

<Half-Title Page>

AU1292 FMFrame Page i Sunday, August 25, 2002 11:47 AM

<Other Auerbach

Publications Page>

AU1292 FMFrame Page ii Sunday, August 25, 2002 11:47 AM

<Title Page>

AU1292 FMFrame Page iii Sunday, August 25, 2002 11:47 AM

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted
with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been
made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the
validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system,
without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new
works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice:

Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation, without intent to infringe.

Visit the Auerbach Publications Web site at www.auerbach-publications.com

© 2003 by CRC Press LLC
Auerbach is an imprint of CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-8493-1292-2

Library of Congress Card Number 2002027956
Printed in the United States of America 1 2 3 4 5 6 7 8 9 0

Printed on acid-free paper

Library of Congress Cataloging-in-Publication Data

Wells, Timothy D.
Dynamic software development : managing projects in flux / Timothy D. Wells.

p. cm.
Includes bibliographical references and index.

ISBN 0-8493-1292-2 (alk. paper)
 1. Computer software--Development--Management. I. Title.

QA76.76.D47 W47 2002
005.1

′

068--dc21
 2002027956

AU1292 FMFrame Page iv Sunday, August 25, 2002 11:47 AM

v

Contents

1 Defining the Goal… Or Visualizing the Ideal

...1
Skills and Success...1
Knowledge Management..4
Manager’s Nightmare..6
Information as the Manager’s Tool...6

The Product’s State..7
The Element’s State ...7
The Task’s State..8

Trust What You Know, Not What You Are Told ..8
Applying Dynamic Management ..10
Chapter 1 Case Study Excerpt ...12

2 Defining Work… Or What’s Really Happening in the Trenches

.........19
A Day in the Life of a Developer...21

8:00 a.m...21
8:30 a.m...22
9:00 a.m...22
11:30 a.m...22
1:00 p.m. ...23

Relating Management to Work ...24
A Unit of Work = Chunk of Information ...26
Defining Tasks...28
Projecting Size..30
Work and Corroboration..33
Applying Dynamic Management ..34
Chapter 2 Case Study Excerpt ...36

3 Planning Progress… Or What You Don’t Know Can Hurt You

...........41
Information Structure...41
Real Building Blocks...42
Reward Complete Thinking ...49
Real Uncertainty...50
Watch the Result, Not the Process ..51
Applying Dynamic Management ..53
Chapter 3 Case Study Excerpt ...54

4 Managing Developers… Or Dance with the One Who
Brought You

...61
No Management? No Documentation? ..61
Diverse Skill Set..62
Combining Work and Learning ..66
The Team of One..66
Multi-Team Efforts ..67

AU1292 FMFrame Page v Sunday, August 25, 2002 11:47 AM

vi

Dynamic Software Development: Managing Projects in Flux

Motivating by Rewarding Consistent Work ...69
Applying Dynamic Management ..70
Chapter 4 Case Study Excerpt ...71

5 Monitoring Productivity… Or Getting Better All the Time

....................77
Measuring Work Done..77
Measuring What Has Changed ...80
Determining Work’s Cost ...84
Demanding Enhanced Value...84
Applying Dynamic Management ..86
Chapter 5 Case Study Excerpt ...87

6 Strategic Framework… Or Metadesign Integrity

.......................................91
The Importance of System Architecture..91
Technology Decisions ..94
Mapping Architecture to Elements ..96
Architecture’s Dark Side...97
Applying Dynamic Management ..98
Chapter 6 Case Study Excerpt ...99

7 Constructive Development Environment… Or Making
Work Flow

..103
Conflict within the Environment...103
Seven Components of a Development Environment ..105
Sources of Conflict...106
Assessing the Environment ..109
Ongoing Assessment...110
Applying Dynamic Management ..111
Chapter 7 Case Study Excerpt ...112

8 Managing Managers… Or I’m OK, but the Rest of Them?

...................117
Dealing with Expectations...117
The Delegate Channel..120
The Collaborate Channel ...121
The Service Channel ..121
Selling Enhanced Value...123
Applying Dynamic Management ..124
Chapter 8 Case Study Excerpt ...126

9 Funding and Economic Return… Or Paying the Way

...........................131
Funding as Risk Containment ..131
Funding the Perpetual Effort ...135
Paying for Asset Development ...137
Applying Dynamic Management ..139
Chapter 9 Case Study Excerpt ...140

10 Leadership by Consensus… Or if You’re Going My Way

.....................147
Decision Councils ..147
Leadership through Criticism ..149
Need for Responsibility..150
Applying Dynamic Management ..151
Chapter 10 Case Study Excerpt ...151

Postscript

..157

AU1292 FMFrame Page vi Sunday, August 25, 2002 11:47 AM

vii

Appendices

A Distorted Reality… Or Why Phased Management Is Appealing

........159
What Is So Bad about the Waterfall?..159
Why Long Lead-Times?...159
Phased Management Leads to Specialization of Skills...160
Phase-Based Management Leads to Distortion
of the Real Objective ...160
Phased-Based Management Leads to Lost Information Assets161

B Where to Begin… Or Getting Started with Dynamic
Management

..163
Selecting Comrades..163
Orchestrating Pilot Projects ...164
Define Your Building Blocks ..164
Define Your Repository ..164
Measure Productivity..165
What You Can Lose ..165

C Capability Maturity Model and Dynamic Software Management

......167

D Dynamic Management Information Model

..185
Information Model Definitions...185

E Glossary

...189

F Reading List

..195

G DSM Case Study

..197
Overview ..197

Organization ..197
Environment ..199
Time: Twelve Years Ago..201
Time: Eleven Years Ago ..205
Time: Ten Years Ago ...206
Time: Nine Years Ago...212
Time: Eight Years Ago ..215
Time: Seven Years Ago ...226
Time: Six Years Ago..228
Time: Five Years Ago ..230
Time: Four Years Ago ...232
Time: Two Years Ago ..234
Time: One Year Ago ...237

Conclusion..238

Index

..241

AU1292 FMFrame Page vii Sunday, August 25, 2002 11:47 AM

AU1292 FMFrame Page viii Sunday, August 25, 2002 11:47 AM

ix

Introduction

I have been thinking about writing this book since I missed my first deadline.
I was the new graduate working on his first big project. I worked obediently
through the phases of a well-defined (...or at least voluminous) project
methodology. All the forms were prepared with great care. I did not know
the exact purpose of each form, but each was so meticulously laid out that
I assumed it had to be important. First came “Feasibility Study,” then “Func-
tional Requirements,” then “Preliminary Design.” The project repository began
to fill with impressive looking three-ring binders. After a while, all the binders
began to look alike, and the forms housed within began to blur together —
each with its proper heading and section numbers — each with its three
approving signatures duly dated.

Then the big push came! The project was behind schedule. We worked
nights and weekends. We were so busy, I did not even notice that we never
referenced the beautiful three-ring binders we had spent so much time
preparing. We had no time. We had to deliver the system.

It seemed strange to me that the project was “suddenly” behind
schedule.

I survived the period of firings and resignations. I was the junior member
of the team. I could not be blamed. I was the naïve, wide-eyed programmer.
I wondered about the logic behind working so hard on requirement specifi-
cations, only to ignore them when the schedule became tight. Where was the
rationale? What was the motivation? I kept thinking my managers knew what
they were doing. In time, I thought, I would be enlightened with their wisdom.

I later become a software management consultant for Yourdon, Inc. I
wondered at the three-ring binders built by my clients. I asked if they were
fulfilling some useful purpose. Usually, the answer was a qualified “Yes.” I
wondered as the three-ring binders were replaced with text databases, CASE
tools, project management software, and knowledge repositories. Still, if the
project found itself behind schedule (a common occurrence), the information
in those electronic three-ring binders was referenced less and less, as if the
value of that information had suddenly dropped. Or, perhaps, the code
suddenly became more valuable. What was the motivation? What was the
rationale? What was the use?

Enlightenment gained definition during those years. It was obvious that
the form of the information was not relevant. Computer technology was more

AU1292 FMFrame Page ix Sunday, August 25, 2002 11:47 AM

x

Dynamic Software Development: Managing Projects in Flux

flexible than wood fiber technology, but the effect was the same. The infor-
mation was not useful in monitoring the state of the project. Somehow, the
information in these volumes is not perceived as valuable when the parameters
of the project change. The knowledge gained by the developers during the
course of the project was useful insofar as the developers could remember
it, but the project repository could, by no stretch of the imagination, be called
an asset.

Now I am an independent consultant and a university professor studying
the same phenomena I observed when I was a student, a developer, and a
manager. I offer this text as an alternative to traditional project management.
I define an information-based approach to software development and enhance-
ment where the objectives are to gather information and add value, rather
than to complete tasks. Work to be performed is determined by the information
needed rather than the next step in the methodology.

This book is built around a model of dynamic software development. The
domain in which software development managers work is a dynamic, ever-
changing environment driven by three significant forces:

1.

Demands placed on system development

to meet corporate goals, stra-
tegic direction, and operational needs

2.

Managers’ need for information

about the state of the products under
development

3.

Elements of technology

used to create software products

As the enterprise’s management defines new needs and set direction, system
management defines tasks to investigate how the system of elements might
be enhanced. The task’s definition identifies strands of related elements into
which the new requirement will be integrated. System management assigns
the task to a development team based on the developer’s skills, knowledge,
and availability. The developers organize available technology into a set of
elements that are integrated into the software product.

The development manager uses information about the product’s elements
to manage the development effort. These elements are the software code,
requirements, test cases, designs, plans, task definitions, and other pieces of
information recorded in a repository. The contents of the repository reflect
what is known about the software product and the way it serves the corpo-
ration.

The cycle continues. Advancements in technology stimulate better methods
of building software solutions. The development manager monitors changes
to the repository and guides the development effort. Enhancements to the
software product spur requests for added functionality. The changing business
environment generates new needs and changes in strategic direction.

The dynamic management techniques defined in this text support all
methods of development, but apply most constructively to extreme program-
ming, adaptive and aspect-oriented programming. The ideas were formed over
countless attempts to devise management techniques compatible with earlier
methods such as Rapid Prototyping, radically concurrent development, and

AU1292 FMFrame Page x Sunday, August 25, 2002 11:47 AM

xi

iterative development. All these methods yield significant benefits to the
development process. At the same time, they are dissonant with traditional
project management techniques. While developers welcomed the methods,
project managers and directors greeted the new developments with skepticism.

This text defines the principles, practices, skills, and techniques needed to
manage a dynamic development environment. Dynamic development recog-
nizes that there is no beginning and no end to the software development
process. There is no distinction between

maintenance

 and

new development

.
Development effort is perpetual, continuous, and involves infinite combina-
tions of varying features, shifting requirements, and changing technology.

Each chapter ends with a section to help you apply the techniques to your
specific organization. I invite you to work through the text. Evaluate the logic
of the approach and the relevance of the examples. You will find ideas that
will make an immediate difference in your organization. Perhaps you would
be willing to contribute your experience and expertise to the emerging
techniques of “dynamic software management.” I invite you to visit and
participate in our Web site at http://luminguild.com/dynamic.

Timothy D. Wells

Pittsford, New York
March 2002

Case Study Illustration

Excerpts of a case study are woven throughout the text. A section in each
chapter presents a narrative describing relevant events in the history of a
composite organization — DSM International. While the organization is not
real, the case study is true.

All characters are realistic. I have observed all the ideas, feelings, actions,
and reactions depicted in the narrative during my 30 years of developing,
managing, consulting, and teaching. You will recognize situations and events
because every organization faces the same dilemmas and decisions. Every
organization deals with similar challenges. Every organization responds to
these challenges uniquely.

I am not specific about the nature of DSM International. I believe the
dynamics and problems illustrated in the narrative are common across corpo-
rate, nonprofit, and professional organizations. As you read the narrative, you
should fill in details from your own experience. The people represented are
identified only by titles rather than names. I am sure you will see your
colleagues, your superiors, and your developers in the narrative.

Topics discussed in each chapter of the book are illustrated in the case
study excerpts at the end of each chapter. You may find it useful to read
through the case study. The case study is presented in chronological order in
Appendix G. Then as you read the body of the text, the referenced segments
of the case study will be familiar to you.

AU1292 FMFrame Page xi Sunday, August 25, 2002 11:47 AM

xii

Dynamic Software Development: Managing Projects in Flux

We learn by exchanging stories. I am sure as you read the text you will
be reminded of important and illustrative events in your professional life. You
are encouraged to share your stories in the discussion at the author’s Web
site (http://luminguild.com/dynamic).

Applying Dynamic Management

Each chapter ends with suggestion on how to apply and implement dynamic
management in your organization. These suggestions are set apart by a
horizontal bar. Many of the ideas in this segment assume you have some form
of computer-mediated communication tool or electronic conferencing system
in use in your organization. This type of utility allows for messages to be
posted in threaded, asynchronous discussions accessible through your network.

An electronic conference can be an extremely effective aid to business
process improvement:

�

Ideas can be presented in a convenient, nonthreatening manner.

�

Responses can be posted and reviewed by a wide audience without
having to schedule meetings or distribute memos.

�

Consensus can be achieved quickly with wider participation.

Many of the recommendations at the end of each chapter are in the form
of topic definitions and open-ended questions you and your colleagues will
find useful in evaluating the ideas presented in this text and planning effective
methods of adapting them to your environment.

Format Conventions

Each chapter begins with a comment or aphorism.

Setting the stage… summarizing the chapter.

Summaries and important points are set apart with bold type:

Scan the book for these comments to see a summary of impor-
tant assertions.

I could not resist making asides and impious remarks based on my own
experience and emotional response. I also use this format to include quotes
and aphorisms that complement the subject.

You are free to ignore these comments, but I believe most readers
will appreciate the sentiments.

AU1292 FMFrame Page xii Sunday, August 25, 2002 11:47 AM

1

Chapter 1

Defining the Goal…

Or Visualizing the Ideal

There is no end to software development. Managers must define
the goal not as finishing, but as the act of managing well.

—Timothy Wells

Skills and Success

A vision of the ideal assists in making sense of an often-chaotic situation. The
mental image acts as a template. When reality deviates from the template,
you move quickly to bend the situation back toward the ideal.

During a management seminar I was conducting on the West Coast, I asked
the participants to list the traits of a successful development effort. I got the
following list.

�

No one is surprised (all expectations are met).

�

The users are delighted.

�

After working with the system for six months, the users are still
delighted.

�

All the developers feel good about their work.

�

After working with the system for six months, the developers still feel
good about their work.

�

Every change request is quickly and successfully addressed.

�

Upper management feels they got more than their money’s worth.

�

The users know they got their money’s worth.

AU1292Ch01Frame Page 1 Sunday, August 25, 2002 11:58 AM

2

Dynamic Software Development: Managing Projects in Flux

�

The users and upper management do not have to wait a year to know
they are getting their money’s worth.

�

I get a big raise, a corner office, and I do not have to manage software
development ever again.

These are the characteristics of an ideal development effort (with the possible
exception of the last point). These qualities, to some degree, must be present
from the very beginning and continue as the development effort expands and
grows. We do ourselves a favor to watch for these traits. If you do not see
them, it is time to take some restorative action.

No one is surprised (all expectations are met).

It is a common and comic situation. You sit down at a review meeting
and run through a demonstration of the latest version. You see the indescrib-
able but familiar look of the users’ faces — that strange combination of
puzzlement, anger, and exasperation. Their expression speaks volumes: “You
idiot. That might have been what we asked for, but you should have known
that’s not what we want!”

Key skill of the development manager: managing expectations.

The users are delighted.… And after working with the system for six months,
the users are still delighted.

Users need solutions to problems and real enhancement to their business
environment. You cannot determine that these needs have been met at the
time a new version is released. Many products have an attractive interface
that can delight us, regardless of the functionality behind it. Humans tend to
judge books by their covers and software is no different. The useful evaluation
comes after the gloss becomes familiar and the product is integrated into the
work environment. The real test is the durability of delight. If the user is still
singing your praises after the system becomes comfortable, your only problem
will be maintaining your humility. There is nothing more rewarding than
seeing your software solution being used effectively. But have no fear. Delight
is an extremely rare condition.

Key skill of the development manager: knowing and acting
upon real needs.

All the developers feel good about their work.
After working with the system for six months, the developers still feel good
about their work.

Development efforts have many audiences (e.g., users, managers, devel-
opers, suppliers, auditors, and regulators). Keeping users delighted is of utmost
importance and that cannot be done without talented, motivated developers.
There is nothing more frustrating than working for months on end on a failing
system. There is nothing more motivating than working on a system that is

AU1292Ch01Frame Page 2 Sunday, August 25, 2002 11:58 AM

Defining the Goal… Or Visualizing the Ideal

3

important, people know it is important, and people have confidence that it
is working because of one’s efforts.

Key skill of the development manager: knowing and capital-
izing on real talent and teamwork.

Every change request is quickly and successfully addressed.
This characteristic of success is central to the rest of the text. To address

a new demand, managers and developers must have access to all the defined
knowledge of the product. If that knowledge has been lost (a key employee
has left) or corrupted (previous design changes were not recorded), our ability
to respond to new expectations is seriously eroded. A manager must ensure
the knowledge repository — that is, everything we know about the product —
is accurate and available.

Key skill of the development manager: developing a knowl-
edge repository, not just a product.

Upper management feel they got more than their money’s worth.
The users know they got their money’s worth.
The users and upper management do not have to wait a year to know they
are getting their money’s worth.

The key economic reality is that software development creates assets (or
liabilities) in the form of corporate information and the ability to manage and
utilize it. Development managers must make it clear that the resource invested
in software systems is a good deal. You have a degree of discretion over the
financial horizons we define. The successful manager provides frequent and
consistent evidence that the resource being applied to information system
development is money well spent.

Key skill of the development manager: managing the knowl-
edge repository to maximize return on investment.

I get a big raise, a corner office, and I do not have to manage software
development ever again.

This last point is clearly a personal ambition. In my years as manager,
consultant, and teacher, I have noticed an interesting phenomenon: those who
are good at managing the development of effective software solutions like
what they do and are not inclined to move “up” to the corner office; and
those who are not successful work toward the corner office and end up managing
the successful development managers (a clear example of the Peter Principle).
This is not always a destructive situation. If I am propelled up the ranks by
encouraging the success of my employees, I am doing good work for myself
and the corporation. If I am not successful at managing a development effort,
but I create an environment where my people can, then I am successful.

Key skill of the development manager: climbing the corporate ladder by
making it possible for others to succeed.

AU1292Ch01Frame Page 3 Sunday, August 25, 2002 11:58 AM

4

Dynamic Software Development: Managing Projects in Flux

This is the development manager’s lot: watching, taking action, monitoring
the effect, taking action, defining goals, taking action, gaining consensus,
taking action, redirecting resources, taking action, redefining goals, and taking
more action.

Knowledge Management

It is tempting to think of managing development as the process of guiding a
team from a point in time when zero work is accomplished, to a point in
time when all required work is done and the users delight in the results (see
Exhibit 1). With this image, we could plan a neat linear path where 50 percent
of the work will be complete when 50 percent of the time allotted for the
effort has been spent. (See Appendix A for a detailed discussion of the
distortions caused by this linear perspective.)

The reality is that the work is never done. You cannot know the extent
of the required work. The conditions that will delight the user today are
different from those that will delight the user tomorrow. The goal keeps
changing — always toward more work. You do not manage work; you manage
the knowledge produced from effective work.

Managing software development is an exercise in knowledge
management.

A constructive image is to think of software development management as
the ongoing activity of directing knowledge acquisition. You and your devel-
opers are gathering and creating knowledge about your business enterprise
and the way software is applied to its improvement. The fact that the goal
seems to change and shift is only natural. As you learn more about business
and software solutions, you identify other needs and opportunities. The goal
changes because the process is never complete.

Exhibit 1

Unrealistic View of Development

T i m e

W
o
r
k

50%

50%
?

?

?
G o a l ?

AU1292Ch01Frame Page 4 Sunday, August 25, 2002 11:58 AM

Defining the Goal… Or Visualizing the Ideal

5

Your job is to direct the process of gathering unstructured, inaccurate,
contradictory, and intangible information and organizing it into a coherent,
comprehensible, verifiable, tangible product. It would be convenient if the
information we needed flowed to us in a nice steady, predictable stream. But
information is dynamic, ever changing, and multi-dimensional in nature. You
cannot hope to know everything at once and you cannot expect the infor-
mation you know today to be valid tomorrow. To successfully manage software
development, you have to become comfortable with uncertainty.

I never hope to embrace the whole, but merely to give in each
separate fragment of work, the feeling of the whole as I go on.

—Henry Miller

I was having dinner with a client. He was a development manager for a
midwestern bank. He said he had succeeded in putting to bed the latest
enhancements to a deposit system. With his upcoming vacation on his mind,
it was important to have the development effort in a steady state before he
left. He wanted to be able to concentrate on the important issues of rest and
relaxation. I thought the phrases “putting to bed” and “steady state” were
descriptive. “The deposit system is one of the most active systems you manage.”
“We have 400 change requests every year for that system.” “With needs
changing at such a pace, how can you possibly put it to bed? A system like
that is never in a steady state.” “Well, the way I figure it, if we know what
we don’t know, it’s steady.”

Knowing that we do not know something is a real achievement in software
development. Managing a development effort is perhaps the most information
intensive of business activities. I track information from developers, users,
senior managers, suppliers, competitors, and peers. I record tasks, timetables,
wants, needs, demands, and results. I analyze the ramifications of proposed
design, study the relationships in departmental data, ask what-if questions,
and play through what-next scenarios. Losing track of the important informa-
tion is often the norm. It has been described as a cartoon — ducking and
dodging manuals, computers, documents, spreadsheets, and people swirling
around your heads as you try to impose some order on the chaos.

My friend seemed to have learned how to effectively manage an inherently
paradoxical environment. Successful managers develop a sense of what is
important. They track the important items (even as the relative importance
changes daily). They understand the warning signs of impending disaster and
take small, timely actions to direct the effort toward a goal that cannot be
achieved because it is always changing. During our dinner, my friend likened
his job to herding cats. Some people seem to have developed the talent.

Although this seems a paradox, all exact science is dominated by
the idea of approximation.

—Bertrand Russell

AU1292Ch01Frame Page 5 Sunday, August 25, 2002 11:58 AM

6

Dynamic Software Development: Managing Projects in Flux

Manager’s Nightmare

I once had a horrible recurring dream while working on a particularly ugly
system development effort. The dream began in my office. My e-mail inbox
was filling up faster than I could read the messages. Developers and users
were flowing in my door, all talking at once, all demanding this and that.

Suddenly, I was no longer in my office. The scene was now some inter-
dimensional void. It was quiet and eerie. I seemed to be floating in the middle
of a holographic control panel. Gauge-like images floated around me. Most
seemed to fluctuate a little but all seemed stable around the midpoint. I felt
that the gauges reflected the status of various systems.

There were controls (or what I thought were controls) that responded to the
proximity of my hand. Some seemed to respond to a passing thought or emotion.

As I tried to make sense out of the images, one of the gauge forms moved
to the center of my field of vision. Its value was changing, as if demanding
attention, but I did not know what to do. Other indicators soon began
changing — as if a chain reaction was occurring — but I did not know the
proper response! As each gauge’s value grew more extreme, it moved closer
to my face, demanding attention and competing with other dials.

I noticed some of the controls moving in harmony with the gauges.
Desperately, I tried to influence the control I thought was associated with the
most prominent gauge, moving my hands, searching for thoughts and feelings
that would have some effect.

Something was working because the gauges and controls began to retreat
to their original orbit around me. But soon, other gauge forms began changing,
moving closer, growing more intense. Again I tried to determine the proper
response. Was my hand movement doing anything, or were my thoughts
actually moving the controls? Did the translucent lever or the amorphous
wheel control the red gauge? Each time I seemed to gain a degree of control,
a new and larger set of gauges began to misbehave. This scene would continue
until I could wake myself up, panting and anxious.

There are likely to be many interpretations of the dream. I am sure there
are deep psychological meanings. But most managers with whom I have
worked have expressed anxiety not dissimilar from those of the dream. The
successful manager develops the skill necessary to see the gauges changing
before conditions become critical.

Information as the Manager’s Tool

If the nightmare is a reasonable facsimile of a development environment, it
begs the questions: What are the analogous gauges and controls? What does
the manager monitor and what actions does she take?

�

The gauges are the state of the product(s) and the state of the tasks
that create the product’s elements.

�

The controls are the definitions of the products, the elements, and the
tasks.

AU1292Ch01Frame Page 6 Sunday, August 25, 2002 11:58 AM

Defining the Goal… Or Visualizing the Ideal

7

A product (e.g., a system or cohesive portion of a system) consists of
elements (see Exhibit 2). There are many types of elements that define what
we know about a product. A good example of an element is a module of
code (C++ class, Java applet, or set of functions from a legacy system).

The Product’s State

The product is part of the user’s environment. If the product is helping the
user succeed, the product is a success. With a successful product, users and
upper managers continue to back the software development effort. If the
product is perceived as a liability to users and their effort to advance the
corporation, no amount of high-tech wizardry will convince them they are
getting their money’s worth.

The Element’s State

A set of information elements (e.g., code, designs, requirements, test suites)
makes up the product. If the set of elements fits together well, the state of
the product is stable. If the set of elements does not fit together well (e.g.,
there are errors in the interface between modules), the product will be
unstable, you will not have a pleasant vacation, and you will not get the
corner office.

Exhibit 2

Development Repository

Products

Elements

TasksModule
N+1

Product
ver. 1.1

Developer building
module N+1

User working
with the product

Module A

Module N

consists of

AU1292Ch01Frame Page 7 Sunday, August 25, 2002 11:58 AM

8

Dynamic Software Development: Managing Projects in Flux

The Task’s State

As new requirements for the product are identified, your developers work on
additional modules and change existing ones to create the next version. If
the task is defined and measurable, the work has a good chance of adding
value to the repository of elements, keeping the product stable and contrib-
uting to the user’s success. If the task is unrealistic or vague, the task will not
be worth the investment in time and resource, the product becomes unstable,
and the user and upper management begin to talk about your replacement.

To gather information, the manager watches the status of the products
being produced — much like a broker watches the activity of an industry’s
stocks. Development managers take action based on this information, coupled
with knowledge of available resources and known expectations.

The action takes the form of changing definitions:

�

If the product’s contribution to the enterprise’s operation begins to
lessen (due to changing requirements and new demands), the devel-
opment manager might direct the development team to revise the
product’s definition by adding new functions, changing scope, or
integrating new technology.

�

The development manager watches the status of the elements. If error
rates begin going up, or the number of user complaints increases, the
manager might change the definition of a task and assign developers
to rewrite key elements.

�

While monitoring the tasks being performed by the developers, the
development manager might notice productivity decreasing or error
rates increasing in one development team. She might modify the
composition of the team by regrouping the developers or changing the
definition of the skills required for the task by scheduling training.

The development manager must use the information being created in the
development process like a control panel — monitoring, in real-time, the
changing status of the many dimensions of the effort (see Exhibit 3).

There are dozens of gauges in the development repository. The develop-
ment manager is interested in the number of elements of various types, number
of relationships between elements, the number of elements in various states,
the change in these numbers over time, and various ratios — just to name a
few. Later chapters discuss and define these and other gauges useful in
managing the development effort.

Trust What You Know, Not What You Are Told

Humans tend to communicate in a way that bends and stretches reality. A
manager asking a developer if a particular module will be ready for testing
by the end of the week will likely be told yes (unless the task is demonstrably
impossible). Humans tend to speak what is expected rather than what is. For

AU1292Ch01Frame Page 8 Sunday, August 25, 2002 11:58 AM

Defining the Goal… Or Visualizing the Ideal

9

this reason, a development manager must develop the habit of trusting the
reality of the development repository, rather than the projections of developers
or the desires of other managers. If the repository shows that 15 modules
have been added in the past week, then it is likely that 15 modules will be
added next week (all things being equal). The fact that the user wants 30
modules completed is irrelevant to the estimation process.

The development repository is not only an effective management tool for
monitoring the development effort, but it is the only reliable tool for projecting
the future (also known as estimating). The development repository contains
the information reflecting the information gathered to bring the software
products to their current state. In essence, it is a journal of actual changes
that occur over time (see Exhibit 4). For example, one month ago there were
eight elements in the repository. Today, there are 17 elements in the repository.
If you project there are 30 additional elements to be built, you can expect
the effort to be completed in approximately 3

⅓

 months working at a rate of
nine elements each month.

This example is making many assumptions, including:

�

All elements are of equal size.

�

All the new elements are about as complex as the older elements.

�

Older elements do not have to be changed as a result of adding new
elements.

�

The development staff does not change.

�

The same tools are being used.

�

The same architecture is being used.

�

The user is involved to the same extent.

�

The same quality is expected.

Later chapters address how to ensure these assumptions are valid or deal with
situations where they are not.

Exhibit 3

Manager’s Gauges

Products

Elements

Tasks

consists of

created by

Effectiveness

Productivity

Error Rate

Development Repository Reflects Status

AU1292Ch01Frame Page 9 Sunday, August 25, 2002 11:58 AM

10

Dynamic Software Development: Managing Projects in Flux

The information necessary to monitor the ongoing development campaign
is in the development repository. It is the capital asset that fuels strategic
planning. It is the object of development work. It reflects the development
organization’s contribution to the corporation. The essence of managing soft-
ware development is the creation and effective use of this information asset.

Applying Dynamic Management

Invite project managers to an informal gathering. Start with a couple of
colleagues. Give them a copy of this book and suggest getting together over
lunch to discuss it.

Before the first gathering, listen to your developers as they work on some
enhancement task and take note of the types of information they reference.
Take an inventory of the work products created by your developers and make
a list of the types of information recorded in the work products. Try to identify
associations between pieces of information.

The information and associations you identify are the knowledge repository
of your development organization. Assume that your development organization
has a convenient way of recording and accessing this information (see
Exhibit 5).

Talk with your colleagues over lunch about the idea of

managing a
development effort based only upon the changes in information in the reposi-
tory.

 Relate any experiences you have had about being surprised to discover
the status of a development effort was significantly different from what your
formal reports recorded. Discuss possible reasons for these discrepancies
between what you thought and what turned out to be real.

Exhibit 4

Repository Changing over Time

Designs

Requirements

Modules

Requirements

Modules

Designs

Time

A Month Ago Now

17 Elements8 Elements

AU1292Ch01Frame Page 10 Sunday, August 25, 2002 11:58 AM

Defining the Goal… Or Visualizing the Ideal

11

After your meeting, set up a discussion conference on network and invite
your colleagues to continue the discussion online. You can start by posting
a topic outlining your goals and objectives (see Exhibit 6).

Online discussion requires that you initiate the debate with some open-
ended question. Post a set of questions that you feel relate to current issues
important to your organization (see Exhibit 7). For example:

�

Can we derive useful management information from the documents
produced by developers?

�

When a developer says he is 75 percent done, what does that mean?

�

Would you need status reports if you could monitor the development
repository accurately?

�

If you could monitor the quality of the information in the repository,
would you be as concerned about process?

Exhibit 5

Worksheet for Knowledge Repository

Element Description Location Association

C++ Class Project Directory/
Source Code Control

Object Design
/*some associated with
table schema */

Object Design Rational Directory C++ Class
Entity Definition Data Modeler Directory Table Schema

/*overlaps with Object
Design?*/

Table Schema DBMS Metadata Entity Definition
Use Case Object Design
Test Suite
etc.

Exhibit 6

Online Discussion Index

Dynamic Management

Discussion Topic Index

Topic: Information-Based Management

File Edit View Tools Help

DM

(click on Topic for discussion)

AU1292Ch01Frame Page 11 Sunday, August 25, 2002 11:58 AM

12

Dynamic Software Development: Managing Projects in Flux

Visit the author’s discussion conference at http://luminguild.com/dynamic/
to see what other managers have to say.

Chapter 1 Case Study Excerpt

The following narrative is a set of excerpts from the full case study in Appendix
G relating to the topics in this chapter.

The first major development effort after the creation of the DSM Develop-
ment Method (DSM-DM) was a product to support DSM clients. The marketing
group was reporting that the advice and support from DSM was useful, but
some form of computer-aided system would be useful. Some major clients
reported that other firms were promising software support within the year
and Marketing was concerned that these clients would opt for competing firms
if DSM did not introduce computer-aided support.

The CEO met with the Director of Applications Development and they
agreed to make the DSM Strategic Integration Support System (DSM-SISS)
product a priority and that it was a great opportunity to “do the job right” by
strictly following the new DSM Development Method.

All the developers had received training in DSM-DM. The methodology
has been used in part on several small efforts, although the development staff
had never been obliged to use the methodology strictly as written. The
Director, confident that the development staff could deliver the DSM-SISS
within a year’s time, quickly initiated a project plan, laying out the phases
and reviews necessary to bring the project in on time (see Exhibit 8).

The plan did allow for overlap of the phases. There was no need for a
formal feasibility study as everyone agreed it was the best (and necessary)
business decision and none of the managers in Applications Development felt
there was any real technical risk.

Exhibit 7

Beginning the Dialogue

Discussion for topic: Information-Based Management

- Moderator:

+ Moderator:

File Edit View Tools Help

DM

Can we derive useful management information from
the documents produced by developers?

+ Reply:

- Moderator:

When a developer says he/she is 75% done - what does that mean?

I guess the code is either there or it is not there. . .

We could get more info out of the Conf. Mgmt. system.

AU1292Ch01Frame Page 12 Sunday, August 25, 2002 11:58 AM

Defining the Goal… Or Visualizing the Ideal

13

Along with the schedule, the development plan outlined the staffing
requirements for the project (see Exhibit 9). The first weeks of the project
would require the services of three senior analysts. By the 12th week, three
designers would be added. The project would be fully staffed by week 28
with additional testers expected around week 45. The majority of this com-
plement could be reassigned to other projects by week 52.

Exhibit 8

Overview: DSM-SISS Development Plan

Exhibit 9

Staffing Requirements

Week: 0 4 8 12 16 20 24 28 32 36 40 44 48 52

General Release

Beta Roll-out

Testing

Implementation

Design

Architecture

Analysis

Feasibility X

V

V

V

V

V

Phases:

Reviews:

Weeks: 0 4 8 12 16 20 24 28 32 36 40 44 48 52

A
na

ly
si

s

D
es

ig
n

Im
pl

em
en

ta
tio

n

Te
st

in
g

R
ol

l-o
ut

s

S
ta

ffi
ng

 le
ve

l

AU1292Ch01Frame Page 13 Sunday, August 25, 2002 11:58 AM

14

Dynamic Software Development: Managing Projects in Flux

While the plan seemed consistent with the DSM-DM, one of the senior
analysts sent an e-mail to the Director expressing some concern (see
Exhibit 10).

The analysts started working the requirements documents. They got good
support from the regional managers who were very excited about the prospect
of adding the software support tool to their mix of products and services.
They were already talking (informally) with clients about the new system. But
every interview with a regional manager or client identified additional features
and conflicting priorities.

Shortly before the first formal review, the analysts were going crazy trying
pull together some coherent, consistent statements of system requirements but
at the review meeting it was clear that the requirements were not close to
being complete, the scope of the project was far greater than expected, and
the frustration of the analysts was unmistakable. The executives at the meeting
refused to consider extending the target date for the product. The VP of
Marketing insisted that the product must be available on schedule or they
would begin losing important clients to the competition.

After the review meeting, the Director of Applications Development sends
out the e-mail shown in Exhibit 11.

At this point, the number of developers working on DSM-SISS increased
as designers and programmers were assigned to the project. The development
team took the memo (Exhibit 11) from the Director as a license to ignore
aspects of the methodology they found inconvenient. After all, the goals had
been clearly communicated: get something out the door by week 52 —

Exhibit 10

E-Mail to Director Expressing Concern and His Response

To: Director of Applications Development

From: Sr. Analyst

Subject: DSM-SISS Development Plan

I feel I must express some misgivings about the development plan we defined for the
proposed SISS system. I can’t help feeling we are creating our own reality. We think
we know what the requirements of the system are, but we probably will not know for
sure until week 12. If we discover by that point in time that the requirements for the
system are much larger than we now expect, will we be obliged to work within the
current time frame? It feels funny to be committing to a completion date when we
are not sure of the amount of work we need to do.

The response:

To: Sr. Analyst

From: Director of Applications Development

Subject: DSM-SISS Development Plan

Thanks for your message. I know that planning and estimation are not exact sciences.
If we discover the product is much larger than we anticipate, we will make the
necessary adjustments to the plan.

AU1292Ch01Frame Page 14 Sunday, August 25, 2002 11:58 AM

Defining the Goal… Or Visualizing the Ideal

15

although the product is much larger than originally envisioned while the
project plan remained unadjusted.

Managers were a little concerned as they heard the company’s development
methodology, DSM-DM, being referred to as “diz-dumb.” But none of the
managers publicly objected to the sarcasm because they knew they were
working long hours and were pulling together as best they could to accomplish
a difficult objective.

A few days before the scheduled week 23 review, the Director of Appli-
cations Development met with one of the regional managers. The Director
pulled up the Event Definitions, Class Models, and Database Schemas for the
system and was prepared to ask questions he had received from the devel-
opment team. But before the Director could begin describing the various
development models, the Regional Manager told the Director that several DMS
clients had already received beta versions of similar products and that the
features that seemed to be the most valuable were not even included in the
original requirements statements. The Regional Manager said he wanted to
discuss the new features at the review meeting and was wondering if the
Director could prepare some estimates for what it would take to include them
in DMS’ product offering.

The Director, trying to do the best job he could, arranged to postpone the
review meeting for one week and met with his managers and several of the
senior analysts to prepare some response. They projected the new features
would increase the size of the system by about 30 percent, revising the
schedule to show the product rolling out about week 65.

When this revised plan was presented at the review meeting, the executives
were not pleased. The CFO said she was uneasy about continuing the project.
She quoted the total in salaries and overhead consumed by the project to
date and wondered aloud what this money was buying. The VP of Marketing
reasserted that the product was critical to the success of the company and
that if more people were needed to get it done, then more resources should
be allocated. The Director of Applications Development pulled out the Event
Definitions, Class Models, and Database Schemas for the product to try to

Exhibit 11

E-Mail after Review Meeting

To: Development Team

From: Director of Applications Development

Subject: DSM-SISS Project

The project review of week 12 was not a great success. It is clear that we have a lot of
work to do. Talking with many of the developers, I am confident that we can deliver
a quality product in the time remaining. The analysts on the project have been directed
to freeze the specification as it stands and to proceed with the Architecture and Design
phases as defined in the project plan. Given our time constraint, we will look to
streamline the tasks defined in the DSM-DM. Our next management review is
scheduled for week 23. Let’s pull together and deliver a product we and our clients
can be proud of.

AU1292Ch01Frame Page 15 Sunday, August 25, 2002 11:58 AM

16

Dynamic Software Development: Managing Projects in Flux

explain the status of the project, but most of the people in the room were
unimpressed. The CFO’s comment was, “These don’t mean anything to me.”
The Director responded by pointing to the DSM-DM to support his position,
but this did not carry much weight. The CEO saw that the meeting was going
nowhere and ended it by saying he would be meeting with people individually
to work out the next step.

The next week was a long series of meetings and hallway discussions. The
next Friday, the CEO called the Director into his office. When the Director
arrived, he saw that the VP of Marketing was already there. The Director was
told that for some time now, the company had been looking into the possibility
of buying out a small private company in the Midwest. The owner was retiring
and was interested in selling his business. The Director recognized the com-
pany as one that had a nice local niche, but never competed with DSM outside
the northern Midwest region.

The VP of Marketing reported that the Midwest company had a product
that was exactly like the one DSM was building, and it was already in use
by clients in that region. He was recommending that DSM buy out the Midwest
company and market the product under DSM’s name. The CFO had already
reviewed the finances and her opinion was that the purchase would be good
for DSM. The CEO turned to the Director and said he wanted him and one
of his analysts to fly out and review the Midwest product and come back
with a recommendation.

Before leaving, the Director told his development team about the move to
buy a competitor’s product and instructed them to stop pulling overtime for
a few days and to turn their attention toward completing the documentation
and cleaning up the work they had completed so far in preparation for
whatever came next.

The Director and the analyst did not want to find a workable product at
Midwest, but they did. They found a very different development environment
and a software system that performed well with most of the needed features.
Better yet (or worse, depending on your point of view), the Director and the
analyst came to believe that the Midwest product was currently functional and
that missing features could be added in subsequent releases. The Director
reluctantly called the CEO and recommended that DSM proceed with the
purchase and that Marketing can go ahead and start planning for the wider
release of the Midwest product as DSM-SISS.

While the Director was at Midwest, he and his counterpart had several
interesting (if not philosophical) discussions. Despite the circumstances, the
two had a lot in common. One day, they were having lunch in the conference
room and began sharing the impressions of the state of software development.
The Director drew a graph on the whiteboard, with one axis labeled “type
of work” and one labeled “time” (see Exhibit 12). He commented how bizarre
it seemed to break up the

y-axis by phase — feasibility, analysis, design, etc.
He commented: “When I work on software, I am thinking about all these
things at once … but one feature at a time.”

As they talked, the Midwest manager drew a third axis to represent the
features or functions of a proposed system. This made the Director even more

AU1292Ch01Frame Page 16 Sunday, August 25, 2002 11:58 AM

Defining the Goal… Or Visualizing the Ideal 17

irritated. “This drawing suggests we are trying to gather all information about
feasibility in phase one, all information about requirements in phase two, etc.
This is crazy! We can’t be that sure about this information. By the time we
get to design and coding, the lower steps have crumbled.”

As the two finished lunch, the Director erased most of the drawing and
began doodling. “If we could manage in a manner compatible with the way
I work, we would recognize that software is built in clumps (see Exhibit 13).
We build a cluster of functions — performing analysis, design, coding, and

Exhibit 12 Steps

Exhibit 13 Clumps

Time

Function / Feature

Ty
pe

 o
f W

or
k

All Feasibility

All Analysis

All Design

All Codingfeasibility

analysis

design

code

Time

Function / Feature

Ty
pe

 o
f W

or
k

feasibility

analysis

design

code

AU1292Ch01Frame Page 17 Sunday, August 25, 2002 11:58 AM

18 Dynamic Software Development: Managing Projects in Flux

testing on them. At a later point in time, we build more software. At some
point we may find a need to enhance the original work. At the same time,
someone else is adding another feature — doing analysis, design, coding, and
testing.

The Director’s counterpart commented that that was pretty much how his
group worked. “It has the advantage of always having a demonstrable system.”
The Director flashed back to the review meeting. He stood there, feeling rather
stupid, with his database schema and class diagrams, unable to show that any
real work had been done. The work was real but not in a form that could
be appreciated by the decision makers.

They agreed to continue the discussion. The Director left Midwest with a
sense that the two had a lot to learn from each other.

AU1292Ch01Frame Page 18 Sunday, August 25, 2002 11:58 AM

19

Chapter 2

Defining Work…

Or What’s Really Happening in the Trenches

Manage what is real, not what is simply convenient.

—Timothy Wells

Management of any activity must be based on a definition of the desired
results. The desired result is a product that adds value to the user and organized
knowledge about the product, allowing you to enhance the product as the
organization grows.

Chapter 1 introduced the idea of a development repository (see Exhibit 1)
from which the development manager monitors product development. The
information in the repository is valuable to the extent that it accurately reflects
the reality of the development effort. Information that distorts the true status
of the product, its elements, or the tasks creating the elements is a liability.
Information that is accurate and easily accessible gives the development
manager a distinct advantage in maintaining a successful effort.

Software products are made up of a variety of elements or chunks of
information. During the development effort, tasks are defined and assigned
to developers who then create a collection of related information. Most of the
information created by developers is about the product’s elements and their
associations. Developers create code and associated designs. The code satisfies
various requirements and is verified by building test cases.

All this information and all the needed associations are recorded somewhere
across the project repositories, configuration management tools, computer-
aided software engineering tools, project plans, files on individual developer’s
laptops, and in the memory of the programmer.

As a developer works, elements progress through various states. For
example, the developer identifies the need for a unit of code. The code

AU1292Ch02Frame Page 19 Sunday, August 25, 2002 11:57 AM

20

Dynamic Software Development: Managing Projects in Flux

element is “declared.” The developer writes the initial version of the code.
Now the code element exists, but it is not reviewed. Another developer reviews
the code and concurs that it is correct and meets relevant standards. The code
unit now is “verified.” Changes in the state of an element are artifacts of the
developer’s work.

Management of the development process can be viewed as the process of
monitoring the repository and taking steps that move all elements — wherever
they are recorded and whenever they were created — toward the verified
state. A developer changing a class definition puts all associated elements in
doubt. This doubt is the artifact of the developer’s work. The class code and
the designs in which the class is referenced may no longer be accurate.
Someone has to perform work to review and possibly modify the associated
elements. When all associated elements are reviewed and back, the repository
is back in a steady state, the task is done, and the change has been successfully
implemented. But if the doubt is ignored, the information about the product
becomes less accurate and less able to support continued enhancement.

Managing the development effort means tapping the reposi-
tory of development artifacts for the information needed to
monitor and direct.

The goal is to move all elements in the repository to the “verified” state even
as new elements are being added and existing ones are being changed.

Exhibit 1

Development Repository

Product

Element

Task

various
associations

Design

Code Unit

Requirement

Test Case

Elements include . . .

consists
of

created
by

AU1292Ch02Frame Page 20 Sunday, August 25, 2002 11:57 AM

Defining Work… Or What’s Really Happening in the Trenches

21

I never did anything worth doing by accident; nor did any of my
inventions come by accident; they came by work.

—Thomas Alva Edison

A Day in the Life of a Developer

Examining a developer’s workday and noting the information used and created
during the act of building software identifies the information needed for
effective management.

8:00 a.m.

A developer arrives at the manufacturing plant after a fitful night’s rest. After
parking and passing through security, he meets his manager in the coffee
room. She is on her second cup, having arrived a half-hour earlier. The team
is working on enhancements to the product pricing function in support of a
new product line. As of this morning, the repository contains a handful of
requirements, designs, and modules of code. The manager and her developer
discuss the need for a particular piece of code they call the “Pricing Function”
(see Exhibit 2). The function is essentially the same as code written for an
older manufacturing system still in use.

Manager’s information:

�

The fact that a unit of code is needed implies that a certain amount
of work must be performed.

�

The repository reflects a new element in the “declared” state.

Exhibit 2

New Element

Uncertain

Change Pending

Verified

Declared
Designs

Modules

Requirements

Pricing Code

AU1292Ch02Frame Page 21 Sunday, August 25, 2002 11:57 AM

22

Dynamic Software Development: Managing Projects in Flux

8:30 a.m.

The developer looks up the code used in the legacy system and determines
it is “not bad.” He copies the code into the repository. The organization’s
development standards require all code to have a corresponding design.
Because the code is from an old application, the design is lost or was never
created. For the knowledge in the repository to be complete, design informa-
tion must be created, thus necessitating additional work (see Exhibit 3).

Manager’s information:

�

Now code exists for the “Pricing Function,” however, the manager
cannot be certain it is completely acceptable.

�

By adding the code to the repository, the state of the repository reflects
that some progress has been made and that a design is now needed.

9:00 a.m.

The manager walks into the developer’s office and reminds him that all code
must have an associated design before it is reviewed. The developer is not
surprised. He has already begun reengineering the design to be sure he
understands the old code and to plan changes needed for the new product
pricing.

11:30 a.m.

Once the new design is complete and the pricing code has been updated,
the repository reflects two “uncertain” elements. This set of related elements

Exhibit 3

Add Associated Design

Uncertain

Change Pending

Verified

Declared

Modules

Requirements

Pricing Code

Pricing
Designs

Designs

AU1292Ch02Frame Page 22 Sunday, August 25, 2002 11:57 AM

Defining Work… Or What’s Really Happening in the Trenches

23

form a strand (see Exhibit 4). The strand is the subject of a quality review.
Once the developer considers the strand complete, he submits it for review.
Other developers will review it to ensure it is complete, understandable,
correct, and ready to be included in the product. Later chapters address the
review process in greater detail.

Manager’s information:

�

Now that the strand (Pricing Function code and design) have been
created, reviewing the strand will move the product closer to the goal
of having all elements created, reviewed, and ready to go.

1:00 p.m.

Two other developers get together and call up the design and code for the
Pricing Function. They also have access to the company’s standards policies,
which they use as a guide to the inspection. They read the design and code,
and come to an agreement that they are consistent and correct (see Exhibit 5).

Manager’s information:

�

Now the repository is in a consistent state.

�

No additional work is implied by the state of the elements.

�

It required the time and talent of three developers to move the repos-
itory from its original state to the one depicted in Exhibit 5.

�

One developer found and modified a unit of code, and then created
the corresponding design information.

�

Two others reviewed and verified the new elements.

Exhibit 4

Strand of Elements

Uncertain

Change Pending

Verified

Declared

Modules

Requirements

Pricing Code

Pricing
Designs

Designs

AU1292Ch02Frame Page 23 Sunday, August 25, 2002 11:57 AM

24

Dynamic Software Development: Managing Projects in Flux

Relating Management to Work

The Pricing Function scenario illustrates the creation of a cohesive strand of
elements. The maintenance of this information is of utmost importance. Clear,
accessible, and accurate information is important to your ability to use the
repository for planning and tracking purposes. The organization of information
is judged useful or not useful by the way that information contributes to future
activities. If the information available to you makes it difficult to respond to
future changes, the information’s value is diminished. If the information is not
transferable to other developers, the information’s value depreciates when
developers leave.

Knowledge without sense is double folly.

—Gracian

To illustrate, consider several alternatives to the idea of organizing the
repository by strands. I have seen many software development efforts orga-
nized as if the developer owned portions of the product. Development
departments are often organized around the individual developers (see
Exhibit 6). One developer is assigned a set of tasks to be completed in relative
independence. This approach seems to produce elements at a faster rate and
is very appealing when an organization rewards individual effort over team-
work and cooperation.

This organization suffers as the complement of developers changes. As
new developers join the team and others leave, knowledge of the elements
deteriorates. Working individually, developers have little need to record their
own knowledge thoroughly. Their individual memories serve them in their
individual tasks. This organization hides the fact that the knowledge stored
in the developer’s memory is actually the information assets of the enterprise.
Rather than recording the information in accessible formats, the organization
has chosen to store the knowledge of elements and their associations in the
memory of the developers.

Exhibit 5

Repository in Steady State

Uncertain

Change

Verified

Declared

Modules

Requirements

Pricing Code

Pricing
Designs

Designs

AU1292Ch02Frame Page 24 Sunday, August 25, 2002 11:57 AM

Defining Work… Or What’s Really Happening in the Trenches

25

Another popular theme is to organize elements by type (see Exhibit 7). This
follows the traditional phased approach. All the analysis work is done (meaning
that all the requirements elements are created), followed by all the design work
(meaning that all design elements are written). The design phase is followed by
the coding phase (i.e., all the code elements are built). The elements in this
organization are typically recorded by phase. All analysis material is recorded in
documentation created during that phase. All code information is stored together
with other information created during the coding phase.

Exhibit 6

Repository Organized by Individual

Exhibit 7

Repository Organized by Element Type

Ray's Stuff

John's Stuff

Jeffrey's Stuff

Kay's Stuff

Testing Stuff

Code Stuff

Design Stuff

Analysis Stuff

Training Stuff

AU1292Ch02Frame Page 25 Sunday, August 25, 2002 11:57 AM

26

Dynamic Software Development: Managing Projects in Flux

This approach has the appearance of being efficient. We have all experi-
enced the sense of satisfaction when the designs for a product are declared
complete. But serious flaws emerge from the fact that associations between
related elements are difficutl to maintain and recreate. The relationship
between an analysis element and the design describing its implementation are
recorded in two separate sets of documentation. The code that implements
the design is often ill-described. When changes in the business environment
require changes in the software systems, it is difficult to identify all the elements
that might be affected because the knowledge necessary to evaluate the total
effect is organized by the time frame in which it was built. Traceability has
to be built in as an afterthought.

A problem that occurs for both alternatives just discussed is that important
associations between elements are artificially separated. A developer writing
code cannot not think about the design upon which the code is based. A
user describing the need for a change in the product refers to an interface
but is thinking about an underlying requirement. The change to the interface
must be understood in relation to the requirement, its design, and the tech-
nology used to implement it. Developers reviewing a code can only evaluate
syntax and adherence to standards if the design documents are inaccurate or
unavailable. Code is good to the extent that it is consistent with the design
and performs and delivers the functionality described in the requirement. A
design is good if it effectively describes the implementation of a requirement
and if an implementation can be produced from it.

At any given moment, the repository must provide a complete set of
information needed to address the demands from the users and enterprise
management. When the user asks to change an interface, the repository must
provide the interface specification, its design, related requirements, and test
cases in order to assess the size and ramifications of the required change.
The development manager must be able to pull on a strand attached to the
interface specification and have all associated elements pop up (see Exhibit 8).
Only with the complete set of information can reasonable decisions about the
product’s development be made.

Any organization of the product’s repository that increases the cost of
accessing needed information is sub-optimal. The more time it takes to collect
all relevant information, the lower the probability all needed information will
be found and the lower the probability the repository will be changed to
reflect the proposed change.

A Unit of Work = Chunk of Information

Defining and directing work is a basic management activity. You are constantly
giving directions to developers to do something. The question now is: exactly
what is that “something” you are asking them to do? Given the way people
naturally work and the goal of software development, the short answer is:
add or change a particular element and make any other changes necessary
to make it fit.

AU1292Ch02Frame Page 26 Sunday, August 25, 2002 11:57 AM

Defining Work… Or What’s Really Happening in the Trenches

27

Information is more useful if it is structured as frameworks of related items.
We tend to learn more effectively when information is connected in relevant
strands or chunks. We feel more intelligent if our knowledge is organized in
a manner that allows us to recall relevant information in response to important
stimuli. A manager is more effective if she can respond with an accurate
project of resource needs when presented with a proposed enhancement
request. A designer feels more confident about changes to a component design
if he is sure he knows all related interfaces. A programmer is more accurate
if he is confident that the data set definition is up-to-date.

Developments in artificial intelligence shed light on the nature of thought
and work. Dennis Mercadal’s

Dictionary of Artificial Intelligence

 provides some
useful definitions:

Chunk:

 information stored and retrieved as a single entity. The information
is somehow related, although the different pieces of information in the
chunk may be of different data types. Miller found that people learn
most effectively by dealing with chunks of meaningful information. The
chunks may be fairly large pieces of organized information. They are
a collection of facts stored and retrieved as a single unit. In chess, a
chunk may be the placement pattern of the entire chess-board. Research
has indicated that one important difference between an advanced chess
player and a beginner is the experience that allows the advanced player
to have more chunks. This insight points out the importance of attempt-
ing to organize information in chunks. When we do this, we are
employing more of a holistic approach rather than a strictly logical
approach.

Chunking:

The storing of information about a topic or object so that
information is easily accessed. A process that takes place in learning

Exhibit 8

New Strand of Elements

Testing Stuff

Code Stuff

Design Stuff

Analysis Stuff

Training Stuff

AU1292Ch02Frame Page 27 Sunday, August 25, 2002 11:57 AM

28

Dynamic Software Development: Managing Projects in Flux

in which information is abstracted in chunks. These chunks of infor-
mation are stored, recalled, compared, and matched with patterns found
in subsequent situations.

Previously, I defined the goal of software development as the creation of
a repository of product knowledge where all elements were in a verified state.
In an ideal world, every software requirement would be well understood,
with cost-effective technology chosen to implement the user’s needs. The
implementation would be an accurate reflection of the requirements and
consistent with standards. Rigorous test suites would be defined to ensure
error-free implementation. A system with hundreds of strands would be easily
understood because user, managers, and developers would be able to work
one strand at a time, keeping the complexity of any task within manageable
limits. Ramifications of proposed changes would be more visible, making
planning more accurate and implementation more thorough. Changes to a
product would result in changes to all related information, making the infor-
mation in the repository as accurate after the change as it was before.

If you feel a twinge of cynicism, you are not alone. The fact that
we have so little faith that our current management approach will
produce useful information suggests a need for a different approach.

Clearly, the ideal will never exist. Change always involves risk. Risk invites
error. However, we can move closer to the ideal by defining tasks that have
as their primary goal the enhancement of the repository. We move farther
away from the ideal if we address enhancement by changing only the code
and data definitions while losing the association with other important elements
of the product. The product is not only the code; the product is everything
we know about the product and how it was built and how it is used.

The goal of software development is not so much to complete
a task as to add value.

Defining Tasks

To build and maintain a useful repository, you must define work aimed at
the goal. A task must identify an element to be created or modified, called
the focus element. The focus element and elements associated with it make
up the task’s strand. The developers assigned to the task are authorized to modify
the elements in the strand to ensure accurate and consistent information.

In the Pricing Function example earlier in this chapter, the focus element
was the code unit. The code and its design formed the strand. The developer’s
task was to build and integrate the elements into the repository. To complete
the task, the developer performed a set of actions or steps. In the scenario,
the following development steps were taken:

AU1292Ch02Frame Page 28 Sunday, August 25, 2002 11:57 AM

Defining Work… Or What’s Really Happening in the Trenches

29

1. Find and evaluate pricing function code from legacy system.
2. Reengineer design for old pricing function code.
3. Modify design and code for new product line.
4. Review design and code.

Action is the proper fruit of knowledge.

—Anonymous

When the development manager assigns a task to a developer, she identifies
the focus element and the element strand. The developer then determines the
development steps needed to complete the task. Less-experienced developers
need more assistance in identifying the steps, while more seasoned developers
proceed with little or no guidance. Chapter 4 addresses techniques for man-
aging your development staff.

The objective is to add value to the repository by doing whatever is
necessary to add required elements and ensure their “fit.” The fact that the
code for the Pricing Function existed but a design did not was an inconsistency.
Resolving the inconsistency makes the repository more complete and easier
to understand and therefore more valuable. Changing the design to reflect the
requirements of the new product line makes the design inconsistent with the
associated code, thus reducing the value of the repository’s information. Updating
the code to reflect the design brings the repository into a consistent and useful
state. Having another developer review and verify the elements adds assurance
that the design and code are correct, understandable, and usable.

The development steps taken during a task change the state of repository
elements. Every element in the repository is moving through its life cycle as
depicted in Exhibit 9. An element is identified. It is created. It is reviewed.

Exhibit 9

Element State Model

Uncertain

Change Pending

Verified

Declared

element reviewed
with assent

element is
created element is

changed

identify need
for change

related element
goes change

identify need
for element

element reviewed
no assent

AU1292Ch02Frame Page 29 Sunday, August 25, 2002 11:57 AM

30

Dynamic Software Development: Managing Projects in Flux

Changes are identified. Problems are identified during the review. Corrections
are made. The element is reviewed again.

A

task definition

consists of a focus element. All relevant associated ele-
ments constitute the

task strand

. By assigning a task to a developer, the
manager sets the task’s objectives: create or change the focus element and
any element of the strand so that all elements are in a verified state.

Projecting Size

Most software developers have a sense of the size of their assigned tasks.
That sense may be optimistic or lack accuracy, but it is derived from their
guess of the number of “things” they do not know — but have to find out.

In the product pricing scenario discussed earlier, the developer knows code
exists that is similar to the code needed from the current product (depicted
in Exhibit 10). He does not know:

�

If the old code will require rework

�

If a design exists in the old documentation

�

If the old design and the old code are consistent

�

If the work he does today will be free of error and omission

The developer must perform work to discover the things he does not know:

�

Study the old code and compare it with current requirements.

�

Find the old design or recreate it.

�

Compare the code to the design, identifying discrepancies.

�

Have revised code and design reviewed by another developer.

To the extent that the repository definitions reflect the infor-
mation needed to define the product, the repository content
reflects the work that needs to be performed.

While one developer is working on the Pricing Function, another developer
is working to fulfill a requirement to make a particular set of data available
to intranet users. She believes she can create a class by extending and
importing existing Java classes (Exhibit 11). She does not know:

Exhibit 10

Strand for Task 1

Uncertain

Change Pending

Verified

DeclaredPricing
Code

Pricing
Design

?
?

?

AU1292Ch02Frame Page 30 Sunday, August 25, 2002 11:57 AM

Defining Work… Or What’s Really Happening in the Trenches

31

�

The definition of the class design

�

If the new class design will fulfill requirements

�

If a design succeeds in processing the data object

�

If the existing Java classes (a and b) are appropriate for the design

�

The syntax for the Java class

�

If the design and the code will be consistent

�

If the work she does today will be free of error and omission

The developer must perform work to find out what she does not know:

�

Build the class design.

�

Study the requirements.

�

Study the data object definition.

�

Evaluate existing Java classes A.

�

Evaluate existing Java classes B.

�

Write the syntax for the new Java class.

�

Verify that the design and the code are consistent.

�

Have the new code and design reviewed by another developer.

These job steps are clearly not independent. Most developers begin to build
a design as they are studying requirements and thinking about code syntax
while the design is still incomplete. It is natural for the developer’s mind to
jump from element to element as she works on a strand. This is how
consistency is guaranteed. After the work is completed, the repository has
been improved (i.e., it contains more information and the information is
internally consistent). Conceptually, in addition to having two new elements,
the question marks depicted in Exhibit 11 have been removed.

Although the eight activities were performed in parallel, eight pieces of
work were performed. This is approximately twice as many as required for
the first scenario depicted in Exhibit 10.

Exhibit 11 Strand for Task 2

Uncertain

Change Pending

Verified

Declared

Product Inquiry
Requirement

Product Data
Definition

?

??

Class B
(Java Library)

Class A
(Java Library)

Product Class
Design

Java Class
(custom)

?
?

??

AU1292Ch02Frame Page 31 Sunday, August 25, 2002 11:57 AM

32 Dynamic Software Development: Managing Projects in Flux

The amount of work to be performed is proportional to the
number of unknowns in the strand.

While the pricing function is being updated and the Java application is
being built, a third developer is working to add a new data object definition
and new requirement to the repository. The requirement being defined
involves the definition of product discounts (Exhibit 12). The developer is on
his way to discuss these with the product manager. The developer does not
know:

� The actual content of the requirements
� The actual data element definitions
� If the requirements and the data definition will be consistent
� If the new data definition will affect the product inquiry requirement
� If the new data definition will affect or be affected by the product data

definition

The developer must perform work to find out what he does not know:

� Interview the product manager and record the discount requirements.
� Interview the product manager and record the data defining a discount.
� Verify that the requirements are consistent with the data definition.
� Study the product inquiry requirement to determine if it must be altered.
� Study the product data definition to determine if it must be altered.

This scenario illustrates the perpetual relationship between completing some
work and generating more work. If the developer determines that adding the

Exhibit 12 Strand for Task 3

Product Inquiry
Requirement

Product Data
Definition

Discount Data
Definition

Discount Definition
Requirement

Uncertain

Change Pending

Verified

Declared

AU1292Ch02Frame Page 32 Sunday, August 25, 2002 11:57 AM

Defining Work… Or What’s Really Happening in the Trenches 33

discount elements to the repository necessitates changes in the associated
elements, additional work is accrued. For example, if the original definition
of the product included some discount data, adding a more thorough definition
of discount as its own object implies the need to change the product object
to remove the old discount attributes. Another example of accrued work is
the product inquiry requirement that should be changed to display the discount
information along with the product definition.

Only when we know little do we know anything; doubt grows with
knowledge.

—Wolfgang Von Goethe

Determination of size can and should be based on actual work patterns.
As knowledge workers, software developers are adding to the repository of
known elements. The goal is to move all declared elements to a verified state.
If a declared element is associated with ten other elements, it is likely to
require twice the work of a declared element associated with only five
elements; this is because each association implies pieces of knowledge that
must be created or analyzed.

From the developer’s perspective, the concept of a focus and a strand are
helpful in defining what must be done. The focus and the strand also provide
an answer to the question: How much work must be done?

A task’s size is determined by three factors:

1. The number of elements and associations in the strand
2. The type of work to be done
3. The complexity of the elements

A complete determination of a task’s size is based on the number of elements
and associations in the strand, the type of work being performed, and the
complexity of the element. In this chapter I have focused on the first of these
factors. Chapter 3 (Planning Progress) and Chapter 5 (Monitoring Productivity)
address the other two factors.

Work and Corroboration
Each of the examples in the previous section ended with a step to ensure
that enhancements to the repository are free of error and omission. The work
is not done until it is corroborated. Someone other than the author must read
it and record the fact that they agree it is “up to snuff.”

Information is not a valuable asset until it is accessible and
can be correctly understood by any qualified reader. Informa-
tion that is a secret (or unverified) is a liability.

AU1292Ch02Frame Page 33 Sunday, August 25, 2002 11:57 AM

34 Dynamic Software Development: Managing Projects in Flux

Many managers find it tempting to define the review or verification activity
as a separate task. While there is an apparent advantage to being able to
schedule reviews at later time, it also separates the activity that creates
information from the activity that verifies the usefulness of the information.

As soon as the developer moves the elements depicted in Exhibit 10 to an
“uncertain” state (e.g., the design and code are written), another developer
should evaluate the work and either concur or disagree with the author’s
work. Referring back to the Element State Model (Exhibit 9), “reviewed with
assent” means that the reviewer has read the work and certifies that it is
understandable, correct, and complete. Reviewing “without assent” puts the
element in a change pending state because the reviewer has identified what
he believes to be an error or omission. Additional work must be performed
to correct the error (or make it clear to the reviewer that no error or omission
exists). This additional work is not part of a new task because the original
task is not complete. The developers are still working toward the originally
stated goal. The evidence that the goal has been reached is that all elements
in the strand are in the verified state. Chapter 4 addresses the management
of development teams in detail.

We work not only to produce but to give value to time.

—Eugene Delacroix

Development managers use this evidence to track progress and measure
productivity. The verification and collaboration is necessary not only to ensure
a quality product, but also to ensure that management information is accurate
and complete.

Applying Dynamic Management
It is important that the definitions for elements and associations be derived from
your development organization. There are no (and never will be) industry-wide
standards for what elements and associations should be built and maintained in
all development repositories. Applying dynamic management techniques to your
organization requires element definitions based on your successful products. You
and your developers create sets of useful information in order to create useful
applications. Elements are definitions of that information.

The information you need to monitor and track a development effort should
be a subset of the information used and created during the development
process. The examples in this chapter imply that Java classes, class designs,
business requirements statements, and data object definitions (e.g., database
table definitions) are elements to be defined in the project repository.

This may be true for many development organizations but not for all. It is
important that people in your development organization define the elements
known to be important in the creation and enhancement of software applications.

AU1292Ch02Frame Page 34 Sunday, August 25, 2002 11:57 AM

Defining Work… Or What’s Really Happening in the Trenches 35

At your next informal manager’s meeting, identify an existing system built
by your development department (see Exhibit 13). Based on your current
understanding of your project archive, discuss the following questions:

� Would you feel comfortable saying to a new colleague that he will get
an accurate understanding of the business requirements of a system by
reading the information in the archive?

� Would you feel comfortable telling a new programmer that he will get
an accurate understanding of the software design by reading the infor-
mation in the archive?

� Discuss ways that the information in your development repositories
can be kept accurate.

Assume you have a convenient way of querying all the work products
produced by your developers. Also assume you have no direct information
from your developers (i.e., your developers did not turn in time sheets and
progress reports). The only source of information you have is their work
products. Post the following questions to your online discussion group (see
Exhibit 14):

� How would you measure the progress of the team?
� If one of your developers claimed he had performed Herculean amounts

of work, but you were skeptical, how would you verify the developer’s
claim?

� If one of your developers looked like she was not working hard (e.g.,
she seemed to be spending a lot of time away from her desk — lots
of time reading rather than pounding the keyboard), could you use
the repository to measure her real contribution?

Exhibit 13 Online Discussion Index

Dynamic Management

Discussion Topic Index

Topic: Information-Based Management
Topic: Defining Work

File Edit View Tools Help

DM

(click on Topic for discussion)

AU1292Ch02Frame Page 35 Sunday, August 25, 2002 11:57 AM

36 Dynamic Software Development: Managing Projects in Flux

Chapter 2 Case Study Excerpt
The following narrative is a set of excerpts from the full case study in Appendix
G relating to the topics in this chapter.

Before DSM adopted the DSM-DM methodology, work was done at CMM
level 1. That is not to say that the work was bad. In fact, the development
group had a good reputation throughout DSM for being fairly responsive and
for producing systems that worked and were reasonably usable. When the
development organization was smaller, it was workable to have each developer
keep track of his or her own documentation. But as the group grew in size
and the systems they were building grew in complexity, documentation
became unworkable. Each developer’s unique idiosyncrasies made it awkward
and time-consuming to share information and build upon each other’s work.

There were mixed feelings about working with the outside consulting firm
in writing the DSM-DM methodology, but there was general consensus that
it was a positive step. After all, everyone seemed to agree that a standardized
set of phases in the development process was a good thing. Each phase would
have a well-defined set of pre-conditions and expected results. The process
would move smoothly from beginning to end. And everyone seemed to agree
that there were (or should be) a definite beginning and a definite end to each
development effort.

The DSM-DM worked well for the first year. There were no big projects,
but lots of small ones. The Director of Applications Development allowed the
developers to adapt and customize the methodology for each project so there
were few complaints about redundant or unnecessary steps.

During that year, the development group adopted a new timesheet (see
Exhibit 15) for reporting work spent on the various tasks defined in the DSM-
DM. The report was easy enough. The Director and project managers would

Exhibit 14 Development Work Dialogue

Discussion for topic: Defining Work

- Moderator:

+ Moderator:

File Edit View Tools Help

DM

If we did not have time reports, how could be monitor development work?

+ Reply1:

- Moderator:

How do we know the information in the repository is accurate?

We’d have to watch what the developers are doing every minute!?

I think there is a lot of information not stored in Conf. Mgmt. system.

+ Reply2: . . . or take snapshots of the config mgmt system every week

+ Reply1: We have to trust the developers - that’s not a bad thing.

AU1292Ch02Frame Page 36 Sunday, August 25, 2002 11:57 AM

Defining Work… Or What’s Really Happening in the Trenches 37

lay out a project plan. Each phase was subdivided into tasks, with each task
being identified by a code number. The methodology defined productivity as
rate at which tasks were completed. The time required for each task was
estimated and an expected resource requirement was recorded. Time was
charged to tasks so that the difference between the expected resource require-
ment and what had actually been charged became a rough measure of the
task’s status.

The project schedule was then computed by summing up all the task
estimates and dividing that sum by the amount of time the developers were
expected to spend working on the tasks. So, a 100-hour task could be assigned
to an individual dedicated to the task who would require approximately 2.5
weeks to complete it (assuming a 40-hour workweek). The same task, assigned
to a three-person team, each person working half-time on the task, would
charge 100 hours to the task after a week and three or four days (100/20 hr
× 3 people).

During the first year of use, the Director noted a significant number of
hours charged to tasks that were already recorded as complete. When he
asked about it, the developers told him that they were just trying to keep the
completed work up-to-date. For example, during a coding task, a developer
might discover some ambiguity in the requirements statement. The time
required to talk with the original analyst or to call the user had to be charged
somewhere. The Director thought it was strange to be working on a task that
the development plan listed as complete. In addition, in most cases, the
estimated resource requirement had already been exhausted, so charging more
time to the task would make it look like the task took longer than it did. So
the Director set a policy of not charging time to closed tasks and notified the
development staff by e-mail (see Exhibit 16).

The DSM-SISS project used the DSM-DM methodology to generate a project
plan and lay out a schedule (see Exhibit 17).

After the decision was made to use the Midwest software rather than
continue with in-house development, the managers in Applications Develop-
ment conducted a post-mortem on the project. They knew that the developers
were upset and viewed the entire effort as unfair.

Exhibit 15 Sample Time Report

 Timesheet week of: 5/14

Date Hours Task Code Description

5/14 4 C12-4 Writing code for task 12-4
5/14 2 C12-9 Updating data dictionary
5/14 2 Misc. Correcting requirements errors
5/15 8 C12-4 Same

Date: ________________________ Signature: ________________________
Date: ________________________ Approved: ________________________

AU1292Ch02Frame Page 37 Sunday, August 25, 2002 11:57 AM

38 Dynamic Software Development: Managing Projects in Flux

During one of the review meetings with the development staff, one pro-
grammer said, “We all feel let-down. I went back over my time sheets and
the project status reports. We were doing all the right things. Our tasks were
coming in almost exactly on budget. We were completing tasks almost exactly
on time. So, why did we do all this work only to have the rug pulled out
from under us?”

Later, the Director was talking with one of his senior managers: “The
programmer is right. How is it that we could look so good on paper and not
know that things were so out of control?”

“Well,” replied the manager, “I think we all know in our heart of hearts
that the information on the timesheets doesn’t reflect reality. It is as if we ask
the developers to tell us what we want to hear. The fact that 100 hours was
charged to a 100-hour task does not mean the work is done. Having a review
where everyone signs the requirements approval form does not mean that
we know what the user really wants nor what they should have.”

Exhibit 16 Time Reports E-Mail

To: Development Team

From: Director of Applications Development

Subject: Time Reports

Just a reminder. Do not charge hours to tasks after the phase review has been
completed. Once a task is done and the phase review has been approved, hours need
to be charged to the current task codes.

Exhibit 17 Project Overview

Week: 0 4 8 12 16 20 24 28 32 36 40 44 48 52

General Release

Beta Roll-out

Testing

Implementation

Design

Architecture

Analysis

Feasibility X

V

V

V

V

V

Phases:

Reviews:

AU1292Ch02Frame Page 38 Sunday, August 25, 2002 11:57 AM

Defining Work… Or What’s Really Happening in the Trenches 39

The Director and the manager went into the conference room. The Director
drew some symbols representing the DSM development methodology on the
whiteboard (see Exhibit 18). The manager pointed to the “code” phase and
said:

“I think a big problem is that, if we are hit with a change to system
(code or design or requirements) at this phase, we don’t have a
plan for rippling back through the phases to bring everything up-
to-date. In fact, we don’t even know what might be affected by a
given change. So the developers either go hunting through all the
past work looking for what needs to be updated, or (more likely)
they just change the code and forget about the other stuff. In fact,
that policy about time reports tends to encourage just working on
the current task because they can’t charge time to work we thought
was done.”

The Director remembered some of the conversations he had had at Midwest.
One of the Midwest developers told him that they did not fill out time reports.
He thought that was strange, but did not think much of it at the time. He also
remembered sitting in on a group session the Midwest developers had in their
war room. The Director erased the whiteboard and drew a mock-up of the war
room (see Exhibit 19). They had diagrams and printouts hanging all over the
walls. Each section of the wall had material from different documents.

The Director continued. “They were talking about a change request. I don’t
remember the specifics but I remember thinking they were talking about a
significant change. One would point to a database schema and list the changes
that might be necessary. Another would interrupt pointing to a piece of code
and marking it as “needing review.” A third would draw some changes on
an interface diagram, saying that if the table had to change, this interface
should be altered. After a short time they had outlined changes to every
document affected by the change. They agreed to get back together the next
morning. I assume they left to make the changes. I thought it was strange.”

Exhibit 18 Methodology Representation

Analysis

Design

mod A

Mod B

Lib X

Code
*.c

*.h

libs

?

?

?

?

?

2.1
2.2

2.3

?

AU1292Ch02Frame Page 39 Sunday, August 25, 2002 11:57 AM

40 Dynamic Software Development: Managing Projects in Flux

The Director and manager agreed that some changes were necessary before
starting the next big project. “They also said they had no projects,” the Director
told the manager as they left the conference room. “I’m not sure what they
meant by that.”

Exhibit 19 Midwest War Room

Code Database

Interface

User
Help

Architecture
server

client
workstn

page

*.c

*.h

libs

screen

screen

screen

?

?

?

?

?

AU1292Ch02Frame Page 40 Sunday, August 25, 2002 11:57 AM

41

Chapter 3

Planning Progress…

Or What You Don’t Know Can Hurt You

Planning the development effort involves visualizing the information you
expect to have once all work is completed. The procedural steps and tasks
are secondary to shaping and communicating the objective in terms of infor-
mation that must be created and recorded.

The secret of all victory lies in the organization of the nonobvious.

—Oswald Spengler

Information Structure

At any given time, software development managers are required to define
objectives and lay out a direction for the development effort. Teams of
developers need to know which elements to build. Senior managers need to
know the status of products. Users need to know what new features will be
implemented next month. Issues related to strategic planning are discussed
in Chapter 6. Here, we need to address tactical planning.

Day-to-day, the manager helps to answer the question: Where do we go
today? Month-to-month, the manager helps to answer the question: Where
should we go next month? Year-to-year, the manager helps to answer the
question: Where will we be next year, next decade?

On the tactical end of the planning spectrum, I am more interested in
actions, verbs, and tasks. When I move toward the strategic end of the
spectrum, my vocabulary shifts to visions, descriptions, and adjectives.

In my role as a development manager, the focus is on the tactical end of
the spectrum. Day-to-day planning assumes you have a policy that says: “In

AU1292Ch03Frame Page 41 Sunday, August 25, 2002 10:47 PM

42

Dynamic Software Development: Managing Projects in Flux

general, we build certain types of elements.” Based on that policy, you and
your developers decide what work must be performed to create the expected
elements (see Exhibit 1).

Planning at a tactical level consists of defining the types of
elements developers are expected to build and directing devel-
opers to build the elements needed for products under devel-
opment.

Tactical planning is an attempt to answers the questions:

�

What elements and associations are necessary in order for us to record
all necessary information about our products?

�

What elements do we need to create for a particular product?

Most development organizations have already defined a standard plan of
attack for all new development efforts. For example, either by policy or by
convention, there may be an understanding that all products will be defined
with an object diagram for recording data object, an event model for each
user transaction, and “C” code for each function. The “C” code, event model,
and object diagram are examples of Element Definition depicted in Exhibit 2.
Defining and establishing this policy is the first part of the planning process.
I find it useful to think of this process as defining the structure of the repository
(at least the part of the repository where elements will be recorded).

Once the structure is established, you decide what data objects are needed
and what functions of “C” code must be written for a given product. These
are the tasks and strands discussed in Chapter 2.

Real Building Blocks

The first two chapters used illustrations of element types such as

design

,

requirement

,

test suite

, and

Java class

. While these are common element types,
they may not be the elements in which your organization is interested.

Exhibit 1

Planning Dialogue

Manager
Developers

All of our products will define:
objects associated with events, and

events associated with modules of code.

This product has
53 objects assoicated with
107 events associated with

386 modules of code.

AU1292Ch03Frame Page 42 Sunday, August 25, 2002 10:47 PM

Planning Progress… Or What You Don’t Know Can Hurt You

43

Managers and developers of an organization create element definitions reflect-
ing the information they find necessary to fully describe and understand your
products. Examples of element definitions are shown in Exhibit 3. At a
minimum, an element definition consists of its name, a description of its
purpose, and at least one unit of measure to assess the size of an element of
this type.

Your organization will have dozens of elements that have been proven
useful in your development work. Your list will be different from that of other

Exhibit 2

Development Repository

Exhibit 3

Examples of Element Definitions

Element Name Purpose Weight Unit

Requirement Description of an application’s
properties and behavior expected by
a user

Paragraph count

Object Design Model of a class highlighting public
methods and interfaces

Method count
Object weight

Entity Design Definition of a collection of data Attribute count
Relational Table Physical structure in a relational

database
Column count

Test Case Definition of initial condition, input,
and expected result used to verify an
application

Edge count

Test Suite Collection of Test Cases run in
sequence

Scenario count

Java Class Unit of software compiled with Java
used for our intranet applications

Method count
Variable count

C++ Class Unit of software compiled with C++
Compiler used in our Windows/
commercial applications

Member Function count
Data Member count

Applet An executable Java program Size, in kB
ActiveX Control Object automating common tasks Property count

Products

Elements

Tasks

consists
of

created
by

is aassigned
to

Element
Definition

Developer

You direct developers
to create product's

elements

You identify and define
the types of elements

you expect

AU1292Ch03Frame Page 43 Sunday, August 25, 2002 10:47 PM

44

Dynamic Software Development: Managing Projects in Flux

organizations. State models will be of great value to teams building process
control applications and of little use to teams building data-dominant database
query applications. Information system developers usually find entity-relation-
ship models extremely useful, while real-time system developers may have
little use for them.

Your list of element definitions will be dynamic as well. A major part of
the planning function is the maintenance of the element definitions. As new
technologies show their worth, we define new ways to describe them and
the applications to which they contribute. Assembler macros might have been
on the list of elements a manager expected her developers to build. These
might have been replaced by COBOL paragraphs and “C” functions.

The set of element definitions describes the building blocks
of a generic product.

It is a way of defining the expectation that the knowledge of any given product
will be recorded using these forms. A product is not complete until all
necessary elements have been built and verified.

Associations between elements allow you to identify missing information.
The fact that a C++ class has been written implies that a design exists. If no
design exists, additional work must be performed to find or create it. A
requirement typically suggests the need for a data object. If a requirement
has been written, the work needed to build one or more data object definitions
is accrued. These associations must be defined as part of the planning process.

An association definition consists of references to the associ-
ated elements, a description of the meaning of each associa-
tion (from both element’s perspectives), and an average
frequency.

The frequency represents the approximate number of associations of this type
in which an element will participate and is used to calculate estimates. You
will see how the frequency is used later in this chapter. Examples of association
definitions are shown in Exhibit 4.

It is easiest to think about association definitions as sentences describing
the “rules of the game.” The rows in Exhibit 4 can be transcribed into prose
as follows:

On average, a

Requirement

suggests data defined as two Object
Designs, and an

Object Design

defines the data suggested in five
Requirements. An

Object Design

is stored as two Entity Designs, and
an

Entity Design

describes the persistent structure for one Object
Design. An

Entity Design

is implemented as two Relational Tables,
and a

Relational Table

implements one Entity Design. A

Java Class

implements one Object Design, and an

Object Design

is implemented
as one Java Class. A

Java Class

is exercised by ten Test Cases, and
a

Test Case

exercises one Java Class. An

Applet

uses one Java Class,

AU1292Ch03Frame Page 44 Sunday, August 25, 2002 10:47 PM

Planning Progress… Or What You Don’t Know Can Hurt You

45

and a

Java Class

is used in two Applets. A

Test Suite

runs 40 Test
Cases, and a

Test Case

is run by one Test Suite. A

Test Suite

exercises
one Applet, and an

applet

is exercised by one Test Suite.

Graphically, the model of the element and association definitions is depicted
in Exhibit 5, the type of model supplied by CASE vendors to describe the
information managed by their Computer Aided Software Engineering tools. It
is also the type of model used to describe development methodologies. CASE
tools are partial implementations of the development repository. They allow
developers and managers to record development knowledge and assist in
assuring consistency. Methodologies are generic project plans defining the
steps to be performed in typical development efforts and the output of each

Exhibit 4

Examples of Association Definitions

Element Meaning
Avg.
Freq. Element Meaning

Avg.
Freq.

Requirement suggests data
defined as

2 Object Design defines data
suggested in

5

Object Design is stored as 2 Entity Design describes
persistent
structure for

1

Entity Design is implemented
as

2 Relational Table implements 1

Java Class implements 1 Object Design is implemented
as

1

Java Class is exercised by 10 Test Case exercises 1
Applet uses 1 Java Class used in 2
Test Suite runs 40 Test Case run by 1
Test Suite exercises 1 Applet is exercises by 1

Exhibit 5

Element and Association Model

stored
as

suggests

implemented
as

exercises

Requirement

Relational
Table

Entity
Design

Object
Design

Java Class

Test Suite

Test Case

Applet

implemented
as

run by used in

AU1292Ch03Frame Page 45 Sunday, August 25, 2002 10:47 PM

46

Dynamic Software Development: Managing Projects in Flux

step. The output definitions are synonymous with the element definitions
described here.

If you are using a CASE tool or a development methodology (and if they
are useful to you), you have definitions of most of the elements you need
for planning purposes. The reason I include the qualification is that different
organizations find value in different sets for elements and association. Their
CASE tool or methodology may not support all of these elements and asso-
ciations. Similarly, the CASE tool or methodology may call for elements that
are of little or no use and should not be included in the planning process.

For example, one organization used a data modeling tool that required the
data analysis to include a physical definition of data attributes (size, data type,
and language-dependent name) when an entity was declared. An error
occurred if at least an identifier and one non-key attribute did not accompany
the definition. This made it difficult to define an entity (a logical representation)
and a relational table (an implementation) as two separate but associated
elements. The analysts used a drawing package to maintain the logical view.
If you were using the data modeling tool as a source of element definitions,
you would have to look beyond the tool to the way the tool was used and
to the additional information the analysts determined was valuable.

While some tools are missing elements that developers find valuable, the
reverse is also true. Many tools and methodologies require the creation of
elements that are less than useless to the developers. A CASE tool I once used
had the bizarre feature of requiring that the developer create a data definition
each time a new data store was declared and again each time a process
accessed the data store. There were hundreds of processes accessing the same
data store; 95 percent of them were accessing a single occurrence of the data
store. This meant there were potentially hundreds of redundant definitions of
the data.

Part of the planning process involves asking which chunks of information
are necessary and sufficient for a complete, useful, and maintainable repository
of knowledge about your products. Being included as part of a software
engineering tool or being recommended by a textbook author does not, in
itself, mean the element should be part of your repository. You and your
developers have to make realistic decisions about which chunks of information
are worth the investment of time, money, and brainpower. Like all assets,
their value comes in their use.

Where do you find potential element and association definitions?

�

Your current methodology and practice

�

Old documentation

�

New books on project management and software development

�

Old books on project management and software development

�

Observation of developers enhancing existing products

I prefer direct observation. There is no practice more useful to observe than
the maintenance process. If you came up through the ranks in software
development, you probably started in maintenance.

AU1292Ch03Frame Page 46 Sunday, August 25, 2002 10:47 PM

Planning Progress… Or What You Don’t Know Can Hurt You

47

Starting new programmers on maintenance is a horrible practice!
The most destructive beginning for a new developer is being turned
loose on an existing product and told to “fix it.”

Remember back to that experience and you will remember a high level of
uncertainty. You did not know what the original analyst had in mind. You
were unsure of the user’s expectations. You did not know if the code you
were changing was the only code that needed to be changed. You were never
sure that you were not introducing additional bugs into the product while
trying to correct someone else’s errors.

Most developers spend a great deal of time trying to rediscover information
that was known at one time but now is lost or inaccessible. By observing the
maintenance activity, you can identify elements that will record the information
your developers need in order to build and enhance your company’s software
products. Chapter 7 explores in greater detail the process of building and
maintaining a productive development environment.

By creating elements and associated definitions, you are creating a frame-
work of work products. As an example, assume you have defined the elements
and associations described in Exhibit 6. One of your developers discovers the
need for a new Object Design. An important question is: How much work is
implied by the addition of this one new Object Design? (See Exhibit 7.) The
answer is that your developers will have to create:

�

Five associations to Requirements (probably necessitating changes to
the Requirements)

�

One new Java Class and its association

Work with your developers to create an initial set of element and association
definitions. The frequencies help you anticipate the amount of work accrued
by the addition of a single element. Because information is meaningful only
in context, the new information created by the addition of a single element
will not be useful until it is associated with related elements. If the typical
Object Design in your organization is associated with five Requirements, the
new Object Design implies that work must be performed to build associations
to (and potentially modify) about five Requirements as well as to build the
Java Class to implement the design.

The average frequency (sometime referred to as “cardinality”) of an asso-
ciation helps predict the number of things that must be done when changes

Exhibit 6

Sample Element/Association Definitions

Element Meaning
Avg.
Freq. Element Meaning

Avg.
Freq.

Requirement suggests data
defined as

2 Object Design defines data
suggested in

5

Java Class implements 1 Object Design is implemented as 1

AU1292Ch03Frame Page 47 Sunday, August 25, 2002 10:47 PM

48

Dynamic Software Development: Managing Projects in Flux

are made to the repository. The size of the elements is needed to be able to
estimate the amount of work involved. You might assign tasks to two devel-
opers to building a C++ class based on object designs. If one developer’s
object design is twice as large as the other’s, you might expect one to take
twice as much time (assuming both developers are equally experienced and
talented with C++). Chapter 5 explores the formulae useful in monitoring
productivity.

For now, the planning process includes identifying the unit of measure you
need to monitor the “size” of the elements. Refer to Exhibit 3 for examples. We
are looking for units of measure with a scale that has a positive relationship to
the amount of resource (usually time) required to define and verify an element.
In the ideal state, an element that has a weight of five will require half the time
to define and verify as an element of the same type with a weight of ten.

We are also looking for units of measure that are predictive. If we cannot
determine a reasonable estimate of the element’s weight until after the element
is completely defined and verified, the weight has no use to us (other than
historical).

In the absence of any better definition, they understand an estimate
to be the most optimistic imaginable result that is not demonstrably
impossible. That kind of estimate is a disaster for planning purposes.

—Tom DeMarco

Be mindful of the difference between size and value. Software development
managers have had a long-running debate about the role and use of counts
like “lines of code.” It has the advantage of being easily computed. It has the

Exhibit 7

Using the Plan to Predict Work

1

suggests
Requirement Object

Design

Java Class

implemented
as

 Object Design

Requirements
Java Class

1

25

Developer I need one Object Design
... which is associated

with Requirements and
Java Classes

The
Plan

Current
Work

Accrued
Work

AU1292Ch03Frame Page 48 Sunday, August 25, 2002 10:47 PM

Planning Progress… Or What You Don’t Know Can Hurt You

49

distinct disadvantage of having no valid relationship between its scale and
the value of the product. That is, a module of code that has 500 lines of code
is not twice as valuable as one that has 250 lines of code. It might be true
that of two modules performing the same function, the one with the fewest
number of lines is more valuable.

If you equate the scale of a measure with “good work,” you encourage
developers to produce elements that rank high on the metric’s scale but may
add little value to the repository and the end user. We tend to work to
maximize the metric against which we believe we are being evaluated.

Reward Complete Thinking

With a set of element and association definitions in place, the next aspect of
tactical planning to consider is deciding which elements to work on at any
given moment. As the workday progresses, developers face countless alter-
natives. After completing the definition of a requirement, a developer might
proceed to the requirement’s design or start working on a related requirement.
A developer might discover an ambiguity in a code module after running a
test case and might either work to correct the code module or continue
building additional test cases.

Perhaps the decision is unimportant because all the work has to be
completed eventually. However, different sequences result in different degrees
of uncertainty. In addition, while I believe developers should work with a
significant degree of autonomy, I do have to define direction and overall
patterns to ensure the completion of the most constructive and beneficial work.

Rewarding complete thinking is the most effective way of establishing a
constructive direction for the development effort at the tactical level of plan-
ning. By this I mean defining the types of strands I expect the developers to
be working on. The message to developers is: if there are incomplete elements
of the strand, those elements take precedence.

The most useful strand is the one that provides a complete description of
a single event and its implementation. From the user’s perspective, the software
system performs sets of tasks. If the user needs enhancement to a Product
Inquiry function, the strand on which a developer will be working might
include a Class Design, several Java Classes, the definition of the Product
Data, and the Inquiry Requirement (depicted in Exhibit 8). As discussed in
Chapter 2, the strand is a useful definition of work. Each strand corresponds
to a task assigned to a developer. The amount of work remaining in the task
corresponds to the number of unverified elements adjusted by their weight.

There may be occasions when you will need to plan a task to declare and
define a large set of a particular element type (see Exhibit 9). For example,
if you are planning a significant enhancement to applications supporting the
purchasing department, it might be useful to have at least an initial declaration
of all the department’s anticipated data objects. This can provide a useful
overview of the scope of the effort and a good starting point for defining
more detailed strands.

AU1292Ch03Frame Page 49 Sunday, August 25, 2002 10:47 PM

50

Dynamic Software Development: Managing Projects in Flux

The danger in declaring and defining elements without defining associated
elements is that each declared element implies that work must be done to
define and connect all the related elements. Each of these undeclared and
unconnected elements is an unknown. The greater the number of unknowns,
the greater the risk. We are accruing more and more work without evidence
that it will fit together in the end. We are creating expectations that will be
more and more difficult to manage.

Real Uncertainty

Developers, like most humans, attempt to make sense out of incomplete
information (either by finding the missing pieces or by rationalizing the

Exhibit 8

Three Down, Three to Go

Exhibit 9

Declaring All Instances of One Element

Uncertain

Change Pending

Verified

Declared

Product Inquiry
Requirement

Product Data
Definition

?

Class B
(Java Library)

Class A
(Java Library)

Product Class
Design

Java Class
(custom)

?

??

Object
Definition

Code Module

Class Design

Event
Definition

Build all object
definitions first . . .

. . . creates hundreds
of 'unknowns'!

?

?

?

?

AU1292Ch03Frame Page 50 Sunday, August 25, 2002 10:47 PM

Planning Progress… Or What You Don’t Know Can Hurt You

51

inconsistencies). Rationalization is the easier option, but actually building the
missing pieces is certainly more valuable. We tend to underestimate the
complexity of future work. We tend to be optimistic about how much we
know and how easy it will be to fill in the blanks.

Developer 1: “I have been getting good information from the user.
The Object Definitions are coming along great!”

Developer 2: “So, when should we start building the Event Defini-
tions and Code Modules?”

Developer 1: “Those will be straightforward. I’m not worried about
them. Once all the Object Definitions are completed, we can wipe
those out in no time.”

Conversations like this are common and often an indication that the devel-
opment effort is out of control. A month later, you hear the same two developers.

Developer 1: “These Event Definitions are more complex than I
expected.”

Developer 2: “I think there are some problems in the Object Defi-
nitions. If we had known about some of these business rules before,
we could have defined some of the Objects differently and saved
ourselves some headaches.”

Developer 1: “Well, the Object Definitions are done, so let’s not
open that can of worms.”

The result of this line of thinking is that the Object Definitions are incomplete,
inaccurate, or inconsistent with the Event Definitions. The inconsistency between
the Object Definition and the Event Definition implies the need for work to
correct the error. The repository no longer reflects what we know about the
product. Future work will be more error-prone due to the misinformation.

Success is more a function of consistent common sense than it is
of genius.

—An Wang

The developers should be allowed and encouraged to think of their work
as the process of moving the repository from one steady state to the next,
rather than simply adding more and more information. Thus, any planning
should focus on the desired state rather than tasks.

Watch the Result, Not the Process

Chapter 2 defined a unit of work as creating chunks of information; specifically,
creating or enhancing a strand of elements. A strand is the purpose of a task.
A developer (or group of developers) is assigned a task of building or

AU1292Ch03Frame Page 51 Sunday, August 25, 2002 10:47 PM

52

Dynamic Software Development: Managing Projects in Flux

enhancing a strand of elements. As a manager, I have little concern for how
the information is created. I coordinate the development effort by defining
the tasks and monitoring the repository for the status of the task.

So, what does a development plan in a dynamic environment look like?
A plan consists of the focus element of the strand, along with a brief description
of the functionality or value to be added to the application. For each task in
the plan, you estimate the number of elements that may be affected by the
developers while working on the task. Each identified task is prioritized or
sequenced and assigned to developers working alone or in teams. Exhibit 10
presents an example. Tasks C and D have been assigned to developers. The
Blue Team is working on enhancing product pricing formulae and Clayton is
working on replacing the inventory valuation method. Task E has not been
assigned. Two customer-related tasks have already been completed. Task A
was performed by the Blue Team. They modified or created 20 elements while
adding functionality to report the status of customer orders. While Clayton
was adding a query for customer credit, he modified or created 12 elements.

Typically, the plan does not include guesses as to when a task will begin
or how long it will take. A task will begin as soon as developers have
completed tasks of higher priority. The work will take approximately the same
length of time as other similar tasks. You rely upon the information in the
repository to compute estimates of dates and resource requirements.

For example, Exhibit 11 contains information about the dates and person-
days for the two completed tasks (see also Exhibit 12). The Blue Team started
Task A on the first day of the month. They completed it on the third day and
charged ten person-days to the task. Clayton started work on Task B on the
first day of the month and completed it on the fourth day, requiring four
person-days. In terms of elapsed time, the Blue Team was working at a rate
of between six and seven elements per day (6.67 to be more precise). Clayton
completed work on 12 elements in four days (three elements per day).

If today is the fifth working day of the month, the Blue Team started
working on Task C yesterday and Clayton begins work on Task D today.
Based on the information in Exhibit 11, both the tasks will probably be

Exhibit 10

Development Plan

Task ID Focus Element
Element
Count Description

Priority/
Sequence

Assigned
To:

A Customer Object
Design

20 Add customer
order status

Done Blue Team

B Customer Object
Design

12 Add customer
credit query

Done Clayton

C Product Object
Design

23 Enhanced product
pricing formula

1 Blue Team

D Product Object
Design

8 Replace inventory
valuation method

2 Clayton

E Product Object
Design

17 Add product
inquiry

3 ?

AU1292Ch03Frame Page 52 Sunday, August 25, 2002 10:47 PM

Planning Progress… Or What You Don’t Know Can Hurt You

53

completed on the seventh working day. You know this because Task C is
projected as effecting 23 elements. The Blue Team has been working at a rate
of approximately six to seven elements per day (elapsed time). Task C should
take them about 3.5 days. They started yesterday so they will be done mid-
day on the seventh working day. Clayton’s task will require creating or
modifying approximately eight elements. At three elements per day, Clayton
will be done in 2.6 days — call it three days.

The unanswered questions concerns Task E. If the time projections for
Tasks C and D prove to be reasonably accurate, Clayton should be able to
complete Task E before the 13th or 14th workday of the month (17 elements
divided by three elements per day suggests about five days). Assigning task
E to the Blue Team will get the work done by the tenth day (17 elements
divided by 6.7 elements per day equals 2.5 days).

The decision to assign Clayton or the Blue Team to Task E is not only a
function of the projected elapsed time. Other factors include skill and expertise
of the developers (more on this in the next chapter) and other tasks pending
on the development plan (discussed in Chapters 9 and 10).

Applying Dynamic Management

Work with your developers to expand the initial list of elements you started
in Chapter 1. Add a column to the element worksheet for a “Weight.” Discuss
each element’s purpose and list measures that might be used to determine size.

Talk about the associations among elements that the developers find
important. The set of elements and associations are the framework on which
your development plan is based (see Exhibit 13). The strands that are part of

Exhibit 11

Work Record

Task ID Developer Started Completed Person-days

A Blue Team 1 3 10
B Clayton 1 4 4

Exhibit 12

Development Schedule

Day: 1 2 3 4 5 6 7 8 9 10 11 12 13 14

BlueTeam

Clayton

Task A

Task B Task D

Task C Task E?

Task E?

start complete

Task

AU1292Ch03Frame Page 53 Sunday, August 25, 2002 10:47 PM

54

Dynamic Software Development: Managing Projects in Flux

the task definitions are determined by the elements and associations you list.
The list does not have to be absolute. You and your developers will refine
the definition as your environment develops and your applications evolve.

Review the work you and your team have completed in the past month.
Describe this recently completed work in a form similar to Exhibits 10 and
11. This helps describe the tasks as strands of elements with a focus. Estimate
the number of elements you worked on (i.e., created or modified) during the
month and calculate the rate (elements per workday).

Productivity = Number of created or modified elements
per number of person-days

This number may not be precise, but it is consistent, useful, and easy to
generate without the biases inherent in other forms of projections.

Add a topic to your online discussion group (Exhibit 14) and attach a copy
of the worksheet. Ask your peers for comments and suggestions (Exhibit 15).

Chapter 3 Case Study Excerpt

The following narrative is a set of excerpts from the full case study in Appendix
G relating to the topics in this chapter.

In the early years, as DSM development efforts grew in size and complexity,
managers and developers alike recognized the need for more structure in the
way software was built. Industry trade journals were filled with articles
debating various methodologies and their characteristics: waterfall, spiral,
model-driven, and process-oriented methods all focused on “process.” Con-
sulting firms preached analogies to other engineering and manufacturing
practices. The managers and developers at DSM adopted the analogy of
building a house with the need for careful plans and blueprints. Construction
began only after careful planning; a firm foundation is laid before the walls
and roof are added. Enhancements identified after construction begins are
postponed and handled by workers under a different contract.

DSM bought into the current thinking of the day and wanted a standard
methodology for all its new development projects. Maintenance was to be
treated as a mini new-development project. DSM contracted with a consulting
firm to help define the methodology to be used in all its development. The
consultants worked with the managers and senior analysts to try to customize
the consulting firm’s template methodology as best they could. At the end of

Exhibit 13

Blank Element List

Element Name Description, Location, Associations Weight Unit

AU1292Ch03Frame Page 54 Sunday, August 25, 2002 10:47 PM

Planning Progress… Or What You Don’t Know Can Hurt You

55

a difficult six months, the methodology was delivered in 17 beautiful binders.
DSM paid the consultants a small phenomenal fee and set about the task of
using the new procedures they had defined for themselves.

All was OK until the disaster of the DSM-SISS project. After that, the
development department entered a period of adjustment. Most of the DSM-
DM methodology fell into disuse. Project managers were allowed to pick and
choose those tasks that seemed most appropriate. As time went on, fewer
and fewer of the tasks were considered “appropriate.”

The support and enhancement of the DSM-SISS remained with the Midwest
group. Development on the West Coast continued with other independent

Exhibit 14

Online Discussion Index

Exhibit 15

Beginning Dialogue

Dynamic Management

Discussion Topic Index

Topic: Information-Based Management

Topic: Planning
Topic: Defining Work

File Edit View Tools Help

DM

(click on Topic for discussion)

Discussion for topic: Planning

- Moderator:

+ Moderator:

File Edit View Tools Help

DM

I think we need some detailed definitions before we can talk much
about planning. I have attached a sample worksheet. . .

+ Reply1:

I have a couple of developers starting a maintenance job.
I’ll ask them to list the documents they find useful.

I have a similar list - I’ll clean it up and post it tomorrow.

+ Reply2: I think there are a lot of overlapping elements.
Can we find a better subset?

+ Reply1: Post us the list when you have it.

AU1292Ch03Frame Page 55 Sunday, August 25, 2002 10:47 PM

56

Dynamic Software Development: Managing Projects in Flux

products but more and more time was spent in maintaining and upgrading
existing systems.

About five years ago, it became increasingly clear that the products being
developed by DSM and Midwest had to be updated and integrated. The
Director, now the Chief Information Officer, had wanted to bring the best of
both development groups together. He felt it was time, at long last, to do
something significant and positive. He initiated his campaign by convening a
development conference. A week was set aside for all developers to gather
in San Francisco to come up with a plan for developing closer working
relationships. Sessions were planned to provide the Midwest group with
detailed orientation to the DSM-DM methodology, the current set of standards
used on the West Coast, and the development environments currently in use.

When the developers at Midwest received the announcement of a “con-
ference,” they immediately concluded that DSM was finally going to indoctri-
nate them into their stiff and formal methodology.

One of the Midwest developers e-mailed her boss, and the manager of the
Midwest development group replied, as shown in Exhibit 16.

So, the conference took place. Much of it was boring. The two sets of
developers began taking longer and longer lunch breaks to exchange stories
about past projects. They even convened impromptu workshops to learn each
other’s development secrets. Both the DSM CIO and the Midwest manager
agreed that the informal exchanges were probably more valuable than the

Exhibit 16 E-Mail to Boss and Reply

E-mail

To: Midwest Development Manager

From: Concerned Developer

Subject: Upcoming DSM Development Conference

I am really concerned about the upcoming conference. I see no reason for our parent
company to impose its formal and stifling methods on us. After all, it was our product
that got them out of a bind several years ago. How should we respond to this?

Reply

To: Concerned Developer

From: Midwest Development Manager

Subject: DSM Development Conference

I think this is a good chance to build some bridges and expand our own influence in
the larger organization. We should go with an open mind. We will take what works
and change what doesn’t. My advice to all of us is to take every opportunity to show
the good work we are doing. Make as many contacts as you can and speak out in favor
of the techniques we use in building successful products. I think the people at DSM
are open to innovation.

AU1292Ch03Frame Page 56 Sunday, August 25, 2002 10:47 PM

Planning Progress… Or What You Don’t Know Can Hurt You 57

planned sessions so they cut short the formal training in favor of the more
spontaneous sessions.

During one of the breaks (i.e., spontaneous sessions), a large group was
gathered in the conference room discussing where the application develop-
ment industry had come from and where it was going. One of the DMS
developers went to the whiteboard and drew a timeline, saying he was happy
to see the passing of the era of vendor-supplied, bundled applications.
Someone pointed out that maybe things have not changed that much. The
big ERP implementation projects are painfully reminiscent of those days —
maybe the era never ended (see Exhibit 17). Someone else grabbed a marker
and wrote, “Application domains,” saying she was glad we are developed
beyond data silos. A voice from the back said, half jokingly, “Hey, those were
some of my best work.”

One of the project managers wrote “Business infiltration” to represent the
shift from discrete systems to systems that better integrated into the daily
business operations. That prompted one analyst to write “Technology imper-
ative.” “It seemed that along with the business integration came the sense that
technology was the end-all solution to everyone’s problems. Everyone has to
have the latest version and the most advanced hardware. I don’t think the
latest version necessarily adds value.” There was overlapping debate over
which era came first and if any really ended. At one point there were five
people at the board, each armed with a marker.

“What about development methodologies?” came a voice from one of the
junior developers. No one had wanted to touch the subject of methodology,
but apparently the kid did not know any better. The CIO walked up to the
board and wrote “Methodology definition.” This legitimized the subject, so
people began to talk.

The group began exchanging ideas about how development projects should
be partitioned into manageable steps. Some were dutifully defending the
phased approach while others began to assert that there were major problems
with the construction or the factory analogy. After a couple of minutes, the
white board had been erased and a new image was being drawn.

Exhibit 17 Development Eras

1960 1970 1980 1990 2000 2010

Vendor driven

Application domains

Business Infiltr
ation

Technology im
perative

Methodology definitio
n

?

?

AU1292Ch03Frame Page 57 Sunday, August 25, 2002 10:47 PM

58 Dynamic Software Development: Managing Projects in Flux

It was clear that the general consensus was that project methodologies
seemed to impose the feeling of an assembly line (see Exhibit 18) and that
image did not feel good to most in the room. The drawing on the board took
on the mantle of satire. The conversation began to slow.

The Midwest manager stepped forward. “What if we turn things around?”
he said, erasing the board again. “The model we have been discussing seems
to divide the work of a project by the type of work first, then the individual
features, functions, or objects. Maybe we can divide up the development effort
by the object, function, or feature first and then subdivide that by the type
of work — requirements, design, coding, etc.”

The Midwest manager began to draw a huge cube that filled the whiteboard
(see Exhibit 19). All the lines were dashed except the lower left-hand corner.
“Let’s say the box here is the product. It is mostly undefined. We can imagine
the whole thing but only in our imagination.” “Down here,” referring to the
solid lines, “we have what we know for sure. We know enough to define a
first version — say, chunks 1 through 5. We think we can add chunks 6

Exhibit 18 Methodology as an Assembly Line

Exhibit 19 Methodology as a Continuous Build

Product

Analysis

Coding

D
es

ign

Te
sti

ng

1.1

1.4

1.2
1.3

1.5

3.4

3.2

2.7

3.7

2.8

2.6

AU1292Ch03Frame Page 58 Sunday, August 25, 2002 10:47 PM

Planning Progress… Or What You Don’t Know Can Hurt You 59

through 8 in the second version. We might even be able to foresee improved
versions of chunks 2, 4, and 7 — but we won’t get to them until a third
version. Of course, these future versions will actually be determined by the
feedback we get from the users when they start using the first version.”

The CIO recognized the drawing from the Midwest conference room
conversation several years before. Obviously, the manager had spent a lot of
time thinking about this. “So, what are these blocks?” asked the CIO. “They
are features or functions or scenarios or requests,” replied the Midwest
manager. “They are cohesive chunks of the product that the user has
requested.” “But what work products do each of the blocks represent?”
demanded the CIO. The Midwest manager responded “They represent our
understanding of the user’s requirements (written in the form of use cases
and object definitions), our declaration of how the requirements will be
implemented (in the form of database tables and code/class structure), the
code satisfying the requirements, the test scenarios used to exercise the
product, the user training updates, and help systems reflecting the new
enhancements. Each version adds value/functionality and keeps all the infor-
mation current. This way, the objective is not to move a complete system
along the assembly line as fast as possible. The objective is to keep adding
value — piece by piece — forever.”

There was silence in the room. The CIO was recalling the conversation he
had had a few years earlier with the Midwest development manager. After a
moment, the CIO said, “Well, OK then. Let’s work on it.”

AU1292Ch03Frame Page 59 Sunday, August 25, 2002 10:47 PM

AU1292Ch03Frame Page 60 Sunday, August 25, 2002 10:47 PM

61

Chapter 4

Managing Developers…

Or Dance with the One Who Brought You

Chapter 2 outlined a definition of work as the process of creating complete,
consistent information about the product. Chapter 3 defined a way those units
of work are organized as part of a tactical plan. This chapter (Chapter 4)
addresses the work of managing and coordinating talent.

What is the real reason why we want to be big, to be creative
geniuses? For posterity? No. To be pointed out when we stroll in
crowded places? No. To carry on with our daily toil under the
conviction that whatever we do is worth the trouble, is something
unique — for the day, not for eternity.

—Cesare Pavese

No Management? No Documentation?

When I have asked software developers to describe what management can
do to help improve the development effort, I am usually told to “have
management leave us alone and the work will get done.” There is widespread
belief that management is not real work and that real work is hindered by
attempts to manage it.

Most of my manager colleagues do not appreciate the advice. Managers
know that their role is important and that the development process would
work more smoothly if work could be planned and organized more effectively.
My observations are that most managers bring value to the equation. This
value is often not recognized by developers.

AU1292Ch04Frame Page 61 Sunday, August 25, 2002 11:56 AM

62

Dynamic Software Development: Managing Projects in Flux

However, the comment is valuable insight into the developer’s perception.
Developers often view management activities as impediments to real progress.
Most developers with whom I have worked want very much to do good work,
advance their knowledge and skills, and be recognized as contributing to
worthy objectives. To the extent that management structures detract from the
developer’s goals, developers and managers will continue to have a conten-
tious relationship. To the extent that management structures support these
goals, the relationship between developers and managers will be constructive.

I have read comments in several extreme programming online discussion
areas expressing a distrust or disdain for traditional management. I have also
noticed many comments casting aspersions on “documentation” — as if it
were an institution. I recall one comment asserting that documentation is a
burden, but recognizing that some form of memory is required. The comment
went on to assert that the team’s collective experience serves this purpose.

The coordination of talented developers has been likened to herding cats.
My goal as manager is to create a framework in which there is good fit
between the information I need to monitor, track, and measure the develop-
ment effort and the information used and created by the development teams.
That fit is assured by building and maintaining an accurate model of elements
and associations, then monitoring the contents of the project repository. This
way, both managers and developers are focused on the same information.
Progress toward the goal (i.e., the ongoing delivery of high-quality, responsive,
and effective software to the user) is accurately measured by actual work
products of the development teams.

Managing developers starts with recognizing the common view that man-
agers get in the way and documenting is simply busy-work. To the extent
this view reflects reality, an organization is operating at a severe disadvantage.

The collective goal of all those involved in a development effort must be
to build and maintain a dynamic environment in which developers and
managers can be creative — on a daily basis — where managers and devel-
opers can provide value to their organization — on a dailby basis — and
where managers and developers can grow in their profession and in their
personal lives.

We will make no progress toward this goal if developers insist that their
personal memory and ability to communicate constitute a sufficient develop-
ment repository. We will not advance toward this goal if managers try to
impose burdensome reporting requirements separate from the knowledge
necessary for effective software development.

Diverse Skill Set

The definition of work presented in Chapter 2 requires a diverse set of skills.
A strand may include requirements information, data object design information,
coding information, testing information, and educational material information.
All this information must be created and reviewed to ensure that it is consistent
with other elements of information in the repository. No single developer has

AU1292Ch04Frame Page 62 Sunday, August 25, 2002 11:56 AM

Managing Developers… Or Dance with the One Who Brought You

63

the expertise or interest in all these forms of information — nor will one
developer have the ability to switch from role to role in the short time frame
in which the strand is being developed.

Software development proceeds most effectively when done by small teams
of specialists, each with a heartfelt appreciation for the skills and contributions
of others on the team.

Visualize an application with an internally consistent and verified set of
elements. This version of the application is in production and being used by
many people in the organization. A new/expanded functionality set has been
identified and the developers have initially identified a strand of ten elements,
including:

�

Three new requirements elements

�

Two new design elements

�

Two modules

�

Three additional test suites

The goal of the development effort is to build the new elements and ensure
consistency with the elements already in the repository. The team will move
the knowledge in the repository from one steady state (State X) to another
steady state (State Y) (see Exhibit 1).

To accomplish this work, you need developers who can build requirements,
designs, related modules of code, and test suites that exercise the other
elements in an effort to find defects. I am not concerned about which element
is created first. Indeed, the elements must be created in tandem. An error

Exhibit 1

Initial State to New Steady State

Designs

Modules

Requirements

Initial State X

Test Suites

Y Designs

Y Requirements

Y Test Suites

Proposed State Y

Y Modules

New Element

AU1292Ch04Frame Page 63 Sunday, August 25, 2002 11:56 AM

64

Dynamic Software Development: Managing Projects in Flux

detected by a test suite may imply an error in the code. It may also suggest
an error in the requirements. The test suite itself may be in error. Rather than
dividing the work across time and across different skills, the work must be
done by a close-knit team watching and participating in the entire process of
moving the repository from State X to State Y (see Exhibit 2).

Teams of two to seven developers work well. The teams should include
individuals with the skills necessary to build strands defined in the planning
process (refer to Chapter 3). Visualize a team of four developers: a business
analyst, a software designer, a programmer, and a tester. For this illustration
I will augment Exhibit 6 in Chapter 3 where I presented an example of an
element/association definition. Exhibit 3 adds definitions for the test suite
illustrated above.

Given these definitions, when we identify the need for two new require-
ments, our repository speaks to us by projecting that each requirement is
typically associated with two object designs (the object design may be asso-
ciated with other requirements already implemented). Each object design is

Exhibit 2

Team Assigned to Task (State Y)

Exhibit 3

Expanded Element/Association Definitions

Element Meaning
Avg.
Freq. Element Meaning

Avg.
Freq.

Requirement suggests data
defined as

2 Object Design defines data
suggested in

5

Java Class implements 1 Object Design is implemented as 1
Test Suite exercises 1 Java Class is exercises by 2
Requirement describes 1 Test Suite is based on 1

Y Designs

Y Requirements

Y Test Suites

Y Modules

AU1292Ch04Frame Page 64 Sunday, August 25, 2002 11:56 AM

Managing Developers… Or Dance with the One Who Brought You

65

usually associated with one Java class. We expect each Java class to be
exercised by two test suites. And it is typical for each test suite to be based
on one requirement. At the beginning of the task, the developers can expect
to be working on a total of 14 elements (two requirements, four object designs,
four Java classes, and four test suites). During the task, the developers might
find the need for more classes or fewer test suites, but based on the current
state of the repository, the expectation is 14 elements. The work of the team
should be distributed as shown in Exhibit 4.

The business analyst is responsible for the definition and overall quality
of the requirements elements. But part of the characteristics of good software
is that requirements are consistent with other related knowledge; specifically,
the object designs and test suites. So, the business analyst must work with
the person responsible for the object designs and test suites. Similarly, the
programmer needs to work with the person who designs the objects and the
person building the test suites. The programmer is responsible for the quality
of the Java classes and is obliged to work with others on the team to ensure
consistent knowledge in the repository.

If the contents of the repository suggest that a strand will have a larger
number of one element, the typical team size would change. For example, if
the typical object design was associated with three Java classes and each class
was exercised by four test suites, the number elements in this example balloons
to 66 elements (two requirements, four object designs, 12 Java classes, and
48 test suites). This suggests that an effective team might include two pro-
grammers and several testers.

As task sizes get larger, there is a tendency to form larger teams. But teams
formed to do creative work become less effective as they get larger. I find
that teams of eight or more self-organize into smaller, more manageable
partnerships. Rather than trying to impose some organizational framework on
larger teams, it is better to keep the tasks smaller and the team membership
below seven. For the larger tasks, team members support each other. While
the tester may still be responsible for 48 test suites, the business analyst and
the programmer can assist by building test suites along with the tester.

Exhibit 4

Team Responsibilities

Team Member Responsible For: Working With:

Business analyst Two Requirements The software designer to define the
objects

The tester to build the test suites
Software designer Four Object Designs The business analyst for requirements

The programmer to build the classes
Programmer Four Java Classes The software designer for specifications

The tester to build test cases
Tester Four Test Suites The programmer for interface

specifications
The business analyst for scenarios

AU1292Ch04Frame Page 65 Sunday, August 25, 2002 11:56 AM

66

Dynamic Software Development: Managing Projects in Flux

Combining Work and Learning

One of the wonderful benefits of team assignments is the opportunity for team
members to learn from each other in the context of real and meaningful work.

You surely remember that moment shortly after you started your first devel-
opment job when you realized that what you were taught in school is not a
close match to what you perceive on the job. Things look different when you
are in the midst of a development effort, far different from the way they did in
the safety of a classroom. You probably also had the same experience I did
when my first assignment was to enhance an existing program. I was terrified
because the number of things I did not know was overwhelming. Working alone,
I studied the program, read the documentation, and worked hard to emulate the
style and techniques of the developers who had built the original product.

It was years later that I realized that the style and techniques of the
developers were not worth emulating. In my maintenance work, I was pre-
sented with examples of good work and examples of bad work, but no one
was there to help me distinguish between the two.

Working in teams, the inexperienced developer is working alongside the
seasoned worker. The new person sees good work being created and sees
not-so-good work being identified and improved. There is no better teacher
than guided experience. The new developer can be productive without being
disruptive — supportive while being supported.

The experienced developer also benefits from the team environment. Career
development is enhanced by being able to work with specialists in various
areas. If a programmer is interested in becoming a tester, he can choose to
spend more time with the tester on his team. The business analyst may aspire
to be a designer. The opportunity is there to observe and participate in the
activities that will enhance her skills in related disciplines.

The opportunity for learning and career development exists between devel-
opers and managers as well. The manager is actively monitoring the repository
to gauge the effort’s status, allocating resources, and prioritizing tasks. She can
take advantage of this shared resource (the repository) to view and study the
elements created by the teams. This makes her more valuable to the team because
she can help without taking developer’s time to “come up to speed” and she
has a better appreciation for the capacity and capability of the developers.

Developers looking to take on more managerial responsibilities are in a perfect
position to see and participate in the management of the team and of the larger
planning process. When both the managers and developers are working with
the same knowledge repository, information is visible to everyone. Managers
can (and should) involve developers in the planning and monitoring processes
to enhance the skills and knowledge of all interested players.

The Team of One

Large teams can be problematic. What about small teams — or teams of one?
The software industry has historically attracted individuals who work well alone.

AU1292Ch04Frame Page 66 Sunday, August 25, 2002 11:56 AM

Managing Developers… Or Dance with the One Who Brought You

67

The stereotypes of the developer pounding away on his keyboard in the middle
of the night and gaining personal satisfaction from single-handedly saving the
day are more fact than fantasy. So, what do you do with a developer who does
not work well in teams? Or the generalist who can work alone effectively?

This one-person team is problematic. Our definition of work is a strand
where every element is moved to a verified state. For an element to be
considered verified, it must be reviewed by someone other than the author.
As a manager, I have to ensure that someone reviews and approves the work
of the one-person team after she has announced that the work is completed.

I find it much more time-consuming to have a reviewer come in and
evaluate a strand after the developer thinks the work is complete. Teams
working concurrently can keep up with what each member is doing. The
team members have the background and context necessary to review each
other’s work before it is completed and while the author is still able to accept
changes. After the product is “done,” it is more vexing to hear criticism —
even constructive, well-intentioned criticism.

Can one-person teams be effective? Yes. But I try to develop an environment
in which individual efforts are replaced with collaborative work. You will have
succeeded when all developers prefer working with colleagues and feel that
working on an assignment alone is done only as a last resort.

While one-person teams are sub-optimal, that does not mean that devel-
opers must always work in teams. It is important to allow space and time for
individuals to think and ponder. It is OK for a team member to stop working
on his part of a task and take time to work alone.

To do great work a man must be very idle as well as very industrious.

—Samuel Butler II

Multi-Team Efforts

As a manager, I have to coordinate teams of teams. My experience teaches
me several things:

�

Most development efforts are larger than one person or one team.

�

Multidisciplinary teams are the best way of organizing software devel-
opment efforts.

�

Self-directed teams can be very effective in creating high-quality prod-
ucts.

�

There is a limit to the size of any individual team.

These truisms impose certain constraints. If team sizes are fixed (three to
seven developers) and one team cannot reasonably be expected to perform
an infinite amount of work, to get a lot of work done requires many small
teams. Each new team added to a development effort requires a degree of
coordination between teams (this is work in addition to the internal team

AU1292Ch04Frame Page 67 Sunday, August 25, 2002 11:56 AM

68

Dynamic Software Development: Managing Projects in Flux

effort). To keep the amount of inter-team coordination work to a minimum,
you use the repository to coordinate teams working concurrently on related
development efforts.

It would be nice if tasks could be defined that were completely independent
with no work by a team on a strand of elements affecting a strand being
developed by another team. I have never seen such a thing. Everything is
deeply interrelated. And as we strive for high levels of reuse and integration,
our applications become more and more interconnected. The saving grace is
that one team does not have to know everything about the workings of
another team. They only need to be aware of each other when one team
moves an element from its “Verified” state to either a “Change Pending” or
“Uncertain” state (see Exhibit 5).

Visualize two teams working on strands that related to the inventory pricing.
The Blue Team is enhancing the pricing function and the Green Team is
adding attributes to an inventory database. The Green Team discovers that a
previously built and verified Object Design should be changed in order to
complete work on their task. The Object Design in question is changed from
“Verified” to “Change Pending.” This immediately changes all related elements
in the repository to “Uncertain.” The proposed change might have an effect
on any associated element. Some developer will have to exert energy to check
these associated elements for any ill effects the change may cause. If no other
team is working on a strand containing elements associated with the Object
Design, the Green Team is free to proceed without concern. However, if the
Object Design element, or any element associated with it, is part of the strand
in another team’s task, the teams need to coordinate their efforts.

The Blue Team has included that particular Object Design in its strand. No
changes were immediately apparent to the Blue Team when they started their
work, but they were adding modules that used the Object Design, so the
Object Design is listed as part of their task definition.

The change planned by the Green Team is communicated to the Blue
Team. At this point, the teams have an obligation to coordinate their efforts.

Exhibit 5

Element State Model

Uncertain

Change Pending

Verified

Declared

element
reviewed with

element is
created

element is
changed

identify
need for
change

related element
goes change

pending

identify
need for
element

element
reviewed no

assent

AU1292Ch04Frame Page 68 Sunday, August 25, 2002 11:56 AM

Managing Developers… Or Dance with the One Who Brought You

69

This also means that the Blue Team must be part of the review that will move
the new definition of the Object Design from “Uncertain” to “Verified” (see
Exhibit 6).

As a manager, I try to define tasks with as little coupling as possible. The
coordination may have been easier if the two tasks were assigned in sequence.
I could have assigned the Green Team’s task first and scheduled the Blue Team’s
work to begin after the Green Team was done. This way, the Blue Team would
begin their work on a newly refined Object Design. On the other hand, the
insight from the Blue Team’s perspective may be useful to the refinement of the
Object Design, and after the Blue Team starts work, they might identify a desirable
change to the Object Design requiring additional work.

The fact is, one does not know which approach will require less work or
be less inconvenient. It would be a waste of time to try to figure it out.
Delaying needed work on the off-chance that some part of the application
may change is always the wrong decision. We cannot know, but we can build
an environment in which overlaps and potential dissonance are easily iden-
tified and teams are rewarded for keeping the repository in a consistent state
(meaning: all elements are in a “Verified” state).

Motivating by Rewarding Consistent Work

One way to lead developers toward collaborative development is to reward
people for building product that is complete, internally consistent, and verified.

Exhibit 6

Shared Element as Bridge between Teams

Designs

Requirements

Modules

Object
Design

Modules

Requirements

Blue Team

Green Team

notification of
change of state

Designs

AU1292Ch04Frame Page 69 Sunday, August 25, 2002 11:56 AM

70

Dynamic Software Development: Managing Projects in Flux

By “reward” I am not talking about monetary reward. I have doubts over the
long-term effectiveness of bonuses and cash awards. We tend to be motivated
by expectations from our peers and from our supervisors, as well as the
expectations we set for ourselves. Expectations are best communicated through
regular, short, direct feedback.

Think about the Blue Team. Team members are working on the enhance-
ment of the Pricing Function. They are assuming that the Object Design is
“solid” and have begun to build elements necessary to complete their task.
But suddenly they get a message saying that the Green Team is proposing a
change to the Object Design. One would predict that the Blue Team might
be a little irritated. But as the manager, you have the opportunity to exacerbate
the situation or capitalize on it.

The goal is to build effective software solutions — continuously. That means
maintaining the repository in a state where all elements are accurate, complete,
and internally consistent. The wrong message to give the Blue Team is:

“OK — Sure, you have more work to do, but you still have to be
done by the end of day tomorrow.”

This punishes the team for working with the Green Team, creating a path of
least resistance to leave the repository in an inconstant state. This type of
message rewards developers for being isolated and rewards the individual
effort — although the individual effort has a detrimental effort in the larger
context.

A more constructive message is:

“Check with the Green Team and help define the Object Design.
Let me know how this changes your task definition.”

All teams will identify the need to change elements you did not anticipate. The
expectation to establish is that “care and feeding” of the knowledge about the
application is far more important than maintaining the original definition of a
task. All managers and developers must get into the habit of focusing on the
repository and the real knowledge being created. The plans and task definitions
are aids to the coordination of resources and monitoring of progress, but the
plans and task definitions are not the product adding value to the user.

They [programmers] often seem to think that their primary function
is to invent clever new algorithms, rather than to perform useful
work.

—Ed Yourdon

Applying Dynamic Management

Identify a small group of developers who, in your opinion, work well together.
Rearrange their office space to provide them with a dedicated work area (e.g.,

AU1292Ch04Frame Page 70 Sunday, August 25, 2002 11:56 AM

Managing Developers… Or Dance with the One Who Brought You

71

a conference space or common area outside their offices). Identify a moder-
ately-sized maintenance or enhancement task and assign the work to the team
(rather than to an individual developer). Ask the team to do everything
necessary to deliver a complete, internally consistent, and reviewed product.
Ask them to track the elements they build and change. After the work is
complete, analyze the work the team accomplished and the team itself.

To analyze the work the team accomplished, compare the list of elements
tracked by the team with the list of elements drafted as part of the “Applying
dynamic management” exercises in Chapters 1 through 3. Discuss similarities
and differences with the team. Ask them to identify the elements and associ-
ations they found most useful.

To analyze the team itself, discuss the team approach to application
development with the developers. Did every developer feel that the group
was functioning well? Did they resolve interpersonal issues effectively? Did
they allocate work based on the skills and interests of the individuals? Did
any of the developers find it difficult to critically review other team member’s
work product? (See Exhibit 7.)

Add a topic to your online discussion group and attach a summary of your
team’s experience (see Exhibit 8). Invite members of your discussion group
to review and comment on the results. Explore ways to expand the experiment
to other development efforts.

Chapter 4 Case Study Excerpt

The following narrative is a set of excerpts from the full case study in Appendix
G relating to the topics in this chapter.

The developer’s conference was notable for two reasons: (1) the developers
from headquarters and the Midwest left with a sense that they were all in the

Exhibit 7

Online Discussion Index

Dynamic Management

Discussion Topic Index

Topic: Information-Based Management

Topic: Developers
Topic: Planning
Topic: Defining Work

File Edit View Tools Help

DM

(click on Topic for discussion)

AU1292Ch04Frame Page 71 Sunday, August 25, 2002 11:56 AM

72

Dynamic Software Development: Managing Projects in Flux

same boat; and (2) the developers knew that their managers were interested
in improving the way software was built at DSM and were willing to listen
to their ideas. After the now-famous conference room discussion, many hallway
discussions occurred. By Thursday, there was a consensus that however they
redefined “process” and “phase,” they needed a common repository to store
their “stuff.” The exact definition of “stuff” was elusive, but a shared memory
was going to be critical to their success. In the minds of the West Coast
developers, this was visualized as a great knowledge base where all the project
deliverables were stored. In the minds of the Midwest developers, this was
visualized as a database storing their collective memory.

As they talked, a simple model emerged (see Exhibit 9). They all agreed
that the products they built consisted of many different kinds of elements
(e.g., pages of requirements, pieces of designs, code, libraries, user manuals,

Exhibit 8

Beginning Dialogue

Exhibit 9

Initial Information Model

Discussion for topic: Developers

- Moderator:

+ Moderator:

File Edit View Tools Help

DM

The team exeriment I outlined is now completed.
 I have attached a summary of the results . . .

+ Reply1:

It seems the work was good. The team reported that the
continuous review was hard at first, but they got into it.
So far no errors detected in production.

How is the quality of their work?

+ Reply2: We could try this approach in my area. I have a 3month effort
pending and some willing participants.

Product

ElementsTasks

Element
Definition

Developer

AU1292Ch04Frame Page 72 Sunday, August 25, 2002 11:56 AM

Managing Developers… Or Dance with the One Who Brought You

73

database tables, interface designs, test cases, etc.). They all agreed that they
worked by identifying some objective (i.e., a task) and building the elements
as they work toward that objective. However, interesting insights began to
emerge as they discussed the elements themselves. Elements were
connected — not to other elements of the same type, but to elements of
different types that described the same feature or subsystem. The “cohesive
chunks of the product” that the Midwest manager drew in the conference
room were strands of pieces of knowledge about a function.

Before leaving the conference on Friday, the developers had added a
notation to their informal model to represent the associations among elements.
They also decided there had to be some agreement as to what those elements
were and what associates were typical, so an entity called “element definition”
was added to the model.

The action item accepted by every developer was to begin defining each
model in greater detail and to start populating the models with actual instances
of elements and element definitions. No one was sure where this would lead,
but all agreed it would be an interesting journey.

Over the course of the next year, the CIO deliberately defined development
efforts involving both West Coast and Midwest developers (see Exhibit 10).
Many of developers at DSM headquarters spent time at the Midwest facility.
Part of every project plan was the enhancement of the repository model and
improvement of the development practices using it.

Exhibit 10

Midwest Development Work Area

Lunch

office

office

office

office

war room

pu
bl

ic
 s

pa
ce

other
departments

office

office

of
fic

e

other
departments

AU1292Ch04Frame Page 73 Sunday, August 25, 2002 11:56 AM

74

Dynamic Software Development: Managing Projects in Flux

The developers visiting from the West Coast got a real appreciation for the
connection between physical surroundings and philosophy. Each member of
the development staff at Midwest had his own office. There were a couple
of workstations set up in the common area where users and developers had
frequent informal meetings to discuss the latest features and discuss plans for
the next round of improvements. But what intrigued the West Coast developers
most was the time spent in the “war room.” The war room was a conference
room dedicated to the development group (i.e., they had exclusive use of the
space). It was used as a command center. The walls and whiteboards were
thick with diagrams and notes and code printouts. Several times a day, groups
of developers would confer about the current project. One of the Midwest
developers commented that it was great to be able to walk into the war room
and immediately have a sense of the group’s status.

By contrast, the Midwest developers spending time at the West Coast facility
noted that the partitioned layout seemed to dictate a partitioned approach to
work. With no space to exchange information informally, the developers had
to pass information from person to person in a more structured way.

The developers set up an online conference with a discussion section to
share their ideas on the repository and how it should be used. Within six
months, they had put together some prototypes of a database system for the
repository and were updating it with their element definitions. As they refined
or added definitions to the repository model, the developers noted many
common element definitions. Each shop included elements such as:

�

Test cases associated with units of code

�

Requirements associated with object/entities

�

Object/entities associated with database tables

There was disagreement as to what constituted a unit of code. The West
Coast used mostly C; Midwest used C++ and some Java. There were differences
in the format and size of the “requirements statements.” The West Coast used
a variation on the formal DSM-DM with defined event and data definitions,
and the Midwest requirements read more like narratives. The West Coast
documented business rules associated with data object definitions while the
Midwest recorded their policy rules with the requirement narratives.

The greatest disagreement involved the definition of “design.” Both groups
used different methods and models to represent design decisions. The West
Coast made use of state models for interface designs while Midwest used less
formal navigation diagrams. Both used class diagrams but different graphic
notations.

Vocabulary was also a difficult issue. Each group had its own definitions
for common words. “Object” and “Entity” were synonyms at Midwest but they
had distinct definitions at DSM headquarters. Midwest used “use cases,” which
were very similar to what the West Coast called “event definitions.” The
manager at Midwest and the CIO often got together and declared company
definitions when consensus was not reached quickly.

AU1292Ch04Frame Page 74 Sunday, August 25, 2002 11:56 AM

Managing Developers… Or Dance with the One Who Brought You

75

The results of the effort were rather impressive. While the development
efforts initiated since the conference were small (i.e., none larger than four-
month duration with four to eight developers), the work being completed
was good. The users liked the fact that real solutions were occurring often,
with an apparent improvement in overall quality. The developers loved
building good applications as well as building effective development tech-
niques. They also liked the idea that they were significant players in defining
the methodology although no one used the word “methodology.” One devel-
oper said it felt like they were creating a culture — not a method.

There were problems. The biggest was with West Coast managers, who
were feeling uneasy about the lack of control. They complained to the CIO
that there was no good way of measuring productivity and monitoring
progress. “Users ask for something and the developers give it to them,”
complained one manager. “We need a way to bring back some planning into
the equation.” The CIO agreed that the managers needed to get more involved
in the process of defining development methods. And while he did not say
anything, the CIO thought to himself that giving the users what they want is
not entirely bad.

AU1292Ch04Frame Page 75 Sunday, August 25, 2002 11:56 AM

AU1292Ch04Frame Page 76 Sunday, August 25, 2002 11:56 AM

77

Chapter 5

Monitoring Productivity…

Or Getting Better All the Time

I have made reference to productivity measurements in previous chapters.
This chapter defines how the repository is used to generate productivity figures.
These numbers are useful in monitoring progress, evaluating effects of
improvement efforts, and projecting estimates of proposed work.

Get your facts first, and then you can distort them as much as you
please.

—Mark Twain

Measuring Work Done

Chapter 2 equated work with chunks of information. Elements added to the
repository are evidence of work done. Chapter 3 initiated a discussion of
productivity with the example of the Blue Team and Clayton. Now we can
dig deeper into the issue of measuring the amount of work done by developers
and teams in a continuous development effort.

As Clayton and the Blue Team are working, the effects of their efforts are
reflected in changes in the development repository. In the information model
in Appendix D, these changes are referred to as “improvements.” These
improvements are reflected in the repository as elements being transformed
from state to state. That is, a developer building an initial version of an element
moves the element from “declared” to “uncertain.” An element being reviewed
and approved moves the element from “uncertain” to “verified.” As the
developer works on a task, new elements are created, existing elements are
changed, and elements are verified or reviewed.

AU1292Ch05Frame Page 77 Sunday, August 25, 2002 11:55 AM

78

Dynamic Software Development: Managing Projects in Flux

By way of example, I will describe the way Task C is accomplished by
the Blue Team (declared in Exhibit 1). The plan estimated that the task involved
23 different elements. The Blue Team’s objective is to enhance the product
pricing formula.

The team finds the current formula described by a strand consisting of the
Requirements, one Object Design, a related Relational Database Table, one
Java Class based on the Object Design (methods of the class access the
database table), and three Test Suites. This strand is typically based on the
association definitions depicted in Exhibit 2. The frequency declared in the
table should be computed from the current repository. It means that Require-
ments in the repository are associated with a average of two Object Designs.
Each Object Design is associated with about two Relational Tables. On average,
each Relational Table is accessed by three Java Classes, and there are typically
four Test Suites built for each Java Class. So, if the Blue Team determines that
Task C will require one additional Object Design, we can project that the
team will also have to build (or reuse) three Relational Database Tables, three
Java Classes, and four Test Suites.

Exhibit 1

Development Plan

Task ID Focus Element
Element
Count Description

Priority/
Sequence Assigned

A Customer
Object Design

20 Add customer
order status

Done Blue Team

B Customer
Object Design

12 Add customer
credit query

Done Clayton

C Product Object
Design

23 Enhanced product
pricing formula

1 Blue Team

D Product Object
Design

8 Replace inventory
valuation method

2 Clayton

E Product Object
Design

17 Add product
inquiry

3 ?

Exhibit 2

Examples of Association Definitions

Association

→

←

 Association

Element Meaning
Avg.
Freq.

Avg.
Freq. Meaning Element

Requirement suggests data
defined as

2 5 defines data
suggested in

Object Design

Object Design is stored as 3 1 implements Relational Table
Relational Table is accessed by 3 2 accesses Java Class
Java Class implements 1 1 is implemented as Object Design
Java Class is exercised by 4 1 exercises Test Suite

AU1292Ch05Frame Page 78 Sunday, August 25, 2002 11:55 AM

Monitoring Productivity… Or Getting Better All the Time

79

Exhibits 3 and 4 graphically predict the projected work of the Blue Team
in their effort to complete Task C. Currently, the repository shows the pricing
function is described by its Requirement, one Object Design, one database
table, one Java Class, and three Test Suites. This strand is smaller than average.
Based on the association definitions in Exhibit 2, the average requirement is
associated with two Object Designs, three Relational Tables, three Java Classes,
and four Test Suites. The frequencies are averages. The repository would have
larger strands.

The element and association definitions determine the estimated
work requirements for a task.

Exhibit 4 also depicts the repository after the Blue Team completes Task C.
If the team is correct in projecting the need for one more Object Design, and
the average frequencies from the repository are accurate, the team’s work is
defined by three Table definitions, one Java Class, and four Test Suites.

At this point, we do not know if the existing elements will need to be
changed or if some of the projected elements can be defined by reusing

Exhibit 3

Before Task C

Exhibit 4

After Task C (Projected)

Object
Design A

Java Class A

Requirement

Table A

Test Suite A

Table B3

Object
Design A

Java Class A

Requirement

Table A

Test Suite A

Object
Design B

Java Class B

Test Suite B

Table B2

Table B1

AU1292Ch05Frame Page 79 Sunday, August 25, 2002 11:55 AM

80

Dynamic Software Development: Managing Projects in Flux

existing elements. But in either case, the team will have to exert work to
move the repository from its current consistent state to a new (better) consistent
state.

Measuring What Has Changed

The repository in Exhibit 5 reflects the work performed by the Blue Team
after the first day. The team created the new Object Design and discussed
the characteristics of the associated elements. They decided that the Object
Design would require two database Tables (rather than the average of three).
They determined that the new Object Design would be implemented as one
Java Class and that it was likely to require four Test Suites to exercise it
effectively. The work performed by the team can be summarized by listing
the transitions made to each element (see Exhibit 6). The transitions can be
called “Improvements” because the work, insight, and creativity of the team
results in improvement or added value to the repository.

The new Object Design is built, so its state moves from “Declared” to
“Uncertain.” The “Uncertain” state means the element exists and the developers
feel it is complete, but it has yet to be reviewed for consistency with associated
elements. The “Declared” state means that the developers know the element
is needed, but it does not yet exist (or has not been completed).

Work went into each of these improvements. I do not know, nor do I care,
if Improvement 3 took more time than Improvement 8. Over time, things even
out.

After the second day of work, the Blue Team had made more progress
and that good effort is reflected in the repository (see Exhibit 7).

Exhibit 5

After Day 1

Object
Design A

Java Class A

Requirement

Table A

Test Suite A

Object
Design B

Java Class B

Test Suite B

Table B2

Table B1

Uncertain

Change Pending

Verified

Declared

AU1292Ch05Frame Page 80 Sunday, August 25, 2002 11:55 AM

Monitoring Productivity… Or Getting Better All the Time

81

Developers working on a database defined the Relational Tables that will
store attributes of the new Object. In completing their work (see Exhibit 8),
the developers mark the original Requirement as “Change Pending.” The need
to update our knowledge of the requirement was clear from the beginning.

Exhibit 6

Day 1 Improvement Log

Element Improvement

1 Object Design B Declared
2 Object Design B Uncertain
3 Table B1 Declared
4 Table B2 Declared
5 Java Class B Declared
6 Test Suite B1 Declared
7 Test Suite B2 Declared
8 Test Suite B3 Declared
9 Test Suite B4 Declared

Exhibit 7

After Day 2

Exhibit 8

Day 2 Improvement Log

Element Improvement

10 Object Design B Uncertain
11 Table B1 Uncertain
12 Table B2 Uncertain
13 Requirement Change Pending

Object
Design A

Java Class A

Requirement

Table A

Test Suite A

Object
Design B

Java Class B

Test Suite B

Table B2

Table B1

Uncertain

Change Pending

Verified

Declared

AU1292Ch05Frame Page 81 Sunday, August 25, 2002 11:55 AM

82

Dynamic Software Development: Managing Projects in Flux

The original objective described in the Task was to enhance the product
pricing formula. Enhancing the system to consider additional information (i.e.,
the new object) must be reflected in the business knowledge retained in the
repository. The team started this effort today and are reasonably sure what
they have changed is correct, but the day ended without consensus. So, the
Requirements element remains in a state of “Change Pending.” The Object
Design A is also in an “Uncertain” state because its associated Requirement
is being changed. Object Design A might not need any adjustment, but it will
have to be reviewed before this part of the product is verified. The “Uncertain”
designation records that work must be performed on this element.

After Day 3 (see Exhibit 9), the work is nearly complete, but changes in
the repository are binary. There is no such thing as an improvement that is
75 percent complete. The repository states that the team has reviewed the
changes to the Requirement element and have concurred that the new version
of the requirement is correct and consistent with all associated elements (see
Exhibit 10). Object Design B is also verified against its associated Requirement,
Tables, and Java Class. The Java Class and two of the associated Test Suites

Exhibit 9

After Day 3

Exhibit 10

Day 3 Improvement Log

Element Improvement

14 Object Design B Verified
15 Requirement Verified
16 Java Class Uncertain
17 Test Suite B1 Uncertain
18 Test Suite B2 Uncertain

Object
Design A

Java Class A

Requirement

Table A

Test Suite A

Object
Design B

Java Class B

Test Suite B

Table B2

Table B1

Uncertain

Change Pending

Verified

Declared

AU1292Ch05Frame Page 82 Sunday, August 25, 2002 11:55 AM

Monitoring Productivity… Or Getting Better All the Time

83

are in the “Uncertain” state. The team has not reviewed the Tables (B1 and
B2) and associated Java Class, so these elements remain “Uncertain.” Two
Test Suites are still being built, so they remain “Declared.”

On the morning of the fourth day, the remaining Test Suites are completed,
moving them to the “Uncertain” state. The team performs the remaining
activities of reviewing the Tables against the Java Class, and the Java Class
against the Test Suites. Once all have concurred that the elements are correct
and consistent, Task C is done (see Exhibits 11 and 12).

The Blue Team has been working on the task for four days. They have
accomplished an objective of enhancing the product pricing formula that was
originally described with seven elements. It now consists of 15 elements. The
repository (i.e., knowledge) is now a consistent state and ready for future
work. The organization has “documented” the work in a way that records the
knowledge necessary for future enhancements.

Exhibit 11

Day 4

Exhibit 12

Day 4 Improvement Log

Element Improvement

19 Table B1 Verified
20 Table B2 Verified
21 Test Suite B3 Uncertain
22 Test Suite B4 Uncertain
23 Java Class Verified
24 Test Suite B1 Verified
25 Test Suite B2 Verified
26 Test Suite B3 Verified
27 Test Suite B4 Verified

Object
Design A

Java Class A

Requirement

Table A

Test Suite A

Object
Design B

Java Class B

Test Suite B

Table B2

Table B1

Uncertain

Change Pending

Verified

Declared

AU1292Ch05Frame Page 83 Sunday, August 25, 2002 11:55 AM

84

Dynamic Software Development: Managing Projects in Flux

Actual work is defined by the new and changed (and deleted)
elements in the repository. The work is complete when the
repository reflects all we know about the current state of the
product.

Determining Work’s Cost

The Blue Team consisted of four developers, each working 3.5 on Task C.
Each team member was on the job for about eight hours each day (four hours
on Day 4). A total of 192 person-hours were dedicated to the task. This time
can be allocated to the various elements simply by distributing the hours
evenly across the improvements and summing by element. The changes in
the repository suggested 27 improvements or a little more than seven person-
hours (7.11) for each. I can distribute the precise fraction, but I prefer to
simply allocate whole numbers. The decision to allocate seven hours (or eight
hours) is simply a guess as to the relative size and complexity of the element.
A more accurate allocation can be implemented by weighting the hours by
the Weight Units of the Element Definitions (refer to Chapter 3). For this
example, I allocate the hours as shown in Exhibit 13. Summing the allocated
hours by element results in an approximation of the hours each element
consumed during Task C (see Exhibit 14).

I am not interested in when work was done, in which order, or by whom.
The team is responsible for meeting the task’s objectives. The task is accom-
plished by adding value to the repository. The value is tracked by the changes
of state of the related elements. There is no attempt to factor in lunch breaks,
time spent looking up articles on developer-oriented Web sites, and talking
about yesterday’s ballgame. If team members spent 10 percent of their time
on these social activities while working on Task C, they would probably spend
10 percent of their time on similar social activities while working on a future
task.

These numbers are valuable for future planning. As new tasks are defined,
the historical data is used to project how long the task will take. A team of
similar composition and skills working in the same domain will probably work
at a similar rate.

The actual cost is the total resource charged to the develop-
ment effort. That cost can be allocated to the elements listed
in the improvement log.

Demanding Enhanced Value

Looking back to Chapter 3, it was estimated that the task would involve 23
different elements and take approximately 3.5 days (given that the Blue Team
has been working at a rate of six to seven elements per day). Task C actually
involved 15 elements, of which nine were new or changed. Their productivity

AU1292Ch05Frame Page 84 Sunday, August 25, 2002 11:55 AM

Monitoring Productivity… Or Getting Better All the Time

85

Exhibit 13

Hours Allocation

Element Improvement Hours

1 Object Design B Declared 7
2 Object Design B Uncertain 8
3 Table B1 Declared 7
4 Table B2 Declared 7
5 Java Class B Declared 7
6 Test Suite B1 Declared 7
7 Test Suite B2 Declared 7
8 Test Suite B3 Declared 7
9 Test Suite B4 Declared 7

10 Object Design B Uncertain 7
11 Table B1 Uncertain 7
12 Table B2 Uncertain 7
13 Requirement Change Pending 7
14 Object Design B Verified 7
15 Requirement Verified 7
16 Java Class B Uncertain 8
17 Test Suite B1 Uncertain 8
18 Test Suite B2 Uncertain 7
19 Table B1 Verified 7
20 Table B2 Verified 7
21 Test Suite B3 Uncertain 7
22 Test Suite B4 Uncertain 7
23 Java Class B Verified 7
24 Test Suite B1 Verified 7
25 Test Suite B2 Verified 7
26 Test Suite B3 Verified 7
27 Test Suite B4 Verified 7

Exhibit 14

Hours/Element Summary

Element Hours

Requirement 14
Object Design B 29
Table B1 21
Table B2 21
Java Class B 22
Test Suite B1 22
Test Suite B2 21
Test Suite B3 21
Test Suite B4 21

AU1292Ch05Frame Page 85 Sunday, August 25, 2002 11:55 AM

86

Dynamic Software Development: Managing Projects in Flux

rate for the four-day task is three to four elements per workday. Does this
mean the team’s productivity is dropping and I should crack the whip or
disband the team? Probably not. This task’s information is one of many gauges
you should use in monitoring the development effort.

The first thing to communicate to the team is: “Good work! Thank you for
achieving your goal of adding value to the services we provide to the
enterprise.” The goal is not higher productivity, it is greater value. The Blue
Team’s objective is to enhance the product pricing formula and, if that is
accomplished, the environment is functioning well.

Two orchestras play the same symphony. The one that finishes first
is not necessarily the best.

If I see productivity numbers dropping over time, I will look for causes
and plan actions aimed at enhancing performance. Teams can always use
more skill, better tools, and closer working relationships with users and policy
makers. If I see productivity numbers improving, I will look to see if the
change can be attributed to process improvement efforts recently initiated.

I would also check to verify that the “improved” numbers are not a symptom
of declining quality. The enterprise is not served by a development group
that is producing lots of bad stuff. The enterprise is served by a development
group that produces valuable solutions day after day, month after month —
regularly and consistently.

Applying Dynamic Management

Discuss the ideas in this chapter with the development team defined at the
end of Chapter 4. Identify the work products produced by the team while
working on the task. Identify the changes produced by the team that indicate
progress. Can you use those changes to monitor the progress of the task?

Discuss the idea of an improvement log.
Build a representation of such a log for the last task performed by the

team (see Exhibit 15).
Do the developers feel the log can be integrated into their development

environment (i.e., have log entries been automatically created by patches to
their development tools)?

Discuss the idea of allocating time to the element via the improvement log.
Do the developers feel this information is representative of the value they

add to the applications?

Exhibit 15

Task: XYZ Enhancement

Element Transition Comment

AU1292Ch05Frame Page 86 Sunday, August 25, 2002 11:55 AM

Monitoring Productivity… Or Getting Better All the Time

87

By watching changes in the repository, you reduce or eliminate the need
to require status reports from individual developers. This allows you to focus
on monitoring and controlling the development effort, while your developers
are focused on creating effective solutions (see Exhibit 15).

Add a topic to your online discussion group and explore the idea of using
an improvement log to track the states of the elements (see Exhibit 17).

Chapter 5 Case Study Excerpt

The following narrative is a set of excerpts from the full case study in Appendix
G relating to the topics in this chapter.

Exhibit 16

Online Discussion Index

Exhibit 17

Beginning Dialogue

Dynamic Management

Discussion Topic Index

Topic: Information-Based Management

Topic: Developers
Topic: Planning
Topic: Defining Work

Topic: Productivity

File Edit View Tools Help

DM

(click on Topic for discussion)

Discussion for topic: Productivity

- Moderator:

File Edit View Tools Help

DM

What are your thoughts about using an improvement log to track
the work being formed by the development teams?

+ Reply1:

- Moderator:

 It seems too simple to be effective.

So far the team has been reporting the idea works.

- Reply2: Simple is good. I’m getting good results and the
developers don’t mind not spending time on those time reports

AU1292Ch05Frame Page 87 Sunday, August 25, 2002 11:55 AM

88

Dynamic Software Development: Managing Projects in Flux

The development group of DSM first became interested in the CMM about
13 years ago. The first articles and books published that explored the idea of
a set of observable attributes of a competent organization caught the imagi-
nation of many members of DSM’s management. DSM never considered formal
appraisal, but did invest a great deal of time and energy in modifying its
methodology (DSM-DM) to reflect the Carnegie Mellon University Software
Engineering Institute’s maturity model.

The DSM managers were particularly interested in developing and imple-
menting planning and measurement techniques. There was a sense of optimism
that the software development process could be manageable and predictable,
if only the work could be performed in a consistent manner and deliverables
could be analyzed and measured. The DSM methodology provided a well-
defined framework of the development process (see Exhibit 18). Each task
had pre-conditions (i.e., completed deliverables from previous tasks) and a
clear objective (i.e., the creation of a deliverable used in the next task).

As DSM gained more experience with measurement activities, the managers
allocated more of their resources to the quality assurance process. Several of
the analysts were given the job of developing techniques for monitoring the
development process and providing measurements of quality and productivity.

The developers were asked to provide more detailed information about
the tasks they were performing. Programmers were asked to provide reports
on the complexity of their programs. Designers had to include in their status
reports the counts of interface complexity and evaluations of the degree of
class reuse. Deliverables from database design tasks had to include measures
of table normalization and transaction optimization.

While the information gathered from the measurement program was useful,
the additional requirement of reports and summaries was adding to the
workload of the developers. The extra work was minimal when the develop-
ment task was small. For larger efforts, or for projects that had fallen behind
schedule, the developers complained that the imposition was hindering their

Exhibit 18

Old Generic Development Process

Process
x -1

Process
X

deliverable
x -1

Process
x +1

Process
x -2 deliverable

x -2

deliverable
x

reports &
summaries

SQA &
Planning

AU1292Ch05Frame Page 88 Sunday, August 25, 2002 11:55 AM

Monitoring Productivity… Or Getting Better All the Time

89

progress. It was not surprising that the developers took little care in the accuracy
of the reports and summaries the developers prepared for the SQA (software
quality assurance) and planning analysts. After all, the real work had to get done
and these reports were not helping them get the product out the door.

The analysts working on the measurements were able to produce impres-
sive projections. When the DSM-SISS project was being planned, the measure-
ments from past development efforts formed the basis for estimates of time
and resource requirements.

After that project’s failure, managers and executives of DSM wanted to
know how the estimates could be so far off. The analysts obtained information
about the Midwest product and created a set of numbers based on its actual
features and code. They discovered that the Midwest product was twice the
size of the product described by the initial requirements statement of the DSM-
SISS (two and a half times the number of function points). They reported that
the features the marketing group were trying to add to the project during the
first six months would have doubled the estimate for the project.

The SQA analysts concluded their report by saying that the original esti-
mates were correct given the projected size of the product, but that the
requirements statements were not accurate. The Director of Applications
Development asserted, with a great deal of frustration, that the development
team could not have known the full extent of the system’s requirements. That
knowledge was not available until they and the regional managers had a
chance to refine the customer’s view of the product.

One of the post-mortem meetings concluded with the CEO saying:

“So, it appears we can accurately measure our software products
after they are finished. We can accurately say what a project should
have cost us if we had known everything at the beginning of the
project that we know at the end. But we can’t know at the beginning
of a project what a project will require until the end.” He shook his
head and said, “Work on it.”

The push for incremental, repository-based development had many of the
DSM managers and SQA analysts concerned. They expressed their discomfort
to the CIO by saying that the developers seemed to be acting more like
hackers than professional developers. They reported that the code being
produced seemed to be of good quality (there was a 64 percent reduction in
the number of defects reported in the first six weeks of operations). And they
liked the fact that the developers were actively reviewing each other’s products.
However, there was no formal measurement like they had when they were
following the DSM-DM.

The CIO could see that the managers were unclear about how they fit into
the scheme of things. Was this process going to put them out of a job? What
was the connection between the work that the developers were doing and
the strategic planning process? How should decisions about resource allocation
and project prioritization be made?

The managers and the CIO began a concerted effort to rethink how
planning and measurement should best be accomplished given the good work

AU1292Ch05Frame Page 89 Sunday, August 25, 2002 11:55 AM

90

Dynamic Software Development: Managing Projects in Flux

that was coming out of the ranks of the developers. They started by admitting
that the accuracy of the data they had been gathering could be better. The
CIO asked if there was a way of gathering information that did not require
the developers to do extra work. He then suggested that the repositories being
developed seemed like a gold mine of useful information.

The SQA analysts and manager began paying closer attention to the online
conference and the discussion of the project repository. They began to
formulate a model that shifted focus from the individual deliverables produced
in processes defined in the methodology to the changing state of the repository
itself. They noted that the developer’s tasks could potentially add/change/
delete many different types of information stored in the repository. For
planning purposes, they needed to study the pattern of these changes.

Out of this analysis came a proposal to maintain an “improvement log” — a
simple list of the changes made to the repository. The physical form of the
repository included the company’s configuration management systems, a newly
implemented “pending task list,” and the directories where the project documents
were stored. They augmented the development environment to update the
improvement log as the developers checked-in configuration items and made
changes to the project directories. This allowed the information to be captured
with nearly no extra work required on the part of the developers. The SQA
analysts began writing scripts to query the configuration management system,
the project directories and entries in the improvement log, and to subsequently
produce summaries of activity with flags calling attention to unique situations.

As time went on, the concern and apprehension of the managers and SQA
analysts changed to intrigue and surprising enthusiasm. One analyst com-
mented, “We are finally measuring something real rather than regurgitating
what others chose to tell us.”

Figure 19

New Generic Development Process

Task
X

Task
Y

Task
Z

SQA &
Planning

Pendin
g
Tasks

Config
Mgmt
Sys Project

Directorie
s

Query

current status
& changes

AU1292Ch05Frame Page 90 Sunday, August 25, 2002 11:55 AM

91

Chapter 6

Strategic Framework…

Or Metadesign Integrity

A major role of managers and developers is to maintain an accurate model
of how software is implemented. This model is a statement of how elements
of existing technology will be employed to provide service to the enterprise.
The vast majority of implementation decisions for any given function should
be “generic.”

It is a profoundly erroneous truism … that we should cultivate the
habit of thinking about what we are doing. The precise opposite is
the case. Civilization advances by extending the number of important
operations which we can perform without thinking about them.

—Alfred North Whitehead

The Importance of System Architecture

Every development organization creates policies (i.e., decisions made ahead
of time) for how systems will be built. The system architecture of a develop-
ment environment is a set of collective decisions the organization makes
governing the shape of the systems it creates. This architecture is created
within a spiral of decision making that runs up and down the enterprise’s
management structure.

Corporate-level decisions set global aspects of the architecture. As a result
of these decisions, developers start the process of building the elements in
the repository knowing the operating system, the technology available to the
users, and the characteristics and requirements of the network (see Exhibit 1).
This level of architecture is created by your buying decisions. This architecture

AU1292Ch06Frame Page 91 Sunday, August 25, 2002 11:54 AM

92

Dynamic Software Development: Managing Projects in Flux

is embodied in the hardware, operating systems, networks, development tools,
and utilities you buy or lease.

The decisions relating to choice of methods, type and content of training,
development tools, and language are typically determined at the level of the
development organization. This level of architecture is formed by the training
you choose and the techniques you adopt. If you hire a large number of
developers with heavy C experience and reinforce their expertise with training
in advanced C, you are creating an expectation that the parts of the system
requiring code will be written in C. It is not likely other languages will be
considered when all evidence indicates that the implicit decision has been
made: if code is needed, write it in C. If the training is conducted by a
consultant advocating a state-driven design method, the environment tends to
adopt a rule: when the situation calls for design, think state-driven.

Individual developers make similar decisions about interfaces, algorithms,
formats, and styles. You cannot consider all variations of style while writing
code, so you “standardize” on certain rules. You often have no objective
rationale for any given convention; but by being true to your “style,” you
avoid a lot of thrashing. As soon as you know you will write a function, your
style rule kicks in and says “functions are created this way.” When you see
you will have to write a loop construct, you pull out your standard loop from
memory and simply fill in the details.

Exhibit 1

Architecture Decision Spiral

Network
Hardware

T
 a

 c
 t

i c
 a

 l

S
 t

r
a

t e
 g

 i
c

Operating
System

User
Equipment

Development
Tools

Naming
Conventions

Design
Techniques

Languages

Format
Style

Interface

Configuration
Mgmt Tool

Telecom
Carriers

Database
Mgmt System

Algorithm

AU1292Ch06Frame Page 92 Sunday, August 25, 2002 11:54 AM

Strategic Framework… Or Metadesign Integrity

93

We must recognize the strong and undeniable influence that our
language exerts on our ways of thinking, and in fact defines and
delimits the abstract space in which we can formulate — give form
to — our thoughts.

—Wirth

The sum total of these decisions defines the architecture in which all the
enterprise’s software is created. These decisions become patterns or rules.
These rules constitute decisions made ahead of time for nearly all elements
added to the repository. As the need for some information is determined, the
architecture defines the information’s implementation. For example, the devel-
opment team recognizes the need to define the user’s requirements (see
Exhibit 2). The rules of the architecture map that recognition into an imple-
mentation — perhaps representing the requirements as Use Cases and sup-
porting Narrative. As the requirements are being discussed, it becomes clear
that some information needs to be defined in more detail. The rules of the
architecture direct the developer to map the need into a Class Diagram drawn
on the CASE tool purchased from W corporation. The CASE tool supports
Java and generates initial code structures based on class information. This
becomes part of the architecture. When you identify the need for program
logic, the decision to generate Java Class is given. You have standardized on

Exhibit 2

Decision Mapping

A Idea / Need need
requirement
- therefore:

Use Case
&

Narrative

need
object design
- therefore:Class

Diagram
drawn on

CASE Tool W

Table
Design

in DBMS X
Java Class

using
compiler Y

Browser
Form
using

GUI Tool Z

need
stored data
- therefore:

need
program logic
- therefore:

need
user input
- therefore:

need
data input
- therefore:

AU1292Ch06Frame Page 93 Sunday, August 25, 2002 11:54 AM

94

Dynamic Software Development: Managing Projects in Flux

the Java environment from the vendor Y, so the class is compiled using that
tool.

During the design of the function, the team determines the need for
persistent data members of the object. The enterprise has a license for the X
DBMS, so the decision of what form the stored data will take is already made.
The discussion with the user was facilitated by a prototyping tool from vendor
Z. When the requirements were defined, the proposed interface was outlined
and the tool generated a browser form; this being part of the architecture,
the decision is already made. You map your discovered need into the form
and format of the architecture.

Every organization creates these tenets, if for no other reason than it is
too complex, too costly, and too confusing to make these decisions for each
application. The architecture forms a collective pattern and it serves many
useful purposes, including:

�

It allows developers to focus on applying the technology toward service
to the enterprise.

�

It makes it possible to target training and development efforts.

�

It helps to ensure consistency across application areas.

�

It increases the opportunity for reuse of existing work.

Form is liberating.

Technology Decisions

Just as software applications are dynamic and ever-changing, system architec-
ture is also fluid. The decisions as to which elements of technology will be
adopted by the enterprise require consideration from various experts at
different levels of the enterprise. More strategic levels of the architecture
require financial consideration, business planning, industry assessment, and
expertise of related technology. More tactical levels of the architecture require
information about current development practices (both inside and outside the
enterprise) and knowledge of current developers skills and expertise.

The decision-making process must be isomorphic with the
architecture itself.

Decisions about architecture always start with someone making a sugges-
tion. The Chief Information Officer makes a proposal to replace our relational
database management system with this new object-oriented database manage-
ment system. One of the development managers suggests that Java would be
a better language than the currently used C. A senior analyst raises the option
of using component design techniques rather than the object-oriented design
the developers are using now.

For each given proposal, the enterprise needs to consider the change to
the architecture by bringing the proper expertise to bear on the decision (see

AU1292Ch06Frame Page 94 Sunday, August 25, 2002 11:54 AM

Strategic Framework… Or Metadesign Integrity

95

Exhibit 3). Each proposal generates questions that must be addressed by
individuals from appropriate levels of the enterprise with the experience and
expertise to answer them.

For example, if the CIO suggests changing database management systems,
questions must be answered that cannot be answered by the CIO alone. While
a junior developer would not provide much useful information about the
license terms of the proposed package, he can provide information on com-
patibility issues. The Chief Financial Officer is not the person to ask about
problems with converting primary keys, but she certainly needs to provide
answers to questions of capital asset accounting.

A senior analyst makes the recommendation that the object-oriented design
techniques currently in use should be replaced with component design meth-
ods. The proposed change to the architecture needs to be evaluated from
different perspectives. The people at the tactical level of the enterprise have
most of the experience and expertise needed to investigate this issue (see
Exhibit 4).

Exhibit 3

Level of Decisions

Proposal: Change DBMS

Questions/Issues Level Expertise

Cost of new DBMS Strategic Chief Financial Officer
Vendor representative

Does the proposed DBMS fit with other
components of the development
environment? (refer to Chapter 7)

Middle Development managers

Can new development use the new system
while working with the current DBMS?

Middle Senior developers

Will software solutions using the new DBMS be
superior to those products with the current
DBMS?

Tactical Senior developers
Current users of the

proposed DBMS

Exhibit 4

Level of Decisions

Proposal: Use component design instead of object-oriented design

Questions/Issues Level Expertise

Are there effective training resources available? Middle Consultants
Development managers

Is there evidence that the industry is adopting
the method?

Middle Consultants
Senior developers

Can current development tools be used with the
proposed method?

Tactical Senior developers

Should the new method be integrated with
object-orineted design?

Tactical Senior developers

AU1292Ch06Frame Page 95 Sunday, August 25, 2002 11:54 AM

96

Dynamic Software Development: Managing Projects in Flux

It is very difficult for a development manager to coordinate decision-making
efforts involving many levels of management. But all decisions affecting the
development architecture require informed, considered input. No one person,
or one level of the enterprise, can have the sole responsibility to decide. It
usually falls upon you, the development manager, to create the framework in
which these decisions will be made. This includes:

�

Defining the proposal

�

Listing the questions generated by the proposal

�

Suggesting (or declaring) how the decision will be made

�

Soliciting the participation of required experts

�

Finding alternate sources if the participants fail to provide needed
information

�

Announcing the consensus (or declaring the decision) once reached

�

Overseeing the implementation

Mapping Architecture to Elements

The decision patterns determined by the chosen architecture must be associ-
ated with the elements you have defined for your repository. Chapter 3
discussed building element definitions to serve as the set of building blocks
of a generic product. Each of these elements will have a default architecture
form (see Exhibit 5).

Every well-formed team with which I have worked has established (or
accepted) a set of rules and standards. The team uses these conventions as

Exhibit 5

Expanded Element Definitions

Element Name Purpose Architecture Form Weight Unit

Requirement Description of an
application’s properties
and behavior expected by
a user

Use Case in CASE
Tool W and
Narrative in Word
Processor

Paragraph
count

Object
Design

Model of a class
highlighting public
methods and interfaces

Class Diagram in
CASE Tool W

Method count
Object weight

Relational
Table

Physical structure in a
relational database

Table design in
DBMS X

Column count

Test Case Definition of initial
condition, input, and
expected result used to
verify an application

V Corp’s Test Utility
using Control Path
and Equivalence
Analysis

Edge count
Class count

Test Suite Collection of Test Cases
run in sequence

V Corp’s Test Utility Scenario count

Java Class Unit of software compiled
with Java used for intranet
applications

Compiler Y version
2.1

Method count
Variable count

AU1292Ch06Frame Page 96 Sunday, August 25, 2002 11:54 AM

Strategic Framework… Or Metadesign Integrity

97

a language. The language allows the team to function at a high level of
coordination. The language increases the number of important things we do
not have to think about, thus giving us more time to think about the solutions
we are providing to the user.

Architecture’s Dark Side

I remember a conversation with a developer at a client’s site. The developer
was upset that I was advocating the use of standards and a well-defined
framework. The developer seemed to have taken great pride in the fact that
the team was working well without formal methodology, life cycle, standards,
and conventions. It was as if the team “just did good work.” But as I worked
with the team, I noticed an incredible consistency in the way designs were
factored and the way test cases were represented. Even the style and formatting
of code was nearly identical in different code written by different developers.
When I asked why a particular design decision was made, why an alternative
was not used, or why a table was normalized as it was, the initial answer
was always the same: “That is the way we do things here.”

The team had created a framework and standards that were extremely
well-defined (not written down but well-communicated among the team
members). The team had established and accepted its norms so well that the
enforcement mechanism was simply a comment from another team member.

This kind of dynamic is wonderful. It is productive, nearly error-free, and
self-sustaining. And, in this case, it was unself-conscious, allowing the team’s
conscious talent to be directed toward building good solutions.

Continuity does not rule out fresh approaches to fresh situations.

—Dean Rusk

The one caveat is that while an enterprise’s architecture is important to
productivity and quality, it also shields the development environment from
innovations in the software and business development industry. The danger
is that the enterprise becomes entrenched in a technology that works for them
and fails to consider the potential benefits to be gained by adopting different
technologies and methods.

Application development is pure problem solving. Problem
solving requires a set of tenets reflecting the lessons from past
successes. The most constructive tenets are evolving
heuristics — not immutable law.

You have to be sure a percentage of your time and budget is allocated to
the care and feeding of the framework. Most enterprises are not research and
development organizations, so the intent is not to be a beta site for every
new tool presented by our vendors. But a balance must be struck to ensure

AU1292Ch06Frame Page 97 Sunday, August 25, 2002 11:54 AM

98

Dynamic Software Development: Managing Projects in Flux

that opportunities are not missed and that the framework is adaptable to a
changing enterprise. Chapter 7 provides some guidance on how to monitor
the environment and incorporate changes that promise to improve the devel-
opment effort.

The human brain craves understanding. It cannot understand without
simplifying, that is, without reducing things to a common element.
However, all simplifications are arbitrary and lead us to drift insen-
sibly away from reality.

—Lecomte Du Nouy

Applying Dynamic Management

Build a model of your “standard” implementation decisions. It should look a
lot like Exhibit 2 but with more detail referencing the specific tools and
methods you use in building software.

Compare this model with the element definitions you built after reading
Chapter 3. Add a column to the element list to record the architecture forms
used to build and record each of the elements (see Exhibit 5).

Watch for mismatches. If there is an element with no place in the archi-
tecture, it either means the element is not used or recorded, or there is an
aspect of the current framework you have not identified.

If there is a piece of the framework that is not associated with an element,
it either means that part of the framework is not used or there is some element
missing from the element list.

Exhibit 6

Online Discussion Index

Dynamic Management

Discussion Topic Index

Topic: Information-Based Management

Topic: Framework

Topic: Developers
Topic: Planning
Topic: Defining Work

Topic: Productivity

File Edit View Tools Help

DM

(click on Topic for discussion)

AU1292Ch06Frame Page 98 Sunday, August 25, 2002 11:54 AM

Strategic Framework… Or Metadesign Integrity

99

Chapter 6 Case Study Excerpt

The following narrative is a set of excerpts from the full case study in Appendix
G relating to the topics in this chapter.

Shortly after the Director of Applications Development was named Chief
Information Officer, he put together a Technology Task Force of senior
managers and developers to review developments in information technology
and development methods, and report back on the trends in the industry that
DSM needed to be aware of.

The group started by surveying new technology and reading research
reports on new development methods. While the work was exciting, it did
not generate applicable results. It was interesting to read what the authors of
new books were saying, but the members of the task force often found it
difficult to translate trends into action items for DSM. The task force continued
its work over the years. Every six months they issued a report.

There were successes. The work of the task force was instrumental in
introducing Java to the development environment. They also got credit for
aiding in the introduction of Web-based applications into the DSM framework.

Along with their search for trends in technology innovation, the task force
worked with the SQA analysts to identify and define standards to be used by
the developers while building work products. For example, along with the
recommendation of the C++ development environment, the task force searched
the literature for guidelines and best practices — including coding style guide-
lines and class format templates. When the task force pushed for adoption of
object-oriented design, they included a proposed standard for the style and
construction techniques to be used (these were based on the approach
advocated by the consulting firm selected to conduct training seminars).

Exhibit 7

Beginning Dialogue

Discussion for topic: Framework

- Moderator:

File Edit View Tools Help

DM

What is our ’standard implementation?’

+ Reply1:

- Moderator:

I think we will need to define several templates. We have our web-based
systems, our lab automation system, and our internal
centralized accounting sytsems

So, if we know we are adding a feature to a web-based system,
we know we would need: an .asp page, access to SQL source
the navigation standard . . . what else?

- Reply2: Let’s get some developers in on this discussion.

AU1292Ch06Frame Page 99 Sunday, August 25, 2002 11:54 AM

100

Dynamic Software Development: Managing Projects in Flux

The task force was very active in the definition of the project repository.
Its members energetically participated in the online discussion and worked
with the developers on the definition of the database prototype. They tried
to find ways to add their standards and framework definitions to the idea of
a development repository. Several of the task force members were at the
famous lunch session when the manager from Midwest drew the “chunk”
model on the whiteboard (see Exhibit 8).

The blocks on the diagram became a focus for the task force for weeks
after the developers’ conference. The members began to talk of the blocks
as mini-applications, each being implemented using a known technology set
following a known set of standards.

The task force began using the vocabulary that was developing among the
developers. Small clusters of these mini-applications were described by user
“scenarios.”

They decided there was another dimension to this model. Each of the
blocks is associated with a set of default design decisions. If the block was
part of the Web-based systems, the developers would use the current Web
server and Web scripts. If the block included access to internal data sources,
the developers would follow the audit requirements defined in DSM data
administration standards.

When the developers outlined the idea of elements and element definitions,
the task force proposed that each element be associated with some component
of the framework (see Exhibit 9).

Some of the database designers reviewed the idea of adding the framework
and standards attributes to the element table and concluded that a better

Exhibit 8

Methodology as Continuous Build (a.k.a. Chunk Model)

1.1

1.4

1.2
1.3

1.5

3.4

3.2

2.7

3.7

2.8

2.6

User Scenario 1

User Scenario 2

User Scenario 3

AU1292Ch06Frame Page 100 Sunday, August 25, 2002 11:54 AM

Strategic Framework… Or Metadesign Integrity

101

design would be to treat the items of the framework and the standards as
elements in their own right. Each item of technology (such as Boundary
Analysis and Use Cases) and each standard (e.g., DSM-422 defining the
qualities of Use Cases, and DSM-485 defining the characteristics of boundary
analysis test cases) would be defined as elements.

Association definitions would then record the connection between the
elements defined by the developers, the technology used to record/build the
elements, and the standards describing desirable characteristics of the elements.
A sample of the association definitions is shown in Exhibit 10

.

The members of the task force found this idea intriguing. One of the
managers on the task force commented, “This will make our standards an
integral part of the process rather than an afterthought.”

Exhibit 9

Proposed Element Definitions with Framework

Element Name Purpose Framework Standard

Requirement Description of an application’s
properties and behavior
expected by a user

Use Case in T-Soft DSM-422

Object Design Model of a class highlighting
public methods and interfaces

Class Diagram in T-
Soft

DSM-31

Relational
Table

Physical structure in a relational
database

Table Design in
SQL Server

DSM-19

Test Case Definition of initial condition,
input, and expected result used
to verify an application

Boundary Analysis
in Word
document

DSM-485

C++ Class Unit of software compiled with
V- Studio used for our client/
server applications

Compiler Y version
2.1

DSM-60

Exhibit 10

Examples of Framework Association Definitions

Association

→

←

 Association

Element Meaning
Avg.
Freq.

Avg.
Freq. Meaning Element

Requirement recorded as 1 1 represents Use Case
Object Design recorded as 3 15 represents Class Diagram
Relational Table implemented as 1 1 implements SQL Table
Test Case based on 1 1 used to derive Boundary Analysis
C++ Class compiled by 1 n used to compile Compiler Y
Use Case guided by 1 n std. used for DSM-422
Class Diagram guided by 3 n std. used for DSM-31
SQL Table guided by 1 n std. used for DSM-19
Boundary Analysis guided by 1 n std. used for DSM-485
C++ Class guided by 1 n std. used for DSM-60

AU1292Ch06Frame Page 101 Sunday, August 25, 2002 11:54 AM

AU1292Ch06Frame Page 102 Sunday, August 25, 2002 11:54 AM

103

Chapter 7

Constructive Development
Environment…

Or Making Work Flow

A major duty of the development manager is to ensure that the development
team has an effective, integrated, smoothly functioning environment in which
to work. This is, of course, a noble goal but difficult to achieve. After all,
“effective,” “integrated,” and “smoothly functioning” are nebulous terms.

We cannot decide whether a misfit has occurred either by looking
at the form alone, or by looking at the context alone. Misfit is a
condition of the ensemble as a whole.

—Christopher Alexander

Conflict within the Environment

Most development organizations are not wanting for ideas about effective
development techniques or standards or training. There are hundreds of
consulting firms with many useful techniques for improving the development
environment. Thousands of books and articles provide advice to managers
on which tools to buy, what methods to adopt, and which education programs
are best. Most of the counsel is reasonable and well-meaning.

During most of my early consulting, I was troubled and frustrated by a
ubiquitous condition. Despite the best efforts of talented managers and
developers — despite the best advice of experienced consultants and
academicians — organizations could not get their development environments

AU1292Ch07Frame Page 103 Sunday, August 25, 2002 10:48 PM

104

Dynamic Software Development: Managing Projects in Flux

to work smoothly. Standards never seemed to deliver on their promise of
consistent results. Methods always resulted in too little work, too much work,
or the wrong work for the targeted activity. Training never succeeded in
enhancing the developer’s skill set to the degree expected.

Most managers become rather cynical about new methods and standards
after having put in so much effort for so little return. Most come to the
conclusion that the consultants and the academicians do not know what it is
like in the trenches and blame the communication gap between theory and
practice.

When the map and the terrain disagree, trust the terrain.

—Swiss Army Proverb

There is another explanation for the phenomenon. The conflict arises in
the way components in the development environment “fit.” Taken individually,
each component of the development environment sounds reasonable, but in
combination they often result in unintended conflict. You can identify the
conflicts just by listening to conversations in the hall (see Exhibit 1).

Just as elements of a software product must fit together, the environment
in which the elements are built must fit together.

Conflicts in the development environment inevitably diminish
our ability to build effective software solutions. Removing
dissonance among components must necessarily enhance our
ability to do good work.

For example:

�

The tools used by the developers are consistent with the standards
adopted by the department.

Exhibit 1

Conflicting Patterns

“We have purchased this great tool.”

→ ←

“We’ll try to schedule training next
quarter.”

“You need to do a thorough
specification before building the
design.”

→ ←

“Why aren’t you programming!?”

“Schedule a review of your code.”

→ ←

“Ignore the findings of last week’s
review. We have to deliver the
product.”

“We are going to use these new
standards.”

→ ←

“The tools we are using do not
support that standard.”

“We measure defect rates.”

→ ←

“Joe gets the promotion because he
gets his work done fast.”

AU1292Ch07Frame Page 104 Sunday, August 25, 2002 10:48 PM

Constructive Development Environment… Or Making Work Flow

105

�

The measurements used to assess quality are employed in product
reviews.

�

A product produced by the development team is defined in the project’s
methodology.

Conflicts between elements in the development environment introduce
obstacles to the developer’s progress. For example, introducing a technique
for exploiting common functions and reducing the volume of new code should
encourage developers to look for ways of increasing reuse. But a conflict is
created if the department’s productivity measurements are based on size and
the developers feel that their evaluations are partially based on creating
measurable volume. A developer who succeeds in increasing reuse comes out
poorly when compared to a colleague adding lots of visible stuff to the
repository. The initial conclusion might be that the reuse technique did not
work, but the real cause of failure is the dissonance between the technique
and the measurement.

I should like to recommend that we should always expect to see
the process of achieving good fit between two entities as a negative
process of neutralizing the incongruities, or irritants, or forces, which
cause misfit.

—Christopher Alexander

Conflicts often occur between development methodologies and standards.
An organization builds or adopts a methodology defining a task and associated
work product. The standards describing the quality characteristics of the work
product refers to a second work product (i.e., specifies consistency require-
ments between the work products). If the methodology specifies that the
second work product is to be built at a different point in time or by a different
team, the developer must complete the first product in isolation — making
assumptions about the related product. When the standard finally is applied,
the first product may be entrenched and developers reluctant to entertain the
idea of making changes suggested by the standard. The conflict here is not
attributable to the methodology or the standard. Both may seem reasonable
and constructive when considered separately; but in combination, they have
a destructive effect on the development effort.

Seven Components of a Development Environment

The development manager must review the development environment in an
attempt to identify conflicts that hinder progress. There are seven components
to consider: standards, tools/techniques, methodologies, measurements, rewards,
reviews, and training/education.

AU1292Ch07Frame Page 105 Sunday, August 25, 2002 10:48 PM

106

Dynamic Software Development: Managing Projects in Flux

A

standard

is a statement of the observable attributes of an acceptable
product. A standard specifies the observable characteristics of good work.
Most standards have a lot of verbiage describing the standard’s history and
its importance. But the portion of a standard important to developers is the
description that helps distinguish good products and actions from not-so-good
products and actions.

Tools and techniques

are software and procedures used to aid and direct
the development work. I can define tools and techniques separately, a tool
being the instrument with which work is performed, and technique being a
set of principles or guidelines used to perform work. I combine them because,
in practice, they are often inseparable. Tools like computer-aided software
engineering tools or code complexity analyzers or language compliers are
usually based on a defined technique. The CASE tool may be designed to
support with Rational Unified Process or Dynamic System Development
Method. A code analysis tools will be based on techniques developed by
McCabe or Halstead. Language-based development environments usually sup-
port some techniques like object-oriented or component design.

A

methodology

is a set of task definitions. Each task definition identifies
necessary pre-conditions and expected results. Most methodologies have a lot
of detail about the sequencing of tasks and content of input and output
documents. I classify most of this detail as “technique” and “standards,” as
defined in the previous paragraphs.

A

measurement

is an observable, objective scale (quantitative or qualitative)
used to assess quality, volume, or duration. Measurements can be very formal,
like function point and edge counts; or they can be very informal, like promptness
to meetings and contributions to the coffee fund. Any measure that the developers
believe is being used to assess work and performance is relevant to us.

Rewards

include any means of recognizing and encouraging desirable
behavior or results. Bonuses, promotions, formal “thank you” communiqués,
job assignments, and office space can all serve as rewards.

A

review

is any means of assuring the quality of a product and the adherence
to standard or plan. Product inspections, peer reviews, and code walk-throughs
are common forms of reviews. Extreme programming is introducing the idea
of continuous review.

All people involved in the development effort must have access to and
encouragement for training and education. My working definition of

training/
education

is a means of acquiring working knowledge or useful information.

I have been involved in many debates over the difference between
training and education. Frankly, the distinction is arbitrary for the
purposes of managing a development effort.

Sources of Conflict

Conflict or dissonance arises in the development environment when a devel-
oper, working in good faith toward a legitimate goal, finds himself in a situation

AU1292Ch07Frame Page 106 Sunday, August 25, 2002 10:48 PM

Constructive Development Environment… Or Making Work Flow

107

in which his work is supported by, and consistent with, one component in
the environment, but in conflict with, or hindered by, another component.

For example, the development team is using a code complexity measure-
ment. What conflicts can exist?

�

The coding standards may require constructs that are measured as
overly complex.

�

The development team may be using a tool that generates components
with interfaces that are measured as overly complex.

�

The developer may be rewarded for delivering the code by the end
of the week although the code is overly complex.

�

The measure may not be included as a significant issue in the product
review.

�

The developers may not have the training to know how to work
constructively with the measure.

Any identified conflicts suggest that some action is needed to remove the
dissonance. To reduce the dissonance between the review and the measure-
ment, the manager could require an assessment of the code complexity in
the review report. Providing education on the measure’s meaning and use
would also improve the development environment.

Instances of each of the seven component types can be in conflict with
any other component in the environment. Imagine a 7

×

 7 matrix where each
of the 49 cells represents a potential conflict. That is more than I can handle.
You can focus the assessment effort by identifying relationships between
components that you and your developers find to be most significant. My
experience is summarized in Exhibit 2. The same set of relationships are
graphically depicted in Exhibit 3.

Exhibit 2 should be read as follows: if I have a problem with a component
listed on the top row, I should look to strengthen support from strong
component types along the left side. Issues related to rewards might imply a
problem with the reviews, methodology, and measures. I can strengthen the

Exhibit 2

Inter-component Influences

Influences

Component Rewards Reviews Methodology Standards Measures Education
Tool/

Techniques

Rewards — Strong Strong
Reviews Strong — Strong Strong
Methodology Strong Strong — Strong
Standards Strong Strong — Strong
Measures Strong Strong —
Education Strong Strong — Strong
Tool/

techniques
Strong Strong —

AU1292Ch07Frame Page 107 Sunday, August 25, 2002 10:48 PM

108

Dynamic Software Development: Managing Projects in Flux

reward system by employing reviews to identify the good work that should
be rewarded. I should use the methodology to identify the activities to reward.
I should be sure that the things I am rewarding are consistent with the
measurements in place.

If it seems that the reviews are not as effective as they could be, I should
try to strengthen the reward structure. If I have few rewards in place for
reviews, reviews deteriorate. Reviews might be enhanced by ensuring that the
methodology defines logical points for reviews to occur and well-defined
products to review. Problems in the reviews might trace back to ambiguous
standards against which products should be evaluated. Enhancing education
could help resolve issues of poor or ineffective reviews.

The use of methodologies can be strengthened (or undermined) by many
factors. If the methodology I am using is becoming less effective, it might
mean that the rewards for working within a methodology are weak. Method-
ologies can deteriorate if there is no method of checking the work done and
gaining consensus that good progress is being made. A lack of standards can
contribute to inconsistent results that can undermine the use of a methodology.
Similarly, the lack of objective measures can make it difficult to track progress
in a demonstrable manner. And, as with reviews, if the developers and
managers do not have the skills and knowledge necessary to work with the

Exhibit 3

Components of the Development Environment

Education

Standards

Tools /
Techniques

Measures Reviews

Rewards

Methodology

AU1292Ch07Frame Page 108 Sunday, August 25, 2002 10:48 PM

Constructive Development Environment… Or Making Work Flow

109

methodology, the methodology will not contribute to an effective development
effort.

The use of measurements makes more sense when they are supported by
objective standards and tools that assist in the gathering and analysis of the
data.

Standards can be a positive factor if they are supported by a complementary
methodology, reviews that help enforce the standards, and tools that aid the
developers in building product consistent with the standards.

One biggest point of dissonance in the software development industry is
the mismatch between tools and training. Often, an organization will purchase
potentially effective tools only to render them nearly useless by not supporting
them with education.

Assessing the Environment

These seven components form a framework for assessing your environment.
The assessment process entails analyzing each element in the development
environment and ensuring no other element is in conflict.

Start by building an inventory of the components in your development
environment (see Exhibit 4). The inventory is then analyzed by reviewing
each component, trying to identify potential conflicts. The algorithm is: the
list of identified conflicts (a dissonance list) represents opportunities for
improvement. Not all conflicts are fixable or even a real problem. You want
to choose your battles and identify changes to the development environment
that have a high probability of success with little risk and not much money.

The development environment is improved by small and frequent
victories.

Perhaps in your assessment of your environment you find that the use of the
CASE tool is weak and you believe the lack of training is a factor (see Exhibit 5).
You also find that programmers on a pilot of extreme programming techniques
are not supported by a methodology. You think that might be a problem.

Exhibit 4

Component Inventory

Name Type Description

ABC CASE tool Tool Modeling tool used for building
specifications and designs

Java Development Kit Tool Develop language
OOA workshop

a

Education Workshop conducted by consulting firm for
new developers

Defect rate Measurement Track number of defects reported by users
Peer programming Review Part of the extreme programming pilot
Java style guide Standard Conventions established by developers

OOA = object-oriented analysis

AU1292Ch07Frame Page 109 Sunday, August 25, 2002 10:48 PM

110

Dynamic Software Development: Managing Projects in Flux

For each of the issues you find, you need to identify potential remedies.
Identify as many possible actions as you can for each issue. For each of the
possible actions, you can project the expense and degree of difficulty (you
are trying to assess your chances for success). Before taking any action, you
want to think about the possibility of success and convince yourself that the
anticipated result is truly better than the current status of things.

For example, you consider that one possible remedy for lack of educational
support of the CASE tools is to hire a vendor to conduct in-service training
sessions. But if your experiences with the vendor’s training is less than stellar,
perhaps the anticipated result is not worth the price. Another option is to set
up time for developers to share their “best practices.” The difficulty would be
ensuring support for the developers and management acceptance of the time
in the self-training sessions as legitimate and valuable work.

The issue with the lack of methodology might be a different story. If the
imposition of a strict phased-based methodology resulted in open rebellion
among the developers, the value of the move is in question. Perhaps the lack
of a supporting methodology is not a problem. If you can define measurable
results from the team, it might mean there is no real conflict between the
extreme programming and methodology and the environment should be left
alone.

Ongoing Assessment

The development of software solutions is an ongoing, never-ending, iterative,
and perpetual activity. So too is the assessment and refinement of the devel-
opment environment. As new components are introduced, the inventory
changes and the balance within the environment is altered. After the initial

Exhibit 5

Dissonance List

Issue Possible Action Expense Difficulty
Anticipated
Result

ABC CASE tool
has no
training
support

Contract with vendor
to deliver in-service
training

Expensive Easy Little real
effect

Arrange “best
practice” seminars by
developers

Not
expensive

Requires
management
support

Potential
for
positive
response

Peer
programming
(as a review)
is not
supported by
methodology

Impose a strict
waterfall
methodology on the
extreme
programming team

Not
expensive

Not hard Open
rebellion

AU1292Ch07Frame Page 110 Sunday, August 25, 2002 10:48 PM

Constructive Development Environment… Or Making Work Flow

111

inventory and evaluation, you need to regularly monitor the set of components
that make up your development environment and gauge its overall balance.

Use the idea of a conflict-free environment when considering any change.
A vendor might introduce a new development tool. Assess the dissonance of
the environment if a new tool were to be added. Any dissonance means
disruption, cost, and potential error. Each point of dissonance means time,
money, and energy must be applied to deal with it. If each of the points of
dissonance can be addressed at a reasonable cost, introducing the new tool
is a constructive change. If the dissonance cannot be removed or the cost of
removing it is too high, introducing the new tool is a mistake — regardless
of how wonderful the tool is on its own merits.

Applying Dynamic Management

Discuss the development environment with your developers. Get their thoughts
on the seven-component model. Make changes to the model to bring it in
line with the mental model of your environment and the view your developers
hold (see Exhibits 6 and 7).

Build an inventory of components being used to develop your software
(i.e., do not invest in new computer-based information system — just create
a list). Run through the algorithm looking for potential conflicts.

For each component in the inventory (call this component A)
 For each of the other components (call this component B)
 Think about how component A supports or conflicts with
 component B
 Record any conflicts in the inventory’s dissonance list
 End For
End For

Exhibit 6

Online Discussion Index

Dynamic Management

Discussion Topic Index

Topic: Information-Based Management

Topic: Framework

Topic: Developers

Topic: Environment

Topic: Planning
Topic: Defining Work

Topic: Productivity

File Edit View Tools Help

DM

(click on Topic for discussion)

AU1292Ch07Frame Page 111 Sunday, August 25, 2002 10:48 PM

112

Dynamic Software Development: Managing Projects in Flux

Verify

that the conflicts are perceived by your developers and judge the degree
to which the conflicts hinder your development team’s effectiveness. This step
is best done in information strategy sessions with small groups of managers
and developers.

Prioritize

the list of conflicts, ranking issues that can be reduced with
simple and inexpensive action. Identify the results you expect from taking the
action. This step is best done by you — alone — after having the advantage
of good counsel from the previous step.

Choose

the most promising actions (i.e., low cost, high probability of
success) and implement them.

Chapter 7 Case Study Excerpt

The following narrative is a set of excerpts from the full case study in Appendix
G relating to the topics in this chapter.

The experiment in incremental development seemed to be working. There
was general consensus among managers and developers on the West Coast
and at Midwest that focusing on the repository was a viable alternative to
focusing on the process. People were recording application elements in the
repository and they felt good about the accuracy of the information. Recording
elements of the development framework in the repository was also working.
DSM products were more consistent and innovative because developers were
able to work from a template of solutions. Even the idea of defining the
developer’s goal as enhancing the state of the repository and maintaining
internal consistent had become comfortable.

However, another concern developed. When work was performed as a
sequence of processes, each process was governed by a set of standards and
techniques. The task force had developed these standards and defined them

Exhibit 7

Beginning Dialogue

Discussion for topic: Environment

- Moderator:

File Edit View Tools Help

DM

Seven components of our environment?

+ Reply1:

- Moderator:

I’m not sure if I would divide up the environment like that, but it
gives us a place to start . . .

Environment inventory - please post your ideas of what our
environment consists of.

- Reply2: We have a whole set of standards documents

- Reply3: We have our three standard compilers, and the CBT training that
goes with them.

- Reply4: We have XYZ corp’s offering of OOD (4-day workshop)

AU1292Ch07Frame Page 112 Sunday, August 25, 2002 10:48 PM

Constructive Development Environment… Or Making Work Flow

113

as a fixed part of the process (see Exhibit 8). Developers were not expected
(nor did they have any opportunity) to question the standards or contribute
to their refinement. The task force would, from time to time, review the
standards and make updates, but that refinement was based on task force’s
findings, and not on the experience of the developers.

Once the items of the framework and the standards were represented as
elements in the repository, they became just another part of the knowledge
base. The goal is to create consistency. When faced with a conflict between
a design and related code, developers would refine the design or the code
or both — choosing the best solution. Now, when faced with a conflict
between a design and the design standards, developers might find the best
solution is to change the design or the design standards or both. The objective
is to create an internally consistent set of information about the product. When
the developers identified a change to a standard they believed would be
constructive, they wanted to be able to change it (see Exhibit 9). Members of
the task force were concerned about their role in the development process
and argued that the developers would tend to soften and diminish the
standards. The developers argued that their experience in applying the stan-
dards yielded positive changes to the standards that deserved to be considered.

For the past year, conflicts between the developers and the members of
the task force were few and were handled one at a time with minimal
disruption. But finally, a group of developers from the Midwest group pro-
posed a major revision to the code documentation standards and insisted
upon documenting their code accordingly. The task force refused to consider

Exhibit 8

Task Force Defines Framework and Standards

Exhibit 9

Shared Maintenance of Framework and Standards

Task
Force Framework

&
Standards

Developers

Imposed
upon

Defines

Task
Force

Framework
&
Standards

Developers

Used

Refines

Monitors

Refines

AU1292Ch07Frame Page 113 Sunday, August 25, 2002 10:48 PM

114

Dynamic Software Development: Managing Projects in Flux

the proposal on the grounds that it would result in a different set of docu-
mentation than all DSM’s older software had used.

The CIO stepped in when he heard the conflict was growing out of
proportion. His response was rather unusual. He resisted the temptation to
call a meeting with all parties present to “duke it out.” He had seen meetings
like that end with each side being obliged to defend its initial position even
after compelling arguments were presented. The CIO went to the office of
each of the task force members and called each developer on the Midwest
team. During these private conversations, the CIO asked each individual to
explain his proposal and to explain the other side’s proposal. He discovered
that everyone thought the changes were good and constructive. The only
issue from the task force was the fact that existing code and new code would
be documented differently.

After the discussions, the CIO met with the task force as a group and
summarized the individual conversations and suggested that the task force
modify the current code standards, incorporating the suggestions from the
Midwest developers. He told the task force members that change is inevitable
and that they would have to accommodate many generations of techniques,
standards, platforms, and product. The CIO then opened up discussion about
how to handle the issue of elements being built in different time frames under
different standards. This was a safe question because two task force members

Exhibit 10

Current State

Requirement

Object
Design

Code

DB Table

Uncertain

Change Pending

Verified

Declared

Object Design
Standard

Code
Standard

DB Table
Standard

AU1292Ch07Frame Page 114 Sunday, August 25, 2002 10:48 PM

Constructive Development Environment… Or Making Work Flow

115

had outlined their ideas during the one-on-one conversations. For example,
one task force member had suggested that nothing be done to the existing
code elements. The other member suggested the existing code could be
reviewed against the new standard over time (see Exhibit 10).

Approving the new standard changes the state of all associated code
elements to “Uncertain” (see Exhibit 11). The elements may not need any
change but, technically, it is possible that an inconsistency exists between the
old code and the new standard that should be reviewed.

No separate development plan would be created. The code would be
reviewed only when it was part of another development task. That is, for
each future enhancement, developers will be required to review the code in
its strand against the new standard. After the code is reviewed and possibly
changed, the state of the code element would changed back to “Verified.”
Everyone agreed this was a good plan.

The CIO then showed the members of the task force a memo he was
sending out that day, stating that suggested changes to DSM techniques and
standards were welcome and encouraged from all managers and developers.
The recommendations should be directed to the task force. Only the task
force had the authority to approve such changes. Before he left the meeting,
the CIO suggested that task force members should do what each of them felt
was appropriate and approve the changes to the coding standards.

Exhibit 11

Start after New Standard Is Approved

Requirement

Object
Design

Code

DB Table

Uncertain

Change Pending

Verified

Declared

Object Design
Standard

Code
Standard

DB Table
Standard

AU1292Ch07Frame Page 115 Sunday, August 25, 2002 10:48 PM

AU1292Ch07Frame Page 116 Sunday, August 25, 2002 10:48 PM

117

Chapter 8

Managing Managers…

Or I’m OK, but the Rest of Them?

There are many managerial roles involved in building system solutions.
Each enterprise has its own structure, reporting and authority lines, and policies
governing the delegation of authority. A significant factor in successfully
delivering effective solutions is your ability to manage the managers with
whom you interact. The standard pronouncement in management texts is that
coordination among managers is a matter of successful communication. But
communication is more than talking; it is a process of defining, sharing, and
adding meaning to information.

Communication of all kinds is like painting — a compromise with
impossibilities.

—Samuel Butler II

Dealing with Expectations

A manager is anyone in an enterprise with the authority to direct and allocate
resources. Every manager has a set of objectives (both personal and profes-
sional). The resources allocated to the manager are used to help achieve his
objectives. Resources and the objectives are delegated to subordinates, who
may in turn delegate subsets to their subordinates, thus forming the typical
organizational hierarchy. Along with that delegation comes the need to coor-
dinate the superset of objectives and resources with the subsets being managed
by subordinates/colleagues. This is depicted in the relationships A to a1 and
A to a2 in Exhibit 1.

Middle managers have to collaborate with others within their division on
their respective pieces of the overall organization objective. Redundancy,

AU1292Ch08Frame Page 117 Sunday, August 25, 2002 11:54 AM

118

Dynamic Software Development: Managing Projects in Flux

inconsistency, and mismatched resource allocation can reduce the chances of
successfully achieving the organization’s objectives. This relationship is shown
as the interaction between a1 and a2 in Exhibit 1.

Collaboration across the organizational boundaries established by the del-
egation is also required (i.e., any interaction A to B in Exhibit 1).

The vectors in Exhibit 1 depict the three communication channels significant
to every manager:

�

Delegate

�

Collaborate

�

Service

Every person in an enterprise has expectations concerning the relationship
between themselves and the people with whom they work. These relationships
take the form of information sharing.

The easiest way to think about these relationships is to define them as a
series of messages (request and response; see Exhibit 2). A CIO directs one
of his managers to study the feasibility of a proposed enhancement (this is a
request on the delegate channel). The manager talks with a colleague about
related elements of the proposal (request on the collaborate channel). The
colleague provides some historical information (response on the collaborate

Exhibit 1

Managerial Relationships

& resources B
objectives B

delegate

collaborate

service

& resources a1
objectives a1

Development
Organization

Other
Enterprise Units

P
ol

iti
ca

l B
ou

nd
ar

y

& resources a2
objectives a2

& resources A
objectives A

& resources b1
objectives b1

T
 a

 c
 t

i c
 a

 l

S
 t

r
a

t e
 g

 i
c

AU1292Ch08Frame Page 118 Sunday, August 25, 2002 11:54 AM

Managing Managers… Or I’m OK, but the Rest of Them?

119

channel). The manager makes an appointment to talk with a user in a different
department. During the meeting, the manager asks for the user’s thoughts on
the benefits of the proposal (request on the service channel). The user provides
her opinion and analysis (response on the service channel). The manager
summarizes the information gained from the interactions, formulates an opin-
ion, and reports his findings to the CIO (response on the delegate channel).

While this scenario is reasonably accurate and convenient to define, it is
an inadequate model for helping us plan and facilitate the development effort.
Instead of thinking of these channels as conveyor belts along which discrete
packages of information flow, think of these channels as shared information
that sits between the players (see Exhibit 3). The information exists over time.
Both parties involved in the channel can think about the information at any
time. Both parties can add to and modify the information at any time.

This shared information is not unlike the element defined in Chapter 2.
These elements are more difficult to label and define. It is easy to define the
meaning and attributes of a relational database table. We are less precise when
we are trying to define the meaning and attributes of a “corporate objective.”
Typically, these elements are not stored in a database or tracked under
configuration management, but the notion is very useful in coordinating
managerial activity — just as it is in coordinating teams of developers.

Exhibit 2

Communication Channels as Elements of Shared Information

Exhibit 3

Shared Elements (Past, Current, and Future)

channel

& resources a1
objectives a1

& resources b1
objectives b1

Information
Elements

Current
Elements

Past
Elements

Future
Elements

Time

justify and project evaluate status plan and direct

AU1292Ch08Frame Page 119 Sunday, August 25, 2002 11:54 AM

120

Dynamic Software Development: Managing Projects in Flux

The shared information resonates and is refined by all individuals involved.
As time moves along, the information shared between managers is drawn
upon to assess current status, justify and rationalize the results of past actions,
and plan future efforts. It is through these shared elements that expectations
are created. Your ability to manage the expectations of other managers depends
on your ability to manage these elements (i.e., create and modify this shared
information).

Most of the elements in the channels can be constructively envisioned as
the answers to interesting questions. Two development managers will share
the answers to the question, “What is the current status of the product pricing
enhancement?” A development manager and a user will share the answers to
the question, “What did we try in the past to address the pricing issue?” A
manager and the CIO will share answers to the question, “Should we upgrade
to the next version of the DBMS?”

The Delegate Channel

It is through the delegate channel that you support higher levels of manage-
ment (and maintain their support). The characteristics of this channel are
determined by the more senior role. I have seen relationships being very
formal and regulated, while others have been more casual. But always (and
understandably), the tenure of the discourse has been similar to the style of
the upper-level manager. This channel was created by the delegation of
resources, so the usual subject of the elements is the effective use of these
resources toward the organization’s objectives. A sub-theme of the dialogue
is the objectives themselves (see Exhibit 4).

The information shared in the elements is never complete, nor will it be
100 percent accurate. This is not usually a problem. The elements are perpetual

Exhibit 4

Delegate Questions

Roles Element/Questions Roles

Vice-presidents
Directors

Current

Are resources being used well?
Are resource changes required?
Are objectives reasonable?

Past

What lessons should we remember from past
efforts?

Is there information in past efforts that will help
project time and resource requirements?

Future

What resources will be needed?
Are there better objectives?

Development
manager

Development
supervisor

AU1292Ch08Frame Page 120 Sunday, August 25, 2002 11:54 AM

Managing Managers… Or I’m OK, but the Rest of Them?

121

and constantly in flux. It is in your best interest to monitor the state of these
elements (just as you monitor the state of elements in the development
repository). If these elements are not being addressed, you will need to take
steps to raise the issues by suggesting answers and inviting comment and
criticism. Dialogue is the important thing. The objective is considered discus-
sion and consensus, not having the “right” answer every time you speak.

A little inaccuracy sometimes saves tons of explanation.

—H.H. Munro

The Collaborate Channel

The collaborate channel is used to synchronize efforts with other managers
within the development organization. This channel involves sharing informa-
tion and supporting each other’s allocated objectives. I find that this channel
is characterized by adjectives such as “mutual,” “adaptive,” and “implicit.”

Given that the objectives delegated to each manager originate from the
same source, it is likely that they are compatible and both managers recognize
the mutual benefit to be gained from coordinating their efforts. One would
hope that the objectives are not mutually exclusive, causing counterproductive
competition for resources and support of the other managers. In any case,
the dialogue should address the relationship between the collaborating man-
agers (see Exhibit 5). The conversation can be malleable and adaptive because
there is typically a degree of freedom in the way responsibilities are shared.
Most of the managers with whom I have worked have felt they have autonomy
to share resources, trade assignments, or even alter directives if everyone
agrees and the net effect is the same as the original objective. Managers
communicating across a collaborate channel are usually the most collegial of
the three channel types. While delegate channels can be formal and service
channels follow a fixed protocol, the collaborate channel is based on rules
that are implicit and often altered to mold to the personalities of those involved.

The Service Channel

User involvement and feedback occur along the service channel. I characterize
this channel as transactional. It tends to be formal but cordial. The way the
development organization interacts with other enterprise units is usually nego-
tiated. A development manager may talk with the marketing manager in formal
meetings scheduled ahead of time. The development management may meet
with the human resources manager at the local coffee shop before work. The
subject matter of the elements in this channel tends to focus on the services
the development organization is providing. Most of the discourse concerns
the current status of the applications, peppered with suggestions and questions
about possible future services (see Exhibit 6).

AU1292Ch08Frame Page 121 Sunday, August 25, 2002 11:54 AM

122

Dynamic Software Development: Managing Projects in Flux

Exhibit 5

Collaborate Questions

Roles Element/Questions Roles

Development
manager

Development
supervisor

Current

What are your developers doing?
Does it affect me?
Are we performing as well as we have in the

past?
Are our current status of our tasks in line with

our objectives?

Past

Have we done similar tasks before?
Are the assumptions we made in the past still

valid?
Is the historical data we are using based on the

same assumptions we are using today?

Future

How can we organize ourselves to meet
objectives?

Should we alter the way we do things?
Are the resources we have adequate to the

anticipated tasks?

Development
manager

Development
supervisor

Exhibit 6

Service Questions

Roles Element/questions Roles

User director
User manager
User supervisor

Current

Is the service constructive?
What problems are we encountering?
Do we see any opportunities for

improvement?

Past

Have services you have been using
been positive?

Is there evidence that benefits we
expected are being realized?

Future

Will proposed changes work with
current services?

How will we prioritize the proposed
changes?

Development manager
Development supervisor

AU1292Ch08Frame Page 122 Sunday, August 25, 2002 11:54 AM

Managing Managers… Or I’m OK, but the Rest of Them?

123

The best way to ensure support for ongoing development efforts is to take
great care in supporting the communication channels (shared information)
between you and the other managers in the enterprise. Most of the failures I
have witnessed have been directly associated with failure to recognize these
shared information elements as critical assets that deteriorate if they are not
tended.

Selling Enhanced Value

Understanding the communication channels that connect you to other man-
agers is important. Using those communication channels to encourage creative
work is critical. Managerial communication is always enhanced when infor-
mation is freely available and accurate.

The information discussed in previous chapters forms a valuable focal point
for all three communication channels (see Exhibits 7, 8, and 9).

The resources that are being managed through the delegate channel include
the developers and the equipment and tools. The information is the Framework
(refer to Chapter 6) and the Development Plan (refer to Chapter 3). With both

Exhibit 7

Delegate Channel

Exhibit 8

Collaborate Channel

Delegate Channel

& resources a1
objectives a1

& resources A
objectives A

Framework

Development
Plan

Collaborate Channel

& resources a1
objectives a1

& resources a2
objectives a2

Framework

Element
Definitions

Development
Plan

AU1292Ch08Frame Page 123 Sunday, August 25, 2002 11:54 AM

124

Dynamic Software Development: Managing Projects in Flux

parties focusing on the same, accurate information, they stand a better chance
of making effective, constructive decisions about the questions in the channel.

Development managers address issues of the development efforts, the
framework on which applications are built, and the environment supporting
the development. The Development Plan and Framework as discussed in
Chapters 6 and 3, respectively, provide a common knowledge base for tactical
decisions that must be made. Issues relating to the structure of the repository
were discussed in Chapters 2 and 4. Using the development repository can
provide a common basis for evaluating status and planning ongoing devel-
opment.

Managers in user departments of an enterprise are concerned about the
service they receive from the development organization and how those services
might affect their success (both positively and negatively). The discourse
occurring on the service channel centers on the value the software provides
and plans for integrating proposed changes into operations. The Development
Plan has information concerning the tasks in progress and projections of the
development schedule. This information should be used to focus and direct
the service channel discussions.

Applying Dynamic Management

Draw an organization chart for your organization. Classify each of the com-
munication channels with your managerial colleagues as “Delegate” or “Col-
laborate” or “Service” (see Exhibits 10 and 11). For each of the channels, list
the questions you are currently investigating with that person. Record questions
you recall addressing in the past. If you feel there are questions that will come
up in the foreseeable future, record these and begin to list the sources of
information you might tap to address them.

You may find it useful to start three separate discussions — each aimed at
evaluating effective ways of communicating along the three channels: delegate,
collaborate, and service.

Exhibit 9

Service Channel

Service Channel

& resources a1
objectives a1

& resources b1
objectives b1

Development
Plan

AU1292Ch08Frame Page 124 Sunday, August 25, 2002 11:54 AM

Managing Managers… Or I’m OK, but the Rest of Them?

125

Universally fundamental laws of literary communication:

1. One must have something to communicate.
2. One must have someone to whom to communicate it.
3. One must really communicate it, not merely express it for oneself alone.

Otherwise, it would be more to the point to remain silent.

—Friedrich Von Schlegel

Exhibit 10

Online Discussion Index

Exhibit 11

Beginning Dialogue

Dynamic Management

Discussion Topic Index

Topic: Information-Based Management

Topic: Framework

Topic: Developers

Topic: Environment
Topic: Managers

Topic: Planning
Topic: Defining Work

Topic: Productivity

File Edit View Tools Help

DM

(click on Topic for discussion)

Discussion for topic: Managers

- Moderator:

File Edit View Tools Help

DM

I have attached our organization chart - (it is old and needs updating)
Are there ways we can improve communication among all the players?

+ Reply1:

- Moderator:

I like the idea of making our development plans public. That should
help focus the decision making process.

I think it is better to find out about such conflicts early rather than after
people think commitments have been made.

- Reply2: What do we do if different users disagree with the priorities?

AU1292Ch08Frame Page 125 Sunday, August 25, 2002 11:54 AM

126

Dynamic Software Development: Managing Projects in Flux

Chapter 8 Case Study Excerpt

The following narrative is a set of excerpts from the full case study in Appendix
G relating to the topics in this chapter.

When the Director of Applications Development was named the CIO, he
took some time to think about his role within DSM (see Exhibit 12). His
personal goal was to identify the type of information each of his constituents
needed. The CIO reasoned that if he could provide the information that each
colleague expected, they had a good chance of maintaining good communi-
cation, effective decision making, and more reasonable prioritization of goals.
If he provided the wrong information, he was sure his effectiveness as an
officer of the company would be severely compromised.

The information relationships with other officers of the company would be
one of “service.” That is, the office of the CIO would be judged by how well it
contributed to the success of the other divisions of DSM. So, the CIO was
determined to keep the other divisions of DSM informed of the status of their
particular requests. He also knew that he would always have more requests for
service than he had resources to fulfill them. The information he shared with
other executives would have to include criteria and strategic goals he used to
prioritize development requests. It would not be enough to say to the VP of
Marketing that the request for an update of field support applications would not
be addressed for six months. The information would also have to include what
applications were given precedence and why. The decision-making process
would have to be coordinated and flexible, and would need the support of his
boss, the CEO. The information shared with the CEO would have to be tailored
to help the CEO direct the discussion of corporate priorities.

The CIO determined that communication within the development group
would be mostly collaborative (see Exhibit 13). While there were formal
administrative relationships, traditionally, managers have tried to function as
a member of the development team. The CIO wondered if that was really the
best arrangement, but every manager had come up through the ranks of the

Exhibit 12

Communication across DSM

Director
Ireland

CEO

CFO

Director
India

COO
VP

Marketing

CIO

et al

International Divisions

Sr. MgrsSr. MgrsRegional Mgrs

Service

Ser
vic

e

Service
Service

Delegate

AU1292Ch08Frame Page 126 Sunday, August 25, 2002 11:54 AM

Managing Managers… Or I’m OK, but the Rest of Them?

127

development staff and enjoyed staying involved with the technology and the
development work. For these communication channels, the CIO determined
to make the development plans and all elements of the environment open to
debate and refinement. Decisions about standards, methods, practices, tools,
and training needed the perspective of developers. Of course, decisions had
to be made and it was clear that the managers would have that responsibility,
but all decisions had to be informed by the lessons learned by the developers
and project leaders.

Communication between the development group and the rest of DSM has
always been difficult (see Exhibit 14). It seemed that the Director of Applications

Exhibit 13

Communication within the Development Group

Exhibit 14

Growing Difference in Expectations

CIO

Mgr.
DB Admin

Mgr
Appl. Dev.

Developers

Project
Mgrs

Mgr.
Midwest

CollaborateCollaborate

Delegate ?

D
elegate ?

Dele
ga

te
?

D
elegate ?

D
el

eg
at

e
?

Collaborate

6 months 1 year 8 months

di
ffe

re
nc

e
in

 e
xp

ec
ta

tio
ns

phase
review

phase
review

phase
review

start

AU1292Ch08Frame Page 127 Sunday, August 25, 2002 11:54 AM

128

Dynamic Software Development: Managing Projects in Flux

Development and the users were in a vicious cycle. The developers and the
DSM managers had the most closely aligned views of a proposed software
application at the beginning of a project. Of course, the application was not
defined, so everyone could imagine anything they wanted. The development
group would work through an initial phase of the DSM-DM. During this phase,
the user’s imagination and the vision in the developer’s eye would evolve
independently. At the phase review, it would be clear how expectations had
diverged. In conversation, everyone tried to explain his or her current under-
standing of the product. At the end of the phase review, expectations would
be closer, but never close to perfect consensus.

The process was frustrating and many coped by practicing avoidance. They
knew the communication process was imperfect and wearisome, so a manager
would often delegate the responsibility of participating in the phase review,
often with good reason; the person chosen to participate was usually closer
to the operation than the manager, perhaps with a better understanding of
the technology. But always, the delegate had less authority to make decisions.
Phase reviews later in a project often required several meetings as the delegate
needed time to return to her or his manager to discuss options and then
return some days later.

Both developers and users find it easier to maintain a high level of
understanding with the advent of incremental development. Most communi-
cation occurs on a very informal level with users commenting on the latest
change, knowing that their concerns will be addressed in a release in the
near future. Both users and developers have reported that the issues being
addressed are never big, emotional issues, but rather a series of smaller
negotiations (see Exhibit 15).

During one discussion, a regional manager recalled how contentious the
process was years ago and said, “Now we discuss problems and errors so
quickly after they are detected, we don’t even call them errors and problems.”

Exhibit 15

Managed Difference in Expectations

6 weeks 1 week3 weeks

di
ffe

re
nc

e
in

 e
xp

ec
ta

tio
ns

release
review

release
review

release
review

release
review

AU1292Ch08Frame Page 128 Sunday, August 25, 2002 11:54 AM

Managing Managers… Or I’m OK, but the Rest of Them?

129

The biggest issue now is the prioritization of requests. Users want the
changes and enhancements as quickly as possible, but there is a limited
number of developers. So, decisions have to be made as to which requests
are addressed in what order. The CIO posts the current development plan
(list of tasks, who is working on them, and the task’s status) on the depart-
ment’s intranet site; this has been a big help in facilitating the communication
process. The development plan is also connected to an online discussion
conference where users and developers can exchange ideas and issues
between physical meetings (which are always difficult to schedule).

AU1292Ch08Frame Page 129 Sunday, August 25, 2002 11:54 AM

AU1292Ch08Frame Page 130 Sunday, August 25, 2002 11:54 AM

131

Chapter 9

Funding and
Economic Return…

Or Paying the Way

Your goal is to add value to the enterprise. The evidence of value is in the
support you build from other divisions of the enterprise, not in “bringing
projects in” on time and under budget. The funding model for software
development must be tied to the value of the result. Small is good. As software
development efforts get bigger, two destructive processes occur. The obvious
effect of size is increased risk. The more insidious effect is that objectives are
twisted from adding value to “getting done.”

Organizations do not need projects, they need systems.

—Robert Block

Funding as Risk Containment

The risk depicted on the

y

-axis in Exhibits 1 through 4 corresponds to the
probability of failure of a development effort as things get “big.” The “big”
scale on the

x

-axis can be the time horizon. Development efforts that plan
long periods of time before real demonstrable results are delivered run the
risk of solving the problem that existed at the start of the period and not
knowing that the problem has changed until after significant resources have
been wasted.

The “big” scale on the

x

-axis can also be the size of the human effort.
Most of us have had experience working in large organizations. You recognize

AU1292Ch09Frame Page 131 Sunday, August 25, 2002 11:53 AM

132

Dynamic Software Development: Managing Projects in Flux

and accept that as the size of the group increases, more resources must be
expended just coordinating work. Colleagues working in large organizations
report they spend about 30 percent of their time in planning meetings or
other coordinative activities, while colleagues working in small development
shops report that less than 10 percent of their time is spent in such activities.

Exhibit 1

Risk versus “Big” Timelines

Exhibit 2

Risk versus “Big” Human Effort

T i m e l i n e

R
i
s
k

6 - months - 12

acceptable

S i z e50 - person months - 200

R e q u i r e m e n t sabsolute - volatile

 T e c h n o l o g yknown - untried

T i m e l i n e

R
i
s
k

1 2 3 - Features - n

acceptable

AU1292Ch09Frame Page 132 Sunday, August 25, 2002 11:53 AM

Funding and Economic Return… Or Paying the Way

133

Both groups speak of these meetings with approximately the same degree of
disdain.

The risk curve looks the same for graphs where the

x

-axis scale represents
the uncertainty of the requirements. The risk of failure is very low in domains
where all users know with certainty and agree on the system functions and
information definitions that will satisfy their requirements. I have never seen
such a user domain, but in theory it could exist. More often, the users do not
know with any degree of certainty what will best serve their needs. In this
more common case, small incremental cycles provide room for review and

Exhibit 3

Risk versus “Big” Requirements

Exhibit 4

Risk versus “Big” Technology Change

R
i
s
k

acceptable

R e q u i r e m e n t sabsolute - volatile

R
i
s
k

acceptable

 T e c h n o l o g yknown - untried

AU1292Ch09Frame Page 133 Sunday, August 25, 2002 11:53 AM

134

Dynamic Software Development: Managing Projects in Flux

critique before a large expenditure of resources is made on building to the
wrong set of requirements.

The “big” scale to which many development shops fall prey is the allure
of big technology. Most developers like to think of themselves as researchers
on the forefront of advancing technology innovation. Given the choice
between old and tired technology and new and promising technology, most
developers will opt for the latter path. The farther out on the new technology
scale we go, the higher the risk of failure because the right end of the axis
increases the number of unknowns. The most successful shops are those in
which developers are excited about solving problems — even if that means
using two-generations-old technology. The shops with the worst reputation
(and the least support for funding) are those perceived as being technology-
driven hotshots.

In all of these scales, the number of unknowns grows significantly as you
move out the

x

-axis. Users are unsure of their requirements and developers
are unsure of what it will take to build a system that is tenuously described.
But confidence is usually high, even if specifics are lacking.

Increased risk is largely due to the uncertainty inherent in larger scales. This
truism is recognized by older prototyping approaches to building software and
by the newer Agile and Extreme methods. These development philosophies
recognize that the probably of success is improved with small cycles and many
opportunities for user and other stakeholders to provide critical feedback.

The ratio of “big” to risk also has a significant effect on the funding process.
“Big” kicks off a vicious cycle. If there is a belief that system enhancements
occur in long cycles and with great effort, there is a tendency to expand the
scope of their requests. This expands the time horizon, which increases the
perceived risk. It is reasonable to be concerned about resource requirements
for a development effort with projections of a long time period and uncertain
future benefits. As managers, we need to be concerned about setting limits
on the risk the enterprise will assume.

Most enterprises behave as if they were following a simple algorithm.

if (the money spent is less than $x) and (the elapsed time is less
than n months) then
 the resulting software will not be valuable
otherwise
 the resulting software will not be valuable
end if

With long time frames and many people negotiating for influence, agree-
ments become heavy, formal, and less flexible. By necessity, the objectives
are fuzzy. After all, we have added as many requirements as we can to the
proposal and we know that many will not be implemented for a long time.
But, the money and time thresholds are firm. So, it is not surprising that all
managers involved begin to focus on the numbers. The goal becomes that of
matching the actual and projected budget and matching the actual and pro-
jected time estimates rather than providing valuable software solutions.

AU1292Ch09Frame Page 134 Sunday, August 25, 2002 11:53 AM

Funding and Economic Return… Or Paying the Way

135

The communication on the delegate channel (the interaction with your
boss) fills up with questions about how we can be sure we will not go over
budget. This means less space on the channel for discussion of improving the
framework and prioritizing objectives.

Communication on the collaborate channel (interaction with your peers)
concentrates on watching the developer’s timesheets and creatively interpreting
requirements to be sure that deadlines can be met. The discussion is not: “Are
we getting better?” but: “We will not meet the time/money goal, therefore,
what can we do to catch up?”

“Necessity is the mother of invention” is a silly proverb. “Necessity
is the mother of futile dodges” is much nearer the truth.

—Alfred North Whitehead

Communication on the service channel (the interaction with users) often
deteriorates to conflicting objectives. The development manager is asking
questions about stabilizing requirements so the money and time thresholds
will not be exceeded. User management is asking questions about how
functions and definitions can be modified and made more relevant to current
needs (as opposed to the needs imagined when the effort began).

Dynamic and iterative development management can help replace the
previous algorithm with a more constructive one:

if (the last delivered feature was valuable to the user) and (the user
turns to me for greater support) then
 my development effort will get increased funding
otherwise
 the organization will begin to question my value proposition
end if

The variables in this equation are not quantitative. You will
need to promote your contribution. If users feel you are adding
value, promoting your success will not be difficult.

Funding the Perpetual Effort

Many managers with whom I have worked have fallen into the cycle of “big.”
One manager described it as a game show where the development group is
asked to bid on cost and time projections — “I can name that tune in three
notes.” Development managers are bidding for approval by claiming, “I can
deliver that service for $1.2 million in 11.5 months.”

To measure up to all that is demanded of him, a man must over-
estimate his capacities.

—Goethe

AU1292Ch09Frame Page 135 Sunday, August 25, 2002 11:53 AM

136

Dynamic Software Development: Managing Projects in Flux

Funding for the perpetual effort is based on continuous development,
keeping a short time horizon and maintaining risk well below acceptable
levels (see Exhibit 5).

If there is a belief that new features and enhancements have a short cycle
requiring smaller effort, the funding process becomes an operations budget
directly associated with benefit. If the development organization is delivering
five features per month at the current funding level, doubling the funding
level should yield eight or nine features per month. The ratio is not linear

Exhibit 5

Small Steps, Small Risk

Exhibit 6

Funding versus Service

T i m e l i n e

R
i
s
k

1 2 3 - Features - n

acceptable

F
e
a
t
u
r
e
s

p
e
r

m
o
n
t
h

x 2x 3x 4x Funding level

25

20

15

10

5

AU1292Ch09Frame Page 136 Sunday, August 25, 2002 11:53 AM

Funding and Economic Return… Or Paying the Way

137

(see Exhibit 6). As development organizations increase in size and applications
increase in features, productivity drops some due to the increased requirement
for inter-team communication and coordination.

The justification for increased funding should be the backing and testimo-
nials of the users. If the service provided by the development organization is
visible and positive, support for a steady funding stream is enhanced by
highlighting the work completed in the past and having user support for future
plans.

Change is one thing, progress is another. “Change” is scientific,
“progress” is ethical; change is indubitable, whereas progress is a
matter of controversy.

—Bertrand Russell

The curve shown in Exhibit 6 implies a nonlinear relationship between
funding level and delivered features. It would be nice to think that if I double
the funding to the development effort, I double the productive output. How-
ever, the property of “big” comes into play again. As the development effort
grows and more resources (both human and hardware) are applied to the
creation of productive applications, a larger portion of the resources has to
be applied toward the coordination of the development effort itself. As
managers, we need to be vigilant and watch for the point where the slope
of the curve is so shallow that increased funding does not yield sufficient
benefit.

I have never seen a development organization suffering from this
problem. This is a problem most managers would love to have.

Paying for Asset Development

The features and services built by the development organization are capital
assets. But unlike software’s physical counterparts (e.g., plant and equipment),
software development costs are difficult to estimate and benefits are difficult
to quantify.

I find it interesting that all the cost and size models show that
software costs and schedules are very consistent across projects. But
the analysis is always in hindsight. After the project is completed,
the numbers line up. Before the project, it is anybody’s guess.

It is far more comfortable to base funding and budgeting decisions on the
body of work. The development plan (see Exhibit 7) is a valuable record of
past and pending work that users are demanding and the development
organization is providing. You should highlight the direct connection between
the resources going into system development and the benefits received by
the users. You should keep the discussion on all your communication channels

AU1292Ch09Frame Page 137 Sunday, August 25, 2002 11:53 AM

138

Dynamic Software Development: Managing Projects in Flux

focused on the proposed services and the resources applied to the tasks that
yield direct, demonstrable benefit.

The development plan lists the pending services and who is assigned to
perform them. There are always more “pending” tasks than “assigned” tasks.
Tasks completed last year will be enhanced this year. It is the nature of the
beast. The funding model should be as natural as the work. We have a given
amount of resources, and we (all affected managers) sequence and prioritize
the work as best we can. Developers work in an environment in which their
goal is to produce sustainable solutions with the most effective technology
available. Developers work in direct response to needs in the enterprise; if
we want more service, we buy more resource (see Exhibit 8).

Exhibit 7

Development Plan

Task
ID

Focus
Element

Element
Count Description

Priority/
Sequence Assigned

A — — Add customer order status Done Blue Team
B — — Add customer credit query Done Green Team
C — — Enhance product pricing formula 1 Blue Team
D — — Replace inventory valuation method 2 Green Team
E — — Add product inquiry 3 Unassigned
F — — Convert customer database 4 Unassigned
G — — Replace order entry sequence 5 Unassigned
H — — Link credit history to order qualification 6 Unassigned
I — — Pull directly from supplier catalog 7 Unassigned

Exhibit 8

More Resources, More Service

Weeks: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . .

BlueTeam

Green Team

Task A

Task B Task D

Task C Task E

Task F

start complete

Task

Pending Task

Task G

Task I

Task H

Weeks: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . .

BlueTeam

Green Team

Red Team

Cyan Team

Task A

Task B Task D

Task C

Task E

Task F Task G

Task I

Task H

AU1292Ch09Frame Page 138 Sunday, August 25, 2002 11:53 AM

Funding and Economic Return… Or Paying the Way

139

The upper and lower portions of Exhibit 8 depict two options for scheduling
Tasks A through I. The discussion on the service and delegate channels should
be prioritizing the pending tasks and weighing the possibility and benefits of
forming additional teams.

Be prepared for the issue of “change.” Every project in which I have been
involved has faced the argument that software built now will have to be
changed at some point in the future when related elements of the repository
are addressed. I remember comments like: “The product table will have to
be redesigned when we change DBMS vendors next year — so why take time
to address Task C now?” Or, “They’re hiring a new Director of Marketing
sometime in the near future — so let’s bundle that into Task J.”

Perfect accuracy of thought is unattainable, theoretically unattain-
able, and undue striving for it is worse than time wasted: it positively
renders thought unclear.

—Charles S. Peirce

A constructive response is to describe the following scenario:

�

Today, elements of the system are changed.

�

Tomorrow, the user identifies a valid need that involves the recently
changed elements.

�

It is ridiculous to say, “We made a change to that element yesterday
so we can’t address your need today.” The decision to dedicate
resources to fulfill that need is not affected by the fact that related
elements have recently been changed.

�

It is equally ridiculous to say, “We may have to change that element
tomorrow; therefore, we can’t address your need today.” The decision
to dedicate resource is not affected by the possibility that future needs
might require change to those same elements.

If the need exists and the enterprise decides it is important enough to take
priority over other pending tasks, it is the right decision to start work on the
newly identified need.

Always have a bias toward action.

Applying Dynamic Management

Review the last project budget you approved for your department (see
Exhibit 9). Consider the role of the budget in your development effort. Try to
remember the criteria you used for day-to-day decisions. How prominent was
the desire to work to the budget numbers? Try to assess how the decisions
might have been different if the criterion had been to maximize service to
the user.

AU1292Ch09Frame Page 139 Sunday, August 25, 2002 11:53 AM

140

Dynamic Software Development: Managing Projects in Flux

Most of the time, the differences are minimal and no real dissonance exists.
But if a significant number of decisions were driven by a need to meet budget
and schedule constraints, there is room for improvement.

Discuss the budget you have just analyzed and your memory of events
with your lunchtime management group. See if others have had similar
experiences. Then discuss the possibility of shifting to a more continuous and
operational funding model (see Exhibit 10).

Chapter 9 Case Study Excerpt

The following narrative is a set of excerpts from the full case study in Appendix
G relating to the topics in this chapter.

Exhibit 9

Online Discussion Index

Exhibit 10

Beginning Dialogue

Dynamic Management

Discussion Topic Index

Topic: Information-Based Management

Topic: Framework

Topic: Developers

Topic: Environment
Topic: Managers

Topic: Funding

Topic: Planning
Topic: Defining Work

Topic: Productivity

File Edit View Tools Help

DM

(click on Topic for discussion)

Discussion for topic: Funding

- Moderator:

File Edit View Tools Help

DM

Does our budget process distort our true objective? That is, are we
compromising the user’s value in favor of coming in on-time/under-budget?

+ Reply1:

- Moderator:

I think that is a stupid question. Of course we want to provide value!

Is there an alternative?

- Reply2: I’m not so sure. I know I feel pressure to modify the plan to avoid having to
go through a witch-hunt at the end of a project. Money is easy to measure
’value’ is not easy - and value is not visible until after we are off onto
another project.

+ Reply1: I’ll admit to wishing we didn’t have to work to the project limits
(complete by June, no more than $X).

AU1292Ch09Frame Page 140 Sunday, August 25, 2002 11:53 AM

Funding and Economic Return… Or Paying the Way

141

DSM had more requests for system support than they could handle.
Marketing wanted customer support for the regional managers, operations
wanted systems to aid the consultants, and the financial people had a long
list of enhancements to internal accounting systems. With the Director of
Applications Development reporting to the CFO, the financial applications
were getting preferred attention.

The VP of Marketing sent a memo to the CEO expressing his frustration,
as shown in Exhibit 11. He also copied the memo to the other executives in
DMS because he knew they were feeling the same frustration and wanted to
ensure the debate was enlarged to include all parts of the DMS enterprise.

The COO and directors of the international divisions replied with similar
requests. They all said they would prefer working in-house, but that the level
of service was not adequate to support the company’s growing needs. The
CFO requested more money to hire more developers and upgrade the devel-
opment tools. The CEO was a little confused by all the discussion but relied
upon his officers, agreeing to amend the budget and increase the investment
in the systems development area.

The CEO’s confusion came from the fact that everyone was talking about
applications development as if the systems were capital assets — like they
were requesting more plant and equipment, but the company was accounting
for the development area like a clerical function. It was a cost center. Usually,
everyone tried to minimize the money consumed by cost centers, but here,

Exhibit 11

Initial Memo to the CEO

To: CEO

From: VP of Marketing

Subject: Support from Applications Development

We need more support from applications development. We have submitted many
requests for new and updated systems. While it appears the people within applications
development have the interest and the expertise, they clearly do not have the time.
We are told that they are busy with updates to the financial applications and that our
requests will be addressed when resources are available. In my conversations with
the CFO, she claims she has no more money to hire more developers and that her
applications will continue to take precedence.

This is untenable. We would prefer working with the internal development group but
there are third-party vendors with software systems that will fill most of our needs. I
need to know if I should continue to investigate outside sources for system support
or if there will be development resources available that I can count on.

cc:

CFO

COO

Director of Applications Development

International Directors

AU1292Ch09Frame Page 141 Sunday, August 25, 2002 11:53 AM

142

Dynamic Software Development: Managing Projects in Flux

there was almost unanimous agreement that the company should “invest” in
the division. The CEO wondered how he would know if the “investment”
yielded a positive return.

The CEO had several conversations with the Director of Applications
Development. He ask the Director how he felt about the current state of
affairs. The Director reported that it was awkward. He wanted to be able to
work with the other divisions on marketing and customer support but, until
recently, was only able to focus on the financial systems. They talked about
the possibility of moving the development function into the marketing area
or have several development groups — one for marketing, one for finance,
one for operations. They agreed that it would be difficult to coordinate and
that it seemed like a duplication of effort. Both men thought about the idea
of applications development reporting directly to the CEO, but neither actually
verbalized it. The CEO was uncomfortable with the technology and, in general,
it seemed like an odd notion.

The CEO explained to the Director that he was increasing the funding for
applications development and that he was sure the CFO would support the
development of nonfinancial systems requested by other divisions in the
company.

Over the next year or so, the CEO saw that various projects were initiated.
He reviewed the accounting of the money being spent on these projects and
convinced himself that things were moving in the right direction. But direction
was not always without its problems.

The CFO was very uncomfortable managing a division that was increasingly
answering to other managers. She recognized that the Director of Applications
Development was in a difficult position as he tried to coordinate development
in support of many parts of DSM. Increasingly, conflicts developed, such as
the one between finance and marketing. A project to develop customer
relations information for the regional managers had been approved. It was
expected to take six months to complete. The CFO accepted a delay in a
proposed upgrade to their customer credit system, expecting the work to
begin after the marketing system was completed. After about five months, it
was clear that the marketing system was not going to be completed on time
and the capital management system would be delayed even further. The
Director of Applications Development suggested that some of the developers
working on the marketing system be reassigned to start the customer credit
project. This meant that the marketing system, already behind schedule, would
be even later.

The CFO resented having to spend time on this conflict. From her per-
spective, she was being generous to support the marketing systems at all, and
now to have her generosity repaid with delays in critical systems was difficult
to take.

The Director went to his developers and asked for extra effort to get the
marketing system “out the door” as soon as possible. The developers
responded by putting in a significant number of overtime hours. They also
were liberal with the interpretation of requirements; after all, it was clear that
the goal was on get “the system” out the door on time. The exact definition

AU1292Ch09Frame Page 142 Sunday, August 25, 2002 11:53 AM

Funding and Economic Return… Or Paying the Way

143

of “the system” had always been nebulous. So the fact that extensive error
handling was not implemented was technically not a violation of requirements
because it was never explicitly stated. Cutting corners on the rigor of data
interfaces seemed justified because it allowed them to deliver “the system”
on time.

They succeeded by the measurements that were most prominent. The
system was put into production only two weeks late. The marketing people
were a little disappointed that some of the features they thought would be
there were not and that the training and conversion support they thought
they would have was rather sketchy. The developers were happy to have
their weekends back and they began working on the customer credit system.

As time went on, marketing began sending more and more maintenance
requests. They had discovered that it was easier to get maintenance requests
in the queue than “new development” requests. But the Director noted that
some of the maintenance requests were larger than the original new devel-
opment proposals. As he assigned people to deal with the maintenance jobs,
there were fewer developers working on the new systems.

The Director of Applications Development knew that the situation was not
going to get better. He reasoned that as long as the managers requesting
services were outside the decision-making process, there was going to be
dissatisfaction with any decisions made. He contacted his boss (the CFO) and
the CEO, suggesting the creation of a steering committee (see Exhibit 12).

The Director had a conversation with the CEO in which the director expressed
his hope that the steering committee could exercise a degree of authority in
mediating the decision-making process. The CEO agreed and called the first
meeting of the committee where he established their mission. The first few
meetings of the steering committee were attended by the executives themselves.
Their initial work seemed promising; they made decisions about which of the

Exhibit 12

Memo from the Director of Applications Development

To: CEO

From: Director of Applications Development

Subject: Project prioritization

The Applications Development department needs more information about the
strategic contribution computer applications are making to DSM. We have a long
backlog of system development requests. Our effort to prioritize the requests requires
more information than we have. The decisions we make about which projects take
precedence will never be optimal without input from all affected DSM divisions.

I request that a steering committee be created with representatives from Finance,
Marketing, Operations, and International Divisions. Their charge would be to approve
and prioritize development requests and act as overseer and facilitator of relationships
between the development group and its users.

cc:

CFO

AU1292Ch09Frame Page 143 Sunday, August 25, 2002 11:53 AM

144

Dynamic Software Development: Managing Projects in Flux

development requests should have priority. They were even successful at
merging several related requests by identifying overlaps in the subject matter
and assigning subject matter experts from different divisions to work jointly
on an integrated system.

While the steering committee did help coordinate the expectations of the
users, there were some unanticipated consequences; most significantly, the
size of the requests became larger. The steering committee added a layer of
formality to the process of selecting projects. For all members of the committee
to vote in favor of a proposal, the proposal had to be significant. Smaller
projects were viewed as taking valuable resources that should be directed to
more “important” work.

The Director and one of his senior analysts were talking one day after a
steering committee meeting. The analyst wondered aloud about the trends
they had seen in the project approvals. He drew a chart representing the size
of a proposed project against the estimated resource requirements. “You would
expect a linear relationship, wouldn’t you?” asked the analyst (see Exhibit 13).
“Bigger projects require more resources. But you would expect the approved
and funded projects to cluster along a threshold, with proposals perceived by
the steering committee as too costly being rejected.”

“This assumes that perceived benefits are proportional to size,” the CIO
added. “Right,” continued the analyst. “Small project — small benefit. Big
projects — big benefits. But that is not what is happening.” The analyst started
another chart with axes labeled “resources” and “size,” but this time he began
marking recent project approvals.

The CIO and the analyst began listing the proposals recently considered
by the steering committee; marking an “x” for rejected proposals and a
checkmark for approved proposals, positioning the mark on the graph (see
Exhibit 14) where it represented their perception of the project’s relative size
and estimated resource requirement.

Exhibit 13

Expected Project Funding

�

� �

�

�
�

�

��

�

�
�

�

�
�

�

E
st

im
at

ed
 R

es
ou

rc
e

R
eq

ui
re

m
en

t

Size

AU1292Ch09Frame Page 144 Sunday, August 25, 2002 11:53 AM

Funding and Economic Return… Or Paying the Way

145

�

More smaller projects were rejected than larger ones.

�

Rejected proposals were the ones with the higher resource estimates.

�

As projects got larger, the resource estimates seemed to be proportion-
ally smaller.

“This last point is insidious,” commented the Director. “We are under
pressure to define proposals that will satisfy the largest number of demands.
If we are honest and accurate with estimates, they appear too large. Large
projects are nearly impossible to estimate accurately, so there is always
pressure to agree to lower resource estimates. And the big projects with lower
estimates are the only ones that get approved. Such a deal!”

Exhibit 14

Actual Project Funding

�

�

�

�

�

�
�

�
�

�

�
�

�

�

��

�

�
�

�

�

�

�

E
st

im
at

ed
 R

es
ou

rc
e

R
eq

ui
re

m
en

t

Size

AU1292Ch09Frame Page 145 Sunday, August 25, 2002 11:53 AM

AU1292Ch09Frame Page 146 Sunday, August 25, 2002 11:53 AM

147

Chapter 10

Leadership by Consensus…

Or if You’re Going My Way

Dynamic system development requires flexible and adroit decision making.
Your network of colleagues forms the mechanism for strategic planning.
Leadership is required. But most of us in development management are not
in a position to lead from a position of organizational power, so we lead
through influence, support, and consensus.

A reasonable change of the world cannot be instrumented by pure
reason.

—Friedrich Dürrenmatt

Decision Councils

People in most enterprises recognize the need to bring different expert
perspectives to bear on the problems of determining the direction of software
development and prioritizing development proposals. Because developers
move through the development tasks quickly, you need input from the rest
of the enterprise that is timely and responsive.

Unfortunately, the most convenient means of instituting this decision-
making process is to appoint a steering committee. These committees are
typically populated with representatives of different levels of management
among different organizations of the enterprise. One example looks like this:

�

CIO (or delegate)

�

Director of Systems Development

�

Senior systems analyst

�

VP of Marketing (or delegate)

AU1292Ch10Frame Page 147 Sunday, August 25, 2002 11:58 AM

148

Dynamic Software Development: Managing Projects in Flux

�

VP of Production (or delegate)

�

VP of Finance (or delegate)

The steering committee meets regularly to review software development
proposals, discuss problems with current efforts, and plan future direction.

While this form of decision council is common, it is not without its
problems. Often, the senior representatives have other responsibilities and
send delegates on their behalf. If the delegate does not have the authority to
make decisions, the meeting becomes a discussion session with decisions
being postponed until the senior members can attend. Also, seldom do issues
being discussed affect all members present. A proposal to enhance Marketing
may not require the expertise of the delegates from other operations. The
unaffected parties are wasting their time while the interested members of the
steering committee are dealing with the item.

As a result, interest and commitment to the process becomes weak and
the lead-time for decisions becomes long. You, as a development manager,
would be better served if the function of the decision council were distributed
and more dynamic.

A combination of electronic conferencing and one-on-one or small group
meetings can serve the purpose of the steering committee without the long
delays. Membership in the conference is still important, but the number of
participants can be larger because there are no scheduled meetings that require
all individuals to coordinate their calendars. The wider membership is good
because you need the expertise of many individuals — but not all of them
all the time.

The basic structure of the electronic conference is depicted in Exhibit 1.
The conference requires some facility on your intranet or file servers, allowing
you to post an item to be considered. The conference must allow for a
threaded discussion so participants can post comments related to the question
at hand and read the opinions of other interested participants. This repository
allows any interested manager in the enterprise to view and monitor items
being considered without requiring participation in physical meetings. The
dotted vectors in the figure represent person meetings (e.g., phone call, lunch
meeting, coffee break, conversations in their offices).

The items in the conference are proposals for development work that must
be prioritized, suggestions for changes to the environment that must be
approved, or strategic considerations that need input and discussion. When
you receive an item, you post its description on the conference and announce
(usually via e-mail) that an item is open for debate. The posting must include
your initial understanding of the significance of the item (i.e., why it is
important to the group).

You then decide who the item directly affects and whose input will be
critical for thorough consideration of the item. You must discuss the item with
these individuals directly to gain an understanding of their perspective. Ask
them to post their views on the conference to make sure their views are
voiced and so others can benefit from their ideas.

AU1292Ch10Frame Page 148 Sunday, August 25, 2002 11:58 AM

Leadership by Consensus… Or if You’re Going My Way

149

You need to synthesize the information from the conference and from one-
on-one conversations as quickly as possible and arrive at a consensus — or
what you believe to be a consensus. Post this conclusion on the conference,
asserting that it appears the group is in agreement and asking that participants
reply if this is in error.

The process continues. More items are received and posted; you lobby to
ensure that people critical to a given decision are notified and their opinions
are shared. You advance the decision that emerges from the discourse.

Thought allied fearlessly to purpose becomes creative force.

—James Allen

Leadership through Criticism

The dynamic and largely asynchronous process outlined above requires per-
petual and ongoing effort on your part. Most of the development managers
with whom I have worked have had very little power, yet their positions
require them to orchestrate significant, far-reaching decisions. The participants
in decision making had far more managerial power. The successful managers
wheedled influence by keeping issues in the open, helping the players
succeed, and always acting in the best interest of the enterprise.

An effective technique for managing the communication channels and
keeping valuable people involved in the strategic support for software devel-
opment is to offer each person many chances to criticize the development
plan and proposed decisions. If you post a task definition and invite partici-
pants to comment, you typically get a couple of quick, well-meaning but

Exhibit 1

Structure of Electronic Conference

Discussion

Delegate

Service

Collaborate

Decision

Item

AU1292Ch10Frame Page 149 Sunday, August 25, 2002 11:58 AM

150

Dynamic Software Development: Managing Projects in Flux

poorly considered replies. If you post a message asserting that it is your
understanding that the group is in agreement that a task should be approved
and that its priority will cause other tasks to be delayed, you will get many
comments with real and valid concerns. Of course, the issues raised by the
replies are often contradictory and mutually exclusive, but you get valuable
information that you can use to forge the modifications necessary to keep the
development effort moving. The issues raised must be addressed, but having
them out in the open gives you the possibility of completing constructive work.

The conference evolves into a shared memory where the current status of
the development plan is visible and proposed changes can be discussed in
the context of current service and other pending requests. The conference is
often a lightning rod for reaction (positive and negative) to changes in the
status of the development effort. A manager is likely to speak up when she
discovers the product pricing function she requested is going to be delayed
because another task is going to be assigned a higher priority. A manager is
not likely to pay much attention if the proposed higher priority task is
presented without stating the consequences of approving it.

The development manager must then invite criticism and subsequently use
this information to present alternatives. Tasks can be switched in sequence,
task definitions can be redefined so that different combinations of elements
are created to satisfy the major player’s concerns, more resources can be
added, or some users can be convinced that the new priority makes sense.
The development manager must keep all the goals visible and resources fairly
applied for the benefit of the enterprise.

The strength of a man’s virtue should not be measured by his special
exertions, but by his habitual acts.

—Blaise Pascal

Need for Responsibility

You as the development manager must take on the responsibility of soliciting
input and facilitating the discussions. There is typically no power or reward
in this position, but the success of the development effort depends on keeping
the people affected by the development effort involved in decision making.
If you see one participant dominating the conversation, you have to intercede
to be sure the discussion is always fair and just.

All participants must sense that the discussion is open and that you do not
have hidden agendas. This is critical to maintaining the trust of both users
and your superiors. The fact that enhancements and new features are added
quickly and regularly is also critical to maintaining the communication chan-
nels. We are more likely to pay attention and be focused on tasks that deliver
service weekly or monthly than we are to pay attention and be focused on
a project that will probably do something for us in the next year or so.

AU1292Ch10Frame Page 150 Sunday, August 25, 2002 11:58 AM

Leadership by Consensus… Or if You’re Going My Way

151

Applying Dynamic Management

Investigate the possibility of setting up an electronic conference on your
organization’s intranet. With the experience you have gained from discussing
topics in this book, you may be in a position to use the same communication
method in defining and prioritizing development plans (see Exhibit 2).

Talk to the managers in your lunch group about the idea of posting
development plans in this public area. Start by using e-mail to send out calls
for participation in strategic decisions. Identify the set of people who must
be involved and meet with them personally. Suggest the idea of using a Web
conference for sharing information and gathering opinions.

The first issue should be small enough to address in one week. Post a
summary of an issue and invite participation. As soon as you think a consensus
has formed, post a message suggesting what the group has decided and that
you will accept that result unless someone raises new issues. Take note of
the responses and talk with the participants to learn what they liked about
working through the conference (see Exhibit 3).

Chapter 10 Case Study Excerpt

The following narrative is a set of excerpts from the full case study in Appendix
G relating to the topics in this chapter.

As the use of technology within DSM became more integrated, the number
of requests for additional computer support grew (see Exhibit 4).

The communication process seemed to improve over the first years of the
committee’s existence. With representatives of all major domains of the com-
pany, decisions were more open and people were aware of any conflicting

Exhibit 2

Online Discussion Index

Dynamic Management

Discussion Topic Index

Topic: Information-Based Management

Topic: Framework

Topic: Developers

Topic: Environment
Topic: Managers

Topic: Funding
Topic: Leadership

Topic: Planning
Topic: Defining Work

Topic: Productivity

File Edit View Tools Help

DM

(click on Topic for discussion)

AU1292Ch10Frame Page 151 Sunday, August 25, 2002 11:58 AM

152

Dynamic Software Development: Managing Projects in Flux

Exhibit 3

Beginning Dialogue

Exhibit 4

Increased Requests for Computer Support

To: DSM Officers

From: CEO

Subject: Applications Development Steering Committee

I am forming a new steering committee to address the growing demand for a computer
applications system. All divisions of the company have identified the need for new
applications supporting both internal functions and our clients. It is clear we cannot
accommodate all the requests at once, so a better method of prioritizing application
requests is in order.

The committee will be made up of:

• CFO — (who will chair the meetings)
• VP Marketing
• COO
• Director of Applications Development
• A representative of the international divisions

I will be a non-voting member of the steering committee.

The charge to the committee is to review project proposals, review information from
the requesting organization to assess potential benefits, review information from the
applications development department to assess resource requirements, approve and
prioritize the project requests and monitor the project’s status.

The first meeting of the steering committee will be next Thursday, 10 a.m.

Discussion for topic: Leadership

- Moderator:

File Edit View Tools Help

DM

I’d like to use this conference to decide on the proposal to change training
vendor for our ’requirements modeling’ workshop. I have attached to
this note a brief history of some of the issues that have been raised.

+ Reply1:

- Moderator:

I definitely feel we need to dump the current outfit. Their performance
has been going down hill for some time now.

We could bring the new vendor for the upcoming workshop before we

- Reply2: I agree, but the proposed vender is unknown to me.

continue.

AU1292Ch10Frame Page 152 Sunday, August 25, 2002 11:58 AM

Leadership by Consensus… Or if You’re Going My Way

153

issues. The steering committee developed a good sense of the projects being
proposed and on many occasions found ways of merging proposals from
different user areas into a single project serving shared interests.

A major problem developed, almost unnoticed. The size of the approved
projects became larger and larger, and the resource estimates became increas-
ingly unrealistic. The steering committee began to view small proposals as
less important than “significant requests.” The small jobs only delayed and
complicated the “real” work of the development group. This trend was
exacerbated by the long lead-times between a project’s request, a project’s
approval, and the completion of the work. The steering committee met only
once each month. There was always a backlog of work and decisions were
often delayed over several meetings. Most of the committee’s time was spent
on the larger proposals. People submitting project requests quickly learned
that bigger proposals got preferential treatment. Smaller proposals took too
long to be considered worthwhile.

After the first year, the executives began sending their subordinates in their
place. This added to the lead-times on proposal considerations. Inevitably,
their delegates would be faced with issues they felt they could not answer.
They would return to their divisions to discuss the matter with their superiors
and report back at the next meeting. This doubled the time it took to consider
and act on a development request.

By the time DSM was considering the DSM-SISS system, the steering
committee had become slow and unresponsive, leaving the Director of Appli-
cations Development alone to coordinate the many considerations and
demands of the proposed system. The CEO stepped in to support the director.
The CEO even began making unilateral decisions when the decision was on
the critical path.

The close working relationship between the director and the CEO and the
company’s experiences during the DSM-SISS project convinced the CEO to
name the director to the position of Chief Information Officer and to change
the reporting relationship (see Exhibit 5). The director achieved the formal
status he had earned over the years. The development organization now
reported directly to an executive-level officer.

The new CIO began laying the groundwork for ending the steering com-
mittee. He worked with his developers to define a browser-based conference
to access the development plan databases (see Exhibit 6). The CIO began by
announcing that the current project status reports were available on the intranet
and that he would not be reviewing them separately during the steering
committee meetings.

Once members became accustomed to the use of the conference to
reference the project status, the CIO introduced a discussion forum where
project proposals were posted (see Exhibit 7). Members were encouraged to
review the proposals online and post questions and comments. When the
CIO determined that a consensus had been reached, he posted the summary
in the discussion and asked if everyone concurred. He would then review
the discussion and the result at the next steering committee meeting. Quickly,

AU1292Ch10Frame Page 153 Sunday, August 25, 2002 11:58 AM

154

Dynamic Software Development: Managing Projects in Flux

the members began to rely on this discussion and decision-making forum (see
Exhibit 8).

When the CIO was convinced the group was functioning well using the
conference, he suggested to the CEO that the steering committee meetings
be canceled and that the group do all future business through the online
conference (see Exhibit 9).

The CIO continued to meet regularly and informally with all the decision
makers. But the flexibility of the online conference allowed him to conve-
niently invite other experts into the discussion. One proposal involved a
complex interface. The CIO invited an outside expert to post information to
help the steering committee assess different options.

Exhibit 5

Change in the Reporting Relationship

To: All DSM Employees

From: CEO

Subject: Chief Executive Officer

It is my pleasure to announce the creation of a new executive position of Chief
Information Officer. I am naming the current Director of Applications Development
to fill this position. All functions under the current Director will move out of the
Finance department into the newly created division. The office of the CIO will report
directly to me.

I, and the other officers, feel that the new position will strengthen the role Applications
Development has played in the growth and success of this company. The Director has
proven to be a valuable asset to the company’s strategic planning and we are confident
that he will continue to serve us well in his new position.

Please take the time to congratulate the new CIO on his promotion.

Exhibit 6

Shared Project Repository

DSM Development Planning Conference

Project Index

Project: Client Profitability Analysis

Proposal: Client Billing Upgrade

Project: International Content Conversion
Project: DSM-SISS - Spectrum Integration
Project: Consultant/Contractor Mgmt

Proposal: Capital Asset Assessment

File Edit View Tools Help

DM

AU1292Ch10Frame Page 154 Sunday, August 25, 2002 11:58 AM

Leadership by Consensus… Or if You’re Going My Way

155

Exhibit 7

Project Status Page

Exhibit 8

Proposal Discussion Area

Exhibit 9

Cancellation of Steering Committee Meetings

To: DSM Officers

From: CEO

Subject: Applications Development Steering Committee

I am canceling all future software application steering committee meetings. It seems
the new online conference system is working and there is no longer a need to
coordinate our schedules and meet regularly for the purpose of reviewing project
requests.

Project: Client Profitability Analysis

- CIO:

File Edit View Tools Help

DM

The project is currently testing user interfaces. A beta release is in operation
at the west coast office. . .

- Estimated person months: 30

- Actual to-date: 26

- Current staff level: 5

- Estimated cost: $253,000

- Project started: March

- Expected completion: June

- Actual to-date: $219,000

- CIO: Click on attachment for detailed project plan and links to current tasks definitions

Proposal: Client Billing Upgrade

- CIO:

File Edit View Tools Help

DM

The proposal is attached to this message. Please review and comment.

+ Reply1:

- CIO:

Didn’t we modify our client billing last year?

Thanks for the input. I do not hear objections. If we are all in agreement I will
go ahead and schedule this project into development.

- Reply2: Yes, but the new market segment has introduced new service and
billing requirements . . .

+ Reply3: Sorry I am late reviewing the proposal. I do have some concerns.
I don’t understand the differences among the market segments . . .

etc. etc.

AU1292Ch10Frame Page 155 Sunday, August 25, 2002 11:58 AM

156

Dynamic Software Development: Managing Projects in Flux

The trend toward smaller tasks and funding for continuous development
continued at DMS. The use of the online development plan continued to
evolve. All parties became comfortable with communicating and refining the
direction of the development effort on a continuous basis.

The development plan intranet site changed from listing projects to listing
tasks. The project status pages were replaced with task status pages with
integrated user-to-developer dialogue (see Exhibits 10 and 11).

Exhibit 10

Current Task List

Exhibit 11

Task Status

DSM Development Planning Conference

Task Index

Task: Client Profile
 Focus: Client Object

Task: Revenue Accounting
 Focus: AR

Task: Language Tracking
 Focus: Content / Country

Task: Contractor Comp
 Focus: Contractor Object / Labor Contract

Task: Information Asset Tracking
 Focus: Capital Asset / Content

File Edit View Tools Help

DM

Tasks Pending

Task: Client Profile

File Edit View Tools Help

DM

+ Strand:

- Johnson:

23 elements

Akira found a condition that seems wrong. Should we factor into the
client status their current revenue projection?

- Developers: Johnson (business analyst)
Carry (database)
Akira (testing)
Mehta (programming)

+ User1: I think we have to. Let’s use a factor of 15% . . .

- Focus: Client Object

+ Started: June 15

+ Projected completion: June 23

AU1292Ch10Frame Page 156 Sunday, August 25, 2002 11:58 AM

157

Postscript

I was recently asked: “How many companies use your method?” My answer:
“All of them, but most don’t know it.” I have yet to walk into a development
organization and not find the techniques discussed in this text being used by
developers and managers alike. It is as if the development organization has
agreed to abide by dual management systems: one being formal, phase-based,
long lead-time, finite, and largely fictitious, and the other being informal,
unrecorded, incremental, continuous, and the one on which most decisions
are based.

My colleague continued on the theme: “When I asked how many companies
use your method?’ you could have said, None. How many companies are
using object-oriented analysis? None. How many companies are using UML
or CMM? None. How many companies are using Extreme Programming? None.
In my consulting, I have never seen two organizations employ any set of
principles completely or exactly like any other company. All the development
managers with whom I have worked say they employ some paradigm or
technique, but they value some tenets and conveniently ignore others.”

This is to be expected (refer back to Chapter 7). Most of the organizations
using the techniques have adopted the parts that work with their environment.
No organization can try to adopt a philosophy without reflection and
adaptation — nor should they. The ideas presented in this text were defined
and developed by talented women and men in dozens of companies with
whom I have worked. It is far more constructive to think of the ideas in this
book as a formalization of your own ideas, rather than management techniques
someone else foisted upon you.

Thinking back to the original question — “How many companies use your
method?” — I added one more nuance. The ideas expressed in this text are
not mine. They represent the sum total of techniques I have seen work in
development organizations around the world. I took note of how developers
really worked (as opposed to what they reported in status reports). I assembled
the techniques of effective project managers and combined them into the
work you have just read.

AU1292 Post Frame Page 157 Sunday, August 25, 2002 11:53 AM

158

Dynamic Software Development: Managing Projects in Flux

Given that the source material for this book came from people like you,
it makes sense to view the material as dynamic and evolving. There are
countless questions development managers ask every day. Most are best
addressed through dialogue with other managers and developers.

An active Web conference at http://luminguild.com/dynamic is available
for exchange of questions, ideas, and observations. You are welcome to
participate and enhance everyone’s ability to manage software development.

AU1292 Post Frame Page 158 Sunday, August 25, 2002 11:53 AM

159

Appendix A

Distorted Reality…

Or Why Phased Management Is Appealing

Planning development projects as a series of phases, where each phase is a
type of work, leads to erroneous information and redundant effort.

Phased-based management leads to long lead-times.
Phased-based management leads to specialization of skills.
Phase-based management leads to distortion of the real objective.
Phased-based management leads to lost information assets.
Other than that, it is great!

What Is So Bad about the Waterfall?

I have searched for years to find a logical explanation for the popularity of
phased methodologies. I have found none. Organizing a development effort
into distinct phases with each phase characterized by the type of work being
performed (e.g., in the design phase, we build designs; in the coding phase,
we code) is convenient for planning and management. However, it creates a
false sense of security. No one believes that after analysis we have a perfect
understanding of the user’s requirements or after the coding phase we no
longer need to write code.

Why Long Lead-Times?

Phased management creates long lead-times because of the intrinsic feature of
defining and approving all feasibility, requirements, design, code, and test infor-
mation before the system is delivered. The phases tend to create long periods
of time where the development teams and users have little interaction. This

AU1292AppAFrame Page 159 Sunday, August 25, 2002 11:52 AM

160

Dynamic Software Development: Managing Projects in Flux

isolation fosters disparate expectations of the system, its features, and functions.
When the system is finally delivered, the differences in expectations becomes
clear, forcing the development effort to rework many aspects of the system. This
correction cycle further delays the time when the system is providing value.

My opinions may have changed, but not the fact that I am right.

—Ashleigh Brilliant

Phased Management Leads to Specialization of Skills

Many managers find it useful to organize developers into specialists. They
have an analysis group, an implementation group, and a database group.
While some developers seem to like having kindred spirits in the next cubicle,
this separation tends to produce a myopic view of the enterprise’s needs.
When all your colleagues are focused on analysis, the goal is to produce the
best-quality functional specification. When all your colleagues are program-
mers, the goal is to produce the best-quality code. While this is laudable, the
quality of the service provided to the enterprise is not limited to the quality
of a single document. The priority should be the discovery, definition, imple-
mentation, and distribution of valuable systems. A beautiful specification that
does not contribute to a beautiful design and test suite is not an asset. A set
of modules that is difficult to test or implements an ambiguous specification
is a liability. Separating skills into silos postpones the dialogue between
developers and creates a contentious environment. It leads to a myopic view
that allows developers to rationalize their role: “I did my part. What is wrong
with you?” The development teams should be a collection of complementary
skills organized by business need.

The early days of the software industry attracted the maverick developer. We
encouraged and rewarded the rare, talented individual who could work myste-
riously and deliver software solutions that appeared valuable. It has taken us
decades to realize that developing complex information systems requires a diverse
set of skills impossible for one person to master. No method, tool, or methodology
can provide the lone developer with the expertise, critical review, multiple
perspectives, or encouragement needed to keep an information system abreast
of corporate needs. It is important for the analyst to participate in the integrated
process of providing value. It is important that the tester work directly with the
designer. It is less important for the analyst to hang out with other analysts and
programmers or to consort with other programmers.

Phase-Based Management Leads to Distortion
of the Real Objective

We are not working to create big solutions (big specifications, lots of code,
etc.). We are working to add value.

AU1292AppAFrame Page 160 Sunday, August 25, 2002 11:52 AM

Distorted Reality… Or Why Phased Management Is Appealing

161

Software systems supporting our businesses must respond quickly to allow
adaptation to change that keeps us competitive. By defining the process as a
set of preplanned phases, the goal shifts from adding value as opportunity
presents itself to come in on time and under budget. Many system failures
have been on time and within budget. They succeeded in meeting the numbers
hysterically formulated to justify a major project effort. They failed because,
as the project progressed, managers made decisions aimed at meeting the
time and financial constraints at the expense of true user needs. When you
hear someone say, “We can’t change that requirement because it prevents us
from meeting our deadline,” it is a clear indicatation that the goals of the
effort have shifted from meeting enterprise needs to satisfying the arbitrary
constraints of “the project.”

Incremental development (i.e., short, predictable cycles) always results in
a better fit between our businesses and our systems without the disruption
of long-cycle development projects. Software development is an ongoing,
integral part of the enterprise — not a special case operation to be kept at
the fringes of the business.

The measure of a software developer’s work is how much value has been
added to the enterprise’s information asset. A project manager told me that
her organization was very productive, working at 32 function points per
person-month. I said that seemed very impressive but how do we know the
function points are adding value? I would much rather know that three person-
months of work made a hospital’s patient data more valuable by adding access
from procedure rooms, than that the effort bought us 49 function points. This
measure is only visible in the perception of the system’s users.

Phased-Based Management Leads to Lost Information Assets

Manage the software development effort as a knowledge-creating endeavor.
The construction of a software system requires the use and creation of accurate
information about the system’s requirements, design decisions, implementa-
tion, and testing practices. The information developers create while building
new features is critical to the ability to enhance and adapt those features to
future requirements.

Partitioning a project into phases creates points in time where developers
push to “finish.” This usually means “record something that approximates what
we have discovered — don’t worry if it is accurate or complete — no one
will be looking at it anyway.” I have yet to find a developer working in a
phase-based environment who is confident that the information recorded in
the project repository is truly accurate. I have yet to see a maintenance
programmer in a phased-based environment who goes to the requirements
first when assigned an enhancement project. This tells us that the information
in the repository is less than useless. It says that, in the opinion of the
developer, using the information about the requirements will be more costly
than recreating the knowledge from the existing implementation.

AU1292AppAFrame Page 161 Sunday, August 25, 2002 11:52 AM

162

Dynamic Software Development: Managing Projects in Flux

The reason the information in the repository is so inaccurate is that we do
not recognize and reinforce its use in ongoing development efforts. Most
managers with whom I have worked give lip service to the need for accurate
archives, and yet they sabotage their own assets by rewarding developers
who do whatever it takes to meet the deadline. It is no wonder that 70 to
80 percent of the software development budget goes toward maintenance.

This text defines a method that makes no distinction between enhancement
and new development. The management of the software development effort
is not divided between new features, which are directed by artificial project
constraints, and enhancement, which tries to make up for the errors committed
during new development projects.

AU1292AppAFrame Page 162 Sunday, August 25, 2002 11:52 AM

163

Appendix B

Where to Begin…

Or Getting Started with Dynamic Management

Changing a management philosophy is a difficult and risky process. The best
chance for success is to create situations where developers and managers
have choices, but the easiest response is to do it the right way. Start by
conducting a pilot effort with trusted colleagues in a quiet way.

The basic checklist (in chronological order) is:

1. Select a team.
2. Select initial projects.
3. Define elements and relationships.
4. Define a simple repository.
5. Report status in terms of features.
6. Track hours charged to the effort.

Do not announce or hype the experiment. It is best to just try the ideas
you find promising without fanfare or exaggerated expectations.

It’s easier to get forgiveness than permission.

Selecting Comrades

If you have been talking with other managers and developers about the ideas
in this book, you probably have a good sense of who is interested and who
is skeptical. You need to gather developers and colleagues you believe are
open to innovation and willing to try making some small changes with the
potential for big improvement. My experience suggests that developers relate
to the ideas of dynamic management more readily than managers. You might

AU1292AppBFrame Page 163 Sunday, August 25, 2002 11:52 AM

164

Dynamic Software Development: Managing Projects in Flux

find your best allies among your senior analysts and team leaders. Select from
this cadre a team of four to seven developers. Choose developers with a
diverse and complementary set of skills. The team should comprise individuals
recognized for their skills in business analysis, database, programming, testing,
and user documentation.

The message to your team is: “Our goal is providing consistent, effective,
predictable solutions to the enterprise on a continuous basis (and improve
ourselves in the process).”

Orchestrating Pilot Projects

Select two related projects that have been approved by your management.
The best choices are projects that build upon a common set of data objects:
a project that defines a portion of a database and another project that extends
that database or provides additional functionality to the original version.

The projects should be relatively small. Projects you expect to require
approximately five to ten person-months should work well.

Build the initial repository during the first project. Begin working on the
objectives of the second without officially closing the first. The goal is to build
momentum and get people thinking in a dynamic fashion before they realize
there is something different.

Define Your Building Blocks

Meet with your development team and sketch out the elements and associa-
tions you feel are important to your collective understanding of the product.
Refer to Chapter 3 for ideas. Define the first couple of tasks your team will
address.

Define Your Repository

Discuss how the elements and tasks should be physically stored. A simple set
of conventions and a shared text document might be enough. Your developers
might be able to define an extension to your configuration management tool
or CASE tool to support your effort. The physical form is not the issue. The
important criterion is that everyone must have easy access and updated
permission. The repository is the communication tool. Every member of the
development team must agree to keep it up-to-date.

Report Feature
As the project progresses, issue regular updates to interested users and

managers. The report should not report percent complete or which phase the
team is in. The report should highlight the features that are in place and
demonstrable (even if only demonstrable within a test environment). Your

AU1292AppBFrame Page 164 Sunday, August 25, 2002 11:52 AM

Where to Begin… Or Getting Started with Dynamic Management

165

goal is to get other managers comfortable with the idea of reporting progress
in the form of service that has been and will be provided to the enterprise.

Measure Productivity

At the end of each reporting cycle, apply the techniques discussed in Chapter
5. Allocate the hours for which you paid your developers to the elements that
have been added to the repository. After a couple of cycles, discuss the results
with the development team, paying attention to differences between the time
periods. Do the numbers generated from the allocation correspond to the
team’s sense of its own productivity? If so, you have some evidence that this
simple approach can provide you with valuable information without having
to interpret developer written status reports.

What You Can Lose

Nothing is risk-free. If you experiment with different management techniques,
you run the risk of upsetting colleagues and superiors comfortable and familiar
with more traditional approaches. The reason you start with a set of small
projects is to get through the learning curves without undue scrutiny. The
small project helps gain allies and allows you to gather hard evidence of the
technique’s effectiveness.

If the first pilot effort is reasonably successful, expand it to clusters of tasks
with larger scope involving more developers and different users. As people
notice differences, explain what you are doing. Offer to show data you have
gathered and to talk with people as to how they like the changes you have
initiated. As more and more people notice changes, you can address any
concerns one by one, and with more and more evidence to back up your
position.

Soon, the organization’s norms have changed to the point that no one has
any reason to challenge your initiative. Dynamic management simply becomes
the way things are done as opposed to another major reengineering/process
improvement campaign foisted upon us from outside, consuming value
resources, disrupting productive work, and suffering an embarrassing demise.

AU1292AppBFrame Page 165 Sunday, August 25, 2002 11:52 AM

AU1292AppBFrame Page 166 Sunday, August 25, 2002 11:52 AM

167

Appendix C

Capability Maturity
Model and Dynamic

Software Management

Most of the discussions I have heard concerning the implementation of the
Capability Maturity Model

SM

 (CMM) assume that work is organized by phase.
Yet there is no vocabulary in the CMM that suggests an organization must use
a methodology that separates tasks into analysis tasks versus coding tasks.
The CMM does not specify how a manager must measure productivity. Still,
my conversations with other managers indicates a degree of discomfort in
relating the CMM to dynamic software management. This appendix offers
some thoughts on how the CMM and techniques presented in this text work
together. I refer to chapters I believe relate to the elements. Where I do not
have a comment about the direct relationship between the CMM and dynamic
management, I leave the cell blank.

It is better to sit in silence and appear ignorant, than to open your
mouth and remove all doubt.

—Mark Twain

AU1292AppCFrame Page 167 Sunday, August 25, 2002 11:51 AM

168

Dynamic Software Development: Managing Projects in Flux

LEVEL 1: REPEATABLE
Key Practice: Requirements Management
Capability Maturity Model Dynamic Management

Goals

Goal 1:

System requirements allocated to
software are controlled to establish a
baseline for software engineering and
management use.

System requirements allocated to
software take the form of requirements-
related elements “declared” in the
repository.

Goal 2:

Software plans, products, and
activities are kept consistent with the
system requirements allocated to
software.

The premise of dynamic management is
that development’s goal is to move the
repository from one consistent state to
the next.

Commitment to Perform

Commitment 1:

The project follows a
written organizational policy for
managing the system requirements
allocated to software.

Managers formalize the methods used to
decide which elements are added to the
repository.

Ability to Perform

Ability 1:

For each project, responsibility
is established for analyzing the system
requirements and allocating them to
hardware, software, and other system
components.

I recommend team leaders be delegated
the responsibility and authority to make
these decisions.

Ability 2:

The allocated requirements are
documented.

Documentation is the repository.

Ability 3:

Adequate resources and funding
are provided for managing the allocated
requirements.

Funding of the development effort is tied
directly to functionality. If the
organization wants more functionality,
they allocate more resources.

Ability 4:

Members of the software
engineering group and other software-
related groups are trained to perform
their requirements management
activities.

Activities Performed

Activity 1:

The software engineering
group reviews the allocated
requirements before they are
incorporated into the software project.

Elements added to the repository are
reviewed to move them to a verified
state.

Activity 2:

The software engineering
group uses the allocated requirements
as the basis for software plans, work
products, and activities.

Elements related to requirements are
usually the focus element of tasks.

Activity 3:

Changes to the allocated
requirements are reviewed and
incorporated into the software project.

Elements changed in the repository are
reviewed to move them to a verified
state.

AU1292AppCFrame Page 168 Sunday, August 25, 2002 11:51 AM

Capability Maturity Model and Dynamic Software Management

169

Measurement and Analysis

Measurement 1:

Measurements are made
and used to determine the status of the
activities for managing the allocated
requirements.

Elements in the repository are the units
of measure.

Verifying Implementation

Verification 1:

The activities for managing
the allocated requirements are reviewed
with senior management on a periodic
basis.

Management reviews the status of the
effort by monitoring changes in the
repository.

Verification 2:

The activities for managing
the allocated requirements are reviewed
with the project manager on both a
periodic and event-driven basis.

Verification 3:

The software quality
assurance (SQA) group reviews and/or
audits the activities and work products
for managing the allocated
requirements and reports the results.

The SQA group monitors the repository.

Key Practice: Software Project Planning
Capability Maturity Model Dynamic Management

Goals

Goal 1:

Software estimates are
documented for use in planning and
tracking the software project.

Most estimates are projected from
information in the repository.

Goal 2:

Software project activities and
commitments are planned and
documented.

Planning and documenting of project
activities is integral to defining and
assigning tasks.

Goal 3:

Affected groups and individuals
agree to their commitments related to
the software project.

All parties must agree to base their work
on a shared repository.

Commitment to Perform

Commitment 1:

A project software
manager is designated to be responsible
for negotiating commitments and
developing the project’s software
development plan.

Commitment 2:

The project follows a
written organizational policy for
planning a software project.

Ability to Perform

Ability 1:

A documented and approved
statement of work exists for the software
project.

This is problematic. The development
plan typically evolves as the
development teams work and users
refine their requirements (Chapter 3)

AU1292AppCFrame Page 169 Sunday, August 25, 2002 11:51 AM

170

Dynamic Software Development: Managing Projects in Flux

Ability 2:

Responsibilities for developing
the software development plan are
assigned.

Ability 3:

Adequate resources and funding
are provided for planning the software
project.

Dynamic management keeps a balance
between resource and work (Chapter 9).

Ability 4:

The software managers, software
engineers, and other individuals
involved in the software project
planning are trained in the software
estimating and planning procedures
applicable to their areas of
responsibility.

This is part of the development
environment (Chapter 7).

Activities Performed

Activity 1:

The software engineering
group participates on the project
proposal team.

Activity 2:

Software project planning is
initiated in the early stages of, and in
parallel with, the overall project
planning.

Work on the development plan is
continuous.

Activity 3:

The software engineering
group participates with other affected
groups in the overall project planning
throughout the project’s life.

All groups should use the development
plan as a focal point.

Activity 4:

Software project commitments
made to individuals and groups external
to the organization are reviewed with
senior management according to a
documented procedure.

Task definitions are allocated to
developers (internal or external).

Activity 5:

A software life cycle with
predefined stages of manageable size is
identified or defined.

Stages are defined as related sets of tasks
(Chapter 2).

Activity 6:

The project’s software
development plan is developed
according to a documented procedure.

Activity 7:

The plan for the software
project is documented.

The plan is part of the repository.

Activity 8:

Software work products that
are needed to establish and maintain
control of the software project are
identified.

The software work products are the
elements and the changes in the
elements’ state.

Activity 9:

Estimates for the size of the
software work products (or changes to
the size of software work products) are
derived according to a documented
procedure.

Size estimates are generated from the
element definitions and development
plan.

Activity 10:

Estimates for the software
project’s effort and costs are derived
according to a documented procedure.

Cost estimates are generated from past
task definitions.

AU1292AppCFrame Page 170 Sunday, August 25, 2002 11:51 AM

Capability Maturity Model and Dynamic Software Management

171

Activity 11:

Estimates for the project’s
critical computer resources are derived
according to a documented procedure.

Estimates are generated from past task
definitions.

Activity 12:

The project’s software
schedule is derived according to a
documented procedure.

Schedules are generated from past
productivity rates.

Activity 13:

The software risks associated
with the cost, resource, schedule, and
technical aspects of the project are
identified, assessed, and documented.

Evaluating the development plan is used
to assess risk.

Activity 14:

Plans for the project’s software
engineering facilities and support tools
are prepared.

The framework specifies the plan for
support tools.

Activity 15:

Software planning data is
recorded.

The development plan is the record.

Measurement and Analysis

Measurement 1:

Measurements are made
and used to determine the status of the
software planning activities.

The states of tasks are recorded in the
repository.

Verifying Implementation

Verification 1:

The activities for software
project planning are reviewed with
senior management on a periodic basis.

Regular review by senior management is
an important part of the leadership
(Chapter 10).

Verification 2:

The activities for software
project planning are reviewed with the
project manager on both a periodic and
event-driven basis.

Verification 3:

The software quality
assurance group reviews and audits the
activities and work products for software
project planning and reports the results.

Key Practice: Software Project Tracking and Oversight
Capability Maturity Model Dynamic Management

Goals

Goal 1:

Actual results and performances
are tracked against the software plans.

Monitoring the repository is the method
of tracking progress (Chapter 5).

Goal 2:

Corrective actions are taken and
managed to closure when actual results
and performance deviate significantly
from the software plans.

Goal 3:

Changes to software
commitments are agreed to by the
affected groups and individuals.

The development plan evolves as the
development teams work and users
refine their requirements (Chapter 3).

Commitment to Perform

Commitment 1:

A project software
manager is designated to be responsible
for the project’s software activities and
results.

AU1292AppCFrame Page 171 Sunday, August 25, 2002 11:51 AM

172

Dynamic Software Development: Managing Projects in Flux

Commitment 2:

The project follows a
written organizational policy for
managing the software project.

Ability to Perform

Ability 1:

A software development plan for
the software project is documented and
approved.

Refer to Chapters 3 and 10.

Ability 2:

The project software manager
explicitly assigns responsibility for
software work products and activities.

Chapter 4 discusses the process of
defining tasks and assigning them to
teams.

Ability 3:

Adequate resources and funding
are provided for tracking the software
project.

Ability 4:

The software managers are
trained in managing the technical and
personnel aspects of the software
project.

Ensuring “fit” in the development
environment includes the balance
between training and management
methods (Chapter 7).

Ability 5:

First-line software managers
receive orientation in the technical
aspects of the software project.

Activities Performed

Activity 1:

A documented software
development plan is used for tracking
the software activities and
communicating status.

The development plan reflects the status
of the repository. The status of the
development effort is communicated by
direct access to the repository and
through regular interaction (Chapter 10).

Activity 2:

The project’s software
development plan is revised according
to a documented procedure.

Activity 3:

Software project commitments
and changes to commitments made to
individuals and groups external to the
organization are reviewed with senior
management according to a
documented procedure.

Activity 4:

Approved changes to
commitments that affect the software
project are communicated to the
members of the software engineering
group and other software-related
groups.

Activity 5:

The size of the software work
products (or size of the changes to the
software work products) are tracked,
and corrective actions are taken as
necessary.

The set of element definitions records the
size metric for each element. Association
definitions include average frequency.
Together, we can project the size of
proposed strands.

Activity 6:

The project’s software effort
and costs are tracked, and corrective
actions are taken as necessary.

Changes in cost and size are generated
from the information in the repository.

AU1292AppCFrame Page 172 Sunday, August 25, 2002 11:51 AM

Capability Maturity Model and Dynamic Software Management

173

Activity 7:

The project’s critical computer
resources are tracked, and corrective
actions are taken as necessary.

Resources for the perpetual project are
defined in the framework (Chapter 6).

Activity 8:

The project’s software schedule
is tracked, and corrective actions are
taken as necessary.

Chapter 5 discusses projecting and
monitoring schedules.

Activity 9:

Software engineering technical
activities are tracked, and corrective
actions are taken as necessary.

Activity 10:

The software risks associated
with cost, resource, schedule, and
technical aspects of the project are
tracked.

Risk is discussed in Chapter 9.

Activity 11:

Actual measurement data and
replanning data for the software project
are recorded.

The repository contains information
about the state of the product and the
project.

Activity 12:

The software engineering
group conducts periodic internal
reviews to track technical progress,
plans, performance, and issues against
the software development plan.

Activity 13:

Formal reviews to address the
accomplishments and results of the
software project are conducted at
selected project milestones according to
a documented procedure.

Measurement and Analysis

Measurement 1:

Measurements are made
and used to determine the status of the
software tracking and oversight
activities.

Verifying Implementation

Verification 1:

The activities for software
project tracking and oversight are
reviewed with senior management on a
periodic basis.

Regular review by senior management is
an important part of the leadership
(Chapter 10).

Verification 2:

The activities for software
project tracking and oversight are
reviewed with the project manager on
both a periodic and event-driven basis.

Verification 3:

The software quality
assurance group reviews and/or audits
the activities and work products for
software project tracking and oversight
and reports the results.

AU1292AppCFrame Page 173 Sunday, August 25, 2002 11:51 AM

174

Dynamic Software Development: Managing Projects in Flux

Key Practice: Software Subcontract Management
Capability Maturity Model Dynamic Management

Goals

Goal 1:

The prime contractor selects
qualified software subcontractors.

Subcontractors should be treated as
another team to which you allocate
tasks.

Goal 2:

The prime contractor and the
software subcontractor agree to their
commitments to each other.

Subcontractors agree to keeping the
repository up-to-date and accurate.

Goal 3:

The prime contractor and the
software subcontractor maintain
ongoing communications.

Ongoing communication is conducted
via the repository (Chapter 4).

Goal 4:

The prime contractor tracks the
software subcontractor’s actual results
and performance against its
commitments.

The development plan serves this
purpose.

Commitment to Perform

Commitment 1:

The project follows a
written organizational policy for
managing the software subcontract.

Commitment 2:

A subcontract manager is
designated to be responsible for
establishing and managing the software
subcontract.

Ability to Perform

Ability 1:

Adequate resources and funding
are provided for selecting the software
subcontractor and managing the
subcontract.

Subcontractors must have expertise in
the enterprise’s framework and agree to
work with the enterprise’s development
environment (Chapters 6 and 7).

Ability 2:

Software managers and other
individuals who are involved in
establishing and managing the software
subcontract are trained to perform these
activities.

Ability 3:

Software managers and other
individuals who are involved in
managing the software subcontract
receive orientation in the technical
aspects of the subcontract.

Activities Performed

Activity 1:

The work to be subcontracted
is defined and planned according to a
documented procedure.

Activity 2:

The software subcontractor is
selected, based on an evaluation of the
subcontract bidders’ ability to perform
the work, according to a documented
procedure.

AU1292AppCFrame Page 174 Sunday, August 25, 2002 11:51 AM

Capability Maturity Model and Dynamic Software Management

175

Activity 3:

The contractual agreement
between the prime contractor and the
software subcontractor is used as the
basis for managing the subcontract.

The contract must specify details of a
shared repository.

Activity 4:

A documented subcontractor’s
software development plan is reviewed
and approved by the prime contractor.

The subcontractor’s development plan
must have the same content as the prime
contractor’s development plan.

Activity 5:

A documented and approved
subcontractor’s software development
plan is used for tracking the software
activities and communicating status.

Activity 6:

Changes to the software
subcontractor’s statement of work,
subcontract terms and conditions, and
other commitments are resolved
according to a documented procedure.

The shared repository forms the basis for
defining tasks and monitoring changes.

Activity 7:

The prime contractor’s
management conducts periodic status/
coordination reviews with the software
subcontractor’s management.

The shared repository provides the
means of monitoring development
status (Chapter 5).

Activity 8:

Periodic technical reviews and
interchanges are held with the software
subcontractor.

Activity 9:

Formal reviews to address the
subcontractor’s software engineering
accomplishments and results are
conducted at selected milestones
according to a documented procedure.

Activity 10:

The prime contractor’s
software quality assurance group
monitors the subcontractor’s software
quality assurance activities according to
a documented procedure.

Activity 11:

The prime contractor’s
software configuration management
group monitors the subcontractor’s
activities for software configuration
management according to a
documented procedure.

Activity 12: The prime contractor
conducts acceptance testing as part of
the delivery of the subcontractor’s
software products according to a
documented procedure.

Activity 13: The software subcontractor’s
performance is evaluated on a periodic
basis, and the evaluation is reviewed
with the subcontractor.

AU1292AppCFrame Page 175 Sunday, August 25, 2002 11:51 AM

176 Dynamic Software Development: Managing Projects in Flux

Measurement and Analysis
Measurement 1: Measurements are made

and used to determine the status of the
activities for managing the software
subcontract.

Verifying Implementation
Verification 1: The activities for managing

the software subcontract are reviewed
with senior management on a periodic
basis.

Regular review by senior management is
an important part of the leadership
(Chapter 10).

Verification 2: The activities for managing
the software subcontract are reviewed
with the project manager on both a
periodic and event-driven basis.

Verification 3: The software quality
assurance group reviews and audits the
activities and work products for
managing the software subcontract and
reports the results.

Key Practice: Software Quality Assurance
Capability Maturity Model Dynamic Management

Goals
Goal 1: Software quality assurance

activities are planned.
SQA activities focus on the changes in the

state of elements in the repository.
Goal 2: Adherence of software products

and activities to the applicable
standards, procedures, and
requirements is verified objectively.

Goal 3: Affected groups and individuals
are informed of software quality
assurance activities and results.

Goal 4: Noncompliance issues that cannot
be resolved within the software project
are addressed by senior management.

Commitment to Perform
Commitment 1: The project follows a

written organizational policy for
implementing software quality
assurance (SQA).

Ability to Perform
Ability 1: An group that is responsible for

coordinating and implementing SQA for
the project (i.e., the SQA group) exists.

Ability 2: Adequate resources and funding
are provided for performing the SQA
activities.

AU1292AppCFrame Page 176 Sunday, August 25, 2002 11:51 AM

Capability Maturity Model and Dynamic Software Management 177

Ability 3: Members of the SQA group are
trained to perform their SQA activities.

Ability 4: The members of the software
project receive orientation on the role,
responsibilities, authority, and value of
the SQA group.

Activities Performed
Activity 1: A SQA plan is prepared for the

software project according to a
documented procedure.

Activity 2: The SQA group’s activities are
performed in accordance with the SQA
plan.

Activity 3: The SQA group participates in
the preparation and review of the
project’s software development plan,
standards, and procedures.

The SQA group has access to the
repository and monitors its
development.

Activity 4: The SQA group reviews the
software engineering activities to verify
compliance.

Activity 5: The SQA group audits
designated software work products to
verify compliance.

Audits can occur at any time on any task
and its associated strands.

Activity 6: The SQA group periodically
reports the results of its activities to the
software engineering group.

Activity 7: Deviations identified in the
software activities and software work
products are documented and handled
according to a documented procedure.

Activity 8: The SQA group conducts
periodic reviews of its activities and
findings with the customer’s SQA
personnel, as appropriate.

Measurement and Analysis
Measurement 1: Measurements are made

and used to determine the cost and
schedule status of the SQA activities.

Verifying Implementation
Verification 1: The SQA activities are

reviewed with senior management on a
periodic basis.

Verification 2: The SQA activities are
reviewed with the project manager on
both a periodic and event-driven basis.

Verification 3: Experts independent of the
SQA group periodically review the
activities and software work products of
the project’s SQA group.

AU1292AppCFrame Page 177 Sunday, August 25, 2002 11:51 AM

178 Dynamic Software Development: Managing Projects in Flux

Key Practice: Software Configuration Management
Capability Maturity Model Dynamic Management

Goals
Goal 1: Software configuration

management activities are planned.
Goal 2: Selected software work products

are identified, controlled, and available.
Elements are the work products.

Goal 3: Changes to identified software
work products are controlled.

Changes to elements move through a
well-defined set of states (Declared
through Verified).

Goal 4: Affected groups and individuals
are informed of the status and content
of software baselines.

Summary status information is based on
the state of the repository.

Commitment to Perform
Commitment 1: The project follows a

written organizational policy for
implementing software configuration
management (SCM).

Ability to Perform
Ability 1: A board having the authority for

managing the project’s software
baselines (i.e., a software configuration
control board — SCCB) exists or is
established.

I recommend that the development
managers constitute the SCCB.

Ability 2: A group that is responsible for
coordinating and implementing SCM for
the project (i.e., the SCM group) exists.

I recommend that the team leaders
constitute the SCM group.

Ability 3: Adequate resources and funding
are provided for performing the SCM
activities.

Ability 4: Members of the SCM group are
trained in the objectives, procedures,
and methods for performing their SCM
activities.

Ability 5: Members of the software
engineering group and other software-
related groups are trained to perform
their SCM activities.

Activities Performed
Activity 1: An SCM plan is prepared for

each software project according to a
documented procedure.

Activity 2: A documented and approved
SCM plan is used as the basis for
performing the SCM activities.

Activity 3: A configuration management
(CM) library system is established as a
repository for the software baselines

The CM library is an extension of the
repository (or vice versa).

AU1292AppCFrame Page 178 Sunday, August 25, 2002 11:51 AM

Capability Maturity Model and Dynamic Software Management 179

Activity 4: The software work products to
be placed under configuration
management are identified.

All defined elements are work products
(Chapters 2 and 3).

Activity 5: Change requests and problem
reports for all configuration items/units
are initiated, recorded, reviewed,
approved, and tracked according to
documented procedures.

Activity 6: Changes to baselines are
controlled according to a documented
procedure.

Activity 7: Products from the software
baseline library are created and their
release is controlled according to a
documented procedure.

Activity 8: The status of configuration
items/units is recorded according to a
documented procedure.

Activity 9: Standard reports documenting
the SCM activities and the contents of
the software baseline are developed and
made available to affected groups and
individuals.

These reports can be implemented as
queries into the repository.

Activity 10: Software baseline audits are
conducted according to a documented
procedure.

Measurement and Analysis
Measurement 1: Measurements are made

and used to determine the status of SCM
activities.

Verifying Implementation
Verification 1: The SCM activities are

reviewed with senior management on a
periodic basis.

Verification 2: The SCM activities are
reviewed with the project manager on
both a periodic and event-driven basis.

Verification 3: The SCM group
periodically audits software baselines to
verify that they conform to the
documentation that defines them.

Verification 4: The software quality
assurance group reviews and audits the
activities and work products for SCM
and reports the results.

AU1292AppCFrame Page 179 Sunday, August 25, 2002 11:51 AM

180 Dynamic Software Development: Managing Projects in Flux

LEVEL 3: DEFINED
Key Practice Area: Organization Process Focus
Capability Maturity Model Dynamic Management

Goals
Goal 1: Software process development

and improvement activities are
coordinated across the organization.

Improvements consist of enhancements
to the element definitions, refinement of
the framework, and improvement in the
development environment.

Goal 2: The strengths and weaknesses of
the software processes used are
identified relative to a process standard.

Refer to Chapter 7.

Goal 3: Organization-level process
development and improvement
activities are planned.

Key Practice Area: Organization Process Definition
Capability Maturity Model Dynamic Management

Goals
Goal 1: A standard software process for

the organization is developed and
maintained.

Refer to Chapter 7.

Goal 2: Information related to the use of
the organization’s standard software
process by the software projects is
collected, reviewed, and made available.

Key Practice Area: Training Program
Capability Maturity Model Dynamic Management

Goals
Goal 1: Training activities are planned. Training is part of the environment

evaluated in Chapter 7.
Goal 2: Training for developing the skills

and knowledge needed to perform
software management and technical
roles is provided.

Goal 3: Individuals in the software
engineering group and software-related
groups receive the training necessary to
perform their roles.

Key Practice Area: Integrated Software Management
Capability Maturity Model Dynamic Management

Goals
Goal 1: The project’s defined software

process is a tailored version of the
organization’s standard software
process.

The organization’s process is defining
work by feature to be added, or
enhanced, in the repository. The
individual develop efforts are
characterized by the selection and
sequencing of specific features.

AU1292AppCFrame Page 180 Sunday, August 25, 2002 11:51 AM

Capability Maturity Model and Dynamic Software Management 181

Goal 2: The project is planned and
managed according to the project’s
defined software process.

There is no difference between
maintenance and new development.
Development efforts are managed by
monitoring the state of the repository.

Key Practice Area: Software Product Engineering
Capability Maturity Model Dynamic Management

Goals
Goal 1: The software engineering tasks

are defined, integrated, and consistently
performed to produce the software.

Goal 2: Software work products are kept
consistent with each other.

Insuring consistency is the central and
most basic theme of dynamic
management.

Key Practice Area: Intergroup Coordination
Capability Maturity Model Dynamic Management

Goals
Goal 1: The customer’s requirements are

agreed to by all affected groups.
All affected groups use the repository to

coordinate their activities (Chapter 4).
Goal 2: The commitments between the

engineering groups are agreed to by the
affected groups.

Goal 3: The engineering groups identify,
track, and resolve intergroup issues.

Key Practice Area: Peer Reviews
Capability Maturity Model Dynamic Management

Goals
Goal 1: Peer review activities are planned. Review and error detection/correction

cycles should be integral to the
development team.

Goal 2: Defects in the software work
products are identified and removed.

LEVEL 4: MANAGED
Key Practice Area: Quantitative Process Management
Capability Maturity Model Dynamic Management

Goals
Goal 1: The quantitative process

management activities are planned.
The development manager develops

queries against the state of the repository
to measure development activity.

Goal 2: The process performance of the
project’s defined software process is
controlled quantitatively.

Goal 3: The process capability of the
organization’s standard software process
is known in quantitative terms.

AU1292AppCFrame Page 181 Sunday, August 25, 2002 11:51 AM

182 Dynamic Software Development: Managing Projects in Flux

Key Practice Area: Software Quality Management
Capability Maturity Model Dynamic Management

Goals
Goal 1: The project’s software quality

management activities are planned.
The development manager develops

queries against the state of the
repository to measure quality.

Goal 2: Measurable goals for software
product quality and their priorities are
defined.

Goal 3: Actual progress toward achieving
the quality goals for the software
products is quantified and managed.

LEVEL 5: OPTIMIZING
Key Practice Area: Defect Prevention
Capability Maturity Model Dynamic Management

Goals
Goal 1: Defect prevention activities are

planned.
Defect prevention is best handled

through effective team organization and
reward.

Goal 2: Common causes of defects are
sought out and identified.

It is the role of the development manager
to monitor the changes being made to
the elements in the repository. Frequent
changes to the same element and/or by
the same team signals the need for
changes in the development
environment.

Goal 3: Common causes of defects are
prioritized and systematically
eliminated.

Key Practice Area: Technology Change Management
Capability Maturity Model Dynamic Management

Goals
Goal 1: Incorporation of technology

changes is planned.
This is handled through the dynamic

maintenance of the development
framework (Chapter 6).

Goal 2: New technologies are evaluated
to determine their effect on quality and
productivity.

Goal 3: Appropriate new technologies are
transferred into normal practice across
the organization.

AU1292AppCFrame Page 182 Sunday, August 25, 2002 11:51 AM

Capability Maturity Model and Dynamic Software Management 183

Key Practice Area: Process Change Management
Capability Maturity Model Dynamic Management

Goals
Goal 1: Continuous process improvement

is planned.
Chapter 7 describes a plan for continuous

improvement to the development
environment.

Goal 2: Participation in the organization’s
software process improvement activities
is organizationwide.

This requires a significant degree of
leadership on the part of development
managers (Chapter 10).

Goal 3: The organization’s standard
software process and the projects’
defined software processes are
improved continuously.

Capability Maturity Model for Software, Version 1.1. Copyrighted by Carnegie Mellon
University, 1996.

AU1292AppCFrame Page 183 Sunday, August 25, 2002 11:51 AM

AU1292AppCFrame Page 184 Sunday, August 25, 2002 11:51 AM

185

Appendix D

Dynamic Management

Information Model

This appendix contains a specification for the information model used to
manage dynamic software development (see Exhibit 1). You can use it to
create a database and application supporting the dynamic management model
defined in this book. The model also serves as a blueprint for identifying
where this knowledge already exists within your current project repository
(i.e., within your configuration management systems, document repository, or
development environment tools).

Information Model Definitions

Conventions:

Symbol Read As

= consists of
+ along with
[x | y | z] either x or y or z — one and only one
{ w } some number of w’s — zero or more

Database table names are in parenthesis.

Italics denotes a primary key.

The data attribute called “object id” is a surrogate key assigned when an object
is created with a value unique across the entire model.

The term “ref” indicates a logical associate (usually implemented as a foreign
key).

AU1292AppDFrame Page 185 Sunday, August 25, 2002 10:49 PM

186

Dynamic Software Development: Managing Projects in Flux

Element Definition (ElementDefs) =
element name + element’s purpose + weight unit +

object id

/* Description: a description of a type of element recorded in the
repository */

Element (Elements) =
name + description + version + weight + state + { location } + element
definition ref +

object id

/* Description: a unit of information about the product */
weight = /* size or complexity metric */
state = [Declared | Uncertain | Verified | Change-Pending | Obsolete]
location = /* path and file name of document containing the element’s
definition */
(normalized) location (ElementLocations) = element ref + location
/* there may be many documents defining an Element */

Exhibit 1 Information Model

Product

Element

Tasks

consists of

member

Element

Definition

Developer

Version
Association

Definition

Delta

Focus

Improvement

Assignment

Individual

Team

Association

Time

Charge

AU1292AppDFrame Page 186 Sunday, August 25, 2002 10:49 PM

Dynamic Management Information Model

187

Association Definition (RelationDefs) =
element1 ref + meaning from1 + average frequency1 + element2 ref
+ meaning from2 + average frequency2 +

object id

/* Description: A description of a type of association between two elements
recorded in the repository */
average frequency = /* used in estimations — approximate number of
associations of this type in which the Element will participate */

Association (Associations) =

element1 ref + element2 ref + association definition ref

/* Description: An important relationship between two elements. Each
element participating in the association is best understood in the context
of the other. */

Product (Products) =
name + description +

object id

/* Description: A set of functionality and data supporting user’s needs */

Version (Versions) =
product ref + version number
+ baseline name +

object id

/* Description: A version of the product */

Consists of (Consists) =

version ref + element ref

/* Description: A set of functionality and data supporting user’s needs */
/* references only “defining” Elements */

Delta (Deltas) =

old element ref + new element ref

/* Description: Trail of identifiable versions of the element */

Task (Tasks) =
created date/time + description + element count +

object id

/* Description: A definition of work to be performed */
/* element count = number of elements [estimated | actual] potentially
effected by the proposed task */

Focus (Focus) =

task ref + element ref

/* Description: Identifies the element on which the developer should focus
his/her efforts while working on a task */

AU1292AppDFrame Page 187 Sunday, August 25, 2002 10:49 PM

188

Dynamic Software Development: Managing Projects in Flux

Improvement (Improvements) =

task ref + element ref + date/time

 + transition type
/* Description: Reflects a change to a element’s state made while working
on a task */
Transition Type = [create | change | verify | associate]

Developer =
call name +

object id

/* Description: a person or team responsible for performing tasks */
Individual = Developer + family name + title + cost per unit
Team = Developer + date created
Member = team ref + developer ref + date assigned

Time Charges =

developer ref + from date + to date

 + work units
/* Description: Days or hours of a developer’s time charged to the project */

Assignment =

developer ref + task ref

 + date assigned
/* Description: A directive instructing a developer to work on a task */

AU1292AppDFrame Page 188 Sunday, August 25, 2002 10:49 PM

189

Appendix E

Glossary

This glossary lists the author’s interpretations and definitions of key words
and phases used in the text.

Accrued Work:

Elements identified as being necessary but, as yet, unfinished.

Architecture:

A set of collective decisions the organization makes governing
the shape of the systems it creates (e.g., network hardware, operating
systems, design techniques, interface standards, end-user equipment).

Asset Development:

The concept of funding the development effort to
develop and enhance information assets rather than funding to complete
projects.

Association:

A meaningful relationship between elements; the information in
the repository that relates one element with another.

Association Definition:

A declaration of a remembered relationship between
two elements, specifying each participating element, the meaning of the
association (from each element’s perspective), and the average frequency
of participation.

Cardinality:

The allowable number of associated elements (

see

 Frequency).

CASE Tool:

Computer Aided Software Engineering Tool.

Change Pending Element:

An element the development team knows must
be altered, but the work has not been completed (

see

 Element State).

Chunk:

Information stored and retrieved as a single entity.

Class:

An abstract definition of the attributes and methods of an Object.

Collaborate Channel:

Communication between managers and supervisors
within the development organization.

Communication Channel:

A means/path of communication (

see

 Collaborate
Channel, Delegate Channel, Service Channel).

Component Inventory:

A list of all components in the development envi-
ronment; a list of all instances of standards, tools, measurements, methods,
rewards, reviews, and training.

AU1292AppEFrame Page 189 Sunday, August 25, 2002 11:50 AM

190

Dynamic Software Development: Managing Projects in Flux

Decision Mapping:

The process of identifying a need and deciding on the
corresponding element of the framework. For example, a class defined in
a design needs to be implemented; therefore, we write a Java class. A
user describes a new feature; therefore, we add a use case to our repository.

Declared Element:

An element the development team knows must be created,
but has not been built (

see

 Element State).

Decision Council:

A committee or body charged with selecting and priori-
tizing development proposals.

Delegate Channel:

Communication between a manager and his or her sub-
ordinates.

Design:

Some statement of how a requirement will be implemented.

Developer:

An individual or team assigned a particular task.

Development Campaign:

An ongoing effort to support the development of
some organizational domain.

Development Manager:

Mid-level manager responsible for more than one
development campaign.

Development Plan:

List of active and planned tasks specifying the focus
element(s), element count task description, task priority and sequence,
and the assigned developer/team.

Development Repository:

The set of all information (regardless of physical
form or location) that describes all the products built and maintained by
a development organization.

Dissonance List:

A list of all development environment components conflict-
ing in such a way as to hinder the development effort.

Documentation:

The content of the repository; a record of relevant project
and product information.

Domain:

An application area usually associated with a cohesive set of business
practices and a common set of users.

Element:

An identifiable unit of the development repository; a chunk of
information of a known type.

Element Count:

A projected number of elements in a strand.

Element Size:

Determined by: (1) the type of element; (2) the complexity of
the element.

Element State:

The current status of an item in the repository [declared |
change pending | uncertain | verified].

Element Type:

A classification of an element (e.g., requirement, design, object,
test case).

Element Worksheet:

A list of work products describing potential element
descriptions, where the elements are physically located and a list of
associated elements, used to define the contents of the repository.

Enhanced Value:

The goal of communication: enhancing the value of infor-
mation shared on a communication channel.

Entity:

A thing of interest to a business organization (a.k.a. Object), usually
representing information to be stored in a database.

Environment:

A set of standards, tools, measurements, methods, rewards,
reviews, and training used in the development process.

AU1292AppEFrame Page 190 Sunday, August 25, 2002 11:50 AM

Glossary

191

Event:

Some occurrence causing the system to respond, usually some trans-
action or a point in time.

Focus:

An element around which a task’s objectives are framed.

Framework:

A model of how software is implemented; a statement of how
elements of existing technology are employed to provide service to the
enterprise; a description of a generic implementation.

Frequency:

Average number of associated elements existing in a repository
(

see

 Cardinality).

Good Code:

Code that is consistent with the design and performs/delivers
functionality described in the requirement.

Good Design:

Design that describes the implementation of a requirement and
an implementation can be produced from it.

Good Requirement:

A statement of user expectations that is unambiguous
and specific.

Good Test Case:

The design of an experiment that has a high probability of
detecting error, consisting of a description of an initial condition, a stimulus,
and an expected result.

Improvement Log:

A list of changes of state of the elements in a task’s
strand; represents work performed.

Information Structure:

The scheme or organizing principles of a repository.

Legacy System:

Applications still performing useful work but implemented
with technology no longer used for current development.

Maintenance:

The real work of software development; moving an existing
product from one verified state to another verified state.

Measurement:

An observable, objective scale (quantitative or qualitative) used
to assess quality, volume, or duration.

Methodology:

A set of task definitions.

Module:

A portion of a design implemented using a computer language.

New Development:

A classification of development work assuming no pre-
vious work needs to be considered; work is not based on any existing
product (

see

 Maintenance).

Object:

A thing of interest to a business organization (a.k.a. Entity) usually
representing a collection of data manipulated by code.

On-line Conference/Discussion:

A networked facility allowing threaded
discussion and shared documents.

Perpetual Effort:

The concept that the development effort is continuous and
fluid rather than project based.

Phase:

A period of time planned for a particular type of work (e.g., analysis
phase, testing phase).

Plan:

A set of tasks ordered in a time sequence.

Planning Dialogue:

Interaction among managers, developers, and users
aimed at defining and prioritizing proposed tasks.

Political Boundary:

Administrative or organizational edges marking authority,
influence, and responsibility: division, department, committee.

Politics:

The process of influencing those over whom you have no direct
authority.

AU1292AppEFrame Page 191 Sunday, August 25, 2002 11:50 AM

192

Dynamic Software Development: Managing Projects in Flux

Process Improvement:

Act of monitoring development practices and actively
seeking ways to increase value: reduce error, increase productivity,
enhance the developer’s environment, improve staff development.

Product:

A named set of elements perceived by the user as a single utility.

Product Size:

Determined by: (1) the number of elements and associations
in the repository; (2) the complexity of the elements.

Product State:

The user’s perception of the value of a software product
(liability/asset).

Productivity:

Number of changes to the repository per unit of work; weighted
sum of element state changes divided by time charged to the tasks.

Release:

A set of functionality made available to the user.

Repository:

see

 Development Repository.

Requirement:

A statement of the user’s expectation. Requirements can be
narrative, use case models, augmented information models.

Review:

Any means of assuring the quality of a product and the adherence
to standard or plan.

Reward:

Any means of recognizing and encouraging desirable behavior or
results.

Risk:

The source and probability of failure.

Risk — Human Effort:

Risk increases as the number of people involved
increases.

Risk — Requirements:

Risk increases as the use of untried technology
increases.

Risk — Technology:

Risk increases as increasingly employee untried tech-
nology.

Risk — Time Horizon:

Risk increases as the time horizon expands.

Service Channel:

Communication between development managers and user
managers.

Shared Element:

An element that is part of two active tasks; requires coor-
dination between developers.

Size:

See

 task size, product size, element size.

Skill Set:

Knowledge and expertise needed to create and maintain an element
type and its associated elements.

Standard:

A statement of the observable attributes of an acceptable product.

Strand: The collection of elements constituting the subject of a task’s work;
a collection of elements associated with a focus element.

Strategic: Adjective referring to decisions and actions concerning the enter-
prise’s future direction.

Tactical: Adjective referring to decisions and actions concerning the effective-
ness of the enterprise today.

Task: A description of the value to be added to the repository, the strand of
elements, and current development assignment.

Task Size: Determined by three factors: (1) the number of elements and
associations in the strand; (2) the type of work to be done; (3) the
complexity of the elements.

Task State: A summary of the state of elements with the strand associated
with the task.

AU1292AppEFrame Page 192 Sunday, August 25, 2002 11:50 AM

Glossary 193

Team: Two or more developers with complementary skill sets sufficient to
work on a task.

Test Case: An initial state, input, or stimulus and expected result.
Test Suite: A set of test cases organized in a series.
Tools and Techniques: Software and procedures used to aid and direct the

development work.
Traceability: The ability to find related elements of information.
Training/Education: A means of acquiring working knowledge or useful

information.
Uncertain Element: An element that is functional but has not been reviewed

(see Element State).
Uncertainty: The ratio between number of verified elements and the total

number of elements in the repository.
Verified Element: An element that is functional and reviewed (see Element

State).
Version: An identified set of elements that are internally consistent and

verified.
War Room: A shared space (usually a conference room) dedicated to a

development team.
Weight: A predictive measure of relative size or complexity of an element or

task.
Weight Unit: A unit of measure (e.g., paragraph count, kilobyte, edge).

AU1292AppEFrame Page 193 Sunday, August 25, 2002 11:50 AM

AU1292AppEFrame Page 194 Sunday, August 25, 2002 11:50 AM

195

Appendix F

Reading List

There is nothing new under the sun. All thought is an extension and rear-
rangement of previous thought. Here is a list of references I find useful —
not always because the authors agree with me, but because they provide
valuable insight and food for constructive thought.

1. Alexander, Christopher,

A Pattern Language: Towns, Buildings, Construction

,
Oxford University Press, 1977.

2. Alexander, Christopher,

Notes of the Synthesis of Form,

 Harvard University Press,
1970.

3. Beck, Kent and Fowler, Martin,

Planning Extreme Programming,

 Addison-
Wesley, 2001.

4. Beck, Kent,

Extreme Programming Explained,

 Addison-Wesley, 2000.
5. Block, Robert,

The Politics of Projects,

 Yourdon Press, 1983.
6. Boehm, Barry W., et al.,

Software Cost Estimation with COCOMO II,

 Prentice-
Hall, 2000.

7. Capability Maturity Model for Software, Version 1.1, Carnegie Mellon University,
1996.

8. Cockburn, Alistair,

Agile Software Development,

 Addison-Wesley, 2001.
9. DeMarco, Tom and Lister, Tim,

Peopleware: Productive Projects and Teams,

2nd ed, Dorset House, 1999.
10. Frame, J. Davidson,

The New Project Management: Tools for an Age of Rapid
Change, Corporate Reengineering, and Other Business Realities,

 Jossey-Bass,
1994.

11. Highsmith, James,

Adaptive Software Development — A Collaborative Approach
to Managing Complex Systems,

 Dorset House, 1999.
12. Hoch, Detlev J., et al.,

Secrets of Software Success — Management Insights from
100 Software Firms around the World,

 Harvard Business School Press, 1999.
13. Humphry, Watts,

Introduction to the Personal Software Process,

 Addison-Wesley,
1996.

14. Kerzner, Harold,

Project Management: A Systems Approach to Planning, Sched-
uling, and Controlling,

 7th ed., John Wiley & Sons, 2000.

AU1292AppFFrame Page 195 Sunday, August 25, 2002 11:50 AM

196

Dynamic Software Development: Managing Projects in Flux

15. Kruchten, Philippe,

The Rational Unified Process, An Introduction,

 2nd ed.,
Addison-Wesley, 2000.

16. Lewin, Roger and Regine, Birute,

Weaving Complexity and Business: Engaging
the Soul at Work,

 Simon & Schuster, 1999.
17. McConnell, Steve C.,

Rapid Development: Taming Wild Software Schedules,

Microsoft Press, 1996.
18. Mercadal, Dennis,

Dictionary of Artificial Intelligence,

 Van Nostrand Reinhold,
1990.

19. Nosek, John T.,

The Case for Collaborative Programming,

 Communications of
ACM, 41(3), 1998.

20. Page-Jones, Meiler,

Practical Project Management,

 Dorset House, 1985.
21. Peter, Laurence J. and Hull, Raymond,

The Peter Principle: Why Things Always
Go Wrong,

 William Morrow & Company, 1969.
22. Pinchot, Gifford and Elizabeth,

The Intelligent Organization,

 Berrett-Koehler
Publishers, Inc., 1994.

23. Stewart, Thomas,

Intellectual Capital — The New Wealth of Organizations,

Doubleday, 1997.
24. Tinnirello, Paul C., Ed,

Handbook of Systems Development,

 Auerbach, 1999.
25. Tinnirello, Paul C., Ed,

Project Management,

 Auerbach, 2000.
26. Tufte, Edward,

Envisioning Information,

 Graphic Press, 1990.
27. Umbaugh, Robert E., Ed,

Handbook of IS Management,

 Auerbach, 1999.
28. Williams, Laurie, et al.,

Strengthening the Case for Pair Programming,

IEEE
Software,

 17(4), 2000.
29. Wurman, Richard Saul, Ed.,

Information Architects,

 Graphics Press Corp., 1996.
39. Yourdon, Ed,

Managing High-Intensity Internet Projects,

 Prentice-Hall, 2002.

Web Sites

1.

Dynamic System Development Method —

rapid development method empha-
sizing team empowerment and frequent product delivery. http://
www.dsdm.org/index.asp

2.

Coad’s Feature Driven Development (FDD) —

a model-driven, short-iteration
process. http://www.togethercommunity.com/coad-letter/Coad-Letter-
0070.html

3.

eXtreme Programming (XP) —

a deliberate and disciplined methodology stress-
ing teamwork, feedback, and simplicity. http://www.extremeprogramming.org/

4.

Microsoft Solutions Framework (MSF) —

model-based development methodol-
ogy focusing on distributed Internet computing. http://www.microsoft.com/
business/services/mcsmsf.asp

5.

Object-oriented Process, Environment, and Notation (OPEN) —

OPEN Consor-
tium’s object-oriented methodology/process. www.open.org.au

6.

Rational Unified Process (RUP) —

a Web-enabled, team-based software engi-
neering process. http://www.rational.com/products/rup/index.jsp

7.

Scrum —

a lightweight, agile process emphasizing a team-based approach to
iteratively, incrementally develop software. Scrum refers to the mechanism used
in rugby for getting an out-of-play ball back into play. http://www.control-
chaos.com/

8.

Unified Modeling Language (UML) —

http://www.rational.com/uml/index.jsp

AU1292AppFFrame Page 196 Sunday, August 25, 2002 11:50 AM

197

Appendix G

DSM Case Study

This appendix presents the case study illustration in its entirety and in
chronological order. Excerpts are included at the end of each chapter.

Overview

DSM International provides a wide variety of services to its customers. The
firm is headquartered on the West Coast with marketing and development
organizations in three cities and two agent offices overseas.

Organization

DSM International provides a wide variety of services to its customers, includ-
ing advisory consulting, training, industry research, and related software prod-
ucts. The firm grew from a three-person partnership serving a small group of
local clients in San Francisco to a major international player in the field. Thirty
years later, its headquarters is still in San Francisco but it has marketing and
customer support offices in six U.S. cities and four agent offices overseas.
Amazingly, all three of the original partners are still with the firm. One of the
partners was born in India and now heads up the New Delhi operation.
Another had family in Ireland and moved there six years ago to set up offices
to serve DSM European clients.

The company’s growth has not been spectacular, but it has been steady. In
many ways, DSM’s reputation and influence has grown faster than its revenue
and profitability. Officers of the company feel good about this but would like
to turn some of that reputation into real cash. Ten years ago, there was a big
push to grow and expand the consulting side of the business. The company
tripled the number of employees and contractors over a period of four months.
They quickly discovered that increased revenue did not automatically translate

AU1292AppGFrame Page 197 Sunday, August 25, 2002 11:49 AM

198

Dynamic Software Development: Managing Projects in Flux

into increased profit. The expansion was followed by a difficult period of very
tight cash flow troubles. The employees and officers pulled through, but the
period illustrated how the company learns — a never-ending cycle of good
intentions and hard knocks. Through it all the culture is still open to change
and internal improvement. While the industry generally views DSM as an
exemplar, internally everyone from the CEO to the janitor knows there is
always room for improvement. Determining which decisions will yield
improvements and which are doomed to fail is the open question.

The current CEO is the third of the original founders of DSM. From the
very beginning, he and his partners divided up the work of the firm into three
domains: Marketing, Operations, and Finance. The basic structure of the
company has remained the same even as the number of people in each of
the areas has grown (see Exhibit 1).

Reporting to the VP of Marketing are regional managers. Each manager is
responsible for client development in his or her geographic region. Reporting
to the COO are senior managers responsible for developing and delivering
services, many of which are specific to certain industries. These people and
their subordinates work with clients, providing advisory consulting, delivering
training seminars, and preparing industry-sector research reports. The manag-
ers under the COO are often assigned to assist in client development within
given regions. The marketing and operations areas of DSM function in a loose,
quasi-formal matrix organization. There is a long-standing rivalry between the

Exhibit 1

Old Organization Chart

Director
Ireland

CEO

CFO

Director
India

COO
VP

Marketing

et al

International Divisions

Sr. MgrsSr. MgrsRegional Mgrs

Director
Appl. Dev.

Developers

Project
Leaders

AU1292AppGFrame Page 198 Sunday, August 25, 2002 11:49 AM

DSM Case Study

199

two groups, with the managers in operations thinking of the regional managers
as overblown salespeople overhyping the company’s capabilities. The people
in marketing refer to operations as a bunch of prima donnas earning their
salary off the hard work of the marketing group. Both groups rely on the
Applications Development group for internal systems and product software
licensed to clients.

The Applications Development staff of the company currently has approx-
imately 50 developers. They have outgrown the seventh floor; some developers
are now located on different floors. The department is responsible for both
in-house systems and customer products. DSM never found the need to
separate in-house information technology from product development. The
systems built and licensed to customers are similar to those originally built to
support DSM’s administrative and development functions. The development
staff has successfully used DSM as a beta site for new development and major
enhancements.

The CFO assumed the responsibility of buying computing equipment and
maintaining the systems from the beginning. As the firm grew comfortable
with the systems, it began relying less on their vendors for packaged solutions.
Some of the accounting staff began writing their own applications. As these
employees spent more time on software and systems and less time on
accounting, the CFO modified her organization to coordinate the development
effort. Several years later, there was a position defined for Director of Appli-
cations Development.

Most of the Applications Development department is located on the seventh
floor of the San Francisco headquarters building. It is a typical configuration
with developers housed in cubicles in the center of the floor and manager’s
offices around the perimeter. There is also a kitchen/lunch room, a testing
lab, and a conference room used for everything from project status reviews
to birthday parties.

Environment

The DMS development group prides itself on being able to deliver its products
on a variety of platforms. The original systems were built on old Digital
Equipment Corp. machines. The first product delivered to customers was on
a UNIX platform. As the company grew and its client base expanded, the
marketing group pushed to deliver Mac-based versions to clients in the
entertainment and design sectors. DMS saw the need for Windows-based
systems and delivered a Win 3.1 version soon after its release. The complement
of developments reflects the diverse client base. As it happened, all the UNIX
developers situated themselves together (see Exhibit 2). The Mac developers
took a set of offices so they could easily work together. The growing number
of Windows developers also flocked together. It was not by deliberate design,
but when it was time to move to the seventh floor, the groups staked out
their cubicles to establish territory. Now, the center isle is known as “Windows
row.” The outside rows of cubicles are referred to as “Mac row” and “UNIX row.”

AU1292AppGFrame Page 199 Sunday, August 25, 2002 11:49 AM

200

Dynamic Software Development: Managing Projects in Flux

The organization not only works with multiple platforms, but also maintains
and enhances systems from many generations. Many of the internal systems
were developed in third-generation languages. These systems are well
respected and valuable to DSM divisions (see Exhibit 3). If DSM had had a
high turnover rate of developers, the issue of converting systems may have

Exhibit 2

DMS Application Development Office Layout

Exhibit 3

Recent Organization Chart

E
le

va
to

rs
M

|

 W

conference
room

lunch office

office office office

office

office

director’s office

testing
lab

stairs

Unix row

Mac row

Windows row

Director
Ireland

CEO

CFO

Director
India

COO
VP

Marketing

CIO

et al

International Divisions

Sr. MgrsSr. MgrsRegional Mgrs

Mgr.
DB Admin

Mgr
Appl. Dev.

Developers

Project
Mgrs

Mgr.
Midwest

AU1292AppGFrame Page 200 Sunday, August 25, 2002 11:49 AM

DSM Case Study

201

taken a higher priority. But there are many developers and managers who
have been with the company for a long time, providing the knowledge and
experience to keep the system evolving and functional.

Time: Twelve Years Ago

DSM had more requests for system support than it could handle. Marketing
wanted customer support for the regional managers, Operations wanted
systems to aid the consultants, and the Financial people had a long list of
enhancements to internal accounting systems. With the Director of Applications
Development reporting to the CFO, the financial applications were getting
preferred attention.

The VP of Marketing sent a memo to the CEO expressing his frustration, as
shown in the memo in Exhibit 4. He also copied the memo to the other executives
in DMS because he knew they were feeling the same frustration and wanted to
ensure that the debate was enlarged to include all parts of the DMS enterprise.

The COO and directors of the international divisions replied with similar
requests. They all said they would prefer working in-house, but that the level
of service was not adequate to support the company’s growing needs. The
CFO requested more money to hire more developers and upgrade the devel-
opment tools. The CEO was a little confused by all the discussion but relied

Exhibit 4

Frustration from the VP of Marketing

To: CEO

From: VP of Marketing

Subject: Support from Applications Development

We need more support from applications development. We have submitted many
requests for new and updated systems. While it appears the people within applications
development have the interest and the expertise, they clearly do not have the time.
We are told that they are busy with updates to the financial applications and that our
requests will be addressed when resources are available. In my conversations with
the CFO, she claims she has no more money to hire more developers and that her
applications will continue to take precedence.

This is untenable. We would prefer working with the internal development group but
there are third-party vendors with software systems that will fill most of our needs. I
need to know if I should continue to investigate outside sources for system support
or if there will be development resources available that I can count on.

cc:

CFO

COO

Director of Applications Development

International Directors

AU1292AppGFrame Page 201 Sunday, August 25, 2002 11:49 AM

202

Dynamic Software Development: Managing Projects in Flux

upon his officers, agreeing to amend the budget and increase the investment
in the systems development area.

The CEO’s confusion came from the fact that everyone was talking about
applications development as if the systems were capital assets — like they
were requesting more plant and equipment, but the company was accounting
for the development area like a clerical function. It was a cost center. Usually,
everyone tried to minimize the money consumed by cost centers; but here,
there was almost unanimous agreement that the company should “invest” in
the division. The CEO wondered how he would know if the “investment”
yielded a positive return.

The CEO had several conversations with the Director of Applications
Development. He asked the Director how he felt about the current state of
affairs. The Director reported that it was awkward. He wanted to be able to
work with the other divisions on marketing and customer support, but until
recently was only able to focus on the financial systems. They talked about
the possibility of moving the development function into the marketing area
or have several development groups — one for marketing, one for finance,
one for operations. They agreed that it would be difficult to coordinate and
that it seemed like a duplication of effort. Both men thought about the idea
of Applications Development reporting directly to the CEO, but neither actually
verbalized it. The CEO was uncomfortable with the technology and, in general,
it seemed like an odd notion.

The CEO explained to the Director that he was increasing the funding for
applications development and that he was sure the CFO would support the
development of nonfinancial systems requested by other divisions of the
company.

In the early years, as DSM development efforts grew in size and complexity,
managers and developers alike recognized the need for more structure in the
way software was built. Industry trade journals were filled with articles
debating various methodologies and their characteristics: waterfall, spiral,
model-driven, and process-oriented methods, all focusing on “process.” Con-
sulting firms preached analogies to other engineering and manufacturing
practices. The managers and developers at DSM adopted the analogy of
building a house with the need for careful plans and blueprints. Construction
began only after careful planning; a firm foundation is laid before walls and
roof are added. Enhancements identified after construction begins are post-
poned and handled by workers under a different contract.

DSM bought into the current thinking of the day and wanted a standard
methodology for all its new development projects. Maintenance was to be
treated as a “mini” new-development project. DSM contracted with a consulting
firm to help define the methodology to be used in all of its development.
The consultants worked with the managers and senior analysts to try to
customize the consulting firm’s template methodology as best they could. At
the end of a difficult six months, the methodology was delivered in 17 beautiful
binders called the DSM Development Methodology (DSM-DM). DSM paid the
consultants a small phenomenal fee and set about the task of using the new
procedures they had defined for themselves.

AU1292AppGFrame Page 202 Sunday, August 25, 2002 11:49 AM

DSM Case Study

203

Before DSM adopted the DSM-DM, work was done at CMM level 1. That
is not to say that the work was bad. In fact, the development group had a
good reputation throughout DSM for being fairly responsive and for producing
systems that worked and were reasonably usable. When the development
organization was smaller, it was workable to have each developer keep track
of his or her own documentation. But as the group grew in size and the
systems they were building grew in complexity, documentation became
unworkable. Each developer’s unique idiosyncrasies made it awkward and
time-consuming to share information and build upon each other’s work.

There were mixed feelings about working with the outside consulting firm
in writing the DSM-DM, but there was general consensus that it was a positive
step. After all, everyone seemed to agree that a standardized set of phases in
the development process was a good thing. Each phase would have a well-
defined set of pre-conditions and expected results. The process would move
smoothly from beginning to end. And everyone seemed to agree that there
were (or should be) a definite beginning and a definite end to each devel-
opment effort.

The development group of DSM was also very interested in the CMM and
most thought that the idea of such a framework was valuable. The first articles
and books published that explored the idea of a set of observable attributes
of a competent organization caught the imagination of many of DSM’s man-
agement. DSM never considered formal appraisal, but did invest a great deal
of time and energy into modifying their methodology (DSM-DM) to reflect
the Carnegie Mellon University Software Engineering Institute’s maturity model.

The DSM managers were particularly interested in developing and imple-
menting planning and measurement techniques. There was a sense of optimism
that the software development process could be manageable and predictable,
if only the work could be performed in a consistent manner and deliverables
could be analyzed and measured. The DSM methodology provided a well-
defined framework of the development process. Each task had pre-conditions
(i.e., completed deliverables from previous tasks) and a clear objective (i.e.,
the creation of a deliverable used in the next task).

As DSM gained more experience with measurement activities, the managers
allocated more of their resources to the quality assurance process. Several of
the analysts were given the job of developing techniques for monitoring the
development process (see Exhibit 5) and providing measurements of quality
and productivity.

The developers were asked to provide more detailed information about
the tasks they were performing. Programmers were asked to provide reports
on the complexity of their programs. Designers had to include in their status
reports, counts of interface complexity and evaluations of the degree of class
reuse. Deliverables from database design tasks had to include measures of
table normalization and transaction optimization.

While the information gathered from the measurement program was useful,
the additional requirement of reports and summaries was adding to the
workload of the developers. The extra work was minimal when the develop-
ment task was small. For larger efforts, or for projects that had fallen behind

AU1292AppGFrame Page 203 Sunday, August 25, 2002 11:49 AM

204

Dynamic Software Development: Managing Projects in Flux

schedule, the developers complained that the imposition was hindering their
progress. It was not surprising that the developers took little care in the
accuracy of the reports and summaries the developers prepared for the SQA
and Planning analysts. After all, the real work had to get done and these
reports were not helping them get the product out the door.

The DSM-DM worked well for the first year. There were no big projects,
but lots of small ones. The Director of Applications Development allowed the
developers to adapt and customize the methodology for each project so there
were few complaints about redundant or unnecessary steps.

During that year, the development group adopted a new timesheet (see
Exhibit 6) for reporting work hours spent on the various tasks defined in the
DSM-DM. The report was easy enough. The Director and project managers
would lay out a project plan. Each phase was subdivided into tasks with each
task being identified by a code number. The methodology defined productivity
as rate at which tasks were completed. The time required for each task was

Exhibit 5

Generic Development Process

Exhibit 6

Sample Time Report

Timesheet

 week of: 5/14

Date Hours Task Code Description

5/14 4 C12-4 Writing code for task 12-4
5/14 2 C12-9 Updating data dictionary
5/14 2 Misc. Correcting requirements errors
5/15 8 C12-4 Same

Date: ________________________ Signature: ________________________
Date: ________________________ Approved: ________________________

Process
x -1

Process
X

deliverable
x -1

Process
x +1

Process
x -2 deliverable

x -2

deliverable
x

reports &
summaries

SQA &
Planning

AU1292AppGFrame Page 204 Sunday, August 25, 2002 11:49 AM

DSM Case Study

205

estimated and an expected resource requirement was recorded. Time was
charged to tasks so that the difference between the expected resource require-
ment and what was actually charged became a rough measure of the task’s
status.

The project schedule was then computed by summing up all the task
estimates and dividing that sum by the amount of time the developers were
expected to spend working on the tasks. So a 100-hour task could be assigned
to an individual dedicated to the task who would require approximately 2.5
weeks to complete it (assuming a 40-hour workweek). The same task, assigned
to a three-person team, each person working half-time on the task, would
charge 100 hours to the task after a week and three or four days (100/20 hr

×

 3 people).
During the first year of use, the Director noted a significant number of

hours charged to tasks that were already recorded as complete. When he
asked about it, the developers told him that they were just trying to keep the
completed work up-to-date. For example, during a coding task, a developer
might discover some ambiguity in the requirements statement. The time
required to talk with the original analyst or to call the user had to be charged
somewhere. The director thought it was strange to be working on a task that
the development plan listed as complete. In addition, in most cases, the
estimated resource requirement had already been exhausted, so charging more
time to the task would make it look like the task took longer than it did. So
the director set a policy of not charging time to closed tasks and notified the
development staff by e-mail, as shown in Exhibit 7.

Time: Eleven Years Ago

Communication between the development group and the rest of DSM has
always been difficult (see Exhibit 8). It seemed that the Director of Applications
Development and the users were in a vicious cycle. The developers and the
DSM managers had the most closely aligned views of a proposed software
application at the beginning of a project. Of course, the application was not
defined, so everyone could imagine anything they wanted. The development
group would work through an initial phase of the DSM-DM. During this phase,
the user’s imagination and the vision in the developer’s eye would evolve
independently. At the phase review, it became clear how expectations had

Exhibit 7

Memo on Time Reports

To: Development Team

From: Director of Applications Development

Subject: Time Reports

Just a reminder, do not charge hours to tasks after the phase review has been
completed. Once a task is done and the phase review has been approved, hours need
to be charged to the current task codes.

AU1292AppGFrame Page 205 Sunday, August 25, 2002 11:49 AM

206

Dynamic Software Development: Managing Projects in Flux

diverged. In conversation, everyone tried to explain his or her current under-
standing of the product. At the end of the phase review, expectations would
be closer, but never close to perfect consensus.

The process was frustrating and many coped by practicing avoidance. They
knew the communication process was imperfect and wearisome, so a manager
would often delegate the responsibility of participating in the phase review,
often with good reason; the person chosen to participate was usually closer
to the operation than the manager, perhaps with a better understanding of
the technology. But always, the delegate had less authority to make decisions.
Phase reviews later in a project often required several meetings as the delegate
needed time to return to her or his manager to discuss options and then come
back some days later.

Time: Ten Years Ago

The first major development effort after the creation of the DSM Development
Method was a product to support DSM clients. The Marketing group was
reporting that the advice and support from DSM was useful, but some form
of computer-aided system would be useful. Some major clients reported that
other firms were promising software support within the year and Marketing
was concerned that these clients would opt for competing firms if DSM did
not introduce computer-aided support.

The CEO met with the Director of Applications Development and they
agreed to make the DSM Strategic Integration Support System (DSM-SISS)
product a priority and that it was a great opportunity to “do the job right” by
strictly following the new DSM Development Method.

All the developers had received training in DSM-DM. The methodology
had been used, in part, on several small efforts although the development

Exhibit 8

Growing Difference in Expectations

6 months 1 year 8 months

di
ffe

re
nc

e
in

 e
xp

ec
ta

tio
ns

phase
review

phase
review

phase
review

start

AU1292AppGFrame Page 206 Sunday, August 25, 2002 11:49 AM

DSM Case Study

207

staff had never been obliged to use the methodology strictly as written. The
Director, confident that the development staff could deliver the DSM-SISS
within a year’s time, quickly initiated a project plan, laying out the phases
and reviews necessary to bring the project in on time.

The DSM-SISS project used the DSM-DM to generate a project plan and
lay out a schedule (see Exhibit 9). The analysts working on the measurements
were able to produce impressive projections. When the DSM-SISS project was
being planned, the measurements from past development efforts formed the
basis for estimates of time and resource requirements.

The plan did allow for overlap of the phases. There was no need for a
formal feasibility study because everyone agreed it was the best (and neces-
sary) business decision and none of the managers in Applications Development
felt there was any real technical risk.

Along with the schedule, the development plan outlined the staffing
requirements for the project (see Exhibit 10). The first weeks of the project
would require the services of three senior analysts. By the twelfth week, three
designers would be added. The project would be fully staffed by week 28,
with additional testers expected around week 45. The majority of this com-
plement could be reassigned to other projects by week 52.

While the plan seemed consistent with the DSM-DM, one of the senior
analysts sent an e-mail to the Director expressing some concern, who
responded, as shown in Exhibit 11.

The analysts started working the requirements documents. They got good
support from the regional managers who were very excited about the prospect
of adding the software support tool to their mix of products and services.
They were already talking (informally) with clients about the new system.

Exhibit 9

Overview: DSM-SISS Development Plan

Week: 0 4 8 12 16 20 24 28 32 36 40 44 48 52

General Release

Beta Roll-out

Testing

Implementation

Design

Architecture

Analysis

Feasibility X

V

V

V

V

V

Phases:

Reviews:

AU1292AppGFrame Page 207 Sunday, August 25, 2002 11:49 AM

208

Dynamic Software Development: Managing Projects in Flux

Exhibit 10

Staffing Requirements

Exhibit 11

E-Mail from Senior Analyst and Response

E-mail:

To: Director of Applications Development

From: Sr. Analyst

Subject: DSM-SISS Development Plan

I feel I must express some misgivings about the development plan we defined for the
proposed SISS system. I can’t help feeling we are creating our own reality. We think
we know what the requirements of the system are, but we probably will not know for
sure until week 12. If we discover by that point in time that the requirements for the
system are much larger than we now expect, will we be obliged to work within the
current time frame? It feels funny to be committing to a completion date when we
are not sure of the amount of work we need to do.

The response:

To: Sr. Analyst

From: Director of Applications Development

Subject: DSM-SISS Development Plan

Thanks for your message. I know that planning and estimation are not exact sciences.
If we discover the product is much larger than we anticipate, we will make necessary
adjustments to the plan.

Weeks: 0 4 8 12 16 20 24 28 32 36 40 44 48 52

A
na

ly
si

s

D
es

ig
n

Im
pl

em
en

ta
tio

n

Te
st

in
g

R
ol

l-o
ut

s

S
ta

ffi
ng

 le
ve

l

AU1292AppGFrame Page 208 Sunday, August 25, 2002 11:49 AM

DSM Case Study

209

However, every interview with a regional manager or client identified addi-
tional features and conflicting priorities.

Shortly before the first formal review, the analysts were going crazy trying
pull together some coherent, consistent statements of system requirements,
but at the review meeting it was clear that the requirements were not close
to being complete, the scope of the project was far greater than expected,
and the frustration among the analysts was unmistakable. The executives at
the meeting refused to consider extending the target date for the product.
The VP of Marketing insisted that the product must be available on schedule
or they would begin losing important clients to the competition.

After the review meeting, the Director of Applications Development sent
out the e-mail shown in Exhibit 12.

At this point, the number of developers working on DSM-SISS increased
as designers and programmers were assigned to the project. The development
team took the memo from the Director as a license to ignore aspects of the
methodology they found inconvenient. After all, the goals had been clearly
communicated: get something out the door by week 52 — although the
product is much larger than originally envisioned and the project plan
remained unadjusted.

Managers were a little concerned as they heard the company’s development
methodology, DSM-DM, being referred to as “diz-dumb.” But none of the
managers publicly objected to the sarcasm because they knew they were
working long hours and were pulling together as best they could to accomplish
a difficult objective.

A few days before the scheduled week 23 review, the Director of Appli-
cations Development met with one of the regional managers. The Director
pulled up the Event Definitions, Class Models, and Database Schemas for the
system and was prepared to ask questions he had received from the devel-
opment team. But before the Director could begin describing the various
development models, the regional manager told the Director that several of
DMS’ clients had already received beta versions of similar products and that

Exhibit 12

E-Mail after the Review Meeting

To: Development Team

From: Director of Applications Development

Subject: DSM-SISS Project

The project review of week 12 was not a great success. It is clear that we have a lot of
work to do. Talking with many of the developers, I am confident that we can deliver
a quality product in the time remaining. The analysts on the project have been directed
to freeze the specification as it stands and to proceed with the Architecture and Design
phase as defined in the project plan. Given our time constraint, we will look to
streamline the tasks defined in the DSM-DM. Our next management review is
schedule for week 23. Let’s pull together and deliver a product we and our clients can
be proud of.

AU1292AppGFrame Page 209 Sunday, August 25, 2002 11:49 AM

210

Dynamic Software Development: Managing Projects in Flux

the features that seemed to be the most valuable were not even included in
the original requirements statements. The regional manager said he wanted
to discuss the new features at the review meeting and was wondering if the
Director could prepare some estimates for what it would take to include them
in DMS’ product offering.

The Director, trying to do the best job he could, arranged to postpone the
review meeting for one week and met with his managers and several of the
senior analysts to prepare some response. They projected the new features
would increase the size of the system by about 30 percent, revising the
schedule to show the product rolling out about week 65.

When this revised plan was presented at the review meeting, the executives
were not pleased. The CFO said she was uneasy about continuing the project.
She quoted the total in salaries and overhead consumed by the project to-
date and wondered aloud what this money was buying. The VP of Marketing
reasserted that the product was critical to the success of the company and
that if more people were needed to get it done, then more resources should
be allocated. The Director of Applications Development pulled out the Event
Definitions, Class Models, and Database Schemas for the product to try to
explain the status of the project, but most of the people in the room were
unimpressed. The CFO’s comment was, “These don’t mean anything to me.”
The Director responded by pointing to the DSM-DM to support his position,
but this did not carry much weight. The CEO saw that the meeting was going
nowhere and ended it by saying he would be meeting with people individually
to work out the next step.

The next week was a long series of meetings and hallway discussions. The
next Friday, the CEO called the Director into his office. When the Director
arrived, he saw that the VP of Marketing was already there. The Director was
told that for some time now, the company had been looking into the possibility
of buying out a small private company in the Midwest. The owner was retiring
and was interested in selling his business. The Director recognized the com-
pany as one that had a nice local niche, but never competed with DSM outside
the northern Midwest region.

The VP of Marketing reported that Midwest had a product that was exactly
like the one DSM was building, and it was already in use by clients in that
region. He was recommending that DSM buy out the Midwest company and
market the product under DSM’s name. The CFO had already reviewed the
finances and her opinion was that the purchase would be good for DSM. The
CEO turned to the Director and said he wanted him and one of his analysts
to fly out and review the Midwest product and come back with a recommen-
dation.

Before leaving, the Director told his development team about the move to
buy a competitor’s product and instructed them to stop pulling overtime for
a few days and to turn their attention toward completing the documentation
and cleaning up the work they had completed so far in preparation for
whatever comes next.

The Director and the analyst did not want to find a workable product at
Midwest, but they did. They found a very different development environment

AU1292AppGFrame Page 210 Sunday, August 25, 2002 11:49 AM

DSM Case Study

211

and a software system that performed well with most of the needed features.
Better yet (or worse, depending on your point of view), the Director and the
analyst came to believe that the Midwest product was functional now and
that missing features could be added in subsequent releases. The Director
reluctantly called the CEO and recommended that DSM proceed with the
purchase and that Marketing should go ahead and start planning for the wider
release of the Midwest product as DSM-SISS.

While the Director was at Midwest, he and his counterpart had several
interesting (if not philosophical) discussions. Despite the circumstances, the
two had a lot in common. One day, they were having lunch in the conference
room and began sharing the impressions of the state of software development.
The Director drew a graph on the whiteboard with one axis labeled “type of
work” and one labeled “time.” He commented how bizarre it seemed to break
up the

y

-axis by phase — feasibility, analysis, design, etc. He commented:
“When I work on software, I am thinking about all these things at once …
but one feature at a time.”

As they talked, the Midwest manager drew a third axis to represent the
features or functions of a proposed system (see Exhibit 13). This made the
Director even more irritated. “This drawing suggests we are trying to gather
all information about feasibility in phase one, all information about require-
ments in phase two, etc. This is crazy! We can’t be that sure about this
information. By the time we get to design and coding, the lower steps have
crumbled.”

As the two finished lunch, the director erased most of the drawing and
began doodling. “If we could manage in a manner compatible with the way
I work, we’d recognize that software is built in clumps. We build a cluster of
functions — performing analysis, design, coding, and testing on them. At a

Exhibit 13

Methodology as Steps

Time

Function / Feature

Ty
pe

 o
f W

or
k

All Feasibility

All Analysis

All Design

All Codingfeasibility

analysis

design

code

AU1292AppGFrame Page 211 Sunday, August 25, 2002 11:49 AM

212

Dynamic Software Development: Managing Projects in Flux

later point in time, we build more software. At some point we may find a
need to enhance the original work. At the same time someone else is adding
another feature — doing analysis, design, coding, and testing (see Exhibit 14).

The Director’s counterpart commented that that was pretty much how his
group worked. “It has the advantage of always having a demonstrable system.”
The Director flashed back to the review meeting. He stood there, feeling rather
stupid, with his database schema and class diagrams, unable to show that any
real work had been done. The work was real but not in a form that could
be appreciated by the decision makers.

They agreed to continue the discussion. The Director left Midwest with a
sense that the two had a lot to learn from each other.

Time: Nine Years Ago

After the decision was made to use the Midwest software rather than continue
with the in-house development, the managers in Applications Development
conducted a post-mortem on the project. They knew that the developers were
upset and viewed the whole effort as unfair.

During one of the review meetings with the development staff, one pro-
grammer said: “We all feel let down. I went back over my timesheets and the
project status reports. We were doing all the right things. Our tasks were
coming in almost exactly on budget. We were completing tasks almost exactly
on time. So why did we do all this work only to have the rug pulled out
from under us?”

Exhibit 14

Methodology as Blocks

Time

Function / Feature

Ty
pe

 o
f W

or
k

feasibility

analysis

design

code

AU1292AppGFrame Page 212 Sunday, August 25, 2002 11:49 AM

DSM Case Study

213

Later, the Director was talking with one of his senior managers: “The
programmer is right. How is it that we could look so good on paper and not
know that things were so out of control?” “Well,” replied the manager, “I think
we all know in our heart of hearts that the information on the time sheets
doesn’t reflect reality. It is as if we ask the developers to tell us what we want
to hear. The fact that 100 hours was charged to a 100-hour task does not
mean the work is done. Having a review where everyone signs the require-
ments approval form does not mean that we know what the user really wants
nor what they should have.”

The Director and the manager went into the conference room. The Director
drew some symbols representing the DSM development methodology on the
whiteboard (see Exhibit 15). The manager pointed to the “code” phase and
said: “I think a big problem is that, if we are hit with a change to the system
(code or design or requirements) at this phase, we don’t have a plan for
rippling back through the phases to bring everything up-to-date. In fact, we
don’t even know what might be affected by a given change. So the developers
either go hunting through all the past work looking for what needs to be
updated, or (more likely) they just change the code and forget about the other
stuff. In fact, that policy about time reports tends to encourage just working
on the current task because they can’t charge time to work we thought was
done.”

The Director remembered some of the conversations he had had at Midwest.
One of the Midwest developers told him that they did not fill out time reports.
He thought that was strange but did not think much of it at the time. He also
remembered sitting in on a group session the Midwest developers had in their
war room (see Exhibit 16). The Director erased the whiteboard and drew a
mock-up of the war room. They had diagrams and printouts hanging all over
the walls. Each section of the wall had material from different documents.

The Director continued, “They were talking about a change request. I don’t
remember the specifics but I remember thinking they were talking about a
significant change. One would point to a database schema and list the changes

Exhibit 15

Methodology Representation

Analysis

Design

mod A

Mod B

Lib X

Code
*.c

*.h

libs

?

?

?

?

?

2.1
2.2

2.3

?

AU1292AppGFrame Page 213 Sunday, August 25, 2002 11:49 AM

214

Dynamic Software Development: Managing Projects in Flux

that might be necessary. Another would interrupt, pointing to a piece of code
and marking it as “needing review.” A third would draw some changes on
an interface diagram, saying that if the table had to change, this interface
should be altered. After a short time they had outlined changes to every
document affected by the change. They agreed to get back together the next
morning. I assume they left to make the changes. I thought it was strange.”

The Director and manager agreed that some changes were necessary before
the next big project was started. “They also said they had no projects,” the
Director said to the manager as they left the conference room. “I’m not sure
what they meant by that.”

After the DSM-SISS project’s failure, managers and executives of DSM
wanted to know how the estimates could be so far off. The analysts got
information about the Midwest product and created a set of numbers based
on its actual features and code. They discovered that the Midwest product
was twice the size of the product described by the initial requirements
statement of the DSM-SISS (two and a half times the number of function
points). They reported that the features the marketing group were trying to
add to the project during the first six months would have doubled the estimate
for the project.

The SQA (software quality assurance) analysts concluded their report by
saying that the original estimates were correct, given the projected size of the
product, but that the requirements statements were not accurate. The Director
of Applications Development asserted, with a great deal of frustration, that
the development team could not have known the full extent of the system’s
requirements. That knowledge was not available until they and the regional
managers had a chance to refine the customer’s view of the product.

One of the post-mortem meetings concluded with the CEO saying: “So, it
appears we can accurately measure our software products after they are
finished. We can accurately say what a project should have cost us if we had
known everything at the beginning of the project that we know at the end.
But we can’t know at the beginning of a project what a project will require
until the end.” He shook his head and said, “Work on it.”

Exhibit 16

Midwest War Room

Code Database

Interface

User
Help

Architecture
server

client
workstn

page

*.c

*.h

libs

screen

screen

screen

?

?

?

?

?

AU1292AppGFrame Page 214 Sunday, August 25, 2002 11:49 AM

DSM Case Study

215

Time: Eight Years Ago

After the disaster of the DSM-SISS project, the development department entered
a period of adjustment. Most of the DSM-DM fell into disuse. Project managers
were allowed to pick and choose those tasks that seemed most appropriate.
As time went on, fewer and fewer of the tasks were considered “appropriate.”

The support and enhancement of the DSM-SISS remained with the Midwest
group. The development on the West Coast continued with other independent
products but more and more time was spent on maintaining and upgrading
existing systems.

Over the next year or so, the CEO saw that various projects were initiated.
He reviewed the accounting of the money being spent on these projects and
convinced himself that things were moving in the right direction. But direction
was not always without its problems.

The CFO was very uncomfortable managing a division that was increasingly
answering to other managers. She recognized that the Director of Applications
Development was in a difficult position as he tried to coordinate development
in support of many parts of DSM. Increasingly, conflicts developed, such as
the one between Finance and Marketing. A project to develop customer
relations information for the regional managers had been approved. It was
expected to take six months to complete. The CFO accepted a delay in a
proposed upgrade to their customer credit system, expecting the work to
begin after the marketing system was completed. After about five months, it
was clear that the marketing system was not going to be completed on time
and the capital management system would be delayed even further. The
Director of Applications Development suggested that some of the developers
working on the marketing system be reassigned to start the customer credit
project. This meant that the marketing system, already behind schedule, would
be even later.

The CFO resented having to spend time on this conflict. From her per-
spective, she was being generous to support the marketing systems at all, and
now to have her generosity repaid with delays in critical systems was hard
to take.

The Director went to his developers and asked for an extra effort to get
the marketing system “out the door” as soon as possible. The developers
responded by putting in a significant number of overtime hours. They also
were liberal with the interpretation of requirements; after all, it was clear that
the goal was to get “the system” out the door on time. The exact definition
of “the system” had always been nebulous. So the fact that extensive error
handling was not implemented was technically not a violation of requirements
because it was never explicitly stated. Cutting corners on the rigor of data
interfaces seemed justified because it allowed them to deliver “the system”
on time.

They succeeded by the measurements that were most prominent. The
system was put into production only two weeks late. The marketing people
were a little disappointed that some of the features they thought would be
there were not, and that the training and conversion support they thought

AU1292AppGFrame Page 215 Sunday, August 25, 2002 11:49 AM

216

Dynamic Software Development: Managing Projects in Flux

they would have was rather sketchy. The developers were happy to have
their weekends back and they began working on the customer credit system.

As time went on, Marketing began sending more and more maintenance
requests. They had discovered that it was easier to get maintenance requests
in the queue than “new development” requests. But the Director noted that
some of the maintenance requests were larger than the original new devel-
opment proposals. As he assigned people to deal with the maintenance jobs,
there were fewer developers working on the new systems.

The Director of Applications Development knew that the situation was not
going to get better. He reasoned that as long as the managers requesting
services were outside the decision-making process, there was going to be
dissatisfaction with any decisions made. He talked to his boss (the CFO) and
to the CEO, suggesting the creation of a steering committee (see Exhibit 17).

The Director had a conversation with the CEO in which the Director
expressed his hope that the steering committee could exercise a degree of
authority in mediating the decision-making process. The CEO agreed and
called the first meeting of the committee where he established their mission
(see Exhibit 18).

The first few meetings of the steering committee were attended by the
executives themselves. Their initial work seemed promising; they made deci-
sions about which of the development requests should have priority. They
were even successful at merging several related requests by identifying over-
laps in the subject matter and assigning subject matter experts from different
divisions to work jointly on an integrated system.

The communication process seemed to improve over the first years of the
committee’s existence. With representatives from all major domains of the
company, decisions were more open and people were aware of any conflicting
issues. The steering committee developed a good sense of the projects being

Exhibit 17

Creation of Steering Committee

To: CEO

From: Director of Applications Development

Subject: Project prioritization

The applications development department needs more information about the strategic
contribution computer applications are making to DSM. We have a long backlog of
system development requests. Our effort to prioritize the requests requires more
information than we have. The decisions we make about which projects take
precedence will never be optimal without input from all affected DSM divisions.

I request that a steering committee be created with representatives from Finance,
Marketing, Operations, and International Divisions. Their charge would be to approve
and prioritize development requests and act as overseer and facilitator of relationships
between the development group and its users.

cc:

CFO

AU1292AppGFrame Page 216 Sunday, August 25, 2002 11:49 AM

DSM Case Study

217

proposed and on many occasions found ways of merging proposals from
different user areas into a single project serving shared interests.

A major problem developed, almost unnoticed. The size of the approved
projects became larger and larger and the resource estimates became increas-
ingly unrealistic. The steering committee began to view small proposals as
less important than “significant requests.” The small jobs only delayed and
complicated the “real” work of the development group. This trend was
exacerbated by the long lead-times between a project’s request, a project’s
approval, and the completion of the work. The steering committee met only
once each month. There was always a backlog of work and decisions were
often delayed over several meetings. Most of the committee’s time was spent
on the larger proposals. People submitting project requests quickly learned
that bigger proposals got preferential treatment. Smaller proposals took too
long to be considered worthwhile.

After the first year, the executives began sending their subordinates in their
place. This added to the lead-times on proposal considerations. Inevitably,
their delegates would be faced with issues they felt they could not answer.
They would return to their divisions to discuss the matter with their superiors
and report back at the next meeting. This doubled the time it took to consider
and act upon a development request.

By the time DSM was considering the DSM-SISS, the steering committee
had become slow and unresponsive, leaving the Director of Applications

Exhibit 18

Calling First Meeting

To: DSM Officers

From: CEO

Subject: Applications Development Steering Committee

I am forming a new steering committee to address the growing demand for a computer
application system. All divisions of the company have identified the need for new
applications supporting both internal functions and our clients. It is clear we cannot
accommodate all the requests at once, so a better method of prioritizing application
requests is in order.
The committee will be made up of:

�

CFO — (who will chair the meetings)

�

VP Marketing

�

COO

�

Director of Applications Development

�

A representative of the international divisions

I will be a non-voting member of the steering committee.

The charge to the committee is to review project proposals, review information from
the requesting organization to assess potential benefits, review information from the
applications development department to assess resource requirements, approve and
prioritize the project requests, and monitor the project’s status.

The first meeting of the steering committee will be next Thursday, 10 a.m.

AU1292AppGFrame Page 217 Sunday, August 25, 2002 11:49 AM

218

Dynamic Software Development: Managing Projects in Flux

Development alone to coordinate the many considerations and demands of
the proposed system. The CEO stepped in to support the director. The CEO
even began making unilateral decisions when the decision was on the critical
path.

The close working relationship between the Director and the CEO, and
the company’s experiences during the DSM-SISS project, convinced the CEO
to name the director to the position of Chief Information Officer, and to change
the reporting relationship (see Exhibit 19). The Director achieved the formal
status he had earned over the years. The development organization now
reported directly to an executive-level officer.

The new CIO began laying the groundwork for ending the steering com-
mittee. He worked with his developers to define a browser-based conference
to access the development plan databases (see Exhibit 20). The CIO began
by announcing that the current project status reports were available on the
intranet and that he would not be reviewing them separately during the
steering committee meetings.

Once members were accustomed to the use of the conference to reference
project status, the CIO introduced a discussion forum where project proposals
were posted (see Exhibit 21). Members were encouraged to review the pro-
posals online and post questions and comments (see Exhibit 22). When the
CIO determined that a consensus had been reached, he posted the summary
in the discussion and asked if everyone concurred. He would then review
the discussion and the result at the next steering committee meeting. Quickly,
the members began to rely on this discussion and decision-making forum.

When the CIO was convinced the group was functioning well using the
conference, he suggested to the CEO that the steering committee meetings
be canceled and that the group do all future business through the online
conference (see Exhibit 23).

Exhibit 19

Changing the Reporting Relationship

To: All DSM Employees

From: CEO

Subject: Chief Executive Officer

It is my pleasure to announce the creation of a new executive position of Chief
Information Officer. I am naming the current Director of Applications Development
to fill this position. All functions under the current Director will move out of the
Finance department into the newly created division. The office of the CIO will report
directly to me.

I, and the other officers, feel that the new position will strengthen the role applications
development has played in the growth and success of this company. The Director has
proven to be a valuable asset to the company’s strategic planning and we are confident
that he will continue to serve us well in his new position.

Please take the time to congratulate the new CIO on his promotion.

AU1292AppGFrame Page 218 Sunday, August 25, 2002 11:49 AM

DSM Case Study

219

The CIO continued to meet regularly and informally with all the decision
makers. However, the flexibility of the online conference allowed him to
conveniently invite other experts into the discussion. One proposal involved
a complex interface. The CIO invited an outside expert to post information
to help the steering committee assess different options.

When the Director of Applications Development was named the CIO, he
took some time to think about his role within DSM. His personal goal was
to identify the type of information each of his constituents needed. The CIO
reasoned that if he could provide the information that each colleague expected,
they had a good chance of maintaining good communication, effective decision

Exhibit 20

Shared Project Repository

Exhibit 21

Project Status Page

DSM Development Planning Conference

Project Index

Project: Client Profitability Analysis

Proposal: Client Billing Upgrade

Project: International Content Conversion
Project: DSM-SISS - Spectrum Integration
Project: Consultant/Contractor Mgmt

Proposal: Capital Asset Assessment

File Edit View Tools Help

DM

Project: Client Profitability Analysis

- CIO:

File Edit View Tools Help

DM

The project is currently testing user interfaces. A beta release is in operation
at the west coast office. . .

- Estimated person months: 30

- Actual to-date: 26

- Current staff level: 5

- Estimated cost: $253,000

- Project started: March

- Expected completion: June

- Actual to-date: $219,000

- CIO: Click on attachment for detailed project plan and links to current tasks definitions

AU1292AppGFrame Page 219 Sunday, August 25, 2002 11:49 AM

220

Dynamic Software Development: Managing Projects in Flux

making, and more reasonable prioritization of goals (see Exhibit 24). If he
provided the wrong information, he was sure his effectiveness as an officer
of the company would be severely compromised.

The information relationships with other officers of the company would
be one of “service.” That is, the office of the CIO would be judged by how
well it contributed to the success of the other divisions of DSM. So, the CIO
was determined to keep the other divisions of DSM informed of the status of
their particular requests. He also knew that he would always have more
requests for service than he had resources to fulfill them. The information he
shared with other executives would have to include criteria and strategic goals
he used to prioritize development requests. It would not be enough to say to
the VP of Marketing that the request for an update of field support applications
would not be addressed for six months. The information would also have to
include what applications were given precedence and why. The decision-
making process would have to be coordinated and flexible, and would need
the support of his boss, the CEO. The information shared with the CEO would
have to be tailored to help the CEO direct the discussion of corporate priorities.

Exhibit 22

Proposal Discussion Area

Exhibit 23

Cancellation of Steering Committee Meetings

To: DSM Officers

From: CEO

Subject: Applications Development Steering Committee

I am canceling all future software application steering committee meetings. It seems
the new on-line conference system is working and there is no longer a need to
coordinate our schedules and meet regularly for the purpose of reviewing project
requests.

Proposal: Client Billing Upgrade

- CIO:

File Edit View Tools Help

DM

The proposal is attached to this message. Please review and comment.

+ Reply1:

- CIO:

Didn’t we modify our client billing last year?

Thanks for the input. I do not hear objections. If we are all in agreement I will
go ahead and schedule this project into development.

- Reply2: Yes, but the new market segment has introduced new service and
billing requirements . . .

+ Reply3: Sorry I am late reviewing the proposal. I do have some concerns.
I don’t understand the differences among the market segments . . .

etc. etc.

AU1292AppGFrame Page 220 Sunday, August 25, 2002 11:49 AM

DSM Case Study

221

The CIO determined that communication within the development group
would be mostly collaborative (see Exhibit 25). While there were formal
administrative relationships, traditionally, managers have tried to function as
a member of the development team. The CIO wondered if that was really the
best arrangement, but every manager had come up through the ranks of the
development staff and enjoyed staying involved with the technology and the
development work. For these communication channels, the CIO determined
to make the development plans and all elements of the environment open to
debate and refinement. Decisions about standards, methods, practices, tools,
and training needed the perspective of developers. Of course, decisions had
to be made and it was clear that the managers would have that responsibility,
but all decisions had to be informed by the lessons learned by the developers
and project leaders.

Exhibit 24

Communication across DSM

Exhibit 25 Communication within the Development Group

Director
Ireland

CEO

CFO

Director
India

COO
VP

Marketing

CIO

et al

International Divisions

Sr. MgrsSr. MgrsRegional Mgrs

Service

Ser
vic

e

Service
Service

Delegate

CIO

Mgr.
DB Admin

Mgr
Appl. Dev.

Developers

Project
Mgrs

Mgr.
Midwest

CollaborateCollaborate

Delegate ?

D
elegate ?

Dele
ga

te
?

D
elegate ?

D
el

eg
at

e
?

Collaborate

AU1292AppGFrame Page 221 Sunday, August 25, 2002 11:49 AM

222 Dynamic Software Development: Managing Projects in Flux

By this time, it became increasingly clear that the products being developed
by DSM and Midwest had to be updated and integrated. The Director, now
the Chief Information Officer, had wanted to bring the best of both develop-
ment groups together. He felt it was time, at long last, to do something
significant and positive. He initiated his campaign by convening a development
conference. A week was set aside for all developers to gather in San Francisco
to come up with a plan for developing closer working relationships. Sessions
were planned to provide the Midwest group with detailed orientation to the
DSM-DM methodology, the current set of standards used on the West Coast,
and the development environments currently in use.

When the developers at Midwest received the announcement of a “con-
ference,” they immediately concluded that DSM was finally going to indoctri-
nate them into its stiff and formal methodology.

One of the Midwest developers e-mailed her boss, and the manager of the
Midwest development group replied, as shown in Exhibit 26.

So the conference took place. Much of it was boring. The two sets of
developers began taking longer and longer lunch breaks to exchange stories
about past projects. They even convened impromptu workshops to learn each
other’s development secrets. Both the DSM CIO and the Midwest manager
agreed that the informal exchanges were probably more valuable than the
planned sessions so they cut short the formal training in favor of the more
spontaneous sessions.

During one of the breaks (i.e., spontaneous sessions), a large group was
gathered in the conference room discussing where the application develop-
ment industry had come from and where it was going. One of the DMS

Exhibit 26 E-Mail from Midwest Developer

To: Midwest Development Manager

From: Concerned Developer

Subject: Upcoming DSM Development Conference

I am really concerned about the upcoming conference. I see no reason for our parent
company to impose its formal and stifling methods on us. After all, it was our product
that got them out of a bind several years ago. How should we respond to this?

Reply:

To: Concerned Developer

From: Midwest Development Manager

Subject: DSM Development Conference

I think this is a good chance to build some bridges and expand our own influence in
the larger organization. We should go with an open mind. We will take what works
and change what doesn’t. My advice to all of us is to take every opportunity to show
the good work we are doing. Make as many contacts as you can and speak out in favor
of the techniques we use in building successful products. I think the people at DSM
are open to innovation.

AU1292AppGFrame Page 222 Sunday, August 25, 2002 11:49 AM

DSM Case Study 223

developers went to the whiteboard and drew a timeline, saying he was happy
to see the passing of the era of vendor-supplied bundled applications. Some-
one pointed out that maybe things had not changed that much. The big ERP
implementation projects are painfully reminiscent of those days — maybe the
era never ended (see Exhibit 27). Someone else grabbed a marker and wrote
“Application domains,” saying she was glad we are developed beyond data
silos. A voice from the back said, half jokingly, “Hey, those were some of my
best work.”

One of the project managers wrote “Business infiltration” to represent the
shift from discrete systems to systems that better integrated into the daily
business operations. That prompted one analyst to write “Technology imper-
ative.” “It seemed that along with the business integration came the sense that
technology was the end-all solution to everyone’s problems. Everyone has to
have the latest version and the most advanced hardware. I don’t think the
latest version necessarily adds value.” There was overlapping debate over
which era came first and if any really ended. At one point, there were five
people at the board, each armed with a marker.

“What about development methodologies?” came a voice from one of the
junior developers. No one had wanted to touch the subject of methodology,
but apparently the kid did not know any better. The CIO walked up to the
board and wrote “Methodology definition.” This legitimized the subject, so
people began to talk.

The group began exchanging ideas about how development projects should
be partitioned into manageable steps (see Exhibit 28). Some were dutifully
defending the phased approach, while others began to assert there were major
problems with the construction or the factory analogy. After a couple of
minutes, the whiteboard had been erased and a new image was being drawn.

It was clear that the general consensus was that project methodologies
seemed to impose a feeling of an assembly line and that image did not feel
good to most in the room. The drawing on the board took on the mantle of
satire. The conversation began to slow.

Exhibit 27 Development Eras

1960 1970 1980 1990 2000 2010

Vendor driven

Application domains

Business Infiltr
ation

Technology im
perative

Methodology definitio
n

?

?

AU1292AppGFrame Page 223 Sunday, August 25, 2002 11:49 AM

224 Dynamic Software Development: Managing Projects in Flux

The Midwest manager stepped forward. “What if we turn things around?”
he said, erasing the board again. “The model we have been discussing seems
to divide the work of a project by the type of work first, then the individual
features, functions, or objects. Maybe we can divide up the development effort
by the object, function, or feature first and then subdivide that by the type
of work — requirements, design, coding, etc.”

He began to draw a huge cube that filled the whiteboard. All the lines
were dashed except the lower left-hand corner. “Let’s say the box here is the
product. It is mostly undefined. We can imagine the whole thing but only in
our imagination.”

“Down here,” referring to the solid lines, “we have what we know for
sure. We know enough to define a first version — say chunks 1 through 5.
We think we can add chunks 6 to 8 in the second version. We might even
be able to foresee improved versions of chunks 2, 4, and 7 — but we won’t
get to them until a third version. Of course, these future versions will actually
be determined by the feedback we get from the users when they start using
the first version (see Exhibit 29).

The CIO recognized the drawing from the Midwest conference room conver-
sation several years ago. Obviously, the manager had spent a lot of time thinking
about this. “So, what are these blocks?” asked the CIO. “They are features or
functions or scenarios or requests,” replied the Midwest manager. “They are
cohesive chunks of the product that the user has requested.”

“But what work products do each of the blocks represent?” insisted the
CIO. The Midwest manager replied, “They represent our understanding of the
user’s requirements (written in the form of use cases and object definitions),
our declaration of how the requirements will be implemented (in the form of
database tables and code/class structure), the code satisfying the requirements,
the test scenarios used to exercise the product, the user training updates, and
help systems reflecting the new enhancements. Each version adds value/
functionality and keeps all the information current. This way, the objective is
not to move a complete system along the assembly line as fast as possible.
The objective is to keep adding value — piece by piece — forever.”

There was silence in the room. The CIO was recalling the conversation he
had had a few years earlier with the Midwest development manager. After a
moment, the CIO said, “Well, OK then. Let’s work on it.”

Exhibit 28 Methodology as an Assembly Line

Product

Analysis

Coding

D
es

ign

Te
sti

ng

AU1292AppGFrame Page 224 Sunday, August 25, 2002 11:49 AM

DSM Case Study 225

The developer’s conference was notable for two reasons: (1) the developers
from headquarters and the Midwest left with a sense that they were all in the
same boat; and (2) the developers knew that their managers were interested
in improving the way software was built at DSM and were willing to listen
to their ideas. After the now-famous conference room discussion, many hallway
discussions occurred. By Thursday, there was a consensus that however they
redefined “process” and “phase,” they needed a common repository to store
their “stuff.” The exact definition of “stuff” was elusive, but a shared memory
was going to be critical to their success. In the minds of the West Coast
developers, this was visualized as a great knowledge base where all the project
deliverables was stored. In the minds of the Midwest developers, this was
visualized as a database storing their collective memory.

As they talked, a simple model emerged (see Exhibit 30). They all agreed
that the products they built consisted of many different kinds of elements
(e.g., pages of requirements, pieces of designs, code, libraries, user manuals,
database tables, interface designs, test cases, etc.). They all agreed that they
worked by identifying some objective (i.e., a task) and building the elements
as they work toward that objective. But, interesting insights began to emerge
as they discussed the elements themselves. Elements were connected — not
to other elements of the same type, but to elements of different types that
described the same feature or subsystem. The “cohesive chunks of the product”
that the Midwest manager drew in the conference room were strands of pieces
of knowledge about a function.

Before they left the conference on Friday, the developers had added a
notation to their informal model to represent the associations among elements.
They also decided there had to be some agreement as to what those elements
are and what associates were typical, so an entity called “element definition”
was added to the model.

Exhibit 29 Methodology as Continuous Build

1.1

1.4

1.2
1.3

1.5

3.4

3.2

2.7

3.7

2.8

2.6

AU1292AppGFrame Page 225 Sunday, August 25, 2002 11:49 AM

226 Dynamic Software Development: Managing Projects in Flux

The action item accepted by every developer was to begin defining each
model in greater detail and to start populating the models with actual instances
of elements and element definitions. No one was sure where this would lead,
but all agreed it would be an interesting journey.

Time: Seven Years Ago

Over the course of the next year, the CIO deliberately defined development
efforts involving both West Coast and Midwest developers. Many of developers
at DSM headquarters spent time at the Midwest facility (see Exhibit 31). Part
of every project plan was the enhancement of the repository model and
improvement of the development practices using it.

The developers visiting from the West Coast got a real appreciation for the
connection between physical surroundings and philosophy. Each member of
the development staff at Midwest had his own office. There were a couple
of workstations set up in the common area where users and developers had
frequent informal meetings to discuss the latest features and discuss plans for
the next round of improvements. But what intrigued the West Coast developers
most was the time spent in the “war room.” The war room was a conference
room dedicated to the development group (i.e., they had exclusive use of the
space). It was used as a command center. The walls and whiteboards were
thick with diagrams and notes and code printouts. Several times a day, groups
of developers would confer about the current project. One of the Midwest
developers commented that it was great to be able to walk into the war room
and immediately have a sense of the group’s status.

By contrast, the Midwest developers who spent time at the West Coast
facility noted that the partitioned layout seemed to dictate a partitioned
approach to work. With no space to exchange information informally, the
developers had to pass information from person to person in a more structured
way.

Exhibit 30 Initial Information Model

Product

ElementsTasks

Element
Definition

Developer

AU1292AppGFrame Page 226 Sunday, August 25, 2002 11:49 AM

DSM Case Study 227

The developers set up an online conference with a discussion section to
share their ideas on the repository and how it should be used. Within six
months, they had put together some prototypes of a database system for the
repository and were updating it with their element definitions. As they refined
or added definitions to the repository model, the developers noted many
common element definitions. Each shop included elements such as:

� Test cases associated with units of code
� Requirements associated with object/entities
� Object/entities associated with database tables

There was disagreement as to what constituted a unit of code. The West
Coast used mostly C. Midwest used C++ and some Java. There were differences
in the format and size of the “requirements statements.” The West Coast used
a variation on the formal DSM-DM with defined event and data definitions,
and the Midwest requirements read more like narratives. The West Coast
documented business rules associated with data object definitions, while
Midwest recorded its policy rules with the requirement narratives.

The greatest disagreement involved the definition of “design.” Both groups
used different methods and models to represent design decisions. The West Coast
made use of state models for interface designs while Midwest used less-formal

Exhibit 31 Midwest Development Work Area

Lunch

office

office

office

office

war room

pu
bl

ic
 s

pa
ce

other
departments

office

office

of
fic

e

other
departments

AU1292AppGFrame Page 227 Sunday, August 25, 2002 11:49 AM

228 Dynamic Software Development: Managing Projects in Flux

navigation diagrams. Both used class diagrams but they used different graphic
notations.

Vocabulary was also a difficult issue. Each group had its own definitions
for common words. “Object” and “Entity” were synonyms at Midwest, but
they had distinct definitions at DSM headquarters. Midwest used “use cases,”
which was very similar to what the West Coast called “event definitions.” The
manager at Midwest and the CIO often got together and declared company
definitions when consensus was not reached quickly.

The results of the effort were rather impressive. While the development
efforts initiated since the conference were small (i.e., none longer than four
months in duration with four to eight developers), the work being completed
was good. The users liked the fact that real solutions were occurring, often
with an apparent improvement in overall quality. The developers loved
building good applications as well as building effective development tech-
niques. They also liked the idea that they were significant players in defining
the methodology although no one used the word “methodology.” One devel-
oper said it felt like they were creating a culture — not a method.

There were problems. The biggest was with West Coast managers. They
were feeling uneasy about the lack of control. They complained to the CIO
that there was no good way of measuring productivity and monitoring
progress. “Users ask for something and the developers give it to them,”
complained one manager. “We need a way to bring back some planning into
the equation.” The CIO agreed that the managers needed to get more involved
in the process of defining development methods. And while he did not say
anything, the CIO thought to himself that giving the users what they wanted
was not entirely bad.

Time: Six Years Ago

Shortly after the Director of Applications Development was named Chief
Information Officer, he put together a Technology Task Force of senior
managers and developers to review developments in information technology
and development methods, and report back on the trends in the industry that
DSM should be aware of.

The group started by surveying new technology and reading research
reports on new development methods. While the work was exciting, it did
not generate applicable results. It was interesting to read what the authors of
new books were saying, but the members of the task force often found it
difficult to translate trends into action items for DSM. The task force continued
its work over the years. Every six months they issued a report.

There were successes. The work of the task force was instrumental in
introducing Java to the development environment. They also got credit for
aiding in the introduction of Web-based applications into the DSM framework.

Along with their search for trends in technology innovation, the task force
worked with the SQA analysts to identify and define standards to be used by
the developers while building work products. For example, along with the

AU1292AppGFrame Page 228 Sunday, August 25, 2002 11:49 AM

DSM Case Study 229

recommendation of the C++ development environment, the task force searched
the literature for guidelines and best practices — including coding style guide-
lines and class format templates. When the task force pushed for adoption of
object-oriented design, they included a proposed standard for the style and
construction techniques to be used (these were based on the approach
advocated by the consulting firm selected to conduct training seminars).

The task force was very active in the definition of the project repository.
Its members energetically participated in the online discussion and worked
with the developers on the definition of the database prototype. They tried
to find ways to add their standards and framework definitions to the idea of
a development repository. Several of the task force members were at the
famous lunch session when the manager from Midwest drew the “chunk”
model (see Exhibit 32) on the whiteboard.

The blocks on the diagram became a focus for the task force for weeks
after the developers’ conference. The members began to talk of the blocks
as mini-applications, each being implemented using a known set of technol-
ogies following a known set of standards.

The task force began using the vocabulary that was developing among the
developers. Small clusters of these mini-applications were described by user
“scenarios.”

They decided there was another dimension to this model. Each of the
blocks is associated with a set of default design decisions. If the block was
part of the Web-based systems, the developers would use the current Web
server and Web scripts. If the block included access to internal data sources,
the developers would follow the audit requirements defined in DSM data
administration standards.

Exhibit 32 Methodology as Continuous Build (a.k.a. Chunk Model)

1.1

1.4

1.2
1.3

1.5

3.4

3.2

2.7

3.7

2.8

2.6

User Scenario 1

User Scenario 2

User Scenario 3

AU1292AppGFrame Page 229 Sunday, August 25, 2002 11:49 AM

230 Dynamic Software Development: Managing Projects in Flux

When the developers outlined the idea of elements and element definitions,
the task force proposed that each element be associated with some component
of the framework (see Exhibit 33).

Some of the database designers reviewed the idea of adding the framework
and standards attributes to the element table and concluded that a better
design would be to treat the items of the framework and the standards as
elements in their own right. Each item of technology (such as Boundary
Analysis and Use Cases) and each standard (e.g., DSM-422 defining the
qualities of Use Cases, and DSM-485 defining the characteristics of boundary
analysis test cases) would be defined as elements.

Association definitions would then record the connection between the
elements defined by the developers, the technology used to record/build the
elements, and the standards describing desirable characteristics of the elements.
A sample of the association definitions is shown in Exhibit 34. The members
of the task force found this idea intriguing. One of the managers on the task
force commented, “This will make our standards an integral part of the process
rather than an afterthought.”

Time: Five Years Ago

The push for incremental, repository-based development had many of the
DSM managers and the SQA analysts concerned. They expressed their dis-
comfort to the CIO by saying the developers seemed to be acting more like
hackers than professional developers. They reported that the code being
produced seemed to be of good quality (there was a 64 percent reduction in
the number of defects reported in the first six weeks of operations). And they
liked the fact that the developers were actively reviewing each other’s products.
But, there was no formal measurement like they had when they were following
the DSM-DM.

Exhibit 33 Proposed Element Definitions with Framework

Element Name Purpose Framework Standard

Requirement Description of an application’s
properties and behavior
expected by a user

Use Case in T-Soft DSM-422

Object Design Model of a class highlighting
public methods and interfaces

Class Diagram in
T-Soft

DSM-31

Relational Table Physical structure in a relational
database

Table Design in SQL
Server

DSM-19

Test Case Definition of initial condition,
input, and expected result
used to verify an application

Boundary Analysis
in Word document

DSM-485

C++ Class Unit of software compiled with
V-Studio used for our client/
server applications

Compiler Y version
2.1

DSM-60

AU1292AppGFrame Page 230 Sunday, August 25, 2002 11:49 AM

DSM Case Study 231

The CIO could see that the managers were unclear about how they fit into
the scheme of things. Was this process going to put them out of a job? What
was the connection between the work that the developers were doing and
the strategic planning process? How should decisions about resource allocation
and project prioritization be made?

The managers and the CIO began a concerted effort to rethink how
planning and measurement should best be accomplished, given the good
work that was coming out of the ranks of the developers. They started by
admitting that the accuracy of the data they had been gathering could be
better. The CIO asked if there was a way to gather information that did not
require the developers to do extra work. He then suggested that the reposi-
tories being developed seemed like a gold mine of useful information.

The SQA analysts and manager began paying closer attention to the online
conference and the discussion of the project repository. They began to
formulate a model that shifted their focus from the individual deliverables
produced in processes defined in the methodology to the changing state of
the repository itself (see Exhibit 35). They noted that the developer’s tasks
could potentially add/change/delete many different types of information stored
in the repository. For planning purposes, they needed to study the pattern of
these changes.

Out of this analysis came a proposal to maintain an “improvement log” —
a simple list of the changes made to the repository. The physical form of the
repository included the company’s configuration management systems, a newly
implemented “pending task list,” and the directories where the project docu-
ments were stored. They augmented the development environment to update
the improvement log as the developers checked-in configuration items and
made changes to the project directories. This allowed the information to be
captured with nearly no extra work required on the part of the developers.

Exhibit 34 Examples of Framework Association Definitions

Association → ← Association

Element Meaning
Avg.
Freq.

Avg.
Freq. Meaning Element

Requirement recorded as 1 1 represents Use Case
Object Design recorded as 3 15 represents Class Diagram
Relational Table implemented

as
1 1 implements SQL Table

Test Case based on 1 1 used to derive Boundary
Analysis

C++ Class compiled by 1 n used to compile Compiler Y
Use Case guided by 1 n std. used for DSM-422
Class Diagram guided by 3 n std. used for DSM-31
SQL Table guided by 1 n std. used for DSM-19
Boundary Analysis guided by 1 n std. used for DSM-485
C++ Class guided by 1 n std. used for DSM-60

AU1292AppGFrame Page 231 Sunday, August 25, 2002 11:49 AM

232 Dynamic Software Development: Managing Projects in Flux

The SQA analysts began writing scripts to query the configuration management
system, the project directories, and entries in the improvement log, and to
subsequently produce summaries of activity with flags calling attention to
unique situations.

As time went on, the concern and apprehension of the managers and SQA
analysts changed to intrigue and surprising enthusiasm. One analyst com-
mented, “We are finally measuring something real rather than regurgitating
what others chose to tell us.”

Time: Four Years Ago

While the steering committee did help coordinate the expectations of the
users, there were some unanticipated consequences; most significantly, the
size of the requests became larger. The steering committee added a layer of
formality to the process of selecting projects. For all members of the committee
to vote in favor of a proposal, the proposal had to be significant. Smaller
projects were viewed as taking valuable resources that should be directed to
more “important” work.

The Director and one of his senior analysts were talking one day after a
steering committee meeting. The analyst wondered aloud about the trends
they had seen in the project approvals. He drew a chart representing the size
of a proposed project against the estimated resource requirements.

“You would expect a linear relationship, wouldn’t you?” asked the analyst
(see Exhibit 36). “Bigger projects require more resources. But you would
expect the approved and funded projects to cluster along a threshold; and
proposals perceived by the steering committee as too costly would be rejected.”

Exhibit 35 Generic Development Process

Task
X

Task
Y

Task
Z

SQA &
Planning

Pending
Tasks

Config
Mgmt
Sys Project

Directories

Query

current status
& changes

AU1292AppGFrame Page 232 Sunday, August 25, 2002 11:49 AM

DSM Case Study 233

“This assumes that perceived benefits are proportional to size,” added the
Director.

“Right,” continued the analyst. “Small project — small benefit. Big
projects — big benefits. But that is not what is happening.” The analyst started
another chart with axes labeled “resources” and “size,” but this time he began
marking recent project approvals.

The Director and the analyst began listing the proposals recently considered
by the steering committee, marking an “x” for rejected proposals and a
checkmark for approved proposals, positioning the mark on the graph where
it represented their perception of the project’s relative size and estimated
resource requirement (see Exhibit 37).

Exhibit 36 Expected Project Funding

Exhibit 37 Actual Project Funding

�

� �

�

�
�

�

��

�

�
�

�

�
�

�

E
st

im
at

ed
 R

es
ou

rc
e

R
eq

ui
re

m
en

t

Size

�

�

�

�

�

�
�

�
�

�

�
�

�

�

��

�

�
�

�

�

�

�

E
st

im
at

ed
 R

es
ou

rc
e

R
eq

ui
re

m
en

t

Size

AU1292AppGFrame Page 233 Sunday, August 25, 2002 11:49 AM

234 Dynamic Software Development: Managing Projects in Flux

� More smaller projects rejected than were larger ones.
� Rejected proposals were the ones with the higher resource estimates.
� As projects got larger, the resource estimates seemed to be proportion-

ally smaller.

“This last point is insidious,” commented the Director. “We are under
pressure to define proposals that will satisfy the largest number of demands.
If we are honest and accurate with estimates, they appear too large. Large
projects are nearly impossible to estimate accurately, so there is always
pressure to agree to lower resource estimates. And the big projects with lower
estimates are the only ones that get approved. Such a deal!”

Time: Two Years Ago

The experiment in incremental development seemed to be working. There
was general consensus among managers and developers on the West Coast
and at Midwest that focusing on the repository was a viable alternative to
focusing on process. People were recording application elements in the
repository and they felt good about the accuracy of the information. Recording
elements of the development framework in the repository was also working.
DSM products were more consistent and innovative because developers were
able to work from a template of solutions. Even the idea of defining the
developer’s goal as enhancing the state of the repository and maintaining
internal consistent had become comfortable.

However, another concern developed. When work was performed as a
sequence of processes, each process was governed by a set of standards and
techniques. The task force had developed these standards and defined them
as a fixed part of the process (see Exhibit 38). Developers were not expected
(nor did they have any opportunity) to question the standards or contribute
to their refinement. The task force would, from time to time, review the
standards and make updates, but that refinement was based on task-force
findings, and not on the experience of the developers.

Once the items of the framework and the standards were represented as
elements in the repository, they became just another part of the knowledge
base. The goal is to create consistency. When faced with a conflict between

Exhibit 38 Task Force Defines Framework and Standards

Task
Force Framework

&
Standards

Developers

Imposed
upon

Defines

AU1292AppGFrame Page 234 Sunday, August 25, 2002 11:49 AM

DSM Case Study 235

a design and related code, developers would refine the design or the code
or both — choosing the best solution. Now, when faced with a conflict
between a design and the design standards, developers might find that the
best solution is to change the design or the design standards, or both. The
objective is to create an internally consistent set of information about the
product. When the developers identified a change to a standard they believed
would be constructive, they wanted to be able to change it (see Exhibit 39).

Members of the task force were concerned about their role in the devel-
opment process and argued that the developers would tend to soften and
diminish the standards. The developers argued that their experience in apply-
ing the standards yielded positive changes to the standards that deserved to
be considered.

For the past year, conflicts between the developers and the members of
the task force were few and were handled one at a time with minimal
disruption. But finally, a group of developers from the Midwest group pro-
posed a major revision to the code documentation standards and insisted
upon documenting their code accordingly. The task force refused to consider
the proposal on the grounds that it would result in a different set of docu-
mentation than all DSM’s older software had used.

The CIO stepped in when he heard the conflict was growing out of
proportion. His response was rather unusual. He resisted the temptation to
call a meeting with all parties present to “duke it out.” He had seen meetings
like that end with each side being obliged to defend its initial position even
after compelling arguments were presented. The CIO went to the office of
each of the task force members and called each developer on the Midwest
team. During these private conversations, the CIO asked each individual to
explain his proposal and to explain the other side’s proposal. He discovered
that everyone thought the changes were good and constructive. The only
issue from the task force was the fact that existing code and new code would
be documented differently.

After the discussions, the CIO met with the task force as a group, summa-
rized the individual conversations, and suggested that the task force modify
the current code standards (Exhibit 40), incorporating the suggestions from
the Midwest developers. He told task force members that change is inevitable
and that they would have to accommodate many generations of techniques,

Exhibit 39 Shared Maintenance of Framework and Standards

Task
Force

Framework
&
Standards

Developer
s

Used

Refines

Monitors

Refines

AU1292AppGFrame Page 235 Sunday, August 25, 2002 11:49 AM

236 Dynamic Software Development: Managing Projects in Flux

standards, platforms, and product. The CIO then opened up discussion about
how to handle the issue of elements being built in different time frames under
different standards. This was a safe question because two task force members
had outlined their ideas during the one-on-one conversations. For example,
one task force member had suggested that nothing be done to the existing
code elements. The other member suggested the existing code could be
reviewed against the new standard over time.

Approving the new standard changes the state of all associated code
elements to “uncertain.” The elements may not need any change but, techni-
cally, it is possible that an inconsistency exists between the old code and the
new standard that should be reviewed (see Exhibit 41).

No separate development plan would be created. The code would be
reviewed only when it was part of another development task. That is, for
each future enhancement, developers will be required to review the code in
its strand against the new standard. After the code is reviewed and possibly
changed, the state of the code element would be changed back to “verified.”
Everyone agreed this was a good plan.

The CIO then showed the members of the task force a memo he was
sending out that day, stating that suggested changes to DSM techniques and
standards were welcome and encouraged from all managers and developers.
The recommendations should be directed to the task force. Only the task
force had the authority to approve such changes. Before leaving the meeting,

Exhibit 40 Current State

Requirement

Object
Design

Code

DB Table

Uncertain

Change Pending

Verified

Declared

Object Design
Standard

Code
Standard

DB Table
Standard

AU1292AppGFrame Page 236 Sunday, August 25, 2002 11:49 AM

DSM Case Study 237

the CIO suggested that task force members should do what each of them felt
was appropriate and approve the changes to the coding standards.

Time: One Year Ago

Both developers and users find it easier to maintain a high level of under-
standing with the advent of incremental development. Most communication
occurs on a very informal level with users commenting on the latest change,
knowing that their concerns will be addressed in a release in the near future.
Both users and developers have reported that the issues being addressed are
never big, emotional issues, but rather a series of smaller negotiations (see
Exhibit 42).

The development plan intranet site changed from listing projects to listing
tasks (see Exhibit 43). The project status pages were replaced with task status
pages (see Exhibit 44) with integrated user-to-developer dialogue.

During one discussion, a regional manager recalled how contentious the
process was years ago and said, “Now we discuss problems and errors so
quickly after they are detected, we don’t even call them errors and problems.”

The trend toward smaller tasks and funding for continuous development
continued at DMS. The use of the online development plan continued to
evolve. All parties became comfortable with communicating and refining the
direction of the development effort on a continuous basis.

Exhibit 41 Start after New Standard Is Approved

Requirement

Object
Design

Code

DB Table

Uncertain

Change Pending

Verified

Declared

Object Design
Standard

Code
Standard

DB Table
Standard

AU1292AppGFrame Page 237 Sunday, August 25, 2002 11:49 AM

238 Dynamic Software Development: Managing Projects in Flux

Conclusion
All organizations are unique, yet all have much in common. I have seen the
applications development function of many organizations evolve to follow the
patterns described in this case study illustration.

DSM does not exist, but its story is true and it is likely to be similar to
your stories. No doubt you recognized situations and problems you faced in
your career. We learn by exchanging stories. I am sure as you read the text,
you will be reminded of important and illustrative events in your professional
life. You are encouraged to share your stories in the discussion at the author’s
Web site (http://luminguild.com/dynamic).

Exhibit 42 Growing Difference in Expectations

Exhibit 43 Current Task List

6 weeks 1 week3 weeks

di
ffe

re
nc

e
in

 e
xp

ec
ta

tio
ns

release
review

release
review

release
review

release
review

DSM Development Planning Conference

Task Index

Task: Client Profile
 Focus: Client Object

Task: Revenue Accounting
 Focus: AR

Task: Language Tracking
 Focus: Content / Country

Task: Contractor Comp
 Focus: Contractor Object / Labor Contract

Task: Information Asset Tracking
 Focus: Capital Asset / Content

File Edit View Tools Help

DM

Tasks Pending

AU1292AppGFrame Page 238 Sunday, August 25, 2002 11:49 AM

DSM Case Study 239

Exhibit 44 Task Status

Task: Client Profile

File Edit View Tools Help

DM

+ Strand:

- Johnson:

23 elements

Akira found a condition that seems wrong. Should we factor into the
client status their current revenue projection?

- Developers: Johnson (business analyst)
Carry (database)
Akira (testing)
Mehta (programming)

+ User1: I think we have to. Let’s use a factor or 15% . . .

- Focus: Client Object

+ Started: June 15

+ Projected completion: June 23

AU1292AppGFrame Page 239 Sunday, August 25, 2002 11:49 AM

AU1292AppGFrame Page 240 Sunday, August 25, 2002 11:49 AM

241

Index

A

Accrued work, example of, 33
ActiveX control, 43
Actual cost, 84
Actual work, definition of, 84
Algorithms, decision made by developers

about, 92
Applet, 45
Application(s)

consistent set of elements within, 63
development

as capital assets, 141
department, 199
reporting of to CEO, 142

domains, 57, 223
mini-, 100
Web-based, 99, 228

Architecture decision spiral, 92
Assembly line, methodology as, 58, 224
Asset development, paying for, 137
Assigned tasks, 138
Association

cardinality of, 47
definitions, 44, 45

Assumptions, 9
Avoidance, practicing, 128, 206

B

Best practice(s)
developer sharing of, 110
seminars, 110

Bonuses, 106
Boundary Analysis, 101, 230
Browser-based conference, 153
Budget

decisions, 137
discussion, 140
operations, 136
software development, 162

Business
analyst, 64, 65

environment, changes in, 26
infiltration, 57, 223

Buying decisions, 91

C

C++, 227
class, 7, 11, 43, 44, 101, 230, 231
development environment,

recommendation of, 99
Capability Maturity Model (CMM), 167–183
Career development, opportunity for, 66
Carnegie Mellon University Software

Engineering Institute maturity model,
88, 203

CASE tool, 46
Cash awards, long-term effectiveness of, 70
CEO

memo to, 141
reporting of applications development to,

142
Change, 137, 139

Pending, 81
risk and, 28

Chief Financial Officer, 95
Chief Information Officer, 56, 94
Chunk(s)

abstraction of information in, 28
definition of, 27
improved versions of, 59
model, 100

Class
code, 20
definition, developer changing, 20
design, building of, 31
Models, 15

Clumps, 17
CMM,

see

 Capability Maturity Model
COBOL, 44
Code

associated design, 22
complexity measurement, 107
creation of, 19

AU1292IndexFrame Page 241 Sunday, August 25, 2002 11:48 AM

242

Dynamic Software Development: Managing Projects in Flux

documentation standards, revision to, 114
elements

built, 25
state of associated, 115
uncertain, 236

error in, 64
information, storage of, 25
lines of, 48
Module, 49, 51
needing review, 39
overly complex, 107
structures, generation of initial, 93
syntax, 31
walk-throughs, 106

Coding
standards, 107, 116
task, ambiguity during, 37

Collaborate
channel, 121, 123, 135
elements, 122

Collaboration, across organizational
boundaries, 118

Communication, 117
channels, 118, 119
development group, 127
gap, 104
inter-team, 137
literary, fundamental laws of, 125
managerial, 123
process, improved, 151

Component inventory, 109
Computer Aided Software Engineering tools,

19, 45
Computer-aided system, 12
Computer support, increased requests for, 152
Conference

browser-based, 153
electronic, 148, 149
online, 90, 129
Web, 158

Configuration management, 119
systems, 185, 232
tools, 19

Conflict(s)
-free environment, 111
potential, 111
prioritizing list of, 112

Consensus, formed, 151
Constructive development environment,

103–116
applying dynamic management, 111–112
case study excerpt, 112–116
components of development environment,

105–106
conflict within environment, 103–105

environment assessment, 109–110
ongoing assessment, 110–111
sources of conflict, 106–109

Consulting, 55, 197
Continuous build, methodology as, 58, 100,

225, 229
Continuous development, funding for, 156
Control, lack of, 75
Corporate objective, 119
Cost estimates, 170
Criticism

leadership through, 149
well-intentioned, 67

Culture, creation of, 75
Current task list, 156
Customer

credit query, 52, 78, 138
credit system, 142, 143
database, 138
Object Design, 52
order status, 52, 78, 138

Cynicism, 28

D

Data
definition, 32, 46
element definitions, 32
modeling tool, 46

Database
customer, 138
designers, 230
design tasks, deliverables from, 88
developers working on, 81
management systems, changing, 95
prototype, definition of, 100
schema, 15, 18, 213
system, prototypes of, 74
tables, 34, 59, 73

Day-to-day planning, 41
DBMS

upgrading, 120
users of proposed, 95
vendors, change of, 139

Decision(s)
budgeting, 137
buying, 91
corporate-level, 91
council, common form of, 148
design, 97
dissatisfaction with, 143
implementation, 98
levels of, 95
making, flexible, 147
mapping, 93

AU1292IndexFrame Page 242 Sunday, August 25, 2002 11:48 AM

Index

243

patterns, 96
standards, 127
technology, 94

Decision-making process, 94
convenient means of instituting, 147
coordinated, 126

Declared state, element in, 21
Defect

prevention, 182
rates, 104, 109

Delegate
channel, 120, 121, 123, 135
questions, 120

Deposit system, 5
Design

code, ill-described, 26
decision, 97
disagreement involving definition of,

227
elements, written, 25

Developer(s)
alternatives facing, 49
idiosyncracies, 36
inexperienced, 66
less-experienced, 29
memory, knowledge stored in, 24
progress, obstacles to, 105
stereotypes of, 67
UNIX, 199
Windows, 199
workday, 21

Developer management, 61–75
applying dynamic management, 70–71
case study excerpt, 71–75
combining work and learning, 66
developer’s view of management,

61–62
diverse skill set, 62–65
motivating by rewarding consistent work,

69–70
multi-team efforts, 67–69
team of one, 66–67

Development
effort

goal of, 63
improvement of, 61
traits of successful, 1

environment(s)
components of, 105, 108
conflicts in, 104
language-based, 106

eras, 57, 223
group, communication within, 127, 221
incremental, 128, 234
management, iterative, 135

manager
key skill of, 2, 3
major duty of, 103

plan, 52, 78
continuous, 170
criticism of, 149
DSM-SISS, 207
misgivings about, 14
staffing requirements, 13, 207

process, generic, 88, 204, 232
projects

errors committed during, 162
long-cycle, 161

repository, 7, 20, 43
schedule, 53
supervisor, 122
unrealistic view of, 4
work dialogue, 36

Director of Applications Development, 143,
152, 217

Discussion(s)
budget, 140
hallway, 16
online, 11, 35, 55, 71, 87, 98, 111, 125, 140,

151
philosophical, 16
proposal, 155, 220

Dissonance list, 110
Diz-dumb, DSM-DM referred to as, 15, 209
Documentation

code, 114
comments casting aspersions on, 62
old, 46
user, 164

Document repository, 185
Dream interpretation, 6
DSM

application development office layout, 200
case study, 197–239
communication across, 126, 221
development

early years of, 202
methodology, 213

framework, introduction of Web-based
applications into, 228

older software, 235
product offering, 210
use of technology within, 151

DSM Development Method (DSM-DM), 12, 15,
128, 202, 203

DSM-DM,

see

 DSM Development Method
DSM-SISS,

see

 DSM Strategic Integration
Support System

DSM Strategic Integration Support System
(DSM-SISS), 12, 13, 206

AU1292IndexFrame Page 243 Sunday, August 25, 2002 11:48 AM

244

Dynamic Software Development: Managing Projects in Flux

development plan, 207
project

disaster of, 55
planning of, 89

requirements statement of, 89
Dual management systems, 157
Dynamic management

getting started with, 163–165
defining building blocks, 164
defining repository, 164–165
measuring productivity, 165
orchestrating pilot projects, 164
selecting comrades, 163–164
what can be lost, 165

information model, 185–188
Dynamic System Development Method, 106

E

Education, enhancing, 108
Electronic conference, structure of, 148, 149
Element

allocating time to, 86
artificially separated associations between,

26
association, 44, 47
and association model, 45
change of existing, 77
code, state of associated, 115
collaborate, 122
complexity of, 33
in declared state, 21
declaring all instances of, 50
definitions

comparison of model with, 98
examples of, 43
expanded, 96
with framework, 101

incomplete, 49
information shared in, 120
listing of transitions made to, 80
mapping architecture to, 96
movement of from declared to uncertain, 77
need to change, 70
new strand of, 27
relationship between, 187
requirements, 63, 82
shared, 119
state model, 29, 34, 68
strand of, 23
tools missing valuables, 46
types, 25, 42
uncertain, 22
unconnected, 50
in Verified state, 69

E-mail
boss’s, 56
calls for strategic decision participation sent

out by, 151
development staff notified by, 37
director expressing concern, 14
Midwest Developer, 222
review meeting, 15, 209
senior analyst, 207, 208
time reports, 38

Enhanced value
demanding, 84
selling, 123

Enhancement project, 161
Enterprise

creating knowledge about business, 4
management, demand from, 26
managers in user departments of, 124
operation, product’s contribution to, 8
structure, 117
value added to, 131

Entity
definition, 11
design, 45

ERP implementation projects, 57
Erroneous truism, 91
Error, potential, 111
Event definitions, 15, 51, 74
Expectations, growing difference in, 127, 128,

206, 238
Extreme Programming, 157

F

Failure, risk of, 133
Formats, decision made by developers about,

92
Framework association definitions, 101, 231
Functions, cluster of, 17
Funding and economic return, 131–145

applying dynamic management, 139–140
case study excerpt, 140–145
funding of perpetual effort, 135–137
funding as risk containment, 131–135
paying for asset development, 137–139

G

Glossary, 189–193
Goal(s)

progress toward, 62
redefining, 4

Goal defining, 1–18
applying dynamic management, 10–12
case study excerpt, 12–18

AU1292IndexFrame Page 244 Sunday, August 25, 2002 11:48 AM

Index

245

information as manager’s tool, 6–8
element’s state, 7
product’s state, 7
task’s state, 7

knowledge management, 4–5
manager’s nightmare, 6
skills and success, 1–4
trusting what you know, 8–10

H

Hallway discussions, 16
Hours

allocation, 85
/element summary, 85

Human effort, risk versus big, 132

I

Ideal, vision of, 1
Implementation decisions, standard, 98
Improvement log, 81, 82, 83, 86, 90, 231
Inconsistency, resolving, 29
Industry

-sector research reports, 198
trade journals, 54

Information
abstraction of in chunks, 28
accessible, 33
accuracy of, 112
assets, lost, 161
-based management, 71, 87
chunk of, 26
code, storage of, 25
development effort based upon changes in,

10
elements, 7
identifying associations between pieces of,

10
as liability, 33
losing track of, 5
as manager’s tool, 6
model, 72, 185, 186, 226
need for, 93
organization of in chunks, 27
process of defining, 117
process of gathering, 5
relationships, with company officers, 126,

220
shared, 119
technology, review of developments in, 99
timesheet, 38
visualizing of, 41

Integrated software management, 180
Inter-component influences, 107

Interface(s)
change of, 26
decision made by developers about, 92
designs, 73

Intergroup coordination, 181
Intranet, 129
Inventory

pricing, 68
valuation method, 52, 78, 138

J

Java, 227
applet, 7
application, building of, 32
class, 42, 43, 45, 64, 79, 96

new, 47
syntax for, 31

Development Kit, 109
environment, 94
library, 50
style guide, 109

K

Knowledge
-creating endeavor, 161
management, exercise in, 4
organization of, 27
repository

development of, 3
worksheet for, 11

storage of in developer’s memory, 24

L

Lack of control, 75
Language(s), 97

-based development environments, 106
development, 109
third-generation, 200

Leadership by consensus, 147–156
applying dynamic management, 151
case study excerpt, 151–156
decision councils, 147–149
leadership through criticism, 149–150
need for responsibility, 150

Learning
opportunity for, 66
work and, 66

Legacy system
code used in, 22
set of functions from, 7

Liability, information as, 33
Lines of code, 48

AU1292IndexFrame Page 245 Sunday, August 25, 2002 11:48 AM

246

Dynamic Software Development: Managing Projects in Flux

Literary communication, fundamental laws of,
125

Loop construct, writing of, 92

M

Maintenance
activities, developer view of, 62
phased, 159
philosophy, changing of, 163
requests, 143

Manager
communication, enhanced, 123
gauges, 9
nightmare, 6
relationships, 118

Managing managers, 117–129
applying dynamic management, 124–125
case study excerpt, 126–129
collaborate channel, 121
dealing with expectations, 117–120
delegate channel, 120–121
selling enhanced value, 123–124
service channel, 121–123

Marketing, proposal to enhance, 148
Meeting(s)

calling first, 217
post-mortem, 89, 214
steering committee, 155, 220

Methodology
assembly line, 224
blocks, 212
continuous build, 225
definition, 57
representation, 39, 213
steps, 211
use, strengthening of, 108

Midwest Development work area, 227
Mini-applications, 100
Misfit, 103
Misinformation, 51
Model

Capability Maturity, 167
chunk, 100
Class, 15
comparison of with element definitions, 98
element and association, 45
Element State, 29, 34, 68
information, 72, 185, 186, 226
maturity, Carnegie Mellon University

Software Engineering Institute, 88
repository, 227

definitions added to, 74
enhancement of, 73

seven-component, 111

standard implementation decisions, 98
state, 44

Multidisciplinary teams, 67

O

Object
Definitions, 51, 59
Design, 11, 45, 64, 78, 96, 101

change to, 70
newly refined, 69

Object-oriented analysis workshop, 109
Object-oriented design, 94, 95, 99, 229
One-person teams, effectiveness of, 67
Online conference, 90
Online discussion

conference, 129
index, 11, 35, 55, 71, 87, 98, 111, 125, 140,

151
Operations budget, 136
Order entry sequence, 138
Organization

chart, 124
old, 198
recent, 200

operation of at disadvantage, 62
philosophy of, 157
process

definition, 180
focus, 180

P

Paradoxical environment, effective
management of, 5

Patterns, conflicting, 104
Peer reviews, 106, 181
Pending tasks, 90, 138, 139, 231
Perpetual effort, funding of, 135
Peter Principle, 3
Phased management, 159–162

distortion of real objective, 160–161
long lead-times, 159–160
lost information assets, 161–162
specialization of skills, 160

Philosophical discussions, 16
Philosophy, changing of management,

163
Pilot effort, successful, 165
Planning dialogue, 42
Post-mortem meetings, 89, 214
Pricing Function, 21, 22

code, 23, 29
enhancement of, 70

Process change management, 182

AU1292IndexFrame Page 246 Sunday, August 25, 2002 11:48 AM

Index

247

Product(s)
attractive interface of, 2
building blocks of generic, 44
class design, 50
cohesive chunks of, 73
current understanding of, 128
data definition, 32, 50
development, 19
durability, test of, 2
engineering, 181
inquiry, 52, 138

function, enhancement to, 49
requirement, 50

inspections, 106
introducing bugs into, 47
less accurate information about, 20
Object Design, 52
pricing

formula, 52, 78, 83, 138
function, 150

software, chunks of information in, 19
work, way of querying, 35

Productivity, 54
defined, 37
dialogue, 87
measure of, 165
monitoring, 77–90

applying dynamic management, 86–87
case study excerpt, 87–90
demanding enhanced value, 84–86
determining work’s cost, 84
measuring what has changed, 80–84
measuring work done, 77–80

numbers, dropping, 86
Programmer, 64, 65
Progress planning, 41–59

applying dynamic management, 53–54
case study excerpt, 54–59
information structure, 41–42
real building blocks, 42–49
real uncertainty, 50–51
rewarding complete thinking, 49–50
watching result, 51–53

Project(s)
commitments, 172
defined software processes, 183
development, errors committed during, 162
DSM-SISS, disaster of, 55
enhancement, 161
ERP implementation, 57
failure, 89
funding

actual, 145, 233
expected, 144, 233

orchestrating pilot, 164

overhead consumed by, 15
overview, 38
partitioning of into phases, 161
proposal team, 170
rejected, 145
requests, 217
schedule, computed, 37
software activities, responsibility for, 171
status

page, 155, 219
reports, 38

tracking, 171, 173
Promotions, 106
Proposal(s)

discussion area, 155, 220
rejected, 145, 234
significant, 144

Prototyping approaches, older, 134

Q

Quality, 86, 88
Quantitative process management, 181

R

Rationalization, 51
Rational Unified Process, 106
Reading list, 195–196
Redundancy, 117
Relational database table, 119
Relational Tables, 78, 79, 96, 101, 230
Reporting relationship, change in, 154,

218
Repository

adding value to, 29
changes, 87

binary, 82
over time, 10

contents of, 65
definitions, 30, 163, 164
development, 7, 20, 43
document, 185
elements in, 9
gauges in development of, 8
information in, 162
knowledge, 11
model, 227

definitions added to, 74
enhancement of, 73

organized by element type, 25
organized by individual, 25
shared, 154, 169, 175, 219
in steady state, 24
uncertain elements, 22

AU1292IndexFrame Page 247 Sunday, August 25, 2002 11:48 AM

248

Dynamic Software Development: Managing Projects in Flux

Requests
new development, 216
prioritization of, 129
project, 217
significant, 153, 217

Requirement
associations to, 47
definition of, 32
documents, 14
elements, 63, 82
management, 168
risk versus, 133
statements, ambiguity in, 205

Resource(s)
allocation, mismatched, 118
redirecting, 4

Return on investment, maximizing, 3
Reviewing without assent, 34
Review meeting, 15, 18
Risk

big human effort versus, 132
big requirements versus, 133
big technology change versus, 133
big timelines versus, 132
change and, 28
containment, funding as, 131
curve, 133
increased, 134
small, 136

S

SCCB,

see

 Software configuration control board
SCM,

see

 Software configuration management
Self-directed teams, 67
Service

channel, 119, 121, 124
funding versus, 136
questions, 122

Seven-component model, 111
Shared elements, 119
Shared information, 119
Shared project repository, 154
Shared repository, 169, 175, 219
Significant requests, 153, 217
Silos, separating of skills into, 160
Skill(s)

set, diverse, 62
specialization, 159, 160

Software
baseline audits, 179
configuration control board (SCCB), 178
configuration management (SCM), 175, 178
designer, 64, 65
developer work, measure of, 161

development
budget, 162
destructive processes, 131
goal of, 28
industry, points of dissonance in, 109
managers, debate of, 48
state of, 211

engineering
activities, 173
tools, computer-aided, 19

estimates, documented, 169
industry, early days of, 160
innovations in, 97
life cycle, 170
management, relating CMM to dynamic, 167
managers, first-line, 172
products, chunks of information in, 19
project

commitments, 172
planning, 169
tracking, 171, 173

quality assurance (SQA), 89, 169, 176, 214
activities, funding for, 176
analysts, apprehension of, 90
group audits, 177

quality management, 182
requirement, 28
solution(s)

building effective, 70
effective use of, 2

subcontract management, 174
subcontractor statement of work, 175

SQA,

see

 Software quality assurance
SQL

Server, 230
Table, 101

Staffing requirements, 13, 207, 208
Standard(s)

ambiguous, 108
approval, 115, 237
coding, changes to, 116
decisions about, 127
lack of, 108
verbiage, 106

State
current, 114, 236
models, 44

Statement of work, software subcontractor, 175
Steady state, initial state to new, 63
Steering committee

creation of, 216
meetings, cancellation of, 155, 220

Strand, unknowns in, 32
Strategic framework, 91–101

applying dynamic management, 98

AU1292IndexFrame Page 248 Sunday, August 25, 2002 11:48 AM

Index

249

architecture’s dark side, 97–98
case study excerpt, 99–101
importance of system architecture, 91–94
mapping architecture to elements, 96–97
technology decisions, 94–96

Styles, decision made by developers about, 92
System

architecture, importance of, 91
definition of, 215

T

Talent, capitalizing on, 3
Task(s)

appropriate, 215
approved, 150
assigned, 138
change, development steps taken during,

29
coding, ambiguity during, 37
definition, 19, 28, 30, 69, 150
estimated work requirements for, 79
force, 100, 101

defining framework and standards,
234

framework and standards defined by,
113

updates made by, 113
list, current, 156, 238
pending, 138, 139
size, factors determining, 33
state, 8
status, 156, 239
strand, 30
team assigned to, 64
unrealistic, 8

Team(s)
effectiveness, 112
multidisciplinary, 67
one-person, effectiveness of, 67
problematic, 66
progress, measurement of, 35
project proposal, 170
responsibilities, 65
selection, 163
self-directed, 67
shared element as bridge between, 69

Technical reviews, 175
Technology

change
management, 182
risk versus big, 133

decisions, 94
two-generations-old, 134
use of within DSM, 151

Test
cases, boundary analysis, 230
scenarios, 59
suite, 42, 43, 63, 79, 96

completed, 83
responsibility for, 65

Tester, 64, 65
Third-generation languages, 200
Timelines, risk versus big, 132
Time report(s), 39

e-mail, 38
memo on, 205
sample, 37, 204

Timesheets, information on, 38
Training

/education, definition of, 106
program, 180

Two-generations-old technology, 134

U

Uncertainty, 50
Units of measure, predictive, 48
UNIX developers, 199
Use cases, 74
User

-to-developer dialogue, 237
documentation, 164
manuals, 72
needs

data supporting, 187
financial constraints at expense of, 161

requirements, understanding of, 59

V

Value, evidence of, 131
Vendor

DBMS, 139
representatives, 95
training, experiences with, 110

Verification activity, 34
Vocabulary, 228
VP of marketing, frustration from 201

W

War room, 40, 74, 214
Web

conference, 158
sites, developer-oriented, 84

Web-based applications, introduction of into
DSM framework, 99, 228

Web-based systems, 100
Windows developers, 199

AU1292IndexFrame Page 249 Sunday, August 25, 2002 11:48 AM

250

Dynamic Software Development: Managing Projects in Flux

Work
accrued, 33
backlog of, 153
cost, determining, 84
defining, 19–40, 67

applying dynamic management, 34–35
case study excerpt, 36–40
defining tasks, 28–30
developer’s workday, 21–23
projecting size, 30–33
relating management to work, 24–26
unit of work, 26–28
work and corroboration, 33–34

development, dialogue, 36
disrupting productive, 165
error-prone, 51
learning and, 66

measure of software developer’s, 161
measuring amount of, 77
motivating by rewarding consistent, 69
need to enhance original, 18
products, way of querying, 35
record, 53
relating management to, 24
reuse of existing, 94
sequence of processes, 112
use of communication channels to

encourage creative, 123
use of plan to predict, 48

Workshops, impromptu, 56, 222

X

XYZ enhancement, 86

AU1292IndexFrame Page 250 Sunday, August 25, 2002 11:48 AM

	Front cover
	Contents
	Introduction
	Chapter 1. Defining the Goal... Or Visualizing the Ideal
	Chapter 2. Defining Work... Or What's Really Happening in the Trenches
	Chapter 3. Planning Progress... Or What You Don't Know Can Hurt You
	Chapter 4. Managing Developers... Or Dance with the One Who Brought You
	Chapter 5. Monitoring Productivity... Or Getting Better All the Time
	Chapter 6. Strategic Framework... Or Metadesign Integrity
	Chapter 7. Constructive Development Environment... Or Making Work Flow
	Chapter 8. Managing Managers... Or I'm OK, but the Rest of Them?
	Chapter 9. Funding and Economic Return... Or Paying the Way
	Chapter 10. Leadership by Consensus... Or if You're Going My Way
	Appendix A: Distorted Reality... Or Why Phased Management Is Appealing
	Appendix B: Where to Begin... Or Getting Started with Dynamic Management
	Appendix C. Capability Maturity Model and Dynamic Software Management
	Appendix D. Dynamic Management Information Model
	Appendix E: Glossary
	Appendix F: Reading List
	Appendix G: DSM Case Study
	Index
	Back cover

