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Foreword

When Carsten and Javad asked me to write a foreword for a book dedicated to
LPV techniques, I had to think 20 years back and recall the ambient work of
this period. LPV techniques are certainly the most beautiful by-product of our
compulsive insistence to write huge (linear) symmetric matrix expressions with an
inequality symbol on the right-hand side of the page. Some used a ∗ character to
avoid replicating symmetric terms to save space for conference papers, which also
proved useful for short journal papers. One could also save a row and a column
by using Schur complements. These were my secret tricks to save money for extra
pages!

More seriously, the LMI period has continued to be a fertile field yielding
sound solutions to new problem classes. Some may be deemed arguable in my
opinion, either because more plausible proxies preexisted or since lack of practical
significance was evident. LPV techniques indisputably form a core contribution and
deserve special attention. The why and how can be sketched as follows.

The need for gain-scheduling or gain interpolation is a recurring design step
which arises in most if not all real-world applications, ranging from aerospace,
automotive, to process plants to cite a few. The rationale being that when plant vari-
ations become prevalent, some form of adjustment of control or filter mechanisms
to the actual system dynamics is insuperable. Viewed differently, gain-scheduling
techniques offer a cheap and fairly transparent way of carrying out nonlinear control
design.

The conventional approach to gain-scheduling is a repetitive design procedure
in which classical linear design methods are the elementary building tools. Such
implementations frequently enjoy success and are deployed in many realistic control
systems. Beyond being extremely laborious, the conventional approach is critically
mistake prone for the following reasons:

• Engineering insight and ad hoc rules are required to bypass combinatorial
explosion when dealing with systems evolving in large operating domains. In
addition, exhaustive and costly validations remain mandatory.
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vi Foreword

• Since they rely on discretization of the operating domain, such approaches incur
a serious risk to miss critical system configurations.

• It is a challenging task to guarantee stability and performance when switching or
interpolating over a finite family of separately designed (local) controllers.

• More importantly, these techniques tacitly assume that parameters are frozen
in time and ignore the nonstationary nature of parameter variations. These
phenomena represent a major source of failure and may well floor the overall
control scheme.

Nearly 20 years ago, LPV techniques emerged as neat and beautiful means in
response to these troubles. In essence, they offer capabilities to handle the whole
operating domain without recourse to discretization. They provide stability and
performance certificates against parameter variations. And as a key ingredient, they
offer an indisputable degree of operational simplicity. In many practical problems,
approximating nonlinear dynamics with LPV dynamics makes sense. LPV models
in open or closed loop with LPV controllers or filters possess a unique feature
which one often refers to as low computational complexity. More concretely, LPV
problems are convex and amenable to LMI computations, the latter being supported
by efficient and reliable software tools. Altogether, this makes these techniques
practical and good candidates for designers’ toolkit.

A comprehensive account of the current state-of-the-art, as well as of the most
recent advances on LPV techniques was becoming pressing. And this is the goal of
this book entitled Control of Linear Parameter Varying Systems with Applications,
edited by Profs. Carsten Scherer and Javad Mohammadpour. Their efforts should be
acknowledged as the realm of LPV techniques has ramified in many directions along
with multiple variants and extensions. This volume is not merely a collection of
chapters. Through these pages, one will find background knowledge for nonexperts
and explorations of most recent frontiers of LPV techniques, all useful to both
theoreticians and practitioners. LPV control and estimation, LPV modeling and
identification are discussed by leading researchers. This is complemented by a rich
set of exciting applications which help conveying concepts, giving insights, and
motivating unfamiliar people. There is no doubt that it will rest as a major reference
for all thoseloving elegant theory or those willing to go beyond classical techniques.

ONERA & Mathematics Institute Prof. Pierre Apkarian
Université Paul Sabatier
Toulouse, France



Preface

Linear parameter varying (LPV) systems are described by linear differential equa-
tions whose describing data depend—possibly in a nonlinear fashion—on time-
varying parameters. The goal of the LPV synthesis problem is to design a controller
of the very same structure such that the overall controlled system satisfies certain
desired specifications on stability and performance over the entire set of permissible
parameter trajectories. Hence, the implementation of LPV controllers takes online
measurements of the time-varying parameters into account in order to improve the
performance over robust controllers, which are compensators without any adapta-
tion capabilities. Since the time-varying parameters often admit the interpretation
of describing the location of the system’s operating point, LPV control methods are
viewed as a viable alternative to classical gain-scheduling designs for controlling
nonlinear systems. In particular, LPV control theory offers advantages over classical
gain-scheduled control in that the resulting LPV controllers are automatically
gain-scheduled, and no ad hoc methods of interpolation of gains are needed. In
addition, it guarantees stability, performance, and robustness properties, which are
generally difficult to achieve with traditional design methodologies. Last but not
least, LPV synthesis exploits the power of available computational tools from
convex optimization.

Since the introduction of the gain-scheduling paradigm about two decades ago
(by Jeff Shamma—then at MIT—and his PhD advisor Michael Athans), the LPV
framework has drawn the attention of many researchers all over the world and a
significant body of related work has emerged. Unfortunately, the history of the
theoretical developments and the applications of LPV theory have not yet been
collectively addressed in a monograph. This volume seeks to bridge this gap
by examining past, recent, and novel state-of-the-art methods and providing an
outlook on modeling, identification, complexity reduction, performance analysis,
and control design of time-varying and nonlinear systems described in the LPV
framework. The book has an interdisciplinary character by emphasizing techniques
that can be commonly applied in various engineering fields. It also includes a rich

vii



viii Preface

collection of illustrative applications in diverse domains which substantiates the
effectiveness of the design methodology and provides pointers to open research
directions.

The book is divided into three parts. Part I collects two chapters of a more
tutorial character on the background of LPV systems. The chapter by Jeff Shamma
introduces the role of LPV systems and the technical delicacies involved in
analyzing stability properties of LPV systems. This contribution describes the
essential ideas on how to handle LPV systems using techniques from convex
optimization (linear matrix inequalities) and set-invariance methods, and it provides
a nice compilation of references to the LPV literature. The chapter by Roland Tóth
et al. gives a theoretical overview of prediction-error-based identification techniques
for modeling LPV systems. It provides useful guidelines in order to choose suitable
methods for the construction of LPV models that can be used for the application of
the techniques in the remainder of the book.

In Part II, we gathered chapters that are devoted to the theoretical advancement
of LPV analysis and synthesis methods. In Chap. 3 by Franco Blanchini et al.
the problem of interpolating parametric controllers is considered, irrespective of
the underlying design philosophy. By using the Youla–Kucera parameterization,
it is revealed how to interpolate controllers for frozen parameters such that
stability of the overall closed-loop system is preserved when the parameters vary
arbitrarily fast. Maurı́cio de Oliveira considers the construction of controllers whose
structure matches the affine parameter dependence of the system for established
LPV synthesis frameworks in Chap. 4. Controller design for systems linearized
around trajectories leads to time-varying LPV systems for which a design approach
is proposed in Chap. 5 by Mazen Farhood. To deal with multiple performance
objectives including classical regulation constraints, Hakan Köroğlu develops a
suitable design methodology for LPV systems in Chap. 6. A nonconservative state-
feedback synthesis technique for switched LPV systems based on path-dependent
Lyapunov functions is proposed by Ji-Woong Lee and Geir Dullerud in Chap. 7.
Robustification of LPV controllers against disturbance inputs in the parameter
measurements is the topic of Chap. 8 contributed by Masayuki Sato and Dimitri
Peaucelle. In Chap. 9, Tri Tran et al. consider time-varying splitting systems in the
context of model-predictive control, in which dissipation-based techniques similar
to those appearing in LPV theory play a central role. Joost Veenman et al. propose an
algorithm for designing gain-scheduled estimators that are robust against structured
uncertainties described by general integral quadratic constraints (IQCs) in Chap. 10.
The more theoretically oriented part is concluded by Chap. 11 on the design of
delay-dependent output-feedback controllers for LPV systems that are affected by
time delays, contributed by Rohit Zope et al.

Part III of the volume showcases concrete applications of LPV modeling and
control techniques in a wide range of technological areas. To comply with industry
standards, the authors Fabiano Daher Adegas et al. of Chap. 12 propose a structured
controller synthesis algorithm for an LPV model of a wind turbine which includes
features of fault tolerance and robustness. Small-satellite attitude regulation with
magnetic actuators is improved by incorporating measurements of the magnetic
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field in the controller through LPV modeling and state-feedback synthesis, as
demonstrated in Chap. 13 by Andrea Corti and Marco Lovera. Jan de Caigny et al.
propose to model LPV systems by interpolation and apply it together with a variety
of LPV synthesis approaches to a vibroacoustic application with high temperature
sensitivity in Chap. 14. Anh-Lam Do et al. investigate how to control semi-active
dampers in a quarter-car model in Chap. 15. Highly nonlinear flexible hypersonic
air-breathing vehicles are controlled on the basis of the so-called gridding approach
to LPV synthesis in Chap. 16 by Hunter Hughes and Fen Wu. Andreas Kominek
et al. suggest tools for generating reduced order LPV models through system
identification and provide an illustration for controlling a turbocharged combustion
engine in Chap. 17. Freeway traffic control is the subject of Chap. 18, in which
Tamas Luspay et al. use scheduling techniques for handling hard constraints and
suppressing undesired phenomena on the network through disturbance attenuation.
Elasticity generates resonance modes that might create performance limitations for
controlling flexible systems; in Chap. 19, Peter Seiler et al. use LPV analysis to
certify conventional controllers for NASA Dryden’s X-53 active aeroelastic wing
testbed and provide a comparison with their own synthesized LPV controller. The
book is concluded with Chap. 20 addressing integrated vehicle chassis control in
which Zoltan Szabo et al. provide an illustration of how to use the LPV technology
for designing hierarchical control architectures.

It is our sincere hope that the readers will enjoy the breadth and depth of this
collection of chapters on LPV theory and applications. Our special thanks go to
Steven Elliot, the former Senior Editor—Engineering and Merry Stuber at Springer
for their assistance throughout this project. Most importantly, we would like to thank
all the contributors fortheir outstanding effort in composing their contributions to
this book.

Houston, TX, USA Javad Mohammadpour
Stuttgart, Germany Carsten W. Scherer
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Chapter 1
An Overview of LPV Systems

Jeff S. Shamma

Abstract The framework of Linear Parameter Varying (LPV) systems concerns
linear dynamical systems whose state-space representations depend on exogenous
nonstationary parameters. Since its introduction by Shamma and Athans in 1988
to model gain-scheduling, the LPV paradigm has become a standard formalism in
systems and controls, with many papers devoted to analysis, controller synthesis,
and system identification of LPV models. This chapter reviews basic concepts and
presents a representative selection of analytical approaches for LPV systems.

1.1 Introducing LPV Systems

1.1.1 Origins

The framework of Linear Parameter Varying (LPV) systems concerns linear dynam-
ical systems whose state-space representations depend on exogenous non-stationary
parameters, as in

ẋ = A(θ )x+B(θ )u,

y = C(θ )x, (1.1)

where u is an input, y is an output, and θ is an exogenous parameter that can be time
dependent.

The LPV paradigm was introduced in the Ph.D. thesis of Shamma [74] for the
analysis of the control design practice of “gain-scheduling” [4, Chap. 9]. In brief,

J.S. Shamma (�)
School of Electrical and Computer Engineering, Georgia Institute of Technology,
Atlanta, GA, USA
e-mail: shamma@gatech.edu

J. Mohammadpour and C.W. Scherer (eds.), Control of Linear Parameter Varying
Systems with Applications, DOI 10.1007/978-1-4614-1833-7 1,
© Springer Science+Business Media, LLC 2012
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4 J.S. Shamma

gain-scheduling is a control design approach that constructs a nonlinear controller
for a nonlinear plant by patching together a collection of linear controllers. These
linear controllers are blended in real time (e.g., via switching or interpolation)
according to available online measurements. See [44, 65, 74, 76, 78, 79, 81] for early
analytical work in gain-scheduling and [46, 66] for survey articles.

The architecture induced by gain-scheduling suggests the LPV framework as
a “middle ground” between linear and nonlinear dynamics. The relationship is as
follows. An analysis of gain-scheduling produces an indexed collection of linear
systems. Likewise, an LPV model consists of an indexed collection of linear
systems, in which the indexing parameter is exogenous, i.e., independent of the
state. In gain-scheduling, this “parameter” is actually a function of the state, and
hence endogenous, as in

ẋ = A(z)x+B(z)u.

y = C(z)x.

z = h(x). (1.2)

The LPV framework abstracts away this nonlinear dependency, resulting in linear,
but nonstationary, dynamics.

1.1.2 LPV vs LTI vs LTV

The terminology “linear parameter varying” was introduced1 in [74] to distinguish
LPV systems from both LTI (linear time-invariant) and LTV (linear time varying)
systems. The distinction from LTI systems is clear in that LPV systems are
nonstationary. The distinction from LTV systems is less apparent, because for any
trajectory of the parameter θ (·), the dynamics of (1.1) constitute a linear time-
varying system. Rather, LPV systems are distinguished from LTV systems in the
perspective taken on both analysis and synthesis.

First consider analysis questions such as stability. Typical assumptions on the
exogenous parameters are bounds on magnitudes and rate of variations, e.g., for all
t ≥ 0,

− μ ≤ θ (t) ≤ μ , (1.3)

−ρ ≤ θ̇ (t) ≤ ρ . (1.4)

1The now standard LPV acronym appears in [81] in 1992 and gained popularity with the works of
[2, 3, 8, 11, 12, 61, 82], among others.
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This characterization defines a family of admissible parameter trajectories. Accord-
ingly, LPV analysis concerns assessing properties (such as stability, disturbance
rejection, tracking, etc.) that hold for a family of LTV systems, rather than a single
LTV system. To highlight this issue going forward, let Q denote some specified
family of parameter trajectories (so that θ (·) ∈ Q).

The distinction between LPV and LTV systems is more pronounced in control
design or synthesis. One typically assumes that the exogenous parameter can be
measured in real time. For example, a state feedback controller may take the form

u(t) = F
(
θ (t)

)
x(t),

where the feedback gain is a function of the current parameter value. More generally,
a state feedback controller may depend on the entire past history of parameter
measurements, as represented by

u(t) = F
(
θ |[0,t]

)
x(t). (1.5)

In either case, the control is constrained to be a causal function of the parameter—
current control values cannot depend on future parameter values. Contrast this
constraint with the classical treatment of LTV systems, e.g., for linear quadratic
optimal control (a standard reference is [42]). For LTV systems, the optimal
controller is again a time-varying linear state feedback law, similar to (1.5). Unlike
(1.5), the optimal state feedback matrix depends exclusively on future parameter
trajectories, e.g.,

u(t) = K
(
θ |[t,∞)

)
x(t),

thereby violating the causality constraint on the control.

1.1.3 Connections

There are two other modeling formalisms worth highlighting in the context of
LPV systems. The first is hybrid dynamical systems (e.g., [69]). Hybrid dynamical
systems possess both continuous and discrete state variables. Accordingly, in the
special case of discrete valued parameters, e.g.,

θ (t) ∈ {θ1, . . .,θn}. (1.6)

LPV systems constitute a specific case of hybrid dynamical systems (namely, where
the underlying continuous dynamics are linear and the discrete switching dynamics
are exogenous). Not surprisingly, many similar discussion and approaches have been
considered separately in both contexts (cf., stability analysis issues in [48]).

The second formalism is jump linear systems (e.g., [28]). Jump linear systems
can be viewed as a case of LPV systems in which parameter trajectories evolve
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according to a probabilistic rule. The treatment of both LPV and jump linear systems
shares the aforementioned perspectives on control, namely, that control laws must
have causal dependencies on parameter trajectories. In the jump linear system case,
the design of control laws typically exploits the known transition probabilities of the
parameter’s stochastic evolution.

1.1.4 Applications

The LPV paradigm has been used for modeling and control in a variety of
applications. Traditionally, gain-scheduling was a prevalent design approach for
flight control, and not surprisingly, many of the first papers exploiting the LPV
framework concerned flight control. These have been followed by several papers
using the LPV framework in a variety of settings. A representative (and incomplete!)
selection of LPV application areas includes:

• Flight control2 and missile autopilots [9, 27, 34, 51, 62, 82, 86]
• Aeroelasticity [10, 40, 43, 93]
• Turbofan engines [6, 26, 36, 85]
• Magnetic bearings [52, 94, 95]
• Automotive systems [7, 35, 38, 64, 91, 99]
• Energy [15, 47, 55, 68]

as well as microgravity [54], IC manufacturing [90], anesthesia delivery [49], and
diabetes control [63].

1.1.5 Outline

The remainder of this overview chapter presents various results on both analysis and
control design for LPV systems. The chapter begins with stability and robustness
of LPV systems. As previously discussed, a main concern is understanding what
properties hold for families of parameter variations. The chapter continues with a
discussion of control design for LPV systems, focusing on three complementary
approaches: linear matrix inequality (LMI) methods, stable realizations, and set-
invariance methods. Again, the issue of causal dependency on parameter variations
is an important concern. Finally, the chapter presents some concluding remarks
regarding other aspects of LPV systems not discussed herein.

Regarding the forthcoming presentation, the analysis and theorems stated herein
are presented in an informal manner. Technical details may (and should) be found
in the associated references. Finally, standard notation is used throughout, with
clarifications provided as needed.

2Boeing 747, F-14, F-16, and VAAC Harrier.
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1.2 LPV Stability Analysis

As stated in section, analysis questions for LPV systems ask what properties hold
for families of parameter trajectories. A baseline assumption is that any control
design produces an LPV system that is stable for constant parameter trajectories.
This assumption stems from the relationship to gain-scheduling, where both stability
and performance are guaranteed by design under constant parameter values. An
important issue is then determining what properties are preserved under parameter
time variations. The following sections discuss the basic stability question and
presents various theoretical results for two limiting cases: (1) slow time variations
and (2) arbitrary time variations. The section concludes with a broader discussion
of robust stability, which also sets the stage for a forthcoming section on controller
design.

1.2.1 Instability and Time Variations

1.2.1.1 Induced Instability

A well-known phenomenon from linear systems analysis is that time variations can
induce instability. There are examples (e.g., [53]) of LTV systems

ẋ = A(t)x

such that the eigenvalues of A(t) are in the left half plane for all t ≥ 0, but for which
solutions, x(t), grow exponentially.

The usual intuition behind this phenomenon is illustrated in Fig. 1.1. This figure
depicts state trajectories of the LPV system

ẋ =

(
0 1

−θ 2 0

)
x

Fig. 1.1 Instability induced
by switching dynamics
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with θ periodically switching between two values, e.g., θ (t) ∈ {ωa,ωb}. Although
for each fixed value of θ the LTI system is (marginally) stable, the state undergoes
phases of increasing and decreasing magnitude. Instability occurs by an alignment
of phases of increasing magnitude.

1.2.1.2 Induced Non-Minimum Phasedness

Related to induced instability is induced “non-minimum phasedness.” Right-half-
plane zeros in the transfer function of an LTI system impose fundamental limitations
in achievable performance (cf., [21, 33]). While time-varying systems do not have
right-half-plane zeros per se, there are similar notions and similar resulting limits of
performance. Shamma [75] defines a non-minimum phased property for nonlinear
time-varying systems where an unbounded input produces a bounded output.
Shamma [75] goes on to show that this property imposes fundamental limitations
on closed-loop disturbance rejection (see also [73]).Just as parameter time variations
can induce instability, they can also induce such non-minimum phased behaviors.
That is, an LPV system can be minimum phase for constant parameter values, but
non-minimum phase under time variations, and thereby have fundamental limits of
achievable performance that are not apparent from the constant parameter analysis.
Shamma and Athans [81] present such an example as a “potential hazard” of gain-
scheduling.

1.2.2 Stability: Slow Time Variations

This section presents a collection of results that formalize the following statement:
Stability for constant parameter trajectories implies stability for slowly time-
varying parameter trajectories.

1.2.2.1 Stability vs Peaking

While the forthcoming conditions for stability have different specific setups and
proofs, they all share a similar intuition.

First, let Θ denote the set of admissible parameter values.3 When convenient, we
may distinguish between a continuum or discrete set. Accordingly, let Θc denote the
continuous set defined in (1.3), and let Θd denote the discrete set defined in (1.6).
Now assume that for any θ0 ∈Θ , the LTI system

ẋ = A(θ0)x (1.7)

3Whereas Q denotes admissible trajectories for θ (·), the related Θ denotes admissible values of
θ (t).
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Fig. 1.2 Stability vs peaking. The bottom line indicates the actual state magnitude. The thin
middle line indicates a succession of upper bounds implied by me−λ t . Finally the top line top
line is an exponentially decaying overall upper bound

is exponentially stable. In particular, let m≥ 1 and λ > 0 be such that for any θ0 ∈Θ ,
solutions of (1.7) satisfy4

|x(t)| ≤ me−λ t |x(0)| .
The parameter m is referred to as the “peaking constant” [32]. In terms of the
previous discussion on induced instability, the peaking constant reflects that the state
may increase in magnitude before decaying exponentially.

Figure 1.2 illustrates the main intuition behind stability under slow time vari-
ations. Assuming the discrete case Θd, after each switched parameter value, there
may be a period of peaking before exponential decay sets in. As long as switching
does not occur too rapidly, then there cannot be an alignment of phases of peaking
(as in Fig. 1.1).

1.2.2.2 Characterizing Slow Variations

The following are various specifications of “slowly time-varying.”

• Continuous case, Θc: Assume Lipschitz continuity of A(·), i.e., for some LA > 0,5

∥
∥A(θ )−A(θ ′)

∥
∥≤ LA

∣
∣θ −θ ′∣∣

for all θ ,θ ′ ∈ θc.

– Persistently slow: ∣∣θ̇
∣∣< ε.

4|x| denotes the Euclidean norm of x ∈ Rn.
5‖A‖ denotes the induced matrix norm, supx�=0 |Ax|/ |x|.
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– Slow on average:

inf
T>0

sup
t0≥0

1
T

∫ t0+T

t0

∣∣θ̇
∣∣ dt < ε

over any interval [t0, t0 +T ] is small.

• Discrete case, Θd: Let t0, t1, t2, . . . denote switching times such that θ (t) is
constant over intervals [tn, tn+1). Define “dwell times,” Tn = tn − tn−1.

– Large average dwell time:

sup
n∗≥1

inf
n≥1

Tn+1 + · · ·+Tn+n∗

n∗
>

1
ε

(1.8)

for any n.

Theorem 1.1. In any of the above settings, the LPV system (1.1) is exponentially
stable for sufficiently small ε > 0.

Stability results for sufficiently slow time variations, particularly the persistently
slow case, trace back to classical results in ordinary differential equations (cf., [31,
p. 125]). Nonetheless, a suitable analysis can derive revealing explicit bounds in
each of the above cases:

• Persistently slow [74] and slow on average [41]:

ε <
λ 2

4LAm log(m)
.

• Average dwell time [48]: There exists an n∗ such that (1.8) is satisfied with

ε <
λ

log(m)
.

An interesting implication from the above bounds is that time variations can be
arbitrarily fast when m = 1. In terms of the previous discussion, m = 1 implies that
trajectories in the constant parameter case have no peaking, and therefore cannot
align to produce instability.

1.2.3 Stability: Arbitrary Time Variations

1.2.3.1 Stability: Arbitrary Time Variations

As opposed to the case of sufficiently slow variations, this section discusses the
stability question from the other extreme, namely, arbitrary time variations. It
turns out that answering such questions is subject to computational complexity
limitations.
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For this discussion, consider the discrete-time LPV system:

x(t + 1) = A(θ (t))x(t), (1.9)

where Θd is a finite set.

Theorem 1.2 ([20, 87, 88]).

• Determining whether solutions of (1.9) are bounded is undecidable (even for
binary Θd).

• Determining whether (1.9) is asymptotically stable is NP-hard.

Consequentially, deriving efficient algorithms for assessing stability will remain
to be elusive.

1.2.3.2 Quadratic vs Non-Quadratic

A consequence of the complexity result is that one must settle for non-definitive
methods or inefficient algorithms to assess stability. The following sufficient
condition is known as quadratic stability (e.g., [60]):

Proposition 1.1. Let X ∈ Rn×n be symmetric, positive definite, and satisfy

XA(θ )+AT(θ )X < 0

for all θ ∈ Θ . Then the LPV system (1.1) is exponentially stable for all (Θ -valued)
trajectory families Q.

An immediate proof is that xTXx is a Lyapunov function for the LPV system.
In fact, the hypothesis of Proposition 1.1 is that xTXx is a Lyapunov function for
all associated constant parameter LTI systems. There is an interesting connection to
the previous discussion on slowly varying systems. Namely, the change of variables
z = X1/2x produces an LPV system with m = 1 for all constant parameter values,
which recovers the conclusions of Proposition 1.1 for arbitrary variations.

Of course, Proposition 1.1 is only a sufficient condition. The following coun-
terexample is due to [30]. The setup is a second-order system whose dynamics
matrix can switch between two matrices:

ẋ ∈ {A1x,A2x}.

This can be viewed as an LPV system with Θd = {1,2}. [30] show that for

A1 =

(−1 −1
1 −1

)
and A2 =

(−1 −a
1/a −1

)
,

and 3+
√

8 < a < 10: (1) the above system is stable for arbitrary switching and (2)
there does not exist an X satisfying the conditions of Proposition 1.1.
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t t+T

Fig. 1.3 Illustration of integral for Lyapunov function construction

1.2.3.3 Lyapunov Structure

While quadratic Lyapunov functions need not characterize stability under arbitrary
parameter variations, one can derive certain special structures of suitable Lyapunov
functions. The following discussion is motivated by the results of [45, 58].

First, some notation. Let

Φ(t,τ;θ ([τ, t]))

denote the state transition matrix for an LPV system where the dependence on the
parameter trajectory (over the interval [τ, t])is explicit. Accordingly,

x(t) = Φ (t,τ;θ ([τ, t]))x(τ).

Assuming that an LPV system is exponentially stable for all parameter trajecto-
ries, there exist m and λ > 0 such that

‖Φ(t,τ; θ ([τ, t]))‖ ≤ me−λ (t−τ).

Let T be such that me−λ T <1, and define the following Lyapunov function candidate
(based on converse Lyapunov function methods, e.g., [92]):

V (x, t) =
∫ t+T

t
|Φ(τ, t;θ ([t,τ]))x|2 dτ.

Figure 1.3 illustrates the construction of this function. In words, this function is
the energy of the solution over the interval [t, t +T ]. One can show that V (x(t), t) is
decreasing along solutions of the LPV system. In particular,

V (x(t + h), t + h)−V (x(t), t)≈−h |x(t)|2+h |x(t +T )|2 <−
(

1−me−λ T
)
|x|2.
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Neglecting issues of differentiability, the above construction suggests that

d
dt

V (x(t), t)<−c |x|2 .
Inspecting the structure of this Lyapunov function, one sees that it can be written
as a quadratic function in x, where the defining matrix is a function of the future
parameter trajectory, i.e.,

V (x(t), t) = xT(t)X
(

θ ([t, t +T ])
)

x(t).

In fact, one can reparameterize the function to be a function of past parameter
trajectories, as in

V (x(t), t) = xT(t)X̃
(

θ ([t −T, t])
)

x(t).

Lee and Dullerud [45] used a similar construction to derive the following:

Theorem 1.3 ([45]). An LPV system is exponentially stable for arbitrary time
variations if and only if there exists a trajectory dependent quadratic Lyapunov
function of the form

V (x, t) = xTX
(

θ ([t −T, t])
)

x.

In discrete time, Lee and Dullerud [45] uses this result to derive a numerical
search for Lyapunov functions. Regarding the previous discussion on complexity,
this search may need to admit progressively longer intervals of trajectory depen-
dence.

It turns out that one can eliminate the dependence on the parameter trajectory
altogether. The intuition is as follows. From the Lyapunov function in Theorem 1.3,
define

V̄ (x) = inf
θ([t−T,t])

xTX
(

θ ([t −T, t])
)

x.

In words, the new Lyapunov function is the former Lyapunov function evaluated at
a “worst case trajectory” that is x-dependent. Again, an informal analysis illustrates
that this parameter-independent Lyapunov function decreases along the solution
of the LPV system for all parameter trajectories. This motivates the existence in
general of a pseudo-quadratic Lyapunov function.

Molchanov and Pyatnitskiy [58] establish the following:

Theorem 1.4 ([58]). An LPV system is exponentially stable for arbitrary time
variations if and only if there exists a Lyapunov function of the form

V (x) = xTX(x)x

for some family of matrices X(·), with the property that X(αx) = X(x) for α ≥ 0.

For further discussion, see [56, 57] which go on to characterize alternative
piecewise linear structures for exponentially stable LPV systems. See also the
survey [17], monograph [18], and references therein.
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Fig. 1.4 Block diagram for
robust stability analysis

1.2.4 Robust Stability

Beyond basic stability in feedback control systems is the broader issue of robust
stability. Robust stability concerns maintaining stability in the presence of possible
modeling errors. Many questions of robust stability can be represented in the form
of Fig. 1.4 (see [100]). The idea is that the stable system M is perturbed by feedback
with an “error” dynamical system, Q. Nominally, Q = 0. Robust stability asks
whether feedback with Q leads to a closed-loop stable configuration for all Q ∈ Q,
where Q defines a class of admissible perturbations. The following discussion
presents two approaches to this issue: slowly varying operators and small-gain
conditions.

1.2.4.1 Slowly Varying Operators

One could anticipate that the previous discussion on slowly varying systems could
be applicable to robust stability analysis as well. One issue is that the analysis
was restricted to ordinary differential equations, and particularly, finite dimensional
systems, whereas a model perturbation, Q, may be infinite dimensional (e.g., time-
delay).

Daleh et al. [29, 80, 98] develop slowly varying approach for classes of infinite
dimensional systems. Shamma and Athans [80] assumes an LPV system in the
forward loop and a convolution operator in the feedback loop, resulting in a so-
called Volterra integrodifferential equation:

ẋ(t) = A(θ (t))x(t)+
∫ t

0
B(θ (t))q(t − τ)C(θ (τ))x(τ)dτ.

Daleh et al. [29, 98] do not make explicit connection to LPV systems, and
so the presentation here is an adaptation. Let M denote the parameter dependent
input/output operator (cf., [31]),

z(t) =
t

∑
τ=0

m(t − τ,θ (t))e(τ).
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This can be viewed as a collection of convolution kernels, indexed by θ . Likewise,
D is defined by

v(t) =
t

∑
τ=0

q(t − τ,θ (t))z(τ).

One can show that if θ is slowly varying, then these input/output operators are also
slowly varying according to a notion defined in [29].

These works make an additional assumption, namely, that the feedback configu-
ration with constant θ has some added margin of stability (compare to λ > 0 in the
finite dimensional case). The main result in both [80] and [29] is that, assuming the
added margin of stability in the constant parameter case, stability is preserved under
sufficiently slow parameter variations.

1.2.4.2 Small-Gain Condition

A well-known result for robust stability analysis is the small-gain theorem [31].
While small-gain theorems are applicable to a broad class of dynamical systems,
the presentation here focuses on the linear, and in particular, LPV case.

First, define the induced norm of an LPV system as follows. Let M denote the
operator relationship between u and y characterized by the LPV system (1.1) under
zero initial conditions (also denoted by M ∼ {A(θ ),B(θ ),C(θ )}). Now define6

‖M‖i,2 = sup
θ(·)∈Q

sup
u

‖y‖2

‖u‖2
.

The following is an LPV generalization of the bounded real lemma (e.g., [23]).

Proposition 1.2. Let X : Rp → Rn×n be symmetric positive definite, differentiable,
and satisfy

p

∑
i=1

θ̇i
∂X
∂θi

(θ )+X(θ )A(θ )+AT(θ )X(θ )+X(θ )B(θ )BT(θ )X(θ )+CT(θ )C(θ )< 0

or equivalently

⎛

⎜
⎝

(
∑p

i=1 θ̇i
∂X
∂θi

(θ )+X(θ )A(θ )+AT(θ )X(θ )
)

X(θ )B(θ ) CT(θ )
BT(θ )X(θ ) −I 0

C(θ ) 0 −I

⎞

⎟
⎠< 0

for all θ (·) ∈ Q and θ ∈Θc ⊂ Rp. Then M ∼ {A(θ ),B(θ ),C(θ )} satisfies

‖M‖i,2 < 1.

6For f : R → Rn, ‖ f ‖2 =
(∫ ∞

0 f T(t) f (t)dt
)1/2

.
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A simple proof of the first statement is to use the above matrix equation and
positive definiteness of X(·) to verify that

d
dt

(
xT(t)X(θ (t))x(t)

)
< uT(t)u(t)− yT(t)y(t).

Integrating this inequality gives the desired result. The equivalent second statement
stems from an application of Schur complement arguments.

Proposition 1.2 coupled with the standard small-gain theorem provides a numer-
ical approach to robust stability analysis for LPV systems.

Theorem 1.5. Let M ∼ {A(θ ),B(θ ),C(θ )} satisfy the hypotheses of Proposition
1.2. Then the feedback configuration of Fig. 1.4 is stable for all Q satisfying
‖Q‖i,2 ≤ 1.

The appeal of this approach is the opportunity to incorporate algorithms for linear
matrix inequalities [22, 23] to verify numerically the conditions of Proposition 1.2
(cf., forthcoming section on control design).

1.3 LPV Control Design

The following sections review selected approaches to LPV control design, namely,
(1) LMI methods, (2) stable realizations, and (3) set-invariance methods.

1.3.1 Linear Matrix Inequality Methods

There have been several developments contributing to LMI methods for LPV control
design. First is the development of LMI-based analysis (and synthesis) methods for
LTI systems (e.g., [21]). Second is the generalization of these results to LPV systems
(e.g., the previous discussion on robust stability and induced norms). Third is the
broad availability of advanced convex optimization software (e.g., cvx7).

The following steps summarize the general idea in LMI methods for LPV
systems:

• Step 1: Derive a (in general, sufficient) analysis condition for a desired closed-
loop property.

• Step 2: Evaluate this condition on the closed-loop LPV system (plant and
controller in feedback).

• Step 3: Transform the search for control parameters into a convex search.
• Step 4: If the convex search is successful, extract controller parameters.

7http://cvxr.com/cvx/.
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The following presentation illustrates these steps for the basic problem of
stabilization.

Step 1: The following is a slight generalization of Proposition 1.1.

Proposition 1.3. Let X : Rp → Rn×n be symmetric positive definite, differentiable,
and satisfy

p

∑
i=1

θ̇i
∂X
∂θi

(θ )+X(θ )A(θ )+AT(θ )X(θ )< 0 (1.10)

for all θ (·) ∈ Q and θ ∈ θc ⊂ Rp. Then the LPV system

ẋ = A(θ )x

is stable.

Step 2: Now consider designing a state feedback u = F(θ )x. Applying
Proposition 1.3 to the closed-loop dynamics results in

p

∑
i=1

θ̇i
∂X
∂θi

(θ )+X(θ )(A(θ )+B(θ )F(θ ))+(A(θ )+B(θ )F(θ ))TX(θ )< 0, (1.11)

where X(θ ) = XT(θ )> 0 and F(θ ) are to be determined.

Step 3: The condition (1.11) in Proposition 1.3 involves a search for X(·) and
feedback matrix F(·). Because of the product term, the set of X(·) and F(·)
satisfying (1.11) is not convex. To remedy this issue, let

Y (θ ) = X−1(θ ) and G(θ ) = F(θ )X−1(θ ),

and multiply (1.11) on the left and right by the symmetric Y (θ ) (which does not

change the definiteness). This leads to

p

∑
i=1

θ̇i
∂Y
∂θi

(θ )+A(θ )Y (θ )+B(θ )G(θ )+Y(θ )AT(θ )+GT(θ )BT(θ )< 0. (1.12)

Note that (1.12) imposes a convex constraint on Y (·) and G(·). Accordingly, one
can use convex optimization to assess the feasibility of (1.12) and construct a
suitable solution if possible. Note that an actual implementation would require a
discretization of the space of parameter values, Θc.

Step 4: Reconstruct the controller feedback matrix as

F(θ ) = G(θ )Y−1(θ ).
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There have been considerable advances beyond stabilization, particularly for
LPV disturbance rejection and induced norm minimization. The starting point (for
Step 1) is the induced norm condition for LPV systems, as in Proposition 1.2.
A representative sampling of this area includes [1, 2, 8, 11, 59, 61, 70, 96, 97]. See
also the review in [66].

1.3.2 Stable Realization

Initial research in LPV control design focused on constant parameter stability and
performance, and issues of parameter variations and the impact on stability were
analyzed after the fact. In research that followed, the possibility of parameter
variations was recognized in the control design process and sufficient conditions
for stability were included as part of the controller construction. As a consequence,
the prospect of time variations limited the constant parameter designs. A middle
ground is the following challenge: design for constant parameter performance
with guaranteed varying parameter stability. Recent work [19] exploits a thus far
neglected degree of freedom to meet this challenge. This degree of freedom is in the
realization of the controller. The following proposition illustrates this concept:

Proposition 1.4 ([19]). Let M ∼ {A(θ ),B(θ ),C(θ )} where A(θ ) is Hurwitz for
all θ ∈ Θc. There exists an M′ ∼ {A′(θ ),B′(θ ),C′(θ )} that is stable for arbitrary
parameter variations and satisfies

C(θ )(sI −A(θ ))−1B(θ ) =C′(θ )(sI −A′(θ ))−1B′(θ )

for all (constant) θ ∈Θc.

It is important to note that M and M′ are not the same LPV system. Rather,
they are two equivalent realizations for constant values of θ , but they have different
dynamic behaviors for varying trajectories.

A derivation is as follows. The stability condition on A(θ ) implies the existence
of a symmetric positive definite parameter dependent X(θ ) such that

X(θ )A(θ )+A(θ )TX(θ )< 0.

Let X(θ ) = RT(θ )R(θ ) and define

A′(θ ) = R(θ )A(θ )R−1(θ ), B′(θ ) = R(θ )B(θ ), and C′(θ ) =C(θ )R−1(θ ).

By construction, the resulting realization of M′ satisfies the quadratic stability
condition of Proposition 1.1.

Of course, this degree of freedom only can be applied to the controller. Blanchini
et al. [19] combine this idea with stable parametrization methods from [39] to derive
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the following result. First, define an LPV system P ∼ {A(θ ),B(θ ),C(θ )} to be LPV-
stabilizable if there exists an LPV controller K ∼ {AK(θ ),BK(θ ),CK(θ ),DK(θ )}
such that the (closed-loop) LPV system

ẋ = A(θ )x+B(θ )
(
CK(θ )z+DK(θ )C(θ )x

)

ż = AK(θ )z+BK(θ )C(θ )x

is stable for arbitrary parameter variations. Blanchini et al. [19] provide conditions
for stabilizability, but the verification of these conditions (and, accordingly, con-
troller construction) is subject to the aforementioned complexity concerns.

Theorem 1.6 ([19]). Assume

• P ∼ {A(θ ),B(θ ),C(θ )} is LPV-stabilizable.
• K ∼ {F(θ ),G(θ ),H(θ )} stabilizes P for all constant parameter values.

Then there exists a K′ ∼ {F ′(θ ),G′(θ ),H ′(θ )} that stabilizes P for arbitrary
parameter variations and furthermore satisfies

H(θ )(sI−F(θ ))−1G(θ ) = H ′(θ )(sI −F ′(θ ))−1G′(θ )

for all θ ∈Θc.

Thus, K′ realizes the same controller as K for constant parameter values, but
assures closed-loop stability for arbitrary parameter variations. Note that K and
K′ need not have the same order (the derivation is more involved than applying
Proposition 1.4).

1.3.3 Set-Invariance Methods

As previously discussed, LPV stability need not be characterized by quadratic
Lyapunov functions, but rather convex functions, which can be approximated as
piecewise linear or piecewise quadratic. This recognition recalls prior work on
constructive approaches to stability analysis and control design for classes of
uncertain system [14, 24, 25, 72]. See also the survey [17], monograph [18], and
references therein. This section reviews such set-invariance methods specialized to
constructing nonlinear controllers for LPV systems. The presentation here follows
[84] as well as [77, 83].

The framework for this section is discrete-time LPV systems as follows:

x(t + 1) = A(θ (t))x(t)+B(θ (t))u(t)+Ld(t). (1.13)

A few comments regarding this setup are: (1) The discussion herein concerns
state feedback, and so there is no output equation. (2) The dynamics have an
explicit disturbance term. (3) The set of parameter values, Θd, is finite and discrete.
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Fig. 1.5 Illustration of
controlled invariance
algorithm (1.14)

(4) Arbitrary time variations are admissible. Regarding this final comment, Shamma
and Xiong [84] also discuss the more general setup of constrained parameter
variations (e.g., bounded rates).

1.3.3.1 Disturbance Rejection

The performance objective, termed “constrained regulation,” is as follows. Given a
penalized output

z(t) =

(
E x(t)
Du(t)

)

maintain8

|z(t)|∞ ≤ 1, t = 0,1,2, . . .

in the presence of all disturbance trajectories satisfying

|d(t)|∞ ≤ 1, t = 0,1,2, . . .

The constrained regulation objective is to limit the effect of disturbances, d, on the
penalized output, z, which includes weighted states and controls.

The set-invariance approach is to execute the following recursive algorithm:

S0 = {x ∈ Rn : |E x|∞ ≤ 1} , (1.14a)

S j+1 = S j, (1.14b)

∩{x : ∃u s.t. (1) A(θ )x+B(θ )u+Ld ∈ S j, ∀|d|∞ ≤ 1

and (2) |Du|∞ ≤ 1} . (1.14c)

Note that variants of the algorithm described by (1.14) have emerged in a variety of
settings, ranging from safety verification [37] to viability theory [5].

The above algorithm progressively prunes states for which a suitable disturbance
could eventually violate the constrained regulation objective (illustrated in Fig. 1.5)

8For |x|∞ = max1≤i≤n |xi| for x ∈ Rn.
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regardless of the control law. The set Sc
0 are all states that immediately violate

the constrained regulation. The set Sc
1 are all states that, for any selection of

admissible controls, violate constrained regulation in one stage for a suitable dis-
turbance/parameter trajectory combination. Likewise, Sc

j has similar interpretations
for constrained violation after j stages.

Versions of the following theorem may be found in [16, 84].

Theorem 1.7. Constrained regulation is achievable if and only if

S∞ =
∞⋂

j=0

S j

is nonempty.

While the algorithm described by (1.14) conceptually decides the issue of con-
strained regulation, there remain lingering issues for implementing computations.
Blanchini [16, 84] go on to discuss:

• Set representations and linear programming implementations
• Finite termination conditions for “almost” constrained regulation
• Controller computation and construction

A product of this construction—if constrained regulation is indeed achievable—is
a piecewise linear function of the state that assures constrained regulation. In the
case of constrained parameter evolution, the feedback law is also a function of the
current parameter value [84].

1.3.3.2 NonQuadratic Cost Minimization

The set representation and linear programming implementations derived for con-
strained regulation are also applicable to nonquadratic cost minimization problems
of the form:

inf
u(·)

∞

∑
t=0

|z(t)|∞

for the LPV system (1.13) without disturbances (i.e., d ≡ 0).
The setup is suitable for the application of dynamic programming, and in

particular, value iteration [13] as described by the following recursive algorithm:

J0(x) = |E x|∞ (1.15a)

Jk+1(x) = min
u

max
θ∈Θd

(∣
∣
∣∣

(
E x
Du

)∣∣
∣∣
∞
+ Jk

(
A(θ )x+B(θ )u

)
)

. (1.15b)

Because of the underlying structure of LPV dynamics, these value functions are
homogeneous (i.e., Jk(αx) = αJ(x)), and can be represented in terms of level sets,
e.g., {x : Jk(x)≤ 1}.
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The remaining issues for executing value iteration (1.15b) parallel those for
controlled invariance: representation, implementation, termination, and control
computation. Shamma and Xiong [84] discuss these issues for LPV systems with
either arbitrary or constrained trajectories.

Set theoretic methods have an appealing generality, and their ability to address
constraints increases the appeal for application to nonlinear systems (e.g., [89]).
Nonetheless, it should be noted that despite this appeal, the resulting (off-line)
computations can be intensive for higher dimensional systems.

1.4 Final Remarks

This chapter has presented a brief overview of LPV systems, from their origins to
a sampling of various approaches for analysis and control design. The presentation
has not attempted to be comprehensive, and among the serious omissions is a discus-
sion on system identification for LPV system (cf., the forthcoming collection [67]).

To conclude, it is very exciting9 to see the widespread adoption of the LPV
paradigm since its introduction in 1988, as well as the continued interest reflected
by short courses [71], special journal issues [50], and this (and future) monographs.
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MA, USA
19. Blanchini F, Casagrande D, Miani S, Viaro U (2010) Stable LPV realization of parametric

transfer functions and its application to gain-scheduling control design. IEEE Trans Autom
Contr 55(10):2271–2281

20. Blondel V, Tsitsiklis J (2000) The boundedness of all products of a pair of matrices is
undecidable. Syst Contr Lett 41:135–140

21. Boyd S, Barratt C (1991) Linear controller design—Limits of performance. Prentice-Hall,
Englewood Cliffs, NJ, USA

22. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cam-
bridge, United Kingdom

23. Boyd S, Ghaoui LE, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and
control theory. SIAM, Philadelphia

24. Brayton R, Tong C (1979) Stability of dynamical systems: a constructive approach. IEEE
Trans Circ Syst CAS-26(4):224–234

25. Brayton R, Tong C (1980) Constructive stability and asymptotic stability of dynamical
systems. IEEE Trans Circ Syst CAS-27(11):1121–1130

26. Bruzelius F, Breitholtz C, Pettersson S (2002) LPV-based gain scheduling technique applied
to a turbo fan engine model. In: Proceedings of the 2002 International Conference on Control
Applications, pp 713–718

27. Carter L, Shamma J (1996) Gain-scheduled bank-to-turn autopilot design using linear
parameter varying transformations. AIAA J Guid Contr Dynam 19(5):1056–1063

28. Costa O, Fragoso M, Marques R (2005) Discrete-time Markov jump linear systems. London
29. Dahleh M, Dahleh M (1991) On slowly time-varying systems. Automatica 27(1):201–205
30. Dayawansa W, Martin C (1999) A converse Lyapunov theorem for a class of dynamical

systems which undergo switching. IEEE Trans Autom Contr 44(4):751–760
31. Desoer C, Vidyasagar M (1975) Feedback systems: input–output properties. Academic Press,

New York
32. Francis B, Glover K (1978) Bounded peaking in the optimal linear regulator with cheap

control. IEEE Trans Autom Contr 23(4):608–617
33. Freudenberg J, Looze D (1985) Right half plane poles and zeros and design tradeoffs in

feedback systems. IEEE Trans Autom Contr 30(6):555–565
34. Ganguli S, Marcos A, Balas G (2002) Reconfigurable LPV control design for Boeing

747-100/200 longitudinal axis. In: Proceedings of the American Control Conference,
pp 3612–3617

35. Gaspar P, Szaszi I, Bokor J (2004) The design of a combined control structure to prevent the
rollover of heavy vehicles. Euro J Contr 10(2):148–162

36. Gilbert W, Henrion D, Bernussou J, Boyer D (2010) Polynomial LPV synthesis applied to
turbofan engines. Contr Eng Pract 18(9):1077–1083



24 J.S. Shamma
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Chapter 2
Prediction-Error Identification of LPV Systems:
Present and Beyond

Roland Tóth, Peter S.C. Heuberger, and Paul M.J. Van den Hof

Abstract The proposed chapter aims at presenting a unified framework of
prediction-error based identification of LPV systems using freshly developed
theoretical results. Recently, these methods have got a considerable attention as
they have certain advantages in terms of computational complexity, optimality in
the stochastic sense and available theoretical tools to analyze estimation errors
like bias, variance, etc., and the understanding of consistency and convergence.
Beside the introduction of the theoretical tools and the prediction-error framework
itself, the scope of the chapter includes a detailed investigation of the LPV extension
of the classical model structures like ARX, ARMAX, Box–Jenkins, OE, FIR, and
series expansion models, like orthonormal basis functions based structures, together
with their available estimation approaches including linear regression, nonlinear
optimization, and iterative IV methods. Questions of model structure selection
and experimental design are also investigated. In this way, the chapter provides a
detailed overview about the state-of-the-art of LPV prediction-error identification
giving the reader an easy guide to find the right tools of his LPV identification
problems.

2.1 Introduction

To design efficient linear parameter-varying (LPV) controllers, it is has a paramount
importance to have an accurate but at the same time low-complexity LPV model of
the underlaying behavior of the system at hand. In engineering, it is common to
use first-principle laws of physics, chemistry, biology, etc., to construct dynamic
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models. However, such a procedure requires a detailed process knowledge from
specialists. To assemble the existing knowledge into a coherent and compact
mathematical description is not only a challenging task but it usually results in a
too complex model as it is hard to distinguish relevant effects from negligible terms.
The selection of the scheduling variable itself is also often restricted by the way of
model construction and likely different choices follow from linearization-based or
direct conversion based methods, see [15,19,23]. Therefore, modeling is often found
to be very laborious and expensive. If the specialist’s knowledge is lacking, like in
case of poorly understood systems, the derivation of a model from first principles is
even impossible. Moreover, certain quantities, like coefficients, rates, etc., required
for the model, are likely unknown and have to be estimated by performing dedicated
experiments.

Descriptions of systems can alternatively be derived by system identification
(ID), where the estimation of a dynamical model is accomplished directly from
measured input–output data. Theexpert’s knowledge still has a major role, as it gives
the basic source of information in decisions on parametrization, model-structure
selection, experiment design, and the actual way of deriving the estimate. This
knowledge also helps in judging the quality and applicability of the obtained models.
Even if system identification requires human intervention and expert’s knowledge
to arrive at appropriate models, it also gives a general framework in which most of
the steps can be automated, providing a less laborious and cost intensive modeling
process.

In the current literature, many LPV identification approaches have been devel-
oped using model structures that are formulated in terms of state-space (SS) and
linear-fractional representations (LFR), e.g., [7, 18, 22, 33, 34], input–output (IO)
representations, e.g., [1,3,11,36], or series-expansion forms, e.g., [23,27,28]. Most
of the existing approaches use a discrete-time setting and commonly assume static
dependence on the scheduling variable p : Z → P, with P ⊆ R

np . Here, static
dependence means dependence of the model coefficients only on the instantaneous
value of p. For a recent overview of the available methods, see [4, 23].

Recently, LPV–IO model structures based methods have got a considerable
attention as they appear to have certain advantages w.r.t. other identification
approaches of the field. One of the major benefits is that identification of this
representation-based model structures can be addressed via the extension of the
LTI prediction-error (PE) framework [23,25]. In opposition with other approaches,
this enables the stochastic analysis of the estimates, treatment of general noise
models [13,25], experimental design [6,12,36], model structure selection, and direct
identification of the involved dependencies [11, 30, 31] often in a computationally
attractive manner and also in continuous time [14]. Moreover, in this setting it is
also relatively easy to identify models with dynamic dependence (dependence of the
coefficients on time shifted instances of p), which is often required for high accuracy
identification of nonlinear systems (see [23]). However, the main stream LPV
control-synthesis approaches are based on models defined in an SS or an LFR form,
hence the delivered IO model needs to be converted to such representation forms.
Due to the fact that multiplication with any time operator is not commutative over
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the p-dependent coefficients, the existing realization theory is more complicated
than in the LTI case and often introduces rational dynamic dependence on p in the
resulting state-minimal SS forms [26, 32]. It is possible to avoid this phenomenon
by aiming at minimal realization in terms of the involved dependency as well,
which often requires either auxiliary state variables or special parametrization of the
polynomial forms [24]. Improving SS realization of IO models in terms of finding
the state basis that provide the simplest scheduling dependence and minimal state
dimension is in the focus of current research activities in this area.

In this chapter, we give an overview about the state-of-the-art of LPV prediction-
error identification. In particular, we focus on what is feasible by the available
approaches, what the practical advantages are, and what developments are still
needed. Due to the broad scope of the topic, we will address here only the discrete-
time case.

The chapter is organized as follows: First in Sect. 2.2, the concept of LPV
series expansion representations is introduced which makes it possible to formulate
predictors and model manipulations later on. Next in Sect. 2.3, the basic setting
of the LPV prediction-error framework is defined with the concept of the data-
generating system, noise models, and one-step-ahead predictors. A general structure
of parameterized models and the perspective of estimation in the �2-optimal
prediction-error sense, identifiability of model structures and informativity of
datasets are also studied. Then in Sect. 2.4, the LPV extension of the classical
model structures is introduced and their properties are analyzed. This is followed
in Sect. 2.5 by a detailed investigation of the available estimation approaches w.r.t.
these models in terms of linear regression, nonlinear optimization and iterative
instrumental variable methods and their stochastic properties.

2.2 LPV Series-Expansion Representations

In the LTI case, many key concepts and model manipulations in the PE framework
are based on a transfer function representation of the dynamic behavior (see [16]).
One of the major problems which has so far prevented the analysis of the PE
methods in the LPV case has been the lack of a transfer function representation
of LPV systems which expresses signal relations in the frequency domain. To
illustrate the problem, consider the classical LPV filter form of discrete-time IO
representations, often defined in the single-input single-output (SISO)1 case as:

na

∑
i=0

ai(p(k))q−iy(k) =
nb

∑
j=0

b j(p(k))q− ju(k), (2.1)

1LPV–IO representations can also be defined for multiple-input multiple-output (MIMO) systems
in a similar form as (2.1), see [23].
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where u : Z→R is the input, y : Z→R is the output, and p :Z→P is the scheduling
variable of the LPV system S represented by (2.1); q is the (forward) time-shift
operator, i.e., q−1u(k) = u(k− 1), na,nb ≥ 0 and ai : P → R and b j : P → R are
functions of p(k) (instantaneous value of p) which is called static dependence. The
functions ai and b j can have arbitrary complexity ranging from simple linear to
rational or real meromorphic2 dependence. To guarantee well-posedness of (2.1), it
is often assumed that all ai and b j are bounded on P.

In identification, we aim to estimate a dynamical model of the system based on
measured data, which corresponds to the estimation of each ai and b j in (2.1). To
formulate estimation of these functions, it is attractive to introduce

A
(
q−1, p(k)

)
=

na

∑
i=0

ai(p(k))q−i and B
(
q−1, p(k)

)
=

nb

∑
j=0

b j(p(k))q− j

as polynomials in q−1 with varying coefficients ai(p(k)) and b j(p(k)) and, inspired
by the LTI system theory, to write

y(k) = F
(
q−1, p(k)

)
u(k) with F

(
q−1, p(k)

)
=

B
(
q−1, p(k)

)

A(q−1, p(k))
. (2.2)

However, F
(
q−1, p(k)

)
in (2.2) relates to a transfer function if and only if p(k) is

a constant signal, i.e., p(k) = p for all k, where p ∈ P. This is justified by the fact
that if q is substituted with the complex z variable, then F

(
z−1, p(k)

)
is a mixed

frequency–time relationship. If Y (z) and U(z) denote the Z-transform of the signals
u and y on an appropriate region of convergence, then Y (z) = F

(
z−1, p(k)

)
U(z)

has a meaning if and only if p, associated with (u,y), is a constant (not-varying
with time). Furthermore, F

(
q−1, p(k)

)
is ill-defined also as an operator because

multiplication with q−1 is not commutative over time-dependent coefficients such
as b j(p(k)), i.e., q−1b j(p(k)) = b j(p(k − 1))q−1. Therefore, multiplication from
the left or right has different meaning. In (2.2), it is ambiguous whether left or
right multiplication is intended to derive this rational operator form. Currently no
theoretical framework is available (to the author’s knowledge) to handle rational
time-operator forms with time-dependent coefficients (such a framework does exist
in case of constant coefficients, i.e., in the LTI case, see [37]).

To overcome this “representation” problem, it has been shown in [23] that the
dynamic mapping between u and y can be characterized as a convolution involving
p and u. This so-called impulse response representation (IRR) is given as

y(k) =
∞

∑
i=0

(gi � p)(k)u(k− i) =

( ∞

∑
i=0

(gi � p)q−iu

)
(k) =

(
(G(q)� p)u

)
(k), (2.3)

2h : Rn → R is a real meromorphic function if h = f /g with f , g analytic and g �= 0.
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where the so-called impulse response coefficients gi are functions of p(k) and of
multiple, but finite many, time-shifted instances of p, like gi(p(k+τ1), . . ., p(k−τ2))
with τ1,τ2 ≥ 0. This is called dynamic dependence. To express such a broad range
of dependencies conveniently, we apply the operator � :

(
R,PZ

)→R
Z
∞, where R is

the set of all real meromorphic functions with finite dimensional domain, such that
(gi � p)(k) = gi(p(k+ τ1), . . . , p(k− τ2)). Note that in the sequel, we will use � to
express dynamic or general dependence like (gi � p)(k) whenever it is needed and
we will use gi(p(k)) to express if a coefficient has only static dependence. For an
illustration, consider the following example.

Example 2.1. Given an asymptotically stable discrete-time LPV–IO representation:

y =−0.1 pq−1y− 0.2 q−2y+ sin(p)q−1u, (2.4)

with P = [0,1]. By recursive substitution for q−1y,q−2y, . . ., the following IRR,
equivalent with (2.4), results

y = sin(p)
︸ ︷︷ ︸

g1�p

q−1u+
(−0.1psin

(
q−1p

))

︸ ︷︷ ︸
g2�p

q−2u

+
(
0.01p

(
q−1p

)− 0.2
)

sin
(
q−2p

)

︸ ︷︷ ︸
g3�p

q−3u+ · · · ,

where the sequence of functions gi � p converges to zero as i → ∞.

Equation (2.3) can be considered as a series expansion of S in terms of q−i

which is convergent if S is asymptotically stable. Furthermore, (2.3) can be seen
as the generalization of LPV–SS and LPV–IO representations with appropriate
equivalence transformations available (see [23]).

2.3 An LPV Prediction-Error Framework

By using the LPV impulse response representation, established in the previous
section, it becomes possible to extend the classical PE framework to the LPV case
allowing sophisticated analysis of the estimation of LPV–IO models. To do so, we
will first define the concept of an LPV data-generating system. This will be followed
by deriving a one-step-ahead predictor for the observed output sequence that we
will use to formulate the estimation of parametrized models under a mean-squared
prediction-error criterion.

2.3.1 Data-Generating System

According to the classical PE setting, the data-generating system is considered as
a discrete-time deterministic filter Go whose output is influenced by a stochastic
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Fig. 2.1 LPV concept of the
data-generating system

noise process vo in an additive manner (see Fig. 2.1). It is assumed that vo is a quasi-
stationary noise process with a bounded power spectral density Φvo(ω). In case Go

is linear, it is possible to lump many different sources of disturbances in vo, such
as noise-corrupted actuation, uncontrollable inputs, process noise, etc., because,
under minor restrictions, all these effects can be propagated through Go. In the LTI
case, this suggests that for many systems it is valid to assume that Φvo(ω) is a
rational function, i.e., that vo can be represented as a filtered zero-mean white noise
process.

Using this concept, a data-generating LPV system So can be analogously
formulated as

y(k) = (Go(q)� p)(k) u(k)+ vo(k), (2.5)

where the process part is represented by an LPV impulse response form

Go(q)� p =
∞

∑
i=0

(go
i � p)q−i, (2.6)

with gi being bounded w.r.t. every p ∈ P, where P ⊆ P
Z denotes all possible

trajectories of p that are allowed during the operation of the system. In order to
guarantee that (2.6) is convergent, it is a necessary assumption that Go under P

represents an asymptotically stable LPV system. Additionally, it is assumed that the
disturbance vo can be described as

vo(k) = (Ho(q)� p)(k) eo(k), (2.7)

where Ho is a convergent LPV–IRR, i.e., it corresponds to an asymptotically stable
LPV filter, it is monic, i.e., Ho(∞) = 1, and eo(k) is a zero-mean white noise
process. Similar to the LTI case, asymptotic stability of Ho in the deterministic sense
is a necessary assumption of the PE setting (see [16]), otherwise Φvo(ω) would
not be bounded yielding that ID of Go(q) is an ill-posed problem. Furthermore,
it is important to point out that in terms of (2.7), E{vo(k)} = 0 for each k,
where E denotes the expectation operator, but the autocorrelation of vo, i.e.,
Rvo,vo(k,τ) = E{vo(k)vo(k − τ)}, is time-dependent. However in the asymptotic
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sense, limN→∞
1
N ∑N

k=1 Rvo,vo(k,τ) exists for a given p and for all τ ∈ Z due to
the convergence properties of Ho(q) and the independence of p form eo. Hence
vo qualifies as a quasi-stationary signal (see [25] for the detailed proof).

2.3.2 One-Step-Ahead Prediction of vo

In order to formulate the estimation of parametrized LPV models of (2.5) in a
prediction-error setting, it is necessary to derive a predictor of y. The simplest case
is to characterize a one-step-ahead predictor of y, for which it is essential to clarify
how we can predict vo(k) at a given time-step k if we have observed vo(τ) for
τ ≤ k− 1. In terms of (2.7):

vo(k) = (ho
0 � p)(k) eo(k)+

∞

∑
i=1

(ho
i � p)(k) eo(k− i), (2.8)

meaning that {vo(τ)}τ≤k−1 and a given trajectory of p defines {eo(τ)}τ≤k−1. Note
that if each ho

i depends only on the current and the backward-time-shifted values of
p, e.g., p(k), p(k− 1), p(k− 2), etc., which is called causal dynamic dependence,
then only the knowledge of {p(τ)}τ≤k and {vo(τ)}τ≤k−1 is sufficient to characterize
{eo(τ)}τ≤k−1. In case the noise process has an LPV–IO representation in terms
of (2.7) with only static p-dependence, then the equivalent IRR form (2.8) is
guaranteed to have only causal dependence [23]. In most practical applications,
causal dynamic dependence on p is quite realistic.

To follow the classical concept of defining the prediction of vo(k), assume that

observations of e(k−1)
o = {eo(τ)}τ≤k−1 and p(k) = {p(τ)}τ≤k are given. Under this

information set, our objective is to compute the one-step-ahead prediction of vo(k)
w.r.t. the �2-loss:

v̂o(k |k− 1) = arg min
δ∈R

E

{
‖vo(k)− δ‖2

�2

∣
∣
∣ e(k−1)

o , p(k)
}
. (2.9)

In [23, 25] it is shown that if p(k) is fully known, then (2.9) is equal to

v̂o(k |k− 1) =
∞

∑
i=1

(ho
i � p)(k) eo(k− i). (2.10)

It easily follows that (2.9) also minimizes the mean-squared error of the prediction.

Of course it is not practical to assume that e(k−1)
o is known. To formulate prediction

of vo(k) in terms of observation of v(k−1)
o = {vo(τ)}τ≤k−1, it is required that Ho has

a stable inverse, i.e., there exists a monic convergent LPV–IRR denoted as H†
o such

that
(
H†

o (q)Ho(q)
)� p= 1. Note that if such a H†

o exists, then it is a bi-lateral inverse



34 R. Tóth et al.

of H, i.e., H†
o (q)Ho(q) = Ho(q)H†

o (q) = 1, which can be shown based on telescopic
sums, see [25]. This implies that

eo(k) =
(
H†

o (q)� p
)
(k) vo(k). (2.11)

Then using (2.11), we can write (2.10) as

v̂o(k |k− 1) =
(
(Ho(q)− 1)� p

)
(k) eo(k) =

(
1−H†

o(q)� p
)
(k) vo(k), (2.12)

which is the LPV form of the classical one-step-ahead predictor result [16].

2.3.3 One-Step-Ahead Prediction of vo with Noisy p

In the previous derivation, it was essential that full, i.e., noise-free observation of
the sequence p(k) is available, which we will call the “p-true case”. In the LPV
literature, such an assumption is generally taken as a technical necessity regardless
of the used identification setting (see [6, 7, 12, 18, 22, 33, 34, 36], exceptions: [3, 5])
and the resulting methods based on it are almost exclusively applied in practical
situations where measurements of p are polluted by noise with various stochastic
properties. The reason for this theoretical gap lies in the difficulty to establish
a conditional expectation of vo(k) in the situation when instead of p(k) only
observations of

p∗(k) = p(k)+wo(k), (2.13)

with wo(k) is an iid noise process, are available as each ho
i can be a nonlinear

function with dynamic dependence on p. For systems with simple dependencies,
formulation of v̂o(k | k− 1) is possible but no general formula can be given based
on the current results (see [3] for an analysis of consistency for LPV autoregressive
with exogenous input (ARX) models under stochastic p). It has been only recently
shown that a general approach to formulate the one-step-ahead predictor in case of
noisy observations of p(k) can be derived from moment-generating functions of the
underlaying distribution of wo(k) [25]. Furthermore, a parametrized noise model to
capturing nonwhite noise on p can also be applied. However, currently the stochastic
properties of the estimated models are not well understood in that case. For the sake
of simplicity and coherence of our overview, we will restrict our attention to the
p-true case and investigate estimation under such an assumption.

2.3.4 One-Step-Ahead Prediction of y

As a next step, we need to formulate the one-step-ahead predictor of y(k) to address
identification of a parametrized model in terms of minimizing the prediction error,
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i.e., the difference between y(k) and the predicted model output, which is the
primary goal in the PE setting. Consider the p-true case with y(k−1) = {y(τ)}τ≤k−1,
u(k) = {u(τ)}τ≤k, and p(k) = {p(τ)}τ≤k (in case of causal dependence). Since (2.5)
implies that

vo(k) = y(k)−
∞

∑
i=0

(go
i � p)(k) u(k− i), (2.14)

vo(τ) is characterized for τ ≤ k − 1 w.r.t. the information set (u(k), p(k),y(k−1)).
Based on (2.12), it is not complicated to show that under the given information
set, the one-step-ahead prediction of y(k) w.r.t. the �2 loss is

ŷ(k |k− 1) =
((

H†
o (q)Go(q)

)� p
)
(k) u(k)+

(
1−H†

o(q)� p
)
(k) y(k). (2.15)

This corresponds to the LPV form of the classical result of the LTI case (see [16]).
Note that in a similar manner, k-step-ahead predictors can also be formulated in this
setting. For a detailed proof, see [23, 25].

2.3.5 Parametrized Models and Estimation

Now, introduce an LPV parametrized model in the form of

(
G(q,θg),H(q,θh)

)
, (2.16)

where G(q,θg) and H(q,θh) are the IRRs of the process part, denoted as Gθg ,
and the noise part, denoted as Hθh , of the model structure, respectively, and
θg ∈ Θg ⊆ R

ng with θh ∈ Θh ⊆ R
nh are the parameters to be estimated. Note that

these parameters are not necessarily associated with the parametrization of impulse
response coefficients directly, but can correspond to the parametrization of the
coefficients of the process and noise models given in an SS or IO form. Then
these parametrized structures are represented by the IRRs: G and H. Also introduce
θ = col(θg,θh) ∈Θ ⊆ R

nθ , the vector of independent parameters in θg and θh.
Denote G = {Gθg | θg ∈ Θg} and H = {Hθh | θh ∈ Θh} the collection of all

process and noise models with the considered parametrization and similarly denote
the overall parametrized model (2.16) as Mθ . Then, based on the model structure
Mθ , the model set, denoted as M, takes the form

M=
{(

Gθg ,Hθh

)∣∣θ = col(θg,θh) ∈Θ
}
. (2.17)

This set corresponds to the set of candidate models in which we seek the model
that explains data gathered from So the best, under a given criterion. We denote
by So ∈M, when the data-generating system is in the model set, i.e., ∃θo =
col(θo,g,θo,h)∈Θ such that Go(q)� p=G(q,θo,g)� p and Ho(q)� p=H(q,θo,h)� p.
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With respect to (2.16), we can define the one-step-ahead prediction error as

eθ (k) = y(k)− ŷ(k |θ ,k− 1), (2.18)

where

ŷ(k |θ ,k− 1) = (Wu(q,θ )� p)(k) u(k)+
(
Wy(q,θ )� p

)
(k) y(k). (2.19)

is the one step-ahead predictor of the model output with subpredictors

Wu(q,θ ) = H†(q,θg)G(q,θh) and Wy(q,θ ) = 1−H†(q,θh) (2.20)

according to (2.15). Denote a data sequence of So by DN = {y(k),u(k), p(k)}N
k=1.

Then the basic philosophy of PE-based identification is to find θ w.r.t. a given
parametrized model Mθ with parameter space Θ ⊆R

nθ and a dataset DN such that
the one-step-ahead predictor (2.19) associated with θ provides a prediction error eθ
which resembles a zero-mean white noise “as much as possible”.

Based on the predictor form (2.19), many different classical identification criteria
can be applied to achieve this objective in terms of “minimization” of eθ subject to
θ . A particularly interesting choice is the mean-squared prediction error or more
often called as the least-squares (LS) criterion:

V (DN ,θ ) =
1
N

N

∑
k=1

e2
θ (k) =

1
N
‖eθ‖2

�2
, (2.21)

such that the parameter estimate is

θ̂ = argmin
θ∈Θ

V (DN ,θ ). (2.22)

Other criteria can also be used to characterize estimation of θ in (2.16) as a
minimization of (2.18) w.r.t. a chosen measure (see [16]) or to introduce other
objectives, e.g., minimization of the support of θ , or weights, like forgetting factors.
However for sake of simplicity, we restrict the main stream of discussion to the
classical LS case.

2.3.6 Identifiability and Informativity

To guarantee uniqueness of (2.22), one condition is that Mθ is globally identifiable.

Definition 2.1 (Identifiability, based on [8]). The model structure Mθ , defined by
(2.16) with a parameter domain Θ ⊆ R

nθ , is called locally identifiable at a θ1 ∈ Θ ,
if ∃δ > 0 such that for all θ2 ∈Θ in ‖θ1 −θ2‖ ≤ δ :

Wy(q,θ1) =Wy(q,θ2) and Wu(q,θ1) =Wu(q,θ2) ⇒ θ1 = θ2. (2.23)
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The model structure is said globally identifiable at θ1 if the same holds for arbitrary
large δ . It is called globally identifiable if it is globally identifiable at all θ1 ∈Θ .

Another condition for uniqueness (2.22) is the informativity of the data set DN .

Definition 2.2 (Informative data, based on [8]). For a model structure Mθ ,
defined by (2.16) with a parameter domain Θ ⊆ R

nθ , a quasi-stationary data set
DN = {u(k),y(k), p(k)}N

k=1 is called informative, if for any θ1,θ2 ∈Θ

Ē
{
(Wy(q,θ1)� p)y− (Wy(q,θ2)� p)y+(Wu(q,θ1)� p)u

−(Wu(q,θ2)� p)u
}2

= 0, (2.24)

with Ē being the generalized expectation operator,3 implies that

Wy(q,θ1) =Wy(q,θ2) and Wu(q,θ1) =Wu(q,θ2). (2.25)

In terms of these definitions, if the model set is globally identifiable (no two
different parameters θ1 and θ2 give rise to the same predictor) and the data set DN

is informative, then V (θ ,DN) has a global optimum in the statistical sense.

2.3.7 Consistency and Convergence

When applying the quadratic ID criterion (2.21), the asymptotic properties of
the resulting parameter estimate can be analyzed in the situation when N → ∞,
similarly as in the LTI case. Consider the following definitions of consistency and
convergence.

Definition 2.3 (Convergence). For an informative data set DN and model structure
Mθ , the parameter estimate θ̂ is called convergent if N → ∞ implies that θ̂ → θ ∗
with probability one, i.e., P(θ̂ = θ ∗) = 1, where θ ∗ = argminθ Ē

{
e2

θ
}

.

Note that convergence implies that the asymptotic parameter estimate is inde-
pendent of the particular noise realization in the data sequence and Mθ is locally
identifiable at θ ∗.

Definition 2.4 (Consistency). For model structure Mθ with model set M and a
data set DN which is informative w.r.t. Mθ , a convergent parameter estimate θ̂ → θ ∗
is called consistent if either of the following conditions holds:

• If So ∈M, then Go(q) = G(q,θ ∗
g ) and Ho(q) = H(q,θ ∗

h ).
• If So �∈M but Go ∈ G, then Go(q) = G(q,θ ∗

g ).

We will investigate these properties w.r.t. the particular identification approaches
we consider in Sect. 2.5.

3The notation Ē{x} = limN→∞
1
N ∑N

k=1E{x(k)} is adopted from the prediction-error framework of
[16].
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2.4 Classical Model Structures

Next we can investigate how the classical model structures can be formulated in the
introduced LPV–PE setting. To follow the classical formulations, we will construct
both the process and the noise components using an LPV–IO representation form.
For the sake of simplicity, we treat these model structures such that their coefficients
have only static dependence on p. Extension of these definitions using coefficients
with dynamic dependence follows naturally.

2.4.1 Process Model

Consider the parametrized model Mθ , where the process part Gθg , whose IRR is
given by G(q,θg), is defined by

A
(
q−1, p(k),θg

)
y̆(k) = B

(
q−1, p(k),θg

)
q−τdu(k). (2.26)

Here y̆ is the noise-free output of the process part, τd ≥ 0 is the input delay and the
p-dependent polynomials

A
(
q−1, p(k),θg

)
= 1+

na

∑
i=1

ai(p(k),θg)q
−i,

B
(
q−1, p(k),θg

)
=

nb

∑
j=0

b j(p(k),θg)q
− j,

with na,nb,τd ≥ 0, are parametrized as:

ai(p(k),θg) =
nα

∑
l=0

ai,lαi,l(p(k)), b j(p(k),θg) =

nβ

∑
l=0

b j,lβ j,l(p(k)), (2.27)

with αi,0(�) = β j,0(�) = 1. In this particular parametrization, which is called linear

parametrization, {αi,l}na,nα
i=1,l=1 and {β j,l}nb,nβ

j=0,l=1 are priori given functions (chosen
by the user) which are bounded on P and

θg =
[

a1,0 · · · ana,nα b0,0 · · · bnb,nβ

] ∈Θg ⊆ R
ng ,

with ng = na(nα + 1)+ (nb + 1)(nβ + 1), represents the unknown parameters to be
estimated for the process part. Note that parametrizations other than (2.27) are pos-
sible; however, the advantage of (2.27) is that a large number of functional depen-
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dencies can be represented, based on the choice of {αi,l}na,nα
i=1,l=1 and {β j,l}nb,nβ

j=0,l=1,
and it is linear in θg. Additionally for the structure (2.26) with static coefficient
dependence, the impulse response coefficients (gi � p)(k) have only causal dynamic
dependence on p [23]. A particular advantage of linear parametrization is that it
not only reduces the complexity of the associated estimation problem but at the
same time it also makes the adequate selection of the structural dependencies well
posed [23]. In terms of (2.27), this selection problem translates to a search for
a set of functions {αi,l}na,nα

i−1,l=1 and {β j,l}nb,nβ
j=0,l=1 such that the true p-dependent

coefficients ao
i and bo

j , associated with the IO representation of the underlaying

system, satisfy ao
i ∈ Span({αi,l}nα

l=0) and bo
j ∈ Span({β j,l}nβ

l=0). In case of a black-
box scenario, the choice of these functions can be arbitrary. One can consider all αi,l

and β j,l to be rational functions or polynomials with a fixed degree and a fixed order
of dynamic dependence. However, the number of possible choices is enormous.
Including a too large set of functions can easily lead to over-parametrization, while
restriction of αi,l and β j,l to only a few basic functions can lead to serious structural
bias. In order to assist the selection of an efficient set of functional dependencies
in the parametrization of linear regression models, recently practically applicable
approaches have been proposed in [11, 30, 31]. In [11] a dispersion functions based
method while in [30] a support vector machine approach, both originating from
the machine learning field, have been developed. These approaches aim to learning
the underlying static or dynamic nonlinear dependence of the coefficients with great
efficiency. In [31], a coefficient shrinkage method, the so-called nonnegative garrote
(NNG) approach originating from statistics, has been introduced for this purpose.
The NNG uses regularization in terms of weights to penalize individual elements of
the parameter vector θ . In this way, the approach starts with a relatively large set of
possible functional dependencies from which those functions that do not contribute
significantly to the validity of the estimated model are eliminated by decreasing their
weights.

2.4.2 Noise Model

The noise model Hθh , whose IRR is given by H(q,θh), is defined as

C
(
q−1, p(k),θh

)
v(k) = D

(
q−1, p(k),θh

)
e(k), (2.28)

where e(k) is a zero-mean white noise process and the p-dependent polynomials C
and D are defined similarly as A and B with order nc,nd ≥ 0. These polynomials are
also considered to be monic in the sense that c0(�) = d0(�) = 1 and to have linear
parameterization in terms of the functions {γi,l}nc,nγ

i=1,l=1, {δ j,l}nd,nδ
j=1,l=1 bounded on P

and parameters

θh =
[

c1,0 · · · cnc,nγ d1,0 · · · dnd,nδ

] ∈Θh ⊆ R
nh ,
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with nh = nc(nγ + 1) + nd(nδ + 1), respectively. Furthermore, it is assumed that
the IRR H(q,θh) of (2.28) has a stable inverse denoted as H†(q,θh) for all values
of θh ∈ Θh. Note that (2.28) is able to express a large variety of different noise
processes. It also includes LTI noise models which admit a polynomial description
since for nγ = 0 and nδ = 0, C and D correspond to polynomials with constant
coefficients and hence H(q,θh) can also be expressed as a transfer function. Similar
to the process part, static coefficient dependence of (2.28) implies that H(q,θh) has
causal dynamic dependence.

2.4.3 Overall Model Structure

Finally, we can define the overall model structure in terms of (2.26) and (2.28). Let
θ = col(θg,θh) ∈ Θg ×Θh ⊆ R

nθ with nθ = ng + nh in case the parametrizations
of Gθg and Hθh are independent. Otherwise θ is constructed from θg and θh such
that it contains only independent parameters. Then the signal relations of the overall
parametrized model Mθ are given as

A
(
q−1, p(k),θg

)
y̆(k) = B

(
q−1, p(k),θg

)
q−τdu(k), (2.29a)

C
(
q−1, p(k),θh

)
v(k) = D

(
q−1, p(k),θh

)
e(k), (2.29b)

y(k) = y̆(k)+ v(k). (2.29c)

Note that in this general model structure, we can distinguish specific cases which
correspond to the classical model structures used in the LTI setting.

2.4.3.1 LPV–ARX and ARMAX structures

By considering C
(
q−1, p(k),θh

)
� A

(
q−1, p(k),θg

)
and D(q−1, p(k),θh) � 1 in

(2.29a–c), the LPV version of the so-called autoregressive with exogenous input
(ARX) model structure results:

A
(
q−1, p(k),θg

)
y(k) = B

(
q−1, p(k),θg

)
q−τdu(k)+ e(k), (2.30)

with θ = θg. It is important to acknowledge here that w.r.t. (2.19):

ŷ(k |θ ,k− 1) = B
(
q−1, p(k),θg

)
q−τd

︸ ︷︷ ︸
(Wu(q,θ)�p)(k)

u(k)+ 1−A
(
q−1, p(k),θg

)

︸ ︷︷ ︸
(Wy(q,θ)�p)(k)

y(k). (2.31)

This means that if A and B are linearly parametrized then the predictor (2.19)
(and hence (2.18)) is linear in θ , giving that the solution of (2.22) can be analytically
computed (see Sect. 2.5.1.1). A particularly interesting feature of this structure in
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the LPV case is that it explicitly assumes that v is correlated with p through the
same nonlinearities as the noise-free output signal. Hence, it generally applies a
more restrictive assumption on the noise than in the LTI case. This type of model
structure is most commonly applied in LPV-ID approaches that are based on least-
squares estimates (e.g., [1, 9, 35]).

An extension of this model structure can be achieved by introducing a moving
average part on e, i.e., when D

(
q−1, p(k),θh

) �= 1. This significantly reduces the
restrictiveness of the modeling assumption on the noise, but the price to be paid is
that the predictor (2.19) is not linear in θ any more as

(
Wu(q,θ )� p

)
(k) =

∞

∑
i=0

(
1−D(q−1, p(k),θh)

)i
B
(
q−1, p(k),θg

)
q−τd , (2.32a)

(
Wy(q,θ )� p

)
(k) = 1−

∞

∑
i=0

(
1−D(q−1, p(k),θh)

)i
A
(
q−1, p(k),θg

)
. (2.32b)

Note that here the infinite sum term results due to the inversion of the scheduling
dependent noise model. This term is convergent as H† is defined to be sta-
ble. Furthermore, due to noncommutativity of q in this setting, the polynomial
terms do not commute, e.g., (2.32a) is not equal to B

(
q−1, p(k),θg

)
q−τd ∑∞

i=0(
1−D

(
q−1, p(k),θh

))i
.

2.4.3.2 LPV–FIR and Series Expansion Structures

Considering the IRR form (2.6) of the process part of So, a particularly interesting
idea is to truncate this series expansion to get an approximation of the original
system (2.5) in the following form:

y(k)≈
nf

∑
i=0

(go
i � p)(k) u(k− i)+ vo(k). (2.33)

Note that if nf is large enough, the approximation error is negligible in (2.33). This
gives that by introducing a polynomial model structure4:

y(k) =
nf

∑
i=0

gi(p(k),θg)u(k− i)+ v(k) = F
(
q−1, p(k),θg

)
u(k)+ v(k), (2.34)

where each coefficient gi of the polynomial F is linearly parameterized in terms
of the functions {αi,l}nf,nα

i=0,l=1 and parameters θg, a rather simple but effective
approximation of the original system can be achieved. This model structure is

4It is more natural to use dynamic dependence in the parametrization of the coefficients in (2.34),
but for the sake of simplicity we use only static dependence here.
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the LPV form of the well-known LTI finite impulse response (FIR) models and
has the attractive property of being linear-in-the-coefficients if v(k) is a white
noise, as in this case, its associated one-step-ahead predictor is ŷ(k | θ ,k − 1) =
F(q−1, p(k),θg)u(k). Note that in the latter case, which corresponds to an output-
error (OE) noise model, this model structure can also be derived from (2.29a–c) by
setting A, B, C to 1 and B

(
q−1, p(k),θg

)
� F

(
q−1, p(k),θg

)
.

FIR models have many advantages in identification due to their simple structure.
However, their well-known disadvantage, both in the LTI and the LPV cases, is
that the expansion may have a slow convergence rate, meaning that it requires a
relatively large number of parameters for an adequate approximation of the system.
In order to benefit from the same properties, but achieve faster convergence rate of
the expansion, it is attractive to use basis functions which, opposite to q−i, have
infinite impulse responses. A particular choice of such a basis follows through the
use of orthonormal basis functions (OBFs), which are specific basis functions in
H2 (Hardy space of square integrable complex functions) and have already proven
their usefulness in LTI identification (see [10]). Based on this idea, it is possible to
show that any asymptotically stable LPV system has a series expansion in terms of
an OBF basis set {φi(z)}∞

i=1 ⊂ H2 (see [23]), via the expansion of each q−i in (2.3)
in terms of {φi(q)}∞

i=1. Thus, (2.5) can be written as

y(k) = (wo
0 � p)(k)u(k)+

∞

∑
i=1

(wo
i � p)(k)φi(q)u+ vo(k), (2.35)

where wo
i are functions with dynamic dependence on p. An obvious choice of model

structure is to use a truncated expansion, i.e., truncating (2.35) to a finite sum in
terms of {φi}nw

i=1, and introducing a parametrization of the expansion coefficients:

y(k) = w0(p(k),θg)u(k)+
nw

∑
i=1

wi(p(k),θg)φi(q)u+ v(k), (2.36)

where each wi is parametrized as in the FIR case using functions with static
dependence on p. Similar to the FIR, this structure is linear in the coefficients
{wi}nw

i=1 if v(k) is assumed to be white, but with nw�nf for the same approximation
capability. Furthermore, it is proven that structures like (2.36), i.e., a OBF filter
bank followed by a static nonlinearity are general approximators of nonlinear
systems with fading memory, i.e., nonlinear dynamic systems with convolution
representation [2]. Additionally, OBF and FIR models have a direct and simple SS
and LFR realization, a somewhat unique property among polynomial IO structures
[23]. An important question that arises is whether the basis functions φi can
be chosen such that a fast convergence rate can be achieved for all possible
trajectories of p, i.e., how {φi(q)}nw

i=1 with minimal nw should be chosen such
that the approximation error is adequate for the problem at hand. For this purpose
the Kolmogorov n-width theory gives an effective way to characterize optimal
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convergence rate as an optimization problem in terms of the poles of the basis
functions {φi}nw

i=1 [28]. Using this concept, data-driven basis selection methods can
be introduced to optimize the basis set w.r.t. to the dynamical behavior of the system
at hand, see [23, 28] for further details.

2.4.3.3 LPV–BJ and OE Structures

Independent parametrization of Gθg and Hθh with the complete structure of
(2.29a–c) corresponds to an LPV Box–Jenkins (BJ) model structure, which allows
to describe a wide range of noise dynamics in a general sense. Of course this
generality have a heavy price in terms of a complicated one-step-ahead predictor
characterized by

(
Wu(q,θ )� p

)
(k) =

∞

∑
j=0

(
1−D

(
q−1, p(k),θh

)) j
C
(
q−1, p(k),θh

)

×
∞

∑
i=0

(
1−A

(
q−1, p(k),θg

))i
B
(
q−1, p(k),θg

)
q−τd , (2.37a)

(
Wy(q,θ )� p

)
(k) =1−

∞

∑
j=0

(
1−D

(
q−1, p(k),θh

)) j
C
(
q−1, p(k),θh

)
. (2.37b)

A simplification of this structure in terms of C
(
q−1, p(k),θh

)
� D

(
q−1, p(k),θh

)

� 1 leads to the so-called output-error (OE) type of model structure with

(
Wu(q,θ )� p

)
(k) =

∞

∑
i=0

(
1−A

(
q−1, p(k),θg

))i
B
(
q−1, p(k),θg

)
q−τd , (2.38a)

(
Wy(q,θ )� p

)
(k) =1. (2.38b)

Regarding LPV–BJ models an extra distinction can be introduced w.r.t.
p-independent noise models. For instance, assuming H(q,θh) to be a rational
LTI transfer function leads to a simplified LPV–BJ model for which a refined
instrumental variable estimation approach has been developed recently (see [13]).

2.4.4 Informativity and Identifiability

Regarding the introduced model structures, we can investigate conditions under
which informativity of a given data set and identifiability of a particular model
structure itself can be assured. As these are the basic ingredients for a successful
identification of the system, it is important to review the available results even if
they are rather sparse.
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For the case of LPV–ARX models with polynomial dependence of the
coefficients on the parameters, conditions for identifiability and informativity have
been studied in [6, 9, 36]. Based on these results, the following theorem holds true.

Theorem 2.1 (Identifiability, LPV–ARX case). The LPV–ARX model structure
(2.30) with linear parametrization (2.27) is globally identifiable, if and only if
each set of functions {αi,l(�)}nα

l=1 and {β j,l(�)}nβ
l=1 for all i ∈ {1, . . . ,na} and j ∈

{0, . . . ,nb}, used in the parametrization (2.27), are linearly independent on P.

For a detailed proof see [6]. Identifiability conditions for other model structures
require linear independence (necessary condition) of the functions used in the
parametrization of each p-dependent coefficient and also co-primeness of certain
pairs of polynomials just like in the LTI case, see [8]. However, the sufficient
conditions to guarantee identifiability in these cases have not been established yet.

To establish a condition on informativity in the ARX case, define

ΔWy(q)=Wy(q,θ1)−Wy(q,θ2), ΔWu(q)=Wu(q,θ1)−Wu(q,θ2).

Then it follows that (2.24) equals to

Ē
{([

ΔWu(q)−ΔWy(q)Go(q)
]� p

)
u+

([
ΔWy(q)Ho(q)

]� p
)

e
}2

= 0. (2.39)

Straightforward application of E in Ē gives that (2.39) is equivalent with

Ē
{([

ΔWu(q)−ΔWy(q)Go(q)
]� p

)
u
}2

= 0, (2.40a)

Ē
{([

ΔWy(q)Ho(q)
]� p

)
e
}2

= 0. (2.40b)

Now we can seek for conditions on u and p for which the above conditions imply
that ΔWu(q) = ΔWy(q) = 0. As p is independent of e, (2.40b) holds if and only
if Ē{ΔWy(q) � p} = 0 whenever e �= 0. However, Ē{ΔWy(q) � p} = 0 does not
necessarily imply ΔWy(q) = A

(
q−1, p(k),θ1

)− A
(
q−1, p(k),θ2

)
= 0. In case of

global identifiability of Mθ , the necessary and sufficient condition to guarantee this
is that the data matrix Φy = [ϕy(1) · · · ϕy(N) ] satisfies that Ē

{
Φ

y Φy
}� 0 where

ϕy(k)=
[

α1,1(p(k)) · · · αna,nα (p(k))
]

.

Next we need to find necessary and sufficient conditions on u and p such that

Ē{(ΔWu(q)� p)u}2 = 0 ⇒ ΔWu(q) = 0. (2.41)

In case of an LPV–ARX model:

ΔWu(q) = B
(
q−1, p(k),θ1

)
q−τd −B

(
q−1, p(k),θ2

)
q−τd . (2.42)
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Assume that the LPV–ARX model is globally identifiable. Now in order to
guarantee that (2.41) holds with (2.42), a necessary and sufficient condition is that
Φu = [ϕu(1) · · · ϕu(N) ] satisfies Ē

{
Φ

u Φu
}� 0 where

ϕu(k)=
[

u(k− τd) β0,1(p(k))u(k− τd) · · · βnb,nβ (p(k))u(k− τd − nb)
]

.

Theorem 2.2 (Informative dataset, LPV–ARX case). Given a globally identifi-
able LPV–ARX model structure (2.30), denoted by Mθ , with linear parametrization
(2.27), then a quasi-stationary data set DN generated by So ∈ M is informative
w.r.t. Mθ , if for Φu = [ϕu(1) · · · ϕu(N) ] and Φy = [ϕ(1) · · · ϕ(N) ] it holds that

Ē
{

Φ
u Φu

}� 0 and Ē
{

Φ
y Φy

}� 0.

Note that in case of a given data set DN with finite N, the above conditions
translate to the existence of a set of time instances Ky,Ku ⊆ {1, . . . ,N} with
Card(Ky) = nanα = ny and Card(Ku) = (nb + 1)(nβ + 1) = nu such that Φy =

[ϕy(k1) · · · ϕy(kny) ]
 with {k1, . . . ,kny}=Ky and Φu = [ϕu(k1) · · · ϕu(knu) ]

 with

{k1, . . . ,knu}=Ku satisfy that Φ
u Φu � 0 and Φ

y Φy � 0. Note that these conditions
are the minimal conditions which are required to be satisfied by the data set DN

to guarantee informativity. It is also possible to formulate these conditions w.r.t.
typical scheduling trajectories to derive easily understandable design rules. This
has been investigated in [6] where the above conditions are interpreted in case of
piecewise and periodic scheduling trajectories. Informativity conditions for other
type of model structures are in the focus of current research.

2.5 Identification with the LS Criterion

Using the LS criterion (2.21), in this section we will investigate the estimation
of the LPV model structures introduced in Sect. 2.4 with linear parametrization.
According to the available approaches in the literature, identification of (2.29a–c)
can be investigated from two perspectives: local setting (identification for constant
p and interpolation) and the global setting (identification with varying p). Here
we will concentrate on global approaches as only this setting allows to address
the minimization of the prediction error eθ which is our aim with the introduced
PE framework. We will see that in the considered global PE setting, the predictor
(2.19), w.r.t. each of the introduced model structures, can be rewritten as a linear
or a pseudolinear regression. This yields that estimation of these structures is
available via a (iterative) least-squares estimate. Alternatively, other nonlinear
optimization schemes can also be applied in the absence of the linear-in-the-
coefficients property of (2.19). Furthermore, we will explore identification with
instrumental variables (IV) in this context as well, showing why such approaches
can be rather advantageous in the LPV case. In addition, consistency and variance
properties of the estimated parameters will be also investigated.
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2.5.1 Prediction-Error Based Identification in the ARX Case

In terms of the considered global setting, we aim at the direct minimization of (2.21)
in terms of the parametrized model structure (2.29a–c) using a dataset DN where
p is varying. This data set is assumed to be informative w.r.t. (2.29a–c) to have
a well-posed problem for identification. To fulfill our estimation objective, several
approaches can be introduced for the various model structures given in Sect. 2.4. For
the sake of clarity, we will study these estimation approaches step-by-step, starting
from the most simplest case of ARX models where the estimation can be addressed
via simple linear regression.

2.5.1.1 Linear Regression

Consider the LPV–ARX model structure (2.30). A particular property of this
structure with the linear parametrization (2.27) of A and B is that the predictor (2.19)
is linear in the parameters θ = θg, see (2.31), and hence can be written as

ŷ(k |θ ,k− 1) = ϕ(k)θ , (2.43)

where

ϕ(k) =
[−y(k− 1)−α1,1(p(k))y(k− 1) · · · −αna,nα (p(k))y(k− na)

u(k− τd) β0,1(p(k))u(k− τd) · · · βnb,nβ (p(k))u(k− τd − nb)
]

.

(2.44)

As (2.43) is a linear regression equation, thus by defining Φ = [ϕ(1) · · · ϕ(N) ]

and Y = [ y(0) · · · y(N) ], the minimum of (2.21) is unique and equal to

θ̂LS = Φ+Y, (2.45)

if rank(Φ) = nθ , where Φ+ =
(

1
N ΦΦ

)−1 1
N Φ is the regularized Moore–Penrose

pseudoinverse. This approach is summarized in terms of Algorithm 1. Equation
(2.45) has been used in many works, e.g., [1], to estimate LPV–IO models, however,
in the introduced PE framework it is justified that (2.45) is the minimizer of (2.21) in
case of an LPV–ARX model structure. It is also important to mention that (2.43) can
be also considered as an LTI multiple-output multiple-input (MIMO) ARX model
with “virtual” input and output signals {β j,l(p)u} and {αi,l(p)y}.

To get an insight of the stochastic behavior of the LS estimator (2.45), assume
that Go ∈ G and consider the “optimal” residual error eθo , which based on (2.43) is

eθo(k) = y(k)− ŷ(k |θo,k− 1) = y(k)−ϕ(k)θo. (2.46)
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Algorithm 1: LPV–ARX identification, LS global method

Require: a data record DN = {u(k),y(k), p(k)}N
k=1 of So, the LS identification criterion V ,

and the LPV–ARX model structure (2.30) with linear parametrization (2.27) and
parameters θ = [ a1,0 · · · ana,nα b0,0 · · · bnb,nβ ] ∈ R

nθ . Assume that DN is
informative w.r.t. (2.30) and (2.30) is globally identifiable.

1: calculate the signals xi,l =−αi,l(p)q−iy and x j+na+1,l = β j,l(p)q− j−τd u and let

ϕ = [ x0,0 · · · xna+nb+1,nβ ] giving that y(k) = ϕ(k)θ + eθ (k).

2: estimate θ in terms of θ̂ = argminθ V (θ ,DN). In case of (2.21), θ̂ = Φ+Y with
Y = [ y(1) · · · y(N) ] and Φ = [ϕ(1) · · · ϕ(N) ].

3: return estimated model (2.30).

As a consequence, (2.45) satisfies that

θ̂LS = θo +

(
N

∑
k=1

ϕ(k)ϕ(k)

)−1

·
N

∑
k=1

ϕ(k)eθo(k). (2.47)

Equation (2.47) yields that θ̂LS is a consistent estimate of θo (unbiased for finite
data) if the following conditions are respected:

Ē

{
ϕ(k)ϕ(k)

}
� 0 and Ē{ϕ(k)eθo(k)} = 0. (2.48)

While the first condition is satisfied in case DN is informative w.r.t. (2.30), the
second condition only holds if eθo is a white noise. Unfortunately, this is only
true when the data-generating system So itself has an ARX noise structure. In
that case, based on the classical proofs, it is possible to show that if the model
set M is uniformly asymptotically stable w.r.t. a compact Θ and it is globally
identifiable, then under the assumption that the data set DN is informative and quasi-
stationary, the estimates θ̂ → θ̂∗ = argminθ∈Θ Ē{‖eθ‖2

�2
} with probability 1 where

θ∗ is unique [25]. Furthermore, if θo = θo,g associated with Go satisfies that θo ∈Θ ,
then θ∗ = θo. This proves consistency and convergence of the estimation. In case
of noisy observation of p, convergence of the LS estimates can be shown, but in
general, consistency does not hold (see [3] for a motivation). It has been recently
shown that his problem can be circumvented by using a regressor with estimated
moment functions associated with p∗, see [25] for further details.

In practice, the ARX modeling assumption often appears to be rather restrictive.
Even though it might be a fair assumption to consider that the process is well
parametrized by (2.29a), the noise model A(q−1, p(k),θg)v(k)=e(k) is often not
rich enough to capture vo. Indeed, in most cases, there is no reasonable explanation
to justify why the noise vo and the process part of So should contain the same
dynamics and nonlinearities. In terms of estimation, this means that using the LS
method in practice will most often lead to biased estimates. Consequently, some
methods have been developed in order to cope with the error induced by this invalid
assumption on the noise. A method proposed in [3] and relying on an instrumental
variable approach is described in the next section.
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2.5.1.2 Instrumental Variable Approach

The original aim of instrumental variable methods is to cope with the fact that
in most cases, eθo is a colored process. The idea is to introduce an instrument
ζ : Z→ R

nθ which is used to produce a consistent estimate independently on the
noise model taken. The IV estimate is given as

θ̂IV =

(
N

∑
k=1

ζ (k)ϕ(k)

)−1

·
N

∑
k=1

ζ (k)y(k), (2.49)

which implies that

θ̂IV = θo +

(
N

∑
k=1

ζ (k)ϕ(k)

)−1

·
N

∑
k=1

ζ (k)eθo(k). (2.50)

Therefore, and similarly to the LS solution, θ̂IV is a consistent estimate of θo if

Ē

{
ζ (k)ϕ(k)

}
� 0 and Ē{ζ (k)eθo(k)} = 0. (2.51)

There is a considerable amount of freedom in the choice of an instrument respecting
these conditions. In the LTI context, the choice of the instrument has been widely
studied and most of the advanced IV methods offer similar performance as extended
LS methods or other PE minimization methods (see [17, 20]). A particularly
interesting fact is that, under the ARX model assumption, the variance of the
IV estimate is minimal if the instrument is chosen as the noise-free version of
the regressor [21]. In other words, when directly applying the IV theory to the
LPV–ARX model (2.30) (the LPV–ARX model can be seen as an LTI model), the
optimal IV estimate is given by

θ̂ opt
IV =

(
N

∑
k=1

ζopt(k)ϕ(k)

)−1

·
N

∑
k=1

ζopt(k)y(k), (2.52)

where the optimal instrument is defined as:

ζopt(k) =
[−y̆o(k− 1) −α1,1(p(k))y̆o(k− 1) · · · −αna,nα (p(k))y̆o(k− na)

u(k−τd) β0,1(p(k))u(k−τd) · · · βnb,nβ (p(k))u(k− τd − nb)
]
. (2.53)

Here y̆o denotes the noise-free output of the data-generating system So which is a
priori unknown in practice. Consequently, often an estimate of y̆o is applied as an
instrument, like the simulated output of a previously obtained model estimate which
in turn can be refined iteratively. Note that if So ∈ M, then both the IV solution
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(2.52) and the LS solution (2.47) are consistent and statistically optimal (minimum
variance and unbiased). Furthermore, consistency of (2.52) also holds in the p-noisy
case, see [3].

To construct the optimal instrument ζopt, a particular approach is the IV4 method
[16], proposed in the LPV case in [3]. In this approach, the instrument is built
using the simulated data generated from an estimated auxiliary ARX model. This
method is given in detail by Algorithm 2. In [3], it was shown that in case

Algorithm 2: LPV–ARX identification, IV4 global method

Require: a data record DN = {u(k),y(k), p(k)}N
k=1 of So, the LS identification criterion V ,

and the LPV–ARX model structure (2.30) with linear parametrization (2.27) and
parameters θ = [ a1,0 · · · ana,nα b0,0 · · · bnb,nβ ] ∈ R

nθ . Assume that DN is informative
w.r.t. (2.30) and (2.30) is globally identifiable on Θ .

1: estimate an LPV–ARX model by Algorithm 1.
2: generate an estimate ŷo(k) of y̆o(k) based on the resulting ARX model of the previous

step.
3: build an instrument based on ŷo(k) and then estimate θ via (2.49).
4: return estimated model (2.30).

So corresponds to an LPV–OE model (vo = eo), Algorithm 2 leads to an unbiased
estimate. Moreover, like in the LTI case, any structural modeling error of the noise
results in a bias for the LS estimate while, using this IV method, only the variance
of θ̂IV is increased. Nevertheless, the bigger the difference between the true noise
process and the noise model assumed is, the higher the resulting variance in the IV
estimate is. Depending on the size N of the dataset, the variance increase of the IV
estimate can lead to worse results than by the LS estimator (for which the variance
is known to remain low). Consequently, it is highly important to assume a noise
model asrealistic as possible in the first place. In the LTI case, many IV methods are
dedicated to more general noise models such as OE or BJ [39]. In Sect. 2.5.2.3, we
consider some available methods for LPV–OE and LPV–BJ model structures which
were introduced in [13].

2.5.1.3 Estimation of FIR and OBF Models

Even if LPV–FIR and OBF models have different representation capabilities than
ARX models, if the noise vo is assumed to be zero mean and white, the one-step-
ahead predictor can be written as a liner regression similar to (2.43) where

ϕ(k)=
[

u(k) α0,1(p(k))u(k) · · · αnf,nα (p(k))u(k− nf)
]

. (2.54)

Due to this fact, the LS approach can be used to estimate such models and as the
regressor does not contain any output terms, the LS estimate is consistent even if
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the noise vo is not white or p is polluted by noise, till these noise effects are not
correlated with u. However, in case of OBF models, the selection of the basis set
{φi(q)}nw

i=1 has a paramount importance as it governs the size of parametrization and
the approximation error directly. To provide a computationally attractive data-driven
selection of efficient sets of basis functions, a Fuzzy clustering based approach has
been proposed in [28]. For more on LPV–OBF models and issues of basis selection
and identification, see [23, 28].

2.5.2 Prediction-Error Based Identification with General
Noise Models

Next we consider the global identification of model structures which utilize
extended noise models to increase the validity of the noise modeling. Unfortunately,
due to the more complicated noise models, the linear-in-the-coefficient property is
lost in these cases, causing (2.22) to be a nonlinear optimization problem whose
solution is more complicated than in the previous case. First a particular idea of
rewriting the one-step-ahead predictor as a pseudolinear regression is extended
from the LTI framework to the LPV case, allowing to derive a computationally
attractive solution. Then we also consider general nonlinear optimization to solve
the estimation problem. Finally, it is shown how the IV approach can offer a simple
solution for the estimation of θ in case of a more general noise model than in
Sect. 2.5.1.2.

2.5.2.1 Pseudolinear Regression

Consider first the LPV–ARMAX case, where A,B,D are (linearly) parametrized as
in (2.27). By multiplying (2.19) with D

(
q−1, p(k),θh

)
on the left, it follows that

D
(
q−1, p(k),θh

)
∑∞

j=0(1−D(q−1, p(k),θh))
j = 1 and hence

D
(
q−1, p(k),θh

)
ŷ(k |θ ,k− 1) = B

(
q−1, p(k),θg

)
u(k− τd)

+
(
D
(
q−1, p(k),θh

)−A
(
q−1, p(k),θg

))
y(k)

(2.55)

in terms of the subpredictors (2.32a–b). By adding (1−D(q−1, p(k),θh))ŷ(k |θ ) to
both sides of (2.55) and using (2.18), (2.19) is equivalent with

ŷ(k |θ ,k− 1) = B
(
q−1, p(k),θg

)
u(k− τd)+

(
1−A

(
q−1, p(k),θg

))
y(k)

+
(
D
(
q−1, p(k),θh

)− 1
)

eθ (k). (2.56)
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Then by considering a regressor ϕ(k | θ ) defined as before (see (2.44)), but
extended with δ1,1(p(k))eθ (k − 1), . . .,δnd,nδ (p(k))eθ (k− nd), the predictor (2.56)
can be rewritten as

ŷ(k |θ ,k− 1) = ϕ(k |θ )θ . (2.57)

This equation corresponds to a pseudolinear regression, hence minimization of
(2.21) follows by an iterative LS approach where an estimate of eθ (k) is generated
by a model obtained in a previous iteration, see Algorithm 3.

Algorithm 3: LPV–ARMAX identification, iterative LS global method

Require: a data record DN = {u(k),y(k), p(k)}N
k=1 of So, the LS identification criterion V ,

and the LPV–ARMAX model structure (2.29a–c) with C
(
q−1, p(k),θh

)
�A

(
q−1, p(k),θg

)

and linear parametrization (2.27) with parameters θ = [ a1,0 · · · bnb ,nβ d1,0 · · · dnd,nδ ]
∈ R

nθ . Assume that DN is informative w.r.t. (2.29a–c) and (2.29a–c) is globally
identifiable on Θ .

1: estimate an ARX model by Algorithm 1 resulting in θ̂ (0)
g . Set D

(
q−1, p(k),θ (0)

h

)
= 1,

θ̂ (0) =

[ (
θ̂ (0)

g

) (
θ̂ (0)

h

)
]

and τ = 0.

2: repeat
3: generate an estimate ê(τ)θ (k) based on the resulting model of the previous step, i.e., θ̂ (τ).
4: calculate the signals xi,l =−αi,l(p)q−iy, x j+na+1,l = β j,l(p)q− j−τd u and

xi+na+nb+1,l =−δi,l(p)q−iê(τ)θ and let ϕτ = [ x0,0 · · · xna+nb+nd+1,nδ
].

5: estimate θ in terms of θ̂ (τ+1) = Φ+
τ Y with Y =

[
y(1) · · · y(N)

]
and

Φτ =
[

ϕτ(1) · · · ϕτ(N)
]

. Increase τ by 1.

6: until θ̂τ has converged or the maximum number of iterations is reached.
7: return estimated model (2.29a–c).

Now consider the LPV–OE case. In this case, θh = /0 and (2.19) read as

ŷ(k |θ ,k− 1) =
∞

∑
i=0

(
1−A

(
q−1, p(k),θg

))i
B
(
q−1, p(k),θg

)
q−τdu(k). (2.58)

Define y̆ = (G(q,θg) � p)u as the noise-free output of the LPV–OE model. Then,
(2.58) can be rewritten as

ŷ(k |θ ,k− 1) =
(
1−A

(
q−1, p(k),θg

))
y̆(k)+B

(
q−1, p(k),θg

)
q−τdu(k). (2.59)

This gives the idea again to introduce the regressor

ϕ(k |θ ) = [−y̆(k− 1) −α1,1(p(k))y̆(k− 1) · · · −αna,nα (p(k))y̆(k− na)

u(k− τd) β0,1(p(k))u(k−τd) · · · βnb,nβ (p(k))u(k− τd−nb)
]
, (2.60)

to write (2.59) in the form of (2.57). Again an iterative LS algorithm, similar to
Algorithm (3), can be introduced to obtain an estimate.
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A pseudolinear regression form can be obtained for the LPV–BJ case by
combining the approaches of the ARMAX and OE cases. In the LPV–BJ case

ŷ(k |θ ,k− 1) = (Wu(q,θ )� p)(k)u(k)+ (Wy(q,θ )� p)(k)y(k), (2.61)

where the subpredictors are defined by (2.37a–b). Again introduce y̆ = (G(q,θg) �
p)u as the noise-free model output and multiply (2.61) with D(q−1, p(k),θh) on the
left giving:

D
(
q−1, p(k),θh

)
ŷ(k |θ ,k− 1) = C

(
q−1, p(k),θh

)
y̆(k)+D

(
q−1, p(k),θh

)
y(k)

−C
(
q−1, p(k),θh

)
y(k). (2.62)

As eθ (k) = y(k)− ŷ(k |θ ,k− 1), we can write

eθ (k) =
(
1−D

(
q−1, p(k),θh

))
eθ (k)+C

(
q−1, p(k),θh

)(
y(k)− y̆(k)

)
. (2.63)

Note that C is monic. We also know that

y̆ =
(
1−A

(
q−1, p(k),θg

))
y̆(k)+B

(
q−1, p(k),θg

)
u(k). (2.64)

Let ξ = y− y̆, then (2.63) reads as

eθ (k) = y(k)−ϕ(k | θ )θ , (2.65)

where

ϕ(k) =
[−y̆(k− 1) −α1,1(p(k))y̆(k− 1) · · · −αna,nα (p(k))y̆(k− na)

u(k− τd) β0,1(p(k))u(k− τd) · · · βnb,nβ (p(k))u(k− τd − nb)

−ξ (k− 1)−γ1,1(p(k))ξ (k− 1) · · · −γnc,nγ (p(k))ξ (k− nc)

eθ (k− 1) δ1,1(p(k))eθ (k− 1) · · · δnd,nδ (p(k))eθ (k− nd)
]
. (2.66)

As eθ (k) = y(k)− ŷ(k |θ ,k− 1), (2.65), can be written as (2.57). Again an iterative
LS algorithm, similar to Algorithm (3) can be introduced to obtain an estimate.

As we could see, despite noncommutativity of the time operator q, the rather
complicated LPV model structures in the considered PE setting could have been
relatively easily transformed to a pseudo linear regression form, hence their
estimation is available by different iterative schemes. However, there is a particular
difficulty to establish consistency and convergence results w.r.t. these schemes.
Namely, the optimal regressor is required by the linear regression form to achieve
such properties. However, as these items are approximated, we can analyze the
estimation properties only in the case if the corresponding iterative approximations
have converged. Such convergence properties, just like in the LTI case, are not fully
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understood in general. In terms of application of these approaches, it has a prime
importance that convergence is quite sensitive on the modeling assumption and the
largeness of parametrization which are typically ill-chosen in most applications.
Nevertheless, the introduced schemes, if they converge, provide computationally
efficient estimation approaches in the considered context.

2.5.2.2 Nonlinear Optimization

Alternatively, minimization of (2.21) is available by general nonlinear optimization
methods, like gradient-based minimization which can be applied directly com-
puting the partial derivatives of the predictor (2.19) w.r.t. θ . Even the advanced
LSQNONLIN approach of MATLAB can be directly used to obtain an estimate. As
the application of these nonlinear optimization schemes only extends to the solution
of the underlaying optimization problem, these approaches are not presented in
detail. However, there are two particular difficulties that can hinder the application
of nonlinear optimization schemes:

1. In case of over-parametrization of the scheduling dependencies, the number of
possible saddle points of (2.21) can seriously increase which can slow down or
even prevent the convergence to the global optimum.

2. In case of large-scale systems, the computational time can be substantial
compared to other approaches.

2.5.2.3 Instrumental Variable Approach

As the alternative of the previous estimation method, we can also introduce an
instrumental variable approach that makes possible the direct identification of LPV–
BJ models with p-independent noise part. Hence it improves considerably the
achievable variance of the IV4 method in case of more complicated noise processes.
To derive such an improved IV scheme, we first start with rewriting the process
equation (2.29a) as

F
(
q−1,θg

)
y̆(k)+

na

∑
i=1

nα

∑
l=1

ai,l ỹi,l(k) =
nb

∑
j=0

nβ

∑
l=0

b j,l ũ j,l(k), (2.67)

where F
(
q−1,θg

)
= 1+∑na

i=1 ai,0q−i is an LTI filter, ỹi,l(k) = αi,l(p(k))y̆(k− i) and
ũ j,l(k) = β j,l(p(k))u(k− j− τd). Note that in this way the process part is rewritten
as a MISO LTI model with nanα +(nb + 1)(nβ + 1) input signals {ỹi,l}na,nα

i=1,l=1 and

{ũ j,l}nb,nβ
j=0,l=0. However, this is not a representation of the original LPV behavior of

(2.29a) as it contains lumped output terms. As a second step, assume that the noise
part is not dependent on p, hence it is modeled as a stable LTI filter H(q,θh) =
D
(
q−1,θh

)
/C

(
q−1,θh

)
, which is a technical assumption we need to take to derive

the intended approach. Given the fact that the polynomial operator F commutes in
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(2.67) over the constant coefficients, thus (2.67) can be rewritten as

y(k) =−
na

∑
i=1

nβ

∑
l=1

ai,l

F
(
q−1,θg

) ỹi,l(k)+
nb

∑
j=0

nβ

∑
l=0

b j,l

F
(
q−1,θg

) ũ j,l(k)+H(q,θh)e(k),

(2.68)

which can be considered again as a “pseudolinear” form. This reformulation
makes possible to introduce IV estimation of the considered LPV–BJ models.
An approach that has been successfully applied in this context is an extended
version of the refined instrumental variable (RIV) approach of the LTI identification
framework [13].

As a refinement of the IV scheme presented in Sect. 2.5.1.2, IV methods have
been developed to cope with more general noise structures such as the BJ case,
where the data equation, under the assumption of So ∈M, can be written as

y(k) = ϕ(k)θo,g +Q(q,θo)eθo(k), (2.69)

with Q(q,θo) being an LTI transfer function, Q−1(q,θo) being stable, and eθo(k) is a
white noise. In the LPV–BJ case with p-independent noise part, this can be achieved
by taking

ϕ(k) =
[
−y(k− 1) · · · −y(k− na) −ỹ1,1(k) · · · − ỹna,nα (k) ũ0,0(k) · · · ũnbnβ (k)

]

and

Q(q,θo) = F
(
q−1,θo,g

) D
(
q−1,θo,h

)

C (q−1,θo,h)
.

Based on this form, the extended-IV estimate in the �2 sense can be given as [21]:

θ̂g,XIV =arg min
θg∈Rng

∥
∥
∥∥
∥

1
N

N

∑
k=1

L(q)ζ (k)L(q)ϕ(k)θg− 1
N

N

∑
t=1

L(q)ζ (k)L(q)y(k)

∥
∥
∥∥
∥

2

�2

,

(2.70)

where ζ (k) is the instrument and L(q) is a stable prefilter. The conditions for
consistency in this case read as:

Ē

{
L(q)ζ (k)L(q)ϕ(k)

}
� 0 and Ē{L(q)ζ (k)L(q)eθo(k)} = 0. (2.71)

Again, there is a considerable amount of freedom in the choice of the instruments.
In [21, 38] it has been shown that the minimum variance estimator can be achieved
in the BJ case if ζ is chosen as the noise-free version of the extended regressor ϕ
and L(q) = Q−1(q,θo). Furthermore, it holds true that in case of noise modeling
error, the extended IV method is consistent and the variance of the estimates should
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be significantly decreased with respect to the IV4 method: even if the noise process
is not in the noise model set defined, it is more likely to be better described by an
BJ model than by an ARX model.

In terms of the estimation, it is important to notice that ϕ contains the noise-
free output terms {ỹi,l}. Therefore, by momentary assuming that {ỹi,l(k)}na,nα

i=1,l=0 are
known a priori and that the data-generating system So is in the model set, then the
previously discussed conditions for optimal estimates lead to the choice of optimal
instrument [13]:

ζopt(k) =
[
− y̆o(k− 1) · · · − y̆o(k− na) − ỹo

1,1(k) · · · − ỹo
na,nα (k)

ũ0,0(k) · · · ũnb,nβ (k)
]

(2.72)

while the optimal filter is given as

Lopt(q) = Q−1(q,θo) =
C
(
q−1,θo,h

)

D(q−1,θo,h)F
(
q−1,θo,g

) . (2.73)

In a practical situation, the optimal instrument (2.72) and filter (2.73) are unknown
a priori. Therefore, the RIV estimation normally involves an iterative (or relaxation)
algorithm in which, at each iteration, an “auxiliary model” is used to generate
an estimate of (2.72) and (2.73). This auxiliary model is based on the parameter
estimates obtained at the previous iteration. Consequently, if convergence occurs,
the optimal instrument and filter are obtained. Based on the previous considerations,
the RIV algorithm dedicated to the LPV case is summarized in Algorithm 4.

Using a similar concept, the so-called simplified RIV (SRIV) method can also
be developed for the estimation of LPV–OE models. As in this case C

(
q−1,θh

)
=

D
(
q−1,θh

)
= 1, Step 7 of Algorithm 4 can be skipped. In practical cases, it is a fair

assumption to consider that the noise model assumed is incorrect for both LPV–OE
and LPV–BJ models. In this case, the LPV–SRIV algorithm might perform as well
as the LPV–RIV algorithm: the BJ assumption might be more realistic, but this is
compensated by the reduced number of parameters to be estimated under the OE
assumption. Additionally, both the RIV and SRIV algorithms can be also extended
to be applicable in a closed-loop setting [29].

2.6 Conclusion

By using an impulse response representation of LPV systems, it has been shown in
this chapter that a unified prediction-error framework for the identification of LPV
polynomial models can be established. We have seen that this framework allows to
understand the role of general noise models in the LPV setting, making possible to
formulate the LPV extensions of classical model structures of the LTI case, like
ARX, ARMAX, Box–Jenkins, OE, FIR, and series expansion models. Further-
more estimation of these models is computationally rather attractive and allows
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Algorithm 4: LPV–BJ identification, RIV global method

Require: a data record DN = {u(k),y(k), p(k)}N
k=1 of So, the LS identification criterion V ,

and the LPV–BJ model structure (2.29a–c) with linear parametrization (2.27), an LTI
noise model characterized by C

(
q−1,θh

)
and D

(
q−1,θh

)
and with parameters

θg = [ a1,0 · · · bnb ,nβ ] ∈ R
ng and θh = [ c1 · · · dnd

] ∈ R
nh . Assume that DN is

informative w.r.t. (2.29a–c) and (2.29a–c) is globally identifiable on Θ .

1: estimate an ARX model by Algorithm 1 resulting in θ̂ (0)
g . Set

C
(

q−1, θ̂ (0)
h

)
= D

(
q−1, θ̂ (0)

h

)
= 1, θ̂ (0) =

[(
θ̂ (0)

g

) (
θ̂ (0)

h

)
]

and τ = 0.

2: repeat

3: compute an estimate of y̆(k) via A
(

pk,q−1, θ̂ (τ)
g

)
y̆(k) = B

(
pk,q−1, θ̂ (τ)

g

)
u(k) and

generate the auxiliary signals {ỹi,l}na,nα
i=1,l=1 and {ũ j,l}nb ,nβ

j=0,l=0 according to (2.67).
4: compute the filter:

L
(

q−1, θ̂ (τ)
)
=

C
(

q−1, θ̂ (τ)
h

)

D
(

q−1, θ̂ (τ)
h

)
F
(

q−1, θ̂ (τ)
g

)

and the associated filtered signals
{

ũf
j,l(k)

}nb,nβ

j=0,l=0
, yf(k) and

{
ỹf

i,l(k)
}na,nα

i=1,l=0
.

5: build the filtered estimated regressor ϕ̂ (τ)
f (k) and the filtered instrument ζ̂ (τ)

f (k) as:

ϕ̂ (τ)
f (k)=

[
−yf(k−1) · · · −yf(k−na) −ỹf

1,1(k) · · · −ỹf
na ,nα (k) ũf

0,0(k) · · · ũf
nb,nβ

(k)
]

ζ̂ (τ)
f (k)=

[
−y̆f(k−1) · · · −y̆f(k−na) −ỹf

1,1(k) · · · −ỹf
na,nα (k) ũf

0,0(k) · · · ũf
nb ,nβ

(k)
]

6: calculate θ̂ (τ+1)
g =

( 1
N Γ 

τ Φτ
)−1 ( 1

N Γ 
τ Y

)
with Y =

[
y(1) · · · y(N)

]
,

Φτ =
[

ϕ̂ (τ)
f (1) · · · ϕ̂ (τ)

f (N)
]

and Γτ =
[

ζ̂ (τ)
f (1) · · · ζ̂ (τ)

f (N)
]

.

7: estimate the noise signal vo as v̂(k) = y(k)− y̆(k). Based on v̂, the estimation of θ̂ (τ+1)
h

follows using the ARMA estimation algorithm of the MATLAB identification toolbox
(an IV approach can also be used for this purpose, see [39]). Increase τ by 1.

8: until θ (τ) has converged or the maximum number of iterations is reached.
9: return estimated model (2.29a–c).

to derive stochastic properties of the model estimates which is a unique property
among the available approaches of the LPV identification literature. We could see
that the present research focus in this framework not only lies in further developing
results on these stochastic properties or understanding the rather challenging case of
the p-noisy case but also establishing model structure selection tools and experiment
design methods which allow better application of data-driven LPV modeling by the
engineering community.



2 Prediction-Error Identification of LPV Systems: Present and Beyond 57

References
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Chapter 3
Parametric Gain-scheduling Control
via LPV-stable Realization

Franco Blanchini, Daniele Casagrande, Stefano Miani, and Umberto Viaro

Abstract It has been recently shown that, given a plant described by a parametric
transfer function, any compensator that internally stabilizes the plant for each
constant value of the parameter can be realized in such a way that the closed-
loop stability is guaranteed under arbitrary variations of the parameter (LPV
stability), provided that certain necessary and sufficient stabilizability conditions are
satisfied. The realization of such an LPV stabilizing compensator is based on the
Youla–Kucera parametrization of all stabilizing compensators; precisely, closed-
loop LPV-stability can be ensured by taking an LPV-stable realization of the
Youla–Kucera parameter. In this chapter, the technique is further explored, and
several issues concerning the practical implementation of the control are considered.
The applications include pointwise optimality with guaranteed LPV stability, online
parameter tuning, and parametric pole assignment. Some design examples are
worked out to show the features of the proposed approach.

3.1 Introduction

Linear parameter-varying (LPV) systems are a useful generalization of linear time-
invariant (LTI) systems not only because they provide the natural setting for
the adaptive (gain-scheduling) control of linear plants whose parameters vary in
time, but also because many nonlinear plants can conveniently be embedded into
a linear differential inclusion and, therefore, treated as LPV systems (see, for
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instance, Sect. 4.3 in [14] and [28, 38]). In fact, recent surveys have pointed out
the importance given to the LPV framework in the modern control system literature
[33, 37].

Nevertheless, the stability analysis of LPV systems is still a challenging subject
since most of the classic tools used in the LTI case are no longer valid. Lyapunov
theory is a notable exception. In particular, it has been shown that the stability, or
stabilizability, of an LPV system is equivalent to the existence of a Lyapunov norm
[8, 15, 16, 30–32]. Extensive research is being carried out in this area [6, 20].

It is common practice, in the control of LPV systems, to determine a family of
compensators, each of which is suitable for particular parameter values. However,
the systematic stability analysis of this type of design solution is rather recent [39].
Since the early 1990s, many papers have dealt with gain-scheduling stabilization
and performance of LPV systems [1, 5, 23, 35]. Most of them exploit quadratic
Lyapunov functions, with some exceptions that consider parameter-dependent and
polyhedral Lyapunov functions [10, 22]. A technique based on pole assignment via
state feedback has been considered in [36].

It has recently been shown [9] that the stabilizability of an LPV plant by
means of a linear gain-scheduled compensator may be related to the existence of
a polyhedral Lyapunov function. This result exploits a duality property and the
separation principle presented in [10, 12]. Here, these issues are further developed
and extended to discrete-time systems. The theoretical results are then applied to
various problems of practical interest.

An intriguing question in LPV control is whether the (parametric) transfer
function of a controller that ensures internal stability for fixed values of the
parameter can be realized so as to ensure stability when this parameter varies in time
[33]. Recently, by adapting results from [12] and [24], it has been proved [9] that
an LPV stabilizing realization of any stabilizing parametric compensator transfer
function does exist.

In many cases, the parameters of the plant are constant most of the time, so that
standard LTI techniques seem to be appropriate. However, the occasional parameter
changes may endanger the stability of the LPV system. It is, therefore, reasonable to
seek pointwise optimality together with LPV stability, which can indeed be achieved
by realizing the compensator properly.

This chapter is organized as follows. First, necessary and sufficient conditions
for the stabilizability of an LPV plant with a separation principle are revised
from [9]. Then, the LPV-stable transfer function realization problem is described.
Precisely, any transfer function, stable for fixed values of the parameter, admits
a realization that is stable under arbitrary parameter variations. By resorting to
the Youla–Kucera parametrization in its observer-based version, a procedure is
subsequently considered to realize the (parametric) compensator transfer function
for a parametric plant in such a way that closed-loop LPV stability is guaranteed.
Several applications of the suggested technique are finally outlined with particular
reference to pointwise optimality with LPV stability, pole placement, and online
tuning.
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3.2 Problem Statement

Given a parametric proper1 rational matrix transfer function

W (s,w) =
N(s,w)
d(s,w)

, w ∈ W , (3.1)

where w is a parameter and W ⊂ IR� a compact set, the state-space representation

ż(t) = F(w)z(t)+G(w)ω(t),

ξ (t) = H(w)z(t)+K(w)ω(t), (3.2)

or, more concisely,

Σ(w) =

[
F(w) G(w)
H(w) K(w)

]
, (3.3)

is a realization of W (s,w) if

W (s,w) = H(w)[sI −F(w)]−1G(w)+K(w), ∀w ∈ W . (3.4)

As long as w ∈ W is constant and (3.3) is minimal, the following two properties
are equivalent: (1) d(s,w) is a Hurwitz polynomial; (2) the realization (3.3) is
asymptotically stable. Instead, if w varies in time, the condition that d(s,w) is
a Hurwitz polynomial for any fixed value of w is only necessary for (3.3) to be
asymptotically stable. Therefore, the following definition is opportune.

Definition 3.1 (LPV-stable realization). Assuming that d(s,w) is a Hurwitz poly-
nomial for all fixed w, the realization (3.3) of (3.1) is LPV-stable if the system

ż(t) = F(w(t))z(t) (3.5)

is asymptotically stable for any function w(t) taking values in W .

As shown below, finding an LPV-stable realization, if any, of a transfer function
with Hurwitz denominator is very useful in parametric control design.

Consider now a strictly proper LPV plant described by

ẋ(t) = A(w)x(t)+B(w)u(t),

y(t) = C(w)x(t), (3.6)

1A parametric transfer function of the form (3.1) is called proper if the degree of d(s,w) as a
polynomial function of s is strictly greater than the degree of every entry of N(s,w) as a polynomial
function of s.
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where x(t)∈ IRn, u(t)∈ IRm, y(t)∈ IRp, and w ∈W , with A(·),B(·),C(·) continuous
functions of w. Let (3.1) be the transfer function of a parametric compensator
ensuring that the closed-loop control system for the plant (3.6) is internally stable
for any constant value of w.

In the sequel, reference will be made to the following definition.

Definition 3.2 (LPV stabilizing controller realization). The realization (3.3) is
an LPV stabilizing realization of the parametric compensator transfer function
(3.1) if the closed-loop control system with the controller realized as in (3.3) is
asymptotically stable when the parameter w varies with time according to any
arbitrary function w(t) taking values in the compact set W .

Taking Definition 3.2 into account, the main problem to be solved can be stated
as follows.

Problem 3.1 (LPV synthesis). Given a plant (3.6) and a parametric compensator
transfer function (3.1) ensuring internal closed-loop stability for all constant values
of w ∈ W , find an LPV stabilizing controller realization (3.3).

As already said, Problem 3.1 is motivated by the fact that the closed-loop LPV
system may be unstable if the parametric compensator transfer function is not
realized properly.

Example 3.1 (Motivating example). Consider the plant described by the first-order
parametric differential equation

ẏ(t) =−α y(t)+w(t)u(t), α > 0, (3.7)

with 0 < w− ≤ w(t) ≤ w+, for all t, and assume that the transfer function of the
feedback controller is

− κ(w)
s+β

, β > 0, (3.8)

with κ(w) = κ0/w, κ0 > 0. When w is constant, the feedback control system is
internally stable with characteristic polynomial:

d(s) = s2 +(β +α)s+αβ +κ0. (3.9)

The controller (3.8) admits the two realizations:

Σ1(w) =

[ −β 1
−κ0/w 0

]
, Σ2(w) =

[ −β −κ0/w
1 0

]
,

yielding, respectively, the closed-loop system matrices:

A1(w) =

[−α −κ0

1 −β

]
, A2(w) =

[ −α w
−κ0/w −β

]
.
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Fig. 3.1 Plant output y(t) (solid line) and controller state z(t) (thin line) starting from y(0) = 2
and z(0) = 1, respectively, when the controller is realized according to Σ2(w) with β = α = 0.1
and w(t) = 3/2+ sin(t)/2

Σ1(w) leads to an asymptotically stable feedback system independently of how
w varies in time, whereas Σ2(w) may not [29]. For instance, if α = β = 0.1 and
w(t) = 3/2+ sin(t)/2, the system is unstable (see Fig. 3.1). In [28], instability has
been attributed to the existence of “hidden coupling terms.” Conditions ensuring that
hidden coupling terms do not exist have been derived for the case in which the LPV
system arises from the linearization of a nonlinear plant (see [33, Theorem 10]).It
will be shown next that framing the design problem as an LPV gain-scheduling
problem avoids this issue.

3.3 Preliminary Results

The results described in this section rely on either quadratic or absolute stabilizabil-
ity conditions which are stated in Assumption 3.1 and Assumption 3.2, respectively.

Assumption 3.1. There exist two positive-definite constant matrices P and Q, and
two matrices U(w) and Y (w), dependent on the parameter w, such that

PA(w)T +A(w)P+B(w)U(w)+U(w)T B(w)T < 0, (3.10)

A(w)T Q+QA(w)+Y(w)C(w)+CT (w)Y (w)T < 0, (3.11)

where A(w), B(w), and C(w) are defined in (3.6).

Assumption 3.1 is standard in quadratic stabilizability studies (see, e.g., [5]).
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Definition 3.3. A matrix M(w) that is a continuous function of w∈W , W compact,
is of class H1 if there exists τ > 0 such that ‖I + τM(w)‖1 < 1 for all w ∈ W .
Similarly, M(w) is of class H∞ if there exists τ > 0 such that ‖I+τM(w)‖∞ < 1 for
all w ∈ W .

Definition 3.4. Given a full-column rank matrix R (a full-row rank X), the positive-
definite function Ψ (x) = ‖Rx‖∞ (the positive-definite function Ψ (x) = min{‖z‖1 :
Xz = x}, respectively) is a polyhedral Lyapunov function for the system ẋ(t) =
A(w(t))x(t) if

(D+Ψ)(x,A(w)x)
.
= lim

h→0+

Ψ(x+ hA(w)x)−Ψ(x)
h

≤−βΨ(x)

for some β > 0.

It is known that the existence of a polyhedral Lyapunov function is necessary and
sufficient for the stability of an LPV system [8, 15, 16, 30–32] (see [11] for further
details).

Proposition 3.1. The following assertions are equivalent:

• The LPV system (3.6) is stable.
• The LPV system admits a polyhedral Lyapunov function.
• The following equation holds for some full-column rank R and Q(w) ∈ H∞

RA(w) = Q(w)R.

• The following equation holds for some full-row rank X and P(w) ∈ H1

A(w)X = XP(w).

Assumption 3.2. There exist a full-row rank n× μ matrix X, a full-column rank
ν ×n matrix R, as well as an m×μ matrix U(w), a ν × p matrix L(w) and matrices
P(w) ∈ H1 and Q(w) ∈ H∞ dependent on w such that

A(w)X +B(w)U(w) = XP(w), (3.12)

RA(w)+L(w)C(w) = Q(w)R. (3.13)

The importance of Assumptions 3.1 and 3.2 is pointed out by the following
theorems.

Theorem 3.1. The following two conditions are equivalent:

(1) The inequalities (3.10) and (3.11) of Assumption 3.1 are satisfied.
(2) The LPV plant (3.6) is quadratically stabilizable by means of a compensator of

the form (3.3).
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The proof of Theorem 3.1 can be found in [5]. Note only that the observer-based
controller described by

d
dt

x̂(t) = [A(w)+L(w)C(w)+B(w)J(w)]x̂(t)−L(w)y(t), (3.14)

u(t) = J(w)x̂(t)+ v(t), (3.15)

v(t) = 0, (3.16)

with J(w) =U(w)P−1 and L(w) = Q−1Y (w), is a quadratically stabilizing compen-
sator.2

Theorem 3.2. The following two conditions are equivalent:

(1) Equations (3.12) and (3.13) of Assumption 3.2 are satisfied.
(2) The LPV plant (3.6) is stabilizable by means of a compensator of the form (3.3)

and the closed-loop system admits a polyhedral Lyapunov function.

Proof. See [9]. �
The conditions of Theorems 3.1 and 3.2 are numerically hard, in general.

However, if A(w) has the polytopic structure:

A(w) =
ρ

∑
i=1

Aiwi, wi ≥ 0,
ρ

∑
i=1

wi = 1,

for some integer ρ , and B and C are constant matrices, the algorithms suggested in
[11, 13] can profitably be used to compute X and R.

The results obtained in [12, 24] for linear switching systems will presently be
extended to LPV systems. In particular, the following result, taken from [12], is
used later.

Proposition 3.2. Assume that either pair of stabilizability conditions of
Theorems 3.1 or 3.2 is satisfied and let W (s,w) be the transfer function of a
compensator ensuring that the closed loop is internally stable for a fixed value of
w. Then, W (s,w) can be realized in the form3

ṙ(t) = Q(w)r(t)−L(w)y(t)+RB(w)u(t), (3.17)

x̂(t) = Mr(t), (3.18)

ż(t) = FSF(w)z(t)+GSF(w)x̂(t), (3.19)

u(t) = HSF(w)z(t)+KSF(w)x̂(t)+ v(t), (3.20)

v(t) = L −1{T (s,w)L {C(w)x̂(t)− y(t)}}= L −1{T (s,w)L {o(t)}} ,
(3.21)

2The reason for introducing the dummy signal v(t) = 0 will become clear later.
3With L we denote the Laplace operator.
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Fig. 3.2 Plant and observer-based controller parametrization c© IEEE 2010 [9]

or in the form (3.14)–(3.16) with (3.16) replaced by (3.21), where T (s,w) is a stable
transfer function (the Youla–Kucera parameter [27,40]) and o(t) =C(w)x̂(t)−y(t).

The structure of the resulting compensator is shown in Fig. 3.2.

3.4 LPV-stable Realization of a Parametric Transfer
Function

This section shows how to derive an LPV-stable realization from a transfer function
with a Hurwitz denominator. To this aim the following definition is useful.

Definition 3.5 (Stable regular parametric (SRP) transfer function). A proper
rational transfer function N(s,w)/d(s,w), where N is a p×m polynomial matrix
in s and d(s,w) is a monic polynomial of degree ν in s, with N and d continuous
functions of w ∈ W ⊂ IR� and W compact, is called a stable regular parametric
(SRP) transfer function if d(s,w) is Hurwitz for all w ∈ W .

The following result is proved in [9].
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Theorem 3.3. Any SRP transfer function admits an LPV-stable realization.

In fact one such realization can be obtained as follows.

Procedure 3.4.1 1. Take any realization
{

F̃(w), G̃(w), H̃(w), K̃(w)
}

of the SRP
transfer function N(s,w)/d(s,w), so that

N(s,w)/d(s,w) = H̃(w)(sI − F̃(w))−1G̃(w)+ K̃(w), (3.22)

where F̃(w) is a Hurwitz matrix continuous in w for all w ∈ W .
2. Compute the positive-definite solution P(w) of the Lyapunov equation

F̃T (w)P(w)+P(w)F̃(w) =−I. (3.23)

3. Factorize P(w) as

P(w) = RT (w)R(w), (3.24)

where R(w) is an upper-triangular matrix (Cholesky’s decomposition).
4. Realize the given SRP function according to

ż(t) = F(w)z(t)+G(w)ω(t),
ξ (t) = H(w)z(t)+K(w)ω(t),

where F(w) = R(w)F̃(w)R−1(w), G(w) = R(w)G̃(w) H(w) = H̃(w)R−1(w), and
K(w) = K̃(w).

3.4.1 Transfer Functions with Factorized Denominator

Simple solutions are possible when the Hurwitz denominator d(s,w) is expressed in
the factorized form

d(s,w) = ∏
i
[s+λi(w)] ∏

j

[
s2 + 2σ j(w)s+σ2

j (w)+ω2
j (w)

]
,

where λi(w) and σ j(w) are positive. In this case, the transfer function can be
expanded into partial fractions as

N(s,w)
d(s,w)

= D+∑
i

α̂i

s+λi(w)
+∑

j

β̂ js+ γ̂ j

s2 + 2σ j(w)s+σ2
j (w)+ω2

j (w)
,

whose numerator coefficients α̂i, β̂ j, γ̂ j can be computed by solving linear equations.
In this case, an LPV-stable realization is provided by
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Fig. 3.3 Diverging state-space trajectory of system (3.25) originating from x1(0) = 5, x2(0) = 4
with w(t) = sgn(x1x2)

F(w) = block-diag

{
−λi(w),

[−σ j(w) ω j(w)
−ω j(w) −σ j(w)

]}
,

G(w) = [ 1 1 · · · [ 0 1 ] [ 0 1 ] · · · ]	 ,

H(w) = [ α1 α2 · · · [ β1 γ1 ] [ β2 γ2 ] · · · ] ,
K(w) = D,

where αi, β j, and γ j are simply related to α̂i, β̂ j, and γ̂ j.

Example 3.2. The system described by

F̃(w) =

[
0 1

−(2+w) −1

]
, G̃ = H̃ = I, K̃ = 0 (3.25)

is stable for any fixed value of w in the interval 0≤w ≤ 10 , but it is not always LPV-
stable [29]. For instance, if the parameter w varies according to w(t) = sgn(x1x2),
the system turns out to be unstable. Figure 3.3 depicts the diverging state-space
trajectory starting from x1(0) = 5, x2(0) = 4.
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Fig. 3.4 The state-space trajectories of system (3.26) converge to the origin for the same variation
of w that leads to the instability of system (3.25)

Remembering that P = RT R, the solution of the Lyapunov equation F̃(w)T P+
PF̃(w) =−I is

P =

[
β 2 γβ
γβ δ 2 + γ2

]
=

[
β 0
γ δ

][
β γ
0 δ

]
,

where

β 2 = (α2 +α + 1)/(2α),

γ = 1/(2αβ ),

δ 2 = (1+α)/(2α)− γ2,

with α = 2+w. Then

G = R =

[
β γ
0 δ

]
, H = R−1 =

[
1/β −γ/(β δ )

0 1/δ

]
,

and

F = RF̃R−1 =

[−γα/β γ2α/(β δ )+ (β − γ)/δ
−δα/β −1+ γα/β

]
, (3.26)

which is similar to F̃ since it has the same characteristic polynomial. However, F
ensures LPV stability while F̃ does not. Figure 3.4 shows the state trajectory of
system (3.26) for the same variation of the parameter considered in Fig. 3.3.
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3.5 Parametrization of all LPV Stabilizing Compensator
Realizations

If the plant to be controlled is LPV-stable (as in the example illustrated at the end of
Sect. 3.2), the required controller realization can be structured as in Fig. 3.5, where
T (s,w) is a stable transfer function (Youla–Kucera parameter). Recall, in this regard,
that if the parameter has a constant value, then any stabilizing compensator W for
a stable plant P = C(sI −A)−1B can be written as W = −(I −T P)−1T (see, e.g.,
[34,42]) which corresponds to the subdiagram enclosed by a dashed line in Fig. 3.5.

As Fig. 3.5 suggests, LPV stability, too, is ensured if and only if the block T (s,w)
is LPV-stable [12,24]. Indeed, by realizing T (s,w) according to (3.2), the state-space
representation of the closed-loop system becomes, assuming the external inputs
equal to zero, i.e., d = 0 and r = 0:

d
dt

x(t) = A(w)x(t)+B(w)u(t), (3.27)

d
dt

x̂(t) = A(w)x̂(t)+B(w)u(t), (3.28)

ŷ(t) = C(w)x̂(t), (3.29)

d
dt

z(t) = F(w)z(t)+G(w)(ŷ(t)− y(t)), (3.30)

u(t) = H(w)z(t)+K(w)(ŷ(t)− y(t)). (3.31)

Note that (3.28) and (3.29) represent a copy of the plant. Letting e(t)
.
= x̂(t)− x(t)

and choosing
[
xT (t) zT (t) eT (t)

]T
as the state vector, the state matrix of the closed-

loop system takes the block-triangular form:

⎡

⎣
A(w) B(w)H(w) B(w)K(w)C(w)

0 F(w) G(w)C(w)
0 0 A(w)

⎤

⎦ .

Therefore, the closed loop is LPV-stable as long as F(w(t)) is so.

+ + +

Copy of
the plant

Plant
r

d
uT(s,w)

Fig. 3.5 LPV-stable plant and stabilizing controller parametrization
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Since the subdiagram inside the dashed line in Fig. 3.5 parametrizes all stabiliz-
ing compensator transfer functions (see [34, p. 67]), in the case of LPV-stable plants
Problem 3.1 admits a solution for any assigned transfer function W (s,w). Precisely,
this solution is obtained by forming the Youla–Kucera parameter according to

T (s,w) =W (s,w)[C(w)(sI −A(w))−1B(w)W (s,w)− I]−1 (3.32)

and realizing it so as to ensure LPV stability.
Problem 3.1 can be solved in the case of an LPV unstable plant, too, provided

the plant satisfies the stabilizability conditions of Sect. 3.3. The interested reader is
referred to [9, 12] for the relevant theorems and realization procedures.

Remark 3.1. Often the plant parameters are constant most of the time and are
subject to variations only occasionally. In these cases, it is reasonable to design the
controller in such a way that it is optimal for the prevailing parameter values while
ensuring LPV stability. Optimality can be achieved, e.g., by determining the Youla–
Kucera parameter according to the Wiener–Hopf design [40]. For slow processes, it
is possible to compute online (within the sampling interval) the optimal compensator
as a function of the current w. The only additional requirement is that the Youla–
Kucera parameter be properly realized.

3.6 The Discrete-time Case

The results presented in the previous sections are based on the solution of a
continuous-time Lyapunov equation. Therefore, in the case of discrete-time systems,
some of them, e.g., Procedure 3.4.1, need to be reformulated. To this purpose, let
the parametric transfer function of a discrete-time regulator be

W (z,w) =
N(z,w)
d(z,w)

that can be realized as

z(k+ 1) = F(w)z(k)+G(w)ω(k),

ξ (k) = H(w)z(k)+K(w)ω(k), (3.33)

with

W (z,w) = H(w)[zI −F(w)]−1G(w)+K(w) .

Also, assume that the plant is described by the usual discrete-time equations

x(k+ 1) = A(w)x(k)+B(w)u(k),

y(k) = C(w)x(k). (3.34)
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Assumption 3.3. There exist two positive-definite constant matrices P and Q, and
two matrices U(w) and Y (w), dependent on the parameter w, such that

A(w)PA(w)T +B(w)U(w)A(w)T +A(w)U(w)T B(w)T

+B(w)U(w)P−1U(w)T B(w)T −P < 0 , (3.35)

A(w)T QA(w)+C(w)TY (w)T A(w)+A(w)TY (w)C(w)

+C(w)TY (w)T Q−1Y (w)C(w)−Q < 0 . (3.36)

where A(w), B(w), and C(w) are defined by (3.34).

Theorem 3.4. The following two conditions are equivalent:

(1) The inequalities (3.35) and (3.36) of Assumption 3.3 are satisfied.
(2) The LPV plant (3.34) is quadratically stabilizable by a compensator of the form

(3.33).

Proof. The proof parallels closely the one of Theorem 3.1 [9]. �
To generalize the stability concept to LPV stability (not necessarily quadratic), we
need to resort to nonquadratic Lyapunov functions.

Definition 3.6. Given a full-column rank matrix R (a full-row rank X) the positive-
definite function Ψ(x) = ‖Rx‖∞ (the positive-definite function Ψ (x) = min{‖z‖1 :
Xz = x}, respectively) is a polyhedral Lyapunov function for the system x(k+ 1) =
A(w(k))x(k) if

ΔΨ (x)
.
=Ψ(A(w)x) ≤ λΨ(x),

for some positive λ < 1.

Again, the existence of a polyhedral Lyapunov function is necessary and sufficient
for LPV stability [2–4, 15, 16] (see also [11] for further details).

Proposition 3.3. The following assertions are equivalent:

• The LPV system

x(k+ 1) = A(w(k))x(k)

is stable.
• The LPV system admits a polyhedral Lyapunov function.
• The following equation holds for some full-column rank R and ‖Q(w)‖∞ ≤ λ < 1

RA(w) = Q(w)R.

• The following equation holds for some full-row rank X and ‖P(w)‖1 ≤ λ < 1

A(w)X = XP(w).

The following theorem holds for the discrete-time case.
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Theorem 3.5. The following two conditions are equivalent:

(1) There exist a full-row rank n×μ matrix X, a full-column rank ν×n matrix R, as
well as an m×μ matrix U(w), a ν × p matrix L(w), and square matrices, P(w)
and Q(w) with norms ‖P(w)‖1 ≤ λ < 1 and ‖Q(w)‖∞ ≤ λ < 1 such that

A(w)X +B(w)U(w) = XP(w), (3.37)

RA(w) +L(w)C(w) = Q(w)R. (3.38)

(2) The LPV plant (3.34) is stabilizable by means of a compensator of the form
(3.33) and the closed-loop system admits a polyhedral Lyapunov function.

Proof. (1)⇒ (2) Assume that a stabilizing compensator of the form (3.3) exists. The
related (stable) closed-loop system matrix is

[
A(w)+B(w)K(w)C(w) B(w)H(w)

G(w)C(w) F(w)

]
.

In view of Proposition 3.3, there exists ‖P(w)‖1 ≤ λ < 1 such that

[
A(w)+B(w)K(w)C(w) B(w)H(w)

G(w)C(w) F(w)

][
X
Z

]
=

[
X
Z

]
P(w). (3.39)

The upper block row of (3.39) yields

A(w)X +B(w)K(w)C(w)X +B(w)H(w)Z = XP(w),

and, by setting U(w) = K(w)C(w)X + H(w)Z, (3.37) follows. The necessity of
(3.38) can be proved by duality [10].

(2)⇒ (1) Assume that (3.37) and (3.38) are satisfied, and consider the compen-
sator of order ν + μ − n described by

r(k+ 1) = Q(w)r(k)−L(w)y(k)+RB(w)u(k), (3.40)

x̂(k) = Mr(k), (3.41)

z(k+ 1) = FSF(w)z(k)+GSF(w)x̂(k), (3.42)

u(k) = HSF(w)z(k)+KSF(w)x̂(k)+ v(k), (3.43)

v(k) = 0, (3.44)

where M is any left inverse of R, i.e., a matrix such that MR= I, and FSF(w), GSF(w),
HSF(w), and KSF(w) can be computed from

[
KSF(w) HSF(w)
GSF(w) FSF(w)

]
=

[
U(w)
V (w)

] [
X
Z

]−1

, (3.45)
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where Z is any complement of X that makes the square matrix

[
X
Z

]
invertible and

V (w)
.
= ZP(w).

Letting
s(k)

.
= R x(k)− r(k)

and choosing
[
xT zT sT

]T
as the state vector, after simple manipulations the

following closed-loop matrix is obtained:

⎡

⎣
A(w)+B(w)KSF(w) B(w)HSF(w) −B(w)KSF(w)M

GSF(w) FSF(w) −GSF(w)M
0 0 Q(w)

⎤

⎦ . (3.46)

The LPV system is stable if and only if the diagonal blocks of the block-triangular
state matrix (3.46) are LPV-stable. Now, the upper left diagonal block is LPV-stable
because it satisfies (3.39), while the lower right block Q(w), ‖Q(w(t))‖∞ < λ < 1,
is the state matrix of an LPV-stable system. ��

The synthesis of parametric compensators which are LPV-stable, can be per-
formed by means of the techniques described in the continuous-time case, provided
that an LPV-stable realization of the Youla–Kucera parameter is considered. This
can be found as follows.

Procedure 3.6.1 1. Take any realization
{

F̃(w), G̃(w), H̃(w), K̃(w)
}

of the SRP
transfer function N(z,w)/d(z,w), so that

N(z,w)/d(z,w) = H̃(w)(zI − F̃(w))−1G̃(w)+ K̃(w), (3.47)

where F̃(w) is a matrix continuous in w for all w∈W and having the eigenvalues
within the unit circle.

2. Compute the positive-definite solution P(w) of the Lyapunov equation:

F̃T (w)P(w)F̃(w)−P(w) =−I. (3.48)

3. Factorize P(w) as
P(w) = RT (w)R(w), (3.49)

where R(w) is an upper-triangular matrix (Cholesky’s decomposition).
4. Realize the given SRP function according to

z(k+ 1) = F(w)z(k)+G(w)ω(k),
ξ (k) = H(w)z(k)+K(w)ω(k),

(3.50)

where F(w) = R(w)F̃(w)R−1(w), G(w) = R(w)G̃(w) H(w) = H̃(w)R−1(w), and
K(w) = K̃(w).

Therefore, the following theorem can be stated.
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Theorem 3.6. Any SRP transfer function admits an LPV-stable realization
computable by means of Procedure 3.6.1.

Proof. Consider a realization obtained by Procedure 3.6.1. Equation (3.48) can be
rewritten as

RT (w)FT (w)R−T (w)P(w)R−1(w)F(w)R(w)−RT (w)R(w) =−I

which, by premultiplying by R−T (w) and postmultiplying by R−1(w), becomes

FT (w)IF(w)− I =−R−T (w)R−1(w) =−P−T (w) .

By continuity, P−T (w) is positive-definite and lower bounded, which means that the
system z(k+1) = F(w)z(k) admits the identity matrix as a solution to the Lyapunov
equation and, hence, it is stable. ��

3.7 Applications and Examples

3.7.1 Fixed-Pole Assignment

Consider the case in which the compensator transfer function is designed so as to
locate the closed-loop poles always in the same place independently of the values
of the plant parameters, that is, the closed-loop system

ΣCL(w) =

[
A(w)+B(w)K(w)C(w) B(w)H(w)

G(w)C(w) F(w)

]

exhibits fixed poles. This implies that the Youla–Kucera parameter has fixed poles.
To achieve this result, the procedures illustrated in Sect. 3.4 can be used. For
simplicity, assume that the desired closed-loop eigenvalues are distinct. Then, the
transformation matrix R(w) can be chosen in such a way that F(T )(w) = F (T ) =
const. The following proposition formalizes this result.

Proposition 3.4. Assume that the plant is LPV-stable and that the assigned com-
pensator transfer function N(s,w)/d(s) locates the poles of the closed-loop transfer
function in fixed positions. Then, an LPV stabilizing realization of the form (3.3)
with F constant can be obtained for this compensator.

If the plant is LPV-stable, the compensator can be structured as in Fig. 3.5, and
the sensitivity function can be written as

S(s,w) = 1− [C(w)(sI−A(w))−1B(w)]T (s,w). (3.51)
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Pole assignment can be accomplished by making T (s,w) cancel all of the plant
eigenvalues and replace them by its own poles. In this way, stability is obviously
guaranteed for every constant value of w. Instead, to achieve LPV stability, T (s,w)
must be realized properly. Since the poles of T (s,w) are fixed, a constant state matrix
F can be chosen so that no transformation R(w) is needed.

Example 3.3 (Example 3.1 revisited). Consider again (3.7). The compensator (3.8)
locates the closed-loop poles at the roots of (3.9). An ad hoc LPV stabilizing
realization was already derived in Example 3.1. However, the controller transfer
function (3.8) can also be realized according to (3.32) with

T (s,w) =
κ(w)(s+α)

(s+α)(s+β )+κ(w)w
=

(κ0/w)(s+α)

(s+α)(s+β )+κ0

leading to a compensator that ensures closed-loop LPV stability for the desired
poles.

3.7.2 Dead-beat LPV Control Problem

A remarkable difference between the discrete- and continuous-time case is that, for
w constant, in the former it is possible to achieve a closed-loop system with finite
impulse response (FIR); as is known, this can be accomplished by placing all of its
poles in the origin. Instead, it is not possible, in general, to make the overall control
system FIR in the case of LPV discrete-time systems. It is possible, however, to
make finite the impulse response between the reference signal and the control input.

To this purpose, assume for simplicity that the discrete-time plant is SISO and
LPV-stable and that a discrete-time compensator is connected with it according
to the discrete-time structure analogous to the one depicted in Fig. 3.5 for the
continuous-time case. Let T (z,w) be the Youla–Kucera parameter and let WC(z,w)
be a dead-beat compensator transfer function. From the sensitivity function

S(z,w) = 1− [C(w)(zI −A(w))−1B(w)
]

T (z,w)

it is apparent that, under parameter variations, the impulse response is not finite.
However the reference-to-control input transfer function is

Fru(z,w) =
WC(z,w)

1+WC(z,w)P(z,w)
= T (z,w) .

Hence, if the compensator is dead-beat, then all of the poles of T (z,w) must be in
the origin.
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According to the pole-placement technique described above, T (z,w) can be
realized by means of a nilpotent state matrix. Suppose that

{
F (T ),G(T )(w),H(T )(w),K(T )(w)

}

is a realization of T (z,w) with F (T) constant and nilpotent. Since x(0) = 0 and
x̂(0) = 0 imply ŷ(k) = y(k), for all k, then the control u(k)—which is the output
of the compensator corresponding to an impulse at one of the inputs d and r—
necessarily has finite support.

Consider the strictly proper LPV plant described by the matrices

A(w) =

[
0 1
−w 1

]
, B =

[
0
1

]
, C =

[−1.6 1
]
, (3.52)

with w ∈ [0.125,0.875], that has been tested to be LPV-stable by means of the
procedure suggested in [11], and the first-order compensator

WC(z) =
αz+β
z+ γ

,

that places all of the closed-loop poles in the origin for fixed values of w. The
parameters α(w), β (w), and γ(w) are the solution of the Diophantine equation

(z+ γ)(z2 − z+w)+ (αz+β )(z− 1.6)= z3 .

The implementation of the compensator {Fc = −γ,Hc = β − γα,Gc = 1,Kc = α}
may lead to instability. On the contrary, the technique described in Sect. 3.6 ensures
LPV stability. Simulations with random jumps of w from an extremum to the other
of the interval [0.125,0.875] are shown in Fig. 3.6.

3.7.3 Online Tuning for LTI Plants

The procedures conceived for LPV plants can profitably be used to synthesize para-
metric compensators for LTI plants. Precisely, to improve the system performance,
some parameters of the controller can be tuned online according to the scheme of
Fig. 3.7.

Assume that P(s) is stabilizable in the LTI sense and Wc(s,w) is a family of
compensator transfer functions, parametrized with respect to w, that ensure the
internal stability of the closed-loop system for all constant w ∈ W . Then, there
always exists a realization of Wc(s,w) that guarantees LPV stability too. The result is
valid no matter how the parameter tuning is carried out, manually or automatically.
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Example 3.4. Let P(s) in Fig. 3.7 be

P(s) =
1

s+ μ
. (3.53)

To (partly) suppress a disturbance d(t) with a (dominant) sinusoidal component of
frequency ω0, the controller transfer function can be chosen as

Wc(s) =
κω2(s+α)

s2 + 2ξ ωs+ω2 , (3.54)

with ω = ω0 and ξ small, which admits the following minimal realization:

[
Fmin Gmin

Hmin Kmin

]
=

⎡

⎣
0 1 0

−ω2 −2ξ ω 1
καω2 κω2 0

⎤

⎦ . (3.55)

If the frequency of the disturbance varies in an interval, say ω− ≤ ω0 ≤ ω+, as is
often the case in practice, the parameter ω in (3.54) must be adjusted accordingly
(which, of course, requires measuring the disturbance frequency) and the control
system becomes an LPV system whose stability depends on the controller realiza-
tion. By considering the above companion realization of the controller, the state,
input, and output matrices of the resulting closed-loop system turn out to be:

[
ACL BCL

CCL 0

]
=

⎡

⎢
⎢
⎣

−μ κω2α κω2 0
0 0 1 0

−1 −ω2 −2ξ ω 1
1 0 0 0

⎤

⎥
⎥
⎦ .

If we assume for simplicity α = μ in (3.54) to cancel the pole of (3.53), then the
preceding realization is non-minimal and, indeed, equivalent to

[
ACL BCL

CCL 0

]
=

⎡

⎣
0 1 0

−(κ + 1)ω2 −2ξ ω 1
κω2 0 0

⎤

⎦ .

It is known that this system is unstable for ξ small and ω varying with time.
However, the compensator can be realized in such a way that, for any fixed w, its
transfer function matches the desired one and, at the same time, LPV stability is
guaranteed. According to Sect. 3.5, the compensator can be given the form

Wc(s,w) =− T (s,w)
1−T(s,w)P(s)

, (3.56)
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from which:

T (s,w) =
Wc

1+WcP
=

κω2(s+ μ)
s2 + 2ξ ωs+(1+κ)ω2 .

Therefore, the problem can be solved by finding an LPV-stable realization of
T (s,w). According to Procedure 3.4.1 and assuming complex eigenvalues, one such
realization is

Σ (T ) =

[
F(T ) G(T )

H(T) 0

]
=

⎡

⎢
⎣

−ξ ω ω
√

1+κ − ξ 2

−ω
√

1+κ − ξ 2 −ξ ω
0
1

h1(w) h2(w) 0

⎤

⎥
⎦ ,

where h1(w) and h2(w) are given by

h1(w) = κω(μ − ξ ω)
/√

1+κ − ξ 2, h2(w) = κω2 .

Thus, (3.56) can be realized as

ẋc =

⎡

⎣
−ξ ω ω

√
1+κ − ξ 2 0

−ω
√

1+κ − ξ 2 −ξ ω 1
h1(w) h2(w) −μ

⎤

⎦xc +

⎡

⎣
0
1
0

⎤

⎦e,

u =
[

h1(w) h2(w) 0
]

e. (3.57)

Figure 3.8 shows the evolutions of the output ylpv with the controller realized in
this way and of the output ymin with the same controller realized in the minimal
form (3.55) for μ = 1, κ = 10, and ξ = 0.01. The latter clearly leads to instability
(note that the scales for ylpv and ymin are quite different). The evolution of the tuning
parameter ω is also shown in Fig. 3.8.

3.7.4 LPV Stability Within the Hurwitz Region

In most practical cases, given a parametric plant and a parametric compensator, the
stability region in the parameter space can be determined by using standard analysis
tools, such as the Routh–Hurwitz table. Obviously, this kind of analysis is valid
if the parameters are constant in time. However, using the procedure previously
outlined, LPV stability can be ensured for all possible parameter variations within
the aforementioned stability region.



3 Parametric Gain-scheduling Control via LPV-stable Realization 83

0 5 10 15

0 5 10 15

0 5 10 15

−10

0

10
y l

pv
y m

in

−50

0

50

0

10

20

30

ω
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Example 3.5. Consider the plant

[
A(w) B(w)
C(w) 0

]
=

⎡

⎣
0 1 0

−(1+ρw) −ξ 1
1 0 0

⎤

⎦ ,

with ξ small and positive and ρ slightly less than 1, and assume that the controller
must satisfy the following specifications:

– For any fixed value of w ∈ [0,1], the controller transfer function has the PI
structure:

Wc(s) = k+
h
s
. (3.58)

– The closed-loop system is LPV-stable when w varies in time within the interval
[0,1].

– The proportional gain k and the integral gain h can be changed online within the
region for which stability is guaranteed for any fixed w.

– The closed-loop system is stable independently of how k and h vary.

Trivial computations based on the Routh–Hurwitz array show that the closed-loop
system is stable for every fixed w ∈ [0,1], if and only if h > 0 and h ≤ ξ (1+ k).
Therefore, for fixed w the stability region in the (k,h)-plane is

R = {h ≥ ε and h ≤ ξ (1+ k)− ε},

with ε positive and arbitrarily small.
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This system is quadratically stabilizable. Possible gains J(w) and L(w) of the
observer-based controller (see (3.14)–(3.15)) are

J(w) = [ρw − 1], L(w) = [0 ρw]T .

Correspondingly, the compensator equations turn out to be

d
dt

[
x̂1

x̂2

]
=

[
0 1

−(1+ρw+ k) −ξ

][
x̂1

x̂2

]
+

[
0

ρw

]
y(t)+

[
0
1

]
v(t),

u(t) = [ ρw − 1 ]

[
x̂1

x̂2

]
+ v(t),

o(t) = −[ 1 0 ]

[
x̂1

x̂2

]
+ y(t),

v(s) = T (s,w)o(s).

The Youla–Kucera parameter T (s,w) can be realized starting from any realization
of the compensator. A simple realization of (3.58) is given by: F = 0, G = 1, H = h,
and K = k. In this case:

[
F(T )(w) G(T )(w)
H(T)(w) K(T )(w)

]
=

[
R(w) 0

0 I

]
⎡

⎢⎢
⎣

0 1 0 0
−(1+ρw+ k) −ξ h −(ρw− k)

−1 0 0 1
−(ρw− k) −1 h k

⎤

⎥⎥
⎦

[
R−1(w) 0

0 I

]
,

where R(w) is the upper-triangular Cholesky factor of the solution P = RT R = [pi j]
of the Lyapunov equation:

(
F (T )(w)

)T
P+PF(T )(w) =−I. (3.59)

By setting α = ξ , β = (1+ ρw+ k), and γ = h, (3.59) entails the solution of the
linear equations:

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

0 0 0 −2β 0 −2
0 −2α 0 2 0 0
0 0 0 0 2γ 0
1 −β 0 −α −1 0
0 0 −1 γ −β 0
0 γ 0 0 −α 1

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

p11

p22

p33

p12

p23

p31

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

−1
−1
−1

0
0
0

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

.
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The non-zero entries of R = [ri j] turn out to be

r11 =
√

p11, r12 = p12/r11, r13 = p13/r11,

r22 =
√

p22 − r2
12, r23 = (p23 − r12r13)/r22,

r33 =
√

p33 − r2
13 − r2

23.

The matrix R−1 = [si j] is also upper-triangular. Its non-zero entries are

s11 = 1/r11, s22 = 1/r22, s33 = 1/r33,

s12 =−r12/(r11r22), s13 =−(r22s12 + r13/r33),

s23 =−r23/(r22r33).

All of the previous operations can easily be implemented online.

3.7.5 Pointwise Optimality and LPV Stability

The following example shows how LPV stability can be combined with pointwise
optimality.

Example 3.6. The LPV system described by

ẋ(t) =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1

w(t) 0 0 0

⎤

⎥
⎥
⎦x(t)+

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦u(t), (3.60)

y(t) =
[

1 0 0 0
]

x(t), (3.61)

with w(t) ∈ [20,980], satisfies Assumption 3.1 and is LPV stabilized by the constant
observer and state-feedback gains

J(w) = J =
[−5442.8 −1886.3 −352.84 −32.57

]

and

L(w) = L =
[−32.57 −352.84 −1886.3 −5442.8

]
.

Suppose that the LQG controller is designed, for the current value of w, according
to the cost function

J =
∫ ∞

0
‖x(t)‖2 + 0.01|u(t)|2dt
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Fig. 3.9 Time course w(t) of the parameter c©IEEE 2010 [9]

and assuming identity state and measurement noise covariance matrices. Suppose
also that w(t) is a sawtooth signal spanning the interval from 980 to 20 with a
period Tw = 1.428 s, as depicted in Fig. 3.9. The direct application of the pointwise
controller may lead to instability (see Fig. 3.10, solid line). However, LPV stability
can be obtained (see Fig. 3.10, dashed line) without affecting pointwise optimality
by following the procedure explained in the previous sections.

3.8 Future Directions

The above-mentioned results lend themselves to interesting extensions. Since the
suggested realization procedure is independent of the design criterion, they can
be combined with any LTI synthesis technique. It seems particularly suited to the
online tuning of standard controllers. Moreover, it could profitably be associated
with existing parametric design techniques such as those in [21].

We have seen that pointwise optimality can be ensured along with LPV stability.
However, nothing can yet be said about time-varying performance. In this respect,
the present chapter follows a path opposite to that followed in [1, 5], where LPV
performance has been considered without pointwise optimality. The problem of
realizing a pointwise optimal compensator so as to ensure a guaranteed performance
is still open.

Another open problem concerns the possibility of “adapting” some robust stabil-
ity conditions for uncertain LTI systems based on parametric Lyapunov functions
[6, 7, 17–19, 26], (for a survey see [20]) so as to ensure LPV stability, too.

In the preceding sections, explicit, yet cumbersome, formulas have been derived
for finding a controller by assuming a polyhedral Lyapunov function. It would
be interesting to see whether other classes of Lyapunov functions, such as the
polynomial [20, 41] and composite ones [25], can lead to simpler formulations.
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Chapter 4
Explicit Controller Parametrizations for Linear
Parameter-Varying Affine Systems Using Linear
Matrix Inequalities

Maurı́cio C. de Oliveira

Abstract In this chapter, we derive explicit controller parametrizations for the
design of output feedback controllers for affine Linear Parametrically Varying
(LPV) systems in the form of Linear Matrix Inequalities (LMIs). The main feature
is that variables related to the LPV controller parameters are retained in the design
inequalities, a fact that can be used to impose a simpler structure to the resulting
controller as well as to develop applications in a number of control problems,
such as mixed objective control problems and delay systems. We develop formulas
using two approaches: one based on polytopes and another based on norm-bounded
uncertainty models. We provide a comparison between these two approaches and
their relation to existing results in the literature.

4.1 Problem Formulation

Consider the following continuous-time time-varying linear system described in
state space form by the equations

ẋ(t) = A(δ (t))x(t)+Bww(t)+Buu(t),

z(t) = Cz(δ (t))x(t)+Dzww(t)+Dzuu(t),

y(t) = Cy(δ (t))x(t)+Dyww(t). (4.1)

where all matrices have dimensions compatible with the signals x ∈ R
n, u ∈ R

m,
w ∈ R

p, z ∈ R
q, y ∈ R

r, respectively, the state, the control input, an exogenous
disturbance, the controlled output, and the measurement output.
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Throughout this chapter, the vector δ (t) ∈ R
s is assumed to be a measurable

parameter that will be used by a controller in order to provide stability and
performance guarantees to the resulting time-varying linear system. Such systems
are often called Linear Parametrically Varying systems, or LPV systems, for short.
As it is standard in the LPV literature, the parameter δ (t) is assumed to lie in a
compact set Δ which is known a priori even though the actual trajectory δ (t) is only
measured at run-time. In the present chapter, we assume that the dependence of A,
Cz, and Cy on δ (t) is affine, that is,

A(δ (t)) := A0 +
s

∑
i=1

δi(t)Ai,

Cz(δ (t)) := Cz0 +
s

∑
i=1

δi(t)Czi,

Cy(δ (t)) := Cy0 +
s

∑
i=1

δi(t)Cyi. (4.2)

There are results in the literature that can handle more general forms of dependence
on δ (t), in particular, explicit or implicit rational dependence on δ (t) are commonly
found. A common thread among those approaches is the use of the Elimination
Lemma [5, 16] that is used to remove the dependence of the synthesis condition
on the controller parameters. See, for instance [1, 2, 4, 12, 13, 15]. Consequently, in
these works, the controller does not directly appear on the design inequalities. The
main contribution of the present chapter is to derive LMIs for the design of LPV
controllers in which the controller parameters appear explicitly, represented by a
number of transformed variables. Such feature will enable the application of these
formulas in a number of problems, as we will discuss in Sect. 4.4.

In the present chapter, we will determine the parameters of an LPV controller
that has the exact same form as the LPV plant, that is,

˙̂x(t) = Â(δ (t)) x̂(t)+ B̂y(t),

u(t) = Ĉ(δ (t)) x̂(t)+ D̂y(t), (4.3)

where x̂ ∈ R
nc and

Â(δ (t)) := Â0 +
s

∑
i=1

δi(t)Âi, Ĉ(δ (t)) := Ĉ0 +
s

∑
i=1

δi(t)Ĉi. (4.4)

The above controller makes use of the measurement input y(t) as well as the
measurable parameter vector δ (t). We shall assume that nc = n, that is, the controller
is full order. Note that many LPV methods in the literature produce controllers
which are rational functions of the parameter δ (t) even when the plant is affine
on the parameter [12, 13] or with a different affine structure [2].
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4.2 Closed Loop Stability Analysis

The closed loop connection of the LPV plant (4.1) with the LPV controller (4.3)
produces a closed loop LPV system of the form

˙̃x(t) = A (δ (t)) x̃(t)+Bw(t),

z(t) = C (δ (t)) x̃(t)+Dw(t), (4.5)

where

x̃(t) :=

[
x(t)
x̂(t)

]
, (4.6)

and

A (δ (t)) :=

[
A(δ (t))+BuD̂Cy(δ (t)) BuĈ(δ (t))

B̂Cy(δ (t)) Â(δ (t))

]
, B :=

[
Bw +BuD̂Dyw

B̂Dyw

]
,

C (δ (t)) :=
[
Cz(δ (t))+DzuD̂Cy(δ (t)) DzuĈ(δ (t))

]
, D := Dzw +DzuD̂Dyw.

(4.7)

Under the assumption of an affine LPV plant (4.2) as well as an affine LPV
controller (4.4), the matrices A (δ (t)) and C (δ (t)) are also affine functions of the
parameter δ (t).

As mentioned earlier, we will treat the parameter δ (t) as an uncertainty in the
compact set Δ at each instant of time t. In the present chapter, we consider that Δ is
the unit hypercube

ΔR := {(δ1, . . . ,δs) : |δi| ≤ 1 for all i = 1, . . . ,s}

hypercubes with different sizes can be obtained by simply scaling the problem data.
In the next sections, we develop sufficient conditions based on the concept of

quadratic stability [3] that will later be used to design the LPV controller. We
simultaneously develop two of the most popular approaches found in the literature:
one based on polytopes and the other on norm-bounded uncertainties in the spirit of
μ-analysis. In Sect. 4.4, we compare and discuss possible applications for the two
sets of conditions.

4.2.1 Polytopic Approach

The LPV controller will be obtained by ensuring that the linear time-varying closed
loop system (4.5) is asymptotically stable and, in addition, that it has a bounded L2

to L2 gain from the exogenous input w to the controlled output z for all δ (t) ∈ ΔR.
After properly scaling the system, this corresponds to asking that ‖z‖2 < 1 whenever
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‖w‖2 < 1. In this case, a well-known sufficient condition [2] is that the following
inequalities, derived from the Bounded-Real Lemma [5] using quadratic stability [3],
be satisfied

⎡

⎣
AT

j P +PA j PB CT
j

BT P −I DT

C j D −I

⎤

⎦≺ 0 for all j = 1, . . . ,2s, (4.8)

for some matrix P = PT � 0 where B, D are as in (4.7) and the matrices A j

and C j are constructed by taking all possible combinations of sums and differences
of matrices of the form

Ai :=

[
Ai+BuD̂Cyi BuĈi

B̂Cyi Âi

]
, Ci :=

[
Czi+DzuD̂Cyi DzuĈi

]
, i = 0, . . . ,s. (4.9)

Indeed

A j = A0 +
s

∑
i=1

e j
i Ai, C j = C0 +

s

∑
i=1

e j
i C1, (4.10)

where e j, j = 1, . . . ,2s, are vectors representing each of the 2s vertices of the
hypercube ΔR. All entries of a particular e j are either “1” or “−1”.

Clearly one disadvantage of the polytopic approach is the exponential number
of inequalities, which grow with 2s. The above setup is very close to the one
in [2]. However, there are significant differences related to the structure of the
controller (4.4), which we will discuss later in Sect. 4.4.

4.2.2 Norm-Bounded Approach

As with the polytopic approach, we wish to enforce that the linear time-varying
closed loop system (4.5) be asymptotically stable and that the L2 to L2 gain from
w to z be bounded for all δ (t) ∈ ΔR. This will be achieved by using tools from μ-
analysis with real and mixed-type uncertainties [6, 17]. We start by introducing the
following auxiliary LTI plant

ẋ(t) = A0x(t)+
s

∑
i=1

Aivi(t)+Bww(t)+Buu(t),

r1(t) = r2(t) = · · ·= rs(t) = x(t),

z(t) = Cz0x(t)+
s

∑
i=1

Czivi(t)+Dzww(t)+Dzuu(t),

y(t) = Cy0x(t)+
s

∑
i=1

Cyivi(t)+Dyww(t), (4.11)
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and the auxiliary LTI controller

˙̂x(t) = Â0x̂(t)+
s

∑
i=1

Âsv̂i(t)+ B̂yu(t),

r̂1(t) = r̂2(t) = · · ·= r̂s(t) = x̂(t),

u(t) = Ĉ0x̂(t)+
s

∑
i=1

Ĉiv̂i(t)+ D̂y(t). (4.12)

As we shall see later, it is essential that the outputs ri’s and r̂i’s be copies of the plant
and controller state. Defining x̃(t) as in (4.6) and

r̃i(t) :=

[
ri(t)
r̂i(t)

]
, ṽi(t) :=

[
vi(t)
v̂i(t)

]
, i = 1, . . . ,s,

the closed loop connection of the auxiliary LTI system (4.11) and the auxiliary LTI
controller (4.12) produces the LTI closed loop plant

˙̃x(t) = A0x̃(t)+
s

∑
i=1

Aiṽi(t)+Bw(t),

r̃1(t) = r̃2(t) = · · ·= r̃s(t) = x̃(t),

z(t) = C0x̃(t)+
s

∑
i=1

Cir̃i(t)+Dw(t), (4.13)

where Ai, Ci are defined in (4.9) and B, D are as in (4.7).
The above closed loop LTI system is related to the closed loop LPV system (4.5)

through the standard feedback interconnection depicted in the diagram of Fig. 4.1,
where

r(t) =

⎡

⎢
⎣

r̃1(t)
...

r̃s(t)

⎤

⎥
⎦ , v(t) =

⎡

⎢
⎣

ṽ1(t)
...

ṽs(t)

⎤

⎥
⎦ ,

P is the LTI system (4.13), and Δ = ΔR represents the time-varying and norm-
bounded scheduled parameter.

In order to handle the bounded L2 to L2 gain requirement, we augment the set ΔR

as follows:

ΔN := {(δ ,Δ) : δ ∈ ΔR, ‖Δ‖ ≤ 1} ,
and ask that the following inequality, which is derived from the Bounded-Real
Lemma with the addition of (D,G) scalings [6], be satisfied

[
A T

0 P +PA0 P F

FT P 0

]
+

[
G H

0 I

]T [
W S

−S −W

][
G H

0 I

]
≺ 0 (4.14)
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Fig. 4.1 Loop
interconnection

for some matrices P = PT � 0, W =WT � 0 and S = −ST , where the matrices
F, G, and H are defined as

[
� F

G H

]
:=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

� A1 · · · As B

I 0 · · · 0 0
...

...
. . .

...
...

I 0 · · · 0 0
C0 C1 · · · Cs D

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.15)

and the scalings W and S have the particular structure

W =

⎡

⎢
⎢
⎢
⎣

W1 0
. . .

Ws

0 I

⎤

⎥
⎥
⎥
⎦
, S=

⎡

⎢
⎢
⎢
⎣

S1 0
. . .

Ss

0 0

⎤

⎥
⎥
⎥
⎦
. (4.16)

The LMI (4.14) can be interpreted in the light of standard results in μ-analysis with
mixed parametric uncertainty, where the structure of the scalings W and S used
above is that of block diagonal (D,G) scalings [6].

4.3 LMIs for Control Design

We now derive LMIs for the design of LPV controllers for affine LPV systems in
which the variables associated with the controller parameters appear explicitly, in
the spirit of [14]. Let us first define the linear functions

Ai(X ,Y,F,R,Qi,Li) :=

[
AiX +BuLi Ai +BuRCyi

Qi YAi +FCyi

]
,
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Ci(X ,R,Li) :=
[
CziX +DzuLi Czi +DzuRCyi

]
,

B(Y,F,R) :=

[
Bw +BuRDyw

YBw +FDyw

]
,

D(R) := Dzw +DzuRDyw, (4.17)

for i = 0, . . . ,s. The dependence on the indicated variables will often be omitted in
the interest of a more compact presentation.

In the next sections, we will derive LMIs involving the above functions. Once
these LMIs have been solved, the controller parameters can be calculated by first
computing square matrices U and V such that

YX +VU = I. (4.18)

It is always possible to compute matrices U and V which are square and nonsingular
from the matrices X and Y obtained from the LMIs, which should satisfy X � Y−1

(see [14] for details). The controller matrices appearing in (4.3)–(4.4) can then be
computed as

[
Â0 · · · Âs B̂
Ĉ0 · · · Ĉs D̂

]
=

[
V Y Bu

0 I

]−1

×
([

Q0 · · · Qs F
L0 · · · Ls R

]
−
[
YA0X · · · YAsX 0

0 · · · 0 0

])

⎡

⎢
⎢
⎢
⎣

U · · · 0 0
...

. . .
...

...
0 · · · U 0

Cy0X · · · CysX I

⎤

⎥
⎥
⎥
⎦

−1

, (4.19)

for both the polytopic model as well as the norm-bounded model. The matrices X ,
Y , F , R, Qi, Fi, i = 0, . . . ,s, come from the solution to the LMIs to be introduced in
the next theorems.

Theorem 4.1 (Polytopic). Consider the linear functions Ai, B, Ci, D, i = 0, . . . ,s,
defined in (4.17). If there exists matrices X = XT , Y = Y T , F, R, Qi, Fi, i = 0, . . . ,s,
such that the LMIs

[
X I
I Y

]
� 0, (4.20)

⎡

⎢
⎣

A0+AT
0 +∑s

i=1 e j
i

(
Ai+AT

i

)
B CT

0 +∑s
i=1 e j

i CT
i

BT −I DT

C0+∑s
i=1 e j

i Ci D −I

⎤

⎥
⎦≺ 0, for all j=1, . . . ,2s, (4.21)
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have a feasible solution then the feedback connection of the LPV system (4.1)–(4.2)
with the LPV controller (4.3)–(4.4), where the controller matrices are computed
using (4.18)–(4.19), is asymptotically stable and the L2 to L2 gain from the
exogenous input w to the controlled output z is less than one for all time-varying
δ (t) ∈ ΔR.

Theorem 4.2 (Norm-bounded). Consider the linear functions Ai, B, Ci, D, i =
0, . . . ,s, defined in (4.17). If there exists matrices X = XT , Y = Y T , F, R, Qi, Fi,
i = 0, . . . ,s, and Wi =Wi, Si =−ST

i , i = 1, . . . ,s, such that the LMIs

[
X I
I Y

]
� 0, Wi � 0, for all i=1, . . . ,s, (4.22)

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

AT
0 +A0 +∑s

i=1 Wi A1 + S1 · · · As + Ss B CT
0

AT
1 − S1 −W1 · · · 0 0 CT

1
...

...
. . .

...
...

...
AT

s − Ss 0 · · · −Ws 0 CT
s

BT 0 · · · 0 −I DT

C0 C1 · · · Cs D −I

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

≺ 0, (4.23)

have a feasible solution then the feedback connection of the LPV system (4.1)–(4.2)
with the LPV controller (4.3)–(4.4), where the controller matrices are computed
using (4.18)–(4.19), is asymptotically stable and the L2 to L2 gain from the
exogenous input w to the controlled output z is less than one for all time-varying
δ (t) ∈ ΔR.

A sketch of the proof of the above theorems can be found in Sect. 4.5.

4.4 Discussion

In this section, we discuss relations between the LMIs appearing in Theorems 4.1
and 4.2 and with existing results in the literature, as well as applications to other
problems, such as mixed objective synthesis and delay systems.

4.4.1 Comparison Between the Polytopic and Norm-Bounded
Approaches

We start by comparing Theorem 4.1 with Theorem 4.2. It is often hard to draw a
clear-cut comparison between results obtained using the polytopic and the norm-
bound approaches. One element that complicates a comparison in the case of LPV
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control design is that the resulting controllers often have different structures in
each case. The explicit controller parametrization developed in the present chapter
enforces the exact same structure to the controller in both approaches, which
facilitates a comparison. Indeed, it is easy to prove the following result.

Lemma 4.1. If there exists matrices X = XT , Y = Y T , F, R, Qi, Fi, i = 0, . . . ,s,
and Wi = W T

i , Si = −ST
i , i = 1, . . . ,s, satisfying the LMIs (4.22)–(4.23) from

Theorem 4.2, then the same matrices also satisfy the LMIs (4.20)–(4.21) from
Theorem 4.1.

The lemma implies that the polytopic approach is always less conservative than
the norm-bounded approach. However, as noted before, this comes at the expense of
an exponential growth in the number of inequalities, which might render the norm-
bounded inequalities from Theorem 4.2 attractive in the case of a large number of
scheduled parameters δ (t). Theorem 4.2 might also be preferred in the case of other
types of parameter scheduling, e.g., as in Sect. 4.4.5.

Lemma 4.1 can be proved simply by multiplying the inequality (4.23) by matrices

R j =

⎡

⎣
e j ⊗ I 0 0

0 I 0
0 0 I

⎤

⎦ , for all j = 1, . . . ,2s,

where the vectors e j’s are the vertices of the hypercube ΔR, to obtain inequali-
ties (4.21).

4.4.2 Comparison with Existing Polytopic Results

Start by noting that Theorem 4.1 is not simply an application of the controller
parametrization of [14] in the context of [2]. The main difference is that the
controller obtained in Theorem 4.1 has the structure (4.4), whereas the controller
obtained in [2] is of the form

[
Â(θ (t)) B̂(θ (t))
Ĉ(θ (t)) D̂(θ (t))

]
=

2s

∑
j=1

θ j(t)

[
Â j B̂ j

Ĉ j D̂ j

]
, (4.24)

where the controller parameters Â j, B̂ j, Ĉj, D̂ j, j = 1, . . . ,2s, are computed from 2s

inequalities which are similar to (4.21), and θ is a convex combination parameter
satisfying

δ (t) =
2s

∑
j=1

θ j(t)e j,
2s

∑
j=1

θ j(t) = 1, θ j(t)≥ 0. (4.25)
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Note that by imposing the structure (4.4) we might be loosing some generality
but have dramatically reduced the number of controller parameters (from 4× 2s

matrices to 2s + 4 matrices) as well as achieved a much simpler, i.e., practical,
implementation. Indeed, the controller in Theorem 4.1 uses δ (t) directly while the
controller from [2] needs an extra online computation of the convex combination
parameter θ (t) as in (4.25). Note that computing (4.25) requires, in general, that a
linear optimization program be solved.

Furthermore, the methods of [2] cannot be used to compute a controller with
the structure (4.4). Indeed, because the controller parameters are eliminated from
the inequalities, it is impossible to account for the coupling between the controller
structure (4.4) and the 2s inequalities (4.21) (see the proof in Sect. 4.5 for more
details). The converse, however, is perfectly fine. That is, it is possible to modify the
inequalities in Theorem 4.1 to compute a controller with the structure (4.24).

4.4.3 Comparison with Existing Norm-Bounded Results

The LMIs in Theorem 4.2 can provide explicit parametrizations for the controllers
developed in [1, 4, 15] under their respective setup and the assumption that the
dependence on the parameter δ (t) is affine. The latter assumption seems to be
essential. This is unfortunate, since one of the advantages of the norm-bounded
approach is precisely the possibility of handling fairly general rational dependence
on the parameter δ (t) [11]. However, at this point, it seems to be impossible
to generalize Theorem 4.2 to cope with rational dependence on δ (t) without
sacrificing linearity of the resulting inequalities. This is even more so in the case of
Theorem 4.1, which relies on the machinery of convex combinations that are hard
if not impossible to generalize to rational dependence on δ (t) without convexity.

4.4.4 Mixed Objective Synthesis

Perhaps the main advantage of having LMIs involving explicit parametrizations
of LPV controllers is to open the door to a host of control problems with mixed
objectives, as done by [14] in the case of standard LTI systems. This is indeed
one of our motivations. Once a controller parametrization such as the one proposed
in the present chapter is available, one can combine many different performance
specifications that should be satisfied simultaneously by a single LPV controller
by adding linear constraints on the auxiliary problem variables, e.g., Lyapunov
and slack matrices, as done in [14]. For discrete-time systems, it is possible to go
even further and introduce additional variables that lead to very effective synthesis
conditions, as shown in [10]. The derivation of such conditions starting from the
ones provided in the present chapter is a straightforward exercise, which we leave
to the interested reader.
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4.4.5 Application to Delay Systems

The LMIs derived in Theorem 4.2 can have a rather unexpected application to the
control of systems with delays. Indeed, from the point of view of μ-analysis, if the
uncertainties in the loop interconnection of Fig. 4.1 are norm-bounded complex
linear time-invariant operators, one shall arrive at the exact same conditions of
Theorem 4.2 with the extra constraint that the skew-symmetric variables Si be all
zero. But this is precisely the case when the δ ’s are replaced by time delays, which
are complex linear operators in the unit circle. The conclusion is that one can state
the following lemma.

Lemma 4.2 (Delay systems). If there exists matrices X = XT , Y = Y T , F, R, Qi,
Fi, i = 0, . . . ,s, and Wi =W T

i , Si = 0, i = 1, . . . ,s, such that the LMIs (4.22)–(4.23)
have a feasible solution then the feedback connection of the linear delay-system

ẋ(t) = A0x(t)+
s

∑
i=1

Aix(t − τi)+Bww(t)+Buu(t),

z(t) =Cz0x(t)+
s

∑
i=1

Czix(t − τi)+Dzww(t)+Dzuu(t),

y(t) =Cy0x(t)+
s

∑
i=1

Cyix(t − τi)+Dyww(t),

with the linear delay-controller

˙̂x(t) = Â0x̂(t)+
s

∑
i=1

Âsx̂(t − τi)+ B̂yu(t),

u(t) = Ĉ0x̂(t)+
s

∑
i=1

Ĉix̂(t − τi)+ D̂y(t),

where the controller matrices are computed using (4.18)–(4.19), is asymptotically
stable and the H∞ of the closed loop transfer function from the exogenous input w
to the controlled output z is less than one for all time-invariant τi ≥ 0, i = 1, . . . ,s.

The above condition is a generalization of the result of [8] for multiple delays.
Note that the quantity that is assumed to be measured online in this case is the
time delay τi ≥ 0. In this sense, the controller in Lemma 4.2 can be thought as
scheduling the time-invariant norm-bounded delay in much the same way that the
LPV controller is scheduling the norm-bounded time-varying parameter δ (t) ∈ ΔR.
It is interesting to note that it does not seem possible to directly apply the less-
conservative polytopic condition in Theorem 4.1 to delay systems. Indeed, the
convex combination machinery prevents the application of Theorem 4.1 to complex
parameters.
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4.4.6 Robust Control

The fact that we were able to impose the structure (4.4) on the controller might lead
one to believe that additional constraints other than the ones discussed above can
also be imposed on the controller. Unfortunately this is not the case. Consider for
example that one would like to use the present setup to design a robust controller,
that is, a controller that does not depend on δ (t). By inspection of (4.4), this
corresponds simply to the linear constraints Âi = 0, Ĉi = 0, for i = 1, . . . ,s. However,
such constraints, when translated in terms of the design variables, become highly
nonlinear. In particular, note that if we set Qi = 0, Li = 0, for i = 1, . . . ,s, in (4.19)
we still obtain Âi 	= 0, Ĉi 	= 0, for i = 1, . . . ,s. See [7, 9] for additional discussions
on the robust control problem.

4.5 Proofs of the Theorems

The proof of Theorems 4.1 and 4.2 follow the ideas in [14]. Here, we sketch the
necessary steps required to prove Theorem 4.2. Theorem 4.1 can be proved along
the same lines. We provide some comments regarding Theorem 4.1 at the end of the
section.

Define the partitions associated with the symmetric matrix P , its inverse and the
related nonsingular matrix T as

P :=

[
Y V

V T Ŷ

]
, P−1 :=

[
X UT

U P̂

]
, T :=

[
X I
U 0

]
.

Matrix T is square and nonsingular because U can be assumed to be nonsingular
in the case of full order controllers (see discussion in [14] for more details). Now,
introduce the variables

[
Q0 · · · Qs F
L0 · · · Ls R

]
:=

[
V Y Bu

0 I

][
Â0 · · · Âs B̂
Ĉ0 · · · Ĉs D̂

]
⎡

⎢
⎢
⎢
⎣

U · · · 0 0
...

. . .
...

...
0 · · · U 0

Cy0X · · · CysX I

⎤

⎥
⎥
⎥
⎦

(4.26)

+

[
YA0X · · · YAsX 0

0 · · · 0 0

]
(4.27)

and

Wi := T T WiT , Si := T T SiT , i = 1, . . . ,s.

These relations are all that are needed to derive the LMIs (4.22)–(4.23). As in [14],
the driving force is the fact that
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T T PAiT = Ai(X ,Y,F,R,Qi,Li), T T PB = B(Y,F,R),

CiT = Ci(X ,R,Li), D = D(R),

where Ai, B, Ci, D, i = 0, . . . ,s, are as defined in (4.17).
Now expand (4.14) using (4.9) and (4.15)–(4.16) to obtain
⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

A T
0 P +PA0+∑s

i=1 Wi PA1 +S1 · · · PAs +Ss PB C T
0

A T
1 P −S1 −W1 · · · 0 0 C T

1
...

...
. . .

...
...

...
A T

s P −Ss 0 · · · −Ws 0 C T
s

BT P 0 · · · 0 −I DT

C0 C1 · · · Cs D −I

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦

≺ 0

after applying the Schur Complement formula (see [5,16]). Using the nonsingularity
of T , the above inequality is equivalent by congruence to the inequality

⎡

⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎣

⎛

⎜
⎝

T T A T
0 PT +

T T PA0T +

∑s
i=1 T T Wi T

⎞

⎟
⎠

(
T T PA1T +

T T S1T

)

· · ·
(

T T PAsT +

T T SsT

)

T T PB T T C T
0

(
T T A T

1 PT −
T T S1T

)

−T T W1T · · · 0 0 T T C T
1

...
...

. . .
...

...
...(

T T A T
s PT −

T T SsT

)

0 · · · −T T WsT 0 T T C T
s

BT P 0 · · · 0 −I DT

C0 C1 · · · Cs D −I

⎤

⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎦

≺ 0

which is precisely (4.23) after substituting for the new variables and linear functions
introduced above. Likewise, inequality (4.22) comes from

0 ≺ T T PT =

[
X I
I Y

]
.

Note how important it is that the terms of the form PAi and the variables Wi and
Si be multiplied by T on the right and by its transpose on the left. Indeed, this
is the main reason why the multipliers Wi and Si can be fully incorporated in the
optimization.

Theorem 4.1 can be proved similarly. However, note the important fact that each
inequality of the form (4.8) involves a different affine function of the matrices Ai as
defined in (4.9)–(4.10). It should not be taken for granted that the reason why the
change-of-variables (4.26) still works is because of the remarkable property that the
right-hand side of (4.26) is simultaneously affine on the controller matrices Âi, Ĉi,
and the problem data Ai, Ci, for all i = 1, . . . ,s.
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Chapter 5
A Parameter-Dependent Lyapunov Approach
for the Control of Nonstationary LPV Systems

Mazen Farhood

Abstract The chapter deals with the control of nonstationary linear parameter
varying (NSLPV) systems, and is motivated by interest in the control of nonlin-
ear systems along trajectories, particularly prespecified eventually periodic ones.
The synthesis objective is to find a feedback parameter-dependent, time-varying
controller, where the controller parameters are the same as those of the plant,
such that the closed-loop system is asymptotically stable and the �2-induced norm
of the closed-loop input–output mapping is less than some �2-gain performance
level γ . The analysis and synthesis results are given in terms of parameterized linear
matrix inequalities (PLMIs), and some of the PLMI relaxation methods available
in the literature, such as the sum of squares (SOS) decomposition method and the
multiconvexity relaxation technique, are discussed. A fast and easy-to-implement
algorithm for online controller construction is also provided.

5.1 Introduction

The chapter deals with the control of nonlinear systems along trajectories, par-
ticularly prespecified eventually periodic ones. Such trajectories can be arbitrary
for a finite amount of time before setting into periodic orbits. Linear parameter-
varying (LPV) models will be used to capture the nonlinear dynamics of the system.
Specifically, the plant models we consider are of the form

x(k+ 1) = A(δ (k),k)x(k)+B(δ (k),k)u(k)
y(k) = C(δ (k),k)x(k)+D(δ (k),k)u(k),

(5.1)
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where A(·, ·), B(·, ·), C(·, ·), and D(·, ·) are matrix-valued functions that are known
a priori. The variable k is time, and δ (k) := (δ1(k), . . . ,δr(k)) is a vector of
real scalar parameters. Models of the form in (5.1) are called nonstationary LPV
(NSLPV) models, and some work on these models formulated in a linear fractional
transformation (LFT) framework can be found in [11, 12]. These models differ
from the standard (stationary) LPV ones in that the state-space matrices of NSLPV
models have explicit dependence on time in addition to the parameters. In the context
of control of nonlinear systems along prespecified trajectories, NSLPV models arise
naturally as a means to capture the nonlinear dynamics while maintaining a model
that is amenable to control synthesis. Furthermore, in such a context, an NSLPV
model is potentially far less conservative than a corresponding stationary one since,
with an NSLPV model, we do not have to parameterize time-varying terms in the
system equations, which are associated with the prespecified trajectory and hence
known a priori. Note also that hybrid LPV systems are directly linked to NSLPV
ones, as will be evident in Sect. 5.4. In the case of hybrid systems, reference
trajectories do not have to be prespecified as long as the reference states and controls
are within the covered state-space region.

The synthesis objective in this chapter is to find a feedback NSLPV controller,
where the controller parameters are the same as those of the plant, such that
the closed-loop system is asymptotically stable and the �2-induced norm of the
closed-loop input-output mapping is less than some �2-gain performance level γ >0.
There are two ways to go about solving this control problem. The first involves
the use of a parameter-independent Lyapunov function; namely, the Lyapunov
function will only have explicit dependence on time. The second is by employing
a parameter-dependent Lyapunov function with explicit dependence both on time
and the parameters. This chapter focuses on the parameter-dependent Lyapunov
approach, assuming that the bounds on the rates of variation of the parameters
are given. The analysis and synthesis conditions will be provided in terms of
linear matrix inequalities (LMIs). Solving the control problem via a parameter-
independent Lyapunov function is conservative; whereas, by allowing the Lyapunov
function to be parameter dependent, this conservatism is likely to diminish but at the
expense of added computational complexity. Also, the type of scheduling parameter
dependence, be it linear, polynomial, or rational, influences, in general, the conser-
vatism and computational complexity of the approach. The more complicated the
Lyapunov function is allowed to be, the more intensive the computational problem
becomes and the less conservative the approach is in general. So, there is a trade-
off between conservatism and computational complexity. In this chapter, we will
eventually assume polynomial parameter dependence; this is not a limitation as it is
always possible to approximate or even equivalently represent a nonlinear function
with a polynomial one though additional parameters may be needed.

While in some cases, the attained improvement in performance may not justify
the added computational complexity, there are certain control problems where the
use of parameter-dependent Lyapunov functions is necessary irrespective of the
performance betterment. One such problem is trajectory regulation in the presence



5 A Parameter-Dependent Lyapunov Approach for the Control... 107

of obstacles [14]. Here, the penalty weights on the tracking errors can be viewed as
scheduling parameters. Then, the position of the vehicle in the obstacle environment
will dictate the penalty weights on the tracking errors, and accordingly the control
strategy will significantly change in order to prioritize the regulation of certain
outputs over others. In this case, the use of a parameter-independent Lyapunov
function is unfavorable because then all scheduled controllers will be inclined for
worst-case-scenario behavior. Instead, a parameter-dependent Lyapunov function
should be used, and, furthermore, the rates of variation of the parameters should be
of relatively small magnitude by design.

The use of parameter-dependent Lyapunov functions in the context of general-
ized LMI-based H∞ control results in analysis and synthesis conditions in the form
of parameterized LMIs (PLMIs). Some PLMI relaxation methods available in the
literature are the sum of squares (SOS) decomposition method given in [28, 29]
and the multiconvexity relaxation technique given in [2], to name a few. A brief
discussion of these PLMI relaxation methods will be given. A fast algorithm for
online controller construction based on the results of [16] will also be provided.

The literature on stationary LPV models and nonstationary systems is vast; see
for instance, [17, 18, 32] and the references therein. Note that, as the Lyapunov
function is constructed from the solutions of the synthesis conditions, a parameter-
independent Lyapunov function implies that we are only interested in time-varying
solutions with no dependence on the parameters. One technique that falls under
this approach is given in [12], where gain scheduling is based on LFT models.
The results therein are generalizations of those in [27], and are achieved using the
framework developed in [6] for linear time-varying systems. No specific bounds,
other than the trivial ones, are imposed on the parameter increments in this case. The
technique requires that the state-space matrices have rational dependence on the pa-
rameters so that the system equations can be formulated in an LFT framework, and
it also allows for complex parameters which is a drawback when the parameters are
known to be real. This disadvantage is absent, for instance, in the method of [1] for
stationary LPV (SLPV) systems, though the parameter dependence in this case can
only be affine; see [7] for the generalization of the results of [1] to the NSLPV case.

The outline of the chapter is as follows: in Sect. 5.2, we formulate the control
problem; in Sect. 5.3, we give analysis and synthesis results for eventually periodic
NSLPV systems; in Sect. 5.4, we give a result on hybrid LPV control; in Sect. 5.5,
we briefly list a number of PLMI relaxation techniques; and last, in Sect. 5.6, we
present a fast algorithm for online controller construction. The notation is somewhat
standard. We denote the set of nonnegative integers by N and that of real n×m
matrices by R

n×m. If Si is a sequence of matrices, then diag(Si) denotes their block-
diagonal augmentation. We use In to denote an n× n identity matrix and 0n×m to
denote an n×m zero matrix. We denote the space of continuous functions by C 0.
The adjoint of an operator X is written X∗, and we use X ≺ 0 to mean it is negative
definite. The normed space of square summable vector-valued sequences is denoted
by �2. It consists of elements x = (x0,x1,x2, . . .), with each xk ∈ R

nk for some nk,
having a finite 2-norm ‖x‖ defined by ‖x‖2 = ∑∞

k=0‖xk‖2 < ∞, where ‖xk‖2 = x∗kxk.
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5.2 NSLPV Plant and Controller

Let G be an NSLPV model defined by the following state-space equation:

⎡

⎣
x(k+ 1)

z(k)
y(k)

⎤

⎦=

⎡

⎣
A(δ (k),k) B1(δ (k),k) B2(δ (k),k)

C1(δ (k),k) D11(δ (k),k) D12(δ (k),k)
C2(δ (k),k) D21(δ (k),k) 0

⎤

⎦

⎡

⎣
x(k)
w(k)
u(k)

⎤

⎦ , (5.2)

x(0) = 0, for w ∈ �2. The signals w(k) and z(k) denote the exogenous disturbances
and errors, respectively, whereas u(k) denotes the applied control and y(k) the
measurements. The vectors x(k), z(k), w(k), y(k), and u(k) are real and have
time-varying dimensions which we denote by n(k), nz(k), nw(k), ny(k), and nu(k)
respectively. Like in [40], we assume the parameters δ (k) = (δ1(k), . . . ,δr(k)) and
parameter increments dδ (k) = δ (k+1)− δ (k) such that (δ (k),dδ (k)) ∈ Γ for all
k ∈N, where Γ is a polytope defined as

Γ :=
{
(p,d p)∈R

r×R
r | fi, j(pi,d pi)≥0 for all i=1, . . . ,r and j=1,2,3

}
,

(5.3)

with fi,1 =
(

pi − p
i

)
(pi − pi) , fi,2 =

(
d pi − d p

i

)(
d pi − d pi

)
,

fi,3 =
(

pi + d pi− p
i

)
(pi − pi− d pi) , and p

i
, pi,d p

i
,d pi ∈ R, d p

i
≤ 0,

d pi ≥ 0.
Notice that, for each i = 1, . . . ,r, the set of points satisfying fi, j(pi,d pi) ≥ 0 for

j = 1,2,3 defines a polygon which constitutes the projection of polytope Γ on the
(pi,d pi)-plane, as shown in Fig. 5.1. Thus, the allowable parameter trajectories δ
reside in the set

ΔΓ := {δ : N→R
r | (δ (k),dδ (k)) ∈ Γ for all k ∈ N}. (5.4)

It is important at this point to properly characterize the state-space matrix-valued
functions. As the following applies to each of the state-space operators, for
simplicity we will focus the discussion on the A-matrix only. First, we assume

Fig. 5.1 Parameter space
in (pi,dpi)-plane
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that the state-space matrices have continuous dependence on the parameters and are
uniformly bounded for all admissible values of time and parameters. Then, setting
Ak(p) = A(p,k), the matrix-valued function A(p,k) can be viewed as a family of
continuous functions of the parameter vector p, denoted A , namely,

A =
{
Ak ∈ C 0

(
R

r,Rn(k+1)×n(k)
)

: k ∈ N

}
.

Furthermore, A is uniformly bounded, meaning that there exists a positive scalar λ
such that ‖Ak(p)‖≤ λ for all pi ∈

[
p

i
, pi

]
and k ∈N. Alternatively, setting Aδ (k) =

A(δ (k),k), the function A(δ (k),k) can be regarded as a set of sequences, where, for
each δ ∈ ΔΓ , the corresponding bounded sequence Aδ (k) is reminiscent of the A-
sequence of a standard linear time-varying (LTV) system. Hence, for each δ ∈ ΔΓ ,
the NSLPV model G reduces to a standard LTV system, say, Gδ ; in other words, G=
{Gδ : δ ∈ ΔΓ }. The uniform boundedness here ensures that there exists a positive
scalar λ such that ‖Aδ (k)‖ ≤ λ for all δ ∈ ΔΓ and k ∈ N.

We say an NSLPV model G, as defined in the preceding, is �2-stable if, for each
δ ∈ ΔΓ , the resulting LTV system is exponentially stable. In the sequel, we will
assume that both δ (k) and dδ (k) are measurable at each time instant k. As for
computing the parameter increment dδ (k) online, it is reasonable to assume that the
parameter function is continuously differentiable, and then, assuming a measurable
derivative δ̇ (k) at each k and a sufficiently small sampling time T , the value of dδ (k)
can be obtained from the Euler approximation dδ (k)≈ T δ̇ (k).

Suppose plant G is controlled by a controller K whose state-space equation is
[

xK(k+ 1)
u(k)

]
=

[
AK(δ (k),dδ (k),k) BK(δ (k),dδ (k),k)
CK(δ (k),dδ (k),k) DK(δ (k),dδ (k),k)

][
xK(k)
y(k)

]
, xK(0) = 0,

where xK(k) ∈ R
m(k). The parameters δi(k) here are the same as those in the plant

equations. It goes without saying that, when constructing the controller from the
synthesis solutions as discussed later, we will make sure that its system matrices are
uniformly bounded functions, with continuous dependence on the parameters and
their increments. The feedback interconnection of G and K is shown in Fig. 5.2. We
denote this closed-loop system by L and write its realization as

[
xL(k+ 1)

z(k)

]
=

[
AL(δ (k),dδ (k),k) BL(δ (k),dδ (k),k)
CL(δ (k),dδ (k),k) DL(δ (k),dδ (k),k)

][
xL(k)
w(k)

]
, (5.5)

where column vector xL(k) = (x(k),xK(k)) ∈ R
n(k)+m(k), and the closed-loop state-

space matrices are given by

[
AL BL

CL DL

]
=

⎡

⎣
A+B2DKC2 B2CK B1 +B2DKD21

BKC2 AK BKD21

C1 +D12DKC2 D12CK D11 +D12DKD21

⎤

⎦ . (5.6)

We now state the synthesis objective.
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K

G
wz

Fig. 5.2 Closed-loop system

Definition 5.1. A controller K is a γ-admissible synthesis for NSLPV plant G
if the closed-loop system in Fig. 5.2 is �2-stable and the performance inequality
‖w 
→ z‖�2→�2 < γ is achieved for all δ ∈ ΔΓ .

Before concluding this section, we need to introduce the special class of
eventually periodic NSLPV systems. In this case, the explicit time variation in the
system realization is eventually periodic. Eventually periodic systems arise in two
basic scenarios. The first is when parameterizing the nonlinear system equations
about an eventually periodic trajectory, and the second is when the plant has an
uncertain initial condition [13]. An eventually periodic trajectory can be arbitrary
for an initial amount of time, but then settles into a periodic orbit; a special case of
this is when a system transitions between two operating points. Both finite horizon
and periodic systems are subclasses of eventually periodic systems.

Definition 5.2. An NSLPV system G is (h,q)-eventually periodic for some integers
h ≥ 0, q ≥ 1 if each of its state-space matrix-valued functions is (h,q)-eventually
periodic with respect to the explicit time dependence; for instance, A(δ ,k) would be
of the form

A(δ ,0),A(δ ,1), . . . ,A(δ ,h− 1)
︸ ︷︷ ︸

h terms

,A(δ ,h), . . . ,A(δ ,h+ q− 1)
︸ ︷︷ ︸

q terms

,

A(δ ,h), . . . ,A(δ ,h+ q− 1)
︸ ︷︷ ︸

q terms

, . . .

5.3 Analysis and Synthesis Results

We now state the following analysis and synthesis results from [8].
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Theorem 5.1. Closed-loop system L, defined in (5.5), is �2-stable and
‖w 
→ z‖�2→�2 < γ for all δ ∈ ΔΓ , as defined in (5.4), if there exists a uniformly
bounded matrix-valued function X(p,k)� 0, continuous in p, such that

[
AL BL

CL DL

]∗[X(p+ d p,k+ 1) 0
0 1

γ2 I

][
AL BL

CL DL

]
−
[

X(p,k) 0
0 I

]
≺−β I, (5.7)

for all (p,d p) ∈ Γ as defined in (5.3), k ∈N, and some positive scalar β , where the
dependence of the state-space matrices on (p,d p,k) is suppressed for simplicity.

A special case of this analysis result for the stationary LPV case is given in [40].

Proof. To start, consider any δ ∈ ΔΓ . Then, given the time-varying parameter
trajectory δ , NSLPV system L reduces to a standard discrete-time LTV system,
say, Lδ . Suppose that inequality (5.7) holds for all (p,d p) ∈ Γ and k ∈ N. Then,
given δ ∈ ΔΓ , the following inequality is valid:

F∗
L (δ (k),dδ (k),k)

[
X(δ (k)+ dδ (k),k+ 1) 0

0 1
γ2 I

]

× FL(δ (k),dδ (k),k)−
[

X(δ (k),k) 0
0 I

]
≺−β I,

with FL =

[
AL BL

CL DL

]
, for all k ∈ N and some positive scalar β ; this immediately

follows from the definition of ΔΓ , which ensures that (δ (k),dδ (k)) ∈ Γ for all
k∈N. Then, as δ (k+1)= δ (k)+dδ (k), we obtain that the sequence X(δ (k),k)� 0,
bounded above and below, satisfies the Kalman–Yakubovich–Popov (KYP) Lemma
condition, with �2-gain performance level γ , for the LTV system Lδ , which, by [6,
Corollary 12], implies that Lδ is stable and ‖Lδ‖�2→�2 < γ . �
Theorem 5.2. Given the NSLPV plant G defined in (5.2) with δ ∈ ΔΓ , suppose
that

(A1) the matrices
[
B∗

2(δ (k),k) D∗
12(δ (k),k)

]
and

[
C2(δ (k),k) D21(δ (k),k)

]
have

full-row rank uniformly for all k ∈N and δ ∈ ΔΓ .

Then there exists a γ-admissible NSLPV synthesis K to G according to Definition 5.1
for some scalar γ if there exist uniformly bounded matrix-valued functions R(p,k)�
0, S(p,k)� 0, continuous in p, and some positive scalar σ such that

⎡

⎣
ARA∗−R+ ARC∗

1 B1

C1RA∗ −γI+C1RC∗
1 D11

B∗
1 D∗

11 −γI

⎤

⎦−σ

⎡

⎣
B2

D12

0

⎤

⎦

⎡

⎣
B2

D12

0

⎤

⎦

∗

≺ −β I
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⎡

⎣
A∗S+A− S A∗S+B1 C∗

1
B∗

1S+A −γI+B∗
1S+B1 D∗

11
C1 D11 −γI

⎤

⎦−σ

⎡

⎣
C∗

2
D∗

21
0

⎤

⎦

⎡

⎣
C∗

2
D∗

21
0

⎤

⎦

∗

≺ −β I

[
R I
I S

]
� 0 (5.8)

for all (p,d p) ∈ Γ , k ∈ N, and some positive scalar β , where the dependence of R,
S, and the state-space matrices on (p,k) is suppressed for simplicity, and

R+ = R(p+ d p,k+ 1), S+ = S(p+ d p,k+ 1).

Proof. As in the proof of Theorem 5.1, for each trajectory δ ∈ΔΓ , NSLPV system G
reduces to an LTV system. Then, invoking [6, Theorem 19] along with applications
of Finsler’s lemma and a similar argument to that in the proof of Theorem 5.2 (iii)
in [2] complete the proof. �
It will be convenient to write the synthesis conditions in (5.8) as

F1 (R(p,k),R(p+ d p,k+ 1),σ , p,k)≺−β I,

F2 (S(p,k),S(p+ d p,k+ 1),σ , p,k)≺−β I,

F3 (R(p,k),S(p,k))� 0, (5.9)

respectively, where Fi are defined in the obvious way.
We assume henceforth that the state-space matrices have polynomial depen-

dence on the parameters. Moreover, we will only seek solutions with polyno-
mial parameter dependence for the synthesis inequalities. Specifically, we define
the family of functions X to consist of all the uniformly bounded matrix-

valued functions X(p,k) � 0, for all pi ∈
[

p
i
, pi

]
and k ∈ N, with polyno-

mial dependence on the parameters, namely, with v = (v1,v2, . . . ,vr) and Jτ :=
{(v1,v2, . . . ,vr)|vi ∈ N and ∑r

i=1 vi ≤ τ}, we have

X(p,k) = ∑
v∈Jτ

pv1
1 pv2

2 . . . pvr
r Xv(k), (5.10)

for some τ ∈ N, where, for each v ∈ Jτ , the sequence Xv(k) is bounded above
and below. Next in this section, we will be focussing on eventually periodic
plants which are presented in Definition 5.2. Thus, it will be convenient to specify
(N,q)-eventually periodic matrix-valued functions in X . Namely, given X ∈ X
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as aforementioned, we say X is (N,q)-eventually periodic if, for each v ∈ Jτ , the
sequence Xv(k) is (N,q)-eventually periodic, i.e., Xv(k) is of the form

Xv(0),Xv(1), . . . ,Xv(N − 1)
︸ ︷︷ ︸

N terms

,Xv(N), . . . ,Xv(N + q− 1)
︸ ︷︷ ︸

q terms

,

Xv(N), . . . ,Xv(N + q− 1)
︸ ︷︷ ︸

q terms

, . . .

The synthesis conditions in (5.8) are convex but infinite dimensional both in time
and parameters. However, if the NSLPV plant G is (h,q)-eventually periodic as
in Definition 5.2, then the infinite dimensionality with respect to the explicit time
dependence can be avoided as shown in the next results.

Proposition 5.1. Given the NSLPV plant G defined in (5.2) with δ ∈ ΔΓ , suppose
that G is q-periodic (i.e., (0,q)-eventually periodic), with assumptions (A1) and

(A2) the state-space matrices of G have polynomial dependence on the parameters
δ ∈ ΔΓ .

Then there exist solutions in X to synthesis conditions (5.8) if and only if there exist
q-periodic solutions in X .

The proof is given in [8] and is inspired by that of a similar result for standard
periodic systems in [6]. Also, a similar averaging technique is used in [5] in the
context of time-varying control analysis.

Proposition 5.2. Suppose NSLPV plant G is (h,q)-eventually periodic, along with
assumptions (A1)–(A2). Then there exist solutions in X to synthesis conditions (5.8)
if and only if there exist (N,q)-eventually periodic solutions in X for some N ≥ h.

The proof of this result is also given in [8]. The result states that, in the case of
eventually periodic NSLPV plants, a solution to the synthesis conditions, if existent,
can always be chosen to be eventually periodic, having the same periodicity as the
plant but probably exhibiting a longer finite horizon. From a practical perspective,
the preceding means that, given an eventually periodic plant, it may be possible to
improve the closed-loop performance by allowing for eventually periodic controllers
with longer finite horizons than the plant. This is also the case for standard LTV
systems as shown in [9, 10].

We conclude this section with the following summarizing corollary.

Corollary 5.1. Given the NSLPV plant G defined in (5.2) with δ ∈ ΔΓ , suppose
that G is (h,q)-eventually periodic, along with assumptions (A1)–(A2). Then,
with N≥h, there exists a γ-admissible (N,q)-eventually periodic NSLPV syn-
thesis K to G for some scalar γ if there exist polynomial matrix-valued func-
tions R0(p), . . . ,RN+q−1(p)� 0, S0(p), . . . ,SN+q−1(p)� 0, and some positive scalar
σ such that
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F1 (R0(p),R1(p+ d p),σ , p,0)≺ 0,

F1 (R1(p),R2(p+ d p),σ , p,1)≺ 0,

...

F1
(
RN+q−2(p),RN+q−1(p+ d p),σ , p,N + q− 2

)≺ 0,

F1
(
RN+q−1(p),RN(p+ d p),σ , p,N+ q− 1

)≺ 0, (5.11)

and similarly, for k = 0,1, . . . ,N + q− 1,

F2 (Sk(p),Sk+1(p+ d p),σ , p,k)≺ 0 and F3 (Rk(p),Sk(p))� 0 (5.12)

for all (p,d p) ∈ Γ , where SN+q(p) ≡ SN(p). In the event that G is q-periodic, i.e.,
h = 0, then N can be set equal to zero with no added conservatism.

Thus, when the explicit time dependence in the system equations is of an
eventually periodic nature, the infinite dimensionality of the synthesis PLMIs with
respect to time k can be bypassed, as evident from Corollary 5.1. This PLMI
problem though remains infinitely constrained. Fortunately, several PLMI relaxation
methods are available in the literature, and a discussion of some of these methods
will be presented in Sect. 5.5. With this said, applying the aforesaid corollary to an
NSLPV plant with numerous sampling points (h,q � 0) may result in a formidable
computational problem, regardless of the PLMI relaxation method employed. The
next section presents a way to reduce the computational complexity of such a
problem.

5.4 NSLPV Control of Switched Systems

In many scenarios where time-varying system parameters are known a priori,
the use of NSLPV models instead of stationary ones is quite advantageous as a
means for less conservative representations. The tradeoff, however, is an added
computational complexity to the synthesis approach; this is by the same token
that an LTV approach is computationally more expensive than an LTI one. The
computational issue is even more severe when a parameter-dependent Lyapunov
function is sought since then each PLMI in a stationary LPV (SLPV) problem
would correspond to at least N + q PLMIs in an (N,q)-eventually periodic NSLPV
problem. It might be possible to avoid a list of PLMIs if the explicit time dependence
can be approximated by polynomial functions, bearing in mind that the larger the
polynomial degree is, the more computationally intensive the problem becomes. In
general, obtaining polynomial approximations can be a very challenging task, and
a practical solution to this computational predicament is to divide the state-space
region into a number of divisions in which the explicit time variation becomes very
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small and the plant dynamics, as a result, can be fairly represented by a stationary
LPV model. In other words, we propose to work with switched stationary LPV
systems as an alternative to NSLPV models so as to reduce the computational
complexity of the synthesis problem to a manageable level. We note that the
approach here requires that each of the stationary LPV models of the switched
system be strongly stabilizable, as defined next.

Definition 5.3. We say an SLPV system, defined by the state equation

x(k+ 1) = A(δ (k))x(k)+B(δ (k))u(k),

with δ ∈ ΔΓ , is strongly stabilizable by a feedback operator F(δ (k),dδ (k)) for all
δ ∈ ΔΓ if there exists a bounded polynomial function X(p)� 0 such that

(
A(p)+B(p)F(p,d p)

)
X(p)

(
A(p)+B(p)F(p,d p)

)∗ −X(p+ d p)≺ 0,

for all (p,d p) ∈ Γ .

Consider a nonlinear system and a corresponding NSLPV model G which
captures the nonlinear system dynamics over some state-space region E . Suppose it
is possible to divide E into N subregions E (i) for i = 1,2, . . . ,N such that, over each
subregion E (i), the explicit time variation of the NSLPV model G is sufficiently
small that the system dynamics can be satisfactorily represented by a strongly
stabilizable SLPV model G(i). The resulting SLPV models constitute a switched

system denoted by Gs :=
{

G(1), . . . ,G(N)
}

. We also denote the boundary between

subregions E (i) and E ( j) by Bi j; a nonexistent boundary is set equal to the empty
set.

It is obvious that switched systems are special cases of NSLPV systems; so
the results of the previous section are still usable here. As mentioned before, the
aim here is to simplify the time-varying nature of the plant in order to render the
associated computational problem practicable. This is indeed possible as long as
each of the constituent SLPV models of the switched system is strongly stabilizable,
as evident from the next result.

Theorem 5.3. Given a switched SLPV system Gs =
{

G(1), . . . ,G(N)
}

with δ ∈ ΔΓ ,

suppose that each of the constituent SLPV models is strongly stabilizable along with
assumptions (A1)–(A2). Then there exists a γ-admissible switched SLPV synthesis
Ks to plant Gs if, for i, j = 1,2, . . . ,N, i �= j, there exist polynomial matrix-valued
functions Ri(p)� 0, Si(p)� 0, and some positive scalar σ such that

F
(i)
1 (Ri(p),Ri(p+ d p),σ , p)≺ 0,

F
(i)
2 (Si(p),Si(p+ d p),σ , p)≺ 0,

F
(i)
3 (Ri(p),Si(p))� 0, (5.13)
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and, across each existent boundary Bi j ,

F
(i)
1 (Ri(p),R j(p+ d p),σ , p)≺ 0, F

(i)
2 (Si(p),S j(p+ d p),σ , p)≺ 0, (5.14)

for all (p,d p)∈Γ , where the notation F
(y)
x is as defined in (5.9) with the superscript

y indicating that the SLPV state-space data used correspond to subsystem G(y), and
the explicit dependence on k is dropped.

Proof. Given a trajectory δ ∈ ΔΓ , say the state-space subregions covered are
E (1), . . . ,E (N), where the time intervals in which the system stays in these sub-
regions are [0,k1], [k1 + 1,k2], . . ., [kN−1,∞[, respectively. Then, the matrix-valued
functions R(p,k)≡ Ri(p), S(p,k)≡ Si(p) for i = 1, . . . ,N, k = ki−1 +1, . . . ,ki, with
k0 =−1 and kN = ∞, and the positive scalar σ solve the synthesis conditions for the
NSLPV system G, whose A-matrix, for example, is defined as A(p,k)≡ A(i)(p) for
i,k as aforementioned. Invoking Corollary 5.1 completes the proof. �
Remark 5.1. In the preceding result, the switching takes place over one discrete-
time instant. It is not difficult to rewrite the conditions so that the switching occurs
over several time instants, bearing in mind that this would incur additional PLMIs
and hence increase the computational complexity. More work needs to be done to
further realize the switching logic and link it to what is currently available in the
literature, for instance, [4, 23, 26].

5.5 Parameterized LMI Relaxation

To start, consider the following feasibility problem: for some τ ∈N, find a uniformly
bounded matrix-valued polynomial function X(p) of degree τ , as defined in (5.10)
for fixed k, such that X(p) = ∑v∈Jτ pv1

1 pv2
2 · · · pvr

r Xv � 0 and the parameterized LMI
G (Xv, p̃) ≺ 0e×e hold for all p̃ = (p,d p) ∈ Γ . This is an infinitely constrained
LMI problem since, for each p̃ ∈ Γ , there corresponds an LMI constraint. The
parameterized LMI aforementioned can be equivalently written as a polynomial
inequality, namely,

g(Xv,c, p̃) = c∗G (Xv, p̃)c < 0 for all c ∈R
e/{0}, p̃ ∈ Γ . (5.15)

In the following, we briefly present two of the available relaxation techniques which
can potentially render such a problem computationally tractable.

5.5.1 Sum of Squares Method

The first relaxation technique we present here is the sum of squares (SOS) decom-
position method given in [28, 29]. As argued in [29], testing global nonnegativity
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of a polynomial function of degree greater than or equal to four is an NP-hard
problem. One way to circumvent this difficulty is to replace the nonnegativity
constraint with an SOS condition. We say a polynomial h(c1, . . . ,ce) is SOS if
it can be written as a sum of squares, namely, h(c1, . . . ,ce) = ∑N

i=1 h2
i (c1, . . . ,ce)

for some positive integer N, where hi are real polynomials. The existence of an
SOS decomposition is clearly sufficient for guaranteeing global nonnegativity of a
polynomial function, but it is not necessary; in other words, not every nonnegative
polynomial is SOS. There are three cases, however, as shown by Hilbert, where
the existence of an SOS decomposition is equivalent to global nonnegativity,
notably when the polynomial is: (1) in one variable; (2) quadratic; or (3) quartic
in two variables. The appealing feature about SOS conditions is that they can
be reformulated as semidefinite programming problems. Specifically, as stated in
[29, Theorem 3.3], a dense polynomial function h(c1, . . . ,ce) of degree 2d is SOS if
and only if there exists a

(e+d
d

)× (e+d
d

)
matrix Q � 0 such that h(c) = Z∗(c)QZ(c),

where Z(c) is a column vector consisting of all the monomials in the variables ci

having a degree less than or equal to d, namely,

Z(c) =
[
1 c1 c2 · · · ce c1c2 · · · cd

e

]∗
.

The size of the semidefinite program is polynomial in the number of variables e for a
fixed degree d and also polynomial in d for a fixed e (though not jointly polynomial
in both). Note that, as discussed in [30], it may be possible to improve the size
and numerical conditioning of the resulting semidefinite program by exploiting
several algebraic properties of the polynomial system such as sparsity and structural
symmetries.

Going back to (5.15), suppose there exists a solution X(p) = ∑v∈Jτ pv1
1 · · · pvr

r Xv

satisfying the polynomial inequality and that gx(c, p̃) := g(Xv,c, p̃). Appealing to
the definition of Γ in (5.3), we can equivalently write (5.15) as

fi, j(pi,d pi)≥ 0 for i=1, . . . ,r and j=1,2,3=⇒gx(c, p̃)< 0 ∀ c ∈R
e, c �=0.

This implication holds if and only if the set

A =
{
(c, p,d p) ∈R

e ×R
r ×R

r | gx(c, p̃)≥ 0, fi, j(pi,d pi)≥ 0
for i = 1, . . . ,r, j = 1,2,3, and l(c) = c∗c− 1 = 0}

is empty. Then, invoking the Positivstellensatz [35], stated for R (as opposed to the
real closed fields), we can provide exact conditions to ascertain that this semialge-
braic set is empty; see [3, Theorem 4.4.2] or [29, Theorem 4.6]. Specifically, A
is empty if and only if there exist solutions from certain classes of polynomials to
the Positivstellensatz equation. These solutions serve as infeasibility certificates and
are not polynomial time verifiable in general. Nevertheless, by restricting the degree
of the certificates, it is possible to provide the solutions in terms of semidefinite
programs, as demonstrated in the proof of [29, Theorem 5.1]. This theorem further
asserts that, if the semialgebraic set is indeed empty, then, by selecting a sufficiently
large degree bound, the resulting semidefinite program will be feasible.
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For simplicity, set f1 = gx(c, p̃), fk = fi, j(pi,d pi) for i = 1, . . . ,r and j = 1,2,3,
where k = i + 1 + ( j − 1)r. We outline next the algorithm for constructing the
certificates, as given in the proof of [29, Theorem 5.1]:

(1) Choose the degree d to be some positive integer;
(2) Write

f = s0 + s1 f1 + s2 f2 + · · ·+ s3r+1 f3r+1 + s12 f1 f2 + · · ·+ s12...(3r+1) f1 · · · f3r+1,

where si are polynomials in (c, p̃) of degree deg(si)≤ d;
(3) Write h = t(c∗c− 1), where t is a polynomial in (c, p̃) of degree deg(t)≤ d;
(4) Solve the convex feasibility problem: find f , h such that si are SOS and f +1+

h = 0.

As mentioned before, if the set A is empty, then we can obtain infeasibility
certificates using the preceding algorithm for some sufficiently large degree d.
Note that there are some available results that give upper bounds on d; see, for
instance, [22].

At this point, consider again the feasibility problem: find X(p) � 0 such that
(5.15) holds. It is not difficult to see from the preceding that this problem can be
reformulated (though not equivalently) as a semidefinite program. To elaborate,
consider the aforementioned algorithm, where f1 = g(Xv,c, p̃) in this case. As X is a
variable here and since the goal is to construct a semidefinite programming problem,
not all the multipliers si in step 2 of the algorithm can be variable; specifically, those
multiplying f1 have to be assigned some nonnegative constant values. With this said,
the feasibility problem in question can be cast as a semidefinite program, namely: for
some positive integer degree d, find X(p) � 0, SOS multipliers si(c, p̃) of degree
deg(si) ≤ d for some i as previously noted, and polynomial t(c, p̃) of degree
deg(t) ≤ d such that the equality f + 1+ h = 0 holds, where all the functions are
defined as in the previous algorithm with f1 = g(Xv,c, p̃). Clearly, the computational
complexity can become quite prohibitive in this case. We can, however, construct
sufficient SOS conditions which are computationally manageable. For instance,
for some sufficiently small positive scalar ε , set t = 1, s1 = 1

ε , si =
1
ε qi for i =

0,2,3, . . . ,3r+1 and zero for all other i, where qi are also variable SOS multipliers.
Then, the condition

−g(Xv,c, p̃)− εc∗c−
3

∑
j=1

r

∑
i=1

qk(c, p̃) fi, j(pi,d pi) is SOS (k = i+ 1+ r( j− 1))

implies (5.15). This is exactly the type of SOS conditions used in [41]. This
SOS problem can be solved using a third-party MATLAB toolbox called SOS-
TOOLS [31], which in turn uses SeDuMi [36] or SDPT3 [37] as the semidefinite
program solver.
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5.5.2 Multiconvexity Relaxation Technique

This method uses directional convexity concepts to transform (potentially conserva-
tively) a parameterized LMI problem into a standard LMI one. A key result in this
regard is [2, Corollary 3.4], which we include next for completeness.

Proposition 5.3 (Multiconvexity). Consider a twice continuously differentiable
function f (x), a polytope Π , and the directions d1,d2, . . . ,dq determined by the
edges of Π . Then, if f is multiconvex along the directions d1, . . . ,dq, i.e.,

∂ 2 f (x+λ di)

∂λ 2

∣
∣
∣
∣
λ=0

≥ 0, for all x ∈ Π , i = 1,2, . . . ,q, (5.16)

then, f has a maximum over Π at a vertex of Π .

It is not difficult to see from the preceding result that, given a solution X(p)
as defined in (5.10) for fixed k, if for each c ∈ R

e/{0} the polynomial g(Xv,c, p̃)
from (5.15) is multiconvex along parallels to the edges of the polytopeΓ , then
G (Xv, p̃) ≺ 0 for all p̃ ∈ Γ if and only if G (Xv, p̃) ≺ 0 for all p̃ ∈ vertΓ , where
vertΓ denotes the set of vertices of Γ . The multiconvexity condition is not trivial,
but it is conceivable that there exists a subset of the set of solutions X(p) such that
any solution from this subset would render the polynomial g (or an appropriately
modified version of g) multiconvex. Then, appealing to (5.16), it may be possible to
enforce multiconvexity by means of additional LMI constraints that would restrict
the solution to the aforesaid subset.

To elaborate, consider the following example. Suppose that we have only one
parameter p and the associated parameter increment d p, and that

X(p)=
2

∑
v=0

pvXv�0, G (Xv, p̃)=M0(Xv)+ p2d pM1(Xv)+ p3M2(Xv)≺0, (5.17)

where the Mi(·) are symmetric matrix-valued affine functions of Xv. The edges of the
polytopeΓ in this case define the directions: d1 = [1,0], d2 = [0,1], and d3 = [1,−1].
To enforce multiconvexity along these directions, the solution, expressed in terms
of the matrix sequence Xv, has to satisfy the constraints

(1)
∂ 2(−w∗X(p)w)

∂ p2 ≥ 0 and (2)
∂ 2g(Xv,c, p̃+λ di)

∂λ 2

∣
∣
∣
∣
λ=0

≥ 0

for all p̃ ∈ Γ , i = 1,2,3,c ∈R
e/{0}, and w ∈ R

n/{0}, where n = dimX ; namely,

X2 � 0, d pM1(Xv)+ 3pM2(Xv)� 0, (d p− 2p)M1(Xv)+ 3pM2(Xv)� 0, (5.18)

for all p̃ ∈ Γ . The last two constraints in (5.18) are infinite dimensional but have
linear dependence on the parameters; hence, these conditions hold for all p̃ ∈ Γ
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if and only if they hold for all p̃ ∈ vertΓ since linear functions are trivially
multiconvex. As discussed in [2], it is possible to relax the multiconvexity require-
ments slightly by strengthening the conditions in (5.17), for instance, replacing
the condition G (Xv, p̃) ≺ 0 with G (Xv, p̃) ≺ −(κ0 + κ1 p2 + κ2d p2)I, for some
nonnegative variables κi. Concerning the computational cost, notice that the number
of LMIs grows exponentially with the number of parameters.

In the preceding, we briefly discussed some PLMI relaxation results available
in the literature. There are many other important results. See, for instance, the
work of Lasserre in [20] and the associated MATLAB software GloptiPoly [19],
which builds and solves semidefinite programming relaxations for the generalized
problem of moments. The latest features of YALMIP [24, 25] are also quite useful
for solving PLMIs. The reader is referred to [21] for a comprehensive survey on the
hierarchies of semidefinite relaxations and their main properties, and to the papers
[33,34] which focus on PLMI problems with polynomial or rational dependence on
uncertainties and their important role in robust control. Note that the S-procedure
[15, 42] can be seen as a special case of the SOS methods. The authors behind the
multiconvexity technique explore other convexification methods yielding standard
LMI problems in [38]; in [39], a relaxation method using monotonicity concepts
is provided, where in this case the resulting finite family of LMI constraints is of
polynomial order with respect to the number of parameters.

5.6 Controller Construction

Given an (h,q)-eventually periodic plant, suppose that, for some integer N ≥ h, the
(N,q)-eventually periodic matrix-valued continuous functions R(p,k) and S(p,k)
satisfy the synthesis conditions (5.8) for all (p,d p) ∈ Γ , k ∈ N, and that the last
condition in (5.8) holds with strict inequality, namely,

[
R(p,k) I

I S(p,k)

]
� 0. (5.19)

As in the standard H∞ case, the controller is constructed from the solutions of
the synthesis conditions, namely, R(δ (k),k) and S(δ (k),k) for some δ ∈ ΔΓ , k ∈N.
Since these solutions are parameter dependent in this case and as the parameter
vector δ (k) is not known a priori but only available for measurement at each time
k, the controller has to be constructed online and, in this section, we will give an
algorithm to do so. Clearly, the time taken to compute the controller realization at
each instant k has to be insignificant relative to the sampling time.

For simplicity, in the following we will suppress the dependence of the system
matrices as well as the controller realization on the parameters, their increments,
and time. As aforementioned, at each instant k, the values of δ (k) and dδ (k) will
be available for measurement. To construct the controller realization at time k, we
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will require the matrices R(δ (k),k), R(δ (k+ 1),k+ 1), S(δ (k),k), and S(δ (k+ 1),
k + 1), where δ (k + 1) = δ (k) + dδ (k). For simplicity, given any matrix-valued
function F(p,k), we will use the notations Fk := F(δ (k),k) and Fk+1 = F(δ (k +
1),k+ 1) whenever convenient.

The following algorithm is a generalized version of the one given in [16]. To
start, applying the Schur complement formula twice along with an appropriate
permutation, the KYP inequality (5.7) can be equivalently written as

⎡

⎢
⎢
⎣

−X−1(p+ d p,k+ 1) AL BL 0
A∗

L −X(p,k) 0 C∗
L

B∗
L 0 −γI D∗

L

0 CL DL −γI

⎤

⎥
⎥
⎦≺ 0, (5.20)

for all (p,d p) ∈ Γ , k ∈ N, where X(p,k) is a positive definite matrix-valued
continuous function in the variable p (not necessarily polynomial). Since X(p,k)
is constructed from R(p,k) and S(p,k), it is also (N,q)-eventually periodic and so
are AL, BL, CL, and DL. As in the standard H∞ case, X(p,k) and its inverse satisfy

X =

[
S N

N∗ Z

]
, X−1 =

[
R M

M∗ Y

]
, MN∗ = I−RS,

where the dependence of X and constituent elements on (p,k) is suppressed. It
is also easy to verify that X(p,k)Π1(p,k) = Π2(p,k) and X−1(p,k)Π3(p,k) =
Π4(p,k), where

Π1 =

[
R I

M∗ 0

]
, Π2 =

[
I S
0 N∗

]
, Π3 =

[
S I

N∗ 0

]
, Π4 =

[
I R
0 M∗

]
.

Pre- and post-multiplying inequality (5.20) by diag(Π ∗
3 (p + d p,k + 1),Π ∗

1 (p,k),
I, I) and its transpose, respectively, we get the equivalent inequality

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

−S(p+d p,k+1) −I Â11 Â12 B̂1 0
−I −R(p+d p,k+1) Â21 Ã B̃ 0
Â∗

11 Â∗
21 −R(p,k) −I 0 Ĉ∗

1
Â∗

12 Ã∗ −I −S(p,k) 0 C̃∗

B̂∗
1 B̃∗ 0 0 −γI D∗

L

0 0 Ĉ1 C̃ DL −γI

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦

≺ 0,

(5.21)

where Ã = A + B2DKC2, B̃ = B1 + B2DKD21, C̃ = C1 + D12DKC2,
Â11 = S(p+ d p,k + 1)ÃR(p,k) + S(p+ d p,k + 1)B2CKM∗(p,k) +N(p + d p,k +
1)BKC2R(p,k)+N(p+ d p,k+ 1)AKM∗(p,k),
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Â12 = S(p+ d p,k+ 1)Ã+N(p+ d p,k+ 1)BKC2,

B̂1 = S(p+ d p,k+ 1)B̃+N(p+ d p,k+ 1)BKD21,

Â21 = ÃR(p,k)+B2CKM∗(p,k),
Ĉ1 = C̃R(p,k)+D12CKM∗(p,k).

(5.22)

Define the permutation P as

P =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

0 0 0 0 0 I
I 0 0 0 0 0
0 0 0 0 I 0
0 0 I 0 0 0
0 0 0 I 0 0
0 I 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

.

Then, pre- and post-multiplying (5.21) by P∗ and P, respectively, we get

⎡

⎣
Ω LR LS

L∗
R −R(p,k) Â∗

11
L∗

S Â11 −S(p+ d p,k+ 1)

⎤

⎦≺ 0, (5.23)

where

Ω =

⎡

⎢
⎢
⎣

−R(p+ d p,k+ 1) 0 Ã B̃
0 −γI C̃ DL

Ã∗ C̃∗ −S(p,k) 0
B̃∗ D∗

L 0 −γI

⎤

⎥
⎥
⎦ ,

LR =

⎡

⎢
⎢
⎣

Â21

Ĉ1

−I
0

⎤

⎥
⎥
⎦ , LS =

⎡

⎢
⎢
⎣

−I
0

Â∗
12

B̂∗
1

⎤

⎥
⎥
⎦ .

Appealing to (5.22), we can write LR and LS as

LR =

⎡

⎢
⎢
⎣

AR(p,k)+B2KC

C1R(p,k)+D12KC

−I
0

⎤

⎥
⎥
⎦ , LS =

⎡

⎢
⎢
⎣

−I
0

A∗S(p+ d p,k+ 1)+C∗
2KB

B∗
1S(p+ d p,k+ 1)+D∗

21KB

⎤

⎥
⎥
⎦ ,

where

KC = DKC2R(p,k)+CKM∗(p,k), (5.24)

KB = D∗
KB∗

2S(p+ d p,k+ 1)+B∗
KN∗(p+ d p,k+ 1). (5.25)
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By the Schur complement formula, inequality (5.23) holds if and only if the
following inequalities are valid:

Ω ≺ 0 and

[
ΔR Δ∗

21
Δ21 ΔS

]
≺ 0,

where ΔR = −R(p,k)−L∗
RΩ−1LR, ΔS =−S(p+ d p,k+ 1)−L∗

SΩ−1LS, and Δ21 =
Â11 − L∗

SΩ−1LR. It is always possible to choose the A-matrix of the controller,
AK(p,d p,k), such that Δ21 = 0 for all (p,d p) ∈ Γ , k ∈ N. With this being the case,
the validity of the KYP inequality becomes equivalent to the validity of Ω ≺ 0,
ΔR ≺ 0, and ΔS ≺ 0. Observe that Ω ≺ 0 is a PLMI in the variable DK , and
so using one of the relaxation techniques presented in the previous section, we
can solve offline for a polynomial function DK(p,d p,k) satisfying Ω ≺ 0 for all
(p,d p) ∈ Γ , k = 0,1, . . . ,N + q− 1. Once DK is computed, then we can apply the
Schur complement formula to turn inequalities ΔR ≺ 0 and ΔS ≺ 0 into the PLMIs

[−R(p,k) L∗
R

LR Ω

]
≺ 0 and

[−S(p+ d p,k+ 1) L∗
S

LS Ω

]
≺ 0 (5.26)

in the variables KC and KB, respectively. Again, the relaxation techniques of
the previous section can be used to solve for polynomial functions KC(p,d p,k)
and KB(p,d p,k) satisfying the preceding two PLMIs for all (p,d p) ∈ Γ , k =
0,1, . . . ,N + q − 1. The three PLMIs may also be solved simultaneously. It is
worth noting that, if the state-space matrices are of large dimensions, then the
large size of the aforementioned PLMI problems may prohibit the use of the SOS
relaxation method; in such a case, the multiconvexity relaxation technique may be
very effective.

With DK , KC, and KB calculated offline, the online computation of the controller
realization at time k can be summarized as follows:

(1) Compute the following factorizations: MkN∗
k = I −RkSk and Mk+1N∗

k+1 = I −
Rk+1Sk+1. For instance, choose Nk = I and Mk = I−RkSk for all k; observe from
(5.19) that this choice of Mk is invertible.

(2) Evaluate DK , KC, and KB at (δ (k),dδ (k),k). Then, from (5.24) and (5.25), we
have

CK = (KC −DKC2Rk)(M
∗
k )

−1 , BK = (Nk+1)
−1 (K∗

B − Sk+1B2DK) .

(3) Set Δ21 = 0 to compute AK ; namely,

AK = (Nk+1)
−1 (L∗

SΩ−1LR − Sk+1ÃRk − Sk+1B2CKM∗
k

−Nk+1BKC2Rk
)(

M∗
k

)−1
.
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An alternative to solving the PLMIs (5.26) offline for KC and KB is to compute online

at each instant k the least-norm solutions

[
KB

�

]
and

[
KC

�

]
of the linear equations

⎡

⎢⎢
⎢
⎢
⎢
⎣

0 0 0 C2 D21

0 −Rk+1 0 Ã B̃
0 0 −γI C̃ DL

C∗
2 Ã∗ C̃∗ −Sk 0

D∗
21 B̃∗ D∗

L 0 −γI

⎤

⎥⎥
⎥
⎥
⎥
⎦

[
KB

�

]
=−

⎡

⎢⎢
⎢
⎢
⎢
⎣

0

− I
0

A∗Sk+1

B∗
1Sk+1

⎤

⎥⎥
⎥
⎥
⎥
⎦
,

⎡

⎢
⎢
⎢
⎢⎢
⎣

0 B∗
2 D∗

12 0 0

B2 −Rk+1 0 Ã B̃
D12 0 −γI C̃ DL

0 Ã∗ C̃∗ −Sk 0
0 B̃∗ D∗

L 0 −γI

⎤

⎥
⎥
⎥
⎥⎥
⎦

[
KC

�

]
=−

⎡

⎢
⎢
⎢
⎢⎢
⎣

0

ARk

C1Rk

−I
0

⎤

⎥
⎥
⎥
⎥⎥
⎦
.

The reader is referred to [8] for an additional algorithm for constructing the con-
troller online, which is based on the results of [27]. Note that online implementation
simplifies significantly when all the states are exactly measurable, i.e., C2 = I and
D21 = 0, as evident from [8, Theorem 8].

5.7 Conclusions

The chapter presents a parameter-dependent Lyapunov approach for the control of
eventually periodic NSLPV and switched SLPV systems, using the �2-induced norm
as the performance measure. The analysis and synthesis conditions are in the form
of PLMIs, and a discussion of some of the PLMI relaxation techniques available
in the literature is provided. The chapter also gives a fast and easy-to-implement
algorithm for online controller construction.
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Chapter 6
Generalized Asymptotic Regulation for LPV
Systems with Additional Performance Objectives

Hakan Köroğlu

Abstract A generalized version of the asymptotic output regulation problem is
considered for an LPV plant subject to bounded (yet infinite-energy) disturbances
generated by an LPV exogenous system. The uncertain parameters affecting the
plant are all assumed to be measurable during online operation. On the other hand,
the exogenous system is allowed to have dependence on measurable as well as
unmeasurable parameters. The goal in the basic generalized asymptotic regulation
problem is to synthesize an LPV controller that guarantees the internal stability of
the closed loop and that ensures a bound on the steady-state peak of an output for all
admissible parameter trajectories. A solution can be obtained for this problem based
on a set of parameter-dependent LMIs. This chapter provides the LMI conditions
that guarantee the satisfaction of an additional performance objective imposed on a
(possibly) different output signal. Two different types of additional constraints are
considered: (1) a bound on the L2-gain from a finite-energy disturbance input to
the considered output; (2) an H2-type average energy constraint on the considered
output in response to impulsive disturbance inputs in different directions.

6.1 Introduction

The classical theory of asymptotic output regulation is concerned with perfect
cancelation of infinite-energy disturbances (or perfect tracking of infinite-energy
references) in steady-state (see [26] for a modern account). Within the framework
of this theory, the disturbances that influence the plant to be controlled are viewed
as the outputs an unexcited and anti-stable (exogenous) system. A key result
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established by [4] (and known as the Internal Model Principle) states that the
exact asymptotic regulation problem can be solved by replicating the dynamics
of the exo-system in the feedback loop. This imposes a particular structure on the
candidate controllers, which need to be stabilizing as well to provide a solution to the
asymptotic regulation problem. In fact, it is possible to aim for more and synthesize
a controller that achieves additional performance objectives expressed in the form
of H∞ or H2 norm constraints [26, 29, 30].

A useful generalization of the asymptotic regulation problem is possible when
the disturbance and references are restricted to be sinusoidal or constant signals. In
this formulation that we refer to as generalized asymptotic regulation (GAR), the
goal is to ensure that the peak-to-peak gain from the exo-system state to the output
to be regulated is as small as possible or desirable (rather than zero, see [10]). Such a
formulation is possible in the case of unbounded disturbances as well, but might be
of little use for practical purposes. The multi-objective version of the GAR problem
was considered in [16] and [20] with H∞ and H2 norm constraints, respectively.
These works clarified how generalized asymptotic regulation constraints can be
integrated into H∞ and H2 (as well as various other) synthesis problems that can
be solved based on linear matrix inequality (LMI) optimization.

Due to the increased interest in parameter-dependent models known as linear
parameter-varying (LPV) systems, it is natural to consider the asymptotic regulation
problem for such systems as well. But the key motivation originates from practical
engineering systems that are subject to sinusoidal disturbances whose frequencies
show variations in time [1, 3, 8, 9, 11, 13, 23]. Such non-stationary sinusoidal
disturbances can clearly be generated by parameter-dependent exo-system models.
The existence of parameter dependence in the plant or the exo-system introduces a
significant challenge in the solution of the standard asymptotic regulation problem.
As a matter of fact, one is faced with a differential algebraic constraint when there
is time variation in the plant or the exo-system [12, 32]. The exact asymptotic
regulation objective then becomes too ambitious and is achievable under restrictive
assumptions (see, e.g., [15]). The problem becomes even more complicated when
the exo-system has dependence on unmeasurable parameters as well, which is
also a case of significant practical relevance. For this reason, the generalized
formulation of the asymptotic regulation problem becomes particularly convenient
for parameter-dependent plants and exo-systems.

The GAR problem was considered for LPV systems with online-measurable
parameters in [17] and an observer-based solution was derived within the framework
of LMI optimization. This solution was extended by [22] in a way to optimize the
transient behavior with a controller of general structure. The case of uncertain exo-
system with unmeasurable uncertainty was considered in [18, 19] for a linear time
invariant (LTI) plant. Based on the achievements of these works, a solution was
derived by [21] for the case in which the plant has dependence only on online-
measurable parameters, while the exo-system is allowed to depend on unmeasurable
parameters as well (see also [14] on avoidance of parameter-derivative dependence
in the LPV controller).
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This chapter basically summarizes the results of [21] and extends them in a way
to handle additional performance objectives as well. The problem setup described
in Sect. 6.2 is slightly more general than that of [21] in that it facilitates the use
of the knowledge concerning the rates-of-variation of the unmeasurable parameters.
The basic problem that we refer to as robust GAR is formulated and studied in
Sect. 6.3. The contents of this section are basically adapted and shortened from
[21]. As the main novel content, this chapter provides solutions to the robust GAR
problem with additional performance objectives. Section 6.4 considers the problem
with an L2-gain constraint, whereas Sect. 6.5 elaborates on the problem with an
H2-type performance objective. In addition to providing LMI-based solutions, these
sections also specialize them to LTI plants/exo-systems and thus establish links to
the relevant works [16] and [20], respectively. Illustrative simulation results are also
provided for the course control problem inherited from [21, 22]. The chapter is
concluded with a brief discussion of interesting and challenging research directions.

6.2 Problem Setup

The problems considered in this chapter are formulated for a parameter-dependent
plant whose dynamics are described as

Σp :

⎡

⎢
⎢
⎣

ẋ
e
z
y

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

A(μ) Br(δ ) Bp(δ ) B(μ)
Cr(δ ) Dr(δ ) Drp(δ ) Drc(δ )
Cp(δ ) Dpr(δ ) Dp(δ ) Dpc(δ )
C(μ) Dcr(δ ) Dcp(δ ) 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x
w
v
u

⎤

⎥
⎥
⎦, (6.1)

where x(t) ∈ R
k denotes the state vector. The design goal is to generate the control

input vector u(t) ∈ R
n by processing the measurements y(t) ∈ R

m in a way to
achieve a generalized regulation objective for the error signal e(t) ∈ R

r and an
additional objective for the performance output z ∈ R

q. This is to be done in the
face of a finite-energy disturbance v(t) ∈ R

p and an infinite-energy disturbance
w(t) ∈R

l . The infinite-energy disturbance is assumed to be generated by a neutrally
stable exogenous system from nonzero initial states as

ẇ = Ae(δ )w. (6.2)

In our setting, the full vector of uncertain parameters is represented by

δ =

[
μ
υ

]
=

⎡

⎢
⎢
⎣

θm

νm

θ u

νu

⎤

⎥
⎥
⎦ ;

θm : vector of measurable parameters
νm : derivative of θm (measurable)
θ u : vector of unmeasurable parameters
νu : derivative of θ u (unmeasurable).

(6.3)
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The uncertain parameter vector θ � (θm,θ u) is allowed to vary in time in a compact
(i.e., closed and bounded) region R in such a way that its derivative ν � θ̇ stays
within D . We represent the set of admissible values for the full parameter vector δ as
U . Note that U is necessarily a subset of R×D , yet it can be a smaller set depend-
ing on the set of admissible parameter trajectories, which we denote as T . When
the uncertainty is described directly by the sets R and U , the set of admissible
parameter trajectories is identified as T =

{
θ (·) : [0,∞)→ R

∣
∣(θ (t), θ̇(t)

) ∈ U
}

,
which should clearly be nonempty for a nontrivial problem formulation. In order to
restrict our interest to the set of measurable parameters or parameter trajectories, we
use Rm, Um, and Tm.

We assume that all the system matrices in (6.1) and (6.2), as well as all the
design variables that will come into the scene in the sequel, depend continuously
on the uncertain parameter vectors. For some design elements, we also assume
differentiability with respect to θ and use

∂S(δ )�
nm

∑
i=1

∂S
∂θm

i
νm

i +
nu

∑
i=1

∂S
∂θ u

i
νu

i , (6.4)

where θm
i , νm

i , θ u
i , and νu

i represent the ith elements of the relevant vectors. When
a design element, say Y , depends only on θm, we write ∂Y (μ). We completely
suppress the parameter dependency whenever it is inferrable from the context. To
reduce the redundancy of notation, we represent the symmetric part of a matrix
as HeA � A+ AT and use ∗ to indicate the blocks of a matrix that are uniquely
identifiable from symmetry.

For the sake of a concise notation, we express the dynamics of the extended plant
by appending the dynamics of the exo-system to the dynamics of the plant as

˙̃x =

[
A(μ) Br(δ )

0 Ae(δ )

]

︸ ︷︷ ︸
Ã(δ )

[
x
w

]

︸︷︷︸
x̃

+

[
Bp(δ )

0

]

︸ ︷︷ ︸
B̃p(δ )

v+

[
B(μ)

0

]

︸ ︷︷ ︸
B̃(μ)=B̂(μ)

u,

e =
[

Cr(δ ) Dr(δ )
]

︸ ︷︷ ︸
C̃r(δ )

x̃+Drp(δ )v+Drc(δ )u,

z =
[

Cp(δ ) Dpr(δ )
]

︸ ︷︷ ︸
C̃p(δ )

x̃+Dp(δ )v+Dpc(δ )u,

y =
[

C(μ) Dcr(δ )
]

︸ ︷︷ ︸
C̃(δ )

x̃+Dcp(δ )v. (6.5)

In order to avoid the dependence of the synthesized controller on the unmeasurable
parameter vector υ , we will use the decompositions of some δ -dependent extended
plant matrices as
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Ã(δ ) =
[

A(μ) Bm
r (μ)

0 Am
e (μ)

]

︸ ︷︷ ︸
Â(μ)

+

[
Bu

r (δ )
Au

e(δ )

]

︸ ︷︷ ︸
B̃u

r (δ )

[0l×k Il ]︸ ︷︷ ︸
E

, (6.6)

C̃(δ ) =
[

C(μ) Dm
cr(μ)

]

︸ ︷︷ ︸
Ĉ(μ)

+Du
cr(δ )E. (6.7)

We note here that the hats should remind the reader of no dependence on the un-
measurable parameters, if the parameter dependencies are suppressed for simplicity.
Hence, any decomposition in which this is respected will in fact be admissible in our
derivations (the simplest can be obtain with Bm

r = 0, Am
e = 0, and Dm

cr = 0). Since
such a decomposition is not needed when there are no unmeasurable parameters
(i.e., when υ is void), we will use

Â = Ã, Ĉ = C̃ and B̃u
r = 0, Du

cr = 0, if δ = μ . (6.8)

We adapt the common assumptions in asymptotic regulation problems (see, e.g.,
[26]) to our setting together with the introduction of some additional notation as
follows:

(A.1) Neutrally Stable Exo-System: There exists a symmetric positive-definite map
S0 : R → S

l
+ such that

Le(S0,δ )� ∂S0(δ )+He(S0(θ )Ae(δ )) = 0, ∀δ ∈ U . (6.9)

(A.2) Stabilizability: There exist Y : Rm → S
k
+, N : Um → R

n×k, and ρ ∈ R+ such
that

Ls(Y,N,μ) �−∂Y (μ)+He(A(μ)Y (θm)+B(μ)N(μ))

�−2ρY(θm), ∀μ ∈ Um. (6.10)

(A.3) Detectability: There exist X : Rm → S
k+l
+ ,M : Um → R

(k+l)×m, and ρ ∈ R+

such that

Ld(X ,M,δ ) � ∂X(μ)+He
(
X (θm) Â(μ)+M(μ)Ĉ(μ)

)

︸ ︷︷ ︸
L m

d (X ,M,μ)

+He
(
X(θm)B̃u

r (δ )E +M(μ)D̃u
cr(δ )E

)

= ∂X(μ)+He
(
X(θm)Ã(δ )+M(μ)C̃(δ )

)

�−2ρX(θm), ∀δ ∈ U . (6.11)

The considered class of infinite-energy disturbances are basically formed by
bounded non-stationary sinusoidal signals. In order to clarify this, we first introduce
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the positive-definite function Ve(w,θ ) � wT S0(θ )w and infer from (A.1) that it
remains constant along the trajectories of (6.2). In other words, we have for all
admissible parameter trajectories that

w(t)T S0(θ (t))w(t) = w(0)T S0(θ (0))w(0), ∀t ≥ 0. (6.12)

With the uniform lower and upper bounds on the eigenvalues of S0 expressed as

λminI � S0(θ )� λmaxI, ∀θ ∈ R, (6.13)

the norm of w can be shown to be bounded from below and above as
√
λmin/λmax‖w(0)‖ ≤ ‖w(t)‖ ≤

√
λmax/λmin‖w(0)‖. (6.14)

As a representative example, let us now consider
[

ẇ1(t)
ẇ2(t)

]
=

[
0 −ϖ(t)

ϖ(t) 0

][
w1(t)
w2(t)

]
, (6.15)

where ϖ(t) serves as a time-varying frequency, which might depend on measurable
as well as unmeasurable parameters. We can obtain the explicit expression for the
states of this system as

[
w1(t)
w2(t)

]
=

[
cos
(∫ t

0ϖ(τ)dτ
) −sin

(∫ t
0ϖ(τ)dτ

)

sin
(∫ t

0ϖ(τ)dτ
)

cos
(∫ t

0ϖ(τ)dτ
)
][

w1(0)
w2(0)

]
. (6.16)

Since the exo-system matrix in this example is skew symmetric, (A.1) is satisfied
with S0 = I.

The problems considered in this chapter aim at designing a controller whose
dynamics depend on the measurable parameter vector as

Σc :

[
ξ̇
u

]
=

[
Ac(μ) Bc(μ)
Cc(μ) Dc(μ)

][
ξ
y

]
. (6.17)

We consider full-order synthesis, which means in this case that the order of the
controller is equal to the order of the plant plus the order of the exo-system(
i.e., ξ (t) ∈ R

k+l
)
. The generalized asymptotic regulation objective will be imposed

on the error signal e when v = 0. In this case, the closed-loop dynamics can be
expressed as

˙̃κ =

[
Ã+ B̃DcC̃ B̃Cc

BcC̃ Ac

]

︸ ︷︷ ︸
Ar(δ )

[
x̃
ξ

]

︸︷︷︸
κ̃

,

e =
[

C̃r +DrcDcC̃ DrcCc
]

︸ ︷︷ ︸
Cr(δ )

κ̃. (6.18)
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On the other hand, the additional performance objectives will be imposed on the
signal z when w = 0. The closed loop evolves in this case according to

κ̇ =

[
A+BDcC BCc

BcC Ac

]

︸ ︷︷ ︸
Ap(μ)

[
x
ξ

]

︸︷︷︸
κ

+

[
Bp +BDcDcp

BcDcp

]

︸ ︷︷ ︸
Bp(δ )

v,

z =
[

Cp +DpcDcC DpcCc
]

︸ ︷︷ ︸
Cp(δ )

κ+
[

Dp +DpcDcDcp
]

︸ ︷︷ ︸
Dp(δ )

v. (6.19)

Due to the linearity of the system for a fixed parameter trajectory, the closed loop is
expected to have a desirable behavior with the synthesized controller when w and v
are both nonzero. Since this will be the case especially for z = e, the performance
output should be chosen to include the error signal as well. A typical choice would
be z =

[
eT λuT

]T
, where λ is a (small) positive scalar that is properly tuned to

adjust the required control effort.

6.3 Robust Generalized Asymptotic Regulation (GAR)

6.3.1 Robust GAR Problem

Based on the problem setup described in the previous section, the robust generalized
asymptotic regulation problem is formulated as follows:

Problem 6.1. Given the plant in (6.1), the exo-system in (6.2) and the uncertainty
regions (R, D , U , etc.), design a controller as in (6.17) such that:

(C.1) Robust Internal Stability: There exist ϕ ,ρ ∈R+ such that, in the closed-loop
system of (6.18) with w(0) = 0 (i.e., for κ̇ = Ap(μ)κ ), we have

‖κ(t)‖2 ≤ ϕ‖κ(0)‖2e−2ρt , ∀t ≥ 0, ∀θm(·) ∈ Tm. (6.20)

(C.2) Robust GAR of Level κ ∈R+: There exist α,ρ ∈R+ such that, in the closed-
loop system of (6.18), we have

‖e(t)‖2 ≤ α‖κ̃(0)‖2e−2ρt +κ2w(t)TΦ(θ (t))w(t), ∀t ≥ 0, ∀θ (·) ∈ T ,
(6.21)

where Φ(·) represents a positive semi-definite attenuation profile.

The generalized asymptotic regulation constraint in (C.2) is adapted from [10].
Recall that the classical asymptotic regulation problem is formulated with κ = 0.
Since we consider an uncertain exo-system, the exact asymptotic regulation problem
will usually be unsolvable. For this reason, the goal in the robust generalized
asymptotic regulation problem would be to keep κ as small as possible or desirable.
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We have introducedΦ(·) as an additional design element. Recalling from (A.1) the
existence of a positive-definite map S0 for which Le(S0,δ ) = 0 and ‖S0(θ )‖ ≤ 1,
we can view Φ(θ ) = S0(θ ) as an alternative choice to Φ = I. In fact, it is quite
reasonable to allow for a graceful degradation on the attenuation level if the
uncertain parameters deviate from their nominal values. In view of this, Φ can be
chosen in the general form

Φ(θ ) = (1+ ς(‖θ‖))S0(θ ), (6.22)

where ς(·) is a scalar-valued, preferably monotone nondecreasing function that is
zero at zero. A simple and convenient choice would be ς(‖θ‖) = ς0‖θ‖2, where ς0

is a nonnegative scalar that determines the admissible rate of degradation in the level
of steady-state attenuation with increasing deviations from the nominal parameter
vector θ = 0.

6.3.2 A Sufficient Condition for Robust GAR

A necessary and sufficient condition is provided for generalized asymptotic regula-
tion in LTI systems by [10]. This condition can be rephrased as a sufficient condition
for parameter-dependent systems considered in this chapter as follows:

Lemma 6.1. The closed-loop system in (6.18) satisfies (C.1) and (C.2) if there exist

ρ ,φ ∈R+ and X : R → S
2(k+l)
+ for which

N (δ ) = ∂Xr(δ )+ 2ρXr(θ )+He (Xr(θ )Ar(δ ))� 0, ∀δ ∈ U , (6.23)

P(δ ) =
[

X (θ ) Cr(δ )T

Cr(δ ) φ I

]
	 0, ∀δ ∈ U , (6.24)

with

Xr � X −φ−1κ2I TΦI, (6.25)

where

I �
[

E 0l×(k+l)

]
=
[

0l×k Il 0l×(k+l)

]
. (6.26)

We then have for the closed-loop system of (6.18) for any admissible parameter
variation that

‖e(t)‖2 ≤ φ κ̃(0)T Xr(θ (0))κ̃(0)e−2ρt +κ2w(t)TΦ(θ (t))w(t), ∀t ≥ 0. (6.27)

Proof. We first infer from (6.23) that the function V (κ̃,θ )� κ̃
T Xr(θ )κ̃ satisfies

d
dt

(
e2ρtV (κ̃(t),θ (t))

)
= e2ρt

κ̃(t)T N (δ (t))κ̃(t)≤ 0, ∀t ≥ 0, (6.28)
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along the trajectories of the extended closed-loop system in (6.18) for any admissi-
ble parameter variation. It hence stays bounded in time from above according to

κ̃(t)T X (θ (t))κ̃(t)−φ−1κ2w(t)TΦ(θ (t))w(t)
︸ ︷︷ ︸

V (κ̃(t),θ(t))

≤ κ̃(0)T Xr(θ (0))κ̃(0)︸ ︷︷ ︸
V (κ̃(0),θ(0))

e−2ρt .

(6.29)
We thus conclude for all t ≥ 0 that

φ κ̃(t)T X (θ (t))κ̃(t)
︸ ︷︷ ︸

≥ε‖κ̃(t)‖2

≤ φ κ̃(0)T Xr(θ (0))κ̃(0)︸ ︷︷ ︸
≤α‖κ̃(0)‖2e−2ρt

e−2ρt +κ2w(t)TΦ(θ (t))w(t),

(6.30)
where ε and α are any positive scalars that satisfy

εI � φX (θ )� φXr(θ )� αI, ∀θ ∈ R. (6.31)

When w(0) = 0, we have w(t) = 0, as a result of which ‖κ(t)‖ = ‖κ̃(t)‖ obeys
(6.20) with ϕ = α/ε . For general w(0), we infer from (6.24) that

φ κ̃(t)T X (θ (t))κ̃(t)−‖e(t)‖2 = χ(t)T P(δ (t))χ(t)≥ 0, ∀t ≥ 0, (6.32)

where χ(t)T =
[
φ1/2

κ̃(t)T −φ−1/2e(t)T
]
. This clearly implies (6.27) and thus

(6.21). 
�
Conditions (6.23) and (6.24) are also necessary if θ is time invariant and fixed,

i.e., when the problem is considered for an LTI system with no uncertainty (see
[10]). Note that in this case ∂Xr is to be replaced with zero. We can then also
fix the value of φ (e.g., as φ = κ) without introducing any conservatism. The
condition is potentially conservative in the general case since it is based on the
construction of a Lyapunov function with only quadratic state dependence. Further
conservatism might also be introduced when the parameter-dependent conditions
are relaxed into finitely many LMIs. In fact, the value of φ might affect the level
of conservatism introduced at the stage of relaxation. When additional performance
objectives are considered, φ will again serve as a parameter that might potentially
reduce conservatism.

6.3.3 A Solution to the Robust GAR Problem

A solution is obtained by [21] for Problem 6.1 based on LMI optimization. This
solution is derived by first expressing the conditions of Lemma 6.1 equivalently
(and with the parameter dependencies suppressed for simplicity) as

Y T (∂Xr)Y + 2ρY T XrY +He
(
Y T XrArY

)
� 0, (6.33)
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[
Y T X Y Y T C T

r

CrY φ I

]
	 0. (6.34)

Here, Y : R → R
2(k+l)×2(k+l) represents a nonsingular map, the choice of which

forms the key step. The suitable choice of Y in this case is derived in [21] by
combining the transformations of [27, 29] similarly to [2]. The equivalent matrix
inequality conditions obtained in this fashion are then rendered affine in all free
matrix variables through a bijective transformation of the controller realization
matrices into a set of new matrix variables. The design ingredients are chosen in
such a way that the resulting controller has no dependence on the unmeasurable
parameters.

Let us now summarize the solution of [21] by first partitioning X and its inverse
compatibly with Ar in (6.18) as

X =

[
P U

UT UT
(
P−Q−1

)−1
U

]

, X −1 =

[
Q V

V T V T
(
Q−P−1

)−1
V

]

.

(6.35)

We assume without loss of generality that U and V are invertible and note that they
are required to satisfy

PQ+UVT = I, (6.36)

as follows from X X −1 = I. Without loss of generality, the matrix Q is chosen to
be of the form

Q =

[
Q11 Q12

QT
12 Q22

]

=

[
I Ω
0 W

]−1 [
Y 0
0 W

][
I Ω
0 W

]−T

, (6.37)

where the partition is compatible with Ã in (6.6). The first set of design variables are
defined by

W � Q−1
22 , (6.38)

Ω � −Q12W, (6.39)

Y � Q11 −ΩW−1ΩT , (6.40)

X � P−ETWE, (6.41)

where E is the constant matrix introduced in (6.26). We will omit W in the final
design conditions and instead use

S � φ−1κ2Φ −W. (6.42)
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With T formed as

T �
[
Ω̂

W E

]
=

[
I Ω
0 W

]
, (6.43)

the suitable choice of Y is given by

Y T =

[
T Q TV

I 0

]
. (6.44)

The second set of design variables are introduced by the transformation

[
L −Θ M
N −Ψ D

]
�
[

U XB̂
0 I

][
Ac Bc

Cc Dc

][
V T Ω̂T V T ETW 0
ĈQΩ̂T ĈQETW I

]

+

[ (
XÂQ+(∂X)Q+(∂U)V T

)
Ω̂T

(
XÂQ+(∂X)Q+(∂U)V T

)
ETW 0

0 0 0

]
. (6.45)

The controller realization matrices can be obtained from the design ingredients via
the inverse transformation

[
Ac Bc

Cc Dc

]
=

[
U−1 −U−1XB̂

0 I

][
L̂ M
N̂ D

][
T−TV−T 0
−ĈQV−T I

]
, (6.46)

where

L̂ = [L −Θ ]−XÂQT T − (∂X)QT T − (∂U)V T T T and N̂ = [N −Ψ ]. (6.47)

Thanks to the use of Â and Ĉ from the decompositions in (6.6) and (6.7) rather than
Ã and C̃, it will be possible to synthesize the controller realization matrices from the
inverse transformation in a way to depend only on the measurable parameters. For
this, one will have to use design elements with no dependence on the unmeasurable
parameters. The only exception to this restriction is S, on which the controller turns
out to have no dependence.

With the design ingredients introduced above, one arrives at the following
solution of [21] to Problem 6.1:

Theorem 6.1. There is a solution to Problem 6.1 if there exist ρ ,φ ∈ R+ and

Y : Rm → S
k
+,X : Rm → S

k+l
+ ,Ω : Rm →R

k×l ,

K : Um → R
(k+l)×k,M : Um → R

(k+l)×m,N : Um → R
n×k,

D : Um → R
n×m,Ψ : Um →R

n×l ,Θ : Um →R
(k+l)×l and S : R → S

l , (6.48)
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with which

⎡

⎢
⎣

Ls(Y,N) ∗ ∗
K − ∂Ω̂T L m

d (X ,M)+He(ΘE) ∗
Lse(Ω ,Ψr)

T −ΘT
r −Le(S)

⎤

⎥
⎦�−2ρ

⎡

⎣
Y Ω̂ 0
Ω̂T X 0
0 0 −S

⎤

⎦, (6.49)

⎡

⎢
⎢
⎢
⎣

Y ∗ ∗ ∗
Ω̂T X ∗ ∗
0 0 φ−1κ2Φ− S ∗

CrY +DrcN CrΩ̂ +Drc(DĈ+ΨE) Lre(Ω ,Ψr) φ I

⎤

⎥
⎥
⎥
⎦
	 0, (6.50)

are satisfied for all δ ∈ U , where

Lse(Ω ,Ψ ) � ∂Ω +ΩAe +Br−AΩ −BΨ , (6.51)

Lre(Ω ,Ψ ) � CrΩ +DrcΨ −Dr, (6.52)

and

Θr � Θ −XB̃u
r −MDu

cr, (6.53)

Ψr �Ψ −DDu
cr, (6.54)

In terms of

H � X − Ω̂TY−1Ω̂ , (6.55)

F � NY−1Ω̂ −ΨE, (6.56)

G � X−1M, (6.57)

L � K − (AΩ̂ +B
(
DĈ+ΨE

))T
, (6.58)

Z = X−1 ((∂X)X−1Ω̂T −L
)

Y−1, (6.59)

a controller that solves the problem can then be constructed with U = −X and
V T = X−1HQ as

[
Ac Bc

Cc Dc

]
=

[(
Â+ B̂F+GĈ− B̂DĈ+ZΩ̂ +X−1ΘE

)
H−1X B̂D−G

(F −DĈ)H−1X D

]
. (6.60)

Proof. The proof consists of expressing the conditions of Lemma 6.1 in terms of the
design variables introduced above. The construction of the controller is based on the
inversion of (6.45) as in (6.46). For further details, we refer the reader to [21]. 
�
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Conditions (6.49) and (6.50) read as infinitely many matrix inequalities in finite
number of variables, once ρ and φ are chosen and the parameter dependencies of the
matrix variables (affine, quadratic, general polynomial, or rational) are fixed. They
can be replaced with finitely many LMIs by employing the relaxation schemes that
are suitable for the considered uncertainty regions. For further information on robust
optimization problems and common relaxation schemes, we refer the reader to [28]
and the references therein.

6.3.4 On Avoiding Parameter Derivative Dependence
in the Controller

The dependence of the controller on the derivatives of the online-measurable
parameters might be undesirable due to implementation issues. If there is no
νm = θ̇m dependence in the system matrices A, B, and C, it is possible to eliminate
νm dependence in the controller. For this, we need to remove the νm-dependent term
from Z and form it as

Z =−X−1LY−1. (6.61)

As a result of this, there will emerge in condition (6.49) a dependence on the
nonlinear term (∂X)X−1Ω̂T . Based on (6.50), a sufficient condition can be derived
for the new version of (6.49) as

⎡

⎢
⎢⎢
⎢
⎣

Ls(Y,N) ∗ ∗ ∗
K + 2ρΩ̂T − ∂Ω̂T L m

d (X ,M)+He(ΘE) ∗ ∗
Lse(Ω ,Ψr)

T −ΘT
r −Le(S) ∗

0 ∂X 0 0

⎤

⎥
⎥⎥
⎥
⎦

�−2ρ blockdiag((1+ψ)Y,X ,−S,−ψX). (6.62)

Clearly, a line search over ψ ≥ 0 will be needed when using this new condition for
controller synthesis. We refer the reader to [14] for further details and an alternative
condition obtained with a different realization of the controller.

6.3.5 Synthesis in the Absence of Unmeasurable Parameters

When there is no unmeasurable parameter (i.e., when θ u is void and hence δ = μ),
simplified conditions can be derived for robust generalized asymptotic regulation by
recalling (6.8) and settingΘ = 0. Note also from (6.53) and (6.54) that we then have
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Θr =Θ = 0 andΨr =Ψ . By choosing K = ∂Ω̂T , we can reduce condition (6.49) to
(6.11) and

[
Ls(Y,N)+ 2ρY ∗

Lse(Ω ,Ψ )T −Le(S)− 2ρS

]
� 0, ∀μ ∈ Rm. (6.63)

We emphasize that no conservatism is introduced by choosingΘ and K as described
above. This result is summarized as follows:

Corollary 6.1. When there are no unmeasurable parameters (i.e., θ u is void),
Problem 6.1 admits a solution if there exist maps as in (6.48) and positive scalars
ρ ,φ with which (6.11), (6.50), and (6.63) are satisfied withΨr =Ψ . With H, F, G,
L, and Z obtained as in (6.55)–(6.59) using K = ∂Ω̂T , a controller that solves the
problem can then be constructed as in (6.60) by settingΘ = 0.

As a further simplification, we can also set D = 0 in the conditions without
introducing any conservatism, since any particular solution X can always be
magnified together with the associated M as desired (i.e., as βX and βM with a
sufficiently large positive scalar β ) to render (6.50) feasible for any D. In fact, based
on the idea of magnifying the particular solutions, we can also obtain an observer-
based controller. Such a controller can be constructed by replacing H−1X and Z in
(6.60) with I and 0, respectively.

At this point, we should also mention the alternative solution derived in [17, 22]
for the GAR problem (with Φ = I) in the absence of unmeasurable parameters. In
this alternative approach, the problem is shown to be solvable under the existence
of bounded time-varying matrices Π and Γ that satisfy

Π̇ = AΠ +BΓ −ΠAe−Br and limsup
t→∞

‖Lre(Π(t),Γ (t))‖ ≤ κ . (6.64)

Interestingly, such Π and Γ are then shown to exist under similar LMI conditions
(more clearly, (6.50) with third row/column blocks removed and (6.63)). On the
other hand, the synthesis of the controller is more complicated since its state vector
includes the matrix Π as well, which is to be obtained online from the solution of a
differential equation. For a more detailed comparison, we refer the reader to [21].

Let us now restrict our attention to the case of a fixed δ = μ , i.e., the GAR
problem for a known LTI system. This problem has been considered by [16], the
solvability condition of which can be expressed in our setting as the existence of
matrices Ω andΨ that satisfy

AΩ +BΨ −ΩAe −Br = 0, (6.65)
[

κΦ (CrΩ +DrcΨ −Dr)
T

CrΩ +DrcΨ −Dr κI

]
	 0. (6.66)

The sufficiency of these conditions can easily be observed from (6.50) and (6.63),
while their necessity is not easily inferrable. Intuitively, reducing the value of ρ is
expected to reduce the conservatism, since this facilitates a slow decay of the tran-
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sients. In the limit as ρ→ 0, the choices of S that ensure the feasibility of (6.63) will
approach 0 since Le(S) cannot be positive definite. This will also forceΩ andΨ to
satisfy condition (6.65). Condition (6.66) will then follow from (6.50) with S → 0.

We emphasize that the conditions of Theorem 6.1 are especially suitable when
the exo-system has dependence on the unmeasurable parameters. As a matter of fact,
it is quite hard (if not impossible) to find design elements that satisfy the differential
equation in (6.64) or the equality constraint of (6.65), when the exo-system depends
on some unmeasurable parameters. The scalar ρ plays an important role in this case
and cannot be set to zero. It also facilitates the shaping of the transient behavior.

6.3.6 Shaping the Transient Behavior

It is easy to observe from (6.27) that faster convergence to steady-state behavior
can be achieved by larger ρ values. However, this might come at the price of an
increased initial peaking of the error, which is clearly undesirable. It is also easy to
avoid this simply by keeping the maximum eigenvalue of Xr small. An H2-type
problem would allow us to adjust the trade-off between fast convergence and high
initial peaking of the error. Note, however, that e will not decay to zero as time goes
to infinity, unless w = 0 or κ = 0. It is hence not possible to formulate the transient
response shaping problem as the minimization of the energy of e. In an effort to
formulate an H2-type problem, one might instead think of ensuring

Jtr(e(·),w(·),θ (·), t; x̃(0))�
∫ t

0

(‖e(τ)‖2 −κ2w(τ)TΦ(θ (τ))w(τ)
)

dτ

≤ σ2‖x̃(0)‖2, ∀x̃(0) ∈ R
k+l , ∀t ≥ 0, ∀θ (·) ∈ T .

(6.67)

For small values of κ , the transient behavior of the error output can be improved by
minimizing σ .

In order to derive a condition that guarantees (6.67), we first recall (6.27) which
is implied by the LMI conditions in Lemma 6.1. By a simple integration, we can
establish with zero initial controller states (i.e., ξ (0) = 0) for all t ≥ 0 that

Jtr(e(·),w(·),θ (·), t; x̃(0))≤ φ
2ρ

x̃(0)T (X(θm(0))−ET S(θ (0))E
)

x̃(0)
(
1−e−2ρt) .

(6.68)
A condition that guarantees (6.67) is then obviously given by

X(θm)−ET S(θ )E ≺ 2ρ
φ
σ2I, ∀θ ∈ R. (6.69)

We emphasize again that this additional condition will ensure (6.67) only when the
initial controller states are set to zero.

When shaping the transient behavior, it might be convenient to restrict the interest
to a particular set of initial conditions, x̃ j

0 ∈R
k+l , collected in the matrix
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Bi =

[
Bp

Be

]
=

[
x1

0 · · · xp
0

w1
0 · · · wp

0

]
=
[

x̃1
0 · · · x̃p

0

]
. (6.70)

In this case, it would be reasonable to ensure a condition of the form

p

∑
j=1

Jtr

(
e(·),w(·),θ (·), t; x̃ j

0

)
< σ2. (6.71)

Since the norms of the initial state vectors are now absorbed in the total cost σ2, it
makes sense to choose x̃ j

0 in such a way that their norms are close to each other. In
order to guarantee (6.71), one needs to impose the trace condition

traceBT
i

(
X(θm)−ET S(θ )E

)
Bi <

2ρ
φ
σ2, ∀θ ∈ R. (6.72)

It might also be necessary to shape the transient behavior of the control input u,
since the transient behavior of e can typically be improved at the cost of extra
control effort. One might in fact consider imposing (6.67) or (6.71) for a different
output z (formed, for instance, as z =

[
eT λuT

]T
with a properly tuned λ > 0).

In that case, it would be necessary to impose a generalized asymptotic regulation
constraint on z, together with the transient response-shaping constraints derived
above. The conditions derived based on these alternative approaches can be found
in [21]. We will also comment briefly on how to use the multi-objective design
problems considered in the sequel for shaping the transient behavior as well.

6.4 Robust GAR Under an L 2-Gain Constraint

6.4.1 Robust GAR Problem with an L 2-Gain Constraint

In this section, we consider a multi-objective GAR problem formulated as follows:

Problem 6.2. Given the plant in (6.1), the exo-system in (6.2) and the uncertainty
regions, synthesize a controller as in (6.17) that ensures (C.1) and (C.2) as well as
the following L2-gain constraint:

(C.3) When the initial states are zero, i.e., κ̃(0) = 0, one can find a positive
scalar ε such that the closed-loop system in (6.19) satisfies for all admissible
parameter trajectories that
∫ ∞

0
‖z(t)‖2dt ≤ (γ− ε)2

∫ ∞

0
‖v(t)‖2dt, ∀v(·) :

∫ ∞

0
‖v(t)‖2dt < ∞, (6.73)

where γ > 0 represents the level of L2-gain performance.
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6.4.2 Robust GAR with L2-Gain Performance

In an effort to derive a solution to Problem 6.2, we first recall the well-known matrix
inequality condition for L2-gain performance:

Lemma 6.2. The closed-loop system in (6.18) satisfies (C.1) and (C.3) if there exist
Xp : R → S

2k+l
+ and ψ ∈ R+ that satisfy

⎡

⎢
⎣

∂Xp(δ )+He
(
Xp(θ )Ap(δ )

)
Xp(θ )Bp(δ ) Cp(δ )T

Bp(δ )T Xp(θ ) −ψ−1γI Dp(δ )T

Cp(δ ) Dp(δ ) −ψγI

⎤

⎥
⎦≺ 0, ∀δ ∈ U . (6.74)

When the initial state κ(0) is nonzero, this condition will ensure
∫ ∞

0
‖z(t)‖2dt < γ2

∫ ∞

0
‖v(t)‖2dt +ψγκ(0)T Xp(δ (0))κ(0). (6.75)

Proof. For the sake of completeness and the clarity of some ensuing discussions,
we sketch the proof that is already available in the literature. We first use the
continuity of the maps and the compactness of U to assert the existence of a
(small) positive scalar ε such that (6.74) is still satisfied when γ is replaced with
γ − ε and ≺ is changed to �. After a multiplication from the left by κ

T
p =

[
ψ1/2

κ
T ψ1/2vT ψ−1/2(γ− ε)−1zT

]
and from the right by κp, we conclude that

d
dt

(
ψκ(t)T Xp(δ (t))κ(t)

)− (γ− ε)‖v(t)‖2 +(γ− ε)−1‖z(t)‖2 ≤ 0. (6.76)

Multiplying both sides by γ− ε > 0 and integrating from t = 0 to t = τ , we obtain

∫ τ

0
‖z(t)‖2dt ≤ (γ− ε)2

∫ τ

0
‖v(t)‖2dt

+ψ(γ− ε)(κ(0)T Xp(δ (0))κ(0)−κ(τ)T Xp(δ (τ))κ(τ)
)
. (6.77)

Since the negative definiteness of the (1,1) block in (6.74) ensures internal stability,
we have limτ→∞κ(τ) = 0 for any finite energy v(·). We then easily infer (6.73) and
(6.75) for the cases of zero and nonzero initial state vector κ(0), respectively. 
�

As is also the case for various other multi-objective synthesis problems, the
challenge in solving Problem 6.2 is to choose the design ingredients in such a way
that the resulting controller ensures the conditions of Lemma 6.1 as well as those of
Lemma 6.2. Since it is not easy (if not impossible) to obtain the same controller by
using different design elements, we think of constructing Xp by using the design
elements introduced in the partitions of X and X −1 in Subsect. 6.3.3. The next
challenge then becomes the determination of a suitable Yp in such a way that
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a congruence transformation applied to (6.74) with blockdiag(Yp, I, I) renders the
condition affine in all of the design ingredients.

Let us now describe the choices with which we are able to provide solutions to
the multi-objective synthesis problems considered in this chapter. Since the exo-
system is excluded from the closed-loop dynamics in (6.19), we consider removing
the corresponding parts from X and choosing Xp as

Xp =

[
IT
(k+l)×kPI(k+l)×k IT

(k+l)×kU

UT I(k+l)×k UT (P−Q−1)−1U

]

, (6.78)

where I(k+l)×k � [ Ik×k 0k×l ]
T . Note that the presence of ψ in (6.74) eliminates the

need for the introduction of a scalar in the choice of Xp for purposes of reduction of
conservatism. In fact, we have two scalars (φ and ψ) to search over for reducing the
potential conservatism originating from parameter dependence and multi-objective
design constraints. We will be commenting further on their roles in the sequel.
Once the choice of Xp is fixed in this fashion, the challenge is reduced to the
determination of Yp. Note that it is not possible to derive the appropriate choice
in a similar fashion from Y . In fact, the suitable choice turns out to be

Y T
p =

[
Y Ω̂V
Ω̂T −ETWEV

]
. (6.79)

This is a legitimate choice since its inverse exists and is given explicitly by

Y −T
p =

[
0 IT

(k+l)×k

V−1I(k+l)×k UT (P−Q−1)−1

]

. (6.80)

With the choices we have just described, one is able to obtain the following
solution to Problem 6.2:

Theorem 6.2. There is a controller of the form in (6.60) that solves Problem 6.2 if
there exist ρ ,φ ,ψ ∈ R+ and maps as in (6.48) with which (6.49), (6.50) and

⎡

⎢
⎢
⎢
⎢
⎣

Ls(Y,N) ∗ ∗ ∗
K − ∂Ω̂T L m

d (X ,M)+He(ΘE) ∗ ∗
(Bp +BDDcp)

T (XB̃p +MDcp)
T −ψ−1γI ∗

CpY +DpcN CpΩ̂ +Dpc(DĈ+ΨE) Dp +DpcDDcp −ψγI

⎤

⎥
⎥
⎥
⎥
⎦
≺ 0, (6.81)

are satisfied for all δ ∈ U .

Proof. To establish the proof, we only need to show that (6.74) is expressed
equivalently as in (6.81) after a congruence transformation with blockdiag(Yp, I, I).
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For this purpose, we have to express the terms in the transformed matrix inequality
in terms of the design elements introduced in Subsect. 6.3.3. To this end, we first
compute

Y T
p Xp =

[
I 0

PI(k+l)×k U

]
, Y T

p XpYp =

[
Y Ω̂
Ω̂T X

]
. (6.82)

Using these, the transformed differential term is obtained as

Yp
T (∂Xp

)
Yp =

[
∂Y ∂Ω̂
∂ Ω̂T ∂X

]

︸ ︷︷ ︸
∂(Yp

T XpYp)

−He

[
I 0

PI(k+l)×l U

]

︸ ︷︷ ︸
Yp

T Xp

[
∂Y ∂Ω̂

∂ (V T Ω̂T ) −∂ (V T ETW E)

]

︸ ︷︷ ︸
∂Yp

=

[ −∂Y ∗
−∂Ω̂T +

(
(∂X)Q+(∂U)V T

)
Ω̂T ∂X −He

((
(∂X)Q+(∂U)V T

)
ETW E

)
]
.

(6.83)

In order to facilitate the final computations, we first express some transformed
controller parameters introduced in (6.45) more explicitly as

M = XB̂D+UBc, (6.84)

N = CcV
T Ω̂T +DCY, (6.85)

Ψ = −(CcV
T ETW +D(Dm

cr −CΩ)
)
, (6.86)

where D � Dc. To simplify the later expressions with the differential terms, we next
introduce

Ld � L− ((∂X)Q+(∂U)V T )Ω̂T

= XÂQΩ̂T +XB̂N +U
(
AcV

T Ω̂T +BcCY
)
, (6.87)

Θd �Θ +
(
(∂X)Q+(∂U)V T )ETW

= XÂQE
T

W +XB̂Ψ −U
(
AcV

T ETW +Bc (D
m
cr −CΩ)

)
. (6.88)

We can now use the expressions provided so far together with the realization of the
closed-loop dynamics as in (6.19) to derive

Y T
p XpApYp =

[
AY +BN AΩ̂ +B(DcĈ+ΨE)

Ld XÂ+MĈ+ΘdE

]
, (6.89)

BT
p XpYp =

[
(Bp +BDDcp)T (XB̃p +MDcp)T

]
, (6.90)

CpYp =
[

CpY +DpcN CpΩ̂ +Dpc(DĈ+ΨE)
]
. (6.91)
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By combining these expressions and performing some final cancelations, one arrives
at the matrix inequality in (6.81). We also note that Y T

p XpYp 	 0 is not added as
an extra condition since it is already implied by (6.50). 
�

6.4.3 GAR with H ∞ Performance for LTI Systems

The LTI version of the multi-objective synthesis problem that we have formulated
in Subsect. 6.4.1 was considered in [16]. In this section, we obtain the solvability
conditions of [16] by specializing Theorem 6.2 to the case ρ = 0. Recall that, in this
case S has to be set to zero, which forces Ω andΨ to be chosen in a way to satisfy
(6.65) and Θ to be set to zero. It then becomes unnecessary to impose (6.49) since
it is already implied by (6.81). By applying the Schur complement and noting that
φ can be chosen arbitrarily large, we can express (6.50) equivalently as (6.66) and

[
Y Ω̂
Ω̂T X

]
	 0. (6.92)

The solvability of the GAR problem with H∞ performance is hence guaranteed
under (6.65), (6.66), (6.81) with Θ = 0 and (6.92). We can also set ψ = 1 without
introducing any conservatism.

Since the transformed controller matrices appear in a single LMI in the solution
we have just derived, they can be eliminated by a routine application of the
projection theorem [6]. In this fashion, we arrive at the following conditions derived
in [16]:

Theorem 6.3. Problem 6.2 admits a solution in the LTI case if and only if there
exist Y ∈ S

k
+, X ∈ S

k+l
+ , Ω ∈ R

k×l , andΨ ∈ R
n×l that satisfy (6.65), (6.66), (6.92),

and

[
Ns 0
0 I

]T
⎡

⎢
⎣

AY +YAT ∗ ∗
CpY −γI ∗
BT

p DT
p −γI

⎤

⎥
⎦

[
Ns 0
0 I

]
≺ 0, (6.93)

[
Nd 0
0 I

]T
⎡

⎣
XÃ+ ÃT X ∗ ∗

XB̃p −γI ∗
CpΩ̂ +DpcΨE Dp −γI

⎤

⎦
[

Nd 0
0 I

]
≺ 0, (6.94)

where Ns and Nd represent any bases for the null spaces of [BT DT
pc ] and

[
C̃ Dcp

]
,

respectively.

With the design variables that satisfy the conditions expressed in Theorem 6.3,
one can construct Xp as in (6.78) (with preferred U and V ) and then solve (6.74) for
the controller realization matrices (Ac,Bc,Cc,Dc). Alternatively, one can develop
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a procedure for a more explicit construction of the controller realization matrices
along similar lines to [5]. It is also possible to use (6.81) with Θ = 0 (instead of
(6.93), (6.94)) and then synthesize the controller as in (6.60).

6.4.4 Shaping the Transient Behavior with an L 2-Gain
Constraint

It is possible to shape the transient behavior in the generalized asymptotic regulation
problem partially by the help of the L2-gain constraint. To this end, one needs to set
Dp = 0, Dcp = 0 and choose the columns of Bp as the initial plant state vectors of
interest (i.e., x(0)) or simply as the identity matrix. The resulting controller should
be used with zero initial states. When v is a vector signal whose jth element is an
impulse at t = 0 while the other entries are all zero, the closed loop in (6.19) will
generate the same κ(t) as the system in (6.18) with w(0) = 0 and x(0) = B j

p, i.e., the
jth column of Bp. This means that the energy of z can be viewed as an indicator of
the quality of the transient behavior resulting from the initial plant states of interest.
One hence needs to impose the L2-gain constraint with a sufficiently small γ to
(partially) improve the transient behavior. Note, however, that this should be done
without leading to an explosion in the second term in the right-hand side of (6.75).
In order to avoid such an explosion, one might bound the trace of B̃T

p XB̃p = B̃T
p PB̃p

from above by a desirably small scalar. Note that the constraint in (6.72) also serves
the same purpose. Typically, one needs to run several optimizations to decide on the
suitable values of the bounds in the constraints discussed above.

6.5 Robust GAR Under an H 2-Type Constraint

6.5.1 Robust GAR Problem with an H 2-Type Constraint

In this section, we consider a multi-objective GAR problem formulated as follows:

Problem 6.3. Given the plant in (6.1), the exo-system in (6.2) and the uncertainty
regions, synthesize a controller as in (6.17) that ensures (C.1) and (C.2) as well as
the following H2-type constraint:

(C.4) When the initial states are zero, i.e., κ̃(0) = 0, the closed-loop system of
(6.19) satisfies for all admissible parameter trajectories that

p

∑
j=1

∫ ∞

0

∥
∥z j(τ)

∥
∥2

dτ < γ2, (6.95)
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where γ > 0 indicates the performance level and z j represents the perfor-
mance output obtained in response to

v j(t)�
[

0 · · · 0 δD(t) 0 · · · 0
]T

, (6.96)

with the Dirac’s delta function δD(·) being located in the jth position.

6.5.2 Robust GAR with H 2 Performance

We adapt the LMI conditions for H2 performance (in the sense explained above) to
our case as follows:

Lemma 6.3. The closed-loop system in (6.18) satisfies (C.1) and (C.4) with γ =
∑p

j=1σ j , if Dp = 0 and there exist Xp : R → S
2k+l
+ and ψ ∈ R+ that satisfy

[
∂Xp(δ )+He

(
Xp(θ )Ap(δ )

)
Cp(δ )T

Cp(δ ) −ψγI

]

≺ 0, ∀δ ∈ U , (6.97)

[
Xp(θ ) Xp(θ )B j

p(δ )
B j

p(δ )T Xp(θ ) ψ−1σ jI

]

	 0, ∀δ ∈ U ; j = 1, . . . , p, (6.98)

where B j
p represents the jth column of Bp.

Proof. We first briefly note that the internal stability, i.e., (C.1), is ensured by
the negative definiteness of the (1,1) block in the left-hand side of (6.97). When
κ(0) = 0, v = v j and Dp = 0, the dynamics of the closed-loop system in (6.19) can
equivalently be expressed as

κ̇
j = Ap(μ)κ j ,

κ
j(0) = B j

p(δ (0)),

z j = Cp(μ)κ j , (6.99)

where κ
j and z j represent the state and the output vectors obtained in response to

v = v j. Through multiplication from the left by (κ j
p)

T � [ψ1/2(κ j)T ψ−1/2γ−1

(z j)T ] and from the right by κ
j
p, we then infer from condition (6.97) that

d
dt

(
ψκ j(t)T Xp(θ (t))κ j(t)

)
+ γ−1

∥
∥z j(t)

∥
∥2 ≤ 0. (6.100)
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After multiplying both sides with γ , we integrate over time and sum over j to obtain

p

∑
j=1

∫ ∞

0

∥
∥z j(t)

∥
∥2

dt ≤γ
p

∑
j=1

lim
τ→∞

∫ 0

τ

d
dt

(
ψκ j(t)T Xp(θ (t))κ j(t)

)
dt

=ψγ
p

∑
j=1

B j
p(δ (0))

T Xp(θ (0))B j
p(δ (0))

T , (6.101)

where we used κ
j(0) = B j

p(δ (0)) and the fact that limτ→∞κ
j(τ) = 0, which

follows from internal stability. By an application of the Schur-complement lemma,
we next infer from (6.98) that

ψB j
p(δ )

T Xp(θ )B j
p(δ )

T < σ j, ∀δ ∈ U . (6.102)

Using this result in (6.101) and recalling γ = ∑p
j=1σ j, we conclude that (C.6.3) is

satisfied. 
�
A solution can be obtained for Problem 6.3 by applying congruence transfor-

mations to (6.97) and (6.98) via blockdiag(Yp, I). Since the suitable choice for Yp

and the resulting expressions in the transformed conditions are already explained in
Subsect. 6.4.1, we directly provide the resulting solution as follows:

Theorem 6.4. There is a controller of the form in (6.60) that solves Problem 6.3, if
there exist ρ ,φ ,ψ ∈ R+ and maps as in (6.48) with which (6.49), (6.50) and

p

∑
j=1
σ j − γ =0, (6.103)

Dp +DpcDDcp =0, (6.104)
⎡

⎢
⎣

Ls(Y,N) ∗ ∗
K − ∂Ω̂T L m

d (X ,M)+He(ΘE) ∗
CpY +DpcN CpΩ̂ +Dpc(DĈ+ΨE) −ψγI

⎤

⎥
⎦≺0, (6.105)

⎡

⎢
⎣

Y ∗ ∗
Ω̂T X ∗

(B j
p +BDD j

cp)
T (XB̃ j

p +MD j
cp)

T ψ−1σ j

⎤

⎥
⎦	0, j = 1, . . . , p,

(6.106)

are satisfied for all δ ∈ U , where the superscript j is used to represent the jth
column of the relevant matrix.

Proof. The proof consists of expressing the conditions of Lemma 6.3 in terms of
the design variables. This is done simply by using (6.89)–(6.91). 
�
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6.5.3 GAR with H 2 Performance for LTI Systems

A solution was derived by [20] for the solution of the GAR problem with H2

performance in the case of LTI systems (with no uncertainty). In fact, the H2

performance objective was formulated in [20] based on a stochastic interpretation,
which turns out to be somewhat inconvenient to use for LPV systems. The result of
Theorem 6.4 can be specialized to LTI systems as well. For this purpose, we only
need to adapt the lines of reasoning in Subsect. 6.4.3. In this fashion, we obtain the
following LMI conditions that are dual to those derived in [20]:

Theorem 6.5. Problem 6.3 admits a solution in the LTI case with no uncertainty if
and only if there exist Y ∈ S

k
+, X ∈ S

k+l
+ ,Ω ∈R

k×l , andΨ ∈R
n×l that satisfy (6.65),

(6.66), (6.103), (6.104), (6.105), and (6.106) withΘ = 0 and ψ = 1.

A controller that solves the GAR problem with H2 performance can then be
constructed again as in (6.60). It is also possible to derive conditions in which
part of the transformed controller parameters are eliminated. For instance, K and
N can be eliminated from (6.105). This might be useful especially for performance
analysis, since it will basically complicate the construction of the controller. The
dual LMI conditions (6.5) were also discussed in [20], especially in the context of
GAR problem with suboptimal transient response. We establish further links to [20]
in the following discussion on how to shape the transient response by an H2-type
constraint.

6.5.4 Shaping the Transient Behavior with an H 2-Type
Constraint

We have already discussed in Subsect. 6.4.4 how the performance channel matrices
can be chosen to (partially) shape the transient behavior. In fact, an H2-type
performance is more suitable for shaping the transient response. This is due to
the fact that the effect of nonzero initial conditions can be expressed equivalently
with impulsive disturbance inputs. In this context, we recall from Subsect. 6.4.4 that
when the performance channel matrices are chosen as

Dp = 0, Dcp = 0, Bp =
[

x1
0 · · · xp

0

]
, (6.107)

the closed loop in (6.19) with v = v j (see (6.96)) will generate the same κ(t) as the
system in (6.18) with w(0) = 0 and x(0) = x j

0. Hence, by imposing (C.4), we can
ensure that the total energy of the performance output z resulting from the different
initial conditions of interest is desirably small.

The particular choices of the performance channel matrices in (6.107) facilitate
some simplification in the conditions of (6.106). In order to derive a new condition in
the same vein as [20], we first take the Schur complement with respect to the (2, 2)
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block and thus rewrite (6.106) with the performance channel matrices of (6.107)
equivalently as

[
Y − Ω̂X−1Ω̂T B j

p − Ω̂ B̃ j
p

(B j
p − Ω̂ B̃ j

p)
T ψ−1σ j − (B̃ j

p)
T XB̃ j

p

]

	 0. (6.108)

Recalling the expressions of B̃p and Ω̂ , respectively, from (6.5) and (6.43), we
observe that Ω̂ B̃ j

p = B j
p. Since the cross-diagonal terms are zero, this condition

reduces to the positive definiteness of the diagonal blocks. The positive definiteness
of the (1, 1) block in (6.108) can be expressed equivalently as in (6.92) since X 	 0.
We next combine the positive definiteness of the (2, 2) block for j = 1, . . . , p together
with (6.103) to obtain an equivalent trace condition as

trace B̃T
p XB̃p < ψ−1γ. (6.109)

Since the equality constraint in (6.104) is automatically satisfied with the perfor-
mance channel matrices in (6.107), we obtain the conditions to impose for shaping
the transient behavior as (6.92), (6.105), and (6.109).

When we specialize the above derivation to the case of LTI systems with no
uncertainty, we basically obtain the LMI conditions derived in [20] for the GAR
problem with suboptimal transient response. Nevertheless, the particular line of
derivation employed in [20] facilitates a problem formulation in which w(0) need
not be zero. As a result of this, the trace condition in (6.109) is expressed with
B̃p → B̃i, where Bi is an initial condition matrix of the form (6.70).

It is also interesting to note the resemblance of the trace condition in (6.109)
to the one in (6.72), which was introduced for shaping the transient behavior as
well. There are, however, several differences between the two conditions, which
are essentially the results of different problem formulations. We emphasize that, in
both cases, the resulting LMI conditions facilitate a partial shaping of the transient
behavior.

6.6 Illustrative Example

In this section, we consider a plant with a state-space description as

⎡

⎣
ẋ1

ẋ2

ẋ3

⎤

⎦=

⎡

⎣
−ω2 0 0

−ω1kvr −ω1 0
0 1 0

⎤

⎦

⎡

⎣
x1

x2

x3

⎤

⎦+

⎡

⎣
0
ω1

0

⎤

⎦d +

⎡

⎣
0
ω0

1
0

⎤

⎦v+

⎡

⎣
ω2kdv

ω1kdr

0

⎤

⎦u.

(6.110)

This is a slightly modified expression of the course dynamics adapted from [25]
and considered before by [21,22]. The states are identified as follows: x1 is the sway
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velocity (in m/s), x3 is the yaw angle (in degrees) and x2 is its rate. The control
problem is to adjust the rudder deflection u (in degrees), so that the yaw angle
y = e = x3 follows zero reference as good as possible in the face of a sinusoidal
wave disturbance d and a finite-energy disturbance v. The dynamics depend on the
velocity of the ship

Vs(t) =V0 (1+θm(t)) ; θm(t) ∈ [−θm
max,θ

m
max] , (6.111)

through the velocity-dependent system parameters

kvr =−0.46, kdr = 0.0027Vs, kdv = 0.01Vs,ω1 = 0.0769Vs, ω2 = 0.0128Vs.

(6.112)

For the sake of simplicity in the design phase, we used a constant term ω0
1 =

0.0769V0 in the input matrix associated with the disturbance v. The sinusoidal wave
disturbance has an uncertain frequency expressed as

ωw = ω0
w (1+θ u(t)) ; θ u(t) ∈ [−θ u

max,θ
u
max] . (6.113)

Due to the velocity of the ship, such a disturbance effects the ship with a frequency
shifted as

ϖ = ωw − g−1ω2
w cosχsVs, (6.114)

where g is the gravitational constant and χs is the angle between the heading and the
direction of the wave. The sinusoidal wave disturbance d = w2 is hence generated
by (6.15) with ϖ given as in (6.114). The acceleration of the ship is assumed to be
bounded according to θ̇m(t) ∈ [−νm

max,νm
max], while no bound is assumed for θ̇ u(t).

We performed three different designs in MATLAB� for a system with

ωw=1rad/s, χs=45◦, V0=10m/s, θm
max = 0.2, νm

max = 0.01πθm
max, θ

u
max = 0.2.

The performance output is formed as z= [x3 λu ]T with λ = 10−5. The feed-through
terms of the controllers are all set to zero. The design variables are chosen to have
affine dependence on θm, except for K andΘ , which are chosen to depend on (θm)2

and (θm)3 as well. We briefly note that the parameter-dependent LMIs are relaxed
based on the partial convexity approach [7] and refer the reader to [21] for the
relevant details. The LMI problems are coded by using the Yalmip [24] interface and
the optimizations are performed with the SDP solver SeDuMi [31]. All of the three
controllers are designed withΦ = I and κ = 0.003. This value of κ is observed to be
feasible (with φ = κ) for ρ = 0.125, which is also kept the same in all the designs.
The first controller is designed to shape the transient behavior of z, in the way
described in [21]. On the other hand, the second and third controllers are designed to
achieve, respectively, the L2-gain and H2-type performance objectives described in
Sects. 6.4 and 6.5. The minimum γ levels are found in these designs by a search over
ψ ∈ [0.01,100] as γ = 0.0015 for Σ2

c (with ψ = 2.9151) and γ = 0.0073 for Σ3
c (with
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Fig. 6.1 Illustrative designs for course control

ψ = 0.0443). After this step, the controllers are designed by setting γ to 1.1 times
its optimum value (for a fixed ψ) and by then minimizing the maximum eigenvalue
of X (as motivated for the shaping of the transient response). In all the designs,
some frozen-parameter pole-placement constraints are also imposed to avoid large
simulation times. We should note that this typically leads to some increase in the
minimum performance levels.

The simulation results obtained for the initial state vector x̃(0) = [0 0 0 1 0 ]T

and a sinusoidal θm trajectory θm(t) = −θm
max cos(νm

maxt/θm
max) are presented in

Fig. 6.1. Note from the top plot that the unmeasurable parameter increases linearly
with time from −0.2 to 0.2 during [0,50] and [50,100], with a jump from maximum
to minimum value at t = 50. In the remaining time interval, it exhibits switches
between −0.2 and 0.2 once in every 50 s. The shape of the sinusoidal signal is
deformed especially due to the jumps of the unmeasurable parameter. The finite
energy disturbance is formed by short pulses of duration 1–2 s that occur once in
50 s as well. The timing of the pulses are chosen to coincide with the switches in θ u.
This is done to observe the response of the system to the combined challenges of the
unmeasurable parameter and the finite-energy disturbance. As can be observed from
the middle plot, the multi-objective designs Σ2

c and Σ3
c lead to better disturbance

attenuation than Σ1
c , especially within the time range [50, 150]. We could verify

this better by zooming in the plot around the instants of impulsive disturbances. In
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fact, the performance of Σ3
c is also quite acceptable. This is not too surprising since

it is designed to shape the transient behavior in a desirable way. The disturbance
attenuation performances of Σ2

c and Σ3
c are very similar to each other. The control

inputs generated by the three different controllers are not distinguishable within the
scale of the bottom plot in the figure. Looking closely, we noticed slight differences
around the instants at which the impulsive disturbances occur. This shows that the
disturbance attenuation performance can be improved by slightly different control
inputs. We should also note from the bottom plot that the rudder deflection reaches
its natural limit during the start-up period. In fact, practical saturation limits are
much smaller and pose a serious challenge for all of the designs, as we encountered
in our simulation exercises.

6.7 Concluding Remarks

The generalized asymptotic regulation problem is a particular version of the peak-
to-peak gain minimization, since the disturbances are restricted to be generated
by known exo-systems. We have provided LMI solutions to the basic as well as
multi-objective versions of this problem in a parameter-dependent setting. A key
feature of the solutions is that they are applicable when the exo-system depends
on unmeasurable parameters as well. For potential reduction of conservatism, one
needs to perform searches over various scalars. It would be quite convenient to
eliminate—at least—the search over the decay rate ρ in the LMIs for GAR. The
problem becomes quite challenging when there are saturation constraints on the
control inputs. Integration of LPV designs with a parameter estimation scheme is
another interesting research direction in robust and adaptive control. This seems to
be challenging for general LPV synthesis problems, but might be promising for the
GAR problem with an LTI plant and an LPV exo-system.
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Chapter 7
Robust Stabilization and Disturbance
Attenuation of Switched Linear
Parameter-Varying Systems in Discrete Time

Ji-Woong Lee and Geir E. Dullerud

Abstract Nonconservative analysis of discrete-time switched linear parameter-
varying systems is achieved via switching path-dependent Lyapunov and Kalman–
Yakubovich–Popov inequalities. Exact convex conditions for the synthesis of a
class of state-feedback controllers are then expressed in terms of nested unions of
linear matrix inequalities. The resulting controllers are robust in the sense that their
coefficients depend solely on a finite number of the most recent past modes and
parameters, but not on the current mode or parameter.

7.1 Introduction

A linear parameter-varying (LPV) system is defined by a parameterized collection
of linear state-space models and a set of admissible parameter trajectories [1,2,13].
An LPV system typically arises from the abstraction of a nonlinear model, where the
precise nonlinear dependence on trajectories is replaced by a covering abstraction
given in terms of varying parameters. The attraction with such abstracted models is
that they can be significantly simpler to analyze, while at the same time—because
they admit more behaviors than the original nonlinear system—can be used to infer
guaranteed properties about the original system. Counterbalancing this potential
ease of analysis is that, if the abstraction is too coarse or conservative, it may not be
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possible to prove anything about the abstracted model even though the nonlinear
system on which it is based has all the properties sought. In particular, such
conservatism can occur in the situation where the underlying nonlinear dynamics are
operating about several different equilibrium points. Although frequently possible
to use a pure LPV model to abstract the nonlinear dynamics in this scenario, there
is potentially much to gain in terms of reducing conservatism of the abstraction by
explicitly modeling the logical switches between equilibrium points. This motivates
the class of switched LPV systems considered in this chapter.

Further motivating the switched LPV class, even when simply operating around
a single equilibrium point, is the situation where a nonlinear system to be analyzed
exhibits multiple modes of operation due to jumps in the dynamics; in this case, it
is natural to abstract the system by multiple LPV models and a switching logic
between them, so that a switch from one LPV model to another corresponds
to a jump from one nonlinear dynamical equation to another. Whenever such
a switched LPV abstraction of a nonlinear system satisfies certain stability and
performance specifications over all admissible parameter trajectories and mode
switching sequences, the original nonlinear system is expected to satisfy the
same stability and performance requirements. For these reasons, switched LPV
approaches have found applications to a variety of nonlinear analysis and control
problems such as gain-scheduled missile autopilot [10], active magnetic bearing
system design [11], high-performance aircraft control [12], and multi-objective
control of a wind turbine [9].

In this chapter, we focus on discrete-time switched LPV systems, where each
LPV model is associated with a parameter polytope. Such systems have already
been considered in the literature in the context of stabilization, H∞-type disturbance
attenuation, and model reduction [14, 15]. However, these results are based on a
conservative analysis of stability and disturbance attenuation properties. Thus, our
first objective is to present a nonconservative, convex analysis of these properties
by extending the existing nonconservative analysis results for LPV systems [6]
and switched linear systems [7, 8] to switched LPV systems. The resulting analysis
conditions are expressed in terms of an increasing union of Lyapunov inequalities
(for stability) and Kalman–Yakubovich–Popov inequalities (for disturbance attenu-
ation performance) indexed by the number of most recent past system modes and
parameters that the associated quadratic Lyapunov function depends on.

Our next objective is to use these analysis conditions to obtain nonconservative,
convex synthesis conditions for a certain type of robust state-feedback controllers
that guarantee stability and disturbance attenuation bounds. These controllers are
robust in the sense that they do not depend on the current system mode or parameter
value. However, we assume that the system mode and parameter become available
to the controller with a unit delay, and that the state-feedback gain matrix is
parameterized by a finite number of past modes and parameters. Our synthesis
conditions thus complement existing results, which are limited to controllers that
do not recall past modes or parameters.

The organization of the chapter is as follows. In Sects. 7.2 and 7.3, we present
stability analysis and robust stabilization results. Then these results are generalized
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to disturbance attenuation problems in Sects. 7.4 and 7.5. The analysis and synthesis
results are illustrated and compared with existing results via numerical examples in
Sect. 7.6. Then a concluding remark is made in Sect. 7.7.

Notation

Denoted by R, N, and N0 are the spaces of real numbers, positive integers, and
nonnegative integers, respectively. For x ∈ R

n, denoted by ‖x‖ is the Euclidean

norm of x defined by ‖x‖= (xTx
)1/2

. For X ∈ R
n×n, we write X > 0 (resp. X < 0)

to indicate that X is symmetric and positive definite (resp. negative definite). The
identity matrix (resp. zero matrix) is denoted by I (resp. 0) with its dimension
understood.

7.2 Stability

Let N, M1, . . . ,MN ∈N be given. Let

Θ ⊂ {1, . . . ,N}∞

be a nonempty set of infinite sequences in {1, . . . ,N}. For each i ∈ {1, . . . ,N} let Λi

be the set of all probability distributions on {1, . . . ,Mi}; namely,

Λi =

{

λ =
(

λ (1), . . . ,λ (Mi)
)
∈ R

Mi : λ (1), . . . ,λ (Mi) ≥ 0 and
Mi

∑
j=1

λ ( j) = 1

}

.

Then, for each θ = (θ (0),θ (1), . . .) ∈Θ , define

Λ θ = Λθ(0)×Λθ(1)×·· ·= {(σ(0),σ(1), . . .) : σ(t) ∈ Λθ(t) for all t ∈ N0
}
,

so that Λ θ is the space of all infinite sequences (σ(0),σ(1), . . .), where σ(t) is a
probability distribution on {1, . . . ,Mθ(t)} for each t ∈ N0.

Let n ∈ N and Ai j ∈ R
n×n be given for i = 1, . . . , N and j = 1, . . . ,Mi. Write

Aiλ =
Mi

∑
j=1

λ ( j)Ai j

for i ∈ {1, . . . ,N} and λ =
(

λ (1), . . . ,λ (Mi)
)
∈ Λi. Then the polytope (i.e., bounded

polyhedron) defined by

Ai = {Aiλ : λ ∈ Λi} ⊂ R
n×n
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is the convex hull of matrices Ai1, . . . , AiMi for each i = 1, . . . , N. With

A = {A1, . . . ,AN},

the pair (A ,Θ) defines the discrete-time switched polytopic linear parameter-
varying (or switched LPV) system, whose state-space description takes the form

x(t + 1) = Aθ(t)σ(t)x(t), t ∈N0, (7.1)

for mode sequences θ = (θ (0),θ (1), . . .) ∈ Θ and parameter sequences σ =
(σ(0),σ(1), . . .) ∈Λ θ . In the special case of N = 1 (i.e., single mode), the switched
LPV system reduces to an LPV system A1, where the time-varying parameter σ(t)
determines the state matrix A1σ(t) for (7.1) from a polytope of matrices (i.e., the
convex hull of A11, . . . ,A1M1 ). On the other hand, in the spacial case of M1 =
· · · = MN = 1, the switched LPV system (A ,Θ) reverts to the switched linear
system ({A11, . . . ,AN1},Θ), where the time-varying mode θ (t) determines the state
matrix Aθ(t)1 for (7.1) from a finite set of matrices.

Our stability requirement for the switched LPV system is that the state x(t) of
the state-space model (7.1) converges to the origin with a single exponential decay
rate uniformly in time and also uniformly over mode sequences and parameter
sequences.

Definition 7.1. The switched LPV system (A ,Θ) is said to be uniformly exponen-
tially stable if there exist c ≥ 1 and λ ∈ (0,1) such that the state-space model (7.1)
satisfies

‖x(t)‖ ≤ cλ t−t0‖x(t0)‖ (7.2)

for all t, t0 ∈N0 with t ≥ t0, for all x(t0) ∈ R
n, for all θ ∈Θ , and for all σ ∈ Λ θ .

The stability of the switched LPV system (A ,Θ) is closely related to that of an
associated switched linear system. Let

Â = {A11, . . . ,A1M1 , . . . ,AN1, . . . ,ANMN }.

An infinite sequence of (pairs of) indices (i0 j0, i1 j1, . . .) is a switching sequence
for Â if it ∈ {1, . . . ,N} and jt ∈ {1, . . . ,Mit} for all t ∈ N0. Let Θ̂ be the set of all
switching sequences for Â restricted to the mode sequences in Θ ; that is,

Θ̂ =
{
(i0 j0, i1 j1, . . .) : (i0, i1, . . .) ∈Θ , jt = 1, . . . ,Mit , t ∈ N0

}
.

Then the pair
(
Â ,Θ̂

)
defines the discrete-time switched linear system whose

state-space description is given by (7.1) for switching sequences (θ ,σ) =

(θ (0)σ(0),θ (1)σ(1), . . .) ∈ Θ̂ . The stability requirement for this switched linear
system is consistent with that for the linear LPV system.
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Definition 7.2. The switched linear system
(
Â ,Θ̂

)
is said to be uniformly ex-

ponentially stable if there exist c ≥ 1 and λ ∈ (0,1) such that the state-space
model (7.1) satisfies (7.2) for all t, t0 ∈ N0 with t ≥ t0, for all x(t0) ∈ R

n, and for all
(θ ,σ) ∈ Θ̂ .

To simplify notation, set θ (t) = 0 and σ(t) = 1 (i.e., Λ0 = {1}) for t < 0

whenever θ ∈ Θ and σ ∈ Λ θ . Define LM(Θ)
(

resp. LM

(
Θ̂
))

as the set of all

switching paths of length M ∈ N0 that appear in at least one of the mode sequences

in Θ
(

resp. switching sequences in Θ̂
)

:

LM (Θ) =
{
(θ (t −M), . . . ,θ (t)) : θ ∈Θ , t ∈ N0

}
, (7.3a)

LM

(
Θ̂
)
=
{(

θ̂ (t −M), . . . , θ̂ (t)
)

: θ̂ ∈ Θ̂ , t ∈N0

}
. (7.3b)

Then let NM(Θ) be the largest subset of LM(Θ) satisfying the following: For
each (i0, . . . , iM) ∈ NM(Θ), there exist K ∈ N with K > M and (iM+1, . . . , iK)
such that (iK−M, . . . , iK) = (i0, . . . , iM) and (ik, . . . , ik+M) ∈ NM(Θ) for 0 ≤ k ≤
K − M. Similarly, let NM

(
Θ̂
)

be the largest subset of LM

(
Θ̂
)

satisfying the

following: For each (i0 j0, . . . , iM jM) ∈ NM

(
Θ̂
)

, there exist K ∈ N with K > M

and (iM+1 jM+1, . . . , iK jK) such that (iK−M jK−M, . . . , iK jK) = (i0 j0, . . . , iM jM) and

(ik jk, . . . , ik+M jk+M) ∈ NM

(
Θ̂
)

for 0 ≤ k ≤ K −M.

We will use the convention that (ik, . . . , il)= 0(resp. (ik jk, . . . , il jl) = 01) if k > l;
otherwise, (ik, . . . , il)(resp. (ik jk, . . . , il jl)) is a switching path of length l − k. The
following theorem gives an exact convex condition for the stability of switched LPV
systems in terms of linear matrix inequalities.

Theorem 7.1. The following are equivalent:

(a) The switched LPV system (A ,Θ) is uniformly exponentially stable.

(b) The switched linear system
(
Â ,Θ̂

)
is uniformly exponentially stable.

(c) There exist a path length M ∈ N0 and an indexed (finite) family of matrices
Y(i1 j1,...,iM jM) ∈R

n×n such that

Y(i0 j0,...,iM−1 jM−1) > 0, (7.4a)

AiM jM Y(i0 j0,...,iM−1 jM−1)A
T
iM jM −Y(i1 j1,...,iM jM) < 0 (7.4b)

for all (i0 j0, . . . , iM jM) ∈ NM

(
Θ̂
)

.

(d) There exist a path length M ∈ N0, real numbers α , β > 0, and an indexed
(uncountably infinite) family of matrices Y(i1λ1,...,iMλM) ∈ R

n×n such that

αI ≤ Y(i0λ0,...,iM−1λM−1) ≤ β I, (7.5a)

AiMλM
Y(i0λ0,...,iM−1λM−1)A

T
iMλM

−Y(i1λ1,...,iMλM) ≤−αI (7.5b)

for all (i0, . . . , iM) ∈ NM(Θ) and for all (λ0, . . . ,λM) ∈ Λi0 ×·· ·×ΛiM .



162 J.-W. Lee and G.E. Dullerud

Moreover, if (c) holds with M ∈ N, then (d) is satisfied with

Y(i0λ0,...,iM−1λM−1) =

Mi0

∑
j0=1

· · ·
MiM−1

∑
jM−1=1

λ ( j0)
0 · · ·λ ( jM−1)

M−1 Y(i0 j0,...,iM−1 jM−1), (7.6a)

Y(i1λ1,...,iMλM) =

Mi1

∑
j1=1

· · ·
MiM

∑
jM=1

λ ( j1)
1 · · ·λ ( jM)

M Y(i1 j1,...,iM jM) (7.6b)

for (λ0, . . . ,λM)∈Λi0 ×·· ·×ΛiM , where λk =
(

λ (1)
k , . . . ,λ

(Mik
)

k

)
, k = 0, . . . ,M. If (c)

holds with M = 0, then (d) is satisfied with

Y(i0λ0,...,iM−1λM−1) = Y(i1λ1,...,iMλM) = Y01.

Proof. The proof extends that of [6, Theorem 1]. We will show that (a) ⇒ (b) ⇒
(c) ⇒ (a); the equivalence (c) ⇔ (d) will follow as a by-product. It is clear that (a)
implies (b). Due to [7, Corollary 3.4], condition (b) implies the existence of an
M ∈N0 and matrices X(i1 j1,...,iM jM) > 0 such that

AT
iM jM X(i1 j1,...,iM jM)AiM jM −X(i0 j0,...,iM−1 jM−1) < 0

for all (i0 j0, . . . , iM jM) ∈ NM

(
Θ̂
)

. The Schur complement formula, along with

Y(i1 j1,...,iM jM) = X−1
(i1 j1,...,iM jM),

then yields (c).
Suppose (c) holds true, so that (7.4) is satisfied for all (i0 j0, . . . , iM jM) ∈

NM

(
Θ̂
)

. Similarly to the proof of [7, Corollary 3.4], run the following algorithm

to enlarge the set NM

(
Θ̂
)

to LM

(
Θ̂
)

:

Step 0. Set L = NM

(
Θ̂
)

.

Step 1. If L = LM

(
Θ̂
)

, then stop; otherwise, choose a switching path (i0 j0,

. . . , iM jM) ∈ LM

(
Θ̂
)∖

L such that (i1 j1, . . . , iM+1 jM+1) ∈ L for some

iM+1 ∈ {1, . . . , N} and jM+1 ∈ {1, . . . ,MiM+1}.
Step 2. If

(
i0 j0, . . . , iM−1 jM−1, k̂Ml̂M

)
/∈ L for any k̂M ∈ {1, . . . , M} and l̂M ∈{

1, . . . , Mk̂M

}
, then choose a Y > 0 such that

AiM jM YAT
iM jM −Y(i1 j1,...,iM jM) < 0,

put Y(i0 j0,...,iM−1 jM−1) = Y, and go to Step 4.
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Step 3. Choose an ε > 0 such that

εAiM jM Y(i0 j0,...,iM−1 jM−1)A
T
iM jM −Y(i1 j1,...,iM jM) < 0

and substitute Y(i0 j0,...,iM−1 jM−1) with εY(i0 j0,...,iM−1 jM−1). Whenever there
exist K ∈ N and (i−K j−K , . . . , i−1 j−1) such that (ik−K jk−K , . . . ,
ik−K+M jk−K+M) ∈ L for all k = 0, . . . , K, then scale Y(ik−K jk−K ,...,

ik−K+M jk−K+M) with the same scaling factor ε for all k = 0, . . . , K as well.
Step 4. Substitute L with L ∪{(i0 j0, . . . , iM jM)} and go to Step 1.

By the definition of NM

(
Θ̂
)

, each step of this algorithm (including Step 3) is well

defined. Moreover, the algorithm produces an extended set of matrices Y(i1 j1,...,iM jM)

such that (7.4) holds for all (i0 j0, . . . , iM jM)∈LM

(
Θ̂
)

. Assume M ∈N without loss

of generality. Since LM

(
Θ̂
)

is a finite set, there exist α , β > 0 such that

αI ≤ Y(i0 j0,...,iM−1 jM−1) ≤ β I (7.7a)

and
AiM jM Y(i0 j0,...,iM−1 jM−1)A

T
iM jM −Y(i1 j1,...,iM jM) <−αI

for all (i0 j0, . . . , iM jM) ∈ LM

(
Θ̂
)

. Applying the Schur compliment formula to the

last inequality yields
[

αI−Y(i1 j1,...,iM jM) AiM jM Y(i0 j0,...,iM−1 jM−1)

∗ −Y(i0 j0,...,iM−1 jM−1)

]

< 0. (7.7b)

Given (i0, . . . , iM) ∈ LM(Θ), choose (λ0, . . . ,λM) ∈ Λi0 × ·· · × ΛiM with λk =(
λ (1)

k , . . . ,λ (Mit )

k

)
for k = 0, . . . ,M, where Λ0 = {1}. Define Y(i0λ0,...,iM−1λM−1) and

Y(i1λ1,...,iMλM) as in (7.6). Taking the weighted sum of (7.7) with weights given by
(λ0, . . . ,λM) then yields (7.5a) and

[
αI−Y(i1λ1,...,iMλM) AiMλM

Y(i0λ0,...,iM−1λM−1)

∗ −Y(i0λ0,...,iM−1λM−1)

]

< 0.

Taking the Schur complement of −Y(i0λ0,...,iM−1λM−1) from this inequality, we
obtain (7.5b). This shows that, if (c) holds, then (7.5) is satisfied for all (i0, . . . , iM)∈
LM(Θ) and (λ0, . . . ,λM)∈Λi0 ×·· ·×ΛiM . Because this implies (d) and because (c)
is a special case of (d), it is immediate that (c) and (d) are equivalent.

To complete the proof, we will show (a) holds true given that (7.5) is satisfied
for all (i0, . . . , iM) ∈ LM(Θ) and (λ0, . . . ,λM) ∈ Λi0 × ·· · ×ΛiM . Choose a mode
sequence θ ∈Θ and a parameter sequence σ ∈ Λ θ . Put

A(t) = Aθ(t)σ(t),

Y(t) = Y(θ(t−M)σ(t−M),...,θ(t−1)σ(t−1))
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for all t ∈ N0, so that

αI ≤ Y(t)≤ β I,

A(t)Y(t)A(t)T −Y(t + 1)≤−αI

for all t ∈ N0. If we put X(t) = Y(t)−1, then there exists an η > 0, independent of
θ and σ , such that

β−1I ≤ X(t)≤ α−1I,

A(t)TX(t + 1)A(t)−X(t)≤−ηI

for all t ∈ N0. Thus, by specializing [5, Corollary 12] to pure stability analysis,
we deduce that there exist c ≥ 1 and λ ∈ (0,1) such that the linear time-varying
system (7.1) satisfies (7.2) for all t, t0 ∈N0 with t ≥ t0. Since θ ∈Θ and σ ∈Λ θ are
arbitrary, and since the constants c and λ can be determined solely from α−1, β−1,
and η (see, e.g., [8, Lemma 4]), we conclude that (a) holds true. ��

According to Theorem 7.1, only the mode switching paths in NM(Θ) are relevant
to stability. This is because the switching paths outside NM(Θ) cannot appear more
than once in any mode sequence in Θ , and because the number of such switching
paths is finite for each path length M.

Although there is no upper bound on the path length M that is required for
our stability test, it is usually the case in practice that one only needs to try the
first few path lengths M. This agrees with the fact that the common Lyapunov
function approach (i.e., the case of M = 0) and the multiple Lyapunov function
approaches (i.e., versions of the case of M = 1) have been very useful in practice.
What Theorem 7.1 gives us is the option to go beyond M = 0 and M = 1 if we are
willing and able to pay additional computational cost in return for potentially better
stability analysis.

7.3 Stabilization

Let m, n ∈ N, Ai j ∈ R
n×n, and Bi j ∈ R

n×m be given for i = 1, . . . , N and j =
1, . . . , Mi. Write

Aiλ =
Mi

∑
j=1

λ ( j)Ai j and Biλ =
Mi

∑
j=1

λ ( j)Bi j

whenever i ∈ {1, . . . ,N} and λ =
(

λ (1), . . . ,λ (Mi)
)
∈ Λi. The polytopes defined by

Ai = {Aiλ : λ ∈ Λi} ⊂ R
n×n,

Bi = {Biλ : λ ∈ Λi} ⊂ R
n×m
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are the convex hulls of Ai1, . . . , AiMi and Bi1, . . . , BiMi , respectively, for each i =
1, . . . , N. As in the previous section, let Θ ⊂{1, . . . ,N}∞ be a nonempty set of mode
sequences. Then, with

G = {(A1,B1), . . . ,(AN ,BN)},

the pair (G ,Θ) defines the controlled version of the discrete-time switched LPV
system described by

x(t + 1) = Aθ(t)σ(t)x(t)+Bθ(t)σ(t)u(t), t ∈ N0, (7.8)

for mode sequences θ ∈ Θ , parameter sequences σ ∈ Λθ , and control sequences
u = (u(0),u(1), . . .).

We will consider all linear state-feedback controllers that generate the control
input u(t) at each time t ∈ N0 based on a finite number L ∈ N0 of past mode
sequences θ (t − L), . . . , θ (t − 1) and parameter sequences σ(t − L), . . . , σ(t − 1)
as well as the perfectly observed current state x(t). As in the previous section, let
θ (t) = 0 and σ(t) = 1 for t < 0 whenever θ ∈Θ and σ ∈ Λθ . Also, write

(θσ)L(t) = (θ (t −L)σ(t −L), . . . ,θ (t)σ(t)),

(θσ)L(t)− = (θ (t −L)σ(t −L), . . . ,θ (t − 1)σ(t − 1)),

(θσ)L(t)+ = (θ (t −L+ 1)σ(t −L+ 1), . . . ,θ (t)σ(t))

for L, t ∈ N0, θ ∈Θ , and σ ∈ Λ θ . For a fixed path length L ∈N0, let Λ0 = {1} and

K = {K(i1λ1,...,iLλL) : λk ∈ Λik , ik = 0,1, . . . ,N, k = 1, . . . ,L} ⊂ R
m×n

if L > 0, and let K = {K01} ⊂ R
m×n be a singleton if L = 0. Then K defines a

robust L-path-dependent state-feedback controller described by

u(t) = K(θσ)L(t)−x(t), t ∈ N0, (7.9)

if L > 0, and u(t) = K01x(t), t ∈N0, if L = 0. For example, if L = 2, then

u(0) = K(01,01)x(0),

u(1) = K(01,θ(0)σ(0))x(1),

and
u(t) = K(θ(t−2)σ(t−2),θ(t−1)σ(t−1))x(t)

for t ≥ 2. Clearly, the case of L = 0 corresponds to the robust state-feedback
controller in the usual sense; if L > 0, on the other hand, the controller perfectly
observes the mode and parameter sequences with a unit delay (or less) and performs
gain scheduling based on the most recent past L modes and parameters.
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The feedback interconnection of the controlled system (G ,Θ), described
by (7.8), and a robust path-dependent controller K , described by (7.9), gives
rise to a closed-loop system whose state evolves according to

x(t + 1) =
(
Aθ(t)σ(t) +Bθ(t)σ(t)K(θσ)L(t)−

)
x(t), t ∈ N0. (7.10)

We now present an exact convex condition for the existence of a stabilizing robust
path-dependent controller, and a synthesis procedure guaranteed to yield such a
controller, if it exists.

Definition 7.3. The switched LPV system (G ,Θ) is said to be uniformly ex-
ponentially stabilizable if there exist c ≥ 1, λ ∈ (0,1), L ∈ N0, and a robust
L-path-dependent state-feedback controller such that the closed-loop state-space
model (7.10) satisfies (7.2) for all t, t0 ∈ N0 with t ≥ t0, for all x(t0) ∈ R

n, for all
θ ∈Θ , and for all σ ∈ Λ θ .

Theorem 7.2. The switched LPV system (G ,Θ) is uniformly exponentially stabiliz-
able if and only if there exist a path length M ∈ N0 and indexed (finite) families of
matrices W(i1 j1,...,iM jM) ∈ R

m×n and Y(i1 j1,...,iM jM) ∈ R
n×n such that

[
−Y(i1 j1,...,iM jM) AiM jM Y(i0 j0,...,iM−1 jM−1) +BiM jM W(i0 j0,...,iM−1 jM−1)

∗ −Y(i0 j0,...,iM−1 jM−1)

]

< 0

(7.11)

for all (i0 j0, . . . , iM jM) ∈ NM

(
Θ̂
)

. Moreover, if (7.11) holds with M ∈ N, then a

robust M-path-dependent state-feedback controller K that uniformly exponentially
stabilizes the system (G ,Θ) is given by

K(i0λ0,...,iM−1λM−1) = W(i0λ0,...,iM−1λM−1)Y
−1
(i0λ0,...,iM−1λM−1)

(7.12a)

for all (i0, . . . , iM) ∈ NM(Θ) and for all (λ0, . . . ,λM) ∈ Λi0 ×·· ·×ΛiM , where

Y(i0λ0,...,iM−1λM−1) =

Mi0

∑
j0=1

· · ·
MiM−1

∑
jM−1=1

λ ( j0)
0 · · ·λ ( jM−1)

M−1 Y(i0 j0,...,iM−1 jM−1), (7.12b)

W(i0λ0,...,iM−1λM−1) =

Mi0

∑
j0=1

· · ·
MiM−1

∑
jM−1=1

λ ( j0)
0 · · ·λ ( jM−1)

M−1 W(i0 j0,...,iM−1 jM−1) (7.12c)

for (λ0, . . . ,λM−1)∈Λi0 ×·· ·×ΛiM−1 with λk =
(

λ (1)
k , . . . ,λ

(Mik
)

k

)
, k = 0, . . . ,M−1.

If (7.11) holds with M = 0, then a robust uniformly exponentially stabilizing state-
feedback controller K is given by

K01 = W01Y−1
01 .
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Proof. The proof is an extension of [6, Theorem 2]. Suppose that the closed-loop
system with a robust L-path-dependent controller K is uniformly exponentially
stable. Then there exist c ≥ 1 and λ ∈ (0,1) such that (7.2) holds for all t, t0 ∈ N0

with t ≥ t0, for all x(t0) ∈R
n, for all θ ∈Θ , and for all σ ∈ Λ θ . Following the proof

of [8, Lemma 4(a)], it is readily seen that there exists an M ≥ L, constants α , β > 0
(which depend solely on c and λ ), and matrices Y(i1 j1,...,iM jM) > 0 such that

αI ≤ Y(θσ)M(t)− ≤ β I,

Â(θσ)L(t)Y(θσ)M(t)−ÂT
(θσ)L(t)

−Y(θσ)M(t)+ <−αI

for all t ∈ N0, θ ∈Θ , and σ ∈ Λ θ , where

Â(θσ)L(t) = Aθ(t)σ(t) +Bθ(t)σ(t)K(θσ)L(t)−

are the closed-loop state matrices. In particular, this holds whenever θM(t)∈NL(Θ)
and σM(t) ∈ Λθ(t−M)×·· ·×Λθ(t), and so

αI ≤ Y(i0λ0,...,iM−1λM−1) ≤ β I (7.13a)

and

Â(iM−LλM−L,...,iMλM)Y(i0λ0,...,iM−1λM−1)Â
T
(iM−LλM−L,...,iMλM)

−Y(i1λ1,...,iMλM) <−αI

for all (i0, . . . , iM) ∈ NM(Θ) and (λ0, . . . ,λM) ∈ Λi0 × ·· · ×ΛiM . As M ≥ L, the
L-path-dependent controller K can be taken to be M-path-dependent, so we can
assume L = M > 0 without loss of generality. Now, applying the Schur complement
formula to the last inequality gives

[
αI−Y(i1λ1,...,iMλM)

(
AiMλM

+BiMλM
K(i0λ0,...,iM−1λM−1)

)
Y(i0λ0,...,iM−1λM−1)

∗ −Y(i0λ0,...,iM−1λM−1)

]

< 0

(7.13b)

for all (i0, . . . , iM) ∈ NM(Θ) and (λ0, . . . ,λM) ∈ Λi0 ×·· ·×ΛiM . Specializing (7.13)
to the associated switched linear system over all switching sequences in Θ̂ , and

using (7.12a), we obtain (7.11) for all (i0 j0, . . . , iM jM) ∈ NM

(
Θ̂
)

. This establishes

necessity.

To show sufficiency, suppose (7.11) holds for all (i0 j0, . . . , iM jM) ∈ NM

(
Θ̂
)

.

Since (7.11) defines a finite number of inequalities over a finite number of matrix
variables, there exist α , β > 0 such that, along with (7.12), we have (7.13) for
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all (i0, . . . , iM) ∈ NM(Θ) and (λ0, . . . ,λM) ∈ Λi0 × ·· · × ΛiM . Taking the Schur
complement of −Y(i0λ0,...,iM−1λM−1) in (7.13b) gives

αI ≤ Y(i0λ0,...,iM−1λM−1) ≤ β I,

Â(i0λ0,...,iMλM)Y(i0λ0,...,iM−1λM−1)Â
T
(i0λ0,...,iMλM)−Y(i1λ1,...,iMλM) ≤−αI

for all (i0, . . . , iM) ∈ NM(Θ) and (λ0, . . . ,λM) ∈ Λi0 ×·· ·×ΛiM , where

Â(i0λ0,...,iMλM) = AiMλM
+BiMλM

K(i0λ0,...,iM−1λM−1)

are the closed-loop state matrices. Now, the equivalence of (a) and (d) in Theorem
7.1 implies that the closed-loop system is uniformly exponentially stable. ��

According to Theorem 7.2, only the feedback gain matrices K(θσ)M(t)− over
θM(t) ∈ NM(Θ), t ∈ N0, and θ ∈ Θ are relevant to the stability of the closed-loop
system. The remaining feedback gain matrices can be chosen arbitrarily. Note that
Theorem 7.2 gives an exact synthesis condition, but that it is limited to the cases
where the mode and parameter are observed with a unit delay. If either the current
mode or the current parameter is available for measurement, then one can use the
results in [15].

7.4 Performance Analysis

In this section, we will address the problem of evaluating the worst-case �2-induced
norm (i.e., the disturbance attenuation property) of a switched LPV system. Given
l, m, n ∈ N, and given Ai j ∈ R

n×n, Bi j ∈ R
n×m, Ci j ∈ R

l×n, and Di j ∈ R
l×m for

i = 1, . . . ,N and for j = 1, . . . ,Mi, consider the state-space model

x(t + 1) = Aθ(t)σ(t)x(t)+Bθ(t)σ(t)w(t), t ∈N0;

z(t) = Cθ(t)σ(t)x(t)+Dθ(t)σ(t)w(t), t ∈ N0, (7.14)

over mode sequences θ ∈ Θ , parameter sequences σ ∈ Λθ , and disturbance
sequences w = (w(0),w(1), . . .); the error output sequence is given by z =
(z(0),z(1), . . .). Writing

Ai = {Aiλ : λ ∈ Λi} ⊂R
n×n,

Bi = {Biλ : λ ∈ Λi} ⊂ R
n×m,

Ci = {Ciλ : λ ∈ Λi} ⊂R
l×n,

Di = {Diλ : λ ∈ Λi} ⊂R
l×m



7 Switched LPV Systems in Discrete Time 169

for i ∈ {1, . . . ,N}, let

S = {(A1,B1,C1,D1), . . . ,(AN ,BN ,CN ,DN)}.

If Θ is a nonempty subset of {1, . . . ,N}∞, then the pair (S ,Θ) defines the discrete-
time switched LPV system whose �2-induced norm under given θ ∈Θ and σ ∈ Λ θ

is defined by the supremum of the square root of ∑∞
t=0 ‖z(t)‖2/∑∞

t=0 ‖w(t)‖2 over
all w with ∑∞

t=0 ‖w(t)‖2 < ∞. We are concerned with evaluating the worst-case �2-
induced norm over all θ and σ . The system (S ,Θ) shall be said to be uniformly
exponentially stable if (A ,Θ) is uniformly exponentially stable.

Definition 7.4. A uniformly exponentially stable switched LPV system (S ,Θ) is
said to satisfy uniform disturbance attenuation level γ > 0 if there exists γ̃ ∈ (0,γ)
such that

∞

∑
t=0

‖z(t)‖2 ≤ γ̃2
∞

∑
t=0

‖w(t)‖2 (7.15)

for all θ ∈Θ , for all σ ∈ Λ θ , and for all w with ∑∞
t=0 ‖w(t)‖2 < ∞.

As in the case of pure stability, the disturbance attenuation property of the
switched LPV system (S ,Θ) is closely related to that of the switched linear system(
Ŝ ,Θ̂

)
, where

Ŝ = {(Ai j,Bi j,Ci j ,Di j) : i = 1, . . . ,N, j = 1, . . . ,Mi},
Θ̂ =

{
(i0 j0, i1 j1, . . .) : (i0, i1, . . .) ∈Θ , jt = 1, . . . ,Mit , t ∈N0

}
.

The state-space description of the switched linear system
(
Ŝ ,Θ̂

)
is given

by (7.14), and hence the same as that of the switched LPV system (S ,Θ), except
that it is restricted to switching sequences (θ ,σ) = (θ (0)σ(0),θ (1)σ(1), . . .) ∈ Θ̂ .

The system
(
Ŝ ,Θ̂

)
is said to be uniformly exponentially stable if

(
Â ,Θ̂

)

is uniformly exponentially stable. The performance requirement for
(
Ŝ ,Θ̂

)
is

consistent with that for (S ,Θ).

Definition 7.5. A uniformly exponentially stable switched linear system
(
Ŝ ,Θ̂

)

is said to satisfy uniform disturbance attenuation level γ > 0 if there exists γ̃ ∈ (0,γ)
such that (7.15) holds for all (θ ,σ) ∈ Θ̂ and for all w with ∑∞

t=0 ‖w(t)‖2 < ∞.

We will continue to use the convention that θ (t)= 0 and σ(t)= 1 (i.e., Λ0 = {1})

for t < 0 whenever θ ∈Θ and σ ∈ Λ θ . Let LM(Θ) and LM

(
Θ̂
)

be as in (7.3) for

path lengths M ∈ N0. The following theorem gives an exact convex condition for
the stability and performance of switched LPV systems in terms of linear matrix
inequalities.
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Theorem 7.3. Let γ > 0. The following are equivalent:

(a) The switched LPV system (S ,Θ) is uniformly exponentially stable and satisfies
uniform disturbance attenuation level γ .

(b) The switched linear system
(
Ŝ ,Θ̂

)
is uniformly exponentially stable and

satisfies uniform disturbance attenuation level γ .
(c) There exist a path length M ∈ N0 and an indexed (finite) family of matrices

Y(i1 j1,...,iM jM) ∈R
n×n such that

Y(i0 j0,...,iM−1 jM−1) > 0, (7.16a)

[
AiM jM BiM jM

CiM jM DiM jM

][
Y(i0 j0,...,iM−1 jM−1) 0

0 I

][
AiM jM BiM jM

CiM jM DiM jM

]T

−
[

Y(i1 j1,...,iM jM) 0
0 γ2I

]
< 0 (7.16b)

for all (i0 j0, . . . , iM jM) ∈ LM

(
Θ̂
)

.

(d) There exist a path length M ∈ N0, real numbers α , β > 0, and an indexed
(uncountably infinite) family of matrices Y(i1λ1,...,iMλM) ∈ R

n×n such that

αI ≤ Y(i0λ0,...,iM−1λM−1) ≤ β I, (7.17a)

[
AiMλM

BiMλM

CiMλM
DiMλM

][
Y(i0λ0,...,iM−1λM−1) 0

0 I

][
AiMλM

BiMλM

CiMλM
DiMλM

]T

−
[

Y(i1λ1,...,iMλM) 0
0 γ2I

]
≤−αI (7.17b)

for all (i0, . . . , iM) ∈ LM(Θ) and for all (λ0, . . . ,λM) ∈ Λi0 ×·· ·×ΛiM .

Moreover, if (c) holds with M ∈ N, then (d) is satisfied with (7.6) for (λ0, . . . ,λM) ∈
Λi0 ×·· ·×ΛiM , where λk =

(
λ (1)

k , . . . ,λ
(Mik

)

k

)
, k = 0, . . . ,M. If (c) holds with M = 0,

then (d) is satisfied with Y(i0λ0,...,iM−1λM−1) = Y(i1λ1,...,iMλM) = Y01.

Proof. We will show (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (a). Clearly (a) implies (b).
Suppose (b) holds. Then, due to the proof of the necessity part of [7,
Theorem 3.3] and a simple scaling argument to take into account γ = 1, there
exist X(i0 j0,...,iM−1 jM−1) > 0 satisfying

[
AiM jM BiM jM

CiM jM DiM jM

]T [
X(i1 j1,...,iM jM) 0

0 I

][
AiM jM BiM jM

CiM jM DiM jM

]

−
[

X(i0 j0,...,iM−1 jM−1) 0
0 γ2I

]
< 0
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for all (i0 j0, . . . , iM jM)∈LM

(
Θ̂
)

. Then the Schur complement formula, along with

Y(i0 j0,...,iM−1 jM−1) = γ2X−1
(i0 j0,...,iM−1 jM−1)

,

gives (c). Suppose (c) holds, and assume M ∈ N without loss of generality. Since

LM

(
Θ̂
)

is a finite set, there exist α , β > 0 such that

αI ≤ Y(i0 j0,...,iM−1 jM−1) ≤ β I (7.18a)

and

[
AiM jM BiM jM

CiM jM DiM jM

][
Y(i0 j0,...,iM−1 jM−1) 0

0 I

][
AiM jM BiM jM

CiM jM DiM jM

]T

−
[

Y(i1 j1,...,iM jM) 0
0 γ2I

]
<−

[
αI 0
0 αI

]

for all (i0 j0, . . . , iM jM) ∈ LM

(
Θ̂
)

. Applying the Schur compliment formula to the

last inequality yields

⎡

⎢
⎢
⎢
⎣

αI−Y(i1 j1,...,iM jM) 0 AiM jM Y(i0 j0,...,iM−1 jM−1) BiM jM

∗ αI− γ2I CiM jM Y(i0 j0,...,iM−1 jM−1) DiM jM

∗ ∗ −Y(i0 j0,...,iM−1 jM−1) 0
∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎦
< 0. (7.18b)

Given (i0, . . . , iM) ∈ LM(Θ), choose (λ0, . . . ,λM) ∈ Λi0 × ·· · × ΛiM with λk =(
λ (1)

k , . . . ,λ (Mit )

k

)
for k = 0, . . . ,M, where Λ0 = {1}. Define Y(i0λ0,...,iM−1λM−1) and

Y(i1λ1,...,iMλM) as in (7.6). Taking the weighted sum of (7.18) with weights given by
(λ0, . . . ,λM) then yields (7.17a) and

⎡

⎢⎢
⎢
⎣

αI−Y(i1λ1,...,iMλM) 0 AiMλM
Y(i0λ0,...,iM−1λM−1) BiMλM

∗ αI− γ2I CiMλM
Y(i0λ0,...,iM−1λM−1) DiMλM

∗ ∗ −Y(i0λ0,...,iM−1λM−1) 0
∗ ∗ ∗ −I

⎤

⎥⎥
⎥
⎦
< 0.

Using the Schur complement formula once more, we obtain (7.17b). Thus, (d) holds
true.

It remains to show (d) implies (a). Suppose (d) holds, so that (7.17) is satisfied
for all (i0, . . . , iM) ∈ LM(Θ) and (λ0, . . . ,λM) ∈ Λi0 × ·· · ×ΛiM . Assume M ∈ N

without loss of generality, and fix a θ ∈Θ and a σ ∈ Λθ . Put

A(t) = Aθ(t)σ(t), B(t) = Bθ(t)σ(t), C(t) = Cθ(t)σ(t), D(t) = Dθ(t)σ(t),
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and
Y(t) = Y(θ(t−M)σ(t−M),...,θ(t−1)σ(t−1))

for t ∈ N0, so that

αI ≤ Y(t)≤ β I,
[

A(t) B(t)
C(t) D(t)

][
Y(t) 0

0 I

][
A(t) B(t)
C(t) D(t)

]T

−
[

Y(t + 1) 0
0 γ2I

]
≤−αI

for all t ∈ N0. If we put X(t) = γ2Y(t)−1, then there exists an η > 0, independent
of θ and σ , such that

γ2β−1I ≤ X(t)≤ γ2α−1I,
[

A(t) B(t)
C(t) D(t)

]T [
X(t + 1) 0

0 I

][
A(t) B(t)
C(t) D(t)

]
−
[

X(t) 0
0 γ2I

]
≤−ηI

for all t ∈ N0. Thus, by [5, Corollary 12] with an appropriate scaling argument,
the linear time-varying system (7.14) is uniformly exponentially stable and satisfies
uniform disturbance attenuation level γ . Since θ ∈Θ and σ ∈ Λθ are arbitrary, and
since α−1, β−1, and η can be chosen independently of (θ ,σ), we conclude that (a)
holds true. ��

Note that, in Theorem 7.3, the Kalman–Yakubovich–Popov (KYP) inequal-

ity (7.16) is required to be satisfied over all switching paths in LM

(
Θ̂
)

, including

the transient paths that contain the dummy mode-parameter pair 01. Compare this
with Theorem 7.1, where the Lyapunov inequality (7.4) is required over a smaller

set of switching paths NM

(
Θ̂
)

. If the mode sequence and parameter sequence are

fixed, then this agrees with the intuition that, while only the switching paths that
occur infinitely many times in the mode sequence is relevant to uniform exponential
stability, every switching path including those that never occur more than once in the
mode sequence counts as far as disturbance attenuation performance is concerned.
Theorems 7.1 and 7.3 make this intuition precise for the case where the mode and
parameter sequences are nondeterministic.

7.5 Performance Optimization

Given l, m1, m2, n ∈ N, and given Ai j ∈ R
n×n, B1,i j ∈ R

n×m1 , B2,i j ∈ R
n×m2 , Ci j ∈

R
l×n, D1,i j ∈R

l×m1 , and D2,i j ∈R
l×m for i= 1, . . . ,N and for j = 1, . . . ,Mi, consider

the controlled state-space model

x(t + 1) = Aθ(t)σ(t)x(t)+B1,θ(t)σ(t)w(t)+B2,θ(t)σ(t)u(t), t ∈ N0;

z(t) = Cθ(t)σ(t)x(t)+D1,θ(t)σ(t)w(t)+D2,θ(t)σ(t)u(t), t ∈ N0. (7.19)
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Our objective in this section is to extend the result of the previous section to the
problem of designing a state-feedback controller that optimizes the disturbance
attenuation performance of the closed-loop system. Defining matrix polytopes

Ai = {Aiλ : λ ∈ Λi} ⊂ R
n×n,

B1,i = {B1,iλ : λ ∈ Λi} ⊂ R
n×m1 , B2,i = {B2,iλ : λ ∈ Λi} ⊂ R

n×m2 ,

Ci = {Ciλ : λ ∈ Λi} ⊂ R
l×n,

D1,i = {D1,iλ : λ ∈ Λi} ⊂ R
l×m1 , D2,i = {D2,iλ : λ ∈ Λi} ⊂ R

l×m2

for i = 1, . . . ,N, let

T = {(A1,B1,1,B2,1,C1,D1,1,D2,1), . . . ,(AN ,B1,N ,B2,N ,CN ,D1,N ,D2,N)}.

If Θ is a nonempty subset of {1, . . . ,N}∞, then the pair (T ,Θ) defines the
controlled version of the discrete-time switched LPV system (S ,Θ) considered
in the previous section. The system (T ,Θ) is said to be uniformly exponentially
stable if (A ,Θ) is uniformly exponentially stable.

We will consider all linear state-feedback controllers that recall L most recent
past modes and parameters for some L ∈ N0. Let

K = {K(i1λ1,...,iLλL) : λk ∈ Λik , ik = 0,1, . . . ,N, k = 1, . . . ,L} ⊂ R
m2×n

if L > 0, and let K = {K01} ⊂ R
m2×n be a singleton if L = 0. Then K defines

such a controller, which we call a robust L-path-dependent state-feedback controller.
The feedback interconnection of the controlled system (T ,Θ) and a robust path-
dependent controller K gives rise to a closed-loop system of the form

x(t + 1) =
(
Aθ(t)σ(t) +B2,θ(t)σ(t)K(θσ)L(t)−

)
x(t)+B1,θ(t)σ(t)w(t), t ∈ N0;

z(t) =
(
Cθ(t)σ(t) +D2,θ(t)σ(t)K(θσ)L(t)−

)
x(t)+D1,θ(t)σ(t)w(t), t ∈N0.

(7.20)

Definition 7.6. Let γ > 0 and L ∈ N0. A robust L-path-dependent state-feedback
controller K is said to achieve uniform disturbance attenuation level γ for the
switched LPV system (T ,Θ) if there exists γ̃ ∈ (0,1) such that the closed-loop
state-space model (7.20) is uniformly exponentially stable and satisfies (7.15) for
all θ ∈Θ , for all σ ∈ Λ θ , and for all w with ∑∞

t=0 ‖w(t)‖2 < ∞.

Theorem 7.4. Let γ > 0. There exists a robust finite-path-dependent state-feedback
controller that stabilizes and achieves uniform disturbance attenuation level γ for
the switched LPV system (T ,Θ) if and only if there exist a path length M ∈ N0

and indexed (finite) families of matrices W(i1 j1,...,iM jM) ∈R
m2×n and Y(i1 j1,...,iM jM) ∈
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R
n×n such that

⎡

⎢
⎢
⎢
⎣

−Y(i1 j1,...,iM jM) 0 F(i0 j0,...,iM jM) B1,iM jM

∗ −γ2I G(i0 j0,...,iM jM) D1,iM jM

∗ ∗ −Y(i0 j0,...,iM−1 jM−1) 0
∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎦
< 0, (7.21a)

with

F(i0 j0,...,iM jM) = AiM jM Y(i0 j0,...,iM−1 jM−1) +B2,iM jM W(i0 j0,...,iM−1 jM−1), (7.21b)

G(i0 j0,...,iM jM) = CiM jM Y(i0 j0,...,iM−1 jM−1) +D2,iM jM W(i0 j0,...,iM−1 jM−1) (7.21c)

for all (i0 j0, . . . , iM jM) ∈ LM

(
Θ̂
)

. Moreover, if (7.21) holds with M ∈ N, then

a robust M-path-dependent state-feedback controller K that achieves uniform
disturbance attenuation level γ for the system (T ,Θ) is given by (7.12) for
all (i0, . . . , iM) ∈ LM(Θ) and for all (λ0, . . . ,λM) ∈ Λi0 × ·· · × ΛiM . If (7.21)
holds with M = 0, then a robust uniformly exponentially stabilizing state-feedback
controller K is given by K01 = W01Y−1

01 .

Proof. The proof is based on Theorem 7.3 but otherwise parallels that of
Theorem 7.2, so it is omitted. ��

Theorem 7.4 gives an exact, convex condition for the existence of suboptimal
robust finite-path-dependent state-feedback controllers. If an optimal (stabilizing)
controller exists, then one can run the sequence of semidefinite programs that
minimize γ2 subject to linear matrix inequalities (7.21) for path lengths M = 0,1, . . ..
As in the case of pure stabilization, the minimal value of γ2 saturates fast as one goes
down this sequence of semidefinite programs, and thus trying only the first few path
lengths M often suffices in practice.

Theorem 7.4 is a direct extension of Theorem 7.2 to performance optimization,
and, hence, it is limited to the synthesis of robust state-feedback controllers that
observe the mode and parameter with a unit delay. Again, if the current mode or
parameter is available for measurement, then the results in [15] can be used instead.

7.6 Illustrative Examples

Example 1

In this example, we will apply Theorem 7.1 to analyze the stability of a simple
switched LPV system (A ,Θ). Let N = 2, M1 = M2 = 2, and Θ = {1,2}∞ (i.e., the
mode sequence is unconstrained). Let A have
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A11 =

[
0.1 0.9
0.0 0.1

]
, A12 =

[
α 0
1 α

]
, A21 = A11, and A22 = A12,

where α > 0. Since A11 = A21 and A12 = A22, it is easily seen that the switched
LPV system (A ,Θ) is equivalent to the LPV system {A1λ : λ ∈ Λ1} considered
in [6, Example 1], which in turn is equivalent to the switched linear system
({A11,A12},Θ). For each path length M ∈ N0, let αM denote the largest value
of α such that the system of Lyapunov inequalities (7.4) is feasible for all

(i0 j0, . . . , iM jM) ∈ NM

(
Θ̂
)

, where

N0

(
Θ̂
)
= {11,12,21,22},

N1

(
Θ̂
)
= {(11,11),(11,12),(11,21),(11,22),(12,11), . . .,

(21,22),(22,11),(22,12),(22,21),(22,22)},
and so on. Then, we obtain α0 = 0.301, α1 = 0.478, and α2 = α3 = · · · = 0.513.
Thus, we conclude that α = 0.513 is the largest value of α for which the switched
LPV system is uniformly exponentially stable. This result agrees with that of
[6, Example 1]. Restricting our attention to parameter-dependent Lyapunov func-
tions as in [4] and [3] would yield suboptimal stability bounds α = 0.422 and
α = 0.478, respectively.

Example 2

We will borrow an example from [14] and use Theorem 7.4 to illustrate how optimal
disturbance attenuation is achieved for switched LPV systems. Let N = 6, M1 =
· · ·= M6 = 2, and Θ = {θ} be a singleton, where

θ = (1,2,3,4,5,6,5,4,3,2, 1,2,3,4,5,6,5,4,3,2, . . .)

is of period 10. Let T have

Ai1 =

[
0.95 0.86
−0.1 −0.02

]
+ρi

[−0.19 −0.5
−0.17 0.49

]
, B1,i1 =

[−0.14
−1.58

]
+ρi

[−10.5
10.9

]
,

Ci1 =
[−0.58 −0.6

]
+ρi

[−0.04 −0.05
]
,

B2,i1 = B1,i1, D1,i1 = D2,i1 = 0,
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and

Ai2 =

[
0.74 0.69
0.08 0.13

]
+ρi

[−0.18 −0.21
−0.16 0.18

]
, B1,i2 =

[−0.51
−0.9

]
+ρi

[−1.34
1.27

]
,

Ci2 =
[−0.62 −0.65

]
+ρi

[−0.02 −0.03
]
,

B2,i2 = B1,i2, D1,i2 = D2,i2 = 0,

where ρi = cos((i − 1)π/5) for i = 1, . . . ,6. Our objective is to achieve optimal
disturbance attenuation performance for the switched LPV system (T ,Θ) via
robust finite-path-dependent state feedback. We have

L0(Θ) = {1,2,3,4,5,6},
L1(Θ) = {(0,1),(1,2),(2,3),(3,4),(4,5),(5,6),(6,5), . . . ,(2,1)},
L2(Θ) = {(0,0,1),(0,1,2),(1,2,3),(2,3,4),(3,4,5),(4,5,6),

(5,6,5),(6,5,4),(5,4,3),(4,3,2),(3,2,1),(2,1,2)},
and so on. It is readily seen that, for this particular Θ , no path length M > 2 needs
to be considered because all path lengths M ≥ 2 result in the same system of linear
matrix inequalities. It is straightforward to obtain

L2(Θ̂) = {(01,01,11),(01,01,12),(01,11,21),(01,11,22),(01,12,21), . . .,

(21,12,22),(22,11,21),(22,11,22),(22,12,21),(22,12,22)}.
This set contains 86 switching paths. If B2,i1 and B2,i2 were zero for i= 1, . . . ,6, then
minimizing γ2 subject to the system of KYP inequalities (7.16), with Bi j = B1,i j

and Di j = D1,i j, over all (i0 j0, i1 j1, i2 j2) ∈ L2

(
Θ̂
)

would yield γ = 7.44. This is

the minimum disturbance attenuation level of the uncontrolled system. However,
minimizing γ2 subject to the system of linear matrix inequalities (7.21) over all

(i0 j0, i1 j1, i2 j2) ∈ L2

(
Θ̂
)

gives γ = 1.55, which is the minimum performance

bound achievable by a robust finite-path-dependent state-feedback controller. An
optimal solution to (7.21) is given by 43 pairs of W(i0 j0,i1 j1) and Y(i0 j0,i1 j1). The
resulting optimal controller takes the form

u(t) =

⎧
⎪⎪⎨

⎪⎪⎩

K(01,01)x(0) if t = 0;

K(01,θ(0)σ(0))x(1) if t = 1;

K(θ(t−2)σ(t−2),θ(t−1)σ(t−1))x(t), if t ≥ 2,

where, whenever

θ (t − 2) = i0, σ(t − 2) = λ0 =
(

λ (1)
0 ,λ (2)

0

)
,

θ (t − 1) = i1, σ(t − 1) = λ1 =
(

λ (1)
1 ,λ (2)

1

)
,
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we have

K(01,θ(0)σ(0)) = W(01,i0λ0)Y
−1
(01,i0λ0)

,

K(θ(t−2)σ(t−2),θ(t−1)σ(t−1)) = W(i0λ0,i1λ1)Y
−1
(i0λ0,i1λ1)

with

Y(01,i0λ0) = λ (1)
0 Y(01,i01) +λ (2)

0 Y(01,i02),

W(01,i0λ0) = λ (1)
0 W(01,i01) +λ (2)

0 W(01,i02),

Y(i0λ0,i1λ1) = λ (1)
0 λ (1)

1 Y(i01,i11) + · · ·+λ (2)
0 λ (2)

1 Y(i02,i12),

W(i0λ0,i1λ1) = λ (1)
0 λ (1)

1 W(i01,i11) + · · ·+λ (2)
0 λ (2)

1 W(i02,i12).

Example 3

We will now consider the example studied in [15, Sect. 5]. Let N = 2, M1 = M2 = 2,
and Θ = {1,2}∞. Let T have

A11 =

⎡

⎣
0 1 0
0 0 1

0.0341 −0.2571 0.7769

⎤

⎦ , B1,11 =

⎡

⎣
0.3
0.1
0.8

⎤

⎦ , B2,11 =

⎡

⎣
0

−0.1
−0.5

⎤

⎦ ,

C11 =
[
0.2 0.1 1

]
, D1,11 = D2,11 = 0,

A12 =

⎡

⎣
0 1 0
0 0 1

−0.0341 −0.2571 −0.7769

⎤

⎦ , B1,12 =

⎡

⎣
0.3
0.1
−0.8

⎤

⎦ , B2,12 =

⎡

⎣
0

−0.2
−0.3

⎤

⎦ ,

C12 =
[−0.2 0.1 1

]
, D1,12 = D2,12 = 0,

A21 =

⎡

⎣
0 −1 0
0 0 1

0.0341 −0.2571 0.7769

⎤

⎦ , B1,21 =

⎡

⎣
−0.3
0.1
0.8

⎤

⎦ , B2,21 =

⎡

⎣
0

−0.1
−0.8

⎤

⎦ ,

C21 =
[
0.2 0.1 −1

]
, D1,21 = D2,21 = 0,

A22 =

⎡

⎣
0 −1 0
0 0 1

−0.0341 −0.2571 −0.7769

⎤

⎦ , B1,22 =

⎡

⎣
−0.3
0.1
−0.8

⎤

⎦ , B2,22 =

⎡

⎣
0
−1
−0.5

⎤

⎦ ,

C22 =
[−0.2 0.1 −1

]
, D1,22 = D2,22 = 0.
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The objective is to obtain a robust finite-path-dependent state-feedback controller
that achieves a desired disturbance attenuation performance for the switched LPV
system (T ,Θ). We have

L0(Θ) = {1,2},
L1(Θ) = {(0,1),(0,2),(1,1),(1,2),(2,1),(2,2)},
L2(Θ) = {(0,0,1),(0,0,2),(0,1,1),(0,1,2),(0,2,1),(0,2,2),(1,1,1),

(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1),(2,2,2)},

and so on. With path length M = 0, minimizing γ2 subject to (7.21) for all mode-

parameter pairs in L0

(
Θ̂
)

gives γ = 4.38, and a robust state-feedback controller

u(t) = K01x(t), t ∈ N0, that achieves this performance level is given by

K01 = W01Y−1
01 =

[−5.03 −26.6 2.13
]
⎡

⎣
85.0 10.2 −4.84
10.2 54.4 −3.68
−4.84 −3.68 3.33

⎤

⎦

−1

=
[
0.00483 −0.481 0.115

]
.

This result coincides with that in [15, Sect. 5]. However, if past modes and
parameters are available to the controller, then a better-performing controller can
be obtained by considering a path length M > 0. Indeed, if γM denotes the mini-
mum achievable disturbance attenuation level by a robust M-path-dependent state-
feedback controller, then we have γ0 = 4.38,γ1 = 4.28,γ2 = 4.14,γ3 = 4.14, . . ..
Moreover, if either the current mode or the current parameter is available to
the controller, then one can lower the performance level further by using mode-
dependent and parameter-dependent controllers as in [15].

7.7 Conclusion

We extended existing nonconservative analysis and synthesis results for switched
linear systems and polytopic LPV systems to switched LPV systems. These
extensions are again nonconservative, and provide convex analysis and synthesis
conditions in terms of linear matrix inequalities. In particular, the stability and
performance analysis conditions cover existing but conservative results in the
literature, and allow us to pay additional computational cost in return for a better
analysis. On the other hand, the controller synthesis conditions are useful for the
case where neither the system mode nor the system parameter is observed without
delay, and thus complements existing results. We envision that the results of this
work could play an important role in automated analysis and synthesis for control
of nonlinear systems.
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Chapter 8
Gain-Scheduled Output-Feedback Controllers
with Good Implementability and Robustness

Masayuki Sato and Dimitri Peaucelle

Abstract This article addresses the design problem of gain-scheduled output-
feedback (GSOF) controllers, which depend on inexactly provided scheduling
parameters, for continuous-time linear parameter-varying (LPV) systems via
parameter-dependent Lyapunov functions (PDLFs). We successfully propose a new
design method for our problem. That is, in stark contrast to conventional design
methods, our method produces practical GSOF controllers being independent of
the derivatives of scheduling parameters, i.e., good implementability is assured,
and depending only on inexactly provided scheduling parameters, i.e., robustness
against the uncertainties on the scheduling parameters is also assured. For further
good implementability of GSOF controllers, we show that it is always possible to
obtain polynomially parameter-dependent GSOF controllers if rationally parameter-
dependent GSOF controllers can be designed for LPV systems under a very mild
constraint.

8.1 Introduction

It has been demonstrated by many researchers that gain-scheduled (GS) controllers
have better performance than robust linear time-invariant (LTI) controllers when
scheduling parameters, which describe changes of plant dynamics, are available.
Therefore, many researchers have already tackled the design problem of GS output-
feedback (GSOF) controllers for linear parameter-varying (LPV) systems using
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Table 8.1 Classification of existing design methods

Exact scheduling
parameters

Inexact scheduling
parameters

PiDLFs [3–5, 27] [12, 20, 30, 32]

PDLFs GSOF controllers depending on [1, 2, 35, 41, 42] [17]
derivatives of scheduling parameters

GSOF controllers independent of [1, 14, 18, 33, 34] Our target
derivatives of scheduling parameters

linear matrix inequalities (LMIs), e.g., [1–5, 15, 21, 28, 35, 41, 42] and references
therein. Furthermore, some applications of GSOF controllers to real systems have
been reported [22, 23, 40]. Thus, the design technique for GSOF controllers seems
to be matured like H∞ controller design [44].

Existing design methods of GSOF controllers for continuous-time LPV systems
are classified in Table 8.1 according to the parameter dependency of the adopted
Lyapunov functions in the design process and to the exactness of the exploited
scheduling parameters in the GSOF controllers. In Table 8.1, “PiDLFs” and
“PDLFs” respectively denote “Parameter-independent Lyapunov Functions” and
“Parameter-Dependent Lyapunov Functions”.

When GS controllers are designed to real systems, the following requirements
should be considered:

• Reduction of conservatism
• Good implementability of controllers
• Robustness against uncertainties in the provided scheduling parameters

When GS state-feedback (GSSF) controllers are considered, these requirements
are easily met by the conventional change-of-variable method [6] with controller
matrix and the inverse of Lyapunov matrix being dependent on uncertain scheduling
parameters instead of actual scheduling parameters [31]. (For reference, the method
is shown in the appendix.) However, when GSOF controllers are considered,
meeting these requirements is not so easy.

We review existing methods of GSOF controllers from viewpoints of these
requirements.

For the first requirement, several methods using PDLFs have been proposed
[1, 35, 41, 42]. Those methods successfully reduce conservatism due to PiDLFs
used in [3–5]; that is, the first requirement is met by applying the methods
in [1, 35, 41, 42]. However, the designed controllers require not only the scheduling
parameters but also their derivatives. Generally speaking, the derivatives of schedul-
ing parameters cannot be obtained in the real world. This property contradicts the
second requirement. Several remedies for this issue have been proposed with the
first requirement being simultaneously considered, e.g., controller implementation
incorporating filters for provided scheduling parameters [18], controller design
via PDLFs with structured parameter dependency [1], and controller design using
sufficient conditions in which the term including the derivatives of scheduling
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parameters is overbounded by another tractable term [14,33,34]. Sato and Peaucelle
[34] is an extended version of [33]. Incorporating filters is an attractive method from
a theoretical point of view, as the method recovers the best achievable performance
by the methods in [1, 35, 42] if the time constants of the filters are set to be
sufficiently small. However, this remedy is not so good from a practical point of
view because the incorporated filters increase the online calculations. The structured
PDLFs used in the remedy in [1] are not recommended from the standpoint of
the first requirement. The methods in [14, 34] are attractive because there are no
restrictions on the parameter dependency of PDLFs, which is different from the
remedy in [1], and designed controllers introduce no additional systems, which is
different from the method in [18]. A numerical example in [34] demonstrates that the
performance degradation from the method in [1], which is caused by overbounding
the derivative term, is very small (less than 5%). Thus, the methods in [14, 34] are
recommended from the standpoints of the first and the second requirements.

There have been several papers for tackling the third requirement, e.g., [12,
17, 20, 30, 32]. The methods in [17, 20] evaluate the effect of the uncertainties
in provided scheduling parameters by introducing an additional uncertain block
in the H∞ control problem. However, in general, multiple uncertain blocks lead
to conservative controllers. The problem setting in [12] is slightly impractical
because the uncertainties are supposed to be proportional to the actual scheduling
parameters. In other words, if some scheduling parameters are almost zeros, then the
related uncertainties are also assumed to be almost zeros. Thus, bias errors cannot be
addressed by the method in [12]. On the other hand, the method in [30] (the journal
version is [32]) is attractive because it can design GSOF controllers which are
robust against bias-type uncertainties, and recovers the conventional design method
when the exact values of scheduling parameters are provided. Thus, if the provided
scheduling parameters have bias-type uncertainties, then the method in [30, 32] is
recommended. However, PiDLFs were adopted in those papers for deriving the
design method, which contradicts the first requirement.

This article tackles the design problem of GSOF controllers exploiting inexact
scheduling parameters for continuous-time LPV systems via PDLFs with the con-
trollers incorporating no additional systems (such as filters) and being independent
of the derivatives of the provided scheduling parameters. That is, the controllers
to be designed are required to have good implementability as well as robustness
against uncertainties on the scheduling parameters. To meet these requirements, the
methods in [32,34] are combined, and a new design method is successfully proposed
in this article. Our method is formulated in terms of parameter-dependent bilinear
matrix inequalities (PDBMIs). As well known, it is very hard to obtain the optima
of the problems formulated with PDBMIs, two tractable algorithms for suboptimal
solutions by solving parameter-dependent LMIs (PDLMIs) are shown.

This article is organized as follows: Section 8.2 first defines LPV systems and
GSOF controllers to be designed, then defines our problem, and finally shows basic
lemmas related to our problem. Section 8.3 first shows our method, then gives
some remarks on conservatism of the method, and finally shows that it is always
possible to obtain polynomially parameter-dependent GSOF controllers if rationally
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parameter-dependent GSOF controllers can be designed. Section 8.4 shows design
results for numerical examples borrowed from the literature to support our results.
Finally, Sect. 8.5 gives concluding remarks.

As mentioned above, solving PDLMIs are required in our method. Several books
and many papers on this topic have been published, e.g., [8–10, 13]. Considering
that sum-of-squares (SOS) techniques [9, 24, 37] is one of the powerful methods
for solving PDLMIs and that the slack variable (SV) approach encompasses SOS
techniques [25], this article adopts the SV approach for solving PDLMIs. Thus, a
very brief description of the SV approach is given in the appendix.

In this article, we use the following notations: He{X} is a shorthand notation
for X +XT, In, I and 0, respectively, denote an n× n dimensional identity matrix,
an identity matrix and a zero matrix of appropriate dimensions, Rn, Rn×m and
S

n respectively denote sets of n dimensional real vectors, n×m dimensional real
matrices and n× n dimensional symmetric real matrices, ⊗ denotes the Kronecker
product, ∗ denotes an abbreviated off-diagonal block in a symmetric matrix, Tr(X)
for a square matrix X denotes the matrix trace, and diag (X1, · · · ,Xk) denotes a block-
diagonal matrix composed of X1, · · · ,Xk.

8.2 Preliminaries

8.2.1 System Definitions

Suppose that a continuous-time LPV system G(θ ) with k independent scheduling
parameters θ = [θ1 · · · θk]

T is given as follows:

G(θ ) :

⎧
⎨

⎩

ẋ = A(θ )x+B1(θ )w+B2u
z = C1(θ )x+D11(θ )w+D12(θ )u
y = C2x+D21(θ )w

, (8.1)

where x ∈ R
n, w ∈ R

nw , u ∈ R
nu , z ∈ R

nz , and y ∈ R
ny respectively denote the state

with x = 0 at t = 0, the disturbance input, the control input, the controlled output,
and the measurement output. The state-space matrices in (8.1) are supposed to have
compatible dimensions.

As indicated in (8.1), we make the following assumption:

Assumption 8.1. Matrices B2 and C2 are constant.

This assumption slightly restricts the applicability of the method exposed
hereafter. One of the simplest methods to satisfy this assumption is to incorporate
strictly proper LTI filters to the original signals u and y [4]. If not adding filters and if
only one of B2 or C2 is indeed parameter dependent, the method we expose remains
valid with appropriate modifications, although more complex. (See Remark 8.5 in
the next section.)
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The parameter dependency of G(θ ) may be quite general. Nevertheless, we
address the design problem assuming that the state-space matrices of G(θ ) are
polynomial with respect to θ . This assumption plus the choice of polynomially
parameter-dependent decision variables makes it possible to solve the PDLMIs
that we will encounter, for example by using SOS techniques [9, 24, 37] or the SV
approach [25].

Assumption 8.2. All state-space matrices of LPV system G(θ ) are supposed to be
polynomial with respect to the parameters θi; that is, their values are supposed to
be continuous and bounded in the domain defined hereafter.

The scheduling parameters θi and the derivatives of the scheduling parameters
with respect to time θ̇i are supposed to lie in a priori given hyper-rectangles Ωθ and

Λθ , respectively; that is, the following holds for θ and θ̇ =
[
θ̇1 · · · θ̇k

]T
:

{
θ (t) ∈ Ωθ , ∀t ≥ 0
θ̇ (t) ∈ Λθ , ∀t ≥ 0

. (8.2)

It is supposed that Λθ includes the origin.
We consider a full-order GSOF controller for LPV system G(θ ). In stark contrast

to conventional problem setting, it is supposed that the values of the scheduling
parameters are provided not accurately but with some uncertainties; that is, the i-th
scheduling parameter is provided as θi + δi with its uncertainty δi. In this practical
situation, we define a full-order GSOF controller K(θ + δ ) as follows:

K(θ + δ ) :

{
ẋK = AK(θ + δ )xK +BK(θ + δ )y
u = CK(θ + δ )xK +DK(θ + δ )y

, (8.3)

where xK ∈ R
n denotes the state with xK = 0 at t = 0, and matrices AK(θ + δ ),

etc. are appropriately dimensioned parameter-dependent matrices to be designed.
Vector δ = [δ1 · · · δk]

T denotes the uncertainties on the scheduling parameters.
It is supposed that the bounds of the uncertainties are given a priori; that is, the
uncertainties δi are supposed to lie in a hyper-rectangle Ωδ which is known in
advance.

δ (t) ∈ Ωδ , ∀t ≥ 0. (8.4)

Furthermore, the derivatives of the uncertainties with respect to time δ̇i are also
supposed to lie in a priori given hyper-rectangle Λδ ; that is, the following holds for
δ̇ = [δ1 · · · δk]

T:

δ̇ (t) ∈ Λδ , ∀t ≥ 0. (8.5)

It is also supposed that Λδ includes the origin.
This assumption seems to be impractical; however, if there are several occasions

to measure scheduling parameters before designing controllers, it is possible to
estimate the bounds of the derivatives of the uncertainties. Otherwise, the bounds
should be set to be sufficiently large.
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(θi, 0)

(θi, δi)

(θi, 0)

(θi, δi)(θi-δi, δi)

(θi-δi, δi)
δi δi

θi θi

(θi, δi)

(θi, δi)

(θi, δi)

(θi, δi)

Case A Case B

Fig. 8.1 Region of pair of (θi,δi) (Case A: δi is independent of θi, Case B: δi depends on θi and
provided scheduling parameter θi +δi is bounded by θ i and θ i, where δ i ≤ 0 ≤ δ i is supposed)

The closed-loop system Gcl(θ ,θ +δ ) comprising G(θ ) in (8.1) and K(θ +δ ) in
(8.3) is given as follows:

Gcl(θ ,θ + δ ) :

{
ẋcl = Acl(θ ,θ + δ )xcl +Bcl(θ ,θ + δ )w
z = Ccl(θ ,θ + δ )xcl +Dcl(θ ,θ + δ )w

, (8.6)

where xcl =
[

xT xT
K

]T
, and

⎧
⎪⎪⎨

⎪⎪⎩

Acl(θ ,θ + δ ) = Ā(θ )+ B̄2K̄(θ + δ )C̄2

Bcl(θ ,θ + δ ) = B̄1(θ )+ B̄2K̄(θ + δ )D̄21(θ )
Ccl(θ ,θ + δ ) = C̄1(θ )+ D̄12(θ )K̄(θ + δ )C̄2

Dcl(θ ,θ + δ ) = D̄11(θ )+ D̄12(θ )K̄(θ + δ )D̄21(θ )

(8.7)

with K̄(θ + δ ) =
[

AK(θ + δ ) BK(θ + δ )
CK(θ + δ ) DK(θ + δ )

]
and the following matrices:

⎡

⎣
Ā(θ ) B̄1(θ ) B̄2

C̄1(θ ) D̄11(θ ) D̄12(θ )
C̄2 D̄21(θ )

⎤

⎦=

⎡

⎢
⎢
⎢
⎢⎢
⎣

A(θ ) 0 B1(θ ) 0 B2

0 0 0 In 0
C1(θ ) 0 D11(θ ) 0 D12(θ )

0 In 0
C2 0 D21(θ )

⎤

⎥
⎥
⎥
⎥⎥
⎦
.

Remark 8.1. In the problem setting above, the uncertainties on scheduling param-
eters are supposed to be independent of the scheduling parameters. (See Case A
in Fig. 8.1 where θi and δi are supposed to satisfy θ i ≤ θi ≤ θ i and δ i ≤ δi ≤
δ i respectively.) However, if the provided scheduling parameter θi + δi with its
uncertainty δi satisfying δ i ≤ δi ≤ δ i does not exceed the physically defined bounds
θ i and θ i, i.e., θ i ≤ θi +δi ≤ θ i, then the region of the pair (θi,δi) should be revised
to conform the physical bounds; that is, the pair (θi,δi) should lie in the gray region
depicted in Case B in Fig. 8.1. This revision conforms the physical bounds of the
scheduling parameter, but also increases the number of vertices compared to Case A.
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8.2.2 Problem Definitions

We tackle the following problems.

Problem 8.1 (H∞ control-type problem). For a given positive number γ∞, design a
GSOF controller K(θ +δ ) depending solely on the provided scheduling parameters
θi + δi which stabilizes the closed-loop system Gcl(θ ,θ + δ ) and satisfies (8.8) for
all admissible quadruplets (θ , θ̇ ,δ , δ̇ ) ∈ Ωθ ×Λθ ×Ωδ ×Λδ .

sup
w∈L2,w �=0

‖z‖2

‖w‖2
< γ∞. (8.8)

Problem 8.2 (H2 control-type problem). Suppose that D11(θ ) = 0 holds for all θ .
For a given positive number γ2, design a GSOF controller K(θ + δ ) depending
solely on the provided scheduling parameters θi + δi with DK(θ + δ ) = 0 which
stabilizes the closed-loop system Gcl(θ ,θ + δ ) and satisfies (8.9) for all admissible
quadruplets (θ , θ̇ ,δ , δ̇ ) ∈ Ωθ ×Λθ ×Ωδ ×Λδ .

E

(∫ ∞

0
zTzdt

)
< γ2

2 for w =

{
w0 (t = 0)
0 (t �= 0)

, (8.9)

with a random variable w0 satisfying E
(
w0wT

0

)
= Inw .

These problem settings above are natural and practical, because the designed
controllers are required to be independent of the derivatives of the scheduling
parameters, i.e., good implementability is required, and the provided scheduling
parameters are supposed to be inexact, i.e., robustness against the uncertainties on
the scheduling parameters is also required.

8.2.3 Basic Lemmas

We show basic lemmas related to our problems.
Hereafter, for continuously differentiable parameter-dependent matrices X(θ )

and X(θ + δ ), Ẋ(θ ) and Ẋ(θ + δ ), respectively, denote d
dt X(θ ) = ∑k

i=1
dθi
dt

∂X(θ)
∂θi

and d
dt X(θ + δ ) = ∑k

i=1

(
dθi
dt

∂X(θ+δ )
∂θi

+ dδi
dt

∂X(θ+δ )
∂δi

)
.

Suppose that some controller K(θ + δ ) defined in (8.3) is given. Then, the
following lemmas are directly derived from the results in [39, 42] by considering
the uncertainty vector δ in K(θ + δ ) to be an additional parameter vector.

Lemma 8.1 ([31]). For a given positive number γ∞, if there exists a continuously
differentiable parameter-dependent matrix Xcl(θ + δ ) ∈ S

2n such that (8.10) and
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(8.11) hold, then the closed-loop system Gcl(θ ,θ + δ ) is exponentially stable and
satisfies (8.8) for all admissible quadruplets (θ , θ̇ ,δ , δ̇ ) ∈ Ωθ ×Λθ ×Ωδ ×Λδ .

Xcl(θ + δ )> 0, ∀(θ ,δ ) ∈ Ωθ ×Ωδ , (8.10)
⎡

⎣
He{Acl(θ ,θ + δ )Xcl(θ + δ )} − Ẋcl(θ + δ ) ∗ Bcl(θ ,θ + δ )

Ccl(θ ,θ + δ )Xcl(θ + δ ) −γ∞Inz Dcl(θ ,θ + δ )
∗ ∗ −γ∞Inw

⎤

⎦< 0,

∀
(

θ , θ̇ ,δ , δ̇
)
∈ Ωθ ×Λθ ×Ωδ ×Λδ . (8.11)

Lemma 8.2 ([31]). Suppose that Dcl(θ ,θ + δ ) = 0 holds for all pairs (θ ,δ ). For
a given positive number γ2, if there exist a continuously differentiable parameter-
dependent matrix Xcl(θ + δ ) ∈ S

2n and a parameter-dependent matrix Q(θ ,θ +
δ ) ∈ S

nw such that (8.12), (8.13) and (8.14) hold, then the closed-loop system
Gcl(θ ,θ + δ ) is exponentially stable and satisfies (8.9) for all admissible quadru-
plets (θ , θ̇ ,δ , δ̇ ) ∈ Ωθ ×Λθ ×Ωδ ×Λδ .

[
He{Acl(θ ,θ + δ )Xcl(θ + δ )} − Ẋcl(θ + δ ) ∗

Ccl(θ ,θ + δ )Xcl(θ + δ ) −Inz

]
< 0,

∀
(

θ , θ̇ ,δ , δ̇
)
∈ Ωθ ×Λθ ×Ωδ ×Λδ , (8.12)

[
Q(θ ,θ + δ ) ∗
Bcl(θ ,θ + δ ) Xcl(θ + δ )

]
> 0, ∀(θ ,δ ) ∈ Ωθ ×Ωδ , (8.13)

γ2
2 > Tr (Q(θ ,θ + δ )) , ∀(θ ,δ ) ∈ Ωθ ×Ωδ . (8.14)

Results we derive in the next section are based on the linearizing change-of-
variables in [11, 36] and its simplified version in [19] for LTI controller design.
The result relies on a factorization of the inverse of the Lyapunov matrix such that

Xcl = Π1Π−1
2 with Π1 =

[
X In

Y T 0

]
and Π2 =

[
In Z

0 N T

]
, where Y and N are any

matrices such that In −X Z = Y N T. One possible choice of these Y and N
matrices is Y =X −Z −1 and N =−Z (details about this choice in GS controller
design can be found in [29]). For this choice, the invertible change-of-variables
amounts to replacing the control gain matrices by

K̄ =

[−Z −1 B2

0 Inu

](
K −

[
Z AX 0

0 0

])[
Y −1 0

−C2X Y −1 Iny

]
, (8.15)

where K is a full matrix containing the new decision variables. Other choices of
Y and N are modifications of the basis in which the state-space matrices of the
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controller are defined. The adopted choice allows to have a simplified expression of
the inverse of Lyapunov matrix

Xcl =

[
X Y

Y Y

]
. (8.16)

We adopt exactly this change-of-variables in the next section with the objective
to get a parameter-dependent K̄(θ + δ ) that should depend only on the provided
scheduling parameters with uncertainties θi + δi and not on the actual scheduling
parameters θi. For this reason, we impose the inverse of Lyapunov matrix Xcl(θ +δ )
to depend only on the provided scheduling parameters (thus X (θ + δ ), Y (θ + δ )
and Z (θ + δ ) are also functions of these provided scheduling parameters) and the
matrix A in the formulation of (8.15) is chosen to be A(θ + δ ) and not the actual
A(θ ). More precisely we use the following formulas:

Xcl(θ + δ ) =
[

X (θ + δ ) ∗
Y (θ + δ ) Y (θ + δ )

]
, (8.17)

K̄(θ +δ ) =
[−Z (θ +δ )−1 B2

0 Inu

](
K (θ +δ )−

[
Z (θ +δ )A(θ +δ )X (θ +δ ) 0

0 0

])

×
[

Y (θ +δ )−1 0
−C2X (θ +δ )Y (θ +δ )−1 Iny

]
. (8.18)

To cope with the term introduced by the choice of A(θ + δ ) in the change-of-
variables, a technical lemma is used. It is a variation on the celebrated properties
He{XTY} ≤ εXTX + ε−1Y TY , ∀ε > 0 (see [26]) and He{XTY} ≤ XTE X +
Y TE −1Y , ∀E = E T > 0 (see [43]). Combined to a Schur complement, the result is
used in the context of this article to approximate in a linear fashion some products
of parameter-dependent decision matrices.

Lemma 8.3. Suppose that symmetric matrices ϒ0,Γ and matrices ϒ1,ϒ2 with
compatible dimensions are given. If one of the following two inequalities holds for
some symmetric positive definite matrix E with compatible dimensions satisfying
E 1/2Γ = Γ E 1/2:

[
ϒ0 ∗[

ϒ1 Eϒ2
] −E Γ

]
< 0, (8.19)

[
ϒ0 ∗

diag (ϒ1,Eϒ2) −diag(E Γ ,E Γ )

]
< 0, (8.20)

then ϒ0 +

[
0 ∗

ϒ T
2 Γ −1ϒ1 0

]
< 0 holds.
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Proof. Applying Schur complement to (8.19) gives

ϒ0 +

[
0 ∗

ϒ T
2 Γ −1ϒ1 0

]
<−

⎡

⎣
ϒ T

1

(
E 1/2Γ E 1/2

)−1ϒ1 0

0 ϒ T
2 E 1/2Γ −1E 1/2ϒ2

⎤

⎦ .

The right-hand side is negative semidefinite. Thus, it proves the lemma for (8.19).
Similarly,

ϒ0 +

[
0 ∗

ϒ T
2 Γ −1ϒ1 0

]
<−

[
ϒ T

1
−ϒ T

2 E

](
E 1/2Γ E 1/2

)−1 [
ϒ1 −Eϒ2

]≤ 0

is obtained from (8.20) by applying Schur complement. Thus, it proves the lemma
for (8.20). 
�

8.3 Main Results

8.3.1 Proposed Methods

For both H∞ control-type and H2 control-type problems, we define the following
notations:

ϒA(θ ,θ + δ ) =
[

A(θ )X (θ+δ ) A(θ )
0 Z (θ + δ )A(θ )

]
+

[
0 B2

In 0

]
K (θ+δ )

[
In 0
0 C2

]
,

ϒB(θ ,θ + δ ) =
[

B1(θ )
Z (θ + δ )B1(θ )

]
+

[
0 B2

In 0

]
K (θ + δ )

[
0

D21(θ )

]
,

ϒC(θ ,θ + δ ) =
[

C1(θ )X (θ + δ ) C1(θ )
]
+
[

0 D12(θ )
]
K (θ + δ )

[
In 0
0 C2

]
,

ϒD(θ ,θ + δ ) = D11(θ )+
[

0 D12(θ )
]
K (θ + δ )

[
0

D21(θ )

]
,

ϒX(θ , θ̇ ,δ , δ̇ ) =
[−Ẋ (θ + δ ) 0

0 Ż (θ + δ )

]
.

We also define two choices of the pair of matrices (ϒd ,Γd) as follows:

ϒd(θ , θ̇ ,δ , δ̇ ) Γd(θ ,δ )
(i)

[
In ε1Ż (θ + δ )

] −ε1Z (θ + δ )
(ii) diag

(
In, ε1Ż (θ + δ )

)
diag

(−ε1Z (θ + δ ), −ε1Z (θ + δ )
) (8.21)
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and four choices of the pair of matrices (ϒu,Γu) as follows:

ϒu(θ ,δ ) Γu

(a)
[
X (θ + δ ) E2 (A(θ )−A(θ + δ ))T Z (θ + δ )

] −E2

(b)
[
(A(θ )−A(θ + δ ))X (θ + δ ) E2Z (θ + δ )

] −E2

(c) diag
(
X (θ + δ ) E2 (A(θ )−A(θ + δ ))T Z (θ + δ )

) −diag(E2,E2)

(d) diag
(
(A(θ )−A(θ + δ ))X (θ + δ ) E2Z (θ + δ )

) −diag(E2,E2)

(8.22)

8.3.1.1 H∞ Control-Type Problem

Let the parameter-dependent matrix

ϒ∞(θ , θ̇ ,δ , δ̇ ) =

⎡

⎣
He{ϒA(θ ,θ + δ )} +ϒX(θ , θ̇ ,δ , δ̇ ) ∗ ϒB(θ ,θ + δ )

ϒC(θ ,θ + δ ) −γInz ϒD(θ ,θ + δ )
∗ ∗ −γInw

⎤

⎦ .

(8.23)

Theorem 8.1. For a given positive number γ∞, suppose that there exist a positive
scalar ε1, a positive definite matrix E2 ∈ S

n, continuously differentiable parameter-
dependent matrices X (θ +δ ),Z (θ +δ ) ∈ S

n, and a parameter-dependent matrix
K (θ + δ ) ∈ R

(n+nu)×(n+ny) such that the following conditions hold for all quadru-
plets (θ , θ̇ ,δ , δ̇ ) ∈ Ωθ ×Λθ ×Ωδ ×Λδ :

[
X (θ + δ ) In

In Z (θ + δ )

]
> 0, (8.24)

⎡

⎣
ϒ∞(θ , θ̇ ,δ , δ̇ ) ∗[

ϒd(θ , θ̇ ,δ , δ̇ ) 0 0
ϒu(θ ,δ ) 0 0

] [
Γd(θ ,δ ) 0

0 Γu

]
⎤

⎦< 0, (8.25)

where (ϒd(θ , θ̇ ,δ , δ̇ ),Γd(θ ,δ )) is any pair chosen from (8.21) and (ϒu(θ ,δ ),Γu) is
any pair chosen from (8.22), then the GS controller K(θ +δ ), whose state-space ma-
trices are constructed using (8.18), stabilizes the closed-loop system Gcl(θ ,θ + δ )
and satisfies (8.8) for all admissible quadruplets (θ , θ̇ ,δ , δ̇ )∈Ωθ ×Λθ ×Ωδ ×Λδ .

Proof. Pre- and postmultiply (8.24) by

[
In 0
In −Z (θ + δ )−1

]
and its transpose,

respectively, to get that Xcl(θ +δ ) defined in (8.17) is positive definite. Thus, (8.10)
holds.
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Lemma 8.3 is applied twice to (8.25). First it is applied with respect to the pair
(ϒu(θ ,δ ),Γu) and whatever its choice among those defined in (8.22) one gets

[
ϒ∞,1(θ , θ̇ ,δ , δ̇ ) ∗[

ϒd(θ , θ̇ ,δ , δ̇ ) 0 0
]

Γd(θ ,δ )

]
< 0, (8.26)

whereϒ∞,1(θ , θ̇ ,δ , δ̇ ) has the same definition as (8.23) except for the termϒA(θ ,θ +
δ ) which is replaced by

ϒA,1(θ ,θ + δ ) =
[

A(θ )X (θ + δ ) A(θ )
Z (θ + δ )(A(θ )−A(θ + δ ))X (θ + δ ) Z (θ + δ )A(θ )

]

+

[
0 B2

In 0

]
K (θ + δ )

[
In 0
0 C2

]
.

This replacement allows to cope with the fact that the controller is defined using
A(θ + δ ) and not the actual A(θ ). Lemma 8.3 is then applied to (8.26) with respect

to the pair
(

ϒd(θ , θ̇ ,δ , δ̇ ),Γd(θ ,δ )
)

and whatever its choice among those defined

in (8.21) one gets:
ϒ∞,2(θ , θ̇ ,δ , δ̇ )< 0, (8.27)

where ϒ∞,2(θ , θ̇ ,δ , δ̇ ) has the same definition as ϒ∞,1(θ , θ̇ ,δ , δ̇ ) except for the term
ϒX(θ , θ̇ ,δ , δ̇ ) which is replaced by

ϒX ,2(θ , θ̇ ,δ , δ̇ ) =
[ −Ẋ (θ + δ ) ∗

Ż (θ + δ )Z (θ + δ )−1 Ż (θ + δ )

]
.

This replacement thus introduces some derivative dependent terms which are not
available for constructing controller matrices.

Similarly to [30,32–34], applying the change-of-variables, which amounts to the
inverse of formula (8.18), one proves that (8.11) holds with the Xcl(θ + δ ) defined
in (8.17). From Lemma 8.1, the assertions are proved. 
�

8.3.1.2 H2 Control-Type Problem

Let the parameter-dependent matrix

ϒ2(θ , θ̇ ,δ , δ̇ ) =
[
He{ϒA(θ ,θ + δ )} +ϒX(θ , θ̇ ,δ , δ̇ ) ∗

ϒC(θ ,θ + δ ) −Inz

]
. (8.28)

Theorem 8.2. For a given positive number γ2, suppose that there exist a positive
scalar ε1, a positive definite matrix E2 ∈ S

n, continuously differentiable parameter-
dependent matrices X (θ +δ ),Z (θ +δ ) ∈ S

n, and parameter-dependent matrices
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Q(θ ,θ + δ ) ∈ S
nw, K (θ + δ ) ∈ R

(n+nu)×(n+ny) such that the following conditions

hold for all quadruplets
(

θ , θ̇ ,δ , δ̇
)
∈ Ωθ ×Λθ ×Ωδ ×Λδ :

[
0 Inu

]
K (θ + δ )

[
0

Iny

]
= 0, (8.29)

⎡

⎣
ϒ2(θ , θ̇ ,δ , δ̇ ) ∗[

ϒd(θ , θ̇ ,δ , δ̇ ) 0
ϒu(θ ,δ ) 0

] [
Γd(θ ,δ ) 0

0 Γu

]
⎤

⎦< 0, (8.30)

⎡

⎣
Q(θ ,θ + δ ) ∗
ϒB(θ ,θ + δ )

[
X (θ + δ ) In

In Z (θ + δ )

]
⎤

⎦> 0, (8.31)

γ2
2 −Tr (Q(θ ,θ + δ ))> 0, (8.32)

where
(

ϒd(θ , θ̇ ,δ , δ̇ ),Γd(θ ,δ )
)

is any pair chosen from (8.21) and (ϒu(θ ,δ ),Γu) is

any pair chosen from (8.22), then the GS controller K(θ +δ ), whose state-space ma-
trices are constructed using (8.18), stabilizes the closed-loop system Gcl(θ ,θ + δ )
and satisfies (8.9) for all admissible quadruplets (θ , θ̇ ,δ , δ̇ ) ∈ Ωθ ×Λθ ×Ωδ ×Λδ .

The proof is omitted here as it is very similar to that of Theorem 8.1.

Remark 8.2. In Theorem 8.1 and Theorem 8.2, PDLFs are set as xT
clXcl(θ +δ )−1xcl

using Xcl(θ + δ ) defined in (8.17) with Y (θ + δ ) = X (θ + δ )−Z (θ + δ )−1.

Remark 8.3. Theorems 8.1 and 8.2 have eight different formulations for the same
conclusions. At the current stage, it is not certain which is the best with respect
to conservatism. However, concerning the numerical complexity for designing
controllers, formulations using matrices with small numbers of rows are always
preferred, i.e., choice (i) in (8.21), and choice (a) or (b) in (8.22) are recommended.

Remark 8.4. As (8.21) and (8.22) indicate, both inequalities (8.25) and (8.30) have
multiplications of decision variables, i.e., ε1Z (θ + δ ) and ε1Ż (θ + δ ), and terms
involving E2 and Z (θ +δ ). That is, those inequalities are PDBMIs and are PDLMIs
for fixed values of ε1 and E2.

Remark 8.5. Theorems 8.1 and 8.2 introduce a positive definite matrix E2 to address
the gap between the actual A(θ ) and its uncertain value A(θ + δ ) used to define
the controller matrix AK(θ + δ ). Applying the same technique exposed above, we
can derive similar formulations for designing GSOF controllers for LPV system
G(θ ) with Assumption 8.1 being relaxed. However, in this case, the gap between
B2(θ ) and B2(θ + δ ), or between C2(θ ) and C2(θ + δ ) should be also considered
thus introducing a new bilinear term dependent on a new matrix. This would
consequently increase both the conservatism and the numerical complexity.
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8.3.1.3 Algorithm for Solving PDBMIs

As noted in Remark 8.4, our method is formulated in terms of PDBMIs which are
not tractable compared to PDLMIs. We show hereafter two algorithms used in this
article to solve the PDBMIs. Both these algorithms assume that we are able to solve
PDLMIs which is indeed possible with either SOS techniques [9, 24, 37] or with
the SV approach [25]. The main assumption for applying these results is that the
data and the decision variables are polynomially dependent with respect to θ , θ̇ ,δ ,
and δ̇ .

The bilinear terms in (8.21) are ε1Z (θ + δ ) and ε1Ż (θ + δ ). If ε1 is fixed
a priori then the bilinear terms become linear with respect to the decision variables.
Thus, line search for ε1 circumvents the difficulty.

On the other hand, the bilinear terms in (8.22) are complicated. However, if E2 is
set as ε2In with a priori fixed positive scalar ε2, then the bilinear terms become linear
with respect to the decision variables. Similarly to the above discussion for ε1, line
search for ε2 circumvents the difficulty. Thus, the following algorithm is proposed.

Algorithm I (line search algorithm) Solve the conditions of Theorem 8.1 or
Theorem 8.2 with two line search parameters ε1 and ε2 (E2 = ε2In).

Although the above algorithm is simple and works well, the numerical com-
plexity is huge because of two line search parameters. In addition, restricting E2 to
be ε2In introduces conservatism. Note that if either a pair (ε1,E2) or Z (θ + δ ) is
fixed a priori, the conditions of Theorems 8.1 and 8.2 are formulated with tractable
PDLMIs. Thus, the following algorithm, in which “Theorem” and “γ”, respectively,
denote “Theorem 8.1” and “γ∞” when Problem 8.1 is addressed or “Theorem 8.2”
and “γ2” when Problem 8.2 is addressed, is proposed to overcome the bilinear terms.

Algorithm II (iterative algorithm)
Step 0 Set i = 0, γi = ∞, ε1 = ε10 , and E2 = E20 = ε20 In with some given

positive scalars ε10 and ε20 , e.g., 1.
Step i.1 Set i = i+ 1. Minimize γ under the conditions of Theorem with fixed

ε1i−1 and E2i−1 , and set Z (θ + δ )i−1 be the optimum of Z (θ + δ ).
Step i.2 Minimize γ under the conditions of Theorem with fixed Z (θ +δ )i−1,

and set ε1i , E2i , and γi be the optima of ε1, E2, and γ , respectively.
Step i.3 If γi−1 − γi is below some predefined threshold ρ , then stop the

iteration. Otherwise, return to Step i.1.

Although this algorithm does not guarantee the convergence to the global optima,
conservatism reduction is expected compared to Algorithm I since the structural
constraint for E2 is relaxed.

8.3.1.4 Extension: LPV Systems with Unmeasurable Parameters

Theorems 8.1 and 8.2 address the design problem of GSOF controllers in which
all parameters of the plant are available for the controllers, although with some
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uncertainties δi. We shall now extend the results to the design problem of robust
GSOF controllers in which some of the parameters are available and others are not.
The controller gains then should depend on the available parameters and the closed-
loop system should be robust against the others, which stand for uncertainties.

Let us assume that the parameters θ1 . . .θk are ordered in such a way that
the first k1 elements are scheduling parameters and the k − k1 last elements are
uncertainties. Enforcing that parameters θi (i = k + 1, · · · ,k) is uncertain, and
thus not available for tuning the controller, amounts to stating that uncertainties
δi (i = k + 1, · · · ,k) on their measurements are as large as their actual values:
δi =−θi, (i = k+1, · · · ,k). Thus, the robust GSOF controller design problem suits
the above described framework by simply rewriting the vector of uncertainties on
the parameters as δ[1,k1] =

[
δ1 · · · δk1 −θk1+1 · · · −θk

]T
and the vector of available

parameters becomes:

θ + δ[1,k1] =
[
θ1 + δ1 · · · θk1 + δk1 0 · · · 0

]T
. (8.33)

According to these notations, we appropriately define the sets of admissible uncer-
tainties Ωδ[1,k1]

and of their derivatives Λδ[1,k1]
. With these notations, Theorems 8.1

and 8.2 can be easily extended to handle the robust GSOF controller design problem.
We only give the formulation of that result for the H∞ control-type problem.
A similar one can trivially be derived for the H2 control-type problem.

Corollary 8.1. For a given positive number γ∞, suppose that there exist a positive
scalar ε1, a positive definite matrix E2 ∈ S

n, continuously differentiable parameter-
dependent matrices X (θ +δ[1,k1]),Z (θ +δ[1,k1])∈ S

n, and a parameter-dependent

matrix K (θ + δ[1,k1]) ∈ R
(n+nu)×(n+ny) such that the conditions (8.24) and (8.25)

hold for all quadruplets (θ , θ̇ ,δ[1,k1], δ̇[1,k1]) ∈ Ωθ ×Λθ ×Ωδ[1,k1]
×Λδ[1,k1]

, where

(ϒd(θ , θ̇ ,δ , δ̇ ),Γd(θ ,δ )) and (ϒu(θ ,δ ),Γu)) are, respectively, any pairs chosen from
(8.21) and (8.22) with δ and δ̇ being, respectively, replaced by δ[1,k1] and δ̇[1,k1], then
the GS controller K(θ + δ[1,k1]), whose state-space matrices are constructed using
(8.18), stabilizes the closed-loop system Gcl(θ ,θ + δ[1,k1]) and satisfies (8.8) for all

admissible quadruplets (θ , θ̇ ,δ[1,k1], δ̇[1,k1]) ∈ Ωθ ×Λθ ×Ωδ[1,k1]
×Λδ[1,k1]

.

Remark 8.6. Since the controller matrices are constructed using the matrices
X (θ + δ[1,k1]) and Z (θ + δ[1,k1]), the method imposes to enforce these to be in-
dependent of the uncertainties θk1+1, . . . ,θk. This clearly brings some conservatism
with respect to the robustness issues. The conservatism is similar to that of the
methods in [30] (Proposition 2 and Proposition 3), in which PiDLFs are adopted
for designing robust controllers.
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8.3.2 Recovery of Conventional Design Methods

In this section, we show that Theorems 8.1 and 8.2 recover the design methods
in [32, 34]. Although we only show the result for Theorem 8.1, similar assertions
hold for Theorem 8.2. Our claims to be proved here are as follows:

• Consider Problem 8.1 in which PiDLFs are adopted instead of PDLFs. Then,
Theorem 8.1 recovers the method in [32] for an ε1 taken sufficiently large.

• Consider Problem 8.1 in which scheduling parameters are exactly provided.
Then, Theorem 8.1 recovers the method in [34] for an E2 = ε2In taken either suf-
ficiently large or close to zero depending on the choices of the pair (ϒu(θ ,δ ),Γu).

Let us first address the first assertion. In [32], the design problem is considered
for a parametrically affine GSOF controller K(θ + δ ) for LPV system G(θ ) with
some mild constraints.1 Nevertheless, these assumptions can be removed and results
of [32] may be extended to LPV system (8.1). This extended version is given below.

Lemma 8.4. For a given positive number γ∞, suppose that there exist a positive
definite matrix E2 ∈ S

n, parameter independent matrices X ,Z ∈ S
n, and a

parameter-dependent matrix K (θ + δ ) ∈ R
(n+nu)×(n+ny) such that the following

conditions hold for all pairs (θ ,δ ) ∈ Ωθ ×Ωδ :

[
X In

In Z

]
> 0, (8.34)

[
ϒ c

∞(θ ,θ + δ ) ∗[
ϒu(θ ,δ ) 0 0

]
Γu

]
< 0, (8.35)

where ϒ c
∞(θ ,θ + δ ) stands for the matrix defined in (8.23) with ϒX(θ , θ̇ ,δ , δ̇ ) set to

0, and (ϒu(θ ,δ ),Γu) is any pair chosen from (8.22), then the GS controller K(θ +δ ),
whose state-space matrices are constructed using (8.18), stabilizes the closed-loop
system Gcl(θ ,θ + δ ) and satisfies (8.8) for all admissible pairs (θ ,δ ) ∈ Ωθ ×Ωδ .

We make the following assertion for Theorem 8.1 and Lemma 8.4. It clearly
states that Theorem 8.1 is less conservative since it allows PDLFs.

Theorem 8.3. Let any performance level γ∞, the following two propositions are
equivalent:

-1- There exists a solution (E2,X ,Z ,K (θ +δ )) to the conditions of Lemma 8.4.
-2- There exists a solution (ε1,E2,X ,Z ,K (θ + δ )) to the conditions of

Theorem 8.1 with parameter-independent matrices X and Z .

1In addition to Assumption 8.1, matrices A(θ ), B1(θ ), C1(θ ) and D11(θ ) are supposed to be
parametrically affine, and matrices D12(θ ) and D21(θ ) are supposed to be constant.
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Proof. Let us first prove that -2- implies -1-. For parameter-independent matrices
X and Z , condition (8.24) is exactly (8.34). Pre- and postmultiply (8.25) with

parameter-independent X and Z by

[
I2n+nz+nw 0

0
[

0 In
]
]

and its transpose, respec-

tively, one exactly gets condition (8.35). Thus -1- indeed holds with exactly the same
values of the solution (E2,X ,Z ,K (θ + δ )) of Theorem 8.1.

We now prove that -1- implies -2-. The condition (8.35) holds for all pairs
(θ ,δ ) ∈ Ωθ × Ωδ , i.e. (8.35) holds on a compact set. There, therefore, exists a
positive scalar ε , potentially very small, such that for all pairs (θ ,δ ) ∈ Ωθ ×Ωδ

[
ϒ c

∞(θ ,θ + δ ) ∗[
ϒu(θ ,δ ) 0 0

]
Γu

]
<−diag(εZ −1, 0, 0, 0, 0). (8.36)

Take ε1 = ε−1, the right-hand term of (8.36) can be factorized either as

[
In 0 0 0 0

]T
(ε1Z )−1 [ In 0 0 0 0

]

or as
[

In 0 0 0 0
0 0 0 0 0

]T [
ε1Z 0

0 ε1Z

]−1 [
In 0 0 0 0
0 0 0 0 0

]
.

A Schur complement applied to (8.36) with either these factorizations gives (8.25)
for the two possible choices of the pair (ϒd ,Γd) with Ẋ = Ż = 0. 
�
Remark 8.7. The proof indicates that when looking for a matrix Z (θ +δ ) with fast
variations of scheduling parameters, an appropriate choice of ε1 is to take it large.
Smaller values of ε1 in Theorem 8.1 may reduce the conservatism due to having a
constant Z .

In the proof given above, the reasoning does not depend at all on X , it is,
therefore, also possible to give the following intermediate result which is trivially
more conservative than Theorem 8.1, but has the advantage of not involving bilinear
terms with scalar ε1. This result is directly related to the result of [1] using structured
PDLFs.

Lemma 8.5. For a given positive number γ∞, suppose that there exist a positive
definite matrix E2 ∈ S

n, a continuously differentiable parameter-dependent matrix
X (θ + δ ) ∈ S

n, a parameter-independent matrix Z ∈ S
n, and a parameter-

dependent matrix K (θ + δ ) ∈ R
(n+nu)×(n+ny) such that the following conditions

hold for all quadruplets (θ , θ̇ ,δ , δ̇ ) ∈ Ωθ ×Λθ ×Ωδ ×Λδ :

[
X (θ + δ ) In

In Z

]
> 0, (8.37)

[
ϒ X

∞ (θ , θ̇ ,δ , δ̇ ) ∗[
ϒu(θ ,δ ) 0 0

]
Γu

]
< 0, (8.38)
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whereϒ X
∞ (θ , θ̇ ,δ , δ̇ ) stands for the matrix defined in (8.23) with ϒX (θ , θ̇ ,δ , δ̇ ) being

replaced by diag
(−Ẋ (θ + δ ),0

)
and (ϒu(θ ,δ ),Γu) is any pair chosen from (8.22),

then the GS controller K(θ + δ ), whose state-space matrices are constructed using
(8.18), stabilizes the closed-loop system Gcl(θ ,θ + δ ) and satisfies (8.8) for all
admissible quadruplets (θ , θ̇ ,δ , δ̇ ) ∈ Ωθ ×Λθ ×Ωδ ×Λδ .

We now address the second assertion. The method in [34] is applicable for LPV
system (8.1) with Assumption 8.1 not being made. Thus, we show a slightly revised
version of the method in [34], which is for LPV system (8.1) with Assumption 8.1.

Lemma 8.6. For a given positive number γ∞, suppose that there exist a
positive scalar ε1, continuously differentiable parameter-dependent matrices
X (θ ),Z (θ ) ∈ S

n, and a parameter-dependent matrix K (θ ) ∈ R
(n+nu)×(n+ny)

such that the following conditions hold for all pairs
(
θ , θ̇

) ∈ Ωθ ×Λδ :
[

X (θ ) In

In Z (θ )

]
> 0, (8.39)

[
ϒ∞(θ , θ̇ ) ∗[

ϒd(θ , θ̇ ) 0 0
]

Γd(θ )

]
< 0, (8.40)

where ϒ∞(θ , θ̇ ) stands for the matrix defined in (8.23) with both δ and δ̇ being
set to be 0 and

(
ϒd(θ , θ̇ ),Γd(θ )

)
is any pair chosen from (8.21), then the GS

controller K(θ ), whose state-space matrices are constructed using (8.18), stabilizes
the closed-loop system Gcl(θ ) and satisfies (8.8) for all pairs (θ , θ̇ ) ∈ Ωθ ×Λθ

We make the following assertion for Theorem 8.1 and Lemma 8.6. It clearly
states that Theorem 8.1 extends Lemma 8.6 to the design problem with uncertainties
on scheduling parameters, without additional conservatism with respect to the
parameter-dependency of Lyapunov functions.

Theorem 8.4. Let any performance level γ∞, the following two propositions are
equivalent:

-1- There exists a solution (ε1,X (θ ),Z (θ ),K (θ )) to the conditions of
Lemma 8.6.

-2- There exists a solution(ε1,E2,X (θ ),Z (θ ),K (θ )), i.e., with uncertainties δ
being set to zero, to the conditions of Theorem 8.1.

Proof. The proof that -2- implies -1- is similar to that in the proof of Theorem 8.3.
We thus concentrate on proving that -1- implies -2-.

Condition (8.40) holds for all pairs (θ , θ̇ ) ∈ Ωθ ×Λθ , i.e., (8.40) holds on a
compact set. There, therefore, exists a positive scalar ε , potentially very small, such
that for all pairs

(
θ , θ̇

) ∈ Ωθ ×Λδ

[
ϒ∞(θ , θ̇ ) ∗[

ϒd(θ , θ̇ ) 0 0
]

Γd(θ )

]
<−diag(εX (θ )2, 0, 0, 0, 0). (8.41)
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Take E2 = ε−1In, the right-hand term of (8.41) can be factorized either as

[
X (θ ) 0 0 0 0

]T
E −1

2

[
X (θ ) 0 0 0 0

]

or as
[

X (θ ) 0 0 0 0
0 0 0 0 0

]T [
E2 0
0 E2

]−1 [
X (θ ) 0 0 0 0

0 0 0 0 0

]
.

A Schur complement applied to (8.41) with either these factorizations gives (8.25)
for the two choices (a) and (c) of the pair (ϒu,Γu), respectively. The formulas for
choices (b) and (d) are obtained in a similar way but starting from the existence of
ε > 0 potentially very small such that

[
ϒ∞(θ , θ̇ ) ∗[

ϒd(θ , θ̇ ) 0 0
]

Γd(θ )

]
<−diag

(
0, εZ (θ )2, 0, 0, 0

)
, (8.42)

and choosing E2 = εIn. 
�
Remark 8.8. The proof indicates that when the uncertainties on the scheduling
parameters are small, an appropriate choice of E2 is to have it proportional to the
identity matrix E2 = ε2In and to take ε2 large in case of choices (a) and (c) of the pair
(ϒu,Γu), and to take ε2 small for choices (b) and (d). Other choices of E2 in Theorem
8.1 can potentially reduce conservatism when uncertainties δi are large.

Remark 8.9. Combining Theorems 8.3 and 8.4, one can easily prove that our
proposed method includes conventional design method either with PiDLFs or
structured PDLFs as in [1].

8.3.3 Polynomially Parameter-Dependent GSOF Controllers

The GSOF controllers designed by our methods, i.e., Theorem 8.1, Theorem 8.2,
and Corollary 8.1, meet our design requirements: robustness against the uncertain-
ties on scheduling parameters as well as good implementability being independent
of their derivatives. However, as shown in (8.18), the state-space matrices of
designed GSOF controllers are rationally parameter dependent and require com-
plicated online calculations. From a practical point of view, implementability would
be much better if GSOF controllers are polynomially parameter dependent. Related
to this issue, we formulate the following two design problems.

Problem 8.3. Suppose that a polynomially parameter-dependent solution
(ε1,E2,X (θ + δ ),Z (θ + δ ),K (θ + δ )) to the conditions of Theorem 8.1 is
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given for some γ∞. Find a polynomially parameter-dependent K̄(θ + δ ) solution
of (8.11) with the same γ∞ using the matrix Xcl(θ + δ ) defined in (8.17) for all

quadruplets
(

θ , θ̇ ,δ , δ̇
)
∈ Ωθ ×Λθ ×Ωδ ×Λδ .

Problem 8.4. Suppose that a polynomially parameter-dependent solution
(ε1,E2,X (θ + δ ),Z (θ + δ ),Q(θ ,θ + δ ),K (θ + δ )) to the conditions of
Theorem 8.2 is given for some γ2. Find a polynomially parameter-dependent
K̄(θ + δ ) solution of (8.12) and (8.13) with the same Q(θ ,θ + δ ) using the matrix

Xcl(θ +δ ) defined in (8.17) for all quadruplets
(

θ , θ̇ ,δ , δ̇
)
∈ Ωθ ×Λθ ×Ωδ ×Λδ .

Having chosen the order of the polynomially parameter-dependent matrix
K̄(θ + δ ), these problems are formulated in terms of PDLMIs that can be solved
with some numerical methods. If a feasible solution is found, one may be satisfied
and use the obtained implementable controller. If not, a strategy may be to increase
the order of the polynomially parameter-dependent matrix K̄(θ + δ ) and solve
again the problem. The question then becomes whether it is guaranteed to get a
feasible solution, eventually at the expense of sufficiently high-order polynomially
parameter-dependent matrix K̄(θ + δ ). The answer is positive and relies on
Weierstrass approximation theorem. Such reasoning can be found in [7] and is
reproduced here for our problems.

For this assertion, we make the following very mild assumption:

Assumption 8.3. Matrices
[

BT
2 DT

12(θ )
]T

and
[

C2 D21(θ )
]

have at least single
non-zero entries for all admissible θ ∈ Ωθ .

Matrices B2 and C2 usually have at least single non-zero entries. Otherwise,
controllability or observability is, or both are not satisfied. Thus, this assumption
is not restrictive at all.

Under this very mild constraint, we give a proof for our assertion.

Proof. Suppose that a polynomially parameter-dependent solution (ε1,E2,X (θ +
δ ),Z (θ +δ ),K (θ +δ )) to the conditions of Theorem 8.1 is given. From formulas
(8.17) and (8.18), there exist rationally parameter-dependent matrices Xcl(θ + δ )
and K̄r(θ + δ ) satisfying (8.11). This inequality is satisfied for all quadruplets(

θ , θ̇ ,δ , δ̇
)
∈ Ωθ ×Λθ × Ωδ ×Λδ , i.e., on a compact set and all functions are

continuous; therefore, there exists a positive scalar μ , possibly very small, such

that ∀
(

θ , θ̇ ,δ , δ̇
)
∈ Ωθ ×Λθ ×Ωδ ×Λδ

⎡

⎣
He{Acl(θ ,θ + δ )Xcl(θ + δ )} − Ẋcl(θ + δ ) ∗ Bcl(θ ,θ + δ )

Ccl(θ ,θ + δ )Xcl(θ + δ ) −γ∞Inz Dcl(θ ,θ + δ )
∗ ∗ −γ∞Inw

⎤

⎦<−μI.
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Matrices Acl, Bcl, Ccl, and Dcl are affine with respect to K̄r(θ + δ ), thus this
inequality can be written as

Ξ0(θ , θ̇ ,δ , δ̇ )+He{Ξ1(θ )K̄r(θ + δ )Ξ2(θ ,δ )} <−μI,

where Ξ1(θ ) =
[

B̄T
2 D̄T

12(θ ) 0
]T

and Ξ2(θ ,δ ) =
[

C̄2Xcl(θ + δ ) 0 D̄21(θ )
]
. Due

to Assumption 8.3 and the fact that Ξ1(θ ) and Ξ2(θ ,δ ) are continuous bounded
functions on a compact set (Assumption 8.2), there exists a positive scalar α such
that 0< ‖Ξ1(θ )‖2‖Ξ2(θ ,δ )‖2 ≤α holds for all pairs (θ ,δ )∈Ωθ ×Ωδ where || · ||2
stands for the spectral norm.

Each coefficient of the matrix K̄r(θ +δ ) = [kr
i j(θ +δ )]i=1···(n+nu), j=1···(n+ny) is a

rational real-valued function. By Weierstrass approximation theorem, there exists a
polynomial function that is as close as needed to the rational function on the compact
set Ωθ ×Ωδ . Thus, for any positive scalar η , there exist polynomial real-valued
functions kp

i j(θ +δ ) such that |kp
i j(θ +δ )−kr

i j(θ +δ )| ≤η hold for all pairs (θ ,δ )∈
Ωθ ×Ωδ . From Lemma 8.7 in the appendix, the following holds for all pairs (θ ,δ )∈
Ωθ ×Ωδ .

‖K̄p(θ + δ )− K̄r(θ + δ )‖2 ≤ η
√
(n+ nu)(n+ ny).

Take η ≤ μ/(2α
√
(n+ nu)(n+ ny)). One then gets that:

Ξ0(θ , θ̇ ,δ , δ̇ )+He{Ξ1(θ )K̄p(θ + δ )Ξ2(θ ,δ )}
<−μI+He{Ξ1(θ )(K̄p(θ + δ )− K̄r(θ + δ ))Ξ2(θ ,δ )}
≤ (−μ + ‖He{Ξ1(θ )(K̄p(θ + δ )− K̄r(θ + δ ))Ξ2(θ ,δ )}‖2)I
≤ (−μ + 2‖Ξ1(θ )‖2‖K̄p(θ + δ )− K̄r(θ + δ )‖2‖Ξ2(θ ,δ )‖2) I
≤ 0.

Equation (8.11) thus holds for the polynomially parameter-dependent matrix
K̄p(θ + δ ) = [kp

i j(θ + δ )]i=1,···,(n+nu), j=1,··· ,(n+ny). 
�
The same result can be obtained for the H2 control-type problem.

8.4 Numerical Examples

To demonstrate the effectiveness of our method, we show design results of H∞
control-type problem for two numerical examples from the literature. All our results
are obtained by using YALMIP [16] and SeDuMi [38].

The PDLMIs in Algorithm I and Algorithm II in the design process are solved
by applying Lemma 8.8 in the appendix if they are not parametrically affine.
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8.4.1 Example in [12]

The state-space matrices of LPV system G(θ ) are given as follows:

⎡

⎣
A(θ ) B1(θ ) B2

C1(θ ) D11(θ ) D12(θ )
C2 D21(θ )

⎤

⎦=

⎡

⎢
⎢
⎢
⎣

−0.89− 0.89θ 1 0.01 −0.119
−142.6− 178.25θ 0 0 −130.8

0 1 0 1
−1.52 0 0.01

⎤

⎥
⎥
⎥
⎦
, (8.43)

where scheduling parameter θ is bounded as |θ | ≤ 1, the variation rate of θ is
bounded as |θ̇ | ≤ ζ , the uncertainty δ in the provided scheduling parameter is
bounded as |δ | ≤ ξ , and the variation rate of δ is bounded as |δ̇ | ≤ 10× ζ . We
consider the following sets for ζ and ξ :

ζ ∈ {0, 1, 100, 10,000},
ξ ∈ {0, 0.1, 0.5, 1}.

We omit the results for ζ = 10,000 when ξ �= 0 holds, because they are almost the
same as those for ζ = 100.

In the design results shown below, parameter-dependent decision matrices are
all set to be affine with respect to the parameter. Although we designed GSOF
controllers using quadratically parameter-dependent decision matrices, the results
are almost the same as using parametrically affine decision matrices. Thus, they are
omitted here.

Table 8.2 shows the design results using Theorem 8.1 with Algorithm I in which
line search algorithm for ε1 and ε2 were conducted with all combinations of six
points linearly gridded over a logarithmic scale in the interval [10−5, 105] for
each parameter. For reference, the values of the line search parameters for optimal
controllers are also given in parentheses.

Table 8.3 shows the design results using Theorem 8.1 with Algorithm II in which
threshold ρ was set as 0.001.

Table 8.4 shows the design results using Lemma 8.4 with matrix E2 being set
to be ε2In with a positive scalar ε2 and all parameter-dependent decision matrices
being set to be parametrically affine. In this case, the conditions of Lemma 8.4 are all
parametrically affine. Thus, they were solved without Lemma 8.8 being applied. The
line search for ε2 was conducted with six points linearly gridded over a logarithmic
scale in the interval [10−5, 105].

Table 8.5 shows the design results using Lemma 8.6 but with δ being set to 0. The
line search for ε1 was conducted with six points linearly gridded over a logarithmic
scale in the interval [10−5, 105].

We first examine the conservatism of two algorithms, line search algorithm and
iterative algorithm. Comparison of Tables 8.2 and 8.3 for ξ �= 0 confirms that the
iterative algorithm has a good potential to produce less conservative controllers
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Table 8.3 Optimal γ∞ when designing GSOF controllers using Theorem 8.1 with Algorithm II

ξ ζ (i), (a) (i), (b) (i), (c) (i), (d) (ii), (a) (ii), (b) (ii), (c) (ii), (d)

0 0 0.111 0.118 0.111 0.119 0.111 0.119 0.111 0.120
1 0.118 0.120 0.118 0.121 0.118 0.130 0.118 0.130
100 0.153 0.155 0.153 0.159 0.153 0.155 0.153 0.159
10,000 0.153 0.156 0.153 0.160 0.153 0.156 0.153 0.160

0.1 0 0.130 0.136 0.183 0.128 0.130 0.135 0.183 0.128
1 0.159 0.163 0.191 0.155 0.158 0.159 0.189 0.153
100 0.172 0.171 0.258 0.173 0.172 0.171 0.256 0.173

0.5 0 0.212 0.212 0.533 0.276 0.212 0.212 0.532 0.277
1 0.230 0.233 0.461 0.309 0.231 0.231 0.439 0.311
100 0.235 0.235 0.433 0.310 0.235 0.235 0.397 0.311

1.0 0 0.290 0.474 1.221 0.503 0.290 0.477 1.214 0.503
1 0.290 0.474 1.466 0.504 0.290 0.471 0.900 0.504
100 0.290 0.477 1.195 0.503 0.290 0.479 1.304 0.503

“(i), (a)”, etc. in the first row denote the choices of (8.21) and (8.22)

Table 8.4 Optimal γ∞ when
designing GSOF controllers
using Lemma 8.4

ξ (a) (b) (c) (d)

0 0.153 0.153 0.153 0.153
(1.0e+5) (1.0e−5) (1.0e+5) (1.0e−5)

0.1 0.218 0.314 0.205 0.307
(1.0e−1) (1.0e−1) (1.0e−1) (1.0e−1)

0.5 0.734 1.675 0.670 1.629
(1.0e−1) (1.0e−1) (1.0e−1) (1.0e−1)

1.0 1.549 4.556 1.436 4.503
(1.0e−1) (1.0e−1) (1.0e−1) (1.0e−1)

“(a)”, etc. in the first row denote the choice of (8.22), and
the numbers in parentheses denote the values of line search
parameter ε2 for optimal controllers

than the line search algorithm. This fact is reasonable as the iterative algorithm
uses matrix E2 instead of scalar ε2. However, the iterative algorithm sometimes,
in particular ξ = 0, produces more conservative controllers than the line search
algorithm. This may be caused by the rough stopping criterion as ρ = 0.001.

We next examine the recovery of Theorem 8.1 to Lemma 8.4. Comparison of
Table 8.2 for large values of ζ and Table 8.4 confirms that Theorem 8.3 holds.

We finally examine the recovery of Theorem 8.1 to Lemma 8.6. Comparison of
Table 8.2 for ξ = 0 and Table 8.5 confirms that Theorem 8.4 holds.
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Table 8.5 Optimal γ∞ when
designing GSOF controllers
using Lemma 8.6 with δ
being set to 0

ζ (i) (ii)

0 0.111 0.111
(1.0e+5) (1.0e+5)

1 0.119 0.118
(1.0e−1) (1.0e−1)

100 0.152 0.152
(1.0e+5) (1.0e+5)

10,000 0.153 0.153
(1.0e+5) (1.0e+5)

“(i)” and “(ii)” in the first row denote
the choice of (8.21), and the numbers
in parentheses denote the values of
line search parameter ε1 for optimal
controllers

8.4.2 Example in [18]

The state-space matrices of LPV system G(θ ) are given as

⎡

⎣
A(θ ) B1(θ ) B2(θ )

C1(θ ) D11(θ ) D12(θ )
C2(θ ) D21(θ )

⎤

⎦=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−4 3 5 1 0
0 7 −5 −2 16

0.1 −2 −3 1 −10
1 1 0 0 1
0 1 0 2

⎤

⎥
⎥
⎥
⎥
⎥
⎦
+θ

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 0 1
2 0 −5 0 −5
2 5 1.5 0 3.5
0 0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦
,

(8.44)

where scheduling parameter θ is bounded as |θ | ≤ 3, the variation rate of θ is
bounded as |θ̇ | ≤ ζ , the uncertainty δ in the provided scheduling parameter is
bounded as |δ | ≤ ξ , and the variation rate of δ is bounded as |δ̇ | ≤ 10× ζ . We
consider the following sets for ζ and ξ :

ζ ∈ {0, 1, 10},
ξ ∈ {0, 0.01, 0.05}.

Since the state-space matrices in (8.44) do not satisfy Assumption 8.1, a strictly
proper LTI filter 1/(0.01s+ 1) is implemented to control input u.

Hereafter, “∞” in tables denotes that no stabilizing controllers were obtained.
We first design GSOF controllers with δ being set to 0 using the method in [1],

in which all parameter-dependent decision matrices apart from X(θ ) and Y (θ ) are
set to be affine with respect to θ . The results are shown in Table 8.6. Note that
the controllers designed using parameter-dependent X(θ ) and Y (θ ) depend on the
derivative of the scheduling parameter θ̇ .

For reference, we design GSSF controllers using Lemma 8.9 in the appendix.
The results are shown in Table 8.7. Considering that the method in Lemma 8.9 is a
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Table 8.6 Optimal γ∞ when designing GSOF controllers using method in [1] with δ
being set to 0

ζ
Parametrically
affine X(θ ),Y (θ )

Parametrically affine
X(θ ) and constant Y

Constant X and
parametrically
affine Y (θ )

Constant
X ,Y

0 19.291 ∞ 26.071 ∞
1 21.383 ∞ 27.500 ∞
10 32.043 ∞ 37.291 ∞

Table 8.7 Optimal γ∞ when designing GSSF controllers using Lemma 8.9

ξ ζ
Parametrically affine
decision matrices

Quadratically parameter-dependent
decision matrices

0 0 1.068 1.045
1 1.144 1.087

10 1.796 1.445

0.01 0 1.093 1.058
1 1.907 1.509

10 ∞ ∞

0.05 0 1.174 1.100
1 1.956 1.536

10 ∞ ∞

Table 8.8 Optimal γ∞ when designing GSOF controllers using Theorem 8.1 with Algorithm II
and parametrically affine decision matrices

ξ ζ (i), (a) (i), (b) (i), (c) (i), (d) (ii), (a) (ii), (b) (ii), (c) (ii), (d)

0 0 ∞ 19.302 574.876 21.071 ∞ 21.070 574.934 19.333
1 707.225 22.357 707.225 22.115 706.637 22.384 706.631 23.472

10 1,802.908 38.072 1,802.839 36.919 1,822.564 37.473 1,822.579 38.689

0.01 0 ∞ 22.964 612.772 21.819 ∞ 22.965 612.770 22.553
1 ∞ 43.109 ∞ 45.381 ∞ 46.747 ∞ 44.454

10 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

0.05 0 ∞ 72.698 826.937 55.589 ∞ 72.697 ∞ 60.873
1 ∞ 485.940 ∞ 243.284 ∞ 479.622 ∞ ∞

10 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
“(i), (a)”, etc. in the first row denote the choices of (8.21) and (8.22)

direct extension of the conventional method of GSSF controllers and no additional
conservatism is consequently introduced, the results in Table 8.7 for ζ = 10 and
ξ �= 0 reveal the difficulty for designing GS controllers which are robust against the
uncertainties on the scheduling parameters.

We next design GSOF controllers using Theorem 8.1, in which iterative algo-
rithm was conducted with threshold ρ = 0.001, with parametrically affine decision
matrices and quadratically parameter-dependent decision matrices. The results are
given in Tables 8.8 and 8.9.
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Table 8.9 Optimal γ∞ when designing GSOF controllers using Theorem 8.1 with Algorithm II
and quadratically parameter-dependent decision matrices

ξ ζ (i), (a) (i), (b) (i), (c) (i), (d) (ii), (a) (ii), (b) (ii), (c) (ii), (d)

0 0 401.295 17.750 401.298 17.751 401.342 16.352 401.346 16.345

1 477.443 19.509 480.690 19.513 478.102 18.541 475.105 18.665

10 1,339.922 31.767 1,339.905 31.785 1,323.187 31.579 1,323.236 31.582

0.01 0 431.811 19.281 417.931 18.859 431.805 19.276 417.875 18.859

1 ∞ 35.993 ∞ 37.311 ∞ 35.597 ∞ 37.101

10 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
0.05 0 673.785 53.386 544.276 44.844 673.778 53.388 544.288 44.842

1 ∞ 199.587 ∞ 147.354 ∞ 196.162 ∞ 146.467

10 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

“(i), (a)”, etc. in the first row denote the choices of (8.21) and (8.22)

We first examine the conservatism of our method compared to the conventional
method in [1]. The least γ∞’s in Table 8.8 for ξ = 0 are 19.302, 22.115, and
36.919, respectively for ζ = 0,1, and 10. Although they are worse than the least
conservative results in Table 8.6, i.e. 19.291, 21.383, and 32.043, by about 0.06%,
3.4%, and 15.2%, respectively, our controllers have good implementability as being
independent of θ̇ . On the other hand, those values are better than the γ∞’s obtained
using the method in [1] with constant X and parametrically affine Y (θ ). That is,
this example illustrates that our method can produce good compromised controllers
between conservatism and implementability.

We next examine the conservatism with respect to the parameter dependency of
decision matrices. The values in Table 8.9 are all smaller than the corresponding
values in Table 8.8. Thus, high-order parameter-dependent decision matrices are
recommended to obtain controllers with small conservatism. However, the GSOF
controllers in Table 8.9 become more complicated than those in Table 8.8. To obtain
practical GSOF controllers, Problem 8.3 is then solved.

Let us consider the case of ξ = 0.01 and ζ = 1. Table 8.9 implies that the
controller designed using the choices of (ii) and (b) has the best performance
γ∞ = 35.597.

We solve Problem 8.3 using the solution (X (θ + δ ),Z (θ + δ )) to the con-
ditions of Theorem 8.1 with the choices of (ii) and (b). As the matrix Xcl(θ +
δ ) defined in (8.17) is complicated as rational, PDLMI (8.11) is solved at all
combinations of linearly gridded ten points in the intervals of θ , θ̇ , δ and δ̇ , i.e., at
10,000 combinations of these variables. We first set the parameter-dependent matrix
K̄(θ + δ ) to be affine, then it is found that the problem is infeasible. We then
set K̄(θ + δ ) to be quadratically parameter-dependent, then a feasible solution is
found. We further set K̄(θ +δ ) to be cubically parameter-dependent, then a feasible
solution is also found.

For reference, we check the H∞ performance of the closed-loop system using
the quadratically and rationally parameter-dependent GSOF controllers with the
assumption that the scheduling parameter and the uncertainty are both frozen in
their intervals. The maximum H∞ performance of the closed-loop system using
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Fig. 8.2 Bode plots of rationally parameter-dependent GSOF controller and quadratically
parameter-dependent GSOF controller (three lines corresponding to δ = −0.01,0,0.01 are drawn
for each controller)

the quadratically parameter-dependent GSOF controller among all combinations of
linearly gridded 1,000 points in the intervals of θ and δ , i.e., of 106 combinations
of these variables, is obtained as 21.573, and the corresponding value using the
rationally parameter-dependent GSOF controller is 20.235. It is confirmed that these
values are smaller than the value of γ∞ when designing the rationally parameter-
dependent GSOF controller.

Figure 8.2 shows the Bode plots of the two controllers, i.e., quadratically and
rationally parameter-dependent GSOF controllers at frozen values of θ as −3,−1,1,
and 3, and Fig. 8.3 shows the gain plots of the closed-loop systems with the two
controllers at the same values of the frozen θ . Figure 8.2 confirms that frequency
responses of the two controllers at frozen scheduling parameters are similar to each
other in the low frequencies, and Fig. 8.3 confirms that the gain properties of the
closed-loop systems are also similar to each other.

This example indicates that we can design simple GSOF controllers by solving
Problem 8.3 after designing rationally parameter-dependent GSOF controllers using
Theorem 8.1.
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Fig. 8.3 Gain plots of closed-loop systems with rationally parameter-dependent GSOF con-
troller and quadratically parameter-dependent GSOF controller (three lines corresponding to
δ =−0.01,0,0.01 are drawn for each controller)

8.5 Conclusions

This article tackles the design problem of gain-scheduled output-feedback (GSOF)
controllers for continuous-time LPV systems via parameter-dependent Lyapunov
functions (PDLFs). In stark contrast to conventional problem setting, GSOF con-
trollers are required to have the following properties: robustness against uncertain-
ties in the provided scheduling parameters and independence from the derivatives of
the provided scheduling parameters. We successfully propose a new design method
for our problem in terms of PDBMIs. We show two algorithms for solving the
PDBMIs, i.e., line search algorithm and iterative algorithm. It is also proved that our
method recovers conventional methods when scheduling parameters are precisely
provided, or parameter-independent Lyapunov functions (PiDLFs) or structured
PDLFs are adopted.

For further good implementability of designed GSOF controllers, we show that
it is always possible to design polynomially parameter-dependent GSOF controllers
if rationally parameter-dependent GSOF controllers can be designed under a very
mild constraint for LPV systems.
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The design results for numerical examples borrowed from the literature well
support our results.
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Appendix 1

Lemma 8.7. For a given matrix [Xi j] ∈ R
p×q, all the elements of which satisfy

|Xi j| ≤ κ for a given positive number κ , the following inequality holds:

‖ [Xi j]‖2 ≤ κ
√

pq. (8.45)

Note that ‖x‖2 =

∥
∥
∥
∥
∥
∥∥

⎡

⎢
⎣

‖x1‖2
...

‖xq‖2

⎤

⎥
⎦

∥
∥
∥
∥
∥
∥∥

2

=

∥
∥
∥
∥
∥
∥∥

⎡

⎢
⎣

|x1|
...

|xq|

⎤

⎥
⎦

∥
∥
∥
∥
∥
∥∥

2

holds for x ∈R
q [44].

Proof. ‖ [Xi j]‖2 is defined as sup
‖x‖2=1, x∈Rq

∥∥[Xi j]x
∥∥

2. Then,

‖ [Xi j]‖2 = sup
‖x‖2=1,
x∈Rq

∥
∥∥
∥
∥
∥
∥∥

⎡

⎢
⎢
⎣

∑q
j=1 X1 jx j

...
∑q

j=1 Xp jx j

⎤

⎥
⎥
⎦

∥
∥∥
∥
∥
∥
∥∥

2

= sup
‖x‖2=1,
x∈Rq

∥
∥∥
∥
∥
∥
∥
∥∥

⎡

⎢
⎢
⎢
⎣

∥
∥
∥∑q

j=1 X1 jx j

∥
∥
∥

2
...∥

∥
∥∑q

j=1 Xp jx j

∥
∥
∥

2

⎤

⎥
⎥
⎥
⎦

∥
∥∥
∥
∥
∥
∥
∥∥

2

≤ sup
‖x‖2=1,
x∈Rq

∥
∥
∥∥
∥
∥
∥
∥

⎡

⎢
⎢
⎣

∑q
j=1 |X1 j||x j|

...
∑q

j=1 |Xp j||x j|

⎤

⎥
⎥
⎦

∥
∥
∥∥
∥
∥
∥
∥

2

= sup
‖x‖2=1,
x∈Rq

√√√
√

p

∑
i=1

(
q

∑
j=1

|Xi j||x j|
)2

≤ sup
‖x‖2=1,
x∈Rq

√√
√√

p

∑
i=1

(
q

∑
j=1

κ |x j|
)2

= sup
‖x‖2=1,
x∈Rq

∥
∥
∥∥
∥
∥
∥

⎡

⎢
⎣

κ · · · κ
...

...
κ · · · κ

⎤

⎥
⎦

⎡

⎢
⎣

|x1|
...

|xq|

⎤

⎥
⎦

∥
∥
∥∥
∥
∥
∥

2

≤ sup
‖x‖2=1,
x∈Rq

∥
∥
∥
∥
∥∥
∥

⎡

⎢
⎣

√
κ
...√
κ

⎤

⎥
⎦

∥
∥
∥
∥
∥∥
∥

2

∥
∥[√κ · · · √κ

]∥∥
2
‖x‖2 = κ

√
pq.

Thus, ‖ [Xi j]‖2 ≤ κ√pq is proved. 
�
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Appendix 2

The general form of the SV approach for solving PDLMIs is given in [25]. However,
the PDLMIs to solve in this article include scheduling parameter vector θ as well
as uncertainty parameter vector δ . Thus, the approach in [25] is revised as shown
below.

Suppose that the state-space matrices of LPV system G(θ ) are parametrically
affine and that either D12(θ ) or D21(θ ) is constant. If the decision matrices in our
propositions are set to be affinely or quadratically parameter dependent, then the
related PDLMIs can be written as follows:

([
1

θ + δ

]
⊗ I
)T

Φ
(

θ , θ̇ ,δ , δ̇
)([ 1

θ + δ

]
⊗ I
)
< 0,

∀
(

θ , θ̇ ,δ , δ̇
)
∈ Ωθ ×Λθ ×Ωδ ×Λδ , (8.46)

where Φ
(

θ , θ̇ ,δ , δ̇
)

is defined as

Φ
(

θ , θ̇ ,δ , δ̇
)
= Φ0 +

k

∑
i=1

θiΦi +
k

∑
i=1

θ̇iΦ̂i +
k

∑
i=1

δiΨi +
k

∑
i=1

δ̇iΨ̂i

with appropriately dimensional matrices Φ0, Φi, Φ̂i, Ψi, and Ψ̂i which include
decision variables.

The SV approach for solving PDLMI (8.46) is given below.

Lemma 8.8. If there exists a constant matrix M of appropriate dimensions such
that (8.47) holds, then (8.46) holds.

Φ
(

θ , θ̇ ,δ , δ̇
)
+He

{([
θ T + δ T

−Ik

]
⊗ I
)

M

}
< 0,

∀
(

θ , θ̇ ,δ , δ̇
)
∈ ver (Ωθ )× ver(Λθ )× ver(Ωδ )× ver (Λδ ), (8.47)

where ver (·) denotes the vertex set of the corresponding set.

This lemma is easily proved by multiplying
[
1 θ T + δ T

]⊗ I and its transpose to
(8.47) from the left and the right, respectively.

When δ = 0 holds, the condition of Lemma 8.8 has only to be checked for all
pairs (θ , θ̇ ) ∈ ver (Ωθ )× ver (Λθ ).
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Appendix 3

Here, we show the design methods of GSSF controllers for Problem 8.1 and
Problem 8.2.

Lemma 8.9 ([31]). For LPV system G(θ ) in (8.1), suppose that matrix B2 is
parameter-dependent B2(θ ), and that C2 and D21(θ ) are respectively In and 0. For
a given positive number γ∞, suppose that there exist a continuously differentiable
parameter-dependent matrix XSF(θ + δ ) ∈ S

n and a parameter-dependent matrix
KSF(θ + δ ) ∈ R

nu×n such that the following conditions hold for all quadruplets(
θ , θ̇ ,δ , δ̇

)
∈ Ωθ ×Λθ ×Ωδ ×Λδ :

XSF (θ + δ )> 0, (8.48)
[
He{A(θ )XSF(θ + δ )+B2(θ )KSF(θ + δ )} − ẊSF(θ + δ ) ∗

C1(θ )XSF(θ + δ )+D12(θ )KSF (θ + δ ) −γ2
∞Inz

]

+

[
B1(θ )
D11(θ )

]
[

B1(θ )T D11(θ )T
]
< 0, (8.49)

then the GSSF controller u=KSF(θ +δ )x with KSF(θ +δ ) =KSF(θ +δ )XSF (θ +
δ )−1 stabilizes the closed-loop system and satisfies (8.8) for all admissible quadru-
plets (θ , θ̇ ,δ , δ̇ ) ∈ Ωθ ×Λθ ×Ωδ ×Λδ .

Lemma 8.10 ([31]). For LPV system G(θ ) in (8.1), suppose that matrix B2 is
parameter-dependent B2(θ ), and that D11(θ ), C2 and D21(θ ) are, respectively, 0, In

and 0. For a given positive number γ2, suppose that there exist a continuously differ-
entiable parameter-dependent matrix XSF (θ + δ ) ∈ S

n, and parameter-dependent
matrices KSF(θ + δ ) ∈ R

nu×n and Q(θ ,θ + δ ) ∈ S
nw such that the following

conditions hold for all quadruplets
(

θ , θ̇ ,δ , δ̇
)
∈ Ωθ ×Λθ ×Ωδ ×Λδ :

[
He{A(θ)XSF (θ +δ )+B2(θ)KSF (θ +δ )} −ẊSF (θ +δ ) ∗

C1(θ)XSF (θ +δ )+D12(θ)KSF (θ +δ ) −Inz

]
< 0, (8.50)

[
Q(θ ,θ +δ ) ∗

B1(θ) XSF (θ +δ )

]
> 0, (8.51)

γ2
2 −Tr (Q(θ ,θ +δ ))> 0, (8.52)

then the GSSF controller u=KSF (θ +δ )x with KSF(θ +δ )=KSF(θ +δ )XSF(θ +
δ )−1 stabilizes the closed-loop system and satisfies (8.9) for all admissible quadru-
plets (θ , θ̇ ,δ , δ̇ ) ∈ Ωθ ×Λθ ×Ωδ ×Λδ .
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14. Köroğlu H (2010) Robust generalized asymptotic regulation via an LPV controller without

parameter derivative dependence. In: Proceedings of the 49th IEEE conference on decision
and control, Atlanta, Georgia, pp 4965–4971

15. Leith DJ, Leithead WE (2000) Survey of gain-scheduling analysis and design. Int J Control
73(11):1001–1025
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Chapter 9
Decentralised Model Predictive Control
of Time-Varying Splitting Parallel Systems

Tri Tran, H.D. Tuan, Q.P. Ha, and Hung T. Nguyen

Abstract This chapter is devoted to the development of a decentralised model
predictive control (MPC) strategy for splitting parallel systems that have time-
varying and unknown splitting ratios. The large-scale system in consideration
consists of several dynamically-coupled modular subsystems. Each subsystem is
regulated by a dedicated multivariable controller employing the open-loop MPC
algorithms in conjunction with stability constraints. The connection topology of
the large-scale systems includes serial, parallel and recirculated configurations. The
solution to splitting parallel systems in this chapter is not only an alternative to the
hybrid approach for duty-standby modes, but also a novel approach that accommo-
dates the concurrent operations of splitting parallel systems. The effectiveness of
this approach rests on the newly introduced asymptotically positive real constraint
(APRC) which prescribes an approaching characteristic towards a positive real
property of the system under control. The asymptotic attribute of APRC smooths out
all significant wind-up actions in the control trajectories. The APRCs are developed
into a one-time-step quadratic constraint on the local control vectors, which plays
the role of a stability constraint for the decentralised MPC. The recursive feasibility
is assured by characterizing the APRC with dynamic multiplier matrices. Numerical
simulations for two typical modular systems in an alumina refinery are provided to
illustrate the theoretical results.
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9.1 Industrial Plant-Wide Process Control and Time-Varying
Splitting Systems

9.1.1 Departmentalisation and Mixed Operational Mode

In industrial plant-wide process system design, it is admirable to have the design
strategy of departmentalisations for the entire large-scale plant. One department
having some redundant process streams is dedicated to a processing area where at
least one unit operation is involved. Departmentalisation is a method of decompos-
ing the large-scale plant under the perspective of process system designs, operational
scheduling, and production planning and management. To increase the operability,
maintainability and business continuity, the principle of reliable system designs
using parallel redundant subsystems [24] are prevailing in many process industries.
The redundancy management within a department can be executed by parallel or
duty-standby operations. It can also vary between full-capacity duty-standby and
shared-capacity parallel operations. The processing areas are normally connected
in a serial configuration with some recirculated paths as conceptually depicted in
Fig. 9.1.

In the plant-wide process control and optimisation design, it is common to
implement one centralised multivariable MPC for a single subsystem of a depart-
ment, due to the intricate interaction between its state variables. There are thus
several MPCs implemented for different subsystems and departments in a large-
scale processing plant in a distributed or decentralised manner. The envisaged issues
arising from running the whole plant with such disparate MPCs may come from the
department start-ups and warm re-starts after a shutdown, or from the process stream
switch-overs and operational mode changes. Specifically, the issues faced by plant
operations can be listed as

• The synchronisation between local MPCs during the starting up and warm
restarting periods

• The start-up of a process stream while the others are running

Subsystem
11

Subsystem
13

Subsystem
21

Subsystem
22

Material

Subsystem
31

Subsystem
32

Product

Subsystem
12

Unit 1 Unit 2 Unit 3

Fig. 9.1 Mixed connection topology of an interconnected system
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• The switch-over between the duty and standby process streams within one
department while the downstream and remaining departments are in full or
reduced-capacity operations

• The operational mode change of a downstream department (e.g. from Automatic
to Manual control mode) while the upstream departments are operating in their
Automatic control mode

These activities are always costly to the plant operations due to the complexity
of shutting down, restarting or switching over tasks. Sometimes they even cause a
plant-wide shutdown because of the system instability. The operational efficiency
is therefore heavily degraded. Automating these activities by having some forms of
orchestrations between the local MPCs will profoundly and ultimately improve the
operational performances. Such automation will reduce the down time, as well as
shorten the startup, restart, and switching over time, yet maintain the operation at a
highest achievable efficiency. A stability assurance measure for the overall system
in different operational scenarios will, therefore, be up-most important.

9.1.2 Time-Varying Splitting Parallel Systems

The parallel connection of parallel redundancies is universal in process system de-
signs for increasing the reliability, availability and business continuity. The parallel
connections, which may destroy the guaranteed-stability property of an existing
strategy, are explicitly addressed in our proposed interconnection stabilisability
condition. The special requirement in parallelism comes from the splitting ratios
of parallel subsystems, which are unknown and time varying, because of which
the existing centralised methods cannot provide efficient solutions. The control of
complex interconnection structures which are involved with both serial and parallel
configurations have been designed using different hybrid approaches. Whilst being
effective with duty-standby operations, wherein a standby subsystem is switched on
or off, the hybrid solution cannot be adopted for parallel operations. Furthermore,
a centralised controller for parallel connections systems will not be accepted due
to reliability and maintainability requirements. Decentralised controllers will thus
be desirable. The parallel connections and operations are widespread in the process
system designs and process control applications, wherein both duty and standby
subsystems are run concurrently to share a common production rate. A continuous
control strategy must therefore be employed instead of hybrid strategies. In a
continuous control strategy, the changing-overs between duty and standby parallel
subsystems are assumed being smooth, i.e., state jumps will not incur due to the
changing-over operations.

This chapter presents a continuous control strategy as an alternative to hybrid
approaches for splitting parallel systems, which effectively stabilise the plant-wide
process in all operational scenarios, including concurrent operation and duty-
standby modes. We have addressed the stabilisation for interconnected systems in
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a decentralised architecture using a segregated approach of the so-called stabilizing
agent [29, 30, 32]. The stability of semi-automatic control systems that are involved
with the closed-loop control and man-in-the-loop regulations is achieved in that
approach. An alternative and progressing approach to the constructive method
for stabilizing controllers based on the asymptotically positive realness constraint
(APRC) and its employment in decentralised MPC problems is presented in this
chapter. The formulation of MPC is developed in conjunction with the APRC-
based quadratic stability constraint, which can be solved by a convex quadratic
programming (QP) numerical method. The stabilisability and feasibility conditions
are rendered by the linear matrix inequalities (LMI) [4, 7]. Parts of the multiplier
matrices of quadratic stability constraints are updated online in this approach to
guarantee the recursive feasibility of MPC problems [31].

9.1.3 Novelty and Chapter Contents

A decentralised perspective on the predictive control of modular systems with
application in the mineral processes is presented as an essential constituent of this
chapter. Special treatments for parallel connections of time-varying and unknown
splitting ratios are provided to stabilise the large-scale system having an arbitrary
connection topology and mixed operational modes. This decentralised control
strategy is cutting edge by employing only decoupled control vectors and precluding
artificial constraints on the coupling variables. The former improves the system
reliability. The latter mitigates any conservativeness of limiting the energy or
material flows between dynamically coupled subsystems. Moreover, a continuous
control strategy is proposed for parallel redundant systems as an alternative to
the hybrid approaches, which effectively stabilise the plant-wide process in all
operational scenarios, including concurrently parallel and duty-standby modes.
The special requirement in parallelism comes from the splitting ratios of parallel
subsystems, which are unknown and time varying, because of which the existing
centralised methods cannot provide an efficient solution. The mixed connection
configuration is dealt with by explicitly incorporating the two types of connections,
serial and parallel, into the state space models. The input and output attributes
are then capitalised to derive a new interconnection stabilisability condition in the
time domain. The issue of unknown and time-varying splitting ratios is tackled by
having a combined solution, wherein the quadratic constraint is developed for each
individual subsystem while the dissipativity criteria are derived for the whole bulk
of subsystems in parallel.

Decentralised control strategies, prevalently used in the field of large-scale
interconnected systems, have been comprehensively described in the literature;
see, e.g., [16, 18, 27]. In a decentralised architecture, the quadratic optimal control
synthesis has been identified with major difficulties. The obstacles around the
constructive methods of H2 or H∞ decentralised optimal control lie in the nonconvex
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nature of optimisation problems. Different results have been presented in the past,
such as the computations for uplifting the H∞ performance based on the finite
horizon optimisation in [28], or convex relaxation for decentralised H2 control [22].

Decentralised model predictive control strategies, the non-communication ver-
sions of distributed MPCs have been successfully developed for both dynamically
coupled and decoupled systems in the literature; see, e.g., [23]. Albeit being
provided with different solutions including coordinative, cooperative, iterative
and hierarchical methods, the field of orchestrating disparate MPCs for large
interconnected systems is still in its infancy stage [21]. Generic approaches that
are applicable to different types of systems and industries are still open for research.

An existence condition for the constrained stabilisation of interconnected sys-
tems in the discrete time domain will be derived in this chapter based on the
newly introduced APRC [32]. The APRC-based stabilisability conditions are sub-
sequently developed into stability constraints for the local MPCs is a decentralised
configuration. The recursive feasibility is guaranteed by characterizing the APRC
with dynamic multiplier matrices. With the asymptotic attribute, the APRC-based
stability constraint smooths out all wind-up control actions. LMI-based stability
and feasibility conditions are obtained as a result of the developments. It is well
known that if a system is quadratically dissipative with respect to its inputs and
outputs then the positive real constraint (PRC) derived from the integral quadratic
constraint (IQC) in the time domain (see, e.g., [2, 14, 19]), is sufficient for its
stabilisability. The stabilizing control can then be found from those satisfying the
positive real condition. However, its lack of correlations between the recursive
control states causes unacceptably non-smooth behaviors to the control. As a
consequence, it cannot be implemented in constrained control applications. The
variations of asymptotic approximation parameters in APRC will make the recursive
control states well correlated, thus leads to an efficiently implemented controllers.
In other words, the fundamental result of a stabilisable positive real system is not
always accompanied by a realisable controller, due to the fact that an infinitely
power control may be required. This chapter addresses the issue by introducing
the APRC concept for use with constrained control problems. The APRC represents
an approaching characteristic towards the positive real property of the system under
control.

This chapter is organised as follows. In Sect. 9.2, the system and control models
for interconnected systems having splitting parallel subsystems are provided.
The interaction-oriented models [16] are used in this chapter. The APRC and a
constructive method of quadratic constraints for decentralised model predictive
controllers based on the APRC are introduced in Sect. 9.3. Handling parallel
redundant subsystems that have time-varying and unknown splitting ratios is another
essential part of this section. The control applications of the counter-current washing
circuit and the predesilication unit operation in a typical alumina refinery are
simulated in Sect. 9.4 to illustrate the viability of the APRC-based decentralised
MPC for time-varying splitting parallel systems.



222 T. Tran et al.

9.1.4 Notation

Capital letters denote matrices. Lower-case alphabet and Greek letters denote
column vectors and scalars, respectively.

(.)T denote matrix transpose operations, respectively.

In is the identity matrix of dimension n×n. 0n is the zero matrix of dimension n×n.

diag[Ai]
N
1 is the block diagonal matrix with diagonal entries Ai, i = 1,2, ...,N.

diag[Qjic] j=1...h,i=1...g j is the block diagonal matrix with diagonal entries Qjic,
j = 1, ...,h, i = 1, ...,g j.

‖v‖ denotes the L2−norm of vector v.

‖Q‖ is the induced 2-norm of the matrix Q, which is defined as
‖Q‖= max{‖Qv‖2 : v ∈R

n,‖v‖2 ≤ 1},‖v‖2 is the L2-norm of v.

The �th element of a vector ui(k) is denoted as u(�)i (k).

The notation ui ∈ [ui,ui] is component-wise understood, i.e. u(�)i ∈ [u(�)i ,u(�)i ]

(u(�)i ≤ u(�)i ≤ u(�)i ) ∀�.

In symmetric block matrices or long matrix expressions, we use ∗ as an ellipsis for
terms that are induced by symmetry, e.g.,

(∗)
[
(∗)+R S
(∗) Q

]
K = KT

[
RT +R S

ST Q

]
K.

In the discrete-time domain, the time index is denoted by k,k ∈ Z.

In a proof, when the time index k is omitted for conciseness, v(−τ) denotes the
vector v(k− τ).

û denotes a sequence of predictive vectors of u( j) starting from the current time step.

ŭ denotes a sequence of u(− j) representing the historical data of u.

The boldface style for letters is used in optimisation formulations to emphasise that
they are variables.
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9.2 Model Development and Problem Statement

The interaction-oriented state space model defined by Lunze (1992) in [16] is
adopted in this section as it is well suited to the input and output nature of
interconnected systems. This type of models is also known as two-port model. The
denotations for subsystems, units and the large-scale system is given in Fig. 9.2,
wherein a large-scale system is viewed as consisting of two layers, Units and
Subsystems.

9.2.1 Control and System Model

Consider a large-scale system Σ consisting of h units, denoted as G j, j = 1 . . .h.
Each unit G j has g j subsystems, denoted as S ji, i = 1 . . .g j. The hierarchical
tree representing the nested subsystems is given in Fig. 9.2 to illustrate subsystem
denotations in this section. Each subsystem S ji is represented by the discrete-time
state space model of the form

S ji :

{
x ji(k+ 1) = Aji x ji(k)+B ji u ji(k)+E ji v ji(k),

y ji(k) =Cji x ji(k), wji(k) = Fji x ji(k),
(9.1)

where E ji = [Eπ ji Eσ ji], vT
ji = [vT

π ji vT
σ ji], Fji = [Fπ ji Fσ ji], wT

ji = [wT
π ji wT

σ ji], in
which vσ ji ∈ R

mσ ji and wσ ji ∈ R
qσ ji are serial coupling input and output vectors

respectively, while vπ ji ∈ R
mπ ji and wπ ji ∈ R

qπ ji are parallel coupling input and
output vectors; x ji ∈ R

n ji is the state vector, y ji ∈ R
q ji is the measurement output

vector, u ji ∈U ji ⊂R
mji is the control input vector. It is notably that, there are hΣ :=

∑h
j=1 g j subsystems S ji in Σ .

Serial Connections: Two subsystems Sξ i and Sζo are said to be serially connected
(SC) if the coupling input vector vσξ i of Sξ i is the coupling output vector wσζo of
Sζo , i.e.

(SC) vσξ i(k) = wσζo(k). (9.2)

Fig. 9.2 Denotations for subsystems, units and the large-scale system
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Fig. 9.3 Parallel connections of a unit G j having three subsystems

In the following, Mj (of unit G j) denotes the diagonal matrix diag[Mji]
g j
1 , and

v∗ j denotes the stacking vector [v∗ j1
T . . .v∗ jg j

T]T (i.e., unit subscript j remains).
A unit G j is represented by the block diagonal system formed by g j parallel
subsystems S ji as

G j :

{
x j(k+ 1) = A j x j(k)+B j u j(k)+E j v j(k),

y j(k) =Cj x j(k), wj(k) = Fj x j(k),
(9.3)

where E j = [Eπ j Eσ j], vT
j = [vT

π j vT
σ j], Fj = [Fπ j Fσ j], wT

j = [wT
π j wT

σ j] .

Specifically, A j=diag[A ji]
g j
1 , B j =diag[B ji]

g j
1 , Cj =diag[Cji]

g j
1 , Eπ j =diag

[Eπ ji]
g j
1 , Fπ j=diag[Fπ ji]

g j
1 , Eσ j=diag[Eσ ji]

g j
1 , Fσ j=diag[Fσ ji]

g j
1 , xT

j =[xT
j1 . . .x

T
jg j
],

uT
j =[uT

j1 . . .u
T
jg j
], yT

j =[yT
j1 . . .y

T
jg j
], vT

σ j = [vT
σ j1 . . .v

T
σ jg j

], wT
σ j = [wT

σ j1 . . .w
T
σ jg j

],

vT
π j = [vT

π j1 . . .v
T
π jg j

], wT
π j = [wT

π j1 . . .w
T
π jg j

].

Parallel Connections within One Unit: The parallel coupling vectors vπ ji and wπ ji

of all subsystems S ji belonging to a unit G j are assumed, without loss of generality,
having the same size. If there is only one parallel signal, the block diagram of the
parallel connections within a unit G j having three subsystems (g j = 3) is given in
Fig. 9.3. The divider operator at vππ j in this figure represents the splitting of vππ j

into v(�)π j .

Two new signals, vππ j and wππ j are introduced here. While the outputs wπ j are
summed up to become wππ j, the input vππ j is split up into vπ j. Their relationships
are represented by two matrices Ψv j and Ψw j , which are defined as

(PC)
vππ j = vπ j1 + · · ·+ vπ jg j :=Ψv j vπ j,

wππ j = wπ j1 + · · ·+wπ jg j :=Ψw j wπ j,
(9.4)

where vT
π j = [vT

π j1 . . .v
T
π jg j

],wT
π j = [wT

π j1 . . .w
T
π jg j

].
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In the parallel redundant configuration, where the material or energy flows are
split into smaller flows to each subsystems, it is impossible to have a constant split-
ting ratio at all time, but rather dynamic ratios. The splitting ratios between vπ ji of
vπ j should, therefore, be time varying and unknown. Due to these unknown splitting
ratios of parallel subsystems, the connectivity of the large-scale interconnection
process can not be established on the basis of subsystems. In later sections, we tackle
this issue by establishing the dissipativity criteria for a unit consisting of parallel
subsystems, i.e., the open-loop subsystems are not necessarily dissipative, but only
their auspice unit is. It is noted here that the common input and output vectors, vππ j

and wππ j, of parallel connections are involved in the connection processes, instead
of vπ j and wπ j.

In the following, M (of Σ ) denotes the diagonal matrix diag[Mj]
h
1, and v∗ denotes

the stacking vector [v∗1
T . . .v∗h

T]T (unit subscripts j vanish). The large-scale system
Σ is represented by the block diagonal system formed by h diagonal units G j (or hΣ
subsystems S ji), and the large-scale interconnection processes Hσ ,Hππ as

Σ :

⎧
⎪⎪⎨

⎪⎪⎩

x(k+ 1) = Ax(k)+Bu(k)+Ev(k),

y(k) =Cx(k), w(k) = Fx(k),

vππ(k) = Hππ wππ(k), vσ (k) = Hσ wσ (k),

(9.5)

where E=[Eπ Eσ ], F=[Fπ Fσ ], vT=[vT
π vT

σ ], wT =[wT
π wT

σ ]. Specifically,
A = diag[A j]

h
1, B=diag[B j]

h
1, C=diag[Cj]

h
1, Eπ =diag[Eπ j]

h
1, Fπ =diag[Fπ j]

h
1,

Eσ =diag[Eσ j]
h
1, Fσ =diag[Fσ j]

h
1, xT=[x1

T . . .xT
h ], u=[u1

T . . .uT
h ], y=[yT

1 . . .y
T
h ],

vπ =[vT
π1 . . .v

T
πh], wπ =[wT

π1 . . .w
T
πh], vππ =[vT

ππ1 . . .v
T
ππh], wππ =[wT

ππ1 . . .w
T
ππh],

vσ =[vT
σ1 . . .v

T
σh], wσ =[wT

σ1 . . .w
T
σh].

The parallel connection process inside Σ is as follows:

vππ(k) =Ψv vπ(k), wππ(k) = HππΨw wπ(k), (9.6)

where Ψv = diag[Ψv j ]
h
1, Ψw = diag[Ψw j ]

h
1.

The interconnections between units and subsystems are specified by the inter-
connection matrices Hππ and Hσ , respectively. The elements of Hππ and Hσ are
zero or one only. The block diagrams of the large-scale system Σ from the unit and
subsystem perspectives are depicted in Figs. 9.4 and 9.5, respectively. It is notably
that the parallel connections cause a disconnection at vππ in Fig. 9.5 because of the
unknown splitting ratios. It is, therefore, preferable to use the block diagram on the
basis of units G j in Fig. 9.4.

The following bounded control constraint is considered:

U ji := {u ji : u ji ∈ [uji,u ji], ∀k ∈ Z}, (9.7)

where uji and u ji are the lower and upper bounds of u ji deduced from the physical
limit of the actuators corresponding to the control vector u ji.
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Fig. 9.4 Block diagram of the large-scale system Σ on the basis of units G j

Fig. 9.5 Block diagram of the large-scale system Σ on the basis of subsystems S ji

It is clear that (9.5) belongs to the class of time-varying uncertain linear
systems. The difficulty there is that the time-varying parameter Eν(k) is unknown
and thus cannot be treated as gain-scheduling ones. Consequently, the popular
gain-scheduling control techniques for time-varying systems [1, 3, 33, 34] cannot
be applied. It should be also noted that the gain-scheduling techniques could hardly
address the control-bounded constraints in time domain such as (9.7).
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In a decentralised architecture, the stand-alone subsystem model (when all coupling
inputs and outputs vanish: v ji = 0, wji = 0) is also requisite, which is represented by

S s
ji :

{
x ji(k+ 1) = A ji x ji(k)+B ji u ji(k),

y ji(k) =Cji x ji(k).
(9.8)

Assumption 9.1. (i) The large-scale system is observable (zero-state observable)
and controllable.

(ii) The updating instants and all invocations are synchronised between all subsys-
tems and their controllers.

Assumption 9.2. The changing-over between the duty and standby subsystems
within one unit is smooth, i.e., state jumps will not incur due to the changing-over
operations. The fault-tolerant controls for duty and standby subsystems, and the
distributed optimisation schemes for parallel operations within one unit, if there are
any, are regarded as internal activities of that unit.

9.2.2 Problem Description and Rationale

The large-scale interconnected system processing a mixed connection configuration
presented in Sect. 9.2 is considered herein. The subsystem models (9.1) in Sect. 9.2.1
are employed to derive the stabilisability condition. The open-loop model predictive
control algorithm is implemented for each subsystem S ji using the stand-alone
model (9.8) associated with (9.1). As mentioned in the introduction, the given
MPC vectors û ji(k) may destabilise the large-scale system Σ (9.5), defined in
Sect. 9.2. Our problem is to redesign these controllers on-the-fly to stabilise it.
We are concerned with the design of hΣ disparate dynamic stability constraints
for these decentralised MPCs. The online and historical data of C ji and S ji are
used to characterise the stability constraint on the outputs of C ji (i.e., control inputs
for S ji). The stability constraints ensure that Σ remains within a stabilisable region
recursively. There are not any assumed constraints on the coupling vectors between
subsystems and units. The inter-subsystem communication between subsystem
controllers are not available for control updates.

9.3 Asymptotically Positive Realness Constraint
and Interconnection Stabilisability Condition

This section presents the main results of this chapter on establishing a new
stabilisability condition for the large-scale interconnected systems. Let us first
introduce the APRC for each subsystem S ji (9.1).
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9.3.1 Asymptotically Positive Realness Constraint

Define a quadratic supply rate

ξ jic =
(
u ji(k),y ji(k)

)
[

u ji(k)
y ji(k)

]T
[

Q jic(k) S jic(k)
ST

jic(k) R jic(k)

][
u ji(k)
y ji(k)

]
, (9.9)

where Q jic(k),R jic(k),S jic(k) are multiplier matrices with symmetric Q jic(k) and
R jic(k). For conciseness, ξ jic(u ji(k),y ji(k)) is denoted as ξ k

jic and the time index k
is represented by a superscript typeface without brackets where appropriated.

Definition 9.1. An input–output pair (u ji(k),y ji(k)) of subsystem S ji is said to
satisfy the asymptotically positive real constraint (APRC) if

ξ k
jic ≥ 0 as k →+∞. (9.10)

Lemma 9.1. If there are k0 ∈ Z
+ and 0 ≤ γ ji(k) < 1− ε ji (0 < ε ji < 1) such that

whenever k > k0, ξ k
jic satisfies the following inequality

ξ k
jic > γ ji(k)ξ k−1

jic , (9.11)

then (9.10) holds true.

Proof. There are two possibilities:

• ξ k0
jic ≥ 0. Then (9.11) means ξ k

jic > 0 ∀k > k0.

• ξ k0
jic < 0 and 0 < γ ji(k)< 1− ε ji then

ξ k
jic ≥ ξ k0

jic ∏k
�=k0

γ ji(�)

≥ ξ k0
jic(1− εji)

k−k0−1 → 0 as k → ∞.

�

Now, rewrite (9.11) as the following constraint in uk
ji,

uk
ji(−Qk

jic)u
k
ji − 2ykT

ji Sk
jicuk

ji < ykT
ji Rk

jicyk
i − γk

jiξ
k−1
jic , (9.12)

which is convex if and only if Qk
jic ≺ 0. Then, by rewriting

ξ k
jic = −(u ji − (Qk

jic)
−1S jicy ji)

T(−Qk
jic)(u ji − (Qk

jic)
−1Sk

jicy ji)

+yT
ji(R

k
jic − SkT

jic(Q
k
jic)

−1Sk
jic)y ji,

the feasibility of (9.12) in uk
ji requires Qk

jic ≺ 0, and

ykT
ji

(
Rk

jic − SkT
jic(Q

k
jic)

−1Sk
jic

)
yk

ji − γk
jiξ

k−1
jic > 0. (9.13)
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Here, we would like to further elaborate the concept of APRC informally. It is
well known that if a system is positive real, then it can be stabilised. However, this
fundamental result is not always realisable, due to the fact that an infinitely power
control may be required. On the other hand, a positive realness constraint can be
treated as a quantity representing the transience of the positive realness property
relatively to the positivity of ξ jic(k) (9.9). It is natural that, if a system does not
satisfy the positive realness constraint (or ξ jic(k) is negative at some time instant
k), one cannot make it bounded by the PRC immediately because the control is also
power constrained. Therefore, an immediate step to make the system tend to satisfy
the PRC is more realistic and desirable.

9.3.2 Stability and Feasibility Conditions

As mentioned in the first section, the issue of unknown and time-varying splitting
ratios in parallel subsystems is tackled by having a combined solution, wherein the
APRC is developed for each individual subsystem S ji while the dissipativity criteria
are derived for the unit G j consisting of g j subsystems S ji in parallel.

A unit G j is said to be quadratically dissipative with respect to the quadratic
supply rate ξ j(y jD,u jD) defined as,

ξ j
(
y jD(k),u jD(k)

)
:=

[
y jD(k)
u jD(k)

]T
[

Q j S j

ST
j R j

][
y jD(k)
u jD(k)

]
, (9.14)

where yT
jD = [yT

j wT
ππ jw

T
σ j], uT

jD = [uT
j vT

ππ jv
T
σ j], the multiplier matrices Q j,S j,R j are

block diagonal of the form

Q j=diag{Q11 j,Q22 j,Q33 j},S j = diag{S11 j,S22 j,S33 j},R j = diag{R11 j,R22 j,R33 j},

in which each block element has a block diagonal structure corresponding to
subsystem dimensions, with symmetric Q j and R j, if there exists a nonnegative C1

function, addressed as storage function, Vj(x j(k)), Vj(0) = 0, such that for all u jD

and all k ∈ Z
+, the following dissipation inequality is satisfied irrespectively of the

initial value of the state x j(0):

Vj
(
x j(k+ 1)

)−Vj
(
x j(k)

)≤ ξ j
(
y jD(k),u jD(k)

)
. (9.15)

The square storage function of the form Vj
(
x(k)

)
= x j(k)TPjx j(k),Pj = PT

j  0,
is considered in this section. Define:
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• The dissipativity matrices of the large-scale system Σ as Q11 : =diag[Q11 j]
h
1,

S11 : =diag[S11 j]
h
1, R11 : =diag[R11 j]

h
1, Q22 : =diag[Q22 j]

h
1, S22 : =diag[S22 j]

h
1,

R22 : =diag[R22 j]
h
1, Q33 : =diag[Q33 j]

h
1, S33 : =diag[S33 j]

h
1, R33 : =diag[R33 j]

h
1.

• The dissipativity matrices of unit G j as Q11 j := diag[Q11 ji]
g j
1 ,Q22 j :=

diag[Q22 ji]
g j
1 , Q33 j := diag[Q33 ji]

g j
1 , S11 j = diag[S11 ji]

g j
1 ,S22 j = diag[S22 ji]

g j
1 ,

S33 j = diag[S33 ji]
g j
1 , R11 j = diag[R11 ji]

g j
1 , R22 j = diag[R22 ji]

g j
1 , R33 j =

diag[R33 ji]
g j
1 , where Q11 ji,R11 ji are symmetric matrices of dimensions q ji ×

q ji,m ji × m ji, respectively, Q22 ji,R22 ji are symmetric matrices of dimensions
qwπ j × qwπ j ,mvπ j × mvπ j , respectively, Q33 ji,R33 ji are symmetric matrices of
dimensions qwσ ji ×qwσ ji ,mvσ ji ×mvσ ji , respectively, S11 ji are rectangular matrices
of q ji×m ji dimensions, S22 ji are rectangular matrices of qwπ j ×mvπ j dimensions,
S33 ji are rectangular matrices of qwσ ji ×mvσ ji dimensions.

• The multiplier matrices for the APRC of the large-scale diagonal con-
troller as Qk

c := diag[Qk
jic] j=1...h,i=1...g j , Sk

c := diag[Sk
jic] j=1...h,i=1...g j , Rk

c :=

diag[Rk
jic] j=1...h,i=1...g j .

The interconnection stabilisability condition for the large-scale system based on
the APRC is stated next.

Theorem 9.1. Suppose that

(i) The following LMIs are feasible in Pj,Q
k0
jic,S

k0
jic,Q11 ji, S11 ji,R11 ji,Q22 j,

S22 j,R22 j, Q33 j,S33 j,R33 j:

[
Q11 ji S11 ji +Sk0

jic

∗ R11 ji +Qk0
jic

]

≺ 0, Q jπ ≺ 0, Q jσ ≺ 0, Qk0
jic ≺ 0, (9.16a)

⎡

⎢
⎢
⎣

Q j M12 M13 M14

∗ M22 B j
TP jEπ j B j

TP jEσ j

∗ ∗ M33 0
∗ ∗ ∗ M44

⎤

⎥
⎥
⎦� 0, P j  0,

j = 1 . . .h, i = 1 . . .g j, (9.16b)

where

M12 := A j
TP jB j −CT

j S11 j,

M13 := A j
TP jEπ j −FT

π jΨT
w j

S22 jΨv j ,

M14 := A j
TP jEσ j −FT

σ jS33 j,

M22 := B j
TP jB j −R11 j,

M33 := ET
π jP jEπ j −Ψv j

TR22 jΨv j ,

M44 := ET
σ jP jEσ j −R33 j,
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Q j := AT
j P jA j −P j −CT

j Q11 jCj −FT
σ jQ33 jFσ j − FT

π jΨw j
TQ22 jΨw j Fπ j,

Q jπ :=ΨT
w Q22Ψw +ΨwHT

ππR22HππΨw,+ΨT
w S22HππΨw +ΨT

w HT
ππ ST

22Ψw,

Q jσ := Q33 +S33Hσ +HT
σ ST

33 +HT
σ R33Hσ ;

(ii) With Qk
jic ≡ Qk0

jic, Sk
jic ≡ Sk0

jic, where Qk0
jic and Sk0

jic are s feasible solution pair

to (9.16), the system of linear inequality constraints (9.13) and Rk
jic ≺ 0 for

j = 1...h, i = 1...g j are feasible in Rk
jic;

Then there exist hΣ unconstrained control vectors u ji(k), k > 0, that stabilise the
system Σ (9.5).

Proof. (a) The supposition (ii) and Qk0
jic ≺ 0 in (9.16a) guarantee the feasibility

of a convex constraint (9.12) in unconstrained u ji.

(b) Quadratical Dissipativity of Unit G j: By substituting the model of G j

(9.3) and the parallel connections of (9.4) into the dissipation inequality of
(9.15), it follows that G j is quadratically dissipative w.r.t the supply rate (9.14)
(i.e., with respect to the output and input pair of y jD = (yT

j ,(Ψw j wπ j)
T,wT

σ j)
T,

u jD = (uT
j ,(Ψv j vπ j)

T,vT
σ j)

T if and only if LMI (9.16b) holds (see, e.g., [6]).
Thus (9.15) is verified for all (y jD,u jD).

(c) Stability: Define

ξ k
c := u(k)TQk

cu(k)+ 2y(k)TSk
cu(k)+ y(k)TRk

cy(k).

Under the condition (ii), there are unconstrained u ji(k) feasible to (9.12), thus
by Lemma 9.1

ξ k
c ≥ 0 as k →+∞. (9.17)

Therefore, such u ji(k) will make

ξ k
c ≥ 0 for k ≥ k̄ <+∞. (9.18)

Using (9.15) and the diagonality of Q11,Q22,Q33,S11,S22, S33,R11,R22,R33

we obtain for V
(
x(k)

)
:= ∑h

j=1Vj
(
x j(k)

)
,

V
(
x(k+ 1)

)−V
(
x(k)

)≤ ξ
(
(yk,wk

ππ ,w
k
σ ),(u

k,vk
ππ ,v

k
σ )
)
,

where

ξ
(
(yk,wk

ππ ,w
k
σ ),(u

k,vk
ππ ,v

k
σ )
)
= (ykT Q11yk + 2ykT S11uk + ukT R11uk)

+(wkT
ππQ22wk

ππ + 2wkT
ππS22vk

ππ + vkT
ππR22vk

ππ)

+(wkT
σ Q33wk

σ + 2wkT
σ S33vk

σ + vkT
σ R33vk

σ ).
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Then, due to (9.18) and (9.6), it follows that

V (k+ 1)−V(k)≤ σ k,

where

σ k := ξ
(
(yk,wk

ππ ,w
k
σ ),(u

k,vk
ππ ,v

k
σ )
)
+ξc(uk,yk)

= wkT
ππQ jπ wk

ππ +wkT
σ Q jσ wk

σ

+ ∑
j=1...h,i=1...g j

(∗)
[

Q11 ji +Rk
jic S11 ji + Sk

jic

(S11 ji + Sk
jic)

T R11 ji +Qk
jic

][
yk

ji

uk
ji

]

.

Using (9.16a) and Rk
jic ≺ 0 in (ii) yields

V (k+ 1)−V(k)≤ σ k < 0, for all (yT,wT,uT) �= 0.

As Σ is observable, if (yT,wT,uT) = 0 we also have x = 0, the origin is globally
asymptotically stable. 
�

In the following Theorem, the feasibility condition for constraint satisfactions
that will be used to guarantee the optimizing feasibility for the MPC is stated.

Theorem 9.2. Suppose that, with the measurement output y ji(k) at the current step

k and Qk0
jic from the offline LMIs (9.16),

(i) The following linear inequality constraint holds:

(Qk0
jic)

−1Sk
jicyk

ji ∈ [u ji,uji]; (9.19)

(ii) With a feasible solution of Sk
jic in (9.19) and Qk

i jc = Qk0
jic, the linear inequality

constraint (9.13) holds;

Then, the intersection of U ji and the feasible set of (9.12) is nonempty recursively
in k.

Proof. Due to Qk0
jic ≺ 0 and (ii), (9.12) is an ellipsoid region having the center at

ũ ji(k) = (Qk0
jic)

−1Sk
jicyk

ji, and not shrinking to a point. If this center point lies inside
U ji, i.e. if ũ ji(k) ∈ [uji,u ji], which is fulfilled by (9.19), the intersection of U ji and
(9.12) will be nonempty. 
�

To ensure that both results of stability and optimizing feasibility are obtained
simultaneously, LMIs (9.16) in Theorem 9.1 will be initially solved offline for
the dissipativity matrices Q11,Q22,Q33,S11,S22,S33,R11, R22,R33, and Qk0

jic. Sub-
sequently, using those resulting offline matrices, the linear inequality constraint
(9.19) in Theorem 9.2 will be solved online together with the first LMI of (9.16a) in
Theorem 9.1 (that has Sk

jic as a variable only) for the multiplier matrix Sk
jic at every

step k > k0. The multiplier matrix Rk
jic is then updated by (9.13) using the resulting

online matrix Sk
jic and the offline matrix Qk0

jic.
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We have shown that the issue of unknown and time-varying splitting ratios have
been solved by applying the common input and output vectors (vππ j(k),wππ j(k))
representing the sums of parallel coupling vectors in the supply rates of dissi-
pative units. The present stabilisability condition thus naturally eliminates any
conservativeness caused by the fixed splitting ratios of material or energy flows of
dynamically-coupled subsystems. In this section, the optimisation problem of each
local MPC is additionally imposed with the convex quadratic constraint w.r.t u ji(k)
of (9.12) as a stability constraint, to guarantee the stability of Σ , as outlined in the
next section.

9.3.3 APRC-Based Decentralised Model Predictive Control

Consider a conventional quadratic objective function with respect to the state and
control input vectors and adequately chosen weighting matrices Q ji,R ji over a
predictive horizon N for subsystem S s

ji (9.8):

J k
ji =

N+1

∑
�=1

xT
ji(k+ �)Q jix ji(k+ �)+

N

∑
�=0

uT
ji(k+ �)R jiu ji(k+ �). (9.20)

According to the MPC literature, see, e.g. [17], the constrained optimisation
problem for a stand-alone MPC at step k is as follows:

min
û ji(k)

ûT
ji(k)Φ jiû ji(k)+2ϒji(k)û ji(k)+δ ji(k) subject to û ji(k) ∈ Û ji, (9.21)

where

Φ ji := Γ T
ji Q̃ jiNΓji + R̃ jiN,ϒji(k) := rT

ji(k)Q̃ jiNΓji,δ ji(k) := rT
ji(k)Q̃ jiNr ji(k),

r ji(k) :=Θ jix ji(k), Q̃ jiN := diag[Q ji]
Nji
1 ,R̃ jiN := diag[R ji]

Nji
1 ,

Γji :=

⎡

⎢
⎢⎢
⎣

B ji . . . 0 0
A jiB ji . . . 0 0
. . . . . . . . . . . .

AN
jiB ji . . . A jiB ji B ji

⎤

⎥
⎥⎥
⎦
, Θ ji :=

⎡

⎢
⎢⎢
⎣

A ji

A2
ji

. . .

AN+1
ji

⎤

⎥
⎥⎥
⎦
,

and Û ji is the constraint set for the variable û ji, which is deduced from the constraint
set U ji (9.7). Specifically,

Û ji := {û ji = [uT
ji(k),u

T
ji(k+ 1), ...,uT

ji(k+N)]T : u ji(.) ∈ [u ji,u ji]}. (9.22)
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Using the inequality of APRC (9.12), the decentralised MPC problem with the
APRC-based one-time-step control constraint is given below:

min
û ji(k)

ûT
ji(k)Φ jiû ji(k)+2ϒji(k)û ji(k)+δ ji(k) subject to û ji(k) ∈ Û ji and

ûk
jiM

T
ji(−Qk

jic)Mjiûk
ji −2ykT

ji Sk
jicMjiûk

ji − ykT
ji Rk

jicyk
i + γk

jiξ k−1
jic < 0, (9.23)

where Mji = [Imji 0mji ...0mji ].
The problem (9.23) is solved by the local controller for the minimising vector

sequence û ji(k) which consists of N elements of u ji(k). Only the first element u ji(k)
of the sequence û ji(k) is outputted to S ji. This rolling process is repeated at the next
time step, and continues thereon. This problem can be solved any optimisers using
the convex quadratic programming (QP) numerical methods.

From Theorems 9.1 and 9.2, the corollary below provides the stabilisability
condition for constrained control problems.

Corollary 9.1. Suppose that

(i) The LMIs (9.16) are feasible in Pj,Q
k0
jic,S

k0
jic,Q11 ji, S11 ji,R11 ji,Q22 j, S22 j,R22 j,

Q33 j,S33 j,R33 j;

(ii) Initialised from feasible matrices Q11 ji,S11 ji,R11 ji,Q
k0
jic,S

k0
jic of LMIs (9.16) and

a feasible solution Rk0
jic of the LMIs Sk0T

jic (Qk0
jic)

−1Sk0
jic ≺ Rk0

jic ≺ 0, the following
conditions are fulfilled recursively in k > k0:

(iia) The following LMIs are feasible in Sk
jic for j = 1,2, ...,h, i = 1,2, ...,g j:

[
Q11 ji S11 ji+SkT

jic

S
T

11 ji+Sk
jic R ji11 +Qk0

jic

]

≺ 0, (Qk0
jic)

−1Sk
jicyk

ji ∈ [uji,u ji]; (9.24)

(iib) With feasible matrices Sk
jic from LMIs (9.24) and Qk

jic ≡Qk0
jic, the system of

linear inequality constraints (9.13) is feasible in Rk
jic for j = 1,2, ...,h, i=

1,2, ...,g j;

Then there exist controls u ji(k), j = 1...h, i = 1...g j satisfying the constraint (9.7)
that stabilise the system Σ (9.5).

Proof. This is a direct result of Theorems 1 and 2. 
�
Based on Corollary 9.1, the control algorithm is summarised in Procedures 1 and

2 below.
Procedure 1–Offline Calculations:

(A.1) Initiate ξ 0
ji,y ji(0),ϒji(0),δ ji(0),x ji(1),, and select the coefficient γ ji (only

time-invariant γ ji is used in this procedure).
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(A.2) Determine the multiplier matrices Q0
jic,S

0
jic for all hΣ local controllers of

hΣ subsystems S ji using offline LMIs (9.16) in Theorem 9.1, and R0
jic

subsequently using (9.13). Calculate the constant Φ ji.

Procedure 2–Online Calculations:

At every synchronised step k > 0 of the local controllers,

(A.1) Using the measurement outputs y ji(k) and Q0
jic to solve LMIs (9.24) for the

multiplier matrix Sk
jic. Then chose Rk

jic from (9.13) using the resulting Sk
jic

and Q0
jic.

(A.2) Using x ji(k) and calculating ξ k−1
jic to update ϒji(k) and δ ji(k). Then verify the

positive condition of ξ k−1
jic > 0. If true, set γ ji = 0.

(A.3) Using the resulting multiplier matrices Qk
jic,S

k
jic,R

k
jic to formulate, then solve

the optimisation problem (9.23) to yield the local control sequence û ji(k).
The first vector element u ji(k) is applied to control S ji.

Remark 9.1. The choice of γk
ji is crucial to the convergence to zero of solutions.

When γk
i approaches 1, the controllers will tend to be smoother but are slower to

converge to zero, and reversely otherwise. This can be seen clearly in the output
trends in Figs. 9.12 and 9.13 in the first example of Sect. 5, wherein all outputs
converge to zero after time step 80 with γ ji = 0.99 in Fig. 9.12 compared to time
step 120 with γ ji � 1 (0.998 or 0.999) in Fig. 9.13. It is notably that, a time-invariant
γi can be employed, as it is in this procedure, to simplify the implementation.

Remark 9.2. The first step of Procedure 2, which is for updating the multiplier
matrices Sk

jic and Rk
jic online, can be ignored if the offline multiplier matrices

S0
jic and R0

jic of the APRC-based stability constraints are sufficient for feasible
solutions.

9.4 Case Studies: Process Control in Alumina Refineries

In the production of alumina from the bauxite ores, the Bayer cycle is recognisee
as a unique processing technology (patented by Karl Bayer with Pechiney in 1887).
A simplified block diagram of the Bayer process is illustrated in Fig. 9.6, whereby
there are four main departments, namely Digestion, Clarification, Precipitation, and
Evaporation.

The production basically dilutes the bauxite ore in certain forms, most popularly
is solid Gibbsite–Trihydrate (Al2O3 ·3H2O), Boehmite–Monohydrate (Al2O3 ·H2O)
and Kaolinite (Al2O3 ·2SiO2 ·2H2O), together with some impurities, such as, Silica
(SiO2), Iron Oxide (Fe2O3), and Titania (TiO2), in heated soda solutions with the
basic reactions of

Al2O3 ·3H2O + 2NaOH → 2NaAlO2 + 4H2O
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Fig. 9.6 The departments of Bayer process

Al2O3 ·H2O + 2NaOH → 2NaAlO2 + 2H2O

5[Al2O3 ·2SiO2 ·2H2O]+Al2O3 ·3H2O+12NaOH → 2[3Na2O ·3Al2O3 ·5SiO2 ·5H2O]+10H2O

to obtain the soluble NaAlO2 and the solid desilication product 3Na2O.
3Al2O3.5SiO2. 5H2O (in the Digesters). It is then going through a series of
crystallisation (in the Thickeners) and precipitation (in the Precipitators) stages,
then the classification stage (through various Filters) and the calcination stage (via
Kilns) to become the final product of Al2O3 in white powder form, called alumina.
The residue liquor that still contains certain levels of Al2O3 will be recirculated
to the Digestion stage via the Evaporators where water condensates are recovered
from the evaporated steam. The residue mud is washed to eliminate all toxic NaOH
before being put into security ponds. The typical equilibrium curve of the Bayer
process, the Bayer cycle, is provided in Fig. 9.7 for information.

The alumina refining challenges are to maximise yield (defined as the ratio of
Weight of Al2O3 recovered over Volume of liquor circulating—g(Al2O3)/litre) sub-
ject to constraints on caustic concentration (expressed in terms of g(Na2CO3)/litre)),
particle size distribution in precipitation, and to robustly maintain liquor inventories
and surge volumes within the optimal operating range [26]. Automatic control
requirements for this process used to be considered as simple and there were no
rooms for advanced process controls in the past. It is, nonetheless, becoming a
promising candidate for modern control theories since the modular approach for
process system designs have been deployed in the recently built plants. They are
not only equipped with high-tech instrumentations, but also allow ultra-complex
interconnections and ultra-flexible parallel operations of several sub-processes,
especially in the Brownfield plants. These complexities do not exist previously (see
Fig. 9.8).
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Fig. 9.7 Typical equilibrium curve of Bayer process: the alumina/caustic ratio ( Al2O3
Na2CO3

) vs.
temperature

9.4.1 Plant-Wide Process Control for Alumina Refineries

With the ever increasing demands of aluminium around the world in the next 15
years, as evaluated by the visionary experts [9], and the widespread approach of
modular assemblies and constructions in the fast-track projects of both Greenfield
and Brownfield alumina refineries [10], the dynamic control of reticulated systems
become imminently requisite and in great needs. With the maturity of optimisation
methods and information technologies, the plant-wide dynamic operation and
control, which have been considered as emerging applications for the mining
industry about a decade ago [11, 26], are playing important roles in reducing the
operational costs for large complex mineral processing plants nowadays [13].

While having appeared in open publications since the early days, the applications
of dynamic modeling and control in this field emphasised on process simulations
using empirical models for the caustic cycle or for the whole plant [12, 15], and
on phenomenological models for different unit operations, see [5] and references
therein, the multivariable control and optimisation-based techniques have only been
attracted to lately [20]. Albeit gradually appreciated, the multivariable control de-
signs have only been proposed and implemented to the individual unit operation as a
single system [26]. In this chapter, we present a novel distributed and decentralised
model predictive control, as well as online centric stabilisation strategies that are
readily applied to the complex reticulated systems arising in the alumina refineries.
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In this chapter, two sub-processes are taken from such a complex refinery for
use in the illustrative examples. They are the inlet department of Predesilications
and the final stage of Counter-Current Washing Circuits. The positions of these
two department within the Bayer process is described in Fig. 9.6. Albeit simulating
with simplified process systems and models, typically serial, parallel and cycle
connections are all represented in these process systems. The developed methods
are applicable to other sub-processes within the refinery and potentially to the entire
Bayer cycle itself. The process descriptions here will only focus on the information
relevant to the control design problem. The process system designs are not under
the scope of this chapter.

9.4.2 The Counter-Current Washing Circuit

The counter-current washing technology is popularly used in the mineral processing
industry. The process flow diagram of a typical washing circuit with a parallel
redundant washing stage T-2b is given in Fig. 9.9. In an alumina refinery, the
washing circuit recovers caustic soda from the residues of the upstream thickeners
and clarifiers. Three residue washers are normally in operation. The inlet slurry is
fed into the first washing stage while fresh condensates (water) are added to the
final stage. The level of liquor on the top and the level of residue solids in the
bottom of each washing tank will be continuously measured and controlled. Each
washing stage (a tank) will have an underflow and overflow pump (e.g., P-11 and
P-12, respectively, of the first tank). The main inlets of a washing tank will be from
the upstream underflow and downstream overflow. The mixing of underflow and
overflow streams will occur in a mixer prior to feeding into each tank. Flocculants
are added after the slurry is mixed to enhance the settling conditions. The settled
residue which has lower levels of caustic is raked to the tank perimeter where it is
removed and pumped to the next downstream stage. The overflow liquor which has
higher levels of caustic is pumped to the next upstream tank. The caustic content is
thus reduced as residues move down the washing circuit.

For increasing the system reliability and operational availability, the second
washing stage is installed with two parallel tanks which unevenly share the overflow
and underflow from the downstream and upstream stages.

A modular control strategy is applied to this washing circuit instead of a plant-
wide strategy, wherein the regulations of the underflow and overflow pumps depend
only on the liquor and residue levels of the same stage. The underflow rates are thus
linearly proportional to the residue levels while the overflow rates are proportional to
the liquor levels. A washing stage is represented by a subsystem state space model.
The nested system models, consisting of Units and Subsystems, will be deployed
for the large-scale system having mixed connection configurations like this one.
The large-scale process is grouped into three Units. Unit 2 has two Subsystems.
Units 1 an 3 each has one Subsystem. Three controlled variables (plant outputs, yi)
of each subsystems correspond to the residue level, liquor level and slurry density.
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The manipulated variables (ui) of the first tank are the feeding slurry and flocculant
flow rates, of the second tank is the flocculant flow rate, and of the third tank are
the condensate and flocculant flow rates. The lumped parameter models [8,25] have
been developed for this process. The state space realisation matrices of the linearised
models are given in the following:

A11 =

⎡

⎣
−29 0 0
17 −6 0.5
−8 0 0

⎤

⎦ ,B11 =

⎡

⎣
1 0
0 0
0 1

⎤

⎦ ,C11 =

[
1 0 0
0 1 0

]
,

A21 =

⎡

⎣
−14 0 0
18 −0.5 0
−3 0 0.2

⎤

⎦ ,B21 =

⎡

⎣
0
0
1

⎤

⎦ ,C21 =

[
1 0 0
0 1 0

]
,

A22 =

⎡

⎣
−13 0 0
16 −0.5 0
−5 0 0.2

⎤

⎦B22 =

⎡

⎣
0
0
1

⎤

⎦ ,C22 =

[
1 0 0
0 1 0

]
,

A31 =

⎡

⎣
−16 0 1
12 −0.7 0
−6 0 0

⎤

⎦ ,B31 =

⎡

⎣
−0.1 0

1 0
0 1

⎤

⎦ ,C31 =

[
1 0 0
0 1 0

]

Eπ11 =

⎡

⎣
0 −0.4
0 2
0 0

⎤

⎦ ,Eπ31 =

⎡

⎣
2 0
0 0.8
0 0

⎤

⎦ ,

Eπ21 =

⎡

⎣
2 0 −1 0
0 0 0 0
0 0.8 0 0

⎤

⎦ , Eπ22 =

⎡

⎣
1.8 0 −1.3 0
0 0 0 0
0 0.9 0 0

⎤

⎦ ,

Fπ11 =

[
0.1 0 0
0 0 1

]
, Fπ21 =

[
0.1 0 0
0 0 0.5

]
,Fπ22 =

[
0.1 0 0
0 0 0.5

]
, Fπ31 =

[
0 0.7 0

]
,

Hπ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢⎢
⎣

0 0 1 0 0
0 0 0 1 0
1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥⎥
⎦

, Hσ = 0.

The control purpose is to track the set points of the controlled variables, which
in this case, are transformed into the stabilizing problem of the linearised system
subject to the control constraints on ui and the decentralised architecture.

Short predictive horizons of N11 = N21 = N22 = 3 have been chosen for the
first three subsystems, while a longer horizon of N31 = 12 is chosen for the
fourth one. They all have the same sampling time of 0.4 min. The weighting
coefficients for the control inputs, their increments and measurement outputs
in the objective functions of three MPCs are as follows: R11 = diag{2,1},
RΔ11 = diag{5,1}, Q11 = diag{5,1,2}, R21 = 1, RΔ21 = 0.3, Q21 = diag{1,1,2},
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R22 = 1, RΔ22 = 0.3, Q22 = diag{1,1,2}, R31 = diag{0.5,1}, RΔ31 =
diag{0.2,0.7}, Q31 = diag{4,1,5}. The control increments are included in the
objective function (the weighting matrices are subscripted with Δ ) and their
constraints are also considered in this simulation. The constraints on the control
inputs are setup as, u11 =−u11 = [2 2]T, u21 =−u21 = [2 2]T, u22 =−u22 = [2 2]T,
u31 = −u31 = [15 15]T. The output constraints are ignored to emulate the control
system instability.

When the multiplier matrices of the APRC are updated online (i.e., the first step
in Procedure 2 is now active), the trends of plant outputs and control inputs are
shown in Fig. 9.10, also indicating clearly a stabilised interconnected system. The
APRC-based stability constraints have been imposed from step 20 in this simulation.
It shows a monotonous increasing min(ξ jic) after which. And this implies a better
control performance and a smoother control trajectory. The values of multiplier
matrices Sk

jic at steps k = 30,45 and 54 are listed below.

Subsystem 11:

S30
11c = 108 ×

[
5.2984 0.8103

−0.76381 −4.4362

]
,

S45
11c = 108 ×

[
6.1578 0.98013
−0.8154 −5.4738

]
,S54

11c = 108 ×
[

6.1456 0.9248
−0.9012 −5.1768

]
,

Subsystem 31:

S30
31c = 108 ×

[
5.2346 0.9575

−0.66474 −4.7956

]
,

S45
31c = 108 ×

[
5.1235 0.91714
−0.6019 −5.1279

]
,S54

31c = 108 ×
[

5.1780 0.9562
−0.6346 −5.2355

]
.

Simulation results in this section have verified the effectiveness of the developed
APRC-based stability constraints in a decentralised MPC strategy. In terms of
operability and reliability, the proposed modular control strategy in this example is
much better than the ad hoc plant-wide strategy usually implemented for this plant,
wherein the downstream overflows (e.g., of tank 3) depend on the upstream liquor
levels (e.g., of tank 2). By employing this modular strategy, the MPC controller
relating to a single tank can be set up individually and built-in at the construction
stage. The final control design for the interconnected system is just simply setting
up the multiplier matrices for the APRC-based stability constraints.

9.4.3 Predesilication Process

In the predesilication department, the extracted bauxite ores are fed into grinding
machines, then preheated and circulated through a system of settling and
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predesilicating tanks before being mixed with heated soda in the digesters.
The predesilication area of an alumina refinery is typical with parallel
subsystems. A simplified process diagram of an actual plant is given in
Fig. 9.11. The large-scale process is grouped into three Units. Unit 1 has
two subsystems. Units 2 an 3 each has one subsystem. There are two mill
grinding subsystems in this case. The mill grinding area (Unit 1) has two
grinding mills (ML-1,-2) built with belt weighers (W-11,-12), mill slurry tanks
(T-11,-12), and relay tanks (T-21, -22). Each mill is installed with an independent
inching control system. The heating and predesilication area (Unit 2) has three
steam heaters (H-31, 32-33) built with mill slurry pumps (P-31, -32, 33), booster
pumps (P-34, -35, -36) and three predesilicating tanks (T-31, -32, -33) built with
transfer and recirculation pumps (P-41, -42, -43). The saturated liquor from R-51 in
Unit 3 is extracted and recirculated back to the mill grinding area via the reheater
H-51. The large-scale system is modeled as four subsystems grouped into three
units in this example. Units two and three each has only one subsystem, whereas
unit one has two parallel subsystems. The control input of each subsystem in Unit 1
is the mill feed solid flow rate via the belt weigher (W-11/W-12). The control for
this unit (1 only) is preferable with on/off (bang-bang) control. The levels in the
mill, slurry and relay tanks are its states. The control inputs for the predesilication
tanks in Unit 2 are the transfer and recirculation flow rates (P-41/42/-43). The levels
in three predesilication tanks are its states. The temperature and flow control loops
in Unit 2 are not included in this scheme. The two control inputs of the subsystem
in Unit 3 are steam and caustic soda flow rates feeding to the top of R-51. The
level and temperature in the reactor R-51 are its states. The state space realisation
matrices are provided in the following:

A11 =

⎡

⎣
−1.4 0.3 0

0 −1.8 1.5
0.1 −2.7 1.06

⎤

⎦ ,B11 =

⎡

⎣
0
0
1

⎤

⎦ ,Eπ11 =

⎡

⎣
0.48

0
0.48

⎤

⎦ ,

A12 =

⎡

⎣
−1.6 0.2 0

0 −2.1 1.7
0.3 −1.8 0.9

⎤

⎦ ,B12 =

⎡

⎣
0
0
1

⎤

⎦ ,Eπ12 =

⎡

⎣
0.5
0

0.5

⎤

⎦ ,

A21 =

⎡

⎣
−0.76 0 0.25
0.48 −0.56 0

0 0.2 −0.34

⎤

⎦ ,B21 =−
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ , Eπ21 =

⎡

⎣
0.8
0
0

⎤

⎦ ,

A31 =

[−4.3 5.9
−1.8 2.7

]
,B31 =

[
1 0
0 1

]
,Eσ31 =

[
0.5
0

]
,

C11 =

[
1 0 0
0 1 0

]
,Fπ11 =

[
1 0 0

]
,C12 =

[
1 0 0
0 1 0

]
,
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Fπ12 =
[
1 0 0

]
, C21 =

[
1 0 0
0 1 0

]
,Fσ21 =

[
0 0 1

]
,

C31 =

[
1 0
0 1

]
,Fπ31 =

[
1 0
]
,

Hππ =

⎡

⎣
0 0 1
1 0 0
0 0 0

⎤

⎦ ,Hσ =

⎡

⎣
0 0 0
0 0 0
0 1 0

⎤

⎦ .

The control purpose is to track the set points of the controlled variables, which in
this case, are transformed into the stabilizing problem of the linearised state space
model. The controlled variables (or plant outputs) are the two out of three states
of subsystems 11 (levels of slurry and relay tanks, T-11 and T-21, respectively), 12
(levels of tanks T-12 and T-22) and 21 (levels of tanks T-31 and T-32), and the two
states of subsystem 31 (temperature and level of R-51), respectively. The control
problem is subject to the constraints on the control vectors ui and the decentralised
architecture.

The subsystem MPCs are formulated with the chosen predictive horizons,
weighting matrices, initial state and control vectors, and the control constraints.
The predictive horizons of four subsystems are as follows: N11 = N12 = 6, N21 = 8,
N31 = 6. The weighting matrices are set up as, Q11 = diag{1,1,2},
R11 = [0.2], Q12 = diag{1,1,2},R12 = [0.2], Q21 = diag{1.5,2.4,1.6},
R21 = diag{0.2,0.2,0.2}, Q31 = diag{1,3},R31 = diag{0.5,0.5}. The initial
state and control vectors are chosen as, x0

11 = [−1 − 1 − 1]T,u0
11 = −1,

x0
12 = [−1 − 1 − 1]T,u0

12 = −1, x0
21 = [−1 1 − 1]T,u0

21 = [1 − 1 1]T,
x0

31 = [1 − 1]T,u0
31 = [−1 1]T. The constraints on the control input vectors are

as follows: u11 = −u11 = 0.15, u12 = −u12 = 0.15, u21 = −u21 = [10 10]T,
u21 = −u31 = [1 1]T. The constraints of 10% u ji on the control increments are
also setup here.

The multipliers are firstly determined offline using Procedure 1. When the
local MPCs are imposed with the APRC-based stability constraints in the control
algorithm of Procedure 2, the measurement output and control input trends are
given in Fig. 9.12a,b, respectively. For asymptotical positive realness, two different
sets of γi j(k) are chosen for the simulations. Only time-invariant γ ji is employed
in this example. The coefficients γ11 = 0.99,γ12 = 0.99,γ21 = 0.99,γ31 = 0.99 in
this simulation. If the coefficients are increased as γ11 = 0.999,γ12 = 0.999,γ21 =
0.998,γ31 = 0.998, the responses are given in Fig. 9.13a,b, respectively. From these
two simulations, it is clearly that, there is a trade-off between the convergent rate of
solutions and γi j . When γi j approaches 1, the control tends to be smoother, as shown
by trends in Fig. 9.13 compared to those in Fig. 9.12 with smallers γi j. The settling
times are, however, longer in Fig. 9.13 when γi j approaches 1.

To demonstrate the efficacy of the proposed approach, only offline multiplier
matrices Q0

jic,S
0
jic,R

0
jic have been used in this example (i.e., the first online step in

Procedure 2 is omitted). They are listed below.
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Fig. 9.12 Decentralised MPC with quadratic programming, and smaller γ ji−time responses
(a) With APRC-based stability constraints—plant outputs (b) With APRC-based stability
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jic
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Q0
11c =

[−5.0161
]
,Q0

21c =

⎡

⎣
−4.3430 −0.0036 −0.5936
−0.0036 −4.3187 −0.0821
−0.5936 −0.0821 −6.8165

⎤

⎦ ,

Q0
31c =

[−4.0614 0.1716
0.1716 −4.2755

]
,

S0
11c = 102

[−0.0639
0.4198

]
,S0

21c = 102
[

1.1024 0.0607 0.5236
0.0695 1.3737 0.5001

]
,

S0
31c = 102

[
1.68 −0.75
0.68 −2.24

]
,

R0
11c =

[
50.499 −1.922
−1.922 42.016

]
,R0

21c = 102
[

0.2843 −0.0380
−0.0380 0.4379

]
,

R0
31c = 102

[
0.4745 −0.6883
−0.6883 1.0104

]
.

In this illustrative example, the APRC-based stability constraints are only imposed
on the optimisation problems from step 15. It is observed that the minimum
of ξ jic, j = 1,2,3; i = 1,2, increases monotonously towards zero without any
fluctuations (Fig. 9.12c), compared to that in Fig. 9.13c. This is also equivalent to
a smoother control trend, as analyzed above.

9.5 Conclusion

This chapter has provided a decentralised perspective on the control of time-
varying splitting parallel systems. We have started with a brief overview on the
industrial plant-wide process control with parallel redundant configurations and
mixed operational modes. They are the basis for introducing the issues around
the parallel systems that have time-varying and unknown splitting ratios. The state
space models of complex interconnected systems with parallel and serial coupling
vectors have been delineated in the subsequent section. Special treatments for
parallel connections of time-varying and unknown splitting ratios are outlined in
details in this section. A decentralised model predictive control strategy for such
complex interconnected systems presented afterwards constituted an essential part
of this chapter. There are not any requirements for the additional constraints on, or
local measurements for, the vectors of coupling inputs and outputs in this approach.
More importantly, a continuous control strategy for time-varying splitting parallel
systems has been presented as an alternative to the hybrid control strategies. From
the theoretical perspective, we have introduced the notion of APRC and its em-
ployment in a constructive method of approaching the positive real property for the
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system under control. The APRC-based stabilisability conditions are developed into
stability constraints for the local MPCs. These stability constraints are characterised
dynamically to guarantee the recursive feasibility of the convex optimisations.
Two case studies of typical modular systems in an alumina refinery have verified
the efficacy of the presented decentralised MPC strategy. With the deployment of
this decentralised MPC, the plant-wide control implementation for time-varying
splitting parallel systems can now be facilitated by a simple plug-and-play function.
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13. Jämsä-Jounela SL (2007) Future trends in process automation. Annu Rev Contr 31:211–220
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Chapter 10
Robust Estimation with Partial Gain-Scheduling
Through Convex Optimization

Joost Veenman, Carsten W. Scherer, and I. Emre Köse

Abstract The problem of robust estimation for uncertain dynamical systems with
a linear fractional dependence on uncertainties is considered. It is assumed that
some of the parametric uncertainties affecting the system are available online and
the estimator is scheduled on these parameters. The integral quadratic constraint
(IQC) framework is considered for handling the uncertainties. Full-block static
multipliers are used for capturing the properties of the measured parameters in the
system while no structural or dynamic restrictions are placed on the multipliers used
for the nonmeasured uncertainties. Sufficient existence conditions for constructing
such robustly stabilizing, partially gain-scheduled estimators with guaranteed L2-
gain bounds are given in terms of finite dimensional linear matrix inequalities.
A numerical example illustrates the advantages of gain-scheduling in robust esti-
mation whenever possible.

10.1 Introduction

The online estimation of nonmeasured variables in a dynamical system constitutes
one of the most important problems in systems and control theory. When the
mathematical model represents the physical system exactly, the estimation problem
is solved efficiently within the framework of H2- or H∞-control theory and the
solutions are expressed in terms of convex optimization problems (see, e.g., [4]).
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It has recently been observed that in the presence of modeling uncertainties, the
robust estimation problem also yields a convex solution [7], which is certainly not
the case for a general robust control design problem.

Since then, a number of papers have appeared investigating different uncertainty
structures in the plant and different methods of solution. As is typical of all
theoretical studies in the literature, the results vary with the dependence of the plant
on the uncertainties. For instance, systems with affine dependence on uncertain
parameters that take values in a convex polytope were studied in [7, 8]. The
conservatism of the techniques presented in these papers was reduced by the use
of parametric Lyapunov functions in [9] and also in [1, 24]. On the other hand,
assuming a linear fractional (i.e., LFT) dependence on uncertain parameters that is
familiar from robust control theory, static and dynamic D/G-scales were considered
in [22, 23], respectively. For dynamical systems involving uncertainties that are
captured by integral quadratic constraints (IQCs) as in [16], a full solution for the
robust estimation problem was given in [19].

In this chapter, we focus on a linear fractional transformation (LFT) repre-
sentation of the uncertain system and assume that the uncertainties affecting the
system fall into two categories. In the first category are the uncertainties whose
characteristics are known, but which are not measured online, and, therefore, cannot
be used for scheduling the estimator. The second category consists of parametric
variations that are measurable online, with a priori known bounds and arbitrarily
fast rates-of-variation. The estimator we seek is scheduled on the uncertainties in
this second category and, hence, is only partially gain-scheduled. The objective is to
find such an estimator that is robustly stable and yields a guaranteed L2-gain bound
from the disturbance to the estimation error signal. This represents a very realistic
engineering scenario and, to the best of our knowledge, has not been addressed in
the literature so far.

Our main result is given in terms of convex conditions for the existence of such
an estimator, together with a construction of the estimator when these conditions are
satisfied. Our solution is based on the robustness analysis of the interconnection of
the system with the estimator using IQCs that are defined through “multipliers”
that describe the characteristics of a given operator [16]. For each category of
the uncertainties, we use the most representative multipliers in the literature.
Indeed, for the unmeasured uncertainties, we allow any appropriate, possibly
dynamic (i.e., frequency-dependent),multiplier to be included in our solution. In our
computations, these multipliers are parameterized through the use of basis functions,
enabling us to approximate the IQCs with arbitrary accuracy and simplifying the
search for optimal multipliers. For the measured parametric uncertainties, we use
full-block static multipliers [17], which are known to yield the least conservative
representation of arbitrarily fast parametric variations.

The results in this chapter are based on [17, 19] and the fact that the structure of
the estimation problem allows one to take the crucial step of “dualization.” This also
allows us to show that the McMillan degree of the estimator can be set to zero and
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the design problem will still yield a convex solution. Lastly, completely analogous
results can be derived for the design of robust, partially gain-scheduled feedforward
controllers employing the techniques here, only in dual form.

The chapter is organized as follows. In Sect. 10.2, we introduce the robust
estimation problem with partial gain-scheduling in detail. Robustness analysis of
the interconnection of the system with the estimator through the use of IQCs is
discussed in Sect. 10.3. Basic results regarding the structure of the multipliers and
the issue of nominal stability characterization in state-space are discussed here. The
main result of the chapter, namely Theorem 10.4, is given in Sect. 10.4. Due to
space limitations, we only give a sketch of the proof of Theorem 10.4 in Sections
“Sketch of Proof of Theorem 10.4: Necessity” and “Sketch of Proof of Theorem
10.4: Sufficiency” in the Appendix. The findings of the chapter are highlighted
through a numerical example in Sect. 10.5. We conclude the chapter with some
remarks in Sect. 10.6. Some technical tools used in this chapter are given in the
Appendix.

10.1.1 Notation

The symbol L2 denotes the space of vector-valued square integrable functions
defined on [0,∞), with the usual inner product given by 〈., .〉. The space of all
real-rational and proper (and stable) matrix functions that have no poles on the
extended imaginary axis (in the closed right-half complex plane) is denoted by
RL m×n

∞ (RH m×n
∞ ). By an operator we mean a map G : L a

2 → L b
2 , and for

two given operators G=

(
G11 G12

G21 G22

)
and Δ , the LFT Δ �G is defined as G22 +

G21Δ (I−G11Δ)−1G12, assuming that (I−G11Δ)−1 exists. Realizations of linear

time-invariant (LTI) systems are denoted by G =C (sI −A)−1B+D :=

[
A B
C D

]
and

with G(iω)∗ we mean G(−iω)T. If G has no eigenvalues on the extended imaginary
axis and P is a symmetric matrix, then, by the KYP Lemma, the frequency domain
inequality (FDI) G(iω)∗PG(iω)≺ 0 ∀ω ∈R∪{∞} is equivalent to the existence of
a symmetric matrix X , for which the following LMI is feasible:

⎛

⎝
I 0
A B
C D

⎞

⎠

T⎛

⎝
0 X 0
X 0 0
0 0 P

⎞

⎠

︸ ︷︷ ︸
M(X ,P)

⎛

⎝
I 0
A B
C D

⎞

⎠≺ 0. (10.1)

It is finally convenient to say that X is a certificate for the FDI and to use the
abbreviation (�)∗PG for G∗PG.
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10.2 The Robust Gain-Scheduled Estimation Problem

Consider the uncertain LPV plant in Fig. 10.1 where

⎛

⎜
⎜
⎝

zd

zs

zp

y

⎞

⎟
⎟
⎠=

⎛

⎜
⎜
⎝

Gdd Gds Gdp

Gsd Gss Gsp

Gpd Gps Gpp

Gyd Gys Gyp

⎞

⎟
⎟
⎠

︸ ︷︷ ︸
G∈RH ∞

⎛

⎝
wd

ws

wp

⎞

⎠ (10.2)

represents a proper, stable LTI system that admits a minimal realization of the form

G=

⎡

⎢
⎢
⎢
⎢⎢
⎣

A Bd Bs Bp

Cd Ddd Dds Ddp

Cs Dsd Dss Dsp

Cp Dpd Dps Dpp

Cy Dyd Dys Dyp

⎤

⎥
⎥
⎥
⎥⎥
⎦
, A ∈ R

n×n. (10.3)

Here, respectively, col(wd,ws,wp) ∈ L
nwd+nws+nwp
2 and col(zd,zs,zp,y) ∈

L
nzd+nzs+nzp+ny

2 denote the collection of uncertainty, scheduling and exogenous
disturbance input signals and uncertainty, scheduling, performance and measure-
ment output signals.

The plant G is subject to perturbations by the bounded and causal operators
Δ d and Δ s, also referred to as the uncertainty and scheduling block, respectively.
The uncertainty block Δ d belongs to a given star-convex set �d with center zero
(i.e., [0,1]�d⊆�d), capturing the properties of the uncertainties and nonlinearities,
while the scheduling block Δ s := Δ̂ s ◦η is assumed to be a linear function of an

Δd 0
0 Δs

G

E

wd
ws

zd
zs

wp

zp

wc
zc

ze

y
u

−
+

Δc

Closed-loop generalized plant G

Fig. 10.1 Robust gain-scheduled estimation problem
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online measurable time-varying parameter vector η : [0,∞) → Λ . Here the map
Δ̂ s :Rk → R

nws×nzs is defined by Δ̂ s(η) :=∑k
i=1 ηiHi for some fixed matrices Hi,

η ∈ R
k, and we assume that η takes its values in Λ :=co

{
η1, . . . ,ηm

}⊆R
k, where

η j =(η j
1 , . . . ,η

j
k ), j ∈ J := {1, . . . ,m} represent the generator points. Without loss

of generality, Λ contains the origin. Then the scheduling block Δ s is contained in
the set �s :=

{
Δ̂ s ◦η : η ∈ Cp([0,∞),Λ)

}
(with Cp([0,∞),Λ) denoting the space

of piecewise continuous functions [0,∞)→ Λ ) and defines the scheduling operator
ws(t)= Δ̂ s(η(t))zs(t).

The plant G interacts with Δ d and Δ s through an LFT, which we assume to be
well-posed. Equivalently, this boils down to

(
I 0
0 I

)
−
(

Gdd Gds

Gsd Gss

)(
Δ d 0
0 Δ s

)
(10.4)

being well-posed, which means that (10.4) is assumed to have a causal inverse for
all Δ d ∈ �d and Δ s ∈ �s.

The main goal in robust gain-scheduled estimation is the synthesis of a filter E �
Δ c that dynamically and causally processes the measurement y and the scheduling
signal η in order to provide an estimate u of the signal zp in the sense that the L2-
gain from wp to ze = zp − u is rendered less than an a priori given γ > 0. Here the
operator Δ c represents the so-called scheduling function that is defined with some
to-be-constructed Δ̂ c : Rnws×nzs → R

nwc×nzc as Δ c := Δ̂ c(Δ s). Again, Δ c defines the
operator wc(t)= Δ̂ c(Δ̂ s(η(t)))zc(t). Moreover, E is a proper and stable LTI system
that admits a realization of the form

(
u
zc

)
=

⎡

⎣
AE By Bc

Cu Duy Duc

Cc Dcy Dcc

⎤

⎦

︸ ︷︷ ︸
E

(
y

wc

)
, AE ∈R

n×n, (10.5)

where AE is Hurwitz and where col(y,wc)∈L
ny+nwc
2 andcol(u,zc)∈L

nu+nzc
2 denote

the collection of measurement and scheduling input and the control and scheduling
output signals respectively.

Given G, Λ and �d, the goal of this chapter can now be formally stated as
follows: “Design a gain-scheduled estimator E �Δ c such that, for all Δ d ∈�d and
Δ s∈�s, the interconnection of Fig. 10.1 is well-posed, stable and the L2-gain from
wp to ze is rendered less than γ .”

10.3 Robust Stability and Performance Analysis

As a preparation, consider the standard input–output setting for robust stability and

performance analysis in Fig. 10.2, where G ∈RH
(nκ+nze )×(nψ+nwp )
∞ represents the

nominal and stable closed-loop generalized plant, as represented by the dashed



258 J. Veenman et al.

Fig. 10.2 Standard configuration for robust stability and performance analysis

box in Fig. 10.1. Here, κ = col(zd,zs,zc)∈L
nzd+nzs+nzc

2 and ψ = col(wd,ws,wc)∈
L

nwd+nws+nwc
2 denote the collection of scheduling and uncertainty signals and G

admits the realization

G :=

(Gκψ Gκp

Geψ Gep

)
=

⎛

⎜
⎜
⎝

Gdd Gds 0 Gdp

Gsd Gss 0 Gsp

Gcd Gcs Gcc Gcp

Ged Ges Gec Gep

⎞

⎟
⎟
⎠=

⎡

⎢
⎢
⎢⎢
⎢
⎣

A Bd Bs Bc Bp

Cd Ddd Dds 0 Ddp

Cs Dsd Dss 0 Dsp

Cc Dcd Dcs Dcc Dcp

Ce Ded Des Dec Dep

⎤

⎥
⎥
⎥⎥
⎥
⎦
=

=

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

A 0 Bd Bs 0 Bp

ByCy AE ByDyd ByDys Bc ByDyp

Cd 0 Ddd Dds 0 Ddp

Cs 0 Dsd Dss 0 Dsp

DcyCy Cc DcyDyd DcyDys Dcc DcyDyp

Cp −DuyCy −Cu Dpd −DuyDyd Dps −DuyDys −Duc Dpp −DuyDyp

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

.

(10.6)

As a natural consequence, G is (1) stable if A and AE are Hurwitz and (2) subject
to perturbations by the bounded and causal operator Δ := diag(Δ d,Δ s,Δ c) which
is contained in the set � :=diag

(
�d,�s, Δ̂ c(�s)

)
and represents the collection of

uncertainty and scheduling blocks. The system interconnection of Fig. 10.2 is now
said

(A.1) To be well-posed if the operator I−GκψΔ has a causal inverse for all Δ ∈�.
(A.2) To be robustly stable if I−GκψΔ is well-posed and if its inverse is bounded

on L2.
(A.3) To have a robust L2-gain performance of level γ , if it is robustly L2-stable

and if for all Δ ∈� the L2-gain from wp to ze is less than γ > 0.

By recalling the structure of (10.6), clearly I−GκψΔ is well-posed if and only if

I−GccΔc (10.7)
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and (10.4) are well-posed for all Δ c ∈ Δ̂ c(�s) and for all Δ d ∈�d and Δ s ∈�s,
respectively. Hence, since (10.4) is well-posed by assumption, we only require
(10.7) to have a bounded inverse for all Δ c ∈ Δ̂ c(�s), which in turn just means
that E �Δ c must be well-posed.

10.3.1 Analysis with IQCs

Recall that the operator Δ is said to satisfy the IQC defined by the multiplier Π =

Π ∗ ∈RL
(nκ+nψ )×(nκ+nψ)
∞ if the following condition holds true:

〈(
κ

Δ(κ)

)
, Π
(

κ
Δ(κ)

)〉
≥ 0 ∀κ ∈ L nκ

2 . (10.8)

For the correct interpretation of this expression, we refer the reader to [5]. In this
chapter, we assume that Π is factorized as Φ∗PΦ , with P being a symmetric matrix
and Φ ∈RH

nψ×nκ
∞ a typically tall transfer matrix. In applications one constructs a

whole family of multipliers …=Φ∗PΦ with a suitable set of symmetric matrices
P∈P such that the IQC holds for all Δ ∈�. We do not make use of any particular
structure of Φ and P for the uncertainty Δ d and restrict our attention to static
full-block multipliers for the scheduling block Δ sc := diag(Δ s,Δ c). Hence, let us
consider the following two IQCs:

〈(
zd

Δ d(zd)

)
,Ψ∗P1Ψ

(
zd

Δ d(zd)

)〉
≥0 ∀zd ∈ L

nzd
2 , (10.9)

〈(
zsc

Δ sczsc

)
,P2e

(
zsc

Δ sczsc

)〉
≥0 ∀zsc :=

(
zs

zc

)
∈ L

nzs+nzc
2 . (10.10)

Here, Ψ :=
(
Ψ1 Ψ2

)∈ RH
nψ×(nwd+nzd )∞ is partitioned according to the structure of

col(zd,Δ d(zd)) and P1 ∈P1 is any suitable (LMIable) set of structured symmetric
matrices such that (10.9) holds (see Sect. 10.3.2 for examples). Moreover, (10.10) is
satisfied if P2e is confined to

P2e :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P2e : (�)T

⎛

⎜
⎜
⎜⎜
⎝

Q Q12 S S12

QT
12 Q22 S21 S22

ST ST
21 R R12

ST
12 ST

22 RT
12 R22

⎞

⎟
⎟
⎟⎟
⎠

︸ ︷︷ ︸
P2e

⎛

⎜
⎜
⎜⎜
⎝

I 0

0 I

Δ̂ s(η j) 0

0 Δ̂ c(Δ̂ s(η j))

⎞

⎟
⎟
⎟⎟
⎠

 0,

(
R R12

RT
12 R22

)

≺ 0∀ j ∈ J

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(10.11)
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Hence, with P1 ∈P1 and P2e ∈P2e, we infer that (10.8) is satisfied for all Δ ∈�

with

Π =Φ∗PΦ =Φ∗
(

P1 0
0 P2e

)
Φ =(�)∗

⎛

⎜
⎜
⎜⎜
⎜
⎝

P1 0 0 0 0
0 Q Q12 S S12

0 QT
12 Q22 S21 S22

0 ST ST
21 R R12

0 ST
12 ST

22 RT
12 R22

⎞

⎟
⎟
⎟⎟
⎟
⎠

⎛

⎜
⎜
⎜⎜
⎜
⎝

Ψ1 0 0 Ψ2 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 0 I 0
0 0 0 0 0 I

⎞

⎟
⎟
⎟⎟
⎟
⎠
.

It is well known from [16] that robust stability and performance of the system
interconnection of Fig. 10.2 can now be characterized as follows.

Theorem 10.1. Suppose that (10.4) is well-posed and that Δ d satisfies (10.9) for
all Δ d ∈�d. Then, for all Δ ∈� the system interconnection of Fig. 10.2 is well-
posed, robustly stable and has a robust L2-gain performance level of γ , if there
exists P1∈P1 and P2e∈P2e for which the following FDI holds:

(�)∗ (�)∗
⎛

⎝
P 0 0
0 I 0
0 0−γ2I

⎞

⎠

︸ ︷︷ ︸
Pp

⎛

⎝
Φ(iω) 0 0

0 I 0
0 0 I

⎞

⎠

⎛

⎜⎜
⎝

Gκψ(iω) Gκp(iω)

I 0
Geψ (iω) Gep(iω)

0 I

⎞

⎟⎟
⎠≺ 0 ∀ω ∈R∪{∞}.

(10.12)

From now on, let us assume that there exists at least one P1∈P1 with

Ψ1(iω)∗P1Ψ1(iω) 0 ∀ω ∈R∪{∞} (10.13)

and suppose that Ψ1 and Ψ2, respectively, admit the minimal realizations

Ψ1 =

[
A1 B1

C1 D1

]
, Ψ2 =

[
A2 B2

C2 D2

]
(10.14)

with A1 and A2 being Hurwitz. Then, we can define the controllable realization

Ψ =
(

Ψ1 Ψ2
)
=

⎡

⎣
A1 0 B1 0
0 A2 0 B2

C1 C2 D1 D2

⎤

⎦=:

[
AΨ BΨ1 BΨ2

CΨ DΨ1 DΨ2

]
, (10.15)

where we stress that the specific structure of (10.15) is relevant for the results
presented in Sect. 10.3.5. If applying the KYP Lemma, the FDIs (10.12) and (10.13)
are equivalent to the existence of some symmetric matrices X and XΨ for which the
following LMIs hold:
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(�)TM(X ,Pp
)

⎛

⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

I 0

AΨ BΨ1Cd BΨ1Ddd+BΨ2 BΨ1Dds 0 BΨ1Ddp

0 A Bd Bs Bc Bp

CΨ DΨ1Cd DΨ1Ddd+DΨ2 DΨ1Dds 0 DΨ 1Ddp

0 Cs Dsd Dss 0 Dsp

0 Cc Dcd Dcs Dcc Dcp

0 0 0 I 0 0
0 0 0 0 I 0

0 Ce Ded Des Dec Dep

0 0 0 0 0 I

⎞

⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

≺ 0, (10.16)

(
AT

Ψ XΨ +XΨ AΨ +CT
Ψ P1CΨ XΨ BΨ1 +CT

Ψ P1DΨ1

BT
Ψ1XΨ +DT

Ψ1P1CΨ DT
Ψ1P1DΨ1

)
 0. (10.17)

Here, we recall from (10.6) that the diagonal blocks of A are given by A and AE

respectively. Hence, we partition X as

X =

(
X U

UT X̄

)

=

⎛

⎜
⎜
⎝

X11 X12 U1

XT
12 X22 U2

UT
1 UT

2 X̄

⎞

⎟
⎟
⎠ , (10.18)

where X11, X22 and X̄ have compatible dimensions with AΨ , A and AE, respectively.
It is now possible to state the following result.

Theorem 10.2 (IQC Analysis). Suppose that (10.4) is well-posed and that Δ d

satisfies (10.9) for all Δ d ∈�d. Then for all Δ ∈� the system interconnection of
Fig. 10.2 is well-posed, robustly stable and has a robust L2-gain performance level
of γ if

there exist X ,XΨ ,P1∈P1,P2e∈P2e such that (10.16), (10.17) hold. (10.19)

10.3.2 Parameterizing Dynamic IQCs

It is one of the main advantages of the IQC framework that IQCs are very useful
in capturing a rich class of uncertainties. One could, for example, think of repeated
static nonlinearities such as saturation [2,3,26] or smoothly time-varying parametric
uncertainties as well as uncertain time-varying time delays, both with bounds on the
rate-of-variation [10, 12–14]. Let us illustrate the flexibility of the framework by
means of three examples:
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Example 10.1 (Dynamic D/G-scalings). Consider the block diagonally repeated
LTI parametric uncertainty zd =Δ DGwd defined as zd(t) :=δwd(t) with δ ∈ [−1,1].
Then, (10.9) holds with

Ψ(iω)∗P1Ψ(iω)=

(
ψ(iω) 0

0 ψ(iω)

)∗(
D G
G∗−D

)(
ψ(iω) 0

0 ψ(iω)

)
, (10.20)

for all δ ∈ [−1,1] and Δ d replaced by Δ DG, if

ψ(iω)∗Dψ(iω) 0, ψ(iω)∗Gψ(iω) =−ψ(iω)∗G∗ψ(iω). (10.21)

Here, ψ ∈RH ∞ is a basis function which can, for example, be chosen as

ψ(iω) = I ⊗
(

1 1
(iω−α) · · · 1

(iω−α)ν

)T
, α < 0, ν ∈ N0 (10.22)

with realization

ψ =

[
Aψ,ν Bψ,ν
Cψ,ν Dψ,ν

]
.

Example 10.2 (Time-varying parametric uncertainties with bounds on the rate
of variation). Consider the block diagonally repeated time-varying parametric
uncertainty zd = Δ TVwd defined as zd(t) := δ (t)wd(t) with (δ (t), δ̇ (t)) ∈ R :=
[−δ̄ , δ̄ ]× [−v̄, v̄]. Then (10.9) is satisfied with Δ d replaced by Δ TV and for all
(δ (t), δ̇ (t)) ∈ R, if choosing

Ψ(iω)∗P1Ψ(iω)=

(
ψ1(iω) 0

0 ψ2(iω)

)∗
P1

(
ψ1(iω) 0

0 ψ2(iω)

)
(10.23)

and P1 with
⎛

⎜
⎜
⎝

I 0
0 I

δ I 0
0 vI

⎞

⎟
⎟
⎠

T

P1

⎛

⎜
⎜
⎝

I 0
0 I

δ I 0
0 vI

⎞

⎟
⎟
⎠� 0 ∀ (δ ,v) ∈ R. (10.24)

Here, respectively, ψ1 and ψ2 admit the realizations

ψ1 =

⎡

⎣
Aψ,ν Bψ,ν
Cψ,ν Dψ,ν

I 0

⎤

⎦, ψ2 =

⎡

⎣
Aψ,ν Bψ,ν I
Cψ,ν Dψ,ν 0

0 0 I

⎤

⎦.

If v̄ = ∞ one has to choose ν = 0, while for finite rate bounds v̄ ≥ 0 one can take
ν ≥ 0. Also note that (10.24) is a semi-infinite LMI constraint and should be relaxed
into a finite number of LMIs through some relaxation scheme. In our numerical
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examples, we use full-block multipliers in combination with a polytopic relaxation
(see Example 10.3). We refer the reader to [14] for further details.

It should be emphasized that the length of the basis function (10.22) plays
an important role in the analysis problem described in Theorem 10.2. Choosing
ν =0 corresponds to non-dynamic multipliers, which might yield overly conser-
vative results or even lead to infeasibility of the analysis problem. On the other
hand, by increasing ν>0 we allow for (more and more) dynamics and, hence, more
freedom in the analysis problem, at the cost of (more and more) computational load.
This very often leads to much less conservative results.

Example 10.3 (Static full-block multipliers). Consider the uncertainty Δ s ∈�s as
defined in Sect. 10.2. Then, the IQC

〈(
zs

Δ szs

)
,P2

(
zs

Δ szs

)〉
≥0 ∀zs ∈ L

nzs
2

is satisfied for all Δ s∈�s, if the symmetric matrix P2 is confined to

P2 :=

{

P2 =

(
Q S
ST R

)
:

(
I

Δ̂ s(η j)

)T

P2

(
I

Δ̂ s(η j)

)
 0, R ≺ 0 ∀ j ∈ J

}

. (10.25)

Recall, from Sect. 10.3.1, that (10.10) is satisfied for all Δ sc = diag(Δ s,Δ c)∈
diag(�s, Δ̂ c(�s)) if P2e∈P2e. As will become clear in the sequel, the results of this
chapter rely on the elimination of the realization matrices of E , and, consequently,
the elimination of the scheduling function Δ̂ c(Δ s), from the synthesis problem.
Therefore, the so-called extended multiplier P2e ∈ P2e for analysis results in the
reduced multiplier P2∈P2 appearing in the synthesis conditions. For further details,
we refer the reader to the proof in Section “Sketch of Proof of Theorem 10.4:
Sufficiency” in the Appendix and [17].

10.3.3 From Analysis to Synthesis

Since the system matrices depend on to-be-designed estimator variables, the
conditions in (10.19) are no longer affine in all variables, such that LMI solvers
are unable to handle the synthesis problem. A common procedure to resolve this
problem is to eliminate the estimator variables by applying Lemma 10.5 (see
Appendix). However, there are three main issues appearing in the robust gain-
scheduling estimator synthesis problem that need to be resolved.

(A.1) Due to the generality of the multipliers, X  0 is no longer the appropriate
condition in order to enforce closed-loop stability [19].

(A.2) In order to eliminate the estimator variables by applying Lemma 10.5, it is
required to formulate a second (dual) solvability condition by applying
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Lemma 10.4 (see Appendix). However, the outer factors of the IQC-
multiplier factorization Ψ∗P1Ψ are generally tall and, hence, cannot be
inverted. Since the inverse of Ψ∗P1Ψ is essential in order to explicitly
formulate the dual of matrix inequality (10.16), the (primal) matrix inequality
(10.16) must be reformulated with a square factorization of Ψ∗P1Ψ (i.e.
Ψ∗P1Ψ = Ψ̂∗diag(I,−I)Ψ̂ with Ψ̂ being square invertible) [15].

(A.3) Unlike the standard nominal H∞-controller synthesis problem [6, 11], it is
not sufficient to only eliminate the controller/estimator variables. The primal
and dual solvability conditions usually induce a nonconvex constraint on the
multipliers which are, in general, impossible to convexify.

10.3.4 A Characterization of Nominal Stability

In this section we focus on the first issue, by considering the characterization of
nominal stability as presented in [19]. Recall that P1 ∈P1 is generally indefinite.
This implies that positive definiteness of the matrix X is no longer an appropriate
condition in order to enforce stability on the underlying closed-loop system. The
following theorem provides a coupling constraint between (10.16) and (10.17),
which is equivalent to A being Hurwitz.

Lemma 10.1. AΨ and A are Hurwitz and FDIs (10.12) as well as (10.13) hold if
and only if there exist solutions X and XΨ of LMIs (10.16) and (10.17) which are
coupled as

X −

⎛

⎜
⎜
⎝

XΨ 0 0

0 0 0

0 0 0

⎞

⎟
⎟
⎠=

⎛

⎜
⎜
⎝

X11 −XΨ X12 U1

XT
12 X22 U2

UT
1 UT

2 X̄

⎞

⎟
⎟
⎠ 0. (10.26)

Proof. See Appendix. ��
It is now possible to exploit Lemma 10.1 in order to state the following result.

Theorem 10.3. Suppose that (10.4) is well-posed and that Δ d satisfies (10.9) for
all Δ d ∈�d. Then there exist a stable and causal estimator E �Δ c such that for all
Δ ∈� the system interconnection of Fig. 10.2 is well-posed, robustly stable and the
resulting L2-gain from wp to ze is rendered less than γ , if

there exist X ,XΨ ,P1∈P1,P2e∈P2e such that (16), (17), (26) hold. (10.27)

10.3.5 Reformulation of the Analysis LMIs of Theorem 10.2

As discussed in Sect. 10.3.3, it is nontrivial to formulate an explicit dual solvability
condition, since the outer factors of the multipliers Ψ are generally tall, and, hence,
cannot be inverted. In order to resolve this problem we will rely on the results
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of [21, 25]. Indeed, one can show, by solving two algebraic Riccati equations,
that it is possible to construct a “new” factorization of Ψ∗P1Ψ that has square
and invertible outer factors. Moreover, one can, subsequently, eliminate the initial
multiplier factorization Ψ∗P1Ψ appearing in the FDI (10.12) and replace it by the
new one. The key difficulty is how this can be done by using state-space arguments.

Lemma 10.2 (IQC Squaring). Suppose that (10.19) holds. Then, there exist sym-
metric matrices Z, Wε , with Wε →0 for ε →0 and matrices Ψ̂j ∈RH ∞, j = 1,2,3
with Ψ̂−∗

1 , Ψ̂−1
2 ∈RH ∞ such that

Ψ ∗P1Ψ =

(
Ψ̂1 Ψ̂3

0 Ψ̂2

)∗(
I 0
0 −I

)(
Ψ̂1 Ψ̂3

0 Ψ̂2

)
=: Ψ̂ ∗P̂1Ψ̂ , (10.28)

Ψ̂ admits the controllable realization

Ψ̂ =

(
Ψ̂1 Ψ̂3

0 Ψ̂2

)
=

⎡

⎢
⎢
⎢
⎣

A1 0 B1 0
0 Â2 0 B̂2

Ĉ1 Ĉ3 D̂1 D̂3

0 Ĉ2 0 D̂2

⎤

⎥
⎥
⎥
⎦
=:

⎡

⎢
⎣

ÂΨ B̂Ψ1 B̂Ψ2

ĈΨ1 D̂Ψ1 D̂Ψ3

ĈΨ2 0 D̂Ψ2

⎤

⎥
⎦ , (10.29)

Z satisfies

(�)T

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

0 Z 0 0 0

Z 0 0 0 0

0 0 I 0 0
0 0 0 −I 0

0 0 0 0 −P1

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

I 0 0

ÂΨ B̂Ψ1 B̂Ψ2

ĈΨ1 D̂Ψ 1 D̂Ψ3

ĈΨ2 0 D̂Ψ2

CΨ ( I 0 ) DΨ 1 DΨ2

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎠

=0 (10.30)

and

(�)T

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

0 Z+Wε 0 0 0

Z+Wε 0 0 0 0

0 0 I 0 0
0 0 0 −I 0

0 0 0 0 −P1

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

I 0 0

ÂΨ B̂Ψ1 B̂Ψ2

ĈΨ1 D̂Ψ 1 D̂Ψ3

ĈΨ2 0 D̂Ψ2

CΨ ( I 0 ) DΨ 1 DΨ2

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

≺0 (10.31)

holds for all small ε > 0.

Proof. The proof is found in [25]. ��
It is obvious that the initial “old” multiplier factorization Ψ∗P1Ψ appearing in

the FDI (10.12) can now simply be replaced with the “new” factorization Ψ̂∗P̂1Ψ̂ as
in (10.28). However, it has only recently been shown in [21] how this can be done
in state-space, by systematically merging (10.16) and (10.31).
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Lemma 10.3 (LMI Gluing). Suppose that (10.19) holds and that Z and Wε satisfy
(10.31) for all small ε > 0. Then, (10.31) and (10.16) imply

(�)TM(X̂ ,T3
)

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

I 0

ÂΨ B̂Ψ1Cd B̂Ψ1Ddd+B̂Ψ2 B̂Ψ1Dds 0 B̂Ψ1Ddp

0 A Bd Bs Bc Bp

ĈΨ 1 D̂Ψ1Cd D̂Ψ1Ddd+D̂Ψ3 D̂Ψ1Dds 0 D̂Ψ1Ddp

ĈΨ 2 0 D̂Ψ2 0 0 0

0 Cs Dsd Dss 0 Dsp

0 Cc Dcd Dcs Dcc Dcp

0 0 0 I 0 0

0 0 0 0 I 0

0 Ce Ded Des Dec Dep

0 0 0 0 0 I

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

≺0,

(10.32)

where

X̂ =

(
X̃ Ũ

ŨT X̄

)

=

⎛

⎜
⎜
⎝

T TX11T+Z+Wε T TX12 T TU1

XT
12T X22 U2

UT
1 T UT

2 X̄

⎞

⎟
⎟
⎠ , (10.33)

T = diag
(
I,(0 I)

)
and T3=diag

(
P̂1,P2e, I,−γ2I

)
.

Since the outer factors of the multipliers are now square and invertible, it is
possible to eliminate ĈΨ2 and D̂Ψ 2 by transforming (10.32) by congruence into

(�)T (32)

⎛

⎜
⎜
⎝

I 0 0

−D̂−1
Ψ2ĈΨ2 0 D̂−1

Ψ2 0 0 0

0 0 I

⎞

⎟
⎟
⎠≺ 0. (10.34)

This yields

(�)TM(X̂ ,T3
)

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

I 0 0 0 0
Â B̂d B̂s B̂c B̂p

Ĉd D̂dd D̂ds 0 D̂dp

0 I 0 0 0

Ĉs D̂sd Dss 0 Dsp

Ĉc D̂cd Dcs Dcc Dcp

0 0 I 0 0
0 0 0 I 0

Ĉe D̂ed Des Dec Dep

0 0 0 0 I

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

≺ 0, (10.35)
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where

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

Â B̂d B̂s B̂c B̂p

Ĉd D̂d D̂ds 0 D̂dp

Ĉs D̂sd Dss 0 Dsp

Ĉc D̂cd Dcs Dcc Dcp

Ĉe D̂ed Des Dec Dep

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

:=

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

ÂΨ−L̂1D̂
−1
Ψ2ĈΨ2 B̂Ψ1Cd L̂1D̂

−1
Ψ2 B̂Ψ1Dds 0 B̂Ψ1Ddp

−BdD̂
−1
Ψ2ĈΨ2 A BdD̂

−1
Ψ2 Bs Bc Bp

ĈΨ 1−L̂2D̂
−1
Ψ2ĈΨ2 D̂Ψ1Cd L̂2D̂

−1
Ψ2 D̂Ψ 1Dds 0 D̂Ψ1Ddp

−DsdD̂−1
Ψ2ĈΨ2 Cs DsdD̂

−1
Ψ2 Dss 0 Dsp

−DcdD̂−1
Ψ2ĈΨ 2 Cc DcdD̂

−1
Ψ 2 Dcs Dcc Dcp

−DedD̂−1
Ψ2ĈΨ 2 Ce DedD̂

−1
Ψ 2 Des Dec Dep

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

,

(10.36)

L̂1 = B̂Ψ1Ddd+B̂Ψ2 and L̂2 = D̂Ψ 1Ddd+D̂Ψ3. It is now crucial to observe that we
have appropriately reformulated (10.16) in order to apply Lemma 10.4:

(�)TM(X̂ ,T3
)−1

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

−ÂT −ĈT
d −ĈT

s −ĈT
c −ĈT

e

I 0 0 0 0

0 I 0 0 0

−B̂T
d −D̂T

dd−D̂T
sd−D̂T

cd−D̂T
ed

0 0 I 0 0

0 0 0 I 0

−B̂T
s −D̂T

ds −DT
ss −DT

cs −DT
es

−B̂T
c 0 0 −DT

cc −DT
ec

0 0 0 0 I

−B̂T
p −D̂T

dp−DT
sp−DT

cp−DT
ep

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

 0. (10.37)

Since (10.35) can be written in the from of (10.44) in the unknown realization
matrices of E , we can apply Lemma 10.5. Hence, this resolves the second issue
discussed in Sect. 10.3.3.

Remark 10.1. Based on the previous reformulation it is also easily seen that (10.35)
implies X̂ Â+ÂTX̂ ≺0. Since ÂΨ is Hurwitz, we conclude that positive definiteness
of X̂ is equivalent to A being Hurwitz. We can thus infer that (10.27) holds if and
only if there exists a positive definite matrix X̂ that satisfies (10.35). Moreover, if
(10.35) is feasible with X̂ 0, the closed-loop system (10.36) is stable.

10.4 Main Result

Before we state the main result, let us define the symmetric matrices

P2 :=

(
Q S
ST R

)
, P̃2 :=

(
Q̃ S̃
S̃T R̃

)
,
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where P2 and P̃2 take their values from the set P2, as well as the matrices

T1 :=diag
(
P1,P2, I,−γ2I

)
, T2 :=diag

(
P1, P̃2,0,−γ2I

)
.

Let us also define the arbitrary basis matrix Γ of the kernel of
(

0 Cy Dyd Dys Dyp
)
.

Then we have introduced all the necessary ingredients in order to provide a
finite-dimensional convex feasibility test for the existence of robust gain-scheduled
estimators that guarantee a given L2-gain for the system interconnection of
Fig. 10.1.

Theorem 10.4. Statement (10.27) is valid if and only if there exist matrices X, Y ,
XΨ , P1∈P1, P2, P̃2∈P2 for which the following LMIs hold:

Γ TOTM(X ,T1)OΓ ≺ 0, (10.38)

OTM(Y,T2)O ≺ 0, (10.39)

O =

⎛

⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

I 0
AΨ BΨ1Cd BΨ1Ddd+BΨ2 BΨ1Dds BΨ1Ddp

0 A Bd Bs Bp

CΨ DΨ1Cd DΨ1Ddd+DΨ2 DΨ1Dds DΨ1Ddp

0 Cs Dsd Dss Dsp

0 0 0 I 0
0 Cp Dpd Dps Dpp

0 0 0 0 I

⎞

⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

,

(
AT

Ψ XΨ +XΨ AΨ +CT
Ψ P1CΨ XΨ B1 +CT

Ψ P1DΨ1

BT
Ψ1XΨ +DT

Ψ1P1CΨ DT
Ψ1P1DΨ1

)
 0, (10.40)

Y −
(

XΨ 0
0 0

)
0, X −Y 0. (10.41)

Here, the matrix Y =Y T has a block structure identical to that of X.

Once the LMIs (10.38)–(10.41) in the variables X , Y , XΨ , P1, P2, P̃2, and γ2 are
feasible, the estimator E and the scheduling function Δ̂ c(Δ s) can be constructed
according to the steps taken in the proof which is found in the Appendix.

In summary, we have merged the problem of designing robust LTI estima-
tors using general dynamic IQC multiplier [19] with the problem of designing
nominal gain-scheduled estimators using full-block multipliers [17], yielding a
convex feasibility test for the existence of robust gain-scheduled estimators. We
have resolved the difficulties of enforcing closed-loop stability, eliminating the
realization matrices of E and removing the remaining nonconvex constraints as
raised in Sect. 10.3.3. It is one of the main differences between the existing results
on gain-scheduled controller synthesis and Theorem 10.4 that both P2 and P̃2 can
be identified as “primal” multipliers. As a natural consequence, it is interesting to
observe that one recovers a special case of the robust estimation problem of [19] by



10 Robust Estimation with Partial Gain-Scheduling Through Convex Optimization 269

setting P2=P̃2. Finally, as discussed in Sect. 10.1, we stress that the McMillan degree
of the estimator can be set to zero by enforcing X =Y and ignoring the inequality
X −Y  0.

Although it is very nice to see that the robust estimation problem of [19] can be
generalized to gain-scheduling based on static (non-dynamic) full-block multipliers,
it remains an open question how to solve the more general case of gain-scheduling
based on general dynamic multipliers. First, results in that direction have shown
that it is possible to solve the nominal gain-scheduling controller synthesis problem
based on dynamic D-scalings [20]. However, it remains a conjecture that the two
approaches can be merged. We further remark that it is straightforward to derive
a convex feasibility test for the synthesis of robust gain-scheduled feedforward
controllers by working with the dual of FDI (10.12) [15]. In fact, it has been
recently shown in [18] that the robust estimator and feedforward controller synthesis
problems can be unified into the following considerably more general robust
controller synthesis problem

(
zp

y

)
=

(P11(Δ d1,Δ d2) P12(Δd2)

P21(Δ d1) P22

)(
wp

u

)
, (10.42)

where only the control channel is not affected by uncertainties. It would be
interesting the see how this problem can be generalized to gain-scheduling as well.

10.5 Numerical Example

In order to illustrate our results, let us consider the uncertain LPV system

⎛

⎝
ẋ(t)
ze(t)
y(t)

⎞

⎠=

⎛

⎜
⎜
⎝

0 −1+0.95δd −2 0
1 −0.5+ 0.25η(t) 1 0
1 η(t) 0 0
1 0 0 0.01

⎞

⎟
⎟
⎠

(
x(t)

wp(t)

)
, (10.43)

where x(t) is the state, η(t)=sin 1
10 t an online measurable scheduling variable, δd∈

[−1,1] a time-invariant parametric uncertainty and wp = col(wp1,wp2). Then, the
operators Δ s,Δ d : L2 →L2 are defined by ws(t)=(Δ szs)(t)=η(t)zd(t) and wd(t)=
(Δ dzd)(t)=δdzs(t), respectively.

In complete analogy to Sect. 10.2, the goal is to design a robust gain-scheduled
estimator that dynamically processes the measurement y and the scheduling signal
η in order to provide an estimate u of the signal zp while the L2-gain from wp to
ze=zp−u is rendered less than γ . For reasons of comparison, we have designed four
estimators:

(A.1) A nominal LTI estimator Enom, which renders the L2-gain from wp to ze less
than γ =0.015 if δd and η are assumed to be zero. Here, we applied standard
H∞-synthesis techniques such as in [6, 11].
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(A.2) A robust LTI estimator Erob, which renders the L2-gain from wp to ze less
than γ =29.19 for all δd ∈ [−1,1], η(t)∈ [−1,1] and η̇(t)∈ 1

10 [−1,1]. Here,
we applied the synthesis results of [19], in combination with multipliers
of the form presented in Example 10.2 with basis length ν = 2 and pole
location α = −1. This allowed us to bound the rate-of-variation of the
scheduling variable. Without bounding the rate-of-variation of the scheduling
variable (i.e., set ν =0), the synthesis LMIs are not feasible. Note that Δ c is
nonexistent in this design.

(A.3) A nominal gain-scheduled estimator Enomgs(Δ s), which renders the L2-
gain from wp to ze less than γ = 0.026 for all η(t) ∈ [−1,1] and if δd is
assumed to be zero. Here, we considered the synthesis results of [17] based on
nondynamic full-block multipliers. We remark that gain-scheduling synthesis
based on general dynamic multipliers is still an open problem. Bounding the
rate-of-variation, like we did for the robust estimator Erob design, is, hence,
not yet possible in this framework.

(A.4) A robust gain-scheduled estimator Erobgs(Δ s) which renders the L2-gain
from wp to ze less than γ =3.67 for all δd ∈ [−1,1] and η(t)∈ [−1,1]. Here,
we considered the main results of this chapter, in combination with dynamic
multipliers of the form discussed in Example 10.1, with basis length ν = 2
and pole location α =−1 for the LTI parametric uncertainty δd and non-
dynamic full-block multipliers for the scheduling variable η . Allowing δd

to vary arbitrarily fast (i.e., set ν = 0) leads to infeasibility of the synthesis
LMIs.

Remark 10.2. It is interesting to remark that considering non-dynamic multipliers
in this example leads to infeasibility of the synthesis problem. This very nicely
illustrates the limitations of non-dynamic multipliers, since allowing for dynamics
in the multipliers leads to feasible solutions as well as a considerable improvement
of performance.

Conformably with Fig. 10.1, let us now define the four closed-loop plants ze :=
Px (Δ d,Δ s)wp, x ∈ x, where x={nom, rob, nomgs, robgs}, corresponding to the
four designed estimators Ex, and discuss the synthesis results. Figure 10.3 shows the
estimation error for δd = 0 (left) and δd = 1 (right) for a random wave disturbance
input wp1 (i.e., a sinusoid with a random uniformly distributed frequency) and a
random uniformly distributed noise input wp2 with an amplitude of 1 and 0.0001,
respectively.

It is very satisfactory to see that the gain-scheduled estimators Enomgs and
Erobgs outperform the LTI estimators Enom and Erob and that the LTI estimator
Erob outperforms the LTI estimator Enom (in the sense that the estimation error is
rendered small). This reveals that gain-scheduled estimation can be preferable over
robust estimation in practice. Nevertheless, if we simulate the system with δd=1, the
estimators Enom, Erob and Enomgs show a drastic performance degradation. However,
it is again very nice to see that the robust gain-scheduled estimator Erobgs keeps the
estimation error small, despite the uncertainty in the system.
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Fig. 10.3 Left: estimation error for δd = 0. Right: estimation error for δd = 1

The results are also consistent with the singular value plots from the disturbance
input wp to the estimation error output ze in Fig. 10.4, if fixing the parameter
η to various points in [−1,1]. Indeed, if we compare, for example, Fig. 10.4.1.3
with Fig. 10.4.2.3, it can be seen that the nominal gain-scheduled estimator Enomgs

is very sensitive to deviating values of the uncertainty δd from zero. Moreover,
clearly, this is also the case if we consider the nominal and robust LTI estimator
Enom and Erob, respectively, in Fig. 10.4.1.1–Fig.10.4.2.2, which are sensitive to
variations of both η and δd. On the other hand, it is very nice to observe that, by
comparing Fig. 10.4.1.4 with Fig. 10.4.2.4, this is not the case for the robust gain-
scheduled estimator Erobgs, which is insensitive to deviating values of the uncertainty
δs from zero.

10.6 Concluding Remarks

We have considered the robust estimation problem for uncertain LFT systems using
the IQC framework. Assuming that some parametric uncertainties are measured
online, we have obtained sufficient conditions for the existence of robust estimators
that are scheduled on the measured parametric variations. The multipliers for the
nonmeasured uncertainties are not restricted by any structural requirements or
frequency independence constraints. For the measured parameters, we have used
the least conservative class of multipliers in the literature, namely static full-block
multipliers. A detailed investigation of the proposed technique on a numerical
example demonstrates the advantages of gain-scheduling in the problem of robust
estimation for uncertain systems.
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Fig. 10.4 Upper row: Singular value plots of Px(Δ d,Δ s) evaluated at Δ d=0 and different values
of Δ s ∈ [−1,1]. Bottom row: Singular value plots of Px(Δ d,Δ s) evaluated at different values of
Δ d∈ [−1,1] and Δ s ∈ [−1,1]
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Appendix: Dualization and Elimination

Lemma 10.4 ([17]). Let A ∈ R
(m+n)×m have full column rank and X = XT ∈

R
(m+n)×(m+n) be nonsingular such that X has m and n negative and positive

eigenvalues, respectively. Then ATXA ≺ 0 if and only if AT
⊥X−1A⊥  0, where A⊥

forms a basis for the orthogonal complement of the image of A.

Lemma 10.5 ([17]). Let C∈R
n×m and P=PT∈R

(m+n)×(m+n) has m negative and
n positive eigenvalues and consider the matrix inequality

(
I

ATXB+C

)T

P

(
I

ATXB+C

)
≺ 0 (10.44)
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in the unstructured unknown X. Then, there exists an X for which (10.44) is satisfied,
if and only if

BT
⊥

(
I
C

)T

P

(
I
C

)
B⊥≺0 and AT

⊥

(−CT

I

)T

P−1

(−CT

I

)
A⊥0. (10.45)

Here, A⊥ and B⊥ denote arbitrary basis matrices of the kernel of A and B,
respectively.

Proof of Lemma 10.1

Observe that (10.16) implies

⎛

⎜
⎜
⎜
⎜
⎜
⎝

I 0
0 I

AΨ BΨ1Cd

0 A
CΨ DΨ1Cd

⎞

⎟
⎟
⎟
⎟
⎟
⎠

T

M(X ,P1)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

I 0
0 I

AΨ BΨ1Cd

0 A
CΨ DΨ1Cd

⎞

⎟
⎟
⎟
⎟
⎟
⎠
≺ 0 (10.46)

and that (10.17) can be inflated to

⎛

⎜
⎜
⎜
⎜⎜
⎝

I 0
0 I

AΨ BΨ1Cd

0 A
CΨ DΨ1Cd

⎞

⎟
⎟
⎟
⎟⎟
⎠

T

M(
diag(XΨ ,0,0),−P1

)

⎛

⎜
⎜
⎜
⎜⎜
⎝

I 0
0 I

AΨ BΨ1Cd

0 A
CΨ DΨ1Cd

⎞

⎟
⎟
⎟
⎟⎟
⎠
� 0. (10.47)

Adding up the two inequalities then yields

⎛

⎜
⎜
⎜
⎜⎜
⎝

I 0
0 I

AΨ BΨ1Cd

0 A
CΨ DΨ1Cd

⎞

⎟
⎟
⎟
⎟⎟
⎠

T

M(X − diag(XΨ ,0,0), 0
)

⎛

⎜
⎜
⎜
⎜⎜
⎝

I 0
0 I

AΨ BΨ1Cd

0 A
CΨ DΨ1Cd

⎞

⎟
⎟
⎟
⎟⎟
⎠
≺ 0, (10.48)

which implies

(
AΨ BΨ1Cd

0 A
)T(

X−
(

XΨ 0
0 0

))
+

(
X−
(

XΨ 0
0 0

))(
AΨ BΨ1Cd

0 A
)
≺ 0. (10.49)

Positive definiteness of (10.26) is, hence, equivalent to AΨ and A being Hurwitz.
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Sketch of Proof of Theorem 10.4: Necessity

Let us assume that statement (10.27) is true. Then, there exist matrices X , XΨ ,
P1∈P1, P2e∈P2e for which (10.16) and (10.17) as well as (10.26) are feasible. We
follow the well-known procedure of eliminating the estimator variables by working
with primal and dual matrix inequalities and applying Lemma 10.5 (see, e.g., [17]).
However, since Ψ is a tall transfer matrix and, hence, cannot be inverted (e.g.,
recall (10.22)) it is unknown how to directly apply Lemma 10.4. To overcome this
trouble, we reformulate (10.16) as suggested in Sect. 10.3.5 by applying Lemma
10.2 and 10.3. This yields (10.32). Now, observe that (10.32) can be written in the
form of (10.44) in the unstructured realization matrices of E . We can, hence, apply
Lemma 10.5. Therefore, let us, respectively, choose the basis matrices Γe and Γ of
the kernels of

⎛

⎝
0 0 I 0 0 0 0
0 Cy 0 Dyd Dys 0 Dyp

0 0 0 0 0 I 0

⎞

⎠ and
(

0 Cy Dyd Dys Dyp
)
. (10.50)

It is then easy to verify that, by left-multiplying and right-multiplying (10.32) with
Γ T

e and Γe, respectively, we obtain

(�)TM(
X̃ ,T4

)

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

I 0

ÂΨ B̂Ψ1Cd B̂Ψ1Ddd+B̂Ψ2 B̂Ψ1Dds B̂Ψ1Ddp

0 A Bd Bs Bp

ĈΨ 1 D̂Ψ1Cd D̂Ψ1Ddd+D̂Ψ3 D̂Ψ1Dds D̂Ψ1Ddp

ĈΨ 2 0 D̂Ψ 2 0 0

0 Cs Dsd Dss Dsp

0 0 0 I 0

0 Cp Dpd Dps Dpp

0 0 0 0 I

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

Γ ≺0, (10.51)

where T4 = diag(P̂1,P2, I,−γ2I) and where we recall that X̃ is the left-upper block
of X̂ in (10.33). It is now possible to apply the steps described in Sect. 10.3.5 in the
reverse direction. Hence, we infer, by Lemma 10.2 and 10.3, that (10.51) implies
(10.38).

Before we continue with the formulation of the dual solvability condition, let us
discuss the following observation first: Since X̂  0, it obviously holds that

X̂ −1 =

((
X̃ −ŨX̄−1ŨT

)−1
�

� �

)

=:

(
Ỹ−1 �

� �

)

with � of being no interest. Now, let us define the new variable

Y =

(
Y11 Y12

Y T
12 Y22

)
:=

(
X11 X12

XT
12 X22

)
−
(

U1

U2

)
X̄−1 (UT

1 UT
2

)
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and observe that

Ỹ = X̃ −ŨX̄−1ŨT =

(
T TY11T+Z+Wε T TY12

Y T
12T Y22

)
, (10.52)

where, clearly, the structured partitioning of X̃ as in (10.33) is preserved. This is
highly relevant in the sequel. Also observe that since X̂  0, we can infer that X̃  0
and X̄  0, which, hence, implies that Ỹ  0.

Let us now apply the congruence transformation (10.34) and apply Lemma 10.4.
This yields (10.37). It is now possible to define the basis matrix

ϒ =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

I 0 0 0
0 I 0 0
0 0 0 0
0 0 I 0
0 0 0 I
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

of the kernel of ⎛

⎝
0 0 I 0 0 0 0
0 0 0 0 0 0 −I
0 0 0 0 0 I 0

⎞

⎠ .

Applying Lemma 10.5, by left-multiplying and right-multiplying, the dual inequal-
ity of (10.35) with ϒ T and ϒ then yields

ÔT
⊥M

(
Ỹ ,T5

)−1Ô⊥  0, (10.53)

where Ô⊥ forms a basis for the orthogonal complement of the image of

Ô=:

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

I 0

ÂΨ − L̂1D̂−1
Ψ2ĈΨ2 B̂Ψ1Cd L̂1D̂−1

Ψ2 B̂Ψ1Dds B̂Ψ1Dds

−BdD̂−1
Ψ2ĈΨ2 A BdD̂−1

Ψ2 Bs Bp

ĈΨ1 − L̂2D̂−1
Ψ2ĈΨ2 D̂Ψ1Cd L̂2D̂−1

Ψ2 D̂Ψ1Dds D̂Ψ1Ddp

0 0 I 0 0

−DsdD̂−1
Ψ2ĈΨ 2 Cs DsdD̂−1

Ψ2 D̂Ψ 1Dss D̂Ψ 1Dsp

0 0 0 I 0

−DpdD̂−1
Ψ2ĈΨ2 Cp DpdD̂−1

Ψ2 D̂Ψ1Dps D̂Ψ1Dpp

0 0 0 0 I

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

and where T5 = diag
(
P̂1, P̃2,0,−γ2I

)
with

P̃2 :=

(
Q̃ S̃

S̃T R̃

)

=

(
Q S

ST R

)

−
(

QT
12 S21

ST
12 RT

12

)T(
Q22 S22

ST
22 R22

)−1(
QT

12 S21

ST
12 RT

12

)

.
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As the key observation that leads to a convex feasibility test for the synthesis
of a robust gain-scheduled estimators, observe that (10.53) has the right structure
in order to apply Lemma 10.4 again. Indeed, it is easily verified that (10.53) is
equivalent to

ÔTM(
Ỹ ,T5

)Ô≺0. (10.54)

Applying the congruence transformation

⎛

⎜
⎜
⎝

I 0 0

Ĉ2 0 D̂2 0 0

0 0 I

⎞

⎟
⎟
⎠

T

(54)

⎛

⎜
⎜
⎝

I 0 0

Ĉ2 0 D̂2 0 0

0 0 I

⎞

⎟
⎟
⎠≺ 0,

now yields

(�)TM(
Ỹ,T5

)

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

I 0

ÂΨ B̂Ψ1Cd B̂Ψ1Ddd+B̂Ψ2 B̂Ψ1Dds B̂Ψ1Ddp

0 A Bd Bs Bp

ĈΨ1 D̂Ψ1Cd D̂Ψ1Ddd+D̂Ψ3 D̂Ψ1Dds D̂Ψ1Ddp

ĈΨ2 0 D̂Ψ2 0 0

0 Cs Dsd Dss Dsp

0 0 0 I 0

0 Cp Dpd Dps Dpp

0 0 0 0 I

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

≺0. (10.55)

Finally, it is again possible to apply the steps described in Sect. 10.3.5 in the reverse
direction and infer, by Lemma 10.2 and 10.3, that (10.55) implies (10.39).

Now observe that left-multiplying and right-multiplying (10.11) with col(I, 0)
directly yields (10.25). Moreover, if we apply Lemma 10.4 to inequality (10.11)
and subsequently left-multiplying and right-multiplying with col(I, 0), we find

(−Δ̂ s(η j)T

I

)T(
Q̃ S̃
S̃T R̃

)−1(−Δ̂ s(η j)T

I

)
≺ 0, j=1, . . . ,m.

Clearly, by applying Lemma 10.4, we can infer P̃2 ∈ P2.
The necessity part of the proof is now completed by showing that (10.41) holds

true. Let us, hence, recall by Lemma 10.1 that stability of A implies and is implied
by the existence of some solutions of (10.40) for which

⎛

⎝X −
(

XΨ 0
0 0

)
U

UT X̄

⎞

⎠ 0,
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or equivalently

(
X −UX̄−1UT)−

(
XΨ 0
0 0

)
 0 and X̄  0.

Since Y = X −UX̄−1UT, we can infer that X̄  0 (sightly perturb if necessary)
implies X  Y and thus (10.41).

In summary, we have shown that (10.16) can be reformulated as (10.32), by
using the results described in Sect. 10.3.5. This allowed us eliminate the realization
matrices of E by applying Lemma 10.5. Two observations then led to the solvability
conditions (10.38) and (10.39) in Theorem 10.4: (1) The matrix inequality (10.53)
has the right structure in order to apply Lemma 10.4 and (2) the steps described in
Sect. 10.3.5 can be applied in the reverse direction. Finally, the stability enforcing
positivity conditions in (10.41) come along very naturally by observing that the
structure of X̃ is preserved in (10.52).

Sketch of Proof of Theorem 10.4: Sufficiency

Suppose now that all conditions of Theorem 10.4 hold true. Then, there exist
matrices X , Y , XΨ P1∈P1, P2, P̃2∈P2 that render (10.38)–(10.41) feasible.

Let us first consider the nonsingular matrices X and X −Y (slightly perturbed if
necessary). Then by defining

X =

(
X X −Y

X −Y X −Y

)
,

we can infer (10.41) thanks to the Schur complement.
For the extension of the scalings we recall from the literature [17] that, given

the matrices P2 and P̃2, it is always possible (slightly perturb if necessary) to find a
nonsingular matrix N and a simple permutation matrix N̂ such that

P2e � P2e = N̂T

(
P2 N

NT NT
(
P2−P̃2

)−1
N

)

N̂.

This also yields an explicit scheduling function Δ̂ c(Δ s) which depends smoothly on
Δ s and satisfies (10.11).

The realization matrices of E are finally obtained by substituting the constructed
matrices X , P1 and P2e in (10.16) and solving the resulting LMI which is, after
applying the Schur complement, affine in the realization matrix variables of E .
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Chapter 11
Delay-Dependent Output Feedback Control
of Time-Delay LPV Systems

Rohit Zope, Javad Mohammadpour, Karolos Grigoriadis,
and Matthew Franchek

Abstract Presented in this chapter, is a method for the design of output feedback
H∞ controllers for linear parameter-varying (LPV) time-delay systems. Towards
this goal, a delay-dependent bounded real lemma (BRL) condition is first developed
by taking advantage of parameter-dependent Lyapunov–Krasovskii functionals. An
existence condition for an output feedback controller with delay in its dynamics
is then developed to guarantee a prescribed H∞ performance level for the closed
loop system by relaxing the obtained BRL through the introduction of additional
slack variables. The proposed synthesis condition is formulated in terms of linear
matrix inequalities (LMIs) that can be solved using existing efficient interior-point
algorithms. A numerical example based on a lumped parameter model of a milling
process is finally employed to validate the presented design method of this chapter.

11.1 Introduction

Dynamic systems with time delays appear frequently in engineering and biological
systems. Time delays may be constant or time varying, point-wise or distributed,
deterministic or stochastic. The most obvious example of time delay in a system
is introduced by the interconnection of two subsystems that are separated by a
significant physical distance resulting in transport or transmission delays between
the subsystems. Delays often describe the time to effect coupling or interconnection
between dynamics through propagation or transport phenomena in shared environ-
ments, or through heredity and competition in population dynamics. Time delays
complicate the controller design process as they often induce instability in the
feedback control system [14]. The mathematical formulation of a time-delay system
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results in a system of functional differential equations (FDEs) which are infinite
dimensional, as opposed to ordinary differential equations (ODEs) that describe
finite-dimensional systems. Stability analysis and control of time-delay systems
is a subject of great practical and theoretical importance and has been studied
extensively in the controls literature for decades. For example, refer the monographs
[13, 18, 21, 26, 28, 41, 49] and the numerous references therein. Richard in [32]
provides a good overview of some recent advances and open problems in time-delay
systems.

Stability of time-delay systems can be broadly studied using either frequency
domain or time domain methods. The discussion in this chapter is restricted to the
use of time domain methods and more specifically to the employment of Lyapunov-
based methods. Existing stabilization results for delay systems are concerned
with either one of the following two types of stabilization: delay-independent
stabilization or delay-dependent stabilization. Delay-independent stabilization is
based on conditions that are independent of the size of the delay and has been
studied extensively in the literature [4, 8, 9, 15, 16, 19, 24, 31]. It is well known
that delay-independent criteria for stabilization lead to conservative results specially
for systems with small time delays, as stability is guaranteed for all nonnegative
values of time delays. Delay-dependent criteria ensure stabilization and a prescribed
level of performance of the system for magnitudes of the delays smaller than a
given bound. This knowledge of a bound on the size of the time delay allows for
reduced conservatism compared to the delay-independent approach. Development
of the delay-dependent stability conditions and control has been investigated in
[11, 17, 23, 25, 27, 33, 39, 45, 46] among many others.

Linear parameter-varying (LPV) systems provide a systematic way of computing
gain-scheduled controllers for nonlinear and/or time-varying systems when for-
mulated in the LPV framework. Stability analysis and control synthesis problems
for LPV systems have been investigated extensively in the literature [1–3, 29, 44].
The above results, however, do not consider systems with delay in their dynamics.
LPV systems with time delays often appear in many engineering applications.
In fact, in parameter-varying systems often the magnitude of the delay changes
as a function of varying parameters in the system. For instance, the transport
delay in an internal combustion engine is a known function of the engine speed
and mass air flow. Similarly, parameter-varying time delays also appear in many
manufacturing processes such as the milling process, where the changes in system
dynamics result in variable time delays. Stability analysis and control of such
LPV time-delay systems has attracted a lot of attention in the last decade. One
of the first work appeared in [43], where the authors analyzed a time-delay LPV
system and developed a delay-independent condition, with an additional restriction
of keeping the kernel of the integral term parameter independent. State feedback
controller synthesis conditions guaranteeing a desired induced L2 gain performance
were also presented in [43]. The authors in [48] developed stability tests for LPV
time-delay systems using both delay-independent and delay-dependent conditions.
However, the delays are assumed to be constant (not parameter varying) and
no controller synthesis conditions were provided. The authors in [20] provide
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the delay-independent and delay-dependent stability analysis results for quadratic
stability and affine quadratic stability and further discuss L2 gain state feedback
control using delay-independent conditions. Improvements over the result of [43]
are presented in [37] along with new results discussing the L2 −L∞ gain control.
Output feedback control synthesis has been discussed in [36, 40] again using the
delay-independent conditions. Delay-dependent H∞ control result for LPV systems
with state delays first appeared in [42]. However, the rate information for the
delay variation has not been used resulting in conservative results. The authors
in [47] examined state feedback H∞ control of LPV time-delay systems with
a rate bounded time-varying delay. Their approach uses a model transformation
introducing additional dynamics in the system. This shortcoming is overcome in the
work of [34], where an equivalent descriptor model transformation first introduced
in [10], along with Park’s inequality [30] for bounding cross terms is used to derive
less conservative results. Additional results concerning control and filtering of LPV
time-delay systems appear in [6, 7, 22].

Despite a large number of research articles appeared in the past decade on
the control of time-delay LPV systems, H∞ control of LPV time-delay systems
based on output-feedback is still an open problem with more efforts directed
towards reducing the design conservatism. It is well known that the choice of
an appropriate Lyapunov–Krasovskii functional is crucial for deriving stability
conditions. The conservatism of the existing delay-dependent conditions stems
from two sources: one is the model transformation used and the other is the
inequality bounding techniques usually employed for some cross terms encountered
in the analysis and synthesis conditions. The Lyapunov–Krasovskii functional used
in this work is borrowed from [5] and modified to allow for the dependence
of the time-varying delay on the scheduling parameter. This type of Lyapunov–
Krasovskii functionals avoids any model transformation or any bounding of the
cross terms. The only conservatism introduced by this method comes from the
initial choice of the Lyapunov–Krasovskii functional and the use of the Jensen’s
inequality [13] employed to bound an integral term in the derivative of Lyapunov–
Krasovskii functional. The main advantage of these functionals is their simplicity
and the lower number of matrix variables involved in the Lyapunov–Krasovskii
functional, thus reducing products between data matrices and decision variables
and making them potentially interesting candidates for the stabilization and control
design purposes. In this chapter, a bounded real lemma, which is an LMI analysis
condition guaranteeing a prescribed level of H∞ performance is derived for the
time-delay LPV system. Before substituting the closed-loop system state-space
matrices and deriving synthesis conditions, the LMI conditions are relaxed using the
approach presented in [38], which introduces slack variables. The resulting bilinear
matrix inequality (BMI) conditions corresponding to the closed-loop system are
linearized using a nonlinear transformation leading to the final delayed-feedback
output controller synthesis conditions. The structure of the feedback controller is
assumed to have a delay term in its dynamics.

The notation used in this chapter is standard. R stands for the set of real numbers.
R

n and R
k×m denote the set of real vectors of dimension n and the set of real k×m
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matrices, respectively. The transpose of a real matrix M is denoted as MT and its null
space by ker(M). Sn denotes real symmetric n×n matrices and S

n
++ is the set of real

symmetric positive definite n×n matrices. The asterisk (*) in the (i, j) element of a
symmetric matrix denotes transpose of the ( j, i) submatrix. C (J,K) denotes the set
of continuous functions from a set J to a set K.

11.2 Problem Statement and Preliminaries

Consider the following state-space representation of a time-delay LPV system:

(Σρ) : ẋ(t) = A(ρ)x(t)+Ah(ρ)x(t − h(ρ(t)))+B1(ρ)w(t)+B2(ρ)u(t),

z(t) = C1(ρ)x(t)+C1h(ρ)x(t − h(ρ(t)))+D11(ρ)w(t)+D12(ρ)u(t),

y(t) = C2(ρ)x(t)+C2h(ρ)x(t − h(ρ(t)))+D21(ρ)w(t),

x(θ ) = φ(θ ),∀θ ∈ [−h(ρ(0)) 0], (11.1)

where x(t) ∈ R
n is the system state vector, w(t) ∈ R

nw is the vector of exogenous
disturbance with finite energy in the space L2[0 ∞), u(t) ∈ R

nu is the input vector,
z(t) ∈ R

nz is the vector of controlled outputs, y(t) ∈R
ny is the vector of measurable

outputs, φ(·) denotes the initial system condition, and h is a differentiable scalar
function representing the parameter-varying time delay. We assume that the delay is
bounded and that the function h lies in the set

H := {h ∈ C (Rs,R) : 0 ≤ h(t)≤ hmax < ∞,∀t ∈ R+}.

The initial condition function φ is a given function in C ([−hmax 0],Rn). Wherever
needed, the notation xt(θ ) is used to denote x(t + θ ) for θ ∈ [−hmax 0], that
is, xt is the infinite dimensional state of the system. The state-space matri-
ces A(·),Ah(·),B1(·),B2(·),C1(·),C1h(·),C2(·),C2h(·),D11(·),D12(·),D21(·) are as-
sumed to be known continuous functions of a time-varying parameter vector ρ(·) ∈
F ν

P , where F ν
P is the set of allowable parameter trajectories defined as

F ν
P � {ρ ∈ C (R+,R

s) : ρ(t) ∈ P, |ρ̇i(t)| ≤ νi},

where P is a compact subset of Rs, i.e., we consider bounded parameter trajectories
with bounded rates for the parameter variation. Notice that, the parametric depen-
dence of the delay on ρ results in a given delay bound hmax, since ρ is restricted to
lie in the given parameter set P . Bounding the rate of variation of the parameter
vector ρ allows the use of parameter-dependent Lyapunov–Krasovskii functionals
resulting in less conservative analysis and synthesis conditions [1, 44].
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In this chapter, we are interested in an H∞ design as the performance specifi-
cation for the closed-loop system. The induced L2 gain (or H∞ norm) of the LPV
system Σρ from w to z considering u ≡ 0 is defined by

‖Tzw‖∞ = sup
ρ∈F ν

P

sup
‖w‖2 �=0

‖z‖2

‖w‖2
,

where Tzw is the operator mapping w to z, ‖w‖2 is the 2-norm of the exogenous input
and ‖z‖2 is the 2-norm of the desired controlled output vector.

This chapter takes advantage of a number of lemmas to prove some of the
technical results. The two important ones are described below.

Lemma 11.1 (Projection Lemma). Given a symmetric matrix Ψ ∈R
m×m and two

matrices C , D of appropriate dimensions, the following problem:

Ψ +C TΘ TD +DTΘC < 0

is solvable in a matrix Θ of compatible dimension if and only if

KerT(C )ΨKer(C )< 0, KerT(D)ΨKer(D)< 0,

where Ker(C ) and Ker(D) are any basis of the kernel or null space of C and D ,
respectively.

Proof. Refer to [12]. �	
Lemma 11.2 (Jensen’s Lemma). Let φ be a convex function and f (x) is a function
integrable over [a b], a < b. Then, the following inequality holds:

φ
(∫ b

a
f (x)dx

)
≤ (b− a)

∫ b

a
φ( f (x))dx

Proof. Refer to [13]. �	
The Jensen’s inequality is often used in the H∞ norm analytical computation of

integral operators in time-delay systems framework. It is also used in approaches
based on Lyapunov–Krasovskii functionals as an efficient bounding technique. An
example of one such application is given as follows:

(∫ t

t−h
ẋ(θ )dθ

)T

P

(∫ t

t−h
ẋ(θ )dθ

)
≤ h

∫ t

t−h
ẋ(θ )TPẋ(θ )dθ

with P = PT 
 0. The convex function is φ(z) = zTPz and f (t) = ẋ(t).
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11.3 H∞ Performance Analysis of Time-Delay LPV Systems

Consider the unforced (i.e., u ≡ 0) time-delay LPV system

(Σρw) : ẋ(t) = A(ρ)x(t)+Ah(ρ)x(t − h(ρ(t)))+B1(ρ)w(t),

z(t) = C1(ρ)x(t)+C1h(ρ)x(t − h(ρ(t)))+D11(ρ)w(t). (11.2)

The following theorem provides a sufficient condition guaranteeing asymptotic
stability along with a prescribed level of disturbance attenuation in an H∞ setting.

Theorem 11.1. The system (Σρw) is asymptotically stable for all h ∈ H and
satisfies the condition ‖z‖2 ≤ γ‖w‖2, if there exists a continuously differentiable
matrix function P : Rs → S

n
++, constant matrices Q,R ∈ S

n
++, and a scalar γ > 0

such that the following LMI:

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

M(ρ,ν) P(ρ)Ah +R P(ρ)B1(ρ) CT
1 (ρ) hmaxAT(ρ)R

∗ −
[

1−
s

∑
i=1

±
(

νi
∂h
∂ρi

)]

Q−R 0 CT
1h(ρ) hmaxAT

h (ρ)R

∗ ∗ −γI DT
11(ρ) hmaxBT

1 (ρ)R
∗ ∗ ∗ −γI 0
∗ ∗ ∗ ∗ −R

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

< 0 (11.3)

with M(ρ ,ν) = AT(ρ)P(ρ)+P(ρ)A(ρ)+

[
s

∑
i=1

±
(

νi
∂P(ρ)

∂ρi

)]

+Q−R holds for

all ρ ∈ F ν
P .

Proof. Consider the following Lyapunov–Krasovskii type functional: �	

V (xt ,ρ) = V1(x,ρ)+V2(xt ,ρ)+V3(xt ,ρ), (11.4)

V1(x,ρ) = xT(t)P(ρ)x(t), (11.5)

V2(xt ,ρ) =
∫ t

t−h(ρ(t))
xT(ξ )Qx(ξ )dξ , (11.6)

V3(xt ,ρ) =
∫ 0

−hmax

∫ t

t+θ
ẋT(η)hmaxRẋ(η)dηdθ . (11.7)

It is easy to show that V (xt ,ρ) is positive definite. To ascertain the asymptotic
stability of the system, the time derivative of V (xt ,ρ) is computed along the
trajectories of the system as follows:

V̇1(x,ρ) = ẋT(t)P(ρ)x(t)+ xT(t)P(ρ)ẋ(t)+ xT(t)
∂P(ρ)

∂ρ
ρ̇x(t), (11.8)
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V̇2(xt ,ρ) = xT(t)Qx(t)−
(

1− ∂h
∂ρ

ρ̇
)

xT(t − h(ρ(t)))Qx(t − h(ρ(t))), (11.9)

V̇3(xt ,ρ) = h2
maxẋT(t)Rẋ(t)−

∫ t

t−hmax

ẋT(θ )hmaxRẋ(θ )dθ . (11.10)

Since h(t)≤ hmax then

−
∫ t

t−hmax

ẋT(θ )hmaxRẋ(θ )dθ ≤−
∫ t

t−h(t)
ẋT(θ )hmaxRẋ(θ )dθ .

Using Jensen’s inequality in Lemma 11.2, it is possible to bound the integral term
in V̇3(xt ,ρ) as follows:

V̇3(xt ,ρ) ≤ h2
maxẋT(t)Rẋ(t)−

∫ t

t−h(t)
ẋT(θ )hmaxRẋ(θ )dθ

≤ h2
maxẋT(t)Rẋ(t)− hmax

h(t)

(∫ t

t−h(t)
ẋ(θ )dθ

)T

R

(∫ t

t−h(t)
ẋ(θ )dθ

)

= h2
maxẋT(t)Rẋ(t)− hmax

h(t)
[x(t)− x(t − h(ρ(t)))]T

×R [x(t)− x(t − h(ρ(t)))] .

Finally bounding − hmax
h(t) by −1, we get

V̇3(xt ,ρ)≤ h2
maxẋT(t)Rẋ(t)− [x(t)−x(t − h(ρ(t)))]T R [x(t)−x(t − h(ρ(t)))] .

Gathering all the derivative terms and letting V̇ (xt ,ρ) < 0, we determine the
following inequality condition:

V̇ (xt ,ρ)≤ ζ T(t)Ξ(ρ , ρ̇)ζ (t)< 0

with

Ξ(ρ , ρ̇) =

⎡

⎣
Ξ11 P(ρ)Ah(ρ)+R P(ρ)B1(ρ)
∗ Ξ22 0
∗ ∗ 0

⎤

⎦+ h2
maxTT(ρ)RT(ρ),

ζ (t) = col[x(t),x(t − h(ρ(t))),w(t)],

T = [A(ρ) Ah(ρ) B1(ρ)] ,

Ξ11 = AT(ρ)P(ρ)+P(ρ)A(ρ)+
∂P(ρ)

∂ρ
ρ̇ +Q−R,

Ξ22 = −
(

1− ∂h
∂ρ

ρ̇
)

Q−R.
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To establish the prescribed H∞ performance level γ , we further require [43]

V̇ (xt ,ρ)− γ2wT(t)w(t)+ zT(t)z(t)≤ 0.

Substituting z(t) into the inequality above finally leads to the inequality
ζ T(t)Ω(ρ , ρ̇)ζ (t)< 0 with

Ω =

⎡

⎢
⎣

Ω11 PAh+R+h2
maxATRAh +CT

1 C1h PB1 +h2
maxATRB1 +CT

1 D11

∗ Ξ22 +h2
maxAT

h RAh +CT
1hC1h h2

maxAT
h RB1 +CT

1hD11

∗ ∗ h2
maxBT

1 RB1 +DT
11D11 − γ2I

⎤

⎥
⎦

with Ω11 =ATP+PA+ ∂P
∂ρ ρ̇+Q−R+h2

maxATRA+CT
1 C1, and where the explicit de-

pendence on the scheduling parameter vector ρ has been dropped for convenience.
Applying Schur complement lemma [4] to the above inequality expression leads to
LMI (11.3). Finally noting that ρ̇ enters affinely in the LMI, it suffices to check the

LMI only at the vertices of ρ̇ and hence ∂h
∂ρ ρ̇ and ∂P

∂ρ ρ̇ are replaced by
s
∑

i=1
±
(

νi
∂h
∂ρi

)

and
s
∑

i=1
±
(

νi
∂P(ρ)

∂ρi

)
, respectively.

Remark 11.1. The notation
s

∑
i=1

±(·) is used to indicate that every combination of

+(·) and −(·) should be included in the inequality. That is the inequality actually
represents 2s different inequalities that correspond to the 2s different combinations
in the summation.

Remark 11.2. The LMI condition in (11.3) corresponds to an infinite-dimensional
convex optimization problem due to the parametric dependence. To obtain a finite-
dimensional optimization problem, the parameter-dependent matrix function P(·)
can be approximated using a finite set of basis functions and a finite gridding of the
parameter space can be used. As the LMIs are to be solved only at each of the grid
points, this results in a set of finite-dimensional LMIs that can be solved numerically
using commercial solvers.

11.3.1 LMI Relaxation Using Slack Variables

A drawback of the standard matrix inequality characterization given by Theorem
11.1 is that it involves multiple product terms including PA and RA and was
found not to be suitable to derive the synthesis conditions. In this section, a
reciprocal variant of Lemma 11.1 is used to derive a relaxed condition. This
technique introduces the so-called slack variables which bring additional flexibility
in the synthesis problem. Moreover, this flexibility is expected to result in far less
conservative conditions than with customary approaches. The following theorem
will be useful in this respect.
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Theorem 11.2. The system (Σρw) is asymptotically stable for all h ∈ H and
satisfies the condition ‖z‖2 ≤ γ‖w‖2, if there exist a continuously differentiable
matrix function P : Rs → S

n
++, constant matrices Q,R ∈ S

n
++, matrix functions

V1,V2,V3 : Rs →R
n×n and a scalar γ > 0 such that the following LMI condition:

⎡

⎢⎢⎢
⎢⎢⎢
⎢
⎣

−V1 −V T
1 P−V T

2 +V1A −V T
3 +V1Ah V1B1 0 V1 +hmaxR

∗ Ψ22 +ATV T
2 +V2A R+ATV T

3 +V2Ah V2B1 CT
1 V2 −P

∗ ∗ Ξ22 +AT
hV T

3 +V3Ah V3B1 CT
1h V3

∗ ∗ ∗ −γI DT
11 0

∗ ∗ ∗ ∗ −γI 0
∗ ∗ ∗ ∗ ∗ (−1−2hmax)R

⎤

⎥⎥⎥
⎥⎥⎥
⎥
⎦

< 0

(11.11)

with Ψ22 =
∂P
∂ρ ρ̇ +Q−R and Ξ22 as defined earlier, holds true for all ρ ∈ F ν

P .

Proof. The proof is inspired from [38]. We first rewrite (11.11) as

Ψ +C TΘ TD +DTΘC < 0 (11.12)

with

Ψ =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

0 P(ρ) 0 0 0 hmaxR
∗ Ψ22 R 0 CT

1 (ρ) −P(ρ)
∗ ∗ Ξ22 0 CT

1h(ρ) 0
∗ ∗ ∗ −γI DT

11(ρ) 0
∗ ∗ ∗ ∗ −γI 0
∗ ∗ ∗ ∗ ∗ (−1− 2hmax)R

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

, (11.13)

C (ρ) =
[−I A(ρ) Ah(ρ) B1(ρ) 0 I

]
, (11.14)

D =

⎡

⎣
I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0

⎤

⎦ , (11.15)

Θ T =
[

V T
1 V T

2 V T
3

]
. (11.16)

The explicit bases of the null space of C and D are given by

Ker(C (ρ)) =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

A(ρ) Ah(ρ) B1(ρ) 0 I
I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

, Ker(D) =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

0 0 0
0 0 0
0 0 0
I 0 0
0 I 0
0 0 I

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

.
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Applying Lemma 11.1 with respect to the variable Θ in (11.12) yields two
inequalities, one of which is exactly the characterization given by (11.3) and the
other is the LMI given by (11.17)

⎡

⎣
−γI DT

11(ρ) 0
∗ γI 0
∗ (−1− 2hmax)R

⎤

⎦< 0. (11.17)

The above inequality is a relaxed form of the right bottom 3 × 3 block of the
inequality (11.3) and is always satisfied. Hence, the feasibility of (11.11) implies
the feasibility of (11.3), which along with the result of Theorem 11.1 concludes the
proof. �	

11.4 H∞ Output Feedback Control Design

In this section, the analysis results presented in the previous section are used to
design a dynamic output feedback controller. The time delay in the system dynamics
is assumed to be an exactly known or measurable function of the scheduling
parameter ρ . For the system (Σρ), we seek to design a controller of the following
form:

(Kdelayed) : ẋk(t) = Ak(ρ)xk(t)+Ahk(ρ)xk(t − h(ρ(t)))+Bk(ρ)y(t),

u(t) = Ck(ρ)xk(t)+Chk(ρ)xk(t − h(ρ(t)))+Dk(ρ)y(t), (11.18)

where xk(t) ∈ R
n is the controller state vector and xk(t − h(ρ(t))) ∈ R

n denotes the
delayed state of the controller. The closed loop system formed by the interconnec-
tion of (Σρ) and (Kdelayed) is given by

(Σρ ,cl) : ẋcl(t) =

[
A+B2DkC2 B2Ck

BkC2 Ak

]

︸ ︷︷ ︸
Acl

xcl(t)+

[
Ah +B2DkC2h B2Chk

BkC2h Ahk

]

︸ ︷︷ ︸
Ahcl

xclh

+

[
B1 +B2DkD21

BkD21

]

︸ ︷︷ ︸
Bcl

w(t),

z(t) =
[

C1 +D12DkC2 D12Ck
]

︸ ︷︷ ︸
Ccl

xcl(t)+
[

C1h +D12DkC2h D12Chk
]

︸ ︷︷ ︸
Chcl

xclh

+
[

D11 +D12DkD21
]

︸ ︷︷ ︸
Dcl

w(t)
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with xcl(t)=col[x(t),xk(t)] and xclh =xcl(t − h(ρ(t))), where again the dependence
on the scheduling parameter has been dropped in order to improve clarity. The
following result gives sufficiency conditions for the synthesis of a delayed output
feedback controller, such that the closed loop system Σρ ,cl is asymptotically stable
and has an induced L2 norm less than γ .

Theorem 11.3. If there exist continuously differentiable matrix functions P̃ : Rs →
S

2n
++, and X ,Y : Rs → S

n
++, constant matrices Q̃, R̃ ∈ S

2n
++, parameter-dependent

matrices Â, Âh, B̂,Ĉ,Ĉh and Dk and a scalar γ > 0 such that the LMI

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

−2Ṽ P̃− Ṽ +A −Ṽ +Ah B 0 Ṽ + hmaxR̃
∗ Ψ̃22 +A +A T R̃+A T +Ah B C T Ṽ − P̃
∗ ∗ Ξ̃22 +Ah +A T

h B C T
h Ṽ

∗ ∗ ∗ −γI DT 0
∗ ∗ ∗ ∗ −γI 0
∗ ∗ ∗ ∗ ∗ (−1− 2hmax)R̃

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

< 0

(11.19)

holds for all ρ ∈ F ν
P with

Ṽ =

[
Y I
I X

]
,

A =

[
AY +B2Ĉ A+B2DkC2

Â XA+ B̂C2

]
,

Ah =

[
AhY +B2Ĉh Ah +B2DkC2h

Âh XAh + B̂C2h

]

,

B =

[
B1 +B2DkD21

XB1 + B̂D21

]
,

C =
[

C1Y +D12Ĉ C1 +D12DkC2
]
,

Ch =
[

C1hY +D12Ĉh C1h +D12DkC2h

]
,

D =
[

D11 +D12DkD21
]
,

Ψ̃22 = Q̃− R̃+

[
s

∑
i=1

±
(

νi
∂ P̃(ρ)

∂ρi

)]

,

Ξ̃22 = −
[

1−
s

∑
i=1

±
(

νi
∂h
∂ρi

)]

Q̃− R̃
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then there exists a controller of the form (Kdelayed) such that:

(A.1) The closed-loop system Σρ ,cl with h ∈ H is asymptotically stable for any
ρ ∈ F ν

P .
(A.2) The H∞ norm of the closed loop system is bounded by the positive scalar γ .

Moreover, once the parameter-dependent matrices satisfying the LMI conditions are
determined, the delayed output feedback control matrices can be computed using the
following steps:

(A.1) Obtain M and N from the factorization problem

I −XY = NMT (11.20)

(A.2) Compute the controller matrices by reversing the transformations defined by

Â = XAY +XB2DkC2Y +NBkC2Y +XB2CkMT +NAkMT,

Âh = XAhY +XB2DkC2hY +NBkC2hY +XB2ChkMT +NAhkMT,

B̂ = XB2Dk +NBk,

Ĉ = DkC2Y +CkMT,

Ĉh = DkC2hY +ChkMT (11.21)

It is to be noted that the matrices M and N are always square and invertible in the
case of full-order controllers.

Proof. The proof uses the result of Theorem 11.2. For simplicity, the slack variable
matrix functions are restricted to be equal and symmetric positive definite. Further,
we define a partitioned form for the slack variable matrix. Hence,

V1 =V2 =V3 =V =

[
X N

NT �

]
.

Define the inverse of V as

V−1 =

[
Y M

MT �

]
,

such that XY + NMT = I, where X and Y are symmetric matrices of dimension
n× n. Substituting the closed-loop system matrices in LMI (11.11) and performing
a congruence transformation T = diag(ZT,ZT,ZT, I, I,ZT), where

Z :=

[
Y I

MT 0

]
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leads to the inequality

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

−2ZTVZ P̃−ZTVZ +ZTVAclZ −ZTVZ +ZTVAhclZ
∗ Ψ̃22 +ZT(AT

clV +VAcl)Z R̃+ZTAT
clZ +ZTVAhclZ

∗ ∗ Ξ̃ +ZT(AT
hclV +VAhcl)Z

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

ZTVBcl 0 ZTVZ + hmaxR̃
ZTVBcl ZTCT

cl ZTVZ − P̃
ZTVBcl ZTCT

hcl ZTVZ
−γI DT

cl 0
∗ −γI 0
∗ ∗ (−1− 2hmaxR̃)

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

< 0 (11.22)

with P̃ = ZTPZ, R̃ = ZTRZ, Ψ̃22 = ZTΨ22Z and Ξ̃22 = ZTΞZ. Note that

ZTVZ =

[
Y I
I X

]
and ZTV =

[
I 0
X N

]
.

With this, the following identities can be obtained:

ZTVAclZ = A , ZTV Bcl = B,

ZTVAhclZ = Ah, ZTCT
cl = C T,

ZTCT
hcl = C T

h , Dcl = D .

Thus, the inequality has been linearized with respect to the new variables
(Â, Âh, B̂,Ĉ,Ĉh and Dk) and it represents the LMI condition presented in Theorem
11.3. Finally, once the decision matrices are determined, one can use the nonlinear
transformations in (11.21) to obtain the controller state-space matrices as follows:

Chk = (Ĉh −DkC2hY )M−T,

Ck = (Ĉ−DkC2Y )M−T,

Bk = N−1(B̂−XB2Dk),

Ahk=−N−1(XAhY +XB2DkC2hY +NBkC2hY+XB2ChkMT − Âh)M−T,

Ak =−N−1(XAY +XB2DkC2Y +NBkC2Y +XB2CkMT − Â)M−T. (11.23)

Remark 11.3. The previous work on H∞ control design for LPV time-delay
systems in case of a time-varying delay required the rate of variation of the time
delay to be less than one, i.e., |ḣ| < 1. With the presented results in this work,
this restriction does not exist and the proposed LMI formulation can even handle
unbounded delay rates.
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11.5 Simulation Example

In this section, a numerical example is employed to demonstrate the main results of
the chapter. The example is motivated by the control of chatter during the milling
process [35,48]. In a milling process, the workpiece is clamped and fed to a rotating
multitooth cutter. The geometry of the cutting process of a milling machine is as
shown in Fig. 11.1. As shown the cutter has two blades that are used to remove
material from the workpiece. The force acting on the tool is a function of not only
the current displacement of the tool but also the surface characteristics, and hence
the displacement at the previous tool pass. This induces a delay into the system. The
force depends also on the angular position of the blade, which plays the role of a
time-varying parameter. The equations of motion can be derived as follows:

m1ẍ1 + k1(x1 − x2) = f , (11.24)

m2ẍ2 + cẋ2 + k1(x2 − x1)+ k2x2 = u, (11.25)

f = k sin(φ +β )l(t)−w, (11.26)

l(t) = sin(φ)[x1(t − h(t))− x1(t)], (11.27)

where k1 and k2 are the stiffness of the two springs, c is the damping coefficient, m1

and m2 are the masses of the blade and the tool, and x1 and x2 are the displacements
of the blade and the tool. The angle β depends on the particular material and the tool

Fig. 11.1 Milling process
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used. The angle φ denotes the angular position of the blade, k denotes the cutting
force coefficient and w denotes the disturbance. The time delay which is the time
interval between two successive cuts is denoted by h(t) and is approximated to be
π
ω where ω is the rotation speed of the blade. The plant we are considering can be
rewritten as

ẍ1 =
1

m1
[−k1x1 + k1x2 − k sin(φ +β )sin(φ)x1

+k sin(φ +β )sin(φ)x1(t − h(t))−w],

ẍ2 =
1

m2
[k1x1 − k1x2 − k2x2 − cẋ2 + u] .

We consider the following problem data: m1 = 1, m2 = 2, k1 = 10, k2 = 20, k = 2,
c = 0.5, and β = 70◦. It is noted that

sin(φ +β )sin(φ) = 0.5 [cos(β )− cos(2φ +β )] = 0.1710− 0.5cos(2φ +β ).

The system equations can be put in an LPV form with the scheduling parameter
vector ρ(t) = [ρ1(t) ρ2(t)]T, where ρ1(t) = cos(2φ + β ) and ρ2(t) = ω are
measurable in real time and can be used to develop a gain-scheduled controller.
The rotation speed of the blade is assumed to be between 200 rpm and 2,000
rpm, and the maximum variation rate is 1,000 rpm/sec. Hence, we have ρ1(t) ∈
[−1 1] and | dρ1

dt | = | − 2sin(2φ + β )ω | ≤ 2 × 2,000 × 2π/60 = 418.9(rad/s),

ρ2(t) ∈ [200×2π/60 2,000×2π/60]= [20.94 209.4](rad/s) and | dρ2
dt |= 1,000×

2π/60= 52.35(rad/s2). The delay rate | dh(t)
dt |= |−π

ω2 × dω
dt | ≤ π

(200×2π/60)2 ×1,000×
2π/60 = 0.75 < 1.

We seek to design an LPV controller to attenuate the effect of the disturbance
force w. An output feedback H∞ control is to be designed. To this end, we add
a control force at mass m2. The controlled variable vector z is composed of the
displacements of the two masses and the control force. The displacement of the
mass m2 is assumed to be the only measurable output. Considering the state vector
to be x= [x1 x2 ẋ1 ẋ2]

T, the state-space representation of the time-delay LPV plant
to be controlled is as follows:

ẋ(t) =

⎡

⎢⎢
⎣

0 0 1 0
0 0 0 1

−10.34+ρ1 10 0 0
5 −15 0 −.25

⎤

⎥⎥
⎦x(t)+

⎡

⎢⎢
⎣

0 0 0 0
0 0 0 0

0.34−ρ1 0 0 0
0 0 0 0

⎤

⎥⎥
⎦x(t −π/ρ2)

+

⎡

⎢
⎢
⎣

0
0
−1
0

⎤

⎥
⎥
⎦w(t)+

⎡

⎢
⎢
⎣

0
0
0

0.5

⎤

⎥
⎥
⎦u(t), (11.28)
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Fig. 11.2 Time varying parameters (a) Blade rotating speed (b) Time-delay
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Fig. 11.3 Control effort

z(t) =

⎡

⎣
1 0 0 0
0 1 0 0
0 0 0 0

⎤

⎦x(t)+

⎡

⎣
0
0

0.1

⎤

⎦u(t), (11.29)

y(t) =
[

0 1 0 0
]

x(t). (11.30)

Note that the penalty on control effort is 0.1. We use the synthesis results presented
in this manuscript to design a delayed output feedback controller. For simplicity,
both the Lyapunov matrix P̃ and the slack variable matrix Ṽ are assumed to be
constant matrices. We grid the parameter space using five grid points. Solving
the LMI in Theorem 11.3, we obtain an H∞ performance bound γ =1.015.
Simulations performed validate the disturbance attenuation performance of the
designed controller. The disturbance w(t) used in the simulation is a rectangular
signal of unity magnitude for 0 ≤ t ≤ 4 and zero elsewhere. The blade rotating
speed ω and the resulting time-delay vary as shown in Fig. 11.2. Under the proposed
control scheme, the control signal is shown in Fig. 11.3 and the displacements of the
two masses in Fig. 11.4. For comparison purposes, we present the displacements of
the two masses with and without control and under the same disturbance w(t). As is
evident from the plots, the displacements are much larger when no active control is
applied.
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11.6 Concluding Remarks

In this chapter, we presented a procedure to design an output feedback controller
for LPV systems with parameter-varying time delays. The presented results of this
chapter are the first in the literature to provide a solution to the output feedback
synthesis problem based on delay-dependent analysis conditions. The developed
delay-dependent induced L2 gain performance analysis conditions are expressed
in terms of LMIs that can be solved efficiently using the commercial solvers.
The obtained matrix inequality-based optimization problem is then relaxed by the
introduction of additional slack variables that allow the synthesis conditions to
be formulated as a convex optimization problem in an LMI form. The proposed
systematic procedure for the gain-scheduled output feedback control design leads
to less conservative results due to the use of parameter-dependent Lyapunov–
Krasovskii functional, inclusion of the delay term in the feedback control dynamics
and final delay-dependent synthesis conditions. The developed delay-dependent
output feedback design methodology is further validated using simulations on the
example of milling process.
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Chapter 12
Structured Linear Parameter Varying Control
of Wind Turbines

Fabiano Daher Adegas, Christoffer Sloth, and Jakob Stoustrup

Abstract High performance and reliability are required for wind turbines to be
competitive within the energy market. To capture their nonlinear behavior, wind
turbines are often modeled using parameter-varying models. In this chapter, a
framework for modelling and controller design of wind turbines is presented. We
specifically consider variable-speed, variable-pitch wind turbines with faults on
actuators and sensors. Linear parameter-varying (LPV) controllers can be designed
by a proposed method that allows the inclusion of faults in the LPV controller
design. Moreover, the controller structure can be arbitrarily chosen: static output
feedback, dynamic (reduced order) output feedback, decentralized, among others.
The controllers are scheduled on an estimated wind speed to manage the parameter-
varying nature of the model and on information from a fault diagnosis system. The
optimization problems involved in the controller synthesis are solved by an iterative
LMI-based algorithm. The resulting controllers can also be easily implemented in
practice due to low data storage and simple math operations. The performance of
the LPV controllers is assessed by nonlinear simulations results.

12.1 Introduction

Motivated by environmental concerns and the depletion of fossil fuels, as well its
mature technological status, wind energy consolidate as a viable sustainable energy
source for the decades to come. Over the past 20 years, the global installed capacity
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of wind power increased at an average annual growth of more than 25% from
around 2.5 GW in 1992 to just under 200 GW at the end of 2010 [14]. Due to
ongoing improvements in the wind turbine efficiency and reliability, and higher fuel
prices, the cost of electricity produced (COE), which, roughly speaking, takes into
account the annual energy production, lifetime of wind turbines, and Operation and
Maintenance costs, is becoming economically competitive with conventional power
production.

Automatic control is one of the engineering areas that significantly contributed
to reduce the cost of wind-generated electricity. In order to reduce COE, a modern
wind turbine is not only controlled to maximize energy production but also to
minimize mechanical loads. The controlled system also has to comply with external
requirements, such as acoustic noise emissions and power quality grid codes. Since
many wind turbines are installed at remote locations, the introduction of fault-
tolerant control is considered a suitable way of improving reliability/availability and
lowering costs of repairs. Finally, the lack of accurate models must be alleviated by
robust control strategies capable of securing stability and satisfactory performance
despite model uncertainties [19].

From a control point of view, a wind turbine is a challenging system since the
wind, which is the energy source driving the machine, is a poorly known stochastic
disturbance. Add to that wind turbines inherently exhibit time-varying nonlinear
dynamics along their nominal operating trajectory, motivating the use of advanced
control techniques such as gain-scheduling, to counteract performance degradation
or even instability problems by continuously adapting to the dynamics of the plant.
Wind turbine controllers typically consist of multiple gain-scheduled controllers,
which are designed to operate in the proximity of a certain operating point. The
gain-scheduling approach for industry-standard classical controllers can be either
based on switching or interpolation of controller gains [7, 8]. Controller structure
may also change by either switching [7] or bumpless transfer [17, 25] according to
the wind speed experienced by the wind turbine. The underlying assumption for
such control schemes is that parameters only change slowly compared to the system
dynamics, which is generally not satisfied in turbulent winds. Additionally, classical
gain-scheduling controllers only ensure performance guarantees and stability at the
operating points where the linear controllers are designed [22].

A systematic way of designing controllers for systems with linearized dynamics
that vary significantly with the operating point is within the framework of linear
parameter-varying (LPV) control. An LPV controller can be synthesized after solv-
ing an optimization problem subject to linear matrix inequality (LMI) constraints.
In control systems for wind turbines, robustness and fault-tolerance capabilities are
important properties, which should be considered in the design process, calling for a
generic and powerful tool to manage parameter variations and model uncertainties.
In this chapter, design procedures for nominal controllers for parameter-varying
models as well as active/passive fault-tolerance, are provided. The framework can be
trivially extended to design controllers robust to uncertainties in the model [1], e.g.,
aerodynamic uncertainties [26]. Indeed, handling known parameter dependencies,
unknown parameter variations, and faults, constitute the main challenges for the
application of wind turbine control.
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An overview of the proposed control structure is illustrated by the block diagram
depicted in Fig. 12.1, where u(k) is the control signal and w(k) is the disturbance.
The LPV controllers depend on the measurements y(k) and an estimate of the
current operating point, θ̂op(k), which is used as scheduling parameter. Additionally,
a fault diagnosis system provides the scheduling parameter θ̂f(k) for the active fault-
tolerant controller (AFTC). The extra degree of freedom added by allowing the
AFTC to adapt in case of a fault may introduce less conservatism than for the passive
fault-tolerant controller. The AFTC is a conventional LPV controller scheduled on
θop(t) and θf(t); the reason for denoting it an active fault-tolerant controller arises
from the origin of the scheduling parameters.

The list of faults occurring in wind turbines is extensive, reflecting the complexity
of the machines. On a system level, faults occur in sensors, actuators, and system
components, ranging from slow gradual faults to abrupt component failures. The
occurrence of faults may change the system behavior dramatically. This motivates
us to develop methods for fault diagnosis and fault-tolerant control, offering several
benefits:

• Prevent catastrophic failures and faults from deteriorating other parts of the wind
turbine, by early fault detection and accommodation.

• Reduce maintenance costs by providing remote diagnostic details and avoiding
replacement of functional parts, by applying condition-based maintenance in-
stead of time-based maintenance.

• Increase energy production when a fault has occurred by means of fault-tolerant
control.

This chapter gives an overview of the most common faults that can be modelled
as varying parameters. For a clear exposure, the fault-tolerant controller is designed
to cope with the simple case of a single fault: altered dynamics of the hydraulic
pitch system due to low hydraulic pressure. The fault is a gradual fault affecting
the control actions of the turbine. The method used also applies to fast parameter
variations, i.e., abrupt faults in the extreme case [12].

Realizing advanced gain-scheduled controllers can in practice be difficult and
may lead to numerical challenges [19, 21]. Several plant and controller matrices
must be stored on the controller memory. Moreover, matrix factorizations and
inversions are among the operations that must be done online by the controller at
each sampling time [4, 5].
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The synthesis procedures presented in this chapter are serious candidates for
solving a majority of practical wind turbine control problems, provided a sufficiently
good model of the wind turbine is available. We believe that the resulting controller
can also be easily implemented in practice due to the following reasons:

(A.1) Structured controller: the controller structure can be chosen arbitrarily.
Decentralized of any order, dynamic (full or reduced-order) output feedback,
static output, and full state feedback are among the possible structures. This
is in line with the current control philosophy within wind industry.

(A.2) Low data storage: the required data to be stored in the control computer
memory is only the controller matrices, and scalar functions of the scheduling
variables representing plant nonlinearities (basis functions).

(A.3) Simple math operations: the mathematical operations needed to compute the
controller gains at each sampling time are look-up tables with interpolation,
products between a scalar and a matrix, and sums of matrices.

The versatile controller structure and facilitated implementation comes with a
price. Due to the (possible) nonconvex characteristics of the synthesis problem, the
controller design is solved by an iterative LMI optimization algorithm that may be
demanding from a computational point of view. However, the authors consider that
it is worth to transfer the computational burden from the controller implementation
to the controller design.

The chapter is organized as follows. Section 12.2 describes the LPV wind
turbine plant modeling including typical faults and uncertainties. The LPV con-
troller design procedure, based on an iterative LMI optimization algorithm, is
presented in Sect. 12.3. Section 12.4 contains a design example on how state of
the art industrial controllers can be designed within the LPV framework. A fault-
tolerant gain-scheduled PI pitch controller for the full load region is designed and
compared to a gain-scheduled controller without fault accommodation capabilities.
Simulation results presented in the same section compares the performance of both
LPV controllers to show that pitch actuator faults due to low pressure can be
accommodated by the fault-tolerant LPV controller, avoiding the shutdown of the
wind turbine. Section 12.5 concludes the paper.

12.2 Wind Turbine LPV model

In this section, an LPV model is derived from a nonlinear time-varying wind turbine
model. The nonlinear model consists of several subsystems, namely aerodynamics,
the tower, the drive train, the generator, the pitch system, and the converter actuator.
The interconnection of the wind turbine submodels is illustrated in Fig. 12.2. For
simulation purposes, the wind disturbance input, V (t), is provided by a wind
model which includes both tower shadow and wind shear [11] together with a
turbulence model [13]. The detailed description of the model is provided in [12].
The submodels are individually described in the sequel.
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Fig. 12.2 Sub-model-level block diagram of a variable-speed variable-pitch WT

12.2.1 Wind Model

The driving force of a wind turbine is generated by the wind. Therefore, a model of
this external input to the wind turbine, Vw(t), has to be provided.

Generally, the wind speed is influenced by several components, which depend
on the environment where the wind turbine is located; however, we restrict our
model to include only three effects: wind shear, tower shadow, and turbulence.
A more thorough wind model can be found in [12]. We will not provide a detailed
description of the wind model, but only explain its three components briefly.

Wind shear is caused by the ground and other obstacles in the path of the wind,
which cause frictional forces to act on the wind. The frictional forces imply that the
mean wind speed becomes dependent on the height above ground level. Therefore,
the mean wind speed depends on the location of the three blades. When a blade
is located in front of the tower, the lift on that blade decreases because the tower
reduces the effective wind speed. This phenomenon is called tower shadow and
implies that the force acting on each blade decreases every time a blade is located in
front of the tower. Finally, the variations in the wind speed, which are not included
in the mean wind speed, are called turbulence and are caused by multiple factors.
The utilized turbulence model is based on the Kaimal spectrum that describes the
turbulence of a point wind. Since the wind model describes the wind speed averaged
over the entire rotor plane, a low-pass filter is applied to smooth the wind speed
signal. Figure 12.3 shows an output of the wind model Vw(t). Note that a detailed
description of the wind model can be found in [12].
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12.2.2 Nonlinear Model

The rotor of a wind turbine converts kinetic energy of the wind into rotational energy
of the rotor blades and shaft. Aerodynamic forces over the rotor blades are often
determined with the assumptions of blade element momentum (BEM) theory [15].
Figure 12.4 illustrates the forces and velocity vectors on a blade element.

Assuming a symmetric aerodynamic rotor driven by a uniform inflow, and
neglecting unsteady aerodynamic effects, the local tangential fQ and axial fT forces
along the local blade radius r are given by

fQ =
1
2

ρc(r)W 2(r,t)
(

CL(r,α(r,t))sin ϕ(r,t)−CD(r,α(r, t))cosϕ(r, t)
)

[N],

fT =
1
2

ρc(r)W 2(r,t)
(

CL(r,α(r,t))sin ϕ(r,t)+CD(r,α(r, t))cosϕ(r, t)
)

[N]
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with the squared local inflow velocity W 2(r,t), local angle of attack α(r, t) and local
inflow angle ϕ(r, t) described as

W 2(r, t) = (V (t)(1− a(r)))2 +
(
rΩr(t)(1 + a′(r))

)2 [m2/s2],

α(r, t) = ϕ(r,t)−φ(r)−β (t) [◦],

ϕ(r, t) = tan−1
(

V (t)(1− a(r))
(
rΩr(t)(1 + a′(r))

)−1
)

[◦].

In the above expressions, ρ is the air density, c(r) is the local chord length, CL(r,α)
and CD(r,α) are the local steady-state lift and drag coefficients, V (t) is a mean wind
speed over the rotor disk, Ωr(t) is the rotor speed, a(r) and a′(r) are the axial and
tangential flow induction factors, respectively, φ(r) is the local chord twist angle
along the blade, and β (t) is the blade pitch angle.

In the aerodynamic model, we assume that a yawing system exists, which always
keeps the rotor plane perpendicular to the direction of the wind; hence, V (t) is
always perpendicular to the rotor plane. However, as the rotor rotates the resulting
wind speed at a blade, called the inflow velocity W (r, t), has an angle ϕ with respect
to the rotor plane. The drag force given by 1/2ρcW2CD is defined to point in the
opposite direction as W (r,t) and the lift force given by 1/2ρcW2CL is perpendicular
to drag force. Via projections of these forces, we obtain fQ and fT.

The aerodynamic torque Qa and thrust force Ta produced by the rotor can be
expressed as the summation of the forces over the B number of rotor blades

Qa(V,Ωr,β ,a,a′) = B
∫ R

0
fQ(r,V,Ωr,β ,a(r),a′(r)) r dr [Nm], (12.1a)

Ta(V,Ωr,β ,a,a′) = B
∫ R

0
fT(r,V,Ωr,β ,a(r),a′(r))dr [N]. (12.1b)

After integration, the aerodynamic torque and thrust are represented as

Qa(t) =
1

2Ωr(t)
ρAV 3(t)CP(λ (t),β (t)) [Nm], (12.2a)

Ta(t) =
1
2

ρAV 2(t)CT(λ (t),β (t)) [N] (12.2b)

with the tip-speed ratio denoting the ratio between the blade tip and the mean wind
speed

λ (t) =
Ωr(t)R

V (t)
[·],

where R is the rotor radius and A = πR2 is the rotor swept area. The power
coefficient CP(λ ,β ) and thrust coefficient CT(λ ,β ) are smooth surfaces usually
given in tabular form. Figure 12.5 depicts CP and CT surfaces of a typical 2 MW
wind turbine.
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Aerodynamic torque Qa drives a drive train model consisting of a low-speed shaft
and a high-speed shaft having inertias Jr and Jg, and friction coefficients Br and Bg.
The shafts are interconnected by a transmission having gear ratio Ng, combined with
torsion stiffness Kdt, and torsion damping Bdt. This results in a torsion angle, θΔ (t),
and a torque applied to the generator, Qg(t), at a speed Ωg(t). The model of the
drive train is shown in Fig. 12.6 and given by

JrΩ̇r(t) =Qa(t)+
Bdt

Ng
Ωg(t)−KdtθΔ (t)− (Bdt + Br)Ωr(t) [Nm], (12.3a)

JgΩ̇g(t) =
Kdt

Ng
θΔ (t)+

Bdt

Ng
Ωr(t)−

(
Bdt

N2
g

+ Bg

)

Ωg(t)−Qg(t) [Nm], (12.3b)

θ̇Δ (t) =Ωr(t)− 1
Ng

Ωg(t) [rad/s]. (12.3c)

The thrust Ta acting on the rotor introduces fore–aft tower bending described
by the axial nacelle linear translation q(t). Sideward movements are ignored by
neglecting yawing and drive train reaction torque on the tower. The tower translates
in the same direction as the wind; therefore, aerodynamic torque and thrust are in
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fact driven by the relative wind speed V (t) = Vw(t)− q̇(t). The tower dynamics is
modeled as a mass-spring-damper system

Mtq̈t(t) = Ta(t)−Btq̇t(t)−Ktqt(t), (12.4)

where Mt is the modal mass of the first fore–aft tower bending mode, Bt is structural
damping coefficient, and Kt is the modal stiffness for axial nacelle motion due to
fore–aft tower bending.

Hydraulic pitch systems are satisfactorily modeled as a second order system with
a time delay, td, and reference angle βref(t)

β̈ (t) = −2ζωnβ̇(t)−ω2
n β (t)+ ω2

n βref(t − td), (12.5)

where the natural frequency, ωn, and damping ratio, ζ , specify the dynamics of the
model. To represent the limitations of the pitch actuators, for simulation purposes
the model includes constraints on the slew rate and the range of the pitch angle.

Electric power is generated by the generator, while a power converter interfaces
the wind turbine generator output with the utility grid and controls the currents in the
generator. The generator torque in (12.6) is controlled by the reference Qg,ref(t). The
converter dynamics are approximated by a first order system with time constant τg

and time delay tg,d

Q̇g(t) = − 1
τg

Qg(t)+
1
τg

Qg,ref(t − tg,d). (12.6)

Just as for the model of the pitch system, the slew rate and the operating range of
the generator torque are both bounded to match the limitations of the real system.
The power produced by the generator can be approximated from the mechanical
power calculated in (12.7), where ηg denotes the efficiency of the generator, which
is assumed constant

Pg(t) = ηgΩg(t)Qg(t). (12.7)

12.2.3 Linear Varying Parameters

From the model description, is clear that a wind turbine is a nonlinear, time-varying
system. What is not apparent is how to find an LPV description that captures this
dynamic behavior. Wind turbines can be represented as Quasi-LPV models [6, 19]
and Linear Fractional Transformation models [19], but the most common approach
relies on the classical linearization around equilibrium or operating points resulting
in a linearized LPV model [5,19,21]. The latter approach is adopted in this chapter.
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12.2.3.1 Aerodynamics

The underlying assumption of a wind turbine LPV model based on linearization
is that wind speed, rotor speed, and pitch angle can be described by slow and fast
components

V (t) = V (t)+ V̂(t), Ωr = Ω (t)+ Ω̂r(t), β (t) = β (t)+ β̂(t),

The collection of operating points (V ,Ω ,β ) is what defines the control strategy of a
wind turbine, selected to match steady-state requirements such as maximize energy
capture, minimize static loads, and limit noise emissions.

A typical control strategy of a generic 2 MW wind turbine is depicted in Fig. 12.7.
A more detailed treatment of different operating strategies for wind turbines [5, 7]
is outside the scope of this chapter. Three subareas on a typical control strategy can
be distinguished:

(A.1) On Region I (Vin to VΩN) the energy capture is maximized by keeping the
aerodynamic efficiency as high as possible. This can be accomplished by
tracking a rotational speed set point using generator torque as the control
input variable. Pitch actuation is not utilized for tracking purposes; the pitch
angle remains at the value of maximum aerodynamic efficiency. With only
one input and one output to be controlled, a multivariable controller is not
necessary on this region. Notice that Ω is proportional to V as a consequence
of optimal aerodynamic efficiency.
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(A.2) On Region II (VΩN to VPN), the wind turbine maintains constant rotational
speed at a nominal value ΩN, by acting on the generator torque. The rotational
speed is limited due to acoustic noise emission limits. Pitch actuation remains
unused. A multivariable controller is still not needed.

(A.3) On Region III (VPN to Vout), rated power PN is reached and the main goal is
to minimize power fluctuations. Small fluctuations on the generator torque
around rated value add damping to the drive train torsional mode and fine
control the electrical power. Therefore, pitch angle should be gradually
increased as wind speed rises to limit generated power by lowering the rotor
aerodynamic efficiency. In some wind turbines, active tower damping is also
implemented on this region.

A linearization-based LPV model is obtained by classical linearization around
the operating points given by the control strategy. The aerodynamic model is
exclusively the source of time-varying nonlinearities. A first order Taylor series
expansion of (12.2) leads to the following linearized representations of torque and
thrust:

Qa ≈ Qa(V ,Ω ,β ) +
∂Qa

∂V

∣
∣∣
∣
(V ,Ω ,β )

V̂ +
∂Qa

∂Ωr

∣
∣∣
∣
(V ,Ω ,β )

Ω̂r +
∂Qa

∂β

∣
∣∣
∣
(V ,Ω ,β )

β̂ , (12.8a)

Ta ≈ T a(V ,Ω ,β ) +
∂Ta

∂V

∣∣
∣
∣
(V ,Ω ,β )

V̂ +
∂Ta

∂Ωr

∣∣
∣
∣
(V ,Ω ,β )

Ω̂r +
∂Ta

∂β

∣∣
∣
∣
(V ,Ω ,β )

β̂ , (12.8b)

where Qa(V ,Ω ,β ) and T a(V ,Ω ,β ) are equilibrium components of the aerodynamic
torque and thrust, respectively. The partial derivatives of Qa and Ta are given by

∂Qa

∂V
=

ρAV 2

2Ωr

(
3CP +V

∂CP

∂λ
∂λ
∂V

)
,

∂Ta

∂V
=

ρAV
2

(
2CT +V

∂CT

∂λ
∂λ
∂V

)
,

∂Qa

∂Ωr
=

ρAV 3

2Ωr

(
∂CP

∂λ
∂λ
∂Ωr

− CP

Ωr

)
,

∂Ta

∂Ωr
=

ρAV 2

2
∂CT

∂λ
∂λ
∂Ωr

,

∂Qa

∂β
=

ρAV 3

2Ωr

∂CP

∂β
,

∂Ta

∂β
=

ρAV 2

2
∂CT

∂β
, (12.9)

and must be evaluated at the time-varying equilibrium point (V ,Ω ,β ). The partial
derivatives of a typical 2 MW wind turbine for the whole operational envelope are
depicted in Fig. 12.8. The aerodynamic partial derivatives given by (12.9), hereafter
also referred to as aerodynamic gains, are varying parameters in an LPV wind
turbine model.

With the assumption that the wind turbine is operating on the nominal trajectory
specified in Fig. 12.7, the equilibrium values for pitch angle and rotor/generator
speed can be described uniquely by the wind speed, e.g., Ω

(
V
)
, β
(
V
)
. This

means that the wind turbine can be described by an LPV model scheduled on wind
speed only

θop(t) := V (t). (12.10)
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Fig. 12.8 Aerodynamic parameters of a typical 2 MW wind turbine. (a) From rotor speed to torque
(b) From wind speed to torque (c) From pitch angle to torque (d) From rotor speed to thrust (e)
From wind speed to thrust (f) From pitch angle to thrust (g) Rotor speed and pitch angle (h) Power
and thrust
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Depending on the region of interest in the control strategy and the model
complexity, the varying parameters can be approximated as an explicit function of
the scheduling variable. An affine representation is always preferable to diminish the
computational cost of solving an LMI-constrained optimization. If tower dynamics
are omitted and the aim is to design a controller for Region III, the aerodynamic
torque gains can be fairly well approximated by a linear function of the wind
speed. In this case, the parameter variations in the nominal LPV plant model
are approximated using an affine description in the wind speed [26]. If tower
dynamics are taken into account, the aerodynamic gains can be fairly approximated
by polynomial functions in Region III. For the most general case, which is the design
of a single LPV controller covering the full control strategy locus, representing the
aerodynamic gains by polynomials is difficult and one has to resort to grid-based
methods at high computational cost [5, 21].

On most wind turbines, the wind speed is measured by an anemometer on the
nacelle, which only measures the wind speed at a single point in space and is
affected by the presence of the rotor. Therefore, this measurement is not a good
estimate of (12.10). To obtain the wind speed for scheduling purposes, an effective
wind speed estimator must be designed [20]. The effective wind speed is defined
as the spatial average of the wind field over the rotor plane with the wind stream
being unaffected by the wind turbine. By inspecting the output of wind models and
real field measurements, we determine the rate bounds on the effective wind speed
θ̂op(t) to be –2 m/s2 and 2 m/s2.

12.2.3.2 Faults

Faults in a wind turbine have different degrees of severity and accommodation
requirements. A safe and fast shutdown of the wind turbine is necessary to some of
them, while to others the system can be reconfigured to continue power generation.
Linear parameter varying control can be applied in the case of failures that gradually
change system’s dynamics. The most common faults along with their magnitude and
the rate at which they can be introduced are summarized in Table 12.1.

Pitch position and generator speed measurements are the sensors most affected
by failures. Originated by either electrical or mechanical anomalies, they can result
in either a bias or a gain factor on the measurements. A biased pitch sensor
measurement affects both the pitch system model and the pitch angle measurement.
When the bias is introduced, the pitch actuator model and measurement equation
are modified as

β̈ (t) = −2ζωnβ̇ (t)−ω2
n (β (t)+ βbias(t))+ ω2

n βref(t − td), (12.11a)

βmes(k) = β (k)+ βbias(k)+ vβ (k), (12.11b)

where vβ (k) is a measurement noise. A bias can either be a result of inaccurate
calibration of the pitch system or be an gradual fault.
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Table 12.1 Specification of ranges and rate limits of gradual faults

Fault Specification

Pitch sensor
Bias β̇bias(t) ∈ [−1◦/month, 1◦/month]

βbias(t) ∈ [−7◦, 7◦]

Pitch actuator
High air content θ̇ha(t) ∈ [−1/month, 1/month]

θha(t) ∈ [0, 1]
Pump wear θ̇pw(t) ∈ [0, 1/(20 years)]

θpw(t) ∈ [0, 1]
Hydraulic leakage θ̇hl(t) ∈ [0, 1/(100 s)]

θhl(t) ∈ [0, 1]
Pressure drop θ̇pd(t) ∈ [−0.033/s, 0.033/s]

θpd(t) ∈ [0, 1]

Generator speed sensor
Proportional error θ̇pe(t) ∈ [−1/month, 1/month]

θpe(t) ∈ [−0.1, 0.1]

A proportional error on the generator speed sensor changes the sensor gain. The
measurement equation

Ωg,mes(k) =
(
1 + θpe(k)

)
Ωg(k)+ vΩg(k) (12.12)

is a linear function of the gain deviation θpe, where vΩg(k) is a measurement noise.
The power converter and pitch systems are the actuators most likely to fail. Power

converter faults can result in an offset of the generated torque due to an offset in the
internal converter control loops. An offset in the internal converter control loops
modifies the generator and converter model as follows:

Ṫg(t) = − 1
τg

(Qg(t)+ Qg,bias(t))+
1
τg

Tg,ref(t − tg,d), (12.13)

where Qg,bias(t) is an offset of the generated torque.
A fault changes the dynamics of the pitch system by varying the damping ratio

and natural frequency from their nominal values ζ0 and ωn,0 to their faulty values ζf

and ωn,f. The dynamics of the pitch system can then be represented as

β̈ (t) = −2ζ (θf)ωn(θf)β̇ (t)−ω2
n (θf)β (t)+ ω2

n(θf)βref(t − td) [◦/s2] (12.14)

with the parameters changing according to a convex combination of the vertices of
the parameter sets [18]

ω2
n (θf) = (1−θf)ω2

n,0 + θfω2
n,lp, (12.15a)

−2ζ (θf)ωn(θf) = −2(1−θf)ζ0ωn,0 − 2θfζlpωn,lp, (12.15b)



12 Structured Linear Parameter Varying Control of Wind Turbines 317

Table 12.2 Parameters for
the pitch system under
different conditions

Fault Parameters

No fault ωn = 11.11 rad/s, ζ = 0.6
High air content in the oil ωn,ha = 5.73 rad/s, ζha = 0.45
Pump wear ωn,pw = 7.27 rad/s, ζpw = 0.75
Hydraulic leakage ωn,hl = 3.42 rad/s, ζhl = 0.9
Pressure drop ωn,hl = 3.42 rad/s, ζhl = 0.9

The normal air content in the hydraulic oil is 7%, whereas
high air content in the oil corresponds to 15%. Pump wear
represents the situation of 75% pressure in the pitch system
while the parameters stated for hydraulic leakage corresponds
to a pressure of only 50%
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Fig. 12.9 Step responses of hydraulic pitch model under normal (blue) and fault (red) conditions

where θf ∈ [0, 1] is an indicator function for the fault with θf = 0 and θf = 1
corresponding to nominal and faulty conditions, respectively. Pitch system failures
are usually occasioned by the following reasons:

• Pump Wear is introduced very slowly and results in low pump pressure. When
θf(t) = 0 the pump delivers the nominal pressure, but as θf(t) goes to one the
pressure drops. Notice that θ̇f(t) ≥ 0 for all t, since the wear is irreversible
without replacing the pump. The fault described by θf = 1, corresponding to
a pressure level of 75%, can emerge after approximately 20 years of operation.

• Hydraulic leakage is introduced considerably faster than pump wear. Again
θ̇f(t)≥ 0 for all t, since a leakage cannot be reversed without repair of the system.
Notice that the pressure for θf = 1 corresponds to 50% of the nominal pressure.

• High air content in the oil is a fault that, in contrast to pump wear and hydraulic
leakage, may disappear; hence, θ̇f(t) can be both positive and negative. The
extreme values caused by θf = 0 and θf = 1 correspond to air contents of 7%
and 15% in the hydraulic oil.

Values for the natural frequency and damping ratio of the pitch system under
faults are described in Table 12.2. Step responses for the normal and fault conditions
in the case of high air content in the oil are illustrated in Fig. 12.9.
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If a number nθf of faults are considered on the modeling, θf denotes a vector of
scheduling parameters

θf = [θf,1, . . . ,θf,m] , m = 1, . . . ,nθf .

12.2.3.3 System Description

The synthesis of LPV controllers are posed similarly to the H∞ control of linear
systems. The first step is to identify the input variable w known as disturbance
or exogenous perturbation, and the fictitious output variable z called performance
output or error. Next, weighting functions for these inputs and outputs are chosen,
usually rational functions of the Laplace operator s stressing the frequencies of
interest. The standard state-space interconnections of the LPV model of the plant
and the weighting functions are called augmented plant, given by the general
continuous-time LPV system description shown in (12.16)

ẋ(t) = A(θ (t))x(t)+ Bw(θ (t))w(t)+ Bu(θ (t))u(t),

z(t) = Cz(θ (t))x(t)+ Dzw(θ (t))w(t)+ Dzu(θ (t))u(t),

y(t) = Cy(θ (t))x(t)+ Dyw(θ (t))w(t), (12.16)

where x(t) ∈ Rn is the state vector, w(t) ∈ Rnw is the vector of exogenous
perturbation, u(t) ∈Rnu is the control input, z(t) ∈Rnz is the controlled output, and
y(t) ∈Rny is the measured output. A(·), B(·), C(·), D(·) are continuous functions of
the time-varying parameter vector θ =

[
θop θf

]
.

Possible types of dependency of the aerodynamic gains on the scheduling
parameters have already been discussed in the Aerodynamics subsection. The
general case where no restrictions are imposed on the parameter dependence
is treated here [4, 5]. It is necessary to choose scalar functions of the varying
parameters such that the LPV model of the augmented plant (12.16) is affine in
these functions. That is,

⎡

⎣
A(θ ) Bw(θ ) Bu(θ )
Cz(θ ) Dzw(θ ) Dzu(θ )
Cy(θ ) Dyw(θ ) Dyu(θ )

⎤

⎦=

⎡

⎣
A Bw Bu

Cz Dzw Dzu

Cy Dyw Dyu

⎤

⎦

0

+∑
i

⎡

⎣
A Bw Bu

Cz Dzw Dzu

Cy Dyw Dyu

⎤

⎦

i

ρi(θ ),

+∑
m

⎡

⎣
A Bw Bu

Cz Dzw Dzu

Cy Dyw Dyu

⎤

⎦

m

θ f ,m, i = 1, . . . ,nρ , m = 1, . . . ,nθ f , (12.17)
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where ρi(θ ) are scalar functions known as basis functions. The aerodynamic
partial derivatives are natural candidates for basis functions related to plant
nonlinearities [5]

ρ1(θ ) :=
1
Jr

∂Qa

∂Ω

∣
∣
∣
∣
V
,

ρ4(θ ) :=
1

Mt

∂Ta

∂Ω

∣
∣
∣
∣
V
,

ρ2(θ ) :=
1
Jr

∂Qa

∂V

∣
∣
∣
∣
V
,

ρ5(θ ) :=
1

Mt

∂Ta

∂V

∣
∣
∣
∣
V
,

ρ3(θ ) :=
1
Jr

∂Qa

∂β

∣
∣
∣
∣
V
,

ρ6(θ ) :=
1

Mt

∂Ta

∂β

∣
∣
∣
∣
V
,

where the division by Jr and Mt is adopted to improve numerical conditioning.

12.3 LPV Controller Design Method

In this section, an LMI-based optimization procedure for designing structured
discrete-time LPV controllers is presented. Decentralized controllers of any order,
fixed-order, and static output feedback (SOF) are among the possible control
structures. Stability is assessed via a parameter-dependent Lyapunov function with
varying parameters having their rates of variation contained in a compact closed
convex set. A parameter-varying nonconvex condition for an upper bound on the
induced L2-norm performance is solved via an iterative LMI-based algorithm [1,2].

An open-loop, discrete-time augmented LPV system with state-space realization
of the form

x(k + 1) = A(θ )x(k)+ Bw(θ )w(k)+ Bu(θ )u(k),

z(k) = Cz(θ )x(k)+ Dzw(θ )w(k)+ Dzu(θ )u(k),

y(k) = Cy(θ )x(k)+ Dyw(θ )w(k) (12.18)

is considered for the purpose of synthesis, where x(k)∈Rn is the state vector, w(k)∈
Rnw is the vector of disturbance, u(k) ∈ Rnu is the control input, z(k) ∈ Rnz is the
controlled output, and y(k) ∈Rny is the measured output. A(θ ), B(θ ), C(θ ), D(θ )
are continuous functions of some time-varying parameter vector θ =

[
θ1, . . . ,θnθ

]
.

The same matrix notation to both the continuous-time augmented plant (12.16) and
the discrete-time counterpart (12.18) have been adopted. Throughout the text, the
context makes it clear when a continuous or discrete system is being referred to.

Assume θ ranges over a hyperrectangle denoted Θ

Θ =
{

θ : θ i ≤ θi ≤ θ i, i = 1, . . . ,nθ
}

.

The rate of variation Δθ = θ (k + 1)−θ (k) belongs to a hypercube denoted V

V = {Δθ : |Δθi| ≤ vi, i = 1, . . . ,nθ} .
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The LPV controller has the form

xc(k + 1) = Ac(θ )xc(k)+ Bc(θ )y(k),

u(k) = Cc(θ )xc(k)+ Dc(θ )y(k), (12.19)

where xc(k) ∈Rnc and the controller matrices are continuous functions of θ . Note
that depending on the controller structure, some of the matrices may be zero. The
controller matrices can be represented in a compact way

K(θ ) :=
[

Dc(θ ) Cc(θ )
Bc(θ ) Ac(θ )

]
. (12.20)

The interconnection of system (12.18) and controller (12.19) leads to the following
closed-loop LPV system denoted Scl:

Scl :

{x(k + 1) = A (θ ,K(θ ))xcl(k)+B(θ ,K(θ ))w(k),

z(k) = C (θ ,K(θ ))xcl(k)+D(θ ,K(θ ))w(k),
(12.21)

where the closed-loop matrices are [24]

A (θ ,K(θ )) = A(θ )+ B(θ )K(θ )M(θ ), B(θ ,K(θ )) = D(θ )+ B(θ )K(θ )E(θ ),

C (θ ,K(θ )) = C(θ )+ H(θ )K(θ )M(θ ), D(θ ,K(θ )) = F(θ )+ H(θ )K(θ )E(θ ),

with

A(θ ) =
[

A(θ ) 0
0 0

]
,

C(θ ) =
[
Cz(θ ) 0

]
,

E(θ ) =
[

Dyw(θ )
0

]
,

M(θ ) =
[
Cy(θ ) 0

0 I

]
,

F(θ ) =Dzw(θ ),

D(θ ) =
[

Bw(θ )
0

]
,

B(θ ) =
[

Bu(θ ) 0
0 I

]
,

H(θ ) =
[
Dzu(θ ) 0

]
.

This general system structure can be particularized to some usual control
topologies. If K(θ ) is an unconstrained matrix and nc = 0, the problem becomes
a SOF. The static state feedback (SSF) is a particular case of SOF, when the system
output is a full rank linear transformation of the state vector ∀θ . If n = nc, the
full-order dynamic output feedback arises. In a structured control context, more
elaborate control systems can be designed by constraining K(θ ). A fixed-order
dynamic output feedback has nc < n. For decentralized controllers of arbitrary order,
the structure of K(θ ) is constrained to be

K(θ ) :=
[

diag(Dc(θ )) diag(Cc(θ ))
diag(Bc(θ )) diag(Ac(θ ))

]
,

where diag(·) stands that (·) has a block-diagonal structure.
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The design of a closed-loop system usually consider performance specifications
that can be characterized in different ways. Define Tzw(θ ) as the input–output
operator that represents the forced response of (12.21) to an input signal w(k) ∈ L2

for zero initial conditions. The induced L2-norm of a given input–output operator

‖Tzw‖2 := sup
(θ ,θΔ )∈Θ×V

sup
‖w‖2 
=0

‖z‖2

‖w‖2

is commonly utilized as a measure of performance of LPV systems and allows
formulating the control specification as in H∞ control theory. It is of interest to
note that an upper bound γ > 0 on the induced L2-norm ‖Tzw‖2 can be interpreted
in terms of the upper bound on the system’s energy gain

lim
h→∞

h−1

∑
k=0

z(k)T z(k) < γ2 lim
h→∞

h−1

∑
k=0

w(k)T w(k).

The LPV system (12.21) is said to have performance level γ when it is expo-
nentially stable and ‖Tzw‖2 < γ holds. An extension of the bounded real lemma
(BRL) for parameter-varying systems provides sufficient conditions to analyze the
performance level, by solving a constrained LMI optimization problem [10,27]. For
a given scalar γ and a given LPV controller K(θ ), if there exists a θ -dependent
matrix function P(θ ) = P(θ )T satisfying

⎡

⎢
⎢
⎣

P(θ + Δθ ) A (θ ,K(θ ))P(θ ) B(θ ,K(θ )) 0
� P(θ ) 0 P(θ )C (θ ,K(θ ))T

� � γI D(θ ,K(θ ))T

� � � γI

⎤

⎥
⎥
⎦> 0 (12.22)

∀(θ ,Δθ ) ∈ Θ ×V , then the system Scl is exponentially stable and ‖Tzw(θ )‖2 < γ .
The symbol � means inferred by symmetry.

The parameter-varying BRL just shown can be also applied to the case where
w(k) is not an energy signal (‖w(k)‖2 not finite) but has a nonzero root mean-square
(RMS) value

wRMS :=

[

lim
h→∞

1
h

h−1

∑
k=0

w(k)T w(k)

]1/2


= 0.

In this context, L2-norm of a system is given in terms of the RMS values of the
signals of interest, instead of ‖·‖2. Such a situation is more appropriate to interpret
control performance of a wind turbine, since the turbulent wind is a stochastic
disturbance that persists for long periods of time, thus ‖w(k)‖2 is not a good measure
of the signal.

When an LPV controller with performance level γ is not given but should be
found (synthesized), the inequality (12.22) is no longer an LMI in the unknown
variables due to the product between the variables K(θ ) and P(θ ). Thus, convex
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optimization algorithms cannot be applied to the condition as it is. Reformulations
into sufficient (possibly conservative) LMI constraints are readily available for
particular controller structures and type of parameter dependencies [9, 10].

We propose to design the controllers via an iterative algorithm, instead of
attempting to reduce the problem to LMIs. The iterative algorithm relies on the
following equivalent non-LMI parametrization that is suitable for iterative design
[2]. If there exist K(θ ), P(θ ) = P(θ )T, and G (θ ) satisfying:

⎡

⎢
⎢⎢
⎣

P(θ +Δθ ) A (θ ,K(θ )) B(θ ,K(θ )) 0

� −G (θ )TP(θ )G (θ )+G (θ )T +G (θ ) 0 C (θ ,K(θ ))T

� � γI D(θ ,K(θ ))T

� � � γI

⎤

⎥
⎥⎥
⎦

> 0,

(12.23)

∀ (θ ,Δθ ) ∈Θ ×V , then the system Scl is exponentially stable and ‖Tzw(θ )‖2 < γ .
The affine dependence of the reformulated condition on K(θ ) allows the

controller matrices to be variables, irrespective of the chosen controller structure.
The inequality remains nonconvex due to the product between P(θ ) and the
introduced slack variable G (θ ). Furthermore, it involves the satisfaction of infinitely
many inequalities, since (12.23) should hold for all (θ ,Δθ ) ∈Θ ×V .

In order to make the problem computationally tractable, the iterative algorithm
solves LMI optimization problems with the slack matrix G (θ ) constant during an
iteration. An iteration should be understood to be an LMI-constrained optimization.
The use of G (θ ) as a parameter-dependent slack variable is facilitated by updating
its value at each iteration according to some predefined rule. In particular, the update
rule is

G (θ ){ j+1} =
(
P(θ ){ j}

)−1
, (12.24)

where {·} is the iteration index and j is the current iteration number.
The iterative algorithm for the design of a structured LPV controller with

minimum performance level γ is formulated next.

Algorithm 0: Set j = 0, a convergence tolerance ε , an initial G (θ ){0} and start to
iterate:
(A.1) For fixed G (θ){ j}, find P(θ){ j}, P(θ +Δθ){ j} , K(θ){ j}, and γ{ j} satisfying the

LMI-constrained problem

Minimize γ subject to (12.23).

(A.2) If
∣
∣γ{ j} − γ{ j−1}∣∣≤ ε , stop. Otherwise, G (θ){ j+1} =

(
P(θ){ j})−1

, set j = j +1 and go to
step 1.
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12.3.1 Initial Slack Matrix G (θ){0}

The initial value of G (θ ){0} required to initialize Algorithm 0 can be obtained in
different ways. If a given initial controller K(θ ) satisfies the following optimization
problem:

Minimize γ subject to (12.22), ∀(θ ,Δθ ) ∈Θ ×V ,

then the resulting P(θ ) can be utilized to derive G (θ ){0} = P(θ )−1. The example
section shows the usage of this approach.

Alternatively, an iterative feasibility algorithm can be created by relaxing the
inequality (12.23). Instead of requiring the inequality to be positive definite (> 0),
a variable term is included to the right hand side (> diag(τI,τGT G,τI,τI)), where
τ is a scalar variable. The algorithm maximizes τ until the value reaches a certain
chosen υ > 0.

Algorithm 1: Set j = 0, a convergence tolerance ε , a υ > 0, an initial G (θ ){0} = I
and start to iterate:
(A.1) For fixed G (θ){ j}, find P(θ){ j}, P(θ +Δθ){ j}, K(θ){ j}, γ{ j}, and scalar τ satisfying the

LMI-constrained problem

Maximize τ subject to (12.23) with the right hand side changed from > 0 to
> diag(τI,τGT G,τI,τI), and τ < υ .

(A.2) If
∣∣τ{ j} − τ{ j−1}∣∣≤ ε , stop. Otherwise, G (θ){ j+1} =

(
P(θ){ j})−1

, set j = j +1 and go to
step 1.

The resulting G (θ ){0} can subsequently be used to initialize Algorithm 0.

12.3.2 From Infinite to Finite Dimensional

The LMI problems of Algorithm 0 involve infinitely many LMIs, as θ and Δθ
are defined in a continuous space. When LMIs depend affinely on θ and Δθ , the
synthesis problem at each iteration is reduced to an optimization problem with a
finite number of LMIs checked at (θ ,Δθ )∈Vert Θ ×Vert V . Note that Vert Θ is the
set of all vertices of Θ . For LMIs polynomially θ -dependent, relaxations based on
multiconvexity arguments also reduce the problem to check LMIs at the vertices of
the parameter space [1, 2]. This procedure, based on sufficient conditions, may lead
to extra conservatism. In the general case, where no restrictions on the parameter
dependence are imposed, one has to resort to ad-hoc gridding methods [4]. The
gridding procedure consists of defining a gridded parameter subset denoted Θg ⊂
Θ , designing a controller that satisfies the LMIs ∀θ ∈ Θg, and checking the LMI-
constraints in a denser grid. If the last step fails, the process is repeated with a
finer grid.
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Due to the assumption of general parameter dependence of the open-loop plant
on the scheduling variables (12.17), the gridding approach is used in the controller
design. The Lyapunov and the LPV controller matrices are affine in the basis
functions

P(θ ) = P0 +
nρ

∑
i=1

ρi(θk)Pi +
nθf

∑
i=1

θf,iPnρ+i, (12.25a)

K(θ ) = K0 +
nρ

∑
i=1

ρi(θ )Ki +
nθf

∑
i=1

θf,iKnρ +i. (12.25b)

Due to the bounded parameter rate set V assumed known, the Lyapunov function
at sample k + 1 can be described as

P(θ + Δθ ) = P0 +
nρ

∑
i=1

ρi(θ + Δθ )Pi +
nθf

∑
i=1

(θf,i + Δθf,i)Pnρ+i. (12.26)

Note the general parameter dependence of (12.26) on Δθ occasioned by ρi(θ +
Δθ ). Conveniently, the basis functions at sample k + 1 are represented as a linear
function of ρ(θ ) and Δθ

ρi(θ + Δθ ) := ρi(θ )+
∂ρi(θ )

∂θ
Δθ , (12.27)

thereby turning inequality (12.23) affine dependent on the rate of variation Δθ .
Thus, it is sufficient to verify (12.23) with (12.26) and (12.27) only at Vert V .

The iterative algorithm for a chosen grid Θg ⊂Θ is presented in the sequel.

Algorithm 2: Set j = 0, a convergence tolerance ε , initialize G (θ ){0} ∀θ ∈Θg, and
start to iterate:

(A.1) For fixed G (θ){ j}, and i = 0,1, . . . ,nρ +nθ f , find P{ j}
i > 0, K{ j}

i , and γ{ j} satisfying the
LMI-constrained problem

Minimize γ subject to (12.23), ∀ (θ ,Δθ) ∈Θg × VertV .

(A.2) If
∣∣γ{ j} − γ{ j−1}∣∣ ≤ ε , stop. Otherwise, G (θ){ j+1} = P(θ){ j}−1, ∀θ ∈Θg. Set j = j +1

and go to step 1.

The Lyapunov variable P(θ ){ j} > 0 may be close to singular at each iteration,
making the inversion required to compute G (θ ) possibly ill conditioned. To alleviate
this issue, an additional LMI constraint

P(θ ){ j} > μI,
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improves numerical condition of the inversion by imposing a lower bound on the
eigenvalues of P(θ ){ j}, where μ > 0 is a chosen scalar. There exists a tradeoff
between the value of μ and the attained value of γ . Higher values of μ may lead
to more conservative controllers, although from our experience, the small value of
μ required to better condition the inversion does not influence significantly on the
performance level γ .

The gridding procedure for controller synthesis can be summarized by the
following steps:

(A.1) Define a grid Θg for the compact set Θ .
(A.2) Find initials G (θ ){0}, ∀θ ∈Θg.
(A.3) Solve Algorithm 2.
(A.4) Define a denser grid.
(A.5) Verify the feasibility of the LMI (12.22) with the computed controller K(θ ),

in each point of the new grid. If it is infeasible, choose a denser grid and go
to step 2.

12.3.3 Controller Implementation

The iterative LMI optimization algorithm provides the controller matrices Ac,i, Bc,i,
Cc,i, Dc,i, for i = 0,1, . . . ,nρ + nθf . These matrices, the basis functions, and the
value of the scheduling variables are the only required information to determine
the control signal u. At each sample time k, the scheduling variable θ is measured
(or estimated) and a control signal is obtained as follows:

(A.1) Compute the value of the basis functions ρi(θ ), for i = 0,1, . . . ,nρ . The basis
functions may be stored in a lookup table that takes θ as an input and outputs
an interpolated value of ρ(θ ).

(A.2) With the value of the basis functions in hand, determine the controller
matrices Ac(θ ), Bc(θ ), Cc(θ ), Dc(θ ) according to

Ac(θ ) = Ac,0 +
nρ

∑
i=1

ρi(θ )Ac,i +
nθf

∑
i=1

θf,iAc,nρ+i,

Bc(θ ) = Bc,0 +
nρ

∑
i=1

ρi(θ )Bc,i +
nθf

∑
i=1

θf,iBc,nρ+i,

Cc(θ ) = Cc,0 +
nρ

∑
i=1

ρi(θ )Cc,i +
nθf

∑
i=1

θf,iCc,nρ+i,

Dc(θ ) = Dc,0 +
nρ

∑
i=1

ρi(θ )Dc,i +
nθf

∑
i=1

θf,iAc,nρ +i.
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(A.3) Once the controller matrices have been found, the control signal u(k) can be
obtained by the dynamic equation (12.19) of the LPV controller, which only
involves multiplications and additions.

12.4 Example: LPV PI Controller Tolerant to Pitch
Actuator Faults

The proportional and integral (PI) is the most utilized controller by the wind
energy industry. At low wind speeds, the PI speed control using generator torque
as controlled input can be quite slow, thus tuning is not significantly challenging.
However, at high wind speeds, the PI speed control using pitch angle as controlled
input strongly couples with the tower dynamics, denoting a multivariable problem,
and should be properly designed. Inappropriate gain selection can make rotational
speed regulation “loose” around the set point or make the system unstable, as well
as excite poorly damped structural modes [7].

The concepts seen throughout this chapter are here applied to the state-of-the-art
controller structure of the wind turbine industry [8]. The present example intends to
show that theoretical rigorousness on the design of gain-scheduled controllers may
bring advantages in terms of performance and reliability of wind turbines in a closed
loop.

12.4.1 Controller Design

For a clear and didactic exposure, the adopted control structure depicted in
Fig. 12.10 is simpler than an industry-standard Region III controller [8], but includes
the most common control loops.

The generator speed is regulated by a PI controller of the form

GPI := kp(θ )+ ki(θ )
(s+ zI)

s
,

where s denotes the Laplace operator. Instead of a pure integrator, the PI controller
is composed by an integrator filter

GI(s) :=
s+ zI

s
,

for reasons to be explained later, where the filter zero zI is a design parameter.
It is possible to provide an extra signal by using an accelerometer mounted in the

nacelle, allowing the controller to better recognize between the effect of wind speed
disturbances and tower motion on the measured power or generator speed. With
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Fig. 12.10 Schematic block diagram of a controlled wind turbine in Region III

this extra feedback signal, tower bending moments loads can be reduced without
significantly affecting speed or power regulation [7]. Therefore, it is assumed that
tower velocity q̇ is available for measurement, by integrating tower acceleration q̈,
and is multiplied by a parameter-dependent constant kq̇(θ ) for feedback.

Additionally, active drive train damping is deployed by adding a signal to the
generator torque to compensate for the oscillations in the drive train. This signal
should have a frequency, ωdt, equal to the eigenfrequency of the drive train, which
is obtained by filtering the measurement of the generator speed using a bandpass
filter of the form

Gdt := Kdt
2ζdtωdts(1 + τdts)
s2 + 2ζdtωdts+ ω2

dt

.

The time constant, τdt, introduces a zero in the filter, and can be used to compensate
for time lags in the converter system. The filter gain kdt and the damping ratio ζdt

are selected based on classical design techniques.
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A power controller for reducing fast power variations is treated simplistically
as a proportional feedback from generator speed to generator torque. Considering
a constant power control scheme, the generator torque can be represented as a
function of the generator speed. The proportional feedback is nothing but the partial
derivative of generator torque with respect to generator speed

∂Qg(Ωg)
∂Ωg

= − PN

NgΩ 2
g,N

.

In real implementations, a slow integral component is added to the loop to include
asymptotic power tracking.

Instead of the classical control techniques, the design of PI speed and tower
feedback loops are revisited under the LPV framework. For a didactic and clear
exposure, the interconnection of the drive train with the damper is now considered
as a first order low pass filter from aerodynamic torque to generator speed, and the
rotor speed proportional to the generator speed. The LPV controller can now be
designed to trade off the tracking of generator speed and tower oscillations with
control effort (wear on pitch actuator). The dynamic model of the variable-speed
wind turbine can then be expressed as an LPV model of the form

G :

{ ẋ = A(θ ) x + Bw(θ ) û+ Bu(θ )βref

y = Cy x
,

where states, controllable input and measurements are

x =
[
Ωr q̇ q β̇ β xΩ ,i

]T
, u = βref, y =

[
Ωg yΩ ,i q̇

]T
.

with open-loop system matrices

A(θ ) =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρ1(θ )− 1
Jr + JgN2

g

∂Qg

∂Ω
−ρ2(θ ) 0 0 ρ3(θ ) 0

ρ4(θ ) − 1
Mt

Bt −ρ5(θ ) − Kt

Mt
0 ρ6(θ ) 0

0 1 0 0 0 0
0 0 0 a44(θf) −a12(θf) 0
0 0 0 1 0 0

Ng 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Bu =
[
ρ2(θ ) ρ5(θ ) 0 0 0 0

]T
, Bw =

[
0 0 0 b4,1(θf) 0 0

]T
, Cy =

⎡

⎣
Ng 0 0 0 0
zI 0 0 0 1
0 1 0 0 0

⎤

⎦,

a12(θf) = b41(θf) = (1−θf(t))ω2
n,0 + θf(t)ω2

n,lp,

a44(θf) = –2(1−θf(t))ζ0ωn,0 − 2θf(t)ζlpωn,lp.
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The basis functions ρ1(θ ), . . . ,ρ6(θ ) related to the parameter-varying aerodynamic
gains are selected as

ρ1 :=
1

Jr + JgN2
g

∂Q
∂Ω

∣
∣
∣∣
V̂
,

ρ4 :=
1

Mt

∂T
∂Ω

∣
∣
∣∣
V̂
,

ρ2 :=
1

Jr + JgN2
g

∂Q
∂V

∣
∣
∣∣
V̂
,

ρ5 :=
1

Mt

∂T
∂V

∣
∣
∣∣
V̂
,

ρ3 :=
1

Jr + JgN2
g

∂Q
∂β

∣
∣
∣∣
V̂
,

ρ6 :=
1

Mt

∂T
∂β

∣
∣
∣∣
V̂
.

Notice the PI controller integrator filter GI conveniently augmented into the state-
space of G, represented by the state xΩ ,i and the output yΩ ,i. The plant Gp is defined
as the wind turbine model solely (plant G without the augmentation of GI).

Considering G as the plant for synthesis purposes, the LPV controller structure
reduces to a parameter-dependent SOF of the form

K(θ ) = Dc,0 +
6

∑
i=1

ρi(θ )Dc,i + θfDc,7, Dc,n :=
[
Dp,n Di,n Dq̇,n

]
,

n = 0,1, . . . ,7.

Controller tuning follows a procedure similar to the H∞ design. Notice that, for
fixed values of the varying parameter θ , and initially neglecting the tower velocity
feedback, the controller design becomes a mixed sensitivities optimization problem
intended to minimize the norm

∥
∥
∥
∥

Wz1 GI S Gv

Wu GPI S Gv

∥
∥
∥
∥

∞
,

where S is the sensitivity defined as S :=
(
I + Gp GPI

)−1, Gv is the transfer function
from V̂ to Ω̂g, Wz1 and Wu are weighting functions. The weight Wz1 applied to
the generator speed deviations can be used to shape the closed-loop response of
rotational speed in face of wind disturbances, given by Ω̂ (t)= SGvV̂ (t). The desired
sensitivity in closed loop is

SΩ (s) :=
s2 + 2ξΩ ωΩ s

s2 + 2ξΩ ωΩ s+ ω2
Ω

,

where the natural frequency ωΩ and damping ratio ξΩ are design parameters that
select the desired second-order closed-loop behavior. The desired sensitivity SΩ can
be applied as a loop-shaping weight by defining Wz1 as

Wz1(s) :=
1

GI(s)SΩ (s)
=

s2 + 2ξΩ ωΩ s+ ω2
Ω

(s+ zI)(s+ 2ξΩ ωΩ )
.
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Wu is a first order high-pass filter that penalizes high-frequency content on the
pitch angle

Wu(s) := k3
s+ z3

s+ p3
.

Wz1 and Wu governs the tradeoff between rotational speed regulation and pitch
wear. Due to the resonance characteristics of the transfer function from V̂ to q̇,
the weighting function Wz2 is chosen as a scalar k2 that tradeoffs the desired tower
damping.

Two LPV controllers are designed, one fault intolerant and another tolerant to
pitch actuator faults. The only difference on their synthesis is the inclusion of the
fault-dependent terms P7θf and Dc,7θf of the Lyapunov and controller matrices,
respectively. The parameters for the loop-shaping weight Wz1 are selected as ωΩ =
0.6283 rad/s (0.1 Hz) and ξΩ = 0.7, with the zero of the integrator filter located at
zI = 1.0 rad/s. A special attention must be devoted to the choice of Wu. Due to the
fact that the pitch system has slower dynamics in the presence of low oil pressure,
the bandwidth of this filter must be made large enough to allow rotational speed
and tower damping control in the occurrence of faults. Defining Ω3P as three times
the nominal rotational speed Ωr,N , in the present example, k3 = 1, p3 = 1.5Ω3P and
z3 = 15Ω3P.

Remember that the iterative LMI algorithm is a synthesis procedure in discrete
time. Therefore, the augmented LPV plant in continuous time is discretized using
a bilinear (Tustin) approximation [3] with sampling time Ts = 0.02 s, at each point
Θg ×VertV . The rate of variation of the scheduling variables in continuous time
must as well be converted to discrete-time by the relation Δθ (k) = TsΔθ (t).

The initial slack matrices G(θ ,Δθ ){0}, ∀(θ ,Δθ ) ∈ Θg × Vert V required to
initialize the LMI-based algorithm are determined from the solution of the following
LMI optimization problem:

Minimize γ subject to (12.22), (12.26), (12.27), ∀(θ ,Δθ ) ∈Θg ×Vert V

with a given initial controller K(θ ). The resulting Lyapunov matrix determines
G(θ ,Δθ ){0} = P(θ ,Δθ )−1. The proportional and integral gains of the given initial
controller can be computed by placement of the poles of the transfer function from
V̂ to Ω̂g. Neglecting pitch actuator dynamics, and considering a pure integrator, the
kp and ki gains can be described analytically as [16]

kp(θ ) =
2ξΩ ωΩ

(
Jr +N2

g Jg

)
−Ng

∂Qg

∂Ωg
+ρ1(θ )

−Ngρ3(θ )
, ki(θ ) =

ω2
Ω

(
1+ξ 2

Ω

)(
Jr +N2

g Jg

)

−Ngρ3(θ )
.

The tower feedback gain of the initial controller is kq̇(θ ) = 0, meaning no active
tower damping.
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Fig. 12.11 Evolution of performance level γ and controller gains kp, ki, kq̇ during the iterative
LMI synthesis. Controller gains computed at θop = 15 m/s, θf = 0

Convergence tolerance of the iterative algorithm is set to ε = 10−3. After
89 iterations, convergence is achieved to a performance level γ = 0.586. The
evolution of γ{ j} versus the iteration number is depicted in Fig. 12.11, where the
monotonically decreasing property of the sequence is noticeable. The proportional
and integral gains depicted on the figures are multiplied by the gearbox ratio Ng

for better illustration. The controller gains K(θ ) = [kp(θ ), ki(θ ), kq̇(θ )] computed
at θop = 15 m/s, θf = 0, during the course of the iterative LMI algorithm, are also
shown. The synthesis procedure converge to controller gains different than the gains
of the initial controller. The tower feedback gain kq̇, null in the initial controller, has
converged to a nonzero value, meaning active tower damping.

The proportional, integral, and tower feedback gains as three-dimensional sur-
faces of the scheduling parameters V and θf are illustrated in Fig. 12.12a–c. The
controller gains capture the dependence of the LPV system on the wind speed given
by the basis functions. Compare the shape of the surfaces with the aerodynamic
gains (Fig. 12.8). Also notice the slight changes in kp and kq̇ and the changes in ki

scheduled by θf.
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Fig. 12.12 Proportional, integral and tower feedback gains as functions of the operating point and
fault scheduling variables

12.4.2 Simulation Results

The performance of the LPV controllers are accessed in a nonlinear wind turbine
simulation environment [12]. The effective wind speed is estimated by an unknown
input observer that uses measurements of generator speed, generator torque, and
pitch angle [20]. Figures 12.13a–12.14d depict time series of the variables of interest
resulting from a 600 s simulation. A mean speed of 17 m/s with 12% turbulence
intensity and shear exponent of 0.1 characterizes the wind field (Fig. 12.13a). At
time t = 200 s, the pitch system experiences a fault with θf increasing from 0
to 1 (Fig. 12.13b). At t = 430 s, the pitch system comes to normality with θf

decreasing from 1 to 0. Both variations on the fault scheduling variable are made
with maximum rate of variation.

Results of LPV controllers intolerant and tolerant to pitch actuator faults are
compared to support a discussion of the consequences of the fault on the closed-
loop system as well as fault accommodation. When the wind turbine is controlled by
the fault intolerant LPV PI controller, the rotational speed (Fig. 12.13c) experiences
poor and oscillatory regulation during the occurrence of faults, more pronouncedly
while θf is varying. The threshold for a shutdown procedure due to overspeed
is usually between 10% and 15% over the nominal speed [23]; in this particular
case, the overspeed would not cause the wind turbine to shut down. The FT-
LPV PI controller successfully accommodates the fault, maintaining rotor speed
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properly regulated. Oscillatory power overshoots of up to 6% of the nominal power
(Fig. 12.13d) degrades power quality; the same does not happen to the FT-LPV
controlled system.

More serious than the effects on rotational speed and power are the conse-
quences of faults on the pitch system and tower. Excessive pitch angle excursions
during faults (Fig. 12.14a) with the limits on velocity of ±8 deg/s being reached
(Fig. 12.14b) may cause severe wear on pitch bearings. The FT-LPV controller
maintain pitch excursions and velocities within normal limits. The tower experi-
ences displacements (Fig. 12.14c) of up to 0.48 m, an increase of approximately
60% when compared to the FT-LPV. The displacements comes along with very high
tower velocities of almost 0.4 m/s, 260% higher than the fault accommodated case.

In such a situation, the supervisory controller would shut down the wind turbine
due to excessive vibrational levels measured by the nacelle accelerometer. The
same would not be necessary if the wind turbine is controlled by the FT-LPV.
Therefore, fault-tolerance leads to higher energy generation and availability. It
also collaborates to a better management of condition-based maintenance; higher
priority of maintenance can be given to wind turbines with faults that cannot be
accommodated by the control system. These are examples of the benefits that the
LPV control design framework presented in this chapter can bring to wind turbines
in closed loop with industry-standard as well as more elaborate controllers.

12.5 Conclusions

This chapter initially presents the modeling of a wind turbine model as an LPV
system, considering faults on actuators and sensors. Later, an iterative LMI-based
algorithm for the design of structured LPV controllers is described. This constitutes
a unified LMI-based design framework to address gain-scheduling, fault-tolerance,
and robustness on the design of wind turbine controllers.

The method is based on parameter-dependent Lyapunov functions, which reduces
conservativeness of control for systems with rate bounds, which is the case in this
work. The iterative algorithm may be computationally expensive depending on the
number of plant states and scheduling variables, but brings desired flexibility in
terms of the controller structure: decentralized of any order, dynamic (reduced-
order) output feedback, SOF, and state feedback are among the possible ones.
Moreover, the resulting controller can also be easily implemented in practice due to
low data storage and simple math operations. In fact, the required data to be stored
on the controller memory is only the controller matrices, and scalar functions of the
scheduling variables representing plant nonlinearities. The mathematical operations
needed to compute the controller at each sampling time are look-up tables with
interpolation, products between a scalar and a matrix, and sums of matrices.

A design example of a fault-tolerant controller for the Region III, with a structure
similar to the state-of-the-art industrial controllers, intends to show that theoretical
rigorousness on the design of gain-scheduled controllers may bring advantages in
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terms of performance and reliability of wind turbines in closed loop. The presented
framework is not limited to the specific example shown. Due to its flexibility, the
framework can be applied to other known wind turbine controller structures or even
to explore different control philosophies.

Simulations indeed confirm that the fault-tolerant LPV controllers have superior
performance in the occurrence of faults. The LPV controller designed for the
nominal system start oscillating when the fault is introduced. In a real situation,
the supervisory controller would shut down the wind turbine due to excessive
vibrational levels measured by the nacelle accelerometer. The same would not be
necessary if the wind turbine is controlled by the FT-LPV. Therefore, higher energy
generation and availability is achieved. It also contributes to a better management of
condition-based maintenance; priority on maintenance can be given to wind turbines
with faults that cannot be accommodated by the control system.
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Chapter 13
Attitude Regulation for Spacecraft
with Magnetic Actuators: An LPV Approach

Andrea Corti and Marco Lovera

Abstract Magnetic torquers are an effective and reliable technology for the attitude
control of small satellites in low Earth orbit. Such actuators operate by generating
a magnetic dipole which interacts with the magnetic field of the Earth. The main
difficulty in the design of attitude control laws based on magnetic torquers is
that the torques they generate are instantaneously constrained to lie in the plane
orthogonal to the local direction of the geomagnetic field vector, which varies
according to the current orbital position of the spacecraft. This implies that the
attitude regulation problem is formulated over a time-varying model. In recent years,
this control problem has been studied extensively, either using methods based on
averaged models or via approaches which exploit the quasi-periodic variability of
the geomagnetic field. With the exception of other approaches based on Model
Predictive Control, none of the above actually exploits at the design stage the
fact that the geomagnetic field can be reliably measured on board and, therefore,
the above mentioned time-variability of the attitude dynamics can be represented
in LPV form. Therefore, in this chapter an LPV approach to the problem of
magnetic attitude control law design is proposed. To this purpose, an LPV model
of the attitude dynamics is first derived, LPV control laws suitable for on board
implementation are synthesized and eventually tested in simulation.

13.1 Introduction

Electromagnetic actuators are a particularly effective and reliable technology for
the attitude control of small satellites. Such actuators operate on the basis of the
interaction between the magnetic field generated by a set of three orthogonal,
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current-driven coils and the magnetic field of the Earth and provide a simple solution
to the problem of generating torques on board of a satellite, both for attitude
control in momentum biased or gravity gradient architectures and as secondary
actuators for momentum management tasks in zero momentum reaction wheel based
configurations (see [25]).

The main difficulty in the design of magnetic attitude control laws is related to
the fact that magnetic torques are instantaneously constrained to lie in the plane
orthogonal to the local direction of the geomagnetic field vector. Controllability of
the attitude dynamics is ensured for a wide range of orbit altitudes and inclinations in
spite of this constraint, thanks to the variability of the geomagnetic field. However,
this implies that the attitude control engineer has to deal with a time-varying model
in the control design process.

In recent years, considerable effort has been devoted to the analysis of this control
problem. In particular, as far as the linear attitude regulation problem is concerned,
two main lines of work can be identified in the literature:

• Methods based on averaged models. The idea is to replace the time-varying
dynamics of the magnetically actuated spacecraft with an approximate
time-invariant model obtained using averaging techniques. The advantage of
this approach is that the control problem becomes time-invariant. The main
drawbacks are that: the designer has to verify a posteriori that the designed con-
troller actually stabilizes the original time-varying dynamics with a satisfactory
performance level; averaging implies limitations in closed-loop performance.
This approach, originally proposed in [27], was further developed in [9] to
deal with the (relatively simple) stabilization problem for the coupled roll/yaw
dynamics of a momentum biased spacecraft using a magnetic torquer aligned
with the pitch axis.

• Methods based on periodic models. As the variability of the geomagnetic field
is almost time-periodic, most of the recent work on the linear magnetic attitude
control problem has focused on the use of optimal and robust periodic control
theory for the design of state and output feedback regulators [13, 14, 19, 20, 26,
30, 34, 35, 37]. While periodic control design methods have the advantage of
guaranteeing closed-loop stability a priori, they lead to the synthesis of time-
periodic regulators, which are difficult to implement and operate in practice.
Therefore, more recent contributions aim at designing constant gain periodically
optimal controllers (see [21, 31, 38]).

With the exception of other approaches based on Model Predictive Control, none
of the above actually exploits at the design stage the fact that the geomagnetic
field can be reliably measured on board and, therefore, the above-mentioned
time-variability of the attitude dynamics can be represented in linear parameter-
varying (LPV) form. Therefore, in this chapter, an LPV approach to the problem
of magnetic attitude control law design is proposed. To this purpose, an LPV
model of the attitude dynamics is first derived, LPV control laws suitable for on
board implementation are synthesized and eventually tested on a realistic spacecraft
simulator. LPV analysis and synthesis methods have been an active area of research
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for almost two decades. Provided that a reliable LPV model for the plant to be
controlled is available (see, e.g., [15] for an overview of the state-of-the-art in LPV
modelling and identification), a number of methods are now available to obtain
both state and output-feedback LPV controllers, see, e.g., [1, 2, 4, 17, 23, 24, 36].
As the corresponding tools reach maturity and allow to deal with problems of
increasing size and complexity, the possibility of achieving a prescribed level
of performance for a parameter-dependent system using a single, parametrically
varying controller can be pursued in practice for a wide range of applications.
In addition, implementation issues, which have proved critical in many cases, are
increasingly well understood (see, e.g., [29] and the references therein) as well as
the effect of noise on the measured scheduling parameters (see [22]).

The chapter is organized as follows. Section 13.2 provides a description of the
spacecraft considered in the study as well as the derivation of a linearized model for
its attitude dynamics. An overview of existing modelling approaches for magnetic
attitude control system design is provided in Sect. 13.3, while Sect. 13.4 is devoted
to the presentation of the proposed LPV technique. Finally, the results obtained in
the simulation of the designed control laws are presented and discussed in Sect. 13.5.

13.2 Mathematical Model and Problem Statement

In order to represent the attitude motion of an Earth-pointing spacecraft on a circular
orbit, the following reference systems are adopted:

• Earth centered inertial reference axes (ECI). The Earth’s center is the origin of
these axes. The positive X-axis points in the vernal equinox direction. The Z-axis
points in the direction of the North Pole. The Y -axis completes the right-handed
orthogonal triad.

• Orbital Axes (X0, Y0, Z0). The origin of these axes is at the satellite center of
mass. The X-axis points to the Earth’s center; the Y -axis points in the direction
of the orbital velocity vector. The Z-axis is normal to the satellite orbit plane.

• Satellite Body Axes. The origin of these axes is at the satellite center of mass; in
nominal Earth-pointing conditions, the Xb (yaw), Yb (roll) and Zb (pitch) axes are
aligned with the corresponding orbital axes.

A spacecraft with inertia matrix I = diag
[
Ixx Iyy Izz

]
is considered, equipped

with a single-momentum wheel aligned with the body z-axis, with moment of
inertia J and angular velocity Ω relative to the body frame. The aim of the attitude
control scheme is to maintain the satellite body axes aligned with the orbital axes,
while exploiting the gyroscopic effect due to the momentum wheel. Note that
the choice of this spacecraft configuration is not particularly restrictive, since by
assuming that Ω = 0 and Ixx � Iyy, Ixx � Izz a gravity-gradient configuration can
be obtained as a particular case. Similarly, the assumptions of a circular orbit
and of a diagonal inertia matrix are made only for ease of presentation, but they
are by no means necessary for the applicability of the proposed design approach.
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Indeed, unlike existing design methods based on averaging (see, e.g., [9]), inertial
coupling between roll/yaw and pitch dynamics can be handled in the design
problem. The angular kinematics and dynamics of the spacecraft are modelled using
as state variables the quaternion q= [q1 qT

R]
T = [q1 q2 q3 q4]

T describing the attitude
of the body axes with respect to the orbital axes and the inertial angular velocity
vector ω = [ωx ωy ωz]

T with respect to the body axes.
In the following, we will present a linearized dynamic model for the formulation

of this control problem. With respect to the selected state variables, the nominal,
Earth-pointing, equilibrium corresponds to the attitude quaternion q̄ = [1 0 0 0]T

and to the angular rate ω̄ = [0 0−Ω0]
T, where Ω0 is the orbital angular rate.

Define the state vector x = [δqT
R δωT]T formed with small displacements of the

vector part qR of the attitude quaternion q from the nominal values q̄R = [0 0 0]T and
small deviations of the body rates from the nominal values ωx =ωy = 0,ωz =−Ω0.

Then the attitude dynamics can be linearized and the local linear dynamics for
the attitude can be defined as [14]

ẋ(t) = Ax(t)+BT [Tm(t)+Td(t)] , (13.1)

where Tm is the magnetic control torque vector, Td is the disturbance torque vector
and

A =

[
A11 A12

A21 A22

]

=

⎡

⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

0 −Ω0 0 0.5 0 0

Ω0 0 0 0 0.5 0

0 0 0 0 0 0.5

0 0 0 0 Wx 0

0 −6kyΩ 2
0 0 Wy 0 0

0 0 +6kzΩ 2
0 0 0 0

⎤

⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

, (13.2)

BT =

⎡

⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

0 0 0

0 0 0

0 0 0

I−1
xx 0 0

0 I−1
yy 0

0 0 I−1
zz

⎤

⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

, (13.3)

and kx =
Iyy−Izz

Ixx
,ky =

Izz−Ixx
Iyy

,kz =
Ixx−Iyy

Izz
, Wx =−kxΩ0+kwxΩ , Wy =−kyΩ0−kwyΩ ,

kwx =
J

Ixx
,kwy =

J
Iyy

. Here, Ω is the nominal wheel speed.
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Taking into account that Tm can be written as

Tm(t) = m(t)× b(t) = S(b(t))m(t) =−b(t)×m(t), (13.4)

where b =
[
bx by bz

]T
is the geomagnetic field vector (in body frame), m is the

dipole vector of the magnetic torquers and

S(b) =

⎡

⎢
⎣

0 bz −by

−bz 0 bx

by −bx 0

⎤

⎥
⎦,

(13.1) can be equivalently written as

ẋ(t) = Ax(t)+Bm(t)m(t)+BTTd(t), (13.5)

where Bm(t) = BTS(b(t)). Note that, while A is constant, the control matrix Bm(t)
corresponding to the control input m turns out to be time-varying because of the
dependence on the geomagnetic field vector b(t). Such time variability turns out
to be approximately time-periodic with period equal to the orbital period T =
2π/Ω0. Deviations from exact periodicity are due to Earth rotation and to orbit
perturbations.

As can be seen from (13.2) (and well known in the literature, see, e.g., [10, 25]),
the A matrix shows that the pitch dynamics is decoupled from the roll/yaw dynamics.
Therefore, in the case of a spacecraft equipped with three independent torque
actuators, it would be possible to design separate controllers for the two subsystems.
Unfortunately, as can be seen from the expression of matrix Bm(t) in (13.3), the
use of magnetic actuators introduces a coupling between the roll/yaw and the pitch
subsystems. Similarly, coupling terms appear if the spacecraft inertia matrix I is not
diagonal—a situation which occurs frequently in practice.

A very common structure for magnetic attitude control laws, which goes back to
classical papers such as [16], consists of control laws of the kind

m(t) =
1

‖b(t)‖2 ST(b(t))Tid(t), (13.6)

where b(t) is the measurement, at time t, of the geomagnetic field b and Tid(t)
is an “ideal” control torque to be determined on the basis of a suitable feedback
of state or output variables, according to the specific attitude control architecture
of the considered spacecraft. The above control law can be readily given a
simple geometric interpretation. Indeed, recalling (13.4) we can express the torque
generated by the magnetic coils as

Tm(t) =
1

‖b(t)‖2 S(b(t))ST(b(t))Tid(t) = Γ (b(t))Tid(t), (13.7)
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where matrix Γ (b(t)) is structurally symmetric and positive semidefinite for all
values of b(t). Equation (13.7) can be easily interpreted as the projection of vector
Tid onto the plane orthogonal to the direction of the magnetic field vector b (hence
the name of “projection-based” controllers). Letting now

B(t) = BTΓ (b(t)) (13.8)

and choosing as control variable u(t) = Tid(t), one gets to the final design model

ẋ(t) = Ax(t)+B(t)u(t)+BTTd(t). (13.9)

Different control strategies can be adopted using the fixed structure projection
approach; in this chapter we will focus on state-feedback control, with either
constant or parameter-dependent gain.

Remark 13.1. In view of the digital implementation of the controller, the above-
described geometric view of magnetic control holds only in an approximate sense,
but still represents a good interpretation of the operation of the controller since the
sampling interval for the implementation of this type of controller is normally short
(from 0.1 s to 1 s at most) with respect to the period of the geomagnetic field along
a low Earth orbit (the orbital period of a LEO orbit is typically about 6,000 s).

Note that the advantage of the considered controller structure is that only constant
parameters (i.e., the ones defining Tid as a function of the state vector) have
to be designed, while the time-dependence of the control law is carried by the
(measurable) value of the components of the geomagnetic field b entering (13.6).
In the following section, an overview of possible approaches to the optimal tuning
of this class of attitude controllers will be proposed.

In view of the above, the goal of the design problem considered in this chapter is
to derive state-feedback controllers for the system in (13.9) satisfying (as many as
possible of) the following requirements:

(A.1) Nominal closed-loop stability: as shown above, the local dynamics of a
magnetically controlled spacecraft is time varying, therefore, the stabilization
problem cannot be faced by means of conventional LTI design tools.

(A.2) Nominal closed-loop performance: the spacecraft is subject to external
disturbances, which can be decomposed in a secular (i.e., constant) and a
cyclic (i.e., periodic, with period equal to the orbit period T = 2π

Ω ); the
controller must try and attenuate the effect of such disturbances on the
attitude.

(A.3) Stability and performance robustness: the dynamics of the spacecraft is
subject to a number of sources of uncertainty, the most important of which
are the moments of inertia of the spacecraft and the actual behavior of the
magnetic field (as opposed to the mathematical model used in the design).
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(A.4) Implementation issues: time-varying gains are not easily implemented on
board, as they give rise to a sensitive synchronization problem. Therefore,
we seek either constant-gain controllers or gain-scheduled controllers which
can exploit on board measurements of the magnetic field vector.

13.3 Approaches to Modelling for Magnetic Attitude Control
Design

In Sects. 13.3.1 and 13.3.2, a short overview of modelling approaches based,
respectively, on averaging and on periodic models is presented, while the LPV
approach to the problem is introduced in Sect. 13.3.3 and further developed in
Sect. 13.4.

13.3.1 Averaging-Based Modelling of Magnetically Controlled
Spacecraft

The simplest approach to the design of a magnetic attitude control law in the setting
established in the previous section is based on the idea of averaging to derive an
approximate LTI model from (13.9). From a practical point of view, one can simply
replace Γ (b(t)) in (13.9) with the constant matrix Γ̄ defined as

Γ̄ =
1
T

∫ T

0
Γ (b(t))dt (13.10)

to get

ẋ(t) = Ax(t)+ B̄u(t)+BTTd(t), (13.11)

where B̄ = BTΓ̄ . One can then resort to the methods and tools for state-feedback
design for LTI systems to compute the sought after control law.

Although averaging has been used somewhat heuristically in the attitude control
literature (see [9] and the references therein), the theoretical foundation for this
approach is the following result (reported from [11]), which provides conditions
under which it is possible to approximate a linear time-periodic system with an
averaged one.

Theorem 13.1. Consider the linear time-periodic system

ẋ(t) = εA(t)x(t), (13.12)
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with A(t + T ) = A(t) and ε > 0 and define the averaged system associated to
(13.12) as

ẋ(t) = εĀx(t), (13.13)

where

Ā =
1
T

∫ T

0
A(τ)dτ. (13.14)

Then if Ā is Hurwitz there exists ε� > 0 such that for all 0 < ε < ε� x = 0 is an
exponentially stable equilibrium for (13.12).

It is apparent from the above theorem that using an averaging approach only
low-bandwidth controllers can be obtained, as stability of the feedback system
is preserved only provided that the closed-loop dynamics turn out to be suffi-
ciently slow.

13.3.2 Periodic Modelling of Magnetically Controlled
Spacecraft

A less restrictive design approach consists in adopting as an approximation of
Γ (b(t)) in (13.9) a periodic matrix obtained by either using a simplified periodic
model for b(t) (such as the tilted dipole model, see, e.g., [32]) or by replacing
b(t) with a time-periodic approximation obtained by least-squares fitting either
flight data or simulated data obtained from a high-fidelity geomagnetic field model.
As an example, in Fig. 13.1, the geomagnetic field along an 87◦ inclination,
450 km altitude orbit computed using the IGRF model is compared to its time-
periodic approximation. Γ (b(t)) in (13.9) is then replaced with a time-periodic
approximation ΓP(t), to get the linear time-periodic model

ẋ(t) = Ax(t)+BP(t)u(t)+BTTd(t), (13.15)

where BP(t) = BTΓP(t). The controller design problem can then be faced using the
methods and tools for state-feedback design for linear time-periodic systems. Unfor-
tunately, the classical theory for optimal and robust control of linear time-periodic
systems (see e.g., [5,14,33]) leads to the design of time-periodic controllers, which
turn out to be impractical from the point of view of implementation. In view of
this, a number of recent results (see [21, 38]) aim at the design of constant gain,
periodically optimal controllers, which represent a trade-off between accuracy and
complexity. Simulation results reported in [21] demonstrate that this approach can
lead to significant improvements with respect to the averaging-based one, both in
terms of stability (faster closed-loop dynamics) and performance (smaller steady-
state pointing errors).
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Fig. 13.1 Periodic approximation of the geomagnetic field in Pitch–Roll–Yaw coordinates, 87◦
inclination orbit, 450 km altitude

13.3.3 Parameter-Dependent Modelling of Magnetically
Controlled Spacecraft

An alternative parameter-dependent approach is proposed in this section. At each
time instant, the matrix Γ (b(t)) can be expressed as the sum of its average defined
in (13.10) with the set of perturbed elements

Γ (b(t)) = Γ̄ +ΔΓ (b(t)). (13.16)

The elements of the matrix ΔΓ (b(t))∈R
3×3 can be interpreted as model parameters

ρ and this leads to the LPV formulation

ẋ(t) = Ax(t)+BT(Γ̄ +ΔΓ (ρ))u(t)+BTTd(t). (13.17)

The geomagnetic field b(t) is measured online and Γ̄ is computed offline, so the
model parameters can be computed online and used for gain-scheduling. Moreover,
the matrix Γ (b(t)) is symmetric, Γ̄ is diagonal, so ΔΓ (b(t)) is symmetric and is
completely defined by six parameters only.
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Fig. 13.2 Elements of the matrix ΔΓ (b(t)), 87◦ inclination orbit, 450 km altitude, simulated for
five orbits

Most LPV synthesis techniques require prior knowledge of the parameters
variation range. These values are obtained using the IGRF geomagnetic field model
and simulating for 24 h the motion of a spacecraft along the chosen orbit. As
an example, in Fig. 13.2 the components of ΔΓ ((b(t)) are depicted for an 87◦
inclination, 450 km altitude orbit.

It can be noticed how ΔΓ33 has small variations, so it can be neglected.
Furthermore, at each time instant for polar orbits the diagonal elements of ΔΓ (b(t))
are related by (13.18)

ΔΓ11(b(t))+ΔΓ22(b(t))+ΔΓ33(b(t))≈ 0. (13.18)

Under the above assumptions, the number of parameters required can be reduced
to four and the simplified matrix ΔΓ (ρ) is given by

ΔΓ (ρ(b)) =

⎡

⎢
⎣

ΔΓ11(b) ΔΓ12(b) ΔΓ13(b)

ΔΓ12(b) ΔΓ22(b) ΔΓ23(b)

ΔΓ13(b) ΔΓ23(b) ΔΓ33(b)

⎤

⎥
⎦=

⎡

⎢
⎣

ρ1(b) ρ2(b) ρ3(b)

ρ2(b) −ρ1(b) ρ4(b)

ρ3(b) ρ4(b) 0

⎤

⎥
⎦.

(13.19)
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13.4 LPV Design of Magnetic Attitude Control Laws

13.4.1 Parameter-Dependent State-Feedback Problem for LPV
Systems

Given a compact set P ⊂ R
s, consider the LPV system

⎡

⎢
⎣

ẋ(t)

z1(t)

z2(t)

⎤

⎥
⎦=

⎡

⎢
⎣

A(ρ(t)) Bw(ρ(t)) Bu(ρ(t))
C1x(ρ(t)) 0 0

C2x(ρ(t)) 0 Inz2

⎤

⎥
⎦

⎡

⎢
⎣

x(t)

w(t)

u(t)

⎤

⎥
⎦ , (13.20)

where x ∈ R
n is the state vector, w ∈ R

mw is the exogenous disturbance vector,
u ∈ R

mu is the control signal vector, and z1 ∈ R
nz1 and z2 ∈ R

nz2 are performance
variable vectors. As the system is a linear-parametrically varying one, the matrices
in (13.20) depend on the parameter vector ρ ∈ P . The problem under study is
to determine a parameter-dependent state-feedback control law that stabilizes the
closed-loop system and makes the induced L2 norm from exogenous disturbances
to some performance variables less than a specified performance level γ . The
parameter-dependent state-feedback problem for LPV systems has been studied
extensively in the last few years and a number of publications in the literature
address this problem. In the following, the approach of [36] will be summarized
(see, e.g., [3,6,8,18] for recent applications of this synthesis method), as far as state
feedback is concerned.

The necessary and sufficient conditions for the existence of a parameter-
dependent state-feedback controller have been expressed in the form of LMIs in
[36]. The main result is the following.

Theorem 13.2 ([36]). Given a compact set P ∈ R
s, the performance level γ > 0,

and the LPV system (13.20), the parameter-dependent state-feedback problem is
solvable if and only if there exists a function X ∈ C1(Rs,S n×n) such that for all
ρ ∈ P such that |ρ̇i|< νi, i = 1, . . . ,s, the conditions

X(ρ)> 0
⎡

⎢
⎢
⎣

X(ρ)ÂT(ρ)+ Â(ρ)X(ρ)− ∑s
i=1±

(
νi

∂ X
∂ ρi

)
−Bu(ρ)BT

u (ρ) X(ρ)CT
1x(ρ) γ−1Bw(ρ)

C1x(ρ)X(ρ) −Inz1
0

γ−1BT
w(ρ) 0 −Imw

⎤

⎥
⎥
⎦<0

(13.21)

hold, where

Â(ρ) := A(ρ)−Bu(ρ)C2x(ρ). (13.22)
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If the LMIs (13.21) are feasible, the state-feedback control law

u = F(ρ)x =−[BT
u (ρ)X

−1(ρ)+C2x(ρ)
]

x

guarantees that the closed-loop system is exponentially stable and that the induced
L2 norm from the disturbances w to the performance variables z1 and z2 is less
than γ .

The considered LMI problem is in general an infinite-dimensional one; however,
the problem can be turned into a finite-dimensional one using a finite number of
basis functions for the Lyapunov variable X(ρ). Moreover, if the open-loop system
can be expressed in an affine form, the feasibility of the LMIs (13.21) has to be
checked only at the vertices of the polytope; thus, only 2s+1 + s LMIs have to be
solved simultaneously. However, such parametrization leads to a sufficient condition
for the parameter-dependent γ-performance problem and it leads to conservatism as
the feasibility of the LMIs (13.21) depends on the selected basis functions.

Finally, Theorem 13.2 holds for a given performance index γ > 0. In order to
minimize the induced L2 norm, the following convex optimization problem can be
implemented:

minX(ρ) −α
s.t. (13.21),

(13.23)

where α = 1/γ .

13.4.2 LPV Design of Magnetic Attitude Controllers

Given the satellite attitude dynamics expressed as an LPV system (13.17) and
assuming the value of the geomagnetic field b and of the state vector x are available,
we can design an LPV state-feedback controller.

Since the model is obtained by linearization and many effects, such as, e.g.,
magnetic residual dipoles (see [7]), are not taken into account, the controller should
be able to attenuate the effect of any torque disturbance acting on the attitude
variables q. For this aim, we have chosen w(t) = Td(t), z1(t),z2(t) ∈R

3 and defined
the matrices C1x =C2x = [I3 0].

Moreover, the structure of the basis functions must be fixed a priori to get a
finite dimensional convex design problem. As recommended in [3], the parameter-
dependent Lyapunov function structure has been chosen in accordance to the
parameter dependence of the plant: X(ρ) = X0+ρ1X1 +ρ2X2. Only two parameters
(ρ1 and ρ2) have been used for gain-scheduling, so as to limit the number of
LMIs. The other two parameters ρ3 and ρ4 have lower variability and they have
been considered uncertain. The parameter ranges used for the controller design are
summarized in Table 13.1.

Note that the control input matrix B(ρ) (13.17) depends on the scheduling
parameter vector ρ . Since this type of LPV system does not satisfy the condition
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Table 13.1 Parameter ranges
and variation rates, 87◦
inclination orbit, 450 km
altitude

#ρ ρmin ρmax |ρ̇ |
ρ1 −0.2 0.8 2×10−3

ρ2 −0.5 0.5 1×10−3

ρ3 −0.25 0.25 1×10−3

ρ4 −0.25 0.25 1×10−3

that the control input matrix is parameter independent, it cannot be solved with a
finite number of LMIs [2]. However, this problem can be circumvented by inserting
a first-order input pre-filter. Define a new control input vector ũ ∈ R

3 by

ẋf(t) = Afxf(t)+Bfũ(t),

u(t) = Cfxf(t), (13.24)

where coefficients matrices Af ∈R
3×3, Bf ∈R

3×3, Cf ∈R
3×3 are design parameters.

A first-order filter with Af, Bf, Cf diagonal matrices has been chosen, so it can be
characterized with a single parameter: the cutoff frequency.

From (13.24), defining a new state vector xe =
[
xT xT

f

]T
the augmented system

is given by

ẋe(t) = A(ρ)xe(t)+Buu(t)+Bww(t), (13.25)

where

A(ρ) =

[
A BT(Γ̄ +ΔΓ (ρ))Cf

0 Af

]

, Bu =

[
0

Bf

]

, Bw =

[
BT

0

]

. (13.26)

As the system is affine in the parameter, the feasibility of the above finite-
dimensional problem has to be checked only at the vertices of the polytopes via
Yalmip [12] and SDPT3 [28].

13.5 Simulation Study

In this section, the performance of the considered control law will be illustrated in
a simulation study. The considered spacecraft is of the type described in Sect. 13.2;
the numerical values for the parameters of the linearized model, corresponding to a
typical small satellite platform for a LEO mission, are

• Satellite inertia (kgm2) : I = diag [35 17 25]
• Momentum wheel inertia (kgm2) : J = 0.01
• Nominal wheel speed (rad/s) : Ω̄ =−200

A saturation limit of ±20 Am2 for the dipoles of the magnetic coils has been
assumed. The considered configuration corresponds to a satellite characterized by
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coupled roll/yaw dynamics—marginally stable thanks to the wheel momentum—
and unstable pitch dynamics, due to the unfavourable gravity gradient effect (kz > 0
in (13.2)). Note, however, that the open-loop instability of the pitch dynamics is
compensated by the fact that the pitch axis is easier to control using magnetic
torquers than the roll and yaw axes, as for the considered (polar) orbit the
geomagnetic field lies essentially in the orbital plane, so that the pitch dynamics
is controllable throughout the entire orbit. The spacecraft operates in a near polar
orbit (87◦ inclination) with an altitude of 450 km and a corresponding orbital period
of 5,614.8 s. Matrix Γ (b(t)) for this orbit has been characterized in Sect. 13.4.

13.5.1 Simulation Results

In order to illustrate the time-domain behaviour of the LPV controllers, some
simulation examples are presented, showing the transient following an initial
perturbation of the attitude dynamics with respect to the nominal Earth-pointing
equilibrium. In particular, the following initial perturbations have been applied to

the angular rate vector: δω(0) =
[
1× 10−3 2× 10−3 0

]T
rad/s. While this may

appear to be an extremely small initial condition, it actually represents a significant
perturbation as far as nominal regulation of attitude dynamics is concerned.

The input filter acts as a weight on the control action. Time histories of the norm
of the orientation error

√
δqT

r δqr as well as norm on the magnetic control dipole√
mT m are depicted during the first orbit, i.e., t ∈ [0,T ] and during the following

four orbits, t ∈ [T,5T ] in Figs. 13.3 and 13.4, respectively. Figure 13.3 shows how
the transient related to a non-zero initial condition is slower and less damped, when
decreasing the cutoff frequency of the input filter. On the other hand, increasing
the cutoff frequency increases the required control effort, as well. As for the effects
of external disturbances, see Fig. 13.4, using a faster input filter provides a better
rejection of the disturbance torque but does not require an additional effort in the
control signal. These results are similar to the ones obtained in [38] using a robust
periodic state-feedback approach.

As can be seen from the figure, both controllers damp out the effect of the initial
angular rate perturbation in less than one orbit (an adequate performance for a
magnetic attitude control scheme) and bring the system to its steady-state response
under the effect of the cyclic external disturbance torques.

13.6 Conclusions

The problem of designing attitude controllers for magnetically actuated spacecraft
has been considered. An approach to the tuning of LPV “projection based”
controllers has been proposed, relying on state-feedback control techniques. The
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performance of the proposed control algorithms has been discussed and illustrated
in a detailed simulation study. The considered control design has provided highly
satisfactory performance, and proved the capability to overcome some of the
restrictions posed by existing control design approaches for this problem.
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Chapter 13
Attitude Regulation for Spacecraft
with Magnetic Actuators: An LPV Approach

Andrea Corti and Marco Lovera

Abstract Magnetic torquers are an effective and reliable technology for the attitude
control of small satellites in low Earth orbit. Such actuators operate by generating
a magnetic dipole which interacts with the magnetic field of the Earth. The main
difficulty in the design of attitude control laws based on magnetic torquers is
that the torques they generate are instantaneously constrained to lie in the plane
orthogonal to the local direction of the geomagnetic field vector, which varies
according to the current orbital position of the spacecraft. This implies that the
attitude regulation problem is formulated over a time-varying model. In recent years,
this control problem has been studied extensively, either using methods based on
averaged models or via approaches which exploit the quasi-periodic variability of
the geomagnetic field. With the exception of other approaches based on Model
Predictive Control, none of the above actually exploits at the design stage the
fact that the geomagnetic field can be reliably measured on board and, therefore,
the above mentioned time-variability of the attitude dynamics can be represented
in LPV form. Therefore, in this chapter an LPV approach to the problem of
magnetic attitude control law design is proposed. To this purpose, an LPV model
of the attitude dynamics is first derived, LPV control laws suitable for on board
implementation are synthesized and eventually tested in simulation.

13.1 Introduction

Electromagnetic actuators are a particularly effective and reliable technology for
the attitude control of small satellites. Such actuators operate on the basis of the
interaction between the magnetic field generated by a set of three orthogonal,
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current-driven coils and the magnetic field of the Earth and provide a simple solution
to the problem of generating torques on board of a satellite, both for attitude
control in momentum biased or gravity gradient architectures and as secondary
actuators for momentum management tasks in zero momentum reaction wheel based
configurations (see [25]).

The main difficulty in the design of magnetic attitude control laws is related to
the fact that magnetic torques are instantaneously constrained to lie in the plane
orthogonal to the local direction of the geomagnetic field vector. Controllability of
the attitude dynamics is ensured for a wide range of orbit altitudes and inclinations in
spite of this constraint, thanks to the variability of the geomagnetic field. However,
this implies that the attitude control engineer has to deal with a time-varying model
in the control design process.

In recent years, considerable effort has been devoted to the analysis of this control
problem. In particular, as far as the linear attitude regulation problem is concerned,
two main lines of work can be identified in the literature:

• Methods based on averaged models. The idea is to replace the time-varying
dynamics of the magnetically actuated spacecraft with an approximate
time-invariant model obtained using averaging techniques. The advantage of
this approach is that the control problem becomes time-invariant. The main
drawbacks are that: the designer has to verify a posteriori that the designed con-
troller actually stabilizes the original time-varying dynamics with a satisfactory
performance level; averaging implies limitations in closed-loop performance.
This approach, originally proposed in [27], was further developed in [9] to
deal with the (relatively simple) stabilization problem for the coupled roll/yaw
dynamics of a momentum biased spacecraft using a magnetic torquer aligned
with the pitch axis.

• Methods based on periodic models. As the variability of the geomagnetic field
is almost time-periodic, most of the recent work on the linear magnetic attitude
control problem has focused on the use of optimal and robust periodic control
theory for the design of state and output feedback regulators [13, 14, 19, 20, 26,
30, 34, 35, 37]. While periodic control design methods have the advantage of
guaranteeing closed-loop stability a priori, they lead to the synthesis of time-
periodic regulators, which are difficult to implement and operate in practice.
Therefore, more recent contributions aim at designing constant gain periodically
optimal controllers (see [21, 31, 38]).

With the exception of other approaches based on Model Predictive Control, none
of the above actually exploits at the design stage the fact that the geomagnetic
field can be reliably measured on board and, therefore, the above-mentioned
time-variability of the attitude dynamics can be represented in linear parameter-
varying (LPV) form. Therefore, in this chapter, an LPV approach to the problem
of magnetic attitude control law design is proposed. To this purpose, an LPV
model of the attitude dynamics is first derived, LPV control laws suitable for on
board implementation are synthesized and eventually tested on a realistic spacecraft
simulator. LPV analysis and synthesis methods have been an active area of research
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for almost two decades. Provided that a reliable LPV model for the plant to be
controlled is available (see, e.g., [15] for an overview of the state-of-the-art in LPV
modelling and identification), a number of methods are now available to obtain
both state and output-feedback LPV controllers, see, e.g., [1, 2, 4, 17, 23, 24, 36].
As the corresponding tools reach maturity and allow to deal with problems of
increasing size and complexity, the possibility of achieving a prescribed level
of performance for a parameter-dependent system using a single, parametrically
varying controller can be pursued in practice for a wide range of applications.
In addition, implementation issues, which have proved critical in many cases, are
increasingly well understood (see, e.g., [29] and the references therein) as well as
the effect of noise on the measured scheduling parameters (see [22]).

The chapter is organized as follows. Section 13.2 provides a description of the
spacecraft considered in the study as well as the derivation of a linearized model for
its attitude dynamics. An overview of existing modelling approaches for magnetic
attitude control system design is provided in Sect. 13.3, while Sect. 13.4 is devoted
to the presentation of the proposed LPV technique. Finally, the results obtained in
the simulation of the designed control laws are presented and discussed in Sect. 13.5.

13.2 Mathematical Model and Problem Statement

In order to represent the attitude motion of an Earth-pointing spacecraft on a circular
orbit, the following reference systems are adopted:

• Earth centered inertial reference axes (ECI). The Earth’s center is the origin of
these axes. The positive X-axis points in the vernal equinox direction. The Z-axis
points in the direction of the North Pole. The Y -axis completes the right-handed
orthogonal triad.

• Orbital Axes (X0, Y0, Z0). The origin of these axes is at the satellite center of
mass. The X-axis points to the Earth’s center; the Y -axis points in the direction
of the orbital velocity vector. The Z-axis is normal to the satellite orbit plane.

• Satellite Body Axes. The origin of these axes is at the satellite center of mass; in
nominal Earth-pointing conditions, the Xb (yaw), Yb (roll) and Zb (pitch) axes are
aligned with the corresponding orbital axes.

A spacecraft with inertia matrix I = diag
[
Ixx Iyy Izz

]
is considered, equipped

with a single-momentum wheel aligned with the body z-axis, with moment of
inertia J and angular velocity Ω relative to the body frame. The aim of the attitude
control scheme is to maintain the satellite body axes aligned with the orbital axes,
while exploiting the gyroscopic effect due to the momentum wheel. Note that
the choice of this spacecraft configuration is not particularly restrictive, since by
assuming that Ω = 0 and Ixx � Iyy, Ixx � Izz a gravity-gradient configuration can
be obtained as a particular case. Similarly, the assumptions of a circular orbit
and of a diagonal inertia matrix are made only for ease of presentation, but they
are by no means necessary for the applicability of the proposed design approach.
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Indeed, unlike existing design methods based on averaging (see, e.g., [9]), inertial
coupling between roll/yaw and pitch dynamics can be handled in the design
problem. The angular kinematics and dynamics of the spacecraft are modelled using
as state variables the quaternion q= [q1 qT

R]
T = [q1 q2 q3 q4]

T describing the attitude
of the body axes with respect to the orbital axes and the inertial angular velocity
vector ω = [ωx ωy ωz]

T with respect to the body axes.
In the following, we will present a linearized dynamic model for the formulation

of this control problem. With respect to the selected state variables, the nominal,
Earth-pointing, equilibrium corresponds to the attitude quaternion q̄ = [1 0 0 0]T

and to the angular rate ω̄ = [0 0−Ω0]
T, where Ω0 is the orbital angular rate.

Define the state vector x = [δqT
R δωT]T formed with small displacements of the

vector part qR of the attitude quaternion q from the nominal values q̄R = [0 0 0]T and
small deviations of the body rates from the nominal values ωx =ωy = 0,ωz =−Ω0.

Then the attitude dynamics can be linearized and the local linear dynamics for
the attitude can be defined as [14]

ẋ(t) = Ax(t)+BT [Tm(t)+Td(t)] , (13.1)

where Tm is the magnetic control torque vector, Td is the disturbance torque vector
and

A =

[
A11 A12

A21 A22

]

=

⎡

⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

0 −Ω0 0 0.5 0 0

Ω0 0 0 0 0.5 0

0 0 0 0 0 0.5

0 0 0 0 Wx 0

0 −6kyΩ 2
0 0 Wy 0 0

0 0 +6kzΩ 2
0 0 0 0

⎤

⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

, (13.2)

BT =

⎡

⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

0 0 0

0 0 0

0 0 0

I−1
xx 0 0

0 I−1
yy 0

0 0 I−1
zz

⎤

⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

, (13.3)

and kx =
Iyy−Izz

Ixx
,ky =

Izz−Ixx
Iyy

,kz =
Ixx−Iyy

Izz
, Wx =−kxΩ0+kwxΩ , Wy =−kyΩ0−kwyΩ ,

kwx =
J

Ixx
,kwy =

J
Iyy

. Here, Ω is the nominal wheel speed.



13 Attitude Regulation for Spacecraft with Magnetic Actuators . . . 343

Taking into account that Tm can be written as

Tm(t) = m(t)× b(t) = S(b(t))m(t) =−b(t)×m(t), (13.4)

where b =
[
bx by bz

]T
is the geomagnetic field vector (in body frame), m is the

dipole vector of the magnetic torquers and

S(b) =

⎡

⎢
⎣

0 bz −by

−bz 0 bx

by −bx 0

⎤

⎥
⎦,

(13.1) can be equivalently written as

ẋ(t) = Ax(t)+Bm(t)m(t)+BTTd(t), (13.5)

where Bm(t) = BTS(b(t)). Note that, while A is constant, the control matrix Bm(t)
corresponding to the control input m turns out to be time-varying because of the
dependence on the geomagnetic field vector b(t). Such time variability turns out
to be approximately time-periodic with period equal to the orbital period T =
2π/Ω0. Deviations from exact periodicity are due to Earth rotation and to orbit
perturbations.

As can be seen from (13.2) (and well known in the literature, see, e.g., [10, 25]),
the A matrix shows that the pitch dynamics is decoupled from the roll/yaw dynamics.
Therefore, in the case of a spacecraft equipped with three independent torque
actuators, it would be possible to design separate controllers for the two subsystems.
Unfortunately, as can be seen from the expression of matrix Bm(t) in (13.3), the
use of magnetic actuators introduces a coupling between the roll/yaw and the pitch
subsystems. Similarly, coupling terms appear if the spacecraft inertia matrix I is not
diagonal—a situation which occurs frequently in practice.

A very common structure for magnetic attitude control laws, which goes back to
classical papers such as [16], consists of control laws of the kind

m(t) =
1

‖b(t)‖2 ST(b(t))Tid(t), (13.6)

where b(t) is the measurement, at time t, of the geomagnetic field b and Tid(t)
is an “ideal” control torque to be determined on the basis of a suitable feedback
of state or output variables, according to the specific attitude control architecture
of the considered spacecraft. The above control law can be readily given a
simple geometric interpretation. Indeed, recalling (13.4) we can express the torque
generated by the magnetic coils as

Tm(t) =
1

‖b(t)‖2 S(b(t))ST(b(t))Tid(t) = Γ (b(t))Tid(t), (13.7)
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where matrix Γ (b(t)) is structurally symmetric and positive semidefinite for all
values of b(t). Equation (13.7) can be easily interpreted as the projection of vector
Tid onto the plane orthogonal to the direction of the magnetic field vector b (hence
the name of “projection-based” controllers). Letting now

B(t) = BTΓ (b(t)) (13.8)

and choosing as control variable u(t) = Tid(t), one gets to the final design model

ẋ(t) = Ax(t)+B(t)u(t)+BTTd(t). (13.9)

Different control strategies can be adopted using the fixed structure projection
approach; in this chapter we will focus on state-feedback control, with either
constant or parameter-dependent gain.

Remark 13.1. In view of the digital implementation of the controller, the above-
described geometric view of magnetic control holds only in an approximate sense,
but still represents a good interpretation of the operation of the controller since the
sampling interval for the implementation of this type of controller is normally short
(from 0.1 s to 1 s at most) with respect to the period of the geomagnetic field along
a low Earth orbit (the orbital period of a LEO orbit is typically about 6,000 s).

Note that the advantage of the considered controller structure is that only constant
parameters (i.e., the ones defining Tid as a function of the state vector) have
to be designed, while the time-dependence of the control law is carried by the
(measurable) value of the components of the geomagnetic field b entering (13.6).
In the following section, an overview of possible approaches to the optimal tuning
of this class of attitude controllers will be proposed.

In view of the above, the goal of the design problem considered in this chapter is
to derive state-feedback controllers for the system in (13.9) satisfying (as many as
possible of) the following requirements:

(A.1) Nominal closed-loop stability: as shown above, the local dynamics of a
magnetically controlled spacecraft is time varying, therefore, the stabilization
problem cannot be faced by means of conventional LTI design tools.

(A.2) Nominal closed-loop performance: the spacecraft is subject to external
disturbances, which can be decomposed in a secular (i.e., constant) and a
cyclic (i.e., periodic, with period equal to the orbit period T = 2π

Ω ); the
controller must try and attenuate the effect of such disturbances on the
attitude.

(A.3) Stability and performance robustness: the dynamics of the spacecraft is
subject to a number of sources of uncertainty, the most important of which
are the moments of inertia of the spacecraft and the actual behavior of the
magnetic field (as opposed to the mathematical model used in the design).
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(A.4) Implementation issues: time-varying gains are not easily implemented on
board, as they give rise to a sensitive synchronization problem. Therefore,
we seek either constant-gain controllers or gain-scheduled controllers which
can exploit on board measurements of the magnetic field vector.

13.3 Approaches to Modelling for Magnetic Attitude Control
Design

In Sects. 13.3.1 and 13.3.2, a short overview of modelling approaches based,
respectively, on averaging and on periodic models is presented, while the LPV
approach to the problem is introduced in Sect. 13.3.3 and further developed in
Sect. 13.4.

13.3.1 Averaging-Based Modelling of Magnetically Controlled
Spacecraft

The simplest approach to the design of a magnetic attitude control law in the setting
established in the previous section is based on the idea of averaging to derive an
approximate LTI model from (13.9). From a practical point of view, one can simply
replace Γ (b(t)) in (13.9) with the constant matrix Γ̄ defined as

Γ̄ =
1
T

∫ T

0
Γ (b(t))dt (13.10)

to get

ẋ(t) = Ax(t)+ B̄u(t)+BTTd(t), (13.11)

where B̄ = BTΓ̄ . One can then resort to the methods and tools for state-feedback
design for LTI systems to compute the sought after control law.

Although averaging has been used somewhat heuristically in the attitude control
literature (see [9] and the references therein), the theoretical foundation for this
approach is the following result (reported from [11]), which provides conditions
under which it is possible to approximate a linear time-periodic system with an
averaged one.

Theorem 13.1. Consider the linear time-periodic system

ẋ(t) = εA(t)x(t), (13.12)
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with A(t + T ) = A(t) and ε > 0 and define the averaged system associated to
(13.12) as

ẋ(t) = εĀx(t), (13.13)

where

Ā =
1
T

∫ T

0
A(τ)dτ. (13.14)

Then if Ā is Hurwitz there exists ε� > 0 such that for all 0 < ε < ε� x = 0 is an
exponentially stable equilibrium for (13.12).

It is apparent from the above theorem that using an averaging approach only
low-bandwidth controllers can be obtained, as stability of the feedback system
is preserved only provided that the closed-loop dynamics turn out to be suffi-
ciently slow.

13.3.2 Periodic Modelling of Magnetically Controlled
Spacecraft

A less restrictive design approach consists in adopting as an approximation of
Γ (b(t)) in (13.9) a periodic matrix obtained by either using a simplified periodic
model for b(t) (such as the tilted dipole model, see, e.g., [32]) or by replacing
b(t) with a time-periodic approximation obtained by least-squares fitting either
flight data or simulated data obtained from a high-fidelity geomagnetic field model.
As an example, in Fig. 13.1, the geomagnetic field along an 87◦ inclination,
450 km altitude orbit computed using the IGRF model is compared to its time-
periodic approximation. Γ (b(t)) in (13.9) is then replaced with a time-periodic
approximation ΓP(t), to get the linear time-periodic model

ẋ(t) = Ax(t)+BP(t)u(t)+BTTd(t), (13.15)

where BP(t) = BTΓP(t). The controller design problem can then be faced using the
methods and tools for state-feedback design for linear time-periodic systems. Unfor-
tunately, the classical theory for optimal and robust control of linear time-periodic
systems (see e.g., [5,14,33]) leads to the design of time-periodic controllers, which
turn out to be impractical from the point of view of implementation. In view of
this, a number of recent results (see [21, 38]) aim at the design of constant gain,
periodically optimal controllers, which represent a trade-off between accuracy and
complexity. Simulation results reported in [21] demonstrate that this approach can
lead to significant improvements with respect to the averaging-based one, both in
terms of stability (faster closed-loop dynamics) and performance (smaller steady-
state pointing errors).
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Fig. 13.1 Periodic approximation of the geomagnetic field in Pitch–Roll–Yaw coordinates, 87◦
inclination orbit, 450 km altitude

13.3.3 Parameter-Dependent Modelling of Magnetically
Controlled Spacecraft

An alternative parameter-dependent approach is proposed in this section. At each
time instant, the matrix Γ (b(t)) can be expressed as the sum of its average defined
in (13.10) with the set of perturbed elements

Γ (b(t)) = Γ̄ +ΔΓ (b(t)). (13.16)

The elements of the matrix ΔΓ (b(t))∈R
3×3 can be interpreted as model parameters

ρ and this leads to the LPV formulation

ẋ(t) = Ax(t)+BT(Γ̄ +ΔΓ (ρ))u(t)+BTTd(t). (13.17)

The geomagnetic field b(t) is measured online and Γ̄ is computed offline, so the
model parameters can be computed online and used for gain-scheduling. Moreover,
the matrix Γ (b(t)) is symmetric, Γ̄ is diagonal, so ΔΓ (b(t)) is symmetric and is
completely defined by six parameters only.
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Fig. 13.2 Elements of the matrix ΔΓ (b(t)), 87◦ inclination orbit, 450 km altitude, simulated for
five orbits

Most LPV synthesis techniques require prior knowledge of the parameters
variation range. These values are obtained using the IGRF geomagnetic field model
and simulating for 24 h the motion of a spacecraft along the chosen orbit. As
an example, in Fig. 13.2 the components of ΔΓ ((b(t)) are depicted for an 87◦
inclination, 450 km altitude orbit.

It can be noticed how ΔΓ33 has small variations, so it can be neglected.
Furthermore, at each time instant for polar orbits the diagonal elements of ΔΓ (b(t))
are related by (13.18)

ΔΓ11(b(t))+ΔΓ22(b(t))+ΔΓ33(b(t))≈ 0. (13.18)

Under the above assumptions, the number of parameters required can be reduced
to four and the simplified matrix ΔΓ (ρ) is given by

ΔΓ (ρ(b)) =

⎡

⎢
⎣

ΔΓ11(b) ΔΓ12(b) ΔΓ13(b)

ΔΓ12(b) ΔΓ22(b) ΔΓ23(b)

ΔΓ13(b) ΔΓ23(b) ΔΓ33(b)

⎤

⎥
⎦=

⎡

⎢
⎣

ρ1(b) ρ2(b) ρ3(b)

ρ2(b) −ρ1(b) ρ4(b)

ρ3(b) ρ4(b) 0

⎤

⎥
⎦.

(13.19)
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13.4 LPV Design of Magnetic Attitude Control Laws

13.4.1 Parameter-Dependent State-Feedback Problem for LPV
Systems

Given a compact set P ⊂ R
s, consider the LPV system

⎡

⎢
⎣

ẋ(t)

z1(t)

z2(t)

⎤

⎥
⎦=

⎡

⎢
⎣

A(ρ(t)) Bw(ρ(t)) Bu(ρ(t))
C1x(ρ(t)) 0 0

C2x(ρ(t)) 0 Inz2

⎤

⎥
⎦

⎡

⎢
⎣

x(t)

w(t)

u(t)

⎤

⎥
⎦ , (13.20)

where x ∈ R
n is the state vector, w ∈ R

mw is the exogenous disturbance vector,
u ∈ R

mu is the control signal vector, and z1 ∈ R
nz1 and z2 ∈ R

nz2 are performance
variable vectors. As the system is a linear-parametrically varying one, the matrices
in (13.20) depend on the parameter vector ρ ∈ P . The problem under study is
to determine a parameter-dependent state-feedback control law that stabilizes the
closed-loop system and makes the induced L2 norm from exogenous disturbances
to some performance variables less than a specified performance level γ . The
parameter-dependent state-feedback problem for LPV systems has been studied
extensively in the last few years and a number of publications in the literature
address this problem. In the following, the approach of [36] will be summarized
(see, e.g., [3,6,8,18] for recent applications of this synthesis method), as far as state
feedback is concerned.

The necessary and sufficient conditions for the existence of a parameter-
dependent state-feedback controller have been expressed in the form of LMIs in
[36]. The main result is the following.

Theorem 13.2 ([36]). Given a compact set P ∈ R
s, the performance level γ > 0,

and the LPV system (13.20), the parameter-dependent state-feedback problem is
solvable if and only if there exists a function X ∈ C1(Rs,S n×n) such that for all
ρ ∈ P such that |ρ̇i|< νi, i = 1, . . . ,s, the conditions

X(ρ)> 0
⎡

⎢
⎢
⎣

X(ρ)ÂT(ρ)+ Â(ρ)X(ρ)− ∑s
i=1±

(
νi

∂ X
∂ ρi

)
−Bu(ρ)BT

u (ρ) X(ρ)CT
1x(ρ) γ−1Bw(ρ)

C1x(ρ)X(ρ) −Inz1
0

γ−1BT
w(ρ) 0 −Imw

⎤

⎥
⎥
⎦<0

(13.21)

hold, where

Â(ρ) := A(ρ)−Bu(ρ)C2x(ρ). (13.22)
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If the LMIs (13.21) are feasible, the state-feedback control law

u = F(ρ)x =−[BT
u (ρ)X

−1(ρ)+C2x(ρ)
]

x

guarantees that the closed-loop system is exponentially stable and that the induced
L2 norm from the disturbances w to the performance variables z1 and z2 is less
than γ .

The considered LMI problem is in general an infinite-dimensional one; however,
the problem can be turned into a finite-dimensional one using a finite number of
basis functions for the Lyapunov variable X(ρ). Moreover, if the open-loop system
can be expressed in an affine form, the feasibility of the LMIs (13.21) has to be
checked only at the vertices of the polytope; thus, only 2s+1 + s LMIs have to be
solved simultaneously. However, such parametrization leads to a sufficient condition
for the parameter-dependent γ-performance problem and it leads to conservatism as
the feasibility of the LMIs (13.21) depends on the selected basis functions.

Finally, Theorem 13.2 holds for a given performance index γ > 0. In order to
minimize the induced L2 norm, the following convex optimization problem can be
implemented:

minX(ρ) −α
s.t. (13.21),

(13.23)

where α = 1/γ .

13.4.2 LPV Design of Magnetic Attitude Controllers

Given the satellite attitude dynamics expressed as an LPV system (13.17) and
assuming the value of the geomagnetic field b and of the state vector x are available,
we can design an LPV state-feedback controller.

Since the model is obtained by linearization and many effects, such as, e.g.,
magnetic residual dipoles (see [7]), are not taken into account, the controller should
be able to attenuate the effect of any torque disturbance acting on the attitude
variables q. For this aim, we have chosen w(t) = Td(t), z1(t),z2(t) ∈R

3 and defined
the matrices C1x =C2x = [I3 0].

Moreover, the structure of the basis functions must be fixed a priori to get a
finite dimensional convex design problem. As recommended in [3], the parameter-
dependent Lyapunov function structure has been chosen in accordance to the
parameter dependence of the plant: X(ρ) = X0+ρ1X1 +ρ2X2. Only two parameters
(ρ1 and ρ2) have been used for gain-scheduling, so as to limit the number of
LMIs. The other two parameters ρ3 and ρ4 have lower variability and they have
been considered uncertain. The parameter ranges used for the controller design are
summarized in Table 13.1.

Note that the control input matrix B(ρ) (13.17) depends on the scheduling
parameter vector ρ . Since this type of LPV system does not satisfy the condition
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Table 13.1 Parameter ranges
and variation rates, 87◦
inclination orbit, 450 km
altitude

#ρ ρmin ρmax |ρ̇ |
ρ1 −0.2 0.8 2×10−3

ρ2 −0.5 0.5 1×10−3

ρ3 −0.25 0.25 1×10−3

ρ4 −0.25 0.25 1×10−3

that the control input matrix is parameter independent, it cannot be solved with a
finite number of LMIs [2]. However, this problem can be circumvented by inserting
a first-order input pre-filter. Define a new control input vector ũ ∈ R

3 by

ẋf(t) = Afxf(t)+Bfũ(t),

u(t) = Cfxf(t), (13.24)

where coefficients matrices Af ∈R
3×3, Bf ∈R

3×3, Cf ∈R
3×3 are design parameters.

A first-order filter with Af, Bf, Cf diagonal matrices has been chosen, so it can be
characterized with a single parameter: the cutoff frequency.

From (13.24), defining a new state vector xe =
[
xT xT

f

]T
the augmented system

is given by

ẋe(t) = A(ρ)xe(t)+Buu(t)+Bww(t), (13.25)

where

A(ρ) =

[
A BT(Γ̄ +ΔΓ (ρ))Cf

0 Af

]

, Bu =

[
0

Bf

]

, Bw =

[
BT

0

]

. (13.26)

As the system is affine in the parameter, the feasibility of the above finite-
dimensional problem has to be checked only at the vertices of the polytopes via
Yalmip [12] and SDPT3 [28].

13.5 Simulation Study

In this section, the performance of the considered control law will be illustrated in
a simulation study. The considered spacecraft is of the type described in Sect. 13.2;
the numerical values for the parameters of the linearized model, corresponding to a
typical small satellite platform for a LEO mission, are

• Satellite inertia (kgm2) : I = diag [35 17 25]
• Momentum wheel inertia (kgm2) : J = 0.01
• Nominal wheel speed (rad/s) : Ω̄ =−200

A saturation limit of ±20 Am2 for the dipoles of the magnetic coils has been
assumed. The considered configuration corresponds to a satellite characterized by
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coupled roll/yaw dynamics—marginally stable thanks to the wheel momentum—
and unstable pitch dynamics, due to the unfavourable gravity gradient effect (kz > 0
in (13.2)). Note, however, that the open-loop instability of the pitch dynamics is
compensated by the fact that the pitch axis is easier to control using magnetic
torquers than the roll and yaw axes, as for the considered (polar) orbit the
geomagnetic field lies essentially in the orbital plane, so that the pitch dynamics
is controllable throughout the entire orbit. The spacecraft operates in a near polar
orbit (87◦ inclination) with an altitude of 450 km and a corresponding orbital period
of 5,614.8 s. Matrix Γ (b(t)) for this orbit has been characterized in Sect. 13.4.

13.5.1 Simulation Results

In order to illustrate the time-domain behaviour of the LPV controllers, some
simulation examples are presented, showing the transient following an initial
perturbation of the attitude dynamics with respect to the nominal Earth-pointing
equilibrium. In particular, the following initial perturbations have been applied to

the angular rate vector: δω(0) =
[
1× 10−3 2× 10−3 0

]T
rad/s. While this may

appear to be an extremely small initial condition, it actually represents a significant
perturbation as far as nominal regulation of attitude dynamics is concerned.

The input filter acts as a weight on the control action. Time histories of the norm
of the orientation error

√
δqT

r δqr as well as norm on the magnetic control dipole√
mT m are depicted during the first orbit, i.e., t ∈ [0,T ] and during the following

four orbits, t ∈ [T,5T ] in Figs. 13.3 and 13.4, respectively. Figure 13.3 shows how
the transient related to a non-zero initial condition is slower and less damped, when
decreasing the cutoff frequency of the input filter. On the other hand, increasing
the cutoff frequency increases the required control effort, as well. As for the effects
of external disturbances, see Fig. 13.4, using a faster input filter provides a better
rejection of the disturbance torque but does not require an additional effort in the
control signal. These results are similar to the ones obtained in [38] using a robust
periodic state-feedback approach.

As can be seen from the figure, both controllers damp out the effect of the initial
angular rate perturbation in less than one orbit (an adequate performance for a
magnetic attitude control scheme) and bring the system to its steady-state response
under the effect of the cyclic external disturbance torques.

13.6 Conclusions

The problem of designing attitude controllers for magnetically actuated spacecraft
has been considered. An approach to the tuning of LPV “projection based”
controllers has been proposed, relying on state-feedback control techniques. The
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performance of the proposed control algorithms has been discussed and illustrated
in a detailed simulation study. The considered control design has provided highly
satisfactory performance, and proved the capability to overcome some of the
restrictions posed by existing control design approaches for this problem.

References

1. Apkarian P, Gahinet P (1995) A convex characterization of gain-scheduled H∞ controllers.
IEEE Trans Automat Contr 40(5):853–864

2. Apkarian P, Gahinet P, Becker G (1995) Self-scheduled H∞ control of linear parameter varying
systems: a design example. Automatica 31(9):1251–1261

3. Balas G (2002) Linear, parameter-varying control and its application to a turbofan engine. Int
J Robust Nonlinear Contr 12(9):763–796

4. Biannic JM, Apkarian P (1995) Self-scheduled H∞ control of missile via linear matrix
inequalities. J Guid Contr Dyn 18(3):532–538

5. Bittanti S, Colaneri P (2008) Periodic systems: Filtering and control. Springer, London
6. Chen J, Gu W, Postlethwhite I, Natesan K (2008) Robust LPV control of UAV with parameter

dependent performance. In: Proceedings of the 17th IFAC world congress, Seoul, South Korea,
pp 1838–1843

7. Corno M, Lovera M (2009) Spacecraft attitude dynamics and control in the presence of large
magnetic residuals. Control Eng Pract 17(4):456–468

8. Corno M, Savaresi S, Balas G (2009) On linear parameter varying (LPV) slip-controller design
for two-wheeled vehicles. Int J Robust Nonlinear Contr 19(12):1313–1336

9. Hablani H (1995) Comparative stability analysis and performance of magnetic controllers for
bias momentum satellites. J Guid Contr Dyn 18(6):1313–1320

10. Hughes P (1986) Spacecraft attitude dynamics. Wiley, New York
11. Khalil H (1992) Nonlinear systems. Macmillan, New York
12. Lofberg J (2004) Yalmip: A toolbox for modeling and optimization in matlab. In: 2004 IEEE

international symposium on computer aided control systems design, pp 284–289
13. Lovera M (2001) Optimal magnetic momentum control for inertially pointing spacecraft. Eur

J Contr 7(1):30–39
14. Lovera M, De Marchi E, Bittanti S (2002) Periodic attitude control techniques for small

satellites with magnetic actuators. IEEE Trans Contr Syst Technol 10(1):90–95
15. Lovera M, Novara C, Dos Santos PL, Rivera D (2011) Guest editorial special issue on applied

LPV modeling and identification. IEEE Trans Contr Syst Technol 19(1):1–4
16. Martel F, Pal P, Psiaki M (1988) Active magnetic control system for gravity gradient stabilised

spacecraft. In: 2nd annual AIAA/USU conference on small satellites, Logan (Utah), USA,
1988

17. Packard A (1994) Gain scheduling via linear fractional transformations. Syst Contr Lett
22:79–92

18. Pfifer H, Hecker S (2010) LPV controller synthesis for a generic missile model. In: Proceedings
of the 4th IEEE multi-conference on systems and control, Yokohama, Japan, pp 1838–1843

19. Pittelkau M (1993) Optimal periodic control for spacecraft pointing and attitude determination.
J Guid Contr Dyn 16(6):1078–1084

20. Psiaki M (2001) Magnetic torquer attitude control via asymptotic periodic linear quadratic
regulation. J Guid Contr Dyn 24(2):386–394

21. Pulecchi T, Lovera M, Varga A (2010) Optimal discrete-time design of three-axis magnetic
attitude control laws. IEEE Trans Contr Syst Technol 18(3):714–722



13 Attitude Regulation for Spacecraft with Magnetic Actuators . . . 355

22. Sato M, Ebihara Y, Peaucelle D (2010) Gain-scheduled state-feedback controllers using
inexactly measured scheduling parameters: H2 and H∞ problems. In: Proceedings of the 2010
American control conference, Baltimore, USA

23. Scherer C (1996) Mixed h2/h∞ control for time-varying and linear parametrically-varying
systems. Int J Robust Nonlinear Contr 6(9–10):929–952

24. Scherer C (2001) LPV control and full block multipliers. Automatica 37(3):361–375
25. Sidi M (1997) Spacecraft dynamics and control. Cambridge University Press, Cambridge
26. Silani E, Lovera M (2005) Magnetic spacecraft attitude control: a survey and some new results.

Contr Eng Pract 13(3):357–371
27. Stickler A, Alfriend K (1976) An elementary magnetic attitude control system. J Spacecr

Rockets 13(5):282–287
28. Toh K, Todd M, Tutuncu R (1999) Sdpt3-a matlab software package for semidefinite

programming. Optim Methods Softw 11(12):545–581
29. Toth R, Lovera M, Heuberger P, van den Hof P (2009) Discretization of linear fractional

representations of LPV systems. In: Proceedings of the 48th IEEE conference on decision
and control, Shanghai, China

30. Varga A, Pieters S (1998) Gradient-based approach to solve optimal periodic output feedback
control problems. Automatica 34(4):477–481

31. Vigano L, Bergamasco M, Lovera M, Varga A (2010) Optimal periodic output feedback
control: a continuous-time approach and a case study. Int J Contr 83(5):897–914

32. Wertz J (1978) Spacecraft attitude determination and control. D. Reidel Publishing Company,
Dordrecht

33. Wisniewski R (2000) Linear time-varying approach to satellite attitude control using only
electromagnetic actuation. J Guid Contr Dyn 23(4):640–646

34. Wisniewski R, Markley L (1999) Optimal magnetic attitude control. In: 14th IFAC world
congress, Beijing, China

35. Wood M, Chen WH, Fertin D (2006) Model predictive control of low earth orbiting spacecraft
with magneto-torquers. In: IEEE international conference on control applications, Munich,
Germany

36. Wu F (1995) Control of linear parameter varying systems. PhD thesis, University of California,
Berkeley, USA

37. Yan H, Ross IM, Alfriend KT (2007) Pseudospectral feedback control for three-axis magnetic
attitude stabilization in elliptic orbits. J Guid Contr Dyn 30(4):1107–1115

38. Zanchettin A, Lovera M (2011) H∞ attitude control of magnetically actuated satellites. In: IFAC
world congress, Milano, Italy



Chapter 14
Modeling and Control of LPV Systems:
A Vibroacoustic Application

Jan De Caigny, Juan F. Camino, Ricardo C.L.F. Oliveira, Pedro L.D. Peres,
and Jan Swevers

Abstract This chapter presents recent advances in both modeling and control of
linear parameter-varying (LPV) systems. The proposed modeling technique follows
the state-space model interpolation of local estimates (SMILE) approach which is
based on the interpolation of a set of linear time invariant (LTI) models that are
estimated for different fixed operating conditions and yields a state-space LPV
model with a polytopic dependency on the scheduling parameter. The proposed
control design technique considers a priori known bounds on the rate of parameter
variation and can be used to compute stabilizing gain-scheduled state feedback
as well as dynamic output feedback controllers for discrete-time LPV systems
through linear matrix inequalities (LMIs). As extensions, H∞, H2, and suboptimal
multiobjective control design problems can be conveniently solved. The presented
techniques are applied to a vibroacoustic setup whose dynamics is highly sensitive
to variations of the temperature. The numerical results show the advantages and
versatility of the proposed approaches on a realistic engineering problem.
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14.1 Introduction

For many practical systems (such as wafer steppers, compressors, etc.), the
assumption that the dynamics is linear and time invariant does not hold true.
Indeed, many systems exhibit dynamic behavior that depends on one or more time-
varying scheduling parameters. To increase the performance of these systems, it is
necessary to take the parameter-dependency of the dynamics into account in the
control design. In this context, the linear parameter-varying (LPV) modeling and
control framework has been one of the most fruitful strategies of the last decades.

This chapter presents some recent advances in both modeling and control of
LPV systems and applies them to a temperature-dependent vibroacoustic system.
The chapter is divided into three main parts. Section 14.2 introduces the state-
space model interpolation of local estimates (SMILE), an LPV modeling technique
that can be used to compute a polytopic LPV state-space model based on a set
of local linear time-invariant (LTI) state-space models that were estimated for fixed
operating conditions. Section 14.3 presents synthesis conditions for stabilizing gain-
scheduled state feedback and dynamic output feedback controllers for polytopic
LPV systems. These design techniques can consider a priori known bounds on the
rate of the parameter variation to reduce the conservatism associated with traditional
control techniques (based on quadratic stability) that allow only arbitrarily fast
parameter variation. Afterwards, in Sect. 14.4, the proposed modeling and control
techniques are applied to a vibroacoustic system whose dynamics depends strongly
on the ambient temperature. It is interesting to note that Sects. 14.2 and 14.3 are
stand-alone parts in the sense that they can be read independently from each other.
This is also reflected in the application section which has a distinct subsection for
modeling (Sect. 14.4.1) and one for control (Sect. 14.4.2). Section 14.5 concludes
the chapter with some final thoughts.

14.1.1 Notation and Terminology

The set of real numbers is denoted by R and the set of natural (nonnegative integer)
numbers by N. A prime ′ is used to indicate the transpose. The space of square-
summable sequences on N is given by �n

2 � { f : N→R
n | ∑∞

k=0 f (k)′ f (k)< ∞} and
the corresponding 2-norm is defined as ‖x(k)‖2

2 =∑∞
k=0 x(k)′x(k). The trace operator

is denoted by Tr{·}. The floor function is indicated as �·� and maps a real number
to the largest previous integer. Identity matrices (resp. zero matrices) are denoted
as I (resp. 0) in case the size is clear from the context. The convex hull of a set
X is denoted by co{X}. The unit-simplex ΛN of dimension N ∈ N, with N ≥ 2, is
given by ΛN = {ξ = (ξ1,ξ2, . . . ,ξN) ∈R

N | ∑N
j=1 ξ j = 1, ξ j ≥ 0, j = 1, . . . ,N}. The

symbol � represents a symmetric block in a linear matrix inequality (LMI).
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To simplify the exposition of Sect. 14.2, the following short notation is used for
state-space models

H =

[
A B
C D

]
=

{
δ [x] = Ax+Bu

y =Cx+Du
,

where the operator δ [·] denotes the time derivative for a continuous-time model
and the forward time shift for a discrete-time model. For SISO state-space models,
the operation ∏ should be interpreted as the state-space series connection, obtained
using the output of the first model as the input of the second model, such that

2

∏
i=1

[
Ai Bi

Ci Di

]
=

⎡

⎣
A1 0 B1

B2C1 A2 B2D1

D2C1 C2 D2D1

⎤

⎦ .

To distinguish between LPV models and LTI models, the following notation is used:
LPV models, their system matrices, and elements are denoted using standard font,
e.g., Ak, whereas LTI models, their system matrices, and elements are denoted using
San Serif font, e.g., A�. The subscript � indicates the index of the local LTI model.

14.2 Interpolation-Based Modeling of LPV Systems

This section presents the proposed SMILE modeling technique to obtain state-space
LPV models for multiple-input multiple-output (MIMO) systems. The technique
is based on the interpolation of LTI models that are estimated for fixed operating
conditions of the system, that is, for constant values of the scheduling parameters.
As the local LTI models can be either continuous- or discrete-time, both continuous-
and discrete-time LPV models can be obtained. The interpolation technique is
formulated as a linear least-squares problem that can be efficiently solved. The
obtained LPV models are numerically well conditioned and, therefore, suitable for
Lyapunov-based state-space LPV control synthesis.

14.2.1 Problem Statement

The following polytopic state-space representation is chosen for the interpolating
LPV model

H(α) =

[
A(α) B(α)

C(α) D(α)

]
=

N

∑
i=1

αi

[
Ai Bi

Ci Di

]
∈
[
R

nx×nx R
nx×nu

R
ny×nx R

ny×nu

]
, (14.1)
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where the time-varying scheduling parameter α takes values in the unit-simplex ΛN

of dimension N ∈N. Using (14.1), the aim is to interpolate the m local minimal LTI
models

H̃� =

[
Ã� B̃�

C̃� D̃�

]
∈
[
R

nx×nx R
nx×nu

R
ny×nx R

ny×nu

]
, for �= 1, . . . ,m, (14.2)

identified at distinct operating conditions of the scheduling parameter α . Thus,
during the identification of the local LTI model H̃�, the scheduling parameter α
is fixed at a constant value, denoted by α̃�.

As the state-space representation is not unique, the local models (14.2) cannot be
readily interpolated since it is not guaranteed that they are represented with respect
to a consistent state-space basis. Therefore, a similarity transformation matrix T�

needs to be calculated for each local model H̃� such that the transformed models

H� =

[
A� B�

C� D�

]
=

[
T−1
� Ã�T� T

−1
� B̃�

C̃�T� D̃�

]
�= 1, . . . ,m (14.3)

are represented in a consistent state-space form. Once the consistent local models
(14.3) have been calculated, an optimization problem can be formulated and solved
to find the optimal interpolating LPV model (14.1). The following section explains
the modeling approach in more detail.

14.2.2 State-Space Model Interpolation of Local Estimates

First, four steps need to be followed to ensure that all local LTI models are repre-
sented in a consistent state-space form. Afterwards, in a final step, an optimization
problem is solved to obtain the interpolating LPV model. These five steps are now
briefly presented (see [2, 4] for more details).

Step 1: Choice of one IO combination: The first step consists of choosing one Input–
Output (IO) combination (i, j) to select the m local SISO LTI models

H̃�,(i,j) =

[
Ã� B̃�,(:,j)

C̃�,(i,:) D̃�,(i,j)

]

, for �= 1, . . . ,m. (14.4)

The choice of the IO combination is restricted due to the fact that all selected SISO
models H̃�,(i,j) need to have the same number of zeros (denoted as z�,(i,j)), which
is necessary for the correct sorting of the zeros in Step 2. A useful heuristic in
choosing the IO combination is to calculate the zeros z�,(i,j) for all IO combinations
and to select the combination whose zeros are the easiest to sort in Step 2.

Step 2: Calculating and sorting poles and zeros: In Step 2, the poles p� and zeros
z�,(i,j) of the m local SISO models H̃�,(i,j) are calculated and sorted. The sorting is
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necessary to assure that for all original SISO models H̃�,(i,j), the poles p� and the
zeros z�,(i,j) are arranged in the same order. This consistent order will be used to

transform the original SISO models H̃�,(i,j) to the consistent SISO models H�,(i,j).

Step 3: Constructing consistent SISO models: In Step 3, the original local SISO
models H̃�,(i,j) are transformed to a new consistent state-space form by representing
them as a gain K�,(i,j) multiplied with the state-space series connection of τ1

first-order and τ2 second-order state-space submodels. This new representation is
denoted by

H�,(i,j) = K�,(i,j)

τ1+τ2

∏
τ=1

Hτ
�,(i,j), with Hτ

�,(i,j) =

[
Aτ
� Bτ

�

Cτ
� Dτ

�

]
, (14.5)

where the subscript τ indicates the index of the submodel for τ = 1, . . . ,τ1 + τ2 and
where τ1 ∈ N is the number of first-order submodels associated with a single real
pole and τ2 ∈ N is the number of second-order submodels associated with a pair of
complex conjugate poles or with two real poles. All local SISO models are chosen
to have the same number τ1 and the same number τ2, determined as follows: τ2 =
�nx/2� and τ1 = nx−2τ2. Since the poles p� and zeros z�,(i,j) of all local SISO models
have been sorted in Step 2, they can be assigned to the τ1+τ2 local submodelsHτ

�,(i,j)

in a consistent way. The pole (or a zero) assigned to submodel τ of the local SISO
model � is denoted by pτ

� (or by zτ
�,(i,j)). To assure that the local submodels Hτ

�,(i,j) are
consistent, they are represented in the observable form. For example, a submodel
with two poles pτ

�,1, pτ
�,2 and two zeros zτ

�,(i,j),1, zτ
�,(i,j),2 is represented by

Hτ
�,(i,j) =

⎡

⎢
⎣

0 aτ
�,1 bτ

�,1

1 aτ
�,2 bτ

�,2

0 1 1

⎤

⎥
⎦ where

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

aτ
�,1 =−pτ

�,1p
τ
�,2,

bτ
�,1 = zτ

�,(i,j),1z
τ
�,(i,j),2−pτ

�,1p
τ
�,2,

aτ
�,2 = pτ

�,1+pτ
�,2,

bτ
�,2 =−(zτ

�,(i,j),1+ zτ
�,(i,j),2)+ (pτ

�,1+pτ
�,2).

Once the local SISO models, H̃�,(i,j) are split into local submodels, the consistent
SISO models H�,(i,j) can be obtained by explicitly calculating the state-space series
connection described in (14.5).

Step 4: Calculating the similarity transformations: After the first three steps have
been performed, two sets of SISO models are available: the original SISO models
H̃�,(i,j), selected in Step 1, and the consistent SISO models H�,(i,j), calculated in
Step 3. In Step 4, the unique similarity transformation matrix T� that transforms
the original SISO model H̃�,(i,j) in the consistent SISO model H�,(i,j) is computed for
each �. These matrices T� are found by solving

A� = T−1
� Ã�T�, B�,(:,j) = T−1

� B̃�,(:,j) and C�,(i,:) = C̃�,(i,:)T�, for �= 1, . . . ,m.

(14.6)
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The conditions for the existence of a unique solution for (14.6) can be found in [5].
Once the matrices T� are computed, they are applied to the original local MIMO
models H̃� to obtain the consistent local MIMO models H�, given by (14.3).

Step 5: Interpolation and optimization: In the final step, the consistent local MIMO
models are interpolated by solving an optimization problem to find the unknown
parameters Ai, Bi, Ci, and Di, for i= 1, . . . ,N, of the interpolating LPV model (14.1).
The following cost function is chosen:

E=
m

∑
�=1

∥
∥
∥
∥∥

N

∑
i=1

α̃�,i

[
Ai Bi

Ci Di

]
−
[
A� B�

C� D�

]∥∥
∥
∥∥

2

F

, (14.7)

where ‖ � ‖F represents the Frobenius norm. This cost function can be rewritten
as a standard unconstrained linear least-squares optimization problem that can be
efficiently solved.

In Sect. 14.4.1, the potential of the SMILE technique is demonstrated through a
numerical example based on experimental data obtained from a vibroacoustic setup
whose dynamics show a strong dependency on the ambient temperature.

Remark: In this section, a polytopic parametrization was chosen for the interpolating
LPV model (14.1). However, by selecting a set of N base functions fi(α), for i =
1, . . . ,N, a more general parametrization is obtained

H(α) =
N

∑
i=1

fi(α)

[
Ai Bi

Ci Di

]
,

while the cost function (14.7) still gives rise to a linear least-squares problem. One
interesting choice for the base functions fi(α) is to use homogeneous polynomials
(as proposed in [5]). Homogeneous polynomial models offer more flexibility for the
interpolation of the local LTI models, while they retain some of the useful properties
of polytopic models for LPV control design techniques based on LMIs (see [4,10]).

14.3 Gain-Scheduled Feedback Control

This section provides stabilizing gain-scheduled control design techniques for the
following discrete-time polytopic LPV system:

H =

⎧
⎪⎪⎨

⎪⎪⎩

x(k+ 1) = A(α(k))x(k) + Bw(α(k))w(k) + Bu(α(k))u(k),

z(k) =Cz(α(k))x(k) + Dzw(α(k))w(k) + Dzu(α(k))u(k),

y(k) =Cy(α(k))x(k) + Dyw(α(k))w(k),

(14.8)
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where x(k) ∈ R
nx is the state, w(k) ∈ R

nw the exogenous disturbance input, z(k) ∈
R

nz the performance output, y(k) ∈ R
ny the measured output, and u(k) ∈ R

nu

the control input. The system matrices have appropriate dimensions and admit a
polytopic parameter-dependency on the scheduling parameter α(k) ∈ ΛN that is a
priori unknown, but can be measured in real time.

Finite sets of LMI conditions for the design of both state feedback controllers
(Sect. 14.3.2) and full-order dynamic-output feedback controllers (Sect. 14.3.3)
are presented. While only the LMI conditions for stabilizing control design are
presented, the proposed technique is generic and can be used to design H2, H∞,
and multi-objective controllers. Section 14.3.4 briefly introduces these possible
extensions. First, however, Sect. 14.3.1 presents a technique to model the uncertainty
domain where the scheduling parameter and its rate of variation can assume values.
This modeling will allow bounds on the rate of variation to be considered in the
control designs.

14.3.1 Modeling the Uncertainty Domain

In this section, a modeling technique is presented for the uncertainty domain where
the vector1 (α,Δα) ∈ R

2N , consisting of the scheduling parameter and its rate of
variation, assumes values. This modeling was previously introduced in [11] and [3].

14.3.1.1 Rate of Parameter Variation and the Bound b

The rate of variation of the parameter αi, for i = 1, . . . ,N, is defined as the change
of αi in one discrete time instant:

Δαi(k) = αi(k+ 1)−αi(k). (14.9)

Due to this definition and the fact that αi(k) ∈ ΛN , it is clear that

N

∑
i=1

Δαi(k) =
N

∑
i=1

αi(k+ 1)−
N

∑
i=1

αi(k) = 1− 1 = 0. (14.10)

It is assumed that the rate of variation of each parameter αi is limited by an a priori
known bound b ∈R such that

− b ≤ Δαi(k)≤ b, for k ≥ 0 (14.11)

1In the modeling of the uncertainty domain, α ∈ R
N and Δα ∈ R

N represent column vectors, that
is, α ∈R

N×1 and Δα ∈R
N×1. Likewise, (α ,Δα) is a column vector (α ,Δα)∈R

2N×1. For reasons
of compactness, this is not explicitly mentioned throughout the remainder of the text.
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with b ∈ [0,1]. Three distinct situations can be considered for the bound b. In case
b = 0, the parameter α is time invariant. If b = 1, α can change in one time instant
from any given value inside the unit-simplex to any other value and consequently,
α is an arbitrarily fast time-varying parameter. Finally, if 0 < b < 1, the variation
of αi is limited such that α cannot change from any given value to any other value.
Hence, α is a bounded time-varying parameter.

14.3.1.2 Modeling of the Uncertainty Domain

Given the bound b ∈ R on the rate of variation Δα , the uncertainty domain where
the vector (α,Δα) ∈ R

2N assumes values can be modeled by the compact set

Γb,N =

{

ϕ ∈ R
2N : ϕ ∈ co

{
v1, . . . ,vM}, v j =

[
f j

h j

]
, f j ∈R

N , h j ∈ R
N,

N

∑
i=1

f j
i = 1 with f j

i ≥ 0, i = 1, . . . ,N,
N

∑
i=1

h j
i = 0, j = 1, . . . ,M

}

,

(14.12)

defined as the convex combination of the M ∈N vectors v j, for j = 1, . . . ,M, which
can be constructed using the bound b. Since (α,Δα) ∈ Γb,N , it is clear that using
γ ∈ΛM , the vector (α,Δα) can be represented as the following convex combination:

(α,Δα) =
M

∑
j=1

v jγ j, that is, α =
M

∑
j=1

f jγ j, and Δα =
M

∑
j=1

h jγ j. (14.13)

Note that the definition of Γb,N ensures that α ∈ΛN and that (14.10) is satisfied. The
vectors v j ∈ Γb,N , for j = 1, . . . ,M, can be constructed in a systematic way for a
given b by searching for all possible solutions of the equalities

N

∑
i=1

αi = 1 and
N

∑
i=1

Δαi = 0 (14.14)

using the extreme points of the constraints given in (14.11), for i = 1, . . . ,N.
However, taking into account just (14.11) introduces conservatism since the bounds
on Δαi are considered independent of αi while in fact, they are highly dependent
on the value of αi, as illustrated in Fig. 14.1. In this figure, the light gray region
indicates the region in the (αi,Δαi)-space where Δαi assumes values as a function
of αi, given the bound b. Obviously, this region is a polytope with six vertices
given by

V = {(0,0),(0,b),(1− b,b),(1,0),(1,−b),(b,−b)}. (14.15)
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Δai

ai
1

1

−1

0
b

b

−b

1−b

Fig. 14.1 Region in the
(αi,Δαi)-space where Δαi

assumes values as a function
of αi (indicated in light gray).
The dark gray region is
unreachable since α ∈ ΛN

In case only (14.11) is considered, the dark gray regions are taken into account
as well, thus producing conservative results. Therefore, to find the vectors v j, the
solutions of the equalities (14.14) need to be sought using the vertices (14.15) of the
feasible region in the (αi,Δαi)-space, for i = 1, . . . ,N.

In [3], it is shown how the M vectors v j, for j = 1, . . . ,M, of the uncertainty set
Γb,N can be generated automatically. As an example, consider α ∈ Λ2. In this case,
M = 6 and the vectors v j, for j = 1, . . . ,6, can be found to be

[
v1 v2 . . . v6

]
=

⎡

⎢
⎢⎢
⎢
⎣

1 1 0 0 b 1− b

0 0 1 1 1− b b

0 −b 0 b −b b

0 b 0 −b b −b

⎤

⎥
⎥⎥
⎥
⎦
.

In this case, (α,Δα) = (α1,α2,Δα1,Δα2) ∈ R
4 and due to (14.10), Δα1 =−Δα2.

Thus, for illustration purposes, the uncertainty region can be represented in the
three-dimensional (α1,α2,Δα)-space, where Δα = Δα1 = −Δα2 (see Fig. 14.2).
The dark gray region, bounded by the thick black lines, indicates the modeled
uncertainty region, which has six vertices (black bullets). The projection of this
region on the (α1,Δα)-plane and on the (α2,Δα)-plane yields the two light gray
regions indicated with dashed lines. Clearly, these regions coincide with the light
gray uncertainty region shown in Fig. 14.1.

This characterization of α and Δα can be exploited in the derivation of a finite-
dimensional set of LMI conditions for control design, as shown in the following
sections.
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Δa

a2

a1

1

−1

1

1

0

b

−b

Fig. 14.2 Uncertainty region in the (α1,α2,Δα)-space for α ∈ Λ2 and 0 < b < 1

14.3.2 Gain-Scheduled State Feedback

This section presents LMI conditions for the design of a gain-scheduled stabilizing
state feedback controller for system (14.8). For full-state feedback, it is assumed
that y(k) = x(k) and the goal is to provide a parameter-dependent control law

u(k) = K(α(k))y(k), with K(α(k)) ∈R
nu×nx ,

such that the closed-loop system

Hcl =

{
x(k+ 1) = Acl(α(k))x(k)+Bw(α(k))w(k),

z(k) =Ccl(α(k))x(k)+Dw(α(k))w(k)
(14.16)

with

Acl(α(k)) = A(α(k))+Bu(α(k))K(α(k)),

Ccl(α(k)) = Cz(α(k))+Du(α(k))K(α(k)) (14.17)

is exponentially stable for all possible variations of the parameter α(k) ∈ ΛN . It is
well known that the closed-loop system (14.16) is stable (see, for example, [1]) if

[
P(α(k+ 1)) Acl(α(k))G(α(k))

� G(α(k))+G(α(k))′ −P(α(k))

]
> 0, ∀k ≥ 0, (14.18)

which, using (14.17) and defining

K(α) = Z(α)G(α)−1, (14.19)
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yields

[
P(α(k+ 1)) A(α(k))G(α(k))+Bu(α(k))Z(α(k))

� G(α(k))+G(α(k))′ −P(α(k))

]
> 0, ∀k ≥ 0. (14.20)

Verifying this condition for all k ≥ 0 yields an infinite-dimensional problem.
However, a finite-dimensional set of sufficient LMI conditions can be obtained by
imposing a particular structure on the Lyapunov matrix P(α) and on the variables
G(α) and Z(α). Choosing P(α), G(α), and Z(α) to have the following affine
structure P(α) = ∑N

i=1 αiPi with α ∈ ΛN , it can be shown, using (14.13), that

P(α) =
N

∑
i=1

αiPi=
N

∑
i=1

(
M

∑
j=1

f j
i γ j

)

Pi=
M

∑
j=1

γ j

(
N

∑
i=1

f j
i Pi

)

=
M

∑
j=1

γ jP̂j= P̂(γ) (14.21)

with P̂j = ∑N
i=1 f j

i Pi. Similarly, G(α), Z(α), and all system matrices in (14.8) can be
converted to a new representation in terms of γ ∈ΛM . Moreover, combining (14.13)
and the fact that α(k+ 1) = α(k)+Δα(k), it follows that

P(α(k+ 1)) =
N

∑
i=1

(αi(k)+Δαi(k))Pi =
N

∑
i=1

(
M

∑
j=1

(
f j
i + h j

i

)
γ j(k)

)

Pi

=
M

∑
j=1

γ j(k)

(
N

∑
i=1

(
f j
i + h j

i

)
Pi

)

=
M

∑
j=1

γ j(k)P̃j = P̃(γ(k)) (14.22)

with P̃j = ∑N
i=1

(
f j
i + h j

i

)
Pi. As a result of this new representation, the LMI (14.20)

can be rewritten with a dependency on γ(k), resulting in

[
P̃(γ(k)) Â(γ(k))Ĝ(γ(k))+ B̂u(γ(k))Ẑ(γ(k))

� Ĝ(γ(k))+ Ĝ(γ(k))′ − P̂(γ(k))

]
> 0, ∀k ≥ 0.

Note that this LMI shows a dependency on the present time instant k only, whereas
(14.20) showed a dependency on both k and k+1. Now, for this LMI to hold for all
time instants k, it suffices that the following LMI holds:

[
P̃(γ) Â(γ)Ĝ(γ)+ B̂u(γ)Ẑ(γ)
� Ĝ(γ)+ Ĝ(γ)′ − P̂(γ)

]
> 0, ∀γ ∈ ΛM. (14.23)

This LMI is a second-order polynomial in γ . A finite set of sufficient LMIs
guaranteeing (14.23) is provided by the next theorem, obtained following the lines
of [13].
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Theorem 14.1 (Gain-scheduled state feedback control). Assume that the vectors
f j and h j of Γb,N are given. If there exist, for i = 1, . . . ,N, matrices Gi ∈ R

nx×nx ,
Zi ∈ R

nu×nx and symmetric positive-definite matrices Pi ∈ R
nx×nx such that Θ j > 0,

for j = 1, . . . ,M, and Θ j� > 0, for j = 1, . . . ,M− 1 and �= j+ 1, . . . ,M, with

Θ j =

[
P̃j Â jĜ j + B̂u, jẐ j

� Ĝ j + Ĝ′
j − P̂j

]

,

Θ j� =

[
P̃j + P̃� Â jĜ�+ Â�Ĝ j + B̂u, jẐ�+ B̂u,�Ẑ j

� Ĝ j + Ĝ′
j + Ĝ�+ Ĝ′

�− P̂j − P̂�

]

,

where P̂j = ∑N
i=1 f j

i Pi, P̃j = ∑N
i=1( f j

i + h j
i )Pi, Ĝ j = ∑N

i=1 f j
i Gi, and Ẑ j = ∑N

i=1 f j
i Zi,

then the parameter-dependent state feedback gain (14.19) with Z(α) = ∑N
i=1 αiZi

and G(α) = ∑N
i=1 αiGi stabilizes system H.

Proof. If Θ j > 0, for j = 1, . . . ,M, and Θ j� > 0, for j = 1, . . . ,M − 1 and � = j +
1, . . . ,M, it is clear for any γ ∈ ΛM that

Θ̂ =
M

∑
j=1

γ2
j Θ j +

M−1

∑
j=1

M

∑
�= j+1

γ jγ�Θ j�

=

⎡

⎣

(
∑M

j=1 γ j

)
P̃(γ) Â(γ)Ĝ(γ)+ B̂u(γ)Ẑ(γ)

�
(

∑M
j=1 γ j

)(
Ĝ(γ)+ Ĝ(γ)′ − P̂(γ)

)

⎤

⎦> 0,

which implies that (14.23) holds. Therefore, under the chosen affine parametriza-
tions for P(α), G(α), and Z(α), in combination with the modeling of the uncer-
tainty domain (14.13), feasibility of the LMIs Θ j > 0 and Θ j� > 0 ensures (14.18).

��

14.3.3 Gain-Scheduled Dynamic Output Feedback

In this section, the aim is to provide for system (14.8) a finite-dimensional set of
sufficient LMI conditions for the synthesis of a gain-scheduled stabilizing strictly
proper full-order dynamic output feedback controller

K =

{
xc(k+ 1) = Ac(α(k))xc(k) +Bc(α(k))y(k)

u(k) =Cc(α(k))xc(k)
(14.24)

with state xc(k) ∈ R
nx and system matrices Ac(α(k)) ∈ R

nx×nx , Bc(α(k)) ∈ R
nx×ny ,

and Cc(α(k)) ∈ R
nu×nx , such that the closed-loop system

Hcl =

{
xcl(k+ 1) = Acl(α(k))xcl(k) + Bcl(α(k))w(k)

z(k) =Ccl(α(k))xcl(k) + Dcl(α(k))w(k)
(14.25)
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with state xcl(k) =
[
x(k)′ xc(k)

′]′ ∈ R
2nx and system matrices

Acl(α) =

[
A(α) Bu(α)Cc(α)

Bc(α)Cy(α) Ac(α)

]
, Bcl(α) =

[
Bw(α)

Bc(α)Dyw(α)

]
,

Ccl(α) =
[
Cz(α) Dzu(α)Cc(α)

]
, Dcl(α) =

[
Dzw(α)

]
(14.26)

is exponentially stable. The proposed synthesis procedure has been presented for the
design of H2 and H∞ controllers in [4] and is an extension to the LPV case of the
technique presented for LTI systems in [6], which can be seen as the discrete-time
counter part of the previous results [9, 15] for continuous-time systems.

Following (14.18), the closed-loop system (14.25) is stable if there exists a
symmetric positive definite matrix P(α) ∈ R

2nx×2nx and a matrix G(α) ∈ R
2nx×2nx

such that

[
P(α(k+ 1)) Acl(α(k))G(α(k))

� G(α(k))+G(α(k))′ −P(α(k))

]
> 0, ∀k ≥ 0. (14.27)

Substituting for the closed-loop matrices (14.26) in (14.27) yields a nonlinear
matrix inequality due to the product of the controller matrices (14.24) and G(α).
Consequently, a change of variables is necessary to transform this nonlinear
matrix inequality into an equivalent LMI. In the following, G(α) is chosen to
be independent of α , that is, G(α) = G. In [4], it is explained that a parameter-
dependent G(α) would lead to a controller that depends on the present as well as
the future value of the scheduling parameter which, for most applications, cannot be
implemented in practice.

In [4], it is shown that (14.27) can be transformed into an equivalent LMI in
the matrices J(α), L(α), Q(α), R(α), S, X , Y , and the symmetric positive definite
matrices E(α) and P(α), given by

⎡

⎢
⎢
⎣

P(α(k+ 1)) J(α(k+ 1)) Ψ13(α(k)) A(α(k))
� E(α(k+ 1)) Q(α(k)) Ψ24(α(k))
� � X +X ′ −P(α(k)) I+ S′ − J(α(k))
� � � Y +Y ′ −E(α(k))

⎤

⎥
⎥
⎦> 0, ∀k ≥ 0,

(14.28)

where

Ψ13(α(k)) = A(α(k))X +Bu(α(k))L(α(k)),

Ψ24(α(k)) = YA(α(k))+R(α(k))Cy(α(k)).

If the LMI (14.28) is satisfied, the system matrices of the gain-scheduled stabilizing
controller can be recovered through the nonlinear transformation
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Ac(α) = V−1
(

Q(α)−YA(α)X −YBu(α)L(α)−R(α)Cy(α)X
)

U−1,

Bc(α) = V−1R(α),

Cc(α) = L(α)U−1, (14.29)

where the matrices U and V are found as the solution of VU = S−YX . In [6], it is
shown that nonsingular matrices U and V , satisfying this constraint, always exist.

Using similar steps as for the state feedback case, a finite-dimensional set of
sufficient LMI conditions can be derived for the infinite-dimensional LMI problem
(14.28). This is the context of the next theorem.

Theorem 14.2 (Gain-scheduled dynamic output feedback). Assume that the
vectors f j and h j of Γb,N are given. Then, the gain-scheduled dynamic output
feedback controller (14.24) with controller matrices (14.29) stabilizes H if there
exist matrices Ji ∈R

nx×nx , Li ∈R
nu×nx , Qi ∈R

nx×nx and Ri ∈R
nx×ny and symmetric

positive definite matrices Ei ∈ R
nx×nx and Pi ∈ R

nx×nx , for i = 1, . . . ,N, and if
there exist matrices S ∈ R

nx×nx , X ∈ R
nx×nx and Y ∈ R

nx×nx such that Ψj > 0, for
j = 1, . . . ,M, and Ψj� > 0, for j = 1, . . . ,M− 1 and �= j+ 1, . . . ,M, with

Ψj =

⎡

⎢
⎢
⎣

P̃j J̃ j Â jX + B̂u, jL̂ j Â j

� Ẽ j Q̂ j Y Â j + R̂ jĈy, j

� � X +X ′ − P̂j I +S′ − Ĵ j

� � � Y +Y ′ − Ê j

⎤

⎥
⎥
⎦ ,

Ψj� =

⎡

⎢⎢
⎣

P̃j + P̃� J̃ j + J̃� Â jX + Â�X + B̂u, jL̂�+ B̂u,�L̂ j Â j + Â�

� Ẽ j + Ẽ� Q̂ j + Q̂� Y Â j +Y Â�+ R̂ jĈy,�+ R̂�Ĉy, j

� � 2X +2X ′ − P̂j − P̂� 2I +2S′ − Ĵ j − Ĵ�
� � � 2Y +2Y ′ − Ê j − Ê�

⎤

⎥⎥
⎦ .

The matrix coefficients associated with the system matrices Â j, B̂u, j, and Ĉy, j and
with the decision variables P̃j, P̂j, Ẽ j, Ê j, J̃ j , Ĵ j , L̂ j, Q̂ j, and R̂ j can be constructed,
for j = 1, . . . ,M, using a similar derivation as (14.21) and (14.22).

The proof can be constructed following steps similar to the proof of
Theorem 14.1.

14.3.4 Extensions

This section presents several extensions to the synthesis problems introduced in the
previous sections. First, only the design of stabilizing gain-scheduled controllers
has been discussed. However, in practice, it is usually desirable to minimize over
some well-defined objective function to achieve the best possible closed-loop
performance. Second, as the LMI conditions in Theorems 14.1 and 14.2 are only
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sufficient and not necessary, it is interesting to point out some ways to decrease
their conservatism. Third, for systems with multiple scheduling parameters that have
different bounds on their rate of variation, it is necessary to consider a more general
class of systems than the standard polytopic description.

14.3.4.1 Multi-objective Control Design with Guaranteed H∞ and H2

Performance

This section provides an LMI characterization to compute guaranteed upper bounds
on the H∞ and H2 performance for discrete-time LPV systems. For system H, given
by (14.8), a bound on the H∞ performance can be computed using the following
LMI characterization (see, for instance, [16]).

Theorem 14.3 (Extended H∞ performance). If there exist a bounded matrix
G(α) ∈ R

nx×nx and a bounded symmetric positive-definite matrix P(α) ∈ R
nx×nx

such that for all k ≥ 0

⎡

⎢
⎢
⎣

P(α(k+1)) A(α(k))G(α(k)) Bw(α(k)) 0
� G(α(k))+G(α(k))′ −P(α(k)) 0 G(α(k))′Cz(α(k))′

� � ηI Dzw(α(k))′

� � � ηI

⎤

⎥
⎥
⎦> 0,

then, system H is exponentially stable and ‖H‖∞ ≤ infP(α),G(α),η η .

A bound on the H2 performance can be computed using the following LMI
characterization (see [3]).

Theorem 14.4 (Extended H2 performance). If there exist a bounded matrix
G(α) ∈ R

nx×nx and bounded symmetric positive definite matrices P(α) ∈ R
nx×nx

and W (α) ∈ R
nz×nz such that for all k ≥ 0

⎡

⎣
P(α(k+ 1)) A(α(k))G(α(k)) Bw(α(k))

� G(α(k))+G(α(k))′ −P(α(k)) 0
� � I

⎤

⎦> 0,

[
W (α(k))−Dzw(α(k))Dzw(α(k))′ Cz(α(k))G(α(k))

� G(α(k))+G(α(k))′ −P(α(k))

]
> 0,

then, system H is exponentially stable and ‖H‖2 ≤ infP(α),G(α),W(α)

√
Tr{W (α)}.

Similar to the stabilizing control designs from the previous sections, sufficient
LMI conditions for the design of H∞ or H2 performance guaranteeing gain-
scheduled state feedback and dynamic output feedback controllers can be derived
based on Theorems 14.3 and 14.4. These synthesis conditions and the respective
suboptimal multiobjective control designs are presented in [3, 4].



372 J. De Caigny et al.

14.3.4.2 LMI Relaxations

The LMI conditions given by Theorems 14.1 and 14.2 are only sufficient and not
necessary for the existence of stabilizing gain-scheduled controllers. Therefore,
it is interesting to point out some techniques to alleviate their conservatism.
First, instead of the affine parametrizations used in the previous section for the
Lyapunov matrices and the slack variables, it is possible to consider more general
polynomial parametrizations for discrete-time LPV systems (see, amongst others,
[4, 11]). A second technique to reduce the conservatism is based on an extension of
Pólya’s Theorem for matrix-valued coefficients, as presented in [14]. This type of
relaxations has been applied, amongst others, in [11].

14.3.4.3 Homogeneous Polynomially Parameter-Dependent System
with Scheduling Parameters Varying in the Multisimplex

This class of systems (discussed in [10]) forms a very general and powerful system
description. The multisimplex Λ is defined as the Cartesian product of L unit-
simplices Λ =ΛN1 × . . .×ΛNL of size N� ∈N, for �= 1, . . . ,L. One advantage of the
modeling of the uncertainty domain of Sect. 14.3.1 is that a different bound b� can
be considered for each different unit-simplex. This means that, in the same design,
LMI conditions can be derived to handle time-invariant, arbitrarily time-varying
and bounded time-varying parameters defined in their own appropriate uncertainty
domain. Moreover, it can be shown that polytopic, affine, multiaffine, polynomial,
and multivariable polynomial parametrizations can be recovered as special cases of
the homogeneous polynomial parametrization with parameters in the multisimplex.

14.4 Vibroacoustic Application

The vibroacoustic setup (displayed in Fig. 14.3) consists of a lexan plate clamped
on a rigid baffle in a semianechoic room. For details see [18]. The vibration of the
plate is caused by a point force (exogenous disturbance w) driven by a shaker. A
piezoelectric patch is attached to the plate providing a flexural moment (control
input u) that can counteract the vibrations caused by the shaker to attenuate, inside
the semianechoic room, the sound pressure measured by a microphone (measured
output y) located near the plate. The dynamics of this system is highly sensitive to
variations of the ambient temperature.

14.4.1 Modeling

For this system, local LTI identification experiments are performed for four
temperatures θ = {22.9, 23.4, 24.4, 25.4}◦C by measuring frequency response
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Fig. 14.3 Vibroacoustic setup

functions (FRFs) in the frequency range 120–260 Hz from the disturbance w and
the control input u to the output y (using a sample frequency of 2,048Hz). For each
operating condition, a tenth-order discrete-time state-space model is estimated using
standard identification tools in the frequency-domain [7, 12]. Figure 14.4 presents
the amplitude and phase of the experimental FRFs (black, solid) and of the estimated
models (gray, dashed). The arrows indicate increasing temperature θ . The estimated
LTI models clearly fit the experimental FRFs well. Now, the SMILE technique can
be applied to these four local LTI models.

First, it is necessary to choose the parametrization of the LPV model. As the
vibroacoustic setup depends on one bounded scheduling parameter θ , it is possible
to have a polytopic representation by defining α = (α1,α2), with

α1 =
θ −θ
θ −θ

and α2 =
θ −θ
θ −θ

, with θ = 25.4◦ and θ = 22.9◦.

Step 1: Choice of one IO combination: The LTI models have two inputs and one
output. Here, the IO combination (1,2) is chosen, which provides, for � = 1, . . . ,4,
the SISO LTI models H̃�,(1,2) from the control input u to the microphone y.

Step 2: Calculating and sorting poles and zeros: Figure 14.5a shows the real and
imaginary part of the poles of the four SISO models as a function of the scheduling
parameter α1. All models have five complex conjugate pole pairs, indicating five
resonances. As shown in Fig. 14.5b, all SISO models have one unstable real zero
and four complex conjugate zero pairs, indicating four antiresonances. Based on
Fig. 14.5, the poles and zeros can be easily sorted. The lines connecting the poles
and zeros indicate this consistent sort.
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Fig. 14.4 Measured FRFs (black, solid) and estimated local LTI models (gray, dashed), for four
different temperatures (arrows indicate increasing temperature) (a) w → y: Amplitude (b) u → y:
Amplitude (c) w → y: Phase (d) u → y: Phase
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Step 3: Constructing consistent SISO models: Since all original SISO LTI models
are tenth-order, they can be represented by a gain multiplied with the series connec-
tion of τ2 = 5 second-order submodels. In Fig. 14.5, this division is emphasized by
assigning the poles and zeros five different markers: poles and zeros with the same
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marker are assigned to the same SISO submodel. After the submodels have been
defined, the consistent SISO state-space models H�,(1,2) can be computed.

Step 4: Calculating the similarity transformations: From the original SISO models
H̃�,(1,2) and the consistent SISO models H�,(1,2), a similarity transformation matrix
T� is calculated by solving (14.6), for � = 1, . . . ,4. The obtained T� is used to
transform the original MIMO models H̃� into a consistent form, denoted by H�.
Step 5: Interpolation and optimization: The optimization problem (14.7) is solved
to obtain the interpolating LPV model, given by

{
x(k+ 1) = A(α(k))x(k)+Bw(α(k))w(k)+Bu(α(k))u(k)

y(k) =Cz(α(k))x(k).

14.4.1.1 Validation

Figure 14.6 compares the four original local LTI models (gray, solid) with the
interpolating LPV model (black, solid with dots), evaluated at 11 equidistant values
of α1 ∈ [0,1]. The LPV model clearly shows a smooth interpolation of the local
LTI models.

14.4.2 Control

In this section, H∞, H2, and multiobjective gain-scheduled state feedback and
dynamic output feedback controllers are designed for the vibroacoustic system using
the extensions of Theorems 14.1 and 14.2 for H∞ and H2 design mentioned in
Sect. 14.3.4. For both the state feedback as well as the dynamic output feedback, the
microphone output signal y(k) is used as performance measure, that is z(k) = y(k).
In the dynamic output control design, the microphone signal y(k) is also the input for
the controller, while in the state feedback design, all ten states are assumed available
for feedback.

Since for this system, the rate of variation of the scheduling parameter (the ambi-
ent temperature) is obviously bounded and usually slow, the application of synthesis
procedures that consider bounds on the rate of variation is particularly interesting.

14.4.2.1 H∞ and H2 Control Design

Gain-scheduled state feedback and dynamic output feedback controllers that guar-
antee an upper bound on the closed-loop H∞ and H2 performance from the
disturbance w to the performance output y of the vibroacoustic setup (indicated as∥∥Tyw
∥∥

∞ and
∥∥Tyw
∥∥

2) are computed. To asses the impact of the bound b on the rate of
parameter variation, controllers are designed for 101 equidistant values of b in the
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Fig. 14.6 Local LTI models (gray, solid) and interpolating LPV model (black, solid with dots),
evaluated for 11 values of α1 (a) w → y: Amplitude (b) u → y: Amplitude (c) w → y: Phase (d)
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interval [0,1]. All problems are modeled in Yalmip [8] and solved using SeDuMi
[17] within the Matlab environment.

The results of the H∞ and H2 control designs are presented in Fig. 14.7 which

shows the obtained bounds η on
∥
∥Tyw
∥
∥

∞ (Fig. 14.7a) and
√

Tr
{

W
}

on
∥
∥Tyw
∥
∥

2
(Fig. 14.7b) as a function of the bound b on the rate of the parameter variation. The
bound on the open-loop performance (computed using the LMI conditions of [3])
is indicated with thick dash-dotted lines, the guaranteed closed-loop performance
using gain-scheduled state feedback with thick dashed lines and the guaranteed
closed-loop performance using gain-scheduled dynamic output feedback with thin
solid lines. It is clear that both the state feedback and dynamic output feedback
dramatically outperform the open-loop system. Furthermore, it can be concluded for
both the H∞ and H2 control design that the state feedback controllers achieve better
performance than the dynamic output feedback controllers. This is expected, since
the dynamic controllers are based on the measurement of the single scalar output y
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Fig. 14.7 Comparison between the upper bound on the open-loop performance (dash-dotted) and
the guaranteed upper bound on the closed-loop performance obtained with state feedback (dashed)
and dynamic output feedback (solid) (a) H∞ design (b) H2 design

only, whereas the state feedback controllers have access to all ten states. However,
for the H∞ control designs (see Fig. 14.7a), the difference is small, as can be seen
from the fact that the thick dashed and thin solid line almost coincide. This suggests
that a dynamic controller, based on the measurement of one single microphone,
can be used without significantly decreasing the closed-loop performance. This is a
crucial point for the practical implementation in acoustic systems since, in general,
it is not possible to measure all the state variables.

14.4.2.2 Multi-objective Design

In this design, the aim is to minimize a bound
√

Tr
{

W
}

on
∥∥Tyw
∥∥

2, while a

bound η is imposed on the closed-loop H∞ performance from the disturbance
w to the control signal u (indicated as ‖Tuw‖∞) to obtain controllers that do not
have excessive control signals. Six bounds on the rate of variation are considered:
b ∈ {0.0,0.2,0.4,0.6,0.8,1.0} and the bound η takes 101 equidistant values in the
interval [0.01,200].

Figure 14.8 shows the obtained trade-off between the prescribed H∞ bound η
and the obtained H2 bound

√
Tr
{

W
}

. Thick lines indicate state feedback control

designs, whereas thin lines indicate dynamic output feedback control designs. The
six cases for the bound b are indicated as follows: b = 0.0, gray solid; b = 0.2,
black dashed; b = 0.4, gray dash-dotted; b = 0.6, black solid; b = 0.8, gray dashed;
and b = 1, black dash-dotted. It is clear that, similarly to the results presented in
Fig. 14.7, higher values of b result in a decrease in guaranteed H2 closed-loop

performance (manifested as an increase in
√

Tr
{

W
}

). Second, tighter bounds on

‖Tuw‖∞, yield a decrease in guaranteed closed-loop H2 performance as well. Third,
like in Fig. 14.7, it is clear that the state feedback controllers outperform the dynamic
output feedback controllers. Fourth, it seems that for high values of η , all curves
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{
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dynamic output feedback (thin)

tend to a constant value. For each value of b, this value can be found in Fig. 14.7b
(indicated with circles), which shows the best guaranteed H2 performance that can
be achieved since no bound on ‖Tuw‖∞ is imposed.

14.5 Conclusion

This chapter has presented a practical local LPV modeling technique that yields
polytopic LPV models based on a set of LTI models estimated for fixed operating
conditions and synthesis conditions for the design of gain-scheduled state feedback
and dynamic output feedback controllers. The merit of these recent advances is
that they offer practical, state-of-the-art methods for LPV modeling and control
design. As demonstrated on the vibroacoustic application, the techniques can be
successfully applied on realistic engineering problems.

However, there is still room for improvement in both areas. With respect to the
modeling, the SMILE technique needs to be further automated by avoiding heuristic
steps like the choice of the IO combination and the pole and zero sort. For the LPV
control, it is interesting to investigate reduced-order LPV control design techniques
and ways to include robustness against parametric and dynamic uncertainty in the
LPV model as well as uncertainty on the measurement of the scheduling parameters.
Moreover, less conservative path-dependent controllers can be designed that, in
addition to the current value α(k) of the scheduling parameter, also depend on
previous values α(k− 1), α(k− 2), etc. These are topics of current research.

Acknowledgment The authors J.F. Camino, R.C.L.F. Oliveira and P.L.D. Peres are partially
supported by the Brazilian agencies CAPES, CNPq and FAPESP. The authors J. De Caigny and



14 Modeling and Control of LPV Systems: A Vibroacoustic Application 379

J. Swevers are supported by the following funding: project G.0002.11 of the Research Foundation-
Flanders (FWO-Vlaanderen), K.U.Leuven-BOF PFV/10/002 Center-of-Excellence Optimization
in Engineering (OPTEC) and the Belgian Programme on Interuniversity Attraction Poles, initiated
by the Belgian Federal Science Policy Office. The scientific responsibility rests with its author(s).

References

1. Daafouz J, Bernussou J (2001) Parameter dependent Lyapunov functions for discrete time
systems with time varying parametric uncertainties. Syst Control Lett 43(5):355–359

2. De Caigny J, Camino JF, Swevers J (2009) Interpolating model identification for SISO linear
parameter-varying systems. Mech Syst Signal Process 23(8):2395–2417

3. De Caigny J, Camino JF, Oliveira RCLF, Peres PLD, Swevers J (2010) Gain-scheduled H2
and H∞-control of discrete-time polytopic time-varying systems. IET Control Theory Appl
4(3):362–380

4. De Caigny J, Camino JF, Oliveira RCLF, Peres PLD, Swevers J (2011a) Gain-scheduled
dynamic output feedback for discrete-time LPV systems. Int J Robust Nonlinear Control.
doi: 10.1002/rnc.1711

5. De Caigny J, Camino JF, Swevers J (2011b) Interpolation-based modelling of MIMO LPV
systems. IEEE Trans Control Syst Technol 19(1):46–63

6. de Oliveira MC, Geromel JC, Bernussou J (2002) Extended H2 and H∞ norm characterizations
and controller parameterizations for discrete-time systems. Int J Control 75(9):666–679

7. Ljung L (1999) System identification: Theory for the user. Prentice-Hall, Upper Saddle River,
NJ, USA
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Chapter 15
LPV Modeling and Control of Semi-active
Dampers in Automotive Systems

Anh-Lam Do, Olivier Sename, and Luc Dugard

Abstract The aim of this chapter is to emphasize the interest of the LPV
methodology for suspension modeling and control. Indeed, the main features of
a semi-active automotive suspensions are:

• The damper can only dissipate energy.
• The damper has a nonlinear behavior which is important to account for in the

control design step.

New methodologies have been recently designed to separately cope with these
constraints (Do AL et al., An LPV control approach for semi-active suspension
control with actuator constraints, 2010; Poussot-Vassal et al., Contr Eng Pract
16(12):1519–1534, 2008; Savaresi et al., Semi-active suspension control for vehi-
cles, 2010). In this study, recent developments are presented to:

• First, develop an LPV model for an automotive suspension system starting from
a nonlinear semi-active damper model.

• Second, using an original LPV representation of the dissipativity of the semi-
active damper, develop an ad hoc H∞/LPV controller.

The whole LPV model is used to design a polytopic H∞ controller for an automotive
suspension system equipped with a Magneto-Rheological semi-active damper. This
controller aims at improving ride comfort and/or road holding, depending on the
required specifications. Some simulation results are given on realistic vehicle and
damper models (whose validation on real data has been performed), allowing to
show the efficiency of the approach.
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15.1 Introduction

When a vehicle travels, it is excited by a broad spectrum of vibrations. The
vibration sources may come from the driveline, engine, tire/wheel assemblies, and
the road roughness. Among these vibration sources, the road roughness influences
dramatically the vehicle dynamics: the vertical acceleration, the wheel–road contact,
the rollover, the cornering and braking behavior, etc. It is well known that, for
vibration isolation, vehicles are equipped with suspension systems which usually
consist of an elastic element and a damping element connected in parallel. Indeed,
suspension design has about 100 years of development, from the appearance of
very simple passive dampers in Roll Royce (in 1913) to sophisticated controllable
MR dampers in the most recent cars such as Audi TT, Audi R8, Ferrari 599
GTB, etc. Today, it plays an important role in the automotive industry because,
besides the vibration isolation capacity (through energy dissipativity), suspension
systems can further improve the safety and the handling (by minimizing the tire
load variation). In general, suspensions are classified into three types according to
their controllability (see, e.g., [23] for a detailed classification):

• Passive suspensions, found in low-cost vehicles, consist of a spring connected
in parallel with a passive damper. They can only dissipate the energy and their
property is time-invariant.

• Semi-active suspensions, found in mid-range and expensive vehicles, consist
of a spring and a semi-active damper. Like passive suspensions, they can only
dissipate the energy but their property (the damping coefficient) can be changed
by external control signals.

• Active suspensions, found in small number in mid-range and expensive vehicles,
use a spring and an active damper. For such types of suspensions, external
actuators are required to supply energy to the systems. Hence, they can both
dissipate and generate the energy.

The main objectives in suspension design are related to ride comfort and road
holding. Ride comfort concerns the pleasure of passenger and driver, road holding
influences the drive safety. While passive suspensions achieve only a compromise
between ride comfort and road holding, the semi-active and active suspensions can
enhance both performance objectives. This is the reason why the latter suspensions
have been studied more intensively in recent years. However, only the semi-active
suspensions are used widely in automotive industry because, compared with fully
active suspensions, the semi-active ones provide a better compromise between the
cost and the performances. Semi-active suspensions can potentially achieve the
majority of the performance criteria (see [24, 33]) while they are smaller in weight
and volume, cheaper in price, more reliable in work (the robustness due to their
dissipative property), and less energy consuming (see also [14, 15, 21, 27, 39, 40]).

In this chapter, the semi-active suspensions are studied. The control design
problem for such suspensions has been tackled with many approaches during the
last three decades. One of the first comfort-oriented control methods, successfully
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Fig. 15.1 Realistic MR
damper force with
bi-viscosity (pre-yield and
post-yield viscous damping)
and hysteresis

applied in commercial vehicles, is the Skyhook control proposed by Karnopp et al.
[26]. In this control design, the damping coefficient is adjusted continuously or
switched between a maximum and a minimum value. Contrary to the Skyhook, the
Groundhook controller [43] was designed to improve road holding. Then numerous
approaches have also been developed such as optimal control [39], clipped optimal
control [6, 16], or H∞ control [35, 36], LPV control [34]. Recently, the mixed
Skyhook and ADD (SH-ADD) algorithm proposed by [40] has been known to be
one of the most efficient comfort-oriented controllers. An overview of some recent
methodologies in terms of performances was done in [38].

In the studies presented previously, the nonlinear characteristics (the bi-viscous
and the hysteretic behaviors of semi-active dampers, see Fig. 15.1) are not taken
into account in the controller design. This may result in bad performance when
these controllers are implemented and applied to real suspension systems. The
main contribution of this chapter is to propose a new control design method for
nonlinear semi-active suspensions using the LPV approach. The methodology is
based on a nonlinear static model of the semi-active damper where the bi-viscous
and hysteretic behaviors of the damper are taken into consideration. The nonlinear
system associated with the quarter vehicle model is reformulated in the LPV
framework. The dissipativity problem is brought into the input saturation one,
using a simple change of variable. To improve ride comfort and road holding, the
H∞ controller for LPV system (see [2, 41]) is used. Finally, a weighting-function
optimization for multiobjective H∞ design using Genetic Algorithms is proposed.
The results in [11, 12] show that this procedure is quite efficient for the particular
problem of semi-active suspension control and it is general enough for other multi-
objective optimization designs for LPV systems.
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15.2 Semi-Active Suspension Modeling

Many models have been proposed for semi-active suspension modeling. For exam-
ple, the Bingham model is a phenomenological model that describes the behavior of
an Electro-Rheological (ER) damper [42]. The model consists of a viscous damper
in parallel with a Coulomb friction element. Another well-known method is the
semi-phenomenological Bouc–Wen model. It was first introduced by Bouc [4] and
then modified by Wen [44]. This model has been used widely to describe hysteretic
systems.

Recently, the Magneto-Rheological (MR) dampers have been analyzed in many
studies. They use MR fluids whose characteristics can be changed through the
application of a magnetic field. Compared with other kinds of semi-active dampers,
they have great advantages like fast time response as well as stable hysteretic
behavior over a broad range of temperature, low battery voltages consumption, etc.
They represent a new generation of semi-active dampers and are applied in many
applications like shock absorbers and damping devices, clutches breaks, actuators
or artificial joints, operational earthquake dampers to reduce motion in buildings
and of course in automotive systems... For the modeling of these dampers, in [25]
Spencer proposed a modified Bouc–Wen model or in [37], Savaresi et al. presented
a black box model. In 2006, Shuqi Guo et al. proposed a semi-phenomenological
model [20]. Besides accuracy, this model has an interesting structure which can be
extended for LPV control synthesis.

15.2.1 Shuqi Guo Model for MR Damper

The behavior of the semi-active damper is represented using the following nonlinear
equation, as in [20]:

Fshuqi−guo = a2

(
ẋmr +

v0

x0
xmr

)
+ a1 tanh

(
a3

(
ẋmr +

v0

x0
xmr

))
, (15.1)

where Fshuqi−guo is the damper force, xmr is the suspension deflection, a1 is the
dynamic yield force of the MR fluid, a2 and a3 are related to the post-yield and pre-
yield viscous damping coefficients, v0 and x0 denote the absolute value of hysteretic
critical velocity ẋ0 and hysteretic critical deflection x0 where ẋ0 and x0 are defined
as the velocity and deflection when the MR damper force is zero.

The model is of semi-phenomenological type and based on a tangent hyperbolic
function to model the hysteresis and bi-viscous characteristic of a damper. This
model has a simple and elegant formulation, but the control input signal (current,
for MR dampers) is not present. Obviously, it cannot be used for the controller
synthesis.
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Fig. 15.2 MR damper characteristics with different current values I: force vs. deflection (Left) and
force vs. velocity (Right)

15.2.2 Control-Oriented MR Damper Model

In [31], the authors have shown that if each coefficient in (15.1) is defined as a
polynomial function of electric current, the obtained model will approach the real
data better. However, for control purpose, a simpler control-oriented model where
only one parameter depends on the input signal was proposed and first studied in
[9, 13]. According to the authors, a control-oriented model for semi-active damper
can be given by

Fmr = c0ẋmr + k0xmr + fI tanh(c1ẋmr + k1xmr) , (15.2)

where Fmr is the damper force, c0, c1, k0, and k1 are constant parameters and fI is
the controllable force coefficient which is varying according to the electrical current
I in coil (0 ≤ fImin < fI ≤ fImax).

Compared with the model (15.1) whose characteristics are static and uncontrol-
lable, the model (15.2) reflects the realistic behavior of an MR damper. This model
allows fulfilling the dissipativity constraint of the semi-active damper and introduces
a control input fI . The limitation of the model is in the assumption that the MR
dampers’ hysteresis is invariant with respect to the current I. Figure 15.2 presents
the dependency of damper force to the input current. Changing the current in the coil
of an MR damper changes its characteristics. Here, the bi-viscous and the hysteresis
can be clearly observed.

The model’s parameters used in Fig. 15.2 are the following: c0 = 810.78 (Ns/m),
k0 = 620.79 (N/m), c1 = 13.76 (s/m), k1 = 10.54 (1/m). These experimental
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Fig. 15.3 Experimental
test-rig for MR damper
parameter identification

parameters are identified by our colleague Jorge de Jesus Lozoya-Santos (see
[29, 30]) on the test-rig at Metalsa1 (see Fig. 15.3).

The experimental system consists of three key blocks: an actuator FlexTest
GT MTSTM, an electric current controller, and an acquisition system. The man–
machine interface interacts with the control systems and the acquisition system.
The specifications of the actuator are from 25 to 3,000 psi and a stroke of 150 mm.
A sensor is used for measuring the displacement. Electrical current is measured by
a resistor connected in series with the coil of the MR damper. An Instron TM load
cell measures the generated forces.

For model identification, a sinusoidal displacement (about 4 Hz) is randomly
modulated in amplitude, and a random signal of electric current is used. Figure 15.4
presents the experimental data in the interval 30–33 s. As seen in Fig. 15.5, the
model tracks well the real data. The average ESR (Error-to-Signal-Ratio) is around
7%, and the maximum ESR is about 20% (in high frequencies where the MR force
changes rapidly). It is recommended to find more details on the experimental results
in [29, 30].

1www.metalsa.com.mx.

www.metalsa.com.mx.
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Fig. 15.4 Experimental data

Let us return to the model 15.2, which has an interesting characteristic that can
be exploited for LPV design. Note that the function tanh(c1ẋmr + k1xmr) is bounded
in [−1;1] for any value of ẋmr and xmr. Moreover, the function value is known
because the damper deflection xmr and velocity ẋmr can be measured using a unique
displacement sensor. It is hence naturally a scheduling parameter in LPV design.

15.3 The Quarter Vehicle Model and Suspension
Performance Objectives

15.3.1 Quarter Vehicle Model

To study the vertical dynamics of a vehicle equipped with suspension systems, it is
well known that a 2-DOF quarter vehicle model (see Fig. 15.6) is used. The model
is simple and suitable for a preliminary design. It represents a single corner of a
vehicle. In this model, the quarter vehicle body is represented by the sprung mass
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Fig. 15.5 Model’s force vs. real data

(ms) and the wheel and tire are represented by the unsprung mass (mus). They are
connected by a spring with the stiffness coefficient ks and a semi-active damper. The
tire is modeled by a spring with the stiffness coefficient kt. As seen in the figure,
zs (respectively, zus) is the vertical displacement around the equilibrium point of
ms (respectively, mus) and zr is the road profile. It is assumed that the wheel–road
contact is ensured. By applying the second law of Newton, the dynamical equations
of a quarter vehicle are given by

{
msz̈s =−Fspring −Fmr

musz̈us = Fspring +Fmr − kt (zus − zr)
, (15.3)

where Fspring = ks(zs − zus) is the spring force. The damper force Fmr is given as in
(15.2) and satisfies the dissipativity constraint:

0 < fImin < fI ≤ fImax (15.4)
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ms

mus zus

ks

kt

zr

zs

Semi-active
damper

Fig. 15.6 Model of quarter
vehicle with a semi-active
damper

Table 15.1 Parameter values of the quarter car model equipped with an MR
damper

1/4 RMC Value Unit MR damper Value Unit

ms 315 (kg) c0 810.78 (Ns/m)
mus 37.5 (kg) k0 620.79 (N/m)
kt 210,000 (N/m) fmin 0 (N)
− − − fmax 800 (N)
− − − c1 13.76 (s/m)
− − − k1 10.54 (1/m)

The dynamical equations are rewritten as follows:

⎧
⎪⎪⎨

⎪⎪⎩

msz̈s =−ks (zs − zus)− c0 (żs − żus)− k0 (zs − zus)

− fI tanh(c1 (żs − żus)+ k1 (zs − zus))

musz̈us = ks (zs − zus)+ c0 (żs − żus)+ k0 (zs − zus)

+ fI tanh(c1 (żs − żus)+ k1 (zs − zus))− kt (zus − zr) .

(15.5)

It is worth noting that (15.5) is a nonlinear differential equation system. In this
chapter, the 1/4 Renault Mégane Coupé (1/4 RMC) equipped with an MR damper
presented in Sect. 15.2 is studied. The model parameters are given in Table 15.1.
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15.3.2 Performance Objective Quantification for Suspension
Control

As mentioned previously, in semi-active suspension control, the two main objectives
are ride comfort and road holding. While road holding can be directly quantified
by the analysis of the dynamic tire force, ride comfort is, however, more difficult
to quantify because it is a subjective matter. The human sensitivity to vibration is
frequency dependent. Furthermore, at the same frequencies, the different parts of the
human body feel the vibration in different ways. To answer to the question on which
is the good measure to evaluate ride comfort, let us recall some criteria existing in
the literature (see [19]).

Denote X the maximum allowed displacement amplitude, ω the angular fre-
quency, f the frequency, and t the time. Janeway’s comfort criterion (1965) relates
the comfort to vertical vehicle body displacement. At low frequencies, the criterion
states that

Xω3 = 12.6 (15.6)

and at high frequencies, in the range 6–20 Hz, the vehicle body acceleration peak
value should not exceed 0.33 m/s2, whilst between 20 and 60 Hz the maximum
velocity should stay below 2.7 mm/s.

Steffens (1966) proposed to evaluate the comfort using the following criterion:

X [cm2] = 7.62× 10−3
(

1+
125
f 2

)
. (15.7)

Another criterion is the vibration dose (VD) value proposed by Griffin (1984)
which provides an indication based on the integral of the fourth power of the
frequency weighted acceleration a

VD =

∫ t

0
a4dt. (15.8)

The most general criterion is the standard ISO 2631 (1978). It is a general
standard applicable not only to vehicles but also to all vibrating environments.
It defines the exposure limits for body vibration in the range 1–80 Hz, defining
limits for reduced comfort, for decreased proficiency and for preservation of health.
According to this criterion, human being is more sensible to the vertical acceleration
in the range of 4–8 Hz. The ISO 2631 filter applied on the sprung mass acceleration
is approximated by the following transfer function (see [48]):

WISO−2631 =
81.89s3 + 796.6s2+ 1937s+ 0.1446

s4 + 80.00s3+ 2264s2+ 7172s+ 21196
. (15.9)
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15.3.2.1 Criteria for Suspension Performance Evaluation

In the following, the criteria to evaluate the performance of the semi-active
suspension systems are given. By abuse of language, let us denote z̈s/zr (respectively,
(zus − zr)/zr)) the “frequency response” from the road disturbance zr to the vehicle
body acceleration z̈s (respectively, the dynamic tire deflection zus − zr).

In general, the vehicle body acceleration between 0 and 20 Hz should be filtered
to guarantee a good ride comfort, although it is worth noting again that human is
the most sensible to vertical acceleration around 4–8 Hz (ISO 2631). On the other
side, to maintain the road–wheel contact, it is necessary that the dynamic tire force
is smaller than g(ms +mus) (where g is the gravity). Hence, for the road holding
improvement, the dynamic tire force kt(zus − zr), in other words the dynamic tire
deflection zus − zr, should be small in the frequency range 0–30 Hz. Also noting
that, road holding is improved by limiting the up and down bouncing of the wheel
zus around its resonant 10–15 Hz.

In summary, with the remarks above, the performance objectives in the frequency
domain are described explicitly as follows:

• Comfort

JCF =

∫ 20

0
z̈s/zr( f )d f . (15.10)

• Road holding

JRH =

∫ 30

0
(zus − zr)/zr( f )d f . (15.11)

The performance objectives above for ride comfort and road holding are consistent
with the ones given in [36, 38].

15.4 LPV Model for Semi-Active Suspension Control

With the defined system and performance objectives in the previous section, in the
following, an LPV model for controller synthesis is formulated. Denote:

• cp = c0

• kp = ks + k0

• zdef = zs − zus

• żdef = żs − żus

• ρ̂ = tanh(c0 (żs − żus)+ k0 (zs − zus))

From (15.5), the state-space representation of the quarter vehicle model can be
deduced as follows:

⎧
⎨

⎩

ẋs = Asxs +Bsρ̂ fI +Bsww
z =Cszxs +Dszρ̂ fI

y =Csxs

, (15.12)
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where xs = (zs, żs, zus, żus)
T, w=zr, y = (zs − zus, żs − żus)

T, z = (z̈s zus)
T.

As =

⎛

⎜⎜
⎜
⎝

0 1 0 0

− kp
ms

− cp
ms

kp
ms

cp
ms

0 0 0 1
kp

mus

cp
mus

− kp+kt
mus

− cp
mus

⎞

⎟⎟
⎟
⎠

, Bs =

⎛

⎜⎜
⎜
⎝

0
− 1

ms

0
1

mus

⎞

⎟⎟
⎟
⎠

, Bsw =

⎛

⎜
⎜⎜
⎜
⎜
⎝

0
0
0
kt

mus

⎞

⎟
⎟⎟
⎟
⎟
⎠

,

Cs =

(
1 0 −1 0
0 1 0 −1

)T

Csz =

( −kp
ms

−cp
ms

kp
ms

cp
ms

0 0 1 0

)

, Dsz=

( −1
ms

0

)
.

Remark 15.1. The considered measurement outputs are the suspension deflection
and suspension deflection velocity, which allows to state that ρ̂ can be known in
real time.

Remark 15.2. As mentioned in the previous section, the performance objectives are
ride comfort and road holding. Ride comfort is clearly related to the vehicle body
acceleration z̈s. Road holding, beside being quantified by the dynamic tire deflection
zus − zr, is related to the bouncing of the wheel zus. Consequently, the controlled
output vector may be as z = (z̈s zus)

T.

As explained above, to guarantee the dissipativity of an MR damper, the control
signal fI must satisfy the constraint (15.4). By defining uI = fI − f0, where f0 =
( fImin + fImax)/2, the dissipativity constraint on fI is recast as a saturation constraint
on uI , i.e.,

− ū ≤ uI ≤ ū, (15.13)

where ū = fImax− fImin
2 .

With this modification, the state-space representation of the quarter vehicle is
given as follows:

P :

⎧
⎪⎪⎨

⎪⎪⎩

ẋs = (As +Bs1
ρ̂

Cs1xs
Cs1)xs +Bsρ̂uI +Bsww

z = (Csz +Ds1
ρ̂

Cs1xs
Cs1)xs +Dszρ̂uI

y =Csxs

, (15.14)

where Bs1 =
(

0 − f0
ms

0 f0
mus

)T
, Cs1 =

(
k1 c1 −k1 −c1

)
, Ds1=

(
− f0
ms

0
)
.

In this study, the LPV model (15.14) can be used to design an LPV con-
troller. However, such a controller may not ensure the closed-loop stability and
performances since the saturation constraint (i.e., the dissipativity constraint) is not
accounted for in the design. Some solutions for this problem have been proposed.
For example, in [34], a scheduling parameter is indeed defined as the difference
between the real controlled damper force and the required one given by the
controller. However, the dissipativity constraint is not theoretically fulfilled. Another
possible method is to add, in the closed-loop system, an AWBT (Anti Wind-up
Bumpless Transfer) compensation to minimize the adverse effects of the control
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input saturation on the closed-loop performance [17,18,28,32]. In the next section, a
simple method is presented to solve the problem by considering the input saturation
as a scheduling parameter. This approach is indeed related to [45].

Define the saturation function sat() as follows:

sat(uI) =

⎧
⎨

⎩

ū if uI > ū
uI if − ū ≤ uI ≤ ū
−ū if uI <−ū

. (15.15)

The state-space representation of the system (15.14) subject to the input satura-
tion constraint (15.13) is rewritten as

P :

⎧
⎪⎪⎨

⎪⎪⎩

ẋs = (As +Bs1
ρ̂

Cs1xs
Cs1)xs +Bsρ̂ sat(uI)

uI
uI +Bsww

z = (Csz +Ds1
ρ̂

Cs1xs
Cs1)xs +Dszρ̂ sat(uI)

uI
uI

y =Csxs

. (15.16)

Denote ρ1 = ρ̂ sat(uI)
uI

and ρ2 = ρ̂
Cs1xs

. From (15.16), the following LPV system is
now obtained

P :

⎧
⎨

⎩

ẋs = (As +Bs1Cs1ρ2)xs +Bsρ1uI +Bsww
z = (Csz +Ds1Cs1ρ2)xs +Dszρ1uI

y =Csxs

. (15.17)

In (15.17) the control input matrix Bsρ1 is parameter dependent, which is not
consistent with the solution of the H∞ design problem for polytopic systems [2].
This problem can be overcome by adding the following filter into (15.17) to make
the controlled input matrix independent from the scheduling parameter:

Wf :

(
ẋf

uI

)
=

(
Af Bf

Cf 0

)(
xf

u

)
(15.18)

with

‖Wf‖∞ ≤ 1, (15.19)

where Af, Bf, Cf are constant matrices.

Remark 15.3. The condition (15.19) ensures that the saturation constraint on uI is
kept for the new control input u. It means that the following implies (15.13):

− ū ≤ u ≤ ū. (15.20)

From (15.17) and (15.18), the control oriented model is now represented by an
LPV system with two scheduling parameters ρ1 and ρ2:

⎧
⎨

⎩

ẋ = A(ρ1,ρ2)x+Bu+B1w
z =Cz (ρ1,ρ2)x
y =Cx

, (15.21)
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where

x =
(

xs
T xf

T
)T

,

A(ρ1,ρ2) =

(
As +ρ2Bs1Cs1 ρ1BsCf

0 Af

)
, B =

(
0
Bf

)
, B1 =

(
Bs1

0

)
,

C =

(
Cs

0

)T

, Cz (ρ1,ρ2) =
(

Csz +ρ2Ds1Cs1 ρ1DszCf
)
,

ρ1 = tanh(Cs1xs)
sat(c f xf)

c f xf
, ρ2 =

tanh(Cs1xs)
Cs1xs

.

Notice also that ρ1 and ρ2 are not independent. As seen in Fig. 15.7, the set
of (ρ1,ρ2) is represented by the shaded area and this set is not a polytope. In the
following section, a polytopic approach will be applied for LPV system (15.21) by
considering a polytope that includes all possible scheduling parameter trajectories
of (ρ1,ρ2).

Indeed, we aim at finding an LPV controller that guarantees the stability and the
H∞ performance for the system (15.21). It is well known that the quality of this
controller depends on the choice of some weighting functions. In the next section, a
general procedure for the optimization of the weighting functions selection will be
proposed and then applied to the semi-active suspension control.

15.5 Optimizing H∞/LPV Controller for Semi-Active
Suspensions

The H∞ control design approach is an efficient tool to improve the performances
of a closed-loop system in pre-defined frequency ranges. The key step of the H∞
control design relies on the selection of the weighting functions which depend on
the engineer skill and experience. In many real applications, it is more difficult
in choosing the weighting functions because the performance specifications are
not accurately defined, i.e., it is simply to achieve the best possible performances
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(optimal design) or to achieve an optimally joint improvement of more than one
objective (multi-objective design). Therefore, it appears interesting to optimize the
selection of the weighting functions to get the desired closed-loop performances.
As studied in [3, 22], it has been proposed to consider a system, no matter how
complex it is, as a combination of subsystems of the first and second order, for
which it is easy to find the good weighting functions to be used in the H∞ control
methodology. However, there is no explicit method to find these functions in the
general case. The usual way is to proceed by trial and error. Recently, as in [1],
the use of nonlinear optimization tools, such as the Genetic Algorithms, has been
proved to be interesting since the parameter design is here related to nonlinear
cost functions. Below, the problem formulation of the H∞/LPV control design for
polytopic systems is presented according to the considered application.

Indeed, in the particular case of semi-active suspension control, ride comfort and
road holding are two essential but conflicting control objectives. It is shown that, for
example, it is impossible to improve ride comfort without degrading road holding
and vice versa around the wheel resonance 10–15 Hz. In this section, the aim is
to use Genetic Algorithms (GAs) to obtain the best controllers (for ride comfort
and/or road holding) through optimizing the selection of the weighting functions
for the H∞/LPV control of semi-active suspensions.

15.5.1 Control Scheme

The control configuration for semi-active suspensions is given in Fig. 15.8. The
controlled outputs are the vehicle body acceleration z̈s (for the ride comfort
improvement) and the wheel displacement zus (for the road holding improvement,
see Sect. 15.3.2). The measurement outputs are the suspension deflection zdef and
suspension deflection velocity żdef (needed for computing the scheduling parameters
as well). To obtain the closed-loop performances (see Sect. 15.3.2), the weighting
functions on controlled outputs {Wz̈s ,Wzus} and disturbance input Wzr are used.

Notice that, due to the self-dependence between ρ1 and ρ2, the set of all
ρ̄ = (ρ1, ρ2) is not a polytope, as seen in Fig. 15.7. In this study, a polytopic ap-
proach is developed for the LPV control design (which leads to some conservatism).
As a consequence, ρ1 and ρ2 are considered as independent parameters and ρ̄
belongs to a polytope Θ whose vertices are ρ̄1 = (1,1), ρ̄2 = (−1,1), ρ̄3 = (−1,0),
ρ̄4 = (1,0).

Consider the augmented system (corresponding to Fig. 15.8) made of the plant
(15.21) and the weighting functions, represented by

ξ̇ = A ν (ρ̄)ξ +Bν
1 (ρ̄)w̄+Bν

2 u,

z̄ = C ν
1 (ρ̄)ξ +Dν

11(ρ̄)w̄+Dν
12u,

y = C2ξ +D21w̄, (15.22)
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Fig. 15.8 Block diagram for semi-active suspension control

where ξ =
(

xT xw
T
)T

, xw being the state vector of the weighting functions,
ρ̄ = (ρ1,ρ2) the vector of scheduling parameters. Note that ν represents the vector
of all weighting function parameters. The LPV controller is defined as follows:

K(ρ̄) :

(
ẋc

u

)
=

(
Aν

c (ρ̄) Bν
c (ρ̄)

Cν
c (ρ̄) Dν

c (ρ̄)

)(
xc

y

)
, (15.23)

where xc, y, and u are, respectively, the state, the input, and the output of
the controller associated with the system (15.22). All matrices have appropriate
dimensions.

Remark 15.4. Since ν represents the vector of the weighting function parameters,
it is used as an exponent in the notation of (15.22) and (15.23) to emphasize the
dependence of the generalized plant, and then of the controller, on the parameters
of the weighting functions.

H∞/LPV problem—The objective of the synthesis is to find an LPV controller
K(ρ) of the form (15.23) such that the closed-loop system is quadratically stable
and that, for a given positive real γ , the L2-induced norm of the operator mapping w̄
into z̄ is bounded by γ , i.e.,

∀ρ̄ ∈Θ ,
‖zw‖2

‖w‖2
≤ γ. (15.24)
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Here the polytopic approach with a quadratic Lyapunov function is employed. It
is stated that for known weighting functions and a suitable predefined real positive
scalar γ , the sufficient condition that solves the H∞/LPV problem is given by (15.25)
and (15.26) where the decision variables are X , Y , Â, B̂, Ĉ, and D̂ (see the detail of
the solution in [41]). It is worth noting that the weighting function parameter set ν
is present in the LMIs problem to cope with optimization purpose of the controller
(which is presented in Sect. 15.5.2).

⎡

⎢
⎢
⎣

Mν
11 (ρ̄i) ∗ ∗ ∗

Mν
21 (ρ̄i) Mν

22 (ρ̄i) ∗ ∗
Mν

31 (ρ̄i) Mν
32 (ρ̄i) −γIm ∗

Mν
41 (ρ̄i) Mν

42 (ρ̄i) Mν
43 (ρ̄i) −γIp

⎤

⎥
⎥
⎦≺ 0, (15.25)

[
X I
I Y

]
� 0 (15.26)

for i = 1 : 4,

where

Mν
11(ρ̄i) = A ν(ρ̄i)X +XA ν(ρ̄i)

T +B2Ĉ(ρ̄i)+ Ĉ(ρ̄i)
TBT

2 ,

Mν
21(ρ̄i) = Â(ρ̄i)+A ν(ρ̄i)

T +C T
2 D̂(ρ̄i)

TBT
2 ,

Mν
22(ρ̄i) = YA ν(ρ̄i)+A ν (ρ̄i)

TY + B̂(ρ̄i)C2 +C T
2 B̂(ρ̄i)

T,

Mν
31(ρ̄i) = Bν

1 (ρ̄i)
T +DT

21D̂(ρ̄i)
TBT

2 ,

Mν
32(ρ̄i) = Bν

1 (ρ̄i)
TY +DT

21B̂(ρ̄i)
T,

Mν
41(ρ̄i) = C ν

1 (ρ̄i)X +D12Ĉ(ρ̄i),

Mν
42(ρ̄i) = C ν

1 (ρ̄i)+D12D̂(ρ̄i)C2,

Mν
43(ρ̄i) = Dν

11(ρ̄i)+D12D̂(ρ̄i)D21.

The controller Kci at vertex i is then reconstructed as

Dν
c (ρ̄i) = D̂(ρ̄i),

Cν
c (ρ̄i) =

(
Ĉ(ρ̄i)−Dν

c (ρ̄i)C2X
)

M−T,

Bν
c (ρ̄i) = N−1

(
B̂(ρ̄i)−YB2Dν

c (ρ̄i)
)
,

Aν
c (ρ̄i) = N−1

(
Â(ρ̄i)−YA(ρ̄i)X −YB2Dν

c (ρ̄i)C2X
)

M−T

−Bν
c (ρ̄i)C2XM−T −N−1YB2Cν

c (ρ̄i),

(15.27)

where M, N are defined such that MNT = In −XY which can be solved through
a singular value decomposition and a Cholesky factorization. The global H∞/LPV
controller is then the convex combination of these local controllers.
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15.5.2 Controller Optimization Using Genetic Algorithms

According to the prescribed objectives in Sect. 15.3.2, the following weighting
functions are used for the H∞/LPV synthesis:

Wzr = 3× 10−2, (15.28)

Wf =
Ωf

s+Ωf
, (15.29)

Wz̈s = kz̈s

s2 + 2ξ11Ω11s+Ω11
2

s2 + 2ξ12Ω12s+Ω12
2 , (15.30)

Wzus = kzus

s2 + 2ξ21Ω21s+Ω21
2

s2 + 2ξ22Ω22s+Ω22
2 . (15.31)

Define the set of parameters

ν = [Ωf Ω11 Ω12 ξ11 ξ12 kz̈s Ω21 Ω22 ξ21 ξ22 kzus ]
T (15.32)

that, in the context of GAs, is a part of the decision vector. By experience, we have
chosen to let γ as a decision parameter in order to add more degrees of freedom, and
then to solve a suboptimal H∞ control problem.

In a usual H∞/LPV problem, the attenuation level γ is to be minimized to satisfy
the H∞ performance objectives. Thanks to the Genetic Algorithms optimization, the
provided methodology will rather allow here to minimize a cost function represent-
ing the true performance objectives. Therefore, the optimization problem of interest
relies on the minimization of this cost function and not on the minimization of γ .

Let us define the optimization problem for semi-active suspension control

min
{ν,γ}∈R12

+

JD (ν,γ) =

[
JD

Comfort (ν,γ)
JD

RoadHolding (ν,γ)

]

. (15.33)

Remark 15.5. The dimension of the searching space is 12× 1 because there are 11
parameters for the weighting functions ν and 1 attenuation level scalar γ . This space
can be made smaller than R12

+ . Effectively, we can define the bounds of each param-
eter, basing on the frequency range of interest at which the weighting functions
act. This is also an explanation for the question of why we use weighting function
parameter optimization instead of controller parameter optimization, specially when
the controller order is high.

Based on the remarks on the comfort and road holding performances in
Sect. 15.3.2, the two objectives are defined so that the vehicle body acceleration
at low and middle frequencies and the wheel displacement at high frequencies will
be minimized for each vertex of the considered polytope. Hence, in the optimization
problem 15.33, the following frequency-based objective functions are considered:
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JD
Comfort

=
4

∑
i=1

∫ 12

0
z̈s/zr( f )id f , (15.34)

JD
RoadHolding =

4

∑
i=1

∫ 20

10
(zus/zr( f )i)d f . (15.35)

Note that, in the equations above, “D” is used to differentiate these design objective
functions with the ones in Sect. 15.3.2 and the index “i” stands for the ith vertex
of the polytope Θ (see Fig. 15.7). The number of elements in each sum is four;
however, in this particular case, the polytope is symmetric in ρ1, only computations
at two vertices {1,4} or {2,3} are needed.

Remark 15.6. The feasibility of the LMIs (15.25) and (15.26) may be violated by
the “bad” decision vectors generated by GAs. The problem can be overcome by
repeating the crossover or mutation until the feasible solution is obtained. However,
a simpler way is to assign a large objective value (for instant JD = ∞) to these
infeasible solutions and then, they will be eliminated by the selection procedure
after some generations.

Remark 15.7. In many cases, to preserve the performance of the closed-loop system
with input saturation, a stable stabilizing controller is required. Other advantages
for the use of stable controllers concern the practical aspects. The stable controllers
are easier to be implemented than the unstable ones and the closed-loop system
(provided that the open-loop system is already stable, e.g., open-loop semi-active
suspension systems) remains stable even when the feedback sensors fail. For LTI
systems, this problem (usually called strong stabilization problem) has been studied
by some authors such as [5, 7], etc Similarly, for the H∞/LPV control of LPV
systems, to obtain a stable LPV controller, it suffices to ensure that all local
controllers at each vertex of the polytope are stable. In this study, the theoretical
solution for the existence of a stable LPV controller is not given. However, a
stable LPV controller can be obtained by eliminating the “unstable solutions”
corresponding to at least one unstable local controller during the synthesis. It can be
accomplished with GAs by simply choosing JD =∞ for “unstable solutions.” Due to
the “survival of the fittest” property, these “unstable solutions” will disappear after
some generations.

To sum up, the objective function using in GAs is chosen as follows.

Algorithm 3: Objective value assignment
if (15.25) and (15.26) are feasible and all Kci in (15.27) are stable then
Calculate JD using (15.34) and (15.35)
else
JD = ∞
end.
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Proposed Weighting Function Optimization Procedure for H∞/LPV Synthesis

• Step 1: Initiate with random positive weighting functions ν = ν0 and random
positive real γga = γ0

ga.
• Step 2: Solve the minimization problem of γ subject to the LMIs (15.25) and

(15.26) to compute the minimal real scalar γmin. Solve again the LMIs (15.25)
and (15.26) with the couple (ν,γ) where γ = γmin + γga. At the end of this step,
compute the objective function JD(ν,γ) using Algorithm 3.

• Step 3: Select the individuals.
• Step 4: Apply crossover and mutation to generate new generation: ν = νnew and

γga = γnew
ga .

• Step 5: Evaluate the new generation: If the criteria of interest (for example,
reaching the limit number of generation) are not satisfied, go to Step 2 with
ν = νnew and γga = γnew

ga ; else, stop and save the best individual νopt = νnew

and γopt = γnew
ga .

The genetic operations presented in Steps 3 and 4 can be done using efficient multi-
objective optimization algorithm like SPEA2 [47], NSGA-II [8].

Remark 15.8. In Step 2, to avoid the infeasibility of the LMIs (15.25) and (15.26)
resulting from the bad (i.e., too small) value of γ generated by GAs, γ will be
decomposed into two positive real elements γmin and γga, where γmin is the minimal
γ satisfying the LMIs (15.25) and (15.26), and γga is tuned by GAs. Due to the
convexity of the LMIs problem, the existence of γmin will ensure the feasibility of
LMIs (15.25) and (15.26) with γ = γmin + γga for all positive real γga. The minimal
value γmin can be found by using LMIs toolbox like Yalmip and Sedumi.

15.6 Numerical Analysis and Results

For simulation analysis, we use the quarter car Renault Mégane Coupé (RMC)
model (see [46]) with the parameters presented in Table 15.1. It is worth noting
that the spring used in this simulation has a nonlinear characteristic (see Fig. 15.9).

With the proposed method, the solution of the multi-objective problem (15.33) is
given by a Pareto set as in Fig. 15.10. Now the conflicting relation between comfort
and road holding criteria can be observed clearly from the figure.

Among the solutions in the Pareto set, two LPV controllers are chosen. One
is comfort oriented (belonging to Set 1) and the other is road holding oriented
(belonging to Set 2, because the solutions in Set 3 improve road holding only in high
frequencies). The parameters for the synthesis of these two controllers are found in
Table 15.2.

In the following, two different closed-loop control strategies as well as passive
open-loop ones for MR dampers are presented and considered as referenced
methods to evaluate the efficiency of the proposed LPV controllers.
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15.6.1 The Based-Lines

The well-known Skyhook [26] has been first proposed by Karnopp in 1974 and
up to now it is still widely used in many real applications. Recently, the Mixed
Skyhook-ADD [40] (see also [38] and references therein) has been proved to be
almost optimal for ride comfort. These two control strategies have been, however,
originally designed for linear dampers where the nonlinear characteristics (i.e., the
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Table 15.2 Parameters for H∞/LPV semi-active suspension design (obtained by genetic optimiza-
tion)

Scalar Filter Wz̈s Wzus

Controllers γmin − γga (×105) Ωf Ω11 Ω12 ξ11 ξ12 kz̈s Ω21 Ω22 ξ21 ξ22 kzus

LPV-Comfort 0.2−1.66 90 48.2 7.1 99 8.48 159 99.9 1.3 5.4 99 90.6
LPV-Road Holding 3.7−3.16 1.4 60.8 12.9 99.7 29.7 436 83.6 0.29 96 89 145

bi-viscous and the hysteretic behaviors) have not been taken into account. In [10],
the extended versions of the Skyhook and Mixed Skyhook-ADD were proposed for
MR dampers. We recall here these control methods.

15.6.1.1 Extended Skyhook for MR Dampers

The main idea of the Skyhook for linear suspension system is that the damper exerts
a force that reduces the velocity of the body mass żs. By using the same principle,
the modified Skyhook for MR damper will be as follows:

fI =

{
fmax if żsρ̂ > 0
fmin if żsρ̂ ≤ 0

, (15.36)

where ρ̂ = tanh(c1żdef + k1zdef).

15.6.1.2 Extended Mixed Skyhook-ADD (SH-ADD) for MR Dampers

It is well known that the Skyhook provides the best ride comfort at low frequency
while the ADD improves considerably ride comfort at high frequency. The Extended
Mixed SH-ADD algorithm guarantees the best behavior of both Skyhook and ADD
and is given as follows:

fI =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

fmax if (z̈2
s −α ż2

s ≤ 0∧ żsρ̂ > 0)∨
(z̈2

s −α ż2
s > 0∧ z̈sρ̂ > 0)

fmin if (z̈2
s −α ż2

s ≤ 0∧ żsρ̂ ≤ 0)∨
(z̈2

s −α ż2
s > 0∧ z̈sρ̂ ≤ 0)

, (15.37)

where ρ̂ = tanh(c1żdef + k1zdef).
The amount (z̈2

s − α ż2
s ) is the frequency-range selector and the SH-ADD

crossover frequency α = 2π fSHADD rad/s, where fSHADD = 2 Hz (see [40]).
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15.6.1.3 Passive MR Dampers

Beside the three controlled methods presented above, the three following passive
open-loop cases are also useful for the analysis:

• Soft MR damper where the controllable input fI = fmin

• Hard MR damper where the controllable input fI = fmax

• Nominal MR damper where the controllable input fI = ( fmin + fmax)/2 (i.e.,
when control input u = 0)

15.6.2 Frequency Domain Analysis

In this section, the evaluation in the frequency domain of referenced and proposed
methods is performed via the nonlinear frequency responses which are computed by
the “Variance Gain” algorithm [37]. This algorithm is simple and provides a good
approximation to frequency response.

Some general remarks can be done from Figs. 15.11 and 15.12:

• Between 0 and 2 Hz, the Hard MRD is the best strategy for both ride comfort and
road holding.
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Table 15.3 Optimal
controllers

Controllers 0–2 Hz 2–12 Hz 12–30 Hz

Comfort-oriented fI = fImax fI = fImin fI = fImin

Road holding-oriented fI = fImax fI = fImin fI = fImax

• Between 2 and 12 Hz, the Soft MRD is the best strategy for both ride comfort
and road holding.

• Between 12 and 30 Hz, the trade-off between ride comfort and road holding is
unavoidable. The best for ride comfort is the Soft MRD, the best for road holding
is the Hard MRD.

With the remarks above, the optimal solutions for ride comfort and road holding
can be roughly defined and once again, the conflict between two objectives, at high
frequency (12–30 Hz), can be seen from Table 15.3.

Some remarks can be made for the five strategies, in the frequency range of
interest 0–30 Hz.

The Nominal MRD and the Extended Skyhook provide medium performances for
both ride comfort and road holding.
The Extended Mixed SH-ADD is the best one for ride comfort. It approaches
the optimal solution of the comfort-oriented controller. As a consequence, this
controller does not guarantee a good road holding around the wheel resonance
which is more important than in other frequency ranges.
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The LPV–Road Holding is the best one for road holding.
The LPV–Comfort approaches very well the Extended Mixed SH-ADD from 3
to 30 Hz. At low frequencies 1–4 Hz, it is not so good but this is not so important
because, as mentioned before in Sect. 15.3.2, the human being is most sensible
to vehicle acceleration in the frequencies around 4–8 Hz.

The remarks above are summarized by Fig. 15.13. The performance criteria (15.10)
and (15.11) in Sect. 15.3.2 are calculated for each strategy and then are normalized
by performance values of the nominal MR damper and compared with the soft and
hard MRDs.

15.6.3 Time Domain Analysis

The road profile could be viewed as a random signal, because it is not predicted by
the vehicle. However, in practice, its bandwidth is limited. In this test, a road profile
is represented by an integrated white noise, band-limited within the frequency range
0–30 Hz (see Fig. 15.14).

To evaluate the performances of the strategies, the spectrum of vehicle acceler-
ation and dynamic tire deflection are depicted in Figs. 15.15 and 15.16. The results
obtained are coherent with the frequency domain analysis: the Extended Mixed
SH-ADD and LPV-Comfort are the best strategies for ride comfort, the LPV-Road
Holding and Hard MRD are the most suitable for the road holding improvement.
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Furthermore, the comfort in time domain can be evaluated, using the following
criterion:

RMSComfort =

√
∫ T

0 z̈2
s (t)dt
T

, (15.38)

where z̈s(t) is the filtered vehicle body acceleration (by the approximated ISO 2631
filter (15.9)) (m/s2) and T is the simulation time (s). In Fig. 15.17, the RMSComfort

values of different strategies, normalized by that value for the nominal damper,
are depicted. The results mentioned previously have been proved again. The LPV-
Comfort approaches the Extended Mixed SH-ADD.

15.7 Conclusion

In this chapter, an application of LPV control to semi-active suspensions has been
presented. The contribution of the chapter may be summarized as follows:

• An LPV control-oriented model of MR dampers is proposed where the bi-viscous
and hysteresis characteristics are taken into account. This model was validated by
experimental tests. It can be seen that the model provides a good approximation
of a real MR damper.
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• The quarter vehicle model equipped with the proposed MR damper model is
written in an LPV framework which can be used for LPV design (H∞, H2 or
mixed H∞/H2, etc.).

• A multi-objective optimization procedure using genetic algorithms that achieves
the desired suspension performances is also introduced. It leads to a generic
methodology to find a controller satisfying the required performance whatever
the criteria are.

• From the practical implementation point of view, as seen in Fig. 15.8, the
proposed control method is simple and easy to implement: a single relative
displacement sensor to measure the suspension deflection (the deflection velocity
can be deduced numerically from the deflection) is needed and the LPV controller
is stable.

The simulations on the nonlinear quarter vehicle model equipped with a validated
MR damper (in the frequency and time domains) have been analyzed. The results
have shown the interest of the proposed method: the obtained comfort-oriented and
road holding-oriented LPV controller can be then used with a switching rule which
can be adapted to different road conditions (in cities and suburbs).
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Chapter 17
Identification of Low-Complexity LPV
Input–Output Models for Control
of a Turbocharged Combustion Engine

Andreas Kominek, Herbert Werner, Maiko Garwon,
and Matthias Schultalbers

Abstract Complexity issues related to experimentally identified LPV models are
addressed, in particular the trade-off between model accuracy and number of
scheduling parameters. For this purpose, an existing identification algorithm for
LPV input–output models is combined with a parameter reduction technique based
on principal component analysis. The approach is illustrated with experimental
results on control of a turbocharged combustion engine. A low-complexity LPV
input–output model is identified and validated. After transforming this model
into state-space form—taking dynamic dependence on scheduling parameters into
account—an LPV gain-scheduling controller is designed and assessed in closed-
loop simulation with a validated nonlinear model.

17.1 LPV Models for Control of Combustion Engines

LPV models are often derived from accurate physical models [12], which can, how-
ever, be hard to obtain. Even when an LPV model can be constructed, the number of
scheduling parameters and the order may be high. Using ad hoc measures or model-
order reduction will reduce model accuracy. For this reason, black-box identification
of LPV models from measured input–output data is receiving increasing attention.
In this chapter, this problem is addressed, and ways of solving it are illustrated in a
case study. The control problem considered in this case study is air charge control
of a turbocharged gasoline engine. Its highly nonlinear nature makes the use of
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nonlinear control necessary and the combustion engine a suitable application for
LPV modeling and control.

A suitable model class for the identification of LPV systems in discrete time
is Input–Output (IO) models [6, 7, 9]. Using this class, identification methods
for linear time-invariant (LTI) systems can easily be extended to LPV system
identification. Controller synthesis, however, often requires an LPV model in State-
Space (SS) representation. For this reason, in this contribution an LPV-IO model is
identified, which can readily be transformed into LPV-SS representation. Subspace
identification of LPV-SS models could also be considered for this purpose. In
standard form, the latter used to suffer from the curse of dimensionality as reported
in [19]. Modified versions of subspace algorithms have been reported in [8, 20] to
overcome the curse of dimensionality. A comparison of IO and subspace methods
would be interesting but is not addressed in this chapter.

In [17], an LPV-IO black-box identification scheme was used to identify a valid
discrete-time description of a gasoline engine. This LPV-IO scheme is based on the
method presented in [6]. A similar LPV-IO gray-box identification was employed
in [21] for the identification of the air path of a turbocharged diesel engine based on
measurement data. By dividing the engine system into subsystems using a priori
knowledge of the system, each block was provided with its specific scheduling
signals. Using physical insight about the system structure can help to improve
system identification, but such gray-box identification schemes are in general not
transferable to other systems.

In this contribution, an LPV-IO black-box identification scheme is presented,
which relies only to a small degree on a priori knowledge about the system structure.
One problem addressed in this contribution is that LPV-IO black-box identification
can result in models with a high number of scheduling parameters.

The computational burden of controller synthesis techniques based on polytopic
LPV models depends exponentially on the number of scheduling parameters and on
the model order. This motivates the development of algorithms to construct LPV
models of low order and with low number of scheduling parameters for a given
nonlinear plant.

A principal component analysis based parameter reduction scheme, referred to
as parameter set mapping (PSM) [13], has been used in a number of studies for
parameter reduction, e.g., [1, 11]. A similar method for complexity reduction of
polytopic LPV models employing higher order singular value decomposition was
presented in [16]. In this contribution, a parametrization which is similar to the
one obtained by PSM is applied to approximate the scheduling functions with a
reduced number of parameters. This results in a nonlinear parametrization, which
is initialized by applying PSM and estimated by employing an iterative algorithm.
This algorithm is described in Sect. 17.6.

In the next section, the engine system used for the case study is introduced.
This is followed by some preliminaries about LPV-IO and LPV-SS model classes
in Sect. 17.3. An LPV-IO model structure is applied to identify an LPV-IO model
of the turbocharged combustion engine in Sect. 17.4. The obtained model has five
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scheduling parameters—too many for control based on a polytopic model. This
motivates the parameter reduction in Sect. 17.5. A strategy for parameter reduction
is applied to the case study in Sect. 17.6 leading to polytopic LPV models, suitable
for controller synthesis. Finally, a controller is synthesized based on the obtained
model in Sect. 17.7, which is tested in closed loop and compared to the industrial
standard controller. This chapter ends with a summary and conclusion in Sect. 17.8.

17.2 Charge Control of a Turbocharged Combustion Engine

The problem considered in this case study is charge control of a turbocharged
gasoline engine, which is highly nonlinear. It is an engine setting in a test car for
which experimental data and a validated nonlinear simulation model were supplied
by IAV GmbH.

A schematic diagram of the air path of the engine is shown in Fig. 17.1. The
air enters through the filter and is compressed by a compressor. The air flow into
the cylinders is regulated by a throttle. After the throttle, the air temperature is

Filter

Catalyst

Catalyst

T
urbine

C
om

pressor

Intercooler

pi

Throttle

Wastegate

Fig. 17.1 Schematic of the air path of the considered turbocharged combustion engine
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LPV
mth

pi neng

mac
wg

Fig. 17.2 Structure of the
plant model to be identified as
LPV model for controller
synthesis

cooled down by an intercooler before it enters the cylinders. The mass flow over
the throttle mth is considered as actuator variable for this system. The exhaust
coming from the cylinders drives a turbine, which in turn drives the compressor. A
bypass from the turbine is given by a wastegate, which leads part of the exhaust flow
directly to the catalysts. This bypass is regulated by a valve wg, which is a second ac-
tuator for this system. The controlled variable is the air charge mac of the cylinders.

The scheduling signals which are chosen to describe the nonlinear behavior of
the system are the pressure after the throttle (referred to as intake manifold pressure
pi) and the rotational speed of the engine neng. The plant model to be identified is
depicted in Fig. 17.2.

u =

[
mth

wg

]
, y = mac, ρ =

[
pi

neng

]
. (17.1)

For the identification and validation of the LPV models, experimental test data
were obtained. The data consist of measurements of the inputs u, the output y, and
the scheduling signals ρ , which are explained in (17.1). It was taken in a test car
in closed-loop operation with an industrial standard controller in the engine control
unit (ECU). The car was started and used with disengaged clutch. The driver used
the gas pedal to excite the engine system in as many maneuvers as possible to cover
the whole parameter and frequency range. The maneuvers were done twice to obtain
two data sets, one for identification and one for validation. Some measurements are
shown in Figs. 17.3 and 17.4.

Model classes which are suitable for identifying LPV models of nonlinear
systems and for controller synthesis are described in the following section.

17.3 Polytopic LPV State-Space and Input–Output Models

An LPV-SS model is given by

x(k+ 1) = Ar(ρ(k))x(k)+Br(ρ(k))u(k), (17.2)

y(k) =Cr(ρ(k))x(k)+Dr(ρ(k))u(k), (17.3)

where Ar(ρ(k)) : Rnρ → R
n×n, Br(ρ(k)) : Rnρ → R

n×nu , Cr(ρ(k)) : Rnρ → R
ny×n,

Dr(ρ(k)) : Rnρ →R
ny×nu . θ is a time-dependent parameter vector given as

θ (k) =
[
θ1(k) θ2(k) ... θnθ (k)

]T ∈ R
nθ , (17.4)
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which is assumed to be a function θ (k) = p(ρ(k)) of the scheduling signal vector
ρ , where the parameter function p : Rnρ �→ R

nθ is an analytic mapping. We refer to
θ as scheduling parameter and to p as scheduling function. For controller design, a
widely used synthesis tool requires a polytopic LPV representation, see e.g. [5]. One
advantage of this form is that it is less conservative compared to controller synthesis
based on LFR models, see [3]. For this approach, the model must be affine in the
parameters, so that it can be represented as

[
As(θ (k)) Bs(θ (k))
Cs(θ (k)) Ds(θ (k))

]
:=

[
As

0 Bs
0

Cs
0 Ds

0

]
+

nθ

∑
i=1

θi

[
As

i Bs
i

Cs
i Ds

i

]
. (17.5)

An affine LPV-SS model where θ ranges over a fixed polytope P is called a
polytopic LPV system. If θ i ≤ θi ≤ θ i, then the polytope can be represented in
terms of its nv = 2nθ vertices θv1 ,θv2 , . . . ,θvnv

. Then for any parameter θ (ka) that
can be represented as

θ (ka) =
nv

∑
i=1

αiθvi with
nv

∑
i=1

αi = 1, αi ≥ 0. (17.6)

the corresponding state-space model at θ (ka) can be represented as a convex
combination of the state-space models evaluated at the vertices as

[
As(θ (ka)) Bs(θ (ka))

Cs(θ (ka)) Ds(θ (ka))

]
=

nv

∑
i=1

αi

[
As(θvi) Bs(θvi)

Cs(θvi) Ds(θvi)

]
. (17.7)

In [18] it was shown that a straightforward conversion of the IO model class
suggested in [6] to a polytopic LPV-SS model leads to an SS model where—in
contrast to (17.5)—the system matrices at time k do not depend only on θ (k),
but also on past values of theta. In [17], different SISO IO model classes are
proposed, which are readily convertible to LPV-SS models that depend statically on
the scheduling parameters. The so-called Shifted Form is provided here for MIMO
systems, which requires the following model class for the identification of the IO
model:

A(ρ(·),q)y(k) = B(ρ(·),q)u(k)+ e(k), (17.8)

A(ρ(·),q) = I+
na

∑
i=1

Ai(ρ(k− i))q−i, (17.9)

B(ρ(·),q) =
nb

∑
j=0

B j(ρ(k− j))q− j, (17.10)

where A(ρ(·),q) means that A can be a function not only of ρ(k) but also of ρ(k−
1),ρ(k− 2),..., with Ai(·) and B j(·) defined as

Ai(ρ(k− i)) = Ai,0 +
nf

∑
l=1

Ai,l fl(ρ(k− i)), i = 1, ...,na, (17.11)
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B j(ρ(k− j)) = B j,0 +
nf

∑
l=1

B j,l fl(ρ(k− j)), j = 1, ...,nb. (17.12)

The na + nb + 1 parametric functions Ai(ρ) : Rnρ → R
ny×ny and B j(ρ) : Rnρ →

R
ny×nu to be identified are assumed to depend affinely on a known set of fixed basis

functions { f1, . . . , fnf}. This is done to achieve a model structure, where parameter
estimation is a linear optimization problem and to allow for a conversion to a
polytopic model. One possible choice of basis functions is the set of all multivariable
monomials up to a given total order in the scheduling signals ρ . If the scheduling
function is chosen to be the functional basis as

θ (k) = p(ρ(k)) = f (ρ(k)), (17.13)

the above can be written as

Ai(θ (k− i)) = Ai,0 +
nθ

∑
l=1

Ai,lθl(k− i), i = 1, ...,na, (17.14)

B j(θ (k− i)) = B j,0 +
nθ

∑
l=1

B j,lθl(k− j), j = 1, ...,nb (17.15)

with θ (k) =
[
θ1(k) θ2(k) ... θnθ

]T
and nθ = np = nf.

The obtained MIMO LPV-IO model can be converted to a MIMO LPV-SS model
of the form in (17.5). A strictly proper system is assumed, so Ds = 0. For na = nb = n
the state-space matrices of the identified model can be expressed as

As(θ (k)) =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

−A1(θ (k)) I [0] · · · [0]
... [0]

. . .
. . .

...
...

...
. . .

. . . [0]
−An−1(θ (k)) [0] · · · [0] I
−An(θ (k)) [0] · · · · · · [0]

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Bs(θ (k)) =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

B1(θ (k))
...
...

Bn−1(θ (k))
Bn(θ (k))

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦

, CsT =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

I
[0]
...
...
[0]

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(17.16)

If the model requires na �= nb, the state-space matrices can be expressed analogously
with the corresponding block matrices set to zero in As(θ ) and Bs(θ ), respectively.

The class of LPV-IO models in shifted form is not a subclass of the class of
standard LPV-IO models proposed in [6]. Instead, they are both subclasses of the
class of output affine models. The identification of LPV-IO models in shifted form
is employed without loss of generality compared to standard LPV-IO models.



452 A. Kominek et al.

17.4 Identification Results

For the identification of an LPV-IO model of the turbocharged engine system, a
sufficiently rich set of measurements of the inputs u, the scheduling signals ρ , and
the output y is required. The experiments employed to obtain them were described in
Sect. 17.2. For the model order, satisfactory results were obtained with na = nb = 2.

An additional feature, which needs to be selected for the identification, is the
basis { fl} in (17.13), which will be employed to describe the nonlinear behavior
of the system. For this purpose, a polynomial basis is used here, which consists
of all monomials in the scheduling signals up to a fixed total order. Such a
polynomial basis can be interpreted as the polynomial terms, which would appear
in a multivariate Taylor approximation of the unknown scheduling function. By
Taylors Theorem any at a point P k-times continuously differentiable function can
be approximated around P by a multivariate Taylor series expansion of degree k. An
approximation to any accuracy can be obtained, when k can be chosen arbitrarily
high. Such a polynomial basis can be described by the Veronese map defined in
[10]: the Veronese map vi : Rnρ �→ R

Mi(nρ )of degree i is the polynomial function of
order i defined as vi : [ρ1, ...,ρnρ ] �→ [...,ρ l , ...], where ρ l ranges over all monomials
of total degree i in ρ1, ..,ρnρ . The dimension Mi(nρ) of the range space is given as:

Mi(nρ) =
(nρ−1+i

i

)
.

A functional basis for the identification of LPV-IO models is given by all
monomials of maximum total degree d in the variables ρ1, ..,ρnρ :

fl(ρ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v1(ρ)l , l = 1, ...,M1(nρ)

v2(ρ)l , l = M1(nρ)+ 1, ...,M1(nρ)+M2(nρ)
...

...
vd(ρ)l , l = 1+∑d−1

k=1 Mk(nρ), ...,∑d
k=1 Mk(nρ),

, (17.17)

where vi(ρ)l is the lth element of the vector vi(ρ). The total number of basis
functions is then nf = ∑d

k=1 Mk(nρ).
When this is applied to the case study with the two scheduling signals ρ1 = neng,

ρ2 = pi and d = 2, we have:

f (ρ) = [v1(ρ),v2(ρ)]T = [ρ1,ρ2,ρ2
1 ,ρ1ρ2,ρ2

2 ]
T.

Now all the input to the identification algorithm is available. The validation
accuracy can be evaluated for single-output systems by the best fit rate (BFR)
according to [14]:

BFR = 100%.max

(
1− ‖Y − Ŷ‖

‖Y −Ym‖ ,0
)
, (17.18)

where Y is a column vector containing the measurements reserved for validation,
Ym is a column vector containing the mean of Y and Ŷ is the approximation of
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Fig. 17.5 Cross validation of the identification result with five scheduling parameters

Y obtained by open-loop simulation with the identified model. The identification
result is depicted in Fig. 17.5. The zoom into the trajectory shows that the identified
model follows the dynamics very well and the BFR of 81.2% shows a good fit.
The model is considered accurate enough for controller synthesis, however the
complexity of the resulting polytopic model is with five parameters too high for
a practical implementation.

17.5 Parameter Reduction

A first attempt to complexity reduction could be PSM. The result of a parameter
reduction by employing the method proposed in [13] to the above model is shown
in Fig. 17.6. It is shown that the number of parameters of the LPV model can be
reduced to two parameters at the cost of a lower BFR of 67.8%. PSM has previously
been applied to LPV models, which were obtained by either physical modeling
or gray-box modeling. In these models, the specific scheduling parameters were
obtained by the physical relationships. In the context of black-box identification,
the scheduling parameters are obtained by applying the basis functions { fl} to the
scheduling signals ρ . The PSM method approximates the trajectories of a high
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Fig. 17.6 Cross validation of the identification result with two scheduling parameters

number of scheduling parameters nθ by a lower number of scheduling parameters
nφ . This method is based on the information contained in the variation of the
individual parameters; it does, however, not consider their relative significance for
the plant dynamics.

In (17.8)–(17.15), the complexity, given by the number of scheduling parameters,
results from the definition of the scheduling parameter vector as θ (k) = p(ρ(k)) =
f (ρ(k)). To take a closer look, (17.11) and (17.12) are repeated:

Ai(ρ(k− i)) = Ai,0 +
nf

∑
l=1

Ai,l fl(ρ(k− i))
︸ ︷︷ ︸

θl (k−i)

, i = 1, ...,na, (17.19)

B j(ρ(k− j)) = B j,0 +
nf

∑
l=1

B j,l fl(ρ(k− j))
︸ ︷︷ ︸

θl(k− j)

, j = 1, ...,nb. (17.20)

In this case, the number of scheduling parameters is given by nθ = nf. If the number
of basis functions nf is very high, one might consider selecting a different scheduling
parameter vector.
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A definition of a low-complexity scheduling parameter vector φ is

Ai(ρ(k− i)) = Ai,0 +

nφ

∑
l=1

Ai,l p̃l(ρ(k− i))
︸ ︷︷ ︸

φl(k−i)

, i = 1, ...,na, (17.21)

B j(ρ(k− j)) = B j,0 +

nφ

∑
l=1

B j,l p̃l(ρ(k− j))
︸ ︷︷ ︸

φl (k− j)

, j = 1, ...,nb (17.22)

with
φl(k) := p̃l(ρ(k)) :=Uc f (ρ(k))+ 1 (17.23)

with a coefficient matrix Uc ∈R
nφ×nf , the vector of basis functions f (ρ)∈R

nf and 1
being a vector of ones with appropriate dimensions. This model class is still the class
of shifted LPV-IO models, because (17.21) and (17.22) are equivalent to (17.19) and
(17.20). This can easily be shown by renaming the basis functions. Nevertheless, the
form of low-complexity LPV IO models in (17.21)–(17.23) illustrates an approach
to identification of low-complexity LPV-IO models. In the standard approach, the
LPV-IO model is identified with the basis functions fl , l = 1, ...,nf, which are
employed to describe the nonlinear relationship between the scheduling signals
ρ and the systems input u and output y. Consequently, the number of scheduling
parameters indicating model complexity is nθ = nf. The low-complexity approach
aims at identifying a smaller set of basis functions p̃l , l = 1, ...,nφ as a weighted
sum of the original basis functions fl , l = 1, ...,nf. When such a basis is found
with nφ < nf, the complexity can be reduced by identifying a model with the basis
p̃l , l = 1, ...,nφ . Such a parametrization can be computed by employing PSM, which
was applied to the case study in the previous section. As reasoned there, the reduced
parameters obtained by employing PSM can be further optimized by an iterative
nonlinear optimization, which is further described in the next section.

17.6 Identification of Low-Complexity Input–Output
LPV Models

A flow diagram of the algorithm is given in Fig. 17.7. The individual steps are
described in the following.

Inputs to the algorithm are measured trajectories of the input u, the output
y, and the scheduling signals ρ , as well as a functional basis { fl}. After the
data preparation step, the functional basis is evaluated, resulting in the scheduling
parameter vector θ . Then PSM is applied to θ to obtain a mapping p̃l on reduced
parameters φ . This mapping is used as an initialization and further improved using
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Fig. 17.7 Flow diagram of
identification procedure
initialized by PSM

a nonlinear optimization method like the simplex method. This optimization is
applied iteratively. The decision variables for nonlinear optimization are given by
the elements of Uc ∈ R

nφ×nf from (17.23). The minimization problem, which is
solved by a downhill simplex method, is given by

min
Uc

BFR. (17.24)

To compute the cost function, a linear regression is performed, which for a fixed
mapping p̃l determines the set of coefficients given in (17.21) and (17.22). The
resulting LPV-IO model is simulated in open-loop and the BFR is computed to
evaluate the cost function for the nonlinear optimization.

The results of the identification are shown in Fig. 17.8. A BFR of 81.0% is
considered satisfactory for controller synthesis. The plot of the zoom into the
trajectory for comparison to the other two methods shows a significant improvement
compared to the model obtained by PSM.

The optimized set of parameters for the coefficient matrix Uc is

Ucopt =

[−0.8338 −0.1925 0.5109 −0.3281 −0.3224
−0.1210 −0.0589 −0.0694 −0.1891 −0.1308

]
. (17.25)

This shows that all basis functions are contributing to the scheduling functions,
but it can be concluded, that the second basis function, which is ρ2, is less significant
than the first being ρ1.
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Fig. 17.8 Identification results resulting from the proposed algorithm

17.7 Controller Synthesis and Closed-Loop Results

The identified IO model has two scheduling parameters nθ = 2. It is converted to a
polytopic LPVSS model of the form (17.5) using (17.16). Polytopic LPV controller
synthesis methods demand a further transformation of the model into a vertex model
given in (17.7). Resulting from nθ = 2, four vertices are obtained. These vertices
are substituted in the polytopic model (17.5) to obtain the vertex models (17.7). The
obtained model has a parameter varying system matrix A(φ), a parameter varying
input matrix B(φ), and constant output matrices C and D, resulting from (17.16).
The controller synthesis method employed in the following requires the input matrix
B(φ) of the LPV model to be constant. Input weighting filters are used as suggested
in [4] to obtain an LPV model of the plant with a constant input matrix B(φ) = B.

The vertex model (17.7) is a convex combination of LTI systems. In norm-
optimal controller synthesis based on polytopic models for each of these vertices
a generalized plant is constructed.

LPV controller synthesis, using a fixed Lyapunov function as in [5], turned
out to be too restrictive for mixed-sensitivity design for the considered engine
model. Therefore, a method of dilated LMIs, a controller synthesis allowing for
parameter varying Lyapunov functions, was employed. An efficient method of using
a parameter varying Lyapunov function for controller synthesis is explained in [15].
In this paper, a robust controller for an uncertain system is designed using LMI
techniques. This method was applied to LPV systems in [2].
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Fig. 17.10 Closed-loop simulation results: dash-dotted: reference, dashed: simulation, solid:
measurements

For the case study considered in this chapter, the controller was tuned by
evaluating the sensitivities and the closed-loop step responses of the LPV-SS model
evaluated at the vertices and adapted in closed-loop simulations with the nonlinear
model. The performance of the controller is finally evaluated through simulations
with the validated nonlinear model. The closed-loop system is depicted in Fig. 17.9,
showing the LPV controller, which is gain scheduled by the scheduling signals and
the engine model to simulate the plant. The closed-loop simulation results are shown
in Fig. 17.10. The dash-dotted line shows the reference given by the ECU. In the two
peaks, the reference cannot be followed very tightly due to physical limitations as
can be seen, when comparing the reference to the measured output obtained by
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the industrial standard controller of the ECU (solid line). The simulation results
obtained by the new controller are shown by the dashed line. By comparing it to the
measurement, a very similar performance can be observed. For reference with neng,
one of the scheduling signals is shown.

17.8 Conclusion and Future Work

An LPV identification scheme has been proposed, which provides an easily applica-
ble tool for low-complexity black-box LPV-IO model identification. Identification
results based on experimental data show that the combination of PSM with LPV-IO
identification is very promising, if extended by an additional nonlinear optimization.
Closed-loop simulation results suggest that based on the obtained models, gain-
scheduled controllers can be designed. Tests of the controller in experiment are
currently being prepared.
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6. Bamieh B, Giarré L (2002) Identification of linear parameter varying models. Int J Robust
Nonlinear Contr 12(9):841–853

7. Boonto S, Werner H (2010) Closed-loop identification of LPV models using cubic splines
with application to an arm-driven inverted pendulum. In: Proceedings of the American control
conference, Baltimore, USA, pp 3100–3105

8. Felici F, Wingerden J, Verhaegen M (2007) Dedicated periodic scheduling sequences for LPV
system identification. In: Proceedings of the 8th European control conference, pp 4896–4902
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Chapter 16
LPV H∞ Control for Flexible Hypersonic Vehicle

Hunter D. Hughes and Fen Wu

Abstract This chapter demonstrates the method to synthesize and simulate an H∞
linear parameter-varying (LPV) controller for a flexible air-breathing hypersonic
vehicle (HSV) model. The output feedback design used velocity tracking for both
the flexible and rigid body hypersonic vehicle models. A parametric study was
conducted to determine the number of gridding points in the parameter space and the
parameter variation rate limits in the system. The study reveals a 7× 7 grid ranging
from Mach 7 to Mach 9 in velocity and from 70,000 ft to 90,000 ft in altitude, and
a parameter variation rate limit of [.1 200]T is preferable. The resulting H∞ robust
performances were γ = 113.2146 for the flexible body case and γ = 83.6931 for
the rigid body case.The H∞ LPV controllers were applied to the flexible nonlinear
plant model. The results show that the controller is robust to disturbance, parametric
uncertainty, and modeling errors for the tracking and regulation states.

16.1 Introduction to Hypersonic Vehicle Controls

Researchinto air-breathing hypersonic vehicles started in the 1960s and continued
through the 1990s with the National Aerospace Plane [5, 6]. Hypersonic vehicles
provide several possibilities that current technology cannot achieve. They are being
considered as a favorable means of reaching both low Earth orbit, and affordable,
reliable outer space access [5, 6, 14, 20, 36]. Hypersonic vehicles have also been
proposed as a means of providing a quick response to global threats [20, 36].
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Fig. 16.1 Hypersonic vehicle schematic drawing (a) Isometric view (b) Side view

It has even been suggested that hypersonic vehicles could be used in commercial
and military applications to reduce flight times since hypersonic vehicles have
the ability to carry larger payloads (due to the requirement of fuel and oxygen
for rockets as opposed to just fuel for the hypersonic vehicle) than the equivalent
rocket powered systems [15, 28]. More recently, NASA has successfully designed
and flown a hypersonic aircraft X-43A. The X-43A is 12 ft long and incorporates
an integrated scramjet engine. The top recorded speed of X-43A test flight was
Mach 9.6, which was achieved in November, 2004 over the Pacific ocean west of
California [19, 20, 34].

Hypersonic vehicle design requires a highly integrated approach which causes
many significant design challenges for control engineers. For hypersonic flight,
an airframe with a highly integrated scramjet is required for optimum perfor-
mance [6, 36]. Moreover, deriving models and control systems for hypersonic
vehicle can be very difficult. Attempts to provide more integrated approaches to
modeling and controlling flexible aircraft have been under way for some time
[24]. Figure 16.1a provides a schematic drawing on the basic design and layout
of a hypersonic vehicle. Notice the scramjet on the bottom of the vehicle. This
particular configuration shows a canard on the front of the vehicle. Figure 16.1b
shows how the scramjet and integrated airframe work together. The bow shock off
the nose of the hypersonic vehicle acts as a compression stage to the scramjet. This
is essential to generate the proper pressure and flow rate needed in maintaining the
combustion to produce the thrust for hypersonic flight. The offset of the scramjet
causes a strong coupling between the thrust, lift, drag, and pitching moment of the
vehicle [19,36]. Moreover, the vehicle flexibility must also be considered since it is
long and slender with a relatively light weight [20]. This flexibility will change the
bow shock position which in turn affects the propulsion of the hypersonic vehicle.
Additionally, the overall drag and lift for the vehicle will be affected. Therefore, the
flexible nature of the hypersonic vehicle must be included in the construction of the
HSV model [20, 28, 36].

The modeling of hypersonic vehicles has been an ongoing research topic. One
of the earlier studies in this area was performed by Shaughnessy et al. [30]. After
the work by Shaughnessy et al., Schmidt and his coworkers have contributed to the
advancement of hypersonic vehicle dynamic modeling [29]. Their study recognizes
the strong couplings between the airframe, the scramjet engine, and the elastic
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modes of the vehicle. It is suggested that the use of a control effector to change
the diffuser area ratio of the hypersonic vehicle may be necessary to maintain stable
combustion. They also discovered that the actuation of the diffuser area ratio must
be of the same bandwidth or more than the fuel flow rate in the combustion chamber.
The functionality of scramjet is most directly affected by the pitch control inputs to
the airframe.

More recently, Chavez and Schmidt have made an effort to model the air-
breathing hypersonic vehicle [10]. This work provides the foundation of the HSV
model used in this chapter. The conclusion of their study is that hypersonic
vehicles are dependent upon both aerodynamic and propulsive effects. Since the
hypersonic vehicle is elastic, the deformation of the vehicle’s forebody and its
pitch response will affect the inlet conditions of the propulsion system. This will
cause disturbances in the engine if this is not properly modeled. They simplified the
hypersonic modeling problem by using two-dimensional Newtonian impact theory
to characterize the aerodynamic pressure distribution. Nevertheless, the studies by
Bolender and Doman [5, 6] have shown that the impact theory does not accurately
capture the location of the shock wave for all flight conditions.

Bilimoria and Schmidt have also worked on the flexible hypersonic vehicle
model [3]. In their study, they attempt to describe the hypersonic vehicle dynamics
using the Lagrangian approach. This modeling effort was an attempt at developing
a complete usable set of kinematic equations for the hypersonic vehicle. Rigid body
motion, elastic deformation, fluid flow, rotating machinery, wind, and the curvature
of the Earth were all considered in their study.

Similarly, Mirmirani et al. have managed to incorporate many of the coupled
dynamics and physics of the hypersonic vehicle using a computational fluid
dynamics (CFD) approach [25]. Their approach uses a high fidelity CFD based
model in conjunction with multi-physics software to model the dynamics of the
hypersonic vehicle. It gives a lot of insight into the different coupled parameters
of the hypersonic vehicle, but does not provide a closed form set of equations for
control synthesis.

There are currently many different control techniques that have been proposed
for the hypersonic vehicle. NASA researchers suggested using classical controls
and simple gain scheduling for the control of their hypersonic vehicle [12].
Moreover, an optimal controller for the hypersonic vehicle was developed by Parker
et al. [28]. This control design incorporates the high fidelity plant model introduced
by Bolender and Doman [5], and applies an inner loop feedback linearization with
an outer loop LQR controller with integral augmentation. Groves et al. proposed
a control technique for the hypersonic vehicle that uses a linear approximation for
the HSV around a trim condition and an LQR controller [20]. These controllers are
only applied to a single linearized equilibrium position, and therefore have a limited
operating range and limited robust capabilities. Also, it is desirable to use output
feedback control algorithm for the HSV.

The work done by Xu et al. attempted to use an adaptive sliding mode controller
with an observer for output feedback [38]. This method is robust, but requires very
large control forces. It is also assumed that the hypersonic vehicle dynamics are
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rigid body. The work done by Mooij also used a rigid body controller [26] and
incorporated a model reference adaptive control (MRAC) algorithm. The designed
controller does not guarantee stability of the HSV, and requires tuning of weight
functions. These control algorithms suffer from the lack of a realistic representation
of the true hypersonic vehicle dynamics. The work by Gibson et al. looked into
the use of adaptive control for a hypersonic vehicle in the presence of modeling
uncertainty [17]. Their study examined the effects of uncertainty but used a limited
range of operation for the vehicle. Fidan et al. have done work on the longitudinal
motion control of a hypersonic vehicle based on linear time-varying models with
adaptive and nonlinear control systems; however, it is purely a mathematical study
[13]. There are no simulated data to show the results of this study.

The work done by Buschek and Calise, as well as Gregory et al., investigated
the application of H∞ and μ-synthesis control algorithms to the hypersonic vehicle
[8, 9, 18]. The study by Gregory et al. considered two controllers: the standard H∞
controller and a μ-synthesis controller with a structured uncertainty block. Their
study showed that the μ-synthesis controller had a better performance than the H∞
controller when actuator uncertainty was incorporated into the control design [18].
Similar studies by Buschek and Carlise also confirmed that μ-synthesis has good
robust performance properties [8, 9].

The work done by Sigthorsson et al. investigates nonlinear tracking control for an
overactuated hypersonic vehicle with steady-state constraints [31]. Their study uses
state feedback LQR control for stabilization and optimization of steady-state control
in both constrained and unconstrained cases. Though there is the potential for
some robust capabilities with this method, it does not demonstrate that the system
will be robust. Robust nonlinear control of a hypersonic aircraft was developed
by Wilcox et al. in the presence of aerothermal effects by using temperature-
dependent parameter-varying state-space models [35]. This controller is supposed
to be robust to sensor noise, exogenous perturbations, parametric uncertainty, and
plant nonlinearities, but there is no simulation results available to back up the theory.

The work done by Jankovsky et al. involves applying output feedback control to
the hypersonic vehicle model as well as investigating the need for proper sensor
placement [22]. They proposed two controllers: the first is an output feedback
controller that relies on an observer to reconstruct the full-state information of
the HSV, and the second is a controller using robust output feedback to ensure
stabilization without an observer. Their study has suggested that gain scheduling
or adaptive control may be able to yield an improved performance for the HSV
output feedback problem.

Linear parameter-varying (LPV) control techniques have been applied to the
flexible hypersonic vehicle thermocontrol problem in the past [23]. This technique
involved using a multiloop controller where the inner loop controller was an LPV
controller to augment active structural damping in the aeroelastic modes while
the outer loop was a traditional rigid body aircraft controller. This multi-loop
control technique is successful in using LPV to control the hypersonic vehicle
thermodynamics, but the research does not go further to investigate attitude and
velocity control of HSV.
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This chapter will design and implement an LPV H∞ controller for the longi-
tudinal dynamics of the flexible air-breathing hypersonic vehicle as modeled by
Bolender and Doman [4, 6]. The output feedback LPV controller will be developed
in this regard. Additionally, this chapter will investigate the feasibility of treating
aircraft flexibility as a disturbance to the system by synthesizing a controller
using the rigid body HSV model and simulating the results on the flexible body
HSV dynamics. The effect of disturbance and parametric uncertainty will also be
investigated to show the robustness of the proposed control technique. It should be
noted that more extensive study might be needed before the implementation of such
a controller on an actual hypersonic vehicle.

The notations used throughout the chapter are fairly standard. R presents the set
of real numbers; Rn stands the n-dimensional real vector set; Rm×n is the set of
real m×n matrices. Sn×n will be used to denote real, symmetric n×n matrices, and
Sn×n
+ for positive definite matrices. For two integers k1,k2, k1 < k2, it will be denoted

that I[k1,k2] = {k1,k1 + 1, · · · ,k2}. Given P ⊂ Rs as a compact set, we define the
parameter ν-variation set as

F ν
P :=

{
ρ ∈C1(R+,Rs) : ρ(t) ∈ P,vk ≤ ρ̇k ≤ v̄k,k = 1,2, · · ·s,∀ t ∈ R+

}

For x ∈ Rn, its Euclidean norm is ‖x‖ := (xTx)1/2. L2 is the space of square-

integrable signals such that for any x ∈ L2, ‖x‖2 :=
(∫ ∞

0 xT(t)x(t)dt
) 1

2 < ∞. The
H∞ norm (more precisely, L2 gain) of a stable LPV system Gρ with input d and
output e is defined as

‖Gρ‖∞ = sup
u∈L2,‖u‖2 �=0

sup
ρ(·)∈F ν

P

‖e‖2

‖d‖2

16.2 Review of LPV Control Techniques

In this section, some background knowledge of LPV control theory will be provided.
More details can also be founded in [1, 2, 37].

The LPV system Pρ is a class of linear systems with its state-space matrices
depending continuously on a time-varying vector ρ(t)

ẋ(t) = A(ρ(t))x(t)+B1(ρ(t))d(t)+B2(ρ(t))u(t), (16.1)

e(t) =C1(ρ(t))x(t)+D11(ρ(t))d(t)+D12(ρ(t))u(t), (16.2)

y(t) =C2(ρ(t))x(t)+D21(ρ(t))d(t)+D22(ρ(t))u(t) (16.3)

where the state x ∈ Rn. u is control input and y is measured output. d is disturbance
and e is controlled output. It is assumed that the scheduling parameter ρ evolves
continuously over time and its range is limited to a compact set ρ ∈ P ⊂ Rs.
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In addition, its time derivative is bounded and satisfies the constraint νk ≤ ρ̇k ≤ ν̄k,
k = 1,2, · · · ,s. Moreover, it is assumed that

(A1) The matrix triple (A(ρ),B2(ρ),C2(ρ)) is parameter-dependent stabilizable
and detectable

(A2) The matrices D21(ρ) and DT
12(ρ) have full-row rank for all ρ ∈ P

(A3) D22(ρ) = 0

For LPV plant, the parameter ρ is measurable in real time. Therefore, it is
possible to construct the LPV controller whose dynamics adjust according to the
variation in the plant. To this end, consider the LPV output feedback controller Kρ
in the form of

ẋk(t) = Ak(ρ(t), ρ̇(t))xk(t)+Bk(ρ(t))y(t), (16.4)

u(t) =Ck(ρ(t))xk(t)+Dk(ρ(t))y(t) (16.5)

where xk ∈ Rnk . The state dimension nk is yet to be determined. Note that the
controller gain will be scheduled by parameter ρ and its derivative ρ̇ in general.

Using a parameter-dependent quadratic Lyapunov function V (x) = xT
clP(ρ) xcl,

the solution of the H∞ LPV output feedback synthesis problem [2, 37] is to find a
pair of continuously differentiable matrix functions R(ρ),S(ρ)∈ Sn×n

+ which satisfy

[
NR(ρ) 0

0 I

]T

⎡

⎢
⎢
⎢
⎢
⎣

{
A(ρ)R(ρ)+R(ρ)AT(ρ)

−∑s
i=1{ν i,ν i} ∂R

∂ρi

}

R(ρ)CT
1 (ρ) B1(ρ)

C1(ρ)R(ρ) −γI D11(ρ)
BT

1 (ρ) DT
11(ρ) −γI

⎤

⎥
⎥
⎥
⎥
⎦

×
[

NR(ρ) 0
0 I

]
< 0 (16.6)

[
NS(ρ) 0

0 I

]T

⎡

⎢
⎢
⎢
⎢
⎣

{
AT(ρ)S(ρ)+ S(ρ)A(ρ)

+∑s
i=1{ν i,ν i} ∂S

∂ρi

}

S(ρ)B1(ρ) CT
1 (ρ)

BT
1 (ρ)S(ρ) −γI DT

11(ρ)
C1(ρ) D11(ρ) −γI

⎤

⎥
⎥
⎥
⎥
⎦

×
[

NS(ρ) 0
0 I

]
< 0 (16.7)

[
R(ρ) I

I S(ρ)

]
≥ 0 (16.8)

for all ρ ∈ P . NR(ρ) = ker
[
BT

2 (ρ) DT
12(ρ)

]
, NS(ρ) = ker

[
C2(ρ) D21(ρ)

]
. After

solving the synthesis condition, one nth-order LPV controller can be constructed as
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Ak(ρ , ρ̇) =−N−1(ρ)
{

ÂT(ρ)+ S(ρ)
[
Â(ρ)+ B̂2(ρ)F(ρ)+L(ρ)Ĉ2(ρ)

]
R(ρ)

+
s

∑
i=1

(
ρ̇i

∂S
∂ρi

)
R(ρ)+

1
γ

S(ρ)
[
B̂1(ρ)+L(ρ)D̂21(ρ)

]
Dt(ρ)B̂T

1 (ρ)

+
1
γ

ĈT
1 (ρ)Dh(ρ)

[
Ĉ1(ρ)+ D̂12(ρ)F(ρ)

]
R(ρ)

}
M−T (ρ), (16.9)

Bk(ρ) = N−1(ρ)S(ρ)L(ρ), (16.10)

Ck(ρ) = F(ρ)R(ρ)M−T (ρ), (16.11)

Dk(ρ) = Π(ρ), (16.12)

where M(ρ)NT(ρ) = I −R(ρ)S(ρ). F(ρ),L(ρ) and Π(ρ) are defined as

F(ρ) =−[DT
12(ρ)Dh(ρ)D12(ρ)

]−1 [
DT

12(ρ)D
T
h (ρ)Ĉ1(ρ)+ γB̂T

2(ρ)R
−1(ρ)

]
,

L(ρ) =−[B̂1(ρ)DT
t (ρ)D

T
21(ρ)+ γS−1(ρ)ĈT

2 (ρ)
][

D21(ρ)Dt(ρ)DT
21(ρ)

]−1

Π(ρ) =−D̂12(ρ)
{[

I − 1
γ2 D11(ρ)(I − D̂21(ρ)D21(ρ))DT

11(ρ)

× (I−D12(ρ)D̂12(ρ))
]−1

D11(ρ)
}

D̂21(ρ)

with

Dt(ρ) =
[

I − 1
γ2 D̂T

11(ρ)D̂11(ρ)
]−1

,

Dh(ρ) =
[

I − 1
γ2 D̂11(ρ)D̂T

11(ρ)
]−1

,

Â(ρ) = A(ρ)+B2(ρ)Π(ρ)C2(ρ)+
1
γ2 B̂1(ρ)D̂T

11(ρ)Dh(ρ)Ĉ1(ρ),

B̂1(ρ) = B1(ρ)+B2(ρ)Π(ρ)D21(ρ),

B̂2(ρ) = B2(ρ)+
1
γ2 B̂1(ρ)D̂T

11(ρ)Dh(ρ)D12(ρ),

Ĉ1(ρ) =C1(ρ)+D12(ρ)Π(ρ)C2(ρ),

Ĉ2(ρ) =C2(ρ)+
1
γ2 D21(ρ)D̂T

11(ρ)Dh(ρ)Ĉ1(ρ),
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D̂11(ρ) = D11(ρ)+D12(ρ)Π(ρ)D21(ρ),

D̂12(ρ) =
[
DT

12(ρ)D12(ρ)
]−1

DT
12(ρ),

D̂21(ρ) = DT
21(ρ)

[
D21(ρ)DT

21(ρ)
]−1

The LPV synthesis condition is given by the set of infinite-dimensional linear
matrix inequalities (LMIs) as a convex problem. The optimal H∞ performance of
closed-loop Pρ with Kρ can be obtained by minimizing the performance level γ
using efficient interior point optimization techniques. Nevertheless, the optimization
variables are matrix functions R(ρ) and S(ρ). They must be parameterized using a
finite number of basis functions [37] as

R(ρ) =
Nf

∑
i=1

fi(ρ)Ri S(ρ) =
Ng

∑
j=1

g j(ρ)S j

where fi(ρ), i = 1,2, · · · ,Nf and g j(ρ), j = 1,2, · · · ,Ng are user specified basis
functions. For the special cases when R(ρ) or S(ρ) is constant, the controller gains
will not depend on ρ̇ , but on ρ only. Furthermore, it is noted that the synthesis
condition is specified over the entire parameter set P . This means that the LMIs
involve an infinite number constraints. To resolve this problem, the parameter space
will be gridded such that a finite number of points for each parameter in the system
will be chosen to represent the system as a whole. It is important to realize that each
of these discretized parameter points will represent a linear model of the system.
Therefore, these gridding points will be chosen in a way such that the discrete
points are close enough that the range for which each linearized region is valid
overlaps with another gridding point. Once the parametrization and gridding have
taken place, the LPV synthesis problem can be solved.

16.3 Hypersonic Vehicle Modelling

This section will present the nonlinear equations of motion for the hypersonic
vehicle as originally derived by Blender and Doman [6]. Based on this set of
nonlinear equations of motion, an LPV model will be derived.

16.3.1 Nonlinear Equations of Motion

By assuming the structure of vehicle body as a free–free beam, it decouples the
rigid body dynamics from the elastic modes and the equation of motion consists
of a set of equations for the traditional rigid body motion and a set for the flexible
mode vibrations [5]. As a result, the longitudinal equation of motion of the flexible
hypersonic vehicle is given by
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V̇t =
T cosα −D

m
− gsin(θ −α), (16.13)

α̇ =
−L−T sin α

mVt
+

g
Vt

cos(θ −α)+Q, (16.14)

Q̇ =
Mp

Iyy
, (16.15)

ḣ =Vt sin(θ −α), (16.16)

θ̇ = Q, (16.17)

η̈i =−2ζiωni η̇i −ω2
ni

ηi +Ni, i = 1,2, · · · ,n, (16.18)

where Vt,α,Q,h,θ are true airspeed, angle-of-attack, pitch rate, altitude, and pitch
attitude of the vehicle. T,D,L are thrust, drag, and lift forces. Mp is the pitching
moment and Iyy is the moment of inertia. The elasticity of the vehicle is described
by the flexible modes in (16.18), where ηi,ωi,ζi, and Ni are generalized flexible
coordinate, natural frequencies, and damping coefficients of the ith elastic mode
and its associated modal force.

The vibrational mode of fuselage is derived using assumed mode method [36],
which determines the evolution of natural frequencies and their associated mode
shapes. This technique chooses the mode shapes of a simple structure (e.g., a free–
free beam) as a set of basis functions to generate approximated mode shapes for
the actual structure and accounts for the actual mass and stiffness distribution of
the true structure. Typically, as the number of basis functions increases, the first
few approximated natural frequencies and mode shapes will converge to their true
values quickly. It is necessary to use a model with less elastic modes as additional
flexible states will make the controller synthesis more complicated. Bolender and
Doman used only three vibrational modes in their study. Williams et al. have shown
that there is a good convergence of the first natural frequency with only three elastic
modes [6, 36]. Simulation and open-loop analysis also verify that three modes will
accurately capture the flexible effects of the hypersonic vehicle [21].

As a result, the state variables of HSV longitudinal dynamics include five rigid
body states Vt,α,Q,h,θ and six flexible states η1, η̇1,η2, η̇2,η3, η̇3 describing its
first three elastic modes. In the latest HSV configuration, a canard was added as
a redundant pitch control effector at the forebody of vehicle to enlarge the angle
and velocity control bandwidth [5]. Thus the control inputs are δe,δc,φ ,Ad, which
are elevator angle, canard angle, throttle ratio, and diffuser area ratio. These control
inputs do not appear directly in the equations of motion (16.13)–(16.18), but enter
them through the forces and moment T,L,D,Ni, and Mp. Equations (16.13)–(16.18)
represent the total nonlinear equations of motion for the flexible hypersonic vehicle.

Since the modeling of HSVs is not the main focus of this research, the derivation
of aerodynamics, propulsion system, and flexible modes governing the equations
of motion will be omitted here. Interested readers may refer to [4–6, 36] for more
details.
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Table 16.1 Actuator
saturation limits

Actuator Lower limit Upper limit

δe − π
12

π
6

δc − π
9

π
9

φ 0.1 0.77
Ad 0.01 1

16.3.2 Actuator Dynamics

Though it is not a part of the equations of motion as shown in the previous
subsection, it is important to include the actuator dynamics of the HSV. Specifically,
there are bandwidth limitations as well as saturation limits imposed by the actuators
in the system. If the control command is outside of the operating range of the
actuators or if the desired actuator response is faster than the actuator can perform,
then the hypersonic vehicle will lose its control capability. This motivates the need
to include actuator dynamics in the control design and simulation study.

Attempts have been made to model the actuator dynamics using simple second-
order differential equations [17, 28]. The second-order model does potentially
describe the actuator dynamics, but for the purposes of this chapter it was decided
that a simpler model would be preferable. As suggested by Groves et al. and
Sigthorsson et al., the actuators can be modeled as low pass filters [20, 31]. This
will incorporate a bandwidth limitation on the actuator response without concerns
about their internal mechanism. Therefore, the actuator dynamics are

ẋd = Adxd +Bdud (16.19)

where

Ad =

⎡

⎢⎢
⎣

−20 0 0 0
0 −20 0 0
0 0 −10 0
0 0 0 −10

⎤

⎥⎥
⎦ , Bd =

⎡

⎢⎢
⎣

20 0 0 0
0 20 0 0
0 0 10 0
0 0 0 10

⎤

⎥⎥
⎦

In the actuator dynamics, the cutoff frequency for δe and δc is roughly 20 Hz, while
the cutoff frequency for φ and Ad is chosen as 10 Hz. This will render the actuator
response of the control command within a realistic range.

It will also be necessary to apply saturation limits to the actuators themselves,
but this will be taken care of in the nonlinear simulation only. Table 16.1 shows the
saturation limits imposed upon the actuators.

16.3.3 Model Linearization

When designing an H∞ LPV controller, the nonlinear HSV dynamics will be turned
into a finite number of linearized models for a set of given parameters to the system.
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Table 16.2 State and control
input bounds in solving trim
points

States Control inputs

α ∈ [0, π/60] rad δe ∈ [π/30, π/12] rad
Q = 0 rad/s δc ∈ [−π/9, π/9] rad
θ ∈ [0, π/60] rad φ ∈ [0.15, 0.5]
ηi ∈ [0, 1] Ad ∈ [0.75, 0.95]
η̇i = 0

Linear controllers are then synthesized at each of these linearized points through
LPV control techniques.

To derive LPV models of HSV, the velocity and altitude were chosen as the
scheduling parameters, i.e., ρ = [Vt h]T and a flight envelop with Mach number
M ∈ [7,9] and altitude h ∈ [70,000,90,000] ft was specified. For better controlled
performance, it is important to have LPV models as close to the nonlinear HSV
dynamics as possible. Basically, the more gridding that is chosen, the better the
approximation the LPV plant will be. Nevertheless, the computational cost of
solving LPV controller synthesis conditions will increase exponentially for more
gridding points.

Based on the nonlinear HSV model (16.13)–(16.18), the trim conditions (equi-
librium points) can be calculated through a constrained optimization approach. At
each trim point, Vt and h will be fixed at their gridding value. Pitch rate Q and all
elastic mode derivatives η̇i are also set to 0. Moreover, all other states and inputs are
constrained within desired states and actuator ranges as listed in Table 16.2.

Subsequently, the linearized LPV model can be obtained by linearizing the
nonlinear HSV dynamics at specified trim points by Jacobian linearization. The
resulting state vectors for the linearized plant will be

xp,f = [Vt α Q h θ η1 η̇1 η2 η̇2 η3 η̇3]
T , (16.20)

xp,r = [Vt α Q h θ ]T (16.21)

where the subscripts f and r in the linearized states xp,∗ denote the flexible and rigid
bodies, respectively. Note that there are 11 states in the flexible model while there
are only 5 of them in the rigid body model.

For this particular study, total of 49 linearized models will be derived based upon
the variation of the velocity and altitude of the vehicle. These linearized models
will be obtained by gridding the parameter space M × h with seven points evenly
in each dimension. Then the LPV system describing the linearized dynamics at the
trim conditions will be

ẋp,∗ = Ap,∗(ρ)xp,∗+Bp,∗(ρ)u, (16.22)

yp,∗ =Cp,∗(ρ)xp,∗ (16.23)

By checking all linearized models, it was found that all LPV models are
unstable. Moreover, {A(ρ),B2(ρ)} pair is controllable, and {A(ρ),C2(ρ)} pair is
observable. These linearized models of HSV will be used to construct the open-loop
interconnected plant.
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16.4 LPV Control Synthesis

This section will discuss output feedback control design for the HSV velocity
tracking problem. It may not always be feasible to measure all the states of the HSV
system because of physical or fiscal limitations. Therefore, output feedback control
is more realistic for the hypersonic vehicle. Because of the importance of elastic
modes to HSV, this study will also examine the differences between the synthesis
using a rigid body model versus a flexible body one. It is important to look at the
effects of elastic modes on the system. By making the comparison between the rigid
body controller and the flexible body controller, it will be determined whether it is
necessary to include the flexible body dynamics into the control synthesis.

16.4.1 Open-Loop Interconnection

To synthesize an output feedback controller, it will be necessary to construct
the open-loop interconnected plant at each trim condition. It is assumed that the
only five rigid body states that are not directly associated with the flexibility of
the hypersonic vehicle are measurable. The remaining six states that represent
elastic modes of the vehicle will be estimated within the control algorithm. These
assumptions were made on the basis that it would be difficult to actually measure
the flexible body states which are dependent upon the displacement of the vehicle
body itself with respect to the rigid body states. In principle, there would be some
noise present in the sensors. Therefore the rigid body control case is still considered
to be output feedback because all five measured rigid body states will have sensor
noise added into them.

To improve steady-state tracking performance, the integral of the error between
the reference velocity and the actual velocity of the vehicle will be added as a state
to the open-loop system. Augmenting the linearized plant model (16.22) and (16.23)
with the actuator dynamics (16.19) along with the integral state will give the open-
loop interconnected plant, as shown in Fig. 16.2. It can be seen from Fig. 16.2a that
the linearized plant P has five rigid body states as output from the block. The flexible
body model, P, has eleven states, but there will only be five states in P for the rigid-
body case. Additionally, Wact represents the actuator dynamics from (16.19).

Figure 16.2b shows the augmented plant Pact has six measured outputs and six
controlled outputs. The measured outputs are the five rigid body states, and the
integral of the tracking error. The controlled outputs include altitude, the integral
state, and four actuator outputs. This setup will render an integral and a proportional
feedback action for the control design. The integral feedback provides zero steady-
state error tracking of the velocity, while the proportional control will regulate the
altitude of the HSV. This means that the altitude will never actually converge to a
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Fig. 16.2 Open-loop interconnection for the output feedback velocity tracking problem (a) Plant
with actuator and integral augmentation (b) Pact (c) Plant with weighted disturbance (d) Open-loop
interconnected plant

value, but the change in the altitude will be minimized. To this end, a weighting
function W is introduced to penalize the controlled output as

W =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 .5 0 0 0 0
0 0 1,000 0 0 0
0 0 0 1,000 0 0
0 0 0 0 316.2778 0
0 0 0 0 0 1,000

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

Note that a frequency-dependentweighting function could yield an even better result
than the constant weight function used here. In this weighting function, the first
two terms are applied to the error states in the system, and the last four terms are
applied to the actuator efforts. By selecting this weighting function, the controller
will penalize the control efforts heavily. It is beneficial to choose high weightings on
the outputs associated with the actuator efforts in the system to keep the actuators
from saturation. On the other hand, the weights on the error states are chosen much
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smaller. Consequently, the augmented plant Pact will be

Pact
ss
=

⎡

⎢
⎢
⎣

Aact(ρ) B1act(ρ) B2act(ρ)
−−−−− −−−−− −−−−−
WC1act(ρ) WD11act(ρ) WD12act(ρ)
C2act(ρ) D21act(ρ) D22act(ρ)

⎤

⎥
⎥
⎦.

The augmented plant Pact is then combined with disturbance vector d ∈ R6,
as shown in Fig. 16.2c. Wd is a weighting function capturing the disturbance
characteristics and is defined as

Wd =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

.01 0 0 0 0 0
0 .01 0 0 0 0
0 0 .01 0 0 0
0 0 0 .01 0 0
0 0 0 0 .01 0
0 0 0 0 0 .01

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦

These disturbances are added to the measured states as well as the integral state.
They are intended to represent measurement noise and the disturbance to the
integration of the error state representing numerical error during the integration
process.

Finally, the open-loop interconnected plant Polic can be seen in Fig. 16.2d.
The state vector of Polic is x =

[
xp,∗ δe δc φ Ad

∫
(re f − v)dt

]T
. As a

result, the number of states for flexible and rigid body cases are 16 and 10,
respectively. The measured output from Polic is y = [Vt α Q h θ

∫
(re f − v)dt]T,

while controlled output e = [h
∫
(re f − v)dt δe δc φ Ad]

T. The system has the
control input u = [δe δc φ Ad]

T, the reference velocity, and the disturbance as
inputs. Therefore, there are total of 12 outputs and 11 inputs for the interconnected
plant.

This concludes the setup of the open-loop interconnection at a single trim
condition for both the flexible and rigid body cases. By extension, this method can
be applied to all of the chosen trim conditions for the hypersonic vehicle.

16.4.2 LPV H∞ Control Design

After a set of open-loop interconnected plants has been generated, it is possible to
synthesize a set of LPV H∞ controllers for the hypersonic vehicle. The LPV output-
feedback synthesis condition consists of three LMIs as seen in (16.6)–(16.8). Before
these LMIs can be solved, matrix functions R(ρ) and S(ρ) must be parameterized.
In this study, the basis function vectors f (ρ) and g(ρ) take the form of
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Table 16.3 γ performance
for different parameter
variation rates

Parameter variation
bound ν Flexible body γ Rigid body γ
[.01 200] 112.7380 83.2507
[.05 200] 112.9252 83.4346
[.1 200] 113.2146 83.6931
[.2 200] 113.6599 84.1999
[.3 200] 114.2606 84.7131
[.4 200] 115.2945 85.1583
[.5 200] 116.9904 85.6793
[.1 50] 113.1878 84.1295
[.1 100] 113.1951 84.1639
[.1 300] 113.2558 84.2772
[.1 400] 113.4078 84.4805
[.1 500] 114.3578 84.9415
[.5 500] 117.9836 86.6760

f (ρ) = [1 ρ1 ρ2]
T g(ρ) = [1] .

Therefore, R(ρ) and S(ρ) are parameterized as R(ρ) = R0 + ρ1R1 + ρ2R2 and
S(ρ) = S0. Since S(ρ) is constant, the controller gains will depend only on ρ but
not ρ̇ . It is also necessary to define a set of bounds for the parameter variation rate
ν such that |ρ̇| ≤ ν . The first term of ν will represent the limitation on how quickly
the Mach number of the hypersonic vehicle can change. The second term describes
how fast the altitude can change.

Based on a 7 × 7 gridding point, the synthesis conditions (16.6)–(16.8) have
been solved using efficient LMI techniques [7, 16]. After obtaining R(ρ), S(ρ),
and the performance level γ , the LPV output feedback controller gains can be
calculated using (16.9)–(16.12). It has been verified that these controllers stabilize
their corresponding linearized models as expected.

After the LPV controller for the hypersonic vehicle is established, it would
be interesting to examine the effects that differing parameter variation bounds
and differing numbers of gridding points have on the control synthesis results.
This parametric study will be used to guide the design and selection of the LPV
controller, and then analyze the response of the resulting closed-loop system.

The selection of the parameter variation bounds could affect the trade-off
between the robust capabilities and the performance associated with the H∞ LPV
control problem. Therefore, it is beneficial to investigate the effect of the parameter
variation bounds ν on the H∞ performance level, γ . Table 16.3 shows that the smaller
parameter variation rate limits yield lower γ values, which translates to improved
robust performance for the system. However, there are limitations on the rate of
change in Mach number and altitude imposed by the hypersonic vehicle operation
requirement. For this study, it was decided that the case where ν = [.1 200]T would
provide the best balance between performance and operating capability of the HSV.
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Table 16.4 γ performance for different number of gridding points

Grid dimension
Flexible body Rigid body
γ LMIs OVs γ LMIs OVs

4×4 93.4078 96 545 61.1913 96 221
5×5 110.4690 150 545 69.3434 150 221
6×6 110.7171 216 545 77.5342 216 221
7×7 113.2146 294 545 84.1999 294 221

For fixed parameter variation bounds, the effect of additional gridding points
on the system’s robust capabilities will also be evaluated. Typically in H∞ LPV
control problems, having a denser grid in the parameter space will increase the
H∞ γ performance value since additional LMI constraints will be included in the
optimization. For the purposes of this study, however, the change of spacing of the
grid points could result in different trim conditions and a different set of linearized
plants. To avoid this, the gridding density will be handled by choosing a large set
of trim conditions, or removing some of trim conditions from the parameter space.
Table 16.4 shows the result of the gridding point study. It is observed that the H∞
γ performance decreases with less points. Though the smaller gridding sizes may
yield a better performance value, it is preferable to use a denser grid to ensure
that the entire parameter space is adequately covered by the controllable region
of synthesized LPV controllers. For this reason, the 7× 7 grid was chosen which
results in a total of 49 different linear controllers over the entire parameter space.

Note that there is a difference in the H∞ performance level between the flexible
and rigid body cases. It is observed from Tables 16.3 and 16.4 that the rigid body
cases have smaller γ values than the flexible body cases. It makes sense that the rigid
body cases would have lower γ values because they are simpler than the flexible
body cases. Each flexible body case has 545 optimization variables (OVs) to be
solved for, while the rigid body case has 221 optimization variables. As a result, the
optimization problem is easier to solve. In addition, less gridding points would lead
to less number of LMIs. Therefore, it is conceivable that the rigid body cases would
achieve better solutions.

The control synthesis was calculated using Matlab 200d8a on a Dell Precision
T5400 with an Intel Xeon processor operating at 2.33 GHz per core and 16 gigabytes
of RAM. The operating system was Windows XP 64-bit edition. The synthesis task
typically took between four and six hours to complete.

From the design considerations mentioned above, the final output feedback
velocity tracking controller for the simulation will have parameter variation bounds
of [.1 200]T, a 7× 7 grid over the parameter range of [7,9]× [70,000, 90,000] ft.
The controlled performances are provided in Tables 16.3 and 16.4. Since all of
the flexible effects on the rigid body model will be treated as disturbance, this
set of controllers will be subject to more disturbance than the flexible cases will.
Consequently, the simulation performance will not necessarily be better than that of
the flexible body case.
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16.5 LPV Control Implementation

There are a total of 49 linear controllers that have been designed for the hypersonic
vehicle model at discrete locations of the parameter space. Therefore, there is a
need to schedule different controllers as the vehicle moves over the flight envelop.
Several different ways of handling this switching exist in the current literature, such
as, interpolation, blending, and digital switching, etc.

The design process for the H∞ LPV controller assumes that the output of
each controller is based on the change from its trim conditions for a given linear
controller. Denoting the trim values for the plant states and control forces by x̄ and
ū, it yields

x = x̄+Δx, u = ū+Δu, y = ȳ+Δy.

Since the trim conditions are known for the system from the control synthesis and
the plant states, x, are known for the system from the nonlinear plant model, it will
be possible to calculate the control effort, u, needed. Consequently, the control input
for nonlinear HSV will be calculated using the the following equations:

ẋk = Akxk +Bk

[
Δy
∫

edt

]
, (16.24)

u = ū+

(
Ckxk +Dk

[
Δy
∫

edt

])
(16.25)

where xk represents the internal states of the output feedback controller. Note that
even though the five measured states from the system are with respect to a set of
trim conditions, the reference signal does not change with respect to a set of trim
conditions. Therefore, it will be beneficial to use a switching algorithm so that the
least amount of trim condition changes will be imposed upon the system. There
is a potential problem with interpolation type methods. When interpolating the
controllers, it is also necessary to interpolate the set of trim conditions x̄ and ū as
well. This can pose some stability issues since the interpolated set of trim conditions
may not exist, or at least may not be accurately represented by a linear interpolation.
It is also difficult to ensure that the resulting controller gains are stabilizing. For this
reason, a digital switching algorithm will be implemented due to its simplicity as
well as its computational benefits.

With two parameters involved in the H∞ LPV control, the parameter set can be
described by a two-dimensional space. The best possible time to trigger the switch
from one controller to the next was if the system reached the next trim condition
along a given parameter. Such a switching condition has been shown in Fig. 16.3.
It illustrates the switching mechanism once the threshold of the next trim condition
has been reached. The idea behind this implementation is that the hypersonic vehicle
states will be as close to the trim conditions as possible so that any disturbance
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caused by the controller switch will have minimal effect on the system. This usually
results in the controller being switched due to either Mach or altitude, but not both
simultaneously.

Moreover, Fig. 16.4 shows that the system is designed such that the controllable
region of one trim point overlaps the subsequent trim conditions closest to it in
all directions. This requirement can be validated for a given reference command
through the nonlinear simulation.

Moreover, it is important to have a method for resetting the integral of error when
switching from one controller to the next. Otherwise, there is a risk of running into
integral windup which can lead to saturation in the control efforts, or even cause
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the system to leave the range of operability. This situation is not quite the same as
the problem discussed in the work by Groves et al. [19], which is a situation where
the control effort is saturated by the linear controller. In this study, the problem of
controller windup is a consequence of building up of the integral state to large values
at new trim conditions. This could also lead to the saturation of the control efforts.
To counteract this effect, it is proposed to simply reset the integral state such that the
change in the control effort was minimized at the switching instant [21]. Since the
integral state represents artificial quantities in the system, it is acceptable to change
this value during control implementation. In fact, this has often been done in the past
with simple PID systems [33]. For the LPV output feedback control, there are also
controller states that do not physically represent physical system quantities. They
can be reset to gain additional control over the integral windup problem as well. To
this end, a suitable switching algorithm was designed to alleviate controller windup.

To minimize the change in the control effort u, a new set of values for the
controller state xk and the integral state

∫
edt can be solved through the LMI

conditions

min δ

subj. to

[
δ uT

+

u+ γI

]
> 0

Vcl
([

x−p x−k
])−Vcl

([
x+p x+k

])≥ 0

ulb ≤ u ≤ uub, (16.26)

where Vcl = xT
clPxcl is the closed-loop Lyapunov function. ulb and uub are the lower

and upper limits of the actuators’ inputs. By solving this optimization problem at
switching instant, it will give the new vector x̃k that minimizes the control effort
after switching while keeping the Lyapunov function monotonically decreasing the
minimal change in the control effort keeps the actuators from saturating and helps
to maintain the HSV stability.

16.6 Nonlinear Simulation Study

This section will outline the procedure used to simulate the response of the nonlinear
hypersonic vehicle using the previously synthesized controllers. It also examines the
results from the nonlinear simulation. Both the rigid and flexible body cases will be
discussed. Moreover, it is interesting to study the system responses for both the
perturbed and nominal system parameters.
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Fig. 16.5 Block diagram of closed loop system for the velocity tracking case

16.6.1 Setup

The block diagram for the HSV velocity tracking problem can be seen in Fig. 16.5.
Due to the fact that the measured states are the rigid body states, there is no
difference in the block diagram for the flexible and rigid body cases. There are
also saturation functions that apply to the actuators, where the saturation levels can
be seen in Table 16.1.

For the purpose of simulation, the full nonlinear plant model will be used for both
the flexible and rigid body cases. The nonlinear plant used in the simulation is the
same model as provided in Sect. 16.3 [5,6]. The flexible effects will help to evaluate
the differences between the flexible and rigid body controllers and draw conclusions
as to whether the rigid body controller is a valid option to the hypersonic vehicle.

During the nonlinear simulation, a ramp reference signal was chosen for
investigating each controller designed. The ramp command represents a gradual
change of operating conditions of the HSV. The input starts at the middle of the
range for both Mach number and altitude and ends near the end of the range of
operation.

The H∞ LPV controller is intended to control the hypersonic vehicle over
a large flight envelop while exhibiting robust capabilities. Robust capabilities
are the system’s ability to handle uncertainties and perturbations to the system.
Uncertainties are considered to be things that may exist in the physical system that
are not properly modeled. Perturbations are external disturbance that inject into the
system. In this study, some aspects of uncertainty and perturbation in the hypersonic
vehicle operation will be investigated.

Some of uncertainty sources of the HSV include thermal effects, fuel consump-
tion (a change in mass), and fluctuations in the atmospheric air data [11, 32, 36].
These all have an impact on the hypersonic vehicle and should be properly modeled
for a HSV mission. It is assumed that the thermal effects of the system change
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Table 16.5 Sensor noise
variance and seed values

State Seed Variance

V 23 .01 ft/s
α 1 .00035 rad
Q 314159265 .001 rad/s
h 1.23×106 1 ft
θ 61 .001 rad

the vehicle’s moment of inertia as well as the length of the vehicle. Additionally,
the mass of the vehicle is changed due to fuel consumption and the inaccurate air
density, pressure, and temperature from the lookup table [27]. The purpose of adding
perturbations to the system is not necessarily to model the effects of uncertainties in
the system, but rather to see the effects that modeling error has on the performance
of the LPV controllers. Therefore, the emphasis will be to look at the results of
changing these parameters as opposed to developing accurate perturbation models.
To this end, each of the previously mentioned parameters (air density, air pressure,
air temperature, vehicle length, and vehicle moment of inertia) was increased by 5%
from their nominal values. This is to capture any changes in the model due to heating
and inaccurate air property tables. On the other hand, the value of the vehicle mass
was decreased by 5% from its nominal value to capture the fuel consumption during
the hypersonic flight. Simulations will be run for perturbed and nominal cases.

There are many external inputs that could affect the hypersonic vehicle. In this
study, however, only the sensor noise will be considered for simplicity. Since the
HSV is a high-performance vehicle, and given its relatively large price tag, it is
suitable to assume that very high quality sensors would be used with relatively small
measurement noise. Table 16.5 provides the noise levels, which are modeled as
random number blocks in the nonlinear simulation. Though the disturbance for the
integration of the error was included in the control synthesis, this will not be added
into the simulation as this value would be very small.

16.6.2 Nonlinear Simulation Results

For both flexible and rigid body controllers, a ramp input command signal will be
considered. The tracking signal used for this study starts at a velocity of 7,819.6 ft/s
and has a slope of 20 ft/s2 for a duration of 60 s. After the 60 s interval, the slope
of the ramp is reduced 0 ft/s2 for a total simulation time of 100 s. The simulation
results for both the flexible and rigid body cases can be seen in Figs. 16.6–16.11.

Figure 16.6 shows the velocity, angle of attack, and the pitch rate for both cases.
From this figure, the perturbed and nominal cases for both the flexible and rigid
body controllers are included. It can be seen that for both the flexible and rigid body
cases, the velocity tracking is achieved at essentially the same rate. It should also
be noted that the perturbed and nominal cases have the same velocity curve. This
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Fig. 16.6 Ramp velocity tracking: Rigid body states (a) Velocity (flexible case) (b) Velocity (rigid
case) (c) Angle of attack (flexible case) (d) Angle of attack (rigid case) (e) Pitch rate (flexible case)
(f) Pitch rate (rigid case)

shows that the velocity tracking is successful for each case both with and without
perturbations in the system. This suggests that a rigid body controller could be used
for the velocity tracking case.

Figure 16.6c,d show the angle of attack for the flexible and rigid body cases
respectively. These figures show that the maximum angle of attack for the flexible
body case is roughly 2.6◦, while the maximum angle of attack for the rigid body
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Fig. 16.7 Ramp velocity tracking: Rigid body states and integration error (a) Altitude (flexible
case) (b) Altitude (rigid case) (c) Pitch attitude (flexible case) (d) Pitch attitude (rigid case) (e)
Integral of tracking error (flexible case) (f) Integral of tracking error (rigid case)

case is roughly 2.0◦. There are some minor differences between the responses seen
between the angle of attack for the two systems, but what should be noted is the
difference seen between the perturbed and nominal cases. It appears as though the
hypersonic vehicle angle of attack is very sensitive to perturbation in the system.
The propagation of noise is very evident from these figures.
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Fig. 16.8 Ramp velocity tracking: Flexible body states I (a) η1 (flexible case) (b) η1 (rigid case)
(c) η̇1 (flexible case) (d) η̇1 (rigid case) (e) η2 (flexible case) (f) η2 (rigid case)

Figure 16.6e,f show the pitch rate for the two cases, respectively. As seen with the
angle of attack, the pitch rate of the vehicle is similar for the flexible and rigid body
cases, but this state is also sensitive to perturbation in the system. The maximum
pitch rate for the flexible body case is approximately 4.6◦, while the maximum pitch
rate for the rigid body case is roughly 3.4◦. Again it is not desirable to have such an
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Fig. 16.9 Ramp velocity tracking: Flexible body states II (a) η̇2 (flexible case) (b) η̇2 (rigid case)
(c) η3 (flexible case) (d) η3 (rigid case) (e) η̇3 (flexible case) (f) η̇3 (rigid case)

influence from the perturbation of the system, but the highly coupled nature of the
hypersonic vehicle makes this a difficult thing to achieve. The velocity tracking
is not effected by the noise in these other states, however, so this simulation is
considered a success.

Figure 16.7 shows the altitude, pitch attitude, and the integration of the error for
both cases. From this figure, the perturbed and nominal cases for both the flexible
and rigid body controllers are included. It is shown that for both cases, the altitude
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Fig. 16.10 Ramp velocity tracking: Actuator input (a) Elevator (flexible case) (b) Elevator (rigid
case) (c) Canard (flexible case) (d) Canard (rigid case) (e) Fuel equivalence ratio (flexible case) (f)
Fuel equivalence ratio (rigid case)

of the hypersonic vehicle is close. In fact, the steady-state conditions for the two
simulations run have a difference of about 35 ft. It is also shown that the effects of
perturbation in the system have only a small effect on the altitude of the vehicle. This
is partially due to the fact that there is a unity gain regulating the altitude tracking.
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Fig. 16.11 Ramp velocity tracking: controller ID (a) Diffuser area ratio (flexible case) (b) Diffuser
area ratio (rigid case) (c) Controller reference number (flexible case) (d) Controller reference
number (rigid case)

Since this state is now included as a regulation state in the control synthesis, it is
more robust to perturbation in the system.

Figure 16.7c,d show the pitch attitude for the two cases, respectively. From these
plots, it can be seen that the perturbation in the system has a large effect on the pitch
attitude of the hypersonic vehicle for both the flexible and rigid body cases. The
flexible body case has a slightly larger pitch attitude than the rigid body case does.
The maximum value of the pitch attitude for the flexible body case is approximately
2.6◦ while the maximum value for the rigid body case is approximately 2.0◦.

Figure 16.7e,f show the integration of the error for the two cases, respectively.
From these two figures, it can be seen that the flexible body case accumulates
a slightly larger amount of error, but that the adjusted integration of the error
is approximately the same for the two cases. Also, it should be noted that the
integration of the error is reset when switching takes place in the controller. Both the
flexible and rigid body cases are switching at roughly the same times. This would
indicate that rigid body assumptions would be valid for controlling the vehicle
during velocity tracking.
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Figures 16.8 and 16.9 show the flexible modes of the hypersonic vehicle for both
cases. It can be seen that the perturbation in the system has a very large effect on
the flexibility of the hypersonic vehicle for both the flexible and rigid body cases.
From these figures, it can also be seen that the first mode of vibration has a response
that is similar in magnitude for the flexible and rigid body cases. The derivative of
the first mode of vibration, however, shows that the flexible body case has a higher
value. For the higher order modes of vibration and their respective derivatives, the
flexible body case has higher values than those seen in the rigid body case. This
would signify that the flexible body case does have a slightly larger deflections due
to vibration, but since the first mode is the dominant mode, the differences are not
significant. This would support the idea that the rigid body controller is suitable for
the flexible body case.

Figure 16.10 shows the elevator deflection angle, the canard deflection angle, and
the fuel equivalence ratio for the two cases. From this plot, it can be seen that the
perturbed case has larger frequencies and magnitudes on their responses than the
nominal cases for both the flexible and rigid body controllers. Even though there is
a high frequency for the perturbed case, they still fall within the defined bandwidth
limitations discussed in Sect. 16.3. Note how the perturbed case oscillates around
the nominal case. It appears as though the mean of the perturbed case is the nominal
case.

Figure 16.10a,b show the response of the elevator control effort. This plot shows
that the flexible body case has a slightly larger range of motion. The rigid body case
operates between 2.3◦ and 12.6◦, where the flexible body case operates between
−1.7◦ and 12.0◦. Also note that there is a different initial trim value for the flexible
and rigid body cases.

Figure 16.10c,d show the response of the canard control effort. As seen with the
elevator, the canard plots show that the flexible body case has a slightly larger range
of motion. The rigid body case operates between 2.3◦ and −9.2◦, where the flexible
body case operates between 0◦ and −18.3◦. Also note that there is a different initial
trim value for the flexible and rigid body cases.

Figure 16.10e,f show the response of the fuel equivalence ratio for the two cases,
respectively. These two cases have responses that are similar in value. This would
make sense seeing as how the velocity and altitude of the vehicle were roughly the
same as well. The fuel equivalence ratio is the control effort that is most directly
linked to the thrust of the vehicle, so this relationship falls in line with the previous
results. Also note how the perturbation has less of an effect on the fuel equivalence
ratio as compared to the elevator and canard control efforts.

Figure 16.11a,b show the response of the diffuser area ratio for the two cases,
respectively. These two figures show that the perturbation present in the system has
very little effect on the diffuser area ratio. It should be noted, however, that the
response seen in the flexible body case is completely different from the one seen in
the rigid body case.
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Figure 16.11c,d show the controller reference numbers for the flexible and
rigid body cases, respectively. It should be noted in Figs. 16.6–16.11 that there are
spikes or small discontinuities that take place at about 20 s, 40 s, and 60 s into the
simulation. These spikes are the results of controller switching. It can be seen from
Fig. 16.11c,d that the different cases all switch at approximately the same time, and
that they all use the same controllers.

16.7 Conclusions

This chapter has presented the design and simulation of flexible and rigid body
output feedback H∞ LPV controllers for the flexible hypersonic vehicle model.
A velocity tracking problem for the HSV is studied and the difference between
perturbed and nominal cases is examined. This section will seek to draw some
deeper understanding from the control synthesis and nonlinear simulation results
of the HSV.

The control synthesis study showed the effects of changing the parameter
variation rates as well as the operational range of the vehicle. From the study, it
can be concluded that choosing the appropriate parameter variation bounds and
operational range on the hypersonic vehicle is critical to the controlled performance
and the robust capabilities of the closed-loop HSV system. It is important to trade-
off between the computational cost and achievable performance. For this study, it
was concluded that an evenly spaced grid containing 49 controllers for the flight
envelop from Mach 7 to Mach 9 and an altitude from 70,000 ft to 90,000 ft would
be the best option. In addition, the parameter variation bounds were established
as ν = [.1 200]T to provide adequate response speeds for the HSV. This is due
to its relatively large operational range and its robust capabilities with currently
available computational power. After all, it will be important for a designer to make
the appropriate decisions when designing an LPV controller for the air-breathing
hypersonic vehicle.

From the control synthesis stage, it can be seen that the rigid body controllers
have a better H∞ performance than the flexible body case do. Though this may
be the case from the LPV synthesis perspective, it is not supported by the
nonlinear simulation study. This is due to the fact that the rigid body controller was
synthesized using a rigid body hypersonic vehicle model, but then it was applied to
the nonlinear flexible body HSV dynamics. Therefore, there is an additional amount
of perturbation in the rigid body model due to the flexible body dynamics.

This study considered the output feedback control strategy for a nonlinear
flexible HSV. Even though this may be more realistic than the full-state feedback,
some critical assumptions have been made to facilitate the study. It was assumed for
this study that all of the rigid body states were measurable. Moreover, the sensor
noise was chosen to be relatively small. This choice was made based upon the
assumption that an expensive and high performance vehicle like this would require
high quality sensors. Though some assumptions that may not accurately represent
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the actual system, the nonlinear simulation results have shown the characteristics of
an H∞ LPV controller on flexible HSV. It can be seen that the amount of perturbation
added to the system for this study is within a reasonable range, and that it does
not have a significant effect on the tracking or regulation states. The introduced
perturbation may have a large effect on the other system variables, especially
flexible body states and the control efforts, but they remain within a reasonable
range for hypersonic flight.

This study has also shown the effects that controller switching has on the
hypersonic vehicle. From the nonlinear simulation results, it can be seen that there
are sharp changes and transients in the system states as a result of switching from
one controller to another. This effect seems to be one of the largest limiting factors
to this controller. The HSV is very sensitive to the switching that takes place in
the controller, so effort must be made to reduce the amount of controller switching
that takes place. This is not always feasible, and thus limits the capabilities of the
controller.

The simulation in this study showed that there is a strong correlation between
the angle of attack and the flexible states of the vehicle. As the angle of attack
increases, the motions for the flexible mode increase. It is important to understand
the relationship because both of these values play into the efficiency of the scramjet
engine. There is also a strong coupling between the angle of attack, the pitch
attitude, and the pitch rate of the hypersonic vehicle. They affect how much air
flows into the scramjet engine and as a result, they will decide how much thrust is
produced by the scramjet engine. It is desirable to keep the angle of attack relatively
small so that the scramjet stays within its operational range. This could be achieved
by penalizing the angle of attack in the control synthesis stage to minimize the
amount of fluctuation seen.
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Chapter 18
Constrained Freeway Traffic Control via Linear
Parameter Varying Paradigms

T. Luspay, T. Péni, and B. Kulcsár

Abstract A novel freeway traffic control design framework is proposed in the
chapter. The derivation is based on the parameter-dependent reformulation of the
second-order macroscopic freeway model. Hard physical constraints are handled
implicitly, by introducing additional scheduling parameter for controller saturation
measure. The ramp metering problem is then formulated as an induced L2 norm
minimization, where the effects of undesired traffic phenomena are attenuated on
the network throughput. The solution of the resulting problem involves convex
optimization methods subjected to Linear Matrix Inequalities. A numerical example
is given to validate the parameter-dependent controller and evaluate its effectiveness
under various traffic situations.

18.1 Introduction

Ramp metering has been identified as one of the most effective traffic control
measures by controlling the merging flow using traffic signals [15]. Excessive
research has been performed since the 1970s to evaluate its impact and to design
appropriate algorithms accordingly. The most important property of ramp metering
is that it can prevent traffic breakdown and off-ramp blockage by controlling the
entering vehicle volume.
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Ramp metering strategies can be categorized according to their behavior as static
(fixed time) or as dynamic (traffic responsive) ones [8, 15]. The design of static
algorithms is carried out off-line, based on historical traffic data. By assuming
constant traffic trend in the future, a fix metering rate is determined off-line
through optimization techniques [21]. These methods are favorable because of their
inexpensive computation needs and effortless implementation in real applications.
Their disadvantage is obvious. Whenever the actual traffic situation diverges from
the presumed one, the control performance is diminished.

A more sophisticated approach is proposed by introducing traffic responsive
or dynamic ramp metering algorithms, when the controller is driven by real-time
traffic measurements [8]. The measurement data are then used for determining the
actual metering rate in a feed-forward [13] or feedback structure [8, 15]. According
to the involved traffic measurements, one can distinguish between local (isolated)
and coordinated ramp metering strategies. While local algorithms use limited
measurements from their vicinity of their location of installation only, coordinated
methods utilize increased amount of data from detectors and other controllers. To
design efficient responsive ramp metering algorithms, a dynamical model is required
for the prediction of traffic evolution.

In case of traffic prediction for control purposes it is beneficial to neglect the
motion of individual vehicles and use aggregated spatiotemporal traffic variables,
such as traffic density (ρ(t,x)), space-mean speed (v(t,x)), and traffic flow (q(t,x)).
According to their level of detail, these models are referred to as macroscopic (or
continuum) models [10, 14]. Dynamical equations of such models can be derived
by exploiting the hydrodynamical analogy between traffic flow and streaming
fluids. These models can be then further categorized according to the number
of variables involved. First-order models predict the time evolution of density
(conservation of mass) [10], while second-order ones incorporate the dynamics
of space-mean speed (conservation of momentum) in addition [18]. The resulting
partial differential equations (PDE) are then temporally and spatially discretized for
practical implementation and use [14].

In order to reproduce the complex behavior of freeway traffic, most macroscopic
models are nonlinear and physically constrained in their variables. From control
point of view it is important that the on-ramp volume is physically limited.
The maximal throughput (capacity) of the on-ramp forms an upper bound on
the allowable inflow, while for practical reasons a lower bound is introduced by
requesting a minimal metering flow to avoid queue spill-over due to on-ramp
blockage [15]. Accordingly, successful model-based traffic control should reflect
the nonlinear nature of the process and handle hard physical constraints eventually.
Even though the literature of ramp-metering is large and diverse, only a few
techniques can face both of these challenges.

The use of linear or linearized models for ramp metering appears in many
applications [7, 16]. The advantage is clearly the applicability of well-established
linear constrained control techniques. At the same time, the drawback of these
techniques is the loss of information due to the use of simplified prediction models.
Incorporating advanced traffic models implies nonlinear numerical optimization
techniques subject to dynamical and hard physical constraints [5, 6, 9].
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Identifying these trade-offs has gained more and more attention in systems and
control theory, leading to the theory of linear parameter varying (LPV) systems (see,
e.g., [1,19,20,23] and the references therein). LPV systems are considered as an al-
ternative representation of nonlinear systems, where the nonlinearities are hidden by
introducing the so-called scheduling parameters. This concept offers the systematic
and numerically efficient extension of well-established linear methods for nonlinear
systems. Consequently, LPV paradigms carry great potential for traffic control.

The chapter proposes a novel control design method for freeway ramp metering,
which (1) exploits the complex nonlinear description of traffic phenomena and (2)
handles physical constraints of the on-ramp control input. The recently established
LPV reformulation of the non-linear macroscopic freeway model serves as a basis
of the design [11, 12]. Accordingly, the chapter is organized as follows. After the
Introduction, the fundamental concept of model-based traffic control is discussed
in Sect. 18.2. The resulting nonlinear optimization problem is then reformulated
by using LPV paradigms. The constrained ramp metering problem is stated as an
induced L2 norm minimization in Sect. 18.3. The solution of the obtained control
formulation is given in Sect. 18.4, where the design of the parameter-dependent
dynamical controller is carried out by using linear matrix inequalities (LMIs).
Section 18.5 provides a benchmark simulation problem, where the effectiveness
of the control structure is investigated. Concluding remarks and further research
directions close the chapter in Sect. 18.6.

18.2 Problem Statement: Model-Based Traffic Control

Microscopic traffic models trace the motion of each participating vehicle and their
interactions, and offer high-detailed dynamical descriptions of traffic processes at
the expense of superior computational demand. Therefore, macroscopic models are
preferred to predict traffic behavior for traffic flow control applications, since the
numerical complexity is decreased through introducing cumulated variables. By
relating the number of vehicles on a stretch to the length of the road, one gets
the so-called traffic density (denoted by: ρ in

[
veh

km lane

]
), while the average speed

of vehicles in question is represented by the space-mean speed (v in
[ km

h

]
). The

dynamical evolution of macroscopic variables in space (x) and in time (t) can be
formulated as a set of PDEs based on hydrodynamical analogies. The PDEs are then
discretized in both space (with variable space step Δi, x = Δi · i where i ∈ Z ) and in
time (with sampling time T , t = T · k where k ∈ Z ) for implementation purposes.
The discretized version of a so-called extended Payne–Whitham type macroscopic
model is considered through the chapter [18,22]. It has been proven that the second-
order model in question is able to reproduce various traffic phenomena, such as free
and congested flow, wide moving jams and capacity drop, as well as stop-and-go
traffic more accurately than first-order models [14].

The dynamical representation of an n-lane stretch with length Δi (called segment)
can be formulated by:
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ρi(k+ 1) = ρi(k)+
T

Δin
[qi−1(k)− qi(k)+ ri(k)− si(k)] , (18.1)

si(k) = βi ·qi−1(k), (18.2)

vi(k+ 1) = vi(k)+
T
τ
[V (ρi(k))− vi(k)]+

T
Δi

vi(k) [vi−1(k)− vi(k)]

−ν
τ

T
Δi

ρi+1(k)−ρi(k)
ρi(k)+κ

− δT
Δin

ri(k)vi(k)
ρi(k)+κ

, (18.3)

V (ρi(k)) = vf exp

[
−1

a

(
ρi(k)
ρcr

)a]
, (18.4)

qi(k) = ρi(k) · vi(k) ·n, (18.5)

li(k+ 1) = li(k)+T (do,i(k)− ri(k)) . (18.6)

The following notations are used in (18.1)–(18.6):

• Discretized traffic density ρi(k) is the number of vehicles in segment i at time
step kT , divided by the segment length Δi and lane number n,

[
veh

km lane

]
.

• Discretized space-mean speed vi(k) is the average speed of vehicles in segment i
at time step kT ,

[
km
h

]
.

• Discretized traffic flow qi(k) is the number of vehicles leaving segment i during
the time period [(k− 1)T, kT ], divided by T ,

[
veh
h

]
.

• The discrete variables ri(k), si(k) are the on- and off-ramp volumes, respectively,
to segment i during the time period [(k− 1)T, kT ] in

[
veh
h

]
.

• li(k) denotes the queue length at ramp i at time step kT , [veh], while do,i(k)
denotes the demand entering the ith ramp during the time period [(k− 1)T, kT ].

Moreover, βi,τ,ν,κ ,δ ,vf,ρcr, and a are supposed to be constant model parameters.
Equation (18.4) expresses the average speed decrease according to density incre-
ments, characterized by the constant parameters vf,ρcr, and a. Substituting vi(k)
with (18.4) in the flow equation (18.6), one can obtain the maximal throughput (i.e.,
capacity) at ρcr. This distinct density value is referred to as critical density [10, 18].

The model uses three dynamical equations expressing mass conservation ((18.1)
for the main lanes and (18.6) for merging on-ramp) and space-mean speed evolution
(18.3) over one specific segment. Longer sections can be built by interconnecting
individual segment dynamics through the boundary variables qi−1(k),vi−1(k) and
ρi+1(k). Variables involved in an arbitrary interconnected chain of S segments
can be then sorted according to their physical nature. Variables with dynamical
equations are considered as the state variables of the system, i.e.:

x(k) = [ρ1(k), v1(k), l1(k), . . . , ρi(k), vi(k), li(k), . . . ,ρS(k), vS(k), lS(k)]
T . (18.7)
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On-ramps are assumed to be controlled by traffic signals, therefore, the flow entering
the freeway through on-ramps is considered as the control input:

u(k) = [r1(k), . . . , ri(k), . . . ,rS(k)]
T . (18.8)

The control input u(k) is subject to an element-wise constraint in the following form:

ri,min ≤ ri(k)≤ ri,max, ∀i, ∀k. (18.9)

Variables that cannot be effected by traffic control measures are collected into the
generalized disturbance vector d(k):

d(k) = [q0(k), v0(k), do,1(k), . . . ,do,i(k), . . . , do,S(k), ρS+1(k)]
T .

The vector d(k) consists of boundary variables representing upstream (q0(k) and
v0(k)) and downstream (ρS+1(k)) traffic conditions and uncontrolled on-ramp
demands do,i(k), i = 1, 2, . . . , S.

By using these notations, the second-order freeway dynamics, of S intercon-
nected segments, can be generally expressed as:

x(k+ 1) = f (x(k),d(k),u(k)). (18.10)

The general goal of traffic control is to achieve a network-wide optimum which
is beneficial for all participants in an average sense.1 Therefore, macroscopic
indicators are favorable to characterize the network-wide performance level. The
total time spent (TTS) measure is a widely used quantity to describe network
efficiency by summing the time that vehicles spend in a traffic network [15]. TTS
can be defined over an arbitrary time period K as follows:

JTTS(K) =
K

∑
k=1

T N(k), (18.11)

where N(k) is the number of vehicles in the network at time step k. Obviously, lower
values of TTS refer to better network efficiency, hence the minimization of (18.11)
is a network-wide control objective for traffic control. The vehicle number N(k) can
be expressed by using the introduced macroscopic variables and by distinguishing
vehicles in the main flow and on-ramps:

N(k) =
S

∑
i=1

ρi(k)Δin

︸ ︷︷ ︸
vehicles in main lanes

+
S

∑
i=1

li(k).

︸ ︷︷ ︸
vehicles at on-ramps

(18.12)

1In contrast to individual user based optimum.
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Furthermore, a generic mass-conservation dynamics can be formulated for the
underlying traffic network as

N(k+ 1) = N(k)+T (d(k)− s(k)), (18.13)

where s(k) represents the sum of all exiting flow through off-ramps and main
lanes, s(k) = ∑S

i=1 si(k)+ qS(k), while d(k) is the total number of vehicles entering
the network in the time period [(k− 1)T, kT ], i.e.: d(k) = ∑S

i=1 do,i(k) + q0(k).
Consequently, the TTS objective is written as

JTTS(K) = T
K

∑
k=1

(N(k)+T (d(k− 1)− s(k− 1))) =

= T
K

∑
k=1

(

N(0)+T
k−1

∑
κ=0

(d(κ)− s(κ))

)

. (18.14)

Vehicles waiting at on-ramps are incorporated into the traffic control objective in
order to avoid ramp closure. Since neither the initial number of vehicles N(0) nor
the generalized disturbance d(k) can be directly controlled, it can be seen from
(18.14) that the minimization of JTTS(K) is equivalent with the maximization of
time-weighted exit flow Q(x,u,d,K)= T 2 ∑K

k=1 ∑k−1
κ=0 s(κ). A further, strong relation

between the network-wide outflow and TTS has been reported in [15], stating
that even a slight improvement in the outflow can significantly improve the TTS
measure.

Accordingly, the freeway traffic control problem can be formulated as a con-
strained nonlinear optimization problem by

max
u(k)

Q(x,u,d,K)

s. t.: x(k+ 1) = f (x(k),d(k),u(k))

ui,min ≤ ui(k)≤ ui,max. (18.15)

The nonlinear optimization problem above subjected to dynamical and hard physical
constraints implies complex numerical needs. In order to avoid real-time numerical
optimization, parameter-varying concepts are adopted in the following section.

18.3 Parameter Varying Problem Formulation

18.3.1 Basic Notions

In the quasi-linear parameter varying (qLPV) framework, a scheduling parameter
is introduced and used for capturing nonlinearities and imitating linearity in
the variables. The system is then continuously scheduled with these functions;
therefore, the entire operation domain is covered with an infinite number of linear
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systems (in contrast to the classical gain-scheduling). The model can then be
formulated under the following generic form in discrete time:

x(k+ 1) = A(p(k))x(k)+E(p(k))d(k)+B(p(k))u(k), (18.16a)

y(k) = C2(p(k))x(k)+D21(p(k))d(k)+D22(p(k))u(k). (18.16b)

qLPV systems are read whenever the scheduling vector p(k) depends on the
state of the system, otherwise (18.16a) and (18.16b) represent a generic LPV
model class. The continuous dependency of the system’s matrix functions on the
scheduling vector is expressed as: A ∈ C 0 (Rnp ,Rnx×nx), B ∈ C 0 (Rnp ,Rnx×nu),
E ∈ C 0 (Rnp ,Rnx×nd ), C2 ∈ C 0 (Rnp ,Rny×nx), D21 ∈ C 0 (Rnp ,Rny×nu),
D22 ∈ C 0 (Rnp ,Rny×nd ). The state-dependency of the scheduling parameter
vector p(k) might be neglected in the analysis, estimation, or control design,
and can be assumed as an exogenous signal that takes its value from the compact
set P ⊂ Rnp [23]. Considering p(k) as an independent variable may lead to
conservative solutions, since some of the known information is not exploited. The
main reason why LPV models are still appealing is that systematic analysis and
design methods developed for linear systems can be extended, since the structural
similarity [1,2]. Furthermore, during the implementation, controllers (or observers)
are usually scheduled with the same p(k); therefore, acceptable performance can be
achieved through the natural adaptivity offered by scheduling [4]. Consequently, the
parameter p(k) should be available during operation for scheduling purposes, hence
its value is assumed to be measured or estimated. Additionally, the conservativeness
of the parameter-dependent design methods can be decreased by incorporating
complementary information on the scheduling parameter (e.g., bounds or rate of
change).

Alternatively, many control problems can be formulated with relaxed compu-
tational needs by using polytopic modeling framework. A discrete-time polytopic
system is a linear time varying (LTV) model in the following form:

x(k+ 1) = A(k)x(k)+E(k)d(k)+B(k)u(k), (18.17a)

y(k) = C2(k)x(k)+D21(k)d(k)+D22(k)u(k). (18.17b)

Restricting the system matrices to belong to the prespecified set Ω :

[
A(k) B(k) E(k) C2(k) D21(k) D22(k)

] ∈ Ω . (18.18)

In addition, Ω is assumed to be a polytope of matrices:

Ω = Co
{[

A1 B1 E1 C1
2 D1

21 D1
22

]
, . . . ,

[
Anλ Bnλ Enλ Cnλ

2 Dnλ
21 Dnλ

22

]}
, (18.19)

where Co refers to the convex hull. Note that the vertices of Ω , i.e., the matrices A j,
B j, E j, C j

2, D j
21, D j

22 with j = 1, . . . ,nλ , form nλ number of LTI systems. According
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to (18.18), the time-varying system can be expressed as the convex combination of
the vertex systems:

A(k) =
nλ

∑
j=1

A jλ j(k), B(k) =
nλ

∑
j=1

B jλ j(k),

E(k) =
nλ

∑
j=1

E jλ j(k), C2(k) =
nλ

∑
j=1

C j
2λ j(k),

D21(k) =
nλ

∑
j=1

D j
21λ j(k), D22(k) =

nλ

∑
j=1

D j
22λ j(k), (18.20)

where the convex combinations are given with weighting functions λ 1, λ 2, . . ., λ nλ

satisfying:

nλ

∑
i=1

λ j = 1, 0 ≤ λ j ≤ 1 ∀ j. (18.21)

Polytopic systems can be used for approximating nonlinear ones by the convex
combination of LTI systems with state-dependent weighting functions λ j(x(k)).

18.3.2 LPV Reformulation of the Extended Payne–Whitham
Model

The following method is proposed to transform the nonlinear freeway model into an
LPV form [11, 12]:

(A.1) Determine steady-state solutions of the nonlinear difference (18.1)–(18.6),
satisfying x(k + 1) = x(k) = x∗. The resulting algebraic equations in the
generic form 0 = f (x∗,u∗,d∗) are underdetermined, therefore additional
design freedoms are given which can be capitalized according to the nature
of the problem in question. For the case of traffic control, the following
selections can be done:

• According to the fundamental theory of freeway traffic, sections reach
their capacity when they operate at the critical density. Therefore, one
could be interested in a steady-state solution where the densities of
segments with outflow capabilities (through off-ramps or main-lanes)
equal the critical value ρcr.

• Furthermore, the corresponding on-ramp volumes can be fixed as the mean
of the hard physical constraints: r∗i =

ri,min+ri,max
2 .

(A.2) Introduce shifted variables as: x̃(k) = x(k)− x∗, ũ(k) = u(k)− u∗, d̃(k) =
d(k)− d∗ and rewrite system dynamics in the new coordinate frame. Ac-
cording to the steady-state specification, the origin of the system in the
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centered coordinates reflects maximal throughput. Furthermore, symmetric
input constraints are obtained in the shifted coordinate frame because of the
imposed steady-state selection on the control input.

(A.3) Rewrite the system dynamics in terms of centered variables and steady-
state values. Time-varying variables can be then factorized from the resulting
nonlinearities (denoted by e(x̃(k))) by using the following transformation:

e(x̃(k)) = E(x̃(k))x̃(k), E(x̃(k)) =
∫ 1

0

∂e(ϕ x̃(k))
∂ϕ

dϕ , (18.22)

with the use of the auxiliary variable ϕ . Such relationship is valid for
functions that satisfy e(0) = 0. This condition is guaranteed in the underlying
traffic model due to the shift of the coordinate frame to the steady-state
operation point.

(A.4) Rearrange the factorized terms according to their nature (state, input, or
disturbance) to obtain quasi-LPV structure in the form

x̃(k+ 1) = A(p(k))x̃(k)+E(p(k))d̃(k)+B(p(k))ũ(k), (18.23)

where the scheduling parameter vector p(k) is used for capturing nonlineari-
ties, therefore depends on x̃(k).

Since no approximation is introduced through the derivation, the obtained
parameter-dependent structure in (18.23) is numerically equivalent with the
nonlinear representation of the process (18.1)–(18.6).

18.3.3 Constraint Handling

As it has been highlighted before, the above selection of r∗i implies a 0-symmetric
constraint representation of the physical limitations in the shifted coordinate frame.
A possible way to model these types of constraints is the consideration of the
saturation limit in the following form [24]:

σ(ũ(k)) =

{
ũ(k) |ũ(k)| ≤ u

sign(ũ(k))u |ũ(k)| ≥ u
, (18.24)

where the unified bound u on the centered on-ramp volume equals rmax−rmin
2 in the

underlying problem. LPV concepts can be then applied for input saturated systems
by introducing the following saturation parameter [24]:

θ (ũ(k)) =
σ(ũ(k))

ũ(k)
, (18.25)
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and defining θ (0) = 1 in addition. Consequently, the domain of the saturation
parameter is (0, 1]. Expressing the saturated input with θ (ũ(k)) as σ(ũ(k))=
θ (k)ũ(k) the system equation (18.23) can be rewritten in the form

x̃(k+ 1) = A(p(k))x̃(k)+E(p(k))d̃(k)+B(p(k))θ (ũ(k))ũ(k). (18.26)

LPV paradigms can be applied in a straightforward way to address the problem,
namely by considering the saturation parameter θ (ũ(k)) as an additional scheduling
parameter of the system. Note that since the bounds of the parameter are known,
and its value can be computed online, it is suitable for scheduling the controller.

Remark 18.1. Increasing the number of scheduling parameters results in a
parameter-varying controller that also depends on θ (ũ(k)), consequently the
controller is continuously informed of the actual level of saturation. This implicit
information has to be distinguished from the explicit solution proposed in Wu
et al. [24]. In the latter solution, the measurement equation is extended with
ũ(k)−σ(ũ(k)). That is when the saturated input is directly fed back to the controller
as it is usual in anti-windup setups. Applying explicit solution requires the controller
to be strictly proper in order to ensure causality [24]. In this chapter only θ (ũ(k))
is involved, hence the controller may have a direct feed-through term from ỹ(k) to
ũ(k), and still it remains causal.

Remark 18.2. It also should be emphasized that the proposed method for constraint
handling does not automatically prevent constraint violations. Since the domain
of θ (ũ(k)) is (0, 1] there always exists a practical lower bound θmin �= 0 on the
saturation parameter, which is used through the design. Although the resulting
control input ũ(k) is unbounded, one should take care that its value does not exceed
θ−1

minu. Furthermore, the value of θmin means a trade-off in the controller design,
since as its value is decreased so is the effect of the control input lowered.

18.3.4 Polytopic Representation

Polytopic systems can cover nonlinear or LPV systems by allowing the weighting
functions to depend on state variables. Polytopic models are widely used for various
engineering problems because of their numerically favorable properties.

In order to transform the obtained generic LPV representation of the freeway
model, a Tensor-Product (TP) model transformation is applied [3]. Generally
speaking, the TP model transformation is a numerical tool with proved numerical
reconstruction capabilities, to reformulate quasi-LPV models into a polytopic form
(18.17a), with state-dependent convex combination of LTI vertex systems.

The first step of the TP model transformation is the evaluation of the investigated
quasi-LPV system (18.26) over an arbitrary selected domain Ψ , representing the
parameter variation set of the scheduling parameters (or of the state variables they
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depend on). In order to evaluate the qLPV dynamics over Ψ , an np dimensional
grid should be defined. The qLPV system matrices are then sampled over the
predefined grid, resulting in a hyper-dimensional data matrix. higher-order singular
value decomposition (HOSVD) is then applied for the decomposition of the data
matrix. The number of local LTI systems used for approximating the nonlinear
dynamics can be determined according to the singular values and their condition
number. Then the discretized weighting functions of the polytopic model ensuring
convexity are constructed by executing the HOSVD decomposition of the LPV data
matrix.

Remark 18.3. According to the proposed constraint handling technique, the
scheduling parameter has been extended with the saturation parameter.
Consequently, the weighting functions of the polytopic description depend on the
saturation level, i.e., the system polytope contains both saturated and unsaturated
dynamics.

18.3.5 Parameter-Dependent Control Formulation

The generic nonlinear freeway model (18.1)–(18.6) is transformed into the follow-
ing polytopic form, by executing steps described in Sects. 18.3.2–18.3.4:

x(k+ 1) = A(k)x(k)+E(k)d(k)+B(k)u(k), (18.27)

where the state vector x(k) contains the centered density and space-mean speed vari-
ables,2 u(k) represents the unbounded on-ramp volumes, while centered upstream,
respectively, downstream variables are compressed in the disturbance vector d(k).
Moreover d(k) can be partitioned according to its unmeasured (w(k)) and measured
(w(k)) components. Consequently, the knowledge of states and the disturbances are
written in the output equation as follows:

y(k) =C2x(k)+D21d(k), (18.28)

where only measured disturbance signals influence the system’s output through the
term D21d(k). The ramp metering problem can then be formulated by defining
the performance output of the system. According to the fundamental theory of
traffic flow, network capacity is maximized if the density reaches its critical
value. This coincides with the origin of the centered coordinate frame due to
the selection ρ∗

i = ρcr. Furthermore, large input deviations can also be penalized
in the performance output. In order to enhance the performance specifications

2For ease notations.
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(dynamical, possibly parameter-dependent), weighting functions can be added at
the plant output or input [19, 25], i.e., one can write the following formula for the
performance of the freeway traffic problem:

z(k) =C1(k)x(k)+D12(k)u(k), (18.29)

i.e., the disturbance does not effect directly the performance output.
As it has been showed in previous studies, disturbances such as shock waves lead

to the degradation of throughput, therefore they are undesirable. Consequently, the
effects of disturbance should be minimized on the capacity output which lead us to
the following formal control problem.

Consider thus the polytopic representation of the process described by
(18.27)–(18.29), where the system matrices belong to the polytope Ω . The aim is
to guarantee certain performance specifications from the unmeasured disturbances
w(k) = Ewd(k)3 to the performance output z(k) ∈ Rnz . A possible candidate of this
performance specification can be given by defining the induced L2 gain from the
disturbance w(k) to z(k):

sup
0<‖w(k)‖<∞

‖z(k)‖
‖w(k)‖ < γ. (18.30)

In order to achieve the control objectives, a finite dimensional (xc ∈Rnxc ) polytopic
controller is proposed in the following form [19]:

xc(k+ 1) = Ac(k)xc(k)+Bc(k)y(k), (18.31a)

u(k) = Ccxc(k)+Dcy(k). (18.31b)

with time-varying system matrices [Ac(k)Bc(k)]∈Ω , and constant Cc, Dc. The latter
assumption on Cc and Dc ensures the convexity of the controller design as discussed
in the following section.

18.4 Controller Setup

Hereunder we give the general derivation of the controller design applied for the
ramp metering problem. We follow the derivation of [19] developed for continuous-
time LTI systems.

3Ew selects the unmeasured part of the generalized disturbance d(k).
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System
x

Controller
xc

z

u y

d
Fig. 18.1 Closed-loop
interconnection of the system
and controller

The closed-loop interconnection of the system (18.27)–(18.29) with the
controller (18.31a) and (18.31b) is given in Fig. 18.1 with the following dynamics:

⎡

⎣
x(k+1)
xc(k+1)

z(k)

⎤

⎦ =

⎡

⎣
A(k)+B(k)DcC2 B(k)Cc E(k)+B(k)DcD21

Bc(k)C2 Ac(k) Bc(k)D21

C1(k)+D12(k)DcC1 D12(k)Cc D12(k)DcD21

⎤

⎦

⎡

⎣
x(k)
xc(k)
d(k)

⎤

⎦ .

(18.32)

Introducing shorthand notations for the closed-loop state vector (ξ (k) ∈ Rnξ ,
nξ = nx + nxc ) and for closed-loop system matrices, the following compact form is
used:

[
ξ (k+ 1)

z(k)

]
=

[
A (k) B(k)
C (k) D(k)

][
ξ (k)
d(k)

]
, (18.33)

where A (k) ∈ Rnξ×nξ , B(k) ∈ Rnξ×nd , C (k) ∈ Rnz×nξ , and D(k) ∈ Rny×nd . The
closed-loop system is said to be dissipative with supply function s(w(k),z(k)) if
there exists a storage function V : Rnξ → R such that [19]:

V (ξ (k+ 1))−V(ξ (k))≤ s(w(k),z(k)), (18.34)

where a widely used candidate for V is the quadratic form

V (ξ (k)) = ξ T(k)X ξ (k) (18.35)

with X ∈ Rnξ×nξ , X = X T � 0. Furthermore, if (18.34) is satisfied with the
supply function in the form

s(w(k),z(k)) = γ2 ‖w(k)‖2 −‖z(k)‖2 , (18.36)
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then:

sup
0<‖w(k)‖<∞

‖z(k)‖
‖w(k)‖ < γ. (18.37)

i.e., the induced L2 norm from the unmeasured disturbance to the performance
output is bounded by γ > 0 [1, 19]. The closed-loop dissipativity with the quadratic
storage function (18.35) and supply function (18.36) reads as follows:

ξ (k+1)TX ξ (k+1)−ξ (k)TX ξ (k)≤
[

w(k)
z(k)

]T [
γ2Inw 0

0 −Inz

][
w(k)
z(k)

]
. (18.38)

After substituting closed-loop dynamics (18.33) and rearranging terms:

[
ξ (k)
d(k)

]T [
A (k)TX A (k)−X A (k)TX B(k)

B(k)TX A (k) B(k)TX B(k)

][
ξ (k)
d(k)

]
(18.39)

≤
[

ξ (k)
d(k)

]T [
0 Ew

C (k) D(k)

]T [
γ2Inw 0

0 −Inz

][
0 Ew

C (k) D(k)

][
ξ (k)
d(k)

]
. (18.40)

Dissipativity is a system’s property, regardless of ξ (k) and d(k), therefore the

quadratic expression above should be satisfied for all
[
ξ T(k) dT(k)

]T
. Consequently,

a matrix definiteness problem obtained, which takes the following form after
rearrangement:
[

X 0
0 γ2ET

wEw

]
−
[
A (k)TX C (k)T

B(k)TX D(k)T

][
X −1 0

0 Inz

][
X A (k) X B(k)

C (k) D(k)

]
� 0.

(18.41)

Then, by using Schur-complement one gets the following expression of the system’s
dissipativity:

⎡

⎢
⎢
⎣

X 0 A (k)TX C (k)T

0 γ2ET
wEw B(k)TX D(k)T

X A (k) X B(k) X 0
C (k) D(k) 0 Inz

⎤

⎥
⎥
⎦� 0. (18.42)

Note that (18.42) is nonlinear in the unknown variables, since the product of X and
closed-loop system matrices A (k) and B(k), containing the controller matrices. A
standard method to handle such nonlinearities is the use of an appropriate congruent
transformation [1, 19]. For this purpose, we introduce the following partition of the
Lyapunov matrix X and its inverse:

X =

[
X U

UT �

]
, X −1 =

[
Y V

V T �

]
, (18.43)
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where � denotes an arbitrary matrix partition. By definition, the following connec-
tion holds for the new variables X ,Y,U,V :

X X −1 =

[
XY +UVT XV +U�

UTY + �V T UTV + ��

]
=

[
Inx 0
0 Inx

]
. (18.44)

Furthermore, we define the following variable

Y =

[
Y Inx

V T 0

]
. (18.45)

These variables are used to construct and perform the congruent transformation, i.e.,
we multiply inequality (18.42) with diag

(
Y , Ind ,Y , Inz

)
from the right and with its

transpose from the left. The congruent of X reads as follows:

Y TX Y =

[
Y Inx

Inx X

]
= X(v), (18.46)

where the transformed variable X has been introduced and depends on the new
variables v = (X ,Y ).

Furthermore:

[
Y 0
0 Inx

]T [
X A (k) X B(k)

C (k) D(k)

][
Y 0
0 Inx

]
=

[
A(k,v) B(k,v)
C(k,v) D(k,v)

]
, (18.47)

where the new matrices are obtained as follows. Firstly,

A(k,v) = Y TX A (k)Y =

[
A(k)Y +B(k)M A(k)+B(k)NC2

K(k) XA(k)+L(k)C2

]
(18.48)

with the new variables defined as

• K(k) = XA(k)Y +XB(k)DcC2Y +UBc(k)C2Y +XB(k)CcV T +UAc(k)V T

• L(k) = XB(k)Dc +UBc(k)
• M = DcC2Y +CcV T

• N = Dc

Secondly,

B(k,v) = Y TX B(k) =

[
E(k)+B(k)ND21

XE(k)+L(k)D21

]
, (18.49)

thirdly,

C(k,v) = C (k)Y =
[

C1(k)Y +D11(k)M C1(k)+D12(k)NC2
]
. (18.50)
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And finally, D(k,v) = D12(k)ND21. Note that A(k,v), B(k,v), C(k,v),D(k,v) are
linear in the new variables:

v =

(
X ,Y,

(
K(k) L(k)

M N

))
. (18.51)

Consequently, the congruent transformation of (18.42) results in:

⎡

⎢
⎢
⎣

X(v) 0 AT(k,v) CT(k,v)
0 γ2Inw BT(k,v) DT(k,v)

A(k,v) B(k,v) X(v) 0
C(k,v) D(k,v) 0 Inz

⎤

⎥
⎥
⎦� 0, (18.52)

which is linear in the new variables v, i.e., (18.52) is a LMI.
The controller design is then formulated as an optimization problem.

min

X ,Y,

⎛

⎝K(k) L(k)
M N

⎞

⎠

γ2,

subject to (18.52). (18.53)

Note that due to the polytopic structure of the system and the controller, it is
sufficient to add a finite number of LMI constraints to the optimization problem,
according to the number of vertices of Ω .

18.5 Numerical Example

In order to investigate the numerical properties of the proposed method, the
following benchmark problem is proposed. An isolated ramp metering section has
been selected, with n = 2 number of lanes and Δ = 0.5km length. The nonlinear
state vector of the configuration consists of segment’s density and space-mean
speed: x(k) = [ρ(k) v(k)]T. A one-lane ramp is connected to the segment with the
maximal capacity inflow rmax = 2,000 veh

h , while the required minimum volume
is set rmin = 360 veh

h . Accordingly, the control input in the nonlinear coordinate
frame is: u(k) = r(k). It is assumed that only the segment-wide traffic variables
are gathered through detector measurements with a T = 10s sampling time. That
is to say, upstream and downstream variables are collected into the generalized
disturbance vector d(k) = [q−(k) v−(k) ρ+(k)].

Such configuration allows us to directly compare the proposed method with the
most well-known ramp metering algorithm, called ALINEA [16, 17]. The control
equation of the ALINEA method reads as follows:

r(k) = r(k− 1)+K(ρ̂ −ρout(k)), (18.54)
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Table 18.1 Nonlinear model parameters

a vfree ρcr κ τ ν δ
1.4 110km/h 25veh/km/ lane 10veh/km/ lane 0.01h 20km2/h 1.7

Table 18.2 Steady-state values

ρ∗ v∗ ρ∗
+ r∗ v∗− q∗−

25 53.8496 25 1180 82.5067 3024
veh/km/ lane km/h veh/km/ lane veh/h km/h veh/h

where K is the regulator gain and ρ̂ is the desired downstream density, i.e., ALINEA
is a linear integral control law for freeway ramp metering.4 Several field test
experiences have been reported from Paris, Amsterdam, and Glasgow [17], where
ALINEA has been successfully applied, offering acceptable control performance.
Hard physical constraints (i.e., minimal and maximal ramp metering rates) are taken
into consideration indirectly through a saturation applied at the implementation.

The model parameters of the second-order macroscopic model are summarized
in Table 18.1.

According to our previous discussion, the steady-state conditions have been
determined and the results summarized in Table 18.2.

Initially, a minimal saturation parameter θmin = 0.4 has been assumed, which
represents approx. doubled allowable domain according to θ−1

minu. Accordingly,
the parameter-dependent model structure has been established and evaluated over
the following domain in the centered density, space-mean speed, and saturation
parameter space Ψ :

Ψ =

⎡

⎣
−18 80
−60 50
0.4 1

⎤

⎦. (18.55)

Consequently, 12 number of LTI vertex systems have been obtained by the proposed
TP transformation of the qLPV model. Furthermore, the assumed detector setup
implies the following output mappings: C2 = I2 and D21 = 02×3.

In the numerical example, only the centered density variable is used as a
performance output. In order to ensure advanced disturbance attenuation, at this
performance output a time invariant dynamical performance weighting function is
introduced. Note that the generic derivation of the controller design allows more
flexible polytopic mappings C1(k) and D12(k). The involvement of the dynamical
weight indirectly enhances the reachable closed-loop performance by improving
tracking performance in low-frequency regions, including steady-state behavior
[25]. For the underlying problem, the following performance weight has been
selected in the z-domain:

Wp(z) =
1.493z− 0.4975

z− 0.99
(18.56)

4That is where the acronym ALINEA originates from.
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with a sampling time T = 10s. Consequently, the obtained polytopic system is
extended with the dynamic and parameter-independent performance weight Wp(z),
and the dimension of the augmented plant is increased with the states of the
proposed weighting function.

A full-order nxc = nx dynamical controller is designed for the augmented plant
by solving the proposed optimization problem subject to the LMI constraints.
According to the vertices of the system polytope, 12 number of LMI constraints
are formulated. The optimization problem was solved by using the SeDuMi
optimization tool. The retrieved controllers Ac(k),Bc(k),Cc,Dc were found to be
stable at all vertices.

In order to evaluate and compare the impact of the proposed design under various
conditions, a simulated traffic scenario has been selected as follows. A stable traffic
flow is used for representing the normal operation. After half an hour, a sharp
discontinuity is introduced in the downstream traffic conditions to mimic a shock
wave (or wide moving jam). Once the shock wave is dissolved autonomously after
an other half an hour, the upstream conditions start to change, imitating peak hour
conditions. More precisely, a slowly increasing density is simulated in the upstream
direction. According to a typical rush hour scenario, upstream demand starts to
decrease after 1 h in the simulation setup.

Three control setups have been investigated under the same demand scenario:

• The uncontrolled case, when no control action is applied at the on-ramp volume,
and a constant number of 1,300 vehicles enter the freeway per hour.

• The newly proposed parameter-dependent controller (constrained LPV).
• The well-known ALINEA control case.

Comparative simulation results are given in Figs. 18.2–18.4.
Figure 18.2 shows the evolution of density for the three setups. One can see

the effect of ramp metering in contrast to the uncontrolled case, by observing
in Fig. 18.2. Both the shock wave and the rush hour traffic conditions lead to
congestion when no control action is applied. Secondly, under smooth traffic
conditions the different on-ramp control algorithms provide similar results. At the
same time, the newly proposed polytopic controller over-performs ALINEA under
changing traffic conditions. ALINEA reacts to the variation with a large overshoot,
while the polytopic controller suppresses the effect according to its disturbance
rejection property. Note that the density reaches the congested region for a limited
period when the ALINEA method is applied, which may propagate backward in a
more realistic traffic simulation (since it effects the upstream condition in contrast
with the scenario in question).

Similar effects can be observed at the space-mean speed evolution (see Fig. 18.3).
The average speed of vehicles drops according to the congested traffic conditions.
One can also note the similar response of the two controlled densities and speeds
during the shock wave excitation period. The reason of the similarity lies in the
saturated on-ramp volumes as illustrated on Fig. 18.4. One can observe the more
sensitive and faster response of the polytopic controller compared to the integrator-
based control law.
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Fig. 18.5 The variation of the saturation parameter θ (u(k))

Finally, the time evolution of the controller saturation level is depicted in
Fig. 18.5, where one can ensure that the initial assumption on the minimal saturation
parameter value θmin = 0.4 has not been violated in the simulation scenario.
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The advantage of the polytopic model-based controller design is the increased
performance under changing disturbance conditions. Moreover, the systematic
design methodology, offered by parameter-dependent paradigms, can be exploited.
One can easily extend the model with an additional queue dynamics and incorporate
the waiting queue in the performance output. The performance output of the system
can also be extended, because of the second-order description, with space-mean
speed. Since the centered variable characterizes the difference from the equilibrium
speed, the extended performance output would be equal with the flow maximizing
control objective. Furthermore, the possibility of additional measurements can
be incorporated through the design, since the generality of the derived control
synthesis. The disadvantage of the constrained LPV design method is the need of
complex computational algorithms compared to ALINEA.

18.6 Conclusions and Further Research

Parameter-dependent methods have been adopted in the chapter for constrained
freeway traffic control problem. For this purpose, the nonlinear second-order macro-
scopic model was transformed into a parameter-dependent polytopic form. Hard
physical constraints were modeled as saturation limit and handled by using LPV
methods. A dynamic controller was then proposed for the solution of the underlying
control problem, where the effects of unmeasured signals were suppressed to avoid
network throughput degradation. Solution was obtained as a standard optimization
problem subject to convex constraints formulated by LMIs. A numerical example
was given for the evaluation of the proposed method. Comparative simulation
scenarios showed the improved disturbance rejection property of the constrained
polytopic controller.

Further research will focus on evaluating the constrained LPV controller in more
complex traffic scenarios and topology. Furthermore, the relaxation of computa-
tional needs arising in large-scale freeway networks will be addressed by adopting
decentralized or distributed control schemes.
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Chapter 19
Linear Parameter-Varying Control for the X-53
Active Aeroelastic Wing

Peter Seiler, Gary J. Balas, and Andrew Packard

Abstract Fuel efficiency, endurance, and noise requirements are pushing modern
aircraft to lighter, more flexible designs. This causes the structural modes to
occur at lower frequencies increasing the coupling with the rigid body dynamics.
The traditional approach to handle aeroservoelastic interaction is to design gain-
scheduled flight control laws based on the rigid body dynamics and then use
filters to avoid exciting the structural modes. This decoupled approach may not
be possible in future, more flexible aircraft without reducing the flight control
law bandwidth. Linear parameter-varying (LPV) techniques provide a framework
for modeling, analysis, and design of the control laws across the flight envelope.
This chapter applies LPV techniques to the roll control of NASA Dryden’s X-53
Active Aeroelastic Wing testbed. LPV techniques are first used to analyze a gain-
scheduled classical controller. Gain-scheduling is still the dominant design method
in industrial flight control laws and LPV analysis tools can play an important role
in certifying the performance of these systems. Next, an LPV controller is designed
and its performance is compared against the gain-scheduled classical controller. All
results are obtained with a set of LPV tools which makes use of object-oriented
programming to enable easy construction and manipulation of LPV models.

19.1 Introduction

Increased fuel efficiency and operational range are significant design drivers for
modern commercial aircraft, e.g., the Boeing 787. Similar design objectives are also
critical for future military aircraft, e.g., the SensorCraft concept aircraft [14,18,31].
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In both cases, lighter aircraft are required to meet these objectives. The reduction in
weight is typically achieved by reducing the structure in the wings and fuselage of
the aircraft. This makes the aircraft more flexible and causes the structural modes
occur at lower frequencies. The main consequence is that lighter, more flexible
aircraft have tight coupling between the rigid body and elastic structural modes. This
increases the likelihood of adverse aeroservoelastic phenomena including flutter and
control surface reversal.

The traditional approach to handle aeroservoelastic interaction is to design the
flight control laws based on the rigid body dynamics and then use filters to avoid
exciting the structural modes. The control laws are typically designed at various
points in the flight envelope and then gain-scheduled by interpolating these point
designs. This gain-scheduled approach may not be possible on future, more flexible
aircraft for which the structural modes occur at lower frequencies. The design
will need to consider coupling between the rigid body dynamics, structural modes,
and the time-varying gain-scheduled controller. Flexible aircraft would significantly
benefit from an integrated aeroservoelastic and rigid body control system.

Several issues must be addressed to enable integrated active control to become
a reality. First, the aeroelastic effects involve unsteady flows [15–17]. In addition,
there can be nonlinear effects, e.g., nonlinear coupling between the structural modes
and the aerodynamics [5, 15]. Advanced tools are needed to model these effects
across the entire flight envelope. A second issue is that an integrated control
design must account for the tight coupling between the rigid body and structural
modes. This will likely require novel sensors that can measure, in real time, the
aerodynamic flow around the aircraft structures. Such sensors are currently being
developed [15–17] and new control architectures may be required to take advantage
of these novel measurements. A third issue is that analysis tools are required to
certify that the designed feedback system meets structural load requirements and is
free from aeroservoelastic instabilities. Existing approaches based on robust flutter
margins [6, 8, 13] form a starting point but may need to be extended to handle the
complexities introduced by the integrated design approach. To summarize, advanced
tools are required for modeling, integrated controller synthesis, and analysis of
flexible aircraft.

This chapter investigates the use of linear parameter-varying (LPV) analysis and
control techniques for flexible aircraft control. There are two main objectives of this
chapter. The first is to introduce new software tools for LPV modeling, analysis,
and control synthesis. These tools implement existing analysis and synthesis
conditions drawn from the large body of literature on LPV systems including
[1, 4, 19, 20, 24, 25, 27, 28, 32–34]. Implementation of the LPV algorithms makes
use of object-oriented programming to enable easy construction and manipulation
of LPV models. The second objective is to apply LPV techniques to NASA Dryden’s
X-53 active aeroelastic wing (AAW) testbed [21–23]. The AAW is an experimental
flight test capability for aeroservoelastic control research. This chapter will focus on
roll rate control of the AAW in the supersonic regime.

The remainder of the chapter has the following outline. First, a brief review of
the AAW program is given in Sect. 19.2. The LPV software data structures and their
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functionality are described in Sect. 19.3. Next, the AAW rigid body and aeroelastic
dynamics are described in Sect. 19.4. A gain-scheduled classical control law is
designed and analyzed in Sect. 19.5. Gain-scheduled classical control is the standard
in industry for flight control design. LPV analysis tools can play an important
role in certifying the performance of these systems and identifying potential issues
due to fast variations in the gain-scheduling parameters. The LPV analysis tools
provide a useful complement to existing approaches, e.g., margin requirements at
each flight condition or robust flutter margins [6, 8, 13]. Section 19.6 describes an
LPV controller for the AAW and compares this design against the gain-scheduled
classical design. Finally, conclusions are given in Sect. 19.7. Early versions of these
results appear in [26].

19.2 Active Aeroelastic Wing

NASA Dryden’s X-53 AAW [21–23] was an experimental flight test capability for
aeroservoelastic control research. NASA and the USAF developed this test bed to
investigate the use of aeroelastic flexibility for improved performance of high aspect
ratio wings. The effectiveness of the conventional aircraft surfaces, e.g., ailerons and
trailing edge flaps, is reduced at higher dynamic pressures due to the flexibility of
the wing. This can lead to control reversal at sufficiently high dynamic pressures.
The standard solution is to reduce wing flexibility by adding structure, and hence
additional weight, to the wings.

The main objective of the AAW Flight Research program was to test an
alternative concept that uses wing flexibility to improve control effectiveness. The
AAW has inner and outer flaps on the leading edge of the wings. Small movements
of these surfaces cause the wing to twist in the direction that increases the local angle
of attack and induces a rolling moment on the aircraft. These flaps do not undergo
a control reversal and, in fact, their effectiveness increases at higher dynamic
pressures. Thus the wing flexibility and twist act in a direction beneficial for control.

To test this concept, the AAW wings were modified from the standard F/A-18
wings to reduce the torsional stiffness [22]. This increases the wing flexibility and
reduces the frequency of the flexible modes. Advanced tools are required to model
the aeroelastic effects because they involve unsteady flows [15–17] and there can
be nonlinearities [5, 15]. For control design, linear models of the rigid body and
aeroelastic dynamics are obtained at each flight condition via linearization. This
naturally falls within the class of LPV models that are scheduled as a function of the
flight condition.

The flight-tested AAW control architecture is a modified version of the
production F/A-18 control laws [11]. The basic architecture uses roll rate feedback
to track roll rate commands from the pilot lateral stick inputs. The lateral controller
commands the aileron, trailing edge flaps, inner leading edge flaps, and outer leading
edge flaps (OLEFs). Each surface command is the sum of a proportional roll rate
feedback term and a proportional roll rate tracking error term. The control gains
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were tuned to maximize roll rate performance while satisfying structural load and
handling quality requirements [11]. The gains were tuned using the multiobjective
optimization tool CONDUIT [30]. This tool performs nonlinear optimization
incorporating results from a high-fidelity simulation model.

The AAW control laws were designed and flight tested at separate design points
in the flight envelope [10]. These control laws were tested during 34 Phase II test
flights conducted from December 2004 through March 2005 [22]. The tests spanned
the transonic and supersonic flight conditions and included 360◦ rolling maneuvers,
5g wind up turns, and 4g rolling pullouts. The flight test program validated the AAW
concept and was deemed a success. Additional details on the existing AAW flight
control laws and flight tests can be found in [10, 11, 22].

19.3 Tools for LPV Analysis and Design

LPV models are time-varying, state-space models of the form

[
ẋ(t)
y(t)

]
=

[
A(ρ(t)) B(ρ(t))
C(ρ(t)) D(ρ(t))

][
x(t)
u(t)

]
, (19.1)

where A(ρ(t)) is the state matrix, B(ρ(t)) is the input matrix, C(ρ(t)) is the output
state matrix, D(ρ(t)) is the input transformation matrix, ρ ∈ R

nρ is a vector of
measurable parameters, x∈R

nx is the state, y∈R
ny is the measurement, and u∈R

nu

is the control input. The dimensions of (A,B,C,D) are compatible with the signal
dimensions.

LPV models arise in many contexts. In industrial settings, a finite collection
of linear models is often used to describe the behavior of a system throughout an
operating envelope. The linearized models describe the small signal behavior of the
system at a specific operating point. The collection is parameterized by one or more
physical variables whose values represent the operating point. For example, the LPV
design model used in this chapter for the AAW roll rate dynamics is based on a
parameterized family of linearizations. The models are scheduled across the aircraft
(Altitude, Mach) flight envelope. Alternatively, LPV models can be constructed
by considering state transformations on a class of nonlinear “quasi-LPV” systems
[27]. This method essentially ignores some nonlinear relationships in the system
dynamics and hence introduces conservatism in the control design.

LPV software tools have been developed to enable the modeling, analysis,
controller synthesis, and simulation for LPV systems. One issue is that several
different methods have arisen for representing the parameter dependence in LPV
models (19.1). These include linear fractional transformations (LFTs) [1, 19, 20,
24, 25], linearizations on a gridded domain [4, 33, 34], and polytopic (affine)
dependence of the state matrices on the parameters [2, 3, 9, 29]. Each of these
different representations has benefits and drawbacks in terms of the modeling effort
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and model structure that can be exploited in developing computational algorithms.
It would be useful for the controls community to have a single LPV toolbox that
easily supports the different representations. Ideally this would include tools to
transform an LPV model in one representation to another representation. This would
enable easy comparison between the various LPV methods and with classical gain-
scheduling approaches.

As a starting point, the initial implementation of the LPV algorithms focuses
on models defined on gridded domains. This is motivated by aircraft aeroelastic
control problems for which models are typically constructed as linearizations around
various flight operating points. A key component of the software tools is the core
LPV data structure object, referred to as a pss (denoting parameter-varying state-
space model). The LPV systems in (19.1) are conceptually represented by a state-
space system S that depends on a parameter vector ρ in some domain of Rnρ . For
general LPV systems, this conceptual representation requires storing the state-space
system at an infinite number of points in the domain of ρ . The data structure object
pss approximates this conceptual representation by storing the LPV system as a
state-space array defined on a finite, gridded domain. As a simple example, consider
an LPV system S(ρ) that depends on a single parameter ρ in the domain ρ ∈ [a,b].
The infrastructure requires the user to specify the domain with a finite grid, e.g.
N points in the interval [a,b]. The software tools include an rgrid data object
to facilitate the creation and manipulation of the multivariable parameter domains.
The user must also specify the values of the state-space system S at each point ρ
in this gridded domain. The pss object stores the state-space array data using the
standard MATLAB Control System Toolbox ss object. Thus the pss can be viewed
as the parameter-varying extension of the standard ss object. To summarize, the
LPV system S(ρ) is represented by a pss data object which stores the gridded
domain and the array that defines the state-space data at each point in the domain.

The notions of parameter-varying matrices and parameter-varying frequency
responses arise naturally to complement the pss objects. LPV systems are time-
varying and hence frequency responses cannot be used to represent the system
behavior as parameters vary. However, frequency responses are useful to gain
intuition about the system performance at fixed locations in the operating domain.
The parameter-varying matrices and frequency responses are represented by pmat
and pfrd data objects, respectively. These two data objects are both stored as a
data array defined on a gridded domain. Table 19.1 shows the relation between
the LPV data objects (pmat, pss, pfrd) and existing MATLAB objects. The
first row of the Table (“Nominal”) shows the basic MATLAB objects: matrices
are double objects, state-space systems are ss objects, and frequency responses
are frd objects. double objects are in the standard MATLAB release while the
ss and frd objects are part of the Control System Toolbox. The second row of
Table 19.1 (“Parameter Varying”) shows the core LPV objects. The LPV objects
(pmat, pss, pfrd) can be viewed as parameter-varying extensions of the standard
objects MATLAB and Control Toolbox objects (double, ss, frd).

The third row of the table (“Uncertain”) shows the equivalent objects used to rep-
resent uncertainty: uncertain matrices, state-space systems, and frequency responses
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Table 19.1 Relation between MATLAB objects
Object
Type

Block Matrix System Frequency
Response

Nominal

y
� M

u
�

double ss frd

Parameter Varying

y
� M(r)

M(r)

u
�

pmat pss pfrd

Uncertain

y
� M

u
�

� D

�

umat uss ufrd

Uncertain
ParameterVarying

y
�

u

� Δ

�

upmat upss upfrd

are represented by umat, uss, and ufrd objects, respectively. These objects
are part of the MATLAB Robust Control Toolbox. The Robust Control Toolbox
models the uncertainty as a perturbation Δ wrapped in feedback around a nominal
part M, i.e., uncertainty is represented using a linear fractional transformation.
Real parametric, complex parametric, and unmodeled dynamic uncertainties can
be modeled. The last row of Table 19.1 (“Uncertain Parameter Varying”) shows
the corresponding parameter-varying objects with uncertainty: uncertain parameter-
varying matrices, state-space systems, and frequency responses are represented by
upmat, upss, and upfrd objects, respectively. The parameter-varying uncertain
objects are not yet implemented but they are essential to developing robustness
analysis and design tools for LPV systems. There is also a natural overlap with
the linear fractional representation for LPV systems.

The LPV objects are being developed within MATLAB’s object-oriented pro-
gramming framework. A benefit of object-oriented programming is that key op-
erations can be overloaded to provide seamless, consistent functionality across a
variety of objects. For example, if A and B are double objects then the syntax A*B
simply multiplies the matrices. If A and B are pmat objects then the syntax A*B
multiplies the parameter-varying matrices at each point in the parameter domain.
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The manipulation of parameter-varying objects is facilitated by this extension of
the * operation to a meaningful, intuitive operation for pmat objects. In addition,
standard MATLAB syntaxes, e.g., M(i,j) to index into the (i, j) element of an
array, have been overloaded and extended for parameter-varying objects. Object-
oriented programming enables this overloading of key functions and this enables
meaningful, intuitive extensions for parameter-varying objects.

To summarize, development of object-oriented LPV software tools will help
expand the functionality and tools for LTI systems, as developed in the MAT-
LAB Control and Robust Control Toolboxes, to linear parameter-varying systems.
SIMULINK blocks have also been developed to simulate LPV systems. There are
several challenges and open issues going forward. These include the numerical
stability and scalability of the algorithms, incorporation of uncertainty analysis,
and development of the data infrastructure and tools to encompass the various LPV
representations. The remainder of the chapter will demonstrate the application of
LPV analysis and control design techniques to the AAW control design example.

19.4 AAW Roll Rate Model

The AAW rigid body roll rate dynamics are given by

ṗ = Lp(h,M)p+Lδ (h,M)δ (19.2)

where p is roll rate (deg/s) and δ is the OLEF position (deg). The OLEF is effective
across the supersonic flight envelope of interest. Thus only this surface is used for
roll rate control design in this chapter. The rigid body LPV model from OLEF to
roll rate (19.2) is denoted Grig.

Lp and Lδ are defined on a grid of altitude h (ft) and Mach M (unitless)
with values provided in Tables 19.2 and 19.3. These data were constructed from
nondimensional aerodynamic coefficients obtained from NASA Dryden [7]. The
nondimensional Lδ data were rescaled to obtain a mean gain of 2 over the flight
envelope. Hence the variations of the Lδ data in Table 19.3 across the flight envelope
accurately represent the AAW OLEF gain but the absolute magnitude contains a
scaling factor. This scaling will be discussed in the following paragraphs.

The AAW wings were modified for increased flexibility leading to flexible
modes occurring at lower frequencies. Models of the AAW aeroelastic dynamics
were obtained from NASA Dryden [7] on a grid of altitude, Mach, and remaining

Table 19.2 AAW rigid body
data, Lp

M= 1.1 M= 1.2 M= 1.3

h= 10k −0.5652 −0.4614 −0.4009
h= 15k −0.5415 −0.4363 −0.3737
h= 20k −0.5165 −0.4128 −0.3606
h= 25k −0.5034 −0.3982 −0.3531
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Table 19.3 AAW rigid body
data, Lδ

M= 1.1 M= 1.2 M= 1.3

h= 10k 1.2916 1.3756 1.2425
h= 15k 0.9305 1.0524 1.1958
h= 20k 0.6032 0.7009 0.8326
h= 25k 0.3056 0.4110 0.5258
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Fig. 19.1 Open-loop Bode plots from OLEF to roll rate

fuel. The dependence on remaining fuel is neglected and the models at 60% fuel
are used for the design and analysis. The aeroelastic dynamics are defined on
the same (h,M) grid used to define the rigid body dynamics, i.e., the aeroelastic
dynamics are defined on the grid h = {10,000,15,000,20,000,25,000} ft and
M = {1.1,1.2,1.3}. At each flight condition, the aeroelastic dynamics are modeled
as a state-space system with 164 states. This model includes 64 states for the first 32
flexible modes and another 100 states for aerodynamic lags. The aerodynamic lag
states can be truncated at each point in flight envelope with minimal impact on the
OLEF to roll rate dynamics. The resulting aeroelastic model, denoted Gflex, has 64
states at each (h,M) flight condition.

The aeroelastic dynamics are added in parallel to the rigid body dynamics to
obtain the full 65 state model, Gfull = Grig +Gflex. Figure 19.1 shows the open-loop
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Bode plots of Gfull from OLEF to roll rate at each point in the (h,M) domain. As
noted above, the Lδ data were rescaled to give a mean gain of 2 across the flight
envelope. This effectively increases the significance of the flexible modes relative to
the rigid body dynamics. In particular, several of the flexible modes have magnitude
exceeding 15 dB at points in the flight envelope. The first cluster of flexible modes
occur around 55–65 rad/s. The OLEF actuator has a bandwidth of 75 rad/s. This
bandwidth is not fast enough to actively suppress these flexible modes. The original
intent was to use LPV techniques to actively control the AAW flexible modes.
The AAW aircraft does not require active attenuation of the flexible modes nor is
the OLEF actuator sufficiently fast to suppress these modes. Thus any control law
must roll-off to avoid exciting these modes. Since the OLEF actuator dynamics are
substantially faster than the AAW roll subsidence mode (Lp) these dynamics will be
neglected in most of the design and analysis in the subsequent sections.

Figure 19.2 shows the open-loop roll rate responses due to an OLEF step of
magnitude δ = 1◦. The top plot shows the response over an 8 s time scale and the
bottom plot zooms in on the transient response over the first second. In both plots
the solid curves are the rigid body responses at each point in the (h,M) domain while
the dashed curves are the responses of the full model with the flexible modes. The
rigid body responses in the top plot show the variation in DC gain and time constant
across the flight envelope. Based on the data in Table 19.2, the time constant varies
from a minimum of 1.77 s to a maximum of 2.83 s. The responses of Gfull show
the transient effects of the flexible modes which are excited by the step input. The
bottom plot more clearly shows this transient response. The flexible modes create a
roll rate oscillation with an amplitude of approximately 0.6 deg/s in the first 0.5 to
1.0 s of the step responses. These lightly damped oscillations decay to a negligible
amplitude after 2-3 s.

As described in Sect. 19.3, the core infrastructure for LPV modeling was
developed using MATLAB object-oriented class programming. The overloading of
key functions enables easy manipulation and analysis of these gridded models.

19.5 Gain-Scheduled Classical Control

Gain-scheduling via interpolation of point designs is still the predominant method
used in industry to develop a full-envelope flight control law. LPV analysis can play
an important role in certifying the performance of these control laws. Moreover,
LPV analysis tools can uncover potential stability and performance degradations
caused by rapid variations in the operating condition. This is especially important
for systems with significant aeroelastic effects because flexible modes may be
excited during aircraft maneuvers. This section analyzes the performance of a gain-
scheduled classical roll rate control design using LPV techniques.
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19.5.1 Control Design

The primary flight control objective is to design a feedback law to track roll rate
commands. The variation in the speed of response and gain of the AAW rigid body
dynamics across the (h,M) flight envelope (Tables 19.2 and 19.3) poses one issue
for the control design. The roll subsidence mode varies from −0.56 rad/s to −0.35
rad/s and the input gain varies from 0.31 to 1.29. A gain-scheduled controller is
designed to achieve a consistent bandwidth of 1.25 rad/s and zero steady-state error
due to step roll rate commands across the envelope. Another design issue is that
the controller must be robust to the flexible modes. The gain-scheduled controller
is designed so that, in closed loop, the flexible modes have magnitude less than
−20 dB at each point in the flight envelope. This is to ensure the flexible wing
modes are not excited by the flight control system. In addition, the gain-scheduled
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controller should achieve 6 dB of gain margin and 45◦ of phase margin at each point
in the envelope. These are standard margin requirements for military aircraft. The
margin specifications at each point in the envelope essentially assume a quasi-steady
approximation for (h,M). LPV analysis tools will be used to determine the impact
of variations in (h,M) on the closed-loop performance.

A classical gain-scheduled controller is designed to achieve these objectives. The
basic idea is to invert the rigid body dynamics and replace them with a desired loop
shape. In other words, the controller is given by Kcl = GinvGls where Ginv inverts
the plant dynamics and Gls is the desired loop shape. At each flight condition, the
AAW rigid body roll rate dynamics are given by Lδ

s+Lp
. The rigid body dynamics

are, in general, time-varying due to the dependence on (h,M) and hence the transfer
function representation is not correct. However, this representation will be used to
provide the basic insight into the control design. The controller inverts the rigid
body dynamics up to a bandwidth ωro to prevent exciting the flexible modes, Ginv =
s+Lp

Lδ
ωro

s+ωro
. The roll-off is chosen to be ωro = 12.5 rad/s. This is fast enough to

have minimal impact on the roll rate response but slow enough to avoid excessive

excitation of the flex modes at 55–65 rad/s. The desired loop shape is Gls =
ω2

d
s2+2ζωd

.

The values used in the control design are ζ = 0.8 and ωd = 1.25 rad/s. This desired
loop shape provides a second-order step response with small overshoot, zero steady-
state error, and a rise time of approximately 2.2 s.

As noted above, the plant and controller are both, in general, time-varying
systems and transfer function representations are not meaningful. State-space
representations should be used instead. The gain-scheduled classical controller
Kcl = GinvGls is given by the state-space representations:

[
Als Bls

Cls Dls

]
:=

⎡

⎣
−2ζωd 1 0

0 0 ωd

ωd 0 0

⎤

⎦ , (19.3)

[
Ainv Binv

Cinv Dinv

]
:=

⎡

⎣
−ωro ωro

−Lp(h,M)+ωro

Lδ (h,M)

ωro

Lδ (h,M)

⎤

⎦ . (19.4)

The dependence on (h,M) has been made explicit for clarity. The controller state
matrices are defined on the 4× 3 (h,M) grid for which plant data are available
(see Tables 19.2 and 19.3). The classical controller is gain-scheduled by linearly
interpolating the state matrices for Gls and Ginv.

A simple, but important observation is that time-varying systems, in general, do
not commute. Thus the closed-loop performance will be impacted by reordering
the controller as GlsGinv or using an alternative state-space realization for Ginv. The
realization of Ginv in (19.4) isolates all time-variations in the output and feedthrough
matrices. This realization enables the controller to instantly cancel variations in the
plant dynamics. A drawback is that this realization of the controller will be sensitive
to errors in the AAW gain-scheduled model.
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Fig. 19.3 Bode plots of classical controller

19.5.2 LTI Point Analysis

Insight into the control design and feedback system can be obtained by studying
the LTI performance at each point in the flight envelope. Figure 19.3 shows the
Bode plots for the classical controller Kcl at each point in the flight envelope. The
controller has proportional–integral action at low frequencies with a second-order
roll-off beyond ωro to avoid exciting the flexible modes. These Bode plots show an
intuitive classical design at each point in the flight domain.

Figure 19.4 shows the Bode plots for the (open)-loop function GfullKcl at each
point in the flight envelope. The loop function again shows integral action at
low frequencies. In addition, the loop transfer function GfullKcl shows significant
attenuation of the flexible modes in comparison with the open-loop Bode Gfull

(Fig. 19.1). The loop GfullKcl has all modes below −19 dB at all points in the flight
envelope. In closed-loop the flexible modes are still well attenuated. The closed-loop
response from roll rate command to roll rate has the flexible modes below −18.5 dB
at all points in the domain. The loop function GfullKcl has gain and phase margins
exceeding 21.3 dB and 65.9◦ at each point in the flight domain. Thus the classical
controller has good gain and phase margins at each point in the flight envelope.

Figure 19.5 shows the closed-loop unit step responses to a 1◦ roll rate command
at all points in the flight envelope. The full model with flexible modes Gfull and gain-
scheduled classical controller Kcl is used to generate these closed-loop responses.
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The top plot shows the roll rate response and the bottom plot shows the OLEF
position. The blue solid curve in the top plot shows the ideal closed-loop response
given by the open-loop specification Gls. The red dashed curves in both plots
show the closed-loop responses at each point in the (h,M) domain. The classical
controller achieves consistent dynamic performance across the flight envelope with
zero steady-state error (top plot). The bottom plot shows the variation in the control
actuation required to achieve this uniform tracking performance. In addition, the
closed-loop step responses (top plot of Fig. 19.5) indicate only small oscillations in
the initial transient due to the flexible modes. This is due to the high-frequency roll-
off of Kcl which attenuates the flexible modes. Finally, the closed-loop responses
(top plot) have a small deviation from the ideal response. This is due to the high-
frequency roll-off in Ginv to avoid exciting the flexible modes.

The closed-loop performance can be evaluated using the induced L2 norm of
various closed-loop sensitivity functions in the feedback loop. Table 19.4a shows
results computed for the feedback system consisting of the rigid body dynamics
Grig and the gain-scheduled classical controller Kcl. The rows labelled Si, Ti, So, and
To provide induced L2 norm bounds for the input sensitivity, input complementary
sensitivity, output sensitivity, and output complementary sensitivity. The second
column, labelled Point H∞, is the maximum H∞ norm over all points in the flight
envelope. For the row labelled Si, this result was obtained by computing the H∞
norm of the input sensitivity function at each point in the flight envelope and then
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maximizing over the flight envelope. The results in the other rows were obtained
similarly. Each data point in this column took, on average, 0.21 s to compute on
a laptop with a dual-core 2.16 GHz Intel processor. At a fixed point in the flight
envelope, the H∞ norm for each sensitivity function is equal to its induced L2 norm.
This is a lower bound on the actual induced L2 norm for the gain-scheduled system
since it does not account for parameter variations. The results for the input and
output functions are equal because the feedback loop is SISO and the pointwise H∞
norm assumes time-invariant dynamics at each point in the domain. The remaining
columns in Table 19.4a are discussed in the following section.

The pointwise H∞ analysis can also be used to investigate the impact of the
flexible modes at each point in the domain. The full-model Gfull with rigid body
and aeroelastic dynamics has 65 states. For this analysis, a reduced order model,
Gred, that captures the first three flexible modes was constructed by residualizing
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Table 19.4 L2 induced
norms for closed-loop
sensitivity functions with
gain-scheduled classical
controller

(a) Closed loop with (Grig,Kcl)

Point H∞ LPV1 LPV2 LPV3

Si 1.292 3.786 2.222 1.590
Ti 1.000 3.685 2.116 1.431
So 1.292 1.295 1.296 1.298
To 1.000 1.000 1.000 1.001

(b) Closed loop with (Gred,Kcl)

Si 1.314 Inf 2.202 1.548
Ti 1.000 Inf 2.143 1.418
So 1.314 Inf 2.406 1.347
To 1.000 Inf 2.096 1.009

the higher frequency flexible modes at all points in the flight envelope. Gred has a
total of seven states: one state for the rigid body dynamics and six states for the
first three flexible modes. The closed-loop sensitivity functions are then formed
with Gred and Kcl. Table 19.4b shows the various norms computed for the closed-
loop sensitivity functions with Gred and Kcl. The rows and columns of this table
can be compared with the previous analysis for the closed-loop with the rigid body
dynamics (Table 19.4a). The maximum H∞ norm over the flight envelope (column:
Point H∞) shows only minor differences with the results for the rigid body dynamics.
Thus the H∞ norms computed at each point in the flight domain indicate that the
aeroelastic dynamics will have minimal impact on the gain-scheduled performance.

19.5.3 LPV Analysis

The analysis of the gain-scheduled classical controller has, up to this point, focused
on the performance at each point in the (h,M) flight envelope. This analysis neglects
the impact of time variations in altitude and Mach. The induced L2 norm for an LPV
system is the maximum input/output gain over all inputs and a class of allowable
parameter trajectories. A generalization of the Bounded Real Lemma leads to linear
matrix inequality (LMI) conditions for computing bounds on the induced L2 norm.
A brief review is provided in Appendix.

Upper bounds on the induced L2 norm of the various closed-loop sensitivity
functions were computed to gain insight into the effect of variations in (h,M).
The results for the closed-loop with Grig and Kcl are given in the columns LPV1,
LPV2, and LPV3 of Table 19.4a. The results in these columns involve LPV-
induced L2 norm upper bounds of various complexity. The column labelled LPV1
used constant Lyapunov matrices in the induced L2 norm LMI conditions. This
is equivalent to an analysis that assumes no knowledge of the parameter rates.
The results in columns LPV2 and LPV3 both assume the rate bounds |Ṁ| ≤ 0.02
1/sand |ḣ| ≤ 1,000 ft/s. LPV2 uses a parameter-dependent Lyapunov function of the
form X(ρ) = X0 +MX1 + hX2 while LPV3 also includes quadratic basis functions,
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X(ρ) = X0 +MX1 + hX2 +M2X3 +MhX4 + h2X5. In theory, the upper bounds on
the induced L2 norm should progressively decrease from analysis LPV1 to LPV2 to
LPV3. The results for So and To in Table 19.4a do not demonstrate this theoretical
trend but the results are within the stopping tolerances of the optimization solver.

There are several interesting aspects to the LPV analysis results in Table 19.4a.
First, the output sensitivity functions, So and To, have an induced norm almost
exactly equal to the pointwise H∞ lower bound. This is because the classical
controller perfectly cancels the rigid body dynamics for reference commands that
enter at the plant output. However, the cancellation is not perfect for disturbances
that enter at the plant input. Thus there is a gap between the upper bounds for Si and
Ti and the pointwise H∞ lower bounds. The gap is reduced by including additional
basis functions in the LPV analysis. The price paid for this improved upper bound
is an increased computational complexity. Each LPV1, LPV2, and LPV3 analysis
took 0.75, 10.1, and 37.6 s, on average. These results indicate that the variations in
(h,M) are unlikely to affect the reference tracking but it may have some effect on
disturbance rejection at the plant input.

It should also be re-emphasized that the performance depends on the state
realization for Ginv. An alternative realization for Ginv is given by Binv = ωro

Lδ (h,M)

and Cinv = −(Lp(h,M) + ωro) with the same Ainv and Dinv given in (19.4).
The alternative realization is identical to the original realization for fixed flight
conditions and hence it yields the same pointwise H∞ norms as in Table 19.4a.
However, the LPV3 analysis results yield norms of 3.433, 3.416, 1.365, and 1.107
for Si, Ti, So, and To, respectively. These are significantly larger than the LPV3
results in Table 19.4a for the original state-space realization of Ginv in (19.4). It
should be noted that the alternative state-space realization for Ginv has parameter
dependence in the input matrix. This parameter dependence must pass through
the Ginv dynamics before it is able to cancel the variations in the plant dynamics.
Thus one might have anticipated that this alternative realization leads to degraded
performance when compared to the original realization in (19.4). This analysis
demonstrates that the LPV-induced norm bounds can be used to aid the design
engineer in selecting the best realization for gain-scheduling.

The LPV analysis can also be used to investigate the impact of the flexible
modes. As described in the previous section, a reduced order, 7-state aeroelastic
model was obtained by retaining the first three flexible modes in the full model.
This model reduction was mainly motivated by the computational complexity of
the LPV analysis condition with respect to the plant state dimension. The 65-state
model Gfull is too large to be handled by current optimization solvers but the 7-state
reduced order model can be analyzed in a reasonable amount of time. Columns
LPV1, LPV2, and LPV3 in Table 19.4b shows the LPV upper bounds computed for
the closed-loop sensitivity functions with Gred and Kcl. The rows and columns of this
table can be compared with the previous analysis for the closed loop with the rigid
body dynamics (Table 19.4a). The LPV upper bounds computed with using linear
and quadratic basis functions (column LPV3 in Table 19.4b) are roughly the same
as the results obtained with the rigid body dynamics (column LPV3 in Table 19.4a).
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This indicates that the aeroelastic dynamics will have a minor impact on the gain-
scheduled closed-loop performance. This agrees with the results obtained using
pointwise H∞ norms. The results labelled In f in column LPV1 indicate that no
provable upper bound on the induced L2 norm can be obtained using constant,
quadratic Lyapunov functions.

The LPV analysis (Table 19.4a, b) has gaps between the pointwise H∞ lower
bounds and the LPV3 analysis upper bound. The user could continue adding basis
functions and see if the LPV3 analysis bound can be reduced. However, there is a
computational penalty to be paid for adding basis functions. Each point H∞, LPV1,
LPV2, and LPV3 analysis in Table 19.4b took 0.08, 0.58, 91.6, and 360.6 s, on
average. An alternative is to compute improved lower bounds via simulation. This
is discussed in the next section.

19.5.4 Worst-Case Simulation

A SIMULINK block has been developed to enable easy simulation of LPV systems.
This block is similar to the SIMULINK state-space block but with an additional input
to specify the parameter trajectory. The function wcsim has been developed to
perform a worst-case LPV analysis directly on a SIMULINK model. “Worst-case”
refers to maximizing or minimizing a user-specified cost over a set of parameter
trajectories subject to user-specified constraint functions.
wcsim works directly on a SIMULINK model that contains feedback intercon-

nections of LTI and/or LPV systems. The user specifies ρ to be a linear combination
of piecewise continuous functions, i.e., ρc(t) ∈ P := {ρ(t) = ∑nb

i=1 ciρi(t)} where
{ρi} are the user-specified basis functions. Let yc : [0, t f ] → R

ny denote the vector
of output signals from the SIMULINK diagram for a given choice of the parameter
vector coefficients, c ∈ R

nb . The worst-case simulation problem is

max
c∈Rnb

G(yc)

subject to: C ≤C(yc)≤ C̄. (19.5)

G : L
ny
2 [0, t f ] → R denotes the objective functional that quantifies the performance

of the output by G(yc). C : L
ny
2 [0, t f ]→R

m denotes a constraint function that defines
a set of m constraints on the output. C and C̄ ∈ R

m specify the lower and upper
bounds on the constraint function. Maximization is without loss of generality. The
objective and constraint functions for a worst-case simulation are specified with
specialized SIMULINK Objective Function and Constraint Function
blocks. These blocks are similar to a standard To Workspace block except
their dialog boxes contain additional fields to specify the objective and constraint
functions.



500 P. Seiler et al.

The wcsim function optimizes the objective function over the set of al-
lowable parameter trajectories subject to the specified constraints. The basic
syntax is wcrho = wcsim(’mdl’). The input specifies the SIMULINK dia-
gram with LPV blocks, Objective Function, and (optionally)Constraint
Function blocks. wcsim returns the worst-case parameter trajectory. No assump-
tions are made about the objective function G or constraint function C. As a result,
the optimization is, in general, not convex and it may have many local optima that
are not global optima. wcsim simply uses gradient-based optimization to find a
parameter trajectory that achieves a local maxima. While this does not necessarily
find the global optima, it does provide a means to improve upon “bad” parameter
trajectories found with other heuristic methods.

The gradient-based optimization is performed by fmincon and thus requires
the MATLAB Optimization toolbox. At each iteration, fmincon requires multiple
evaluations of the objective and constraint functions in order to compute numerical
gradients. An evaluation of all objective and constraint functions specified in
a SIMULINK diagram requires one simulation of the model. At each iteration
fmincon evaluates the objective function at the current value c ∈ R

nb of the
parameter trajectory coefficients well as at small perturbations along each coefficient
direction. If the parameter trajectory contains nb coefficients, fmincon will
perform approximately nb + 1 simulations at each iteration. Simulating the system
is typically responsible for the bulk of the computation time to perform a worst-
case simulation. Thus the total time for wcsim with no constraint blocks will be
roughly (nc+1)Niτ where τ is the computation time for one simulation and Ni is the
number of iterations. If the model contains constraint blocks, then fmincon will
typically perform additional function evaluations, and hence additional simulations,
per iteration.

Figure 19.6 shows the SIMULINK diagram used to investigate the AAW closed-
loop roll rate tracking performance. The diagram contains the controller Kcl in the
LPV block labelled “Gain-Scheduled Controller.” The LPV block labelled “LPV
AAW” contains the full AAW model, Gfull. In addition, the OLEF actuator dynamics
have been included in the feedback loop. The diagram contains inputs for roll rate
command and plant step input disturbance. The LPV analysis in the previous section
indicated that the input sensitivity functions were more likely to be affected by
parameter variations. This section focuses on the OLEF actuator position response
due to the step input disturbance. The roll rate command is set to zero.

The model was simulated at each point in the flight domain to investigate the
closed-loop performance. The L2 norm of the OLEF actuator position response
to the input step disturbance varied from 2.720 to 2.723 across the flight domain.
This indicates uniform disturbance rejection performance at each point in the flight
envelope. The OLEF response due to the input step disturbance is shown as the solid
line (“Nominal”) in the top subplot of Fig. 19.7. This simulation was performed at
the center of the flight envelope, i.e., (h,M) = (17,500ft,1.2). The response is well
damped and shows no oscillations due to the flexible modes. In addition, the OLEF
position cancels the disturbance in steady state. The average time to complete one
simulation is 25.3 s.
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Fig. 19.7 Simulation results due to step input disturbance

Next wcsim is used to perform a search for time-varying trajectories that
degrade the disturbance rejection performance. For this example,wcsimmaximizes
the L2 norm of the OLEF position by searching over parameter trajectories of the
form c0 + c1t + c2 cos(t) + c3 sin(t) where ci are constants to be optimized. Both
the Mach and Altitude parameter trajectories are restricted to have this form and
thus there are a total of eight coefficients to be optimized. The objective function
is specified using the block labeled “Objective” in Fig. 19.7. For this example, the
wcsim objective is to maximize the L2 norm of the OLEF position response due to
the input step disturbance.

Initially, no constraints are placed on the parameter trajectory and parameter
rates. The trajectories are projected to lie within the bounds of the (h,M) parameter
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domain at all times using a saturation block. After Ni = 4 gradient steps, wcsim
finds a parameter trajectory that achieves an OLEF position L2 norm of 3.096. The
worst-case OLEF position response due to the step input disturbance is shown as
the dashed curve in the top subplot of Fig. 19.7. The worst-case Mach trajectory
computed by wcsim is shown as the dashed curve in the bottom subplot of Fig. 19.7.
The worst-case altitude trajectory is not shown since it is a constant 17,500 ft to
within 0.25 ft. These results indicate that variations in altitude have a small impact
on the closed-loop disturbance rejection. The expected computation for this wcsim
is (nc + 1)Niτ ≈ 910 s based on nc = 8 coefficients, Ni = 4 iterations, and τ = 25.3
seconds per simulation. The actual wcsim optimization ran 60 simulations and took
1,735 s to complete. The worst-case Mach trajectory (bottom subplot of Fig. 19.7)
shows fast variations with a peak rate of |Ṁ| ≈ 0.156 1/s. These are unrealistic Mach
rates for the actual AAW aircraft.

Another wcsim optimization is run with the constraint |Ṁ| ≤ 0.02 1/s. This
constraint is enforced in the “Parameter Rate Constraint” subsystem in Fig. 19.6
using an approximate derivative and a wcsim Constraint Function block.
The altitude was held constant at 17,500 ft for this optimization since altitude
variations appear to have minor impact on the OLEF position response. Thus
wcsim only optimizes over the four coefficients in the Mach trajectory. After Ni = 6
gradient steps, wcsim finds a parameter trajectory that achieves an OLEF position
L2 norm of 2.948. The worst-case OLEF position response due to the step input
disturbance is shown as the dash-dotted curve in the top subplot of Fig. 19.7. The
worst-case Mach trajectory computed by wcsim is shown as the dash-dotted curve
in the bottom subplot of Fig. 19.7. The worst-case trajectory returned by wcsim
satisfies |Ṁ| ≤ 0.202 1/s. This slight violation of the enforced constraint is due to
the restriction of Ni = 6. The Mach trajectory computed by wcsim simply slows
the AAW down from its upper Mach limit to its lower limit over the ten-second
simulation. The expected computation for this wcsim is (nc + 1)Niτ ≈ 759 s based
on nc = 4 coefficients, Ni = 6 iterations, and τ = 25.3 s per simulation. The actual
wcsim optimization ran 38 simulations and took 1,154 s to complete.

19.6 LPV Control Design

This section describes an LPV control design that provides guaranteed performance
with respect to time variations in the (h,M) parameters. The design approach
is based on signal-weighted induced L2 norms. Figure 19.8 shows the design
interconnection used for the control synthesis. The performance objective is to
minimize the induced L2 norm from the design interconnection inputs to the outputs.
The various I/O signals are weighted to obtain the desired trade-offs between
reference tracking, disturbance/noise rejection, and actuation usage.

The rigid body AAW dynamic models Grig are used in the design. The de-
sign interconnection formulates a model-matching problem. The key performance
objective is for the closed-loop response from pcmd to p to match the ideal
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Fig. 19.8 Design interconnection AAW roll rate control

response given by Gideal =
ω2

d
s2+2ζωds+ω2

d
. The ideal response natural frequency

and damping are given by ζ = 0.8 and ωd = 1.25 rad/s. This is the same ideal
response given by the loop shape Gls in the gain-scheduled classical design. The
actuation and performance penalties are given by Wa =

100s+25
s+2500 and Wp =

0.01s+12.5
s+0.125 .

This emphasizes tracking of the ideal response up to ≈11.25 rad/s and penalizes
control usage at higher frequencies. The input disturbance and noise weights are
chosen as Wd = 0.1 and Wn = 0.01. The small values are chosen to emphasize the
actuation / performance trade-off. The ideal model and all weights are independent
of the flight condition. Thus the performance objective aims to achieve similar
performance across the flight envelope. The standard Robust Control Toolbox
command sysic has been overloaded to allow interconnections of pss objects
and standard MATLAB system objects. This overloaded sysic command was used
to generate the LPV design interconnection shown in Fig. 19.8.

To understand the limits of performance, the H∞ optimal control problem
specified by this design interconnection was solved at each point in the flight
envelope. The optimal performance varied from a minimum of γ = 1.008 at
(h,M) = (25,000ft,1.1) to a maximum of γ = 3.726 at (h,M) = (15,000ft,1.3).
The optimal performance of any LPV design must be greater than or equal to the
optimal H∞ performance achieved at any point in the domain. Hence γ = 3.726
is a lower bound on the achievable performance by the optimal LPV controller.
For comparison, the gain-scheduled classical controller, Kcl, achieves a minimum
gain of γ = 1.000 at (h,M) = (25,000ft,1.1) and a maximum gain of γ = 3.857 at
(h,M) = (15,000ft,1.3).

Next, an LPV controller was synthesized without using knowledge about the
rate variations of altitude and Mach. This control synthesis is performed a set of
parameterized LMIs using a constant (nonparameter varying) Lyapunov function.
The parameterized LMI conditions are based on results in [33]. The nonrate
bounded design achieves an optimal gain of γlpv,nr = 3.844. This is very close to the
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performance lower bound computed based on the pointwise H∞ designs. The design
interconnection has a total of five states: one for the rigid body AAW dynamics,
two for the ideal response model, and one each for the actuation and performance
weights. The nonrate bounded controller Klpv has the same number of states as the
design interconnection, i.e., Klpv has five states. A rate-bounded LPV controller was
also synthesized assuming |Ṁ| ≤ 0.02 and |ḣ| ≤ 1,000 ft/s and using basis functions
{1,M,h}. The rate bounded design achieved a gain of γlpv,rb = 3.797. This is a
small improvement over the nonrate bounded design. Hence the bound on the rate
of the parameter variation does not play a significant role in the AAW design. The
remainder of the section will focus on the nonrate bounded control design.

Figure 19.9 shows the Bode plots for nonrate bounded LPV controller Klpv at
each point in the flight envelope. The controller has proportional–integral action
at low frequencies and a second-order roll-off beyond ωro to avoid exciting the
flexible modes. Both these characteristics are similar to gain-scheduled classical
design shown in Fig. 19.3. One difference is that Klpv has additional phase lead
between 1 and 10 rad/s. In addition, Klpv has the same high-frequency gain at all
points in the flight envelope while the high-frequency gain of the classical design Kcl

varies with the flight condition. The point-wise Bode plots of Klpv show an intuitive
classical design at each point in the flight domain and this provides confidence in
the LPV design tools. One benefit of the LPV design tools, even for single-input
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single-output gain-scheduling, is that the designer does not have to worry about the
impact of the differing state-space realizations. The impact of the state realization
on the gain-scheduled performance is built into the design.

Figure 19.10 shows the Bode plots for the (open)-loop function GfullKnr at each
point in the flight envelope. The loop function again shows integral action at low
frequencies. The loop GfullKnr has all modes below −12.0 dB at all points in the
flight envelope. In closed loop, the response from roll rate command to roll rate has
the flexible modes below −12.4 dB at all points in the domain. This is slightly less
attenuation than achieved by the gain-scheduled classical controller. The additional
phase lead in Knr is evident from 1 to 10 rad/s in the Bode plot of GfullKnr. The loop
function GfullKcl has gain and phase margins exceeding 18.8 dB and 66.7◦ at each
point in the flight domain. This is a slightly smaller gain margin than Kcl but the
phase margins of Kcl and Knr are essentially the same.

Figure 19.11 shows the closed-loop unit step responses to a 1◦ roll rate command
at all points in the flight envelope. The full model with flexible modes Gfull and LPV
controller Knr are used to generate these closed-loop responses. The top plot shows
the roll rate response and the bottom plot shows the OLEF position. The blue solid
curve in the top plot shows the ideal closed-loop response specified by the ideal
model Gideal. The red dashed curves in both plots show the closed-loop responses at
each point in the (h,M) domain. The LPV controller achieves consistent dynamic
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performance across the flight envelope with good attenuation of the flexible modes.
The LPV controller provides slightly better tracking of the ideal response when
compared to the classical design (Fig. 19.5). Both Knr and Kcl have similar actuator
usage for the step roll rate command.

Table 19.5a, b show the bounds on the LPV-induced L2 norms of the various
closed-loop sensitivity functions. Table 19.5a was computed using Grig and Klpv

while the results in Table 19.5b were computed with the reduced aeroelastic model
Gred and Klpv. These results can be compared with the gain-scheduled classical
controller performance Kcl in Table 19.4a, b. The LPV controller has achieved
slightly better performance based on the rate-bounded upper bounds computed using
the linear and quadratic basis functions (column LPV3).
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Table 19.5 L2 induced
norms for closed-loop
sensitivity functions with
LPV controller

(a) Closed loop with (Grig,Klpv)

Point H∞ LPV1 LPV2 LPV3

Si 1.302 3.682 2.063 1.434
Ti 0.995 3.586 2.004 1.358
So 1.302 1.315 1.309 1.306
To 0.995 1.002 0.998 0.998

(b) Closed loop with (Gred,Klpv)

Si 1.328 Inf 2.087 1.450
Ti 0.995 Inf 2.036 1.360
So 1.328 Inf 1.356 1.357
To 0.995 Inf 1.007 0.999

19.7 Conclusions

This chapter investigated the use of LPV techniques for the roll control of NASA
Dryden’s X-53 AAW testbed. LPV analysis of a gain-scheduled classical controller
indicated that variations in scheduling parameter would have minimal impact on
reference tracking but may have some impact on disturbance rejection at the plant
input. An LPV controller was also synthesized using a model matching design. The
LPV controller has an intuitive classical control characteristics and its performance
was similar to the gain-scheduled classical design. All results were obtained using
new LPV modeling, analysis, and design software tools. Future work will consider
the scalability of the numerical algorithms, incorporation of uncertainty analysis,
and development of the data infrastructure and tools to encompass the various LPV
representations.

Acknowledgments This research was supported under the NASA Dryden SBIR NNX11CD58P
entitled “Adaptive Linear Parameter-Varying Control for Aeroelastic Suppression”. The technical
contract monitor is Dr. Martin J. Brenner.

Appendix: Induced L2 Analysis for LPV Systems

This appendix briefly defines the L2 norm for LPV systems and provides a set of
conditions for computing a bound on this norm. The presentation essentially follows
that given in [33].

Consider an LPV system of the form

[
ẋ(t)
y(t)

]
=

[
A(ρ(t)) B(ρ(t))
C(ρ(t)) D(ρ(t))

][
x(t)
u(t)

]
, (19.6)
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where (A,B,C,D) are continuous functions of ρ defined on a compact set P ⊂ R
nρ .

The signal dimensions are ρ ∈ R
nρ , y ∈ R

ny , u ∈ R
nu , and x ∈ Rnx . The dimensions

of the state matrices are compatible with these signal dimensions.
ρ is a piecewise continuous function from R to R

nρ . It is assumed that ρ(t) ∈ P
∀t. In addition, it is assumed that there exist {νi}nρ

i=1 ∈ R such that |ρ̇i| ≤ νi ∀t.
In other words, the {νi}nρ

i=1 are known rate bounds on the parameter trajectories.
Let FP,ν denote the set of piecewise continuous parameter trajectories that are
restricted to P and whose rates satisfy the bounds specified by {νi}nρ

i=1.
Let G denote the LPV system along with the set of allowable parameter

trajectories FP,ν . The induced L2 norm of G is defined as

‖G‖i,2 := sup
ρ∈FP,ν

sup
u∈L2‖u‖2 
=0

‖y‖2

‖u‖2
, (19.7)

where ‖ · ‖2 denotes the L2 norm. In calculating this induced norm, it is assumed
that x(0) = 0. This norm is the maximum input/output gain over all inputs and all
allowable parameter trajectories.

The following theorem, taken from [33], gives a condition for an upper bound on
the induced L2 norm.

Theorem 19.1. If there exists a piecewise continuous function X : Rnρ → S nx×nx

such that X(ρ)> 0 and

⎡

⎢
⎣

AT (ρ)W (ρ)+W(ρ)A(ρ)+∑
nρ
i=1 βi

∂W
∂ρi

W (ρ)B(ρ) γ−1CT (ρ)
BT (ρ)W (ρ) −Inu γ−1DT (ρ)

γ−1C(ρ) γ−1D(ρ) −Iny

⎤

⎥
⎦< 0 (19.8)

∀ρ ∈ P and |βi| ≤ νi (i = 1, . . . ,nρ ) then:

(A.1) The system G is parametrically dependent stable over P .
(A.2) ∃k with 0 ≤ k < γ such that ‖G‖i,2 ≤ k.

Functions to compute an upper bound on the induced L2 norm for an LPV system
based on this result have been developed. There are two implementations of the
induced LPV norm. The first computes an upper bound Gamma on the induced
L2 norm of the pss G using a constant (parameter independent) Lyapunov matrix
X(ρ)=X . The use of a constant X is equivalent to computing the induced norm with
no parameter rate bounds, i.e., a parameter-independent Lyapunov function can be
used for rate unbounded analysis.

The second implementation computes a tighter (less conservative) bound on
the induced L2 norm by using a parameter-dependent matrix Lyapunov X(ρ)
and bounds on the parameter rates of variation. X(ρ) is assumed to be a linear
combination of basis functions specified by

X(ρ) =
nb

∑
j=1

f j(ρ)Xj. (19.9)
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The functions f j : Rnρ → R are piecewise continuous functions. The toolbox
searches for {Xj}nb

j=1 such that X(ρ) satisfies the conditions in the theorem. The
norm bound computed by this second syntax is less conservative at the expensive of
higher computational complexity.

The conditions in Theorem 19.1 are a parameterized set of LMIs that must be
verified for all ρ ∈ P and all |βi| ≤ νi. We approximately solve these conditions
by enforcing the LMIs on a set of gridded points of P . The terms involving
parameter rates are handled by exploiting the fact that the βi enter affinely in (19.8).
Specifically, if the LMIs hold for all combinations of βi = ±νi (a total of 2nρ

combinations) then they hold for all |βi| ≤ νi.
The computational growth of these conditions is an issue. Let ng denote the

total number of grid points used to approximate P . A rate bounded analysis must
enforce the LMI conditions at all ng grid points and for all 2nρ combinations
of βi = ±νi. Thus there are a total of ng2nρ constraints for each of dimension
(nx + nu + ny). If there are nb basis functions, then the Lyapunov matrix has
nb symmetric matrix decision variables {Xj}nb

j=1 for each of dimension nx × nx.

This gives a total of nb
nx(nx+1)

2 individual decision variables in the rate bounded
analysis. LMI optimization solvers have an asymptotic complexity that depends
on both the number of decision variables and the number/dimension of LMI
constraints. For example, LMILab has a floating point operation growth of O(nrn3

v),
where nr is the total row dimension of the LMI conditions and nv is the total
number of decision variables [12]. This complexity assumes the default Cholesky
factorization of the Hessian matrix is used to solve the least squares problem that
arises in each iteration. Thus the complexity of solving the LPV analysis condition

is roughly O
(

ng2nρ (nx + nu + ny)
(
nbn2

x

)3
)

. This growth limits the analysis to a

modest number of parameters, grid points, and basis functions.
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Chapter 20
Design of Integrated Vehicle Chassis Control
Based on LPV Methods

Zoltán Szabó, Péter Gáspár, and József Bokor

Abstract The aim of this chapter is to present a multilayer supervisory architecture
for the design and development of reconfigurable and integrated control systems
in road vehicles. The individual performance specifications are guaranteed by
the local controllers, while the coordination of these components is provided by
the supervisor in order to meet global performance specifications and avoid the
interference and conflict between components. Monitoring components provide
the supervisor with information needed to make decisions about the necessary
interventions into the vehicle motion and guarantee the robust operation of the
vehicle. In the proposed architecture, these decisions are propagated between the
supervisor and the local components through a well-defined interface encoded as
suitable monitoring signals. This interface uses the monitoring signals as additional
scheduling variables of the individual linear parameter varying (LPV) controllers
introduced to distinguish the performances that correspond to different operational
modes. The advantage of this architecture is that local LPV controllers are designed
independently provided that the monitoring signals are taken into consideration in
the formalization of their performance specifications. Moreover, the operation of a
local controller can be extended to reconfigurable and fault-tolerant functions. The
operation of the control systems is demonstrated through various simulation vehicle
maneuvers.
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20.1 Introduction and Motivation

Recently, there has been a growing demand for vehicles with ever better driving
characteristics in which efficiency, safety, and performance are ensured. In line
with the requirements of the vehicle industry, several performance specifications
are in the focus of research, e.g., improving road holding, passenger comfort, roll
and pitch stability, guaranteeing the reliability of vehicle components, reducing fuel
consumption and proposing fault-tolerant solutions, see [7]. In order to meet these
requirements, an increasing number of active components with high versatility are
applied.

The control components used in a vehicle system are often in interaction or
even in conflict with each other in terms of the full vehicle. An integrated control
system is designed in such a way that the effects of a control system on other
vehicle functions are taken into consideration in the design process by selecting
the various performance specifications. Redundancy on sensor and actuator levels
makes it possible to realize the same functionality using different sensor and
actuator configurations, i.e., control reconfigurations. Thus integrated design is also
motivated by the needs of reconfigurable and reliable control, see, e.g., [17, 18].
Recently, several important papers have been presented in this topic, see, e.g.,
[13, 19, 23].

A possible solution to an integrated control could be to set the design problem for
the whole vehicle and include all the performance demands in a single specification.
Besides the complexity of the resulting problem, the formulation of a suitable
performance specification is the main obstacle for this direct global approach. In the
framework of available design techniques, the formulation and successful solution
of complex multi-objective control tasks are highly nontrivial, see, e.g., [2, 8].

Another solution to the integrated control is a quasi-decentralized control
structure where the components are designed independently, see, e.g., [4, 22]. In
the chapter, the quasi-decentralized control system is augmented with a supervisor
as illustrated in Fig. 20.1. The role of the supervisor is to meet performance
specifications and prevent the interference and conflict between components. The
supervisor has information about the current operational mode of the vehicle,
i.e., the various vehicle maneuvers or the different fault operations gathered from
monitoring components and fault-detection and identification (FDI) filters. The
supervisor is able to make decisions about the necessary interventions into the
vehicle components and guarantee the reconfigurable and fault-tolerant operation of
the vehicle. These decisions are propagated to the lower layers through predefined
interfaces encoded as suitable scheduling signals.

In the proposed solution, the design of local control components is based on
linear parameter varying (LPV) methods. LPV methods are well elaborated and
successfully applied to various industrial problems. The LPV approaches allow us
to take into consideration the highly nonlinear effects in the state-space description
[1, 12]. Moreover, in the LPV method, both performance specifications and model
uncertainties are taken into consideration. The main point of the proposed approach
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Fig. 20.1 The supervisory decentralized architecture of integrated control

is that in the control design of the local components scheduling variables received
from the supervisor are used as a key of the integration. In this way, the operation
of a local controller can be extended to reconfigurable and fault-tolerant functions.

The structure of the chapter is as follows. In Sect. 20.2, the architecture of the
supervisory integrated control is presented. In Sect. 20.3, as an illustration, the
control-oriented LPV modeling is described. In this section, the weighting strategy
in the closed-loop interconnection structure is also illustrated. In Sect. 20.4, the
selection of the sensors and monitored components is presented. In Sect. 20.5,
the integration of the actuators based on the operation modes is shown. In
Sect. 20.6, the global performances based on the supervisory activity are analyzed.
In Sect. 20.7, the integrated control mechanism is presented through simulation
examples. Finally, Sect. 20.8 contains concluding remarks.

20.2 Architecture of the Integrated Control

The term configuration refers to a well-defined sensor and actuator set that is
associated with a given functionality. Control reconfiguration is motivated by the
following requirements: the achieved control performance in certain scenarios must
be improved and an increased reliability in the presence of sensor or actuator
faults must be achieved. The term event is related to the occurrence of such a
scenario. A finite set of events E are always assumed. On a higher level, an event is
handled based on a given functionality thus one can associate a certain event e ∈ E
with a set of configurations Ce. Reconfigurable control strategies define a policy
S : E ×C → Ce to select a possibly new configuration K = S (e) when an event e
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occurs in a specific, usually baseline, configuration. In a normal situation, a baseline
configuration is formed by a single local component, e.g., steering, otherwise it is
composed of several local components that can fulfill the same functional behavior,
e.g., steering and brake for generating yaw moment.

The event set E , the corresponding class of the configuration sets Ce, and the
policy S are determined in the preliminary step of the design. The specification
of the configuration sets and that of the corresponding reconfiguration policy is a
cornerstone of the proposed method and it may be a highly nontrivial task requiring
a lot of engineering knowledge. However, the analysis of the configurations, events,
and possible reconfigurations is necessary for any reconfiguring control strategy.

20.2.1 Supervisory Control

The role of the supervisor is to coordinate the local components and handle the
interactions between them. Since the performance specifications of local controllers
are often in conflict, the supervisor must also guarantee a balance or trade-off
between them. This trade-off is formulated on the level of local controllers as a result
of an engineering knowledge. However, when an event occurs the preferences, i.e.,
the trade-off levels, are subject to change. This fact is reflected in the structure of
the policy S .

As an example, the effect of actuator saturation may prevent a specific perfor-
mance requirement to be fulfilled. The encountered performance degradation might
be treated as an event, if there is a configuration that potentially can improve the
performance, which in practical situations is closely related to a safety requirement.
Recovering to the normal parameters creates another event that makes the supervisor
to select the baseline configuration.

In order to implement a transition defined by the policy S , a safety feature, the
operation of a local controller, must be modified by a supervisory command. This
is realized through appropriately set scheduling variables that are transmitted to the
local controllers. At a local level, the behavior of the controller is affected by these
scheduling variables through the performance weighting functions. The difficulty
in the supervisory control is that global stability and performance are difficult to
guarantee. The information provided by the supervisor is composed of messages and
signals sent by the monitoring components and fault-detection and isolation (FDI)
filters. Based on this information, the supervisor is able to make decisions about
the necessary vehicle maneuvers and guarantee reconfigurable and fault-tolerant
operation of the vehicle and send messages to the local controllers.

The design of the supervisor does not involve dynamical systems explicitly.
However, due to the time variation of the signals, the policyS defines time varying
conditions and relations, i.e., the designer should check the validity of relations
based on a temporal logic. The difficult part of the design is to ensure the correctness
of the specification, see [11, 14]. It must be stressed at this point that the baseline
configurations handle only one actuator, which is associated with a given task
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(functionality). The hierarchy of the configurations and corresponding scheduling
variables ensure that the additional actuator(s) considered improve the stability
properties of the given functionality. These two design principles facilitate the
verification of the specification considerably.

In contrast to the controller switching strategy, the proposed approach uses a
performance weighting strategy. On the supervisor level, the required configurations
are defined uniquely by the specific values of a set of marker signals. These marker
signals are used as scheduling variables on the level of local controllers. The task
of the supervisor design is to specify these marker signals in such a way that the
different combinations of their values define the specific event (functionality) in a
unique way. The different combinations of the marker signals encode the designers
specification (option) in dealing with multiobjective or conflicting scenarios.

As an illustration, consider the tracking problem which is handled by using active
steering. When the vehicle is performing a maneuver, e.g., a double lane change or
a cornering, the lateral loads might generate overturning moments. The role of the
brake mechanism is to reduce the lateral tire forces by generating a yaw moment and
decelerate the vehicle. However, using the brake, the real path significantly deviates
from the desired trajectory. This deviation must be compensated for by the active
steering system. Performing road tracking and increasing roll stability at the same
time pose a difficult problem since these tasks are in contradiction.

20.2.2 Local Components

A local component is a well-defined ensemble of a controller, an actuator, and a
set of related physical or virtual sensors, e.g., units for monitoring components and
FDI filters. The virtual sensors might be provided by the vendors of the specific
sensors or actuators, or they might be designed and implemented on a global vehicle
level. These elements are able to detect emergency vehicle operations, various fault
operations or performance degradations in controllers. They send messages to the
supervisor in order to guarantee the safe operation of the vehicle.

Each of the local components is governed by a local controller. A local controller
must meet the predefined performance specifications. The signals of monitoring
components and those of FDI filters are built in the performance specifications of
the controller by using a parameter-dependent form. The performance specifications
are formalized in a parameter-dependent way in which the corresponding scheduling
variable is given by the supervisor. Thus the controller is able to modify or
reconfigure its normal operations in order to focus on other performances instead
of the actual performances. It sends messages about the changes to the supervisor
and it receives messages from the supervisor about the special requirements.

For example, if there is a lock failure in the operation of the active anti-roll bars,
i.e., the piston of the hydraulic actuator remains locked in a particular position,
then the hydraulic actuator will not be able to operate after the fault has occurred.
Different control components are able to substitute for the faulty active anti-roll
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bars and the selection of the appropriate controller is determined by the supervisor.
However, this substitution is based on at least two requirements: the reconfigurable
controller must handle the fault operation of active anti-roll bars and the signal from
the supervisor about the performance degradation or the fatal failure is received.

The aims of active suspension systems are to improve passenger comfort and
road holding and minimize the effects of harmful road irregularities. The operations
of the suspension system can be extended to roll and pitch stability. This is based
on the fact that the system is able to generate a stabilizing moment to balance
the overturning moment during maneuvers and generate a moment to balance
the pitching moment during abrupt and hard braking. In case of an emergency,
e.g., in an imminent rollover, the controller must focus only on enhancing the
critical performances, e.g., road holding or drivability, and guaranteeing comfort
performances is no longer a priority.

20.3 Modeling and Control of Vehicle Systems

20.3.1 LPV Modeling of Vehicle Systems

The proposed design strategy is illustrated through an application example. The
objective of the control design is to track a predefined path, guarantee road holding,
and increase pitch and roll stability. Five control components are applied in the
system: the active brake, steering, anti-roll bars, the suspension system, and the
driveline system, see Fig. 20.2. The longitudinal force is generated by the driveline
and the brake systems. The tracking of the predefined road geometry is performed
by the active steering. During maneuvers active anti-roll bars are used to improve
roll stability. Road holding and passenger comfort are guaranteed by applying an
active suspension system. This system also improves both the roll and the pitch
stability. The brake system might also be activated to provide the lateral stability
of the vehicle. Since the driver inputs considered are the braking and steering, two
force types are considered, i.e., the longitudinal forces together with brake forces
and lateral forces from all four tires. The longitudinal and lateral forces generated
by each tire, Ftx,Fty, are the result of the normal forces acting on each wheel and
the tire slip angles. The vehicle is steered by the front tires and the steering angle
δ f . The forces generated by the active suspension and the active anti-roll bars on the
left-hand and right-hand side at the front and the rear are denoted by Fzi j.

The chassis vertical (zs), longitudinal (x), lateral (y), roll (θ ), pitch (φ ), and yaw
(ψ) dynamics are given by the following equations. Here vx and vy are the velocities
of the chassis in x-directions and y-directions, zs and zu are the displacement of the
sprung mass and the unsprung masses in z-direction.

mv̇x =−Ftx f cosδ f −Ftxr −Fty f sinδ f −mψ̇vy, (20.1)

mv̇y =−Ftx f sinδ f +Fty f +Fty f cosδ f +mψ̇vx, (20.2)
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Fig. 20.2 Vehicle body for yaw, roll, and pitch motions

msz̈s =−Fz f −Fzr −Fdz, (20.3)

musi j z̈usi j = Fzi j −Ftzi j, (20.4)

Ixθ̈ = tr(Fzrl −Fzrr)+ t f (Fz f l −Fz f r)+mhv̇y, (20.5)

Iyφ̈ = � f Fz f − �rFzr −mhv̇x, (20.6)

Izψ̈ = (� f (−Ftx f sinδ f +Fty f cosδ f )− �r(Ftyr

+ t f (Ftx f r −Ftx f l)cosδ f − tr(Ftxrr −Ftxrl)+Mdz. (20.7)

The relationship between the yaw dynamics ψ̇ and the dynamics of the side slip
angle of the center of gravity β̇ is β̇ = ψ̇ +(Fty f +Ftyr)/m/vx. Using small steering
angle, the following approximations are applied: sinδ = δ and cosδ = 1.

The local controllers are designed based on vehicle models with different
complexity. Their design is based on state-space representation form

ẋ = A(ρ)x+B1(ρ)w+B2(ρ)u, (20.8)

where x, w, and u are the state, disturbance, and input, respectively. Vector ρ
includes the scheduling variables. In the first step, the state equation is defined
and then the performances and measured output are selected considering the
control tasks.
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The primary role of the brake is to reduce the forward velocity of the vehicle or
stop it. It is also able to generate unilateral brake forces at the front and the rear
wheels at either of the two sides ub = ΔFb. In the control system, the brake is able
to modify the yaw angle of the vehicle during a cornering and reduce the effect
of lateral acceleration. Thus, the brake is able to substitute for different vehicle
components if they are affected by a fault or degradation in terms of performances.
The steering is used to follow the desired course. The control input is the steering
angle: ud = δ f . Considering the practice in these tasks, the measured signals are the
lateral acceleration and the yaw rate.

Active suspensions are used to provide good handling characteristics and im-
prove ride comfort while harmful vibrations caused by road irregularities act upon
the vehicle. The suspension system is also able to improve pitch and roll stability by
generating pitch moment during abrupt braking and roll moments during emergency
maneuver. The control inputs are generated by the suspension actuators: us =
[

f f l , f f r, frl , frr
]T

. The measured signals are the relative displacements between the
sprung and unsprung masses over the wheels. For more details, see [5, 6].

The role of the active anti-roll bars is to keep roll stability even during vehicle
maneuvers such as a sharp cornering, double lane changing, or overtaking.The ac-
tive anti-roll bars operate continuously during traveling and generate stabilizing roll
moments between the sprung and unsprung masses to improve roll stability. The
control inputs are the roll moments at the front and the rear between the sprung and

unsprung masses generated by active anti-roll bars: ur =
[
ur f ,urr

]T
. The measured

signals are the lateral acceleration and the roll rate.
The nonlinear effects of the forward velocity, the adhesion coefficient of the

vehicle in the lateral direction, or the nonlinear characteristics in the suspension
spring and damper components are taken into consideration ρ = [v,μ ,ρbi j,ρki j]

T,
where ρki j and ρbi j are the relative displacement and its velocity. It is assumed that
with suitably selected scheduling variables ρ , these nonlinear components can be
transformed into affine parameter-dependent forms. Then the nonlinear models are
transformed into LPV models in which nonlinear terms are hidden with suitably
selected scheduling variables. This transformation requires that the components of
vector ρ be measured, see [3, 16].

The design of a local controller is based on the control-oriented LPV model
and weighting strategy. The closed-loop system applied in the design of integrated
control includes the feedback structure of the model G(ρ), the compensator, and
elements associated with the uncertainty models and performance objectives:

z =C(ρ)x+D1(ρ)w+D2(ρ)u, (20.9)

where w = [d n]T includes both the external disturbances and the sensor noise.
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Fig. 20.3 The closed-loop interconnection structure

20.3.2 LPV Control of Vehicle Systems

A typical interconnection structure is shown in Fig. 20.3. In this framework
performance requirements z are imposed by a suitable choice of the weighting
functions Wp. Usually the purpose of weighting functions Wp is to define penalty
functions, i.e., weights should be large where small signals are desired and small
where large performance outputs can be tolerated. The proposed approach realizes
the reconfiguration of the performance objectives by an appropriate scheduling of
these weighting functions. Δm block contains the uncertainties of the system, such as
unmodeled dynamics and parameter uncertainty. In this augmented plant unmodeled
dynamics is represented by a weighting function Wr and a block Δm. The purpose of
the weighting functions Ww and Wn is to reflect the disturbance and sensor noises.

Finally, the control problem can be formulated in the general P−K−Δ structure
(Fig. 20.4), where P is the generalized plant and Δ contains both the uncertainties
and the scheduling variables. In the design of local controllers, the quadratic LPV
performance problem is to choose the parameter-varying controller in such a way
that the resulting closed-loop system is quadratically stable and the induced L2 norm
from the disturbance and the performances is less than the value γ . The minimization
task is the following:

inf
K

sup
Δ

sup
‖w‖2 �=0,w∈L2

‖z‖2

‖w‖2
. (20.10)

The existence of a controller that solves the quadratic LPV γ-performance
problem can be expressed as the feasibility of a set of linear matrix inequalities
(LMIs), which can be solved numerically. Stability and performance are guaranteed
by the design procedure, for details see [12, 15, 20]. For the sake of simplicity, in
this chapter the parameter gridding method of [21] combined by a weighted small
gain approach for the uncertainties was used.
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Fig. 20.4 The P−K−Δ
structure

20.4 Sensors and Monitored Components in the Distributed
Control System

The local components also include units for monitoring vehicle operations and FDI
filters. These components are able to detect emergency vehicle operations, various
fault operations, or performance degradations in controllers. They also send mes-
sages to the supervisor. In the reconfigurable and fault-tolerant control of the local
controller, several signals must be monitored and scheduling variables are added to
the scheduling vector in order to improve the safety of the vehicle, e.g., variables are
needed to encode the rollover risk, represent the harmful effects of abrupt braking,
and take a detected failure of an active component into consideration.

The efficient operation of the supervisor and the local controllers require reliable
and highly accurate signals from the system. To meet this requirement redundant
sensors, diverse calculations and fault-detection filters are needed. To achieve the
efficient and optimal intervention, the detections of faulty sensors are important
since they must be substituted for in operations based on these sensors. Low-cost
solutions are preferred in the vehicle industry, thus simple sensors and software-
based redundancy must be applied.

In the following several examples for monitored components related to specific
control goals are presented:

20.4.1 Yaw Stability

Yaw stability is achieved by limiting the effects of the lateral load transfers.
The purpose of the control design is to minimize the lateral acceleration, which
is monitored by a performance signal: za = ay. Unilateral braking is one of the
solutions, in which brake forces are generated in order to achieve a stabilizing yaw
moment. In the second solution, additional steering angle is generated in order to
reduce the effect of the lateral loads. These solutions, however, require active driver
intervention into the motion of the vehicle to keep the vehicle on the road.
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20.4.2 Road Tracking

Another control task is to follow the road geometry. The purpose of the control is
to minimize the difference between the yaw rate and the reference yaw rate to be
minimized: ze = |ψact −ψref|. In practice, the calculation of this difference is based
on signals of a video camera.

20.4.3 Roll Stability

Roll stability is achieved by limiting the lateral load transfers on both axles to
below the levels for wheel lift-off during various vehicle maneuvers. The lateral
load transfer is ΔFzi = ktφti, where φti is the monitored roll angle of the unsprung
mass at the front and the rear. The normalized lateral load transfer is introduced:
ρR = ΔFzy/(mg). The aim of the control design is to reduce the maximum value of
the normalized lateral load transfer if it exceeds a predefined critical value.

20.4.4 Pitch Stability

The pitch angle of the sprung mass may increase significantly during a sudden
and hard braking. Pitch stability is achieved by limiting the longitudinal load
transfers to below a predefined level. The normalized longitudinal load transfer is
the normalized value of the pitch angle: ρP = θ/θmax, where θ is the monitored pitch
angle and θmax is the maximal value of the pitch angle. The aim of the control design
during braking is to reduce the pitching dynamics if the normalized longitudinal
load transfer exceeds a critical value. Besides the basic control problems, these
monitoring components require additional sensors. The tracking task requires one
or two cameras for reasons of redundancy, the pitch and roll stability require the
pitch and roll angle of the sprung mass. In the vehicle industry, roll and pitch rates
are measured and then the angles are calculated by a numerical procedure. Different
methods are also used to filter out the offset error from the angles, e.g., Kalman filter.

20.4.5 Actuator Selection

In the control design, the distribution of the wheel forces must also be taken
into consideration. In a front-wheel-driven vehicle, the traction force is distributed
between the front wheels by using the differential gear. The steering angle is limited
by construction (δcrit), therefore when the maximal steering angle is reached the
desired lateral dynamics of the vehicle must be achieved by the brake moment.
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Fig. 20.5 Relationship between the parameter ρa and the actuator selection

During braking, the load of wheels is modified due to the pitch dynamics of
the vehicle. The braking of the front wheels must be stronger while the braking
of the rear wheels must be reduced. The wheel forces must be monitored in
view of the momentary friction margin of the tire. It requires the estimation of
friction coefficient μ , which is also necessary for the determination of maximal
cornering velocity. An estimation method for the adhesion coefficient is proposed
by Gustafsson [9].

The maximal longitudinal force of the wheels (Fi,max) is calculated and compared
to the momentary longitudinal wheel forces (Fi). Note that the maximal longitudinal
force depends on the maximal adhesion coefficient and the static and dynamic
components of the vertical force at the wheel, i.e., the lateral and pitch dynamics.
The variable ν = max{Fi/Fi,max} is the maximal value between the force ratios
considering all the wheels and νcrit is a design parameter.

A weighting factor ρact, which depends on the vehicle operation, i.e., the traction
and the brake, will be used in the weighting strategy of the control design, see
Fig. 20.5. This factor might depend on other parameters less such as forward
velocity, lateral loads, maneuvers.

20.4.6 Fault Monitoring

The fault-tolerant control requires fault information in order to guarantee
performances and modify its operation. Thus, FDI filters are also designed for
the operation of the actuators. As an example, the fault information provided by
a fault-detection filter is given by ρD = fact/ fmax, where fact is an estimation of
the failure (output of the FDI filter) and fmax is an estimation of the maximum
value of the potential failure (fatal error). The estimated value fact means the rate
of the performance degradation of an active component. The value of a possible
fault signal is normalized into the interval ρD = [0, 1] and it is used as a scheduling
variable that directly affects the performance specification (performance weight) of
the corresponding component.
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The actuator reconfiguration is based on the fact that two actuators are able
to influence the same vehicle dynamics. Thus, the fault-free actuator is able to
substitute for the operation of another actuator which has been affected by a failure
or its performance has degraded. The control design is based on two factors:
the failure or performance degradation has already been detected and the fault
information ρD and the necessary intervention possibilities are built into its control
design. Instead of a switching type controller reconfiguration, the control structure
changes due to a reconfiguration of the performance goal achieved by a scheduling
of the performance weights.

The detection of a sensor failure as accurately as possible is crucial since
the controller may generate fault actuator intervention as a result of fault sensor
information. In practice, the probability of a sensor failure can be reduced by using
redundant sensors. In this case, the faulty sensor is substituted for by another fault-
free sensor which provides the same or similar signal. Sensor failures may also
prevent certain actuators from being used; then handling the sensor failure leads to
an actuator reconfiguration problem. Thus complex vehicle systems require various
FDI filters both for actuator and sensor failures.

20.5 Actuators and Operation Modes in the Distributed
Control System

This section gives a short overview about the main control systems and their
operation modes in the vehicle. At each subsystem, the most common performance
specifications and the corresponding weighting strategies are formulated.

20.5.1 Steering System

In order to solve the yaw rate tracking problem in the design of the steering system,
the command signal must be fed forward to the controller (yref). The command
signal is a predefined reference displacement and the performance signal is the
tracking error: ze. The weighting function of the tracking error is selected as

Wpe = κe(Td1s+ 1)/(Td2s+ 1), (20.11)

where Tdi are time constants. Here, it is required that the steady-state value of the
tracking error should be below 1/κe in steady state.
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20.5.2 Brake System

In the design of the brake system, the command signal is the difference in brake

forces while the performance signal is the lateral acceleration: zb =
[
ay,ur

]T
.

The weighting function of the lateral acceleration is selected as

Wpa = φa(Tb1s+ 1)/(Tb2s+ 1), (20.12)

where Tbi are time constants and

φa =

⎧
⎪⎨

⎪⎩

1 if |ρR|> Rb,
|ρR|−Ra
Rb−Ra

if Ra ≤ |ρR| ≤ Rb,

0 if |ρR|< Ra.

(20.13)

Here φa is a gain, which reflects the relative importance of the lateral acceleration
and it is chosen to be parameter dependent, i.e., the function of ρR. When ρR is small
(|ρR|< Rb), i.e., when the vehicle is not in an emergency, φa is small, indicating that
the LPV control should not focus on minimizing acceleration. On the other hand,
when ρR approaches the critical value, i.e., when |ρR|� Rb, φa is large, it indicates
that the control should focus on preventing the rollover. Here Rb defines the critical
status when the vehicle is close to the rollover situation, i.e., all wheels are on the
ground but the lateral tire force of the inner wheels tends to zero. Parameter Ra

shows how fast the control should focus on minimizing the lateral acceleration.
These parameters guarantee the smooth transient of the signals (Fig. 20.6).

If a fault is detected in the operation of the anti-roll bars, the brake system will
be activated at a smaller critical value than in a fault-free case, i.e., when |ρDa|> 0.
Consequently, the brake is activated in a modified way and the brake moment is able
to assume the role of the anti-roll bars or the suspension actuator in which the fault
has occurred. The modified critical value is

Ra,new = Ra −α ·ρDa, (20.14)

where α is a predefined constant factor.
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If a fault is detected in the steering system (|ρDs| > 0), the brake must focus on
yaw dynamics in order to reduce the tracking error. Thus, in the control design of the
brake, the performance specification concerning the steering system is also built in

Wpe = φe(Tb3s+ 1)/(Tb4s+ 1), (20.15)

where φe is

φe =

⎧
⎪⎨

⎪⎩

1 if |ρDs|> ρcrit,
|ρR|−ρtol
ρcrit−ρtol

if ρtol ≤ |ρDs| ≤ ρcrit,

0 if |ρDs|< ρtol.

(20.16)

In this weighting the critical value of the brake intervention is used together with a
tolerance value.

20.5.3 Anti-roll Bars

The performance signals in the control design of active anti-roll bars are the lateral

load transfers and control inputs: zr =
[
ΔFz f ΔFzr u

]T
. Considering the vehicle

masses at the front and rear weighting functions

Wp f = κ f (Tf 1s+ 1)/(Tf 2s+ 1) (20.17)

are applied to the lateral load transfers, where the gain κ f and time constants Tf i are
tuning parameters of the specification.

20.5.4 Suspension System

The performance signals in the suspension design are: zs =
[
az sd td us

]T
. The goals

are to keep the heave accelerations az = q̈, suspension deflections sd = x1i j − x2i j,
wheel travels td = x2i j −wi j, and control inputs small over the desired operation
range. The performance weighting functions for heave acceleration, suspension
deflections, and tire deflections are selected as

Wp,az = φaz(Ts1 + 1)/(Ts2 + 1), (20.18)

Wp,sd = φsd(Ts3 + 1)/(Ts4+ 1), (20.19)

Wp,td = κtd(Ts5 + 1)/(Ts6+ 1), (20.20)
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where Tsi and κtd are time constants and the parameter-dependent gains are

φaz =

⎧
⎪⎨

⎪⎩

1 if |ρki j|< ρ1,
|ρki j |−ρ2

ρ1−ρ2
if ρ1 ≤ |ρki j| ≤ ρ2,

0 if R ≥ Rs or |ρki j|> ρ2,

(20.21)

φsd =

⎧
⎪⎨

⎪⎩

0 if |ρki j|< ρ1,
|ρki j |−ρ1

ρ2−ρ1
if ρ1 ≤ |ρki j| ≤ ρ2,

1 if R ≥ Rs or |ρki j|> ρ2.

(20.22)

In normal cruising, the suspension system focuses on the conventional
performances based on the parameter-dependent gain, which is a function of
the suspension deflection ρki j. A large gain φaz and a small gain φsd correspond
to a design that emphasizes passenger comfort while choosing φaz small and φsd

large corresponds to a design that focuses on suspension deflection. The idea of
the reconfigurable suspension system is based on the fact that active suspension
systems are used not only to eliminate the effects of road irregularities but also to
generate roll moments to improve roll stability or generate pitch moment to improve
pitch stability.

Wp,θ = φP(Ts7 + 1)/(Ts8 + 1), (20.23)

Wp,φ = φR(Ts7 + 1)/(Ts8 + 1). (20.24)

For a reconfigurable suspension system, the parameter-dependent gains are selected
as functions of the normalized lateral load transfer ρR and the normalized value of
the pitch angle ρP. If ρP exceeds a predefined critical value, i.e., when |ρP| � RP,
the controller must focus on pitch stability. In an emergency, however, i.e., when
|ρR| ≥ Rs, the suspension system must reduce the rollover risk and guaranteeing
passenger comfort (and pitch angle) is no longer a priority.

20.6 Global Performances Based on the Supervisor Activity

In order to provide a formal verification of the achieved control performance on a
global level, the problem must be formulated globally. Only on this extended level
are the performance variables which are relevant for the whole vehicle available.
Once the local controllers have been designed, however, it is possible to perform
an analysis step in the same robust control framework on a global level, for details
see [10]. This might be a highly computation intensive procedure. Moreover, the
presence of competing multiobjective criteria denies the applicability of this global
approach. For example, in emergency events certain performance components gain
absolute priority over others, thus requiring a given performance level for the
ignored performance components is not justified. On the other hand, the local design



20 Design of Integrated Vehicle Chassis Control Based on LPV Methods 529

guarantees the prescribed performance level for the critical components. Therefore,
in practice the formal global verification is often omitted and the quality of the
overall control scheme is assessed through simulation experiments.

The relationship between the supervisor and the local controllers guarantee
that the system meets the specified performances. Applying parameter-dependent
weighting a balance between different controllers is achieved. In different critical
cases related to extreme maneuvers or performance degradations/faults in sensors
or actuators, the controllers reconfigure their operations.

However, maneuvers in which different critical performances must be achieved
simultaneously may occur. For example, in a high-speed cornering maneuver the
risk of a rollover increases significantly. The performances are in contradiction:
deviating from the lane might cause the vehicle to run off the road while increasing
roll dynamics might lead to rollover. This maneuver requires an intensive cooper-
ation between the steering and the brake. The supervisor sends critical signals to
these controllers and consequently these control systems are activated. However,
reducing the rollover risk, the yaw dynamics is modified and the deviation from
the predefined path may increase. In contrast, reducing the difference from the path
might improve the rollover risk. Since both interventions are critical, the supervisor
is not able to resolve the problem, thus the performances are handled by the actuators
with performance degradation. In similar emergency cases, the supervisor is able to
handle only a trade-off between critical performances.

20.7 Simulation Examples

As an illustration, an integrated control is proposed for tracking the path of
the vehicle, guaranteeing road holding and improving pitch and roll stability.
The control design is performed by using the Matlab/Simulink while the verification
of the designed controller is performed by using the CarSim simulation software.
In cruising mode, the steering minimizes the tracking error while the active anti-roll
bars and the suspension system are operating. When the monitoring signals have
reached their critical values, the brake is also activated in order to improve roll and
pitch stability.

The operation of the integrated control in a heavy vehicle is illustrated in a
double-lane-changing maneuver, which is defined by the signal yaw rate. The ma-
neuver has a 4 m path deviation over 100 m. The velocity of the vehicle is 120 km/h.
The operation of three control systems is shown in Fig. 20.7. The integrated control
performs the maneuver in a fault-free operation (solid), operation in which there is
a float failure in the active anti-roll bar at the rear (dashed dotted), and operation
in which there is a float failure in the active anti-roll bar both at the front and the
rear (dashed). During the faulty operation the anti-roll bars cannot generate enough
stabilizing moment to balance the overturning moment. When there is a fault in the
front anti-roll bar the brake is activated earlier than in the fault-free case. Moreover,
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0 2 4 6 8 10
−6

−3

0

3

−0.6

−0.3

0

03

δ f
 (

de
g)

Time (sec)

0 2 4 6 8 10

Time (sec)

0 2 4 6 8 10

Time (sec)

0 2 4 6 8 10

Time (sec)

0 2 4 6 8 10

Time (sec)

0 2 4 6 8 10

Time (sec)

0 2 4 6 8 10

Time (sec)

0 2 4 6 8 10

Time (sec)

Steering angle

a y
 (

g)

u f
 (

kN
m

)

Lateral acceleration

−20

−10

0

10

20

30

40

u f
 (

kN
m

)

−20

−10

0

10

20

30

40

Roll moment at front Roll moment at rear

0

5

10

15

20

25

30

35

40

F
br

l (
kN

)

F
br

r (
kN

)

Brake force at left

−10

−8

−6

−4

−2
0

2

4

6

8

10

Brake force at right

−20

−15

−10

-5

0

5

10

ψ
 (

de
g/

s)

ψ
er

r (
de

g/
s)

Yaw rate

−6

−3

0

3

6

Tracking error

a b

c d

e f

g h

Fig. 20.7 Time responses of the tracking control based on a supervisory control (solid: fault-free,
dashed-dotted: fault in the roll moment at front; dashed: fault in the roll moments) (a) Steering
angle (b) Lateral acceleration (c) Roll moment at front (d) Roll moment at rear (e) Brake force at
left (f) Brake force at right (g) Yaw rate (h) Tracking error



20 Design of Integrated Vehicle Chassis Control Based on LPV Methods 531

the braking lasts longer and the brake forces are greater than in the normal situation.
The reason for this is that in the fault case the critical value of Ra is smaller than in
the fault-free case.

The supervisor uses three signals, i.e., the normalized lateral load ρR from
a component, which monitors the roll dynamics of the vehicle, the normalized
longitudinal load ρP from a component, which monitors the pitch dynamics, and
the fault information ρD from an FDI filter, which monitors the operation of the
active anti-roll bars. The supervisor sends ρR and ρD signals to the active brake,
which focuses on the roll stability. The integration is carried out through the
parameter-dependent weighting function used in the design of the brake. The brake
activates and generates a yaw moment in order to reduce the influence of the lateral
loads. The supervisor also sends ρR, ρP, and ρD signals to the active suspension
system, which provides road holding and passenger comfort. The control design
is based on the LPV method since it is able to handle parameter dependence in the
weighting strategy and guarantee that the designed controller meets the performance
specifications.

In the second example, the supervisory controller is compared to the conventional
distributed controller. In order to compare these cases, weighting functions are used
in the design of the conventional controller. Figure 20.8 shows the time responses of
the controlled systems when there is a float failure in the active anti-roll bar at the
front. The results show the benefit of the proposed solution, which uses a supervisor
over the completely decentralized approach, i.e., the required control inputs and the
control energy are considerably smaller.

20.8 Conclusions

In this chapter, a multilayer supervisory architecture for the design and development
of integrated vehicle control systems has been proposed. The local controllers
are designed independently by taking into consideration the monitoring and fault
signals received from the supervisor. In this architecture, the supervisor is able to
make decisions about the necessary interventions and guarantee the reconfigurable
and fault-tolerant operation of the vehicle. The design of local vehicle controllers
has been carried out by using LPV methods. In the control-oriented modeling,
the monitoring variables and the signals from the FDI filters play an important
role. The supervisor sends these signals to the local controllers and handles
the interactions and trade-off between these components. It is shown that the
performance specifications are formalized in parameter-dependent weighting and
the LPV method guarantees that the supervisory integrated control meets the defined
performance specifications.
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Parametric gain-scheduling control,
LPV-stable realization)

Linear parametrization, 38
Linear regression, 46–47
Linear time-invariant (LTI) system, 4, 256, 257

frequency response functions and, 374
and interpolating LPV model, 376
IO combination, 360, 373
plants, online parameter tuning for, 79–82
point analysis, X-53 active aeroelastic

wing, 494–497
poles and zeros, 374
robust GAR

with H∞ performance, 146–147
with H2 performance, 150

Linear time varying (LTV) systems, 4–5
LMIs. See Linear matrix inequalities (LMIs)
Local identification approach, 36, 37, 45
LPV systems. See Linear parameter varying

(LPV) systems
LS criterion. See Least squares (LS) criterion
LTV systems. See Linear time varying (LTV)

systems
Lyapunov function

parameter-dependent, 106–107
parameter-independent, 106–107

Lyapunov inequalities, 158
Lyapunov–Krasovskii functionals, 281–284
Lyapunov matrix, 474, 475
Lyapunov structure, 12–13

M
Magnetic attitude control

LPV design
control input matrix, 350, 351
convex optimization, 350

induced L2 norm, 349, 350
parameter-dependent state-feedback

problem, 349–350
parameter ranges and variation rates,

350, 351
Yalmip, 351

magnetically controlled spacecraft
averaging-based modelling, 345–346
parameter-dependent modelling,

347–348
periodic modelling, 346–347

Magneto-rheological (MR) dampers
bi-viscosity and hysteresis, 383
control-oriented model, 385–388
extended mixed Skyhook-ADD, 402
extended Skyhook, 402
passive, 403
Shuqi Guo model, 384
test-rig, 386

MATLAB objects, X-53 active aeroelastic
wing, 487, 488

Milling process, 292
Mixed objective synthesis, 100
Model predictive control (MPC), of time-

varying splitting parallel systems.
See Decentralised model predictive
control (MPC), of time-varying
splitting parallel systems

Moore–Penrose pseudoinverse approach, 46
Multiconvexity relaxation technique,

119–120
Multiple-input multiple-output (MIMO)

systems, 359, 362, 375

N
NASA Dryden’s X-53 AAW, 485
Noise model, 39–40
Nonlinear optimization, 53
Non-negative garrote (NNG), 39
Nonquadratic cost minimization,

21–22
Non stationary LPV (NSLPV),

105–107
definition, 108
matrix-valued function, 108–109
plant and controller, 108–109
switched systems, control of

SLPV system, 115
state-space subregions, 116

Norm-bounded approach
closed loop system, 94–96
vs. polytopic approach, 98–99

NSLPV. See Nonstationary LPV (NSLPV)
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O
Observer-based controller, 67, 68
One-step-ahead predictor, 29, 31, 33, 34, 36,

42, 43, 50
Open-loop interconnection, flexible hypersonic

vehicle
augmented plant, 426
output feedback velocity tracking problem,

424, 425
weighting function, 425

Optimal disturbance attenuation, 175, 176
Orbits, 105, 110
Orthonormal basis functions (OBFs), 42

and FIR, 49–50
Outer leading edge flaps (OLEFs), X-53 active

aeroelastic wing, 490–492
Output-error (OE) structure, 42, 43

P
Parameter-dependent bilinear matrix

inequalities (PDBMIs), 183, 193,
194

Parameter-dependent decision matrices, 202
Parameter-dependent LMIs (PDLMIs),

183–185, 193, 194, 200, 201, 208,
212

Parameter-dependent Lyapunov approach,
NSLPV systems control, 105

analysis and synthesis, 110–114
controller construction, 120–124

algorithm, 121
matrix-valued continuous function, 120,

121
polynomial functions, 123
solutions, 120

control problem solving, 106
parameterized LMI relaxation

multiconvexity relaxation technique,
119–120

sum of squares (SOS) method, 116–118
plant and controller, 108–110
switched systems, 114–116
uses, 106, 107

Parameter-dependent Lyapunov functions
(PDLFs), 182, 183, 193, 196, 197,
199

Parameterized linear matrix inequalities
(PLMIs), 107, 114, 116, 120, 123,
124

multiconvexity relaxation technique,
119–120

sum of squares (SOS) method, 116–118

Parameter set mapping (PSM), 455, 456
Parametric gain-scheduling control, LPV-stable

realization
applications

dead-beat LPV control problem, 78–79
fixed pole assignment, 77–78
Hurwitz region, LPV stability within,

82–85
online tuning for LTI plants, 79–82
pointwise optimality and LPV stability,

85–86
discrete-time case, 73–77
factorized denominator, transfer functions

with, 69–71
preliminary results, 65–68
problem statement

closed-loop control system, 64
LPV stabilizing controller realization,

64
LPV-stable realization, 63–64
LPV synthesis, 64–65
state-space representation, 63

stabilizing compensator realizations, 72–73
Parametric transfer function, LPV-stable

realization of, 68–71
Parametrized model, LPV systems, 35–36
Payne–Whitham model, constrained freeway

traffic control, 468–469
PDBMIs. See Parameter-dependent bilinear

matrix inequalities (PDBMIs)
PDLFs. See Parameter-dependent Lyapunov

functions (PDLFs)
PDLMIs. See Parameter-dependent LMIs

(PDLMIs)
Peaking vs. stability, 8–9
Periodic systems, 110, 113
PLMIs. See Parameterized linear matrix

inequalities (PLMIs)
Pointwise optimality and LPV stability, 85–86
Polynomial parameter-dependence, 106, 112

GSOF controllers, 199–201
Polytopes, 108, 164, 165
Polytopic approach

closed loop system, 93–94
vs. norm-bounded approach, 98–99

Prediction-error identification, 27
ARX case, LS criterion

FIR and OBF models, 49–50
instrumental variable approach, 48–49
linear regression, 46–47

classical model structures
LPV-ARX and ARMAX, 40–41
LPV-BJ and OE, 43
LPV-FIR and series expansion, 41–43
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noise model, 39–40
process model, 38–39

framework
consistency, 37
convergence, 37
data-generating system, 31–33
identifiability, 36–37
informativity, 37
noisy p, vo prediction with, 34
parameterized models and estimation,

35–36
vo prediction, 33–34

general noise models, LS criterion, 50
instrumental variable approach, 53–55
nonlinear optimization, 53
pseudo-linear regression, 50–53

informativity and identifiability, 43–45
LPV series-expansion representation,

29–31
LS criterion, 45
y, prediction of, 34–35

Process model, 38–39
Proportional and integral (PI) controller

controller design
aerodynamic gains, 329
bandpass filter, 327
drive train, 327, 328
integrator filter, 326, 329
LMI optimization problem, 330
loop-shaping weight, 329, 330
Lyapunov matrix, 330
mixed sensitivities optimization

problem, 329
open-loop system matrices, 328
performance level and controller gains,

331
proportional, integral and tower

feedback gains, 331, 332
schematic block diagram, 327
static output feedback, 329
variable-speed wind turbine, 328

simulation results
fault-tolerance, 335
time series, 332–334

Pseudolinear regression, 50–53

Q
Quadratic vs. non-quadratic stability, 11
Quarter vehicle model, 387–389

R
Ramp metering, 461, 462
Ramp velocity tracking

actuator input, 438, 440
controller ID, 439–441
flexible body states, 436–437, 440
integration error, 435, 437, 439
rigid body states, 433–435

Reference tracking, 498, 503, 508
Refined instrumental variable (RIV) approach,

43, 54
Renault Mégane Coupé (RMC), 389, 400, 401
Road tracking, in distributed control system,

523
Robust controller, designing, 102
Robust estimation, with partial gain-scheduling

convex optimization
dualization and elimination, 272–277
gain-scheduled estimation problem,

256–257
KYP lemma, 255, 260
linear fractional transformation (LFT), 254,

257
LMI, 255
LTI system, minimal realization of, 256,

257
numerical

estimation error, 270, 271
estimator, 269–270
singular value plots of, 271, 272
uncertain LPV system, 269

result, 267–269
scheduling operator, 257
stability and performance analysis

from analysis to synthesis, 263–264
with IQCs, 259–261
LMIs analysis, reformulation of,

264–267
nominal stability, characterization of,

264
parameterizing dynamic IQCs, 261–263
realization of, 258
standard configuration for, 257, 258

star-convex set, 256
uncertain dynamical system, 254
uncertain parameters, 254
well-posed, 257–261, 264

Robust finite-path-dependent state feedback,
173, 174, 176, 178

Robust generalized asymptotic regulation
(GAR)

with H2 performance, 148–149
H2-type constraint

problem with, 147–148
shaping transient behavior with,

150–151
L2 gain constraint
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Robust generalized asymptotic regulation
(GAR) (cont.)

robust GAR with, 142
shaping transient behavior with, 147

with L2 gain performance, 143–146
LTI systems

H∞ performance for, 146–147
H2 performance for, 150

parameter derivative dependence in
controller, 139

problem, 133–134
solution, 135–139
sufficient condition, 134–135
transient behavior, shaping, 141–142
unmeasurable parameters, absence of,

139–141
Robustness, 181–213
Robust stability, 14

slowly varying operators, 14–15
small-gain condition, 15–16

Root mean-square (RMS) value, 321, 408
Routh–Hurwitz table, 82

S
Schur complement formula, 103, 121, 123,

146, 162, 167, 171
Semi-active suspensions

frequency domain analysis
extended mixed SH-ADD, 404
frequency responses, 403, 404
nominal MRD and extended Skyhook,

404
optimal controllers, 404
performances comparison, 405

H∞ /LPV controller
control scheme, 395–397
genetic algorithms, 398–400
stable controllers, 399
strong stabilization, 399

LPV model
deflection velocity, 392
input saturation constraint, 393
ride comfort and road holding, 392
saturation function, 393
scheduling parameters, 393, 394
state-space representation, 391–392

magneto-rheological dampers
bi-viscosity and hysteresis, 383
control-oriented model, 385–388
extended mixed Skyhook-ADD, 402
extended Skyhook, 402
passive, 403
Shuqi Guo model, 384
test-rig, 386

nonlinear RMC spring, 400, 401
Pareto set, 400, 401
performance objective quantification

road holding improvement, 391
vehicle body acceleration, 391
vibration dose value, 390

quarter vehicle model, 387–389
time domain analysis, 405–408

Set-invariance method, 19
disturbance rejection, 20–21
nonquadratic cost minimization, 21–22

Shuqi Guo model, 384
SIMULINK model, X-53 active aeroelastic

wing, 499–501
Single-input single-output (SISO) model, 29,

78, 359–361, 373–375, 393, 450,
496

state-space model interpolation of local
estimates, 360–362

vibroacoustic application, 373–375
Sinusoidal disturbance attenuation, 128, 152,

153
Slack variable (SV), LMI relaxation, 286–288
Slow time variations

characterization, 10
stability vs. peaking, 8–9

SLPV systems. See Stationary LPV (SLPV)
systems

Small-gain theorem, 15–16
SOS method. See Sum of squares (SOS)

method
Spacecraft, magnetic actuators

averaged models, 340
magnetic attitude control design

averaging-based modelling, 345–346
parameter-dependent modelling,

347–348
periodic modelling, 346–347
time-periodic system, 345–346

mathematical model
angular kinematics and dynamics, 342
earth centered inertial reference axes,

341
geomagnetic field vector, 343
LEO orbit, 344
local linear dynamics, 342
magnetic coils, 343
magnetic torquers, 343
orbital axes, 341
satellite body axes, 341

periodic models, 340
simulation study

orientation error, 352, 353
small satellite platform, 351
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state-feedback controllers
implementation issues, 345
nominal closed-loop performance,

344
nominal closed-loop stability, 344
stability and performance robustness,

344
SRP transfer function. See Stable regular

parametric (SRP) transfer function
Stability, 62

arbitrary time variations
Lyapunov structure, 12–13
quadratic vs. non-quadratic stability, 11
stability, 10–11

of discrete time switched LPV systems,
159–164

within Hurwitz region, 82–85
instability and time variation

induced instability, 7–8
induced non-minimum phasedness, 8

vs. peaking, 8–9
and pointwise optimality, 85–86
robust, 14

slowly varying operators, 14–15
small-gain condition, 15–16

slow time variations
characterization, 9–10
stability vs. peaking, 8–9

Stable regular parametric (SRP) transfer
function, 68–69, 76–77

State-feedback controller, 165
State-space equation, 108
State-space matrices, 202, 206, 212
State-space model interpolation of local

estimates (SMILE)
input–output combination, 360
interpolation and optimization, 362
poles and zeros, 360–361
polytopic parametrization, 362
similarity transformation matrix, 361–362
SISO models, 361

State-space (SS) representation, 3, 28, 63, 72,
282, 293, 359, 360, 391–393, 493,
519

State-space trajectory, 70, 71
Static dependence, 28, 30, 31
Static output feedback (SOF), 319, 320, 329
Static state feedback (SSF), 320
Stationary LPV (SLPV) systems, 107, 115
Steering system, 525
Sub predictors, 36, 50, 52
Sum of squares (SOS) method, 116–118
Switched LPV systems, in discrete time,

174–178

Kalman–Yakubovich–Popov inequalities,
158

Lyapunov inequalities, 158
notation, 159
optimal control, 176
performance optimization, 172–174
problem evaluaton

error output sequence, 168
Kalman–Yakubovich–Popov (KVP)

inequality, 172
Schur complement formula, 170, 171
state-space description, 169

robust finite-path-dependent state feedback,
173, 174, 176, 178

stability, 159–164
stabilization

closed-loop system, 167
feedback gain matrices, 168
polytopes, 164, 165
state-feedback controller, 165

Switching systems, 67

T
Time-delay systems

blade rotating speed, 294, 295
control effort, 295
displacements of mass, 295, 296
gain-scheduled controllers, 280
gridding parameter space, 295

Jensen’s lemma, 283
L2 gain performance analysis,

280, 281, 297
Lyapunov–Krasovskii functionals, 281,

283, 284
milling process, 292
output feedback control design
closed loop system, 288–290
inequality, 291
slack variable matrix, 290
state-space matrices, 291
parameter-varying systems, 280
performance analysis

asymptotic stability, 284–286
LMI relaxation, slack variables,

286–288
Schur complement lemma, 286

projection lemma, 283
stabilization, 280
state-space representation, 282, 293
transport delay, 280

Time-varying splitting parallel systems. See
Decentralised model predictive
control (MPC), of time-varying
splitting parallel systems
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Traffic control. See Constrained freeway traffic
control, LPV paradigms

Trajectory tracking, 92, 106, 110–112, 116
Transfer functions

with factorized denominator, 69–71
Hurwitz denominator, 69
SRP transfer function, 68–69
state-space trajectory, 70, 71

Transient behavior, shaping
with L2-gain constraint, 147
robust GAR, 141–142

Turbocharged combustion engine control,
low-complexity LPV input-output
models

basis functions, 451–456
black-box identification, 445, 446, 453
charge control of

air path, 447
measured inputs and outputs, 449
measured scheduling signals, 449
plant model, structure of, 448

controller synthesis and closed-loop
results

dilated LMIs, 457
Lyapunov function, 457
parameter varying matrix, 457
simulation results, 458
system configuration, 458
vertex model, 457

identification of
coefficient matrix, 456
downhill simplex method, 456
flow diagram, of algorithm, 456
parameter set mapping (PSM), 455,

456
identification results, 456, 457

best fit rate (BFR), 452
cross validation, with scheduling

parameters, 453
functional basis for, 452
polynomial basis, 452

parameter reduction
cross validation, of identification result,

453, 454
scheduling parameter vector., 454, 455

polytopic state-space and, 448, 450–451
principal component analysis, 446
scheduling function, 446, 450–452, 456
shifted form, 450, 451

U
Unmeasurable parameters, LPV systems with,

194–195

V
Vehicle dynamics, 382
Vehicle systems. See also Integrated vehicle

chassis control, design of
LPV control

closed-loop interconnection structure,
521

minimization task, 521
P–K–D structure, 521, 522

LPV modeling
brake and anti-roll bars, 520
dynamics, 518–519
state-space representation form, 519
suspension system, 520
yaw, roll, and pitch motions, 518, 519

Viability theory, 20
Vibroacoustic application

control design, 375–377
modeling

frequency response functions, 372–374
input–output combination, 373
interpolation and optimization, 375
poles and zeros, 373
similarity transformation matrix, 375
SISO models, 374–375
validation, 375

multi-objective design, 377–378

W
Wind turbines

aerodynamics
Taylor series, 313
tower dynamics, 315
typical control strategy, 312–313
typical 2 MW wind turbine, 314

automatic control, 304
controller structure, 306
cost of electricity, 304
fault diagnosis and fault-tolerant control,

305
faults

biased pitch sensor, 315
high air content, 317
hydraulic leakage, 317
hydraulic pitch model, 317
pitch systems, 316, 317
power converter, 316
pump wear, 317
ranges and rate limits, 316

gain-scheduling approach, 304
low data storage, 306
LPV controller design method

bounded real lemma, 321
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closed-loop matrices, 320
controller implementation, 325–326
controller matrices, 320
decentralized controllers, 319
general parameter dependence, 324
gridding procedure, 325
induced L2-norm, 319, 321
infinite to finite dimensional, 323–325
initial slack matrix, 323
input–output operator, 321
iterative algorithm, 322
Lyapunov function, 324
nonconvex, 319, 322
parameter-dependent Lyapunov

function, 319
parameter-dependent slack variable,

322
root mean-square value, 321
static output feedback, 319, 320
static state feedback, 320

LPV PI controller
aerodynamic gains, 329
bandpass filter, 327
drive train, 327, 328
integrator filter, 326, 329
LMI optimization problem, 330
loop-shaping weight, 329, 330
Lyapunov matrix, 330
mixed sensitivities optimization

problem, 329
open-loop system matrices, 328
performance level and controller gains,

331
proportional, integral and tower

feedback gains, 331, 332
schematic block diagram, 327
simulation results, 332–335
static output feedback, 329
variable-speed wind turbine, 328

mathematical operations, 306
nonlinear model

aerodynamic torque and thrust, 309–311
blade element, 308
converter dynamics, 311
drive train, 310
hydraulic pitch systems, 311
mass-spring-damper system, 311
power coefficient, 310
thrust coefficient, 310

system description, 318–319
variable-speed variable-pitch, 307
wind model, 307–308

X
X-53 active aeroelastic wing

aeroservoelastic interaction, 484
flexible aircraft, 484
gain-scheduled classical control

Bode plots of, 494, 495
closed-loop responses, 495, 496
control design, 492–493
L2 induced norms for, 497–499
LPV analysis, 497–499
LTI point analysis, 494–497
parameter trajectory, 503
SIMULINK model, 499–501
state-space representations, 493
step input disturbance, 502
worst-case simulation, 499–503

integrated active control, issues, 484
LPV analysis and design, tools for

gridded domains, 487
MATLAB objects, 487, 488
object-oriented programming, 488, 489
parameter-varying matrices and

frequency, 487
pfrd, 487
pmat, 487–489
pss, 487
state-space models of, 486

LPV control design
Bode magnitude plots of, 505
Bode plots of loop function, 506
closed-loop responses, to step roll rate,

506, 507
design interconnection roll rate control,

503, 504
L2 induced norms, for closed-loop

sensitivity functions, 507, 508
LPV simulation, 486, 499
parameter dependent Lyapunov function,

497
roll rate model

altitude, Mach, 489
dynamics, 489, 490
open-loop Bode plots, from OLEF, 490,

491
open-loop step responses, from OLEF,

491, 492
rigid body data, 489, 490

Y
Yaw stability, distributed control system, 522
Youla–Kucera parameter, 62, 72, 73, 76–78, 84
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