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Preface

This book has grown out of research undertaken at the Department of Bio-
statistics of the Harvard School of Public Health and the Dana-Farber Cancer
Institute in Boston on the one hand and at the Limburgs Universitair Cen-
trum (transnational University Limburg) in Belgium on the other hand, in
close collaboration with a number of colleagues located at various institu-
tions. Research interests in the modeling of clustered and repeated categor-
ical data have been brought together with research in the modeling of data
from toxicological experiments in general and developmental toxicity studies
in particular.
Several local grants have provided the impetus to undertake this work, but

an invaluable binding force has been the support from a NATO Collaborative
Research Grant, allowing contributors to travel and meet.
While formally an edited volume, this work interpolates between a standard

monograph and a collection of stand-alone contributions. The reasons for this
choice are manifold.
First and foremost, while in most of the chapters at least one editor was

involved, we have found the chosen form of authored chapters to be a fair way
to give credit to our colleagues who have contributed in a generous fashion to
the genesis of this book.
Second, the field of developmental toxicity is exciting and raises a large

range of substantive and methodological questions. Nevertheless, the method-
ology presented here has much wider ramifications than just this field of appli-
cation. Therefore, a modular concept seemed most appropriate. In particular,
the motivating examples have been collected in a separate chapter, followed by
chapters on model building and on particular estimation procedures (gener-
alized estimating equations and pseudo-likelihood). The “modeling chapters”
have been written with a general clustered or even correlated data setting in
mind and are therefore of use far beyond the developmental toxicology con-
text. In later chapters, specific issues have been tackled. Some of these are
rather particular to toxicology and dose-response modeling (e.g., the chap-
ters on quantitative risk assessment and exact dose-response inference) while
others are more general in scope (e.g., the chapters on goodness-of-fit, model
misspecification, individual level covariates, and combined continuous and dis-
crete outcomes). In this way, both the very focused as well as the more broadly
interested reader will have no difficulty selecting the material of interest to
her. To underscore the large potential of methods for clustered data, a chapter
has been included on the analysis of clustering effects in complex survey data.
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Third, we have chosen to “strongly edit” the text to achieve a smooth
flow, in spite of the multitude of chapter authors that have contributed. As
far as possible, a common set of notation has been used by all authors. The
editors have provided ample cross-references between chapters, not only to
refer back, in later chapters, to motivating examples and models, but also to
point to cross links between chapters. Thus, the book should be suitable to
either read a selected number of chapters or the integral text.
In our choice of topics, we have tried to cover a wide variety of choices. As-

ymptotic inference is contrasted with exact and simulation-based (bootstrap)
methods. Classical maximum likelihood is supplemented with such alterna-
tives as generalized estimating equations and pseudo-likelihood methods. Not
only fully parametric modeling, but also semi-parametric and non-parametric
methods are discussed. Nevertheless, it is impossible to study all available
techniques within the scope of a single text. For example, apart from brief
mention, no thorough study has been undertaken of Bayesian methodology.
We believe that this highly interesting but specialized area would deserve
separate treatment.
We hope the book gives pleasure and satisfaction to the more methodolog-

ically interested as well as to the substantially motivated reader.

Marc Aerts (transnationale Universiteit Limburg, Diepenbeek-Hasselt)
Helena Geys (transnationale Universiteit Limburg, Diepenbeek-Hasselt)

Geert Molenberghs (transnationale Universiteit Limburg,
Diepenbeek-Hasselt)

Louise Ryan (Harvard School of Public Health, Boston)
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CHAPTER 1

Introduction

1.1 Correlated Data Settings

In applied sciences, one is often confronted with the collection of correlated
data. This generic term embraces a multitude of data structures, such as mul-
tivariate observations, clustered data, repeated measurements, longitudinal
data, and spatially correlated data.
Historically, multivariate data have received the most attention in the sta-

tistical literature (e.g., Seber 1984, Krzanowski 1988, Johnson and Wichern
1992). Techniques devised for this situation include multivariate regression
and multivariate analysis of variance. In addition, a suite of specialized tools
exists such as principal components analysis, canonical correlation analysis,
discriminant analysis, factor analysis, cluster analysis, and so forth.
The generic example of multivariate continuous data is given by Fisher’s iris

data set (e.g., Johnson and Wichern 1992), where, for each of 150 specimens,
petal length, petal width, sepal length, and sepal width are recorded. This is
different from a clustered setting where, for example, for a number of families,
body mass index is recorded for all of their members. A design where, for each
subject, blood pressure is recorded under several experimental conditions is
often termed a repeated measures study. In the case that body mass index is
measured repeatedly over time for each subject, we are dealing with longitudi-
nal data. Although one could view all of these data structures as special cases
of multivariate designs, there clearly are many fundamental differences, thor-
oughly affecting the mode of analysis. First, certain multivariate techniques,
such as principal components, are hardly useful for the other designs. Second,
in a truly multivariate set of outcomes, the variance-covariance structure is
usually unstructured and hardly of direct scientific interest, in contrast to, for
example, clustered or longitudinal data. Therefore, the methodology of the
general linear model is too restrictive to perform satisfactory data analyses of
these more complex data.
Replacing the time dimension in a longitudinal setting with one or more

spatial dimensions leads naturally to spatial data. While ideas in the longitu-
dinal and spatial areas have developed relatively independently, efforts have
been spent in bridging the gap between both disciplines. In 1996, a workshop
was devoted to this idea: “The Nantucket Conference on Modeling Longi-
tudinal and Spatially Correlated Data: Methods, Applications, and Future
Directions” (Gregoire et al . 1997).

Among the clustered data settings, longitudinal data perhaps require the
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most elaborate modeling of the random variability. Diggle, Liang, and Zeger
(1994) distinguish among three components of variability. The first one groups
traditional random effects (as in a random-effects ANOVA model) and ran-
dom coefficients (Longford 1993). It stems from interindividual variability
(i.e., heterogeneity between individual profiles). The second component, ser-
ial association, is present when residuals close to each other in time are more
similar than residuals further apart. This notion is well known in the time-
series literature (Ripley 1981, Diggle 1983, Cressie 1991). Finally, in addition
to the other two components, there is potentially also measurement error.
This results from the fact that, for delicate measurements (e.g., laboratory
assays), even immediate replication will not be able to avoid a certain level of
variation. In longitudinal data, these three components of variability can be
distinguished by virtue of both replication as well as a clear distance concept
(time), one of which is lacking in classical spatial and time-series analysis and
in clustered data.
These considerations imply that adapting models for longitudinal data to

other data structures is in many cases relatively straightforward. For example,
clustered data of the type considered in this book can often be analyzed by
leaving out all aspects of the model that refer to time. In some cases, a version
of serial association can be considered for clustered data with individual-level
exposures. We refer to Chapter 4 for an overview of the modeling families that
arise in this context.
A very important characteristic of data to be analyzed is the type of out-

come. Methods for continuous data form no doubt the best developed and
most advanced body of research; the same is true for software implementa-
tion. This is natural, since the special status and the elegant properties of
the normal distribution simplify model building and ease software develop-
ment. A number of software tools, such as the SAS procedure MIXED, the
SPlus function lme, and MLwiN, have been developed in this area. However,
also categorical (nominal, ordinal, and binary) and discrete outcomes are very
prominent in statistical practice. For example, quality of life outcomes are of-
ten scored on ordinal scales. In many surveys, all or part of the information
is recorded on a categorical scale.
Two fairly different views can be adopted. The first one, supported by

large-sample results, states that normal theory should be applied as much
as possible, even to non-normal data such as ordinal scores and counts. A
different view is that each type of outcome should be analyzed using in-
struments that exploit the nature of the data. Extensions of GLIM to the
longitudinal case are discussed in Diggle, Liang, and Zeger (1994), where the
main emphasis is on generalized estimating equations (Liang and Zeger 1986).
Generalized linear mixed models have been proposed by, for example, Bres-
low and Clayton (1993). Fahrmeir and Tutz (1994) devote an entire book to
GLIM for multivariate settings. Subscribing to the second point of view, we
will present methodology specific to the case of categorical data. The main
emphasis will be on clustered binary data from developmental toxicity studies
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CORRELATED DATA SETTINGS 3

(Section 1.2) and from survey data (Section 1.3). However, the modeling and
analysis strategies described in this text have a much broader applicability.
In clustered settings, each unit typically has a vector Y of responses. This

leads to several, generally nonequivalent, extensions of univariate models. In
a marginal model , marginal distributions are used to describe the outcome
vector Y , given a set X of predictor variables. The correlation among the
components of Y can then be captured either by adopting a fully parametric
approach or by means of working assumptions, such as in the semiparametric
approach of Liang and Zeger (1986). Alternatively, in a random-effects model ,
the predictor variables X are supplemented with a vector b of random (or
cluster-specific) effects, conditional upon which the components of Y are usu-
ally assumed to be independent. This does not preclude that more elaborate
models are possible if residual dependence is detected (Longford 1993). Fi-
nally, a conditional model describes the distribution of the components of Y ,
conditional on X but also conditional on (a subset of) the other components of
Y . Well-known members of this class of models are log-linear models. Several
examples are given in Fahrmeir and Tutz (1994).
For normally distributed data, marginal models can easily be fitted, for ex-

ample, with the SAS procedure MIXED, the SPlus function  lme, or within
the MLwiN package. For such data, integrating a mixed-effects model over the
random effects produces a marginal model, in which the regression parameters
retain their meaning and the random effects contribute in a simple way to the
variance-covariance structure. For example, the marginal model correspond-
ing to a random-intercepts model is a compound symmetry model that can
be fitted without explicitly acknowledging the random-intercepts structure.
In the same vein, certain types of transition models induce simple marginal
covariance structures. For example, some first-order stationary autoregressive
models imply an exponential or AR(1) covariance structure. As a consequence,
many marginal models derived from random-effects and transition models can
be fitted with mixed-models software.
It should be emphasized that the above elegant properties of normal models

do not extend to the general GLIM case. For example, opting for a marginal
model for clustered binary data precludes the researcher from answering con-
ditional and transitional questions in terms of simple model parameters.
This implies that each model family requires its own specific analysis and,
consequently, software tools. In many cases, standard maximum likelihood
analyses are prohibitive in terms of computational requirements. Therefore,
specific methods such as generalized estimating equations (Chapter 5) and
pseudo-likelihood (Chapters 6 and 7) have been developed. Both apply to
marginal models, whereas pseudo-likelihood methodology can be used in the
context of conditional models as well. In case random-effects models are used,
the likelihood function involves integration over the random-effects distribu-
tion for which generally no closed forms are available. Estimation methods
then either employ approximations to the likelihood or score functions, or re-
sort to numerical integration techniques. Some estimation methods have been
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implemented in standard software. For example, an analysis based on general-
ized estimating equations can be performed within the GENMOD procedure
in SAS. Mixed-effects models for non-Gaussian data can be fitted using the
MIXOR program (Hedeker and Gibbons 1994, 1996), MLwiN, or the SAS
procedure NLMIXED. In many cases, however, specialized software, either
commercially available or user-defined, will be needed.
In this book, we will focus on clustered binary data, arising from devel-

opmental toxicity studies, complex surveys, etc. These contexts will be in-
troduced in the remainder of this chapter, whereas actual motivating exam-
ples will be introduced in Chapter 2. After discussing specific and general
issues in modeling such data (Chapter 3), and reviewing the model fami-
lies (Chapter 4), specific tools for analysis will be presented and exemplified
in subsequent chapters. While the emphasis is on binary data, we also deal
with the specifics of continuous outcomes (Chapter 13) and mixtures of bi-
nary and continuous outcomes (Chapter 14). Apart from model formulation
and parameter estimation, specific attention is devoted to assessing model fit
(Chapter 9), quantitative risk assessment (Chapter 10), model misspecifica-
tion (Chapter 11), exact dose-response inference (Chapter 12), and individual-
level covariates (Chapter 13), as opposed to cluster-level covariates.
In the next sections, we will deal with the specifics of developmental toxicity

studies and complex surveys.

1.2 Developmental Toxicity Studies

Lately, society has been increasingly concerned about problems related to fer-
tility and pregnancy, birth defects, and developmental abnormalities. Con-
sequently, regulatory agencies such as the U.S. Environmental Protection
Agency (EPA) and the Food and Drug Administration (FDA) have given
increased priority to protection against drugs, harmful chemicals, and other
environmental hazards. As epidemiological evidence of adverse effects on fe-
tal development may not be available for specific chemicals present in the
environment, laboratory experiments in small mammalian species provide an
alternative source of evidence essential for identifying potential developmental
toxicants. For ethical reasons, animal studies afford a greater level of control
than epidemiological studies. Moreover, they can be conducted in advance of
human exposure. Unfortunately, there have been cases in which animal studies
have not been run properly. The thalidomide tragedy is a prominent example
(Salsburg 1996). Thalidomide was present in at least 46 countries under many
different brand names. In Belgium it is best known as “Softenon”. The drug
was described as being “safe” because it was not possible to develop toxic
lesions in animal trials. Unfortunately, this was not the case. An estimated
10,000 children were born throughout the world as deformed, some with fin-
like hands grown directly on the shoulders, with stunted or missing limbs,
deformed eyes and ears, ingrown genitals, absence of a lung, a great many of
them stillborn or dying shortly after birth, etc. The animal tests performed
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Figure 1.1 Time line for a typical Segment II study.

by the inventor of the drug were very superficial and incomplete. They did not
carry out animal tests specifically to demonstrate teratogenetic effects. This
runs contrary to the basic ideas behind such studies. According to Paracelsus
all compounds are potential poisons: “Only the dose makes a thing not a poi-
son”. Malformations, like cancer, could occur when practically any substance,
including sugar and salt, is given in excessive doses. A proper animal study
should therefore always include a dose at which a toxic lesion happens.
As a consequence of the thalidomide tragedy, there has been a marked

upsurge in the number of animals used in testing of new drugs. Also, drugs
are now specifically tested on pregnant animals to safeguard against possible
teratogenic effects on the human foetus. However, methods for extrapolating
the results to humans are still being developed and refined. Differences in the
physiological structure, function, and biochemistry of the placenta that exist
between species make reliable predictions difficult.
Since laboratory studies further involve considerable amounts of time and

money, as well as huge numbers of animals, it is essential that the most ap-
propriate and efficient statistical models are used (Williams and Ryan 1996).
Three standard procedures (Segments I, II, and III) have been established to
assess specific types of effects.
• Segment I or fertility studies are designed to assess male and female fertility

and general reproductive ability. Such studies are typically conducted in one
species of animals and involve exposing males for 60 days and females for
14 days prior to mating.

• Segment II studies are also referred to as “teratology studies”, since histor-
ically the primary goal was to study malformations (the origin of the word
“teratology” lies in the Greek word “tera”, meaning monster). In Section
1.2.1, we will describe standard teratology studies in greater detail. The
time line for a typical Segment II study is depicted in Figure 1.1.

• Segment III tests are focused on effects later in gestation and involve ex-
posing pregnant animals from the 15th day of gestation through lactation.

In addition, we will describe alternative animal test systems, such as the so-
called “heatshock studies” in Section 1.2.2. The methodology described in
this work will be applied primarily to standard Segment II designs and to
heatshock studies.
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Figure 1.2 Dissected mouse with removed uterus.

1.2.1 The Segment II Study: a Standard Experimental Design

A Segment II experiment involves exposing timed-pregnant animals (rats,
mice, and occasionally rabbits) during major organogenesis (days 6 to 15 for
mice and rats) and structural development. A graphical representation is given
in Figure 1.1. Administration of the exposure is generally by the clinical or
environmental routes most relevant for human exposure. Dose levels consist
of a control group and 3 or 4 dose groups, each with 20 to 30 pregnant dams.
The dams are sacrificed just prior to normal delivery, at which time the uterus
is removed and thoroughly examined (Figures 1.2 and 1.3).
An interesting aspect of Segment II designs is the hierarchical structure

of the developmental outcomes. Figure 1.4 illustrates the data structure. An
implant may be resorbed at different stages during gestation. If the implant
survives being resorbed, the developing foetus is at risk of fetal death. Adding
the number of resorptions and fetal deaths yields the number of non viable foe-
tuses. If the foetus survives the entire gestation period, growth reduction such
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Figure 1.3 Uterus with removed foetus.

as low birth weight may occur. The foetus may also exhibit one or more types
of malformation. These are commonly classified into three broad categories:

• external malformations are those visible by naked eye, for instance missing
limbs;

• skeletal malformations might include missing or malformed bones;

• visceral malformations affect internal organs such as the heart, the brain,
the lungs, etc.

Each specific malformation is typically recorded as a dichotomous variable
(present or absent). Adding the number of resorptions, the number of fetal
deaths, and the number of viable foetuses yields the total number of implan-
tations. Since exposure to the test agent takes place after implantation, the
number of implants, a random variable, is not expected to be dose-related.
The analysis of developmental toxicity data as described above, combining

hierarchical, multivariate, and clustered data issues, raises a number of chal-
lenges (Molenberghs et al. 1998, Zhu and Fung 1996). These will be described
in detail in Chapter 3.
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Figure 1.4 Data structure of developmental toxicity studies.

1.2.2 Heatshock Studies

A unique type of developmental toxicity study was originally developed by
Brown and Fabro (1981) to assess the impact of heat stress on embryonic
development. Subsequent adaptations by Kimmel et al. (1994) allows the in-
vestigation of effects, related to both temperature and duration of exposure.
These heatshock experiments are described in Section 2.2. The embryos are
explanted from the uterus of the maternal dam and cultured in vitro. Next,
each embryo is exposed to a short period of heat stress by placing the culture
vial into a warm water bath, involving an increase over body temperature
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of 4 to 5◦C for a duration of 5 to 60 minutes. The embryos are examined
24 hours later for impaired or accelerated development. This type of devel-
opmental test system has several advantages over the standard Segment II
design. First of all, the exposure is directly administered to the embryo, so
that controversial issues regarding the unknown relationship between the ex-
posure level to the maternal dam and that which is actually received by the
embryo need not be taken into account. Second, the exposure pattern can
be easily controlled, since target temperature levels in the warm water baths
can be achieved within 2 minutes. Further, information regarding the effects
of exposure are quickly obtained, in contrast to the Segment II study which
requires 8 to 12 days after exposure to assess impact. And finally, this animal
test system provides a convenient mechanism for examining the joint effects
of both duration of exposure and exposure levels.

1.3 Complex Surveys

1.3.1 Introduction

Complex surveys can be seen as another, very important, area of motivation
for and application of the methods presented in this book. The reasons for
this are manifold.
First, survey applications are very common in many areas of statistics and

related fields. Classically associated with sociological and psychometric re-
search, they are very prominent also in the biomedical sciences and in epidemi-
ology. Examples include quality-of-life assessment in clinical studies (Mesbah,
Cole, and Ting Lee 2001), health interview surveys (see Section 2.3), needs as-
sessment, etc. There is a well established literature on survey literature (Kish
1965, Cochran 1977, Foreman 1991, Scheaffer, Mendenhall, and Ott 1990, and
Lemeshow and Levy 1999). To the casual user of survey methodology, it may
appear as if the survey literature is completely segregated from other branches
of statistics, such as, for example, biostatistics. This is not true, and brings
us to the next point.
Second, survey sampling goes in almost all cases far beyond simple ran-

dom sampling. To cope with stratification, unequal selection probabilities,
and multistage sampling, the survey researcher has developed a specific lan-
guage, littered with weights , Horvitz-Thompson estimators, and design effects.
We will zoom in on the designs in Section 1.3.2, but at this point it is impor-
tant to realize that the design effect is closely related to the clustering as it
occurs in developmental toxicity studies and, to some extent, to the concept
of overdispersion, which is so familiar to the user of generalized linear models
(Hinde and Demétrio 1998).
On the one hand, it is to be applauded that standard software packages

such as SUDAAN, STATA, and SAS are devoting more and more attention to
the correct analysis of survey data. In the past, the lack of software, and also a
lack of knowledge, has often produced incorrect analyses. Indeed, often survey
data, arising from complicated designs, have been analyzed as if they com-
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prise a simple random sample. There is also a danger, however, arising from
these software tools, since they reinforce the view that survey data analysis
is completely divorced from other types of data analysis. This may lead to
an entirely different treatment of the same phenomenon, such as clustering,
dependent on the context. While this can be defended in some situations, it
is not always the case. Essentially, the data analyst has to choose between ei-
ther advanced data analysis tools such as linear and nonlinear mixed models,
thereby ignoring the design aspects, or correctly accounting for the design,
but then restricting the estimands to such simple quantities as means, totals,
and proportions (the main themes in the standard survey texts). The book
by Skinner, Holt, and Smith (1989) tries to bridge this gap and considers
explicitly the case of complex designs.

1.3.2 Sampling Designs

As mentioned in the previous section, a key characteristic of many survey
samples is their relatively complex design. We refer to the standard texts
mentioned in the previous section for a thorough treatment, and only give a
brief overview at this point.
Most surveys aim to be representative for a certain population (e.g., the Bel-

gian population in 2001), unlike, for example, a clinical study, which borrows
its authority from randomization (Piantadosi 1997). To reach the population,
a sampling frame is selected (e.g., the phone directory, the National Register)
in order to strike a balance between avoiding over- and underrepresentation
on the one hand and keeping the field work manageable on the other hand.
For example, using a phone survey will lead to companies as well as individ-
uals (a benign problem) but will fail to reach those without a phone (a more
serious problem since those respondents without a phone may form a specific
subgroup in the socio-economic sense, the public health sense, etc.). At the
same time a phone survey will be much cheaper than a face-to-face survey.
To obtain a representative sample of a population, one often resorts to strata

to ensure that not only overall, but also within certain subgroups, the number
of respondents is under control. Typical stratification variables are age, sex,
and geographical location. In federal countries, states or provinces may be
given a share of the sample which is proportional or disproportional to the
population size. In the latter case, the selection probabilities of individuals
from different states will be unequal, a feature that needs to be accounted
for in the analysis, just as the stratification itself. Further, in order to reach
respondents (target units), one often resorts to a multi-stage sampling scheme.
For example, one first selects towns (primary sampling units), then a number
of households within towns (secondary sampling units), and finally a number
of household members within a household (target or tertiary sampling units).

A consequence of such a sampling scheme is that a number of respondents
stem from the same household and the same town. One then cannot ignore the
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possibility of individuals within families being more alike than between fami-
lies, with the same to a lesser extent holding for towns. In the way described
above, clustering arises as a by-product of the chosen multi-stage sampling
design. In some cases, clusters can be selected without the detour via multi-
stage sampling. In any case, one can distinguish between, broadly, three ways
of dealing with such clustering:

• Clustering is ignored. While this typically leaves the consistency of point
estimation intact, the same is not true for measures of precision. In case of
a “positive” clustering effect (i.e., units within a cluster are more alike than
between clusters), then ignoring this aspect of the data, just as ignoring
overdispersion, overestimates precision and hence underestimates standard
errors and lengths of confidence intervals.

• In answer to the previous strategy, one often accounts for clustering. This
means the existence of clustering is recognized but considered a nuisance
characteristic. A crude way of correcting for clustering is by means of com-
puting a so-called design effect. Roughly, the design effect is a factor com-
paring the precision under simple random sampling with the precision of
the actual design. Standard errors, computed as if the design had been
simple random sampling, can then be inflated using the design effect. This
is similar to a heterogeneity factor for overdispersion.

• In contrast to the previous viewpoint, one can have a genuine scientific
interest in the clustering itself. When the design encompasses families, fa-
milial association can be of direct interest. In genetic studies, pedigrees are
sampled with the explicit goal to study the association in general and the
genetic component thereof in particular.

While the second viewpoint is closely connected to the available methodol-
ogy in the survey sampling context, obviously the third one is much broader
and analysis strategies consistent with an interest in the intra-cluster depen-
dence provided in this book can be applied in this context as well.

1.4 Other Relevant Settings

It will be clear from the above that developmental toxicity studies and complex
surveys, as exemplified in the next chapter and analyzed throughout the book,
form very versatile areas of application. Needless to say that there are many
others, a few of which are given in Sections 2.3–2.6. In texts such as Fahrmeir
and Tutz (1994) and Pendergast et al. (1996) a multitude of other relevant
settings can be found.

1.5 Reading Guide

The remaining chapters are grouped so as to facilitate access for readers with
different backgrounds and interests.

Case studies and issues. These are presented in Chapter 2. While some
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issues coming from them are indicated in the chapter itself, a formal but
nontechnical overview of the issues arising from clustered binary data is
given in Chapter 3. Both chapters provide ample references to later chapters
where the data are used and/or issues are addressed.

Modeling chapter. Chapter 3 gives a thorough and general overview of
model families and relevant members of each family. In Chapter 8, flexible
polynomial methods are introduced which, in combination with the model
families, yield a broad framework to model clustered binary data.

Inference chapters. Inferential procedures are developed in Chapters 5
(where the focus is on generalized estimating equations), 6 and 7 (pseudo-
likelihood), and 12 (exact inference).

Selected topics are given in the remaining chapters. Some are concerned
with the quality of a model (Chapter 9 on goodness-of-fit and Chapter 11
on model misspecification), while others are rather specific to risk assess-
ment (Chapter 10 on quantitative risk assessment). Further, Chapter 13
deals with individual-level covariates and Chapter 14 is dedicated to a
combination of continuous and discrete outcomes. These two topics are il-
lustrated using developmental toxicity studies, but their relevance reaches
well beyond this area. Finally, Chapter 15 illustrates both the analysis of
complex clustered survey data, where in addition weights are incorporated,
as well as the use of the multilevel model paradigm.

The more methodologically interested reader can start from the modeling
chapter and explore the inferential chapters and selected topics from there.
The reader who is primarily substantively motivated can go directly to an
appropriately selected topic, and use the cross-references to earlier chapters
to fill in holes. While still acknowledging the edited nature of the book, we
hope the chapters are sufficiently structured as to cater a wide audience.
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CHAPTER 2

Motivating Examples

This chapter introduces the sets of data which will be used throughout the
book. The National Toxicology Program data are presented in Section 2.1.
The heatshock studies are introduced in Section 2.2. Section 2.3 describes
the Belgian Health Interview Survey data. The POPS data, the low-iron rat
teratology data and data from the Wisconsin diabetes study are presented in
Sections 2.4–2.6. In Sections 2.7 and 2.8, two examples are introduced that
will illustrate the developments related to exact inference.

2.1 National Toxicology Program Data

The developmental toxicity studies introduced in this section are conducted at
the Research Triangle Institute, which is under contract to the National Tox-
icology Program of the U.S. (NTP data). These studies investigate the effects
in mice of five chemicals: ethylene glycol (Price et al. 1985), triethylene glycol
dimethyl ether (George et al. 1987), diethylene glycol dimethyl ether (Price et
al. 1987), di(2-ethylhexyl)phthalate (Tyl et al. 1988) and theophylline (Lind-
ström et al. 1990).

2.1.1 Ethylene Glycol

Ethylene glycol (EG) is also called 1,2-ethanediol and can be represented by
the chemical formula HOCH2CH2OH. It is a high-volume industrial chemical
with many applications. EG is used as an antifreeze in cooling and heating
systems, as one of the components of hydraulic brake fluids, as an ingredient
of electrolytic condensers and as a solvent in the paint and plastics industries.
Furthermore, EG is employed in the formulation of several types of inks, as
a softening agent for cellophane and as a stabilizer for soybean foam used to
extinguish oil and gasoline fires. Also, one uses EG in the synthesis of various
chemical products, such as plasticizers, synthetic fibers and waxes (Windholz
1983).
EG may represent little hazard to human health in normal industrial han-

dling, except possibly when used as an aerosol or at elevated temperatures. EG
at ambient temperatures has a low vapor pressure and is not very irritating
to the eyes or skin. However, accidental or intentional ingestion of antifreeze
products, of which approximately 95% is EG, is toxic and may result in death
(Rowe 1963, Price et al. 1985).

© 2002 by CRC Press LLC



14

EG Study in Mice

Price et al. (1985) describe a study in which timed-pregnant CD-1 mice were
dosed by gavage with EG in distilled water. Dosing occurred during the pe-
riod of organogenesis and structural development of the foetuses (gestational
days 8 through 15). The doses selected for the study were 0, 750, 1500 or 3000
mg/kg/day. Table 2.1 shows, for each dose group and for all five NTP toxic
agents, the number of dams containing at least one implant, the number of
dams having at least one viable fetus, the number of live foetuses, the mean lit-
ter size and the percentage of malformation for three different classes: external
malformations, visceral malformations and skeletal malformations. While for
EG, skeletal malformations are substantial in the highest dose group, external
and visceral malformations show only slight dose effects. The distribution of
the number of implants is given in Table 2.2 for each of these five chemicals.
It is shown that clusters consisting of 10–15 implants occur frequently.
Figure 2.1 represents some of the data of this study. For each dose group,

cumulative relative frequencies of the number of clusters are plotted for the
number of implants in a cluster, the number of viable foetuses, the number
of dead foetuses, the number of abnormals (i.e., dead or malformed foetuses),
the number of external, skeletal and visceral malformations and the number
of foetuses with at least one type of malformation.
Figures 2.2–2.4 show for each of these studies and for each dose group the

observed and averaged malformation rates in mice.

EG Study in Rats

Price et al. (1985) also describe a developmental toxicity experiment, investi-
gating the effect of EG in rats. The doses selected for the present teratology
study were 0, 1.25, 2.50 and 5.0 g/kg/day. A total of 1368 live rat foetuses
were examined for low birth weight (continuous) or defects (binary). This
joint occurrence of continuous and binary outcomes will provide additional
challenges in model development. Table 2.3 summarizes the malformation
and fetal weight data from this experiment. The data show clear dose-related
trends for both outcomes. The rate of malformation increases with dose, rang-
ing from 1.3% in the control group to 68.6% in the highest dose group. The
mean fetal weight decreases monotonically with increasing dose, ranging from
3.40 g to 2.48 g in control and highest dose group, respectively. The fetal weight
variances, however, do not change monotonically with dose. In the lower dose
groups, the variances remain approximately constant. However, in the high-
est dose group, the fetal weight variance is elevated. Further, it can be ob-
served that simple Pearson correlation coefficients (ρ) between weight and
malformation tend to strengthen with increasing doses. As doses increase, the
correlation becomes more negative, because the probability of malformation
is increasing and fetal weight is decreasing. This is illustrated in Figure 2.5,
which shows the observed malformation rates for all clusters, the averaged
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Table 2.1 Summary Data by NTP studies in mice. The dose is in mg/kg/day.

Litter
# dams, ≥ 1 Size Malformations

Exposure Dose impl. viab. Live (mean) Ext. Visc. Skel.

EG 0 25 25 297 11.9 0.0 0.0 0.3
750 24 24 276 11.5 1.1 0.0 8.7
1500 23 22 229 10.4 1.7 0.9 36.7
3000 23 23 226 9.8 7.1 4.0 55.8

DEHP 0 30 30 330 13.2 0.0 1.5 1.2
44 26 26 288 11.1 1.0 0.4 0.4
91 26 26 277 10.7 5.4 7.2 4.3
191 24 17 137 8.1 17.5 15.3 18.3
292 25 9 50 5.6 54.0 50.0 48.0

DYME 0 21 21 282 13.4 0.0 0.0 0.0
62.5 20 20 225 11.3 0.0 0.0 0.0
125 24 24 290 12.1 1.0 0.0 1.0
250 23 23 261 11.3 2.7 0.1 20.0
500 22 22 141 6.1 66.0 19.9 79.4

TGDM 0 27 26 319 12.3 0.003 0.000 0.000
250 26 26 275 10.6 0.000 0.000 0.000
500 26 24 262 10.9 0.004 0.000 0.004
1000 28 26 286 11.0 0.042 0.003 0.073

THEO 0 26 25 296 11.8 0.003 0.000 0.000
282 26 25 278 11.1 0.007 0.000 0.000
372 33 29 300 10.3 0.017 0.003 0.003
396 23 17 197 11.6 0.020 0.005 0.000

malformation rates for each dose group, the average weight outcomes for all
clusters and the average weight outcomes for each dose group.

2.1.2 Di(2-ethylhexyl)Phthalate

Di(2-ethylhexyl)phthalate (DEHP) is also called octoil, dioctyl phthalate or
1,2-benzenedicarboxylic acid bis(2-ethylhexyl) ester. It can be represented by
C24H38O4. DEHP is used in vacuum pumps (Windholz 1983). Furthermore,
this ester as well as other phthalic acid esters are used extensively as plas-
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Table 2.2 NTP Data in Mice. Frequency distribution of the number of implants.

Number of EG TGDM DYME DEHP THEO
implants

1 0 1 0 1 2
2 0 0 0 1 2
3 1 1 1 0 1
4 0 3 1 2 1
5 1 1 0 0 0
6 0 1 0 2 3
7 2 2 2 0 0
8 1 0 2 4 0
9 8 2 2 5 6
10 4 7 7 7 4
11 8 21 10 18 14
12 19 26 15 21 17
13 16 19 27 26 21
14 11 10 19 21 19
15 16 8 9 10 12
16 6 4 10 8 3
17 1 1 5 2 2
18 0 0 0 2 1
19 1 0 0 1 0

95 107 110 131 108

ticizers for numerous plastic devices made of polyvinyl chloride. DEHP pro-
vides the finished plastic products with desirable flexibility and clarity (Shiota,
Chou and Nishimura 1980).
It has been well documented that small quantities of phthalic acid esters

may leak out of polyvinyl chloride plastic containers in the presence of food,
milk, blood or various solvents. Due to their ubiquitous distribution and pres-
ence in human and animal tissues, considerable concern has developed as to
the possible toxic effects of the phthalic acid esters (e.g., Autian 1973).
In particular, the developmental toxicity study described by Tyl et al. (1988)

has attracted much interest in the toxicity of DEHP. The doses selected for
the study were 0, 0.025, 0.05, 0.1 and 0.15%, corresponding to a DEHP con-
sumption of 0, 44, 91, 191 and 292 mg/kg/day respectively. Females were
observed daily during treatment, but no maternal deaths or distinctive clin-
ical signs were observed. The dams were sacrificed, slightly prior to normal
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Figure 2.1 EG Study in Mice. Cumulative relative frequencies of the number of clus-

ters representing some of the data.

delivery, and the status of uterine implantation sites recorded. A total of 1082
live foetuses were dissected from the uterus, anaesthetized and examined for
external, visceral and skeletal malformations.
Some of the data of this study are shown in Figure 2.6. Table 2.1 sug-

gests clear dose-related trends in the malformation rates. The average litter
size (number of viable animals) decreases with increased levels of exposure
to DEHP, a finding that is attributable to the dose-related increase in fetal
deaths.
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Figure 2.2 EG Study in Mice. Observed and averaged malformation rates.

2.1.3 Diethylene Glycol Dimethyl Ether

Other names for diethylene glycol dimethyl ether (DYME) are diglyme and
bis(2-methoxyethyl) ether. DYME has as its chemical formula

CH3O(CH2)2O(CH2)2OCH3
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Figure 2.3 DEHP and DYME Studies. Observed and averaged malformation rates.

(Windholz 1983). It is a component of industrial solvents. These are widely
used in the manufacture of protective coatings such as lacquers, metal coat-
ings, baking enamels, etc. (NIOSH 1983). Although to date, several attempts
have proven inadequate to evaluate the potential of glycol ethers to produce
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Figure 2.4 THEO and TGDM Studies. Observed and averaged malformation rates.

human reproductive toxicity, structurally related compounds have been iden-
tified as reproductive toxicants in several mammalian species, producing (1)
testicular toxicity and (2) embryotoxicity.
Price et al. (1987) describe a study in which timed-pregnant mice were dosed
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Ta b l e 2 . 3 EG Study in Rats. Summary data.

Dose Dams Size Malf. Weight Pearson
(1) (2) Live (3) Nr. % Mean SD Corr. (ρ)

0 28 379 13.50 5 1.3 3.40 0.38 0.07
125 28 357 12.75 21 5.8 3.30 0.37 0.00
250 29 345 11.89 86 24.9 2.90 0.36 -0.29
500 26 287 11.04 197 68.6 2.48 0.46 -0.37

(1) Dose is in mg/kg/day.
(2) The number of dams with at least one implant is given.
(3) Mean litter size.

with DYME throughout major organogenesis (gestational days 8 through 15).
The doses selected for the study were 0, 62.5, 125, 250 and 500 mg/kg/day.
Table 2.1 summarizes the data and a representation of the data in the DYME
study is given in Figure 2.7.

2.1.4 Triethylene Glycol Dimethyl Ether

Similar to DEHP, triethylene glycol dimethyl ether (TGDM), also referred to
as triglyme or tetraoxadodecane, is an industrial solvent with diverse appli-
cations. The solvent’s chemical formula can be written as

CH3O(CH2)  2O(CH2)  2O(CH2)  2OCH3

(Windholz 1983). TGDM is a member of the glycol ether class of industrial
solvents. These solvents are widely used in the manufacture of protective
coatings (NIOSH 1983).
Although field studies have not adequately evaluated the potential of gly-

col ethers to produce human reproductive toxicity, some glycol ethers have
been identified as reproductive toxicants in several mammalian species (Clapp,
Zaebst and Herrick 1984, George et al. 1987).
The pregnant dams of the TGDM study are exposed to 0, 250, 500 or 1000

mg/kg/day (George et al. 1987). Table 2.1 summarizes the data from their
study. Clearly, visceral malformations are very infrequent with TGDM (only
one malformation observed).
In Figure 2.8, some of the data of the TGDM study are shown.

2.1.5 Theophylline

Theophylline (THEO) has many other names, among others 1,3-dimethyl-
xanthine, theocin and 3,7-dihydro-1,3-dimethyl-1H-purine-2,6-dione. One can
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Figure 2.5 EG Study in Rats. Observed malformation rates and average weights for

all clusters.

represent THEO by C7H8N4O  2 (Windholz 1983). The developmental toxic-
ity of orally administered theopylline (THEO) in mice has been described by
Lindström et al. (1990). Theophylline belongs to the class of compounds used
in the treatment of respiratory diseases, as an anti-asthmatic, diuretic, etc.
Theophylline has been shown to cross the human placenta and is secreted in
breast milk. Therefore, there has been an increased interest in the teratoge-
netic potential of theophylline in rodents.
Table 2.1 summarizes the data from a developmental toxicity study, investi-

gating the effect of theophylline in mice. The doses selected for the study were
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Figure 2.6 DEHP Study in Mice. Cumulative relative frequencies of the number of

clusters representing some of the data.

0, 0.075, 0.15 or 0.20 % THEO, which correspond to a consumption of 0, 282,
372 and 396 mg/kg/day respectively. The table suggests small dose-related
trends in the malformation rates. Figure 2.9 represents some of the data of
this experiment.
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Figure 2.7 DYME Study in Mice. Cumulative relative frequencies of the number of

clusters representing some of the data.

2.2 Heatshock Studies

Heatshock studies have been described by Brown and Fabro (1981) and Kim-
mel et al. (1994). In these experiments, embryos are explanted from the uterus
of a maternal dam (rats, mice or rabbits) during the gestation period and
cultured in vitro. Each subject is subjected to a short period of heat stress
by placing the culture vial into a water bath, usually involving an increase
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Figure 2.8 TGDM Study. Cumulative relative frequencies of the number of clusters

representing some of the data.

over body temperature of 4 to 5◦C for a duration of 5 to 60 minutes. The
embryos are examined 24 hours later for impaired and/or accelerated de-
velopment. The studies collect measurements on 13 morphological variables.
Three of these are: olfactory system (OLF), optic system (OPT) and midbrain
(MBN). We can assess the effects of both duration and level of exposure on
each morphological endpoint, coded as affected (1) versus normal (0).
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Figure 2.9 THEO Study in Mice. Cumulative relative frequencies of the number of

clusters representing some of the data.

In addition to the discrete outcomes, there are several continuous outcomes
recorded in the heatshock study, such as size measures on crown rump, yolk
sac, and head. These will be studied in Chapter 13.
While the heatshock studies do not represent a standard developmental

toxicity test system (Tyl et al. 1988), they have several advantages. These
include direct exposure to the embryo rather than the dam, easily controlled
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Ta b l e 2 . 4 Heatshock Studies. Number of (surviving) embryos exposed to each com-

bination of duration and temperature.

Temperature Duration of Exposure Total
5 10 15 20 30 45 60

37.0 11 11 12 13 12 18 11 88
40.0 11 9 9 8 11 10 11 69
40.5 9 8 10 9 11 10 7 64
41.0 10 9 10 11 9 6 0 55
41.5 9 8 9 10 10 7 0 53
42.0 10 8 10 5 7 6 0 46

Total 60 53 60 56 60 57 29 375

Ta b l e 2 . 5 Heatshock Studies: Distribution of cluster sizes.

cluster size ni 1 2 3 4 5 6 7 8 9 10 11

# clusters of size ni 6 3 6 12 13 11 8 5 2 3 2

exposures, quick results, and a mechanism for exploring dose-rate effects. The
study design for the set of experiments conducted by Kimmel et al. (1994) is
shown in Table 2.4, which indicates the number of embryos cultured in each
temperature-duration combination. A total of 375 embryos, arising from 71
initial dams, survived the heat exposure. These were further examined for any
affections and used for analysis.
The distribution of cluster sizes, ranging between 1 and 11, is given in

Table 2.5. The mean cluster size is about 5. Since only surviving foetuses
were included, cluster sizes are smaller than those observed in most other
developmental toxicity studies and do not reflect the true original litter size.
Figure 2.10 shows the actual percentages of affected embryos for each ex-

perimental temperature-duration combination. Historically, the strategy for
comparing responses among exposures of different durations to a variety of
environmental agents (e.g., radiation, inhalation, chemical compounds) has
relied on a conjecture called Haber’s Law, which states that adverse response
levels should be the same for any equivalent level of dose times duration (Haber
1924). In other words, a 15-minute exposure to an increase of 3 degrees should
produce the same response as a 45-minute exposure to an increase of 1 degree.
Clearly, the appropriateness of applying Haber’s Law depends on the phar-
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Figure 2.10 Heatshock Studies. Actual percentage of affected embryos (experimental

data points only).

macokinetics of the particular agent, the route of administration, the target
organ and the dose/duration patterns under consideration. Although much
attention has been focused on documenting exceptions to this rule, it is of-
ten used as a simplifying assumption in view of limited testing resources and
the multitude of exposure scenarios. However, given the current desire to de-
velop regulatory standards for a range of exposure durations, models flexible
enough to describe the response patterns over varying levels of both exposure
concentration and duration are greatly needed.
For the heatshock studies, the vector of exposure covariates must incor-

porate both exposure level (also referred to as temperature or dose), dij ,
and duration (time), tij , for the jth embryo within the ith cluster. Further-
more, models must be formulated in such a way that departures from Haber’s
premise of the same adverse response levels for any equivalent multiple of dose
times duration can easily be assessed. The exposure metrics in these models
are the cumulative heat exposure, (dt)ij = dijtij , referred to as durtemp and
the effect of duration of exposure at positive increases in temperature (the
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Figure 2.11 POPS Data. The open circles correspond to zero outcomes.

increase in temperature over the normal body temperature of 37◦C):

(pd)ij = tijI(dij > 37).

We refer to the latter as posdur . We will return to this subject in Chapter 13.

2.3 Belgian Health Interview Survey

In 1997, the second Belgian Health Interview Survey took place. The HIS1997
was conducted to evaluate the usefulness of a periodic health-related survey,
with the idea to collect information on the subjective health of the Belgian
population, as well as on important predictor variables.
The main goal of the HIS is to give a description of the health status of

the overall population in Belgium as well as of the three regional subpopula-
tions (Flemish, Walloon and Brussels region), and in addition of the German
community. The idea is to obtain a reflection of how specific groups of peo-
ple experience their health, to what extent they utilize health care facilities,
and how they look after their own health by adopting a certain life-style or
by relying on preventive and other health services. Precisely, the focus is on:
(1) identification of health problems, (2) description of the health status and
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Figure 2.12 Twins data.

health needs of the population, (3) estimation of prevalence and distribution
of health indicators, (4) analysis of social (in)equality in health and access to
the health services and (5) study of health consumption and its determinants.
The target population is defined as all people residing in Belgium at a

particular point in time. Due to the selection of a sample frame and practical
considerations, not all persons belonging to this target population will or can
be considered for the survey. Because the National Register is being used
as the sampling frame, only people listed in this register can participate in
the survey. This implies that no information about the health status of, for
example, the homeless can easily be collected.
The total number of successful interviews for the sample was set to 10,000.

The sampling of the households and respondents is a combination of several
sampling techniques: stratification, multistage sampling and clustering, and
differential selection probabilities. The sampling of respondents took place in
the following steps: (1) stratification by region and province, (2) selection of
the municipalities within each stratum, (3) selection of a cluster of households
within each municipality and (4) selection of respondents within a household.
The use of the National Register and interviewers’ travel are two important

concerns, which need to be balanced carefully against coverage of the pop-
ulation. Even when a relatively good list is available (such as the National
Register), a direct selection from this list would be too expensive, because the
spread would be too wide. Cost savings may allow the investigators to use a
larger sample size than they could use for a simple random sample of the same
cost. Therefore, a multi-stage design with municipalities as primary selection
units is a feasible solution.
The main advantage of stratification is that it typically produces a smaller

bound on the error of estimation than would be produced by a simple random
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sample of the same size. This result is enforced if strata are largely homoge-
neous. In the HIS, there are two stratification levels (at the regional and
provincial levels). Within a region, a proportional representation per province
in the base sample of 10,000 is sought. A simple random sample of munic-
ipalities within a region would ascertain this condition from the sampling
framework point of view. Resulting differences are regarded as purely random.
However, stratifying proportionally over provinces further controlled this ran-
dom variation.
Second- and third-stage selection units are households within municipalities

and individuals within households, respectively. Municipalities are established
administrative units, they are stable (in general they do not change during
the time the survey is conducted) and they are easy to use in comparison
with other specialized sources of data related to the survey. Municipalities
are preferred above regions or provinces, because the latter are too large and
too few. The large variation in the size of the municipalities is controlled
for by systematically sampling within a province with a selection probability
proportional to their size.
Within each municipality, a sample of households is drawn such that blocks

(also referred to as groups) of 50 individuals in total can be interviewed.
Whereas the stratification effects and the systematic sampling according to
municipalities have the effect of increasing the precision, the clustering effect
(selecting blocks of 50) might slightly reduce precision, since units will resem-
ble each other more than in a simple random sample. However, since strati-
fication is based on unequal probabilities (to guarantee a meaningful sample
size per stratum) a slight decrease in overall efficiency is to be expected.
As a result, data are clustered at the levels of municipality and household.

The study of this is undertaken in Chapter 15. In Chapter 8, these data were
used to illustrate the use of flexible polynomial models.

2.4 POPS Data

The Project On Preterm and Small-for-gestational age infants (POPS) col-
lected information on 1338 infants born in the Netherlands in 1983 and having
gestational age less than 32 weeks and/or birthweight less than 1500 g (Ver-
loove et al. 1988). The outcome of interest here concerns the situation after
two years. The binary variable is 1 if an infant has died within two years
after birth or survived with a major handicap, and 0 otherwise. Some of the
recorded observations are from twins or triplets. So, one might have to ac-
count for the association between siblings of the same twin (or triplet, . . . ).
Another interesting aspect is that there are observations on both cluster and
individual level. For example, for a twin, the mother’s age and the gestational
age is the same for both siblings, while birthweight is subject specific.
The POPS data are shown graphically in Figure 2.11, and Figure 2.12

is a jittered scatter plot of the individual neonatal mortality and morbidity
outcomes of the 107 twins as a function of gestational age. The data are used in
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Figure 2.13 Low-iron rat teratology data.

Chapters 8 and 9 to illustrate how classical regression smoothers and omnibus
lack-of-fit tests can be generalized to a multiparameter likelihood framework.

2.5 Low-iron Rat Teratology Data

This example uses data from the experimental setup from Shepard, Mackler
and Finch (1980). A total number of 58 female rats was given different amounts
of iron-supplement (ranging from normal to zero level). The rats were made
pregnant and sacrificed 3 weeks later. For each female rat the hemoglobin
levels were recorded, as well as its total number of foetuses (ranging from 1
to 17) and the number of dead foetuses. The proportion of dead foetuses as a
function of the mother animal’s hemoglobin level is shown in Figure 2.13. This
plot does not give any information about the correlation structure within a
litter. For this kind of clustered binary data it would be interesting to have an
estimation method resulting in two smooth curves: the estimated probability
of death and the estimated correlation within a cluster, both as a function of
the covariate. Such a method will be discussed in Chapter 8, together with
a bootstrap method to construct simultaneous confidence intervals for both
curves.
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Figure 2.14 Wisconsin diabetes study.

2.6 The Wisconsin Diabetes Study

In this data set there are records from 720 younger onset diabetic persons.
Both eyes of each person are examined for the presence of macular edema.
See Klein, Klein, Moss, Davis and DeMets (1984) for more details. In the
study there were 29 individuals where macular edema is present at only one
eye, for 17 of them it is observed at both eyes, and for the remaining 674
persons, it was completely absent. We will study the probability of macular
edema as a function of the patient’s systolic blood pressure, hereby taking
the clustered nature of the data into account, as indeed the response values
of both eyes are likely to be correlated. A graphical representation of these
data, as in Figure 2.14, can easily yield some idea of how the proportion of
macular edema-infected eyes varies with the person’s systolic blood pressure.
Such a graph, however, does not give any information about the correlation

between the outcomes of both eyes. Most often, this correlation is just assumed
to be some constant, which can be estimated from the data. Chapters 8 and 9
present some graphical diagnostic tools and a formal lack-of-fit test to examine
the validity of such an assumption.

2.7 Congenital Ophthalmic Defects

Table 2.6 contains the proportions (zi/ni), within two age groups, of rejected
corneal grafts (zi) out of grafts received (ni) for 9 children diagnosed with an
ophthalmic dysfunction congenital hereditary endothelial dystrophy (CHED).
A study of these children was made by Schaumberg et al. (1999), in part to
assess the impact of potential risk factors on the success of corneal implants
to correct the loss of visual acuity resulting from CHED. Seven of the children
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Table 2.6 Congenital Ophthalmic Defects. Proportion (zi/ni) of rejected corneal

grafts (zi) out of number of grafts given (ni) for nine children affected by CHED.

Age at Diagnosis
(years)

< 3 ≥ 3
0/2 0/2
0/2 1/2
0/2 1/2
0/2 1/1

1/1

received implants in both eyes, and two received implants in only a single eye.
All of the children were diagnosed before the age of 6 years, and all received
implants before the age of 12 years. Early intervention in cases of CHED
may be critical to prevent amblyopia, commonly known as “lazy eye”, due to
opacification of the corneas. However, the necessary surgery carries greater risk
when performed on young children as opposed to older children and adults.
The investigators were therefore interested in comparing the results between
two age groups: those younger than 3 years versus those aged at least 3 years
at the time of surgery.
The small sample sizes reported in this and other studies of CHED reflect

the extreme rarity of the condition. The investigators were unfortunately un-
able to apply inferential procedures to their data because of this. The outcome
of interest in Table 2.6 is whether or not an eye of a given child rejected the
initial implant. Of the eight eyes among the younger children, there were no
rejections, whereas four of the eight implants were rejected among the older
children. We wish to know whether this implies a higher average rejection rate
among children over 3 years of age compared to those who are younger. Like-
lihood or quasi-likelihood procedures that require estimation of an age effect
clearly fail for these data, since all 4 rejections occurred in older children.

2.8 A Developmental Toxicology Study

The data of Table 2.7 are reprinted from Bradstreet and Liss (1995). One
hundred female mice were randomized to either control or one of three dose
levels (8, 80 or 800 mg/kg) of a potentially harmful drug, then mated with
untreated male mice. While 25 animals were assigned to each treatment, not
all were impregnated (one each in the control and 800 mg/kg groups, and
two in the 80 mg/kg group). The drug was administered orally from day 6
through day 15 of the gestational period. At day 17 of gestation, the animals
were sacrificed and their offspring observed for external, visceral and skeletal
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Table 2.7 Oral Teratogenic Data. Proportion (zi/ni) of foetuses with ≥ 1 malfor-

mation (zi) out of total foetuses (ni) born to exposed dams.

Dose (mg/kg)
0 8 80 800

0/7 0/10 0/11 0/11
0/8 3/10 0/11 0/11
0/9 0/11 0/11 0/11
0/10 0/11 0/11† 2/11†
0/10 0/12 0/12 0/12
0/11 0/12 0/12 1/12
0/11 0/12 0/12† 0/13
0/11 0/12 1/12 0/13
1/11 0/12 2/12 0/13
0/12 0/12 0/13 0/13
0/12 0/13 0/13 1/13
1/12 0/13 0/13 2/13
0/13 0/13 1/13 0/14
0/13 1/13 0/14 0/14
0/13 0/14 0/14 0/14
0/13 0/14 0/14 1/14
0/13 0/14 1/14 1/14
1/13 0/14 0/15 0/15
0/14 1/14 1/15 1/15†
0/14 1/14† 2/15 0/16
0/14 0/15 0/16 0/16
0/14† 0/15 0/16 1/16
1/14 0/15† 0/16 0/17
0/16 0/15 0/17

0/17

Total 4/288 6/327 8/305 10/328
(% Malformed) (1.4%) (1.8%) (2.6%) (3.0%)

†One additional foetus born dead but not examined for malformations.

malformations. The table records the proportion (zi/ni) of foetuses (zi) per
litter (ni) who were observed to have ≥ 1 malformation.
We wish to know whether the increasing marginal empirical probability of

response across dose groups provides evidence of a dose effect, after adjust-
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ing appropriately for the clustering. While the number of clusters (96) and
total sample size (1248) are relatively large, the number of affected foetuses
(28) seems relatively small. The investigator may feel uncomfortable using
asymptotic approximations to assess a dose-response relationship.
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CHAPTER 3

Issues in Mo deling Clustered Data

Louise M. Ryan

Harvard School of Public Health, Boston, MA

In Figure 1.4, the complexity of developmental toxicity studies is clearly
illustrated. This, of course, implies there are a number of non-trivial challenges
for model development (Molenberghs et al. 1998, Zhu and Fung 1996). Let us
list the most important ones.

• Because of genetic similarity and the same treatment conditions, offspring
of the same mother behave more alike than those of another mother. This
has been termed litter effect. As a result, responses on different foetuses
within a cluster are likely to be correlated, inducing extra variation in the
data relative to those associated with the common binomial or multinomial
distribution. This extra variation must be taken into account in statistical
analyses (Chen and Kodell 1989; Kupper et al. 1986).

• Since deleterious events can occur at several points in development, an
interesting aspect lies in the staging or hierarchy of possible adverse fetal
outcomes (Williams and Ryan 1996). Ultimately, a model should take into
account this hierarchical structure in the data: (i) a toxic insult early in
gestation may result in a resorbed fetus; (ii) thereafter an implant is at risk
of fetal death; (iii) foetuses that survived the entire gestation period are
threatened by low birth weight and/or several types of malformation.

• While some attempts have been made for the joint analysis of prenatal
death and malformation (Chen et al. 1991, Ryan 1992), the analysis of
developmental toxicity data has usually been conducted on the number of
viable foetuses alone. An appropriate statistical model should then account
for possible correlations among the different fetal endpoints.

• As the number of viable foetuses can sometimes affect the chance of an ad-
verse effect (in a large litter a larger number of animals have to compete for
the same maternal resources and therefore the probability of malformation
may be larger), a model should also be flexible enough to allow litter size
to affect response probabilities.

• Finally, one may have to deal with outcomes of a mixed continuous (e.g.,
low birth weight) versus discrete (e.g., malformation indicator) nature.
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In subsequent sections, we will discuss several of these issues in turn. A de-
tailed treatment will then be given in following chapters.

3.1 Choosing a Model Family

As a result of the research activity over the past 10 to 15 years, there are
presently several different schools of thought regarding the best approach to
the analysis of correlated binary data. See also Chapter 4. Unlike in the nor-
mal setting, marginal, conditional, and random-effects approaches tend to give
dissimilar results, as do likelihood, quasi-likelihood, and generalized estimat-
ing equations (GEE) based inferential methods. Prentice (1988), Fitzmaurice,
Laird and Rotnitzky (1993), Diggle, Liang and Zeger (1994), and Pendergast
et al. (1996) present excellent reviews.
Several likelihood based methods have been proposed. Fitzmaurice and

Laird (1993) incorporate marginal parameters for the main effects in this
model and quantify the degree of association by means of conditional odds ra-
tios. Fully marginal models are presented by Bahadur (1961) and Cox (1972),
using marginal correlations, and by Ashford and Sowden (1970), using a mul-
tiply dichotomized version of a multivariate normal to analyze multivariate
binary data. Alternatively, marginal odds ratios can be used, as shown by Dale
(1986) and Molenberghs and Lesaffre (1994, 1999). Cox (1972) also describes
a model with parameters that can be interpreted in terms of conditional prob-
abilities. Similar models were proposed by Rosner (1984) and Liang and Zeger
(1989). Random-effects approaches have been studied by Stiratelli, Laird and
Ware (1984), Zeger, Liang and Albert (1988), Breslow and Clayton (1993),
and Wolfinger and O’Connell (1993). Generalized estimating equations were
developed by Liang and Zeger (1986).
The debate continues about the relative merits of the different approaches.

For several years it seemed that marginal models, particularly GEEs, were
the most popular, perhaps due to their relative computational ease and the
availability of good software. It is noteworthy that the recent renewed interest
in random-effects models is partly provoked by the availability of the GLIM-
MIX macro in SAS and most recently by the NLMIXED procedure in SAS.
There are merits and disadvantages to all three model families and generally
no simple transformations between the three families exist. Arguably, model
choice has to depend not only on the application of interest but also on the
specific analysis goals.
Because of the need to account for litter effects, all these issues of model-

ing strategy arise with developmental toxicity data. Several additional issues
complicate the analysis. For example, cluster sizes vary and can affect re-
sponse rates, perhaps due to competition between littermates or underlying
health of the mother (Rai and Van Ryzin 1985). Also, it is often important to
account for the multivariate nature of the outcomes measured on each litter-
mate. Random-effects models (beta-binomial, Williams 1975) were among the
first proposed for developmental toxicity data (see also Chen and Kodell 1989).
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However, they do not extend naturally to multivariate outcomes. Lefkopoulou,
Moore and Ryan (1989) apply the generalized estimating equations ideas to
model multiple binary outcomes measured on clusters of individuals. While
their approach is simple to apply, and leads to easily interpreted tests, a dis-
advantage is lack of a likelihood basis. Furthermore, there are some regions of
the parameter space where the method can be quite inefficient (Lefkopoulou
and Ryan 1993). Also, therefore, the approach does not lend itself well to
quantitative risk assessment.
Due to the popularity of marginal (especially GEE) and random-effects

models for correlated binary data, conditional models have received relatively
little attention, especially in the context of multivariate clustered data. A
noticeable exception is Liang and Zeger (1989), although this approach was
criticized (Diggle, Liang and Zeger, 1994, p. 147) because the interpretation
of the dose effect on the risk of one outcome is conditional on the responses of
other outcomes for the same individual, outcomes of other individuals, and the
litter size. Nevertheless, there are some advantages to conditional models and
with appropriate care the disadvantages can be overcome. See also Section 3.4.

3.2 Joint Continuous and Discrete Outcomes

Developmental toxicity studies may seek to determine the effects of dose on
fetal weight (continuous) and malformation incidence (binary) simultaneously,
as both have been found to be indicative of a toxic effect. This motivates
the formulation of a joint distribution with mixed continuous and discrete
outcomes. However, this is not standard.
Catalano and Ryan (1992) note that latent variable models provide a use-

ful and intuitive way to motivate the distribution of the discrete outcome.
Such models presuppose the existence of an unobservable, normally distrib-
uted random variable, underlying the binary outcome. The binary event is
then assumed to occur if the latent variable exceeds some threshold value.
They further note that this notion of latent variables has much appeal to
toxicologists, because it provides a natural and intuitive framework for the
biological mechanism leading to adverse events such as malformation.
A flexible latent variable approach to model an arbitrary number of con-

tinuous and discrete outcomes, each of which follows an exponential family
distribution, is proposed by Sammel, Ryan and Legler (1997). They intro-
duce a modified EM algorithm for parameter estimation with either a simple
Monte Carlo expectation or a numerical integration technique based on, e.g.,
Gauss-Hermite quadrature to approximate the E-step which is not necessarily
available in closed form. The method allows for arbitrary covariate effects and
estimates of the latent variable are produced as a by-product of the analysis.
However, their approach does not extend to correlated (i.e., clustered) data.
In the context of developmental toxicity studies, the dose-response model

is often characterized in each of the two outcomes (weight and malformation)
separately, using appropriate methods to account for correlation induced by
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the clustering of foetuses within litters, or the well-known “litter-effect”. The
more sensitive of the two outcomes is determined based on the dose-response
patterns and used for risk assessment purposes. However, because these out-
comes are correlated (Ryan et al. 1991), jointly modeling the outcomes and
using the bivariate outcome as a basis for risk assessment may be more ap-
propriate (Regan and Catalano 1999a). A standard approach is to apply a
conditioning argument that allows the joint distribution to be factorized in
a marginal component and a conditional component, where the condition-
ing can be done on either the discrete or continuous outcome (Catalano and
Ryan 1992, Cox and Wermuth 1992, Cox and Wermuth 1994, Fitzmaurice and
Laird 1995, Olkin and Tate 1961). Cox and Wermuth (1992, 1994) consider
various factorization methods and tests for independence. Let us discuss some
factorization methods.

Catalano and Ryan (1992) apply the latent variable concept to derive the
joint distribution of a continuous and a discrete outcome and then extend
the model, using GEE ideas, to incorporate clustering. They parameterize
the model in a way that allows to write the joint distribution as the product
of the marginal distribution of the continuous response, and the conditional
distribution of the binary response given the continuous one. The marginal
distribution of the continuous response is related to covariates, using a linear
link function, while for the conditional distribution they use a probit link.
Due to the non-linearity of the link function relating the conditional mean
of the binary response to the covariates, the regression parameters in the
probit model of Catalano and Ryan (1992) have no direct marginal interpre-
tation. Furthermore, if the model for the mean has been correctly specified,
but the model for the association between the binary and continuous out-
comes is misspecified, the regression parameters in the probit model are not
consistent. The lack of marginal interpretation and lack of robustness may be
considered unattractive features of this approach. An important advantage,
however, is that it can be readily extended to allow for clustering. Fitzmaurice
and Laird (1995) circumvent the difficulties in the approach of Catalano and
Ryan (1992) by factorizing the joint distribution as the product of a marginal
Bernoulli distribution for the discrete response, and a conditional Gaussian
distribution for the continuous response given the discrete one. Under inde-
pendence, their method yields maximum likelihood estimates of the marginal
means that are robust to misspecification of the association between the bi-
nary and continuous response. They also consider an extension of their model
that allows for clustering. By using GEE methodology, they avoid the compu-
tational complexity of maximum likelihood in this more elaborate setting. A
conceptual difficulty with this model is the interpretation of the parameters,
which depends on cluster size.

A drawback of mixed outcome models based on factorization (as above) is
that they may be difficult to apply for quantitative risk assessment (Geys et al.
2001, Regan and Catalano 1999a). While taking into account the dependence
between weight and malformation, the intrafoetus correlation itself cannot be
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directly estimated. Thus, an expression for the joint probability that a fetus
is affected (i.e., malformed and/or of low birth weight) is difficult to specify.
Catalano et al. (1993) used a factorization model for quantitative risk assess-
ment, in which direct estimation of the bivariate correlation is approximated
using a conditioning argument. To overcome this problem, one needs joint
models that incorporate the correlation between outcomes directly. Thus, a
desirable model should have three properties:

• it allows separate dose-response functions for each component of the bi-
variate outcome,

• it accounts for the correlations due to clustering within litters,

• it estimates the bivariate intrafoetus association.

In Chapter 14, we will propose models that satisfy these properties (see also
Geys et al. 2001 and Regan and Catalano 1999a).

3.3 Likelihood Misspecification and Alternative Methods

Likelihood methods enjoy many desirable properties, such as efficiency under
appropriate regularity and the ability to calculate functions of interest based
on the posited parametric model and the maximum likelihood estimates of the
parameters (Edwards 1972, Welsh 1997). These properties come at a price.
First, not only the specification of a likelihood function but also the esti-

mation of the parameters thereof can be computationally intensive. That is
why several chapters of this book are devoted to alternatives, such as gener-
alized estimating equations (Chapter 5) or pseudo-likelihood (Chapters 6 and
7). Broadly, generalized estimating equations are a replacement for the often
complicated true first derivatives of the log-likelihood function (i.e., the score
equations). The theory of Liang and Zeger (1986) establishes the conditions
under which solving such equations yields correct inference. Pseudo-likelihood
is based on directly replacing the complicated log-likelihood function with a
simpler pseudo-likelihood function. Again, it has been established that valid
inference can be obtained from such models (Arnold and Strauss 1991, Geys,
Molenberghs and Ryan 1999).
Second, the advantage of fully specifying the joint probability model for a

vector (e.g., a cluster) of outcomes also carries a danger: there is an increased
risk for misspecification. This is well known throughout the statistical litera-
ture when a choice has to be made between classical or robust methods (e.g.,
a mean versus a median, a linear versus a quadratic function in discriminant
analysis, etc.). In addition, it is well known that the impact on misspecification
is different depending on the goal of inference. In linear mixed models theory
(Verbeke and Molenberghs 2000), it is known that the fixed-effects structure is
less sensitive to misspecification than the variance-covariance structure. When
modeling dichotomous outcomes, it has been established that the choice be-
tween classical link functions is almost immaterial for the central area of the
unit probability interval. In other words, for probabilities between 30–70%, or
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even 20–80%, one can choose between a logit or a probit link on other grounds
than merely model fit.
However, in some cases, as is the case here, one wants to explicitly ad-

dress probabilities at the extreme of the scale. Indeed, the ultimate goal of
developmental toxicity studies is to perform risk assessment, i.e., to set safe
limits for human exposure, based on the fitted model (Crump 1984). Risk
assessment is developed in detail in Chapter 10; see also Section 3.4. To this
end, models should fit the data well. This has implications for both the model
family chosen, as well as for the form of the linear predictors. Since classical
polynomial predictors are often of poor quality, especially when low dose ex-
trapolation is envisaged, there is a clear need for alternative specifications of
the predictors describing main effects and associations. Non-linear predictors
pose non-trivial challenges. We apply the fractional polynomial approach of
Royston and Altman (1994), which provides more flexibly shaped curves than
conventional polynomials. They argue that conventional low order polynomi-
als offer only a limited family of shapes and that high order polynomials may
fit poorly at the extreme values of the covariates. Moreover, polynomials do
not have finite asymptotes and cannot fit the data where limiting behavior is
expected. The method was also applied by Royston and Wright (1998) for the
construction of age-specific reference intervals and by Sauerbrei and Royston
(1999) for building prognostic and diagnostic indices for multivariate mod-
els. An attractive feature is that conventional polynomials are included as a
subset of this extended family. Fractional polynomial models are flexible but
nevertheless parametric and user-defined. More non-parametrically inspired
approaches, fully data driven, can be very useful. In an explorative way, a
parametric model can be graphically compared with its non-parametric alter-
native. In the one-parameter case, several authors have examined strategies to
implement nonparametric estimation procedures in likelihood based regression
models. The local polynomial fitting, which has become the standard in kernel
smoothing, produces smoothers that have several advantages in comparison
with other linear smoothers, such as the behavior at the boundary. Chapter 8
provides a detailed treatment of both fractional polynomial methods and local
polynomial smoothers.
The construction of more flexible predictors is a major step forward. At the

same time, it is imperative to investigate the fit of the models considered.
The lack-of-fit of a regression model is investigated by testing the hypothesis

that a function has a prescribed parametric form. The function of interest
can be one of the parameters in a regression model; typically the mean of
the response, but it might also be its variance, or the correlation between
different outcomes. In other cases, it might be a complete density function of
which we want to investigate the goodness-of-fit. Parametric testing methods
are designed to detect very specific types of departures from the hypothesized
model. For example, likelihood ratio, Wald, or score tests are employed to
contrast a linear and a quadratic dose-response curve. While very powerful
for this particular class of alternative models, these tests quickly lose power
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when the truth is more complicated. In Chapter 9 the omnibus nonparametric
methods of this chapter are appealing in that they are consistent against
virtually any departure from the hypothesized parametric model. An adaption
of the Hosmer-Lemeshow (1989) approach, for application to clustered binary
data, is constructed. Further, order selection tests based on orthogonal series
estimators are discussed.
Chapter 11 is devoted to the specific implications of model misspecification

on the dose-effect assessment on the one hand, and on safe-dose determination
on the other hand. When the data do not come from the assumed parametric
model, the usual asymptotic chi-squared distribution under the null hypoth-
esis remains valid for “robustified” Wald and score test statistics. For full
likelihood models, robust Wald and score tests have been described in the lit-
erature (Kent 1982, Viraswami and Reid 1996). The modified tests again have
an asymptotic chi-squared distribution, even when the assumed model is not
correct. Robust test statistics are also used in the context of generalized esti-
mating equations (Liang and Zeger 1986, Rotnitzky and Jewell 1990) and of
pseudo-likelihood (Geys, Molenberghs and Ryan 1999). Aerts and Claeskens
(2001) compare the performance of such a chi-squared approximation to that
of a semiparametric bootstrap method. In the context of likelihood-based esti-
mation, Williams and Ryan (1996) have indicated it is preferable to define the
BD using the likelihood ratio statistic. As indicated earlier, a full likelihood
technique will perform best when the likelihood is correctly specified, but one
might expect problems in case of misspecification (Aerts, Declerck and Molen-
berghs 1997). Therefore it is important to look at robust estimation methods
such as quasi-likelihood, GEE, and pseudo-likelihood. Further, the likelihood
method is unavailable in quasi-likelihood settings, and hence also in GEE,
since there is no analogue to the likelihood ratio statistic. Precisely, the use of
a profile score approach has been proposed by Claeskens, Aerts, Molenberghs
and Ryan (2002).
The justification of inferences usually rests upon the approximate normality

of the statistics of interest. Such a distributional assumption may be untenable
when samples are small or sparse. If a normal approximation is not accurate,
the result might be tests that do not preserve the a priori testing level es-
tablished by the investigator. Likewise, actual coverage probabilities for con-
fidence intervals may be much lower or higher than the nominal confidence
level. Moreover, where likelihood or quasi-likelihood methods are applied, in-
ference can be further complicated when parameter estimates lie at or near
the boundary of the parameter space. Exact inference then provides a sensible
alternative. Strategies developed to this end are studied in Chapter 12.

3.4 Risk Assessment

In this section we zoom in on risk assessment, which is further studied in
detail in Chapter 10.
Risk assessment can be defined as (Roberts and Abernathy 1996): “the use
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of available information to evaluate and estimate exposure to a substance and
its consequent adverse health effects.” An important goal in the risk assess-
ment process is to determine a safe level of exposure. Traditionally, quan-
titative risk assessment in developmental toxicology has been based on the
NOAEL, or No Observable Adverse Effect Level, which is the dose immedi-
ately below that deemed statistically or biologically significant when compared
with controls. The NOAEL, however, has been criticized for its poor statisti-
cal properties (see, for example, Williams and Ryan 1996). Therefore, interest
in developing techniques for dose-response modeling of developmental toxicity
data has increased, and new regulatory guidelines (U.S. EPA 1991) emphasize
the need of quantitative methods for risk assessment. The standard approach
requires the specification of an adverse event, along with r(d) representing the
probability that this event occurs at dose level d. For developmental toxicity
studies where offspring are clustered within litters, there are several ways to
define the concept of an adverse effect. First, one can state that an adverse
effect has occurred if a particular offspring is abnormal (fetus based). Alter-
natively, one might conclude that an adverse effect has occurred if at least one
offspring from the litter is affected (litter based). Based on this probability, a
common measure for the excess risk over background is defined as

r∗(d) = r(d)− r(0)

or as

r∗(d) =
r(d)− r(0)
1− r(0)

, (3.1)

where definition (3.1) puts greater weight on outcomes with large background
risks. The benchmark dose (BMDq), sometimes also called the effective dose
(EDq), is then defined as the dose satisfying r∗(d) = q, where q corresponds
to the pre-specified level of increased response and is typically specified as
0.01, 1, 5, or 10% (Crump 1984).

In practice, calculation of the BMD follows several steps. After choosing
and fitting an appropriate dose-response model, the excess risk function is
solved for the dose, d, that yields r∗(d) = q. Since the dose-response curve
is estimated from data and has inherent variability, the BMD is itself only
an estimate of the true dose that would result in this level of excess risk.
The final step therefore consists of acknowledging this sampling uncertainty
for the model on which the BMDq is based, by replacing the BMDq by its
lower confidence limit (Williams and Ryan 1996). Several approaches have
been proposed.
Using the delta method, a Wald based method can be used:

B̂MDLq = B̂MDq − 1.645
√
V̂ar(B̂MDq).

Assume that β is the vector of parameters included in the dose-response
model; then the BMDq variance can be obtained from the variance matrix of
β. Several authors have indicated that this method suffers from drawbacks,
especially with low dose extrapolation (Aerts, Declerck and Molenberghs 1997,
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Crump 1984, Crump and Howe 1985, Krewski and Van Ryzin 1981) in which
case the method may yield negative lower limits. Furthermore, Catalano, Ryan
and Scharfstein (1994) have empirically found that this method can yield
unstable estimates.
Alternatively, an upper limit for the risk function can be computed, and

thus the dose that corresponds to a q% increased response above background
is determined from this upper limit curve by solving:

r̂∗(d) + 1.645
√

V̂ar(r̂∗(d)) = q,

where the variance of the estimated increased risk function r̂∗(d) is estimated
as:

V̂ar(r̂∗(d)) =
(
∂r∗(d)
∂β

)T
Ĉov(β̂)

(
∂r∗(d)
∂β

)∣∣∣∣∣
β=

̂β

and where Ĉov(β̂) is the estimated covariance matrix of β̂. The resulting dose
level is referred to as the lower effective dose (LEDq) (Kimmel and Gaylor
1988).
Crump and Howe (1985) recommend using the asymptotic distribution of

the likelihood ratio (if available). According to this method, an approximate
100(1− α)% lower limit for the BMD, denoted by BMD(1), corresponding to
an excess risk of q is defined as

min{d(β) : r(d;β) = q over all β such that 2(&(β̂)− &(β)) ≤ χ2
p(1− α)},

where & denotes the log-likelihood and p is the number of model parameters. A
second approach, denoted BMD(2), is based on the profile likelihood method
(Morgan 1992). First, construct a profile likelihood based confidence interval
for the dose effect parameter βd. Second, transform this interval into an in-
terval for d and check that the transformation is monotonic. Aerts, Declerck
and Molenberghs (1997) compare the different lower limits for the BMD and
show that, in general, BMD(1) yields lower results than BMD(2). Further-
more, they note that for conditionally specified models, the transformation is
not monotonic, and hence the BMD(2) should not be applied to such models.
A variation on this theme, suggested by many authors (Chen and Kodell 1989,
Ryan 1992, Gaylor 1989), first determines a lower confidence limit, e.g., corre-
sponding to an excess risk of 1%, and then linearly extrapolates it to a BMD.
The main advantage quoted for this procedure is that the determination of a
BMD is less model dependent.
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CHAPTER 4

Model Families

Geert Molenberghs

transnationale Universiteit Limburg, Diepenbeek–Hasselt, Belgium

In most developmental toxicity studies, exposure is administered to the
dam, rather than directly to the developing foetuses. Because of genetic simi-
larity and the same treatment conditions, offspring of the same mother behave
more similar than those of another mother. This has been termed “litter ef-
fect” and is one important form of clustering. There are several ways to handle
clustering. While dose-response modeling is relatively straightforward in un-
correlated settings, it is less so in the clustered context. Of course, one can
ignore the clustering altogether by treating the littermates as if they were
independent. However, this will in general be too strong an assumption. Also,
the litter effect issue can be avoided by modeling the probability of an af-
fected cluster via, e.g., a logistic regression model. Such models are generally
too simplistic but there is a multitude of models which do consider clustering.

Indeed, failure to account for the clustering in the data can lead to seri-
ous underestimation of the variances of dose effect parameters and, hence,
inflated test statistics. The need for methods that appropriately account for
the heterogeneity among litters, especially with regard to binary outcomes,
has long been recognized. When the response is continuous and assumed to
be approximately Gaussian, there is a general class of linear models that is
suitable for analyses (see Section 4.3.2). However, when the response variable
is categorical, fewer techniques are available. This is partly due to the lack of
a discrete analogue to the multivariate normal distribution. The use of bino-
mial or Poisson models in toxicological testing has frequently been criticized
on the grounds that they generally poorly fit actual experimental data. This
is caused by extra-binomial variation, i.e., more variability among litters than
would be expected based on binomial or Poisson models. In an attempt to
explain this variation, a number of generalized linear models have been pro-
posed. Williams (1975) assumes that foetuses in the same litter provide a set
of independent Bernoulli responses conditional on the litter-specific success
probability, and that the variation in this probability from litter to litter fol-
lows a beta-distribution. Haseman and Kupper (1979) provide an early survey
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of likelihood generalizations of standard distributions to account for cluster-
ing. Later, Pendergast et al. (1996) gave an overview of methods for clustered
binary data. The texts by Fahrmeir and Tutz (1994) and Diggle, Liang and
Zeger (1994) are very useful in this respect.
As indicated in Chapter 1, models for correlated data can be grouped into

the following different classes:
• conditionally specified models,
• marginal models,
• cluster-specific models.
Note that the term cluster-specific models is similar to the more commonly
used random-effects models. If a cluster is understood in the broad sense (i.e.,
representing one of the following: litters, families, repeated measures, longitu-
dinal measures, etc.) then the term is more general than the random-effects
terminology. Indeed, the presence of cluster-specific effects in a model can
be handled in several ways. Broadly, one can treat them as either fixed ef-
fects or as random effects. A third alternative consists in conditioning upon
the cluster-specific effects, a principle well known in the area of matched
case-control studies, where conditional logistic regression is frequently used
(Breslow and Day 1987).
The answer to the question of which model family is to be preferred de-

pends principally on the research question(s) to be answered. In conditionally
specified models the probability of a positive response for one member of the
cluster is modeled conditionally upon other outcomes for the same cluster,
while marginal models relate the covariates directly to the marginal proba-
bilities. Cluster-specific models differ from the two previous models by the
inclusion of parameters that are specific to the cluster. What method is used
to fit the model should not only depend on the assumptions the investigator
is willing to make, but also (to some extent) on the availability of compu-
tational algorithms. If one is willing to fully specify the joint probabilities,
maximum likelihood methods can be adopted. Yet, if only a partial descrip-
tion in terms of marginal or conditional probabilities is given, one has to rely
on non-likelihood methods such as: generalized estimating equations (Chap-
ter 5) or pseudo-likelihood methods (Chapters 6 and 7).

4.1 Marginal Models

In marginal models, the parameters characterize the marginal probabilities
of a subset of the outcomes, without conditioning on the other outcomes.
Advantages and disadvantages of conditional and marginal modeling have
been discussed in Diggle, Liang and Zeger (1994), and Fahrmeir and Tutz
(1994).
Bahadur (1961) proposed a marginal model, accounting for the association

via marginal correlations. This model has also been studied by Cox (1972),
Kupper and Haseman (1978) and Altham (1978). While the general form
of the Bahadur model requires the specification of a number of parameters,
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exponential in the cluster size, considerable simplification is possible when
assuming exchangeability, in the sense that each foetus within a litter has
the same malformation probability, and in addition setting all the three- and
higher-way correlations equal to zero (Eq. 4.2). A drawback of the approach is
the existence of severe constraints on the correlation parameter when higher-
order correlations are removed. Even in the unconstrained case, the parameter
space has a peculiar shape. While non-rectangular parameter spaces is a typi-
cal feature of marginal models (cf. the parameter space of covariance matrices
for the normal distribution), it often poses unsurmountable problems in the
case of the Bahadur model. A general study is given in Declerck, Aerts and
Molenberghs (1998).

Molenberghs and Lesaffre (1994) and Lang and Agresti (1994) have pro-
posed models which parameterize the association in terms of marginal odds
ratios. Dale (1986) defined the bivariate global odds ratio model, based on a bi-
variate Plackett distribution (Plackett 1965). Molenberghs and Lesaffre (1994,
1999) extended this model to multivariate ordinal outcomes. They generalize
the bivariate Plackett distribution in order to establish the multivariate cell
probabilities. Their 1994 method involves solving polynomials of high degree
and computing the derivatives thereof, while in 1997 generalized linear mod-
els theory is exploited, together with the use of an adaption of the iterative
proportional fitting algorithm. Lang and Agresti (1994) exploit the equiva-
lence between direct modeling and imposing restrictions on the multinomial
probabilities, using undetermined Lagrange multipliers. Alternatively, the cell
probabilities can be fitted using a Newton iteration scheme, as suggested by
Glonek and McCullagh (1995).

However, even though a variety of flexible models exist, maximum likelihood
can be unattractive due to excessive computational requirements, especially
when high dimensional vectors of correlated data arise. As a consequence, al-
ternative methods have been in demand. Liang and Zeger (1986) proposed so-
called generalized estimating equations (GEE) which require only the correct
specification of the univariate marginal distributions provided one is willing to
adopt “working” assumptions about the association structure (see Chapter 5).
le Cessie and van Houwelingen (1994) suggested to approximate the true like-
lihood by means of a pseudo-likelihood (PL) function that is easier to evaluate
and to maximize (Chapters 6 and 7). Both GEE and PL yield consistent and
asymptotically normal estimators, provided an empirically corrected variance
estimator, often referred to as the sandwich estimator, is used. However, GEE
is typically geared towards marginal models, whereas PL can be used with
both marginal (Le Cessie and Van Houwelingen 1994, Geys, Molenberghs and
Lipsitz 1998) and conditional models (Geys, Molenberghs and Ryan 1997,
1999).

Alternative marginal models include the correlated binomial models of Al-
tham (1978) and the double binomial model of Efron (1986).
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4.1.1 The Bahadur model

Let the binary response Yij indicate if foetus j of cluster i has the adverse
event under investigation. To be more specific, some type of malformation is
considered here. The marginal distribution of Yij is Bernoulli with E(Yij) =
P (Yij = 1) ≡ πij , i.e., the probability that the foetus is affected according to
the specified malformation type.
Next, to describe the association between binary outcomes, the pairwise

probability P (Yij = 1, Yik = 1) = E(YijYik) ≡ πijk has to be characterized.
This “success probability” of two foetuses of the same dam can be modeled in
terms of the two marginal probabilities πij and πik, as well as an association
parameter.
Dealing with binary responses, common choices for the association para-

meter are the marginal odds ratio, the marginal correlation and the kappa
coefficient (Agresti 1990). The marginal odds ratio will be treated in Sec-
tion 4.1.3.
The marginal correlation coefficient assumes the form

Corr(Yij , Yik) ≡ ρijk =
πijk − πijπik

[πij(1− πij)πik(1− πik)]1/2
.

In terms of this association parameter, the joint probability πijk can then be
written as

πijk = πijπik + ρijk[πij(1− πij)πik(1− πik)]1/2.

Hence, given the marginal correlation coefficient ρijk and the univariate prob-
abilities πij and πik, the pairwise probability πijk can easily be calculated.
Other expressions for the associations and the pairwise probabilities can be
found in Cox (1972). Bahadur (1961) and Cox (1972) consider the marginal
correlation ρijk to measure the association.

The first and second moments of the distribution have been specified. How-
ever, a likelihood-based approach requires the complete representation of the
joint probabilities of the vector of binary responses in each litter. The full joint
distribution f(y) of Y i = (Yi1, . . . , Yini

)t is multinomial with a 2ni probability
vector. Different models put different restrictions on the 2ni joint probabili-
ties of Y i. We will first introduce the Bahadur model. The model has been
used by several authors in the context of toxicological experiments (Altham
1978, Kupper and Haseman 1978). As a consequence, it is treated here as
a representative of the marginal family. The Bahadur model gives a closed
form expression for the joint distribution f(y). The association between bi-
nary responses is expressed in terms of marginal malformation probabilities
and correlation coefficients of second, third, . . . order.
Let

εij =
Yij − πij√
πij(1− πij)

and eij =
yij − πij√
πij(1− πij)

,

where yij is an actual value of the binary response variable Yij . Further, let
ρijk = E(εijεik), ρijk� = E(εijεikεi�), . . . , ρi12...ni

= E(εi1εi2 . . . εini
).
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Then, the general Bahadur model can be represented by the expression
f(yi) = f1(yi)c(yi), where

f1(yi) =
ni∏
j=1

π
yij

ij (1− πij)1−yij

and

c(yi) = 1 +
∑
j<k

ρijkeijeik +
∑

j<k<�

ρijk�eijeikei� + . . .+ ρi12...ni
ei1ei2 . . . eini

.

Thus, the probability mass function is the product of the independence model
f1(yi) and the correction factor c(yi). The factor c(yi) can be viewed as a
model for overdispersion.
When the focus is on the special case of exchangeable littermates, this

implies on the one hand that each foetus within a litter has the same mal-
formation probability, i.e., πij = πi for littermates j = 1, . . . , ni and litters
i = 1, . . . , N . On the other hand, it implies that within a litter, the asso-
ciations of a particular order are constant, i.e., ρijk = ρi(2) for j < k,
ρijkl = ρi(3) for j < k < l, . . . , ρi12...ni

= ρi(ni), with i = 1, . . . , N . Under
exchangeability, the Bahadur model reduces to

f1(yi) = πzi
i (1− πi)ni−zi

and

c(yi) = 1 +
ni∑
r=2

ρi(r)

r∑
s=0

(
zi
s

)(
ni − zi
r − s

)
(−1)s+rλr−2s

i , (4.1)

with λi =
√

πi/(1− πi). The probability mass function of Zi, the number of
malformations in cluster i, is given by

f(zi) =
(
ni

zi

)
f(yi).

In addition, setting all three- and higher-way correlations equal to zero, the
probability mass function of Zi simplifies further to:

f(zi) ≡ f(zi|πi, ρi(2), ni) =
(
ni

zi

)
πzi
i (1− πi)ni−zi

×
[
1 + ρi(2)

{(
ni − zi

2

)
πi

1− πi
− zi(ni − zi)

+
(

zi
2

)
1− πi
πi

}]
. (4.2)

This very tractable expression of the Bahadur probability mass function
is advantageous over other representations, such as an odds ratio representa-
tion for which no closed form solution for the joint distribution is possible.
However, a drawback is the fact that the correlation between two responses
is highly constrained when the higher order correlations are removed. Even
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when higher order parameters are included, the parameter space of marginal
parameters and correlations is known to be of a very peculiar shape. Bahadur
(1961) discusses restrictions on the correlation parameters. The second order
approximation in (4.2) is only useful if it is a probability mass function. Ba-
hadur indicates that the sum of the probabilities of all possible outcomes is
one. However, depending on the values of πi and ρi(2), expression (4.2) may
fail to be non-negative for some outcomes. The latter results in restrictions
on the parameter space which, in case of the second order approximation, are
described by Bahadur (1961). From these, it can be deduced that the lower
bound for ρi(2) approaches zero as the cluster size increases. However, it is
important to notice that also the upper bound for this correlation parameter
is constrained. Indeed, even though it is one for clusters of size two, the upper
bound varies between 1/(ni − 1) and 2/(ni − 1) for larger clusters. Taking a
(realistic) litter of size 12, the upper bound is in the range (0.09; 0.18). Kup-
per and Haseman (1978) present numerical values for the constraints on ρi(2)
for choices of πi and ni. Restrictions for a specific version where a third order
association parameter is included as well are studied by Prentice (1988), while
a more general situation is discussed in Appendix A.
The marginal parameters πi and ρi(2) can be modeled using a composite link

function. Since Yij is binary, the logistic link function for πi is a natural choice.
In principle, any link function, such as the probit link, the log-log link or the
complementary log-log link, could be chosen. A convenient transformation of
ρi(2) is Fisher’s z-transform. This leads to the following generalized linear
regression relations  ln

(
πi

1−πi

)
ln
(

1+ρi(2)

1−ρi(2)

)  ≡ ηi = Xiβ, (4.3)

where Xi is a design matrix and β is a vector of unknown parameters. For
example, a linear marginal logit model and a constant association ρi(2) = ρ(2)

implies:

Xi =
(

1 di 0
0 0 1

)
and β =

 β0

βd
β2

 . (4.4)

Obviously, this model can be extended by changing the design matrix and the
vector of regression parameters, such that the logit of πi depends on dose via,
e.g., a quadratic or a higher order polynomial function. Also, the association
parameter ρi(2) can be modeled as some function of dose.
Denote the log-likelihood contribution of the ith cluster by

&i = ln f(zi|πi, ρ(2), ni).

The maximum likelihood estimator β̂ for β is defined as the solution to the
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score equations U(β) = 0. The score function U(β) can be written as

U(β) =
N∑
i=1

Xt
i (T

t
i )

− 1Li (4.5)

where N is the number of clusters in the dataset,

Ti =
∂ηi
∂Θi

=

(
∂ηi1
∂πi

∂ηi2
∂πi

∂ηi1
∂ρ(2 )

∂ηi2
∂ρ(2 )

)
=

(
1

πi (1−π  i ) 
0

0  
2

(1−ρ(2 ) )(1+ρ(2 ) )

)
,

Li =
∂&i
∂Θi

=

(
∂�i

∂πi
∂�i

∂ρ(2 )

)
and

Θi = (πi, ρ(2))t, the set of natural parameters.

A Newton-Raphson algorithm can be used to obtain the maximum likelihood
estimates β̂ and an estimate of the asymptotic covariance matrix of β̂ can be
obtained from the observed information matrix at maximum.
When including higher order correlations, implementing the score equa-

tions and the observed information matrices becomes increasingly cumber-
some. While the functional form (4.5) does not change, the components Ti
and Li become fairly complicated. Fisher’s z transform can be applied to all
correlation parameters ρi(r ). The design matrix Xi is extended in a straight-
forward fashion. Unfortunately, fitting a higher order Bahadur model, whether
through numerical or analytical maximization, is not straightforward, due to
increasingly complex restrictions on the parameter space.
Observing that, in many studies considered, interest will be restricted to

the marginal mean function and the pairwise association parameter, one can
replace a full likelihood approach by estimating equations where only the first
two moments are modeled and working assumptions are adopted about third
and fourth order moments. A thorough treatment is found in Liang, Zeger
and Qaqish (1992). See also Chapter 5. Obviously, an important special form
for these working assumptions is given by setting the higher order parameters
equal to zero, thereby avoiding the need for moment-based estimation of nui-
sance parameters. Consistent point estimates are supplemented with robust
standard errors (following from the sandwich estimator), rather than with
purely model-based (or naive) standard errors. Often, point estimates dif-
fer only slightly from their likelihood counterparts, while test statistics may
change considerably. This point will be illustrated in Chapter 11.

4.1.2 The George-Bowman model

George and Bowman (1995) propose a model for the analysis of exchangeable
binary data. The probability mass function for the number of malformations
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Zi in litter i consisting of ni viable foetuses is presented as:

f(zi|λi,zi
, λi,zi+1, . . . , λi,ni

, ni) =(
ni

zi

) ni−zi∑
�=0

(−1)�
(

ni − zi
&

)
λi,zi+�, (4.6)

in which

λi,k =

{
P (Yi1 = 1, Yi2 = 1, . . . , Yik = 1) if k = 1, . . . , ni,

1 if k = 0.

As a consequence, the parameter λi,k can be interpreted as the probability
that in litter i, all foetuses in a set of k exhibit the adverse event under
consideration. The mean of the number of malformed foetuses and the second
order correlation between two responses of the same litter can be expressed
in terms of λi,k parameters:

E(Zi) =
ni∑
j=1

E(Yij) = niP (Yij = 1) = niλi,1

and

Corr(Yij , Yik) =
E(YijYik)− E(Yij)E(Yik)

E(Y 2
ij)− (E(Yij))2

=
P (Yij = 1, Yik = 1)− P (Yij = 1)P (Yik = 1)

P (Yij = 1)− P (Yij = 1)2

=
λi,2 − λ2

i,1

λi,1(1− λi,1)
.

George and Bowman (1995) also give expressions for higher order moments
of Zi and for higher order correlations.
Under independence of the ni responses of litter i,

λi,k = P (Yi1 = 1) . . . P (Yik = 1) = λki,1

and (4.6) can be written as:

f(zi|λi,zi
, λi,zi+1, . . . , λi,ni

, ni) =
(
ni

zi

) ni−zi∑
�=0

(−1)�
(

ni − zi
&

)
λzi
i,1λ

�
i,1

=
(
ni

zi

)
λzi
i,1

ni−zi∑
�=0

(
ni − zi

&

)
(−λi,1)�

=
(
ni

zi

)
λzi
i,1(1− λi,1)ni−zi .

Hence, under independence, the George-Bowman model of which the para-
meters are λi,zi

, λi,zi+1, . . . , λi,ni
and ni reduces to a binomial model with

parameters ni and λi,1.
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George and Bowman focus attention on the so-called folded logistic para-
meterization:

λi,zi+�(β) =
2

1 + exp [−Xiβ ln(zi + &+ 1)]
(4.7)

where Xi = (1, di) and β = (β0, βd)t. Hence, (4.7) can be rewritten as:

λi,zi+�(β) =
2

1 + (zi + &+ 1)−β0−βddi
.

However, it turns out that the “specific” George-Bowman model with the
folded logistic parameterization does not simplify to the binomial model in this
case. In addition, the model is not coding invariant, i.e., if the 0/1 coding for
successes and failures is swapped, the model changes and so do the maximum
likelihood estimates. This should be seen as an undesirable feature of the
model.
The maximum likelihood estimates of the George-Bowman model with

this specific parameterization are found by the Newton-Raphson algorithm.
George and Bowman prove that Xiβ < 0 is necessary and sufficient in order
to have a valid probability mass function.

4.1.3 The Dale and Probit Models

The probit and Dale models have been proposed for multivariate and repeated
ordered categorical outcomes, of which binary outcomes are a special case. In
the case of the probit model, the ordinal outcome vector is assumed to arise
from discretizing an underlying multivariate normal, whereas in the case of
the Dale model an underlying Plackett distribution is assumed. In the first
case, the association is captured by means of correlation coefficients, whereas
in the second case global odds ratios are used to model the association.
The outcome for cluster i is a series of measurements yij (j = 1, . . . , ni).

Assume that yij can take on cj distinct ordered values kj = 1, . . . , cj . It is
convenient to define so-called cumulative multi-indicator functions:

zi(k) = zi(k1, . . . , kni
) = I(yi ≤ k).

The corresponding probability is denoted by µi(k). The choice to use cumu-
lative indicators is in agreement with the ordinal nature of the outcomes.
Setting one or more of the indices kj equal to their maximal value cj has
the effect of marginalizing over the corresponding outcome. Doing this for all
but one index results in the univariate indicators zijk = I(yij ≤ k) and their
corresponding marginal probability µijk.

The ordering needed to stack the multi-indexed counts and probabilities into
a vector will be assumed fixed. Several orderings of both zi and µi are possible.
A natural choice is the lexicographic ordering, but this has the disadvantage
of dispersing the univariate marginal counts and means over the entire vector.
Therefore, we will group the elements first by dimensionality.
We can now complete the model by choosing appropriate link functions.
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For the vector of links ηi we consider a function, mapping the Ci-vector µi

(Ci = c1 · c2 · · · · · cTi
) to

ηi = ηi(µi), (4.8)

a C
′
i -vector. Often, Ci = C

′
i , and ηi and µi have the same ordering. A coun-

terexample is provided by the probit model, where the number of link func-
tions is smaller than the number of mean components, as soon as ni > 2.

We consider particular choices of link functions. The univariate logit link
becomes ηijk = ln(µijk)− ln(1− µijk) = logit(µijk). The probit link is ηijk =
Φ−1

1 (µijk), with Φ1 the univariate standard normal distribution.
However, univariate links alone do not fully specify ηi, and hence leave

the joint distribution partly undetermined. Full specification of the associa-
tion requires addressing the form of pairwise and higher-order probabilities.
First, we will consider the pairwise associations. Let us denote the bivariate
probabilities, pertaining to the j1th and j2th outcomes, by

µi,j1j2,k1k2 = µi(c1, . . . , cj1−1, k1, cj1+1, . . . , cj2−1, k2, cj2+1, . . . , cni
).

The marginal correlation coefficient is defined as

ρi,j1j2,k1k2 =
µi,j1j2,k1k2 − µij1k1µij2k2√

µij1k1(1− µij1k1)µij2k2(1− µij2k2)
,

which is the basis of the Bahadur model discussed in Section 4.1.1.
The Dale model is based on the marginal global odds ratio defined by

ψi,j1j2,k1k2 =
(µi,j1j2,k1k2)(1− µij1k1 − µij2k2 + µi,j1j2,k1k2)
(µij2k2 − µi,j1j2,k1k2)(µij1k1 − µi,j1j2,k1k2) (4.9)

and usefully modeled on the log scale. Higher order global odds ratios are
easily introduced using ratios of conditional odds (ratios). Let

µij1|j2(wj2) = P (zij1k1 = 1|zij2k2 = wj2 , Xi,θ) (4.10)

be the conditional probability of observing a success at occasion j1, given the
value wj2 is observed at occasion j2, and write the corresponding conditional
odds as

ψij1|j2(wj2) = µij1|j2(wj2)/[1− µij1|j2(wj2)].

The pairwise marginal odds ratio, for occasions j1 and j2, is defined as

ψij1j2 =
{P (zij1k1 = 1, zij2k2 = 1)} {P (zij1k1 = 0, zij2k2 = 0)}
{P (zij1k1 = 0, zij2k2 = 1)} {P (zij1k1 = 1, zij2k2 = 0)} =

ψij1|j2(1)
ψij1|j2(0)

,

in accordance with (4.9). This formulation can be exploited to define the
higher order marginal odds ratios in a recursive fashion:

ψij1...jmtm+1 =
ψij1...jm|jm+1(1)
ψij1...jm|jm+1(0)

, (4.11)
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where ψij1...jm|jm+1(wm+1) is defined by conditioning all probabilities occur-
ring in the expression for ψij1...jm

on Zijm+1km+1 = wjm+1 . The choice of the
conditioning variable is immaterial.
The multivariate probit model also fits within the class defined by (4.8).

For three categorical outcome variables, the inverse link is specified by

µijk = Φ1(ηijk), (4.12)
µi,j1j2,k1k2 = Φ2(ηij1k1 , ηij1k2 , ηi,j1j2,k1k2), (4.13)

µi,123,k1k2k3 = Φ3(ηi1k1 , ηi2k3 , ηi3k3 , ηi,12,k1k2 , ηi,13,k1k3 , ηi,23,k2k3),(4.14)

where the notation for the three-way probabilities is obvious. The association
links ηi,ts,k� represent any transform (e.g., Fisher’s z-transform) of the poly-
choric correlation coefficient. It is common practice to keep each correlation
constant throughout a table, rather than having it depend on the categories:
ηi,j1j2,k1k2 ≡ ηi,j1j2 . Relaxing this requirement may still give a valid set of
probabilities, but the correspondence between the categorical variables and
a latent multivariate normal variable is lost. Finally, observe that univariate
links and bivariate links (representing correlations) fully determine the joint
distribution. This implies that the mean vector and the link vector will have
a different length, except in the univariate and bivariate cases.
Model formulation is completed by specifying appropriate design matri-

ces. Parameter estimation then proceeds by means of, for example, maximum
likelihood. Especially for longer sequences, computational requirements are
non-trivial and it may be necessary to use alternative estimation procedures
such as pseudo-likelihood.

4.2 Conditional Models

In a conditional model the parameters describe a feature (probability, odds,
logit, . . . ) of (a set of) outcomes, given values for the other outcomes (Cox
1972). The best known example is undoubtedly the log-linear model. Rosner
(1984) described a conditional logistic model. Due to the popularity of mar-
ginal (especially generalized estimating equations) and random-effects models
for correlated binary data, conditional models have received relatively little at-
tention, especially in the context of multivariate clustered data. Diggle, Liang
and Zeger (1994, pp. 147–148) criticized the conditional approach because the
interpretation of the dose effect on the risk of one outcome is conditional on
the responses of other outcomes for the same individual, outcomes of other
individuals and the litter size. Molenberghs, Declerck and Aerts (1998) and
Aerts, Declerck and Molenberghs (1997) have compared marginal, conditional
and random-effects models for univariate clustered data. Their results are en-
couraging for the conditional model, since they are competitive for the dose
effect testing and for benchmark dose estimation, and because they are com-
putationally fast and stable. Molenberghs and Ryan (1999) discuss, in the
specific context of exchangeable binary data, the advantages of conditional
models and show how, with appropriate care, the disadvantages can be over-
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come. They constructed the joint distribution for clustered multivariate bi-
nary outcomes, based on a multivariate exponential family model. A slightly
different approach, also based on the exponential family, is presented in Fitz-
maurice, Laird, and Tosteson (1996). An advantage of such a likelihood-based
approach is that, under correct model specification, efficiency can be gained
over other procedures such as generalized estimating equations (GEE) meth-
ods. Furthermore, the model provides a natural framework for quantitative
risk assessment (Chapter 10). Present approaches estimate benchmark doses
(Crump 1984) based on the marginal probability of a single offspring being af-
fected (Chen and Kodell 1989). From a biological perspective, one might argue
that it is important to take into account the health of the entire litter when
modeling risk as a function of dose. The likelihood basis of the Molenberghs
and Ryan (1999) model allows calculation of quantities such as the probability
that at least one littermate is affected (probability of an affected litter). In
contrast, GEE based models do not provide a way to derive such quantities
since they do not specify the joint probability between outcomes but only
marginal probabilities and a working correlation matrix. While they could be
calculated from a fully specified marginal model, fitting these models is ham-
pered by lengthy computations and/or parameter restrictions (Molenberghs,
Declerck and Aerts 1998 and Aerts, Declerck and Molenberghs 1997).

The flexibility of the Molenberghs and Ryan (1999) model partly relies on
the exponential family framework. However, maximum likelihood estimation
can be unattractive, due to excessive computational requirements. For exam-
ple, with multivariate exponential family models, the normalizing constant
can have a cumbersome expression, rendering it hard to evaluate (Arnold and
Strauss 1991). Several suggestions have been made to overcome this prob-
lem, such as Monte Carlo integration (Tanner 1991). For example, Geyer and
Thompson (1992) use Markov Chain Monte Carlo simulations to construct a
Monte Carlo approximation to the analytically intractable likelihood. Arnold
and Strauss (1991) and Arnold, Castillo and Sarabia (1992) propose the use
of a so-called pseudo-likelihood (PL). Pseudo-likelihood (or pseudo-maximum-
likelihood) methods are alternatives to maximum likelihood estimation that
retain the methodology and properties while trying to eliminate some of the
difficulties such as strong distributional assumptions or intensive computa-
tions. The idea is that a parametric family of models is specified, to which
likelihood methodology is applied; the method is denoted “pseudo”, as there
is no assumption that this family is the true distribution generating the data.
Geys, Molenberghs and Ryan (1997, 1999) implemented a pseudo-likelihood
method for the Molenberghs and Ryan (1999) model that replaces the joint
distribution of the responses, a multivariate exponential-family model, by a
product of conditional densities that do not necessarily multiply to the joint
distribution (see also Chapters 6 and 7). In this approach, the normalizing
constant cancels, thus greatly simplifying computations, especially when lit-
ter sizes are large and variable (since the normalizing constant depends on
litter size). In following chapters we will show that pseudo-likelihood esti-
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mation is an attractive alternative for maximum likelihood estimation in the
context of clustered binary data. Moreover, since the pseudo-likelihood still
reflects the underlying likelihood it can be useful for dose-response modeling
(e.g., to determine a benchmark dose). Pseudo-likelihood estimation turned
out to be also extremely useful in the context of spatial statistics (Cressie
1991). Besag (1975) used pseudo-likelihood estimation in the context of a
general Markov random field and established consistency of the estimators.
A selection of other applications of this technique can be found in Connolly
and Liang (1988), Liang and Zeger (1989) and le Cessie and van Houwelingen
(1994).
As before, we consider an experiment involving N clusters, the ith of which

contains ni individuals, each of whom are examined for the presence or absence
of M different responses. Suppose for the moment that Yijk = 1 when the
kth individual in cluster i exhibits the jth response and 0 otherwise. Let Y i

represent the vector of outcomes for the ith cluster, and xi an associated
vector of cluster level covariates.

4.2.1 No Clustering

Let us first suppose there is no clustering (ni = 1; i = 1, . . . , N). Because
k ≡ 1 in this setting, we drop this index temporarily from our notation. The
observable outcome is thus Y i = (Yi1, . . . , YiM )T . Next, consider the following
probability mass function proposed by Cox (1972):

fY i(yi;Θi) = exp


M∑
j=1

θijyij +
∑
j<j′

ωijj′yijyij′ + . . . (4.15)

+ ωi1...Myi1 . . . yiM −A(Θi)

 .

The θ parameters can be thought of as “main effects”, whereas the ω para-
meters are association parameters or interactions. Models that do not include
all interactions are derived by replacing W i, the vector of the ω parameters,
by one of its subvectors. A useful special case is found by setting all three and
higher order parameters equal to zero, which is a member of the quadratic
exponential family discussed by Zhao and Prentice (1990). Thélot (1985) stud-
ied the case where M = 2. If M = 1, the model reduces to ordinary logistic
regression.
We will briefly outline standard procedures for likelihood based parameter

estimation in this setting. Modeling in terms of a parsimonious parameter
vector of interest can be achieved using a linear model of the form Θi = Xiβ,
where Θi is a vector of natural parameters, Xi is a q × p design matrix and
β a p× 1 vector of unknown regression coefficients. Let the mean parameter
be πi. Then it is a basic property of exponential families (e.g., Brown 1986,
p. 36) that πi is related to the natural parameter Θi by πi = ∂A(Θi)/∂Θi.
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Here, A(Θi) is a normalizing constant. Next, the log-likelihood can be written
as

& =
N∑
i=1

ln f(yi;Θi) =
N∑
i=1

{
βTXT

i wi −A(Xiβ)
}
,

and the score function is

U(β) =
N∑
i=1

XT
i (wi − πi).

The maximum likelihood estimator for β is defined as the solution to U(β) =
0. It is usually found by applying a Newton-Raphson procedure, which co-
incides with a Fisher scoring algorithm for exponential family models with
canonical link functions.

4.2.2 Single Clustered Outcome

Let us now consider a single clustered outcome. Because the index j always
equals 1, we drop it temporarily from our notation. We re-introduce however
the subscript k to indicate an individual within a cluster.
Similarly to the Thélot model (a bivariate conditional model, Thélot 1985),

Molenberghs and Ryan (1999) derived the joint distribution of the clustered
binary data Y i as:

fY (yi;Θi
∗, ni) = exp

{
ni∑
k=1

θ∗i yik +
∑
k<k′

δ∗i yikyik′ −A(Θ∗
i )

}
,

(4.16)

with δ∗i describing the association between pairs of individuals within the ith
cluster.
They code Yijk = 1 when the kth individual in cluster i exhibits the jth

response and −1 otherwise. They use this coding rather than 1 and 0 since it
provides a parameterization that more naturally leads to desirable properties
when the roles of success and failure are reversed (see Cox andWermuth 1994).
Defining the number of individuals from cluster i with positive response to be
zi, (4.16) then becomes

fY (yi;Θ
∗
i , ni) = exp

{
θ∗i zi − θ∗i (ni − zi)

+δ∗i

[(
zi
2

)
+
(
ni − zi

2

)
− zi(ni − zi)

]
−A(Θ∗

i )
}

= exp
{
θ∗i (2zi − ni) + δ∗i

[(
ni

2

)
− 2zini + 2z2

i

]
−A(Θ∗

i )
}
. (4.17)

Upon absorbing constant terms into the normalizing constant and using the
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reparametrization θi = 2θ∗i and δi = 2δ∗i this becomes

fY (yi;Θi, ni) = exp
{
θiz

(1)
i + δiz

(2)
i −A(Θi)

}
, (4.18)

with z
(1)
i = zi and z

(2)
i = −zi(ni − zi). For this model, independence corre-

sponds to δi = 0. A positive δi corresponds to classical clustering or overdis-
persion, whereas a negative parameter value occurs in the underdispersed
case. It is worthwhile to note that even for underdispersion, no restrictions
are required on the parameter space. Molenberghs and Ryan (1999) show that
model (4.18) has several additional desirable properties. First, the model is
clearly invariant to interchanging the codes of successes and failures, whence
both estimation and testing will be invariant for this change as well. Second,
the conditional probability of observing a positive response in a cluster of size
ni, given that the remaining littermates yield zi − 1 successes, is given by:

P (yik = 1|zi − 1, ni) =
exp[θi − δi(ni − 2zi + 1)]

1 + exp[θi − δi(ni − 2zi + 1)]
,

(4.19)

which decreases to zero when ni increases and zi is bounded, and approaches
unity for increasing ni and bounded ni − zi, whenever there is a positive
association between outcomes. From (4.19) it is clear that the conditional logit
of an additional success, given zi − 1 successes, equals θi − δi(ni − 2zi + 1).
Thus, upon noting that the second term vanishes if zi − 1 = (ni − 1)/2, θi is
seen to be the conditional logit for an additional success when about half of
the littermates exhibit a success already. Similarly, the log odds ratio for the
responses between two littermates is equal to 2δi, confirming the association
parameter interpretation of the δ-parameter. Finally, the marginal success
probability in a cluster of size ni is clearly a (non-linear) function of ni:

E

(
Zi

ni

)
=
∑ni

z=0 z
(
ni

z

)
exp{θiz − δiz(ni − z)}∑ni

z=0 ni

(
ni

z

)
exp{θiz − δiz(ni − z)} .

Because this model is conditional in nature, this marginal quantity does not
simplify in general. Nevertheless, this expectation can be easily calculated and
plotted to explore the relationship between cluster size and response proba-
bility.

4.2.3 Clustered Multivariate Outcomes

Suppose again that yijk = 1 when the kth individual in cluster i exhibits
response j and −1 otherwise. It is convenient to group the outcomes for the
ith cluster in an Mni vector Y i = (Yi11, . . . , Yi1ni

, . . . , YiMni
). Molenberghs

and Ryan (1999) proposed the following model for the joint distribution of
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indiv. k indiv. k′

Yijk δ∗ij✛ ✲ Yijk′ outcome j

outcome j′

ω∗
ijj′

✻

❄

γ∗
ijj′

✟✟✟✟✟✟✯

✟✟✟✟✟✟✙

ω∗
ijj′

✻

❄

Yij′k δ∗ij′✛ ✲ Yij′k′

Figure 4.1 Association structure for outcomes j and j ′ on individuals k and k ′ in

cluster  i.

clustered multivariate binary data:

fY  i
(yi;Θ

∗
i ) = exp


M∑
j =1

ni∑
k =1

θ∗ijyijk +
M∑
j =1

∑
k<k′

δ∗ijyijkyijk′

+
∑
j<j′

ni∑
k =1

ω∗
ijj′yijkyij′k

+
∑
j<j′

∑
k �=k′

γ∗
ijj′yijkyij′k′ − A(Θ∗

i )

 , (4.20)

where A(Θ∗
i ) is the normalizing constant, resulting from summing (4.20) over

all 2Mni possible outcomes. The building blocks of this model are clearly the
“main effects” (θ∗) and three types of association parameters, reflecting three
different types of association. For example, δ∗ij refers to the association be-
tween two different individuals from the same cluster on the same outcome j,
ω∗
ijj′ refers to the association between outcomes j and j′ for a single individ-

ual within cluster i and γ∗
ijj′ gives the association between outcomes j and j′

for two different individuals in the same cluster. The three different types of
associations captured in the model are depicted in Figure 4.1.
The absence of individual-specific subscripts reflects the implicit exchange-
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ability assumption between any two individuals within the same cluster. This
assumption will now be used to simplify the model. Defining zij as the number
of individuals from cluster i positive on outcome j and zijj′ as the number of
individuals in cluster i, positive on both outcomes j and j′, Molenberghs and
Ryan (1999) derived (after reparameterization):

fY i
(yi;Θi) = exp


M∑
j =1

θijz 
(1)
ij +

M∑
j =1

δijz 
(2)
ij

+
∑
j<j′

ωijj′z 
(3)
ijj′ +

∑
j<j′

γijj′z 
(4)
ijj′ −A(Θi)

 , (4.21)

where

z
(1)
ij = zij

z
(2)
ij = −zij(ni − zij)

z
(3)
ijj′ = 2zijj′ − zij − zij′ (4.22)

z
(4)
ijj′ = −zij(ni − zij′)− zij′(ni − zij)− z  

(3)
ijj′ .

Advantages of this model are the flexibility with which both main effects and
associations can be modeled, and the absence of constraints on the parameter
space, which eases interpretability. Both foetus-based and litter-based mal-
formation probabilities (Chapter 10) have appealing and simple expressions.
This aspect is important when using the model in a dose-response setting.
Further, the fact that the probability model depends explicitly (see (4.22))
and implicitly on the cluster size is an advantage since it is in line with the
observation that litter size itself may depend on the level of exposure. Note
that model (4.21) is conditional in nature, since it describes a feature of (a
set of) outcomes conditional on the other outcomes. More precisely, it implies
conditional odds and conditional odds ratios that are log-linear in the natural
parameters. Molenberghs and Ryan (1999) construct the conditional logit as-
sociated with the presence and absence of outcome j for an individual k in
cluster i, given all other outcomes in the same cluster, and show that this
function depends on cluster size and on the observed pattern of the remaining
outcomes. Let κijk = 1 if the kth individual exhibits a success on the jth
variable and 0 otherwise. Then

log
pr(Yijk = 1|yij′k′ , j′ = j or k′ = k)
pr(Yijk = −1|yij′k′ , j′ = j or k′ = k)

= θij + δij(2zij − ni − 1)

+
∑
j′ �=j

ωijj′(2κij′k − 1) +
∑
j′ �=j

γijj′(2zij′ − ni − 2κij′k + 1). (4.23)

Marginal quantities are fairly complicated functions of the parameters and
are best represented graphically.
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4.2.4 Implications for Risk Assessment

The model described in the previous section can be used in various ways as a
basis of risk assessment. First, we can focus on the number of dead or resorbed
foetuses out of the number of implant versus the number of malformed foetuses
out of the number of viable foetuses. Second, an adverse event can be defined
in terms of the foetus or the litter.
Representing the number of dead foetuses in cluster i by Ri out of mi

implants (similar to zi malformations out of ni viable foetuses), expression
(4.17) can be used for this situation as well:

f(yi|ψ∗
i , φ

∗
i ,mi) = exp {ψ∗

i (2ri −mi)

+φ∗
i

[(
mi

2

)
− 2rimi + 2r2

i

]
−A∗

i

}
. (4.24)

After absorbing the constant terms into the normalizing constant and after a
simple reparameterization (ψi = 2ψ∗

i and φi = 2φ∗
i ), one obtains from (4.24):

f(yi|ψi, φi,mi) = exp {ψiri − φiri(mi − ri)−Ai} . (4.25)

From formula (4.25), the probability mass function of the number of fetal
deaths follows:

f(ri|ψi, φi,mi) =
(
mi

ri

)
exp {ψiri − φiri(mi − ri)−Ai} .

(4.26)

Hence, the normalizing constant Ai can be written as:

Ai = ln

{
mi∑
ri=0

(
mi

ri

)
exp {ψiri − φiri(mi − ri)}

}
≡ A(ψi, φi,mi).

Based on (4.26), the conditional logit for a dead foetus given the number of
deaths in the group of remaining foetuses can be written as a linear function
of ψi and φi:

logit[P (foetus j dead | ri of the other foetuses also dead)]
= ψi − φi(mi − 2ri − 1),

where j = 1, . . . ,mi. This implies that if the number of implants is odd, then
the parameter ψi equals the logit for a dead foetus given that one half of the
remaining foetuses are dead as well. Also, (4.26) results in

ψi =
1
mi

ln
(
P (Ri = mi)
P (Ri = 0)

)
. (4.27)

From (4.26) and (4.27), it follows that the parameter ψi = 0 if and only if the
distribution of Ri is symmetric around mi/2. Furthermore, it can be shown
that the parameter φi is one half of the log odds ratio for a pair of foetuses
given the number of deaths in the remaining group of foetuses. Thus, clearly,
the parameters in the model of Molenberghs and Ryan have a conditional
interpretation.
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A special case of the conditional model (4.26) is obtained when the associ-
ation parameter φi = 0:

f(ri|ψi,mi) =
(
mi

ri

)
exp(ψiri −Ai). (4.28)

Let

ψi = ln
{

ωi

1− ωi

}
.

Then, formula (4.28) can be re-expressed as

f(ri|ψi,mi) =
(
mi

ri

){
ωi

1− ωi

}ri

exp(−Ai)

=
(
mi

ri

)
ωri
i (1− ωi)mi−ri .

Hence, if in the conditional model with parameters ψi, φi and mi, the para-
meter φi is set equal to zero, then this model reduces to the logistic regression
model with parameters mi and

ωi =
1

1 + exp(−ψi)
.

Furthermore, one notices from (4.26) that positive and negative values of φi

correspond to overdispersion and underdispersion respectively. Also, there are
no restrictions on the parameter space of the conditional model, even in case
of underdispersion (Molenberghs and Ryan 1999).
The parameters ψi and φi can be modeled as(

ψi

φi

)
= Xiβ,

with Xi and β as in (4.4). Estimation of these model parameters can easily
be carried out using maximum likelihood techniques. Grouping the summary
statistics in

W i =
(

Ri

−Ri(mi −Ri)

)
,

the contribution of the ith cluster to the log-likelihood is given by &i =
wt

iXiβ −Ai, whence the score function becomes

U(β) =
C∑
i=1

Xt
i (wi − E(W i)).

The expectation πi of Ri/mi, the marginal death probability in a cluster of
mi implants, is clearly a (non-linear) function of mi:

πi =

∑mi

ri=0 ri

(
mi

ri

)
exp {(β0 + βddi)ri − β2ri(mi − ri)}∑mi

ri=0 mi

(
mi

ri

)
exp {(β0 + βddi)ri − β2ri(mi − ri)}

.
(4.29)
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Methods similar to those of Cox and Wermuth (1994) could be invoked to
develop approximate expressions for the marginal means and odds ratios. Be-
cause the model is conditional in nature, the marginal parameter (4.29) does
not simplify in general. As a consequence, the conditional model implies a
natural dependence of πi on the number of implants, in contrast to mar-
ginal models. Furthermore, only when the clustering parameters are equal
to zero, the conditional model, the Bahadur model and the beta-binomial
model reduce to logistic regression. In Section 4.1.2, it has been shown that
the general expression of the George-Bowman model reduces to the logistic
regression model too if the foetuses of a cluster are independent. The previ-
ous discussion implies that the parameters of the conditional model are not
directly comparable to their counterparts in the Bahadur, George-Bowman
and beta-binomial models.

4.3 Cluster-specific Models

Cluster-specific models are differentiated from population-averaged models
by the inclusion of parameters that are specific to the cluster. Unlike for
correlated Gaussian outcomes, the parameters of the cluster-specific and of
the population-averaged models for correlated binary data describe different
types of effects of the covariates on the response probabilities (Neuhaus 1992).
The choice between population-averaged and cluster-specific strategies may

heavily depend on the scientific goals. Population-averaged models evaluate
the overall risk as a function of covariates; the conditionally specified models
and marginal models, described above, belong to this class. With the cluster-
specific approach, the response rates are modeled as a function of covariates
and parameters, specific to a cluster. In such models, interpretation of fixed-
effect parameters is conditional on a constant level of the cluster-specific pa-
rameter (e.g., random effect). Population-averaged comparisons, on the other
hand, make no use of within cluster comparisons for cluster varying covariates
and substantially underestimate within cluster risks. Neuhaus, Kalbfleisch and
Hauck (1991) discuss parameter interpretations of these models. They also
draw the analogy with omitted covariates; i.e., unless the included and omit-
ted covariates are uncorrelated (conditional on the response), the effect of a
randomly assigned treatment will be biased towards zero. Thus, from these
papers, population-averaged effects would be expected to be closer to zero
than cluster-specific effects.
Cluster-specific parameters can be dealt with in essentially three ways: (1)

as fixed effects, (2) as random-effects, and (3) by conditioning upon them. The
first approach is seemingly simplest but in many cases flawed since the num-
ber of parameters then increases with a rate proportional to the sample size,
thereby invalidating most standard inferential results. The second approach
is very popular. There are two routes to introduce randomness into the model
parameters. Stiratelli, Laird and Ware (1984) assume the parameter vector
to be normally distributed. This idea has been carried further in the work on
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so-called generalized linear mixed models (Breslow and Clayton 1993) which
is closely related to linear and non-linear mixed models. Alternatively, Skel-
lam (1948) introduced the beta-binomial model, in which the adverse event
probability of any foetus of a particular cluster comes from a beta distribu-
tion. Hence, this model can also be viewed as a random effects model. The
third approach is well known in epidemiology, more precisely in the context of
matched case-control studies. In particular, conditional logistic regression is
then often considered (Breslow and Day 1987). In general, with so-called con-
ditional likelihood methods, one conditions on the sufficient statistics for the
cluster-specific effects (Ten Have, Landis and Weaver 1995, Conaway 1989).
In the remainder of this section we will consider the beta-binomial model

and classical mixed-effects models. To facilitate introduction and understand-
ing of generalized linear mixed model, we first introduce the linear and non-
linear mixed-model family. A somewhat different way of introducing mixed-
effects models is through the concept of multilevel models. These will be stud-
ied in some detail in Chapter 15.
It is implicit in the treatment here that the models will be fitted using maxi-

mum likelihood or related estimation methods. Alternatively, a fully Bayesian
treatment could be envisaged (Carlin and Louis 1996). However, the study of
these methods is outside the scope of this text.

4.3.1 The Beta-binomial Model

Rather than modeling marginal functions directly, a popular approach is to
assume a random effects model in which each litter has a random parameter
(vector). Skellam (1948), Kleinman (1973) and Williams (1975) assume the
malformation probability Pi of any foetus in litter i to come from a beta
distribution with parameters αi and βi:

pαi−1(1− p)βi−1

B(αi, βi)
, 0 ≤ p ≤ 1,

where B(., .) denotes the beta function. Conditional on Pi, the number of
malformations Zi in the ith cluster follows a binomial distribution. This leads
to the well-known beta-binomial model. The mean of this distribution is

µi = niπi = ni
αi

αi + βi
(4.30)

and the variance is σ2
i = niπi(1 − πi) 1+niθi

1+θi
with θi = 1/(αi + βi). It can be

shown that the intra-litter correlation can be expressed as

ρi =
1

αi + βi + 1
. (4.31)

In a litter of size ni, the probability mass function of Zi can be expressed
directly in terms of the mean and correlation parameters (4.30) and (4.31),
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i.e., f(zi | πi, ρi, ni) can be expressed as(
ni

zi

)
B(πi(ρ−1

i − 1) + zi, (1− πi)(ρ−1
i − 1) + ni − zi)

B(πi(ρ−1
i − 1), (1− πi)(ρ−1

i − 1))
,

(4.32)

where B(., .) denotes the beta function. The only association parameter of this
model is ρi, which is the correlation between two binary responses of litter i.
The higher order correlations of the beta-binomial model can be expressed as
a function of the mean malformation probability πi and ρi. The association
in both the beta-binomial and the Bahadur model is expressed by means
of the intraclass correlation. It turns out that both models have the same
first and second moments. As a consequence, the parameter ρi of the beta-
binomial model equals ρi(2) of the Bahadur model. The parameters πi and
ρi of the beta-binomial model have a marginal interpretation and, therefore,
they are the parameters in the derived marginal model as well. This results
in similarities between the beta-binomial and marginal models, such as the
Bahadur model.
It can be shown (Williams 1975) that the contribution of the ith cluster to

the log-likelihood, ln f(zi|πi, ρi, ni) ≡ &i, can be written as

&i =
zi−1∑
r=0

ln
(
πi +

rρi
1− ρi

)
+

ni−zi−1∑
r=0

ln
(
1− πi +

rρi
1− ρi

)

−
ni−1∑
r=0

ln
(
1 +

rρi
1− ρi

)
, (4.33)

with i = 1, ..., N . It follows from (4.33) that if the association parameter ρi
equals zero, then the beta-binomial model reduces to the logistic regression
model.
Assuming the same generalized linear regression relations (4.3) and (4.4) for

πi and ρi, the maximum likelihood estimator β̂ is the solution to U(β) = 0
with the score function for β defined as in (4.5).
Kupper and Haseman (1978) compare the Bahadur model to the beta-

binomial model. They conclude that the models perform similarly in three
clustered data experiments, whereas they both outperform the (naive) bino-
mial model.

4.3.2 Mixed Models

Perhaps the most commonly encountered subject-specific (or cluster-specific
model) is the generalized linear mixed model. It is best to first introduce linear
mixed models and non-linear mixed models as a basis for the introduction of
generalized linear mixed models. To emphasize they fit within a single common
framework, we first give a general formulation.
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General Formulation

Let yij denote the jth measurement available for the ith unit, i = 1, . . . , N ,
j = 1, . . . , ni, and let yi denote the vector of all measurements for the ith
unit, i.e., yi

′ = (yi1, . . . , yini
). Our general model assumes that yi (possibly

appropriately transformed) satisfies

yi|bi ∼ Fi(θ, bi), (4.34)

i.e., conditional on bi, yi follows a pre-specified distribution Fi, possibly de-
pending on covariates, and parameterized through a vector θ of unknown
parameters, common to all subjects. Further, bi is a q-dimensional vector of
subject-specific parameters, called random effects, assumed to follow a so-
called mixing distribution G which may depend on a vector ψ of unknown
parameters, i.e., bi ∼ G(ψ). The bi reflect the between-unit heterogeneity in
the population with respect to the distribution of yi. Different factorizations
of Fi will lead to different models. For example, considering the factors made
up of the outcomes yij given its predecessors (yi1, . . . , yi,j−1)′ leads to a so-
called transitional model. A model without any random effects bi is called a
marginal model for the response vector yi. In the presence of random effects,
conditional independence is often assumed, under which the components yij
in yi are independent, conditional on bi. The distribution function Fi in (4.34)
then becomes a product over the ni independent elements in yi.

In general, unless a fully Bayesian approach is followed, inference is based on
the marginal model for yi which is obtained from integrating out the random
effects, over their distribution G(ψ). Let fi(yi|bi) and g(bi) denote the density
functions corresponding to the distributions Fi and G, respectively; we have
that the marginal density function of yi equals

fi(yi) =
∫

fi(yi|bi)g(bi)dbi, (4.35)

which depends on the unknown parameters θ and ψ. Assuming independence
of the units, estimates of θ̂ and ψ̂ can be obtained from maximizing the
likelihood function built from (4.35), and inferences immediately follow from
classical maximum likelihood theory.
Obviously, the random-effects distribution G is crucial in the calculation of

the marginal model (4.35). One approach is to leave G completely unspecified
and to use non-parametric maximum likelihood (NPML) estimation, which
maximizes the likelihood over all possible distributions G. The resulting esti-
mate Ĝ is then always discrete with finite support. Depending on the context,
this may or may not be a realistic reflection of the true heterogeneity between
units. One therefore often assumes G to be of a specific parametric form,
such as a (multivariate) normal. Depending on Fi and G, the integration in
(4.35) may or may not be possible analytically. Proposed solutions are based
on Taylor series expansions of fi(yi|bi), or on numerical approximations of
the integral, such as (adaptive) Gaussian quadrature.
Although in practice one is usually primarily interested in estimating the
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parameters in the marginal model, it is often useful to calculate estimates for
the random effects bi as well. They reflect between-subject variability, which
makes them helpful for detecting special profiles (i.e., outlying individuals)
or groups of individuals evolving differently in time. Also, estimates for the
random effects are needed whenever interest is in prediction of subject-specific
evolutions. Inference for the random effects is often based on their so-called
posterior distribution fi(bi|yi), given by

fi(bi|yi) =
fi(yi|bi) g(bi)∫
fi(yi|bi) g(bi) dbi

, (4.36)

in which the unknown parameters θ and ψ are replaced by their estimates
obtained earlier from maximizing the marginal likelihood. The mean or mode
corresponding to (4.36) can be used as point estimates for bi, yielding empir-
ical Bayes (EB) estimates.

Linear Mixed Models

When continuous (normally distributed) hierarchical data are considered (re-
peated measures, clustered data, geographical data, longitudinal data, . . . ),
a general, and very flexible, class of parametric covariance models is obtained
from introducing random effects bi in the multivariate linear regression model.
Linear mixed models assume the outcome vector yi follows a multivariate nor-
mal distribution, with mean vector Xiβ + Zibi and some covariance matrix
Σi, and assume that the random effects bi also follow a (multivariate) normal
distribution, i.e., it is assumed that the ni-dimensional vector yi satisfies

yi|bi ∼ N(Xiβ + Zibi,Σi), (4.37)
bi ∼ N(0, D), (4.38)

where Xi and Zi are (ni × p) and (ni × q) dimensional matrices of known
covariates, β is a p-dimensional vector of regression parameters, called the
fixed effects, D is a general (q × q) covariance matrix and Σi is a (ni × ni)
covariance matrix that depends on i only through its dimension ni, i.e., the
set of unknown parameters in Σi will not depend upon i.
The above model can be interpreted as a linear regression model for the

vector yi of repeated measurements for each unit separately, where some of
the regression parameters are specific (random effects, bi), while others are
not (fixed effects, β). The distributional assumptions in (4.38) with respect to
the random effects can be motivated as follows. First, E(bi) = 0 implies that
the mean of yi still equals Xiβ, such that the fixed effects in the random-
effects model (4.37) can also be interpreted marginally. Not only do they
reflect the effect of changing covariates within specific units, they also measure
the marginal effect in the population of changing the same covariates. As
will be discussed further, this important property only holds for very specific
random-effects models, one of which is the linear mixed model considered here.
Second, the normality assumption immediately implies that, marginally, yi

also follows a normal distribution with mean vector Xiβ and with covariance
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matrix Vi = ZiDZ ′
i + Σi. Hence, no numerical approximation to the integral

in (4.35) is needed. Apart from this mathematical convenience, the normality
assumption for the bi is further supported by noticing that the bi express
how unit-specific trends deviate from the population-averaged trends, which
suggests that they can be interpreted as residuals.
Note that the random effects in (4.37) implicitly imply the marginal covari-

ance matrix Vi of yi to be of the very specific form Vi = ZiDZ ′
i +Σi. Let us

consider two examples under the assumption of conditional independence, i.e.,
assuming Σi = σ2Ini

. First, consider the case where the random effects are
univariate and represent unit-specific intercepts. This corresponds to covari-
ates Zi which are ni-dimensional vectors containing only ones. The implied
covariance matrix can then easily be shown to have the compound symme-
try structure which makes the strong assumption that the variance remains
constant over all repeated measures and that the correlation between any two
measures within a specific unit is also constant. Second, for longitudinal data,
suppose that the bi represent unit-specific intercepts as well as linear time
effects. The corresponding Zi are then of the form

Zi =


1 ti1
1 ti2
...

...
1 tini

 ,

where tij is the time point at which the jth measurement was taken for the ith
subject. Denoting the (k, l) element in D as dkl, we have that the covariance
between two repeated measures within a single unit is given by

Cov(yik, yil) =
(
1 tik

)
D

(
1
til

)
+ σ2

= d22 tik til + d12(tik + til) + d11 + σ2.

Note how the model now implies the variance function of the response to be
quadratic over time, with positive curvature d22.
When time is replaced by dose level, this modeling approach can also be

used for clustered data with foetus-specific exposure, such as in the heatshock
studies (Section 2.2).
The marginal model implied by expressions (4.37) and (4.38) is

yi ∼ N(Xiβ, Vi), Vi = ZiDZ ′
i +Σi,

that can be viewed as another multivariate linear regression model, with a very
particular parameterization of the covariance matrix Vi. Hence, our earlier
remarks with respect to the fitting of the marginal model remain valid. The
vector α of variance components then consists of the variances and covariances
in D as well as all unknown parameters in Σi.
With respect to the estimation of unit-specific parameters bi, the posterior

distribution of bi given the observed data yi can be shown to be (multivariate)
normal with mean vector equal to DZ ′

iV
−1
i (α)(yi −Xiβ). Replacing β and
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α by their maximum likelihood estimates, we obtain the EB estimates b̂i for
the bi, introduced at the start of this section. A key property of these EB
estimates is shrinkage, which is best illustrated by considering the prediction
ŷi ≡ Xiβ̂ + Zib̂i of the ith profile. It can easily be shown that

ŷi = ΣiV
−1
i Xiβ̂ +

(
Ini
− ΣiV

−1
i

)
yi,

which can be interpreted as a weighted average of the population-averaged
profile Xiβ̂ and the observed data yi, with weights ΣiV

−1
i and Ini

−ΣiV
−1
i ,

respectively. Note that the “numerator” of ΣiV
−1
i represents within-unit vari-

ability and the “denominator” is the overall covariance matrix Vi. Hence, much
weight will be given to the overall average profile if the within-unit variability
is large in comparison to the between-unit variability (modeled by the random
effects), whereas much weight will be given to the observed data if the oppo-
site is true. This phenomenon is referred to as shrinkage toward the average
profile Xiβ̂. An immediate consequence of shrinkage is that the EB estimates
show less variability than actually present in the random-effects distribution,
i.e., for any linear combination λ of the random effects,

var(λ′b̂i) ≤ var(λ′bi) = λ′Dλ.

This is also the main reason why, in practice, EB estimates cannot be used
to check the normality assumption of the random effects. For example, his-
tograms of elements of the b̂i do not necessarily reflect their correct underlying
distribution.

Non-linear Mixed Models

An extension of model (4.37) which allows for non-linear relationships between
the responses in yi and the covariates in Xi and/or Zi is

yi|bi ∼ N(h(Xi, Zi,β, bi),Σi) (4.39)

for some known ‘link’ function h. The definition of Xi, Zi, β, and bi remains
unchanged, the random effects bi are again assumed to be normally distributed
with mean vector 0 and covariance matrix D and inference can proceed as
explained for the general model.
There are at least two major differences in comparison to the linear mixed

model discussed in the previous section. First, the marginal distribution of
yi can no longer be calculated analytically, such that numerical approxima-
tions to the marginal density (4.35) come into play, seriously complicating the
computation of the maximum likelihood estimates of the parameters in the
marginal model, i.e., β, D and the parameters in all Σi. A consequence is that
the marginal covariance structure does not immediately follow from the model
formulation, such that it is not always clear in practice what assumptions a
specific model implies with respect to the underlying variance function and
the underlying correlation structure in the data.
A second important difference is with respect to the interpretation of the

fixed effects β. Under the linear model (4.37), we have that E(yi) equals Xiβ,
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such that the fixed effects have a subject-specific as well as a population-
averaged interpretation. Indeed, the elements in β reflect the effect of specific
covariates, conditionally on the random effects bi, as well as marginalized over
these random effects. Under non-linear mixed models, however, this does no
longer hold in general. The fixed effects now only reflect the conditional effect
of covariates, and the marginal effect is not easily obtained anymore as E(yi)
is given by

E(yi) =
∫
yi

∫
fi(yi|bi)g(bi)dbidyi,

which, in general, is not of the form h(Xi, Zi,β,0).
Only for very particular models, (some of) the fixed effects can still be

interpreted as marginal covariate effects. For example, consider the model
where, apart from an exponential link function, the mean is linear in the
covariates, and the only random effects in the model are intercepts. More
specifically, this corresponds to the model with h(Xi, Zi,β, bi) = exp(Xiβ +
Zibi), in which Zi is now a vector containing only ones. The expectation of
yi is now given by

E(yi) = E [exp(Xiβ + Zibi)]
= exp(Xiβ) ZiE [exp(bi)] , (4.40)

which shows that, except for the intercept, all parameters in β have a marginal
interpretation.

The Generalized Linear Mixed Model

The generalized linear mixed model is the most frequently used random-effects
model for discrete outcomes. A general formulation is as follows. Conditionally
on random effects bi, it assumes that the elements yij of yi are independent,
with density function of the form

fi(yij |bi) = exp [(yijηij − a(ηij))/φ+ c(yij , φ)] ,

with mean E(yij |bi) = a′(ηij) = µij(bi) and variance Var(yij |bi) = φa′′(ηij),
and where, apart from a link function h, a linear regression model with para-
meters β and bi is used for the mean, i.e., h(µi(bi)) = Xiβ+Zibi. Note that
the linear mixed model is a special case, with identity link function. The ran-
dom effects bi are again assumed to be sampled from a (multivariate) normal
distribution with mean 0 and covariance matrix D. Usually, the canonical link
function is used, i.e., h = a′−1, such that ηi = Xiβ + Zibi.

The non-linear nature of the model again implies that the marginal distrib-
ution of yi is, in general, not easily obtained, such that model fitting requires
approximation of the marginal density function. An exception to this occurs
when the probit link is used. Further, as was also the case for non-linear
mixed models, the parameters β have no marginal interpretation, except for
some very particular models. An example where the marginal interpretation
does hold is the Poisson model for count data, for which the logarithm is the
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canonical link function. In case the model only includes random intercepts, it
immediately follows from the calculations in (4.40) that the only element in
β which has no marginal interpretation is the intercept.
As another example, consider the binomial model for binary data, with the

logit canonical link function, and where the only random effects are intercepts
bi. It can then be shown that the marginal mean µi = E(yij) satisfies h(µi) ≈
Xiβ

∗ with β∗ = (c2Var(bi) + 1)−1/2β, in which c equals 16
√
3/15π. Hence,

although the parameters β in the generalized linear mixed model have no
marginal interpretation, they do show a strong relation to their marginal
counterparts. Note that, as a consequence of this relation, larger covariate
effects are obtained under the random-effects model in comparison to the
marginal model.
Several approaches have been developed to the fit of generalized linear

mixed models. One approach, proposed by Wolfinger and O’Connell (1993),
is based on an extension of the method of Nelder and Wedderburn (1972) (see
also McCullagh and Nelder 1989) to fit fixed-effects generalized linear models.
Let us briefly recall this procedure. Dropping the subject-specific index i, the
basic form of a generalized linear model is:

η = Xβ,

where η = g(µ), µ = E(Y ) and g is an appropriate link function. Nelder and
Wedderburn (1972) showed that maximum likelihood estimates for β can be
obtained by iteratively solving

X ′WXβ = X ′Wy∗, (4.41)

where

W = DΣ−1D,

y∗ = η̂ + (y − µ̂)D−1,

D = (∂µ/∂η),
Σ = Σ1/2

µ AΣ1/2
µ .

Here, Σµ is a diagonal matrix of variances and A is a correlation matrix.
McCullagh and Nelder (1989) note that the “working” dependent variable in
these estimating equations is not y but y∗, a linearized version of y.
As indicated earlier, likelihood inference for generalized linear mixed models

requires evaluation of integrals (Breslow and Clayton 1993), where the inte-
gral’s dimension is equal to the number of random effects. Zeger and Karim
(1991) avoid the need for numerical integration by casting the generalized
linear random-effects model in a Bayesian framework and by resorting to the
Gibbs sampler. Wolfinger and O’Connell (1993) circumvent numerical inte-
gration by using pseudo-likelihood (and restricted pseudo-likelihood) proce-
dures. The latter approach is implemented in the SAS macro GLIMMIX and
is essentially a random-effects extension of (4.41). The GLIMMIX macro is
known to have some drawbacks such as, for example, downward biases in
fixed-effects and covariance parameters. In contrast, the MLWIN software,
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the MIXOR software package (Hedeker and Gibbons 1994) and the SAS pro-
cedure NLMIXED use either better approximations or numerical integration
and are known to have better properties.
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Generalized estimating equations play an important role in the analysis of
repeated or clustered outcomes of a non-normally distributed type. In this
work, it will be used, together with pseudo-likelihood methodology, as non-
likelihood based method for the analysis of clustered binary data. A compar-
ison between both will be made in Chapter 6. Also, the use of generalized
estimating equations will be illustrated in the contexts of individual-level co-
variates and combined continuous and discrete outcomes, in Chapters 13 and
14, respectively. Further applications of the GEE technology can be found in
Section 9.2.6 and Chapter 11.
When we are mainly interested in first order marginal mean parameters and

pairwise interactions, a full likelihood procedure can be replaced by quasi-
likelihood methods (McCullagh and Nelder 1989). In quasi-likelihood, the
mean response is expressed as a parametric function of covariates; the variance
is assumed to be a function of the mean up to possibly unknown scale pa-
rameters. Wedderburn (1974) first noted that likelihood and quasi-likelihood
theories coincide for exponential families and that the quasi-likelihood “esti-
mating equations” provide consistent estimates of the regression parameters β
in any generalized linear model, even for choices of link and variance functions
that do not correspond to exponential families.
For clustered and repeated data, Liang and Zeger (1986) proposed so-called

generalized estimating equations (GEE or GEE1) which require only the cor-
rect specification of the univariate marginal distributions provided one is will-
ing to adopt “working” assumptions about the association structure. They
estimate the parameters associated with the expected value of an individual’s
vector of binary responses and phrase the working assumptions about the
association between pairs of outcomes in terms of marginal correlations.
Prentice (1988) extended their results to allow joint estimation of probabil-
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ities and pairwise correlations. Lipsitz, Laird and Harrington (1991) modified
the estimating equations of Prentice (1988) to allow modeling of the associ-
ation through marginal odds ratios rather than marginal correlations. When
adopting GEE1 one does not use information of the association structure to
estimate the main effect parameters. As a result, it can be shown that GEE1
yields consistent main effect estimators, even when the association structure
is misspecified. However, severe misspecification may seriously affect the ef-
ficiency of the GEE1 estimators. In addition, GEE1 should be avoided when
some scientific interest is placed on the association parameters.
A second order extension of these estimating equations (GEE2) that include

the marginal pairwise association as well has been studied by Liang, Zeger and
Qaqish (1992). They note that GEE2 is nearly fully efficient though bias may
occur in the estimation of the main effect parameters when the association
structure is misspecified. A variation to this theme, using conditional probabil-
ity ideas, has been proposed by Carey, Zeger and Diggle (1993). It is referred
to as alternating logistic regressions.
In Section 5.1 we present general GEE theory, whereas several applications

and specializations to the case of clustered binary data are presented in Sec-
tion 5.2.

5.1 General Theory

Usually, when confronted with the analysis of clustered or otherwise correlated
data, conclusions based on mean parameters (e.g., dose effect) are of primary
interest. When inferences for the parameters in the mean model E(yi) are
based on classical maximum likelihood theory, full specification of the joint
distribution for the vector yi of repeated measurements within each unit i
is necessary. For discrete data, this implies specification of the first-order
moments, as well as all higher-order moments and, depending on whether
marginal or random-effects models are used, assumptions are either explicitly
made or implicit in the random-effects structure. For Gaussian data, full-
model specification reduces to modeling the first- and second-order moments
only. However, even then can inappropriate covariance models seriously invali-
date inferences for the mean structure. Thus, a drawback of a fully parametric
model is that incorrect specification of nuisance characteristics can lead to in-
valid conclusions about key features of the model.
A very flexible approach, frequently used in practice, is so-called general-

ized estimating equations (GEEs). The GEE methodology is based on two
perceptions. First, the score equations to be solved when computing maxi-
mum likelihood estimates under a marginal normal model yi ∼ N(Xiβ, Vi)
are given by

N∑
i=1

X ′
i(A

1/2
i RiA

1/2
i )−1(yi −Xiβ) = 0, (5.1)

in which the marginal covariance matrix Vi has been decomposed in the form
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A
1/2
i RiA

1/2
i , with Ai the matrix with the marginal variances on the main

diagonal and zeros elsewhere, and with Ri equal to the marginal correlation
matrix. Second, the score equations to be solved when computing maximum
likelihood estimates under a marginal generalized linear model (omitting the
random effects bi from the model formulation of Section 4.3.2), assuming in-
dependence of the responses within units (i.e., ignoring the repeated measures
structure), are given by

N∑
i=1

∂µi

∂β′ (A
1/2
i Ini

A
1/2
i )−1(yi − µi) = 0, (5.2)

where Ai is again the diagonal matrix with the marginal variances on the
main diagonal.
Note that expression (5.1) is of the form (5.2) but with the correlations

between repeated measures taken into account. A straightforward extension
of (5.2) that accounts for the correlation structure is

S(β) =
N∑
i=1

∂µi

∂β′ (A
1/2
i RiA

1/2
i )−1(yi − µi) = 0, (5.3)

that is obtained from replacing the identity matrix Ini
by a correlation matrix

Ri = Ri(α), often referred to as the working correlation matrix. Usually, the
marginal covariance matrix Vi = A

1/2
i RiA

1/2
i contains a vector α of unknown

parameters which is replaced for practical purposes by a consistent estimate.
Assuming that the marginal mean µi has been correctly specified as h(µi) =

Xiβ, it can be shown that, under mild regularity conditions, the estimator β̂
obtained from solving (5.3) is asymptotically normally distributed with mean
β and with covariance matrix

I−1
0 I1I

−1
0 , (5.4)

where

I0 =

(
N∑
i=1

∂µi
′

∂β
V −1
i

∂µi

∂β′

)
,

I1 =

(
N∑
i=1

∂µi
′

∂β
V −1
i Var(yi)V −1

i

∂µi

∂β′

)
.

In practice, Var(yi) in (5.4) is replaced by (yi−µi)(yi−µi)′, which is unbiased
on the sole condition that the mean was again correctly specified.
Note that valid inferences can now be obtained for the mean structure, only

assuming that the model assumptions with respect to the first-order moments
are correct. Note also that, although arising from a likelihood approach, the
GEE equations in (5.3) cannot be interpreted as score equations corresponding
to some full likelihood for the data vector yi.

Liang and Zeger (1986) proposed moment-based estimates for the working
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correlation. To this end, first define deviations:

eij =
yij − µij√
v(µij)

and decompose the variance slightly more generally as above in the following
way:

Vi = φA1/2
i RiA

1/2
i ,

where φ is an overdispersion parameter.
Some of the more popular choices for the working correlations are:
• Independence:

Corr(Yij , Yik) = 0 (j �= k).
There are no parameters to be estimated.

• Exchangeable:
Corr(Yij , Yik) = α (j �= k).

α̂ =
1
N

N∑
i=1

1
ni(ni − 1)

∑
j �=k
eijeik.

• AR(1):
Corr(Yij , Yi,j+t) = αt (t = 0, 1, . . . , ni − j).

α̂ =
1
N

N∑
i=1

1
ni − 1

∑
j≤ni−1

eijei,j+1.

• Unstructured:
Corr(Yij , Yik) = αjk (j �= k).

α̂jk =
1
N

N∑
i=1

eijeik.

A dispersion parameter can be estimated by

φ̂ =
1
N

N∑
i=1

1
ni

ni∑
j=1

e2ij .

The standard iterative procedure to fit GEE, based on Liang and Zeger
(1986), is then as follows:
1. Compute initial estimates for β, using a univariate GLM (i.e., assuming

independence).
2. Compute the quantities needed in the estimating equation:

• Compute Pearson residuals eij .
• Compute estimates for α.
• Compute Ri(α).
• Compute an estimate for φ.

• Compute Vi(β,α) = φA1/2
i (β)Ri(α)A1/2

i (β).
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3. Update the estimate for β:

β(t+1) = β(t) −
[

N∑
i=1

DT
i V

−1
i Di

]−1 [ N∑
i=1

DT
i V

−1
i (yi − µi)

]
.

Iterate the second and third steps until convergence.
Standard procedures, such as the SAS/STAT procedure GENMOD (1997)

and the Oswald functions in Splus (Smith, Robertson and Diggle 1996), that
include GEE1 capabilities use an iterative fitting process, where estimation
of the parameters α is based on standardized residuals. The model based
estimator of Cov(β̂) is given by I−1

0 , where

I0 =
N∑
i=1

∂π′
i

∂β
V −1
i

∂µi
∂β
.

The empirically corrected variance estimator (Liang and Zeger 1986) takes
the form I−1

0 I1I
−1
0 , where

I1 =
N∑
i=1

∂µ′
i

∂β
V −1
i Cov(Y i)V −1

i

∂µi
∂β
.

Williamson, Lipsitz and Kim (1997) wrote a SAS macro for GEE1 that is
based on Prentice’s approach. The latter considered an extension of the GEE1
approach of Liang and Zeger (1986) that allows joint estimation of the para-
meters β and α in both the marginal response probabilities and the pairwise
correlations. A GEE1 estimator for β and α may be defined as a solution to:

N∑
i=1

DT
i V

−1
i (Y i − µi) = 0

N∑
i=1

ET
i W

−1
i (Zi − δi) = 0,

where

Zijk =
(Yij − µij)(Yik − µik)√
µij(1− µij)µik(1− µik)

and δijk = E(Zijk). Under exchangeability we have δijk = ρi, the correlation
between any two outcomes of the same cluster i. This can be reparametrized
in terms of α, using Fisher’s z-transformation: α = ln(1 + ρ)− ln(1− ρ). The
joint asymptotic distribution of

√
N(β̂−β) and

√
N(α̂−α) is Gaussian with

mean zero and with variance-covariance matrix consistently estimated by N
times (

A 0
B C

)(
Λ11 Λ12

Λ21 Λ22

)(
A BT

0 C

)
,
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where

A =

(
N∑
i=1

DT
i V

−1
i Di

)−1

,

B =

(
N∑
i=1

ET
i W

−1
i Ei

)−1( N∑
i=1

ET
i W

−1
i

∂Zi

∂β

)(
N∑
i=1

DT
i V

−1
i Di

)−1

,

C =

(
N∑
i=1

ET
i W

−1
i Ei

)−1

,

Λ11 =
N∑
i=1

DT
i V

−1
i Cov(Y i)V −1

i Di,

Λ12 =
N∑
i=1

DT
i V

−1
i Cov(Y i,Zi)W−1

i Ei,

Λ21 = Λ12,

Λ22 =
N∑
i=1

ET
i W

−1
i Cov(Zi)W−1

i Ei,

and Var(Y i), Cov(Y i,Zi) and Var(Zi) respectively estimated by the quan-
tities (Y i −µi)(Y i −µi)T , (Y i −µi)(Zi − δi)T and (Zi − δi)(Zi − δi)T . It
is convenient to define:

Zi =


Yi1Yi2
Yi1Yi3

...
Yini
Yi(ni−1)

 .
Hence, under exchangeability,

E(Zijk) = µijk = ρ
√
µij(1− µij)µik(1− µik) + µijµik,

Var(Zijk) = µijk(1− µijk),
∂E(Zijk)
∂α

=
2 exp(α)

(exp(α) + 1)2

√
µij(1− µij)µik(1− µik).

The matrix C then reduces to:

C =
(

2 exp(α)
(exp(α) + 1)2

√
µij(1− µij)µik(1− µik)

)2 1
µijk(1− µijk) .

To obtain the variance-covariance matrix of the correlation parameters ρ, one
can apply the delta method. In the case of exchangeability we multiply the
standard error of α with a factor 2 exp(α)/(exp(α)+1)2 to obtain the standard
error of ρ.
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The GEE2 approach naturally accommodates individual-level covariates in
the estimation of marginal response probabilities. For each cluster, define

wi = (yi1, . . . , yini
, yi1yi2, . . . , yini−1yini

)T ,

a vector of ni+
(
ni

2

)
components. Further, let Θi = (µTi ,ρ

T
i )T which depends

on a p × 1 vector of regression parameters β through a generalized linear
model. Estimation of β is accomplished by solving the following second order
estimating equations:

U(β) =
N∑
i=1

XT
i

(
T−1
i

)T
V −1
i (W i − E(W i)) = 0,

with Xi = ∂ηi/∂β, Ti = ∂ηi/∂Θi and Vi = Cov(W i). Calculation of all ma-
trices involved is straightforward with the exception of the covariance matrix,
which contains third and fourth order probabilities. To this end, the three-way
and higher order correlations are set equal to zero. As before, the parame-
ter estimates β̂ can then be calculated using, for example, a Fisher scoring
algorithm. Provided the first and second order models have been correctly
specified, β̂ is consistent for β and has an asymptotic multivariate normal
distribution with mean vector β and variance-covariance matrix consistently
estimated by:

V (β̂) =

(
N∑
i=1

XT
i T̂

−T
i V̂ −1

i T̂
−1
i Xi

)−1 N∑
i=1

U i(β̂)U i(β̂)T

(
N∑
i=1

XT
i T̂

−T
i V̂ −1

i T̂
−1
i Xi

)−1

.

5.2 Clustered Binary Data

In addition to Prentice’s (1988) proposal to use a second set of estimating
equations for the correlation nuisance parameters, Lipsitz, Laird and Harring-
ton (1991) suggested the use of odds ratios rather than correlations to capture
the within-cluster covariance. Adopting their ideas, we first consider a GEE1
approach that allows joint estimation of regression parameters (βT ,αT )T in,
respectively, the marginal means and pairwise associations, using two sets
of estimating equations. Both extended the GEE1 approach of Liang and
Zeger (1986), where estimators for (βT ,αT )T were obtained using iteratively
reweighted least squares calculations and moment-based estimation of α.

Earlier in this chapter, GEE1 was studied, together with its alternative pro-
posed by Prentice (1988), as well as GEE2. We will now specifically consider
the case of clustered binary data. To this effect, let us introduce the notation
πi11 for the joint observation for two successes in cluster i and πi00 for the

© 2002 by CRC Press LLC



84

joint observation of two failures. The probability of one success and one failure
is then πi10 ≡ πi01. It is insightful to study this case in a bit more detail.

If we let the marginal means πi10 and pairwise probabilities πi11 depend on
a vector of regression parameters (βT ,αT )T through the following generalized
linear model:

ηi =
(

ln(πi10)− ln(1− πi10)
ln(πi11) + ln(1− 2πi10 + πi11)− 2 ln(πi10 − πi11)

)
= Xi

(
β
α

)
,

then the two sets of estimating equations for, respectively, β and α can be
combined into:

N∑
i=1

(
DT
i 0
0 CTi

)(
Var(Zi) 0

0 Var(
(
Zi

2

)
)

)−1(
Zi − niπi10(
Zi

2

)− (ni

2

)
πi11

)
,

where Di = ni∂πi10/∂β and Ci =
(
ni

2

)
∂πi11/∂α. An iterative procedure for

calculating β and α begins with starting values β0 and α0 and produces
updated values βs+1,αs+1 from values βs,αs by means of

βs+1 = βs +

(
N∑
i=1

DT
i V

−1
i Di

)−1 N∑
i=1

DT
i V

−1
i (Zi − niπi10)

αs+1 = αs +

(
N∑
i=1

CTi W
−1
i Ci

)−1 N∑
i=1

CTi W
−1
i

((
Zi
2

)
−
(
ni
2

)
πi11

)
,

where Vi = Var(Zi) and Wi = Var(
(
Zi

2

)
) = Var(

∑
j<k YijYik). Here, Wi is a

function of third and fourth order probabilities, which are nuisance parame-
ters we would rather not estimate. Assuming three- and higher-order indepen-
dence, in the spirit of Lipsitz, Laird and Harrington (1991), and taking into
account the exchangeability assumption, Wi reduces to:

(
ni
2

)
πi11(1− πi11).

Prentice (1988) and Lipsitz, Laird and Harrington (1991) have shown that

the joint asymptotic covariance matrix of (β̂
T
, α̂T )T equals:

Vβ,α = lim
N→∞

(
B−1

11 0
B21 B−1

22

)(
Σ11 Σ12

ΣT
12 Σ22

)(
B−1

11 0
B21 B−1

22

)T
,

where
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B11 = N−1
∑N

i=1D
T
i V

−1
i Di,

B22 = N−1
∑N

i=1 C
T
i W

−1
i Ci,

B21 = B−1
22 (

∑N
i=1 C

T
i W

−1
i ∂(

(
ni

2

)
πi11)/∂β)B−1

11 ,

Σ11 = N−1
∑N

i=1D
T
i V

−1
i Var(Zi)V −1

i Di,

Σ22 = N−1
∑N

i=1 C
T
i W

−1
i Var(

(
Zi

2

)
)W−1

i Ci,

Σ12 = N−1
∑N

i=1D
T
i V

−1
i Cov(Zi,

(
Zi

2

)
)W−1

i Ci.

The matrix Vβ,α can be consistently estimated by replacing β and α by their
estimates, and also

Var(Zi) by (Zi − niπi10)(Zi − niπi10)T ,
Var(

(
Zi

2

)
) by (

(
Zi

2

)− (ni

2

)
πi11)(

(
Zi

2

)− (ni

2

)
πi11)T ,

Cov(Zi,
(
Zi

2

)
) by (Zi − niπi10)(

(
Zi

2

)− (ni

2

)
πi11)T .

Note that GEE1 operates as if β and α are orthogonal to one another even
when they actually are not. The effect is that GEE1 gives consistent estimators
of β whether or not the association structure is correctly specified. On the
other hand, GEE1 can be extremely inefficient for the estimation of α.

A second order extension of these estimating equations that includes mar-
ginal pairwise associations as well has been studied by Liang, Zeger and Qaqish
(1992), Molenberghs and Ritter (1996) and Heagerty and Zeger (1996). Liang,
Zeger and Qaqish (1992) point out the connection of the quasi-likelihood theo-
ries with second order generalized estimating equations, GEE2. In fact, GEE2
can be simply regarded as a multivariate extension of quasi-likelihood. As in
quasi-likelihood, GEE2 requires specification of first and second order mo-
ments, which are usually of great scientific interest. Indeed, even when there
is considerable association between outcomes, three-way and higher order in-
teractions tend to be negligible and are certainly more difficult to interpret.
Therefore, a working higher order independence assumption is often plausi-
ble. We will develop a second-order estimating equations procedure (GEE2),
following the ideas of Liang, Zeger and Qaqish (1992) and adopting a work-
ing higher order independence assumption. It is very appealing that such a
procedure closely corresponds to the way in which the pseudo-likelihood func-
tion was represented. Recall that the pseudo-likelihood function also limits
its attention to pairwise interactions, since it is constructed as a product of
pairwise probabilities. In the GEE2 framework the following set of estimating
equations can be considered:

U(β) =
N∑
i=1

XT
i (T−1

i )TV −1
i (Zi − πi) = 0
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with

Zi =

 Zi(
Zi
2

)  and πi =

 niπi10(
ni
2

)
πi11

 .

Furthermore, Ti = ∂ηi/∂πi and Vi is the covariance matrix of Zi. The com-
putation of Ti presents no difficulties and is analogous to the calculations
performed in Section 6.3.1. We obtain, for Ti:




1
ni

(
1

πi10
+ 1

1−πi10

)
0

1
ni

(
−2

1−2πi10+πi11
− 2

πi10−πi11

)
2

ni(ni−1)

(
1

πi11
+ 1

1−2πi10+π11
+ 2

πi10−πi11

)


 .

However, the matrix Vi contains third and fourth order probabilities, which
can be found using either the iterative proportional fitting (IPF) algorithm,
outlined in Molenberghs and Lesaffre (1999), or alternatively by the procedure
given in Molenberghs and Lesaffre (1994), which we use here. This is an im-
portant difference with both PL and GEE1, as will be indicated in Section 6.3.
Indeed, these only need first and second order probabilities, which are straight-
forward to implement. Probabilities of order n can be computed, provided all
lower-dimensional probabilities together with the odds-ratio of dimension n
are known. At this point we introduce the higher order independence working
assumption. Let us denote the so-obtained three and four way probabilities
P (yij = 1, yik = 1, yil = 1) and P (yij = 1, yik = 1, yil = 1, yim = 1) by π(3)

i1

resp. π(4)
i1 , then we can calculate the different components of Vi:

Var(Zi1) = E(Z2
i )− E(Zi)2

= 2E

 ni∑
j=1

∑
k>j

YijYik

+ E

 ni∑
j=1

Y 2
ij

− E
 ni∑
j=1

Yij

2

= 2
(
ni
2

)
πi11 + niπi10(1− niπi10). (5.5)

Note that (5.5) reduces to niπi10(1−πi10), under independence. Similarly, we
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calculate:

Cov(Zi1, Zi2) = 3
ni∑
j=1

∑
k>j

∑
l>k

E [YijYikYil] + 2E

 ni∑
j=1

∑
l>k

Y 2
ikYil


−ni

(
ni
2

)
πi10πi11

= 3
(
ni
3

)
π

(3)
1 + 2

(
ni
2

)
πi11 − ni

(
ni
2

)
πi10πi11,

Var(Zi2) = E

 ni∑
j=1

∑
k>j

YijYik

ni∑
r=1

∑
s>r

YirYis

− (ni
2

)2

π2
i11

= 6
(
ni
4

)
π

(4)
1 + 6

(
ni
3

)
π

(3)
1 + 2

(
ni
2

)
πi11 −

(
ni
2

)2

π2
i11.

A Fisher scoring algorithm can now be applied to calculate the parameter esti-
mates. The empirically corrected version of the asymptotic covariance matrix
proposed by Liang and Zeger (1986) is similar to the one described in Sec-
tion 6.3.1 and is estimated by:(

N∑
i=1

XT
i T̂

−T
i V̂ −1

i T̂
−1
i Xi

)−1( N∑
i=1

U i(β̂)U i(β̂)T
)

×
(

N∑
i=1

XT
i T̂

−T
i V̂ −1

i T̂
−1
i Xi

)−1

. (5.6)

Thus, provided the model is correctly specified, β̂ is consistent for β and is
asymptotically normally distributed with the covariance matrix estimated by
(5.6). If the model for the association structure is misspecified, bias may follow
in first order parameters (Liang, Zeger and Qaqish 1992). This contrasts with
the classical first order estimating equations, GEE1, which yield consistent
estimates even if the association structure is misspecified.

© 2002 by CRC Press LLC



CHAPTER 6
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It is well known that full maximum likelihood estimation can become pro-
hibitive for many models. For example, in the framework of a marginally spec-
ified odds ratio model (Lipsitz, Laird and Harrington 1991, Dale 1986, Molen-
berghs and Lesaffre 1994, Glonek and McCullagh 1995, Lang and Agresti
1994) for multivariate, clustered binary data, full maximum likelihood esti-
mation is prohibitive, especially with large within-unit representation. Condi-
tional models such as the Molenberghs and Ryan (1999) models, introduced in
Section 4.2, are based on an exponential family model for multivariate binary
data and exhibit a high flexibility to capture different patterns of non-linear
dependencies of the marginal probabilities on the cluster size. Like most ex-
ponential family models, the Molenberghs and Ryan (1999) model enjoys well
known properties, such as linearity of the log-likelihood in the minimal suf-
ficient statistics, unimodality, etc. This implies a high numerical stability of
iterative procedures to determine maximum likelihood estimators. In multi-
variate settings (with 3 or more outcomes), however, where the normalizing
constant takes a complicated form, all of these advantages can be lost as
this leads to excessive computational requirements. This is especially true for
clusters of variable length, because the normalizing constant depends on the
cluster size. Hence, alternative estimation methods, which do not require the
explicit calculation of the normalizing constant, are in demand.

In this chapter, we introduce the pseudo-likelihood estimation method.
Strictly speaking this is a non-likelihood method. The principal idea is to
replace a numerically challenging joint density by a simpler function that
is a suitable product of ratios of likelihoods of subsets of the variables. For
example, when a joint density contains a computationally intractable normal-
izing constant, one might calculate a suitable product of conditional densities
which does not involve such a complicated function. A bivariate distribution
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f(y1, y2), for example, can be replaced by the product of both condition-
als f(y1|y2)f(y2|y1). While the method achieves important computational
economies by changing the method of estimation, it does not affect model
interpretation. Model parameters can be chosen in the same way as with full
likelihood and retain their meaning. This method converges quickly with only
minor efficiency losses, especially for a range of realistic parameter settings.

6.1 Pseudo-likelihood: Definition and Asymptotic Properties

To formally introduce pseudo-likelihood, we will use the convenient general
definition given by Arnold and Strauss (1991). Without loss of generality
we can assume that the vector Y i of binary outcomes for subject i (i =
1, . . . , N) has constant dimension L. The extension to variable lengths of Y i

is straightforward.

6.1.1 Definition

Define S as the set of all 2L−1 vectors of length L, consisting solely of zeros and
ones, with each vector having at least one non-zero entry. Denote by y(s)

i the
subvector of yi corresponding to the components of s that are non-zero. The
associated joint density is fs(y

(s)
i ;Θi). In order to define a pseudo-likelihood

function, one chooses a set δ = {δs|s ∈ S} of real numbers, with at least one
non-zero component. The log of the pseudo-likelihood is then defined as

p( =
N∑
i=1

∑
s∈S
δs ln fs(y

(s)
i ;Θi). (6.1)

Adequate regularity conditions have to be assumed to ensure that (6.1) can be
maximized by solution of the pseudo-likelihood (score) equations, the latter
obtained by differentiation of the logarithm of the pseudo-likelihood and the
setting of the derivative to zero.

The classical log-likelihood function is found by setting δs = 1 if s is the
vector consisting solely of ones, and 0 otherwise. Subsequently we will present
some examples of pseudo-likelihood functions that satisfy (6.1).

6.1.2 Consistency and Asymptotic Normality

Before stating the main asymptotic properties of the PL estimators, we first
list the required regularity conditions on the density functions fs(y(s);Θ).
A0 The densities fs(y(s);Θ) are distinct for different values of the parameter

Θ.
A1 The densities fs(y(s);Θ) have common support, which does not depend

on Θ.
A2 The parameter space Ω contains an open region ω of which the true

parameter value Θ0 is an interior point.
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A3 ω is such that for all s, and almost all y(s) in the support of Y (s), the
densities admit all third derivatives

∂3fs(y(s);Θ)
∂θj∂θk∂θ�

.

A4 The first and second logarithmic derivatives of fs satisfy

EΘ

(
∂ ln fs(y(s);Θ)

∂θk

)
= 0, k = 1, . . . , q,

and

0 < EΘ

(−∂2 ln fs(y(s);Θ)
∂θk∂θ�

)
<∞, k, ( = 1, . . . , q.

A5 The matrix J , defined in (6.2), is positive definite.
A6 There exist functions Mklr such that∑

s∈S
δsEΘ

∣∣∣∣∂3 ln fs(y(s);Θ)
∂θk∂θ�∂θr

∣∣∣∣ < Mk�r(y)

for all y in the support of f and for all θ ∈ ω and mk�r = EΘ0
(Mk�r(Y )) <

∞.
Theorem 6.1.1, proven by Arnold and Strauss (1991), guarantees the ex-

istence of at least one solution to the pseudo-likelihood equations, which is
consistent and asymptotically normal. Without loss of generality, we can as-
sume Θ is constant. Replacing it by Θi, and modeling it as a function of
covariates is straightforward.

Theorem 6.1.1 (Consistency and Asymptotic Normality) Assume
that (Y 1, . . . ,Y N ) are i.i.d. with common density that depends on Θ0. Then
under regularity conditions (A1)–(A6):

1. the pseudo-likelihood estimator Θ̃N , defined as the maximizer of (6.1), con-
verges in probability to Θ0.

2.
√
N(Θ̃N−Θ0) converges in distribution to Np(0, J(Θ0)−1K(Θ0)J(Θ0)−1)

with J(Θ) defined by

Jk�(Θ) = −
∑
s∈S
δsEΘ

(
∂2 ln fs(y(s);Θ)

∂θk∂θ�

)
(6.2)

and K(Θ) by

Kk�(Θ) =
∑
s,t∈S

δsδtEΘ

(
∂ ln fs(y(s);Θ)

∂θk

∂ ln ft(y(t);Θ)
∂θ�

)
.

(6.3)

Similar in spirit to generalized estimating equations (Liang and Zeger 1986),
the asymptotic normality result provides an easy way to estimate consistently
the asymptotic covariance matrix. Indeed, the matrix J is found from eval-
uating the second derivative of the log PL function at the PL estimate. The
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expectation in K can be replaced by the cross-products of the observed scores.
We will refer to J−1 as the model based variance estimator (which should not
be used since it overestimates the precision), to K as the empirical correction,
and to J−1KJ−1 as the empirically corrected variance estimator. In the con-
text of generalized estimating equations, this is also known as the sandwich
estimator.

As discussed by Arnold and Strauss (1991), the Cramèr-Rao inequality
implies that J−1KJ−1 is greater than the inverse of I (the Fisher information
matrix for the maximum likelihood case), in the sense that J−1KJ−1−I−1 is
positive semi-definite. Strict inequality holds if the PL estimator fails to be a
function of a minimal sufficient statistic. Therefore, a PL estimator is always
less efficient than a ML estimator.

6.1.3 Applied to Exponential Family Models with a Single Clustered Binary
Outcome

A convenient pseudo-likelihood function for exponential family models such
as (4.16) with a single clustered outcome is found by replacing the joint
density fY (yi;Θi) by the product of univariate “full” conditional densities
f(yij |{yij′}, j′ �= j;Θi) for j = 1, . . . , L, obtained by conditioning each ob-
served outcome on all others. This idea can be put into the framework (6.1)
by choosing δ1L

= L and δsj
= −1 for j = 1, . . . , L where 1L is a vector

of ones and sj consists of ones everywhere, except for the jth entry. For all
other vectors s, δs equals zero. We refer to this particular choice as the full
conditional pseudo-likelihood function. This pseudo-likelihood has the effect of
replacing a joint mass function with a complicated normalizing constant by L
univariate functions.

If we can assume that outcomes within a cluster are exchangeable, there are
only two types of contributions: (1) the conditional probability of an additional
success, given there are zi− 1 successes and ni− zi failures (this contribution
occurs with multiplicity zi):

pis =
exp {θi − δi(ni − 2zi + 1)}

1 + exp {θi − δi(ni − 2zi + 1)} ,

and (2) the conditional probability of an additional failure, given there are zi
successes and ni − zi − 1 failures (with multiplicity ni − zi):

pif =
exp {−θi + δi(ni − 2zi − 1)}

1 + exp {−θi + δi(ni − 2zi − 1)} .

The log PL contribution for cluster i can then be expressed as p(i = zi ln pis+
(ni − zi) ln pif . The contribution of cluster i to the pseudo-likelihood score
vector is of the form(

zi(1− pis)− (ni − zi)(1− pif )
−zi(ni − 2zi + 1)(1− pis) + (ni − zi)(ni − 2zi − 1)(1− pif )

)
.

Note that, if δi ≡ 0, then pis ≡ 1 − pif and the first component of the score
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vector is a sum of terms zi − nipis, i.e., standard logistic regression follows.
In the general case, we have to account for the association, but this non-
standard system of equations can be solved using logistic regression software as
follows. Represent the contribution for cluster i by two separate records, with
repetition counts zi for the “success case” and ni − zi for the “failure case”,
respectively. All interaction covariates need to be multiplied by −(ni−2zi+1)
in the success case and −(ni − 2zi − 1) in the failure case.

6.1.4 Applied to Exponential Family Models With Clustered Multivariate
Binary Data

For clustered multivariate binary data, several formulations can be adopted.
One convenient PL function is found by replacing the joint density (4.21) by
the product of Mni univariate conditional densities describing outcome j for
the kth individual in a cluster, given all other outcomes in that cluster:

PL(1) =
N∏
i=1

M∏
j=1

ni∏
k=1

f(yijk|yij′k′ , j′ �= j or k′ �= k;Θi). (6.4)

This fits into framework (6.1) by choosing δ1Mni
= Mni and δskj

= −1
for k = 1, . . . , ni and j = 1, . . . ,M where 1Mni

is a vector of ones and skj
is a Mni × 1 vector, obtained by applying the vec operator to an ni ×M
matrix, consisting of ones everywhere, except for entry (k, j), which is 0. If
the members of each cluster are assumed to be exchangeable on every outcome
separately, there are only M2M different contributions. Subsequently one can
model components of Θ as a function of covariates, and take derivatives of
the log PL function with respect to the regression parameters β to derive the
score functions.

Equation (6.4) is one convenient definition of the PL function but certainly
not the only one. For example, one might want to preserve the multivariate
nature of the data on each cluster member by considering the product of ni
conditional densities of the M outcomes for subject k, given the outcomes for
the other subjects:

PL(2) =
N∏
i=1

ni∏
k=1

f(yijk, j = 1, . . . ,M |yijk′ , k �= k′, j = 1, . . . ,M).
(6.5)

This satisfies (6.1) by taking δ1Mni
= ni and δsk

= −1 for k = 1, . . . , ni. Here,
1Mni

denotes the Mni dimensional vector of ones, while sk is the (Mni × 1)
vector, obtained by applying the vec operator to an (ni×M) matrix, consisting
of ones everywhere, except for the kth row which consists of zeros.

Computational convenience may be the primary reason for choosing one
PL definition over another. Let us discuss the relative merits of definitions
(6.4) and (6.5). The former procedure is straightforward and natural when
interest is focused on the estimation of main effect parameters. Furthermore,
it is slightly easier to evaluate. If, however, interest lies in the estimation of
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Table 6.1 NTP Data. Maximum likelihood estimates (model based standard errors;

empirically corrected standard errors) of univariate outcomes.

Study Par. External Visceral Skeletal Collapsed

DEHP β0 -2.81 (0.58;0.52) -2.39 (0.50;0.52) -2.79 (0.58;0.77) -2.04 (0.35;0.42)

βd 3.07 (0.65;0.62) 2.45 (0.55;0.60) 2.91 (0.63;0.82) 2.98 (0.51;0.66)

βa 0.18 (0.04;0.04) 0.18 (0.04;0.04) 0.17 (0.04;0.05) 0.16 (0.03;0.03)

EG β0 -3.01 (0.79;1.01) -5.09 (1.55;1.51) -0.84 (0.17;0.18) -0.81 (0.16;0.16)

βd 2.25 (0.68;0.85) 3.76 (1.34;1.20) 0.98 (0.20;0.20) 0.97 (0.20;0.20)

βa 0.25 (0.05;0.06) 0.23 (0.09;0.09) 0.20 (0.02;0.02) 0.20 (0.02;0.02)

DYME β0 -5.78 (1.13;1.23) -3.32 (0.98;0.89) -1.62 (0.35;0.48) -2.90 (0.43;0.51)

βd 6.25 (1.25;1.41) 2.88 (0.93;0.83) 2.45 (0.51;0.82) 5.08 (0.74;0.96)

βa 0.09 (0.06;0.06) 0.29 (0.05;0.05) 0.25 (0.03;0.03) 0.19 (0.03;0.03)

multivariate associations then approach (6.5) would be more natural. Geys,
Molenberghs and Ryan (1999) have shown that both procedures are roughly
equally efficient.

While we have now exemplified the definition on pseudo-likelihood functions
for conditional models, one can also develop pseudo-likelihood functions for
marginal models that satisfy (6.1). These will be considered in Section 6.3.

Further, it should be noted that, in general, it is not guaranteed that a
p( function corresponds to an existing and uniquely defined probability mass
function. However, since PL(1) and PL(2) are derived from (4.21), existence is
guaranteed. In addition, both definitions (6.4) and (6.5) satisfy the conditions
of the theorem presented in Gelman and Speed (1993), and hence uniqueness
is guaranteed as well.

6.1.5 Illustration: NTP Data

To illustrate our findings, we apply the proposed method to three develop-
mental toxicity studies in mice (DEHP, EG, DYME) conducted by the Re-
search Triangle Institute under contract to the National Toxicology Program
(NTP). These studies were described in Section 2.1. We will adopt the pseudo-
likelihood method both for a univariate and multivariate Molenberghs and
Ryan (1999) model.

Single Clustered Outcome

We fitted Model (4.18) to 4 outcomes in each of the 3 datasets: external, vis-
ceral, and skeletal malformation, as well as a collapsed outcome, defined to be
1 if any malformation occurred and −1 otherwise. Parameters were estimated
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Ta b l e 6 . 2 NTP Data. Pseudo-likelihood estimates (standard errors) of univariate

outcomes.

Study Par. External Visceral Skeletal Collapsed

DEHP β0 -2.85 (0.53) -2.30 (0.50) -2.41 (0.73) -1.80 (0.35)
βd 3.24 (0.60) 2.55 (0.53) 2.52 (0.81) 2.95 (0.56)
βa 0.18 (0.04) 0.20 (0.04) 0.21 (0.05) 0.20 (0.03)

EG β0 -2.61 (0.88) -5.10 (1.55) -1.18 (0.14) -1.11 (0.14)
βd 2.14 (0.71) 3.79 (1.18) 1.43 (0.19) 1.41 (0.19)
βa 0.30 (0.06) 0.23 (0.10) 0.21 (0.01) 0.21 (0.01)

DYME β0 -5.04 (0.94) -3.34 (0.99) -2.20 (0.27) -3.08 (0.47)
βd 5.52 (1.01) 2.91 (0.91) 3.22 (0.49) 5.20 (0.97)
βa 0.13 (0.05) 0.29 (0.06) 0.25 (0.02) 0.19 (0.02)

by both maximum likelihood (Table 6.1) and pseudo-likelihood (Table 6.2).
The empirically corrected standard errors are commonly referred to as “ro-
bust” standard errors (Liang and Zeger 1986; see also Chapter 5). The fitting
procedure has been implemented in GAUSS. The natural parameters were
modeled as follows: θi = β0 + βddi where di is the dose level applied to the
ith cluster, and δi = βa, i.e., a constant association model.

An attractive feature of the proposed approach is that the parameters can
also be obtained using standard and readily available software, such as the
SAS procedures LOGISTIC or GENMOD. As an illustration, the parameters
for the external outcome in the DEHP study were also determined with the
LOGISTIC procedure. An implementation and selected output is presented
in Figures 6.1 and 6.2. Each cluster is represented by a two-line record. The
first line corresponds with the “success” case so that the variable ASSOC
represents −(ni−2zi+1); the second line corresponds with the “failure” case
so that ASSOC represents −(ni − 2zi − 1).

While the estimates are identical to those obtained in Table 6.2, the stan-
dard errors are incorrect since they are based on the assumption of indepen-
dence. To obtain a correct estimate of the variability, a short macro could be
written.

The methods can be compared based on the parameter estimates, their
standard errors (model based likelihood, empirically corrected likelihood, and
pseudo-likelihood), or a combination of both (e.g., the Z statistic, defined
as the ratio of estimate and standard error). Obviously, the development of
methods to assess the fit of the proposed methods is necessary. However, clas-
sical tools cannot be used within the pseudo-likelihood framework without
modification. Of course, one can always assess the fit by fitting an extended
model and testing whether the additional parameters are significant. The ex-
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data pseudo;

input success failure dose assoc;

total=success+failure;

cards;

0.0000 0.0000 0.0000 -10.0000

0.0000 9.0000 0.0000 -8.0000

0.0000 0.0000 0.1667 -11.0000

0.0000 10.0000 0.1667 -9.0000

1.0000 0.0000 0.3333 -6.0000

0.0000 6.0000 0.3333 -4.0000

...

2.0000 0.0000 0.6667 -10.0000

0.0000 11.0000 0.6667 -8.0000

;

run;

proc logistic data=pseudo;

model success/total = dose assoc;

run;

Figure 6.1 DEHP Study. Implementation using the SAS procedure PROC LOGIS-

TIC.

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Standardized

Variable DF Estimate Error Chi-Square Chi-Square Estimate

INTERCPT 1 -2.8520 0.5621 25.7456 0.0001 .

DOSE 1 3.2369 0.6501 24.7921 0.0001 0.474261

ASSOC 1 0.1833 0.0429 18.2737 0.0001 0.393847

Figure 6.2 DEHP Study. Selected output of the SAS procedure PROC LOGISTIC.

tension of flexible tools such as likelihood ratio and score tests to the PL
framework has been proposed by Geys, Molenberghs and Ryan (1999) and
will be described in Chapter 7.

Maximum likelihood and pseudo-likelihood dose parameter estimates agree
fairly closely, except for the EG outcomes skeletal and collapsed. No method
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Table 6.3 NTP Data. Pseudo-likelihood estimates (standard errors) for trivariate

outcomes (different main dose effects).

Par. DEHP EG DYME

β01 -2.13 (0.64) -1.64 (1.04) -5.67 (1.16)
β02 -2.38 (0.63) -5.04 (1.75) -2.34 (1.26)
β03 -2.76 (0.72) -0.39 (0.51) -2.97 (0.90)
δ1 0.14 (0.07) 0.18 (0.13) 0.15 (0.04)
δ2 0.18 (0.04) 0.12 (0.17) 0.30 (0.06)
δ3 0.29 (0.06) 0.20 (0.01) 0.25 (0.02)
ω12 0.06 (0.25) -0.05 (0.57) -0.45 (0.20)
ω13 0.60 (0.20) 0.11 (0.31) 0.25 (0.31)
ω23 0.36 (0.29) 0.86 (0.34) 0.35 (0.31)
γ12 0.11 (0.06) 0.14 (0.13) 0.07 (0.04)
γ13 -0.06 (0.05) 0.08 (0.04) -0.11 (0.05)
γ23 -0.14 (0.06) -0.09 (0.04) 0.01 (0.05)

βd1 2.70 (0.66) 1.12 (0.86) 6.48 (1.26)
βd2 2.63 (0.66) 3.63 (1.04) 1.66 (1.36)
βd3 2.70 (0.76) 1.42 (0.19) 4.29 (0.99)

systematically leads to larger parameter estimates (each one yields the largest
value in about half of the cases).

Rather than comparing estimated standard errors directly, one could also
consider the derived Z statistics (not shown) and their associated significance
levels. Pairwise comparisons of the test statistics reveal again that no proce-
dure systematically yields larger values. Indeed, in all three comparisons, the
magnitude of one statistic is larger than the other in approximately 50% of
the cases.

These results are promising because a loss of efficiency of pseudo-likelihood
versus maximum likelihood could be anticipated. However, even though in
Section 6.2 it will be shown that the asymptotic relative efficiency (ARE) is
in general strictly less than 1 (except for saturated models), the data analysis
suggests that the efficiency loss is moderate.

Clustered Multivariate Outcomes

When considering all three outcomes (external, visceral, and skeletal, respec-
tively indexed by 1, 2, and 3) jointly, ML becomes prohibitively difficult to
fit. Some analyses are very sensitive to initial values and take more than 10
hours to converge. Therefore, we abandoned ML and concentrated solely on
the PL method, which took less than 3 minutes to converge.
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Ta b l e 6 . 4 NTP Data. Pseudo-likelihood estimates (standard errors) for trivariate

outcomes (common main dose effects).

Par. DEHP EG DYME

β01 -2.10 (0.51) -1.97 (0.56) -3.89 (0.83)
β02 -2.42 (0.50) -2.96 (0.87) -4.77 (0.87)
β03 -2.74 (0.49) -0.27 (0.55) -3.21 (0.81)
δ1 0.14 (0.07) 0.18 (0.13) 0.22 (0.03)
δ2 0.18 (0.04) 0.17 (0.17) 0.25 (0.06)
δ3 0.29 (0.05) 0.20 (0.01) 0.25 (0.02)
ω12 0.06 (0.24) -0.05 (0.57) -0.46 (0.19)
ω13 0.60 (0.20) 0.11 (0.30) 0.29 (0.30)
ω23 0.36 (0.28) 0.97 (0.37) 0.28 (0.31)
γ12 0.11 (0.06) 0.13 (0.13) 0.05 (0.04)
γ13 -0.06 (0.05) 0.06 (0.04) -0.09 (0.04)
γ23 -0.14 (0.06) -0.07 (0.03) -0.03 (0.05)

βd 2.67 (0.48) 1.50 (0.20) 4.31 (0.85)

For all three NTP studies, we considered (1) a model with a different dose
effect per outcome and (2) a common dose effect model, both of which are
tested for the null hypothesis of no dose effect. In both cases all associa-
tion parameters are held constant. Results of these analyses are tabulated in
Tables 6.3 and 6.4 and indicate, based on Wald tests, that all dose effect pa-
rameters are significant (except for External outcomes in EG and for Visceral
malformations in DYME). In addition, Tables 6.3 and 6.4 show that by fit-
ting a relatively simple model with different dose effects for each outcome and
constant association parameters, the three different main dose effect parame-
ters in the DEHP study all seem to be relevant and of similar magnitude.
This suggests that the use of a common main dose parameter is desirable,
hereby increasing the efficiency (Lefkopoulou and Ryan 1993). The estimated
clustering parameters δj (j = 1, 2, 3) are all significant, except for External
and Visceral malformation outcomes in the EG study. In contrast, the other
association parameters often do not reach the 5% significance level.

6.2 Relative Efficiency of Pseudo-likelihood versus Maximum
Likelihood

6.2.1 Asymptotic Relative Efficiency for the Saturated Model

The price for computational ease usually consists of some efficiency loss. In this
section we will however show that the ARE equals one for all saturated models,
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i.e., models of the form (4.15) without covariates and where all subvectors of
W are included. The ARE for non-saturated models will be discussed in
Section 6.2.2.

Consider the PL contribution for a single cluster, consisting of the product
of all univariate conditional densities. Like in Section 4.2.1 the cluster index
i is kept fixed and dropped from notation:

PL =
M∏
j=1

fj(yj |y(j)),

where y(j) indicates omission of the jth component. Extending the notational
conventions, the logit of the conditional probability that yj equals 1 given all
others can be written as:

logit (µj(y1, . . . , yj−1, yj+1, . . . , yM )) = θj +
∑

k �=j ωjkyk
+
∑

k<k′;k,k′ �=j ωjkk′ykyk′ + · · ·+ ω12...My1 . . . yj−1yj+1 . . . yM . (6.6)

In short, we denote the logit in (6.6) by logit µj . In general, the pseudo-
likelihood score contributions of the rth (r = 1, . . . ,M) association parameter
for a single subject can then be derived as:

r∑
�=1

(yk�
− µk�

)yk1 . . . yk�−1yk�+1 . . . ykr
, (6.7)

(1 ≤ k1 < k2 < · · · < kr ≤ M). For the main effect and the pairwise interac-
tions, these contributions reduce to

yj − µj , 1 ≤ j ≤M,
(yj − µj)yk + (yk − µk)yj , 1 ≤ j < k ≤M.

We will now show that the maximum likelihood estimator satisfies (6.7) in
the sense that it solves for this equation summed over all subjects.

Organize the data into anM dimensional contingency table with cell counts
zj1...jM

(jp = 0, 1; p = 1, . . . ,M). Obviously, it may be more convenient to
introduce an alternative notation for these cell counts. Rather than giving a
sequence ofM zeros and ones, we can present the subscripts for which jp = 1.
Thus, z. is the number of individuals with failures on all variables, zj refers to
those having a success on outcome j and a failure on all others, zj1j2 refers to
those having successes on both outcomes j1 and j2 and a failure on all others,
etc. With straightforward notation, the maximum likelihood estimates for the
corresponding cell probabilities are given by:

π̂j1...jp
=
zj1...jp

N
.

Now, simple relations exist between these cell probabilities and the natural
parameters:

π̂j = eθ̂j/A(Θ̂)
and hence

eθ̂j = zj/z.,
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which is the classical relationship between the main effect parameters and
the conditional odds associated with outcome j, given failures on all others.
Similarly,

π̂j1j2 = eθ̂j1+θ̂j2+ω̂j1j2 /A(Θ̂)

and thus
eω̂j1j2 = (zj1j2z.)/(zj1zj2).

Using the notation introduced above, the PL score contribution for the main
effect θj , combined over all subjects, can be written as:∑
(t1,...,tj−1,tj+1,...,tM )

zt1...tj−11tj+1...tM {1− µj(t1, . . . , tj−1, tj+1, . . . , tM )}

+
∑

(t1,...,tj−1,tj+1,...,tM )

zt1...tj−10tj+1...tM {−µj(t1, . . . , tj−1, tj+1, . . . , tM )} = 0,

where the summation is over all M − 1 vectors (no jth component) of zeros
and ones. Rewriting this equation as∑

(t1,...,tj−1,tj+1,...,tM ) zt1...tj−11tj+1...tM−∑
(t1,...,tj−1,tj+1,...,tM ) zt1...tj−1+tj+1...tMµj(t1, . . . , tj−1, tj+1, . . . , tM ) = 0,

it is easily seen that the MLE satisfies this equation, since on the one hand

µj(t1, . . . , tj−1, tj+1, . . . , tM )

is the probability of observing a success on outcome j, given the value of the
other outcomes, and on the other hand its MLE is given by

µ̂j(t1, . . . , tj−1, tj+1, . . . , tM ) =
zt1...tj−11tj+1...tM

zt1...tj−1+tj+1...tM

.

Similar calculations can be carried out for the equations pertaining to the as-
sociation parameters. This shows that the maximum likelihood estimator and
the pseudo-likelihood estimator coincide in this case. A trivial consequence of
this result is that ARE≡1.

6.2.2 Asymptotic Relative Efficiency for Clustered Outcomes

Although explicit formulae for the ARE were derived for unclustered outcomes
in previous sections, similar expressions in the clustered case are difficult to ob-
tain. We will focus on a single clustered binary outcome. Results for clustered
multivariate binary data are similar (Geys, Molenberghs and Ryan 1999). To
study the ARE, we will follow the recommendations of Rotnitzky and Wypij
(1994). In order to compute asymptotic bias or efficiency, an artificial sample
can be constructed, where each possible realization is weighted according to
its true probability. In our case, we need to consider all realizations of the
form (ni, zi, di), and hence have to specify: (1) f(di), the relative frequencies
of the dose groups, as prescribed by the design; (2) f(ni|di), the probability
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Ta b l e 6 . 5 Local linear smoothed cluster frequencies.

ni f(ni) ni f(ni)

1 0.0046 11 0.1179
2 0.0057 12 0.1529
3 0.0099 13 0.1605
4 0.0139 14 0.1424
5 0.0147 15 0.0975
6 0.0148 16 0.0542
7 0.0225 17 0.0207
8 0.0321 18 0.0086
9 0.0475 19 0.0030

10 0.0766

with which each cluster size can occur, possibly depending on the dose level;
and (3) f(zi|ni, di), the actual model probabilities.

Throughout, we assume that there are 4 dose groups, with one control
(di = 0) and three exposed groups (di = 0.25, 0.5, 1.0). The number ni of
viable foetuses per cluster is chosen at random, using a local linear smoothed
version of the relative frequency distribution given in Table 1 of Kupper et al.
(1986) (which is considered representative of that encountered in actual ex-
perimental situations). Least squares cross-validation has been used to choose
the bandwidth. The smoothed frequencies are presented in Table 6.5. Guided
by the analysis of the examples, we identified three values for each of the three
parameters: β0 = −5,−3, 0, βd = 0, 3, 5, and βa = 0, 0.15, 0.30, with notation
as defined in Section 6.2. The full grid of 27 parameter combinations has been
explored. Results are displayed in Table 6.6.

No AREs are exactly equal to one, although some appear to be due to
rounding. The AREs are very high for the lowest background rate (β0 = −5)
and they are almost all above 90% for the medium background rate (β0 = −3).
We can notice the non-monotone relationship of the ARE with βd and βa.
While still high in some areas of the (βd, βa) space for β0 = 0, a dramatic
decrease is observed when βa increases and/or βd decreases. PL performs
very poorly when there is no dose effect together with a reasonably high
association. Unless background malformation probabilities or dose effects are
extreme, large associations diminish the contribution to the information of
a full conditional. As a limiting case it can even be reduced to zero when
the association parameter approaches infinity. This phenomenon is further
illustrated in Figure 6.3.

The parameter estimates found from the data analysis are all in regions of
the parameter space with a high ARE.
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Table 6.6 Simulation Results. Asymptotic relative efficiencies of pseudo-likelihood

versus maximum likelihood.

βa
β0 βd 0.00 0.15 0.30

-5 0 1.000 1.000 1.000
3 0.982 0.999 1.000
5 0.940 0.978 0.966

-3 0 1.000 1.000 1.000
3 0.938 0.938 0.897
5 0.921 0.959 0.907

0 0 1.000 0.725 0.055
3 0.958 0.895 0.792
5 0.943 0.928 0.890

Figure 6.3 Simulation Results. Asymptotic relative efficiency of pseudo-likelihood

versus maximum likelihood for the dose effect parameter in the clustered data model.

In order to investigate whether these conclusions also hold for random sam-
ples, a small simulation study has been performed, to be described next.
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6.2.3 Small Sample Relative Efficiency of Pseudo-likelihood versus
Maximum Likelihood

The same 27 parameter combinations of the previous sections are investigated,
for samples of size 30. For each setting, 500 simulations were run. The esti-
mated covariance matrices were kept and averaged at the end of the run. The
relative efficiencies for the dose-effect parameters are displayed in Table 6.7.
For the maximum likelihood procedure, both the purely model based as well
as the empirically corrected version are considered.

The results of the asymptotic study and the small sample study are re-
markably well in agreement, except for the small sample relative efficiency
(SSRE), which tends to be slightly higher in certain regions of the grid, such
as β0 = −3 or 0 and βa = 0.3. Also, the SSRE is larger for the model based
than for the empirically corrected likelihood version, which is in line with
knowledge about the sandwich estimator. The only major discrepancies, de-
serving further explanation, are seen for β0 = −5, no dose effect (βd = 0),
and βa �= 0. First, observe that these parameter settings correspond to a very
low background rate (the background probability of observing no malforma-
tion in a single foetus being 0.9933). It can be calculated that the marginal
probability of sampling a cluster without malformations is 0.9229, 0.9851, and
0.9966 for the corresponding association parameters 0.0, 0.15, and 0.30. Cor-
respondingly, the number of datasets without malformations (and thus with
parameters at infinity) in a batch of 500 runs is on average 0.03, 83, and 332,
respectively. In our simulation study, we actually encountered 0, 83, 331 of
such datasets. All 83 (331) of these datasets were ignored, along with 98 (76)
other problematic sets of data, mainly because the latter contain merely a sin-
gle malformation, which renders the association parameter inestimable. Still,
the remaining 319 and 93 datasets are not free of difficulties. Let us consider
variances and relative efficiencies for the dose effect in the 0.30 association
case. The asymptotic variances are all about 17.8, while the simulation result
for the small sample variances is smaller (8.84 for model based likelihood,
0.94 for empirically corrected likelihood, and 0.99 for PL). This is most likely
due to the fact that omitting the problematic datasets truncates the sampling
space and effectively reduces the variability. In particular, these problematic
datasets contain no events, yielding an estimate for the intercept of −∞, the
dose effect being inestimable. Typically, samples with extreme parameter val-
ues are excluded, leading to still smaller sample variances. This effect is more
pronounced in the empirically corrected estimators than in the purely model
based one.

For the other, often more realistic parameter settings, the asymptotic and
small sample variances are in fairly good agreement. This leads to SSREs and
AREs that are very close. Further, the observed variances in these settings,
whether asymptotic or small sample, are much smaller than in the problematic
settings described earlier, e.g., when β0 = −3.0, βd = 3.0, and βa = 0.15, the
asymptotic variances of the dose effect are all close to 0.13, while the small
sample versions are about 0.14.
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Table 6.7 Simulation Results. Small sample relative efficiencies (500 replications)

of pseudo-likelihood versus maximum likelihood.

βa
0.00 0.15 0.30

β0 βd model emp. runs model emp. runs model emp. runs

-5 0 1.073 0.973 500 2.592 0.990 319 8.919 0.945 93
3 0.976 0.955 500 1.086 0.995 485 1.613 1.017 254
5 0.959 0.918 500 1.003 0.982 499 1.123 0.986 411

-3 0 1.027 0.994 500 1.116 1.018 500 1.966 1.009 425
3 0.929 0.915 500 0.970 0.938 500 1.005 0.921 500
5 0.931 0.905 500 0.979 0.938 500 1.058 0.951 498

0 0 1.000 0.995 500 0.746 0.732 500 0.055 0.055 500
3 0.948 0.942 500 0.925 0.903 500 0.912 0.831 500
5 0.934 0.909 500 0.951 0.932 500 1.064 0.950 500

6.3 Pseudo-likelihood and Generalized Estimating Equations

In the framework of a marginally specified odds ratio model (Lipsitz, Laird and
Harrington 1991, Dale 1986, Molenberghs and Lesaffre 1994, Glonek and Mc-
Cullagh 1995, Lang and Agresti 1994) for multivariate, clustered binary data,
full maximum likelihood estimation can also become prohibitive, especially
with large within-unit replication. In this section, we compare generalized
estimating equations with pseudo-likelihood, to gain insight in both.

Note that, while GEE is typically aimed at marginal models, PL can be
used for both marginal (le Cessie and van Houwelingen 1994, Geys, Molen-
berghs and Lipsitz 1998) and conditional models. Here, we discuss the relative
merits of PL and GEE, which will be illustrated using data from NTP studies.
As before, we will only pay attention to exchangeable association structures
and cluster-level covariates, since this simplifies comparison and covers the
setting encountered in the data. While our findings can be applied to some
longitudinal settings, the assumption of exchangeability is frequently not ten-
able, so that more complex association structures are needed. An extension of
these results to longitudinal data could be of interest, but would need further
investigation.

6.3.1 Pseudo-likelihood Estimating Equations

In this section we first present a general PL form, accommodating clustered
responses. Next, we concentrate on the special case of exchangeability leading
to an elegant formulation of the PL. Again, we assume there are N clusters
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with k = 1, . . . , ni indexing the individuals in the ith cluster. If we denote
the binary outcome for subject k in cluster i by Yik then the exchangeability
assumption allows us to introduce the summary statistic Zi =

∑ni

k=1 Yik: the
total number of successes within the ith cluster.

Classical Representation

First Definition le Cessie and van Houwelingen (1994) replace the true con-
tribution of a vector of correlated binary data to the full likelihood, writ-
ten as f(yi1, . . . , yini

), by the product of all pairwise contributions f(yij , yik)
(1 ≤ j < k ≤ ni), to obtain a pseudo-likelihood function. Grouping the out-
comes for subject i into a vector Y i, the contribution of the ith cluster to the
log pseudo-likelihood is

p(i =
∑
j<k

ln f(yij , yik), (6.8)

if it contains more than one observation. Otherwise p(i = f(yi1). In the sequel
we restrict our attention to clusters of size larger than 1. Clusters of size 1
contribute to the marginal parameters only.

Using a bivariate Plackett distribution (Plackett 1965) the joint probabili-
ties f(yij , yik), denoted by πijk, can be specified in terms of marginal proba-
bilities and pairwise odds ratios. For individuals j and k (or for measurement
occasions j and k in a longitudinal study), the pairwise odds ratio ψijk is
defined as (Fitzmaurice, Molenberghs and Lipsitz 1995):

ψijk =
P (Yij = 1, Yik = 1)P (Yij = 0, Yik = 0)
P (Yij = 1, Yik = 0)P (Yij = 0, Yik = 1)

.

Dale (1986) refers to this quantity as the global cross ratio.
The univariate marginal means πij , as well as the pairwise odds ratios ψijk,

can be modeled in terms of regression parameters, using (for example) logit
and log links, respectively, whence the bivariate marginal means πijk satisfy:

πijk =

{
1+(πij+πik)(ψijk−1)−S(πik,πij ,ψijk)

2(ψijk−1) if ψijk �= 1,
πijπik if ψijk = 1,

with

S(πij , πik, ψijk) =
√

[1 + (πij + πik)(ψijk − 1)]2 + 4ψijk(1− ψijk)πijπik.
Under Exchangeability For binary data and taking the exchangeability as-
sumption into account, the log pseudo-likelihood contribution p(i can be for-
mulated as:

p(i =
(
zi
2

)
lnπ∗i11 +

(
ni − zi

2

)
lnπ∗i00 + zi(ni − zi) lnπ∗i10. (6.9)

In this formulation, π∗i11 and π∗i00 denote the bivariate probabilities of observ-
ing two successes or two failures, respectively, while π∗i10 is the probability for
the first component being 1 and the second being 0. Under exchangeability,

© 2002 by CRC Press LLC



106

this is identical to the probability π∗i01 for the first being 0 and the second
being 1. If we consider the following reparameterization:

πi11 = π∗i11,
πi10 = π∗i11 + π∗i10 = π01,
πi00 = π∗i11 + π∗i10 + π∗i01 + π∗i00 = 1,

then this one-to-one reparameterization maps the three, common within-
cluster, two-way marginal probabilities (π∗i11, π

∗
i10, π

∗
i00) to two one-way mar-

ginal probabilities (which under exchangeability are both equal to πi10) and
one two-way probability πi11 = π∗i11. Hence, equation (6.9) can be reformu-
lated as:

p(i =
(
zi
2

)
lnπi11 +

(
ni − zi

2

)
ln(1− 2πi10 + πi11)

+zi(ni − zi) ln(πi10 − πi11), (6.10)

and the pairwise odds ratio ψijk reduces to:

ψi =
πi11(1− 2πi10 + πi11)

(πi10 − πi11)2 .

To enable model specification, we assume a composite link function ηi =
(ηi1, ηi2)T with a mean and an association component:

ηi1 = ln(πi10)− ln(1− πi10),
ηi2 = ln(ψi) = ln(πi11) + ln(1− 2πi10 + πi11)− 2 ln(πi10 − πi11).

From these links, the univariate and pairwise probabilities are easily derived
(Plackett 1965):

πi10 =
exp(ηi1)

1 + exp(ηi1)
and

πi11 =

{
1+2πi10(ψi−1)−Si

2(ψi−1), if ψi �= 1
π2
i10 if ψi = 1,

with
Si =

√
[1 + 2πi10(ψi − 1)]2 + 4ψi(1− ψi)π2

i10.

Next, we can assume a linear model ηi = Xiβ, with Xi a known design matrix
and β a vector of unknown regression parameters. The maximum pseudo-
likelihood estimator β̂ of β is then defined as the solution to the pseudo-score
equations U(β) = 0. Using the chain rule, U(β) can be written as:

U(β) =
N∑
i=1

XT
i (T−1

i )T
∂p(i
∂πi

(6.11)

with πi = (πi10, πi11)T and Ti = ∂ηi/∂πi. Two frequently used fitting algo-
rithms are the Newton-Raphson and the Fisher scoring algorithms. Newton-
Raphson starts with a vector of initial estimates β(0) and updates the current
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value of the parameter vector β(s) by

β(s+1) = β(s) +W (β(s))−1U(β(s)).

Here,W (β) is the matrix of the second derivatives of the log pseudo-likelihood
with respect to the regression parameters β:

W (β) =
N∑
i=1

XT
i

(
F i + (T−1

i )T
∂2p(i
∂πi∂πTi

(T−1
i )

)
Xi,

and F i is defined by (McCullagh 1987, p. 5; Molenberghs and Lesaffre 1999):

(Fi)jk =
∑
s

∑
r,t,u

∂2ηir
∂πit∂πiu

∂πis
∂ηir

∂πit
∂ηij

∂πiu
∂ηik

∂p(i
∂πis

.

The Fisher scoring algorithm is obtained by replacing the matrix W (β) by its
expected value:

W (β) =
N∑
i=1

XT
i (T−1

i )TAi(T−1
i )Xi,

with Ai the expected value of the matrix of second derivatives of the log
pseudo-likelihood p(i with respect to πi.

Similar in spirit to generalized estimating equations, the asymptotic co-
variance matrix of the regression parameters β̂ is consistently estimated by
(Arnold and Strauss 1991, Geys, Molenberghs and Ryan 1997):

W (β̂)−1

(
N∑
i=1

U i(β̂)U i(β̂)T
)
W (β̂)−1.

In the context of generalized estimating equations, this estimator is also known
as the empirically corrected or sandwich estimator.

Second Definition A non-equivalent specification of the pseudo-likelihood
contribution (6.8) is:

p(∗i = p(i/(ni − 1).

The factor 1/(ni − 1) corrects for the effect that each response Yij occurs
ni − 1 times in the ith contribution to the PL and it ensures that the PL
reduces to full likelihood under independence. Indeed, under independence,
(6.10) simplifies to:

p(i = (ni − 1) [zi ln(πi10) + (ni − zi) ln(1− πi10)] .
We can replace p(i by p(∗i everywhere in this discussion. However, if (ni−1) is
considered random it is not obvious that the expected value of Ui(β)/(ni−1)
equals zero. To ensure that the solution to the new pseudo-score equation is
consistent, we have to assume that ni is independent of zi given the dose level
di for the ith cluster. When all clusters are equal in size, the PL estimator
β and its variance-covariance matrix remain the same, no matter whether we
use p(i or p(∗i in the definition of the log pseudo-likelihood.
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Generalized Linear Model Representation

To obtain the pseudo-likelihood function described in Section 6.3.1 we replaced
the true contribution f(yi1, . . . , yini

) of the ith cluster to the full likelihood, by
the product of all pairwise contributions f(yij , yik) with 1 ≤ j < k ≤ ni. This
implies that a particular response yij occurs ni−1 times in p(i. Therefore, it is
useful to construct for each response yij , ni−1 replicated y(k)ij with k �= j. The

dummy response y(k)ij is to be interpreted as the particular replicate of yij that

is paired with the replicate y(j)ik of yik in the pseudo-likelihood function. Using
this specific device we are able to rewrite the gradient of the log pseudo-
likelihood p( in an appealing generalized linear model type representation.
With notation introduced in the previous section the gradient can now be
written as

U(β) =
N∑
i=1

XT
i (T−1

i )TV −1
i (Zi − πi),

or, using the second representation p(∗i , as

U(β) =
N∑
i=1

XT
i (T−1

i )TV −1
i (Zi − πi)/(ni − 1),

where

Zi =
( ∑ni

j=1

∑
k �=j Y

(k)
ij

1
2

∑ni

j=1

∑
k �=j Y

(k)
ij Y

(j)
ik

)
, πi =

(
ni(ni − 1)πi10(

ni

2

)
πi11

)
and Vi is the covariance matrix of Zi. Geys, Molenberghs and Lipsitz (1998)
have shown that the elements of Vi take appealing expressions and are easy
to implement. One only needs to evaluate first and second order probabilities.
Under independence, the variances reduce to well-known quantities. To obtain
a suitable PL estimator for β we can use the Fisher-scoring algorithm where
the matrix Ai in the previous section is now replaced by the inverse of Vi. The
asymptotic covariance matrix of β̂ is estimated in a similar fashion as before.

6.3.2 Comparison with Generalized Estimating Equations

In the previous sections we described one alternative estimating procedure for
full maximum likelihood estimation in the framework of a marginally speci-
fied odds ratio model, which is easier and much less time consuming. Another
popular alternative approach is generalized estimating equations, described
in detail in Chapter 5. Several questions arise such as to how the different
methods compare in terms of efficiency and in terms of computing time and
what the mathematical differences and similarities are. At first glance, there
is a fundamental difference. A pseudo-likelihood function is constructed by
modifying a joint density. Parameters are estimated by setting the first deriv-
atives of this function equal to zero. On the contrary, generalized estimating
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equations follow from specification of the first few moments and by adopting
assumptions about the higher order moments. One could also consider them
as resulting from modifying the score equations from the likelihood function.
In that respect, McCullagh and Nelder (1989) note that these estimating
equations need not necessarily integrate to a so-called quasi-likelihood.

The close connection of PL to likelihood is an attractive feature. Indeed, it
enabled Geys, Molenberghs and Ryan (1999) to construct pseudo-likelihood
ratio test statistics that have easy-to-compute expressions and intuitively ap-
pealing limiting distributions. In contrast, likelihood ratio test statistics for
GEE (Rotnitzky and Jewell 1990) are slightly more complicated.

In Section 6.3.1 we have rewritten the PL score equations as contrasts of
observed and fitted frequencies, establishing some agreement between PL and
GEE2. Both procedures lead to similar estimating equations. The most im-
portant difference is in the evaluation of the matrix Vi = Cov(Zi). This only
involves first and second order probabilities for the pseudo-likelihood proce-
dure. In that respect, PL resembles GEE1. In contrast, GEE2 also requires
evaluation of third and fourth order probabilities. This makes the GEE2 score
equations harder to evaluate and also more time consuming.

Both pseudo-likelihood and generalized estimating equations yield consis-
tent and asymptotically normally distributed estimators, provided an empiri-
cally corrected variance estimator is used and provided the model is correctly
specified. This variance estimator is similar for both procedures, the main
difference being the evaluation of Vi.

If we define the log of the pseudo-likelihood contribution for clusters with
size larger than one as p(∗i = p(i/(ni − 1), the first component of the PL
vector contribution Si = Zi − πi equals that of GEE2. On the contrary,
the association component differs by a factor of 1/(ni − 1). Yet, if we would
define the log pseudo-likelihood as p( =

∑N
i=1 p(i, then the second components

would be equal, while the first components would differ by a factor of ni −
1. Therefore, in studies where the main interest lies in the marginal mean
parameters one would prefer p(∗ over p(. However, if main interest lies in the
estimation of the association parameters we advocate the use of p( instead.
GEE1 in that case should be avoided, since its goal is limited to estimation of
the mean model parameters, while GEE2 is computationally more complex.

The price to pay for computational ease is usually efficiency. Therefore, we
will study the asymptotic relative efficiencies (AREs) of the different estima-
tion procedures. For clusters of fixed size, p( and p(∗ are equally efficient. For
variable sized clusters, the loss of efficiency for main effects of p( will turn
out to be very small compared to p(∗. On the contrary, p( will turn out to be
superior for estimation of association parameters. We follow the suggestion of
Rotnitzky and Wypij (1994), described in Section 6.2.2. In our case, we need
to consider all realizations of the form (ni, di, yi1, . . . , yini

), and have to spec-
ify: (1) f(di), the relative frequencies of the dose groups, as prescribed by the
design; (2) f(ni|di), the probability with which each cluster size can occur,
possibly depending on the dose level (we will assume f(ni|di) = f(ni)); and
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(3) f(yi1, . . . , yini
|ni, di), the actual model probabilities. These can be derived

from the cumulative Dale model probabilities. For instance, let π(k) denote
the cumulative Dale probability of observing at least k successes and π(k)∗

the probability of observing exactly k successes, then

π(k)∗ =
(
ni
k

) (ni−k)∑
j=0

(−1)j
(
ni − k
ni − k − j

)
π(k+j).

As before, we assume that there are 4 dose groups, with one control (di = 0)
and three exposed groups (di = 0.25, 0.5, 1.0). The number ni of viable foe-
tuses per cluster can be chosen at random using a local linear smoothed ver-
sion of the relative frequency distribution given in Table 6.5. Due to excessive
time requirements for the maximum likelihood procedure, the calculations are
restricted to clusters of size 4. The ML estimating equations are:

U(β) =
N∑
i=1

∂π

∂β
V −1
i (Zi − π) = 0,

where

Zi =


Zi(
Zi

2

)(
Zi

3

)(
Zi

4

)
 and πi =


niπi10(
ni

2

)
πi11(

ni

3

)
π

(3)
i(

ni

4

)
π

(4)
i

.

This involves the evaluation of third and fourth order probabilities, which
is computationally laborious, though feasible. Data are generated from a
univariate model where the parameters of interest are modeled as follows:
logit(πi10) = β0 + βddi with di, the dose level applied to the ith cluster, and
lnψi = βa, i.e., a constant marginal odds ratio model. The background rate
parameters (β0) equal either 0 or −5 and dose effect parameters (βd) are cho-
sen from 0, 3, 5. The second order association parameters (βa) are chosen from
0, 0.3, 1. The third and fourth order associations are assumed to be zero. The
AREs will decrease for increasing higher order associations.

Table 6.8 shows that, when main interest lies in the estimation of the dose
effect, the AREs are highest for GEE2, followed by GEE1 and PL. Since the
cluster sizes are assumed to be constant and equal to 4, it does not matter
whether we use p( or p(∗ to define the log of the pseudo-likelihood. This result
shows that GEE1 has some advantage when interest lies in the estimation of
main effect parameters. ML and GEE2 are computationally more complex.
GEE1 is the easiest one to fit and the loss of efficiency for the main effect pa-
rameters is very small compared to GEE2 and ML. Similar results were found
by Liang, Zeger and Qaqish (1992). The PL estimation procedure proposed
by le Cessie and van Houwelingen (1994) is also computationally easy but is
slightly less efficient than GEE1. The differences in ARE between GEE1 and
PL are minor.

When main interest lies in the estimation of the association parameters,
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Table 6.8 Simulation Studies. Asymptotic relative efficiencies for dose effect para-

meter of GEE1, GEE2 and PL versus ML.

β0 βd βa PL GEE1 GEE2

-5 5 0.0 1.000 1.000 1.000
0.3 0.999 0.999 0.999
1.0 0.995 0.999 0.999

-5 3 0.0 1.000 1.000 1.000
0.3 0.999 0.999 0.999
1.0 0.998 0.999 0.999

-5 0 0.0 1.000 1.000 1.000
0.3 0.999 0.999 0.999
1.0 0.999 0.999 0.999

0 0 0.0 1.000 1.000 1.000
0.3 0.999 0.999 0.999
1.0 0.999 0.999 0.999

Table 6.9 Simulation Results. Asymptotic relative efficiencies for association para-

meter of GEE1, GEE2 and PL versus ML.

β0 βd βa PL GEE1 GEE2

-5 5 0.0 1.000 0.865 1.000

0.3 0.998 0.888 0.999

1.0 0.995 0.862 0.999

-5 3 0.0 1.000 0.992 1.000

0.3 0.999 0.992 0.999

1.0 0.993 0.992 0.999

-5 0 0.0 1.000 1.000 1.000

0.3 1.000 1.000 1.000

1.0 1.000 1.000 1.000

0 0 0.0 1.000 1.000 1.000

0.3 1.000 1.000 1.000

1.0 1.000 1.000 1.000

Table 6.9 shows that GEE1 can lose considerable efficiency. Moreover, in gen-
eral, one should not use GEE1 for estimating association parameters, unless
confidence in the working assumption is great. Therefore, we would advocate
the use of PL. ML and GEE2 are again the most efficient procedures, but

© 2002 by CRC Press LLC



112

Figure 6.4 Simulation Results. Asymptotic relative efficiency of GEE2 versus PL

and GEE1 for the dose effect parameter in a marginally specified odds ratio model.

computationally intensive. In case of no dose effect, the three procedures are
equally efficient with respect to the association parameter.

As Liang, Zeger and Qaqish (1992) suggested, GEE1, GEE2, and PL may
be less efficient when the cluster sizes are unequal. Figures 6.4 and 6.5 show
the efficiencies of p( and p(∗ and GEE1 versus GEE2 for varying cluster sizes.
In that case p( and p(∗ behave differently. Since maximum likelihood is pro-
hibitive, we calculated the AREs of several methods versus the GEE2 method.
Since even data generation from the assumed true distribution is rather time
consuming, we restricted the calculations to clusters of size less than or equal
to 6. Association parameters of order three and higher are assumed to be zero.

Figure 6.4 shows that p(∗ is much more efficient than p( for estimating
dose effects. Furthermore, it has the desirable property that the ARE equals
1 under independence. For estimating the second order association parameter,
however, Figure 6.5 suggests the use of p( rather than p(∗. Therefore, if main
interest lies in the marginal mean parameters we would suggest to use p(∗

rather than p(. However, if main interest lies in the estimation of association
parameters, the use of p( is advised. If interest is combined, and one type
of analysis should be chosen, p( might be preferable. When using p(∗ the
ARE increases for increasing association. Furthermore, in all cases, AREs are
highest for the lowest background rate parameters.
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Figure 6.5 Simulation Results. Asymptotic relative efficiency of GEE2 versus PL

and GEE1 for the association parameter in a marginally specified odds ratio model.

6.3.3 Examples: NTP Data

We apply the PL and first and second order GEE estimating procedures to
data from the DEHP and DYME studies, described in Section 2.1. Malforma-
tions are classified as being external, visceral, and skeletal. However, we fit the
marginal odds ratio model described in the previous sections to a collapsed
outcome, defined as 1 if at least one malformation was found and 0 otherwise.
The parameters of interest are modeled using logit(πi10) = β0 + βddi, with
di the dose level applied to the ith cluster, and lnψi = βa, i.e., a constant
marginal odds ratio model is assumed.

Table 6.10 shows that the parameter estimates, obtained by either the
pseudo-likelihood or the generalized estimating equations approach, are com-
parable. Because main interest is focused on the dose effect, we used p(∗ rather
than p(. Dose effects and association parameters are always significant, except
for the GEE1 association estimates. For this procedure, βa is not significant for
the DEHP study and marginally significant for the DYME study. The GEE1
standard errors for βa are much larger than for their PL and GEE2 counter-
parts. The GEE2 standard errors are the smallest among the different esti-
mating approaches, which is in agreement with findings in previous sections.
Furthermore, it is observed that the standard errors of the Newton-Raphson
PL algorithm are generally slightly smaller than those obtained using Fisher
scoring, which is in line with other empirical findings. On the other hand, the
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Ta b l e 6 . 1 0 NTP Data. Parameter estimates (standard errors) for a marginal odds

ratio model fitted with PL, GEE1 and GEE2.

Study β0 βd βa

Newton-Raphson PL Estimates
DEHP -3.98 (0.30) 5.57 (0.61) 1.10 (0.27)
DYME -5.73 (0.46) 8.71 (0.94) 1.42 (0.31)

Fisher scoring PL Estimates
DEHP -3.98 (0.30) 5.57 (0.61) 1.11 (0.27)
DYME -5.73 (0.47) 8.71 (0.95) 1.42 (0.35)

GEE2 Estimates
DEHP -3.69 (0.25) 5.06 (0.51) 0.97 (0.23)
DYME -5.86 (0.42) 8.96 (0.87) 1.36 (0.34)

GEE1 Estimates
DEHP -4.02 (0.31) 5.79 (0.62) 0.41 (0.34)
DYME -5.89 (0.42) 8.99 (0.87) 1.46 (0.75)

Ta b l e 6 . 1 1 NTP Data. Time (in seconds) needed for the PL, GEE1 and GEE2

procedures. For PL, Fisher scoring was used.

PL (Fisher scoring)
Study GEE2 Classical GLM GEE1

DEHP 1280 116 72 25
DYME 801 110 76 26

Newton-Raphson procedure is computationally slightly more complex in this
case. The time gain of Fisher scoring however is negligible.

Table 6.11 presents the time (in seconds) needed for each procedure. As was
expected, GEE2 is relatively time consuming. Then comes the PL estimating
approach in its classical form, followed by the generalized linear model type
representation, which is computationally less complex. As anticipated, GEE1
is the least complicated fitting procedure.
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Pseudo-likeliho o d Inference

Helena Geys, Geert M olenb erghs

transnationale Universiteit Limburg, Diepenbeek–Hasselt, Belgium

In Chapter 6, the pseudo-likelihood estimation procedure was proposed as
a viable and attractive alternative to maximum likelihood estimation in the
case of clustered (multivariate) binary data. In practice, one will often want
to perform a flexible model selection. Therefore, one needs extensions of the
Wald, score, or likelihood ratio test statistics to the pseudo-likelihood frame-
work. Rotnitzky and Jewell (1990) examined the asymptotic distributions of
generalized Wald and score tests, as well as likelihood ratio tests, for regres-
sion coefficients obtained by generalized estimating equations for a class of
marginal generalized linear models for correlated data. Using similar ideas,
we derive different test statistics, as well as their asymptotic distributions for
the pseudo-likelihood framework. Liang and Self (1996) have considered a test
statistic, for one specific type of pseudo-likelihood function, which is similar
in form to one of the tests we will present below.

7.1 Test Statistics

Suppose we are interested in testing the null hypothesis H0 : γ = γ0, where
γ is an r-dimensional subvector of the vector of regression parameters β and
write β as (γT , δT )T . Then, several test statistics can be used.

7.1.1 Wald Statistic

Because of the asymptotic normality of the PL estimator β̃N ,

W ∗ = N(γ̃N − γ0)TΣ−1
γγ (γ̃N − γ0)

has an asymptotic χ2
r distribution under the null hypothesis, where Σγγ de-

notes the r × r submatrix of Σ = J−1KJ−1, where J is the matrix of minus
the second derivatives of the log pseudo-likelihood and K is the matrix of the
cross-products of the first derivative vectors. In practice, the matrix Σ can be
replaced by a consistent estimator, obtained by substituting the PL estimator
β̃N . Although the Wald test is in general simple to apply, it is well known to be
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sensitive to changes in parameterization. The Wald test statistic is therefore
particularly unattractive for conditionally specified models, since marginal ef-
fects are likely to depend in a complex way on the model parameters (Diggle,
Liang and Zeger 1994).

7.1.2 Pseudo-score Statistics

As an alternative to the Wald statistic, one can propose the pseudo-score
statistic. A score test has the advantage that it can be obtained by fitting
only the null model. Furthermore, it is invariant to reparameterization. Let
us define

S∗(e.c.) =
1
N
Uγ(γ0, δ̃(γ0))TJγγΣ−1

γγ J
γγUγ(γ0, δ̃(γ0)),

where δ̃(γ0) denotes the maximum pseudo-likelihood estimator in the subspace
where γ = γ0, Jγγ is the r× r submatrix of the inverse of J , and JγγΣ−1

γγ J
γγ

is evaluated under H0. Geys, Molenberghs and Ryan (1999) showed that this
pseudo-score statistic is asymptotically χ2

r distributed under H0. As discussed
by Rotnitzky and Jewell (1990) in the context of generalized estimating equa-
tions, such a score statistic may suffer from computational stability problems.
A model based test that may be computationally simpler is:

S∗(m.b.) =
1
N
Uγ(γ0, δ̃(γ0))TJγγUγ(γ0, δ̃(γ0)).

However, its asymptotic distribution under H0 is complicated and given by∑r
j=1 λjχ

2
1(j) where the χ2

1(j) are independently distributed as χ2
1 variables

and λ1 ≥ · · · ≥ λr are the eigenvalues of (Jγγ)−1Σγγ , evaluated under H0.
The score statistic S∗(m.b.) can be adjusted such that it has an approximate
χ2
r distribution, which is much easier to evaluate. Several types of adjustments

have been proposed in the literature (Rao and Scott 1987, Roberts, Rao and
Kumar 1987). Similar to Rotnitzky and Jewell (1990), Geys, Molenberghs and
Ryan (1999) proposed an adjusted pseudo-score statistic

S∗
a(m.b.) = S∗(m.b.)/λ,

where λ is the arithmetic mean of the eigenvalues λj . Note that no distinc-
tion can be made between S∗(e.c.) and S∗

a(m.b.) for r = 1. Moreover, in the
likelihood-based case, all eigenvalues reduce to one and thus all three statistics
coincide with the model based likelihood score statistic.

7.1.3 Pseudo-likelihood Ratio Statistics

Another alternative is provided by the pseudo-likelihood ratio test statistic,
which requires comparison of full and reduced model:

G∗2 = 2
[
p((β̃N)− p((γ0, δ̃(γ0))

]
.
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Geys, Molenberghs and Ryan (1999) showed that the asymptotic distribution
of G∗2 can also be written as a weighted sum

∑r
j=1 λjχ

2
1(j), where the χ2

1(j)

are independently distributed as χ2
1 variables and λ1 ≥ · · · ≥ λr are the

eigenvalues of (Jγγ)−1Σγγ . Alternatively, the adjusted pseudo-likelihood ratio
test statistic, defined by

G∗2
a = G∗2/λ,

is approximately χ2
r distributed. Their proof shows that G∗2 can be rewrit-

ten as an approximation to a Wald statistic. The covariance structure of the
Wald statistic can be calculated under the null hypothesis, but also under
the alternative hypothesis. Both versions of the Wald tests are asymptotically
equivalent under H0 (Rao 1973, p. 418). Therefore, it can be argued that the
adjustments in G∗2

a can also be evaluated under the null as well as under
the alternative hypothesis. These adjusted statistics will then be denoted by
G∗2
a (H0) and G∗2

a (H1) respectively. In analogy with the Wald test statistic,
we expect G∗2

a (H1) to have high power. A similar reasoning suggests that
the score test S∗

a(m.b.) might closely correspond to G∗2
a (H0), since both de-

pend strongly on the fitted null model. Analogous results were obtained by
Rotnitzky and Jewell (1990). Section 7.2 briefly compares the small sample
behavior of the different test statistics.

The asymptotic distribution of the pseudo-likelihood based test statistics
are weighted sums of independent χ2

1 variables where the weights are un-
known eigenvalues. In Aerts and Claeskens (1999) it is shown theoretically
that the parametric bootstrap leads to a consistent estimator for the null dis-
tribution of the pseudo-likelihood ratio test statistic. The bootstrap approach
does not need any additional estimation of unknown eigenvalues and auto-
matically corrects for the incomplete specification of the joint distribution in
the pseudo-likelihood. Similar results hold for the robust Wald and robust
score test. Their simulation study indicates that the χ2 tests often suffer from
inflated type I error probabilities which are nicely corrected by the bootstrap.
This is especially the case for the Wald statistic whereas the asymptotic χ2

distribution of the robust score statistic test is performing quite well. The
parametric bootstrap is expected to break down if the likelihood of the data
is grossly misspecified. Chapter 11 presents a more robust semiparametric
bootstrap, based on resampling the score and differentiated score values.

7.2 Simulation Results

7.2.1 Asymptotic Simulations

Diggle, Liang and Zeger (1994) note that Wald tests can have poor properties
for conditional models. Therefore we advocate the use of score and ratio test
statistics.

To explore the performance of these test statistics more thoroughly, we will
show some simulation results with asymptotic considerations similar to the
ideas of Rotnitzky and Wypij (1994). Section 6.3.2 describes this approach in a
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Figure 7.1 Simulation Results. Comparison of likelihood and pseudo-likelihood test

statistics for a common dose trend in the bivariate Molenberghs and Ryan (1999)

model.

univariate context. The extension to a multivariate context is straightforward.
As in Chapter 6, we assume that there are 4 dose groups, with one control
group (di = 0) and three active groups (di = 0.25, 0.5, 1.0) and that the
number of viable foetuses (ni) per cluster is chosen at random from a local
linear smoothed version of the relative frequency distribution given in Table 1
of Kupper et al.(1986) (which is considered representative of that encountered
in actual experimental situations.)

The present study is restricted to clusters of bivariate binary data with
maximum cluster size of 10, due to prohibitive time requirements of ML. The
main effects are modeled as

θij = β0j + βddi(j = 1, 2),

i.e., a common main dose effect is assumed, and all association parameters are
assumed to be constant. Data are generated from a bivariate model with back-
ground rate parameters (β01, β02) = (−3,−3) and a zero association vector
(δ1, δ2, ω12, γ12). Positive associations yield similar results.

We would like to assess the effect of βd. Since the Wald test is known to
depend on the particular parameterization, it might be a less relevant measure
to use. We will therefore concentrate mainly on score and ratio statistics.

Figure 7.1 shows the adjusted pseudo-score and pseudo-likelihood ratio sta-
tistics S∗

a(m.b.) and G∗2
a (H0), as well as the model based, S(m.b.), and empir-

ically corrected, S(e.c.), likelihood score tests and the likelihood ratio statistic
G2. We restrict to G∗2

a (H0), since it is similar to G∗2
a (H1) in this case. Note

that S∗
a(m.b.) is identical to S∗(e.c.), since we are testing for the effect of a
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Ta b l e 7 . 1 Simulated type I error probabilities for β  0 = −2 . 5 and dose levels

0 , .25, .50, 1. (NC is the number of clusters per dose level.)

Likeliho o d Pseudo-likeliho o d

βa  NC G2 S ( m.b  ) S ( e.c) G∗
a  ( H0 ) G∗

a ( H1 ) S∗ ( e.c) = S∗
a ( m.b  )

0.10 5 5.09 4.21 3.21 4.29 14.29 2.80

30 6.00 6.20 5.00 5.40 6.60 5.40

0.25 15 3.63 3.68 1.23 4.70 18.37 2.25

30 6.01 4.60 5.00 6.63 10.84 5.20

single parameter. In the absence of both a true dose effect and an associa-
tion between outcomes or between cluster members, likelihood and pseudo-
likelihood are equivalent. However, a substantial discrepancy arises between
G2 and G∗2

a (H0) for positive dose effects. Indeed, by ignoring an important
effect, we introduce an apparent association, which is given too much weight
in the pseudo-likelihood. This leads to a pseudo-likelihood value that is too
large under the null. Therefore, the pseudo-deviance is much smaller than
the likelihood deviance. As a consequence of the misspecification, the matrix
Σγγ(Jγγ)−1, and hence also the corresponding adjustment, is overestimated,
rendering an even greater discrepancy between the test statistics G2 and
G∗2
a (H0). A similar argument explains the discrepancy with the pseudo-score

statistic, since this statistic is fully obtained from the null model. As follows
from theory, S∗

a(m.b.) and G∗2
a (H0) are comparable. For small to moderate

dose effects, both these statistics are situated between S(m.b.) and S(e.c.).
However, for larger dose effects, the pseudo-statistics S∗a(m.b.) and G∗2

a (H0),
as well as their adjustments, show a non-monotone behavior, in contrast to
the likelihood ratio that increases monotonically with dose.

7.2.2 Small Sample Behavior of the Test Statistics

In this section, we present the results of a small sample simulation study
for a single clustered outcome, based upon 500 replications, to illustrate the
finite sample behavior of the pseudo-likelihood test statistics with respect to
type I error probability and power (Geys, Molenberghs and Ryan 1999). The
number ni of viable foetuses per cluster is again assumed to follow a local
linear smoothed version of the relative frequency distribution in Table 1 of
Kupper et al. (1986). Data are generated and fitted using a model where the
main effect is modeled as θ = β0 + βdd and the association parameter is held
constant (δ = βa). The hypothesis of interest is βd = 0. The results are shown
in Tables 7.1 and 7.2.

The pseudo-score test statistics as well as G∗2
a (H0) have satisfactory type I

error probabilities, in good agreement with their likelihood counterparts. Since
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Ta b l e 7 . 2 Simulated powers for β 0 = −2 . 5, βa  = 0. 1 and dose levels  0 , .25, .50, 1.

(NC is the number of clusters per dose level.)

Likelihood Pseudo-likelihood
βd NC G2 S(m.b) S(e.c) G∗

a(H0) G∗
a(H1) S∗(e.c) = S∗

a(m.b)

1.0 5 25.05 24.80 16.80 20.04 29.66 20.20
2.0 96.42 95.79 79.79 90.18 91.38 90.40
2.5 100.00 100.00 92.46 98.20 97.80 98.00

1.0 30 88.40 88.60 83.40 83.80 87.60 84.40
2.0 100.00 100.00 100.00 100.00 100.00 100.00
2.5 100.00 100.00 100.00 100.00 100.00 100.00

we are in the single parameter case, S∗(e.c.) and S∗
a(m.b.) yield identical re-

sults. The rejection probabilities for the score statistics tend to be somewhat
smaller than for the pseudo-likelihood ratio statistics, which is often observed
in the likelihood setting as well. The pseudo-likelihood ratio statistic G∗2

a (H1)
shows inflated type I error probabilities, especially for small samples. Conse-
quently its power may be misleadingly high. A bootstrap alternative of the
pseudo-likelihood ratio test, constructed by Aerts and Claeskens (1999), seems
to nicely correct this towards the nominal size (see also Chapter 11). Similar
problems can be remedied by the bootstrap for the Wald statistic (which is
also based on the alternative model). The power of G∗2

a (H0) closely corre-
sponds to that of the pseudo-score statistics. For realistic parameter settings
such as (β0, βd, βa) = (−2.5, 2.5, 0.1) (based on analyses of National Toxicol-
ogy Program data; Price et al. 1987) and/or large samples, G∗2

a (H1) behaves
similarly to the other pseudo-likelihood test statistics. Moreover, powers are
then very high for all pseudo-likelihood statistics and comparable to their
likelihood counterparts. An analogous result was obtained from asymptotic
simulations (not shown).

In summary, the simulations suggest that the pseudo-score statistics as well
as G2

a(H0) may have lower power than their likelihood counterparts. Calcu-
lating the adjusted pseudo-likelihood ratio test under the alternative, G2

a(H1)
may increase the power, but tends to inflate type I error probabilities in small
samples. However, for realistic samples and parameter settings, the pseudo-
likelihood ratio tests produce high powers. Therefore, we would suggest the
use of the adjusted pseudo-likelihood ratio tests, but recommend caution for
small sample sizes.
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7.3 Illustration: EG data

In this section, we return to the data, described in Section 2.1, studied in ear-
lier Chapters, and collected to study the toxicity of Ethylene Glycol in mice.
The main goal is to construct an appropriate dose-response model. This will
be achieved by fitting model (4.21) and modeling the natural parameters Θ
in this model as fractional polynomial functions of dose (Royston and Alt-
man 1994), since fractional polynomials provide more flexibly shaped curves
than conventional polynomials. More details on this approach can be read in
Chapter 8. Estimation is by pseudo-likelihood rather than maximum likeli-
hood, due to the latter’s excessive computational requirements. To select an
appropriate dose-response model, we need to use the test statistics, developed
in Section 7.1.

Attempts to use conventional low order polynomials of the form β0 +∑m
j=1 βjd

j to express the model parameters Θ as a function of dose (d) are
not successful for the EG data. Royston and Altman (1994) argue that con-
ventional low order polynomials offer only a limited family of shapes and that
high order polynomials may fit poorly at the extreme values of the covariates.
Moreover, polynomials do not have finite asymptotes and cannot fit the data
where limiting behavior is expected. This is a severe limitation when low dose
extrapolation is envisaged. As an alternative, Royston and Altman (1994)
propose an extended family of curves, which they call fractional polynomials.
For a detailed discussion see Section 8.1.

Geys, Molenberghs and Ryan (1999) adopted this approach in their analysis
of the EG data. The following strategy is adopted. First, they select a suitable
set of dose transformations for each of the three developmental outcomes
(skeletal, visceral, and external) separately, using the method described by
Royston and Altman (1994). The resulting set of transformations is then used
to construct more elaborate (multivariate) models that can be scrutinized
further by means of the formal tests proposed in Section 7.1.

Their most complex model we consider (Model 1) allows different
√
d trends

on the external, visceral, and skeletal main effect parameters, an additional
d trend on the skeletal main effect parameter (θ1 = β01 + β√d1

√
d; θ2 =

β02 + β√d2
√
d; θ3 = β03 + β√d3

√
d + βd3d), and different

√
d trends to the

clustering parameters (δ). All other association parameters (ω and γ) are held
constant. This model can now be scrutinized further by means of the formal
test statistics introduced in Section 7.1.

From Table 7.3 it is clear that the clustering parameters do not depend on√
d (confirming our preliminary, univariate findings). Hence, Model 2 is now

selected. The d trend on the skeletal main effect parameter cannot be removed
(comparing Models 2 and 3), nor can the different

√
d trends on the external,

visceral, and skeletal main effects be replaced by a common trend (comparing
Models 2 and 4). Therefore we select Model 2 for the time being. Table 7.4
shows parameter estimates for this model.

A key tool to gain insight in this model is the qualitative study of the dose-
response relationship. In the area of developmental toxicity, there is generally
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Ta b l e 7 . 3 EG Data. Model selection. (All effects are constant except the ones men-

tioned.)

Model Description # Pars.

1 �= √d trends on θ1, θ2, θ3; d trend on θ3;
�= √d trends on δ1, δ2, δ3 19

2 �= √d trends on θ1, θ2, θ3; d trend on θ3 16
3 �= √d trends on θ1, θ2, θ3 15
4 =

√
d trend on θ1, θ2, θ3; d trend on θ3 14

5 �= √d trends on θ1, θ2, θ3; d trend on θ3;No ω, γ pars. 10

Comparison df λ(H0) λ(H1) S∗(e.c.) S∗
a(m.b.) G∗2

a (H0) G∗2
a (H1)

1–2 3 1.27 0.89 3.77 2.84 2.84 4.06
2–3 1 0.45 0.78 15.19 15.19 18.55 10.68
2–4 2 0.79 0.70 5.76 8.03 8.05 9.09
2–5 6 1.48 1.44 7.71 9.18 9.68 10.01

little understanding about the complex processes that relate maternal expo-
sure to adverse fetal impacts. For developmental toxicity studies where off-
spring are clustered within litters, there are several ways to define an adverse
effect. A foetus-based approach considers the malformation probability of an
individual offspring while a litter-based approach is based on the probability
that at least one adverse effect has occurred within a litter. Here, we restrict
attention to the litter-based approach. To this end, moment-based methods
such as GEE cannot be used, while the Molenberghs and Ryan (1999) model
allows flexible modeling for both the main effects and the association struc-
ture. Given the number of viable foetuses ni, the probability of observing at
least one abnormal foetus in a cluster is 1− exp(−Ani

(Θi)). Integrating over
all possible values of ni, we obtain the following risk function:

r(d) =
∞∑

ni=0

P (ni)[1− exp(−Ani
(Θi))], (7.1)

where P (ni) is the probability of observing ni viable foetuses in a pregnant
dam. (We use the empirical distribution of P (ni).) One of the major chal-
lenges of a teratology study lies in characterizing the relationship between
dose and event probability (7.1) by means of a dose-response curve. Here,
Model 2 is used to construct dose-response curves representing the probabil-
ity of observing an adverse event as a function of dose (d). The risk function
r(d) is calculated using PL parameter estimates.

Figures 7.2 (a) and (b) show the observed frequencies of malformed litters
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Ta b l e 7 . 4 EG Data. Pseudo-likelihood estimates (standard errors) for the final

model.

Effect Outcome Parameter Est. (s.e.)
Model 2 Model 5

θ Main Ext. β01 -2.27 (1.16) -3.58 (1.10)
β√d1 1.71 (0.99) 3.07 (0.97)

Visc. β02 -6.98 (2.36) -7.17 (2.26)
β√d2 5.54 (1.71) 5.83 (1.96)

Skel. β03 -2.81 (0.95) -3.61 (0.84)
β√d3 7.73 (2.32) 7.59 (2.22)
βd3 -4.01 (1.50) -3.89 (1.43)

δ Clustering Ext. δ1 0.18 (0.13) 0.29 (0.06)
Visc. δ2 0.12 (0.17) 0.22 (0.09)
Skel. δ3 0.18 (0.01) 0.19 (0.01)

ω Assoc. Ext.-Visc. ω12 -0.06 (0.57)
Ext.-Skel. ω13 0.11 (0.29)
Skel.-Visc. ω23 0.81 (0.34)

γ Assoc. Ext.-Visc. γ12 0.14 (0.13)
Ext.-Skel. γ13 0.08 (0.04)
Skel.-Visc. γ23 -0.08 (0.04)

at the selected dose levels for external and visceral malformations and the
(univariate) dose-response curves for models with constant association and

√
d

trends on the main effects. The observed malformation rates are supplemented
with pointwise 95% confidence intervals. The dose-response curve for skeletal
malformation (Figure 7.2 (c)) is based on the quadratic (

√
d, d)-model for

the main effect parameter and constant clustering. Figure 7.2 (d) shows the
trivariate dose-response curve based on all three outcomes simultaneously
(Model 2). Both the univariate as well as the trivariate fits are excellent. All
curves gradually increase when dams are exposed to larger quantities of the
toxic substance, before finally reaching an asymptotic. Note that there is a
fundamental difference in the dose-response curve for external and visceral
outcomes on the one hand, and skeletal malformation on the other, the latter
of which shows a much more pronounced dose-response relationship. This is in
line with the different functional form for these responses. Further, the joint
dose-response curve is clearly driven by skeletal malformation.

These observations suggest to explore additional model simplification. Can-
didates for removal are the dose trends on the external and visceral outcomes,
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Figure 7.2 EG Data. Dose-response curves. (a) Univariate dose-response curve for

external malformations based on a model with
√

d trend on main effect parameter

θ and constant clustering parameter δ. (b) Univariate dose-response curve for vis-

ceral malformations based on a model with
√

d trend on main effect parameter θ

and constant clustering parameter δ. (c) Univariate dose-response curve for skele-

tal malformations based on the quadratic (
√

d, d) trend on main effect parameter θ

and constant clustering parameter δ. (d) Trivariate dose-response curves based on

Models 2 and 5.

as well as one or more association parameters. Table 7.3 shows that the ω and
γ association parameters are redundant (compare Model 2–Model 5). How-
ever, the clustering parameters could not be removed from the model without
a substantial decrease in fit. Furthermore, the dose trends on the external
and visceral main effects are also important. Since the goal of selecting a
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good-fitting model is to perform risk assessment, merely concentrating on for-
mal model selection criteria is insufficient. Arguably, the excellent fit of the
dose-response curves that have been achieved should not be compromised.
However, Figure 7.2 shows that the simplified Model 5 produces essentially
the same dose-response curve as Model 3. Therefore, Model 5 will be treated
as our final model. The parameter estimates are tabulated in Table 7.4. It is
important to remember that the model parameters have a conditional inter-
pretation. For example it can be derived from (4.23) that, in Model 5, the
main effect parameter θij can be interpreted as the conditional logit, associ-
ated with an additional malformation of type j in the ith cluster, given the
cluster contains already zij = (ni + 1)/2 foetuses with malformations of that
type. Similarly, δij can be interpreted as the conditional log odds ratio for a
pair of foetuses, exhibiting malformation j, given all other outcomes. Thus, if
interest is in marginal quantities, such as the dose-response curve, they have
to be obtained as non-linear functions of the parameters. Computationally,
this is a very feasible task. In contrast, conditional questions can be answered
in terms of linear functions of the parameters.
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Clustered binary data have been analyzed mainly in a parametric way.
The selection of the proper functional forms describing the dependence of all
main and association parameters in a specific probability model is not always
an easy task. There is clearly a need for flexible parametric models and, in
case the design allows, for semi- and nonparametric approaches. This chapter
illustrates how two popular classes of polynomial models, fractional and local
polynomials, offer great flexibility in modeling clustered data.

8.1 Fractional Polynomial Models

Although classical polynomial predictors are still very customary, they are of-
ten inadequate. A very elegant alternative approach to classical polynomials,
which falls within the realm of (generalized) linear methods, is given by frac-
tional polynomials. They provide a much wider range of functional forms. Let
us briefly describe this procedure, advocated by Royston and Altman (1994).

For a given degree m and a univariate argument x > 0, fractional polyno-
mials are defined as

β0 +
m∑
j=1

βjx
[pj ],

where the βj are regression parameters, x[p] = xp if p �= 0 and x[0] = ln(x).
The powers p1 < · · · < pm are either positive or negative integers, or fractions.
Royston and Altman (1994) argue that polynomials with degree higher than
2 are rarely required in practice and further restrict the powers of x to a small
pre-defined set of noninteger values:

Π = {−2,−1,−1/2, 0, 1/2, 1, 2, . . . ,max(3,m)}.
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The full definition includes possible “repeated powers” which involve multipli-
cation with ln(x). For example, a fractional polynomial of degree m = 3 with
powers (−1,−1,2) is of the form β0 + β1x−1 + β2x−1 ln(x) + β3x2 (Royston
and Altman 1994, Sauerbrei and Royston 1999). Setting m = 2, for example,
will generate:

(1) 4 “quadratics” in powers of x, represented by

– β0 + β11/x+ β21/x2,
– β0 + β11/

√
x+ β21/x,

– β0 + β1
√
x+ β2x, and

– β0 + β1x+ β2x2;

(2) a quadratic in ln(x): β0 + β1 ln(x) + β2 ln2(x); and

(3) several other curves with shapes different from those of low degree polyno-
mials.

For given m, we consider as the best set of transformations, the one produc-
ing the highest log (pseudo)-likelihood. For example, the best first degree frac-
tional polynomial is the one with the highest log (pseudo)-likelihood among
the eight models with one regressor (x−2, x−1, . . . , x3). As with conventional
polynomials, the degree m is selected either informally on a priori grounds or
by increasing m until no worthwhile improvement in the fit of the best fitting
fractional polynomial occurs. In the above discussion, it is assumed that x is
strictly positive. If x can take zero values, a preliminary transformation of x
is needed to ensure positivity (e.g., x+ 1).

Geys, Molenberghs and Ryan (1999) used fractional polynomials for dose-
response modeling as basis for quantitative risk assessment. A similar appli-
cation is illustrated in the next section.

8.1.1 The EG Data

Consider the EG data from the NTP developmental experiments in mice. In
order to describe the dose-response relationship, representing the probability
of observing at least one adverse event as a function of dose (d), we use the
exponential family likelihood model of Molenberghs and Ryan (1999). See also
Section 4.3.

Traditionally, conventional linear predictors are used to describe main ef-
fects and associations. Figures 8.1 (a)–(c) show the observed frequencies of
malformed litters at the selected dose levels for external, visceral, and skele-
tal malformations (dots), and the three (univariate) dose-response curves for
models with constant association and a linear d trend on the main effect
(solid line). Figure 8.1 (d) shows the trivariate dose-response curve based on
all three outcomes jointly and with a common linear dose trend on the main
effect parameters (solid line). These models are clearly too restricted to ad-
equately describe the underlying dose-response relationship. One can try to
further improve the data by adopting the fractional polynomial approach.
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Figure 8.1 EG Study. Univariate and trivariate dose-response curves for external,

visceral and skeletal malformation rates.

We first select a suitable set of dose transformations for each of the three
developmental outcomes separately. We consider as the best set of transfor-
mations the one producing the smallest value of Akaike’s (1974) information
criterion (AIC). The AIC is a measure of model fit, and penalizes for increas-
ing size of the model. AIC is defined as minus twice the log (pseudo)-likelihood
value plus twice the number of model parameters. Table 8.1 shows the best
first and second degree models for the main effect of skeletal malformation
outcomes. Among all models under consideration, the quadratic represented
by (
√
d, d) yields the smallest AIC. A similar approach can be applied to the

clustering parameter, but suggests that no dose effect needs to be incorpo-
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Ta b l e 8 . 1 EG Study. Selection procedure for main effect of skeletal malformation

outcomes.

m = 1 m = 2
transformation AIC transformation AIC

1/d2 681.18 (1/d, d2) 674.48
1/d 680.96 (1/d, 1/d2) 672.88

1/
√
d 682.94 (1/d, d) 673.90

ln(d) 684.92 (
√
d, d) 671.92√

d 677.98 (d, d2) 675.60
d 688.58 (ln(d), ln(d)2) 675.12
d2 696.56 (ln(d), d2) 675.18
d3 699.02 (d, 1/d) 673.90

rated. For both the external and visceral malformation outcomes, the main
effects are best modeled linearly in

√
d, with constant association.

Based on the univariate selection, we construct more elaborate, trivariate
models that can be further scrutinized by means of formal test statistics. This
strategy was suggested by Geys, Molenberghs and Ryan (1999). The most
complex model we consider allows different

√
d trends on the external, visceral,

and skeletal main effect parameters, an additional d trend on the skeletal main
effect parameter, and different

√
d trends on the clustering parameters. All

other associations are assumed constant. Using formal test statistics, we can
simplify this model. We can show that a model with different

√
d trends on

the external, skeletal, and visceral main effect parameters, an additional trend
on the skeletal main effect parameter, and constant associations is a good
fractional model. Figures 8.1 (a)–(d) shows these fractional models (dashed
line). Univariate as well as the trivariate dose-response curves fit the data
well.

8.1.2 The HIS Data

The HIS data were introduced in Section 2.3. They were collected at three dif-
ferent stages (municipalities, households, and individuals). A multilevel model
takes the underlying hierarchical structure into account. We want to study the
effects of personal, social, and material characteristics on the body mass index
(BMI). The covariates of interest are region, sex, age, education, and house-
holds income. The variables region, education, and households income are
categorical, with respectively 3, 5, and 5 categories. The variable age is con-
tinuous. Figure 8.2 (a) plots ln(BMI) against age, together with the estimated
response for the model with a linear age effect. There is clearly a nonlinear
trend. We use fractional polynomials to model the effect of age, since these
polynomials give very flexible shaped curves.
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Figure 8.2 Belgian Health Interview Survey. ln(BMI) versus age.

Table 8.2 shows that a single effect of dose (m = 1) is unacceptable as
compared to two effects simultaneously (m = 2). This table presents only
a few of the models, but none of the other fractional polynomials provided
an improvement in fit. The quadratic represented by (age, age2) yields the
smallest AIC. This can also be seen in Figures 8.2 (b)–(d).

In this example, none of the fractional polynomials give a better fit than
the conventional quadratic polynomial. It is clear that when the fractional
polynomial approach is not necessary, it reduces to a standard polynomial
approach.

8.2 Local Polynomial Models

Although flexible, fractional polynomial models are fully parametric and their
possible shapes are pre-defined. Fully data driven nonparametric approaches,
where there is no need to postulate any assumptions on the curves’ shapes,
are another very useful modeling tool. In an explorative way, a parametric
model can be graphically compared with its nonparametric alternative. In a
further stage, a formal test statistic to examine the appropriateness of a cer-
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Ta b l e 8 . 2 Belgian Health Interview Survey. Selection procedure.

m = 1 m = 2
transformation AIC transformation AIC

1/age2 −2760.612 age, age2 −7737.231
1/age −3949.483

√
age, age −7090.243

1/
√

age −5551.051
√

age, age2 −7439.551
ln(age) −6841.176 1/age, ln(age) −7161.566
ln(age)2 −6823.584 1/age2, ln(age) −7212.649√

age −6492.688 age, age ∗ ln(age) −7637.586
age −5368.459 1/

√
age, 1/age −7407.479

age2 −3741.608 1/age, 1/age2 −6272.256

tain hypothesized parametric function can be developed. This chapter focuses
on estimation whereas Chapter 9 deals with such lack-of-fit tests.

In the one-parameter case, several authors have examined strategies to im-
plement nonparametric estimation procedures in likelihood based regression
models. Recently, many other applications have been introduced and studied.
For relevant references on this subject, see, e.g., Fan and Gijbels (1996) and Si-
monoff (1996). We restrict attention to the local polynomial fitting which has
become the standard in kernel smoothing. The corresponding smoothers are
known to have several advantages in comparison with other linear smoothers,
such as the behavior at the boundary.

8.2.1 Local Likelihood Estimation

Instead of assuming a particular functional form that specifies how the pre-
dictor x affects the distribution of the dependent variable Y , one can allow
the data to describe this relationship nonparametrically, only requiring some
weak smoothness assumptions.

For binomial data (no clustering), kernel estimates of the dose-response
curve by locally averaging the sample proportions have been studied by Co-
pas (1983), Staniswalis and Cooper (1988), and Müller and Schmitt (1988).
These approaches essentially ignore the categorical nature of the response
and do not incorporate clustering effects. Here, the multi-parameter models
as introduced in Chapters 4 and 5 are used in a generalization of the concept
of local likelihood estimation (introduced by Tibshirani and Hastie 1987).
Without loss of generality, we restrict attention to two parameter probability
models, where there are two curves of interest, θ1(x) and θ2(x), for example,
representing a dose-response relation and a within cluster correlation, both as
a function of a covariate x.

The idea behind local polynomial estimation, which is a pointwise estima-
tion method, is the following. If a covariate value xi is close to the value x
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where we wish to estimate the curve θr, then by a Taylor series approximation,
θr(xi) should be well approximated by

θr(x) + θ′r(x)(xi − x) + . . .+
1
pr!
θ(pr)
r (x)(xi − x)pr ,

provided the curve θr is smooth enough to possess at least pr continuous deriv-
atives. Denoting θrj(x) = θ(j)r (x)/j!, j = 0, . . . , pr, r = 1, 2, local polynomial
fitting provides estimators for θTr (x) = (θr0(x), . . . , θrpr

(x)), that is, the vec-
tor containing the values at x of the curve θr and its higher order derivatives
up to order pr (r = 1, 2). The local polynomial maximum likelihood estimator

(β̂
T

1 , β̂
T

2 ) = (β̂10, . . . , β̂1p1 , β̂20, . . . , β̂2p2)

maximizes the kernel weighted log-likelihood function

Ln(β1,β2) =
1
nh

n∑
i=1

ln f(Yi;
p1∑
j=0

β1j(xi − x)j ,
p2∑
j=0

β2j(xi − x)j),

×K[(xi − x)/h] (8.1)

with respect to (βT1 ,β
T
2 ) = (β10, . . . , β1p1 , β20, . . . , β2p2). The data are cen-

tered about x and each individual log-likelihood contribution is multiplied by
a weight, governed by the kernel K and the bandwidth h. In this way, those
observations xi close to x have a larger impact on the maximization process.
Of course, instead of the smoothing weights wni(x) = (1/nh)K[(xi − x)/h],
other nonnegative weights satisfying limn→∞

∑n
i=1 wni(x) = 1 could be cho-

sen.
Taking a one-parameter family and p1 = 0 (local constant) the aforemen-

tioned estimator has been studied by Staniswalis (1989), and Fan, Heckman
and Wand (1995) discussed the local polynomial estimator for f(y; θ(x)), a
one-parameter exponential family member. Carroll, Ruppert and Welsh (1998)
considered the general estimating equations setting.

Although the role of link functions here is less crucial than in paramet-
ric models (because the fitting is localized), link functions still can be very
useful in this nonparametric setting. Above all, a properly defined link func-
tion guarantees that the final estimators θ̂1(x) and θ̂2(x) will have the cor-
rect range of admissible values. Moreover, the choice of the link function af-
fects the computational aspects of the estimation procedure. For example,
local polynomial estimates in the beta-binomial model are obtained by defin-
ing θ1(x) =logit[π(x)], θ2(x) = ln[(1 + ρ(x))/(1 − ρ(x))], and by using the
beta-binomial log-likelihood (in terms of θ1(x) and θ2(x)) in the definition of
the kernel weighted log-likelihood function (8.1). Since for the beta-binomial
model explicit expressions for the maximizer of the function (8.1) are not
available, a Newton-Raphson algorithm is used to obtain the estimates in the
data examples below.

Assuming that the bandwidth h→ 0 in such a way that nh→∞ as n→∞,
and also the existence of the necessary derivatives of θr(x) and typical like-
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lihood regularity conditions, Aerts and Claeskens (1998b) proved consistency
of the local polynomial estimator (β̂1, β̂2) as an estimator for (θ1(x),θ2(x)),
derived its asymptotic bias and variance expressions, and proved joint asymp-
totic normality. Using the delta method, these results can be stated in terms
of different scales (e.g., probability instead of logit scale). The main conclu-
sion concerning the asymptotic bias expression is that the leading term is
essentially of an order determined by the polynomial of the smallest degree.
Hence, it is recommended to use polynomials of the same degree p1 = p2 = p,
preferably odd. Indeed, for odd degree polynomial fits, boundary bias and
interior bias are of the same order of magnitude. This automatic incorpora-
tion of boundary treatment is one of several nice properties to which local
polynomial fitting owes its popularity (Fan and Gijbels 1996).

For p1 = p2 = p odd, the asymptotic bias of θ̂�(x) is given by

hp+1(
∫
zp+1Kp(z)dz)θ

(p+1)
� (x)/(p+ 1)!

and its asymptotic variance by

tr
(
I−1(θ1(x), θ2(x))

) ∫
K2
p(z)dz/(nhfX(x)).

Here, Kp is a modification of the kernel K (the so-called equivalent kernel),
fX(x) refers to the design density, and I(θ1(x), θ2(x)) is the positive definite
Fisher information matrix. The bias expression states explicitly the smooth-
ness condition, namely the existence of the derivative θ(p+1)

� (x). Its asymptotic
order O(hp+1) further shows that bias decreases according to higher choices
for p, the degree of the local polynomial. On the other hand, the order of the
variance O(1/(nh)) does not depend on p, though a closer inspection of the

constant
∫
K2
p(z)dz shows that the variance increases with p. A local linear

approach has been shown to serve most purposes.
It is known that the choice of the kernel K is not very important for the

performance of the resulting estimators, but the choice of the bandwidth is
crucial. Indeed, the above expressions show that bias decreases while variance
increases as h gets smaller. Minimizing the asymptotic mean squared error
or equivalently balancing the squared bias and variance leads to the optimal
local bandwidth

hopt(x) = C(K, fX)C(θ1(x), θ2(x))n−1/(2p+3)

where the first constant C(K, fX) only depends on kernel K and design den-
sity fX(x) but the second contains several unknown quantities. Another more
natural approach in likelihood estimation is to consider the bandwidth which
maximizes E[ln f(Y ; θ̂1(x), θ̂2(x))]. This yields an optimal bandwidth of the
same order O(n−1/(2p+3)), but with a different constant C(θ1(x), θ2(x)) also
incorporating the (asymptotic) covariance between both estimators θ̂1(x) and
θ̂2(x). These are optimal local bandwidths. Taking a global loss measure such
as the asymptotic mean integrated squared error, we get an optimal global,
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Figure 8.3 Low-iron Rat Teratology Data. Local linear/linear estimates.

fixed, bandwidth. Plug-in procedures could be implemented to get a data-
driven bandwidth, but this gets very complicated.

An alternative approach is to define a cross-validation criterion

ĥCV = argmaxh>0

n∑
i=1

ln f(Yi; θ̂
[i]
1 (xi), θ̂

[i]
2 (xi)) (8.2)

where θ̂[i]1 (xi) and θ̂[i]2 (xi) are the estimators based on the sample without the
ith observation (xi, Yi). This cross-validation method is straightforward and
fully data-driven. Local linear estimators with data-driven bandwidth choice
is applied to the low-iron rat teratology data, introduced in Section 2.5.

8.2.2 The Low-iron Rat Teratology Data

For a grid of hemoglobin levels and with p1 = p2 = 1 (i.e., local linear),
we estimate the proportion of dead animals π(x) and the correlation ρ(x).
As link functions we choose the logit and Fisher’s z-transformations. After
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Figure 8.4 Low-iron Rat Teratology Data. Local linear pseudo-likelihood estimates.

rescaling the hemoglobin levels to the unit interval, the cross-validation (CV)
procedure (8.2) resulted in a bandwidth ĥCV = 0.319 (see Figure 8.3 (a) for a
plot of the CV-measure as a function of log(h)). Figure 8.3 (b) shows the data
together with the fitted π(x)-curve; the same curve on logit scale is shown
in Figure 8.3 (c). The latter picture suggests a possible quadratic type of
curvature. Figure 8.3 (d) shows the fitted ρ(x)-curve. Apparently, intra-litter
correlation decreases linearly as hemoglobin level increases. Inspired by these
suggestions, we fitted the data in a parametric way. The quadratic effect of
hemoglobin on the proportion dead and the linear effect on the correlation
appeared to be statistically significant (the likelihood ratio test producing
p = 0.029). This illustrates a typical application of a nonparametric estimator
as a tool to suggest specific functional relationships.

8.2.3 Local Pseudo-likelihood

Using the notation of Chapter 6 and restricting again to the two-parameter
case, the local polynomial pseudo-likelihood estimator is defined, analogously
to (8.1), as the maximizer, denoted (β̂

T

1 , β̂
T

2 ), of the locally weighted log
pseudo-likelihood equations; see also equation (6.1),

PLn(β1,β1) =
1
nh

∑
s∈S
δs

n∑
i=1

log fs(Y
(s)
i ;

p1∑
j=0

β1j(xi − x)j ,

p2∑
j=0

β2j(xi − x)j)K[(xi − x)/h]. (8.3)
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Claeskens and Aerts (2000a) prove consistency and asymptotic normality for
these estimators. Taking p1 = p2 = p, the asymptotic bias is identical to
that mentioned in Section 8.2.1. In the asymptotic variance expression the
Fisher information matrix I(θ1(x), θ2(x)) has to be replaced by the product
J−1KJ−1(θ1(x), θ2(x)), where J(θ1(x), θ2(x)) is the matrix with components

Jrr′(θ1(x), θ2(x)) =∑
s∈S
δsE[− ∂2

∂θr∂θr′
ln fs(Y (s); θ1(x), θ2(x))], (8.4)

(r, r′ = 1, 2), and K(θ1(x), θ2(x)) is the matrix with components

Krr′(θ1(x), θ2(x)) =
∑
s,t∈S

δsδtE[
∂

∂δs
ln fs(Y (s); θ1, θ2)

∂

∂δt
ln ft(Y (t); θ1, θ2)],

(r, r′ = 1, 2). See also equations (6.2) and (6.3) in the parametric pseudo-
likelihood estimation framework. Figure 8.4 shows the local linear estimates
of the two-parameter Molenberghs and Ryan (1999) exponential family like-
lihood model (solid lines) and of the full conditional pseudo-likelihood model
(dashed lines). Both estimation approaches result into curves which are in
close agreement.

Irrespective of the estimation method chosen, full likelihood or pseudo-
likelihood, the asymptotic bias and variance expressions depend in a com-
plicated way on several unknown quantities. Claeskens and Aerts (2000a)
discuss several bias and variance estimators. Furthermore, they study a one-
step bootstrap method allowing the construction of simultaneous confidence
regions. This approach is illustrated in the next section and is a local version
of the bootstrap method discussed in more detail in Chapter 11.

8.2.4 The Wisconsin Diabetes Study

Based on the beta-binomial likelihood, Figure 8.5 shows local estimates for the
probability of macular edema and the intra-person correlation, together with
simultaneous and pointwise 90% confidence intervals (using 1000 bootstrap
simulation runs). For this type of application, the correlation structure is often
assumed to be constant. In an explorative way, Figure 8.5 already indicates
that this assumption might be violated. In Section 9.2.6, we will formally test
this assumption using an omnibus lack-of-fit test.

8.3 Other Flexible Polynomial Methods and Extensions

Next to fractional and local polynomial models, there are other interesting
approaches using the polynomials as building blocks. One such smoothing
technique is the orthogonal series method using orthogonal polynomials as
basis functions. In the next chapter this method will be used to construct
lack-of-fit tests. Also, smoothing splines or penalized regression splines use
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Figure 8.5 Wisconsin Diabetes Data. Simultaneous and pointwise 90% confidence

intervals for the probability of macular edema (left panel) and for the intra-person

correlation (right panel), based on the one-step linear bootstrap.

polynomials and truncated polynomials as basis functions. In case of multiple
predictors, these methods can be easily extended but they are all confronted
with the curse of dimensionality. One way out is to consider additive models.
Some relevant references for clustered data are Wild and Yee (1996), Claeskens
and Aerts (2000b), Aerts, Claeskens and Wand (2002), and Gao et al. (2001).
All of the above mentioned methods are essentially linear. Of course, non-
linear models form another interesting family of models. This approach will
not be discussed here.

Another important issue in model building is misspecification. Also, here,
flexible models can play an important role. A misspecified probability model
can be partly corrected by flexible regression models for the parameters in-
volved. More about this topic will be explained in Chapter 11.
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CHAPTER 9

Assessing the Fit of a Model

Gerda Claeskens

Texas A & M University, College Station, TX

Marc Aerts

transnationale Universiteit Limburg, Diepenbeek–Hasselt, Belgium

To evaluate how effective a model is in describing the outcome variable,
we need to assess the quality of its fit. The lack-of-fit of a regression model
is investigated by testing the hypothesis that a function has a prescribed
parametric form. The function of interest is typically the mean of the response,
but it might also be its variance, or the correlation between different outcomes.
In other cases, it might be a complete density function of which we want to
investigate the goodness-of-fit. The parametric testing methods of Chapter 7
are designed to detect very specific types of departures from the hypothesized
model. For example, likelihood ratio, Wald or score tests are employed to
contrast a constant and a linear dose-response curve. While very powerful
for this particular class of alternative models, these tests quickly lose power
when the truth is more complicated. The omnibus nonparametric methods of
this chapter are appealing in that they are consistent against virtually any
departure from the hypothesized parametric model.

Section 9.1 describes an adaptation of the Hosmer-Lemeshow (1989) ap-
proach, for application to clustered binary data. In the remaining sections
of this chapter, we discuss order selection tests based on orthogonal series
estimators. In particular, Section 9.2 defines the different testing strategies
for simple regression, while Section 9.3 gives extensions to multiple regression
and to somewhat more specific alternative models. Section 9.4 applies these
ideas to test whether density functions belong to a specific class.

9.1 A Hosmer-Lemeshow Approach for Likelihood Based Models

Several methods for assessing the goodness-of-fit of binary logistic regression
models are based on the notion of partitioning the covariate space into groups
or regions. Tsiatis (1980) proposed a lack-of-fit statistic for a given partition
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of the covariate space, but he did not provide a method for partitioning the
covariate space into suitable regions. Hosmer and Lemeshow (1989) proposed
the partition of subjects into groups or regions on the basis of percentiles of the
predicted probabilities from the fitted logistic regression model. To construct
a lack-of-fit measure for clustered binary data, an adaptation of the methods
proposed by the above authors is necessary. We illustrate this in the context
of the heatshock study. First, groups are constructed according to deciles of
the predicted malformation probabilities in each temperature-duration combi-
nation. Given this partition, the lack-of-fit statistic is formulated by defining
G− 1 group indicators (in our example, G = 10):

Igik =

{
1 if π̂ik is in group g (g = 1, . . . , G− 1),

0 otherwise,

where π̂ik is the estimated malformation probability of the kth individual
within the ith cluster, calculated from the model that takes into account
the clustering between the individuals. For example, in the context of the
heatshock studies, the following model is considered:

ln
(
πik

1− πik

)
= β0 + βt∗t∗ik + βdtdtik +

G−1∑
g=1

Igikγg.

The association is modeled similarly as in the model for which the lack-of-fit is
assessed. One possible choice would be an exchangeable correlation structure.

If the mean structure in the original model is correctly specified, then all
γg = 0. Moore and Spruill (1975) note that, even though IIgik is based on
random quantities π̂ik, the partition can be treated asymptotically as if it were
based on the true πik. To test the lack-of-fit of the model, one can use either a
likelihood ratio, Wald or score statistic to test H0 : γ1 = · · · = γG−1 = 0. For
large samples, each of these statistics has approximately a χ2 distribution with
G− 1 degrees of freedom, if the model under the null hypothesis is correctly
specified. We suggest the use of the likelihood ratio statistic, since it is simple
to calculate and is fairly powerful. For large samples, all estimated expected
frequencies should typically be greater than 1 and at least 80 percent should
be greater than 5. Otherwise, one can collapse some frequencies, reducing the
number of groups G (Lipsitz, Fitzmaurice and Molenberghs 1996). Hosmer
and Lemeshow (1989) noted that G = 6 should be a minimum, since a test
statistic calculated from fewer than 6 groups will usually have low power and
thus indicates that the model fits well. Note that in the lack-of-fit assessment
described above, correlation is essentially treated as a nuisance parameter
and interest is focused on the relationship between the covariates and the
probability of response. Hosmer, Hosmer, Lemeshow and le Cessie (1997) have
shown that there may be disadvantages in the use of lack-of-fit tests based
on the ones proposed by Hosmer and Lemeshow. Decisions on model fit may
depend more on choice of cut points than on lack-of-fit and their test statistic
may have relatively low power with small sample sizes. This goodness-of-fit

© 2002 by CRC Press LLC



method will be illustrated on the heatshock data in detail in Section 13.4.
Finally, we mention that the method as proposed above has been studied for
GEE for repeated binary outcomes by Horton et al. (1999).

9.2 Order Selection Tests

The basic idea of the construction of omnibus lack-of-fit tests based on or-
thogonal series expansions comes from Eubank and Hart (1992) who proposed
the order selection test for checking the fit of a linear model in fixed-design
ordinary regression. The tests in the current section, as proposed by Aerts,
Claeskens and Hart (1999), are applicable to a much wider range of statis-
tical problems. Robust versions of the tests have an asymptotic significance
level which is correct even when the likelihood is misspecified, or when quasi-
likelihood, pseudo-likelihood, or generalized estimating equations methods are
being used.

Suppose we have independent observations (x1,Y 1), . . . , (xn,Y n). Here,
the Y i might represent the vector of all outcomes of the ith cluster. The
covariate values are assumed to be fixed, which could correspond either to a
designed experiment or to conditioning on the values of a random covariate.
The density (or probability mass function) of each Y i is known up to the
function of interest γ(·) and some k-dimensional nuisance parameter η (k <
∞). We wish to test a null hypothesis about the functional form of γ,

H0 : γ(·) ∈ {γ( · ;θp) : θp = (θ1, . . . , θp) ∈ Θ}, (9.1)

where Θ is a subset of a p-dimensional Euclidean space. One example would be
to test for linearity of a marginal parameter. In this case γ(x;θ2) = θ1 + θ2x,
where θ2 = (θ1, θ2) is left unspecified.

Our interest is in tests that are sensitive to essentially any departure from
H0. As alternative models for γ(·) we consider sequences of approximators
with the property that the parametric family under the null hypothesis is
nested within the alternative models, which in turn form a sequence of nested
models having more and more parameters as r increases. Furthermore, we
request that the approximators come closer and closer to spanning the space
of all functions of interest as r →∞. For example,

γ(·; θ1, . . . , θp) +
r∑

j=1

θp+juj(·),

where {u1(·), u2(·), . . . } is complete for the class of functions that are con-
tinuous on the range of the design points. If x is real-valued, possibilities for
the uj ’s are orthonormalized Legendre polynomials, a cosine system where
uj(x) = cos(Ajx), or linear combinations of polynomials and/or trigonomet-
ric functions that are orthogonal in some sense.

It is implicit here that the added functions in the alternative models do
not repeat terms already in the null model. If this were the case, we could
simply discard those uj ’s from

∑r
j=1 θp+juj(x). For example, suppose we wish
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to test the hypothesis that γ(x) has the form θ1 + θ2x and we want to use
polynomial alternatives. Then we could take uj(x) = xj+1, j = 1, 2, . . . , since
it is pointless to include 1 or x in our set of alternative models.

9.2.1 A Likelihood-based Test

The basic idea of the tests is to use a data-driven method of selecting a model
for γ(·), and to reject the null hypothesis (9.1) if the selected model contains
more than p parameters, with p being the number of parameters in H0. In
a likelihood context, a popular method of model selection is AIC, Akaike’s
(1974) information criterion. Denote by Lr the likelihood at its maximum
value in the model with r terms in addition to the p terms already in the null
model, i.e., employing the approximator γ( ·; θ1, . . . , θp+r). L0 is the value
corresponding to the null model. The AIC function is the penalized likelihood

AIC(r) = Lr − (k + p+ r), r = 0, 1, . . . ,

in which k is the number of nuisance parameters. For future reference we note
that the maximizer of AIC(r) is equal to the maximizer of 2(Lr−L0)−2r, and
to the minimizer of another frequently used form of the criterion: −2Lr + 2r.
An estimate of γ(·) may be obtained by choosing r to maximize AIC(r) over
some set of the form {0, 1, . . . , rn}, where rn could either be fixed or tending
to infinity with n.

A possible test of H0 against a general alternative is to reject H0 if r̂, the
order selected by AIC, is larger than 0. Under certain regularity conditions
(Aerts, Claeskens and Hart 1999), the limiting level of this test (as n→∞) is
about 0.29. By most standards, a type I error probability of 0.29 is quite high.
To obtain control of the test level, Aerts, Claeskens and Hart (1999) propose
a modification of AIC that parallels a proposal in Eubank and Hart (1992).
Define the likelihood information criterion, LIC, by

LIC(r;Cn) = 2(Lr − L0)− Cnr, r = 0, 1, . . . , (9.2)

where Cn is some constant larger than 1, and let r̂Cn
be the maximizer of

LIC(r;Cn). By appropriate choice of Cn, the asymptotic type I error proba-
bility of the test

“reject H0 when r̂Cn
> 0” (9.3)

can be any number between 0 and 1. For example, a test of asymptotic level
0.05 is obtained by using Cn = 4.18. See Hart (1997, p. 178) for values of
Cn leading to other test levels. Taking Cn equal to 2 and logn in (9.2) yields
the well-known AIC and the Bayesian information criterion BIC (Schwarz
1978), respectively.

The test described above in (9.3) rejects H0 if and only if LIC(r;Cn) is
larger than 0 for some r in {1, . . . , rn}, which is equivalent to rejecting H0

when Tn ≥ Cn, with

Tn = max
1≤r≤rn

2(Lr − L0)
r

.
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Hence, in addition to playing the role of penalty constant, Cn is a critical value
of the statistic Tn. The test based on Tn has a nice interpretation in terms of
likelihood ratio statistics. Note that Lr − L0 is the log of the likelihood ratio
that is used to test hypothesis (9.1) against the alternative with r additional
parameters. Since our test of H0 is omnibus, Tn is not a single likelihood ratio
but rather the largest of a set of weighted log-likelihood ratio statistics. The
largest weights are placed on the models with the fewest parameters. This has
a similar effect to using a prior distribution that places higher probability on
alternatives with fewer parameters.

Using this version of the test one may approximate the p value correspond-
ing to an observed Tn = t by using either the bootstrap or a large-sample
distribution, where we approximate the p value by

p value ≈ 1− exp

− M∑
j=1

P (χ2
j > jt)
j

 ,
for some large number M , say 80 (Hart 1997, p. 175).

9.2.2 A Score-based Test

Another method of choosing r (Aerts, Claeskens and Hart 1999) uses the
score-based information criterion,

SIC(r;Cn) = Sr − Cnr, r = 0, 1, . . . , (9.4)

where S0 is defined to be 0, and the score statistic

Sr = Ur(δ̂r0)T
{
Jnr(δ̂r0)

}−1

U r(δ̂r0),

for r = 1, 2, . . . , rn, δ̂r0 = (η̂0, θ̂p0,0r) and (η̂0, θ̂p0) is the null estimate, i.e.,
the estimate of (η, θ1, . . . , θp) under the model specified by the null hypoth-
esis. The vector U r(·) in Sr is the score vector, that is, the vector of first
partial derivatives with respect to the parameter θp+r. The matrix Jnr(·) is
the observed Fisher information evaluated at the null parameter estimates.
In some cases it is possible to obtain explicit expressions for the expected
Fisher information, in which case one could replace Jnr(·) by the expected
information evaluated at the null estimates. There is no general consensus in
the literature as to which of these two approaches is better (Efron and Hink-
ley 1978 and Boos 1992). Asymptotically, the two versions of Sr are generally
equivalent to first order. An appealing aspect of using expected information
is that it often leads to simpler and more readily interpretable expressions for
Sr.

The test rejectsH0 when the maximizer, r̃Cn
, of SIC(r, Cn) is larger than 0.

This test is equivalent to one that rejects H0 for T̃n ≥ Cn, where

T̃n = max
1≤r≤rn

Sr
r
,
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and Cn is some constant larger than 1. We may choose r to maximize criterion
SIC(r;Cn) over r = 0, 1, . . . , rn, with the upper bound rn either fixed or
tending to infinity with n. When the null hypothesis is true, the difference
between SIC(r;Cn) and LIC(r;Cn) is negligible. For this reason, we shall
refer to SIC(r; 2) and SIC(r; logn) as score analogs of AIC and BIC.

The Wald and score test statistics are two computationally attractive and
quadratic approximations of the likelihood ratio statistic. Either one could
be used instead of 2(Lr − L0). The Wald statistic (Boos 1992) needs the
“unrestricted” maximum likelihood estimators, while the score statistic only
requires fitting the null model. The last property is appealing in our setting
where one considers a large number of alternative models. A parallel devel-
opment is possible for Wald statistics, which are, however, known not to be
invariant to equivalent reparameterizations of nonlinear restrictions (Phillips
and Park 1988).

9.2.3 A Robust Score-based Test

Parameter estimators can be obtained by solving more general estimating
equations than likelihood equations. If the parameter of interest is the (con-
ditional) mean of the response variables, the idea of solving a set of score
equations U r(·) = 0 in likelihood models is generalized to the construction of
quasi-likelihood equations (Wedderburn 1974), and to the multivariate ver-
sion, the generalized estimating equations (GEE) (Liang and Zeger 1986, for
details see Chapter 5). Other frequently used estimating equations are found
in the context of M-estimation (Huber 1981), resulting in robust regression
models.

In the absence of a likelihood function, it is clear that an LIC-based test can
no longer be constructed. Instead, a robust information criterion RIC may
be defined. The basic idea of the lack-of-fit test construction is the following.
Specify a nested sequence of growing models, encompassing the null model
(r = 0). In each model, calculate the robust score statistic Rr. We define the
robust score-based information criterion (where R0 = 0):

RIC(r;Cn) = Rr − Cnr, r = 0, 1, . . . , rn.

We may then reject H0 whenever the maximizer of RIC(r;Cn) exceeds 0.
This test is equivalent to one that rejects H0 whenever the largest of a set of
weighted robust score statistics is larger than Cn:

T̄n = max
1≤r≤rn

Rr

r
≥ Cn.

Under H0 and appropriate regularity conditions, the statistic T̄n will have
the same limit distribution as that of Tn and T̃n, based on LIC and SIC
respectively. Importantly, this result does not require a correct specification
of a likelihood.

More specifically, if the null model to be tested contains unknown para-
meters θ1, . . . , θp and possibly a k-dimensional nuisance parameter η, for ex-
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ample, consisting of components of a covariance matrix, then the estimating
equations for the r-th alternative model in our model sequence is given by

n∑
i=1

ψr(Y i;η, θ1, . . . , θp+r) = 0p+k+r,

where ψr is of dimension p+ k + r. Let δ̂r0 = (η̂0, θ̂p0,0r) be the null model
estimators, extended with a zero vector of length r. Define ξr to be the length
p + k + r vector equal to the estimating equations evaluated at the null es-
timators:

∑n
i=1ψr(Y i; η̂0, θ̂0,0r). The robustified score statistic, using the

“sandwich” covariance estimator, is defined as

Rr = (ξr)
T
r

{(
J̃

−1

nr (δ̂r0)
)
r

[(
J̃

−1

nr (δ̂r0)K̃nr(δ̂r0)J̃
−1

nr (δ̂r0)
)
r

]−1

×
(
J̃

−1

nr (δ̂r0)
)
r

}
(ξr)r,

for r = 1, 2, . . . , where J̃nr(·) is a (p+ k + r)× (p+ k + r) matrix of partial
derivatives of ψr and

K̃nr(δ̂r0) =
n∑
i=1

ψr(Y i; η̂0, θ̂p0,0r)ψr(Y i; η̂0, θ̂p0,0r)
T .

Further, (·)r denotes the right r × r submatrix of a (k + p + r)-dimensional
matrix or the last r components of a length (k + p+ r)-vector. Also, when a
likelihood model is constructed, but there is uncertainty about the correctness
of this model, we advise using the robustified score test, since this test remains
valid under model misspecification.

The score-based tests are advantageous in at least two ways. They are com-
putationally simple, since the score criterion has the advantage of requiring
MLEs of model parameters only under the null hypothesis and they can eas-
ily be robustified to protect against model misspecification, which lead to the
definition of RIC.

9.2.4 The Low-iron Rat Teratology Data

Let π(x) denote the expected proportion of dead foetuses for female rats
whose hemoglobin level is x, and suppose we wish to test the following null
hypothesis:

H0 : logit(π(x)) = θ1 + θ2x, for each x. (9.5)

We will employ the beta-binomial model which allows for correlation within
a cluster. Test statistics for hypothesis (9.5) are calculated using both polyno-
mial and cosine alternatives. First, we transform the design points to the inter-
val (0, 1). Then, we consider uj(x) = xj+1 and uj(x) = cos(πjx), j = 1, 2, . . . .
In the beta-binomial model the correlation was modeled as a straight line
function of x, a model that is, referring to the results of Section 8.2.2, found

© 2002 by CRC Press LLC



Table 9.1 Twins Data. Omnibus lack-of-fit test statistics.

Polynomial basis Cosine basis
Criterion Value p value rn Value p value rn

SIC 0.471 0.981 15 0.799 0.948 15
RIC 1.693 0.399 15 2.993 0.120 15

to be reasonable. An upper bound of rn = 14 was used in each statistic, since
there were computational problems when fitting models with more than 16
variables. The RIC criterion results in an observed value of 1.93 for T̄n when
using a cosine basis for the alternative models. The corresponding p value
equals 0.31. If we use a polynomial basis instead, the observed value is 3.18
with a p value of 0.1. Neither the cosine nor the polynomial version of the
robust score statistic exceeds 4.18, the asymptotic critical value for a 0.05
level test, and hence the data appear to be consistent with the hypothesis
that π(x) has the form 1/[1 + exp{−(θ1 + θ2x)}].

9.2.5 The POPS Twins Data

For the set of twins in the POPS study, we will test the null hypothesis
of linearity in gestational age (in weeks) for the logit of the probability of
mortality and morbidity within 28 days after birth,

H0 : logit(π(x)) = θ1 + θ2x, for each x.

Because of the size of this data set (there are 113 twins) we model the corre-
lation parameter, which is the nuisance parameter in a beta-binomial model,
as a constant function of gestational age.

We used both a polynomial and a cosine basis to extend the null model.
Observed values of test statistics and approximate p values based on the as-
ymptotic distribution theory are given in Table 9.1. There are no results for
the LIC based tests, because of convergence problems. This demonstrates
clearly the advantage of using score-based tests instead of likelihood ratio-
based tests. “Naive” as well as robust score-based tests do not give evidence
of a more complicated structure. Based on these data, and for a level of sig-
nificance smaller than 11.9%, we cannot reject the null hypothesis of linearity
for the probability of mortality and morbidity within 28 days after birth.

9.2.6 Tests for Correlation in the Wisconsin Diabetes Study

We apply our proposed tests to the data set concerning the effect of the
systolic blood pressure on the occurrence of macular edema at the eyes of
younger onset diabetic persons. Let yi denote the number of eyes infected
(0, 1, or 2), xi the systolic blood pressure, π(x) the expected proportion of
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Table 9.2 Wisconsin Diabetes Data. Omnibus lack-of-fit test statistics.

π(x) Criterion Value P -value rn

Beta-binomial likelihood

Linear SIC 2.096 0.262 15
RIC 4.350 0.045 15
LIC 3.522 0.080 4

Quadratic SIC 2.105 0.260 15
RIC 4.045 0.055 15
LIC 3.405 0.087 4

GEE2 (Bahadur)

Linear RIC 4.632 0.037 15
Quadratic RIC 4.381 0.044 15

infected eyes for a diabetic person whose systolic blood pressure is x and let
ρ(x) denote the expected correlation between the outcomes of the left and
right eye. We wish to test whether the correlation changes with systolic blood
pressure, in which case the null hypothesis is

H0 : ρ(x) = θ, for each x. (9.6)

We will consider two models for these data, both accounting for the intra-
person correlation. The first model is the full likelihood beta-binomial model
(see Section 4.3.1). The second model uses generalized estimating equations
(GEE2, Zhao and Prentice 1990; see also Chapter 5) based on the first four
moments of the Bahadur (1961) model. Test statistics for hypothesis (9.6) are
calculated using polynomial alternatives; their values are given in Table 9.2.
Note that for the GEE2 model, only the RIC criterion yields relevant test
statistics and that the LIC criterion is not defined in this context. Test statis-
tics were calculated with rn equal to 15. For the likelihood methods, however,
there were convergence problems with rn values bigger than 4. The parame-
ters corresponding to π(x) are, for present purposes, nuisance parameters. It
turns out that for these data the test results are very similar for a linear or a
quadratic form of π(x). None of the “naive” score-based tests is able to reject
the null hypothesis. In the generalized estimating equations model the p val-
ues are slightly smaller than in the full likelihood model, but in both cases,
the RIC yields p values that are not larger than 5.5%. For these data, we
might consider modeling the correlation as a nonconstant function of systolic
blood pressure.
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9.2.7 Some Other Test Statistics

Aerts, Claeskens and Hart (2000) propose and compare some other nonpara-
metric tests of H0 that all have two features in common: they are functions
of score or likelihood statistics based on different model dimensions, and the
model dimension is chosen by a data-based rule.

Define the statistics r̂a and r̂b as the maximizers of the SIC criteria,

r̂a = argmax0≤r≤rn
SIC(r; 2) and r̂b = argmax1≤r≤rn

SIC(r; logn).

The first two test statistics are simply Sa ≡ Sr̂a
and Sb ≡ Sr̂b

, i.e., the score
statistic with number of alternative parameters chosen by the score analogs
of AIC and BIC, respectively. Note that r̂b maximizes SIC(r; logn) over
1, . . . , rn rather than 0, 1, . . . , rn. This definition is used due to a consistency
property of BIC-type order selection criteria. When r = 0 is included, the
statistic r̂b is a consistent estimator of 0 under the null hypothesis. This means
that the limit distribution of Sr̂b

is degenerate at 0, making the asymptotic
level of a nonrandomized test either 0 or 1. Maximizing SIC over the set
{1, . . . , rn} (as suggested by Ledwina 1994) allows one to perform a non-
randomized (large sample) test of any level. Standardizing Sr̂a

leads to the
statistic (9.7)

Ta =
Sr̂a
− r̂a

max(1,
√
r̂a)
. (9.7)

Under general conditions, one can show that

Ssn
− sn√
2sn

(9.8)

converges in distribution to a standard normal random variable as n→∞ and
sn →∞ at a sufficiently slow rate. It thus seems natural to use a test statistic
of the form (9.8), and statistic (9.7) is essentially (9.8) with a data-driven
choice for sn. It turns out that standardizing Sr̂a

as above greatly stabilizes
the null distribution of the statistic, which has a decided effect on the power
for (9.7). One could similarly standardize Sr̂b

, but the null distribution of this
statistic is already quite stable and the standardization has a negligible effect.

Yet another test statistic is

Tmax = SIC(r̂a; 2), (9.9)

that is, the AIC-type score criterion evaluated at its maximum.
Aerts, Claeskens and Hart (2000) compare all of these statistics, including

the previously defined order selection test Tos ≡ T̃n. Their conclusion in ex-
periments under alternative models with added higher frequency terms (for
example, a high order polynomial) is that the order selection test T̃n is very
good at the lowest frequency, but going to higher frequencies, its power de-
creases rapidly. The BIC-based test Sr̂b

shows very similar behavior. It enjoys
good power at low frequency alternatives, but since it has a large penalty for
models with many parameters, it has almost no power at high frequencies. At
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low frequency alternatives, both Ta and Tmax improve upon the unstandard-
ized Sr̂a

test, but when the frequency of the alternative models exceeds the
null models’ frequency by at least 4, Sr̂a

has the largest power. Since Tmax

and Ta are both doing very well for the low frequency cases and still have
reasonable power at high frequencies, we recommend one of these two tests.
If one suspects a higher frequency alternative, Sr̂a

is the best choice. For low
frequencies, the order selection test T̃n is the best one in this comparison. For
combinations of low and high frequency terms, the low frequencies will be
dominant.

9.3 Data-driven Tests in Multiple Regression

In this section, we consider the score-based tests in the setting of multiple re-
gression. In doing so, we address the issue of choosing an appropriate sequence
of nested alternative models. This issue is relatively trivial when testing the
fit of a function of one variable, but increases quickly in complexity when the
number of variables increases.

9.3.1 Omnibus Tests in Models With Two Covariates

To illustrate how the methods of Section 9.2 may be generalized to multiple
regression, we consider the relatively simple case of two covariates. Let γ be
an unknown function of the covariates x1 and x2. We wish to test the null
hypothesis

H0 : γ ∈ {γ( · , · ;θ) : θ ∈ Θ}. (9.10)

If we use a cosine series to represent γ, an alternative model may be expressed
as

γ(x1, x2) = γ(x1, x2;θ)

+
∑∑

(j,k)∈Λ
αjk cos(πjx1) cos(πkx2). (9.11)

The definition of the index set Λ will, in general, depend on the specific model
under the null hypothesis. For example, if we wish to test the hypothesis that
γ(x1, x2) has the form

θ1 + θ2 cos(πx1) + θ2 cos(πx2),

and we use a cosine basis, then clearly (1, 0) and (0, 1) should not be included
in Λ. For ease of notation, we will now assume that the function γ(x1, x2,θ)
is constant, but generalizations are straightforward. Under the no-effect null
hypothesis, Λ is a subset of

{(j, k) : 0 ≤ j, k < n, j + k > 0}.
In analogy to (9.4), we define a score statistic SΛ and the criterion

SIC(Λ;Cn) = SΛ − CnN(Λ),
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respectively, where N(Λ) denotes the number of elements in Λ.
To carry out a test we maximize SIC(Λ;Cn) over some collection of sub-

sets Λ1,Λ2, . . . ,Λmn
. It is important that this collection corresponds to nested

models; otherwise, the distributions of the resultant test statistics will, in gen-
eral, depend upon parameters of the null model, even when n→∞. We thus
insist that Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λmn

, and we call such a collection of sets a model
sequence. The only problem now is in deciding on how to choose a model
sequence, since obviously there are many possibilities. One important consid-
eration is whether a given sequence will lead to a consistent test. To ensure
consistency against virtually any alternative to H0, we ask that N(Λmn

)→∞
in such a way that, for each (j, k) �= (0, 0) (j, k ≥ 0), (j, k) is in Λmn

for all
n sufficiently large. The choice of a model sequence is further simplified if
we consider only tests that place equal emphasis on the two covariates. In
other words, we could insist that terms of the form cos(πjx1) cos(πkx2) and
cos(πkx1) cos(πjx2) simultaneously enter the model.

We now give a concrete example of how to construct a model sequence. As
an illustration, we use cosine basis functions; it should be clear how to follow
this scheme for other bases. Below, we give explicitly the basis functions that
are added to the previous model in the first four steps. For ease of notation,
we assume that we want to test the null hypothesis of no effect. The same
sequence of steps is graphically represented in Figure 9.1:
1. cos(πx1) and cos(πx2),

2. cos(πx1) cos(πx2),

3. cos(π2x1) and cos(π2x2),

4. cos(πx1) cos(π2x2) and cos(π2x1) cos(πx2),

5. . . .
Other choices for the model sequences are discussed in more detail in Aerts,
Claeskens and Hart (2000). We also refer to this paper for more informa-
tion about the large sample distribution of the test statistics as defined in
Section 9.2.7.

In the case of three or more covariates, it is worthwhile to point out the
price to be paid by an omnibus test as the number, d, of covariates increases.
Regardless of what d is, the maximum number of parameters we should con-
sider in a model is O(n), and for simplicity let us just say n. For an omnibus
test that places the same emphasis on all d covariates, this entails, roughly
speaking, that rn ought not to exceed n1/d. Thus clearly, the ability of an
omnibus test to detect higher frequency alternatives quickly wanes as the
dimension of the x-space increases.

9.3.2 Tests in Additive Models

For a high-dimensional covariate vector, the omnibus tests become less at-
tractive. However, if we can assume that an additive model fits the data well,
the curse of dimensionality can be circumvented. Under this assumption, an
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Figure 9.1 Model sequence in two dimensions.

alternative to the null model (9.10) can, for two covariates and the cosine
basis, be written as

γ(x1, x2) = γ(x1, x2;θ) +
∑
j∈Λa

aj cos(πjx1) +
∑
j∈Λb

bj cos(πjx2),

which has the form of (9.11) with

Λ ⊆ Λ∗
n = {(j, 0) : 1 ≤ j ≤ mn} ∪ {(0, k) : 1 ≤ k ≤ mn}.

As before, we define a score statistic SΛ and the criterion

SIC(Λ;Cn) = SΛ − Cn(N(Λa) +N(Λb)).

The test is carried out by maximizing SIC(Λ;Cn) over a collection Λ1 ⊆ Λ2 ⊆
. . . ⊆ Λrn

of subsets of Λ∗
n. Again, there are a number of ways to construct

such a sequence of nested models. One possibility is to use, at step r, a series
estimate of the form

kr∑
j=1

aj cos(πjx1) +
�r∑
j=1

bj cos(πjx2),

where kr ≥ kr−1 and (r ≥ (r−1 for r = 2, 3, . . . . If we insist that kr = (r and
let kr increase by 1 at each step, then

Λj = {(1, 0), (0, 1), (2, 0), (0, 2), . . . , (j, 0), (0, j)}.
We will refer to a test based on this model sequence as a diagonal test, since
the “path” {(kr, (r) : r ≥ 1} corresponding to this test proceeds along the
diagonal {(kr, kr) : r ≥ 1}. At each step in a diagonal test, two terms are
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added to the previous model. This approach has an obvious extension to the
case of more than two covariates.

Another model sequence is obtained by adding alternately a term in x1,
followed by the corresponding term in x2, or vice versa. This may be referred
to as a step-diagonal path, which has the disadvantage that the symmetry is
lost.

9.3.3 The “Max” Tests in Models with Any Number of Covariates

First we explain the idea in two-covariate models. For example, consider as
an alternative model

γ(x1, x2) = γ(x1, x2;θ) +
∑
j∈Λ

aj cos(πjxk), k = 1 or 2,

where only one of the covariates is used to distinguish from the null model. Of
course, other basis functions may be used. Unless one has a prior belief that
only xk would cause the lack of fit from the null model, this approach is not
recommended. Instead, we could take as our test statistic the maximum of the
values obtained by looking at each covariate “direction” separately; we refer
to this as the max test. The level of this test can be controlled by application
of Bonferronni’s inequality.

This same idea can be used to extend the domain of application to models
with more than two covariates. For a model with d covariates we consider, for
each pair (r, s) separately, alternatives

γ(x1, . . . , xd) = γ(x1, . . . , xd;θ)

+
∑∑

(j,k)∈Λ
αjk cos(πjxr) cos(πkxs). (9.12)

For a particular choice of (r, s), we may perform any of the tests for two-
covariate models, for example, one of the omnibus tests following the model
sequence in Figure 9.1. Next, we take the maximum of all d(d − 1)/2 test
statistics. If the number of covariates d is large, using Bonferronni’s inequality
will result in a very conservative test; instead a bootstrap procedure might be
applied. It seldom occurs that relevant hypotheses contain more than four or
five covariates, since usually a model selection stage is passed before testing
a specific hypothesis.

When both continuous and discrete covariates are present, one might want
to perform the test on the continuous covariates only. In this semiparametric
testing framework, we may apply the max test on the continuous variables
only, while leaving the model for the discrete variables unchanged during the
testing procedure.

9.3.4 Tests for More Specific Alternatives

The test in Section 9.3.2 is not necessarily consistent unless the alternative is
additive. This additivity assumption can be tested by a modification of the
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omnibus tests. Consider the null hypothesis

H0 : γ(x1, x2) = γ1(x1;θ1) + γ2(x2;θ2).

A general additive model can be estimated by a series estimator, but now
the vector θ = (θ1,θ2) is possibly infinite dimensional. An approach to this
problem is to first estimate, by use of a model selection criterion, optimal
orders k1 and k2 for series estimates of γ1( · ;θ1) and γ2( · ;θ2). Then, the null
model based on these estimated orders is extended with interaction terms
according to a model sequence.

Alternatively, one could perform tests of additivity for a large, fixed value
of k = k1 = k2. A sensitivity analysis on k might show to what extent the
choice of k1 and k2 influences the final conclusion.

Finally, we also mention a goodness of link or single-index test. In this case
the hypothesized model (9.10) is contrasted with alternative models of the
following form:

γ(x1, x2) = γ(x1, x2;θ) +
∑
j∈Λ

ajuj [γ(x1, x2;θ)].

For generalized linear models, this provides a way of testing the adequacy of
the link function. It is an alternative to methods described by Collett (1991,
Section 5.3) and Brown (1982).

9.3.5 The POPS Data

The Project On Preterm and Small-for-gestational age infants (POPS) has
been introduced in Section 2.4 and the twins within the study have been an-
alyzed in Section 9.2.5. We will consider information on 1338 infants born in
the Netherlands in 1983 and having gestational age (x1) less than 32 weeks
and/or birthweight (x2) less than 1500 g. The outcome of interest here con-
cerns the situation after 2 years. The binary variable Y is 1 if an infant has
died within 2 years after birth or survived with a major handicap, and 0 oth-
erwise. After deleting observations with missing data, 1310 infants remain in
the dataset.

Le Cessie and van Houwelingen (1991, 1993) examined these data to illus-
trate a lack-of-fit test based on a weighted sum of kernel smoothed standard-
ized residuals. Their test failed to reject the null hypothesis of a logistic model
having linear and quadratic terms in both covariates x1 and x2. Likewise, a
likelihood ratio test showed that neither one of the third-order terms nor a
first-order interaction term contributes significantly to the model. Table 9.3
shows the values of the omnibus (sequence (d)), additive (diagonal and max)
and single-index test statistics. The Legendre polynomials Lk(·), where k de-
notes the polynomial order, are used to represent all models. With L0(x) ≡ 1,
the null hypothesis can be written as

H0 : logit(E(Y )) =
2∑

k=0

αk0Lk(x1) +
2∑

�=1

α0�L�(x2).
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Table 9.3 POPS Data. Results of testing H0: “model is quadratic in x1 and x2”.

Sb Sa Ta Tos Tmax r̂a r̂b

omnibus 0.42 10.64 4.41 3.55 4.64 2 1
p value P∞ 0.811 0.073 0.039 0.036 0.034
p value PB 0.532 0.034 0.031 0.071 0.016

diagonal 3.03 0.00 0.00 1.52 0.00 0 1
max(x1, x2) 2.33 2.33 1.33 2.33 0.33 1 1
single index 3.52 8.43 0.99 3.52 2.43 6 2

We considered alternative additive models extending this null model by extra
terms Lk(x1) and L�(x2) with k, ( = 3, . . . , 15. For the alternative models
allowing interaction terms, we included the above main effects up to the sixth
order together with all interaction terms Lk(x1)L�(x2) where 2 ≤ k + ( ≤ 6.
For the omnibus tests, Table 9.3 also shows p values based on the asymp-
totic distribution (P∞) and on the bootstrap (PB). Using a parametric boot-
strap, 999 replications were generated under H0 (using the null estimates).
All omnibus tests except Sb indicate some evidence against H0. The differ-
ent behavior of Sb is a consequence of too large a penalty for large samples
(Cn = log n ≈ 7.18). No additive or single index test is significant. These re-
sults suggest an extension of the null model by certain interactions. The value
of r̂a = 2 corresponds to the interaction terms (Figure 9.1) L1(x1)L1(x2),
L1(x1)L2(x2) and/or L2(x1)L1(x2).

Inspired by these findings we investigated numerous new models extending
the null model and for each we computed the classical model selection criterion
(9.2) with Cn=2 (AIC) and Cn = log n (BIC). The BIC criterion selected
the null model, which, again, is a consequence of the large penalty. The model
selected by AIC is

logit(E(Y )) =
5∑

k=0

αk0Lk(x1) +
2∑

�=1

α0�L�(x2)

+α11L1(x1)L1(x2) + α12L1(x1)L2(x2), (9.13)

which can be rewritten in terms of x1, . . . , x51, x2, x
2
2, x1x2, x1x

2
2. Both groups

of higher order main effects x31, x41, x51 and interactions x1x2, x1x22 are signifi-
cant at the 5% level.

9.4 Testing Goodness of Fit

In a similar way as we test the fit of a regression model, we can perform tests
for the adequacy of a likelihood function itself. Historically, this type of test
is called a goodness-of-fit test. We are considering independent observations
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from a common density and want to test whether this density is equal to a
specified f0, against the nonparametric alternative that it is a density f �= f0.

There exist several ways to embed the null model density in a larger family.
Aerts, Claeskens and Hart (1999) propose writing

f(x) = Cγ exp[γ(x)] (9.14)

and rephrase the null hypothesis in terms of γ(x) = ln[f(x)/Cγ ], that is, on a
logarithmic scale. More specifically, H0 : γ(x) ∈ G for some parametric fam-
ily of functions G = {γ(x; θ1, . . . , θp) : (θ1, . . . , θp) ∈ Θ}. Consider additive
approximators of γ(x) of the form

γ(x; θ1, . . . , θp) +
r∑

j=1

θjuj(x).

We may then proceed to test H0 using either LIC, SIC or RIC as described
in Sections 9.2.1–9.2.3.

A second approach is to construct multiplicative approximators via a log-
linear expansion:

fr(x; θ1, . . . , θp+r) = f0(x; θ1, . . . , θp) exp

 r∑
j=1

θp+juj(x)

 /Cr, (9.15)

for r = 1, . . . , rn. When f0 is a uniform density, the approaches (9.14) and
(9.15) are identical; in general they are not. The basis functions uj(·) are
chosen to be orthogonal and normalized with respect to f0 and also orthogonal
to the function u0 = 1, i.e.,∫

f0(x;θp)uj(x)uk(x) dx = I{j = k}.

Because of these requirements, the basis functions will depend on the unknown
parameters, i.e., uj(·) = uj(·;θp). In practice, we replace the parameter by
its maximum likelihood estimator. The normalizing constant Cr needs to be
recalculated for each approximator since

Cr =
∫
f0(x;θp) exp

 r∑
j=1

θp+juj(x)

 dx.
To operationalize this procedure, one has first of all to decide on a practi-
cal sequence of uj functions, which, of course, can be done in several ways,
for example, by taking orthogonalized polynomials or a cosine system; see
Section 9.2. Claeskens and Hjort (2001) study tests based on likelihood ratio
statistics:

2(Lr−L0) = 2
n∑
i=1

ln
fr(Xi; θ̂p+r)

f0(Xi; θ̂p)
= 2

 r∑
j=1

θ̂p+j

n∑
i=1

uj(Xi)− n lnCr(θ̂p+r)

 ,
for r = 1, . . . , rn, where θ̂p maximizes the likelihood under the null model.
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Tests based on the likelihood ratio statistics are compared to those based on
the score statistics:

Sr =
1
n

r∑
j=1

{
n∑
i=1

uj(Xi)}2, r = 1, . . . , rn.

The score statistic here takes a particularly simple form. This type of test
has its origin in Neyman’s 1937 paper on ‘smooth tests’. The criteria LIC
and SIC are defined as in (9.2) and (9.4). The test rejects H0 when the
model order chosen by the criterion exceeds zero. Or, equivalently, when the
maximum of a set of weighted likelihood ratio or score statistics exceeds a
critical value. The testing procedure in the goodness-of-fit setting is exactly
as given in the lack-of-fit setting in Section 9.2.

The score test, in conjunction with BIC, has been proposed by Ledwina
(1994). A comparison in Claeskens and Hjort (2001) shows that BIC applied
to a sequence of nested models may have serious disadvantages. For the class of
densities f where the lowest frequency term equals zero but some of the higher
frequency terms do not, the asymptotic power of the deduced test under local
alternatives is equal to the significance level. Since the probabilities that AIC
chooses a model of dimension m > 1 are nonzero, although decreasing, for
all dimensions m > 1, the AIC based test is likely to outperform the nested
sequence BIC for a large class of alternatives. Therefore we recommend the
use of AIC based criteria for lack-of-fit and goodness-of-fit testing.

It is important to note that the performance of tests using BIC as a model
selector can be drastically improved by not restricting attention to only nested
model sequences, but rather allowing all subsets within a fixed dimension m0.
The fact that m0 is fixed is not disturbing for practical matters, since it would
correspond to typical use, and since it is allowed to be arbitrarily large. For
asymptotic distribution theory and more details, we refer to Claeskens and
Hjort (2001).
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CHAPTER 10

Quantitative Risk Assessment

Lieven Declerck

European Organization for Research and Treatment of Cancer, Brussels, Bel-
gium

In the area of risk assessment, the focus can be on a number of issues.
Interest can be placed on the characterization of the dose-response relation-
ship, i.e., studying the dependence of a particular outcome such as the risk of
a malformed foetus, on the dose which is administered to the dam. Besides
investigating the dose-response relation, another issue is quantitative risk as-
sessment. This critically important area of risk assessment is based on the
relationship between dose and response, to derive a safe dose. In quantitative
risk assessment, there are a number of choices that have to be made, resulting
in a variety of approaches.

First, safe exposure levels can be derived from the NOAEL (No Observed
Adverse Effect Level) safety factor approach. The assumption made here is
that if the dose administered to a dam is below some value (the threshold),
then there will be no adverse effects on the foetuses of that dam (Williams
and Ryan 1996). The NOAEL is defined as the experimental dose level im-
mediately below the lowest dose that produces a statistically or biologically
significant increase in an adverse effect in comparison with the control. An
“acceptably safe” daily dose for humans is then calculated by dividing the
NOAEL by a safety factor (commonly 100 or 1000). In this way, sensitive
subgroups of the population and extrapolation from animal experiments to
human risk are taken into account. Rather than basing quantitative risk as-
sessment on the NOAEL procedure, dose-response modeling can also be used
to determine safe doses. Due to the disadvantages of the NOAEL and the
benefits of dose-response models, this chapter is concerned with statistical
procedures to predict safe exposure levels based on such a modeling approach.

Second, there are several ways to handle clustering. While dose-response
modeling is relatively straightforward in uncorrelated settings, it is less so in
the clustered context. Of course, one can ignore the clustering altogether by
treating the littermates as if they were independent. Also, the litter effect
issue can be avoided by modeling the probability of an affected litter. Such
models are generally too simplistic but there is a multitude of models which
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do consider clustering. Indeed, as discussed in Chapter 4, different types of
models (marginal, random effects, conditional) for clustered binary data can
be formulated. In this chapter, the emphasis is on the beta-binomial model
(Skellam 1948, Kleinman 1973), as well as on the conditional model of Molen-
berghs and Ryan (1999). Besides the choice of an appropriate dose-response
model, parameters can be estimated via several inferential procedures. Esti-
mation methods range from full likelihood to pseudo-likelihood (Chapters 6
and 7) and generalized estimating equations (Chapter 5). In this chapter, pa-
rameters are estimated using maximum likelihood methodology. Furthermore,
the implications in terms of uncertainty of fitting a model based on a finite set
of data are investigated. In Chapter 11, the effect of misspecifying the para-
metric response model on the estimation of a safe dose will be investigated.

Third, quantitative risk assessment can be based on either foetus or on
litter-based risks. To perform dose-response modeling and assessment of safe
doses, most authors take a foetus-based perspective, where the excess risk
over background for an affected foetus is determined as a function of dose.
The latter approach is straightforward for marginal models, which are ex-
pressed in terms of this marginal adverse event probability (Diggle, Liang
and Zeger 1994, Pendergast et al. 1996). However, a disadvantage of this ap-
proach is that it may raise biological questions. Arguably, the entire litter is
more representative of a human pregnancy than a single foetus. As a con-
sequence, modeling litter-based excess risks is a very appealing alternative
from a biological perspective. In the litter-based approach, quantitative risk
assessment is based on the cluster of foetuses of a dam, i.e., the probability
that at least one foetus of a dam has the adverse event under consideration is
crucial. In this chapter, foetus and so-called litter-based risks are contrasted
in the determination of safe doses.

Fourth, one needs to acknowledge the stochastic nature of the number of
implants and the number of viable foetuses (i.e., the litter size) in a dam.
Some methods (Ryan 1992) condition on the observed litter size when mod-
eling the number of malformations. Others (e.g., Catalano et al. 1993) allow
response rates to depend on litter size and then calculate a safe dose at an
“average” litter size, thereby avoiding the need for direct adjustment. Krewski
and Zhu (1995) use a model formulation that causes litter size to drop from
the expression for excess risk. Rai and Van Ryzin (1985) compute risks by
integrating over the litter size distribution. This approach will be used in this
chapter.

The relatively complex data structure forces the researcher to reflect on
several other questions:
1. Are linear or non-linear predictors used?
2. Are the malformation indices studied separately, collapsed into a single

indicator or treated as a multivariate outcome vector per foetus within a
litter?

3. Is death ignored, studied separately without taking into account malforma-
tions among the viable foetuses, combined with a collapsed malformation
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indicator into a new indicator for abnormality (i.e., death or malformation),
or studied jointly with the malformation outcomes?

4. Are continuous responses, such as birth weight, excluded from the model
or not? Chen et al. (1991), Ryan (1992), Catalano et al. (1993), Krewski
and Zhu (1994) discuss statistical models that allow for exposure effects
on death and malformation, formulating the problem as a trinomial model
with overdispersion. Catalano and Ryan (1992) and Catalano et al. (1993)
propose models that incorporate fetal weight in addition to death and mal-
formation. This topic is studied further in Chapter 14.

In this chapter, linear predictors are used for the parameters of the imple-
mented models. Four approaches are considered:
1. an indicator for death,
2. a collapsed malformation indicator ignoring dead foetuses,
3. an indicator for abnormality (i.e., death or malformation) and
4. a joint model for death and malformation.
A multivariate approach for malformation and the incorporation of fetal birth
weight into the model are not highlighted in this chapter.

It will be shown here how the beta-binomial and the conditional models can
easily handle litter-based rates. Furthermore, it will be demonstrated how the
conditional model leads to a natural formulation of the foetus-based excess
risk on the number of implants in a dam, unlike marginal models such as the
beta-binomial model.

In Section 10.1, foetus and litter-based risks are derived for the beta-
binomial and conditional models. The collapsed outcome “abnormality” is
discussed, as well as the hierarchically structured outcomes death and mal-
formation. Section 10.2 compares the foetus and litter-based approach and
contrasts a model for abnormality with a joint model for death and malfor-
mation, based on the NTP data. Section 10.3 illustrates these items based
on so-called asymptotic samples. Further details can be found in Declerck,
Molenberghs, Aerts and Ryan (2000).

10.1 Expressing Risks

An introduction to risk assessment is provided in Section 3.4. Suppose one
wishes to estimate a safe level of exposure, based on, e.g., the beta-binomial or
the conditional model. The standard approach to quantitative risk assessment
requires the specification of an adverse event (e.g., abnormality), along with
the risk of this event expressed as a function of dose. The risk r(d) represents
the probability that the adverse event occurs at dose level d.

Instead of the risk r(d) itself, one might prefer to use the additive excess risk,
which is the excess risk above the background rate, i.e., r(d)−r(0). Assuming
that at any non-zero value of dose, the chemical under investigation has more
toxic effect than at dose level 0, the additive excess risk function ranges from
0 to 1 − r(0). This type of risk does not relate the difference in risk at dose
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d and at dose 0 to the background rate. This is in contrast with the relative
excess risk function r∗(d). It is a “multiplicative” risk function, measuring the
relative increase in risk above background and is defined as (Crump 1984)

r∗(d) =
r(d)− r(0)
1− r(0) . (10.1)

Here, r∗(d) is called the excess risk. Assuming again that the chemical results
in more adverse effects at non-zero dose d compared to dose level 0, the excess
risk ranges from 0 to 1.

From the relationship r∗(d), a safe level of exposure can be determined. The
terminology used to describe a “virtually safe dose” or a “benchmark dose” is
not standardized and depends on the area of application (carcinogenicity, de-
velopmental toxicity) and the regulatory authorities involved (Environmental
Protection Agency, Food and Drug Administration, . . . ). A useful overview
is given in Williams and Ryan (1997). Here, the benchmark dose (BMD),
sometimes called the effective dose (ED), is the dose at which the excess risk
over the background rate is small, say 10−4 and the BD or VSD is the lower
confidence limit of the effective dose.

Using r(d) ≡ r(d;β), i.e., the risk at dose level d corresponding to the
parameter vector β in the model considered, the BMD can be defined as the
value d that solves r∗(d;β) = 10−4. The ML estimate of the effective dose is
the solution to r̂∗(d) = r∗(d; β̂) = 10−4 where β̂ is the ML estimate of β.

For setting confidence limits in low dose extrapolation, i.e., to determine
the BMDL, several approaches can be considered. For example, Crump and
Howe (1985) recommend to use the asymptotic distribution of the likelihood
ratio. According to this method, an approximate 100(1−α)% lower confidence
limit for the BMD corresponding to an excess risk of 10−4 is defined as

min{d(β) : r∗(d;β) = 10−4 over all β

such that 2(((β̂)− ((β)) ≤ χ2
p(1− 2α)}, (10.2)

with p the number of regression parameters. This might imply that a dose-
response model with more regression parameters (and thus more uncertainty)
leads to a larger confidence region and thus to a smaller BMDL. Of course, it
is important that a likelihood ratio test be available, making the method less
straightforward to use in non-likelihood settings. For pseudo-likelihood, the
proposal of Geys, Molenberghs and Ryan (1999) for pseudo-likelihood ratio
tests could be followed. As another appealing alternative, Section 11.4 studies
a profile score based approach.

A variation to this theme, suggested by many authors (Chen and Kodell
1989, Gaylor 1989, Ryan 1992), first determines a lower confidence limit, e.g.,
corresponding to an excess risk of 1% and then linearly extrapolates it to a
BMDL. The main advantage quoted for this procedure is that the determina-
tion of a BMDL is less model dependent.

Several other methods have been proposed. A lower confidence bound for
the benchmark dose can be computed based on the profile likelihood method
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(Morgan 1992). This idea will be pursued in Section 11.3. Also, a Wald-based
version can be obtained using the delta method. Several authors have indi-
cated that the latter method suffers from drawbacks, especially with low dose
extrapolation (Krewski and Van Ryzin 1981, Crump 1984, Crump and Howe
1985). One of the disadvantages of a Wald-based confidence interval for the
effective dose is that its lower limit may fail to be positive. The NOAEL
provides another alternative.

10.1.1 Foetus and Litter-Based Risks

In this section, different risks and corresponding excess risks are presented
for the beta-binomial and conditional models. They can be foetus or litter
based and they can be defined for a single adverse event like “death” or
“malformation” as well as for both events jointly. In the next sections, these
different approaches to risk and BMD estimation are compared for the NTP
data and for asymptotic samples.

The main issue deals with the choice between foetus and litter-based risks.
Here, for simplicity, the presentation is restricted to the adverse event “abnor-
mality” in a litter with m implants. A foetus-based approach focuses on the
risk of a foetus as a function of the level of exposure d given to the dam. Let
qF (m; d) be the probability that a foetus is abnormal, given that the foetus
is selected from a litter with m implants. Consider all values of the number
of implants m with non-zero probability P (m). Administering some specified
dose d to M dams, the foetus-based risk is:

rF (d) =
∑

mMP (m)mqF (m; d)∑
mMP (m)m

=
∑

m P (m)mqF (m; d)∑
m P (m)m

.
(10.3)

Hence, the foetus-based risk at some specified dose is an average of conditional
probabilities qF (m; d) with weights MP (m)m, i.e., the expected number of
foetuses in litters with m implants resulting from the M dams.

In marginal models such as, for example, the beta-binomial model, the
probability qF (m; d) does not depend on the number of implants m (except
when it is explicitly incorporated in the model as a covariate) and, hence,
rF (d) = qF (d). It will be shown that this is in contrast with the conditional
model of Molenberghs and Ryan (1999), where qF is related to the number of
implants m in a natural way.

In a litter-based approach, the event of interest is whether at least one
foetus in a litter is abnormal. Let qL(m; d) be the probability that at least one
foetus in a litter of size m has the adverse event. The litter-based risk is

rL(d) =
∑
m

P (m)qL(m; d), (10.4)

which is an average of conditional probabilities qL(m; d) with weights P (m).
Since a particular adverse effect in one or more foetuses of a litter is at

least as probable as the occurrence of this adverse event in a specific foetus, it
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follows that qF (m; d) ≤ qL(m; d). Considering this inequality for any number
of implants m with non-zero probability P (m), it follows that∑

m

P (m)qF (m; d) ≤ rL(d) =
∑
m

P (m)qL(m; d).

For a single adverse event in a marginal model, the conditional probability
qF (m; d) = qF (d) and, hence, the first sum equals rF (d). In this case, the
foetus-based risk is smaller than or equal to the litter-based risk. Note how-
ever that in general the first sum is different from rF (d). One can easily find
examples in which rF (d) is smaller than, equal to or greater than rL(d). In-
deed, consider the case of two litters, litter 1 with one foetus being abnormal
and litter 2 with two foetuses being healthy. Then, rF (d) for the adverse event
“abnormality” is 1/3, while rL(d) = 1/2. If litter 1 would have had two abnor-
mal foetuses, then rF (d) = rL(d) = 1/2. Finally, if litter 1 consisted of three
abnormal foetuses, then rF (d) = 3/5 > rL(d) = 1/2. Similarly, there are cases
where the foetus-based excess risk r∗F (d) is smaller than, equal to or greater
than the litter-based excess risk r∗L(d).

For a specific model, these risks can be estimated by replacing all parame-
ters by their maximum likelihood estimates. Also, the values P (m), i.e., the
distribution of the number of implants in a litter, have to be estimated. This
is discussed in more detail in Declerck et al. (2000).

In what follows, foetus and litter-based risks will be discussed for the beta-
binomial model and the conditional model of Molenberghs and Ryan. For both
models, the approach of a single adverse event (focusing on “abnormality”)
will be given, as well as the approach where the adverse events “death” and
“malformation” are studied jointly.

10.1.2 Risks for a Beta-binomial Model for Abnormality

The probability qF that a foetus is abnormal, given that the foetus is selected
from a litter with m implants, is π. Based on (4.3) and (4.4),

qF =
1

1 + exp(−β0 − βdd) .

As mentioned before, the probability qF does not depend on the number of
implants m and hence the foetus-based excess risk equals

r∗F =
qF (d)− qF (0)

1− qF (0)
=

1− exp(−βdd)
1 + exp(−β0 − βdd) .

Since r∗
F

does not depend on the correlation parameter ρ, the above expression
is also valid for the ordinary logistic regression model.

The probability that at least one foetus of a litter is abnormal is

qL = 1− B(π(ρ−1 − 1), (1− π)(ρ−1 − 1) +m)
B(π(ρ−1 − 1), (1− π)(ρ−1 − 1))

.
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This expression can be rewritten as

qL = 1−
m−1∏
k=0

(
1− π +

kπρ

1 + (k − 1)ρ

)
.

Note that, in cases of overdispersion, the litter-based probability of an adverse
event qL is smaller than the probability 1− (1− π)m, corresponding to ρ = 0
(no clustering). From (10.1) and (10.4), the litter-based excess risk can be
computed as

r∗L = 1−

∑
m

P (m)
m−1∏
k=0

(1− π(d) + kπ(d)ρ/(1 + (k − 1)ρ))

∑
m

P (m)
m−1∏
k=0

(1− π(0) + kπ(0)ρ/(1 + (k − 1)ρ))

.

In case of no clustering, this expression reduces to

r∗L = 1− G(1− π(d))
G(1− π(0)) ,

where G(·) is the probability generating function of the number of implants.
For m = 1, G(z) = z, such that r∗L = r∗F .

10.1.3 Risks for a Beta-binomial Model For Death and Malformation Jointly

Here, it is proposed to model both components of

f(ri, zi|mi, di) = f(ri|mi, di)f(zi|ri,mi, di)

= f(ri|mi, di)f(zi|ni,mi, di), (10.5)

with a model similar to (4.32):

f(r | m, d) =(
m

r

)
B(πdth(ρ−1

dth − 1) + r, (1− πdth)(ρ−1
dth − 1) +m− r)

B(πdth(ρ−1
dth − 1), (1− πdth)(ρ−1

dth − 1))
, (10.6)

f(z | n, d) =(
n

z

)
B(πmal(ρ−1

mal − 1) + z, (1− πmal)(ρ−1
mal − 1) + n− z)

B(πmal(ρ−1
mal − 1), (1− πmal)(ρ−1

mal − 1))
. (10.7)

Again, one can distinguish between risk assessment at foetus level and at litter
level.

The probability that foetus j is dead or malformed, given that the number
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of implants equals m, is

qF = P (foetus j is dead | m implants)
+P (foetus j is malformed | m implants)

= πdth +
m−1∑
r=0

(P (foetus j is alive and R = r | m implants)

×P (foetus j is malformed |
foetus j alive & r deaths out of m implants) (10.8)

where R denotes the number of deaths in a litter. This can be re-expressed as

qF = πdth +
πmal

B(πdth(ρ−1
dth − 1), (1− πdth)(ρ−1

dth − 1))

m−1∑
r=0

(
m− 1
r

)
×B(πdth(ρ−1

dth − 1) + r, (1− πdth)(ρ−1
dth − 1) +m− r). (10.9)

Expressions (10.1), (10.3) and (10.9) enable the calculation of the foetus-based
excess risk.

The probability that at least one foetus is dead or malformed, given m, is
based upon (10.5) and reduces to

qL = 1− P (R = 0, Z = 0 | m, d) = 1− P (R = 0 | m, d)P (Z = 0 | n, d).
Explicitly, in terms of (10.6) and (10.7),

qL = 1−
m−1∏
k,�=0

(
1− πdth +

kπdthρdth

1 + (k − 1)ρdth

)

×
(

1− πmal +
(πmalρmal

1 + ((− 1)ρmal

)
. (10.10)

Formulas (10.1), (10.4) and (10.10) allows one to compute the litter-based
excess risk.

10.1.4 Risks for a Conditional Model for Abnormality

For the conditional model, the probability qF that foetus j is abnormal, given
implant size m, can be expressed in several ways. The probability qF can be
written as in (4.29) in terms of S, the number of abnormals. It can also be
computed based on (4.26), by summing over the distribution of the outcomes
of the other littermates:

qF =
m∑
s=1

(
m− 1
s− 1

)
exp {ψs− φs(m− s)−A(ψ, φ,m)}

= exp {−A(ψ, φ,m) +A(ψ + φ, φ,m− 1) + ψ − φ(m− 1)} ,
with s the number of abnormal foetuses in a litter. Finally, one can derive an
expression for qF by calculating the probability that foetus j is healthy, given
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m implants:

qF = 1−
m−1∑
s=0

(
m− 1
s

)
exp {ψs− φs(m− s)−A(ψ, φ,m)}

= 1− exp {−A(ψ, φ,m) +A(ψ − φ, φ,m− 1)} . (10.11)

Using the expression for a healthy foetus is slightly more convenient. These
formulas show how, for the conditional model, the probabilities qF depend on
the number of implants. Based on (10.1), (10.3) and (10.11), the foetus-based
excess risk follows.

Now, the probability that at least one foetus is abnormal, given m, is qL =
1− P (S = 0), which, based on (4.26), is given by

qL = 1− exp {−A(ψ, φ,m)} . (10.12)

This result is an appealing counterpart to (10.11). It differs from (10.11) by the
deletion of one normalizing constant. Expression (10.1), (10.4), and (10.12)
can be used to calculate the litter-based excess risk.

10.1.5 Risks for a Conditional Model for Death and Malformation Jointly

The conditional model for death and malformation jointly is the product of

f(r | m, d) =
(
m

r

)
× exp {ψdthr − φdthr(m− r)−A(ψdth, φdth,m)} , (10.13)

f(z | n, d) =
(
n

z

)
× exp {ψmalz − φmalz(n− z)−A(ψmal, φmal, n)} . (10.14)

Using (10.8), the conditional probability that foetus j exhibits an adverse
event, given that a litter contains m implants, can be rewritten as:

qF = πdth +
m−1∑
r=0

(
m− 1
r

)
exp {ψdthr − φdthr(m− r)−A(ψdth, φdth,m)}

× {1− exp {−A(ψmal, φmal,m− r)
+A(ψmal − φmal, φmal,m− r − 1)}} .

Based on (10.11), this expression can be simplified to

qF = 1− exp {−A(ψdth, φdth,m)}

×summ−1
r=0

(
m− 1
r

)
exp(B(r)), (10.15)
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with

B(r) = ψdthr−φdthr(m−r)−A(ψma l, φma l,m−r)+A(ψma l −φma l, φma l,m−r−1).

Again, by means of (10.1), (10.3) and (10.15), the foetus-based excess risk can
be computed.

Considering the conditional model for death and malformation jointly, the
probability that a litter has at least one adverse event, given m, can be based
on (10.5), (10.13) and (10.14):

qL = 1− exp {−A(ψdth, φdth,m)−A(ψma l, φma l,m)} . (10.16)

The rather complicated sum in (10.15) is replaced by a normalizing constant.
Expressions (10.1), (10.4) and (10.16) enable the calculation of the litter-based
excess risk.

10.2 Analysis of NTP Data

The different risk and corresponding BMD estimators of Section 10.1 are com-
pared for the NTP data, introduced in Section 2.1. Excess risk functions are
estimated by maximum likelihood for a grid of dose values, based on the beta-
binomial model and the conditional model. These results are also compared
to those of the logistic model for which all information of a litter is collapsed
into a single, binary variable indicating whether there is at least one abnormal
foetus. For the toxic agent DEHP, the resulting curves for the adverse events
“abnormality” and “death and malformation jointly” are shown in Figure
10.1. As expected intuitively, litter-based excess risks are clearly larger than
foetus-based risks at the same dose level. Also, the risk curve for the adverse
event “abnormality” and the corresponding curve for “death and malforma-
tion jointly” are rather close to each other. This holds for both models (beta-
binomial and conditional) and for both foetus and litter-based approaches.
The litter-based excess risks for the beta-binomial model are clearly larger
than the corresponding risks for the conditional model. This is also true for
the foetus-based risks except for large dose values. The risks for the logistic
regression model are comparable to the beta-binomial litter-based risks for all
dose levels below 0.25.

Besides the adverse effects considered in Figure 10.1, also “death” and “mal-
formation among the viable foetuses” are investigated for DEHP, DYME, EG,
TGDM and THEO. Benchmark doses are calculated for several adverse events.
These are shown in Table 10.1. The BMD of a foetus-based risk curve is in gen-
eral about 5 to 10 times larger than the corresponding litter-based BMD. This
is in line with the excess risk curves of Figure 10.1. The effective doses of “ab-
normal” and of “joint” are well comparable, except for the chemical TGDM.
Comparing the three models under investigation, the ED of the conditional
model is most often larger than the BMD of the beta-binomial model. The
logistic model results in the smallest BMD. Since the models considered come
from fundamentally different modeling families (conditional and marginal), a
somewhat different behavior in key aspects is not unexpected. Aerts, Declerck
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Figure 10.1 NTP Data. Excess risk curves for DEHP based on the logistic regression,

beta-binomial and conditional models.

and Molenberghs (1997) addressed BMD determination in the foetus-based
setting. They also concluded that BMDs tend to be somewhat higher in the
conditional model, as opposed to the beta-binomial, the Bahadur and the
George-Bowman models. The next section examines whether these findings
are confirmed by a large sample simulation study.

10.3 Asymptotic Study

To compare the asymptotic effect of a foetus-based versus a litter-based ap-
proach on the benchmark dose, the ideas of Rotnitzky and Wypij (1994) are
followed here. This procedure was employed in Section 7.2 as well. Recall that
an artificial (asymptotic or “large”) sample is constructed where each possible
realization of dose d, number of implants m, number of deaths r and number
of malformations z is weighted according to the probability in the underlying
model. Precisely, all realizations of the form (d,m, r, z) are included and are
assigned the weight f(d,m, r, z) where f denotes a probability mass function.
Hence, one has to specify: (1) f(d), the relative frequency of the dose group
as prescribed by the design; (2) f(m|d), which equals f(m) since a dam is
randomly assigned to a dose group and exposure occurs after mating; (3)
f(r|m, d), the actual model probability for the occurrence of r deaths and
(4) f(z|r,m, d) = f(z|n,m, d), which is assumed here to be f(z|n, d), the ac-
tual model probability for z malformations. The doses 0, 0.25, 0.5 and 1 are
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Table 10.1 NTP Data. Effective doses of DEHP, DYME, EG, TGDM and THEO

corresponding to an excess risk of  10−4. All quantities shown should be divided by

104.

Model Unit Adv. event DEHP DYME EG TGDM THEO

Logist. regr. Litter Abnormal 0.3 0.4 0.3 1.7 1.4

Beta-bin. Foetus Dead 2.5 7.8 12.3 40.4 8.1
Malformed 7.7 15.6 5.1 81.3 150.6
Abnormal 1.9 4.6 2.5 10.0 7.5
Joint 1.9 5.2 3.6 27.1 7.7

Litter Dead 0.5 0.9 1.5 7.7 1.9
Malformed 1.4 2.6 1.1 12.1 17.6
Abnormal 0.3 0.6 0.4 1.7 1.7
Joint 0.4 0.6 0.6 4.7 1.7

Condit. Foetus Dead 5.2 10.7 15.9 31.7 14.9
Malformed 9.8 15.4 8.2 93.6 182.4
Abnormal 3.4 6.6 4.0 15.2 13.7
Joint 3.5 6.7 5.3 23.7 13.8

Litter Dead 0.8 1.0 1.8 5.9 2.3
Malformed 1.1 1.5 1.2 8.6 16.8
Abnormal 0.5 0.6 0.6 2.0 2.0
Joint 0.5 0.6 0.8 3.6 2.0

considered when generating asymptotic samples and each dose is assigned a
relative frequency of 1/4. The distribution of the number of implants, f(m),
is based on the NTP data. The relative frequencies of m for all NTP datasets
under investigation are smoothed via a local linear smoothing technique. Least
squares cross-validation has been used to choose the bandwidth. The absolute
and relative frequency distribution resulting from the NTP data, as well as
the smoothed relative frequencies, are presented in Table 10.2. The condi-
tional model is used for generating the number of deaths and the number of
malformations as in (10.13) and (10.14). The parameters are modeled as

ψdth = β0,dth + βd,dthd, φ dth = β2,dth,

ψma l = β0,ma l + βd,ma ld, φ ma l = β2,ma l.

Based on the parameter estimates from the conditional model for each NTP
dataset, 60 parameter combinations are selected (Table 10.3). Next, for each
parameter vector, an asymptotic sample is generated based on a conditional
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Table 10.2 NTP Data. Absolute and relative frequencies of the number of implants.

Number of absolute relative smoothed relative
implants frequency frequency frequency

1 4 0.0073 0.0073
2 3 0.0054 0.0063
3 4 0.0073 0.0081
4 7 0.0127 0.0094
5 2 0.0036 0.0074
6 6 0.0109 0.0092
7 6 0.0109 0.0113
8 7 0.0127 0.0189
9 23 0.0417 0.0376
10 29 0.0526 0.0676
11 71 0.1289 0.1226
12 98 0.1779 0.1712
13 109 0.1978 0.1812
14 80 0.1452 0.1469
15 55 0.0998 0.1002
16 31 0.0563 0.0579
17 11 0.0200 0.0249
18 3 0.0054 0.0084
19 2 0.0036 0.0036

551 1 1

model for death and malformation jointly. Foetus and litter-based excess risk
curves are computed for death and malformation jointly as well as for abnor-
mality. Figure 10.2 shows a selection of curves for six parameter combinations.
Again, foetus-based excess risks are markedly smaller than litter-based excess
risks. For β0,dth = β0,mal = 0, the difference is less pronounced. In general,
foetus and litter-based curves are relatively close to each other for large back-
ground rates for death and malformation. The plots of Figure 10.2 also show
that the curve for “abnormality” and the corresponding curve for “death and
malformation jointly” are relatively close to each other. This is true for the
foetus-based as well as for the litter-based approach. The 54 other parameter
combinations considered here result in excess risk functions for “abnormal”
and for “joint”, which are often comparable. However, there are a number
of parameter combinations for which the curve for “abnormal” is strikingly
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Table 10.3 Asymptotic Study. Parameter settings.

Parameter values

β0,mal -6 -4 -2 0
β0,dth = fβ0,mal with f 0.25 0.5 1
βd,mal = βd,dth 2 4 6
β2,mal = β2,dth 0.0 0.2

larger than for “joint”, i.e., the overly simplistic model leads to higher excess
risks than the correctly specified joint model.

In general, for an increasing value of the ratio f = β0,dth/β0,mal, the risk
curves seem to get closer to each other. The same holds for increasing values
of β0,mal and of βd,mal = βd,dth. Furthermore, in case of association (β2,mal =
β2,dth = 0.2), the excess risk at a particular dose is in general smaller than in
the case of independence.

10.4 Concluding Remarks

Developmental toxicity studies are complicated by the hierarchical (death,
malformation, healthy foetus), clustered (foetuses within litters) and multi-
variate (several malformation indicators and low birth weight) nature of the
data. As a consequence, a multitude of modeling strategies, with varying de-
grees of simplification, have been proposed in the literature. Such choices are
often subjective and can affect the quantitative risk assessment based on the
fitted models.

The emphasis was on the choice between (1) the beta-binomial model ver-
sus the conditional model proposed by Molenberghs and Ryan (1999), (2)
modeling death only, modeling malformation only, modeling a collapsed out-
come indicating death or malformation (termed “abnormal”) or a joint model
for death and malformation. The main emphasis has been put on (3) the
distinction between foetus-based and litter-based risk assessment.

It has been argued that benchmark doses calculated from the litter-based
approach are between 5 and 10 times smaller than those obtained from the
foetus-based approach. Thus, while the latter seems to be the standard in
practice, it is deduced that a litter-based approach should be considered far
more often. Furthermore, from a biological perspective, one could argue that
litter-based inference makes sense since a litter represents the typical preg-
nancy outcome in a rodent, compared with a single birth in humans. How-
ever, in general, litter-based risk assessment has not been widely studied, nor
compared with foetus-based risk assessment in a systematic way. While this
chapter does not resolve the issue of whether to use foetus or litter-based risk

© 2002 by CRC Press LLC



CONCLUDING REMARKS 171

Figure 10.2 NTP Data. Excess risk versus dose for asymptotic samples based on the

conditional model.

assessment procedures, it raises the question in a new way and provides a
convincing argument that further work, statistical and biological, is needed
on this topic.

In most cases, the beta-binomial model yields somewhat smaller BMDs
than the conditional approach, but the differences are less pronounced. A
joint model for death and malformation yields in some cases approximately
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the same risk as a collapsed indicator for abnormality, but there are regions
in the parameter space where the former yields considerably larger BMDs. As
a result, a joint modeling strategy is recommended.
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In this chapter, the effect of misspecifying the parametric response model
on dose effect estimation, hypothesis testing and safe dose determination for
the clustered binary data models is investigated. In Section 11.1 the impact on
testing for dose effect under a possibly incorrectly specified model is investi-
gated. A robust alternative to the classical parametric approaches is proposed
in Section 11.2. The impact of misspecifying a model on the determination
of a safe dose is studied in Section 11.3, while profile score-based alternatives
are introduced in Section 11.4.

11.1 Implications of Misspecification on Dose Effect Assessment

If the correct model is fit to a dataset of finite sample size, it is well known
that score, Wald and likelihood ratio test statistics have the same asymptotic
χ2 distribution under the null model as well as under contiguous alternatives
(Serfling 1980). For fixed alternatives, the picture is less clear and when fit-
ting the incorrect model, asymptotic theory is not always available. In Molen-
berghs, Declerck and Aerts (1998), ideas of Rotnitzky and Wypij (1994) are
adapted to get asymptotic information on the effect of model misspecifica-
tion on dose effect assessment. These have been described in Sections 7.2 and
10.3. An artificial sample is constructed, where each combination of dose di,
number of viable foetuses ni and number of malformations zi is assigned a
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weight equal to the probability f(di, ni, zi) that this combination occurs in
the underlying model. For a specified probability model the value of the test
statistic is computed for this artificial sample. These are the population test
statistics and have the following interpretation. Suppose a very large sample
of size N is obtained, in which a given cluster occurs exactly with the mul-
tiplicity predicted by the model; then the corresponding test statistics are N
times the population values. Therefore, this method is useful to investigate
the large sample effect of choosing an incorrect model.

A comparison of the likelihood ratio (LR) and Wald (W) statistics for the
Bahadur (Bah), beta-binomial (BB) and conditional (MR) models in Molen-
berghs, Declerck and Aerts (1998) shows that all population test statistics
are very close when the true dose effect is small. For higher dose effects, one
observes that

LR(Bah) >> LR(Cond) > LR(BB)

and that
W(Bah) ≥W(BB) >>W(Cond).

For the conditional model, one should bear in mind that all parameters, in-
cluding the dose effect parameter, are conditional in nature. A marginal dose
effect is likely to depend in a complex way on the model parameters. Since the
Wald test is known to depend on the particular parameterization (in contrast
to likelihood ratio and score tests), it might be a less relevant measure, in par-
ticular for conditional models. Finally, all Wald tests show a non-monotone
trend, an aberrant behavior in agreement with Hauck and Donner (1977).
Likelihood ratio test statistics all increase with increasing dose.

For more details on the comparison of the test statistics for a set of mod-
els for clustered binary data, we refer to Molenberghs, Declerck and Aerts
(1998). After illustrating the effect of the model on two NTP datasets in Sec-
tion 11.1.1, we explain how robust test statistics in combination with boot-
strap methods can be used to largely circumvent model misspecification prob-
lems.

11.1.1 Analysis of NTP Data

Apart from the external, skeletal, and visceral malformation outcomes, a col-
lapsed malformation outcome is considered, which is one if a foetus exhibits
at least one type of malformation and zero otherwise. Tables 11.1 and 11.2
contain maximum likelihood estimates (MLE) and standard errors for the
Bahadur, beta-binomial and conditional models. Estimates of the Bahadur
model parameters obtained by a GEE2 (Chapter 5) method are also shown.

Bahadur (MLE and GEE2) and beta-binomial parameters have the same
interpretation, but they are not directly comparable with the parameters
of the conditional model. For the first three models, the intercepts β0 and
dose effect parameters βd have similar numerical values but the situation is
slightly different for the association parameter βa, where in 6 out of 8 cases,
βa(Bah) < βa(GEE2) < βa(BB). The only exceptions are EG (visceral), where
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Table 11.1 NTP Data. Parameter estimates (standard errors) for the DEHP study.

Outcome Par. Bah GEE2(Bah) BB Cond

External β0 -4.93(0.39) -4.98(0.37) -4.91(0.42) -2.81(0.58)
βd 5.15(0.56) 5.29(0.55) 5.20(0.59) 3.07(0.65)
βa 0.11(0.03) 0.15(0.05) 0.21(0.09) 0.18(0.04)

Visceral β0 -4.42(0.33) -4.49(0.36) -4.38(0.36) -2.39(0.50)
βd 4.38(0.49) 4.52(0.59) 4.42(0.54) 2.45(0.55)
βa 0.11(0.02) 0.15(0.06) 0.22(0.09) 0.18(0.04)

Skeletal β0 -4.67(0.39) -5.23(0.40) -4.88(0.44) -2.79(0.58)
βd 4.68(0.56) 5.35(0.60) 4.92(0.63) 2.91(0.63)
βa 0.13(0.03) 0.18(0.02) 0.27(0.11) 0.17(0.04)

Collapsed β0 -3.83(0.27) -5.23(0.40) -3.83(0.31) -2.04(0.35)
βd 5.38(0.47) 5.35(0.60) 5.59(0.56) 2.98(0.51)
βa 0.12(0.03) 0.18(0.02) 0.32(0.10) 0.16(0.03)

the association is not statistically significant and EG (collapsed), where the
three estimates are very close. In the other cases, the beta-binomial MLE for
βa is typically about double the corresponding Bahadur MLE. This is due to
range restrictions on βa in the Bahadur model. For instance, the allowable
range of βa for the external outcome in the DEHP data is (−0.0164; 0.1610)
when β0 and βd are fixed at their MLE. This range excludes the MLE under a
beta-binomial model. It translates to (−0.0082; 0.0803) on the correlation scale
(see also Appendix A). A GEE2 estimate is valid as soon as the second, third
and fourth order joint probabilities are non-negative, whereas the likelihood
analysis requires all joint probabilities to be non-negative. Thus, a correla-
tion valid for GEE2 estimation is allowed to violate the full likelihood range
restrictions. The standard errors, obtained by Bahadur and GEE2, are very
similar, except for EG(skeletal) and EG(collapsed). It is no coincidence that
exactly in these cases, βa attains very high values, probably very close to the
boundary of the admissible range, implying that boundary effects might dis-
tort large sample approximations to the null distribution. The beta-binomial
model features all positive correlations. Hence, the dominant ordering of the
estimated βa parameters reflects the severity of the parameter restrictions.

Since the conditional model has no restrictions on the parameters, it is
easier to fit than the others. In all 8 examples, standard starting values (all
parameters equal to zero) led to convergence.

After having discussed the parameter estimates of the fitted models, the
focus is now on the problem of testing the null hypothesis of no dose effect.
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Table 11.2 NTP Data. Parameter estimates (standard errors) for the EG study.

Outcome Par. Bah GEE2(Bah) BB Cond

External β0 -5.25(0.66) -5.63(0.67) -5.32(0.71) -3.01(0.79)
βd 2.63(0.76) 3.10(0.81) 2.78(0.81) 2.25(0.68)
βa 0.12(0.03) 0.15(0.05) 0.28(0.14) 0.25(0.05)

Visceral β0 -7.38(1.30) -7.50(1.05) -7.45(1.17) -5.09(1.55)
βd 4.25(1.39) 4.37(1.14) 4.33(1.26) 3.76(1.34)
βa 0.05(0.08) 0.02(0.02) 0.04(0.09) 0.23(0.09)

Skeletal β0 -2.49(0.11) -4.05(0.33) -2.89(0.27) -0.84(0.17)
βd 2.96(0.18) 4.77(0.43) 3.42(0.40) 0.98(0.20)
βa 0.27(0.02) 0.30(0.03) 0.54(0.09) 0.20(0.02)

Collapsed β0 -2.51(0.09) -4.07(0.71) -2.51(0.09) -0.81(0.16)
βd 3.05(0.17) 4.89(0.90) 3.05(0.17) 0.97(0.20)
βa 0.28(0.02) 0.26(0.14) 0.28(0.02) 0.20(0.02)

Results are summarized in Table 11.3. They are in agreement with previous
findings.

For the LR tests, one observes that LR(Bah) dominates the others. LR(BB)
is considerably smaller and the smallest values are found with LR(Cond). This
picture is seen in 7 out of 8 cases. A slightly different picture is seen for EG
(visceral and external outcomes), where all three statistics are in fact very
close to each other. However, although there are discrepancies between the
magnitudes of the LR statistics, they all reject the null hypothesis.

Comparing LR to Wald tests, the former ones are seen to dominate the lat-
ter in most cases: LR(Cond)>W(Cond) in all 8 cases and LR(Bah)>W(Bah)
in 6 cases. However, LR(BB)>W(BB) in only two cases and, more impor-
tantly, agreement between both test statistics is very close, providing evi-
dence for approximate equivalence of both tests under a range of alternatives.
This feature is in agreement with the asymptotic findings. Recall that both
Bahadur test statistics might differ due to a misspecified higher order correla-
tion structure, whereas for the conditional model, the Wald statistic could be
low due to sensitivity of the test to the particular parameterization adopted.
For example, the correlations between β̂d and the other parameter estimates
for the external outcome in the DEHP study are corr(β̂0, β̂d) = −0.96 and
corr(β̂a, β̂d) = −0.79, as opposed to −0.91 and 0.27 for Bahadur and −0.90
and 0.23 for beta-binomial.

Among the Wald tests, W(Bah) and W(BB) are reasonably close to each
other, apart from two aberrant cases (EG skeletal and EG collapsed). Mis-
specification might be one of the sources for the observed discrepancies. When
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Table 11.3 NTP Data. Wald and likelihood ratio test statistics for the DEHP and EG

data. H0: no dose effect, in a constant association model. Wr denotes the robustified

Wald statistic.

External Visceral Skeletal Collapsed
DEHP EG DEHP EG DEHP EG DEHP EG

Bah LR 96.48 15.05 81.28 16.00 76.40 182.45 164.75 189.99
W 85.94 11.89 78.82 9.40 71.02 261.22 130.31 314.40

BB LR 71.58 13.18 59.78 17.37 58.51 63.88 91.66 65.36
W 76.78 11.61 66.80 11.82 61.39 74.89 98.46 71.58

Cond LR 43.20 14.43 33.72 13.98 38.95 49.95 74.48 50.74
W 22.30 10.78 19.91 7.81 21.46 23.15 33.71 23.39

GEE2 W 79.40 12.50 71.45 10.32 70.72 120.99 113.75 121.87
Wr 92.41 14.70 58.23 14.64 78.87 58.53 92.27 29.69

GEE2 based tests are believed to correct for (at least part) of aforementioned
misspecification, their values are smaller than W(Bah) and much closer to
W(BB). The most striking phenomenon is that the two aberrant W(Bah)
values in the EG data are indeed largely corrected downwards by the GEE2
versions.

Liang and Hanfelt (1994) have shown that assuming a constant intraclass
correlation in the beta-binomial model might substantially bias mean parame-
ter estimation and testing. Therefore, it is useful to study at least one possible
departure from the constant association model. In the Bahadur, beta-binomial
and conditional models, the association parameter βa was allowed to vary lin-
early with dose level, β2i = β20+β2ddi, extending the three parameter families
(β0, βd, βa) to four parameter versions (β0, βd, β20, β2d). Reconsider now the
problem of testing the null hypothesis of no dose effect, neither on the mal-
formation rate nor on the association. The corresponding test statistics are
shown in Table 11.4. Values in bold correspond to those cases where the
null hypothesis of a constant association parameter H0 : β2d = 0 was re-
jected on the basis of a one degree of freedom likelihood ratio test. Clearly,
a non-constant association in one model (e.g., the conditional model) does
not necessarily imply the same for the other models (e.g., the Bahadur and
beta-binomial models). Next, the test statistics for dose effect are considered,
which in the four parameter model becomes H0 : βd = β2d = 0. In most cases,
the statistics vary only mildly, although W(Bah) tends to increase somewhat
more. The discrepancy is larger when the null hypothesis of a constant associ-
ation is rejected. Of course, one has to bear in mind that these test statistics
should be compared to a null χ2 distribution with two degrees of freedom, di-
luting power when there is no evidence for non-constant association. Finally,
failure to detect a linear trend on the association does not imply that the

© 2002 by CRC Press LLC



178

Table 11.4 NTP Data. Wald and likelihood ratio test statistics, H0: no dose effect

in a linear model with linear dose effect on the association parameter. Bold figures

refer to cases where the dose effect on the association is significant at the 5% nominal

level.

External Visceral Skeletal Collapsed

DEHP EG DEHP EG DEHP EG DEHP EG

Bah LR 99.09 19.99 86.13 76.59 192.77 173.07 196.06
W 93.04 18.07 90.00 69.60 207.93 157.37 211.28

BB LR 71.90 13.57 61.56 17.55 58.65 65.74 97.98 67.45
W 73.70 11.20 67.17 9.48 63.07 63.50 107.17 63.88

Cond LR 44.99 16.19 33.72 14.89 40.70 58.90 75.61 60.01
W 25.98 12.39 19.99 7.44 24.98 30.72 33.00 30.35

association is constant, since the association function might have an entirely
different shape (e.g., quadratic). It is advisable to explore these functions in
a bit more detail (Molenberghs and Ryan 1999). Also smoothing methods are
an excellent way to get some idea about the functional form; see Chapter 8
for a discussion.

11.2 A Robust Bootstrap Procedure

When the data do not come from the assumed parametric model, the usual
asymptotic chi-squared distribution under the null hypothesis remains valid
for “robustified” Wald and score test statistics. For full likelihood models,
robust Wald and score tests have been described by Kent (1982), Viraswami
and Reid (1996), amongst others. The modified tests again have an asymptotic
chi-squared distribution, even when the assumed model is not correct. We are
not aware of a modified likelihood ratio test with asymptotic chi-squared
distribution. Robust test statistics are also used in the context of generalized
estimating equations (Rotnitzky and Jewell 1990) and in the pseudo-likelihood
approach (Geys, Molenberghs and Ryan 1999).

Aerts and Claeskens (2001) compare the performance of this chi-squared
approximation to that of a semiparametric bootstrap method. The bootstrap
is a well-established statistical methodology nowadays. There are several pa-
pers and books showing a multitude of examples where the bootstrap can be
implemented and applied successfully (e.g., Davison and Hinkley 1997 and
references therein). The main difficulty in bootstrap hypothesis testing is the
generation of bootstrap data reflecting the null hypothesis. Assuming the true
likelihood of the data to be known, this can be achieved by the parametric
bootstrap based on the null estimates. Such an approach has been generalized
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to pseudo-likelihood models and applied to clustered binary data in Aerts and
Claeskens (1999). There it is shown that the parametric bootstrap test leads
to a substantial improvement. In practice, however, the assumed probability
model can be wrong, in which case the parametric bootstrap leads to incorrect
results. The semiparametric bootstrap method of Aerts and Claeskens (2001),
which will be explained in this section, remains valid when the assumed model
is incorrect.

11.2.1 A One-Step Bootstrap Procedure

We formulate the procedure in general, such that it can be applied to essen-
tially any type of estimating equations, whether maximum likelihood, quasi-
likelihood, pseudo-likelihood or generalized estimating equations. Let Y i (i =
1, . . . , n) be independent response variables of length m with unknown joint
density or discrete probability function (abbreviated: pdf) g(yi;xi) where
yi = (yi1, . . . , yim) and xi = (xi1, ..., xip), the latter representing a vector of
p explanatory variables. In the context of clustered binary data,m corresponds
to the size of the cluster.

In general, parametric inference is based on an r dimensional score or es-
timating function ψ(y;x, t), where the “true” parameter θ = (θ1, . . . , θr) is
defined as the solution t to the equations

n∑
i=1

E{ψ(Y i;xi, t)} = 0

where all expectations are with respect to the true pdf g(yi;xi). Solving the
system of equations

n∑
i=1

ψ(Y i;xi, t) = 0

leads to the estimator θ̂n for θ. Within classical maximum likelihood

ψ(y;x, t) = (∂/∂t) log f(y;x, t).

For example, for clustered binary data, f(y;x, t) might represent the beta-
binomial distribution or the conditional model proposed by Molenberghs and
Ryan (1999). Note that, in this setting, the assumed pdf f(y;x, t), the model
used for fitting the data, might not contain the true data generating structure
g(y;x).

The proposal of Aerts and Claeskens (2001) is to resample the score and
the differentiated score values. Based on a linear approximation, a bootstrap
replicate of θ̂n is constructed as

θ̂
∗
n = θ̂n −

(
n∑
i=1

ψ̇
∗
i (θ̂n)

)−1 n∑
i=1

ψ∗
i (θ̂n) (11.1)

where (ψ∗
i (θ̂n), ψ̇

∗
i (θ̂n)), i = 1, . . . , n is a sample with replacement from the
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set {(
ψ(Y i;xi, θ̂n), (∂/∂θ)ψ(Y i;xi, θ̂n)

)
, i = 1, . . . , n

}
.

Consider the hypothesis H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ\Θ0 where Θ0 is a
(r−t) dimensional subspace of the parameter space Θ such that the parameter
of interest θ = (θ1, . . . , θr) belongs to Θ0 if and only if θ1 = . . . = θt = 0,
1 ≤ t ≤ r. More general situations, in which H0 is of the form H0 : h1(θ) =
. . . = ht(θ) = 0 for some smooth real-valued functions h1, . . . , ht, can be put
into this form by a reparametrization.

The bootstrap Wald and score test statistics based on θ̂
∗
n as defined in

(11.1) coincide and are given by

W ∗
n = S∗

n = n(θ̂
∗
n − θ̂

(0)

n )TL
(
J∗
n(θ̂n)−1K∗

n(θ̂n)J∗
n(θ̂n)−1

)−1
LL

(θ̂
∗ − θ̂

(0)

n )L,

where ALL denotes the left upper t×t submatrix of A and mvL the subvector
of the first t elements. Further,

Jn(θ) = − 1
n

p∑
i=1

ni∑
j=1

∂

∂θ
ψi(Y ij ,θ),

Kn(θ) =
1
n

p∑
i=1

ni∑
j=1

ψi(Y ij ,θ)ψi(Y ij ,θ)T .

Finally, J∗
n(θ) and K∗

n(θ) are defined the same way as Jn(θ) and Kn(θ), but
using the bootstrap scores and derivatives of the scores {ψ∗

ij(θ̂n), ψ̇
∗
ij(θ̂n)},

(j = 1, . . . , ni) instead of {ψi(Y ij , θ̂n), (∂/∂θ)ψi(Y ij , θ̂n)}, (j = 1, . . . , ni).

Further, θ̂
(0)

is a
√
n-consistent estimator of θ under the null hypothesis.

The motivation for defining S∗
n equal to W ∗

n follows from the classical ar-
guments in proving the asymptotic normality of the score test statistic. It is
well known that both test statistics are first order equivalent. A typical way
of obtaining the asymptotic distribution of the score test statistic is by sub-

stituting (θ̂
∗
n − θ̂

(0)

n )L in the Wald statistic by the first t components of the
second term in (11.1). By definition, (11.1) of the one-step linear estimator,
this substitution is exact; for estimators in general, this is only approximate.

Definition (11.1) follows from a linear approximation of the score equations.
One might improve on this by including quadratic and higher order terms. We
focus attention to the following second order approximation,

0 =
n∑
j=1

ψ(Y j ,θ) +
r∑
k=1

n∑
j=1

∂

∂θk
ψ(Y j ,θ)(θ̂nk − θk)

+
r∑
k=1

r∑

=1

n∑
j=1

∂2

∂θk∂θ

ψ(Y j ,θ)(θ̂nk − θk)(θ̂n
 − θ
)

+OP (n−1/2). (11.2)

By calculations similar to those of Ghosh (1994), a Taylor expansion suggests
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the following one-step quadratic estimator

θ̂
∗
n = θ̂

(0)

n + U∗
n

−1
2

 n∑
j=1

ψ̇
∗
j (θ̂n)

−1
r∑
k=1

r∑

=1

n∑
j=1

ψ̈
∗
j (θ̂n)k,
U∗

nkU
∗
n
, (11.3)

with

U∗
n = −{

p∑
i=1

ni∑
j=1

ψ̇
∗
ij(θ̂n)}−1

p∑
i=1

ni∑
j=1

ψ∗
ij(θ̂n).

This bootstrap estimator is based on the values

(ψ∗
j (θ̂n), ψ̇

∗
j (θ̂n), ψ̈

∗
j (θ̂n)),

(j = 1, . . . , n) taken with replacement from the set{(
ψ(Y j , θ̂n), (∂/∂θ)ψ(Y j , θ̂n), (∂2/∂θ∂θT )ψ(Y j , θ̂n)

)
, j = 1, . . . , n

}
.

It is expected that the last term at the right-hand side of (11.3) improves the

representation of the random variation about the null estimate θ̂
(0)

n . This is
confirmed in a simulation study in Aerts and Claeskens (2001). For the no dose
effect null hypothesis we might consider two different resampling schemes. In a
first method scores and differentiated scores are resampled for each dose level
separately. We denote this by B1/D for the linear one-step approximation, or
by B2/D when the quadratic approximation is being constructed. For the no
dose effect null hypothesis, an alternative valid resampling scheme is to ignore
the presence of the dose and to resample from the complete set of scores and
differentiated scores. This resampling scheme is denoted by Bi/A (i = 1, 2).

Both bootstrap procedures (linear and quadratic) lead to consistent esti-
mators for the null distribution of the robust Wald and score test statistics.

11.2.2 The Theophylline Data

Lindström et al. (1990) investigated the effect in mice of the chemical theo-
phylline. In each of the three models, the beta-binomial (BB) model (Sec-
tion 4.3.1), the conditional model (Section 4.2) of Molenberghs and Ryan
(1999; MR) and the pseudo-likelihood approach (PL) we used a linear/constant
parameterization, i.e., a linear function for the mean function and a constant
association function. We are interested in testing the no dose effect hypoth-
esis on the main effect parameter (H0 : θ11 = 0). The results are shown in
Table 11.5. The table shows the p values (as %) of the different test statis-
tics discussed before. We also included the results from a GEE2 estimation
method based on the first four order moments of the Bahadur model.

For external malformations, the results of the different tests are almost
the same for the beta-binomial model and close to each other for the other
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Table 11.5 NTP Data. Analysis of theophylline with H0 : βd = 0. Robust Wald

statistic Wr and robust score statistic R; p values are shown as %.

External Visceral Skeletal Collapsed
Wr R Wr R Wr R Wr R

BB χ2 22.85 23.54 4.50∗ — 0.00∗ 31.98 4.58∗ 5.33
B1/A 22.78 23.25 0.50∗ — 0.00∗ 13.10 6.16 6.96
B1/D 23.98 24.66 0.90∗ — 0.00∗ 13.70 5.32 6.00

GEE2 χ2 14.60 13.90 3.61∗	 17.27	 0.00∗ 36.86 3.45∗ 4.20∗

B1/A 15.70 14.40 1.40∗	 18.80	 0.00∗ 19.43 4.05∗ 4.80∗

B1/D 14.20 13.30 1.00∗	 20.20	 0.00∗ 22.86 1.70∗ 2.20∗

MR χ2 9.76 16.98 3.55∗ 18.26 2.19∗ 18.82 3.40∗ 7.54
B1/A 9.30 18.80 0.60∗ 21.60 0.30∗ 16.60 2.30∗ 7.20
B1/D 7.80 16.30 0.50∗ 19.70 0.20∗ 14.50 1.50∗ 5.20
B2/A 8.70 — 5.20 — 28.10 — 2.50∗ —
B2/D 7.70 — 3.40∗ — 27.40 — 1.70∗ —

PL χ2 12.26 17.06 3.47∗ 18.56 0.64∗ 16.08 4.11∗ 6.83
B1/A 12.30 19.10 0.50∗ 21.70 0.00∗ 7.30 3.90∗ 6.70
B1/D 11.10 16.10 0.50∗ 19.70 0.00∗ 6.70 2.20∗ 5.20
B2/A 17.60 — 10.30 — 1.90∗ — 8.20 —
B2/D 13.90 — 8.60 — 1.10∗ — 5.40 —

A ∗ denotes rejection at the 5% level and a � indicates that a Moore-Penrose

generalized inverse is used to obtain the results.

models. There seems to be no significant effect of theophylline on the external
malformation probability.

For visceral and skeletal malformations, there is a striking discrepancy be-
tween the Wald and the score test. The significance of the Wald test should
be interpreted with care because of inflated type I errors for model misspec-
ification settings. The quadratic bootstrap seems to correct the Wald test
in the direction of the score test. Compared with the chi-squared tests, the
bootstrap score test has higher p values for visceral malformation and lower
p values for skeletal malformation. For the beta-binomial model there were
convergence problems when fitting the null model. For this reason, the score
statistics could not be obtained. Also, for the GEE2 model some problems
arose, but these could be avoided by using a Moore-Penrose generalized in-
verse of the matrix J . For visceral malformations, the null hypothesis cannot
be rejected. The picture is less clear for skeletal malformations. Except for the
quadratic bootstrap for the MR model, all Wald tests indicate a significant
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dose effect, while all score tests indicate no effect (although the p value of
the bootstrap score PL test is nearing 5%). Since the score tests showed also
a good behavior in a simulation study, we tend to better believe the results
of these tests, though further investigation might be necessary to come to a
definite conclusion. Finally, also note that, for all three types of malformation,
the different Wald tests lead to highly variable p values whereas the score tests
are much stabler.

The collapsed version seems to indicate that theophylline might have an
effect on the development of foetuses. Here, all score p values are between
0.0220 and 0.0754 and the Wald p values are between 0.015 and 0.082. This
indicates that a separate analysis of each type of malformation can lead to
misleading conclusions and that for this type of problems one has to consider
all types jointly as a multivariate response or at least, as we did here, a
collapsed malformation indicator.

11.2.3 Bias Correction and Double Bootstrap

Although the maximum likelihood estimator θ̂n is asymptotically unbiased,
the quadratic one-step bootstrap procedure can be used for finite sample bias
correction. In practical applications, a large number, B say, resamples are
taken, resulting in a set of B bootstrap estimators θ̂

∗1
n , . . . , θ̂

∗B
n . From this

set a bias-corrected estimator is defined as

θbcn = 2θ̂n − 1
B

B∑
i=1

θ̂
∗i
n .

The intuition behind this definition is clear. We subtract from the estimator
θn, the estimated bias based on the B bootstrap replicates. For bias estima-
tion, the second order approximation turns out to be very useful, which is not
completely unexpected since the bias is a second order aspect of the asymp-
totic properties of the estimator. Simulations show that this bias correction
might even decrease the variance. Using a double bootstrap procedure, Aerts,
Claeskens and Molenberghs (1999) study the distribution of θ̂

bc

n and define a

bootstrap based variance estimator for θ̂
bc

n . An important observation in their
simulation study is that the bias correction even decreases the variance, as the
simulated standard deviation σ(β̂bc0 ) and σ(β̂bc1 ) are, for all settings in their
study, smaller than the corresponding simulated values of σ(β̂0) and σ(β̂1),
respectively.

To study the distribution of the bias corrected estimator, which is al-
ready based on a bootstrap resampling scheme, we will need a second boot-
strap stage. The double bootstrap procedure reads as follows. Using a non-
parametric resampling scheme (i.e., by resampling the data directly), we con-
struct a set of bootstrap estimators. In the same way as described before (i.e.,
we construct the one-step quadratic bootstrap), perform a bias correction,
and next, construct the bias-corrected estimator. To study the distribution of
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the resulting estimator, we construct from each of the resampled data new
bootstrap estimators via the one-step quadratic bootstrap. These values can
now be used to compute the estimator’s variance, quantiles, etc.

11.2.4 Bootstrap Confidence Intervals

Confidence intervals for the parameter θ can be derived from the asymptotic
normality result, by using the Wald statistic as a pivot. Next to this classi-
cal approach, the appropriate quantiles can be selected from the bootstrap
approximation to the asymptotic distribution. Aerts, Claeskens and Molen-
berghs (1999) construct bootstrap confidence intervals from the so-called hy-
brid bootstrap (Shao and Tu 1995, Sections 4.1 and 4.2). A 100(1 − α)%
confidence interval for the parameter θ is defined as

{θ : z∗L ≤
√
n(θ̂n − θ) ≤ z∗R},

where z∗L is the 100α/2% and z∗R is the 100(1− α/2)% quantile of the distri-
bution of

√
n(θ̂

∗
n − θ̂n).

Simulations show that the quadratic bootstrap everywhere reduces the
length of the confidence intervals. This reduction in length is usually more
pronounced for the highest confidence levels. For more information we refer
to Aerts, Claeskens and Molenberghs (1999).

Although the one-step linear method is asymptotically equivalent to the
fully iterative one, our experience in the setting of binary response data showed
to interpret its results with care. Compared to the normal based confidence
intervals, the linear one-step bootstrap tends to produce shorter confidence
intervals but simulations show an equivalent decrease in coverage probability.
Also, by definition, the one-step approach is not able to detect the bias of
the estimator. These shortcomings seem to be greatly eliminated by the one-
step quadratic bootstrap, which allows the construction of a bias corrected
estimator and improved confidence intervals.

11.3 Implications of Misspecification on Safe Dose Determination

Quantitative risk assessment is based on the relationship between dose and
response to derive a safe dose. Whereas in Chapter 10, we contrasted foetus
and litter-based risks, here we focus on effects of model misspecification on
the determination of a safe dose. As explained in Section 10.1, the benchmark
dose BMD is this dose level d such that the excess risk function r(d;β) = q,
where q is a user-specified value. Popular values of q are 0.05, 0.01, or 10−4

depending on the specific area of application.
For example, for a linear dose-response effect in a Bahadur or a beta-

binomial model:

BMD = ln
(

1 + q exp(−β0)
1− q

)
β−1
1 . (11.4)

The maximum likelihood (ML) estimate of the effective dose is the solution
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to r(d; β̂) = q where β̂ is the ML estimate of β. Following Crump and Howe
(1985), in the next section we will use a full likelihood method to determine
a safe dose.

11.3.1 Likelihood Determination of a Safe Dose

A full likelihood approach to safe dose determination defines the virtually safe
dose corresponding to an excess risk value q, as an approximate 100(1− α)%
lower confidence limit for the BMD; see also Section 10.1:

BMDLm
 = min{d(β) : r(d;β) = q over all β such that

2(�(β̂)− �(β)) ≤ χ2p(1− 2α)}, (11.5)

with �(β) the value of the log-likelihood at β, p the total number of parame-
ters in the model and χ2p(1 − 2α) the (1 − 2α)-quantile of a χ2p distributed
random variable. The dependence of the log-likelihood function on the data
is, for simplicity, omitted in the notation. For the Bahadur and beta-binomial
models, the (1− α)100% lower limit can be rewritten as

min
{

ln
(

1 + qe−β0

1− q

)
β−1
1 over all β0, β1

s.t. 2{�(β̂0, β̂1, β̂a)− �(β0, β1, βa)} ≤ χ23(1− α)
}
. (11.6)

The procedure is somewhat more involved for the conditional model, where
(11.5) is solved numerically.

In Section 11.4, we will give an alternative definition which does not require
a likelihood specification of the model.

11.3.2 A One-Dimensional Profile Likelihood Determination of a Safe Dose

Since expression (11.4) contains only the two coefficients β0 and β1 but the
critical point is calculated from a chi-squared distribution with three degrees
of freedom, this full likelihood approach is expected to be too conservative.
Indeed, the parameter βa can be considered as a nuisance parameter. A tech-
nique which treats (nuisance) parameters in a more parsimonious way is the
profile likelihood method (Morgan 1992).

The partially maximized log-likelihood function

�P (β1) = max
β0,βa

�(β0, β1, βa)

is the profile likelihood for β1. A one-dimensional profile likelihood approach
for BMDL calculation can be defined as follows:

BMDLp
1 = min
{
d(β1|β̂0, β̂a) : r(d;β1, β̂n(β1)) = q over all β1 such

that 2{�(β̂d, β̂n(β̂1))− �(β1, β̂n(β1))} ≤ χ21(1− 2α)
}
.(11.7)
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In Aerts, Declerck and Molenberghs (1997), an asymptotic study is per-
formed, comparing both procedures BMDLml and BMDLpl1. Also, a compar-
ison between an extrapolated version and a model based one is made. An
extrapolated version, as suggested by many authors (Chen and Kodell 1989,
Gaylor 1989, Ryan 1992), first determines a lower confidence limit, e.g., corre-
sponding to an excess risk of 1% and then linearly extrapolates it to a BMD.
The main advantage quoted for this procedure is that the determination of
a BMD is less model dependent. In our case, the effective dose values are
found to be too low under the extrapolated version. Morgan (1992, p. 175)
and the Scientific Committee of the Food Safety Council (1980) point out that
blind adherence to a conservative procedure is to be regarded as scientifically
indefensible.

11.3.3 Analysis of NTP Data

Benchmark (effective) doses and safe doses are obtained for the NTP studies
which investigate the effects in mice of the toxic agents DEHP, DYME, and
EG. Details on these data are provided in Section 2.1.

Two estimates of the benchmark dose corresponding to an excess risk of
q = 10−4 are obtained. Besides an entirely model based (MB) effective dose,
a linear extrapolation (EP) version is computed. Furthermore, four quantities
for the lower confidence limit of the BMD are determined. In addition to the
determination of the confidence region based BMDL(ml), the profile likeli-
hood version BMDLpl1 is calculated. Table 11.6 shows model based BMDL’s
and the corresponding extrapolated versions. The conditional model in general
yields the highest values for both BMD and BMDLml, in both the extrapo-
lation and the model based methods, but the effect is somewhat clearer in
the extrapolation procedure. To some extent, this result differs for the three
chemicals under consideration.

The number of cases in which the Bahadur model results in higher values
relative to the beta-binomial model is comparable to the number of cases with
lower values for the Bahadur model.

One also notices that the extrapolation method yields much smaller values
in all cases. This is in line with an asymptotic study, which has shown that
effective doses computed by means of the extrapolation procedure result in
lower values as compared to the model based estimates.

Next, the focus is on the various procedures to calculate BMDL’s. First, one
observes that BMDL(p�1) is virtually always higher than BMDLml. This is to
be expected, since it is based on a one degree of freedom procedure, whereas
for BMDLml, three degrees of freedom are spent in case of the Bahadur and
beta-binomial models. Of course, as pointed out in the previous section, a
lower BMDL is “safer”, but one should be careful not to be overly cautious
(Morgan 1992). Second, the linearly extrapolated versions of Table 11.6 are
smaller than their purely model based counterparts. These two observations
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Table 11.6 NTP Data. Estimates of effective doses and lower confidence limits. All
quantities shown should be divided by 104.

Ent. model based Linear extrap.

Outc. Model DEHP EG DYME DEHP EG DYME

Ext. Bah BMD 27 72 165 17 41 34
BMDLml 15 47 48 12 38 23
BMDLpl1 18 55 63 14 39 25

BB BMD 26 73 168 17 41 34
BMDLml 14 45 47 12 37 22
BMDLpl1 17 56 62 13 39 25

Cond BMD 36 124 141 24 57 36
BMDLml 22 66 55 17 42 25

Visc. Bah BMD 19 350 171 14 67 44
BMDLml 13 189 48 11 62 28
BMDLpl1 15 126 72 12 62 34

BB BMD 18 367 98 14 67 36
BMDLml 11 199 63 10 62 31
BMDLpl1 14 131 40 11 62 26

Cond BMD 28 504 202 21 78 64
BMDLml 18 134 95 15 55 47

Skel. Bah BMD 23 4 13 16 4 10
BMDLml 14 4 9 11 4 8
BMDLpl1 16 4 7 13 4 6

BB BMD 27 6 25 17 5 14
BMDLml 14 4 11 12 4 9
BMDLpl1 18 5 14 14 5 10

Cond BMD 34 11 25 23 10 18
BMDLml 20 9 17 16 8 14

Coll. Bah BMD 9 4 25 7 4 14
BMDLml 6 4 13 5 4 9
BMDLpl1 7 4 15 6 4 10

BB BMD 8 5 27 7 5 14
BMDLml 6 4 13 5 4 9
BMDLpl1 6 4 15 6 4 11

Cond BMD 14 11 27 11 10 17
BMDLml 9 8 18 8 8 13

yield the following ordering:

BMDLml(EP) ≤ BMDLpl1(EP) ≤ BMDLml(MB) ≤ BMDLpl1(MB).

This ordering is found in 30 out of 36 cases. In addition, the discrepancies be-
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tween the BMDL’s from different models and between BMDLp
1 and BMDLml
are smaller with the linear extrapolation method.

The exception to the rule seems to be visceral malformation in the EG study.
At the same time, it is the only outcome for which virtually no intra-litter
clustering has been found.

11.3.4 Profile Likelihood After Reparametrization for the Determination of a
Safe Dose

Simulations reported in Claeskens, Aerts, Molenberghs and Ryan (2001) illus-
trate that the one-dimensional profile likelihood approach results in too low
coverage probabilities for the BMDL. A possible explanation for this is the
extra randomness due to estimation of β0. Transformation (11.4) expresses
the dosage d as a function of both β0 and βd. Since β0 is unknown, in prac-
tice we have to substitute an estimator for the unknown true parameter. This
additional source of variability might largely explain why a 90% confidence
interval for βd does not transform into an “at least 90%” one-sided confidence
interval for the BMD.

An alternative approach is to first reparameterize the likelihood in terms
of the dose d. For a specified excess risk, either member of the pair (βd, d)
contains the same information, provided a monotonic relationship exists be-
tween βd and d (Aerts, Declerck and Molenberghs 1997). For the Bahadur and
beta-binomial models, (11.4) shows that the relationship between βd and d is
indeed monotone. For the conditional model, however, this transformation is
most often not monotone. Therefore, the reparametrization approach will not
be applied to that model.

In the above example of the Bahadur and beta-binomial model, a repara-
metrization of the likelihood in terms of d is obtained by replacing β1 by

β1 = ln{(1 + qe−β0)/(1− q)}/d.
This equation is obtained by solving r(d;β) = q for β1 in the linear-logit
model. The likelihood function is now maximized directly with respect to
(β0, d, βa). This leads to definition (11.8), which is, however, not equivalent to
the previous profile method (11.7) (Claeskens, Aerts, Molenberghs and Ryan
2001):

B̃MDLpl1 = min
{
d : 2[�{d̂, β̂0(d̂), β̂a(d̂)} − �{d, β̂0(d), β̂a(d)}]

≤ χ21(1− 2α)
}
. (11.8)

An advantage of this reparametrization is that the profile function is con-
structed directly in terms of dosage d. The presence of β0 in the reparame-
trization (11.4) is automatically taken care of while obtaining the solution to
the likelihood equations. Results of a simulation study shown in Claeskens,
Aerts, Molenberghs and Ryan (2001) clearly show that the reparametrization
increases the coverage percentages significantly.
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This method is preferable to the simpler one-dimensional profile approach
of Section 11.3.2.

11.3.5 A Two-Dimensional Profile Likelihood Determination of a Safe Dose

When reparametrization becomes too complicated, a second solution is a
higher dimensional profile approach, where all parameters in the function
π(·) are taken into account (Claeskens, Aerts, Molenberghs and Ryan 2001).
For the model

logit[π(d)] = β0 + β1d,

this means both parameters (β0, βd). This leads to the following definition,

BMDLp
2 = min
{
d(β0, β1, β̂a) : r(d;β0, β1, β̂a) = q over all (β0, β1)

such that 2[�(β̂0, β̂1, β̂a)− �(β0, β1, β̂a(β0, β1))]

≤ χ22(1− 2α)
}
. (11.9)

We now use one more degree of freedom; the degrees of freedom correspond
to the length of the subset of the β-vector which effectively occurs in the
dose-response model.

Comparing the results of the two-dimensional profile approach with those
of the reparameterized one-dimensional approach, in the above mentioned
article, it is found that the BMDL obtained via the two-dimensional method
tends to be larger. Since there is not a 100% coverage it may happen that the
BMDL is larger than the true BMD; in this situation, the distance between the
BMDL and the true BMD is larger on average for the two-dimensional profile
method than compared to the reparametrization method. A good method for
BMDL determination would have a small mean/median distance between the
BMDL and the true BMD.

11.4 A Profile Score Approach

The idea is to reconsider existing likelihood approaches for developmental tox-
icity risk assessment from a non-likelihood point of view; an important class of
examples are the generalized estimating equations (Chapter 5). According to
Williams and Ryan (1996) it is preferable to define the BMDL using the like-
lihood ratio statistic. This method is explained in Section 11.3.1. Of course,
a full likelihood technique will perform best when the likelihood is correctly
specified, but one might expect problems in case of misspecification; see Sec-
tion 11.3. Therefore it is important to look at robust estimation methods such
as quasi-likelihood, GEE and pseudo-likelihood. Another reason for extension
is that the likelihood method is unavailable in quasi-likelihood settings, and
hence also in GEE, since there is no analogue to the likelihood ratio statistic.
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11.4.1 A Score or Robust Score-based Benchmark Dose

Because of the first order equivalence between likelihood ratio, Wald and
score statistics, we can replace the likelihood ratio statistic in the previous
definitions by either the Wald or the score statistic, without affecting the first
order asymptotic properties. Several authors have indicated drawbacks of a
Wald based approach (Krewski and Van Ryzin 1981, Crump 1984, Crump and
Howe 1985). The non-invariance of Wald tests to parameter transformations
(Phillips and Park 1988) makes a replacement by the score statistic more
appealing. Score inverted confidence intervals are described in, for example,
Hinkley, Reid and Snell (1991, p. 278).

Claeskens, Aerts, Molenberghs and Ryan (2001) define the following ap-
proach. Assume the parameter estimator β̂ is the solution of estimating equa-
tions

U(β) =
N∑
i=1

ψ(di, zi,mi;β) = 0, (11.10)

where, as before, di is the dose, mi the size and zi the number of malfor-
mations of litter i and N is the total number of litters. For ML estimators
ψ(di, zi,mi;β) is the derivative of the log-likelihood with respect to β. The
score statistic is defined as

S(β) = U(β)TA(β)−1U(β),

where

A(β) = −
N∑
i=1

∂

∂β
ψ(di, zi,mi;β).

A 100(1− α)% score based lower limit for the BMD can be defined as

min
{
d(β) : r(d;β) = q over all β such that S(β) ≤ χ2p(1− 2α)

}
, (11.11)

with S(β) the score statistic at parameter value β.
Within a likelihood framework the asymptotic χ2p distribution is not valid

anymore in case the probability density (likelihood) function is misspecified,
e.g., when there is some overdispersion not correctly accounted for. This holds
for the score statistic as well as for the log-likelihood ratio and Wald statis-
tics. There exists an extensive literature on likelihood misspecification. For an
overview and many related references, see White (1982, 1994).

When there is uncertainty about the correctness of the likelihood specifica-
tion, it is better to use the so-called robust statistics, since these modified test
statistics have an asymptotic chi-squared distribution, even when the assumed
probability model is not correct. For full likelihood models, robust Wald and
score tests can easily be modified by using the so-called sandwich variance es-
timator (Kent 1982 and Viraswami and Reid 1996). We are not aware of such
a simple modification of the likelihood ratio test. An alternative is the use of
bootstrap methods; see Aerts and Claeskens (1998, 1999). As indicated before,
we focus on score tests. Another advantage of the robust score tests is that

© 2002 by CRC Press LLC



A PROFILE SCORE APPROACH 191

they are also defined in quasi-likelihood, GEE and pseudo-likelihood models
(Liang and Zeger 1986, Rotnitzky and Jewell 1990, and Geys, Molenberghs
and Ryan 1999).

The robustified BMDL is defined similarly as in (11.11) but with S(β)
replaced by the robust score statistic

R(β) = U(β)TA(β)−1
(
A(β)−1B(β)A(β)−1

)−1
A(β)−1U(β)

with

B(β) =
N∑
i=1

ψ(di, zi,mi;β)ψ(di, zi,mi;β)T .

For details on the definition of R(β), we refer to the above mentioned papers.
As explained before, all these methods (likelihood and score based) are ex-
pected to be too conservative. In the next section we turn to profile likelihood
and profile score approaches.

11.4.2 A Profile Score or Profile Robust Score-based Benchmark Dose

Similar to definition (11.7), we now define a profile score based BMDL as

BMDLps1 = min
{
d(β1, β̂n(β1)) : r(d;β1, β̂n(β1)) = q over all β1

such that S(β1, β̂n(β1)) ≤ χ21(1− 2α)
}

(11.12)

and, for the robust score approach,

BMDLpr1 = min
{
d(β1, β̂n(β1)) : r(d;β1, β̂n(β1)) = q over all β1

such that R(β1, β̂n(β1)) ≤ χ21(1− 2α)
}
. (11.13)

These profile BMDL definitions use only one degree of freedom for the chi-
squared distribution; therefore, this profile approach is expected to be more
efficient. In a similar fashion, definition (11.9) can be modified to score-based
methods. Only the robustified profile score BMDL definition (11.12) is theo-
retically valid in case of misspecification.

In Claeskens, Aerts, Molenberghs and Ryan (2001) a comparison is made of
the likelihood, score and robust score approaches. It turns out that all three
yield very similar results. This confirms the applicability and usefulness of
score and robust score definitions. Moreover, these latter two are computa-
tionally much easier to obtain since only estimates of the nuisance parameters
need to be computed and not of the βd parameter itself, which is necessary in
the likelihood criterion (11.7).

An important question that arises is whether it still makes sense to define
a BMDL when the estimated dose effect parameter βd is not significantly
different from zero, i.e., when the confidence interval for βd contains zero. One
argument against defining a BMDL could be that when there is no statistically
significant effect of the dose on the outcome, there is no interest in the value
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Table 11.7 EG Study. BMD and BMDL determination.

Model Outcome Benchmark Dose Score Robust Likelihood

BB External 0.00734 0.00447 0.00504 0.00385
Pr(2) Visceral 0.03674 0.02244 0.01730 0.02242

Skeletal 0.00056 0.00043 0.00045 0.00043
Collapsed 0.00051 0.00041 0.00041 0.00040

GEE2 External 0.00824 0.00450 0.00486
Pr(2) Visceral 0.03797 0.01581 0.01683

Skeletal 0.00058 0.00044 0.00046
Collapsed 0.00053 0.00040 0.00042

GEE2 External 0.00824 0.00347 0.00495
Pr(1,d) Visceral 0.03797 — 0.01228

Skeletal 0.00058 0.00041 0.00046
Collapsed 0.00053 0.00038 0.00042

of a safe dose and one could just as well define the BMDL to be zero. On
the other hand, it can still be of interest to have an idea on the value of the
BMDL even if the dose effect happens to be statistically not significant.

Another case is when the estimated dose effect parameter β̂d is negative.
This implies a decreasing dose-response curve on the logit scale. A problem
with this situation is that possibly π(d;β) ≤ π(0;β) for d ≥ 0, which implies
that r(d;β) ≤ 0. In other words, it could be “healthy” to be exposed to a
certain level of the particular exposure. The above methods do not apply to
this case.

11.4.3 Toxicity Study on Ethylene Glycol

As before, we will consider external, skeletal, and visceral malformation, as
well as a collapsed outcome. We will take a univariate approach and estimate
BMD and determine BMDL’s for each of these malformation types in turn
using the two-dimensional profile approach Pr(2) and the one-dimensional
reparametrization method Pr(1, d).

For GEE2, only the robust profile BMDL’s should be considered. Note that
for GEE2, the last column is empty since the likelihood ratio based BMDL
does not exist.

Table 11.7 shows BMD and BMDL values, which, for visceral malformation
are much higher than for the other types of malformations. For visceral and
skeletal malformation, and for a collapsed outcome variable (any of those 3
malformation types), profile likelihood and score BMDL values nearly coin-
cide for the BB model. For skeletal and collapsed outcomes, the results by
GEE2 (both profile methods) do not differ much from the corresponding BB-
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values. For skeletal malformation and a collapsed outcome, the largest BMDL
values are obtained by the GEE2 profile robust score method; for external
malformation by the BB profile robust score method and for visceral by the
BB profile likelihood approach. For skeletal malformation and the collapsed
outcome, the BMDL values obtained by the robust score approach are, up to
rounding, the same for both profile GEE2 methods. For visceral malforma-
tion, the one-dimensional profile method Pr(1,d) yields a somewhat smaller
value, in comparison with the Pr(2) method. The reverse is true for external
malformation, although both values are rather comparable.

11.4.4 Concluding Remarks

Throughout this section, we considered a linear dose-response function on the
logit scale, which, for the marginal models under study, resulted in an explicit
formula for the BMD; see equation (11.4). In general, one might have to deal
with more flexible functional relationships π(d;β), such as non-linear dose-
response models, and/or with other link functions. The BMD is defined in the
same way as before, or equivalently, as the solution d to the equation

π(d;β) = q + (1− q)π(0;β) (11.14)

which, in general, will require numerical methods. In case expression (11.14)
has more than one solution, one could define the BMD to be the smallest
positive solution. BMDL determination in these models can proceed through
a profile method, similar to the one in Section 11.3.5; one then only needs to
adapt the degrees of freedom of the chi-squared distributed random variable
according to the number of components of β actually appearing in (11.14).

To address the coverage percentage issue, one possibility to increase the cov-
erage percentages, in particular for the two-dimensional profile method and
for the robust score approach, is to use bootstrap critical points instead of the
χ2 critical values. This could be advantageous if the reason for small cover-
age is the use of the critical value from the asymptotic distribution. A naive
application of bootstrap methods for the construction of confidence intervals
would perform a bootstrap test at each value of the grid, which would make
the method computationally very unattractive. Alternatively, other methods
for obtaining confidence intervals could be considered; see Davison and Hink-
ley (1997) for an overview. None of those techniques have been studied in the
context of quantitative risk assessment, and their theoretical and practical
properties in this context are yet unknown.

© 2002 by CRC Press LLC



CHAPTER 12

Exact Dose-Resp onse Inference

Chris Corcoran

Utah State University, Logan, UT

Louise M. Ryan

Harvard School of Public Health, Boston, MA

Methods for analyzing correlated binary data have been well established in
recent decades. Pendergast et al. (1992) offer a review of methods for corre-
lated binary data, with a focus on cluster-correlated observations. Some of
these methods, including marginal, random effects, and Markovian or condi-
tional models, have been introduced in Chapter 4 and studied in subsequent
chapters. However, the justification of inferences that rely on such methods
usually rests upon the approximate normality of the statistics of interest.
Such a distributional assumption may be untenable when samples are small
or sparse. If a normal approximation is not accurate, the result might be tests
that do not preserve the a priori testing level established by the investigator.
Likewise, actual coverage probabilities for confidence intervals may be much
lower or higher than the nominal confidence level. Moreover, where likelihood
or quasi-likelihood methods are applied, inference can be further complicated
when parameter estimates lie at or near the boundary of the parameter space.
The following two examples illustrate these perils of approximate uncondi-
tional inference for cluster-correlated binary data. In this chapter, we will use
the examples introduced in Sections 2.7 and 2.8.

12.0.5 Issues

What are the options when faced with the practical problems posed by these
data sets? In the first example, no inference is possible due to the separability
inherent in the data. In the second example, the sparseness of the data (due
to the apparently very low baseline probability of malformation) may render
a normal approximation suspect.

While much progress has been made in deriving large-sample methods for
correlated binary data, there are comparatively few nonparametric options
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available to those faced with analyzing data such as those found in Tables
2.6 and 2.7. One ad hoc method for small or sparse samples includes us-
ing summary response measures. For example, one might treat the observed
proportion of responses within each cluster as the outcome, and then use a
generalized Wilcoxon test, such as the Kruskal-Wallis or Jonckheere-Terpstra
test, to assess whether the median cluster-level response probability differs
by dose level. While generally more conservative, such methods based upon
summary response measures do not necessarily guarantee preservation of the
significance level established a priori by the researcher. This preservation is a
primary aim of exact tests. Another approach might be to treat cluster mem-
bership as a fixed effect, and then use exact conditional logistic regression
to condition out the cluster effects. However, including a nominal covariate
whose levels increase with increasing sample size may lead to poor testing
properties. Moreover, exact logistic regression is computationally intensive,
and may be infeasible when a great number of fixed effects, such as clusters,
are included in the model.

In the next section, we introduce an exponential family model for clustered
binary data that allows an exact permutation test comparing either two pop-
ulations of clustered binomial observations, or K ordered clustered binomial
populations. The resulting hypothesis test is “exact” in the sense that the test
statistic of interest has a known distribution that is free of any unknown para-
meters. In Section 12.2 we compare this permutation test to some large-sample
procedures in the context of a common teratology study design. Finally, in
Section 12.3 we revisit the data of Table 2.7, and discuss some general issues
regarding the exact test.

12.1 Exact Nonparametric Dose-Response Inference

In the case of independent, uncorrelated observations, an exact trend test is
fairly straightforward: we have K ordered binomial populations, each with ni
subjects who have been exposed to a level xi, a given compound.

Suppose that we have N clusters, where the ith cluster has ni subjects
with an associated ordinal covariate xi, for i = 1, . . . , N . Let Yij represent the
binary response of the jth observation in the ith cluster, and Zi =

∑ni
j=1 Yij

represent the total number of responses within the ith cluster.
The Molenberghs and Ryan (MR) model (1999), introduced in Section 4.2,

specifies the density of Yi = (Yi1, Yi2, . . . , Yini)
T as

Pr(Yi = yi) = exp {θizi − δizi(ni − zi) + Ai(θi, δi)} ,

where δi represents the dispersion parameter and Ai(θi, δi) is the normalizing
constant, summing over all possible realizations of Yi. The parameter δi re-
flects intracluster correlation. It is easy to show that the model reduces to a
product of independent binary probabilities when δi = 0. Using the logit link,
a linear predictor of the form θi = α+βxi, and assuming that δi = δ for each
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i, the density is expressed as

Pr(Yi = yi|xi) =
exp {(α + βxi)zi − δzi(ni − zi) + Ai(α, β, δ)} . (12.1)

Because of the exchangeability of the binary responses, this density depends
on Yi only through Zi. Any permutation of the binary responses within Yi
yields the same probability. The density of Zi can therefore be expressed as

Pr(Zi = zi|xi) =
(
ni
zi

)
exp {(α + βxi)zi − δzi(ni − zi) + Ai(α, β, δ)} ,

zi = 0, . . . , ni. Assuming cluster independence, the joint distribution of Z =
(Z1, . . . , ZN )T given x = (x1, . . . , xN )T is obtained as

Pr(Z = z|x) =
N∏
i=1

(
ni
zi

)
× exp {(α + βxi)zi − δzi(ni − zi) + Ai(α, β, δ)}

=

[
N∏
i=1

(
ni
zi

)]

× exp

{
αs1 + βt− δs2 +

N∑
i=1

Ai(α, β, δ)

}
, (12.2)

where s1 =
∑
i zi, t =

∑
i xizi, and s2 =

∑
i zi(ni − zi). Because this density

is of the exponential family, s1, t, and s2 are sufficient for α, β, and δ.
We are interested in the null hypothesis H0: β = 0. We can eliminate the

nuisance parameters α and δ and obtain the exact distribution of Z under H0

by conditioning on s = (s1, s2). Define the conditional reference set Γ(s1, s2)
such that

Γ(s1, s2) =

{
z∗ :

N∑
k=1

z∗k = s1,
N∑
k=1

z∗k(nk − z∗k)

}
,

where z∗ is any generic table of the form z∗ = (z∗1 , z∗2 , . . . , z∗N )T and the
cluster sizes nk are held fixed. Then the density of Z given s is

Pr(Z = z | x, s) =[∏N
i=1

(
ni
zi

)]
exp
{
αs1 + βt− δs2 +

∑N
i=1Ai(α, β, δ)

}
∑

z∗∈Γ(s1,s2)

[∏N
k=1

(
nk
z∗k

)]
exp
{
αs1 + βt− δs2 +

∑N
k=1Ak(α, β, δ)

}

=

[∏N
i=1

(
ni
zi

)]
exp {βt}∑

z∗∈Γ(s1,s2)

[∏N
k=1

(
nk
z∗k

)]
exp {βt}

.
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Table 12.1 Congenital Ophthalmic Defects. Permutation distribution for data of Ta-
ble 2.6.

t Pr(T = t)

0 0.09524
1 0.28571
2 0.28571
3 0.28571
4 0.04762

Under H0 this reduces to

Pr(Z = z|s, H0) =

∏N
i=1

(
ni
zi

)∑
z ∗∈Γ(s1,s2)

∏N
k=1

(
nk
z∗k

) , (12.3)

which is free of all unknown parameters.
An exact test is formed by ordering the tables within Γ(s1, s2) according

to some discrepancy measure. As we are interested in inference about β, we
wish to find the null distribution of the trend statistic

T (Z) =
N∑
i=1

xiZi, (12.4)

the sufficient statistic for β, conditional on the observed value of s.
From (12.3), the probability under H0 of observing a table

zobs = (z1, . . . , zN )′

with associated sufficient statistic s and a realization of T denoted by tobs =
t(zobs) is

Pr(T > tobs|H0, s) =
∑

z ∗∈Γ(s1,s2):
T (z ∗)≥tobs


∏N
i=1

(
ni
zi

)∑
z ∗∈Γ(s1,s2)

∏N
k=1

(
nk
z∗k

)
 .

(12.5)

A one-sided α-level test then rejects H0 when tobs > tα, where tα is defined
as the smallest value such that

Pr(T > tα|H0, s) ≤ α.

A two-sided p value can be obtained by doubling (12.5).
We now apply this test to the data of Table 2.6. Note that for this par-

ticular example, N = 9, (n1, n2, . . . , n9) = (2, 2, 2, 2, 2, 2, 2, 1, 1), and z =
(0, 0, 0, 0, 0, 1, 1, 1, 1). Assuming that xi = 0 for children less than 3 years of
age and xi = 1 otherwise, we have s1 = 4, s2 = 2, and an observed trend
test statistic of t = 4. Conditional on the number and sizes of the clusters,
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there are exactly 12 tables for which s1 = 4 and s2 = 2. For example, the
tables z∗ = (0, 0, 0, 0, 1, 0, 1, 1, 1) and z∗∗ = (1, 0, 0, 0, 2, 1, 0, 0, 0) belong to
this reference set. The tables in the conditional reference set give rise to the
permutation distribution of t shown in Table 12.1. Based upon this distribu-
tion, the exact probability of having observed a test statistic with a value of
at least 4 is 0.04762. This is the p value of a one-sided hypothesis test that
β1, the coefficient of the age indicator xi, is equal to zero, versus the alter-
native that β1 > 0. As previously noted, because none of the four children
younger than 3 years of age experienced a graft rejection, large-sample test-
ing procedures, particularly those requiring an estimate of the age effect, may
be suspect if not impossible. The exact procedure introduced here, however,
provides some evidence that older children are prone to a higher probability
of graft rejection.

Computing the exact p value of (12.5) is made difficult by the necessity
of obtaining its denominator. Corcoran et al. (2001) suggest one method of
computing this tail distribution using a graphical approach. This algorithm is
currently implemented in ToxTools (2001) and StatXact (2001).

12.2 Simulation Study

We present here the results of a small simulation study to evaluate the perfor-
mance of the exact test. We compare the exact test to four other procedures:
likelihood-ratio tests using the beta-binomial and the logistic-normal-binomial
models, the score test using the conditional exponential family model of (12.1),
and a closed-form GEE trend test statistic derived by Lefkopoulou and Ryan
(1992).

Our experiment involves 4 dose groups of unequally-sized clusters, with rel-
ative dose levels set at 0, 1, 2, and 3. This scenario mimics that of the common
teratology study of the National Toxicology Program (NTP), wherein 25 fe-
male rodents (dams) are randomized to one of four doses of an investigative
compound, then impregnated and exposed to the compound during a criti-
cal period of gestation. The dams are sacrificed before gestation is complete
and the foetuses observed for the presence or absence of some response, such
as malformation. We randomly generated the cluster sizes themselves from
the empirical distribution of Table 12.2, which is reproduced from Carr and
Portier (1993). This distribution is constructed from historical control data of
21 NTP experiments involving mice.

We first generated data from the conditional model of (12.1), using a value
for the dispersion parameter of δi = 0.1 for each i. This is the value used by
Molenberghs et al. (1998) in their study of the effect of model misspecification
under a fully parametric setting.

Figure 12.1 compares the performance of the five tests. Results at each plot-
ted point are based upon 500 samples. Figure 12.1 (a) plots the estimated level
of the tests as a function of the baseline response rate under the null hypothe-
sis. The horizontal axis in this case indexes the value of the constant under the
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Table 12.2 Empirical distribution of litter sizes from NTP historical control data
(Carr and Portier 1993).

Litter Size Frequency p̂

1 1 .002
2 2 .003
3 4 .007
4 4 .007
5 9 .015
6 16 .027
7 15 .025
8 19 .032
9 32 .054

10 45 .076
11 93 .157
12 100 .169
13 104 .175
14 73 .123
15 39 .066
16 27 .046
17 8 .013
18 2 .003

logit link. Plots 12.1 (b) and 12.1 (c) show estimated power as a function of the
covariate effect — plot 12.1 (b) was generated using a constant of −4.0 under
the logit link, and plot 12.1 (c) a constant of −2.0 (yielding baseline response
rates of approximately 1 and 10%, respectively). The horizontal axes under
these plots represent the coefficient of dose under the logit link. Estimated
group response rates generated by the simulation are included parenthetically
along the horizontal axis to allow more straightforward interpretation of the
model parameters.

Figure 12.1 (a) shows that both the GEE and MR-based procedures result
in considerable violation of the Type I error over the entire range of baseline
response probabilities. For 500 samples, assuming conservatively that each
point along the horizontal axis is independent, an observed Type I error of
about 0.073 or greater is considered significantly higher than 0.05. In light
of the uniform invalidity of these tests, comparing them to the exact test in
terms of relative power is unfair. Nevertheless, we see from plots 12.1 (b) and
12.1 (c) that the asymptotic tests have slightly higher power, although this
is clearly at the cost of sacrificing the testing level. The exact test proves
advantageous even under this design that employs such a large sample.

Figure 12.2 shows analogous results for an experiment with data generated
from the beta-binomial model. Figure 12.2 compares the performance of the
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Figure 12.1 Molenberghs and Ryan Random Data. (a) Estimated test size as a func-
tion of baseline response rate, and (b) and (c) estimated power as a function of group
effect for baseline response rates of approximately 1.0% and 3.0%, respectively, when
comparing four dose levels of 25 clusters each.

five tests. Results at each plotted point are based upon 500 samples. Fig-
ure 12.2 (a) plots the estimated level of the tests as a function of the baseline
response rate under the null hypothesis. The horizontal axis in this case in-
dexes the value of the constant under the logit link. Plots 12.2 (b) and 12.2
(c) show estimated power as a function of the covariate effect, plot 12.2 (b)
was generated using a constant of −4.0 under the logit link and plot 12.2 (c)
a constant of −2.0 (yielding baseline response rates of approximately 1 and
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Figure 12.2 Beta-binomial Random Data. (a) Estimated test size as a function of
baseline response rate, and (b) and (c) estimated power as a function of group ef-
fect for baseline response rates of approximately 1.0% and 3.0%, respectively, when
comparing four dose levels of 25 clusters each.

10%, respectively). The horizontal axes under these plots represent the coef-
ficient of dose under the logit link. Estimated group response rates generated
by the simulation are included parenthetically along the horizontal axis to
allow more straightforward interpretation of the model parameters.

Figure 12.2 (a) shows that both the GEE and MR-based procedures result in
serious violation of the Type I error over the entire range of baseline response
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Table 12.3 Oral Teratogenic Data. Comparison of testing results of Table 2.7.

Model Test p value

Logistic Normal Likelihood ratio 0.131
Wald 0.129

GEE Score 0.145
Wald 0.136

MR Score 0.065
Nonparametric Jonckheere-Terpstra 0.144
Nonparametric Cochran-Armitage 0.103
Nonparametric New Exact 0.059

probabilities. For 500 samples, assuming conservatively that each point along
the horizontal axis is independent, an observed Type I error of about 0.073
or greater is considered significantly higher than 0.05. In light of the uniform
invalidity of these tests, comparing them to the exact test in terms of relative
power is unfair. Nevertheless, we see from plots 12.2 (b) and 12.2 (c) that the
asymptotic tests have slightly higher power, although this is clearly at the
cost of sacrificing the testing level. The exact test proves advantageous even
under this design that employs such a large sample.

12.3 Concluding Remarks

It is useful to compare the five methods used in the previous section when
applied to the data of Table 2.7. These findings are summarized in Table 12.3,
along with the results of a method that uses the empirical cluster response
rates as summary response measures. The exact test provides the strongest
evidence of a dose-effect, while the likelihood and GEE-based tests seem more
conservative. The Jonckheere-Terpstra test is a rank test of the null hypothesis
that the median cluster-specific malformation rate is the same across dose
groups, versus the ordered alternative that the median malformation rate is
larger when the dose is greater. The results of this test yield weaker evidence
of a dose effect than does the exact test. However, while a rank-based test
using the sample proportions is relatively easy to use, it naively assumes that
the 0/7 litter in the control group carries as much weight as does the 0/17
litter in the 8 mg/kg dose group.

Two of the asymptotic test statistics from Table 12.3, the GEE and MR
score tests, directly approximate the distribution of T under H0. Thus, par-
ticularly in light of the relatively anticonservative result of the exact test,
it is instructive to compare these approximations to the exact conditional
distribution of T given s. The conditional density of T is shown in Fig-
ure 12.3. The range of T is (0, 2830), and its conditional mean and vari-
ance are E(T |s, H0) = 738.8 and Var(T |s, H0) = 49, 062. We see further
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Figure 12.3 Oral Teratogenic Data. Conditional density of T , given s = (s 1 , s2)′,
for data of Table 2.7.

that this conditional density is highly discrete and decidedly nonnormal. On
the other hand, the GEE and MR score test statistics are each asymptoti-
cally chi-square distributed with one degree-of-freedom, and are of the form
(T −E(T |H0))2/Var(T |H0). However, the unconditional mean of this asymp-
totic distribution is approximated as 811.7 using the GEE method, and 743.1
under the MR score test. Furthermore, the GEE method approximates the
variance of the asymptotic distribution as 67,234, while the MR score yields
an estimate of 51,374. The reduced variance of the conditional distribution
in this case indicates that the exact test is preferable as a basis for inference.
There are several factors that can affect the conditional distribution, includ-
ing imbalance in the data, unequal cluster sizes, the underlying variability
between clusters in their average response probabilities, and the spacing of
covariate levels. Future evaluation of the effects of all or some of these factors
may explain further the anticonservatism of the conditional test for data such
as these.

An additional feature of the exact test is that it can be extended natu-
rally to handle exact logistic regression for clustered binary data. One need
only condition on the additional sufficient statistics introduced by adding
nuisance regression parameters to the model. However, extending the model,
particularly with continuous-type covariates, can render an exact test com-
putationally infeasible. Inclusion of continuous-type covariates may result in
a degenerate permutation distribution. Even in situations where the distribu-
tion consists of meaningful support, additional covariates introduce additional
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layers of conditioning on sufficient statistics, which increases memory and stor-
age requirements. Recent improvements in computational algorithms, such as
those developed by Mehta, Patel and Senchaudhuri (2000) for exact logistic
regression, may also be usefully applied to this problem.

Conditioning on the cluster sizes is possible only in cases where these mar-
ginal totals are ancillary for β. In practice, there may be some situations
where this is not the case. In teratological research, for example, foetuses may
be at higher risk of death before the end of the study due to the toxicity of
the administered substance. The litter sizes hence provide some information
regarding the dose effect. Another important consideration with regard to the
covariate is its effect on the dispersion as well as the mean. Carr and Portier
(1993) point out that, in practice, teratological studies that provide evidence
in favor of a covariate effect tend also to show a positive relationship between
dose and intracluster correlation. However, the assumption of homogeneous
dispersion across clusters may also be relaxed. For example, one might wish
to model the dispersion parameter δ as a function of covariates. As with the
addition of nuisance regression parameters for the mean, this would require
further conditioning on the sufficient statistics introduced by the augmented
parameter vector, with the same possible computational consequences.
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As discussed in Chapter 4, two main approaches to the analysis of clus-
tered binary data are the cluster-specific (CS) approach (Section 4.3) and the
population-averaged (PA) approach (grouping the conditional and marginal
approaches of Sections 4.2 and 4.1). Cluster-specific models include cluster
effects and thus are useful for assessing the effects of individual-level covari-
ates. Individual-level covariates may take on different values, either by design
or chance, for every unit in the cluster. These have also been referred to as
cluster-varying covariates in the literature, since the values may vary within
a cluster. Examples of CS models are mixed-effect logistic regression, with ei-
ther parametric or nonparametric mixing distributions for the cluster effects,
and conditional logistic regression. A number of cluster-specific approaches
have been introduced in Section 4.3. In contrast, population-averaged mod-
els do not include cluster effects, and thus are most useful for assessing the
effects of cluster-level covariates. Cluster-level covariates take on the same
values for every unit in the cluster. The effects of individual-level covariates
can also be estimated from population-averaged models, but their interpreta-
tions are based on the overall population, without adjusting for cluster effects.
Quasi-likelihood models and models based on generalized estimating equations
(GEEs, Chapter 5) fall under the heading of PA models. Excellent reviews of
these modeling approaches for clustered binary data are provided by Prentice
(1988), Fitzmaurice, Laird and Rotnitzky (1993), Diggle, Liang and Zeger
(1994), and Pendergast et al. (1996).

Three examples will serve to illustrate the concepts of cluster-level ver-
sus individual-level covariates. First, consider a developmental toxicity study
which evaluates the occurrence of fetal malformations in response to an en-
vironmental or chemical exposure. Clustered data result from the fact that
binary outcomes (malformation versus no malformation) are evaluated on the

© 2002 by CRC Press LLC



208

offspring, while the exposure is administered to the pregnant female. In most
developmental toxicity studies, as for most toxicity studies in general, the pri-
mary interest is in evaluating dose-response effects. Since the exposure level is
a cluster-level covariate, many models encountered in the developmental tox-
icity literature are “population-averaged” (PA) models. In particular, GEEs
have become a very popular choice for the analysis of developmental toxicity
studies (Ryan 1992).

In contrast, consider a study conducted in 52 human subjects, 23 of whom
were HIV-infected, in order to determine whether the lymphocyte prolifer-
ation assay (LPA) could be run on blood samples which had been shipped
or stored rather than requiring fresh blood samples (Weinberg et al. 1998,
Betensky and Williams 2001). The LPA measurements were performed on up
to 36 combinations of conditions on each subject’s blood sample, reflecting
the three possible storage methods (fresh, shipped, or stored blood samples),
three different anticoagulants, and four possible stimulants. In this study, the
individual subject defines the cluster and the repeated LPA measurements on
each subject form the clustered outcomes. The primary interest focused on the
handling method, which is a cluster-varying (i.e., individual-level) covariate.
Anticoagulant and stimulant are also individual-level covariates, since they
pertain to the processing of an individual blood sample within a study sub-
ject. However, HIV infection status is a cluster-level covariate since it remains
constant for each study subject. For this type of study, cluster specific models
are likely to be more appropriate.

Last of all, suppose a multicenter clinical trial has been conducted in HIV-
infected subjects to compare the effects of two combination antiretroviral reg-
imens on HIV-1 RNA viral load. The viral load may be analyzed as a contin-
uous outcome after log-transformation (ignoring, for the moment, the issue of
censored data resulting from measurements below the limit of quantification
of the viral load assay), or by dichotomizing as above or below the limit of
quantification. In either case, such studies often measure the viral load at each
clinic visit, resulting in repeated measurements for each subject. One of the
primary interests of such a study might be to compare the trajectories of viral
load over follow-up time between patients randomized to the two regimens.
In this scenario, treatment regimen is a cluster-level covariate, while week on
therapy is a cluster-varying covariate. However, because primary interest re-
volves around identifying treatment differences, a population-averaged model
would be appropriate.

In contrast to models for dependent continuous outcomes, the two ap-
proaches for dependent binary data produce parameters with different in-
terpretations and actually address different questions. From the above exam-
ples, it should be clear that the choice between one modeling approach or
another depends primarily on the scientific question of utmost importance to
the study. However, there may be instances in which both cluster-level and
individual-level covariates are of interest within the same study. For example,
in the heatshock studies described in Section 2.2, the embryos are explanted

© 2002 by CRC Press LLC



CLUSTER-SPECIFIC MODELS 209

from the uterus of the maternal dam and exposed in vitro to various combina-
tions of heat stress (increased temperature) and exposure duration; thus, the
exposure covariate does not remain constant within a litter. Yet the genetic
similarity of offspring from the same litter may still induce an intralitter corre-
lation. Analysis of such data with a CS model may allow distinction between
the genetic and environmental components of the intralitter effect, whereas
studies with only cluster-level covariates can account for a “litter effect” but
cannot disentangle this any further. In some such cases it may be reasonable
to consider both approaches as equally valid. In these situations, issues of
efficiency and robustness should be considered.

In this chapter, modeling approaches are described for addressing individual-
level covariates in the context of clustered binary outcomes. Then, cluster-
specific models for binary data are addressed, and are further broken down
into conditional and marginal inferential approaches (Section 13.1). In Sec-
tion 13.2, population-averaged models for binary data are reviewed, and are
similarly subdivided into conditional and marginal model forms. The marginal
models are further classified as likelihood-based versus those based on general-
ized estimating equations. Issues of efficiency are discussed in Section 13.3, for
situations in which more than one modeling approach might produce estimates
with valid interpretations. An example of analysis by these various modeling
approaches for the particular case of the heatshock data (See Section 2.2) is
provided in Section 13.4. In Section 13.5, cluster-specific (or random-effects)
models are discussed when the outcomes of interest are continuous.

Let us first turn attention to binary outcomes.

13.1 Cluster-Specific Models

If primary interest of a study lies in within-cluster comparisons, then cluster-
specific approaches are most appropriate. Cluster-specific approaches can be
further subdivided into conditional and marginal models. The methods we
consider below are both based on likelihood approaches.

13.1.1 Marginal Likelihood Approach

Consider a clustered data experiment in which the response of interest is a
binary random variable Yij which is measured on the jth unit, j = 1, ..., ni,
of the ith cluster, i = 1, ..., N . Both the mixed effect and conditional logistic
regression models are derived from the same general form for a cluster-specific
model:

logit[P (Yij = 1|Xij , αi,βcs)] = αi + X′
ijβcs, (13.1)

where αi is a random intercept term for the ith cluster, Xij is a vector of
covariates of interest for the jth individual within the ith cluster, and βcs
is the corresponding vector of parameters. The vector Xij may contain both
a cluster-level component, X(f)i, and a cluster-varying component, X(v)ij ,
where the subscript (f) denotes “fixed” within a cluster, and (v) denotes
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Figure 13.1 Heatshock Study. Fitted correlation function.

“varying”. The corresponding components of βcs are β(f)cs and β(v)cs . With this
notation, model (13.1) is written

logit[P (Yij = 1|Xij , αi,βcs)] = αi + X′
(f)iβ

(f)
cs + X′

(v)ijβ
(v)
cs . (13.2)

The likelihood under the mixed effect logistic regression model is obtained
by integrating (13.2) over the mixing distribution G for the αi within each
cluster, and then taking the product over the independent clusters:

LF =
m∏
i

P (Yi = yi|Xi,βcs, G) (13.3)

=
m∏
i


∫ ∏

j

pij
yij (1− pij)

(1−yij)dG(α)

 ,

where logit[pij ] = αi + X′
(f)iβ

(f)
cs + X′

(v)ijβ
(v)
cs . (See also Section 4.3.2.) With

respect to the mixing distribution G, both parametric distributions such as
αi ∼ N(0, σ2) (Stiratelli, Laird and Ware 1984) and semi-parametric mixture
models in which G is estimated nonparametrically in conjunction with βcs
(Lindsay and Lesperance 1995) have been suggested.

The parameter αi in the cluster-specific model (13.2) represents the log-odds
of response for any of the ni units in cluster i given that X(f)i = 0 and X(v)ij =
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0. The parameter β
(f)
cs in (13.2) measures the change in the conditional logit

of the probability of response with a unit change in the covariate X(f) for a
given value of X(v), with corresponding odds ratio exp(β(f)cs ). Note that this
within-cluster change is unobservable, since X(f) by definition stays constant
within a cluster. For example, for the LPA study described in Section 13.1, this
would be akin to comparing HIV-infected to noninfected within an individual
subject; yet HIV status was assumed to remain constant for each subject, and
so this within subject comparison is not possible. In contrast, the parameter
β
(v)
cs in (13.2) measures the change in the conditional logit of the probability

of response with a unit change in the covariate X(v) for a given value of X(f),
with corresponding odds ratio exp(β(v)cs ), and is based on observable data. For
the LPA study, an example would be the comparison of the LPA results for a
shipped sample versus a sample stored overnight within an individual subject.

13.1.2 Conditional Likelihood Approach

The conditional likelihood (CL) is based on factoring the likelihood in (13.3) as
LF = LC ×LS , where LC is a conditional term that depends on the sufficient
statistics, Si =

∑
j Yij , i = 1, . . . ,m, and LS is the product of the marginal

distributions of the sufficient statistics, as follows:

LF =
m∏
i

P (Yi = yi|Si,Xi;βcs)P (Si = si|Xi,βcs, G)

=

[
m∏
i

P (Yi = yi|Si,Xi;βcs)
] [

m∏
i

P (Si = si|Xi,βcs, G)

]
= LC × LS .

The conditional MLEs for βcs are then obtained by maximizing LC . The
resulting conditional likelihood is:

LC =
m∏
i

∏ni
j

[
exp(X′

ijβcs)
]yij∑

w

∏
jw

[
exp(X′

ijβcs)
]yij ,

where w indexes the number of possible permutations of the ni repeated
measurements per cluster and jw indexes the repeated measurements under
assignment w (Ten Have, Landis and Weaver 1995). The conditional approach
does not allow for estimation of any cluster-level covariates; they are removed
from the likelihood with the cluster effects. Thus, for example, the effect of
HIV infection status for the LPA study could not be estimated on the basis of
a conditional logistic regression model. Similarly, for a developmental toxicity
study, the effects of any covariates specific to the pregnant female, such as
maternal body weight, could not be estimated.

© 2002 by CRC Press LLC



212

13.2 Population-averaged Models

If the primary interest of a study lies in assessing overall effects of exposure (or
treatment) on repeated outcomes, then population-averaged models are most
appropriate. PA approaches model the average response to changes in the co-
variates, and are thus best-suited for evaluating between-cluster effects. There
are several examples of population-averaged (PA) models, including the beta-
binomial, quadratic exponential, quasi-likelihood, and generalized estimating
equation (GEE) approaches. In general, PA models can be subdivided as con-
ditionally specified (Section 4.2) models or marginal models (Section 4.1).

13.2.1 Conditionally Specified Models

In a conditionally specified model, the parameters describe a function (e.g.,
probability, odds, or logit) of a set of outcomes, given values for the other
outcomes. These models have been introduced and studied in Section 4.2,
primarily in the context of cluster-level covariates. Here, we will indicate some
peculiar aspects when individual-level covariates are observed.

The most familiar example of such a model is the log-linear model. For
binary outcomes which are correlated within clusters, Molenberghs and Ryan
(1999) proposed a likelihood-based model which relies on the multivariate
exponential family. Using conditionally specified models can be somewhat
controversial. On one hand, the conditional approach has been criticized be-
cause the interpretation of the covariate effect on one outcome is conditional
on the responses of other outcomes for the same individual, outcomes of other
individuals, and the cluster size (Diggle, Liang and Zeger 1994, pp. 147–
148). On the other hand, it has also been shown that conditionally specified
models, such as that proposed by Molenberghs and Ryan, are very flexible
for exchangeable clustered binary data (Geys, Molenberghs and Ryan 1999).
However, with only individual-level covariates, the limitations of conditionally
specified marginal models become severe.

For the conditional model (Section 4.2), we will follow the slightly non-
traditional notation used by Geys, Molenberghs and Ryan (1999). Assume
that yij = 1 when the jth individual in cluster i exhibits the response of
interest and−1 otherwise. Although the 0/1 coding is more common for binary
outcomes, this alternative coding provides a better parameterization under
variable cluster sizes since it leads to invariance properties when the role of
success and failure are reversed (Cox and Wermuth 1994). Molenberghs and
Ryan (1999) proposed a joint distribution for exchangeable clustered binary
data based on a multivariate exponential family model by setting the higher
order interactions to zero. Extending their model to individual-level covariates
is, at the formal level, straightforward. Similarly to Zhao and Prentice (1990),
the joint density for the ith cluster is given by:

fYi
(yi;Θi) = exp


ni∑
j=1

θijyij +
∑
j<j′

δijj′yijyij′ −A(Θi)

 , (13.4)
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where A(Θi) is the normalizing constant, obtained by summing (13.4) over all
2ni possible outcomes. The parameters θij refer to the main effects, whereas
the parameters δijj′ refer to the association between two individuals within the
same cluster. Grouping the parameters in the (q×1) vector Θi (q = ni+

(
ni
2

)
)

and applying a linear link function, we assume a model Θi = Xiβ, with Xi a
(q×p) design matrix and β a (p×1) vector of unknown regression coefficients.

While model (13.4) benefits from the elegance and simplicity of exponential
family theory, it is not entirely appropriate for analysis of clustered binary data
with covariates specific to each observation. To illustrate this point, consider
a cluster of size 2 yielding two outcomes (Y1, Y2). The marginal probability of
response for the first individual then equals

P (Y1 = 1) = exp(θ1 − θ2 − δ12 −A(Θ)) + exp(θ1 + θ2 + δ12 −A(Θ)),

which depends on the covariates of the second individual. For the particular
case of the heatshock data, this would imply that the response for one embryo
would depend on the exposure group to which a separate littermate was ran-
domized. This seems to be an undesirable property for modeling the effects
of individual-level covariates.

13.2.2 Marginal Models

Marginal models have been introduced at length in Section 4.1. Here, we will
focus on the Bahadur model, in particular on the general form that needs to
be used when individual-level covariates are used.

The Bahadur model has been used by several authors (Kupper and Haseman
1978, Altham 1978), especially in the context of toxicological experiments, and
can thus be considered an important representative of the marginal family.
Bahadur (1961) describes the joint distribution of clustered binary data for a
single outcome in terms of marginal means µi = (µi1, . . . , µini)

T and marginal
correlations ρi = (ρi12, ρi13, . . . , ρi12...ni)

T . The closed form probability mass
function is given as:

f(yi,µi,ρi) =
n∏
j=1

µ
yij
ij (1− µij)(1−yij)

×
1 +

∑
j1<j2

ρij1j2rij1rij2 +
∑

j1<j2<j3

ρij1j2j3rij1rij2rij3

+ · · ·+ ρi1...nri1 . . . rin

 .

In practice, three-way and higher order associations are often small in mag-
nitude and difficult to interpret. If we set all three- and higher way correlations
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equal to zero, Bahadur’s representation simplifies to:

f(yi|πi,ρi) =
ni∏
j=1

µ
yij
ij (1− µ

1−yij
ij )

1 +
∑
j<k

ρijkeijeik

 , (13.5)

with eij = yij−µij√
µij(1−µij)

. Using appropriate link functions, the marginal mean

parameters µij (j = 1, . . . , ni), as well as the marginal correlations ρijk(j < k),
can be modeled as a function of a (n i (n i + 1) /2 × p) covariate matrix Xi and
a parsimonious (p × 1) vector of regression parameters β∗. The logistic link
function is a natural choice for µij , while Fisher’s z-transform is convenient
to model ρijk. This leads to the following generalized linear model:

(
ηi1
ηi2

) ln
(

µij
1−µij

)ni
j=1

ln
(
1+ρijk
1−ρijk

)
j<k

 = Xiβ
∗ =

(
Xiβ
Ziα

)
.

The maximum likelihood estimator β̂ for β is defined as the solution to
U(β̂) = 0 with U(β) the score function. A Fisher scoring or Newton-Raphson
algorithm can be used to obtain the maximum likelihood estimate β̂.

A drawback of this approach is the fact that the correlation parameters
are highly constrained when the higher order correlations have been set to
zero. Even when higher order parameters are included, the parameter space
of marginal parameters and correlations has a very peculiar shape. We refer
to Appendix A for more details. Despite the attendant restrictions on model
parameters, they are satisfied for the heatshock studies. Therefore we can fit
model (13.5) to these studies.

13.2.3 Generalized Estimating Equations

Even though a variety of flexible models exist, maximum likelihood can be
unattractive due to excessive computational requirements, especially when
high dimensional vectors of correlated data arise. As a consequence, there has
been a demand for alternative methods. Liang and Zeger (1986) proposed use
of generalized estimating equations (GEEs) which require only the correct
specification of the univariate marginal distributions provided one is willing
to adopt “working” assumptions about the association structure. Generalized
estimating equations are studied in detail in Chapter 5.

The GEE approach yields consistent estimates of covariate effects even when
the association structure is misspecified. However, severe misspecification may
seriously affect the efficiency of the GEE estimators (Liang, Zeger and Qaqish
1992). A second-order extension of these estimating equations, which has been
referred to as “GEE2”, includes marginal pairwise associations as well and
specifically models these associations rather than treating them as nuisance
parameters (Heagerty and Zeger 1996, Liang, Zeger and Qaqish 1992, Molen-
berghs and Ritter 1996). The GEE2 approach is nearly fully efficient, although
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bias may occur in the estimation of the main effect parameters when the asso-
ciation structure is misspecified. The GEE2 approaches proposed by Heagerty
and Zeger (1996) Liang, Zeger and Qaqish (1992), and Molenberghs and Ritter
(1996) all use odds ratios as measures of association. However, the estimating
equations can just as easily be specified in terms of correlation parameters,
which has the advantage of enabling an easy comparison with the Bahadur
model.

The PA model based on the GEE approach has become very popular due
to its ease of implementation in many popular statistical software packages
(e.g., SAS, Stata, and SPlus). The general GEE population-averaged model
can be written as:

logit[P (Yij = 1|Xij ,βpa)] = αpa + βpaXij . (13.6)

When both cluster-level and individual-level covariates, denoted by X(f)i and
X(v)ij , respectively, are included in the model, the basic model in (13.6) can
be expanded as:

logit[P (Yij = 1|Xij ,βpa)] = αpa + X′
(f)iβ

(f)
pa + X′

(v)ijβ
(v)
pa . (13.7)

The probability P (Yij |Xij ,βpa) represents the marginal distribution of the
Yij , averaged over the clusters. In fitting this model, it is also necessary
to make some assumption about the working correlation structure of Yi to
account for intracluster correlation. Common assumptions include indepen-
dence, exchangeable (equi-correlated), auto-regressive, and unstructured cor-
relation. Liang and Zeger (1986) derive consistent estimates for βpa based on
solving a set of estimating equations, and provide estimates for both model-
based and robust standard errors.

The interpretation of parameters in cluster-specific and population-averaged
models has been discussed by Neuhaus, Kalbfleisch and Hauck (1991), Neuhaus
and Kalbfleisch (1998), Graubard and Korn (1994), Zeger, Liang and Albert
(1988), and Ten Have, Landis and Weaver (1995), among others. For the PA
model, the parameter αpa represents the population log-odds (or logit) of re-
sponse in the baseline group, i.e., those in the population with X(f) = 0 and
X(v) = 0:

αpa = log
[

P (Y = 1|X(f) = 0, X(v) = 0)
1− P (Y = 1|X(f) = 0, X(v) = 0)

]
.

The parameters β
(f)
pa and β

(v)
pa in model (13.7) reflect unconditional logits of

the overall population prevalences. Specifically, the population-averaged effect
in the log odds from a unit increase in X(f)i for fixed X(v) is defined as

β(f)pa (X(f), X(v)) = log
P (Y = 1|X(f) + 1, X(v))/P (Y = 0|X(f) + 1, X(v))

P (Y = 1|X(f), X(v))/P (Y = 0|X(f), X(v))
.

In the population-averaged model, this quantity is independent of both X(f)

and X(v).
Since a mixed effect model specifies a marginal model for response, it is
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possible to define population-averaged effects from the mixed effect models.
Betensky and Williams (2001) show that, for small values of α, the PA para-
meter for the baseline response can be approximated by:

αpa = log
(

2 + EG(α)
2− EG(α)

)
,

where expectation is taken with respect to the mixing distribution, G, for the
cluster effects. Based on the mixed effect model, the unconditional logits of
population prevalences reflected by β

(f)
pa and β

(v)
pa depend on both X(f) and

X(v); for example, at values of β(f)cs close to zero, the approximate relationship
below holds:

β(f)pa (X(v)) ≈ β(f)cs [1− ρy(0|β(v)cs , X(v))],

where

ρy(0|β(v)cs , X(v)) = Corr(Yij , Yij′ |β(f)cs = 0, β(v)cs , X(v)ij = X(v)ij′ = X(v)).

Thus, in the cluster-specific model, the population-averaged effect of a cluster-
level covariate is approximately independent of that covariate, but not of the
cluster-varying covariates. The analogous result for the population-averaged
effect in the log odds from a unit increase in X(v) for fixed X(f) is

β(v)pa (X(f)) ≈ β(v)cs [1− ρy(0|β(f)cs , X(f))],

where
ρy(0|β(f)cs , X(f)) = Corr(Yij , Yij′ |β(v)cs = 0, β(f)cs , X(f)).

Thus, the population-averaged effect of a cluster-varying covariate from a
cluster-specific model is approximately independent of that covariate, but not
of the cluster-level covariates. If both β

(v)
cs and β

(f)
cs are close to 0, then the

approximations simplify to

β(f)pa ≈ β(f)cs [1− ρy(0)] and β(v)pa ≈ β(v)cs [1− ρy(0)] (13.8)

where
ρy(0) = Corr(Yij , Yij′ |β(f)cs = 0, β(v)cs = 0).

In this case, the population-averaged effects of any covariate are approximately
independent of all covariates. This latter approximation (13.8) is implied by
the results of Neuhaus, Kalbfleisch, and Hauck (1991).

13.3 Efficiency of Modeling Approaches

When both cluster-specific and population-averaged approaches give parame-
ter estimates which have valid interpretations, issues of efficiency should be
considered (Graubard and Korn 1994). For example, if interest centers on a
cluster-varying covariate and the study design is balanced, both approaches
may be valid. Previous research has shown that the relative efficiency of PA
and CS approaches for clustered binary outcomes may depend on the in-
tracluster correlation between covariate levels (e.g., Neuhaus and Lesperance
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1996). For a cluster-level covariate, the intracluster correlation is ρx = 1. For a
designed study, units or subjects within a cluster might be randomly assigned
to different levels of a covariate, which would induce a negative intracluster
correlation for that particular covariate. For example, a matched pairs study
in which one unit is randomized to a new treatment and the other to a control
has an intracluster correlation of −1 for the treatment covariate. For a cluster
size of n, the maximal negative intracluster correlation of ρx = −1/(n − 1)
is achieved by a balanced assignment of units within cluster to the possible
covariate values.

For cluster-level covariates, Neuhaus (1993) and Neuhaus, Kalbfleisch and
Hauck (1991) found that Wald tests involving cluster-level covariates based on
cluster-specific models and population-averaged models were approximately
equivalent. On the other hand, when there is positive intracluster correlation
of responses, the cluster-varying covariate effects from population-averaged
models are attenuated towards zero as compared to those from cluster-specific
models. Further, tests of individual-level covariates based on cluster-specific
models are more powerful than those based on population-averaged models,
if the correlation structure is not modeled (i.e., a GEE independence model).
However, tests of cluster-varying covariates from population-averaged mod-
els which specify a compound symmetry correlation structure (i.e., GEE ex-
changeable) are equally efficient to those from a cluster-specific model.

More specifically, for paired data, Neuhaus (1992, 1993) noted that the as-
ymptotic relative efficiency (ARE) of β̂pa under a GEE independence approach
versus β̂cs under a mixed effect model, for βcs close to 0, is:

AREI,ME,n=2 =
(1− ρ2y)

(1− ρ2yρ
2
x)

,

where ρx = Cov(Xij , Xij′) and ρy = Cov(Yij , Yij′ |βcs = 0). This approxima-
tion assumes equal cluster sizes (ni = n), and that the mixing distribution G
can be approximated by the distribution induced by a beta distribution on
p (where logit(p) = αi + X′

ijβcs). Betensky and Williams (2001) generalized
the paired data results to clusters of size n, and found that the ARE could be
expressed as:

AREI,ME =
(1− ρy) [1 + (n− 1)ρy]

[1 + (n− 1)ρxρy] [1 + (n− 2)ρy − (n− 1)ρxρy]
.

Based on this formula, the GEE independence model is consistently less effi-
cient than the mixed effect model. For larger cluster sizes, in fact, the efficiency
can be very low. In contrast, the minimum ARE for paired data is 1− ρ2y, or
very close to 1 for small or moderate values of ρy.

It is also possible to calculate Pitman efficiencies for comparing the condi-
tional logistic regression approach versus the GEE population-averaged ap-
proaches. The relationship between the parameters from the GEE and condi-
tional logistic approaches can be expressed as βpa ≈ (1 − ρy)βcs for βpa and
βcs close to zero. Betensky and Williams (2001) showed that the Pitman ARE
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for the conditional logistic regression versus the GEE independence approach
is:

ARECL,I =
(1− ρx)
(1− ρy)

(n− 1)
n

[1 + (n− 1)ρyρx]

and the ARE for comparing the conditional logistic regression approach versus
the GEE exchangeable model is:

ARECL,E =
(n− 1)

n

[1 + (n− 1)ρy] (1− ρx)
[1 + (n− 2)ρy − (n− 1)ρyρx]

.

The conditional logistic regression approach is always less efficient than the
GEE exchangeable model. However, the conditional logistic regression ap-
proach can yield more efficient estimates than the GEE approach under in-
dependence. In fact, the conditional logistic estimation approach is only less
efficient for fairly high values of ρx, which would not be anticipated in a de-
signed study with individual-level covariates.

A distinction between the two popular cluster-specific models lies in their
use of clusters with discordant outcomes; the conditional likelihood approach
uses data only from clusters with discordant outcomes and covariates, whereas
the mixed effect approach uses both concordant and discordant clusters. Thus,
the conditional likelihood tends to be less efficient than the mixed effect ap-
proach. Neuhaus and Lesperance (1996) found that the approximate ARE of
the conditional likelihood approach versus the full likelihood approach of the
mixed effect model is:

ARECL,ME =
(n− 1) {1 + (n− 1)ρy} (1− ρx)
n {1 + (n− 2)ρy − (n− 1)ρxρy} (13.9)

for βcs close to 0. There are several implications of this ARE formula. First,
for designed studies with maximal negative correlation [ρx = −1/(n−1)], the
ARE equals 1; in other words, conditional logistic regression is fully efficient.
Second, the ARE is 0 for cluster-level covariates, and decreases as the covari-
ate correlation ρx increases. The ARE increases as the cluster size increases,
all other factors being held constant, and thus the conditional likelihood ap-
proach is least efficient relative to mixed effect estimation when data are
paired (n = 2). The latter result is fairly intuitive, since concordant clusters
arise less frequently with increasing cluster size. For paired data, the above
ARE approximation can be simplified to:

ARECL,ME,n=2 =
(1 + ρy)(1− ρx)

2(1− ρxρy)
.

Figure 13.2 illustrates the efficiency of the conditional logistic regression
model versus a full likelihood approach under a mixed effect model, for a value
of ρy = 0.14, and cluster sizes of n = 2 (panel (a)) and n = 23 (panel (b)).
From Figure 13.2, it is evident that the efficiency decreases almost linearly
as a function of increasing covariate correlation when data are paired (panel
(a)), but remains fairly high for larger cluster sizes with moderate covariate
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Figure 13.2 Pitman ARE of conditional versus mixed effect logistic regression as a
function of covariate correlation ρx, assuming ρy = 0.14, for cluster size (a) n=2
and (b) n=23.

correlation (panel (b)). Thus, while efficiency of the conditional logistic model
can be low for paired data with correlated intracluster covariates, it is a rea-
sonably efficient estimation strategy for designed studies with larger cluster
sizes.

An alternative interpretation of the relative efficiency of the conditional like-
lihood and mixed effect approaches is provided by Neuhaus and Kalbfleisch
(1998). They note that the conditional likelihood approach measures within-
cluster effects, and not between-cluster covariate effects. In contrast, mixed
effect models typically assume that the within- and between-cluster effects of
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the covariates are the same, and thus may disagree with conditional likelihood
estimates. When this assumption is met, such as in designed experiments in
which the covariate pattern is the same for all clusters, the mixed effect and
conditional likelihood approaches typically yield identical covariate effects.
The increased efficiency of the mixed effect model compared with the con-
ditional likelihood model arises solely through this assumption made by the
mixed effect model, which may, in fact, be false. Thus, mixed effect models
should be used only after checking this assumption or for designed experi-
ments.

13.4 Analysis of Heatshock Data

The study design for the set of experiments conducted by Kimmel et al. (1994)
is described in Section 2.2. Continuous outcomes have been analyzed in Sec-
tion 13.5. A total of 375 embryos, arising from 71 initial dams, survived the
heat exposure. These surviving embryos were further examined for malforma-
tions and delayed growth, and are included in our analysis. The distribution
of cluster sizes ranged between 1 and 11, with a mean cluster size of 5. Note
that, since embryos of questionable viability were not included, cluster sizes
here are smaller than those observed in most other developmental toxicity
studies and do not reflect the true original litter size.

Historically, comparison of response levels among exposures of different du-
rations has relied on a conjecture called Haber’s Law, which states that adverse
response levels should depend only on cumulative exposure (dose × duration)
(Haber 1924). For the heatshock studies, the vector of exposure covariates
must incorporate both exposure level, dij , and duration, tij , for the jth em-
bryo of the ith dam, and should be formulated in such a way that departures
from Haber’s premise can easily be assessed. The exposure metrics in these
models are the cumulative heat exposure, dij × tij , which will be denoted
by dtij , and the effect of duration of exposure at temperatures above normal
body temperature, pdij = tij× δdij , where δdij = 1 if dij > 37◦C and 0 other-
wise. While many outcomes were recorded in the heatshock study, we confine
our interest to three of the most sensitive responses: midbrain, optic system
and olfactory system.

The design of the heatshock studies allows us to quantify the association
between different embryos from the same initial dam in terms of genetic as
well as environmental components. We will consider three different modeling
approaches for the pairwise associations. Model 1 assumes a constant value for
the pairwise associations, ρ. Hence, the design matrix Xi for the ith cluster
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is a matrix with ni +
(
ni
2

)
rows and 4 columns:

Xi =



1 pdi1 dti1 0
...

...
...

...
1 pdini dtini 0
0 0 0 1
...

...
...

...
0 0 0 1


, and β =


β0
βpd
βdt
α

 ,
(13.10)

where α = ln[(1 + ρijk)/(1− ρijk)].
Model 2 allows separate parameters for pairwise association related to

within-litter correlation and within-exposure group correlation; this allows
an assessment of whether the pairwise association depends on the level of
exposure. The pairwise correlations are modeled as:

ln
(

1 + ρijk
1− ρijk

)
=
{

α + γ if pdij = pdik and dtij = dtik,
α otherwise.

Hence, the α-parameter reflects the “within-cluster” association reflecting a
genetic component. The parameter γ reflects the extra association for embryos
within the same exposure level. Note that such a model is not possible in
conventional developmental toxicity studies, where exposure applies at the
dam level, rather than at the individual fetus level.

In Model 3, the pairwise associations are modeled as a linear function of
the “quadratic distances” between any two cumulative exposure values, i.e.,

ln
(

1 + ρijk
1− ρijk

)
= α + γ(dtij − dtik)2. (13.11)

For the model matrix Xi and the vector of regression parameters β, this
implies:

Xi =



1 hi1 dti1 0 0
...
1 hini dtini 0 0
0 0 0 1 (dti1 − dti2)2

0 0 0 1 (dti1 − dti3)2
...
0 0 0 1 (dti(ni−1) − dtini)

2


, β =


β0
βpd
βdt
α
γ

 .

13.4.1 Population-averaged Models

If interest lies in the overall cumulative exposure and high temperature ef-
fects, then PA models are most appropriate. We will restrict attention to the
Bahadur model and generalized estimating equations as representatives of PA
models. Restrictions on the parameter space in the Bahadur representation
present no problem for our data. As mentioned in the introduction, severe
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Table 13.1 Heatshock Study. Parameter estimates (standard errors) for the Bahadur
model, applying different models for the association structure.

Outcome Par. Model 1 Model 2 Model 3

Midbrain β0 -1.844 (0.211) -1.846 (0.209) -1.644 (0.226)
βdt 5.875 (1.713) 5.803 (1.699) 5.492 (1.456)
βpd -3.826 (1.692) -3.752 (1.689) -4.033 (1.410)
α 0.131 (0.078) 0.133 (0.076) 0.224 (0.084)
γ -0.049 (0.208) -1.264 (0.576)

Optic syst. β0 -2.503 (0.228) -2.413 (0.249) -2.426 (0.250)
βdt 5.656 (1.577) 6.127 (1.695) 5.613 (1.583)
βpd -3.690 (1.616) -4.262 (1.720) -3.931 (1.639)
α -0.059 (0.070) -0.098 (0.072) 0.000 (0.094)
γ 0.715 (0.280) -0.541 (0.428)

Olfact. syst. β0 -1.469 (0.185) -1.395 (0.202) -1.430 (0.213)
βdt 6.688 (1.971) 7.349 (1.686) 7.118 (1.743)
βpd -4.914 (2.003) -5.612 (1.693) -5.520 (1.799)
α 0.258 (0.066) 0.221 (0.082) 0.294 (0.077)
γ 0.488 (0.269) -0.374 (0.511)

restrictions may arise for larger cluster sizes, but cluster sizes are relatively
small for the heatshock studies.

Table 13.1 gives the parameter estimates (standard errors) using the Ba-
hadur model for the three association models described above. For the mid-
brain response, an important cumulative exposure effect (dt) and an impor-
tant additional effect of duration of exposure to temperatures above normal
body temperature (pd) were observed. This indicates a departure from Haber’s
premise. The coefficients for βpd were consistently negative, indicating that
shorter acute exposures of the same temperature-duration combination cause
more developmental damage than longer ones. As expected, the malformation
probability tends to increase with increasing cumulative exposures.

The results of fitting Model 1 show no evidence of a significant intracluster
correlation for midbrain responses. Direct exposure to the individual embryos
seems to reduce the need to account for litter effects on midbrain malforma-
tions. Models 2 and 3 lead to similar conclusions. In addition, Model 2 does not
support an “environmental” association component for midbrain responses.
Comparing the likelihoods of Models 2 and 1 yields a deviance difference (D)
of 0.052. In contrast, Model 3 yields a significant quadratic distance asso-
ciation parameter γ (D=3.90) in comparison with the constant association
model (Model 1). This is evidence that the association between any two in-
dividuals decreases with the “distance” between their cumulative exposures.
Goodness-of-fit statistics based on a Hosmer and Lemeshow approach (1989;
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Table 13.2 Heatshock Study. Goodness-of-fit deviance statistics (p values).

Model 1 Model 2 Model 3

Midbrain 6.784 (0.659) 6.905 (0.647) 6.361 (0.703)
Optic system 17.768 (0.038) 14.891 (0.094) 18.094 (0.034)
Olfactory system 25.181 (0.003) 22.652 (0.007) 25.451 (0.003)

see also Section 9.1) are provided in Table 13.2 for all fitted models. None
of the deviance statistics indicates a lack-of-fit for the midbrain predicted
probabilities.

For the optic system, important effects of cumulative exposure and an ad-
ditional effect of duration of exposure to temperatures above normal body
temperature were again observed. The clustering parameter α was never sig-
nificant, indicating that there was no important intra-litter correlation work-
ing on the optic system. However, there was evidence for a dependence of
the pairwise associations on the level of exposure, i.e., that animals within
the same duration-temperature group behaved more similarly than animals
from different groups (D=6.02). Parameter estimates for Models 1 and 2 were
similar but dt and pd tend to be slightly more significant for Model 2, suggest-
ing a gain in efficiency. There was no evidence of a quadratic distance effect
(D=1.62), and Table 13.2 shows that Model 3 actually provided a poor fit to
the data. Therefore, Model 2 is preferable for this data.

For the olfactory system, all models showed evidence of a significant intra-
litter correlation. This indicates that direct exposure of the embryos does not
always reduce the need to account for litter effects. Model 2 also indicated a
marginally significant extra contribution of association for individuals within
the same duration-temperature group (D=3.68). The quadratic distance ef-
fect parameter γ in Model 3 was apparently unnecessary (D=0.56). However,
Table 13.2 shows that all of these models fit poorly to the data. Including
a quadratic effect for cumulative exposure, dt, improves the fit substantially.
The best fit is then obtained for Model 2, yielding a goodness-of-fit deviance
statistic of 12.31 (p value 0.193). For Models 1 and 3 the GOF statistics were
16.21 (p value 0.06) and 13.01 (p value 0.16), respectively. The intralitter cor-
relation becomes even more significant, but the extra association component
for individuals within the same duration-temperature group is reduced to a
nonsignificant level.

Table 13.3 gives the parameter estimates together with model-based and
empirically corrected (robust) standard errors of second order generalized es-
timating equations (GEE2), as described by Liang, Zeger and Qaqish (1992).
In many cases, GEE2 models were difficult to fit. For instance, in the case
of the more complicated Model 3, the GEE2 model could not be fit for any
of the outcomes, and is therefore excluded from the table. For midbrain, the
results of GEE2 are similar to those obtained using the Bahadur model. The
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Table 13.3 Heatshock Study. Parameter estimates (model-based standard error; em-
pirically corrected standard error) for GEE2, applying different models for the asso-
ciation structure.

Outcome Par. Model 1 Model 2

Midbrain β0 -1.813 (0.213;0.222) -1.831 (0.210;0.219)
βdt 5.934 (1.679;1.941) 5.701 (1.636;1.956)
βpd -3.928 (1.655;1.955) -3.676 (1.615;1.971)
α 0.095 (0.077;0.061) 0.108 (0.078;0.069)
γ -0.160 (0.181;0.170)

Optic system β0 -2.491 (0.241;0.224) -2.415 (0.252;0.229)
βdt 5.635 (1.665;2.267) 5.644 (1.767;2.233)
βpd -3.686 (1.703;2.217) -3.710 (1.787;2.215)
α -0.049 (0.045;0.043) -0.072 (0.056;0.056)
γ 0.763 (0.252;0.269)

Olfactory system β0 -1.516 (0.223;0.275) .
βdt 5.606 (1.502;1.527) .
βpd -3.701 (1.489;1.557) .
α 0.513 (0.079;0.136) .
γ .

model-based standard errors correspond closely with those calculated by the
likelihood method. Furthermore, model-based and empirically corrected (ro-
bust) standard errors are close to each other, indicating that complex associa-
tion models need not be considered. In contrast, for the optic system outcome,
there is a larger gap between model-based and empirically corrected standard
errors, especially for Model 1. This could indicate that other more complex
models should be considered.

To illustrate the importance of addressing complex association patterns, Ta-
ble 13.4 presents the parameter estimates and estimated standard errors for
each of the three binary outcomes (midbrain, optic system, and olfactory sys-
tem) based on a logistic model, a standard first-order GEE procedure (GEE1),
and the extended GEE1 approach described by Prentice (1988). All of these
models are population-averaging approaches with an exchangeable correla-
tion structure. Table 13.4 indicates a clear distinction between the logistic
and correlated models. For the midbrain outcome, the logistic standard error
was smaller than the model-based standard errors of the other two procedures,
which were in turn smaller than any of the empirically corrected standard er-
rors. More complex association designs which were previously obtained using
the second-order generalized estimating equations (e.g., Table 13.3, Model 2)
did not reduce the gap between model-based and empirically corrected stan-
dard errors. This may be due to the fact that the association parameters were
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Table 13.4 Heatshock Study. Parameter estimates (model-based standard error; em-
pirically corrected standard error) for midbrain, optic system, and olfactory system
outcome, comparing logistic regression with two different GEE1 procedures.

LOGISTIC GEE1 (standard) GEE1 (Prentice)

Outcome Par.

Midbr. β0 -1.799(0.199) -1.808(0.203;0.226) -1.822(0.214;0.222)
βdt 5.854(1.602) 5.910(1.618;1.953) 5.999(1.686;1.971)
βpd -3.884(1.582) -3.920(1.597;1.949) -3.976(1.662;1.978)
ρ 0 0.017 0.049

Optic β0 -2.475(0.251) -2.466(0.236;0.222) -2.468(0.239;0.222)
βdt 5.609(1.729) 5.678(1.649;2.304) 5.659(1.668;2.299)
βpd -3.683(1.768) -3.769(1.691;2.264) -3.748(1.709;2.258)
ρ 0 -0.034 -0.026

Olfact. β0 -1.435(0.183) -1.544(0.216;0.216) -1.573(0.231;0.214)
βdt 7.194(1.659) 6.649(1.767;2.152) 6.398(1.768;2.116)
βpd -5.687(1.649) -4.850(1.736;2.106) -4.499(1.732;2.069)
ρ 0 0.149 0.238

not significant for midbrain. Fitting more complex models would therefore not
be very helpful.

In contrast, for the optic system outcome, model-based and empirically
corrected standard errors tended to lie closer to each other for the GEE2 es-
timates (e.g., Table 13.3, Model 2) than for the exchangeably correlated PA
procedures. The inclusion of the extra association parameter, γ, resulted in
a significant improvement of the association model. Hence, it might be im-
portant to consider more complicated models for the association structure.
Furthermore, the standard errors of the estimates obtained with the logis-
tic model for this outcome were always smaller than those obtained with
the empirically corrected version of the correlated models but larger than
the model-based versions. Note that the estimated correlation parameter was
always negative. For the olfactory system, the model-based standard errors
for the logistic procedure were considerably smaller than the model-based
standard errors for the correlated procedures. Furthermore, the discrepancy
between model-based and empirically corrected standard errors for the cor-
related procedures is fairly large. Unfortunately, GEE2 was hard to fit for
complex association models, such as Models 2 and 3. In conclusion, although
GEE1 is much easier to fit than GEE2, it presents more difficulties when
coping with complex association models.
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Table 13.5 Heatshock Study. Parameter estimates (standard errors; p values) for the
mixed-effects logistic and conditional logistic models, applied on the midbrain, optic
system and olfactory system outcomes.

mixed-effects conditional
logistic logistic

Outcome Parameter

Midbrain β0 -1.936 (0.225;0.000)
βdt 6.375 (1.598;0.000) 6.839 (2.633;0.009)
βpd -4.232 (1.522;0.005) -4.639 (2.547;0.069)

Optic system β0 -2.475 (0.290;0.000)
βdt 5.607 (1.364;0.000) 3.961 (3.009;0.188)
βpd -3.680 (1.465;0.012) -1.459 (3.036;0.631)

Olfact. system β0 -1.998 (0.319;0.000)
βdt 8.061 (1.953;0.000) 6.303 (3.035;0.038)
βpd -5.702 (1.933;0.003) -3.399 (2.962;0.251)

13.4.2 Cluster-specific Approaches

If interest lies in within-cluster comparisons as opposed to overall effects, the
CS approaches may be more appropriate since these effects are not confounded
by cluster differences. The MIXOR software package (Hedeker and Gibbons
1993) was employed to fit mixed-effects logistic models to the binary outcomes
midbrain, optic system and olfactory system. Alternatively, the SAS procedure
NLMIXED could be used. The responses from the ith cluster are correlated
by virtue of their sharing a common intercept.

Table 13.5 shows the parameter estimates (and p values) for the mixed-
effects logistic model. Note that the parameter estimates for the corresponding
PA models in Tables 13.1, 13.3, and 13.4 are consistently smaller than those
of the CS model in Table 13.5; this “shrinkage effect” is consistent with the
attenuation implied by equation (13.8). For all three outcomes, there is evi-
dence of a significant effect of the cumulative exposure (dt) and a significant
effect of duration of exposure at temperatures above normal body tempera-
ture (pd). Furthermore, the parameter estimate for pd is again negative, which
is in agreement with earlier results.

Table 13.5 also shows the conditional logistic regression parameter esti-
mates. All cluster level effects are conditioned out, so parameter estimates for
the intercepts are not obtained. Clearly, there is a large discrepancy between
the mixed-effects logistic models and conditional logistic parameter estimates,
especially for the optic system and olfactory system responses. Neuhaus and
Kalbfleisch (1998) note that a covariate has both a between-cluster compo-
nent, which may be summarized in terms of xi, the cluster mean, and a within-
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cluster component xij − xi. The conditional logistic approach estimates the
pure within-cluster covariate effect of xij − xi. However, the mixed-effects lo-
gistic approach estimates the effect of xij . Therefore, the results of conditional
logistic and mixed-effects logistic are comparable only under the assumption
of common between- and within-cluster covariate effects, in which case the
mixed-effects logistic approach is more efficient.

For the heatshock studies the assumption of common between- and within-
cluster covariate effects was satisfied for the midbrain response (a likelihood
ratio test yields a value of 1.653 at 1 degree of freedom, p value= 0.198).
That explains the similarity in mixed-effects logistic and conditional logistic
parameter estimates for that response and the increased efficiency of mixed-
effects logistic as opposed to the conditional logistic method. Whereas strong
significant effects were identified for c and h by the mixed-effects logistic and
PA approaches, the statistical significance was reduced for conditional logistic
regression, as implied by equation (13.9). When evaluated at the mean cluster
size of 5 and based on the estimated intracluster correlation from the standard
GEE1 approach in Table 13.4 (ρy = 0.017), the ARE from formula (13.9)
would be 81% for ρx = 0, and lower for higher values of ρx.

In contrast, for optic system and olfactory system, the assumption of equal
between- and within-cluster covariate effects was not satisfied, explaining the
large discrepancy between mixed-effects logistic and conditional logistic es-
timates. A comparison of standard errors or statistical significance is thus
not appropriate here, unless we fit a mixed-effects logistic model with sepa-
rate parameters for the between- and within-cluster covariate component. The
within-cluster covariate effect estimates thus obtained for optic system were
3.929 (s.e. 2.647) and −1.255 (s.e. 2.779) for cumulative exposure dt and high
temperature pd, respectively. Similarly, we found 5.804 (s.e. 3.044) and −2.839
(s.e. 2.968) for the within-cluster covariate effects of dt and pd on olfactory
system. These estimates were similar to the conditional logistic estimates, but
do not indicate a loss in efficiency.

13.5 Continuous Outcomes

As stated earlier, there are measurements on 13 morphological variables. Some
are binary while others are measured on a continuous scale. In this section,
we will focus on the continuous outcomes (Verbeke and Molenberghs 2000).

There are several continuous outcomes recorded in the heatshock study,
such as size measures on crown rump, yolk sac, and head. We will focus on
crown rump length (CRL). The linear mixed model, presented in Section 4.3.2,
will be used to this effect (Verbeke and Molenberghs 2000).

It will be shown that the three components of variability customarily in-
corporated in a linear mixed-effects model of the form (4.38) can usefully
be applied here as well, even in the absence of a repeated-measures struc-
ture. Although there will be no doubt that random effects are used to model
interdam variability and also the role of the measurement error time is un-
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Table 13.6 Heatshock Study. Parameter estimates (standard errors) for initial and
final model.

Effect Parameter Initial Final

Fixed effects:

Intercept β1 3.622 (0.034) 3.627 (0.042)
Durtemp (dt)ij β2 −1.558 (0.376) −1.331 (0.353)
Posdur (pd)ij β3 0.019 (0.006) 0.015 (0.006)

Random-effects parameters:

var(b1i) d11 0.010 (0.014) 0.046 (0.014)
var(b12) d12 −0.038 (0.065)
cov(b1i, b2i) d22 0.071 (0.032)

Residual variance parameters:

var(ε(1)ij) σ2 0.097 (0.014) 0.097 (0.014)
var(ε(2)ij) τ2 0.044 (0.017) 0.042 (0.017)
Spatial corr. parameter ρ 4.268 (5.052) 4.143 (3.772)

ambiguous, it is less obvious what the role of the serial association would
be. Generally, serial association results from the fact that within a cluster,
residuals of individuals closer to each other are often more similar than resid-
uals for individuals further apart. Although this distance concept is clear in
longitudinal and spatial applications, it is less so in this context. However,
covariates like duration and temperature, or relevant transformations thereof,
can play a similar role. This distinction is very useful since random effects
capture the correlation structure which is attributable to the dam and hence
includes genetic components. The serial correlation, on the other hand, is en-
tirely design driven. If one conjectures that the latter component is irrelevant,
then translation into a statistical hypothesis and, consequently, testing for it
are relatively straightforward. Note that such a model is not possible in con-
ventional developmental toxicity studies, where exposure applies at the dam
level, not at the individual fetus level.

The model we consider is based on Haber’s Law (for a detailed discussion,
see Section 13.4) and controlled deviations thereof, in the sense that the fixed-
effects structure includes the interaction between duration of the experiment
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Figure 13.3 Heatshock Study. Fixed-effects structure for (a) the final model and (b)
the model with posdur removed.

and temperature elevation (durtemp, dt) and positive duration (posdur, pd ,
the duration in case there is a nonzero elevation of temperature, and zero
otherwise). For computational convenience, the ranges of these covariates are
transformed to the unit interval. The maximal values correspond to 225 minoC
for durtemp and 60 minutes for posdur. The random-effects structure includes
a random intercept and a random slope for dt. The residual covariance struc-
ture is decomposed into a Gaussian serial process in dt and measurement
error. Formally,

Yij = (β1 + bi1) + (β2 + bi2)(dt)ij + β3(pd)ij + ε(1)ij + ε(2)ij , (13.12)

where the ε(1)ij are uncorrelated and follow a normal distribution with zero
mean and variance σ2. The ε(2)ij have zero mean, variance τ2, and serial
correlation

hijk = exp
{−φ[(dt)ij − (dt)ik]2

}
.

The random-effects vector (bi1, bi2) is assumed to be a zero-mean normal
variable with covariance matrix D. The initial model is reproduced in Ta-
ble 13.6. Note that the variance of the random slopes is negative. This is
allowed, in case one is prepared to focus on the marginal model only, ignoring
the random-effects motivation of the model (Verbeke and Molenberghs 2000,
Chapter 6).

First, the covariance model is simplified. The covariance between both ran-
dom effects is not significant and can be removed (G2 = 3.35 on 1 degree of
freedom, p = 0.067). Next, the random durtemp effect is removed (G2 = 3.63,
2 df, p = 0.057). The serial process cannot be removed (G2 = 6.19, 2 df,
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Figure 13.4 Heatshock Study. Fitted variogram.

p = 0.045). Finally, both fixed effects are highly significant and cannot be
removed. The final model is given in Table 13.6.

The fixed-effects structure is presented in Figure 13.3. The left-hand panel
shows the fixed-effects structure of the final model, as listed in Table 13.6. The
coefficient of durtemp is negative, indicating a decreasing crown rump length
with increasing exposure. This effect is reduced by a positive coefficient for
posdur. Fitting this model with posdur removed shows qualitatively the same
trend, but the effect of exposure is much less pronounced, underscoring that
there is a significant deviation from Haber’s Law.

The fitted variogram (Verbeke and Molenberghs 2000) is presented in Fig-
ure 13.4. Roughly half of the variability is attributed to measurement error,
and the remaining half is divided equally over the random intercept and the
serial process. The corresponding fitted correlation function is presented in
Figure 13.1. The correlation is about 0.50 for two foetuses that are at the
exact same level of exposure. It then decreases to 0.25 when the distance be-
tween exposures is maximal. This reexpresses that half of the correlation is
due to the random effect, and the other half is attributed to the serial process
in durtemp.

13.6 Concluding Remarks

In summary, the heatshock data example illustrated several issues encoun-
tered in the analysis of clustered binary outcomes. Marginal PA approaches
using likelihood methods such as the Bahadur model or generalized estimat-
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ing equations tended to yield similar parameter estimates, especially when the
correlation structure was specifically modeled using a GEE2 approach. Failure
to take into account the correlation structure yielded underestimates of the
true standard errors. The parameter estimates for the PA models tended to be
smaller than those of the corresponding CS models, supporting the “shrink-
age effect” discussed by Neuhaus and Lesperance (1996). When between and
within-cluster covariate effects were similar, as for the midbrain outcome, the
conditional logistic regression approach yielded similar parameter estimates to
those from a mixed effect logistic regression model, but was less efficient. How-
ever, the mixed effect model yielded similar tests of significance to the GEE1
approaches shown in Table 13.4, which assumed an exchangeable correlation
structure. For this particular data, the Bahadur model and GEE2 approaches
provided particular insight into the correlation structure, since they allowed
the association to be modeled as a function of both exposure levels and clus-
ters as defined by litters. However, in most cases it is advisable to fit several
different classes of models and compare the results for consistency, rather than
focus on only a single model. A complete analysis incorporating both CS and
PA models can often provide insight into the scientific interpretation and im-
pact of association structure when some covariates of interest are cluster-level
while others are measured at the level of the individual.
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CHAPTER 14

Combined Continuous and Discrete
Outcomes

Meredith M. Regan

Beth Israel Deaconess Medical Center and Harvard Medical School, Boston,
MA

Paul J. Catalano

Harvard School of Public Health, Boston, MA

For the analysis of data from Segment II developmental toxicity designs
(Sections 1.2.1 and 2.2, and Chapter 13), focus has recently turned to better
handling of the multivariate nature of the response. These studies seek to
determine the overall adverse effects of dose on the offspring and it is most
often not known a priori how effects will manifest. In developmental toxicity
studies with a Segment II design, the uterus of each sacrificed dam is removed
and examined for resorptions (very early deaths) and fetal deaths. The viable
foetuses are measured for birth weight and length and examined carefully
for the presence of different types of malformations. Among viable foetuses,
the incidence of any malformation (binary) and reductions in fetal weight
(continuous) are typically of primary concern, as both have been found to be
sensitive indicators of a toxic effect (U.S. EPA 1991).

Often, dose-response relationships are characterized in each of the outcomes
(death, weight, and malformation) separately, using appropriate methods to
account for litter effects. Based on the dose-response patterns, the outcome
that appears most sensitive to the exposure (called the critical effect) becomes
the focus for risk assessment purposes (U.S. EPA 1991, 1995). This approach
assumes that protecting against the most sensitive outcome protects against
all other adverse outcomes; however there may be a more generalized pattern
of effects. An approach that considers the multiple sources of risk and the
relationship between them in quantifying an overall risk may be preferable.
One approach considers the non-live and live outcomes as conditionally inde-
pendent, and hence they can be modeled separately (Ryan 1992). Because the
live outcomes are correlated (Chen and Gaylor 1992, Ryan, Catalano, Kimmel
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and Kimmel 1991), jointly modeling the live outcomes and using the bivariate
outcome as a basis for risk assessment may be most appropriate.

This motivates the formulation of a joint distribution with mixed continu-
ous and discrete outcomes. The joint model must allow different dose-response
functions for each type of outcome and must account for the correlation be-
tween them, as well as the correlations that result from clustering. Methods
for jointly modeling discrete and continuous outcomes, especially with cluster-
ing, are not well established (Regan and Catalano 1999a, 1999b, 2000, Geys,
Regan, Catalano and Molenberghs 2001). Without an obvious multivariate
distribution incorporating both types of outcomes, specifying a joint distrib-
ution of responses within a litter is not straightforward.

We discuss several models for jointly modeling discrete and continuous out-
comes in the clustered data setting of developmental toxicity studies (Sec-
tion 14.1). In Section 14.2, we then discuss the application of the models to
quantitative risk assessment.

14.1 Models for Bivariate Data of a Mixed Nature

Early research, often motivated by psychology, focused on estimating the cor-
relation between a discrete and continuous outcome and deriving the distri-
bution of the estimator. Tate (1954) examined the case of a single binary
outcome, assumed Bernoulli, and a continuous outcome with conditional dis-
tribution given the binary outcome assumed normal, and derived the asymp-
totic distribution of the sample point-biserial correlation coefficient. Olkin and
Tate (1961) extended this work to a multivariate setting, assuming multino-
mial and conditional multivariate normal distributions.

Others have approached the problem by using latent variable, or toler-
ance distribution, ideas which presuppose the existence of an unobservable,
continuous random variable underlying the discrete outcome. A binary event
is assumed to represent an indicator that the latent variable exceeds some
threshold value. It is assumed that the joint distribution of the observed and
underlying continuous variables is bivariate normal. Tate (1955) focused on
the estimation and asymptotic variances of the bivariate normal correlation
and the point of dichotomy of the dichotomized normal variable; this was gen-
eralized to a multivariate normal with a single dichotomized variable (Hannan
and Tate 1965) or a single discretized variable (Cox 1974).

Methods focusing on jointly analyzing discrete and continuous outcomes
and estimating mean parameters have more recently been explored. The chal-
lenge stems from the lack of multivariate distributions for combining both
types of outcomes, so that specification of a joint distribution of the responses
is not straightforward. The multivariate exponential family model has a gen-
eral form that easily incorporates both discrete and continuous outcomes and
has been discussed in the unclustered setting (Prentice and Zhao 1991, Zhao,
Prentice and Self 1992, Sammel et al. 1997). Otherwise, following the idea of
Olkin and Tate (1961), a frequent approach in other, unclustered multivariate
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settings is to specify the joint distribution as the product of a marginal and a
conditional distribution; this factorization leads to a model with two compo-
nents that can be specified separately. Two versions of a conditional model are
possible, depending on whether the conditioning is done on the continuous or
the discrete outcomes (Cox and Wermuth 1992, Fitzmaurice and Laird 1997,
Krzanowski 1988, Little and Schluchter 1985).

Conditional models have been proposed in the clustered data setting of de-
velopmental toxicity studies, where the joint distribution of the outcomes of
the litter can be specified based on a clustered malformation model and a
clustered fetal weight model, with one model conditional on the other out-
comes. The choice of conditioning is mostly for statistical convenience rather
than biologic rationale, as relatively little is understood about the biologic
mechanisms of developmental toxicity.

The latent variable idea has been used to directly specify the joint distrib-
ution of the discrete and continuous outcomes of a litter. When the observed
and latent continuous outcomes are assumed jointly normal, a mixed-outcome
probit model arises which uses the correlation structure of the underlying mul-
tivariate normal distribution to characterize intrafoetus and intralitter corre-
lation. An alternative is to specify a Plackett distribution, which allows flexi-
bility for selection of marginal densities and uses the odds ratio as a measure
of intrafoetus association.

14.1.1 Notation

Let N denote the total number of dams, and hence litters, in the study.
For the ith dam (i = 1, . . . , N), let ni be the litter size, or the number of
viable foetuses, of litter i. Each foetus is examined for the presence (Mik = 1)
or absence (Mik = 0) of a certain malformation indicator and fetal weight
(Wik) is measured (k = 1, . . . , ni). Let M i and W i denote ni × 1 vectors of
malformation and fetal weight outcomes, respectively, and let (W T

i ,M
T
i )T

be the 2ni × 1 vector of outcomes for the ith litter.
In models that appeal to the latent variable approach, the binary malfor-

mation outcome is assumed to arise from an unobservable continuous random
variable, denoted M∗

ik; Mik represents an indicator of whether this underlying
variable exceeds some threshold, arbitrarily assumed to be 0. Let M∗

i denote
the ni × 1 vector of latent malformation outcomes, and let (W T

i ,M
∗T
i )T be

the 2ni × 1 vector of observed and latent continuous outcomes for the ith
litter.

Throughout this chapter, parameters corresponding to fetal weights will be
subscripted with w and those corresponding to malformation with m.

Keeping with standard notation, Ii denotes an ni-dimensional identity ma-
trix, and J i and 1i denote an ni-matrix and an ni-vector of ones. φn(·) de-
notes an n-dimensional multivariate normal density, and Φ(·) and Φ2(·) are
the standard univariate and bivariate normal distribution functions.
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14.1.2 Conditional Models

In this section we consider two conditional models for mixed continuous-
discrete outcomes: one model that conditions on the continuous outcomes
and one that conditions on the discrete outcomes. Note that the term condi-
tional model is used in line with its general meaning in the rest of the text
(Section 4.2).

In a factorization that conditions on the continuous outcomes, Catalano and
Ryan (1992) apply the latent variable concept to derive the joint distribution
of continuous and binary outcomes and then use generalized estimating equa-
tion (GEE) ideas for estimation in the clustered data setting. The marginal
distribution of the fetal weights is related to covariates using an identity link
function, while for the conditional distribution of malformation given fetal
weights, they use a probit link. The model has been extended to model an
ordinal malformation variable (Catalano 1997).

Fitzmaurice and Laird (1995) reverse the factorization to condition on
the discrete outcomes. Assuming independence among littermates, they write
the joint distribution of the bivariate outcome as the product of a marginal
Bernoulli distribution for the malformation response, and a conditional normal
distribution for the fetal weight response given malformation; the correlation
between outcomes is considered a nuisance parameter. They consider an ex-
tension of their model that allows for clustering, and use GEE methodology
for estimation to avoid the computational complexity of maximum likelihood
in the clustered setting.

Models that Condition on the Continuous Outcomes

Catalano and Ryan (1992) motivate their model by considering an unob-
servable continuous latent variable corresponding to malformation and then
constructing a joint distribution between the latent variable and the observ-
able fetal weight outcome. The 2ni×1 vector of observed and latent outcomes
(W T

i ,M
∗T
i )T is assumed to follow a multivariate normal (MN) distribution

with means µw;ik and µm;ik among the fetal weights and latent malformations,
respectively. The assumed MN covariance structure allows for a constant cor-
relation between observations on the same foetus (intrafoetus) and separate
correlations between observations on littermates (intralitter). The correlation
structure for littermates k and k′ may be illustrated as:

Wik ←− ? −→ M∗
ik

↑ ↖ ↗ ↑
ρw ρwm ρ∗m

↓ ↙ ↘ ↓
Wik′ ←− ? −→ M∗

ik′

(14.1)
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which results in the following block equicorrelated covariance matrix:

Cov(W T
i ,M

∗T
i )T = σ2w[(1−ρw)Ii + ρwJ i] σwσm[(?−ρwm)Ii + ρwmJ i]

σwσm[(?−ρwm)Ii + ρwmJ i] σ2m[(1−ρ∗m)Ii + ρ∗mJ i]

 .(14.2)

Dose-response models are specified for each marginal mean, and may incor-
porate litter- and/or foetus-specific covariates, such as gender or litter size; a
power parameter on dose can also be incorporated (Catalano et al. 1993). For
example, consider the following simple model for the means:

µw;ik = α0 + α1di + α2(ni − n̄), (14.3)
µm;ik = β∗

0 + β∗
1di, (14.4)

where di is the dose administered to the dam of the ith litter.
Following from MVN theory, the conditional distribution of the malforma-

tion latent variables given the fetal weight vector is also normal, where the
ikth element of the conditional mean is given by

µm|w;ik = µm;ik +
(
σm
σw

)(
? + (ni−1)ρwm
1 + (ni−1)ρw

)
ēw;i

+
(
σm
σw

)(
?− ρwm
1− ρw

)
(ew;ik − ēw;i) (14.5)

which depends on the average litter weight residual, ēw;i = (W i−µw;ik), and
the individual fetal weight residuals, ew;ik− ēw;i, where ew;ik = (Wik−µw;ik).
The conditional distribution for the observable malformation indicator given
fetal weights can be described by a correlated probit model, with average
litter weight and individual weight residuals as covariates. Not all parameters
in this model are estimable, but the model can be reparametrized to a fully
estimable form:

πm|w;ik = E(Mik|W i)

= Φ {β0 + β1di + β2ēw;i + β3(ew;ik − ēw;i)} . (14.6)

The dependence on the weight residuals indicates that both the litter aver-
age and individual weights affect the probability of malformation, a result of
allowing different intrafoetus and intralitter correlations.

Note that the β parameters in the conditional probit model are directly re-
lated to variance and correlation parameters in the underlying latent variable
model; so tests of model parameters and examination of their magnitudes
lends insight into the validity of the assumed correlation structure. This is
seen by comparing the probit model in (14.6) to the expression for the condi-
tional mean in (14.5). A drawback, however, is that the β parameters do not
have a marginal interpretation in the probit model.
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As observed with the DYME data, live litter size may decrease with increas-
ing dose levels due to an increasing fetal death rate with dose. In addition,
fetal weight and malformation are often affected by litter size. Thus, it may
be appropriate for an analysis of live outcomes to adjust for litter size. A
reasonable approach in the current context is to begin with a model similar
to (14.4) and incorporate a covariate for the deviation from the overall aver-
age litter size, (ni − n̄). Because the coefficient of the average weight residual
in the conditional latent malformation mean (14.5) is a function of litter size,
the resulting model for the correlated probit model is

πm|w;ik = Φ {β0 + β1di + β2ēw;i + β3(ew;ik − ēw;i)
+β4(ni − n̄) + β5(ni − n̄)ēw;i} . (14.7)

That is, incorporating litter size leads to a probit model similar to (14.6),
but with a covariate for litter size and a litter size-by-average fetal weight
interaction term.

Parameter estimation proceeds in two steps, thus implementing the GEE
methodology of Liang and Zeger (1986) (see also Chapter 5) to each compo-
nent of the conditional model separately. First, a correlated regression of fetal
weight on dose and other covariates is fit to obtain estimates of α; moment-
based estimates of the working correlation parameter, ρw, and of σ2w are ob-
tained. Next, a correlated probit regression of malformation conditional on
weight, with dose, average, and individual fetal weight residuals, and other
covariates is fit to obtain estimates of β; a moment-based working correlation
parameter, ρm, is also estimated. The corresponding GEEs for the regression
parameters θ = (α,β) can be written∑N

i=1 DT
i V −1

w;i (W i − µw;i(α)) = 0,∑N
i=1 ET

i V −1
m;i (M i − πm|w;i(β)) = 0,

(14.8)

where Di = ∂µw;i/∂α with µw;i denoting the marginal mean of W i, and
Ei = ∂πm|w;i/∂β with πm|w;i denoting the conditional mean vector with
elements from (14.7). As working covariance matrices, they use:

Cov(W i) = V w;i ≈ σ2w [(1− ρw)Ii + ρwJ i],

Cov(M i |W i) = V m;i ≈ ∆1/2
i [(1− ρm)Ii + ρmJ i]∆

1/2
i , (14.9)

where ∆ = diag[πm|w;ik(1 − πm|w;ik)] from (14.7). Note the working corre-
lation ρm is for the binary malformation endpoint after conditioning on the
weight outcomes, and not ρ∗m from (14.1). Model-based and robust estimates
of the covariance of the regression parameters are computed following the
GEE methodology of Liang and Zeger (1986) and Zeger and Liang (1986).

Due to the non-linearity of the link function relating the conditional mean
of the binary response to the covariates, the regression parameters in the pro-
bit model have no direct marginal interpretation. Furthermore, if the model
for the mean has been correctly specified, but the model for the association
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between the binary and continuous outcomes is misspecified, the regression
parameters in the probit model are not consistent. The lack of marginal in-
terpretation and lack of robustness may be considered unattractive features
of this approach. An important advantage is that hypothesis tests of model
parameters lend insight into the validity of the assumed correlation structure,
as will be discussed for the example.

DYME in Mice

As a running example throughout the chapter, we will use the DYME data,
as described in Section 2.1.3.

The parameter estimates obtained from fitting mean models (14.3) and
(14.7) and working covariances (14.9) are displayed in Tables 14.1 and 14.2,
in the column labeled C-Cont. Fitted model parameters are consistent with the
summary data in Table 2.1. For fetal weight, the dose coefficient is significantly
negative (α̂1 = −0.943), but there appears to be little effect of litter size
on weight (α̂2 = −0.0021). The intralitter working correlation for weight is
substantial (ρ̂w = 0.572), and the variance, estimated as the scale parameter
of the GEEs, is σ̂2w = 0.011.

The dose coefficient is significantly positive for malformation (β̂1 = 8.577).
The negative coefficients of the individual weight residual (β̂2 = −2.164) and
average weight residual (β̂3 = −4.366) indicate that low fetal weight has an
impact on risk of malformation at both the litter and foetus level for this
substance. That is, foetuses from litters with a low average birth weight are
at increased risk of malformation and, furthermore, an individual animal’s
reduced birth weight relative to its average litter weight increases its own risk
of malformation. The negative coefficient of litter size (β̂4 = −0.060) sug-
gests that larger litters had a lower risk of malformation, even after adjusting
for individual and average fetal weight, though this effect is not statistically
significant. The intralitter working correlation among the conditional binary
malformation variables is small (ρ̂m = 0.047).

Although the model does not allow estimation of the intrafoetus correla-
tion, denoted ? in (14.1), one can test whether ? = ρwm, that is, whether
intrafoetus and intralitter correlation between weight and malformation are
the same, by using the coefficient of the weight residual to test H0 : β2 = 0
in the malformation model (14.7). For these data this test has a value of
Z = −1.8 (p = 0.08), suggesting separate intrafoetus and intralitter correla-
tion parameters between the fetal weight and malformation outcomes. That
is, an individual foetus’s weight offers additional information over the litter
average weight about the probability of malformation. If the intrafoetus and
intralitter weight-malformation correlations were both zero then it would be
the case that the coefficients related to fetal weight residuals (i.e., β2, β3, β5
in (14.7)) would also be zero.
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Other Models

In a similar modeling approach that conditions on the continuous outcomes,
Chen (1993) uses conditional normal regression chain models (see Cox and
Wermuth 1992) to model malformation using litter size and fetal weight as
covariates. A difference from Catalano and Ryan (1992) is that Chen directly
models litter size as a function of dose, resulting in a 3-step regression model.
After modeling litter size as a function of dose, fetal weight is modeled as
a function of dose and conditional on litter size, and finally malformation is
modeled as a function of dose and conditional on both fetal weight and litter
size. Ahn and Chen (1997) also propose a tree-structured logistic regression
model in which fetal weight is similarly incorporated.

Models that Condition on the Discrete Outcomes

Fitzmaurice and Laird (1995) develop a bivariate model under an assumption
of independence to motivate their model in the clustered setting. Assume
temporarily that littermates are independent. Marginally, Mik is Bernoulli
and the mean response rate, πm;ik = Pr(Mik = 1), is related to covariates via
a logit link function. The conditional distribution of Wik given Mik is assumed
normally distributed with mean,

µw|m;ik = E(Wik |Mik) = µw;ik + ζ (Mik − πm;ik)

and variance σ2w, where µw;ik = E(Wik) and ζ is an association parameter
from the regression of Wik on Mik.

Dose-response models are specified for each marginal mean, and may incor-
porate litter- and foetus-specific covariates. The models are denoted:

ηik = logit(πm;ik) = Xikβ = β0 + β1di + β2(ni − n̄), (14.10)
µw;ik = Xikα = α0 + α1di + α2(ni − n̄), (14.11)

where Xik is a covariate vector, which in general may differ for each mean
model, though it does not in this example. For simplicity of notation, the
covariate vector will be denoted without respect to its parameter.

The distribution of the bivariate outcome is specified as a product of the
marginal and conditional distributions as

f(Wik,Mik) = fm(Mik)× fw|m(Wik |Mik)

= exp{Mik ηik − ln[1 + exp(ηik)]} ×
(2πσ2w)−

1
2 exp{−12σ2w [Wik − µw;ik − ζ em;ik]2} ,

where eik = (Mik − πm;ik). Note that, as a result of the parameterization of
the model, E(Wik) = Xikα so that both regression parameters, β and α,
have marginal interpretations. This is an advantage of specifying the linear
link on the conditional continuous model.
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Table 14.1 DYME in Mice. Model fitting results from different approaches. Estimates (standard errors; Z values).

Parameter C-Cont C-Disk Plackett-Dale Probit Lik Probit GEE

Fetal Weight:

Intercept 1.024 (0.018;55.6) 1.026 (0.018;56.0) 1.012 (0.016;62.1) 1.023 (0.015;67.6) 1.023 (0.017;60.5)

Dose −0.943 (0.069;−13.6) −0.963 (0.069;−14.0) −0.886 (0.057;−15.9) −0.937 (0.057;−16.4) −0.940 (0.061;−15.5)
ni − n̄ −0.0021 (0.004;−0.6) −0.0019 (0.004;−0.5) 0.0005 (0.003;0.2) −0.0006 (0.003;−0.2) −0.0013 (0.003;−0.4)
em;ik – −0.036 (0.011;−3.1) – – –

ēm;i – −0.025 (0.043;−0.6) – – –

Malformation:

Intercept −2.775 (0.234;−11.9) −5.244 (0.491;−10.7) −5.015 (0.498;−10.1) −2.847 (0.212;−13.5) −2.825 (0.205;−13.8)
Dose 8.577 (0.888;9.7) 15.869 (2.056;7.7) 15.094 (2.207;6.8) 8.551 (0.766;11.2) 8.479 (0.838;10.1)

ni − n̄ −0.060 (0.042;−1.4) −0.177 (0.095;−1.9) −0.229 (0.103;−2.2) −0.089 (0.042;−2.1) −0.108 (0.044;−2.5)
ēw;i −2.164 (1.231;−1.8) – – – –

ew;ik − ēw;i −4.366 (1.358;−3.2) – – – –

(ni − n̄)× ēw;i 0.113 (0.477;0.2) – – – –

a The dose metric is g/kg/day
b C-Cont., C-Disc., Plackett-Dale, Probit GEE all report robust standard errors and Z scores
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Table 14.2 DYME in Mice. Model fitting results from different approaches. Estimates (standard errors; Z values).

Parameter C-Cont C-Disk Plackett-Dale Probit Lik Probit GEE

Fetal Weight:

Dose-dependent variance:

0 0.011 0.107 0.014 (0.002;6.0) 0.015 (0.002;7.6) 0.013 (0.004;3.2)

0.0625 0.011 0.107 0.013 (0.002;7.6) 0.014 (0.002;9.2) 0.015 (0.004;3.6)

0.1250 0.011 0.107 0.012 (0.001;9.4) 0.013 (0.001;10.5) 0.013 (0.002;8.0)

0.2500 0.011 0.107 0.010 (0.001;9.0) 0.011 (0.001;8.8) 0.010 (0.002;4.8)

0.5000 0.011 0.107 0.007 (0.002;3.9) 0.007 (0.001;6.1) 0.008 (0.002;3.9)

Dose-dependent correlation:

0 0.527 0.597 – 0.632 (0.056;11.3) 0.493

0.0625 0.527 0.597 – 0.657 (0.048;13.7) 0.493

0.1250 0.527 0.597 – 0.512 (0.056;9.1) 0.493

0.2500 0.527 0.597 – 0.671 (0.042;16.0) 0.493

0.5000 0.527 0.597 – 0.501 (0.092;5.4) 0.493

Malformation:

Correlation 0.047 0.092 – 0.306 (0.079;3.9) 0.019

Fetal Weight / Latent Malformation Association:

0 – – 0.219 (0.128;1.7) −0.269 (0.070;−3.8) −0.184 (0.071;−2.6)
0.0625 – – 0.219 (0.128;1.7) −0.269 (0.070;−3.8) −0.184 (0.071;−2.6)
0.1250 – – 0.219 (0.128;1.7) −0.269 (0.070;−3.8) −0.340 (0.240;−1.4)
0.2500 – – 0.219 (0.128;1.7) −0.269 (0.070;−3.8) −0.435 (0.110;−4.0)
0.5000 – – 0.219 (0.128;1.7) −0.269 (0.070;−3.8) −0.517 (0.105;−5.0)
a The dose metric is g/kg/day
b C-Cont., C-Disc., Plackett-Dale, Probit GEE all report robust standard errors and Z scores
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To simplify notation, let Hik = {Xik, em;ik} and ω = (α, ζ), such that
µw|m;ik = Hikω, and let Sik = (Wik−µw|w;ik)2. The score equations for joint
estimation of the marginal mean and association parameters are derived and
expressed as estimating equations:

∑N
i=1


Dik 0 0

F ik Hik 0

0 0 1


T 

∆ik 0 0

0 σ2w 0

0 0 υ


−1

×


Mik − πm;ik

Wik − µw|m;ik

Sik − σ2w

 = 0, (14.12)

with scalar parameters ∆ik = Var(Mik) = πm;ik(1 − πm;ik), υ = Var(Sik),
σ2w = E(Sik |Mik), and Dik and F ik are vectors such that

Dik =
∂πm;ik
∂β

= ∆ikXik,

F ik =
∂µw|m;ik

∂β
= −ζ∆ikXik,

Hik =
∂µw|m;ik

∂ω
.

In the clustered setting, for the 2ni×1 vector (W T
i ,M

T
i )T of responses for

litter i, the model for the means, generalized from (14.10–14.11), is specified
as

logit(πm;ik) = β0 + β1di + β2(ni − n̄), (14.13)

µw|m;ik = E(Wik |M i) = α0 + α1di + α2(ni − n̄)
+ ζ1 em;ik + ζ2 ēm;i, (14.14)

where ēi = n−1
i

∑ni
k=1(Mik−πm;ik). The parameters (ζ1, ζ2) induce correlation

between W i and M i; the intralitter correlation is characterized by n−1
i ζ2,

while ζ1 + n−1
i ζ2 characterizes the intrafoetus correlation.

Because maximum likelihood estimation becomes more complicated in the
clustered setting, Fitzmaurice and Laird implement GEE methodology based
on the score equations derived above. Working covariance matrices are speci-
fied as:

Cov(M i) = V m;i ≈ ∆1/2
i [(1− ρm)Ii + ρmJ i]∆

1/2
i ,

Cov(W i |M i) = V w;i ≈ σ2w[(1− ρw)Ii + ρwJ i], (14.15)

where now ∆i = diag[πm;ik(1− πm;ik)]. The GEEs implemented to estimate
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the regression parameters, θ = (β,α, ζ1, ζ2), are:

∑N
i=1

(
Di 0

F i Hi

)T (
V m;i 0

0 V w;i

)−1

×
(

M i − πm;i

W i − µw|m;i

)
= 0, (14.16)

where πm;i and µw|m;i are the ni × 1 vectors of elements πm;ik and µw|m;ik ,
and now Di,F i,Hi are matrices with F i = −(ζ1+ζ2)∆iXi, and Hi has rows
Hik = {Xik, em;ik, ēm;i} corresponding to parameter vector ω = (α, ζ1, ζ2).
Moment-based estimates of σ2w, ρw, ρm from (14.15) are obtained. The re-
sulting GEE estimates of the mean parameters (β,α) will be consistent and
asymptotically multivariate normal given only that the model for the marginal
means is correctly specified. Model-based and robust estimates of the covari-
ance of the regression parameters are computed following GEE methodology.

DYME in Mice

The parameter estimates obtained from fitting mean models (14.13)–(14.14)
and working covariances (14.15) are displayed in Tables 14.1 and 14.2, in
the column labeled C-Disc. The dose coefficient is significantly positive for
malformation (β̂1 = 15.869), and the negative coefficient of litter size (β̂2 =
−0.177) suggests that larger litters had a lower risk of malformation. The
intralitter correlation is relatively large for a binary outcome (ρ̂m = 0.092).

For fetal weight, the dose coefficient is significantly negative (α̂1 = −0.963),
and there appears to be little effect of litter size on weight (α̂2 = −0.0019). The
negative coefficients of the malformation residual (ζ̂1 = −0.036) and average
malformation residual (ζ̂2 = −0.025) indicate that fetal malformations are
associated with lower fetal weight. As expected, the association between fetal
weight and malformation is stronger (ζ1 + n−1

i ζ2) for the same foetus than it
is for different foetuses (n−1

i ζ2) though the estimate for the average residual is
not statistically significant (Z = −0.6). The intralitter correlation for weight
(conditional on malformation) is substantial (ρ̂w = 0.597).

Other Models

Similar models that condition on the discrete outcomes can be derived by
considering different marginal distributions of the binary outcomes in com-
bination with a multivariate normal for the continuous responses conditional
on the binary ones.

14.1.3 Unconditional Joint Models

In this section we consider latent variable models that directly specify the joint
distribution of mixed continuous-discrete outcomes based on two approaches:
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a Plackett-Dale approach and a probit approach. For an introduction to the
standard versions of these models, see Section 4.1.

Geys et al. (2001) used a Plackett latent variable to specify the joint distri-
bution of bivariate binary and continuous outcome. The Plackett distribution
provides an alternative to the frequently used normal latent variable. A main
advantage is the flexibility with which the marginal densities can be chosen
(normal, logistic, complementary log-log, etc.). Furthermore, the odds ratio,
being a natural measure of global association (Plackett 1965), is an attrac-
tive alternative to the correlation. Pseudo-likelihood (PL) methodology is the
basis of estimation in the clustered setting.

Two mixed-outcome probit models have been proposed: a full-likelihood
model that specifies the joint distribution of the binary and continuous out-
comes in a litter (Regan and Catalano 1999a), and a bivariate model that
relies on GEE methodology to describe the litter effects (Regan and Catalano
1999b). Both maintain marginal dose-response interpretations for the contin-
uous and binary outcomes, and use the correlation of the underlying multi-
or bivariate normal distribution to characterize the intrafoetus correlation.

Plackett-Dale Approach

The Plackett-Dale idea was first proposed for bivariate outcomes of indepen-
dent subjects (Molenberghs, Geys and Buyse 2001) then extended to the clus-
tered data setting using pseudo-likelihood ideas (Geys et al. 2001). Assume
temporarily that littermates are independent. The density function fWik

is
assumed normal with mean µw;ik and variance σ2w;ik. The success probability,
Pr(Mik = 1), is denoted by πm;ik.

The cumulative distributions of the fetal weight (Wik) and the binary mal-
formation (Mik) are given by FWik

and FMik
. Their dependence can be defined

using a global cross-ratio at cutpoint (w,m) (m = 0, 1):

ψik =
FWik,Mik

(w,m) [1− FWik
(w)− FMik

(m) + FWik,Mik
(w,m)]

[FWik
(w)− FWik,Mik

(w,m)] [FMik
(m)− FWik,Mik

(w,m)]
.

This expression can be solved for the joint cumulative distribution FWik,Mik

(Plackett 1965):

FWik,Mik
(w,m) =



1+[FWik (w)+FMik (m)](ψik−1)−S(FWik (w),FMik (m),ψik)
2(ψik−1)

if ψik �= 1,

FWik
(w)FMik

(m)
if ψik = 1,

(14.17)

where
S(FWik

, FMik
, ψik) =

√
[1 + (ψik − 1)(FWik

(w) + FMik
(m))]2 + 4ψik(1 − ψik)FWik

(w)FMik
(m).

Based upon this distribution function, a bivariate Plackett density function
gik(w,m) for mixed continuous-binary outcomes is derived. Define gik(w,m)
by specifying gik(w, 0) and gik(w, 1) such that they sum to fWik

(w).
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If gik(w, 0) = ∂FWik,Mik
(w, 0)/∂w, then this leads to specifying gik by:

gik(w, 0) =



fWik (w)

2

[
1− 1+FWik (w)(ψik−1)−(1−πm;ik)(ψik+1)

S(FWik ,1−πm;ik,ψik)

]
if ψik �= 1,

fWik
(w) (1− πm;ik)

if ψik = 1,

(14.18)

gik(w, 1) = fWik
(w)− gik(w, 0). (14.19)

Note that gik(w, 0) naturally factors as a product of the marginal density
fWik

(w) and the conditional density fMik|Wik
(0|w) (and similarly for gik(w, 1)).

Interesting special cases are obtained when ψik = 1 (independence), ψik = 0
(perfect negative association), or when ψik =∞ (perfect positive association).

Dose-response models that incorporate litter- and foetus-specific covariates
can be considered for each of the parameters by using appropriate link func-
tions. For the DYME data we fit,

logit(πm;ik) = β0 + β1di + β2(ni − n̄),

µw;ik = α0 + α1di + α2(ni − n̄),

ln(σ2w;ik) = XT
ikς,

ln(ψik) = XT
ikξ,

(14.20)

which, in contrast to conditional models, allows fetal weight variances to dif-
fer across doses and directly models dependence between fetal weight and
malformation.

In the case of clustering, rather than considering the full likelihood con-
tribution for litter i, computational complexity is avoided by replacing the
full likelihood by a pseudo-likelihood function that is easier to evaluate. The
contribution of the ith litter to the log pseudo-likelihood function is defined
as:

p�i =
ni∑
k=1

ln gik(wik,mik), (14.21)

where gik(·) is defined in (14.18)–(14.19). With this approach, the correla-
tion between weight and malformation outcomes for an individual foetus is
modeled explicitly, but for outcomes from different littermates independence
is taken as a working assumption. A sandwich variance estimator, formu-
lated below (14.23), is then used to adjust for potential bias in the variance
estimates. If the amount of clustering is of interest as well, then the pseudo-
likelihood (14.21) can be extended to this case as well (Geys et al. 2001). For
a detailed discussion of pseudo-likelihood, see Chapters 6 and 7.

Estimates of the regression parameters, θ = (αT , ςT ,βT , ξT )T , are obtained
by solving the estimating equations corresponding to the pseudo-likelihood
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(14.21):
N∑
i=1

U i(θ) =
N∑
i=1

ni∑
k=1

(
∂ ln gik(x, y)

∂θ

)
= 0. (14.22)

Arnold and Strauss (1991) showed that the PL estimator θ̂, obtained by max-
imizing (14.22), is consistent and asymptotically normal with covariance ma-
trix estimated by:

Ĉov(θ̂) =

(
N∑
i=1

∂U i

∂θ

)−1( N∑
i=1

U i(θ)U i(θ)T
)

(
N∑
i=1

∂U i

∂θ

)−1∣∣∣∣∣∣
θ=̂θ

. (14.23)

A key difference between conditional and unconditional models is that there
is an estimated measure of association. The generality of (14.20) is an im-
portant advantage of this approach; as for developmental toxicity data, the
assumptions of constant variance and constant association are often not ten-
able. Another advantage is the close connection of pseudo-likelihood with
likelihood, which enabled Geys, Molenberghs and Ryan (1999) to construct
pseudo-likelihood ratio test statistics that have easy-to-compute expressions
and intuitively appealing limiting distributions. The pseudo-likelihood ratio
tests are summarized in Chapter 7.

DYME in Mice

The parameter estimates obtained from fitting dose-response models (14.20)
are displayed in Tables 14.1 and 14.2, in the column labeled Plackett-Dale. The
selection of a parsimonious model for the log odds ratio and fetal weight vari-
ance relied on the pseudo-likelihood procedure for the Plackett-Dale approach;
Z-statistics are displayed in Tables 14.1 and 14.2 to facilitate comparison with
other approaches. Similarly, the fetal weight and malformation models fit were
dictated by the other approaches.

For fetal weight, the dose coefficient is significantly negative (α̂1 = −0.886),
and there appears to be little effect of litter size on weight (α̂2 = 0.0005). The
variances were initially fit separately by dose, but even though the variances
are not monotonically decreasing when calculated without regard to cluster-
ing, a PLR test (G∗2

a (H0), Chapter 7) showed this could be reduced to a more
parsimonious model where variances (with ln link function) were modeled as
a linear function of dose (PLR statistic=1.157, 3 degrees of freedom). The
linearly decreasing parameterization of the variance accommodates the de-
creased variance at the highest two doses as compared with the control and
lower two doses. Because of the working independence assumption, there is
no estimated intralitter correlation for fetal weight.

The dose coefficient is significantly positive for malformation (β̂1 = 15.094),
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and the significantly negative coefficient of litter size (β̂2 = −0.229) suggests
that larger litters had a lower risk of malformation. Again, because of the
working independence assumption, there is no estimated intralitter correlation
for malformation.

The log odds ratio characterizing the association between fetal weight and
malformation was initially fit separately by dose as well, except that the lowest
two doses were combined to avoid difficulty in fitting when few malformations
are observed. However, a PLR test shows that comparing 4 separate to a
common parameter was not a significant improvement in fit (PLR=0.708,
3df). The estimated odds ratio is ψ̂ik = 0.219 and is less than 1 because of
the negative association between weight and malformation; the value close to
zero indicates the strength of the association.

Full-likelihood Mixed-Outcome Probit Model

Regan and Catalano (1999a) introduced a mixed-outcome probit model that
extends a correlated probit model for binary outcomes (Ochi and Prentice
1984) to incorporate continuous outcomes. The correlated binary model as-
sumes that the latent malformation variables M∗

i for litter i share a MVN
distribution, denoted by φni(M

∗
i ; γm;i, 1, ρ∗m;i), with mean γm;i1i and equicor-

related covariance Σm;i = [(1−ρ∗m;i)Ii+ρ∗m;iJ i]. The ni binary malformation
outcomes are defined according to whether the ni latent malformation vari-
ables exceed a common threshold, arbitrarily assumed to be zero. The joint
distribution of the binary malformation variables is written,

Pr(Mi+) =

(
ni

Mi+

) ni−Mi+︷ ︸︸ ︷∫ −γm;i

−∞
· · ·
∫ −γm;i

−∞

Mi+︷ ︸︸ ︷∫ ∞

−γm;i

· · ·
∫ ∞

−γm;i

φni(Z
∗
i ; 0, 1, ρ∗m;i) dZ∗

i ,

where Mi+ is the number of malformed foetuses in litter i and Z∗
ik = (M∗

ik −
γm;i). The marginal probability of malformation is πm;ik = Pr(Z∗

ik > −γm;i) =
Φ(γm;i). Dose-response models are incorporated by expressing γm;i and ρm;i
as functions of dose and other litter-specific covariates, for which maximum
likelihood (ML) estimates of the regression parameters are obtained.

To extend the correlated probit model to both binary and continuous out-
comes, the 2ni×1 vector of observed and latent continuous outcomes, written
as (W T

i ,M
∗T
i )T , is assumed to follow a MVN distribution,

φ2ni (W i,M
∗
i ; µw;i, γm;i, σ

2
w;i, 1, ρw;i, ρ

∗
m;i, ρwm;i)

= (2π)−ni | Σ2ni |−
1
2

× exp

−1
2

(
Wi − µw;i1i
M∗

i − γm;i1i

)T
Σ-1
2ni

(
Wi − µw;i1i
M∗

i − γm;i1i

)
with means µw;i among the fetal weights and γm;i among the latent malforma-
tions. The correlation structure is similar to (14.1). Among littermates both
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outcomes are assumed equicorrelated, with separate intralitter correlations
(ρw;i, ρ∗m;i). A common correlation (ρwm;i) is assumed between fetal weight
and latent malformation within a foetus and among different foetuses in the
same litter (i.e., ?i = ρwm;i) in (14.1). This complete exchangeability assump-
tion is necessary to maintain a tractable likelihood. The correlation structure
gives rise to the following covariance matrix:

Σ2ni = Cov(W T
i ,M

∗T
i )T

=

 σ2w;i [(1− ρw;i)Ii + ρw;iJ i] ρwm;i σw;iJ i

ρwm;i σw;iJ i [(1− ρ∗m;i)Ii + ρ∗m;iJ i]

 .

As in the binary-only model, the ni binary malformation outcomes are defined
according to whether the ni latent malformation variables exceed a common
threshold. The resulting joint distribution of the vector of weights and binary
malformations can be written

f2ni(W i,M i) ∝

ni−Mi+︷ ︸︸ ︷∫ −γm;i

−∞
· · ·
∫ −γm;i

−∞

Mi+︷ ︸︸ ︷∫ ∞

−γm;i

· · ·
∫ ∞

−γm;i

×φ2ni(W i,Z
∗
i ; µw;i, 0, σ2w;i, 1, ρw;i, ρ

∗
m;i, ρwm;i) dZ∗

i (14.24)

where again Z∗
ik is the standardized variate (M∗

ik − γm;i).
Dose-response models that incorporate litter-specific covariates are spec-

ified for each parameter. For the DYME mice, the following models were
considered:

γm;i = β0 + β1di + β2(ni − n̄),

µw;i = α0 + α1di + α2(ni − n̄),

ln(σ2w;i) = ς0 + ς1di,

FZ(ρw;i) = τw;0I(d = 0) + τw;1I(d = 0.0625)
+τw;2I(d = 0.125) + τw;3I(d = 0.25)
+τw;4I(d = 0.5),

FZ(ρ∗m;i) = τm,

FZ(ρwm;i) = τwm,

(14.25)

where FZ denotes Fisher’s Z-transformation, ln[(1+ρ)/(1−ρ)], which is used
as a link function for the correlations. The model not only specifies mean
models, but also allows dose effects on weight variability and the correlations,
which is often appropriate for developmental toxicity data.

From the log-likelihood based on (14.24), the first and second derivatives
necessary to define the score function and information matrix are obtained and
the Newton-Raphson algorithm implements ML estimation of the regression
parameters, θ = (αT ,βT , ςT , τTw, τTm, τTwm)T . Differentiation of the likelihood
is not trivial and the reader is referred to the original article for details; the
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complete exchangeability assumption between weight and latent malforma-
tion within a foetus and among different foetuses within the same litter is
necessary to maintain a tractable likelihood. However, the derivatives can be
expressed in terms of equicorrelated probit integrals of lower dimension so
their evaluation is not at all prohibitive. Multidimensional normal integrals
are evaluated using the approximation of Mendell and Elston (1974).

The model has several advantages and additional features compared with
conditional model approaches. As compared with Catalano and Ryan, all pa-
rameters maintain marginal dose–response interpretations, including malfor-
mation. In addition, the correlation between weight and malformation, ρwm;i,
may vary with dose, as well as the correlations accounting for litter effects
and the fetal weight variances. The likelihood model allows for assessment of
the model’s goodness-of-fit; likelihood ratio tests are easily implemented to
assess the most parsimonious models for the six marginal parameters.

An assumption of the model is that of complete exchangeability between
weight and latent malformation outcomes, i.e., that intrafoetus and intralitter
correlation are the same. It may be the case that outcomes within a foetus are
more correlated than those between foetuses, but extending the model to al-
low for a separate intrafoetus correlation is not trivial. The tractability of the
multidimensional integral expressions is due to the exchangeability of foetuses
within a litter so that only litter–specific data are required for computations,
and not foetus–specific outcomes. In this same manner, only litter–specific co-
variates can be included in the dose–response models. The model presented in
the next section was designed to overcome the full exchangeability assumption
and to allow foetus–specific covariates.

DYME in Mice

The parameter estimates obtained from fitting dose-response models (14.25)
are displayed in Tables 14.1 and 14.2, in the column labeled Probit Lik. The fe-
tal weight and malformation models fit were dictated by the other approaches.
Likelihood-ratio tests (LRT) selected a parsimonious model for the correla-
tions and fetal weight variance; Z-statistics are displayed in Tables 14.1 and
14.2 to facilitate comparison with other approaches.

For fetal weight, the dose coefficient is significantly negative (α̂1 = −0.937),
and there appears to be little effect of litter size on weight (α̂2 = −0.0006).
The fitting of the fetal weight variance and correlation is interrelated and was
determined to be best with a separate correlation parameter for each dose, and
a simpler model for the variances. The variances, though not monotonically
decreasing when calculated without regard to clustering, fit well (with ln link
function) with a linear model of dose (LRT statistic=7.05, 1 degree of freedom,
versus common parameter), with no improvement of 3 additional parameters
to fit correlations separately by dose (LRT=1.92, 3 degrees of freedom). The
intralitter correlation estimates (ρ̂w;i) are large and range from 0.501 to 0.671.

The dose coefficient is significantly positive for malformation (β̂1 = 0.8551),
and the negative coefficient of litter size (β̂2 = −0.089) suggests that larger
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litters had a lower risk of malformation. The model for the latent malformation
correlation fits a constant correlation with respect to dose and is estimated to
be ρ̂∗m;i = 0.306; fitting a second-order parameter of a latent variable can be
difficult, especially when there are few events at the lowest doses as for the
DYME data.

Whereas the correlations within each outcome are positive, the correlation
between outcomes is negative (ρ̂wm;i = −0.269), because fetal weight is de-
creasing while the probability of malformation is increasing. There was no
improvement in model fit by estimating one correlation per dose (LRT=1.23,
4 degrees of freedom) versus a common correlation. Recall that this parameter
characterizes correlation between (latent) malformation and weight for both
an individual foetus and among littermates.

Semiparametric Mixed-Outcome Probit Model

To overcome the complete exchangeability assumption of the full-likelihood
approach and to allow foetus-specific covariates in the dose-response models,
Regan and Catalano (1999b) proposed an alternative mixed-outcome probit
model. Similar to other models discussed, they developed a bivariate model
under an assumption of independence to motivate their model in the clustered
setting.

Assume temporarily that littermates are independent. To derive the mar-
ginal distribution of the bivariate response (Wik,Mik), the observed fetal
weight and latent malformation variables for foetus ik are assumed to share
a bivariate normal distribution,

f(Wik,M
∗
ik) = φ2(Wik,M

∗
ik; µw;ik, γm;ik, σ

2
w;ik, 1, ?ik),

(14.26)

where ?ik is the intrafoetus correlation denoted in (14.1). To arrive at a conve-
nient form of the bivariate distribution of the mixed outcomes, this density is
rewritten as a product of the marginal density for fetal weight and conditional
density of latent malformation given weight; so, the joint distribution of the
bivariate fetal weight and binary malformation outcome for foetus ik can be
written

f(Wik,Mik) = fw(Wik)× fm|w(Mik |Wik)

= φ(Wik; µw;ik, σ
2
w;ik)

×πMik

m|w;ik [1− πm|w;ik]1−Mik , (14.27)

where πm|w;ik = Φ(γm|wik) is the expectation of the conditional binary malfor-
mation outcome E(Mik |Wik), and from bivariate normal theory,

γmw =
γm;ik + ?ik

(
Wik−µw;ik
σw;ik

)
(1−?2ik)1/2

.

The marginal expectation is πm;ik = Φ(γm;ik).
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Dose-response models are specified for all four parameters of the bivariate
normal density, using appropriate link function. For the DYME data, the
following dose-response models were specified:

γm;ik = β0 + β1di + β2(ni − n̄)

µw;ik = α0 + α1di + α2(ni − n̄)

ln(σ2w;ik) = ς0I(d = 0) + ς1I(d = 0.0625) + ς2I(d = 0.125)
+ς3I(d = 0.25) + ς4I(d = 0.5)

FZ(?ik) = τ1I(d = 0, 0.0625) + τ2I(d = 0.125)
+τ3I(d = 0.25) + τ4I(d = 0.5)

(14.28)

where the ikth foetus has covariates that may be both foetus- and litter-
specific and vectors of fixed regression parameters θ = (βT , τT , αT , ςT )T .
From the log-ikelihood based on the bivariate distribution (14.27), score func-
tions for the regression parameters θ can be written
N∑
i=1

ni∑
k=1

(
∂�ik

∂βT
∂�ik
∂τT

∂�ik
∂αT

∂�ik
∂ςT

)T

=
N∑
i=1

ni∑
k=1



∆bikXik 0 0

∆tikXik 0 0

∆aikXik Xik 0

∆sikXik 0 σ2w;ikXik





{
πm|w;ik 0 0
[1−πm|w;ik]

}-1

0 σ-2
w;ik 0

0 0 1
2 σ

-4
w;ik



×


Mik − πm|w;ik

Wik − µw;ik

Sik − σ2w;ik

 , (14.29)

where Sik = (Wik − µw;ik)2, and

∆bik =
∂πm|w;ik
∂γm;ik

,∆tik =
∂πm|w;ik
∂?ik

,∆aik =
∂πm|w;ik
∂µw;ik

,∆sik =
∂πm|w;ik
∂σ2w;ik

,

with Xik generally denoting the appropriate covariate vector.
In the case of clustering, we avoid fully specifying the joint distribution

of the ni bivariate outcomes in litter i by using the score equations of the
bivariate distribution derived under independence to motivate a set of GEEs
for the clustered setting. We assume the marginal distribution of the bivariate
outcome is defined by (14.27) and use the form of the score functions (14.29)
to construct a set of GEEs for the regression parameters by replacing the
diagonal covariance matrix by a working covariance matrix that incorporates
correlation between littermates.
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The regression parameters θ = (βT , τT , αT , ςT )T are estimated in the
clustered setting from the following set of GEEs:

N∑
i=1


∆biXi ∆tiXi ∆aiXi ∆siXi

0 0 Xi 0

0 0 0 ΣwiXi


T

Vmi Vwmi 0

Vwmi Vwi 0

0 0 V si


−1

×


M i−πm|w;i

Wi−µw;i
Si − σ2w;i

= 0 (14.30)

where the elements of these matrices are now matrix- or vector-versions of
the elements from above (14.29): ∆bi , ∆ti , ∆ai , ∆si , Σwi are ni×ni diagonal
matrices; πm|w;i, µw;i, σ2w;i and Si are ni×1 vectors. Vmi(ρm), Vwi(ρw), and
V si(ρw) are equicorrelated working covariance matrices based on the respec-
tive elements of (14.29). Vwmi(ρwm) is introduced to account for the correla-
tion between the weight and malformation outcomes among littermates; the
intrafoetus correlation is still characterized by ?ik. The methodology of Liang
and Zeger (1986) and Zeger and Liang (1986) is implemented to estimate
θ; moment-based estimates of working correlation parameters, (ρm, ρw, ρwm)
are obtained. The resulting GEE estimates of θ will be consistent and asymp-
totically normal if the motivation of the bivariate distribution (14.27) has
specified the correct moments for the GEEs (14.30). Model-based and robust
estimates of the covariance of the parameter estimates are obtained following
GEE methodology.

This model has been extended to handle multiple ordinal outcomes with a
continuous outcome (Regan and Catalano 2000). This is useful because the
malformation variable typically represents a binary indicator of any malforma-
tion, and malformations are sometimes ordinally measured such as (absent,
signs of variation, full malformation). In the motivating example, the most
frequent malformations occurred in the eyes, and were either anophthalmia
(missing eye) or microphthalmia (small eye). Malformation was modeled as
an ordinal outcome (normal, microphthalmia, anophthalmia) and each eye
was considered separately. They compared this modeling strategy with the
bivariate model in which malformation was a binary variable representing
any malformation in either eye.

DYME in Mice

The parameter estimates obtained from fitting dose-response models (14.28)
are displayed in Tables 14.1 and 14.2, in the column labeled Probit GEE.

For fetal weight, the dose coefficient is significantly negative (α̂1 = −0.940),
and there appears to be little effect of litter size on weight (α̂2 = −0.0013).
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The variances were fit separately by dose even though this may not be the
most parsimonious choice. The model was chosen because a robust Wald test
of whether all five parameters are equal was not significant (Z2 = 5.43, 4
degrees of freedom) but a test comparing the variances of the three lower doses
to the two highest doses was significant (Z2 = 4.4, 1 degree of freedom). The
variance estimates range from σ̂2w;ik = 0.015 at 125 mg/kg/d to σ̂2w;ik = 0.008
at 500 mg/kg/d. The working correlation parameter is ρ̂w = 0.493.

The dose coefficient is significantly positive for malformation (β̂1 = 0.8479),
and the negative coefficient of litter size (β̂2 = −0.108) suggests that larger
litters had a lower risk of malformation. The working correlation parameter
for malformation, conditional on weight, is ρ̂m = 0.019.

The intrafoetus correlation between latent malformation and observed fetal
weight was fit separately by dose, except the control and lowest dose were
grouped because of difficulty fitting when few malformations were observed
at lowest dose levels. A robust Wald test comparing separate to a common
parameter was significant (Z2 = 7.9, 3 degrees of freedom). The correlation
estimates range from ?̂ik = −0.184 at 0 and 62.5 mg/kg/d to ?̂ik = −0.517 at
500 mg/kg/d.

14.2 Application to Quantitative Risk Assessment

Quantitative risk assessment was introduced in Section 3.4 and Chapter 10.
We will use the same conventional notations. Recall that quantitative risk as-
sessment involves the determination of a dose based on the experimental data
in animals from which a safe level of exposure for humans can be estimated.
Dose-response modeling is often the basis of this process. Based on a model, a
dose corresponding to a specified level of increased response over background
is estimated; in noncancer evaluations, this dose is often referred to as the
benchmark dose (BMDq) or the effective dose (EDq). The subscript q corre-
sponds to the level of increased response above background, also known as
the benchmark response, and is typically specified as 1, 5, or 10%. To allow
for estimation variability, a 95% lower confidence limit on this estimated dose
(LEDq or LEDq) is the quantity suggested (Crump 1984, 1995) to be used as
part of the quantitative risk assessment process for determining an acceptable
low-risk exposure level for humans.

To determine the BMD, a quantity characterizing risk as a function of
dose must be specified. For quantal outcomes, this is generally expressed as
P (d), the probability of response at dose d. To incorporate the background
response into the BMD calculation, this probability is used in conjunction with
a risk function, for example, additional risk r(d) = P (d)−P (0), or extra risk
r(d) = P (d)−P (0)

1−P (0) , where P (0) is the background risk. Extra risk puts greater
weight on outcomes with large background risks. The BMDq (EDq) is defined
as the estimated dose satisfying r̂(d) = q, where q is the benchmark response.
With a univariate response, this expression can typically be solved explicitly
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for d, for example d = P−1(q+P (0)); with a bivariate response, a closed-form
solution cannot be determined and d must be obtained numerically.

One approach for determining a BMD from a continuous outcome is, after
fitting the continuous dose-response model, to consider a dichotomized version
of the outcome and use the framework for a quantal outcome. For example, we
may consider P (d) as the probability of low fetal weight, where a cutoff level
is specified for determining a low weight extreme enough to be considered
an adverse event. Because of the arbitrariness of the cutpoint, estimating
a BMD from a continuous response has led to much discussion (Bosch et al.
1996, Crump 1984, 1995, Gaylor and Slikker 1990, Kavlock et al. 1995, Kodell
and West 1993). A cutpoint of three standard deviations below the average
fetal weight of control animals, corresponding to a low birth weight rate of
0.1% assuming normality, will be used here.

To incorporate the multiple outcomes evaluated in a study, a less integra-
tive approach usually involves fitting dose-response models and determining
BMDs (and LEDs) separately for each outcome. Typically, this would include
embryolethality, malformation, and fetal weight; for illustration we will focus
only on malformation and weight. The outcome that appears most sensitive
to the exposure (i.e., the critical effect) becomes the focus for estimating risk
in humans (U.S. EPA 1991, 1995). For example, a probit model could be fit
to the malformation outcomes (using either likelihood or GEE estimation),
and (omitting temporarily the litter and foetus indices)

Pm(d) = Pr(Malformation at dose d) = Φ (γm(d)) (14.31)

would be the basis of determining a BMD (and a LED). Fetal weight could be
modeled with a random effects model or using GEEs, and assuming normality
leads to a probit function,

Pw(d) = Pr(Low fetal weight at dose d) = Φ
(
Wc − µw(d)

σw(d)

)
(14.32)

for determining a BMD and LED, where Wc denotes the cutpoint for deter-
mining low weight extreme enough to be considered an adverse event. The
outcome resulting in the lower LED would be considered the critical effect.
This method of selecting the smallest LED among several adverse events as-
sumes that protecting against the most sensitive outcome protects against all
other adverse outcomes. This approach to determining a BMD is unattrac-
tive when there are several adverse outcomes because there may be more
generalized effects across the spectrum of adverse outcomes. It may therefore
be preferable to determine the BMD from an expression that characterizes
the combined risk to a foetus by incorporating the separate outcomes while
accounting for the relationship between them.

To estimate the overall risk to an individual foetus for the bivariate outcome
malformation and low fetal weight, P (d) represents the probability that an
individual foetus is malformed and/or of low birth weight. In other words, for
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the kth foetus in the ith litter:

P (d) = Pr(Wik < Wc and/or Mik = 1 | d) .

Based on the methods presented in the previous section, expressions for the
joint probability P (d) can be specified. Fitzmaurice and Laird (1995) do not
discuss the application of their model to risk assessment, and so it is not
included in the discussion that follows.

For their model that conditions on the fetal weight outcomes, Catalano et
al. 1993 proposed that risk assessment be based on the expression

P (d) = 1− [1− P (Mik |W i)] [1− P (Wik)]

= 1− [1− πm|w;ik(d)
] [

1− Φ
(
Wc − µw;ik(d)

σw

)]
, (14.33)

based on the mean models (14.7) and (14.3). In this expression the model
for weight is evaluated at the average litter size (ni = n̄); the conditional
model for malformation is evaluated at the average litter size and zero fetal
weight residuals, which has the interpretation as a prediction of an average
animal from an average litter, after adjusting for the animal’s and litter’s
fetal weight values. Thus, though the conditional modeling approach does
not directly specify a measure of intrafoetus dependence, the conditioning
argument provides an approximation of the joint risk.

An approach for the mixed-outcome probit models was proposed by Regan
and Catalano (1999a). In these models, the observed weight and latent mal-
formation variables for an individual foetus are assumed to share a bivariate
normal distribution, as specified for the semiparametric model (14.26). The
probability of an adverse outcome for an individual foetus as related to dose
can then be expressed as:

P (d) = 1−
∫ -γm;ik(d)

-∞

∫ ∞

Wc

×φ2(Wik, Z
∗
ik; µw;ik(d), 0, σ2w;ik(d), 1, ?ik(d)) dWik dZ

∗
ik

= Φ(γm;ik(d))

+ Φ2

(
−γm;ik(d),

(
Wc − µw;ik(d)

σw;ik(d)

)
; ?ik(d)

)
. (14.34)

Hence, P (d) explicitly depends on the measure of association between fetal
weight and malformation, which is the correlation of the underlying bivariate
normal density. For the likelihood model, ρwm is used since it is assumed that
? = ρwm; for the semiparametric model ? itself is used.

For the Plackett-Dale approach, Geys et al. (2000) adopt the same ap-
proach. The observed weight and latent malformation variables for an indi-
vidual foetus are assumed to share a bivariate Plackett distribution and the
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probability of an adverse outcome for an individual foetus is expressed as:

P (d) = πm;ik(d) + FWik,Mik
(Wc, 0) (14.35)

which also depends explicitly on the odds ratio, ψ, as seen in (14.17).
Fetal death can be incorporated into risk assessment by using the notion

of conditional independence between death and the live outcomes. Following
Ryan (1992) and Catalano et al. (1993), one can specify:

P ∗(d) = 1− (1− PE(d)) (1− PL(d)) ,

where PE(d) denotes the probability of embryolethality and PL(d) denotes
the probability of an adverse live outcome at dose d, as specified by equations
(14.33)–(14.35) above. We focus the rest of our discussion on the live outcomes;
see Catalano et al. (1993) and Regan and Catalano (1999a) for details and
examples.

Just as for a univariate outcome, three approaches to calculating a lower
confidence limit on the BMD may be used; they are based on the asymptotic
properties of the BMD, of the risk function, and of the likelihood ratio sta-
tistic. We implement the approach suggested by Kimmel and Gaylor (1988)
and calculate the lower confidence limit based on the approximate normality
of the estimated risk function, r̂(d), taking into account the variability as-
sociated with its estimation. This dose level is often referred to as the lower
effective dose, LEDq. An upper confidence limit on the estimated risk function
is computed, then the dose that corresponds to a q% increased response above
background is determined from this upper limit curve. Thus the LEDq is the

value of d that solves q = r̂(d) + 1.645
√

V̂ar(r̂(d)), where the variance of the
estimated risk function is estimated as

V̂ar(r̂(d)) =
(
∂r(d)
∂θ

)T
V̂ar(θ̂)

(
∂r(d)
∂θ

)
θ=̂θ ,

where, for models implementing GEEs and pseudo-likelihood estimation, the
quantity V̂ar(θ̂) is the robust, or sandwich, variance estimator.

14.2.1 DYME in Mice

To define the joint probability of an adverse live outcome, foetuses that
weighed less than 0.673 g are considered to be of low fetal weight, which
corresponds to a 0.9% rate in the control animals. The expressions (14.33)–
(14.35) are evaluated at the GEE, PL, or ML estimates from the corresponding
dose-response models, to estimate the probability that a live foetus is affected
at each experimental dose. These probabilities are given in Table 14.3.

For illustration, we estimate the BMD corresponding to a 5% additional
risk over the background, i.e., the dose satisfying 0.05 = P (d) − P (0). Here,
results for 5% extra risk are similar since P (0) is very small. From the bivariate
probabilities (14.33)–(14.35), we obtain BMD05s ranging from 122-128 mg/kg
corresponding to the dose at which the risk of an adverse effect is 5% above
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Table 14.3 DYME in Mice. Quantitative risk assessment results from different ap-
proaches.

Dose Approach
(mg/kg/d) C-C Pl-D Prb-L Prb-G Min(M,W )

P (d)
0 0.0032 plik 0.0043 0.0032 –

62.5 0.0156 plik 0.0164 0.0199 –
125 0.0578 plik 0.0539 0.0553 –
250 0.3659 plik 0.3167 0.2990 –
500 0.9915 plik 0.9858 0.9748 –

Benchmark Dose∗

BMD05 cr pl 125 122 146
LED05 cr pl 108 103 126

∗ Based on additional risk

the background risk of less than 0.5%. The corresponding LED05s range from
103 to 109 mg/kg.

Finally, we will compare the joint modeling approaches with the usual ap-
proach for multiple outcomes in which the lower of the individual malforma-
tion and fetal weight LEDs is used as an overall LED (ignoring embryolethal-
ity for this illustration). We fit dose-response models and determined BMD05

and LED05 separately from each outcome; the minimum of the two LED05

can be compared with those obtained above from the outcomes jointly. Mal-
formation and fetal weight were each modeled via: (1) GEEs using probit and
identity link functions and exchangeable working correlation matrices, and
(2) Plackett-Dale models with logit and identity link functions using pseudo-
likelihood estimation. With d the dose administered to the dam (in g/kg/day),
the BMDs and LEDs were estimated from

Pm(d) = Φ(−2.86 + 8.50d),

Pw(d) = Φ
(

0.673− (1.02− 0.94d)
0.108

)
,

for GEE and

Pm(d) = expit(−5.67 + 17.23d),

Pw(d) = Φ
(

0.673− (1.01− 0.88d)
0.106

)
,

for Plackett-Dale using the same cutpoint for defining low fetal weight.
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Let us describe the estimates. The BMD05 (LED05) estimates are based
on malformation is 146 (126) mg/kg/d for GEE and 162 (143) mg/kg/d
for Plackett-Dale. Based on low fetal weight the BMD05 (LED05) is 185
(168) mg/kg/d for GEE and 187 (178) mg/kg/d for Plackett-Dale.

Thus, using the definition above for low fetal weight, the minimum of the
two LED05 is more than 20% higher than those obtained using the bivariate
methods which incorporate the relationship between the two outcomes.

14.3 Discussion

In this chapter, a variety of approaches have been considered for the analysis
of clustered data with a combination of continuous and discrete outcomes.
They were applied to a case study (DYME in mice). It is useful to reflect
on similarities and differences. Modeling approaches all need to consider the
construction of multivariate or bivariate distributions for the combined con-
tinuous and discrete outcomes, thereby incorporating the clustering between
littermates. Since such models are necessarily complicated, efficient computa-
tional tools are required.

The fetal weight mean model parameter estimates are almost identical re-
gardless of modeling approach, as all approaches use an identity link func-
tion. The model for which the mean fetal weight conditions on the binary
outcomes (column C-Disc) was parameterized to give marginal estimates of
these parameters, so it can be compared directly with the other models. The
corresponding marginal estimates of mean fetal weight by dose, and evaluated
at ni = n̄, are given in Table 14.4.

The malformation regression parameters are not all comparable because of
the different link functions, and the model that conditions on fetal weight
(column labeled C-Cont) does not have a marginal interpretation. The esti-
mates of the two unconditional probit models are almost identical. The C-Disc
and Plackett-Dale models both use logistic link functions so the estimates are
comparable and quite similar. Note that even though the C-Cont model does
not have a marginal interpretation, the estimates are quite similar to the other
unconditional probit models. The corresponding estimates of the probability
of malformation by dose and evaluating at ni = n̄ and zero residuals for the
C-Cont model are given in Table 14.4. Here, all four marginal estimates and
the conditional estimates are very similar.

The main differences between models rest in the treatment of the second-
order parameters, specifically fetal weight variance and the intrafoetus and
intralitter correlations.

For the weight variance, the conditional models estimate a common moment-
based scale parameter, based on GEE methodology. The unconditional mod-
els allow regression models to be specified. Often, with developmental toxicity
data, the fetal weight variances are not constant across doses, as seen in the
DYME example, and decrease with increasing dose where at the highest two
doses the fetal weights were decreased in many foetuses across many litters.
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Table 14.4 DYME in Mice. Parameters estimated from different approaches.

Dose
(mg/g/day) C-C C-D Pl-D Pb-Lik Pb-GEE

µaw
0 1.02 1.03 pl 1.02 1.02

62.5 0.97 0.97 pl 0.96 0.96
125 0.91 0.91 pl 0.91 0.91
250 0.79 0.79 pl 0.79 0.79
500 0.55 0.54 pl 0.55 0.55

Pr(M = 1)a

0 0.003 0.005 pl 0.002 0.002
62.5 0.013 0.014 pl 0.010 0.011
125 0.044 0.037 pl 0.038 0.039
250 0.264 0.218 pl 0.239 0.240
500 0.935 0.936 pl 0.923 0.921

Association (W,M)b

0 – – pl -0.27 -0.18
62.5 – – pl -0.27 -0.18
125 – – pl -0.27 -0.34
250 – – pl -0.27 -0.43
500 – – pl -0.27 -0.52

a Evaluated at average covariates
b ψ for the P-D model, ρwm and ?

for Pb-L and Pb-G models, respectively

The conditional models using GEE estimation and the Plackett-Dale model
using PL estimation also treat clustering parameters as nuisance, as does one
unconditional probit model using GEE estimation. GEE models estimate com-
mon moment-based parameters; the Plackett-Dale model uses independence
as working assumption, and hence are assumed to be zero. The likelihood-
based probit model allows modeling of these intralitter correlations; in the
case of malformation they are, of course, on a latent scale.

The biggest difference is in the correlation between malformation and fetal
weight. The conditional models do not directly specify a measure of associ-
ation, though adding the residuals from the marginal model as covariates in
the conditional model induces association. The associated parameters do lend
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insight into the strength of association on the one hand and whether an in-
trafoetus correlation is stronger than intralitter correlation on the other hand,
even though they are not directly interpretable. The Plackett-Dale model uses
the odds ratio as intrafoetus measure of association, which is readily inter-
pretable. The probit models use the correlation of an underlying multivariate
or bivariate normal distribution to characterize the intrafoetus and intralitter
correlations. In the likelihood model one assumes complete exchangeability,
i.e., intrafoetus and intralitter correlation are assumed constrained to be equal.
Alternative approaches used on the example suggest this assumption is vio-
lated. Nevertheless, other parameter estimates seem fairly robust against this
violation. The semiparametric probit model directly estimates the intrafoetus
correlation. In the DYME example it was seen this then leads to different
conclusions.

Several of the methods proposed have been applied to quantitative risk
assessment. While there are subtle differences between all, one conclusion
stands out. Ignoring the correlation between either littermates or outcomes
leads to too conservative and hence unscientific safe doses.
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CHAPTER 15

Multilevel Mo deling of Complex Survey
Data

Didier Renard, Geert M olenb erghs

transnationale Universiteit Limburg, Diepenbeek–Hasselt, Belgium

As indicated in Chapter 1, many sets of data collected in human and bi-
ological sciences inherently have a hierarchical structure, where a hierarchy
consists of units grouped at different levels. The denomination of ‘clustered
data’ ordinarily refers to a two level hierarchy, where some basic units are
grouped into clusters. Numerous examples have been given so far such as
animals grouped into litters or subjects studied repeatedly over time.

A hierarchical structure can consist of more than two levels however, and
examples also abound in practice. Schooling systems, for instance, present an
obvious multilevel structure, with pupils grouped into classrooms, which are
nested within schools which themselves may be clustered within education
authorities. As a consequence, an important class of models, known under the
generic name of multilevel models (Goldstein 1995), has been developed to
represent such structures. These will be briefly reviewed in Section 15.1.

Often in sample surveys, for cost-related reasons or administrative consid-
erations, multistage sampling schemes are adopted. In multistage sampling,
the sample is selected in stages, with the sampling units at each stage being
sub-sampled from the larger units drawn at the previous stage. Thus, it im-
mediately becomes apparent that a sample obtained by multistage sampling
is hierarchical in nature and, therefore, we may want to analyze such data
using multilevel modeling techniques.

Based on the data from the Health Interview Survey (HIS) introduced in
Section 2.3, we will illustrate the use of multilevel models with continuous
(normally distributed) and discrete (binary) response variables in Section 15.2.
In particular, the issue of weighting for unequal selection probabilities will
be addressed as this is not, in principle, a simple extension of conventional
weighing methods.
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15.1 Multilevel Models

In this section, we briefly review multilevel models for normally-distributed
and binary outcomes. While keeping an eye on the HIS, we consider a three-
level population for notational convenience. To make matters more concrete,
municipalities are termed level 3 units (or, in survey sampling terminology, the
primary sampling units); households (secondary sampling units) correspond
to level 2 units, while individuals (tertiary sampling units) form level 1.

For comprehensive accounts on multilevel modeling, the interested reader
may consult Bryk and Raudenbush (1992), Longford (1993) and Goldstein
(1995). Kreft and de Leeuw (1998) provide a more informal and introductory
approach to the subject.

15.1.1 The Multilevel Linear Model

Suppose we have a sample consisting of K municipalities, with Jk households
within the kth municipality (k = 1, . . . ,K) and Njk individuals within the
jth household from the kth municipality (j = 1, . . . , Jk). Let yijk be the
value of the response variable associated with the ith individual within the
jth household from the kth municipality. We shall assume that the data yijk
were generated according to the three-level model

yijk = xijkβ + z
(3)
ijkvk + z

(2)
ijkujk + z

(1)
ijkeijk, (15.1)

where xijk, z
(3)
ijk, z(2)ijk, and z

(1)
ijk are (possibly overlapping) fixed covariate row

vectors, β is a fixed vector of parameters, and vk, ujk, and eijk are mutu-
ally independent normally distributed random variables. The vk’s and ujk’s
are unobserved (sometimes called latent) variables that are essentially used
to model variation in the data that is attributable to the clustering effect at
the corresponding levels. These random variables can been thought of as rep-
resenting various (cluster-specific) characteristics that are shared by all the
elements of a cluster, thereby inducing some dependency between these units.

Note that there is an extremely close link between the multilevel modeling
philosophy and random-effects models as introduced in Section 4.3 and studied
in Chapter 13.

In its simplest form, the model will have z
(3)
ijk ≡ 1 and z

(2)
ijk ≡ 1, which

reduces to a random intercept model. We will use such a model in the next
section to investigate the clustering effect in the HIS. Also, it will commonly
be the case that z

(1)
ijk ≡ 1, meaning that the model includes solely a simple

residual error term, but the possibility of adding extra covariates permits the
representation of complex variation at level 1, including subgroup variability
or heteroscedasticity.

Parameter estimation in multilevel linear regression models can be carried
out by maximizing the likelihood function. To this end, direct maximization,
using Newton-Raphson or the EM algorithm (Little and Rubin 1987) for in-
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stance, can be performed. An equivalent procedure, called iterative generalized
least squares (IGLS), was proposed by Goldstein (1986). His algorithm simply
iterates between the estimation of the fixed and random parameters obtained
by standard generalized least squares formulae, hence its name. IGLS is an at-
tractive procedure as it tends to be quite efficient with large data sets typically
encountered in the multilevel modeling framework. Note that the IGLS algo-
rithm can be slightly modified (RIGLS) to perform similarly to residual (or
restricted) maximum likelihood estimation, which yields unbiased estimates
for variance components in random-effects models (Verbeke and Molenberghs
2000).

15.1.2 Multilevel Models for Discrete Response Data

We restrict attention to the case of a binary response, but the discussion below
applies more generally to models for proportions or count data, for example.
In fact, the theory can be developed for any non-linear multilevel model.

Consider the following multilevel logistic model:

logit(πijk) = xijkβ + z
(3)
ijkvk + z

(2)
ijkujk, (15.2)

where πijk = P [yijk = 1|vk,ujk] and the same notation as in the previous
section is followed. The model specification is completed by assuming that
yijk ∼ Bernouilli(πijk). In other words, the model can be written as

yijk = πijk + z
(1)
ijkeijk,

where z
(1)
ijk =

√
πijk(1− πijk), eijk has mean zero and variance 1, and πijk

satisfies (15.2).
A few remarks are in place. First, the above model discriminates between

level 1 and higher level variation. In particular, random disturbances at levels
2 and 3 appear on the logit scale, in contrast to the level 1 binomial variation
which appears on the probability scale. Second, the conditional probability of
observing a response is actually modeled, where conditioning takes place on
the unobserved random variables vk and ujk.

Third, to proceed with inference, we can maximize the marginal likelihood
function obtained after integrating out the random effects. Since the resulting
expression is intractable, one needs to resort to numerical integration, such
as Gaussian quadrature (Anderson and Aitkin 1985) or Markov Chain Monte
Carlo techniques (Zeger and Karim 1991), but this can become computation-
ally prohibitive. Approximate procedures have therefore been proposed to cir-
cumvent the problem. Breslow and Clayton (1993), for instance, exploit the
penalized quasi-likelihood (PQL) estimator by applying Laplace’s method for
integral approximation. They also consider marginal quasi-likelihood (MQL),
a name they give to a procedure previously proposed by Goldstein (1991).
These two approaches entail iterative fitting of linear models based on first-
order Taylor expansions of the mean function about the current estimated
fixed part predictor (MQL) or the current predicted value (PQL).
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As Rodŕıguez and Goldman (1995) demonstrate, these approximate proce-
dures may be seriously biased when applied to binary response data. Their
simulations reveal that both fixed effects and variance components may suffer
from substantial, if not severe, attenuation bias in certain situations. Gold-
stein and Rasbash (1996) show that including a second-order term in the
PQL expansion greatly reduces the bias described by Rodŕıguez and Gold-
man. Other authors have advised the introduction of bias-correction terms
(Lin and Breslow 1996) or the use of iterative bootstrap (Kuk 1995) among
other things.

15.1.3 Weighting in Multilevel Models

The issue of weighting in multilevel models has not been extensively investi-
gated until quite recently (Pfeffermann et al. 1998). A reason might be that
sampling schemes are commonly ignored in multilevel analyses of survey data
since multilevel models enable the analyst to incorporate certain character-
istics of the sampling design as covariates (e.g., stratification variables), al-
though this argument breaks down when the relevant information is not made
available or when it is not scientifically meaningful to be included in the model.
When the sample selection probabilities are related to the response variable
even after conditioning on covariates of interest, the conventional estimators
of the model parameters may be biased, hence the need to study weighting
procedures that attempt to correct for this bias.

It should be emphasized that weighting in multilevel models is not a trivial
extension of conventional methods of weighting. One key feature of the mul-
tilevel approach is that sample inclusion probabilities can be defined at any
stage of the hierarchy, conditionally on the membership to clusters from higher
levels. Thus, municipality k is selected with inclusion probability πk, house-
hold j is selected with probability πj|k within municipality k, and individual
i is sampled with probability πi|jk within household j from municipality k.
Unconditional selection probabilities can be derived from suitable products
of conditional probabilities (e.g., πjk = πkπj|k denotes the probability that
municipality k is sampled and that, within this municipality, household j is
selected).

The approach Pfeffermann et al. advocate consists of substituting, in the
IGLS sample estimators, each sum over units at a given level by a correspond-
ingly weighted sum, using (inverse) conditional selection probabilities as de-
fined above. When the sample inclusion probabilities (and hence the weights)
are independent of the random effects, they show that a simple transformation
of the variables specified in the random part of the model is sufficient. The
appropriate transformation is:

• replace z
(1)
ijk by w

−1/2
k w

−1/2
j|k w

−1/2
i|jk z

(1)
ijk = w

−1/2
ijk z

(1)
ijk,

• replace z
(2)
ijk by w

−1/2
k w

−1/2
j|k z

(2)
ijk = w

−1/2
ij z

(2)
ijk,

• replace z
(3)
ijk by w

−1/2
k z

(3)
ijk,
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where the weights are defined by

wk = π−1
k , wj|k = π−1

j|k, wi|jk = π−1
i|jk.

Note that the weights should be rescaled in the above transformation in such
a way that they have a mean of unity. The main advantage of this procedure is
that it can easily be implemented with any standard software package which
allows fitting of multilevel models.

If the weights are not independent of the random effects at a certain level
(the sampling mechanism is then said to be informative), this leads to a more
complicated procedure but the above authors conclude that, in this situation,
the above step should produce acceptable results in many cases, though it can
give biased estimates in some circumstances.

Finally, extra calculations are needed to obtain appropriate standard errors,
but an easy solution is to use the robust or sandwich estimator instead, as
advised in the MLwiN package (Section 15.1.4).

15.1.4 Specialized Software

This section is not devoted to general purpose software packages, such as SAS,
SPlus, Stata, or SPSS, that have special built-in capabilities for multilevel
modeling but, rather, to one specialized package named MLwiN. Details on
other software packages specifically designed for multilevel modeling can be
found, for example, on the Multilevel Models Project homepage at the address

http://multilevel.ioe.ac.uk/.
A review of many multilevel programs is also available at

http://www.stat.ucla.edu/̃deleeuw/software.pdf.
MLwiN and its older DOS incarnation MLn are the most extensive multilevel
packages and were developed by researchers working on the Multilevel Models
Project at the Institute of Education in London. It is of course beyond the
scope of this chapter to provide a detailed description of all the functionalities
available in MLwiN but we can emphasize a few interesting characteristics.
Obviously, MLwiN allows fitting of linear models (using IGLS or RIGLS es-
timation) but it can also handle models for discrete responses (binomial data
and counts) fitted using the MQL or PQL algorithm with first- or second-order
approximation. Other interesting features include parametric and nonparame-
teric bootstrap estimation and Bayesian modeling using Markov chain Monte
Carlo methods. Finally, the user can create his or her own macros for fitting
special models, thus making it more flexible. A series of such macros are pro-
vided with the package to fit models for categorical outcomes, survival data,
and time series, for example.

For analysis, data need to be prepared in rows corresponding to the cases
observed. The MLwiN data structure is essentially that of a spreadsheet or
worksheet with columns denoting variables and rows corresponding to obser-
vations. MLwiN can basically be operated in two modes. The user can either
submit commands directly (or store them in a file that is run in batch), or the

© 2002 by CRC Press LLC



268

model be specified through a graphical interface. In the latter case, the user
starts from the nucleus of the model and gradually builds it. This is a useful
visual aid as one can immediately see whether the specified model is as one
intended it to be.

Of the available multilevel packages, MLwiN is probably the most flexible
and most complete one, but it might take some time before the user gets
acquainted with all of its features. Additional information about the package
can be currently obtained from the web site

http://multilevel.ioe.ac.uk/features/.

15.2 Application to the HIS

For the sake of illustration, we consider two response variables: body mass
index (BMI), which will be log-transformed and analyzed as a normally dis-
tributed outcome, and a binary indicator for subjective or perceived health,
which was originally rated by the interviewees on a 5-point scale and was
dichotomized as good/very good versus other. As an attempt to find a par-
simonious model for these data, the following covariates were examined: sex,
age (eight categories), education (five categories), household income (5 cate-
gories), and smoking behavior. Note that the question about smoking behavior
was addressed only to persons aged 15 or more, thus reducing the effective
sample size from 10,221 to 8560.
In addition to the aforementioned covariates, information about the sample
design can be taken into consideration:
• stratification variables: quarter and provinces;
• size variables: province, municipality, household;
• other variables: number of groups to be interviewed within a municipality,

interviewee status (indicating whether he/she is the reference person or
his/her partner).

15.2.1 Multilevel Linear Regression: An Example

Due to unit and item non-response, 7422 out of 8560 (87%) observations were
available with complete information on the selected covariates and BMI. The
model that we will fit can be written as follows:

yijk = xTijkβ + vk + ujk + eijk, (15.3)

with vk ∼ N(0, σ2v), ujk ∼ N(0, σ2u), and eijk ∼ N(0, σ2e). Thus, the total vari-
ation in (log) BMI can be decomposed into that between individuals within
each household, that between households within municipalities, and that be-
tween municipalities. Among covariates listed above, only sex, age, education,
and smoking behavior were found to have a significant effect and were included
in the model. Second-order interaction terms of sex with age and education
were also included. Among sampling-related variables, only province, house-
hold size, and interviewee status were retained.
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The variance components (σ2v, σ2u, and σ2e) can be interpreted in terms of
intra-unit correlation. Thus, the intra-municipality correlation is defined as

ρMUN =
σ2v

σ2v + σ2u + σ2e
, (15.4)

while the intra-household correlation is equal to

ρHH =
σ2v + σ2u

σ2v + σ2u + σ2e
. (15.5)

The intra-unit correlation therefore reflects the proportion of the total vari-
ability in the outcome variable that is attributable to the clustering effect at
a certain level and, as such, is a measure of within-group homogeneity.

Table 15.1 shows the results of fitting model (15.3) to the data, using
weighted (as described in Section 15.1.3) and unweighted estimators. Robust
standard errors are reported for parameter estimates. We see that there is
generally good agreement (within standard error) between weighted and un-
weighted estimators, but that standard errors of the weighted estimators are
subject to a sometimes severe loss of efficiency. Whether this is due to the use
of the robust estimator for standard errors or to weighting itself is not entirely
clear. As illustrated by Graubard and Korn (1994) for example, weighted esti-
mates generally tend to be more variable than unweighted estimates, especially
as sample weights become more variable. In the HIS, the unscaled weights wk
and wi|jk were characterized by a mean of 4.17 and 1.04 and standard devia-
tion of 4.43 and 0.21, respectively, thus revealing substantial variability at the
municipality level. Note that it is assumed there is no differential sampling at
the household level.

The estimated variance components show that there is little clustering effect
at the municipality level and a moderate effect at the household level, with
an estimated value of 0.19 for ρHH. An estimate for the standard error of this
parameter was obtained using the delta method for a ratio of two parameters
(Herson 1975).

Finally, some diagnostic plots were examined (not shown). Thus, a plot of
the level 1 residuals versus fixed part predictor did not reveal any special
pattern, while normal probability plots of standardized residuals (at levels 1,
2, and 3) did not show any severe departures from the normality assumption,
only pointing to a few extreme values.

15.2.2 Multilevel Logistic Regression: An Example

In this section, we consider an indicator for perceived health as our binary
response variable. Due to unit and item non-response, 7254 out of 8560 (85%)
observations were available for analysis. We will consider model (15.2), in-
cluding random intercepts at the household and municipality levels. Variance
components can no longer be interpreted in simple ‘intra-unit correlation’
terms, however, since such a measure now depends on the (fixed-effects) co-
variate matrix X. This follows from the mean-variance link, typical for gener-
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Table 15.1 Belgian Health Interview Survey. Multilevel linear regression model on
log(BMI). Weighted and unweighted estimators are reported with empirical standard
errors given in parentheses.

Unweighted Weighted Unweighted Weighted

β Intercept 3.140(0.021) 3.120(0.034)

Smoking (1=smoker): -0.038(0.004) -0.035(0.007)

Age (categorical): Males Females

15-24 - - -0.073(0.022) 0.076(0.033)

25-34 0.053(0.011) 0.041(0.018) -0.038(0.022) -0.014(0.034)

35-44 0.088(0.009) 0.087(0.023) -0.035(0.023) -0.017(0.038)

45-54 0.125(0.011) 0.115(0.019) -0.041(0.022) -0.027(0.033)

55-64 0.158(0.012) 0.152(0.018) -0.067(0.027) -0.040(0.037)

65-74 0.149(0.012) 0.124(0.016) -0.068(0.022) -0.033(0.037)

75+ 0.079(0.014) 0.068(0.020) -0.047(0.025) -0.035(0.036)

Education: Males Females

No diploma - - - -

Primary -0.065(0.021) -0.044 (0.033) 0.073(0.027) 0.055(0.035)

Lower secondary -0.089(0.019) -0.082(0.033) 0.095(0.021) 0.098(0.034)

Higher secondary -0.106(0.019) -0.091(0.033) 0.097(0.022) 0.088(0.035)

Higher -0.151(0.020) -0.135(0.034) 0.122(0.023) 0.108(0.034)

Provinces:

Brussels - -

Antwerpen -0.001(0.007) 0.005(0.008)

Vlaams Brabant -0.005(0.008) -0.003(0.009)

Limburg 0.013(0.012) 0.012(0.021)

Oost-Vlaanderen 0.007(0.008) 0.009(0.008)

West-Vlaanderen -0.017(0.007) 0.028(0.013)

Brabant Wallon 0.022(0.014) 0.028(0.014)

Hainaut 0.029(0.007) 0.036(0.010)

Liege 0.022(0.009) 0.010(0.017)

Luxembourg 0.025(0.010) 0.023(0.009)

Namur 0.022(0.009) 0.025(0.014)

German community 0.009(0.008) 0.008(0.010)

Household size: 0.005(0.002) 0.006(0.002)

Interviewee status: 0.034(0.007) 0.035(0.010)

σ2
v 0.000(0.000) 0.000(0.000)

σ2
u 0.004(0.000) 0.004(0.001)

σ2
e 0.019(0.001) 0.019(0.003)

ρ†HH 0.190(0.016) 0.199(0.025)

† Standard errors were calculated using the delta method.

alized linear models, but absent in the normally distributed case. Approximate
estimates can be produced nonetheless, albeit dependent on the set of covari-
ates included in the model, as explained by Goldstein, Browne and Rasbash
(2000)∗. It should also be noted that a ‘global’ intra-unit correlation measure
similar to (15.4) and (15.5) can be calculated, provided that the model can

∗ Unpublished manuscript that can be downloaded at
http://multilevel.ioe.ac.uk/team/currpap.html.
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be formulated as a threshold model, i.e., if it can be assumed that the ob-
served binary response arises from an underlying continuous unobserved (or
latent) variable in such a way that a ‘1’ is observed when a certain threshold
is exceeded.

Another issue is related to weighting. The original paper by Pfeffermann
et al. was framed in the context of multilevel linear models. In the MLwiN
help, it is argued that a similar procedure applies to multilevel generalized
linear models, the main difference being that level 1 is defined by the bino-
mial variation and a method of incorporating the weights is to work with
wijknijk instead of nijk as the denominator. The weighted explanatory vari-
ables at levels 2 and higher retain their meaning. We found this procedure to
be numerically unstable in our case, however. The procedure was run on three
different binary outcomes. With two of them (including the perceived health
indicator), it did not converge, and in the last instance the final results were
quite dramatically different from the unweighted analysis. It is not clear if the
problem stems from the weighting scheme used in our example or from the
procedure itself, but we cannot recommend its use in the multilevel logistic
model until it is more thoroughly explored.

Table 15.2 shows the results of the unweighted analysis for the perceived
health indicator. Among the original covariates, all were found important and
included in the model. An interaction term between smoking behavior and age
was also included. Among design-related covariates, only province indicator
and size (household, municipality) variables were retained.

We allowed for an extra-dispersion parameter in the model, i.e., we assume
that

yijk = πijk + z
(1)
ijkeijk,

where eijk has mean zero and variance σ2e . As can be seen from Table 15.2,
the estimated value of σ2e strongly suggests that there is under-dispersion. Es-
timated variance components again reveal that there is almost no clustering
effect at the municipality level compared to the household level. Note that
a normal probability plot of standardized residuals at the household level
showed a marked departure from normality, thereby making the appropriate-
ness of the model to these data questionable.

15.3 Concluding Remarks

Multilevel data structures commonly occur in practice and sample survey data
are no exception, especially given the widespread use of multistage sampling
schemes. Multilevel regression models therefore constitute a natural tool that
can be employed to account for the clustering aspect present in survey data. In
addition to taking the hierarchical nature of the data explicitly into account,
the great advantage of such models is that they allow the data analyst to eas-
ily incorporate covariates referring to certain characteristics of the sampling
design, such as strata or size variables. If, conditionally on these characteris-
tics, the sampling design is not informative, the analyst can simply proceed
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Table 15.2 Belgian Health Interview Survey. Multilevel logistic regression model on
perceived health indicator. Unweighted estimators are reported with robust standard
errors given in parentheses.

Parameters Est. (s.e.) Parameters Est. (s.e.)

β Intercept 1.427(0.290)

Sex (1=male): 0.508(0.080)

Age (categorical): Non-smokers Smokers

15-24 - -0.540(0.303)

25-34 -0.531(0.221) -0.081(0.245)

35-44 -1.298(0.204) -0.368(0.166)

45-54 -1.701(0.204) -0.226(0.180)

55-64 -2.250(0.203) 0.037(0.251)

65-74 -2.445(0.209) -0.324(0.233)

75+ -2.814(0.217) -0.112(0.424)

Education: Household income:

No diploma - < 20,000 -

Primary 0.240(0.206) 20,000-30,000 -0.180(0.177)

Lower secondary 0.560(0.191) 30,000-40,000 0.179(0.164)

Higher secondary 0.998(0.197) 40,000-60,000 0.510(0.170)

Higher 1.301(0.208) > 60,000 0.982(0.213)

Provinces: Household size: 0.110 (0.035)

Brussels - Municipality size: -0.163(0.058)

Antwerpen 0.727(0.185)

Vlaams Brabant -0.080(0.186) σ2
v 0.054(0.036)

Limburg 0.118(0.224) σ2
u 3.050(0.157)

Oost-Vlaanderen 0.454(0.216) σ2
e 0.476(0.023)

West-Vlaanderen 0.664(0.228)

Brabant Wallon -0.118(0.141)

Hainaut -0.431(0.155)

Liege -0.417(0.204)

Luxembourg 0.274(0.225)

Namur -0.155(0.151)

German community 0.350(0.234)

with the analysis. When this is not the case, conventional estimators may be
biased and a weighting procedure can be used in an attempt to remove this
bias.
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APPENDIX A

Bahadur Parameter Space

Lieven Declerck

European Organization for Research and Treatment of Cancer, Brussels, Bel-
gium

A.1 Restrictions on the Bahadur Model Parameters

In Section 4.1.1, it was suggested that the Bahadur model, unlike other models
such as the beta-binomial model, has a heavily constrained parameter space.
The beta-binomial model features all non-negative correlations, implying that
there are only very mild constraints on the parameter space of this model. The
restrictions on the Bahadur model parameters are much more complicated
and stringent. Bahadur (1961) indicates that the sum of the probabilities of
all possible outcomes is one, even when higher order correlations are set equal
to zero. However, the requirement of having non-negative probabilities for all
possible outcomes results in restrictions on the parameters. This holds even
in the case of a Bahadur model with all higher order associations involved.

In this appendix, based on Declerck, Aerts and Molenberghs (1998), we
study the nature of the restrictions of the parameter space of the Bahadur
model. Throughout the appendix, the subscript referring to the cluster is
omitted in order to simplify notation.

Bahadur (1961) discusses the restrictions on the second order correlation
when all higher order associations are left out. He shows that the second order
approximation is a probability distribution if and only if

− 2
n(n− 1)

min
(

π

1− π
,

1− π

π

)
≤ ρ(2) ≤ 2π(1− π)

(n− 1)π(1− π) + 0.25− γ0
,(A.1)

where
γ0 =

n
min
z=0

{
[z − (n− 1)π − 0.5]2

}
.

Bounds of the second order correlation ρ(2) are graphically represented in
Figure A.1 for smaller litter sizes (n = 2, 3, 4, 5) and in Figure A.2 for larger
litters (n = 7, 10, 12, 15). The lower bound for ρ(2) in a two-way Bahadur
model attains its smallest value −2/(n(n−1)) at the malformation probability
π = 0.5. This bound quickly approaches zero as the litter size n increases.
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Figure A.1 Boundaries for the second order correlation of the two-way, three-way
and four-way Bahadur model for some smaller litter sizes.

When n = 2, the upper bound for ρ(2) is one, independent of π. For larger
values of n, the upper bound depends on π and varies between 1/(n− 1) and
2/(n− 1). As a consequence, the upper bound is in the range (0.09; 0.18) for
litters of size 12. As litter size increases, the restrictions on ρ(2) of Bah(2)
become more severe.

Kupper and Haseman (1978) also consider the two-way Bahadur model
and present numerical values for the constraints on ρ(2) for choices of π and
n. Prentice (1988) studies the constraints in Bah(2) for any n. Furthermore,
when the size of the clusters equals three, he argues that including the third
order correlation removes the upper bound on ρ(2). However, it will be shown
here that the requirements he verifies are necessary but not sufficient.

The parameter space of the general Bahadur model seems to be only par-
tially known. The upper and lower bound of the second order correlation in
Bah(3) and Bah(4) will be studied here. This leads to a clearer insight in the
properties and usefulness of this model in general and in the behavior of the
LR statistic in particular.

First, the focus is on the three-way Bahadur model. An analytical procedure
that can handle any cluster size is developed. Explicit expressions for the
bounds of ρ(2) are derived. These bounds are constructed such that for any
value of ρ(2) between the lower and upper bound (both depending on the
specified values of n and π), there exists at least one value of ρ(3) leading to
a valid probability mass function.
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Figure A.2 Boundaries for the second order correlation of the two-way, three-way
and four-way Bahadur model for some larger litter sizes.

The constraints on ρ(2) in Bah(3) for n = 3 are depicted in Figure A.1.
Although this model is saturated in the sense that only clusters of size three
are considered and two- and three-way correlations are included, still not all
positive pairwise correlations are allowed. This is due to the condition that
ρ(3) ∈ [−1, 1].

Constraints on ρ(2) for n = 4 are also shown in Figure A.1. The small values
of the upper bound for extreme malformation probabilities are again due to
the constraint −1 ≤ ρ(3) ≤ 1.

For larger cluster sizes, boundaries for ρ(2) in a three-way Bahadur model
are represented in Figures A.1 and A.2. For these clusters, the upper bound
is very similar to the one of Bah(2), except for extreme values of π. Further-
more, it seems that the effect of adding a third order correlation to a two-way
Bahadur model results in an upper bound for ρ(2) being almost independent
on π. Compared to Bah(2), the range of negative ρ(2) is enlarged for small
and large π.

Next, the focus is on the four-way Bahadur model. The analytical method
described in Appendix A for Bah(3) can be extended to Bah(4). Developing
first an expression for the constraints on ρ(4), the restrictions on ρ(3) are
then derived, which finally result in the bounds for ρ(2). For any specified
values of n and π, the lower and upper bound for the pairwise correlation is
such that for any ρ(2) between these bounds, there exists at least one pair
(ρ(3), ρ(4)) leading to a valid probability mass function. Dealing with large
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clusters, Figure A.2 shows that compared to Bah(3), the range of allowable
positive pairwise correlations of Bah(4) increases markedly, except for extreme
values of π. The range of negative second order correlations remains very
narrow.

In principle, constraints on ρ(2) for five- and higher-way Bahadur models
can be calculated by generalizing the analytical procedure given for Bah(4).

Besides this analytical method, also a numerical procedure was developed
to compute the bounds for the pairwise correlation in Bah(3) and Bah(4).
This second procedure is used to check the calculations of the constraints
on ρ(2). The numerical method is described here for Bah(3). First, the upper
bound is calculated corresponding to some specified malformation probability.
The starting value for the upper bound for ρ(2) is based on expression (A.1).
Then, an increment is given to the starting value and by screening the interval
[−1, 1], a value of ρ(3) leading to a valid probability mass function is searched
for. If such a value is found, an increment is given to the improved ρ(2) and the
procedure is repeated. Otherwise, step halving is used and it is investigated
whether a value of ρ(3) can be found resulting in non-negative probabilities for
all outcomes. When improvements of the upper bound become smaller than
some cut-off value, computations corresponding to the specified malformation
probability are stopped. Next, an increment is given to π and the values of
ρ(2) and ρ(3) corresponding to the previous π are used as starting values for
the current malformation probability. The upper bound for ρ(2) is found for
a grid of values of π. An analogous procedure is used to get lower bounds.
It turns out that the results of the analytical and numerical procedures are
essentially identical.

The findings are consistent with the results from both the asymptotic study
and the analysis of the NTP data. Fitting a Bah(2) null model, the association
parameter β̂2 captures part of the omitted dose effect. However, due to the (in
general severe) restrictions on the second order association, this parameter is
tied to a small range. This has some implications when dealing with strong
dose effects in the underlying model. On the one hand, this results in values
of β̂2 being smaller than for the beta-binomial model. On the other hand,
the likelihood of the two-way Bahadur null model is smaller than the one of
beta-binomial for which the constraints on the association parameter are very
mild. In the case of the asymptotic study, the likelihood of the Bah(2) and
beta-binomial alternative models is equal when there is no association in the
underlying model. In the case of the NTP data, the difference between the
likelihood of these two alternative models is minor relative to the null models.
In conclusion, the likelihood of alternative and null models results in inflated
values of the LR statistic when testing the null hypothesis of no dose effect.

In the previous discussion, artificial samples are generated without corre-
lation in the underlying Bahadur model. Now, the focus is on the correlated
case. With increasing dose effect, the association parameter of the two-way Ba-
hadur null model will reach more quickly the boundary since there is already
an association in the absence of dose effect. Here, an analogous explanation
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as for the case without association can be given for the behavior of the LR
statistic.

Finally, the inclusion of a third order correlation into a two-way Bahadur
model hardly changes the upper bound for ρ(2). This leads to values of the LR
statistic being comparable to the ones under Bah(2). When adding a fourth
order correlation, the constraints on ρ(2) are relaxed strikingly. As a conse-
quence, the Bah(4) null model is much more likely than the Bah(2) and Bah(3)
null models. Hence, the LR statistic results in values closer to the ones under
beta-binomial. This finding clearly needs to be addressed carefully. In order
to gain some additional insight, some binomial, beta-binomial and Bahadur
distributions are displayed in Figure A.3. All distributions assume π = 0.5
and the cluster size is chosen to be n = 20. One striking observation is that
the probability mass for the Bahadur model with only two-way association is
bimodal for ρ(2) sufficiently large. It can be shown that when ρ(2) increases,
the trough between the two modi reaches zero when the second order cor-
relation reaches its upper bound, i.e., ρ(2) = 0.1. When ρ(3) is added, the
mass function is skewed as is obvious from definition (4.1). Considering the
curve for ρ(2) = 0.05, ρ(3) = 0 and ρ(4) = 0.01 is very insightful. Indeed,
relative to the curve with only two-way association, the bimodal shape has
disappeared, the curve is much closer to the binomial model, but the tails are
thicker, which is in line with the concept of kurtosis. Thus, it seems that a
plausible form of overdispersion is captured, not by merely adding ρ(2), but
by adding ρ(2) and ρ(4). Observe, however, that the form of this distribution
is still fairly different from the beta-binomial one. Since in the analysis of the
NTP data, overdispersion seems to be more of an issue than skewness, ρ(3)
adds little to the picture in this case. In general, since ρ(3) merely skews the
distribution, rather than pulling up the trough, it is not surprising that ρ(3)
only marginally relieves the bounds on ρ(2), whereas ρ(4) has a considerably
stronger effect. This effect of ρ(4) is seen not only by the disappearance of the
bimodal shape; in addition, this unimodal distribution is much closer to the
binomial distribution.

A.2 Effect on the Likelihood Ratio Test

Fitting a two-way Bahadur model, an anomalous behavior of the LR test
statistic for the null hypothesis of no dose effect is observed when analyzing
data from artificial samples and from developmental toxicity studies. Dealing
with artificial samples, the LR statistic inflates as the dose effect becomes
stronger. Analyzing the NTP data, the values of this test statistic are in
general strikingly larger than when fitting a beta-binomial model. Adding
a third order correlation to the Bahadur model most often results in the
same phenomena. However, considering Bah(4), the values of LR are more
comparable to the ones under a beta-binomial model.

The behavior of the LR statistic when fitting a Bahadur model is explained
by investigating the parameter space. Requiring a valid probability mass func-
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Figure A.3 Distribution of binomial, beta-binomial and Bahadur models.

tion, the parameters of the Bahadur model are subject to constraints. By
means of analytical, numerical and graphical methods, it is shown that the
inclusion of a third order association (playing the role of a skewness para-
meter) does not relax the upper bound of the second order correlation. In
Bah(4), the range of positive second order associations is enlarged markedly.
The combination of the second and fourth order correlations captures a more
standard form of overdispersion (by means of a unimodal distribution) than
a model with the second order association parameter only. This form shows a
better resemblance with the overdispersion captured by a beta-binomial dis-
tribution, although there are still differences. Hence, in comparison with the
LR statistic under Bah(2), the LR under Bah(4) is more comparable to the
beta-binomial version.

The price to pay for including higher order associations is computational
ease. While fitting Bah(2) is already more complex than fitting the beta-
binomial model, the conditional model or GEE versions of the Bahadur model,
even more difficulties are encountered with the Bah(3) and Bah(4) versions.
This difficulty is not due to increased computation time, but to the compli-
cated restrictions on the parameter space, which easily leads to divergence.
It seems that even careful convergence monitoring is not able to fully relieve
this problem.
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A.3 Restrictions on ρ(2) in a Three-way Bahadur Model

An analytical method for the bounds of the second order correlation in a
three-way Bahadur model is described. Let the coefficient of ρi(r) in expression
(4.1) be denoted by gr(λ, n, z). Hence, the three-way Bahadur model under
exchangeability can be written as

f(y) = πz(1− π)n−z
[

1 +
3∑
r=2

ρ(r)gr(λ, n, z)

]
.

Let the values for n and λ (or equivalently π) be arbitrary but fixed and drop
them from notation. Hence, gr(λ, n, z) is abbreviated as gr(z). Restrictions
on the Bahadur model parameters are resulting from the condition that the
probability mass function has to be non-negative for all possible outcomes
(Bahadur 1961), which for Bah(3) implies that

1 + ρ(2)g2(z) + ρ(3)g3(z) ≥ 0, (A.2)

for z = 0, 1, . . . , n. Let zP , zZ and zN be the vectors containing the values of
z for which g3(z) is positive, zero and negative respectively. Denote a general
element of zP , zZ and zN by zP , zZ and zN respectively. For each of the
elements of zP , (A.2) can be expressed as

ρ(3) ≥ −
1 + ρ(2)g2(zP )

g3(zP )
.

Analogously for zN , one obtains

ρ(3) ≤ −
1 + ρ(2)g2(zN )

g3(zN )
.

Taking into account that ρ(3) ∈ [−1, 1], the constraints for ρ(3) are:

max
[
max
zP

(
−1 + ρ(2)g2(zP )

g3(zP )

)
,−1
]

≤ ρ(3) ≤

min
[
min
zN

(
−1 + ρ(2)g2(zN )

g3(zN )

)
, 1
]
. (A.3)

In particular, in the case of clusters of size n = 3, expression (A.3) reduces to

max(−λ−1 + (2λ−1 − λ)ρ(2),−λ3 − 3λρ(2),−1) ≤ ρ(3) ≤
min(λ−3 + 3λ−1ρ(2), λ + (λ−1 − 2λ)ρ(2), 1). (A.4)

For clusters of size n = 4, the expression analogous to (A.4) depends on π
lying in the first, second, third, or fourth quarter of the [0, 1]-interval. The
derivation is straightforward but lengthy and is omitted here.

Given ρ(2) in expression (A.3), there exists at least one value of ρ(3) leading
to a valid probability mass function if and only if the lower bound is not larger
than the upper bound. Equivalently, both terms on the left hand side have

© 2002 by CRC Press LLC



280

to be smaller than or equal to both terms on the right hand side. First, this
implies for any pair (zP , zN ) that

− 1 + ρ(2)g2(zP )
g3(zP )

≤ −1 + ρ(2)g2(zN )
g3(zN )

. (A.5)

Let
∆(zP , zN ) = g3(zN )− g3(zP )

and
τ (zP , zN ) = g2(zN )g3(zP )− g2(zP )g3(zN ).

Expression (A.5) can then be rewritten as

ρ(2)τ (zP , zN ) ≥ ∆(zP , zN ).

On the one hand, for any (zP , zN ) for which τ > 0, it implies that

ρ(2) ≥ ∆(zP , zN )
τ (zP , zN )

.

On the other hand, for any (zP , zN ) for which τ < 0, it results in

ρ(2) ≤ ∆(zP , zN )
τ (zP , zN )

.

Based on these inequalities, boundaries for ρ(2) are derived:

max
(zP ,zN ):τ>0

(
∆(zP , zN )
τ (zP , zN )

)
≤ ρ(2) ≤ min

(zP ,zN ):τ<0

(
∆(zP , zN )
τ (zP , zN )

)
. (A.6)

Expression (A.3) also implies for any element of zP that

−1 + ρ(2)g2(zP )
g3(zP )

≤ 1.

On the one hand, for any zP for which g2 > 0, it leads to

ρ(2) ≥ −1 + g3(zP )
g2(zP )

.

On the other hand, for any zP for which g2 < 0, it results in

ρ(2) ≤ −1 + g3(zP )
g2(zP )

.

Based on these inequalities, boundaries for ρ(2) are derived:

max
zP :g2>0

(
−1 + g3(zP )

g2(zP )

)
≤ ρ(2) ≤ min

zP :g2<0

(
−1 + g3(zP )

g2(zP )

)
. (A.7)

Analogously, the condition that

−1 ≤ −1 + ρ(2)g2(zN )
g3(zN )
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for any element of zN implies that

max
zN :g2>0

(
−1− g3(zN )

g2(zN )

)
≤ ρ(2) ≤ min

zN :g2<0

(
−1− g3(zN )

g2(zN )

)
. (A.8)

Also the effects of the elements of zZ on the constraints on ρ(2) need to be
studied. Expression (A.2) then reduces to

1 + ρ(2)g2(zZ) ≥ 0

for any zZ . For zZ for which g2 > 0, it leads to

ρ(2) ≥ − 1
g2(zZ)

,

while for zZ for which g2 < 0, it results in

ρ(2) ≤ − 1
g2(zZ)

.

Based on these inequalities, boundaries for ρ(2) are derived:

max
zZ :g2>0

(
− 1
g2(zZ)

)
≤ ρ(2) ≤ min

zZ :g2<0

(
− 1
g2(zZ)

)
. (A.9)

From (A.6)–(A.9) and the constraint −1 ≤ ρ(2) ≤ 1, it follows that the upper
and lower bound for ρ(2) in a three-way Bahadur model can be written as

max
[
max(zP ,zN ):τ>0

(
∆
τ

)
,maxzP :g2>0

(
− 1+g3g2

)
,

maxzN :g2>0
(
− 1−g3g2

)
,maxzZ :g2>0

(
− 1
g2

)
,−1
]

≤ ρ(2) ≤

min
[
min(zP ,zN ):τ<0

(
∆
τ

)
,minzP :g2<0

(
− 1+g3g2

)
,

minzN :g2<0
(
− 1−g3g2

)
,minzZ :g2<0

(
− 1
g2

)
, 1
]
.

A.4 Restrictions on ρ(2) in a Four-way Bahadur Model

In contrast with Appendix A, this appendix deals with an analytical proce-
dure for the derivation of the constraints on the second order correlation in a
four-way Bahadur model. Again, represent the coefficient of ρi(r) in formula
(4.1) by gr(λ, n, z). One can then express the four-way Bahadur model under
exchangeability as

f(y) = πz(1− π)n−z
[

1 +
4∑
r=2

ρ(r)gr(λ, n, z)

]
.

Here, the values for n and λ are arbitrary but fixed and, hence, the coef-
ficient gr(λ, n, z) is represented by gr(z). Constraints on the parameters of
the Bahadur model are due to the condition that the density function needs
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to be non-negative for all outcomes (Bahadur 1961), which for the four-way
Bahadur model results in

1 + ρ(2)g2(z) + ρ(3)g3(z) + ρ(4)g4(z) ≥ 0, (A.10)

for z = 0, 1, . . . , n. The vectors containing the values of z for which g4(z)
is positive, zero and negative are denoted by zP , zZ and zN respectively.
Let a general element of zP , zZ and zN be represented by zP , zZ and zN
respectively. Then, expression (A.10) can be written as

ρ(4) ≥ −
1 + ρ(2)g2(zP ) + ρ(3)g3(zP )

g4(zP )

for each of the elements of zP . For zN , it follows from (A.10) that

ρ(4) ≤ −
1 + ρ(2)g2(zN ) + ρ(3)g3(zN )

g4(zN )
.

Adding the constraint ρ(4) ∈ [−1, 1], the restrictions on the four-way correla-
tion coefficient are:

max
[
maxzP

(
− 1+ρ(2)g2(zP )+ρ(3)g3(zP )g4(zP )

)
,−1
]

≤ ρ(4) ≤ (A.11)

min
[
minzN

(
− 1+ρ(2)g2(zN )+ρ(3)g3(zN )g4(zN )

)
, 1
]
.

For a particular value of ρ(2) and ρ(3) in expression (A.11), there exists at
least one value of ρ(4) resulting in a valid density function if and only if the
lower bound in (A.11) is not larger than the upper bound. Hence, each of the
terms on the left hand side needs to be smaller than or equal to each of the
terms on the right hand side. This implies, among others, that for any pair
(zP , zN ),

− 1 + ρ(2)g2(zP ) + ρ(3)g3(zP )
g4(zP )

≤ −1 + ρ(2)g2(zN ) + ρ(3)g3(zN )
g4(zN )

. (A.12)

Let

∆(zP , zN , ρ(2)) =

g4(zN )
[
1 + ρ(2)g2(zP )

]− g4(zP )
[
1 + ρ(2)g2(zN )

]
(A.13)

and

τ (zP , zN ) = g3(zN )g4(zP )− g3(zP )g4(zN ). (A.14)

One can then re-express formula (A.12) as

ρ(3)τ (zP , zN ) ≥ ∆(zP , zN , ρ(2)).

For any (zP , zN ) for which τ > 0, it results in

ρ(3) ≥
∆(zP , zN , ρ(2))

τ (zP , zN )
.
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Also, for any (zP , zN ) for which τ < 0, it implies that

ρ(3) ≤
∆(zP , zN , ρ(2))

τ (zP , zN )
.

From these inequalities, constraints on the third order correlation coefficient
are obtained:

max
(zP ,zN ):τ>0

(
∆(zP , zN , ρ(2))

τ (zP , zN )

)
≤ ρ(3)

≤ min
(zP ,zN ):τ<0

(
∆(zP , zN , ρ(2))

τ (zP , zN )

)
. (A.15)

Formula (A.11) also results in

−1 + ρ(2)g2(zP ) + ρ(3)g3(zP )
g4(zP )

≤ 1

for any element of zP . On the one hand, for any zP for which g3 > 0, it implies
that

ρ(3) ≥ −
1 + g4(zP ) + ρ(2)g2(zP )

g3(zP )
.

On the other hand, for any zP for which g3 < 0, it leads to

ρ(3) ≤ −
1 + g4(zP ) + ρ(2)g2(zP )

g3(zP )
.

Based on these inequalities, restrictions on ρ(3) are found:

max
zP :g3>0

(
−1 + g4(zP ) + ρ(2)g2(zP )

g3(zP )

)
≤ ρ(3)

≤ min
zP :g3<0

(
−1 + g4(zP ) + ρ(2)g2(zP )

g3(zP )

)
. (A.16)

In an analogous way, the condition that

−1 ≤ −1 + ρ(2)g2(zN ) + ρ(3)g3(zN )
g4(zN )

for any element of zN results in

max
zN :g3>0

(
−1− g4(zN ) + ρ(2)g2(zN )

g3(zN )

)
≤ ρ(3)

≤ min
zN :g3<0

(
−1− g4(zN ) + ρ(2)g2(zN )

g3(zN )

)
. (A.17)
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Also the effects of the elements of zZ on the boundaries for the third order
correlation have to be considered. Formula (A.10) then simplifies to

1 + ρ(2)g2(zZ) + ρ(3)g3(zZ) ≥ 0

for any zZ . For zZ for which g3 > 0, it implies that

ρ(3) ≥ −
1 + ρ(2)g2(zZ)

g3(zZ)
,

while for zZ for which g3 < 0, it results in

ρ(3) ≤ −
1 + ρ(2)g2(zZ)

g3(zZ)
.

From these inequalities, restrictions on ρ(3) are derived:

max
zZ :g3>0

(
−1 + ρ(2)g2(zZ)

g3(zZ)

)
≤ ρ(3) ≤ min

zZ :g3<0

(
−1 + ρ(2)g2(zZ)

g3(zZ)

)
. (A.18)

Based on (A.15)–(A.18) and the restriction −1 ≤ ρ(3) ≤ 1, the lower and
upper bound for the third order correlation coefficient in a four-way Bahadur
model can be expressed as

max
[

max
(zP ,zN ):τ>0

(
∆
τ

)
, max
zP :g3>0

(
−1 + g4 + ρ(2)g2

g3

)
,

max
zN :g3>0

(
−1− g4 + ρ(2)g2

g3

)
, max
zZ :g3>0

(
−1 + ρ(2)g2

g3

)
,−1
]
≤ ρ(3) ≤

min
[

min
(zP ,zN ):τ<0

(
∆
τ

)
, min
zP :g3<0

(
−1 + g4 + ρ(2)g2

g3

)
,

min
zN :g3<0

(
−1− g4 + ρ(2)g2

g3

)
, min
zZ :g3<0

(
−1 + ρ(2)g2

g3

)
, 1
]
.

Based on the previous formula, restrictions on the second order correlation
coefficient can be derived. For a particular value of ρ(2), there exists at least
one value of ρ(3) resulting in a valid distribution if and only if the lower bound
for ρ(3) is smaller than or equal to the upper bound. Hence, each of the five
terms in the lower bound of ρ(3) needs to be smaller than or equal to each
of the five terms in the upper bound. More specifically, this implies, among
others, that

max
(zP ,zN ):τ>0

(
∆(zP , zN , ρ(2))

τ (zP , zN )

)
≤ min
(zP ,zN ):τ<0

(
∆(zP , zN , ρ(2))

τ (zP , zN )

)
. (A.19)

Represent a pair (zP , zN ) for which τ > 0 by (zP1, zN1) and a pair (zP , zN )
for which τ < 0 by (zP2, zN2). Inequality (A.19) can be re-expressed as

∆(zP1, zN1, ρ(2))
τ (zP1, zN1)

≤ ∆(zP2, zN2, ρ(2))
τ (zP2, zN2)

(A.20)
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for any combination of (zP1, zN1) and (zP2, zN2). Let

ν(zP1, zN1, zP2, zN2) = τ (zP1, zN1) [g2(zN2)g4(zP2)− g2(zP2)g4(zN2)]
− τ (zP2, zN2) [g2(zN1)g4(zP1)− g2(zP1)g4(zN1)]

and

ω(zP1, zN1, zP2, zN2) = τ (zP1, zN1) [g4(zN2)− g4(zP2)]
− τ (zP2, zN2) [g4(zN1)− g4(zP1)] .

Using also expression (A.13) for ∆(zP , zN , ρ(2)), it follows from (A.20) that

ρ(2)ν(zP1, zN1, zP2, zN2) ≥ ω(zP1, zN1, zP2, zN2).

For any (zP1, zN1, zP2, zN2) for which ν > 0, it implies that

ρ(2) ≥ ω(zP1, zN1, zP2, zN2)
ν(zP1, zN1, zP2, zN2)

.

Furthermore, for any (zP1, zN1, zP2, zN2) for which ν < 0, it follows that

ρ(2) ≤ ω(zP1, zN1, zP2, zN2)
ν(zP1, zN1, zP2, zN2)

.

Based on these inequalities, constraints for ρ(2) are derived:

max(zP1,zN1,zP2,zN2):ν>0

(
ω(zP1,zN1,zP2,zN2)
ν(zP1,zN1,zP2,zN2)

)
≤ ρ(2) ≤

min(zP1,zN1,zP2,zN2):ν<0

(
ω(zP1,zN1,zP2,zN2)
ν(zP1,zN1,zP2,zN2)

)
.

In an analogous way, the other constraints for the second order correlation co-
efficient in a four-way Bahadur model are obtained. The derivation is straight-
forward but tedious and, hence, that part is omitted here.
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