
Springer Proceedings in Mathematics & Statistics

M'hamed Eddahbi
El Hassan Essaky
Josep Vives    Editors

Statistical Methods 
and Applications 
in Insurance and 
Finance
CIMPA School, Marrakech and Kelaat 
M’gouna, Morocco, April 2013



Springer Proceedings in Mathematics & Statistics

Volume 158



Springer Proceedings in Mathematics & Statistics

This book series features volumes composed of selected contributions from
workshops and conferences in all areas of current research in mathematics and
statistics, including operation research and optimization. In addition to an overall
evaluation of the interest, scientific quality, and timeliness of each proposal at the
hands of the publisher, individual contributions are all refereed to the high quality
standards of leading journals in the field. Thus, this series provides the research
community with well-edited, authoritative reports on developments in the most
exciting areas of mathematical and statistical research today.

More information about this series at http://www.springer.com/series/10533

http://www.springer.com/series/10533


M’hamed Eddahbi • El Hassan Essaky
Josep Vives
Editors

Statistical Methods and
Applications in Insurance
and Finance
CIMPA School, Marrakech and Kelaat
M’gouna, Morocco, April 2013

123



Editors
M’hamed Eddahbi
Department of Mathematics
Université Cadi Ayyad
Marrakesh
Morocco

El Hassan Essaky
Faculté Polydisciplinaire de Safi
Université Cadi Ayyad
Safi
Morocco

Josep Vives
Faculty of Mathematics
University of Barcelona
Barcelona
Spain

ISSN 2194-1009 ISSN 2194-1017 (electronic)
Springer Proceedings in Mathematics & Statistics
ISBN 978-3-319-30416-8 ISBN 978-3-319-30417-5 (eBook)
DOI 10.1007/978-3-319-30417-5

Library of Congress Control Number: 2016933327

Mathematics Subject Classification (2010): 91B30, 60H07, 60H35, 60G51, 60E07, 60J65, 60G52,
62P05, 91B28, 60H30, 91G80, 91G20, 90B30, 60J75, 62M10, 60H10, 60G44, 93E20, 60G55, 60H20,
60H99

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland



The original version of the book
frontmatter was revised: Book subtitle was
corrected. The erratum to the book
frontmatter is available at
DOI 10.1007/978-3-319-30417-5_10

http://dx.doi.org/10.1007/978-3-319-30417-5_10


Preface

This book is an outcome of the CIMPA-UNESCO-MESR-MINECO-MOROCCO
research school entitled “Statistical Methods and Applications in Finance and
Actuarial Science”. The research school, organized by the Cadi Ayyad University
in Marrakech, in collaboration with the International Centre for Pure and Applied
Mathematics (CIMPA), was held in Marrakech and Kelaat M’gouna between 8 and
20 April 2013.

This volume of proceedings from the conference provides an opportunity for
readers to engage with the lecture notes for two of the courses and seven refereed
papers that were presented during the school.

The volume comprises two parts. The first is devoted to applications in Finance
and includes a series of lectures presented by F. Viens during the conference
entitled “A didactic introduction to risk management via hedging in discrete and
continuous time” as well as three refereed contributions. The first of these, by
M. Eddahbi and S.M. Lalaoui Ben Cherif, entitled “Sensitivity analysis for
time-inhomogeneous Lévy process: a Malliavin calculus approach and numerics”,
is devoted to the study of sensitivity analysis, with respect to the parameters of the
model, within the framework of a time-inhomogeneous Lévy process. The second,
by N. Privault and D. Yang, is entitled “Variance GGC asset price models and their
sensitivity analysis” and treats the problem of computation of sensitivities or Greeks
under different examples of Lévy type models. On the other hand, the third con-
tribution, by J. Vives, entitled “Decomposition of the pricing formula for stochastic
volatility models based on Malliavin-Skorohod type calculus”, treats the problem of
obtaining decompositions of the derivative price formula for stochastic volatility
jump diffusion models that clarify the exact role of correlation and jumps in
derivative prices.

The second part of this volume is devoted to applications to Insurance and the
study of stochastic differential equations of different types. This part opens with the
lecture notes for the course by B. Djehiche, entitled “Statistical estimation tech-
niques in life and disability insurance—a short review”. This lecture is a short
introduction to some basic aspects of statistical estimation techniques known as
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graduation techniques in life and disability insurance. Subsequently, four refereed
contributions are included. The contributions by A. Al-Hussein, A. Al-Hussein and
B. Gherbal, entitled respectively “Necessary and sufficient conditions of optimal
control for infinite dimensional SDE” and “Sufficient conditions of optimality for
forward-backward doubly SDEs with jumps”, are devoted to optimal control
problems. The contribution by M. Benabdallah, S. Bouhadou and Y. Ouknine,
entitled “On the pathwise uniqueness of solutions of one-dimensional stochastic
differential equations with jumps”, treats the problem of uniqueness of the solution
of one-dimensional stochastic differential equations with jumps, and finally the
contribution by E.H. Essaky and M. Hassani, entitled “BSDE approach for Dynkin
game and American game option”, is devoted to study of the existence of a value as
well as a saddle point for a Dynkin game under weaker conditions. This contri-
bution also discusses American game option pricing problems in finance and their
relationship with backward stochastic differential equations with double reflecting
barriers.

Marrakech M’hamed Eddahbi
Safi El Hassan Essaky
Barcelona Josep Vives
November 2015
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Finance



A Didactic Introduction to Risk
Management via Hedging in Discrete
and Continuous Time

Frederi Viens

Abstract The following is based on a series of lectures which the author presented
at a graduate training workshop in April 2013, organized by the Ecole nationale
des sciences appliquées of the Université Cadi Ayyad in Marrakech, Morocco, and
partially financed by the CIMPA (International Center for Pure and Applied Math-
ematics). The author expresses his gratitude to the CIMPA and the main organizers
Profs. M’hamed Eddahbi, Khalifa Es-sebaiy, Youssef Ouknine, and Josep Vives, for
their work, support, and hospitality. The style of these notes is deliberately informal
and didactic, with no formal development of a full mathematical theory. The intended
audience includes finishing undergraduate students (3years of college) and first year
graduate students (4years of college), with some basic background in calculus, linear
algebra, differential equations, and probability. No prior knowledge of investment
finance or actuarial science is required. No references are provided in the text. An
excellent further treatment of many of the topics listed herein can be found in a book
currently recommended by the Society of Actuaries for its treatment of “Financial
Economics”: Robert L.McDonald:DerivativesMarkets (3rd Edition, 2012), Pearson
Series in Finance.

Keywords Risk management ·Option pricing ·Overnight profit ·Market making ·
Actuarial mathematics

Mathematical Subject Classification 2010 91G20 · 91B30 · 60J65

F. Viens (B)
Purdue University, West Lafayette, IN, USA
e-mail: viens@purdue.edu

© Springer International Publishing Switzerland 2016
M. Eddahbi et al. (eds.), Statistical Methods and Applications in Insurance
and Finance, Springer Proceedings in Mathematics & Statistics 158,
DOI 10.1007/978-3-319-30417-5_1
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4 F. Viens

1 Introduction: Basic Insurance Question (Casualty)

Assume a home value is $100,000, and the chance of it burning down is= 0.01 (1%).
Also assume that an insurer insures homes which are independent and identically
distributed.1

Therefore the expected loss per house = 105 × 10−2 = $1,000. Indeed, the
loss variable is 100,000X where X is a Bernoulli r.v. with parameter p = 0.01
(i.e. X equals 1 with probability 0.01 and 0 otherwise)

→ Pricing of the insurance claim needs to cover this expected loss plus the cost
of running an insurance business (e.g. employee salaries), minus the interest earned
on clients’ premiums.

→ But what if major a event occurs? The insurance company would need more
cash to cover large losses.

1. Company must hold capital reserves: The Central Limit Theorem says the more
i.i.d. clients one holds, the less reserve per capital one might need. Indeed:
Let X (N ) := 105(

∑N
i=1 Xi )

1
N : here Xi i.i.d. Bernoulli (parameter p = 0.01),

thus X (N ) is the per-capital reserve. We have of course E
[
X (N )

] = 105 pN/N =
1,000. However,

√
Var(X (N )) = 105

√
Np(1 − p)

1

N
= 1000√

N

which shows that the spread of the per-capita reserve decreases like constant/
√
N .

More specifically, to be 95% sure that one can cover all losses, we can look for the
amount of per-capita reserve ε beyond the average per-capita reserve of $1,000
such that the chance of the actual per-capita loss exceeding that level is 5%: find
ε such that

P(X (N ) > 103 + ε) = 0.05

⇐⇒ P(
X (N ) − 1000

104 1√
N

>
ε

104 1√
N

) = 0.05

⇐⇒ P(N (0,1) >
ε

104 1√
N

) = 0.05 approximately, by the CLT

⇐⇒ ε

104 1√
N

� 1.645 approximately, using a normal table

⇐⇒ ε = 16450√
N

.

1This could be an abusive assumption if an insurer insures all the homes in a given high-risk area,
such as a coastal flood plain or a town in the U.S. midwest in an area which is prone to tornados.



A Didactic Introduction to Risk Management … 5

We conclude that

• If we have 10,000 customers, then excess reserve needed per customer equals
ε = $164,5.

• But if we have 1,000,000 customers, then this excess reserve decreases to
ε = $16,45.
Hence the use of aggregating as many customers as possible, to take advantage
of this phenomenon of risk diversification (as long as our customers are i.i.d).

2. However, there is another way to manage risk: Use Reinsurance.
Ask a reinsurance company to take on the risk associated with very large events
only. If the total value Claim of all claims exceed a certain level K , the reinsurer
pays the insurer Claim − K to cover those claims in excess of the large value K ;
otherwise the reinsurer pays nothing: thus the reinsurer pays

• max(Claims − K ,0) : This is the payoff of a call option where the asset =
total claims and the strike price = K = level where reinsurance kicks in.

• This contract can also be thought of as a put option for the insurer: the insurer
has the right to sell to the reinsurer all the contracts that lost money: thus
insurer may sell to reinsurer the negative quantity −Claims if that amount is
less than −K ; hence the contract payoff is max(−K − (−Claims),0).

In any case, there is a need to price this payoff, i.e. this contingent claim
max(Claims − K ,0).
Question: Can the reinsurance use the same method of pricing excess reserves
ε per client, as the insurance company does with its own individual clients? Here
the reinsurer’s clients are individual insurance companies. Therefore...
Answer isTypically NO: indeed the typical number of clientsM for the reinsurer
is never as large as N = 10,00,000, so can’t rely on “diversification of risk”,
the reinsurer cannot use the CLT because the number of insurance companies
(or contracts) M for a reinsurer is usually too small.

3. Need a new pricing method for reinsurance: Hedging.
This method would be common to both reinsurance and financial derivatives
markets; it is the method of derivatives (e.g. options) pricing.
The word “Claims” can be replaced by the more generic term “value of a risky
asset or index” ; this asset could be a stock price S = {S (t) ; t ∈ [0,T ]}.
Basic idea of hedging: a market maker sells a call option with strike price K ,
payoff CT = max(S (T ) − K ,0).

• Question: can we try to hedge this payoff ahead of time by investing in the
stock S and in a risk-free account with short rate r?

• IF the answer is “Yes this can be done perfectly”, then the value of the call
option at any time t prior to maturity T (t ≤ T ) is exactly the value of the
hedging investment (portfolio). In the language of insurance, this value is the
premium of the call option at time t , the value one would pay to buy the claim
at time t .
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Equivalently, at time t = 0 (say), one only needs to make an investment equal
in value to the hedging portfolio, and rebalance the portfolio over time so that
its value remains equal to what it is supposed to be at any time t ≤ T , then
this portfolio will be exactly equation to the payoff CT = max(S (T ) − K ,0)
at time T .

• Answer to the question:
Answer is Yes, in discrete time: there’s a perfect answer (perfect hedging
portfolio) using the binomial model.
However, typically, the binomial model work well for time step h = 1 day, but
is much to show for very liquid asset high frequency (h = 5 min). For the HF
question, there is a perfect continuous time theory.
Answer is Yes, in continuous time: the Black-Scholes model also leads to a
perfect hedging portfolio, but one must be allowed to trade continuously.

4. In practice: one typically uses a continuous-time model such as Black-Scholes,
but one only follows its hedging portfolio discretely in time; this discretization
leads to hedging errors.

• In other words, hedging in practice is never perfect.
• Hedging errors can be large if a large asset price swing occurs in a short period.
• The market maker may try to immunize her position against such risks. One
way to do this is to buy a financial derivative that is related to the one she
sold. We will see below that if we sell a call option, we can buy a certain
amount of another call option to cover some of the risk, using a procedure
called delta-gamma hedging.

In the sequel we will use the following numerical values to illustrate the three
types of basic hedges (binomial, continuous-time Black-Scholes, discretized version
of continuous-time Black-Scholes), as well as delta-gamma hedging (also a discrete
hedge for continuous-time Black-Scholes):

• Stock S, S0 = 40.

– Stock’s volatility is σ = 0.3.

• Time step Δt = h = 1
365 = one day.

• We sell the call option C40(0,S0) with

– Strike price K = 40 (“at the money”).
– Maturity T = 91

365 (3months).

• Short rate r = 0.08.
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2 Binomial Option Pricing

Themost general one-periodmodel for option pricing is a risk-free asset whose value
at time 0 is B0 = 1 and at time h is Bh = erh , plus the following stock model:

new stock value if it goes “up”: S0u option payoff = Cu

↗
intial stock value: S0

↘
new stock value if it goes “down”: S0d option payoff = Cd

For example, for a call with strike price K , we have Cu = max (0; S0u − K ) and
Cd = max (0;S0d − K ). Here u and d are fixed values, and we assume d < u; using
d > 1 or d ≤ 1 are both legitimate, as long as we have d < erh < u which is needed
to avoid arbitrage. Note that we did not specify the probability of the stock going up
or down; these so-called objective probabilities are not needed to price and hedge
the option.

• Hedging question
Find a portfolio � = (b,y) with y shares of S at time 0 and b dollars in risk-free
asset at time 0, such that value V �(h) at time h = exactly Cu if stock went “up”
and Cd if stock went “ down”. Therefore we have the following values for the
portfolio at times 0 and h

V l(0) = b + yS0,

V l(h) = berh + ySh =
{
berh + yS0u if stock went “up”
berh + yS0d if stock went “down”

.

To have a perfect hedge, only need to require that we replicate the option, i.e.
{
berh + yS0u = Cu

berh + yS0d = Cd
.

This is a system with two unknowns b and y. and a unique solution (a perfect
hedge)

y = Cu − Cd

u − d
; b = e−rh uCu − dCd

u − d
.

• Pricing question
The price of the option at time 0 should be the value V � (0) of the hedging portfolio
� at time 0:

Price of option at time 0 = V � (0) = b + yS0

with the values y and b given above.
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• Probabilistic interpretation of the option price

Let qu = erh − d

u − d
∈ (0,1); then we find, after some simple algebra, that

V l(0) = e−rh(quCu + (1 − qu)Cd).

We can interpret this as saying that V � (0) is the discounted expected value of the
option payoff at maturity (at time h) under a model in which the probability of
going up is qu , and therefore the probability of going down is 1 − qu : the payoff is

payoff at time 1 = Xh =
{
Cu with prob qu
Cd with prob (1 − qu)

price at time 0 = e−rhEQ [Xh] .

Here Q is the probability measure defined by Q(“up”) = qu and Q(“down”) =
1 − qu .

• Q is called the risk-neutral measure for our model. Notice that e−rhEQ[Sh] = S0,
which explains whyQ is also called amartingale measure. The term “risk-neutral”
comes from the fact that the strategy to hedge the option does not take into account
the true risk associated with the stock S (e.g. its true chance of going up), and
therefore this strategy is neutral with respect to the stock’s risk. The formula
e−rhEQ [Xh] is called the discounted risk-neutral valuation formula for the option
price.

IMPORTANT: V l(0) is the correct (“arbitrage-free”) price of the option C at
time 0.

Also (easy to prove): the condition qu ∈ [0,1] ⇔ d < erh < u ⇐⇒ no arbitrage
⇔ there is a risk neutral measure.

Also: ∃ hedge (b, y) ⇐⇒ ∃! risk-neutral measure.

3 Multi-period Binomial Model: N Periods

To extend the binomial model to several periods, in an effort to develop a model
for option pricing and hedging which includes the possibility of dynamic portfolio
allocation, we consider a total number of periods N ≥ 2, and iterate the one-period
construction of the previous section, over several periods, forming what is known as
a binomal tree, with the root typically represented at the left, and the leaves at the
right, i.e. with time running from left to right. For N = 2, this tree representation for
the two-period binomial model has the following form
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S0u2

↗
S0u

↗ ↘
S0 S0du

↘ ↗
S0d

↘
S0d2

Note that the tree has the so-called “recombining” property, because the up and
down factors do not change. More generally, for N ≥ 2, and n = 1,2, . . . ,N , k =
0,1, 2, . . . , n, period number n models the dynamics during the time interval [n −
1, n], and the node (n, k) is the name of the position in the tree at time n for any stock
price path which takes k up steps and n − k down steps, from time 0 to time n. This
parametrization of nodes is only possible because of the recombining property. This
property works because the up and down factors u,d do not depend on the position
in the tree at a fixed time (u and d might depend on time n, this does not impact the
recombining property). In particular, the value of S at node (n,k) is

Sn,k := S0u
kdn−k .

Again in the casewhere u and d depend only on n (wewill not consider other cases
in these notes), let us translate the binomialmodel in amore probabilist fashion. Letqu
be probability to go up at every node. Assume qu is constant. For every n = 1, . . . ,N ,
we can consider the random variable Kn representing the number of times that the
stock went up rather than down between time 0 and time n. Then Kn = ∑n

i=1 εi
where εi = 1 if the stock went up in the interval [i − 1,1], and εi = 0 if the stock
went down. Each εi is a Bernoulli random variable with parameter qu . Assuming
all the εi ’s are independent, Kn is thus a binomial random variable with parameters
n,qu . This is from whence the binomial model gets its name. The stock price model
then has the following probabilistic representation: for n = 0, . . . ,N ,

Sn = S0u
Kndn−Kn = S0e

(ln d)n+ln(u/d)Kn .

4 Option Pricing and Hedging Algorithm: Backwards
Recursion

Assume we need to price and hedge a simple European claim with contract function
Φ.Wemay use the pricing and hedging scheme from the one-periodmodel iteratively
backwards in time to price and hedge options in the N -period binomial model.
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• At time N , value of option = value of payoff = CN = Φ(SN )

In node notation, if number of up steps = k then SN = S0ukdN−k . Thus:

Initialization CN ,k = Φ(S0ukdN−k) for all k = 0,1, . . . ,N .

• To implement the recursion, assume that at some time n ≤ N ; Cn,k is known for
every k = 0,1, . . . , n. Then, for each k = 0,1, . . . , n − 1, by using the formula for
pricing in the one-period binomial model which goes from node (n − 1, k) to the
two possible future nodes (n, k) and (n, k + 1), i.e. the tree, in which each node
contains stock and option prices,

Sn,k+1

Cn,k+1
with probability qu

↗
Sn−1,k

Cn−1,k

↘
Sn,k

Cn,k
with probability (1 − qu)

we obtain the following price recursion:

Recursion: option prices Cn−1,k = e−rh
(
quCn,k + (1 − qu)Cn,k−1

)
for each

n = 1, . . . ,N and k = 0,1, . . . , n − 1.

• We must also compute the hedging portfolio at node (n − 1, k): this can either be
computed while implementing the previous recursion, or offline after all option
prices are known. By the one-period hedging portfolio, this is

Hedge: number of shares of stock

yn−1,k = Cn,k+1 − Cn,k

Sn,k+1 − Sn,k
= Cn,k+1 − Cn,k

Sn−1,k(u − d)
.

Hedge: wealth in risk-free account

bn−1,k = Cn−1,k − Sn−1,k yn−1,k .

• The above scheme provides a perfect hedge which can be followed dynamically
in time, and reacts to the changes in stock prices over each period. Indeed, at time
n − 1, the hedging decision only requires knowledge of the observed stock price
Sn−1 = Sn−1,Kn−1 (under the binomial model, the random variables Sn−1 and Kn−1

can be computed one from the other; they share the same information), and of
the two possible future values for Cn , which are Cn,Kn−1+1 and Cn,Kn−1 which are
among the precomputed values in the binomial tree.
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• As an option hedger (also known as an optionmarketmaker), onemust consider the
trade-off between assuming that the length of the time in one’s binomial model is
short enough to stick closely to the stock variations, and incurringmany transaction
costs every time one rebalances one’s hedging portfolio. In practice, stock prices
change many more times than once a day. Yet market makers often assume that
h = 1/365 = 1 day nonetheless. When we enter our discussion of continuous-
time modeling with discrete-time hedging, we will provide a way to compute the
discrepancy between a perfect hedge and the need to keep the hedging frequency
down to a reasonable, daily level.

• Recall probabilistic representation of the option price for one period: price at time
0 = e−rhEQ [Xh] . Such a formula also holds for the multiperiod model, and it is
easy to prove this by using the one-period formula and the recursion formula for
the multi-period model given here. The details are left to the reader.

Discounted Risk Neutral Valuation Formula: multi-period case With maturity
T = Nh, define the contingent claim XT = Φ (S (T )), the risk-neutral (mar-
tingale) measure Q is defined by using the risk-neutral probabilities qu and
1 − qu in each period. Then we have

price of XT at time 0 = e−rTEQ [XT ] .

4.1 How to Estimate/Calibrate Parameters r, u and d?

We provide some brief recommendations for the parameter estimation question.
An excellent proxy for the rate r is the LIBOR (London Interbank Offered Rate)

short (overnight) rate L: this is the average rate at which banks lend each other money
over a 24-hour period. This is thus most appropriate when h = 1/365, and one sets
erh = 1 + L . Since the LIBOR short rate changes over time, one typically uses the
previous day’s value of L to calibrate r . There exist stochastic models of interest rates
that take into account the uncertainty on future values of L . They are not discussed
in these notes.

For u and d, it is typical to base their estimation/calibration using the concept of
“historical volatility”, which can be defined, for instance, as the empirical standard
deviation, over an appropriately long time period, of h−1/2Rt where Rt are the
log returns Rt := log (S (t − h) /S (t)) where (S (t))t are the past stock price data,
which can thus be identified, insofar as it represents a consistent estimator, with the
square root σ of

σ 2 := Var (Rt )

where now the notation Rt comes from a specific model, as long as this variance
does not depend on t (stationarity).

There are many other ways of determining volatility models, some of which
involve assuming that volatility is random itself.Anemergingmethod for determining
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volatility is becoming popular in the case of the S&P 500 index. Since 1993, the
Chicago Board of Options Exchange (CBOE) has published a composite value of
option prices on this equity index, which can be interpreted as a 30-day average of
volatility on the index. This volatility index, now known as the VIX, increased in
popularity since the CBOE started offering traded options and futures contracts on
the VIX starting in 2004.

Once a value of σ has been determined, a common method for calibrating u and
d using the so-called Cox-Ross-Rubenstein parametrization:

u = eσ
√
h,

d = e−σ
√
h .

Other choices include the Hull-White parametrization u = 1 + αh + σ
√
h, d = 1 +

αh − σ
√
h; as well as the Jarrow-Rudd parametrization u = eμh+σ

√
h , d = eμh−σ

√
h ,

where the values of α and μ are h−1 times the expected values of the log returnsRt

or the simple returns Rt = (S (t + h) − S (t)) /S (t).
Understanding the differences between these various parametrizations can be done

in conjunction with the introduction of the continuous-time analogue to the Binomial
model, the so called Black-Scholes model, where the volatility parameter σ plays a
rather clear role, as we now discuss.

5 Black-Scholes Model (Single Stock)

The classical Black-Scholes model with constant coefficients contains the following
two elements, for any t ∈ [0,T ] where T is a maturity or time horizon:

• A risk-free account B with constant rate r :

B(t) = ert .

• A stock or index price process S:

S(t) = S(0)e(α− 1
2 σ 2)t+σW (t).

Here, we use the nomenclature α = “mean rate of return” for stock S, and σ =
“volatility” for stock S; while {W (t); t ≥ 0} is a standard Brownian motion
(Wiener process).
The process W has the following properties:

– W (0) = 0, for 0 ≤ s < t ,W (t) − W (s) is independent of all the random vari-
ables W (r) for r ≤ s, and W (t) − W (s) is centered normal with variance
t − s.

– W has continuous paths with probability one.
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• Convenient notation: μ := α − 1
2σ

2.
• These parameters α, σ, μ are assimilated to quantities similarly to those in the
discussion at the end of the previous section: specifically it holds that

α = lim
h↓0 E[ S(t + h) − S(t)

h
]

μ = lim
h↓0 E[1

h
log(

S(t + h)

S(t)
)]

σ 2 = lim
h↓0 Var [ S(t + h) − S(t)

h
]

= lim
h↓0 Var [1

h
log(

S(t + h)

S(t)
)].

Example 1 Today is time t = T = Nh; let Si = S(ih); i = 0,1, . . . ,N . Then σ 2

can be estimated as the rescaled empirical variance of the sequence of log returns:

σ 2 ≈ σ̂ 2 : = 1

N

N−1∑

i=0

(
1√
h
log

(
Si+1

Si

)

− 1√
h
E

[

log

(
Si+1

Si

)])2

= 1

h

1

N

N−1∑

i=0

(

log

(
Si+1

Si

)

− μh

)2

,

since Var
[
log

(
Si+1

Si

)]
= Var [σW ((i + 1) h) − σW (ih)] = σ 2h. Using same

idea, we can also get estimators for μ and α.

5.1 Method of Moments

To explain the parameter choices made at the end of the previous section, one only
needs to match the means and variances (first and second moments) of the stock
returns over one period in the binomial model, to the same statistics in the Black-
Scholes model in a period of length h, by using various specific choices for the
objective probabilities of going up or down:

• We compute the log and simple returns in the Black-Scholes model:

Rt = log(
S(t + h)

S(t)
) = μh + σ(W (h + t) − W (t)),

Rt = S (t + h) − S (t)

St
= eμh+σ(W (h+t)−W (t)) − 1,



14 F. Viens

so that we compute can compute their means and variances, and their asymptotics
for small h:

E [Rt ] = μh,

Var [Rt ] = σ 2h,

E [Rt ] = eαh − 1 ≈ αh,

Var [Rt ] = e(2μ+σ 2)h
(
eσ 2h − 1

)
≈ σ 2h.

• One possibility is to look for the binomial model with equal probabilities pu =
1 − pu = 0.5 of going up or down, and matching its simple returns’ expectation
and variance. Since then Rt = (S1 − S0) /S0 = u − 1 or d − 1 with probabilities
0.5 and 0.5, those binomial statistics are

E [Rt ] = u + d

2
− 1,

Var [Rt ] = 1

2

(
(u − 1)2 + (d − 1)2

) −
(
u + d

2
− 1

)2

=
(
u − d

2

)2

.

In the case of small h, this yields (approximately) the system

{
αh + 1 = u+d

2
σ
√
h = u−d

2

whose solution is easily seen to be

u = 1 + αh + σ
√
h,d = 1 + αh − σ

√
h

pu = 1

2
.

We recognize the Hull-White parametrization.
• Another possibility is to decide that one prefers to have up and down factors which
are reciprocals of each other. By inspecting the Black-Scholes model, ignoring the
drift term μt and concentrating only on the term σWt inside the exponential,
one knows that an order of magnitude of the change of σWt over a period of
length h is its standard deviation, namely σ

√
h. It is then legitimate to require that

u = 1
d = exp(σ

√
h). However, let us use the method of moments using only the

restriction u = 1/d. We can compute mean and variance of the log return Rt in
the one peroid binomial, finding
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E [Rt ] = pu log u + (1 − pu) log u
−1

= (2pu − 1) log u

Var [Rt ] = pu log
2 u + (1 − pu)

2 log2 u − (2pu − 1)2 log2 u

= (
1 − (2pu−1)

2
)
log2 u.

Using the approximation that if h is small, p should be close to 1/2, matching
the above variance with the Black-Scholes variance yields log2 u = σ 2h, which is
precisely

u = 1

d
= eσ

√
h .

Plugging this into the equation for matching expectations (2pu − 1) log u = μh,
we get, σ

√
h (2pu − 1) = μh, i.e.

pu = 1

2
+ μ

2σ

√
h.

This is the Cox-Ross-Rubenstein parametrization.
• One last possibility we examine is the case of matching means and variances of
the log returns when pu = 1/2. In this case, we compute those statistics for the
Binomial model

E [Rt ] = 1

2
(log u + log d)

Var [Rt ] = 1

2

(
log2 u + log2 d

) − 1

4
(log u + log d)2

=
(
log u − log d

2

)2

.

In this case, the moment-matching equations can be solved without resorting to
approximations, and one finds

u = eμh+σ
√
h,

d = eμh−σ
√
h,

pu = 1

2
.

This is the Jarrow-Rudd parametrization. This parametrization is closest in spirit
to the original Black-Scholes model, if one attempts to discretize it in time by
replacing each Brownian increment Wt+h − Wt by a random variable taking the
values+σ

√
h and−σ

√
h with equal probabilities, owing to the standard deviation

and symmetry of the normal law for this increment. In fact, the binomal model
with Jarrow-Rudd parameters converges to the Black-Scholes model. The proof
of this fact is nearly immediate for fixed t by using the central limit theorem; that
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the convergence also holds at the process level (i.e. for all t simultaneously) is an
application of the infinite-dimensional (functional) extension of the central limit
theorem, sometimes known as Donsker’s invariance principle.

The fact that there are several parametrization choices show that the binomal
model is in fact richer than the Black-Scholes model; the former has one more
parameter than the latter, hence the existence of many parametrization choices.

5.2 Option Pricing Under BS Model

Because of the close similarity between the binomial model with Jarrow-Rudd para-
meters and the Black-Scholes model, one suspects that the discounted risk-neutral
valuation formula should hold for the Black-Scholes model. This is in fact true, and
there is a generic option-pricing meta-theorem, which is broader than merely the
Black-Scholes model, and also includes a statement about hedging.

Pricing metatheorem Let S be a stock price model, and let X be a contingent
claim expiring at time T , i.e.X is a random variable which can be determined at
time T using knowledge of the path of the stock price S up to time T . If the model
for S can be expressed with a probability measure Q under which t → e−r t S (t)
is a martingale with respect S, then all contingent claims can be simultaneously
priced in a consistent way via the formula

price of XT at time 0 = e−rTEQ [XT ] .

If the measureQ is unique, then the price of every contingent claim is unique, and
each such claimcanbeperfectly hedged (in continuous time) using a continuously-
rebalanced self-financing portfolio of stock S and risk-free asset B.

In the case of Markovian models such as the Black-Scholes model, much more
can be said about simple claims. We state the result in the Black-Scholes case only,
for simplicity.

Definition 1 We say that X is a simple “contingent claim” (= a simple “option”)
if there as a non-random function Φ : R+ → R such thatX = Φ(S(T )) (here T =
maturity).

Theorem 1 (Discounted Risk-Neutral Valuation Formula) Assume S satisfies the
Black-Scholes model. The price Pt at time t ≤ T for the claim X defined above, is
given by

Pt = F(t,S(t))

where the non-random function F : [0,T ] × R+ → R is given by

F(t,x) = exp(−r(T − t))E∗ [Φ(S(T ))/S(t) = x] ,
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where E∗ is the expectation under P∗ the unique risk-neutral (martingale) measure.
Moreover, P∗ can be defined by saying that under P∗, the parameter α in the Black-
Scholes model need only be replaced by the risk-free rate r .

5.3 Black-Scholes Formula

Wemay now use the meta-theorem’s application to the Black-Scholes model, which
we have just stated, to calculate the price of call options.

Definition 2 Let K be a positive constant. A simple contingent claim with contract
function given by Φ(x) = max(x − K ,0), is a Call option with strike price K .

Wewish to compute F(t,x) in the previous theoremwhenΦ(x) = max(x − K ,0)
and S(t) = Black-Scholes model under P∗. This can be done to a large extent by
hand:

F(t,x) = exp(−r(T − t))E∗ [max(x − K ,0)/S(t) = x]

= exp(−r(T − t))E[max(x exp(μ∗(T − t) + σ(W (T ) − W (t))) − K ,0)]
= exp(−r(T − t))E[max(x exp(μ∗(T − t) + σ

√
T − t Z) − K ,0)]

where in the second line, we denote

μ∗ := r − σ 2/2

(i.e. we use the parameters for S under P∗), and in the last line, thanks to scaling
for normal laws, we assume that Z is a standard normal random variable. Note that,
starting with the second displayed line above, it becomes unnecessary to add a star
to the expectation sign. We also see that the last expression above depends on T and
t only via T − t . Hence without loss of generality we set t = 0. Thus

F (0,x) = e−rTE
[
max(x exp(μ∗T + σ

√
T Z) − K ,0)

]

= e−rTE
[
[1{x exp(μ∗T+σ

√
T Z)>K }(x exp(μ

∗T + σ
√
T Z) − K )

]

= xe−rTE
[
1{x exp(μ∗T+σ

√
T Z)>K } exp(μ

∗T + σ
√
T Z)

]

−Ke−rTP
[
x exp(μ∗T + σ

√
T Z) > K

]
.
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We first compute the second piece:

P
[
x exp(μ∗T + σ

√
T Z) > K

]
= P

[

Z >
1

σ
√
T

(

−μ∗T + log

(
K

x

))]

= P

[

Z <
1

σ
√
T

(
μ∗T + log

( x

K

))]

: = P [Z < d2]

: = N (d2)

where N is the cummulative distribution function of the standard normal N (d) =
(2π)−1/2

∫ d
−∞ e−z2/2dz and

d2 := 1

σ
√
T

(
μ∗T + log

( x

K

))
= 1

σ
√
T

((
r − σ 2/2

)
T + log

( x

K

))
.

For the first piece, the computation is not much harder:

xe−rTE
[
1{x exp(μ∗T+σ

√
T Z)>K } exp(μ

∗T + σ
√
T Z)

]

= xE

[

exp

(

−1

2
σ 2T + σ

√
T Z

)

1{Z>−d2}
]

= xE

[

exp

(

−1

2
σ 2T − σ

√
T (−Z)

)

1{−Z<d2}
]

= xe−rT
∫ d2

−∞
exp

(

−1

2
σ 2T − σ

√
T z

)

exp(− z2

2
)
dz
√
2π

= x
∫ d2

−∞
exp

(

−1

2
(z + σ

√
T )2

)
dz
√
2π

= x
∫ d2+σ

√
T

−∞
exp

(

− z2

2

)
dz
√
2π

= xN (d2 + σ
√
T )

:= xN (d1)

where

d1 := 1

σ
√
T

((
r + σ 2/2

)
T + log

( x

K

))
.

We proved the famous Black-Scholes formula for pricing.

Theorem 2 The pricing function F of the call option with strike K under the stan-
dard Black-Scholes model is:

F(t,x) = xN (d1) − Ke−r(T−t)N (d2)
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where N is the standard normal distribution function and

d1 : = 1

σ
√
T − t

(log(
x

K
) + (r + 1

2
σ 2)(T − t)),

d2 : = 1

σ
√
T − t

(log(
x

K
) +

(

r − 1

2
σ 2

)

(T − t))

= d1 − σ
√
T − t .

Remark 1 This formula has an interesting feature, which is to suggest a possible
way of hedging the option over time: indeed, if at time t , where the stock price is
S (t), one invests in N (d1) shares of stock (here x must be replaced by the current
stock value S (t) in the formulas), then by also holding

F(t,S(t)) − S(t)N (d1) = −Ke−r(T−t)N (d2)

dollars in the risk-free asset, one obtains a replicating portfolio for the option, i.e.
one whose value is exactly that of the option at all times. This will be a worthwhile
observation if one can prove that the portfolio is self-financing.

Remark 2 As it turns out, the previous portfolio really is self-financing, meaning
that all changes in the portfolio allocations can be financed by the changes in the
asset prices. We record this fact formally here, but rather enter into a formal proof,
in the next section, we investigate how far from a perfect hedge one might get when
the hedging portfolio is followed appriximately, by using discrete time.

Theorem 3 (Perfect Black-Scholes Hedge) The Call option with strike-price K and
maturity T can be perfectly replicated using the following portfolio: yt shares of stock
S and bt dollars in the risk-free asset, with

yt = N (d1),

bt = −Ke−r(T−t)N (d2)

where x is replaced by S (t) in the formulas for d1 and d2. This portfolio is self-
financing.

More generally, for the pricing function F of a given contingent claim X =
Φ (S (T )), under the Black-Scholes model, the hedging portfolio defined by

yt := ∂F

∂x
(t,S(t)) ; bt := F (t,S (t)) − S (t) yt

is replicating by definition, and is self-financing.
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6 Imperfect Black-Scholes Hedging in Discrete Time

6.1 Overnight Rebalancing, with Profit (Loss) Calculation

We mentioned earlier that following a trading strategy in continuous time is not
practical. The replicating strategy (yt ,bt ) in the previous theorem is not immune to
this difficulty. In practice, a high-frequency trading strategy (e.g. rebalancing every
5min) can take advantage of rapid changs in stock values, but is too expensive to
implement because of transaction costs.

Question: What happens if we follow the Black-Scholes hedging strategy only
once a day?

We will use the arguments (t,x) and (t + h,x + ε) for expressions F , d1 and d2,
as shorthand notation, with the following understanding:

t = today

h = 1/365

t + h = tomorrow

x = S (t) = price of stock today

x + ε = S (t + h) = price of stock tomorrow.

Taking the perspective of the option hedger, we sell one option at time t and purchase
its corresponding Black-Scholes perfect hedging portfolio at the same time, and hold
that portfolio without any rebalancing until time t + h. The value of the portfolio
at time t is 0 by the hedging theorem. Let us investigate the so-called “overnight
profit (or loss)”; this is thus identical to the value of the portfolio at time t + h before
rebalancing:

• Value held in option: −F (t + h,x + ε) .

• Value held in stock: (x + ε) N (d1 (t,x)) .

• Value held in risk-free asset: (F(t,x) − xN (d1)) erh .
• Total value held is: Overnight profit (or loss)

= −F(t + h,x + ε) + (x + ε)N (d1(t,x)) + (F(t,x) − xN (d1 (t,x))) erh .

Example 2 In our numerical applications, we use: x = 40; ε = 0.5; σ = 0.3; r =
0.08; h = 1/365; we choose to price the call with K = 40 and T − t = 1/4
(3months).

By using BS formula we find F(t,x) = 2,7847 ; N (d1(t,x)) = 0,5825 ; F(t,x)
− xN (d1) = −20,5159 ; F(t + h,x + ε) = 3,0665. Thus in this case:

Option hedger’s overnight profit = −3,0665 + 0,5824 × 40,5 − 20,5159e0.08/365,

= 0,00500.
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This is great: this is very close to 0, so there is probably no need to buy or sell stock
to rebalance the portfolio at time t + h.

Example 3 However, the good news in the previous example is due to the fact that
the stock price did not move very far (only about 1%) overnight. One might run into
more trouble if the movements are larger. Repeating the previous calculations for
various values of ε, we obtain the following Figures.

Figure 1 shows that when large stock price movements occur, the overnight profit
quickly becomes a substantial loss. Figure 2 shows in detail the small magnitude of
profit or loss when stock price changes are small (for S (t + h) near S (t).) An actual
small profit occurs for |S (t + h) − S (t)| < 0.6 only.

We finish this section bymentioning the general form of the overnight profit under
the Black-Scholes model.

Theorem 4 (Overnight profit for general simple claims under the Black-Scholes
model) With the pricing function F of a given contingent claim X = Φ (S (T )),
under the Black-Scholes model, by following the hedging portfolio defined by yt :=
∂F
∂x (t,S(t)) ; bt := F (t,S (t)) − S (t) yt at discrete time intervals of length h, the
overnight profit at time t is

−F(t + h,x + ε) + (x + ε)
∂F

∂x
(t,x) +

(

F(t,x) − x
∂F

∂x
(t,x)

)

erh .

Fig. 1 Overnight profit for values of x + ε from 35 to 45. Vertical axis is dollar value
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Fig. 2 Detail of overnight profit for values of x + ε from 39 to 41

6.2 Forecasting

To understand the previous graph in theory, instead of analyzing the Black-Scholes
formula in a mechanistic way (i.e. looking only at its dependence on t and x as
a deterministic function), one may return to the probabilistic understanding and
employ some simple forecasting. A rough approximation is in fact sufficient. Under
the Black-Scholes model we can compute

S(t + h) − S (t) = S (t) exp (μh + σ(W (t + h) − W (t))) − S (t)

= S (t) (exp (μh + σ(W (t + h) − W (t))) − 1) .

Since h is considered small, and the typical size of the mean-zero increment W (t +
h) − W (t) is the size of its standard deviation, i.e.

√
h, one may consider in a first

approximation that W (t + h) − W (t) is small and dominates μh. Thus, using the
first order Taylor expansion of the exponential function, we would get

S(t + h) − S(t) = S (t) (σ (W (t + h) − W (t))) + o(
√
h).

We may interpret this approximation in a binary way, as

S(t + h) − S(t) � (±1)σ
√
hS(t).

In other words, with the x and ε notation, this approximation is equivalent to:

ε � (±1)σ
√
hx
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where the (±1) symbol represents a random variable which takes values +1 and −1
with equal probabilities.

Using Taylor’s formula on F up to order 1 in time and order 2 in space, we obtain

F(t + h,x + ε) = F(t,x) + h
∂F

∂t
(t,x) + ε

∂F

∂x
(t,x) + 1

2
ε2

∂2F

∂x2
(t,x) + o(h) + o(ε2).

Therefore,

overnight profit = −
[

F(t,x) + h
∂F

∂t
(t,x) + ε

∂F

∂x
(t,x) + 1

2
ε2

∂2F

∂x2
(t,x)

]

+∂F

∂x
(t,x) (x + ε) +

[

F(t,x) − x
∂F

∂x
(t,x)

]

(1 + rh) + o(h) + o(ε2).

One notes that all the terms involving ε rather ε2 miraculously disappear, as do all
the terms which are not small: this is because the Black-Scholes hedge was chosen
in such a way to make these simplications occur, at least in the first approximation
we are using here. Thus we get overnight profit

= −h
∂F

∂t
(t,x) − 1

2
ε2

∂2F

∂x2
(t,x) + rhx

∂F

∂x
(t,x) + rhF(t,x) + o(h) + o(ε2).

Interestingly, in a first-order approximation on ε, one sees that if ∂2F
∂x2 (t,x) > 0, which

is typically the case for most options, the highest overnight profit is obtained when ε
is 0. Now using the forecast for ε, we see that ε2 = σ 2h and that o(h) = o(ε2). This
yields

overnight profit =
(

r F(t,x) − ∂F

∂t
(t,x) − 1

2
σ 2x2

∂2F

∂x2
(t,x) − r x

∂F

∂x
(t,x)

)

h + o (h) .

The option hedger must try to keep her profit to a minimum in absolute value, as
one should from the perspective of an insurer, which is to minimize risk (it is also
a good idea from an investment perspective, since we saw in the previous section
that the overnight profit’s downside is significantly greater than its upside.) This
risk-minimizing strategy can thus be summarized as “Overnight profit = 0”

⇐⇒ ∂F

∂t
(t,x) + r x

∂F

∂x
(t,x) + 1

2
σ 2x2

∂2F

∂x2
(t,x) − r F (t,x)=0.

This is precisely the famous so-called BLACK-SCHOLES PDE !
What we have essentially just shown is that the Black-Scholes hedge is a perfect

self-financing replicating portfolio if and only if the Black-Scholes PDE holds for
the pricing function F . In fact, the above development is in some sense equivalent
to the classical proof of the Black-Scholes pricing and hedging theorem by means
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of stochastic calculus and the Itô formula. We do not provide the details, but state
the result formally, also summarizing our theorems on the discounted risk-neutral
valuation formula and the perfect Black-Scholes hedge.

Theorem 5 For a generic simple European contingent claimX = Φ(S(T )) under
the Black-Scholes model, let

F (t,x) = e−r(T−t)E∗ [X | S (t) = x]

where under P∗, the parameter α is replaced by the short rate r . Then X can be
replicated perfectly at all times t ≤ T by using the following Black-Scholes self-
financing replicating portfolio:

1. At time t0 < T , collect F (t0,S (t0)) dollars from the sale of X .
2. At all times t ∈ [t0,T ), compute ∂F

∂x (t,x), and invest (long or short) in yt =
∂F
∂x (t,S(t)) shares of stock at time t.

3. At the same time, put (or borrow) bt = F(t,S(t)) − yt S(t) dollars in the risk-free
account to finance the stock investment.

This strategy is possible because the portfolio is self-financing.Moreover, F solves
the Black-Scholes PDE with terminal condition F (t,x) = Φ (x) for all x > 0 and
all t ∈ [t0,T ].

6.3 Delta and Gamma Hedging

To improve on the discrete hedging strategy studied above, also known as the dis-
crete Delta hedge (recall from the previous graphs that the overnight losses can be
substantial if there are large price changes) we consider a possible second-order
approximation to the perfect Black-Scholes hedge.

Definition 3 For any X = Φ(S(T )) with pricing function F let

ΔF (t,x) = “Delta” = ∂F

∂x
(t,x),

ΓF (t,x) = “Gamma” = ∂2F

∂x2
(t,x).

These are two examples of what we call “Greeks”, sensitivities of pricing functions
to changes in their parameters. Other greeks include the Theta Θ = ∂F

∂(T−t) , the Rho

ρ = ∂F
∂r , and the Vega V = ∂F

∂σ
(even though Vega is not really a Greek letter!!).

Similarly to what is done in the insurance business, we can look for a way of
transferring some of the risk in the Delta-hedging portfolio to a third party, i.e. a
reinsurance contrat. We show how this works on an example.
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Example 4 Back to our call with K = 40 and T = 1/4, imagine that we worry that
S(t) will go much higher than 40 overnight. We will ask another market maker to
sell us a call option with K ′ = 45, and a longer expiration T ′ = 1/3 (4months).

• Whole portfolio: our new portfolio has −1 unit of K = 40-call (pricing function
F40), yt shares of S, zt units of the K ′ = 45-call (pricing function F45), and bt
in risk-free account which we compute to make the value at time 0 of our entire
portfolio equal to 0. Its value is

0 = V (t,x) := −F40(t,x) + yt x + zt F45(t,x) + bt .

• Goal: for the whole portfolio with value V (t,x) , we want not just ΔV = ∂V
∂x = 0

but also ΓV = ∂2V
∂x2 = 0. In the old portfolio we just had ∂Vold

∂x = 0.
• Gamma condition. Slightly abusively, we consider that partial derivatives operate
only on pricing functions (this is an excellent approximation, it turns out):

ΓV = ∂2V

∂x2
= −Γ40(t,x) + yt × 0 + ztΓ45(t,x).

Since we want ΓV = 0, this yields the choice

zt = Γ40(t,x)

Γ45(t,x)
.

• Delta condition. Next, with zt already computed, we calculate

ΔV = −Δ40(t,x) + yt + ztΔ45(t,x),

and wanting ΔV = 0, this gives

yt = Δ40(t,x) − ztΔ45(t,x).

• Cash. Finally, since yt and zt have been computed, we now compute the risk-free
position:

bt = F40(t,x) − yt x − zt F45(t,x).

Remark 3 We already know that for the call FK we have ΔK (t,x) = N (d1 (t,x)).
Therefore, by the chain rule, since N ′ (z) = (2π)−1/2 e−z2/2, and

∂d1/∂x = 1/
(
σ x

√
T − t

)
,

we get

ΓK (t,x) = 1

σ x
√
T − t

√
2π

e−d1(t,x)
2/2.
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Example 5 With the same parameters as previously r = 0.08, σ = 0.3, K = 40,
K ′ = 45, T − t = 1/4, T

′ − t = 1/3 , using the above formulas, we can compute

at t 40-call 45-call
F 2.7847 1.3741
Δ 0.5825 0.3301
Γ 0.06794 0.06342

from which the expressions for the allocations of stock and 45-call become

zt = 0.06794

0.06342
= 1.0714,

yt = 0.5825 − 1.0714 ∗ 0.3301 = 0.2288.

By repeating the overnight profit analysis here we find

Overnight profit (or loss)

= −F40(t + h,x + ε) + (x + ε)yt + F45 (t + h,x + ε) zt
+ (F40(t,x) − xyt − F45 (t,x) zt ) e

rh .

Thus if ε = 0.5 for instance, one finds F40(t + h,40.5) = 2.767 and F45(t + h,

40.5) = 1.361, so that the overnight profit computes to 0.001813, which is about
one third of what it was for the pure discrete Delta-hedging strategy. This decrease

Fig. 3 Overnight profit for values of x + +ε from 35 to 45: green line is Delta hedge, red line is
Delta and Gamma hedge using a 45-strike 4-month call. From 39 to 41
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Fig. 4 Overnight profit for values of x + ε from 35 to 45: green line is Delta hedge, red line is
Delta and Gamma hedge using a 45-strike 4-month call

denotes better risk-management. The improvement is particularly evident for large
values of ε, as can be seen in Figs. 3 and 4.

The next graph shows the detail for small stockmovements: here too, the improve-
ment of the Delta-Gamma hedge over the Delta hedge is marked.

7 Extensions of the Black-Scholes Formula

Recall that in a Call option, the strike is denoted by K , and the stock by S, but
in reality, by introducing the concept of prepaid forward prices for assets, these
notions become relative, and may be switched for convenience. An example of such
a situation is that where K is a second asset, and the call option is then an exchange
option. Let us be more precise about the generic framework.

• Main Idea: the prepaid forward price of any quantity K over [t, T ] is the cash
value needed on hand at time t to guarantee a payoff of K at time T . This would
hold whether K is non-random, or a traded risky asset such as a stock or an interest
rate or an index, or even if it is a contingent claim. In the last case, the prepaid
forward price is what we have simply been calling the price of the claim.

• Let us discuss the other cases. Generally, we may use the notation FP
t,T for the

operator which computes the prepaid forward prices of assets. We assume for
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simplicity, as we have before, that the risk-free rate r is constant. The general
principle bywhich it is sufficient to identify a self-financing replicating portfolio to
compute prepaid forward prices still holds. Thismakes the following computations
essentially trivial.

– When K is non-random, by investing in the risk-free asset alone, one finds its
prepaid forward price as

FP
t,T (K ) = Ke−r(T−t).

– When K is a non-dividend-paying stock S, by investing in one share of this
stock alone, by definition, one finds

FP
t,T (S) = S(t).

– Whena stockpays a continuous dividend rate δ, thismeans that bypurchasing the
stock at the price S (t) at time t , one will obtain at time T the value S (T ) eδ(T−t).
Therefore, by investing in a discounted number of shares of this stock alone, we
find

FP
t,T (S) = S(t)e−δ(T−t).

– If S pays a discrete dividend of $ D at a fixed time u ∈ [t,T ], this means that
an investment in one share worth S (t) at time t yields one share worth S (T ) at
time T but also a fixed payoff of D dollars at time u < T . Thus an investment
in one share of stock minus a discounted amount borrowed at the risk free rate
from time t to time u, will replicate the stock’s payment stream, yielding

FP
t,T (S) = S(t) − De−r(u−t).

– Combining the above two dividends, we get in general

FP
t,T (S) = S(t)e−δ(T−t) − De−r(u−t).

In the formulas below, as usual, the S (t) is to be replaced by x .

• It turns out that we can recast the classical BS formula for calls with no dividends
and K = constant in terms of prepaid forward prices for S and K : using the
notation x instead of S (t), as usual, we have

price of the call C(t,x) = xN (d1) − Ke−r(T−t)N (d2)

= FP
t,T (S)N (d1) − FP

t,T (K )N (d2).
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d2 = 1

σ
√
T − t

(

log
( x

K

)
+

(

r − 1

2
σ 2

)

(T − t)

)

= 1

σ
√
T − t

(

log

(
FP
t,T (S)

FP
t,T (K )

)

− 1

2
σ 2(T − t)

)

;

d1 = d2 + σ
√
T − t .

This formula extends in many cases.
• Options for dividend-paying stocks

Theorem 6 If S pay a single discrete dividend D at time u < T and / or continuous
dividends at the rate δ, the formula

C (t,x) = FP
t,T (S)N (d1) − FP

t,T (K )N (d2)

for the price of the call holds true for all t < u with d1 andd2 as above, and F P
t,T (K ) =

Ke−r(T−t) and F P
t,T (S) = xe−δ(T−t) − De−r(u−t).

Remark 4 WhenD = 0,moregenerally for a simpleEuropean claimX = Φ (S (T ))

with contract functionΦ, the pricing function Fδ for this claim satisfies the following
modified Black-Scholes PDE with continuous dividend rate δ and terminal condi-
tion Φ

∂Fδ

∂t
+ (r − δ − 1

2
σ 2)

∂Fδ

∂x
+ 1

2
σ 2 ∂2Fδ

∂x2
− r Fδ = 0.

Remark 5 The solution of this PDE, and the hedging portfolio, are easily computed
given our previous work. In fact, the following results hold.

Theorem 7 (Pricing and hedging with continuous dividends).

Remark 6 • The discounted risk-neutral valuation formula still holds, with P∗
defined by replacing α by r − δ in the Black-Scholes model.

• Let F0 be the solution to the Black-Scholes PDE with δ = 0. Then the general
solution is given by

Fδ (t,x) = F0
(
t,xe−δ(T−t)

)
.

• The hedging portfolio for claim X = Φ (S (T )) is still given by investing in the
following number of shares of stock:

yt = Δ(t,S (t)) := ∂Fδ

∂x
(t,S (t)) ,

and financing this position by holding bt = Fδ (t,S (t)) − S (t) yt money in the
risk-free account.
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Remark 7 Note that, from the previous formula for Fδ via F0, we have

Δ(t,x) = e−δ(T−t) ∂F0

∂x

(
t,xe−δ(T−t)

)

= e−δ(T−t)Δ0
(
t,xe−δ(T−t)

)

where Δ0 is the stock hedging position with zero dividend. Hence to hedge an
option on a continuous dividend-paying stock, one may use the zero-dividend hedge
by reducing the position by the dividend discount factor, and reducing the current
observed stock price by the same factor.

• Option on currency exchange rate
Let X (t) = exchange rate (e.g. the price in US dollars (domestic currency) for one
Euro (foreign currency)). We use the Black-Sholes model with a volatility σ for
X . Also, we have two risk-free rates to consider:

Forigne risk - free rate = r f ,

Domestic risk - free rate = r.

Since the Euro can be considered as a risky asset, and can also be invested in the
foreign risk-free account, it will yield payments at a continuously compouded rate
r f when placed in this account. Therefore, X is just like a stock with continuous
dividend rate δ = r f . This proves that a call option on X with strike price K has
pricing function Fδ = Fr f .

• Call option on a futures contrat
A Futures on a stock S in the interval [t,T ] is a contact in which the counterparties
decide on price to pay for S at time t , but the stock is delivered at time T and the
price is paid at delivery. We use a Black-Scholes model for the futures price G(t).
However, the prepaid forward price of a futures on S is notG (t) but e−r(T−t)G (t),
since an investment of that many dollars in the risk-free accout will yield the
quantity G (t) at time T , which is precisely the price to be paid for the stock S at
time T under the futures contract. Hence we have

FP
t,T (G) = e−r(T−t)G (t) .

By comparing with the prepaid forward price of a dividend-paying stock, one sees
that the priceG of the futures contract on S is like the price of a version of S which
pays a continuous dividend rate of δ = r , and the corresponding pricing function
F = Fr for options. For instance, for the call option, one obtains a particularly
simple pricing function



A Didactic Introduction to Risk Management … 31

CG (t,x) = xe−r(T−t)N (d1) − Ke−r(T−t)N (d2),

d2 (t,x) = 1

σ
√
T − t

(

log
( x

K

)
− 1

2
σ 2(T − t)

)

,

d1 (t,x) = d2 (t,x) + σ
√
T − t .

• Exchange option
Instead of using a constant strike K , let us use another stock S̃. Hence, we consider
the contingent claim

X = max
(
S (T ) − S̃ (T ) , 0

)
.

Specifically because this option is similar to a call, the general pricing principe still
works, but one must reinterpret the volatility. By using an argument by which one

rewrite the claim’s payoff asX = S̃ (T )max
(
S (T ) /S̃ (T ) − 1,0

)
, one realizes

that the normalized asset S (T ) /S̃ (T ) plays an important role. Assuming that both
assets satisfy Black-Scholes models with correlated Brownian motions, they have
volatilities σ and σ̃ , and one may assume that their Brownian motions W and
W̃ have correlation ρ. This implies that the normalized asset S/S̃ has volatility
equal to

σe :=
√

E

[(
σW (1) − σ̃ W̃ (1)

)2
]

=
√

σ 2 + σ̃ 2 − 2ρσ σ̃ .

A further argument leads to realizing that for the normalized asset S/S̃, under a
risk-neutral measure, the mean rate of return parameter α should be zero. This
all leads to a pricing formula for X which follows the general call formula with
r = 0; δ = 0, and σ = σe given above. Thus, with the notation x representing S (t)
and y representing S̃ (t), we get the exchange option pricing function

Ce (t,x,y) = xN (d1) − yN (d2),

d2 (t,x) = 1

σe
√
T − t

(

log

(
x

y

)

− 1

2
σ 2
e (T − t)

)

,

d1 (t,x) = d2 (t,x) + σe

√
T − t .

When S and/or S̃ pay dividends, we get the usual modifications to the prepaid
forward prices of x and y. More generally, we have the following call pricing
general principle.

• Conclusion: call pricing meta-theorem
Let S and S̃ be two assets which could be dividend-paying, or not, or could be
constants. Let σ be the effective volatility of the normalized asset S/S̃. Then the

price of the contingent claimX = max
(
S (T ) − S̃ (T ) , 0

)
isC

(
t,S (0) , S̃ (0)

)

where
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C (t) = FP
t,T (S) N (d1) − FP

t,T

(
S̃
)
N (d2),

d2 (t,x) = 1

σ
√
T − t

⎛

⎝log

⎛

⎝
FP
t,T (S)

FP
t,T

(
S̃
)

⎞

⎠ − 1

2
σ 2(T − t)

⎞

⎠ ,

d1 (t,x) = d2 (t,x) + σ
√
T − t .

8 An Even More General Black-Scholes Formula:
Stochastic Interest Rates

One problem with the Black-Scholes model is that the parameters are assumed to be
constant. This can be a problematic assumption over long time periods, particularly
for the purpose of option pricing, where the time scale is in months. While arguably
the biggest issue is the non-constance of the volatility parameter, here wewill discuss
the case where the short rate parameter is itself assumed to be a stochastic process.
In this case, one cannot simply write FP

t,T (K ) = e−r(T−t)K , but it turns out that the
discounted risk-neutral valuation formula holds. Without entering into the details of
determining bond models and prices, we state the following.

Definition 4 The zero-coupon bond with maturity T is a contract that yields one
dollar at time T . Its price at time t < T is denoted by P (t,T ).

Theorem 8 Assume the short rate r (t) is a stochastic process, and that there exists
a martingale measure Q for the bond market. Then

P (t,T ) = EQ
[

exp

(

−
∫ T

t
r (s) ds

)]

.

The general call-pricing principle described at the end of the previous section can
be updated for this situation in which interest rates are stochastic, to some extent,
using the idea of change of numeraire. We provide some ideas and a special case
where the computations can be carried out.

Let S be a fixed asset. For any other asset S̃, we say that S̃/S is the asset S̃ under the
change of numeraire S. The probability measure PS , if it exists, is one under which
each asset S̃/S is a martingale; this PS is called the “S-neutral measure”. When one
uses the bond prices P (·,T ) as the normalizing asset, the measure PP(·,T ) is usually
denoted by PT , and is called the “T -Forward neutral measure”.

Theorem 9 For the standard call on S with strike K under stochastic interest rates
given by a bond-price model P (·,T ), the call pricing function is

C(t,x) = xPS[S(t) ≥ K | S(t) = x] − K P(t,T )PT [S(t) ≥ K | S(t) = x].
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The problem with the above theorem is that computing the law of S(t) under PT

and under PS is sometimes difficult. The following special situation allows a full
computation.

Example 6 (El Karoui, Geman, Rochet) Let

Z(t) = S(t)

P(t,T )
.

The dynamics of Z may be highly non-trivial in terms of the mean rate of return of Z ,
but its volatility structure is the same under the measures PT and PS and the original
objective probability measure P. If this volatility happens to be time-dependent by
non-random, i.e. equal to the function σ (s) for s ∈ [t,T ], then C (t,x) satisfies the
standard Black-Scholes formula with effective volatilty

σ :=
√

1

T − t

∫ T

t
|σ(s)|2 ds.

9 For Further Analyses: Basic Introduction
to the Black-Scholes Model with Itô calculus

9.1 Itô calculus

All the formulas developed for continuous-time models are typically shown rigor-
ously by using Itô’s stochastic calculus, which we now introduce briefly.

Let W = a brownian motion.
Let f ∈ C 2

b (twice continuously differentiable function with bounded deriva-
tives), let Y (t) = f (W (t)). We may use Taylor’s formula to express changes in the
process Y :

Y (t + h) − Y (t) = f
′
(W (t))(W (t + h) − W (t))

+ 1

2
f

′′
((W (t))(W (t + h)−W (t))2 + o

(
(W (t + h)−W (t))2

)
.

Let us investigate what happens when h = dt is an infinitesimal.

Itô’s rule Using standard Gaussian calculation rules, since W (t + h) − W (t) is
normal with mean zero and variance h, we find

E
[
(W (t + h) − W (t))2

] = h
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and

Var
(
(W (t + h) − W (t))2

)
= E

[
(W (t + h) − W (t))4

]
−

(
E

[
(W (t + h) − W (t))2

])2

= 3h2 − h2 = 2h2.

Therefore with h = dt , ignoring terms of order dt2, the random variable
(W (t + dt) − W (t))2 may be interpreted as one which has a zero variance. With
the Itô differential notation

dW (t) = W (t + dt) − W (t)

this leads to the following:

Itô’s rule: (W (t + dt) − W (t))2 = dt.

Other Itô rules Similarly we obtain

dW (t) · dt = 0

because h(W (t + dt) − W (t)) = O(h). Let W̃ be an independent copy of W :
then

dW (t) · dW̃ (t) = 0.

Itô’s formula Using these rules in the earlier Taylor expansion, adding an extra
time parameter for convenience, and integrating over time, we finally arrive at the
following.

Theorem 10 (Itô’s formula and Itô integral) For F (t,x) of class C1,2

f (t,W (t)) = f (0,0) +
∫ t

0

∂ f

∂t
(u,W (u)) du +

∫ t

0

∂ f

∂x
(u,W (u)) dW (u)

+1

2

∫ t

0

∂2 f

∂x2
(u,W (u)) du

where the first and third integrals are of Riemann type, and the second is of the so-
called Itô type, which can be defined as the limit in L2 (�) of its Itô-type Riemann-
Stieltjes sums

∫ t

0
g (W (s)) dW (s) = lim

n→∞

n−1∑

k=0

g

(

W

(
kt

n

))(

W

(
(k + 1)t

n

)

− W

(
kt

n

))

.

Itô’s formula for the Black-Scholes model Let S satisfy the Black-Scholes model

S(t) = S0e
μt+σW (t), μ = α − 1

2
σ 2.
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The Itô formula above implies that S solves the Black-Scholes stochastic differ-
ential equation

dS(t) := S(t + dt) − S(t) = αS(t)dt + σ S(t)dW (t).

The following Itô rule for S is a consequence of using Itô’s rules formally on
(dS (t))2 above:

(dS (t))2 = σ 2S (t)2 dt.

Indeed (dS(t))2 = α2(S(t))2(dt)2 + 2ασ S2(t)dtdW (t) + σ 2S2(t)(dW )2 and
the first and second terms are 0. This can also be established by using the method-
ology employed forW directly for S itself. The Itô rule for S and Taylor’s formula
similarly imply the following:

Theorem 11 (Itô’s formula for the Black-Scholes model) Let S be a Black-Scholes
model and f ∈ C1,2, then for every t ≥ 0,

f (t,S (t)) = f (0,S (0)) +
∫ t

0

∂ f

∂t
(u,S (u)) du

+
∫ t

0

∂ f

∂x
(u,S (u)) dS (u) + 1

2

∫ t

0

∂2 f

∂x2
(u,S (u)) (dS (u))2

= f (0,S (0)) +
∫ t

0

∂ f

∂t
(u,S (u)) du

+
∫ t

0

∂ f

∂x
(u,S (u)) (αS (u) du + σ S (u) dW (u))

+1

2

∫ t

0

∂2 f

∂x2
(u,S (u)) σ 2S (u)2 du.

Itô’s rule for pairs of processes For specific models, one may use Itô’s rules for-
mally to evaluate the last term in the following general “integration by parts”
principle: for X , Y two process:

d(X (t)Y (t)) = X (t)dY (t) + Y (t)dX (t) + dX (t) · dY (t).

9.2 Application: Self-financing Condition and Option
Pricing and Hedging Theorem

Consider {Si ; i = 1, . . . ,d} a set of d risky Black-Scholes-type assets. The value of
a portfolio which contains yi (t) shares of Si at time t is
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V (t) =
d∑

i=1

yi (t)Si (t).

By Itô’s integration-by-parts formula

dV (t) =
d∑

i=1

yi (t)dSi (t) + dyi (t)Si (t) + dyi (t)dSi (t).

Let us investigate an infinitesimal interpretation of the notion of self-financing. In
discrete time, when passing from time t − h to time t , changes in portfolio positions
must be financed by current changes in asset values. This means that the portfolio
value just before changing allocations at time t must equal the portfolio value right
after changing allocations at the same time t :

d∑

i=1

Si (t)hi (t) =
d∑

i=1

Si (t)hi (t − h).

Consequently

0 =
d∑

i=1

Si (t)(hi (t) − hi (t − h))

=
d∑

i=1

Si (t − h)(hi (t) − hi (t − h)) −
d∑

i=1

(Si (t) − Si (t − h))(hi (t) − hi (t − h)).

Then passing to h = dt infinitesimal, we find

0 =
d∑

i=1

Si (t)dhi (t) −
d∑

i=1

dSi (t)dhi (t).

Combining this with the expression above for dV (t), we arrive at the

Self-financingcondition: dV (t) =
d∑

i=1

yi (t)dSi (t).

Note that the risk-free asset can be denoted by S0 (t) and satisfiesdS0 (t) = r S0 (t) dt .
Thus if instead of denoting by y0 (t) the number of “shares” of the risk-free asset, we
use the notation bt for the cash amount in the risk-free asset, then bt = y0 (t) S0 (t)
and thus y0(t)dS0(t) = btrdt. Consequently we have
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Self-financing condition for a portfolio of yt shares of stock and bt in the
risk-free asset:

dV (t) = ytdS (t) + btrdt.

It is nowpossible to check that themain pricing andhedging theorem for theBlack-
Scholesmodel is correct. Recall that it states that with F satisfying the Black-Scholes
PDEwith terminal conditionΦ, the claimX = Φ (T ) can be replicated by investing
in yt = ∂F/∂x (t,S (t)) shares of stock and bt = F (t,S (t)) − yt S (t) position in the
risk-free asset. By definition, the value V (t) = bt + yt S (t) = F (t,S (t)) replicates
the claim at time T by virtue of F’s terminal condition. We thus only need to check
that V satisfies the self-financing condition.

By Itô’s formula for the Black-Scholes model, the Black-Scholes PDE, and the
definition of bt and yt ,

dV (t) = dF (t,S (t))

= ∂F

∂t
(t,S (t)) dt + ∂F

∂x
(t,S (t)) dS (t) + 1

2

∂2F

∂x2
(t,S (t)) σ 2S (t)2 du

= r F (t,S (t)) dt − r S (t)
∂F

∂x
(t,S (t)) − 1

2
σ 2S (t)2

∂2F

∂x2
(t,S (t))

+∂F

∂x
(t, S (t)) dS (t) + 1

2

∂2F

∂x2
(t, S (t)) σ 2S (t)2 du

= r (bt + yt S (t)) dt − r yt S (t) dt + ytdS (t)

= rbtdt + ytdS (t) .

This is the self-financing condition for the hedging portfolio V . The main pricing
and hedging theorem is thus justified.



Sensitivity Analysis
for Time-Inhomogeneous Lévy Process:
A Malliavin Calculus Approach
and Numerics

M’hamed Eddahbi and Sidi Mohamed Lalaoui Ben Cherif

Abstract The main goal of this paper is to study sensitivity analysis, with respect to
the parameters of themodel, in the framework of time-inhomogeneous Lévy process.
This is a slight generalization of recent results of Fournié et al. (Finance Stochast
3(4):391–412, 1999 [9]), El-Khatib and Privault (Finance Stochast 8(2):161–179,
2004 [7]), Bally et al. (Ann Appl Probab 17(1):33–66, 2007 [1]), Davis and Johans-
son (Stochast Process Appl 116(1):101–129, 2006 [5]), Petrou (Electron J Probab
13(27):852–879, 2008 [12]), Benth et al. (Commun Stochast Anal 5(2):285–307,
2011 [2]) and El-Khatib and Hatemi (J Statist Appl Probab 3(1):171–182, 2012 [8]),
using Malliavin calculus developed by Yablonski (Rocky Mountain J Math 38:669–
701, 2008 [16]). This relatively recent result will help us to provide tools that are
necessary for the calculation of the sensitivities. We provide some simple examples
to illustrate the results achieved. In particular, we discussed the time-inhomogeneous
versions of the Merton model and the Bates model.

Keywords Additive processes ·Time-inhomogeneous lévy process ·Malliavin cal-
culus · Integration by parts formula · Sensitivity analysis
Mathematics Subject Classification 2010 60H07 · 60H35 · 60G51

M. Eddahbi (B) · S.M. Lalaoui Ben Cherif
Faculty of Sciences and Techniques, Department of Mathematics, Cadi Ayyad
University, B.P. 549 Marrakech, Morocco
e-mail: m.eddahbi@uca.ma

S.M. Lalaoui Ben Cherif
Faculty of Sciences Semlalia, Department of Mathematics, Cadi Ayyad University,
B.P. 2390 Marrakesh, Morocco
e-mail: mohamed.lalaoui@ced.uca.ma

© Springer International Publishing Switzerland 2016
M. Eddahbi et al. (eds.), Statistical Methods and Applications in Insurance
and Finance, Springer Proceedings in Mathematics & Statistics 158,
DOI 10.1007/978-3-319-30417-5_2

39



40 M. Eddahbi and S.M. Lalaoui Ben Cherif

1 Introduction

A trader selling a financial product to a customer usually tends to avoid any risk
involved in that product and therefore wants to get rid of these risks by hedging. In
some cases we can make use of a static hedge and we can hedge—and—forget it,
additionally we can calculate the price from the products used for hedging. But for
most options this is not possible and we have to use a dynamic hedging strategy.
The price sensitivities with respect to the model parameters—the Greeks—are vital
inputs in this context.

The Greeks are calculated as differentials of the derivative price, which can be
expressed as an expectation (in risk—neutral measure) of the discounted payoff. The
Greeks are traditionally estimated by means of a finite difference approximation.
This approximation contains two errors: one on the approximation of the derivative
function by means of its finite difference and another one on the numerical com-
putation of the expectation. In addition the theoretical convergence rates for finite
difference approximations are not met for discontinuous payoff functions.

Fournié et al. [9] propose a method with faster convergence which consists in
shifting the differential operator from the payoff functional to the diffusion kernel,
introducing a weighting function. The main idea is the use of the Malliavin integra-
tion by parts formula to transform the problem of calculating derivatives by finite
difference approximations to calculating expectations of the form

E[H(ST )π |S0 = x]

where the weight π is a random variable and the underling price process is a Markov
diffusion given by:

dSt = b(St )dt + σ(St )dWt , S0 = x .

There have been several studies that attempt to produce similar results for markets
governed by processes with jumps. We mention León et al. [10], have approximated
a jump—diffusion model for a simple Lévy process, and hedged an european call
option using aMalliavin Calculus approach. El-Khatib and Privault [7] where a mar-
ket generated by Poisson processes is considered. Their setup allows for random
jump sizes, and by imposing a regularity condition on the payoff they use Malli-
avin calculus on Poisson space to derive weights for Asian options. Bally et al.
[1] reduce the problem to a setting in which only ‘finite—dimensional’ Malliavin
calculus is required in the case where stochastic differential equations are driven by
Brownianmotion and compound Poisson components. Davis and Johansson [5] have
developed the Malliavin calculus for simple Lévy process which allows them to cal-
culate the Greeks in a jump diffusion setting which satisfy a separability condition.
Petrou [12] has calculated the sensitivities using Malliavin Calculus for markets
generated by square integrable Lévy processes which is a extension of the paper
[9]. Benth et al. [2] studied the computation of the deltas in model variation within
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a jump—diffusion framework with two approaches, the Malliavin calculs technics
and the Fourier method. El-Khatib and Hatemi [8] estimated the price sensitivities
of a trading position with regard to underlying factors in jump—diffusion models
using jump times Poisson noise.

While Lévy processes offer nice features in terms of analytical tractability, the
constraints of independence and stationarity of their increments prove to be rather
restrictive. On one hand, the stationarity of increments of Lévy processes leads to
rigid scaling properties for marginal distributions of returns, which are not observed
in empirical time series of returns. On the other hand, from the point of view of risk
neutral modeling, the Lévy models allow to reproduce the phenomenon of volatility
smile for a given maturity, but it becomes more complicated when one tries to stick
to several maturities. The inhomogeneity in time increments can improve it, hence
the importance of introducing the additive processes in financial modeling. Each
of the previous papers has its advantages in specific cases. However, they can only
treat subclasses of Lévy processes except that of [12] but in time-homogeneous case
setting.

The objective of this work is to derive stochastic weights in order to compute
the Greeks in market models with jump when the discontinuity is described by a
Poisson random measure with time-inhomogeneous intensity and then to use differ-
ent numerical methods to compare the results for simpler time dependent models.
The main tool uses Malliavin calculus, developed by Yablonski [16] for additive
processes, that will be presented shortly at the appendix of the present document for
the sake of completeness. Essentially, we introduce the time-inhomogeneity in the
jump component of the risky asset price. In particular, we focus on a class of models
in which the price of the underlying asset is governed by the following stochastic
differential equation:

⎧
⎨

⎩

dSt = b(t, St−)dt + σ(t, St−)dWt

+ ∫
R

d
0
ϕ(t, St−, z)Ñ (dt, dz),

S0 = x
(1)

where Rd
0 := R

d \ {0Rd }, x = (xi )1≤i≤d ∈ R
d . The functions b : R+ × R

d −→ R
d ,

σ : R+ × R
d −→ R

d×d and ϕ : R+ × R
d × R

d −→ R
d×d , are continuously differ-

entiable with bounded derivatives. Here

Wt = (W1(t), . . . ,Wd(t))

is a d-dimensional standard Brownian motion and

Ñ (dt, dz)� = (N1(dt, dz1) − ν1
t (z1), . . . , Nd(dt, dzd) − νd

t (zd))

where Nk, k = 1, . . . , d are independent Poisson random measures on [0, T ] × R0,
R0 := R

1
0, with time-inhomogeneous Lévy measures νk

t , k = 1, . . . , d coming from
d independent one-dimensional time-inhomogeneous Lévy processes. The family of
positive measures (νk

t )1≤k≤d satisfies
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d∑

k=1

∫ T

0

∫

R0

(|zk |2 ∧ 1)νk
t (dzk)dt < ∞

and νk
t ({0}) = 0, k = 1, . . . , d. Let b(t, x) = bi (t, x))1≤i≤d , σ(t, x) = σi j

(t, x)1≤i≤d,1≤ j≤d and ϕ(t, x, z) = ϕik(t, x, z)1≤i≤d,1≤k≤d be the coefficients of (1)
in the component form. Then St = (Si (t))1≤i≤d in (1) can be equivalently written as

⎧
⎨

⎩

dSit = bi (t, St−)dt + ∑d
j=1 σi j (t, St−)dWj (t)

+∑d
k=1

∫
R0

ϕik(t, St−, zk)Ñk(dt, dzk),
Si0 = xi .

(2)

To guarantee a unique strong solution to (1), we assume that the coefficients of
(1) satisfy linear growth and Lipschitz continuity, i.e.,

‖b(t, x)‖2 + ‖σ(t, x)‖2 +
d∑

k=1

d∑

i=1

∫

R0

|ϕik(t, x, zk)|2νk
t (dzk) ≤ C(1 + ‖x‖2)

(3)

and

‖b(t, x) − b(t, y)‖2 + ‖σ(t, x) − σ(t, y)‖2 ≤ K1‖x − y‖2 (4)

for all x, y ∈ R
d and t ∈ [0, T ], with C and K1 are positive constants.

We suppose that there exists a family of functions ρk : R −→ R, k = 1, . . . , d such
that

sup
0≤t≤T

∫

R0

d∑

k=1

|ρk(zk)|2νk
t (dzk) < ∞, (5)

and a positive constant K2 such that

d∑

i=1

|ϕik(t, x, zk) − ϕik(t, y, zk)|2 ≤ K2|ρ(zk)|2‖x − y‖2, (6)

for all x, y ∈ R
d , t ∈ [0, T ] and zk ∈ R, k = 1, . . . , d. Similarly to the homogeneous

case, we have the following lemma:

Lemma 1.1 Under the above conditions there exists a unique solution (St )t∈[0,T ]
for (1). Moreover, there exists a positive constant C0 such that

E

[

sup
0≤t≤T

‖St‖2
]

< C0.
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2 Regularity of Solutions of SDEs Driven
by Time-Inhomogeneous Lévy Processes

The aim of this section is to prove that under specific conditions the solution of
a stochastic differential equation belongs to the domains D1,2 (see Sects. 4.14 and
4.16). Having in mind the applications in finance, we will also provide a specific
expression for the Wiener directional derivative of the solution.

Remark 2.1 The theory developed in the Appendix also holds in the case that our
space is generated by an d-dimensional Wiener process and d-dimensional random
Poissonmeasures.However,wewill have to introducenewnotation for the directional
derivatives in order to simplify things. For the multidimensional case,

Dt,0 = (D(1)
t,0 , . . . , D

(d)
t,0 )

will denote a row vector, where the element D( j)
t,0 of the j th row is the directional

derivative for the Wiener process Wj , for all j = 1, . . . , d. Similarly, for all z =
(zk)1≤k≤d ∈ R

d
0 we define the row vector

Dt,z = (D(1)
t,z1 , . . . , D

(d)
t,zd )

where the element D(k)
t,zk of the kth row is the directional derivative for the random

Poisson measure Ñk , for all k = 1, . . . , d. For what follows we denote with σ j the
j th column vector of σ and ϕk the kth column vector of ϕ.

Theorem 2.2 Let (St )t∈[0,T ] be the solution of (1). Then St ∈ D
1,2 for all t ∈ [0, T ],

and we have

1. The Malliavin derivative D( j)
r,0 St with respect to Wj satisfies the following linear

equation:

D( j)
r,0 St =

d∑

i=1

∫ t

r

∂b

∂xi
(u, Su−)D( j)

r,0 S
i
u−du + σ j (r, Sr−)

+
d∑

i=1

d∑

α=1

∫ t

r

∂σα

∂xi
(u, Su−)D( j)

r,0 S
i
u−dWα(u)

+
d∑

i=1

∫ t

r

∫

R
d
0

∂ϕ

∂xi
(u, Su−, y)D( j)

r,0 S
i
u− Ñ (du, dy),

for 0 ≤ r ≤ t a.e. and D( j)
r,0 St = 0 a.e. otherwise.

2. For all z ∈ R
d
0 , The Malliavin derivative Dr,z St with respect to Ñ satisfies the

following linear equation:
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Dr,z St =
∫ t

r
Dr,zb(u, Su−)du +

∫ t

r
Dr,zσ(u, Su−)dWu

+ϕ(r, Sr−, z) +
∫ t

r

∫

R
d
0

Dr,zϕ(u, Su−, y)Ñ (du, dy),

for 0 ≤ r ≤ t a.e. and Dr,z St = 0 a.e. otherwise.

Proof 1. We consider the Picard approximations Snt , n ≥ 0, given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S0t = x

Sn+1
t = x +

∫ t

0
b(u, Snu−)du +

∫ t

0
σ(u, Snu−)dWu

+
∫ t

0

∫

R
d
0

ϕ(u, Snu−, z)Ñ (du, dz).

(7)

From Lemma 1.1 we know that

E

[

sup
0≤t≤T

|Snt − St |2
]

−→
n→∞ 0.

By induction, we prove that the following statements hold true for all n ≥ 0.
Hypothesis (H)

(a) Snt ∈ D
1,2 for all t ∈ [0, T ].

(b) ξn(t) = sup
0≤r≤t

E

[

sup
r≤u≤t

∣
∣Dr,0Snu

∣
∣2
]

< ∞.

(c) ξn+1(t) ≤ α + β
∫ t
0 ξn(u)du for some constants α, β.

For n = 0, it is straightforward that (H) is satisfied. Assume that (H) holds for a
certain n. Wewould prove it for n + 1. By Proposition 4.12 b(u, Snu−), σ(u, Snu−)

and ϕ(u, Snu−, z) are in D
1,2. Furthermore,

Dr,0bi (u, Snu−) =
d∑

α=1

∂bi
∂xα

(u, Snu−)Dr,0S
n,α
u− 1{r≤u},

Dr,0σi j (u, Snu−) =
d∑

α=1

∂σi j

∂xα

(u, Snu−)Dr,0S
n,α
u− 1{r≤u},

Dr,0ϕik(u, Snu−, zk) =
d∑

α=1

∂ϕik

∂xα

(u, Snu−, zk)Dr,0S
n,α
u− 1{r≤u}.

Since the functions b, σ and ϕ are continuously differentiable with bounded first
derivatives in the second direction and taking into account the conditions (4) and
(6) we have
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∥
∥Dr,0bi (u, Snu−)

∥
∥2 ≤ K1

∥
∥Dr,0S

n
u−

∥
∥2 ,

∥
∥Dr,0σi j (u, Snu−)

∥
∥2 ≤ K1

∥
∥Dr,0S

n
u−

∥
∥2 , (8)

∥
∥Dr,0ϕik(u, Snu−, zk)

∥
∥2 ≤ K2|ρ(zk)|2

∥
∥Dr,0S

n
u−

∥
∥2 .

However,
∫ t
0 b(u, Snu−)du,

∫ t
0 σ(u, Snu−)dWu and

∫ t
0

∫
R

d
0
ϕ(u, Snu−, z)Ñ (dt, dz)

are in D1,2. Which implies that Sn+1
t to D1,2 and we have

D( j)
r,0

∫ t

0
bi (u, Snu−)du =

∫ t

r
D( j)
r,0 bi (u, Snu−)du,

D( j)
r,0

d∑

α=1

∫ t

0
σiα(u, Snu−)dWα

u = σi j (r, S
n
r−) +

d∑

α=1

∫ t

r
D( j)
r,0 σiα(u, Snu−)dWα(u),

D( j)
r,0

d∑

k=1

∫ t

0

∫

R0

ϕik (u, Snu−, zk )Ñk (dt, dzk ) =
d∑

k=1

∫ t

r

∫

R0

D( j)
r,0 ϕik (u, Snu−, zk )Ñk (dt, dzk ).

Thus

D( j)
r,0 S

n+1
t =

∫ t

r
D( j)
r,0 b(u, Snu−)du + σ j (r, S

n
r−) +

d∑

α=1

∫ t

r
D( j)
r,0 σα(u, Snu−)dWα(u)

+
d∑

k=1

∫ t

r

∫

R0

D( j)
r,0 ϕk(u, Snu−, zk)Ñk(dt, dzk).

We conclude that

E

[

sup
r≤v≤t

|D( j)
r,0 S

n+1
v |2

]

≤ 4

{

E

[

sup
r≤v≤t

∣
∣
∣
∣

∫ v

r
D( j)

r,0 b(u, Snu−)du

∣
∣
∣
∣

2
]

+E

[

sup
0≤t≤T

|σ j (t, S
n
t )|2

]

+ E

⎡

⎣ sup
r≤v≤t

∣
∣
∣
∣
∣

d∑

α=1

∫ v

r
D( j)

r,0σα(u, Snu−)dWα(u)

∣
∣
∣
∣
∣

2
⎤

⎦

+ E

⎡

⎣ sup
r≤v≤t

∣
∣
∣
∣
∣

d∑

k=1

∫ v

r

∫

R0

D( j)
r,0ϕk(u, Snu−, zk)Ñk(dt, dzk)

∣
∣
∣
∣
∣

2
⎤

⎦

⎫
⎬

⎭
.

Using Cauchy–Schwarz inequality and Burkholder–Davis–Gundy inequality
(see [14], Theorem 48 p. 193), there exists a constant K > 0 such that

E

[

sup
r≤v≤t

|D( j)
r,0 S

n+1
v |2

]

≤ K

{

(t − r)E

[∫ t

r
|D( j)

r,0 b(u, Snu−)|2du
]

+E

[

sup
0≤t≤T

|σ j (t, S
n
t )|2

]

+ E

[
d∑

α=1

∫ t

r
|D( j)

r,0σα(u, Snu−)|2du
]
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+ E

[
d∑

k=1

∫ v

r

∫

R0

|D( j)
r,0ϕk(u, Snu−, zk)|2νk

u (dzk)du

]}

.

From (6) and (8) we reach

E

[

sup
r≤u≤t

|D( j)
r,0 S

n+1
u |2

]

≤ KE

[

sup
0≤t≤T

|σ j (t, S
n
t )|2

]

+K

⎛

⎝K1(T + 1) + K2 sup
0≤t≤T

∫

R0

d∑

k=1

|ρk(zk)|2νkt (dzk)

⎞

⎠
∫ t

r
E
[
|D( j)

r,0 S
n
u−|2

]
du.

Then, from (3)

E

[

sup
r≤u≤t

|D( j)
r,0 S

n+1
u |2

]

≤ KC

(

1 + E

[

sup
0≤t≤T

|Snt |2
])

+K

(

K1(T + 1) + K2 sup
0≤t≤T

∫

R0

d∑

k=1

|ρk(zk)|2νkt (dzk)
)∫ t

r
E

[

sup
r≤v≤u

|D( j)
r,0 S

n
v−|2

]

du.

Consequently

ξn+1(t) ≤ α + β

∫ t

0
ξn(u)du,

where

α := KC

(

1 + sup
n∈N

E

[

sup
0≤t≤T

|Snt |2
])

< ∞

and, using (5), we have

β := K

(

K1(T + 1) + K2 + sup
0≤t≤T

∫

R0

d∑

k=1

|ρk(zk)|2νk
t (dzk)

)

< ∞.

By induction, we can easily prove that, for all n ∈ N and t ∈ [0, T ]

ξn(t) ≤ α

n∑

i=0

(βt)i

i ! .

Hence, for all n ∈ N and t ∈ [0, T ]

ξn(t) ≤ αeβt < ∞,
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which implies that the derivatives of Snt are bounded inL
2(Ω × [0, T ])uniformly

in n. Hence, we deduce that the random variable St belongs to D
1,2 and by

applying the chain rule to (1) we achieve our proof.
2. Following the same steps we can prove the second claim of the theorem.

As in the classical Malliavin calculus we are able to associate the solution of (1)
with the first variation process Yt := ∇x St .We reach the following proposition which
provides us with a simpler expression for Dr,0St .

Proposition 2.3 Let (St )t∈[0,T ] be the solution of (1). Then the derivative satisfies
the following equation:

Dr,0St = YtY
−1
r− σ(r, Sr−)1{r≤t} a.e. (9)

where (Yt )t is the first variation process of (St )t .

Proof Let (St )t∈[0,T ] be the solution of (1). Then

D( j)
r,0 S

i
t =

d∑

β=1

∫ t

r

∂bi
∂xβ

(u, Su−)D( j)
r,0 S

β
u−du + σi j (r, Sr−)

+
d∑

β=1

d∑

α=1

∫ t

r

∂σiα

∂xβ

(u, Su−)D( j)
r,0 S

β
u−dWα(u)

+
d∑

β=1

d∑

k=1

∫ t

r

∫

R0

∂ϕik

∂xβ

(u, Su−, zk)D
( j)
r,0 S

β
u− Ñk(du, dzk).

The d × d matrix–valued process Yt is given by

Y i j
t := ∂Sit

∂x j

= δi j +
d∑

k=1

∫ t

0

∂bi
∂xk

(u, Su−)Y kj
u−du

+
d∑

k=1

d∑

α=1

∫ t

0

∂σiα

∂xk
(u, Su−)Y kj

u−dWα(u)

+
d∑

k=1

d∑

β=1

∫ t

0

∫

R0

∂ϕiβ

∂xk
(u, Su−, zβ)Y kj

u− Ñβ(du, dzβ)

with δi i = 1 and δi j = 0 if i �= j . Let (Zt )0≤t≤T be a d × d matrix–valued process
that satisfies the following equation
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Zi j
t = δi j +

d∑

k=1

∫ t

0

(

− ∂bk
∂x j

(u, Su−) +
d∑

n=1

d∑

α=1

∂σkα

∂xn
(u, Su−)

∂σnα

∂x j
(u, Su−)

)

Zik
u−du

+
d∑

k=1

d∑

β=1

∫ t

0

∫

R0

∑d
n=1

∂ϕkβ
∂xn

(u, Su−, zβ)
∂ϕnβ
∂x j

(u, Su−, zβ)

1 + ∂ϕkβ
∂x j

(u, Su−, zβ)
Zik
u−νβ

u (dzβ)du

−
d∑

k=1

d∑

α=1

∫ t

0

∂σkα

∂x j
(u, Su−)Zik

u−dWα(u)

−
d∑

k=1

d∑

β=1

∫ t

0

∫

R0

∂ϕkβ
∂x j

(u, Su−, zβ)

1 + ∂ϕkβ
∂x j

(u, Su−, zβ)
Zik
u− Ñβ(du, dzβ).

By means of Itô’s formula, one can check that

d∑

j=1

Zi j
t Y

jk
t = δik .

Hence ZtYt = ZtYt = Id where Id is the unit matrix of size d. As a consequence, for
any t ≥ 0 the matrix Yt is invertible and Y−1

t = Zt . Applying again Itô’s formula, it
holds that

D( j)
r,0 S

i
t =

d∑

n=1

d∑

k=1

Y ik
t Zkn

r σnj (r, Sr−) for all r ≤ t.

Then the result follows.

2.1 Greeks

For n ∈ N
∗ we define the payoff H := H(St1 , St2 , . . . , Stn ) to be a square integrable

function discounted frommaturity T and evaluated at the times t1, t2, . . . , tn with the
convention that t0 = 0 and tn = T . Under a chosen, since we do not have uniqueness,
risk neutral measure, denoted by Q, the price C (x) of the contingent claim given an
initial value is then expressed as:

C (x) = EQ

[
H(St1 , St2 , . . . , Stn )

]
.

In what follows, we assume the next ellipticity1 condition for the diffusion matrix σ .

1This is to ensure that we can find some solutions for the weighting functions, since it often requires
to take the inverse of the volatility function.
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Assumption 2.4 The diffusion matrix σ satisfies the uniform ellipticity condition:

∃ η > 0 ξ ∗σ ∗(t, x)σ (t, x)ξ > η‖ξ‖2, ∀ ξ, x ∈ R
d .

Using the Malliavin calculus developed in the Sect. 2.1 we are able to calculate the
Greeks for the one–dimensional process (St )t∈[0,T ] that satisfies equation (1).

2.2 Variation in the Initial Condition

In this section, we provide an expression for the derivatives of the expectation C (x)
with respect to the initial condition x in the form of a weighted expectation of the
same functional.
Let us define the set:

Tn =
{

a ∈ L2([0, T ]) :
∫ ti

0
a(u)du = 1 ∀ i = 1, 2, . . . , n

}

where ti , i = 1, 2, . . . , n are as defined in the Sect. 2.1.

Proposition 2.5 Assume that the diffusion matrix σ is uniformly elliptic. Then for
all a ∈ Tn,

∇xC (x) = EQ

[

H(St1 , St2 , . . . , Stn )
∫ T

0
a(u)σ−1(u, Su−)Yu−dWu

]

.

Proof Let H be a continuously differentiable function with bounded gradient. Then
we can differentiate inside the expectation (see Fournié et al. [9] for details) and we
have

∇xC (x) = EQ

[
n∑

i=1

∇i H(St1 , St2 , . . . , Stn )∇x Sti

]

= EQ

[
n∑

i=1

∇i H(St1 , St2 , . . . , Stn )Yti

]

where∇i H(St1 , St2 , . . . , Stn ) is the gradient of H with respect to Sti for i = 1, . . . , n.
For any a ∈ Tn and i = 1, . . . , n and using (9) we find

Yti =
∫ T

0
a(u)Du,0Sti σ

−1(u, Su−)Yu−du.

From Proposition 4.12 we reach
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∇xC (x) = EQ

[∫ T

0

n∑

i=1

∇i H(St1 , St2 , . . . , Stn )a(u)Du,0Sti σ
−1(u, Su−)Yu−du

]

= EQ

[∫ T

0
Du,0H(St1 , St2 , . . . , Stn )a(u)σ−1(u, Su−)Yu−du

]

= EQ

[∫ T

0

∫

R

Du,z H(St1 , St2 , . . . , Stn )a(u)σ−1(u, Su−)Yu−duδ0(dz)

]

.

Into measure π(dudz) defined in Sect. 4.12 we replace Δ by 0 and μ(du) by a
Lebesgue measure du. Then

∇xC (x) = EQ

[∫ T

0

∫

R

Du,z H(St1 , St2 , . . . , Stn )a(u)σ−1(u, Su−)Yu−1{0}(z)π(dudz)

]

.

Using the integration by parts formula (see Sect. 4.14), we have

∇xC (x) = EQ

[
H(St1 , St2 , . . . , Stn )δ

(
a(·)σ−1(·, S·)Y·1{z=0}(·)

)]
.

However,
(
a(u)σ−1(t, St−)Yt−

)
0≤t≤T is a predictable process, thus the Skorohod

integral coincides with the Itô stochastic integral.

∇xC (x) = EQ

[

H(St1 , St2 , . . . , Stn )
∫ T

0
a(u)σ−1(u, Su−)Yu−dWu

]

.

Since the family of continuously differentiable functions is dense in L2, the result
hold for any H ∈ L2 (see Fournié et al. [9] for details).

2.3 Variation in the Drift Coefficient

Let b̃ : R+ × R
d −→ R

d be a function such that for every ε ∈ [−1, 1], b̃ and b + εb̃
are continuously differentiable with bounded first derivatives in the space directions.

We then define the drift–perturbed process (Sε
t )t as a solution of the following

perturbed stochastic differential equation:

{
dSε

t = (b(t, Sε
t−) + εb̃(t, Sε

t−))dt + σ(t, Sε
t−)dWt

+ ∫
R

d
0
ϕ(t, Sε

t−, z)Ñ (dt, dz), with Sε
0 = x . (10)

We can relate to this perturbed process the perturbed price C ε(x) defined by

C ε(x) = EQ

[
H(Sε

t1 , S
ε
t1 , . . . , S

ε
tn )

]
.
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Proposition 2.6 Assume that the diffusion matrix σ is uniformly elliptic. Then we
have

Rho = ∂C ε

∂ε
(x)

∣
∣
∣
∣
ε=0

= EQ

[

H(St1 , St2 , . . . , Stn )
∫ T

0
(σ−1b̃)(t, St−)dWt

]

.

Proof We introduce the random variable

D̃ε
T = exp

(

ε

∫ T

0
(σ−1b̃)(t, Sε

t−)dWt − ε2

2

∫ T

0
‖(σ−1b̃)(t, Sε

t−)‖2dt
)

.

The Novikov condition is satisfied since

EQ

[

exp

(
ε2

2

∫ T

0
‖(σ−1b̃)(t, Sε

t−)‖2dt
)]

< +∞.

As well as EQ[D̃ε
T ] = 1, then we can define new probability measure Q

ε by its
Radon–Nikodym derivative with respect to the risk–neutral probability measure Q:

D̃ε
T = dQε

dQ

/

FT .

By changing of measure, we can write

EQ

[
H(Sε

t1 , S
ε
t1 , . . . , S

ε
tn )

] = EQε

[

H(Sε
t1 , S

ε
t1 , . . . , S

ε
tn )

dQ

dQε

]

= EQ

[
H(St1 , St2 , . . . , Stn )D

ε
T

]

where

Dε
T = exp

(

−ε

∫ T

0

(
(σ−1b̃)(t, St−)

)
dWt − ε2

2

∫ T

0
‖(σ−1b̃)(t, St−)‖2dt

)

= 1 − ε

∫ T

0

(
(σ−1b̃)(t, St−)

)
Dε

t dWt

which implies that

∣
∣
∣
∣
∣

EQ

[
H(Sε

t1 , S
ε
t1 , . . . , S

ε
tn )

] − EQ

[
H(St1 , St2 , . . . , Stn )

]

ε

−EQ

[

H(St1 , St2 , . . . , Stn )
∫ T

0
(σ−1b̃)(t, St−)dWt

]∣
∣
∣
∣

2
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=
∣
∣
∣
∣EQ

[

H(St1 , St2 , . . . , Stn )

(
Dε

T − 1

ε
−

(∫ T

0
(σ−1b̃)(t, St−)dWt

))]∣
∣
∣
∣

2

≤ EQ

[|H(St1 , St2 , . . . , Stn )|2
]
EQ

[∣
∣
∣
∣
Dε

T − 1

ε
−

∫ T

0

(
(σ−1b̃)(t, St−)dWt

)
∣
∣
∣
∣

2
]

.

2.4 Variation in the Diffusion Coefficient

In this section, we provide an expression for the derivatives of the price C (x) with
respect to the diffusion coefficient σ . We introduce the set of deterministic functions

T̃n =
{

a ∈ L2([0, T ]) :
∫ ti

ti−1

a(u)du = 1 ∀ i = 1, 2, . . . , n

}

where ti , i = 1, 2, . . . , n are as defined in theSect. 2.1. Let σ̃ : R+ ×R
d −→R

d ×R
d

a direction function for the diffusion such that for every ε ∈ [−1, 1], σ̃ and σ + εσ̃

are continuously differentiable with bounded first derivatives in the second direction
and verify Lipschitz conditions such that the following assumption is satisfied:

Assumption 2.7 The diffusion matrix σ + εσ̃ satisfies the uniform ellipticity con-
dition for every ε ∈ [−1, 1]:

∃ η > 0 ξ ∗ (σ + εσ̃ )∗ (t, x) (σ + εσ̃ ) (t, x)ξ > η‖ξ‖2, ∀ ξ, x ∈ R
d .

We then define the diffusion–perturbed process (Sε,̃σ
t )0≤t≤T as a solution of the

following perturbed stochastic differential equation:

{
dSε,̃σ

t = b(t, Sε,̃σ
t− )dt +

(
σ(t, Sε,̃σ

t− ) + εσ̃ (t, Sε,̃σ
t− )

)
dWt

+ ∫
R

d
0
ϕ(t, Sε,̃σ

t− , z)Ñ (dt, dz), with Sε,̃σ
0 = x .

We can also relate to this perturbed process the perturbed price C ε,̃σ (x) defined by

C ε,̃σ (x) := EQ

[
H(Sε,̃σ

t1 , Sε,̃σ
t1 , . . . , Sε,̃σ

tn )
]
.

We will need to introduce the variation process with respect to the parameter ε

dZ ε,̃σ
t = b′(t, Sε,̃σ

t− )Z ε,̃σ
t− dt +

(
σ ′(t, Sε,̃σ

t− ) + εσ̃ ′(t, Sε,̃σ
t− )

)
Z ε,̃σ
t− dWt

+ σ̃ (t, Sε,̃σ
t− )dWt +

∫

R
d
0

ϕ′(t, Sε,̃σ
t− , z)Z ε,̃σ

t− Ñ (dt, dz) and Z ε,̃σ
0 = 0,
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so that ∂Sε,̃σ
t

∂ε
= Z ε,̃σ

t . We simply use the notation St , Yt and Z σ̃
t for S0,̃σt , Y 0,̃σ

t and
Z0,̃σ
t where the first variation process is given by Y 0,̃σ

t := ∇x S
0,̃σ
t . Next, consider the

process (βσ̃
t )t∈[0,T ] defined by

βσ̃
t := Y−1

t Z σ̃
t , 0 ≤ t ≤ T a.e.

Proposition 2.8 Assume that Hypothesis 2.7 holds. Set

β̃a,̃σ
t =

n∑

i=1

a(t)
(
βσ̃
ti − βσ̃

ti−1

)
1[ti−1,ti [(t).

Suppose further that the process (σ−1(t, St )Yt β̃
a,̃σ
t δ0(z))(t,z) belongs to Dom(δ),

then we have for any a ∈ T̃n:

V ega = ∂C ε,̃σ

∂ε
(x)

∣
∣
∣
∣
ε=0

= EQ

[
H(St1 , St2 , . . . , Stn )δ

(
σ−1(·, S·)Y·β̃a,̃σ

· δ0(·)
)]

.

Moreover, if the process
(
βσ̃
t δ0(z)

)
t∈[0,T ] belongs to D

1,2, then

δ
(
σ−1(·, S·)Y·β̃a,̃σ

· δ0(·)
) =

n∑

i=1

{

βσ̃
ti δ0(z)

∫ ti

ti−1

a(t)(σ−1(t, St−)Yt−)dWt

−
∫ ti

ti−1

a(t)
(
(Dt,0β

σ̃
ti )σ

−1(t, St−)Yt−
)
dt

−
∫ ti

ti−1

a(t)(σ−1(t, St−)Yt−βσ̃
ti−1

δ0(z)dWt

}

.

Proof Let H be a continuously differentiable function with bounded gradient. Then
we can differentiate inside the expectation

∂C ε,̃σ

∂ε
(x) = EQ

[
n∑

i=1

∇i H(Sε,̃σ
t1 , Sε,̃σ

t2 , . . . , Sε,̃σ
tn )

∂Sε,̃σ
ti

∂ε

]

= EQ

[
n∑

i=1

∇i H(Sε,̃σ
t1 , Sε,̃σ

t2 , . . . , Sε,̃σ
tn )Z ε,̃σ

ti

]

.

Hence

∂C ε,̃σ

∂ε
(x)

∣
∣
∣
∣
ε=0

= EQ

[
n∑

i=1

∇i H(St1 , St2 , . . . , Stn )Z
σ̃
ti

]

.
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On the other hand we have

Z σ̃
ti = Yti β

σ̃
ti

= Yti

i∑

j=1

(βσ̃
t j − βσ̃

t j−1
)

= Yti

i∑

j=1

∫ t j

t j−1

a(t)(βσ̃
t j − βσ̃

t j−1
)dt

=
∫ ti

t0

Yti β̃
a,̃σ
t dt.

From Proposition 2.3, we conclude that

Z σ̃
ti =

∫ T

0
Du,0Sti σ

−1(u, Su−)Yu−β̃a,̃σ
u du.

Which implies that

∂C ε,̃σ

∂ε
(x)

∣
∣
∣
∣
ε=0

= EQ

⎡

⎣
∫ T

0

n∑

i=1

∇i H(St1 , St2 , . . . , Stn )Du,0Sti σ
−1(u, Su−)Yu−β̃

a,̃σ
u du

⎤

⎦

= EQ

[∫ T

0
Du,0H(St1 , St2 , . . . , Stn )σ

−1(u, Su−)Yu−β̃
a,̃σ
u du

]

.

Using the duality formula in Sect. 4.14 and taking into account the fact that
(σ−1(t, St )Yt β̃

a,̃σ
t δ0(z))(t,z) belongs to Dom(δ), we reach

∂C ε,̃σ

∂ε
(x)

∣
∣
∣
∣
ε=0

= EQ

[
H(St1 , St2 , . . . , Stn )δ

(
σ−1(·, S·)Y·β̃a,̃σ

· δ0(·)
)]

.

2.5 Variation in the Jump Amplitude

To derive a stochastic weight for the sensitivity with respect to the amplitude para-
meter ϕ we use the same technique as in the Proposition 2.6. To do this, we consider
the perturbed process

⎧
⎪⎨

⎪⎩

dSε,ϕ̃
t = b(t, Sε,ϕ̃

t− )dt + σ(t, Sε,ϕ̃
t− )dWt

+ ∫
R

d
0
(ϕ(t, Sε,ϕ̃

t− , z) + εϕ̃(t, Sε,ϕ̃
t− , z))Ñ (dt, dz),

Sε,ϕ̃
0 = x
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where ε ∈ [−1, 1] and ϕ̃ : R+ × R
d × R

d −→ R
d×d is continuously differentiable

function with bounded first derivative in the second direction. The variation process
with respect to the parameter ε becomes

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dZ ε,ϕ̃
t = b′(t, Sε,ϕ̃

t− )Z ε,ϕ̃
t− dt + ∑d

k=1 σ ′
k(t, S

ε,ϕ̃
t− )Z ε,ϕ̃

t− dW (k)
t

+ ∫
R

d
0

(
ϕ′(t, Sε,ϕ̃

t− , z) + εϕ̃′(t, Sε,ϕ̃
t− , z)

)
Z ε,ϕ̃
t− Ñ (dt, dz)

+ ∫
R

d
0
ϕ̃(t, Sε,ϕ̃

t− , z)Ñ (dt, dz),

Z ε,ϕ̃
0 = 0.

We can also relate to this perturbed process the perturbed price C ε,ϕ̃(x) defined by

C ε,ϕ̃(x) := EQ

[
H(Sε,ϕ̃

t1 , Sε,ϕ̃
t1 , . . . , Sε,ϕ̃

tn )
]
.

Hence, the statement of the following proposition is practically identical to
Proposition 2.8:

Proposition 2.9 Assume that the diffusion matrix σ is uniformly elliptic and the
process (σ−1(t, St )Yt β̃

a,ϕ̃
t δ0(z))(t,z) ∈ Dom(δ), then we have for any a ∈ T̃n:

Kappa = ∂C ε,ϕ̃

∂ε
(x)

∣
∣
∣
∣
ε=0

= EQ

[
H(St1 , St2 , . . . , Stn )δ

(
σ−1(·, S·)Y·β̃a,ϕ̃

· δ0(·)
)]

.

Moreover, if the process (β
ϕ̃
t δ0(z))t∈[0,T ] belongs to D1,2, then

δ
(
σ−1(·, S·)Y·β̃a,ϕ̃

· δ0(·)
) =

n∑

i=1

{

β
ϕ̃
ti δ0(z)

∫ ti

ti−1

a(t)(σ−1(t, St−)Yt−)dWt

−
∫ ti

ti−1

a(t)
(
(Dt,0β

ϕ̃
ti )σ

−1(t, St−)Yt−
)
dt

−
∫ ti

ti−1

a(t)(σ−1(t, St−)Yt−β
ϕ̃
ti−1

δ0(z))dWt

}

.

3 Numerical Experiments

In this section, we provide some simple examples to illustrate the results achieved
in the previous section. In particular, we will look at time-inhomogeneous versions
of the Merton model and the Bates model.
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3.1 Examples

3.1.1 Time-Inhomogeneous Merton Model

We consider time-inhomogeneous versions of the Merton model when the riskless
asset is governed by the equation:

dS0t = S0t r(t)dt, S00 = 1,

and the evolution of the risky asset is described by:

dSt = St−dLt , S0 = x,

where

Lt =
∫ t

0
b(u)du +

∫ t

0
σ(u)dWu +

∫ t

0
ϕ(u)dXu, t ≥ 0.

• {Wt , 0 ≤ t ≤ T } is a standard Brownian motion.
• The process {Xt , 0 ≤ t ≤ T } is defined by Xt := ∑Nt

j=1 Z j for all t ∈ [0, T ], such
that {Nt , t ≥ 0} is a inhomogeneous Poisson process with intensity function λ(t)
and (Zn)n≥1 is a sequence of square integrable random variables which are i.i.d.
(we set κ := EQ[Z1]).

• {Wt , t ≥ 0}, {Nt , t ≥ 0} and {Zn, n ≥ 1} are independent.
• r , b, σ and ϕ are deterministic functions.

We can write

Lt =
∫ t

0
b(u)du +

∫ t

0
σ(u)dWu +

∫ t

0

∫

R0

ϕ(u)z JX (du, dz)

=
∫ t

0
(b(u) + κϕ(u)λ(u)) du +

∫ t

0
σ(u)dWu +

∫ t

0

∫

R0

ϕ(u)z J̃X (du, dz),

where JX (du, dz) and J̃X (du, dz) are, respectively, the jump measure and the com-
pensated jumpmeasure of the process X . By Itô’s formula, we have for all t ∈ [0, T ]:

ln(St ) = ln(x) +
∫ t

0

(

b(u) − 1

2
σ 2(u)

)

du

+
∫ t

0
σ(u)dWu +

∫ t

0

∫

R0

ln(1 + ϕ(u)z)JX (du, dz).
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Set At = exp(− ∫ t
0 r(u)du),we conclude that the process (At St )t∈[0,T ] is amartingale

if and only if the following condition is satisfied:

b(t) − r(t) + κϕ(t)λ(t) = 0 ∀ t ∈ [0, T ].

Hence, for all t ∈ [0, T ]:

ln(St ) = ln(x) +
∫ t

0

(

r(u) − 1

2
σ 2(u) − κϕ(u)λ(u)

)

du

+
∫ t

0
σ(u)dWu +

∫ t

0

∫

R0

ln(1 + ϕ(u)z)JX (du, dz).

The price of a contingent claim H(ST ) is then expressed as

C (x) = EQ [AT H(ST )] ,

and for all t ∈ [0, T ], the processes Yt , Z σ̃
t , β

σ̃
t , Z

ϕ̃
t and β

ϕ̃
t are, respectively, given

by

Yt = St
x

Z σ̃
t =

(∫ t

0
σ̃ (u)dWu −

∫ t

0
σ̃ (u)σ (u)du

)

St

βσ̃
t = x

(∫ t

0
σ̃ (u)dWu −

∫ t

0
σ̃ (u)σ (u)du

)

Z ϕ̃
t =

(∫ t

0

∫

R0

ϕ̃(u)z

1 + ϕ(u)z
JX (du, dz) −

∫ t

0
κϕ̃(u)λ(u)du

)

St

β
ϕ̃
t = x

(∫ t

0

∫

R0

ϕ̃(u)z

1 + ϕ(u)z
JX (du, dz) −

∫ t

0
κϕ̃(u)λ(u)du

)

.

By using the general formulae developed in the previous section, we are able to
compute analytically the values of the different Greeks (a(u) = 1

T ):

∇xC (x) = EQ

[

AT H(ST )

∫ T

0
a(u)

(
σ−1(u, Su−)Yu−

)
dWu

]

= EQ

[

AT H(ST )

∫ T

0

1

xTσ(u)
dWu

]
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Rhõr = EQ

[

AT H(ST )

∫ T

0

(
σ−1(t, St−)̃r(t, St−)

)
dWt

]

−EQ

[∫ T

0
r̃(u)duAT H(ST )

]

= EQ

[

AT H(ST )

(∫ T

0

r̃(u)

σ (u)
dWu −

∫ T

0
r̃(u)du

)]

Vegaσ̃ = EQ

[

AT H(ST )

∫ T

0
σ−1(t, St−)Yt−β̃a

t−dWt

]

= EQ

[

AT H(ST )

(∫ T

0
a(t)βT (σ−1(t, St−)Yt−)dWt

)]

= EQ

[

AT H(ST )

(∫ T

0

a(t)

σ (t)

(∫ T

0
σ̃ (u)(dWu − σ(u)du)

)

dWt

)]

Kappaϕ̃ = EQ

[

AT H(ST )

∫ T

0
σ−1(t, St−)Yt−β̃a

t−dWt

]

= EQ

[

AT H(ST )

(∫ T

0
a(t)βT (σ−1(t, St−)Yt−)dWt

)]

= EQ

[

AT H(ST )

(∫ T

0

a(t)

σ (t)
dWt

)

×
(∫ T

0

∫

R0

ϕ̃(u)z

1 + ϕ(u)z
JX (du, dz) −

∫ T

0
κϕ̃(u)λ(u)du

)]

For numerical simplicity we suppose that the coefficients r > 0, σ > 0 are real
constants and ϕ = 1 such that ln(1 + Z1) ∼ N (μ, δ2)whereμ ∈ R and δ > 0. The
intensity function λ(t) is exponentially decreasing given by λ(t) = ae−bt for all
t ∈ [0, T ], where a > 0 and b > 0.

In this case we have κ = E[Z1] = eμ+ δ2

2 − 1 and the mean–value function of the
Poisson process {Nt , t ≥ 0} is m(t) = ∫ t

0 λ(s)ds = a
b

(
1 − e−bt

)
, ∀ t ∈ [0, T ].

3.1.2 Binary Call Option

We consider the payoff of a digital call option of strike K > 0 and maturity T i.e.
H(ST ) = 1{ST ≥K }, such that:

ST = x exp

⎧
⎨

⎩

(

r − 1

2
σ 2

)

T − aκ

b
(1 − e−bT ) + σWT +

NT∑

j=1

ln(1 + Z j )

⎫
⎬

⎭
.
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The price of a digital option is given by:

C M
bin := C (x) = e−rTEQ[1[K ,+∞[(ST )].

Delta: variation in the initial condition

• Delta computed from a derivation under expectation: By conditioning on the num-
ber of jumps, we can express the price as a weighted sum of Black–Scholes prices:

C M
bin =

∑

n≥0

e−m(T )(m(T ))n

n! C BS
bin (0, T, Sn, K , r, σn)

where m(T ) = a
b (1 − e−bT ), Sn = x exp(n(μ + δ2

2 ) − m(T )κ), σ 2
n = σ 2 + n δ2

2
and C BS

bin (0, T, Sn, K , r, σn) stands for the Black–Scholes price of a digital option.

ΔM
bin := ∂C M

bin

∂x
=

∑

n≥0

e−m(T )(m(T ))n

n!
Sn
x

∂C BS
bin (0, T, Sn, K , r, σn)

∂Sn
.

Recall that

C BS
bin (0, T, Sn, K , r, σn) = e−rTN (d2,n)

and

∂C BS
bin (0, T, Sn, K , r, σn)

∂Sn
= e−rT

Snσn

√
T

�(d2,n)

where d1,n = ln( Sn
K )+(r+ σ2n

2 )T

σn

√
T

, d2,n = d1,n − σn

√
T and �(z) = 1√

2π
e

−z2

2 . Conse-
quently

ΔM
bin = e−(rT+m(T ))

x
√
T

∑

n≥0

(m(T ))n

n!
�(d2,n)

σn
.

• Finite difference approximation scheme of Delta:

Δ
M,DF
bin = ∂

∂x
EQ[e−rT H(Sx

T )] � EQ[e−rT H(Sx+ε
T )] − EQ[e−rT H(Sx−ε

T )]
2ε

.
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• Global Malliavin formula for Delta:
The stochastic Malliavin weight for the delta is written:

δ(ω) =
∫ T

0

1

T

St
xσ St

dWt = WT

xσT

where ω(t) = a(t) Yt
σ St

and Yt = St
x and a(t) = 1

T

Δ
M,Mal
bin = EQ

[

e−rT 1[K ,+∞](ST )
WT

xσT

]

.

• Localized Malliavin formula for Delta:
Empirical studies have shown that the theoretical estimators produced by the tech-
niques of Malliavin are unbiased. We will adopt the localization technique intro-
duced byFournié et al. [9], which aims is to reduce the variance of theMonte–Carlo
estimator for the sensitivities by localizing the integration by part formula around
the singularity at K .
Consider the decomposition:

H(ST ) = Hε,loc(ST ) + Hε,reg(ST ).

The regular component is defined by:

Hε,reg(ST ) := Gε(ST − K ).

where ε is a localization parameter and the localization function Gε, that we
propose, is given by:

Gε(z) =

⎧
⎪⎪⎨

⎪⎪⎩

0; z ≤ −ε
1
2

(
1 − z

ε

) (
1 + z

ε

)3 ; −ε < z < 0

1 − 1
2

(
1 + z

ε

) (
1 − z

ε

)3 ; 0 ≤ z < ε

1; z ≥ ε.

Then

Hε,reg(ST ) = 1

2

(

1 − ST − K

ε

)(

1 + ST − K

ε

)3

1{K−ε<ST <K }

+
(

1 − 1

2

(

1 + ST − K

ε

)(

1 − ST − K

ε

)3
)

1{K≤ST <K+ε}

+ 1{ST ≥K+ε}.

The localized component is given by:

Hε,loc(ST ) = H(ST ) − Hε,reg(ST ).
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Fig. 1 Delta of a digital option computed by global, localized Malliavin like formula and finite
difference. The parameters are S0 = 100, K = 100, σ = 0.10, T = 1, r = 0.02, μ = −0.05, δ =
0.01, ϕ = 1, the intensity function λ is exponentially decreasing given by λ(t) = ae−bt for all
t ∈ [0, T ], where a = 1 and b = 1

We find that the Delta computed by localized Malliavin formula:

ΔLocMall = e−rTEQ

[

Hε,loc(ST )
WT

xσT

]

+ e−rTEQ

[

H ′
ε,reg(ST )

ST
x

]

.

In Fig. 1 we plot the delta for a digital option for a simplest time-inhomogeneous
Merton model.

Furthermore, we have

Rho = e−rTEQ

[(
WT

σ
− T

)

1{ST ≥K }
]

Vega = e−rTEQ

[(
W 2

T − σTWT − T

σT

)

1{ST ≥K }
]

Kappa = e−rTEQ

⎡

⎣

⎛

⎝
NT∑

j=1

Z j

1 + ϕZ j
− κ

a

b
(−e−bT + 1)

⎞

⎠ WT

σT
1{ST ≥K }

⎤

⎦ .

Rho: variation in the drift coefficient

• Rho computed from a derivation under expectation: Recall that

C BS
bin (0, T, Sn, K , r, σn) = e−rTN (d2,n)
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and

∂C BS
bin (0, T, Sn, K , r, σn)

∂r
= −T e−rTN (d2,n) +

√
T e−rT

σn
�(d2,n)

RhoMbin := ∂C M
bin

∂r

=
∑

n≥0

e−m(T )(m(T ))n

n!
∂C BS

bin (0, T, Sn, K , r, σn)

∂r

=
∑

n≥0

e−m(T )(m(T ))n

n! (−T e−rTN (d2,n) +
√
T e−rT

σn
�(d2,n))

= T e−(rT+m(T ))
∑

n≥0

(m(T ))n

n!
(

−N (d2,n) + �(d2,n)√
Tσn

)

.

• Finite Difference Approximation scheme of Rho:

RhoFD := ∂

∂r
EQ[e−rT H(ST )] � EQ[e−(r+ε)T H(Sr+ε

T )] − EQ[e−(r−ε)T H(Sr−ε
T )]

2ε
.

• Global Malliavin formula for Rho:

RhoGMall = e−rTEQ

[(
WT

σ
− T

)

1{ST ≥K }
]

.

• Localized Malliavin formula for Rho:

RhoLocMall = e−rTEQ

[

Hε,loc(ST )

(
WT

σ
− T

)]

+e−rTEQ

[
H ′

ε,reg(ST )T ST
] − T e−rTEQ

[
H ′

ε,reg(ST )
]
.

In Fig. 2 we plot the Rho for a digital option for a simplest time-inhomogeneous
Merton model.

Vega: variation in the diffusion coefficient

• Vega computed from a derivation under expectation:

VegaM
bin : = ∂C M

bin

∂σ

=
∑

n≥0

e−m(T )(m(T ))n

n!
∂σn

∂σ

∂C BS
bin (0, T, Sn, K , r, σn)

∂σn
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Fig. 2 Rho of a digital option computed by global, localized Malliavin like formula and finite
difference. The parameters are S0 = 100, K = 100, σ = 0.1, T = 1, r = 0.03, μ = −0.05, δ =
0.01, ϕ = 1, the intensity function λ is exponentially decreasing given by λ(t) = ae−bt for all
t ∈ [0, T ], where a = 1 and b = 1

=
∑

n≥0

e−m(T )(m(T ))n

n!
σ

σn
(−e−rT )(

√
T + d2,n

σn
)�(d2,n)

= −σe−(rT+m(T ))
∑

n≥0

(m(T ))n

n!

(
σn

√
T + d2,n
σ 2
n

)

�(d2,n).

• Finite Difference Approximation scheme of Vega:

VegaFD := ∂

∂σ
EQ[e−rT H(Sσ

T )] � e−rT EQ[H(Sσ+ε
T )] − EQ[H(Sσ−ε

T )]
2ε

.

• Global Malliavin formula for Vega:

VegaGMall = e−rTEQ

[(
W 2

T − σTWT − T

σT

)

1{ST ≥K }
]

.

• Localized Malliavin formula for Vega:

VegaLocMall = e−rTEQ

[

Hε,loc(ST )

(
W 2

T − σTWT − T

σT

)]

+ e−rTEQ

[
H ′

ε,reg(ST ) (WT − σT ) ST
]
.
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Fig. 3 Vega of a digital option computed by global, localized Malliavin like formula and finite
difference. The parameters are S0 = 100, K = 100, r = 0.02, σ = 0.20, T = 1, r = 0.05, μ =
−0.05, δ = 0.01, ϕ = 1, the intensity function λ is exponentially decreasing given by λ(t) = ae−bt

for all t ∈ [0, T ], where a = 1 and b = 1

In Fig. 3 we plot the Vega for a digital option for a simplest time-inhomogeneous
Merton model.

Alpha: variation in the jump amplitude

• Alpha computed from a derivation under expectation:

AlphaM
bin := ∂C M

bin

∂ϕ

=
∑

n≥0

e−m(T )(m(T ))n

n!
∂Sn
∂ϕ

∂C BS
bin (0, T, Sn, K , r, σn)

∂Sn

=
∑

n≥0

e−m(T )(m(T ))n

n!
m(T )κSn

ϕ

∂C BS
bin (0, T, Sn, K , r, σn)

∂Sn

= κe−(rT+m(T ))

ϕ
√
T

∑

n≥0

(m(T ))n+1

n!
�(d2,n)

σn
.

• Finite Difference Approximation scheme of Alpha:

AlphaFD := ∂

∂ϕ
EQ[e−rT H(Sϕ

T )] � e−rT EQ[H(Sϕ+ε

T )] − EQ[H(Sϕ−ε

T )]
2ε

.
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• Global Malliavin formula for Alpha:

AlphaGMall = e−rTEQ

⎡

⎣

⎛

⎝
NT∑

j=1

Z j

1 + ϕZ j
− κ

a

b
(−e−bT + 1)

⎞

⎠ WT

σT
1{ST ≥K }

⎤

⎦ .

• Localized Malliavin formula for Alpha:

AlphaLocMall = e−rT EQ

⎡

⎣Hε,loc(ST )

⎛

⎝
NT∑

j=1

Z j

1 + ϕZ j
− κ

a

b
(−e−bT + 1)

⎞

⎠ WT

σT

⎤

⎦

+ e−rT EQ

⎡

⎣H ′
ε,reg(ST )

⎛

⎝
NT∑

j=1

Z j

1 + ϕZ j
− κ

a

b
(−e−bT + 1)

⎞

⎠ ST

⎤

⎦ .

In Fig. 4 we plot the sensitivity with respect to the jump size parameter ϕ for a digital
option for a simplest time-inhomogeneous Merton model.

Fig. 4 Alpha of a digital option computed by global, localized Malliavin like formula and finite
difference. The parameters are S0 = 100, K = 100, σ = 0.20, T = 1, r = 0.02, μ = −0.05,
δ = 0.01, ϕ = 1, the intensity function λ is exponentially decreasing given by λ(t) = ae−bt for
all t ∈ [0, T ], where a = 1 and b = 1
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3.1.3 Time-Inhomogeneous Bates Model:

We consider the solution of the stochastic differential equation:

⎧
⎨

⎩

dS1t = r S1t−dt + √
Vt S1t−dW 1

t + S1t−
∫
R0

(ez − 1)Ñ (dt, dz), S10 = x0,
dVt = κ(θ − Vt )dt + σ

√
VtdBt , V0 = v0,〈

W 1, B
〉
t = ρt,

where (W 1
t , Bt )t∈[0,T ] is a two–dimensional correlated Brownian motion with cor-

relation parameter ρ ∈] − 1, 1[. The stochastic process (S1t ) is the underling price
process and (Vt ) is the square of the volatility process which follows a CIR2 process
with an initial value v0 > 0, with long–run mean θ , and rate of reversion κ , σ is
referred to as the volatility of volatility.
For all t ∈ [0, T ], we define

W 2
t := 1

√
1 − ρ2

(
Bt − ρW 1

t

)
.

The process (W 2
t )t∈[0,T ] is a Brownian motion which is independent of (W 1

t )t∈[0,T ].
Then, the system of stochastic differential equations can be rewritten in a matrix
form

dSt = b(t, St−)dt + σ(t, St−)dWt +
∫

R0

ϕ(t, St−, z)Ñ (dt, dz), S0 = (x0, v0)

where St = (S1t , Vt ), W ∗
t = (W 1

t ,W 2
t )∗, b∗(t, St−) = (r S1t−, κ(θ − Vt ))

∗,
ϕ∗(t, St−, z) = ((ez − 1)S1t−, 0)∗ and

σ(t, St−) =
⎛

⎝

√
Vt S1t− 0

ρσ
√
Vt σ

√
1 − ρ2

√
Vt

⎞

⎠ .

The inverse of σ is

σ−1(t, St−) = 1

σ
√
1 − ρ2S1t−Vt

⎛

⎝
σ
√
1 − ρ2

√
Vt 0

−ρσ
√
Vt

√
Vt S1t−

⎞

⎠ .

The price of the contingent claim in this setting is expressed as:

C = EQ

[
e−rT H(St )

]
.

2Cox, Ingersoll and Ross model. See [4].
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Note that by Itô’s formula we have for all t ∈ [0, T ]

ln(S1t ) =
∫ t

0

(

r − 1

2
Vu

)

du +
∫ t

0

∫

R0

[
z − (ez − 1)

]
νu(dz)du

+
∫ t

0

√
VudW

1
u +

∫ t

0

∫

R0

z Ñ (du, dz).

The Rho

In the drift—perturbed process (Sε
t )t which is a solution of the stochastic differential

equation (10), we take b̃∗(t, x) = (x1, 0)∗ and we get

(σ−1(t, St−)̃b(t, St−))∗ =
(

1√
Vt

,
−ρ

√
1 − ρ2

√
Vt

)

.

From Proposition 2.6, we have

Rho = e−rT EQ

[

H(St )

(∫ T

0

dW 1
t√
Vt

− ρ
√
1 − ρ2

∫ T

0

dW 2
t√
Vt

)]

− T e−rT EQ [H(St )] .

The Delta

The first variation process is given by

⎧
⎨

⎩

dYt = b′(t, St−)Yt−dt + σ ′
1(t, St−)Yt−dW 1

t
+ σ ′

2(t, St−)Yt−dW 2
t + ∫

R0
ϕ′(t, St−, z)Yt− Ñ (dt, dz),

Y0 = I2

where

b′(t, St−) =
(
r 0
0 −κ

)

, ϕ′(t, St−, z) =
(

(ez − 1) 0
0 0

)

,

σ ′
1(t, St−) =

(√
Vt

S1t−
2
√
Vt

0 σρ

2
√
Vt

)

and σ ′
2(t, St−) =

(
0 0

0
σ
√

1−ρ2

2
√
Vt

)

,

(
σ−1(t, St−)Yt−

)∗ =
⎛

⎜
⎝

Y 1,1
t−

S1t−
√
Vt

−ρ√
1−ρ2

Y 1,1
t−

S1t−
√
Vt

Y 2,1
t−

S1t−
√
Vt

1√
1−ρ2

√
Vt

(−ρY 1,2
t−

S1t−
+ Y 2,2

t−
σ

)

⎞

⎟
⎠ .
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By Proposition 2.5 we conclude that

Delta := ∂C

∂x0

= e−rTEQ

[

H(St )

(∫ T

0
a(t)

Y 1,1
t−

S1t−
√
Vt

dW 1
t −

∫ T

0
a(t)

−ρ
√
1 − ρ2

Y 1,1
t−

S1t−
√
Vt

dW 2
t

)]

.

Since Y 1,1
t− = S1t−

x0
and if we take a(t) = 1

T , we get

Delta = e−rT

x0T
EQ

[

H(St )

(∫ T

0

dW 1
t√
Vt

− ρ
√
1 − ρ2

∫ T

0

dW 2
t√
Vt

)]

.

The Vega

We perturb the original diffusion matrix with σ̃ to get the perturbed process given
by (11) such that

σ̃ (t, x) =
(
x1 0
0 0

)

.

For all t ∈ [0, T ], the processes Z σ̃
t and βσ̃

t are, respectively, given by

Z1,̃σ
t =

(

W 1
t −

∫ t

0

√
Vudu

)

St , Z2,̃σ
t = 0

β1,̃σ
t = x0

(

W 1
t −

∫ t

0

√
Vudu

)

, β2,̃σ
t = 0.

Using the chain rule (Proposition 4.12) on a sequence of continuously differ-
entiable functions with bounded derivatives approximating

√
Vu , together with

Proposition 2.3 we obtain

Dt,0β
1,̃σ
T = x0

(

(1, 0)∗ −
∫ T

0

1

2
√
Vu

Dt,0

√
Vudu

)

= x0

(

(1, 0) − σ

2

∫ T

t

√
Vt√
Vu

Y 2,2
u

Y 2,2
t

(
ρ,

√
1 − ρ2

)
du

)

.

Thus

Tr
(
(Dt,0βT )σ−1(t, St−)Yt−

) = 1√
Vt

.
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Then

δ
(
σ−1(·, S·)Y·β̃a

· δ0(·)
) = βσ̃∗

T

∫ T

0
a(t)(σ−1(t, St−)Yt−)∗dWt

−
∫ T

0
a(t)Tr

(
(Dt,0βT )σ−1(t, St−)Yt−

)
dt

=
(

W 1
T −

∫ T

0

√
Vudu

)

×
(∫ T

0

a(t)√
Vt

dW 1
t − ρ

√
1 − ρ2

∫ T

0

a(t)√
Vt

dW 2
t

)

−
∫ T

0

a(t)√
Vt

dt.

Consequently,

Vegaσ̃ = e−rT

T
EQ

[

H(ST )

((

W 1
T −

∫ T

0

√
Vudu

)

×
(∫ T

0

dW 1
t√
Vt

− ρ
√
1 − ρ2

∫ T

0

dW 2
t√
Vt

)

−
∫ T

0

dt√
Vt

)]

.

The alpha

We consider the perturbed process

⎧
⎨

⎩

dSε
t = b(t, Sε

t−)dt + σ(t, Sε
t−)dWt

+ ∫
R0

(ϕ(t, Sε
t−, z) + εϕ̃(t, Sε

t−, z))Ñ (dt, dz),
Sε
0 = x,

with

ϕ̃(t, x, z) =
(
x1
0

)

.

For all t ∈ [0, T ], the processes Z ϕ̃
t and β

ϕ̃
t defined above are, respectively, given by

Z1,ϕ̃
t =

(∫ t

0

∫

R0

e−z Ñ (du, dz) −
∫ t

0

∫

R0

(1 − e−z)νu(dz)du

)

St , Z2,ϕ̃
t = 0

β
1,ϕ̃
t = x0

(∫ t

0

∫

R0

e−z Ñ (du, dz) −
∫ t

0

∫

R0

(1 − e−z)νu(dz)du

)

, β
2,ϕ̃
t = 0.
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Then

δ
(
σ−1(·, S·)Y·β̃a

· δ0(·)
) = β

ϕ̃∗
T

∫ T

0
a(t)(σ−1(t, St−)Yt−)∗dWt

−
∫ T

0
a(t)Tr

(
(Dt,0βT )σ−1(t, St−)Yt−

)
dt

=
(∫ T

0

∫

R0

e−z Ñ (du, dz) −
∫ T

0

∫

R0

(1 − e−z)νu(dz)du

)

×
(∫ T

0

a(t)√
Vt

dW 1
t − ρ

√
1 − ρ2

∫ T

0

a(t)√
Vt

dW 2
t

)

.

Consequently

Alphaϕ̃ = e−rT

T
EQ

[

H(ST )

(∫ T

0

∫

R0

e−z Ñ (du, dz) −
∫ T

0

∫

R0

(1 − e−z)νu(dz)du

)

×
(∫ T

0

dW 1
t√
Vt

− ρ
√
1 − ρ2

∫ T

0

dW 2
t√
Vt

)]

.

4 Malliavin Calculus for Square Integrable Additive
Processes

4.1 Additive Processes

Definition 4.1 (see Cont [3], Definition 14.1) A stochastic process (St )t≥0 on R
d

is called an additive process if it is càdlàg, satisfies S0 = 0 and has the following
properties:

1. Independent increments: for every increasing sequence of times t0, . . . , tn , the
random variables St0 , St1 − St0 , . . . , Stn − Stn−1 are independent.

2. Stochastic continuity: ∀ ε > 0 and ∀ t ≥ 0, limh→0 P[|St+h − St | ≥ ε] = 0.

Theorem 4.2 (see Sato [15], Theorems 9.1–9.8) Let (St )t≥0 be an additive process
on R

d . Then St has an infinitely divisible distribution for all t . The law of (St )t≥0 is
uniquely determined by its spot characteristics (At , μt , Γt )t≥0:

E[exp(iuSt )] = exp(ψt (u))

where

ψt (u) = −1

2
u · Atu + iu · Γt +

∫

Rd

(eiu·z − 1 − iu · z1{|z|≤1})μt (dz).
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The spot characteristics (At , μt , Γt )t≥0 satisfy the following conditions

1. For all t , At is a positive definite d × d matrix and μt is a positive measure on
R

d satisfying μt (0) = 0 and
∫
R

d
0
(|z|2 ∧ 1)μt (dz) < ∞.

2. Positiveness: A0 = 0, μ0 = 0, Γ0 = 0 and for all s, t such that s ≤ t , At − As

is a positive definite d × d matrix and μt (B) ≥ μs(B) for all measurable sets
B ∈ B(Rd).

3. Continuity: if s −→ t then As −→ At , Γs −→ Γt and μs(B) −→ μt (B) for all
B ∈ B(Rd) such that B ⊂ {z : |z| ≥ ε} for some ε > 0.

Conversely, for a family of (At , μt , Γt )t≥0 satisfying the conditions (1), (2) and
(3) above there exists an additive process (St )t≥0 with (At , μt , Γt )t≥0 as spot char-
acteristics.

Example 1 We consider a class of spot characteristics (At , μt , Γt )t≥0 constructed in
the following way:

• A continuous matrix valued function σ : [0, T ] −→ Md×d(R) such that σt is sym-
metric for all t ∈ [0, T ] and verifies

∫ T
0 σ 2

t dt < ∞.

• Afamily (νt )t∈[0,T ] ofLévymeasures verifying
∫ T
0

(∫
R

d
0
(|z|2 ∧ 1)νt (dz)

)
dt < ∞.

• A deterministic function with finite variation γ : [0, T ] −→ R
d (e.g., a piecewise

continuous function).

Then the spot characteristics (At , μt , Γt )t≥0 defined by

At =
∫ t

0
σ 2
s ds

μt =
∫ t

0
νsds

Γt =
∫ t

0
γsds

satisfy the conditions 1, 2, 3 and therefore define a unique additive process (St )t≥0

with spot characteristics (At , μt , Γt )t∈[0,T ]. The triplet (σ 2
t , νt , γt )t∈[0,T ] are called

local characteristics of the additive process.

Remark 4.3 Not all additive processes can be parameterized in this way, but we
will assume this parametrization in terms of local characteristics in the rest of this
paper. In particular, the assumptions above on the local characteristics implies that
the process (St )t≥0 is a semimartingale which will allow us to apply the Itô formula.

The local characteristics of an additive process enable us to describe the structure
of its sample paths: the positions and sizes of jumps of (St )t≥0 are described by a
Poisson random measure on [0, T ] × R

d

JS(ω, ·) =
∑

0≤t≤T ;ΔSt �=0

δ(t,ΔSt )
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with (time-inhomogeneous) intensity given by νt (dz)dt :

E[JS([t1, t2] × B)] = μT ([t1, t2] × B) =
∫ t2

t1

νs(B)ds.

The compensated Poisson random measure can therefore be defined by:

J̃S(ω, dt, dz) = JS(ω, dt, dz) − νt (dz)dt.

4.2 Isonormal Lévy Process (ILP)

Let μ and ν are σ–finite measures without atoms on the measurable spaces (T,A )

and (T × X0,B) respectively.
Define a new measure

π(dt, dz) := μ(dt)δΔ(dz) + ν(dt, dz) (11)

on a measurable space (T × X,G ), where X = X0 ∪ Δ, G = σ(A × Δ,B) and
δΔ(dz) is the measure which gives mass one to the point Δ.

We assume that the Hilbert space H = L2(T × X,G , π) is separable.

Definition 4.4 We say that a stochastic process L = {L(h), h ∈ H } defined in a
complete probability space (Ω,F , P) is an isonormal Lévy process (or Lévy process
onH ) if the following conditions are satisfied:

1. The mapping h −→ L(h) is linear.
2. E[eixL(h)] = exp(�(x, h)), where

�(x, h) =
∫

T×X

(

(eixh(t,z) − 1 − i xh(t, z))1X0 (z) − 1

2
x2h2(t, z)1Δ(z)

)

π(dt, dz).

4.3 Generalized Orthogonal Polynomials (GOP)

Denote by x = (x1, x2, . . . , xn, . . .) a sequence of real numbers. Define a function
F(z, x) by

F(z, x) = exp

( ∞∑

k=1

(−1)k+1

k
xk z

k

)

. (12)

If

R(x) =
(
lim sup |xk | 1

k

)−1
> 0
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then the series in (12) converge for all |z| < R(x). So the function F(z, x) is analytic
for |z| < R(x).

Consider an expansion in powers of z of the function F(z, x):

F(z, x) =
∞∑

n=0

zn Pn(x).

One can easily show the following equalities:

(n + 1)Pn+1(x) =
n∑

k=0

(−1)k xk+1Pn−k(x), n ≥ 0,

∂Pn
∂xl

(x) =
{
0 if l > n,
(−1)l+1

l Pn−l(x) if l ≤ n.

4.4 Examples

1. If x(h) = (x, λ, 0, . . . , 0, . . .), then

F(z, x) = exp

(

zx − z2

2
λ

)

=
∞∑

n=0

Hn(x, λ)zn,

where Hn(x, λ) are the Hermite polynomials (Brownian case). So

Pn(x, λ, 0, . . . , 0) = Hn(x, λ).

2. If x(h) = (x − t, x, . . . , x, . . .), then

F(z, x) = (1 + z)xe−t z =
∞∑

n=0

Cn(x, λ)
zn

n! ,

where Cn(x, λ) are the Charlier polynomials (Poissonian case). So

n!Pn(x − t, x, . . . , x) = Cn(x, λ).

4.5 Relationship Between Generalized Orthogonal
Polynomials and Isonormal Lévy Process

For h ∈ H ∩ L∞(T × X0,B, ν), let x(h) = (xk(h))∞k=1 denote the sequence of the
random variables such that
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x1(h) = L(h);
x2(h) = L(h21X0) + ‖h‖2H ;
xk(h) = L(hk1X0) +

∫

T×X0

hk(t, x)ν(dt, dx), k ≥ 3.

Lemma 4.5 Let h and g ∈ H ∩ L∞(T × X0,B, ν). Then for all n,m ≥ 0we have
Pn(x(h)) and Pm(x(g)) ∈ L2(Ω), and

E [Pn(x(h))Pm(x(g))] =
{
0 if n �= m,
1

n! (E [L(h)L(g)])n if n = m.

4.6 The Chaos Decomposition

Lemma 4.6 The random variables {eL(h), h ∈ H ∩ L∞(T × X0,B, ν)} form a
total subset of L2(Ω,F , P).

For each n ≥ 1 we will denote byPn the closed linear subspace of L2(Ω,F , P)

generated by the random variables {Pn(x(h)), h ∈ H ∩ L∞(T × X0,B, ν)}. P0

will be the set of constants. For n = 1,P1 coincides with the set of random variables
{L(h), h ∈ H }. We will call the space Pn chaos of order n.

Theorem 4.7 The space L2(Ω,F , P) can be decomposed into the infinite orthog-
onal sum of the subspace Pn:

L2(Ω,F , P) =
∞⊕

n=0

Pn.

4.7 The Multiple Integral

Set G0 = {A ∈ G |π(A) < ∞}. For any m ≥ 1 we denote by Em the set of all linear
combinations of the following functions f ∈ L2((T × X)m,G m, πm)

f (t1, x1, . . . , tm, xm) = 1A1×A2×...Am (t1, x1, . . . , tm, xm), (13)

where A1, . . . , Am are pairwise–disjoint sets in G0.
The fact that π is a measure without atoms implies that Em is dense in L2((T ×

X)m). (See, e.g. Nualart [11] pp. 8–9).
For the function of the form (13) we define the multiple integral of order m

Im( f ) = L(A1) . . . L(Am).
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Then, by linearity we conclude Im( f ) for all functions f ∈ Em and by continuity
Im( f ) for all functions f ∈ L2((T × X)m).

The following properties hold:

1. Im is linear.
2. Im( f ) = Im( f̃ ), where f̃ denotes the symmetrization of f , which is defined by

f̃ (t1, x1, . . . , tm, xm) = 1

m!
∑

σ∈Sm

f (tσ(1), xσ(1), . . . , tσ(m), xσ(m)).

3.

E [In( f )Im(g)] =
{
0 i f n �= m,

m! < f̃ , g̃ >L2((T×X)m ) i f n = m.

4.8 Relationship Between Generalized Orthogonal
Polynomials And multiple Stochastic Integrals

Proposition 4.8 Let Pn be the nth generalized orthogonal polynomial and x(h) =
(xk(h))∞k=1, where h ∈ ∩p≥2L p(T × X0,B, ν) ∩ H and

x1(h) = L(h);
x2(h) = L(h21X0) + ‖h‖2H ;
xk(h) = L(hk1X0) +

∫

T×X0

hk(t, x)ν(dt, dx), k ≥ 3.

Then it holds that

n!Pn(x(h)) = In(h
⊗n),

where

h⊗n(t1, x1, . . . , tm, xm) = h(t1, x1) × · · · × h(tm, xm).

4.9 Expansion into a Series of Multiple Stochastic Integrals

Corollary 4.9 Any square integrable random variable ξ ∈ L2(Ω,F , P) can be
expanded into a series of multiple stochastic integrals:

ξ =
∞∑

k=0

Ik( fk). (14)
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Here f0 =E[ξ ], and I0 is the identity mapping on the constant. Furthermore, this
representation is unique provided the functions fk ∈ L2((T × X)k) are symmetric.

4.10 The Derivative Operator

Let S denote the class of smooth random variables such that a random variable
ξ ∈ S has the form

ξ = f (L(h1), . . . , L(hn)), (15)

where f belongs to C∞
b (Rn), h1, . . . , hn are in H , and n ≥ 1. The set S is dense

in L p(Ω), for any p ≥ 1.

Definition 4.10 The stochastic derivative of a smooth functional of the form (15) is
theH –valued random variable Dξ = {Dt,xξ, (t, x) ∈ T × X} given by

Dt,xξ =
n∑

k=1

∂ f

∂yk
(L(h1), . . . , L(hn))hk(t, x)1Δ(x) (16)

+ ( f (L(h1) + h1(t, x), . . . , L(hn) + hn(t, x))

− f (L(h1), . . . , L(hn))) 1X0(x).

We will consider Dξ as an element of ξ ∈ L2(T × X × Ω) ∼= L2(Ω;H ),
namely, Dξ is a random process indexed by the parameter space T × X .

1. If the measure ν is zero or hk(t, x) = 0, k = 1, . . . , n when x �= Δ then Dξ

coincides with the Malliavin derivative (see, e.g. Nualart [11] Def. 1.2.1 p. 38).
2. If the measure μ is zero or hk(t, x) = 0, k = 1, . . . , n when x = Δ then Dξ

coincides with the difference operator (see, e.g. Picard [13]).

4.11 Integration by Parts Formula

Theorem 4.11 Suppose that ξ and η are smooth functionals and h ∈ H . Then

1.

E[ξL(h)] = E[〈Dξ ; h〉H ].

2.

E[ξηL(h)] = E[η 〈Dξ ; h〉H ] + E[ξ 〈Dη; h〉 >H ] + E[〈Dη; h1X0Dξ
〉
H

].
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As a consequence of the above theorem we obtain the following result:

• The expression of the derivative Dξ given in (16) does not depend on the particular
representation of ξ in (15).

• The operator D is closable as an operator from L2(Ω) to L2(Ω;H ).

We will denote the closure of D again by D and its domain in L2(Ω) by D
1,2.

4.12 The Chain Rule

Proposition 4.12 (See Yablonski [16], Proposition 4.8) Suppose F = (F1, F2, . . . ,

Fn) is a random vector whose components belong to the spaceD1,2. Let φ ∈ C 1(Rn)

be a function with bounded partial derivatives such that φ(F) ∈ L2(Ω). Then
φ(F) ∈ D

1,2 and

Dt,xφ(F) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n∑

i=1

∂φ

∂xi
(F)Dt,ΔFi ; x = Δ

φ(F1 + Dt,x F1, . . . , Fn + Dt,x Fn) − φ(F1, . . . , Fn); x �= Δ

4.13 The Action of the Operator D via the Chaos
Decomposition

Lemma 4.13 It holds that Pn(x(h)) ∈ D
1,2 for all h ∈ H ∩ L∞(T × X0,B, ν),

n = 1, 2, . . . and

Dt,x Pn(x(h)) = Pn−1(x(h))h(t, x).

Proposition 4.14 Let ξ ∈ L2(Ω,F , P)with an expansion ξ = ∑∞
k=0 Ik( fk)where

fk ∈ L2((T × X)k) are symmetric for all k. Then ξ ∈ D
1,2 if and only if

∞∑

k=0

kk!‖ fk‖2L2((T×X)k ) < ∞,

and in this case we have

Dt,xξ =
∞∑

k=0

k Ik−1( fk(·, t, x))
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and

E

[∫

T×X
(Dt,xξ)2π(dt, dx)

]

coincides with the sum of the series (14).

4.14 The Skorohod Integral

We recall that the derivative operator D is a closed and unbounded operator defined
on the dense subset D1,2 of L2(Ω) with values in L2(Ω;H ).

Definition 4.15 We denote by δ the adjoint of the operator D and we call it the
Skorohod integral.
The operator δ is a closed and unbounded operator on L2(Ω;H ) with values in
L2(Ω) defined on Dom(δ), where Dom(δ) is the set of processes u ∈ L2(Ω;H )

such that
∣
∣
∣
∣E

[∫

T×X
Dt,z Fu(t, z)π(dt, dz)

]∣
∣
∣
∣ ≤ c ‖F‖L2(Ω)

for all F ∈ D
1,2, where c is some constant depending on u.

If u ∈ Dom(δ), then δ(u) is the element of L2(Ω) such that

E [Fδ(u)] = E

[∫

T×X
Dt,z Fu(t, z)π(dt, dz)

]

(17)

for any F ∈ D
1,2.

4.15 The Behavior of δ in Terms of the Chaos Expansion

Proposition 4.16 Let u ∈ L2(Ω;H ) with the expansion

u(t, z) =
∞∑

k=0

Ik( fk(·, t, z)). (18)

Then u ∈ Dom(δ) if and only if the series

δ(u) =
∞∑

k=0

Ik+1( f̃k) (19)

converges in L2(Ω).
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It follows that Dom(δ) is the subspace of L2(Ω) formed by the processes that
satisfy the following condition:

∞∑

k=1

(k + 1)!‖ f̃k‖2L2(T×X)k+1 < ∞. (20)

Note that the Skorohod integral is a linear operator and has a zero mean, e.g.
E [δ(u)] = 0 if u ∈ Dom(δ). The following statements prove some properties of δ.

Proposition 4.17 Suppose that u is a Skorohod integrable process. Let F ∈ D
1,2 be

such that E
[∫

T×X

(
F2 + (Dt,z F)21X0

)
u(t, z)2π(dt, dz)

]
< ∞. Then it holds that

δ
((
F + (Dt,z F)1X0

)
u
) = Fδ(u) −

∫

T×X
(Dt,z F)u(t, z)π(dt, dz), (21)

provided that one of the two sides of the equality (21) exists.

4.16 Commutativity Relationship Between the Derivative
and Divergence Operators

Let L1,2 denote the class of processes u ∈ L2(T × X × Ω) such that u(t, x) ∈ D
1,2

for almost all (t, x), and there exists a measurable version of the multi–process
Dt,xu(s, y) satisfying

E

[∫

T×X

∫

T×X
(Dt,xu(s, y))2π(dt, dx)π(dsdy)

]

< ∞.

Proposition 4.18 Suppose that u ∈ L
1,2 and for almost all (t, z) ∈ T × X , the two–

parameter process
(
Dt,zu(s, y)

)
(s,y)∈T×X is Skorohod integrable, and there exists a

version of the process
(
δ(Dt,zu(·, ·)))

(t,z)∈T×X
which belongs to L2(T × X × Ω).

Then δ(u) ∈ D
1,2, and we have

Dt,zδ(u) = u(t, z) + δ(Dt,zu(·, ·)). (22)

4.17 The Itô Stochastic Integral as a Particular
Case of the Skorohod Integral

Let W = {Wt , 0 ≤ t ≤ T } is a be an d-dimensional standard Brownian motion, Ñ a
compensated Poisson random measure on [0, T ] × R

d
0 with (time-inhomogeneous)

intensity measure ν(dt, dx) = βt (dx)dt , where (βt )t∈[0,T ] is a family of Lévy mea-



80 M. Eddahbi and S.M. Lalaoui Ben Cherif

sures verifying
∫ T
0

(∫
Rd (‖z‖2 ∧ 1)βt (dz)

)
dt < ∞. HereR0 := R \ {0} and for each

t ∈ [0, T ],Ft is the σ–algebra generated by the random variables

{W j
s , Ñ ((0, s] × A); 0 ≤ s ≤ t, j = 1, . . . , d, A ∈ B(Rd

0), sup
0≤s≤t

βs(A) < ∞}

and the null sets of F .
We denote by L2

p the subset of L
2(Ω;H ) formed by (Ft )–predictable processes.

Proposition 4.19 L2
p ⊂ Dom(δ), and the restriction of the operator δ to the space

coincides with the usual stochastic integral, that is

δ(u) =
d∑

j=1

∫ T

0
u j (t, 0)dW j

t +
∫ T

0

∫

R
d
0

u(t, z)Ñ (dt, dz). (23)
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Variance-GGC Asset Price Models
and Their Sensitivity Analysis

Nicolas Privault and Dichuan Yang

Abstract This paper reviews the variance-gamma asset price model as well as its
symmetric and non-symmetric extensions based on generalized gamma convolutions
(GGC). In particular we compute the basic characteristics and decomposition of the
variance-GGCmodel, and we consider its sensitivity analysis based on the approach
of Kawai and Kohatsu-Higa in Appl Math Finance 17(4):301–321, 2010 [8].
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1 Introduction

Lévy processes play an important role in the modeling of risky asset prices with
jumps. In addition to the Black-Scholes model based on geometric Brownianmotion,
pure jump and jump-diffusion processes have been used by Cox and Ross [5] and
Merton [13] for the modeling of asset prices. More recently, Brownian motions
time-changed by non-decreasing Lévy processes (i.e. subordinators) have become
popular, in particular the Normal Inverse Gaussian (NIG) model [1], the variance-
gamma (VG) model [11, 12], and the CGMY/KoBol models [3, 4].
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The normal inverse Gaussian (NIG) process [1] can constructed as a Brownian
motion time-changed by aLévyprocesswith the inverseGaussian distribution,whose
marginal at time t is identical in law to the first hitting time of the positive level t by
a drifted Brownian motion.

The variance-gamma process [11, 12] is built on the time change of a Brownian
motion by a gamma process, and has been successful in modeling asset prices with
jumps and in addressing the issue of slowly decreasing probability tails found in real
market data.

The CGMY/KoBol models [3, 4] are extensions of the variance-gammamodel by
a more flexible choice of Lévy measures. However, this extension loses some nice
properties of variance-gamma model, for example variance-gamma processes can
be decomposed into the difference of two gamma processes, whereas this property
does not hold in general in the CGMY/KoBol models.

In [6] the variance-gamma model has been extended into a symmetric variance-
GGC model, based on generalized gamma convolutions (GGCs), see [2] for details
and a driftless Brownian motion. In this paper we review this model and propose an
extension to non-symmetric case using a drifted Brownian motion.

GGC random variables can be constructed by limits in distribution of sums of
independent gamma random variables with varying shape parameters. As a result,
the variance-GGC model allows for more flexibility than standard variance-gamma
models, while retaining some of their properties. The skewness and kurtosis of
variance-GGC processes can be computed in closed form, including the relations
between skewness and kurtosis of the GGC process and of the corresponding
variance-GGC process. In addition, variance-GGC processes can be represented as
the difference of two GGC processes.

On the other hand, the sensitivity analysis of stochastic models is an important
topic in financial engineering applications. The sensitivity analysis of time-changed
Brownian motion processes has been developed and the Greek formulas have been
obtained by following the approach in [8]. In addition, the sentivity analysis of the
variance-gamma, stable and tempered stable processes has been performed in [9]
and [10] respectively. As an extension of the variance-gamma process, we study the
corresponding sensitivity analysis of the variance-GGCmodel along the lines of [9].

In the remaining of this section we review some facts on generalized gamma con-
volutions, (GGCs) including their variance, skewness and kurtosis. We also discuss
an asset price model based on GGCs and its sensitivity analysis.

Wiener-gamma integrals

Consider a gamma process (γt )t∈R+ , i.e. (γt )t∈R+ is a process with independent and
stationary increments such that γt at time t > 0 has a gamma distribution with shape
parameter t and probability density function e−x x t−1/Γ (t), x > 0. We denote by

∫ ∞

0
g(t)dγt , (1)
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the Wiener-gamma stochastic integral of a deterministic function

g : R+ −→ R+

with respect to the standard gamma process (γt )t∈R+ , provided g satisfies the
condition

∫ ∞

0
log(1 + g(t))dt < ∞, (2)

which ensures the finiteness of Eq. (1), cf. Sect. 1.2, page 350 of [7] for details. In
particular, there is a one-to-one correspondence between GGC random variables and
Wiener-gamma integrals, Proposition 1.1, page 352 of [7].

Generalized gamma convolutions

A random variable Z is a generalized gamma convolution if its Laplace transform
admits the representation

E[e−uZ ] = exp

(

−t
∫ ∞

0
log
(
1 + u

s

)
μ(ds)

)

, u ≥ 0

where μ(ds) is called the Thorin measure and should satisfy the conditions

∫

(0,1]
| log s|μ(ds) < ∞ and

∫

(1,∞)

s−1μ(ds) < ∞.

Generalized gamma convolutions (GGC) can be defined as the limits of independent
sums of gamma random variables with various shape parameters, cf. [2] for details.

In particular, the density of the Lévy measure of a GGC random variable is a
completely monotone function. From the Laplace transform of Z we find

E[Z ] =
∫ ∞

0
t−1μ(dt),

and the first central moments of Z can be computed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E[(Z − E[Z ])2] =
∫ ∞

0
t−2μ(dt),

E[(Z − E[Z ])3] = 2
∫ ∞

0
t−3μ(dt),

E[(Z − E[Z ])4] = 3 (Var [Z ])2 + 6
∫ ∞

0
t−4μ(dt).

(3)
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As a consequence we can compute the

Skewness[Z ] = E[(Z − E[Z ])3]
(Var [Z ])3/2 = 2

∫∞
0 t−3μ(dt)

(Var [Z ])3/2 ,

and

Kurtosis[Z ] = E[(Z − E[Z ])4]
(Var [Z ])2 = 3 + 6

∫∞
0 t−4μ(dt)

(Var [Z ])2

of Z . We refer the reader to Proposition 1.1 of [7] for the relation between the
integrand in aWiener-gamma representation and the cumulative distribution function
of the associated generalized gamma convolution.

Market model and sensitivity analysis

As an extension of the model of [9] to GGC random variables we consider an asset
price process ST defined by the exponent

ST = S0 exp

(

θ

∫ ∞

0
g(s)dγs + τ

√
TΘ + ZT + c(θ, τ )T

)

,

of a variance-GGCprocess, i.e.
∫∞
0 g(s)dγs is a GGC random variable represented as

a Wiener-gamma integral, Θ is an independent Gaussian random variable, (Zt )t∈R+
is another GGC-Lévy process, and θ ∈ R, τ ≥ 0, T > 0.

In Sect. 3 the sensitivity
∂

∂S0
E[Φ(ST )] of an option with payoff Φ with respect

to the initial value S0 in a variance-GGC model is shown to satisfy

∂

∂S0
E[Φ(ST )] = 1

S0
E[Φ(ST )LT ],

where

LT := 2θ
∫∞
0 g(s) f 2(s)dγs

(θ
∫∞
0 g(s) f (s)dγs + τ

√
Tη)2

+
∫∞
0 f (s)dγs − T

∫∞
0 f (s)ds + ηΘ

θ
∫∞
0 g(s) f (s)dγs + τ

√
Tη

for any positive function f : R+ → (0, a) and η > 0. In Theorem 1wewill compute
this sensitivity as well as orther Greeks based on the model parameters θ and τ .

The remaining of this paper is organized as follows. In Sect. 2 we introduce a
model for Brownian motion time-changed by a GGC subordinator. The variance,
skewness and kurtosis of variance-GGC processes are calculated in relation with the
corresponding parameters of GGC processes, and several example of variance-GGC
models are considered. A Girsanov transform of GGC processes is also stated. The
sensitivity analysis with respect to S0, θ and τ is conducted in Sect. 3.
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2 Variance-GGC Processes

Given (Wt )t∈R+ a standard Brownian motion and θ ∈ R, σ > 0, consider the drifted
Brownian motion

Bθ,σ
t := θ t + σWt , t ∈ R+.

Next, consider a generalized gamma convolution (GGC) Lévy process (Gt )t∈R+ such
that G1 is a GGC random variable with Thorin measure μ(ds) on R+. We define the
variance-GGC process (Y σ,θ

t )t∈R+ as the time-changed Brownian motion

Y σ,θ
t := Bθ,σ

Gt
, t ∈ R+.

The probability density function of Y σ,θ
t is given by

fY σ,θ
t

(x) = 1

σ
√
2π

∫ ∞

0
exp

(

−|x − θy|2
2σ 2y

)

ht (y)
dy√
y
, x ∈ R,

where ht (y) is the probability density function of Gt , cf. Relation (6) in [11].
The Laplace transform of Y σ,θ

t is

E
[
exp
(−uY σ,θ

t

)] =
∫ ∞

0
e−uy fYt (y)dy

= ΨGt

(

θu − σ 2

2
u2
)

= exp

(

−t
∫ ∞

0
log

(

1 + θu − σ 2u2/2

s

)

μ(ds)

)

, (4)

where ΨGt is the Laplace transform of Gt .
This construction extends the symmetric variance-GGC model constructed in

Sect. 4.4, pages 124–126of [6]. In particular, the next proposition extends to variance-
GGC processes Relation (8) in [11, 12], which decomposes the variance-gamma
process into the difference of two gamma processes. Here, we are writing Yt as
the difference of two independent GGC processes, i.e. Yt becomes an Extended
Generalized Gamma Convolution (EGGC) in the sense of Chap.7 of [2], cf. also
Sect. 3 of [14].

Proposition 1 The time-changed process Yt can be decomposed as

Yt = Ut − Wt ,

where Ut and Wt are two independent GGC processes with Thorin measures μA and
μB which are the image measures of μ(dt) on R+ respectively, by the mappings
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s �−→ B(s) := θ

σ 2
+ 1

σ

√
θ2

σ 2
+ 2s, s ∈ R+,

and

s �−→ A(s) = − θ

σ 2
+ 1

σ

√
θ2

σ 2
+ 2s, s ∈ R+.

Proof From (4), the Laplace tranform of Yt can be decomposed as

E
[
exp
(−uY σ,θ

t

)] = exp

(

−t
∫ ∞

0
log

(

1 − u

B(s)

)(

1 + u

A(s)

)

μ(ds)

)

= exp

(

−t
∫ ∞

0
log

(

1 + u

A(s)

)

μ(ds) − t
∫ ∞

0
log

(

1 − u

B(s)

)

μ(ds)

)

= exp

(

−t
∫ ∞

0
log
(
1 + u

s

)
μA(ds) − t

∫ ∞

0
log
(
1 − u

s

)
μB(ds)

)

= E[e−uUt ]E[euWt ].

�
The Laplace tranform of Yt can also be decomposed as

E

[
exp
(
−uY σ,θ

t

)]
= exp

(

−t
∫ ∞

0
log
(
1 + u

s

)
μA(ds) − t

∫ ∞

0
log
(
1 − u

s

)
μB(ds)

)

= exp

(

−t
∫ 0

−∞
log
(
1 + u

s

)
μ−B(ds) − t

∫ ∞

0
log
(
1 + u

s

)
μA(ds)

)

, (5)

whereμ−B is the imagemeasure ofμB by s �→ −s, and in particular,Yt is an extended
GGC (EGGC) with Thorin measure μA + μ−B in the sense of Chap.7 of [2].

In the next proposition we compute the variance, skewness and kurtosis of
variance-GGC processes.

Proposition 2 We have

(i) Var [Y1] = θ2Var [G1] + σ 2
E[G1].

(ii) Skewness[Y1] = −E[(G1 − E[G1])3] + 2(σ/θ)2Var [G1]
2(Var [G1] + (σ/θ)2E[G1])3/2

= −θ3

2
Skewness[G1] (Var [G1])3/2

(Var [Y1])3/2 − θσ 2Var [G1]
(Var [Y1])3/2 . (6)
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(iii) Kurtosis[Y1] = 3 + 3θ4E[(G1 − E[G1])4] − 3(Var [G1])2
8(θ2Var [G1] + σ 2E[G1])2

+ 3
3θ2σ 2

E[(G1 − E[G1])3]/4 + σ 4Var [G1]
(θ2Var [G1] + σ 2E[G1])2

= 3 + θ4 (Kurtosis[G1] − 3)(Var [G1])2
16(Var [Y1])2

+ 9σ 2θ2 Skewness[G1](Var [G1])3/2
4(Var [Y1])2 + 3

σ 4Var [G1]
(Var [Y1])2 . (7)

Proof Using the Thorin measure μA + μ−B of Yt and (3) we have

Var [Y1] =
∫ ∞

0
t−2μA(dt) +

∫ 0

−∞
t−2μ−B(dt)

=
∫ ∞

0

1

A2(t)
μ(dt) +

∫ ∞

0

1

B2(t)
μ(dt)

=
∫ ∞

0

θ2 + tσ 2

t2
μ(dt)

= θ2Var [G1] + σ 2
E[G1],

and

E[(Y1 − E[Y1])3] = 2
∫ ∞

0
t−3μA(dt) + 2

∫ 0

−∞
t−3μ−B(dt)

= 1

2

∫ ∞

0

θ3 + θσ 2
(
θ2/σ 2 + 2t

)

t3
μ(dt)

= θ3

2
E[(G1 − E[G1])3] + θσ 2Var [G1],

and

E[(Y1 − E[Y1])4] = 6
∫ 0

−∞
t−4μA(dt) + 6

∫ ∞

0
t−4μ−B(dt)

+ 3

(∫ 0

−∞
t−2μ−(dt) +

∫ ∞

0
t−2μ+(dt)

)2

= 3

4

∫ ∞

0

θ4 + (θσ )2(
√
4θ2/σ 2 + 8t/2)2 + σ 4(

√
4θ2/σ 2 + 8t)4/2

t4
μ(dt)

+ 3

(∫ ∞

0

θ2 + tσ 2

t2
μ(dt)

)2

= 3

4

∫ ∞

0

3θ4 + 6σ 2θ2t + 4σ 4t2

t4
μ(dt) + 3

(∫ ∞

0

θ2 + tσ 2

t2
μ(dt)

)2
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= 3

8
θ4(E[(G1 − E[G1])4] − 3(Var [G1])2)

+9

4
θ2σ 2

E[(G1 − E[G1])3] + 3σ 4Var [G1] + 3(θ2Var [G1] + σ 2
E[G1])2,

and this yields (6) and (7). �

Girsanov theorem

Consider the probability measure Qλ defined by the Radon-Nikodym density

dQλ

dP
:= eλYT

E[eλYT ] = (1 − λ)aT eλYT = eλYT +aT log(1−λ), λ < 1, (8)

cf. e.g. Lemma 2.1 of [9], where YT is a gamma random variable with shape and
scale parameters (aT, 1) under P . Then, under Qλ, the random variable Yt has a
gammadistributionwith parameter (aT, 1/(1 − λ), i.e. the distribution ofYt/(1 − λ)

under P .
In the next proposition we extend this Girsanov transformation to GGC random

variables.

Proposition 3 Consider the probability measure Pf defined by its Radon-Nikodym
derivative

d Pf

d P
= e

∫∞
0 f (s)dγs

E[e∫∞
0 f (s)dγs ] = e

∫∞
0 f (s)dγs+

∫∞
0 log(1− f (s))ds,

where f : R+ → (0, 1) satisfies

∫ ∞

0
log

(
1 + f (t)

1 − f (t)

)

dt < ∞. (9)

Assume that g : R+ → R+ satisfies (2), and

∫ ∞

0
log (1 + ug(s) − f (s)) ds > −∞, u > 0.

Then, under Pf , the law of
∫∞
0 g(s)dγs is the GGC distribution of theWiener-gamma

integral ∫ ∞

0

g(s)

1 − f (s)
dγs

under P.
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Proof For all u > 0, we have

EPf

[

exp

(

−u
∫ ∞

0
g(s)dγs

)]

= E

[

exp

(

−u
∫ ∞

0
g(s)dγs +

∫ ∞

0
f (s)dγs +

∫ ∞

0
log (1 − f (s)) ds

)]

= E

[

exp

(∫ ∞

0
f (s) − ug(s)dγs

)]

exp

(∫ ∞

0
log (1 − f (s)) ds

)

= exp

(

−
∫ ∞

0
log (1 + ug(s) − f (s)) ds

)

exp

(∫ ∞

0
log (1 − f (s)) ds

)

= exp

(

−
∫ ∞

0
log

(

1 + ug(s)

1 − f (s)

)

ds

)

= E

[

exp

(

−u
∫ ∞

0

g(s)

1 − f (s)
dγs

)]

.

�

Note that (8) is recovered by taking g(s) = 1[0,aT ](s) and f (s) = λ1[0,aT ](s) for
λ ∈ (0, 1), i.e. GT = ∫∞

0 g(s)dγs is a gamma random variable with shape parameter
aT and we have

EPf [e−uGT ] =
(

1 + u

1 − λ

)−aT

= E

[

exp

(

− u

1 − λ
GT

)]

,

u > 0, λ < 1. Next we consider several examples and particular cases.

Gamma case

In case the Thorin measure μ is given by

μ(dt) = γ δc(dt),

where δc is the Dirac measure at c > 0 we find the variance-gamma model of [12].
Here, Gt , t > 0, has the gamma probability density

φt (x) = cγ t x
γ t−1e−cx

Γ (γ t)
, x ∈ R+,

with mean and variance γ t/c and γ t/c2, and Gt becomes a gamma random variable
with parameters (γ t, c). In this case, the decomposition in Proposition 1 reads

ΨYt (u) =
(

1 − σ 2u2

2c

)−tγ

=
(

1 − σu√
2c

)−tγ (

1 + σu√
2c

)−tγ

,
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and we have
μA(dt) = μB(dt) = γ δ√

2c/σ (dt),

thus (Ut )t∈R+ , (Wt )t∈R+ become independent gamma processes with parameter
(γ t,

√
2c/σ). The mean and variance of U1 are

E[U1] =
∫ ∞

0
t−1μA(dt) = σγ√

2c

and

Var [U1] = E[(U1 − E[U1])2] =
∫ ∞

0
t−2μA(dt) = γ σ 2

2c
.

Symmetric case

When θ = 0 we recover the symmetric variance-GGC process

Yt := Bσ (Gt ), t ∈ R+,

defined in Sect. 4.4, page 124–126 of [6], i.e. the time-changed Brownian motion is
a symmetric variance-GGC process. Here, Yt is a centered Gaussian random vari-
able with variance σ 2Gt given Gt , where Bσ

t is a standard Brownian motion with
variance σ 2.

The Laplace transform of Yt in Proposition 1 shows that Yt decomposes into two
independent processes with same GGC increments since μA and μB are the same
image measures of μ(dt) on R+, by s �→ √

2s/σ .

Variance-stable processes

Let (Gt )t∈R+ be a Lévy stable process with index parameter α ∈ (0, 1) and moment
generating function h(s) = e−sα

. In this section we consider a non-symmetric exten-
sion of the symmetric variance stable process considered in Sect. 4.5, pages 126–127
of [6]. The Thorin measure of the stable distribution is given by

μ(dt) = ϕ(t)dt = α

π
sin(απ)tα−1dt,

cf. page 35 of [2]. By Proposition 1, Yt can be decomposed as

Yt = Ut − Wt ,

where Ut and Wt are processes with independent stable increments and Thorin
measures

μA(dt) = ϕA(t)dt = α

π
sin(απ)(σ 2t + θ)

(
1

2
(σ t − θ/σ)2 − θ2

2σ 2

)α−1

dt,
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Fig. 1 Sample paths of variance-stable process with α = 0.99

and

μB(dt) = ϕB(t)dt = α

π
sin(απ)(σ 2t − θ)

(
1

2
(σ t − θ/σ)2 − θ2

2σ 2

)α−1

dt.

In the symmetric case θ = 0 we find

μA(dt) = ϕA(t)dt = μB(dt) = ϕB(t)dt = σ 2tϕ

(
σ 2t2

2

)

dt = α sin(απ)

2α−1π
σ 2α t2α−1dt,

i.e.
√
2Ut/σ and

√
2Wt/σ are stable processes of index 2α. Note that the skewness

and kurtosis ofGt andYt are undefined. Figure1 presents a simulation of the variance-
stable process.

Variance product of stable processes

Here we take G1 = Z1/αXα where Z is a Γ (γ, 1) random variable and Xα is a stable
random variable with index α < 1. The MGF of G1 is h(s) = (1 + sα)γ , cf. page 38
of [2], i.e. G1 is a GGC with Thorin measure

μ(dt) = ϕ(t)dt = 1

π

γαtα−1 sin(απ)

1 + t2α + 2tα cos(απ)
dt,

and Yt decomposes as
Yt = Ut − Wt ,

whereUt andWt are processes of independent product of stable increment andThorin
measures
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Fig. 2 Sample paths of variance-product of stable process with α = 0.99 and γ = 0.2

μA(dt) = ϕA(t)dt

= 1

π

γα((σ t + θ/σ )2/2 − θ2/(2σ 2))α−1 sin(απ)(σ 2t + θ)

1 + ((σ t + θ/σ )2/2 − θ2/(2σ 2))2α + 2((σ t + θ/σ )2/2 − θ2/(2σ 2))α cos(απ)
dt,

and

μB(dt) = ϕB(t)dt

= 1

π

γα((σ t − θ/σ )2/2 − θ2/(2σ 2))α−1 sin(απ)(σ 2t − θ)

1 + ((σ t − θ/σ )2/2 − θ2/(2σ 2))2α + 2((σ t − θ/σ )2/2 − θ2/2σ 2)α cos(απ)
dt.

In the symmetric case

μA(dt) = ϕA(t)dt = μB(dt) = ϕB(t)dt

= σ 2tϕ

(
σ 2t2

2

)

dt = γασ 2αt2α−1 sin(απ)

π(2α−1 + 2−α−1σ 4αt4α + σ 2αt2α cos(απ))
dt.

The skewness and kurtosis of Gt and Yt are undefined. Figure2 presents the corre-
sponding simulation.

3 Sensitivity Analysis

In this section we extend approach of [8] to the sensitivity analysis of variance-GGC
models. Consider (Bt )t∈R+ a standard one-dimensional standard Brownian motion
independent of the Lévy process (Yt )t∈[0,T ] generated by
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YT :=
∫ ∞

0
g(s)dγs .

Let Θ be a standard Gaussian random variable independent of (Yt )t∈[0,T ]. For each
t ∈ [0, T ], we denote byFt the filtration generated by Θ and σ(Ys : s ∈ [0, t]).

Let (Zt )t∈R+ be a real-valued stochastic process in R independent of (Yt )t∈R+
and (Bt )t∈R+ . Finally we denote by and let Cn

b (R+;R) denote the class of n-time
continuously differentiable functions with bounded derivatives, whereas Cc(R+;R)

denotes the space of continuous functions with compact support.
Given θ ∈ R and τ ∈ R+ we consider the asset price ST written as

ST = S0 exp
(
θYT + τ

√
TΘ + ZT + T c(θ, τ )

)
,

where the function g(s) : R+ → R+ verifies (2).

Remark 1 When θ = 0 the above model reduces to the standard Black-Scholes
model, and in case θ �= 0 we find the variance-GGC model by taking (Zt )t∈[0,T ]
to be a GGC process.

For example, we can take the Wiener-gamma integral
∫∞
0 g(s)dγs to be a stable

random variable and set ZT to be another stable random variable, then the exponent
of St is a variance-stable process. This example will be developed in the next section.

The next theorem deals with the sensitivity analysis of the variance-GGC model
with respect to S0, θ and τ , and is the main result in this section. Define the classes
of functions

CL(R+;R) := { f ∈ C(R+;R) : | f (x)| ≤ C(1 + |x |) for some C > 0},

and

D(R+;R) :=
{
f : R+ → R : f =

n∑

k=1

ck fk1Ak , n ≥ 1,

ck ∈ R, fk ∈ CL(R+;R), Ak intervals of R+
}
.

Theorem 1 LetΦ ∈ D(R+;R). Assume that the law of ZT is absolutely continuous
with respect to the Lebesgue measure, with

∫ ∞

0
log

(

1 + g(s) f k(s)

(1 − λ f (s))k+1

)

ds < ∞, k = 1, 2, 3. (10)

Then

(i) (Delta—sensitivity with respect to S0). We have

∂

∂S0
E[Φ(ST )] = 1

S0
E[Φ(ST )LT ],
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where

LT = 2θ
∫∞
0 g(s) f 2(s)dγs

(θ
∫∞
0 g(s) f (s)dγs + τ

√
Tη)2

+
∫∞
0 f (s)dγs − T

∫∞
0 f (s)ds + ηΘ

θ
∫∞
0 g(s) f (s)dγs + τ

√
Tη

.

(ii) (Sensitivity with respect to θ ). We have

∂

∂θ
E[Φ(ST )] = E

[

Φ(ST )

(

LT

∫ ∞

0
g(s)dγs − 1

HT

∫ ∞

0
g(s) f (s)dγs

)]

+ T S0
∂c

∂θ
(θ, τ )

∂

∂S0
E[Φ(ST )],

where HT = θ

∫ ∞

0
g(s) f (s)dγs + τ

√
Tη.

(iii) (Theta—sensitivity with respect to τ ). We have

∂

∂τ
E[Φ(ST )] = E

[

Φ(ST )LT
√
T

(

Θ − η

HT

)]

+ T S0
∂c

∂τ
(θ, τ )

∂

∂S0
E[Φ(ST )].

(iv) (Gamma—second derivative with respect to S0). We have

∂2

∂S20
E[Φ(ST )]

= 1

S20
E

[

Φ(ST )

(

(LT )2 − 1

HT

(
IT HT − 2(KT )2

(HT )3
+ NT HT − MT KT

(HT )2

))]

− 1

S0

∂

∂S0
E[Φ(ST )],

where

KT = 2θ
∫ ∞

0
g(s) f 2(s)dγs, MT =

∫ ∞

0
f (s)dγs − T

∫ ∞

0
f (s)ds + ηΘ,

and

IT = 6θ
∫ ∞

0
g(s) f (s)3dγs, NT =

(∫ ∞

0
f (s)dγs − T

∫ ∞

0
f (s)ds + ηΘ

)2
.

Next we state two lemmas which are needed for the proof of Theorem 1.

Lemma 1 Assume that E[e2γ ZT ] < ∞ for some γ > 1. Let f : R → (0, a) be a
positive function and λ ∈ (0, ε) for ε < 1/a such that (10) holds. Fix η > 0 and
suppose that one of the following conditions holds:
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(i) The density function of YT = ∫∞
0 g(s)dγs decays exponentially, or

(ii) E
[
e2γ (1+θδ)YT

]
< ∞ for all δ > 0.

Let also

S(λ f )
T = S0 exp

(

θ

∫ ∞

0

g(s)

1 − λ f (s)
dγs + τ

√
T (Θ + ηλ) + ZT + c(θ, τ )T

)
,

and

H (λ f )
T = ∂

∂λ
log S(λ f )

T = θ

∫ ∞

0

g(s) f (s)

(1 − λ f (s))2
dγs + τ

√
Tη, HT = H (0)

T ,

and

K (λ f )
T = ∂

∂λ
H (λ f )

T = 2θ
∫ ∞

0

g(s) f 2(s)

(1 − λ f (s))3
dγs, KT = K (0)

T .

Then we have the L2(Ω)-limits

lim
λ→0

S(λ f )
T H (λ f )

T = ST HT and lim
λ→0

K (λ f )
T

(H (λ f )
T )2

= KT

(HT )2
.

Proof For any λ ∈ (0, ε), we have

sup
λ∈(0,ε)

E

[
|S(λ f )

T H (λ f )
T |2γ

]
≤ C1E

[
e2γ τ

√
TΘ
]
E

[
e2γ ZT

]

× sup
λ∈(0,ε)

E

[(

θ

∫ ∞

0

g(s) f (s)

(1 − λ f (s))2
dγs + τ

√
Tη

)2γ
exp

(

2γ
∫ ∞

0

g(s)

1 − λ f (s)
dγs

)]

≤ C1E[e2γ τ
√
TΘ ]E[e2γ ZT ]

× sup
λ∈(0,ε)

(
a

(1 − λa)2

)2γ
E

[(∫ ∞

0
g(s)dγs + τ

√
Tη

)2γ
exp

(
2γ θ

1 − λa

∫ ∞

0
g(s)dγs

)]

≤ C1E[e2γ τ
√
TΘ ]E[e2γ ZT ]

×
(

a

(1 − εa)2

)2γ
E

[(∫ ∞

0
g(s)dγs + τ

√
Tη

)2γ
exp

(
2γ θ

1 − εa

∫ ∞

0
g(s)dγs

)]

,

where C1 is a positive constant. Under condition (i) or (i i) above we have

E

[

Y 2γ
T exp

(
2γ θ

1 − εa
YT

)]

≤ E

[

exp

(

2γ

(

1 + θ

1 − εa

)

YT

)]

< ∞,
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and similarly we have E

[
e

2γ θ

1−εa YT

]
< ∞. Finally, we have E[e2γ ZT ] < ∞ by

assumption, and it is clear that E[e2γ τ
√
TΘ ] < ∞. Then |S(λ f )

T H (λ f )
T | is L2γ (Ω)-

integrable, hence (S(λ f )
T H (λ f )

T )2 is uniformly-integrable since γ > 1. Therefore, we
have proved that S(λ f )

T H (λ f )
T converges to ST HT in L2(Ω) as λ → 0.

Next, for any λ ∈ (0, ε) we have

sup
λ∈(0,ε)

E[|K (λ f )
T /(H (λ f )

T )2|2γ ] ≤ sup
λ∈(0,ε)

E

[((
2θ

τ
√
Tη

)∫ ∞

0

g(s) f 2(s)

(1 − λ f (s))3
dγs

)2γ]

≤
(

a2

(1 − λa)3

)2γ

E

[(∫ ∞

0
g(s)dγs

)2γ
]

sup
λ∈(0,ε)

∣
∣
∣
∣

2θ

τ
√
Tη

∣
∣
∣
∣

2γ

≤
(

a2

(1 − εa)3

)2γ

E

[(∫ ∞

0
g(s)dγs

)2γ
] ∣
∣
∣
∣

2θ

τ
√
Tη

∣
∣
∣
∣

2γ

,

since E

[(∫∞
0 g(s)dγs

)2γ
]
is finite under Condition (i) or (i i) above. Therefore

(K (λ f )
T /(H (λ f )

T )2)2 is uniformly-integrable since γ > 1, and this shows that K (λ f )
T /

(H (λ f )
T )2 converges to KT /(HT )2 as λ → 0 in L2(Ω). �

Lemma 2 Assume thatE[e2γ ZT ] < ∞ for some γ > 1 and that (10) holds. Suppose
in addition that one of the following conditions holds:

1. The density function of
∫∞
0 g(s)dγs decays exponentially.

2. E
[∣
∣e2γ (1+θδ)YT

∣
∣
]

< ∞ for all δ > 0, where YT = ∫∞
0 g(s)dγs .

Then for Φ ∈ C 1
b (R+,R) it holds that

(i) E
[
Φ ′(ST )ST HT

] = E

[(∫ ∞

0
f (s)dγs − T

∫ ∞

0
f (s)ds + ηΘ

)

Φ(ST )

]

.

(ii) E[Φ ′(ST )ST ] = E[Φ(ST )LT ].
(iii) E

[

Φ ′(ST )ST

∫ ∞

0
g(s)dγs

]

= E

[

Φ(ST )

(

LT

∫ ∞

0
g(s)dγs − 1

HT

∫ ∞

0
g(s) f (s)dγs

)]

.

(iv) E[Φ ′(ST )ST BT ] = √
TE

[

Φ(ST )LT

(

Θ − η

HT

)]

.

(v) If in addition Φ ∈ C 2
b (R+,R) and (10) is satisfied then we have

E[Φ ′′(ST )(ST )2] + E[Φ ′(ST )ST ]
= E

[

Φ(ST )

(

(LT )2 − 1

HT

(
IT HT − 2(KT )2

(HT )3
+ NT HT − MT KT

(HT )2

))]

.
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Proof We have

E[(Φ(ST ))2] ≤ 2E[(Φ(ST ) − Φ(S0))
2] + 2E[(Φ(S0))

2]
≤ 2E[(Φ(S0))

2] + 2
∫ 1

0
E[(Φ ′(r ST + (1 − r)S0))

2(ST − S0)
2]dr

< ∞,

since Φ ∈ C1
b(R+;R). As for (i) we have

E

[
Φ(S(λ f )

T )
]

= E

[
dPλ f

d P
∣
∣FT

Φ(ST )

]

, (11)

where we define the probability measure Pλ f via its Radon-Nikodym derivative

dPλ f

d P
∣
∣FT

= eλ
∫∞
0 f (s)dγs

E[eλ
∫∞
0 f (s)dγs ]

eληΘ

E[eληΘ ] = eλ
∫∞
0 f (s)dγs+T

∫∞
0 log(1−λ f (s))ds+ληΘ−λ2η2/2,

where f : R → (0, a) and λ ∈ (0, ε). In this way the GGC random variable∫∞
0 g(s)dγs and the Gaussian random variable Θ under Pλ f are transformed to
∫∞
0

g(s)
1−λ f (s)dγs and Θ + ηλ under P .

First we prove that
∂

∂λ
E

[
Φ(S(λ f )

T )
]
exists and equals the left hand side of (i).

For every ε ∈ (−λ, λ) we have

Φ(S(ε f )
T ) − Φ(ST )

ε
=
∫ 1

0
Φ ′(S(rε f )

T )S(rε f )
T H (rε f )

T dr,

and by the Cauchy-Schwarz inequality we get

E

[∣
∣
∣
∣
1

ε
(Φ(S(ε f )

T ) − Φ(ST )) − Φ ′(ST )ST HT

∣
∣
∣
∣

]

≤
∫ 1

0
E[|Φ ′(S(rε f )

T )S(rε f )
T H (rε f )

T − Φ ′(ST )ST HT ]dr

≤
∫ 1

0

√

E[(Φ ′(S(rε f )
T ))2]

√

E[(S(rε f )
T H (rε f )

T − ST HT )2]dr

+
∫ 1

0

√

E[(Φ ′(S(rε f )
T ) − Φ ′(ST ))2]

√
E[(ST HT )2]dr. (12)

From the boundedness and continuity of Φ ′(S(ε f )
T ) with respect to ε in L2(Ω), we

have
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E[(Φ ′(S(ε f )
T ))2] < ∞ and lim

ε→0
E[(Φ ′(S(ε f )

T ) − Φ ′(ST ))2] = 0.

By Lemma 1 we get that S(λ f )
T H (λ f )

T converges in L2(Ω). Finally, we take the limit

on both sides of (12) as ε → 0. Next we prove that
∂

∂λ
E

[
dPλ f

d P
∣
∣FT

Φ(ST )

]

exists

and equals the right hand side of (i).
For every ε ∈ (−λ, λ) the Cauchy-Schwarz inequality yields

E

[∣
∣
∣
∣
∣

1

ε

(
dPε f

d P
∣
∣FT

− dP0
dP
∣
∣FT

)

Φ(ST ) −
(∫ ∞

0
f (s)dγs − T

∫ ∞

0
f (s)ds + ηΘ

)

Φ(ST )

∣
∣
∣
∣
∣

]

≤
√
E
[
(Φ(ST ))2

]

E

√
√
√
√
√

⎡

⎣

(
1

ε

(
dPε f

d P
∣
∣FT

− dP0
dP
∣
∣FT

)

−
(∫ ∞

0
f (s)dγs − T

∫ ∞

0
f (s)ds + ηΘ

))2
⎤

⎦.

It is then straightforward to check that E[|Φ(ST )|2] < ∞ and

1

λ

(

exp

(

λ

∫ ∞

0
f (s)dγs + T

∫ ∞

0
log (1 − λ f (s)) ds + ληΘ − λ2η2/2

)

− 1

)

converges to ∫ ∞

0
f (s)dγs − T

∫ ∞

0
f (s)ds + ηΘ

in L2(Ω) as λ tends to 0 since λ−1(eλ
∫∞
0 f (s)dγs − 1) converges to

∫∞
0 f (s)dγs in

L2(Ω) as λ → 0. We conclude by taking the limit on both sides as λ → 0.
For (i i) we start with the identity

E

[
Φ(S(λ f )

T )

H (λ f )
T

]

= E

[
dPλ f

d P
∣
∣FT

Φ(ST )

HT

]

.

First we prove that
∂

∂λ
E

[
Φ(S(λ f )

T )

H (λ f )
T

]

exists and equals the left hand side of (i i). For

every ε ∈ [−λ, λ] we have

1

ε

(
Φ(S(ε f )

T )

H (ε f )
T

− Φ(S(0)
T )

HT

)

=
∫ 1

0

Φ ′(S(rε f )
T )S(rε f )

T (H (rε f )
T )2 − Φ(S(rε f )

T )K (rε f )
T

(H (rε f )
T )2

dr,
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and by the Cauchy-Schwarz inequality we get

E

[∣
∣
∣
∣
∣

1

ε

(
Φ(S(ε f )

T )

H (ε f )
T

− Φ(ST )

HT

)

− Φ ′(ST )ST (HT )2 − Φ(ST )KT

(HT )2

∣
∣
∣
∣
∣

]

≤
∫ 1

0
E

[∣
∣
∣
∣
∣

Φ ′(S(rε f )
T )S(rε f )

T (H (rε f )
T )2 − Φ(S(rε f )

T )K (rε f )
T

(H (rε f )
T )2

− Φ ′(ST )S(0)
T (HT )2 − Φ(ST )KT

(HT )2

∣
∣
∣
∣
∣

]

dr

≤
∫ 1

0

√

E[(Φ ′(S(rε f )
T ))2]

√

E[(S(rε f )
T − ST )2]dr

+
∫ 1

0

√

E[(Φ ′(S(rε f )
T ) − Φ ′(ST ))2]

√

E[(ST )2]dr

+
∫ 1

0

√

E[(Φ(S(rε f )
T ))2]

√

E[(K (rε f )
T /(H (rε f )

T )2 − KT /(HT )2)2]dr

+
∫ 1

0

√

E[(Φ(S(rε f )
T ) − Φ(ST ))2]

√

E[(KT /(HT )2)2]dr. (13)

We have shown E[(Φ(ST ))2] < ∞ in the proof of (i). Then

E[(Φ(S(ε f )
T ))2] ≤ 2E[(Φ(S(ε f )

T ) − ST )2] + 2E[(Φ(ST ))2]
≤ 2ε2

∫ 1

0
E[(Φ ′(S(rε f )

T )S(rε f )
T H (rε f )

T )2]dr + 2E[(Φ(ST ))2]
≤ 2ε2 sup

x∈R
|Φ ′(x)|2 sup

|ε|≤λ

E[(S(ε f )
T H (ε f )

T )2] + 2E[(Φ(ST ))2] < ∞,

where the Cauchy-Schwarz inequality and the Fubini theorem have been used for
the second inequality. The convergence of S(ε f )

T H (ε f )
T as ε → 0 in L2(Ω) has been

proved in Lemma 1. Note that E[(Φ(S(ε f )
T ))2] < ∞ also implies

E[(Φ(S(ε f )
T ) − Φ(ST ))2] → 0 as ε → 0.

By Lemma 1, we get K (ε f )
T /(H (ε f )

T )2 converges to KT /(HT )2 as ε → 0 in L2(Ω).

Taking the limit on both sides of (13) as ε → 0.

Next, we prove that
∂

∂λ
E

[
dPλ f

d P
∣
∣FT

Φ(ST )

HT

]

exists and is equal to the right hand

side of (i i). For all p > 0 we have

E[(H (λ f )
T )−2p] =

∫ ∞
0

(

θ

∫ ∞
0

g(s) f (s)

(1 − λ f (s))2
dγs + τ

√
Tη

)−2p
f1(y)dy < (τ

√
Tη)−2p,

where f1 is the density function of
∫∞
0

g(s) f (s)
(1−λ f (s))2 dγs . Therefore, the moment is uni-

formly bounded.
We conclude as in the second part of proof of (i). The proof of (i i i) − (iv) is

similar to that of (i i). As for (i i i) we have
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E

[
Φ(S(λ f )

T )

H (λ f )
T

∫ ∞

0

g(s)

1 − λ f (s)
dγs

]

= E

[
dPλ f

d P
∣
∣FT

Φ(ST )

HT

∫ ∞

0
g(s)dγs

]

.

For the first part, the existence of the derivative can be obtained as

E

[(∫ ∞
0

g(s)

1 − λ f (s)
dγs −

∫ ∞
0

g(s)dγs

)2
]

≤ E

[(

λ

∫ ∞
0

g(s)
f (s)

1 − λ f (s)
dγs

)2
]

≤ E

[(

λ
a

1 − λa

∫ ∞
0

g(s)dγs

)2
]

≤ ∞.

Similarly,
∫ ∞

0

g(s) f (s)

(1 − λ f (s))2
dγs converges to

∫∞
0 g(s) f (s)dγs in L2(Ω) as λ → 0.

The second part is almost the same as (i) by uniform boundedness of H (λ f )
T .

For (iv) we have

(Θ + ηλ)E

[
Φ(S(λ f )

T )

H (λ f )
T

]

= ΘE

[
dPλ f

d P
∣
∣FT

Φ(ST )

HT

]

.

For the first part, the existence of the derivative follows from the fact that Θ has a
Gaussian distribution. The second part is proved similarly.

Finally, for (v), define Ψ (x) = Φ ′(x)x , and by the result of (i i) we have

E[Φ ′′(ST )(ST )2] = E[(Ψ ′(ST ) − Φ ′(ST ))ST ] = E[Ψ (ST )LT ] − E[Φ ′(ST )ST ].

Hence, we obtain the desired equation by differentiating

E

[

Φ(S(λ f )
T )

L(λ f )
T

H (λ f )
T

]

= E

[
dPλ f

d P
∣
∣FT

Φ(ST )
LT

HT

]

at λ = 0. �

Now we can prove Theorem 1.

Proof The proof of Theorem 1 uses the same argument as in the proof of
Corollary 3.6 of [9]. The only difference is that ST is a variance-gamma process
in the proof of Corollary 3.6 of [9], while ST is a variance-GGC process in this
proof.

When Φ ∈ C 2
b (R+,R), all four formulas in Theorem 1 are direct consequences

of (i i) − (v) in Lemma 2, and we now extend this result to the class D(R+;R). In
general, in order to obtain an extension to Φ in a class �1 of functions based on an
approximating sequence (Φn)n∈N in a class�2 ⊂ �1, it suffices to show that for each
compact set K ⊂ R we have
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sup
S0∈K

|E[Φn(ST )] − E[Φ(ST )]| → 0 as n → ∞, (14)

and

lim
n→∞ sup

S0∈K

∣
∣
∣
∣

∂

∂S0
E[Φn(ST )] − 1

S0
E[Φ(ST )LT ]

∣
∣
∣
∣ = 0. (15)

The extension is then based on the above steps, first from C 2
b (R+,R) to Cc(R+,R),

then toCb(R+,R) and to the class of finite linear combinations of indicator functions
on an interval of R. Finally the result is extended to the class of functions Φ of the
form Φ = Ψ × 1A where Ψ ∈ CL(R+,R) and A is an interval of R+. This shows
that (14) and (15) are satisfied, and the details of each step are the same as in the
proof of Corollary 3.6 of [9]. �
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Decomposition of the Pricing Formula
for Stochastic Volatility Models Based
on Malliavin-Skorohod Type Calculus

Josep Vives

Abstract The goal of this survey article is to present in detail a method that, for
a financial derivative under a certain stochastic volatility model, allows to obtain a
decomposition of its pricing formula that distinguishes clearly the impact of correla-
tion and jumps. This decomposed pricing formula, usually calledHull andWhite type
formula, can be potentially useful for model selection and calibration. The method
is based on the obtention of an ad-hoc anticipating Itô formula.

Keywords Hull andWhite type formula ·Malliavin-Skorohod calculus · Stochastic
volatility jump-diffusion models · Derivative pricing · Quantitative finance
Mathematical Subject Classification 60H07 · 60H30 · 91G80 · 91G20

1 Introduction

The decomposition method presented in this paper is based on a series of works
developed during the last ten years. In [1], E. Alòs obtained a decomposition of
the pricing formula, usually called Hull and White type formula, for a plain vanilla
call under a correlated stochastic volatility model, with minor hypothesis on the
volatility process related with its Malliavin derivability. The decomposition was
obtained applying an ad-hoc extension of the anticipative Itô formula given in [2].
The obtained formula showed clearly the impact on prices of adding correlation
between price and volatility in stochastic volatility models.

In [3] the same type of formula was obtained adding also finite activity jumps in
the price process. A new term appeared, showing the impact of jumps. In [5] the for-
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mula was extended to the case of assuming jumps also on the volatility process. Still
a new term appeared in the formula. Finally, on [9], the result in [5] was extended
for free to the case of infinite activity and finite variation jumps, and with a cer-
tain restriction in the interpretation of the formula, to the case of infinite activity
and infinite variation jumps. The very general model considered in this last paper
covers almost all stochastic volatility models with and without jumps, treated in the
literature.

Aswe see in the paper, the presence of correlation and jumps in stochastic volatility
models is relevant. Additional terms in the pricing formula appears from correlation,
from jumps in the price process and from jumps in the volatility. Malliavin-Skorohod
calculus and the decomposition method allow to obtain these pricing formulas that
clearly distinguish the effect of correlation than the effect of jumps, for different types
of jumpmodels. If the stochastic volatility is correlated only with the continuous part
of the price process, only Gaussian Malliavin-Skorohod calculus is needed. If the
stochastic volatility is also correlated with price jumps, Lévy Malliavin-Skorohod
calculus is needed.

Section2 is devoted to the Brownian (no jump) case and Sect. 3 treats the
Lévy case.

2 Decomposition of the Pricing Formula Under a General
Brownian Stochastic Volatility Model

The main reference of the theory presented in this section is [1].

2.1 The Model

Let T > 0 be a finite horizon, S = {St , t ∈ [0, T ]} a price process, Xt = log St the
corresponding log price process and r > 0 the fixed interest rate. We assume the
following exponential model with stochastic volatility for the dynamics of the log-
price, under a market chosen risk-neutral probability:

Xt = x + r t − 1

2

∫ t

0
σ 2
s ds +

∫ t

0
σs(ρdWs +

√
1 − ρ2dBs)

where x is the current log-price,W and B are independent standardBrownianmotions
and ρ ∈ (−1, 1).

We denote byFW andF B the filtrations generated by the independent processes
W and B. Moreover, we define F , the filtration associated to S, by F : = FW ∨
F B . We consider our price model defined on the product of the canonical spaces of
processes W and B.
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The volatility process σ is assumed to be a square-integrable stochastic process,
adapted toFW and with strictly positive and càdlàg trajectories.

Note that this is a very general stochastic volatility model. In this sense, recall the
following facts:

• The model is a generalization of Heston model or other classical correlated sto-
chastic volatility models in the sense that we do not assume a concrete dynamics
for the volatility process σ .

• If ρ = 0 we have a generalization in the same sense as before of different
non correlated stochastic volatility models as Hull-White, Scott, Stein-Stein or
Ball-Roma.

• If σ is deterministic or constant we have the classical Osborne-Samuelson-Black-
Scholes model.

For information about correlated and non-correlated stochastic volatility models,
a good reference is [8].

Stochastic volatility models pursue the goal to replicate price surfaces of plain
vanilla options (depending on time tomaturity and strike) given by derivativemarkets
or vanilla desks. The stochastic volatility σ is a process not directly observable, so it
is not easy to model. This is a justification for trying to assume minimal conditions
on it.

Let HT be the payoff of a financial derivative. Assume it is a FT−measurable
functional. Its price is given by Vt = e−r(T−t)

Et (HT ) where Et : = E(·|Ft ). To fix
ideas wewill concentrate on the case of a plain vanilla call, that is, HT = (ST − K )+.

So, our goal is to obtain a decomposition of

Vt = e−r(T−t)
Et ((ST − K )+)

under our risk neutral model, in order to clarify the effect of correlation in the price.

2.2 Fast Summary of Brownian
Malliavin-Skorohod Calculus

Here we simply recall some basic definitions and facts necessary for our purpose.
See for example [10] for a complete presentation of the theory.

Let W and (ΩW ,FW ,PW ) be the canonical Wiener process and its canonical
space, respectively. Recall that ΩW : = C0([0, T ]) is the space of continuous func-
tions on [0, T ], null at the origin. Denote by EW the expectation with respect to PW .

Consider the family of smooth functionals of type

F = f (Wt1 , . . . ,Wtn )

for any n ≥ 0, t1, . . . tn ∈ [0, T ] and f ∈ C∞
b (Rn).
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Given a smooth functional F we define its Malliavin derivative DW F as the
element of L2(ΩW × [0, T ]) given by

Dt F =
n∑

i=1

∂i f (Wt1 , . . . ,Wtn )11[0,ti ](t).

The operator DW is closed and densely defined in L2(ΩW ), and its domain
Dom DW is the closure of the smooth functionals with respect the norm

||F ||Dom DW : = (
EW (|F |2) + EW

∫ T

0
|DW

t F |2dt) 1
2 .

We define δW as the dual operator of DW . Given u ∈ L2(ΩW × [0, T ]), δW (u) is
the element of L2(ΩW ) characterized by

EW (FδW (u)) = EW

∫ T

0
ut D

W
t Fdt

for any F ∈ Dom DW . Note that taking F ≡ 1 we obtain

EW (δW (u)) = 0.

The following results will be helpful:

• If F,G and F · G belong to Dom DW we have

DW (F · G) = FDWG + GDW F.

• If F ∈ Dom DW , u ∈ Dom δW and F · u ∈ Dom δW then

δW (F · u) = FδW (u) −
∫ T

0
ut D

W
t Fdt.

• It is well known that DW can be interpreted as a directional derivative on the
Wiener space and δW is an extension of the classical Itô integral.

We define the space L1,2
W := L2([0, T ]; Dom DW ), that is the space of processes

u ∈ L2([0, T ] × ΩW ) such that ut ∈ Dom DW for almost all t and Du ∈ L2(ΩW ×
[0, T ]2). It can be proved that L1,2

W ⊆ Dom δW and

EW (δW (u)2) ≤ ||u||2
L
1,2
W

:= EW (||u||2L2([0,T ])) + EW (||DWu||2L2([0,T ]2)).

Finally, we will denote δWt (u) := δW (u11[0,t]).
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2.3 The Hull and White Formula

If we assume constant volatility we have the well known geometric Brownian model.
In this case, the price Vt is given by the well known Black-Scholes formula:

Vt = BS(t, Xt , σ ) = exΦ(d+) − Ke−r(T−t)Φ(d−)

where

d± = Xt − log K + r(T − t)

σ
√
T − t

± σ
√
T − t

2

and Φ is the cumulative probability function of the standard normal law.
If we allow σ = σ(t) be a deterministic function, it is easy to see, that

XT − Xt ∼ N ((r − 1

2
σ̄ 2
t )(T − t), σ̄ 2

t (T − t)),

where

σ̄t :=
√

1

T − t

∫ T

t
σ 2(s)ds

is the so called future average volatility. Define σ̄T as the limit of σ̄t when t ↑ T .

So, in this case, the pricing formula is exactly the Black-Scholes formula changing
σ by σ̄t , that is,Vt = BS(t, Xt , σ̄t ).This suggests that it is the future averagevolatility
and not the volatility the really relevant quantity in pricing. Black-Scholes formula
would be nothing more than the particular case of constant future average volatility.

If σ is a stochastic process uncorrelated with price, that is, ρ = 0 in our model,
we have, following for example [7]:

Vt = Et (BS(t, Xt , σ̄t )).

This is the classical Hull and White formula and covers non correlated stochas-
tic volatility models as the cases of Hull-White, Scott, Stein-Stein, Ball-Roma and
others. The proof is immediate, conditioning first byFt ∨ FW

T .

Note that the future average volatility σ̄t is an anticipative process. This suggest
the use of Malliavin-Skorohod calculus as a natural tool to deal with this type of
processes.

In the correlated case we have the following theorem:

Theorem 1 Assume

• (A1): σ 2 ∈ L
1,2
W .

• (A2): σ ∈ L
1,2
W .
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Then we have,

Vt = Et [BS(t, Xt , σ̄t )] + ρ

2
Et [

∫ T

t
e−r(s−t)(∂3

x − ∂2
x )BS(s, Xs, σ̄s)Λsds]

where

Λs := (

∫ T

s
DW

s σ 2
r dr)σs .

Proof The proof is based on the so called decomposition method.
Recall that

VT = (eXT − K )+ = BS(T, XT , σ̄T )

and so
e−r t Vt = Et (e

−rT BS(T, XT , σ̄T )).

The idea of the proof consists in applying an ad-hoc anticipative Itô formula to
the process

e−rs BS(s, Xs, σ̄s)

between t and T , take conditional expectations Et and multiply by ert . This gives
the expansion for Vt .

The ad-hoc Itô formula is an adaptation to our case of the anticipative Itô formula
proved in [2]. Define

Yt := (T − t)σ̄ 2
t =

∫ T

t
σ 2
r dr.

Thanks to (A1), we are under the conditions of Theorem 1 in [1], and so, for any
F ∈ C1,2,2

b ([0, T ] × R × [0,∞)), we have

F(t, Xt ,Yt ) = F(0, X0,Y0) +
∫ t

0
∂s F(s, Xs,Ys)ds + δW,B

t (∂x F(·, X ·,Y·)σ·)

+
∫ t

0
∂x F(s, Xs,Ys)(r − σ 2

s

2
)ds −

∫ t

0
∂y F(s, Xs,Ys)σ

2
s ds

+ρ

∫ t

0
∂xy F(s, Xs,Ys)Λsds + 1

2

∫ t

0
∂2
x F(s, Xs,Ys)σ

2
s ds.

Now we want to apply this result to

F(s, x, y) := e−rs BS(s, x,

√
y

T − s
),

but this function doesn’t satisfy the required conditions of the previous Itô formula
because the derivatives are not bounded, so we need to use a mollifier argument.
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For n ≥ 1 and δ > 0, we consider the approximation,

Fn,δ(s, x, y) := e−rs BS(s, x,

√
y + δ

T − s
)φ(

x

n
),

where φ ∈ C2
b (R), such that φ(z) = 1 if |z| ≤ 1, φ(z) ∈ [0, 1] if |z| ∈ [1, 2] and

φ(z) = 0 if |z| > 2.
Then, applying the previous ad-hoc Itô formula to Fn,δ(s, Xs,Ys), taking the

conditional expectation Et , using the fact that Skorohod type integrals have zero
expectation and multiplying by ert we obtain

Et (e
−r(T−t)BS(T, XT , σ̄ δ

T )φ(
XT

n
))

= Et (BS(t, Xt , σ̄
δ
t )φ(

Xt

n
))

+Et (

∫ T

t
e−r(s−t)An(s)ds)

+ρ

2
Et (

∫ T

t
e−r(s−t)(∂3

x − ∂2
x )BS(s, Xs, σ̄

δ
s )φn(

Xs

n
)Λsds

+ρ

2
Et (

∫ T

t
e−r(s−t)(∂2

x − ∂x )BS(s, Xs, σ̄
δ
s )

1

n
φ

′
(
Xs

n
))Λsds

where

σ̄ δ
s :=

√
Ys + δ

T − s

and

An(s) : = σ 2
s

n
∂x BS(s, Xs, σ̄

δ
s )φ

′
(
Xs

n
)

+σ 2
s

2n
BS(s, Xs, σ̄

δ
s )(

1

n
φ

′′
(
Xs

n
) − φ

′
(
Xs

n
))

+ r

n
BS(s, Xs, σ̄

δ
s )φ

′
(
Xs

n
).

The details can be found in [9] (erasing there the terms depending on jumps, that
will be treated later in this paper).

Finally, the result follows from the dominated convergence theorem taking limits
first on n ↑ ∞ and then on δ ↓ 0. The dominated convergence runs thanks to the
properties of Black-Scholes function and (A2). For the left hand side and the two
first terms on the right hand side we use the fact that function BS(t, x, σ ) is bounded
by ex + K and its derivative (∂x BS)(t, x, σ ) is bounded by ex . For the last two terms
on the right hand side we use Lemma 2 in [3] that says that for any n ≥ 0,
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|E[∂n
x (∂

2
x − ∂x )BS(s, Xs, σ̄s)|Ft ∨ FW

T ]| ≤ Cn(ρ)(

∫ T

t
σ 2
s ds)

− n+1
2 ,

for a certain constant Cn(ρ) that depends only on n and ρ.

For example, for the third term on the right hand side, we have

Et (

∫ T

t
e−r(s−t)(∂3

x − ∂2
x )BS(s, Xs, σ̄

δ
s )φn(

Xs

n
)Λsds)

= Et (

∫ T

t
e−r(s−t)

E[(∂3
x − ∂2

x )BS(s, Xs, σ̄
δ
s )|Ft ∨ FW

T ]φn(
Xs

n
)Λsds).

And, applying the lemma,

|E[(∂3
x − ∂2

x )BS(s, Xs, v
δ
s )|Ft ∨ FW

T ]φn(
Xs

n
)Λs | ≤ C1(ρ)

|Λs |
∫ T
t σ 2

s ds
.

Using the chain rule for DW , the problem reduces to show

Et (

∫ T
t (

∫ T
t |DW

s σu |σudr)σsds
∫ T
t σ 2

r dr
) < ∞,

and applying Cauchy-Schwarz inequality twice, we can bound this expression by

Et (
(
∫ T
t (

∫ T
t |DW

s σu |σudu)2ds)
1
2

(
∫ T
t σ 2

u du)
1
2

)

≤ Et (
(
∫ T
t (

∫ T
t |DW

s σu |2dr)(
∫ T
t σ 2

u du)ds)
1
2

(
∫ T
t σ 2

u du)
1
2

)

≤ Et ((

∫ T

t

∫ T

t
|DW

s σu |2duds) 1
2 )

≤ (Et

∫ T

t

∫ T

t
|DW

s σu |2duds) 1
2 .

So, (A2) proves that this expression is finite.
For the fourth term in the right hand side, applying the lemma and using C as a

generic constant, we have

|E[(∂2
x − ∂x )BS(s, Xs, σ̄

δ
s )|Ft ∨ FW

T ]1
n
φ

′
n(

Xs

n
)Λs | ≤ C

n

|Λs |
(
∫ T
t σ 2

s ds)
1
2

.



Decomposition of the Pricing Formula for Stochastic Volatility Models … 111

So, we have to show

Et (

∫ T
t σs(

∫ T
s |DW

s σu |σudu)ds

(
∫ T
t σ 2

u du)
1
2

) < ∞,

that follows applying Cauchy-Schwarz inequality, similarly to the previous case.

Remark 1 Note that hypothesis (A2) can be changed by the following alternative
hypothesis of uniform ellipticity (A2′): The process σ 2 defined on [0, T ] is uniformly
bounded below by a constant a > 0. In fact (A1) and (A2′), jointly, imply (A2).

3 The Lévy Case

The main references for this section are [3, 5, 9].

3.1 A Very General Stochastic Volatility Lévy Model

Assume now the following exponential Lévy model with stochastic volatility for the
dynamics of the log-price, under a market chosen risk-neutral probability:

Xt = x + r t − 1

2

∫ t

0
σ 2
s ds +

∫ t

0
σs(ρdWs +

√
1 − ρ2dBs) + L0

t

where L0 is a pure jumpLévy processwith possibly infinitelymany jumpswith triplet
(γ0, 0, ν) and independent of W and B. Now, the volatility process σ is assumed to
be adapted to the filtration generated by W and L0.

Due to the well known Lévy-Itô decomposition we can write

L0
t = γ0t +

∫ t

0

∫

{|y|>1}
yN (ds, dy) + lim

ε↓0

∫ t

0

∫

{ε<|y|≤1}
y Ñ (ds, dy)

where N denotes the Poisson measure associated to Lévy process, Ñ (ds, dy) :=
N (ds, dy) − ν(dy)ds is the compensated Poisson measure and the limit is a.s. and
uniformly on compacts.

For the integers i ≥ 0, we consider the following constants, provided they exist:

ci :=
∞∑

k=i

∫

R

yk

k! ν(dy).
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Observe that in particular

c0 =
∫

R

eyν(dy),

c1 =
∫

R

(ey − 1)ν(dy),

c2 =
∫

R

(ey − 1 − y)ν(dy).

In order to e−r t eXt be a martingale, see for example [6], we must assume
∫

|y|≥1
eyν(dy) < ∞ and γ0 = −

∫

R

(ey − 1 − y11{|y|<1})ν(dy).

These conditions guarantee that ν has moments of all orders greater or equal than
2 and that we can write

L0
t =

∫ t

0

∫

R

y Ñ (ds, dy) − c2t.

So, in the following we will assume, without loosing generality, the model

Xt = x + (r − c2)t − 1

2

∫ t

0
σ 2
s ds +

∫ t

0
σs(ρdWs +

√
1 − ρ2dBs) + Jt

with

Jt :=
∫ t

0

∫

R

y Ñ (ds, dy).

Recall that if
∫
R

|y|ν(dy) = ∞ we say that the process has infinite activity and
infinite variation. In this case c1 := ∫

R
(ey − 1)ν(dy) and c0 := ∫

R
eyν(dy) are infi-

nite or not defined. If ν has first order moment, that is
∫
R

|y|ν(dy) < ∞, we say the
model has infinite activity but finite variation and c1 is finite. In this case we can
consider c2 = c1 − ∫

R
yν(dy) and rewrite

∫ t

0

∫

R

y Ñ (ds, dy) − c2t =
∫ t

0

∫

R

yN (ds, dy) − c1t.

Finally, if ν is finite, the model has finite activity and so, it is a Compound Poisson
process with ν = λQ for a certain probability measure Q and a certain constant
λ = ν(R) > 0. In this case,

c1 =
∫

R

(ey − 1)ν(dy) = c0 − λ
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and
∫ t

0

∫

R

yN (ds, dy) =
Nt∑

i=1

Vi ,

where N is a λ−Poisson process and Vi are i.i.d. random variables with law Q, the
law that produce the jumps.

Let F J be the filtration generated by J . Note that this filtration is the same
as the filtration generated by L0 because the difference of these two processes is
deterministic. Define now F , the filtration associated to S, by

F := FW ∨ F B ∨ F J .

We will consider our price model defined on the product of the canonical spaces
of processes W , B and J. This means that

ω := (ωW , ωB, ωJ ) ∈ Ω := ΩW × Ω B × Ω J

and in the rest of the paper, any hypothesis on one of the spaces will mean that the
property is true almost surely with respect to the other spaces.

Note that this is a very general stochastic volatilitymodel because, beingσ adapted
toFW ∨ F J , we are allowing jumps both in price and volatility. Recall the following
facts:

• If we assume no jumps, that is ν = 0, we have a generalization of correlated and
non correlated stochastic volatility models in the sense that we do not assume a
concrete dynamics for the volatility. This is the case treated in Sect. 2.

• If we restrict our model to the case σ adapted only toFW we have a generalization
of the Bates model in a double sense; on one hand we do not assume any concrete
dynamics for the stochastic volatility and on other hand we are not assuming finite
activity nor finite variation on ν.

• If we assume no correlation but presence of jumps we cover for example Heston-
Kou model or any uncorrelated model with the addition of Lévy jumps in the price
process with any Lévy measure ν.

• If σ = 0 but we have jumps, we cover the so called exponential Lévy models.

3.2 Malliavin-Skorohod Type Calculus for Lévy Processes

The literature on Malliavin calculus for Lévy processes is more recent and less
extended. Here we follow closely [11] and [4]. A survey of this results can be found
in [12]. We refer to these references for proofs of next results.

Let us denote R0 := R − {0}. Consider the canonical version of the pure jump
Lévy process J. It is defined on the spaceΩN given by the finite or infinite sequences
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of pairs (ti , xi ) ∈ (0, T ] × R0 such that for every ε > 0 there is only a finite number
of (ti , xi ) with |xi | > ε. Of course, ti denotes a jump instant and xi a jump size.

Consider ωN ∈ ΩN . Given (t, x) ∈ [0, T ] × R0 we can introduce a jump of size
x at instant t to ωN and call the new element

ωN
t,x := ((t, x), (t1, x1)(t2, xs), ...).

For a random variable F ∈ L2(ΩN ), we define

Tt,x F(ωN ) = F(ωN
t,x )

and

DN
t,x F = Tt,x F(ωN ) − F(ωN )

x
.

The operator DN is closed and densely defined in L2(ΩN ) and its domain
Dom DN can be characterized by the fact that

F ∈ Dom DN ⇐⇒ DN F ∈ L2(Ω × [0, T ] × R0, P ⊗ ds ⊗ x2ν(dx)).

On other hand we define δN as the dual operator of DN .

Given u ∈ L2(ΩW × [0, T ] × R, P ⊗ ds ⊗ x2ν(dx)), δN (u) is the element of
L2(ΩN ) characterized by

EN (FδN (u)) = EN (

∫ T

0

∫

R

ut,x D
N
t,x Fx

2ν(dx)dt)

for any F ∈ Dom DN . In particular EN (δN (u)) = 0.
Let us denote δNt (u) := δN (u11[0,t]).
As we have seen, DN is an increment quotient operator and it is also known that

δNt is an extension of Itô integral in the sense that

δNt (u11R0) =
∫ t

0

∫

R

u(s, x)x Ñ (ds, dx)

for predictable integrands u.

The following formulas will be helpful:

• If F,G and F · G belong to Dom DN we have

DN (F · G) = FDNG + GDN F + xDN FDNG.
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• If F ∈ Dom DN , u ∈ Dom δN and u · Tt,x F ∈ Dom δN then

δN (F · u) = FδN (u) −
∫ T

0

∫

R

ut,x D
N
t,x Fx

2ν(dx)dt − δN (x · u · DN F).

As in the Wiener case we define the space

L
1,2
N := L2([0, T ] × R, Dom DN ),

that is the space of processes u ∈ L2([0, T ] × R × ΩN ) such that ut,x ∈ Dom DN

for almost all (t, x) and Du ∈ L2(ΩN × ([0, T ] × R)2).

It can be proved that L1,2
N ⊆ Dom δN and

EN (δN (u)2) ≤ ||u||2
L
1,2
N

:= EN (||u||2L2([0,T ]×R)) + EN (||DNu||2L2(([0,T ]×R)2)).

Moreover we introduce the spaceL1,2
N ,− as the subspace ofL1,2

N of processes u such
that the left-limits

u(s−, y) := lim
r↑s,x↑y u(r, x)

and
DN ,−

s,y u(s−, y) := lim
r↑s,x↑y D

N
s,yu(r, x)

exists PN ⊗ ds ⊗ x2ν(dx)−a.s. and belong to L2(ΩN × [0, T ] × R).

Assume u ∈ L
1,2
N ,− and

∫ T
0

∫
R0

|u(s−, y)||y|N (ds, dy) ∈ L2(ΩN ). Then, for any
t ∈ [0, T ],

T−
s,yu(s−, y) := u(s−, y) + yDN ,−

s,y u(s−, y) ∈ Dom δNt

and

∫ t

0

∫

R

u(s−, y)y Ñ (ds, dy) = δNt (T−
s,yu(s−, y)11R0)

+
∫ t

0

∫

R

DN ,−
s,y u(s−, y)y2ν(dy)ds.

If u is predictable we have DN ,−
s,y u(s−, y) = 0. Hence, in this case,

∫ t

0

∫

R

u(s−, y)y Ñ (ds, dy) = δNt (u(s−, y)11R0).
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3.3 The Hull and White Formula in the Lévy Case

Consider the following definitions in order to shorten the notation, for a suitable
function F :
• Δx F(s, Xs,Ys) := F(s, Xs + x,Ys) − F(s, Xs,Ys).
• Δxx F(s, Xs,Ys) := F(s, Xs + x,Ys) − F(s, Xs,Ys) − x(∂x F)(s, Xs,Ys).
• ΔF(s, Xs,Ys) = F(s, Xs + x,Ys) − F(s, Xs,Ys) − (ex − 1)(∂x F)(s, Xs,Ys).

Then, we have the following decomposition of the price formula:

Theorem 2 Assume

• (B1): σ 2 ∈ L
1,2
N ,− ∩ L

1,2
W .

• (B2): σ ∈ L
1,2
W .

• (B3): For any t ∈ [0, T ], ∫ T
t Et ((

∫ s
t σ 2

u du)−2)ds < ∞.

Then we have

Vt = Et (BS(t, Xt , vt ))

+ρ

2
Et (

∫ T

t
e−r(s−t)(∂3

x − ∂2
x )BS(s, Xs, σ̄s)Λsds)

+Et (

∫ T

t

∫

R

e−r(s−t)ΔBS(s, Xs−, σ̄s)ν(dy)ds)

+Et (

∫ T

t

∫

R

e−r(s−t)DN ,−
s,y Δy BS(s, Xs−, σ̄s)yν(dy)ds).

Remark 2 We can consider the following particular cases:

1. Observe that we cannot split the third term in two terms because in the general
case

Et (

∫ T

t

∫

R

e−r(s−t)Δy BS(s, Xs− , σ̄s)ν(dy)ds)

and

Et (

∫ T

t

∫

R

e−r(s−t)(ey − 1)∂x BS(s, Xs− , σ̄s)ν(dy)ds)

are not necessarily convergent.
2. Observe that if in the previous theorem we assume

∫
R

|y|ν(dy) < ∞, that is,
finite variation, we obtain
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Vt = Et (BS(t, Xt , vt ))

+ρ

2
Et (

∫ T

t
e−r(s−t)(∂3

x − ∂2
x )BS(s, Xs, σ̄s)Λsds)

−Et (

∫ T

t

∫

R

e−r(s−t)(ey − 1)∂x BS(s, Xs, σ̄s)ν(dy)ds)

+Et (

∫ T

t

∫

R

e−r(s−t)T−
s,yΔy BS(s, Xs− , σ̄s)ν(dy)ds),

that is exactly the formula obtained in [5] for the finite activity case, that in fact
is valid in the finite variation case.

3. If the volatility process is independent from price jumps, we have

DN ,−
s,y Δy BS(s, Xs−, σ̄s) = 0

and we obtain

Vt = Et (BS(t, Xt , σ̄t ))

+ρ

2
Et (

∫ T

t
e−r(s−t)(∂3

x − ∂2
x )BS(s, Xs, σ̄s)Λsds)

+Et

∫ T

t

∫

R

e−r(s−t)ΔBS(s, Xs− , σ̄s)ν(dy)ds,

that generalizes the formula in [3]. As in the previous remark, only in the finite
variation case we recuperate exactly the formula in [3]. This formula covers
Bates model and any correlated model with any type of Lévy jumps in the price
process.

4. If moreover, the volatility process is independent from the price process, that is,
ρ = 0, we obtain

Vt = Et (BS(t, Xt , vt )) + Et

∫ T

t

∫

R

e−r(s−t)ΔBS(s, Xs− , σ̄s)ν(dy)ds.

This covers all the so called uncorrelated models plus jumps (Heston-Koumodel
for example) and in the particular case of constant volatility, the so called expo-
nential Lévy models. In the jump part we can consider infinite activity jumps as
CGMY model (for Y ≥ 0) or Meixner model for example.

Proof We follow the same general idea of Theorem 1. The necessary ad-hoc Itô
formula, see [9], is now
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F(t, Xt ,Yt ) = F(0, X0,Y0) +
∫ t

0
∂s F(s, Xs,Ys)ds + δW,B

t (∂x F(·, X ·,Y·)σ·)

+
∫ t

0
∂x F(s, Xs,Ys)(r − c2 − σ 2

s

2
)ds −

∫ t

0
∂y F(s, Xs,Ys)σ

2
s ds

+ρ

∫ t

0
∂xy F(s, Xs,Ys)Λsds + 1

2

∫ t

0
∂2
x F(s, Xs,Ys)σ

2
s ds

+
∫ t

0

∫

R0

(Δy F(s, Xs−,Ys) − y(∂y F)(s, Xs−,Ys))ν(dy)ds

+δNt (
Δy F(s, Xs−,Ys)

y
11R0(y)) + δNt (DN ,−

s,y Δy(s, Xs−,Ys))

+
∫ t

0

∫

R

DN ,−
s,y Δy F(s, Xs−,Ys)yν(dy)ds.

To prove it, fix first ε > 0, and consider the process

X ε
t := x + (r − c2)t − 1

2

∫ t

0
σ 2
s ds +

∫ t

0
σs(ρdWs +

√
1 − ρ2dBs)

+
∫ t

0

∫

|x |>ε

x Ñ (ds, dx).

This process has a finite number of jumps and converges a.s. and in L2 sense
to Xt .

Denote by T ε
i the jump instants, and write T ε

0 := 0. Then

F(T ε
i+1, X

ε
T ε
i+1

,YT ε
i+1

) − F(T ε
i , X ε

T ε
i
,YT ε

i
) =

∫ T ε
i+1−

T ε
i

d F(s, X ε
s ,Ys)

+F(T ε
i+1, X

ε
T ε
i+1

,YT ε
i+1

) − F(T ε
i+1, X

ε
T ε
i+1−,YT ε

i+1
).

On the stochastic interval [T ε
j , T

ε
j+1[we can apply the anticipative Itô formula for

continuous process presented in Sect. 2. Then we have that

∂x F(s, Xs− ,Ys)σs11[0,t](s) ∈ Dom δW,B

and

F(t, X ε
t ,Yt ) = F(0, X0,Y0) +

∫ t

0
∂s F(s, X ε

s ,Ys)ds

+
∫ t

0
∂x F(s, X ε

s ,Ys)(r − σ 2
s

2
− c2)ds + δW,B

t

(
∂x F(s, X ε

s− ,Ys)σs
)

−
∫ t

0

∫

{|x |>ε}
∂x F(s, X ε

s ,Ys)xν(dx)ds −
∫ t

0
∂y F(s, X ε

s ,Ys)σ
2
s ds
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+ ρ

∫ t

0
∂xy F(s, X ε

s ,Ys)Λsds + 1

2

∫ t

0
∂2
x F(s, X ε

s ,Ys)σ
2
s ds

+
∑

i

[F(T ε
i , X ε

T ε
i
,YT ε

i
) − F(T ε

i , X ε
T ε
i −,YT ε

i
)].

Of course we can write

∑

i

[F(T ε
i , Xε

T ε
i
,YT ε

i
) − F(T ε

i , Xε
T ε
i −, YT ε

i
)] =

∫ t

0

∫

|x |>ε

Δx F(s, Xs−,Ys)N (ds, dx).

Then,

∑

i

[F(T ε
i , X ε

T ε
i
,YT ε

i
) − F(T ε

i , X ε
T ε
i −,YT ε

i
)] −

∫ t

0

∫

|x |>ε

∂x F(s, X ε
s−,Ys)xν(dx)ds

=
∫ t

0

∫

|x |>ε

Δx F(s, X ε
s−,Ys)Ñ (ds, dx) +

∫ t

0

∫

|x |>ε

Δxx F(s, X ε
s−,Ys)ν(dx)ds.

Observe that this equality is the crucial step of the proof. Only introducing
Δxx F(s, X ε

s−,Ys) we become able to apply succesfully the dominated convergence
theorem, even if Y has no jumps.

Using the relation between δN and the integral with respect to Ñ we have

∫ t

0

∫

|x |>ε

Δx F(s, X ε
s−,Ys)Ñ (ds, dx)

= δNt (T−
s,x

Δx F(s, X ε
s−,Ys)

x
11{|x |>ε})

+
∫ t

0

∫

|x |>ε

DN ,−
s,x

Δx F(s, X ε
s−,Ys)

x
x2ν(dx)ds.

And using mean value theorem and the fact that first and second derivatives of
F are bounded we have

|T−
s,x

Δx F(s, X ε
s−,Ys)

x
| = |Δx F(s, X ε

s−, T−
s,xYs)

x
| ≤ C,

|DN ,−
r,y

Δx F(s, X ε
s−, T−

s,xYs)

x
| ≤ C |DN ,−

r,y T−
s,xYs | = C

∫ T

s
|DN ,−

r,y T−
s,xσ

2
u |du

and

|DN ,−
s,x

Δx F(s, X ε
s−,Ys)

x
| ≤ C |DN ,−

s,x Ys | = C
∫ T

s
|DN ,−

s,x σ 2
r |dr,

for a generic constant C.
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Finally, using (B1) and the dominated convergence theorem the right hand side
of the previous equality converges when ε goes to 0. The other terms converge also
by the dominated convergence theorem, and the Itô formula follows.

Then, following the same steps of the proof of Theorem 1, after applying this
last ad-hoc Itô formula, taking conditional expectations, using the fact that Skorohod
type integrals have zero expectation and multiplying by ert we obtain

Et (e
−r(T−t)BS(T, XT , σ̄ δ

T )φ(
XT

n
)) (1)

= Et (BS(t, Xt , σ̄
δ
t )φ(

Xt

n
))

+Et (

∫ T

t
e−r(s−t)An(s)ds)

+ρ

2
Et (

∫ T

t
e−r(s−t)(∂3

x − ∂2
x )BS(s, Xs, σ̄

δ
s )φn(

Xs

n
)Λsds)

+ρ

2
Et (

∫ T

t
e−r(s−t)(∂2

x − ∂x )BS(s, Xs, σ̄
δ
s )

1

n
φ

′
(
Xs

n
)Λsds)

−c2Et (

∫ T

t
e−r(s−t)∂x BS(s, Xs, σ̄

δ
s )φ(

Xs

n
)ds)

+Et (

∫ T

t

∫

R

e−r(s−t)Δyy BS(s, Xs− , σ̄ δ
s )φ(

Xs−
n

)ν(dy)ds)

+Et (

∫ T

t

∫

R

e−r(s−t)DN ,−
s,y

Δy BS(s, Xs− , σ̄ δ
s )φ(

Xs−
n )

y
y2ν(dy)ds).

And as in Theorem 1, applying the dominated convergence theorem, letting first
n ↑ ∞ and then δ ↓ 0 we obtain the result.

To assure the dominated convergence, we have to treat the last three terms of (1)
as a unique term and separate it in two integrals, one on |y| ≤ 1 and the other on
|y| > 1.

In the case |y| > 1, things simplify and we obtain

−Et (

∫ T

t

∫

|y|>1
e−r(s−t)∂x BS(s, Xs, σ̄

δ
s )φ(

Xs

n
)(ey − 1)ν(dy)ds)

+Et (

∫ T

t

∫

|y|>1
e−r(s−t)T N ,−

s,y Δy BS(s, Xs− , σ̄ δ
s )φ(

Xs−
n

)ν(dy)ds).

For the first termwe use that ∂x BS(s, Xs, σ̄
δ
s ) is bounded by eXs and for the second

term we use the fact that

|T N ,−
s,y Δy BS(s, Xs− , σ̄ δ

s )| ≤ 2K + eXs−+y + eXs−
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and that ∫

{|y|>1}
eyν(dy) < ∞.

In the case |y| ≤ 1, the fifth term in the right hand side of (1) is bounded because
∂x BS is bounded. The sixth term can be written as

1

2
Et (

∫ T

t

∫

|y|≤1
e−r(s−t)∂2

x BS(s, Xs + α, σ̄ δ
s )φ(

Xs−
n

)y2ν(dy)ds)

= 1

2
Et (

∫ T

t

∫

|y|≤1
e−r(s−t)(∂2

x − ∂x )BS(s, Xs + α, σ̄ δ
s )φ(

Xs−
n

)y2ν(dy)ds)

+1

2
Et (

∫ T

t

∫

|y|≤1
e−r(s−t)∂x BS(s, Xs + α, σ̄ δ

s )φ(
Xs−
n

)y2ν(dy)ds)

where |α| ≤ |y|.
The second term on the right hand side of this last expression is bounded because

∂x BS is bounded. For the first term we use Lemma 2 in [3] as in Theorem 1 and we
bound it by

CEt (

∫ T

t

∫

|y|≤1

√
1

Yt
y2ν(dy)ds),

for a certain constantC.Hypothesis (B3) guarantees the convergence of this integral,
because

Et (

∫ T

t

∫

|y|≤1

√
1

Yt
y2ν(dy)ds) = C(T − t)Et (

√
1

Yt
)

and

Et (

√
1

Yt
) ≤ (Et (

1

Y 2
t
))

1
4 ≤ (Et ((

∫ s

t
σ 2
u du)−2))

1
4

and so, the term is bounded by (B3).
Finally, the last term of (1) can be bounded by

Et (

∫ T

t

∫

|y|≤1
|DN ,−

s,y (∂x BS)(s, Xs− + α, σ̄ δ
s )|y2ν(dy)ds)

= Et (

∫ T

t

∫

|y|≤1
|DN ,−

s,y (∂x BS)(s, Xs− + α,

√
Ys + δ

T − s
)|y2ν(dy)ds)

= Et (

∫ T

t

∫

|y|≤1
|(∂xσ BS)(s, Xs− + α,

√
θs,y + δ

T − s
)| |DN ,−

s,y Ys |
2(T − s)

√
θs,y+δ

T−s

y2ν(dy)ds)
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= 1

2
Et (

∫ T

t

∫

|y|≤1
|(∂x (∂2x − ∂x )BS)(s, Xs− + α,

√
θs,y + δ

T − s
)||DN ,−

s,y Ys |y2ν(dy)ds),

(2)
where |α| ≤ |y| and θs,y is a quantity between Ys and T N ,−

s,y Ys .
Now, we cannot apply directly Lemma 2 in [3], but mimicking the proof we have

that the last integral is less or equal than

CEt (

∫ T

t

∫

|y|≤1

|DN ,−
s,y Ys |

∫ s
t σ 2

u du
y2ν(dy)ds).

Then, applying Cauchy-Schwarz inequality, this expression is bounded by

C(Et (

∫ T

t

∫

|y|≤1

1

(
∫ s
t σ 2

u du)2
y2ν(dy)ds))

1
2 (Et (

∫ T

t

∫

|y|≤1
|DN ,−

s,y Ys |2y2ν(dy)ds))
1
2 .

The first term of this product is bounded by (B3) and the second one by (B1)

Remark 3

1. As in the case of Theorem 1, (B2) can be changed by (A2′).
2. If σ not depends on jumps, (B3) reduces to Et ((

∫ T
t σ 2

u du)− 1
2 ) < ∞, that it is

weaker than (A2′).
3. In the case of finite variation, (B3) is not necessary.
4. In the complete general case, but only in this case, (B1) and (A2′) are not enough.

An alternative treatment of (2), using (A2′), is to bound directly

|(∂x(∂2
x − ∂x )BS)(s, Xs− + α,

√
θs,y + δ

T − s
)| ≤ eXs−+α(

1√
Ys

+ 1

Ys
).

So, we can decompose this term in two new terms. The term with Y
− 1

2
s can be

treated easily and it is bounded with no other requirements than (B1) and (A2′).
But the term with Y−1

s requires to assume, alternatively to (B3), the following
hypothesis,

Et (

∫ T

t

∫

|y|≤1

|DN ,−
s,y Ys |
Ys

y2ν(dy)ds) < ∞,

that using (A2′) is equivalent to assume

(B4) : Et (

∫ T

t

∫

|y|≤1

|DN ,−
s,y Ys |
T − s

y2ν(dy)ds) < ∞.

Note that this last hypothesis is stronger than (B1). So, we need (B1), (A2′) and
(B4) to guarantee the complete general case.
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Statistical Estimation Techniques in Life
and Disability Insurance—A Short Overview

Boualem Djehiche

Abstract This is a short introduction to some basic aspects of statistical estimation
techniques known as graduation technique in life and disability insurance.

Keywords Life insurance · Disability insurance · Claims reserving · Mortality
modeling · Thiele’s equation
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1 Life Insurance

By life insurance policy or contract we mean any form of person insurance contract
over a (long) period of time such as life or pension and disability or sickness coverage.
In such products, premiums and benefits are typically contingent upon transitions of
the policyholder between a number of states stated in the contract. Thereof the use
of the powerful (semi)-Markov chain theory to carry out the valuation of insurance
contracts and estimation of the underlying rates. We first give a short introduction
to the basic constituents of a life insurance contract and related reserving. Then
we single out the main parameters that control the evolution of the life insurance
contract and focus on their statistical estimation. These parameters are the mortality
rate and disability inception and recovery rates. Due to lack of space, the reader
is referred to the list of references for an update of recent developments in claims
reserving techniques for life and disability insurance. A detailed account for basic
life insurance contracts can be found in the papers [11–15] by Norberg. A very short
summary is displayed in Sects. 1.1–1.6, below.
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1.1 A Markov Chain Model of a Life Insurance Contract

Let E = {0, 1, 2, . . . ,m} be the (finite) set of possible states of the policy. Starting
at 0, the policy is assumed to be in one and only one state at each time. Let X (t)
denote the state of the policy at time t ∈ [0, n]. We assume that the process X is
right-continuous with a finite number of jumps, with transition probability

pi j (s, t) = P[X (t) = i|X (s) = j], i, j ∈ E, 0 ≤ s ≤ t ≤ n, (1)

and transition intensity

μi j (t) := lim
h↓0

pi j (t, t + h)

h
, i �= j. (2)

The total transition intensity from state i at time t is

μi·(t) =
∑

k:k �=i

μik(t) (3)

so that

pii(t, t + dt) = 1 − μi·(t)dt + o(t).

1.1.1 Basic Kolmogorov Equations

The transition probabilities (pi j (s, t), i, j ∈ E, 0 ≤ s ≤ t ≤ n) satisfy the follow-
ing equations.

A. The Kolmogorov backward equation: for s ≤ t ,

⎧
⎨

⎩

∂pi j

∂s
(s, t) = μi·(s)pi j (s, t) − ∑

k:k �=i μik(s)pk j (s, t),

pi j (t, t) = δi j .

(4)

B. The Kolmogorov forward equation: for s ≤ t ,

⎧
⎨

⎩

∂pi j

∂t (s, t) = −pi j (s, t)μ j ·(t) + ∑
k:k �=i pik(s, t)μk j (t),

pi j (s, s) = δi j .

(5)

C. The Chapman-Kolmogorov equation

pik(s,u) =
∑

j∈E
pi j (s, t)p jk(t,u), s ≤ t ≤ u. (6)
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The key parameter in this Markov chain framework is the transition intensity which
is the object of our statistical inference study.

1.2 Examples

1.2.1 Single Life with One Cause of Death (One Absorbing State)

In this model E = {0, 1}, where state 0 = alive, state 1= dead (absorbing state).
If T denotes the life length of a person with survival probability

F̄(t) = P(T > t),

the Markov chain counts the number of deaths:

X (t) = 11{T≤t}, t ∈ [0, n],

with transition probability

p00(s, t) = F̄(t)

F̄(s)
= e− ∫ t

s μ(u)du.

μ is called mortality intensity (rate or force). Its estimation from data is of central
importance in life insurance Fig. 1

1.2.2 Single Life with m Causes of Death (m Absorbing States)

In this model E = {0, 1, . . . ,m}, where state 0 = alive, state j= dead with cause
j (absorbing state). These absorbing states model different causes of death such as
death by “car accident”, “normal death” or “death caused by a disease” etc. Fig. 2.

The total mortality intensity is

μ0·(t) := μ(t) =
r∑

j=1

μ j (t), (7)

where, μ j (t) := μ0 j (t) denotes the mortality rate for death with cause j . This is
nothing but the transition intensity from state 0 (alive) to the absorbing state j .

Fig. 1 Single life with one
cause of death
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Fig. 2 Single life with m
causes of death

The probability that an s years old person will die from cause j before age t is
then

p0 j (s, t) =
∫ t

s

e− ∫ u
s μ(τ )dτμ j (u)du. (8)

1.2.3 Disability, Recovery and Death

This model is widely used to analyze insurance contracts with payments depending
on the state of the health of the insured. For example

• Sickness insurance that provides an annuity benefit during disability periods.
• Life insurance with premium waiver during disability.
• Pension with additional benefits to other members of the family.

The possible states are a = alive/active, i=invalid/unemployed, and d=dead/recovered
or any other suitable labeling Fig. 3.

1.3 Payment Streams and Reserving Techniques

Let X be theMarkov chain with intensities μi j associated with an insurance contract.
Let

I j (t) = 11{X (t)= j}, t ∈ [0, T ],

denote the indicator process of whether the policy is in state j or not, and

Ni j (t) = #{s: X (s−) = i, X (s) = j, s ∈ (0, t]}, i �= j,

denote the number of transitions from state i to state j during the time interval (0, t].
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Fig. 3 Three possible states
of a life insurance contract

We have

d I j (t) = dN· j (t) − dN j ·(t), (9)

where,

N· j (t) :=
∑

k;k �= j

Nk j (t), N j ·(t) :=
∑

k;k �= j

N jk(t).

We have, for t ≤ u

E[I j (u)|X (t) = i] = pi j (t,u),

E[dN jk(u)|X (t) = i] = pi j (t,u)μ jk(u)du. (10)

A standard payment stream A (benefits less premiums) has usually the following
form:

d A(t) :=
∑

j

⎛

⎝I j (t)d A j (t) +
∑

k;k �= j

a jk(t)dN jk(t)

⎞

⎠ , (11)

where,

d A j (t) := a j (t)dt + (A j (t) − A j (t
−)) = a j (t)dt + �A j (t) (12)

specifies the so-called general life annuity payment i.e. payments due during sojourn
in state j . The payment a j (t) is the rate of a state-wise annuity payable continuously
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at time t , while the lump sum payment �A j (t) is an endowment at time t . The
annuity function A j is usually assumed to have a finite number of discontinuity points
{t1, t2, . . . , tq}. The payments a jk(t) specify the so-called general life assurance i.e.
amounts that are payable immediately upon transition from state j to state k.

1.4 Expected Present Values and Prospective Reserves

The liability at time t for which the insurer should provide a reserve (prospective
reserve) is the present value of the payment streams (future benefits less premiums)
A over the lifespan [t, n] of the insurance contract:

V (t) =
∫ n

t
e− ∫ s

t r(u)dud A(s). (13)

When the policy is in state i at time t , then, in view of Eq. (10), the state-wise
prospective reserve is

Vi(t) := E[V (t)|X (t) = i] = ∫ n
t e− ∫ s

t r(u)duE[d A(s)|X (t) = i]

= ∫ n
t e− ∫ s

t r(u)du
∑

j pi j (t, s)
(
d A j (t) + ∑

k;k �= j a jk(s)μ jk(s)ds
)

,

(14)

when r, a j , aik are all deterministic function.
Written in differential form, Vj satisfies the following Feynman-Kac type formula
known as the backward Thiele’s differential equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dVi
dt (t) = (r(t) + μi·(t))Vi(t) − ∑

j; j �=i μi j (t)Vj (t) − ai(t) − ∑
j; j �=i ai j (t)μi j (t),

t ∈ (tp−1, tp), p = 1, . . . , q,

�Vj (tp) = −�A j (tp), p = 1, 2, . . . , q, i ∈ E,

Vj (n) = 0.
(15)

This equation admits an explicit solution only for a fewuninteresting/trivial insurance
contracts. In most cases it is solved using a numerical integration recipe. A fourth
order “Runge-Kutta” procedure seems to work efficiently in almost all practical
situations.

Thiele’s equation can be recast in the following form “preferred by actuaries”

− ai(t)dt = dVi(t) − r(t)Vi(t)dt +
∑

j; j �=i

Ri j (t)μi j (t)dt (16)



Statistical Estimation Techniques in Life and Disability … 133

where,

Ri j (t) = ai j (t) + Vj (t) − Vi(t), (17)

is the so-called “Sum-at-Risk” associated with a possible transition from state i to
state j .

• The term
∑

j; j �=i Ri j (t)μi j (t)dt is called the “risk premium” in (t, t + dt).
• The term dVi(t) − r(t)Vi(t)dt is called the “savings premium” in (t, t + dt).

1.5 The Equivalence Principle (aka Fairness Constraint)

The equivalence principle of insurance states that the expected present values of
premiums and benefits should be equal. That is, roughly speaking, premiums and
benefits should balance on the average. In our context this principle states that

V0(0) = −A0(0). (18)

This condition imposes a constraint on the contractual payments a j , A j and ai j to
design a premium level for given benefits. Noting that A0(0−) = 0, we easily see
that Eq. (18) is equivalent to

V0(0
−) := E

[∫ n

0−
e− ∫ s

0 r(u)dud A(s)

]

= 0. (19)

The state-wise prospective reserveV (t) can be seen as the value function of a singular
control problem subject to the fairness constraint, where the control parameter is the
process A(t).

1.6 First and Second Order Reserving Bases

The jump intensities μi j (purely actuarial parameters or liability driving parameter)
and the discounting rate r which reflects the “expected return” of the investment
portfolio (the main driver of the asset side) constitute the so-called reserving basis:

• First order technical basis (prudent or conservative). This is a set of assump-
tions about the portfolio return (or just an interest rate that reflects the market value
of the cash flow), r , the transition ratesμi j (includingmortality rates), costs and other
relevant technical parameters etc. These assumptions are meant to yield premiums
and reserves that include a high safety loading that hedges against worst case scenar-
ios. The first order premiums and reserves are usually higher than experience based
or historically observed values. This means that a systematic surplus is created by
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the company and, by law (which regulates mutual funds in some countries), it should
be redistributed to the policyholder in terms of bonuses that are usually allocated but
not distributed until the termination of the policy. Here we face a model risk!

• Second order technical basis: It is also called experience (or market) basis.
It sets values of the parameters based on realistic scenarios collected based on the
history of the policy. The company updates the reserves on a regular basis and adjusts
for the parameters using the bonus fund created by applying the first order basis.

A typical example of adjustments to bemadeunder the experience (market) basis is
compensation for a possible non-equivalenceof thefirst order payments i.e.V0(0−) �=
0, i.e. the insurance company compensates for this by adding dividend payments
D to the first order payments. D has usually the following form:

dD(t) :=
∑

j

⎛

⎝I j (t)dDj (t) +
∑

k;k �= j

δ jk(t)dN jk(t)

⎞

⎠ , (20)

where,
dDj (t) := δ j (t)dt + (Dj (t) − Dj (t

−)) = δ j (t)dt + �Dj (t). (21)

The coefficients δ j ,�Dj and δi j are stochastic processes adapted to the
“demographic-economic” history F with a more complex structure than the coeffi-
cients related to the payment processes A. The dividend process D is chosen (con-
strained) to attain the ultimate equivalence (fairness):

E

[∫ n

0−
e− ∫ s

0 r(u)dud(A + D)(s)

]

= 0. (22)

In the Black and Scholes market model, the dividend payments are provided by an
asset portfolio such as the following diffusion Y modulated by the jump process X :

dY (t) = rY (t)dt + σ(t, X (t),Y (t))Y (t)dW (t) + d(C − D)(t),
Y (0−) = 0,

(23)

where,C is the usual income (or contribution) process of the following form (similar
to A and D):

dC(t) :=
∑

j

⎛

⎝I j (t)dC j (t) +
∑

k;k �= j

c jk(t)dN jk(t)

⎞

⎠ , (24)

dC j (t) := c j (t)dt + (C j (t) − C j (t
−)) = c j (t)dt + �C j (t). (25)
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Assuming the coefficients δ j (t),�Dj (t) and δi j (t) are functions of (t,Y (t)), the
state-wise prospective reserve is

Vi(t,x) := E[V (t)|X (t) = i,Y (t) = x]
= E

[∫ n
t e− ∫ s

t r(u)dud(A + D)(s)|X (t) = i,Y (t) = x
] (26)

satisfies a more complex “Thiele’s” PDE (cf. [8, 16, 18]).

1.7 Graduation Techniques-Estimation of the Mortality Rates

We start with statistical inference of the mortality rate μ which is the only jump
intensity in the simplest life insurance contract: Single life with one cause of death
(one absorbing state) i.e. E = {0, 1}, where state 0 = alive, state 1= dead (absorbing
state). The underlying Markov chain counts the number of deaths:

X (t) = 11{T≤t}, t ∈ [0, n],

where, T denotes the life length of a person with survival probability

p00(s, t) = F̄(t)

F̄(s)
= e− ∫ t

s μ(u)du, 0 ≤ s ≤ t ≤ n.

In actuarial practice one often considers the remaining life length Tx of an insured of
age x. The corresponding survival probability over a time period of length t ≥ 0 is

P(Tx > t) := P(T > x + t |T > x) = e− ∫ x+t
x μ(u)du = e− ∫ t

0 μ(x+u)du. (27)

In a more general framework where ‘stochastic mortality’ modeling can be incor-
porated, consider (the possibly random) force (or rate) of mortality μ(x, t) at t for
individual aged x at time 0. Then, the survival index

S(x, t) := exp

(

−
∫ t

0
μ(x + s, s)ds

)

is the probability of survival of an individual aged x during the time interval [0, t],
given the mortality force μ(x, s) i.e.

P(Tx > t) = E[S(x, t)].

In Eq. (27), μ(x, t) = μ(x + t).
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The main goal of this section is to estimate the mortality force μ(x, s), given
historical mortality data of a population of insured individuals.

1.7.1 An Age-Specific Model: Gompertz-Makeham Graduation
Formula

This model captures the evolution of mortality in mutually exclusive age cohorts but
disregards a possible common risk factor that links all cohorts together. Consider an
insured population of ages xi, i = 1, 2, . . . , n. Let Nx denote the exposure i.e. the
number of individuals of the same age x, and Dx denotes the number of individuals
dead during the interval (x,x + 1). Assuming that the remaining survival lengths
of all individuals are independent, and the insured population is homogeneous in
the sense that the survival probability of all individuals is the same. A stochastic
model based on a “crude approximation” of the Binomial distribution by the Poisson
distribution suggests that

Dxi
∼ independent Poisson(μxi

Nxi
). (28)

Then the mortality rate (or force) μxi
for a population of age xi, i = 1, 2, . . . , n can

be estimated by the so-called ‘central or crude death rate’

μ̂xi
= Dxi

Nxi

, i = 1, 2, . . . , n. (29)

Gompertz and later Makeham famous graduation formula suggests a mortality rate
of the form

μx := α + βeγx, (30)

where, the parameters α,β and γ which satisfy α + β > 0,β > 0 and γ ≥ 0 are
estimated using the insured population data.Whenα = 0 we get Gompertz mortality
law. A fairly standard way to perform the parameter estimation is to use a weighted
least squares method: minimize

Q =
n∑

i=0

wxi

(
μ̂xi

− α − βeγxi
)2

(31)

w.r.t. the parameters α,β and γ, where the weight is the inverse of the variance of
μ̂xi

:

wxi
= N 2

xi

Var(Dxi
)

= N 2
xi

Nxi
μ̂xi

= Nxi

μ̂xi

, (32)

so that Q is approximatelyχ2-distributed. In practice, one ‘fixes’ a value for γ ‘based
on experience’ and finds the optimal values of α and β. In the Swedish life insurance
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business, there is a Central Mortality Committee that estimates these parameters to
be used by insurance companies and pension funds. For example, in the so-called
M90 investigation, the committee suggested that

μx = α + βeγ(x− f ),

where, the parameter f adjusts for mortality of females among the insured popula-
tion. Values f = 4 or 5 years are used. For M90, α = 0.001,β = 0.000012 and
γ = 0.044.

1.7.2 Gompertz Graduation Formula with a View Towards GLM

Recall Gompertz’ graduation formula:

μx := βeγx, (33)

or logμx, which is linear in age,

logμx = logβ + log eγx := a + γx.

This can be extended to a quadratic or a polynomial form

logμx = a + bx + cx2, logμx = a0 + a1x + a2x
2 + . . . + apx

p.

GLM means that we perform a regression of logμx with respect to a basis

{1,x}, {1,x,x2}, {1,x, . . . ,xp},

or any other carefully chosen ‘spline’ basis {B1(x), B2(x), . . . , Bp(x)} such that

μx =
p∑

j=1

Bj (x)a j := P(a),

and estimate the coefficients a0, a1, . . . , ap which maximize the penalized log-
likelihood function:

L(a) − 1

2
λP(a), (34)

where, L(a) is the log- likelihood of the model

Dxi
∼ independent Poisson(μxi

Nxi
), i = 1, . . . , n, (35)

and λ > 0 is a smoothing parameter.
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A similar approach can be applied to obtain a smooth year (or period) specific
mortality: maximize the penalized log-likelihood function

L(θ) − 1

2
λP(θ), (36)

where, L(θ) is the log- likelihood of the model

Dti ∼ independent Poisson(μti Nti), t = tmin, . . . , tmax, (37)

and

P(θ) =
p∑

j=1

Bj (t)θ j .

The smoothing parameter λ can be estimated using the Akaike Information Criterion
(AIC), theBayesian InformationCriterion (BIC) or theGeneralizedCross-Validation
(GCV).

1.7.3 An Age-Period Model: Lee-Carter Graduation Formula

Lee andCarter [10] suggest aGompertz type graduation formula for the fullmortality
rate μ(x, t):

logμ(x, t) := α(x) + β(x)κ(t), (38)

subject to the constraints

∑

x

β(x) = 1,
∑

t

κ(t) = 0, (39)

fitting
∑

x,t

(logμobs(x, t) − α(x) + β(x)κ(t))2 .

This model captures the evolution of mortality in mutually exclusive age cohorts
while at the same time includes a possible common risk factor (systemic risk) k(t) that
links all cohorts together over time. The parameters a(x) and b(x) are age-specific
while k(t) is time (period) dependent only and should capture the random period
effect of the mortality rate. The risk factor k(t) is usually modeled as a time series
or a random walk with drift. Lee and Carter [10] suggest an ARIMA (discretized
diffusion process) for κ of the form

k(t + 1) = k(t) + a1 + a2ξ + σz(t)
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where, z(t) is white noise and ξ ∈ {0, 1} is a dummy variable that captures major
outbreaks of disease leading to a huge mortality wave such as the 1918 worldwide
flu outbreak or the 2008 earthquake in China etc. Statistical estimation of these para-
meters is usually performed w.r.t. each dimension: x and time (period) t . Here are
some suggestions (see [2, 10], Currie, Richards and co-authors (2003–2012), [17]
etc.).

• Given κ(t) = κ̂(t), fit a GLM with regressor κ̂:

logμ(x, t) := α(x) + β(x)κ̂(t).

• Givenα(x) = α̂(x), β(x) = β̂(x), fit aGLMwith offset α̂(x) and regressor β̂(x):

logμ(x, t) := α̂(x) + β̂(x)κ(t).

• Perform a regression w.r.t. a 2-d spline basis Ba(x) ⊗ By(t) for age and time
dimensions (x, t).

1.7.4 Building Blocks of the MLE for the Lee-Carter Model

Following [2], theMLE approach to the Lee-Carter model is based on the assumption
that

Dx,t ∼ Poisson(μ(x, t)Nx,t ), where logμ(x, t) := α(x) + β(x)κ(t),
x = xmin, . . . ,xmax, t = tmin, . . . , tmax.

(40)

The parameters α(x),β(x) and κ(t) are estimated by maximizing the log-likelihood
function

L(α,β,κ) :=
∑

x,t

(
Dx,t (α(x) + β(x)κ(t)) − Nx,t exp (α(x) + β(x)κ(t))

) + C,

where, C contains all the terms that do not dependent on the parameters. The nonlin-
ear term β(x)κ(t) does not allow for a closed form of the maximizing parameters.
One instead uses an iterative method such as the Newton-Raphson updating scheme
(or any more efficient numerical optimization algorithm):

θ(n+1) = θ(n) − ∂L(n)/∂θ

∂2L(n)/∂θ2
,

which numerically solves ∂L(n)/∂θ = 0.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α̂(0)
x = 0, β̂(0)

x = 1, κ̂(0)
t = 0,

alternatively α̂(0)
x = 1

tmax−tmin+1

∑
t log(μ̂(x, t)), β̂(0)

x = 1
tmax−tmin+1 ,

κ̂(0)
t = ∑

x β̂(0)
x

(
log(μ̂(x, t)) − α̂(0)

x

)
,

D̂(n)
x,t = Nx,t exp (α̂(n)

x + β̂(n)κ̂(n)
t ),

α̂(n+1)
x = α̂(n)

x −
∑

t (Dx,t−D̂(n)
x,t )

− ∑
t D̂

(n)
x,t

, β̂(n+1)
x = β̂(n)

x , κ̂(n+1)
t = κ̂(n)

t ,

κ̂(n+2)
t = κ̂(n)

t −
∑

t (Dx,t−D̂(n+1)
x,t )β̂(n+1)

x

−∑
t D̂

(n+1)
x,t (β̂(n+1)

x )2
, α̂(n+2)

x = α̂(n+1)
x , β̂(n+2)

x = β̂(n+1)
x ,

β̂(n+3)
x = β̂(n+2)

x −
∑

t (Dx,t−D̂(n+2)
x,t )κ̂n+2(t)

− ∑
t D̂

(n+2)
x,t (κ̂n+2

t )2
, α̂(n+3)

x = α̂(n+2)
x , κ̂(n+3)

t = κ̂(n+2)
t .

The parameters are standardized in each step of the iteration to satisfy the constraints

∑

x

β(x) = 1,
∑

t

κ(t) = 0, (41)

by letting

α̂(n+1)
x = α̂(n)

x + Aβ̂(n)
x , κ̂(n+1)

x = (κ̂(n)
t − A)B, β̂(n+1)

x = β̂(n)
x /B, (42)

where,

A = 1

tmax − tmin

∑

t

κ̂(n)
t , B =

∑

x

β̂(n)
x . (43)

The estimated values of κ(t), t = tmin, . . . , tmax are used to fit it to a dynamical
model. We mentioned above that Lee and Carter fit κ(t) to an ARIMA model of the
form

k(t + 1) = k(t) + a1 + a2ξ + σz(t)

where, z(t) is white noise and ξ ∈ {0, 1} is a dummy variable that captures major
mortality changes.

This algorithm is illustrated by the Figs. 4, 5 and 6, applied to mortality data
among Swedish insured (cf. Swedish Research Board for Actuarial Science [17]).

Mortality jumps, due to e.g. new life standards or medical development etc.,
are also important to capture in a mortality model, despite the serious difficulties to
perform reliable estimation. Cox et al. [7] suggest two types of mortality jump events
to the Lee-Carter model:

logμ(x, t) := α(x) + β(x)κ(t) − G(x, t) + H(x, t),
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Fig. 4 The αx parameter for
ages 30–90 years (females
and males). (From [17],
reproduced with permission
from Taylor and Francis
Ltd.)
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Fig. 5 Estimated and
smoothed βx parameter for
ages 30–90 years (females
and males). (From [17],
reproduced with permission
from Taylor and Francis
Ltd.)
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where

• G(x, t) captures a permanent longevity jump and takes the form

G(x, t) := K (x, t) + D(x, t),

with

K (x, t) :=
∞∑

j=1

y j A j (x)11{t≥η j } = Jump reduction component,
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Fig. 6 Estimated and
linearized κ(t) parameter for
data 1985–2005 (females
and males). (From [17],
reproduced with permission
from Taylor and Francis
Ltd.)
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and

D(x, t) :=
∞∑

j=1

ζi(t − νi)Fi(x)e−ξi(t−νi)11{t≥νi} = Trend reduction component.

• K (x, t) captures temporary adverse mortality jumps and takes the form

H(x, t) :=
∞∑

j=0

b j B j (x)e−κi(t−τi)11{t≥τ j }.

1.8 An Age-Period-Cohort Model: Extending Lee-Carter
Graduation Formula

The Lee-Carter model captures the age-period effect, but does not reflect the possible
cohort effect (calender year-age= t−x). A simple model that would simultaneously
capture the age-period-cohort effect is

logμ(x, t) := α(x) + κ(t) + γ(t − x).

Renshaw and Haberman [9] suggested the following extension of the Lee-Carter
model to capture the cohort effect (calender year-age = t − x):

logμ(x, t) := β1(x) + β2(x)κ(t) + β3(x)γ(t − x). (44)
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A generalization of this mortality model for data divided into N components reads

logμ(x, t) :=
N∑

j=1

β j (x)κ j (t)γ j (t − x).

In a series of papers the Edinburgh teams including Currie, Richards and co-authors
(2003–2012) and Cairns and co-authors (2006–2012) suggest other extensions and
perform deep statistical analysis that seem tune the age-period-cohort effect when
applied to mortality data from England and Wales, and USA.

1.9 An Infinite Dimensional Approach to Mortality Modeling

The mortality rate can be viewed as an (infinite dimensional) curve of (x, t). To
capture the high level of uncertainty in projections of future mortality one is tempted
to translate the “machinery” developed for “forward” interest rate yields such as
“the HJM-model under the Musiela parametrization etc.” to mortality rates. One
is tempted to translated the calibration techniques of interest rate yield curves, to
perform hopefully more accurate projections of future mortality (thoughwith limited
data points). Recent relevant references include [3–6, 19].

2 Disability Insurance

In the next sections we briefly describe a stochastic semi-Markov model for the
development of disability inception and recovery rates and perform the corresponding
statistical estimation. For more details see [1].

2.1 Disability Inception

Let Ex,t denote the number of healthy individuals with age in [x,x + 1) at the
beginning of time period t , and let Dx,t denote the number of individuals among Ex,t

with disability inception in the interval [t, t + 1). In this section we model inception
over time, t = 0, 1, 2, . . . and eventually estimate the underling parameters.

The Fig. 7 describes inception frequencies per 5-year age groups of females
insured and a smoothed curve. This plot clearly shows that inception seems to be
strongly time- and age-dependent. Below, we suggest a model of this behavior.

Assume Dx,t is binomially distributed given Ex,t :

Dx,t ∼ Bin(Ex,t , px,t ) (45)
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Fig. 7 Left Inception
frequencies per 5-year age
groups, females. Right
Smoothed surface
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where px,t is the inception probability of an x-year-old. In order to reduce the dimen-
sionality of the problem and achieve some level of smoothness, we use the logistic
regression:

logit px,t := log
( px,t

1 − px,t

)
=

n∑

i=1

νi
tφ

i(x), (46)

where φi(x) are age-dependent basis functions, and νi
t time-varying stochastic risk

factors that we aim at estimating. Changing notation, pνt (x) = px,t , we invert the
expression above, obtaining

pνt (x) = exp
(∑n

i=1 νi
tφ

i(x)
)

1 + exp(
∑n

i=1 νi
tφi(x))

. (47)

This guarantees that the probabilities pνt (x) ∈ (0, 1).
Given historical values of Dx,t and Ex,t , and a set of basis functions {φi}, the

log-likelihood function for yearly values of νt ∈ Rn can be written

l(νt ) =
∑

x∈X

[
Dx,t

n∑

i=1

νi
tφ

i(x) − Ex,t log
(
1 + exp

{ n∑

i=1

νi
tφ

i(x)
})] + ct . (48)

If the basis functions are linearly independent it can be shown that −l(νt ) is strictly
convex. Thus it has a unique minimum. Minimizing−l(νt ), using e.g. methods from
numerical optimization, yields estimates of νt . The basis functions can be chosen by
the user, according to some criteria. Desired properties of pνt (·), e.g. continuity or
smoothness w.r.t. x, are achieved by choosing continuous or smooth φi(·), by taking
into account eventual population characteristics. Suitable choices of basis functions
give the risk factors concrete interpretations. Alternatively, an optimal basis can be
extracted from the data using functional principal component analysis. This approach
yields better model fit, but harder to interpret results.



Statistical Estimation Techniques in Life and Disability … 145

Fig. 8 Left Two basis
functions. Centre Basis
functions scaled with risk
factor values 0.4 and 0.6.
Right The resulting linear
combination. Note
φ1(25) = φ2(64) = 1, and
φ1(64) = φ2(25) = 0

25 30 35 40 45 50 55 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

25 30 35 40 45 50 55 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

25 30 35 40 45 50 55 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Consider the simple model

logit pνt (x) = ν1
t φ

1(x) + ν2
t φ

2(x),

where the basis functions are linear on x ∈ [25, 64]:

φ1(x) = 64 − x

39
, φ2(x) = x − 25

39
. (49)

A linear combination of φ1 and φ2 is then also linear Fig. 8.
Under this model, the logistic inception probability of a 25-year old is given by

logit pνt (25) = ν1
t φ

1(25) + ν2
t φ

2(25) = ν1
t .

Similarly, for a 64-year old we have logit pνt (64) = ν2
t . An x-year old can be seen as

a convex combination of a 25-year old and a 64-year old. Inception for the population
is fully described by only ν1

t and ν2
t .

2.2 Recovery from Disability

Recovery from disability is slightly more complicated. The probability of recovering
from illness depends on the amount of time spent in the ‘ill’ state. This is known
as the semi-Markov property. We extend the disability inception model above to the
semi-Markov case, and apply it to recovery modeling.

Let Ex,d,t denote the number of individuals with disability inception age in
[x,x + 1) and disability duration d at some point in the time period [t, t + 1). Let
Rx,d,t denote the number of individuals among Ex,d,t that recover during [d, d+�d)

and [t, t + 1). Assume Rx,d,t is binomially distributed given Ex,d,t :

Rx,d,t ∼ Bin(Ex,d,t , px,d,t ), (50)
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where, px,d,t is the probability that an individual, with disability inception age in
[x,x + 1) and disability duration d at some point in [t, t + 1), recovers during
[d, d + �d).

We propose the following logistic regression model:

logitpνt (x, d) =
n∑

i=1

φi(x)

k∑

j=1

ν
i, j
t ψ j (d), (51)

where φi and ψ j , are age and duration dependent basis functions, respectively, and
ν

i, j
t are stochastic risk factors. This is the inceptionmodel Eq. (46), extendedwith one
dimension. The likelihood also has the same structure as before. It is strict convexity
if each of the sets of functions {φi} and {ψi} are linearly independent. Again, we
estimate νt using numerical optimization Fig. 9.

Consider the simple model

logit pνt (x, d) = φ1(x)

3∑

j=1

ν
1, j
t ψ j (d) + φ2(x)

3∑

j=1

ν
2, j
t ψ j (d)

where φ and ψ are given by:

φ1(x) = 64−x
39 ,φ2(x) = x−25

39 ,ψ1(d) = 1,ψ2(d) = d,ψ3(d) = √
d.

Hence, the recovery probabilities for a 25-year old are given by

logit pνt (25, ·) = φ1(25)
3∑

j=1

ν
1, j
t ψ j (·) + φ2(25)

3∑

j=1

ν
2, j
t ψ j (·) =

3∑

j=1

ν
1, j
t ψ j (·),

Fig. 9 Left Conditional
recovery probabilities. Right
Recovery surface, females,
calendar year 2006
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determined by ν1,1
t , ν1,2

t , ν1,3
t . Similarly, the recovery probabilities for a 64-year old

determined by ν2,1
t , ν2,2

t , ν2,3
t . An x-year old can be seen as a convex combination of

a 25-year old and a 64-year old. These considerations allow us to fully compute the
probability that illness lasts longer than a given period. Let an x-year old’s illness
duration be the r.v. D. The probability that the illness lasts longer than d years is
given by

λ(x, d) = Pνt (D > d) =
d/�d−1∏

n=0

(1 − pνt (x, n�d)).

This is analogous to survival curves.
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Necessary and Sufficient Conditions
of Optimalcontrol for Infinite
Dimensional SDEs

Abdulrahman Al-Hussein

Abstract A general maximum principle (necessary and sufficient conditions) for
an optimal control problem governed by a stochastic differential equation driven by
an infinite dimensional martingale is established. The solution of this equation takes
its values in a separable Hilbert space and the control domain need not be convex
when studying optimality necessary conditions. The result is obtained by using the
adjoint backward stochastic differential equation.

Keywords Martingale · Optimal control · Backward stochastic differential
equation · Maximum principle · Conditions of optimality
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1 Introduction

This paper studies the following form of a controlled stochastic differential equation
(SDE in short):

{
dX (t) = F(X (t), u(t))dt + G(X (t))dM(t), 0 ≤ t ≤ T,

X (0) = x0,
(1)

where M is a continuous martingale taking its values in a separable Hilbert space K ,
while F , G are some mappings with properties to be given later and u(·) represents
a control variable. We will be interested in minimizing the cost functional:

J (u(·)) = E

[∫ T

0
�(Xu(·)(t), u(t)) dt + h(Xu(·)(T ))

]

over a set of admissible controls.
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We shall follow mainly the ideas of Bensoussan in [10, 11], Zhou in [36, 37],
Øksendal et al. [26], and our earlier work [4]. The reader can see our main results in
Theorems 2 and 3.

We recall that forward SDEs driven by martingales are studied in [6, 15, 16,
21, 34]. In fact in [6] we derived the maximum principle (necessary conditions)
for optimality of stochastic systems governed by SPDEs. However, the results there
show themaximum principle in its local form and also the control domain is assumed
to be convex. In this paper we shall try to avoid such conditions as we shall shortly
talk about it. Due to the fact that we are dealing here with a non-convex domain of
controls, it is not obvious how one can allow the control variable u(t) to enter in
the mapping G in (1) and obtain a result like Lemma 3 below. This issue was raised
also in [10]. Nevertheless, in some special cases (see [8]) we can allow G to depend
on the control, still overcome this difficulty, and prove the maximum principle. The
general case is still open as pointed out in [6, Remark 6.4].

The maximum principle in infinite dimensions started after the work of Pontrya-
gin [30]. The reader can find a detailed description of these aspects in Li and Yong
[22] and the references therein. An expanded discussion on the history of maximum
principle can be found in [36, P. 153–156]. On the other hand, the use of (linear)
backward stochastic differential equations (BSDEs) for deriving the maximum prin-
ciple for forward controlled stochastic equations was done by Bismut in [12]. In
this respect, one can see also the works of Bensoussan in [10, 11]. In 1990 Pardoux
and Peng [27], initiated the theory of nonlinear BSDEs, and then Peng studied the
stochastic maximum principle in [28, 29]. Since then several works appeared con-
sequently on the maximum principle and its relationship with BSDEs. For example
one can see [17–19, 33, 36] and the references of Zhou cited therein. Our earlier
work in [2] has now opened the way to study BSDEs and backward SPDEs that are
driven by martingales. One can see [23] for financial applications of BSDEs driven
by martingales, and [7, 9, 14, 20] for other applications.

In this paper we shall consider first a suitable perturbation of an optimal control
by means of the spike variation method in order to derive the maximum principle in
its global form to derive optimality necessary conditions. Then we shall provide suf-
ficient conditions for optimality of our control problem. The results will be achieved
mainly by using the adjoint equation of (1), which is a BSDE driven by themartingale
M . This can be seen from Eq. (30) in Sect. 5. It is quite important to realize that the
adjoint equations in Sect. 5 of such SDEs are in general BSDEs driven by martin-
gales. This happens also even if the martingale M , which is appearing in Eq. (1), is
a Brownian motion with respect to a right continuous filtration being larger than its
natural filtration. There is a discussion on this issue in Bensoussan’s lecture note [10,
Sect. 4.4], and in [1] and its erratum, [5]. In particular, studying control problems
associated with SDEs like (1) with their martingale noises cannot be recovered from
the works done for SDEs driven by Brownian motions in the literature. We refer the
reader to the discussion at the beginning of Sect. 5 below for more details. To the best
of our knowledge our results here towards deriving the maximum principle (neces-
sary and sufficient optimality conditions) in its global form for a control problem
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governed by SDE (1) with a martingale noise are new. The general case when the
control variable enters in the noise term G is still an open problem as stated above.

The paper is organized as follows. Section2 is devoted to some preliminary nota-
tion. In Sect. 3 we present our main stochastic control problems. Then in Sect. 4
we establish many of our necessary estimates, which will be needed to derive the
maximum principle for the control problem of (1). The maximum principle in the
sense of Pontryagin for the above control problem is derived in Sect. 5. In Sect. 6 we
establish sufficient conditions for optimality for this control problem, and present
some examples as well.

2 Preliminary Notation

Let (Ω,F , P) be a complete probability space, filtered by a continuous filtration
{Ft }t≥0, in the sense that every square integrable K -valued martingale with respect
to {Ft , 0 ≤ t ≤ T } has a continuous version.

Denoting by P the predictable σ—algebra of subsets of Ω × [0, T ] we say
that a K - valued process is predictable if it is P/B(K ) measurable. Suppose that
M 2

[0,T ](K ) is the Hilbert space of cadlag square integrable martingales {M(t), 0 ≤
t ≤ T }, which take their values in K . Let M 2,c

[0,T ](K ) be the subspace of M 2
[0,T ](K )

consisting of all continuous square integrable martingales in K . Two elements M
and N of M 2

[0,T ](K ) are said to be very strongly orthogonal (or shortly VSO) if

E [M(τ ) ⊗ N (τ )] = E [M(0) ⊗ N (0)],

for all [0, T ]—valued stopping times τ .
Now for M ∈ M 2,c

[0,T ](K ) we shall use the notation < M > to mean the pre-
dictable quadratic variation of M and similarly � M � means the predictable
tensor quadratic variation of M , which takes its values in the space L1(K ) of
all nuclear operators on K . Precisely, M ⊗ M− � M �∈ M 2,c

[0,T ](L1(K )). We

shall assume for a given fixed M ∈ M 2,c
[0,T ](K ) that there exists a measurable map-

ping Q(·) : [0, T ] × Ω → L1(K ) such that Q(t) is symmetric, positive definite,
Q(t) ≤ Q for some positive definite nuclear operator Q on K , and satisfies the
following equality:

� M �t =
∫ t

0
Q(s) ds.

We refer the reader to Example 1 for a precise computation of this processQ(·).
For fixed (t, ω), we denote by LQ(t,ω)(K ) to the set of all linear operators

ϕ : Q1/2(t, ω)(K ) → K and satisfy ϕQ1/2(t, ω) ∈ L2(K ), where L2(K ) is the
space of all Hilbert-Schmidt operators from K into itself. The inner product and norm
in L2(K ) will be denoted respectively by 〈·, ·〉2 and || · ||2. Then the stochastic inte-
gral

∫ ·
0 Φ(s)dM(s) is defined for mappings Φ such that for each (t, ω), Φ(t, ω) ∈
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LQ(t,ω)(K ), ΦQ1/2(t, ω)(h) ∀ h ∈ K is predictable, and

E

[ ∫ T

0
||(ΦQ1/2)(t)||22 dt

]

< ∞.

Such integrands formaHilbert spacewith respect to the scalar product (Φ1, Φ2) →
E [ ∫ T

0 〈Φ1Q1/2(t),Φ2Q1/2(t)〉 dt ]. Simple processes taking values in L(K ; K ) are
examples of such integrands. By letting Λ2(K ;P, M) be the closure of the set of
simple processes in this Hilbert space, it becomes a Hilbert subspace. We have also
the following isometry property:

E

[

|
∫ T

0
Φ(t)dM(t)|2

]

= E

[ ∫ T

0
||Φ(t)Q1/2(t)||22 ds

]

(2)

for mappings Φ ∈ Λ2(K ;P, M). For more details and proofs we refer the reader
to [25].

On the other hand, we emphasize that the processQ(·) will be play an important
role in deriving the adjoint equation of the SDE (1) as it can be seen from Eqs. (29),
(30) in Sect. 5. This is due to the fact that the integrandΦ is not necessarily bounded.
More precisely, it is needed in order for the mapping ∇x H , which appear in both
equations, to be defined on the space L2(K ), since the process Zu(·) there need not be
bounded. This always has to be considered when working with BSDEs or BSPDEs
driven by infinite dimensional martingales.

Next let us introduce the following space:

L2
F (0, T ; E) := {ψ : [0, T ] × Ω→E, predictable and E

[∫ T

0
|ψ(t)|2dt

]

< ∞},

where E is a separable Hilbert space.
Since Q(t) ≤ Q for all t ∈ [0, T ] a.s., it follows from [3, Proposition 2.2] that

ifΦ ∈ L2
F (0, T ; LQ(K )) (where as above LQ(K )) = L2(Q1/2(K ); K )), the space

of all Hilbert-Schmidt operators from Q1/2(K ) into K ), then Φ ∈ Λ2(K ;P, M)

and

E

[ ∫ T

0
||Φ(t)Q1/2(t)||22 dt

]

≤ E

[ ∫ T

0
||Φ(t)||2LQ(K ) dt

]

. (3)

An example of such a mapping Φ is the mapping G in Eq. (1); see the domain of G
in the introduction of the following section.
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3 Formulation of the Control Problem

LetO be a separableHilbert space andU be a nonempty subset ofO .We say thatu(·) :
[0, T ] × Ω → O is admissible if u(·) ∈ L2

F (0, T ;O) and u(t) ∈ U a.e., a.s. The
set of admissible controls will be denoted by Uad .

Let F : K × O → K , G: K → LQ(K ), �: K × O → R and h: K → R be mea-
surable mappings. Consider the following SDE:

{
dX (t) = F(X (t), u(t)) dt + G(X (t)) dM(t), t ∈ [0, T ],
X (0) = x0 ∈ K .

(4)

If assumption (E1), which is stated below, holds, then (4) attains a unique solution
in L2

F (0, T ; K ). The proof of this fact can be gleaned from [31] or [32]. In this case
we shall denote the solution of (4) by Xu(·).

Our assumptions are the following.
(E1) F,G, �, h are continuously Fréchet differentiable with respect to x , F and � are
continuously Fréchet differentiable with respect to u, the derivatives Fx , Fu, Gx ,

�x , �u are uniformly bounded, and

|hx |L(K ;K ) ≤ k (1 + |x |K )

for some constant k > 0.
In particular, |Fx |L(K ,K ) ≤ C1, ||Gx ||L(K ,LQ(K )) ≤ C2, |Fv|L(O,K ) ≤ C3, for

some positive constants Ci , i = 1, 2, 3, and similarly for �.
(E2) �x satisfies Lipschitz condition with respect to u uniformly in x .

Consider now the cost functional:

J (u(·)) := E

[ ∫ T

0
�(Xu(·)(t), u(t)) dt + h(Xu(·)(T ))

]

, (5)

for u(·) ∈ Uad .
The control problem here is to minimize (5) over the set Uad . Any u∗(·) ∈ Uad

satisfying
J (u∗(·)) = inf{J (u(·)) : u(·) ∈ Uad} (6)

is called an optimal control, and its corresponding solution X∗ := Xu∗(·) to (4) is
called an optimal solution of the stochastic optimal control problem (4)–(6). In this
case the pair (X∗, u∗(·)) in this case is called an optimal pair.

Remark 1 We mention here that the mappings F,G and � in (4) and (5) can be
taken easily to depend on time t with a similar proof as established in the following
sections, but rather, having more technical computations.

Since this control problem has no constraints we shall deal generally with pro-
gressively measurable controls. However, for the case when there are final state
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constraints, one can mimic our results in Sects. 4, 5 and 6, and use Ekeland’s varia-
tional principle in a similar way to [24, 28] or [36].

In the following section we shall begin with some variational method in order to
derive our main variational inequalities that are necessary to establish the main result
of Sect. 5.

4 Estimates

Let (X∗, u∗(·)) be the given optimal pair. Let 0 ≤ t0 < T be fixed and 0 < ε <

T − t0. Let v be a random variable taking its values in U , Ft0 -measurable and
sup
ω∈Ω

|v(ω)| < ∞. Consider the following spike variation of the control u∗(·):

uε(t) =
{
u∗(t) if t ∈ [0, T ]\[t0, t0 + ε]
v if t ∈ [t0, t0 + ε]. (7)

Let Xuε(·) denote the solution of the SDE (4) corresponding to uε(·). We shall
denote it briefly by Xε. Observe that Xε(t) = X∗(t) for all 0 ≤ t ≤ t0.

The following lemmas will be very useful in proving the main results of Sect. 5.
Lemma 1 Let (E1) hold. Assume that {p(t), t0 ≤ t ≤ T } is the solution of the fol-
lowing linear equation:

{
dp(t) = Fx (X∗(t), u∗(t)) p(t) dt + Gx (X∗(t)) p(t) dM(t), t0 < t ≤ T,

p(t0) = F(X∗(t0), v) − F(X∗(t0), u∗(t0)).
(8)

Then
sup

t∈[t0,T ]
E [ |p(t)|2 ] < C

for some positive constant C.

Proof With the help of (E1) apply Itô’s formula to compute |p(t)|2, and take the
expectation. The required result follows then by using Gronwall’s inequality.

Lemma 2 Assuming (E1) we have

E

[

sup
t0≤t≤T

|Xε(t) − X∗(t)|2
]

= o(ε).

Proof For t0 ≤ t ≤ t0 + ε one observes that

Xε(t) − X∗(t) =
∫ t

t0

[F(Xε(s), v) − F(X∗(s), v)] ds

+
∫ t

t0

[F(X∗(s), v)−F(X∗(s), u∗(s))] ds+
∫ t

t0

[G(Xε(s))−G(X∗(s))]dM(s),

(9)
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or, in particular,

|Xε(t) − X∗(t)|2 ≤ 3 (t − t0)
∫ t

t0

|F(Xε(s), v) − F(X∗(s), v)|2 ds

+ 3 (t − t0)
∫ t

t0

|F(X∗(s), v) − F(X∗(s), u∗(s))|2 ds

+ 3 |
∫ t

t0

[G(Xε(s)) − G(X∗(s))]dM(s)|2. (10)

But Taylor expansion implies the three identities:

F(Xε(s), v) − F(X∗(s), v)

=
∫ 1

0
Fx (X

∗(s), u∗(s) + λ(Xε(s) − X∗(s))) (Xε(s) − X∗(s)) dλ, (11)

F(X∗(s), v) − F(X∗(s), u∗(s))

=
∫ 1

0
Fv(X

∗(s), u∗(s) + λ(v − u∗(s))) (v − u∗(s)) dλ, (12)

and

G(Xε(s)) − G(X∗(s)) =
∫ 1

0
Gx (X

∗(s) + λ(Xε(s) − X∗(s))) (Xε(s) − X∗(s)) dλ

=: Φ(s) (∈ LQ(K )). (13)

Then, by using (13), the isometry property (2), (3) and (E1) we deduce that for
all t ∈ [t0, t0 + ε],

E

[

|
∫ t

t0

(
G(Xε(s)) − G(X∗(s))

)
dM(s)|2

]

= E

[

|
∫ t

t0

Φ(s)dM(s)|2
]

= E

[ ∫ t

t0

||Φ(s)Q1/2(s)||22 ds
]

≤ E

[ ∫ t

t0

||Φ(s)||2LQ(K ) ds

]

= E

[ ∫ t

t0

||
∫ 1

0
Gx (X

∗(s) + λ(Xε(s) − X∗(s))) (Xε(s) − X∗(s)) dλ||2LQ(K ) ds

]

≤ E

[ ∫ t

t0

∫ 1

0
||Gx(X

∗(s) + λ(Xε(s) − X∗(s))) (Xε(s) − X∗(s))||2LQ(K ) dλ ds

]

≤ C2 E

[ ∫ t

t0

|Xε(s) − X∗(s)|2 ds
]

. (14)
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Therefore, from (10), (11), (12), (E1) and (14), it follows evidently that

E [ |Xε(t) − X∗(t)|2 ] ≤ 3 (C1 (t − t0) + C2)

∫ t

t0

E [ | Xε(s) − X∗(s) |2 ] ds

+ 3 (t − t0)C3

∫ t

t0

E [ | v − u∗(s) |2 ] ds,

for all t ∈ [t0, t0 + ε].
Hence by using Gronwall’s inequality we obtain

E [ | Xε(t) − X∗(t) |2 ] ≤ 3C3 (t − t0) e
3 (C1 (t−t0)+C2)(t−t0)×

∫ t0+ε

t0
E [ |v − u∗(s)|2 ] ds,

(15)

for all t ∈ [t0, t0 + ε]. Consequently,

E

[∫ t0+ε

t0
| Xε(t) − X∗(t) |2 dt

]

≤ 3C3 ε2 e3 (C1 ε+C2)ε ×
∫ t0+ε

t0
E [ |v − u∗(s)|2 ] ds.

(16)

It follows then from (10), (15), standard martingale inequalities, (14) and (16)
that

E

[

sup
t0≤t≤t0+ε

|Xε(t) − X∗(t)|2
]

≤ 3C3 [ 3 (C1 ε + 4C2) ε e3 (C1 ε+C2)ε + 1 ] ε

∫ t0+ε

t0

E [ |v − u∗(s)|2 ] ds. (17)

Next, for t0 + ε ≤ t ≤ T , we have

Xε(t) − X∗(t) = Xε(t0 + ε) − X∗(t0 + ε)

+
∫ t

t0+ε

[F(Xε(s), u
∗(s)) − F(X∗(s), u∗(s))] ds

+
∫ t

t0+ε

[G(Xε(s)) − G(X∗(s))]dM(s). (18)

Thus by working as before and applying (15) we derive

E

[ ∫ T

t0+ε

| Xε(t) − X∗(t) |2 dt
]

≤ 9C3 ε2eC4(ε)

∫ t0+ε

t0

E [ |v − u∗(s)|2 ] ds

and
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E

[

sup
t0+ε≤t≤T

|Xε(t) − X∗(t)|2
]

≤ 27C3 ε eC4(ε) [ 1 + ((T − t0 − ε)C1 + 4C2) ε ]

×
∫ t0+ε

t0

E [ |v − u∗(s)|2 ] ds, (19)

where C4(ε) = [3 ε2 + 3 (T − t0 − ε)2]C1 + (T − t0 + 2 ε)C2.
Now (17) and (19) imply that

E

[

sup
t0≤t≤T

|Xε(t) − X∗(t)|2
]

≤ (C5(ε) + C6(ε))

∫ t0+ε

t0

E [ |v − u∗(s)|2 ] ds,

with the constants

C5(ε) = 3C3 [ 3 (C1 ε + 4C2) ε e3 (C1 ε+C2)ε + 1 ] ε

and
C6(ε) = 27C3 ε eC4(ε) [ 1 + ((T − t0 − ε)C1 + 4C2) ε ].

This completes the proof.

Remark 2 We note that for a.e. s,

1

ε

∫ s+ε

s
E [ |φ(X∗(t), u∗(t)) − φ(X∗(s), u∗(s))|2 ] dt → 0, as ε → 0, (20)

for φ = F, �. Indeed, if for example, φ = F, then we may argue as in (12) to see
that

1

ε

∫ s+ε

s
E [ |F(X∗(t), u∗(t)) − F(X∗(s), u∗(s))|2 ] dt

= 1

ε

∫ s+ε

s
E

[

|
∫ 1

0
Fv(X

∗(t), u∗(s) + λ(u∗(t) − u∗(s))) (u∗(t) − u∗(s)) dλ|2 dt
]

≤ 1

ε

∫ s+ε

s
E [ |u∗(t) − u∗(s)|2 ] dt. (21)

But since
∫ T
0 E [ |u∗(t) − u∗(s)|2 ] dt < ∞ (for fixed s), then, as it is well-known

from measure theory (e.g. [13]), there exists a subset O of [0, T ] such that
Leb([0, T ] \ O) = 0 and the function O � t → E [ |u∗(t) − u∗(s)|2 ] is continuous.
Thus, if s ∈ O , this function is continuous in a neighborhood of s, and so we have

1

ε

∫ s+ε

s
E [ |u∗(t) − u∗(s)|2 ] dt → 0, as ε → 0,

which by (21) implies (20) for φ = F .

We will choose t0 such that (20) holds for φ = F, �. This assumption will be
considered until the end of Sect. 5.
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Lemma 3 Assume (E1). Let

ξε(t) = 1

ε
(Xε(t) − X∗(t)) − p(t), t ∈ [t0, T ].

Then
lim
ε→0

E [ |ξε(T )|2 ] = 0.

Proof First note that, for t0 ≤ t ≤ t0 + ε,

dξε(t) = 1

ε
[ F(Xε(t), v) − F(X∗(t), u∗(t)) − ε Fx (X

∗(t), u∗(t)) p(t) ]dt

+ 1

ε
[G(Xε(t)) − G(X∗(t)) − ε Gx (X

∗(t)) p(t) ]dM(t),

ξε(t0) = − (
F(X∗(t0), v) − F(X∗(t0), u∗(t0))

)
.

Thus

ξε(t0 + ε) = 1

ε

∫ t0+ε

t0

[ F(Xε(s), v) − F(X∗(s), v) ] ds

+ 1

ε

∫ t0+ε

t0

[ F(X∗(s), v) − F(X∗(t0), v) ] ds

+ 1

ε

∫ t0+ε

t0

[ F(X∗(t0), u∗(t0)) − F(X∗(s), u∗(s)) ] ds

+ 1

ε

∫ t0+ε

t0

[G(Xε(s)) − G(X∗(s)) ]dM(s)

−
∫ t0+ε

t0

Fx (X
∗(s), u∗(s))p(s) ds −

∫ t0+ε

t0

Gx (X
∗(s))p(s)dM(s).

By using (2), (3) and (E1) we deduce

E [ | ξε(t0 + ε) |2 ] ≤ 6C1 E [ sup
t0≤t≤t0+ε

|Xε(t) − X∗(t)|2 ]

+ 6 sup
t0≤t≤t0+ε

E [ |F(X∗(t), v) − F(X∗(t0), v)|2 ]

+ 6

ε

∫ t0+ε

t0
E [ |F(X∗(s), u∗(s)) − F(X∗(t0), u

∗(t0))|2 ] ds

+ 6C2

ε
E

[

sup
t0≤t≤t0+ε

|Xε(t) − X∗(t)|2
]

+ 6 (C1 + C2) E

[ ∫ t0+ε

t0
|p(s)|2 ds

]

.

(22)

But from (17)
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1

ε
E

[

sup
t0≤t≤t0+ε

|Xε(t) − X∗(t)|2
]

≤ 3C3 [ 3 (C1 ε + 4C2) ε e3 (C1 ε+C2)ε + 1 ]
∫ t0+ε

t0

E [ |v − u∗(s)|2 ] ds → 0

(23)

as ε → 0. Also as in (11), by applying (E1) and (15), one gets

E [ |F(X∗(t), v) − F(X∗(t0), v)|2]

= E

[

|
∫ 1

0
Fx (X

∗(t0) + λ(X∗(t) − X∗(t0)), v)(X
∗(t) − X∗(t0)) dλ|2

≤ C1 E [ |X∗(t) − X∗(t0)|2]
≤ 3C1 C3 ε e3 (C1 ε+C2)ε

∫ t0+ε

t0
E [ |v − u∗(s)|2 ] ds → 0 as ε → 0. (24)

Thus, by applying Lemma 2, (24), (23), (20) and Lemma 1 in (22), we deduce

E [ | ξε(t0 + ε) |2 ] → 0 as ε → 0. (25)

Let us now assume that t0 + ε ≤ t ≤ T . In this case we have

dξε(t) = 1

ε
[ F(Xε(t), u

∗(t)) − F(X∗(t), u∗(t)) − ε Fx (X
∗(t), u∗(t)) p(t) ]dt

+ 1

ε
[G(Xε(t)) − G(X∗(t)) − ε Gx (X

∗(t)) p(t) ]dM(t),

or, in particular, by setting

Φ̃ε(s) =
∫ 1

0
[Gx (X

∗(s) + λ(Xε(s) − X∗(s))) − Gx (X
∗(s)) ] p(s) dλ,

we get

ξε(t) = ξε(t0 + ε) +
∫ t

t0+ε

∫ 1

0
Fx (X

∗(s) + λ(Xε(s) − X∗(s)), u∗(s)) ξε(s) dλ ds

+
∫ t

t0+ε

∫ 1

0
Gx (X

∗(s) + λ(Xε(s) − X∗(s))) ξε(s) dλ dM(s)

+
∫ t

t0+ε

∫ 1

0
[ Fx (X∗(s) + λ(Xε(s) − X∗(s)), u∗(s)) − Fx (X

∗(s), u∗(s)) ] p(s) dλ ds

+
∫ t

t0+ε
Φ̃ε(s) dM(s),
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for all t ∈ [t0 + ε, T ]. Hence by making use of the isometry property (2) it holds
∀ t ∈ [t0 + ε, T ],

E [ | ξε(t) |2 ] ≤ 5E [ | ξε(t0 + ε) |2 ] + 5 (C1 + C2)

∫ t

t0+ε
E [ |ξε(s) |2 ] ds

+ 5E

[ ∫ T

t0
|
∫ 1

0

(
Fx (X

∗(s) + λ(Xε(s) − X∗(s)), u∗(s)) − Fx (X
∗(s), u∗(s))

)
p(s) dλ ds |

]2

+ 5E

[ ∫ T

t0
||Φ̃ε(s)Q

1/2(s)||22 ds
]

. (26)

But as done for the second equality and first inequality in (14) we can derive easily
that

E

[ ∫ T

t0
||Φ̃ε(s)Q

1/2(s)||22 ds
]

= E

[ ∫ t

t0
||Φ̃ε(s)Q

1/2(s)||22 ds
]

≤ E

[ ∫ t

t0
||Φ̃ε(s)||2LQ(K ) ds

]

= E

[ ∫ t

t0
||

∫ 1

0
[Gx (X

∗(s) + λ(Xε(s) − X∗(s))) − Gx (X
∗(s))]p(s) dλ||2LQ(K )ds

]

≤ E

[ ∫ t

t0

∫ 1

0
||Gx (X

∗(s) + λ(Xε(s) − X∗(s))) − Gx (X
∗(s)) ] p(s)||2LQ(K ) dλ ds

]

.

(27)

Therefore, from Lemma 2, the continuity and boundedness of Gx in (E1), Lemma 1
and the dominated convergence theorem we deduce that the last term in the right
hand side of (27) goes to 0 as ε → 0.

Similarly, the third term in the right hand side of (26) converges also to 0 as ε → 0.
Finally, by applyingGronwall’s inequality to (26), and using (25)–(27), we deduce

that
sup

t0+ε≤t≤T
E [ | ξε(t) |2 ] → 0 as ε → 0,

which proves the lemma.

Lemma 4 Assume (E1) and (E2). Let ζ be the solution of the equation:

{
dζ(t) = �x (X∗(t), u∗(t))p(t)dt, t0 < t ≤ T,

ζ(t0) = �(X∗(t0), v) − �(X∗(t0), u∗(t0)).

Then

lim
ε→0

E

[ ∣
∣
∣
∣
1

ε

∫ T

t0

(
�(Xε(t), uε(t)) − �(X∗(t), u∗(t))

)
dt − ζ(t)

∣
∣
∣
∣

2
]

= 0.
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Proof Let

ηε(t) = 1

ε

∫ t

t0

(
�(Xε(t), uε(t)) − �(X∗(t), u∗(t))

)
dt − ζ(T ),

for t ∈ [t0, T ]. Then ηε(t0) = − (�(X∗(t0), v) − �(X∗(t0), u∗(t0))). So one can pro-
ceed easily as done in the proof of Lemma 3 to show thatE [ | ηε(T ) |2 ] → 0, though
this case is rather simpler.

Let us now for a C1 mapping Ψ : K → R denote by ∇Ψ to the gradient of
Ψ , which is defined, by using the directional derivative DΨ (x)(k) of Ψ at a point
x ∈ K in the direction of k ∈ K , as 〈∇Ψ (x), k〉 = DΨ (x)(k) (= Ψx (k)). We shall
sometimes write ∇xΨ for ∇Ψ (x).

Corollary 1 Under the assumptions of Lemma 4

d

dε
J (uε(·))|ε=0 = E [ 〈∇ h(X∗(T )), p(T )〉 + ζ(T ) ]. (28)

Proof Note that from the definition of the cost functional in (5) we see that

1

ε

[
J (uε(·)) − J (u∗(·))] = 1

ε
E

[
h(Xε(T )) − h(X∗(T ))

+
∫ T

t0

(
�(Xε(s), uε(s)) − �(X∗(s), u∗(s))

)
ds

]

= E

[ ∫ 1

0
hx (X

∗(T ) + λ(Xε(T ) − X∗(T )))
(Xε(T ) − X∗(T ))

ε
dλ

+ 1

ε

∫ T

t0

(
�(Xε(s), uε(s)) − �(X∗(s), u∗(s))

)
ds

]

.

Now let ε → 0 and use the properties of h in (E1), Lemmas 3 and 4 to get (28).

5 Maximum Principle

Themaximum principle is a good tool for studying the optimality of controlled SDEs
like (4) since in fact the dynamic programming approach for similar optimal control
problems require usually a Markov property to be satisfied by the solution of (4),
cf. for instance [36, Chap. 4]. But this property does not hold in general especially
when the driving noise is a martingale.

Let us recall the SDE (4) and the mappings in (5), and define the Hamiltonian
H : [0, T ] × Ω × K × O × K × L2(K ) → R for (t, ω, x, u, y, z) ∈ [0, T ] × Ω ×
K × O × K × L2(K ) by
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H(t, ω, x, u, y, z) := �(x, u) + 〈F(x, u), y〉 + 〈G(x)Q1/2(t, ω), z〉2 . (29)

The adjoint equation of (4) is the following BSDE:

⎧
⎨

⎩

− dY u(·)(t) = ∇x H(t, Xu(·)(t), u(t),Y u(·)(t), Zu(·)(t)Q1/2(t)) dt
− Zu(·)(t) dM(t) − dNu(·)(t), t0 ≤ t < T,

Y u(·)(T ) = ∇h(Xu(·)(T )).

(30)

The following theorem gives the solution to BSDE (30) in the sense that there
exists a triple (Y u(·), Zu(·), Nu(·)) in L2

F (0, T ; K ) × Λ2(K ;P, M) × M 2,c
[0,T ](K )

such that the following equality holds a.s. for all t ∈ [0, T ], N (0) = 0 and N is
VSO to M :

Y u(·)(t) = ξ +
∫ T

t
∇x H(s, Xu(·)(s), u(s),Y u(·)(s), Zu(·)(s)Q1/2(s)) ds

−
∫ T

t
Zu(·)(s)dM(s) −

∫ T

t
dNu(·)(s).

Theorem 1 Assume that (E1)–(E2) hold. Then there exists a unique solution
(Y u(·), Zu(·), Nu(·)) of the BSDE (30).

For the proof of this theorem one can see [2].
We shall denote briefly the solution of (30), which corresponds to the optimal

control u∗(·) by (Y ∗, Z∗, N ∗).
In the following lemma we shall try to compute E [ 〈Y ∗(T ), p(T )〉 ].

Lemma 5

E [ 〈 Y ∗(T ), p(T ) 〉 ] = − E

[ ∫ T

t0

�x (X
∗(s), u∗(s))p(s) ds

]

+ E
[ 〈Y ∗(t0), F(X∗(t0), v) − F(X∗(t0), u∗(t0)〉

]
. (31)

Proof Use Itô’s formula together to compute d 〈Y ∗(t), p(t)〉 for t ∈ [t0, T ], and use
the facts that

∫ T

t0

〈 p(s),∇x H(s, X∗(s), u∗(s),Y ∗(s), Z∗(s)Q1/2(s))〉 ds

=
∫ T

t0

[
�x (X

∗(s), u∗(s))p(s) + 〈 Fx (X
∗(s), u∗(s))p(s),Y ∗(s) 〉] ds

+
∫ T

t0

〈Gx (X
∗(s))p(s)Q1/2(s), Z∗(s)Q1/2(s) 〉2 ds,

which is easily seen from (29).
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Now we state our main result of this section.

Theorem 2 Suppose (E1)–(E2). If (X∗, u∗(·)) is an optimal pair for the problem
(4)–(6), then there exists a unique solution (Y ∗, Z∗, N ∗) to the corresponding
BSDE (30) such that the following inequality holds:

H(t, X∗(t), v,Y ∗(t), Z∗(t)Q1/2(t)) ≥ H(t, X∗(t), u∗(t),Y ∗(t), Z∗(t)Q1/2(t))

a.e. t ∈ [0, T ], a.s. ∀ v ∈ U. (32)

Proof We note that since u∗(·) is optimal, d
dε

J (uε(·))|ε=0 ≥ 0, which implies by
using Corollary 1 that

E [ 〈Y ∗(T ), p(T )〉 + ζ(T ) ] ≥ 0. (33)

On other hand by applying (33) and Lemma 5 one sees that

0 ≤ − E [
∫ T

t0

�x (X
∗(s), u∗(s))p(s) ds ]

+ E [ 〈Y ∗(t0), F(X∗(t0), v) − F(X∗(t0), u∗(t0)〉 + ζ(T ) ]. (34)

But

ζ(T ) = ζ(t0) +
∫ T

t0

�x (X
∗(s), u∗(s))p(s) ds

and

H(t0, X
∗(t0), v,Y ∗(t0), Z∗(t0)Q1/2(t0))

−H(t0, X
∗(t0), u∗(t0),Y ∗(t0), Z∗(t0)Q1/2(t0))

= ζ(t0) + 〈Y ∗(t0), F(X∗(t0), v) − F(X∗(t0), u∗(t0))〉.

Hence (34) becomes

0 ≤ E [ H(t0, X
∗(t0), v,Y ∗(t0), Z∗(t0)Q1/2(t0))

− H(t0, X
∗(t0), u∗(t0),Y ∗(t0), Z∗(t0)Q1/2(t0)) ]. (35)

Now varying t0 as in (20) shows that (35) holds for a.e. t., and so by arguing for
instance as in [10, p. 19] we obtain easily (32).

Remark 3 Let us assume for example that the space K in Theorem 1 is the real space
R and M is the martingale given by the formula

M(t) =
∫ t

0
α(s)dB(s), t ∈ [0, T ],
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for some α ∈ L2
F (0, T ; R) and a one dimensional Brownian motion B. If α(s) > 0

for each s, then Ft (M) = Ft (B) for each t, where

Ft (R) = σ {R(s), 0 ≤ s ≤ t}

for R = M, B. Consequently, by applying the unique representation property for
martingales with respect to {Ft (M), t ≥ 0} or larger filtration in [2, Theorem 2.2]
or [5] and the Brownian martingale representation theorem as e.g. in [14, Theorem
3.4, P. 200], we deduce that the martingale Nu(·) in (30) vanishes almost surely if the
filtration furnished for the SDE (4) is {Ft (M), 0 ≤ t ≤ T }. This result follows from
the construction of the solution of the BSDE (30). More details on this matter can
be found in [2, Sect. 3]. As a result, in this particular case BSDE (30) fits well with
those BSDEs studied by Pardoux & Peng in [27], but with the variable αZ replacing
Z there.

Thus in particular we conclude that many of the applications of BSDEs, which
were studied in the literature, to both stochastic optimal control and finance (e.g.
[37] and the references therein) can be applied directly or after slight modification
to work here for BSDEs driven by martingales. For example we refer the reader to
[23] for financial application. Another interesting case can be found in [9].

On the other hand, in this respect we shall present an example (see Example 2) in
Sect. 6, by modifying an interesting example due to Bensoussan [10].

6 Sufficient Conditions for Optimality

In the previous two sections we derived Pontyagin’s maximum principle which gives
necessary conditions for optimality for the control problem (4)–(6). In the following
theorem we shall try to show when the necessary conditions for optimality becomes
sufficient as well. Let us assume from here on thatU is convex. This concerned result
is a variation of Theorem 4.2 in [3].

Theorem 3 Assume (E1) and, for a given u∗(·) ∈ Uad , let X∗ and (Y ∗, Z∗, N ∗)
be the corresponding solutions of Eqs. (4) and (30) respectively. Suppose that the
following conditions hold:

(i) U is a convex domain in O , h is convex.
(ii) (x, v) → H(t, x, v,Y ∗(t), Z∗(t)Q1/2(t)) is convex for all t ∈ [0, T ] a.s.
(iii) H(t, X∗(t), u∗(t), Y ∗(t), Z∗(t)Q1/2(t))

= min
v∈U H(t, X∗(t), v,Y ∗(t), Z∗(t)Q1/2(t))

for a.e. t ∈ [0, T ] a.s.
Then (X∗, u∗(·)) is an optimal pair for the control problem (4)–(6).
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Proof Let u(·) ∈ Uad . Consider the following definitions:

I1 := E

[ ∫ T

0

(
�(X∗(t), u∗(t)) − �(Xu(·)(t), u(t))

)
dt

]

and
I2 := E [ h(X∗(T )) − h(Xu(·)(T )) ].

Then readily

J (u∗(·)) − J (u(·)) = I1 + I2. (36)

Let us define

I3 := E
[

∫ T

0

(
H(t, X∗(t), u∗(t),Y ∗(t), Z∗(t)Q1/2(t))

− H(t, Xu(·)(t), u(t),Y ∗(t), Z∗(t)Q1/2(t))
)
dt

]
,

I4 := E

[ ∫ T

0
〈F(X∗(t), u∗(t)) − F(Xu(·)(t), u(t)),Y ∗(t)〉 dt

]

,

I5 := E

[ ∫ T

0
〈(G(Xu∗(·)(t)) − G(Xu(·)(t))

)
Q1/2(t), Z∗(t)Q1/2(t)〉2 dt

]

,

and

I6 := E

[ ∫ T

0
〈∇x H(t, X∗(t), u∗(t), Y ∗(t), Zu∗(·)(t)Q1/2(t)), X∗(t) − Xu(·)(t)〉 dt

]

.

From the definition of H in (29) we get

I1 = I3 − I4 − I5. (37)

On the other hand, from the convexity of h in condition (ii) it follows

h(X∗(T )) − h(Xu(·)(T )) ≤ 〈∇h(X∗(T )), X∗(T ) − Xu(·)(T ) 〉 a.s.,

which implies that
I2 ≤ E [ 〈 Y ∗(T ), X∗(T ) − Xu(T ) 〉 ]. (38)
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Next by applying Itô’s formula to compute d 〈Y ∗(t), X∗(t) − Xu(·)(t)〉 and using
Eqs. (4) and (30) we find with the help of (38) that

I2 ≤ I4 + I5 − I6 . (39)

Consequently, by considering (36), (37) and (39) it follows that

J (u∗(·)) − J (u(·)) ≤ I3 − I6. (40)

On the other hand, from the convexity property of the mapping (x, v) →
H(t, x, u,Y ∗(t), Z∗(t)Q1/2(t)) in assumption (iii) the following inequality holds
a.s.:

∫ T

0

(
H(t, X∗(t), u∗(t),Y ∗(t), Z∗(t)Q1/2(t))

− H(t, Xu(·)(t), u(t),Y ∗(t), Z∗(t)Q1/2(t))
)
dt

≤
∫ T

0
〈 ∇x H(t, X∗(t), u∗(t),Y ∗(t), Z∗(t)Q1/2(t)), X∗(t) − Xu(·)(t) 〉 dt

+
∫ T

0
〈 ∇u H(t, X∗(t), u∗(t),Y ∗(t), Z∗(t)Q1/2(t)), u∗(t) − u(t) 〉O dt.

As a result
I3 ≤ I6 + I7, (41)

where

I7 = E

[ ∫ T

0
〈 ∇u H(t, X∗(t), u∗(t),Y ∗(t), Z∗(t)Q1/2(t)), u∗(t) − u(t) 〉O dt

]

.

Since v → H(t, X∗(t), v,Y ∗(t), Z∗(t)Q1/2(t)) isminimumat v = u∗(t) by themin-
imum condition (iii), we have

〈 ∇u H(t, X∗(t), u∗(t),Y ∗(t), Z∗(t)Q1/2(t)), u∗(t) − u(t) 〉O ≤ 0.

Therefore I7 ≤ 0, which by (41) implies that I3 − I6 ≤ 0. So (40) becomes

J (u∗(·)) − J (u(·)) ≤ 0.

Now since u(·) ∈ Uad is arbitrary, this inequality proves that (X∗, u∗(·)) is an
optimal pair for the control problem (4)–(6) as required.

Example 1 Letm be a continuous square integrable one dimensionalmartingalewith
respect to {Ft }t such that < m >t =

∫ t
0 α(s)ds ∀ 0 ≤ t ≤ T for some continuous

α : [0, T ] → (0,∞). Consider M(t) = β m(t)(= ∫ t
0 β dm(s)), with β �= 0 being
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a fixed element of K . Then M ∈ M 2,c(K ) and � M �t equals β̃ ⊗ β
∫ t
0 α(s)ds,

where β̃ ⊗ β is the identification ofβ ⊗ β in L1(K ), that is (β̃ ⊗ β)(k) = 〈β, k〉β, k

∈ K . Also < M >t = |β|2 ∫ t
0 α(s) ds. Now letting Q(t) = β̃ ⊗ β α(t) yields that

� M �t = ∫ t
0 Q(s) ds. This processQ(·) is bounded sinceQ(t) ≤ Q ∀ t, where

Q = β̃ ⊗ β max
0≤t≤T

α(t). It is also easy to see that Q1/2(t)(k) = 〈β,k〉 β

|β| α1/2(t). In

particular β ∈ Q1/2(t)(K ).
Let K = L2(Rn). Let M be the above martingale. Suppose that O = K . Assume

that G̃ ∈ LQ(K ) or even a bounded linear operator from K into itself, and F̃ is a
bounded linear operator from O into K . Let us consider the SDE:

{
dX (t) = F̃ u(t) dt + 〈X (t), β〉 G̃ dM(t), t ∈ [0, T ],
X (0) = x0 ∈ K .

For a given fixed element c of K we assume that the cost functional is given by
the formula:

J (u(·)) = E [
∫ T

0
|u(t)|2 dt ] + E [ 〈c, X (T )〉 ],

and the value function is

J ∗ = inf{J (u(·)) : u(·) ∈ Uad}.

This control problem can be related to the control problem (4)–(6) as follows. We
define

F(x, u) = F̃ u, G(x) = 〈x, β〉 G̃, �(x, u) = |u|2, and h(x) = 〈c, x〉,

where (x, u) ∈ K × O.

The Hamiltonian then becomes the mapping

H : [0, T ] × Ω × K × O × K × L2(K ) → R,

H(t, x, u, y, z) = |u|2 + 〈F̃ u, y〉 + 〈x, β〉 〈G̃Q1/2(t), z〉2,

(t, x, u, y, z) ∈ K × O × K × L2(K ).

It is obvious that H(·, ·, y, z) is convex with respect to (x, u) for each y and z and
∇x H(t, x, u, y, z) = 〈G̃Q1/2(t), z〉 β.

Next we consider the adjoint BSDE:

{− dY (t) = [ 〈G̃Q1/2(t), Z(t)〉2 β ] dt − Z(t) dM(t) − dN (t),
Y (T ) = c.
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This BSDE attains an explicit solution Y (t) = c , since c is non-random. But this
implies that Z(t) = 0 and N (t) = 0 for each t ∈ [0, T ].

On the other hand,we note that the functionO � u → H(t, x, u, y, z) ∈ R attains
its minimum at u = − 1

2 F̃
∗ y, for fixed (x, y, z). So we choose our candidate for an

optimal control as

u∗(t, ω) = − 1

2
F̃∗ Y (t, ω) = − 1

2
F̃∗ c (∈ U := O).

With this choice all the requirements in Theorem 3 are verified. Consequently
u∗(·) is an optimal control of this control problem with an optimal solution X̂ given
by the solution of the following closed loop equation:

{
d X̂(t) = − 1

2 F̃ F̃∗ Y (t) dt + 〈X̂(t), β〉 G̃ dM(t),
X̂(0) = x0 ∈ K .

The value function takes the following value:

J ∗ = 1

4
|F̃∗c|2 T + E [ 〈c, X̂(T )〉 ].

Remark 4 It would be possible if we take h(x) = |x |2, x ∈ K , in the preceding
example and proceeds as above. However if a result of existence and uniqueness os
solutions to what we may call “forward-backward stochastic differential equations
with martingale noise” holds, it should certainly be very useful to deal with both this
particular case and similar problems.

Example 2 LetO = K . We are interested in the following linear quadratic example,
which is gleaned from Bensoussan [10, p. 33]. Namely, we consider the SDE:
{
dX (t) = (A(t)X (t) + C(t)u(t) + f (t)) dt + (B(t)X (t) + D(t)) dM(t),
X (0) = x0,

(42)

where B(t)x = 〈γ (t), x〉 G̃(t) and A, γ,C : [0, T ] × K → K , f : [0, T ] → K ,

G̃, D : [0, T ] → LQ(K ) are measurable and bounded mappings.
Let P, Q : [0, T ] × K → K , P1 : K → K be measurable and bounded map-

pings. Assume that P, P1 are symmetric non-negative definite, and Q is a symmetric
positive definite and Q−1(t) is bounded. For SDE (42) we shall assume that the cost
functional is

J (u(·)) = E

[ ∫ T

0

(
1

2
〈P(t)Xu(·)(t), Xu(·)(t)〉 + 1

2
〈Q(t)u(t), u(t)〉

)

dt

+ 1

2
〈P1Xu(·)(T ), Xu(·)(T )〉

]

, (43)

for u(·) ∈ Uad .
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The control problem now is to minimize (43) over the setUad and get an optimal
control u∗(·) ∈ Uad , that is

J (u∗(·)) = inf{J (u(·)) : u(·) ∈ Uad}. (44)

By recalling Remark 1we can consider this control problem (42)–(44) as a control
problem of the type (4)–(6). To this end, we let

F(t, x, u) = A(t)x + C(t)u + f (t),

G(t, x) = 〈γ (t), x〉 G̃(t) + D(t),

�(t, x, u) = 1

2
〈P(t)x, x〉 + 1

2
〈Q(t)u, u〉,

h(x) = 1

2
〈P1x, x〉.

Then the Hamiltonian H : [0, T ] × Ω × K × K × K × L2(K ) → R is given by

H(t, x, u, y, z) = �(t, x, u) + 〈F(t, x, u), y〉 + 〈G(t, x)Q1/2(t), z〉2
= 1

2
〈P(t)x, x〉 + 1

2
〈Q(t)u, u〉 + 〈A(t)x + C(t)u + f (t), y〉

+ 〈 (〈γ (t), x〉 G̃(t) + D(t))Q1/2(t), z〉2 .

We can compute ∇x H directly to find that

∇x H(t, x, u, y, z) = P(t)u + A∗(t)x + 〈G̃(t)Q1/2(t), z〉2 γ (t).

Hence the adjoint equation of (42) takes the following shape:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− dY u(·)(t) =
(
A∗(t)Y u(·)(t) + P(t)Xu(·)(t)

+〈
G̃(t)Q1/2(t), Zu(·)(t)Q1/2(t)

〉
2 γ (t)

)
dt

−Zu(·)(t)dM(t) − dNu(·)(t),
Y u(·)(T ) = P1Xu(·)(T ).

Now the maximum principle theorems (Theorems 2, 3) in this case hold readily
if we consider Remark 1 again, and yield eventually

C∗(t)Y ∗(t) + 1

2
Q(t)u∗(t) = 0.
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Sufficient Conditions of Optimality
for Forward-Backward Doubly SDEs
with Jumps

AbdulRahman Al-Hussein and Boulakhras Gherbal

Abstract We consider a sufficient maximum principle of optimal control for a
stochastic control problem. This problem is governed by a system of fully coupled
multi-dimensional forward-backward doubly stochastic differential equation with
Poisson jumps. Moreover, all the coefficients appearing in this system are allowed
to be random and depend on the control variable. We derive, in particular, sufficient
conditions for optimality for this stochastic optimal control problem. We apply our
result to treat a kind of forward-backward doubly stochastic linear quadratic optimal
control problems with jumps.

Keywords Poisson process · Sufficient conditions of optimality ·Optimal control ·
Forward-backward doubly stochastic differential equation · Adjoint equations
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1 Introduction

Forward-backward stochastic differential equations (FBSDEs in short) were first
studied by Antonelli in [2], and since then they are encountered in stochastic optimal
control problem, which is one of the central themes of modern control science. For
example, Xu in [20] studied a non-coupled continuous forward-backward stochastic
control system.ThenWu [16], studied extensively themaximumprinciple for optimal
control problem of fully coupled continuous forward-backward stochastic system.
We refer the reader also to [3]. Peng andWu [9], considered fully coupled continuous
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forward-backward stochastic differential equations with random coefficients and
applications to optimal control. A method of continuation is developed there. In this
respect one can see also [22]. Shi and Wu in [11] studied the maximum principle for
fully coupled continuous forward-backward stochastic system and provided under
non-convexity assumption on the control domain necessary optimality conditions.
The forward diffusion there does not contain the control variable.

Fully coupled FBSDEs with respect to Brownian motion and Poisson process
were considered by Wu in [17] and Yin and Situ in [21]. Such equations have been
shown to be very useful for example in studying linear quadratic optimal control
problems of random jumps, and also to handle nonzero-sum differential games with
random jumps. The work of Wu and Wang in [18] is useful in this respect. In [6],
Øksendal and Sulem investigated stochastic maximum principle for non-coupled
one-dimensional FBSDEs with jumps. In [13], Shi and Wu obtained both necessary
and sufficient maximum principles for optimal control of FBSDEs with random
jumps, when the control domain is convex. The result is applied to a mean-variance
portfolio selection mixed with a recursive utility functional optimization problem.
Meng [4], considered an optimal control problem of fully coupled forward-backward
stochastic systemswith Poisson jumps under partial information.More generally, Shi
in [10] provided recently necessary conditions for optimal control of fully coupled
FBSDEs with random jumps.

Backward doubly stochastic differential equations were first introduced by Par-
doux and Peng in [7]. They gave a probabilistic representation of quasi linear sto-
chastic partial differential equations. This important paper has given rise to a huge
literature on BDSDEs and has become a powerful tool in many fields such as finan-
cial mathematics, optimal control, stochastic games, quasi linear partial differential
equations. In 2003, Peng and Shi [8], introduced fully coupled forward-backward
doubly stochastic differential equations (FBDSDEs in short). Such equations are
generalizations of stochastic Hamilton systems. Existence and uniqueness of the
solutions to (continuous) FBDSDEs with arbitrarily fixed time duration and under
some monotone assumptions are established. Peng and Shi provided in [8] a proba-
bilistic interpretation for the solutions of a class of quasilinear SPDEs. Moreover, in
this respect, we refer the reader to [24] for an application of fully coupled FBDSDEs
to provide a probabilistic formula for the solution of a quasilinear stochastic partial
differential-integral equation (SPDIE in short). Another application to SPDEs can
be found in [23]. These are some examples to show the importance and motivations
to study FBDSDEs.

The existence and uniqueness of measurable solutions to FBDSDEs with Poisson
jumps are established in [24] via the method of continuation. We refer the reader
also to [8, 25] in this respect.

A sufficient maximum principle with partial information for a one-dimensional
FBDSDE with jump with a forward equation being independent of the processes
of the backward equation was studied in [19]. Necessary optimality conditions for
FBDSDEs in [19] were derived also there under non-convexity assumption on the
control domain. On the other hand, in [23], Zhang and Shi studied the maximum
principle to find necessary conditions and sufficient conditions for optimality for a
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stochastic control problem governed by a continuous FBDSDE in dimension one.
They allow also all the coefficients of these equations to contain control variables.

The general case of deriving the maximum principle for control problems gov-
erned by a multi-dimensional discontinuous FBDSDE with its coefficients being
allowed to be random and depend on the control variable and when the control
domain is not convex is still an interesting incomplete research problem. In the
present work we shall consider this discontinuous situation, and study, in particular,
a stochastic control problem where the system is governed by a nonlinear fully cou-
pled multi-dimensional FBDSDEwith jumps as in system (1) below.More precisely,
we shall allow both the forward and backward equations to have random jumps, and
establish sufficient conditions for optimality in the form of the maximum principle
with a convex control domain. We will allow also all the coefficients appearing in
our system to be random and contain control variables. Our results here are new in
this respect. We will consider some relevant necessary optimality conditions for this
problem (i.e. when we have a non-convex control domain) in a future work.

Our system under study is the following:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dyt = b(t, yt , Yt , zt , Zt , kt , vt )dt + σ(t, yt , Yt , zt , Zt , kt , vt )dWt

+ ∫
Θ

ϕ(t, yt , Yt , zt , Zt , kt , vt , ρ)Ñ (dρ, dt) − zt
←−
dBt ,

dYt = − f (t, yt , Yt , zt , Zt , kt , vt )dt − g(t, yt , Yt , zt , Zt , kt , vt )
←−
dBt

+ ZtdWt + ∫
Θ
kt (ρ)Ñ (dρ, dt),

y0 = x0, YT = h(yT ),

(1)

where b, σ, ϕ, f and g are given mappings, with properties to be mentioned clearly
in Sect. 2, and h is a combination of a square integrable random variable in Rm and
a linear function fromR

n toRm . The processes (Wt )t≥0 and (Bt )t≥0 are independent
Brownian motions taking their values respectively in R

d and R
l , while v· repre-

sents a control process, and Ñ (dρ, dt) is the compensated Poisson random measure
associated with a Poisson point process η. Here T is a fixed positive number.

We shall be interested in minimizing the cost functional

J (v·) = E
[
∫ T

0
�(t, yt ,Yt , zt , Zt , kt , vt )dt + β(yT ) + γ (Y0)

]
, (2)

over the set of all admissible controls (to be described in Sect. 2 below).
Our formulation of these equations as well as cost functionals are given in abstract

forms to allow the possibility to cover most of the applications available in the
literature. For instance, a linear quadratic case can be given as a concrete and useful
example. For more details of this example, we refer the reader to [12] or [18]. In
fact, many applications of FBDSDE either in finance or to SPDEs can be developed
in parallel to those provided in the literature; see e.g. [8, 23, 24]. We point out in
particular that fully coupled FBDSDEs (1) provide a probabilistic formula for the
solution of a quasilinear SPDIE in the sense of [23], and so one can apply our results
here to study some optimal control problems of SPDIE (again similarly to [23]).
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On the other hand, recently many research attentions have been drawn towards
studying optimal control problems for discontinuous stochastic systems, especially
those having Poisson jumps.One can see [1, 4, 6, 10, 17–19, 21, 24].Many empirical
studies have proven the existence of jumps in stock, foreign exchange and bond
markets. There is, in fact, a trustworthy evidence that the dynamics of prices of
financial instruments exhibit jumps that cannot be adequately captured solely by only
diffusion processes. More precisely, jumps constitute a central feature in describing
credit risk sensitive instruments.

Other models with jumps have also become popular in other areas of science and
technology. As a result, paying more attention to study more applications of such
discontinuous systems, including ours here is in demand. This will be somehow our
coming future work.

Let us now close the introduction by recording that, in the case of partial informa-
tion, one could easily develop similar results. We refer the reader to Ahmed et al. [1],
in this respect.

We shall organize the paper as follows. In Sect. 2, we formulate the problem and
give various assumptions used throughout the paper. In Sect. 3 we introduce the
adjoint equation of (1), state our main theorem and give an example to illustrate this
theorem. Section 4 is devoted to proving the main result.

2 Formulation of the Problem and Assumptions

Let (Ω,F ,P) be a complete probability space. Let (Wt )t∈[0,T ] and (Bt )t∈[0,T ] be two
Brownian motions taking their values in R

d and R
l respectively. Let η be a Poisson

point process taking its values in a measurable space (Θ,B(Θ)). We denote by
ν(dρ) the characteristic measure of η which is assumed to be a σ -finite measure on
(Θ,B(Θ)), by N (dρ, dt) the Poisson counting measure (jump measure) induced
by η with compensator ν(dρ)dt , and by

Ñ (dρ, dt) = N (dρ, dt) − ν(dρ)dt,

the compensation of the jump measure N (·, ·) of η. Hence ν(O) = E[N (O, 1)]
for O ∈ B(Θ). We assume that these three processes W, B and η are mutually
independent.

Let N denote the class of P-null sets of F . For each t ∈ [0, T ], we define
Ft := FW

t ∨ F B
t,T ∨ F η

t , where for any process {πt }, we set

F π
s,t = σ(πr − πs; s ≤ r ≤ t) ∨ N ,F π

t = F π
0,t .

For a Euclidean space E, let M 2(0, T ; E) denote the set of jointly measurable
processes {Xt , t ∈ [0, T ]} taking values in E, and satisfy: Xt is Ft -measurable for
a.e. t ∈ [0, T ], and
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E
[
∫ T

0
|Xt |2E dt

]
< ∞.

Let L2
ν(E) be the set ofB(Θ)-measurable mapping k with values in E such that

|‖k‖| := [
∫

Θ

|k(ρ)|2E ν(dρ)
] 1

2 < ∞.

Denote by N 2
η (0, T ; E) to the set of processes {Kt , t ∈ [0, T ]} that take their

values in L2
ν(E) and satisfy: Kt is Ft -measurable for a.e. t ∈ [0, T ], and

E
[
∫ T

0

∫

Θ

|Kt (ρ)|2E ν(dρ)dt
]

< ∞.

Finally, we set

M
2 := M 2

(
0, T ;Rn

) × M 2
(
0, T ;Rm

) × M 2
(
0, T ;Rn×l

)

×M 2
(
0, T ;Rm×d

) × N 2
η

(
0, T ;Rm

)
.

Then M
2 is a Hilbert space with respect to the norm ‖·‖M2 given by

‖ζ·‖2
M2 := E

[
∫ T

0

( |yt |2 + |Yt |2 + ‖zt‖2 + ‖Zt‖2 + |‖kt‖|2
)
dt

]
,

for ζ· = (y·,Y·, z·, Z ·, k·).
Let U be a non-empty convex subset of Rr . We say that v· : [0, T ] × Ω → R

r is
admissible if v· ∈ M 2(0, T ;Rr ) and vt ∈ U a.e., P − a.s. The set of admissible
controls will be denoted by Uad . Consider the following controlled fully coupled
FBDSDE with jumps:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dyt = b(t, yt ,Yt , zt , Zt , kt , vt )dt + σ(t, yt ,Yt , zt , Zt , kt , vt )dWt

+ ∫
Θ

ϕ(t, yt ,Yt , zt , Zt , kt , vt , ρ)Ñ (dρ, dt) − zt
←−
dBt ,

dYt = − f (t, yt ,Yt , zt , Zt , kt , vt )dt − g(t, yt ,Yt , zt , Zt , kt , vt )
←−
dBt

+ ZtdWt + ∫
Θ
kt (ρ)Ñ (dρ, dt),

y0 = x0,YT = h(yT ),

(3)

where the mappings

b : Ω × [0, T ] × R
n × R

m × R
n×l × R

m×d × L2
ν(R

m) × R
r → R

n,

σ : Ω × [0, T ] × R
n × R

m × R
n×l × R × L2

ν(R
m) × R

r → R
n×d ,

ϕ : Ω × [0, T ] × R
n × R

m × R
n×l × R

m×d × L2
ν(R

m) × R
r × Θ → R

n,

f : Ω × [0, T ] × R
n × R

m × R
n×l × R

m×d × L2
ν(R

m) × R
r → R

m,
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g : Ω × [0, T ] × R
n × R

m × R
n×l × R × L2

ν(R
m) × R

r → R
m×l ,

h : Ω × R
n → R

m,

aremeasurable (further properties to be introduced later in this section) and v· ∈ Uad .

Given a full-rank m × n matrix R of real indices, we assume that h is defined, for
(ω, x) ∈ Ω × R

n, by h(ω, x) := c Rx + ξ(ω), where c 
= 0 is a constant and ξ is a
fixed arbitrary element of L2(Ω,FT ,P;Rm). This formula of h is useful and vital
in establishing the proof our main theorem (Theorem 3) in Sect. 4, when we apply
in particular the adjoint equations of (3).

Note that the integral with respect to
←−
dB is a “backward” Itô integral, while

the integral with respect to dW is a standard “forward” Itô integral. We refer the
reader to [5] for more details on such integrals, which are particular cases of the
Itô-Skorohod stochastic integral.

A solution of (3) is a quintuple (y,Y, z, Z , k) of stochastic processes such that
(y,Y, z, Z , k) belongs toM2 and satisfies the following FBDSDE:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

yt = x0 + ∫ t
0 b(s, ys, Ys, zs, Zs, ks, vs)ds + ∫ t

0 σ(s, ys, Ys, zs, Zs, ks, vs)dWs

+ ∫ t
0

∫
Θ

ϕ(s, ys, Ys, zs, Zs, ks, vs, ρ)Ñ (dρ, ds) − ∫ t
0 zs

←−
dBs,

Y (t) = h(yT ) + ∫ T
t f (s, ys, Ys, zs, Zs, ks, vs)ds + ∫ T

t g(s, ys, Ys, zs, Zs, ks, vs)
←−
dBs

− ∫ T
t ZsdWs − ∫ T

t

∫
Θ
ks(ρ)Ñ (dρ, ds), t ∈ [0, T ].

Define the cost functional by:

J (v·) := E
[
∫ T

0
�(t, yt ,Yt , zt , Zt , kt , vt )dt + β(yT ) + γ (Y0)

]
, v· ∈ Uad , (4)

where

β : Rn → R,

γ : Rm → R,

� : Ω × [0, T ] × R
n × R

m × R
n×l × R

m×d × L2
ν(R

m) × R
r → R

are measurable functions such that (4) is defined.
Now the control problem of system (3) is to minimize J over Uad . In this case

we say that u· ∈ Uad is an optimal control if

J (u·) = inf
v·∈Uad

J (v·). (5)

Let us set the following notations:

ζ = (y,Y, z, Z , k) ∈ R
n+m+n×l+m×d × L2

ν(R
m),

A(t, ζ, v) = (−R∗ f, Rb,−R∗g, Rσ, Rϕ)(t, ζ, v),

〈A, ζ 〉 = − 〈
y, R∗ f

〉 + 〈Y, Rb〉 − 〈
z, R∗g

〉 + 〈Z , Rσ 〉 + 〈〈k, Rϕ〉〉,
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where

R∗g = (R∗g1 · · · R∗gl), Rσ = (Rσ1 · · · Rσd), . . . ,

by using the columns {g1, . . . , gl} and {σ1, . . . , σd} of g and σ respectively, and

〈〈k, Rϕ〉〉 (t, ζ, v) =
∫

Θ

〈k(ρ), Rϕ(t, ζ, v, ρ)〉 ν(dρ).

The following assumptions will be our main assumptions in the paper. We shall
mimic similar assumptions from the literature (e.g. [23]) for this purpose.

• (A1) ∀ ζ = (y,Y, z, Z , k), ζ̄ = (ȳ, Ȳ , z̄, Z̄ , k̄) ∈ R
n+m+n×l+m×d × L2

ν(R
m),

∀ t ∈ [0, T ], ∀ v ∈ R
r ,

〈
A(t, ζ, v) − A(t, ζ̄ , v), ζ − ζ̄

〉 ≤ −μ1(|R(y − ȳ)|2 + ∣
∣R∗(Y − Ȳ )

∣
∣2)

−μ2(‖R(z − z̄)‖2 + ∥
∥R∗(Z − Z̄)

∥
∥2 + ∣

∣
∥
∥R∗(k − k̄)

∥
∥
∣
∣2),

and
c > 0,

or
• (A1)’

〈
A(t, ζ, v) − A(t, ζ̄ , v), ζ − ζ̄

〉 ≥ μ1(|R(y − ȳ)|2 + ∣
∣R∗(Y − Ȳ )

∣
∣2)

+μ2(‖R(z − z̄)‖2 + ∥
∥R∗(Z − Z̄)

∥
∥2 + ∣

∣
∥
∥R∗(k − k̄)

∥
∥
∣
∣2),

and

c < 0,

where μ1 and μ2 are nonnegative constants with μ1 + μ2 > 0. Moreover μ1 > 0
(resp. μ2 > 0) when m > n (resp. n > m).

• (A2) For each ζ ∈ R
n+m+n×l+m×d × L2

ν(R
m), v ∈ R

r , A(t, ζ, v) ∈ M
2.

• (A3) We assume that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) the mappings f, b, g, σ, ϕ, � are continuously differentiable with respect to
(y, Y, z, Z , k, v), and β and γ are continuously differentiable with respect to
y and Y, respectively,

(i i) the derivatives of f, b, g, σ, ϕ with respect to the above arguments are
bounded,

(i i i) the derivatives of �are bounded by C(1 + |y| + |Y | + ‖z‖ + ‖Z‖ + |‖k‖|),
(iv) the derivatives of β and γ are bounded by C (1 + |y|) and C (1 + |Y |)

respectively,

for some constant C > 0.
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Remark 1 The condition c > 0 in (A1) guarantees the following monotonicity con-
dition of the mapping h:

〈h(y) − h(ȳ), R(y − ȳ)〉 ≥ c |R(y − ȳ)|2, ∀ y, ȳ ∈ R
n.

The same thing happens also for c < 0 in (A1)’.

The following theorem is concerned with the existence and uniqueness of the
solution of (3).

Theorem 1 For any given admissible control v·, if assumptions (A1)–(A3) (or (A1)’,
(A2), (A3)) hold, then (3) has a unique solution.

Our assumptions in this theorem satisfy the assumptions of the corresponding
result in [24], so the proof of this theorem can be gleaned from [24]. We refer the
reader also to [8, 25] for useful works in this respect.

3 Adjoint Equations and the Maximum Principle

Suppose that (A1)–(A3) hold. We want to introduce the adjoint equations of
FBDSDE (3) and then present our main result of the maximum principle for our
optimal control problem governed by the FBDSDE with jumps (3). To this end,
let us begin by defining the Hamiltonian H from [0, T ] × Ω × R

n × R
m × R

n×l ×
R

m×d × L2
ν(R

m) × R
r × R

m × R
n × R

m×l × R
n×d × L2

ν(R
n) to R by the

formula:

H(t, y,Y, z, Z , k, v, p, P, q, Q, V ) :
= 〈p, f (t, y,Y, z, Z , k, v)〉

− 〈P, b(t, y,Y, z, Z , k, v)〉 + 〈q, g(t, y,Y, z, Z , k, v)〉
− 〈Q, σ (t, y,Y, z, Z , k, v)〉 − �(t, y,Y, z, Z , k, v)

−
∫

Θ

〈V (ρ), ϕ(t, y,Y, z, Z , k, v, ρ) 〉 ν(dρ). (6)

Let v· be an arbitrary element of Uad and {(yt ,Yt , zt , Zt , kt ), t ∈ [0, T ]} be the
corresponding solution of (3). The adjoint equations of our FBDSDE with jumps (3)
are

⎧
⎪⎨

⎪⎩

dpt = HY (t)dt + HZ (t)dWt − qt
←−
dBt + ∫

Θ
Hk(t)Ñ (dρ, dt),

dPt = Hy(t)dt + Hz(t)
←−
dBt + QtdWt + ∫

Θ
Vt (ρ)Ñ (dρ, dt),

p0 = −γY (Y0), PT = −c R∗ pT + βy(yT ),

(7)

where and βy(yT ) is the gradient ∇yβ(yT ) ∈ R
n and Hy(t) is the gradient

∇y H(t, y,Yt , zt , Zt , kt , vt , pt , Pt , qt , Qt , Vt ) ∈ R
n, . . . etc. Let us in the following

say some thing more about this system (7).
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Theorem 2 Under (A1)–(A3) there exists a unique solution (p, P, q, Q, V ) of
the adjoint equations (7) (in M̃2 := M 2 (0, T ;Rm) × M 2 (0, T ;Rn) × M 2

(
0, T ;

R
m×l

) × M 2
(
0, T ;Rn×d

) × N 2
η (0, T ;Rn)).

Proof This system (7) can be rewritten as in the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dpt = ( f ∗
Y (t)pt − b∗

Y (t)Pt + g∗
Y (t)qt − σ ∗

Y (t)Qt − ∫
Θ

ϕ∗
Y (t)Vt (ρ)ν(dρ) − �Y (t))dt

+ ( f ∗
Z (t)pt − b∗

Z (t)Pt + g∗
Z (t)qt − σ ∗

Z (t)Qt − ∫
Θ

ϕ∗
Z (t)Vt (ρ)ν(dρ) − �Z (t))dWt

− qt
←−
dBt + ∫

Θ
( f ∗

k (t)pt − b∗
k (t)Pt + g∗

k (t)qt − σ ∗
k (t)Qt

− (ϕ∗
k (t)Vt )(ρ) − �k(t))Ñ (dρ, dt),

dPt = ( f ∗
y (t)pt − b∗

y(t)Pt + g∗
y(t)qt − σ ∗

y (t)Qt − ∫
Θ

ϕ∗
y (t)Vt (ρ)ν(dρ) − �y(t))dt

+ ( f ∗
z (t)pt − b∗

z (t)Pt + g∗
z (t)qt − σ ∗

z (t)Qt − ∫
Θ

ϕ∗
z (t)Vt (ρ)ν(dρ) − �z(t))

←−
dBt

+ QtdWt + ∫
Θ
Vt (ρ)Ñ (dρ, dt),

p0 = −γY (Y0), PT = −c R∗(t) pT + βy(yT ),

which is a linear FBDSDE with jumps. Here f ∗
y (t) ∈ R

n×m is the adjoint (transpose)
of the Fréchet derivative (hence theGâteaux derivative) Dy f (t, y,Yt , zt , Zt , kt , vt ) ∈
R

m×n of f (t, ·,Yt , zt , Zt , kt , vt ) : Rn → R
m at y, . . . etc. Thanks to assumptions

(A1)–(A3) this latter linear FBDSDE satisfy easily (A1)’, (A2) and (A3). In fact the
monotonicity condition follows from the definition of Gâteaux derivatives (as limits)
and the fact that the corresponding mappings satisfy originally R−monotonicity
condition in (A1). Thus the desired result follows from Theorem 1.

Now our main theorem is the following.

Theorem 3 Assume that (A1)–(A3) hold. Given u· ∈ Uad , let (y,Y, z, Z , k) and
(p, P, q, Q, V ) be the corresponding solutions of the FBDSDEs (3) and (7) respec-
tively. Suppose that the following assumptions hold:
(i) β and γ are convex.
(ii) For all t ∈ [0, T ], P -a.s., the function H(t, ·, ·, ·, ·, ·, ·, pt , Pt , qt , Qt , Vt ) is
concave.
(iii) We have

H(t, yt ,Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt )

= max
v∈U H(t, yt ,Yt , zt , Zt , kt , v, pt , Pt , qt , Qt , Vt ), (8)

for a.e, P -a.s.
Then (y,Y, z, Z , k, u·) is an optimal solution of the control problem (3)–(5).

Remark 2 Condition (A1) assumed in this theorem and the lemmas that follow is
only needed to guarantee the existence and uniqueness of the solutions of (3) and (7),
and so if we can get these unique solutions without assuming (A1) there will not any
necessity to assume it in advance in this theorem.
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The proof of Theorem 3 will be established in Sect. 4. Now to illustrate this
theorem let us present an example.

Example 1 Let (Θ,B(Θ)) = ([0, 1],B([0, 1])). Let Ñ (dρ, dt) be a compensated
Poisson randommeasure,where (t, ρ) ∈ [0, 1] × [0, 1]. Recall thatE[Ñ (dρ, dt)2] =
ν(dρ)dt is required to be a finite Borel measure such that

∫
[0,1] ρ

2ν(dρ) < ∞. Let the
controls domain be U = [−1, 1]. Consider the following stochastic control system:

⎧
⎪⎨

⎪⎩

dyt = (1 + t)vt dt + (zt − Zt + vt )dWt − zt
←−
dBt − ∫

[0,1](vtρ + kt (ρ))Ñ (dρ, dt),

dYt = −(t − 4)vt dt − 3
2 (zt + Zt + vt )

←−
dBt + ZtdWt + ∫

[0,1] kt (ρ)Ñ (dρ, dt),
y0 = Y1 = x ∈ R, t ∈ (0, 1),

(9)

whereW, B are Brownian motions inR, andW, B and Ñ are mutually independent.
Consider also a cost functional given for v· ∈ Uad by

J (v·) = 1

2
E

[
∫ 1

0
(y2t + Y 2

t + z2t + Z2
t +

∫

[0,1]
k2t (ρ)ν(dρ) + v2t )dt + y21 + Y 2

0

]
,

(10)

with

�(t, yt ,Yt , zt , Zt , kt , vt ) = 1

2
(y2t + Y 2

t + z2t + Z2
t +

∫

[0,1]
k2t (ρ)ν(dρ) + v2t ),

β(yt ) = 1

2
y2t , γ (Yt ) = 1

2
Y 2
t .

We define the value function by

J (u·) = inf
v·∈Uad

J (v·). (11)

This system (9) can be related to the one in (3) by setting the followingmappings:

b(t, yt ,Yt , zt , Zt , kt , vt ) = (1 + t)vt ,

σ (t, yt ,Yt , zt , Zt , kt , vt ) = zt − Zt + vt ,

ϕ(t, yt ,Yt , zt , Zt , kt , vt , ρ) = −vtρ − k(ρ),

f (t, yt ,Yt , zt , Zt , kt , vt ) = (t − 4)vt ,

g(t, yt ,Yt , zt , Zt , kt , vt ) = 3

2
(zt + Zt + vt ),

h(y1) = y1, i.e. c = 1, ξ = 0.

One can see easily that assumptions (A1), (A3) (and of course (A2)) are ful-
filled for this system. More precisely, for (A1) we observe with the help of the
notations preceding assumption (A1) and Cauchy-Schwartz inequality, that, for
ζ = (y,Y, z, Z), ζ̄ = (ȳ, Ȳ , z̄, Z̄ , k̄) ∈ R × R × R × R × L2

ν(R),
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〈A(t, ζ, v) − A(t, ζ̄ , v) , ζ − ζ̄ 〉 ≤ −1

2
||z − z̄||2 − 1

2
(z − z̄)(Z − Z̄)

− ||Z − Z̄ ||2 − |||k − k̄|||2

≤ −3

4

(||z − z̄||2 + ||Z − Z̄ ||2 + |||k − k̄|||2) ,

which satisfies (A1) with μ1 = 0, μ2 = 3
4 and c1 = 1.

Thus Theorem 1 guarantees the existence and uniqueness of the solution of (9).
Note that (9)–(11) is a linear-quadratic optimal control problem with jumps.

Letting u· ≡ 0, we find from the construction of FBDSDEs with jumps (as for
instance in [24]) that the corresponding solution (yt ,Yt , zt , Zt , kt ) of (9) equals
(x, x, 0, 0, 0), for all t ∈ [0, 1].

Next notice that the adjoint equations of (9) are

⎧
⎪⎨

⎪⎩

dpt = −Ytdt + ( 32qt + Qt − Zt )dWt − qt
←−
dBt − ∫

[0,1](Vt (ρ) + kt (ρ))Ñ (dρ, dt),

dPt = −ytdt + ( 32qt − Qt − zt )
←−
dBt + QtdWt + ∫

[0,1] Vt (ρ)Ñ (dρ, dt),
p0 = −x, P1 = −p1 + x, t ∈ (0, 1).

(12)

Since p0 is deterministic, then so is pt . Hence

pt = p0 −
∫ t

0
Ytdt = p0 − x

∫ t

0
dt = −x(1 + t).

Thus P1 is deterministic since:

P1 = −p1 + x = 3x .

It follows similarly that

Pt = P1 +
∫ 1

t
ytdt = 3x + x(1 − t) = x(4 − t).

In particular, (pt , Pt , qt , Qt , Vt ) ≡ (−x(1 + t), x(4 − t), 0, 0, 0) is the unique
solution of (12). These facts show that the Hamiltonian attains an explicit formula:

H(t, yt ,Yt , zt , Zt , kt , v, pt , Pt , qt , Qt , Vt )

= pt (t − 4)v − Pt (1 + t)v + 3

2
qt (zt + Zt + v) − Qt (zt − Zt + v)

+
∫

[0,1]
(v ρ + kt (ρ)) Vt (ρ) ν(dρ) − 1

2
(y2t + Y 2

t + z2t + Z2
t

+
∫

[0,1]
k2t (ρ)ν(dρ) + v2)
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= − x(1 + t)(t − 4)v − x(1 + t)(4 − t)v − 1

2
v2 − 1

2
x2 − 1

2
x2

= − 1

2
v2 − x2, v ∈ U.

Hence

H(t, yt ,Yt , zt , Zt , kt , v, pt , Pt , qt , Qt , Vt )

−H(t, yt ,Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt )

= − 1

2
v2 − x2 + 1

2
u2t + x2 = −1

2
v2 ≤ 0, ∀v ∈ U, a.e. t, P − a.s.

As a result, condition (iii) of Theorem 3 holds here for u· = 0. Furthermore, all other
conditions of Theorem 3 can be verified easily. Consequently,

(y,Y, z, Z , k, u·) ≡ (x, x, 0, 0, 0, 0)

is an optimal solution of the control problem (9)–(11).

For more applications of the theory of fully coupled FBDSDEs particularly in
providing a probabilistic formula for the solution of a quasilinear SPDIE we refer
the reader to [24, p. 15].

4 Proof of Theorem 3

In this section we shall establish the proof of Theorem 3. Let us recall first the
following lemma.

Lemma 1 [Integration by parts] Let (α, α̂) ∈ [
S 2(0, T ;Rn)

]2
, (β, β̂) ∈

[
M 2(0, T ;Rn)

]2
, (γ, γ̂ ) ∈ [

M 2(0, T ;Rn×k)
]2

, (δ, δ̂) ∈ [
M 2(0, T ;Rn×d)

]2
, and

(K , K̂ ) ∈ [
N 2

η (0, T ;Rm)
]2

. Assume that

αt = α0 +
∫ t

0
βsds +

∫ t

0
γs

←−
dBs +

∫ t

0
δsdWs +

∫ t

0

∫

Θ

Ks(ρ)Ñ (dρ, ds),

and

α̂t = α̂0 +
∫ t

0
β̂sds +

∫ t

0
γ̂s

←−
dBs +

∫ t

0
δ̂sdWs +

∫ t

0

∫

Θ

K̂s(ρ)Ñ (dρ, ds),

for t ∈ [0, T ]. Then

〈αT , α̂T 〉 = 〈α0, α̂0〉 +
∫ T

0
〈αt , dα̂t 〉 +

∫ T

0
〈̂αt , dαt 〉 +

∫ T

0
d 〈α, α̂〉t .
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E
[〈αT , α̂T 〉] = E

[〈α0, α̂0〉
] + E

[
∫ T

0
〈αt , dα̂t 〉

] + E
[
∫ T

0
〈̂αt , dαt 〉

]

− E
[
∫ T

0
〈γt , γ̂t 〉dt

] + E
[
∫ T

0
〈δt , δ̂t 〉dt

] + E
[
∫ T

0

∫

Θ

〈Kt (ρ), K̂t (ρ)〉ν(dρ)dt
]
.

This lemma can be deduced directly from Itô’s formula with jumps (see e.g. [14,
15]).

We now prove Theorem 3. We start with two lemmas.

Lemma 2 Assume (A1)–(A3). Let v· be an arbitrary element of Uad , and let
(yv· ,Y v· , zv· , Zv· , kv·) be the corresponding solution of (3). Then we have

J (v·) − J (u·) ≥ E
[ 〈
PT , yv·T − yT

〉 ] + E
[ 〈
c R∗ pT , yv·T − yT

〉 ] − E
[ 〈
p0, Y

v·
0 − Y0

〉 ]

+ E
[
∫ T

0

(
�(t, yv·t , Y v·

t , zv·t , Zv·
t , kv·t , vt ) − �(t, yt , Yt , zt , Zt , kt , ut )

)
dt

]
.

(13)

Proof From (4) we get

J (v·) − J (u·) = E
[
β(yv·T ) − β(yT )

] + E
[
γ (Y v·

0 ) − γ (Y0)
]

+ E
[
∫ T

0

(
�(t, yv·t , Y v·

t , zv·t , Zv·
t , kv·t , vt ) − �(t, yt , Yt , zt , Zt , kt , ut )

)
dt

]
.

Since β and γ are convex, we obtain

β(yv·
T ) − β(yT ) ≥ 〈βy(yT ), yv·

T − yT 〉,
γ (Y v·

0 ) − γ (Y0) ≥ 〈γY (Y0),Y
v·
0 − Y0〉,

which imply that

J (v·) − J (u·) ≥ E
[〈βy(yT ), yv·T − yT 〉] + E

[〈γY (Y0),Y
v·
0 − Y0〉

]

+ E
[
∫ T

0

(
�(t, yv·t , Yv·

t , zv·t , Zv·
t , kv·t , vt ) − �(t, yt , Yt , zt , Zt , kt , ut )

)
dt

]
.

But from the adjoint equation (6) and system (3) we know

p0 = −γY (Y0), PT = −c R∗ pT + βy(yT ).

Thus (13) holds.

The following lemma contains duality relations between (3) and (7) (see the
equivalent equations in the proof of Theorem 2).
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Lemma 3 Suppose that assumptions of Lemma 2 (in particular (A1)–(A3)) hold.
Then

− E
[ 〈
p0,Y

v·
0 − Y0

〉 ]

= −E
[ 〈
pT ,Y v·

T − YT
〉 ]

− E
[
∫ T

0

〈
pt , f (t, yv·

t ,Y v·
t , zv·

t , Zv·
t , kv·

t , vt ) − f (t, yt ,Yt , zt , Zt , kt , ut )
〉
dt

]

+ E
[
∫ T

0

〈
HY (t, yt ,Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt ),Y

v·
t − Yt

〉
dt

]

− E
[
∫ T

0

〈
qt , g(t, y

v·
t ,Y v·

t , zv·
t , Zv·

t , kv·
t , vt ) − g(t, yt ,Yt , zt , Zt , kt , ut )

〉
dt

]

+ E
[
∫ T

0

〈
HZ (t, yt ,Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt ), Z

v·
t − Zt

〉
dt

]

+ E
[
∫ T

0

∫

Θ

〈Hk(t, yt ,Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt ), k
v·
t (ρ)

− kt (ρ)〉ν(dρ)dt
]
, (14)

and

E
[ 〈
PT , yv·

T − yT
〉 ]

= E
[
∫ T

0
〈Pt , b(t, yv·

t ,Y v·
t , zv·

t , Zv·
t , kv·

t , vt ) − b(t, yt ,Yt , zt , Zt , kt , ut )〉dt
]

+E
[
∫ T

0

〈
Hy(t, yt ,Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt ), y

v·
t − yt

〉
dt

]

+E
[
∫ T

0

〈
Hz(t, yt ,Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt ), z

v·
t − zt

〉
dt

]

+E
[
∫ T

0

〈
Qt , σ (t, yv·

t ,Y v·
t , zv·

t , Zv·
t , kv·

t , vt ) − σ(t, yt ,Yt , zt , Zt , kt , ut )
〉
dt

]

+E
[
∫ T

0

∫

Θ

〈Vt (ρ), ϕ(t, yv·
t ,Y v·

t , zv·
t , Zv·

t , kv·
t , vt , ρ)

−ϕ(t, yt ,Yt , zt , Zt , kt , ut , ρ)〉ν(dρ)dt
]
. (15)

Proof Applying integration by parts (Lemma 1) to
〈
pt ,Y

v·
t − Yt

〉
gives

〈
pT , Y v·

T − YT
〉 = 〈

p0, Y
v·
0 − Y0

〉

−
∫ T

0

〈
pt , f (t, yv·t , Y v·

t , zv·t , Zv·
t , kv·t , vt ) − f (t, yt , Yt , zt , Zt , kt , ut )

〉
dt

−
∫ T

0
〈pt ,

(
g(t, yv·t , Y v·

t , zv·t , Zv·
t , kv·t , vt ) − g(t, yt , Yt , zt , Zt , kt , ut )

)←−
dBt 〉



Sufficient Conditions of Optimality for Forward-Backward Doubly SDEs with Jumps 187

+
∫ T

0

∫

Θ

〈
pt , (k

v·
t (ρ) − kt (ρ))

〉
Ñ (dρ, dt)

+
∫ T

0

〈
pt , (Z

v·
t − Zt )dWt

〉 −
∫ T

0

〈
Y v·
t − Yt , qt

←−
dBt

〉

+
∫ T

0

〈
HY (t, yt , Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt ), Y

v·
t − Yt

〉
dt

+
∫ T

0

〈
Y v·
t − Yt , HZ (t, yt , Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt )dWt

〉

+
∫ T

0

∫

Θ

〈Y v·
t − Yt , Hk(t, yt , Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt )〉Ñ (dρ, dt)

−
∫ T

0

〈
qt , g(t, y

v·
t , Y v·

t , zv·t , Zv·
t , kv·t , vt ) − g(t, yt , Yt , zt , Zt , kt , ut )

〉
dt

+
∫ T

0

〈
HZ (t, yt , Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt ), Z

v·
t − Zt

〉
dt

+
∫ T

0

∫

Θ

〈Hk(t, yt , Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt ), k
v·
t (ρ)−kt (ρ)〉ν(dρ)dt.

Now by taking the expectation to the above equality, we obtain (14). Similarly

〈
PT , yv·T − yT

〉 =
∫ T

0
〈Pt , b(t, yv·t , Y v·

t , zv·t , Zv·
t , kv·t , vt ) − b(t, yt , Yt , zt , Zt , kt , ut )〉dt

+
∫ T

0
〈Pt , (σ (t, yv·t , Y v·

t , zv·t , Zv·
t , kv·t , vt ) − σ(t, yt , Yt , zt , Zt , kt , ut ))dWt 〉

+
∫ T

0

∫

Θ

〈
yv·t − yt , Vt (ρ)

〉
Ñ (dρ, dt) −

∫ T

0

〈
Pt , (z

v·
t − zt )

←−
dBt

〉
+

∫ T

0

〈
yv·t − yt , QtdWt

〉

+
∫ T

0

∫

Θ

〈Pt ,
(
ϕ(t, yv·t , Y v·

t , zv·t , Zv·
t , kv·t , vt , ρ) − ϕ(t, yt , Yt , zt , Zt , kt , ut , ρ)

)〉Ñ (dρ, dt)

+
∫ T

0

〈
yv·t − yt , Hz(t, yt , Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt )

←−
dBt

〉

+
∫ T

0

〈
Hy(t, yt , Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt ), y

v·
t − yt

〉
dt

+
∫ T

0

〈
Hz(t, yt , Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt ), z

v·
t − zt

〉
dt

+
∫ T

0
〈Qt , σ (t, yv·t , Y v·

t , zv·t , Zv·
t , kv·t , vt ) − σ(t, yt , Yt , zt , Zt , kt , ut )〉dt

+
∫ T

0

∫

Θ

〈Vt (ρ), ϕ(t, yv·t , Y v·
t , zv·t , Zv·

t , kv·t , vt , ρ) − ϕ(t, yt , Yt , zt , Zt , kt , ut , ρ)〉ν(dρ)dt.

By taking the expectation to this equality (15) holds.

The remaining is devoted to completing the proof of Theorem 3.

Proof (Proof of Theorem 3) Observe first from (6) that
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�(t, yv·t , Yv·
t , zv·t , Zv·

t , kv·t , vt ) − �(t, yt , Yt , zt , Zt , kt , ut )

= − (
H(t, yv·t , Yv·

t , zv·t , Zv·
t , kv·t , vt , pt , qt , Pt , Qt , Vt )

− H(t, yt , Yt , zt , Zt , kt , ut , pt , qt , Pt , Qt , Vt )
)

+ 〈
pt , f (t, yv·t , Yv·

t , zv·t , Zv·
t , kv·t , vt ) − f (t, yt , Yt , zt , Zt , kt , ut )

〉

− 〈Pt , b(t, yv·t , Yv·
t , zv·t , Zv·

t , kv·t , vt ) − b(t, yt , Yt , zt , Zt , kt , ut )〉
+ 〈qt , g(t, yv·t , Yv·

t , zv·t , Zv·
t , kv·t , vt ) − g(t, yt , Yt , zt , Zt , kt , ut )〉

− 〈
Qt , σ (t, yv·t , Yv·

t , zv·t , Zv·
t , kv·t , vt ) − σ(t, yt , Yt , zt , Zt , kt , ut )

〉

−
∫

Θ
〈Vt (ρ), ϕ(t, yv·t , Yv·

t , zv·t , Zv·
t , kv·t , vt , ρ)

− ϕ(t, yt , Yt , zt , Zt , kt , ut , ρ)〉ν(dρ). (16)

Next apply Lemma 3 and (16) in Lemma 2 to find that

J (v·) − J (u·)

≥ E
[
∫ T

0

〈
Hy(t, yt , Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt ), y

v·
t − yt

〉
dt

]

+ E
[
∫ T

0

〈
HY (t, yt , Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt ),Y

v·
t − Yt

〉
dt

]

+ E
[
∫ T

0

〈
Hz(t, yt , Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt ), z

v·
t − zt

〉
dt

]

+ E
[
∫ T

0

〈
HZ (t, yt , Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt ), Z

v·
t − Zt

〉
dt

]

+ E
[
∫ T

0

∫

Θ
〈Hk(t, yt , Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt ), k

v·
t (ρ) − kt (ρ)〉ν(dρ)dt

]

− E
[
∫ T

0

(
H(t, yv·t , Yv·

t , zv·t , Zv·
t , kv·t , vt , pt , Pt , qt , Qt , Vt )

− H(t, yt , Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt )
)
dt

]
. (17)

Here we have used the formula h(ω, x) := c Rx + ξ(ω), x ∈ R
n, to get the

cancelation
E

[ 〈
c R∗ pT , yv·

T − yT
〉 ] − E

[ 〈
pT ,Y v·

T − YT
〉 ] = 0

resulting from (13) of Lemma 2 and (15) of Lemma 3.
On the other hand, from the concavity condition (ii) of the mapping

(y,Y, z, Z , k, v) �→ H(t, y,Y, z, Z , k, v, pt , Pt , qt , Qt , Vt )

it follows that

H(t, yv·t , Y v·
t , zv·t , Zv·

t , kv·t , vt , pt , Pt , qt , Qt , Vt ) − H(t, yt , Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt )
≤ 〈

Hy(t, yt , Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt ), y
v·
t − yt

〉

+ 〈
HY (t, yt , Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt ), Y

v·
t − Yt

〉
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+ 〈
Hz(t, yt , Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt ), z

v·
t − zt

〉

+ 〈
HZ (t, yt , Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt ), Z

v·
t − Zt

〉

+
∫

Θ

〈
Hk(t, yt , Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt ), k

v·
t (ρ) − kt (ρ)

〉
ν(dρ)

+ 〈Hv(t, yt , Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt ), vt − ut 〉 .

In particular,

− 〈Hv(t, yt ,Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt ), vt − ut 〉
≤ 〈

Hy(t, yt ,Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt ), y
v·
t − yt

〉

+ 〈
HY (t, yt ,Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt ),Y

v·
t − Yt

〉

+ 〈
Hz(t, yt ,Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt ), z

v·
t − zt

〉

+ 〈
HZ (t, yt ,Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt ), Z

v·
t − Zt

〉

+
∫

Θ

〈
Hk(t, yt ,Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt ), k

v·
t (ρ) − kt (ρ)

〉
ν(dρ)

−[H(t, yv·
t ,Y v·

t , zv·
t , Zv·

t , kv·
t , vt , pt , Pt , qt , Qt , Vt )

− H(t, yt ,Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt )].

Now by applying this latter result in (17) we obtain

J (v·) − J (u·) ≥ −E
[
∫ T

0
〈Hv(t, yt ,Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt ), vt − ut 〉 dt

]
.

(18)
On the other hand, the maximum condition (iii) yields

〈Hv(t, yt ,Yt , zt , Zt , kt , ut , pt , Pt , qt , Qt , Vt ), vt − ut 〉 ≤ 0.

Hence (18) becomes
J (v·) − J (u·) ≥ 0.

Since v· is an arbitrary element of Uad , this inequality completes the proof if we
recall (5).
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On the Pathwise Uniqueness of Solutions
of One-Dimensional Stochastic Differential
Equations with Jumps

Mohsine Benabdallah, Siham Bouhadou and Youssef Ouknine

Abstract Weconsider one-dimensional stochastic differential equationswith jumps
in the general case. We introduce new technics based on local time and we prove
new results on pathwise uniqueness and comparison theorems. Our approach are very
easy to handled. Similar equations without jumps were studied in the same context
by [10, 15] and others authors.

Keywords Semimartingale · Local time · Tanaka formula · Pathwise uniqueness
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1 Introduction

Stochastic differential equations play a central role in the theory of stochastic
processes and are often used in the modeling of various random processes in
nature. Often defined as strong solutions of stochastic differential equations, diffu-
sion processes are widely used in stochastic modeling e.g., Ornstein and Uhlenbeck
[11] used their process for the analysis of velocity of a particle in a fluid under the
bombardment bymolecules. Samuelson [19] introduced geometric Brownianmotion
formodeling the behavior of financial markets. Also diffusions processes appear e.g.,
in stochastic population modeling.
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In the recent years, jump processes were also used in many fields as flexible models
to describe various phenomena. In particular, they are frequently used in financial
modeling, it would be nice for the readers to refer to Cont and Tankov [5] and their
reference for details about applications. Barndorff-Nielsen [1] proposed the idea for
generalizing diffusion processes by means of changing the driving Wiener process
by a Lévy process and defined the so-called background driven Ornstein-Uhlenbeck
type process.
In the present paper, we consider stochastic differential equations driven by both a
Wiener process and a Poisson random measure, and study the question of pathwise
uniqueness of this class called stochastic differential equation with jumps:

dXt = σ(Xt )dWt + b(Xt )dt +
∫

R−0
F(Xt−, z)(μ − ν)(dz, dt), X0 = x0. (1)

In fact, the results on pathwise uniqueness of (1) have been obtained under Lipschitz
conditions, see Skorohod [20], Ikeda and Watanbe [9], Protter [17]. In absence of
jumps, this SDE

dXt = σ(Xt )dWt + b(Xt )dt,

with non-Lipschitz coefficient were considered by several authors. There were many
works which discuss under which conditions on b and σ , we have the existence of
strong solutions of stochastic differential equations. In the case when the equation
is one-dimensional and σ is not degenerated, several results have been obtained
by Ouknine [12–14]. For SDEs which involve local times of unknown process, the
most general result is given by Rutkowski [18] where he showed the so called (LT)
condition is sufficient to have pathwise uniqueness. So, the purpose of this paper is
to give the analogue of this condition for the one dimensional SDEwith jumps which
concerns the couple of coefficients σ and F .

This paper is arranged as follows. In Sect. 2, we recall the definition of (LT)
condition introduced by Barlow and Perkins [2], and we introduce the new definition
of local time condition (LT ). In Sect. 3, we give some sufficient assumptions which
ensure this condition.

2 Preliminaries

On some stochastic basis (Ω,A ,F = (Ft )t≥0, P), we consider one-dimensional
F-Brownian motionW = (Wt )t≥0 and a F-Poisson point process {pt }. Letμ(ds, dy)
be the Poisson random measure associated with {pt }. We suppose that μ and W are
independent. The random measure μ(ds, dy) has deterministic intensity

ν(ds, dy) = dsλ(dy) on (0,∞) × R − {0}
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where λ is σ -finite measure on R − {0}, satisfying
∫

R−0
(y ∧ 1)2λ(dy) < ∞.

A solution of (1) is any process X = (Xt )t≥0 on (Ω,A ,F, P) satisfying (i) and
(i i) below.We say that the pathwise uniqueness of solutions for (1) holds if whenever
X and X ′ are any two solutions defined on the same stochastic basis (Ω,A ,F, P)

with the same F-Brownian motion W = (Wt )t≥0 and the same F-Poisson point
process μ(ds, dy) such that X0 = X ′

0 a.s., then Xt = X ′
t for all t ≥ 0 a.s.

We present, following Protter [17] the notion of local time of a semimartingale
and some of its properties. If X is a general càdlàg semimartingale, let ΔX denote
the process ΔXt = Xt − Xt−.
We recall the quadratic variation process of X is defined by

[X ]t = X2
t − 2

∫ t

0
Xs−dXs .

The local time at a of X , denoted La
t = La

t (X) is defined to be the process given by

La
t = |Xt − a| − |X0 − a| −

∫ t

0
sign(Xs− − a)dXs

−
∑

0<s≤t

{|Xs − a| − |Xs− − a| − sign(Xs− − a)ΔXs} .

The local time gives a generalization of Itô’s formula: if f is the difference of two
convex functions and f ′ is its left derivative and let μ be the signed measure which
is the second derivative of f . Thus we have

f (Xt ) = f (X0) +
∫ t

0+
f ′(Xs−)dXs +

∑

0<s≤t

{
f (Xs) − f (Xs−) − f ′(Xs−)ΔXs

}

+1

2

∫ ∞

−∞
La
t μ(da).

We introduce the local time slanted L a
t (X) of a semimartingale X by

L a
t = |Xt − a| − |X0 − a| −

∫ t

0
sign(Xs− − a)dXs .

We remark that if f is the difference of two convex functions, we have

f (Xt ) = f (X0) +
∫ t

0+
f ′(Xs−)dXs + 1

2

∫ ∞

−∞
L a

t μ(da).
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Finally, we indicate the formula of occupation density, if f is a bounded Borel
measurable function, then, a.s.

∫ ∞

−∞
La
t f (a)da =

∫ t

0
f (Xs−)d〈X〉s,

where 〈X〉 is the continuous part of [X ].
We apply this notation:
For all x and y in R, x ∧ y = inf(x, y) and x ∨ y = sup(x, y).
Now, we introduce two definitions of the (LT) condition, the first concerns the coef-
ficient σ uniquely and the second concerns the couple of coefficients (σ, F) that will
help us to get the pathwise uniqueness of Eq. (1).

Definition 1 We say that a coefficient σ of Eq. (1) satisfies the (LT) condition if for
two solutions X1 and X2 of (1), then

∀t ≥ 0 L0
t (X

1 − X2) = 0. (2)

Now, we define the (LT ) condition concerning the couple of coefficient (σ, F)

of Eq. (1).

Definition 2 We say that the coefficients (σ, F) of Eq. (1) satisfy (LT ) condition
if for two solutions X1 and X2 of (1), then

∀t ≥ 0 L 0
t (X1 − X2) = 0. (3)

We can remark that if the coefficients of (1) verify the (LT ) condition then they
verify the (LT) condition too which was used by several authors (Le Gall [10],
Ouknine [15]) and which permits to prove the pathwise uniqueness of solutions of
one-dimensional stochastic differential equations without jumps.

3 The Pathwise Uniqueness Property for Eq. (1)

3.1 Main Result

Throughout this paragraph, we make the following assumption on the coefficients in
Eq. (1):

(A) The functions σ and b are measurable and bounded.
(B) |b(x) − b(y)| ≤ c |x − y| for all x, y.
(C) |b(x)|2 + |σ(x)|2 + ∫ |F(x, z)|2 λ(dz) + ∫ |F(x, z)| λ(dz) ≤ c(1 + |x |2)

for all x .
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Theorem 1 If (σ, F) verify (LT ) condition, then the solution to (1) is pathwise
unique.

Proof We need the following Lemma to prove that if pathwise uniqueness holds for
(1) before the first big jump(for example |ΔX | ≥ 1), then pathwise uniqueness holds
for every t ≥ 0. This allows to consider Eq. (1) with only the small jumps.

Lemma 1 We have pathwise uniqueness for Eq. (1) with only the small jumps, then
pathwise uniqueness holds for Eq. (1) for general case.

Proof Let X and Y two solutions of Eq. (1) with the same initial value. Let S1 be
the first time when the big jump happens (|ΔX | ≥ 1), then we have

Xt = Yt a.s. for t ∈ [0, S1) .

We have also XS1 = XS−
1

+ F(XS−
1
,ΔXS1) = YS−

1
+ F(YS−

1
,ΔYS1) = YS1 . We con-

sider the filtration F
S1 = (FS1+t )t≥0, the F

S1 -Brownian motion WS1 = (WS1+t −
WS1)t≥0 and a FS1 -Poisson point process μS1(ds, dy) with intensity νS1 = dsλ(dy)
on in (0,∞) × R defined by μS1([0, t] × ·) = μ([S1, S1 + t] × ·). We consider the
new equation:

dX S1
t = σ(XS1

t )dW S1
t + b(XS1

t )dt +
∫

F(XS1
t−, z)(μS1 − νS1)(dz, dt), t ≥ 0. (4)

We consider the processes XS1 and Y S1 defined by XS1
t = XS1+t , t ≥ 0 and Y S1

t =
YS1+t , t ≥ 0. Then XS1 and Y S1 are solutions of (4) with the same initial condition
and by the hypothesis of pathwise uniqueness property of stochastic differential
equation without the big jumps, they are equal until the first big jump when happens
at time S2. We have also

XS1
t = Y S1

t a.s. for t ∈ [0, S2 − S1) .

This implies
Xt = Yt a.s. for t ∈ [0, S2) .

We repeat the same process, we obtain the pathwise uniqueness for Eq. (1) for the
general case.

To complete the proof, we use the Tanaka’s formula. Let X1 and X2 be two solutions
to (1), then ∣

∣X1
t − X2

t

∣
∣ = ∫ t

0 sign(X
1
s− − X2

s−)d(X1
s − X2

s ). (5)

Now, we have

d(X1
t − X2

t ) = (σ (X1
t ) − σ(X2

t ))dWt + (b(X1
t ) − b(X2

t ))dt

+ ∫
(F(X1

t−, z) − F(X2
t−, z))(μ − ν)(dt, dz).

(6)
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If we substitute (6) in (5), we obtain

∣
∣X1

t − X2
t

∣
∣ = ∫ t

0 sign(X
1
s− − X2

s−)(σ (X1
s ) − σ(X2

s ))dWs

+ ∫ t
0 sign(X

1
s− − X2

s−)(b(X1
s ) − b(X2

s ))ds

+ ∫ t
0 sign(X

1
s− − X2

s−)
∫
(F(X1

s−, z) − F(X2
s−, z))(μ − ν)(ds, dz).

The first and the third terms on the right hand sides are martingales and all terms on
the right hand side are integrable.
We can prove, if we note I2(t) the second term on the right hand side and using the
fact that b is Lipschitz, that

|I2(t)| ≤ c
∫ t

0

∣
∣X1

s − X2
s

∣
∣ ds. (7)

Finally, we obtain

E
(∣
∣X1

t − X2
t

∣
∣
) ≤ c

(∫ t

0
E

∣
∣X1

s − X2
s

∣
∣ ds

)

and Gronwall’s lemma implies that X1 ≡ X2.
In the following, we present a sufficient assumption to get the (LT ) condition.

Proposition 1 Suppose that there exist a sequence of non-negative and twice con-
tinuously differentiable functions {φn} with the following properties:

(a) φn(z) ↑ |z| as n → ∞.
(b)

∣
∣φ′

n(z)
∣
∣ ≤ 1 for all z.

(c) φ′′
n (z) ≥ 0 for z ∈ R and as n → ∞,

φ′′
n (x − y) [σ(x) − σ(y)]2 → 0 uniformly in |x | , |y| ≤ m.

(d) as n → ∞
∫

[
φn(x + F(x, z) − y − F(y, z)) − φn(x − y) − φ′

n(x − y)(F(x, z)

−F(y, z))] λ(dz)

converges to 0 uniformly in |x | , |y| ≤ m;
then (σ, F) verify (LT ) condition.

Proof Let X1 and X2 be two solutions of (1) defined on the same stochastic
basis (Ω,A ,F, P) with the same F-Brownian motion W = (Wt )t≥0 and the same
F-Poisson point process μ(ds, dy) such that X1

0 = X2
0 a.s., we set:
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In(s) =
∫

{
φn((X

1
s− − X2

s−) + [
F(X1

s−, z) − F(X2
s−, z)

]
)

− φn(X1
s− − X2

s−) − [
F(X1

s−, z) − F(X2
s−, z)

]
φ′
n(X

1
s− − X2

s−)
}
λ(dz).

Let τm = inf {t ≥ 0 : |X1(t)| ≥ m or |X2(t)| ≥ m}. By application of Itô’s for-
mula, we have

∫ t∧τm

0
In(s)ds = φn(X1

t∧τm
− X2

t∧τm
) − φn(0)

−
∫ t∧τm

0
φ′
n(X

1
s− − X2

s−)(b(X1
s−) − b(X2

s−))ds

−
∫ t∧τm

0
φ′
n(X

1
s− − X2

s−)(σ (X1
s−) − σ(X2

s−))dWs

−1

2

∫ t∧τm

0
φ′′
n (X

1
s− − X2

s−)(σ (X1
s−) − σ(X2

s−))2ds

−
∫ t∧τm

0

∫
[
φn((X

1
s− − X2

s−) + (F(X1
s−, z) − F(X2

s−, z))

−φn(X1
s− − X2

s−)
]
(μ − ν)(dz, ds).

According to the assumptions (a), (c), (d), the term on the left hand side, the
second and the fifth terms on the right hand side tend to zero. We obtain:

0 = ∣
∣(X1

t∧τm
− X2

t∧τm
)
∣
∣

− ∫ t∧τm
0 sign(X1

s− − X2
s−)(b(X1

s−) − b(X2
s−))ds

− ∫ t∧τm
0 sign(X1

s− − X2
s−)(σ (X1

s−) − σ(X2
s−))dWs

− ∫ t∧τm
0

∫ [∣
∣X1

s− − X2
s− + (F(X1

s−, z) − F(X2
s−, z))

∣
∣

− ∣
∣X1

s− − X2
s−

∣
∣
]
(μ − ν)(dz, ds).

We note that this leads to the formula of Tanaka which lacks a term that can only
be zero in this case. We obtain

∣
∣X1

t∧τm
− X2

t∧τm

∣
∣ −

∫ t∧τm

0
sign(X1

s− − X2
s−)d(X1

s − X2
s ) = 0.

Since τm → ∞ as m → ∞, we obtain

L 0
t (X1 − X2) = ∣

∣X1
t − X2

t

∣
∣ −

∫ t

0
sign(X1

s− − X2
s−)d(X1

s − X2
s ) = 0.

Thus, (σ, F) verify (LT ) condition.
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Now, we give several conditions which ensure (LT ) condition, in particular the
coefficients can be discontinuous. First, we need the following Lemma:

Lemma 2 Suppose that the condition (C) is satisfied. Let X be a solution of (1), then
there exists a version of (a, t, w) → La

t (X) which is everywhere jointly continuous
in t and right continuous in a.

Proof To prove the lemma, we may verify that:
∑

s≤t |ΔXs | < ∞ a.s.; see e.g.
Theorem 75, Protter [17]. So, it is sufficient to prove that

∑
s≤t |ΔXs | < ∞. Let

αt = ∑
s≤t |ΔXs |. From (1) and condition (C):

E(αt ) = E

(
∑

s≤t

|Δp(t)|
)

= E

(∫ t

0

∫

|F(Xs−, u)|μ(ds, du)

)

= E

(∫ t

0

∫

|F(Xs−, u)|λ(du)ds

)

< ∞

Corollary 1 If σ and F verify the following condition:

|σ(x) − σ(y)|2 +
∫

|z|<1
(F(x, z) − F(y, z))2λ(dz) ≤ h(|x − y|) for all x, y

where h : [0,∞) → [0,∞) is continuous and nondecreasing, h(0) = 0, h(x) > 0
for x > 0, and ∫ ε

0

du

h(u)
= ∞ for every ε > 0,

and if x → x + F(x, z) is nondecreasing in a neighborhood of 0, λ(dz) a.e. then
(σ, F) verify (LT ) condition.

Proof The main idea is to use the Tanaka formula but with the function x → x+.
Let X1 and X2 be two solutions to (1), then

(
X1
t − X2

t

)+ =
∫ t

0
1(X1

s−−X2
s−>0)d(X1

s − X2
s )

+
∑

0<s≤t

1(X1
s−−X2

s−>0)

(
X1
s − X2

s

)−

+
∑

0<s≤t

1(X1
s−−X2

s−≤0)

(
X1
s − X2

s

)+

+1

2
L0
t (X

1 − X2).

In order that the (LT ) condition be realized, we can prove that the second and
the third term on the right hand side is zero and that L0

t (X
1 − X2) = 0. By the first

hypothesis on σ and F and Itô’s formula, we obtain:
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∫ t

0
1{X1

s−−X2
s−>0}

d〈X1 − X2〉s
h(X1

s− − X2
s−)

≤
∫ t

0

(σ (X1
s ) − σ(X2

s ))
2 + ∫

|z|<1(F(X1
s , z) − F(X2

s , z))
2λ(dz)

h(X1
s − X2

s )
1{X1

s −X2
s >0} ds

≤ t.

Hence, by the occupation time formula, we get:

∫ t

0
1{X1

s−−X2
s−>0}

d〈X1 − X2〉s
h(X1

s− − X2
s−)

=
∫ +∞

0+

da

h(a)
La
t (X

1 − X2) < ∞.

Thus, by Lemma 2, a → La
t (X

1 − X2) is right continuous. This argument combined
with this condition

∫ ε

0+
du
h(u)

= ∞ for some ε > 0 imply that L0
t (X

1 − X2) = 0.
Now,we prove uniquely the nullity of the second term, the other is proved by the same
method. We can suppose that x → F(x, z) + x is nondecreasing in a neighborhood
of 0, λ(dz) a.e. . We have

∑
0<s≤t 1(X1

s−−X2
s−>0)

(
X1
s − X2

s

)−

= ∑
0<s≤t 1(X1

s−−X2
s−>0)

(
ΔX1

s − ΔX2
s + X1

s− − X2
s−

)−

=
∫ t

0

∫

1(X1
s−−X2

s−>0)

[
(F(X1

s−, z) + X1
s−) − (F(X2

s−, z) + X2
s−)

]−
μ(ds, dz).

(8)

Since x → x + F(x, z) is nondecreasing, the right hand size of (8) is 0. We obtain
the desired result.

This corollary generalizes the results of Fu-Li [8] F is weaker than [8]. We present
a second corollary in the spirit of Nakao (Le Gall [10]) result but for discontinuous
SDE.

Corollary 2 If σ = 0 and F verifies the following condition:

∫

|z|<1
(F(x, z) − F(y, z))2λ(dz) ≤ | f (x) − f (y)| for all x, y

where f : R → R is of bounded variation, if there exists ε > 0 such that F > ε

and if x → x + F(x, z) is nondecreasing in a neighborhood of 0, λ(dz) a.e. then
F verifies (LT ) condition.

Proof Without loss of generality, we shall prove the statement for an increasing
function f . Let us first show that L0· (X − Y ) ≡ 0, whenever X and Y denote any
two solutions of the SDE (1). By Lemma 2, we get the right continuity of L0· . So, it
is enough to prove that, for any t ≥ 0,
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∫ +∞

0+

La
t (X − Y )

a
da < +∞.

Indeed, using the density occupation formula we can write,

∫ +∞

0+

La
t (X − Y )

a
da =

∫ t

0

d〈X − Y 〉s
Xs− − Ys−

1{Xs−−Ys−>0}

=
∫ t

0

∫
|z|<1 (F(Xs, z) − F(Ys, z))

2 λ(dz)

Xs − Ys
1{Xs−Ys>0}ds.

Applying the assumption of the corollary, we obtain

∫ t

0

∫
|z|<1 (F(Xs, z) − F(Ys, z))

2 λ(dz)

Xs − Ys
1{Xs−Ys>0}ds

≤
∫ t

0

| f (Xs) − f (Ys)|
Xs − Ys

1{Xs−Ys>0}ds.

As a consequence,

E

[∫ +∞

0+

La
t (X − Y )

a
da

]

≤ E

[∫ t

0

| f (Xs) − f (Ys)|
Xs − Ys

1{Xs−Ys>0}ds
]

. (9)

Now, by a localization argument ‖ f ‖∞ := supx | f (x)| < ∞.
Let θn denote the standard positive regularizing mollifiers sequence, and define

fn(x) = ( f̃ (.) ∗ θn)(x) for x ∈ R, n ∈ N
∗,

where f̃ is any real function such that f̃ (x) = f (x) if |x | ≤ M and 0 if |x | ≥ M + 1.
Note that fn are increasing functions, with support contained in [−M − 1, M + 1]
such that

sup
n

sup
x

| fn(x)| ≤ ‖ f ‖∞ and fn(x) → f (x) for every x ∈ Dc, |x | ≤ M,

where D is the denumerable set of discontinuous points of the function f . If we
denote
Zα
t = αXt + (1 − α)Yt , then, using successively Fatou’s Lemma, the intermediate

value theorem and F > ε. We get,

E

[∫ t

0

( f (Xs) − f (Ys))

Xs − Ys
1{Xs−Ys>0}ds

]

≤ lim inf
n→+∞ E

[∫ t

0

( fn(Xs) − fn(Ys))

Xs − Ys
1{Xs−Ys>0}ds

]
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= lim inf
n→+∞ E

[∫ t

0

∫ 1

0
f ′
n(αXs + (1 − α)Ys)dαds

]

= lim inf
n→+∞

∫ 1

0
dαE

[∫ t

0
f ′
n(Z

α
s )ds

]

≤ 1

ε2
lim inf
n→+∞

∫ 1

0
dαE

[∫ t

0
f ′
n(Z

α
s )d〈Zα〉s

]

.

Note that we have used in the first inequality the fact that

∫ t

0
P[(Xs− ∈ D) ∪ (Ys− ∈ D)]ds = 0.

This last equality is a consequence of the occupation time formula. Hence,

E

[∫ +∞

0

La
t (X − Y )

a
da

]

≤ 1

ε2
lim inf
n→+∞ E

[∫

R

∫ 1

0
f ′
n(a)La

t (Z
α)dαda

]

.

Therefore, we obtain

E

[∫ +∞

0+

La
t (X − Y )

a
da

]

≤ C sup
α∈[0,1],a∈R

E
[
La
t (Z

α)
]
∫

R

f ′
n(a)da

where C > 0 is a generic constant. Suppose now we can show

sup
α∈[0,1],a∈R

E
[
La
t (Z

α)
]

< ∞, (10)

this implies that

E

[∫ +∞

0+

La
t (X − Y )

a
da

]

≤ C‖ f ‖∞.

Hence L0· (X − Y ) ≡ 0. By Tanaka’s formula, we obtain that |X · − Y·| is a local
martingale, thus also a non-negative supermartingale, with |X0 − Y0| = 0, and con-
sequently, X and Y are indistinguishable.
The property (10) is checked by standard methods: with the help of the Tanaka’s
formula

|Zα
t − a| = |Zα

0 − a| +
∫ t

0
sgn(Zα

s − a)dZα
s + La

t (Z
α)

and the Itô isometry, we get

E(La
t (Z

α)) ≤ E(|Zα
t − Zα

0 |) + E(〈Zα〉t ) 1
2 .
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The assumptions (B) and (C) yields the result.
We conclude by following the same lines as in the proof of the Corollary 1.

Corollary 3 If (σ, F) verifie the following condition:

|σ(x) − σ(y)|2 +
∫

|z|<1
(F(x, z) − F(y, z))2λ(dz) ≤ | f (x) − f (y)| for all x, y

where f : R → R is of bounded variation, and there exists ε > 0 such that

σ > ε or F > ε

and if x → x + F(x, z) is nondecreasing in a neighborhood of 0, λ(dz) a.e. then
(σ, F) verify (LT ) condition.

Proof The proof of the Corollary 3 is similar to what we have seen previously, this
is due to the first hypothesis for σ and F which implies the (LT) condition and the
hypothesis for F is identical to that of the Corollary 2.

Proposition 2 If σ satisfies (LT) condition and F verifies the following condition:

∫

|F(x, z) − F(y, z)| λ(dz) ≤ c |x − y| for all x, y (11)

then the solution to (1) is pathwise unique.

Proof We use the Tanaka formula. Let X1 and X2 be two solutions to (1), then

∣
∣X1

t − X2
t

∣
∣ =

∫ t

0
sign(X1

s− − X2
s−)d(X1

s − X2
s )

+
∑

0<s≤t

{∣
∣X1

s − X2
s

∣
∣ − ∣

∣X1
s− − X2

s−
∣
∣

−sign(X1
s− − X2

s−)Δ(X1
s − X2

s )
}
. (12)

Now, we have

d(X1
t − X2

t ) = (σ (X1
t ) − σ(X2

t ))dWt + (b(X1
t ) − b(X2

t ))dt

+
∫

(F(X1
t−, z) − F(X2

t−, z))(μ − ν)(dt, dz). (13)

If we substitute (13) in (12), we obtain
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∣
∣X1

t − X2
t

∣
∣ =

∫ t

0
sign(X1

s− − X2
s−)(σ (X1

s ) − σ(X2
s ))dWs

+
∫ t

0
sign(X1

s− − X2
s−)(b(X1

s ) − b(X2
s ))ds

+
∫ t

0
sign(X1

s− − X2
s−)

∫

(F(X1
s−, z) − F(X2

s−, z))(μ − ν)(ds, dz)

+
∑

0<s≤t

{∣
∣X1

s − X2
s

∣
∣ − ∣

∣X1
s− − X2

s−
∣
∣ − sign(X1

s− − X2
s−)Δ(X1

s − X2
s )

}
.

The first and the third terms on the right hand side are martingales and all terms on
the right hand side are integrable.
We can prove, if we note I2(t) the second term on the right hand side and using the
fact that b is Lipschitz, that

|I2(t)| ≤ c
∫ t

0

∣
∣X1

s − X2
s

∣
∣ ds. (14)

We treat the fourth term, denoted I4(t), by the following calculation:

|I4(t)| ≤
∑

0<s≤t

∣
∣
∣
∣X1

s − X2
s

∣
∣ − ∣

∣X1
s− − X2

s−
∣
∣
∣
∣ + ∣

∣Δ(X1
s − X2

s )
∣
∣

≤ 2
∫ t

0

∫
∣
∣F(X1

s−, z) − F(X2
s−, z)

∣
∣ μ(ds, dz)

= 2
∫ t

0

∫
∣
∣F(X1

s−, z) − F(X2
s−, z)

∣
∣ (μ − ν)(ds, dz)

+ 2
∫ t

0

∫
∣
∣F(X1

s−, z) − F(X2
s−, z)

∣
∣ ν(ds, dz).

Taking expectation in the two sides and using the martingales property and (11),
we obtain

E (|I4(t)|) ≤ cE

(∫ t

0
ds

∫
∣
∣F(X1

s−, z) − F(X2
s−, z)

∣
∣ λ(dz)

)

and hence, we have

E (|I4(t)|) ≤ c
∫ t

0
E

(∣
∣X1

s − X2
s

∣
∣
)
ds. (15)

Hence the result.
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4 Others Results

Theorem 2 If (σ, F) verify (LT ) condition and b is measurable and bounded.
Then the uniqueness in the sense of probability law implies the pathwise uniqueness.

Proof Let X1 and X2 be two solutions of Eq. (1) with the same initial condition. We
will prove that Y = X1 ∨ X2 and Z = X1 ∧ X2 are solutions of (1). We obtain by
using Tanaka’s formula and (LT ) condition,

(
X2
t − X1

t

)+ = ∫ t
0+ 1(X2

s−−X1
s−>0)d(X2

s − X1
s )

by using the fact that X1 ∨ X2 = X1 + (X2 − X1)+ we obtain

X1
t ∨ X2

t =
∫ t

0

[
1(X2

s−−X1
s−>0)(σ (X2

s ) − σ(X1
s )) + σ(X1

s )
]
dWs

+
∫ t

0

[
1(X2

s−−X1
s−>0)(b(X

2
s ) − b(X1

s )) + b(X1
s )

]
ds

+
∫ t

0+

∫ [
1(X2

s−−X1
s−>0)(F(X2

s−, z) − F(X1
s−, z))

+ F(X1
s−, z)

]
(μ − ν)(ds, dz)

=
∫ t

0
σ(X1

s ∨ X2
s )dWs +

∫ t

0
b(X1

s ∨ X2
s )ds

+
∫ t

0+

∫

F((X1 ∨ X2)s−, z)(μ − ν)(ds, dz).

Then Y is a solution of (1).
We have on the other hand,

(
X1
t − X2

t

)+ =
∫ t

0+
1(X1

s−−X2
s−>0)d(X1

s − X2
s ).

By using the fact that X1 ∧ X2 = X1 − (X1 − X2)+ we obtain by the sameway that

X1
t ∧ X2

t =
∫ t

0
σ(X1

s ∧ X2
s )dWs +

∫ t

0
b(X1

s ∧ X2
s )ds

+
∫ t

0+

∫

F((X1 ∧ X2)s−, z)(μ − ν)(ds, dz).

Then Z is a solution of (1).
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Finally, we have for all t ≥ 0

E
[∣
∣X1

t − X2
t

∣
∣
] = E

[
X1
t ∨ X2

t

] − E
[
X1
t ∧ X2

t

]
,

and by using the uniqueness in the sense of probability law, we obtain

E
[∣
∣X1

t − X2
t

∣
∣
] = 0.

Since X1 and X2 are càdlàg, hence X1
t = X2

t for all t ≥ 0 a.s.

This allows us to give a generalization of Bass’s result [4], we have the following:

Theorem 3 If (σ, F) verify (LT ) condition and b is measurable, bounded and
moreover we suppose that:

• σ is bounded, continuous and strictly positive.
• x → ∫

A
|z|2

1+|z|2 F(x, z)λ(dz) is bounded and continuous for each A ⊂ R − {0}.
Then there exists a solution to (1) that is pathwise unique.

Proof By Bass’s result [4], the hypothesis of theorem entail the existence of a unique
solution to the martingale problem associated to the SDE (1). By using the equiv-
alence between martingale problem- stochastic differential equation, this implies
existence of a unique weak solution to the Eq. (1). Hence, by the (LT ) condition
combined with last theorem, we get the desired result.

If we set F(x, z) = 1
|z|1+α(x) and σ = b = 0 in the Eq. (1), we obtain the stable-like

process with the operator

L f (x) =
∫

[
f (x + z) − f (x) − 1(|z|≤1) f

′(x)z
] 1

|z|1+α(x)
dz.

We have the following proposition

Proposition 3 If the function α is Dini continuous, bounded above by a constant
less than 2 and bounded bellow by a constant greater than 0 and is increasing, then
we have pathwise uniqueness of the solution of the stochastic differential equation
driven by stable-like process associated to F.

The proof is a consequence of Bass’s result ([4], p. 13).

Theorem 4 Suppose that for i = 1, 2, X i satisfies:

dXi
t = σ(Xi

t )dWt + bi (X
i
t )dt +

∫

F(Xi
t−, z)(μ − ν)(dt, dz), (16)

where σ, F, b1, b2, are bounded measurable functions. Assume that:

• (σ, F) verify (LT ) condition.
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• One of the two functions b1, b2 is Lipschitz.

Assume further that:

1. b1 ≤ b2.
2. X1

0 ≤ X2
0 .

Then: X1
t ≤ X2

t for all t a.s.

Proof Let Xi , i = 1, 2 two solutions of equations (16). ByTanaka formulawe obtain

(
X1
t − X2

t

)+ =
∫ t

0
1(X1

s−−X2
s−>0)d(X1

s − X2
s )

+
∑

0<s≤t

1(X1
s−−X2

s−>0)

(
X1
s − X2

s

)−

+
∑

0<s≤t

1(X1
s−−X2

s−≤0)

(
X1
s − X2

s

)+

+1

2
L0
t (X

1 − X2). (17)

As (σ, F) verify (LT ) condition, the second, the third and the fourth terms in
the right hand sides are zero. Using the same argument as in Proposition 2, we find

E

[(
X1
t − X2

t

)+]
≤ c

∫ t

0
E

[(
X1
s − X2

s

)+]
ds

which implies that X1
t ≤ X2

t for all t ≥ 0 a.s. (since X1 and X2 are càdlàg).

Theorem 5 Suppose that for i = 1, 2, X i satisfies:

dXi
t = σ(Xi

t )dWt + bi (X
i
t )dt +

∫

Fi (X
i
t−, z)(μ − ν)(dt, dz) (18)

where σ, F1, F2, b1, b2, are bounded measurable functions. Assume that:

• σ verify (LT ) condition.
• One of the two functions b1, b2 is Lipschitz.

Assume further that:

1. b1 ≤ b2.
2. X1

0 ≤ X2
0 .

3. x1 + F1(x1, z) ≤ x2 + F2(x2, z) for all x1 ≤ x2.

Then: X1
t ≤ X2

t for all t a.s.
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Proof We apply the same method as before in the Theorem 4, the second and the
third terms in the right hand side of (17) is zero because of the assumption 3 and
the fourth term is zero because the σ verify (LT ) condition. The end of the proof is
identical to that of the Theorem 4.

Remark 1 We can see that if Fi , i = 1, 2 satisfy the hypothesis of Corollary 2 (or 3),
then we can replace the hypothesis 3. by

F1(x1, z) ≤ F2(x2, z),∀x1 ≤ x2.

Remark 2 If we take F1 = F2 in the Theorem 2, the assumption of the Corollary 1
(or 2) on F is enough for the conclusion of the Theorem 4.

Remark 3 We can remark that the condition 3 in the Theorem 5 ensures that the paths
of Xi do not cross at jump times: if (s, z) is an atom ofμ and if X1

s− = x ≤ X2
s− = y,

then
X1
s = x + F1(x, z) ≤ y + F2(y, z) = X2

s

and this condition is necessary for comparison theorem.

Remark 4 We can remark that the Theorem 5 generalizes the result of Peng and Zhu
[16] namely Theorem 3.1.

Remark 5 Our approach based on local time technic can be used for more general
equation of type:

Xt = X0 +
∫ t

0
σ(Xs−, u) W (ds, du) +

∫ t

0
b(Xs−) ds

+
∫ t

0

∫

{|u|≤1}
g0(Xs−, u)Ñ0(ds, du)

+
∫ t

0

∫

{|u|≥1}
g1(Xs−, u)N1(ds, du)

where

• {W (ds, du)} the white noise with intensity dsπ(dz), with π is a σ−finite measure
on R.

• N1(ds, du) and Ñ0(ds, du) denote the Poisson random measures on [0,∞) ×
[−1, 1], [0,∞) × [−1, 1]c respectively, defined on same probability space and
are independent each of other.

• Ñ0(ds, du) denote the compensated measure of N0(ds, du).

This SDE was recently studied by Donald A. Dawson and Zenghu Li [6] and treated
by Ouknine [15] in continuous case, it will be the subject of another paper.
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Abstract Consider a Dynkin game with payoff

J (λ, σ) = F

[

Uλ1{λ<σ} + Lσ1{λ>σ} + Qσ1{σ=λ<T } + ξ1{σ=λ=T }
]

,

where F : R −→ R is a continuous nondecreasing function and λ, σ are stopping
times valued in [0, T ]. We show the existence of a value as well as a saddle-point for
this game using the theory of BSDE with double reflecting barriers. An American
game option pricing problem is also discussed.
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Considerable attention has been devoted to studying the association between back-
ward stochastic differential equations (BSDEs for short) and stochastic differential
games. Among others, Cvitanic and Karatzas showed in [4] existence and unique-
ness of the solution to the BSDE with double reflecting barriers, and associated their
equation to a stochastic games. Hamadène [9] and Hamadène and Hassani [11] stud-
ied the mixed zero-sum stochastic differential game problem using the notion of a
local solution of BSDEs with double reflecting barriers. Hamadène and Lepeltier
[10] added controls to the Dynkin game studied by Cvitanic and Karatzas in [4].
Karatzas and Li [14] studied a non-zero-sum game with features of both stochastic
control and optimal stopping, for a process of diffusion type via the BSDE approach.
Dumitrescu et al. [5] introduced a generalized Dynkin game problem associated with
a BSDE with jumps.

Consider the Dynkin game, associated with processes L ,U , ξ and Q, with payoff:

J (λ, σ) = F

[

Uλ1{λ<σ} + Lσ1{λ>σ} + Qσ1{σ=λ<T } + ξ1{σ=λ=T }
]

,

where F : R −→ R is a continuous nondecreasing function and λ, σ are stopping
times valued in [0, T ]. In the direction of connection between BSDEwith two reflect-
ing barriers and Dynkin games, in order to prove that this game has a saddle point,
which is a pair of stopping (λ∗, σ∗) such that for any stopping times λ and σ one has

E

(

J (λ∗, σ)

)

≤ E

(

J (λ∗, σ∗)
)

≤ E

(

J (λ, σ∗)
)

,

all the works [4, 9–11, 14] have considered the case of bounded or square integrable
processes F(ξ), F(Q), F(L) and F(U ). Moreover, they have assumed that the
barriers F(L) and F(U ) have to satisfy one of the conditions:

1. The so-called Mokobodski condition which turns out into the existence of a dif-
ference of nonnegative supermartingales between F(L) and F(U ).

2. The complete separation i.e. F(L) < F(U ).

One of the main objective of this work is to weaken the assumptions assumed on
the data F(ξ), F(Q), F(L) and F(U ) in the case of association between BSDE with
two reflecting barriers and Dynkin games. Yet, checking Mokobodski’s condition
appears as a difficult question. So, instead of assuming the Mokobodski’s condition
on the barriers F(L) and F(U ), we suppose only that there exists a semimartingale
between them. It should be also noted here that if the barriers are completely separated
this implies that there exists a semimartingale between them (see [8]). Actually, if
we assume the following conditions:

1. There exists a semimartingale between L and U and for every semimartingale S
such that L ≤ S ≤ U , F(S) is a also a semimartingale.

2. E[F(Lσ)
−] < +∞, for all stopping time 0 ≤ σ ≤ T , where F(L)−

= sup(−F(L), 0).
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3. lim inf
r→+∞ r P

[

sup
s≤T

F(Us)
+ > r

]

= 0, where F(U )+ = sup(F(U ), 0).

4. lim inf
r→+∞ r P

[

sup
s≤T

F(Ls)
− > r

]

= 0,

then the pair of stopping times (λ∗, σ∗) defined by

λ∗ = inf{s ≥ 0 : Ys = F(Us)} ∧ T and σ∗ = inf{s ≥ 0 : Ys = F(Ls)} ∧ T,

is a saddle-point for the game, where Y is the solution of the following BSDE with
double reflecting barriers F(L) and F(U ) (see Definition 2):

⎧
⎪⎪⎨

⎪⎪⎩

(i) Yt = F(ξ) + ∫ T
t dK+

s − ∫ T
t dK−

s − ∫ T
t ZsdBs , t ≤ T,

(ii) Y between F(L) and F(U ), i.e. ∀t ≤ T, F(Lt) ≤ Yt ≤ F(Ut ),

(iii) the Skorohod conditions hold:
∫ T
0 (Yt − F(Lt ))dK+

t = ∫ T
0 (F(Ut ) − Yt )dK−

t = 0, a.s..

Weshouldmention here that if F(L) and F(U ) are L1—integrable, i.e.E sup
t≤T

(|F(Ut )|
+ |F(Lt )|) < +∞, then the above assumptions 2–4 are satisfied and then theDynkin
game has a saddle point. This corresponds to the main assumption assumed in the
general context of Dynkin games.

An American option is a contract which enables its buyer (holder) to exercise
it at any time up to the maturity. An American game option gives additionally the
right to the option seller (writer, issuer) to cancel it early paying for this a prescribed
penalty. American game optionwas first introduced byKifer [15] and studied later by
several authors, see for example Hamadène [9], Hamadène and Zhang [13] and the
references therein. The second aim of this work is to prove, under weaker conditions
than the square integrability assumed on the data in [9], that the value of the option
at any time t ∈ [0, T ] is given by ertYt , where Y is the solution of some BSDE with
two reflecting barriers. Moreover, we also show that a hedge after t , against the game
option, exists.

2 Preliminaries

2.1 Notations and Assumptions

Let (Ω,F , (Ft )t≤T , P) be a stochastic basis onwhich is defined a Brownianmotion
(Bt )t≤T such that (Ft )t≤T is the natural filtration of (Bt )t≤T and F0 contains all
P-null sets of F . Note that (Ft )t≤T satisfies the usual conditions, i.e. it is right
continuous and complete.
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Let us now introduce the following notations:

• P the sigma algebra of Ft -progressively measurable sets on Ω × [0, T ].
• C the set of R-valued P-measurable continuous processes (Yt )t≤T .
• L 2,d the set of Rd -valued and P-measurable processes (Zt )t≤T such that

T∫

0

|Zs |2ds < ∞, P − a.s.

• K the set of P-measurable continuous nondecreasing processes (Kt )t≤T such
that K0 = 0 and KT < +∞, P– a.s.

Throughout the paper, we introduce the following data:

• L := {Lt , 0 ≤ t ≤ T } and U := {Ut , 0 ≤ t ≤ T } are two real valued barriers
which are P-measurable and continuous processes such that Lt ≤ Ut , ∀t ∈
[0, T ].

• Q be a process such that, ∀t ∈ [0, T ] Lt ≤ Qt ≤ Ut , P − a.s.
• ξ is anFT -measurable one dimensional random variable such that

LT ≤ ξ ≤ UT .

• F : R −→ R is a continuous nondecreasing function.

We assume the following assumptions:

(A.1) There exists a continuous semimartingale S. = S0 + V+
. − V−

. + ∫ .

0 αsd Bs ,
with S0 ∈ R, V+, V− ∈ K and α ∈ L 2,d , such that

Lt ≤ St ≤ Ut , ∀t ∈ [0, T ].

(A.2) For every semimartingale S such that L ≤ S ≤ U , F(S) is a also a
semimartingale.

2.2 Existence of Solution for BSDE with Double Reflecting
Barriers

In view of clarifying this issue, we recall some results concerningBSDEswith double
reflecting barriers with two continuous barriers (see Essaky and Hassani [8] for more
details). Let us recall first the following definition of two singular measures.
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Definition 1 Let K 1 and K 2 be two processes inK . We say that:

K 1 and K 2 are singular if and only if there exists a set D ∈ P such that

E

T∫

0

1D(s, ω)dK 1
s (ω) = E

T∫

0

1Dc(s, ω)dK 2
s (ω) = 0.

This is denoted by dK 1 ⊥ dK 2.

Let us now introduce the definition of a BSDE with double reflecting obstacles
L and U .

Definition 2 1. We call (Y, Z , K+, K−) := (Yt , Zt , K+
t , K−

t )t≤T a solution of the
GBSDE with two reflecting barriers L andU associated with a terminal value ξ

if the following hold:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(i) Yt = ξ + ∫ T
t dK+

s − ∫ T
t dK−

s − ∫ T
t ZsdBs , t ≤ T,

(ii) Y between L and U, i.e. ∀t ≤ T, Lt ≤ Yt ≤ Ut ,

(iii) the Skorohod conditions hold:
∫ T
0 (Yt − Lt )dK+

t = ∫ T
0 (Ut − Yt )dK−

t = 0, a.s.,
(iv) Y ∈ C K+, K− ∈ K Z ∈ L 2,d ,

(v) dK+ ⊥ dK−.

(1)

2. Wesay that theBSDE(1) has amaximal (resp.minimal) solution (Y, Z , K+, K−)

if for any other solution (Y
′
, Z

′
, K ′+, K ′−) of (1) we have for all t ≤ T , Y

′
t ≤ Yt ,

P − a.s. (resp. Y
′
t ≥ Yt , P − a.s.).

The following theorem has already been proved in [8].

Theorem 1 Let assumption (A.1) holds true. Then there exists a maximal (resp.
minimal) solution for BSDE with double reflecting barriers (1).

3 Dynkin Game

Our purpose in this section is to show that the existence of a solution (Y, Z , K+, K−)

to the BSDE (1) implies that Y is the value of a certain stochastic game of stopping.
Consider the payoff

J (λ, σ) = F

(

Uλ1{λ<σ} + Lσ1{λ>σ} + Qσ1{σ=λ<T } + ξ1{σ=λ=T }
)

.
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The setting of our problem of Dynkin game is the following. There are two players
labeled player 1 and player 2. Player 1 chooses the stopping time λ, player 2 chooses
the stopping time σ, and J (λ, σ) represents the amount paid by player 1 to player

2. It is the conditional expectation E

(

J (λ, σ)

)

of this random payoff that player 1

tries to minimize and player 2 tries to maximize. The game stops when one player
decides to stop, that is, at the stopping time λ ∧ σ before time T , the payoff is then
equals

J (λ, σ) =

⎧
⎪⎪⎨

⎪⎪⎩

F(Uλ) if player 1 stops the game first
F(Lσ) if player 2 stops the game first
F(Qσ) if players stop the game simultaneously before time T
F(ξ) if neither have exercised until the expiry time T.

It is then natural to define the lower and upper values of the game:

V := sup
σ∈Mt,T

inf
λ∈Mt,T

E

[

J (λ, σ)

]

≤ V := inf
λ∈Mt,T

sup
σ∈Mt,T

E

[

J (λ, σ)

]

,

where Mt,T is the set of stopping times valued between t and T . If it happens that
V = V , then the above Dynkin game is said to have a value. A pair (λ∗

0, σ
∗
0) is called

a saddle point if

E

(

J (λ∗
0, σ)

)

≤ E

(

J (λ∗
0, σ

∗
0)

)

≤ E

(

J (λ, σ∗
0)

)

.

Our objective is to show the existence of a saddle-point for the game and to charac-
terize it. This implies that this game has a value.

Let assumptions (A.1) and (A.2) hold true. Let (Y, Z , K+, K−) be the solution,
which is exists according to Theorem1, of the followingBSDEwith double reflecting
barriers:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(i) Yt = F(ξ) + ∫ T
t dK+

s − ∫ T
t dK−

s − ∫ T
t ZsdBs, t ≤ T,

(ii) ∀t ≤ T, F(Lt ) ≤ Yt ≤ F(Ut ),∫ T
0 (Yt − F(Lt))dK+

t = ∫ T
0 (F(Ut ) − Yt )dK−

t = 0, a.s.,
(iv) Y ∈ C K+, K− ∈ K Z ∈ L 2,d ,

(v) dK+ ⊥ dK−.

(2)

Let λ∗
t and σ∗

t be the stopping times defined as follows:

λ∗
t = inf{s ≥ t : Ys = F(Us)} ∧ T and σ∗

t = inf{s ≥ t : Ys = F(Ls)} ∧ T .

The main result of this section is the following.
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Theorem 2 Assume the following assumptions:

1. EF(Lσ)
− < +∞, for all stopping time 0 ≤ σ ≤ T , where F(L)− = sup

(−F(L), 0).

2. lim inf
r→+∞ r P

[

sup
s≤T

F(Us)
+ > r

]

= 0, where F(U )+ = sup(F(U ), 0).

3. lim inf
r→+∞ r P

[

sup
s≤T

F(Ls)
− > r

]

= 0.

Then

Yt = E

[

J (λ∗
t , σ

∗
t ) | Ft

]

= sup
σ∈Mt,T

E

[

J (λ∗
t , σ) | Ft

]

= inf
λ∈Mt,T

E

[

J (λ, σ∗
t ) | Ft

]

= inf
λ∈Mt,T

sup
σ∈Mt,T

E

[

J (λ, σ) | Ft

]

= sup
σ∈Mt,T

inf
λ∈Tt

E

[

J (λ, σ) | Ft

]

,

(3)

whereMt,T is the set of stopping times valued between t and T . Y0 can be interpreted
as the value of the game and (λ∗

0, σ
∗
0) as the fair strategy for the two players (or a

saddle point for the game).

Proof Let (a+
n )n and (a−

n )n be two nondecreasing sequences such that

lim inf
n→+∞ a+

n P

[

sup
s≤T

F(Us)
+ > a+

n

]

= 0, lim inf
n→+∞ a−

n P

[

sup
s≤T

F(Ls)
− > a−

n

]

= 0.

(4)

Let also (αi )i≥0 and (υ±
i )i≥0 be families of stopping times defined by

αi = inf{s ≥ t :
s∫

t

| Zr |2 dr ≥ i} ∧ T, υ±
i = inf{s ≥ t : Y±

s > a±
i } ∧ T .

It follows from Eq. (2) that for every stopping time σ ∈ Mt,T

Yt =Yλ∗
t ∧σ∧αi∧υ+

n ∧υ−
m

+
λ∗
t ∧σ∧αi∧υ+

n ∧υ−
m∫

t

dK+
s −

∫ λ∗
t ∧σ∧αi∧υ+

n ∧υ−
m

t
dK−

s

︸ ︷︷ ︸
=0

−
λ∗
t ∧σ∧αi∧υ+

n ∧υ−
m∫

t

ZsdBs .

Then for every stopping time σ ∈ Mt,T
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Yt ≥ E

(

Yλ∗
t ∧σ∧αi∧υ+

n ∧υ−
m

| Ft

)

= E

(

Y+
λ∗
t ∧σ∧αi∧υ+

n ∧υ−
m

| Ft

)

− E

(

Y−
λ∗
t ∧σ∧αi∧υ+

n ∧υ−
m

| Ft

)

.

In view of passing to the limit on i and n respectively and using Fatou’s lemma for
Y+ and dominated convergence theorem for Y− since it is bounded, we have

Yt ≥ E

(

Y+
λ∗
t ∧σ∧υ−

m
| Ft

)

− E

(

Y−
λ∗
t ∧σ∧υ−

m
| Ft

)

.

Now taking the upper limit on m we get

Yt ≥ lim sup
m

[

E

(

Y+
λ∗
t ∧σ∧υ−

m
| Ft

)

− E

(

Y−
λ∗
t ∧σ∧υ−

m
| Ft

)]

= lim sup
m

[

E

(

Y+
λ∗
t ∧σ1λ∗

t ∧σ≤υ−
m

| Ft

)

+ E

(

Y+
υ−
m
1λ∗

t ∧σ>υ−
m

| Ft

)

−E

(

Y−
λ∗
t ∧σ∧υ−

m
| Ft

)]

≥ lim sup
m

[

E

(

Y+
λ∗
t ∧σ1λ∗

t ∧σ≤υ−
m

| Ft

)

− E

(

Y−
λ∗
t ∧σ∧υ−

m
| Ft

)]

= E

(

Y+
λ∗
t ∧σ | Ft

)

− lim inf
m

E

(

Y−
λ∗
t ∧σ∧υ−

m
| Ft

)

.

In view of using the limit appearing in (4), we obtain

lim inf
m

E

(

Y−
λ∗
t ∧σ∧υ−

m
| Ft

)

≤ lim inf
m

[

E

(

Y−
λ∗
t ∧σ1λ∗

t ∧σ≤υ−
m

| Ft

)

+ a−
mE

(

1λ∗
t ∧σ>υ−

m
| Ft

)]

= E

(

Y−
λ∗
t ∧σ | Ft

)

+ lim inf
m→+∞ a−

mE

(

1λ∗
t ∧σ>υ−

m
| Ft

)

≤ E

(

Y−
λ∗
t ∧σ | Ft

)

+ lim inf
m→+∞ a−

mE

(

1{sup
s≤T

F(Ls)
− > a−

m } | Ft

)

= E

(

Y−
λ∗
t ∧σ | Ft

)

,

it follows then that for all stopping time σ ∈ Mt,T ,
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Yt ≥ E

(

Y+
λ∗
t ∧σ | Ft

)

− E

(

Y−
λ∗
t ∧σ | Ft

)

= E

(

Yλ∗
t ∧σ | Ft

)

≥ E

(

F(Uλ∗
t
)1{λ∗

t <σ} + F(Lσ)1{λ∗
t >σ} + F(Qσ)1{σ=λ∗

t <T } + F(ξ)1{σ=λ∗
t =T } | Ft

)

= E

(

J (λ∗
t , σ) | Ft

)

.

(5)
Now it follows from Eq. (2) that for every stopping time λ ∈ Mt,T

Yt ≤ E

(

Yλ∧σ∗
t ∧αi∧υ−

m ∧υ+
n

| Ft

)

= E

(

Y+
λ∧σ∗

t ∧αi∧υ−
m ∧υ+

n
| Ft

)

− E

(

Y−
λ∧σ∗

t ∧αi∧υ−
m ∧υ+

n
| Ft

)

.

In view of passing to the limit on i and m respectively and using dominated conver-
gence theorem for Y+ since it is bounded, we have

Yt

≤ E

(

Y+
λ∧σ∗

t ∧υ+
n

| Ft

)

− lim sup
m

E

(

Y−
λ∧σ∗

t ∧υ−
m ∧υ+

n
| Ft

)

= E

(

Y+
λ∧σ∗

t ∧υ+
n

| Ft

)

− lim sup
m

[

E

(

Y−
λ∧σ∗

t ∧υ+
n
1λ∧σ∗

t ∧υ+
n ≤υ−

m
| Ft

)

+E

(

Y−
υ−
m
1λ∧σ∗

t ∧υ+
n >υ−

m
| Ft

)]

≤ E

(

Y+
λ∧σ∗

t ∧υ+
n

| Ft

)

− E

(

Y−
λ∧σ∗

t ∧υ+
n

| Ft

)

− lim sup
m

E

(

Y−
υ−
m
1λ∧σ∗

t ∧υ+
n >υ−

m
| Ft

)

≤ E

(

Y+
λ∧σ∗

t ∧υ+
n

| Ft

)

− E

(

Y−
λ∧σ∗

t ∧υ+
n

| Ft

)

.

By using Fatou’s lemma and assumption 1. Of Theorem 2 we get

Yt + E

(

Y−
λ∧σ∗

t
| Ft

)

≤ Yt + lim inf
n

E

(

Y−
λ∧σ∗

t ∧υ+
n

| Ft

)

≤ lim inf
n

E

(

Y+
λ∧σ∗

t ∧υ+
n

| Ft

)

≤ E

(

Y+
λ∧σ∗

t
| Ft ) + lim inf

n→+∞ a+
n E

(

1λ∧σ∗
t >υ+

n
| Ft

)

≤ E

(

Y+
λ∧σ∗

t
| Ft ) + lim inf

n→+∞ a+
n E

(

1{sups≤T F(Us )+>a+
n } | Ft

)

≤ E

(

Y+
λ∧σ∗

t
| Ft

)

,

where we have used the limit appeared in (4).
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It follows that for every stopping time λ ∈ Mt,T

Yt ≤ E

(

Y+
λ∧σ∗

t
| Ft

)

− E

(

Y−
λ∧σ∗

t
| Ft

)

= E

(

Yλ∧σ∗
t

| Ft

)

.

≤ E

(

F(Uλ)1{λ<σ∗
t } + F(Lσ∗)1{λ>σ∗

t } + F(Qσ∗)1{σ∗
t =λ<T } + F(ξ)1{σ∗

t =λ=T } | Ft

)

= E

(

J (λ, σ∗
t ) | Ft

)

.

(6)

In force of inequalities (5) and (6) we obtain that for all σ, λ ∈ Mt,T

E

(

J (λ∗
t , σ) | Ft

)

≤ Yt = E

[

J (λ∗
t , σ

∗
t ) | Ft

]

≤ E

(

J (λ, σ∗
t ) | Ft

)

.

Then it is immediately checked that

inf
λ∈Mt,T

sup
σ∈Tt

E

(

J (λ, σ) | Ft

)

≤ sup
σ∈Tt

E

(

J (λ∗
t , σ) | Ft

)

≤ Yt = E

[

J (λ∗
t , σ

∗
t ) | Ft

]

≤ inf
λ∈Mt,T

E

(

J (λ, σ∗
t ) | Ft

)

≤ sup
σ∈Mt,T

inf
λ∈Mt,T

E

(

J (λ, σ) | Ft

)

.

Since sup
σ∈Mt,T

inf
λ∈Mt,T

E

(

J (λ, σ) | Ft

)

≤ inf
λ∈Mt,T

sup
σ∈Mt,T

E

(

J (λ, σ) | Ft

)

, we have

Yt = E

[

J (λ∗
t , σ

∗
t ) | Ft

]

= sup
σ∈Mt,T

E

[

J (λ∗
t , σ) | Ft

]

= inf
λ∈Mt,T

E

[

J (λ, σ∗
t ) | Ft

]

= inf
λ∈Mt,T

sup
σ∈Mt,T

E

[

J (λ, σ) | Ft

]

= sup
σ∈Mt,T

inf
λ∈Tt

E

[

J (λ, σ) | Ft

]

,

Theorem 2 is then proved. �

Remark 1 We should remark here that:

1. If F(L) and F(U ) are L1−integrable, i.e.E sup
t≤T

(|F(Ut)| + |F(Lt)|) < +∞, then

the assumption of Theorem 2 are satisfied.
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2. If we suppose that F(x) = eθx (or F(x) = −e−θx ), θ > 0, we have an utility
function which is of exponential type and then our result can give, in particular,
a solution to the existence a saddle point for the risk-sensitive problem (see [7]
for more details).

4 American Game Option

4.1 Problem Formulation

We deal with American game option or a game contingent claim which is a contract
between a seller A and a buyer B at time t = 0 such that both have the right to
exercise at any stopping time before the maturity time T . If the buyer exercises at
time t he receives the amount Lt ≥ 0 from the seller and if the seller exercises at
time t before the buyer he must pay to the buyer the amountUt ≥ Lt so thatUt − Lt

is viewed as a penalty imposed on the seller for cancellation of the contract. If both
exercise at the same time t before the maturity time T then the buyer may claim Qt

and if neither have exercised until the expiry time T then the buyer may claim the
amount ξ . In short, if the the seller decides to exercise at a stopping time λ ≤ T and
the buyer exercises at a stopping time σ ≤ T then the former pays to the latter the
amount:

J 1(λ, σ) = Uλ1{λ<σ} + Lσ1{λ>σ} + Qσ1{σ=λ<T } + ξ1{σ=λ=T }.

Such game option is considered in a standard securities market consisting of a non-
random component S0t representing the value of a savings account at time t with an
interest rate r and of a random component St representing the stock price at time
t . More precisely and following the same idea as in Hamadène [9], we consider a
security market M that contains, say, one bond and one stock and we suppose that
their prices are subject to the following system of stochastic differential equations:

{
dS0t = r S0t dt, S00 > 0
dSt = St (bdt + δdBt ), S0 > 0.

Let X be anFt -measurable random variable such that X ≥ 0. The classical approach
suggests that valuation of options should be based on the notions of a self-financing
portfolio and on hedging. For this reason, we give the following definitions.

Definition 3 A self-financing portfolio after t with endowment at time t is X , is a
P-measurable process π = (βs, γs)t≤s≤T with values in R2 such that:
(i)

∫ T
t (| βs | +(γs Ss)2)ds < ∞.

(i i) If Δπ,X
s = βs S0s + γs Ss, s ≤ T , then Δπ,X

s = X + ∫ s
t βudS0u + ∫ s

t γudSu,
∀s ≤ T .
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Definition 4 A hedge against the game with payoff

J 1(s, λ) := Uλ1{λ<s} + Ls1{s<λ} + Qs1{s=λ<T } + ξ1{s=λ=T },

after t whose endowment at t is X is a pair (π, λ), where π is self-financing portfolio
after t whose endowment at t is X and a stopping time λ ∈ Mt,T , satisfying: P-a.s.
∀s ∈ [t, T ],

Δ
π,X
s∧λ ≥ J 1(s, λ).

Definition 5 The fair price of a contingent claim game is the infimum of capitals X
for which the hedging strategy exists. It is defined by

Vt := inf{X ≥ 0, ∃(π, λ) such that Δ
π,X
s∧λ ≥ J 1(s, λ), ∀t ≤ s ≤ T, P − a.s.}.

4.2 Fair Price of the Game as a Solution of BSDE
with Two Reflecting Barriers

Now, let P∗ be the probability on (Ω,F ) under which the actualized price of the
asset is a martingale, i.e.

dP∗

dP
:= exp

(

− δ−1(b − r)Bt − 1

2
(δ−1(b − r))2t

)

, t ≤ T .

Hence the process Wt = Bt + δ−1(b − r)t is an (Ft , P∗)-Brownian motion.

Let ξ, L ,U and Q be as in the beginning such that: 0 ≤ L ≤ U. Assume moreover
that assumption (A.1) holds true and consider, on the probability space (Ω,F , P∗),
the following BSDE with two reflecting barriers whose solution exists according to
Theorem 1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(i) Yt = e−rT ξ + ∫ T
t dK+

s − ∫ T
t dK−

s − ∫ T
t ZsdWs, t ≤ T,

(ii) ∀t ≤ T, e−r t Lt ≤ Yt ≤ e−r tUt ,∫ T
0 (Yt − e−r t Lt )dK+

t = ∫ T
0 (e−r tUt − Yt )dK−

t = 0, a.s.,
(iv) Y ∈ C K+, K− ∈ K Z ∈ L 2,d ,

(v) dK+ ⊥ dK−.

(7)

Let �∗
t and ϑ∗

t be the stopping times defined as follows:

�∗
t = inf{s ≥ t : Ys = e−r tUs} ∧ T and ϑ∗

t = inf{s ≥ t : Ys = e−r t Ls} ∧ T .

If we suppose that lim inf
r→+∞ r P∗(sup

s≤T
Us > r) = 0, it follows then from Theorem 2,

since L ≥ 0, that for all σ, λ ∈ Mt,T , Yt solution of BSDE (7) is given by
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Yt = E
∗
[

J (�∗
t , ϑ

∗
t ) | Ft

]

= inf
λ∈Mt,T

sup
σ∈Mt,T

E
∗
[

J (λ, σ) | Ft

]

= sup
σ∈Mt,T

inf
λ∈Tt

E
∗
[

J (λ, σ) | Ft

]

,

(8)

where

J (λ, σ) = e−rλUλ1{λ<σ} + e−rσLσ1{λ>σ} + e−rλQσ1{σ=λ<T } + e−rT ξ1{σ=λ=T }.

The main result of this section is the following.

Theorem 3 Assume that lim inf
r→+∞ r P∗(sup

s≤T
Us > r) = 0. Then, the fair price of our

game is given by Vt = ertYt , for any t ≤ T . Moreover, a hedge after t against the
option exists and it is given by:

γs = ers Zs

δSs
1{s≤ϑ∗

t } and βs =
(

ers(Yt +
s∫

t

ZudWu) − γs Ss

)

(S0s )
−1, ∀s ∈ [t, T ].

Proof Let (π, λ) a hedge after t against the option. Therefore λ ∈ Mt,T and π =
(βs, γs)t≤t≤T is a self-financing portfolio whose value at t is X satisfying Δ

π,X
s∧λ ≥

J 1(s, λ), ∀t ≤ s ≤ T . But

e−r(s∧λ)Δ
π,X
s∧λ = e−r t X + δ

s∧λ∫

t

γu Sue
−rudWu ≥ e−r(s∧λ) J 1(s, λ), ∀t ≤ s ≤ T .

Let σ ≥ t be a stopping time. Putting s = σ and taking the conditional expectation
we obtain

e−r t X ≥ E
∗
(

e−r(σ∧λ) J 1(σ, λ) | Ft

)

.

In view of relation (8) we have

e−r t X ≥ sup
σ∈Mt,T

E
∗
(

e−r(σ∧λ) J 1(σ, λ) | Ft

)

≥ inf
λ∈Mt,T

sup
σ∈Mt,T

E
∗
(

e−r(σ∧λ) J 1(σ, λ) | Ft

)

= inf
λ∈Mt,T

sup
σ∈Mt,T

E
∗
(

J (σ, λ) | Ft

)

= Yt .

Henceforth Vt ≥ ertYt . Let us now prove the converse inequality. It follows that for
every t ≤ s ≤ T ,
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Yt + ∫ s∧ϑ∗
t

t ZudWu

≤ Ys∧ϑ∗
t
− ∫ s∧ϑ∗

t
t dK−

u
≤ Ys∧ϑ∗

t≤ e−rsUs1{s<ϑ∗
t } + e−rϑ∗

t Lϑ∗
t
1{s>ϑ∗

t } + e−rs Qϑ∗
t
1{ϑ∗

t =s<T } + e−rT ξ1{ϑ∗
t =s=T }

= e−r(s∧ϑ∗
t ) J 1(s, ϑ∗

t ).

Hence for every t ≤ s ≤ T ,

J 1(s, ϑ∗
t ) ≥ er(s∧ϑ∗

t )(Yt +
s∧ϑ∗

t∫

t

ZudWu).

Now if we put for all s ∈ [t, T ], γs = ers Zs
δSs

1{s≤ϑ∗
t } and βs =

(

ers(Yt + ∫ s
t ZudWu) −

γs Ss

)

(S0s )
−1.

Hence (βs, γs)t≤s≤T is a self-financing portfolio whose value at t is ertYt . On other
hand we have

er(s∧�∗
t )(Yt +

s∧�∗
t∫

t

ZudWu) ≥ J 1(s, �∗
t ), ∀s ∈ [t, T ].

Hence ((βs, γs)t≤t≤T , �∗
t ) is a hedge against the game option. Then ertYt ≥ Vt .

Henceforth ertYt = Vt . The proof of Theorem 3 is then achieved. �
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