amended]

 [description("Binary WAVE stream of the user's name"):amended]

nnection to the namespace through

about what the classes, methods, and properties actually are. Ap
nd properties, only a few qualifiers have provided a little morea

been qualified as a key property. In the previous section, we introduced the EnumPrivi
qualifier for classes. Classes, methods, and properties can provide helpful text descriptions through
a description qualifier. If you are creating and implementing a new class, then you should consid
supplying description qualifiers. They will help others understand and use your new class. You al
could use them in your own applications as help items. L ple MOF file that uses

#pragma namespace(

instance of __namespace {name = "WMIBoo

#pragma namespac

[
 description("This manages user accounts for the voicem
]
class Sample_VoicemailAccount
{

 [key, description("The Directory common
 string UserID;

 [descriptio
 string TelephoneExtension;

 string DisplayName;

 uint8 SpokenName[];
};

In this example, the class and most of the properties have a description qualifier. The amended
flavor means that the qualifier (description in this case) will be retrieved from the localized
namespace. Recall that the initial co
IWbemLocator::ConnectServer specifies the locale.

The process of making a localized namespace was covered briefly in Chapter 6. In this section, we
shall use the previous example to expand on localized namespaces and shall provide sample code to

a
e. Everything that requires localization has been marked with the

 flavor. W

 MOF file contains all the class definitions. The localized file will contain only
e

show the localization support in action.

The previous MOF example demonstrates exactly what you need before you consider making
localized version of the fil
amended hen the MOF compiler processes this file, it outputs two files: a language-neutral
version and a localized version.

The language-neutral
those classes, m thods, and properties that used the amended flavor. When the MOF compiler
processes the localized file, it creates a new localized namespace for the amended classes.

Let's make a localized namespace (assume the above example is in a file called

emailLN.mof -MFL:WMIVoicemailLS.mfl -Amendment:MS_409

tral version into a file
calle . The -MFL: the classes, methods, and properties

e

Here is the output of the language-neutral MOF file:

ragma namespace("\\\\.\\root")

 {name = "WMIBook";};

#pragma namespace("\\\\.\\root\\WMIBook")

 [key] string UserID;

 string DisplayName;

ontained in the localized MOF file:

space("\\\\.\\root\\WMIBook")

stance of __namespace {name="ms_409";};

 [description("Binary WAVE stream of the user's name"):Amended]

ich
ds, and properties that have

WMIVoicemail.mof):

mofcomp -MOF:WMIVoic
 WMIVoicemail.mof

The -MOF: switch instructs the MOF compiler to place the language-neu
d WMIVoicemailLN.mof switch specifies that

that use the amended flavor be output to a file called WMIVoicemailLS.mfl. The -
Amendment:MS_409 switch determines what language the localized output file will represent. Th
MS_409 portion of the switch specifies the U.S. English locale.

#p

stance of __namespacein

class Sample_VoicemailAccount
{

 string TelephoneExtension;

 uint8 SpokenName[];
 };

Notice that there are no description qualifiers. These are c

#pragma name

in

#pragma namespace("\\\\.\\root\\WMIBook\\ms_409")

[
 description("This manages user accounts for the voicemail system"):
 Amended, AMENDMENT, LOCALE(0x409)
]
class Sample_VoicemailAccount
{

 [key, description("The Directory common name of the user"):Amended]
 string UserID;

 [description("Telephone extension number of the user"):Amended]
 string TelephoneExtension;

 uint8 SpokenName[];
};

You will notice that the property does not exist in this MOF code, whDisplayName
demonstrates that a localized namespace contains only class
the

es, metho
amended flavor.

When the language-neutral files and all the localized MOF files are compiled, namespace
structure in

s take the
Figure 7.8. The WMIBook namespace contains localized content for U.S. English and

German.

Figure 7.8. Example WMI namespace structure

Connecting to the WMIBook namespace for the German locale requires the following call:

hr = spLoc->ConnectServer(CComBSTR("root\\WMIBook"), NULL, NULL,
7"), NULL, 0, 0, &spServices);

n the chapter for more information about the locale
meter.

the locale specified in the ConnectServer call. The following code sample
:

definition using amended qualifiers
CComPtr<IWbemClassObject> spClass;

BEM_FLAG_USE_AMENDED_QUALIFIERS,

mPtr<IWbemQualifierSet> spClassQualifiers;
ualifierSet(&spClassQualifiers);

;

ass is'%ls'\n"), V_BSTR(&varClassDesc));

Ptr<IWbemQualifierSet> spPropQualifiers;
hr = spClass->GetPropertyQualifierSet(L"UserID", &spPropQualifiers);

_tprintf(_T(" User ID is'%ls'\n"), V_BSTR(&varUserIDDesc));

The above code outputs the f

l system'
e Directory common name of the user'

 CComBSTR("MS_40

Refer to the ConnectServer discussion earlier i
para

Whenever you wish to access localized content in your applications, you must use
WBEM_FLAG_USE_AMENDED_QUALIFIERS on calls to the IWbemServices interface. This includes all
variants of GetObject, ExecQuery, and CreateInstanceEnum. This flag instructs WMI to obtain
the localized content for
retrieves the U.S. English descriptions for the class and UserID property that we created earlier

CComBSTR bstrClass("Sample_VoicemailAccount");

// Get class

hr = spServices->GetObject(bstrClass, W
 NULL, &spClass, NULL);

 Get class qualifiers //

CCo
hr = spClass->GetQ

// Get description for class
CComVariant varClassDesc;

rClassDesc, NULL)hr = spClassQualifiers->Get(L"Description", 0, &va

_tprintf(_T(" Cl

Get property qualifiers //
CCom

// Get description for property
CComVariant varUserIDDesc;
hr = spPropQualifiers->Get(L"Description", 0, &varUserIDDesc, NULL);

ollowing:

Class is 'This manages user accounts for the voicemai
User ID is 'Th

Overview of High Performance Classes
oftware instrumentation interface would be complete without a mechanism for accessing high

performance data. All Windows NT-based Operating Systems from the outset have included
nters

ion about current activity.

 performance monitoring without exposing any
customized performance objects. Windows 2000/XP instruments standard objects such as a process,

read, network interface, and processor, to name a few. Every performance object has one or more
counters. A process, for example, includes process ID, private bytes, handle count, and thread count

e whether an application is leaking

onitoring design goals was to monitor other machines on the
e. This requirement turned into a solution that uses special

data

uly great benefits of WMI is that it is a unified API for accessing management
information in an enterprise environment. It describes all management information through classes.

I
(high-performance). Applications wishing to expose high-

performance information don't necessarily need to go through the anguish of exposing performance
igh-performance

information.

t need to use any special
all either GetObject

kes calls across process boundaries,
tage of a high-performance class, you

vider in-process and copies data directly from provider to the client, using a shared memory
interface. If the refresher is accessing objects on another machine, then the refresher on the remote

No s

monitoring tools (such as the System Monitor in Windows 2000/XP) that use performance cou
to capture and analyze system performance. This is useful especially in determining system
bottlenecks and fine-tuning system and application performance. High performance software
instrumentation allows services and drivers to provide real-time informat

Fortunately, all applications can benefit from

th

counters. The Windows 2000/XP System Monitor can determin
memory by inspecting the Private Bytes counter.

Adding your own customized performance counters to the system was not easy and
programmatically reading them was not much better until the Performance Data Helper (PDH)
library emerged. PDH provided a much simpler API that made it considerably easier to access
instrumented data from the Operating System, a Windows service, or a device driver.

One of the original performance-m
network, not just the local machin
registry keys that provide fast access to the data. However, there is little optimization of this
when it is transmitted over the network.

One of the tr

High-performance data is no exception. WMI can access all the performance counters that exist in
Windows 2000/XP through the generic performance counter provider. For example, the
Win32_PerfRawData_PerfProc_Process class exposes all the counters of the process object. WM
terms these types of classes Hi-Perf

counters any more. WMI supports a special type instance provider that exposes h

One of the benefits of accessing high-performance classes is that you don'
API to access them; you can use the standard IWbemServices interface and c
or CreataInstanceEnum. However, using this approach ma

ich is a relatively slow process. To take maximum advanwh
need to use a special WMI API called a refresher. The refresher loads the high-performance
pro

machine caches the objects and transmits only a minimal data set over the network.

Writing Applications to Access High-Performance Data

All Windows 2000/XP performance counters are exposed in classes that are derived from
Win32_PerfRawData. If you need to access any performance counters, use a tool like CIM St

 Let's exam
udio to

identify the class and its properties. ine ways in which the

2_PerfRawData_PerfProc_Process: Win32_PerfRawData
{

. (We mention these properties specifically because we shall use

them entioned, you can access high-performance classes in two
. Although it is

tain the memory usage
of a process.

);

ormance. A refresher is a mechanism that can update a
 that were added prior

onitors the private
he process:

resher);

mBSTR bstrPath("Win32_PerfRawData_PerfProc_Process.Name=\"WMIHiPerf\"");

CComPtr<IWbemClassObject> spRefreshableObject;
0L, NULL,

ast property retrieval.

Win32_PerfRawData_PerfProc_Process class can be accessed. This is a portion of the class
definition:

class Win3

 [key] string Name;
 uint64 PercentProcessorTime;
 uint64 PercentUserTime;
 uint64 PercentPrivilegedTime;
 uint32 WorkingSet;
 uint64 PrivateBytes;
 uint32 ThreadCount;
 uint64 ElapsedTime;
 uint32 IDProcess;

 ...
};

The Name property identifies the name of the process and the PrivateBytes property identifies how
much memory the process is using

 in sample code later.) As already m
ways: either by using the standard IWbemServices interface or by using a refresher
not desirable for high performance, you could make the following calls to ob

CComBSTR
bstrPath("Win32_PerfRawData_PerfProc_Process.Name=\"MyProcess\""

CComPtr<IWbemClassObject> spInstance;
hr = spServices->GetObject(bstrPath, 0, NULL, &spInstance, NULL);

CComVariant var;
hr = spInstance->Get(CComBSTR("PrivateBytes "), 0, &var, 0, 0);

A refresher is required to achieve high-perf
number of refreshable objects speedily. A refresher updates only the objects

 calling . The following sample code leaks some memory and then mto Refresh
bytes property to inspect the amount of memory that is allocated for t

// Create a refresher, this accesses the Hi Perf data
ComPtr<IWbemRefresher> spRefresher; C
hr = spRefresher.CoCreateInstance(CLSID_WbemRef

// We need to add objects to the refresher

igureRefresher> spConfig = spRefresher; CComQIPtr<IWbemConf

CCo

// Add the instance we want refreshed

hr = spConfig->AddObjectByPath(spServices, bstrPath,
&spRefreshableObject, NULL);

// Using IWbemObjectAccess for f
CComQIPtr<IWbemObjectAccess> spObjectAccess = spRefreshableObject;

// Obtain the property handles, this is used in reading propert
long lPrivateBytesHandle = 0;

ies.

opertyHandle(L"PrivateBytes", NULL,

a memory leak!

refresher
_AUTO_RECONNECT);

 // Read the processes PrivateBytes memory usage

 _tprintf(_T("Process is using %lu bytes\n"), dwPrivateBytes);

After creating a refresher (in-process), the next task is to configure the refresher with the objects

 object path of the high-performance object referred to by the
namespace to which the IWbemServices parameter points. The IWbemConfigureRefresher

ties of the
 object by calling Get for the property value. However, you should consider using

another interface called IWbemObjectAccess. This interface is optimized for very fast property

btain property access handles by calling GetPropertyHandle. Property handles represent
the named properties and allow direct access to the property in the refresher. Another downside is

ReadDWORD, ReadQWORD, and ReadPropertyValue
with calls to Lock and Unlock.

Part of the reason that is slower is that it has to translate the property
e property directly.

T

The e at memory is being leaked:

hr = spObjectAccess->GetPr
&lPrivateBytesHandle);

// Small loop to show that there is
for(int x = 0; x < 5; x++)
{

 // Update all the objects added to the
 hr = spRefresher->Refresh(WBEM_FLAG_REFRESH

 hr = spObjectAccess->Lock(0);

 DWORD dwPrivateBytes = 0;
 spObjectAccess->ReadDWORD(lPrivateBytesHandle, &dwPrivateBytes);

 hr = spObjectAccess->Unlock(0);

 // Leak some more memory
 char* pLeakMemory = new char[20000];
}

that require monitoring. Call AddObjectByPath for as many objects as you want to monitor.
AddObjectByPath requires an

interface has a number of other methods that can add objects to the refresher, including AddEnum,
AddObjectByTemplate, and AddRefresher. We find AddRefresher interesting because all the
objects added to another refresher (also called a child refresher) result in all objects being updated
with a single call to Refresh. Objects also can be removed by calling Remove.

The IWbemClassObject returned by AddObjectByPath allows you to inspect the proper
high-performance

access, but the downside is that property names cannot be used to access properties. Instead, you
need to o

that the interface is not thread-safe, so depending on your circumstances, you should consider using
the Lock and Unlock methods. Surround calls to

IWbemClassObject::Get
name into a property handle that is then used to access th

Calling Refresh regularly is critical to monitoring changes to objects and objects in child
refreshers. The WBEM_FLAG_REFRESH_AUTO_RECONNECT specifies that even if the connection is
broken, the refresher will attempt to reconnect to the high-performance provider automatically. If
you do not want to do this, use WBEM_FLAG_REFRESH_NO_AUTO _RECONNEC .

 pr vious sample code outputs the following. Notice th

Pro
Pro
Pro

ing 1380352 bytes

umerated Data

 interface that you later
ll the objects in the enumerator, after a refresh. The following code
hat will add all the process instances to the refresher for monitoring:

accesses the Hi Perf data
her> spRefresher;

stance(CLSID_WbemRefresher);

e need to add objects to the refresher
CComQIPtr<IWbemConfigureRefresher> spConfig = spRefresher;

fresher->Refresh(WBEM_FLAG_REFRESH_AUTO_RECONNECT);
DWORD dwNumReturned = 0;

jects there are in the refresher.

);

EnumAccess,

les. Used when reading properties.
;

ropertyHandle(L"PrivateBytes", NULL,

andle);

NumReturned; dwIndex++)

cess is using 1294336 bytes
cess is using 1314816 bytes
cess is using 1335296 bytes

Process is using 1359872 bytes
Process is us

Access High-Performance En
In the last section, we explained how a single object could be added, refreshed, and retrieved from a
refresher. Another way of adding objects to a refresher is to add an enumerator. An enumerator
adds all the objects of the class that you can later retrieve by iterating through the conformant array
of IWbemObjectAccess objects. To add an enumerator, you need to call
IWbemConfigureRefresher::AddEnum. This returns an IWbemHiPerfEnum
use to obtain the list of a

ludes an enumerator tinc

// Create a refresher, this
CComPtr<IWbemRefres
hr = spRefresher.CoCreateIn

// W

// Add an enumerator to the refresher.
CComPtr<IWbemHiPerfEnum> spEnumObjects;
hr = spConfig->AddEnum(spServices,
 L"Win32_PerfRawData_PerfProc_Process", 0, NULL,
 &spEnumObjects, NULL);

// Update all the objects added to the refresher.
hr = spRe

IWbemObjectAccess** apEnumAccess = NULL;

// Find out how many ob
hr = spEnumObjects->GetObjects(0L, 0, apEnumAccess,
 &dwNumReturned

// We expect this, best to check anyway.
if (hr == WBEM_E_BUFFER_TOO_SMALL)
{
 apEnumAccess = new IWbemObjectAccess*[dwNumReturned];

 // Get all the objects that are now updated
 hr = spEnumObjects->GetObjects(0L, dwNumReturned, ap
 &dwNumReturned);
}

// Obtain the property hand
long lPrivateBytesHandle = 0
hr = apEnumAccess[0]->GetP
 &lPrivateBytesHandle);
long lNameHandle = 0;
hr = apEnumAccess[0]->GetPropertyHandle(L"Name", NULL, &lNameH

// Examine all the properties
for(DWORD dwIndex = 0; dwIndex < dw

{
 hr = apEnumAccess[dwIndex]->Lock(0);

 LPWSTR szName[64];
 h

 h

 _tprintf(_T("Process '%ls' is using %lu bytes\n"), szName,

, and the second call retrieves the
cts. It is now possible to iterate through all the currently active processes. Note that
stances in the enumerator can change with every call to Refresh.

WCHAR

ng is small portion of the output from the above code:

ytes
Process 'csrss' is using 1777664 bytes

ct of managing objects in WMI. The first
ental and basic operations. You learned how

erated, and queried. Methods provided

isynchronous and asynchronous
 to good effect. We covered all three types of events and the

 // Read PrivateBytes
 DWORD dwPrivateBytes = 0;
 hr = apEnumAccess[dwIndex]->ReadDWORD(lPrivateBytesHandle,
 &dwPrivateBytes);

 // Read Name
 long nNameSizeInBytes = 0;

r = apEnumAccess[dwIndex]->ReadPropertyValue(lNameHandle,
 sizeof(WCHAR) * 64, &nNameSizeInBytes, (LPBYTE)szName);

r = apEnumAccess[dwIndex]->Unlock(0);

 dwPrivateBytes);
}

To obtain the objects within the IWbemHiPerfEnum enumerator, you must call GetObjects twice.
The first call determines how big the conformant array should be
enumerated obje
the number of in

The previous code sample conveniently introduced the ReadPropertyValue call. You can use this
call to retrieve data that is neither a DWORD nor QWORD. In this case, we wanted the name of the
process (all strings are more than likely in Unicode, hence the).

The followi

Process 'Idle' is using 0 bytes
Process 'System' is using 90112 bytes
Process 'SMSS' is using 1126400 b

Process 'LSASS' is using 2916352 bytes
..
...

Summary
This chapter has introduced you to virtually every aspe
half of the chapter introduced you to the most fundam
objects could be accessed, created, deleted, updated, enum
you with a powerful mechanism for adding behavior to classes and objects. Some detailed

anipulate properties, especially objects or arrays. discussion outlined how you could m

Leading into
calls and how you could use them

the sections covering WMI events, we introduced sem

distinctions among them. Intrinsic events involve changes to classes, namespaces, and object
instances. Extrinsic events allow providers to add new types of events to the management
environment. Finally, timer events allow you to set up configurable timers to remind you to perform
some task at a specific time or interval.

The last few sections covered advanced topics that include more information about security and
dealing with localized namespaces (using amended qualifiers). The WMI high-performance
refreshers were discussed in detail to make it easier for you to access this sort of monitoring

++/COM
tions:

MI using the ConnectServer method on the
IWbemLocator interface. The resulting IWbemServices out-parameter will

t
 to

are by supplying the class name,

 if you know the specific management object to which you require
creating a valid object path.

t properties may supply Values and ValueMap qualifiers to describe

 from the management
environment by using data queries. Data queries are specified using WQL and are
passed to .

information.

Ten Fast Facts: Developing C
Management Applica

1. You always have to connect to W

provide you with all the facilities you are mostly likely to require.
2. Use CreateInstanceEnum to easily identify the currently available managemen

objects for a class. For example, you could call CreateInstanceEnum
determine quickly what shared directories there
"Win32_Share".

3. Use GetObject
access. This involves

4. Be aware tha
how to interpret property data.

5. WMI offers a powerful means to extract information

ExecQuery
6. Many WMI classes use methods to add behavior. Always check whether the class

you want to use has any methods in which you may be interested. In particular,
many classes in the CIMV2 namespace use methods to create and update
management objects. Call ExecMethod to execute a management class or
management object method.

7. Interpreting WMI class properties involves dealing with VARIANTs. If you are
unsure what VARIANT types you need to use, consult Table 7.1.

8. Always consider using semisynchronous or asynchronous techniques in your
management applications. Either of these approaches will make your applications
more responsive.

9. Event notification is one of WMI's most powerful features. WMI has the
capability to deliver events when something interesting happens. "Something

sk space runs low on a machine,
ake an event subscription.

interesting" might include being notified when di
for example. Call ExecNotificationQuery to m

10. If you need to obtain values from performance counters, remember WMI provides
a means to access them using high-performance classes that are optimized for
communication across a network.

Chapter 8. Developing .NET Management
Applications

Microsoft has introduced the .NET Framework, a whole new paradigm in the way that developers
technological features that make it a

ork is an execution platform that is
e.

e (CLR). When a .NET
nerated is in an Intermediate Language (IL). Upon

cation, the .NET run time will compile the IL code into

All applications that use the .NET Framework can use the large library of built-in classes. This

s in

ng

ay
rm and

programming language independence is a great technological breakthrough. In addition, because all

write and run software. This new platform contains many new
reat way to write, deploy, and run software. The .NET Framewg

not tied to a specific processor architectur

The key in achieving this is based on the Common Language Run-tim
 is geapplication is compiled, the object code that

stallation or the first execution of the appliin
processor-specific instructions (native code).

means that .NET applications can be developed faster, making the developer more productive.
Applications will be able to use the same classes as another application, such as the Thread clas
the System.Threading namespace. All .NET classes exist in a namespace. The WMI classes, for
instance, exist in the System. Management namespace. Another major advantage of the .NET
Framework is that it offers programming language independence. This makes the programmi
language you use irrelevant. For instance, you could develop a component using the new C#
programming language, and extend it (using inheritance) with Visual Basic. After that, you m
decide to use the component in your favorite COBOL application! This type of platfo

.NET applications use the same libraries, applications usually have a much smaller footprint.

In Chapter 7, we covered the WMI COM APIs that allow you to interact with WMI. This chapter
takes a similar form but covers the .NET classes. It assumes that you are familiar with the C#
programming language and are familiar with the .NET platform. It also assumes that you are aware
by now that management objects can be created, updated, deleted, enumerated, and queried. You

 WMI
ow you can write applications to manage management objects. Some

tail to give you a complete guide to how you might want to make
MI calls in your own applications. By the end of this chapter, you will know about virtually every

key aspect of writing a .NET management application.[1]

can manipulate properties on management objects, execute methods, and subscribe to receive
events. This chapter details h
specific topics are discussed in de
W

[1] If you are not familiar with the .NET initiative, we suggest you read one of
.NET environment and, in particular, C#.

 the many books available on programming within the

Getting Started

e System.Management namespace in your projects.

Fig

During this chapter we use the terms "management object" and "instance" interchangeably.

This chapter focuses on the classes within the System.Management namespace. All the samples and
classes in this chapter are based on the .NET Framework and Visual Studio .NET.

When creating .NET management applications with Visual Studio .NET, do not forget to include a
reference to th

ure 8.1 highlights some of the major classes in the System.Management namespace with which
ll become fayou i

Figure 8.1. Major .NET Framework management classes

 w miliar by the end of the chapter.

Getting a Management Object
ing a management object is one of the most basic operations to perform. This kind of operation

know what m

Win32_Share.Name="C$". We

Gett
is useful especially when you anagement object you want. For example, you can gain
access to properties for a shared directory (which may be on another machine) by executing an
operation that retrieves the management object from WMI.

Before you can gain access to a management object, you must have a valid object path. An object
path is a string that can specifically reference either a management class or a management object.
For example, if you look at the Win32_Share class in the CIMV2 namespace, you'll see that it has
one key property, "Name". If you expect the C$ shared directory on a machine to exist, you
therefore can attempt to get a management object that represents the shared directory. You must
generate an object path that includes the one and only key value,
explained object paths in more detail in Chapter 7.

You may also get an object path from a property. WMI includes an object reference, which is a data
ts. Association classes include properties that are

d one of these properties and merely
nagementObject class's constructor.

ave a valid object path, you'll be able to gain access to a management

tory:

e.Name=\"C$\" ");

_Share.Name=\"C$\" path is {0}", mo["Path"]);

tory and outputs it to the screen. This
be the most common way to retrieve properties from a management object. However,

e code sample employs a lazy object retrieval technique. The properties for the
management object are retrieved when the mo["Path"] property is required, not when the

requires

ManagementObject mo = new ManagementObject("Win32_Share.Name=\"C$\" ");

type that can reference other management objec
object references in order to make an association. You may rea
ass the object reference (which is a string) straight into the Map

Either way, as long as you h
object.

The following code illustrates how to get the path of a shared direc

ManagementObject mo = new ManagementObject("Win32_Shar

Console.WriteLine("Win32

The above exa
y will

mple retrieves the path of the shared direc
probabl

bovthe a

ManagementObject is created. To specify explicitly when an object is retrieved from WMI
a call to Get on the ManagementObject class. Let's look at an example:

mo.Get(); // Expli

cit. Object retrieved here!

re.Name=\"C$\" path is {0}", mo["Path"]);

is example now is retrieved at specific point in the code. This offers
a deterministic method to specify where in the code the overhead of retrieving the object is

 classes and
bjects. Here is a portion of the ManagementBaseObject class declaration:

ect

irtual PropertyDataCollection SystemProperties {get;}

 .

 /
 public bool CompareTo(ManagementBaseObject otherObject,

qualifierName);

 public void SetQualifierValue(string qualifierName,

e.

Console.WriteLine("Win32_Sha

The
you

 management object in th

made. If there are any problems in retrieving the management object, you are in a better position to
place exception error handling code appropriately.

Let's look at the ManagementObject class in more detail. To do this, let's take a step back and
examine the base class, ManagementBaseObject, which is the base class for both management
objects and management classes. We've just now seen how we can get a management object, so we
will focus on some of the other available operations that can be performed for both
o

public class ManagementBaseObj
{
 // Properties
 public virtual ManagementPath ClassPath {get;}
 public object this[string propertyName] {get; set;}
 public virtual PropertyDataCollection Properties {get;}
 public virtual QualifierDataCollection Qualifiers {get;}
 public v

.

/ Methods

 ComparisonSettings settings);

 public object GetPropertyQualifierValue(string propertyName,
 string

 public object GetPropertyValue(string propertyName);

 public object GetQualifierValue(string qualifierName);

 public void SetPropertyQualifierValue(string propertyName,
 string qualifierName, object qualifierValue);

 public void SetPropertyValue(string propertyName, object
 propertyValue);

 object qualifierValue);

 ..
};

The ClassPath property provides information about the class of the object referenced by the
management object. This sometimes is useful when you want to construct a new object path for
other objects of the same class or to generate a WQL query. The ManagementPath class will be
discussed in more detail shortly.

The [] index operator is a very useful shorthand for GetPropertyValue and SetPropertyValu
The index operator allows easy access to set and get property values. The code samples shown

earlier use this technique to retrieve the path of a shared directory (mo["Path"]). We discuss
getting and setting properties in more detail later in the chapter.

The Properties property represents all the properties of a management class or management
object. This is useful when you must process the values for all of the properties. You will see an

rties property collection.

iers for a
ay want to process all of
or the classes, objects,

ualifier for a class or object, use
 example shortly that

ieves a class qualifier. If you want to set or get a specific qualifier for a property, use
, respectively. If you were

pare two management objects derived from agementBaseObject, then you
aring management objects an

 such useful methods that make life

 class:

ntObject();

h, ObjectGetOptions

ementObject(string path, ObjectGetOptions options);

n

he reverse side, if you obtain an object
reference from WMI (either through an object reference or through the property), you may

e ManagementPath class instead of an object path
string. Let's look at how this class is used. The following code sample obtains the shared directory
information from another machine:

example of this later in the chapter. The system-provided properties can be found in the
SystemPrope

Like the property, the property represents all the qualifProperties Qualifiers
management class or management object. For similar reasons, you also m

information fthe qualifier values. Qualifiers are a way to provide context
perties, and methods. If you want to set or get a specific qpro

Se
retr
tQualifierValue or GetQualifierValue, respectively. You'll see an

SetPropertyQualifierValue and GetPropertyQualifierValue
writing the CIM Studio application (which ships with the Platform SDK) using the .NET
Framework, then you would need to use Properties, SystemProperties, and Qualifiers
properties to display the enumerations.

If you want to com Man
may consider the CompareTo method. This makes the job of comp
easy task. In the .NET management library, you will find many

ier. We include more examples later. eas

Let's examine a portion of the ManagementObject

public class ManagementObject: ManagementBaseObject
{
 // Constructors
 public Manageme
 public ManagementObject(ManagementPath path);

 public ManagementObject(string path);
 public ManagementObject(ManagementPath pat
 options);
 public Manag

 .
};

Earlier you saw some code samples that referenced a management object by specifying an object
path as a string, such as:

ManagementObject mo = new ManagementObject("Win32_Share.Name=\"C$\"");

This code uses a relative object path. Retrieving an object (or a class) from a specific namespace o
a specific machine requires a fully qualified object path. A fully qualified object path includes the
machine name, the namespace, and an object reference. On t

__PATH
end up parsing the object path string into its separate elements. In the .NET environment, another
way to specify an object path is to use the ManagementPath class. Two of the ManagementObject
constructors (in the preceding declaration) use th

ManagementPath path = new ManagementPath();
path.Path = "Win32_Share.Name=\"C$\" ";
path.Server = "BOB";
path.NamespacePath = "root\\CIMV2";

ManagementObject mo = new ManagementObject(path);

Console.WriteLine("Win32_Share.Name=\"C$\" path is {0}", mo["Path"]);

d the object reference (Win32_Share.Name="C$").
Let's look at what else the ManagementPath class offers:

 public ManagementPath();

lassName {get; set;}
 public static ManagementPath DefaultPath {get; set;}

 {get;}
et;}

};

u
roperty. Likewise,

if you want to determine whether the Path property has an object reference, you can inspect the
s a singleton object, you can

s, examine the Server property. If you
achine for an object (or a class) request, do something similar to the code

To determine the namespace in which the ine the NamespacePath
t code sample and set the

achine and namespace (as a string) that will be
pacePath) is specified. This is currently

\root\CIMV2".

his can be
tly

existing object. The following demonstrates what happens to the Path property:

This code sample specifies all the elements of a fully qualified object path, that is, the machine
name (BOB), the namespace (root\CIMV2), an

public class ManagementPath
{
 // Constructors

 public ManagementPath(string path);

 // Properties
 public string C

 public bool IsClass {get;}
ublic bool IsInstance {get;} p

 public bool IsSingleton
 public string NamespacePath {get; s
 public string Path {get; set;}

blic string RelativePath {get; set;} pu
 public string Server {get; set;}

 // Methods
 public void SetAsClass();
 public void SetAsSingleton();

The ClassName property exposes the management class specified within the Path property. Yo
can determine if the Path property references a class by inspecting the IsClass p

IsInstance property. In addition, if the Path property reference
inspect the IsSingleton property.

To d
are specifying a specific m

etermine the machine on which the class or object reside

sample and set the Server property.

class or object resides, exam
property. To specify a namespace, do something similar to the recen
NamespacePath property.

The DefaultPath property specifies the default m
used when no machine (Server) and/or namespace (Names
"\\.

The SetAsClass method will convert the path (whatever it is) into a class reference. T
useful when you want to create another management object of the same class as another curren

ManagementPath path = new ManagementPath();
path.Path = "

Win32_Share.Name=\"C$\" ";

ple demonstrates:

__SystemSecurity");

is __SystemSecurity=@". Notice that the class
ied through the ManagementPath's constructor.

 class declaration:

 Properties

s or
alues,
s on the

ll, you
rough another method call on another interface. In the .NET environment, all

 ManagementOptions. The Options property in
n retrieving

ObjectGetOptions class:

;

path.SetAsClass();

onsole.WriteLine("Path is {0}", path.ToString()); C

The WriteLine statement outputs: "Path is Win32_Share".

The SetAsSingleton method will convert the path into a singleton reference. Sometimes this is
useful when you need a quick way of converting a class reference to a singleton reference. For
instance, the __SystemSecurity class has a singleton reference and the class reference can be
converted easily, as the following code sam

ManagementPath path = new ManagementPath("

path.SetAsSingleton();

Console.WriteLine("Path is {0}", path.ToString());

The WriteLine statement outputs: "Path
reference was specif

Here is another portion of the ManagementObject

public class ManagementObject: ManagementBaseObject
{
 //
 public ObjectGetOptions Options {get; set;}
 public virtual ManagementPath Path {get; set;}

 .. .
};

Microsoft has rationalized all the various options for different WMI operations into single
encapsulated classes. The WMI COM API specified the various options either through flag
through calling specific methods. For example, if you wanted to access amended qualifier v
you had to specify WBEM_FLAG_USE_AMENDED_QUALIFIERS in the flags parameter in method
IWbemServices interface. If you wanted to specify the WMI call context, you had to specify that
through another parameter. If you wanted to specify the time-out for a semisynchronous ca
had to specify that th
of this is unified into option classes derived from
the previous class declaration allows you to inspect and modify the various options whe
objects and classes. The ManagementClass class also has an Options property.

Let's look at an example for retrieving an object using the

ObjectGetOptions options = new ObjectGetOptions();
options.UseAmendedQualifiers = true;

ManagementClass mc = new ManagementClass("Win32_Share", options);
Console.WriteLine("Win32_Share description is '{0}' ",
 (string)mc.GetQualifierValue("Description"))

This code sample enables the amended qualifiers so that the localized description of the
Win32_Share class can be obtained. All the options for retrieving objects or classes are provided
through the ObjectGetOptions class. The output of this code sample produces the following:

Win32_Share description is 'The Win32_Share class represents a shared resource on

e base class,

 public ManagementNamedValueCollection Context {get; set;}

lps
e cases providers use

the mechanism so that clients can set additional context information that the provider may extract
r a specific operation.

 for semisynchronous calls. In general, we do not cover
is so easy to use the .NET classes to do true

 public ObjectGetOptions();
 p
 public ObjectGetOptions(ManagementNamedValueCollection context,

 /
 publ
};

The ObjectGetOptions
 sample created an ObjectGetOptions object and

UseAmendedQualifiers property. Alternatively, we could have specified this by
usin tructor.

Let's continue examining the ManagementObject class:

agementOperationObserver watcher);

a Win32 system. This may be a disk drive, printer, inter-process communication, or
other shareable device. Example: C:\PUBLIC.'

Let's look at the ObjectGetOptions class in more detail. To do this, let's go back to th
ManagementOptions. ManagementOptions is the base class for all management operation options.

public abstract class ManagementOptions
{
 // Properties

 public TimeSpan Timeout {get; set;}
};

The Context property is usually used from within WMI providers that make WMI calls. This he
to avoid infinite loops from occurring within the provider. However, in som

fo

The Timeout property is required only
semisynchronous calls in this chapter because it
asynchronous operations. We discuss semisynchronous event subscription, the only exception, later
in the chapter.

Now let's look at the ObjectGetOptions class:

public class ObjectGetOptions: ManagementOptions
{

 // Constructors

ublic ObjectGetOptions(ManagementNamedValueCollection context);

 TimeSpan timeout, bool useAmendedQualifiers);

/ Properties
ic bool UseAmendedQualifiers {get; set;}

 class is one of the simpler options classes because it has only one property,
UseAmendedQualifiers. The earlier code
separately set the

g the correct ObjectGetOptions cons

public class ManagementObject: ManagementBaseObject
{
 // Methods
 public void Get();
 public void Get(Man

ow you could use the Get
method to specify explicitly when the object was retrieved. This class declaration shows the

meter. Use this for asynchronous retrieval operations as
apter.

Enumerating Management Objects
nt a complete list of all the management objects of a given class.

hat allows the user to select a shared directory to complete a
 display a list of all the available shared directories. You can

achieve this by enumerating all the instances of the Win32_Share class. You also could perform the

ing a query involves processing the query, obtaining a list of objects, and
object. In this case, it is more efficient to enumerate the objects in

e name of the class you want to

ement

le illustrates how to obtain a list of shared directories:

ew ManagementClass("Win32_Share");

llection = mc.GetInstances();

 Console.WriteLine(" '{0}' path is '{1}'", mo["__RELPATH"], mo["Path"]);

ction) that you can later
he terms collection and

ontainer
ent, or

To move
res an enumerator. Call the ManagementObjectCollection class's
o obtain an enumerator for the collection. GetEnumerator returns an

 .
};

Earlier in this section we described the lazy management object retrieval employed within the
ManagementObject and ManagementClass classes. We also described h

prototype for the Get method as well as another Get method that takes a
ManagementOperationObserver para
discussed in more detail later in the ch

In some cases, you will wa
Suppose you have a user interface t

. In this case, you would want totask

following query to achieve the same result:

SELECT * FROM Win32_Share

However, perform
comparing the query against each
the class. To perform an enumeration, all you must know is th
enumerate.

Enumerating objects for a given class is also one of the easiest ways to discover which manag
objects are available. When you move through classes using CIM Studio (which comes as a
developer tool in the Platform SDK), one of the first things you do is look at a list of instances to
see which objects can be managed.

The following code samp

ManagementClass mc = n

agementObjectCollection mcCoMan

foreach(ManagementObject mo in mcCollection)
{

}

The GetInstances call creates a collection (ManagementObjectColle
enumerate to gain access to every instance of that class. You may see t
enumeration used interchangeably, but there is an important difference. A collection is a c
of values or objects. You can enumerate a collection, providing access to every value, elem
object, but you cannot navigate it (that is, move back and forth through the collection).
through a collection requi

thod GetEnumerator tme

enumerator object of class ManagementObjectCollection.ManagementObjectEnumerator. All
ction classes in the System.Management namespace also have an enumerator class.

Win32_Share.Name='ADMIN$' path is 'C:\WINNT'

ptions class. By
ation collection enumerates only the instances of objects of a specific

allow enumeration, and you saw it in the preceding code
all the instances of

Win32_SystemAccount

ementClass("Win32_SystemAccount");
on = mc.GetInstances();

n you might want to build your enumeration
deep

 must create and complete an
e you want to see all security

hema using CIM Studio, you will see that the

ass,

();
options.EnumerateDeep = true;

tion)
{

1}'", mo["__RELPATH"],

lass in more detail.

class EnumerationOptions: ManagementOptions

colle

Notice that __RELPATH was specified as a property name. __RELPATH is the relative path of the
object. WMI has many system-provided properties for classes and instances that we will discuss in
more detail later in the chapter. The output of the preceding code on our machine produces the
following:

Win32_Share.Name='C$' path is 'C:\'
Win32_Share.Name='IPC$' path is '

Retrieving collections of management objects also uses an options class derived from
ManagementOptions. The EnumerationOptions class has many more options than
ObjectGetOptions (described earlier).

Let's consider a simple example of how we might want to use the EnumerationO
default, the enumer
management class. This is called a sh
sample. Here is another example, one that will provide only an enumeration of

e class. th

ManagementClass mc = new Manag
ManagementObjectCollection mcCollecti

If the class you want to enumerate is a base class, the
ollection so that it includes all classes derived from the base class. This is called a c

enumeration. To specify a deep enumeration, you
EnumerationOptions
accounts on your system. If you look at the CIMV2 sc

 object. Let's look at an example. Suppos

Win32_Account is a base class for Win32_SystemAccount, Win32_Group, and
Win32_UserAccount classes. By specifying a deep enumeration for the Win32_Account cl
you'll get a collection that will contain all instances of Win32_ SystemAccount, Win32_Group, and
Win32_UserAccount. Here is an example:

ManagementClass mc = new ManagementClass("Win32_Account");

EnumerationOptions options = new EnumerationOptions

ManagementObjectCollection mcCollection = mc.GetInstances(options);

foreach(ManagementObject mo in mcCollec

 Console.WriteLine("Account '{0}' is '{
 mo["Status"]);

}

Let's look at the onOptions cEnumerati

public
{
 // Constructors
 public EnumerationOptions();
 public EnumerationOptions(ManagementNamedValueCollection context,

 TimeSpan timeout, int blockSize, bool rewindable,
dedQualifiers,

ypeOnly, bool directRead,

 {get; set;}

set;}
 set;}

 public bool ReturnImmediately {get; set;}

into the collection before they pass to the caller. This can improve performance when you

expect large collection sets of objects in which the caller can process a group of objects at a time.

f it

uired only for semisynchronous calls. This chapter does not
cover semisynchronous calls.

ructs WMI whether to build an enumerator that can be rewound (that is,
ption is set to false, WMI

memory. If you do not need to navigate your collection, then we recommend that you set

endedQualifiers option allows access to localized content. This was demonstrated

 and
PrototypeOnly options will be discussed later.

ose objects can be

 bool returnImmediately, bool useAmen
 bool ensureLocatable, bool protot
 bool enumerateDeep);

 // Properties
 public int BlockSize
 public bool DirectRead {get; set;}
 public bool EnsureLocatable {get; set;}
 public bool EnumerateDeep {get;

blic bool PrototypeOnly {get; pu

 public bool Rewindable {get; set;}
 public bool UseAmendedQualifiers {get; set;}
};

The BlockSize option allows you to specify how many management objects will be obtained and
placed

The default value for this option is 1.

The DirectRead option allows the caller direct access to the WMI provider.

As you have seen, the EnumerateDeep option allows you to enumerate an entire class hierarchy i
is set to true.

The ReturnImmediately option is req

The Rewindable option inst
allow the caller to move back and forth through the collection). If this o

lds a forward-only enumeration. This type of enumeration generally is faster and requires less bui

Rewindable to false. If the class you are enumerating has a very large collection of instances, you
may experience out-of-memory exceptions. In this case, you must obtain the collection
asynchronously.

The UseAm
earlier.

The EnumerationOptions class also is used in performing queries, so the EnsureLocatable

Creating a Management Object
When writing applications to create objects, you must take into account how th
created, if at all. This consideration applies equally to how you foresee the creation of your own

 machine is an example of objects when you design your schema. Creating a shared directory on a
eating an object. There are three ways to look at the creation of objects. cr

1. Using the standard mechanism provided by WMI.

2. Using a method such as eate. The Win32_ShCr are class does this.
Win32_ComputerSystem class.

ou must spawn an uncommitted instance
mit the instance to WMI. (The code

As a general rule, you must set all the key properties on the newly spawned instance before
e.

 uint8 NumberOfChapters;

 and . This means that the other
anger, especially if

not so bad if
emaining

hen using other

ism of creating management objects have the

he
tance:

hapters);

3. You cannot create instances at all, as in the case of the

First Point

When creating instances using the standard mechanism, y
ased on the class definition, set your properties, and comb

sample later in this section illustrates this process.)

committing it. Key properties identify an object explicitly and are required to access it in the futur
In some cases, the provider may assign a value to a key property if it discovers that one does not
exist, but this is not common. Best practice is that you set the key properties when you create your
objects. To see what this means, let's look at the following class:

class Sample_Book
{
 [key] string BookTitle;
 [key] string AuthorName;
 string Summary;
 DATETIME DatePublished;

};

The only properties that must be set are BookTitle AuthorName
properties do not need to be set to create a valid instance, which can pose some d
Summary and NumberOfChapters properties also are required. However, this danger is

t the ryou control the source code in the provider, because you simply could ensure tha
uld return something like two required properties are set; otherwise, you co

WBEM_E_INVALID_OBJECT from the provider. Of course, this is not guaranteed w
providers.

WMI classes that support the standard mechan
supportsCreate qualifier.

Second Point

To state clearly the information that is required to create an instance, some classes use a method to
create an instance. This is the case with the Win32_Share class, which has a method called Create.
You would first set up a method call and then execute it. The next time you enumerate the
Win32_Share class, the new instance is listed as part of the collection. Let's have another look at t
Sample_Book class, this time with a method to create an ins

class Sample_Book
{
 [key] string BookTitle;
 [key] string AuthorName;
 string Summary;
 DATETIME DatePublished;
uint8 NumberOfChapters;

 [static, implemented] boolean Create([in] string BookTitle,

ame, [in] string Summary, [in] string AuthorN
 [in] uint8 NumberOfC

};

Now it is clear that the Create method requires both the Summary and NumberOfChapters value
as well as the key values. Also notice that the method returns a Boolean value to indicate whether
the method succeeded. (You could instead return a uint32 if you want to return a HR
However, remember that you can call the

ight not be the most suitable return value.) He

s,

ESULT.
 method from scripting environments where HRESULTs

m re are some other reasons that you might want a

1. The key values are not known in advance and are generated by the provider.
2. You may want to have specific flags passed to the method for more context information

when creating the instance.
n value).

Win32_ComputerSystem k
e more than one instance of this class. You may find in your
tances and the only supported operations allowed are to

Example

// Make new object

mo["AuthorName"] = "Gwyn Cole";
rumentation";

"NumberOfChapters"] = 11;

he class definition. Calling
an uncommitted instance

not yet been passed to WMI and we can perform normal operations like setting and
properties. That is exactly what we do next—set all the properties (as long as we include the

key properties) of the new instance. After all the properties have been set, we pass the instance to

method for the creation of instances:

3. You may want to receive one or more out-parameters (other than the retur

If you find that a method exists for the creation of instances for a class, then you can expect the
standard mechanism to fail. However, this depends on the provider. Methods that create
management objects may contain the Constructor qualifier. The Constructor qualifier signifies
that the method can create one or more management objects.

Third Point

For some classes, instances cannot be created, as in the class. If you thin
about it, it does not make sense to hav
own schema that you cannot create ins
update, enumerate, and perform queries.

Let's look how you might create an object using the standard mechanism. We discuss calling
methods on classes later in the chapter.

// Get class so we can spawn an instance of it
ManagementPath path = new ManagementPath();
path.ClassName = "Sample_Book";
path.NamespacePath = "root\\WMIBook";

ManagementClass mc = new ManagementClass(path);

ManagementObject mo = mc.CreateInstance();

// Set some properties on the object
mo["BookTitle"] = "Developing WMI Solutions";

mo["Summary"] = "A cool book on Windows Management Inst
mo[
// Commit to create instance in WMI
mo.Put();

The first task is to spawn an uncommitted instance that is based on t
nce does this for the Sample_Book class. We call this CreateInsta

 it has because
ng getti

WMI by calling Put on the management object. The provider will extract all the properties fr
instance and physically do whatever it needs to do to create the instance.

Let's see the

om the

public class Manageme
{

r
a tPat

blic Ma mentPat ions options);
..

ting gement o so has an ns, derived from
entO ns. Let's look at the PutOp

clas Option gementOp

nstr
ic Pu ions();

oper
c Pu Type et;}
c bo seAmend fiers {g

 option can be UpdateOrCreate, Up eateOnly and specifies the kind of
tion ust be p . The co ied no PutOptions : Put() defaults
r By spe Updat

commit the desired change in any way it sees
teOn

ady h stance ntical key
"object already exists" exception. Use Create e instance to be

cci There ions
follows.

tin g ment Ob
When writing applications, updating existing
operations you most often end up doing. As in creating instances, you have three options: using the

ll.

nge
ties, and then call Put. The following code sample changes a property value on the book

 = "Sample_Book.BookTitle=\" Developing WMI Solutions\",
 AuthorName=\"Gwyn Cole\" ";
path.NamespacePath = "root\\WMIBook";

Put methods the ManagementObject class:

ntObject : ManagementBaseObject

 // Prope
 public M
 pu

ties
nagemen
nage

h Put();
h Put(PutOpt

 ...
};

Commit mana bjects al options class, PutOptio
Managem ptio tions class:

public s Put s: Mana tions
{
 // Co uctors
 publ

tOpt

 // Pr
 publi

ties
tType {get; s

 publi
};

ol U edQuali et; set;}

The Type
put-opera

dateOnly, or Cr
de sample specif that m erformed

to UpdateO Create. cifying the eOrCreate, PutOptions allows the provider to
 fit, regardless of whether the management object

existed or not. If
you alre

Crea
ad an in

ly were specified, WMI would allow onl
 with ide

y the creation of the instance. If
 properties, the Put call would fail by throwing an
Only option when you do not intend th

updated a
that

dentally. is a PutOpt example in the Updating Management Objects section

Upda g Mana e jects
 instances with new property values is one of the

standard mechanism to update, using a method to update, and not being allowed to update at a
The standard mechanism of updating instance property values is very similar to creating a new
instance, because you still make a call to Put. The general process is to get your instance, cha
the proper
instance we created earlier:

// Generate the object path
ManagementPath path = new ManagementPath();
path.Path

// Get the Sample_Book object we want
ManagementObject mo = new ManagementObject(path);

// Change the number of chapters
mo["NumberOfChapters"] = 12;

g an instance is straightforward. We only changed the number of chapters
ted. However, notice the use of the

 WMI should allow, in this case
p to an already existing instance. If
e Sample_Book instance did not exist, the Put method would throw an "object not found"

 Put

Some classes use methods to update instances for very simila to those described in the
ass has a method called SetShareInfo in which

the description of the shared directory, together with some other properties, can be changed. The
other example; it has two methods, Change and ChangeStartMode, to

ndard mechanism of updating management objects have the

ctory, which would involve

deleting the shared directory management object. As with creating and updating instances, you have

For some classes such as the class, it makes no sense to delete instances.
lass is a hardware device and to remove the instance would involve

eo controller from your computer. Using the standard mechanism to
st method of removing instances. In some classes you may find that a

re are some reasons that you might want a method for the deletion

ific flags passed to the method for more context information when deleting the

e one or more out-parameters (other than the return value)

PutOptions options = new PutOptions();
ptions.Type = PutType.UpdateOnly; o

/ Commit to update instance in WMI /
mo.Put(options);

As you can see, updatin
property and all the other property values remained unaffec
PutOptions class, which specifies the type of put operation that
dateOnly. The UpdateOnly option will allow an update only U

th
exception. If we had specified the UpdateOrCreate option (which is the default type) instead,
may not have failed, because the provider would have attempted to create the instance. Use
UpdateOnly in situations in which you do not want accidental creation of instances.

r reasons
previous section. For example, the Win32_Share cl

Win32_Service class is an
update an instance.

WMI classes that support the sta
supportsUpdate qualifier.

Deleting a Management Object
When writing applications, you occasionally will want to delete management objects. For instance,
you might want to remove access to an already existing shared dire

three options: using the standard mechanism to delete, using a method to delete, and not being
allowed to delete at all.

Win32_VideoController
The er cWin32_VideoControll

he vidphysically removing t
delete an object is the easie
deletion method is available. He
of instances:

1. To have spec
instance

2. To receiv

If you find that a method exists for the deletion of instances, then you can expect the standard
mechanism to fail, but this depends on the provider. WMI classes that support the standard
mechanism of deleting management objects have the supportsDelete qualifier.

Let's have another look at the above Sample_Book class, this time with a method to delete an

] string BookTitle,
, [in] string Summary,
pters);

elete();

};

Did you obs How will
le know which book to delete? The key is that the Delete method is not static and

ier,
 ef e class.

is is th d programming. The Delete method can be called only
echanism, deleting an instance is an easy

ration ct and call Delete and the provider will
mpt t e created earlier:

Gene
agem
h.Pa tions\",

nagem

// Delete Sample_Book

Delete method in the ManagementObject class:

o has an options class derived from ManagementOptions.
esting in it because delete is a relatively simple operation. Let's

instance:

class Sample_Book
{
 [key] string BookTitle;
 [key] string AuthorName;
 string Summary;
 DATETIME DatePublished;
 uint8 NumberOfChapters;

 [static, implemented] boolean Create([in
 [in] string AuthorName
 [in] uint8 NumberOfCha

 [implemented] boolean D

erve that the Delete method does not include the key properties of the class?
the De te method
is relative to the m
which

anagement object. The Create method was defined with the static qualif
fectively means the method can be called without reference to any instances of th

Th e same concept as in object-oriente
relative to the m
ope

anagement object. Using the standard m
. All you need do is obtain a ManagementObje

atte o remove the instance. Let's remove the Sample_Book instance that w

// rate the object path
Man
pat

entPath path = new ManagementPath();
th = "Sample_Book.BookTitle=\" Developing WMI Solu

AuthorN
path.Na

ame=\"Gwyn Cole\" ";
mespacePath = "root\\WMIBook";

Ma entObject mo = new ManagementObject(path);

mo.Delete();

Let's look at the

public class ManagementObject: ManagementBaseObject
{
 // Properties
 public void Delete();
 public void Delete(DeleteOptions options);

 ...
};

Deleting management objects als
However, there is not much inter
look at the DeleteOptions class:

public class
{

Constr

De

 you can s t leaves the constructor to discuss. The
y reason y is if you have specific

es
onstr low-level

anism f vider will query

ent
ng your

own applications, you will inevitably find that you must perform queries that fall into one of two

face application could formulate the following

This query would provide you with a full list of all the users in DOMAIN_A. You can also use a
us example

 You do not
(security

be revised to specifically ask for the display name

ELECT FullName, SID FROM Win32_UserAccount WHERE Domain="DOMAIN_A"

e

atches the query, WMI copies the instance and the
llection that is passed to the caller. The bottom line is that the

on whether providers support query optimization in their implementation.

me ways, similar to enumeration. When we dealt with enumeration
ned that you could get all of the instances of a specific class and you

DeleteOptions : ManagementOptions

 //
 public DeleteOptions ();

uctors

 public leteOptions(ManagementNamedValueCollection context,
 TimeSpan timeout);
};

As ee, there are no properties to speak of, which jus
onl ou would want to create and specify a DeleteOptions object
context inform
have a c

ation to pass to the provider. Although not explicitly mentioned, all options class
uctor that takes a ManagementNamedValueCollection. This is a reasonably

mech
the context infor

or supplying additional information to the provider. Of course the pro
mation only if it is expecting any specific named context values.

Performing Queries
Performing queries is one of the most popular mechanisms for gaining access to managem

bjects, because it allows great flexibility in specifying exactly what you want. When writio

categories:

1. You need context-relative information.
2. You need to improve performance.

For an example of context-relative information, suppose that a task requires a security principle
(that is, a user) from a particular domain. A user inter
WQL query:

SELECT * FROM Win32_UserAccount WHERE Domain="DOMAIN_A"

query to improve performance by specifying what properties you require. The previo
asked for all properties from the Win32_UserAccount class (that is, the SELECT *).

eed all the properties if you simply want to display a list of users and use the SID n
identifier) to perform some task. The query can
and SID.

S

The above query would return the FullName and SID property values only for each instance that
matches the query (WHERE Domain="DOMAIN_A"). However, the performance improvement can vary
from provider to provider. WMI providers do not have to support query optimization, in which cas
WMI obtains the complete list of all the instances together with all their property values. WMI then
processes each instance and if the instance m
required properties to the query co

eries depends speed of qu

Performing queries is, in so
earlier in the chapter, you lear

could access the instances through an enumeration collection (ManagementObjectColl
When performing queries, you still end up with a collection that allows yo

ection).
u to enumerate all of the

instances that satisfy your query. For more information on all the different types of queries that can
be performed, review Chapter 3 and the Platform SDK documentation.

The following code sample illustrates how to obtain a list of Windows Services that have already
been started:

entObjectSearcher(
true");

ion = query.Get();
ection)

 Console.WriteLine("Service:'{0}' ", mo["DisplayName"]);
}

) performs the query (if

{

ObjectSearcher(ObjectQuery query);
 public ManagementObjectSearcher(ManagementScope scope, ObjectQuery

onOptions options);

s ptions {get; set;}
t; set;}
e {get; set;}

//
 public ManagementObjectCollection Get();

ilable allow the execution of a query by calling either of the Get
ecutes the query synchronously and the second version executes

synchronous WMI operations will be discussed later in the chapter.
e Query property. The WMI connection used to execute the

query is supplied through the property. The class will also be discussed

We mentioned earlier that querying for objects is similar to returning all instances of a class. Earlier
volving the EnumerationOptions class. We will reveal more detail

ManagementObjectSearcher query = new Managem
"SELECT * FROM Win32_Service WHERE Started=

ManagementObjectCollection queryCollect
foreach(ManagementObject mo in queryColl
{

In the code sample, the Get call (on the ManagementObjectSearcher class
it is valid). The Get operation creates and returns a collection that can be used to gain access to
every management object that matches the query. The display name for every running Windows
service is output to the console.

Let's see what the ManagementObjectSearcher class looks like:

public class ManagementObjectSearcher: Component

 // Constructors
 public ManagementObjectSearcher();
 public ManagementObjectSearcher(string queryString);
 public Management

 query, Enumerati

 // Properties
 public EnumerationOption O
 public ObjectQuery Query {ge

op public ManagementScope Sc

 Methods

 public void Get(ManagementOperationObserver watcher);
};

Notice that the only methods ava
thods. The first Get method exme

the query asynchronously. A
query executed is specified in the Th

Scope ManagementScope
later in the chapter. When executing the query, if it is found to be invalid or the class specified is
not found, be prepared to handle a ManagementException.

you saw a detailed discussion in
about some of the enumeration options shortly.

Let's examine the different ways that a query can be specified. In the previous code sample, the
above class

cl tion. That is, a complete WQL plain text query was specified.

few
 code

 new ObjectQuery("SELECT * FROM Win32_Service WHERE Started=true");

ry);

uery into an ObjectQuery object rather than it
tructor. Let's take a quick look at the

Ob

 public ObjectQuery(string query);

d constructor, the WQL query language is assumed.

ObjectQuery ManagementQuery classes in the

o let's

ject queries, hence, the
ly named class, WqlEventQuery,

Manag
ara
ementObjectSearcher object was created by using the second constructor in the

de

ManagementObjectSearcher query = new ManagementObjectSearcher(
 "SELECT * FROM Win32_Service WHERE Started=true");

Another way to specify the WQL query is through an ObjectQuery object. ObjectQuery has a
derived classes that allow you to use alternative methods of assembling your queries. You can
the preceding query alternatively as follows:

ObjectQuery myquery =

ManagementObjectSearcher query = new ManagementObjectSearcher(myque

The above case specifies the plain text SELECT q
being specified through the ManagementObjectSearcher cons

 class: jectQuery

public class ObjectQuery: ManagementQuery
{
 public ObjectQuery();

 public ObjectQuery(string language, string query);
};

The second constructor specifies the query that WMI should execute. The third constructor also
specifies the query language used by the query. The current implementation of WMI supports only
WQL. When using the secon

Notice that the class inherits from . All WMI query
.NET Framework inherit from this class, which is an abstract class that forces query classes to
support both the query language and the query. Here is what the class looks like:

public abstract class ManagementQuery: ICloneable
{
 public virtual string QueryLanguage {get; set;}
 public virtual string QueryString {get; set;}
};

So far, the ObjectQuery class hasn't offered many advantages over using a plain text string. S
look at one of the derived classes, WqlObjectQuery:

public class WqlObjectQuery: ObjectQuery
{
 public WqlObjectQuery();
 public WqlObjectQuery(string query);

 public override string QueryLanguage {get;}
};

The main purpose of this class is that all queries are WQL ob
eryLanguage property will always return WQL. A similarQu

specifies WQL event queries. Although it, too, offers little benefit, this is how the query could have

OM Win32_Service WHERE Started=true");

(myquery);

ass, SelectQuery. This
eries for either management classes or

m there are many more

);
, string condition,

ring Condition {get; set;}

 public bool IsSchemaQuery {get; set;}

If you really e of the
constru ethod of
specify

SelectQuery myquery = new SelectQuery("Win32_Service", "Started=true");

mentObjectSearcher(myquery);

his query shows that the class and condition statements are supplied through two separate
eters. This has the added benefit that if you must generate complex queries, you do not have

is can be managed easily through the

been specified:

WqlObjectQuery myquery =
* FR new WqlObjectQuery("SELECT

ManagementObjectSearcher query = new ManagementObjectSearcher

Again, we do not achieve much benefit, so let's look at the next derived cl
class's purpose is to encompass all WQL SELECT

anagement objects. From the following class declaration, you can see that
qu

useful constructors and properties.

public class SelectQuery: WqlObjectQuery
{
 // Constructors

 public SelectQuery();
 public SelectQuery(string queryOrClassName);
 public SelectQuery(string className, string condition
 public SelectQuery(string className

operties); string[] selectedPr

 // Properties
 public string ClassName {get; set;}
 public st

 public override string QueryString {get; set;}
 public StringCollection SelectedProperties {get; set;}
};

 wanted to, you could still pass an entire WQL plain text query into on
ctors, but let's see how this class differs. Consider the following alternative m
ing the query:

ManagementObjectSearcher query = new Manage

T
param
to assemble all the query strings yourself. Most of th
SelectQuery class.

There are also RelatedObjectQuery and RelationshipQuery classes. The Related-
ObjectQuery class represents a WQL ASSOCIATORS OF query and RelationshipQuery represents
a WQL REFERENCES OF query. Review Chapter 3 and the Platform SDK documentation for more

lly in

information.

As mentioned earlier, WMI has some system-provided properties that are included automatica
every object. These properties are __SUPERCLASS, __DYNASTY, __RELPATH, __DERIVATION,
__SERVER, __NAMESPACE, and __PATH. The meaning and purpose of these properties are discussed
in Chapter 3. The reason we mention these now is that depending on the type of query you perform,
these system-provided properties may or may not be set.

If you perform any query that starts with SELECT, you can be assured that all the system-provided
properties will be available for you, as in the following case:

SELECT * FROM Win32_UserAccount WHERE Domain="DOMAIN_A"

rties in the SELECT statement, then the system-
ll not be available, as in the following case:

nt WHERE Domain="DOMAIN_A"

-provided properties that can identify the
ureLocatable option to true in

e returned management object
, and __PATH properties.

nt Server implements an extended version of WQL, called Extended
L. As part of Extended WQL, there are additional SELECT clauses such as DISTINCT, JOIN,

 option in the

casions in which you might want or must make method calls. For instance,
ave called methods for the creation and deletion of our Sample_Book

and Windows
 in your own schema designs

 which case methods are the answer. Although we see
 approaches

 flags passed to the method for more context information

the return value).
ts the types of errors you would like to return. You
that you can return an appropriate data type for the

uld like to pass back to the caller.

2. Calling methods on objects

et's

If you perform any query that specifies specific prope
provided properties wi

SELECT FullName, SID FROM Win32_UserAccou

All is not lost! You can instruct WMI to include the system
location of a management object. To do this, you must set the Ens
the class. The resulting instances in thEnumerationOptions
ollection will include __RELPATH, __SERVER, __NAMESPACEc

Microsoft Systems Manageme
WQ
and DATEPART. The PrototypeOnly EnumerationOptions class allows you to
obtain a class definition in the result set that uses the JOIN clause.

Making Method Calls
So far, you saw a few oc
you've seen that we could h
class. Other examples include changing the configuration of shared directories
Services (as well as starting and stopping them). You may discover
that you must add behavior to your classes, in
methods for creating, changing, and deleting instances, we urge you to use the standard

r these types of operations where possible. However, exceptions are made when you find yourself fo
in one or more of the following situations:

1. You may want to have specific
when creating and deleting instances.

2. You may want to receive one or more out-parameters (other than
3. None of the WMI HRESULTs suppor

e method return value so can define th
errors you wo

4. You may want to create multiple instances at the same time.

Calling methods fall into two categories:

1. Calling static methods on classes

To illustrate making method calls in detail, we shall use a fictitious class with a method called foo,
and decorate the method with different parameters so that you can gain a clear understanding. L
look at this declaration:

class Sample_Class

{
 [key] string Name;
 [static, implemented] void foo();
};

The class has a static method that takes no parameters and returns void (effectively meaning no
return value). So let's see what code we need to make this method call:

agementClass mc = new ManagementClass("Sample_Class");

 first retrieve the class from WMI. We do this
cess to the Sample_Class

the method with InvokeMethod. Let's revise our method declaration:

plemented] void foo();

ic qualifier.
tances of

ass. With the change to foo, we must now use an object reference. Let's look at the following

ntObject mo = new
tObject("Sample_Class.Name=\"Gwyn\" ");

ll);

ject reference is now used instead of a class reference. To access a management object
ires the ManagementObject class, which also has an InvokeMethod method. Unfortunately,

o

 [implemented] string foo();

foo

e

 [key] string Name;

Man

mc.InvokeMethod("foo", null);

Invoking static methods in a class requires that you
through the ManagementClass class. The previous code sample gets ac
class followed by invoking

class Sample_Class
{

ey] string Name; [k
 [im
};

We do not see much difference. The only change we made was the removal of the stat
The tatic qualifier meant that the method could be called without reference to any inss

e clth
code:

Manageme
Managemen

mo.InvokeMethod("foo", nu

An
requ

ob

methods that take no parameters and have no return value are not practical for most purposes. S
let's extend foo to return a value:

class Sample_Class
{
 [key] string Name;

};

Here is how you can easily retrieve the string return value from :

ManagementObject mo = ne
ManagementObject("Sample_Class.Name=\"Gwyn\" ");

w

string myString = (string)mo.InvokeMethod("foo", null);

The code now has all the information you'll need to make the Delete method call on th
Win32_Share class. Finally, let's make our foo method take an in- and out-parameter.

class Sample_Class
{

 [implemented] string foo([in] uint32 inparam, [out] boolean outparam);

tting more involved. All in-parameters and out-parameters
ment object. ManagementObjects make it very easy to get
ing parameters is also like getting and setting properties,

inology is slightly different where they are not properties but are in- or out-
rty

.

your method out-
parameters can use this name. If the method also has one or more out-parameters, then the

lue as well as the
other out-param s see some code:

nagementObject("Sample_Class.Name=
 \"Gwyn\" ");

nt object

ue and out-parameters
];

vokeMethod call and the provider extracts the parameters for the
entBaseObject instance

AllowMaximum;

.

};

From a code perspective, things start ge
are encapsulated into a kind of manage

 set properties. Preparing and accessand
except the term
parameters. ManagementBaseObject objects are used as a container of parameters. Each prope
corresponds to a method parameter, so if the method you're planning to call has six parameters, then
you'll have to set six properties (assuming all the parameters are required and are not optional)

A method's return value exists in a property called ReturnValue, hence, none of

ManagementBaseObject passed back to the caller will contain the ReturnVa
eters. Let'

ManagementObject mo = new Ma

// Get the method parameters
ManagementBaseObject inParams = mo.GetMethodParameters("foo");

// Complete method in-parameters
inParams["inparam"] = 12345;

// Call method on manageme
ManagementBaseObject outParams =
 mo.InvokeMethod("foo", inParams, null);

// Get return val
string retVal = (string)outParams["ReturnValue"
bool mybool = (bool)outParams["outparam"];

Writing code to pass in-parameters to a WMI method is significantly more involved. The
preparation of the method's in-parameters is achieved most suitably by calling
GetMethodParameters. This is followed by setting each parameter in the ManagementBaseObject
instance, inParams. You must complete the associated value for each in-parameter. Finally, the in-
parameters are passed to the In
operation. After the provider has done its work, it will populate a Managem

ut-parameters and return value. that will contain the method's o

To provide a more serious code sample and introduce some other issues that you most likely will
have to deal with, we shall create a shared directory with the Win32_Share class. Here is an almost
complete declaration of the Win32_Share class:

class Win32_Share: CIM_LogicalElement
{
[read] string Name;

 [read] boolean
 [read] uint32 MaximumAllowed;

read] string Path; [
 ..

 [static, implemented]
 uint32 Create([in] string Path, [in] string Name,
 [in, ValueMap {"0", . . . }, Values {"Disk Drive", . . . }] uint32 Type,

 [in] uint32 MaximumAllowed,
 [in, optional] string Description,
 [in, optional] string Password,
 [in, optional] Win32_SecurityDescriptor Access);

 [implemented] uint32 SetShareInfo([in, optional] uint32
 MaximumAllowed,

, Type, MaximumAllowed,
d be straightforward to

ok at the sharing property page for a directory, you'll see the user interface that
 method's parameter types and declarations in

eters are usually inherited from

 "0", "1", "2", "3",
 "2147483648", "2147483649", "2147483650", "2147483651"
}

present? Describing them is the role of the Values qualifier.
This qualifier provides a textual description of the values in the . Here is the full

r

n. You should use these types of attributes in your own schema to aid the

 create a shared directory:

ManagementBaseObject inParams = mc.GetMethodParameters("Create");

 [in, Optional] string Description,
 [in, optional] Win32_SecurityDescriptor Access);
 [implemented] uint32 Delete();
};

Let's examine the Create method. It has seven in-parameters, Path, Name
scription, Password and Access. Each of these parameters shoulDe

understand; if you lo
maps to these parameters. Let's discuss the Create
detail.

First, you'll see that most parameters take standard types that you already recognize, like string
and uint32. The Access parameter is an exception: It passes a Win32_SecurityDescriptor
object. Classes intended for use in method param
Win32_MethodParameterClass. All parameter declarations use qualifiers to provide more context
information. The [in] qualifier specifies that the parameter is an in-parameter and [optional]
means that it is not required to be set. The ValueMap qualifier specifies the values that are valid for
the property or parameter. The full ValueMap declaration that follows shows various integers values
that are valid for the Type parameter:

ValueMap
{

But what do these values mean or re
ValueMap Values

declaration below:

Values
{
 "Disk Drive", "Print Queue", "Device", "IPC",
 "Disk Drive Admin", "Print Queue Admin", "Device Admin", "IPC Admin"
}

Using the Values and ValueMap attributes, it is now possible to work out what the Type paramete
means or should be. The parameter 0 (in integer form) specifies "Disk Drive", 1 specifies "Print
Queue", and so o
understanding of your method parameters and class properties.

Let's look at some code that calls a static method to

// Get the class definition so we can get access to the method from the class
ManagementClass mc = new ManagementClass("Win32_Share");

// Get the methods in parameters

// Setup required in parameters for method
inParams["
inParams[

Name"] = "temp";
"Path"] = "C:\\temp";

nly the
new ones. Did you notice that we completed only the eters (that is, parameters that

 and
returns a value other

than void, then you'll always get an out-parameter named "ReturnValue."

Let's have a look at the WMI method-related methods in the ManagementObject class:

oid InvokeMethod(ManagementOperationObserver watcher,

 public ManagementBaseObject GetMethodParameters(string methodName);

d
aration, you

parameters can use the same version of InvokeMethod (by
nts the method's in-parameters). Did you also notice InvokeMethod 's

thod automatically extracts the ReturnValue out-
 using the base data type, object.

ples involving in-
I method should be called, which

d from

s

ptions(ManagementNamedValueCollection context,

inParams["Type"] = 0;

// Execute method
ManagementBaseObject outParams =
 mc.InvokeMethod("Create", inParams, null);

// Inspect out parameters for return value
uint retVal = (uint)outParams["ReturnValue"];

Most of the details of the preceding code sample have been discussed, so we'll examine o
required param

do not have the optional attribute set)? We did this for two reasons: first, to keep the code sample
small, and second, we needed to fill in only the required parameters to create a shared directory.
The Type parameter has a value of zero (integer), which, if you recall, according to the Values
attribute will specify "Disk Drive." We finally pass the in-parameters to the InvokeMethod call
we shall get the out-parameters through outParams. If a method being called

public class ManagementObject : ManagementBaseObject
{
 // InvokeMethod declarations
 public object InvokeMethod(string methodName, object[] args);
 public ManagementBaseObject InvokeMethod(string methodName,
 ManagementBaseObject inParameters, InvokeMethodOptions options);
 public v
 string methodName, object[] args);
 public void InvokeMethod(ManagementOperationObserver watcher,
 string methodName, ManagementBaseObject inParameters,
 InvokeMethodOptions options);

 // GetMethodParameters declaration

};

There are four variants of the InvokeMethod method. The first declaration is the one we use
earlier when we called foo—the version that had no method parameters. From its decl
can now see that a method with in-
passing an array that represe
return type, object? This version of InvokeMe
parameter and returns it,

The second InvokeMethod method declaration is the one we used in the code sam
 WMparameters. The third parameter options specifies how the

includes additional context information. The eMethodOptions class is deriveInvok
anagementOptions. Let's have a look: M

public class InvokeMethodOptions: ManagementOption
{
 public InvokeMethodOptions();
 public InvokeMethodO
 TimeSpan timeout);

};

This class has no additional p
t
roperties other than those inherited from the ManagementOptions
include the use of the class in the earlier code samples. One possible

 Context property
agementNamedValueCollection).

hich you saw how to create a management object. Notice how the value is assigned:

 value is obtained:

indexing []
ertyValue and

xample demonstrates incrementing the number of
 type is uint 8):

Value("NumberOfChapters");

OfChapters);

e the property of the instance in memory, but will
rsist the change, a call to Put is

rties:

Object

};

class. This is why we did no
use would be to pass additional context information through the
(Man

The third and fourth InvokeMethod declarations are asynchronous versions of the first and second
declarations.

Manipulating Management Object Properties
As you've already seen, setting and getting property values is one of the most common operations
when writing management applications. Throughout nearly all the code samples in this chapter so
far, you've seen properties' get, set, and property values retrieved. We have, however, been careful
to use strings or integers to aid understanding. In the next couple of sections, we shall cover in more
detail how to get and set properties of different data types. Let's quickly recapitulate the calls we
made earlier that involve getting and setting property values. The following call was made in the
section in w

mo["NumberOfChapters"] = 11;

The next call was made in the section where you saw how to obtain a management object. Notice
how the

Console.WriteLine("Win32_Share.Name=\"C$\" path is {0}", mo["Path"]);

Both of these code samples are either getting a value or setting a value using the
operator. The code sample also could have been written to use the GetProp
SetPropertyValue methods. The following e
chapters (notice that the value uses a byte cast because the property CIM

byte NumOfChapters = (byte)mo.GetProperty
NumOfChapters++;
o.SetPropertyValue("NumberOfChapters", Numm

Note that calling SetPropertyValue will chang
not persist the change to the real management object in WMI. To pe
required on the management object. Here are the prototypes for accessing the prope

public class Mana

gementObject : ManagementBase
{
 public object GetPropertyValue(string propertyName);

etPropertyValue(string propertyName, object public void S
 propertyValue);

 public object this[string propertyName] {get; set;}

 ...

You may find that you must cast the object return value to the desired C# data type, like the
preceding case in which GetPropertyValue returned a uint 8 that maps to the C# data type, byte.
Table 8.1 describes all the CIM data types and the C# data type mappings. The CimType
enumeration is defined in the System.Management namespace.

Table 8.1. CIM Data Type to C# Mappings

MOF data
type type

CimType
enumeration

Comment

nt16 Signed 16-bit integer.

Signed 32-bit integer.

uint UInt32 Unsigned 32-bit integer.

ETIME string DateTime All dates and times in WMI use the format designed

ject

ref
An object path string. See the discussion earlier in the

char Char16 16-bit Unicode character.

[array] [] index An array of any of the above data types. Arrays are

e separately accessed via the ManagementBaseObject property,
llection that will include

, and __PATH

C# data

sint8 sbyte SInt8 Signed 8-bit integer.
sint16 short SI

sint32 int SInt32

sint64 long SInt64 Signed 64-bit integer.
real32 float Real32 32-bit floating point number.

loating point number. real64 double Real64 64-bit f
uint8 byte UInt8 Unsigned 8-bit integer.
uint16 ushort UInt16 Unsigned 16-bit integer.
uint32

uint64 ulong UInt64 Unsigned 64-bit integer.
boolean bool Boolean Boolean value.
DAT

by the Distributed Management Task Force (DMTF).
object object Object Represents an object. Cast to ManagementBaseOb

to gain access to the object properties.
object string Reference

chapter about object paths.
16 short

string string String Unicode character string.

operator accessed using the array [] index operator. For
example, an array of strings is string[].

In addition to the values of properties, determining where the property originated also can be
obtained from WMI. This is called the property flavor and can be local, inherited, or system-
provided.

System-provided properties can b
SystemProperties. The SystemProperties property will contain a co

UPERCLASS, __DYNASTY, __RELPATH, __DERIVATION, __SERVER, __NAMESPACE__S
properties.

In classes, a local property is the most derived property, for example, the Win32_Share class has

management class. Inherited properties are declared in a parent (or super) class. To see this in
ns for the Win32_Share

class:

 ManagementClass("Win32_Share");

)
"{0}is Inherited", pd.Name);

tly introduced you to the enumeration of properties. As you can see, it is
erty collection (PropertyDataCollection) and

erate through each item. Each property is identified through the PropertyData class, and
hether it is local or not can be determined by inspecting the IsLocal property.

is local
AllowMaximum is local

Status is inherited

AccessMask, AllowMaximum, MaximumAllowed, Path, and Type, all declared within the

action, the following code sample enumerates all the property definitio

ManagementClass mc = new

PropertyDataCollection props = mc.Properties;

foreach (PropertyData pd in props)
{
 if (pd.IsLocal)
 Console.WriteLine("{0}is Local", pd.Name);
 else if (!pd.IsLocal
 Console.WriteLine(
}

This code convenien
straightforward: All you must do is obtain the prop
enum
w

The previous code produces the following output:

AccessMask

Caption is inherited
Description is inherited
InstallDate is inherited
MaximumAllowed is local
Name is inherited
Path is local

Type is local

You can now see proof that AccessMask, AllowMaximum, MaximumAllowed, Path, and Type all are
declared locally within the Win32_Share class. The Caption, Description, InstallDate, Name,
and Status all are inherited from CIM_ManagedSystem-Element.

For management objects, local properties are those that are set by the provider for the class. Code
similar to the previous enumeration, except for an instance of a Win32_Share class instead of a
class definition, produces the following output:

AccessMask is inherited
AllowMaximum is local
Caption is local
escription is local D
InstallDate is inherited
MaximumAllowed is inherited
Name is local
ath is local P
Status is local
Type is local

You can now see that the provider for the Win32_Share class has set the inherited class properties
us (as well as most of its local properties). The properties

ss declaration

e assume that you're
e types we think need more
 data types will be covered

ime or an interval. Both types are
ed Management Task Force (DMTF).

. The

Caption, Description, Name, and Stat
AccessMask, InstallDate, and MaximumAllowed were inherited from the cla

ecause the provider did not set them. b

Now let's examine some of the more unusual property data types. W
omfortable with most of the data types such as string and sint32. Thc

explanation are arrays, object, and DATETIME. The array and object
later in the chapter, so let's talk about DATETIME.

The DATETIME data type can represent either a date and t
represented as strings using formats designed by the Distribut
Each format is a fixed-length string that contains fields for each type of time specification

ng format for the date and time specification is: stri

yyyymmddHHMMSS.mmmmmmsUUU

Table 8.2 describes each field.

Table 8.2. DATETIME Field Descriptions for Absolute Date/Time

Field Comment

: 4 July 2005
inutes only: 12:30 pm

200507********.********** // year & month only: July 2005
- 12:30 pm

 29 seconds
**+060 // date & time: 4 July 2005 - 12:30 pm,

ur ahead of universal time

ion is:

yyyy Four-digit year (0000 through 9999). Providers can restrict the supported range.
mm Two-digit month (01 through 12).
dd Two-digit day of the month (01 through 31).
HH Two-digit hour of the day using the 24-hour clock (00 through 23).
MM Two-digit minute in the hour (00 through 59).
SS Two-digit number of seconds in the minute (00 through 59).
mmmmmm Six-digit number of microseconds in the second (000000 through 999999).
s Plus sign (+) or minus sign (–) to indicate a positive or negative offset from Universal

Time Coordinates (UTC).

Each of the nine fields must either be completed or ignored and replaced with asterisks. Here are
some examples:

20050704******.********** // date only
********1230**.********** // hours & m

20050704123029.********** // date & time: 4 July 2005

200507041230**.****
 // 1 ho

The string format for the interval time specificat

ddddddddHHMMSS.mmmmmm:000

Table 8.3 describes what each field is.

Table 8.3. DATETIME Field Descriptions for Interval Times

Field Comment
dddddddd Eight digits representing a number of days (00000000 through 99999999).
HH Two-digit hour of the day using the 24-hour clock (00 through 23).

9).

days, 3 hours, 7 minutes

s
 than likely will have to use arrays to obtain the property

rays to get your own array-based property values in
ction, you can have an array of any CIM data type.

 8.

ome code that accesses an array-based property. The purpose of the following code
s, in this case Win32_PhysicalMemory. The

s.

riteLine("{0}", classname);

, as we have obtained th
easily

y for the

CIM_PhysicalElement
CIM_ManagedSystemElement

MM Two-digit minute in the hour (00 through 5
SS Two-digit number of seconds in the minute (00 through 59).
mmmmmm Six-digit number of microseconds in the second (000000 through 999999).
:000 Interval times always have a trailing :000 as the last four characters.

All five fields must be completed. Here are some examples of interval times:

00000002030756.000000:000 // interval: 2
 & 56 sec
00000000000100.000000:000 // interval: every minute
00000000000015.000000:000 // interval: every 15 seconds
00000000000000.500000:000 // interval: 500 milliseconds (half a second)

Manipulating Array Object Propertie
When writing your applications, you more
values you want. You might even need to use ar

 last seyour schema design. As mentioned in the
inary data can be represented as an array of B uint

Let's examine s
sample is to list the derivation hierarchy for a clas

stem-provided property is declared as an array of string__DERIVATION sy

ManagementClass mc = new ManagementClass("Win32_PhysicalMemory");

s = (string[])mc.GetPropertyValue("__DERIVATION"); string[] classe

foreach (string classname in classes)
{
 Console.W
}

You should be reasonably familiar with this code e class definition and
requested the system-provided property __DERIVATION. The array of strings can be accessed
by enumerating the array. The output of this example produces the inheritance hierarch
Win32_PhysicalMemory class. Win32_PhysicalMemory first inherits from CIM_PhysicalMemory
and that inherits from CIM_Chip and so on.

CIM_PhysicalMemory
CIM_Chip
CIM_PhysicalComponent

Saving array-based properties is also straightforward. Create your array and pass it to
SetPropertyValue (or perform an assignment using the index operator).

The previous code sample demonstrates how to access a property and cast it to the desired array
data type. However, accessing the class derivation (in this specific case) also could have been
achieved using the ManagementClass's Derivation property:

ManagementClass mc = new ManagementClass("Win32_PhysicalMemory");

on)

roperties
ethod

ve already
Access in-parameter for the

riptor object. To explain the concept of
) more fully, we shall extend the

ter.

ith a small change. The Summary property no longer is defined as a
g data type. Instead, we encapsulated the summary string within a new class called

 [key] string BookTitle;

ample_BookSummary class looks like:

k into another class (through
 sample code better, let's create an instance of the

ice that the Summary property is a new instance:

okTitle = "Developing WMI Solutions";
 AuthorName = "Craig Tunstall & Gwyn Cole";
 NumberOfChapters = 11;
 Summary = instance of Sample_BookSummary

foreach (string classname in mc.Derivati
{
 Console.WriteLine("{0}", classname);
}

Accessing Objects from Object P
When writing your applications you will occasionally have to access properties or m

rameters that are not strings, integers, or arrays, but, in fact, are complete objects. You'pa
seen an example of this earlier in the chapter. The
Win32_ShareCreate method took a Win32_SecurityDesc

etersembedding objects within properties (or method param
 class that was introduced earlier in the chapSample_Book

Her
strin

e is the Sample_Book class w

Sample_BookSummary.

class Sample_Book
{

 [key] string AuthorName;
Sample_BookSummary Summary;

 DATETIME DatePublished;
uint8 NumberOfChapters;

};

As you can see, the Summary property now is defined as an object of type Sample_Book-Summary
(effectively a new data type). Let's see what the S

class Sample_BookSummary
{
 string BookSummary;
};

All we have done is move the string describing the summary of the boo
the property). To visualise theBookSummary

. NotSample_Book using the MOF code below

instance of Sample_Book
{
 Bo

 {
 BookSummary = "A cool book on Windows Management Instrumentation";
 };
};

The next sample code obtains this object (Sample_Book
object (). When designing your own schemas, you might want to employ this

This sample code obtains the instance we created:

}'", mp["BookSummary"]);

nd

ct.

d

assignment using the index operator).

me = "Sample_Book";
path.NamespacePath = "root\\WMIBook";

) and accesses a property that is an also an
Sample_BookSummary

technique. However, be careful, because the disadvantage of this approach is that it limits your
capability to query and form associations. The ability to query and form associations on your
management objects is a key benefit. Keep your options open for future schema revisions.

ManagementPath path = new ManagementPath();
path.Path = "Sample_Book.BookTitle=\" Developing WMI Solutions\",
 AuthorName=\"Craig Tunstall & Gwyn Cole\" ";
path.NamespacePath = "root\\WMIBook";

ManagementObject mo = new ManagementObject(path);

ManagementBaseObject mp =
 (ManagementBaseObject)mo.GetPropertyValue ("Summary");

Console.WriteLine("BookSummary is '{0

Most of the previous code sample should be straightforward by now. We get the object we want a
obtain the Summary property value. We have highlighted in bold text the code that actually extracts
the embedded object. After the object is extracted from the property it becomes easy to get and set
property values. We do that next, retrieving the BookSummary property from the embedded obje
The previous code outputs:

BookSummary is 'A cool book on Windows Management Instrumentation'

Creating objects that have properties with embedded objects is a little more involved. You may
need to create objects like this in your own applications because your schema uses embedde
property objects. The process of creating embedded property objects is not dissimilar to creating
instances, covered earlier in the chapter. The general process is to get the class definition and (this
is the crucial part) spawn an instance of it. The spawned instance represents the object that you will
use when you set the property values. You set all your properties on the spawned instance before
calling SetPropertyValue (or an

Let's extend the code sample from the earlier section covering the creation of objects. In that
section, we created a Sample_Book instance when the Summary property was declared as using a
string data type. Now with the revised Sample_Book class definition, let's recreate the Sample_Book
instance. The following code will do the same task as the MOF compiler did earlier with the MOF
code. We have highlighted in bold text the code that we discuss:

// Get class so we can spawn an instance of it
ManagementPath path = new ManagementPath();
path.ClassNa

ManagementClass mc = new ManagementClass(path);

// Make new object

ManagementObject mo = mc.CreateInstance();

// Set some properties on the object
mo["BookTitle"] = "Developing WMI Solutions";
mo["AuthorName"] = "Gwyn Cole";

ManagementObject propmo = propmc.CreateInstance();

Summary"] = propmo;

ting an instance for a property are virtually the same sort of code. You
n an instance of the class, and set your properties. The only differences

 and saving property objects are:

ement object, you save (commit) it by calling Put.
property object, you save (commit) it by calling SetPropertyValue (or

rm an assignment using the index operator) on the management object.

n you call methods that use parameter objects in either the in- or the out-parameters, then you

y

ckage while the operation is in progress.

eveloping asynchronous access to management objects requires the development of one or more
delegate methods. A delegate method's purpose depends on the type of event that occurs. For

anagement object is ready to be passed to the caller from WMI, the .NET
s call an ObjectReady delegate method with the object details supplied through

s of

mo["NumberOfChapters"] = 11;

// We're going to create the object for the Summary property
// First get the definition of the Sample_BookSummary class
ManagementPath proppath = new ManagementPath();
proppath.ClassName = "Sample_BookSummary";
proppath.NamespacePath = "root\\WMIBook";

ManagementClass propmc = new ManagementClass(proppath);

// Make new Sample_BookSummary object

// Set property on embedded object
propmo["BookSummary"] =
 "A cool book on Windows Management Instrumentation";

// Finally, set the Summary property
mo["

// Commit to create instance in WMI
mo.Put();

Creating an instance and crea
 the class definition, spawget

between saving management objects

1. When you create a manag
2. When you create a

perfo

Whe
must write similar code to that demonstrated earlier.

Making Asynchronous Calls
The main benefit of accessing management objects asynchronously is that an operation can be
started and, if necessary, be cancelled later. This enables an application to be optimized more easil
for performance and solves the problem of thread blo

D

instance, when a m
management classe
the method's arguments.

Calling an asynchronous method starts the desired operation and returns immediately. The result
the operation are reported to the delegate methods (as events) until the asynchronous operation

completes. All asynchronous operations use the ManagementOperationObserver class. This class
contains the delegate methods (these a

re like function pointers in C++) for the four different types

of events: Progress, ObjectReady, ObjectPut, and Completed. Let's take a look at the

To sta created and
then t ncel method
allow on the four
event delegate

Let' ices was
obt

//
Man
 "SELECT * FROM Win32_Service WHERE Started=true");

//
MyQ

// Create an asynchronous control and handler object
Man

//
moo
moo.Co

//
que

// Wai
while
{
 C
 S
}

The fir a handler class. In the
sam .) The next step is
to creat to your
handler
asynch ome way of
specify

ManagementOperationObserver class:

public class ManagementOperationObserver
{
 // Constructors
 public ManagementOperationObserver();

 // Properties
 public event ProgressEventHandler Progress;
 public event ObjectReadyEventHandler ObjectReady;
 public event ObjectPutEventHandler ObjectPut;
 public event CompletedEventHandler Completed;

 // Methods
 public void Cancel();
};

rt an asynchronous operation a ManagementOperationObserver object must be
he delegate handlers for the types of events that are required must be set. The Ca
s a caller to cancel a currently executing asynchronous operation. We shall focus

 handler properties later.

s reimplement the earlier code sample in which a list of running Windows Serv
ained:

ate WQL query Cre
agementObjectSearcher query = new ManagementObjectSearcher(

Create class with event handlers
ueryObjectAsyncHandler handler = new MyQueryObjectAsyncHandler();

agementOperationObserver moo = new ManagementOperationObserver();

Set event delegate methods
.ObjectReady += new ObjectReadyEventHandler(handler.WMIObject);

mpleted += new CompletedEventHandler(handler.Done);

Start the asynchronous operation
ry.Get(moo);

t until the asynchronous operation has completed
(!handler.Completed)

onsole.WriteLine(" Waiting 100ms . . . ");
ystem.Threading.Thread.Sleep(100);

st step in coding your own asynchronous operations is to develop
ple code this is MyQueryObjectAsyncHandler. (We shall discuss this shortly

e the asynchronous operation observer that provides control and event delivery
s. This is followed by passing the ManagementOperationObserver object to the
ronous version of the desired WMI operation. All WMI operations have s
ing a ManagementOperationObserver object.

Althou ive all the objects that match the
WQ
MyQuer tReady
events ompleted events. Let's take a look at the
MyQueryObjectAsyncHandler class:

ublic class MyQueryObjectAsyncHandler

A method conforming to this prototype (without specifying) will be able to receive

ll

t
ass:

gh it may not be obvious, the code sample in fact does rece
L query. The delivery of the objects is made through the event handlers on the

yObjectAsyncHandler object, handler. Two handlers are set up, one for Objec
and other for asynchronous operation C

p
{

 // A helper member to assess whether the operation has completed
 private bool completed = false;

 // The CompletedEventHandler delegate
 public void Done(object sender, CompletedEventArgs e)
 {
 completed = true;

 Console.WriteLine("Query has completed!");
 Console.WriteLine("CompletedEventArgs.Status is {0}", e.Status);
 }

 // The ObjectReadyEventHandler delegate
 public void WMIObject(object sender, ObjectReadyEventArgs e)
 {
 Console.WriteLine("Service: '{0}' ", e.NewObject["DisplayName"]);
 }

 // A property to determine if the operation has completed
 public bool Completed
 {
 get
 {
 return completed;
 }
 }
};

The MyQueryObjectAsyncHandler class has two of the event delegate methods implemented,
WMIObject and Done. The WMIObject method conforms to the Object-ReadyEventHandler
prototype and Done conforms to the CompletedEventHandler prototype. The WMIObject method
just outputs the DisplayName of the Windows service and the Done method outputs the result of the
asynchronous operation.

Let's discuss the event delegate methods in detail. The Progress delegate handler property (in the
ManagementOperationObserver class) has the following declaration:

public delegate void ProgressEventHandler(object sender,
 ProgressEventArgs e);

delegate
progress information from the provider. The handler will not be called unless the delegate is
specified through the Progress property. The sender parameter usually points to the
ManagementOperationObserver object that sent the event. You will find that in most cases, you'
ignore this parameter. This applies to all ManagementOperationObserver event handlers. The
progress information is supplied through a ProgressEventArgs object. The handler should inspec
this object to obtain the progress details. Here is the declaration of the ProgressEventArgs cl

public class ProgressEventArgs: ManagementEventArgs
{
 // Properties
 public int Current {get;}
 public string Message {get;}

public delegate void ObjectReadyEventHandler(object sender,
 ObjectReadyEvent

A method conforming to this prototype (without specifying delegate) will be able to receive the
management objects from the provider as and when WMI has been able to satisfy the desired
operation. The handler will not be called unless the delegate is specified through the ObjectReady
property. The management object is passed through an ObjectReadyEventArgs object. The handler
should inspect this object to access the management object. Here is the declaration of the
ObjectReadyEventArgs class:

public class ObjectReadyEventArgs: ManagementEventArgs
{

 // Properties
 public ManagementBaseObject NewObject {get;}
};

Inspect the NewObject property to gain access to the management object. When performing a query
or enumerating all the instances of a class, the assigned Object-Ready delegate handler will be
called each time a management object satisfies the query. The ObjectPut delegate handler property
has the following declaration:

public delegate void ObjectPutEventHandler(object sender,
 ObjectPutEventArgs e);

A method conforming to this prototype (without specifying delegate) will be able to receive the
details of the Put (or commit) operation. The handler will not be called unless the delegate is

rty. The details are passed through an ObjectPutEventArgs
 class:

Put Path
ject path of a newly created instance. This is especially useful if

 public int UpperBound {get;}
};

The progress value is contained in the Current property and usually represents a percentage,
although this depends on the provider. The total value is contained in the UpperBound property and
usually represents the total number of instances, but again, this depends on the provider. The
Message property represents optional additional information regarding the operation's progress.
WMI providers do not necessarily support the delivery of progress information.

The ObjectReady delegate handler property has the following declaration:

Args e);

specified through the ObjectPut prope
object. Here is the declaration of the ObjectPutEventArgs

public class ObjectPutEventArgs: ManagementEventArgs
{
 // Properties
 public ManagementPath Path {get;}
};

When making asynchronous calls, you might want to inspect the property. This property
is set by the provider to return an ob

the provider assigns or generates a unique value for a key property. The Completed delegate
handler property has the following declaration:

pub
 Comp

A m h
outcom
will no ugh the Completed property. Here is the
declaration of the CompletedEventArgs class:

usObject {get;}
};

The outcome of the operati Status SDK for
all the management status enumeration values.

The StatusObject property allows the provider to return very rich information about the error or
status of an operation. This is especially useful where the error and/or status sim ly cannot be
encapsulated in the ManagementStatus enumeration. When writing your own providers, keep this

view of Events

 An event is considered published when either a client or an event
provider delivers it to WM s, refer to Chapter 7

lic delegate void CompletedEventHandler(object sender,
letedEventArgs e);

et od conforming to this prototype (without specifying delegate) will be able to determine the
e of an asynchronous operation by inspecting the CompletedEventArgs object. The handler
t be called unless the delegate is specified thro

public class CompletedEventArgs : ManagementEventArgs
{
 // Properties
 public ManagementStatus Status {get;}
 public ManagementBaseObject Stat

on is supplied through the property. Check the Platform

p

in mind if you want richer information provided to the client. The StatusObject property works
like any other management object in which inspecting the properties of the object provides the
detailed information. Making asynchronous calls is the only means of getting at this rich
information.

Over
One of the most powerful features in WMI is that it has the capability to deliver events when
something interesting happens. "Something interesting" might include being notified when disk
space runs low on a machine. The event mechanism employed by WMI is based on a publishing
and subscription approach.

I. For a fully detailed explanation of WMI event .

As mentioned in Chapter 7, no events will be delivered unless an event consumer subscribes for
them. All event subscriptions are made using a WQL event query. To demonstrate what an event

he above query asks to be notified for any changes to any Win32_CDROMDrive management object
(perhaps they have more than one CD-ROM drive). If the CD-ROM drive door opens and closes,

 each operation causes a change to the management object. All event
; WMI does not support event queries that specify properties in

query looks like, let's make a subscription to be notified when the CD-ROM drive management
object changes:

SELECT * FROM __InstanceModificationEvent WITHIN 5 WHERE
 TargetInstance ISA "Win32_CDROMDrive"

T

two events will get fired as
queries should start with SELECT *

the SELECT statement. If properties are specified, WMI ignores them and treats the query as
SELECT *.

The next piece of information the event query requires is the type of event to which the consumer is
subscribing. The earlier query asked to be notified for the intrinsic event,
__InstanceModificationEvent. Most intrinsic event queries must specify how often WMI shou
poll the provider to determine if there are any changes to the management objects. This is the rea
for the

ld
son

ds for
s to know what object class it should monitor; this

is the purpose of the operator. The operator requests notification of events for any class
deriving from the s class.

Let's review the query: It requests notification every 5 seconds for any instance modification events
for all instances that are members of any class deriving from Win32_CDROMDrive. To try out the
various types of event subscriptions, go to Appendix A

WITHIN clause. The query instructs WMI to poll all the CD-ROM drives every 5 secon
modification changes. Next, the event query need

ISA ISA
pecified class. The TargetInstance is a property on the event

 for a short tutorial on using the WMI SDK
event tools. Appendix B covers a short tutorial on using the WMI server explorer in Microsoft
Visual Studio .NET, which includes support for making event subscriptions.

Writing Applications to Receive Asynchronous Events
There are two choices for event notification: polling for the event deliveries yourself or having them
delivered to you asynchronously. Synchronous event notification is not possible because of the
nature of events. Events get delivered to the consumer at any time after the event query is
registered.

As with the other asynchronous calls you have seen, you must supply one or more delegate methods
to handle the events fired from the .NET Framework. Whenever WMI delivers an event, the .NET
Framework calls your delegated method with the event details supplied through method arguments.
We discussed asynchronous method calls earlier in the chapter.

vent

 public ManagementEventWatcher(EventQuery query);
 public ManagementEvent
 public ManagementEventWatcher(ManagementScope scope, EventQuery

Watcher ptions);

rties
EventWatcherOp

 public EventQuery Que

 // Event delegates
 public event EventArrivedEventHandler EventArrived;

WMI asynchronous event operations use the ManagementEventWatcher class. This class contains
the delegate methods (these are like function pointers in C++) for the two different types of .NET
Framework events, EventArrived and Stopped. The event watcher manages all the e
interactions between WMI and caller (that is, the application). Let's take a look at the
ManagementEventWatcher class:

public class ManagementEventWatcher
{
 // Constructors
 public ManagementEventWatcher();

Watcher(string query);

 query, Event

Options o

 // Prope
 public tions Options {get; set;}

ry {get; set;}

 public event StoppedEventHandler Stopped;

 // Methods
 public void Start();

);
tBase

};

chronous ope
the delegate handlers for the
actually registers the event w an event consumer. This is when the delegate

 to
he

when the event watcher is co is in the
he

ery can be specified in one of two wa
n EventQuery b he

resulting event query can be tcher
was created using the default
property (as long as it is befo
as a string.

You should use asynchronou d
nd using anot uery subscription is
diately to per anages the background

:

string eventquery = "SE
HERE Target

// Create class with ev
MyEventAsyncHandler han

// Set event delegate m
watcher.EventArrived +=
 new EventArrivedEventHandler(handler.EventArrived);

ped += new

// Register the watcher
tart();

// Thread is available
for 30 seconds

 public void Stop(
 public Managemen Object WaitForNextEvent();

To start an asyn ration, a ManagementEventWatcher object must be created and then
types of events that are required must be set. The Start method
atcher with WMI as

event handlers can expect
unregisters the event watc

receive WMI events as and when they occur. The Stop method
r as an event consumer. The WaitForNextEvent method is used only
nfigured as a semisynchronous event consumer. We discuss th

next section and discuss t two event delegate handler properties later.

The event qu
string or as a

ys. The event query can be either specified as a
ased object when a ManagementEventWatcher object is created. T
accessed through the Query property. If the ManagementEventWa
 constructor, you can supply the query afterward by setting the Query
re Start is called). The next code sample will supply the event query

s event subscription when you want event notifications to be delivere
in the backgrou
available imme

her thread. The thread that performs the event q
form other tasks. The .NET Framework neatly m

thread.

The following code sample demonstrates how to asynchronously subscribe for event notifications

LECT * FROM __InstanceModificationEvent
 WITHIN 5 W

Instance ISA \"Win32_CDROMDrive\" ";

ent handlers
dler = new MyEventAsyncHandler();

// Create an asynchronous event watcher
ManagementEventWatcher
 new ManagementEventWa

watcher =
tcher(eventquery);

ethods

watcher.Stop

StoppedEventHandler(handler.StoppedEvent);

 as an event consumer
watcher.S

to do other stuff. In this case, waits//

System.Threading.Thread.Sleep(30000);

// Stop and the watcher is no longer a registered event consumer
watcher.Stop();

The event query in the sample M drives every 5 seconds,
and if there are any changes to e

elivered er), the EventArrived
od will be cal

Start), the calling
an event consumer. This means that WMI events indow (if any

 all). You
around for 30 seconds.

MyEventAsync-Handler
(in this case). The event handlers determine how the WMI event should be processed, so let's have a

lers do

ventArr

 // Extract the TargetInstance from the __InstanceModificationEvent
mentBaseObje
gementBaseOb

ne(
_CL

 }

e
 {

}

ved handler
expecting __InstanceModi of the management object that had

an

ved delegate handler property has the following declaration:

public delegate void EventArrivedEventHandler(object sender,
 EventArrivedEventArgs e);

l
EventArrived sender eter

he

 code instructs WMI to poll all the CR-RO
any of the CD-ROM drives, to send an event notification. Each tim

a WMI event gets d to a .NET event watcher (an event consum
delegate meth
(through

led. In the code sample, after the event watcher has registered with WMI
 thread just hangs around for 30 seconds before unregistering itself as

 are captured only for a 30-second w
events are fired at r applications will probably do something more useful than just sitting

The WMI events are delivered through the delegate handlers in the class

look at what the hand :

public class MyEventAs
{

yncHandler

 public void E
 {

ived(object sender, EventArrivedEventArgs e)

 Manage
 (Mana

ct TargetInstance =
ject)e.NewEvent["TargetInstance"];

 Console.WriteLi
 e.NewEvent["_

"Received a {0}event of type {1}",
ASS"], TargetInstance["__CLASS"]);

 public void Stopp dEvent(object sender, StoppedEventArgs e)

 Console.WriteLine("StoppedEventArgs.Status is {0}", e.Status);
 }

The EventArri simply outputs to the console what type of event occurred (we're
ficationEvent) and the class

changed (in TargetInst
event watcher was stopped.

ce). The StoppedEvent handler simply outputs to the console how the

The EventArri

A method conforming to this prototype (without specifying delegate) will be able to receive the
event objects from WMI as and when an event matches the event query. The handler wil not be
called unless the delegate is specified through the property. The param
points to the ManagementEventWatcher event consumer that registered for the event. You will find
that in most cases, you'll ignore this parameter. This applies to all ManagementEventWatcher event
handlers. The event object is passed through an EventArrivedEventArgs object. The handler
should inspect this object to access the details about the WMI event. Here is the declaration of t
EventArrivedEventArgs class:

public class EventArrivedEventArgs: ManagementEventArgs
{
 // Properties
 public ManagementBaseObject NewEvent {get;}
};

Inspect the NewEvent property to gain access to the WMI event. The assigned EventArrived
delegate handler will be called each time WMI is able to match an event with the event query.

The Stopped delegate handler property has the following declaration:

public delegate void StoppedEventHandler(object sender,
 StoppedEventArgs e);

A method conforming to this p delegate le to identify when
the event consumer stopped being registered to receive events from WMI. The handler will not be
called unless the delegate is specified through the Stopped property. The event object is passed
thro h inspect the Status property to
understand why the event watcher is no longer an ev er. Here is the declaration of the
Sto e

public class StoppedEventArgs: ManagementEventArgs

};

Writing Applications to Receive Semisynchronous

the
 as is

isynchronous events
d, the events are usually processed inline.

Developing code to receive sem ilar to setting up an
asynch her, you have to create the delegate
event m isynchronous event watcher leaves the
EventA a
predefi

Let's ex tion using the query discussed
earlier. isynchronous WMI
event. T loop. Let's have a look:

// Cre
WqlEventQuery query = new WqlEventQuery("__InstanceModificationEvent",
 new TimeSpan(0, 0, 5), "TargetInstance ISA \"Win32_CDROMDrive\" ");

// Specify a timeout of 15 seconds
ventWatcherOptions options = new EventWatcherOptions();
ptions.Timeout = new TimeSpan(0, 0, 15);

 new ManagementEventWatcher(null, query, options);

rototype (without specifying) will be ab

ug an StoppedEventArgs object. The handler should
ent consum

pp dEventArgs class:

{
 // Properties
 public ManagementStatus Status {get;}

Events
Capturing WMI events semisynchronously offers a solution through which an application thread
can start and receive WMI events using a polling technique. No other threads are required and
executing thread blocks for a predefined time-out. The time-out can be as short or as long
required. Developing applications to receive sem reduces code complexity by
not having to develop event handlers. Instea

isynchronous WMI events is quite sim
ronous event watcher. In an asynchronous event watc
ethods and assign them to the event watcher. A sem
rrived event handler property with a null value and the Timeout property is set to
ned time-out.

amine some sample code that subscribes for event notifica
 The sample code that follows demonstrates how to receive just one sem
o receive multiple events typically would require a while

ate the event query

E
o

// Make ourselves an event watcher
ManagementEventWatcher watcher =

try
{
 // Wait for an event to occur
 ManagementBaseObject NewEvent = watcher.WaitForNextEvent();

 // Extract the TargetInstance from the __InstanceModificationEvent
 ManagementBaseObject TargetInstance =
 (ManagementBaseObject)NewEvent["TargetInstance"];

 Console.WriteLine("Received a {0}event of type {1}",
 NewEvent["__CLASS"], TargetInstance["__CLASS"]);
}
catch(System.Management.ManagementException e)
{
 // M
 Cons
}

//
watche

Notice n
setting
(WQL
also been used.

The next task is to setup the time-out that will be used when waiting for an event to occur. To
s, it is

ManagementOptions, provides the event watcher with a predefined time-out when waiting for an
event. Both the query and th
ManagementEventWatcher object is created. Notice that a semisynchronous event consumer does
not require Start to be called. The Start method is used by an asynchronous event consumer to
register the event watcher (review the previous section for more information). The difference
between asynchronous and semisynchronous event handling is that the WaitForNextEvent method
replaces the functionality provided by the asynchronous EventArrived event handler. The
WaitForNextEvent method blocks until a WMI event occurs. If no event matches the event query
within the specified time-out (15 seconds in our case), WaitForNextEvent throws a time-out
ManagementException. You will notice that the code to extract the details of the WMI event is
similar to the asynchronous EventArrived delegated handler. It merely outputs what type of event
occurred and the class of the object that had changed. Finally, the semisynchronous event watcher is
unregistered from WMI as an event consumer, using Stop.

Let's look at the EventWatcherOptions class:

public class EventWatcherOptions: ManagementOptions
{
 // Constructors
 public EventWatcherOptions();
 public EventWatcherOptions(ManagementNamedValueCollection context,

};

aybe the event timed-out after 15 seconds?
ole.WriteLine("Caught ManagementException ->'{0}' ", e.Message);

Stop receiving events
r.Stop();

how the query is specified? This demonstrates the other .NET Framework alternatives i
up an event query. The WqlEventQuery class ensures that the query is a WQL event query.
is the only currently supported WMI query language.) The EventQuery class could have

specify the time-out requires the EventWatcherOptions class. Like the other options classe
derived from ManagementOptions. Setting the Timeout property, which is inherited from

e event watcher options are passed when the

 TimeSpan timeout, int blockSize);

 // Properties
 public int BlockSize {get; set;}

Apart from the inherited properties Context and Timeout, the options class defines BlockSize.
The BlockSize property specifies how many events to wait for before returning from a block
operation.

Managing Connections to WMI
At s connections to WMI have been
automa s good enough for most
case y the opportunity to fine-
tune o ich could possibly be on different machines. You
may als sses you want to access require higher security

ving into the details of managing connections to WMI, let's take a quick tour of the
 attention:

ConnectionOptions options = new ConnectionOptions();

onationLevel.Imper
rivileges = true;
= "MS_409";

"DOMAIN_A\\gcole";
"mypassword";

ManagementScope("\\\\OS

to WMI namespace

hare.Name=\"C$\" ");

// Reuse existing connection for this ManagementObject retrieval
mo.Scope = ms;

pe used ect is retrieved here

Console.WriteLine("Win32

h

All connections to WMI are m
set up a connection to a machi
scope object. The connection ally set up after the Connect method is called. If there are
any problems in making the connection, then you can expect to catch a that

thi point in the chapter, you've seen code samples in which the
tically managed by the .NET management classes. This probably i

nagement classes give yous ou are likely to encounter. The .NET ma
 y ur connections to WMI namespaces, wh

o discover that the providers for the cla
privileges, or that you must provide specific security credentials for another authorized user to gain
access to a particular management namespace. There are many other reasons why you might want
to fine-tune access to WMI in .NET applications.

Before di
following code sample that encompasses all the main points we want to bring to your

options.Authentication = AuthenticationLevel.Call;
options.Impersonation = Impers sonate;
options.EnableP
options.Locale
options.Username =
options.Password =

ManagementScope ms = new
 options);

AKA\\root\\CIMV2",

// Explict connection
ms.Connect();

ManagementObject mo = new ManagementObject("Win32_S

// Connection sco when obj
mo.Get();

_Share.Name=\"C$\" path is {0}", mo["Path"]);

First, notice that there is anot er options class, ConnectionOptions. This also derives from
tains many important properties which we shall discuss.

anaged through the

ManagementOptions and con

ManagementScope class. This class allows you to
ne and namespace that is retained for the lifetime of a management
is physic

ManagementException
will detail the nature of the problem—an access-denied error, for instance.

After you have a connected ManagementScope object, you can use it in the .NET management
classes ManagementObject, ManagementClass, ManagementObjectSearcher, and

l have a property called Scope. Assigning a management
dy configured WMI connection session to be supplied for an

e

public class Managem
{
 // Constructors
 public ManagementScope();
 public ManagementScope(ManagementPath path);

ns {get; set;}
t; set;}

 /
 p
};

The
 set and retrieved from the Path property.

th one of the ManagementScope constructors.

Let's m

public
{
 // Constructors
 public ConnectionOptions()
 public ConnectionOptions(string locale, string username,
 string password, string authority,
 ImpersonationLevel impersonation,
 AuthenticationLevel authentication,
 bool enablePrivileges, ManagementNamedValueCollection context,
 TimeSpan timeout);

 // Properties
 public AuthenticationLevel Authentication {get; set;}
 public ImpersonationLevel Impersonation {get; set;}
 public string Locale {get; set;}
 public string Username {get; set;}
 public string Password {set;}
 public string Authority {get; set;}
 public bool EnablePrivileges {get; set;}
};

ManagementEventWatcher, which al
scope object to Scope allows an alrea
operation. The preceding code sample does this. The management object mo uses the connection set
up by ms. When the shared directory object is retrieved from WMI, it is done so with the connection
set up through ms.

Let's take a look at the ManagementScop class:

entScope: ICloneable

 public ManagementScope(string path);
 public ManagementScope(ManagementPath path, ConnectionOptions
 options);
 public ManagementScope(string path, ConnectionOptions options);

 // Properties
 public bool IsConnected {get;}
 public ConnectionOptions Optio
 public ManagementPath Path {ge

/ Methods
ublic void Connect();

 IsConnected property can be used to evaluate whether a connection to WMI exists. The
management path of the WMI connection can be
However, the Path property is usually set up wi

ove our attention to the all-important ConnectionOptions class:

 class ConnectionOptions: ManagementOptions

;

This class is tremendously import connection that has the
specific security settings required to access the management objects you want to query or
manipulate.[2]

ant because it is your gateway to set up a

 Let's look at each property in detail.

Our aim for the rest of this section is to provide you with enough information that can be of some
tion level and impersonation level

options that can be specified. The enumeration values you pass for these properties also depend on
what th

Authen entity to another
princip s
that the o one of the AuthenticationLevel enumeration values.
In most cases, all you will need is . This value requires the client to prove its identity on the

se Default,
which allows DCOM layer to choose the authentication level using its normal security blanket
negotiation algorithm (under Windows 2000). Under Windows NT 4.0, this value defaults to

entation for more information on the other
.

er

. alled delegation and you must use Delegate. Delegation is a form of

impersonation that allows WMI to pass your security context to another machine so that machine
half. However, the downside to delegation is that your security credentials

ose machines can perform tasks on
angerous if you do

operty allows you to specify the locale that will be used to retrieve localized class
starts with "MS_"
409" and German is

 this property makes sense only when you have a localized namespace. If a
 is localized in U.S. English and German, you will see sub- (or child) namespaces called

 respectively. Localized namespaces use amended qualifiers, which were
ter. For a more detailed discussion of localized namespaces, refer

[2] For a more detailed discussion on security, we recommend reading Programming Windows Security by Keith Brown (ISBN 0-201-
60442-6).

practical use. In particular, we want to discuss the authentica

e providers require to do their work.

tication is the circumstance in which one principle (your client) proves its id
le (ultimately the WMI provider). To specify the type of authentication you want require
 Authentication property be set t

Connect
first connection with WMI, which is usually adequate for most interactions. Supplying Call causes
the client to prove its identity on every WMI call it makes. Alternatively, you can u

Connect. Check the MSDN docum
AuthenticationLevel enumeration values

Impersonation specifies what a principle on another machine is allowed to do with your security
context. To specify what type of impersonation you want requires that the Impersonation property
be set to one of the ImpersonationLevel enumeration values. Impersonate allows WMI and the
providers to perform tasks on your behalf. This ultimately means that you can access any local
executive objects that you have permission to access. Any calls made by a WMI provider to anoth
machine will result in an access-denied error. This level of impersonation does not allow your
security context to be passed to anybody else. As we mentioned earlier, providers can dictate the
minimum impersonation level. Consider the following—if a provider performs some task that
results in another WMI call to some other machine on the network, then your security context needs
to be passed This is c

can make calls on your be
can be passed to an unlimited number of other machines and th
your behalf (and can be audited). Needless to say, this level of impersonation is d
not completely trust the provider.

The Locale pr
information, such as class or property descriptions. The format of this property
and you append the W
S_407". Specifying

in32 LCID locale identifier in hex. U.S. English is "MS_
"M
namespace
"ms_409" "ms_407"
overed briefly earlier in the chap

 and
c
to Chapter 7.

When making a connection to a different machine, you can optionally include the
s with w

Username and
hich to connect. Local connections do not

rently logged-on user credentials are used. You
Password properties to specify the user credential

quire these properties to be specified and the curre

may need to complete these properties if you do not want to use the currently logged-on user for a
also include the domain of the

ty authentication or to use a different NTLM domain to
th nticate the user credentials, then you specify the authority in the Authority property. In most
es, you will just leave the Authority property empty, which will cause the default domain

ere

 EnumPrivileges {"SeSecurityPrivilege"}

ile;
ifier;

de;

es of the
s any

ges of a management class.
on options have the

es property set to true. To get an idea of what happens out of sight, review
h

connection to another machine. The Username property can
principle, for example, DOMAIN_A\User_A. user/

If you need to use Kerberos securi
au
cas

e

security authority of the currently logged-in user to be used. To use Kerberos authentication, you
must pass a string formatted like this: "Kerberos:<principle name>", where <principle name>
is the principle of the machine against which to authenticate. To use NTLM authentication for a
specific domain, you must pass a string formatted like this: "NTLMDOMAIN:<domain name>", wh
<domain name> is the domain against which to authenticate. If you specify this property, do not
include domain information in the Username property.

All the classes we have discussed so far have not required any special security privileges to access
instance data. However, you will more than likely come across classes that fall into this category.
An example is the Windows event log WMI class, Win32_NTLogEvent, which requires that the
SeSecurityPrivilege be set when accessing instance data. Let's have a look at the class:

[
 dynamic,
 provider("MS_NT_EVENTLOG_PROVIDER"),

]
ass Win32_NTLogEvent cl

{
 [key] uint32 RecordNumber;
 [key] string Logf

dent uint32 EventI
 uint16 EventCo
 string SourceName;

 ...
};

The EnumPrivileges qualifier contains an array of strings that represent the privilege nam
security privileges. The security privileges must be set on the thread that wants to acces

gement object. information from the management class or a mana

The .NET Framework makes it very easy to enable the security privile
All that is required is to set up a connection in which the connecti
EnablePrivileg

apter 7C . You will realize quickly how useful it is to set one property that automatically applies
e correct security privileges on the calling thread.

y aspect of managing objects in WMI using the
ses. We explained some of the most fundamental and basic

ssed, created, deleted, updated, enumerated, and
 a powerful mechanism for adding behavior to

th

Summary
This chapter has introduced you to virtually ever

ET Framework management clas.N
operations through which objects could be acce

eried. Our coverage of methods provided you withqu

classes and objects. Detailed discussion outlined how properties could be manipulated, especially
ose that are either objects or arrays.

perations to be
ussed both semisynchronous and

detail.

, some off-topic discussions brought your attention to some of the more
bscure functionality provided by the .NET management classes, such as determining whether or

not a property is locally defined. In addition, we pointed out some programming shortcuts (such as

ections to WMI. This chiefly covered
how you can set up a connection with very specific options, including advanced security
configuration.

s: Developing .NET

2. The ManagementObject class makes it easy to gain access to a WMI management
n object path or use the

management object.
 "options" class that unifies all

lasses are inherited from
agementOptions.

y supply Values and ValueMap qualifiers to describe

 information from the management
ta queries are specified using WQL and can

any query classes, starting with ObjectQuery.
6. Many WMI classes use methods to add behavior. Always determine if the class

agementClass to execute a method.
7. Interpreting WMI class properties involves dealing with C# data types. If you are

th

We provided details about how to make asynchronous calls within your own applications.
(Asynchronous calls make your applications much more responsive and allow for o
easily cancelled.) Our very quick introduction to WMI events disc

nchronous event subscriptions in asy

Throughout the chapter
o

the management class's Derivation property) to highlight that it is worth taking some time to
explore fully what is available to you in the .NET management classes.

Finally, we discussed in detail how you can manage your conn

Ten Fast Fact
Management Applications

1. Connections to WMI are automatically managed by the .NET Framework.
However, you can manage and set up your own connections using the
ManagementScope class.

object. Simply supply your ow
ManagementObjectCollection to gain access to each

3. The .NET Framework management classes have an
the options for a particular operation. The option c
Man

4. Be aware that properties ma
how to interpret property data.

act5. WMI offers a powerful means to extr
 by using data queries. Daenvironment

be assembled through one of the m

you want to use has any methods in which you may be interested. In particular,
many classes in the CIMV2 namespace use methods to create and update
management objects. Call InvokeMethod on either the ManagementObject or the
Man

unsure what data types you need to use, consult Table 8.1.
8. Always consider using as

applications. This will ma
ynchronous techniques in your management
ke your applications more responsive.

I's most powerful features. WMI has the
resting happens. "Something

 on a machine,

9. Event notification is one of WM
capability to deliver events when something inte
interesting" might include being notified when disk space runs low
for example. Use the ManagementEventWatcher class to make an event
subscription. Also, explore which of the event query classes is the most

appropriate for your situation, starting with EventQuer
s many useful helper functions

y.
10. The .NET Framework ha

apter. It is worth
, more than those covered

 taking some time to explore fully what is available to
anagement classes.

in this ch
you in the .NET m

Chapter 9. Developing MMC Snap-ins
Chapter 12 covers in detail how applications can expose management objects with Windows
Management Instrumentation (WMI). This chapter explores how you can develop management user
interfaces to manage your own management objects. The Microsoft Manage ent Console is
Microsoft's answer to providing a consistent user interface in which administrato

m

rs can find all their
manage s were a few years ago to see why the
Microsoft Management Console was developed.

 for users and configuring print

servers. Now, computer systems are used for many more business functions within the enterprise,
de the

of the Active Directory, IP telephony solutions, e-mail servers, unified messaging
ore. System administration became fragmented as

own administration tools with different and usually
verwhelmed with the array of administration

some aspect of the system had to find the correct
efore changes could be made. In addition, every time the system expanded with new

nother learning curve in using the new administration tools. This
o the already vast collection of administration software.

dministration tools and the knowledge of and the ability to find the correct ones were fragmented
dress this problem,

inistration
 place. There are
nt for any

 simply looks for it in
ls. All MMC administration software has a similar look and

 the administrator. This moves toward a
rs, especially in large production sites, also

inistration tasks. Making administration possible through WMI,
MI

ment tools. Let's review where management tool

In recent years, networked computer systems have become more complex and as a result have
become harder to administer. Administrators in the past had relatively simple tasks compared to
today. Their tasks included correctly setting security permissions

and system administration has become a complex task. The administrator's tasks now inclu
setting up
solutions, complex databases, and many m
software and hardware vendors developed their
nonstandard user interfaces. The administrator was o
tools. An administrator who wanted to administer
program b
services, the administrator had a
resulted in another program to add t
A
across the system. This ultimately increased the total cost of ownership. To ad
Microsoft developed the Microsoft Management Console (MMC). MMC is an adm
nvironment that integrates all machine, network, and systems management in onee

no more fragmented administration tools across the system: MMC is the center poi
administration facility. An administrator who can't find the appropriate tool
the list of installed administration too
feel, which helps reduce the learning curve required by

er total cost of ownership. In addition, administratolow
rely on the ability to script their adm
which is scriptable, moves further toward a lower total cost of ownership. We cover scripting W
from an administrator's perspective in Chapter 10.

MMC by itself does not do anything useful for the administrator. Instead, it relies on snap-ins that
form the administration tool-set. Snap-ins hook into the MMC user interface and extend it with the
administration tasks of the hardware or software. The Explorer-like user interface is extended by
snap-ins that add menus, toolbars, property sheets, wizards, and new items within both the
and result panes. Microsoft provides some guidelines that vendors writin
follow in an effort

 scope
g MMC snap-ins should

 to make all administration tools coexist and be consistent with each other.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch09fn02

Administrators can personalize their administration environments by selecting one or more snap
to the console and saving it to a file. This enables them

-ins
 to make different console files for all their

common administration tools.

Figure 9.1 shows a screen shot of the management console from the Computer Management snap-
he
uch as

at relate to the
a toolbar button for

ient host for common tasks. Every snap-in item
 verbs include rename,

 interface and a set of

in. This snap-in can administer the most common administration tasks for a single machine. T
n tasks into different namespaces, sscope pane allows snap-ins to partition their administratio

the Shared Folders item. The result pane usually contains a collection of items th
namespace. The Shares namespace lists all the machine's shared folders and has
creating new, shared folders. The toolbar is a conven
has a common set of verbs in either the scope or the result panes. These
delete, refresh, and properties. Verbs help in maintaining a consistent user

er in Figure 9.1operations across all snap-ins. The E$ shared fold displays two enabled verbs:
properties and refresh. All items can individually enable the supported verbs that are communicated
through the context menu and toolbar.

Figure 9.1. The Microsoft Management Console

terface. Extension
g its namespace,

, and property pages. The extension snap-in architecture provides a good
ministration tasks into smaller and more maintainable

Snap-in Architecture
MMC categorizes two types of snap-ins: primary and extension. Primary (or stand-alone) snap-ins
provide the entry point for any administration tool. This type of snap-in is added to the root of the
console tree in the scope pane and has full control over all aspects of the user in

ther snap-in (both primary and extension) by extendinsnap-ins can extend any o
nus, toolbars, taskpadsme

solution in separating related but different ad
bases. code

Do you develop a primary snap-in or do you develop an extension snap-in? The basic rule to follow

existing administration snap-

ents are related but different from an existing administration
ry or extension), develop an extension snap-in. For instance, if you want to

provide system information for your software, then you should consider an extension snap-
in.

pe of item within the console
er). This is fundamental to the

is:

1. If your administration requirements are distinct from any other
in, then develop a primary snap-in.

2. If your administration requirem
snap-in (prima

in to extend the System Information snap-

How does any snap-in know how to extend another snap-in? Every ty
lly unique identifimust have a unique identifier called a GUID (globa

snap-in extension architecture. Figure 9.2 illustrates the GUIDs that i
tend the Shared Folders item

dentify two types of items
, you do so using

Figure 9.2. MMC item unique identifiers

within the Shared Folders snap-in. If you need to ex
its GUID identifier to bind it to the item.

Note that not every item in the console must have a unique GUID. Every type of item must have
unique GUID. Consider the Shares item in

 a
 the Shared Folders snap-in. All the shares listed in the

tending this item

cture to life. All snap-ins make registrations in the registry,
ins to load and what notifications to deliver

When administrators want to construct their own personalized administration environments, they

result pane have the same GUID because they are all of the same item type. Ex
ects all the Share items in the result pane. aff

Registration brings the snap-in archite
and MMC uses this information to determine what snap-
to them.

can use the Add/Remove Snap-ins menu item. From the list of installed snap-ins, administrators can
add one or more primary snap-ins to the console. The screen shot in Figure 9.3 displays a list of
installed primary snap-ins.

Figure 9.3. MMC's installed snap-ins list

One of the useful features in MMC is that you can create configuration files that store references
a number of snap-ins. The console loads the snap-ins when the file opens. Software vendors u
mechanism for their own administration environments. For instance, Windows 2000
Management uses a configuration file called compmgmt.msc.

Getting Started

 to
se this

 Computer

integrate with the Microsoft
mming, COM

robably enough for most people, and the second half covers more advanced
nap-in development. Therefore, you will

ethod call, but after completing it, you should
ap-in development is knowing

nterfaces are provided by the
console. Let's examine the diagram in Figure 9.4

The rest of this chapter focuses on the COM APIs that allow you to
Management Console (version 1.2). We assume that you are familiar with C++ progra

t Model), and ATL (Active Template Library). The first half of this chapter (Component Objec
vers the basics, pco

topics. You may consider this chapter an introduction to s
not find any deep analysis of every interface and m
know enough to find what you need.The key to understanding sn

iwhich interfaces need to be provided by the snap-in and which
.

and snap-in components Figure 9.4. MMC interfaces

The diagram clearly shows that a snap-in typically implements two COM coclasses: the snap-in and
its about information. Don't be alarmed at the number of interfaces that need to be implemented
the snap-in. You need to implement only the interfaces for the features that you plan to support. If
you do not want to add any buttons to the toolbar, you do not need to implement the

by

on

e

IExtendControlbar interface. ATL's snap-in support has implementations for the most comm
interfaces. The snap-in's about information is provided through the ISnapinAbout interface and is
used when displaying the Add/Remove Snap-in's dialog.The console interfaces provide a set of
services that snap-ins use to interact and customize the administration user interface. For example,
the IConsoleNameSpace2::InsertItem call will add an item into the console's tree in the scop
pane. Table 9.1 briefly describes what each of the console interfaces means to the snap-in.

Console Interface Comment

taining
s in the

espace, and updating all views of the snap-in. MMC passes a
ointer to this interface when the snap-in is being initialized.

 snap-in to add new items to the scope pane with support for
updating the items, navigating the child/parent relationships, and
deleting items.

Allows the snap-in to manage the state of the verbs available for an
item. It is the snap-in's responsibility to correctly set up the verbs when
an item is selected.

s to a context menu. You'll rarely
ap-in support.

s the snap-in to provide its own context menu. You'll rarely need
sult view.

Table 9.1. MMC Console Interfaces

IConsole2 Provides core console services, like setting up image lists,
onsole's window handle, expanding and selecting item

ob
the c
nam
p

IConsoleNameSpace2 Allows the

IConsoleVerb

IContextMenuCallback Allows the snap-in to add menu item
need to use this interface when using ATL's sn

IContextMenuProvider Allow
to use this interface unless you are using a customized re

Table 9.1. MMC Console Interfaces

etains column configuration by the user and
sc). This interface

ows snap-ins to gain access to the user-defined column
-in may not want to fetch data for

columns that are hidden in order to improve performance.

Allows the snap-in to add menus and toolbars in the console. You'll
rarely need to use this interface when using ATL's snap-in support.

Help Allows the snap-in to display help for an item.
erCtrl2 Allows the snap-in to insert, remove, and change column

configuration.

Allows the snap-in to set up image lists that will be used for its user
or instance.

ages to a property sheet.
Provider Allows the snap-in to provide its own property sheet or wizard without

u'll rarely need to use this
 you're planning on providing customized property

sheets and wizards.

 new items to the result pane with support for
updating the items, enumerating the result list, and deleting items.

IToolbar ole's toolbar. You'll rarely
need to use this interface when using ATL's snap-in support.

The snap-in implements a number of interfaces to deliver its u terface. For instance, if a snap-
in wants to add some menu items, it must implement the IExtendContextMenu interface. The menu
items are added when the console calls the snap-in's implementation of AddMenuItems. The
interfaces that determine the snap-in's capabilities are briefly discussed in Table 9.2

Console Interface Comment
ColumnData MMC automatically r

persists the data into the configuration file (.m
all
configuration. For example, a snap

IControlbar

IDisplay

IHead

IImageList

interface—the scope and result pane items, f
IMenuButton Allows the snap-in to add menu items to the console's menu bar. There

is only one menu bar per console view. Depending on the function of
the snap-in, this generally does not get used.

IPropertySheetCallback Allows the snap-in to add property p
IPropertySheet

responding to the properties verb. Yo
interface unless

IResultData Allows the snap-in to add

Allows the snap-in to add buttons to the cons

ser in

Table 9.2. MMC Snap-in Interfaces

.

s in the scope pane.
ment this interface.

IExtendContextMenu Implement this interface only if the snap-in will add context menu
items.

Implement this interface only if the snap-in will add toolbars or menu

Snap-in Interface Comment
IComponent This implements the snap-in's interactions with items in the result pane

All snap-ins should implement this interface.
IComponentData This implements the snap-in's interactions with item

All snap-ins should imple

IExtendControlbar

Table 9.2. MMC Snap-in Interfaces

Comment

r.
xtendPropertySheet2 Implement this interface only if the snap-in will add property pages.

e snap-in will support taskpads. The

nterface only if the snap-in will add one or more tasks
to a taskpad. The IExtendTaskpad also must be implemented.

are Implement this interface only if you want the snap-in to compare result
items so that the items can be sorted in the result pane.

ltDataCompareEx Similar to IResultDataCompare except that scope items can also be
compared.

IRequiredExtensions Implement this interface only if the snap-in requires that the console
lo ctive of the extension snap-
ins specified in the Add/Remove Snap-ins console menu item.

ISnapinAbout This implements the snap-in's about information. This includes the
snap-in description, vendor details, and an icon.

We hope you now have a rough idea of the services provided by the console and the snap-in
at you can implement. Assuming that most snap-ins will extend menus, toolbars, and

roperty sheets, we shall focus specifically on these through the first half of this chapter.

Snap-in Interface

items to the console's control ba
IE

IExtendTaskpad Implement this interface only if th
IEnumTASK also must be implemented.

IEnumTASK Implement this i

IResultDataComp

IResu

IResultOwnerData Implement this interface only if the snap-in plans to use virtual lists for
the list view control in the result pane.

ISnapinHelp2 Implement this interface only if the snap-in provides help for items in
the scope and/or result panes.

ad other extension snap-ins. This is irrespe

interfaces th
p

Let's have a quick look at a snap-in in Figure 9.5. The entry point for any snap-in is the scope pane
object. The console creates this object and calls Initialize on the IComponentData interface. The

te

omponent interface) in a similar way to the scope pane object by calling
Initialize. Both the scope and result pane objects (Figure 9.5

Initialize method supplies the snap-in with an IConsole interface—this later becomes the
lifeline for the snap-in so that it can socialize with the console. All future interactions with the
IComponentData interface allow the snap-in to extend the scope pane user interface. The
IComponentData::CreateComponent method is an exception—the console calls this to instantia
a result pane object that extends the result pane's user interface. The console initializes the result
pane object (that is, the IC

) support a number of interfaces that

s objects that support the IDataObject interface. The IDataObject interface is used
through many Windows APIs and was originally used for OLE drag-and-drop operations. The

ber of data formats (or structures) that
anybody else can read. This provides a perfect solution for snap-ins because both primary and

Figure 9.5. MMC snap-in objects

extend specific console user interface elements. All items in the scope and result panes are
represented a

concept behind this interface is that objects can expose a num

extension snap-ins can exchange information about an item. Snap-in items expose the following
information using the IDataObject interface.

The item's GUID (both in binary and string form)

nap-in's class identifier (CLSID)
The item's object data (provided through ATL)

•
• The item's display name
• The s
•

There are more data structures and formats exposed by items, but we discuss them later in the
chapter. The Figure 9.5 diagram can be expressed simply as:

A snap-in provides the console with three types of objects. The scope and result pane
objects extend the console's user interface. The item object allows communication
with other snap-in items and the console.

Another important aspect of snap-in development is controlling the delivery of an item's user
ations. Item notifications

ance, when a user selects or
 to the appropriate item. All
IComponentData or

re are a few examples:

 an item is selected.

 in response to the rename verb.

onse to the delete verb.

.

 Implementation Basics

interface. This depends, in part, on how an item responds to MMC notific
are another important communication medium for a snap-in. For inst

ation gets deliveredexpands an item in the user interface, a notific
otifications are delivered through the Notify method on either the n
IComponent interface. He

MMCN_SELECT— received when

MMCN_EXPAND— received when an item is expanded.

MMCN_PROPERTY_CHANGE— received when a property sheet changes values in an
item.

— received in response to the refresh verb. MMCN_REFRESH

MMCN_RENAME— received

— received in respMMCN_DELETE

MMCN_COLUMN_CLICK— received when a user clicks a column header

Snap-in

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch07#ch07

Typical snap-in development largely relies on the COM infrastructure provided by ATL.[1] All snap-
 friends. When you embark on a

d that you use the Microsoft Visual C++
rates boilerplate code that starts you in the right

n. All the ATL snap-in support is encapsulated in the atlsnap.h header file. Perform the
lowing steps to create an MMC snap-in project with Visual C++ Developer Studio 6.0:

nd then the New option.
3. On the Project tab, ensure that the ATL COM AppWizard item is selected. Enter a name for

ault
s OK.

4. Select the Insert menu and then the New ATL Object … optio
bject Wizard dialog, select the MMC SnapIn item under the Objects category.

Press Next. This enters you into the MMC Snap-in wizard. The next page requests some
ut the project setup. Enter a name for the snap-in in the Short name field (the

other fields automatically get populated). Switch to the MMC Snapin tab on the same
implest options, select all the interfaces in the Interfaces group

s Persistence check box (most projects won't require this). Press

project.

snap-in looks like in terms of COM objects and
et's take a quick tour (Figure 9.6

ins are COM components that implement IComponentData and
snap-in development project, we highly recommen

er Studio MMC snap-in wizard. This geneDevelop
iodirect

fol

[1] For more information about ATL, we recommend reading ATL Internals by Brent Rector and Chris Sells, ISBN-0-201-69589-8.

1. Load Visual C++ Developer Studio 6.0.
2. Select the File menu a

the project in the Project name field. Press OK. On the next wizard page, go with the def
selections and press Finish. The final dialog confirms the wizard options; pres

n.
5. On the ATL O

information abo

wizard page. To go with the s
select the Supportbox and de

OK.
6. You now have a MMC snap-in

Earlier in the chapter, we discussed what a
interfaces. L) and see what the three objects look like using ATL.

p-in ATL objects Figure 9.6. MMC sna

The dia
ten

gram shows the scope and result pane classes with the user interface elements that the snap-
ds (by looking at the supported interfaces). For instance, the IExtendContextMenu

rface allows the snap-in to add and respond to context menu commands.
in ex
inte

The key to understanding snap-in development is that the item is the heart of an application. Let
briefly look at the folder example presented earlier (

's
Figure 9.1). The Shares item provided a menu,

a toolbar, and a list of shares in the result pane. If this were your snap-in, you could encapsulate the
functionality for this item into one class. In ATL, this class would be derived from

d to add?
• What toolbar buttons should I display?

our attention on the requirements for each type of item you
ill provide the answer to what interfaces your scope and result objects must
 the Figure 9.6

CSnapInItemImpl. The CSnapInItemImpl template class effectively wraps up the IDataObject
interface to the extent that you probably never will need to get near it. When approaching your own
snap-in development, focus on what each item type needs to do. Ask yourself the following
questions for every item type:

• What menu actions will I have (that are not verb-related)?
• What verbs do I need to enable (refresh, delete, properties, etc.)?
• What property pages do I nee

Asking these questions should focus y
have. This exercise w

ms insupport. The ite . diagram can display context menus, property pages, and
toolbars.

Table 9.3 is a list of the ATL snap-in classes that you can use to extend your snap-in.

Table 9.3. MMC ATL Snap-in Component C++ Templates

terface
IComponentData

IComponent

IExtendContextMenu

l IExtendPropertySheet

ndControlbarImpl IExtendControlbar

s also is provided by ATL, but it does not implement

ATL Snap-in C++ Template Class Snap-in COM In
IComponentImpl

IComponentDataImpl

IExtendContextMenuImpl

IExtendPropertySheetImp

IExte

The template clasIResultDataCompareImpl
anything. Table 9.4 shows the other classes provided by ATL.

Table 9.4. MMC ATL Snap-in Framework C++ Templates

rom this class. The ATL implementations of the
snap-in interfaces forward all method calls for an item to an object

m this class.

 basic implementation of a property-page base class. You
ation frameworks for their

indows Template Library
form SDK). All that a snap-in requires is a HPROPERTYPAGE

SnapInItemImpl class is the cornerstone of snap-in development. Later in the chapter, we
l expand on how notifications and interface methods calls get routed to this class. But for now,

just note this class will be the basis for all your snap-in development.

ATL Snap-in Class Comment
CSnapInItemImpl All items derive f

derived fro
CSnapInPropertyPageImpl This offers a

can choose other ATL-based applic
property-sheet base classes (such as the W
in the Plat
handle.

The C
shal

Let's Make a Snap-in
Before we dive into the details of ATL and other aspects of snap-in development, let's first discuss

in

the design of a snap-in and then add features to it as we move through the chapter. Designing a
snap-in is an exercise that will help you determine the functionality of each item type and what
interfaces you must support. Let's develop something similar to the Windows 2000 Services snap-
(shown in the screen shot in Figure 9.7).

Figure 9.7. Windows 2000 Services snap-in

The item labeled Console Root is always present and is added by MMC. All other items are added
by snap-ins. There are tw in the scope
pane and all the service ner for all the
Windows service items in the result pane. Each Wi service item in the result pane is of the
same type. Let's focus on the functionality we want for each of the two item types.

he Services item (in the scope pane):

s in the result pane when expanded.
ices in the result pane can be

tup
type, and so forth.

2. Must add some contex 9.8

o types of items that we will have to design: the Services item
items in the result pane. The Services item is a contai

ndows

T

1. Must create and add all the Windows service item
2. Must support the refresh verb so that the list of all the serv

updated. The console will display the enabled verbs through the context menu and toolbar.
3. Must set up the columns in the result pane so that the service items can populate them.

The Windows service item (in the result pane):

1. Must display some service details in the provided columns, such as name, status, star

t menu actions, like start and stop. Figure shows what the
Windows 2000 Services snap-in context menu looks like.

Figure 9.8. Service item's menu

3. Must add a toolbar so that the service easily can be started and stopped. Figure 9.9 shows
what the Windows 2000 Services snap-in toolbar looks like.

Figure 9.9. Service item's toolbar

4. Must support the properties verb so that service details can be edited through property

 the console
interfaces to set up the user interface.

2. The snap-in will require IExtendContextMenu, IExtendControlbar, and

.

onentData

o nap-in delivers its user interface by supporting many
OM interfaces. One of the most important interfaces is IComponentData. The two main purposes

COM object

ser interface and so all interactions
rrect item. This delegation mechanism is important because

e scope or the result pane. The
ectRoot h is why you see it in the following

Primary:
p ic CComObjectRootEx<CComSingleThreadModel>,

sheets.

Here is a summary of the interfaces that must be supported:

1. Verbs and columns do not require additional interfaces. The snap-in uses

IExtendPropertySheet because service items (in the result pane) will have a context
menu, toolbar, and property sheet.

In fact, in our snap-in, we will have a third item type because we want to use the same snap-in to
expand other snap-in features later. The Services item will hang off the root item

Implementing IComp
Y
C

u should have gathered by now that a s

of this interface are (1) to customize the scope pane's user interface, and (2) to create a
that extends the result pane's user interface. Fortunately, ATL provides an implementation of this
interface. In addition, an important feature of ATL is that it delegates console interactions to the
appropriate item. A snap-in can have many items within its u
need some way of being routed to the co
it makes it easier to develop items that can be added to either th

 base class provides this mechanism, whicCSnapInObj
declaration:

class
ubl
 CMMC

 public CSnapInObjectRoot<1, CMMCPrimary>,
 public IComponentDataImpl<CMMCPrimary, CMMCPrimaryComponent>,
 public CComCoClass<CMMCPrimary, &CLSID_MMCPrimary>
{
protected:
 // I added this to make it easier to call base class methods

NTRY(IComponentData)

RE_REGISTRY_RESOURCEID(IDR_MMCPRIMARY)
ry)

nit();

;

reateInstance to load the snap-in, it queries for IComponentData and
calls Initialize. This is where you should perform your own initialization tasks. The wizard-
provided initialization ATL base class
implementation) and setting up the images used by the items.

All the icons that a snap-in intends to use are embedded in a bitmap that is called an image list. All
snap-ins have two image lists: one for small icons (16x16 pixels) and one for large icons (32x32
pixels). The Visual Studio snap-in wizard creates both of these image lists ready for you to extend
with new icons. Setting an image list requires the use of the IConsole::QueryScopeImageList
method. This method returns an IImageList interface that is used subsequently to add the image
list to the console through ImageListSetStrip. The image mask [RGB(255, 0, 255) in this case]
specifies the transparency color mask used by the image list. As we shall see throughout the
chapter, the IConsole interface is used frequently to harness the services provided by the console.

HRESULT CMMCPrimary::Initialize(LPUNKNOWN pUnknown)
{
 HRESULT hr = _CompDataBase::Initialize(pUnknown);

 if (FAILED(hr))
 return hr;

);

typedef IComponentDataImpl<CMMCPrimary, CMMCPrimaryComponent>
_CompDataBase;

public:
 CMMCPrimary();
 ~CMMCPrimary() {}

GIN_COM_MAP(CMMCPrimary) BE
 COM_INTERFACE_E

COM_MAP() END_
 DECLA
 DECLARE_NOT_AGGREGATABLE(CMMCPrima

 STDMETHOD(Initialize)(LPUNKNOWN pUnknown);

 static void WINAPI ObjectMain(bool bStarting)
 {
 if (bStarting)

CSnapInItem::I
 }
 }

The CMMCPrimary class in this declaration is the minimum you have to implement for a snap-in.
After the console calls CoC

includes obtaining an IConsole interface (by calling the

 CComPtr<IImageList> spImageList;
 return E_UNEXPECTED;

 // Load bitmaps associated with the scope pane
 HBITMAP hBitmap16 = LoadBitmap(_Module.GetResourceInstance(),
 MAKEINTRESOURCE(IDB_MMCPRIMARY_16));

 HBITMAP hBitmap32 = LoadBitmap(_Module.GetResourceInstance(),
 MAKEINTRESOURCE(IDB_MMCPRIMARY_32)

 hr =
 (l

 retu
}

Before
with th MMC. The root item is the starting point for adding other
scope a
up doin
constru

CMMCPr
{
 m_pNode = new CMMCPrimaryRootItem;

 m_pComponentData = th
}

The m_pComponentData in this code fragment is used by most of the ATL snap-in base classes. The

 m_pNode = NULL;
}

The ObjectMain method is an ATL facility that allows a COM component to perform initialization
when the DLL is loaded. As briefly mentioned earlier, snap-in items are represented through an
IDataObject. The CSnapInItem::Init() call registers the clipboard formats that are used to
communicate the item information. We shall cover this later.

h this object. When an item sends a notification or
is object handles those interactions. Like the scope pane

 the appropriate item. Hence the
ss code sample below is the snap-in's

e eadModel>,

>

ryComponent() {}

BEGIN_COM_MAP(CMMCPrimaryComponent)
 COM_INTERFACE_ENTRY(IComponent)

 spImageList->ImageListSetStrip((long*)hBitmap16,
ong*)hBitmap32, 0, RGB(255, 0, 255)) != S_OK)

rn hr;

 a snap-in can add any user interface, it must have a root item. This should not to be confused
e Console Root item provided by
nd result pane items to the console. Depending on your application, the root item may end
g very little, perhaps just adding one or more scope pane items. The following snap-in
ctor creates a new root item that is held by m_pNode.

imary::CMMCPrimary()

is;

snap-in wizard also adds the following destructor code that cleans up the root item.

CMMCPrimary::~CMMCPrimary()
{
 delete m_pNode;

Implementing IComponent
The IComponent interface allows the snap-in to connect to the console's result pane. All item
activity in the result pane is controlled throug
when a property sheet is displayed, th
object, all notifications and interface method calls get routed to

. The inclusion of the CSnapInObjectRoot template base cla
result pane class declaration.

class CMMCPrimaryComponent:
Thr public CComObjectRootEx<CComSingl

 public CSnapInObjectRoot<2, CMMCPrimary >,
entImpl<CMMCPrimaryComponent public ICompon

{
public:

MCPrima CM

 END_COM_MAP()
};

The CMMCPrimaryComponent class is the minimum you have to implement. As mentioned earlier,
the console creates the result pane object by calling

a

nent

 // Create result pane object
;

ent);

onent may need this to communicate with the scope pane object

 IComponent interface to the console
mponent->QueryInterface(IID_IComponent,

l Item Basics
MMC snap-in is the items contained within it. All items have some common

e) tasks that they must implement. Fortunately, the Visual Studio snap-in wizard creates a
 item that is derived from the CSnapInItemImpl base class. Unfortunately, it does not do

useful, but it does contain code that all snap-in items must have. You can use the

CreateComponent on the IComponentDat
interface. This is what the IComponentDataImpl::CreateCompo implementation looks like
(roughly):

STDMETHOD(CreateComponent)(LPCOMPONENT *ppComponent)
{
 HRESULT hr = E_POINTER;

 CComObject<Component>* pComponent
 hr = CComObject<Component>::CreateInstance(&pCompon

 // Comp

rn the // Retu
 = pCo hr

 (void**)ppComponent);
 return hr;
}

The Root Item and Genera
The heart

plat
of an

(boiler
enericg

anything very
generic item code as the basis for your own snap-in items.[2] Let's determine what code you need to

e both the scope and the result panes, which is
why you can see GetScopePaneInfo and GetResultPaneInfo in the class declaration below.

class CMMCPrimaryRootItem: public CSnapInItemImpl<CMMCPrimaryRootItem>

PE;
Y_NAME;

tatic const CLSID* m_SNAPIN_CLASSID;

 STDMETHOD(GetScopePaneInfo)(SCOPEDATAITEM *pScopeDataItem);

 STDMETHOD(GetResultPaneInfo)(RESULTDATAITEM *pResultDataItem);

put in place before we look at some of the more interesting snap-in features.

[2] You may wish to make an item template–based class in your own snap-ins.

Th CSnapInItemImpl class is designed to support

These functions provide a means to get data structures that describe an item and are used when
adding (or updating) items in either the scope or the result pane.

{
public:
static const GUID* m_NODETYPE;

 static const OLECHAR* m_SZNODETY
static const OLECHAR* m_SZDISPLA
 s

public:
CMMCPrimaryRootItem();

 ~CMMCPrimaryRootItem() {}

 STDMETHOD(Notify)(MMC_NOTIFY_TYPE event, long arg, long param,
 IComponentData* pComponentData, IComponent* pComponent,
 DATA_OBJECT_TYPES type);

 LPOLESTR GetResultPaneColInfo(int nCol);

e

here m_pNode becomes
the cookie v alue because you will always be able to reference the

ucture
lParam member.

in item

E | SDI_OPENIMAGE | SDI_PARAM;
K;

 = 0; // May need modification
em.nOpenImage = 0; // May need modification

) this;

izeof(RESULTDATAITEM));
 | RDI_IMAGE | RDI_PARAM;

MMC_CALLBACK;
May need modification

d items. Result items don't set this!
;

aneInfo. This allows an item to expose a current version
TAITEM structure if you

ap-in item classes must add
ilar to the following:

m.nImage;
DI_OPENIMAGE)
 = m_scopeDataItem.nOpenImage;

Item->nState = m_scopeDataItem.nState;

};

To be able to add or update a scope item (using either IConsoleNameSpace2::InsertItem or
IConsoleNameSpace2::SetItem) requires a structure called SCOPEDATAITEM. This structure
contains information such as the item's icon and display name. The lParam member of this structure
is a cookie (set by the snap-in) that uniquely identifies an item. ATL requires the cookie value to b
the item's object address (that is, m_pNode = new CMMCPrimaryRootItem w

alue). This is an excellent cookie v
item's implementation directly by casting lParam appropriately. The result item str
RESULTDATAITEM is similar in content and also has an

An item's constructor initializes both the scope and result data-item structures. All snap-
wing: classes must add something similar to the follo

CMMCPrimaryRootItem::CMMCPrimaryRootItem()
{
 ZeroMemory(&m_scopeDataItem, sizeof(SCOPEDATAITEM));
 m_scopeDataItem.mask = SDI_STR | SDI_IMAG

ayname = MMC_CALLBAC m_scopeDataItem.displ
 m_scopeDataItem.nImage
 m_scopeDataIt
 m_scopeDataItem.lParam = (LPARAM

 ZeroMemory(&m_resultDataItem, s
 m_resultDataItem.mask = RDI_STR
 m_resultDataItem.str =
 m_resultDataItem.nImage = 0; //
 m_resultDataItem.lParam = (LPARAM) this;

 // This item will contain chil
 m_scopeDataItem.cChildren = 0
 m_scopeDataItem.mask |= SDI_CHILDREN;
 }

All items have a method called GetScopeP
of the SCOPEDATAITEM structure. You will need a new updated SCOPEDA
want to change an item's icon or display name, for instance. All sn
something sim

HRESULT CMMCPrimaryRootItem::GetScopePaneInfo(SCOPEDATAITEM
 *pScopeDataItem)
{
 if (pScopeDataItem->mask & SDI_STR)
 pScopeDataItem->displayname = m_bstrDisplayName;
 if (pScopeDataItem->mask & SDI_IMAGE)

 m_scopeDataIte pScopeDataItem->nImage =
 if (pScopeDataItem->mask & S
 pScopeDataItem->nOpenImage
 if (pScopeDataItem->mask & SDI_PARAM)

m.lParam; pScopeDataItem->lParam = m_scopeDataIte
 if (pScopeDataItem->mask & SDI_STATE)
 pScopeData

 // TODO: Add code for SDI_CHILDREN
 return S_OK;
}

The GetResultPaneInfo method is similar to GetScopePaneInfo and is called whenever a current
e is required. The RESULTDATAITEM structure has one exception. Any

indows

k & RDI_STR)

ataItem->mask & RDI_IMAGE)
ge = m_scopeDataItem.nImage;
k & RDI_PARAM)

m;

em->nCol);

 m_resultDataItem.nImage;
(pResultDataItem->mask & RDI_PARAM)

 pResultDataItem->lParam = m_resultDataItem.lParam;
 if (pResultDataItem->mask & RDI_INDEX)

The method is added by the Visual Studio snap-in wizard and is intended
lt pane. The

m_bstrDisplayName member commonly is accessed whenever an item's display name is needed; it
is part of the CSnapInIt ved for result pane
items when GetResultPaneColInfo is called (the display name is normally a column index of
zero). Here is what the method looks like:

POLESTR CMMCPrimaryRootItem::GetResultPaneColInfo(int nCol)
{

The Notify method is very important. This is where the snap-in item will receive notifications from
the console. There are many utlined earlier), and we
shall cover these in more detail later in the chapter. The wizard adds the following code that

RESULTDATAITEM structur
items added to the scope pane may end up displayed in the result pane (like folders in W
Explorer). This is the purpose of the bScopeItem member; it is set to true whenever a scope item is
displayed in the result pane. All snap-in item classes must add something similar to the following:

HRESULT CMMCPrimaryRootItem::GetResultPaneInfo(RESULTDATAITEM
 *pResultDataItem)
{
 if (pResultDataItem->bScopeItem)
 {
 if (pResultDataItem->mas
 pResultDataItem->str =
 GetResultPaneColInfo(pResultDataItem->nCol);
 if (pResultD
 pResultDataItem->nIma
 if (pResultDataItem->mas
 pResultDataItem->lParam = m_scopeDataItem.lPara

 return S_OK;
 }

 if (pResultDataItem->mask & RDI_STR)
 pResultDataItem->str = GetResultPaneColInfo(pResultDataIt
 if (pResultDataItem->mask & RDI_IMAGE)
 pResultDataItem->nImage =
 if

 pResultDataItem->nIndex = m_resultDataItem.nIndex;

 return S_OK;
}

GetResultPaneColInfo
to make it easier to retrieve column information when an item is displayed in the resu

emImpl base class. The display name is usually retrie

L

 if (nCol == 0)
 return m_bstrDisplayName;

 // TODO: Return the text for other columns
 return OLESTR("Override GetResultPaneColInfo");
}

 different notifications (some of which were o

includes a default implementation for the MMCN_ADD_IMAGES notification. The snap-in responds to
the MMCN_ADD_IMAGES notification by supplying the console with the images that the item intends to

s

nsole;

*)pComponent)->m_spConsole;

ist* pImageList = (IImageList*) arg;

 // Load bitmaps
 HBITMAP hBitmap16 = LoadBitmap(_Module.GetResourceInstance(),

 MAKEINTRESOURCE(IDB_MMCPRIMARY_16));

 }

code, why are there different calls for obtaining the IConsole interface? During
alization, a call is made to IComponentData::Initialize and shortly after, another

ce passed into these two different
onsole object may

d differently. Item
ack to the

laration, you should have noticed the declaration of some static
are used by ATL to expose the

at an IDataObject represents an
these static members. The following sets up the item's GUID.

that is, every class). The m_NODETYPE holds a
m_SZNODETYPE has the string form.

st GUID CMMCPrimaryRootItemGUID_NODETYPE =
{ 5852eee, 0x67e4, 0x4150, {0x9c, 0xdf, 0xae, 0x1e, 0x93, 0x16,
0xa, 0xf5}};

use. In practice, a single bitmap contains all the icons for the whole snap-in. The add images code i
similar to that introduced earlier.

HRESULT CMMCPrimaryRootItem::Notify(MMC_NOTIFY_TYPE event, long arg,
 long param, IComponentData* pComponentData, IComponent* pComponent,
 DATA_OBJECT_TYPES type)
{
 HRESULT hr = S_FALSE;

 // Need the correct IConsole interface pointer
 CComPtr<IConsole> spConsole;
 if (pComponentData != NULL)
 spConsole = ((CMMCPrimary*)pComponentData)->m_spCo
 else
 spConsole = ((CMMCPrimaryComponent

 switch (event)
 {
 case MMCN_ADD_IMAGES:
 {
 IImageL

 HBITMAP hBitmap32 = LoadBitmap(_Module.GetResourceInstance(),
 MAKEINTRESOURCE(IDB_MMCPRIMARY_32));

 // Add images to console
 hr = pImageList->ImageListSetStrip((long*)hBitmap16,
 (long*)hBitmap32, 0, RGB(255, 0, 255));

 break;

 }
 return hr;
}

In the add i
in initi

mages
snap-
call is made to IComponent::Initialize. The IUnknown interfa
Initialize IConsole
have a different set of supported interfaces and some methods may respon

 calls will reveal different interface pointers. Each IC

notification handlers should use
MCPrimaryRootItem class dec

the correct IConsole interface. Going b
CM
members. All item classes must declare these members because they
item information through the IData

em. The next statements initialize
Object interface. Recall th

it
Recall that this must be unique for every item type (

he GUID and the binary version of t

stati
0xf
c con

const GUID* CMMCPrimaryRootItem::m_NODETYPE =
 &CMMCPrimaryRootItemGUID_NODETYPE;

const OLECHAR* CMMCPrimaryRootItem::m_SZNODETYPE =
 OLESTR("F5852EEE-67E4–4150–9CDF-AE1E93160AF5");

The following sets up the display name of the item. This applies only to the root item, because all
other items use the member.

otItem::m_SZDISPLAY_NAME =
tion");

m belongs.

maryRootItem::m_SNAPIN_CLASSID = &CLSID_MMCPrimary;

m_bstrDisplayName

const OLECHAR* CMMCPrimaryRo
ESTR("MMC WMI Administra OL

The following sets up the snap-in's class identifier (CLSID) to which the ite

const CLSID* CMMCPri

Figure 9.10 shows what the snap-in looks like so far.

Figure 9.10. Snap-in with root item

Adding Your Own Namespace Items
All snap-ins have a root namespace in the scope pane. In Figure 9.10, the MMC WMI
Administration item is the snap-in's root item. We shall extend the namespace by adding a new item
to the scope pane.

Adding items to a namespace involves using the IConsoleNameSpace2 interface and a
SCOPEDATAITEM structure. You can get a SCOPEDATAITEM structure from the item using its
GetScopeData method (this is implemented in CSnapInItemImpl). Once you have the
SCOPEDATAITEM structure, you can call InsertItem to add the item to the scope pane. When the
InsertItem method returns, the ID member of the SCOPEDATAITEM structure contains th scope
item handle. This handle can be used later to manipulate the scope item using other methods on the
IConsoleNameSpace2 interface. To limit long snap-in startup times, you should design your snap-

ations. All notifications have two
arg param rent meanings depending on the type

le
e it as the

relative parent. This will correctly position the new scope item in the correct place within the scope

Finally, a call to InsertItem will add the item to the namespace. Here are the relevant portions of

HRESULT CMMCPrimaryRootItem::Notify(MMC_NOTIFY_TYPE event, long arg,

e

ins so that items are created and added when a scope pane item is expanded. Before we discuss
adding a scope item, we want explain a bit more about notific
parameters: and . These parameters will have diffe
of notification MMC is delivering. This is similar to a Windows message that has WPARAM and
LPARAM parameters. For a MMCN_EXPAND notification, the param parameter is the scope item hand
of the item being expanded. You can consider this the parent for new items and should us

pane. Of course you could choose to ignore the param parameter and use another scope item
handle if you wish, although we don't think this is common.

the Notify method implementation:

 long
 DATA
{
 HRES

 C
 ...
 .. .

 swit
 {

mQIPtr<IConsoleNameSpace2> spNamespace(spConsole);

aryServicesItem;

eItem);

..

.

. This will be the container for all the Windows services (we cover it
 pane items). Before adding items to either the scope or the result pane, you

something like this in your own snap-ins:

yServicesItem()

igure 9.11

 param, IComponentData* pComponentData, IComponent* pComponent,
_OBJECT_TYPES type)

ULT hr = S_FALSE;

ComPtr<IConsole> spConsole;

.

ch (event)

 case MMCN_EXPAND:
 {

 // Need namespace interface to insert an item
 CCo

 // Create item to add
 CMMCPrimaryServicesItem* pItem = new CMMCPrim

 // Get items scope data item structure
 SCOPEDATAITEM* pScopeItem = NULL;
 hr = pItem->GetScopeData(&pScopeItem);

 // Set this items parent
 pScopeItem->relativeID = param;

 if (SUCCEEDED(hr))
 hr = spNamespace->InsertItem(pScop

 break;
 }

.. ..

 }

 return hr;
}

As you can see in the code fragment, we created a new item class called
CMMCPrimaryServicesItem
later when we add result
should set up the display name. Do

CMMCPrimaryServicesItem::CMMCPrimar
{
...

 m_bstrDisplayName = L"Services";
}

F shows what the snap-in looks like so far.

Figure 9.11. Snap-in with Service item

Adding Your Own Columns
A scope pane item normally adds the columns that its result pane item counterparts will populate.
Adding columns is easy: The scope item responds to the MMCN_SHOW notification and calls
IHeaderCtrl::InsertColumn to add the columns that are required. The MMCN_SHOW notification

 if(arg == TRUE)

VCFMT_LEFT, MMCLV_AUTO);
 }

 }

n InsertColumn specifies the column number. Column numbers do not have to
tiguous, for example, 0, 1, 2, and 3. The following is also valid: 0, 2, 8, and 11. The second

the column should be displayed
n width. We shall see these

add the result pane items later. Figure 9.12

indicates that the result pane has the focus, and it is an ideal time to add some columns (if required).
The MMCN_SHOW notification's arg parameter is true when the item is selected.

The following code fragment inserts three columns.

switch (event)
{
case MMCN_SHOW:
 {
 CComQIPtr<IHeaderCtrl> spHeader(spConsole);

 {
 hr = spHeader->InsertColumn(0, L"Name",
 LVCFMT_LEFT, MMCLV_AUTO);

 hr = spHeader->InsertColumn(1, L"Status",
 LVCFMT_LEFT, MMCLV_AUTO);

 hr = spHeader->InsertColumn(2, L"Startup Type",
 L

 break;

 .
}

The first parameter i
be con
parameter is the column title. The third parameter specifies how

right, center), and the fourth parameter specifies the colum(left,
columns being populated when we shows what the snap-
in looks like so far.

Figure 9.12. Snap-in with columns

Adding Your Own Result Items

Adding result pane items is usually the job of the scope item (the namespace) when it is selected.
 console. First,

d (it is only sent once) and can be used to create the result item
 in a list for later retrieval.

s in

the easiest way to store the result CSnapInItem objects. Here's the

p ef std::list<CSnapInItem*> TChildItemList;

r. In

ane

};

Do something similar to the next code fragment to create the result items for the namespace:

case MMCN_EXPAND:

When a scope item is selected for t
n expanded notification is delivere

he first time, it receives two notifications from the
a
(CSnapInItem) objects. The CSnapInItem objects typically are stored

n the snap-in would add the result itemSecond, a selected notification is delivered. This is whe
the list to the result pane.

An STL list is probably
ion: declarat

ty ed

Add a TChildItemList member to the scope item class so that result items can be accessed late
the class that follows, we add a couple of reusable methods that can be used to populate the
TChildItemList member (with PopulateResultItems) and display the items in the result p
(with DisplayResultItems).

class CMMCPrimaryServicesItem:
 public CSnapInItemImpl<CMMCPrimaryServicesItem>
{
protected:
 TChildItemList m_listChildItems;

 void PopulateResultItems();
 void DisplayResultItems(IConsole* pConsole);

 ..

 {
 PopulateResultItems();
 break;
 }

The following code should be familiar to you by now (it is based on discussions from Chapter 7). It
connects to WMI and obtains all the Win32_Service management objects. As each management
object is obtained, a result item is created and is added to the m_listChildItems list. Notice that

to the result item constructor. We shall expand on this
highlighted in bold font.

PrimaryServicesItem::PopulateResultItems()

ces;

ULL, NULL, 0,

the IWbemClassObject interface is passed
later. The code that we really are interested in from a snap-in perspective is

void CMMC
{
 CComPtr<IWbemLocator> spLoc;
 HRESULT hr = spLoc.CoCreateInstance(CLSID_WbemLocator);

\\.\\root\\CIMV2")); CComBSTR bstrNamespace(_T("\\
 CComPtr<IWbemServices> spServi

// Connect to CIM

 hr = spLoc->ConnectServer(bstrNamespace, N
 NULL, 0, 0, &spServices);

/ Setup security /

 hr = CoSetProxyBlanket(spServices, RPC_C_AUTHN_DEFAULT,
 RPC_C_AUTHZ_NONE, NULL, RPC_C_AUTHN_LEVEL_CONNECT,
 RPC_C_IMP_LEVEL_IMPERSONATE, NULL, EOAC_NONE);

n32_Service"),

 false;

while (!bFinished)

sObject> spInstance;
 spEnumInst->Next(10000, 1, &spInstance,

M_S_FALSE)
hed = true;

 m_listChildItems.push_back(pItem);

s. The MMCN_SHOW handler should iterate through the m_listChildItems list and add

the MMCN_SHOW notification. The IConsole interface is passed to our
el d to access the result pane through IResultData.

Data::InsertItem method, which takes a
 obtained using the item's

t the scope data item
ethod:

e)

 // Get list of objects
CComPtr<IEnumWbemClassObject> spEnumInst;

 hr = spServices->CreateInstanceEnum(CComBSTR("Wi
LLOW, NULL, &spEnumInst); WBEM_FLAG_SHA

 bool bFinished =

 {
 ULONG uNumOfInstances = 0;
 CComPtr<IWbemClas

HRESULT hrNext =
 &uNumOfInstances);

 if (hrNext == WBE

 bFinis
 else
 {
 // Add child item for result pane

CMMCPrimaryWinServiceItem* pItem =
 new CMMCPrimaryWinServiceItem(spInstance);

 }
 }
}

When the scope item is selected, it will receive an MMCN_SHOW notification. The MMCN_SHOW
notification indicates that the result pane has the focus and that this is an ideal time to display the
result item
each item to the result pane.

Here is the code to handle
per method because it is requireh

case MMCN_SHOW:
{
 if(arg == TRUE)
 {

 // Add columns code here!

 // Add items in result pane
 DisplayResultItems(spConsole);
 }
 break;
}

Result pane items are added using the IResult
RESULTDATAITEM structure. The RESULTDATAITEM structure should be
CSnapInItem::GetResultData method. This is similar to the way we go
structure that was discussed earlier. Here is the code for the helper m

void CMMCPrimaryServicesItem::DisplayResultItems(IConsole* pConsol
{

 // Get the IResultData interface from the console
 CComQIPtr<IResultData> spResult(pConsole);

 TChildItemList::iterator itrItem = m_listChildItems.begin();

++)
{

)

 if (SUCCEEDED(hr))

 needs to do. It has created the
result items and added them to the result pane. Coding the result items is our next focus. We need to

result item (a Windows service) should display itself.

obtain information about the
rimaryWinServiceItem class took

 its constructor. The simplest way to extract this
d reason for making a
e valid indefinitely.

uced in Chapter 7

 for (; itrItem != m_listChildItems.end(); itrItem

 if (*itrItem

 {

 // Get the result pane info for the node
 LPRESULTDATAITEM pResultItem = NULL;
 HRESULT hr = (*itrItem)->GetResultData(&pResultItem);

 hr = spResult->InsertItem(pResultItem);
 }
 }
}

So far, the scope pane services item has completed everything it

figure out how each

Before a Windows service item can be displayed, we need somehow to
service. If you recall from the code fragments earlier, the CMMCP
an IWbemClassObject interface (the service) in
information is to make a local copy of the Win32_Service properties. A goo
opy as soon as possible is that the IWbemClassObject is not guaranteed to bc

The following code fragment was introd . It enumerates through all the
t we call a property map. Let's

rimaryWinServiceItem(

 CComBSTR bstrName;

tion

Win32_Service properties, allowing us to make a local copy in wha
see what the constructor looks like:

CMMCPrimaryWinServiceItem::CMMCP
ce) IWbemClassObject* pServi

{

... .. .

 ...

 // Get properties from the service
 HRESULT hr = pService->BeginEnumeration(WBEM_FLAG_NONSYSTEM_ONLY);

 CComVariant varValue;
 while (pService->Next(0, &bstrName, &varValue, 0, NULL) ==
 WBEM_S_NO_ERROR)
 {
 m_PropertyMap[bstrName.m_str] = varValue;

 // Free memory for next itera
 bstrName.Empty();

 varValue.Clear();
}

 pService->EndEnumeration();

 // Set-up the display name
 m_bstrDisplayName = V_BSTR(&m_PropertyMap[L"DisplayName"]);
}

Notice how the display name is set up—it uses the DisplayName property that originally came from
_bstrDisplayName because it is used in

v

erty value
ere is the TWMIPropertyMap declaration:

y ing, CComVariant> TWMIPropertyMap;

e discussion

ame;

eColInfo");

the Win32_Service object. It is important to set up m
eral places by the ATL snap-in framework. se

Here is the m_PropertyMap declaration:

class CMMCPrimaryWinServiceItem:
 public CSnapInItemImpl<CMMCPrimaryWinServiceItem>
{
protected:
 TWMIPropertyMap m_PropertyMap;
...

 ..
 };

The TWMIPropertyMap type is an STL map keyed on the name of the property. The prop
is contained in a CComVariant. H

typedef std::basic_s
pedef std::map<wstr

tring<WCHAR> wstring;
t

Next, the service item must populate the columns that the scope item set up. Recall th
earlier on GetResultPaneColInfo. GetResultPaneColInfo is a helper method that returns a
string for each of the columns. The column number referenced by nCol maps to the number used
when InsertColumn was called. The following code populates the column values. Notice how the
values are obtained from the local property map.

LPOLESTR CMMCPrimaryWinServiceItem::GetResultPaneColInfo(int nCol)
{
 if (nCol == 0)
 return m_bstrDisplayN
 else if (nCol == 1)
 {
 // We only want 'Started' to appear on service items

Map[L"Started"]) == VARIANT_FALSE) if (V_BOOL(&m_Property
 return L"";
 else

 return L"Started";
 }
 else if (nCol == 2)
 return V_BSTR(&m_PropertyMap[L"StartMode"]);
 else
 return OLESTR("Override GetResultPan
}

Figure 9.13 shows what the snap-in looks like so far.

Figure 9.13. Snap-in with result pane items

Setting Up and Handling Verbs
As briefly mentioned earlier, verbs

ponsibility of an item is to set up
help in maintaining common activities across all snap-ins. The
 the verbs it supports. In this section, we shall enable the refresh

 user, it will get delivered to the item via a MMCN_REFRESH
erbs use notifications as their delivery mechanism. A properties

instance, results in a call to IExtendPropertySheet::CreatePropertyPages. Table 9.5

res
verb; when it is triggered by the

ification. However, not all vnot
verb, for

sts the most common verbs and how they get delivered (other verbs will be covered later).

rbs

d
 enable this

lt items, then they own it and le

To manipulate verbs requires the IConsoleVerb interface that can be obtained from a call to
 SetVerbState) is during the

CT is sent when an item's selected state changes. The item is
e. The following code fragment enables the refresh verb:

b
tate(MMC_VERB_REFRESH, ENABLED, TRUE);

e refresh verb causes the verb to appear on the Item's Context menu and toolbar. When a

li

Table 9.5. Common Snap-in Ve

Verb Delivery Mechanism
MMC_VERB_REFRESH Delivered through the MMCN_REFRESH notification.
MMC_VERB_RENAME Delivered through the MMCN_RENAME notification.
MMC_VERB_DELETE Delivered through the MMCN_DELETE notification.
MMC_VERB_PROPERTIES Delivered through IExtendPropertySheet. Both QueryPagesFor an

Create-PropertyPages get called. Only primary snap-ins can
verb because they own the item. However if extension snap-ins create
namespace or resu therefore can also enab
the properties verb.

MMC_VERB_PRINT Delivered through the MMCN_PRINT notification.

IConsole::QueryConsoleVerb. The best time to set the verbs (using
MMCN_SELECT notification. MMCN_SELE
selected if the arg parameter is tru

case MMCN_SELECT:
 {
 if (arg) // Item selected
 {
 CComPtr<IConsoleVerb> spVerb;
 hr = spConsole->QueryConsoleVerb(&spVerb);

h ver // Enable the refres
SetVerbS hr = spVerb->

 }
}

Enabling th
user triggers the refresh verb, an MMCN_REFRESH notification is delivered to the item. The most basic
way to refresh a namespace item (the services item, in this case) is to remove all the result items and
re-create the list. This is what the following refresh verb handler does:

case MMCN_REFRESH:
{
 DeleteResultItems(spConsole);

 PopulateResultItems();

 DisplayResultItems(spConsole);
}

This conveniently brings us to
leteResultItems that removes result item

 the deletion of items. We have created a helper method
s and physically deletes the result pane CSnapInItem

rvicesItem>

e. This time we call
pane item is similar except

NameSpace::DeleteItem, passing a HSCOPEITEM handle. Here is the code

ltItems(IConsole* pConsole)

 delete *itrItem;
 *itrItem = 0;
 }

De
objects. Here is what has been added to the services class:

class CMMCPrimaryServicesItem:
imarySe public CSnapInItemImpl<CMMCPr

{
rotected: p
 void DeleteResultItems(IConsole* pConsole);

 ..
; }

As with inserting, deleting items also requires the IResultData interfac
leting a scope DeleteItem, passing the item's HRESULTITEM handle. De

that you call IConsole
for the DeleteResultItems helper method:

void CMMCPrimaryServicesItem::DeleteResu
{
 // Get the IResultData interface from the console
 CComQIPtr<IResultData> spResult(pConsole);

 TChildItemList::iterator itrItem = m_listChildItems.begin();
 for (; itrItem != m_listChildItems.end(); itrItem++)
 {
 if (*itrItem)
 {

 LPRESULTDATAITEM prdi = NULL;
 HRESULT hr = (*itrItem)->GetResultData(&prdi);

 hr = spResult->DeleteItem(prdi->itemID, 0);

 }
}

Figure 9.14 shows what the snap-in looks like now. Notice that the refresh verb is displayed on the
Context menu and toolbar.

Figure 9.14. Snap-in with refresh verb enabled

 Your Own Menus
 few places. Limiting the number of
onsistent user interface between

.15

Adding
The MMC console allows snap-ins to add menu items in only a

ining a cplaces where menu items can be added helps in mainta
sn ap-in extension mechanism. The menu in ap-ins and also aids the sn Figure 9 is a typical Item

r places where snap-ins can add

New operations are performed here. Creating a new, shared directory is an
ple. Menu items here can be added by both primary and extension snap-ins.

TASK— All other tasks are placed under this submenu. If you want to add any behavior to
a user in the Windows 2000

s that
enerally do not use the All Tasks

an be added by both

 also appear in the TOP menu.
e TOP menu, so a user will have to use

enu to access the extended menu options.
tending this submenu is useful if you want different views or employ a

mechanism to filter the data presented in the result pane. Menu items here can be added by

nu structure

Context menu without any verbs enabled. The menu highlights fou
nu items: TOP, NEW, TASK, and VIEW. me

• NEW—
exam

•
your scope or result item, this is the right place. For instance,
Users and Computers snap-in has a menu task Reset Password… . Result pane item
have a only small number of context menu items g
submenu. They instead use the top menu region only. Menu items here c
primary and extension snap-ins.

• TOP— It is common to find that all items in the TASK menu
Extension snap-ins are encouraged not to extend th
the All Tasks subm

• VIEW— Ex

both primary and extension snap-ins.

Figure 9.15. Snap-in me

To create the context menu items with ATL is easy: Only
APINMENUID

 one macro identifies a menu resource,
s similar to Figure 9.16. The menu resource in Visual Studio lookSN . In this example,

ave one menu item each. Add the menu items for the regions you want to

Figure 9.16. Snap-in menu resource structure

all of the four regions h
support in your snap-in.

Adding context menus requires the snap-in to support the IExtendContextMenu interface. The
IExtendContextMenu interface effectively gives the snap-in the option to add menu items that can
be responded to later by performing the desired operation. The bold font shows the new additions

 public CSnapInObjectRoot<2, CMMCPrimary >,
 public IExtendContextMenuImpl<CMMCPrimaryComponent>,
 public IComponentImpl<CMMCPrimaryComponent>

 COM_INTERFACE_ENTRY(IComponent)

After creating the menu resource, the next step is to use the SNAPINMENUID macro in your class.
This identifies a menu resource that ATL will translate into snap-in specific calls. This approach for
adding menus is excellent. You work with menu resources in your projects and the

(note that this is only the result pane object):

class CMMCPrimaryComponent:
 public CComObjectRootEx<CComSingleThreadModel>,

{
 BEGIN_COM_MAP(CMMCPrimaryComponent)

 COM_INTERFACE_ENTRY(IExtendContextMenu)
 END_COM_MAP()

 .
};

IExtendContextMenuImpl::AddMenuItems implementation iterates through the menu, making
calls to the console-provided interface IContextMenuCallback. Adding this macro makes it
possible for you to see the menu items in your snap-in.

 the
d

c CSnapInItemImpl<CMMCPrimaryWinServiceItem>

D_MAP(CMMCPrimaryWinServiceItem, FALSE)
TRY(ID_TASK_START, OnTaskStartService)

_TASK_STOP, OnTaskStopService)

;

jectRootBase *pObj);
ectRootBase *pObj);

Connect(IWbemServices** ppServices);
ool bStart);

olbar buttons

andled,

rtStopService(true);

T CMMCPrimaryWinServiceItem::OnTaskStopService(bool &bHandled,
napInObjectRootBase *pObj)

Next, we must handle the menu commands when the user activates them. This is the purpose of
SNAPINCOMMAND_ENTRY macro. It routes a menu command from IExtendContextMenu::Comman
to a method in the item's class. In the class declaration that follows, we add a couple of helper
functions to make it easy to stop and start Windows services using WMI.

class CMMCPrimaryWinServiceItem:
 publi
{
public:

 .
 BEGIN_SNAPINCOMMAN

INCOMMAND_EN SNAP
 SNAPINCOMMAND_ENTRY(ID

INCOMMAND_MAP() END_SNAP

CE_MENU) SNAPINMENUID(IDR_WINSERVI

 void UpdateMenuState(UINT id, LPTSTR pBuf, UINT *flags)

 ..

protected:
 HRESULT OnTaskStartService(bool &bHandled, CSnapInOb

skStopService(bool &bHandled, CSnapInObj HRESULT OnTa

methods // Helper
WMI HRESULT

 HRESULT StartStopService(b
};

The two menu item handlers for starting and stopping Windows services are straightforward. They
use the StartStopService helper method to perform the task. As you will see later, to

ling these methods. Here are the handlers: also end up cal

HRESULT CMMCPrimaryWinServiceItem::OnTaskStartService(bool &bH
ctRootBase *pObj) CSnapInObje

{
a return St

}

LHRESU
S C

{
 return StartStopService(false);
}

The StartStopService helper executes either the StartService or StopService method on the
Windows service, depending on the bStart parameter. Calling WMI method calls is discussed in
Chapter 7.

To reference and manipulate a management object requires an object path. An object path is a WM
term that identifies a management object by specifying the machine, namespace, class, and key
properties. Given t
WMI, a relative ob

I

hat the machine and namespace information is provided when connecting to
ject path specifies just the class and key properties of the management object and

ou will see later, the __RELPATH property also is useful
during the MMCN_PROPERTY_CHANGE notification. Here is the helper method:

indows service
L"__RELPATH"]));

 if (bStart)

ms;

lue", 0, &varReturnValue, 0, 0);

 if (V_I4(&varReturnValue) != 0)
 {

 CComQIPtr<IResultData> spResult(m_spCachedConsole);

Notice that the item's property map entry, , is updated to reflect the status of the Windows
te the

is activity is forced when the IResultData::UpdateItem method is

can be accessed easily via the __RELPATH property. We use this property to execute a WMI method
against the correct Windows service. As y

HRESULT CMMCPrimaryWinServiceItem::StartStopService(bool bStart)
{
 HRESULT hr = S_OK;

 // Connect to WMI using a helper method that wraps up ConnectServer
 CComPtr<IWbemServices> spServices;
 hr = WMIConnect(&spServices);

 // This is the relative object path of the W
 CComBSTR bstrNTService(V_BSTR(&m_PropertyMap[

 // Which WMI method do we want to call?
 CComBSTR bstrMethod;

 bstrMethod = "StartService";
 else
 bstrMethod = "StopService";

 // Execute WMI method
 CComPtr<IWbemClassObject> spOutPara
 hr = spServices->ExecMethod(bstrNTService, bstrMethod, 0, NULL,
 NULL, &spOutParams, NULL);

 CComVariant varReturnValue;
 hr = spOutParams->Get(L"ReturnVa

 // Windows service method failed. Convert to HRESULT
 hr = HRESULT_FROM_WIN32(V_I4(&varReturnValue));
 }

 // Update property map so the UI can correctly reflect changes
 if (bStart && SUCCEEDED(hr))
 m_PropertyMap[L"Started"] = CComVariant(true);
 else if (!bStart && SUCCEEDED(hr))
 m_PropertyMap[L"Started"] = CComVariant(false);

 // Update the item's column information
 RESULTDATAITEM* prdi = 0;
 hr = GetResultData(&prdi);

 hr = spResult->UpdateItem(prdi->itemID);

 return hr;
}

Started
2000 service correctly. The arted status is used when an item is requested to populaSt
columns in the result pane. Th

called. If you want to change the icon of an item in the result pane, you need to call

ed by now that we have only two menu items: Start and Stop.
them. This does not
ing. To resolve this,

atlsnap.h is a
ver a menu is

nd the description. That
 method was added to the earlier class declaration. The following code

pBuf,

D_TASK_START)

 // Service already started, grey Start menu item

 else if (id == ID_TASK_STOP)
 {

yMap[L"Started"]) == VARIANT_FALSE)
D;

.
u

nu item. The flags parameter constitutes

IResultData::SetItem.

You probably have gather
Unfortunately, both menu options are available and the user can execute both of
make much sense, especially when we already know whether the service is runn
we can dim the Stop menu item for a service that has already started. Hidden deep in

lled whenemethod called UpdateMenuState that can be overridden. This method is ca
flags aabout to be displayed. It provides an opportunity to change the menu

is why the UpdateMenuState
implements the behavior we want:

void CMMCPrimaryWinServiceItem::UpdateMenuState(UINT id, LPTSTR
NT *flags) UI

 {
 if (id == I
{

 if (V_BOOL(&m_PropertyMap[L"Started"]) == VARIANT_TRUE)
 *flags |= MFS_GRAYED;
 }

 // Service already stopped, grey Stop menu item
 if (V_BOOL(&m_Propert
 *flags |= MFS_GRAYE
 }
}

The id parameter in the preceding code fragment is the menu identifier used in the menu resource
The pBuf parameter is the menu item text that you can change (if you want to). Changing the men
text is useful when you want to toggle the purpose of a me
any of the Win32 MFS_xxxx flags.

Figure 9.17 shows what the snap-in looks like so far. Notice the dimmed menu item.

7. Snap-in item with custom menu Figure 9.1

Adding Your Own Toolbars
Creating toolbars with ATL is similar to creating menus. Just add a macro into the toolbar ma
the item's class. The macro identifies a toolbar resource that contains the button bitmaps and IDs.
The toolbar resource in Visual Studio looks similar to

p in

Figure 9.18.

Figure 9.18. Snap-in toolbar resource

Now that we are adding a toolbar for result pane items, it is necessary for the snap-in's result pane
olbar interface. The IExtendControlbar interface gives the
r items and later to respond to them. The mechanism used to

ontext menu items. If toolbars are used for
es on the scope pane object.

 CComObjectRootEx<CComSingleThreadModel>,
 CSnapInObjectRoot<2, CMMCPrimary >,

ntImpl<CMMCPrimaryComponent>
{
 BEGIN_COM_MAP(CMMCPri
 COM_INTERFACE_ENTRY
 COM_INTERFACE_ENTRY(IExtendContextMenu)
 COM_INTERFACE_ENTRY(IExtendControlbar)
 END_COM_MAP()

 .
};

bars to an item. All toolbars are specified
ID_MAP macros. Our snap-in has just one toolbar and is added to the

map using the SNAPINTOOLBARID_ENTRY macro. Behind the scenes, adding the toolbar is done when

COMMAND_ENTRY(ID_TASK_STOP, OnTaskStopService)
 END_SNAPINCOMMAND_MAP()

 B I

 E

 B

object to support the IExtendContr
ap-in an opportunity to add toolbasn

respond to toolbar actions is the same as that used by C
any scope pane items, then you must also extend the supported interfac
The bold font shows the new additions:

class CMMCPrimaryComponent:
 public
 public
 public IExtendContextMenuImpl<CMMCPrimaryComponent>,
 public IExtendControlbarImpl<CMMCPrimaryComponent>,
 public ICompone

maryComponent)
(IComponent)

Unlike Context menus, a snap-in can add several tool
through the SNAPINTOOLBAR

IExtendControlbarImpl::SetControlbar is called. Handling notifications from the toolbar is
processed through IExtendControlbarImpl::ControlbarNotify. When a user clicks a button,
ATL's ControlbarNotify method delegates the notifications to the same handlers used by the
Context menus. Here are the new additions to the item:

class CMMCPrimaryWinServiceItem:
 public CSnapInItemImpl<CMMCPrimaryWinServiceItem>
{
public:

 .
 // These were already defined in previous section
 BEGIN_SNAPINCOMMAND_MAP(CMMCPrimaryWinServiceItem, FALSE)
 SNAPINCOMMAND_ENTRY(ID_TASK_START, OnTaskStartService)
 SNAPIN

EG N_SNAPINTOOLBARID_MAP(CMMCPrimaryWinServiceItem)
_WINSERVICE_TO SNAPINTOOLBARID_ENTRY(IDR OLBAR)

ND_SNAPINTOOLBARID_MAP()

OOL UpdateToolbarButton(UINT id, BYTE

 fsState);

 ..
};

Un u id
with th an
execute olled by overriding
Update er a toolbar button is about to be displayed
and off turn
false to

BOOL C
{
 if (
 {
 // Service already started, grey Start toolbar button

fort nately, we have the same problem with enabling and disabling the toolbar buttons as we d
e menu items. Both the start and the stop toolbar buttons are available, and the user c
 both of them. Like UpdateMenuState, toolbars can be contr
ToolbarButton. This method is called whenev
ers an opportunity to set the button state. The UpdateToolbarButton method must re
 disable the toolbar button. The following code implements the behavior we want:

MMCPrimaryWinServiceItem::UpdateToolbarButton(UINT id, BYTE fsState)

id == ID_TASK_START)

 if (V_BOOL(&m_PropertyMap[L"Started"]) == VARIANT_TRUE)
 return FALSE;
 }
 else if (id == ID_TASK_STOP)
 {
 // Service already stopped, grey Stop toolbar button
 if (V_BOOL(&m_PropertyMap[L"Started"]) == VARIANT_FALSE)
 return FALSE;
 }

 if (fsState == ENABLED)
 return TRUE;
 return FALSE;
}

Figure 9.19 shows what the snap-in looks like so far. Notice the dimmed toolbar button.

ure 9.19. Snap-in item with toolbar Fig

Adding Your Own Property Pages
Property pages typically are used to display and manipulate properties of an item. For instance,
item representing a shared directory may have properties that specify how many users can access
the share. This information could

an

 be displayed and changed on the item's property page.

There are two mechanisms for adding your own property pages: (1) Enable the item's properties
d separately without using the

upplying your own
plement, and second,
operty pages to an

hen the user activates the properties verb, the console asks your item to add its pages by
lling IExtendPropertySheet::CreatePropertyPages.

fication is sent to the item. The

u rty sheets in the result pane requires the result pane object to support the
 interface. If you use property sheets for any scope pane items, then you

,
 public IExtendContextMenuImpl<CMMCPrimaryComponent>,

rimaryComponent)
ent)
ontextMenu)
Controlbar)

result in the
dy seen how to enable

ties verb the default action. Double-clicking an item
ollowing code fragment enables the properties verb:

e default
S, ENABLED, TRUE);

verb, and (2) provide a customized property sheet that is launche
 on the former. properties verb. This section will focus

The following is a typical property sheet lifecycle:

1. Enable the items properties verb. This is the most common approach to s
property sheets within an MMC snap-in. First, it's relatively easy to im
it provides a standard means for extension snap-ins to add their own pr
item.

2. W
ca

3. When properties on a page change, a property-changed noti
item performs the appropriate response to commit the change.

S
IExtendPropertySheet

pporting prope

must also extend the supported interfaces on the scope pane object. The bold font shows the
additions:

class CMMCPrimaryComponent:
 public CComObjectRootEx<CComSingleThreadModel>,
 public CSnapInObjectRoot<2, CMMCPrimary >

 public IExtendControlbarImpl<CMMCPrimaryComponent>,
t>, public IExtendPropertySheetImpl<CMMCPrimaryComponen

ublic IComponentImpl<CMMCPrimaryComponent> p
{
BEGIN_COM_MAP(CMMCP

 COM_INTERFACE_ENTRY(ICompon
 COM_INTERFACE_ENTRY(IExtendC

d COM_INTERFACE_ENTRY(IExten
 COM_INTERFACE_ENTRY(IExtendPropertySheet)
END_COM_MAP()

 .
};

The next step is to enable the properties verb. When the user triggers the verb, it will
console calling QueryPagesFor and CreatePropertyPages. You've alrea
verbs; but in this case, we shall make the proper

fautomatically triggers the properties verb. The

case MMCN_SELECT:
{
 if (arg) // Item selected
 {
 CComPtr<IConsoleVerb> spVerb;
 hr = spConsole->QueryConsoleVerb(&spVerb);

 // Enable the properties verb and make it th
 hr = spVerb->SetVerbState(MMC_VERB_PROPERTIE
 hr = spVerb->SetDefaultVerb(MMC_VERB_PROPERTIES);
 }
}

Enabling the properties verb causes the verb to appear on the Item's Context menu and toolbar. The
t to indicate that this is the default Context menu will highlight the properties verb in bold fon

action. Figure 9.20 shows what a Windows service item's Context menu looks like.

 with properties verb enabled Figure 9.20. Snap-in item

Before a snap-in item can add any pages (a potentially heavyweight process), the console first
cifies the

S_FALSE .

opertyPages the item
e property sheet and the

 by adding them using the
gh the lpProvider
entation of a property page

 class as the basis for your

ions to add property pages.

 CMMCPrimaryWinServiceItem:
rviceItem>

r
t pane items
not support property pages for

 // other contexts

opertyPages)(LPPROPERTYSHEETCALLBACK lpProvider,
nown* pUnk, DATA_OBJECT_TYPES type);

 {
 // We only support the result pane for this item

queries if there are any pages to add through QueryPagesFor. The type parameter spe
context that the console is using to display the property pages. Currently, there are four recognized
contexts: CCT_SCOPE, CCT_RESULT, CCT_SNAPIN_ MANAGER, and CCT_UNINITIALIZED. The
CCT_SCOPE and CCT_RESULT contexts query for property pages for either the scope or the result
panes, respectively. The CCT_SNAPIN_ MANAGER context queries for wizard pages to display during
snap-in initialization. The CCT_SNAPIN_MANAGER and CCT_UNINITIALIZED contexts currently are
not used by verbs. QueryPagesFor should respond with S_OK if pages need to be added and

 if there are no pages for the supplied context

The next task is to implement the item's CreatePr
s its property pages for the supplied context. The console provides th

 method. This is where
add
snap-in provides the property pages
IPropertySheetCallback::AddPage method (interface supplied throu

ides a sample implemparameter). The Visual Studio snap-in wizard prov
ses the ATL class. You can use thisthat u CSnapInPropertyPageImpl

own pages.

Here is the Windows service item class with the new addit

class
 public CSnapInItemImpl<CMMCPrimaryWinSe
{

 ..

 STDMETHOD(QueryPagesFor)(DATA_OBJECT_TYPES type)
 {
 if (type == CCT_RESULT)
 return S_OK; // Yes. We support property pages fo
 // resul
 return S_FALSE; // We do

 }

 STDMETHOD(CreatePr
 long handle, IUnk

 if (type == CCT_RESULT)
 {
 // Create the property page. It will get destroyed
 // later . . . The second parameter to the property page
 // class constructor should be true for only one page as
 // it destroys the notification handle.
 CMMCWinServiceG Pag
 new CMMCWinServiceGeneralPage(handle, true, _T("General"));

eneral e* pPage =

age(pPage->Create());

orth examining. When any of the
. This will fire an

OPERTY_CHANGE notification that will find its way back to the item. The item should
o this notification, perhaps persisting any changes made in the

s the notification handle through handle, which
inished with the handle it should

ll to MMCFreeNotifyHandle. Note
 pUnk parameter provides access
 of the snap-in (depending on

 to be useful in your own snap-
added to the

1

 // Provide access to the item so we can use the property map

 pPage->SetItem(this);

 // Add the property page's HPROPSHEETPAGE handle
 lpProvider->AddP

 // TODO: Continue to add additional pages here . . .

 return S_OK;
 }
 return E_UNEXPECTED;
 }
};

CreatePropertyPages has a few other parameters that are w
property pages have changed, you should call MMCPropertyChangeNotify
MMCN_PR
formulate an appropriate response t
property sheet. CreatePropertyPages passe
MMCPropertyChangeNotify uses. When the property pages have f
be freed (typically by only one of the property pages) with a ca
that the notification handle is valid only for primary snap-ins. The

ionto either the IComponent or the IComponentData implementat
here is called). This may or may not provew CreatePropertyPages

ins. The parameter is the supplied context of the type of pages that should be type
9.2property sheet or wizard. Figure is the property sheet for a Windows service item.

em's property sheet Figure 9.21. Snap-in it

Although you can use the ATL CSnapInPropertyPageImpl class to implement your property
ass there is no problem in using it as long as it can return a

ollowing code is the property page class declaration that was used in the code fragment earlier.
 by the Visual Studio

ve highlighted points of interest in bold font.

ndle,
R* pTitle = NULL):

alPage>(pTitle),
e(bDeleteHandle) {}

eneralPage();
m {IDD = IDD_WINSERVICEGENERAL_PAGE};

 og)
 COMMAND_CODE_HANDLER(BN_CLICKED, OnUpdate)

pages, if you have your own cl
HPROPSHEETPAGE handle.

The f
This property page class is based on the sample implementation provided
snap-in wizard. We ha

class CMMCWinServiceGeneralPage:
 public CSnapInPropertyPageImpl<CMMCWinServiceGeneralPage>
 {
public:

otifyHa CMMCWinServiceGeneralPage(long lN
 bool bDeleteHandle = false, TCHA
 CSnapInPropertyPageImpl<CMMCWinServiceGener
 m_lNotifyHandle(lNotifyHandle), m_bDeleteHandl

MMCWinServiceG ~C
 enu

 BEGIN_MSG_MAP(CMMCWinServiceGeneralPage)

 MESSAGE_HANDLER(WM_INITDIALOG, OnInitDial

 CHAIN_MSG_MAP(CSnapInPropertyPageImpl<CMMCWinServiceGeneralPage>)
 END_MSG_MAP()

public:
 HRESULT PropertyChangeNotify();

 void SetItem(CMMCPrimaryWinServiceItem* pItem);

 BOOL OnApply();

protected:
 LRESULT OnInitDialog(UINT uMsg, WPARAM wParam, LPARAM lParam,

 // Should this page delete the notification

MMCPrimaryWinServiceItem* m_pItem; // The item being manipulated

m method allows the item to associate itself with the property page and should be called
o the console's property sheet. This enables the

unication primarily involves
ent object's property values.

's object address for

}

The following code is a typical OnInitDialog message handler. It sets up all the controls on the
page and populates them with values from the item ap. In the following code fragment,
we set up three user interface controls:

LRESULT OnInitDialog(UINT uMsg, WPARAM wParam, LPARAM lParam, BOOL&

 USES_CONVERSION; // using ATLs conversion macros

 wndName.SetWindowTextW(V_BSTR(&rProp[L"DisplayName"]));

 // Set-up the Start Mode combo box
INSERVICE_STARTMODE));

tomatic")));
nual")));

.SendMessage(CB_ADDSTRING, 0, LPARAM(_T("Disabled")));

service's Start Mode in the combo box
dMessage(CB_SELECTSTRING, 0,

[L"StartMode"]))));

 BOOL& bHandled);

 LRESULT OnUpdate(WORD wNotifyCode, WORD wID, HWND hWndCtl,
 BOOL& bHandled);

protected:
 long m_lNotifyHandle; // The change notification handle
 bool m_bDeleteHandle;
 // handle?

 C
};

The SetIte
by the item before the property page is added t
property page to communicate and manipulate the item. The comm

 is a copy of the managemaccessing the item's property map, which
Here is the implementation of the SetItem method that simply stores the item

er use. lat

 void SetItem(CMMCPrimaryWinServiceItem* pItem)
{
 m_pItem = pItem;

's property m

 bHandled)
{

 TWMIPropertyMap& rProp = m_pItem->GetPropertyMap();

 // Display service display name
 CWindow wndName(GetDlgItem(IDC_WINSERVICE_NAME));

 // Display service executable path
 CWindow wndExePath(GetDlgItem(IDC_WINSERVICE_PATH));
 wndExePath.SetWindowTextW(V_BSTR(&rProp[L"PathName"]));

 CWindow wndMode(GetDlgItem(IDC_W
 wndMode.SendMessage(CB_ADDSTRING, 0, LPARAM(_T("Au
wndMode.SendMessage(CB_ADDSTRING, 0, LPARAM(_T("Ma

 wndMode

 the // Display
Mode.Sen wnd

 LPARAM(OLE2T(V_BSTR(&rProp

 return TRUE;

ng SetModified) whenever a user changes
rties on the property page. The start mode combo box is the only editable control on the

anipulate an item's
and moves it to the

ve operations are encapsulated in the item. With this
s property map and

TMODE));
;

TCHAR szMode[20];
wndMode.SendMessage(CB_GETLBTEXT, nIndex, LPARAM(szMode));

A key s ve code is the call to PropertyChangeNotify. This generates an
MMCN_PROPERTY_CHANGE notification, where the item will know that it has been changed and that it
should perform the

The Visual Studio snap-in wizard–generated code provides no support for property-changed
notifications, and it is left to the developer to implement them. We shall cover this shortly, but for
now note that the item's object address is passed in the LPARAM parameter of the
MMCPropertyChangeNotify call. This will be used later to route the notification to the correct item.

HRESULT PropertyChangeNotify()
{
 return MMCPropertyChangeNotify(m_lNotifyHandle, long(m_pItem));
}

When all the pages have finished with the notification handle, only one page should free the handle.
This is what the wizard-generated code looks like:

~CMMCWinServiceGeneralPage()
{
 if (m_bDeleteHandle)
 MMCFreeNotifyHandle(m_lNotifyHandle);
}

}

The O
rope

nUpdate method enables the apply button (by calli
p
property page.

Developing snap-in property pages is usually more lightweight as they merely m
roperty map. This reduces the functionality contained within the property page p

item class. The result is that all the load and sa
strategy in mind, the implementation of OnApply sets new values in the item'
fires a property-changed notification, as in the following code:

BOOL OnApply()
 {
 // Get selected start mode text
 CWindow wndMode(GetDlgItem(IDC_WINSERVICE_STAR

wndMode.SendMessage(CB_GETCURSEL) int nIndex =

 // Change the item's property
 TWMIPropertyMap& rProp = m_pItem->GetPropertyMap();

 rProp[L"StartMode"] = szMode;

 // Send notification to item
 PropertyChangeNotify();

 return TRUE;
}

tatement in the abo

 necessary operations to save the changes.

The main issue with the MMCN_PROPERTY_CHANGE notification is that when IComponent::Notif
called, the

y is
arameter

here the LPARAM parameter of the MMCPropertyChangeNotify
call comes in. First, let's see what the wizard-generated code looks like for IComponent::Notify:

bject, MMC_NOTIFY_TYPE event,

omponent>::Notify(lpDataObject,

ect == NULL.

 can be used now

 {
 // Get item pointer from MMCPropertyChangeNotify
 CSnapInItem* pItem = reinterpret_cast<CSnapInItem*>(param);

 CComPtr<IDataObject> spDataObject;

the service's start option that was selected in the item's
property page. This is what the handled notification looks like:

lpDataObject reference is null. As will be discussed later in the chapter, this p
provides important information that ATL uses to route notifications to the appropriate item. As this
is null for property-changed notifications, we have to find another way to identify the object that is
sending the notification. This is w

STDMETHOD(Notify)(LPDATAOBJECT lpDataO
 long arg, long param)
 {
 if (lpDataObject != NULL)

<CMMCPrimaryC return IComponentImpl
 event, arg, param);

 // TODO: Add code to handle notifications that set lpDataObj
return E_NOTIMPL;

}

To implement our new policy, we must obtain the LPARAM parameter passed into the
MMCPropertyChangeNotify call. The LPARAM value eventually makes its way through to the param
parameter of the MMCN_PROPERTY_CHANGE notification. Because the param value is an item's object
address, we can simply cast it to a CSnapInItem pointer. A call to the item's GetDataObject
method will obtain an IDataObject representation of the item. The IDataObject
to route the notification as normal back to the item. The following code fragment demonstrates:

STDMETHOD(Notify)(LPDATAOBJECT lpDataObject, MMC_NOTIFY_TYPE event,
 long arg, long param)
{
 if (lpDataObject != NULL)
 {
 return IComponentImpl<CMMCPrimaryComponent>::Notify(lpDataObject,
 event, arg, param);
 }
 else if (event == MMCN_PROPERTY_CHANGE)

 // Get item's IDataObject

 pItem->GetDataObject(&spDataObject, CCT_RESULT);

 // Deliver the notification to the correct item
 return IComponentImpl<CMMCPrimaryComponent>::Notify(
 spDataObject, event, arg, param);
 }

 return E_NOTIMPL;
}

The above implementation is only for the result pane object. If you plan to support property pages
for scope pane items, then similar code is required for the scope pane object.

To handle the MMCN_PROPERTY_CHANGE notification, we have created a helper function called
SetServiceStartMode that calls the ChangeStartMode method on the Win32_Service class. We
call SetServiceStartMode to reflect

case MMCN_PROPERTY_CHANGE:
{
 SetServiceStartMode();
}
break;

Refocusing an Item's Property Sheet
On c ry to refocus a property sheet programmatically.
Pro rt closed by the snap-in. This must be done by the user.
All property sheets run in their own thread and can be hidden from view easily by focusing another
window. Be s property sheet, it needs to compare the open

d
-

dy open property sheet. Unfortunately, a wizard-
generated snap-in has no s, both the
IComponent and IComponentData method.

The following code fragment takes a very simple approach. It compares the item's object address to

 CSnapInItem::GetDataClass(lpDataObjectB, &pItemB, &typeB);

 // Is this the sa
 if (pItemA == pItemB)
 return S_OK;
 else
 return S_FALSE;
}

By implementing the CompareObjects method, the desired functionality outlined earlier will now
work. That is, if an item's property sheet becomes hidden and a user triggers the properties verb, the
already open property sheet will be refocused as the topmost window.

 new

nt implementation.

bool CMMCPrimaryWinServiceItem::RefocusPropertySheet()
{
 HRESULT hr = S_FALSE;

 oc asion, you will find that it is necessa
pe y sheets cannot be programmatically

fore a snap-in can refocus an item'
property sheet with the associated item. The same applies when the properties verb is triggered an
the property sheet is displayed. If the property sheet becomes hidden, the user should be able to re
trigger the properties verb to display the alrea

 implementation for comparing items. To resolve thi
 interfaces should implement the CompareObjects

determine if the compare succeeds or fails. It extracts the item's object pointer from the
IDataObject using the CSnapInItem::GetDataClass method. If the two pointer values are the
same, then we are looking at the same item.

STDMETHOD(CompareObjects)(LPDATAOBJECT lpDataObjectA,
 LPDATAOBJECT lpDataObjectB)
{
 CSnapInItem* pItemA = 0;
 DATA_OBJECT_TYPES typeA;
 CSnapInItem::GetDataClass(lpDataObjectA, &pItemA, &typeA);

 CSnapInItem* pItemB = 0;
 DATA_OBJECT_TYPES typeB;

me item?

To refocus a property sheet programmatically requires the use of the console-provided
IPropertySheetProvider interface. Let's look at how you can use this interface. The
m_spCachedConsole and m_pCachedComponent members you see below were cached during a
revision of the Notify method. The m_spCachedConsole is the snap-in's IConsole interface and
the m_pCachedComponent is a pointer to our own ICompone

 // Get the property sheet provider from the console
 CComQIPtr<IPropertySheetProvider> spPropSheet = m_spCachedConsole;

 // Get an IDataObject of ourselves

eed the HRESULTITEM
 RESULTDATAITEM* prdi = 0;
 h =

 // If the property sheet is found, it is displayed

 return true; // Property sheet refocused

The crucial call in this code is FindPropertySheet. The first parameter is the property sheet's
 ID. The second parameter is

e snap-in. The third parameter is
tem's

Object call creates an IDataObject, which represents the item being refocused. The
es access to the item's itemID handle (the cookie value). Make the
you are planning to refocus a scope pane item. This includes calling

ible options for adding help in your snap-in.
rred strategy is that you integrate with this.

res that you create an HTML Help file in which all the topics, including your
bs. The alternative is to use WinHelp or

more unpopular as vendors increasingly use

ML Help file. Most commercial product development projects
 that provides the compiled HTML Help files (.chm).

 Extend your snap-in scope pane object (IComponentData) to support the ISnapinHelp2
interface. When the ISnapinHelp2 interface is called, your help file will be added to the

 must

ng

 CComPtr<IDataObject> spData;
 hr = GetDataObject(&spData, CCT_RESULT);

 // We get this because we n

r GetResultData(&prdi);

 hr = spPropSheet->FindPropertySheet(long(prdi->itemID),
 LPCOMPONENT(m_pCachedComponent), spData);

 if (hr == S_OK)

 else
 return false; // No property sheet
}

cookie value. For the properties verb, this is the HRESULTITEM item
 of theither the IComponent or IComponentData implementations

the IDataObject of the item being refocused. FindPropertySheet returns S_OK if the i
property page was found and displayed and if it was nS_FALSE ot.

The GetData
GetResultData call provid
appropriate code changes if
GetScopeData and using a HSCOPEITEM handle.

Adding Your Own Help
The Microsoft Management Console provides two poss

 HTML Help system, and the prefeMMC itself uses the
his obviously requiT

own, can be accessed via the MMC help index and search ta
your own proprietary help system. This is becoming
the HTML Help system.

Follow these steps to integrate help in your snap-in:

1. Ensure that you have an HT
have a documentation team

2.

MMC help file collection. If your help file links to other HTML Help files, then you
also specify these so they, too, can be added to the MMC help file collection.

3. Handle the MMCN_CONTEXTHELP notification and call IDisplayHelp::ShowTopic specifyi
the help topic URL. The console provides the IDisplayHelp interface.

The ISnapinHelp2 interface allows the snap-in to add its help files to the MMC help file collectio
by implementing the

n
dTopics methods. GetHelpTopic returns the

file path of the snap-in's HTML Help file. The file path is a Unicode string created with

The new additions are highlighted in

i
mary, CMMCPrimaryComponent>,

 STDM
 {
 CComBSTR bstrHelpFile("SomeHelpFile.chm");

strHelpFile.Length() +1) * sizeof(OLECHAR))));

File, bstrHelpFile);

K;

 linked help files

MAP(CMMCPrimary)

t help for a particular item, they display it by selecting the Help menu option on the
enu. The console responds by sending a help notification to the item, but only if

supports the ISnapinHelp2 interface.

When the snap-in supports the ISnapinHelp2 interface, all item context menus include a Help
g

IDisplayHelp::ShowTopic method requires an HTML Help file URL that references the desired
topic. The format of the URL is:

GetHelpTopic and GetLinke

CoTaskMemAlloc. GetLinkedTopics returns a string of all the linked HTML Help files (which are
separated by semicolons). The ISnapinHelp2 interface is queried for early during the snap-in
initialization.

This is what our snap-in (scope pane object) looks like now.
bold font:

class CMMCPrimary:
 public CComObjectRootEx<CComSingleThreadModel>,

mary>, ublic CSnapInObjectRoot<1, CMMCPr
 public IComponentDataImpl<CMMCPri
 public ISnapinHelp2,
 public CComCoClass<CMMCPrimary, &CLSID_MMCPrimary>
{
public:

 ..

ETHOD(GetHelpTopic)(LPOLESTR* lpCompiledHelpFile)

 *lpCompiledHelpFile = static_cast<LPOLESTR>(CoTaskMemAlloc(

 ((b

 ocscpy(*lpCompiledHelp

rn S_O retu
 }

 STDMETHOD(GetLinkedTopics)(LPOLESTR* lpCompiledHelpFiles)
 {
 return E_NOTIMPL; // No
 }

 BEGIN_COM_
 COM_INTERFACE_ENTRY(IComponentData)

2) COM_INTERFACE_ENTRY(ISnapinHelp
_COM_MAP() END

 ..
 };

When users wan
ext mitem's Cont

-in the snap

menu option and the console's standard Help Topics menu item on the Help menu. A user triggerin
a Help menu option results in an MMCN_CONTEXTHELP notification being sent to the item. The next
step is to handle this notification and instruct the console to display the help topic. The

helpfilename::topicfilename

The code fragment that follows it uses the following URL:

SomeHelpFile.chm::/Topic_one.htm

You should do something similar to the following code to handle the MMCN_CONTEXTHELP

{
 CComQIPtr<IDispl

 // Display help
 hr = spHelp->ShowTopic(L"SomeHelpFile.chm::/Topic_one.htm");
}
break;

This moves your help strategy toward providing help for every item ype.

 you do not have an HTML Help file for your snap-in, then you should not support the
ISnapinHelp2 interface. In this scenario, the console will display the Help on <snap-in name>

HELP
tion to display

help. This is useful if you use another help system. If you plan to
support page-level help in your property pages, then you must not use the IDisplayHelp interface,

d

ted and
-

ins make two types of registrations: (1) Because snap-ins are COM components, they must make

The Vi ry script that incorporates both types of
registra components and so we shall not cover
this exp

The MMC specific registrations are stored in the HKEY_LOCAL_MACHINE portion of the registry

notification:

case MMCN_CONTEXTHELP:

ayHelp> spHelp(spConsole);

 t

If

menu option and when the option is activated, the console will send a MMCN_SNAPIN
notification to the result pane object (IComponent). You should handle this notifica
your own non-HTML Help–based

but rather the MMCPropertyHelp API call. From what we have observed, most help for dialogs an
property pages has moved toward using the WinHelp API "What's this?" context help.

A display of the help topic in the previous code fragment on a property page would look like this:

MMCPropertyHelp(L"SomeHelpFile.chm::/Topic_one.htm");

Primary (Standalone) Snap-in Registration
Snap-in registration is key to the MMC architecture. As the console is the center point for all
administration tools, some kind of registration is necessary so that all the tools can be loca
displayed through the snap-in selection dialogs. This registration is made in the registry. All snap

the appropriate COM runtime registrations, and (2) snap-ins must let MMC know that they are
available through MMC specific registrations.

sual Studio snap-in wizard generates an ATL regist
tion. All COM registrations are similar for all COM
licitly.

under Software\Microsoft\MMC\Snapins. All snap-ins register their CLSID (class identifier)
under this key. The COM object referenced by the CLSID must support the IComponentData

interface. Our demonstration snap-in is registered under ... \MMC\Snapins{E131584D-6EFD-
4624–9547-B328834BAC31}. Let's look at the ATL registry script and continue examining it detail:

ing = s 'MMC WMI Administration'
BE5E087-CDD5–479D-B64C-FA294EF61390}'

50–9CDF-AE1E93160AF5}
AACA79E}

one

ve {F5852EEE-67E4–4150–9CDF-AE1E93160AF5}

yed in the

snap-in name is stored in the registry, it is
if en your product provides a dynamic means of supporting different
nguages.

HKLM
{
 NoRemove Software
 {
 NoRemove Microsoft
 {
 NoRemove MMC
 {
 NoRemove Snapins
 {
 ForceRemove {E131584D-6EFD-4624–9547-B328834BAC31}=

 s 'MMCPrimary'
 {
 val NameStr
 val About = s '{7
 NodeTypes
 {
 {F5852EEE-67E4–41
 {DF2FB296–321D-4f62–9D6E-12895
 {55BC8974-CEDE-4123–91C1-E2A6CDAF7A7D}
 }
 StandAl
 }
 }
 NoRemove NodeTypes
 {
 ForceRemo
 {
 }
 ForceRemove {DF2FB296–321D-4f62–9D6E-12895AACA79E}
 {
 }
 ForceRemove {55BC8974-CEDE-4123–91C1-E2A6CDAF7A7D}
 {
 }

 }
 }
 }
 }
}

The value under the NameString key is the name of the snap-in. This name gets displa
tandalone Snap-in dialog, through the Add/Remove Snap-ins menu item (page 409) and also Add S

the About property sheet. Unfortunately, because the
ficult to localize, especially whd

la

All standalone snap-ins should add the StandAlone key. If it does not exist, then the snap-in will
not appear in the Add Standalone Snap-in dialog. Extension-only snap-ins should not create the
StandAlone key.

The value under the About key is the CLSID of the about co-class. The console will CoCreate this
to display the snap-in's details and icons.

The ... \MMC\Snapins{E131584D-6EFD-4624–9547-B328834BAC31}\NodeTypes key (in our
blished item GUIDs. All snap-ins that want to allow extension
t publish the GUIDs of those item types. Recall the following

GUID CMMCPrimaryRootItemGUID_NODETYPE =
0x9c, 0xdf, 0xae, 0x1e, 0x93, 0x16,

:m_SZNODETYPE =

deTypes
ID

) is registered. You can also deduce that there are
date the registry script

 snap-in.

ary snap-
ally makes empty entries for the item types it publishes. Extension snap-ins will make

ditional registrations under these keys.

By now, you have seen su nstrate how to manipulate items and
how ite taObject. You have also witnessed that
items can create an IDataObject representation of themselves using GetDataObject. The reverse

ataObject keeps a pointer to the C++
CSnapInItem–based class using a custom data format called CCF_GETOBJECTDATA (defined in
atlsnap . Given any IDataObject, the snap-
in can gain access to the original C++ item.

OBJECTDATA format and then
forwards the call or notification to the correct item. The following code fragment demonstrates how

here the call is forwarded to the item:

, long param)

nItem* pItem = 0; // Will be the original C++ object
CT_TYPES type; // either CCT_SCOPE or CCT_RESULT

 the CCF_GETOBJECTDATA data format

demonstration snap-in) are the pu
snap-ins to extend their items mus

chapter: from earlier in the

static const
 {0xf5852eee, 0x67e4, 0x4150, {
 0xa, 0xf5}};

const GUID* CMMCPrimaryRootItem::m_NODETYPE =
 &CMMCPrimaryRootItemGUID_NODETYPE;

const OLECHAR* CMMCPrimaryRootItem:
 OLESTR("F5852EEE-67E4–4150–9CDF-AE1E93160AF5");

Every item has a GUID associated with it. These GUIDs should appear under the ... \No
ding snap-in registry script, you will see that the root item's GUkey. If you inspect the prece

(F5852EEE-67E4–4150–9CDF-AE1E93160AF5
three item types in the demonstration snap-in. Many developers forget to up
when they add new item types to the

The ... \MMC\NodeTypes key has entries for all the items that can be extended. The prim
in usu
ad

More on How ATL Delegates Tasks to an Item
fficient code fragments that demo

ms communicate with the console through IDa

is also true. You have seen that GetDataClass can obtain the items object pointer from an
IDataObject. This functionality is possible because the ID

.h). This is the key to how ATL snap-in templates work
CSnapInItem

Virtually all the snap-in interface methods have an IDataObject parameter. ATL extracts the
CSnapInItem object from the IDataObject using the CCF_GET

ATL does this. The bold font shows w

STDMETHOD
ng arg

(Notify)(LPDATAOBJECT lpDataObject, MMC_NOTIFY_TYPE event,
 lo
{
 HRESULT hr = E_POINTER;

ect) if (lpDataObj
 {

SnapI C
 DATA_OBJE

 // A helper method that uses

 // and turns it into a CSnapInItem pointer of the item
m_pComponentData->GetDataClass(lpDataObject,
em, &type);

eive it
if (SUCCEEDED(hr))

 hr = pItem->Notify(event, arg, param, this, NULL, type);

eturn hr;

at is not supported

 you must
ing experience and when

onstrate this, we
ated a new scope pane node that can be renamed.

e verb. The following code fragment should be familiar to you:

MMCN_SELECT:

 // Item selected

 CComPtr<IConsoleVerb> spVerb;
 hr = spConsole->QueryConsoleVerb(&spVerb);

y selecting another item or by
pressing carriage return. When this happens, an MMCN_RENAME notification is sent to the item with

ct
sed value. Returning S_FALSE indicates that the item rejected the change and S_OK

indicates that the item accepted the change. As part of the name change, maintain the item's
rally

SetItem to perform any
e or (in
Let's

ndler:

:

 // Update with new name
 m_bstrDisplayName = reinterpret_cast<LPOLESTR>(param);

 hr =
 &pIt

n to the item that must rec // Delegate notificatio

 }

 r
}

Knowing this detail is useful when you want to implement an M
y ATL.

MC interface th
b

Renaming Items
If your snap-in needs to be able to rename items either in the scope or result panes, then
enable the rename verb. The rename verb provides an in-place edit
completed results in an MMCN_RENAME notification being sent to the item. To dem
have cre

The first task is to enable the renam

case
{
 if (arg)
 {

 // Enable the rename verb
 hr = spVerb->SetVerbState(MMC_VERB_RENAME, ENABLED, TRUE);
 }
}

The rename verb will now appear on the item's Context menu and, when triggered, the item turns
into an in-place edit control. The user commits the new name either b

the new name contained within the param parameter. It is up to the item whether to accept or reje
the new propo

integrity by updating the internal variables such as m_bstrDisplayName. Call SetItem to lite
update the user interface with your new changes. In fact, you can use
update to the user interface. You can use this technique if you need to change the icon imag

lay name. This also includes populating columns with new values. this case) update the disp
ok at the notification halo

case MMCN_RENAME
{

 //
 SCOPEDATAITEM* psdi = 0;
 hr = GetScopeData(&psdi);

 // Update the user interface for the item
 CComQIPtr<IConsoleNameSpace2> spNamespace(spConsole);

 otherwise return S_OK.

 We need the scope item structure so SetItem can be called

 hr = spNamespace->SetItem(psdi);

 // Set hr to S_FALSE to disallow the rename,
}
break;

The screen shot in Figure 9.22 shows how our snap-in is looking so far. You can see the new item
that is being edited.

Figure 9.22. Renaming snap-in item

Drag and Drop
and-drop functionality is prevalent in applications today because it provides an easier-to-use

lications are no exception. Occasionally you will want to make it easy
and drop them elsewhere in your management environment. Users already
d to this concept. A user can grab a folder in Windows Explorer and either

ation. Implementing drag-and-drop functionality is not always

otifications.

dropped elsewhere
upport is

t has an affinity with the MMC process. This means that items cannot be dropped
an be dropped only within the same console. Items can be
 and scope pane boundaries. Let's examine the steps required to

_VERB_COPY. This displays a toolbar button and Copy is
nabling this verb says, "I can be copied."

MMC_VERB_PASTE. This displays a toolbar button and Paste is
y other items."

PASTE notifications.

STE notification queries the destination item whether the source item can be
t item responds with S_OK, it effectively means, "Yes. I can perform the paste

e source item." The console will then issue the MMCN_PASTE notification to complete
ation. Let's examine the steps required to copy and/or move items:

Drag-
experience. Management app
for users to grab objects

me accustomehave beco
copy it or move it to another loc
perceived as an easy thing to do. Microsoft has made drag and drop in MMC snap-ins very

erbs and respond to nstraightforward to support. All you need to do is enable v

There are two types of drag-and-drop operations: (1) Items can be copied and
only, and (2) items can be copied or moved to another location. The drag-and-drop s
limited in that i
into another MMC console; they c

dropped across resultdragged and
copy items:

1. The source item must enable MMC
placed on the item's Context menu. E

 must enable 2. The target item
placed on the item's Context menu. Enabling this verb says, "I can cop

3. The target item must handle MMCN_QUERY_PASTE and MMCN_

The MMCN_QUERY_PA
pasted. If the targe
operation for

per
 th

the drop o

1. The source item must enable MMC_VERB_COPY and MMC_VERB_CUT. This displays both the
Copy and Cut toolbar buttons and adds them to the item's Context menu. Enabling
MMC_VERB_CUT says, "I can be removed from this location."

2. The target item must enable MMC_VERB_PASTE.
3. The target item must handle MMCN_QUERY_PASTE and MMCN_PASTE. The MMCN_PASTE

arameter.

et's consider which drag-and-drop operations we want to support in the demonstration snap-in.
Now we have two scope pane items: The first item lists the Windows services on the local machine,

would be handy to drag a
roup item list (see the small

notification must also return an IDataObject of the source item to be removed. Depending
on the operation (copy or move), the source data object may or may not get used.

4. If a move drag-and-drop operation is being performed, you should remove the source item
when the snap-in receives an MMCN_CUTORMOVE notification. The source item's IDataObject
is contained within the notification's arg p

L

and the second could list a small subset of services to monitor. It
Windows service from the Services list and drop it into the new G
screen shot in Figure 9.22). For example, if users wanted to monitor only the Fax and Telephony
services, they could drag and drop them into the Group list. The Group scope item would display
only the Fax and Telephony service items.

Let's focus on copying items. Enable the MMC_VERB_COPY verb on the source item and then enable
the MMC_VERB_PASTE verb on the target item. (Previous code samples demonstrate how to enable
verbs. See "Setting Up and Handling Verbs," p. 436.) Enabling these verbs will cause the console to
send MMCN_QUERY_PASTE and MMCN_PASTE notifications to the target item. The following code
fragment uses helper functions to handle the notifications:

case MMCN_QUERY_PASTE:
{
 hr = QueryPaste(reinterpret_cast<LPDATAOBJECT>(arg));
}
break;

case MMCN_PASTE:

ion (RTTI) to determine the class type of a pointer, and if the item is

ste(LPDATAOBJECT lpDataObject)

tem::GetDataClass(lpDataObject, &pItemQuery, &objtype);

{
 hr = PasteObject(reinterpret_cast<LPDATAOBJECT>(arg),
 reinterpret_cast<LPDATAOBJECT*>(param), spConsole);
}
break;

For the query paste notification, we decided that we could paste any Windows service item. This
means that we can drop any Windows service into the Group item. The following implementation
uses Run-Time Type Informat
a CMMCPrimaryWinServiceItem class, it allows the paste operation to go ahead. In a commercial
snap-in, it is likely that you would perform more comprehensive checks to ensure that the item
could be pasted. For instance, we could have checked the Current Item list, and if the item already
had been added, deny the paste.

HRESULT CMMCPrimaryGroupItem::QueryPa
{
 HRESULT hr = S_OK;

 // Get snap-in item pointer from the IDataObject
 CSnapInItem* pItemQuery = 0;
 DATA_OBJECT_TYPES objtype;
 hr = CSnapInI

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch09fig31
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch09fig31

 // Use RTTI to determine if we can paste objects of this type
 CComBSTR bstrClassName = typeid(*pItemQuery).name();
 if (bstrClassName == _T("class CMMCPrimaryWinServiceItem"))
 {
 hr = S_OK; // Yes. We can paste objects of this type
 }
 else
 {
 hr = S_FALSE; // Not a supported object to paste
 }

 return hr;
}

If the query was successful, the console issues a
ethod. It assumes that the paste

n MMCN_PASTE notification that is handled by the
is acceptable, obtains the WMI object's relative

th to our internal list
old font is used for move

move operations shortly.

AOBJECT lpDataObject,
ole)

m pointer
ry = 0;
ype;

GetDataClass(lpDataObject, &pItemQuery, &objtype);

 // Query paste should have already identified that this object of

 hr = WMIConnect(&spServices);

TR(&rProp[L"__RELPATH"]),
E, NULL, &spInstance, NULL);

ceItem* pCopyItem =

m);

 // Add the item to
 if (SUCCEEDED(hr))

following helper m
pa , and uses this information to create a brand-new item. We add the new item

 to add it to the result pane. The code highlighted in band then attempt
operations. We will discuss

HRESULT CMMCPrimaryGroupItem::PasteObject(LPDAT
 LPDATAOBJECT* lpNewDataObject, IConsole* pCons
{
 HRESULT hr = S_OK;

 // Get snap-in ite
 CSnapInItem* pItemQue
 DATA_OBJECT_TYPES objt
 CSnapInItem::

 // type CMMCPrimaryWinServiceItem* is okay.
 CMMCPrimaryWinServiceItem* pServiceItem =
 reinterpret_cast<CMMCPrimaryWinServiceItem*>(pItemQuery);

 // We need the items property map so we can extract the __RELPATH
 TWMIPropertyMap& rProp = pServiceItem->GetPropertyMap();

 // Connect to WMI to get the object
 CComPtr<IWbemServices> spServices;

 // Getting object from WMI
 CComPtr<IWbemClassObject> spInstance;
 hr = spServices->GetObject(V_BS
 WBEM_FLAG_RETURN_WBEM_COMPLET

 // Create new item to add to the result pane
 CMMCPrimaryWinServi
 new CMMCPrimaryWinServiceItem(spInstance);

 // We want to store this as we need to display the items in the
 // result pane (during MMCN_SELECT)
 m_listChildItems.push_back(pCopyItem);

 // Get the result pane info for the new item
 LPRESULTDATAITEM pResultItem = NULL;
 hr = pCopyItem->GetResultData(&pResultIte

the result pane

 {
 CComQIPtr<IResultData> spResult(pConsole);
 hr = spResult->InsertItem(pResultItem);
 }

 // This paste may be as a result of a cut or move operation. In which
 // case we need to return the item to be deleted.
 *lpNewDataObject = lpDataObject;

 return hr;
}

Let's now focus on moving items from one place to another. Apart from enabling the
MMC_VERB_COPY verb, the source item must also enable MMC_VERB_CUT. If the user decides to move
the item from one location to another, the MMCN_CUTORMOVE notification is sent to the snap-in's
IComponent or IComponentData interface. The purpose of this notification is to remove the source
item provided in the arg parameter. This ordinarily involves removing the item from the user
interface and then physically freeing the memory resources that maintain the item's state. Let's look
at how the MMCN_ CUTORMOVE notification is handled:

STDMETHOD(Notify)(LPDATAOBJECT lpDataObject, MMC_NOTIFY_TYPE event,
 long arg, long param)
{
 if (lpDataObject != NULL)
 {
 return IComponentImpl<CMMCPrimaryComponent>::Notify(
 lpDataObject, event, arg, param);
 }
 else if (event == MMCN_PROPERTY_CHANGE)
 {

nt == MMCN_CUTORMOVE)

The first task in this code sample is to determine the item's class. We decided that we can move

y and the only task left is to remove
the source item referenced in the arg parameter. Let's look at what might be done to physically
remove the source item:

 // Handle property change notifications
 }
 else if (eve
 {

 // Get the item from the IDataObject
 CSnapInItem* pItemCut = 0;
 DATA_OBJECT_TYPES objtype;
 CSnapInItem::GetDataClass(reinterpret_cast<LPDATAOBJECT>(arg),
 &pItemCut, &objtype);

 // Use RTTI to determine if we can delete this object
 CComBSTR bstrClassName = typeid(*pItemCut).name();
 if (bstrClassName == _T("class CMMCPrimaryWinServiceItem"))
 {
 CutOrMoveWinService(pItemCut);
 }

 return S_OK;
 }
 return E_NOTIMPL;
}

only items that are Windows services. If the item is a Windows service
(CMMCPrimaryWinServiceItem), then we call a helper function CutOrMoveWinService to
complete the move. Note that the item has been copied alread

void CMMCPrimaryComponent::CutOrMoveWinService(CSnapInItem* pItemToCut)
{
 CMMCPrimaryWinServiceItem* pItem =
 reinterpret_cast<CMMCPrimaryWinServiceItem*>(pItemToCut);

 //
 CMM
 reinterpret_cast<CMMCPrimaryServicesItem*>(pItem->GetParentItem());

 // Iterate through all items until we reach the item to cut or move
 TChildItemList& rChildList = pParent->GetChildItemList();

 T i
 for
 {
 // Is this the item we want to cut or move?

 {

 HRESULT hr = pItemToCut->GetResultData(&prdi);

 }
 }
}

In t ace) using a
TChild pe item's
TCh pt is
ma o memory
resourc

The r

Get parent item
CPrimaryServicesItem* pParent =

Ch ldItemList::iterator itrService = rChildList.begin();
(; itrService != rChildList.end(); itrService++)

 if ((*itrService) == pItemToCut)

// We need the itemID
LPRESULTDATAITEM prdi = NULL;

// Remove the item from the result pane
CComQIPtr<IResultData> spResult(m_spConsole);
hr = spResult->DeleteItem(prdi->itemID, 0);

// Free memory and remove the object from our internal list
// of the real object
delete *itrService;
rChildList.erase(itrService);

break;

his snap-in's implementation, the result items are stored in the scope item (namesp
ItemList member. To remove the result item involves finding it in the sco

 so that the result itemildItemList 's HRESULTITEM handle can be obtained. After an attem
de t remove the result item from display (using its handle), the next step is to free the

es allocated to the item, and then to remove it from the TChildItemList member.

een shot in Figure 9.23 sc shows the Fax service being dragged and about to be dropp
up item.

ed in the
Gro

tem Figure 9.23. Dragging snap-in items from result pane to scope pane i

Accessing Web Sites
On occasion, your software requirements may include accessing a Web site. For examp
administration application might need to access a support site, submit problem reports, or run some
aspects of your administration environment through a Web server. Creating an item to access a We
site is easy. All that is required is to override the GetResultViewType method in the CSnapInIte
derived class. The following is a generalized class that can use any Web site URL:

class CMMCPrimaryWebSiteItem:
 public CS

le, an

b
m-

napInItemImpl<CMMCPrimaryWebSiteItem>
{

ewType)(LPOLESTR *ppViewType, long

 // Ensure standard list view is not selected

rotected:
 CComBSTR m_bstrURL; // The Web Site's URL

The Web site display name and URL are passed when the scope pane item is created. The item's

lling GetResultViewType. Here the
item can instruct MMC to use an alternate view. The out-parameter allows the snap-in
to s c ap-in and will get freed by MMC when
MM result
pane vi tions to be set, MMC_VIEW_

. This instructs MMC not to use the standard list view control. MMC

 the
MMCPrimaryRootItem class demonstrates how the scope pane item is created and added as a child

public:

 ..
 CMMCPrimaryWebSiteItem(LPOLESTR lpszURL, LPOLESTR lpszDisplayName)
 {

 m_bstrURL = lpszURL;
 m_bstrDisplayName = lpszDisplayName;
 }

 STDMETHOD(GetResultVi
 *pViewOptions)
 {
 // Allocate memory for URL
 *ppViewType = static_cast<LPOLESTR>(
 CoTaskMemAlloc(sizeof(OLECHAR) * (m_bstrURL. Length() +1)));

 // Copy URL that MMC will use to go to
 wcscpy(*ppViewType, m_bstrURL);

 *pViewOptions = MMC_VIEW_OPTIONS_NOLISTVIEWS;
 return S_OK;
 }

p

};

display name is copied to m_bstrDisplayName and the Web site's URL is copied to m_bstrURL.
MMC determines what the result pane view should be by ca

ppViewType
pe ify a string moniker. The string is allocated by the sn
C no longer requires the string. The pViewOptions out-parameter specifies one or more

ew options. To display a Web page requires only one of the op
OPTIONS_NOLISTVIEWS
becomes reliant entirely on the ppViewType parameter to determine what view to display.

You must not specify the http:// portion when specifying a Web URL. For instance,
http://www.microsoft.com becomes www.microsoft.com. MMC will interpret
www.microsoft.com as a Web-based URL. The following code fragment from
C

of the root item. Notice the format of the URL being passed to the con
CMMCPrimaryWebSiteItem class.

structor of the

reak;

case MMCN_EXPAND:
{
 CComQIPtr<IConsoleNameSpace2> spNamespace(spConsole);

 .
 CMMCPrimaryWebSiteItem* pWebSite =
 new CMMCPrimaryWebSiteItem(L"www.microsoft.com",
 L"Microsoft's Web Site");

 InsertScopeItem(spNamespace, pWebSite, param);
}
b

The screen shot in Figure 9.24 shows the Web site item that displays the Microsoft home page.

Figure 9.24. Snap-in item displaying a Web page

Displaying Custom Views
X To display a custom view other than the standard list view control, you need to develop an Active

control. An ActiveX control allows you the freedom to have the user interface that best suits your
administration environment. You may have noticed that some of the Windows 2000 snap-ins
display custom views in the result pane, such as the disk management tool.

Creating an item to use an ActiveX control is very similar to creating an item to access Web sites
(as in the previous section). You must override the GetResultViewType method in the
CSnapInItem-derived class. The following class displays the standard Windows 2000 calendar
ActiveX control:

class CMMCPrimaryAXControlItem:
 public CSnapInItemImpl<CMMCPrimaryAXControlItem>
{
pub c
 .
 .
 ..
 CMMCPrimaryAXControlItem()

etResultViewType)(LPOLESTR *ppViewType, long *pViewOptions)

 // The following GUID is the standard calendar control
 CComBSTR bstrCtrl(L"{8E27C92B-1264–101C-8A2F-040224009C02}");

y for GUID string

};

Like the Web site example in the previous section, MMC calls GetResultViewType to determine
ane. To display a custom view through an ActiveX control, you
s identifier (CLSID) in string form through the ppViewType out-

li :
.
.. . ..

 {

 m_bstrDisplayName = L"Calendar Control";
 }

STDMETHOD(G
{

 // Allocate memor
 *ppViewType = static_cast<LPOLESTR>(
 CoTaskMemAlloc(sizeof(OLECHAR) * (bstrCtrl.Length() +1)));

 // Copy CLSID of ActiveX control so that MMC can display the control
 wcscpy(*ppViewType, bstrCtrl);

 // Ensure standard list view is not selected
 *pViewOptions = MMC_VIEW_OPTIONS_NOLISTVIEWS;
 return S_OK;
}

the view to display in the result p
specify the ActiveX control's clas
parameter. MMC will evaluate the string and determine that it is a class identifier for a COM
component. MMC loads the control and hosts it within the result pane issuing Object Linking and
Embedding (OLE) method calls for the control to display its user interface. Developing OLE
ActiveX controls is beyond the scope of this book.[3] The screen shot in Figure 9.25 shows the
calendar control as the scope item's user interface.

[3] For more information about developing OLE ActiveX controls, we recommend reading ATL Internals by Brent Rector and Chris
Sells, ISBN 0-201-69589-8.

Figure 9.25. Snap-in item hosting an ActiveX control

More than likely, the OLE control that is displayed in the result pane will require some sort of
initialization. MMC supports this scenario by sending the snap-in item an MMCN_INITOCX
notification immediately after the control is loaded. This is your opportunity to initialize the contr
in the item's Notify implementation. The following code sample demonstrates how to initialize the
calendar control to July 3, 2001:

case MMCN_INITOCX:
{
 // Use ATLs IDispatch helper class
 CComDispatchDriver spCalendar = LPUN

ol

KNOWN(param);

 // Set calendar control properties
 // date == 3 July 2001

y", &CComVariant(3));
nth", &CComVariant(7));

 spCalendar.PutPropertyByName(L"Year", &CComVariant(2001));

class
s. The

IUnknown QueryResultView on the
ows you to delegate calls from the MMC snap-in to the control. For

that you may want to expose to the user via the
MMC propriate
item re er either
could u rom the
MMCN_I from
the con esh
method

 spCalendar.PutPropertyByName(L"Da
 spCalendar.PutPropertyByName(L"Mo

}

Notice that the above code makes use of ATL's CComDispatchDriver class. This is a helpful
if you do not want to import or include header files that contain the COM interface definition
IUnknown interface of the OLE control is passed through the param parameter during the
MMCN_INITOCX notification. It is up to you to perform whatever is necessary to initialize the control.

You can also obtain the OLE control's interface by calling the
IConsole interface. This all
example, the control may have a refresh operation

refresh verb. The refresh action easily can be delegated to the control when the ap
ceives an MMCN_REFRESH notification. The implementation of the notification handl
se a cached (reference counted) copy of the control's IUnknown interface (cached f
NITOCX notification) or call QueryResultView to get the control's IUnknown interface
sole. After access to the control is established, the snap-in can call the appropriate refr
 to complete the delegated action.

Dev
xtension snap-ins make the Microsoft Management Console environment different from other
anagement user interfaces. Generally, other management environments provide no means of

did offer an extension
pose you were to add some voice

mail features for users in an e-mail environment. You could add your application's administration

LL

result is that you end up with a fragmented administration extension mechanism for
virtually every kind of administration environment. The extension mechanism provided by MMC is
compre ified API for developing
administration applications and extending them regard the extension mechanism to be one of
the m werful features of MMC.

To e types
that can be extended. Typically, as you have lit
manage ent, you should register all the item types used within the snap-in.

ion snap-in can then register to extend one or more of the user interface elements of a

• Extending a scope item's namespace

• Extending an item's task pad

e chanism an extension snap-in can extend another extension
der the diag ure 9.26

eloping Extension Snap-ins
E
m
adding new administration tasks. If the management environment
mechanism, it was always a proprietary solution. For instance, sup

tasks to the Exchange System Administrator in Microsoft Exchange 5.5. Luckily, Microsoft
Exchange 5.5 does provide a mechanism to add your own property pages by implementing a D
that exports a few functions. However, if another e-mail system were used, there would be another
API to hook into and you would face the additional possibility that no such extension mechanism
even exists. The

hensive, is well thought out, and most importantly, offers a un
. We

ost po

nable the extension mechanism requires that a primary snap-in properly register the item
tle idea of how others might want to extend the

ment environm

The extens
particular item type. This includes:

• Extending an item's Context menu
• Extending an item's toolbar
• Extending an item's property sheet

The extension m
snap-in. Consi

 is so powerful that
ram in Fig .

Figure 9.26. Snap-in extension mechanism

Suppose that Ite
snap-in can exten

m A was a n
d Item A n adding Item A is the

primary snap-in for Item B ver the item and if extended
ap-i sion sna .

dded to the scope pane by a primary standalone s
's namespace and add its own, Item B. The snap-i
. The snap-in adding Item B has full control o

ap-in. An extension

becomes a primary sn
The snap-in adding Item B

n. Item B can be extended by another exten
 is the primary snap-in for Item C.

p-in adding Item C

How do iated
with it and should be registered by the prim
item type, specifying what type of user interface it is extending (namespace, property sheet, menu,
and so forth). When the console invokes the extension snap-in (Figure 9.27

es the extension snap-in mechanism work? Every item type has a unique GUID assoc
ary snap-in. An extension snap-in registers to extend the

) he
primary snap-in's item: For instance, Item A is wrapped by Item A binding.

Figure 9.27. Snap-in ext

, it must bind to t

ension item binding

If the primary snap-in's (Item A) namespace is extended, then notifications sent to the primary snap-
in's IComponentData::Notify are also sent to the extension snap-in's item binding (Item A

red to the
, then

eveloping extension snap-ins does not really differ from the techniques you have already seen in
this chapter. For instance, adding scope pane items and adding property pages or a menu item are

The differences are:

 was generated
we wanted to

enus.

c IExtendContextMenuImpl<CMMCExtension>,
 public CComCoClass<CMMCExtension, &CLSID_MMCExtension>
 {
 public:

 EXTENSION_SNAPIN_DATACLASS(CWinServiceExtItem)

binding) through its IComponentData::Notify as well. The notifications that are delive
extension snap-in depend on what is being extended. If only a Context menu is extended
MMCN_EXPAND notifications will not be forwarded to the extension snap-in. The extension snap-in
will be queried for the Context menu items it wants to add.

Extension snap-ins cannot alter the behavior of primary snap-ins; they only can add behavior to
them. For instance, an extension snap-in cannot enable the properties verb to an item in the primary
snap-in.

D

still the same.

• A special item class binds to the primary snap-in's item.
• Extension snap-in's registration is slightly different.

Let's focus on the item class that binds (or wraps) to the primary snap-in's item. We shall make an
extension snap-in that adds only a Context menu item to a primary snap-in item. This menu item
will be labeled "An example action" and will be added to all Windows service items.

The following is the complete class declaration for the extension snap-in's co-class. It
rt by the Visual Studio snap-in wizard in which we specified only that for the most pa

extend context m

 class CMMCExtension:
 public CComObjectRootEx<CComSingleThreadModel>,
 public CSnapInObjectRoot<1, CMMCExtension>,
 public IComponentDataImpl<CMMCExtension, CMMCExtensionComponent>,
 publi

 CMMCExtension();
 ~CMMCExtension();

 BEGIN_EXTENSION_SNAPIN_NODEINFO_MAP(CMMCExtension)
 EXTENSION_SNAPIN_NODEINFO_ENTRY(CWinServiceExtItem)
 END_EXTENSION_SNAPIN_NODEINFO_MAP()

 BEGIN_COM_MAP(CMMCExtension)
 COM_INTERFACE_ENTRY(IComponentData)
 COM_INTERFACE_ENTRY(IExtendContextMenu)
 END_COM_MAP()

 DECLARE_REGISTRY_RESOURCEID(IDR_MMCEXTENSION)
 D L

 S M

 stat
 {
 if

 }
};

As you can see
statements in bold text. These statements enable the extension snap-in to bind to the primary snap-
in's ite riable that
repres he binding
communicate with the primary snap-in. This is the job of the DEINFO_MAP

p-in were
 need to

ike this:

EXTENSION_SNAPIN_DATACLASS(CAnotherExtItem)

BEGIN_EXTENSION_SNAPIN_NODEINFO_MAP(CMMCExtension)
 EXTENSION_SNAPIN_NODEINFO_ENTRY(CWinServiceExtItem)
 EXTENSION_SNAPIN_NODEINFO_ENTRY(CAnotherExtItem)

 class[4]

EC ARE_NOT_AGGREGATABLE(CMMCExtension)

TD ETHOD(Initialize)(LPUNKNOWN pUnknown);

ic void WINAPI ObjectMain(bool bStarting)

 (bStarting)
 CSnapInItem::Init();

, virtually everything appears the same as a primary snap-in, except for the

m. The EXTENSION_SNAPIN_DATACLASS macro effectively creates a member va
ents a permanent binding to the primary snap-in item. The next step is to make t

EXTENSION_SNAPIN_NO
macro, which will be discussed in the next section.

An extension snap-in can extend any number of primary snap-in items. If an extension sna
to extend two different items (perhaps even in different primary snap-ins), then you would
create another extension data class and add another entry in the extension item map, l

EXTENSION_SNAPIN_DATACLASS(CWinServiceExtItem)

END_EXTENSION_SNAPIN_NODEINFO_MAP()

In the following code sample, let's examine the CWinServiceExtItem that binds to the
one

temImpl<CWinServiceExtItem, TRUE>
{

 CWinServiceExtItem();
 ~ i
 . .
 .
 .

primary snap-in item. This class looks like any other CSnapInItemImpl class except that it has
difference: It has TRUE in the template parameter list (in bold font). This parameter is used only in
extension snap-ins in which an item is binding to a primary snap-in item. In all other cases, this
parameter is not specified and defaults to FALSE.

[4] The snap-in wizard–generated code initially used the name CMMCExtensionExtData, which we changed to
CWINServiceExtItem.

class CWinServiceExtItem: public CSnapInI

public:

CW nServiceExtItem();
.
.. .

 BEGIN_SNAPINCOMMAND_MAP(CWinServiceExtItem, FALSE)
 SNAPINCOMMAND_ENTRY(ID_TASK_ANEXAMPLEACTION, OnTaskEx
 END_SNAPINCOMMAND_MAP()

ampleAction)

 SNAPINMENUID(IDR_MMCEXTENSION_MENU)

tion(bool &bHandled,
 CSnapInObjectRootBase *pObj)

 return S_OK;
 }

 ...
};

ll

protected:
 HRESULT OnTaskExampleAc

 {
 MessageBox(NULL, _T("An example action for a Windows Service"),
 _T("Extension snap-in"), MB_OK);

As you can see, we have specified the menu (using the SNAPINMENUID macro) and implemented a
handler (OnTaskExampleAction) for the one and only Context menu item that we added to the A
Tasks Context menu. We discussed the same type of code earlier in the chapter (p. 441).

Figure 9.28 shows what the snap-in looks like so far. Notice that All Tasks menu is added to
include the Extension Snap-ins Context menu item.

Figure 9.28. Extension snap-in adding a menu item

When the "An example action" Context menu is triggered by the user, the handler displays the
message box in Figure 9.29.

Figure 9.29. Extension snap-in example action

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch10fn05

Exchanging Information between Primary and
Extension Snap-ins

. When the message box popped up, it was effectively a blind action, with no regard for
which Windows service was selected. In most cases, this will not be adequate. The extension snap-

indows service items, the primary snap-in will need to publish some information that
an extension snap-in can use effectively. As witnessed earlier, the __RELPATH WMI property

m's GUID in string form (CCF_SZNODETYPE)
• The item's display name (CCF_DISPLAY_NAME)

The clipboard formats used above are registered when the is called in the

ly publish Unicode strings
for easy access, and this is what we shall do to expose the relative object path.

Publishing your own formats involves overriding the CSnapInItem::FillData method. The easiest
approach in implementing this is to copy the method from atlsnap.h and extend it by publishing
additional information. Let's call the new format we shall publish CCF_WINSERVICE_RELPATH. If the

::FillData(CLIPFORMAT cf,
 LPSTREAM pStream)

F_SZNODETYPE)
m->Write(GetSZNodeType(),

In the previous section, there was no context information to identify the Windows service being
managed

in certainly will want some context information to perform the appropriate task. As we mentioned
earlier in the chapter, the IDataObject interface provides a perfect solution for exchanging
information. The IDataObject interface is the key for primary snap-ins to publish context
information and for extension snap-ins to subscribe to it.

Let's focus on publishing information in a primary snap-in. Given that the extension snap-in is
extending W

contains the relative path of a WMI management object. A more complete and absolute reference
would be the __PATH property (a fully qualified path containing machine and namespace
information). For our purposes, the WMI relative path is more than enough context information.

Let's publish the relative path in the primary snap-in. But before we dive into the details, let's
examine the information already published by ATL and the associated clipboard formats:

• The item's GUID in binary form (CCF_NODETYPE)
• The ite

• The snap-in's class identifier (CCF_SNAPIN_CLASSID)

CSnapInItem::Init
snap-ins ObjectMain DLL initialization method. What we need to do is extend the published
information to include the relative object path of the Windows service. The published formats can
be of any type such as a GUID or some other binary structure. We usual

extension snap-in requests this format, then the primary snap-in must fill the stream (pStream) with
the appropriate information, in this case, a Unicode string containing the relative object path of the
service. Let's look at the code:

STDMETHODIMP CMMCPrimaryWinServiceItem

{
 // Copied from atlsnap.h
 ULONG uWritten = 0;

 if (cf == m_CCF_NODETYPE)
 return pStream->Write(GetNodeType(), sizeof(GUID), &uWritten);

 if (cf == m_CC
 return pStrea

 (ocslen((OLECHAR*)GetSZNodeType()) + 1)* sizeof(OLECHAR),

if (cf == m_CCF_DISPLAY_NAME)
isplayName(),

izeof(OLECHAR),
 &uWritten);

UID), &uWritten);

 // Publish the snap-ins additional information
LIPFORMAT cfWinServerRelPath =
 CLIPFORMAT(::RegisterClipboardFormat(_T("CCF_WINSERVICE_RELPATH")));

 {
 // Get the relative object path of the service
 BSTR bstrRelPath = V_BSTR(&m_PropertyMap[L"__RELPATH"]);

 // Write it out to the stream for the extension snap-in to read
 return pStream->Write(bstrRelPath,

 }

then

al Studio snap-in wizard included the following:

taObject* m_pDataObject;

 p l
 i

 {

 // The default code stores off the pointer to the Dataobject the class

 // dataobject to the internal format it represents and store that

 }

 // Modify to return a different CSnapInItem* pointer.

 &uWritten);

 return pStream->Write(GetD
 (ocslen((OLECHAR*)GetDisplayName()) + 1) * s

 if (cf == m_CCF_SNAPIN_CLASSID)
 return pStream->Write(GetSnapInCLSID(), sizeof(G

 C

 if (cf == cfWinServerRelPath)

 (SysStringLen(bstrRelPath) + 1) * sizeof(OLECHAR), &uWritten);

 return DV_E_CLIPFORMAT;
}

You've probably gathered by now that only one IDataObject format can be requested at a time. If
CCF_WINSERVICE_RELPATH is requested, we obtain the relative object path from the item's property
map and write it to the IStream. Note that if CCF_WINSERVICE_RELPATH is already registered,
RegisterClipboardFormat will return the existing clipboard format value.

Let's move on to the extension snap-in. The Visu

 class CWinServiceExtItem: public CSnapInItemImpl<CWinServiceExtItem,
 TRUE>
 {
 public:
 CWinServiceExtItem();
 ~CWinServiceExtItem();

 .
 protected:
 IDa

ub ic:
 v rtual void InitDataClass(IDataObject* pDataObject,
 CSnapInItem* pDefault)

 m_pDataObject = pDataObject;

 // is wrapping at the time. Alternatively you could convert the

 // information.

 CSnapInItem* GetExtNodeObject(IDataObject* pDataObject,
 CSnapInItem* pDefault)
 {

 return pDefau
 }

lt;

};

ap-in

The InitDataClass method is used only for extension snap-in items that bind to primary sn
items. Its main purpose is to give the extension snap-in an opportunity to extract (or subscribe to)
information provided by the primary snap-in item. The pDataObject parameter is the IDataObject
of the primary snap-in item to which we are binding. The pDefault parameter is the permanent
item binding set up by the EXTENSION_SNAPIN_DATACLASS macro.[5]

[5] We have never found a practical use for the pDefault parameter.

The GetExtNodeObject method is a way of delegating the extraction of primary snap-in item
information through another CSnapInItem-based object.[6]

[6] We have never found a practical use for the GetExtNodeObject method.

ut is the relative object path of the Windows service.

Le

 c

 CWinServiceExtItem();
 ~CWinServiceExtItem();

 IDataObject* m_pDataObject;

 {
 // Store in local data member for later access

The tasks left are to implement the InitDataClass method and to extract the primary snap-in item
information using the pDataObject parameter. The only context information the extension snap-in
cares abo

t's look at how this might be done:

lass CWinServiceExtItem: public CSnapInItemImpl<CWinServiceExtItem,
 TRUE>
 {
 public:

 .
 protected:

 CComBSTR m_bstrRelPath;

 public:
 virtual void InitDataClass(IDataObject* pDataObject,
 CSnapInItem* pDefault)
 {

 // Cache copy for ourselves
 m_pDataObject = pDataObject;

 // Prepare IDataObject format for the CCF_WINSERVICE_RELPATH
 FORMATETC formatetc = {
 ::RegisterClipboardFormat(_T("CCF_WINSERVICE_RELPATH")),
 NULL, DVASPECT_CONTENT, -1, TYMED_HGLOBAL};

 // Allocate memory for the data, lets hope that 256 Unicode
 // characters is okay
 STGMEDIUM stgmedium = {TYMED_HGLOBAL, NULL};
 stgmedium.hGlobal = GlobalAlloc(0, 512);

 // Extract the information from the primary snap-in item
 if (SUCCEEDED(pDataObject->GetDataHere(&formatetc, &stgmedium)))

 m_bstrRelPath = static_cast<LPOLESTR>(stgmedium.hGlobal);
 }

 // Free memory
 if (stgmedium.hGlobal)
 GlobalFree(stgmedium.hGlobal);
 }

gh memory to hold data that you are
extracting. After extracting the information, store it in a suitable place for later retrieval, in this
ase, m_bstrRelPath.

ormation it needs to execute tasks, in this
 member.

 TCHAR szBuffer[512];

 ...
};

Notice how the format was specified: It requested the CCF_WINSERVICE_RELPATH from the primary
snap-in item. However, you must be sure to allocate enou

c

The extension snap-in bound item now has the context inf
case, the relative path contained within the m_bstrRelPath

The next step is to use this information in our simple Context menu handler. We just display the
relative path:

HRESULT OnTaskExampleAction(bool &bHandled, CSnapInObjectRootBase *pObj)
{

 sprintf(szBuffer, _T("An example action for a Windows Service (%ls)"),
 m_bstrRelPath);

 MessageBox(NULL, szBuffer, _T("Extension snap-in"), MB_OK);

 return S_OK;
}

Figure 9.30 shows what the OnTaskExampleAction handler displays.

Figure 9.30. Extension snap-in adding a menu item with context information

Ex
Like primary standalone snap-ins, extension snap-ins make two types of registrations: (1) COM

rd generates an
rporates both types of registration. All COM registrations are similar

r all COM components, so we shall not explicitly cover this.

tension Snap-in Registration

component registration and (2) MMC registration. The Visual Studio snap-in wiza
ATL registry script that inco
fo

The MMC specific registrations are
under Software\Microsoft\MMC.

 stored in the HKEY_LOCAL_MACHINE portion of the registry
Our demonstration extension snap-in is registered under . . .

 {
 NoRemove Snapins
 {

 Extension'

 }

ary snap-in items that
 script that made empty registration

t extends these

e
keys
, the

\MMC\Snapins{08B017E8–47AD-4D1B-A928–94FFD77E9950}, similar to the registration of primary
standalone snap-ins. The real difference is in the registrations made under the . . .
\MMC\NodeTypes key.

Let's look at the ATL registry script and then examine it in detail:

HKLM
{
 NoRemove Software
 {
 NoRemove Microsoft
 {
 NoRemove MMC

 ForceRemove {08B017E8–47AD-4D1B-A928–94FFD77E9950}=
 s 'WMI Administration
 {
 val NameString = s 'WMI Administration Extension'
 val About = s '{2FC11162–83EE-47ED-87DA-490D7402230C}'
 }
 }
 NoRemove NodeTypes
 {
 NoRemove {55BC8974-CEDE-4123–91C1-E2A6CDAF7A7D}
 {
 NoRemove Extensions
 {
 NoRemove ContextMenu
 {
 val {08B017E8–47AD-4D1B-A928–94FFD77E9950}=
 s 'WMI Administration Extension'
 }
 }
 }
 }
 }
 }
 }

The registrations made under the . . . \MMC\NodeTypes key are the prim
we have extended. Recall the previous primary snap-in registry
place holders for the items it published (p. 461). The extension snap-in registry scrip
items with additional registrations.

In the preceding registry script, we add the Extensions key, which can contain one or more of th
following: NameSpace, ContextMenu, ToolBar, PropertySheet, and Task. Each of these sub
specifies the type of extension of the extension snap-in. As you can see from this registry script
extension snap-in extends only Context menus for the Windows service items. The class identifier
(CLSID) value is the extension snap-in's co-class.

Making MMC Snap-ins Theme Aware
Unlike previous versions of Windows, Windows XP introduces new user interfaces that are called

ns to become theme
 home under Windows

XP. Users of Windows XP rapidly get accustomed to the hot-spotting of controls as the mouse
moves over them, as well as its notice if your application does

ith the use ying close attention to the user interface in MMC snap-ins is
cause MMC me aware. Property pages that it hosts will appear out of place,

ting a mixed st
snap-in example in F

visual styles. A visual style affects how applications display buttons, dialogs, and other common
controls. An application that displays buttons, dialogs, and other common controls in the active
visual style is said to be theme aware. It should be the goal for all applicatio
aware. The visual impression of a theme-aware application makes it look at

 visual appearance. Users will quickly
not fit in w
important be

r interface. Pa
 itself is the

presen yle of controls, if the snap-in is not theme aware. Look at the primary MMC
igure 9.31.

Figure 9.31. MMC snap-in: Not theme aware

Notice first that the pa ead of a white-to-grey
u look

controls and combo box use the classic visual style. Although this is not a complex page, it is easy
s not
 to m
e task tion in

using the theme-awar

ge uses the classic solid dialog background color inst
gradation. If yo closely, you will see a white border around the page. Second, the edit

to tell that it doe
reasonably easy

 fit in with the Windows XP visual style. Fortunately, Microsoft makes it
ake an application or DLL theme aware. (If your application uses OLE

controls, then th is a bit more involved. Check the Platform SDK for additional informa
e APIs.)

The first task in making an MMC snap-in DLL theme aware is to declare it as isolation aware. This
introduces special code within the Platform SDK header files to use the theme-aware controls,
especially property sheets. Include the following statement before any other header files in stdafx.h:

SOLATION

de introduced e the DLL automatically use the theme-aware
rols if it is runnin
dows with no oth

ARE_E
common controls.

visual style other ed into the
mon controls DL e

e-awa chieved by making
s resources

 cument is stored in a
lled MMCPrimar

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
bly xmlns="

="1.0">
<assemblyIdentity

ion="1.0.0.

MMCPrimar
 type="win32"
/>

ription>WMI

pendentAssem
 <assemblyIdentity
 type="win32"
 name="Microsoft.Windows.Common-Controls"
 version="6.0.0.0"

 language="*"

T Framework introduce a new concept called an assembly. At a very basic level, an
assembly is a collection of files. In many cases, it probably is a single DLL. Global assemblies are
registered wi ystem. The result of
the example m on controls) that an
application or

The next step is to include the above m LL. Declare the following

define MANIFEST_RESOURCE_ID 2

#define I _AWARE_ENABLED TRUE

The co by this declaration will mak
cont
Win

g under Windows XP. Note that the DLL is compatible with other versions of
er operating system specific dependencies being introduced. The

ISOLATION_AW NABLED definition becomes active only when the DLL is linked to the new

In a than the classic one, all the standard controls have been mov
com
Windows them

L, COMCTL32.DLL, so the key in making an application or DLL use th
re controls is to link to the new common controls. This is a

a manifest that is an XML-based fi
and is queried for by

le. The manifest is included in the application or DLL'
the Windows executable loader. The following XML do

file ca ySnapin.dll.manifest:

<assem urn:schemas-microsoft-com:asm.v1" manifestVersion

 vers 1"
 processorArchitecture="X86"
 name=" ySnapin.MMCPrimary.1"

<desc Service primary snap-in</description>
<dependency>
 <de bly>

 processorArchitecture="X86"
 publicKeyToken="6595b64144ccf1df"

 />
 </dependentAssembly>
</dependency>
</assembly>

The items highlighted in bold font are the replaceable portions of the manifest. You should
complete them with your version number, component identifier, and description. Windows XP and
the .NE

th the operating system and are stored in a secure area of the file s
anifest is that all the user-interface controls (standard and comm

 DLL uses will use the new common controls version 6.0.

anifest in the application or D
resource identifier in the resource.h file:

#

This is followed by linking the manifest file into the executable's resources. Includ
DLL's resource file (.rc):

e the following

yed in
tion will also become theme aware. The screen shot in Figure 9.32

MANIFEST_RESOURCE_ID RT_MANIFEST "MMCPrimarySnapin.dll.manifest"

When the application or DLL is loaded after compilation, it will use the new common controls
library. Because the new common controls library is theme aware, all common controls displa
your applica shows a theme-
aware version of the property page from Figure 9.31.

Figure 9.32. MMC snap-in: Theme aware

Summary
We began this chapter by noting the importance of a standardized unified administration

e extensible and support many different types of
terfaces defined within MMC followed. We distinguished

e console and the interfaces the snap-in should implement.
IComponent, two of the most

nd

es, and toolbars. In addition, we showed how to incorporate an

environment. This environment had to b
e inadministration. A quick tour of all th

etween the interfaces provided by thb
The snap-in demonstration first discussed the IComponentData and
important interfaces that a snap-in must implement. After we demonstrated how to add scope a

 discussion provided a how-to guide for extending the administration user result items, more
terface with menus, property pagin

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch10list02

ActiveX control to customize the result pane view for a scope item and how to access Web sites
easily.

We discussed and demonstrated some advanced features like drag and drop and how to
 sheet. We showed you how ATL delegates calls to the

s interactions with other

 c using the management object's relative path
 Windows service.

rtitioning of snap-in development within a large team.

Ten Fast Facts: Developing MMC
Snap-ins

1. The Microsoft Management Console is the center point for all administration
tools. It allows administrators to set up frequently accessed administration tools
and, because all snap-ins have a similar look and feel, it reduces the total cost of
ownership.

2. MMC provides a comprehensive snap-in hosting architecture providing support
for standalone and extension snap-ins. Standalone snap-ins can be run on their
own and can be extended in a number of ways, allowing administration tool
developers to leverage existing administration environments. Extension snap-ins
also can be extended by other extension snap-ins.

3. Developing MMC snap-ins is a combination of using a number of MMC-provided
COM interfaces and a snap-in providing MMC with implementations of a few
COM interfaces that deliver the administration user interface.

4. Standalone snap-ins must support the IComponentData and IComponent
interfaces. Extension snap-ins can support either or both of these interfaces
depending on the type of extension.

5. The IComponentData interface is the snap-in's primary interface and allows the
extension of scope pane items. The IComponent interface implements the result
pane and allows the extension of result pane items.

6. Snap-ins that want to display context menus, property sheets, and toolbars must
support IExtendContextMenu, IExtendPropertySheet, and
IExtendControlbar interfaces respectively.

7. MMC has a number of specific verbs such as rename, delete, and properties.
Verbs help in maintaining a consistent user interface and a set of common

ins.
8. Primary and extension snap-in items (both scope and result pane items) should

opens up the MMC extension architecture for other
sions to the

9. If you require a customized user interface that differs from the default list view in
the result pane, then consider developing a custom OLE control.

programmatically refocus a property
appropriate items and more about the IDataObject interface and some of it
bjects, such as in extension snap-ins. o

To make the demonstration snap-in relevant to this book, we showed how to express WMI
onveniently management objects in the user interface,

to carry out operations against the correct

We discussed and demonstrated extension snap-ins in detail, in which the most important part was
how extension snap-ins bind to a primary snap-in. The extension snap-in architecture is rich and
allows for the pa

operations across all snap-

publish key information. This
extension snap-ins to provide new and related user interface exten
administration tool set.

10. Develop your snap-ins against the latest Platform SDK so that they can be made
theme aware and fit in with Windows XP visual styles.

Chapter 10. Developing WMI Scripts for

fe to

ws crisis as a type of opportunity (although we doubt this means a
risamatunity," as Homer Simpson once said). The purpose of this chapter is to look at the ways

 productive use of
etting, and
will be

e eventualities and better able to automate a great many of your day-
asks.

In the p
comple e advances it seems that the
reactiv at a larg entage of time is spent
resolvi phes in an ad hoc manner. For Microsoft and the DMTF,
this sig
technol was born with
a view
develop age and enable administrators to embrace
proacti ministrators can actually try
to antic mated sequence of
tasks in place to deal with it.

Until now we have disc ut have addressed its
nly from the perspective of a develo s any potential imbalance, Chapters 10

Administrators
If you have spent any amount of time managing computer systems in industry, it is probably sa
assume that at some point, through no fault of your own, you have had to deal with a system
management crisis. It is said that the Chinese language, developed long before system
administration, vie
"c
that WMI minimizes these opportunities for administrators and promotes more
your time. Don't be mistaken: network cards still will fail, user accounts will need res

 defragmenting, but with the suite of tools provided by Microsoft, you disks will need
prepared better for at least som
to-day t

ast decade alone, the role of system administrators and support staff has increased in
xity with every advance in enterprise infrastructure. Despite thes

e perce ethos of system management remains, ensuring th
ng previously unforeseen catastro
nalled that it was time for enterprise system management to catch up with the rest of
ogy. Consequently, Microsoft Windows Management Instrumentation (WMI)
to providing a more efficient way to manage systems and your time. Microsoft has
ed a suite of tools built to gain maximum lever

ve as well as reactive management strategy. Using these tools ad
ipate events, such as a server disk running out of space, and have an auto

ussed the core technologies and architecture of WMI, b
use o per. To redres and
11 are
of ow

 written specifically with a view to total cost
nership. Whereas past chapters focu

 a number s and the solutions to
them offered by WMI.

d save you some money on shoe leather.

Scripti
Microsoft provides a variety of se who wish to manage their systems
using WMI. We shall examine three particular approaches:

targeting those at the sharp end of reducing the
sed upon the role of both the developer and the

administrator, we now examine of scenarios specific to administrator

Let's look at the various tools at your disposal as an administrator and see if we can make your life
easier at work an

ng, WMIC, and the CIM Studio
 tools and technologies for tho

• The WMI CIM studio (for Windows 98 and above)
• Windows Management Instrumentation Command-line (WMIC) (for Win
• Visual Basic Scripting for WMI (for Windows 98 and above)

This chapter

dows XP)

introduces scripting for beginners and then introduces the WMI Application
Programming Interface (API) in the context of a series of examples. Chapter 11 examines how to

kle writing your own scripts for WMI as an adjunct to the material presented here and
e Windows XP tool, WMIC. The WMI CIM studio is mentioned in oth chapters, how

uld refer to

tac introduces
th b ever, those
unfamiliar with it sho Chapter 4 for a detailed introductory tutorial.

Administration and the WMI CIM Studio
If you have read Chapter 4, you are already familiar with the function and purpose of the W
Studio. From an administrator's perspective, the Studio provides an invaluable way of m
through the CIM repository to gain an insight into exactly what data you can retrieve
well as a way of managing system settings. Its primary purpose here is to assist us in mov
through the wealth of management information available

MI CIM
oving

from WMI, as
ing

 from the CIM repository and in tracking
down classes that may be of interest. In fact, being able to script proficiently is only half of the

derstanding the
structure of the CIM repository and being able to move through it to locate relevant classes and

line tools and is an
f machines or

 WMI's management data. We shall look at how we can use WMIC
 automate management tasks and as a command line–driven utility for local and remote system

Perhaps the most advanced feature of the WMI management suite of tools for administrators is the
pting mechanism supported by the Windows Scripting Host. Although comparatively

 interface model for developers discussed in Chapters 7

struggle to gain maximum advantage from WMI. The other half comes from un

associations.

Administration and the WMIC
WMIC is part of Microsoft Windows XP Professional's new suite of command-
effective tool for administrators who wish to effect changes upon small groups o
produce reports garnered from
to
configuration and management in the next chapter.

Administration and Scripting

client-side scri
simple in relation to the COM and 8,

ieving information from WMI and for automating
ct s to system management. Although we are

s discussed here are relevant
WMIC (to some extent) are excellent ways to test

WMI-instrumented products.

scripting is nonetheless a powerful means for retr
ive solutionday-to-day tasks and providing proa

leveling our discussion at administrators, the examples and technique
also to software developers, because scripting and

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch03#ch03

Gu
Muc

eb site (http://msdn.microsoft.com

iding Principles
h that you need to know about administration for WMI can be found on Microsoft's MSDN

W) as well as on numerous third party sites. Acres of
ocumentation exist to assist those new to scripting, WMIC, or the WMI CIM Studio to discover

f information; so why bother with this chapter?

One of the common problems people find when learning a new technology today is not that they
re to

nformative

ut a swathe through the documentation so you do not have to!
• Provide examples, suggestions, and best practices that are targeted at providing a

The purpose of this chapter
therefore is not to replace the official documentation, but rather to provide a quick introduction to
the relevant issues that builds upon readers' existing knowledge to make them productive as quickly
as possible.

Prerequisites
ost from this chapter, first make sure that you have read Chapters 1

d
even the smallest minutiae o

cannot find enough information but more often that they find too much and do not know whe
begin, or they do not have the time to extract what they need. To learn WMI using the existing
Microsoft documentation (which provides a commendable level of detail), is somewhat akin to
attempting to learn the English language by reading a thesaurus: The material is very i
but somewhat overpowering for a beginner. With this in mind, this chapter attempts to:

• C

manageable level of detail for someone just starting out with scripting and WMI.

After readers are more accomplished, the Microsoft sources available on the Web provide an
excellent source of reference and should become an invaluable tool.

To get the m through 4 and are
uld

ledge of batch files

I
t readers have scripted before but that they have some prior

knowledge of batch file language or log on scripts and so feel comfortable with the basics of

t.
rity

considerations and potential pitfalls associated with the different techniques. The bulk of the chapter
introduces a series of pra retrieving data,
modifying data, deleting data, and creating data, all of which are tasks administrators commonly
perform with WMI. As part of this process, we introduce the basic use of the Windows GUI to

familiar with CIM terminology: classes, instances, schemas, namespaces, and so forth. You sho
also be familiar with the WMI CIM Studio and have a good general knowledge of the Windows
platforms. We assume that as an administrator you have a general knowledge of desktop and server
hardware and of basic network topologies and concepts: routers, gateways, and so forth. The
chapter does not assume a prior knowledge of scripting, but some basic know
will be helpful to your understanding of the concepts we explain.

Chapter Structure
The chapter tackles one of the more challenging tools for administrators to master: the scripting AP
for WMI. This section assumes not tha

program execution and program flow of control. The introduction examines simple scripting
examples that illustrate basic script structure, variables and constants, and basic input and outpu
The chapter then introduces the concept of attaching to WMI namespaces and the secu

ctical examples for interacting with WMI, including

enable scripts to
well as accepting

elicit feedback in a format consistent with the users' experience, as
 inpu and line.

e chapt
WMI scripts for syste
readers to write maint ts.

VBScript Bo
of this se

Scripting Host (WSH
this, we made certain
only the bare essentia n
the pragmatic aspects of scripting for W MI API offers more

f
definitive approach to ,
however, convey a ser
professional-level scri
section of the tasks th
starting point from wh
upon completing the e hapter 11

 and provide
t from the comm

Throughout th er, we introduce readers to a series of best practices for writing professional
m administration. We anticipate that practicing these techniques will enable
ainable, readable, and usable scrip

ot Camp
The purpose ction is to introduce you to the fundamentals of scripting, the Windows

), and the scripting API for WMI in as short a time as possible. To achieve
sacrifices with regard to the level of detail and topics covered. We present
ls. Consequently, some details have been omitted in favor of concentrating o

MI. For example, although often the W
than one way to achie
the widest number o

ve a goal, because of limited space we chose the most broadly applicable to
scenarios. Therefore, we do not claim that our examples represent the
 tackling a problem in WMI (nor the leanest or most efficient). They do
ies of best practices with explanations that will enable administrators to write
pts quickly and simply. We also hope that the examples represent a cross-
at system administrators will want to perform with WMI, thus providing a
ich to script productively in as short a time as possible. We anticipate that
xamples given here and in C , readers should feel confident enough

to write their own more complex scripts using the reference material available from Microsoft.[1]

[1] Detailed information on scripting and all Microsoft technologies is available on the Microsoft MSDN Web site,
http://msdn.microsoft.com.

Although it is true that scripting is not as simple as the MSDOS batch file language or log on scrip
for network operating systems, over the years it has become an increasingly powerful tool for
system administrators. With the introduction of WMI and the scripting API for WMI there ha
never been a more compelling reason to learn to script. The material covered here will introduce
you to scripting for WMI and in doing so will teach you the basics of scripting. Scripting skills are
generally applicable to all types of system maintenance, whether governed by WMI or not, an

ts

s

d can
be broadly applied to the automation of day-to-day repetitive tasks. Despite the initial overhead
associated with learning ay you by making

de clear examples of the kind of power you can
s co employers.

cript v
SH can interpr

between the two is largely arbitrary in scripting for WMI. We use VBScript in our examples
use although we
operability with

collections that comm s. VBScript, a subset of the Visual Basic for
(VBA) l

interested in maintain

to script for WMI, the investment will ultimately rep
your time more productive. The sample scripts provi
harness to impres lleagues and

JavaS s. VBScript
The W et both JScript and VBScript as part of its standard installation, and the choice

beca
inter

do not require the platform independence of JScript, we do require the
Component Object Model (COM). VBScript has built in support for
only are returned by COM object

Applications anguage, is developed and supported by Microsoft, which is actively
ing and promoting its future use.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch10table05

Terminology Checkpoint:

Throughout this section we refer to the syntax and semantics of a language. The
syntax of a language governs its grammatical usage and spelling. Unlike humans,

uters und
ax of the l

a command (that is, what it does). In the ould say that "I, in

eaning. Syntax
es of error

latest version of Microsoft
Windows Scripting Host and Windows Script Debugger (free from the Microsoft Web site).
Installi y
on you a ill also allow you to run the examples
in this chapter.[2]

comp
synt

erstand only information fed to them in a very precise form. The
anguage dictates this form. Semantics refer to the intended meaning of

English language, we c
the bar, went" is a simple example of a syntax error whereas, "We went into the bar,"
although syntactically correct is semantically wrong if one person went in to the bar
alone. In other words, the conveyed meaning is not the intended m
and semantic errors (sometimes referred to as logic errors) are two typ
programmers commonly encounter.

Setting Up Your System for Scripting
Regardless of the version of Windows you run, you should download the

ng these will ensure that all the file associations and script engines are configured correctl
r system and that you h ve the latest functionality. It w

[2] Microsoft Windows Scripting Host (version 5.6 approximately 700k) can be downloaded from:
http://www.microsoft.com/msdownload/vbscript/scripting56.asp.

 XP users sh /NT4.0 version of Windows

and A
typical workload of a

Note

Windows ould download the Windows 9x/Me
Scripting Host.

Scripting dministration
The system administrator covers a wide variety of tasks. In Table 10.1 we

on administrative tasks that for which WMI scripting is useful. We shall
e chapter.

provide examples of comm
cover each of these aspects in th

Table 10.1. Mat

Tracing the source of a ring which disk controller is attached to Association traversal.

tus of a eval.

ching Common Administrative Tasks to WMI Equivalent

Type of Task Example WMI Scripting
Programmatic
Equivalent

Discove
fault. which disk drive partition.

Checking the sta
managed object.

Check the processes and services currently
running on local/remote machine(s).

Instance retri

Table 10.1. Mat MI Equivalent

Type of Task WMI Scripting
tic

Find the s

stance retrieval using
a WQL query.

g the state of a
 object.

Setting a user account to be lo modification.

a new
managed object.

 etc.

g a managed rint queue. Instance deletion.

system.

Rebooting a system

hanges
in the managed
environment.

 the Win
The Windows Scripting H a small binary executable that resides in the ..//
Windows/system32 folder. It is shipped with Windows 98, Windows 2000 (Server and
Profess .0. Microsoft describes it as a "language independent scripting
host for the Windows operating system," which in plain English means that you can use a variety of
cripting languages with it if you have installed the necessary ActiveX scripting engine. Because

standard WSH supports Microsoft Visual Basic Scripting (VBScript) and JavaScript (JScript), both
SH on

o actions. WSH determines to which engine to pass the script based upon the file
suffix of the script. For scripts written in VBScript, the file suffix is .vbs and for scripts written in
JScr g engine is
store

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows Scripting Host\Script

ching Common Administrative Tasks to W

Example
Programma
Equivalent

 Find user accounts that are locked or disabled. In

tatus of a specific user account.

Changin
managed

cked. Instance

Creating Create a new instance of a managed object. For
example a new process (i.e., run Notepad. exe),

Instance creation.

create a new directory, service or share,

Deletin
object.

Removing a print job from a p

Effecting changes in
state on a managed

 or enabling DHCP. Method invocation.

Responding to c Disk space below 10Mbytes. Event triggered script.

What Is dows Scripting Host?
ost (WSH) is

ional), Windows XP, and IIS4

s

of which install as part of Internet Explorer 3.0 and later, to run scripts, you need to install W
your system.

Scripts
A script is merely a plain text file, very similar in some respects to an MSDOS batch file. It
contains a series of commands that the WSH passes to the relevant scripting engine for
interpretation int

ipt, the file suffix is .js. The association between the suffix and the ActiveX scriptin
d in the registry under the following key:

Ex

xtensions
akes it

 as
I

ike compiled languages such as C++, you do not need to go through building and
compilation before you can execute a script. In other words, you do not need to create an executable

exe file) to run the file. This simplifies the process of coding and debugging but affects the
performance of the script in relation to such compiled languages. The performance reduction,

l because most scripts are relatively small and the tasks administrators require
 relatively simple, compared to a full-blown Windows application.

ore.

tensions

Two further file types that are of interest to the WSH are .wsf and .wsh. Files with these e
contain references to other script files as part of the script. This programming approach m
possible to intermix scripts written in different languages and to store functions collectively
libraries. Space limitations prevent our addressing these file types in our introduction to WM
scripting.

Scripting vs. Compiled Languages
In scripting, unl

(.

however, is nomina
them to perform are

The benefits of writing scripts for WMI follow in summary:

• They are easy to use after you master the basic syntax.
• They can do everything that MSDOS batch files can do and a lot m
• They can be written to perform tasks ranging from the retrieval of a log-in name to e-

mailing all of the services running on a given machine to you.
• They enable you use the professional-looking Windows GUI to write scripts, which is not

possible from MS-DOS.
• They can take action in response to events while they are unattended.[3]

[3] Anyone who questions the potential power of scripting should think back to the outbreak of the I Love You (Love Letter)
worm. Written in VBScript and sent as an attachment in an e-mail message, it is an infamous testament to the power of

d never have achieved a fraction of this functionality!

Administrators who are concerned about the potential security risks associated with
dvantage of Microsoft's new scripting security model introduced

lists (CRLs), and certificate trust lists

[4]

scripting and the Windows Scripting Host. An MSDOS batch file coul

BEST PRACTICE! Script Signing

running scripts can take a
with Windows Scripting Host 5.6. It provides a series of Crypto API tools that can create

, it is possible to sign a script, and to view and verify digital signatures. Using these tools
nd manage certificates, certificate revocation a

(CTLs). This means that you can create a script and sign it to ensure that when it executes
 a host no one has tampered with it and it comes from authorized source.on

[4] For more information on the Crypto API tools see: http://msdn.microsoft.com/library/en-us/script56/html/wsconWinTrust.asp.

The Windows Scripting Host

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch10list03

Microsoft developed the Windows Scripting Host (WSH) to provide a way to interact with the
Windows operating system by executing scripts directly on the Windows desktop or from within
the command console. Microsoft also provides a command-line driven equivalent, CSCript.exe, that
will allow you to run scripts from the command line. In our discussion we shall use the Windows-

tine
s verifying the fields in a form. WSH enables us to write standalone scripts and execute

them directly without embedding them in HTML.

ter.
.

hey can be executed as standalone scripts using the Windows Scripting Host.

ors undertake, we shall concentrate upon writing
standalone scripts that are interpreted by the Windows Scripting Host.

and

based version, WSCript.exe, so that we can interact with the Windows GUI. If you surf the Web,
you may already be aware that scripts can be embedded in HTML documents to perform rou
tasks such a

Scripts can be executed in any of the following ways:

• They can be added to HTML documents and activated with Internet Explorer V3.0 or la
• They can be added to Active Server Pages (.asp) using Internet Information Services (IIS)
• T

Because of the types of tasks administrat

Your First Script
Rather than attempt to introduce a large amount of theory off the cuff, let's start by typing
running our first script (Figure 10.1). If you are too impatient to type the scripts, yo

 site at http://www.wbem.co.uk
u can download

them all from our Web .

Figure 10.1. First script

To write using VBScript you need a simple text editor like Windows Notepad or Wordpad. If you
use Windows Wordpad you should make sure that you save your work as a text document because
the extra formatting instructions in the other formats will cause errors in running the script. The
other downside of using Wordpad is that error messages typically refer to specific line numbers and
Wordpad does not have the facility to display line numbers

. This can become confusing if your

scripts grow to any great length. To avoid this problem you can use Notepad or a dedicated program
 shareware or freeware examples are available for download from the

[5]

editor (of which numerous
Web). The Windows script debugger already has a line number facility for identifying errors.

[5] A particularly good product is the Textpad text editor from Helios, http://www.textpad.com, that is available for trial as shareware.

Note

The Microsoft Notepad GoTo … facility on the Edit menu only works with the Word
Wrap feature switched off.

Hint

Scripting is not case sensitive, so you can use upper case and lower case indiscriminately

ing Host, your script should generate three separate dialog boxes, one

and it will mean the same to the WSH.

Now save the file to disk before attempting to run it. To run the script you can double-click the file
in Explorer or right-click it and select Open. Assuming that you have typed everything correctly and
installed the Windows Script
at a time, as shown in Figure 10.2.

Figure 10.2. Results of running example1.vbs

Congratulations, you have successfully typed and run your first script! Now let us look at how it

 some comments explaining who
and a simple description of what it does. We refer to this as

importance shortly. Next we specify an option for the WSH, Option
e script is parsed before it is interpreted. We shall discuss this in

SAGE and assigned it a value,
e," using the equals (=) sign. We also declare a variable called strMyInput using the DIM
t.

f

K button. Each MsgBox contains some text, the

nd a string literal and constant, and the third a string literal, constant,
o de more detailed definitions of all these terms as the chapter progresses.
 way of describing a piece of text enclosed in quotation marks. In the last

t

works.

You can see from the example that the program starts by listing
wrote the script, when they wrote it,
annotation and shall explain its

xplicit. This affects the way thE
detail shortly. Next we define a single constant value called MES
"Welcom
statemen

We then enter the program body, which is the part of the script that tells WSH what to do with all o
the constants and variables defined previously and how to behave. First we assign the string value,
"to scripting," to our variable. Next we have a series of calls to MsgBox function (short for Message
Box), which displays a simple dialog box with an O
first a string literal, the seco

viand variable. We shall pr
A string literal is a fancy
two calls to MsgBox we used the ampersand (&) symbol to concatenate the data before displaying i
to the screen.

Now let's type another example (Figure 10.3) that illustrates GUI-based input and output and the
use of variables.

This script initially behaves much the same as the last one until the point at which the variable
strMyInput is assigned the value, "to scripting." Then its behavior alters and an input box is place
on the screen using the

d
InputBox function that displays in Figure 10.4.

Figure 10.4. The result of calling the InputBox function

The input box is displayed before the message box when we run the script because it appears in the
script before the MsgBox call. Any input is then stored in the variable strMyInput, overwriting its
initial value. The last MsgBox call then displays this value to the screen by referring to the
strMyInput. This shows us how variables can be overwritten at run-time. Try changing the script
as follows and running it to see what happens.

Figure 10.3 GUI output using script

strMyInput = " to scripti

 ("This i
 ("This i
x ("This i trMyInput)
Input = In text:")

Input

Hint

In reality, the first line that assigns a value to strMyInput would be superfluous because the
variable is later assigned a value from the results of the input box.

'Example: 2
'Author: Craig Tunstall 26/04/2002
'Description: A simple script to get some input using InputBox and
' then display it using the MsgBox function

Option Explicit

Const MESSAGE = "Welcome"
DIM strMyInput

ng"
strMyInput = InputBox("Please enter some text:")

MsgBox
MsgBox

s a string literal")
s a constant: " & MESSAGE)

MsgBo
strMy

s what you entered: " & s
putBox("Please enter some

to

MESSAGE = Box("Please enter some text:")

You will receive an error, and the script will not run.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch10list06

Don't worry at this point if you do not understand every statement in the examples. Their purpose i
to introduce you to the basics of variables and put, and basic program

s
 constants, input and out

structure. Having typed these, let's look at some theory behind VBScript and programming in
iliar before you

start scripting.

dentation
hly structured than batch files, and to make them readable and maintainable and

 syntax errors, we use indentation. Scripts should always follow a consistent
on to amend an existing
tion style for the entire

ent lines of code where necessary.
vertical spaces (carriage returns) to segment logical sections of the script (for example,

gram body and variable/constant declaration).
 separate statements and their outcome.

BEST PRACTICE! Code Indentation
 help you

general and introduce some additional principles with which you will need to be fam

In
Scripts are more hig

 help track downto
indentation convention to emphasize the flow of the program. If called up

ndentascript always adhere to the existing indentation style or modify the i
source.

• Use tabs to ind
•

pro
Use

• Use horizontal spaces to

Always indent your code. It will improve readability and maintainability and
locate syntax errors.

Annotation
It is considered good

ognize wh
practice to always annotate a script. Annotation enables programmers to
at the program does, who wrote it, and when it was written. Typically

any subroutines, complex statements, arguments to
nd control stru nsure that you update

the comments to reflect enough comments that
ogrammer c our code, but not so many that they overwhelm readers, thus

de.

n VBscri the REM
rt for RE hat the script does

 that lin ing of each new line
re yo

e to
 your script

to run, it is definitely considered good practice an
scripts.

quickly rec
ers annotate the start of the script and programm

routines, a ctures. If you are modifying an existing script, also e
any changes. As a general rule scripts should include

another pr an interpret y
obscuring the co

To annotate i pt, you have two choices: either to use the ' character or to use
keyword (sho
until the end of

Mark). Both allow you to put a textual description of w
e. Remember to use the ' character or REM at the beginn

immediately befo ur text to avoid syntax errors.

Annotating your code saves somebody else having to read through your work line by lin
understand the purpose of the script. Although this type of annotation is not required for

d can save a lot of time when you go back to your

BEST PRACTICE! Code Annotation
Always annotate your s least the author's name, the date the script was cripts with at
written or modified, and the purpose of the script.

ples, we declared a constant called MESSAGE. We did so using the const
otation marks

here it starts and ends. Anything enclosed in quotation
marks is classified as a string literal. Because is a constant, it cannot be changed while the

e
ge you received earlier if you altered the script to assign MESSAGE, the value taken from

the input box. If we wish to create values that can be changed during the running script, we declare
variables his statement—
ReDIM, P IM). Note also
that variable and constant names scope that they are declared.

The purpose of variables and constants in any programming language is to keep track of data
we would
ere we

for! In the not-so-distant past when people programmed in
ssembly language, you literally chose a free spot in memory and placed your data there. Whenever

you wanted to retrieve that data, you had to refer explicitly to that memory address using a numeric
 way of storing this data in memory.

Software engineers classify pr typed depending
upon how str ining of types. For
example, in erical value) of a
variable bef assify it as loosely
typed. You s you use. You can
also combine variables and constants regardless of type.

 script to use any variable or constant name
w of a script, maintain it, and track errors if

you use meaningful variable and constant names. For example, variable X13DA may have had some

Variants, Variables, and Constants
In the previous exam
keyword and assigning it a value of "Welcome." The string literal was enclosed in qu
to delimit the string so that WSH knows w

MESSAGE
script is running (that is, it remains constant throughout the running of the script). This explains th
error messa

using the DIM statement (note that there are actually three variations of t
ublic, and Private—but for the purpose of the boot camp we use only D

 must be unique within the

components in a convenient and easy to remember way. Without variables and constants,
find ourselves placing data in areas of memory manually and then having to remember wh
placed them and what they were
a

value. Variables and constants provide us with an automatic

VBScript has only a single data type, referred to as a Variant. Variants are able to contain different
types of data (that is, strings, numbers, objects) depending on how they are used. From the
perspective of a programmer this makes life really simple. Also, because Variant is the only data
type in VBScript, it is also the data type returned by all functions in VBScript. When we declare
variables, they are all of type Variant.

ogramming languages as either strongly or loosely
ict the language is with regard to its type declaration and the comb

C++ you must first declare the type (that is, if it is a string or a num
ore you can assign it a value. Because VBScript uses Variants, we cl
therefore can forego having to assign an explicit type to any variable

Use Meaningful Variable Names
Although it is tempting while hacking away at a piece of
that comes to mind, it is a lot easier to understand the flo

cryptic meaning at its inception but is unlikely to have the same meaning six months later and wi
probably mean nothing to someone else trying to maintain your script.

Different software companies have different naming conventions for variables, constants, object
and so forth. Indeed you may decide that you should follow this example and define a naming
conventio

ll

s,

n of your own. When doing so, try to capture in the naming scheme the purpose of the
variable, constant, or function as well as its type. For example, name your variables and constants in

 they can change during the execution of the
script), constants (that is, they cannot change during the execution of the script), or functions. In

 six and twenty characters; otherwise, they become cumbersome.

For example, we shall use the

ic variable ed with n that is, nCounter

String variables are prepended with str that is, ring

a that is, ay

Objects are prepended with obj that is, objAnObject

 when writing scripts and always use
meaningful variable names.

a way that indicates whether they are variables (that is,

scripting, variable and constant names can be up to 255 characters long, but it is advisable to keep
them to between

 following naming convention:

Numer s are prepend

strMySt

Array variables are prepended with aAnArr

Constants are entirely uppercase that is, MYCONST

BEST PRACTICE! Variable Naming
Always use a consistent naming convention

VBScript Functions
BScript to assist you in performing a variety of

you having to write complex code when
performing tasks like placing a dialog box on the screen, converting date values, or displaying a

riFunctions.asp

Microsoft provides over 90 built-in functions with V
common programming tasks. These functions save

picture to the screen. In the examples so far, we have used the MsgBox and InputBox function to
output information.

MsgBox ("This is a string literal")
MsgBox ("This is a constant: " & MESSAGE)
MsgBox ("This is what you entered: " & strMyInput)

For a detailed explanation of the available functions and their purpose, see
http://msdn.microsoft.com/library/en-us/script56/html/vto .

The WSH Object Model

The main motivation for writing any program is to achieve some goal, whether it is displaying a
iting
ritten

del. When you run a script using the
ly gain access to the object model that it provides. Each object in the object

ber of methods and properties that are all related by function. For
t contains methods that relate to network drives and printers and

ain name. The WSH object model

 as
nment variables, creating shortcuts, and

g from the system registry. The execution and troubleshooting interfaces allow
d manipulation of the WSH. We cannot describe each of these in detail here,

ples. For more information on the WSH object
 http://msdn.microsoft.com/library/en-

simple text message on the screen or accessing some data from a database. The process of wr
is simplified by calling upon prewour scripts to perform certain types of administrative tasks

ethods or properties that are stored in the WSH object mom
WSH, you automatical
model potentially contains a num
example, the WshNetwork Objec
properties that hold the user name, computer name, and dom
defines 14 objects, broadly categorized as either helper functions or script execution and

suchtroubleshooting functions. You can use the helper functions in your scripts to perform tasks
mapping network drives or retrieving and modifying enviro
reading and writin
output to the screen an

ntion those that we use in our exambut shall me
model, see
us/script56/html/wsoriWSHLanguageReference.asp.

m
associated actions. These

 and parcel of
 some

tant
h programming language has its own set of keywords. The only

ou need to remember that you cannot use one of these reserved keywords to name
ample, you cannot name a variable Set because this would lead to confusion:

to the variable or to the VBScript keyword.
e practice, however, you will find yourself reusing certain statements, making the coding

erge in your program

ge.

Table 10.

Program Statements and Keywords
For our programs to actually perform some actions, we must issue comm

e
ands to tell the syste

what we want it to do. To make this happen, we use statements that hav
statements are predefined by the programming language and learning them is part
coding in any language. To make things easier to remember, the statement names give
indication of their function and are usually referred to as keywords. For example, the cons
keyword is short for constant. Eac
limitation is that y
your variables. For ex
The system would not know whether you were referring
With som
process a lot more fluid. Also, certain patterns will begin to em ming, thus
simplifying and speeding up your scripting time. In our Example 1 and Example 2, const and DIM
are keywords that belong to the VBScript langua

2 provides a list of VBScript keywords with brief descriptions. For a more detailed outline
nction and arguments, please refer to the MSDN Web site at of their fu

http://msdn.microsoft.com/library/en-us/script56/html/vtoriStatements.asp.

word used to pass control of the script to a sub or function

Table 10.2. VBScript Keywords

Keyword Description
Call An optional key

procedure.
Class Used to declare class definitions.
Const Declares a constant value.
Dim Declares one or more variables.
Do...Loop Used to repeat a block of statements until a condition is true or while a

Table 10.2. VBScript Keywords

Keyword Description

condition is true.
Erase Used in conjunction with fixed-sized arrays to clear their contents.

.

dy of a Function

Error

Option Explicit Used to force explicit declaration of variables in a script with the DIM,

 to declare private variables.

Used in a class block to specify a name, arguments, and code that set a value.

 in a class block to specify a name, arguments, and code that set a

om number. Used in conjunction with the Rnd function that

res a dynamic array.

 comments to a script. Is same as '.

 an

Used to assign an object reference to a variable or property.

f code that forms the
outine must be terminated by the statement End Sub.

ied. This is
me object.

Execute Used to execute one or more statements.
ExecuteGlobal Used to execute one or more statements in the global namespace of the script
Exit Used to forcibly exit do … loop, for each … next, functions or subroutines.
For Each...Next Iterates through a group of statements for each element in a collection or

array.
For...Next Iterates through a block of statements a specified number of times.
Function Declares the name, arguments, and code that form the bo

procedure.
If...Then...Else Conditionally executes a block of statements, depending on the value of an

expression.
On Error Enables or disables error-handling by the system. Typically used as On

Resume Next, which disables the global Err object.

ReDIM, Private, and Public statements.
Private Used
Property Get Used in a class block to specify a name, arguments, and code that return a

value.
Property Let

Property Set Used
reference to a value.

Public Used to declare public values.
Randomize Generates a rand

returns a random number.
ReDim Decla
REM Short for Remark and used to add
Select Case Executes one of several groups of statements depending on the value of

expression.
Set

Sub Dec
subr

lares a subroutine within a script. The block o

While . . . Wend Repeats a block of statements while a condition is true.
With Allows reference to be made to an object's functions unqualif

useful if repeated calls need to be made to functions on the sa

Table 10.2. VBScript Keywords

Description

initialized variable value. This is not the same thing as a
ng set to null.

to 0.

ble from any

xplicit Statement
In all of our examples, we shall use the Option Explicit statement. This tells the interpreter to check

d we
specify something that will m ssible
to introduce erro Option
Explicit makes you more aware of the variables that you have declared and their purpose within the
script.

BEST PRACTICE! Variable

Keyword
Empty Used to indicate an un

variable bei
False Equivalent
Nothing Used in conjunction with set to disassociate an object varia

object.
Null Used to indicate that a variable contains no valid data.
True Equivalent to 1.

The Option E

the script more stringently for the declaration of variables using the DIM, Private, Public, and
ReDim. This statement must appear before any other statements in the script. But why woul

ake our lives harder? We don't. Without Option Explicit it is po
rs in your script that can be hard to track down at a later date. Using

Declaration
Always declare the Option Explicit statement at the start of your scripts.

Connec
Our next example takes the first step toward interacting with WMI using a script. It connects to a
namespace in the CIM repository. From reading the previous chapters, you should be aware of the

ieve, set, delete, or create
ust first connect to a

.5

ting to a Local or Remote Namespace

purpose of namespaces in CIM. When connected you are able to retr
management information. If you want to interact with WMI, then you m
namespace.

In the example in Figure 10 , we have built upon Example 2 and defined a new variable called
objNamespace to hold a namespace object. The script still uses an input box, but we have modified

you wish to connect. WMI accepts a machine
name or an IP address as a parameter. The script introduces the use of the GetObject statement to

iker (don't
worry; we shall discuss and monikers in more detail shortly). We say attempt because the

 the script, including

this to request the name of the machine to which

attempt to connect to a WMI namespace on a remote machine using the WINMGMTS mon
WINMGMTS

successful completion of the task is due to many factors outside the control of

the availability of the destination machine, network conditions, and our security context. Let's
on the target

e default then we could append it, as

A moniker is an alias for a sequence of calls and settings. Microsoft provided the WINMGMTS
moniker to simplify the process of attaching to the default CIM namespace with default privileges.
In its sim
as fo

Figu
Note at the
GetO returns successfully (that is, attaches to a namespace).

 Example: 3
' Author: Craig Tunstall 26/04/2002

 namespace

Option Explicit

Set objNamespace = GetObject("WINMGMTS:")

g.SWbemLocator")

Locator.ConnectServer(,"root\CIMV2")

assume, however, that the statement successfully connects to the default namespace
machine.

Set objNamespace =
Getobject("WINMGMTS:{impersonationlevel=impersonate}\\" &
 strMyInput)

If we wanted to specify a target namespace other than th
 call. follows, to the end of the WINMGMTS

Set objNamespace =
GetObject("WINMGMTS:{impersonationlevel=impersonate}//"&
 "root/anothernamespace"}

plest form the WINMGMTS moniker can attach to the default namespace on the local machine
llows:

re 10.5 Scripts That interact with the GUI
: Because we haven't discussed error checking yet we shall assume th
bject call always

'

' Description: A simple script to attach to a

Const MESSAGE = "Connected to "
DIM strMyInput, objNamespace

strMyInput = InputBox("Please enter a machine name:")

Set objNamespace = Getobject("WINMGMTS:{impersonationlevel=impersonate}\\"
& strMyInput)

MsgBox(MESSAGE & strMyInput)

This is functionally equivalent to the following series of calls which we discuss shortly:

DIM objLocator, ojNamespace

et objLocator = CreateObject("WbemScriptinS

Set objNamespace = obj

objNamespace.Security_.ImpersonationLevel =
bemImpersonationLevelImpersonate w

By doing so we accept the following (Figure 10.6) default settings, which
indows XP this value can be altered using the snap-in that can be

are OS configurable. In
WMIMGMT called using Start/Run, W

wmimgmt.msc.

Figure 10.6. The WMI Control Advanced tab can be used to set the default
namespace on a machine

Default settings for WINMGMT are:

• Namespace: \\root\CIMV2_
Impersonation level: impersonate (WMI core version 1.5 above)

 to a namespace by using the SWbemLocator
an replace our call to as follows:

ce

ocator = CreateObject("WbemScripting.SWbemLocator")

gh Connectserver uses more lines of code, it is possible to specify a username and
you use WINMGMTS.

•
• Authentication level: pktprivacy

As we mentioned earlier, it is also possible to attach
method, ConnectServer. Thus, we c WINMGMTS

DIM objLocator, ojNamespa

et objLS

Set objNamespace = objLocator.ConnectServer(,"root\CIMV2")

 objNamespace.Security_.ImpersonationLevel =
wbemImpersonationLevelImpersonate

Althou
password when connecting to a namespace, which you are not able to do if

ConnectServer(Servername,NameSpace,Username,Password,Locale,Authority,
Securityflags)

ser on
 I
ser

• Servername is the name of destination machine—that is, Machinename, 145.123.123.1
pace is the destination namespace—that is, \root\CIMV2

ms_409 for US
for the host machine.

ain is required for
authenticat

• ntlmdomai
•

vice.Security_.ImpersonationLevel = wbemImpersonati Level
mpersonate
vice.Security_.AuthenticationLevel = wbemAuthenticationLevelIPkt

 Integrity

Where:

• Names
• Username is the user name—that is, Administrator
• Password supplies the password

e LCID. For example, for UK English and • Locale specifies th ms_809
English. If not specified, then it simply takes the default

• Authority specifies whether an alternative Kerberos or NTLM dom
ion. It should be formed as follows:
n:domainname or kerberos:domainname\Servername

Securityflags: Only two options are currently available (see Table 10.3).

Table 10.3. Security Flags for ConnectServer

Flag Description
Null Wait indefinitely until connection establishes
WbemConnectFlagUseMaxWait The call returns in 2 minutes or less

It is good practice to set the security flag to

 is going to

BEST PRACTICE! Using a password
o a

namespace
If specifying the username and password for accessing a namespace, avoid placing these
values in the script explicitly using string literals or constants as this warrants an
unne e, use them, and then
destr ve attached to the

wbemconnectflagUseMaxWait if your script
run unattended.

and username to attach t

cessary security risk. Instead, specify these values at runtim
oy them (by resetting the variable to null) as soon as you ha

namespace.

BEST PRACTICE! Retrieving locale-
specific information

You may recall from Chapters 3 and 4 that WMI can contain locale-specific information.
If you are connecting to a namespace that stores information from multiple locales or
simply from a different locale from your own, you possibly will need to specify the locale
of the information you wish to retrieve. This would be especially true if you were
attempting to connect to a namespace hosted on a machine based in a foreign country. If
you do not specify this value, you run the risk of retrieving your data in the default locale

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch10list12

of the target machine. There are two ways of retrieving locale-specific information,
depending on whether you are connecting to a namespace: You can use the WINMGMTS
moniker or SWbemLocator. ConnectServer.

Using WINMGMTS, you enclose the locale value in [] square brackets as follows:

[View full width]

09]!root\CIMV2:

SWbemLocator.ConnectServer, you specify it as follows:

Set objNamespace =
 GetObject("WINMGMTS:[locale=ms_8
Win32_LogicalDisk")

This call retrieves the localized class definition for . Win32_LogicalDisk

Alternatively, using

[View full width]

Set objLocator = CreateObject("WbemScripting.SWbemLocator")
t objNamespace = objLocator.ConnectServer(, "root\CIMV2",

,,

ers when performing any subsequent calls that read or
ample:

Se
"ms_809")

Having specified your locale, in both cases you must then use the flag
wbemFlagUseAmendedQualifi
write to locale-specific information. For ex

[View full width]

wbemobjecSet obj
jName

t = _
space.Get("Win32_LogicalDisk", ob

wbemFlagUseAmendedQualifiers)

We introduce the Get function later in the chapter.

Top Tip

The underscore _ character in VBScripting allows a statement to carry across to a new
nderscore

 up sting literals so that they carry across to a new line.

po o
ab
authentication, that you can use when connecting to a namespace using WINMGMTS or
ConnectServer. The impersonation level dictates if and how you hand over your credentials to a
trusted third party. The authentication level dictates if and how you verify that you are who you say
you are.

line. Always ensure that it is prec
ter cannot be used to break

eded by a single white space. Note that the u
charac

Security Issues
The issue of security has always been of importance in distributed systems, especially when

tentially system-critical management data is at stake. To combat malicious attacks that attempt t
use WMI Microsoft, employ two Distributed COM (DCOM) mechanisms, impersonation and

To illustrate this point further imagine that you walk into a Main Street bank and request a transfer
of funds. Before proceeding with the transfer the bank clerk must first authenticate that you are the
owner of the account. To prove you are the owner, you could provide visual confirmation: a bank
card, driver's license, or passport. These are forms of authentication.

Note of Interest

It is worth noting that in banking and system security they commonly refer to this as

Next, the clerk may need to etails on the banking
system and carry out the tra rdinarily the clerk could

cess to your account but tails is able to carry out the requested task. At the
transaction, the clerk returns the card, and you leave the bank.

vel of impersonation a ing to a namespace is an
important aspect of ensuring that your code works and is secure. Using too high a level of
impersonation represents an unwar iving too little may not allow the

r words, it is a balancing n these two states. Microsoft's
icient in mo hough in certain

situations you may want to reconsider the impersonation and authentication setting, for example, if
you are connecting to one or more nnecting across an

k such as the Inter

The impersonation level (Table 10.

"two-factor" authentication. For example, an ATM requires both your card (a physical
factor) and your PIN number (a personal factor).

 swipe your bank card to gain access to your d
nsaction. This is a process of impersonation. O

not gain ac with these de
end of the

Setting the le nd authorization prior to connect

ranted security risk, whereas g
 act betweetask to be carried out. In othe

default settings are suff st cases for connecting to a namespace alt

remote namespaces, especially if you are co
untrusted networ net.

4) defines two aspects of your interac
tials to the target process. Second, i

tion. First, it determines
whether or not you show your creden t dictates whether that

can then use your security st.

Table 10 tion Levels

Level
Description

Anonymous Will fail on calls to m te machines as it hides the credentials of the
r bank without

achines as this allows the target to
query the credentials of the caller but not adopt those credentials to carry out
the request. This would be like allowing the bank clerk to see your credentials
but not allowing the clerk to use them when carrying out your request.

 to both retrieve and use the credentials of the

an be carried out. This is the default setting
for WMI version 1.5 and above.

Delegate (Windows This setting not only allows the remote machine to use your credentials but

machine context to carry out the reque

.4. Security Impersona

Impersonation

ost remo
caller. This would be like trying to withdraw money from you
providing valid proof of identity.

Identify Will also fail on calls to most remote m

Impersonate This allows the remote machine
caller. Works in most cases for connections to remote machines. This would
be like providing adequate proof of ID and supplying the clerk with your
bank card so that your request c

Table 10.4. Security Impersonation Levels

et

There are varying strengths of authentication depending on how vulnerable to attack is the type of
connection yo

Impersonation
Level

Description

2000 and XP only) also any subsequent machines it connects to while carrying out your request.
Use with caution as the further your credentials are carried around the
network, the more vulnerable they are to attack. Using our banking metaphor,
this would be like giving your bank card to the bank clerk who could then
potentially pass it around the bank to numerous people in an attempt to g
the job done: not advisable unless you are very confident about all of the host
machines in your network.

u are making (see Table 10.5). With each increase in strength is an associated
overhead of processing time and bandwidth to carry out the authentication. Although negligible in
terms of DSL connections and today's high-end pro essors, this could become an issue if you are
connecting to a server across a low-bandwidth analog 56k line. It is important to understand that
uthentication works both for you and the machines to which you are trying to connect. For

example, if you set the authentication level to None and tried to connect to a namespace hosted on a
obably fail. This is because that machine
t allow you access to its resources.

 Authenticates the credentials of the caller only when the connection is first
ation machine.

 at the beginning of each call when the destination machine

 all data, packet by packet, from the client. This is the default
setting for WMI.

ates that no data has been modified during transit between the
e and destination machine.

 encrypts the argument

ues are:

inname\Servername}

e (see

c

a

remote Windows 2000 server, the connection will most pr
has no way of authenticating you and consequently will no

Table 10.5. Security Authentication Levels

Authentication
Level

Description

None No authentication is used. Not recommended!

Connect
made to the destin

Call Authenticates only
receives a request.

Pkt Authenticates

PktIntegrity Authentic
sourc

PktPrivacy Authenticates all previous impersonation levels and
value of each remote procedure call.

It is also possible to identify the authentication authority. At present the two accepted val

• WINMGMTS: {authority=ntlmdomain:domainname}
• WINMGMTS: {authority=kerberos:doma

Finally, it is also possible to specify which privileges to deny or allow on your local machin
Table 10.6). When communicating a

u
cross a network to a remote host, this becomes the
 will need to set the privileges if you want to perform certain

any
responsibility of the COM RPC. Yo
tasks such as requesting that the machine shut down. However, be careful not to revoke

privileges that may interfere with the actual purpose of your script. This option is not applicable to
ws 98 because of the different security model (or absence thereof):

o deny a certain privilege, use an exclamation sign (!) before it.

tants[*]

Windo

• WINMGMTS:{(Security,!RemoteShutDown)} will stop this machine performing remote
requests to shut down.

T

Table 10.6. Security Privilege Cons

Privilege Constant Description
CreateToken Required to create a primary token.
PrimaryToken Required to assign the primary token of a process.
LockMemory Required to lock physical pages in memory.
IncreaseQuota Required to increase the quota assigned to a process.
MachineAccount Required to create a machine account.
Tcb Identifies its holder as part of the trusted computer base. Some trusted,

protected subsystems are granted this privilege.
Security Required to perform a number of secu

controlling and viewing aud
rity-related functions, such as

it messages. This privilege identifies its

an object without being granted
r value to be set only
gn as the owner of an

 a device driver.

nformation for the entire system.

Required to gather profiling information for a single process.
IncreaseBasePriority Required to increase the base priority of a process.

n Required to shut down a local system.

Audit Required to generate audit-log entries.

odify the nonvolatile RAM of systems that use this type of

holder as a security operator.
TakeOwnership Required to take ownership of

discretionary access. This privilege allows the owne
to those values that the holder may legitimately assi
object.

LoadDriver Required to load or unload
SystemProfile Required to gather profiling i
Systemtime Required to modify the system time.
ProfileSingleProcess

CreatePagefile Required to create a paging file.
CreatePermanent Required to create a permanent object.
Backup Required to perform backup operations.
Restore Required to perform restore operations. This privilege enables you to set

any valid user or group SID as the owner of an object.
Shutdow

Debug Required to debug a process.

SystemEnvironment Required to m
memory to store configuration information.

Table 10.6. Security Privilege Constants[*]

Privilege Constant Description

Required to receive notifications of changes to files or directories. This
 It is

directory service data.

puter and user accounts to be trusted for

the type of task
r static within the

 documentation for the provider you
, but at present this is problematic. Many of the built-in providers do not explicitly

ent the implementation/authentication settings needed to carry out specific tasks, in which
ase you must assume that the default settings are sufficient. In reality the setting depends on a
rocess of trial and error, reading the error messages you get when calls fail, and generally using

this is that versions of
WMI earlier than 1.5 were configured to have a default impersonation level of Identify.

lways a
possibility that when connecting to a remote machine the call will fail. Notice also that we

onnect to, as this setting can equally be

ChangeNotify

privilege also causes the system to skip all traversal access checks.
enabled by default for all users.

RemoteShutdown Required to shut down a system using a network request.
Undock Required to remove computer from docking station.
SyncAgent Required to synchronize
EnableDelegation Required to enable com

delegation.

[*] Taken from Microsoft MSDN documentation

Deciding on the Level of Security Required
The settings for the impersonation and authentication levels is largely dictated by

that is, a provider oyou wish to carry out and how it is instrumented within WMI (
heck theCIM repository). Microsoft suggests that you should c

are usi
ocum

ng
d
c
p
common sense.

BEST PRACTICE! Connecting to a
namespace

Our example uses the WINMGMTS moniker to improve readability but also explicitly
defines the level of impersonation as impersonate. The reason for

Unless you specifically set the impersonation level in your calls, there is a

have explicitly defined the namespace to c
modified and cause your scripts to go awry.

[View full width]

t objNamespaceSe =_

 GetObject("WINMGMTS:{impersonationlevel=impersonate}//
&"root/another- "
namespace"}

Data Input
Sometimes when you write a script you want to be able to enter the parameters at runtime rather

ample
runtime

As part of the VBScript boot ca k at two possible ways of doing this:
one for unattended operation and one for attended. ed in the
par capture and use
these ct model
me

than specifying them explicitly in the script. This makes the script more flexible. A classic ex
that would warrant this approach could be specifying the machine name or domain name at
so that your script can carry out its function.

mp introduction we shall loo
The first unattended way is to fe

ameters at the command line when initially calling the script. The script can then
rguments using the a WSCript.Arguments property that is part of the WSH obje

ntioned earlier. Type the script in Figure 10.7 and then call it from the Start/R
owing:

un menu by typing
the foll

C:\example4.vbs machinename username <return>

Fig
Note: ber of arguments in this example, then
the

'Examp
'Autho
'Description: Simple script to accept command line parameters and output
'

DIM objArguments, strMachine, strUsername, strPassword

Set ob

' S
str
strUse

' notice that the arguments start at 0
MsgBox("The machine name is: " & strMachinename)
sgBox("The user name is: " & strUsername)

Each parameter you entered is retrieved by the property and then displayed using the
assed to the

e

ure 10.7 Input through the command line
If you do not supply the correct num

 script will fail.

le: 4
r: Craig Tunstall 02 May 2002

 them to the screen

jArguments = WScript.Arguments

tore these values in meaningful variable names
Machinename = objArguments(0)

rname = objArguments(1)

M

Arguments
call to MsgBox. The numeric value passed to objArguments(n) refers to the argument p
script starting with zero as the first entry (in our case machinename).

The second way of retrieving input is the InputBox function that uses the Windows GUI. We hav
already encountered this function in an earlier example, but here it is again with a few more
parameters.

Figure 10.8 displays three separate input boxes and stores the values entered by the user in each of
the three separate variables, strServerName, strUsername, and strPassword. The first parameter
passed to the input box is the text prompt displayed that tells the user what data is required. The
econd parameter is the title of the input box. Notice that we have added default values for the

server name and username as an optional third parameter to speed up the process of entering the

Figure 10.8 Input through the GUI

s

details.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch10#ch10

'Example: 5
'Author: Craig Tunstall 02 May 2002
'Description: Simple script using input boxes to retrieve input

DIM strServerName, strUsername, strPassword

Error Detection
Broadly speaking, two types of errors should con
errors t r. These
errors c
judicio ult of
problem e script is trying to connect to

munication with the outside world.
m in place to catch the error and

provide as much information as possible about it.

.

other types of errors. To use our own error-checking routine
we must first turn off the WSH standard error-checking routine. To do so, at the beginning of your
script b

On Error Resume Next

This literally means "on error resume at the next statement in the script." This stops the error from
being c). But
why is this useful? Many types of administrative scripts need to run unattended; therefore, it is not

 see the
g On Error Resume Next makes it the responsibility of the programmer to detect any

errors and take the appropriate action. The error-checking technique we propose introduces the use

y

y

Sub MySubRoutine
nts here

' Then end the subroutine using EndSub

e it using the call statement as
follows (note that you do not have to use the call statement but we do so in the examples to improve
the readability of the script).

strServername = InputBox("Enter server name: ","Server Name Input Box",
 "Default server name")
strUsername = InputBox("Enter user name:", "User name Input Box",
 "Administrator")
strPassword = InputBox("Enter password:", "Password Input Box")

cern us when writing scripts. There are those
hat are part of the script, syntax and semantic errors, that we mentioned briefly earlie
an be found during development and testing and are highlighted largely by WSH and
us use of the script debugger. The second, more insidious kind of error happens as a res

s outside the scope of the script. For example, a router that th
may not be responding or a faulty network card prevents com
For this type of problem, our scripts need to have a mechanis

To deal with these errors we employ a function that is part of the WMI scripting API, SWbemError
This function provides a more detailed account of WMI-related errors than the standard WSH Err
routines that we also shall use to catch

efore any other statements enter the following line:

aught by WSH (which would normally terminate the script and report the error to you

particularly useful for them to behave in the default manner because nobody will be there to
error. Usin

of subroutines, using the sub statement. A subroutine in VBScript is a simple but effective way of
saving time by reusing blocks of code that you may need to use repeatedly within your script. B
delimiting a block of code with the Sub and End sub statements, as you can see in the excerpt
below, you create a subroutine within your script that you can call repeatedly. Subroutines typicall
are placed at the end of the script after the main body of code.

'Enter my block of stateme
' And here.'

End sub

Having declared the MySubRoutine, it is then possible to evok

Call MySubRoutine()

Using subroutines, we can also pass parameters as in the example in Figure 10.9.

Figure 10.9 Calling subroutines

' Example: 6

Call DisplayText(strMyInput)

Sub DisplayText(strText)

 MsgBox ("This

End sub

tice that the value you

e, strText,

For our e call
CheckW d we call
CheckS

In both

' Author: Craig Tunstall 26/04/2002
' Description: An example of passing a value to a subroutine

Option Explicit

DIM strMyInput

strMyInput = InputBox("Please enter some text: ")

 is what you entered: " & strText)

Multiple parameters can also be passed using the comma as a delimiter. No
type in the input box is held first in variable strMyInput, which is then passed to the subroutine
DisplayText. After inside subroutine, DisplayText, the variable assumes a new nam
which is then displayed as part of the MsgBox call.

Call CheckWMIError()
Call CheckStdError()

 error checking we define two subroutines: CheckWMIError and CheckStdError. W
MIError after we perform any task that calls the WMI API to check for an error an
tdError in all other cases when we want to check for more general WSH errors.

 subroutines in Figure 10.10 we introduce the use of the conditional If … then statement.
Using this stat ents in response to certain conditions
being met. In o Err <> 0, which checks to see if the
global WSH o not equal to zero an error
has occurred in ssage box. It converts the
value i nd
then pr called,
then ex routine
clears t e WSH object
model m WScript.quit(0)
used to

ement it is possible to execute a block of statem
ur error-checking subroutines the condition is

bject Err contains an error code. More precisely, if Err is
 your script. If true the routine then displays an error me

nto a string representing the hexadecimal value of the number using the Hex function a
oceeds to list the description for the error. If the CheckWMIError subroutine has been
tended WMI error information is appended to the error message. Finally the sub
he Err object back to zero and then stops the execution of the script with th

ethod . The value enclosed in the parentheses is optional and can be
 indicate under what conditions the script terminated. See Figure 10.11 for an
ialog boxes in action.

rror and WMI Exte

example of the
Error d

Figure 10.11. The Standard E nded Error Information dialog boxes

A
c

s you can see the code blocks for both subroutines are quite detailed, which is why we place the
ode in a subroutine and call it as necessary in our examples. Notice how we have indented the

ts within the If … then statement to help make the script more readable.

b.

block of statemen

If you examine the code within the calls to MsgBox you will see references made to VbCr and VbTa
These are VBScript constants that can be used for formatting text. Table 10.7 provides a complete
list of the available formatting constants and their descriptions.

tant ion

Lf ut.
Cr

CrLf feed into output.
ne to the output.

In our error-detection routine, we have also enhanced the appearance of the message box by using
 additional flag

at you declare a variab nMsgResult
Without this the call will fail. We have deliberately changed the appearance of the MsgBox so that it

ghlights that an and feel of the
UI. Y exclamation Wav when it is
ach

Table 10.7. VBScript Constants

Cons Descript
vbTab Inserts a horizontal tab into output.
Vb Inserts a line feed into outp
vb Inserts a carriage return into output.
vb Inserts both a carriage return and line
vbNewLi Inserts a platform-specific new line in

an
ensure th

, vbExclamation. To access these features on the MsgBox function you must
le to which it will return a value. In our case this is .

hi error has occurred in a way that is consistent with the look
Windows G
displayed. E

ou will also notice that the message box plays the
of the constants in Table 10.8 can be used with the MsgBox function to change its

nce to match the message it conveys.

igure 10.10 S

'Example:
'Author: Craig Tunstall

own. Cut and

Sub Ch

DIM nM

If Err
 nMsg
 Hex(Err.Number) & vbCr & "Error Type: " & VbTAB & _

appeara

F ubroutines to display errors

 7

'Description: This is an excerpt and will not run on its
' past into your own scripts to use.

eckStdError()

sgResult

.number <> 0 then
Result = MsgBox ("Error Number: " & VbTAB & "0x" & _

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch11table01

 Err.Description,vbExclamation, "Standard Error Information")
 Err.clear
 WScript.quit
 End if
End sub

Sub CheckWMIError()

 DIM nMsgResult,WMIError

 If Err.number <> 0 then

mScripting.SWbemLastError")
 nMsgResult = MsgBox ("Error Number: " & VbTAB & "0x" & _

ror.Operation & vbCr & "Parameter Info: " & VbTAB & _

vbQuestion Displays the warning question mark icon in the message box.

 10.9

 Set WMIError = CreateObject("Wbe

 Hex(Err.Number) & vbCr & "Error Type: " & VbTAB & _
 Err.Description & vbCr & "Operation: " & VbTAB & _
 WMIEr
 WMIError.ParameterInfo & vbCr & "Provider Name: " & VbTAB & _
 WMIError.ProviderName & vbCR & "Error Description: " & VbTAB & _
 WMIError.Description, vbExclamation, _
 "WMI Extended Error Information")
 Err.Clear
 WScript.quit
 End if
End sub

Table 10.8. MsgBox Appearance Constants

Constant Description
vbInformation Displays the information message icon in the message box.

vbCritical Displays the critical message icon in the message box.
vbExclamation Displays the warning message icon in the message box.

You can also modify the behavior of the message box using the constants in Table .

s allowed
to continue.

vbApplication e message

essage box that both displayed icon and
spended all currently lications, you could specify it as follo

M nMsgResult
= MsgBox cationModal+vbExc
clamatio

Table 10.9. MsgBox Modal Constants

Constant Description
vbSystemModal The user must respond to the message box before the application i

Modal All applications are suspended until the user acknowledges th
box.

For example, if you wanted to create a m the exclamation
su running app ws:

DI
nMsgResult
 "Modal Ex

("Look at me!",vbAppli
n message box")

lamation,

Both error dialogs in Figure 10.11 use the VbExclam
es.

ation constant to change the appearance of
MsgBox

BEST PRACTICE! User/Script
Interaction

If writi ser
at all st
success

ng an attended script, always provide consistent and accurate feedback to the u
ages of a script's execution. This includes error notification and notification of the
ful completion of a task.

Error Logging (NT/2000/XP Only)
If your eal way to keep track of any
successes or failures that have occurred in your absence. WSH supports event logging so that you

an invaluable way
of tracking whether a script successfully executed or the type of errors it encountered. It also

 time that the error occurred.

d Script Behavior
e application event log is a powerful feature for tracking the

behavior of your scripts, but use this feature sparingly. Do not use it as a debugging tool
al to tracking the event.

 scripts are going to run unattended, dialog boxes are not the id

can write to the application event log and view the information later. This can be

provides the exact date and

BEST PRACTICE! Tracking
Unattende

Storing information in th

and report only the information vit

First, c function.

Set ws

Then to n. This tells the WSH to
write directly to the application event log. The LogEvent function takes two parameters: The first
tells the event log what type of event has taken place and the second is the text it displays in the
description field of the event. In the following example, the first parameter is , which tells the
even scription of
the e

Wshs

ber of different options depending on the type of event you are reporting, as shown
 Table 10.10

reate a WSCript object for accessing the LogEvent

hshell = CreateObject("WSCript.Shell")

 generate an event, place a call to this object's LogEvent functio

1
t log to list this as an error. The string literal is the text that will be placed in the de
vent.

hell.LogEvent 1, "My error description"

There are a num
in .

 Types

1 Error 8 Audit success

Table 10.10. Event Logging

Value Description Value Description

0 Success 4 Information

Table 10.10. Event Logging Types

Va Description

2 Audit failure

The event log

lue Description Value

Warning 16

error notification subroutine is shown in Figure 10.12. It is very similar to
r() but writes its output to the event log instead. Notice that we included the namCheckWMIErro e

and path of the script for which the error occurred, using the WScript.ScriptFullName property.

The LogWMIError tput in Figure 10.13 routine will produce the ou within the application event log.

LogWMIError

Note that it will record the source as WSH.

Figure 10.13. Event generated by

WMI Scripting Data Retrieval
look at one of the most common tasks you
WMI. The first thing you will need to do

Having successfully attached to a namespace, we now
will want to perform—the task of retrieving data from
before retrieving any data is find the names of the classes that represent the managed objects in
which you are interested. The most common way to find this information is through the WMI CIM
Studio and its search facility. This process is covered later in the chapter. For the sake of brevity,
let's assume that we have already performed the search and have decided to use the

Win32_NetworkLoginProfile class held in the root/CIMV2 namespace. This class contains
information about the currently logged-on user accounts.

In th .
Also, because we do not need to supply a user and a password, we can use the WINMGMTS moniker.
As explained as one of our best practices, we can implicitly accept the default value for
authentication but must always explicitly define the setting for impersonation as being impersonate.

Figure 10.12 Subroutines to record errors in the Windows event log

s own. Cut and
'

Sub LogStdError()
 DIM nMsgResult,WSHshell

 If Err.number <> 0 then
 Set WSHshell= CreateObject("WSCript.Shell")
 WSHshell.LogEvent 1,"Script name: " & vbTAB & WSCript.ScriptFullname & _
 vbcr & "Error Number: "& VbTAB & "0x" & Hex(Err.Number) & vbCr & _
 "Error Type: " & VbTAB & Err.Description

 Err.clear
 WScript.quit
 End if
End sub

 Number: " & VbTAB & "0x" & _
 Hex(Err.Number) & vbCr & "Error Type: " & VbTAB & _

 WMIError.ParameterInfo & vbCr & "Provider Name: " & VbTAB & _
 WMIError.ProviderName & vbCR & "Error Description: " & VbTAB & _
 WMIError.Description

o

BEST PRACTICE! Using InstancesOf

is case, because we are attaching locally to WMI, we do not need to specify a machine name

'Example: 8
'Author: Craig Tunstall 26/04/2002
'Description: This is an excerpt and will not run on it

 paste into your own scripts.

Sub LogWMIError()
 DIM nMsgResult,WMIError,WSHshell

 If Err.number <> 0 then
 Set WSHshell= CreateObject("WSCript.Shell")
 Set WMIError = CreateObject("WbemScripting.SWbemLastError")
 WSHshell.LogEvent 1, "Script name: " & vbTAB &
 WSCript.ScriptFullname & vbCR & "Error

 Err.Description & vbCr & "Operation: " & VbTAB & _
 WMIError.Operation & vbCr & "Parameter Info: " & VbTAB & _

 Err.Clear
 WScript.quit
 End if
End sub

To retrieve all of the available instances of a class, we use the InstancesOf function that belongs t
SWBemServices, which is part of the WMI API.

[View full width]

Set objNamespace = GetObject("winmgmts:{impersonationlevel=

 im
Set objLoginProfiles = objNamespace.InstancesOf(

personate}\\")

"Win32_NetworkLoginProfile")

Assuming that the call to GetObject is successful, the script has now connected to the namespace
LoginProfiles as a collection. A

ctor.
ored in

is our job to go
s one by one and inspect their values. Note that we could further reduce the

the following compound statement.

l=impersonate}\\").

personal matter, although using the first example allows
 namespace.

also included the error-checking subroutines in Figure 10.14

and retrieved all available instances placing them in obj
collection is a set of objects with properties and methods that are related by some common fa
The collection returned by our call to (rofile") is stInstancesOf "Win32_NetworkLoginP
bjLoginProfiles as a set of objects, one for each network log-in profile. It O

through these object
ount of code written by using am

Set objNamespace =
etObject("winmgmts:{impersonationleveG
 InstancesOf("Win32_NetworkLoginProfile")

The choice between the two is largely a
reuse of the WINMGMTS object to interact with other classes in the same

We have to illustrate how you can
 we placed one call to CheckWMIError() immediately
his will catch any errors that may have occurred during

r calls to WMI. Our next error check is in the statement block of our for each … next statement.
block of statements delimited by the next part of the

nce of Win32_
e

e for the current user.

e arrive at the names that display the various properties of our management
or example, the function refers to and . These

e property we want to display, taken directly from the win32_ class definition. To find out the

hoice of properties for a class, use the WMI CIM Studio, locate the class, enumerate all the

from

for each Profile in objNetworkLoginProfiles

incorporate them into a script. Notice that
 Tafter our first two calls to the WMI API.

ou
The for each … next statement repeats the
statement. It repeats for each element in our collection (that is, each insta
Win32_NetworkLogin-Profile returned by our call to InstancesOf). For each iteration it calls th

k for errors. If no error has occurred, it then displays a subroutine CheckStdError() to chec
message box with the name and last log-on date and tim

You m
ta. F

ay wonder how w
da MsgBox Profile.Name Profile.LastLogon
values are made from the element name declared in the for each … next statement and the name of
th
c
instances, and then look at the instance data.

Figure 10.14 Retrieving the network log-in name and date from WMI

'Example: 9
'Author: Craig Tunstall
'Description: This example retrieves the network login name and date
' WMI and displays it using a message box

option explicit
on error resume next

DIM objNamespace, objNetworkLoginProfiles, Profile, nMsgBox

Set objNamespace = GetObject("winmgmts:{impersonationlevel=impersonate}\\")

Set objNetworkLoginProfiles =
 objNamespace.InstancesOf("Win32_NetworkLoginProfile")
Call CheckWMIError()

 call CheckStdError()
 nMsgBox=MsgBox("Network Login Name: " & vbTAB & Profile.
 "Last logon: " & vbTAB & Profile.LastLogon, vbInformation, _

Name & VbCR & _

0x"' & _
 Hex(Err.Number) & vbCr & "Error Type: " & VbTAB & _

clear
 WScript.quit
 End if
End sub

Sub CheckWMIError()
 DIM nMsgResult,WMIError

 If Err.number <> 0 then
 Set WMIError = CreateObject("WbemScripting.SWbemLastError")
 nMsgResult = MsgBox ("Error Number: " & VbTAB & "0x" & _
 Hex(Err.Number) & vbCr & "Error Type: " & VbTAB & Err.Description & _
 vbCr & "Operation: " & VbTAB & WMIError.Operation & vbCr & _
 "Parameter Info: " & VbTAB & WMIError.ParameterInfo & vbCr & _
 "Provider Name: " & VbTAB & WMIError.ProviderName & vbCR & _
 "Error Description: " & VbTAB & WMIError.Description, _
 vbExclamation, "WMI Extended Error Information")

 Err.Clear
 WScript.quit
 End if
End sub

Having run this script, you will notice a slight problem with the output. Instead of listing the date
and time the current user logged on, it displays a string similar to the one in Figure 10.15

 "Current User Details")
Next

' **** Beginning of our error checking subroutines ****
Sub CheckStdError()
DIM nMsgResult
 If Err.number <> 0 then
 nMsgResult = MsgBox ("Error Number: " & VbTAB & "

 Err.Description,vbExclamation,"Standard Error Information")

 Err.

.

ut formatting Figure 10.15. Example of a date value witho

Displaying Date and Time Values (XP Only)
rse, or set date and time values retrieved from your calls, the WMI API
e function (Figure 10.16

To successfully display, pa
provides the SWbemDateTim). To use it in your scripts you must first create
an object as follows:

Set dateTime = CreateObject("WbemScripting.SWbemDateTime")

Figure 10.16. Example of date formatting using SWBemDateTime

Then take the initial WMI value and convert it using the following:

dateTime.Value = object.LastLogon

before displaying it using:

MsgBox("Date:" & datetime.GetVarDate)

Here are the modifications to Example 9 so that it displays the date and time properly:

DIM objNamespace, objNetworkLoginProfiles, Profile, nMsgBox,
 objDatetime

for each Profile in objNetworkLoginProfiles
r()

Note

ery instead of InstancesOf to refine the set of instances returned
e all available accounts on the

the system accounts, which do not store a

le way of retrieving all of the instance information for a given
y want only to retrieve a specific subset of the data available.

Set objNetworkLoginProfiles = objNamespace.ExecQuery("SELECT * FROM
Win32_NetworkLoginProfile WHERE UserType='Normal Account'")

which result in the following more user-friendly date and time format:

set objDateTime = CreateObject("WbemScripting.SWbemDateTime")

 call CheckStdErro
 objDateTime.Value = Profile.LastLogon
 nMsgBox=MsgBox("Network Login Name: " & vbTAB & Profile.Name & VbCR &
 "Last logon: " & vbTAB & vbTAB & objDateTime.GetVarDate,
 vbInformation, "Current User Details")
Next

We have used ExecQu
by the script. If we used InstancesOf we would retriev

ts. For Windows XP users, the script would fail target machine including system accoun
when it attempted to convert the date on
lastlogon value.

Retrieving Subsets of Instances
The InstancesOf function is a simp
class; however, in some cases we ma

For example, many processes can run on a machine at a given time and retrieving all of them is
nt. To remedy this, it is possible to refine the exact set of data returned by a call

sing the ExecQuery function and a WQL statement (Figure 10.17
needlessl

 WMI u
y inefficie

to). Please refer to the
tutorial in Chapter 4 for constructing WQL queries.

ple: 10

etrieve a subset of

nterProfiles, Profile, n MsgBox

GetObject("winmgmts:{impersonationlevel=impersonate}\\")

ter available", _

.Name & VbCR & _
 "Status: " _

Default Printer" _

 although there can be only one default printer on a system, we still need to treat whatever
tentially more than one object. In Example 11

Figure 10.17 Uses a WQL query to get the default printer

' Exam
' Author: Craig Tunstall
 Description: This example uses a WQL query to r'
' data from WMI and displays it using a message box.

 ' It gets the default printer and displays
 a selection of details.

option explicit
on error resume next

IM objNamespace, objPriD

et objNamespace = _ S

Set objPrinterProfiles = _
 objNamespace.ExecQuery _
 ("SELECT * FROM Win32_Printer WHERE Default=true")

f objPrinterProfiles.count = 0 then i
 nMsgBox = MsgBox("No default prin
 vbInformation, "Printer dialog")
 WScript.quit
end if

or each Profile in objPrinterProfiles f
 nMsgBox=MsgBox("Printer: " & vbTAB & Profile

bcr & "Shared: " & vbTAB & Profile.Shared & v
 & vbTAB & Profile.Status,VbInformation,"
 "Settings")
next

Note that
is returned from ExecQuery as a collection of po
(Figure 10.18) we enumerate (that is, list) all those services on the host machine that

 is manual.
 are stopped

trieve a specific instance of a class by specifying its
uery string. For example, the excerpt in Figure 10.19

and whose start mode

You can also use the ecQuery command to reEx
 qkey value in the WQL would return only the

.18 Uses a WQL query to list Windows services not started

' Author: Craig Tunstall

DIM objNamespace, objProcess, Process, nMsgBox

details of the alerter service.

Figure 10

' Example: 11

' Description: This example uses a WQL query to retrieves a subset of
' data from WMI and displays it using a message box

option explicit
on error resume next

Set objNamespace = _
 GetObject("winmgmts:{impersonationlevel=impersonate")

Set objService = _
 objNamespace.ExecQuery("SELECT * FROM Win32_Service WHERE _

me & VbCR & _

r Windows services

 method. This bypasses the need for WMI

 startmode='Manual' AND started=FALSE")

if objService.count = 0 then
 nMsgBox = MsgBox("No Services match the criteria", vbInformation, _
 "Services dialog")
 WScript.quit
end if

for each Service in objService
 nMsgBox=MsgBox("Service: " & vbTAB & Service.Na
 "State: " & vbTAB & Service.State & vbcr & "Status: " & _
 vbTAB & Service.Status,VbInformation,
 "Manual Services Stopped Dialog")
next

Figure 10.19 A WQL query to get the alerte

Set objProcess = objNamespace.ExecQuery("SELECT * FROM Win32_Service
WHERE name='alerter'")

BEST PRACTICE! Use the Get Method
When retrieving a specific instance of a class, assuming you know its key value, it is
more efficient to use the SWBemServices.Get
to parse a WQL query before returning the instance.

[View full width]

bjProcess = objNamespace.Get("Win32_Service.name='alSet
nMsg

o erter'")
Box=MsgBox("Process:"& vbTAB & objProcess.Name & VbCR &

"State:" & vbTAB &_
 objProcess.State & vbcr & "Status:" & vbTAB & _
 objProcess.Status,VbInformation)

BEST PRACTICE!
s Calls to ExecQuery

 in
ing returned to your script. Typically WMI would wait until the

 data

Use
Semisynchronou

In some cases when using the ExecQuery call, certain types of WQL query can result
large quantities of data be
query was complete and all the data gathered before returning the data to your script, thus
slowing the script's performance. To avoid this potential bottleneck and improve the
performance of your script, you can tell WMI to perform the ExecQuery call
semisynchronously. To do this, set two flags, wbemFlagReturnImmediately and
wbemFlagForwardOnly, as part of the ExecQuery call. They tell WMI to return the
as soon as the provider supplies it rather than waiting for the entire collection to be
assembled, as is the case with synchronous calls. Notice that we have specified the flag's
combined value as 48 (decimal) in the call to ExecQuery.

[View full width]

Set objPrinter = objNamespace.ExecQuery("SELECT * FROM

 Default=true",,)

Win32_Printer
WHERE

48

Note

Don't forget the two commas immediately after the query!

WMI Data Modification Scripting Example
To modify the data you have retrieved from WMI is very simple, assuming that the provider
supports the operation. Unfortunately, WMI currently is not very clear at conveying whether or not
a class is updatable. In theory, a class should contain the class qualifiers, SupportsCreate,
SupportsDelete, and SupportsUpdate, for this purpose. (SupportsCreate indicates that the class
will support the creation of instance, Suppor that the class supports instance deletion, and

 that the class supports ins
tsDelete

SupportsUpdate tance modification.) To determine if these qualifiers are
and then check for the
er, the Win32_Schema does

future re ee
what m first retrieve the data from
WMI, change its value to our new setting, and then use the SWBemObject Put_ method (Figure

present, use the WMI CIM Studio to navigate to the class in question
qualifiers under the Object Qualifiers menu option. In practice howev
not use these qualifiers, which means it is often a case of trial and error to determine what the class
will allow you to do. We anticipate, however, that Microsoft will implement these qualifiers in a

lease of WMI. An alternative measure is to examine the object class in CIM Studio to s
ethod it supports and use its method to modify data. To do so, we

10.20).

Figure 10.20 Example script that enables disabled user accounts

' Example: 12
' Author: Craig Tunstall
' De
' accounts that have been disabled and uses the put_method
' to enable them. It also uses the MsgBox vbYesNo flag to
' prompt the user whether or not to enable the account

option explicit

DIM objN

Set objNamespace = GetObject("winmgmts:{impersonationlevel=impersonate}\\")

Set objUserAccounts = objNamespace.ExecQuery("SELECT * FROM Win32_UserAccount
 WHERE disabled=TRUE")

if o
 nM

 WS
end

for
 nMsgResult = MsgBox("Enable user account: "& UserAccount.Name & "?", _

scription: This example uses a WQL query to retrieve all the user

on error resume next

amespace, objUserAccounts, Useraccount, nMsgResult

bjUserAccounts.count = 0 then
sgResult = MsgBox("All accounts are enabled", vbInformation,
"Accounts dialog")
cript.quit
if

each UserAccount in objUserAccounts

vbSystemModal+ vbYesNo + vbQuestion, "Locked User Account")

 If nMsgResult = vbYES Then

 & "Fullname: " & UserAccount.fullname,vbInformation, _

 allow the user to choose whether or
chieved by setting the vbYesNo flag on the call to MsgBox so that

e have also made the dialog box modal
ark using the flag vbQuestion (Figure 10.21

 UserAccount.disabled=FALSE
 UserAccount.Put_
 nMsgResult= MsgBox (UserAccount.Name & " has now been enabled." & _
 vbCr
 "User Account Enabled")
 end if
next

We also introduce some additiona
ot to enable the account. This is a

l logic to this example and
n
it prompts the user with the choice of a yes or no button. W
using vbSystemModal and displayed a question m).

h nd vbQuestion flags setFigure 10.21. A MsgBox wit the vbYesNo, vbSystemModal, a

After the user mak
yes button ()

es a choice, we test the result (stored in nMsgResult) to see if the user clicked the
vbYes . If true, the if statement block then changes the user account from disabled to

s
t indicates that the job was a success. Table 10.11

enabled and uses the Put function to send the information back to WMI. The script then provide
visual confirmation with a dialog box tha lists the
constants available for MsgBox to alter its buttons.

Table 10.11. MsgBox Button Constants

Constant Description
vbOKOnly Displays a single OK button. Test for VbOk.
vbOKCancel Displays OK and cancel buttons.

Test for vbOk and vbCancel.
vbAbortRetryIgnore Displays abort, retry, and ignore buttons.

Test for vbAbort, vbRetry, and vbIgnore.
vbYesNoCancel Displays yes, no, and cancel buttons.

Test for vbYes, vbNo, and vbCancel.
vbYesNo Displays yes and no buttons.

Test for vbYes and vbNo.
vbRetryCancel Displays retry and cancel buttons.

Table 10.11. MsgBox Button Constants

Constant Description

Test for vbRetry and vbCancel.

 you may receive the following error:

Error: Provider is not capable of the attempted operation

Sou e

Thi n
will no VBScript.

want to delete u e
SWbemServices delete m when
doing this, however, is that the provider does not support this action. Again, in the absence of
documentation or the Supports Delete qualifier, it is a trial-and-error process to determine whether

If when experimenting with the Put method,

Code: 80041024

rc : SWbemObjectEx (win XP) or SWbemObject

s i dicates that the provider for that class does not support the Put method. Consequently you
t be able to change the data through

Data Deletion Scripting Example
Deleting instance data from WMI is a relatively simple task. First you must retrieve the data you

sing, for example, InstancesOf, ExecQuery, or get. Next you call th
ethod on the specific object you wish to delete. A common problem

you can carry out this task on the required object. In Figure 10.23, we provide the user with a choice
of whether or not to perform the deletion of a printer configuration using the MsgBox function.

Figure 10.22 shows a message box eliciting a response from the user before performing actions
such as deletion. This is good practice depending on the purpose of the script.

Figure 10.22. Using MsgBox to elicit a response from the user

Data Cre pting Eation Scri xample
Data creation i n the delete
method, you must retrieve the object you wish to create and then create a new instance. You do this
with a call to the SpawnInstance method (see Figure 10.24

n WMI uses the SpawnInstance method of SWBemObject. As you did i

). If successful, you then can populate
the properties of the instance before committing it to WMI with the Put method.

Figure 10.23 Retrieves all the currently installed printers and offers an option to
delete

' Example: 13
' Author: Craig Tunstall
' Description: This example retrieves all the currently installed printers
' and then gives the user the option to delete them one
' at a time.

option explicit

on error resume next

DIM objNamespace, objPrinter, PrinterInstance, nMsgResult

Set objNamespace = GetObject("winmgmts:{impersonationlevel=impersonate}\\")

Set objPrinter = objNamespace.ExecQuery("SELECT * FROM Win32_Printer")

If objPrinter.count = 0 Then MsgBox("No Printers installed!")

for each PrinterInstance in objPrinter
 nMsgResult = MsgBox("Delete printer: "& PrinterInstance.Name & "?", _
 vbSystemModal+ vbYesNo + vbquestion, "Delete printer configuration")

 If nMsgResult = vbYes Then
 PrinterInstance.Delete_
 nMsgResult= MsgBox (PrinterInstance.Name & " has now been deleted
 from the system." & vbCr, vbInformation,"Printer Deleted")
 end if

 to
 qualifier.

Association Traversal Using VBScript

roller card, which in turn is connected to which
m
down associated m ExecQuery
the AssocClass qualifier to specify the association class in which we are interested. The script starts
by iterating through each of the available parallel ports on the host machine and then using the
association class Win32_PrinterController to determine which, if any, printers are attached to
that port (Figure 10.25

next

Again, many providers do not appear to support this method, and it is a trial-and-error process
determine which ones do and do not in the absence of the Supports Create

Associations in CIM are, arguably, one its greatest strengths. It is possible by using an association
to determine the exact relationships between managed objects. For example, with associations you
can determine which disk is connected to which cont

otherboard, and so on. The following example demonstrates how to use associations to track
anaged objects, using the method. It passes a WQL query that uses

). As with many of the examples given here, the WMI CIM Studio plays a
large part in discovering and understanding the relationships between these managed objects. For
more information on forming WQL queries for associations, refer to Chapter 4 .

Figure 10.24 Creating a printer configuration

' VBScript excerpt for creating an instance of Win32_Printer

DIM objNamespace, objPrinter, ObjNewUser

Set objNamespace = GetObject("winmgmts:{impersonationlevel= _
 impersonate}\\")
Set objPrinter = objNamespace.ExecQuery("SELECT * FROM _

 Win32_Printer.DeviceID="HP Laserjet 5")

ObjNewPrinter=objPrinter.SpawnInstance_()

_Printer for description of other properties
er.Put_

ObjNewPrinter.DeviceID="New Printer Config"
ObjNewPrinter.Description="This is our new printer config"
' See Win32
ObjNewPrint

Executing Methods Using VBScript
To execute a method in VBScript, you first must retrieve the managed object and then call the
method directly. You can use the WMI CIM Studio to browse the available methods on a CIM class
using the Method tab in the right pane. Always check with WMI CIM Studio to determine whether
any parameters are required in the method call. In the example in Figure 10.26, we call the
PrintTestPage method on the WMI class Win32_Printer, which results in a test page being
printed.

Figure 10.25 Find printers attached to a parallel port

' Example: 14
' Author: Craig Tunstall
' Description: This example uses a WQL query to traverse the association
' between each parallel port on the host machine and any
' printers that may be attached.

option explicit
on error resume next

jPrinter.count = 0 Then
Box("No parallel ports available")

 {Win32_ParallelPort.DeviceID='" & ParallelPort.DeviceID & "'}
 WHERE " & "AssocClass=Win32_PrinterController Role=antecedent")

("There are no printers attached", vbInformation,
viceID)

DIM objNamespace, objPrinter, ParallelPort, nMsgResult,PrinterCollection,
AttachedPrinter

Set objNamespace = GetObject("winmgmts:{impersonationlevel=impersonate}\\")

Set objPrinter = objNamespace.InstancesOF("Win32_ParallelPort")

If ob
 Msg

for each ParallelPort in objPrinter
 Set PrinterCollection = objNamespace.ExecQuery("ASSOCIATORS OF

If PrinterCollection.count = 0 Then
 nMsgResult=MsgBox
 ParallelPort.De

 for each AttachedPrinter in PrinterCollection
 nMsgResult = MsgBox ("Printer " & AttachedPrinter.DeviceID &
 " is attached to " & ParallelPort.DeviceID,
 vbInformation,ParallelPort.DeviceID)
 next
next

Summary
 boot camp introduction to scripting for WMI. During Chapter 10Thus concludes our VBScript , we

covered the basic issues surrounding writing an administrative script for WMI and introduced some
e of the components you will need to write professional administrative WMI scripts. These includ

program layout, input and output, error checking routines, and a series of best practices to avoid
common scripting problems. In Chapter 11, we look at the issues of writing your own script for t
first time and study the Windows XP command-line tool, WMIC.

Figure 10.26 Finds the default printer and prints the test page

' Example: 15
' Author: Craig Tunstall
' Description: This example uses retrieves the default printer and send

he

s

1. Use meaningful nam
variables, constan

2. Use subroutines as a useful way to avoid needlessly repeating blocks of
commonly used code.

3.

4. Use the WINMGMT moniker unless yo ify a username and password.
5. Always specify the locale when making your calls to avoid queries failing because

WMI is trying to access the wrong locale.
6. Always try to catch extended error information from calls to WMI specific

functions, because this will help locate the source of the fault.
7. Always annotate your scripts with the author's name, date of

creation/modification, purpose of script, or modification to script.
8. Always use Option Explicit and declare your variables using DIM, ReDIM, Public,

or Private. This will help you to keep track of your variable use and prevent
potential problems that might occur later.

9. Avoid using default values (for example, the default namespace) where possible
when connecting to WMI because they can be changed on the client machine and
cause your scripts to fail unexpectedly.

' a test page to it by executing the PrintTestPage method

option explicit

DIM objNamespace, objPrinter, nMsgResult,PrinterCollection, DefaultPrinter

Set objNamespace = GetObject("winmgmts:{impersonationlevel=impersonate}\\")

Set objPrinter = objNamespace.ExecQuery("SELECT * FROM Win32_Printer WHERE
 Default=true")

For each DefaultPrinter in ObjPrinter
 DefaultPrinter.PrintTestPage()
 nMsgResult = MsgBox("Test page sent to: " & DefaultPrinter.name,
 vbInformation, "Test Page Dialogue")
Next

Ten Fast Facts: Summary of VBScript
Boot Camp

es for all artifacts in your script (for example, objects,
ts, and functions).

Decide upon the required level of impersonation when connecting to a WMI
namespace and specify it explicitly in your calls.

u need to spec

10. Don't ever turn error checking off while developing your script but do use it when
running your script after it has been debugged. Use error routines, such as the ones
presented here, to track your errors and write the output to the screen or event log.

Chapter 11. WMI Scripting and WMIC
Having introduced the basics of scripting for WMI in Chapter 10, we focus in this chapter on the
process of writing your own scripts. We examine the thought processes involved as a series of steps
and examine practical issues such as how your script will interact with its environment, what type
of execution model it will adopt, and how to debug it. In the latter part of the chapter, we introduce
the Windows XP command-line driven tool WMIC and give examples of its use in interactive and
noninteractive mode.

Identifying the Correct Course of Action

Make a Note of the Problem Description

a
when you're just starting off, and it helps you think about

the problem. If you cannot write a clear and concise description of what you are trying to achieve

Enable DHCP on all the machines on the third floor that are members of the
to lease out its

IP addresses for seven days and to set the default gateway to 127.0.0.1 (Note: For the
oopback address).

 further into smaller constituent parts and you may find that different
 task into subtasks can simplify the process of

med, make sure that
e:

Regardless of whether you intend to use WMIC, VBScript, or WMI CIM Studio, there are a number
of steps you should take before committing to any particular course of action. The following guide
aims to help you through the process of selecting the right tool.

It is important to note down the problem from the perspective of what you need to do in as much
detail as possible, even if it amounts to only a few lines. Although this may seem like overkill for
relatively small task, it is good practice

then you will definitely have trouble writing a script (for example) to perform the task!

Here's an example problem description:

Accounts department. Configure the DHCP server for the third floor

sake of argument we have used the local l

Divide the Problem into Its Constituent Parts

Some problems can be broken
tools can address different problems. Breaking the
solving the problem. If there is any order in which the tasks should be perfor
you capture that as well. For exampl

Task 1: Modify the settings on the DHCP server so that it leases IP addresses for
seven days at a time.

Task 2: Change the default gateway to 127.0.0.1.

Task 3: Configure the machines on the third floor from static IP addresses to DHCP.

Decide Which Hardware or Software Components You Are Going to
Manage

 before using any of the WMI administrative tools (that
the scripting API) is first deciding which components you are
ing their equivalent CIM classes. Assuming that you know which

nage

One of the most important tasks to perform
is, WMI CIM Studio, WMIC, or
going to manage and second, find
components you wish to manage, the next step is to locate their classes. To do this you first must
decide which namespace contains the ma ment information that is most relevant for your
managed component (see Chapter 4 for a list of namespaces and their purposes).

For administrators root\CIMV2, root\WMI, and root\Microsoft are the best places to start looking
for administrative management information. For example, the root\WMI namespace contains a vast
amount of management information not available elsewhere.

l
n

from

the
HCP

ave been selected in Figure 11.1

Selecting a Namespace

After you have selected the relevant namespace, you must then search for the class that best
captures the management information in which you are interested. To help you do this Microsoft
provides a good search facility in WMI CIM Studio (which is part of the WMI SDK and can be
downloaded from the Microsoft site—see earlier chapters for the URL). To provide a practica
example, let's use WMI CIM Studio to tackle Task 3 of our example and determine if any classes i
the root\CIMV2 namespace hold DHCP related-information.

First, start WMI CIM Studio and navigate to the root/CIMV2 namespace, which, if you recall
previous chapters, holds the majority of classes for local management information. Now click the
search binoculars in the class view and select each of the search options so that class names,
property names, and class descriptions are all active. Now type the acronym DHCP and click
Go! button to search for any related classes. Doing this returns a list of class names that have D
as part of their class name, class description, or property name.

Notice that all three search options h .

Figure 11.1. The Search dialog of the WMI CIM Studio

In this case, our search returns only two classes: Win32_BaseService and
Win32_NetworkAdapterConfiguration. Now inspect each class and its description, using t
icon to get their details. Based on the descriptions it appears that the required class is
Win32_NetworkAdapterConfiguration. Now that we have found the relevant class, we will
inspect its methods and properties. I

he help

n the case of the class Win32_NetworkAdapterConfiguration

there are two things of interest: a method called EnableDHCP() and a property called
comes from the class information in WMI CIM Studio.

k
turns

1—Successful completion, reboot required, and so forth

The description for property DHCPEnabled: "The property indicates

Properties vs.

Whene
perform
script c
For example, if the result of a call to EnableDHCP() were 1 as opposed to 0, then we

DHCPEnabled.The following description

The description for method EnableDHCP(): "The EnableDHCP method enables
the Dynamic Host Configuration Protocol (DHCP) for service with this networ
adapter. DHCP allows IP addresses to be dynamically allocated. The method re
an integer value that can be interpreted as follows:

0—Successful completion, no reboot required

DHCPEnabled
whether the dynamic host configuration protocol (DHCP) server automatically
assigns an IP address to the computer system when establishing a network
connection. Values: TRUE or FALSE. If TRUE, DHCP is enabled."

BEST PRACTICE!
Methods

ver presented with the choice of using a method or a property that appears to
 the same function, it is advisable to use the method. If you use a method, your

an elicit more feedback about the outcome of the call and take action accordingly.

would
program instance of class
Win32_OperatingSystem and calling its shutdown method.

need to reboot the machine before DHCP would be enabled. We could achieve this
matically if required by retrieving the primary

Hint

When y ecause
these c es that
can pro

Which Tool?

Table 1

ou have found the classes you are looking for, also check the associations b
an be a really useful way of tracing a fault to its conclusion and finding class
vide additional information on your managed object.

1.1 will help determine whether you need to write a script to perform the task or whether
you use

Table 11.1. Administration Tools

Tool

Scriptin

 GUI for input or output.

 anaged objects.

WMIC

 interactive

 ing into a

 anagement data in a formatted output.

WMI C
Studio

 st amount of steps or repetition.

 Situations that require a user-friendly interface and search facility (for example,

In the c ple:

nly, therefore WMIC or WMI CIM Studio.

 is the number of machines on the third floor) is a

 a tool such as WMIC, Scripting, or WMI CIM Studio.

Strengths

g Tasks that are performed at regular intervals or in response to an event.

Tasks that have many steps.

Tasks that require a

Tasks that use many m

Tasks that do not have too many steps.

Tasks that are performed regularly (noninteractive mode) or once only (
mode).

Situations that cannot use or don't require a GUI (for example, telnett
machine).

Tasks that require m

IM Tasks that involve a single namespace at a time.

Tasks that do not have a va

browsing the CIM repository).

ontext of our running example, we decide the following, for exam

Task 1 performed once o

Task 2 performed once only, therefore WMIC or WMI CIM Studio.

Task 3 performed n times (where n
candidate for scripting.

If you a r basis,
then yo
example, Tasks 1 and 2 could be carried out this way. If the task requires some degree of repetition
and/or has many steps, that is, you need to carry it out weekly or need to repeat it on multiple
machin ting also is ideal for situations in which you need to get user
feedback to complete a task using a GUI. The user, in this instance, could be another administrator.
WMIC tasks that
do not

The following steps apply only to scripting.

Decid Target
Mach

How th espace largely will dictate the security issues that need to be
addressed. If you are connecting remotely (that is, across a network), you need to determine if a
usernam rsonation
are nee rrent
credent ord. The only setting you can change is
the impersonation level. Changes to the authentication level other than pktprivacy will fail.

Always try to use the WINMGMTS moniker where possible to assist readability and cut down the
comple u must
use the od instead (see Chapter 10

re performing a task only once and do not anticipate performing it again on a regula
u would be best advised to use either WMI CIM Studio or WMIC to do the job. In our

es, then consider scripting. Scrip

, although capable of behaving in a scripted manner, is more suitable for smaller
require a GUI.

e Whether Your Script Should Run Locally or Remotely on the
ines

e script will connect to the nam

e and password are explicitly required and what level of authentication and impe
ded. If you are connecting locally, then your script automatically assumes your cu
ials and you cannot specify a username and passw

xity of the script, but remember that if a username and password are required then yo
SWBemLocator.connectserver meth for more details).

In our f n the script locally and attach across the network
remotely to the target namespace of each of the machines in the Accounts department. We shall
assume nt, and
that we or each machine.

Decide Whether Your Script Will Run Unattended or Attended

Whethe t
techniq

ictitious example, we are going to ru

 that we have administrator-level privileges for all of the machines in the departme
 do not need to use a unique password and username explicitly f

r your script executes attended or unattended dictates the type of input and outpu
ues you will use. Check Table 11.2 for the available choices for the material presented here.

lthou st, it provides a discussion point for your own script.

Table 11.2. Attended and Unattended Inputs and Outputs

Output

A gh by no means a definitive li

Style Input

Attended Messageboxes Messageboxes

 Inputboxes Event log

 Command line arguments

Unattended Command line arguments Event log

Determine the Variables and Constants

Now to determine the variables and constants you may need in your script. A simple technique (also
used in Chapter 5, Schema Design) is to examine your problem description and select the nouns as

le in our problem defined earlier, we specified our
basic requirements as being

"Enable DHCP on all the machines on the third floor that are members of the
epartment. Configure the DHCP server for the third floor to lease out its

to three separate tasks, of which Task 3 was suitable for

 the third floor that are members of the

oduce the following constants and variables.

We need the following

A variable to hold the namespace object

A variable to hold the result from the EnableDHCP() method

A variable to hold the name of the target machine, and so forth

Note

When you start writing your script you often will find yourself adding or deleting
variables and constants as you go along. Don't worry, this is a normal part of the

Det

Here s on
the t
steps

candidate variables and constants. For examp

Accounts d
IP addresses for seven days and to set the default gateway to 127.0.0.1."

We then broke these requirements in
scripting.

"Enable DHCP on all the machines on
Accounts department."

From this simple description, we pr

Candidate Constants

Members of the Accounts department all belong to the Accounts domain. We could therefore
declare this as a constant using the following statement:

Const ACCOUNTS = "accounts"

Candidate Variables

variables:

development process, which is why we define them as candidate variables and constants;
they are used only as a guide to start the scripting process.

ermine the Sequence of Steps in the Task

 we break the task into its individual steps. For example, "Enable DHCP on all the machine
hird floor that are members of the Accounts Department," can be broken into the following
:

1. Gath this could be
done es that are members of the Accounts group.

2. For each machine in the domain perform the following:
a. Attach to target namespace of root\CIMV2
b. Retrieve the instance of Win32_NetworkAdapterConfiguration where Index=1

trieves the primary NIC for that machine)
 on the NetworkAdapterConfiguration object and

Chapter 10

er the names of all machines in the Accounts department. For example,
 by retrieving the names of those machin

(Note that Index=1 re
c. Call the method EnableDHCP

check result
d. If value is 1 then initiate reboot on machine
e. Go to next machine (2a)

Using the examples given in , we can now begin to see how we may implement each one
guide when we start writing the script.

ment and Execution

 most straightforward approach is to execute your scripts locally from the machine on which
they are installed (Figure 11.2

of these steps. This, then, can be our

Script Deploy
A variety of options is available to you for delivering your scripts. These options assume that you
are operating in a networked environment.

Local Execution and Storage

The
). If you do this and use the default security settings, then the script

 the currently logged-on user because it assumes
their security context. This can be advantageous if you do not need the script to perform any tasks

Figure 11.2. The script is stored and runs locally

only will be able to perform options available to

requiring administrator-level privileges. The disadvantage of this approach is that the script is not
updated centrally, and if you make changes to one script then you will need to update all
installations of the script.

Local Execution from a Shared Resource

 in essence to the previous option, here the script is stored on a shared drive to which
e access. This removes the problem of keeping the script up to date (Figure 11.3

Very similar
all users hav). The
disadvantage of this approach is that the script then presents a single point of failure, and if security

precautions are not taken and the script is damaged, corrupted, or interfered with, then its impact
will be more widespread.

Figure 11.3. The script is stored centrally on a shared drive and runs locally

Remote Connection across a Network

Write the script so that it attach achine, using a
O P/IP address (Figure 11.4

es remotely across the network to the client m
NetBI S name or TC). This approach is secure because the script relies

a ne's resources.

Figure 11.4. The script is stored locally and attaches across the network to the
ote namespace

on your security privileges to access the destin

rem

tion machi

Remote Invocation of a Script (Avai

Use rem ion of the script using WSH's remote scripting feature, which is new to
achine

 D loc

lable Only with Windows Script v5.6)

ote invocat
Windows Sc
using

ript v5.6. This feature transfers the sc
COM, where it then is executed as a

ript across the network to the client m
al process using your security context (Figure 11.5).

For this eges to execute the WSH on the remote machine and
also the (version 5.6).

Figure 11.5. The script is stored locally, copied across the network, and executed as
ss in th

 option to work you must have privil
 latest version of WSH installed

a proce e remote machine

WSH uses an object called WSHRemote to start the remote script (Figure 11.6). First you must create
an object of WSHController and then invoke its ript function, passing to it the name of
the script you wish to use and the destination U e name. You can then start the script on
the destination machine by calling the Execute us of the script by
checking the WSHRemote status property where a value of 0 in
but is not yet running, 1 means that the script is
completed. If the script ceases to respond or complete its task after a predetermined amount of time

CreateSc
NC machin
method. You can confirm the stat

dicates that the job has been created
 running remotely, and 2 means the job has

you can call upon the terminate method.

The example in Figure 11.6 tak
o

es a machine name and script name from the command line and
te machine. It then waits until the script is complete by testing its

status before displaying a Confirmation dialog box.[1]

executes the script on the rem

[1] For more de
Microsoft's M

tailed information, please refer to the documentation for Windows Scripting Host 5.6, available as a help file at
SDN Web site.

'Description: This is an example of remote scripting. The script takes
 two command line parameters, the name of the machine to
' run the script on and the name of the script

end if

Set objController = WScript.CreateObject("WSHController")
et objRemoteScript = objController.CreateScript(strMachinename,strScriptname)

Status = 2

)

Figure 11.6 Running a script on a remote machine

'Example: 16
'Author: Craig Tunstall 02 May 2002

'

Option Explicit

DIM objArguments, strMachinename, strScriptname

Set objArguments = WScript.Arguments

'store the arguments in meaningful variable names

if objArguments.count <> 2 then
 MsgBox("Usage: <scriptname> machinename scriptname")
 WScript.quit

strMachinename = objArguments(0)
strScriptname = objArguments(1)

Dim objRemoteScript,objController

S
objRemoteScript.Execute

Do Until objRemoteScript.
 WScript.Sleep 50
Loop

MsgBox("Script:" & strScriptname & " completed running on " & strMachinename

Script Execution Methods

Having written your script, you then will want to decide how to trigger its execution. This typical
falls into one of two categories:

ly
f

explanatory and depends upon someone being present to initiate the script and then provide
feedbac

Execu

ws XP/NT/2000 only) it is
possible to trigger the script's execution whenever the user logs on. In this instance the script
assumes the us s on (and

be performed every time the user logs on).
indows 9x/Me/Win XP/N tallation it is also possible to place the script in the

l ensure t
that in all cases the target machine
neither approach is particularly el

sing

which is included as standard and
utility you can specify the name o facility and then schedule it to run

startup, or whenever you log on.

ows task scheduler (Fig

attended or unattended execution. Attended execution is sel

k where necessary. There are numerous options for unattended execution.

ting Scripts at Start Up

By associating the script as part of the user's log-on profile (Windo

er's credentials while executing and is performed when the user first log
unless you explicitly write the script
On a W

 otherwise, it will
T4.0/2000 ins

startup folder, which wil hat the script gets executed every time the machine starts. Note
 must have the Windows scripting host installed. Although

oquent, both are simple to configure.

Execute the Script U the Windows Scheduler

Users of Windows 98 and earlier can schedule a script to run using the Windows task scheduler,
 found under the Accessories/System Tools folder. With this
f your script using the browse

every day, week, month, once, at

The Wind ure 11.7) can be used to trigger your script only once or at regular
intervals.

Figure 11.7. The Windows task scheduler

Event-driven Script Execution (Windows XP Only)

 Here the script is triggered in response to an intrinsic event in the system and must be defined using
a WQL query. There are several limitations to this approach. First, there must be a class present in

the CIM repository that represents the event you want to monitor. If not, you will have to write an
event provider and define new classes to expose the event. Second, the script runs under
LocalSystem credentials, which restricts its access to network shares and environment variab
because it is not able to access the data for a particular user's account.

For more information see the

les

.
ther things, allow the user to configure to

y
s

to notify you by e-mail of events such as a disk running low on free

n XP, there is no integrated WMI e-mail facility that can
lthough we cannot recreate this facility entirely in VBScript,

nds e-mails using an Outlook object and then pass this routine
. Although not triggered in response to an event, the script could be

he Windows task scheduler, as we discussed earlier. The

ActiveEventConsumer class in the \root\subscription
namespace.

Sending E-mail
In some situations, normally when you want to maintain a time-sensitive record of an event in your
system, it is useful to be able to use e-mail in conjunction with WMI. That way, the information
arrives at your inbox where you can view it at your discretion. Users of Windows XP have this
facility supported with the SMTPEventConsumer class held in the root\subscription namespace
This class consists of a number of properties that, among o
whom the e-mail is sent, the subject line, the message itself, and the name of the SMTP server. B
creating an instance of an event filter and binding it with an instance of SMTPEventConsumer, it i
possible to configure WMI
space.

For users of Windows versions earlier tha
be triggered in response to events. A

that sewe can develop a subroutine
rmationour management info

scheduled to run at regular intervals using t
 Figure 11.8following VBScript in retrieves the list of services on the host machine that are set to

startup='auto') but currently are in the stopped state. After the script
s connected to the CIMV2 namespace and retrieved this information with a call to Execquery, it

The variabl

start up automatically (that is,
ha
then calls the PostEmail subroutine. PostEmail takes three parameters: the subject line, the
destination address, and the message body. For it to work on your machine, you must be running a
MAPI compliant e-mail package such as Microsoft Outlook. MAPI is an acronym for Mail
Application Programming Interface: It was defined by Microsoft and became a de facto standard for
interfacing with e-mail applications.

e strRecipient (in Figure 11.8) stores the e-mail address of the person to whom the
message will be sent. The strsubject variable simply contains the text that you want to display in
the subject heading of your e-mail message. The strMsgBody variable contains the message that
will be the main body of your e-mail.

Figure 11.8 Sends an e-mail of all Windows services

'Example: 17
'Author: Craig Tunstall 02 May 2002
'Description: Catalogues all of the services currently running on the
' host machine and sends an email to the address specified
' in strEmailAddr. In order for this to work you must have
' Microsoft Outlook installed on your system
' N. B. Does not work on Windows XP

option explicit

on error resume next

DIM objNamespace, objService, Service, nMsgBox,
strMsgBody,strRecipient,strSubject

' define the items for the e-mail
strRecipient = "insertyouname@mailprovider.com"
strSubject = "Services currently running on machine: "

Set objNamespace = GetObject("winmgmts:{impersonationlevel=impersonate}\\")

Set objService = objNamespace.ExecQuery("SELECT * FROM Win32_Service WHERE
startmode='Auto' AND state='Stopped'")

If objService.count = 0 then
 MsgBox("No matches")
 WScript.quit
end if

for each Service in objService
 strMsgBody = strMsgBody & "Service: " & Service.Name & vbTAB &
 vbTAB & vbTAB & "State: " & Service.State & vbTAB & vbTAB &
 "Status: " & Service.Status & vbCr
next

 ' obtain an ob
 Set objMAPI =

 ' create a new mail item object
 Set objMailItem = objOutl.CreateItem(BLANKEMAIL)

o our MAPI compliant email client
 ' i.e. outlook

 objMAPI.Logon "profile", "password"

call PostEmail(strMsgBody,strRecipient,strSubject)

' The PostEmail subroutine takes three parameters, the contents of the
' email, the strEmailAddr address and strSubjectline line

Sub PostEmail(strEmailcontents, strEmailAddr,strSubjectline)
 ' This constant is used in the call to the outlook object to create
 ' a blank email message
 Const BLANKEMAIL = 0

 Dim objOutl, objMAPI, objMailItem, ServiceSet, Service, SystemSet, System

 ' Create Outlook object reference
 Set objOutl = WScript.CreateObject("Outlook.Application")

ject reference to "Mapi" name space
objOutl.GetNameSpace("MAPI")

 ' set the mail object properties
 objMailItem.Recipients.Add strEmailAddr

 Set objSystemSet = GetObject("winmgmts:").
 InstancesOf ("Win32_ComputerSystem")

 for each System in objSystemSet
 objMailItem.Subject = strSubjectline & System.Name
 next

 objMailItem.Body = strEmailcontents

 ' We are now ready to connect t

 objMailItem.Send
 objMAPI.Logoff
 nMsgBox=MsgBox("E-mail created for " & strEmailAddr, vbInformation,
 "E
end su
' Create Outlook object reference
Set objOutl = WScript.CreateObject("Outlook.Application")

This statement assigns our object variable, objOutl, to an Outlook application object. Outlook is
the name of our automation server and Application is the name of the type of the object. From this
point on, if we need to call any of the functions in Microsoft Outlook, we do so using the variable
objOutl followed by a period and then the name of the property or method that we need to call.

Remember that we cannot use whitespaces or extended characters (such as the exclamation point) in
our variable names, so we normally use something short and to the point to help us remember it.
Objects are an abstraction mechanism that provide a storage place for complex data types. In this
case we have created an object of type "Outlook.Application".

Set objMAPI = objOutl.GetNameSpace("MAPI")

Here we obtain a namespace object of type MAPI by making a call to GetNameSpace using our
recently created objOutl object. This currently is the only supported type for Microsoft Outlook,
Visual Basic, and VBScript. This object is assigned to our object variable objNameSpace. We shall
call the methods on this object later on in our program.

Set objMailItem = objOutl.CreateItem(BLANKEMAIL)

objMailItem.Recipients.Add strEmailAddr

This section of the program calls the add recipient function from our ObjMailItem object variable.
Also included in the call is the variable strEmailAddr that we passed in by our call to PostEmail.
In short, this function adds the contents of the variable recipient to the newly created message as a

is

next

Next we retrieve all available instances of Win32_ComputerSystem and assign these to our object
variable SystemSet. We then append the e-mail subject line with the name of the machine from
which this information has come, using the name property of Win32_Computersystem.

objMailItem.Body = strEmailcontents
objMAPI. Logon "profile", "password"
objMailItem.Send
objMAPI. Logoff

mail dialogue")
b

At this stage in the program we use our Outlook object (objOutl) to create a new e-mail message
item. The constant BLANKEMAIL is passed to CreateItem to instruct it to create a new blank e-mail
message. We then can fill this item in with the fields for the subject header and message body.

recipient address. Now our e-mail message has a destination address. If we wanted to send th
message to multiple recipients we could repeatedly call objMailItem.Recipients.Add with each
of the different recipient names.

Set objSystemSet = GetObject("winmgmts:").InstancesOf
("Win32_ComputerSystem")
for each System in objSystemSet
 objMailItem.Subject = subject & System.Name 'subject

nMsgBox=MsgBox("E-mail created for " & strEmailAddr, vbInformation,
 "Email dialogue")

The final section of the script logs on to the MAPI provider using the permissions granted to the
current user's profile and then invokes the send method on objMailItem. After doing this, the
script again logs out of the mail system. Next we display a dialog box confirmation message that the
system has created an e-mail message. It includes the name of the e-mail recipient.

Type the code exactly as shown in the example, and let's run the program to see what it does. Once
it is executed, you should be presented with a dialog box notifying you that the message has been
created and placed in your outbox. If you now check your e-mail outbox, you should have a
message pending that lists the current automatic services that are stopped.

Setting Up Your System for Debugging and Testing
Having typed the examples, let's now look at the issue of debugging. Debugging is the term
programmers commonly use to describe the process of removing syntax or semantic errors (also
known as logic errors or "bugs") from programs. Typically, this involves reading through the

e and is a process all

n a

rovides us with a free tool, the Microsoft Windows Script Debugger, to help

program repeatedly to trace a spelling mistake or grammatical error to its sourc
programmers go through when developing software, no matter how experienced they are.
Unfortunately, you normally will not be aware of the bugs in your scripts until you attempt to ru
script and it fails. Depending upon the type of fault that caused the failure, the WSH ordinarily will
point you toward the source of the error by referring to a specific line in your script. The only
exceptions to this rule are semantic errors that occur when the program doesn't behave quite as you
wanted or expected. For these types of error you need to step through the script, line by line,
examining the script's behavior at each stage to understand where things start to go wrong.
Fortunately Microsoft p
track down syntactical and semantic errors.

Microsoft Windows Script Debugger (approx. 600k)

To debug scripts you need the Windows Script debugger. This is available from the following URL:

http://msdn.microsoft.com/downloads/sample.asp?url=/MSDN-
FILES/027/001/731/msdncompositedoc.xml

Having installed the debugger, let's configure your system to simplify the process of debugging and
testing your scripts.

text in Figure 11.9

Note

Before typing the following registry code, make sure that you have sufficient privileges to
modify the system registry.

Navigate to the Start/Run menu, type the , and click the OK button.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#ch11fig26

Figure 11.9. Use Notepad to create a new file called scriptdebug.reg

Warning

Changing values in the Windows registry, if not carried out correctly, can have dire
consequences that can affect your machine's performance and/or configuration. All

lick yes to create a new file and in your new instance of Windows
e text in Figure 11.10

changes effected via a .reg file are immediate and there is no undo facility (although is it
possible to roll back to an earlier version of your registry—this is potentially a time-
consuming task). Type and run the following code exactly as printed (or download from
our Web site). C
Notepad type th and save to an easily locatable directory.

Figure

REG

[HKEY_CLASSES_ROOT\VBSFile\Shell\Debug]
@="

[HK
@="

[HKEY_
@="&Fo

 are associated with the Windows registry and
double-clicking them adds their contents. The new registry settings capitalize upon two of the

low you to
e have added these options to

simplify the process of debugging your scripts. For more Windows Scripting options go to the

s
(Visual Basic script) file (Figure 11.11

 11.10 Registry changes to enable script debugging

EDIT4

&Debug on Error"

EY_CLASSES_ROOT\VBSFile\Shell\Debug\Command]
WScript.exe \"%1\" //D"

CLASSES_ROOT\VBSFile\Shell\ForcedDebug]
rced Debug"

[HKEY_CLASSES_ROOT\VBSFile\Shell\ForcedDebug\Command]
@="WScript.exe \"%1\" //X"

Now locate scriptdebug.reg with the file explorer, double-click it, and click yes to allow it to
update the registry. Files appended with the .reg

options available for the Windows Scripting Host and the keys within the registry that al
add new features to the right-click menu for specific file types. W

Start/Run menu option and type:

Wscript.exe /?

Having updated the registry, you should have two new options whenever you right-click a .vb
).

Figure 11.11. The two new settings available on the Context menu for .vbs files

The first new option, Debug on Error that if it encounters an error
while a ed. The second new option, Forced Debug, starts your
script within the debugger ve been encountered. This can be

wn

ly if your program encounters an error

 of our sample scripts with the

example2.vbs click it to bring up the Context menu.
Select Forced Debug from the list to initiate the debugger (as in Figure 11.12

, executes your script and ensures
ttempting to run, the debugger is call

regardless of whether any errors ha
useful if you wish to observe the step-by-step execution of your script, for example, to track do
logical errors.

Debugging Your Scripts
Having updated the registry, you should now have two new options added to the right mouse
context menu for Visual Basic script files (suffix .vbs). To reiterate, these options were:

• Debug on Error: This option calls the debugger on
while executing.

• Forced Debug: This option launches your script within the debugger and allows you to step
through your program line by line.

To illustrate the use of these debug options, let's take a look at one
debugger in Forced Debug mode.

First, locate using the file explorer and right-
).

Figure 11.12. The Windows Script debugger main screen

The initial screen displays your script with the first program statement highlighted. At this point the
debugger has frozen the script and is waiting for your command before proceeding. Notice that the
Window screen is read-only: Subsequently you cannot modify your script within the debugger
unless you save it under a different name using the File/Save As option. Now open the View menu

ur script.
 variables in your script or even to enter

,
ox

t is possible, however, to enter multiple commands using the colon as a separator.

ouse to
posit om our
scrip pear next to
the line you selected (as in

and select the Command Window option from the drop-down menu. This produces another stand-
act with the debugger and yoalone window that enables you to type commands and inter

This can be used, for example, to inspect or set the value of
actual VBScript statements to see the outcome. For example, you can issue VBScript statements
such as MsgB , to it. The only limitation of the command window is that you can enter only one
line at a time: I

Return focus to the main window by left-clicking it. You can use the cursor keys or the m
ion the cursor anywhere throughout your script. Select the last MsgBox statement fr
t and press F9 to highlight this as a breakpoint. You should now see a red circle ap

Figure 11.13). Breakpoints are really useful way of stopping the
 locations, for example, to

e until the first breakpoint and use the command window to

a
program's execution at specified inspect the value of variables. Let's step
through our script one line at a tim

he message

Figure 11.13. Setting breakpoints in the debugger using F9

inspect the value of the variable strMyInput before it is displayed to the screen using t
box function.

Use the ou wanted to
step thr in the
comma

 F5 key to run the script: Enter some text in the input box and click OK. If y
ough the script one line at a time, you alternatively could use the F8 key. Now,
nd window, type the text in Figure 11.14 and press the return key.

Figure 11.14. The command window can retrieve the value of variables

ould be presented with the text that you just typed to the text input box. Now, from t
nd window, let's chang

You sh he
comma e the value of this text again: Type the text in Figure 11.15 and press
the retu

F variables

rn key.

igure 11.15. The command window also can be used to set the value of

Now p program, and you will see that the output has been
changed to your new value.

king down logic errors in your scripts. If the

e

and-line

lly unfriendly and fairly long for the command line (especially

mple, you can transfer information between heterogeneous systems in XML or
disp y n
of infor

As well as the built-in help feature in W d
syn e
Start m the
ava b
defi iti
and hig
tasks.

Note th
group. This is regardless of wmimgmt.msc

Usin
As men ractive or noninteractive. Interactive
mode starts WMIC and provides you with a special command prompt to issue your WMIC-specific

ress F5 again to continue execution of the

The debugger can be an invaluable tool for trac
outcome of a script is not as expected, by judicious use of breakpoints and using the command
window for variable inspection, you can gain insight into what exactly is happening behind th
scenes when your script runs.

Windows Management Instrumentation Comm
(WMIC)
Administrators of Windows XP have an additional tool in their system management armory, the
WMI Command-line or WMIC. As the name suggests, this is a command-line driven tool that can
access local or remote CIM repositories and retrieve, modify, add, or delete data in them. With
WMIC, Microsoft introduces a new term to system management, Alias. An Alias is a simplified
term that refers to a more complex query that retrieves and formats information from the CIM
repository. Microsoft's rationale for Aliases is that the traditional paths and class names for data in
the CIM repository are syntactica
when you consider the 1024 char buffer limit). Aliases alleviate this and help to simplify
performing system administrative tasks. Another interesting feature of Aliases is that WMIC will
allow you to define your own, thus enabling you to tailor the management of your system.

WMIC operates in one of two modes: interactive and noninteractive. In noninteractive mode you
can call WMIC from batch files or from the command prompt. In interactive mode you are
presented with a special command prompt.

WMIC also contains a number of options that allow you to control the format of the output it
generates. For exa

la your output on the local intranet using HTML-compatible data to allow easy disseminatio
mation.

MIC, an extensive overview of the command settings an
tax is available in the Windows XP Help and Support Center, which you can activate from th

enu. After you have activated it, type WMIC and click the search button to retrieve a list of
ila le information. Consequently, this section of the chapter does not provide an exhaustive
n on of the syntax of WMIC. It is an introductory tutorial that illustrates the use of the syntax

hlights some of its more useful features that you might use in day-to-day administrative

at WMIC will install and run only if you are an administrator member of the administrators'
the permissions granted using at the namespace level.

g WMIC
tioned, WMIC can operate in one of two modes: inte

commands. Noninteractive mode starts WMIC, performs the requested actions, and then retur
the calling function, be it the command line or a script (in this sense, it can be a batch file,
VBScript, or Jscript). This is useful if you wish to automate certain commands, perhaps by adding
WMIC commands to existing batch files. Let's look at WMIC

ns to

in interactive mode.

 Start
f the file wmic.exe that is

 in the %SystemRoot%\wbem folder. WMIC installs on demand, so there will be some initial
gargling as Windows XP installs the executable and compiles a number of MOF files into the CIM

espace of the CIM repository.

 press

You can tell that you no e command prompt
has changed to wmic.root\cli> and is waiting for your input. The command prompt keeps track of
the role

Interactive Mode
To activate WMIC in interactive mode, move to the command prompt f

on o
rom the Windows

menu, type WMIC, and press the return key. This triggers the executi
held

repository the first time you run it. To be precise, it compiles the files Cli.mof,
Cliegaliases.mof, and Cliegaliases.mfl into the root/Cli nam
Cli.mof contains the class descriptions for the Aliases, whereas Cliegaliases contains the actual
instances. Aliases, as we shall discover, are a useful tool for simplifying day-to-day tasks and
provide a way for the administrator to govern the presentation of management information.

Each time you execute WMIC after its initial installation, it compiles only Cliegaliases.mof and
Cliegaliases.mfl into the repository to update the instances of Microsoft's Aliases.
Cliegaliases.mof and Cliegaliases.mfl also can be found in the %SystemRoot%\wbem folder
on your machine. We shall look at Cliegaliases.mof and Cliegaliases.mfl later. Let's practice
using WMIC in interactive mode: Open a session of the command prompt and type WMIC, then
the key.

w are operating WMIC in interactive mode because th

 setting. A role in WMIC is really a namesp ce in the CIM repository that holds the a
information for your Aliases (by default this is root\cli, which you can see by looking at the
command prompt in Figure 11.16). Microsoft introduced the notion of an Alias with WMIC to
simplify the management of your environment. Aliases replace syntactically complex strings of
classes, instances, and WQL queries with simplified keywords. The great thing about this approach
is that you can create and tailor your own Aliases.
you can

Microsoft provides a series of default Aliases that
 browse by issuing the /? command (Figure 11.17) from the WMIC prompt: This command

s you view a list of commands and global switches. also let

Figure 11.16. The WMIC command prompt

Figure 11.17. The /? sequence retrieves all available switches, Aliases, and
commands

Figure 11.17 offers quite a few new terms to learn, but WMIC has an interactive help facility to
. Simply type the name of the command

ou
onfigure output styles, then

e,
to

ds
 to a text file for reference.

assist you. Also, remember that WMIC is not case sensitive
about which you would like to know more, followed by /?.

The global switches listed initially are the configuration settings for your current instance of
WMIC. For example, these global switches define the machines to which you will connect, your
username or password, and so forth. Most of these can keep their default settings. However, if y
want to connect to multiple machines across the network or c
understanding these configuration switches is essential.

Next all of the available Aliases are listed with brief descriptions of their purposes. As you will se
Microsoft provides more than 70 predefined Aliases for commonly carried-out tasks—quite a lot
read on the screen at one time. We shall configure WMIC to write all of the available comman
and Aliases

Finally, beneath the Aliases is a series of commands, CLASS, PATH, CONTEXT, and
QUIT/EXIT. In addition to these commands are numerous additional verbs such as ASSOC, GET,
and SET that allow you to construct precise statements about the information you would like to
retrieve or change in the CIM repository. We shall take a closer look at these later in the chapter.

Configure WMIC to write all output to commands.txt, a file on the C drive:

Wmic:root\cli>/output:c:\commands.txt

Now issue the command to send a full listing of all the available commands to the file:

Wmic:root\cli>/?:full

The command sends a comprehensive listing of the available functions to .

RR are in the command prompt screen. If you now move to the root of the C:\

drive and open the file , you will find a detailed description of the global switches,

MIC
configuration of WMIC (Figure 11.18

Now return the output value to its default setting:

Wmic:root\cli>/output:STDOUT

/?:full commands.txt
The final command tells WMIC to redirect output back to the standard output stream, STDOUT,
which by default is the command prompt screen. STDOUT, STDIN, and STDERR are common
programming terms. STDIN and STDOUT refer to the input or output streams respectively and
STDERR is the stream to which all errors are sent. STDIN is by default in the keyboard and
STDOUT and STDE

commands.txt
commands, and Aliases.

Configuring W
Next, we shall inspect the) using the context command.

pt type:

i xt

From the WMIC command prom

Wm c:root\Cli>conte

Figure 11.18. WMIC configuration

As you can see from Figure 11.18, WMIC is attached to the root\CIMV2 namespace: It gathers its
ected to node SMITH (p. 590), which in this

achine, although we could also specify multiple nodes here to enable us to
achine. WMIC is configured by default to use impersonation level access

dentials of the current user for actions carried out locally. If you are
 remote machines, then you may want to increase the security level to

 Windows 2000 machines and later) to enable your credentials to be used
at is that this may represent an unnecessary security

s set to its default value of Pkt
to ensure it does, in fact, originate

m receiving erroneous data from a malicious
third party. Note that all local connections to WMI on your machine use the highest possible

r

Aliases from the default role root\cli. It is also conn
instance is the local m
manage more than one m

t uses the account cretha
attaching to namespaces on
delegate (available on
during calls to other computers. The only cave
risk and so should be used sparingly. The authentication level i

ound data is authenticated (packet), which ensures that all outb
 the intended client. This certifies that you are not fro

authentication level of PktPrivacy, which authenticates all previous impersonation levels and
encrypts the argument value of each remote procedure call. Any attempt to set this value to any
other setting on your local machine will result in any subsequent calls to an Alias, a PATH, or a
CLASS failing to retrieve any data.

The locale setting dictates any language-specific settings for the namespace you are accessing. This
may at first appear to be a fairly trivial switch; however, make sure that this setting matches the
locale of the namespace on the machine that you are accessing: otherwise, you will encounter erro
messages such as 0x8004100e, Invalid Namespace when trying to use Aliases.[2]

[2] For a table of languages and LCIDs (LoCale IDentifiers), see http://msdn.microsoft.com/library/en-us/script56/html/vsmscl_CID.asp.

Hint

T ke the last three digits of your hex locale ID and append them with ms_ to set WMIC's
l cale switch. For example US English hex value is 0x409 = ms_409, UK English hex

.

a
o
a

v lue 0x809 = ms_809

Top Tip

If you experience problems while using WMIC, the first place to look for clues is the
gs/wmic.log file. Another good place to search for information

the error code that WMIC gives you,
 the search facility to check for Microsoft

ace
olve and detect problems. The RECORD switch is

mmands
ates

whe e WMIC will not
pro t . This setting is
useful if you intend to make unattended calls to WMIC, for example, from batch files. The

ount

cript to move to the next command after a

espace as part of the connection property.
(Remember that W namespace
switch is set to nless you
start them with a double backslash (\\). If you wish to change the namespace value to
something that does not reside beneath the current namespace use, for example:

Wmic:Cli>/namespace:\\root\someothernamespace

 that contains your Alias configuration data. By
 but this can be changed if you wish to

enables you to carry out tasks simultaneously
on multiple machines. The only caveat is that you cannot mix administration of local

%SystemRoot%\wbem/lo
is the Windows Help and Support Center. Type
which normally starts with 0x800xxxxx, and use
Knowledge Base information.

The PRIVILEGES switch is enabled by default and allows or revokes your privileges during
operations in WMIC. The TRACE switch is set to OFF by default but when set to ON writes all
debug information to the screen (referred to as STDERR, for Standard Error). Enabling the tr
facility is very helpful when you are trying to res
also OFF by default but when set to ON takes a filename to which it writes all of your co
and their output in XML format. The INTERACTIVE switch is, by default, OFF and dict

th r or not WMIC must confirm its actions with you. In reality, this means that
mp a class or instance from the namespace you for confirmation before deleting

FAILFAST switch is also useful because it enables commands to fail after a predetermined am
of time rather than waiting indefinitely for a response when your machine is running scripts
unattended. Setting FAILFAST to ON would enable the s
predetermined amount of time rather than hanging indefinitely if a remote machine were not
responding to your requests setting.

In summary, the switches are as follows:

/NAMESPACE: Defines the namespace against which all your PATH and CLASS
commands will be carried out. Aliases do not rely on this setting because they
contain their own reference to a nam

MIC is not case sensitive.) By default in WMIC, the /
 root\cimv2. Note that all namespace paths are relative u

/ROLE: Defines the namespace
default this is the namespace \\root\Cli
define your own namespace to hold your own Aliases (remember that you can store
your own user-defined Aliases in \\root\Cli). For example:

Wmic:Cli>/role:\\root\myownroles

Wmic:root\cli>/role:\\.—this sets the role to no namespace

/NODEs: Defines which machines WMIC will access on your network. This feature
is actually pretty powerful because it

and remote machines in the same session. This is because WMIC will not allow you
to supply a username and/or password when attaching to local namespaces and takes
your current credentials instead, for example:

Top T

Wigwams. When forming namespace paths in WMIC the syntax can be
confusing and it can be easy to mix up the order of the forward slash with
the backward slash. One simple way of remembering the order is to think
of a wigwam /\ with the two slashes in opposing directions. Remember the
wigwam—forward slash followed by one or more backward slashes.

For example: /namespace:\mynamespace or /role:\mynamespace

Wmic:Cli>/node:machine1,machine2,machine3

or scripting to get a complete list of options. For example:

ate

 short for authentication level. This switch defines the level of
authentication used with each of your actions. Again, please refer to the earlier
section on security for scripting to

ctions. For example, if the
machine to which you are attaching is based in the United States and you are based

 need to change locale (despite the obvious
rom ms_809 UK English to ms_409 US English. Failing

 failing when it tries to retrieve locale-specific

ges during your interaction with WMIC,

Wmic:Cli>/privileges:enable

/TRACE:

value is off. For example:

ip

/IMPLEVEL: Is short for impersonation level. Please refer to the earlier section on
security f

Wmic:Cli>/implevel:imperson

/AUTHLEVEL: Is

 get a complete list of options.

Wmic:Cli>/authlevel:Pkt

/LOCALE: Defines the language settings for your intera

in the United Kingdom, you still will
similarities in languages) f
to do so would result in WMIC
information, for example:

Wmic:Cli>/locale:ms_409

/PRIVILEGES: Enables or disables privile
for example:

 Can be set to on or off and dictates whether WMIC explicitly provides
output for every task it undertakes. In most cases you will want this set to off, which
is the default. For example:

Wmic:Cli>/trace:off

/RECORD: Places all output (including the commands you type) to a user specified
file, for example:

Wmic:Cli>/record:output.txt

/INTERACTIVE: Dictates whether or not delete commands are confirmed or not.
This is useful if you are running WMIC unattended from a batch file. By default this

Wmic:Cli>/interactive:off

/FAILFAST: Dictates whether WMIC times out after two minutes of trying to

ecified by a filename).

/APPEND: Is the same as OUTPUT but appends the data to any existing output

.

 on to WMI. This
value can be reset using, for example:

wmic:root\cli>/user: " " " "

 that you can use to get management information from WMI
mands. If you are familiar with the CIM repository, then

eel quite natural to you. The CLASS command retrieves
ereas the PATH command retrieves the actual data
ation). As an administrator, you probably will be most

ands accept schema class names and paths to the CIM repository
p re not comfortable with this, then you may feel slightly more at home
ng Aliases. Despite syntactic differences, you more or less can do the same thing with both types

rompt type the following:

Wmic:Cli>path Win32_NetworkAdapter

complete a command before continuing. For example:

Wmic:Cli>/failfast:disable

/OUPUT: Dictates whether the output from your commands goes to the standard
output stream (STDOUT), the Windows clipboard where it can then be pasted into
most Windows applications, or to a file (sp

Wmic:Cli>/output:disable

rather than overwriting it. This is useful if you wish to keep a progressive log of
changes to your managed environment over time

Wmic:Cli>/append:disable

/USER: Allows you to provide a specific username when logging

/PASSWORD: Allows you to provide a password for the username. This is also
called automatically when you define a username, for example:

Wmic:Cli>/password:disable

/AGGREGATE: Can be set to either on or off and allows you to aggregate the
results of multiple queries, for example:

Wmic:Cli>/aggregate:on

Interacting with WMIC
The three main commands in WMIC
are the Aliases, CLASS, and PATH com
the CLASS and PATH commands should f
class information about managed objects wh

formassociated with the class (the instance in
interested in the latter. Both comm

art of their syntax. If you aas
usi
of commands although Aliases have the slight edge of allowing you to format the output generated
from them.

From the command p

which is semantically identical to the following built-in Microsoft Alias:

Wmic:Cli>nic

Both commands retrieve information about the network cards installed on the current machine.

:

ic:Cli>class Win32_NetworkAdapter

. There is

e
pt by typing its name followed by /?:full. The full switch ensures that all available

formation, including its description, is returned. If you want less information, use the brief
witch. For example, let's look at the help information for the Alias baseboard:

Now type at the command prompt

Wm

This retrieves all of the class schema information for the class Win32_Network-Adapter
no semantic equivalent for Aliases.

You can find additional information on the use of each Alias, command, or global switch from th
WMIC prom
in
s

Wmic:root\cli>baseboard /?:full

This should present results similar to the screenshot in Figure 11.19.

Figure 11.19. Usage information on an Alias

At the top of the screen you can see a brief description of the function of the Alias, whi this
a description

the syntax for using the Alias written in BNF (Backus Naur Form).

the syntax of for

ch in
case tells us that it returns information about the motherboard on our system. Next is
of

Note

BNF is named after its inventors, John Backus and Peter Naur. BNF is a way of defining
mal languages. In BNF a vertical line (|) indicates alternatives and square

brackets ([]) indicate optional parts. The vertical line character is represented by 'vline'
and spaces are represented by the word 'space'. Words enclosed in "<" and ">" are called
nonterminals because they can be further broken into constituent parts, whereas symbols
and characters like "A", "+", or "—" that cannot be broken are called terminals.[3]

[3] Microsoft provides a comprehensive breakdown of the WMIC langauge using BNF that is available from the
Windows XP Help and Support Center or the Microsoft Web site
(http://www7.software.ibm.com/vad.nsf/Data/Document4639).

The WHERE Clause
WHERE enables you to refine your query for information and is useful in situations in which you
want to receive a specific subset of information. For example, if we retrieved a comprehensive list
of all of the services on our system, we could use the following Alias or path statement without a
WHERE clause.

 specific service, called alerter. We
ss in which a

which would retrieve the instance information for only the alerter service. It also is possible to use a

Wmic:Cli>Path win32_service

or

Wmic:Cli>Service

Let's imagine that we wanted only to get information about a
could refine our statement so that it retrieved only this specific instance of the cla
iven property met certain criteria. For example, using the WHERE clause: g

Wmic:Cli>Path win32_service where name="alerter"

or

Wmic:Cli>service where name="alerter"

variety of conditions (Table 11.3) with a WHERE clause (+,=,<,>=,!=). For exam
to list all those services that are currently not set to auto for the startmode the

ple, if we wished
n we could use the

or equal to != Is not equal to

Verbs
retrieve only the displayname and
 could use the get verb:

>service where startmode!="auto" get displayname,description

following:

Wmic:Cli>service where startmode!="auto"

Remember always to enclose strings in double quotes. Numerical values do not need to be treated
this way.

Table 11.3. Comparison Operators

Symbol Description Symbol Description

> Is greater than = Is equal to

>= Is greater than

< Is less than

Verbs allow us to refine our list even further. For example, to
 that match our criteria, wedescription for each of the services

Wmic:Cli

or

Wmic:Cli>Path Win32_Service where startmode!="auto" get displayname,

 with /? as follows:

ill be a subset of the verbs listed in Table 11.4

 description

To retrieve the list of available verbs, end the statement

Wmic:Cli>service where startmode!="auto" /?

All cases w .

rbs

r xample

instances of the class!!!

tatus,deviceid

ormation is
|system|status

property. Multiple properties can be
changed by separating each with a

ice where name="alerter" set

Description="My new description"

alls a function that belongs to a class Service where name="alerter" call pauseservice

This causes the alerter service to pause. You could
achieve the same effect by calling the pauseservice
verb defined as part of the alias.

Service where name="alerter" pauseservice

o of their parameters, switches, and use simply type them as follows:

aliasname verb /?:full
e.g. nic assoc /?:full

Table 11.4. List of WMIC Ve

Ve b Description E

Assoc Returns all associated instances. This
is a useful way of determining which
components are associated to each
other.

nic assoc

Create Creates a new instance and creates
property values for it. Note that the
provider must support this switch in
order for it to work.

nic create index=11

Delete Deletes the current instance or
instances. Can also delete a class. Use
with caution!

nic delete index=1 OR

nic delete

Will attempt to delete all

Get Can be used to retrieve specific nic where deviceID< 3 get name,s
properties

List Alters the display of data. Can be nic list brief|full|instance
used to specify what inf
displayed. Note: This verb is
available ONLY when using
Aliases!

Set Changes the values of a given Serv

comma.

Call C

T obtain a detailed explanation

Adverbs
Adverbs allow us to refine our query even further. They are additions to the verbs given above. To

e of the verb (in conjunction with an Alias name or path) and
nly the list verb has any adverbs.

service where name="alerter" get status, name /every:2 /repeat:5

This will result in the status of the alerter service being displayed five times, once every two
seconds, unless a key is pressed. We also can do this with the list verb as follows:

t

n
MIC's data (which is all in XML format). Type the following:

mat:hform.xsl

 write all output to a file called nic.htm on the d drive, and
HTML-compatible table

 of template rules that convert
ature of

ats.[4]

retrieve a list of adverbs, enter the nam
use /?:full. At the time of writing o

Looping WMIC Commands
The list and get verbs have two special switches that allow you to repeatedly loop a query as many
times as you desire (within reason). For example, type the following:

service where name="alerter" list brief /every:2 /repeat:5

This shows that the list and get verbs are really very similar. List, in reality, is a set of canned
output formats that describe using the adverbs brief, full, instance, status, and system, whereas ge
allows you to define exactly which properties are retrieved.

Types of Output
Microsoft provides an additio al number of eXtensible Stylesheet Language Transform (XSL) files
to assist in the formatting of W

Wmic:root\cli>/output:d:\nic.htm
Wmic:root\cli>nic get /for

These two commands tell WMIC first to
second to retrieve data on the available network cards and format it into an
using . XSL Transform files act as stylesheets with a serieshform.xsl

ful fethe XML data generated by WMIC into a variety of formats. This is another power
IC that will allow administrators to tailor the output of WMIC into custom formWM ,[5]

[4] For a detailed description of both XML and XSL, visit the World Wide Web Consortium Web site at http://www.3w.org/.

[5] If you are interested in creating your own SXL files, IBM provides a free XSL stylesheet editor (approximately 5Mb) that can be
downloaded from http://www7.software.ibm.com/vad.nsf/Data/Document4639.

The XSL files in Table 11.5 are installed with WMIC by default.

Table 11.5. Supplied XSL Files for Outputting WMIC Results

Name Description
wmiclimofformat.xsl Converts XML data to MOF format. If Aliases or other WM

objec e defined in XML fo
I

ts ar rmat, this XSL can be used to
convert them to MOFs so that they can be MOFCOMPed. -
/FORMAT:MOF format.

.xsl —/ALL or /FORMAT:TABLE

l hat it does not have
the a " properties (properties for the
WMI path of instances, etc.).

es or other WMI
objects are defined in XML for
convert them to MOFs so that they can be MOFCOMPed.

L

wmiclitableformat

wmiclitableformatnosys.xsl Same as wmiclitableformat.xs
bility to display WMI "system

 except t

wmiclivalueformat.xsl /VALUE format—one line per value.
mof.xsl Converts XML data to MOF format. If Alias

mat, this XSL can be used to

xml.xsl To output XML data in XML format. All WMIC data is extracted
in XML format, so this format will give you data the way that
WMIC sees it. This can be useful for creating your own XS
files. Outputting data in XML format is also useful if you want to
provide the data to systems that accept XML data.

hform.xsl HTML output—the data is displayed in a vertical table (one row
per property or instance name). The table can be very long.

htable.xsl HTML output—the data is displayed in a horizontal table (one
row per instance). The table can be very wide.

texttable.xsl The same as wmiclitableformatnosys.xsl.
texttablewsys The same as wmiclitableformat.xsl.
textvaluelist Similar to wmiclivalueformat.xsl except that property names

are not included on each line and the format is more compact.

Aliases
In Figure 11.20, the Connection object defines the parameters required when connecting to WMI,
for example, a username, password, or authentication method. The description property provides
description of the Alias. The Formats array contains a list of properties to be shown for this Alias
Microsoft documents this as a list of lists indexed by the format name (for example, FULL
INSTANCE, or a user-defined qualifier). The FriendlyName string provides the name for the Alias.
The name must be uniqu

a
.

, BRIEF,

e in the context of the namespace in which the Alias is defined. As
atch keywords, thus, you cannot

se they appear in the same location
 PWhere property defines a From/where clause (that is, a WQL query

query string may contain substitution parameters (tokens preceded
the query string. The parameter values

Alias if the token cannot be resolved to a switch or
 as "nic 1" where the PWhere value for the nic

mentioned earlier with respect to scripting, Alias names cannot m
name your Alias CLASS, QUERY, PATH, or RESTORE becau
in the syntax. Next, the
without the Select clause). The
by a # mark) indicating where values may be substituted into
are taken from the tokens immediately after the

rb—this allows, for example, a command suchve

Alias is "WHERE DeviceID=#" and the target is "Select * from Win32_NetworkAdapter." The
 1 is taken by PWHERE and replaces the #, giving "WHERE DeviceID=1." Then this is

in32_NetworkAdapter WHERE DeviceID=1."
es the object

ormat Formats[];
 FriendlyName;

S ING PWhere;
MSFT_CliQualifier Qualifiers[];

ur
WMI CIM Studio

and navigate to the root\cli namespace. From here you should be presented with the set of classes

value of
appended to the target, forming "Select * from W
Next the qualifiers applicable to this Alias are held in an array. The Target string defin

QL query. If the to be operated on through the Alias. The string may be a simple class name or a W
Target

he Verbs array is the list of verbs supported by the Alias.
 property is empty, only verbs based on command-line utilities may be used by the Alias.

T

igure 11.20 The basic structure of an Alias in MOF format stored in the root\cliF
namespace by default

class MSFT_CliAlias
{
 MSFT_CliConnection Connection;

escription; String D
CliF MSFT_

RING ST
TR

 STRING Target;
 MSFT_CliVerb Verbs[];
};

You can also view Aliases and make modifications using the CIM Studio. Let's take a quick deto
and have a look under the hood of Aliases to further understand the concept. Start

(as in the screenshot in Figure 11.21).

Figure 11.21. The MSFT_CliAlias class in the root\Cli namespace

The right hand pane in Figure 11.21 is an enumeration of the MSFT_CliAlias instances.

The classes held in the
the MSFT sch

root\cli namespace are defined specifically for WMIC. These are all part
f ema of classes that are designed to facilitate, among other things, policy
xtensions, remote events, and WMIC-specific functions. Select MSFT_CliAlias and click the

s

re 11.22

o
e
enumerate button in the top right. In the right hand pane we have enumerated all instances of clas
MSFT_CliAlias as this is the class of most interest to us with respect to Aliases. If you enumerate
this class, you will be presented with all of the currently available Aliases. The friendly name is the
name you can use in WMIC, and, as you can see, many of them are self-describing, with names like
Printer, Registry, or OS. Scroll down the right pane until you see the friendly name of NIC (short
for Network Interface Card). Highlight this row and go to the object using either a double-click or
right mouse click. You should be presented with the information (in Figu) in the right pane.

Figure 11.22. The NIC Alias, up close and personal

The Connection property holds an object of type MSFT_CliConnection. The value of this object
ails of the target namespace to which your Aliases will connect. In most cases, you will
our information from the CIMV2 namespace because it holds much of the system-specific

ject button in the Value column to

n remote machines by
ord. Unfortunately, these properties seem to have
h instead access the machine specified in the

tches and . We also warn against setting these properties here because they
achine

ialog (Figure 11.23

holds det
 yretrieve

information relevant to you as an administrator. Click the ob
explore this in more detail: Note that the value of the Namespace property in this case is

u to attach to CIM repositories located oroot\CIMV2. This object allows yo
ecifying the server name, username, and passwsp

little effect upon the behavior of the Aliases, whic
global swi /node /user
hold the password value undisguised by the traditional star characters, which leaves the m
open to snooping and subsequent abuse.

Clicking the Connection value brings up the Embedded Object d) for class

CliConnection

MSFT_CliConnection.

Figure 11.23. The Embedded Object dialog for class MSFT_

The next property is the description for the Alias and details its purpose. After that is the Form
property, which contains an array of objects that dictate how the output is formatted for the Alias.
This is of particular interest to us if we wish to customize the fields shown in the output from an
Alias and the way in which they are displayed (

at

Figure 11.24).

Figure 11.24. An array of objects associated with the Formats property

Figure 11.24 is an array of objects associated with the Formats property. Each one of these
represents a different style of layout, for example, BRIEF|FULL|INSTANCE| SYSTEM|STATUS,
that can be called from WMIC. If you click the topmost object number (1), you will be presented
with a dialog box (Figure 11.25) that displays the properties of the STATUS format option. This is
defined for table format (the only other option is LIST), which makes the output very wide because

rom left to right across the screen. The Properties
array contains the list of the properties that are displayed by the format.

.25. Properties of the STATUS format option

it lists the properties of the class in columns f

Figure 11

Each object defines the layout of the data and the properties that are displayed.

FriendlyName at must be unique for the
d also is the name you use in WMIC. PWhere is used to retrieve specific instances of the

ss defined in the property Target. The hash character (#) indicates that a numeric value is
ccept a string value from the command line, enclose

 the qualifiers

use. The Verb
re are

on with the Alias. To see the Alias in action, let's
 and type wmic

s, nic (remember, WMIC is not case sensitive). You

As mentioned earlier, the property is a key property th
instance an
CIM cla
assigned by users when they call the Alias. To a
the hash symbol in single quotes, '#'. The Qualifiers property holds an array of
applicable to the Alias.

The Target property can contain either a class name or, more commonly, a WQL cla
conjunction with the Alias. In this example, theproperty details the verbs that can be used in

 verbs that can validly be used in conjunctino
activate it in WMIC. First, move from the Start menu to the command prompt option
at the prompt. Now type the name of the Alia
should be presented with something similar to the image in Figure 11.26.

Figure 11.26. The NIC Alias in action

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch07#ch07

As you can see, you have retrieved a comprehensive list of all of the network interface cards, both
logical and physical, available on your machine. To save this output, you could simply pipe all of
the information to an output file by specifying its name in the /output global switch as follows:

Wmic:root\cli>/output:d:\nic.txt

Or to cut and paste the information into a Windows GUI–based application we could specify:

 send our output to the screen later, we could use the following command:

T is the default screen on most operating systems.

reating or Modifying Aliases Using the CIM Studio
an tailor it to suit your own needs by

omizing or modifying Aliases to
ut formats to

is that you must
ed it for you.

can be viewed either
espace using

 from the
 the WMI CIM Studio.

ponents you wish to manage and locate their classes in the CIM
io. Typically, the best place to start looking is the

 the help button to retrieve
you decide whether this class

achines (nodes) on the network you are going to retrieve this
on. Do any of the machines use Kerberos authority or NTLM? You must specify

this in the Alias.

Wmic:root\cli>/output:clipboard

To

Wmic:root\cli>/output:STDOUT

STDOU

C
One of the most powerful features of WMIC is that you c
customizing certain aspects of it. This includes potentially cust
simplify the syntax of day-to-day tasks and also creating your own canned outp
determine which properties are shown and how they are displayed. The only caveat

 implementdetermine before creating your own Alias whether Microsoft already has
MIC: They Microsoft includes more than 70 built-in Aliases as part of W

typing in WMIC or by inspecting the /? MSFT_CliAlias class in the root\Cli nam
the WMI CIM Studio.

We will examine three ways of creating your own Alias: one using the MOF language, one
command line of WMIC using the create command, and one using

Considerations

1. Decide which com
repository using the WMI CIM Stud
root\CIMV2 namespace. After you are in the namespace, use

ate classes and their properties to help descriptions of candid
contains the information you need.

2. Decide from which m
informati

3. Identify the locale of each machine you will be accessing. Make a note, because you will
need to specify this in the Alias.

4. Determine whether you will need a username and password to access these machines. Are
they the same for all the machines? Remember, you cannot define specific
username/password pairs for specific nodes: All nodes in a WMIC session require the same

om the command line using Alias. Start WMIC in inte
or noninteractive mode and type the following:

pterType='#'",
 FROM Win32_NetworkAdapter" < >

on successful." This will result in a new Alias
 in the CIM repository. MyAlias returns a list of the

at
the

 quotes, type:

n>

to use WMIC to access WMI on the local machine or across
 a brief look at the pros

liases, and switches after
t of WMIC from

e the following and then press the return key:

ses while experimenting with the CIM
ping:

For instances: c:\mofcomp Cliegaliases.mof

p

the classes and instances to their initial states, but will not delete any existing
stances you may have created.

.

username and password.

Creating a Simple Alias from the WMIC Command Line

It is also possible to create an Alias fr ractive

Alias create friendlyname="MyAlias", PWhere="WHERE Ada
 target="SELECT *

If successful, WMIC will return "instance creati
alled MyAlias being created and stored locallyc

currently installed network adapters with the option to filter the results by frame type. Notice th
we have enclosed the hash in single quotes, because it is a string value. To test it from
interactive command prompt, making sure to enclose the string value in double

wmic:root\Cli>MyAlias "Ethernet 802.3" <retur

Using WMIC in Noninteractive Mode
In noninteractive mode it is possible
the network to a remote machine from within a batch file. Here we shall take
and cons of doing so.

To ca nds, All WMIC in noninteractive mode, you must append all comma
e call to WMIC, each separated by a space. For example, to retrieve the contexth

the command line, you would typ

C:\WMIC CONTEXT

If you irreparably damage the existing Alias instances or clas
pository by tystudio, you can recompile them into the CIM re

For classes: c:\mofcomp cli.mof

c:\mofcom Cliegaliases.mfl

This will restore
in

You must take certain precautions when running your batch files unattended and accessing WMIC
For example, make sure that you have set the namespace, role, and node global switches before

making any calls. Also ensure that FAILFAST and INTERACTIVE are OFF before proceeding.
t to a file for later viewing.

noninteractive mode because they improve
e command line. Fully qualified

 to publish a table of the currently installed software on a machine when the
ators to keep track of potential irregularities,

o set this up,

ff/OUTPUT:c:\ le.htm

Note

ore Aliases, otherwise they have no effect. Aliases and

ile table.htm in tabular HTML format, using the format defined in
hform.xsl (Figure 11.27

You will probably want to write the outpu

Aliases are recommended for use with WMIC in
readability and sparingly use the 1024-character limitation of th
paths potentially could eat up vast numbers of characters.

Suppose that we wish
user first boots up. This table would allow administr
such as the installation of unlicensed software or software that is not work-related. T
we could append the autoexec.bat file to call WMIC as follows:

WMIC /FAILFAST:off /LOCALE:ms_409/INTERACTIVE:o
 Product get name,vendor /format:hform.xsl

Always specify switches bef
switches must be separated by spaces.

This call will result in the name and vendor of all the software products installed on the host
machine being written to the f

).

Figure 11.27. WMIC can format the output in a variety of predesigned styles

WMIC commands can be configured to format the output in a va
formats are also customizable because WMIC works with XSL docum

riety of predesigned styles. These
ents. Using the output switch

n the file table.htm is overwritten each time it runs. If, however, you ensures that everything i

wanted to keep track of the changes over the weeks, you would use the /append switch instead, as

LFAST:off /LOCALE:ms_409 /INTERACTIVE:off /APPEND:table.htm
t list format brief /format:hform.xsl

gle command line. For example, the following

 Usernames and
Passwords

follows:

WMIC /FAI
duc Pro

WMIC does not accept multiple queries on a sin
would fail.

WMIC /LOCALE:ms_409 nic: /LOCALE Product list format brief /
format:hform.xsl

BEST PRACTICE!

Never declare passwords and usernames using the /password and username switches
when using WMIC in noninteractive mode from a batch file. This represents an
unwarranted security risk.

Summary
By learning to use WMI Scripting and WMIC, administrators are able to plan and imple

active management strategy, as well as to automate complex day-to-day tasks. The W
ment a
MI

's most extensive management architecture to date: The tools examined in
pro
architecture is Microsoft
this chapter and in Chapter 10 provide relatively simple, but powerful, ways to benefit from it.

s an essential tool for carrying out single queries on one or more machines. This is perfect
inistrative tasks with a relatively small number of steps. WMIC is also extremely simple to

gin to obtain results from it in a relatively short time. WMIC
 extensible by designing custom XSL formats of

to use without any prior knowledge of
 users to issue commands one at a time

ode, existing batch files can be

anguage and of
, Microsoft has

ent
I offer a real

ips
n be used to access local or remote CIM repositories and retrieve,

.
stem management, Alias. An Alias is a

eves and formats

WMIC i
mfor ad

use, ensuring that administrators can be
has powerful formatting abilities that are easily
your own. The Alias feature makes WMIC particularly easy

owsthe structure of the CIM. In interactive mode, WMIC all
d query WMI on local or remote machines. In noninteractive man

updated so that they can also harness the power of WMI.

WMI Scripting is a step beyond the previous capabilities of the MS-DOS batch file l
the scripting capabilities of the WSH object model alone. In providing the WMI API

simple management tools of their provided administrators with a unique opportunity to develop
own within reasonable time. After the initial overhead of learning to script, the rapid developm

pts compared with the complexity of the tasks they can undertake via WMtime of scri
step forward in the enterprise system management arena.

Ten Fast Facts: WMIC T
1. WMIC ca

modify, add, or delete data in them
2. WMIC introduces a new term to sy

simplified term that refers to a more complex query that retri

information from the CIM repository.
 WMIC can operate in one of two modes, interactive and noninteractive.

e mode starts WMIC and provides you with a special command prompt
r WMIC-specific commands. Noninteractive mode starts WMIC,

performs the requested actions, and then returns to the calling function.

 The
CLASS command retrieves class information about managed objects whereas the

s. Append with /? to retrieve help
for a specific command (or verb ass a command).

w you to

allow the user to refine the set of data returned by a query.
at refine the query even further.

using XSL documents. Microsoft provides a
r the output

rganization.
r own Aliases to simplify the administration of your

3.
Interactiv
to issue you

4. WMIC is configured by default to use impersonation level access that uses the
account credentials of the current user for actions carried out locally.

5. The three main commands in WMIC that you can use to get management
information from WMI are the Aliases, CLASS, and PATH commands.

PATH command and Aliases retrieve the actual data associated with the class (the
instance information).

6. WMIC provides help on each of its command
ociated with

7. The WHERE clause enables you to refine your WMIC queries to allo
receive a specific subset of information.

8. Verbs in WMIC
Adverbs are additions to verbs th

9. Output from WMIC can be modified
number of XSL documents but users can also define their own to tailo
to suit the needs of their o

ate you10. It is possible to cre
target environment. This can be done using the WMI CIM Studio or by writing

g a MOF file. and compilin

Chapter 12. Developing WMI Providers
f the most powerful features of Windows Management Instrumentation (WMI) is that it

n management objects through a provider. WMI offers a lot of
 reasonably straightforward. Let's look at the big picture

ches used by developers to expose their management interfaces.

ou're a developer of a client-side project, then it's likely that you don't have any facility to
manage and monitor the software. Managing and monitoring client applications is sometimes

ing server-side applications. Microsoft has
rnet Explorer expose management objects.

If you're a developer of a server-side project, then you almost definitely have some management
ment projects have implemented their own

ote administration. This may have been a combination of custom
s directly into the registry, or using some other mechanism (such as
y proprietary and require special knowledge to manage the

y route at
e plumbing

One o
allows developers to expose their ow
infrastructure that makes writing providers
of current approa

If y

viewed as more of a problem than managing and monitor
already led the way by making Microsoft Office and Inte
Microsoft Office exposes more than 100 classes (in the root\MSAPPS10 namespace) and Internet
Explorer exposes around ten classes (in the root\CIMV2\Applications\MicrosoftIE
namespace). This allows administrators to remotely monitor and manage large numbers of client
machines in the network.

requirement. Traditionally, server-side develop
infrastructure for local and rem

OM interfaces, writing valueDC
a file), all of which are completel
environment. Writing your own DCOM administration interfaces may seem like an eas

ffers a lot of thfirst but after writing a WMI provider, you will soon realize that WMI o

that you might otherwise have to implement. Here are a few reasons why writing a WMI provider

a sets over the network.
Provides a logical and unified administration model.

int in the list. Some development projects store their administration
hese could include the Active Directory, an XML file, a database,

torage medium is sometimes referred

can benefit you:

• Uses an industry standard class-based schema. The benefit here is that the classes can be
very precise in their definition. This allows others to understand and use your classes easily.
A class-based schema allows you to encapsulate objects logically in the management
environment.

• Allows access to management objects either through the scripting interface or through a
programming language such as C++ and C#.

• Provides an infrastructure for executing WQL queries. If a provider doesn't support query
optimization, WMI can still perform the query by enumerating all the management objects
for a class. In short, you get free query support.

• Allows simpler deployment. Developing DCOM solutions requires a proxy-stub DLL to be
installed on each client machine. Accessing WMI management objects requires no
additional installation on client machines if they're running Windows 2000/XP or Windows
ME.

• Provides an infrastructure to publish events when something interesting happens. Clients
can capture these events across the network by making an event subscription.

• Optimizes the marshalling of high-performance data across the network. When accessing
high-performance objects on another machine, WMI on the remote machine caches the
objects and transmits only minimal dat

•

Let's focus on the last po
information in several places. T
the Internet, the registry, or some other storage medium. The s
to as the local cache. Let's consider the following WMI class:

mple_MyUser

 string Name; // Stored in a database
rieved from the Internet

y

hich the data

eeds to use any other APIs to access the
ramming requirement is to use the WMI

onment, this encapsulation is lost: The
y. Encapsulation is not the

re that is lost; scripting support and querying are lost, too. The solution is to write a
der that accesses all the data from the different data sources and then deploy the provider on
achine that is exposing the management objects. Any client can then connect to the machine to

class Sa
{
 [key]
 boolean OnLine; // Ret
 boolean UserAlreadyLoggedOn; // Obtained at runtime

 Director string PhoneNumber; // Retrieved from the Active
 Sample_Preferences Options; // Stored in an XML file
 boolean EnableUser; // Stored in Registry
};

This class clearly demonstrates how we logically can encapsulate a user in code in w
nt data source. for each of the properties has originated from a differe

From a client programming perspective, the client never n
properties exposed by the class. The client's only prog
IWbemServices interface. In a traditional programming envir

o write code to access all the different data sources separatelclient needs t
only featu
prov
the m

i

access the data. At a general level, providers fall into two categories: push providers and pull
providers. Figure 12.1 illustrates.

Figure 12.1. WMI client/provider architecture

Pull providers pull instance or property data from the local cache and p
rovider implements its own data retrieval. Typically, a pull provid

ass it to WMI. Hence, a pull
er accesses data that is dynamic

providers:

r instance, the WMI
unter definitions. We

ent objects that are available for one or
al, creation,

tore
an

 is the most common type.
ds in one or more classes. This

sic and extrinsic events. This type of
ally is coupled with instance providers.

lements dynamic property access for one or more classes.
 a class, instance, or property context.

fficient access to constantly
 how Win32 performance counters are exposed.

ush, that is, write, instance data into the CIM repository. The CIM repository is
a eans that the data storage, data access, and event notification are

provided by WMI.

re two types of event consumers:
temporary event consumers and permanent event consumers. Chapter 7

p
and/or changes frequently. There are six different types of pull

• Class. A class provider can generate class definitions dynamically. Fo
Performance Counter provider generates WMI classes based on the co
do not explicitly discuss class providers in this c

managem
hapter.

• Instance. An instance provider exposes the
more classes. An instance provider can support instance enumeration, retriev
modification, and deletion of management object data. An instance provider needs to s
and provide access to its own data. The WMI Event Log provider is an example of
instance provider. Instance provider development probably

• Method. A method provider implements one or more metho
ally is coupled with instance providers. type of provider gener

Event. An event provider can publish both intrin
provider gener

•

• Property. A property provider imp
Properties are accessed using either

• Hi-Perf. A high-performance provider allows very fast and e
changing data. This is

Push providers p
naged by WMI, which mm

In addition to these types of providers is a permanent event consumer provider. An event consumer
is an application that requests events from WMI. There a

 covers temporary event
elivery and are more like
er is that it does not have

vent occurs.

e familiar with C++ programming, COM (Component
ter 7

consumers in detail. Permanent event consumers offer on-demand event d
a client than a provider. The main advantage of a permanent event consum
to be running when the e

The rest of this chapter assumes that you ar
Object Model), and ATL (Active Template Library). It also assumes that you have read Chap

nt objects can be created, updated, deleted, enumerated, and queried,
executed, and you can subscribe

to

and are aware that manageme
and that properties on objects can be manipulated, methods can be

 receive WMI events. This chapter is a detailed discussion on how to write providers to expose

your own management objects. By the end of this chapter, you should be knowledgeable about
virtually every key aspect of writing a WMI provider.[1]

[1] During this chapter, we use the terms "management object," "managed object," "object," and "instance" interchangeably.

rst. If you're developing an
en you need to have designed your class schema and added it to the CIM

alifiers to specify how the class, property, or method is

rs in this chapter. As we discuss each type of
 being implemented and the provider

Developing an Instance Provider

ces. This may include a

hardware device, a database, a file, the registry, and so forth.

 the class schema for the management objects. We shall implement a fruit
schema with three classes that includes an association class. Most real-

ates how you can

Where to Start
Developing a WMI provider requires that some schema be in place fi
instance provider, th
repository. The schema includes some qu

d. implemente

We shall cover most of the different types of provide
on the schemaprovider, we shall include information

on. registrati

An instance provider exposes instances for one or more classes. You develop an instance provider
when a class's instance data originates from a data source other than the CIM repository. As already
mentioned, this data or local cache can originate from a variety of sour

The first step is to design
asket. This is a simple b

world objects will have an association: This provider implementation demonstr
integrate such a class. Figure 12.2 describes a rough outline of the class schema that we shall
implement.

Figure 12.2. WMI instance provider class schema

As you develop your schema, you will realize that you need to understand all the interactions
 Here are the rules

ed:

it basket can contain one or more items of fruit.
eside

fter an item of fruit is assigned to a basket, it cannot be changed. An item of
d, so are all of the items of fruit

ere's the first class:

stance,

te

ss Sample_Basket

ntain.

are created dynamically. The provider
pecifies the name of a
alifier be propagated to

port the standard mechanism for
e,
 class supports

between your classes. We call this "The rules of
r the management environment we have defin

 the management environment."
fo

There can be zero, one, or more fruit baskets. A fru
Many items of fruit can exist but only as long as they are in a basket. An item of fruit can r
only in one basket. A
fruit cannot be deleted specifically. When a basket is delete
contained within it.

Let's have a look at the class definitions that will be implemented. H

[
 dynamic: ToInstance,
 provider("FruitBasketProv"): ToIn
 SupportsUpdate,
 SupportsDele
]
lac
{
 [key] string Name;
 uint8 Capacity;
};

This is a simple class with two properties. The first property is the name of the basket. No two
baskets can have the same name because Name is a key property. The purpose of key properties is
that they uniquely specify how an object is referenced which determines what appears in the
__Path property. Hence, if a class doesn't have a key property, then any objects of that class cannot
be referenced, which has the side effect that objects cannot be created. The Capacity property
merely specifies how many items of fruit the basket can co

The next step is to mark the class as implemented by an instance provider. This requires the
dynamic qualifier, which indicates that the class's instances
qualifier informs WMI who will provide the instances. This qualifier s
registered WMI provider. The ToInstance flavor specifies that the qu
instances.

Before diving into the details of writing a provider, you should assess the capabilities that a
provider requires. An instance provider can create, update, enumerate, delete, get an object, and
support query optimization. Not all of our classes support all of these features: It is common for
different classes to support different combinations of supported provider functions. Incorporate this
design activity during your schema design. WMI classes that sup
creating, updating, and deleting management objects should have the SupportsCreat
SupportsUpdate, and SupportsDelete qualifiers respectively. The Sample_Basket
the following provider functions:

• Update basket instance data (note that the class is qualified as supporting this feature by
specifying the SupportsUpdate qualifier).

• Get a basket instance.
• Delete a basket instance (note that the class is qualified as supporting this feature by

specifying the SupportsDelete qualifier).
• Enumerate all basket instances.

Let's move to the Sample_Fruit class:

[

 simple class that has only two properties. The Name property uniquely identifies an
item of fruit and th lso has a method
called AddFruitTo at does not
already exist, and it is also the only way to add an item of fruit and associate it with a specific
basket. Apply the constructor qualifier to methods that create instances (which
AddFruitToBasket does). WMI does not use the constructor qualifier, which is for information
purposes only. The implemented qualifier indicates that the method has an implementation that is
supplied by a method provider. The static qualifier effectively means the method can be called
without reference to any instances of the class. This is the same concept as in object-oriented
programming. We shall discuss the details of the AddFruitToBasket method later when method
providers are covered.

The Sample_Fruit class will support the following provider functions:

et a fruit instance.
• Enumerate all fruit instances.

led an

 dynamic: ToInstance,
 provider("FruitBasketProv"): ToInstance,
 SupportsUpdate
]
class Sample_Fruit
{
 [key] string Name;
 uint16 Weight;

 [implemented, static, constructor]
 boolean AddFruitToBasket([in] string FruitName,
 [in] string BasketName);
};

This is another
e Weight property stores how heavy the fruit item is. The class a
Basket. In our schema, this is the only way to create a basket th

• Update fruit instance data (note the class is qualified as supporting this feature by specifying
the SupportsUpdate qualifier).

• G

• Execute a method.

The Sample_BasketFruitMembership class links the fruit to the basket. This is cal
association. Associations describe the relationship between instances of two classes. The properties

association,

The Basket entifies the basket in nship and the Fruit reference identifies the
item of fruit in the relationship. Apart from the object reference properties, the association
qualifier is what makes this an association class.

of an association class include object references to the two instances.

[

 dynamic: ToInstance,
 provider("FruitBasketProv"): ToInstance
]
class Sample_BasketFruitMembership
{
 [key] Sample_Basket ref Basket;
 [key] Sample_Fruit ref Fruit;
};

 reference id the relatio

The Sample_BasketFruitMembership class supports the following provider functions:

• Get

an instance of the relationship between the basket and an item of fruit.
• Enumerate all relationship instances.

Now that we have defined our schema and determined the provider capabilities we need, let's
.

rfaces:

discuss the COM interfaces that need to be implemented

An instance provider is a COM component (in or out of process server) that supports two inte
IWbemProviderInit and IWbemServices (see Figure 12.3). All providers implement the
IWbemProviderInit interface, and WMI uses it to initialize the provider. The IWbemServices
interface is implemented for class, instance, and method providers. An instance provider usually
implements the

ing

PutInstanceAsync ExecQ

ent

CreateInstanceEnumAsync and GetObjectAsync methods. Optionally (depend
on the requirements of the schema), the provider may implement DeleteInstanceAsync,

, and ueryAsync.

Figure 12.3. WMI instance provider compon

Provider Registration
Apart from the COM registration requirements, a WMI provider also must register itself with W
This is achieved by creating instances of provider-related classes within the CIM repository.
Without the WMI registration process, it would be impossible for class, instance, and property
providers to be referenced by classes and properties.

Provider registration is a two-step process. The first step includes the initialization and security
requirements of the provider,. The second step is to register what kind of provider it is, for exa
whether it is an inst

MI.

mple,
ance or method provider.

e
The first step requires a __Win32Provider instance to register the provider. The second step
requires an instance of a class derived from __ProviderRegistration to specify the type of th
provider referenced by the __Win32Provider instance. Figure 12.4 shows the class hierarchy
classes used in provider registrations.

 of the

Figure 12.4. WMI provider registration class hierarchy

Let's take a quick tour of the base class, __Provider, before we focus on the __Win32Pr
registration.

ovider

lass
{

ass or

sing the provider qualifier, which usually is accompanied by a
dynamic qualifier. The __Win32Provider class looks like this:

bleCLSID;
 string DefaultMachineName;

= 0;
olean PerUserInitialization = FALSE;

};

ponent that WMI must
ment the

ce. The ClientLoadableCLSID property is used by high-performance
-process if the client and provider reside on the same machine.

DefaultMachineName property specifies the computer on which to launch the provider. If the
rovider runs on the local computer, then this should have a null value.

 allows the provider to remain idle before it
is unloaded. According to the documentation, providers typically request that WMI wait no longer

rom

UnloadTimeout property because it will be used in future versions of WMI.

[abstract]
class __Provider: __SystemC

 [key] string Name;
};

The Name property uniquely identifies the provider registration. The name used by the Name
property can be referenced by other classes and instances when specifying a provider. A cl
instance can specify a provider by u

class __Win32Provider: __Provider
{
 [not_null] string CLSID;
 string ClientLoada

 datetime UnloadTimeout;
boolean InitializeAsAdminFirst;

 sint32 ImpersonationLevel = 0;
int32 InitializationReentrancy s

 bo
 boolean PerLocaleInitialization = FALSE;
 boolean Pure = TRUE;

The CLSID property must be supplied because it identifies the COM com
nstance). The COM component must impleload (by calling CoCreateI

IWbemProviderInit interfa
providers to load the provider in

T
p

he

The UnloadTimeout property specifies how long WMI

than 5 minutes. However, the current version of WMI ignores this property. WMI unloads the
provider based on the timeout value specified by the ClearAfter property in a class derived f
__CacheControl in the root namespace. Microsoft recommended that providers set

The InitializeAsAdminFirst property specifies whether the provider requires that it be
initialized using an administration-level security context under WMI. The ImpersonationLevel
property specifies whether the provider requires the security context of the caller to access system-

The PerLocaleInitialization property specifies that the provider be initialized each time a user

ancy property specifies how WMI should control the initialization of
:

zation must be serialized.

ns in the same namespace must be serialized.

2 zation serialization is required.

rs are
re providers because they exist to service requests from clients, such as an instance provider. A

ust wait

instance of __Win32Provider
{
 Name = "FruitBasketProv";
 CLSID = "{9BE34D0B-B648-471C-9608-1E6FAE67A7F7}";
 ClientLoadableCLSID = NULL;

 ImpersonationLevel = 1;
 InitializationReentrancy = 0;

ALSE;
FALSE;

 PerUserInitialization = TRUE;

sketProv provider to service requests. The FruitBasketProv instance is the first step in

 will contain instances that complete the second step of the
ances are derived from __ProviderRegistration (as can be seen
d earlier). Let's have a quick look at this base class:

level objects. The PerUserInitialization property specifies whether the provider is initialized
once for each and every user (caller) making service requests against the provider. We discuss these
three properties in more detail later in the chapter.

connects to the namespace using a different locale.

The InitializationReentr
the provider. This property can be one of the following

0: All provider initiali

1: All provider initializatio

: No provider initiali

The Pure property specifies whether the provider is a pure or nonpure provider. Most provide
pu
nonpure provider transitions to the role of a client after it has finished servicing client requests. For
instance, a push provider would be a nonpure provider. After a push provider has updated the CIM
repository with data during its initialization, it no longer has any responsibilities, other than waiting
to be unloaded or to transition to the role of a client. It is important for WMI to distinguish between
pure and nonpure providers so that it can determine when it is safe to shut down. WMI m
for all operations involving nonpure providers to finish before it can safely shut down.

Here's a typical provider registration:

 DefaultMachineName = NULL;

 InitializeAsAdminFirst = F
 PerLocaleInitialization =

 Pure = TRUE;
 UnloadTimeout = NULL;
};

Notice that the schema described in the previous section used the provider qualifier to specify the
FruitBa
provider registration.

A MOF registration file typically
vider registration. These instpro

from the class hierarchy displaye

[abstract]

class __ProviderRegistration: __SystemClass
{
 __Provider ref provider;
};

The __Win32Provider registration is referenced by all instances derived from

 provider, we shall provide more details on how the provider should be

Init Initialize
Initialize can be called with different values. For instance, a provider

 with per-user or per-locale initialization. We shall discuss this later.

ur opportunity to initialize state or devices correctly so that the provider
 the IWbemProviderInit interface.

// Must be zero, reserved

wszLocale,

xt for making WMI calls
 IWbemProviderInitSink*); // Report initialization status

.

for a
a single namespace. Use this parameter if your

ce has different initialization

 This parameter is
. This can be useful if your
le. The format of this

ntifier (in hex) is appended. US English

 to be able to make service requests back into WMI. This is typical when
d's in/out parameter definitions. The pNamespace

__ProviderRegistration through the provider property.

As we cover each type of
istered. reg

Provider Initialization
Shortly after it loads a provider, WMI initializes the provider through its IWbemProviderInit
interface. The IWbemProvider interface has only one method, . Depending on the
provider's registration,
may have been registered

Provider initialization is yo
can function properly. Let's look at

interface IWbemProviderInit
{
HRESULT Initialize(
 LPWSTR wszUser, // User name
 LONG lFlags,
 LPWSTR wszNamespace, // Namespace loading the provider
 LPWSTR // Initialization locale
 IWbemServices* pNamespace, // The providers local IWbemServices
 IWbemContext* pCtx, // Conte

pInitSink
};

The wszUser parameter is the name of the user accessing the provider. This parameter is passed
only if the provider registration requested per-user initialization. This can be useful if you want to
alter your provider capabilities on a per-user basis (like making properties read-only, for example)

The wszNamespace parameter is the name of the namespace that loads the provider. It is possible
for a provider to service requests for more than one namespace. However, it is common
provider implementation to service requests within
provider targets more than one namespace and each namespa
requirements.

The parameter is the locale for which the provider is being initialized.wszLocale
passed only if the provider registration requested per-locale initialization

rovider has different initialization requirements for each supported locap
parameter starts with "MS_" and the Win32 LCID locale ide
is " " and German is " ." MS_409 MS_407

Often a provider needs
spawning an instance of a class or getting a metho

pa provider's own local Services interface that is caprameter is the IWbe
requests made by the provider.

m able of servicing any

 in

WbemLocator> spLoc;
hr = spLoc.CoCreateInstance(CLSID_WbemLocator);

 this, you

r> spLoc;
e(CLSID_WbemAdministrativeLocator);

ator service.

x arameter is the context used by WMI when making calls to the IWbemServices interface
pCtx parameter can cause WMI to start

MI. The IWbemProviderInitSink
ider must call SetStatus, passing either

_S_INITIALIZED indicates that the provider is fully
hat the provider failed to

eed to implement the

ance:
 CComObjectRoot,

lic CComCoClass<CInstance,&CLSID_Instance>,
public IWbemProviderInit,

 public IWbemServicesImpl<CInstance>

 COM_INTERFACE_ENTRY(IWbemProviderInit)

It is possible that during provider initialization, the provider may want to execute WMI requests
another namespace, even a namespace on another machine. Your first act, in this instance, may be
to perform something similar to the following:

CComPtr<I

CComBSTR bstrNamespace("\\\\SomeMachine\\root\\SomeNamespace");

CComPtr<IWbemServices> spServices;
hr = spLoc->ConnectServer(bstrNamespace, NULL, NULL, 0,
 NULL, 0, 0, &spServices);

Doing this during provider initialization may result in an access denied error. To avoid
should use the CLSID_WbemAdministrativeLocator service instead of the standard
CLSID_WbemLocator service. Create your locator service like this:

CComPtr<IWbemLocato
hr = spLoc.CoCreateInstanc

This technique applies only to providers that are in-process COM servers. Out-of-process COM
vers should use the standard CLSID_WbemLocser

The pCt p
through the pNamespace parameter. Neglecting to pass the
an infinite loop.

The pInitSink parameter reports initialization status back to W
interface has just one method, SetStatus. A prov
WBEM_S_INITIALIZED or WBEM_E_FAILED. WBEM
initialized and is ready to accept requests. WBEM_E_FAILED indicates t
initialize and is not functional.

We've already determined that an instance provider will n
IWbemProviderInit and IWbemServices interfaces. So let's look at a minimal ATL
implementation.

class CInst
 public
 pub

{
public:
 CInstance() {}
 BEGIN_COM_MAP(CInstance)

 COM_INTERFACE_ENTRY(IWbemServices)
 END_COM_MAP()

ECLARE_REGISTRY_RESOURCEID(IDR_Instance) D
protected:

 CComPtr<IWbemServices> m_spLocalServices;

blic:
THOD(Initialize)(LPWSTR wszUser, LONG lFlags,
WSTR wszNamespace, LPWSTR wszLocale,

WbemContext *pCtx,
);

ion is an IWbemServices
 of these

ust perform a
he IWbemServices interface passed

 later in the
ices member will become very useful when we start exposing

s to report
e provider is

_S_NO_ERROR.

ProviderInit::Initialize:

(LPWSTR wszUser, LONG lFlags,
 *pNamespace,

of the local namespace

 dd your initialization code here
 //

o be thread-safe, we use ATL's ObjectLock to synchronize access to all

pu
 STDME

P L
 IWbemServices *pNamespace, I
 IWbemProviderInitSink *pInitSink
 };

The IWbemServicesImpl C++ template class in this declarat
implementation that returns WBEM_E_NOT_SUPPORTED for all the interface methods. Some

ill be overridden as new provider functionality is implemented. interface methods w

The fruit basket provider has no special initialization requirements, but a provider m
minimal set of tasks. A provider should keep a reference on t
through pNamespace. The reference is held by m_spLocalServices. As you'll see
chapter, the m_spLocalServ
management objects. A provider must also call IWbemProviderInitSink::SetStatu

WMI uses this information to determine if ththe provider initialization status to WMI.
capable of servicing requests. SetStatus always returns WBEM

Let's look at the implementation for IWbem

STDMETHODIMP CInstance::Initialize
 LPWSTR wszNamespace, LPWSTR wszLocale, IWbemServices
 IWbemContext *pCtx, IWbemProviderInitSink *pInitSink)
{

jectLock lock(this); Ob

 Cache a copy //
 m_spLocalServices = pNamespace;

 HRESULT hrStatus = WBEM_S_INITIALIZED;

y tr
 {
 //
 // TODO: A

 }
 catch(. . .)
 {
 hrStatus = WBEM_E_FAILED;
 }

 // Let WMI know your initialized
 pInitSink->SetStatus(hrStatus, 0);

 return WBEM_S_NO_ERROR;
}

For more complex providers, the initialization requirements may be more involved than in this
simple example. Just t
methods implemented in a provider.

Enumerating Objects
All instance providers should be capable of enumerating the objects they expose. Implementing this

ur
ed

, create instances of your objects, and pass
sk

functionality is usually the best place to start, because you can immediately start testing yo
rovider with the CIM Studio (shipped with the Platform SDK). To enumerate your managp

objects requires that you iterate through your local cache
them onto WMI. The fruit ba et provider will use the registry for its local cache of data. The
registry needs to store many baskets, each containing many items of fruit. Figure 12.5 shows the
registry structure we shall use.

Figure 12.5. Fruit basket registry structure

From Figure 12.5, you can determine that there are two baske
asket1 containing two items of fruit, Apple1 and Apple2. Lik

ts (MyBasket1 and MyBasket2), with
ewise, MyBasket2 has only one item

ORD value, Capacity, and

 under the
MI, which is run under

entation of
erface contains many methods, including

ment the asynchronous versions, the

ontext* pCtx, // Context for making WMI calls
mObjectSink* pResponseHandler); // Returned managed objects

t is
er

tances that pertain to the referenced class (that is,
es of abstract classes are never passed

B
of fruit, Orange1. Each basket will store the basket's capacity in a DW
each item of fruit will have a DWORD value, Weight. To expose all the baskets in our provider
involves enumerating all the baskets under the Basket key. We store the data

gistry key because the provider will be loaded by WHKEY_LOCAL_MACHINE re
e local system account. th

To expose the enumeration through a provider requires the implem
ervices intCreateInstanceEnumAsync. The IWbemS

synchronous and asynchronous versions. Providers only imple
es ending with . on ... Async

Let's look at the CreateInstanceEnumAsync method:

interface IWbemServices
{
HRESULT CreateInstanceEnumAsync(
 const BSTR strClass, // Class to enumerate

Flags, // Optional flags LONG l
C IWbem

e IWb
 };

An instance provider can service many different classes in one or more namespaces; the class tha
 be enumerated is passed by WMI to the provider through the strClass parameter. A providto

must use this parameter and create only ins
exposing management objects for a specific class). Nam
through the strClass parameter.

The parameter contains the flags that a clienlFlags t passes to W
rovider. WBEM_FLAG_SEND_STATUS is the only flag that you're li

MI: WMI passes the flags to the
kely to use. This flag requests that

about the call so that WMI can pass the information to the
ects and progress status information through the

Let's see what the

mObjectSink

SULT Indicate(
 LONG lObjectCount, // Number of objects passed

of objects

lFlags,

/ For PutInstanceAsync only
 IWbemClassObject *); // For complex error/status

there
te method three times.

er to notify WMI with call status information; this
des call completion and call progress information. The SetStatus method's lFlags parameter

STATUS_ PROGRESS. When the provider has
tatus, passing the WBEM_STATUS_COMPLETE flag.

the completed operation. If a client passes
rface method (such as

tStatus regularly so that
t handle the

BEM_FLAG_SEND_STATUS flag, so it effectively becomes ignored. If you choose to implement this
feature, then your provider should call , passing WBEM_STATUS_PROGRESS in the lFlags

n both the progress and total information. The
ich is usually represented as a percentage. The

the

pObjParam

Let's lo

class
 publ
 public CComCoClass<CInstance,&CLSID_Instance>,

p
the provider send progress information
client. The provider exposes its management obj
pResponseHandler parameter (which is an IWbemObjectSink interface).
IWbemObjectSink interface looks like:

interface IWbe
{
REH

 IWbemClassObject **ppObjArray); // Array

HRESULT SetStatus(
 LONG // Call status
 HRESULT hResult, // Call result or progress
 BSTR strParam, /

pObjParam
};

The provider calls the Indicate method to pass one or more instances that satisfy a request. If
are three objects that satisfy a request, then the provider will call the Indica

The SetStatus method allows the provid
inclu
can be either WBEM_STATUS_COMPLETE or WBEM_
completed the service request, it must call SetS
The hResult parameter must contain the outcome of
EM_FLAG_SEND_STATUS to an IWbemServices inteWB

CreateInstanceEnumAsync), then the provider should make calls to Se
lient continually can be informed with the service request. Some providers don'the c

W
SetStatus

parameter, and the hResult parameter, should contai
progress value is contained in LOWORD(hResult), wh
total value is contained in HIWORD(hResult) and usually represents the total number of instances.
However, depending on how you want to present the information to the client, you can choose how
to encode your status information in the hResult parameter. The strParam parameter allows the
provider to return an object path of a newly created instance. A provider should complete this
parameter in implementations of PutInstanceAsync that create objects.

The pObjParam parameter allows the provider to return very rich information about an error or
status of an operation. This is useful especially where the error and/or status cannot simply be
encapsulated in an HRESULT. When writing your own providers, keep this in mind if you want
richer information provided to the client. The parameter works like any other
IWbemClassObject instance. Properties on the instance can be inspected for the desired
information.

ok at the new additions in the provider implementation:

CInstance:
ic CComObjectRoot,

 publ
 public IWbemServicesImpl<CInstance>
{

 ...
 ..
public: // IWbemServices

o

 .
};

In the provider's implementation of CreateInstanceEnumAsync, you should check to ensure that

irst, let's look at CreateInstanceEnumAsync:

nce::CreateInstanceEnumAsync(const BSTR Class,
ontext *pCtx,
esponseHandler)

 hr = WBEM_E_INVALID_CLASS; // Provider does not support the class

ic IWbemProviderInit,

.

 STDMETHOD(CreateInstanceEnumAsync)(const BSTR Class, long lFlags,
 IWbemContext *pCtx, IWbemObjectSink *pResponseHandler);
protected: // Enum implementation for each class
 HRESULT EnumBasket(IWbemObjectSink *pResponse, IWbemContext *pCtx);

 HRESULT EnumFruit(IWbemObjectSink *pResponse, IWbemC ntext *pCtx);

 HRESULT EnumFruitBasket(IWbemObjectSink *pResponse,
 IWbemContext *pCtx);

protected: // Helpers
 HRESULT CreateInstance(LPOLESTR lpszClassName,
 IWbemClassObject** ppObject, IWbemContext *pCtx);

the provider supports the enumeration of the requested class: if it does, it should route the service
request to another method. That's why you see EnumBasket, EnumFruit, and EnumFruitBasket in
the previous declaration. To make the code sample readable, we created a helper method
(CreateInstance) that we use to create the instances of our management objects.

F

STDMETHODIMP CInsta
long lFlags, IWbemC
IWbemObjectSink *pR
{
 ObjectLock lock(this);
 HRESULT hr = WBEM_S_NO_ERROR;

 try
 {
 // Handle service request based on class name
 if (CompareClass(Class, L"Sample_Basket"))
 hr = EnumBasket(pResponseHandler, pCtx);
 else if (CompareClass(Class, L"Sample_Fruit"))
 hr = EnumFruit(pResponseHandler, pCtx);
 else if (CompareClass(Class, L"Sample_BasketFruitMembership"))
 hr = EnumFruitBasket(pResponseHandler, pCtx);
 else

 // Tell WMI that the service request is complete
 pResponseHandler->SetStatus(WBEM_STATUS_COMPLETE,
 hr, NULL, NULL);
 }
 catch(...)
 {
 hr = WBEM_E_PROVIDER_FAILURE;

 pResponseHandler->SetStatus(WBEM_STATUS_COMPLETE,
 hr, NULL, NULL);
 }

 return hr;

CompareClass ple is a simple wrapper for the Win32 API
provider

IWbemObjectSink interface so that the provider can pass one or more instances of a class to WMI
 call progress information. The IWbemContext interface is also required so that

Services context.

plementation for providing all of the instances of the
asket EnumFruit and EnumFruitBasket is not included here. The

ld font are the main steps for exposing your own management objects. First, the
t is created in memory and the values of its properties are obtained and then set

nagement object is passed to WMI by calling Indicate.

 *pResponse,
Ctx)

 hr = WBEM_S_NO_ERROR;

pen the basket key to enumerate the baskets
CRegKey regBasketEnum;

tEnum.Open(HKEY_LOCAL_MACHINE,
oftware\\WMIBookProv\\Basket"), KEY_ENUMERATE_SUB_KEYS);

0;

 // Get the basket name for each iteration

RegIndex++,

 {

 CComVariant varName(szBasketName);
 hr = spObject->Put(L"Name", 0, &varName, 0);

registry keys to get Capacity property
 CRegKey regBasket;
 lReg = regBasket.Open(HKEY_LOCAL_MACHINE,

}

The function you see in this code sam
function, CompareString. If the class name referenced by Class is not supported, then the
should return WBEM_E_INVALID_CLASS. An enumeration request needs access to the

and possibly supply
new instances can be spawned using the correct IWbem

The following code sample is the im
 class. The code for Sample_B

lines of code in bo
anagement objecm

by calling Put. Finally, the ma

HRESULT CInstance::EnumBasket(IWbemObjectSink
 IWbemContext *p
{
 USES_CONVERSION;
 HRESULT

 // O

 LONG lReg = regBaske
 _T("S

 if (lReg == ERROR_SUCCESS)
 {
 DWORD dwRegIndex = 0;
 LONG lRegBasket =

 do
 {

 WCHAR szBasketName[128];
 lRegBasket = RegEnumKeyW(regBasketEnum, dw
 szBasketName, 128);

 if (lRegBasket == ERROR_SUCCESS)

 // Create managed object
 CComPtr<IWbemClassObject> spObject;

hr = CreateInstance(L"Sample_Basket", &spObject, pCtx);

 // Set Name property of the managed object

 CComBSTR
 bstrBasketPath(L"Software\\WMIBookProv\\Basket\\");
 bstrBasketPath += szBasketName;

 // Open appropriate

 OLE2T(bstrBasketPath), KEY_QUERY_VALUE);

 if (lReg == ERROR_SUCCESS)
 {
 // Get Capacity value from registry
 DWORD dwCapacity = 0;
 lReg = regBasket.QueryValue(dwCapacity, _T("Capaci

ty"));

anaged object
acity);

;

Object->Put(L"Capacity", 0, &varCapacity, 0);
 }

er method wraps up the creation of instances. First, we obtain the
e create the management object by calling SpawnInstance. The

 spawned management object requires its properties to be set before it is passed to WMI. Notice

bject(CComBSTR(lpszClassName), 0,

ppObject);

 specific object from your management environment. When
client makes a specific request for a management object, it creates an object path that uniquely

 if (lReg == ERROR_SUCCESS)
 {

 // Set Capacity property for the m
dwCap CComVariant varCapacity((int)

 varCapacity.ChangeType(VT_UI1)

 hr = sp

 }

 // Pass managed object to WMI
 hr = pResponse->Indicate(1, &spObject.p);
 }

 }
 while (lRegBasket == ERROR_SUCCESS);
 }

 return hr;
}

The CreateInstance help
management class and second, w
new
that m_spLocalServices that was cached earlier is now used.

HRESULT CInstance::CreateInstance(LPOLESTR lpszClassName,
 IWbemClassObject** ppObject, IWbemContext *pCtx)
{
 HRESULT hr = WBEM_S_NO_ERROR;

 if (m_spLocalServices)
{

 // Get class definition
 CComPtr<IWbemClassObject> spClass;
 hr = m_spLocalServices->GetO
 pCtx, &spClass, NULL);

 // Create instance of class
 hr = spClass->SpawnInstance(0,
 }

 return hr;
 }

Getting an Object
All providers should be able to obtain a
a
identifies the management object. An object path contains the class and one or more key

property/value pairs to identify the object. It can also optionally include the machine and namespace
entifies a user account:

or a more
efer to Chapter 7

details. Here is an example that uniquely id

Win32_UserAccount.Domain="GWCOLE",Name="Administrator"

A string such as the one above gets passed to the provider's GetObjectAsync method. F
detailed explanation of object paths, please r .

ctAsync method:

interface IWbemServices

 // Optional flags
 IWbemContext* pCtx, // Context for making WMI calls

Path the
 exists, then creates and populates the properties of the object. Finally, the provider returns an

d by WMI (pResponseHandler).

get
on when the

EM_FLAG_SEND_STATUS. Most providers implementations of
d to WBEM_FLAG_SEND_STATUS because a get operation is usually

 provider implementation:

>,

 ...

HRESULT GetFruit(IWbemObjectSink *pResponse, IWbemContext *pCtx,
 ParsedObjectPath* pObjectPath);

 ParsedObjectPath* pObjectPath);

Let's look at the GetObje

{
HRESULT GetObjectAsync(
 const BSTR strObjectPath, // Requested object
 LONG lFlags,

 IWbemObjectSink* pResponseHandler); // Returned managed object
};

When a client makes a request for a specific management object using an object path, WMI passes
the object path to the provider through the strObject parameter. The provider verifies that
object
IWbemClassObject object back to WMI through the sink provide

I in turn passes the object back to the client. WM

The parameter contains the flags that a client passes to WMlFlags I. If you expect your
peration to be lengthy, then you should consider implementing progress informatio
lFlags parameter specifies WB

nGetObjectAsync don't respo
fast.

Let's look at the new additions in the

class CInstance:
 public CComObjectRoot,
 public CComCoClass<CInstance,&CLSID_Instance
 public IWbemProviderInit,
 public IWbemServicesImpl<CInstance>
{

 ..
public: // IWbemServices
 STDMETHOD(GetObjectAsync)(const BSTR ObjectPath, long lFlags,
 IWbemContext *pCtx, IWbemObjectSink *pResponseHandler);

protected: // GetObject implementation for each class
 HRESULT GetBasket(IWbemObjectSink *pResponse, IWbemContext *pCtx,
 ParsedObjectPath* pObjectPath);

 HRESULT GetFruitBasket(IWbemObjectSink *pResponse, IWbemContext *pCtx,

otected: // Helpers pr

 VARIANT GetObjectPathKey(LPCWSTR lpszPropName,
 ParsedObjectPath* pObjectPath);

of obtaining the object. This is the purpose of the GetBasket, GetFruit, and

Microsoft has
mplemented through a set of

arser class is used to decode and encode an object path.
ents an object path in which the machine, namespace, class,

dividually. You'll see the CObjectPathParser and
ut this chapter.

ng lFlags,
mObjectSink *pResponseHandler)

jectPathParser objPath;

edPath->m_pClass, L"Sample_Basket"))
th);
ple_Fruit"))

dPath);
,

eHandler, pCtx, pParsedPath);

class

 .
};

As with the CreateInstanceEnumAsync implementation, GetObjectAsync also checks to ensure
that the provider supports the requested class. If the class is supported, the request is routed to a
method that is capable
GetFruitBasket methods in the preceding class declaration. To decode the object path passed by

tunately, WMI, we have created a helper method called GetObjectPathKey. For
vided a WMI object path parser in the Platform SDK. The parser is ipro

header and .cpp files. The CObjectPathP
The ParsedObjectPath class repres
and key properties can be inspected in
ParsedObjectPath classes used througho

Let's have a look at : GetObjectAsync

STDMETHODIMP CInstance::GetObjectAsync(const BSTR ObjectPath, lo
 IWbemContext *pCtx, IWbe
 {
 USES_CONVERSION;
 ObjectLock lock(this);

ULT hr = WBEM_S_NO_ERROR; HRES

 try
 {

 COb
 ParsedObjectPath* pParsedPath;

 // Parse object path for the desired object
 objPath.Parse(ObjectPath, &pParsedPath);

 // Handle service request based on class name
 if (CompareClass(pPars
 hr = GetBasket(pResponseHandler, pCtx, pParsedPa

L"Sam else if (CompareClass(pParsedPath->m_pClass,
 hr = GetFruit(pResponseHandler, pCtx, pParse
 else if (CompareClass(pParsedPath->m_pClass
 L"Sample_BasketFruitMembership"))
 hr = GetFruitBasket(pRespons

 else
 hr = WBEM_E_INVALID_CLASS; // Provider does not support the

 // Tell WMI that the service request is complete

>SetStatus(WBEM_STATUS_COMPLETE, pResponseHandler-
 hr, NULL, NULL);
 }
 catch(. . .)
 {
 hr = WBEM_E_PROVIDER_FAILURE;

 pResponseHandler->SetStatus(WBEM_STATUS_COMPLETE,
 hr, NULL, NULL);
 }

 return hr;
}

The general
ivi

technique applied here is to parse the object path and use the ParsedObjectPath class
dual key properties can be obtained. Like CreateInstanceEnumAsync, we need access

IWbemObjectSink interface so that the provider can create a single object instance (if it

ment object for the
GetFruit and GetFruitBasket is not included here. The code

 key steps for exposing a management object, which is first created in
Indicate to

tPath* pObjectPath)

T hr = WBEM_S_NO_ERROR;
Ptr<IWbemClassObject> spObject;

&varBasketName);

sts, create an instance and return it to WMI

 class
ject->P me, 0);

 t.Q ;

 varCapacity.ChangeType(VT_UI1);

so that ind
 the to

exists).

The following code sample is the im
mple_Basket

plementation for obtaining a manage
Sa class. The code for
in bold font includes the
memory, followed by setting the object's property values. Finally, the provider calls
pass the management object to WMI.

HRESULT CInstance::GetBasket(IWbemObjectSink *pResponse,
 IWbemContext *pCtx, ParsedObjec
{

NVERSION; USES_CO
L HRESU

m CCo

 // Get the name of the requested basket from the object path
 CComVariant varBasketName(GetObjectPathKey(L"Name", pObjectPath));

 CComBSTR bstrBasketPath(L"Software\\WMIBookProv\\Basket\\");
 bstrBasketPath += V_BSTR(

 // Check if basket exists?
 CRegKey regBasket;
 LONG lReg = regBasket.Open(HKEY_LOCAL_MACHINE, OLE2T(bstrBasketPath),
 KEY_QUERY_VALUE);

 if (lReg == ERROR_SUCCESS)
{

 // Basket exi
 hr = CreateInstance(L"Sample_Basket", &spObject, pCtx);

_Basket // Populating the properties of the Sample
 hr = spOb ut(L"Name", 0, &varBasketNa

 DWORD dwCapacity = 0;

 lReg = regBaske ueryValue(dwCapacity, _T("Capacity"))

 if (lReg == ERROR_SUCCESS)
 {
 CComVariant varCapacity((int)dwCapacity);

 hr = spObject->Put(L"Capacity", 0, &varCapacity, 0);
 }
 }

 // Pass the requested object to WMI
 if (spObject)
 hr = pResponse->Indicate(1, &spObject.p);
 return hr;
}

The GetObjectPathKey helper method makes it easy to get a key property value from a parsed
erty and, if it exists, returns it as a

edObjectPath object (passed

RIANT CInstance::GetObjectPathKey(LPCWSTR lpszPropName,
 ParsedObjectPath* pObjectPath)

 nKeyIndex++)

nt(); // Property not found

nagement
ed to implement PutInstanceAsync and DeleteInstanceAsync, respectively.

sign some management objects should not be deleted directly.
e devices, then it is not possible to

ard. WMI passes an object path that the provider
e management

// Object to delete!

ng WMI calls

gement environment, it must
passed through the strObjectPath parameter: It is the
 object reference is valid.

c discussion, if you expect your delete operation to be lengthy, then you
n when WBEM_FLAG_SEND_STATUS is specified

object path. The lpszPropName parameter specifies a key prop
VARIANT. The key properties are contained within an array in the Pars
as pObjectPath).

VA

{
 CComBSTR bstrPropName(lpszPropName);

 // Object paths can specify multiple properties
 for (int nKeyIndex = 0;
 nKeyIndex < int(pObjectPath->m_dwNumKeys);

 {
 // Is this the property we're after?
 if (bstrPropName == pObjectPath->m_paKeys[nKeyIndex]->m_pName)
 return pObjectPath->m_paKeys[nKeyIndex]->m_vValue;
 }

 return CComVaria
}

Deleting an Object
The previous two sections covered the functionality that is needed to make a read-only instance
provider. If your management requirement extends to creating, updating, or deleting ma
objects, then you ne
You may find that in your schema de
For instance, if you're designing a schema related to hardwar
create or delete such objects.

Deleting a management object is straightforw
should verify to ensure that it references a real instance and then, literally, remove th
object.

Let's look at the DeleteInstanceAsync method:

interface IWbemServices
{
HRESULT DeleteInstanceAsync(

strObjectPath, const BSTR
 LONG lFlags, // Optional flags
 IWbemContext* pCtx, // Context for maki

pResponseHandler IWbemObjectSink*); // Progress status
};

When a client wishes to remove a management object from the mana
specify an object path. The object path is
provider's responsibility to verify that the

As in the GetObjectAsyn
should consider implementing progress informatio
through the lFlags parameter.

Let's look at the new additions in the provider implementation:

ance>,

ObjectPath, long lFlags,
sponseHandler);

rotected: // GetObject implementation for each class
 HRESULT DeleteBasket(IWbemObjectSink *pResponse, IWbemContext *pCtx,

er

c:

DMETHODIMP CInstance::DeleteInstanceAsync(const BSTR ObjectPath,
 long lFlags, IWbemContext *pCtx, IWbemObjectSink *pResponseHandler)

* pParsedPath;

pParsedPath);

// Handle service request based on class name
 if (CompareClass(pParsedPath->m_pClass, L"Sample_Basket"))

 = WBEM_E_NOT_SUPPORTED; // Delete operation not supported

 L"Sample_BasketFruitMembership"))
 hr = WBEM_E_NOT_SUPPORTED; // Delete operation not supported

t the class

class CInstance :
 public CComObjectRoot,
 public CComCoClass<CInstance,&CLSID_Inst
 public IWbemProviderInit,
 public IWbemServicesImpl<CInstance>
{

 ...
 ..
public: // IWbemServices
 STDMETHOD(DeleteInstanceAsync)(const BSTR
 IWbemContext *pCtx, IWbemObjectSink *pRe

p

 ParsedObjectPath* pObjectPath);

 .
};

After the DeleteInstanceAsync method has checked that it supports the requested class, it should
handle the request by removing the object from the local cache. The fruit basket schema requires
only that the Sample_Basket class support the deletion of objects (that is, baskets). The provid
has just one delete method, DeleteBasket.

Let's have a look at DeleteInstanceAsyn

ST

{
 USES_CONVERSION;
 ObjectLock lock(this);
 HRESULT hr = WBEM_S_NO_ERROR;

 try
 {
 CObjectPathParser objPath;
 ParsedObjectPath

 // Parse object path for the desired object
 objPath.Parse(ObjectPath, &

 hr = DeleteBasket(pResponseHandler, pCtx, pParsedPath);
 else if (CompareClass(pParsedPath->m_pClass, L"Sample_Fruit"))
 hr
 else if (CompareClass(pParsedPath->m_pClass,

 else
 hr = WBEM_E_INVALID_CLASS; // Provider does not suppor

 // Tell WMI that the service request is complete
 pResponseHandler->SetStatus(WBEM_STATUS_COMPLETE,
 hr, NULL, NULL);
 }

 catch(...)
 {
 hr = WBEM_E_PROVIDER_FAILURE;

 pResponseHandler->SetStatus(WBEM_STATUS_COMPLETE,
 hr, NULL, NULL);
 }

 retu
}

You sh r the
classes
specific
capabil

The fol eting a management object for the

 HRESULT hr = WBEM_S_NO_ERROR;

 CComBSTR bstrBasketPath(L"Software\\WMIBookProv\\Basket");

 CRegKey regBasket;

Creating or
If any of the classes implemented by a provider support the creation or the updating of management
objects, then you need to implement the PutInstanceAsync method. None of the classes in the
fruit basket schema support the creation of objects through PutInstanceAsync. However, there is a
requirement to update the properties of both the Sample_Basket and Sample_Fruit classes.

Let's look at the PutInstanceAsync method:

rn hr;

ould have noticed that a specific error code, WBEM_E_NOT_SUPPORTED, was returned fo
 that do not support the deletion of objects. You may find that your providers support a
 class, but not for your specific operation. In cases like this, in which the provider
ities vary between classes, you should return an appropriate error code.

lowing code sample is the implementation for del
Sample_Basket class. It begins by verifying the object path, then deletes all the baskets and the
contained items of fruit using ATL's CRegKey class.

HRESULT CInstance::DeleteBasket(IWbemObjectSink *pResponse,
 IWbemContext *pCtx, ParsedObjectPath* pObjectPath)
{
 USES_CONVERSION;

 // Check basket exists?

 LONG lReg = regBasket.Open(HKEY_LOCAL_MACHINE, OLE2T(bstrBasketPath),
 KEY_WRITE);

 if (lReg == ERROR_SUCCESS)
 {
 CComVariant varBasketName(GetObjectPathKey(L"Name", pObjectPath));

 // Delete basket from registry
 lReg = regBasket.RecurseDeleteKey(OLE2T(V_BSTR(&varBasketName)));
 }

 if (lReg != ERROR_SUCCESS)
 hr = WBEM_E_PROVIDER_FAILURE;

 return hr;
}

 Updating an Object

interface IWbemServices
{

 // Context for making WMI calls
 IWbemObjectSink* pResponseHandler); // Progress status

emory version of
anagement object to WMI, which in turn

t is the provider's responsibility to retrieve
 interface and persist them to the local cache.

 as WBEM_E_NOT_FOUND, if the object doesn't exist. If the object does exist, the
provider should update (persist) the object's properties in its local cache. If the client passes

t is necessary to persist the object
ust handle all of these three flags. If you expect your creation or

gthy, then you should consider implementing progress information
 is specified.

>
{

Services
(IWbemClassObject *pInst, long lFlags,

IWbemContext *pCtx, IWbemObjectSink *pResponseHandler);

lags);

ers for PutBasket
tName);

};

HRESULT PutInstanceAsync(
 IWbemClassObject* pInst, // Object to create or update!
 LONG lFlags, // Optional flags
 IWbemContext* pCtx,

};

When a client wants to create or update a management object, it creates an in-m
the object and populates its properties. It then passes the m

pInst parameter. Ipasses it to the provider through the
property values from the IWbemClassObjectthe

The lFlags parameter specifies what kind of operation PutInstanceAsync should perform. If the
client passes WBEM_FLAG_CREATE_ONLY, then the provider must allow only the creation of objects. If
the object already exists, then the provider should return an appropriate error, such as
WBEM_E_ALREADY_EXISTS. If not, the provider should create the object in its local cache. If the
client passes WBEM_FLAG_UPDATE_ONLY, then the provider must allow updates to be performed only
against an already existing object. Updating, similar to creating objects, should return an
appropriate error, such

WBEM_FLAG_CREATE_OR_UPDATE, then the provider should do wha
to the local cache. A provider m
updating operation to be len

n WBEM_FLAG_SEND_STATUSwhe

Let's look at the new additions in the provider implementation:

class CInstance :
 public CComObjectRoot,
 public CComCoClass<CInstance,&CLSID_Instance>,
 public IWbemProviderInit,
 public IWbemServicesImpl<CInstance

...

 ..
public: // IWbem

TDMETHOD(PutInstanceAsync) S

protected: // PutInstance implementation for the basket class
 HRESULT PutBasket(IWbemObjectSink *pResponse, IWbemContext *pCtx,
 IWbemClassObject* pInst, long lFlags);

 HRESULT PutFruit(IWbemObjectSink *pResponse, IWbemContext *pCtx,
 IWbemClassObject* pInst, long lF

protected: // Help
 bool FindBasket(LPCTSTR lpszBaske

 HRESULT UpdateBasket(IWbemClassObject* pInst);

 .

After the PutInstanceAsync method has verified that it supports the requested class, it should
handle the request by creating or updating the object in the local cache. The PutBasket and
PutFruit methods update instances of Sample_Basket and Sample_ Fruit, respectively.

not pass an object path. Instead, it passes an
he __CLASS system property to determine the

DMETHODIMP CInstance::PutInstanceAsync(IWbemClassObject *pInst,
Handler)

 hr = PutBasket(pResponseHandler, pCtx, pInst, lFlags);

 L"Sample_BasketFruitMembership"))
ate or create not supported

ALID_CLASS; // Provider does not support the class

 atus(WBEM_

r
_CREATE_ONLY. The

lo

PutInstanceAsync is the only method that does
IWbemClassObject created by the client. Inspect t
object's class.

Let's look at : PutInstanceAsync

ST
 long lFlags, IWbemContext *pCtx, IWbemObjectSink *pResponse
{
 USES_CONVERSION;
 ObjectLock lock(this);
 HRESULT hr = WBEM_S_NO_ERROR;

 try
 {
 // What class is this instance?
 CComVariant varClass;
 hr = pInst->Get(L"__CLASS", 0, &varClass, 0, 0);

 // Handle service request based on class name
 if (CompareClass(varClass.bstrVal, L"Sample_Basket"))

 else if (CompareClass(varClass.bstrVal, L"Sample_Fruit"))
 hr = PutFruit(pResponseHandler, pCtx, pInst, lFlags);
 else if (CompareClass(varClass.bstrVal,

 hr = WBEM_E_NOT_SUPPORTED; // Upd
 else

 hr = WBEM_E_INV

 // Tell WMI that the service request is complete

pResponseHandler->SetSt STATUS_COMPLETE,
 hr, NULL, NULL);
 }
 catch(. . .)
 {
 hr = WBEM_E_PROVIDER_FAILURE;

 pResponseHandler->SetStatus(WBEM_STATUS_COMPLETE,
 hr, NULL, NULL);
 }

 return hr;
}

When handling a particular class, you must implement appropriate actions fo
WBEM_FLAG_CREATE_OR_UPDATE, WBEM_FLAG_UPDATE_ONLY, and WBEM_FLAG

wing should demonstrate the sort of logic required. fol

HRESULT CInstance::PutBasket(IWbemObjectSink *pResponse,
IWbemContext *pCtx, IWbemClassObject* pInst, long lFlags)
{
 USES_CONVERSION;
 HRESULT hr = WBEM_S_NO_ERROR;

 // The name of the basket, we need this to determine whether or not the
 // object exists
 CComVariant varName;

ket(OLE2T(V_BSTR(&varName)));

M_FLAG_UPDATE_ONLY)

T(V_BSTR(&varName)));

EM_FLAG_CREATE_ONLY)
PPORTED;

vider determine what actions it should take when updating
receding example).

 basket's registry key to determine whether or
t it exists. If the basket exists, then true is returned, otherwise false.

Prov\\Basket\\");

RegKey regBasket;
_LOCAL_MACHINE, OLE2T(bstrBasketPath),

 return true;

cache. It
d writes

priate error is returned to WMI and, ultimately, to

 hr = pInst->Get(L"Name", 0, &varName, NULL, NULL);

 if (lFlags == WBEM_FLAG_CREATE_OR_UPDATE)
 {
 bool bFound = FindBas

 if (bFound)

t); hr = UpdateBasket(pIns
 else
 hr = WBEM_E_NOT_SUPPORTED;

 }
 else if (lFlags & WBE
 {
 bool bFound = FindBasket(OLE2

 if (bFound)

eBasket(pInst); hr = Updat
 else
 hr = WBEM_E_NOT_FOUND;
 }
 else if (lFlags & WB

 WBEM_E_NOT_SU hr =
 else
 hr = WBEM_E_INVALID_PARAMETER;

 return hr;
 }

The FindBasket
basket objects. If the basket doesn't exist, then it cannot be updated (as in the p

 method helps the pro

The FindBasket helper method attempts to open the
no

bool CInstance::FindBasket(LPCTSTR lpszBasketName)
{
 USES_CONVERSION;

 CComBSTR bstrBasketPath(L"Software\\WMIBook
 bstrBasketPath += lpszBasketName;

 C
 LONG lReg = regBasket.Open(HKEY
 KEY_QUERY_VALUE);

 if (lReg == ERROR_SUCCESS)

 else
 return false;
}

The UpdateBasket helper method helps the provider persist basket properties to the local
ves all the properties from the object (in bold font in the code sample that follows) anretrie

the properties to the registry. If this fails, an appro
the client.

HRESULT CInstance::UpdateBasket(IWbemClassObject* pInst)
{

 USES_CONVERSION;
 HRESU
 // Get

LT hr = WBEM_S_NO_ERROR;
 the Name of the basket

 CComBSTR bstrBasketPath(L"Software\\WMIBookProv\\Basket\\");

bject's properties to the local cache

Objects
utomatically provides the infrastructure
volves one of your classes, WMI first

ization is supported through the provider registration. If the provider does not
I then processes the query by evaluating all the objects returned by

ization usually involves retrieving only the properties that have been requested by the

SELECT * Win32_UserAccount object must be populated. This can
rties from the object. Recall

e the Internet, a hardware
ll of these data sources have the potential to be very

les and in time. Clients can optimize queries by specifically stating
vise the previous query:

t WHERE Domain="DOMAIN_A"

en when a client issues a query,

s all

 CComVariant varName;
hr = pInst->Get(L"Name", 0, &varName, NULL, NULL);

 bstrBasketPath += V_BSTR(&varName);

 // Open the basket's registry key
 CRegKey regBasket;
 LONG lReg = regBasket.Open(HKEY_LOCAL_MACHINE, OLE2T(bstrBasketPath),
 KEY_WRITE);

 // Get the Capacity property from the basket
 CComVariant varCapacity;
 hr = pInst->Get(L"Capacity", 0, &varCapacity, NULL, NULL);

 // Write the o
 lReg = regBasket.SetValue(DWORD(V_UI1(&varCapacity)), _T("Capacity"));

 if (lReg != ERROR_SUCCESS)
 hr = WBEM_E_PROVIDER_FAILURE;

 return hr;
}

Querying for Your
One of the great benefits of writing a provider is that WMI a

ries. When a client issues a query that into support WQL que
hecks if query optimc

support query optimization, WM
CreateInstanceEnumAsync, if the provider implements this. The result is that by supporting
CreateInstanceEnumAsync, you get free query support.

Query optim
client. For example, if the client makes the following query:

SELECT * FROM Win32_UserAccount WHERE Domain="DOMAIN_A"

 requests that all properties of a
be considered lazy if the client intends to use just two or three prope
that some properties can originate from a variety of sources that includ
device, or another server (using RPC). A
expensive both in processor cyc
the properties they intend to use. Let's re

SELECT FullName, SID FROM Win32_UserAccoun

SELECT FullName, SID now specifies that the client is interested in only two properties: FullName
and SID. If your provider does not support query optimization, th
WMI will call your provider's implementation of CreateInstanceEnumAsync, which retrieve

 properties in all of the objects. WMI will process and evaluate each object. If the object of the

satisfies the query, WMI will pass the object to the client with only the FullName and SID
roperties populated. However, if the provider does support query optimization, then the provip der

two properties
satisfy the query

lly passes it on to the client. If the clause includes properties, then you should also

ptimization
to WMI. This involves the processing of the WHERE

are not in
e client passes a

aluate each object
ery processor, and (2)

great. The good news is that WMI
bset of objects that WMI uses to

cesses the set to ensure that each object satisfies the
2.6

should obtain only the FullName and SID properties and create an object with the
s, in fact, populated. When WMI receives the object, it verifies that the object doe

and fina WHERE
include them in the properties that you populate.

Retrieving just the requested propertie
 in the management objects that get passed

s is one level of optimization. Another level of o
is
clause. In the above query, WHERE Domain="DOMAIN_A" specifies a property Domain that has a

alue DOMAIN_A. This kind of query allows the provider to exclude all other objects that v
DOMAIN_A. This ultimately means that a subset of objects is passed to WMI. If th
complex query with several WQL operators, it is unlikely that the provider will ev
against such a query because (1) the provider would need access to a good qu
the development effort to implement query support would be too

ider passes a rough suprovides an infrastructure in which the prov
o the complex evaluation. That is, WMI prod

query and then delivers the final set of management objects to the client. Figure 1 demonstrates

nt

what happens.

Figure 12.6. Query processing from provider to clie

The fruit basket provider does not implement any query optimization support. If it were to offer this
facility, the provider would need to implement the ExecQueryAsync method. Let's look at this
method:

interface IWbemServices

Context for making WMI calls
 IWbemObjectSink* pResponseHandler); // Returned objects

strQuery
client issues an ASSOCIATORS query, WMI may break up the query and issue several standard WQL

{
HRESULT ExecQueryAsync(
 const BSTR strQueryLanguage, // The query language to use
 const BSTR strQuery, // The actual query
 long lFlags, // Optional flags
 IWbemContext* pCtx, //

};

The strQueryLanguage parameter specifies the type of query to perform. The current
implementation of WMI supports only WQL.

The parameter is the query that WMI or the client wishes the provider to perform. If a

queries under the cover. The provider passes back the objects that roughly satisfy the qu
the

ery through

so you may wa
implementing progress information when WBEM_FLAG_SEND_STATUS is specified in the lFlags

Instance Provider Registration

lities.

derRegistration class must be
ities of an instance provider and

se class:

abstract]
class __ObjectProviderRegistration: __ProviderRegistration

 boolean SupportsGet = FALSE;

The SupportsPut property specifies whether the instance provider supports data modification,
 updating objects. If the provider supports either of these functions, then

 provider must implement the method. If not, WMI
and immediately returns WBEM_E_PROVIDER_NOT_CAPABLE

e eatures). A provider may or may not
nt to include this facility, depending on whether the schema includes instances that can be

u
IWbemServices::GetObjectAsync method. It is generally considered good practice that all

SupportsDelete property is similar, but pertains to the deletion of instances. If it is supported
, then the provider must implement the IWbemServices::DeleteInstanceAsync

y not want to implement this facility depending on whether the
 be deleted.

pResponseHandler parameter (using the Indicate method).

Queries can sometimes take a significant amount of time, nt to consider

parameter.

Earlier in the chapter, we covered the first step of the provider registration. The second step
completes the registration process by specifying the type of provider and its particular capabi

For an instance provider, an instance of the __InstanceProvi
de within the CIM repository. This class details the capabilma

derives from the abstract class, __ObjectProviderRegistration. Let's tour this ba

[

{
 boolean SupportsPut = FALSE;

 boolean SupportsDelete = FALSE;
 boolean SupportsEnumeration = FALSE;
 [
 ValueMap{ "WQL:UnarySelect", "WQL:References",
 "WQL:Associators", "WQL:V1ProviderDefined"}
] string QuerySupportLevels[];

 [
 Values{"Pull", "Push", "PushVerify"}
] sint32 InteractionType = 0;
};

which includes creating and
the IWbemServices::PutInstanceAsync

rovider makes no attempt to call the p
 same reaction for the rest of the nonsupported provider f(th

wa
created or updated.

The SupportsGet property is similar to SupportsPut but pertains to the retrieval of an instance
from the provider. If the provider s pports this function, then the provider must implement the

providers support the retrieval of objects.

The
by the provider
method. A provider may or ma
schema includes instances that can

The SupportsEnumeration property is similar but pertains to the enumeration of instances exposed
 provider. If it is supported by the provider, then the provider must implement the

 management objects

e evels property specifies the level of query optimization that the provider
ports. In general, if a provider supports query processing, it includes the "WQL:UnarySelect"

s"
ents. If

returning WBEM_E_TOO_COMPLEX.

The In specifies what kind of instance provider it is. Generally, instance
provide s
propert
register
__Obje s and instance provider
registrations.

ed."

ration: __ObjectProviderRegistration

e

r = "__Win32Provider.Name=\"FruitBasketProv\"";
 SupportsGet = TRUE;
 SupportsPut = T
 SupportsDelete = TRUE;
 SupportsEnumeration = TRUE;
};

Developing a Method Provider

by the
IWbemServices::CreateInstanceEnumAsync method. It is generally considered good practice (in

bsolute must) that all providers support the retrieval of allour opinion, an a
exposed by the provider.

Th
sup

 QuerySupportL

string in the QuerySupportLevels array. If the provider supports one or more of the other features
(such as "WQL:V1ProviderDefined"), then it can include the capability in the array as well. The
"WQL:V1ProviderDefined" capability allows the provider to extend the WQL vocabulary to
include other clauses, such as ORDER BY. Include the "WQL:References" or "WQL:Associator
capabilities if your provider can process either REFERENCES OF or ASSOCIATORS OF statem
the provider cannot process these types of WQL statements, WMI will formulate standard WQL
queries and issue them against the provider (assuming it supports "WQL:UnarySelect").

If the query passed to the provider is too complex, the provider can let WMI handle the query by

teractionType property
rs are pull providers, which means that the value of this property is almost always zero. Thi
y has more meaning if you are developing a push provider. Push providers normally are
ed as class providers and the InteractionType property must be set to 1. The
ctProviderRegistration base class is used for both clas

The __ObjectProviderRegistration class under Windows XP adds two more properties:
SupportsBatching and SupportsTransactions. These are currently documented as ''not us
The __InstanceProviderRegistration class defines the already defined Provider property as
the class's key property.

class __InstanceProviderRegist
{
 [key] __Provider ref Provider;
};

Here is a typical registration for an instance provider. Notice that it supports nearly all the instanc
provider capabilities except query optimization.

instance of __InstanceProviderRegistration
{
 Provide

RUE;

Method providers implement behavior for manageme
design your schema, you should consider what action

nt classes and management objects. When you
s need to be or could be performed. For

er when one or more classes in your schema defines a method. The

 of

instance, if you had a management object that represented a telephony device, one of the actions
that you might want to perform is to dial a telephone number. This is an example of adding
behavior to the class or object.

You develop a method provid
Sample_Fruit class in our schema defines a method called AddFruitToBasket. This method adds
an item of fruit to a basket. If the basket doesn't exist, then the basket is created before the item
fruit is assigned to the basket. Chapter 7 outlines other considerations for method design.

 declaration as we defined it earlier:

er("FruitBasketProv"): ToInstance,

ame, [in] string BasketName);

asketName parameter specifies
f fruit is specified by the

 and output parameters that can be
hat get passed as objects.

mponent (in-process or out-of-process server) that supports two

Here is the Sample_Fruit class

[
 dynamic: ToInstance,
 provid
 SupportsUpdate
]
class Sample_Fruit
{
 [key] string Name;
 uint16 Weight;

[implemented, static, constructor]

 boolean AddFruitToBasket([in] string FruitN
};

The AddFruitToBasket method takes two input parameters. The B
. The item othe basket to which an item of fruit should be assigned

FruitName parameter. Methods can take a combination of input
 other classes tof any WMI data type. This includes instances of

A method provider is a COM co
interfaces: IWbemProviderInit and IWbemServices (see Figure 12.7). The IWbemServices

 an implementation.

t

interface has many methods, of which only the ExecMethodAsync requires

Figure 12.7. WMI method provider componen

Executing Methods
All method providers implement the ExecMethodAsync m

sonabl
ethod. Depending on the input and output

a y straightforward to implement. The
ut or output parameters. More complex

parameter complexity, method providers can be re
simplest implementation is a static method that takes no inp

methods are those that use a combination of input and output par
je

 HRESULT ExecMethodAsync(

};

 [static, implemented] void foo();

, it should expect the strObjectPath
lass reference, such as Sample_Class. The method provider should

pports the referenced class. If the static method declaration

uld expect the strObjectPath parameter to contain a
mple_Class.Name="SomeValue". This uniquely identifies an

ethodName parameter is the name of the method, such as "foo". A method provider can

g ect your method operation to be lengthy, then you should consider implementing
rogress information when WBEM_FLAG_SEND_STATUS is specified through the lFlags parameter.

ComPtr<IWbemClassObject> spClass;
r = spServices->GetObject(L"Sample_Class", 0, NULL, &spClass, NULL);

n;
hr = spClass->GetMethod(L"foo", 0, & spInParamsDefinition, NULL);

ameters of varying types, including
cts. ob

Let's look at the ExecMethodAsync method:

interface IWbemServices
{

 const BSTR strObjectPath, // Class or object path
 const BSTR strMethodName, // Method being called
 LONG lFlags, // Optional flags
 IWbemContext* pCtx, // Context for making WMI calls
 IWbemClassObject* pInParams, // Method input parameters
 IWbemObjectSink* pResponseHandler); // Method output parameters

The strObjectPath parameter is an object path that specifies either a class reference or an object
path. To explain the differences, let's examine the following declaration:

class Sample_Class
{
 [key] string Name;

};

If a method provider implemented the previous foo method
parameter to contain a relative c
check this parameter to determine if it su

anged to something such as: ch

class Sample_Class
 {
 [key] string Name;
 [implemented] void foo();
};

then a method provider implementing foo sho
relative object reference, such as Sa
object against which the method should be performed. The method provider should check that the

. object exists before performing the operation

The strM
implement one or more methods in one or more classes.

A
p

ain, if you exp

Here is a typical code fragment of what a client does to pass the in-parameters to a WMI method.

// Get the class definition so we can get access to the method in-parameters
C
h

// Get the methods in-parameters
CComPtr<IWbemClassObject> spInParamsDefinitio

// Spawn an instance of the in-parameters for client to populate
CComPtr<IWbemClassObject> spInParams;
hr = spInParamsDefinition ->SpawnInstance(0, &spInParams);

// Setup required for the method in-parameters

d(bs ,

ter in the method's
the method provider through the

roperty values for it to perform the desired

parameters (including the return value), then the provider
eceding code fragment. The provider creates an instance of
roperty that maps to the method's output parameter. The

n value for a method exists in a property called ReturnValue, hence, none of your method out-

ectSink:: Indicate pResponseHandler

r. We omit the IWbemProviderInit
tance provider.

blic CComCoClass<CInstance,&CLSID_Instance>,

 public IWbemProviderInit,
 public IWbemServicesImpl<CInstance>

 ...

public:
 STDMETHOD(ExecMet
 const BSTR strMethodName, long lFlags, IWbemContext *pCtx,
 IWbemClassObject *pInParams, IWbemObjectSink *pResponseHandler);

protected: // method implementation
 HRESULT Method_AddFruitToBasket(IWbemClassObject *pInParams,
 IWbemObjectSink *pResponse, IWbemContext *pCtx,
 ParsedObjectPath* pObjectPath);

CComVariant varInParam(int(12345));
hr = spInParams->Put(L"MyParamName", 0, & varInParam, 0);

// Execute method
CComPtr<IWbemClassObject> spOutParams;
hr = spServices->ExecMetho trClass, bstrMethod, 0, NULL
 spInParams, &spOutParams, NULL);

When a client spawns an instance of the in-parameters, it populates all the properties with real
values. Each property in the in-parameter instance represents an in-parame
argument list. WMI passes the spInParams instance straight to
pInParams parameter. The provider must extract the p
operation.

If the method being executed has any out-
performs similar operations as in the pr
the
retur

out-parameters and populates each p

parameters can use this name. The provider passes the out-parameters to WMI using the
IWbemObj method ().

Let's look at the implementation for the method provide
entation because it is the same as the one for the insimplem

class CInstance:
ublic CComObjectRoot, p

 pu

{

 ..
public: // IWbemProviderInit
 STDMETHOD(Initialize)(LPWSTR wszUser, LONG lFlags,
 LPWSTR wszNamespace, LPWSTR wszLocale,
 IWbemServices *pNamespace, IWbemContext *pCtx,
 IWbemProviderInitSink *pInitSink);

 // IWbemServices
hodAsync)(const BSTR strObjectPath,

 .
};

The method provider is required to implement only one WMI method, AddFruitToBasket. Thi
implemented by Method_AddFruitToBasket. Let's see how ExecMethodAsync processe

s is
s its

parameters and executes the WMI method call:

::ExecMethodAsync(const BSTR strObjectPath,
 long lFlags, IWbemContext *pCtx,

I ms, IWbemObjectSink *pResponseHandler)

 USES_CONVERSION;

hr = WBEM_S_NO_ERROR;

 CObjectPathParser objPath;
 ParsedObjectPath* pParsedPath;

e

tBasketMembership

 if (CompareClass(pParsedPath->m_pClass, L"Sample_Fruit") &&

 {

 }
 else if (CompareClass(pParsedPath->m_pClass, L"Sample_Basket"))
 hr = WBEM_E_NOT_SUPPORTED;

pClass,

 hr = WBEM_E_NOT_SUPPORTED;

CLASS;

atus(WBEM_STATUS_COMPLETE,
 NULL, NULL);

dler->SetStatus(WBEM_STATUS_COMPLETE,

thod, the method's implementation
x itToBasket) that implements the WMI method.
e next code fragment should contain nothing new. It uses two helper methods, GetEnumFruitMap

 it
n, it

STDMETHODIMP CInstance
 const BSTR strMethodName,

WbemClassObject *pInPara
{

 ObjectLock lock(this);
 HRESULT

 try
 {

 // We want this so we can determine the class nam
 objPath.Parse(strObjectPath, &pParsedPath);

 // We don't support Sample_Basket and Sample_Frui
 // classes.

 CComBSTR(strMethodName) == L"AddFruitToBasket")

 // This calls the method's implementation
 Method_AddFruitToBasket(pInParams, pResponseHandler, pCtx,

 pParsedPath);

 else if (CompareClass(pParsedPath->m_
 L"Sample_FruitBasketMembership"))

 else
 hr = WBEM_E_INVALID_

vice request is complete // Tell WMI that the ser
 pResponseHandler->SetSt

 hr,
 }
catch(. . .)

 {
 hr = WBEM_E_PROVIDER_FAILURE;

 pResponseHan

 hr, NULL, NULL);
}

hr; return

}

After it is determined that the provider supports the class and me
is e
Th

ecuted by calling a function (Method_AddFru

and FindFruitInMap, which help identify whether an item of fruit already exists. The
Method_AddFruitToBasket first retrieves the in-parameters and then checks them to ensure that
has valid values to execute the operation. After the method has attempted to perform its operatio
creates and populates the method's out-parameters and passes them back to WMI. In our particular

case, the only out-parameter is the method's return value, which is called eReturnValu
The bold font in

. This
 the following

the out-parameters are set

T CInstance::Method_AddFruitToBasket(IWbemClassObject *pInParams,
ObjectSink *pResponse, IWbemContext *pCtx,

jectPath)

ams->Get(L"BasketName", 0, &varBasket, 0, 0);

uitName in-parameter

, 0);

ion
 V_VT(&varBasket) != VT_NULL &&

e a map of all the basket and fruit items

);

We can't add the fruit item it is already added to a basket
 WBEM_E_ALREADY_EXISTS;

 fruit.
);

ist

AL_MACHINE,
_NON_VOLATILE,

zBasketPath);
 szFruitPath += _T("\\");

regFruit.Create(HKEY_LOCAL_MACHINE,
ruitPath.c_str(), NULL, REG_OPTION_NON_VOLATILE,
WRITE);

SS)
 in WMI methods return value

sequence of actions will be similar for every method implementation.
de shows where the method's in-parameters are obtained and where co

and returned to WMI.

HRESUL
 IWbem
 ParsedObjectPath* pOb
{
 USES_CONVERSION;
 HRESULT hr = WBEM_S_NO_ERROR;
 bool bRetVal = false;

 // Get the method's BasketName in-parameter
 CComVariant varBasket;
 HRESULT hrBasket = pInPar

 // Get the method's Fr
 CComVariant varFruit;
 HRESULT hrFruit = pInParams->Get(L"FruitName", 0, &varFruit, 0

 // Ensure that we have both parameters to perform method funct
 if (SUCCEEDED(hrBasket) &&
 SUCCEEDED(hrFruit) && V_VT(&varFruit) != VT_NULL)
 {
 // Helper function to creat
 TBasketFruitMap mapFruit;
 GetEnumFruitMap(mapFruit

 if (FindFruitInMap(OLE2T(V_BSTR(&varFruit)), mapFruit))
 {
 //
 hr =
 }
 else
 {
 // Fruit name not used. Can create and assign the item of
 tstring szBasketPath(_T("Software\\WMIBookProv\\Basket\\")
 szBasketPath += OLE2T(V_BSTR(&varBasket));

 // Create the basket if it doesn't already ex
 CRegKey regBasket;
 LONG lReg = regBasket.Create(HKEY_LOC
 szBasketPath.c_str(), NULL, REG_OPTION
 KEY_WRITE);

 if (lReg == ERROR_SUCCESS)
 {
 tstring szFruitPath(s

 szFruitPath += OLE2T(V_BSTR(&varFruit));

 // Create and assign item of fruit
 CRegKey regFruit;
 LONG lReg =
 szF
 KEY_

 if (lReg == ERROR_SUCCE
 bRetVal = true; // Used
 }

 }

 // Setup the out-parameters
 CComPtr<IWbemClassObject> spClass;

S_FRUIT, 0, pCtx, &spClass, NULL);

 // Spawn out parameter instance to pass to WMI

bRetVal);
 hr = spOutParams->Put(L"ReturnValue", 0, &varReturn, 0);

rlier in the chapter, we covered the first step of the provider registration. The second step
completes the method provider registration.

additional capabilities except to redefine the Provider property to be the class's key property.

class __MethodProviderRegistration: __ProviderRegistration

};

instance of __MethodProviderRegistration
{
 P v
};

De
Deliver ables management objects to indicate
when something interesting has happened, either as an intrinsic or extrinsic event. The example

e

anagement
at subscribe for a new basket notification will receive an event indicating that a

 }

 hr = m_spLocalServices->GetObject(CLAS

 // Get out-parameter definition
 CComPtr<IWbemClassObject> spOutClass;
 hr = spClass->GetMethod(L"AddFruitToBasket", 0, NULL, &spOutClass);

 CComPtr<IWbemClassObject> spOutParams;
 hr = spOutClass->SpawnInstance(0, &spOutParams);

 // Set method's return value
 CComVariant varReturn(

 // Pass out-parameters to WMI
 hr = pResponse->Indicate(1, &spOutParams.p);

 return hr;
}

Method Provider Registration
Ea

Method provider registration is much simpler than for all the other providers. There are no

{
 [key] __Provider ref Provider;

Here is a typical method provider registration:

ro ider = "__Win32Provider.Name=\"FruitBasketProv\"";

veloping an Event Provider
ing events is one of WMI's most useful features. It en

schema used thus far throughout this chapter has some scope for delivering events. Our instanc
provider exposes management objects that can be created by calling the AddFruitToBasket method
by specifying a basket name that does not already exist. When a management application creates a
new basket, an event provider can deliver (publish) this interesting event to WMI. All m
applications th

basket has been created. Intrinsic events usually provide management applications with enough
detail about an object so that there is no need to make a separate call to GetObject.

To review from Chapter 7, there are three types of events: intrinsic, extrinsic, and timer.

1. Intrinsic events: These occur in response to changes to namespaces, classe
Changes to ins

s, and instances.
tances are the most useful event notifications.

2. Extrinsic events: These are custom-defined events. These types of events allow great
from

activity on other management objects. The Win32_PowerManagementEvent class is a good
example.

3. Timer events: These are events that are delivered by WMI using preconfigured information.
 becomes the

ll
CreationEvent. This event will be publish to WMI after the

AddFruitToBasket method has successfully created a new basket.

Like all the other providers you've seen, an event provider is also a COM component (an in-process
ventProvider

flexibility in managed applications to deliver specialized events. They can be separate

There are no provider mechanisms for timer events because WMI effectively
provider.

If a provider creates, modifies, or deletes instances, as in our case, then it should publish the
intrinsic events __InstanceCreationEvent, __InstanceModificationEvent, and
__InstanceDeletionEvent. To keep our sample event provider implementation simple, we sha
only publish an __Instance ed

or out-of-process server). It must support the and IWbemEIWbemProviderInit
erfaces (see int Figure 12.8). WMI initializes the provider through the IWbemProviderInit

 interface requires an implementation for its one and only

 12.8. WMI event provider component

interface, and the IWbemEventProvider
method, ProvideEvents.

Figure

To test the provider's event notification capability, go to Appendix A for a short tutorial on using
ng Microsoft Visual Studio .NET, then Appendix Bthe WMI SDK event tools. If you are usi covers

aking event

ents.
develop an event provider. This is preferred because the provider

viders and also is a single source for the events.
t ent applications can use a tool such

v numerate the instances of the
he EventQueryList property.

a short tutorial on using the WMI server explorer, which includes support for m
subscriptions.

Firing Events
Before writing an event provider, let's consider the type of mechanisms available to publish ev
The preferred approach is to
implementation can be decoupled from the other pro
Another benefit is tha other users and developers of managem

ent registrations. They can eas CIM Studio to view the e
__EventProviderRegistration class and inspect t

The second approach is to use the QueryObjectSink method on the IWbemServices interface. This
allows a client or management application such as a Windows 2000/XP service to publish events

sed for extrinsic events, but it
also works for intrinsic events.

 IWbemEventProvider
{

o deliver events to WMI
 // Reserved, must be zero

alled by WMI only once, when the first client application makes a
rovider. The ProvideEvents method typically creates

s.

t should pass the event to WMI using the
i ctSink). Publishing the event is completed when Indicate is called.

bemProviderInit,

_ENTRY(IWbemEventProvider)
 END_COM_MAP()

 DECLARE_REGISTRY_RESOURCEID(IDR_CEvent)

// IWbemEventProvider

protected:

directly to WMI without developing a provider. Typically, this is u

All event providers must implement the IWbemEventProvider interface:

interface

HRESULT ProvideEvents(
IWbemObjectSink* pSink, // T

 long lFlags);
};

The method is cProvideEvents
 psubscription for an event published by the

its own thread, which is used to publish the event

When an event provider is ready to publish an event, i
pS nk parameter (IWbemObje

Let's look at the implementation for the event provider. We omit the IWbemProviderInit
implementation because it is the same as the one for the instance provider.

class CEvent:
 public CComObjectRoot,
 public CComCoClass<CEvent,&CLSID_Event>,
 public IW
 public IWbemEventProvider
{
public:
 CEvent() {}

 BEGIN_COM_MAP(CEvent)
 COM_INTERFACE_ENTRY(IWbemProviderInit)
 COM_INTERFACE

 ...
 ..

// IWbemProviderInit
public:
 STDMETHOD(Initialize)(LPWSTR wszUser, LONG lFlags,
 LPWSTR wszNamespace, LPWSTR wszLocale,
 IWbemServices *pNamespace, IWbemContext *pCtx,
 IWbemProviderInitSink *pInitSink);

public:
 STDMETHOD(ProvideEvents)(IWbemObjectSink *pSink, long lFlags);

// Helpers for event provider

 static void ThreadProvideEvents(void *param);

 static void GetBasketList(tstringlist& slBaskets);

 static void FireEventNewBaskets(tstringlist& listOrigBaskets,
 IWbemServices* pServices, IWbemObjectSink* pEventSink);

 static HRESULT EventCreateInstance(LPOLESTR lpszClassName,

t
read will fire the event to WMI. The only

the

r<IWbemObjectSink> spEventSink;

}TEve

The fo ined structure
to be completed and passed to the ation API:

STDMETHODIMP CEvent::ProvideEvents(IWbemObjectSink *pSink, long lFlags)
{
 TEve

 pThr
 pThreadParams->spEventSink = pSink;

 HAND
 pT

 retu
}

The fir he registry
(becaus
determ ever exits. In
your ow
accordi

void C
{
 CoIn

 // E
 TEve
 reinterpret_cast<TEventProvThread*>(param);

 IWbemClassObject** ppObject, IWbemServices *pServices);
};

The EventCreateInstance helper method is similar to the CreateInstance helper method we
discussed earlier. This makes it convenient to create a new instance (event) of a specified class. The
EventCreateInstance will be used to create the event and also to create a basket instance for the
event's TargetInstance property.

The ProvideEvents implementation will create a thread that will monitor changes to the baske
local cache. When a new basket change is detected, the th
information needed by the thread is the provider's local IWbemServices interface and the
IWbemObjectSink interface. The IWbemServices interface will create the instances required for the
event and the event's TargetInstance property. The IWbemObjectSink interface will publish
events. To pass both of these into the thread requires a small structure:

typedef struct tagTEventProvThread
{
 CComPtr<IWbemServices> m_spLocalServices;
 CComPt

ntProvThread;

llowing simple implementation of ProvideEvents requires only the newly def
 thread via the thread cre

ntProvThread* pThreadParams = new TEventProvThread;

eadParams->m_spLocalServices = m_spLocalServices;

LE hThread = HANDLE(_beginthread(ThreadProvideEvents, 0,
hreadParams));

rn WBEM_S_NO_ERROR;

st task for the thread is to extract the thread parameters and monitor changes to t
e this is the provider's local cache). As soon as some activity happens, the provider

ines whether a new basket was added and fires an event. The following thread n
n provider implementation, you probably will want to change this to be more robust

ng to good programming techniques.

Event::ThreadProvideEvents(void *param)

itializeEx(NULL, COINIT_MULTITHREADED);

xtract thread parameters
ntProvThread* pThreadParams =

 // O
 CReg
 LONG
 _T

 whil
 {
 // Retrieve the list of baskets so we can later determine if a
 //
 tstringlist listBasket;
 GetBasketList(listBasket);

 // Wait for a notification from the registry
 LONG lResult = RegNotifyChangeKeyValue(regBaskets.m_hKey, TRUE,

e registry, if a new basket was
 // added, fire an event

hether

th the original basket list. If there is a new basket entry, we shall create the event and
fire it. Here is the implementation of GetBasketList that retrieves all the baskets that currently

etEnum, dwRegIndex++,

pen registry key to monitor
Key regBaskets;
 lReg = regBaskets.Open(HKEY_LOCAL_MACHINE,
("Software\\WMIBookProv\\Basket"), KEY_READ);

e (true)

 new basket had been added.

 REG_NOTIFY_CHANGE_NAME, NULL, FALSE);

 if (lResult == ERROR_SUCCESS)
 {
 // Activity happened in th

 FireEventNewBaskets(listBasket, pThreadParams->m_spLocalServices,
 pThreadParams->spEventSink);
 }
 }
 CoUninitialize();
}

The RegNotifyChangeKeyValue returns only when there is activity for the specified key. The only
activity that will be monitored is specified by REG_NOTIFY_CHANGE_NAME, which monitors w
a subkey is added or deleted.

To determine whether any changes have occurred, a list of all the baskets is obtained before waiting
for notifications from the registry. When a registry notification is received, the new basket list is
compared wi

exist:

void CEvent::GetBasketList(tstringlist& slBaskets)
{
 CRegKey regBasketEnum;
 LONG lReg = regBasketEnum.Open(HKEY_LOCAL_MACHINE,
 _T("Software\\WMIBookProv\\Basket"), KEY_ENUMERATE_SUB_KEYS);

 DWORD dwRegIndex = 0;
 LONG lRegBasket = 0;

 do
 {
 WCHAR szBasketName[128];
 lRegBasket = RegEnumKeyW(regBask
 szBasketName, 128);

 if (lRegBasket == ERROR_SUCCESS)
 slBaskets.push_back(W2T(szBasketName));
 }
 while (lRegBasket == ERROR_SUCCESS);
}

The FireEventNewBaskets function does all the work. It determines if there is a new basket
there is, begins to create and populate the event and then publishes it to WMI. The bulk of this
function should be familiar to you by now: It uses the ATL registry class and STL lists.

Before diving into the code, let's quickly review what an __InstanceCreationEvent looks like.

class __InstanceCreationEvent: __InstanceOperationEvent
{
};

and, if

The TargetInstance property represents a copy of the new instance that we just now created. In
n bold

;

 }

 bstrBasketPath += (*itrCurBasket).c_str();

 OLE2T(bstrBasketPath), KEY_QUERY_VALUE);

 CComPtr<IWbemClassObject> spTargetInst;

An instance creation event derives from __InstanceOperationEvent, which looks like this:

class __InstanceOperationEvent: __Event
{
 object TargetInstance;
};

our case, this is an instance of the Sample_Basket class. The portions of the following code i
font are the main duties of an event provider: (1) to create an in-memory version of the newly
created management object, which will be used to populate the event's TargetInstance property
(2) create the event and populate its properties, specifically, the TargetInstance property; and (3)
fire the event to WMI.

void CEvent::FireEventNewBaskets(tstringlist& listOrigBaskets,
 IWbemServices* pServices, IWbemObjectSink* pEventSink)
{
 HRESULT hr = WBEM_S_NO_ERROR;

 // Get new list of baskets
 tstringlist listCurBaskets;
 GetBasketList(listCurBaskets);

 // Compare original list of baskets against the new list
 tstringlist::iterator itrCurBasket = listCurBaskets.begin();
 for (; itrCurBasket != listCurBaskets.end(); itrCurBasket++)
 {
 bool bFound = false;

 tstringlist::iterator itrBasket = listOrigBaskets.begin();
 for (; itrBasket != listOrigBaskets.end(); itrBasket++)
 {
 // Is this is a new basket
 if ((*itrBasket) == (*itrCurBasket))
 bFound = true;

 if (!bFound) // We have a new basket
 {
 // Prepare registry path to get new basket information
 CComBSTR bstrBasketPath(L"Software\\WMIBookProv\\Basket\\");

 CRegKey regBasket;
 LONG lReg = regBasket.Open(HKEY_LOCAL_MACHINE,

 if (lReg == ERROR_SUCCESS)
 {

 if (lReg == ERROR_SUCCESS)
 {
 CComVariant
 varCapacity.ChangeType(VT_UI1);

 hr = spTargetInst->Put(L"Capacity", 0, &varCapacity, 0);

 // Populate the TargetInstance property of the event

s that you must implement for an event provider. There are
two additional interfaces that you might want to consider: and

ormance of the event provider. Here is the interface:

 // Create an instance for the TargetInstance property of
 // the event
 hr = EventCreateInstance(L"Sample_Basket", &spTargetInst,
 pServices);

 // Populate the newly created basket's properties
 CComVariant varBasketName((*itrCurBasket).c_str());
 hr = spTargetInst->Put(L"Name", 0, &varBasketName, 0);

 DWORD dwCapacity = 0;
 lReg = regBasket.QueryValue(dwCapacity, _T("Capacity"));

varCapacity((int)dwCapacity);

 }
 }

 // We have a completed TargetInstance, so now create the event
 CComPtr<IWbemClassObject> spEvent;
 hr = EventCreateInstance(L"__InstanceCreationEvent",
 &spEvent, pServices);

 if (spEvent)
 {

 CComVariant varTargetInst(spTargetInst);
 hr = spEvent->Put(CComBSTR("TargetInstance"), 0,
 &varTargetInst, 0);
 // Fire the event to WMI!
 hr = pEventSink->Indicate(1, &spEvent.p);
 }
 }
 }
}

We have told you about the two interface
IWbemEventProviderQuerySink

IWbemEventProviderSecurity.

The IWbemEventProviderQuerySink interface is implemented by providers that want to know
what event queries the provider currently is servicing. Providers can use this information to
optimize perf

interface IWbemEventProviderQuerySink
{
HRESULT NewQuery(
 unsigned long dwId, // WMI provided ID for query
 WBEM_WSTR wszQueryLanguage, // Query language of wszQuery
 WBEM_WSTR wszQuery); // Event query

 HRESULT CancelQuery(
 unsigned long dwId); // WMI provided ID for query
};

The dwId parameter is a WMI-generated ID that providers can use to track event queries. When
WMI calls NewQuery, the provider can track the query until CancelQuery is called.

The wszQueryLanguage parameter specifies the type of event query subscription. The current
The wszQuery parameter specifies the event query for
notifications.

 by the client or management application. If a
provider offers different security access levels based on the query, then the provider should also

der
an

 is

 Windows 2000/XP service of some interesting
event and vice versa. An example might be to fire an event when a Windows service encounters an

event provider sample code, WMI passed an event sink (IWbemObjectSink) to the
provider, which the provider later used to deliver events. The second technique of firing events is

yObjectSink on the IWbemServices interface supplies an
tSink interface is the same as an

 following client-side
et):

to the namespace via IWbemServices
(bstrNamespace, NULL, NULL, 0,

roperty of the event
pTargetInstClass;
CComBSTR("Sample_Basket"), 0,

implementation of WMI supports only WQL.
the events for which a client wants to receive

The IWbemEventProviderSecurity interface is implemented by event providers who want to
restrict access to their events. When a client or management application subscribes for event
notification, if this interface is implemented, WMI will check with the provider to determine if it is
all right to continue the event subscription. Here is the interface:

interface IWbemEventProviderSecurity
{
HRESULT AccessCheck(
 WBEM_CWSTR wszQueryLanguage, // Usually 'WQL'
 WBEM_CWSTR wszQuery, // Event query request
 long lSidLength, // Length of the security descriptor
 const BYTE* pSid); // The security descriptor
};

The wszQuery parameter is the requested event query

check the security descriptor in the lSidLength and pSid parameters. In most cases, the provi
may care to inspect only the security descriptor. If the event provider wishes to deny access for
event subscription, it should return WBEM_E_ACCESS_DENIED.

So far we've covered the preferred approach of publishing your own events. The second approach
based on publishing an event without writing a provider. This is typically used where an
administration application might want to notify a

unhandled exception.

In the previous

somewhat similar. A call to Quer
IWbemObjectSink event interface. The use of the IWbemObjec
event provider, that is, you call Indicate to publish an event to WMI. The

alues for a new instance of a basksample code demonstrates this (using hard-coded v

// Access WMI
CComPtr<IWbemLocator> spLoc;
hr = spLoc.CoCreateInstance(CLSID_WbemLocator);

CComBSTR bstrNamespace(_T("\\\\.\\root\\WMIBook"));
CComPtr<IWbemServices> spServices;

/ Connect to WMI to get access /
hr = spLoc->ConnectServer
 NULL, 0, 0, &spServices);

 instance so we can populate the // Create a target
/ TargetInstance p/
CComPtr<IWbemClassObject> s
hr = spServices->GetObject(

 NULL, &spTargetInstClass, NULL);

t"), 0,
 NULL, &spEventClass, NULL);

);

hr = spEventSink->Indicate(1, &spEvent.p);

The only additional requ ider ifying the WQL event queries
that the p EventQueryList property.

at it can support to the EventQueryList array.

 Provider = "__Win32Provider.Name=\"FruitBasketEventProv\"";
 EventQueryList =
 {
 "SELECT * FROM __InstanceCreationEvent WHERE TargetInstance
 ISA \"Sample_Basket\" "

CComPtr<IWbemClassObject> spTargetInst;
hr = spTargetInstClass->SpawnInstance(0, &spTargetInst);

// Populate the basket's properties
CComVariant varBasketName("MyBasket");
hr = spTargetInst->Put(L"Name", 0, &varBasketName, 0);

CComVariant varCapacity(int(4));
varCapacity.ChangeType(VT_UI1);
hr = spTargetInst->Put(L"Capacity", 0, &varCapacity, 0);

// Create the event
CComPtr<IWbemClassObject> spEventClass;
hr = spServices->GetObject(CComBSTR("__InstanceCreationEven

CComPtr<IWbemClassObject> spEvent;
hr = spEventClass->SpawnInstance(0, &spEvent);

// Populate the event's properties
CComVariant varTargetInst(spTargetInst
hr = spEvent->Put(CComBSTR("TargetInstance"), 0, &varTargetInst, 0);

// Ask WMI for an event sink so we can publish events
CComPtr<IWbemObjectSink> spEventSink;
hr = spServices->QueryObjectSink(0, &spEventSink);

// Publish the __InstanceCreationEvent

Event Provider Registration
Earlier in the chapter, we covered the first step of the provider registration. The second step
completes the event provider registration.

irement for event prov registration is spec
rovider is capable of servicing. This is done through the

class __EventProviderRegistration: __ProviderRegistration
{
 [key] __Provider ref Provider;
 string EventQueryList[];
};

A provider must add all the WQL event queries th
This registration also proves useful to the users of your classes or events to identify the event
notifications that are available from your provider. Here is a typical event provider registration:

instance of __EventProviderRegistration
{

 };
};

This registration says that the event provider supports only event notifications for newly created
baskets.

sumer Provider
MI, and in Chapter 7

Developing an Event Con
In the previous section, you saw how you can publish events to W , you saw

ent
ing,

vent will not be delivered or handled. WMI offers a permanent event consumer as another

powerful mechanism for handling events even when the application is not running. Here is a
system might be used:

You decide that you would like to build automatic software update distribution in

n
by developing a permanent event consumer provider. The provider could check a

h a more
 creatively solve problems. WMI
t consumer providers by loading the

mer provider is also a COM component (an
e IWbemProviderInit and

WMI initializes the provider through the
face requires an

indConsumer.

 is based on a
s notifications

er contains configuration information that the
the event. Logical consumers are related

f the logical consumer (in the provider registration).
ust define its own class for its logical consumers.

 property so that
ers that

er, to tie an event filter

how client (or services) applications could subscribe for event notification as a temporary ev
r. This means that if the Windows 2000/XP service or client application is not runnconsume

then the e
solution for a more robust event delivery. The permanent event consumer is developed as a WMI
provider and is referred to as an event consumer provider. This robust event delivery system is a

scenario in which this robust event delivery

your software. You could achieve this by setting up a timer instruction that will fire
an event once a month. By subscribing to the event, you could handle the notificatio

Web site and automatically patch the updated files. This process runs independent of
the software being distributed. You may identify other scenarios in whic
robust event delivery system may allow you to
delivers event subscriptions to permanent even
provider and passing the event notification to it.

Like all the other providers you've seen, an event cons
-process or out-of-process server). It must support th

u
in
IWbemEventConsumerProvider interfaces.
IWbemProviderInit IWbemEve

plementation for the one and only method, F
 interface. The ntConsumerProvider inter

im

Handling Event Notifications
Permanent event subscription is very different from temporary event subscription.

y. The event consumer provider receive
It

configuration held within the CIM repositor
through a logical consumer. A logical consum
provider can use to determine how it should deal with
directly to the provider through the class type o

er provider mThis means that an event consum
The class must be derived from __EventConsumer, and it must define a key

stances of the logical consumers can be created. You can set up several logical consumin
you can later tie to different event queries (filters). Event filters define the event subscriptions for

gical consumers by creating instances of the lo __EventFilter class. Howev
to an event consumer requires that an association be created with the

__FilterToConsumerBinding class. Figure 12.10 is the hierarchy of the classes used by permanent
the Sample_WMIBookEventConsumer class is defined for our sample

ro
event consumers. Note that

vider. p

Figure 12.10. WMI event consumer provider classes

Figure 12.9. WMI event consumer provider component

Let's look at creating a logical consumer class for our provider. First, let's examine the b
n configura

ase class,
tion details

ximumQueueSize;

nd all events.
s of the queued

ntifies the user
ies: It is left to the
ogical consumer. Here is

ur f the new provider that we
are about to develop:

okEventConsumer: __EventConsumer
{

nd, hence
t

 a

__EventConsumer, because our new class must derive from it to add our ow
for each consumer.

[abstract]
class __EventConsumer: __IndicationRelated
{
 string MachineName;
 [units("bytes")] uint32 Ma
 [read] uint8 CreatorSID[];
};

The MachineName property defines the name of the computer to which WMI must se
eThe MaximumQueueSize property defines the limit for the maximum number of byt

events. Finally, the property is a security identifier that uniquely ideCreatorSID
who created the permanent event consumer. Notice the lack of key propert

 lderived class to define the key properties required to properly reference a
ation oa new event consumer class that represents the consumer config

class Sample_WMIBo

 [key] string Name;
 boolean EnableBeep;
};

We shall identify our consumers by name, hence the key property called Name. In the provider
implementation you will see, when our provider receives an event, it will make a beep sou
the configuration property, EnableBeep. Creating a class doesn't automatically enroll a permanen
event consumer provider to consume events. To create a logical consumer, we must create an
instance of our new class that will be stored in the CIM repository. The following code will create
logical consumer called MyEventConsumer.

instance of Sample_WMIBookEventConsumer
{
 EnableBeep = TRUE;
 Name = "MyEventConsumer";
};

This completes the consumer registration. Next, event filters must be created for the required ev
subscriptions. This is a simple task of creating instances of the __EventFilter class. In the
following filter, we will subscribe for the events that are generated by our

ent

 new provider. We call
this query filter MyEventConsumerFilter.

created a logical consumer that specified whether it should

make a beep sound upon receipt of an event. Next, we defined an event filter for the event

g the

Let's move on to developing the provider. Apart from initialization, all event consumer providers

interface IWbemEventConsumerProvider
{
HRESULT FindConsumer(

t *pLogicalConsum // The logical consumer
ectSink **ppConsu // The consumer sink

ethod is called by W
pLogicalConsumer

instance of __EventFilter
{
 Name = "MyEventConsumerFilter";
 QueryLanguage = "WQL";
 Query = "SELECT * FROM __InstanceCreationEvent WHERE TargetInstance
 ISA \"Sample_Basket\" ";
};

We now need to tie the logical consumer to the event filter. No event notifications will get delivered
to the event consumer provider without this step. It is important that you completely specify a fully
qualified object path that also includes the machine name.

instance of __FilterToConsumerBinding
{
 Consumer = "\\\\GCOLE\\ROOT\\WMIBook:
 Sample_WMIBookEventConsumer.Name=\"MyEventConsumer\" ";

 Filter = "\\\\GCOLE\\ROOT\\WMIBook:
 __EventFilter.Name=\"MyEventConsumerFilter\" ";
};

In the preceding example, when an event matches the event subscription in
MyEventConsumerFilter, WMI will deliver the event to the logical consumer, MyEventConsumer
(loading the logical consumer if required).

Let's summarize. We created a class that defines the properties that specify what a logical consumer
should do upon receipt of an event. We

notifications we want to receive. Finally, we tied the logical consumer to the event filter, which
completes the event subscription for the permanent event consumer. The benefit of separatin
event filters, logical consumers, and bindings is that an event filter can be used for many logical
consumers and a logical consumer can subscribe to many event filters.

must implement the IWbemEventConsumerProvider interface:

 IWbemClassObjec
 IWbemUnboundObj

er,
mer);

};

The FindConsumer m
logical consumer. The

MI whenever it needs to deliver an event to a particular
 parameter is the same instance referenced by the

Consumer property in the __Fil . After the provider has found
or created an appropriate event sink, ppConsumer output

l use the sink to delive s to the provider. Here's the returned event
sink interface:

k
{
HRESULT IndicateToConsumer(
 IWbemClassObject *pLogicalConsum // The logical consumer
 long lNumObjects, // Number of events
 IWbemClassObject **apObjects);
};

pLogi
 The provider can ins calConsumer instance to
s it must take to process th

pLogicalConsumer is the Sample_WMIBoo
that we created earlier. The lNumObjects in
the apObjects parameter.

Let's look at the implementation for the event consum der. We omit the
IWbemProviderInit implementation beca

ctRoot,
ass<CEventConsume

 public IWbemProviderInit,
 public IWbemEventConsumerProvide
{
public:
 CEventConsumer() {}

i
 COM_INTERFACE_ENTRY(IWbemEvent
 END_COM_MAP()

 DECLARE_REGISTRY_RESOURCEID(IDR_E

public:
 STDMETHOD(Initialize)(LPWSTR wsz
 LPWSTR wszNamespace, LPWSTR ws

espace, IWbe
nk *pInitSi

umerProvider

public:
 STDMETHOD(FindConsumer)(IWbemCla
 IWbemUnboundObjectSink** ppConsumer);

ethod's responsibility is to find and, if necessary, create an event sink for a
s mi

ntConsumer::FindC
 IWbemClassObject* pLogicalConsumer,

terToConsumerBinding association
 the provider returns it through the

parameter. WMI wil r the event

interface IWbemUnboundObjectSin

er,

 // Array of events

Like the FindConsumer method, the calConsumer parameter is the WMI representation of
pect properties of the pLogithe logical consumer.

determine what action e event. In our example provider,
kEventConsumer.Name= "MyEventConsumer" instance
parameter specifies how many events are being passed

er provi
use it is the same as the one for the instance provider.

class CEventConsumer :
 public CComObje
 public CComCoCl r, &CLSID_EventConsumer>,

r

 BEGIN_COM_MAP(CEventConsumer)
 COM_INTERFACE_ENTRY(IWbemProv derInit)

ConsumerProvider)

ventConsumer)

// IWbemProviderInit

User, LONG lFlags,
zLocale,

 IWbemServices *pNam
 IWbemProviderInitSi

mContext *pCtx,
nk);

ssObject* pLogicalConsumer,

// IWbemEventCons

};

The FindConsumer m
particular consumer. Let's see how thi ght be done:

onsumer(STDMETHODIMP CEve

 IWbemUnboundObjectSink**
{

(this);
EM_E_NOT_FOUND;

ut-par

s of the event consumer

mB

 // Check that we can support this event consumer
 if (_wcsicmp(V_BSTR(&varClass), L"Sample_WMIBookEventConsumer") == 0)
 {
 // Create permanent event consumer
 CComObject<CEventConsumerSink>* pEventSink = 0;

 else
 hr = WBEM_E_NOT_FOUND;

vider supports its accompanying logical consumer class,
er. Because this is a particularly e

 WMI will eventually release. rovider, you
ine what kind of sink you want to pass back to WMI.

h to deliver the eve (by calling
h the IWbemProviderInit I then calls

ess to the sink. WMI hold a short while

tConsumerSink class implementa il. This is where
 takes place.

 public CComObjectRootEx<CComSingleThreadModel>,

IndicateToConsumer
method to deliver the events to the provider through the apObjects parameter. This is where the

 ppConsumer)

 ObjectLock lock
 HRESULT hr = WB

 *ppConsumer = 0; // Init o am

 // Get the clas
 CComVariant varClass;
 hr = pLogicalConsumer->Get(CCo STR("__CLASS"), 0, &varClass, 0, 0);

 hr = CComObject<CEventConsumerSink>::CreateInstance(&pEventSink);
 // Query for the out-going interface
 hr = pEventSink->QueryInterface(IID_IWbemUnboundObjectSink,
 (LPVOID*)ppConsumer);
 }

 return hr;
}

The first task is to check that the pro
Sample_WMIBookEventConsum simple implementation, th
provider creates an event sink that
may want to check other properties to determ

 In a more complex p

If WMI does not have an active sink to whic
) and initializes it throug

nt, it loads the provider
 interface. WMCoCreateInstance

the FindConsumer method to gain acc s on to the sink for
before it releases it.

Let's have a look at the CEven tion in more deta
the real processing of the events

class CEventConsumerSink:

 public IWbemUnboundObjectSink
{
public:
 CEventConsumerSink() {}

 BEGIN_COM_MAP(CEventConsumerSink)
 COM_INTERFACE_ENTRY(IWbemUnboundObjectSink)
 END_COM_MAP()

// IWbemUnboundObjectSink
public:
 STDMETHOD(IndicateToConsumer)(IWbemClassObject* pLogicalConsumer,
 long lNumObjects, IWbemClassObject** apObjects);
};

The only method that the provider needs to implement is . WMI calls this

provider should perform its processing of the event. In the following implementation, all the
provider does is make a beep sound i conf figured to do so:

STDMETHODIMP CEventConsumerSink::IndicateToConsumer(
 IWbemClassObject* pLogicalConsumer, long lNumObjects,

class of the event consumer

omBSTR("__CLASS"), 0, &varClass, 0, 0);

gicalConsumer->Get(CComBSTR("EnableBeep"), 0, &varBeep, 0, 0);

// This is a simple event handler, just retrieves the class.
 CComVariant varEventType;

 hr = apObjects[nIndex]->Get(CComBSTR(_T("TargetInstance")), 0,
 &varEventType, 0, 0);

 // Get event object

EventType);

does nothing with this information.)
lass;
R(_T("__CLASS")), 0,

UND;

 typically the case when the provider cannot process the event notifications as fast as
es a beep sound. In a
d you notice that the provider

 IWbemClassObject** apObjects)
{
 ObjectLock lock(this);
 HRESULT hr = WBEM_S_NO_ERROR;

 // Get the
 CComVariant varClass;
hr = pLogicalConsumer->Get(CC

 // Check that we can support this event consumer

csicmp(V_BSTR(&varClass), L"Sample_WMIBookEventConsumer") == 0) if (_w
 {
 // Get event consumer properties

iant varBeep; CComVar
 = pLo hr

 // WMI can que events and send them all together in one call

 (int nIndex = 0; nIndex < lNumObjects; nIndex++) for
 {

 CComQIPtr<IWbemClassObject> spEvent = V_UNKNOWN(&var

 // Get the class of the event (you may want to do this so

etermine what to do with this event. This // that you can d
ntation // impleme

 CComVariant varEventTypeC
 hr = spEvent->Get(CComBST
 &varEventTypeClass, 0, 0);

 // Make a beep sound if the consumer is configured as such
 if (V_BOOL(&varBeep))
 Beep(1500, 250);

 // Received event of type < V_BSTR(&varEventTypeClass) >
 }
 }
 else
 hr = WBEM_E_NOT_FO

 return hr;
}

Be prepared to handle more than one event because WMI can queue events and send them all at
once. This is
they are being delivered. This is a very simple provider that only mak
commercial provider you will have to process more serious events. Di
checked to make sure that it could process the event by looking at the logical consumer that
subscribed for the event? In addition, you also would check the class of the event to ensure that you
can process it.

Permanent Event Consumer Provider Registration
Earlier in the chapter, we covered the first step of the provider registration. The second step

thin the CIM
he __EventFilter

ers using your own class derived from __EventConsumer,
nsumer and event
terToConsumerBinding.

he
 and

vider registration. Notice that our logical consumer class
vider in the ConsumerClassNames

e CIM
on storing instances in the CIM repository, then you may have a

ore properties in an instance rely on dynamic
ormation, then your first act usually is to develop an instance provider (requiring you to

implement your own local cache for the instance data). In this situation, a property provider can
dynamically provide the property for an instance.

We shall implement a very simple schema for our sample property provider. The class will contain
two properties: a key property and a property that will be provided by a property provider. Let's

class Sample_Chapter

umber;

completes the event consumer provider registration.

As already discussed, all permanent event consumer registrations are held wi
al approach is to create your event subscriptions using trepository. The gener

class and create your own logical consum
which is in our case Sample_WMIBookEventConsumer. The logical co

bscriptions are then bound together with an association class, __Filsu

The second step of the event consumer provider registration requires an instance of t
__EventConsumerProviderRegistration class. The registration contains a provider reference
the event consumer classes supported by the provider. WMI uses the ConsumerClassNames
property to link an event consumer to a specific provider.

class __EventConsumerProviderRegistration: __ProviderRegistration
{
 [key] __Provider ref Provider;
 [key] string ConsumerClassNames[];
};

Here is a typical event consumer pro
(Sample_WMIBookEventConsumer) is registered against our pro
property. Whenever WMI needs to deliver an event to the Sample_WMIBookEventConsumer
consumer, WMI can determine which provider to load and delivers the event to it.

instance of __EventConsumerProviderRegistration
{

itBasketPermEventProv\" "; Provider = "__Win32Provider.Name=\"Fru
 ConsumerClassNames = {"Sample_WMIBookEventConsumer"};

Developing a Property Provider
A property provider retrieves and modifies property values for instances that are stored in th
repository. If your schema is based

uirement for a property provider. If one or mreq
inf

have a look at the class:

{
 [key] sint32 ChapterN
 boolean FileReadOnly;

};

The class is supposed to represent a chapter that is stored as a document on a disk drive. The
the number of the chapter and the FileReadOnly property
 is read-only or not. The FileReadOnly property will be

le_Chapter class in the CIM repository:

]

 a

s:

 a property context.

t qualifier is applied to an instance in which the co ormation
applies to every property.

• The PropertyContext q hich there is very specific
context information that only

e In which the
part onstrates

within opertyContext qualifier specified a
oc example of the property

 p "\My
oc"

t happened to use file system–based strings.

ChapterNumber property represents
 document filerepresents whether the

provided by the property provider.

Let's create an instance of the Samp

[
 DynProps,
 InstanceContext("E:")
]
instance of Sample_Chapter
{
 ChapterNumber = 12;

 [
 PropertyContext("\\My Documents\\WMIProvChapter.doc"),
 Dynamic,
 Provider("WMIPropertyProv")

 FileReadOnly;
};

Note the use of the DynProps qualifier: It indicates that an instance contains values provided by
dynamic property provider. When an instance uses the DynProps qualifier, it means that one or
more properties have both the Dynamic and Provider qualifiers. The Dynamic qualifier specifies
that the property be supplied dynamically by the provider specified in the Provider qualifier.
Whenever a property provided value is Dynamic, the property must also specify the
PropertyContext qualifier. Property providers can make use of three different context qualifier
ClassContext, InstanceContext, and PropertyContext. The context qualifiers: can provide
additional context information about a class, instance, and property. For a property provider to
achieve anything useful requires

• The ClassContext qualifier is applied to a class in which the context information is the
same for every instance.

• The InstanceContex ntext inf

ualifier is applied to a property in w
applies to a single property.

In the sample instance above, th
chapter resided. Although not a

stanceContext qualifier specified the disk drive on
icularly good example of an instance context, it dem

the use of an instance context a provider. The Pr
relative file path to the chapter's d
context because the

ument file. This is a reasonably good
roperty pertains to the actual document, FileReadOnly

Documents\WMIProvChapter.d .

All three context qualifiers can contain any string that will mean something to the property
provider. In the above example, we jus

Like all the other providers you've seen, a property provider is a COM component (in process or
out-of-process server). It must support the IWbemProviderInit and IWbemPropertyProvider
interfaces (see

Figure 12.11). WMI initializes the provider through the IWbemProviderInit
interface, and the IWbemPropertyProvider interface requires an implementation to get and set
properties.

Figure 12.11. WMI property provider component

ic
g the

hieved easily by using

 the property provider. We omit the IWbemProviderInit
ider.

der

ublic:

 STDMETHOD(Initialize)(LPWSTR wszUser, LONG lFlags,

Exposing Dynamic Properties
The sample property provider implementation will expose only as a dynamFileReadOnly
property. In addition, the provider will support only the retrieval of the property. Settin

ossible in this implementation. However, it could be acproperty will not be p
the appropriate Win32 APIs.

Let's look at the implementation for
implementation because it is the same as the one for the instance prov

class CProperty:
 public CComObjectRoot,

 &CLSID_Property>, public CComCoClass<CProperty,
 public IWbemProviderInit,
 public IWbemPropertyProvi
{
p
 CProperty() {}

 BEGIN_COM_MAP(CProperty)
 COM_INTERFACE_ENTRY(IWbemProviderInit)
 COM_INTERFACE_ENTRY(IWbemPropertyProvider)
 END_COM_MAP()

 DECLARE_REGISTRY_RESOURCEID(IDR_Property)

// IWbemProviderInit
public:

 LPWSTR wszNamespace, LPWSTR wszLocale,
 IWbemServices *pNamespace, IWbemContext *pCtx,
 IWbemProviderInitSink *pInitSink);

// IWbemPropertyProvider
public:
 STDMETHOD(GetProperty)(long lFlags, const BSTR strLocale,
 const BSTR strClassMapping, const BSTR strInstMapping,
 const BSTR strPropMapping, VARIANT* pvValue);

 STDMETHOD(PutProperty)(long lFlags, const BSTR strLocale,

roperty
 closer look

 // Must be zero
 Locale

pMapping, // Property context

er-specified locale that is obtained during the initial connection to
here the returned property value is localized. If the property is not

entation can ignore the locale parameter.

of the context strings passed throug re
completely user-def by the schema designer.

at will be returned to the caller. The
value of the property is based on the supplied contexts and locale. Notice that no parameters specify

p

path

 V_VT(pvValue) = VT_BOOL;

 const BSTR strClassMapping, const BSTR strInstMapping,
 const BSTR strPropMapping, const VARIANT* pvValue)
 {
 return WBEM_E_NOT_SUPPORTED;
 }
};

Because the provider will not allow the setting of the FileReadOnly property, the PutP
ethod is not implemented and returns an appropriate HRESULT to WMI. Let's take am

at the GetProperty method:

interface IWbemPropertyProvider
{
HRESULT GetProperty(
 long lFlags,
 const BSTR strLocale, //
 const BSTR strClassMapping, // Class context

strInstMapping, // Instance context const BSTR
 const BSTR strPro
 VARIANT *pvValue); // The returned property value
};

The strLocale parameter is a us
MI. This can be used in cases wW

localized, the provider implem

The strClassMapping, strInstMapping, and strPropMapping parameters correspond to
ClassContext, InstanceContext, and PropertyContext respectively. However, you can expect
the strPropMapping parameter to be present because any property supplied by a property provider
also declares the property context. All h to the provider a

ined

The pvValue output parameter is the value of the property th

the class or property names. Carefully consider how you divide and reference your property
provider implementations and how you encode the context strings.

Let's have a look at how you might develop the GetProperty method:

STDMETHODIMP CProperty::GetProperty(long lFlags, const BSTR strLocale,
 const BSTR strClassMapping, const BSTR strInstMapping,
 const BSTR strPropMapping, VARIANT* pvValue)
{
 ObjectLock lock(this);
 HRESULT hr = WBEM_S_NO_ERROR;

 // Create a full file path based on the instance and property contexts
 CComBSTR bstrFile(strInstMap ing);
 bstrFile += strPropMapping;

 // Quick attempt to make sure there is a file
 if (bstrFile.Length() > 0)
 {

 // Determine if file is read only

 V_BOOL(pvValue) =
 (GetFileAttributesW(bstrFile) & FILE_ATTRIBUTE_READONLY) ?
 VARIANT_TRUE : VARIANT_FALSE;
 }
else

 hr = WBEM_E_NOT_FOUND; // No instance or property contexts

ings to formulate a fully qualified
ermine whether or not

e is read-only. The code in bold font is the value that will be returned to the caller.

he second step
stration. Registering property providers requires you to specify

rations you can do with a property: property retrieval and

upportsPut property specifies whether the property provider supports property modification.
ts this function, then the provider must implement the

no attempt to call the
_E_PROVIDER_NOT_ CAPABLE. The SupportsGet

roperty has the same reaction.

 boolean SupportsGet = FALSE;

ports only property

};

 return hr;
}

The code sample demonstrates how you can use the context str
file path. The file path is then passed to the GetFileAttributes API to det
the fil

Property Provider Registration
Earlier in the chapter we covered the first step of the provider registration. T
completes the property provider regi
the capabilities of the two most basic ope
property modification.

The S
If the provider suppor
IWbemPropertyProvider::PutProperty method. If not, WMI makes
provider and will immediately return WBEM
p

The SupportsGet property specifies whether the property provider supports property retrieval. If
the provider supports this function, then the provider must implement the
IWbemPropertyProvider::GetProperty method. Here is the
__PropertyProviderRegistration class definition:

class __PropertyProviderRegistration : __ProviderRegistration
{
 [key] __Provider ref Provider;
 boolean SupportsPut = FALSE;

};

Here is a typical property provider registration. Notice that the registration sup
retrieval.

instance of __PropertyProviderRegistration
{
 Provider = "__Win32Provider.Name=\"MyPropertyProv\" ";
 SupportsGet = TRUE;
 SupportsPut = FALSE;

Developing a Push Provider

A push provider allows you to create instances and update properties that reside within the CIM
repository. This is useful for data that is not dynamic and solves the problem of having to create
manage your own local cache. This includes the data storage, data access, and event notification
that are provided by WMI. Push providers are the simplest to develop because the only interface
you need to implement is

and

IWbemProviderInit (see Figure 12.12).

Figure 12.12. WMI push provider component

In practice, developing push providers is not very common. However, you may find that in your

ll it will do is create an
ition:

s Sample_SomeClass

tify

ry time the provider is initialized.

er there are any objects that you need to create. If there are, then you must

e. If there are, remove them

3. Update the properties of your instances that now exist. This may involve obtaining the

iderInit

solution developing a push provider is a perfect match.

Let's implement a very simple solution for our sample push provider. A
instance of a specific class and update one of its properties. Here is the class defin

clas
{
 [key] string Name;
 uint32 NumberOfUpdates;
};

The property is an arbitrary name that will be a key property and thName erefore uniquely iden
an instance.

The NumberOfUpdates property will be incremented by one eve

Pushing Data to the CIM Repository
A push provider should perform the following sequence of tasks:

1. Identify wheth
create the objects in the CIM repository.

ects that you need to remov2. Identify whether there are any obj
from the CIM repository.

property values from some other data source.

A push provider's class declaration looks like this:

class CPushInstance:
 public CComObjectRoot,
 public CComCoClass<CPushInstance,&CLSID_PushInstance>,
 public IWbemProv
{
public:

 CPushInstance() {}

 BEGIN_COM_MAP(CPushInstance)

WbemProviderInit)

CEID(IDR_PushInstance)

// IWbemProviderInit

at a specific instance of the Sample_SomeClass class exists and

ETURN_WBEM_COMPLETE, NULL,
nce, NULL);

simple implementation, we're just incrementing
property by one.

 hr = spInstance->Put(CComBSTR("NumberOfUpdates"), 0,

 // Our object does not exist, lets create one. First, we need to
 an instance of it.

 CComPtr<IWbemClassObject> spClass;

&

 COM_INTERFACE_ENTRY(I
 END_COM_MAP()

 DECLARE_REGISTRY_RESOUR

public:
 STDMETHOD(Initialize)(LPWSTR wszUser, LONG lFlags,
 LPWSTR wszNamespace, LPWSTR wszLocale,
 IWbemServices *pNamespace, IWbemContext *pCtx,
 IWbemProviderInitSink *pInitSink);
};

Our push provider will ensure th
that its object path can be referenced by Sample_SomeClass.Name= "MyClass". If the object
already exists, the provider will retrieve the NumberOfUpdates property and add one to it. The
updated property is then written back to the CIM repository. Let's take a look at the implementation:

STDMETHODIMP CPushInstance::Initialize(LPWSTR wszUser, LONG lFlags,
 LPWSTR wszNamespace, LPWSTR wszLocale, IWbemServices *pNamespace,
 IWbemContext *pCtx, IWbemProviderInitSink *pInitSink)
{
 ObjectLock lock(this);
 HRESULT hrStatus = WBEM_S_INITIALIZED;

 try
 {
 CComBSTR bstrPath;
 bstrPath = (_T("Sample_SomeClass.Name=\"MyClass\" "));

 // Check if the object we want to update exists?
 CComPtr<IWbemClassObject> spInstance;
 HRESULT hr = pNamespace->GetObject(bstrPath,
 WBEM_FLAG_R
 &spInsta

 if (SUCCEEDED(hr))
 {
 // Get a property from the object that we want to update
 CComVariant varUpdate;
 hr = spInstance->Get(CComBSTR(_T("NumberOfUpdates")), 0,
 &varUpdate, 0, 0);

 // In this
 // the
 V_I4(&varUpdate) += 1;

 // Write new property

 &varUpdate, 0);
 }
 else
 {

 // get the class definition so we can spawn

 hr = pNamespace->GetObject(CComBSTR("Sample_SomeClass"),
spClass, NULL); WBEM_FLAG_RETURN_WBEM_COMPLETE, NULL,

 // Make new object
 hr = spClass->SpawnInstance(0, &spInstance);

 // Set some properties on the object
 CComVariant varInstName(_T("MyClass"));
 hr = spInstance->Put(CComBSTR("Name"), 0, &varInstName, 0);
 CComVariant varInstUpdate(int(1));
 hr = spInstance->Put(CComBSTR("NumberOfUpdates"), 0,
 &varInstUpdate, 0);
 }

i
Instance(spInstance,

 WBEM_FLAG_CREATE_OR_UPDATE | WBEM_FLAG_OWNER_UPDATE,
 NULL, NULL);
 }

ED;

nished
tatus, 0);

istration
d the first step of the provid
istration.

isguised as a cla ce provider because
 exposed dynamically. A push provider requires that the classes it supports be

finitions do not
sh provider.

f the __ClassProviderRegistration class.
InteractionType that this is a push provider. The

= "__Win32Provider.Name=\"MyPushProv\" ";
 InteractionType = 1;

Security Considerations

 // Commit to create nstance in CIM repository
 hr = pNamespace->Put

 catch(...)
 {
 hrStatus = WBEM_E_FAIL
 }
 // Let WMI know we've fi
 pInitSink->SetStatus(hrS

 return hrStatus;
}

Push Provider Reg
Earlier in the chapter we covere
completes the push provider reg

er registration. The second step

Registering a push provider is d
instances are not

ss provider. It is not an instan

previously defined. The class de
advantage of a pu

 need to have any special qualifiers to take

Registration for a push provider requires an instance o
The property is set to 1 to indicate
InteractionType property was covered earlier in the chapter (in the section on instance provider
registration).

instance of __ClassProviderRegistration
{
 Provider

};

Note that when making the __Win32Provider registration, you must ensure that the Pure property
is set to false because a push provider does not need to hang around to service any other requests.

Depending on the requirements of the provider, you may need to provide secure access to your
objects. This means that the provider can restrict access to operations and information. Here are
three reasons that you might want secure access:

1. Your provider uses system-level objects such as a file or the registry. The correct security
context might be required to service the request. For instance, altering a registry value may
require users of a particular security group and therefore requires the provider to

impersonate the user (who may be on another machine) executing the operation.

he

est.
 security calls in the provider. The second step is to correctly

register the provider so that WMI can ensure that the security context will be correctly
impersonated.

Let's take a closer look at how the client security context manages to get to the provider. When
WMI passes the client an IWbemServices interface, the client (using the COM run time) creates a
proxy that is used to communicate with the WMI service. The proxy resides in its own thread in the
client process and therefore has its own security context. The COM run time ensures that the
security context used by the proxy ends up at the stub (see Figure 12.13

2. You may want the provider to impersonate a user so that all security operations can be
audited (if enabled by the administrator).

3. You may decide to perform your own security, in which case the provider could inspect t
security descriptor to determine if access is allowed.

Fortunately, Microsoft has made it very easy for providers to impersonate the client's security
context. It requires a two-step process. The first step is to impersonate the client making the requ
This involves making the appropriate

). It is the client's
responsibility to ensure that the proxy's security context is set up correctly using
CoSetProxyBlanket.

Figure 12.13. Remote access boundaries between clients and providers

For a provider to impersonate a client request requires CoImpersonateClient and
re provided as part

ver the client's security context is required for
an operation. When the provider is finished with the security context (perhaps after accessing

evertToSelf to switch back to the

t's security context:

CoRevertToSelf. Because the WMI architecture is built on COM, these APIs a
of the COM run time. The implementation of virtually all the methods in the IWbemServices
interface should call CoImpersonateClient whene

system-level objects, such as the registry), it should call CoR
provider's security context.

Let's see how a provider typically impersonates a clien

STDMETHOD(GetObjectAsync)(const BSTR ObjectPath, long lFlags,
 IWbemContext *pCtx, IWbemObjectSink *pResponseHandler)
{
 HRESULT hr = WBEM_S_NO_ERROR;

 // This impersonates the client's security context. Any calls made
client's security context and therefore

try

 {

 context.
 CoRevertToSelf();

e

CoImpersonateClient();

 // after this will be in the
 // can be audited.
 CoImpersonateClient();

 {
 //
 // TODO: Add your code here. May set hr to WBEM_E_ACCESS_DENIED.
 //
 }
 catch(...)

 hr = WBEM_E_FAILED;
 }

 // Go back to the providers security

 return hr;
}

If the provider requires switching the client security context back and forth within th
implementation, it can do so simply by making multiple impersonate/revert-to-self calls:

// Do operation in client security context
CoRevertToSelf();
// Do operation in provider security context
CoImpersonateClient();
// Do operation in client security context
CoRevertToSelf();

For more information, review the section on security in Chapter 7.

The second step for enabling provider security is the provider's registration. Earlier in the chapter
we covered provider registration in detail. Recall that __Win32Provider registration includes the

tring CLSID;
 string ClientLoadableCLSID;
 s
 d
 bool
 sint
 sint32 InitializationReentrancy = 0;

security and initialization requirements of a provider. This is what the __Win32Provider class
looks like:

class __Win32Provider: __Provider
{
 [not_null] s

tring DefaultMachineName;
atetime UnloadTimeout;

ean InitializeAsAdminFirst;
32 ImpersonationLevel = 0;

 boolean PerUserInitialization = FALSE;
 boolean PerLocaleInitialization = FALSE;
 boolean Pure = TRUE;
};

The ImpersonationLevel property must be set to 1 and the PerUserInitialization property
must be set to TRUE. The ImpersonationLevel specifies that when the provider calls
CoImpersonateClient and CoRevertToSelf, the provider will impersonate the client correctly.
The PerUserInitialization specifies that whenever a user accesses the objects exposed by a

provider, the provider is initialized and given the opportunity to perform any specific security
initialization.

If the provider needs to use the administration-level thread security token during initialization, then
the registration must also set the InitializeAsAdminFirst property to TRUE. Although a call to
CoImpe
client's. This is useful when you want the provider to have privileged access to system-level objects
during initialization.

to

data). You should design the capabilities of the provider along with the schema.

r for your classes and objects by implementing a
 Chapter 7

rsonateClient will not fail, the provider will use WMI's security context instead of the

Summary
This chapter has introduced you to the most popular kinds of WMI providers that can be written to
expose some aspect of your management environment. You learned how you can easily expose
management objects through an instance provider. This type of provider has to manage how and
where it stores its data (the local cache). However, if you don't want to use the registry or a file
store the data, you may choose to store the data in the CIM repository in a subnamespace (perhaps
called

Next, you saw how you can provide behavio
method provider. Review for guidelines on method design. You learned that as well as

pes like sint32, you can also pass objects as in and out parameters.

You learned how you can develop an event provider to expose events in your management
 this

chema. The sample provider exposed an intrinsic event
that is always linked to classes, instances, or namespaces. You can publish events that have no

s the power management event classes, for
s of events you could publish for your own system.

es, robust event delivery through

ay.

M
roviding dynamic properties without

having to write a full blown instance provider. However, you'll need to carefully choose what
d.

w you could develop one to expose your
't much scope for controlling what

owever, the nature of a push provider
me other data source.

xts. This is useful when a
jects such as a file or the

passing standard WMI ty

environment. This is a very powerful feature, so think of creative ways that you can incorporate
type of information in your management s

relation to classes, instances, or namespaces, such a
example. Consider the possibilities of the type

You were introduced to one of the most powerful WMI featur
permanent event consumer providers. This allows you to create an in or out of process COM server
that will be activated by WMI to deliver an event. This can be completely separate from the main
application and provides interesting opportunities to solve interesting problems in an elegant w

Next, you saw how you could easily provide properties dynamically for instances held in the CI
repository. Property providers offer an easy way out for p

contexts you need to use and how they are encode

Although push providers are not very popular, you saw ho
anagement objects within the CIM repository. There isnm

happens to the instances you create, delete, or update. H
ally means that the instances that need to be pushed reside on sousu

Finally, you learned how you can easily impersonate client security conte
provider makes calls to APIs that require access rights to system-level ob
registry.

Ten Fast Facts: Developing WMI
Providers

1. Expose your management environment through WMI! This will help you unify
ur administration interfaces for your hardware and software. You can use WMy

to access yo
o I

ur management objects in a user interface administration tool (such as

ur schema design first, before developing a WMI provider. Review
ter 5

MMC), and it may also help system administrators make scripts for routine
administration tasks.

2. Think about yo
Chap and Chapter 6 to learn more about schema design.

can be developed and their merits. In
ers are the most common.

thod providers must support the IWbemServices interface. Event providers
ace.

en developing your WMI providers, consider making them local COM servers.
ess from which the information is

rity context in which the

a minimum, it is best practice for instance WMI providers to support
ers and

e available

ent environment, consider what external events
f your management objects. Review Chapter 7

3. Be aware of the types of WMI providers that
 event providparticular, instance, method, and

4. All WMI providers must support the IWbemProviderInit interface. Instance and
me
must support the IWbemEventProvider interf

g for a solution that requires a robust event 5. Keep your mind open when lookin
delivery system. Permanent event consumer providers may be the solution.

6. Wh
This will allow you overall control of the proc

le to specify the secuexposed; for instance, you will be ab
provider is launched.

7. At
CreateInstanceEnumAsync and GetObjectAsync. This will enable us
management applications to determine what management objects ar
and to gain access to a specific management object.

8. Consider the security requirements for your WMI provider. Note that WMI's
security model is based on DCOM security. Separate from DCOM security is
namespace security, controlled via an access control list (ACL).

9. When examining your managem
exist outside the scope o for a

es between intrinsic and extrinsic events.
 this book is an ATL-like WMI provider

ake your provider development easier.

detailed discussion of the differenc
 that accompanies10. On the Web site

framework that will m

Chapter 13. High-Performance

on of applications with detailed trace
 most basic trace instrumentation that

 logging is usually
e, a thread identifier, and

entation has
g file to determine the program

 log file has other benefits apart from identifying where a

Instrumentation
The computing world has long required the instrumentati

formation and techniques to monitor system usage. Thein
many development organizations employ is a debug logging facility. Debug
achieved by writing text statements into a text file that may include the tim
the subsystem or component writing the trace statement. This basic form of instrum
aided many organizations to resolve pro

ow at the time a problem occurred. The
blems by inspecting the lo

fl

particular problem occurred. A developer can use the log file for performance profiling by
and identify portions of code that take too long to complete. A
aded problems by seeing the sequence of calls made between

 be easily reproducible, a developer can ascertain
 should be added and make the section of code

bust.

ame of a

inspecting the tick count (time)
er can identify multithredevelop

threads and components. Even if a problem cannot
onal instrumentationfrom the log file where additi

more ro

Every line or statement written to a debug log file can be viewed as an event, hence the n
cingnew instrumentation technology introduced in Windows 2000, event tra . Event tracing allows

event tracing session can be monitored in
 a binary log file that is managed by the operating system. Every event is a

in that has some predefined fields, such as a time stamp, the type of event, and its
ersion. Most events are extended with customized fields or structures to supply additional

d
rn,

hat is required to identify and resolve
ay turn out that the MAPI call is taking too long because of an

roblem when looking at a flat
 the components on which you are

it is

Event tracing doesn't stop there! A single event in an event trace can have a parent event. This
s to

s that

d ot easily be achieved with a flat
text file.

l applications have been able to read and write high-
performance counters. High-performance counters offer a very fast solution for monitoring system

se the information
le counter at that moment. Performance counters

ter in turn may have
co ters like Thread
lications). This is one

applications to fire and capture events extremely fast. An
real time or be written to

ary structureb
v
information about the activity. To achieve the same outcome as a debug log file, an event-tracing
event would contain a single custom string field that would verbosely describe the event. The
Windows 2000/XP kernel exposes many event traces that include activity with processes, threads,
file and disk activity, TCP/IP, loading images such as DLLs and executables, registry access, and
hard and soft page faults. There are also event traces for the various security subsystems used by
Windows. Windows XP extends the existing kernel events with new versions to provide even more
detail about what is happening in the kernel.

Problems in applications that output text statements or events to a debug log file are much more
difficult to properly evaluate and resolve because the information provided in the file is only at an
application level. Suppose a server-side mail-oriented application builds on top of MAPI
(Messaging API). MAPI itself builds on top of the operating system, which uses the remote
procedure call layer (RPC), which, in turn, causes the TCP/IP network layer to be exercised (an
not forgetting the security authentication that goes on behind the scenes). The e-mail server, in tu
uses the message store, the Active Directory, and so the list goes on. When a customer has a
problem in which a MAPI call is taking a significant amount of time, where do you start? The text
debug log file will not be able to give you all the detail t
difficult problems. For instance, it m
isolated network problem. It is unlikely you'll be able to identify this p
text file. This is because you don't know what is going on with
building. If all the components on which you are building expose useful event traces, then
possible to get a three-dimensional view of the problem.

opens up the possibility to have child events that detail a larger event. Suppose an application ha
perform a complex calculation. It could fire a start calculation event followed by child event
detail the calculation's progress, which might finally end in a stop calculation event. So, not only
can you drill down through all the components to the operating system, but you may also be able to
drill through all the child events and their chil events. This cann

Since the release of Windows NT 3.1, al

utilization. This form of instrumentation is different from event tracing becau
communicated is based on a single value for a sing
are arranged into objects that can contain one or more counters and each coun

unone or more instances. For example, a particular Process object has some
Count for which there are several Instances (that is, currently running app

example of the instrumentation provided by the operating system. In fact, Windows includes many
performance counters; other examples include Memory, IP, Processor, and System. To make such
an instrumentation technique useful, a monitoring application continually must retrieve the count
values in a loop that allows an ongoing graph or log to be updated. For example, the performance
monitor supplied with Windows is a graphical application that can display graphs for one or more
performance counters. A d

er

eveloper who wishes to identify whether an application leaks memory
over a long period can set up the performance monitor to monitor the Private Bytes counter from

he

 for monitoring registry access.

though specifically
indows 2000.

Event tracing is a subsystem that is deeply integrated in the Windows operating system and is
re 13.1

the Process object. If the graph goes up, then the application is leaking memory. If the graph is
stable, then the application is well behaved. This is one example that demonstrates how
tremendously useful software instrumentation is. It is also an example of how noninstrumented
applications can benefit from the instrumentation provided through the Windows operating system.
Many server-side applications now instrument or expose high-performance counters to help
administrators in planning for system capacity. Writing code to access performance counters is not
user-friendly and requires the use of the registry APIs. To overcome the difficulties of accessing t
performance counters, Microsoft developed the Performance Data Helper (PDH) library. This
makes it significantly easier to write code to monitor performance counters.

The main difference between event tracing and performance counters is that it is hard to track
individual resources with performance counters. Performance counters offer a way to view system
utilization, such as memory usage. Performance counters cannot be used easily for debug logging,
for tracking resources or operations such as a disk drive, or

This chapter aims to bring you up to speed with event-tracing technology. Al
aimed at Windows XP, many of the event-tracing APIs are available in W

Overview of Event Tracing

considered part of the Windows Management Instrumentation tool set (see Figu). Event
blems and monitoring and tracking

event tracing is an event. An event can be best described
indows operating system's TCP/IP stack is

t describe activities such as connect, send, receive, and
ation about the activity: In the case of

 is provided about the connection and details of what was sent
erred to as the event tracer and is

.1. Event-tracing architecture

tracing is super fast and provides new scope for resolving pro
resources. The most fundamental aspect of

 an activity of interest. For example, the Was
instrumented with event traces tha
disconnect. Each event typically includes additional inform

/IP stack, more informationthe TCP
or received. The subsystem that implements event tracing is ref
implemented in the Windows kernel.

Figure 13

Events are fired (published) by an event-tracing provider, also known as an event-tracing logger.
Any application that you develop can be an event-tracing provider and it can be engaged in one or

eral
ing session must be created to record the events from

each provider.

 see the terms class and event trace used
interchangeably. There are no limits to how many different event traces a provider can instrument.
The kernel, for exam red by a provider
is further defined by its event type. For instance, the kernel event trace for the TCP/IP stack has
event types connect, send, receive, and disconnect. The interpretation of an event depends on its
event type. For instance, the TCP/IP details for a connect event are different from the details
exposed for a read or write event. Although there are some system-defined event types, an event-
tracing provider is free to define its own.

Event-tracing sessions cannot be started, stopped, or queried without an event-tracing controller. An
event-tracing controller is an application under Windows XP that can initiate up to a maximum of
32 event-tracing sessions of which 29 are available for applications. Under Windows 2000, the
global logger and the kernel logger have reserved sessions. Windows XP reserves a third session for
internal use.

Event traces cannot be processed or inspected without an event-tracing consumer. A consumer is an
application that can either process the event traces in real time or open an already existing event
trace log file from disk. Depending on the volume of event traces being fired, a real-time consumer
must process the events super fast to not lose events from the nonpaged memory buffers. If the

more event-tracing sessions. The event tracer temporarily holds the events fired by a provider in
nonpaged system memory buffers. The event tracer manages the buffers and if necessary, it also
manages the dumping of them to an event trace log file on disk. An event-tracing session can be
associated only with a single event-tracing provider. Hence, if you want event traces from sev
subsystems or components, then an event-trac

The structure of an event is usually published as a class in the WMI repository and is sometimes
referred to as an event trace. Hence you'll often

ple, publishes nine different event traces. Each event trace fi

event tracer fills all the available buffers, it starts dropping events. When postprocessing event trace
log files, a consumer can specify and process several log files at once. Hence, if you have event
traces from several subsystems or components, you can get the event tracer to process them and
provide you with a chronological event stream.

A single application can be both an event-tracing controller and an event-tracing consumer.

Controlling Event Traces
Controlling event traces is critically important because it allows event-tracing sessions to be started
and stopped. This ultimately provides a log file either for later analysis or to monitor the events in
real time. Conveniently, the operating system can manage the dumping of events to a log file. The
log file is stored in binary format and can be configured to log the events circularly, sequentially, or
incrementally. Monitoring the events live is convenient as well because not only can the events be
monitored in real time, you also might have other requirements based on retrieving the events as
soon as they are available. For instance, you may have a requirement to process the events in real
time so that they can be stored in an alternative format or transmitted over the network to a shared
logging or tracing server. Obviously, this distributed approach would degrade network performance
if thousands of events were to occur every few seconds. The Windows XP kernel can generate
10,000 events in just a few seconds. If you're considering a distributed tracing approach, carefully
evaluate what you send over the network.

StartTrace. The
ssion (starting other event-tracing providers will be

on properties.
 is a private helper function.

ROPERTIES pTraceProps =

entially
aceProps->LogFileMode |= EVENT_TRACE_FILE_MODE_SEQUENTIAL;

gger
_TCPIP |

Starting a Kernel Event-Tracing Session

Starting an event-tracing session requires two essential pieces of information. First, you must
specify the event-tracing provider that will generate the required events, and second, you must
specify where the events must be delivered (either a log file or delivery in real time). Calling
StartTrace, if successful, will start the event-tracing session using the session's configuration
supplied through an EVENT_TRACE_PROPERTIES structure. When a session is in progress, calling
ControlTrace will allow the session's configuration and statistics at that moment to be obtained.
We will discuss more on this later in the chapter.

Let's start with the first call that must be made to initiate an event-tracing session,
following code starts the NT Kernel Logger se
covered later):

void StartEventTracing()
{

g sessi // Setup the Event Tracin
 // The MakeTraceProperties
 PEVENT_TRACE_P
 MakeTraceProperties(_T("NT Kernel Logger"),
 _T("C:\\MyEventTrace.etl"));

 This tell the Event Tracer to log to a file sequ //

 pTr

nts from the NT Kernel Lo // Requesting TCP/IP and registry eve
 pTraceProps->EnableFlags |= EVENT_TRACE_FLAG_NETWORK
 EVENT_TRACE_FLAG_REGISTRY;

 // Start the session.

el Logger"),
ce

LocalFree(pTraceProps);

n
hat enough

e allocated to hold both the structure and the two strings that are tagged at the end of the
ure, one string for the name of the session and the other to specify the log file path. After

zation for the EVENT_TRACE_PROPERTIES structure,
The EVENT_TRACE_FILE_MODE_SEQUENTIAL

ecause the maximum log

e next step is to specify the kernel
 registry and the TCP/IP

 StartTrace(PTRACEHANDLE TraceHandle, LPCTSTR InstanceName,

d event-tracing session, it returns a TRACEHANDLE
eHandle parameter. It is sometimes useful to keep the returned TRACEHANDLE

out the session, update the session's operating configuration, and
l see later, there are other techniques to reacquire the session

 reserved

 TRACEHANDLE hTraceSession = 0;
 ULONG ulError = StartTrace(&hTraceSession, _T("NT Kern
 pTra Props);

}

The step prior to calling StartTrace is to set up the session's configuration through a
T_TRACE_PROPERTIES structure. This is a variable length structure that requires tEVEN

memory b
struct
creating and performing the minimum initiali
the event trace log file that should be written to is set.
flag instructs the session to write the events to the log file sequentially. B

 log file will continue to grow indefinitely. Because file size has not been set, this means that the
we're setting up a session to monitor the NT Kernel Logger, th
events that are required. In this case, we request events from access to the

 by calling stack. Finally, the event-tracing session is started StartTrace.

Let's look at in moreStartTrace detail. Here is the function's declaration:

ULONG
 PEVENT_TRACE_PROPERTIES Properties);

If StartTrace is successful in starting the desire
through the Trac
because you can gather statistics ab
stop the session. However, as you'l
handle if you don't have it. The TRACEHANDLE is considered closed when the session is stopped.

To uniquely identify a session, a session name must be provided through the InstanceName
parameter. Other applications may have started their own sessions, and they probably would be
unhappy if your application changed their operating configurations or stopped their sessions
altogether. This is why a unique session name must be supplied that has the added benefit that an
application's session can be easily identified when enumerating all the active event-tracing sessions.
(This is covered later in the chapter.) However, that said, NT Kernel Logger is a special case and its
session name must be "NT Kernel Logger" (this is one of the operating system's
sessions).[1]

[1] This is defined by the KERNEL_LOGGER_NAME macro in evntrace.h.

The session's configuration is passed through the Properties parameter. Whe
dates the members of the EVENT_TRACE_PROPERTIES structure to p

n StartTrace
rovide some initial
n details might not

PERTIES structure in more detail. As already mentioned, this is a
es the session's configuration and run-time statistics. Figure 13.2

returns, it up
statistics and the final outcome of the session's configuration (some configuratio
have been specified and some sensible defaults are automatically assigned).

Setting Up a Session's Configuration

Let's cover the EVENT_TRACE_PRO
tructure that storvariable-length s

shows a rough layout highlighting that the variable length members ffseLoggerNameO
fset point to offsets from the start of the structure.

t and

S structure

LogFileNameOf

Figure 13.2. EVENT_TRACE_PROPERTIE

The following privately defined macro calculates the offset described above which will be used in

fset)) : NULL)

.

d

 // Calculate how big we need our structure
 ULONG ulSizeNeeded = s
 (SESSION_NAME_STRLEN

E_STRLEN * s AR));

or str

SizeN

eProps,

 pTraceProps->Wnode.BufferS
 pTraceProps->Wnode.Flags = WNODE_FLAG_TRACED_GUID;

 // Correctly specify the o
 pTraceProps->LoggerNameOff
 pTraceProps->LogFileNameOf
 pTraceProps->LoggerNameOffset +

 // Copy Provider and Log file path
 LPTSTR lpszLoggerName =

the MakeTraceProperties helper function.

#ifndef ByteOffset
 #define ByteOffset(X, Offset) \

einterpret_cast<LPTSTR>(Offset ? (DWORD(X) + DWORD(Of r
#endif

We have arbitrarily decided that it is unlikely the log file path will be longer than 1024 characters
The session name must not be larger than 1024 characters. Here are the definitions we will use:

#define SESSION_NAME_STRLEN 1024
#define LOGFILE_NAME_STRLEN 1024

The helper function MakeTraceProperties is used by all code samples in this chapter to create an
complete the minimum initialization of an EVENT_TRACE_PROPERTIES structure. Let's look:

PEVENT_TRACE_PROPERTIES MakeTraceProperties(
 LPCTSTR lpszProvider = _T(""), LPCTSTR lpszLogFile = _T(""))
{
 PEVENT_TRACE_PROPERTIES pTraceProps = 0;

izeof(EVENT_TRACE_PROPERTIES) +
 * sizeof(TCHAR)) +

 (LOGFILE_NAM

izeof(TCH

 // Allocate memory f ucture
 pTraceProps = reinterpret_cast<PEVENT_TRACE_PROPERTIES>(
 LocalAlloc(LPTR, ul eeded));

 RtlZeroMemory(pTrac ulSizeNeeded);

 // Fill standard members

ize = ulSizeNeeded;

ffsets for the variable length strings
set = sizeof(EVENT_TRACE_PROPERTIES);
fset =

 (SESSION_NAME_STRLEN * sizeof(TCHAR));

 ByteOffset(pTraceProps, pTraceProps->LoggerNameOffset);

 LPTSTR lpszLogFileName =
 ByteOffset(pTraceProps, pTraceProps->LogFileNameOffset);

 _tcsncpy(lpszLoggerName, lpszProvider, SESSION_NAME_STRLEN -1);

 return pTraceProps;
}

 first fe ing
enough room for the two strings tag
recorded in the Wnode.BufferSize

 that indicates that the structure
strin

the appropriate positions within the
"NT Kernel Logger" sessions beca
LoggerNameOffset member shoul
session's configuration and statistic t
member will contain the session na

i
session, let's discuss the members of the EVENT_TRACE_PROPERTIES structure.

 MaximumFileSize; // maximum logfile size (in MBytes)
 ULONG LogFileMode; // sequential, circular
 ULONG FlushTimer; // buffer flush timer, in seconds
 ULONG EnableFlags;

 / age decay time, in minutes

 ULONG FreeBuffers; // no of buffers free

 to file

 ULONG LogBuffersLost; // no of logfile write failures

e

g session are held in nonpaged system memory buffers until
they either are written to disk or inimum of four buffers is
required, although this depend a high throughput of events

ombination of m preallocated buffers, the maximum number of buffers,

 _tcsncpy(lpszLogFileName,

lpszLogFile, LOGFILE_NAME_STRLEN -1);

It should be obvious that the w statements calculate the memory requirements, includ
ged at the end of the structure. The size of the structure is
 member. It is essential that the Wnode.Flags member contain

the WNODE_FLAG_TRACED_GUID
The next step is to specify the

contains event-tracing information.
g offsets correctly and copy the session name and log file path to
 structure. The LoggerNameOffset member is set up only for

use it is a special case, as you will see later. The
d always be allocated enough memory because when the
s are queried for, using ControlTrace, the LoggerNameOffse
me.

To understand more about the stat stics and configurations that are available for an event-tracing

typedef struct _EVENT_TRACE_PROPERTIES {
 WNODE_HEADER Wnode;
//
// data provided by caller
 ULONG BufferSize; // buffer size for logging (kbytes)
 ULONG MinimumBuffers; // minimum to preallocate
 ULONG MaximumBuffers; // maximum buffers allowed
 ULONG

 // trace enable flags
 LONG AgeLimit;

 /

// data returned to caller
 ULONG NumberOfBuffers;

 // no of buffers in use

 ULONG EventsLost;
 ULONG BuffersWritten;

 // event records lost
 // no of buffers written

 ULONG RealTimeBuffersLost; // no of rt delivery failures
 HANDLE LoggerThreadId; // thread id of Logger
 ULONG LogFileNameOffset; // Offset to LogFileName
 ULONG LoggerNameOffset; // Offset to LoggerNam
} EVENT_TRACE_PROPERTIES, *PEVENT_TRACE_PROPERTIES;

The Wnode member contains specific information about the EVENT_TRACE_PROPERTIES structure
(for instance, its size).

All events delivered to an event-tracin
 are delivered to a real-time monitor. A m

s on the expected throughput of events. If
is expected, a c the minimu

and the buffer size should be increased to prevent events from being lost. The number of
preallocated buffers can be specified through the MinimumBuffers member. If a value less than
four buffers is specified, Windows XP automatically ups it to the minimum requirements. The

d

allocate more buffers, up to th ers
maximum number of allocated buffers has b nts will be lost. If the

P on
the buffer size and how much as. The size of each buffer can be specified
through the BufferSize member. The default buffer size for the NT Kernel Logger is 4KB; for
other providers, it is 8KB. Ho
MinimumBuffers and Maximu
size of the buffer (BufferSiz y the machine has.

To determine what really is ha he
EVENT_TRACE_PROPERTIES st ntsLost read-
only members. The NumberOf allocated. This
usually is less than configured rOfBuffers e same size as
MaximumBuffers, then the minimum MaximumBuffers might need reconsideration. To further
determine if this is the case, c
currently in use that are ready near zero
and NumberOfBuffers is near MaximumBuffers, then the session's configuration needs

sion is
gress. tware systems, there are periods when data throughput is high and

when it is low. Event tracing behaves similarly, which is why the session buffer pool can be flexibly
 get delivered in just a few seconds, there is more need to

make the buffer pool large enough so that no events are lost. When the event throughput returns to a
ally

frees the unused buffers based on the AgeLimit. This is specified in minutes and if none (zero) is

The BuffersWritten member tells how many buffers have been written to disk or have been

g events to the log file, then the LogBuffersLost member will contain the
numb RealTimeBuffersLost tells the number of buffers

eduled

s.

maximum number of allocate
the operating system finds tha

 buffers can be specified through the MaximumBuffers member. If
t all the available allocated buffers are full, it automatically will
e specified MaximumBuff , to hold the undelivered events. If the

een reached, eve MaximumBuffers
 will automatically calculate a minimum maximum default based
 memory the machine h

member is zero, Windows X

wever, the buffer size can be set from 1KB to 1024KB. Both the
mBuffers can be increased significantly, but this will depend on the
e) and how much memor

ppening with the session's buffer configuration, t
ructure has NumberOfBuffers, FreeBuffers, and Eve

ently areBuffers member says how many buffers curr
 reaches th MaximumBuffers but, if Numbe

heck the FreeBuffers. This is the number of allocated buffers not
 for use in the session's buffer pool. If the FreeBuffers is

reconsideration because there is danger of losing events. The most definite indicator that the buffer
configuration is not large enough for the throughput of events is that EventsLost is anything
greater than zero. If necessary, a session's buffer configuration can be updated while the ses
still in pro As with most sof

configured. When thousands of events can

low state, the unused allocated buffers are no longer required. The operating system automatic

supplied, Windows XP defaults it to 15 minutes.

delivered to a real-time monitor. Combined with the buffer size and the average size of an event,
this can be a good indicator of how many events have been generated, saved, and processed. If
problems occur in writin

er of buffers that were lost. Likewise, the
that could not be delivered in real time.

When configuring an event-tracing session to write to a log file, how often the buffers are sch
to be flushed to disk can be specified through the FlushTimer member. This is specified in
seconds. If zero, each buffer will be flushed when it becomes full. Setting the FlushTimer to one
second may cause each buffer (even if not full) to be flushed to disk more frequently (every second)
depending on the throughput of events.

Event-tracing sessions can be easily configured for managing the storage or delivery of event
Table 13.1 describes the flags that can be used when setting up the LogFileMode member.

Table 13.1. LogFileMode Flags

LogFileMode Flags Comment
EVENT_TRACE_FILE_MODE_APPEND

(Windows XP only)

Append new events to an existing sequential log file.

Do not use with EVENT_TRACE_REAL_TIME_MODE
EVENT_TRACE_FILE_MODE_CIRCULAR

or

newer
events.

TIME_MODE or
EVENT_TRACE_FILE_MODE_SEQUENTIAL.

EVENT_TRACE_FILE_MODE_NEWFILE Automatically switches to a new log file when the file

The specified file name must be a formatted string (i.e., it
must contain a %d). Each time a new file is created, a

AR.

 file
ies

e during logging, for both circular and
 files. When the session is stopped, the log

uced to the size needed.

This flag is useful if there is concern about running out

 file sequentially. Stop when the file
ximum size.

.

Do not use with EVENT_TRACE_FILE_MODE_CIRCULAR
ACE_FILE_MODE_SEQUENTIAL.

Logs the event without including EVENT_TRACE_HEADER.
og one or more existing log
ore, the variable portion of

or an

.
EVENT_TRACE_FILE_MODE_CIRCULAR Write events to a log file. When the file reaches the

maximum size, the oldest events are replaced with

Do not use with EVENT_TRACE_REAL_

(Windows XP only)
reaches the maximum size.

counter is incremented and its value is used. The
formatted string is used as the file name.

Do not use with EVENT_TRACE_FILE_MODE_CIRCUL
EVENT_TRACE_FILE_MODE_PREALLOCATE

(Windows XP only) the entire spac
tial log

When a session is created with StartTrace, the log
is extended to the MaximumFileSize. The file occup

sequen
file is red

of disk space during the session.
EVENT_TRACE_FILE_MODE_SEQUENTIAL Write events to

reaches the ma
a log

Do not use with EVENT_TRACE_FILE_MODE_CIRCULAR
EVENT_TRACE_REAL_TIME_MODE Deliver the events to consumers in real time.

or EVENT_TR

EVENT_TRACE_RELOG_MODE

(Windows XP only)
The logger was started to rel
files to a new log file. Theref
the relogged event already has a header from the old log
file.

EVENT_TRACE_USE_GLOBAL_SEQUENCE

(Windows XP only)

Use sequence numbers that are unique across event-
tracing sessions. See TraceMessage for usage details.

EVENT_TRACE_USE_LOCAL_SEQUENCE Use sequence numbers that are unique only f

Table 13.1. LogFileMode Flags

LogFileMode Flags Comment

r

ACE_USE_PAGED_MEMORY Use paged memory. This setting is recommended so that
 up the nonpaged system memory.

EVENT_TRACE_PRIVATE_LOGGER_MODE A private event-tracing session is a user-mode event-

er.

 EnableFlags member is applicable only when using the NT Kernel Logger. Because of
y the NT Kernel Logger, the EnableFlags member
tivities in which the session is interested. Table 13.2

(Windows XP only) individual event-tracing session. See TraceMessage fo
usage details.

EVENT_TR

(Windows XP only)
events do not use

tracing session that runs in the same process as its event
trace provider.

This will be discussed in more detail later in the chapt

Using the
the very high throughput of events generated b

ation of the kernel acallows the precise specific
 that can be combined.

File I/O events.

Physical disk I/O events.

Image load events.

 page fault events.

All page fault events.

TCP/UDP events.
SS Process events.

Thread events.

Registry access events.

bgPrint(ex) calls.

, there

l
t will automatically start a kernel session. The

second approach involves specifying the globally unique identifier (GUID) of the event-tracing
e

 session
g the Wnode.Guid member specifies the

describes the possible flags

Table 13.2. EnableFlags Flags

EnableFlags Flags Comment
EVENT_TRACE_FLAG_DISK_FILE_IO

EVENT_TRACE_FLAG_DISK_IO

EVENT_TRACE_FLAG_IMAGE_LOAD

EVENT_TRACE_FLAG_MEMORY_HARD_FAULTS Hard
EVENT_TRACE_FLAG_MEMORY_PAGE_FAULTS

EVENT_TRACE_FLAG_NETWORK_TCPIP

EVENT_TRACE_FLAG_PROCE

EVENT_TRACE_FLAG_THREAD

EVENT_TRACE_FLAG_REGISTRY

EVENT_TRACE_FLAG_DBGPRINT D

When setting up the EVENT_TRACE_PROPERTIES structure to pass into a call to StartTrace
are two ways in which you can specify the event-tracing provider. The first, which works only for
the NT Kernel Logger, is to complete the string pointed to by LoggerNameOffset with "NT Kerne
Logger." This combined with the EnableFlags se

provider. All providers are uniquely identified by a GUID, which is sometimes referred to as th
control GUID is necessary to start aprovider's control GUID. Specifying the provider's

using any other event-tracing provider. Completin
provider's control GUID and also makes the string pointed to by LoggerNameOffset redundant.
The kernel provider can be specified using either of these two approaches. If using the latter
approach to start a kernel session, ensure that the Wnode.Guid member contains

SystemTraceControlGuid.[2] If the session is configured to store the event trace in a log file, the
string pointed to by

 SystemTraceControlGuid is defined in evntrace.h.

dentifier of the event-tracing session.

_TRACE_PROPERTIES structure (accessed through Wnode) uses a
et's have a look:

his ULONG
ng this buffer

 Logger use

r WMI

 };

 UL
 HA
 LARGE_INTEGER TimeStamp; // Timestamp as returned in units of

 };
 GUID Guid; // Guid for data block returned with results
 ULON
 ULON
} WNODE_HEADER, *PWNODE_HEADER;

BufferSize
ted.

ControlTrace.
ut this, but for now,

LE of a

mber, as described earlier, contains the event-tracing provider's control GUID. The
y the EVENT_TRACE_PROPERTIES structure. The Flags member

RACED_GUID, which says that this structure contains event-tracing

onfiguration and Statistics

f a session while it is in progress, you can use ControlTrace to
determining whether any events are lost or simply to see how

LogFileNameOffset specifies the file path. This, obviously, is not required
when monitoring events in real time.

[2]

The member contains the thread iLoggerThreadId

The header for the EVENT
WNODE_HEADER structure. L

typedef struct _WNODE_HEADER
{
 ULONG BufferSize; // Size of buffer inclusive of t
 ULONG ProviderId; // Provider Id of driver returni
 union
 {
 ULONG64 HistoricalContext; //
 struct
 {
 ULONG Version; // Reserved
 ULONG Linkage; // Linkage field reserved fo
 };

 union
 {

ONG CountLost; // Reserved
NDLE KernelHandle; // Kernel handle for data block

 // 100ns since 1/1/1601

G ClientContext;
G Flags;

The size of the entire EVENT_TRACE_PROPERTIES structure (including the two variable length
strings) is recorded in the member. This must be set up soon after the
EVENT_TRACE_PROPERTIES structure has been crea

If access to the session's TRACEHANDLE is not available, you can query for it using
racing code sample later in the chapter will explain more aboThe StopEventT

we just want to highlight that the HistoricalContext member can contain the TRACEHAND
session when it is queried.

The Guid me
TimeStamp member is not used b
must be set to WNODE_FLAG_T
information.

Querying the Session's C

If you care deeply about the state o
query its statistics. This is useful in

many buffers have been written. Combined with other configurations, this can give an indication of
 outputs all of the available configurations and

_PROPERTIES pTraceProps = MakeTraceProperties();

n"));

 _tprintf(_T("\t\tNumber of buffers %d\n"), pTraceProps->NumberOfBuffers);
 _tprintf(_T("\t\tBuffers written %d\n"), pTraceProps->BuffersWritten);
 _tprintf(_T("\t\tProvider ID %d\n"), pTraceProps->Wnode.ProviderId);
 _tprintf(_T("\t\tReal-time buffers lost %d\n"),

rops->Wnode.Flags);
 _tprintf(_T("\t\tTrace session handle %d\n"),

nds) %d\n"), pTraceProps->FlushTimer);

 _t

 _tprintf(_T("\t\tMaximum buffers %d\n"), pTraceProps->MaximumBuffers);
 _tprintf(_T("\t\tMaximum log file size (MB) %d\n"),

 _tprintf(_T("\t\tMinimum buffers %d\n"), pTraceProps->MinimumBuffers);
 _t

 _tprintf(_T("\t\tTrace log mode %d\n\n"), pTraceProps->LogFileMode);

 Lo
}

ACE_PROPERTIES structure with
. The next call to queries the NT Kernel Logger session for

 Free buffers 24

event throughput. Let's look at a code sample that
an NT Kernel Logger session: statistics for

void QueryEventTracing()
{

up the Event Tracing session properties // Set
 PEVENT_TRACE

 // We can also perform a query without a session handle

ulError = ControlTrace(NULL, _T("NT Kernel Logger"), ULONG
 pTraceProps,

ENT_TRACE_CONTROL_QUERY); EV

 _tprintf(_T("\nQuerying 'NT Kernel Logger'\n\

 _tprintf(_T("\t*Read-only properties\n"));
 _tprintf(_T("\t\tEvents lost %d\n"), pTraceProps->EventsLost);
 _tprintf(_T("\t\tFree buffers %d\n"), pTraceProps->FreeBuffers);
 _tprintf(_T("\t\tLog buffers lost %d\n"), pTraceProps->LogBuffersLost);
 _tprintf(_T("\t\tLogger thread ID %d\n"), pTraceProps->LoggerThreadId);

 pTraceProps->RealTimeBuffersLost);
 _tprintf(_T("\t\tTrace flags %d\n"), pTraceP

 pTraceProps->Wnode.HistoricalContext);

 // Read/write properties
 _tprintf(_T("\n\t*Read/Write properties\n"));
 _tprintf(_T("\t\tAge limit (minutes) %d\n"), pTraceProps->AgeLimit);
 _tprintf(_T("\t\tBuffer size (KB) %d\n"), pTraceProps->BufferSize);
 _tprintf(_T("\t\tFlush timer (seco
 _tprintf(_T("\t\tLogger name %s\n"), ByteOffset(pTraceProps,

pTraceProps->LoggerNameOffset));
printf(_T("\t\tLog file path %s\n"), ByteOffset(pTraceProps,
pTraceProps->LogFileNameOffset));

pTraceProps->MaximumFileSize);

printf(_T("\t\tProvider GUID %ls\n"),
CComBSTR(pTraceProps->Wnode.Guid));

calFree(pTraceProps);

Once again, the first task is to create an EVENT_TR
MakeTraceProperties ControlTrace
its configuration and statistics. The rest of the code sample merely prints the details of each member
of the structure. Here is the output:

Querying 'NT Kernel Logger'

 *Read-only properties
 Events lost 1680

 Log buffers lost 0
 Logger thread ID 2364
 Number of buffers 27
 Buffers written 112
 Provider ID 0
 Real-time buffers lost 0

 in a way that did not require a
race declaration:

aceHandle, LPCWSTR InstanceName,
ties, ULONG ControlCode);

actions specified by the
arameter. If the TRACEHANDLE is passed through the TraceHandle parameter, the

ULL. TraceHandle and InstanceName should not be
TRACEHANDLE vailable, then the session name must be specified

re

s are

 Trace flags 0
 Trace session handle 65535

*Read/Write properties

 Age limit (minutes) 15
 Buffer size (KB) 4
 Flush timer (seconds) 0
 Logger name NT Kernel Logger

 Log file path C:\MyEventTrace.etl
 Maximum buffers 26
 Maximum log file size (MB) 0

 Minimum buffers 4
006008A86939} Provider GUID {9E814AAD-3204-11D2-9A82-

 Trace log mode 513

The QueryEventTracing function used ControlTrace
TRACEHANDLE. To discuss this further, let's look at the ControlT

ULONG ControlTrace(TRACEHANDLE Tr
PEVENT_TRACE_PROPERTIES Proper

If a TRACEHANDLE is available, it should be used to perform one of the
ControlCode p
InstanceName parameter should be set to N
used at the same time. If a is not a
through the InstanceName parameter: This should be the same session name that was supplied in
the call to StartTrace. Note that using the session's name will cause ControlTrace to acqui
TRACEHANDLE internally, which will add a very small performance loss. Given that most of the time
this is a reasonably rare operation, it won't make a lot of difference because these function
highly efficient and super fast.

Regardless of the operation specified in ControlCode, the Properties parameter will always
return the most recent configuration and statistics for the session. The ControlCode can be only one
of the actions in Table 13.3.

Table 13.3. ControlCode Flags

ControlCode Flags Comment
EVENT_TRACE_CONTROL_QUERY Retrieves only session configuration and statistics.

ps the session.

ry, make the appropriate
alteration, and then update the session.

EVENT_TRACE_CONTROL_STOP Sto
EVENT_TRACE_CONTROL_UPDATE Updates the session's configuration.
EVENT_TRACE_CONTROL_FLUSH Flushes the session's active buffers. For Windows XP only.

To update or change a session's configuration, you should perform a que

Calling using the actionControlTrace EVENT_TRACE_CONTROL_QUERY [3] will query the current
trolTrace

si e the event
acer to flush the currently active buffer, use the EVENT_ TRACE_CONTROL_FLUSH action to call

 that QueryTrace, UpdateTrace, and FlushTrace have been superseded by ControlTrace.

t. The most
nger requires

mple
LE for a specific session can be

 // Setup the Event Tracing session properties

ACEHANDLE(pTraceProps->Wnode.HistoricalContext);

 structure has been created and initialized, the next step
ery for the session's configuration using

ough the Wnode.HistoricalContext
ce uses the newly acquired TRACEHANDLE and stops the

 action. can also be used to stop a

er
providers is slightly different. F e in the way the
NT Kernel Logger can. A GUID must be specified to reference the provider that must be started. In

art a session to report events for the Domain Name Service:
a7. Second, the provider

has to be enabled for it to start tracing events. Let's have a look:

statistics for a specific session. To update a session's operating parameters, call Con
ng the EVENT_TRACE_CONTROL_UPDATE action. Finally, to programmatically forcu

tr
ControlTrace.

[3] Note

Stopping the Session

When you decide that the session no longer needs to be active, you should stop i
common among a number of reasons for stopping a session is that the application no lo
a debug trace or that the real-time monitor application has been closed. The next code sa
demonstrates how to stop a session, as well as how the TRACEHAND
reacquired. Let's have a look:

void StopEventTracing()
{

 PEVENT_TRACE_PROPERTIES pTraceProps = MakeTraceProperties();

 // We can get the session handle by performing a query
 ULONG ulError = ControlTrace(NULL, _T("NT Kernel Logger"),
 pTraceProps,
 EVENT_TRACE_CONTROL_QUERY);

 // Get the session handle
 TRACEHANDLE hTraceSession =
 TR

 // Stop the session.
 ulError = ControlTrace(hTraceSession, NULL, pTraceProps,
 EVENT_TRACE_CONTROL_STOP);

 LocalFree(pTraceProps);
}

After the EVENT_TRACE_PROPERTIES
demonstrates how to reacquire the . First, quTRACEHANDLE
ntrolTrace and extract the TRACEHANDLE from it thrCo

member. The next call to ControlTra
session by using the EVENT_TRACE_CONTROL_STOP StopTrace
session; however, it has been superseded by ControlTrace.

Starting Event-Tracing Sessions

All of the code samples so far have demonstrated how to start, query, update, and stop the kernel
event-tracing session. Starting a kernel session is a special case and starting a session for oth

irst, other providers cannot be referenced by a nam

the following code sample, we shall st
Its provider's control GUID is 1540ff4c-3fd7-4bba-9938-1d1bf31573

void StartEventTracingProvider()
{
 // Guid for DNS provider {1540ff4c-3fd7-4bba-9938-1d1bf31573a7}
 GUID DNS_EVENTTRACER =
 { 0x1540ff4c, 0x3fd7, 0x4bba, {0x99, 0x38, 0x1d, 0x1b, 0xf3, 0x15,

 // S
 PEVE
 MakeTraceProperties(_T(""), _T("C:\\MyEventTraceProvider.etl"));

 file sequentially
 pTraceProps->LogFileMode |= EVENT_TRACE_FILE_MODE_SEQUENTIAL;

 // Start the session.
 TRACEHANDLE hTraceSession = 0;
 ULONG ulError = StartTrace(&hTraceSession, _T("My DNS Session"),
 pTraceProps);

 // Normal providers must be enabled to get events
 ulError = EnableTrace(TRUE, 0, 0, &DNS_EVENTTRACER, hTraceSession);

 LocalFree(pTraceProps);
}

ANDLE TraceHandle);

As we sh calling the provider's control function, which is
registere ent
tracer. Th g, and
EnableLevel parameters. All providers should interpret Enable as either TRUE (to start emitting
events) or FALSE (to stop emitting events). The EnableFlag parameter can specify the type of

d the session handle is passed
through

 on a
 of which 3 are reserved by the operating system,

 0x73, 0xa7 } };

etup the Event Tracing session properties
NT_TRACE_PROPERTIES pTraceProps =

 // Setup session to start the following event tracing provider
 pTraceProps->Wnode.Guid = DNS_EVENTTRACER;

 // This tells the Event Tracer to log to a

In the code sample, we have marked the differences between starting the NT Kernel Logger and
other providers in bold font. First, we declare the provider's control GUID (DNS_EVENTTRACER).
Next, we specify the control GUID in the Wnode.Guid member of the EVENT_TRACE_PROPERTIES
structure. Finally, we start the provider emitting the required events using EnableTrace. Let's have
a look at EnableTrace in more detail.

ULONG EnableTrace(ULONG Enable, ULONG EnableFlag, ULONG EnableLevel,
 LPCGUID ControlGuid, TRACEH

all discuss later, EnableTrace ends up
d when the provider initializes and registers its GUID with the operating system's ev
is ultimately means that the provider defines the interpretation Enable, EnableFla

events the provider should produce. This can be a similarly defined set of bit-mask flags such as
those used to enable the various event traces from the kernel. However, many providers may not
publish their enabled flags, so good providers should always treat a value of zero as meaning all
traces. The EnableLevel parameter is the detail level of the events produced by the provider. A
provider can define its detail level from 0 to 255, and the interpretation of this value is user defined.

The ControlGuid parameter specifies the provider's control GUID an
 the TraceHandle parameter.

Querying for Active Event-Tracing Sessions

From time to time, it is useful to determine the event-tracing sessions that currently are running
machine. A maximum of 32 sessions is allowed,

leaving
hav

 29 sessions available. To query for all active sessions requires a call to QueryAllTraces.
e a look:

Tracing session properties
MakeTraceProperties(_T(""), _T(""));

eOffset(parProps[nIndex], parProps[nIndex]->LoggerNameOffset),
eOffset(parProps[nIndex], parProps[nIndex]->LogFileNameOffset));

ple is to create an array of 32 EVENT_ TRACE_PROPERTIES
ieve all the configuration and statistics for all the sessions.
e number of sessions that are active: These are listed and

nd the log file path.

ACE_PROPERTIES *PropertyArray,
, PULONG LoggerCount);

IES structures that
tistics of each active session. The PropertyArrayCount is the

tails in

ac and EnableTrace do not

Let's

void QueryAllEventTraces()
{
 // Max 32 Event Tracing sessions

NT_TRACE_PROPERTIES parProps[MAX_TRACESESSIONS]; PEVE

 for (int nIndex = 0; nIndex < MAX_TRACESESSIONS; nIndex++)
 {
 // Setup the Event

rops[nIndex] = parP
 }

 ULONG ulNumOfTraceSessions = 0;
 ULONG ulRetVal = QueryAllTraces(parProps, MAX_TRACESESSIONS,
 &ulNumOfTraceSessions);

 _tprintf(_T("\nCurrently active sessions\n\n"));

 for (nIndex = 0; nIndex < ulNumOfTraceSessions; nIndex++)
 {
 // Display basic details

intf(_T("\t%s - %s\n"), _tpr
 Byt
 Byt
 }

 // Free memory
 for (nIndex = 0; nIndex < MAX_TRACESESSIONS; nIndex++)
 LocalFree(parProps[nIndex]);
}

The first task we perform in the code sam
structures. This is large enough to retr

eturns thThe call to QueryAllTraces r
output to the console. The only detail we display is the name of the session a
Here is an example output:

Currently active sessions

 NT Kernel Logger - C:\MyEventTrace.etl

The QueryAllTraces function is quite simple:

ULONG QueryAllTraces(PEVENT_TR
 ULONG PropertyArrayCount

The PropertyArray parameter is an array of pointers to EVENT_TRACE_PROPERT
will hold the configuration and sta
number of elements allocated in PropertyArray. Finally, the number of active session de
the properties array is returned by Count. Logger

Querying for Registered Event-Tracing Providers

When starting a session for an event-tracing provider, it is important to ensure that the provider
y is running before starting the session. Unfortunately, StartTrcurrentl

report an error if the provider is not running currently. This gives the impression that the session is
ity, it is not. However, sessions that have been started without the

 being loaded are valid, because when the provider loads and registers itself with the event
ill generate the

r with the
calls UnregisterTraceGuids to

 If you want to identify

le only under Windows XP and later). Let's have a look:

e higher

IES));

ed GUIDs\n\n"), ulGuidCount);
e\n"));
eLevel \tLoggerID\n"));

x = 0; nIndex < ulGuidCount; nIndex++)

,

vent"),
"),

bleLevel,

hrough a TRACE_ GUID_PROPERTIES
EnumerateTraceGuids TRACE_GUID_PROPERTIES

rs large enough to retrieve all the registration information. This becomes the first task in the
w examined. We made up a theoretical maximum of 128 registered elements

. However, this can be higher when more software uses the
EnumerateTraceGuids is called, the details of each registration are

utput to the console.

Let's examine the TRACE_GUID_PROPERTIES structure in detail:

running
rovider

 happily when, in real
p
tracer, the event tracer will attempt automatically to enable the provider so that it w

 to registerequired event traces. When a provider loads, it calls RegisterTraceGuids
operating system's event tracer. When a provider closes or exits, it
remove its control GUID from the event tracer's internal active GUID list.

 the provider you're starting is currently registered, you can call EnumerateTraceGuidswhether
vailab(a

void QueryRegisteredTraceGuids()
{

n b // Array for 128 registered GUIDs, although this ca
CE_GUID_PROPERTIES parProps[MAX_TRACEGUIDS]; PTRA

 for (int nIndex = 0; nIndex < MAX_TRACEGUIDS; nIndex++)
 {
 // Setup the registered GUID properties

nterpret_cast<PTRACE_GUID_PROPERTIES>(parProps[nIndex] = rei
 LocalAlloc(LPTR, sizeof(TRACE_GUID_PROPERTIES)));

 ZeroMemory(parProps[nIndex], sizeof(TRACE_GUID_PROPERT
 }

 // Get list of registered GUIDs

ulGuidCount = 0; ULONG
 ULONG ulError = EnumerateTraceGuids(parProps, MAX_TRACEGUIDS,
 &ulGuidCount);
 _tprintf(_T("\n%d Currently register
 _tprintf(_T("\t< GUID > \tGuid Typ
 _tprintf(_T("\t\tIsEnabled \tEnableFlags \tEnabl
 _tprintf(_T("\n\t———————————————-\n\n"));

 for (nInde
 {

 Display details //
 _tprintf(_T("\t%ls \t%s \n\t\t%s \t\t%d \t\t%d \t\t%d\n\n")

CComBSTR(parProps[nIndex]->Guid),
 parProps[nIndex]->GuidType == 0 ? _T("Provider") : _T("E

rProps[nIndex]->IsEnable == 1 ? _T("True") : _T("False pa
 parProps[nIndex]->EnableFlags, parProps[nIndex]->Ena

ggerId); parProps[nIndex]->Lo
 }

 // Free memory
 for (nIndex = 0; nIndex < MAX_TRACEGUIDS; nIndex++)
 LocalFree(parProps[nIndex]);
}

Details of each registered provider or event class are supplied t
. The function requires an array of structure

pointe
code sample we just no
(identified through MAX_ TRACEGUIDS)

-tracing system. After event
o

typedef struct _TRACE_GUID_PROPERTIES {
 GUID Guid;
 ULONG GuidType;
 ULONG LoggerId;
 ULONG EnableLevel;
 ULONG EnableFlags;
 BOOLEAN IsEnable;
} TRACE_GUID_PROPERTIES, *PTRACE_GUID_PROPERTIES;

The Guid member contains the event-tracing GUID registration referenced by GuidType. Currently,
the event-tracing system supports two types of GUID registrations: providers and events. If the

in Windows XP does not provide the event
class re

current state
el, EnableFlags, and IsEnable members. The

aceGuids

 ————————————————————————————————————

0
 0 3

vider
 False 0 0 0

ULONG EnumerateTraceGuids(PTRACE_GUID_PROPERTIES *GuidPropertiesArray,
 ULONG PropertyArrayCount, PULONG GuidCount);

GuidType member contains 0, then the registration details (LoggerId, EnableLevel, EnableFlags,
and IsEnable) are for a provider. If GuidType contains 1, it identifies an event class registration.
Unfortunately, the current event-tracing implementation

gistrations.

The LoggerId member contains the thread identifier of the event-tracing session. The
of each provider is supplied through EnableLev
LoggerId member is valid only if IsEnable is TRUE.

Executing the QueryRegisteredTr function produces the following output:

22 Currently registered GUIDs

 < GUID > Guid Type
 IsEnabled EnableFlags EnableLevel LoggerID

 ————————————————

0A80EF5B} Provider {8D316658-850B-4A3E-B79D-0F3
 True 0

 {196E57D9-49C0-4B3B-AC3A-A8A93ADA1938} Provider

 0 0 0 False

 .. .

 {1B1D4FF4-F27B-4C99-8BD7-DA8F1A74051A} Provider
 True 0 0 2

 {F33959B4-DBEC-11D2-895B-00C04F79AB69} Pro

 {58DB8E03-0537-45CB-B29B-597F6CBEBBFD} Provider
 False 0 0 0

Although we have shortened the above output, it does show that two providers are involved in
event-tracing sessions and that the rest of the registrations are not enabled for any event-tracing
sessions.

Calling the EnumerateTraceGuids function is quite simple:

The GuidPropertiesArray parameter is an array of pointers to TRACE_GUID_PROPERTIES
structures that will hold the provider and event registration details. The PropertyArrayCount is the
number of elements allocated in . Finally, the number of registered provider

R_MORE_DATA and a larger array should be allocated. Note
 provider are not listed in the GuidPropertiesArray out-

ause the kernel provider is a special case with a reserved session, named "NT

for only eight providers have been

GuidPropertiesArray
and event GUIDs is returned by GuidCount. If the supplied array is too small,
EnumerateTraceGuids will return ERRO

at the registration details for the kernelth
parameter. This is bec
Kernel Logger".

Out of the 22 event-tracing providers in Windows XP, details
published (check Table 13.4).

Table 13.4. Published Event-Tracing Providers

{1540FF4C-3FD7-4BBA-9938- Domain Name Service (DNS)

{94A984EF-F525-4BF1-BE3C- Windows Print Spooler

{F33959B4-DBEC-11D2-895B- Active Directory—Net Log-on

{C92CF544-91B3-4DC0-8E11- NTLM Security Protocol

ration and Power Interface

So far we've discussed starting kernel and normal sessions. The differences between these types of
s

ng events. There is another
evaluate

mps the
eadId

artTrace

Event-tracing Provider GUID Comment
{9e814aad-3204-11d2-9a82-
006008a86939}

NT Kernel Logger

1D1BF31573A7}

EF374056A592}

00C04F79AB69}

{CC85922F-DB41-11D2-9244-
006008269001}

Local Security Authority

C580339A0BF8}

{BBA3ADD2-C229-4CDB-AE2B-
57EB6966B0C4}

Active Directory—Kerberos

{DAB01D4D-2D48-477D-B1C3-
DAAD0CE6F06B}

Advanced Configu
(ACPI)

Starting Private Event-Tracing Sessions

sessions are quite small. The only real difference is that normal sessions require the provider'
aticontrol GUID and an additional call to EnableTrace to start gener

way to initiate a normal session: a private session. Before we delve into this, let's re
StartTrace.

Whether for a kernel or a normal session, StartTrace sets up a thread that manages and du
gerThrsession's buffers either to a log file or to a real-time monitoring application. The Log

member of the EVENT_TRACE_PROPERTIES structure contains the thread identifier that St
sets up. Figure 13.3 shows this.

Figure 13.3. Starting a kernel or normal session

The advantage of this solution is that a provider publishes the events only once but several sessio
can be receiving the events in their buffers. Not only can the events be logged to a file, bu
session also can be monitoring the same event trace actively at the same time. The disadvantages
include that only a maximum of 32 sessions can be active at one time and that the sessions ha
pass through a kernel mode to a user-mode transition. The transition occurs when the user-mode
provider delivers the event to the kernel, which is then delivered to the user-mode session thread
To overcome these disadvantages, an event-tracing controller can initiate a

ns
t another

ve to

.

ent

e
ed with any real-time delivery. Further, events generated by

a private session do not in on times in the event detail. If you can live with these

private session.

A private event-tracing session is a user-mode session that runs in the same process as its ev
trace provider. Private event-tracing sessions are less expensive because they avoid kernel mode to
user mode transitions. However, they come with other limitations. A private session can record
events only for the threads of the process in which it is running. There can be only one privat
session per process, and it cannot be us

clude executi
limitations, then it is possible to have more than 32 actively executing sessions. The diagram in
Figure 13.4 shows a private session.

Figure 13.4. Starting a private session

The difference in starting a private event-tracing session is that you specify the
le

),
 pTraceProps);

T ;

e

QueryAllTraces

Developing an Event-Tracing Provider

EVENT_TRACE_PRIVATE_LOGGER_MODE flag and ensure that it is accompanied with one of the fi
logging options. The following code demonstrates:

// Setup the Event Tracing session properties
PEVENT_TRACE_PROPERTIES pTraceProps =
 MakeTraceProperties(_T(""), _T("C:\\MyPrivateEventTrace.etl"));

pTraceProps->Wnode.Guid = DNS_EVENTTRACER;

// This tells the Event Tracer to setup a private session and output
// logging to a file (sequentially)
pTraceProps->LogFileMode |= EVENT_TRACE_PRIVATE_LOGGER_MODE |
 EVENT_TRACE_FILE_MODE_SEQUENTIAL;

// Start the private session.
TRACEHANDLE hTraceSession = 0;
ULONG ulError = StartTrace(&hTraceSession, _T("My Private DNS Session"

RACER, hTraceSession)ulError = EnableTrace(TRUE, 0, 0, &DNS_EVENT

When the private session's log file is created, the process's identifier is appended to the supplied fil
path. The file path in the code sample, when created, will look something like
C:\\MyPrivateEventTrace.etl_3788.

Another perceived disadvantage is that cannot be used to find which private
event-tracing sessions are currently active. However, calling EnumerateTraceGuids will identify
whether the provider currently is in a session.

Before we cover analyzing event trace log files, it is important to know how the in
exposed from the provider. This will help you more easily to understand how to in

formation is
terpret the events.

.

er is to define the
ication, we shall

between floors 0 to 9 and once in a while
ent this problem

 when the lift is going up
wn

When developing your own applications or components, seriously consider exposing event traces.
Integrating the event-tracing technology into your applications is not hard. Some useful C++
templates accompany this book. As each application and component is instrumented with events
traces, debugging problems will take you to new levels of analysis. You don't have to instrument all
of your applications at once, but as each new component is developed, integrate the event-tracing
technology even if you have to coexist with other debugging mechanisms that might already be
employed for your project. Over time, you'll be able to better analyze problems with other
subsystems for which you have no control, such as the kernel and the Windows XP security
subsystems

The first step in making an application or component an event-tracing provid
vents (schema) that you want to trace. To discuss how to instrument an apple

develop a very simple lift simulator. The lift will travel
will complain about having some fault. Three event classes are involved to instrum
domain briefly:

1. An event to describe
2. An event to describe when the lift is going do
3. An event to expose the nature of the fault

The screen shot in Figure 13.5 shows the lift simulator provider in action .[4] You can ea
hen the lift starts to go down, it is marked with a start event. Also, its event details provide m

sily see that
ore

 where it is going. After the lift has started to travel (that is, when it is

t
uch

 to
nt type

 when the lift stops,
ctures even though

t, stop, and checkpoint are standard event types; a few others
all discuss the standard event types later in the chapter.

ntrol event-tracing sessions. It

trace

w
detail of where the lift is and
in progress), checkpoint events mark when it passes each floor. Notice that the event is still
classified as a LiftDown event class; however, its event details are different from the start event.
This is because the interpretation of the event details is not only dependent on the event class bu
also on the version of the event and the event type. The flexibility of an event type allows m
more freedom to add new tracing to an already existing event class because all that is required is
define a new event type and its associated details structure. If the details of an existing eve
change, you should update the event version for the whole event class. Finally,
it is marked with a stop event. The start and stop events use identical detail stru
they use different event types. The star
lso are defined in evntrace.h. We sha

[4] The screen shot is taken from an application that Gwyn Cole developed to analyze event traces and co
can be found on the Web site that accompanies this book.

Figure 13.5. Lift Simulator event

Defining the Event Class Schema

All events use a standard structure called EVENT_TRACE_HEADER that describes common deta
every event. However, for most applications, an event without user-defined detail doesn't provi
any real benefit. Fortunately, each event can have its own customized data tagged on at the end of
the

ils for
de

p event

ll that is left is to tag the structure to the end of the

tructure is defined separately is to make it easier to reuse and cast the event
t-tracing consumer (covered later). The checkpoint

typedef struct tagLIFTSIM_MOVINGFLOOR

EVENT_TRACE_HEADER structure. Defining your own schema thus simply becomes a task to
define some structures. Let's start with the structure that describes the detail for start and sto
types.

typedef struct tagLIFTSIM_UP_DOWN
{
 LONG lFromFloor;
 LONG lToFloor;
} *PLIFTSIM_UP_DOWN, LIFTSIM_UP_DOWN;

It is as simple as that! A LIFTSIM_UP_DOWN
EVENT_TRACE_HEADER structure, like this:

typedef struct tagEVENT_LIFTSIM_UP_DOWN
{
 EVENT_TRACE_HEADER Header;
 LIFTSIM_UP_DOWN Data;
} *PEVENT_LIFTSIM_UP_DOWN, EVENT_LIFTSIM_UP_DOWN;

We've now defined an event that can be used in our event-tracing provider. However, this is only
for two of the three event types in our event class schema: start and stop. The reason that the
LIFTSIM_UP_DOWN s
details when performing analysis in an even
event type has a different structure. Here is its definition:

{
 LONG lCurrentFloor;
} *PLIFTSIM_MOVINGFLOOR, LIFTSIM_MOVINGFLOOR;

typedef struct tagEVENT_LIFTSIM_MOVINGFLOOR
{
 EVENT_TRACE_HEADER Header;
 LIFTSIM_MOVINGFLOOR Data;
} *PEVENT_LIFTSIM_MOVINGFLOOR, EVENT_LIFTSIM_MOVINGFLOOR;

Before gister the application as an event-tracing
provide
event-t vent tracer
commu tion's control GUID. Note that you would
generat

// {8D316659-850B-4a3e-B79D-0F300A80EF5B}

// {2205BB0B-75C8-4f78-A8C

8, 0x4f78, {0xa8, 8, 0x4c, 0xa4, 0x37, 0x77,

// {2205BB0C-75C8-4f78-A8C5-984CA437
static const GUID LIFTSIM_DOWN =
{0x2205bb0c, 0x75c8, 0x4f78, {0xa8, 0xc5, 0x98, 0x4c, 0xa4, 0x37, 0x77,
0x82}};

f78-A8C5-984CA437
IFTSIM_JAMMED =

{0x2205bb0d, 0x75c8, 0x4f78, {0xa8, 0xc5, 0x98, 0x4c, 0xa4, 0x37, 0x77,

Registering an Application as an E

on, its implementation is an excellent example for
m ters

itself as an event-tracing provider and goes o instruction to generate its events:

extern "C" int _tmain()

riables
 g_hProvider = 0;

 // Include event class registration GUIDs
 TRACE_GUID_REGISTRATION tgrEventClasses[3];

 we can use these structures, we shall need to re
r, which requires both the registration of the provider and its supported event classes. All

racing providers have a control GUID because this is how the operating system's e
nicates with the provider. Here is this applica
e a new GUID for your application or component.

static const GUID PROVGUID_LIFTSIM =
{0x8d316659, 0x850b, 0x4a3e, {0xb7, 0x9d, 0xf, 0x30, 0xa, 0x80, 0xef,
0x5b}};

Next, the GUIDs to uniquely identify events also must be defined. Every event class that you wish
to define must have its own GUID. Here are the GUID declarations for the , , LiftUp LiftDown and
LiftJammed classes:

5-984CA4377782}
static const GUID LIFTSIM_UP =
{0x2205bb0b, 0x75c 0xc5, 0x9
0x82}};

7782}

// {2205BB0D-75C8-4
static const GUID L

7782}

0x82}};

vent-Tracing Provider

Because the lift simulator is a simple applicati
visualizing what is required to register and e it events. Here is the main function, which regis

n to wait for the

{
 // Initialise global va

 g_dwEnableLevel = 0;
 g_dwEnableFlags = 0;
 g_bTracerActive = false;

 g_lCurrentFloor = 0;

 ZeroMemory(tgrEventClasses, sizeof(tgrEventClasses));

 // The three event classes this prov der supports i

acerActive)

 off by initializing some global variables. The global variables will be set
ntrol call-back function, ControlCallback. The g_hProvider variable stores

ACEHANDLE. Access to the provider's TRACEHANDLE is required if the application
 events. The g_dwEnableLevel and g_dwEnableFlags variables allow other code

ce. The g_bTracerActive variable
 events. The g_lCurrentFloor variable

t floor that the simulator is on.

is

GUID_REGISTRATION structure:

typedef struct _TR
 LPCGUID Guid; // Guid of data block being registered or updated.
 HANDLE RegHandle; // Guid Registration Handle is returned.
} TRACE_GUID_REGISTRATION, *PTRACE_GUID_REGISTRATION;

Before passing the structure to RegisterTraceGuids, the Guid member must be set. All event
classes are referenced by a GUID; thus, no other details about the class are required. When
RegisterTraceGuids returns, it populates the RegHandle member with a handle that can be used

 tgrEventClasses[0].Guid = &LIFTSIM_UP;
 tgrEventClasses[1].Guid = &LIFTSIM_DOWN;
 tgrEventClasses[2].Guid = &LIFTSIM_JAMMED;

 // Register this application as an event-tracing provider
 TRACEHANDLE hRegProvider = 0;
 ULONG ulReg = RegisterTraceGuids(ControlCallback, NULL,
 (LPCGUID)&PROVGUID_LIFTSIM, 3, tgrEventClasses,
 NULL, NULL, &hRegProvider);

 while (<some condition >)
 {
 if (g_bTr
 {
 // Emit the lift simulated events
 ProvideEvents();
 }
 }

 // We're finished, remove this as an event-tracing provider from the
 // OS event tracer's internal registered provider list
 ulReg = UnregisterTraceGuids(hRegProvider);

 return 0;
}

The main function starts
by the provider's co
the provider's TR
wants to produce
in the application to determine what events it should produ

ot the application starts generatingdetermines whether or n
renkeeps track of the cur

As briefly mentioned, the provider registration also must include the event classes for which it will
be generating events. This is specified through an array of TRACE_ GUID_REGISTRATION structures.
Each element in the array represents a single event class. This, together with the applications path
and the control call-back function, must be supplied to RegisterTraceGuids. After the call to
RegisterTraceGuids, the application awaits the instruction to start producing events from an
event-tracing controller (that is, through StartTrace and EnableTrace). When the application
closes, it must call UnregisterTraceGuids to inform the operating system's event tracer that it
going away and will no longer be a registered provider.

Let's take a closer look at the TRACE_

ACE_GUID_REGISTRATION {

for calls to CreateTraceInstanceId and TraceEventInstance. These event-tracing calls are for
producing hierarchical events (covered later).

Without calling RegisterTraceGuids, an application cannot become an event-tracing provider, so
let's look at this function in more detail:

ULONG RegisterTraceGuids(WMIDPREQUEST RequestAddress, PVOID
RequestContext,
 LPCGUID ControlGuid, ULONG GuidCount,
 PTRACE_GUID_REGISTRATION TraceGuidReg, LPCSTR MofImagePath,
 LPCSTR MofResourceName, PTRACEHANDLE RegistrationHandle);

For the operating system's event tracer to communicate with the provider, the provider must supply
a call-back function through RequestAddress. This primarily will be called from the event tracer
but usually will be triggered as a result of an event-tracing controller calling EnableTrace. The

he provider's GUID is passed through the ControlGuid parameter and the number of event class
registrations referenced by GuidCount is passed in the TraceGuidReg array. The definition of event

ocumented in the WMI repository under the EventTrace class in the root\WMI
rovider wants to document or publish the structure of its event classes, then the

plied

LE

's have

vel(g_hProvider);

RequestContext parameter is a user-defined value that will get passed to the RequestAddress
function. In a C++ application, this parameter could be the address of a C++ object or some other
user-defined cookie value.

T

classes is usually d
namespace. If the p
MofImagePath parameter should contain the path of the executable or DLL that contains a
Windows resource of the compiled binary MOF file. The actual reference to the resource is sup
by MofResourceName. Both MofImagePath and MofResourceName can be NULL if the provider
wants keep the structure of the event classes private.

Upon a successful provider registration, RegisterTraceGuids will return a TRACEHAND
referenced by RegistrationHandle that will be used later when the provider unregisters itself. The
RegistrationHandle is valid only in a call to UnregisterTraceGuids. The
UnregisterTraceGuids function is very straightforward:

ULONG UnregisterTraceGuids(TRACEHANDLE RegistrationHandle);

Developing the Provider's Control Call-Back Function

Apart from registering the application as an event-tracing provider, the next most important
development task is to code the provider's control call-back function. As already mentioned, this is
the primary communication between the operating system's event tracer and the provider. Let
a look at the implementation for the lift simulator:

ULONG __stdcall ControlCallback(WMIDPREQUESTCODE RequestCode,
 PVOID Context, ULONG *reserved, PVOID Buffer)
{
 ULONG ulStatus = ERROR_SUCCESS;

 switch (RequestCode)
 {
 case WMI_ENABLE_EVENTS:
 {
 g_hProvider = GetTraceLoggerHandle(Buffer);
 g_dwEnableLevel = GetTraceEnableLe
 g_dwEnableFlags = GetTraceEnableFlags(g_hProvider);

 g_bTracerActive = true;

 break;
 }
 case WMI_DISABLE_EVENTS:
 {

 g_bTracerActive

 break;
 }

 {

 }
 }
 retu
}

As you is either
WMI
WMI_DI to the provider
to inter

For the re passed to
Enable eve a valid
TRACEH
events an be
obtaine
GetTra he
GetTra

The Co l to
Regist

Pro

Finally, we shall generate some events. Generating events is very simple. All that is required is to
create and initialize the appropriate event structure (defined earlier) and pass it to TraceEvent. The
TraceEvent function passes the event to the kernel's event tracer, which ultimately delivers it to the

ether the

 g_hProvider = 0;
 g_dwEnableLevel = 0;
 g_dwEnableFlags = 0;

 = false;

 default:

ulStatus = ERROR_INVALID_PARAMETER;

rn ulStatus;

 can see, it is simple. The event tracer calls this function and the RequestCode
_ENABLE_EVENTS, to inform the provider that it should start emitting events, or

SABLE_EVENTS p
pret what is meant by being enabled and disabled.

, to tell it to stop emitting events. However, it is ultimately u

 application to determine which tracing flags and which tracing-level values we
Trace, the control call-back function must call GetTraceLoggerHandle to retri
ANDLE TRACEHANDLE r wants to produce
in calls to

. Retrieval of the also is necessary if the provide
TraceEvent (to be discussed in more detail). The event-tracing flags c

d with a call to and the tracing level with a call to GetTraceEnableFlags
ceEnableLevel. The Buffer parameter is exclusively for use by t

 call. ceLoggerHandle

ntext parameter is a user-defined cookie value that previously was supplied in a cal
erTraceGuids.

ducing an Event Trace

session's active buffer. Before a provider calls TraceEvent, it should recognize wh
provider has been enabled to generate events.

Before integrating TraceEvent into your application, you should have a clear understanding of the
sequence of events and their event types that need to be generated. The diagram in Figure 13.6
describes the schema that will be instrumented.

Figure 13.6. Event-trace schema for Lift Simulator

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/?xmlid=0-201-61613-0/ch07#ch07

The diagram attempts to highlight that an event class can have many versions and that each version
has a set of supported event types. However, for the lift simulator, there is only one version, version
zero. Whenever the lift goes up, it will start with an EVENT_TRACE_TYPE_START event followed by
several (if necessary) checkpoint events of type EVENT_TRACE_TYPE_CHECKPOINT. Finally, when
the lift stops at the desired floor, the entire LiftUp operation will end with an
EVENT_TRACE_TYPE_END event. Although specific event types could have been defined, it would
not make reasonable sense to define them because the standard event types describe the LiftUp

LONG lStartFloor = g_lCurrentFloor;
LONG lEndFloor = rand()

// Make sure the final destination floor is greater than the floor we are
// currently on.

 // We are at either the starting floor or the ending floor
 EVENT_LIFTSIM_UP_D
 Event.Header.Size = sizeof(EVENT_LIFTSIM_UP_DOWN);
 Event.Header.Guid = LIFTSIM_UP;
 Event.Header.Flags = WNODE_FLAG_TRACED_GUID;

operation perfectly. The structures described in the diagram's event types are not exactly the same
as those defined for the provider; however, the binary memory representation is the same and makes
for easier visualization of the event structure. Let's look at a portion of the lift simulator code to see
how it produces some of the events. The following portion is from the up operation:

 % 10;

while (lEndFloor <= lStartFloor)
 lEndFloor = rand() % 10;

// Move floors
for (LONG lFloor = lStartFloor; lFloor <= lEndFloor; lFloor++)
{
 if (lFloor == lStartFloor || lFloor == lEndFloor)
 {

OWN Event = {0};

 if (lFloor == lStartFloor)
 Event.Header.Class.Type = EVENT_TRACE_TYPE_START;
 else
 Event.Header.Class.Type = EVENT_TRACE_TYPE_END;

 Event.Data.lFromFloor = lStartFloor;
 Event.Data.lToFloor = lEndFloor;
 // Generate the event

OOR);

r;

 // Generat
 ulError = TraceEvent(g_hProvider, (PEVENT_TRACE_HEADER)&Event);
 }

Pay special attention to th sing two different event
structures for the LiftUp operation (EVENT_LIFTSIM_UP_DOWN and EVENT_
LIFTSIM_MOVINGFLOOR), the Event.Header.Guid member contains the LiftUp operation's GUID
that defines the events as being from the same event class. The Event. Header.Class.Type
member contains the event type information. This, combined with the event class and the version,
allows a consumer to properly interpret the data structure attached to the event during analysis.
Finally, the event is generated from a call to TraceEvent. Notice, however, that it must have access
to the provider's TRACEHANDLE (obtained during the control call-back function).

Let's move on to examine the EVENT_TRACE_HEADER structure. This structure is used for all event

 ulError = TraceEvent(g_hProvider, (PEVENT_TRACE_HEADER)&Event);
 }
 else
 {

 // We are moving between floors
 EVENT_LIFTSIM_MOVINGFLOOR Event = {0};

GFL Event.Header.Size = sizeof(EVENT_LIFTSIM_MOVIN
 Event.Header.Guid = LIFTSIM_UP;
 Event.Header.Flags = WNODE_FLAG_TRACED_GUID;

 Event.Header.Class.Type = EVENT_TRACE_TYPE_CHECKPOINT;
 Event.Data.lCurrentFloor = lFloo

e the event

 // Takes time to move between floors
 Sleep(rand() % 250);
}

// New floor
g_lCurrentFloor = lEndFloor;

e items in bold font. Notice that although we are u

generation via TraceEvent. It also represents all the detail that is common to all generated events.

typedef struct _EVENT_TRACE_HEADER { // overlays WNODE_HEADER
 USHORT Size; // Size of entire record
 union {
 USHORT FieldTypeFlags; // Indicates valid fields
 struct {
 UCHAR HeaderType; // Header type—internal use only
 UCHAR MarkerFlags; // Marker—internal use only
 };
 };
 union {
 ULONG Version;
 struct {
 UCHAR Type; // event type

 UCHAR
 USHORT Version; // version of trace record
 } Class;
 };
 ULONG ThreadId; // Thread Id
 ULO
 LARGE_INTEGER TimeStamp; // time when event happens
 union {
 GUID Guid; // Guid that identifies event
 ULONGLONG GuidPtr; // use with WNODE_FLAG_USE_GUID_PTR
 };
 union {
 struct {
 ULONG ClientContext; // Reserved
 ULONG Flags; // Flags for header
 };

ENT_TRACE_HEADER, *PEVENT_TRACE_HEADER;

The structure
and all the space required by all the event's custom fields.

g
ass.Version member and the level

of the event can be ass nt
type, which i wn event
types: These must be greater than 0x09. Table 13

 Level; // trace instrumentation level

NG ProcessId; // Process Id

 struct {
 ULONG KernelTime; // Kernel Mode CPU ticks
 ULONG UserTime; // User mode CPU ticks
 };
 ULONG64 ProcessorTime; // Processor Clock
 };
} EV

 starts off by wanting the Size, which includes the EVENT_TRACE_HEADER structure

The most important information for clearly stating the class, version, and type of the event starts
with completing the Guid member. This contains the event class's GUID. If you want to avoid a
GUID assignment, then a pointer to a GUID can be referenced instead. To do this requires setting
up GuidPtr and updating the Flags member with WNODE_FLAG_USE_GUID_PTR. We prefer the
GUID assignment to the Guid member because it is less difficult to identify the class durin
analysis. The version of the event can be updated through the Cl

igned to Class.Level. To complete the event identification requires an eve
s assigned to Class.Type. As already mentioned, a provider can define its o

.5 describes the standard event types.

Table 13.5. Standard Event Types

ltistep event.
EVENT_TRACE_TYPE_END ultistep event.
EVENT_TRACE_TYPE_DC_START Collection start event. This is used by the NT Kernel Logger to

EVENT_TR

Class.Type Flags Comment
EVENT_TRACE_TYPE_INFO Informational event. This is the default event type.
EVENT_TRACE_TYPE_START Start event. Use to trace the initial state of a mu

End event. Use to trace the final state of a m

state which threads and processes have been set up for event-
tracing data collection.

In other applications, this could be used to state which
resources/devices/operations are set up for generating event
traces.

ACE_TYPE_DC_END Collection end event

Table 13.5. Standard Event Types

Class.Type Flags Comment

Check EVENT_TRACE_TYPE_DC_START for more details.

vent. Use when an application that requests resources

to mark the time
when work on the item actually begins. Use

n the
item completes.

or

the

EVENT_TRACE_TYPE_EXTENSION Extension event. Use for an event that is a continuation of a
previous event. For example, use the extension event type when
an event trace records more data than can fit in a session buffer.

EVENT_TRACE_TYPE_REPLY Reply e
can receive multiple responses. For example, if a client
application requests a URL, and the Web server reply is to send
several files, each file received can be marked as a reply event.

EVENT_TRACE_TYPE_DEQUEUE Dequeue event. Use when an activity is queued before it begins.
Use EVENT_TRACE_TYPE_START to mark the time when a work
item is queued. Use the dequeue event type

EVENT_TRACE_TYPE_END to mark the time when work o

EVENT_TRACE_TYPE_CHECKPOINT Checkpoint event. Use this for an event that is not at the start
end of an activity.

The kernel defines a number of its own event types: Examine the evntrace.h for more detail.

Some of the fields are not for public use and are used by the event tracer internally. However,
FieldTypeFlags member provides additional information about which members of the structure
are valid (Table 13.6). Note that TraceEvent and the event tracer will update specific members of
the structure, TimeStamp, for example. Be aware that any flags set in FieldTypeFlags may be
altered.

Table 13.6. FieldTypeFlags Flags

FieldTypeFlags

EVENT_TRACE_USE_NOCPUTIME The KernelTime, UserTime, and ProcessorTime members are not
used.

EVENT_TRACE_USE_PROCTIME The ProcessorTime member is valid.

The ThreadId and ProcessId members contain the thread and process identifiers that generated
the event. The TimeStamp member is the exact time the event was generated. The ThreadId,
ProcessId, and TimeStamp members are completed by TraceEvent.

The Flags member contains information about the event structure. It is important that this member
be initialized with WNODE_FLAG_TRACED_GUID. This flag, effectively, says that this structure
contains event-tracing information. In addition, the Flags member can contain a combination of
bit-mask values shown in Table 13.7

 Values Comment

.

Flags

Table 13.7. Flags Bit-Mask Values

 Values Comment

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#app01fig13

Table 13.7. Flags Bit-Mask Values

Flags Values Comment
WNODE_FLAG_USE_GUID_PTR Use this to indicate that the event class is referenced by a pointer to

the GUID. If t

his is the case, the GuidPtr member must contain a

WNODE_FLAG_USE_MOF_PTR The event data append
MOF_FIELD structures.

Note that this is not commonly used. Specifying the event's custom
data like this has a limitation of only 16 MOF_FIELD structures. The

typedef struct _MOF_FIELD {

alues.

The TraceEvent fu

ULONG TraceEvent(TRACEHANDLE TraceHandle, PEVENT_TRACE_HEADER EventTrace);

ernel-mode device drivers can also generate events and, interestingly, they register themselves
te events

 Hierarchical Event Trace

at

n

valid pointer to a GUID.

ed to this structure is stored in an array of

structure looks like this:

 ULONG64 DataPtr; // Pointer to data
 ULONG Length; // Length of MOF field
 ULONG DataType; // Type of data
} MOF_FIELD, *PMOF_FIELD;

The DataType member has no documented values. However, it seems
sensible to use the WMI CIMTYPE enumeration v

The KernelTime member contains the elapsed execution time for kernel mode instructions and the
UserTime member contains the elapsed execution time in user mode. A private event-tracing
session uses the ProcessorTime member and does not use the KernelTime and UserTime
members.

nction is quite simple:

The provider's TRACEHANDLE that was obtained in the control call-back function must be passed in
TraceHandle. The event structure containing any custom fields must be passed into EventTrace.

K
with the operating system's event tracer using IoWMIRegistrationControl and genera
with IoWMIWriteEvent.

Producing a

Event tracing also includes the ability to group events hierarchically. Generating events with
TraceEvent produces a stream of events that have no association with other events. However, as
you saw earlier in the chapter, we used the event-type field to help in distinguishing a flat series of
events to either track an operation or to monitor a resource. Additionally, a cookie or a handle th
can specifically reference a particular operation or object could also be included with the event's
custom fields. This can help as well in associating a large number of events to a specific operatio
or resource. Event tracing with TraceEvent is the most common approach because it makes
analyzing several event-tracing log files in which the event time order will interleave events from
different sources easier. That said, grouping events in a way that makes it easier to associate one
event from another can't be ignored.

One such example is in the lift simulator described earlier. It has three classes of events: LiftUp,
wn, and LiftJammed. Both LiftUp and LiftDown attempt to group events by monitoring the

lift's progress with start and end events. If the lift travels more than one floor, several checkpoint
events in between the start and s of the operation. The
checkpoint and end events in reality are associated with the start of the lift's movement. The
LiftJammed event can't be associated with any other event, so this would remain as a normal traced
event. The diagram in Figure 13.7

LiftDo

end events help in tracking the progres

 shows how the lift simulator might look if it used hierarchical
events as opposed to a flat series of events. An event trace can contain a mix of both types of
events.

Figure 13.7. Flat versus hierarchical event trace

All events generated by TraceEvent simply are called events. In generating hierarchical events,

Let's review some of the event-tracing provider
wishes to expose mu ray of
TRACE_GUID_REGISTRATION structures that register the GUIDs of the event classes stored in the

tgrEventClasses[3];

].Guid = &LIFTSIM_JAMMED;

rTraceGuids((WMIDPREQUEST)ControlCallback, NULL,
LIFTSIM, 3, tgrEventClasses,
h, NULL, &hRegProvider);

ilar, but not quite the same, are the provider's event structures. For TraceEvent, the event
structures begins with EVENT_TRACE_HEADER. For hierarchical event tracing, the event structure

each event is called an event instance so that all child event instances can be associated with the
correct parent event instance.

registration. All the event classes that a provider
st be registered with RegisterTraceGuids. This takes an ar

Guid member. If RegisterTraceGuids is successful, it returns a handle for each class in the
RegHandle member of the TRACE_GUID_REGISTRATION structures. Without access to the
RegHandle, it is impossible to generate hierarchical event traces. Here is the registration code:

TRACE_GUID_REGISTRATION
tgrEventClasses[0].Guid = &LIFTSIM_UP;

.Guid = &LIFTSIM_DOWN; tgrEventClasses[1]
tgrEventClasses[2

ACEHANDLE hRegProvider = 0; TR

ULONG ulReg = Registe
(LPCGUID)&PROVGUID_

 (LPCTSTR)szModulePat

Sim

must begin with EVENT_INSTANCE_HEADER and also is followed by optional custom fields. Here is
an example:

typedef struct tagEVENTINST_LIFTSIM_UP_DOWN
{
 EVENT_INSTANCE_HEADER Header;
 LIFTSIM_UP_DOWN Data;
} *PEVENTINST_LIFTSIM_UP_DOWN, EVENTINST_LIFTSIM_UP_DOWN;

As you've already seen, generating flat events is straightforward: You need only complete the event
structure and pass it to TraceEvent. Generating hierarchical events requires an instance identifier to
be created before the event structure can be completed. The instance identifier makes it possible
uniquely to identify a specific operation. When analyzing hierarchical event traces, the instance
identifier allows you to associate child and parent event instances correctly. Create a unique
instance identifier for an event instance by calling CreateTraceInstanceId, like this:

EVENT_INSTANCE_INFO UpEvtInst = {0};
 ulError = CreateTraceInstanceId(tgrEventClasses[0].RegHandle,
 &UpEvtInst);

It is important to note from this example that the first parameter uses the event class registration
handle returned by RegisterTraceGuids. Here is the prototype of the CreateTraceInstanceId
function:

ULONG CreateTraceInstanceId(HANDLE RegHandle,

s

EVENT_ INSTANCE_HEADER structure. The instance
identifier
structure:

STANCE_INFO;

The RegHandle p same as the
one supplied in the first parameter to CreateTraceInstanceId. The unique event instance
identifier is placed in the InstanceId member.

Let's look at a code sample that generates an instance event.

EVENTINST_LIFTSIM_UP_DOWN Event = {0};
Event.Header.Size = sizeof(EVENTINST_LIFTSIM_UP_DOWN);
Event.Header.Flags = WNODE_FLAG_TRACED_GUID;

// The event instance's event type
Event.Header.Class.Type = EVENT_TRACE_TYPE_START;

// Custom event data
Event.Data.lFromFloor = lStartFloor;
Event.Data.lToFloor = lEndFloor;

 PEVENT_INSTANCE_INFO pInstInfo);

The RegHandle parameter contains the event class handle provided by the RegisterTraceGuids.
Internally, CreateTraceInstanceId uses the event class's RegHandle to verify and locate that the
event class registration exists and to obtain its GUID. Unlike a standard event, an event instance'
event class GUID cannot be specified in the

 is returned by the pInstInfo parameter. Let's look at the EVENT_INSTANCE_INFO

typedef struct EVENT_INSTANCE_INFO {
 HANDLE RegHandle;
 ULONG InstanceId;
} EVENT_INSTANCE_INFO, *PEVENT_IN

arameter contains the event class's registration handle, which is the

// Generates an instance event
ulError = TraceEventInstance(g_hProvider,
 (PEVENT_INSTANCE_HEADER)&Event, &UpEvtInst, NULL);

This code should look quite familiar by now. The event structure is set up and is passed to
TraceEventInstance to generate the event. Notice that the third parameter uses the event instance
information (EVENT_INSTANCE_INFO) structure that was initialized by CreateTraceInstanceId.
Let's examine TraceEventInstance prototype:

ULONG TraceEventInstance(TRACEHANDLE TraceHandle,
 PEVENT_INSTANCE_HEADER EventTrace, PEVENT_INSTANCE_INFO pInstInfo,
 PEVENT_INSTANCE_INFO pParentInstInfo);

Like TraceEvent, the TraceHandle parameter is the provider's TRACEHANDLE. The event that the
provider wishes to generate is passed to the EventTrace parameter. The event's instance details,
created by CreateTraceInstanceId, must be passed to pInstInfo. If the event instance has a
parent, be sure to pass the parent's instance details to pParentInstInfo. Before examining the
EVENT_INSTANCE_HEADER structure, let's look at a complete code sample that produces a child
instance event:

// Create instance for child event
EVENT_INSTANCE_INFO MovingEvtInst = {0};
ulError = CreateTraceInstanceId(tgrEventClasses[0].RegHandle,
 &MovingEvtInst);

OR);
Event.Header.Flags = WNODE_FLAG_TRACED_GUID;

Event.Header.Class.Type = EVENT_TRACE_TYPE_CHECKPOINT;

ingEvtInst, &UpEvtInst);

Although the EVENT_I E_ HEADER, it is
different in the following ways.

1. It does not have a Guid member because the GUID is obtained from the event class
registration.

2. It has a RegHandle member that holds the event class registration handle and the
InstanceId member uniquely identifies the event.

3. It has both ParentRegHandle and ParentInstanceId members to record the parent
instance's event class registration handle and instance identifier.

For additional information about the other members, check the EVENT_TRACE_ HEADER structure
discussed earlier. Here is the EVENT_INSTANCE_HEADER structure:

typedef struct _EVENT_INSTANCE_HEADER {
 USHORT Size;

// Setup child event
EVENTINST_LIFTSIM_MOVINGFLOOR Event = {0};
Event.Header.Size = sizeof(EVENT_LIFTSIM_MOVINGFLO

// Event custom data
Event.Data.lCurrentFloor = lFloor;

// Generate child instance event. Both the event instance and parent
// event instance details are passed into TraceEventInstance.
ulError = TraceEventInstance(g_hProvider,
 (PEVENT_INSTANCE_HEADER)&Event, &Mov

NSTANCE_HEADER structure is similar to the EVENT_TRAC

 union {
 USHORT FieldTypeFlags; // Indicates valid fields
 struct {
 UCHAR HeaderType; // Header type - internal use only
 UCHAR MarkerFlags; // Marker - internal use only
 };
 };
 union {
 ULONG Version;
 struct {
 UCHAR Type;
 UCHAR Level;
 USHORT Version;
 } Class;
 };
 ULONG ThreadId;
 ULONG ProcessId;
 LARGE_INTEGER TimeStamp;
 ULONGLONG RegHandle;
 ULONG InstanceId;
 ULONG ParentInstanceId;
 union {
 struct {
 ULONG ClientContext; // Reserved
 ULONG Flags; // Flags for header
 };
 struct {
 ULONG KernelTime; // Kernel Mode CPU ticks
 ULONG UserTime; // User mode CPU ticks
 };
 ULONG64 ProcessorTime; // Processor Clock
 };
 ULONGLONG ParentRegHandle;

at it is
ows XP

al event tracing works just fine.

Event-Trace Log Files
zing events from an event-trace log file or a real-time session is the most important aspect of

nt traces from an application

 track
ugh every subsystem. This provides a complete perspective for
 a few examples:

nd reads a file, an event-tracing session will be able to
confirm the disk I/O activity involved as well as to determine whether the file was

emory file cache.

} EVENT_INSTANCE_HEADER, *PEVENT_INSTANCE_HEADER;

Unfortunately, there is a big problem with hierarchical event tracing in the released version of
Windows XP. It is badly broken! The event class GUIDs are GUID_ NULL, which means th

at eventually a Windimpossible to identify to which class the events belong. We hope th
rvice pack will fix this problem. Under Windows 2000, hierarchicse

Analyzing
Analy
the event-tracing technology. It allows the possibility of analyzing eve

h to the subsystems upon which the application builds, right down to the and its components throug
kernel and including kernel mode device drivers. For the first time, software truly can
operations and resources thro

blems. Here areresolving pro

When an application opens a

read from the in-m

If an application performs badly on a particular machine, it will be possible to
ance. If this is the

ith a particular server within
 able to filter network activity to that server.

 only to a single log file. To monitor
ubsystems that an application builds upon requires several sessions to record the activity in

al log files. Analyzing several log files can be an ugly business. One of the real benefits of the
mer APIs is that they can consume several log files and produce a time-ordered

s. Suppose there is a situation in which you have a distributed application on several
cking operations and resources between two or more systems is traditionally difficult,

ost cases, analyzing problems for such applications is poor, usually because marrying

ET_FILE = _T("C:\\LiftSim.etl");

LOGFILE log = {0};

ocate memory for log file name

TRACE_LOGFILE structure

ffer.

chronous call
r = ProcessTrace(hTraceLog, 1, NULL, NULL);

 = CloseTrace(hTraceLog[0]);

 sets up and analyzes the log file (C:\LiftSim.etl) until all its events have been
irst task is to create and initialize an EVENT_TRACE_LOGFILE structure. This

formation about which log file to open and the call-back functions that will process the
within the file as they are processed. Opening the log file simply requires a call to

penTrace and passing the EVENT_TRACE_LOGFILE structure to it. On returning, OpenTrace
provides a TRACEHANDLE that is used for processing the file with ProcessTrace. The
ProcessTrace function executes synchronously, which means that you may want to consider
calling it on another thread. When ProcessTrace is executing, it delivers a time-ordered stream of
events to the call-back specified by EventCallback, and as each buffer is processed, a notification

identify if a lot of paging occurs at specific times of poor perform
case, perhaps the machine requires more memory.

If an application is having problems communicating w
the enterprise, a consumer will be

Processing an Event-Trace Log File

You should know by now that an event-tracing session can log
all th

ver
e s

se
event-tracing consu
stream of event
servers.
nd in m

 Tra
a
activities between several (possibly text-based) log files is not easy and is awkward.

Let's look at some code that analyzes an event trace:

const LPCTSTR

ACE_EVENT_TR

All//
log.LogFileName = reinterpret_cast<LPTSTR>(LocalAlloc(LPTR,
 (_tcslen(ET_FILE) +1) * sizeof(TCHAR)));

// Copy log file name to EVENT_
_tcscpy(log.LogFileName, ET_FILE);

ery event. // Setup event callback. This will be called for ev
log.EventCallback = GenericEventCallback;

// Setup buffer callback. This will be called at the end of every bu

 log.BufferCallback = GenericBufferCallback;

// Setup as many log files that you want processed
TRACEHANDLE hTraceLog[1];
hTraceLog[0] = OpenTrace(&log);

cess all the log files. This is a syn// Pro
ULONG ulErro

an up // Cle
rorulEr

This code sample
processed. The f
contai

ents
ns in

ev
O

is delivered to the call-back specified by BufferCallback. After the log file has been
CloseTrace is called to clean up. Multiple log files can be specified through Process
because it takes

 dealt with,
Trace

 an array (hTraceLog) of opened log file handles. More on these APIs is covered
later.

typedef struct
 EVENT_TRACE_HEADER Header; // Event trace header
 ULONG InstanceId; // Instance Id of this event

lly references a transaction. The
ParentInstanceId references who the event's parent transaction is. A rentInstanceId of zero
indicates that the instance s
The instance's GUID can be obtained from the Header.Guid member, and if the
ParentInstanceId is greater than zero, the ParentGuid member contains the parent's event class
GUID.

An event's custom data that the provider tagged on at the end of the EVENT_TRACE_ HEADER
structure can be obtained during analysis through the MofData member; its length is supplied by

LIFTSIM_MOVINGFLOOR

The Event Call-Back Function

The event call-back function is critical to gaining access to the events. The call-back function is
provided by a consumer and when ProcessTrace is called, it calls the call-back for every event in
the log file. If there is a requirement to process thousands of events as quickly as possible, you
should aim to make the call-back as efficient as possible. The following is a very simple event call-
back that outputs only the event class's GUID and the version number:

void WINAPI ASimpleEventCallback(PEVENT_TRACE pEvent)
{
 // Display event class GUID and the version of the event
 _tprintf(_T("EventGuid = %ls, EventVersion = %d\n"),
 CComBSTR(pEvent->Header.Guid), pEvent->Header.Class.Version);
}

The event is passed in pEvent, which is a pointer to an EVENT_TRACE structure. Let's look at this in
more detail:

 _EVENT_TRACE {

 ULONG ParentInstanceId; // Parent Instance Id.
 GUID ParentGuid; // Parent Guid;
 PVOID MofData; // Pointer to Variable Data
 ULONG MofLength; // Variable Datablock Length
 ULONG ClientContext; // Reserved
} EVENT_TRACE, *PEVENT_TRACE;

The Header member uses an EVENT_TRACE_HEADER structure that was discussed earlier. This
contains general information that is common to every event in an event trace.

The InstanceId, ParentInstanceId, and ParentGuid members are used by hierarchical event
tracing. All hierarchical events are referenced by instance values as well as by the event class,
version, and type details. The InstanceId specifica

Pa
upplied by InstanceId is an event at the root of the hierarchical tree.

MofLength. Why the events in the provider were structured like this should now make sense.

typedef struct tagLIFTSIM_MOVINGFLOOR
{
 LONG lCurrentFloor;
} *PLIFTSIM_MOVINGFLOOR, LIFTSIM_MOVINGFLOOR;
typedef struct tagEVENT_

{
 EVENT_TRACE_HEADER Header;
 LIFTSIM_MOVINGFLOOR Data;
} *PEVENT_LIFTSIM

We can easily reuse and cast the MofData member to the desired LIFTSIM_MOVINGFLOOR structure.

_MOVINGFLOOR, EVENT_LIFTSIM_MOVINGFLOOR;

Designing your events like this makes it a little easier to ensure that the events generated by the
provider can be interpreted correctly by a consumer.[5] Assuming that the event class, version, an
type have been identified correctly, here is how to gain access to the customized event data:

d

PLIFTSIM_MOVIN
 reinterpret_cast<PLIFTSIM_MOVINGFLOOR>(pEvent->MofData);

When a provider makes its events public, it usually publishes the event structures using WMI. The
EventTrace base class in the root\WMI namespace contains inherited classes that describe the
following:

1. The existence of the provider and the GUID with which it can be referenced
2. The event classes of the events that the provider can generate and their GUIDs
3. The supported event types of the event class and the properties of the class document (how

to interpret the event)

It is up to the consumer to generate a structure based on the information obtained from WMI. This
is how you would make structures to interpret events from the kernel, for instance. Figure 13.8

[5] If the provider and consumer use a shared header file describing the custom event data.

GFLOOR pData =

shows the print spooler's documented class hierarchy.

Figure 13.8. Print spooler's event-trace schema

The first event in all event-tracing log files supplies details about the session that created the log
file. In fact, this is done for every log file that is processed.

Figure 13.9 shows the order in which

events and buffers will occur. The left event stream shows what happens when a single log file is
processed. The righ are processed.
The only difference is that for every log file processed, the event call-back function will receive an

[6]

t event stream shows what happens when two or more log files

EventTraceGuid event with the session details that recorded the log file. The session details can
f a

[6] EventTra

Figure 13.9. Processing single versus multiple event-tracing log files

be extracted via the event's custom data. Simply cast the event's member to a pointer o
 structure.

MofData
TRACE_LOGFILE_HEADER

ceGuid is defined in evntrace.h.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#app02fig12
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#app02fig13
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#app02fig14
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#app02fig14
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#app02fig14
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#app02fig14
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-61613-0/#app02fig14

Let's have a look at the event call-back function used by the e
-class and even

arlier code sample. The items in bold
t-type[7]font highlight the places in the code that event checks are performed to

MofData ember should be interpreted, if at all. Because event
cluded the whole function. Its purpose is to output all the details of

from the lift simulator, extract and interpret its custom data. The lift
ail in the provider section of the chapter.

vents.

vent)

Details from the TRACE_LOGFILE_HEADER structure that help to interpret

 event that describes
e monitor.
tTraceGuid) &&

r.Class.Type == EVENT_TRACE_TYPE_INFO)

ssion =
>(pEvent->MofData);

hether this is a log from

properly determine how the event's m
analysis is important, we have in
an event and, if the event is

 detsimulator is discussed in

[7] As this is a simple consumer for this book, we have omitted code to check the version of the e

void WINAPI GenericEventCallback(PEVENT_TRACE pE
{
 //
 // event information
 static ULONG ulTimerResolution = 1;
 static bool bPrivateSession = false;

 try
 {
 // For each log file processed, you get an
 // the contents of the log file or real-tim

d), Even if(IsEqualGUID((pEvent->Header.Gui
 pEvent->Heade
 {
 PTRACE_LOGFILE_HEADER tlhSe
 Reinterpret_cast<PTRACE_LOGFILE_HEADER

 if (tlhSession)
 {
 // We can find easily find out w

 // a private session. We will use this for determining what
r and processor time

an be displayed. Private session can only use
 member.

FileMode & EVENT_TRACE_PRIVATE_LOGGER_MODE;

of the timer used in the log file.

tlhSession->TimerResolution / 10000;

rsion
printf(_T("\nEventGuid = %ls, EventVersion = %d\n"),

 CComBSTR(pEvent->Header.Guid), pEvent->Header.Class.Version);

 type and event level
ventType = %s, EventLevel = %d\n"),
String(pEvent->Header.Class.Type),

 pEvent->Header.Class.Level);

D
 TCHA
 GetT
 si

 _tprintf(_T("\tTimeStamp = %s\n"), szDateTime);

y supported timings

 pE

 pEvent->Header.FieldTypeFlags & EVENT_TRACE_USE_PROCTIME ?
 _T("Yes") : _T("No"));

 !(pE
 {
 //
 _tprintf(_T("\tKernelTime = %d (%d ms), UserTime = %d (%d ms), ")\
 _
 pEvent->Header.KernelTime,

Header.UserTime,

 pEvent->Header.ProcessorTime * ulTimerResolution);
 }
 else if (pEvent->Header.FieldTypeFlags & EVENT_TRACE_USE_PROCTIME ||

 _tprintf(_T("\tProcessorTime = %d (%d ms)\n"),

t->Header.ProcessorTime * ulTimerResolution);
 }

 retrieve a pointer to
 // the data, cast the MofData member to the desired type.

 // aspects about the kernel, use
 // members c
 // the ProcessorTime

on = bPrivateSessi
 tlhSession->Log

ion // The resolut
 if (tlhSession->TimerResolution > 0)
 ulTimerResolution =
 }
 }

isplay event class and event ve // D
 _t

 // Display event
 _tprintf(_T("\tE
 GetEventTypeAs

 // isplay event time stamp

R szDateTime[80];
imeStampAsString(pEvent->Header.TimeStamp, szDateTime,
zeof(szDateTime) / sizeof(TCHAR));

 // Displa
 _tprintf(_T("\tCPUTimeSupported = %s, ProcessorTimeSupported = %s\n"),

vent->Header.FieldTypeFlags & EVENT_TRACE_USE_NOCPUTIME ?
_T("No") : _T("Yes"),

 if (!bPrivateSession ||

vent->Header.FieldTypeFlags & EVENT_TRACE_USE_NOCPUTIME))

 Display all timings

T("ProcessorTime = %d (%d ms)\n"),

 pEvent->Header.KernelTime * ulTimerResolution,
 pEvent->

pEvent->Header.UserTime * ulTimerResolution,
pEvent->Header.ProcessorTime,

 bPrivateSession)
 {

// Display Processor timing only. Note that private session
// only support the processor time.

 pEvent->Header.ProcessorTime,
 pEven

 // Decoding custom event fields/details. To

 if

 {
 |
 pEvent->Header.Class.Type == EVENT_TRACE_TYPE_END)

vents use the same

 _tprintf(_T("\tFromFloor = %d, ToFloor = %d\n"),
 pData->lFromFloor, pData->lToFloor);
 }

NT_TRACE_TYPE_CHECKPOINT)

 _tprintf(_T("\tCurrentFloor = %d\n"), pData->lCurrentFloor);
 }

 }
 el
 {
 if (pEvent->Header.Class.Type == EVENT_TRACE_TYPE_INFO)

 pData->szDescription);
 }

 }
 }
 catc
 {
 //
 }
}

several
the info ulTimerResolution bPrivateSession. The
previous function is called GenericEventCallback because it will be called for every event

cessTrace. Later, we discuss how events can be filtered by their class. Hence
there c

The following is a portion of the output produced by the preceding sample code. The items in bold
font highlight the event class and its type as well as the custom data that is extracted from the

ber. The {2205BB0C-75C8-4F78-A8C5-984CA4377782} GUID identifies the event as
the "lift going down" (LiftDown) and last event {2205BB0D-75C8-4F78-A8C5-984CA4377782} is
identified as the "lift requiring attention" (LiftJammed).[8]

 (IsEqualGUID(pEvent->Header.Guid, LIFTSIM_UP) ||
IsEqualGUID(pEvent->Header.Guid, LIFTSIM_DOWN))

if (pEvent->Header.Class.Type == EVENT_TRACE_TYPE_START |

 {
 // LiftUp and LiftDown start and stop e

 // data structure
 PLIFTSIM_UP_DOWN pData = (PLIFTSIM_UP_DOWN)pEvent->MofData;

 else if (pEvent->Header.Class.Type == EVE
{
 // LiftUp and LiftDown checkpoint events use a different
 // data structure
 PLIFTSIM_MOVINGFLOOR pData =
 (PLIFTSIM_MOVINGFLOOR)pEvent->MofData;

 else
 _tprintf(_T("\t<Unknown event type>\n"));

se if (IsEqualGUID(pEvent->Header.Guid, LIFTSIM_JAMMED))

 {
 // LiftJammed information events use a different

 // data structure
 PLIFTSIM_JAMMED_INFO pData =
 (PLIFTSIM_JAMMED_INFO)pEvent->MofData;

 _tprintf(_T("\tFault Description = %ls\n"),

 else
 _tprintf(_T("\t<Unknown event type>\n"));

h (. . .)

 Do something meaningful

For simplicity, the above code won't be able to properly interpret event timings when processing
 event-tracing log files. In your own solutions, consider using an alternative method to store
rmation provided by the static members, and

processed by Pro
an be several event-handling functions.

MofData mem

[8] Check the provider section for more details about the events produced by the lift simulation provider.

uid = EventG
 Even
 TimeStamp = 12/01/2002 17:18:58.074
 CPUTimeSupported = Yes, ProcessorTimeSupported = No

= 3 (0 ms), UserTime = 0 (0 ms), ProcessorTime = 3 (0 ms)

EventG
 Even
 Time
 CPUTimeSupported = Yes, ProcessorTimeSupported = No
 KernelTime = 3 (0 ms), UserTime = 0 (0 ms), ProcessorTime = 3 (0 ms)

EventG
 Even
 TimeStamp = 12/01/2002 17:18:58.340
 CPUTimeSupported = Yes, ProcessorTimeSupported = No

), UserTime = 0 (0 ms), ProcessorTime = 3 (0 ms)

EventG
 Even
 TimeStamp = 12/01/2002 17:18:58.418
 CPUTimeSupported = Yes, ProcessorTimeSupported = No
 KernelTime = 3 (0 ms), UserTime = 0 (0 ms), ProcessorTime = 3 (0 ms)

The B

All event traces are organized in a sequence of buffers, each of which contains many trace events.
ntially a variable-length record and only so many events can be stored in a buffer

ed
on it is s the
case wh ull. This could be a result
of the session being stopped while the buffer was half full, or Windows deciding to flush the buffer

erhaps triggered by the session's FlushTimer), or an event-tracing controller making a call
to Cont
called a

The following buffer call-back function is very simple because all it does is keep a record, which is
any buffers have been processed so far.

ULONG WINAPI GenericBufferCallback(PEVENT_TRACE_LOGFILE pLog)
{
 static ULONG ulBufferNum = 0;

 // W
 prin

 // Return TRUE to continue processing next buffer or FALSE to stop

{2205BB0C-75C8-4F78-A8C5-984CA4377782}, EventVersion = 0
tType = Start, EventLevel = 0

 KernelTime
FromFloor = 2, ToFloor = 0

uid = {2205BB0C-75C8-4F78-A8C5-984CA4377782}, EventVersion = 0
tType = Checkpoint, EventLevel = 0
Stamp = 12/01/2002 17:18:58.215

 CurrentFloor = 1

uid = {2205BB0C-75C8-4F78-A8C5-984CA4377782}, EventVersion = 0
tType = End, EventLevel = 0

 KernelTime = 3 (0 ms
 FromFloor = 2, ToFloor = 0

uid = {2205BB0D-75C8-4F78-A8C5-984CA4377782}, EventVersion = 0
tType = Information, EventLevel = 0

 Fault Description = The lift needs maintenance

uffer Call-Back Function

Each event is esse
that is at least 1KB in size (default is 8KB). The size of each event without any custom data tagg

 around 30–40 bytes. Also note that a buffer can contain a small number of events. This i
en the buffer has been flushed prematurely to disk before it was f

to disk (p
rolTrace using the EVENT_TRACE_CONTROL_FLUSH action. The buffer call-back function is
t the end of every buffer processed by ProcessTrace.

output to the console, of how m

 ulBufferNum++;

ould normally inspect details of the EVENT_TRACE_LOGFILE structure
tf("\nEnd of Buffer %d\n\n", ulBufferNum);

 return TRUE;
}

Given
been pr
Proces events the
processing of further buffers.

The Consumer Event-Tracing APIs

ProcessTrace CloseTrace
by their class: SetTraceCallback and RemoveTraceCallback. These will be discussed later.

Every e .
This w
prototy

TRACEHANDLE OpenTrace(PEVENT_TRACE_LOGFILE Logfile);

ce can be called, an EVENT_TRACE_LOGFILE structure needs to be initialized and set
up. Thi
session s the various members:

struct EVENT_TRACE_LOGFILE {
 LogFileName; // Logfile Name

 LONG
 ULON
 ULON

 EVENT_TRACE CurrentEvent; // Current Event from this stream
 TRACE_LOGFILE_HEADER LogfileHeader; // logfile header structure

BUFFER_CALLBACK // callback before each buffer

 //
 // following variables are filled for BufferCallback.
 //

BufferSize;

 ULON
 //
 // following needs to be propagated to each buffer
 //
 PEVENT_CALLBACK EventCallback; // callback for every event

 IsKernelTrace; // TRUE for kernel logfile

};

When setting up the structure to read an event-trace log file, ensure that the LogFileName member
is completed: It should contain the path of the log file. Monitoring real-time sessions requires that

later.

To process all the events from the log file, the EventCallback member must contain a pointer to a
ProcessTrace can call for each and every event. To receive notifications

that ProcessTrace is a synchronous function, it does not return until all the buffers have
ocessed. This sometimes is not desirable for some consumer applications. Fortunately,
sTrace can be interrupted by the buffer call-back returning FALSE, which pr

The EVENT_TRACE_LOGFILE structure will be discussed in more detail.

As you've already seen from the earlier code samples, an event consumer uses OpenTrace,
, and API calls. However, two more API calls assist in filtering events

vent-tracing log file and real-time monitoring session needs to be opened with OpenTrace
ill provide a special TRACEHANDLE that ProcessTrace can use. So let's have a look at the
pe of this function:

Before OpenTra
s structure contains information about the event-trace log file or real-time monitoring
. Let's discus

 LPTSTR
 LPTSTR LoggerName; // LoggerName

LONG CurrentTime; // timestamp of last event
G BuffersRead; // buffers read to date
G LogFileMode; // LogFile Mode.

 PEVENT_TRACE_
 BufferCallback; // is read

 ULONG
 ULONG Filled;

G EventsLost;

 ULONG
 PVOID Context; // reserved for internal use

the Log member congerName tain the session name. Monitoring real-time sessions will be discussed

call-back function that

upon th
buffer
membe to
open th

ILE structure is used by both OpenTrace and the buffer call-back function.
all-back, the time stamp of the last event in the buffer is recorded in the

Curren
docum to
date wh
session' options that were used to create the log file or real-time monitoring session can be
retrieved from the LogFileMode member. For instance, if OpenTrace opens a log file that was

e events sequentially on disk, LogFileMode would contain EVENT_TRACE_

to the l
suppose r in bytes, but we have found it to be zero. It can be found
in LogfileHeader.BufferSize. The Filled member contains the number of bytes in the buffer

 The number of events that were lost and not stored in the buffer can be

Analyzing k e session, OpenTrace will
always set the IsKernelTrace member to TRUE; for normal event traces it is FALSE.

The TR it
contain which the
log file was created. This structure is used by EVENT_TRACE_ LOGFILE and is also the

 event's custom data. Let's have a look:

typede
 ULON
 unio
 ULONG Version; // Logger version
 struct {

 }
 };
 ULON
 ULONG NumberOfProcessors; // Number of Processors
 LARGE_INTEGER EndTime; // Time when logger stops
 ULONG TimerResolution; // assumes timer is constant!!!

 MaximumFileSize; // Maximum in Mbytes

 ULON
 unio
 GUID LogInstanceGuid; // For RealTime Buffer Delivery
 struct {
 ULONG StartBuffers; // Count of buffers written at start.

 PointerSize; // Size of pointer type in bits
entsLost; // Events losts during log session

 };
 LPWSTR LoggerName;

e completion of every buffer, the BufferCallback member should contain a pointer to a
call-back function. Although the EventCallback (more important) and BufferCallback
rs can be NULL, it is uncommon. One possible reason for having both members NULL is
e log file and retrieve details about it.

The EVENT_TRACE_LOGF
When used in a buffer c

tTime member. OpenTrace makes no use of the CurrentTime. According to the
entation, the BuffersRead member is supposed to report the number of buffers processed
ile reading a log file. However, this is zero upon the completion of every buffer. The
s logging

configured to record th
FILE_MODE_SEQUENTIAL. During the processing of an event trace, CurrentEvent provides access

ast event in the buffer. According to the documentation, the BufferSize member is
d to contain the size of each buffe

that have valid data.
determined by looking at EventsLost.

ernel event-trace log files or monitoring a kernel real-tim

ACE_LOGFILE_HEADER structure contains more information about the log file. Specifically,
s information about how to interpret event timings and the operating system on

EventTraceGuid

f struct _TRACE_LOGFILE_HEADER {
G BufferSize; // Logger buffer size in Kbytes
n {

 UCHAR MajorVersion;
 UCHAR MinorVersion;

UCHAR SubVersion;
UCHAR SubMinorVersion;
VersionDetail;

G ProviderVersion; // defaults to NT version

 ULONG
 ULONG LogFileMode; // specify logfile mode

G BuffersWritten; // used to file start of Circular File
n {

 ULONG
 ULONG Ev
 ULONG CpuSpeedInMHz; // Cpu Speed in MHz
 };

 LPWSTR LogFileName;
 TIME
 LARG
 LARG
 LARG
 ULON
 ULONG BuffersLost;
} TRACE_LOGFILE_HEADER, *PTRACE_LOGFILE_HEADER;

examin

The ProviderVersion and VersionDetail members contain the operating system's build and
pectively. The start time of the session can be determined by StartTime, and

the tim
frequen or real-time session used
when it was created. This is usually the speed of the machine in hertz. The TimerResolution
member provides timing information that allows the correct interpretation of the kernel, user, and

s within the log file's events. contains the resolution of the
hardwa

Process
(OpenTr ction is straightforward:

ME StartTime, LPFILETIME EndTime);

The arr
the arra parameter. The StartTime and EndTime parameters allow
the restriction of events by delivering only the events of interest during the period starting with

Time and ending with EndTime. If both of these are NULL, no time restriction is applied.

Finally e
closed

ULONG CloseTrace(TRACEHANDLE TraceHandle);

e Event-Tracing Sessions
To monitor events in rea er to
receive the events. The consumer will receive the events only as each buffer becomes full or is

Coding up a controller to start a real-time session is virtually the same as you have seen in
earlier in the
string p e
LogFil
session' to
StartTrace. The following sample code starts a real-time session for event traces from the lift
simulator:

// Set
PEVENT

_ZONE_INFORMATION TimeZone;
E_INTEGER BootTime;
E_INTEGER PerfFreq; // Reserved
E_INTEGER StartTime; // Reserved
G ReservedFlags; // Reserved

We won't cover every member in this structure because most of them are pretty obvious. Let's
e a few of them that you might want to use.

version numbers, res
e the session was stopped can be found in EndTime. The PerfFreq member provides the
cy of the high-resolution performance counter that the log file

processor timing TimerResolution
re timer, in units of 100 nanoseconds.

ing events from event-trace log files or real-time sessions is represented by an array of
ace provided) TRACEHANDLEs. The ProcessTrace fun

ULONG ProcessTrace(PTRACEHANDLE HandleArray, ULONG HandleCount,
 LPFILETI

ay of TRACEHANDLEs is supplied through HandleArray and the number of elements within
y is passed in the HandleCount

Start

, when ProcessTrace has finished, all the TRACEHANDLEs in the HandleArray should b
with CloseTrace. Note that CloseTrace closes only handles created by OpenTrace.

Monitoring Real-Tim
l time requires the set up of a real-time session and a real-time consum

flushed.
sections of this chapter. The only notable difference is that no log filename is specified
ointed to by LogFileNameOffset because a real-time session has no filename. Also, th
eMode contains the EVENT_TRACE_REAL_TIME_MODE flag, which is what really specifies the
s events to be delivered in real time. Finally, the name of the real-time session is passed in

up the Event Tracing session properties
_TRACE_PROPERTIES pTraceProps = MakeTraceProperties();

pTrace

// This tells the Event Tracer to setup a real-time session
pTraceProps->LogFileMode = EVENT_TRACE_REAL_TIME_MODE;

 session.
TRACEH
ULONG
 _T("LiftSim real-time session

race(TRUE, 0, 0, &PROVGUID_LIFTSIM, hTraceSession);

LocalF

After th
(remem ll). To monitor a specific real-time
session requires the EVENT_TRACE_LOGFILE structure to specify the real-time session name
correctly in and set LogFileMode to include EVENT_TRACE_REAL_TIME_MODE. The

 real-time events from the real-time session started earlier.

const

EVENT_TRACE_LOGFILE log = {0};

me

 (_tc

// Copy session name to EVENT_TRACE_LOGFILE structure
_tcscpy(log.LoggerName, ET_RT_SESSION);

log.Ev

// We want to monitor a real-time session
log.LogFileMode = EVENT_TRACE_REAL_TIME_MODE;

TRACEH
hTrace

// Process all the log files. This is a synchronous call
ULONG ulError = ProcessTrace(hTraceLog, 1, NULL, NULL);

ulErro

As you
earlier the events only when the buffer becomes
full or is flushed. This means that for sessions with large buffers and/or providers that don't produce
many events, you won't get access to the events for a measurable amount of time. To overcome this

ither set up the session's automatically to flush the buffers more
regular
variabl er controller can adjust the
buffer size automatically and flush the timer to suit the frequency of events.

Props->Wnode.Guid = PROVGUID_LIFTSIM;

// Start the

ANDLE hTraceSession = 0;
ulError = StartTrace(&hTraceSession,

"), pTraceProps);

ulError = EnableT

ree(pTraceProps);

e real-time session is started, another application or thread can process events in real time
ber that ProcessTrace is a synchronous function ca

LoggerName
following code sample receives

LPCTSTR ET_RT_SESSION = _T("LiftSim real-time session");

// Allocate memory for session na
log.LoggerName = reinterpret_cast<LPTSTR>(LocalAlloc(LPTR,

slen(ET_RT_SESSION) +1) * sizeof(TCHAR)));

// Setup event callback. This will be called for every event.

entCallback = GenericEventCallback;

// Setup as many log files that you want processed

ANDLE hTraceLog[1];
Log[0] = OpenTrace(&log);

// Clean up

r = CloseTrace(hTraceLog[0]);

 can see, starting and monitoring events in real time is similar to the techniques identified
in the chapter. Remember that you will get to see

limitation, you can e FlushTimer
ly or programmatically call ControlTrace to flush the buffers manually. If you expect a
e throughput of events from a particular provider, perhaps anoth

Providing and Analyzing Lightweight Events

Event-t s
oppose es
inform s data supplied through a variable argument list. The
advantage of TraceMessage is that it is not only considered lightweight but is also simpler to call
from within a provider. The fact that it produces only informational events clearly states its intended

reprocessor (WPP) uses to generate events from
within
it is pre age
and WP uses
of Trac ked/debug builds. We highly
encourage you not to consider TraceMessage as an alternative for all of an application's event

file or real-time session is processed, it is much harder to

The lif
followi
chosen
// One of the variable arguments will be a string

wcscpy

// Generate event

rovider,

 | TR
 szAc
One of be of a fixed length so that it is
easier to interpret the event during analysis. The call to TraceMessage uses most of the flag
parameters that can be passed to it. As each flag is used, the structure of the resulting event's data

t is the action about to be performed. When this is
coupled this
(in a pr erminated
with N
Let's di
ULONG
 ULONG MessageFlags, LPGUID MessageGuid, USHORT MessageNumber, . . .);

ike TraceEvent LoggerHandle parameter is the TRACEHANDLE that was obtained in the
s control call-back function.

Message contain almost no information in the EVENT_ TRACE
consumer. The event's custom data is used to store both the variable
fied by the MessageFlags parameter. The only members of the

t
supplied in the MessageNumber parameter. The value and meaning of the

s to the data specified
ent list.

racing providers can use what is considered a lightweight approach for generating events, a
d to calling TraceEvent normally. The lightweight function TraceMessage generat
ational events that include the event'

use. The Windows Software Trace P TraceMessage
an application. The WPP is a set of macros: When inserted into an application's source code,
processed before the compiler does the compilation. One of the objectives of TraceMess
P is to be as easy as using printf style logging in an application. One of the suggested
eMessage is to provide additional information in chec

tracing, because when an event-trace log
analyze than a trace with TraceEvent generated events.

t simulator provider generates events detailing the lift's actions and its progress. The
ng code provides more information about what the lift is about to do before it starts the
operation:

WCHAR szActionMsg[32];
ZeroMemory(szActionMsg, sizeof(szActionMsg));

(szActionMsg, L"The next action is ");

ULONG ulError = TraceMessage(g_hP
 TRACE_MESSAGE_SEQUENCE | TRACE_MESSAGE_GUID | TRACE_MESSAGE_TIMESTAMP

ACE_MESSAGE_SYSTEMINFO, &MYINFOEVENT, 502,
tionMsg, sizeof(szActionMsg), nAction, sizeof(nAction), NULL, 0);
 the variable parameters is a string. The string is declared to

will be affected. The second variable argumen
 with the first variable argument, the resulting trace message would read something like
intf style output), "The next action is 2." Finally, the variable argument list is t

ULL values.
scuss TraceMessage in more detail:
__cdecl TraceMessage(TRACEHANDLE LoggerHandle,

, the L
provider'
All events generated by Trace
structure when processed by a
arguments and extra data speci
EVENT_TRACE structure used by TraceMessage include:

1. Class.Version which contains the flags passed in MessageFlags. Note that the flags
specified alter the outcome of the custom data.

2. The lower DWORD of Version contains the number of each occurrence of the message/even
that is
MessageNumber parameter are user-defined.

3. Both the MofData and MofLength members are used to provide acces
for inclusion by MessageFlags and the variable argum

The MessageGuid parameter can specify either the class (GUID) of the message or a DWORD

a and the argument specifies the length of the

component identifier that is user-defined.
The variable argument list contains the message's information in pairs of PVOID and ULONG
parameters. The PVOID argument specifies dat ULONG
data (in bytes) referenced by PVOID. The argument list must be terminated with a NULL and 0.
Table 13.8 contains the flags that can be passed into the parameter. Note that these

ment
RACE_MESSAGE_SEQUENCE Include a sequence number in the message.

Note that sequence numbers will be generated only if
the session supplies either
EVENT_TRACE_USE_LOCAL_SEQUENCE or
EVENT_TRACE_USE_GLOBAL_SEQUENCE.

TRACE_MESSAGE_GUID The message type and that the MessageGuid
parameter contains a GUID.

TRACE_MESSAGE_COMPONENTID The component to which the message pertains. The
MessageGuid parameter contains a DWORD.

TRACE_MESSAGE_TIMESTAMP Includes the time that the message was generated.
TRACE_MESSAGE_PERFORMANCE_TIMESTAMP Time stamp is the performance counter (not the

system clock).
This flag is valid only if TRACE_MESSAGE_TIMESTAMP
is also specified.

TRACE_MESSAGE_SYSTEMINFO Includes the thread identifier (TID) and process
identifier (PID) in which the message was generated.

The TraceMessage function is available only under Windows XP and later.

Analyzing Lightweight Events

Analyzing events generated by TraceMessage always reveals an event class containing GUID_NULL.
This effectively means the event has no class. This is one of the reasons why it is more difficult to
analyze event traces with these types of events.
As already mentioned, an event trace processed with ProcessTrace can be supplied with an event
call-back function to analyze the events within the log file or real-time session. However, it is
important to note that all events are delivered to the call back. To separate or filter events by their
event class is possible with the use of SetTraceCallback. This sets the event call-back function for
a specific event class and is irrespective of any particular ProcessTrace session within the process.
When ProcessTrace encounters an event that has a registered event call-back for an event class, it
calls that call-back function. This is in addition to the generic call-back function specified for the
ProcessTrace session that still gets called. This technique of specifically filtering events of a
specific class will become useful when analyzing event traces that contain events generated by
TraceMessage.
Let's call SetTraceCallback to filter what is probably a TraceMessage event:
ulError = SetTraceCallback(&GUID_NULL, TraceMessageEventCallback);
The code says that for this process, whenever ProcessTrace encounters an event that has a class
GUID of GUID_NULL, call the TraceMessageEventCallback function. It probably is wise to filter

MessageFlags
are in the correct evaluation order when analyzing an event generated by TraceMessage.

Table 13.8. MessageFlags Flags

MessageFlags Flags Com
T

TTraceMessageT events for processing by another call-back function because they can be very
intricate to implement. Structures pointed to by the TMofDataT member will vary, depending on the
flags and variable arguments that were passed to TTraceMessageT. The following example structure
will decode the preceding TTraceMessageT event:
typedef struct tagLiftSimMsgType0VerBitmask43
{
 // TraceMessage members
 DWORD SeqNumber;
 GUID guid;
 FILETIME ft;
 DWORD TID;
 DWORD PID;

 // Variable arguments for MYINFOEVENT class
 WCHAR szMsg[32];
 ULONG nAction;
} LiftSimMsgType0VerBitmask43;
The TSeqNumberT member is included in the structure because the TTraceMessageT call that generated
the event specified the TTRACE_MESSAGE_SEQUENCE T flag. The TguidT member is included because of
the TTRACE_MESSAGE_GUID T flag. If the TTraceMessageT had specified TTRACE_MESSAGE_COMPONENTID T
flag, then the TguidT member would be replaced with a TDWORDT for the component identifier. You get
the picture: It becomes very intricate. Instead of making structures for every combination of flags
passed to TTraceMessageT, it is probably better to walk the memory pointed to by TMofDataT before
processing the variable arguments. If no flags are specified in a call to TTraceMessageT, then the
resulting data structure contains only the variable arguments. Hence, it is important to evaluate the
flags correctly in the proper order. The diagram in HTUFigure 13.10UTH shows the correct order of
declaration of the resulting structure.

Figure 13.10. Interpreting TTraceMessageT events

Whenever TSetTraceCallback T sets up a filter and it no longer is required, TRemoveTraceCallback T
should be called to remove the call-back registration from the process, like this:
ulError = RemoveTraceCallback(&GUID_NULL);

Summary

This chapter has introduced you to the benefits of event tracing and provided a complete and
thorough discussion about the event-tracing APIs: Every API and structure has been covered.
You've seen how to turn your existing applications into event-tracing providers by simply making a
couple of API calls. In addition, you've been given everything you need to know to develop your
own controllers and consumers. We have used these same techniques to develop a general purpose
event-tracing analyzer, which is available on the Web site that accompanies this book.
Start integrating event traces in your own applications so that in time you'll be in a better position to
investigate problems at customer sites. Using the event-tracing technology opens up the possibility
of obtaining event traces from subsystems apart from your own. This is a real benefit, especially in
multiteam projects for large systems. Event tracing paves the way for unified debug, resource,
operation, and capacity planning activities that have not been previously possible, especially when
the kernel, device drivers, and security activity are included.
The event-tracing APIs are super fast, so any time-sensitive operation should not be affected by
using them. In fact, on multiprocessor systems, each processor is allocated a separate active buffer
to eliminate contention.
One other interesting area is event-tracing security. This is an ACL stored in the registry: If an ACL
exists for the provider, the operating system's event tracer will apply the configured security
credentials. Hence, it is possible to receive an access-denied error from the event-tracing APIs.
Check the Platform SDK for more information on event-tracing security.
A limitation of the event-tracing system is that events delivered to a consumer may not appear in
the exact time order that the events were delivered to the event tracer. This is true only if there are
multiple events within the same millisecond. The lightweight function TTraceMessageT does offer the
facility to sequence the events, but unfortunately, there is no equivalent for TTraceEventT.
Event tracing is one of three high-performance instrumentation techniques available in Windows.
There are also performance counters that make it easy to monitor system utilization. If you want to
expose counters for your own application, you can check out some of the new features in ATL 7.0
in this area. If you want to gain access to performance counters from a client point of view, you can
visit the Performance Data Helper (PDH) library.
An alternative to exposing performance counters is to develop a high-performance WMI provider.
This makes it easy to expose WMI objects that can be accessed through the normal WMI APIs, as
well as being optimized for very high performance both within an application and for transmissions
over a network. The last few sections of HTUChapter 7UTH discuss how to query high-performance data as a
client.

Ten Fast Facts: High-Performance
Instrumentation

1. The main difference between event tracing and performance counters is that it is
hard to track individual resources with performance counters. Performance
counters offer a way to view system utilization, such as memory usage.
Performance counters cannot be used easily for debug logging, for tracking
resources or operations such as a disk drive, or for monitoring registry access.

2. Event-tracing controllers start and stop event-tracing sessions. An application that
produces an event trace is known as an event-tracing provider. Event-tracing
consumers analyze event-tracing log files and monitor the events in real time.

3. Event-tracing controllers can start sessions using the TStartTraceT API and later
stop using TControlTraceT passing the TEVENT_TRACE_CONTROL_STOP T flag.

4. Event-tracing providers can produce both events and event instances. Event
instances are used for hierarchical event-tracing.

5. An event-tracing provider must implement a call-back function prototyped by

TWMIDPREQUESTT and register it using TRegisterTraceGuids T. When the provider
shuts down, it must unregister itself using TUnregisterTraceGuids T.

6. Event-tracing providers produce events using TTraceEventT, and for hierarchical
events they must use TCreateTraceInstanceId T and TTraceEventInstance T.

7. A list of registered event-tracing providers can be obtained using
TEnumerateTraceGuids T.

8. A list of active event-tracing sessions can be obtained using TQueryAllTraces T.
9. Analyzing event traces involves using consumer APIs TOpenTraceT, TProcessTraceT,

and TCloseTraceT. One of the real benefits of the event-tracing consumer APIs is
that they can consume several log files and produce a time-ordered stream of
events.

10. Event-tracing providers that want to produce informational events can do so using
TTraceMessageT.

Appendix A. WMI Event SDK Tools
HTUChapters 7UTH, HTU8UTH and HTU12UTH covered subscribing and publishing WMI events. The aim of this appendix is
to show how you can refine or test your event queries for an administrative script or an application
development project. The WMI SDK comes with a number of tools that include CIM Studio, WMI
Event Registration, WMI Event Viewer, and WMI Object Browser. CIM Studio is covered in
HTUChapter 4UTH. In this appendix, we shall focus on the WMI Event Registration and WMI Event Viewer
tools.
HTUChapter 7UTH covered the three different types of events—intrinsic, extrinsic, and timer instructions—
in detail. The WMI event tools allow you to set up event consumers to receive any WMI event. The
main benefit of the event tools is that they allow visualization and inspection of virtually every
aspect of an event. This is an invaluable resource for a developer. From an event consumer's point
of view, they provide a toolset to refine and test event queries. From an event provider's
perspective, they facilitate testing, which helps to ensure that the provider is working properly.
Let's start a tutorial that sets up and monitors a couple of event queries. We shall use the examples
from HTUChapters 7UTH and HTU8UTH. The first event query will monitor when the CD-ROM drive changes and
has media, such as a music CD, loaded. The second event query will monitor events from an
interval timer instruction.
From the Start menu, run the WMI Event Viewer tool. This tool has two functions. First, it allows
you to view events from previously set-up consumers. Second, it allows you to load the WMI Event
Registration tool to set up the event queries and consumers. HTUFigure A.1UTH shows what you'll see.

Figure A.1. WMI Event Viewer

Let's start by setting up an event query. To do so, launch the WMI Event Registration facility by
pressing the first button on the top left of the toolbar. The WMI Event Registration tool enables the
set up of event queries (also called filters), timer instructions, and event consumers. After these are
set up, the WMI Event Viewer will instantiate the event consumers to receive the events. HTUFigure A.2UTH
shows what the WMI Event Registration tool looks like.

Figure A.2. WMI Event Registration

The left pane lists the selected configuration, which can be Consumers, Filters, or Timers. The right
pane lists either event queries (filters) or consumers, depending on the configuration that is selected
in the left pane. The configuration in the left pane displays currently set-up items or the creation of
new items, such as timers, queries, and consumers. The right pane allows consumers and event
queries to be associated with each other. More on this later.
Let's start by making a new event query. Select Filters and right-click the T__EventFilter T item, as
in HTUFigure A.3UTH.

Figure A.3. Creating a new event query

Select the New Instance menu item. This displays a property sheet that allows the event query
configuration to be entered. First, you'll need to supply a name that uniquely identifies the event
query. Supplying a good name will make it easy to identify the query when it is associated with an
event consumer. Second, enter the event query for the events that you want to receive. Enter the
following query that was covered in detail in HTUChapters 7UTH and HTU8UTH:
SELECT * FROM __InstanceModificationEvent WITHIN 5
 WHERE TargetInstance ISA "Win32_CDROMDrive" AND
 TargetInstance.MediaLoaded = true
Briefly, the query requests events when the CD-ROM drive has changed and media has been
loaded. Last, enter the type of the event query. The only currently supported type is WQL. HTUFigure
A.4 UTH shows how this information is entered.

Figure A.4. Entering configuration for new event query

The next step is to create an event consumer with which the newly configured event query can be
associated. This is an important step because only consumers can make event subscriptions to WMI.
The WMI Event Registration facility makes it easy to set up a consumer and associate it with one or
more event queries. Select the Consumers configuration in the left pane and right-click the
EventViewerConsumer item as in HTUFigure A.5UTH.

Figure A.5. Creating new event consumer

Select the New Instance menu item. This displays a property sheet that allows the event consumer
configuration to be entered (HTUFigure A.6UTH). First, you'll need to supply a name that uniquely identifies
the event consumer. As with setting up an event query, supplying a good name will make it easier to
identify the consumer when it is associated with an event query. Second, enter a description. This
will be displayed in the WMI Event Viewer when the consumer receives an event. Entering a
description is useful to distinguish events received by this consumer when multiple consumers are

receiving events (HTUFigure A.12UTH). Last, enter the severity of the events subscribed to by this consumer.
A value of zero will display an error icon in the WMI Event Viewer when an event arrives. The
TSeverityT property can be used to visualize the importance of an event. As you can see from HTUFigure
A.12UTH, there is a warning icon for the events being subscribed to from the CD-ROM Media Loaded
consumer and an informational icon for the events received by the Timer Event consumer. Set the
TSeverityT property to zero for an error icon, one for a warning icon, or two for an information icon.

Figure A.6. Entering configuration for new event consumer

Figure A.12. WMI Event Viewer displaying events from multiple consumers

Finally, the new consumer needs to be associated with the CD-ROM Media Loaded event query.
The right pane lists all the available event queries with which the consumer can be associated. As
only one query has been set up, only one query is listed. To associate the query to the consumer,
press the green check toolbar button and a green check will appear next to the query, as in HTUFigure
A.7 UTH.

Figure A.7. Associating an event query to an event consumer

Closing the WMI Event Registration tool returns you to the WMI Event Viewer. The Event Viewer
automatically updates itself when registrations are created or deleted. In the example in HTUFigure A.8UTH,
we opened the CD-ROM and closed it with a music CD placed on the tray. This action caused the
CD-ROM management object to change, and the event query was ultimately satisfied because the
MediaLoaded event property became true. Notice that there is a warning icon because the
consumer's configuration had the TSeverityT property set to one.

Figure A.8. WMI Event Viewer displaying newly received event

Let's continue and create an interval timer instruction and an event query to subscribe for the timer
event. In addition, we shall create another consumer to receive the new timer events. Reopen the
WMI Event Registration facility with the WMI Event Viewer. Select the Timers configuration in
the left pane and right-click the __IntervalTimerInstruction item, as in HTUFigure A.9UTH.

Figure A.9. Creating new time instruction

Select the New Instance menu item. This displays a property sheet that allows the timer instruction
configuration to be entered (HTUFigure A.10UTH). First, you'll need to supply a timer identifier (that is, its
name) to reference the timer instruction uniquely. As noted already, make a point of supplying a
good name. Second, set the interval time between events in milliseconds. In the example in HTUFigure
A.10UTH, WMI will fire a timer event every two seconds.

Figure A.10. Entering configuration for new interval timer instruction

The next step is to create an event query that will capture the timer events fired by the new timer
instruction. You'll need to go through steps similar to those that were used to create the CD-ROM
event query, except that the query you enter in the screen in HTUFigure A.4UTH will subscribe for the new
timer events. Here's the timer event query:
SELECT * FROM __TimerEvent WHERE TimerId = "TwoSecondQuery"
Although the above event query could be associated with the CD-ROM Media Loaded consumer,
we prefer to create another consumer to receive the timer events, because it demonstrates setting
multiple consumers, and the event queries associated with the consumer can have a different class
of severity. The events received by the CD-ROM Media Loaded consumer display a warning icon
and those received by the Two Second Timer consumer display an information icon. HTUFigure A.11UTH
shows the timer query being associated with the Two Second Timer consumer.

Figure A.11. Associating a timer event query to an event consumer

When you return to the WMI Event Viewer screen, you'll see multiple events being received by
multiple consumers, as in HTUFigure A.12UTH. This is how you'll be able to visualize your event queries
and monitor various types of events across the network. Using the WMI event SDK tools can
provide a very simple means for a system administrator to monitor activity from servers with a
network.
To examine the detail of an event, either double-click an event or press the properties toolbar
button. HTUFigure A.13UTH shows the event detail of the CD-ROM drive T_InstanceModificationEvent T
in HTUFigure A.12UTH. The T_InstanceModificationEvent T event is covered in detail in HTUChapter 7UTH.
However, note that both the TPreviousInstance T and TTargetInstance T properties are embedded
objects. The WMI Event Viewer allows embedded objects to be displayed in detail by pressing the
object button.

Figure A.13. Viewing an event in the WMI Event Viewer

Pressing the object button (next to the TTargetInstance T property) displays the recently changed
CD-ROM management object: See the screen shot in HTUFigure A.14UTH. All the properties of the
TWin32_CDROMDrive T object can be inspected and you'll also notice that the TMediaLoadedT property is
Ttrue,T which is a requirement of the event query.
The WMI event SDK tools are very useful: You'll find yourself using them continuously during
your software development projects or administrative tasks. The more you use WMI events, the
more you'll realize just how useful they are.

Figure A.14. Viewing TTargetInstance T property

Appendix B. WMI Server Explorer
Microsoft has developed the WMI Server Explorer extension for Visual Studio.NET, a new tool for
interacting with WMI in the integrated development environment. The Server Explorer is a useful
aid that allows you to manipulate and manage various components of a machine. By default, there
are facilities in the server explorer to access the Windows event log, services, performance
counters, message queues, and SQL Server database connections. To add the WMI Server Explorer
extension, you must download and install it from the Microsoft Web site. Go to
HTUhttp://www.microsoft.com/downloads/UTH and perform a keyword search for "Management (WMI)
Extensions for VS.NET" to link to the WMI Server Explorer download page.
In some ways, the WMI Server Explorer extension is similar to the WMI Object Browser, which is
a tool that ships with the WMI SDK. The WMI Server Explorer uses association classes to link
related management objects together. Before delving into a tutorial, let's see what the server
explorer looks like (HTUFigure B.1UTH).

Figure B.1. The Visual Studio .NET Server Explorer

The items listed under "Management Classes" are the WMI classes included in the server explorer
by default. "Management Events" allows you to subscribe for WMI event notifications. More on
this later.

Manipulating Management Objects in the Server
Explorer
Let's go through a short tutorial in using the WMI Server Explorer. The WMI Server Explorer
allows you to add management classes from any WMI namespace into the view you see in HTUFigure
B.1UTH. The WMI Server Explorer displays the class's management objects and any association classes
relating management objects to one another. Let's start by adding the Fruit Basket management
classes that we discussed in HTUChapter 12 UTH. There are two main classes, TSample_Basket T and
TSample_FruitT, and an association class, TSample_BasketFruitMembership T, to link which fruit
belongs in which basket.
To add a management class to the WMI Server Explorer view, right-click on Management Classes
and select the Add Classes … menu option. HTUFigure B.2UTH shows the Add Classes dialog that allows
you to select the namespace and the classes within them that you would like to add to the WMI
Server Explorer view. HTUFigure B.2UTH shows the TSample_Basket T and TSample_FruitT classes being
added.

Figure B.2. Add Classes dialog

After pressing the OK button you'll see the selected classes get added to the view. HTUFigure B.3UTH shows
a simplified view of what the newly added items will look like.

Figure B.3. The newly added management classes

Notice that the full class names are displayed. If you want your classes to have a different display
name, "Fruit Basket" instead of "Sample_Basket," you must add the TDisplayNameT qualifier to the
management class, as in the following MOF declaration.
[
 dynamic: ToInstance,
 provider("FruitBasketProv"): ToInstance,
 SupportsUpdate,
 SupportsDelete,
 TDisplayName("Fruit Basket"): ToInstance ToSubClass T

]
class Sample_Basket
{
 [key] string Name;
 uint8 Capacity;
};
To highlight the similarities between the WMI Object Browser and the WMI Server Explorer, the
screen shot in HTUFigure B.4UTH shows how the WMI Object Browser displays the fruit basket called "The
Basket." Notice that "The Basket" management object is associated with only one item of fruit,
"Orange." If the basket had multiple items of fruit, these would also be listed. The right pane shows

the basket's properties and a tab for invoking any methods, as well as a tab for showing the object
relationships diagrammatically.

Figure B.4. The WMI Object Browser showing the fruit basket objects

Let's see how the same fruit basket is displayed in the WMI Server Explorer. HTUFigure B.5UTH shows a
portion of the view. Notice that we added the TDisplayNameT qualifiers to the TSample_Basket T and
TSample_FruitT classes. The "Fruit Basket" class has one basket called "The Basket." Through the
association class, the basket contains one item of fruit, "Orange." As you can see, this is very
similar to the view you see in the WMI Object Browser.

Figure B.5. The WMI Server Explorer showing the fruit basket objects

The properties of a management object also can be displayed. To do this, right-click the "The
Basket" management object and select the Properties menu option. You will see a Properties
window similar to the one in HTUFigure B.6UTH.

Figure B.6. The WMI Server Explorer properties window

Management class and object methods can also be invoked with the WMI Ser-ver Explorer. The
methods appear on the item's menu. For example, right-click the Fruit management class and you'll
see the menu option AddFruitToBasket … (as in HTUFigure B.7UTH).

Figure B.7. The TFruit T class menu

Select the AddFruitToBasket menu option and you will see the dialog in HTUFigure B.8UTH. To invoke the
method, complete the method parameters and press the invoke button. To add an item of fruit called
"Apple" to a basket called "The Cool Basket," complete the TFruitNameT and TBasketNameT method
parameters respectively. After a method has been invoked, the Results list shows the methods
TReturnValueT and any other output parameters.

Figure B.8. The TAddFruitToBasket T method dialog

Also notice that the menu in HTUFigure B.7UTH has a menu option titled Generate Managed Class. In a
.NET C# development project, this will create a C# class that wraps up access to the management
class in question. This is very handy if you want easy access to WMI objects within your
development projects. The following is a much cut-down extract of the class generated.
public class Fruit: System.ComponentModel.Component {

 // Private property to hold the name of WMI class which created this class.
 private static string CreatedClassName = "Sample_Fruit";

 ...
 .

 // Gains access to the WMI Sample_Fruit.Name property
 [Browsable(true)]
 [DesignerSerializationVisibility(DesignerSerializationVisibility.
 Hidden)]
 public string Name {
 get {
 return ((string)(curObj["Name"]));
 }
 }

 ...
 ..

 // Gains access to the WMI Sample_Fruit.Weight property
 [Browsable(true)]
 [DesignerSerializationVisibility(DesignerSerializationVisibility.
 Hidden)]
 [TypeConverter(typeof(WMIValueTypeConverter))]
 public System.UInt16 Weight {
 get {
 if ((curObj["Weight"] == null)) {
 return System.Convert.ToUInt16(0);
 }
 return ((System.UInt16)(curObj["Weight"]));
 }
 }

 ...

 // Gains access to the WMI Sample_Fruit enumeration and WQL queries
 public static FruitCollection GetInstances(string condition) {
 return GetInstances(null, condition, null);
 }

 ..

 // A wrapper for the WMI Sample_Fruit class method, AddFruitToBasket.
 public static bool AddFruitToBasket(string BasketName, string
FruitName) {
 bool IsMethodStatic = true;
 if ((IsMethodStatic == true)) {
 System.Management.ManagementBaseObject inParams = null;
 System.Management.ManagementClass classObj =
 new System.Management.ManagementClass(null,
 "Sample_Fruit", null);
 inParams = classObj.GetMethodParameters("AddFruitToBasket");
 inParams["BasketName"] = BasketName;
 inParams["FruitName"] = FruitName;
 System.Management.ManagementBaseObject outParams =
 classObj.InvokeMethod("AddFruitToBasket", inParams, null);
 return System.Convert.ToBoolean(outParams.
 Properties["ReturnValue"].Value);
 }
 else {
 return System.Convert.ToBoolean(0);
 }
 }

 ..
}

Subscribing for Event Notification in the Server
Explorer
HTUChapters 7UTH, HTU8UTH and HTU12UTH covered subscribing and publishing WMI events. To be able to refine and test
your event queries within the integrated development environment is a real benefit. You may do this
for an administrative script or for an application development project. The WMI Event Registration
and WMI Event Viewer, discussed in HTUAppendix AUTH,are among the number of tools in the WMI SDK.
Because the WMI Server Explorer is a separate downloadable extension, it is not part of the WMI
SDK.
HTUChapter 7UTH covered the three different types of events—intrinsic, extrinsic, and timer instructions—
in detail. The WMI Server Explorer allows you to set up temporary event consumers to receive any
WMI event. From an event consumer point of view, the WMI Server Explorer provides a means to
refine and test event queries. From an event provider perspective, the WMI Server Explorer
facilitates testing, which helps to ensure that the provider is working properly.
So let's continue the tutorial and set up and monitor an event query. We will use an example from
HTUChapters 7UTH and HTU8UTH. The event query will monitor when the CD-ROM drive changes and has media
loaded, such as a music CD.
To add a management event query to the WMI Server Explorer view, right-click the Management
Events and select the Add Event Query … menu option. HTUFigure B.9UTH shows the Build Management
Event Query dialog that allows you to set up the event query.

Figure B.9. The Build Management Event Query dialog

The dialog's user interface allows you develop a query without having to know all the class names,
event query syntax, and other details to create an event query. The query that we would like to set
up will be equivalent to the following, which was covered in detail in HTUChapters 7UTH and HTU8UTH:
SELECT * FROM __InstanceModificationEvent WITHIN 5
 WHERE TargetInstance ISA "Win32_CDROMDrive" AND
 TargetInstance.MediaLoaded = true
Briefly, the query requests events when the CD-ROM drive has changed and media has been
loaded. When first entering the dialog in HTUFigure B.9UTH, you are presented with a list of all the WMI
namespaces in the list titled "Available classes." HTUFigure B.10UTH shows what the list looks like before it
was expanded in HTUFigure B.9UTH. Expand the Troot\CIMV2T namespace and scroll down until you find the
CD-ROM Drives item (as in HTUFigure B.9UTH). Selecting this will ensure that the resulting query will
include the TWin32_CDROMDrive T management class.

Figure B.10. The available classes list

Next, change the Deliver events for these operations selection to Object modification. Selecting
Object Modification will ensure that the resulting query will include the
T__InstanceModificationEvent T intrinsic event class.
Next, ensure that the Event polling interval is set to 5. This will ensure that the resulting query will
include the TWITHIN 5T clause.
To make the event query more specific, you will need to press the advanced button. HTUFigure B.11UTH
shows the Advanced Query Options dialog.

Figure B.11. The Advanced Query Options dialog

The lower portion of the dialog shows the WQL event query so far. The next task is to add the
TMediaLoaded = true T condition to the event query. This involves finding the TMediaLoadedT
property in the target instance class, TWin32_CDROMDrive T. Entering the desired operator and the
desired value will cause the event query to be updated, as in HTUFigure B.12UTH.

Figure B.12. Specifying the TMediaLoaded=true T condition

Press OK again on the Build Management Event Query dialog. After the WMI Server Explorer
registers the event query subscription, you'll see the event query item appear as in HTUFigure B.13UTH.

Figure B.13. The CD-ROM event query subscription

Finally, when an event occurs, it will appear in the output window in Visual Studio.NET, as in
HTUFigure B.14UTH. Note that the output of the event is on a single line.

Figure B.14. The Visual Studio .NET output window

Expanding the text from one of the events provides every detail of the event. The following is the
last event in HTUFigure B.14UTH expanded. The items in bold demonstrate that the TMediaLoadedT property
did indeed change to be in a loaded state.
CD-ROM Drives Event Query: instance of __InstanceModificationEvent
{
 PreviousInstance = instance of Win32_CDROMDrive
 {
 Availability = 3;
 Capabilities = {3, 7};
 Caption = "HITACHI DVD-ROM GD-5000";

 ConfigManagerErrorCode = 0;
 ConfigManagerUserConfig = FALSE;
 CreationClassName = "Win32_CDROMDrive";
 Description = "CD-ROM Drive";
 DeviceID = "IDE\\CDROMHITACHI_DVD-ROM_GD-
 5000_0212_\\5&35C6CA11&0&0.0.0";
 Drive = "D:";
 Id = "D:";
 Manufacturer = "(Standard CD-ROM drives)";
 TMediaLoaded = FALSE; T

 MediaType = "CD-ROM";
 Name = "HITACHI DVD-ROM GD-5000";
 PNPDeviceID = "IDE\\CDROMHITACHI_DVD-ROM_GD-
 5000_0212_\\5&35C6CA11&0&0.0.0";
 SCSIBus = 0;
 SCSILogicalUnit = 0;
 SCSIPort = 1;
 SCSITargetId = 0;
 Status = "OK";
 SystemCreationClassName = "Win32_ComputerSystem";
 SystemName = "GWCOLE";
 };

 TargetInstance = instance of Win32_CDROMDrive
 {
 Availability = 3;
 Capabilities = {3, 7};
 Caption = "HITACHI DVD-ROM GD-5000";
 ConfigManagerErrorCode = 0;
 ConfigManagerUserConfig = FALSE;
 CreationClassName = "Win32_CDROMDrive";
 Description = "CD-ROM Drive";
 DeviceID = "IDE\\CDROMHITACHI_DVD-ROM_GD-
 5000_0212_\\5&35C6CA11&0&0.0.0";
 Drive = "D:";
 DriveIntegrity = TRUE;
 FileSystemFlagsEx = 524293;
 Id = "D:";
 Manufacturer = "(Standard CD-ROM drives)";
 MaximumComponentLength = 110;
 TMediaLoaded = TRUE; T

 MediaType = "CD-ROM";
 Name = "HITACHI DVD-ROM GD-5000";
 PNPDeviceID = "IDE\\CDROMHITACHI_DVD-ROM_GD-
 5000_0212_\\5&35C6CA11&0&0.0.0";
 SCSIBus = 0;
 SCSILogicalUnit = 0;
 SCSIPort = 1;
 SCSITargetId = 0;
 Size = "644122624";
 Status = "OK";
 SystemCreationClassName = "Win32_ComputerSystem";
 SystemName = "GWCOLE";
 TransferRate = 3264;
 VolumeName = "MP3";
 VolumeSerialNumber = "9ED67994";
 };
};

Glossary

TAliasT
An Alias is an abstraction introduced as part of the Windows XP command line tool WMIC.
It provides simplified keywords, or Aliases, in place of more complex queries that retrieve
and format information from the CIM repository. Using an Alias makes it easier to specify a
complex query from the command line.

TAssociationT
An association is a special management class that illustrates the relationships that exist
between management objects.

TCIM (Common Information Model)T
The common information model defines a model that represents the manageable elements of
the enterprise. It is a core concept of the WBEM initiative and was defined by the DMTF.
The CIM describes the management environment through namespaces, classes, objects,
properties, standard data types, and methods.

TCIM repositoryT
The CIM repository is the store that holds enterprise management information. It uses the
Common Information Model as a template for structuring the data held in the repository,
and it is implementation specific.

TClass providerT
A class provider can generate class definitions dynamically. For instance, the WMI
Performance Counter provider generates WMI classes based on the counter definitions.

TClass schemaT
See [HTUManagement schemaUTH]

TCMIP (Common Management Information Protocol)T
Common Management Information Protocol is part of the Open Standards Interconnect
(OSI) body of standards that defines operations and notification services described in the
standard called Common Management Information Services (CMIS).

TCMIS (Common Management Information Services)T
The Common Management Information Services framework defines a set of messages, their
structure, and their content for use with network management. It is similar in concept to
SNMP but provides more functionality.

TCOM/DCOM (Distributed Component Object Model)T
The Component Object Model (COM) is a Microsoft-defined component software
architecture that allows applications and systems to be built from components supplied by
different software vendors. The Distributed Component Object Model (DCOM) extends
COM by enabling a communication mechanism among objects on different computers.
(Source: MSDN)

TData queryT
Data queries specify which management objects are requested from the management
environment. For example, "TSELECT * FROM Win32_LogicalDisk T".

TDMI (Desktop Management Interface)T
The Desktop Management Interface (DMI) is a specification defined and managed by the
DMTF. It came into existence in 1994 and was the realization of the DMTF's goal to
simplify desktop management. It represents the DMTF's first initiative to reduce the
complexity of desktop management for vendors and administrators.

TDMTF (Distributed Management Task Force) T
The DMTF consortium was founded in May of 1992 by a cooperative of eight companies:
Digital Equipment Corporation, Hewlett-Packard, IBM, Intel, Microsoft, Novell, SunSoft,
and SynOptics. The DMTF now comprises over 200 commercial technology industry
providers whose aim is to work together to develop standards for the maintenance, support,
and development of management standards for personal computer products.

TEvent consumerT
An event consumer is an application that requests events from WMI. There are two types of
event consumers: temporary event consumers and permanent event consumers.

TEvent providerT
An event provider can publish both intrinsic and extrinsic events. This type of provider is
generally coupled with instance providers.

TEvent queryT
An event query specifies exactly the events to which an event consumer would like to
subscribe. For example, " TSELECT * FROM __InstanceModificationEvent WITHIN 30
WHERE TargetInstance ISA T T"Win32_CDROMDrive" T ".

TEvent tracingT
Event tracing is a subsystem that is deeply integrated in the Windows operating system and
is considered part of the Windows Management Instrumentation tool set. Event tracing is
super fast and provides new scope for resolving problems and monitoring and tracking
resources. The most fundamental aspect of event tracing is an Tevent.T

TEvent-tracing sessionT
An event-tracing session manages the events delivered to the operating system's event tracer
and either stores them to a file or delivers them to an event-tracing real-time monitor.

TEvent-tracing provider T
An event-tracing provider publishes events to one or more event-tracing sessions. There are
several providers within the operating system to expose activity in the Windows kernel,

security subsystems, and numerous other subsystems. Any application can expose events to
the operating system's event tracer.

TEvent-tracing analysisT
This is the process of analyzing event traces either by reading one or more event tracing log
files or by monitoring and analyzing the events in a real-time monitor.

TExtrinsic event T
Extrinsic events are custom-defined events. These are useful for applications to publish
events that do not fit in with namespaces, classes, and instances.

TFlavorsT
Qualifiers are characterized by how they are transmitted from parent to child class or from
class to instance. Flavors determine the rules by which a qualifier transmits its information.

THigh-Performance providerT
A high-performance (Hi-Perf) provider allows very fast and efficient access to constantly
changing data.

THTTP (Hypertext Transfer Protocol)T
The transport protocol defined by the W3C that enables the transmission of HTML
(Hypertext Markup Language) pages across the Web. HTTP is one of the underlying
protocols capable of transmitting XML-managed information.

TIETF (Internet Engineering Task Force)T
The Internet Engineering Task Force is a standards body that oversees the evolution of the
Internet architecture and the smooth operation of the Internet. It has been responsible for
defining hundreds of standards for the protocols that proliferate the Internet.

TInstanceT
The term TinstanceT is interchangeable with Tmanagement objectT and Tmanaged object.T

See also [HTUManagement objectUTH]

TIntrinsic eventT
Intrinsic events occur in response to changes to namespaces, classes, and instances.

TInstance providerT
An instance provider exposes the instances that are available for one or more classes. An
instance provider can support instance enumeration, retrieval, creation, modification, and
deletion of instance data. An instance provider needs to store and provide access to its own
data, the local cache.

TKey propertyT

A key property or compound key properties define how a management object will be
referenced.

TLocal cacheT
The Tlocal cacheT is a term used in developing WMI providers. It represents the data that
dynamic providers use when exposing management objects, properties, and methods.
Examples include the Active Directory, an XML file, a database, the Internet, the registry,
or some other storage medium.

TManaged objectT
The term Tmanaged object T is interchangeable with Tmanagement objectT and Tinstance.T

See also [HTUManagement objectUTH]

TManagement applicationT
A management application is a program (such as an MMC snap-in) or Web interface that
can interact with the management environment to gather, inspect, and manipulate a system's
functionality or configuration.

TManagement classT
A management class is the schema to which all management objects (or instances) will
conform.

TManagement namespace T
Namespaces are used in WMI to differentiate among the groups of classes and instances that
represent particular management environments.

TManagement objectT
A management object is an instance of a management class and represents an object whose
properties can be inspected to evaluate the state of the managed item. For instance, a shared
directory on a personal computer can be represented as a managed item by exposing the
name of the share together with its path and a multitude of other properties.

TManagement schemaT
A management schema is a set of classes that instrument a particular management
environment. For instance, the Win32 schema instruments the various Windows-specific
aspects of the operating system. A management schema is also referred to as the TclassT
schema.

TManagement scopeT
A term used by the WMI classes in the .NET Framework to help manage connections to the
WMI operating system services.

TMethod providerT

A method provider implements one or more methods in one or more classes. This type of
provider is generally coupled with instance providers.

TMMC (Microsoft Management Console)T
The Microsoft Management Console is Microsoft's answer to providing a consistent user
interface in which system administrators can find all their management tools.

TMOF (Managed Object Format)T
The Managed Object Format is used to define the structure and contents of the CIM schema.
A MOF text file describes the classes (and instances) of one or more management objects.
The information held in a MOF file can then be imported into the CIM repository.

T.NET Framework T
The .NET Framework is a new platform that has many new technological features that make
it useful for writing, deploying, and running software. A top-level view of the .NET
Framework is that it can be seen as an execution platform that is not tied to a specific
processor architecture. The WMI management environment is exposed through the .NET
Framework through the System.Management library.

TObject path T
An object path is a string that can specifically reference either a class or object instance. An
object path can either be considered a TfullyT Tqualified pathT or a Trelative path.T Relative object
paths omit the machine and namespace names.

TObject propertyT
See [HTUPropertyUTH]

TObject referenceT
See [HTUObject pathUTH]

TPermanent event consumerT
Permanent event consumers offer a robust event delivery system and are implemented as
loadable (on-demand) components. When an event is delivered to a permanent event
consumer, WMI loads the appropriate component (if it has not already been loaded from a
previous event delivery) and then passes the event to it.

TPropertyT
TPropertyT is the term used in WMI to describe the characteristics of a management class or
object.

TProperty providerT
A property provider implements dynamic property access for one or more classes. Properties
are accessed using a class, an instance, or a property context.

TPush provider T

A push provider allows you to create instances and update properties that reside within the
CIM repository. This is useful for data that is not dynamic and solves the problem of having
to create and manage your own local cache. This includes the data storage, data access, and
event notification, all of which are provided by WMI.

TQualifiersT
Qualifiers are the mechanism by which characteristics can be assigned to any of the
elements within a schema. This includes methods, method parameters, properties, classes,
and associations.

TRoleT
A role in WMIC is a namespace that defines and contains alias configuration data. By
default this is the namespace T\\root\CliT. This can be changed by system administrators
who wish to define their own namespaces for their own aliases.

TSchemaT
See [HTUManagement schemaUTH]

TSchema queryT
Schema queries are used to request class information and/or schema associations.

TScriptT
A script is a plain text file and is similar in some respects to an MSDOS batch file. It
contains a series of commands that the Windows Scripting Host (WSH) passes to the
relevant scripting engine for interpretation into specific actions. System administrators can
write scripts to execute routine administrative tasks within the management environment.

TSNMP (Simple Network Management Protocol)T
The simple network management protocol is an open network management protocol
designed to monitor and control network components such as servers, gateways, and routers.
SNMP is an Internet standard defined by the IETF and is part of the TCP/IP suite of
protocols.

TTimer event T
Timer events are a specialized kind of intrinsic event. They are events that are generated and
delivered by WMI using preconfigured timer instructions.

TTimer instructionT
A timer instruction informs WMI when to generate a timer event. There are two types of
timer instructions: absolute and interval timer instructions. Absolute timer instructions
generate and deliver an event at a specific time. Interval timer instructions are continuously
generated and delivered when each interval occurs.

TTemporary event consumerT

Temporary event consumers are applications (clients or Windows services) that subscribe to
WMI for event notification. The event notification is temporary because if the application is
not running, the event cannot be delivered.

TUML (Unified Modelling Language) T
The Unified Modelling Language is used in schema design as a way of creating a visual
template of schemas, with the aim of simplifying the overall development process.

TWBEM (Web-Based Enterprise Management)T
WBEM is an initiative that ties together existing standards with new technologies such as
the CIM.

TWMI (Windows Management Instrumentation) T
The Windows Management Instrumentation is a complete management infrastructure for the
Windows operating systems. It integrates WBEM's concept of a common information model
for management information into the Windows management framework.

TWMICT
Administrators of Windows XP have an additional tool in their systems management armory
called the WMI TCommand lineT or WMIC. As the name suggests, this is a command-line
driven tool that can access local or remote CIM repositories and retrieve, modify, add, and
delete objects in the management environment.

TWMI CIM StudioT
A tool supplied by the WMI SDK that allows developers and system administrators to
navigate, inspect, manipulate, and search the CIM repository.

TWMI ProviderT
A software component that is loaded by WMI to service a management request. There are
several types of providers that can be developed to expose a systems management
environment.

TWSH (Windows Scripting Host)T
The Microsoft Windows Scripting Host (WSH) is a language-independent scripting host for
Windows Script compatible scripting engines. It brings simple, powerful, and flexible
scripting to the Windows platform, allowing you to run scripts from both the Windows
desktop and the command prompt. (Source: MSDN)

TW3C (World Wide Web Consortium)T
The W3C was founded in 1994 with the objective of developing common protocols for the
World Wide Web. The development of these common protocols enables interoperability in
an environment that spans the globe, the Internet.

TWQL (WMI Query Language) T
The WMI Query Language is based on SQL (Structured Query Language) with new
keywords to support specific WMI features. This includes data, schema, and event queries.

TXML (Extended Markup Language) T
XML is a subset of the Standard Generalized Mark-up Language (SGML) and is targeted at
data representation. XML has been adopted by the DMTF as a means of representing the
information stored in CIM across heterogeneous networks.

TZAW (Zero Administration for Windows) T
Microsoft launched the Zero Administration for Windows (ZAW) initiative to show its
commitment to the problems and costs associated with complex administrative
environments. The aim of the ZAW initiative was to reduce the Total Cost of Ownership
(TCO) of running and maintaining a Windows desktop personal computer in the enterprise.
It encompassed a variety of technologies including Windows policy-base management and
more important,WMI.

Bibliography
Booch, Grady. (1993). TObject-Oriented Analysis and Design with ApplicationsT (2nd Ed.). Menlo
Park, CA: Addison-Wesley. [ISBN: 0-805-35340-2]
Booch, Grady, Rumbaugh, James, and Jacobson, Ivar. (1998). TThe Unified Modeling Language
User Guide T. Reading, Mass: Addison-Wesley. [ISBN: 0-201-57168-4]
Brown, Keith. (2000). TProgramming Windows SecurityT. Boston, MA: Addison-Wesley. [ISBN 0-
201-60442-6]
HTUhttp://msdn.microsoft.comUTH: Microsoft Developer Network (MSDN)
HTUhttp://www.dmtf.orgUTH: Distributed Management Task Force (DMTF)
HTUhttp://www.ietf.orgUTH: Internet Engineering Task Force (IETF)
HTUhttp://www.microsoft.comUTH: Microsoft website
HTUhttp://www.rational.com/uml/UTH: Rational Software
HTUhttp://www.textpad.comUTH: Helios
HTUhttp://www.w3.org UTH: The World Wide Web Consortium
Kent, William. (1983). T"A simple guide to five normal forms in relational database theory."T
TCommunications of the ACM T, 26:2, 120–125.
Priestly, Mark. (2000). TPractical Object-Oriented Design with UMLT (2nd Ed). Europe: McGraw-
Hill Education. [ISBN: 0-077-09599-5]
Rector, Brent, and Sells, Chris. (1999). TATL InternalsT. Reading, Mass.: Addison-Wesley. [ISBN 0-
201-69589-8]
Thompson, J. P. (1989). TData with Semantics: Data Models and Data Management T. New York:
Van Nostrand Reinhold. [ISBN: 0-442-31838-3]

	
	
	Copyright
	Preface
	Who Is This Book for and What Is WMI?
	How to Approach This Book and What You Will Learn
	Chapter 1: Introduction
	Chapter 2: Existing Management Frameworks
	Chapter 3: Windows Management Instrumentation
	Chapter 4: A Guided Tour of the Common Information Model Repository
	Chapter 5: Developing Class Schemas
	Chapter 6: Method Design and Schema Class Positioning
	Chapter 7: Developing Management Applications
	Chapter 8: Developing .NET Management Applications
	Chapter 9: Developing MMC Snap-ins
	Chapter 10: Developing WMI Scripts for Administrators
	Chapter 11: WMI Scripting and WMIC
	Chapter 12: Developing WMI Providers
	Chapter 13: High-Performance Instrumentation
	Where Can I Find the Sample Source Code and Scripts?
	Glossary

	Acknowledgments
	Craig Tunstall
	Gwyn Cole

	Chapter 1. Introduction
	Structure of the Book
	Pedagogical Elements
	Target Audience
	Prerequisites
	Terminology
	Software Requirements
	Operating System Requirements
	Table 1.1. WMI-Supported Operating Systems Required

	Hardware Requirements
	Introducing WBEM
	WBEM's Basic Objectives
	Core Objectives
	The Central Information Store
	The Common Information Model
	Object Orientation and CIM
	Building an Information Model
	Structure of the Centralized Repository
	Figure 1.1. Inheritance and the difference between class and instance data

	The Three-Tiered Model
	Figure 1.2. The Common Information Model has three tiers

	Acronyms and Terminology
	Standards Bodies
	Motivation
	De Facto and de Jure Standards
	The Distributed Management Task Force (DMTF)
	Figure 1.3. The DMTF working groups
	Figure 1.4. Key stages in the evolution of the WBEM

	The World Wide Web Consortium (W3C)
	Web-Based Enterprise Management (WBEM)
	Windows Management Instrumentation (WMI)
	Common Information Model (CIM)
	Common Information Model (CIM) Repository
	Managed Object Format (MOF)
	Simple Network Management Protocol (SNMP)
	Common Management Information Services (CMIS)
	Common Management Information Protocol (CMIP)
	Desktop Management Interface (DMI)
	eXtensible Markup Language (XML)
	Hypertext Transfer Protocol (HTTP)
	Extended Schemas
	WMI Scripting
	Summary

	Ten Fast Facts: Web-Based Enterprise Management
	Chapter 2. Existing Management Frameworks
	The Need for a Universal Management Model
	Figure 2.1. A typical network management scenario

	The Simple Network Management Protocol
	A Simple Solution to a Complex Problem
	The SNMP Network Management Station
	Figure 2.2. An SNMP-managed network

	Relevant SNMP Standards
	Figure 2.3. The components and relationships between elements of SNMP
	Figure 2.4. An SNMP network management station (NMS) and SNMP agent interacting

	Structure of an SNMP Message
	Figure 2.5. The basic structure of an SNMP message over TCP/IP

	Communities
	Figure 2.6. Security verification in SNMP 1 and SNMP 2c using communities

	Event Notification: SNMP Traps and Informs
	The Management Information Base
	Figure 2.7. A partial MIB tree hierarchy

	SNMP Security
	Modus Operandi
	Table 2.1. SNMP Operations
	Figure 2.8. The GetRequest operation
	Figure 2.9. The SetRequest operation
	Figure 2.10. The SNMP trap
	Figure 2.11. A simplified version of the functional block diagram (excluding features unique to DMI 2.0s)

	 Advantages of the SNMP Protocol
	Disadvantages of the SNMP Protocol
	The Desktop Management Interface
	The DMI Information Model: The Management Store
	Figure 2.12. Attribute presentation within the DMI Data Model
	Figure 2.13 An excerpt from a MIF file to describe the attribute Group:Disk

	Policy
	Notification of Events
	DMI Security
	MIF Database Security
	Management Interface Security
	Component Interface Security
	Security Indications
	Advantages of the DMI
	Disadvantages of the DMI
	Summary
	Common Elements for Management Frameworks
	Figure 2.14. A two-tiered approach to data instrumentation
	Figure 2.15. A three-tiered approach to data instrumentation

	The Need for a Unified Management Framework

	Ten Fast Facts: SNMP and DMI
	Chapter 3. Windows Management Instrumentation
	The Standard WBEM Components
	Installing WMI
	Installation Files
	Core (WMICORE.EXE) (approximately 6.5 Mb)
	WMI SDK (WMISDK.EXE) (approximately 12Mb)

	Configuring Windows 98 for WMI
	Table 3.1. AutoStartWin9x Registry Value Options
	Optional Setting

	Core Components of WMI
	winMgmt.exe: The Windows Management Service
	Figure 3.1. The command-line options for the Winmgmt executable

	mofcomp.exe: The Microsoft MOF Compiler
	Table 3.2. mofcomp Command-Line Options
	Figure 3.2. The WMI Control snap-in for Windows 2000/WinXP/.NET

	The WMI Control
	Windows Management Instrumentation Tester
	Figure 3.3. The Windows Management Instrumentation Tester

	Automatic MOF Registration
	WMI Log Files
	WMI CIM Repository

	Windows Management Instrumentation
	The Basic Framework of WMI
	Figure 3.4. An overview of the WMI architecture

	WMI Management Applications
	Direct Access
	Indirect Access
	Providers
	Table 3.3. Windows Operating System WMI Providers

	Types of Providers
	Event Providers
	Figure 3.5. The simplified event consumer/event provider model

	Data Providers
	Table 3.4. Types of WMI Providers
	Table 3.5. WMI Provider Classifications

	Event Handling
	Intrinsic Events
	Extrinsic Events
	Timer Events

	Event Consumer
	Temporary Consumers
	Permanent Consumers

	WMI Security
	Authentication
	WMI Permission Assignment Using WMI Control
	Figure 3.6. The WMI Control Security tab displaying the available namespaces
	Figure 3.7. Setting the security options for group or user names
	Table 3.6. WMI Namespace Permission Types
	WMI Security on Windows 9x

	The WMI Query Language
	Figure 3.8. The Windows Management Instrumentation Tester main dialog
	Figure 3.9. The Connect dialog
	Figure 3.10. The Query dialog

	Data Queries
	Table 3.7. ASSOCIATORS OF Statement Keywords
	Table 3.8. REFERENCES OF Statement Keywords

	Event Queries
	Schema Queries

	Summary

	Ten Fast Facts: Windows Management Instrumentation
	Chapter 4. A Guided Tour of the Common Information Model Repository
	Metadata
	Table 4.1. Metadata Examples

	Dynamic and Static Data
	Dynamic Data and the CIM Repository
	Figure 4.1. Example topology without any mechanism to supply dynamic data
	Figure 4.2. Example topology in which product supplies WMI with dynamic data

	The Common Information Model
	Figure 4.3. The three layers of CIM
	The Core Model
	The Common Model
	Systems Model
	Networks Model
	Devices Model
	Physical Model
	Applications Model
	Event Model
	Policy Model
	Support Model
	User Model
	Metrics Model
	Interop Model

	The Extended Schemas

	Namespaces
	Using the CIMV2 Namespace
	Table 4.2. Likely Management Object Locations

	WMI Namespaces and the CIM repository
	Figure 4.4. Example of namespaces found in a Windows XP installation
	Table 4.3. Windows XP Namespaces

	Defining and Using Your Own Namespace
	Figure 4.5. Namespaces and the CIM repository

	Namespaces and Schemas
	Using Existing Schemas
	Subclassing and Instantiating Existing Classes in the CIMV2 Namespace
	Modifying Existing Classes
	Managed Object Format

	MOF Class Declaration
	Figure 4.6 A MOF class declaration

	Qualifiers
	Figure 4.7 Example qualifiers

	Flavors
	Figure 4.8 Example flavors

	Custom Qualifiers
	User-Defined Qualifiers
	Intrinsic Data Types
	Table 4.4. Intrinsic Data Types

	Instance Creation
	Figure 4.9 Creating an instance of MOF
	Aliasing
	Figure 4.10 Using an alias in MOF

	A Compileable MOF File
	Figure 4.11 A compilable MOF (part 1 of 2)
	Figure 4.12. The CIM repository with the new namespace, Example1
	Figure 4.13 A compileable MOF (part 2 of 3)
	Figure 4.14 A compileable MOF (Part 3 of 3)

	ActiveX Components
	Let the Tour Begin!
	Figure 4.15. Browsing and attaching to a namespace
	Figure 4.16. The WMI CIM Studio
	Figure 4.17. Class explorer functions
	Figure 4.18. Class viewer functions

	The Class Explorer Explained
	Figure 4.19. CIM Studio icon definitions
	Associations
	Figure 4.20 An example association

	Key Propagation
	Figure 4.21 Example of key propagation
	Figure 4.22 Instance of an association

	Namespaces and Associations
	Figure 4.23. The cross namespace associations rule
	Figure 4.24. CIM Studio property types

	System Properties
	Table 4.5. WMI System Properties

	Object and Property Qualifiers
	Figure 4.25. The Object qualifiers window for class MySchema_CDROM
	Table 4.6. Object Qualifiers
	Table 4.7. Property Qualifiers
	Figure 4.26. The Property qualifiers dialog window

	CIM Studio Functions
	 Help for a Class
	Figure 4.27 MOF for storage class
	Figure 4.28. The Help dialog for class MySchema_Storage

	 Browse for a Namespace
	 Search for a Class
	Figure 4.29. The Search for Class dialog
	Figure 4.30. Search facility automatically goes to the class you select from the search results
	Figure 4.31. The Associations view

	 Instance Enumeration
	 Change the View (System Properties and Inherited Properties)
	Figure 4.32. The Select Properties dialog

	 WQL Queries Tool
	Figure 4.33. The Query dialog box allows you to create, save, and execute WQL queries

	 Add a Class
	Figure 4.34. The Add Class dialog

	 Create an Association
	 Delete a Class or Association
	Delete a Property
	 Add an Instance
	 Delete an Instance

	Places of Interest within the CIM repository
	The Provider Classes
	Table 4.8. Provider System Classes

	The Namespace Classes
	Figure 4.35. Enumerating the __NAMESPACE class

	Create a Namespace
	Delete a Namespace

	Tutorial: Creating a Namespace and Adding Classes, Properties, and an Association
	Figure 4.36. Adding a key property

	The Wizards
	Figure 4.37. The wizards available in the WMI CIM Studio
	The MOF Generator
	The MOF Compiler
	The Provider Code Generator

	Summary

	Ten Fast Facts: CIM Repository
	Chapter 5. Developing Class Schemas
	Schema Design and System Manageability
	Figure 5.1. WMI product instrumentation life cycle overview

	Case Study: Client/Server E-mail Package
	Figure 5.2. Client Server e-mail topology
	Basic Functionality
	System Requirements for Post Office E-mail

	The Unified Modeling Language
	Further Reading in UML

	Learning the CIM Schema and Win32 Extended Schemas
	Psychological Requirements
	Schema Design Timescales
	Software Application Life Cycle
	Figure 5.3. The software application life cycle

	The Windows Installer and WMI
	The Role of WMI with Standard Software Applications and Management Software Applications

	Schema Design by Teams vs. by Single Developers
	When Should I Commit My Design to UML?
	Can I Design a Schema without UML?

	The Unified Modeling Language in Schema Design
	A Brief Introduction to UML Object Modeling
	Figure 5.4. Class notation in UML
	Figure 5.5. Default UML compartment names
	Figure 5.6. Class notation with properties and methods suppressed
	Figure 5.7. Class notation with properties, types, default values, and methods shown

	Inheritance Notation
	Figure 5.8. Inheritance in UML

	Association Notation
	Figure 5.9. Associations in UML
	Table 5.1. Relationship Cardinality
	Figure 5.10. Associations in UML

	Aggregate Associations
	Figure 5.11. Aggregate associations in UML
	Figure 5.12. Instance association of aggregate relationship
	Figure 5.13 Aggregate relationship association class

	Interpreting the Common Model in UML
	Figure 5.14. The Common Model from the CIM schema

	The Schema Design Road Map
	Figure 5.15. The Schema Design Road Map
	Basic Rules for Schema Design
	Telephone Operator Example

	WMI Topology Design
	First Approach
	Figure 5.16. A centralized approach to instrumenting the E-mail package
	Table 5.2. Pros and Cons of the First Approach

	Second Approach
	Figure 5.17. A decentralized approach to instrumenting the e-mail package in WMI
	Table 5.3. Pros and Cons of the Second Approach

	Schema Design Phase
	Step 1: Gather Information
	Input
	Collate Management-Specific Information
	Ascertain Your Management Data Consumers
	Output

	Step 2: Define System Requirements, Rules, and Assertions
	Input
	Use Case Diagrams and Use Case Details
	Figure 5.18. Use Case diagram for the Post Office
	Table 5.4. Post Office Management Functions
	Figure 5.19 Use Case details for management function Shutdown Post Office
	Rules and Assertions
	Rules
	Table 5.5. Post Office Rules
	Assertions
	Table 5.6. Post Office Assertions
	Output

	Step 3: Define Classes and Properties
	Input
	Name Your Schema
	MOF Qualifiers
	Define Candidate Classes
	Table 5.7. Candidate Classes for the Post Office Schema
	Define Events
	Table 5.8. Intrinsic Event Classifications
	Table 5.9. Intrinsic Event Classifications
	Intrinsic Event Filter Example
	Figure 5.20 Event filter for locked accounts
	Figure 5.21 Event filter for large mailbox accounts
	Define Statistical Classes
	Table 5.10. Candidate Statistical Classes for the Post Office
	Define Settings Classes
	Table 5.11. Candidate Settings Classes for the Post Office
	Define Properties
	Table 5.12. Post Office Classes with Candidate Properties
	Class PO_PostOffice
	Table 5.13. Class PO_PostOffice Properties
	Discussion
	A Brief MOF Interlude
	MOF Language Tip
	Class PO_PostOfficeSettings
	Class PO_UserDetails
	Table 5.14. Class PO_PostOfficeSettings Properties
	Table 5.15. Class PO_UserDetails Properties
	Discussion
	Class PO_EmailAccount
	Table 5.16. Class PO_EmailAccount Properties
	Discussion
	Table 5.17. AccountStatus Property Values
	Class PO_Mailbag
	Table 5.18. Class PO_Mailbag Properties
	Discussion

	Class PO_MessageSettings
	Table 5.19. Class PO_MessageSettings Properties
	Discussion
	Class PO_PostOfficeStats
	Table 5.20. Class PO_PostOfficeStats Properties
	Output

	Step 4: Define Associations
	Input
	The Purpose of Associations
	Table 5.21. Candidate Associationsa
	Table 5.22. Association Cardinality
	Table 5.23. Association Endpoints

	Representing the PostOffice Schema in UML
	Figure 5.22. A UML object model of the Post Office schema system showing the classes and associations. Note that we position our Post Office schema classes in the next chapter.
	Output

	Summary

	Ten Starting Schema Design Tips
	Chapter 6. Method Design and Schema Class Positioning
	Properties vs. Methods
	Methods, Operations, and Functions
	Table 6.1. Difference between Operations and Functions

	Step 5: Define Methods
	Input
	Candidate Methods
	Table 6.2. Candidate Post Office Methods
	Retrieving Information from the Post Office Schema
	Scenario 1
	Scenario 2
	Method Design
	Assigning Methods to Host Classes
	Table 6.3. Post Office Methods and Associated Host Class
	Properties and Parameter Classes

	Method Arguments
	Figure 6.1 Method arguments specified in method signature
	Advantages of Parameter Classes
	Figure 6.2 Method arguments specified through parameter class
	Figure 6.3 Final method signature

	Method Overriding and Polymorphism
	The Post Office Schema Methods
	Why Define Preconditions and Postconditions?

	Method AddUser
	Host Class: PostOffice
	Figure 6.4 Method parameter class for new users
	Table 6.4. AddUser Method Specification

	Method RemoveUser
	Host Class: PostOffice
	Table 6.5. RemoveUser Method Specification

	Method UnlockAccount
	Host Class: EmailAccount
	Table 6.6. UnlockAccount Method Specification

	Method LockAccount
	Host Class: EmailAccount
	Table 6.7. LockAccount Method Specification

	Method StopPostOffice
	Host class: PostOffice
	Table 6.8. StopPostOffice Method Specification

	Method StartPostOffice
	Host Class: PostOffice
	Table 6.9. StartPostOffice Method Specification

	Post Office Schema UML Diagram with Methods
	Figure 6.5. The Post Office UML object model (including methods and parameter class)

	Output

	Step 6: Check Schema Design
	Input
	Table 6.10. Post Office Rules
	Table 6.11. Post Office Assertions

	Rule Generation–Based UML Diagrams
	Final Considerations—Future Additions

	Final Step: Positioning Classes
	Table 6.12. Schema Positioning Stages

	Step-by-Step CIMV2 Namespace Class Positioning
	Extending the CIMV2 Namespace
	Table 6.13. Classes That Can Be Subclassed
	Table 6.14. Associations That Can Be Subclassed
	Classes
	Associations

	Normalization
	CIMV2 Class Placement Objectives

	Putting Class Placement Theory into Practice
	Table 6.15. CIM Models
	Figure 6.6. The help facility in WMI CIM Studio
	Table 6.16. Post Office Class Positioning in the CIM Namespace

	Namespace and Schema Placement
	The Applications Namespace
	Table 6.17. Advantages and Disadvantages of Namespace Positioning
	Limitations of Multinamespace Class Positioning
	Figure 6.7. An arrangement of classes from the Post Office schema
	Example 1. Executed in the CIMV2 Namespace
	Example 2. Executed in the PostOffice Namespace
	Example 3. Executed in the PostOffice Namespace

	Post Office Schema Namespace Positioning
	The Post Office Schema Class Positions
	Figure 6.8. Post Office schema settings classes
	Figure 6.9. Post Office schema statistical classes
	Figure 6.10. Post Office schema method parameter classes
	Figure 6.11. Post Office schema dependency classes
	Figure 6.12. Post Office schema managed element classes
	Figure 6.13. Post Office schema element classes

	Managed Object Format (MOF) Qualifiers and Flavors

	MOF Creation and Testing
	Implementing the Schema: WMI API Calls vs. MOF Code
	Multilanguage Support
	Figure 6.14 Example of the amendment qualifier
	Figure 6.15 Example of the amended qualifier
	Figure 6.16 Example of the DisplayName qualifier
	Figure 6.17 Example of the amendment MOF compiler directive

	The Post Office Schema in MOF
	Brief MOF Syntax Reminder

	PO_PostOfficeHasSettings MOF File
	Figure 6.18. The root/CIMV2/Applications/PostOffice namespace

	Testing
	Schema Deployment
	Summary

	Schema Design and Positioning Q & A
	Chapter 7. Developing Management Applications
	Getting Started
	Object Paths Explained
	Getting an Object
	Enumerating Objects
	Figure 7.1. Win32_Account class hierarchy

	Creating an Object
	First Point
	Second Point
	Third Point
	Example

	Updating Objects
	Deleting an Object
	Performing Queries
	Making Method Calls
	Manipulating Object Properties
	Table 7.1. CIM Data Type to Variant Mappings
	Table 7.2. DATETIME Field Descriptions for Absolute Date/Time
	Table 7.3. DATETIME Field Descriptions for Interval Times

	Manipulating Array Object Properties
	Accessing Objects from Object Properties
	Making Semisynchronous Calls
	Making Asynchronous Calls
	WMI Error Messages
	Overview of Events
	Figure 7.2. WMI event interaction

	Intrinsic Events
	Table 7.4. Intrinsic Event Classes
	Figure 7.3. WMI event classes

	Extrinsic Events
	Figure 7.4. WMI extrinsic event classes

	Timer Events
	Figure 7.5. WMI timer instruction classes

	How to Subscribe to Events
	Writing Applications to Receive Semisynchronous Events
	Writing Applications to Receive Asynchronous Events
	Figure 7.6. DCOM client callback problem
	Figure 7.7. DCOM client callback solution

	More on Security
	Classes that Require Specific Security Privileges
	Localized Namespaces
	Figure 7.8. Example WMI namespace structure

	Overview of High Performance Classes
	Writing Applications to Access High-Performance Data
	Access High-Performance Enumerated Data
	Summary

	Ten Fast Facts: Developing C++/COM Management Applications:
	Chapter 8. Developing .NET Management Applications
	Getting Started
	Figure 8.1. Major .NET Framework management classes

	Getting a Management Object
	Enumerating Management Objects
	Creating a Management Object
	First Point
	Second Point
	Third Point
	Example

	Updating Management Objects
	Deleting a Management Object
	Performing Queries
	Making Method Calls
	Manipulating Management Object Properties
	Table 8.1. CIM Data Type to C# Mappings
	Table 8.2. DATETIME Field Descriptions for Absolute Date/Time
	Table 8.3. DATETIME Field Descriptions for Interval Times

	Manipulating Array Object Properties
	Accessing Objects from Object Properties
	Making Asynchronous Calls
	Overview of Events
	Writing Applications to Receive Asynchronous Events
	Writing Applications to Receive Semisynchronous Events
	Managing Connections to WMI
	Summary

	Ten Fast Facts: Developing .NET Management Applications
	Chapter 9. Developing MMC Snap-ins
	Figure 9.1. The Microsoft Management Console
	Snap-in Architecture
	Figure 9.2. MMC item unique identifiers
	Figure 9.3. MMC's installed snap-ins list

	Getting Started
	Figure 9.4. MMC interfaces and snap-in components
	Table 9.1. MMC Console Interfaces
	Table 9.2. MMC Snap-in Interfaces
	Figure 9.5. MMC snap-in objects

	Snap-in Implementation Basics
	Figure 9.6. MMC snap-in ATL objects
	Table 9.3. MMC ATL Snap-in Component C++ Templates
	Table 9.4. MMC ATL Snap-in Framework C++ Templates

	Let's Make a Snap-in
	Figure 9.7. Windows 2000 Services snap-in
	Figure 9.8. Service item's menu
	Figure 9.9. Service item's toolbar

	Implementing IComponentData
	Implementing IComponent
	The Root Item and General Item Basics
	Figure 9.10. Snap-in with root item

	Adding Your Own Namespace Items
	Figure 9.11. Snap-in with Service item

	Adding Your Own Columns
	Figure 9.12. Snap-in with columns

	Adding Your Own Result Items
	Figure 9.13. Snap-in with result pane items

	Setting Up and Handling Verbs
	Table 9.5. Common Snap-in Verbs
	Figure 9.14. Snap-in with refresh verb enabled

	Adding Your Own Menus
	Figure 9.15. Snap-in menu structure
	Figure 9.16. Snap-in menu resource structure
	Figure 9.17. Snap-in item with custom menu

	Adding Your Own Toolbars
	Figure 9.18. Snap-in toolbar resource
	Figure 9.19. Snap-in item with toolbar

	Adding Your Own Property Pages
	Figure 9.20. Snap-in item with properties verb enabled
	Figure 9.21. Snap-in item's property sheet

	Refocusing an Item's Property Sheet
	Adding Your Own Help
	Primary (Standalone) Snap-in Registration
	More on How ATL Delegates Tasks to an Item
	Renaming Items
	Figure 9.22. Renaming snap-in item

	Drag and Drop
	Figure 9.23. Dragging snap-in items from result pane to scope pane item

	Accessing Web Sites
	Figure 9.24. Snap-in item displaying a Web page

	Displaying Custom Views
	Figure 9.25. Snap-in item hosting an ActiveX control

	Developing Extension Snap-ins
	Figure 9.26. Snap-in extension mechanism
	Figure 9.27. Snap-in extension item binding
	Figure 9.28. Extension snap-in adding a menu item
	Figure 9.29. Extension snap-in example action

	Exchanging Information between Primary and Extension Snap-ins
	Figure 9.30. Extension snap-in adding a menu item with context information

	Extension Snap-in Registration
	Making MMC Snap-ins Theme Aware
	Figure 9.31. MMC snap-in: Not theme aware
	Figure 9.32. MMC snap-in: Theme aware

	Summary

	Ten Fast Facts: Developing MMC Snap-ins
	Chapter 10. Developing WMI Scripts for Administrators
	Scripting, WMIC, and the CIM Studio
	Administration and the WMI CIM Studio
	Administration and the WMIC
	Administration and Scripting
	Guiding Principles
	Prerequisites
	Chapter Structure
	VBScript Boot Camp
	JavaScript vs. VBScript
	Setting Up Your System for Scripting
	Scripting and Administration
	Table 10.1. Matching Common Administrative Tasks to WMI Equivalent

	What Is the Windows Scripting Host?
	Scripts
	Scripting vs. Compiled Languages

	BEST PRACTICE! Script Signing
	The Windows Scripting Host
	Your First Script
	Figure 10.1. First script
	Figure 10.2. Results of running example1.vbs
	Figure 10.4. The result of calling the InputBox function
	Figure 10.3 GUI output using script

	Indentation

	BEST PRACTICE! Code Indentation
	Annotation

	BEST PRACTICE! Code Annotation
	Variants, Variables, and Constants
	Use Meaningful Variable Names

	BEST PRACTICE! Variable Naming
	VBScript Functions
	The WSH Object Model
	Program Statements and Keywords
	Table 10.2. VBScript Keywords

	The Option Explicit Statement

	BEST PRACTICE! Variable Declaration
	Connecting to a Local or Remote Namespace
	Figure 10.5 Scripts That interact with the GUI Note: Because we haven't discussed error checking yet we shall assume that the GetObject call always returns successfully (that is, attaches to a namespace).
	Figure 10.6. The WMI Control Advanced tab can be used to set the default namespace on a machine
	Table 10.3. Security Flags for ConnectServer

	BEST PRACTICE! Using a password and username to attach to a namespace
	BEST PRACTICE! Retrieving locale-specific information
	Security Issues
	Table 10.4. Security Impersonation Levels
	Table 10.5. Security Authentication Levels
	Table 10.6. Security Privilege Constants[*]

	Deciding on the Level of Security Required

	BEST PRACTICE! Connecting to a namespace
	Data Input
	Figure 10.7 Input through the command line Note: If you do not supply the correct number of arguments in this example, then the script will fail.
	Figure 10.8 Input through the GUI

	Error Detection
	Figure 10.9 Calling subroutines
	Figure 10.11. The Standard Error and WMI Extended Error Information dialog boxes
	Table 10.7. VBScript Constants
	Figure 10.10 Subroutines to display errors
	Table 10.8. MsgBox Appearance Constants
	Table 10.9. MsgBox Modal Constants

	BEST PRACTICE! User/Script Interaction
	Error Logging (NT/2000/XP Only)

	BEST PRACTICE! Tracking Unattended Script Behavior
	Table 10.10. Event Logging Types
	Figure 10.13. Event generated by LogWMIError
	WMI Scripting Data Retrieval
	Figure 10.12 Subroutines to record errors in the Windows event log

	BEST PRACTICE! Using InstancesOf
	Figure 10.14 Retrieving the network log-in name and date from WMI
	Figure 10.15. Example of a date value without formatting
	Displaying Date and Time Values (XP Only)
	Figure 10.16. Example of date formatting using SWBemDateTime

	Retrieving Subsets of Instances
	Figure 10.17 Uses a WQL query to get the default printer
	Figure 10.18 Uses a WQL query to list Windows services not started
	Figure 10.19 A WQL query to get the alerter Windows services

	BEST PRACTICE! Use the Get Method
	BEST PRACTICE! Use Semisynchronous Calls to ExecQuery
	WMI Data Modification Scripting Example
	Figure 10.20 Example script that enables disabled user accounts
	Figure 10.21. A MsgBox with the vbYesNo, vbSystemModal, and vbQuestion flags set
	Table 10.11. MsgBox Button Constants

	Data Deletion Scripting Example
	Figure 10.22. Using MsgBox to elicit a response from the user

	Data Creation Scripting Example
	Figure 10.23 Retrieves all the currently installed printers and offers an option to delete

	Association Traversal Using VBScript
	Figure 10.24 Creating a printer configuration

	Executing Methods Using VBScript
	Figure 10.25 Find printers attached to a parallel port

	Summary
	Figure 10.26 Finds the default printer and prints the test page

	Ten Fast Facts: Summary of VBScript Boot Camp
	Chapter 11. WMI Scripting and WMIC
	Identifying the Correct Course of Action
	Make a Note of the Problem Description
	Divide the Problem into Its Constituent Parts
	Decide Which Hardware or Software Components You Are Going to Manage
	Selecting a Namespace
	Figure 11.1. The Search dialog of the WMI CIM Studio

	BEST PRACTICE! Properties vs. Methods
	Which Tool?
	Table 11.1. Administration Tools
	Decide Whether Your Script Should Run Locally or Remotely on the Target Machines
	Decide Whether Your Script Will Run Unattended or Attended
	Table 11.2. Attended and Unattended Inputs and Outputs

	Determine the Variables and Constants
	Candidate Constants
	Candidate Variables

	Determine the Sequence of Steps in the Task

	Script Deployment and Execution
	Local Execution and Storage
	Figure 11.2. The script is stored and runs locally

	Local Execution from a Shared Resource
	Figure 11.3. The script is stored centrally on a shared drive and runs locally

	Remote Connection across a Network
	Figure 11.4. The script is stored locally and attaches across the network to the remote namespace

	Remote Invocation of a Script (Available Only with Windows Script v5.6)
	Figure 11.5. The script is stored locally, copied across the network, and executed as a process in the remote machine
	Figure 11.6 Running a script on a remote machine

	Script Execution Methods
	Executing Scripts at Start Up
	Execute the Script Using the Windows Scheduler
	Figure 11.7. The Windows task scheduler

	Event-driven Script Execution (Windows XP Only)

	Sending E-mail
	Figure 11.8 Sends an e-mail of all Windows services

	Setting Up Your System for Debugging and Testing
	Microsoft Windows Script Debugger (approx. 600k)
	Figure 11.9. Use Notepad to create a new file called scriptdebug.reg
	Figure 11.10 Registry changes to enable script debugging
	Figure 11.11. The two new settings available on the Context menu for .vbs files

	Debugging Your Scripts
	Figure 11.12. The Windows Script debugger main screen
	Figure 11.13. Setting breakpoints in the debugger using F9
	Figure 11.14. The command window can retrieve the value of variables
	Figure 11.15. The command window also can be used to set the value of variables

	Windows Management Instrumentation Command-line (WMIC)
	Using WMIC
	Interactive Mode
	Figure 11.16. The WMIC command prompt
	Figure 11.17. The /? sequence retrieves all available switches, Aliases, and commands

	Configuring WMIC
	Figure 11.18. WMIC configuration

	Interacting with WMIC
	Figure 11.19. Usage information on an Alias

	The WHERE Clause
	Table 11.3. Comparison Operators

	Verbs
	Table 11.4. List of WMIC Verbs

	Adverbs
	Looping WMIC Commands
	Types of Output
	Table 11.5. Supplied XSL Files for Outputting WMIC Results

	Aliases
	Figure 11.20 The basic structure of an Alias in MOF format stored in the root\cli namespace by default
	Figure 11.21. The MSFT_CliAlias class in the root\Cli namespace
	Figure 11.22. The NIC Alias, up close and personal
	Figure 11.23. The Embedded Object dialog for class MSFT_CliConnection
	Figure 11.24. An array of objects associated with the Formats property
	Figure 11.25. Properties of the STATUS format option
	Figure 11.26. The NIC Alias in action

	Creating or Modifying Aliases Using the CIM Studio
	Considerations
	Creating a Simple Alias from the WMIC Command Line

	Using WMIC in Noninteractive Mode
	Figure 11.27. WMIC can format the output in a variety of predesigned styles

	BEST PRACTICE! Usernames and Passwords
	Summary

	Ten Fast Facts: WMIC Tips
	Chapter 12. Developing WMI Providers
	Figure 12.1. WMI client/provider architecture
	Where to Start
	Developing an Instance Provider
	Figure 12.2. WMI instance provider class schema
	Figure 12.3. WMI instance provider component

	Provider Registration
	Figure 12.4. WMI provider registration class hierarchy

	Provider Initialization
	Enumerating Objects
	Figure 12.5. Fruit basket registry structure

	Getting an Object
	Deleting an Object
	Creating or Updating an Object
	Querying for Your Objects
	Figure 12.6. Query processing from provider to client

	Instance Provider Registration
	Developing a Method Provider
	Figure 12.7. WMI method provider component

	Executing Methods
	Method Provider Registration
	Developing an Event Provider
	Figure 12.8. WMI event provider component

	Firing Events
	Event Provider Registration
	Developing an Event Consumer Provider
	Handling Event Notifications
	Figure 12.10. WMI event consumer provider classes
	Figure 12.9. WMI event consumer provider component

	Permanent Event Consumer Provider Registration
	Developing a Property Provider
	Figure 12.11. WMI property provider component

	Exposing Dynamic Properties
	Property Provider Registration
	Developing a Push Provider
	Figure 12.12. WMI push provider component

	Pushing Data to the CIM Repository
	Push Provider Registration
	Security Considerations
	Figure 12.13. Remote access boundaries between clients and providers

	Summary

	Ten Fast Facts: Developing WMI Providers
	Chapter 13. High-Performance Instrumentation
	Overview of Event Tracing
	Figure 13.1. Event-tracing architecture

	Controlling Event Traces
	Starting a Kernel Event-Tracing Session
	Setting Up a Session's Configuration
	Figure 13.2. EVENT_TRACE_PROPERTIES structure
	Table 13.1. LogFileMode Flags
	Table 13.2. EnableFlags Flags

	Querying the Session's Configuration and Statistics
	Table 13.3. ControlCode Flags

	Stopping the Session
	Starting Event-Tracing Sessions
	Querying for Active Event-Tracing Sessions
	Querying for Registered Event-Tracing Providers
	Table 13.4. Published Event-Tracing Providers

	Starting Private Event-Tracing Sessions
	Figure 13.3. Starting a kernel or normal session
	Figure 13.4. Starting a private session

	Developing an Event-Tracing Provider
	Figure 13.5. Lift Simulator event trace
	Defining the Event Class Schema
	Registering an Application as an Event-Tracing Provider
	Developing the Provider's Control Call-Back Function
	Producing an Event Trace
	Figure 13.6. Event-trace schema for Lift Simulator
	Table 13.5. Standard Event Types
	Table 13.6. FieldTypeFlags Flags
	Table 13.7. Flags Bit-Mask Values

	Producing a Hierarchical Event Trace
	Figure 13.7. Flat versus hierarchical event trace

	Analyzing Event-Trace Log Files
	Processing an Event-Trace Log File
	The Event Call-Back Function
	Figure 13.8. Print spooler's event-trace schema
	Figure 13.9. Processing single versus multiple event-tracing log files

	The Buffer Call-Back Function
	The Consumer Event-Tracing APIs

	Monitoring Real-Time Event-Tracing Sessions
	Providing and Analyzing Lightweight Events
	Table 13.8. MessageFlags Flags
	Analyzing Lightweight Events
	Figure 13.10. Interpreting TraceMessage events

	Summary

	Ten Fast Facts: High-Performance Instrumentation
	Appendix A. WMI Event SDK Tools
	Figure A.1. WMI Event Viewer
	Figure A.2. WMI Event Registration
	Figure A.3. Creating a new event query
	Figure A.4. Entering configuration for new event query
	Figure A.5. Creating new event consumer
	Figure A.6. Entering configuration for new event consumer
	Figure A.12. WMI Event Viewer displaying events from multiple consumers
	Figure A.7. Associating an event query to an event consumer
	Figure A.8. WMI Event Viewer displaying newly received event
	Figure A.9. Creating new time instruction
	Figure A.10. Entering configuration for new interval timer instruction
	Figure A.11. Associating a timer event query to an event consumer
	Figure A.13. Viewing an event in the WMI Event Viewer
	Figure A.14. Viewing TargetInstance property

	Appendix B. WMI Server Explorer
	Figure B.1. The Visual Studio .NET Server Explorer
	Manipulating Management Objects in the Server Explorer
	Figure B.2. Add Classes dialog
	Figure B.3. The newly added management classes
	Figure B.4. The WMI Object Browser showing the fruit basket objects
	Figure B.5. The WMI Server Explorer showing the fruit basket objects
	Figure B.6. The WMI Server Explorer properties window
	Figure B.7. The Fruit class menu
	Figure B.8. The AddFruitToBasket method dialog

	Subscribing for Event Notification in the Server Explorer
	Figure B.9. The Build Management Event Query dialog
	Figure B.10. The available classes list
	Figure B.11. The Advanced Query Options dialog
	Figure B.12. Specifying the MediaLoaded=true condition
	Figure B.13. The CD-ROM event query subscription
	Figure B.14. The Visual Studio .NET output window

	Glossary
	Bibliography

