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Preface

Unmanned Aerial Vehicles (UAVs) or Unmanned Aircraft Systems (UAS), a term
preferred by the U.S. Department of Defense, have seen unprecedented levels of
growth over the last decade. Even though UAVs have been mainly used for military
applications, there is a considerable and increasing interest for civilian applications.
It is not an exaggeration to consider that as the technology matures, as small-scale
UAVs become cost-effective with proven reliability and safety, and as the roadmap
to integrating UAS into the National Airspace System (NAS) progresses, civilian
applications will dominate the field. It is postulated that UAVs will be used in the fu-
ture extensively for environmental monitoring, forest protection, wildfire detection,
traffic monitoring, building, power line and bridge inspection, emergency response,
crime prevention, search and rescue, mapping, surveillance, reconnaissance, border
patrol, to name several applications.

From all classes of UAVs, unmanned rotorcraft, and in particular unmanned he-
licopters, have advantages over fixed-wing UAVs because they take-off and land
vertically, they do not require a runway, and they have the ability to hover and fly
in (very) low altitudes. It is reasonable to assume that light-weight (<150 Kgr) and
small-scale (<50 Kgr) helicopters will be the first ones to be allowed to fly in civil-
ian airspace. Such helicopters, though, still retain the flight characteristics and phys-
ical principles of their full-scale counterparts. In addition, they are naturally more
agile and dexterous compared to full-scale helicopters. Their flight capabilities, re-
duced size and cost have recently monopolized the attention of the UAV research
community as they are preferred for a wide spectrum of applications. However,
helicopters are highly unstable, nonlinear and coupled underactuated systems, and
controller design for such systems is a rather challenging problem.

The problem of designing autonomous flight controllers for small-scale heli-
copters is equally challenging, and the flight controller design problem is tightly
connected with the helicopter modeling. Helicopter dynamics may be represented
by both linear and nonlinear models of ordinary differential equations. Typically,
the validity of the linear models is restricted in a certain region around a specific op-
erating point, while nonlinear models provide a global description of the helicopter
dynamics.
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Therefore, it is the goal of this book to present a rather comprehensive and well
justified analysis for designing (autonomous) controllers for small-scale unmanned
helicopters, and then present details on how to design MIMO linear, continuous and
discrete time nonlinear controllers for such helicopters guarantying stability. The
controllers objective is for the helicopter to autonomously track predefined position
(or velocity) and heading reference trajectories, evaluating their performance using
X-Plane, a realistic and commercially available flight simulator.

However, as in most control applications, the helicopter model that is used for
controller design purposes is just an approximation of the actual nonlinear heli-
copter dynamics. Thus, in order to develop a generic flight control system, which
applies to most standard small-scale helicopter platforms, the designer must suc-
cessfully solve three intermediate tasks: (i) Derive the structure and the order of a
parametric dynamic model that best describes the helicopter motion; any derived
parametric model should provide a physically meaningful dynamic description for
a large family of small-scale helicopters. (ii) After the parametric helicopter model
is derived, one must determine a nominal feedback control law such that the heli-
copter tracks a predefined reference trajectory. The design should guarantee that the
control inputs remain bounded while the helicopter tracks the reference trajectory.
(iii) Given a specific helicopter, one must determine which is the best methodol-
ogy to accurately extract the values of the parametric model that will be used to
implement the linear/nonlinear controllers.

The reader is introduced to the controller design challenges in a step-by-step way.
At first, an analytical derivation of the helicopter’s kinematic equations of motion
is presented with the helicopter treated as a rigid body, followed by a simplified
model of the main rotor dynamics that encapsulates the coupling effects between the
fuselage motion and the main rotor of the helicopter. Next, the reader is introduced
to linear controller designs based on a frequency domain identification method that
is used for the extraction of low order linear helicopter models. Then, the focus shifts
to controller designs based on the nonlinear helicopter model. The design approach
is very rigorous and detailed following the backstepping methodology for systems
in feedback form. Continuous and discrete time nonlinear controllers are presented,
and a simple Recursive Least Squares (RLS) method is employed to identify the
parameters of the discrete nonlinear helicopter model. It is also demonstrated how a
Takagi–Sugeno fuzzy system may improve the time domain identification results of
the RLS algorithm. An extensive comparison and evaluation of all controller designs
is also included in this book. The rationale for such a study is to pave the way for
a rather comprehensive performance evaluation of controllers, and at the same time
justify and support the chosen methodologies.

The reader is expected to have knowledge of modern control theory as the min-
imum prerequisite to follow the book, as well as an understanding of fundamentals
of kinematics and dynamics.

Ioannis A. Raptis
Kimon P. Valavanis

Atlanta, Georgia, USA
Denver, Colorado, USA
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FB = {OB,�iB, �jB, �kB} Body-fixed frame
Fh = {Oh,�ih, �jh, �kh} Hub frame
FI = {OI ,�iI , �jI , �kI } Inertial Earth-fixed frame
g Gravitational constant
�hM Position vector of the main rotor from the CG
hB

M = (xm ym zm)T Coordinates of the main rotor shaft with respect to the
body-fixed frame

�hT Position vector of the tail rotor from the CG
hB

T = (xt yt zt )
T Coordinates of the tail rotor shaft with respect to the

body-fixed frame
�H Angular momentum vector

HB = (hx hy hz)
T Angular momentum with respect to the body-fixed

frame
I Inertia matrix
Ib Inertia of the blade
Ixx, Iyy, Izz Moments of inertia
Ixy, Iyx, Ixz, Izx, Iyz, Izy Products of inertia
J (Π) Cost function (dependent on the parameter vector Π )
Jll, Jyh Longitudinal–lateral and yaw–heave error subsystems

performance indexes
Jll, Jyh Longitudinal–lateral and yaw–heave error subsystems

(including the position and yaw integral error)
performance indexes

Kβ Stiffness of the rotor hub
L,M Thresholds of the saturation function σ

Lb,Ma Stability derivatives of the pitch and roll moments
m Total mass of the helicopter
mb Mass per unit length of the blade
N Number of samples
�p Position vector of the helicopter CG
pI = (pI

x pI
y pI

z )T Position with respect to the inertial frame



Symbols xix

QM Main rotor reaction torque
Qll, Rll,Qyh, Ryh Longitudinal–lateral and yaw–heave error subsystems

LQR design matrices
Qll, Rll, Qyh, Ryh Longitudinal–lateral and yaw–heave error subsystems

(including the position and yaw integral error) LQR
design matrices

R Rotation matrix
Rb Blade’s radius
Rl Total number of fuzzy rules
Rxx(τ ) Auto correlation of the signal x(t)

Rxy(τ ) Cross correlation of the signals x(t) and y(t)

Sxx(jω) Auto spectral density of the signal x(t)

Sxy(jω) Cross spectral density of the signals x(t) and y(t)

Ŝxx(jω) Discrete estimate of the auto spectral density Sxx
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Chapter 1
Introduction

This Chapter presents the rationale for the book, defines the problem to be solved
along with the challenges that need to be overcome, and concludes with a summary
of the linear and nonlinear controller methodologies that will be detailed in subse-
quent Chapters.

1.1 Background Information

The term Unmanned Aerial Vehicles (UAVs) is used to describe unpiloted flying
vessels. This term refers to vehicles that are remotely piloted or autonomously con-
trolled for the execution of a predefined flight task. In both cases the key attribute of
these vehicles is the absence of a human pilot on-board [106]. The applicability of
UAVs is predominant in the execution of potentially dangerous flight missions or in
cases where the small size of the vehicle restricts the presence of a pilot [70].

Potential usage of UAVs can be found in military and civilian applications, al-
though military applications dominate the non-military ones. Civilian applications
involve pipelines and power lines inspection, surveillance, rescue missions, border
patrol, oil and natural gas research, fire prevention, topography, agricultural appli-
cations [106], filmmaking [70], traffic monitoring, flight in hazardous environments
(i.e. in a radioactive environment) [11], to name just a few application domains.

UAVs are further classified into two main categories. The first category is fixed-
wing UAVs (e.g., unmanned airplanes) that require relative velocity for the pro-
duction of aerodynamic forces and a runaway for take-off and landing [105]. The
second category is the rotorcraft UAVs, which also includes helicopters. The advan-
tages of the rotorcraft unique flight capabilities have drawn much attention through
the years. The primary characteristic attribute of the rotorcraft is the use of rotary
wings to produce the thrust force necessary for motion. The main benefit of using
a rotorcraft is its ability to move in all directions of the Cartesian space while pre-
serving an independent heading. Therefore, rotorcraft have an advantage relative
to fixed-wing aircraft because they do not require any relative velocity to produce
aerodynamic forces [40] and also due to their vertical flight capability.

I.A. Raptis, K.P. Valavanis, Linear and Nonlinear Control of Small-Scale Unmanned
Helicopters, Intelligent Systems, Control and Automation: Science and Engineering 45,
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Fig. 1.1 Typical helicopter configuration. The helicopter motion is produced by two engine driven
rotors: The main and tail rotor

The main representative of the rotorcraft family is the helicopter. The typical con-
figuration of a helicopter involves two engine driven rotors: The main and the tail
rotor as shown in Fig. 1.1. The main rotor produces the thrust force for the vertical
lift of the helicopter. The tail rotor compensates the torque produced by the main
rotor and controls the heading of the helicopter. The change of the helicopter’s fuse-
lage attitude angles results in the tilt of the main rotor and, therefore, the production
of the propulsive forces for the longitudinal/lateral motion of the helicopter.

Small-scale helicopters (MTOW < 50 Krg) retain all the flight characteristics
and physical principles of their full-scale counterpart. In addition, they are naturally
more agile and dexterous compared to full-scale helicopters. Their flight capabil-
ities, their reduced size and cost, have monopolized the attention of the UAV re-
search community for the development of low cost and efficient autonomous flight
platforms.

The design of an autonomous small-scale helicopter flight platform requires sev-
eral expertises in diverse fields of engineering. Some of the challenges towards the
development of an autonomously flying helicopter involve sensor integration and
sensor fusion to obtain accurate measurements, flight controller design, path plan-
ning and communications. Advances in sensor technology, computational efficiency
and the constantly reduced size of processors provide a significant boost in the de-
velopment of on-board hardware for all classes and types of UAVs.

The goal of this book is to present a rather comprehensive and well justified
analysis for the very challenging problem of designing (autonomous) controllers for
small-scale unmanned helicopters guarantying stability. In principle, and in general,
a typical flight control system is composed of a mathematical algorithm that pro-
duces the appropriate command signals required to perform any autonomous flight.
The control algorithm receives measurement signals from several sensors and trig-
gers a suitable output for operating the helicopter. The controller’s output is also
referred to as the controller’s feedback signal. As previously stated, an important
requirement of the controller design is to guarantee the stability of the helicopter
during the autonomous flight operation.

The most reliable approach to designing a control algorithm and also examining
the stability properties of the autonomous flight system is via modern control theory.
According to this theoretical framework, the flight controller design is based on



1.1 Background Information 3

the helicopter’s dynamic model. This dynamic model is a mathematical system of
ordinary differential equations that describes the helicopter response to any given
input.

Helicopters are underactuated, highly nonlinear systems with significant dy-
namic coupling that needs to be considered and accounted for during controller
design and implementation. The dynamic coupling is attributed to two main rea-
sons: The first one is the helicopter nonlinear equations of motion. The second one
is the dynamic coupling between the generated aerodynamic forces and moments. In
addition, there is also significant parameter and model uncertainty due to the rather
complicated aerodynamic nature of the thrust generation. Furthermore, helicopters
are considered to be much more unstable than fixed-wing aircraft, and constant con-
trol action must be sustained at all times. Therefore, it is obvious that the helicopter
characteristics result in very challenging obstacles that need be overcome to solve
the controller design problem.

As in most control applications, the helicopter model that is used for control de-
sign purposes is just an approximation of the actual nonlinear helicopter dynamics.
To this extent, in order to develop a generic flight control system, which applies to
most standard small-scale helicopter platforms, the designer must successfully solve
the following three intermediate tasks:

• Derive the structure and the order of a parametric dynamic model that best de-
scribes the helicopter motion. The order of the model should be kept to minimum
such that the parametric model includes only the absolutely necessary variables
that are required to represent the helicopter dynamics. Dynamic systems of high
order are very impractical since they significantly increase the complexity of the
control design. Any derived parametric model should provide a physically mean-
ingful dynamic description for a large family of small-scale helicopters.

• After the parametric helicopter model is derived, one must determine a nominal
feedback control law such that the helicopter tracks a predefined reference trajec-
tory. The design should guarantee that the control inputs remain bounded while
the helicopter tracks the reference trajectory.

• Given a specific helicopter, one must determine which is the best methodology to
accurately extract the values of the parametric model that will be used to imple-
ment the linear/nonlinear controllers.

Most of currently published research in the field of helicopter control restricts its
analysis only to a subset of the above design challenges. Further, the characteristics
of the helicopter dynamics (high uncertainty, nonlinear, coupled dynamics) make
the helicopter control problem very stimulating from its theoretical and real-life
implementation viewpoint. Thus, it is the main objective of this book to provide a
thorough examination of all of the above design issues that need to be accounted for,
before any controller design. A second objective is to provide mathematically con-
sistent methodologies that can be applied to actual small-scale unmanned helicopter
platforms.



4 1 Introduction

1.2 The Mathematical Problem

Helicopter dynamics are inherently nonlinear with significant dynamic coupling
among the state variables and control inputs. Dynamic coupling expresses the fact
that any change in a control input affects multiple state variables of the helicopter.
Therefore, each input affects not only the state variables of interest, but also pro-
duces unintended secondary responses. To suppress the unwanted excitation of sec-
ondary state variables, simultaneous coordination of all control inputs is required
at all time instances. The nonlinear nature and the cross coupling effect of the he-
licopter dynamics places them among the most complex aerial vehicles, which are
very difficult to control.

The helicopter has four control inputs. Two cyclic commands that manipulate the
longitudinal/lateral motion of the helicopter, one collective command that controls
the vertical motion and finally the pedal command that controls the heading motion
of the helicopter. Since the control inputs are (significantly) less than the motion
variables, the helicopter is further classified as an underactuated system.

The actual helicopter dynamics are represented in mathematical terms by the
differential equations of the following nonlinear system:

ẋ = f (x,uc) (1.1)

where x ∈ R
n is the helicopter’s state vector and uc ∈ R

4 is the control input vector.
Control techniques based on modern control theory are model based, in the sense
that the controller architecture depends on the dynamic description of the system.
Therefore, knowledge of the helicopter’s dynamic model is required to design au-
tonomous flight controllers.

However, the actual helicopter dynamics are unknown and, as in most engi-
neering applications, they are approximated by physically meaningful mathematical
models of lower order. At this point, it must be stated that the approximated model
is just an “abstraction” since it is practically impossible to provide a complete rep-
resentation of the actual helicopter dynamics [81]. However, this does not mean that
it is impossible to develop a model, which sufficiently represents the dynamics of
the helicopter under certain operating flight conditions.

Generally, there are two ways to approximate the actual helicopter dynamics.
The first is by a Linear Time Invariant (LTI) system model. The second represen-
tation is via a model of nonlinear differential equations. Typically, the validity of
the LTI model is restricted in the vicinity of a particular operating condition of the
helicopter. Thus, to cover a wide portion of the helicopter flight envelope, multi-
ple linear models are required for different operating conditions. The LTI helicopter
system model is represented by a set of first-order linear differential equations of
the form:

ẋl = A(Πl)xl + B(Πl)uc

y = Clxl

ym = Cm
l xl

(1.2)
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where xl is the vector of the helicopter’s linear model state variables, ym is the vector
of the helicopter’s available measurements, y is the vector of the helicopter outputs
that need to be controlled, Cl , Cm

l are linear matrices of appropriate dimensions and
Πl denotes the parameter vector of the linear model. The state matrix A and control
matrix B are parametrized by the Πl vector. The dimension of the output vector
cannot exceed the number of the control inputs.

The design problem is to find a feedback law of the measurement vector, ul =
Φl(ym), such that, when uc = ul , then the helicopter output asymptotically tracks a
reference trajectory denoted by yr . Hence, the objective is:

lim
t→∞‖y(t) − yr(t)‖ = 0 (1.3)

By applying modern control design techniques, the feedback law ul will depend in
general on the structure of the linear system given by (1.2).

On the other hand, nonlinear models provide a global description of the heli-
copter dynamics for the complete flight envelope. Nonlinear models are more elab-
orate and complex compared to linear models, however, only a single model is re-
quired for the description of the helicopter dynamics. When a nonlinear dynamic
representation is chosen, the helicopter dynamics may be written as:

ẋn = φ(xn,uc,Πn)

y = Cnxn

ym = Cm
n xn

(1.4)

where xn is the state vector of the nonlinear model, Πn denotes the parameter vector
of the nonlinear model and Cn, Cm

n are linear matrices of appropriate dimensions.
Of course, even in the case of the nonlinear representation, the output and the mea-
surement vector of the helicopter are identical with the linear model case. However,
the dimensions of the state vectors xn and xl are (in general) different, since the two
models may have different orders. Again, the control objective is to design a feed-
back law un = Φn(ym), such that, when uc = un, then, asymptotic tracking of (1.3)
is achieved. Since un depends on the state space equations (1.4), then, in principal,
ul and un will be different.

A block diagram of the helicopter tracking control problem is illustrated in
Fig. 1.2. Regardless of the method of solution, the design challenges are:

• The determination of the order and structure of the parametric model (1.2) or
(1.4). These parametric models should encapsulate the dynamic behavior of a
large family of small-scale helicopters.

• The derivation of a consistent methodology to design the feedback laws ul =
Φl(ym) or un = Φn(ym), which guarantee that the tracking objective given in
(1.3) is achieved.

• The identification of the parameter vector Πl or Πn such that the predicted re-
sponse from (1.2) and (1.4) is the same with the actual helicopter response ob-
tained by flight data. The identified parameter vectors required for the implemen-
tation of the control laws ul and un, respectively.
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Fig. 1.2 This block diagram
illustrates the helicopter
controller design problem.
The helicopter dynamics can
be represented by a linear or
nonlinear system of
differential equations. In
either case, the feedback
control law depends on the
model choice

The following Chapters provide a rather complete and consistent solution to the
unmanned helicopter controller design problem. All intermediate challenges asso-
ciated with controller designs are addressed for both the linear and nonlinear repre-
sentations of the helicopter dynamics.

1.3 Controller Designs

Proposed solutions to the helicopter controller design problem incorporate a fine
balance between theoretical control challenges and real-time/real-life application is-
sues. Depending on the helicopter model representation, controller designs are clas-
sified as linear or nonlinear. Designs include both linear, continuous and discrete
time nonlinear controllers. After designing the controllers, their performance and
applicability are evaluated using a commercially available flight simulator, called
X-Plane. Experiments are conducted in the X-Plane environment for a small-scale
Raptor 90 SE Radio Controlled (RC) helicopter. However, the designed controllers
may be applied to other small-scale helicopters as well. In addition to the experi-
ments, simulation studies have been performed to evaluate the performance of the
introduced continuous time nonlinear controller.
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1.3.1 Linear Controller Design

Linear controller design is based on a linear Multiple-Input Multiple-Output
(MIMO) coupled helicopter model. Typical design techniques that deal with the
tracking problem of linear systems are the internal model approach and the integral
control design. The disadvantage of the internal model approach is its complex de-
sign, while integral control is restricted only to cases where the reference output is
a constant signal.

The proposed design guarantees the asymptotic tracking of arbitrary continuous
reference trajectories requiring only that the reference signal and its higher deriva-
tives are bounded. The main novelty of this controller is its ability to “pass” the
intuitive notion of helicopter piloting to the mathematical controller design. This is
achieved by decoupling the rotor dynamics into two separate subsystems: The first
subsystem involves the coupled dynamics of the longitudinal/lateral motion while
the second subsystem is composed of the yaw/heave dynamics of the helicopter.
This separation provides a more distinct effect of the helicopter inputs to the state
variables of the two subsystems. Observation of helicopter operation dictates that the
two cyclic commands are used to generate longitudinal and lateral motion, while the
two collective commands of the main and tail rotor are mainly used to produce the
vertical lift and regulate the helicopter’s heading.

The basic idea of the linear controller design is to determine a desired state vec-
tor for each of the two subsystems such that when the helicopter state variables
converge to their desired state values, then, the tracking error tends asymptotically
to zero. The desired state vectors for each subsystem, are composed of the compo-
nents of the reference output vectors and their higher derivatives.

Another novelty of this design is the development of a recursive procedure to
derive the aforementioned desired state vectors for each subsystem. This recursive
procedure is based on the principle of backstepping design for systems in pure feed-
back form. However, the linear helicopter dynamics are not in feedback form. This
fact is attributed to the coupling between the helicopter’s external forces and mo-
ments, although, as stated in [47], a simplified helicopter model that neglects this
coupling between helicopter forces and moments is in pure feedback form. This
approximation is based on the rational assumption that the forces produced by the
flapping motion of the main rotor blades are negligible compared to the forces pro-
duced by the tilt of the fuselage. Since the approximate system is in pure feedback
form, it is also feedback linearizable and differentially flat. Thus, derivation of the
desired state vectors is based on the differential flatness property of the two subsys-
tems.

The linear model representation of the helicopter dynamics follows the model
structure proposed in [70]. This linear model has been successfully used for para-
metric identification of several small-scale helicopters of different specifications [8,
10, 27, 28, 89, 90]. This model is a linear coupled system of the helicopter mo-
tion variables and the main rotor flapping dynamics. Model validity is evaluated by
performing frequency domain system identification using flight test data obtained
by flying the Raptor 90 SE. The frequency domain identification procedure of the
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Raptor 90 SE utilizes the CIFER© package developed by the NASA Rotorcraft Di-
vision (Ames Research Center) [105]. The identified model is also used to evaluate
the MIMO linear controller performance.

A second linear controller is also presented for comparison purposes, which does
not require knowledge of the helicopter model. This is because in many practical
control applications the MIMO dynamic model of the helicopter is not available.
This second controller is composed of four Single-Input Single-Output (SISO) Pro-
portional Integral Derivative (PID) feedback loops. This control scheme is a very
common reference design point for real-life/real-time applications, since it does not
require knowledge of the helicopter model and also the controller gains may be
empirically tuned.

1.3.2 Nonlinear Controller Design

The adopted nonlinear model of the helicopter dynamics is based on [47]. The he-
licopter model is represented by the rigid body nonlinear equations of motion en-
hanced by a simplified model of force and torque generation.

The first controller design is based on the backstepping design principle for
systems in feedback form. The intermediate backstepping control signals (a.k.a.,
pseudo controls) for each level of the feedback system are appropriately chosen to
stabilize the overall helicopter dynamics. The resulting system error dynamics can
be separated in two interconnected subsystems representing the error in translational
and attitude dynamics, respectively. This separation reflects the inherited time scal-
ing that exists in the helicopter dynamics: The attitude dynamics are significantly
faster compared to the dynamics of the translational motion.

A major novelty of this controller is that the thrust magnitude is used to compen-
sate the translational error dynamics in all Cartesian directions, and not only for the
heave dynamics. Furthermore, apart from stabilizing the attitude dynamics, the con-
troller design can guarantee that the helicopter will not overturn for every allowed
reference trajectory. In addition, the use of nested saturations in the intermediate
pseudo controls of the translational dynamics can guarantee that the physical con-
straints of the helicopter motion and power will be preserved.

In principle, this nonlinear controller is applicable to both full-scale and small-
scale helicopters. However, the adopted nonlinear model is significantly simplified
and does not include higher order dynamics, such as engine, inflow velocity and
main rotor lead-lag dynamics that are required to model full-scale helicopters.

Although this nonlinear controller has significant theoretical potential, extracting
the model parameters from the continuous time nonlinear model using time domain
identification is computationally inefficient. The identification procedure is signifi-
cantly simplified when the nonlinear dynamic model is discretized. Thus, a second
controller is introduced that applies the backstepping methodology to the equivalent
discrete time system. Similarly to the continuous time case, the discretized model
has a cascade structure. The novelty of the controller for the discretized model is
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the design freedom in the convergence rate for each state variable of the cascade
structure. This is of particular interest since control of the convergence rate in each
level of the cascade structure provides better flight results. In addition, the stability
of the resulting dynamics may be simply inspected by the eigenvalues of a linear
system without the need to derive appropriate Lyapunov functions. The eigenvalues
are determined by the designer.

For parameter identification of the nonlinear discrete time system, a simple Re-
cursive Least Squares (RLS) algorithm is performed. The identified model and the
controller performance were also evaluated for the Raptor 90 SE. It is also shown
that the identification results of the previous methodology may be significantly im-
proved if the discrete nonlinear helicopter dynamics are represented by a Takagi-
Sugeno fuzzy system. After the derivation of the Takagi-Sugeno system, a standard
RLS algorithm is used for parameter estimation. The resulting fuzzy system is an
interpolator of nonlinear discrete systems, which depends on the helicopter’s flight
condition.

1.4 Outline of the Book

The book is composed of eleven chapters and one Appendix. This first Chapter
provided the motivation for the book, stated the challenges of the problem to be
solved and introduced the reader to the approaches that will be followed to design
linear and nonlinear controllers for small-scale helicopters.

Chapters 2 to 4 may be considered as basic, fundamental Chapters that include
material necessary for the reader to understand controller designs detailed in the rest
of the book. Chapter 2 presents published research on linear and nonlinear controller
designs. The list is by no means complete, but it provides essential information to
justify the methodologies for the subsequent designs discussed in this book. The
objective of Chap. 3 is to present an analytical derivation of the helicopter’s kine-
matic equations of motion, when the helicopter is treated as a rigid body. The goal
of Chap. 4 is to present a simplified model of the main rotor dynamics that encap-
sulates the coupling effects between the fuselage motion and the main rotor of the
helicopter. This Chapter presents the sequence of all intermediate events that oc-
cur from the implementation of the cyclic commands to the generation of the blades
flapping motion. The concepts described in this Chapter are important to understand
the external aerodynamic forces and moments models that will be used by both the
linear and nonlinear representations of the helicopter dynamics.

Chapters 5 and 6 focus on the linear controller design for small-scale unmanned
helicopters. Chapter 5 describes the frequency domain identification method that
is used for the extraction of low order linear helicopter models. The same Chap-
ter also includes a description of the small-scale experimental helicopter platform
used for flight validation throughout the book. Based on the derived low order linear
model, Chap. 6 describes in detail a MIMO tracking controller, and compares per-
formance against four decoupled Single-Input Single-Output (SISO) Proportional
Integral Derivative (PID) controllers applied to the same platform.
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Fig. 1.3 This flow chart illustrates the organization of the book. Both linear and nonlinear con-
troller designs are presented. The implementation of each control system on a helicopter requires
three intermediate steps. The parametric modeling of the helicopter, the design of the controller
based on the parametric model and the parametric identification part. The parametric identification
methods and the controller designs are validated using the X-Plane flight simulator for a Raptor 90
SE RC helicopter

Chapters 7 and 8 focus on continuous and discrete nonlinear controller designs,
respectively. Controller designs are based on the nonlinear helicopter model intro-
duced in Chap. 7. This Chapter provides a very rigorous and detailed design based
on the backstepping methodology for systems in feedback form. This methodology
is mostly valued for its theoretical contribution and design steps to guarantee system
stability. Design of a discrete time nonlinear controller that can be implemented in
real-time/real-life applications is proposed in Chap. 8. This nonlinear controller de-
sign is based on the discretized nonlinear helicopter dynamics. A simple Recursive
Least Squares (RLS) method is employed to identify the parameters of the discrete
nonlinear helicopter model.

Chapter 9 may be considered as a standalone Chapter; however, it complements
Chap. 8 since it shows how a Takagi-Sugeno fuzzy system may improve the time
domain identification results of the RLS algorithm.

Chapter 10 provides an extensive comparison and evaluation of all controller
designs in this book. The rationale of this Chapter is to pave the way for a rather
comprehensive performance evaluation of controllers, and at the same time justify
and support the chosen methodologies.

Concluding remarks and recommendations to generalize the presented designs
are the topic of Chap. 11.

Appendix summarizes fundamentals of the backstepping control method.
A flowchart of the Chapter sequence is shown in Fig. 1.3. Depending on the

background of the readers, this book may be used to study linear controller designs



1.4 Outline of the Book 11

(Appendix, Chaps. 1–6, Chaps. 10–11), nonlinear controller designs (Appendix,
Chaps. 1–4, Chaps. 7–11), or both. It is obvious that the reader is required to have
knowledge of modern control theory as the minimum prerequisite to follow the
book.





Chapter 2
Review of Linear and Nonlinear Controller
Designs

This Chapter reviews several flight controller designs for unmanned rotorcraft.1

Flight control systems have been proposed and tested on a wide range of rotorcraft
types and configurations. This review includes controller designs for several rotor-
craft types such as full-scale, small-scale and experimental platforms (gimbaled on
a vertical stand). Existing flight control systems use tools from all fields of control
theory by incorporating into the controller design classical, modern and intelligent
control techniques.

Regardless, flight control systems are mainly classified as linear or nonlinear.
Typically, this classification is based on the rotorcraft model representation that is
used by the controller. Linear control designs are more application-oriented and
have been implemented on the majority of rotorcraft platforms. Their popularity
stems from the simplicity of the controller design, which minimizes both the com-
putational effort and the design time.

On the contrary, nonlinear controllers are mostly valued for their theoretical con-
tribution to the rotorcraft control problem and their implementation to actual plat-
forms is limited. In what follows, both linear and nonlinear controller designs are
discussed and compared.

In general, the attitude dynamics of the helicopters are significantly faster com-
pared to its translational dynamics. The architecture of both controller types (linear
and nonlinear) is adapted to this distinct time scaling between the two helicopter
subsystems. To this extent, most helicopter controllers are composed of two in-
terconnected feedback loops as shown in Fig. 2.1. The outer feedback loop is re-
sponsible for the regulation of the translational dynamics. It is used for guidance,
generating position or velocity reference commands to the inner-loop. In addition,
it controls the magnitude of the thrust vector by the collective command. The inner-
loop is responsible for stabilizing the helicopter and decoupling the attitude vari-
ables by controlling the helicopter moments. The main task of the inner-loop is to
provide adequate decoupling such that the outer-loop may control each variable of
the translational dynamics subsystem independently.

1The term rotorcraft and the term helicopter are used interchangeably in this book.
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Fig. 2.1 Inner-loop and outer-loop control architecture for helicopters

2.1 Linear Controller Designs

Classical control techniques disregard the multivariable nature of the rotorcraft dy-
namics and the strong coupling that exists between the rotorcraft states and the con-
trol inputs. In controller designs of this type each control input is responsible for
the regulation of one particular rotorcraft output. The interaxis couplings that exist
between the rotorcraft outputs are disregarded, and each control input is associated
with an SISO feedback loop. The SISO feedback loops that correspond to the con-
trol inputs are completely independent of each other. The SISO feedback loops are
designed based on typical loop shaping techniques. The stability of a feedback loop
is determined by the phase and gain margins of the latter. These margins dictate the
admissible amount of gain and phase that can be injected by the controller such that
the feedback loop dynamics are stable. These margins, however, may easily lead to
misleading conclusions in the case of multivariable systems [108].

A PID controller that is composed of four independent SISO loops has been ap-
plied to the Kyosho Concept 60 Graphite small-scale radio controlled helicopter [88]
as part of the Berkeley AeRobot (BEAR) project. In order to evaluate the closed loop
characteristics of the PID scheme an eleven state linear model was identified based
on the model structure derived in [72]. The model parameters were identified by
using the prediction error method, which is a time domain identification approach.
The PID design did not manage to suppress the coupling effect between the lateral
and longitudinal motion of the helicopter and the flight controller was limited only
to hover flight. Obtained results indicated that SISO techniques have moderate per-
formance and that multivariable approaches are required to eliminate the inherent
cross coupling effect of the helicopter dynamics. A similar multi-loop PID design
has been implemented on a Yamaha R-50 small-scale helicopter with shortcomings
that restricted the autonomous flight of the helicopter only to hover mode [44].

Another simple classical control design composed of Proportional Derivative
(PD) SISO feedback loops was investigated in [70] for the Yamaha R-50 helicopter,
the model of which was derived by using a frequency domain identification method.
The identified helicopter dynamics were represented by a thirteen state linear model
of the motion variables, the rotor and stabilizer bar characteristics. The identified
linear model was then used for the optimization of the flight control system. In this
particular case, the use of a notch filter was suggested for compensating the effect of
the stabilizer bar on the helicopter’s attitude dynamics. This approach indicated that
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although the performance of flight control systems based on classical control tech-
niques was limited, accurate knowledge of the helicopter’s model may significantly
improve the design of the feedback loops.

However, the majority of linear flight controllers that have been applied to au-
tonomous helicopter platforms, are based on the H∞ feedback control approach.
The H∞ control scheme was initially introduced in [68]. The main advantage of
the H∞ approach, is its ability to cope with both model uncertainty and disturbance
rejection. The H∞ based controller design can be easily adjusted to classical con-
trol techniques and at the same time compensate for the multivariable effects of the
helicopter. The work reported in [80] provides very strong arguments for why the
H∞ approach is a reasonable and suitable control solution for flight vehicles.

The typical structure of an H∞ controller is composed of two parts. The first
part is the loop shaping portion of the problem where the input channel is pre-
compensated and post-compensated in a similar way that takes place in the classical
control techniques of SISO systems. The pre-compensator includes Proportional
Integral (PI) compensators for increasing the low-frequency gain of the system, dis-
turbance rejection and attenuate the steady state error. The post compensator is typ-
ically used for noise elimination, therefore, it is typically composed of low pass
filters. The second portion of the controller, is the H∞ synthesis part, where a static
feedback gain is calculated in order to stabilize the multivariable system dynamics,
being also optimal with respect to a performance index. More about H∞ control
may be found in [12, 17, 78, 92, 113].

In [108] an observer based multivariable controller was designed using a singu-
lar value loop shaping method based on a two degree of freedom H∞ optimization.
The controller objective was the development of an Attitude-Command Attitude-
Hold (ACAH) flight system for the full-scale Westland Lynx helicopter. Contrary to
autonomous flight applications, the ACAH flight system is integrated with manned
flight operations. The goal of the ACAH flight controller is for the helicopter to track
an attitude and heave velocity command that is generated by the pilot’s stick input.
The principle of the controller design is to suppress the interaxis coupling of the he-
licopter dynamics, thus, decreasing the pilot’s workload. The pilot is only charged
with the generation of the reference attitude and heave velocity commands that are
necessary for the helicopter’s motion. The H∞ controller design was based on an
eight rigid body states and four actuator states linear model. The model was obtained
by linearizing a more elaborate nonlinear model in hover mode. The controller per-
formance was evaluated through flight simulations. Although the controller was de-
signed for hover and low speed operations, the simulation results indicated satisfac-
tory performance for speeds up to 90 knots.

Design of an ACAH flight system based on a static H∞ loop shaping approach,
is also reported in [83] for the Bell 205 full-scale helicopter. This work addresses
the common problem that exists in multivariable modern control theory, according
to which, the controller order is equal to the order of the plant to be controlled. This
fact is of particular importance for the design of helicopter flight control systems,
since the order of a full-scale helicopter model may reach up to thirty states! The
order of the controller can be reduced by model reduction techniques, however,
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it is preferable to design from the beginning a flight controller of minimum order
via the use of output feedback. When the complete state vector of a system is not
available for feedback purposes, instead, only a subset of the state variables can
be used by the controller; then the control law is classified as an output feedback
controller. This research demonstrated the design of high performance and low order
H∞ controllers by applying linear matrix inequality optimization techniques. The
helicopter model was derived by linearizing a thirty two states nonlinear model at
hover. The linearized model was further truncated to twelve states by removing the
dynamics associated with the main rotor. The performance of the developed ACAH
system was tested in a series of helicopter maneuvers with satisfactory results.

An alternate H∞ static output feedback controller design was proposed in [26–
28] for the stabilization of an autonomous small-scale helicopter at hover. The out-
put feedback approach allowed for the design of multivariable feedback loops using
a reduced set of states that results in minimization of the flight controller’s order.
The structure of the proposed feedback loops reflects the physical flight intuition for
helicopters such that the controller design was well suited for the particular applica-
tion. The loop shaping part of the H∞ controller attenuates the effects of helicopter
high frequency unmodeled dynamics. In most cases, the output feedback controller
design problem requires the solution of three nonlinear coupled matrix equations.
In [26–28], a novel iterative algorithm was introduced that solved the H∞ synthesis
part of the controller by solving only two coupled matrix equations not requiring
knowledge of an initial stabilizing gain. The controller structure is composed of two
main loops. The first loop is responsible for the stabilization of the attitude dynamics
while the second loop is used for position tracking. The controller design is based on
a thirteen state linear model of the coupled fuselage and rotor dynamics. The model
order and structure followed the approach in [70]. The identified parameter values
were obtained for a small-scale Raptor 90 radio controlled helicopter. The controller
performance was evaluated by numeric simulations restricted to hover flights.

Promising flight results for an autonomous small-scale helicopter have been ob-
tained in the work reported in [51, 53–55]. In this research, an H∞ loop shaping
controller was implemented on the Carnegie Mellon University’s Yamaha R-50. This
approach applied a blending of multivariable control techniques and system identi-
fication for the development of the flight control system. The helicopter nonlinear
model is derived by using the MOdeling for flight Simulation and Control Analysis
(MOSCA) modeling technique [52]. MOSCA combines first principles and system
identification techniques for the derivation of both linear and nonlinear helicopter
models. A thirty state nonlinear model was derived that includes the fuselage, main
rotor, stabilizer bar and inflow dynamics. The helicopter nonlinear dynamics was
further linearized in several linear models that correspond to certain operating con-
ditions of the helicopter. Based on the multiple linear models a gain scheduled H∞
loop shaping controller is applied.

Gain scheduling is a control technique according to which the gains of the
controller vary depending on certain variables, called scheduling variables. The
scheduling variables may be functions of the system’s state variables or exogenous
variables that describe the operating conditions of the system. The main design idea
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Fig. 2.2 Block diagram of a gain scheduling controller for a nonlinear system. The nonlinear sys-
tem is linearized over No operating points. A linear controller is designed for each linearized model
that corresponds to a particular operating point. The overall control law operates as an interpolator
of the multiple linear controllers whose gain parameters depend on the operating condition of the
nonlinear system

is to control a nonlinear system using a family of linear controllers. The nonlin-
ear system dynamics are linearized over a finite number of operating points. The
operating points are parametrized by the scheduling variables. For each linearized
model that corresponds to a particular operating point, a linear controller is de-
signed. The overall control law operates as an interpolator of the multiple linear
controllers whose gain parameters depend on the scheduling variables. More details
about gain scheduling may be found in [43, 87]. The gain scheduling approach has
emerged from avionics control applications, where the linearization of the vehicle’s
nonlinear dynamics around several operating points is a rather common procedure.
A descriptive block diagram of a gain scheduling controller for a nonlinear system
is shown in Fig. 2.2.

An interesting comparative study between several controller designs is given in
[109, 110]. Both classical and multivariable linear controllers are included in the
study. An eighteen state linear model, which represents the helicopter dynamics at
hover, has been used for the flight controllers design. The flight controllers were
tested on an RC helicopter mounted on a mechanical structure that allows the mo-
tion of the helicopter in all directions of the Cartesian space. For hovering, multi-
variable techniques had superior performance in comparison with classical control
designs. From the multivariable designs, LQR, H2 and H∞ designs were evaluated.
The flight validation indicated that in the multivariable design case it is preferable
to design multiple feedback loops that correspond to independent subsystems of the
helicopter dynamics, thus, decomposing the problem. This approach is preferable
to design the controller for the complete helicopter dynamics. The low order sub-
systems should appeal to the physical flight intuition and should be as decoupled
as possible. In the particular case the initial linear model was decomposed into a
subsystem representing the longitudinal/lateral motion and a second subsystem of
the heave and yaw dynamics.

An example of a linear controller design for a helicopter on a vertical stand is also
given in [56]. The gimbaled like device on which the helicopter was connected to,
allows only a three degrees of freedom motion of the latter. A discrete LQR is used
with an augmented Kalman filter for state estimation. The work in [2] compares a
simple eigenstructure assignment with full state feedback controller versus a typical
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LQR design. The helicopter model under consideration does not include the flapping
dynamics and the verification takes place by numerical simulations. Other robust
designs of helicopter control are reported in [6, 50, 82, 97].

2.2 Nonlinear Controller Design

In general, most control designs have been/are based on linearized helicopter dy-
namics using the widely adopted concept of stability derivatives. However, in recent
years there is considerable research related to helicopter flight control based on non-
linear dynamic representations. The nonlinear controller designs are mostly valued
for their theoretical contribution to the helicopter flight control problem. Their ap-
plicability is still an open challenge mainly due to the increased order and nonlinear
structure of the controller. However, their contribution to the understanding of the
limitations and capabilities of the helicopter control problem is very significant.

Detailed models of helicopter nonlinear dynamics may be found in [40, 79, 84].
However, such models are of high order and impractical for controller design pur-
poses. In [47, 48] a simplified nonlinear model of the helicopter dynamics is intro-
duced. The helicopter model is represented by the nonlinear dynamic equations of
motion of the helicopter enhanced by a simplified model of the aerodynamic force
and torque generation. This particular model has been adopted in most research
related to the helicopter nonlinear controller design. It indicates that exact input–
output linearization fails to linearize the helicopter model resulting in unstable zero
dynamics. It has also shown that the use of an approximate model that disregards the
thrust forces produced by the main rotor flapping motion, is full state linearizable.
This derivation is very important since, if the system dynamics are not input–output
linearizable, most nonlinear control techniques would be inapplicable. A feedback
linearization controller was proposed based on the approximated model dynamics. It
was proven that the proposed controller, based on the approximated model, achieves
bounded tracking of the position and yaw reference trajectories.

However, helicopters are characterized by significant parametric and model un-
certainty due to the complicated aerodynamic nature of the thrust generation. There-
fore, linearization and nonlinear terms cancellation techniques are poorly suited. It is
important that the controller design exhibits sufficient robustness towards potentially
significant uncertainty. A design that guarantees bounded tracking in the presence
of parametric and model uncertainty is reported in [37]. The proposed control law
incorporates stabilization techniques for feedforward systems with input saturation
and adaptive nonlinear output regulation techniques.

The work reported in [66, 67] addresses the design of an autopilot for a heli-
copter capable of letting its vertical/lateral and longitudinal dynamics and yaw atti-
tude dynamics tracking arbitrary references with only some bound requirements on
the higher order time derivatives imposed by functional controllability. This work is
an extension of [37], it includes the main rotor dynamics and allows for the tracking
of arbitrary trajectories. In addition, the controller design is based on the pitch-roll-
yaw attitude convention instead of quaternions, which are used in [37]. Similarly
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to [37], the final control structure is a mix of feedforward actions and nested sat-
uration control laws. The controller in [66, 67] is able to enforce very aggressive
maneuvers characterized by large attitude angles and to cope with possible large
uncertainties affecting the physical parameters.

As previously mentioned, most nonlinear designs neglect the effect of thrust
force components associated with the tilt of the main rotor disk. This is common
practice since those parasitic forces have a minimal effect on translational dynam-
ics. This simplification results in a set of system equations having a feedback form,
which is ideal for backstepping control design established in [49]. Backstepping
control implementation for helicopters is presented in [11, 21, 64, 65] and similar
designs for a quadrotor in [32, 33, 42].

Approaches of nonlinear control that use Neural Networks (NN) and nonlinear
inversion have been reported in [14, 15, 34, 38, 39, 45]. In all cases, the nonlinear
inversion requirement and the augmentation of an NN increases significantly the
order of the controller. To this extent, the derivation of the controller using the non-
linear equations of motion of the helicopter becomes impractical. Therefore, these
cases have applied designed controllers based on the linearized dynamics of the he-
licopter around hover. In [34, 45] the analysis is even more restricted by using a
simplified model of only the longitudinal and heave motion of the helicopter. In [38,
39] the controller was experimentally implemented to a Yamaha R-50 helicopter for
a simple step command response.

2.3 Remarks

This Chapter discussed several linear and nonlinear controller designs for heli-
copters. The focus of the presented approaches was emphasizing limitations and
shortcomings of the corresponding designs, in an attempt to understand better what
needs to be done in terms of controller designs to capture helicopter behavior execut-
ing aggressive and nonaggressive flights. Observations and results from this survey
have been incorporated into the design concepts presented in subsequent Chapters.





Chapter 3
Helicopter Basic Equations of Motion

The objective of this Chapter is to provide the basic equations of motion of the
helicopter, when the helicopter is treated as a rigid body. The equations of motion
are derived by implementing Newton’s second law that deals with vector summa-
tions of all forces and moments as applied to the helicopter relative to an inertial
reference frame. However, for practical reasons, analysis may be significantly sim-
plified if motion is described relative to a reference frame rigidly attached to the
helicopter. When this is the case, the equations of motion are derived relative to
this non-inertial, body-fixed frame. The end result of this Chapter is the complete
state space representation of the helicopter equations of motion in the configuration
space.

3.1 Helicopter Equations of Motion

The first assumption toward dynamic modeling of a helicopter is to consider it as
a rigid body with six Degrees Of Freedom (DOF). The DOF dictate the minimal
number of parameters that are required to specify an object’s configuration [95].
The motion of a rigid body is defined relative to a Cartesian inertial frame. A frame
is composed of a point in space and three orthonormal vectors that form a basis.
Therefore, in order to derive the equations of motion, two frames are required. The
first one is the inertial frame (Earth-fixed frame) defined as FI = {OI ,�iI , �jI , �kI }.
A typical convention of the Earth-fixed frame is the North-East-Down system where
�iI points North, �jI points East and �kI points at the center of the Earth. The second
frame is the body-fixed reference frame defined as FB = {OB,�iB, �jB, �kB}, where
the center OB is located at the Center of Gravity (CG) of the helicopter. The vector
�iB points forward through the helicopter nose, �jB points at the right side of the
fuselage and �kB points downwards, such that {�iB, �jB, �kB} constitutes a right-handed
Cartesian coordinate frame (�kB = �iB × �jB ). The directions of the body-fixed frame
orthonormal vectors {�iB, �jB, �kB} are shown in Fig. 3.1.

There are two ways to represent free vectors in space. The first is through the
synthetic approach, where the free vectors are considered to be geometric entities.

I.A. Raptis, K.P. Valavanis, Linear and Nonlinear Control of Small-Scale Unmanned
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Fig. 3.1 Body-fixed
coordinate system. The
components of the external
forces and moments acting on
the fuselage are denoted by
f B = [X Y Z]T and
τB = [L M N ]T ,
respectively. The linear and
angular velocity components
are denoted by the triples
vB = [u v w]T and
ωB = [p q r]T , respectively

In the second approach, the geometric entities are represented by coordinates. This
is called analytic approach [95]. In the analytic approach, the vector representation
depends on the coordinate frame of reference. The advantage of the analytic ap-
proach is that the operations between vectors may be tackled by algebraic methods
(equations). For example, a vector �w can be represented analytically by the coordi-
nate triple wB = [wB

1 wB
2 wB

3 ]T ∈ R
3, with respect to the body-fixed frame, or by

the triple wI = [wI
1 wI

2 wI
3 ]T ∈ R

3, with respect to the inertial frame. In general,
the triples wB and wI will be different, however, they both represent the same ge-
ometric entity �w. In this Chapter, in order to provide a clear understanding of the
derivation of the helicopter’s equations of motion both approaches will be adopted.

An inertial frame makes the analysis impractical since moments and products of
inertia will vary with time. This is not the case when a body-fixed frame is consid-
ered, where moments and products of inertia are constant. Therefore, the equations
of motion will be derived with respect to the body-fixed frame.

The linear velocity vector of the fuselage CG is denoted by �v. The coordinate
vector of the linear velocity is vB = [u v w]T with respect to the body-fixed frame.
Similarly, the angular velocity �ω of the fuselage, is represented in the body-fixed
frame by ωB = [p q r]T .

The vector sum of all the external forces and moments (torques) that act on the
fuselage is denoted by �f and �τ , respectively. The triplet f B = [X Y Z]T represents
the components of the force vector �f with respect to the body-fixed frame. Similarly,
the sum of all external moments are denoted by τB = [L M N ]T , as shown in
Fig. 3.1. Positive direction of the angular velocity and moment components refers
to the right-hand rule about the respective axis.

The equations of Newton’s second law are valid only in an inertial reference
frame. Therefore, Newton’s second law for the translational motion of the helicopter
is given by:

�f = m
d �v
dt

∣
∣
∣
∣
I

(3.1)

where m denotes the total mass of the helicopter. The operand d(◦)
dt

|I denotes the
time derivative of a vector in space as viewed by an observer in the inertial reference
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frame. From basic kinematic principles, which can be found in [31, 111], the time
derivative of �v with respect to the inertial reference frame, is equal to:

d �v
dt

∣
∣
∣
∣
I

= d �v
dt

∣
∣
∣
∣
B

+ �ω × �v (3.2)

The operator (×) is the vector cross product. The term d �v
dt

|B denotes the time
derivative of the velocity vector �v with respect to the body-fixed reference frame. In
general, d(◦)

dt
|B denotes the derivative of a vector from the viewpoint of an observer

in the body-fixed frame. At this point, a clarification is needed about vector differ-
entiation: As indicated in [31], the operands d(◦)

dt
|I and d(◦)

dt
|B when performed on a

free vector in space will provide in general a different result. The first one is the time
rate of change of a vector as viewed by an observer of the inertial frame, while the
second one is the time rate of change viewed by an observer of a rotating frame. The
change of the vector’s direction due to the angular velocity of the body-fixed frame
is not conceivable by the observer on the body-fixed frame. Contrary, this change is
detected by the observer of the inertial frame. A simple coordinate conversion will
not provide accurate results since both of them are viewing a different change.

Since �v = u�iB + v �jB + w�kB , then d �v
dt

|B = u̇�iB + v̇ �jB + ẇ�kB . Therefore, substi-
tuting (3.2) to (3.1), the analytic expression of Newton’s second law for the transla-
tional motion is:

X/m = u̇ + qw − rv

Y/m = v̇ + ru − pw

Z/m = ẇ + pv − qu

(3.3)

To conclude the derivation of the equations of motion, Newton’s second law is
applied to all moments that act on the CG. The reference point for calculating the
angular momentum and the external moments is rigidly attached to the CG of the
helicopter. Furthermore, using the body-fixed reference frame for the analysis is
advantageous since the moments and the products of inertia do not vary with time
given that the mass distribution of the helicopter does not change.

Let �H denote the vector of the helicopter angular momentum and HB =
[hx hy hz]T its coordinates with respect to the body-fixed frame. From [31], the
angular momentum components of the body-fixed reference frame are given by
HB = IωB , where I denotes the inertia matrix:

I =
[ Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Izx −Izy Izz

]

(3.4)

The respective moments of inertia are:

Ixx =
∑

(y2
m + z2

m)dm

Iyy =
∑

(x2
m + z2

m)dm

Izz =
∑

(x2
m + y2

m)dm

(3.5)
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The products of inertia are:

Ixy = Iyx =
∑

xmym dm

Ixz = Izx =
∑

xmzm dm

Iyz = Izy =
∑

ymzm dm

(3.6)

The above sums apply to all elementary masses dm of the helicopter, and xm, ym

and zm are the distances of each elementary mass from the CG. It is assumed that the
principal axes coincide with the axes of the body-fixed frame, therefore, it follows
that Ixy = Iyx = 0, Iyz = Izy = 0 and Ixz = Izx = 0.

Newton’s second law for the rotational motion dictates that the external moments
acting on the helicopter are equal to the time rate of change of the angular momen-
tum with respect to the inertial reference frame. Therefore:

�τ = d �H
dt

∣
∣
∣
∣
I

(3.7)

From differentiation of free vectors, one has:

d �H
dt

∣
∣
∣
∣
I

= d �H
dt

∣
∣
∣
∣
B

+ �ω × �H (3.8)

The term d �H
dt

|I is the time rate of change of the angular momentum with respect
to the inertial frame. The time derivative components of the angular momentum
d �H
dt

|B , are given by:

ḣx = Ixxṗ

ḣy = Iyy q̇

ḣz = Izzṙ

(3.9)

Substituting (3.8) and (3.9) to (3.7), the analytic expression of Newton’s second law
for the rotational motion of the helicopter is:

L = Ixxṗ + qr(Izz − Iyy)

M = Iyy q̇ + pr(Ixx − Izz)

N = Izzṙ + pq(Iyy − Ixx)

(3.10)

Therefore, the final form of the equations of motion with respect to the inertial
frame, but expressed in the body-fixed frame coordinate components, are given by
(3.3) for the translational and by (3.10) for the rotational motion of the helicopter.
A compact form of the helicopter equations of motion expressed in the body-fixed
frame is the following:

[

mI3 0
0 I

][

v̇B

ω̇B

]

+
[

ωB × mvB

ωB × IωB

]

=
[

f B

τB

]

(3.11)

From [75], the above equations are called Newton–Euler equations in the body-fixed
frame’s coordinates.
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Fig. 3.2 Helicopter
orientation

3.2 Position and Orientation of the Helicopter

The motion of the helicopter is defined by the position and orientation of the body-
fixed frame relative to the inertial frame. The Newton–Euler equations provide in-
formation about the translational and angular velocity of the helicopter. However,
neither of them give information about the helicopter’s current position and orienta-
tion. The helicopter equations of motion are completed by determining the position
and orientation dynamics of the latter. Derivations follow the approach presented in
[20] but with additional details for clarification purposes.

Let F1 = {OB,�i1, �j1, �k1} define an intermediate frame that is aligned with FI and
centered on the CG of the helicopter as shown in Fig. 3.2. The helicopter orientation
at any time instant may be obtained by performing three consecutive rotations of F1
until it is aligned with FB . The rotations are performed at a specific order, they
cannot be considered as vectors and they are not commutative [111]. Therefore, the
rotation order is important for consistency purposes, and it is as follows:

• A rotation of an angle ψ about �k1. This rotation moves the helicopter to the di-
rection defined by F2 = {OB,�i2, �j2, �k2}, bringing �i2 parallel to the plane defined
by �iB and �k1.

• A rotation of an angle θ about �j2. This rotation moves the helicopter to the direc-
tion described by F3 = {OB,�i3, �j3, �k3}, aligning �i3 with �iB .

• A rotation of an angle φ about axis �i3 bringing F3 to its final orientation FB .

In this way, each rotation is performed about an axis the location of which de-
pends on the preceding rotations [16]. The intermediate frames and each rotation
are shown in detail in Fig. 3.2. These angles, with the particular sequence of rota-
tions, are also known as Z–Y–X Euler angles. The Euler angles orientation vector
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is denoted by Θ = [φ θ ψ]T . Positive direction of each angle refers to the right-
hand rule about the respective axis. Any arbitrary rotation of the body-fixed frame
relative to the inertial frame can be parametrized by the three Euler angles.

3.2.1 Helicopter Position Dynamics

Expressing the helicopter position relative to the body-fixed frame is meaningless.
Therefore, the position dynamics are derived with respect to the inertial frame. Be-
fore the position dynamics are presented, one needs to introduce the description that
relates the coordinate vectors of the body-fixed and inertial frames. This description
is called the rotation matrix and it provides a systematic way to express the relative
orientation of the two frames.

Denote by vI = [vI
x vI

y vI
z ]T the linear velocity coordinate vector with respect

to the inertial frame. The linear velocity vector of the helicopter, relative to FB and
FI , respectively, is:

�v = u�iB + v �jB + w�kB (3.12a)

�v = vI
x
�i1 + vI

y
�j1 + vI

z
�k1 (3.12b)

Using the definition of the Euler angles, the unit vectors of the body-fixed frame FB

are written relative to the frame F3 as:
[ �iB�jB�kB

]

=
[1 0 0

0 cosφ sinφ

0 − sinφ cosφ

][ �i3�j3�k3

]

= RT
φ (φ)[�i3 �j3 �k3]T (3.13)

Similarly, the unit vectors of the frame F3 are expressed relative to the frame F2 as:
[ �i3�j3�k3

]

=
[ cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

][ �i2�j2�k2

]

= RT
θ (θ)[�i2 �j2 �k2]T (3.14)

Finally, the unit vectors of the frame F2 relative to F1 are expressed as:
[ �i2�j2�k2

]

=
[ cosψ sinψ 0

− sinψ cosψ 0
0 0 1

][ �i1�j1�k1

]

= RT
ψ(ψ)[�i1 �j1 �k1]T (3.15)

By consecutive substitutions of (3.13), (3.14) and (3.15) to (3.12a), one obtains:

�v = [u v w][�iB �jB
�kB ]T

= [u v w]RT
φ (φ)[�i3 �j3 �k3]T

= [u v w]RT
φ (φ)RT

θ (θ)[�i2 �j2 �k2]T
= [u v w]RT

φ (φ)RT
θ (θ)RT

ψ(ψ)[�i1 �j1 �k1]T (3.16)
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Denote by R(Θ) the product:

R(Θ) = Rψ(ψ)Rθ (θ)Rφ(φ) (3.17)

Equating the right-hand sides of (3.12b) and (3.16), one gets:
⎡

⎣

vI
x

vI
y

vI
z

⎤

⎦ = R(Θ)

[
u

v

w

]

(3.18)

where:

R(Θ) =
[

cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ

cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ

− sin θ sinφ cos θ cosφ cos θ

]

(3.19)

The matrix R(Θ) is called the rotation matrix and it is parametrized with respect
to the three Euler angles. The rotation matrix R is used to map vectors from the
body-fixed frame FB to the inertial frame FI . The rotation matrix belongs to the
Special Orthogonal group of order 3 denoted by SO(3).

Property 3.1 The rotation matrix has the following properties [95]:

1. RRT = RT R = I

2. det(R) = 1
3. Each column (and each row) of R is a unit vector
4. Each column (and each row) of R are mutually orthogonal

When the rotation matrix is parametrized by the Z–Y–X Euler angles, singu-
larities occur at θ = ±π/2. More specifically, when θ = ±π/2, then, the inverse
problem of retrieving the Euler angles from the rotation matrix, does not have a
solution [75]. Such singularities occur in any 3-D representation of SO(3).

The rotation matrix facilitates the derivation of the position and translational ve-
locity dynamics with respect to the inertial frame. Denote by pI = [pI

x pI
y pI

z ]T
the position of the helicopter’s CG. Then, the position and velocity dynamics with
respect to the inertial frame are:

ṗI = vI (3.20)

v̇I = 1

m
Rf B (3.21)

Any rigid motion is defined by the ordered pair (pI ,R) where pI ∈ R
3 and R ∈

SO(3). The group SE(3) = R
3 × SO(3) is the configuration space of the helicopter

and it is known as the Special Euclidean group.

3.2.2 Helicopter Orientation Dynamics

Consider that during an infinitesimal time interval dt the helicopter is subjected to
three infinitesimal rotations dψ , dθ and dφ resulting in a position defined by angles
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ψ + dψ , θ + dθ and φ + dφ. Although finite rotations cannot be treated as vectors,
infinitesimal rotations may be treated as such, thus, according to [20], the vector that
represents the above rotation is:

n̂ = dφ �iB + dθ �j3 + dψ �k2 (3.22)

Then, the angular velocity can be expressed as:

�ω = dn̂

dt
= φ̇�iB + θ̇ �j2 + ψ̇ �k1 (3.23a)

and:

�ω = p�iB + q �jB + r �kB (3.23b)

By using the expressions (3.13)–(3.15) and equating the right-hand sides of
(3.23a) and (3.23b), one has:

[
p

q

r

]

=
[

φ̇

0
0

]

+ RT
φ (φ)

[ 0
θ̇

0

]

+ RT
φ (φ)RT

θ (θ)

[ 0
0
ψ̇

]

⇒
[

p

q

r

]

=
[1 0 − sin θ

0 cosφ sinφ cos θ

0 − sinφ cosφ cos θ

][
φ̇

θ̇

ψ̇

]

(3.24)

Based on the above equation, the orientation dynamics of the helicopter are given
by:

Θ̇ = Ψ (Θ)ωB (3.25)

where:

Ψ (Θ) =
[1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ/ cos θ cosφ/ cos θ

]

(3.26)

For an arbitrary motion, the components of the rotation matrix are time varying. The
derivative of the rotation matrix is given by:

Ṙ = Rω̂B (3.27)

where ω̂B denotes the skew symmetric matrix of the vector ωB . For a vector w =
[w1 w2 w3]T the skew symmetric matrix is defined as:

ŵ =
[ 0 −w3 w2

w3 0 −w1
−w2 w1 0

]

The multiplication of the matrix ŵ with a vector h, produces the coordinates of the
cross product w × h.

Proposition 3.1 For two vectors g1 and g2 of R
3, the skew symmetric matrix has

the following properties:

1. ĝ1g1 = 0
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Fig. 3.3 Interconnection of the helicopter dynamics in the configuration space SE(3)

2. R(ĝ1g2) = (̂Rg1)(Rg1)

3. ĝ1 + ĝT
1 = 0

4. Rĝ1R
T = R̂g1

The derivation of (3.27) is not presented here because it is out of the scope of
this Chapter. However, more details may be found in [75, 95]. The rotation matrix
dynamics are very important, since they appear in the linear velocity dynamics given
in (3.21). Although the orientation dynamics are also given in (3.26), working with
the rotation matrix in control applications is preferable due to the special properties
of the rotation matrix.

3.3 Complete Helicopter Dynamics

Having defined the position and orientation dynamics, the complete state space rep-
resentation of the helicopter equations of motion in the configurations space SE(3)

is:

ṗI = vI (3.28)

v̇I = 1

m
Rf B (3.29)

Ṙ = Rω̂B (3.30)

Iω̇B = −ωB × (IωB) + τB (3.31)

where [pI vI R ωB ] ∈ R
3 × R

3 × SO(3) × R3. Integration of the above equations
provides all required information for determining the helicopter motion in the con-
figuration space. The interconnection of the helicopter dynamics in SE(3) is illus-
trated in Fig. 3.3.

As mentioned earlier, the orientation of the helicopter is parametrized by the
Z–Y–X Euler angles. In this case each intermediate rotation takes place about an
axis of a frame that is produced by a preceding rotation. In aviation applications it is
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Table 3.1 Key equations of motion

Newton–Euler equations:
[

mI3 0
0 I

][

v̇B

ω̇B

]

+
[

ωB × mvB

ωB × IωB

]

=
[

f B

τB

]

Rotation matrix:

R(Θ) =
[ cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ

cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ

− sin θ sinφ cos θ cosφ cos θ

]

Equations of motion in the configuration space SE(3):

ṗI = vI

v̇I = 1
m

Rf B

Ṙ = Rω̂B

Iω̇B = −ωB × (IωB) + τB

preferable that each rotation takes place about the axis of a fixed frame. Exactly the
same equations are derived if the final orientation is produced by a φ angle about the
axis �iI , then, an angle θ about �jI and, finally, an angle ψ about the axis �kI . In this
convention the angles φ, θ and ψ are called pitch, roll and yaw angles, respectively.

The helicopter rigid body dynamics given in (3.28)–(3.31) are completed by
defining the external body frame force f B and torque τB .

3.4 Remarks

This Chapter has presented an analytical derivation of the helicopter’s basic equa-
tions of motion. The linear and angular velocity dynamics are obtained from New-
ton’s second law for translational and rotational motion. The orientation of the heli-
copter with respect to a stationary inertial frame is determined by three orientation
angles. The rotation matrix is parametrized by the orientation angles and constitutes
a systematic tool for mapping vectors from the inertial frame to the body-fixed frame
and vise versa. The position and orientation dynamics complete the description of
the helicopter’s motion in the configuration space. The final requirement towards
the derivation of the helicopter’s mathematical model is the determination of the
external forces and moments applied to the helicopter. The main source of force and
torque generation of the helicopter is produced by the main and tail rotor. The main
rotor itself is a dynamical system. A detailed model of the aerodynamic forces and
moments of the main rotor would be of high order and significant complexity. The
next Chapter presents a simplified model of the main rotor dynamics that is suitable
for control design purposes.

Concluding this Chapter, the key equations that must be remembered for subse-
quent development are summarized in Table 3.1.



Chapter 4
Simplified Rotor Dynamics

The helicopter’s main source of propulsion is provided by the main and tail rotor.
The aerodynamic forces and moments are nonlinear functions of motion character-
istics and controls. Due to the complexity and the uncertainty associated with the
aerodynamic phenomena, a detailed model of the forces and moments produced
by the main rotor would be of high order and completely impractical for any con-
troller design. In this Chapter, the modeling approach presented in [47, 56, 70, 72]
is followed to arrive at a simplified derivation of the main rotor dynamics and the
produced thrust force vector that are considered sufficient for controller design pur-
poses.

4.1 Introduction

There are four control commands associated with helicopter piloting. The control
input vector is defined as uc = [ulon ulat uped ucol]T , where ucol and uped are the
collective controls of the main and tail rotor, respectively. The collective commands
control the magnitude of the main and tail rotor thrust by a uniform change in the
pitch angles of all the rotor’s blades. The other two control commands, ulon and
ulat, are the cyclic controls of the helicopter, which control the inclination of the
Tip-Path-Plane (TPP) on the longitudinal and lateral direction. The TPP is the plane
on which the tips of the blades lie and it is used to provide a simplified representation
of all the rotor blades [70].

A simplified approach for the main rotor thrust generation is followed based on
[47, 70, 72], according to which the thrust vector produced by the rotor disk is
perpendicular to the TPP. The main rotor blades, apart from rotating about the shaft
axis, they also exhibit a flapping motion that is normal to the plane of rotation. Since
the thrust vector is normal to the TPP, by controlling the TPP inclination, the pilot
indirectly controls the direction of the propulsion forces.

The TPP is itself a dynamic system the dynamics of which represent the ro-
tor dynamics. The rotor is affected by both the pilot’s control commands and the
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helicopter’s motion. The helicopter’s motion itself is controlled by the applied ro-
tor forces and moments. Therefore, there is an obvious coupling between the rotor
and fuselage dynamics. The work presented in [70] and [104] provides a simplified
model of the rotor dynamics that is integrated with the rigid body model, in order to
arrive at a “hybrid model” of the helicopter dynamics.

The goal of this Chapter is to present a simplified model of the rotor dynam-
ics that encapsulates the cross coupling effect between the rotor and the fuselage.
The second goal is to derive a practical description of the thrust force and moment
components produced by the main rotor. In general, the rotor mathematical model-
ing is a very complex procedure. The complexity of the model, without considering
any simplification assumptions, will significantly increase. As pointed in [18], the
model complexity depends on the application the model is designed for. For control
applications, the proposed model provides a practical and physically meaningful de-
scription of the rotor dynamics. Obtained results in this Chapter associated with the
rotor dynamics are based on and relate to results found in [70].

In order to better understand the final derivation of the simplified rotor dynamics
and to capture details of the physical concepts that effect the rotor behavior, a series
of intermediate steps need be presented. The first step is to introduce the additional
DOF of the blades. The control of the rotor is mainly produced by the variation
of the blades pitch angle. By changing the pitch angle, the aerodynamic loads of
the blades are also altered. This is a way of controlling the lift forces applied to
each blade. To this extent, a generic description of the basic mechanical design that
produces the variation of the pitch angle is given.

Simplified aerodynamics concepts are presented next, which result in the deriva-
tion of the aerodynamic forces applied to each blade. By describing the aerody-
namic forces and by considering the additional inertia forces acting on the blade,
the blade’s equations of motion are derived. The adoption of some physically mean-
ingful simplification assumptions leads to the derivation of the so-called Tip-Path-
Plane dynamic equations, which essentially are the main rotor dynamics. Finally,
using the Tip-Path-Plane equations, the force and moment components produced by
the main rotor are derived.

4.2 Blade Motion

The most common rotor configuration consists of two (or more) identical blades at-
tached to the rotor hub [40]. The rotor hub is connected to the rotor shaft. The blades
perform rotational motion around the rotor shaft with a constant angular velocity Ω .

Apart from the rotational motion around the shaft, the blades also have three
additional DOF. These DOF are illustrated in Figs. 4.1(a) and 4.1(b). More specifi-
cally:

• Flapping: This DOF produces a motion of the blade that is parallel to the plane
that includes the blade and the shaft, and it is denoted by the flapping angle β .
The flapping angle is defined to be positive when the blade moves upwards.
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Fig. 4.1 Representation of
the rotor 3 DOF. (a) The 3
DOF of the rotor blade in
space. The Figure is based on
[40]. (b) Top view of the rotor
hub where each DOF of the
rotor blade is represented by a
blade hinge. The Figure is
based on [40]

• Lead-Lagging: This DOF produces a motion of the blade that is parallel to the
hub plane. The lagging angle is denoted by ξ . Lagging is positive when the blade
opposes the direction of rotation produced by the rotor.

• Feathering: This DOF produces a pitching motion of the blade about the blade
span. The feathering angle is denoted by ζ . Feathering angle is considered posi-
tive for nose up motion of the blade.

The necessity for free motion of the blade with respect to these additional DOF
was apparent from early helicopter designs. The feathering angle controls the aero-
dynamic forces that are generated on the blades. Those aerodynamic forces control
the thrust force that is necessary for the motion of the helicopter. However, the gen-
eration of aerodynamic forces has as a result the appearance of large moments on
the root of the blade. Those moments are transmitted to the hub and then to the rest
of the helicopter’s body. A rotor configuration that allows the flapping motion of the
blade is needed in order to relief the blade root from those arising moments. The
immediate result of the flapping motion is the generation of Coriolis moments on
the blade in the plane of rotation [7]. A second configuration is needed to allow the
lagging motion of the blade so those moments are relieved.

There are several hub designs that allow for motion of the blades. The traditional
approach is the use of mechanical hinges at the blade root for the flapping and lag-
ging motion. Modern designs have substituted the use of hinges by flexible elements
in the root of the hub that allow for the flapping and lagging motion. In addition,
there are configurations that use both approaches. A general classification of the
rotor hub depending on the mechanical configuration that is used to facilitate the
flapping and lagging motion according to [40, 58] is the following:
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• Articulated rotor: This type of rotor hub provides a flap and a lag hinge for every
individual blade. There is also a feathering bearing for the control of the blade
pitch. This is the most classical means to provide blade motion. This configuration
allows the blade to move independently from the others.

• Teetering rotor: This type of rotor is composed of two blades that are connected
together, forming a continuous structure with a single flap hinge. The two blades
are connected to the flap hinge in such a way that when the one blade flaps up-
wards the other blade flaps downwards. This type of rotor does not include lag
hinges.

• Hingeless rotor: The hingeless rotor allows the flap and lag motion by structural
bending in the root of the blade. This configuration does not require hinges. The
structural bending at the root of the blade is made by an attachment to the hub of
a cantilever root restraint. A feathering bearing or hinge is used for changes in the
pitch angle of each blade. This design provides a relative stiff rotor hub and as a
result the hub and blade loads are higher than those of hinged configurations.

4.3 Swashplate Mechanism

Helicopter flight control is achieved by varying the pitch angle of the blades. Feath-
ering is the pitching motion of the blade about the span of the blades. The feathering
motion changes the blade’s angle of attack, providing a way to control the thrust and
the moments that are applied to the rotor. The feathering angle (as well as the flap-
ping angle) are measured relatively to a reference plane. This reference plane is
perpendicular to the rotor shaft and it is denoted as the hub plane. The total pitch
angle of each blade is given by the equation:

ζ = ζ0 − ζ1c cosψb − ζ1s sinψb (4.1)

The angle ζ0 is called collective pitch and it controls the magnitude of the thrust
vector. The two angles ζ1c and ζ1s are called cyclic pitch angles. The two cyclic pitch
angles control the orientation of the thrust vector. More specifically, ζ1c controls the
lateral orientation of the thrust vector while ζ1s controls the longitudinal orientation.
The blade’s position is described by the azimuth angle ψb = Ωt . The azimuth angle
is considered zero when the blade is aligned with the tail facing backwards.

There are several types of mechanical designs that produce the collective and
cyclic angles of the blades. A generic description of the most standard configuration
is given in [40] and it is described here. This configuration is composed of two
main mechanical parts. The first part is associated with the creation of the blade’s
feathering angle and it is illustrated in Fig. 4.2. The pitch motion of the blades takes
place about a pitch bearing or a hinge. This bearing is rigidly attached to one of
the tips of the pitch horn. The other tip of the pitch horn is connected to the pitch
link. The pitch horn and the pitch link are connected in such a way that the vertical
motion of the pitch link produces the blade’s pitch motion. What is needed, is a
mechanical arrangement that provides the periodic pitch angle described by (4.1).
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Fig. 4.2 Connection of the
pitch horn to the pitch link.
The pitch link is also attached
to the swashplate. The blade’s
3 DOF are represented by
three blade hinges. This
Figure is based on [40]

The most standard mechanical configuration for this task is the use of the swashplate
mechanism.

There is a wide variety of designs for the swashplate. Here, the fundamental
principle of the swashplate’s function is presented based on [40]. A schematic of
the basic swasplate’s components is illustrated in Fig. 4.3.

The swashplate is composed of two rings that are concentric with the shaft. One
of the rings has the ability to rotate about the shaft while the other one is constantly
nonrotating. Bearings lie between the two rings. The blade pitch links are attached
to the rotating wing while the pilot’s controls are attached to the nonrotating ring.
The two rings are attached to the shaft in such a way that the swashplate surface can
take an arbitrary orientation relative to the shaft.

Moving the swashplate vertically to the shaft results in a uniform change of the
blade’s pitch independently of the position of the blade. Therefore, the vertical mo-
tion of the swashplate produces the collective pitch angle ζ0. On the other hand,
a longitudinal or lateral tilt of the swashplate creates a sinusoidal variation of the
pitch angle depending on the azimuthal position of the blade. It is obvious that the
control of the swashplate tilt produces the cyclic control angles ζ1s and ζ1c of the
rotor blades.

Fig. 4.3 Basic configuration of the swashplate mechanism. This Figure is based on [40]
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Therefore, the cyclic control angles can be written as linear functions of the con-
trols inputs of the pilot’s stick. Hence:

ζ1s = Alonδlon

ζ1c = Blatδlat
(4.2)

where Alon, Blon are constants associating the stick commands with the blade’s pitch
angles.

4.4 Fundamental Rotor Aerodynamics

The objective of this Section is to provide a somewhat simplified analysis of the ro-
tor aerodynamics. The mathematical analysis will be kept to the minimum required
in order to reduce complexity, however, it will provide insight related to the dom-
inant behavior of the rotor. In order to determine the aerodynamic forces that are
applied to the rotor blade the first step is to analyze the velocity components of the
blade relative to the air over the complete blade span. This analysis, in general, is a
very difficult task due to the complexity associated with the modeling of the inflow
velocity throughout the rotor disk.

As indicated in [40] and [58] the blade element analysis considers each blade
element as a two dimensional airfoil. The aerodynamic behavior of neighboring
blade elements is independent of each other. An induced inflow velocity on each
blade element should be accounted, which is a product of the rotor wake. Analytical
ways of calculating the induced velocity may be found using momentum theory,
vortex theory or nonuniform inflow calculations [40]. In general the calculation of
the inflow velocity is a very challenging task, due to its non uniformity across the
blade span; mathematical simplifications should be applied in order to minimize
the complexity of the analysis. Finally, after determining the velocity components
of the blade element, the aerodynamic forces acting on this element are calculated.
The complete dynamic behavior of the blade is obtained by integrating the applied
forces of the individual elements throughout the blade span.

In what follows, the hub plane is considered as the reference plane. To facilitate
the analysis denote by Fh = {Oh,�ih, �jh, �kh} a reference frame attached to the main
rotor where �ih = −�iB , �jh = �jB and �kh = −�kB . The center Oh is located at the center
of the rotor hub such that �ih is aligned with the blade when ψb = 0.

Let V∞ denote the free stream velocity, which is the helicopter’s forward velocity
with respect to the air. The free stream velocity, illustrated in Figs. 4.4(a) and 4.4(c),
is directed straight to the front part of the helicopter at an angle αhb with respect
to the hub plane (positive when the free stream velocity is facing downwards to the
hub). Therefore, the free stream velocity has a component V∞ cosαhb , which lies in
the plane of the hub, and a component V∞ sinαhb , which is normal to the hub plane.
Usually in the literature, the in-plane component is defined as the non dimensional
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Fig. 4.4 Directions of the velocity components seen by the blade element. This Figure also illus-
trates the direction of the free stream and inflow velocity. (a) Top view of the rotor. (b) Side view
of the rotor. (c) Direction of the free stream and inflow velocity relative to the hub plane

quantity called rotor advance ratio, denoted by μ, which is the in-plane free stream
component normalized by the blade’s tip speed. Therefore:

μ = V∞ cosαhb

ΩRb

(4.3)



38 4 Simplified Rotor Dynamics

where Rb denotes the blade’s radius. The rotor blades perform three types of motion.
The first one is the out-of-plane flapping motion described by the flapping angle β .
There is also feathering motion about the blade axis with a feathering angle ζ mea-
sured relative to the hub plane. Last, the blade performs a rotational motion about
the rotor’s shaft with angular velocity Ω .

The velocity accounted by each blade element is due to the helicopter forward
motion, the blade’s flapping motion, the rotor’s inflow velocity and the rotor’s rota-
tion about the shaft.

Three velocity vectors are required for the description of the total air velocity
U as seen by the blade element. The vectors are two in-plane components and one
out-of-plane component, normal to the hub plane. The first in-plane component is
denoted by UT . It is tangential to the blade and parallel to the disk plane. The posi-
tive direction of UT is opposing the rotational blade motion.

The second in-plane component is the radial component of the blade, denoted by
UR that lies on the hub plane, it is parallel to the blade axis and positive direction
is considered outwards. Both of them can be seen in Fig. 4.4(a). Finally the out-
of-plane component is denoted by UP and it is perpendicular to the hub plane with
positive direction facing downwards as illustrated in Fig. 4.4(b).

The tangential velocity UT is affected by the rotor rotation and the forward ve-
locity. The component due to rotor rotation is Ωr (where r is the radial distance
of the blade element), while the tangential to the blade forward velocity compo-
nent is (V∞ cosαhb) sinψb. Therefore, the complete form of UT with respect to the
azimuthal angle ψb and the radial distance r of the blade element is given by:

UT (r,ψb) = (V∞ cosαhb) sinψb + Ωr (4.4)

The radial component of the blade element is solely produced by the freestream
velocity, therefore:

UR(ψb) = (V∞ cosαhb) cosψb (4.5)

In general the effect of the radial component towards the calculation of the air veloc-
ity of the blade element is neglected. However, this component should be considered
when calculating explicitly the effect of the rotor drug [58].

The out-of-plane velocity vector consists of four velocity components. The
first one is the velocity due to blade flapping given by rβ̇ . The second one is
the perpendicular to the blade element component due to the radial velocity UR

given by UR sinβ . The third is the effect of the forward velocity described by
(V∞ sinαhb) cosβ . Lastly, there is the influence of the inflow velocity ui , which is
perpendicular to the rotor hub with component ui cosβ . The complete out-of-plane
velocity is given by:

UP (r,ψb) = rβ̇ + UR sinβ + (V∞ sinαhb) cosβ + (ui) cosβ (4.6)

By considering a small flapping angle β , the following simplified equation is
obtained:

UP (r,ψb) = rβ̇ + URβ + (V∞ sinαhb) + ui (4.7)
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Fig. 4.5 Illustration of a two
dimensional blade element.
The Figure illustrates the
velocity components of the
blade element, the
aerodynamic angles and the
elemental aerodynamic
forces. This Figure is based
on [70]

A schematic description of the velocities, aerodynamic angles and elemental
forces acting on a blade element is given in Fig. 4.5. The magnitude of the velocity
seen by the blade element is given by:

U =
√

U2
T + U2

P (4.8)

The relative inflow angle (or induced angle of attack) is given by:

φb = tan−1
(

UP

UT

)

(4.9)

The blade’s angle of attack is a function of the blade pitch angle ζ and the produced
inflow angle φb . The complete expression of the angle of attack is given by:

αb = ζ − φb (4.10)

The aerodynamic lift and drug vectors of the blade element are normal and parallel,
respectively, to the velocity U seen by the blade element.

From [58] the incremental lift dL produced at the blade element is:

dL = 1

2
ρaU

2cbClααb dr (4.11)

In the above equation ρa is the air density, cb is the blade chord and Clα is the
airfoil’s lift curve slope. The drag component, denoted dD, of the element blade is
given by:

dD = 1

2
ρaU

2cbCd dr (4.12)

where Cd is a drag constant that depends on the blade’s geometry. The components
of the forces acting parallel and perpendicular to the hub plane are given by:
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dFx = dL sinφb + dD cosφb (4.13)

dFz = dL cosφb − dD sinφb (4.14)

The complete forces are obtained by integrating the above equations for all the blade
elements along the blade’s length. The above equations indicate that the cyclic in-
puts and the helicopter forward motion through the air, produce periodic aerody-
namic forces with a frequency related to Ω . Actually, as indicated in [7, 40, 58, 70],
the periodic aerodynamic loads produced by feathering have a frequency equal to or
closed to Ω . An analytical description of the aerodynamic forces is too complex and
it out of the scope of this book. These periodic forces result in the periodic flapping
motion of the blade described next.

4.5 Flapping Equations of Motion

This Section presents the rotor equations of motion associated with the flapping of
the blades. Flapping is assumed to take place about a hinge located at the intersection
of the shaft with the hub plane (no hinge offset). To complete the model of the
flapping hinge, a linear torsional spring is added at the hinge with stiffness Kβ as
shown in Fig. 4.6. This modeling approach is based on [7, 79] and it is a successful
way to represent uniformly a variety of hinged and hingeless rotors. This modeling
approach is also able to capture the effect of the hinge offset. Apart from the flapping
motion, the blade is rotating with angular velocity Ω about the shaft. The effect of
the rotational and translational accelerations of the fuselage on the blade motion is
disregarded. This is a typical simplification assumption, however, details about this
effect may be found in [79]. Furthermore, mass uniformity of the blade is assumed.
The mass per unit length of the blade is denoted by mb . The mass of a blade element
with radial distance r from the blade root is mb dr .

The first step towards this analysis is the determination of the forces acting on the
blade element. The first force component is the periodic aerodynamic lift force dFa ,

Fig. 4.6 Aerodynamic,
inertia and centrifugal forces
acting on a blade element.
The flapping angle of the
blade is denoted by β .
A centered torsional spring of
stiffness Kβ is placed at the
root of the blade. This Figure
is based on [70]



4.5 Flapping Equations of Motion 41

acting on the blade element. This force component is perpendicular to the blade el-
ement facing upwards. In addition, there are two inertia forces acting on the blade.
The first one is the inertia force component opposing the flapping motion. The ac-
celeration of the blade element due to flapping is β̈r , therefore, the inertia force due
to flapping dFi is mb dr β̈r , which is perpendicular to the blade facing downwards.
The second inertia force is the centrifugal force dFc = mb dr Ω2r cosβ , which is
parallel to the hub plane directed radially outwards, due to the centripetal acceler-
ation Ω2r cosβ . The inertia force due to Coriolis acceleration (this force is in the
in-plane direction) and the weight force acting on the blade are disregarded since
they produce significant smaller forces than the forces produced by flapping.

The flapping equation of motion is derived by equating all moments that act
on the blade. The total moment is derived by calculating the elementary moments
acting on a blade element and then by integrating along the complete blade length.
Since the force components that are collinear with the blade axis do not produce any
moments, the moment equation takes the form:

∫ Rb

0
mbΩr2 cosβ sinβ dr +

∫ Rb

0
mbβ̈r2 dr + Kββ

=
∫ Rb

0
r dFa dr (4.15)

By assuming small angle approximation for β , (4.15) results in:

(β̈ + Ω2β)

∫ Rb

0
mbr

2 dr + Kββ =
∫ Rb

0
r dFa dr (4.16)

The integral of the first term is the inertia of the blade given by:

Ib =
∫ Rb

0
mbr

2 dr (4.17)

Equation (4.16) takes a more intuitive form if the flapping angle β is expressed
as a function of the azimuthal angle ψb of the blade, instead of time. The operand (′)
denotes the derivative of β with respect to ψb . The relation between the azimuthal
angle and time is given by ψb = Ωt , so regarding the derivatives of β with respect
to ψb the following equalities hold:

β̇ = ∂β

∂ψb

∂ψb

∂t
= Ωβ ′ (4.18)

β̈ = ∂β̇

∂ψb

∂ψb

∂t
= Ω2β ′′ (4.19)

Considering (4.18) and (4.19), (4.16) results in:

β ′′ + λ2
ββ = 1

Ω2 Ib

∫ Rb

0
r dFa dr (4.20)

where the flapping frequency ratio λβ [70, 79] is given by the expression:

λ2
β = Kβ

Ω2 Ib

+ 1 (4.21)
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The dynamics of (4.20) resemble the equation of motion of a single DOF Spring-
Mass-Damper (SMD) system. The description of the latter is given by the equation
mẍ + cẋ + kx = F where m denotes the mass of the object, c is the damping coef-
ficient, k is the spring stiffness and F is the external applied force. For this system,
the natural frequency is given by ωn = √

k/m and it is independent of the damping
coefficient. Observing (4.20) it is obvious that the natural frequency of blade flap-
ping is equal to the flapping frequency ratio λβ . The aerodynamic term in the right
hand side of (4.20) includes the damping term.

4.6 Rotor Tip-Path-Plane Equation

From the analysis of the previous Section it is apparent that the flapping motion
depends on the azimuthal angle of the blade. Therefore, the flapping motion is a
periodic function with fundamental frequency Ω and period Tb = 2π/Ω . Every
periodic function can be expressed as a Fourier series, so the flapping motion can
be expanded to the following infinite sum:

β(ψb) = β0 −
∞
∑

n=1

(bnc cosnψb + bns sinnψb)

= β0 − b1c cosψb − b1s sinψb

− b2c cos 2ψb − b2s sin 2ψb − · · · (4.22)

where β0, βnc , and βns denote the Fourier series coefficients. Practical observa-
tions have shown that only the first harmonics of the infinite series are sufficient to
approximate the flapping behavior of the blade since the contribution of higher har-
monics can be considered negligible. In this case, following the classical approach
of [13], the form of the flapping angle β is represented by the first harmonic terms
of (4.22) with time varying coefficients. Therefore:

β(ψb) = β0(t) − β1c(t) cosψb − β1s(t) sinψb (4.23)

This equation indicates that the tips of the blade curve a circular path. The plane
that this circular path lies on, is referred to as Tip-Path-Plane (TPP) or rotor disk. In
order for the reader to understand the blade motion described by (4.23) the following
analysis examines individually the effect of the first harmonic coefficients on the
TPP. For simplicity, the coefficients β0, β1c, and β1s are considered constant with
time. Denote by [xh yh zh]T the coordinates of the tip of the blade with respect to
the hub frame Fh.

If the flapping angle is composed only by the β0 coefficient, then the blades form
a cone as they rotate and the TPP is a circle parallel to the hub plane as illustrated
in Fig. 4.7(a).

Regarding the β1c term, if small angle approximation is used and the flapping
angle is given by β(ψb) = −β1c cosψb , then the coordinate of the tip of the blade
on the �kh axis is:

zh = Rb sinβ ≈ Rbβ = −Rbβ1c cosψb ≈ −β1cxh (4.24)
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Fig. 4.7 Effect of each harmonic given by (4.23) to the TPP. (a) Coning. (b) Longitudinal tilt of
the TPP. (c) Lateral tilt of the TPP

In this case, the TPP lies on a plane that is tilted about the �jh axis with an angle β1c

downwards as illustrated in Fig. 4.7(b). Following the same analysis for the motion
of β(ψb) = −β1s sinψb , one obtains:

zh = Rb sinβ ≈ Rbβ = −Rbβ1s sinψb ≈ −β1syh (4.25)

and the TPP will be a plane tilted about the �ih axis downwards having an angle β1s

with the reference plane. The lateral tilt of the TPP is illustrated in Fig. 4.7(c). The
TPP equation described by (4.23) results in a longitudinal and lateral tilt of the cone
produced by β0. The tilt angles of the cone are β1c and β1s , respectively.

The first harmonic terms of (4.23) provide the dynamic equations of the TPP.
Those equations are derived by substituting (4.23) to (4.20), and equating, respec-
tively, the non-periodic term, the terms including cosψb and the terms with sinψb .
A detailed analysis of this approach, providing a thorough mathematical representa-
tion is given in [13]. Let a = [β0 a b]T denote the state vector of the TPP (following
the notation given in [70]) where a stands for β1c and b for β1s . The TPP dynamic
equations are given by the following differential equation of the state vector a:

ä + Dȧ + Ka = F (4.26)

where D is the damping matrix, K is the stiffness matrix and F is the matrix of
the forcing function. Equation (4.26) may be further simplified in order to provide a
practical model of the TPP dynamics. Those simplifications are introduced in [70]
and they are presented in the next Section.

4.7 First Order Tip-Path-Plane Equations

For the derivation of a simplified model of the rotor dynamics the work in [70] has
adopted the detailed dynamic equations of the TPP presented in [13], also consid-
ering some additional simplification assumptions. The model proposed in [70] is
suitable for system identification since it includes the necessary components that
capture the dynamic behavior of the helicopter without burdening the model with
unnecessary complexity. The simplification assumptions are the following:
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• The effect of the inflow ratio is disregarded.
• The coning angle is considered constant, therefore its associated dynamics are

omitted.
• The effect of the hinge offset is disregarded.
• The pitch-flap coupling ratio is zero.
• The effect of the forward velocity is disregarded (μ = 0).

If one does not consider the above simplification assumptions, the resulting TPP
model is going to be very complex and completely impractical for control design
purposes. Based on [70], the simplified flapping dynamics are given by:

τf ȧ = −a − τf q + Abb + Alonulon (4.27a)

τf ḃ = −b − τf p + Baa + Blatulat (4.27b)

The above equations are an approximation of the TPP dynamics produced by the he-
licopter motion and control inputs. The term τf denotes the main rotor time constant
and it is given by:

τf = 16

γΩ
(4.28)

The rotor’s time constant depends on the angular velocity Ω and the Lock number γ .
The Lock number is given by:

γ = ρaacbR
4
b

Ib

(4.29)

Finally, the main rotor cross coupling terms Ab and Ba are:

Ab = −Ba = 8

γ
(λ2

β − 1) (4.30)

4.8 Main Rotor Forces and Moments

The final part of the rotor description deals with the derivation of a simplified model
of the forces and moments produced by the main rotor. The thrust vector produced
by the main rotor is considered perpendicular to the Tip-Path-Plane (TPP). Since
the thrust vector is normal to the TPP, by controlling the TPP inclination, the pilot
indirectly controls the direction of the propulsion forces.

Let �TM denote the thrust vector of the main rotor and TM denote its magnitude.
The body-fixed frame coordinate vector of the thrust is denoted by T B

M . By simple
geometry the following equations are derived:

T B
M =

[
XM

YM

ZM

]

=
[ − sina cosb

cosa sinb

− cosa cosb

]

TM ≈
[−a

b

−1

]

TM (4.31)

The above equations are simplified by assuming small angle approximation
(cos(·) ≈ 1 and sin(·) ≈ (·)) for the flapping angles. The small angle assumption
is also adopted by [40, 47, 70].



4.9 Remarks 45

The generated thrust torque is the result of the above force and the rotor’s stiff-
ness moments. Denote by hB

M = [xm ym zm]T the position of the main rotor shaft.
Let �τβ denote the vector of the main rotor moments due to the hub stiffness Kβ .
Then, the main rotor moment vector is given by �τM = �hM × �TM + �τβ . The compo-
nents of the hub stiffness moments vector in the body-fixed frame are given by:

τB
β =

[
Lβ

Mβ

Nβ

]

=
[

b

a

0

]

Kβ (4.32)

In the ideal case that the CG is aligned with the shaft, i.e. hB
M = [0 0 − lh], then, the

pitch and roll moments of the main rotor are given by:

LM = −(−lh)YM + Lβ

MM = −lhXM + Mβ

Hence:

LM = (lhTM + Kβ)b (4.33a)

MM = (lhTM + Kβ)a (4.33b)

Therefore, the pitch and roll moments about the CG depend on the main rotor thrust
magnitude and the stiffness of the hub. The above simplified case is presented be-
cause it provides insight to the development of the linear helicopter model. In the
case that the nonlinear helicopter dynamics are considered, the more elaborate de-
scription �τM = �hM × �TM + �τβ , is used for the representation of the moment produced
by the main rotor.

4.9 Remarks

This Chapter has presented a description of the intermediate concepts that are related
with the flapping dynamics of the blades. The flapping motion is initially triggered
by a change in the cyclic pitch of the blades. The pitch variation alters the blade’s
angle of attack resulting in generating periodic aerodynamic forces that act on the
blade. The flapping motion is produced by the aerodynamic, centrifugal, inertial and
hub stiffness moments that act on the blade. The flapping dynamics equations are
based on [70], where the simplified rotor dynamics (flapping dynamics) are derived
by significantly simplifying the more elaborate model presented in [13]. The par-
ticular rotor model is physically meaningful and has been successfully applied to
system identification modeling of several helicopters. The flapping dynamics given
by (4.27a) and (4.27b) are suitable for small-scale helicopters since for full-scale
helicopters an accurate model would also require the addition of the coning dynam-
ics effect. The rotor model is augmented to the rigid body dynamics to produce the
complete helicopter model. The main rotor thrust vector is considered perpendicu-
lar to the TPP. This modeling assumption is adopted by both linear and nonlinear
helicopter models.
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Table 4.1 Equations of the simplified rotor dynamics

Flapping dynamics:

τf ȧ = −a − τf q + Abb + Alonulon

τf ḃ = −b − τf p + Baa + Blatulat

Thrust vector:

T B
M =

[
XM

YM

ZM

]

=
[ − sina cosb

cosa sinb

− cosa cosb

]

TM ≈
[−a

b

−1

]

TM

Moments vector due to hub stiffness:

τB
β =

[
Lβ

Mβ

Nβ

]

=
[

b

a

0

]

Kβ

The key equations of the rotor dynamics are summarized in Table 4.1.
The objective of the next Chapter is to present a reliable system identification

methodology for the extraction of linear helicopter models.



Chapter 5
Frequency Domain System Identification

Any helicopter flight controller design requires knowledge of a mathematical model
that accurately describes the dynamic behavior of the helicopter. This mathematical
model is represented by a set of ordinary differential equations. Establishing such
a model for helicopters is a challenging task. This Chapter provides a thorough de-
scription of a frequency domain identification procedure for the extraction of linear
models that correspond to certain operating conditions of the helicopter. The dis-
cussed methodology was initially presented in [105] and it has been successfully
applied for a small-scale helicopter in the work reported in [70]. The frequency do-
main identification procedure is evaluated for an experimental small-scale Radio
Controlled (RC) Raptor 90 SE helicopter using the X-Plane flight simulator. The
Raptor 90 SE helicopter has also been used for the evaluation and comparison of
the several controller designs and identification methods that are presented in this
book.

5.1 Mathematical Modeling

Helicopter dynamics are nonlinear and of high order. For typical aircraft models
there is a distinct separation between the dynamics associated with the lateral and
longitudinal motion. This separation is not valid for helicopters where there exists a
strong coupling among the system dynamics.

The main coupling effect is encountered because of the interaction of the fuse-
lage and main rotor dynamics. As indicated in Chap. 4, the rotor is a dynamical
system itself, affected by both the environment, through the air flow (inflow) pass-
ing through the rotor blades, and the fuselage motion. In many cases, the fuselage
rigid body dynamics representation is not adequate and the additional effect of the
rotor should be encountered [70]. An additional source of complexity is the descrip-
tion of the aerodynamic forces and moments acting on the helicopter. Those forces
and moments are complicated with significant changes in their behavior, depending
on the operating condition of the helicopter.

I.A. Raptis, K.P. Valavanis, Linear and Nonlinear Control of Small-Scale Unmanned
Helicopters, Intelligent Systems, Control and Automation: Science and Engineering 45,
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Two approaches may be followed to derive a mathematical model representing
the helicopter dynamics. The first modeling approach is the derivation of a mathe-
matical model from first principles, while the second is through system identifica-
tion. Those two methods are somehow complementary to each other and in many
cases the use of both of them is mandatory to increase the accuracy of the derived
model.

5.1.1 First Principles Modeling

When the first principles modeling method is used, the system equations are derived
by implementation of physics laws. Obviously, this approach, requires an a priori
knowledge of all the parameters that affect the helicopter motion and aerodynamics.
The typical end result of first principles modeling is a set of nonlinear differential
equations of high order that cover a wide portion of the flight envelope. A major
application of the first principles modeling method is for deriving simulation mod-
els. The main disadvantage of this approach is the large number of parameters that
need to be determined. These parameters involve geometrical characteristics, mass
and inertias, drag coefficients and aerodynamic parameters. Many of the latter pa-
rameters can be easily obtained by simple experimental tests (such as masses and
inertias), however their majority requires more sophisticated experiment methods
such as wind tunnel tests [105]. The difficulty in obtaining an accurate estimate
of many of the helicopter parameters renders the first principles modeling method
impractical for many applications.

5.1.2 System Identification Modeling

System identification is the procedure of deriving a mathematical model of the sys-
tem based on experimental data of the system’s control inputs and measured out-
puts. Two types of models can be derived by this method. The first type is the non-
parametric models; examples of such models are impulse and frequency response
models. The nonparametric models are directly derived using experimental data and
they provide an input–output (I/O) description of the system. These model types are
based on collections of data and they do not require any knowledge of the system
structure.

The challenge of the system identification procedure is to derive a parametric
model of the system; examples of parametric models are the transfer function and
the state space models. The first step towards the extraction of a parametric model,
is the derivation of a parametrized model, which will serve as a “logical guess”
of the actual system model. The use of an optimization algorithm determines the
parameters of the model that minimize (in a least-square sense) the error between
the actual system responses and the model responses. The first question to answer
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refers to what is a “suitable guess” of the initial parametrized model in terms of
model order, structure and the initial values of the parameters. Estimates of those
characteristics may be obtained by analysis of the nonparametric model combined
with information obtained by the first principles approach.

The system identification procedure is an iterative process. Depending on the
identification results, the parametrized model may be refined in terms of order and
structure until a satisfactory identification error is achieved. When the parametrized
model is known, the system identification method reduces to the parameter estima-
tion problem. There exist many system identification methods, which are well de-
scribed in [61, 62, 93]. A major classification amongst system identification method-
ologies depends on whether the compared responses are considered in the time do-
main or in the frequency domain. Frequency domain system identification has been
proven to be a successful approach for extracting accurate aircraft and helicopter
linear models.

5.2 Frequency Domain System Identification

The inability of the first principles modeling approach to provide accurate and prac-
tical models for control design, has lead to the development of more suitable system
identification approaches. In particular, frequency domain identification has been re-
garded as an ideal solution for extracting linear helicopter models of high accuracy.
One of the main advantages of this approach is the use of actual flight data for de-
riving and validating the model. Additionally, frequency domain identification has a
coherent flow of the design steps starting from the input–output characterization of
the helicopter (nonparametric modeling), continuing with the extraction of the state
space model (parametric modeling) concluding with validating the predicted model
in the time domain. This method is classified as an output-error method where the
fitting error is defined between the actual flight data frequency responses and the
frequency responses predicted by the model.

The initial step of the identification procedure is the excitation of the helicopter
using specially designed input signals such as frequency sweeps. The intention of
the test data inputs is to excite the helicopter dynamics over a desired frequency
range. The choice of the desired frequency range (model bandwidth) has an impor-
tant role in the identification process. The model bandwidth has to be wide enough
in order to encapsulate all the dynamic effects of interest (i.e., fuselage dynamics
and rotor dynamics).

After some preprocessing to eliminate the noise effects and other types of incon-
sistencies in the time domain output data, the second phase is the computation of
the input–output frequency responses using a Fast Fourier Transform. This phase of
the process constitutes the nonparametric model of the helicopter.

The design of the parametrized linear state space model follows using informa-
tion from the first principles physical laws and the nonparametric modeling phase.
The linear model has the form:
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ẋ(t) = A(Π)x(t) + B(Π)uc(t − τ) (5.1)

y(t) = Cx(t) + uc(t − τ) (5.2)

where x is the state space vector, y is the measurement vector, Π denotes the un-
known model parameter vector and τ is the system’s delay. The matrix C is usually
known based on standard kinematic equations. The objective of parametric model-
ing is the extraction of the model matrices A, B (that depend on Π ) and the time
delay τ .

The frequency domain identification method is only suitable for the derivation of
linear state space models. Although the helicopter dynamics are nonlinear, around
certain trimmed flight conditions, the nonlinearities from the equations of motion
and aerodynamics are relatively mild. When this is the case, a linearized model
is adequate to accurately predict the helicopter’s response. Usually, the validity of
the linearized model is satisfactory in a relatively wide area of the flight envelope
around the trim point. However, a single linear model in most cases is not enough
to represent globally the flight envelope. Different models are required for each
operating condition.

After the determination of the linearized model, an optimization algorithm is
used to tune the identification parameters such that a good fit is achieved between
the parametrized system’s responses and the flight data responses. The frequency
response magnitude and phase errors are denoted by the vector ε(ω,Π) for a fre-
quency ω. The objective is the minimization of a cost function J (Π), which is the
sum of the weighted squared errors ε(ω,Π) over a finite number of frequencies ωi .
More specifically:

J (Π) =
n

∑

j=1

ε(ωi,Π)T Wε(ωi,Π) (5.3)

where W is a weight matrix. The above procedures constitute the parametric mod-
eling part of the problem. If the parameter identification does not provide a satisfac-
tory result, the parametrized model is revisited in terms of order and structure until
a satisfactory minimization of the cost function is achieved.

The final step of the identification procedure is the validation of the model. This
step takes place in the time domain, with different flight data from the identification
procedure. For the same input sequence, the helicopter responses from the flight data
are compared with the predicted values of the model, obtained by integration of the
state space model. Again, if the validation portion of the problem is not satisfactory
the designer should modify the parametric modeling setup and repeat the procedure.

5.3 Advantages of the Frequency Domain Identification

Based on [70, 105], some of the advantages of using frequency domain identification
for helicopter modeling are the following:



5.4 Helicopter Identification Challenges 51

• Biases and reference shifts from the trim condition are removed by the identifica-
tion process.

• The frequency response estimates are unbiased from measurement noise, given
that the latter is uncorrelated with the excitation signals.

• Accurate identification of time delays.
• The frequency range of each frequency response is selected individually. There-

fore, only the most accurate data are involved in the calculations.
• The model structure and order selection are facilitated by the nonparametric

model.
• The frequency domain identification is computationally more efficient from its

time domain counterpart. The time domain identification requires the integration
of the system state space equations for each iterative step. Integration of the sys-
tem equations does not take place in the frequency domain scheme. In addition,
frequency domain identification requires less data points than the time domain
identification.

5.4 Helicopter Identification Challenges

The identification process encounters some particular difficulties in the case of he-
licopters. Based on [70, 105] those difficulties are listed below:

• In many cases where the helicopter is operating at low velocities (hover, low
speed cruising) the control input has similar magnitude with the measurement
noise. Common noise source could be produced by structural vibrations caused
from gear boxes, the engine, as well as the rotor.

• The helicopter is a MIMO system with significant dynamic coupling (or interaxis
coupling). For any primary axis response (on-axis response) caused by one of the
inputs, unintended secondary axis responses (off-axis responses) result.

• A linear model based solely on the rigid body dynamics will not be sufficient to
accurately describe the helicopter responses. A model of higher order is needed
including additional subsystems such as the rotor dynamics. Furthermore, the
rotor dynamics are not independent from the rest of the model so a coupled
fuselage-rotor model is required.

• The helicopter dynamics are in general unstable or critically stable. During the
execution of the excitation control signals required for the experimental data col-
lection, additional feedback is required to sustain the helicopter in a range of a
certain operating condition. The presence of feedback deteriorates the identifica-
tion results.

5.5 Frequency Response and the Coherence Function

Consider a Linear Time Invariant (LTI) system with input and output signals x(t)

and y(t), respectively. Denote by h(t), the impulse response that characterizes the
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LTI system. The time domain relation of the output y(t) with respect to the input
x(t) of the system is given by the convolution integral [23, 77], namely:

y(t) =
∫ ∞

−∞
h(t − s)x(s) ds (5.4)

The frequency domain representation of the signals x(t), y(t) and h(t) is given by
the Fourier transform. More specifically:

X(jω) =
∫ ∞

−∞
x(t)e−jωt dt

Y (jω) =
∫ ∞

−∞
y(t)e−jωt dt

H(jω) =
∫ ∞

−∞
h(t)e−jωt dt

(5.5)

where ω is the real continuous time angular frequency variable expressed in radians.
The system input output mapping is better represented in the frequency domain by:

Y(jω) = H(jω)X(jω) (5.6)

The Fourier transform H(jω) of the impulse response is called frequency response
of the system. It is a complex valued function with real and imaginary parts, HR(jω)

and HI (jω), respectively. The frequency response can be expressed in polar form
as:

H(jω) = |H(jω)|ej∠H(jω) (5.7)

where:

|H(jω)| =
√

H 2
R(jω) + H 2

I (jω) and

∠H(jω) = tan−1
(

HI (jω)

HR(jω)

) (5.8)

The frequency domain may also be derived by the input and output spectral den-
sities. The quantities Sxx and Sxy are the auto spectral density and cross spectral
density, respectively. The auto spectral density and cross spectral density are func-
tions commonly used in stochastic processes [5, 46]. The two-sided auto spectral
density Sxx(jω) and cross spectral density Sxy(jω) are given by:

Sxx(jω) = 2
∫ ∞

−∞
Rxx(τ )e−jωτ dτ

Sxy(jω) = 2
∫ ∞

−∞
Rxy(τ )e−jωτ dτ

(5.9)
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where Rxx(τ ) and Rxy(τ ) denote the auto correlation and cross correlation, respec-
tively, given by:

Rxx(τ ) = lim
T →∞

1

T

∫ ∞

−∞
x(t)x(t + τ) dt

Rxy(τ ) = lim
T →∞

1

T

∫ ∞

−∞
x(t)y(t + τ) dt

(5.10)

The equality that relates the spectral densities with the frequency response is:

Sxy(jω) = H(jω)Sxx(jω) �⇒ H(jω) = Sxy(jω)

Sxx(jω)
(5.11)

An important quantity, particularly useful in the frequency domain identification
of MIMO systems is the coherence function. The coherence function is defined for
the SISO case as:

γ 2
xy(jω) = |Sxy(jω)|2

|Sxx(jω)||Syy(jω)| (5.12)

The coherence function is a normalized metric with its values ranging from zero to
unity. It is an indicator of the linearity between the input and the output [46]. A value
of the coherence function close to unity indicates that the output is significantly
linearly correlated with the input of the system. Possible causes for a low value of
the coherence function are [46]:

• Presence of noise.
• The input output mapping is nonlinear.
• The input does not effect the output.

In the case of a MIMO system the equivalent metric is denoted as partial coher-
ence. A low partial coherence in a MIMO system, is usually an indicator of that the
specific input–output pair is uncorrelated, therefore, the corresponding frequency
response should not be included in the identification process. More about partial
coherence can be found in [105].

All of the above functions are/will be calculated using a digital computer. The
discretization of the continuous signals x(t) and y(t) by a sampling period Ts leads
to the concept of the Discrete Fourier Transform (DFT). Denote by N the total
number of sampled data. The DFTs for the N samples of x(t) and y(t) are given by
[73, 76]:

X(kΩs) =
N−1
∑

n=0

x(t0 + nTs)e
−j2πkn/N (5.13)

Y(kΩs) =
N−1
∑

n=0

y(t0 + nTs)e
−j2πkn/N (5.14)

where Ωs is the frequency resolution and t0 is the first sampling time instant. Finally,
the discrete estimates of the auto spectral and cross spectral density, Ŝxx and Ŝxy ,
respectively, are given by [46, 70]:
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Ŝxx(kΩs) = 2

NTs

|X(kΩs)|2 (5.15)

Ŝxy(kΩs) = 2

NTs

X†(kΩs)Y (kΩs) (5.16)

where the upper script † denotes the complex conjugate value of the variable.

5.6 The CIFER© Package

The CIFER© package is an effective tool that may be utilized to tackle the aircraft
and rotorcraft complete identification problem. CIFER© (Comprehensive Identifi-
cation from FrEquency Responses) [105] has been developed as a joint venture
of the Army/NASA Rotorcraft Division (Ames Research Center). The program is
composed of six utility packages that interact with a sophisticated database of fre-
quency responses. The importance of a well organized and flexible database system
is very crucial in a large scale MIMO identification procedure of an air vehicle. The
CIFER© package is designed to cover all the intermediate steps necessary for the
development of an air vehicle parametric model. The key characteristic of CIFER©

is its ability to generate and analyze high quality frequency responses for MIMO
systems, by using sophisticated DFT and windowing algorithms. The six utility
packages of CIFER© are [70, 105]:

• FRESPID: This utility package calculates the SISO frequency responses for each
input output pair. For the calculation of the FFTs a chirp-z algorithm is used.
The user provides to the utility the time domain flight records of the input and
output measurements. Biases and shifts are removed by the time domain data,
and the flight records are concatenated into a single record. The time domain
data are additionally filtered (to eliminate high frequency noise) and additionally
processed by overlapping windowing. The later actions are necessary to improve
the fidelity and the speed of the chirp-z transform. Finally the database is updated
with the estimated frequency responses and coherence functions.

• MISOSA: This utility package receives the frequency responses previously cal-
culated from FRESPID and removes the effect of secondary inputs which are
possibly correlated with the primary input (conditioning). MISOSA outputs the
conditioned frequency responses and partial coherence.

• COMPOSITE: This module optimizes the frequency responses for each spectral
window applied by FRESPID and MISOSA, to provide the best possible estimated
frequency response and highest coherence function over the desired bandwidth.

• NAVFIT: This module belongs to the parametric portion of the identification pro-
cedure. NAVFIT calculates the transfer function model that best fits the estimated
SISO frequency response.

• DERIVID: This program estimates the MIMO state space representation whose
frequency response is the best fit for the estimated frequency responses obtained
by the flight data. The parameters of the model can be considered free or con-
strained by a different parameter during the identification process. The unknown
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parameters are extracted by the application of a nonlinear iterative secant algo-
rithm.

• VERIFY: This modules is the final step of the identification procedures. VERIFY
compares the time domain response of the identified model with the experimen-
tal data. The data used by VERIFY should be dissimilar with the flight records
obtained by the identification procedure.

5.7 Time History Data and Excitation Inputs

An issue of primary concern is the design of the excitation inputs used to collect
data for the identification part. It is important to note that the behavior of the actual
model that is required to be encapsulated by the identifier should be included in the
data used for the identification [105]. In general, regarding system identification,
the design of the excitation signal is an open subject that depends on the model to
be identified. The excitation signal must be capable of exciting the actual system
modes that are needed to appear in the identified model.

A description of excitation signals specially designed for aircraft identification
may be found in [46]. Some of those signals are frequency sweeps, impulse mul-
tisines and doublets; frequency sweeps are used here. Frequency sweeps are sinu-
soidal signals with variable frequency. The frequency of the signal increases loga-
rithmically over time. The excitation signal is, thus, capable of covering the desired
frequency band. Frequency sweeps are commonly used in frequency identification
techniques where the model is identified over a predefined frequency range.

Observations regarding the frequency sweeps are presented in [46, 105]. The
most important feature is that they are not required to have constant amplitude.
Variations in the frequency sweeps instead of being avoided are welcome since they
enrich the frequency content of the signal. The symmetry of those signals allows the
helicopter to sustain its position around a certain operating condition.

When the frequency sweep is applied to one of the helicopter’s control inputs
the rest should be implemented in such a way to adjust the helicopter in the neigh-
borhood of the operating point. As indicated in [105] the rest of the control inputs
should be uncorrelated with the main excitation signal and at the same time suppress
any unwanted flight behavior. During the system identification procedure, frequency
sweep data collected by several maneuvers can be concatenated, so it is very impor-
tant that the data start and end at the trim condition. A 3 sec period in trim at the
beginning and at the end is suggested.

The design of the frequency sweeps requires that the frequency bandwidth is
determined a priori. In general, a good bandwidth for helicopter identification lies
between 0.3–12 rad/sec [105]. The recorded length of the data for each sweep fol-
lowing a rule of thumb should be four to five times the period that corresponds to
the minimum frequency. Let [ωmin ωmax] be the desired frequency interval that the
excitation signal should contain. Then, the period that corresponds to the small-
est frequency will be Tmax = 2π/ωmin. The suggested recorded length should be
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Trec ≥ 4Tmax. The proposed excitation signal is given by u = Ap sin [f (t)] where A

is the amplitude of the signal and:

f (t) =
∫ Trec

0
s(t) dt (5.17)

K(t) = C2[exp(C1t/Trec) − 1] (5.18)

s(t) = ωmin + K(t)(ωmax − ωmin) (5.19)

From [105], the proposed parameters are C1 = 4.0 and C2 = 0.0187. Further, based
on [105], a brief summary of the most important guidelines that should be accounted
for in the frequency sweep signals are the following:

• The sinusoidal should be as symmetric as possible to maintain the helicopter at
trim. The symmetric input will also assist the FFT to identify and remove the trim
values.

• The sweep signal should provide satisfactory excitation over the frequency range
of interest. Special attention should be given to the low frequency excitation (0.3–
1 rad/sec). At least two periods of the minimum frequency of interest should be
included in the excitation signal.

• The amplitude does not have to be constant.
• The increase in frequencies is not important. Furthermore, the maneuver should

start and end with a 3 sec operation at trim.
• Most importantly, the secondary control commands should be as uncorrelated as

possible with the primary excitation. The use of low frequency pulses is recom-
mended to keep the off-axis responses bounded. However, although the off-axis
responses should not diverge from the trim condition, they should not be sup-
pressed either. Those effects are produced by the cross-coupled nature of the he-
licopter dynamics and this information should be included in the identification
process.

5.8 Linearization of the Equations of Motion

As already mentioned equations describing the helicopter motion are nonlinear dif-
ferential equations. Linearizing these equations, under specific assumptions, is a
common practice that simplifies greatly calculations and at the same time provides
an adequate description of the actual behavior of the helicopter. Derivations follow
the work described in [20].

Model linearization is based on small disturbance theory, according to which,
analysis is done under small perturbations of motion characteristics (related to
forces, momentums, velocities, angular velocities, etc.) from a steady nonaccelerat-
ing reference flight. The rationale behind this approach is the fact that external aero-
dynamic forces and moments acting on the CG depend mainly on the helicopter’s
control inputs and motion variables such as linear and angular velocities. When this
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is the case, the perturbed aerodynamic forces and moments may be considered as
linear functions of the disturbances [20].

The helicopter is assumed to perform a reference trimmed flight when the distur-
bances occur. In this equilibrium operation, the state variable x of the helicopter can
be approximated by x = x0 + δx, where x0 is the trimmed value of the state and δx

the perturbation from the reference flight condition. The small perturbations logic
applies for the control inputs as well. Since in the identification procedure only the
hover representation of the helicopter is considered, the equilibrium state values will
be:

u0 = v0 = w0 = p0 = q0 = r0 = θ0 = φ0 = 0

The perturbation quantities and their derivatives will have very small values;
therefore, their products are negligible. Without loss of generality, it is assumed
that the trigonometric quantities of the perturbed variables, for example δθ , will be
cos δθ = 1 and sin δθ = δθ . Therefore:

sin(θ0 + δθ) = sin θ0 cos δθ + cos θ0 sin δθ = δθ (5.20)

cos(θ0 + δθ) = cos θ0 cos δθ − sin θ0 sin δθ = 1 (5.21)

Based on the above assumptions, substitutions into (3.3) and (3.10) result in the
following perturbed equations:

mδu̇ = −mgδθ + X0 + δX

mδv̇ = mgδφ + Y0 + δY

mδẇ = mg + Z0 + δZ

(5.22)

Ixxδṗ = L0 + δL

Iyyδq̇ = M0 + δM

Izzδṙ = N0 + δN

(5.23)

δθ̇ = δq

δφ̇ = δp

δψ̇ = δr

(5.24)

In the above equations, δX, δY , δZ denote the perturbed values of the external
aerodynamic forces and δL, δM , δN denote the perturbed values of the moments
about the CG of the helicopter. When the helicopter is at trim, the trimmed values
of the moments about the CG will be zero. In addition, only the trimmed force
component Z0 is compensating for the gravitational force. Hence, at trim:

δu̇ = −gδθ + δX/m

δv̇ = gδφ + δY/m

δẇ = δZ/m

(5.25)
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δṗ = δL/Ixx

δq̇ = δM/Iyy

δṙ = δN/Izz

(5.26)

5.9 Stability and Control Derivatives

The last step towards the linearization of the initial rigid body equations relates to
expressing the perturbed values of the external aerodynamic forces and moments
in a linear way. The analysis of the perturbed external aerodynamic forces and mo-
ments follows the assumption that the latter are continuous functions of the heli-
copter disturbed motion variables and the helicopter controls [20, 70, 79]. The lin-
earization of those perturbed values is a very common method with very practical
results although linearization is not based on a consistent mathematical background,
and to this extent, there might be cases that this modeling method will not provide
adequate results [20, 79].

Due to the assumption that the perturbed forces and moments are functions of the
disturbed values of the helicopter’s motion and controls, it follows that the former
may be expressed as a Taylor series. The linear form of those quantities results by
neglecting high order terms. Notation wise, the expansion of the aerodynamic force
(or moment) is normalized by the mass (or corresponding inertia). An example is
the expansion of the aerodynamic moment δL, as:

1

Ixx

δL = 1

Ixx

∂L

∂u
δu + · · · + 1

Ixx

∂L

∂p
δp + · · ·

+ 1

Ixx

∂L

∂a
δa + · · · + 1

Ixx

∂L

∂ui

δui (5.27)

where ui denotes a helicopter’s control variable. Typically, the products of the partial
derivatives are expressed, for example, as:

Lu = 1

Ixx

∂L

∂u
(5.28)

The above partial derivatives, with respect to the helicopter’s perturbed motion vari-
ables and control inputs, are called stability and control derivatives, respectively.
Those derivatives are calculated under the trim flight condition. The calculation of
the stability derivatives is beyond the scope of the book, however, details may be
found in [7, 79, 84, 86]. In general not all stability derivatives are necessary for
linearization of the forces or moments. As mentioned in [70] an important part of
system identification is to decide which derivatives are important in the calculations
of the perturbed forces and moments. Recall that everything will take place at hover.
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5.10 Model Identification

The previous Sections of this Chapter provided an outline of the frequency do-
main identification method for helicopter modeling. This Section presents the iden-
tification results obtained by CIFER© for a small-scale helicopter operating in a
flight simulator environment. Flight tests (throughout this book) are conducted us-
ing the X-Plane flight simulator for an RC Raptor 90 SE helicopter. At first, the
description of the experimental platform is given. The parametrized model with
the associated stability derivatives is also provided. After the presentation of the
parametrized model, the set-up and final results of the identification procedure ob-
tained by CIFER© follow. Finally, the accuracy of the extracted model is validated
in the time domain. The end result of this Section is a linear dynamic system repre-
senting the helicopter response at hover.

5.10.1 Experimental Platform

The system identification accuracy and the performance of the controller designs are
evaluated by using the commercial X-Plane flight simulator. The helicopter model
in X-Plane is treated as the “black box” portion of the problem, since no a priori
knowledge of the model parameters is used during the identification process or the
control design. X-Plane is an awarded flight simulator certified by the Federal Avi-
ation Administration (FAA). Apart from the realistic flight simulation capabilities,
X-Plane incorporates a series of additional useful features, making it an ideal solu-
tion for experimentation and validation of unmanned flight. The user has the ability
to modify and customize those models in order to achieve the desired flight charac-
teristics. In addition, X-Plane supplies a plethora of flight data, which are required
for the model identification process and control feedback. The main advantage of
X-Plane, in comparison with other simulators such as Microsoft’s Flight Simulator
and FlightGear, is the ability to import and export real-time data. This is of partic-
ular importance, since the control inputs can be obtained by an external autopilot.
In addition, the autopilot requires the helicopter’s state at every sampling instant,
which is available by the exported data of X-Plane.

The helicopter used for experimentation in X-Plane is a customized Raptor 90 SE
RC helicopter, based on the Raptor 70 flight model [19]. The basic specifications of
this model are shown in Table 5.1. The X-Plane helicopter model has been addition-
ally calibrated by an experienced pilot in such a way that the flight behavior of the
latter will accurately resemble the behavior of the actual helicopter. However, in the
software model, the yaw rate exhibits significant sensitivity to the pedal input. This
sensitivity in the yaw rate results from the absence of a gyro feedback mechanism in
the simulator model. The gyro is a typical feature of actual small-scale helicopters
and inserts additional feedback for controlling the heading.

The experimental platform, in which the flight testing took place, utilizes a com-
munication interface between MATLAB/SIMULINK and X-Plane. The code of the
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Table 5.1 Experimental helicopter model specifications

Full length of fuselage 6.6 (ft)

Full width of fuselage 1 (ft)

Total height 2.12 (ft)

Main rotor radius 3 (ft)

Tail rotor radius 0.7 (ft)

Main rotor designed angular speed 1250 (RPM)

Tail rotor designed angular speed 5000 (RPM)

Full equipped weight 16 (lb)

control algorithm is developed and stored in SIMULINK. At every sampling in-
stant, the control algorithm receives the state measurement from X-Plane and out-
puts the control commands. The flight simulator receives the control commands and
visualizes the flight response. Communication between SIMULINK and X-Plane
is accomplished through a User Datagram Protocol (UDP) connection. The block
diagram of the communication interconnections is depicted in Fig. 5.1. The com-
munication of the software packages is based on the work presented in [19]. The
sampling rate is slightly variable around an average value. This average value may
be chosen by the user and it has a maximum value of 100 Hz. Most of the experi-
ments were contacted at 60 Hz.

Fig. 5.1 Block diagram of
the experimental platform’s
communication interface
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5.10.2 Parametrized State Space Model

One of the most critical parts in the frequency domain identification method is the
determination of the parametrized model. As previously indicated, the key challenge
is to decide about which stability derivatives should be included in the development
of the parametrized model. The linear parametrized model used for parameter identi-
fication of the Raptor 90 SE is based on Mettler’s model that is described in [70–72]
for the Carnegie Mellon’s Yamaha R-50 and MIT’s X-Cell .60.

The structure of the parametrized model proposed by Mettler has been already
successfully used for the parametric identification of several helicopters of different
sizes and specifications [8, 10, 27, 28, 89, 90]. The ability of this model structure
to establish a generic solution to the small-scale helicopter identification problem
is based on two important factors: The first factor is that Mettler’s parametrized
model provides a physically meaningful representation of the system dynamics. All
stability derivatives included in this model are related to kinematic and aerodynamic
effects of the fuselage and the main rotor. The second component is the ability to
represent the many cross coupling effects that dominate the helicopter motion. This
ability stems from the integration of the rotor model with the linearized equations
of motion.

The proposed parametrized model has two main differences with respect to Met-
tler’s model: The first difference is the absence of the stabilizer bar dynamics. The
stabilizer bar provides additional damping to the pitch and roll rates. This mecha-
nism is not included in the X-Plane Raptor 90 SE helicopter model. In addition, as
mentioned in Sect. 5.10.1, the Raptor does not include a gyro feedback. The absence
of the gyro results in very high yaw rate response to the pedal input. This fact was
an obstacle in the application of the frequency sweeps of the pedal command. Small
sinusoidal oscillation of the pedal resulted in very high deviations of the yaw rates.
To tackle this problem, the pedal input used was:

uped = −λrr + ūped (5.29)

where λr is a positive gain. This was a practical way to provide some additional
feedback to the yaw response in order to conduct the experiments. The frequency
sweep excitation is applied through the input ūped instead of a direct transmis-
sion through uped. Although the experiments associated with the pedal command
were conducted in closed loop, this did not create a problem in the identification
procedure. The additional yaw damping from the feedback term in (5.29) is ab-
sorbed by the stability derivative Nr . In this case, it is important to clarify, that the
parametrized model considers ūped as the pedal input command.

The parametrized model represents the linearized dynamics of the perturbed
states and control inputs of the helicopter from a trimmed reference flight con-
dition. The trim operating condition considered is the hover mode. Although the
parametrized model is associated with the perturbed values of the states and inputs,
for notation simplicity, the δ’s defined in Sect. 5.8 are dropped. The linear state-
space parametrized model is given by:

ẋ = Ax + Buc
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where the state and control vectors are, respectively:

x = [u v θ φ q p a b w r ]T and

uc = [ulon ulat ucol ūlat ]T
The matrices A and B of the parametrized model are composed of the stability and
control derivatives of the helicopter. The state space matrices of the parametrized
linear model, for the Raptor 90 SE, are:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Xu 0 −g 0 0 0 Xa 0 0 0
0 Yv 0 g 0 0 0 Yb 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0

Mu Mv 0 0 0 0 Ma 0 0 0
Lu Lv 0 0 0 0 0 Lb 0 0
0 0 0 0 −1 0 −1/τf Ab 0 0
0 0 0 0 0 −1 Ba −1/τf 0 0
0 0 0 0 0 0 Za Zb Zw Zr

0 Nv 0 0 0 Np 0 0 Nw Nr

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Alon Alat 0 0
Blon Blat 0 0

0 0 Zcol 0
0 0 Ncol Nped

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

To finalize the description of the parametrized model additional details are pro-
vided for some of the key stability and control derivatives of the above matrices.
Since the trim operating condition is the hover mode, it is assumed that the magni-
tude of the main rotor thrust will be equal to the weight of the helicopter. Therefore,
TM = mg. Based on (4.31) the linear velocity stability derivatives may be approxi-
mated by:

Xa = 1

m

∂X

∂a
= 1

m

∂(−TMa)

∂a
= −g

Yb = 1

m

∂Y

∂b
= 1

m

∂(TMb)

∂b
= g

The above equations impose a constraint on the values of Xa and Yb , reducing the
number of the unknown parameters in the parameter estimation phase. Based on
(4.33a) and (4.33b), the stability derivatives for the pitch and roll moments can be
calculated as:

Ma = 1

Ixx

∂M

∂a
= 1

Ixx

∂[(lhTM + Kβ)]a
∂a

= lhmg + Kβ

Ixx



5.10 Model Identification 63

Lb = 1

Iyy

∂L

∂b
= 1

Iyy

∂[(lhTM + Kβ)]b
∂b

= lhmg + Kβ

Iyy

Some additional stability derivatives that require further clarification are the follow-
ing:

• Alat, Blon: These stability derivatives are added to the flapping dynamics to cap-
ture potential unmodeled off-axes effects.

• Mu, Mv and Lu, Lv : According to [70], these speed derivatives are included to
capture the effect of airspeed to the angular dynamics. In theory, the angular dy-
namics are not affected by the airspeed. It would make more sense to include
them in the rotor dynamics. However, as indicated in [70], the identification re-
sults are significantly better when those moments are included in the pitch and
roll equations.

As mentioned earlier, the above parametrized model provides an excellent
generic description of the small-scale helicopter dynamics. The dimensions of the
parametrized model can be increased by the inclusion of the stabilizer bar and gyro
feedback dynamics. The challenge is to determine which of those parameters should
be included in the model and the determination of their arithmetic values.

5.10.3 Identification Setup

The identification procedure for the Raptor 90 SE starts with the collection of the
experimental time domain flight data. For the collection of each flight data record,
the helicopter is set to hover and a computerized frequency sweep excitation signal
is applied to one of the four control inputs. While the frequency sweep is executed
by the primary input of interest, the rest of the control commands should maintain
the helicopter in the vicinity of the reference operating point. In addition, as indi-
cated in Sect. 5.7, the secondary inputs should be as uncorrelated as possible from
the main input. For each control input, five to six flight records have been collected.
The bandwidth of the excitation signal ranges between 0.3 rad/sec–28 rad/sec. The
computerized sweeps applied are based on (5.17)–(5.19). The minimum and maxi-
mum frequency of the excitation sweeps as well as the duration of the flight records
for each control input are given in Table 5.2.

Table 5.2 Frequency sweeps parameter. These parameters correspond to (5.17)–(5.19)

ωmin (rad/sec) ωmax (rad/sec) Trec (sec)

ulon 1 28 7Tmax

ulat 0.8 28 7Tmax

ucol 0.3 27 4Tmax

ūped 0.8 25 7Tmax
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For each flight record, the maximum frequency ωmax of the corresponding exci-
tation signal is slightly varied from the value given in Table 5.2. This variation will
produce a different excitation signal for each flight record. Identical excitations do
not provide additional spectral information. The sampling rate of the experiments
was set at 60 Hz. X-Plane provides availability to all the helicopter states and control
inputs. The collected measurements for the identification process, are the following:

• Euler angles φ, θ , ψ .
• Angular velocities p, q , r .
• Body frame accelerations u̇, v̇ and linear velocity w.

For translational motion, the body frame accelerations u̇, v̇ were chosen instead
of the velocity measurements u and v, respectively. The body frame acceleration
measurements for these directions provide a more symmetrical response around the
trim value, facilitating the calculations of the respective FFTs.

After the collection of the time domain experimental data, flight records excited
by the same primary control input are concatenated into a single record. The con-
catenated flight records are additionally filtered by a low pass filter with a cutoff
frequency of 13 Hz. The time domain experimental data are inserted in the CIFER©

software. The three modules, FRESPID, MISOSA and COMPOSITE, process the
time domain experimental data to produce a high quality MIMO frequency response
database. This database is composed of the conditioned frequency responses and
partial coherences for each input–output pair.

After the calculation of the flight data frequency responses, the next task is the
extraction of the parametric model. CIFER© uses the DERIVID module to determine
the parameters of the state space model, such that the estimated frequency responses
from the latter are the best fits to the flight data frequency responses.

The first action required by the parametric modeling process is the determination
of the flight data frequency response input–output pairs, which will be included in
the identification process. From these frequency responses, the frequency range of
interest should also be determined. For the Raptor 90 SE, the selected frequency re-
sponses and their corresponding ranges are depicted in Table 5.3. The criterion for
the frequency response selection is the coherence function γ 2. Frequency responses
for which the coherence function has values greater than 0.7 over the desired fre-
quency range of the model will be included. Frequency responses with γ ≤ 0.7 over
their entire range are dropped.

After determining the frequency response pairs that will be included in the iden-
tification process, extraction of the state space model follows. This part initially
requires the determination of the structure and order of the parametrized state space
model as described in Sect. 5.10.2. The next step is to decide about logical initial
guesses for the values of the model parameters. DERIVID uses an optimization algo-
rithm which calculates the parameter vector Π , such that the cost function defined
in (5.3) for each input–output pair, is minimized. The optimization algorithm is
based on an iterative robust secant algorithm that reduces the phase and magnitude
error between the state space model and the flight data frequency responses. The
execution of the optimization algorithm continues, until the average of the selected
frequency responses cost functions Ja is minimized.



5.10 Model Identification 65

Table 5.3 Selected frequency responses and their corresponding frequency ranges
(in rad/sec). The dashed entries indicate that the specific input–output pair was not
included in the identification process. The bold entries highlight the on-axis re-
sponses

ulon ulat ucol ūped

u̇ 0.5–12.5 – – –

v̇ – 0.51–22 – –

w – – 0.20942–27 –

φ – 0.51–27 – –

θ 0.5–18 – – –

p 0.5–18 0.51–27 – –

q 0.5–18 0.51–27 – –

r – 0.51–27 1–10 1–10

The extraction of the parametric model is an iterative procedure, which continues
until the most suitable stability and control derivatives of the state space model
are selected. In order to determine which stability or control derivatives will be
included in the state space model, apart from the frequency responses cost functions,
DERIVID provides two additional statistical metrics. The first one is the percentage
of the Cramér–Rao (CR) bound for each parameter. The CR bound gives a lower
bound of the standard deviation of the parameter. A high CR bound indicates that
the parameter is unreliable and should be disqualified from the model, or fixed to a
certain value. The second statistical metric is the percentage of the insensitivity of
each parameter with respect to the cost function. A high insensitive parameter will
have minimal or no effect on the calculation of the cost function. Therefore, this
parameter should be dropped from the model. A summary of the guidelines for the
selection of the state space model’s derivatives based on [105] is:

• Ja ≤ 100.
• CR % ≤ 20%.
• Insensitivity % ≤ 10%.

The identified stability and control derivatives for the Raptor 90 SE, with their
respective CR bound and insensitivity percentage are shown in Table 5.4. The on-
axis frequency responses, obtained by the flight data and those predicted by the state
space model are given in Fig. 5.2. The same comparison for the off-axis responses
is given in Fig. 5.3. The identification results demonstrate a very good fit between
the frequency responses obtained by the flight data and those predicted by the state
space model. The cost value for each frequency response of the input–output pairs
included in the identification process is depicted in Table 5.5. The average cost Ja

is well below the suggested guideline value. Those results indicate that the identifi-
cation procedure has accurately extracted a linear state space model of the Raptor
90 SE dynamics.

Table 5.4 indicates that some of the identified parameters exhibit high CR bounds
and insensitivities. The larger values are encountered in the translational velocity
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Table 5.4 Linear state space model identified parameters. The dashed entries indicate that the
specific derivatives were not included in the state space model

Value CR % Insensitivity % Value CR % Insensitivity %

A matrix

Xu −0.03996 118.7 58.24 Ba 0.6168 9.090 1.923

Yv −0.05989 127.4 62.24 Za – – –

Mu 0.2542 12.25 4.195 Zb – – –

Mv −0.06013 28.95 7.091 Zw −2.055 7.351 2.546

Ma 307.571 6.815 1.097 Zr – – –

Lu −0.02440 36.81 10.63 Nv 2.982 6.991 1.908

Lv −0.1173 246.6 94.13 Np – – –

Lb 1172.4817 5.751 1.462 Nw −0.7076 15.95 4.400

Ab 0.7713 8.896 1.860 Nr −10.71 6.729 1.233

g 9.389 3.331 0.9953 1/τf 30.71 7.474 0.9838

B matrix

Alon 4.059 3.005 0.9285 Zcol −13.11 5.026 1.688

Alat −0.01610 14.66 3.356 Ncol 3.749 7.161 2.602

Blon −0.01017 23.79 7.206 Nped 26.90 6.189 1.825

Blat 4.085 2.900 0.8280

damping derivatives Xu and Yv . The same issue with the specific parameters was
also encountered for the Yamaha R-50 model described in [70]. Although the sign
and the value of this parameters makes sense, the statistical metrics indicate that
they are completely unreliable. According to [70], the large uncertainty of the spe-
cific stability derivatives resulted from the lack of low frequency excitation. High
statistical metrics are also associated with the speed derivatives of the roll and pitch
rates. In particular, Mv and Lu, Lv exhibit very high CR bounds and insensitivities.
Those parameters could be dropped from the model without sacrificing the accuracy
of the identification results. However, they were intensionally preserved to keep the
final state space dynamics as close as possible to the parametrized model.

Finally, the mismatch in the heave responses depicted in Fig. 5.2, indicate that X-
Plane accounts for the main rotor inflow dynamics. The most important parameters
of the state space model are the main rotor flapping spring derivatives Ma and Lb .
The high value of those two variables indicate the Raptor 90 SE is a super maneu-
verable and highly agile helicopter. This was an anticipated result since small-scale
helicopters of this type have very rigid blades. Apart from the excellent fit of the
actual and predicted frequency responses, the identification result indicate that the
flight simulator may duplicate real flight applications.
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Fig. 5.2 On-axis frequency responses of the flight data (solid line) and frequency responses pre-
dicted by the state space model (dashed line)

5.10.4 Time Domain Validation

The final step of the identification procedure is the validation of the extracted state
space model in the time domain. Time domain validation is important for evaluating
the predictive accuracy and limitations of the identified model. The time domain
flight data used for the validation part are obtained by applying special control inputs
which are dissimilar with the ones used in the identification process. These inputs
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Fig. 5.2 (Continued)

are steps or roughly symmetric doublets. These types of inputs are used due to their
relative large frequency content [70]. The time domain responses of the identified
model obtained by the integration of the state space equations are compared with the
corresponding responses of the flight data. The inputs to the state space model used
for the integration process are identical with the ones obtained by the flight data.

To obtain the validation flight data, four individual flight records are collected,
each corresponding to one of the control inputs. In every individual flight record,
a roughly symmetric doublet is applied by the corresponding primary input, while
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Fig. 5.3 Off-axis frequency responses of the flight data (solid line) and frequency responses pre-
dicted by the state space model (dashed line)

the rest of the control commands retain their trimmed value. The doublet should be
applied in such a way that the on-axis responses of the corresponding input are suf-
ficiently diverged from the trimmed condition. A large deviation from the operating
point will reveal the identified model predictive limitations. Before each doublet is
applied, the helicopter is set to hover mode. The time domain validation comparison
results are shown in Fig. 5.4, in a similar way with [70]. The time domain responses
for each record are illustrated in columns. The first row shows the executed doublet
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Table 5.5 Transfer functions
costs for each input–output
pair

u̇/ulon 54.087

θ/ulon 56.108

p/ulon 48.502

q/ulon 60.196

v̇/ulat 29.704

φ/ulat 36.271

p/ulat 38.068

q/ulat 55.421

r/ulat 42.551

w/ucol 89.496

r/ucol 20.147

r/ūped 20.178

Average 45.894

of each primary control input. The validation comparison indicates an excellent fit
between the predicted values from the linear state space model and the flight data.
Therefore, the identified model provides a reliable dynamic representation of the
helicopter around the hovering operating condition and it is appropriate for control
design.

5.11 Remarks

The identification process described in this Chapter considers hovering as the refer-
ence flight operating point. Therefore, the model is limited to an area of the flight
envelope around the specific operating condition. To derive a linear model for a
different flight mode, the same procedure should be repeated. However, the execu-
tion of the frequency sweeps for a different reference flight condition from hover
is a very tedious process. For example, in the case of forward flight, the helicopter
should cruise at a constant translational velocity when the sweeps are applied. This
experimental procedure introduces practical limitations. Firstly, it is very difficult
to sustain a constant translational velocity in all flight records. In addition, the re-
tainment of the helicopter around the desired operating point when the sweeps are
applied is an additional limiting factor. This limitation is more apparent when the
low frequency portion of the sweep is executed. To this extent, the experimental
data acquired from the cruise mode have inferior quality compared with the data
collected when the helicopter is in hover. Therefore, the system identification mod-
eling method has potential shortcomings in the development of linear models which
correspond to flight modes different from hover. Having decided the order and the
structure of a generic parametric linear helicopter model at hover, the next step is
the development of a systematic procedure for the design of linear helicopter flight
controllers. The next Chapter provides a position and heading tracking controller
based on the linear helicopter model.
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Fig. 5.4 Time domain validation
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Fig. 5.4 (Continued)



Chapter 6
Linear Tracking Controller Design for
Small-Scale Unmanned Helicopters

The previous Chapter presented an analytical methodology for the extraction of a
linear dynamic model for a small-scale helicopter based on [70, 105]. Modern con-
trol techniques are model based, in the sense that the controller architecture de-
pends on the dynamic description of the system. Therefore, the knowledge of the
helicopter linear dynamic model is very valuable for designing (autonomous) flight
controllers. This Chapter presents a systematic procedure for the design of a flight
controller based on the linear dynamic representation of the helicopter. The con-
troller objective is for the helicopter to track predefined reference trajectories of the
inertial position and the yaw angle.

6.1 Helicopter Linear Model

The goal of this Section is to derive a flight controller based on the helicopter’s linear
dynamic model. The proposed controller should also be applicable to any small-
scale helicopter. This claim requires the adoption of a nominal linear dynamic model
structure, which is capable of capturing the dynamic behavior of a wide family
of small-scale helicopters. An ideal solution to this requirement is the use of the
parametrized model described in Sect. 5.10.2 as a basis for the controller design.

The specific model represents the dynamic response of the helicopter perturbed
state vector from the reference flight condition. In this case, the reference operating
condition is hover. At hover, the trim values of the linear and angular velocity are:

vB
o = ωB

o = [0 0 0]T (6.1)

From the above equations it is apparent that when the helicopter operates around
hover, the helicopter’s state is equal to the perturbed state vector about the refer-
ence operating point. The helicopter linear model follows the rationale presented
in Sect. 5.10.2 and it is repeated here for clarification purposes. The adopted state
space model is:

ẋ = Ax + Buc (6.2)

I.A. Raptis, K.P. Valavanis, Linear and Nonlinear Control of Small-Scale Unmanned
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where the state and control vectors are, respectively:

x = [u v θ φ q p a b w r ψ]T and

uc = [ulon ulat ucol ulat]T
(6.3)

The matrices A and B of the state space model are given by:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Xu 0 −g 0 0 0 Xa 0 0 0 0
0 Yv 0 g 0 0 0 Yb 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0

Mu Mv 0 0 0 0 Ma 0 0 0 0
Lu Lv 0 0 0 0 0 Lb 0 0 0
0 0 0 0 −1 0 −1/τf Ab 0 0 0
0 0 0 0 0 −1 Ba −1/τf 0 0 0
0 0 0 0 0 0 Za Zb Zw Zr 0
0 Nv 0 0 0 Np 0 0 Nw Nr 0
0 0 0 0 0 0 0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Alon Alat 0 0
Blon Blat 0 0

0 0 Zcol 0
0 0 Ncol Nped
0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The above state space representation is slightly different from the parametrized
model of Sect. 5.10.2, since it includes the yaw dynamics given by ψ̇ = r . The
yaw dynamics are excluded from the identification process since they do not in-
clude any unknown stability derivatives and the yaw is decoupled from the rest of
the state variables. However, the controller design requires the inclusion of the yaw
in the state space model. The overall dynamics constitute a coupled linear system of
the helicopter motion variables and the main rotor flapping dynamics.

The order of the above model can be increased by including the dynamics of
the stabilizer bar and the yaw damping system. These two subsystems provide ad-
ditional damping to the angular velocity dynamics. Since they constitute additional
feedback sources of the angular dynamics, their presence in the state space system
does not influence the controller design. Therefore, their effect has been omitted
from the helicopter model.

The proposed linear model (usually with the inclusion of the yaw gyro dynam-
ics) has been successfully adopted for control applications in a large number of
small-scale unmanned helicopters [8, 10, 27, 28, 89, 90]. To this extent, the linear
model proposed by [70] provides a generalized and physically meaningful solution
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to developing practical linear models for small-scale helicopters. For any particular
small-scale helicopter, the numeric values of the A and B matrices may be estimated
by following the identification procedure described in the previous Chapter.

6.2 Linear Controller Design Outline

Having established the helicopter linear dynamic model, the next step is the design
of the autonomous flight controller. The controller’s ultimate objective is for the
helicopter to autonomously track predefined bounded position and heading refer-
ence trajectories. The linear model given in (6.2) does not include the helicopter
position dynamics. Therefore, the controller design starts with the tracking problem
of a reference translational velocity and heading profile. Integration of the position
tracking with the control problem follows. The initial output vector of interest of the
helicopter is:

y = [u v w ψ]T = Cx (6.4)

The matrix C is composed only by zeros and ones and has obvious dimen-
sions. The first design task is for the helicopter to track the reference output
yr = [ur vr wr ψr ]T . The tracking problem requires the determination of the
control signal uc(t) as a function of the state variables of the vector x(t) and the
reference output yr(t), with its higher derivatives, such that:

lim
t→∞‖y(t) − yr(t)‖ = 0 (6.5)

while the state of the system x(t) and, thus, the control input uc(t) remain bounded
for any bounded reference output yr(t). An additional difficulty of the tracking con-
trol problem is the availability of the state variables from measurements. Not all of
the helicopter states can be measured, hence only a subset of the state variables can
be used by the controller for feedback purposes. In real life applications, only the
helicopter motion state variables can be directly measured. On the other hand, the
flapping angles are typically absent from the available measurements. It is assumed
that there is availability of the following measurement vector:

ym = [u v w p q r θ φ ψ]T = Cmx (6.6)

where Cm is a matrix of obvious entries and dimensions. The complete state can be
reconstructed for control purposes using a Kalman filter or a state estimator [3, 23,
41]. Both of these choices increase the system dynamics order. However, in manned
flight applications, the pilot is able to operate the helicopter without accounting for
the flapping angles. Therefore, the same requirement is set for the unmanned case
restricting the controller’s feedback information only to the measured vector ym.
This problem is classified as output feedback. When ym = x this results in full state
feedback.

In the case of linear systems, the tracking problem with output feedback can
be tackled following two different approaches. Tracking with integral control and
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tracking via the use of an internal model. In the internal model approach, the ref-
erence output signal is generated by a fixed reference dynamic system driven by
a bounded input. This reference system is called internal model. The structure of
the internal model is used by the controller yielding a dynamic feedback scheme.
Typical application of such control design is met when the reference output is a con-
stant signal or sinusoidal with constant frequency [43]. The internal model approach
has very important robust and adaptive properties, however, the design is relatively
complex. In the case of MIMO systems the generated internal model should con-
sider the relative degree vector that corresponds to the output (the relative degree
vector components indicate how many times each output should be differentiated
until the input appears). Likewise, with the integral control, the use of the internal
model becomes relatively complicated when the desired output is an arbitrary con-
tinuous time signal. More details about the internal model approach may by found
in [9, 36].

The use of integral control for the tracking problem results in designing of a
dynamic feedback controller. Integral control provides a reliable and consistent so-
lution when the desired output has constant values over time. However, in the case
of a time varying output profile, the integral control design requires determination
of a steady state response xss(t) and a steady state control input uss

c (t), such that
when y(t) tends to yr(t), the following equality holds:

ẋss = Axss + Buss
c (6.7)

The determination of the pair (xss, u
ss
c ) is a difficult task, rendering the integral

control design impractical for the tracking problem of a time varying output. More
details about the integral control of linear systems may be found in [23, 43].

Instead of following the above standard methodologies, a simple tracking design
is adopted which is mathematically consistent and well suited to the specific prob-
lem under consideration. The first part of the design involves determining a desired
state vector xd that is composed only by the components of the reference output
vector yr and their higher derivatives. Denote e = x − xd the error between the ac-
tual helicopter state and its desired value. The desired vector xd should be chosen in
such a way that, given:

lim
t→∞‖e(t)‖ = 0 then lim

t→∞‖y(t) − yr(t)‖ = 0 (6.8)

The proposed controller design provides a recursive methodology for the derivation
of a desired state vector xd and a desired control input ud

c that satisfies (6.8) and
also:

ẋd = Axd + Bud
c (6.9)

The role of the desired state vector xd and the control input ud
c is identical with

the steady state vector xss and the input vector uss
c that is required by the integral

control methodology. The contribution of the proposed design is the development of
a simple recursive procedure for deriving the pair (xd, ud

c ) that satisfies (6.8)–(6.9).
The choice of the pair (xd, ud

c ) is based on the backstepping design methodology,
details of which are provided in Appendix. In this particular case the backstepping
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design is not used for the stabilization of the tracking error; instead it is restricted
to determining the desired state and control input vectors. Backstepping provides
a systematic methodology for the output tracking problem of systems in feedback
form.

Due to the presence of the stability derivatives Xa and Yb in (6.2), the helicopter
model cannot be characterized as belonging to this class of systems. A common sim-
plification practice, followed in [37, 47, 66], is to neglect the effect of the lateral and
longitudinal forces produced by the TPP tilt. These parasitic forces have a minimal
effect on the translational dynamics compared to the propulsion forces produced
by the stability derivatives Xθ and Yφ (in (6.2) are denoted by −g and g, respec-
tively). This assumption is physically meaningful and results into a linear system in
feedback form.

Systems of strict feedback form are feedback linearizable and, therefore, differ-
entially flat. The differentially flatness property is the key attribute of the approxi-
mated system for which the controller design is based on. A system is called differ-
entially flat when there exists output functions (called flat outputs) such that all the
state and input vectors may be expressed in terms of the flat outputs and their higher
derivatives [48]. Details about the differential flatness property of nonlinear systems
may be found in [22, 107]. The concept of differential flatness has been also used in
[47, 48] for the development of a nonlinear controller based on nonlinear inversion
for the helicopter tracking problem.

Having defined the desired state xd and control vector ud
c , the stabilizing con-

troller of the system is introduced. The controller signal is constructed by the fol-
lowing superposition:

uc = ud
c + ufb

c (6.10)

where ufb
c is a feedback control law. Then, the error dynamics take the form:

ė = Ae + Bufb
c (6.11)

The above system is identical with the system given in (6.2). The difference is that
the state space vector is substituted by the error vector. The second control compo-
nent, ufb

c , may be chosen using a variety of output feedback techniques, such that
the error e is rendered globally asymptotically stable (GAS).

6.3 Decomposing the System

It is emphasized that the controller design must incorporate the physical limitations
of helicopter flight. A common mistake in the development of flight controllers is
the blind adoption of a mathematical control scheme without considering the phys-
ical structure of the helicopter model. It is typical that the flight controller problem
is forced to fit a specific controller design rather than the controller design being tai-
lored based on the problem. Even a challenging and rigorously mathematical control
scheme may perform poorly in a real life application if the fundamental notion of
helicopter flight is disregarded by the designer.
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Helicopter piloting dictates that the cyclic commands ulon and ulat are used to
manipulate the pitch and roll moments with ultimate objective the production of
translational motion. The collective command ucol controls the magnitude of the
thrust of the main rotor producing the necessary lifting force, while the pedal com-
mand controls the heading of the helicopter. To this extent, the ideal solution is for
each control command to be as independent as possible from the others. The ideal
solution to the problem is to construct four independent SISO feedback loops for
each control input. However, since the system is a highly coupled linear system,
this approach cannot guarantee a rigorous and mathematically consistent stability
analysis.

Having said that, a close inspection of the model structure given in (6.2), in-
dicates that the helicopter dynamics can be separated in two interconnected sub-
systems. The first subsystem accounts for the longitudinal and lateral motion. The
second subsystem represents the coupled yaw and heave dynamics. In particular, the
lateral–longitudinal subsystem is given by:

ẋll = Allxll + Bllull (6.12)

where:

xll = [u v θ φ q p a b]T and ull = [ulon ulat]T (6.13)

and:

All =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Xu 0 −g 0 0 0 Xa 0
0 Yv 0 g 0 0 0 Yb

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

Mu Mv 0 0 0 0 Ma 0
Lu Lv 0 0 0 0 0 Lb

0 0 0 0 −1 0 −1/τf Ab

0 0 0 0 0 −1 Ba −1/τf

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Bll =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
0 0
0 0
0 0
0 0
0 0

Alon Alat
Blon Blat

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.14)

The yaw–heave dynamics subsystem is given by:

ẋyh = Ayhxyh + Byhuyh + Dyhxll (6.15)

where:

xyh = [ψ w r]T and uyh = [uped ucol]T (6.16)

and:
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Fig. 6.1 Interconnection of
the two helicopter subsystems

Ayh =
[0 0 1

0 Zw Zr

0 Nw Nr

]

Byh =
[ 0 0

0 Zcol
Nped Ncol

]

Dyh =
[0 0 0 0 0 0 0 0

0 0 0 0 0 0 Za Zb

0 0 0 0 0 1 0 0

]

(6.17)

The interconnection of the two subsystems is shown in Fig. 6.1. Controller design
requires that the following assumptions associated with the helicopter linear model
of (6.2) should hold:

Assumption 6.1 The matrix pairs (All,Bll) and (Ayh,Byh) are controllable.

Assumption 6.2 The matrix B ∈ R
8×4 has four linearly independent rows.

Assumption 6.3 The stability derivatives g, Ma and Lb are nonzero.

The above assumptions are necessary conditions required by the controller de-
sign. If the linear model does not satisfy all of the above conditions then, most likely,
the modeling identification process has lead to erroneous results. The assumptions
reflect the fact that the linear model has to be “physically meaningful”. Intuitively,
from manned flight applications, pilot commands regulate the position and heading
of the helicopter in all of the configuration space. Regarding Assumption 6.1, lack
of controllability indicates poor identification results, wrong model structure or a
helicopter that cannot fly properly! In addition, each input must have a direct effect
on the helicopter’s motion, therefore, Assumption 6.3 should hold as well. Finally,
if Ma = 0 or Lb = 0 this implies that no moments are transmitted to the helicopter.
Therefore, the above assumptions provide a validity check for the helicopter linear
model.

At this stage, a preliminary control action is introduced for the input vectors ull,
uyh that cancels out the coupling effect of the control derivatives and normalizes the
Bll and Byh matrices, respectively. Hence:

ull = (Bn
ll )

−1vll uyh = (Bn
yh)

−1vyh (6.18)

where:

Bn
ll =

[

Alon Alat
Blon Blat

]

Bn
yh =

[

0 Zcol
Nped Ncol

]

(6.19)
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and vll, vyh are control vectors to be determined. Based on Assumption 6.3 the
above inverse matrices are nonsingular. Singularity in any of them indicates erro-
neous parameter values. Substituting the above preliminary control actions the two
subsystems of (6.12) and (6.15), also shown in Fig. 6.1, become:

ẋll = Allxll + B̄llvll (6.20)

ẋyh = Ayhxyh + B̄yhvyh + Dyhxll (6.21)

where:

B̄ll =
[

06×2
I2

]

B̄yh =
[

02×1
I2

]

(6.22)

Therefore, the initial system is now viewed as two interconnected subsystems in
cascade form! The backstepping design is performed independently for each sub-
system resulting in the cascaded error dynamics of the helicopter. Stabilization of
nonlinear systems in cascade form has been extensively studied in [63, 94, 98].
Contrary to the nonlinear systems, the case for the LTI systems is much more easier
in terms of analysis. If the controller is designed such that the two error dynam-
ics subsystems are rendered GAS (by ignoring the interconnection effect), then the
complete error dynamics system is rendered GAS, as well. This approach is based
on the separation principle, which emerges from the superposition property of LTI
systems.

The controller structure requires designing of two independent feedback loops
for each subsystem. This approach results in a mathematically consistent and
systematic methodology, which reflects the intuitive flight notion. The lateral/
longitudinal motion is regulated independently from the heading and vertical mo-
tion of the helicopter. The same decomposition of the helicopter dynamics is also
reported in [109]. The stability analysis of the controller design is given in detail in
the following Sections.

6.4 Velocity and Heading Tracking Controller Design

This Section provides details for designing the controller for velocity and heading
tracking of the helicopter. The control problem is focused on the design of two
feedback loops for each subsystem. After the introduction of the two feedback loops
the stability analysis of the overall system dynamics is presented.

6.4.1 Lateral–Longitudinal Dynamics

The helicopter longitudinal and lateral motion are not directly controlled through
the cyclic inputs but rather via a sequence of intermediate steps. The cyclic inputs
produce pitch and roll moments to the helicopter fuselage. These moments result in
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Fig. 6.2 Strict feedback interconnection of the longitudinal–lateral helicopter dynamics subsys-
tem. The terms associated with the Xa and Yb stability derivatives are disregarded

a change of the pitch and roll attitude angles. The attitude change results in the tilt
of the helicopter main rotor disc. By tilting the rotor disc the main rotor thrust is also
tilted to produce the necessary propulsion forces for lateral and longitudinal motion.
The effect of the translational forces produced by the flapping motion of the main
rotor is parasitic and negligible compared to the main source of propulsion, which
is the roll and pitch tilt of the main rotor.

As indicated in Sect. 6.2, neglecting the effect of the stability derivatives Xa and
Yb is a common practice that results in a more physically meaningful design. When
the latter stability derivatives are omitted from the helicopter model, the lateral–
longitudinal dynamics have a strict feedback form.

The complete description of the longitudinal–lateral subsystem is given by:

ẋll = Afb
ll xll + B̄llvll

yll = Cllxll

ym
ll = Cm

ll xll

(6.23)

where:

xll = [u v θ φ q p a b]T
vll = [vlon vlat]T
yll = [u v]T
ym

ll = [u v θ φ q p]T

In the above equations ym
ll is the measurement vector available for feedback, yll is

the output of the subsystem and Cll, Cm
ll are matrices of obvious entries and dimen-

sions. The reference output vector is yr
ll = [ur vr ]T . The matrix Afb

ll , is identical
to All with the only difference that the stability derivatives Xa and Yb are omitted.
The interconnection of the approximated longitudinal–lateral subsystem is shown
in Fig. 6.2.

Further, from Sect. 6.2, the first goal of the controller design for this subsystem
is to determine a desired state vector xd

ll and a desired control input vd
ll , with both of

them being functions of the yr
ll components and their higher derivatives, such that

for the error ell = xll − xd
ll given that:

lim
t→∞‖ell‖ = 0 then lim

t→∞‖yll(t) − yr
ll(t)‖ = 0 (6.24)
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To do so, the control law of this subsystem is obtained by the following superposi-
tion:

vll = vd
ll + vfb

ll =
[

vd
lon

vd
lat

]

+
[

vfb
lon

vfb
lat

]

(6.25)

where vfb
ll is a feedback control law to be determined. The initial task is to select the

pair (xd
ll , v

d
ll) such that they satisfy the requirement of (6.24) and also:

ẋd
ll = Afb

ll xd
ll + B̄llv

d
ll (6.26)

If the pair (xd
ll , v

d
ll) satisfies the above equation, then, the error dynamics become:

ėll = Afb
ll ell + B̄llv

fb
ll (6.27)

The final step is the selection of an output feedback control law vfb
ll that stabilizes

ell such that the tracking objective of (6.24) is achieved.
For the derivation of the desired state vector xd

ll and control input vd
ll a recursive

procedure based on the backstepping methodology is followed. The backstepping
approach is ideal for the control design of systems in feedback form. In this case,
however, the backstepping procedure is not used for the stabilization of the sys-
tem but it is only restricted to the derivation of the pair (xd

ll , v
d
ll) such that (6.24)

and (6.26) are satisfied. The applicability of this approach is based on the fact that
the longitudinal–lateral subsystem is in strict feedback form, therefore, it is differ-
entially flat. Therefore, the derivation of the desired state and the nominal desired
input based on the reference output is feasible.

Derivation of the error dynamics and the selection of the desired states and inputs
occurs simultaneously. The basic idea of the recursive procedure is to start from the
top state equations of the subsystem and gradually derive the desired state variables
and the error dynamics of each level by moving downwards in each step, until the
bottom set of state equations is reached. In each step the desired values of the state
variables of lower levels is chosen in such a way that they cancel out the desired
values of state variables of higher levels.

The procedure begins by deriving the error dynamics of the translational velocity
variables. Therefore:

ėu = u̇ − u̇d = −u̇d + Xu (eu + ud)
︸ ︷︷ ︸

u

−g (eθ + θd)
︸ ︷︷ ︸

θ

= −u̇d + Xuud − gθd + Xueu − geθ (6.28)

ėv = v̇ − v̇d = −v̇d + Yv (ev + vd)
︸ ︷︷ ︸

v

+g (eφ + φd)
︸ ︷︷ ︸

φ

= −v̇d + Yvvd + gφd + Xuev + geφ (6.29)

The desired pitch and roll angles are chosen such that they cancel out the values u̇d ,
ud and v̇d , vd , respectively. More precisely:

θd = 1

−g
[u̇d − Xuud ] φd = 1

g
[v̇d − Yvvd ] (6.30)
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The choice of the desired translational velocity components is ud = ur and vd = vr

such that when:

lim
t→∞‖[eu ev]T ‖ = 0 then lim

t→∞‖yll(t) − yr
ll(t)‖ = 0 (6.31)

It is apparent that the desired angles of (6.30) are functions of only the yr
ll vector

components and their first derivatives. The particular choice of (6.30) is also phys-
ically meaningful since it indicates that the desired attitude is proportional to the
reference acceleration and velocity. With the above choice of the desired roll and
pitch angles, the translational velocity error dynamics become:

ėu = Xueu − geθ (6.32)

ėv = Yvev + geφ (6.33)

The attitude angles error dynamics are:

ėθ = θ̇ − θ̇d = −θ̇d + (eq + qd)
︸ ︷︷ ︸

q

= −θ̇d + qd + eq (6.34)

ėφ = φ̇ − φ̇d = −φ̇d + (ep + pd)
︸ ︷︷ ︸

p

= −φ̇d + pd + ep (6.35)

The desired values of the pitch and roll angular velocities are chosen such that they
cancel out the effect of θ̇d and φ̇d . Therefore:

qd = θ̇d pd = φ̇d (6.36)

The roll and pitch attitude error dynamics become:

ėθ = eq (6.37)

ėφ = ep (6.38)

Similarly, the angular velocity error dynamics are:

ėq = q̇ − q̇d = −q̇d + Mu (eu + ud)
︸ ︷︷ ︸

u

+Mv (ev + vd)
︸ ︷︷ ︸

v

+Ma (ea + ad)
︸ ︷︷ ︸

a

= −q̇d + Muud + Mvvd + Maad + Mueu + Mvev + Maea (6.39)

ėp = ṗ − ṗd = −ṗd + Lu (eu + ud)
︸ ︷︷ ︸

u

+Lv (ev + vd)
︸ ︷︷ ︸

v

+Lb (eb + bd)
︸ ︷︷ ︸

b

= −ṗd + Luud + Lvvd + Lbbd + Lueu + Lvev + Lbeb (6.40)

The values of the desired flapping angles ad and bd are chosen as:

ad = 1

Ma

[q̇d − Muud − Mvvd ] bd = 1

Lb

[ṗd − Luud − Lvvd ] (6.41)

Hence, the angular error velocity dynamics, become:
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ėq = Mueu + Mvev + Maea (6.42)

ėp = Lueu + Lvev + Lbeb (6.43)

Finally, the flapping angles error dynamics, are:

ėa = ȧ − ȧd = −ȧd − (eq + qd)
︸ ︷︷ ︸

q

− 1

τf

(ea + ad)
︸ ︷︷ ︸

a

+Ab (eb + bd)
︸ ︷︷ ︸

b

+vlon

= −ȧd − qd − 1

τf

ad + Abbd − eq − 1

τf

ea + Abeb + vd
lon + vfb

lon (6.44)

ėb = ḃ − ḃd = −ḃd − (ep + pd)
︸ ︷︷ ︸

p

− 1

τf

(eb + bd)
︸ ︷︷ ︸

b

+Ba (ea + ad)
︸ ︷︷ ︸

a

+vlat

= −ḃd − pd − 1

τf

bd + Baad − ep − 1

τf

eb + Baea + vd
lat + vfb

lat (6.45)

The components of the control vector vd
ll are chosen such that they cancel out the

terms of all the desired state values and only the error state variables remain in the
flapping error dynamic equations. Thus:

vds
lon = ȧd + qd + 1

τf

ad − Abbd vds
lat = ḃd + pd + 1

τf

bd − Baad (6.46)

It is easy to verify that the derived pair (xd
ll , v

d
ll) satisfies the differential equation

(6.26). The components of xd
ll and vd

ll are composed of the reference values ur and
vr and their higher derivatives up to the fourth order. Therefore, the components of
yr

ll should belong to C4. The final form of the longitudinal–lateral subsystem error
dynamics is:

ėll = Afb
ll ell + B̄llv

fb
ll

Yll = ell

Ym
ll = Cm

ll ell

(6.47)

where:

ell = [eu ev eθ eφ eq ep ea eb]T
Ym

ll = [eu ev eθ eφ eq ep]T
In the above equations Yll is measurement vector of the longitudinal–lateral error
subsystem. The initial tracking problem of the longitudinal and lateral dynamics has
been converted to the stabilization problem of the error vector ell. The measurement
vector Ym

ll does have available all the state variables of the system (6.47) since the
flapping angles a and b cannot be measured. As already stated, when the complete
state vector of a system is not available for feedback purposes and only a subset of
the state variables can be used by the controller, then the control law is classified
as an output feedback controller. In particular, instead of integrating in the initial
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system the dynamics of a state estimator, a static feedback control law is required
of the form:

vll = −KllY
m
ll (6.48)

with Kll being a gain matrix, such that for the closed loop system:

ėll = (Afb
ll − B̄llKllC

m
ll )ell (6.49)

the closed loop matrix Acl
ll = Afb

ll − B̄llKllC
m
ll is Hurwitz. A square matrix is called

Hurwitz if all of its eigenvalues have strictly negative real parts.
Details about the output feedback problem are given in [99] and [100]. Stabiliza-

tion via output feedback can be achieved by two ways: Eigenvalue placement and
in the context of the Linear Quadratic Regulator (LQR). The eigenvalue placement
approach typically requires the solution of very complicated heuristic algorithms
for the calculation of the output feedback gain. For this reason, the LQR approach
is preferred. In this case, the objective is to chose Kll from (6.48) such that Acl

ll
is Hurwitz and, in addition, the gain selection minimizes the following quadratic
performance index:

Jll =
∫ ∞

t0

(eT
ll Qllell + (vfb

ll )T Rllv
fb
ll ) dt (6.50)

where Qll ≥ 0 (positive semi-definite) and Rll > 0 (positive definite) are diagonal
matrices. The Qll and Rll matrices are the design parameters of the LQR controller.
The principle of the optimality problem is to regulate the state error vector to zero,
with the least possible state deviation and control energy. The trade of between
control energy and state deviation is specified by the relative values of Qll and Rll.
For a larger weighting matrix Rll, the control input is forced to be smaller in magni-
tude relative to the state norm. Contrary, a larger Qll matrix, requires that the error
state vector deviates less from zero by injecting more control energy to the system.

The LQR controller design for LTI systems with output feedback was initially
introduced in [59]. The necessary condition for the solution of the above optimal-
ity problem is the existence of three matrices, namely, Kll, Sll and Pll, which are
solutions to the following coupled equations [59, 74]:

0 = (Acl
ll )

T Sll + SllA
cl
ll + Qll + (Cm

ll )T KT
ll RllKllC

m
ll (6.51)

0 = Pll(A
cl
ll )

T + Acl
ll Pll + I8 (6.52)

0 = RllKllC
m
ll Pll(C

m
ll )T − B̄T

ll SllPll(C
m
ll )T (6.53)

Generally, optimal control with output feedback results in such coupled nonlinear
matrix equations [60]. There are several iterative algorithms for the solution of the
above problem. However, the most practical convergent algorithm that results in a
local minimum solution is given in [60] based on [74]. The iterative algorithm is the
following:
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Step 1: Initialize the iteration procedure by setting n = 0. Determine an initial
gain Kll,0 such that Acl

ll,0 = Afb
ll − B̄llKll,0C

m
ll is Hurwitz.

Step 2: nth iteration: Set Acl
ll,n = Afb

ll − B̄llKll,nC
m
ll . Solve for Sn and Pn the

following Lyapunov equations:

0 = (Acl
ll,n)

T Sn + SnA
cl
ll,n + Q + (Cm

ll )T KT
ll,nRllKll,nC

n
ll

0 = Pn(A
cl
ll,n)

T + Acl
ll,nP

T
n + I

Set Jll,n = tr(Sn) and evaluate the gain update direction:

�K = R−1
ll B̄T

ll SnPn(C
m
ll )T (Cm

ll Pn(C
m
ll )T )−1 − Kn

Update the feedback gain by:

Kll,n+1 = Kll,n + α�K

In the above equation chose α ∈ (0 1] such that the closed loop ma-
trix Acl

ll,n is Hurwitz and:

�Jll = ‖Jll,n+1 − Jll,n‖ = ‖tr(Sn+1) − tr(Sn)‖ ≤ ε

where ε is a very small number. If �Jll ≤ ε proceed to Step 3, else set
n = n + 1 and repeat Step 2.

Step 3: Terminate the algorithm by setting Kll = Kll,n+1 and Jll = Jll,n+1.

The disadvantage of this specific numerical algorithm is the requirement to guess
an initial stabilizing gain Kll,0, at the first step of the algorithm. A practical solution
to this problem is to initially calculate the state feedback gain by a regular eigen-
value placement algorithm. Then, omit the entries that correspond to the unmeasured
states, and use the rest of the gain components that correspond to the measured states
as the initial output feedback gain Kll,0. The above algorithm was presented because
standard software packages such as MATLAB do not include built-in routines for the
calculation of the output feedback gain. Contrary, MATLAB provides a complete
set of algorithms for the solution of generalized Lyapunov equations and the ex-
traction of full state feedback gains via eigenvalue placement or performance index
optimization.

6.4.2 Yaw–Heave Dynamics

The goal of this Section is the design of the second control law responsible for
the heading and vertical velocity tracking. The yaw–heave dynamics subsystem, is
summarized by the following equations:
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ẋyh = Ayhxyh + B̄yhvyh + Dyhxll

yyh = Cyhxyh

ym
yh = xyh

(6.54)

where:

xyh = [ψ r w]T
vyh = [vped vcol]T
yyh = [ψ w]T

In the above equations, yyh is the output vector, ym
yh is the measurement vector and

Cyh is a matrix of obvious entries and dimensions. The reference output is denoted
by yr

yh = [ψr wr ]T . The yaw–heave subsystem is in cascade connection with the
longitudinal–lateral subsystem via the matrix Dyh. The interconnection of the yaw–
heave subsystem dynamics is shown in Fig. 6.3. The design procedure is similar with
the one presented in Sect. 6.4.1. The controller design requires the determination of
a desired state vector xd

yh and a desired nominal control input vd
yh, such that when

the error eyh = xyh − xd
yh is regulated to zero, then, the output yyh of the yaw heave

subsystem asymptotically tracks the reference output vector yr
yh. The obvious choice

of the desired yaw and heave velocity is ψd = ψr and wd = wr . Thus, when:

lim
t→∞‖[eψ ew]T ‖ = 0 then lim

t→∞‖yyh(t) − yr
yh(t)‖ = 0 (6.55)

The control law for the yaw–heave subsystem, is obtained as the following super-
position:

vyh = vd
yh + vfb

yh =
[

vd
ped

vd
col

]

+
[

vfb
ped

vfb
col

]

(6.56)

where vfb
yh is a feedback control vector to be determined. The choice of the controller

component vd
yh and the desired state vector xd

yh should satisfy:

ẋd
yh = Ayhx

d
yh + B̄yhv

d
yh + Dyhx

d
ll (6.57)

where the state vector xd
ll is defined in Sect. 6.4.1. The input vd

yh and the desired

state xd
yh, are derived by using a similar recursive backstepping procedure with the

Fig. 6.3 Interconnection of the yaw–heave helicopter dynamics subsystem. The yaw–heave dy-
namics are additionally perturbed by the longitudinal–lateral dynamics state vector xll
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one described in Sect. 6.4.1. The choice of vd
yh and xd

yh components emerge from

the inspection of the error vector eyh = xyh − xd
yh dynamics. The error dynamics of

the yaw–heave subsystem are given by:

ėψ = ψ̇ − ψ̇d = −ψ̇d + (er + rd)
︸ ︷︷ ︸

r

= −ψ̇d + rd + er (6.58)

ėr = ṙ − ṙd = −ṙd + Nv (ev + vd)
︸ ︷︷ ︸

v

+Np (ep + pd)
︸ ︷︷ ︸

p

+ Nw (ew + wd)
︸ ︷︷ ︸

w

+Nr (er + rd)
︸ ︷︷ ︸

r

+vped

= −ṙd + Nvvd + Nppd + Nwwd + Nrrd

+ Nvev + Npep + Nwew + Nrer + vd
ped + vfb

ped (6.59)

ėw = ẇ − ẇd = −ẇd + Za (ea + ad)
︸ ︷︷ ︸

a

+Zb (eb + bd)
︸ ︷︷ ︸

b

+ Zr (er + rd)
︸ ︷︷ ︸

r

+Zw (ew + wd)
︸ ︷︷ ︸

w

+vcol

= −ẇd + Zaad + Zbbd + Zrrd + Zwwd

+ Zaea + Zbeb + Zrer + Zwew + vds
col + vfb

col (6.60)

The desired angular velocity rd , and the components of vd
yh, are chosen such that

they cancel out all the terms associated with the rest of the desired state variables
and only the error terms remain in the yaw–heave subsystem error dynamics. Thus:

rd = ψ̇d (6.61)

vds
ped = ṙd − Nvvd − Nppd − Nwwd − Nppd (6.62)

vds
col = ẇd − Zaad − Zbbd − Zrrd − Zwwd (6.63)

Based on the above choice, it is easy to verify that (6.57) is satisfied. The desired
state vector xd

yh and the control input vd
yh are functions of the components of the

yr
yh, yr

ll vectors and their higher derivatives. Moreover, ψr and wr should belong

to C2 and C1, respectively. The dependence of vd
yh on the components of yr

ll stems
from the interconnection of the two subsystems through the matrix Dyh. Using the
equations given in (6.61)–(6.63), the error dynamics of the yaw–heave subsystem
become:

ėyh = Ayheyh + B̄yhv
fb
yh + Dyhell

Yyh = eyh

Ym
yh = eyh

(6.64)

where:

eyh = [eψ er ev]T
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In the above equations Ym
yh denotes the vector of available measurements. Similarly

with the longitudinal–lateral subsystem, the tracking problem of yr
yh is converted to

the regulation of eyh to zero. However, in this particular case, the full state vector of
the system in (6.64) is available for feedback. The design objective is to determine
a static feedback law vfb

yh of the form:

vfb
yh = −Kyheyh (6.65)

where Kyh is a gain matrix, such that the closed loop stability matrix Acl
yh = Ayh −

B̄yhKyh of the yaw–heave error subsystem is Hurwitz. As it will be illustrated later,
if this condition is satisfied, the solution of the complete error dynamics is GAS
given that Acl

ll is Hurwitz as well.
Since full state feedback is available, there are several options for determining

the feedback gain Kyh. The first choice for calculating Kyh is via the LQR method.
Similarly with the output feedback case, Kyh is calculated such that Acl

yh is Hurwitz,
and the gain selection minimizes the following performance index:

Jyh =
∫ ∞

t0

(eT
yhQyheyh + (vfb

yh)
T Ryhv

fb
yh) dt (6.66)

In the above equality, Qyh ≥ 0 and Ryh > 0 are diagonal matrices of appropriate
dimensions. Likewise to Qll and Rll, the matrices Qyh and Ryh are chosen by the
designer such that a fine balance between the system response and the control effort
is achieved. In the case of full state feedback, the particular optimization problem is
much easier than its output feedback counterpart. The controller state feedback gain
is given by:

Kyh = R−1
yh B̄T

yhPyh (6.67)

where the matrix Pyh is the solution of the algebraic Riccati equation:

0 = PyhB̄yhR
−1
yh B̄T

yhPyh − Qyh − PyhAyh − AT
yhPyh (6.68)

The solution of the algebraic Riccati equation, is provided by MATLAB by using
the care.m built-in routine. A different approach is to determine the feedback gain
Kyh by direct eigenvalue placement. The advantage of this method is that the eigen-
value position provides a quantitative perception of the system’s response. MATLAB
provides the place.m built-in routine, for accurate eigenvalue placement will full
state feedback for MIMO systems.

6.4.3 Stability of the Complete System Error Dynamics

Sections 6.4.1 and 6.4.2, provided a detailed presentation of how to define the
feedback gain matrices Kll and Kyh, such that the close loop matrices Acl

ll =
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Fig. 6.4 Cascade connection
of the closed loop error
dynamics subsystems

Afb
ll − B̄llKllC

m
ll and Acl

yh = Ayh − B̄yhKyh are Hurwitz. By applying the control

laws vfb
ll and vfb

yh, the complete error system dynamics take the form:
[
ėyh

ėll

]

=
[
(Ayh − B̄yhKyh) Dyh

08×3 (Afb
ll − B̄llKllC

m
ll )

][
eyh

ell

]

(6.69)

The cascade connection of the closed loop error dynamics is shown in Fig. 6.4. The
stability of the complete error dynamics system given in (6.69), is specified by the
following Theorem:

Theorem 6.1 Given that the feedback gains Kll and Kyh are selected such that the
matrices Acl

ll = Afb
ll − B̄llKllC

m
ll and Acl

yh = Ayh − B̄yhKyh are Hurwitz, then the

solution [eyh(t) ell(t)]T of the complete error dynamics system of (6.69) is GAS.

Proof The proof of the Theorem begins with a standard result from linear algebra.
If A ∈ R

n×n, B ∈ R
m×m are square matrices, and C ∈ R

n×m, then the following
property holds:

det

([

A C
0m×n B

])

= det (A) · det (B)

where det(·) denotes the determinant of a matrix. Denote by λ the eigenvalues of the
composite error dynamics system of (6.69). By definition, the eigenvalues of (6.69)
satisfy the following equalities:

det

([
Acl

yh − λI3×3 Dyh

0 Acl
ll − λI8×8

])

= det(Acl
yh − λI3×3) · det(Acl

ll − λI8×8) = 0

Therefore the eigenvalues of the composite error system are the union of the eigen-
values of Acl

yh and Acl
ll . Since both of those matrices are Hurwitz, then all the eigen-

values of (6.69) have strictly negative real parts. Therefore, the complete error dy-
namics system of (6.69) is GAS. �

6.5 Position and Heading Tracking

The ultimate goal of the controller design is for the helicopter to track a prede-
fined position trajectory of the inertial frame expressed by the reference vector
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pI
r = [pI

r,xp
I
r,yp

I
r,z]T . The helicopter position expressed in the body-fixed frame

is denoted by the coordinate vector pB = [pB
x pB

y pB
z ]T . The position error ex-

pressed in the body-fixed frame is given by eB
p = pB − pB

r . The position error dy-
namics are derived by using the properties of the rotation matrix R, described in
Chap. 3. The rotation matrix is used for mapping coordinate vectors from the body-
fixed frame to the inertial frame. For the position error expressed in the body-fixed
frame the following equalities hold:

eB
p = pB − pB

r = RT pI − RT pI
r (6.70)

Using the analysis of Chap. 3, the position error dynamics are given by:

ėB
p = RT (ṗI − ṗI

r ) + ṘT (pI − pI
r )

= RT (vI − vI
d ) + (Rω̂B)T (pI − pI

r )

= vB − vB
d + (ω̂B)T (pB − pB

r )

= eB
v − ω̂BeB

p

= eB
v + êB

p ωB (6.71)

In order to derive the position error dynamics the following have been considered:

vI
d = ṗI

r vI = ṗI Ṙ = Rω̂B ω̂BeB
p = −êB

p ωB (6.72)

The position error dynamics are not linear since they include the nonlinear term
êB
p ωB . The latter term expresses the contribution of the angular velocity to the po-

sition error dynamics.
The choice of a linear model for the representation of the helicopter dynamics is

limited to a certain range of a particular operating condition. In this case, the oper-
ating condition of interest is the hover flight mode. Since the linear model of (6.2) is
restricted within a certain range of the hover mode, the tracking problem of arbitrary
position and velocity trajectories becomes dubious. However, experimental results
of real life applications indicate that the accuracy of linear dynamic models is satis-
factory enough for a relatively wide range of the flight envelope around the reference
operating condition. Therefore, it is assumed that the adopted linear model of (6.2)
provides a quasi-global description of the helicopter dynamics. Linearization is also
applied to the nonlinear position error dynamics, assuming that eB

p is the perturbed
value of the position error from the reference steady state vector eB

p,o = [0 0 0]T .
Similarly, ωB is considered as the angular velocity’s perturbed value from the trim
vector ωB

o = [0 0 0]T . In this case, the term êB
p ωB can be disregarded since it

is considered as a product of two perturbed values.1 This approximation adds up to
all simplification assumptions that take place in order to obtain the linear dynamic
model of the helicopter given in (6.2). Therefore, the approximated position error
dynamics are given by:

ėB
p = eB

v (6.73)

1More details about linearization may be found in Sect. 5.8.
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The composite error system is additionally enhanced by the integral of the po-
sition and yaw error dynamics. The presence of integral terms in the control law is
very beneficial in terms of robustness performance. The feedback integral compo-
nents attenuate the steady state tracking error caused by potential parametric and
model uncertainty. Denote by ηB

p = [ηB
x ηB

y ηB
z ]T and ηψ the integral of the po-

sition and yaw error. Thus:

η̇B
p = eB

p and η̇ψ = eψ (6.74)

The structure of the control laws for the position tracking problem will be iden-
tical to the velocity tracking case. The composite error dynamics are still sepa-
rated into two subsystems corresponding to the lateral–longitudinal and yaw–heave
motion. From this point forward the state error of the two subsystems including
the position and the position integral error is denoted by ε. Having said that, the
longitudinal–lateral dynamics are given by:

ε̇ll = Allεll + Bllv
fb
ll

Y m
ll = Cm

ll εll
(6.75)

where:

εll = [ηB
x ηB

y eB
x eB

y eu ev eθ eφ eq ep ea eb]T
Y m

ll = [ηB
x ηB

y eB
x eB

y eu ev eθ eφ eq ep]T
and:

All =
[

04×2 I4×4 04×6

08×2 08×2 Afb
ll

]

Bll =
[

04×2

B̄ll

]

(6.76)

In the above equations Y m
ll denotes the available measurement vector and Cm

ll a ma-
trix of obvious dimensions and entries. The yaw–heave error dynamics are given
by:

ε̇yh = Ayhεyh + Byhv
fb
yh + Dyhεll

Y m
yh = εyh

(6.77)

where:

εyh = [ηB
z ηψ eB

z eψ ew er ]T
and:

Ayh =
[

03×2 I3×3 03×1

03×2 03×1 Ayh

]

Byh =
[

03×2

B̄yh

]

Dyh =
[

03×3 03×8

03×4 Dyh

]

(6.78)

In the above equations Yyh denotes the available measurements vector. The inter-
connection of the new complete error dynamics subsystems is illustrated in Fig. 6.5.
Similarly to the velocity tracking case, the control design is reduced to the calcula-
tion of two feedback gain matrices Kll and Kyh, such that by applying the following
feedback control laws:
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Fig. 6.5 Cascade connection
of the error dynamics
subsystems related with the
position tracking problem

vfb
ll = −Kll Y m

ll (6.79)

vfb
yh = −Kyh Y m

yh (6.80)

the closed loop matrices Acl
ll = All − Bll Kll Cm

ll and Acl
yh = Ayh − Byh Kyh are Hur-

witz. The feedback gains may be calculated by following the analysis described in
Sects. 6.4.1 and 6.4.2. For example, following the LQR method the gains are se-
lected such that they minimize the following quadratic performance indexes:

Jll =
∫ ∞

t0

(εT
ll Qllεll + (vfb

ll )T Rllv
fb
ll ) dt (6.81)

Jyh =
∫ ∞

t0

(εT
yh Qyhεyh + (vfb

yh)
T Ryhv

fb
yh) dt (6.82)

where Qll, Qyh ≥ 0 and Rll, Ryh > 0 are diagonal matrices picked by the designer.
However, in order to follow the LQR or eigenvalue placement methodologies, the
pairs (All, Bll) and (Ayh, Byh) must be controllable. The necessary condition for
controllability of the pairs (All, Bll) and (Ayh, Byh) is established by the following
Theorem:

Theorem 6.2 Given that Assumptions 6.1, 6.2 and 6.3 hold, then the pairs (All, Bll)

and (Ayh, Byh) are controllable.

Proof Based on Assumptions 6.1 and 6.2, the pair (Afb
ll , B̄yh) is controllable. Let

T (s) = [sI8 −Afb
ll |B̄ll] where s ∈ R. From the Popov–Belevitch–Hautus (PBH) test,

for every s ∈ R, rank(T (s)) = 8. Thus, one must show that rank(T (s)) = 12 for
every s ∈ R, where T (s) = [sI12 − All|Bll].
• For s �= 0 one has:

rank(T (s)) = rank

⎛

⎝

⎡

⎣

sI2 −I2 02×2 02×6 04×2
02×2 sI2 −I2 02×6

02×2 02×2 −Afb
ll −Bll

⎤

⎦

⎞

⎠

Since s �= 0, the first four rows are linearly independent. Therefore:

rank(T (s)) = 4 + rank([Afb
ll |Bll]) = 4 + 8 = 12
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• For s = 0 one has:

rank(T (0)) =
⎛

⎝

⎡

⎣

02×2 −I2 02×2 02×6 04×2
02×2 02×2 −I2 02×6

02×2 02×2 −Afb
ll −Bll

⎤

⎦

⎞

⎠

The first two rows are linearly independent. Therefore:

rank(T (0)) = 2 +
([−I2 02×6 02×2

−Afb
ll −Bll

])

The matrix of the right hand side of the above equation, is square and lower
triangular with nonzero elements in its main diagonal (this fact is guaranteed by
Assumption 6.3). Hence, the rank of this matrix is 10 and rank(T (0)) = 12.

Therefore, it has been proved that for every s ∈ R, rank(T (s)) = 12. So, given that
the pair (Afb

ll , B̄ll) is controllable, then the pair (All, Bll) is controllable as well. The
proof for the controllability of (Ayh, Byh) based on the controllability of the pair
(Ayh, Byh) is derived in a similar way. �

By applying the control laws vfb
ll = −Kll Y m

ll and vfb
yh = −Kyh Y m

yh, the complete
error system dynamics take the form:

ε̇ = Acl
ε ε (6.83)

where:

ε =
[
εyh

εll

]

Acl
ε =

[
(Ayh − Byh Kyh) Dyh

08×3 (All − Bll Kll Cm
ll )

]

(6.84)

The stability of the complete error dynamics system of (6.83) is established by the
following Theorem:

Theorem 6.3 Given that the feedback gains Kll and Kyh are selected such that
the matrices Acl

ll = All − Bll Kll Cm
ll and Acl

yh = Ayh − Byh Kyh are Hurwitz, then the
solution ε(t) = [εyh(t) εll(t)] of the complete error dynamics system in (6.83), is
GAS.

Proof The proof is derived similarly to Theorem 6.1. The eigenvalues of (6.83) have
strictly negative real parts based on the determinant property of square matrices in
block triangular form. �

The design steps that are required for the implementation of the linear tracking
controller are described below:



6.5 Position and Heading Tracking 95

Step 1: Calculate Kll and Kyh, such that the closed loop matrices Acl
ll = All −

Bll Kll Cm
ll and Acl

yh = Ayh − Byh Kyh are Hurwitz.
Step 2: From the helicopter’s available measurements and the reference trajec-

tory, using Table 6.1 calculate vd
ll , vd

yh and Y m
ll , Y m

yh.
Step 3: Calculate the two feedback control laws:

vll = vd
ll − Kll Y m

ll and vyh = vd
yh − Kyh Y m

yh

Step 4: The final control vectors for the two subsystems are obtained by:

ull = (Bn
ll )

−1vll uyh = (Bn
yh)

−1vyh

Table 6.1 Outline of the desired state and control variables for the longitudinal–lateral and yaw–
heave subsystems

• Given a reference position vector pI
r = [pI

r,xpI
r,ypI

r,z]T , with respect to the inertial frame, the

desired velocities values vB
d = [udvdwd ]T , in the body-fixed frame, are given by:

vB
d = RT ṗI

r

• In the case of velocity tracking, simply set vB
d = vB

r .
• The desired state variables and control inputs for the longitudinal–lateral subsystem are:

θd = 1

−g
[u̇d − Xuud ]

φd = 1

g
[v̇d − Yvvd ]

qd = θ̇d

pd = φ̇d

ad = 1

Ma

[q̇d − Muud − Mvvd ]

bd = 1

Lb

[ṗd − Luud − Lvvd ]

vds
lon = ȧd + qd + 1

τf

ad − Abbd

vds
lat = ḃd + pd + 1

τf

bd − Baad

• The desired state variables and control inputs for the yaw–heave subsystem are:

rd = ψ̇d

vds
ped = ṙd − Nvvd − Nppd − Nwwd − Nppd

vds
col = ẇd − Zaad − Zbbd − Zrrd − Zwwd
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6.6 PID Controller Design

In many practical control applications the MIMO dynamic model of the helicopter
is not available. When this is the case, a fundamental controller composed of four
SISO Proportional Integral Derivative (PID) feedback loops may be implemented.
This control scheme is a very common start up design point in real life applications,
since it does not require knowledge of the helicopter model and the controller gains
can be empirically tuned.

The design of the cyclic feedback loops is based on the simple fact that the longi-
tudinal and lateral velocity of the helicopter is produced from the pitch and roll tilt
of the fuselage. Therefore, the helicopter velocity is considered proportional to the
helicopter attitude [70]. The structure of the feedback law is composed by two main
loops: The inner loop and the outer loop. The inner loop regulates the helicopter
attitude to the desired angles θdes and φdes. The feedback signal of the inner loop is
proportional to the attitude error. The outer loop generates the desired attitude an-
gles. The desired pitch and roll angles are proportional to the position and velocity
error in the longitudinal and lateral directions, respectively. The cyclic commands
are given by:

ulon = −Kθ(θ − θdes) = −Kθ(θ − Kη,xη
B
x − Kxe

B
x − Kueu) (6.85)

and:

ulat = −Kφ(φ + φdes) = −Kφ(φ + Kη,yη
B
y + Kye

B
y + Kvev) (6.86)

where Kθ , Kφ , Kη,x , Kη,y , Kx , Ky , Ku and Kv are positive gains. In order for the
above feedback law to perform well, the attitude error should be regulated to zero
faster than the translational error. To do so, the control law gains should be chosen
appropriately such that a distinct time scaling is achieved between the attitude dy-
namics and the translational dynamics. The pedal and collective feedback loops are
more direct than the cyclic loops. Each of them is composed solely from the yaw and
heave error and their corresponding velocity error. So the pedal and the collective
input are given by:

uped = −Kη,ψηψ − Kψeψ − Krer (6.87)

and:

ucol = −Kη,zη
B
z − Kze

B
z − Kwew (6.88)

Similarly, Kη,ψ , Kη,z, Kψ Kz Kr and Kw are positive gains. The PID control design
does not take into consideration the cross coupling effect that usually exists in the
helicopter dynamics. Therefore, the four closed loops are completely independent
of each other. The gains of the control feedback loops are tuned by simple trial and
error. The gain tunning procedure can be significantly improved by the knowledge
of a simple nonparametric model of the helicopter. The nonparametric model can
be extracted with the methodologies described in Chap. 5. The block diagram of the
PID controller is shown in Fig. 6.6.
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Table 6.2 Linear tracking controller feedback gains

Kll =
[−1.9187 0.4710 −4.3711 1.0374 −3.1353 0.6882 9.8054 1.9041 0.5662 0.2395

−0.1242 0.6031 −0.2734 1.3663 −0.1847 0.9682 0.5038 2.9687 0.0632 −0.5391

]

Kyh =
[

0 0 42 0 10.9451 0

0 0 0 60 0 1

]

6.7 Experimental Results

The performance of the presented linear tracking controller and the PID design is
evaluated using the Raptor 90 SE RC helicopter in the X-Plane simulator. The sta-
bility and control derivatives of the Raptor’s linear model are given in Table 5.4.
Controller performance was tested by executing a velocity tracking maneuver. The
reference maneuver is a trapezoidal velocity profile in the lateral and longitudinal di-
rections of the inertial space. Throughout the maneuver the desired heading remains
constant with a value of ψr = 0. The linear tracking controller’s gains of (6.79)–
(6.80) are shown in Table 6.2. The PID gains are given in Table 6.3. The controller
responses versus the desired trajectory are illustrated in Fig. 6.7. The pitch, roll and
yaw orientation angles for the two controllers are depicted in Fig. 6.8. The position
of the helicopter in the inertial coordinates is given in Figs. 6.9 and 6.10. Finally,
the control inputs for the two designs are given in Figs. 6.11 and 6.12.

Based on the results, the performance of both controller designs is deemed sat-
isfactory. Although the reference trajectory requires that the helicopter executes a
cruising maneuver (longitudinal velocity up to 17 m/sec and lateral velocity up to
3 m/sec) a single linear controller based only on the hover linear model, was ad-
equate. To this extent, the identification of multiple models for different operating
conditions was redundant. It was expected that the PID performance would be in-
ferior to the linear design, however the flight results indicate that both designs pro-
vided equally successful results. The success of the PID controller is attributed to
the attenuated cross coupling effect amongst the Raptor dynamics. This fact is sup-
ported by the off-axis responses of the helicopter illustrated in Fig. 5.3. The magni-
tude of the q/ulat and p/ulon responses lie in the zone of −20 to −40 dB. This is
an indicator of negligible cross coupling between the helicopter dynamics.

Table 6.3 PID controller
gains Kθ 0.7566 Ky 0.3252

Kη,x 0 Kv 0.2493

Kx 0.3256 Kη,ψ 0

Ku 0.1628 Kψ 3

Kφ 0.4569 Kr 0.35

Kη,y 0 Kη,z 0

Kw 0.6060 Kz 1.6018
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Fig. 6.7 (Color online) Reference trajectory (solid green line), actual velocity trajectory of the lin-
ear (green dashed line) and PID (dashed–dotted red line) designs, expressed in inertial coordinates
with respect to time

Fig. 6.8 (Color online) Orientation angles of the linear (solid line) and PID (dashed line) designs
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Fig. 6.9 (Color online) Reference position trajectory (solid line) and the actual trajectory of the
linear (dashed line) design with respect to the inertia axis

Fig. 6.10 (Color online) Reference position trajectory (solid line) and the actual trajectory of the
PID (dashed line) design, with respect to the inertia axis



6.7 Experimental Results 101

Fig. 6.11 (Color online) Control inputs of the linear design

Fig. 6.12 (Color online) Control inputs of the PID design
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6.8 Remarks

This Chapter presented a position (or velocity) and heading tracking controller for
small-scale helicopters. The analysis is restricted to this class of rotorcraft because
the adopted generic linear model, to which the controller is based on, may be in-
adequate for full-scale helicopters. Models for full-scale helicopters are in principle
of higher order since they include additional dynamics such as coning, engine dy-
namics and other aerodynamic effects like the inflow velocity’s dynamics. The linear
design is based on the linearized helicopter dynamics around hover. The design may
be expanded such that the overall control law can be an interpolator of multiple con-
trollers where each of them corresponds to a linear model around different operating
condition of the helicopter. It is important, however, that all of the linearized models
have the same structure and order with the base hover model and only their param-
eters may vary. In addition, it is important that for all linear models, it is physically
meaningful to approximate them by a system of strict-feedback form such that the
principle of differential flatness holds. The output feedback controllers vfb

ll and vfb
yh

are not restricted only to the proposed designs of this Chapter, but they could be
chosen from a wide variety of linear controller designs that exist in the literature.
To this extent, the popular method of H∞ may be also applied. The suggested out-
put feedback control laws of this Chapter are only indicators for a straightforward
design.

To eliminate the necessity of multiple linear models a single nonlinear model
should be used leading to a nonlinear controller design. This is the goal of the next
Chapter where a nonlinear backstepping controller is proposed based on the nonlin-
ear helicopter dynamics. The helicopter dynamics are based on the complete nonlin-
ear equations of motions enhanced by a simplified model of the main and tail rotor
forces and moments generation.



Chapter 7
Nonlinear Tracking Controller Design for
Unmanned Helicopters

The previous Chapter presented a tracking controller of the position and heading of
a helicopter based on the linearized helicopter dynamics. The adopted parametric
linear model, on which the flight controller is based on, represented the quasi steady
state behavior of the helicopter dynamics at hover.

Real life case studies indicate that the validity of linear models is restricted only
to flight operation around the trim point of reference. A wider description of the
flight envelope requires the identification of multiple linear models where each of
them corresponds to a different operating condition of the helicopter. Therefore,
as already stated, multiple controllers should be designed where each of them is
based on the linear model of a particular operating condition. The output of the
overall control law is produced by a scheduling process of the multiple controllers
depending on the helicopter’s operating condition.

However, as indicated in Chap. 5 the experimental procedure for the extraction of
linear models parameters, for operating conditions other than hover, is a tedious and
in many cases an unreliable process. The ideal solution to this problem would be
the design of a single controller based on a model that provides a global description
of the helicopter dynamics. The goal of this Chapter is the design of a position
and heading control law based on the nonlinear helicopter dynamics. The resulting
control law, from a theoretical view point, is valid for the complete flight envelope
and it is applicable to both full-scale and small-scale helicopters.

7.1 Introduction

In general, most controller designs are based on the linearized helicopter dynamics
using the widely adopted concept of stability derivatives [25, 28, 54–56, 89]. How-
ever, in recent years there is considerable research related to helicopter flight control
based on nonlinear dynamic representations [24, 30, 47, 88, 91].

This Chapter presents a nonlinear tracking controller design for helicopters. The
main objective is for the helicopter to track a predefined, possibly aggressive, posi-
tion and yaw reference trajectories with certain bounds that reflect the helicopter’s

I.A. Raptis, K.P. Valavanis, Linear and Nonlinear Control of Small-Scale Unmanned
Helicopters, Intelligent Systems, Control and Automation: Science and Engineering 45,
DOI 10.1007/978-94-007-0023-9_7, © Springer Science+Business Media B.V. 2011
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physical limitations. The helicopter model is represented by the rigid body equa-
tions of motion enhanced by a simplified model of force and torque generation. The
helicopter nonlinear model is based on the work reported in [47].

The controller is based on the backstepping design principle for systems in feed-
back form. The intermediate backstepping control signals (a.k.a. pseudo controls)
for each level of the feedback system are appropriately chosen to stabilize the overall
helicopter dynamics. The resulting system error dynamics may be separated in two
interconnected subsystems representing the error in translational and attitude dy-
namics, respectively. The distinction of the two subsystems indicate the time scaling
separation that exists in actual helicopters where the position dynamics are signifi-
cantly slower than the attitude dynamics.

The incorporation of nested saturation feedback functions in the backstepping
design preserves the helicopter’s motion and power physical constraints. The inter-
mediate control signals related to the attitude dynamics exploit the structural prop-
erties of the rotation matrix and they are enhanced with terms that guarantee that the
helicopter will not overturn while tracking the desired position trajectory. The at-
titude dynamics are rendered exponentially stable while the translational dynamics
are globally asymptotically stable. Numerical simulations illustrate the applicability
of this design.

7.2 Helicopter Nonlinear Model

Before the derivation of the helicopter nonlinear model, some mathematical notation
is introduced that is required for the subsequent analysis. The abbreviations Ct and
St with t ∈ R represent the trigonometric functions cos(t) and sin(t), respectively.
The operands ‖(·)‖, |(·)| denote the Euclidean norm and the ‖(·)‖1 norm of a vector,
respectively.

The helicopter model considered in this Section is composed of the nonlinear
equations of motion accompanied by a simplified model of the forces and moments
that are produced by the main and tail rotor. These aerodynamic forces and mo-
ments are complex nonlinear functions of the motion characteristics and controls,
which are dominated by high uncertainty. Detailed models of the helicopter nonlin-
ear dynamics can be found in [7, 40, 84]. However, such models are of high order
and impractical for the development of flight controllers. Derivation of the external
forces and moments that act on the helicopter is based on the simplified model of
the generated main rotor thrust covered in Chap. 4.

7.2.1 Rigid Body Dynamics

The helicopter rigid body nonlinear equations of motion have already been de-
rived in Chap. 3 and they are repeated here for clarification purposes. Let pI =
[pI

x pI
y pI

z ]T denote the position vector of the CG of the helicopter with respect to
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the inertial coordinates, and vI = [vI
x vI

y vI
z ]T denote the linear velocity vector in

inertial coordinates. The angular velocity with respect to the body-fixed frame is
ωB = [p q r]T . Based on Chap. 3, the complete rigid body dynamic equations of
the helicopter in the configuration space SE(3) = R

3 × SO(3) are:

ṗI = vI (7.1)

v̇I = 1

m
Rf B (7.2)

Ṙ = Rω̂B (7.3)

Iω̇B = −ωB × (IωB) + τB (7.4)

The rotation matrix R is parametrized with respect to the three Euler angles roll
(φ), pitch (θ ) and yaw (ψ ) and maps vectors from the body-fixed frame FB to the
inertia frame FI . The controller design is based on the rotation matrix, given by:

R =
[

CψCθ −SψCφ + CψSθSφ SφSψ + CφSθCψ

SψCθ CφCψ + SφSθSψ −CψSφ + SψSθCφ

−Sθ CθSφ CθCφ

]

The orientation vector is given by Θ = [φ θ ψ]T and the associated orientation
dynamics are governed by:

Θ̇ = Ψ (Θ)ωB (7.5)

The components of the Ψ (Θ) matrix are given in (3.27). The helicopter’s rigid body
dynamics given in (7.1)–(7.4) are completed by defining the external body-fixed
frame force f B and torque τB . The vector FB = [f B τB ]T is called the external
wrench that acts on the helicopter [75].

7.2.2 External Wrench Model

The modeling approach of [47, 56, 70, 72] is followed, which provides a simplified
external wrench model adequate for controller design purposes. Most of the con-
cepts associated with the derivation of the simplified external wrench model have
been already covered in Chap. 4. The main assumption is that the thrust vector pro-
duced by the main rotor is considered perpendicular to the TPP.

There are four control inputs associated with helicopter piloting. The control
input vector is defined as uc = [a b TM TT ]T . The components TM and TT are
the magnitude of the generated thrusts by the main and tail rotor, respectively. The
magnitude of the main and tail rotor thrust is produced by a uniform change in the
pitch angles of the main and tail rotor blades. The flapping angles a, b represent the
tilt of the TPP at the longitudinal and lateral axis, respectively. The vectors of the
body-fixed frame, the flapping angles and the thrust vectors are shown in Fig. 7.1.
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Fig. 7.1 The helicopter’s
body-fixed frame, the
Tip-Path-Plane angles and the
thrust vectors of the main and
tail rotor

From Sect. 4.8 the components of the main rotor thrust vector �TM , expressed in
the body-fixed frame, are given by:

T B
M =

[
XM

YM

ZM

]

=
[−SaCb

CaSb

−CaCb

]

TM ≈
[−a

b

−1

]

TM (7.6)

As indicated from Sect. 4.8, the above equation is simplified by assuming small
angle approximation (cos(·) ≈ 1 and sin(·) ≈ (·)) for the flapping angles. The small
angle assumption is also adopted by [40, 47, 70]. For the body-fixed components of
the tail rotor thrust vector, one has:

T B
T =

[ 0
YT

0

]

=
[ 0

−1
0

]

TT (7.7)

Therefore, by including the helicopter’s weight the complete force vector is:

f B =
[

XM

YM + YT

ZM

]

+ RT

[ 0
0

mg

]

(7.8)

A common simplification practice followed in [37, 47, 66] is to neglect the effect
of the lateral and longitudinal forces produced by the TPP tilt and the effect of
the tail rotor thrust. Those parasitic forces have a minimal effect on the translational
dynamics compared to the ZM component.1 In this case, the only two forces applied

1The override of the f B components in the �iB and �jB directions of the body-fixed frame achieves
the decoupling of the helicopter external force and moment model. The work reported in [47]
indicates that if the complete description of the force vector given in (7.8) is used, then the state
space dynamics of the nonlinear helicopter model cannot be input–output linearizable and the zero-
dynamics of the system will be unstable. If the system dynamics are not input–output linearizable
most of the standard control methodologies will be inapplicable. If the proposed approximation
takes place, the helicopter nonlinear model becomes full state linearizable by considering the po-
sition and the yaw as outputs. To the authors knowledge, there is not any controller design in the
literature that is based on the exact model and in all case studies this approximation is performed.
The use of the approximated model also took place in Chap. 6 indicating that for the helicopter
control problem only practical stability can be achieved based on the approximated model.
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Fig. 7.2 This block diagram illustrates the connection of the generated thrusts of the main and tail
rotor with the helicopter dynamics. The vector �WB represents the weight force expressed in the
body-fixed frame

to the helicopter are the main rotor’s thrust vector in the direction of �kB of the body-
fixed frame and the weight force. Therefore, (7.8) becomes:

f B =
[ 0

0
−TM

]

+ RT

[ 0
0

mg

]

(7.9)

The generated torques are the result of the above forces and the rotors moments.
Denote hB

M = [xm ym zm]T and hB
T = [xt yt zt ]T as the position vectors of the main

and tail rotor shafts, respectively (expressed in the body-fixed coordinate frame).
Let �τM = �hM × �TM and �τT = �hT × �TT be the torques generated by �TM and �TT ,
respectively. The complete torque vector will be:

τB = τB
Q +

[
ymZM − zmYM − ztYT

zmXM − xmZM

xmYM − ymXM + xtYT

]

(7.10)

with τB
Q = [RM MM NM ]T . The �τQ is produced by the main rotor moment vector

�τβ due to the hub stiffness and the main rotor anti-torque denoted by QM . Details
about �τβ are given in Sect. 4.8. The components of τB

Q = [RM MM NM ]T are:

RM = Kβb − QMSaCb MM = Kβa + QMSbCa

NM = −QMCaCb QM = CM |TM |1.5 + DM

The positive constants CM and DM are associated with the generation of the reac-
tion torque QM . A detailed description of �τQ can be found in [30, 47]. Figure 7.2
depicts the association of the generated thrusts with the helicopter’s rigid body dy-
namics. Substituting (7.6), (7.7) to (7.10) a more compact form of the torque can be
given as:

τB = Ā(TM)vc + B̄(TM) (7.11)

where:

vc = (a b TT )T (7.12)
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Fig. 7.3 This block diagram illustrates the interconnection of the approximated helicopter’s dy-
namics

with Ā(TM) ∈ R
3×3 being an invertible matrix for bounded TM and B̄(TM) ∈ R

3×1.
In particular:

Ā(TM) =
[ −QM(TM) −zmTM + Kβ zt

−zmTM + Kβ QM(TM) 0
ymTM xmTM −xt

]

B̄(TM) =
[ −ymTM

xmTM

−QM(TM)

] (7.13)

7.2.3 Complete Rigid Body Dynamics

Using the force simplification assumption given in (7.9) and the applied torque given
by (7.11), the translational and angular velocity helicopter dynamics are expressed
as:

v̇I = − 1

m
Re3TM + ge3 (7.14)

Iω̇B = −ωB × (IωB) + Ā(TM)vc + B̄(TM) (7.15)

where e3 = [0 0 1]T . The interconnection of the helicopter dynamics is shown in
Fig. 7.3. The helicopter dynamics can be further separated in two interconnected
subsystems representing the attitude and the translational dynamics, respectively.

7.3 Translational Error Dynamics

Consider that the baseline helicopter model is described by the dynamic equations
(7.1), (7.3) and (7.14), (7.15). The objective is to design a controller regulating the
position pI and the yaw angle ψ to the reference values pI

r = [pI
r,x pI

r,y pI
r,z]T and

ψr , respectively, requiring that the components of pI
r and their higher time deriva-

tives are bounded. This is an expected restriction, which reflects the helicopter’s
physical constraints. Furthermore, the controller design assumes availability of all
helicopter’s state variables related to the translational and attitude dynamics. The
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controller design is based on the backstepping procedure for systems in feedback
form. A summary of the backstepping methodology is presented in Appendix.

Let R = [ρ1 ρ2 ρ3], where ρi with i = 1,2,3 are the column vectors of the
rotation matrix. Denote ρi,j to be the element of the j th row and ith column of the
rotation matrix. Let eρ denote the orientation error between the actual direction of
the thrust vector ρ3, minus a desired direction denoted by ρd = [ρd,1 ρd,2 ρd,3]T .
Following standard procedure of the backstepping design, the translational error
dynamics of the helicopter may be written as:

ėp = ṗI − ṗI
r = −ṗI

r + vI
d + ev (7.16)

ėv = v̇I − v̇I
d = ge3 − v̇I

d − 1

m
ρdTM − 1

m
eρTM (7.17)

The elements of the unitary vector ρ3 express the inertial coordinates of the body-
fixed frame vector �kB . The term −ρ3TM represents the helicopter’s thrust force.
Obviously, ρ3 dictates the direction of the thrust vector, while TM denotes its magni-
tude. As illustrated in Fig. 7.3, the thrust magnitude TM is a direct control command
while the direction vector ρ3 is indirectly manipulated by the attitude dynamics. The
translational error dynamics subsystem is shown in Fig. 7.4.

The main design idea of this step is to choose the desired velocity dynamics vI
d ,

the desired direction and magnitude of the thrust vector (ρd and TM , respectively) in
such a way so that the translational error dynamics will be globally asymptotically
stable (GAS) by disregarding initially the effect of eρ . The resulting translational
error dynamics subsystem can be viewed as a GAS nominal system perturbed by
the orientation error eρ . As it will be illustrated, the proposed choice of vI

d , ρd, TM

followed by the exponential stability of the orientation error eρ , will guarantee that
the complete translational error dynamics will be uniformly globally asymptotically
stable (UGAS) for any initial condition of the position and translational velocity.

The following desired values are chosen:

vI
d = ṗI

r (7.18)

ρd = −p̈I
r + ge3 + Σ2(ev + Σ1(W(ev + ep)))

‖−p̈I
r + ge3 + Σ2(ev + Σ1(W(ev + ep)))‖ (7.19)

TM = m‖−p̈I
r + ge3 + Σ2(ev + Σ1(W(ev + ep)))‖ (7.20)

where W = diag(w1,w2,w3) with wi > 0 for i = 1,2,3 and:

Fig. 7.4 This block diagram illustrates the translational error dynamics subsystem
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Σ2(ev + Σ1(W(ev + ep))) =
[

σ2,1(ev,x + σ1,1(w1(ev,x + ep,x)))

σ2,2(ev,y + σ1,2(w2(ev,y + ep,y)))

σ2,3(ev,z + σ1,3(w3(ev,z + ep,z)))

]

= S(ep, ev) (7.21)

The function σ denotes a saturation function, which is defined as follows:

Definition 7.1 The function σ : R → R is a continuous, twice differentiable, non-
decreasing function for which given two positive numbers L, M with L ≤ M the
following properties hold:

1. σ(s) = s when |s| ≤ L;
2. |σ(s)| ≤ M for every s ∈ R;
3. sσ (s) > 0 for every s �= 0;
4. |σ(s)| ≤ |s| for every s ∈ R;
5. σ(s) is globally Lipschitz2 in s, with Lipschitz constant σ L. Hence:

∀s1, s2 ∈ R |σ(s1) − σ(s2)| ≤ σ L|s1 − s2|

The above definition of the linear saturation function is similar to the definition
given in [102]. Two additional properties are added. The twice differentiability and
the globally Lipschitz property (5) that are necessary for the backstepping design.

The choice of the desired thrust vector −ρdTM given in (7.19), (7.20) is twofold.
From (7.19) it is obvious that ρd is chosen to be a unitary vector. Further, due to
the use of the nested saturation feedback, given that the desired acceleration p̈I

r

is bounded by (7.20), the thrust magnitude TM will be bounded as well. This fact
is of particular importance since due to the physical constraints of the helicopter
actuation, stability should be achieved with limited control resources.

The helicopter during the flight operation is required not to overturn while track-
ing the reference maneuver. More specifically, it is required that |φ(t)| < π/2 and
|θ(t)| < π/2 for every t ≥ t0. Apart from the physical helicopter flight limitations,
this condition is necessary to avoid singularities in the rotation matrix representation
of the Euler angles. Similar constraints apply when using quaternions for the attitude
representation [4, 37]. Since ρ3,3 = CθCφ , the helicopter will not overturn if the in-
equality ρ3,3(t) > 0 is preserved for every t ≥ t0. When the helicopter is tracking its
desired orientation, dictated by the directional vector ρd , the same limitation should
apply. In other words, |φd(t)| < π/2 and |θd(t)| < π/2 for every t ≥ t0. From (7.19)
an additional constraint is imposed on the choice of the saturation vector S(ep, ev)

and the desired position trajectory. This constraint is sufficient to guarantee that
ρd,3 = Cθd

Cφd
> 0 for every t ≥ t0.

2The function f (t, s) is Lipschitz in s ∈ R
n if it is piecewise continuous in t and satisfies the

Lipschitz condition:

‖f (t, s1) − f (t, s2)‖ ≤ f L‖s1 − s2‖
for every s1, s2 ∈ R

n and a positive constant f L (called Lipschitz constant). If the function f (t, s)

is Lipschitz in s, then the system ṡ = f (t, s) with s(t0) = so has a unique solution for every t [43].
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Property 7.1 If for every t ≥ t0 the saturation level M2,3 of the function σ2,3 and
the predefined value of p̈I

r,z satisfy the inequality:

g − M2,3 > max
t≥t0

p̈I
r,z(t)

then ρd,3(t) > 0 and consequently |φd(t)|, |θd(t)| < π/2 for every t ≥ t0.

The above property can be easily verified by the following series of inequalities:

ρd,3(t) > 0 ⇒ −p̈I
r,z(t) + g + σ2,3(ev,z + σ1,3(w3(ev,z + ep,z))) > 0

⇒ g − M2,3 > max
t≥t0

p̈I
r,z(t)

Substitution of the desired values given in (7.18)–(7.20) will result in the following
representation of the translational error dynamics:

ėp = ev (7.22)

ėv = −S(ep, ev) − (ρ3(Θ) − ρd(t))
︸ ︷︷ ︸

eρ

U(t, ep, ev) (7.23)

where:

U(t, ep, ev) = ‖−p̈I
r + ge3 + Σ2(ev + Σ1(W(ev + ep)))‖ (7.24)

Regarding U(·) the following property will hold:

Property 7.2 Given that ρd,3(t) > 0 for every t ≥ t0, then the following inequalities
will hold:

Umin ≤ U(t, ep, ev) ≤ Umax

with:

Umin = g − M2,3 − max
t≥t0

p̈I
r,z(t) > 0

Umax = max
t≥t0

‖p̈I
r (t)‖ + g + √

3(M2,1 + M2,2 + M2,3)

where M2,1,M2,2 are the saturation levels of the functions σ2,1 and σ2,2, respec-
tively.

The resulting system dynamics, up to this point, are illustrated in Fig. 7.5. The
translational error dynamics subsystem can be considered as a GAS nominal system
of a single integrator controlled by a nested saturation feedback law. Chains of inte-
grators controlled by linear saturation functions have been extensively investigated
in [102]. The nominal system is perturbed by a bounded term of the orientation er-
ror eρ . The stability analysis of the resulting translational error dynamics will be
investigated in detail in Sect. 7.6, after some useful stability results associated with
the attitude error dynamics subsystem are established.
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Fig. 7.5 Resulting system dynamics after the choice of vI
d , ρd and TM

Before proceeding with the analysis of the attitude dynamics subsystem, the fol-
lowing observation is mentioned. Since ρ3 and ρd are unitary vectors, there is an

additional constraint expressed by the equality ρ3,3 =
√

1 − ρ2
3,1 − ρ2

3,2 given that

ρ3,3 ≥ 0. Due to this constraint it is shown that only exponential decay of the vector
e� = � − �d with � = [ρ3,1 ρ3,2]T and �d = [ρd,1 ρd,2]T is required. The vectors �

and �d lie in the x − y plane of the inertial frame. Given that the controller design
guarantees that the helicopter will not overturn (ρ3,3(t) > 0 for every t > t0), the ex-
ponential convergence of ρ3,3 to ρd,3 follows. A representation of the orthonormal
vectors ρ3, ρd is depicted in Fig. 7.6.

Definition 7.2 Denote the open and connected sets:

1. P = (0 1].
2. The two dimensional set Q = {v ∈ R

2: ‖v‖ < 1}.
3. The two dimensional set E = (−2 2) × (−2 2).

A consequence of the angle bounds |θ |, |φ| < π/2 and |θd |, |φd | < π/2 are the
statements of the following Proposition:

Fig. 7.6 This Figure illustrates the helicopter’s vertical orientation vectors ρ3, ρd with respect to
inertial frame for ρ3,3, ρd,3 > 0
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Proposition 7.1 When ρ3,3, ρd,3 ∈ P then:

1. |φ|, |φd |, |θ |, |θd | < π/2.
2. �,�d ∈ Q.
3. e� ∈ E .

This Section has introduced the applied pseudo controls associated with the trans-
lational error dynamics. Additional comments and conditions have been presented
related to the orientation restrictions of the helicopter during the flight maneuver that
are necessary for the analysis of the attitude dynamics. The detailed stability anal-
ysis of the translational error dynamics subsystem is given in Sect. 7.6, after some
useful results associated with the stability of the attitude dynamics are established
in Sects. 7.4 and 7.5.

7.4 Attitude Error Dynamics

The attitude error dynamics subsystem is described. Furthermore, the proposed
pseudo controls and the input vector vc for the stabilization of the attitude error
are provided. Apart from the stabilization part, an additional goal for the control
law is to keep |θ(t)|, |φ(t)| < π/2 for every t ≥ t0 for any initial condition of the
attitude dynamics for which the helicopter is not overturned.

7.4.1 Yaw Error Dynamics

The yaw dynamics are obtained by the equation:

ψ̇ = Ψ3(Θ)ωB (7.25)

where Ψ3(Θ) is the third row of the matrix Ψ (Θ) defined in (3.27). Let eψ = ψ −ψr

be the error of the yaw angle; then, the error dynamics will be:

ėψ = −ψ̇r + Ψ3(Θ)ωB

= −ψ̇r + Sφ

Cθ

q + Cφ

Cθ

r (7.26)

Using the yaw angular velocity r as pseudo control, the error dynamics for the yaw
angle can be written as:

ėψ = −ψ̇r + Sφ

Cθ

q + Cφ

Cθ

rd + α(φ, θ)eω (7.27)

where eω = ωB − ωB
d , with eω = [eω,x eω,y eω,z], ωB

d = [pd qd rd ]T and α(φ, θ) =
[0 0 Cφ

Cθ
]. The value of rd is chosen in such a way to cancel out the nonlinear terms

and stabilize the yaw error dynamics. This choice is:

rd = Cθ

Cφ

[

ψ̇r − Sφ

Cθ

q − λψeψ

]

(7.28)
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where λψ is a positive gain. The yaw dynamics become:

ėψ = −λψeψ + α(φ, θ)eω (7.29)

7.4.2 Orientation Error Dynamics

As mentioned earlier due to the constraint of orthonormality of the vector ρ3 the
orientation analysis may be restricted to the vector � ∈ E . As it will be shown,
exponential stabilization of the error dynamics e� = � − �d will guarantee the ex-
ponential stabilization of eρ . The reduced orientation error dynamics are:

ė� = −�̇d + Z(Θ)

[

pd

qd

]

+ Z(Θ)

[

eω,x

eω,y

]

(7.30)

where3:

Z(Θ) =
[−ρ2,1 ρ1,1

−ρ2,2 ρ1,2

]

withZ−1(Θ) = 1

ρ3,3

[

ρ1,2 −ρ1,1
ρ2,2 −ρ2,1

]

(7.31)

The choice of the angular velocity pseudo controls is:
[

pd

qd

]

= Z−1(Θ)

(

�̇d − Λ1e� − k

ρ3,3
e�

)

(7.32)

where Λ1 = diag(λ1,1, λ1,2) with λ1,i , k > 0 for i = 1,2. The reduced orientation
error dynamics take the form:

ė� = −Λ1e� − k

ρ3,3
e� + Z(Θ)

[

eω,x

eω,y

]

= −Λ1e� − k

ρ3,3
e� + Z0(Θ)eω (7.33)

with Z0(Θ) = [Z(Θ) 02×1]. It can be easily verified that ‖Z(Θ)‖ = ‖Z0(Θ)‖ = 1.

7.4.3 Angular Velocity Error Dynamics

The angular velocity error dynamics eω based on (7.15) have the following form:

I ėω = I(ω̇B − ω̇B
d )

= −Iω̇B
d − ω̂B IωB + Ā(TM)vc + B̄(TM)

= −Iω̇B
d − êω IωB − ω̂B

d IωB + Ā(TM)vc + B̄(TM) (7.34)

3Note that ρ3,3 = ρ1,1ρ2,2 − ρ1,2ρ2,1.
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The initial objective of vc is to remove the effect of Ā(TM) and B̄(TM). Therefore,
the initial choice of vc is:

vc = Ā−1(TM)[−B̄(TM) + ṽ] (7.35)

The vector ṽ is an additional stabilizing term of the following form:

ṽ = Iω̇B
d + ω̂B

d IωB − eψα(φ, θ)T − Λ2eω (7.36)

where Λ2 ∈ R
3×3 is a diagonal matrix of positive gains.

7.5 Stability of the Attitude Error Dynamics

Applying the control vc of (7.35), (7.36) and the pseudo controls given in (7.28),
(7.32), the error attitude dynamics become:

ė� = −Λ1e� − k

ρ3,3
e� + Z0(Θ)eω

ėψ = −λψeψ + α(φ, θ)eω

I ėω = −êω IωB − eψα(φ, θ)T − Λ2eω

(7.37)

The complete error vector of the attitude dynamics is given by the state vector
[eψ e� eω]T ∈ Z where Z = R × E × R

3. Precondition for the continuity of the
right hand side of (7.37) is for ρ3,3 to belong to the set P .

Theorem 7.1 Given that ρ3,3(t) and the desired value of ρd,3(t) belong to P for
every t ≥ t0, and the choice of gains:

λ1,1 = κ1 + θ2
1 λ1,2 = κ2 + η2

1

λ2,min = ζ + θ2
2 + η2

2

where λ2,min is the minimum entry of the gain matrix Λ2 and θ1, θ2, η1, η2, ζ >

0 with θ1θ2 ≥ 1/2, η1η2 ≥ 1/2, then the error dynamics of the system (7.37) are
exponentially stable for any initial condition [eψ(t0) e�(t0) eω(t0)] ∈ Z .

Proof The stability analysis of the attitude dynamics begins by considering the fol-
lowing Lyapunov quadratic function of the associated attitude variables:

V (eψ, e�, eω) = 1

2
e2
ψ + 1

2
eT
� e� + 1

2
eT
ω Ieω

The derivative of V (eψ, e�, eω) along the trajectories of the attitude dynamics, for
every [eψ e� eω] ∈ Q and ρ3,3 ∈ P will be:

V̇ (eψ, e�, eω) = eψ ėψ + eT
� ė� + eT

ω I ėω

= −λψe2
ψ − eT

� Λ1e� − k

ρ3,3
eT
� e� − eT

ωΛ2eω + eT
� Z0(Θ)eω
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≤ −λψ‖eψ‖2 − k

ρ3,3
eT
� e� − λ1,1‖eρ,1‖2 − λ1,2‖eρ,2‖2

− λ2,min‖eω‖2 + eρ,1[1 0]Z0(Θ)eω + eρ,2[0 1]Z0(Θ)eω

≤ −λψ‖eψ‖2 − λ1,1‖eρ,1‖2 − λ1,2‖eρ,2‖2 − λ2,min‖eω‖2

+ (θ1‖eρ,1‖ − θ2‖eω‖)2 + (η1‖eρ,1‖ − η2‖eω‖)2

+ ‖eρ,1‖‖eω‖ + ‖eρ,2‖‖eω‖
≤ −λψ‖eψ‖2 − (λ1,1 − θ2

1 )‖eρ,1‖2 − (λ1,2 − η2
1)‖eρ,2‖2

− (2θ1θ2 − 1)‖eρ,1‖‖eω‖ − (2η1η2 − 1)‖eρ,2‖‖eω‖
− (λ2,min − θ2

2 − η2
2)‖eω‖2

≤ −λψ‖eψ‖2 − κ1‖eρ,1‖2 − κ2‖eρ,2‖2 − ζ‖eω‖2

This proves the theorem. �

The exponential decay of the vector e� from Theorem 7.1 results in the following
inequalities:

‖eρ,1‖ ≤ ‖eρ,1(t0)‖e−κ1(t−t0) and

‖eρ,2‖ ≤ ‖eρ,2(t0)‖e−κ2(t−t0) ∀t ≥ t0 (7.38)

Theorem 7.2 For the system in (7.37), given a desired orientation vector ρd(t) with
the vector component ρd,3(t) > 0 for every t ≥ t0, the helicopter will not overturn,
satisfying ρ3,3(t) > 0 for every t ≥ t0. The latter inequality of the vector component
ρ3,3 holds for every initial state of the angular velocity and the orientation of the
thrust vector, given that ρ3,3(t0) > 0.

Proof The necessary condition for the helicopter not to overturn is ρ3,3(t) > 0 for
every t ≥ t0. This condition requires that ‖�‖ < 1 for every t ≥ t0.

If Property 7.1 holds, then ρd,3(t) > 0 for every t ≥ t0. Let mint≥t0 ρd,3(t) =
cmin > 0. Define the positive constant Cmax given by maxt≥t0(ρ

2
d,1(t) + ρ2

d,2(t)) =
C2

max. Since:

min
t≥t0

ρ2
d,3(t) = 1 − max

t≥t0
(ρ2

d,1(t) + ρ2
d,2(t)) ⇒ c2

min = 1 − C2
max

it follows that 0 ≤ Cmax < 1. From Theorem 7.1, the error variables e�,1 and e�,2

are exponentially stable in E . The exponential stability of e� itself cannot guarantee
that ρ3,3(t) > 0 ∀t ≥ t0. Considering only the exponential stability of e� one gets:

−‖e�,i(t0)‖e−κi (t−t0) + ρd,i ≤ ρ3,i ≤ ‖e�,i(t0)‖e−κi (t−t0) + ρd,i (7.39)

for i = 1,2. The above inequality indicates that there might exist initial conditions
e�(t0), a desired vector �d and a time t� such that ‖�(t�)‖ = 1. This case is depicted
in Fig. 7.7. Therefore, the question that arises is what happens when ‖�‖ → 1. Of
course the goal is for every t ≥ t0 to hold ‖�‖ < 1.
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Fig. 7.7 This Figure
illustrates that only the
exponential convergence of
e� cannot guarantee that
‖�‖ < 1 for every t ≥ t0. In
the depicted case although the
inequalities (7.39) hold there
might exist a time t� for
which ‖�(t�)‖ = 1

From (7.33) the rates of change of the vector ρ3(t) in the x and y direction of the
inertial frame are given by:

�̇ = �̇d − Λ1e� − k

ρ3,3
e� + Z0(Θ)eω (7.40)

Consider the quadratic function R(‖�‖) = (1/2)‖�‖2 of ‖�‖. The objective is to
prove that each time ‖�‖ tends to the vicinity of 1, then Ṙ(‖�‖) ≤ 0. The derivative
of R(‖�‖) is:

Ṙ(‖�‖) = �T �̇ = �T �̇d − �T Λ1e� − k
�T e�

ρ3,3
+ �T Z0(Θ)eω

≤ �T �̇d − �T Λ1e� + ‖�‖‖Z0(Θ)‖‖eω‖ − k
�T e�

ρ3,3

≤ Ṙ(‖�d‖) + eT
� �̇d − �T Λ1e� + ‖eω(t0)‖e−ζ(t−t0) − k

�T e�

ρ3,3

≤ Ṙ(‖�d‖) + (‖�̇d‖ + λ‖�‖)‖e�‖ + ‖eω(t0)‖e−ζ(t−t0) − k
�T e�

ρ3,3

≤ Ṙ(‖�d‖) + ‖e�(t0)‖(‖�̇d‖ + λ)e−κ(t−t0) + ‖eω(t0)‖e−ζ(t−t0)

− k
��T − �T �d
√

1 − ‖�‖2

≤ Ṙ(‖�d‖) + 2(‖�̇d‖ + λ)e−κ(t−t0) + ‖eω(t0)‖e−ζ(t−t0)
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− k
‖�‖(‖�‖ − ‖�d‖)
√

1 − ‖�‖2

≤ ‖χ(t, �d, �̇d ,‖eω(t0)‖)‖ − �(‖�‖)
√

1 − ‖�‖2
= R̄(‖χ(·)‖,‖�‖)

where κ = min(κ1, κ2), λ = max(λ1,1, λ1,2) and:

χ(·) = Ṙ(‖�d‖) + 2(‖�̇d‖ + λ)e−κ(t−t0) + ‖eω(t0)‖e−ζ(t−t0)

�(·) = k‖�‖(‖�‖ − Cmax)

When ‖�‖ lies inside the set Cmax = (Cmax 1) it is obvious that �(‖�‖) > 0.
By solving R̄(‖χ‖,‖�‖) < 0, with respect to ‖�‖ when ‖�‖ ∈ Cmax, after some
algebraic calculations it is easy to show that there exists a C�(‖χ(·)‖), with Cmax <

C�(·) < 1 for every ‖χ(·)‖ ∈ R, such that when ‖�‖ > C� then Ṙ(‖�‖) < 0. The
value of C� is given by:

• If Cmax > 0, then:

C�(γ1) =
Cmax + γ1

√

γ 2
1 + 1 − C2

max

1 + γ 2
1

where:

γ1(‖χ(·)‖) = ‖χ(t, �d, �̇d ,‖eω(t0)‖)‖
kCmax

• If Cmax = 0, then, ‖�d‖ = ‖�̇d‖ = 0 for every t ≥ 0, and the value of C� is given
by:

C�(γ2) =

√
√
√
√γ2

√

γ 2
2 + 4 − γ 2

2

2

where:

γ2(‖χ(·)‖) = ‖χ(t,0,0,‖eω(t0)‖)‖
k

Since R(‖�‖) is a positive definite function of ‖�‖ and Ṙ(‖�‖) < 0 for every
‖�‖ > C� with C� < 1, then ‖�‖ is decreasing in the interval (C� 1) and never
reaches 1, so the helicopter will never overturn. This proves the theorem. A graphic
representation clarifying the findings of this proof can be seen in Fig. 7.8. �

Due to the fact that ρ3,3 = CθCφ , Theorem 7.2 implies that |θ(t)|, |φ(t)| < π/2
for every t ≥ t0 given that |θ(t0)|, |φ(t0)| < π/2.

Lemma 7.1 Given that the conditions of Theorem 7.1 are met for the system in
(7.37), the dynamics of eρ,3 will exponentially decay to zero, with the bound:

‖eρ,3‖ ≤ 2
√

2

cmin
‖e�(t0)‖e−κ(t−t0)

where κ = min(κ1, κ2).
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Fig. 7.8 This Figure illustrates the existence of a value C� with Cmax < C� < 1 such that when
‖�‖ > C� then Ṙ(‖�‖) < 0. The definition of R(‖�‖) is given in the proof of Theorem 7.2

Proof From Theorem 7.2 it has been shown that ρ3,3 > 0 and ρd,3 ≥ cmin for every
t ≥ t0. Thus:

ρ3,3 + ρd,3 ≥ cmin ⇒ 1

ρ3,3 + ρd,3
≤ 1

cmin

Regarding eρ,3 one has:

eρ,3 = ρ3,3 − ρd,3 = ρ2
3,3 − ρ2

d,3

ρ3,3 + ρd,3
= −ρ2

3,1 − ρ2
3,2 + ρ2

d,1 + ρ2
d,2

ρ3,3 + ρd,3

= −(ρ3,1 + ρd,1)(ρ3,1 − ρd,1) − (ρ3,2 + ρd,2)(ρ3,2 − ρd,2)

ρ3,3 + ρd,3

= −e�,1(ρ3,1 + ρd,1) − e�,2(ρ3,2 + ρd,2)

ρ3,3 + ρd,3

The norm of eρ,3 will be:

‖eρ,3‖ ≤
∥
∥
∥
∥

ρ3,1 + ρd,1

ρ3,3 + ρd,3

∥
∥
∥
∥
‖e�,1‖ +

∥
∥
∥
∥

ρ3,2 + ρd,2

ρ3,3 + ρd,3

∥
∥
∥
∥
‖e�,2‖

≤ 2
√

2

cmin
‖e�‖ ≤ 2

√
2

cmin
‖e�(t0)‖e−κ(t−t0) �

An immediate consequence of Theorem 7.1 and Lemma 7.1 is the following
property, which summarizes the bounds of the norm ‖eρ‖. Those bounds are useful
in the analysis of the translational error dynamics.
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Property 7.3 Given that Theorem 7.1 and Lemma 7.1 hold, ‖eρ‖ will have the
following bounds:

1. ‖eρ‖ ≤ 2.
2. For the components of the error vector eρ :

‖eρ,i‖ ≤ εi‖e�(t0)‖e−κ(t−t0)

where εi = 1 for i = 1,2 and ε3 = 2
√

2/cmin.
3. The vector eρ is exponentially stable for every eρ(t0) ∈ E × P with the exponen-

tially decaying bound:

‖eρ‖ ≤ cmin + 2
√

2

cmin
‖eρ(t0)‖e−κ(t−t0)

Proof Due to orthonormality ‖ρ3‖,‖ρd‖ = 1. Consequently, Property 7.3.1 is de-
rived by:

‖eρ‖ =
√

(ρ3 − ρd)T (ρ3 − ρd) =
√

ρT
3 ρ3 + ρT

d ρd − 2ρT
3 ρd

=
√

2 − 2ρT
3 ρd ≤ 2

Property 7.3.2 can be easily derived from Theorem 7.1 and Lemma 7.1. For the
exponential bound of Property 7.3.3 the following holds:

‖eρ‖ ≤ ‖e�‖ + ‖eρ,3‖

≤ ‖e�(t0)‖e−κ(t−t0) + 2
√

2

cmin
‖e�(t0)‖e−κ(t−t0)

≤ cmin + 2
√

2

cmin
‖e�(t0)‖e−κ(t−t0)

≤ cmin + 2
√

2

cmin
‖eρ(t0)‖e−κ(t−t0)

Lemma 7.1 and Property 7.3.3 provide a very conservative bound on ‖eρ,3‖ and
‖eρ‖. However, the useful attribute of those is the exponential decay of eρ,3 and eρ ,
which is necessary for the stability analysis of the translational error dynamics.

Theorem 7.1 establishes the exponential stability of the attitude error [eψ e� eω]T .
In addition, Theorem 7.2 guarantees that the helicopter will not overturn in its effort
to track the reference trajectory, achieving the bounding condition |φ|, |θ | < π/2
for every t ≥ t0. Based on those two results, from Property 7.3.3, the exponential
decay of the orientation error eρ follows. �
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7.6 Stability of the Translational Error Dynamics

This Section examines the stability of the translational error dynamics. The first step
towards the stability analysis is to perform the following linear state transformation:

y =
[

y1
y2

]

=
[

I3×3 I3×3
0 I3×3

][

ep

ev

]

(7.41)

This state transformation will facilitate the stability analysis. The resulting form of
the translational dynamics is:

ẏ = f (y) + g(t, y)eρ = G(t, y, eρ) (7.42)

where:

f (y) =
[

y2 − Σ2(y2 + Σ1(Wy1))

−Σ2(y2 + Σ1(Wy1))

]

g(t, y) = −
[

I3×3
I3×3

]

U(t, y) (7.43)

The following properties are required to prove global asymptotic stability of the
system in (7.42).

Property 7.4 For the nominal system:

ẏ = f (y) (7.44)

with f (y) defined in (7.43), y = 0 is an equilibrium point. Given that, for the satu-
ration levels of the vector S (defined in (7.21)), the following inequalities hold:

1. L2,i ≤ M2,i and L1,i ≤ M1,i for i = 1,2,3.
2. M1,i < 1

3L2,i for i = 1,2,3.

Then, based on the findings of [102], the nominal system of (7.44) is GAS.

The resulting helicopter dynamics after the state transformation can be seen in
Fig. 7.9. The translational dynamics subsystem can be viewed as a perturbed UGAS
nominal system where the perturbation term is driven by eρ . The final form of the
complete helicopter dynamics is a nonlinear cascaded time-varying system. The
stability properties for this class of systems has been investigated in [63]. According
to [63], in order for the solutions of the system in (7.42) to be UGAS, the following
sufficient conditions should hold simultaneously:

(C.1) The nominal system of (7.44) is UGAS.
(C.2) The integral curves of eρ are UGAS.
(C.3) The solutions of the system in (7.42) are uniformly globally bounded (UGB).

Fig. 7.9 Block diagram of
the complete helicopter
dynamics after the
transformation of the
translational error states
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Conditions (C.1) and (C.2) are guaranteed by Properties 7.4 and 7.3.3, respec-
tively. The system in (7.42) is not Input to State Stable (ISS). The ISS property
would significantly facilitate the proof of condition (C.3). Consequently, a different
approach is followed, which exploits the Lipschitz properties of G(t, y, eρ) with
respect to y and the bounds of eρ provided by Property 7.3.

Property 7.5 The function f (y) defined in (7.43), is globally Lipschitz in y, with
Lipschitz constant:

Df = √
6(1 + 2ΣL2 + 2wmax

ΣL1
ΣL2)

where wmax = max (w1,w2,w3) and ΣL1,ΣL2 positive constants such that:

∀s1, s2 ∈ R
3 |Σi(s1) − Σi(s2)| ≤ ΣLi |s1 − s2| for i = 1,2.

Proof For the function f : R
6 → R

6 defined in (7.43), for any y, z ∈ R
6 the follow-

ing inequalities will hold:

‖f (y) − f (z)‖
=
∥
∥
∥
∥

[

y2 − z2 − Σ2(y2 + Σ1(Wy1)) + Σ2(z2 + Σ1(Wz1))

−Σ2(y2 + Σ1(Wy1)) + Σ2(z2 + Σ1(Wz1))

]∥
∥
∥
∥

≤ |y2 − z2 − Σ2(y2 + Σ1(Wy1)) + Σ2(z2 + Σ1(Wz1))|
+ | − Σ2(y2 + Σ1(Wy1)) + Σ2(z2 + Σ1(Wz1))|

≤ |y2 − z2| + 2| − Σ2(y2 + Σ1(Wy1)) + Σ2(z2 + Σ1(Wz1))|
≤ |y2 − z2| + 2ΣL2|y2 − Σ1(Wy1) − z2 + Σ1(Wz1)|
≤ (1 + 2ΣL2)|y2 − z2| + 2wmax

ΣL1
ΣL2|y1 − z1|

≤ (1 + 2ΣL2 + 2wmax
ΣL1

ΣL2)(|y1 − z1| + |y2 − z2|)
≤ (1 + 2ΣL2 + 2wmax

ΣL1
ΣL2)

√
6‖y − z‖

Therefore f (y) is globally Lipschitz in y. �

The existence of ΣL1, ΣL2 is guaranteed by property 5 of Definition 7.1.

Property 7.6 For any vector function d(t) ∈ R
3 that is uniformly continuous with

respect to t and ‖d(t)‖ ≤ δ0 for every t ≥ t0 with δ0 a positive constant, the function
g(t, y)d(t) := Γ (t, y) is globally Lipschitz in y with Lipschitz constant:

Dg(δ0) = δ0(
ΣL2 + wmax

ΣL1
ΣL2)

√
12

Umax

Umin

Proof Let a(t) = −p̈I
r + ge3. For the function Γ (t, y) = g(t, y)d(t) with Γ :

[0 ∞] × R
6 → R

6, for any y, z ∈ R
6 the following inequalities will hold:

‖Γ (t, y) − Γ (t, z)‖ ≤ √
2‖d(t)U(t, y) − d(t)U(t, z)‖

≤ δ0
√

2‖U(t, y) − U(t, z)‖ ≤ δ0
√

2

∥
∥
∥
∥

U2(t, y) − U2(t, z)

U(t, y) + U(t, z)

∥
∥
∥
∥
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≤ δ0
√

2

2Umin
‖2aT (t)(S(y) − S(z))

+ (S(y) + S(z))T (S(y) − S(z))‖
≤ δ0√

2Umin
(2‖a(t)‖ + ‖S(y) + S(z)‖)‖S(y) − S(z)‖

≤ δ0
√

2
Umax

Umin
|Σ2(y2 + Σ1(Wy1)) − Σ2(z2 + Σ1(Wz1))|

≤ δ0
√

2
Umax

Umin
(ΣL2|y2 − z2| + wmax

ΣL1
ΣL2|y1 − z1|)

≤ δ0(
ΣL2 + wmax

ΣL1
ΣL2)

√
12

Umax

Umin
‖y − z‖

The existence of Umin,Umax is guaranteed from Property 7.2 given that Property 7.1
is satisfied and the second derivatives of pI

r (t) coordinates are bounded. The above
inequality implies that there always exists a Lipschitz constant for every appropriate
choice of pI

r (t) and for every bounded d(t) ∈ R
3. Therefore, g(t, y)d(t) is globally

Lipschitz in y. �

The following lemma is an immediate consequence of Properties 7.5 and 7.6.

Lemma 7.2 For any vector d(t) defined in Property 7.6, the perturbed system:

ẏ = f (y) + g(t, y)d(t) := Π(t, y) (7.45)

is globally Lipschitz in y with Lipschitz constant:

D0(δ0) = Df + Dg(δ0)

Therefore, the solutions of (7.45) exist, are unique and do not have a finite escape
time for any arbitrarily large time interval.

The error vector eρ is continuous and from Property 7.3.1 ‖eρ‖ ≤ 2 for every
e�(t0) ∈ E . Therefore:

Lemma 7.3 Based on Lemma 7.2, due to the continuity and boundedness of the
vector eρ , the system in (7.42) is globally Lipschitz in y, with Lipschitz constant
D = D0(2), therefore the solutions of (7.42) exist, are unique and do not have a
finite escape time for any arbitrarily large time interval.

Lemma 7.3 is of particular interest for the proof of the following theorem, which
guarantees the global uniform boundedness of the solutions of the system in (7.42).

Theorem 7.3 Given that Theorems 7.1 and 7.2 hold, the solutions of the system
given by (7.42) are UGB for every time t ≥ t0.

Proof The nominal system

ż = f (z) (7.46)
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of (7.44), based on [102] is globally asymptotically stable (GAS). Since it is an au-
tonomous system, it will be uniformly globally bounded (UGB) as well. Therefore,
for any δ > 0 (arbitrarily large) there exists β > 0, which may depend on δ, such
that:

‖z(t0)‖ ≤ δ ⇒ ‖z(t)‖ ≤ β(δ) ∀t ≥ t0

For the perturbed term of the system in (7.42), for any y ∈ R
6 using Property 7.3.1

the following bound will hold:

‖g(t, y)eρ‖ ≤ √
2‖U(t, y)eρ‖ ≤ 2

√
2Umax = E

Applying the Gronwall–Bellman inequality to the integral curves of the nominal
(7.46) and perturbed system (7.42), with z(t0) = y(t0) ≤ δ for any finite time interval
with t ≥ t0 one obtains:

‖y(t)‖ − ‖z(t)‖ ≤ ‖y(t) − z(t)‖ ≤ E

D
[eD(t−t0) − 1]

⇒ ‖y(t)‖ ≤ β(δ) + E

D
[eD(t−t0) − 1] = B(δ, t − t0) (7.47)

with D defined in Lemma 7.3. Let y1,i , y2,i and eρ,i with i = 1,2,3 denote the
ith component of the vectors y1, y2 and eρ , respectively. The dynamics of the ith
component of the perturbed system (7.42) will be:

ẏ1,i = y2,i − σ2,i (y2,i + σ1,i (wiy1,i )) − γi(t, y, eρ,i)

ẏ2,i = −σ2,i (y2,i + σ1,i (wiy1,i )) − γi(t, y, eρ,i)

where γi(t, y, eρ,i) = U(t, y)eρ,i . Using Property 7.3.2 one has:

‖γi(t, y, eρ,i)‖ = ‖U(t, y)eρ,i‖
≤ Umax‖eρ,i‖ ≤ Umaxεi‖e�,i(t0)‖e−κ(t−t0)

≤ 2Umaxεie
−κ(t−t0)

To prove uniform boundedness of y it is sufficient to show uniform boundedness
of y1,i , y2,i for i = 1,2,3. From this point, the subscript i will be omitted to simplify
the notation.

From the exponential decaying bound of γ (·) there always exists a finite time
T ∗ = t0 + t∗ with t∗ ≥ 0 such that:

2Umaxεe
−κt� ≤ L1

4

Consider the Lyapunov function V2 = 1
2y2

2 . From the above inequality and using
t0 = T ∗ − t∗, the derivative of V2 along the trajectories of the perturbed system will
be:

V̇2 = −y2σ2(y2 + σ1(wy1)) − y2U(t, y)eρ

≤ −y2σ2(y2 + σ1(wy1)) + |y2|Umaxε‖e�(t0)‖e−κ(t−t0)

≤ −y2σ2(y2 + σ1(wy1)) + |y2|2Umaxεe
−κt�e−κ(t−T �)

≤ −y2σ2(y2 + σ1(wy1)) + |y2|L1

4
e−κ(t−T �)
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For every ‖y2‖ ≥ M1 + L1
2 = δ2 and for every t ≥ T � one will get:

V̇2 ≤ −y2σ2(y2 + σ1(wy1)) + L1

4
|y2| ≤ −L1

2
|y2| + L1

4
|y2|

≤ −L1

4
|y2|

Then from [43, Theorem 4.18] for every |y2(T
∗)| ≥ δ2 and for every t ≥ T ∗ there

exists a K L4 function β2 and a finite time t1 ≥ 0 dependent of y2(T
∗) and δ2 such

that the integral curve of y2(t) satisfies:

‖y2(t) ‖ ≤ β2(‖y2(T
∗)‖, t − T ∗) ∀T ∗ ≤ t ≤ T1

‖y2(t)‖ ≤ δ2 ∀t ≥ T1

where T1 = T ∗ + t1. Clearly, if |y2(T
∗)| ≤ δ2 then |y2(t)| ≤ δ2 for every t ≥ T ∗

rendering t1 = 0 and T1 = T ∗. Those facts indicate that there always exist a finite
time T1 ≥ T ∗ after which the integral curve of y2(t) will remain bounded in the set
Δ2 = {y2 : |y2| ≤ δ2} for any initial condition y2(t0) ∈ R. Moreover, the asymptotic
convergence (or the confinement when t1 = 0) of y2(t) to the bounded set Δ2 begins
at the finite time T ∗. Lemma 7.3 guarantees that the trajectory of y2(t) does not have
a finite escape time in the interval [t0 T ∗] and remains bounded.

From (7.47), given that ‖y2(t0)‖ ≤ δ the trajectory of y2(t) for t ∈ [t0 T ∗] will be
bounded by ‖y2(t)‖ ≤ B(δ, t∗) = B2(δ). Hence, for every δ > 0 with ‖y2(t0)‖ ≤ δ:

‖y2(t)‖ ≤ max (B2(δ), β2(B2(δ),0), δ2) = R2(δ) ∀t ≥ t0

Obviously the bound R2(δ) > 0 is independent of t0. Therefore, the solution y2(t)

is UGB.
After the time threshold T1 the argument of the saturation function σ2 will be

bounded by:

|y2 + σ1(wy1)| ≤ |y2| + |σ1(wy1)| ≤ 2M1 + L1

2
≤ 5

6
L2 (7.48)

To this extent, when t ≥ T1, the saturation function σ2(·) operates in its linear region.
Continuing the above procedure, consider the Lyapunov function V1 = 1

2y2
1 . The

derivative of V1 for every t ≥ T1 will be:

V̇1 = y1(−σ1(wy1) − U(t, y)eρ,i) ≤ −y1σ1(wy1) + L1

4
|y1|

Consequently, for every |y1| ≥ L1/w = δ1 and t ≥ T1 will yield, V̇1 ≤ − 3
4L1|y1|.

Once more there exists a K L function β1 and a finite time t2 that depends on y1(T1)

and δ1 such that when |y1(T1)| ≥ δ1, the integral curve of y1(t) satisfies:

4Based on [43] a continuous function αK(s) : [0 ∞) → [0 ∞) belongs to the class K if it is
strictly increasing and αK(0) = 0. A continuous function βK L(s1, s2) : [0 ∞) × [0 ∞) → [0 ∞)

belongs to the class K L if, for each fixed s2, the mapping βK L(s1, s2) belongs to the class K with
respect to s1 and for each fixed s1, the mapping βK L(s1, s2) is decreasing with respect to s2 and
βK L(s1, s2) → 0 as s2 → ∞.
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‖y1(t)‖ ≤ β1(‖y1(T1)‖, t − T1) ∀T1 ≤ t ≤ T2

‖y1(t)‖ ≤ δ1 ∀t ≥ T2

where T2 = T1 + t2. If |y1(T1)| ≤ δ1 then y1(t) remains bounded in the set Δ1 =
{y1 : |y1| ≤ δ1} for every t ≥ T1 rendering t2 = 0. In either case for any initial con-
dition y1(t0) ∈ R there exists a finite time T2 ≥ T1 after which the trajectory y1(t)

remains bounded in the set Δ1. The convergence (or the confinement when t2 = 0)
of y1(t) to Δ1 starts when t ≥ T1. The existence of y1(t) in the time interval [t0 T1]
is guaranteed by Lemma 7.3.

From (7.47), given that ‖y1(t0)‖ ≤ δ the trajectory of y1(t) for t ∈ [t0 T1] will be
bounded by ‖y1(t)‖ ≤ B(δ, t∗ + t1) = B1(δ, t1). Hence, for every δ > 0 and t ≥ t0
with ‖y1(t0)‖ ≤ δ:

‖y1(t)‖ ≤ max (B1(δ, t1), β1(B1(δ, t1),0), δ1) = R1(δ, t1)

The time t1 depends on the value y2(T
�) and δ2. Both of them are independent

of t0. To this extent R1(δ, t1) does not depend on the initial time t0, which proves
the uniform global boundedness of the trajectory y1(t).

Since y1,i (t), y2,i (t) are UGB for i = 1,2,3, the same holds for the complete
states y1(t), y2(t) of the system in (7.42). �

Theorem 7.3 satisfies the remaining condition (C.3) that is required to guarantee
that the solutions of (7.42) are UGAS. Based on the work of [63, 94, 103] the stabil-
ity of the helicopter translational error dynamics is formally stated in the following
theorem:

Theorem 7.4 ([63, 103]) Given that the nominal system in (7.44) is UGAS (Prop-
erty 7.4), the orientation error eρ is exponentially convergent and bounded (Prop-
erty 7.3), and the solutions of (7.42) are UGB (Theorem 7.3), then the solutions of
the perturbed system in (7.42) are UGAS.

Theorems 7.1, 7.2 and 7.4 guarantee that the controller design objectives are met.
More specific, for any desired position reference trajectory pI

r with bounded higher
derivatives satisfying the requirements of Property 7.1 and for every desired yaw
heading ψr :

lim
t→∞‖pI − pI

r ‖ = 0 lim
t→∞‖ψ − ψr‖ = 0

and |θ(t)|, |φ(t)| < π/2 ∀t ≥ t0

for any initial condition [pI (t0) vI (t0) ωB(t0) ψ(t0)]T ∈ R
10 given that the heli-

copter is not initially overturned (|θ(t0)|, |φ(t0)| < π/2).

7.7 Numeric Simulation Results

This Section presents numeric simulation results of the nonlinear control law al-
gorithm. For the helicopter model, the complete representation of the thrust vector
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given in (7.8) is used, which includes the parasitic elements XM,YM and YT . How-
ever, the controller design is based on the simplified force vector representation of
(7.9). Furthermore, the total body force and moment vectors of (7.8) and (7.10) are
additionally perturbed by the total drag force and moment vectors f B

d and τB
d , re-

spectively. The drag forces and moments are produced by the effect of the relative
wind velocity and air pressure on the surfaces of the helicopter’s fuselage, vertical
fin and horizontal stabilizer. To represent the complete drag force and moment vec-
tors the model given in [66] is adopted, which is a simplified version of the more
elaborate description presented in [29]. The vectors are:

f B
d =

⎡

⎢
⎣

−d
f
x vB

a,xV∞
−d

f
y vB

a,yV∞ − dvf
y |vvf|vvf

−d
f
z (vB

a,z + ui)V∞ + dhs
z |vhs|vhs

⎤

⎥
⎦

τB
d =

⎡

⎣

ztd
vf
y |vvf|vvf

−xhsd
hs
z |vhs|vhs

−xtd
vf
y |vvf|vvf

⎤

⎦ (7.49)

where d
f
x , d

f
y , d

f
z , dvf

y , dhs
z are constant parameters that depend on the air density as

well as the geometry of the fuselage, the vertical fin and horizontal stabilizer. The
constant ui denotes the main rotor’s induced velocity while xhs is the coordinate
of the horizontal stabilizer in the �iB direction of the body-fixed frame. The relative
wind velocity vector vB

a = [vB
a,x vB

a,y vB
a,z]T is given by vB

a = vB −vB
w , where vB

w de-
notes the wind velocity in the body-fixed frame coordinates. The rest of the velocity
components involved in the drag force and moment model, are:

vvf = vB
a,y + xt r vhs = vB

a,z − xhsq (7.50)

V∞ =
√

(vB
a,x)

2 + (vB
a,y)

2 + (vB
a,z + ui)2 (7.51)

In addition to the wind effects, simulation considers the servo dynamics, which
are typically represented by a first order filter [30]. Therefore, the servo outputs T̄M ,
T̄T of the main and tail rotor are given by:

τs
˙̄T M = −T̄M + TM τs

˙̄T T = −T̄T + TT (7.52)

where τs is the rotor’s time constant. The applied flapping angles ā, b̄ are produced
by the flapping dynamics model established in [30, 70], namely:

τf
˙̄a = −τf q − ā + a τf

˙̄b = −τf p − b̄ + b (7.53)

where τf is the main rotor’s dynamics time constant. The applied flapping angles
are used to examine in the simulation the effect of the actual flapping dynamics de-
scribed in Chap. 4. The flapping angles a, b are also saturated to ±0.25 rad, comply-
ing with realistic limitations of actual rotor configurations. The nominal helicopter
model parameters, used by the controller, are obtained by [29] for the MIT’s small-
scale helicopter X-Cell .60 and presented in Table 7.1. The parameters related to the
drag forces and moments as well as the servos time constants are given in Table 7.2.
The actual helicopter model of the simulator, includes parametric uncertainty that
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Table 7.1 Helicopter parameters

I = diag(0.18,0.34,0.28) kg m2, m = 8.2 kg, g = 9.81 m/sec2

xt = −0.91 m, zt = −0.08 m, zm = −0.235 m, xm = ym = yt = 0

Kβ = 52 N m/rad, CM = 0.004452 m/
√

N, DM = 0.6304 N m

reaches a difference of up to 30% with respect to the nominal values used by the
controller. All of the above uncertainty injection is necessary for investigating the
robust capabilities of the controller under model and parametric uncertainty that
occurs in real life applications.

The proposed controller can be easily modified in order to include integral com-
ponents that will attenuate the steady state tracking error, caused by the parametric
and model uncertainty. In particular, the nested saturation vector S and the desired
angular velocity component rd (defined in (7.21) and (7.28), respectively), can be
enhanced with the position and yaw integral error, as follows:

S(ηp, y1, y2) = Σ3(y2 + Σ2(W2y1 + Σ1(W1(ηp + y1)))) (7.54)

rd = Cθ

Cφ

[

ψ̇r − Sφ

Cθ

q − λψeψ − ληηψ

]

(7.55)

where η̇p = ep , η̇ψ = eψ , λη > 0 and W1, W2 are diagonal matrices of positive
gains. In this case, the requirements of Property 7.4 become, Li,j ≤ Mi,j for i, j =
1,2,3 while Mj,i < Lj+1,i for j = 1,2 and i = 1,2,3.

The controller performance, in terms of tracking accuracy and dexterity, was
tested by the execution of two different maneuvers. For the first maneuver, the heli-
copter reaches a set point while its velocity exponentially decreases and its heading
remains constant. The desired trajectory for the first maneuver is:

pI
r (t) =

( 20 − 20e−0.25t

−30 + 30e−0.25t

−10 + 10e−0.45t

)

ψr(t) = 0

The second maneuver is composed of two parts. In the first part the helicopter
lifts vertically for 7 sec. Then, it performs an “8 shaped” curved path while it con-
tinues to lift. Throughout the whole maneuver the vertical velocity is exponentially
decreasing while the heading remains constant. For the second maneuver, the de-
sired position and heading are:

pI
r (t) = (0 0 − 7(1 − e−0.3t ))T for t ≤ 7

pI
r (t) =

⎛

⎝

20(1 − cos 2π
23 (t − 7))

10 sin( 4π
23 (t − 7))

−7(1 − e−0.3t )

⎞

⎠ for t > 7

ψr = 0

Table 7.2 Drag, servo and flapping dynamics parameters

d
f
x = 0.06, d

f
y = 0.132, d

f
z = 0.09, dvf

y = 0.0072, dhs
z = 0.006 kg/m,

xhs = −0.71 m, ui = 4.2 m/sec, τs = 0.1 sec, τf = 0.1 sec
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Table 7.3 Controller gains
M3,i 22 Λ1 diag(3.1,3.1)

L3,i 21.5 Λ2 diag(6,6,3)

M2,i 7 W1 diag(8,8,8)

L2,i 6.5 W2 diag(0.1,0.1,0.1)

M1,i 2 λψ 2

L1,i 1.5 λη 2

for i = 1,2,3 k 0.1

During the execution of both of the maneuvers, the components of the wind speed
in the inertial coordinates are (in m/sec):

vI
w(t) = 2 sin(t) vI

w(t) = 2 cos(0.75t + π/2) vI
w(t) = 0

The controller gains associated with the attitude dynamics are tuned based on the
gain requirements of Theorem 7.1. They are sufficiently high in order for the heli-
copter to rapidly obtain its desired orientation. The saturation gains are tuned based
on the gain requirements of Property 7.4. In addition, p̈I

r,z and M3,3 comply with
Property 7.1. To compensate the effect of the anti-torque QM and the model uncer-
tainty, a steady state value of the flapping angles is required. This steady state value,
through the parasitic forces XM , YM and YT causes an offset in the translational
position error. This steady state offset is minimized by increasing the gains of the
diagonal matrices W1,W2. The controller gains used for the simulation are shown
in Table 7.3. The choice of the linear saturation function satisfying the requirements
of Definition 7.1 is the following:

σ(s) =
⎧

⎨

⎩

s |s| ≤ L

sgn(s)[sin(
|s|−L

2(M−L)
π)M−L

π
+ 1

2 (|s| − L) + L] L < |s| ≤ 2M − L

sgn(s)M |s| > 2M − L

The position response in the inertial coordinates, versus the desired trajectories
with respect to time, are illustrated in Fig. 7.10 and Fig. 7.11 for the two maneuvers.
The helicopter position in inertial coordinates is illustrated in Fig. 7.12 and Fig. 7.13.
The orientation angles, for the two control schemes, are depicted in Fig. 7.14 and
Fig. 7.15. Finally, the rotors thrusts and the flapping angles can be seen in Fig. 7.16
and Fig. 7.17. The numerical results illustrate the controller’s successful tracking
performance. Even though, the proposed design is a model based controller, it ex-
hibits significant robustness attributes towards considerable parametric and model
uncertainty. Figures 7.14 and 7.15 indicate that the roll and pitch bound which guar-
antees that the helicopter will not overturn is met even in the aggressive part of the
maneuvers.

7.8 Remarks

This Chapter has presented a backstepping position and heading tracking controller
for helicopters. The helicopter model is represented by the rigid body equations of
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Fig. 7.10 First maneuver: Reference position trajectory (dashed line) and actual helicopter trajec-
tory (solid line) expressed in the inertial coordinates with respect to time

Fig. 7.11 Second maneuver: Reference position trajectory (dashed line) and actual helicopter tra-
jectory (solid line) expressed in the inertial coordinates with respect to time
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Fig. 7.12 First maneuver: Reference position trajectory (solid line) and actual helicopter trajec-
tory (dashed line) with respect to the inertial axis

Fig. 7.13 Second maneuver: Reference position trajectory (solid line) and actual helicopter tra-
jectory (dashed line) with respect to the inertial axis
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Fig. 7.14 First maneuver: Euler’s orientation angles

Fig. 7.15 Second maneuver: Euler’s orientation angles
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Fig. 7.16 First maneuver: Main and tail rotor thrust TM,TT and the flapping angles a, b

Fig. 7.17 Second maneuver: Main and tail rotor thrust TM,TT and the flapping angles a, b
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Table 7.4 Controller design
outline vI

d = ṗI
r

ρd = −p̈I
r +ge3+S(ep,ev)

‖−p̈I
r +ge3+S(ep,ev)‖

TM = m‖ − p̈I
r + ge3 + S(ep, ev)‖

[
pd

qd

]

= Z−1(Θ)(�̇d − Λ1e� − k
ρ3,3

e�)

rd = Cθ

Cφ
[ψ̇r − Sφ

Cθ
q − λψeψ ]

ṽ = Iω̇B
d + ω̂B

d IωB − eψα(φ, θ)T − Λ2eω

vc = Ā−1(TM)[−B̄(TM) + ṽ]

motion enhanced by a simplified model of force and torque generation. The con-
troller assumes full availability of all the helicopter’s state variables of the transla-
tional and attitude dynamics. The design outline follows a typical backstepping de-
sign for feedback systems. The choice of the pseudo controls is taken with caution
avoiding unnecessary terms cancellations. This results in a controller that includes
a minimal number of terms required to stabilize the overall system. A summary of
the controller inputs and pseudo controls is given in Table 7.4.

The main idea of the design is the use of the direction and magnitude of the
thrust vector to stabilize the position error dynamics. The choice of the backstepping
pseudo controls results in two interconnected subsystems representing the transla-
tional and attitude dynamics errors, respectively.

The translational error dynamics are controlled by a nested saturation feedback
term and at the same time are perturbed by a bounded function of the directional er-
ror. The attitude controller design is based on the structural properties of the rotation
matrix and it is enhanced special terms that can guarantee that the helicopter will
not overturn in its effort to track the predefined position reference trajectory. The at-
titude error dynamics will be rendered exponentially stable driving the translational
error dynamics globally uniformly asymptotically stable.

The rationale of this design dictates that for each controller design a standard
identification procedure is proposed that will provide the model parameters of the
helicopter based on experimental flight data. The applicability of the controller is
limited if the designer does not have a practical method to extract the model pa-
rameters of the helicopter. The parametric identification of nonlinear continuous
dynamic systems can only take place in the time domain. However, time domain
parametric identification methods for flight systems are computationally inefficient
and less effective compared to frequency domain identification methods [105]. In
the time domain approach each iteration of the identification algorithm requires the
integration of the nonlinear differential equations of the system for the calculation
of the cost function value. This procedure significantly increases the computational
load. In addition, in real life applications the controller algorithm is executed in
a microprocessor on board the helicopter. The processing of the algorithms takes
place in discrete time and the sampling effect should be taken into account.

Although the proposed controller exhibits significant robustness to parametric
uncertainty, still a fair knowledge of the model parameters is necessary. Due to the
lack of an efficient identification method the testing of the proposed algorithm is
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restricted only to numeric simulations based on the MITs X-Cell .60 small-scale
helicopter parameters.

The goal of the next Chapter is to present a backstepping algorithm based on
the discrete nonlinear helicopter dynamics. The discretization of the helicopter dy-
namics facilitates the identification procedure since a simple recursive least square
algorithm can be used for the determination of the model parameters based on the
flight data. Due to the discretization of the helicopter dynamics the new design is not
equivalent with the backstepping controller described in this Chapter. The proposed
controller of the next Chapter provides a practical solution which can be directly ap-
plied to real life applications. The performance of the controller is evaluated using
the X-Plane simulator.





Chapter 8
Time Domain Parameter Estimation and
Applied Discrete Nonlinear Control for
Small-Scale Unmanned Helicopters

This Chapter deals with the dual problem of parameter estimation and nonlinear
discrete control of helicopters. The objective is to develop a practical identification
and control solution for direct application to an autonomous helicopter flight system.
Although most controller designs are in continuous time, this Chapter considers the
discrete time dynamics of the helicopter. The shift of the helicopter control problem
to discrete time is twofold: Control algorithms are executed by microprocessors.
The discretization effect of the helicopter dynamics should be incorporated into the
controller design. In addition, time domain parametric identification is much simpler
and computationally more efficient when the system equations are discretized.

A simple Recursive Least Square (RLS) algorithm is used for parameter esti-
mation in the time domain, the objective being the derivation of system dynamics
that are both minimal in complexity and accurate for a controller design in discrete
time. The controller is designed based on a discrete time backstepping technique,
such that tracking of predefined position and yaw trajectories is accomplished. The
developed controller provides design freedom in the convergence rate for each state
variable of the cascade structure. This is of particular interest since control of the
convergence rate in each level of the cascade structure provides better flight results.
Both the parameter estimation part and control performance are evaluated using the
X-Plane simulator and the Raptor 90 RC helicopter.

8.1 Introduction

The concept of backstepping control for continuous time systems in a cascade form
has been well studied and analyzed [43], including adaptive modifications [49] to
cope with systems having parametric uncertainty. However, this is not the case for
discrete time systems. The most representative work may be found in [112], which
deals with adaptive backstepping control for discrete time systems.

The first objective of this Chapter is to design a nonlinear controller for tracking
of predefined position and yaw trajectories. This is accomplished by designing a
discrete time backstepping controller based on the nonlinear discretized equations

I.A. Raptis, K.P. Valavanis, Linear and Nonlinear Control of Small-Scale Unmanned
Helicopters, Intelligent Systems, Control and Automation: Science and Engineering 45,
DOI 10.1007/978-94-007-0023-9_8, © Springer Science+Business Media B.V. 2011
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of the helicopter. The controller provides more design freedom compared to the
continuous backstepping counterpart proposed in [11, 21], since the convergence
rate of each state variable of the cascade structure may be manipulated. Furthermore,
the stability of the resulting dynamics can be simply inspected by the eigenvalues
of a linear system without the need of Lyapunov’s functions. These eigenvalues are
determined by the designer.

The second objective of this Chapter is to examine a standard Recursive Least
Square (RLS) algorithm for parameter estimation of the nonlinear discrete time dy-
namics of the helicopter. The parameter estimation method and the controller where
successfully tested in X-Plane for the Raptor 90 SE RC helicopter.

8.2 Discrete System Dynamics

The discrete nonlinear model of the helicopter dynamics is derived by direct dis-
cretization of the continuous time model presented in the previous Chapter. The TPP
dynamics are assumed to be very fast in comparison with the rigid body dynamics
and only their steady state effect will be considered. This is a typical assumption
found in nonlinear controller designs that exist in the literature. The dynamics of
the flapping motion are treated as unmodeled uncertainty, which is compensated
by the robustness of the control algorithm. Therefore, regarding the TPP angles the
following hold:

a = Kaulon (8.1)

b = Kbulat (8.2)

where Ka , Kb are constant parameters. The magnitude of the main and tail rotor
thrust will be considered to be proportional to the collective control commands,
therefore:

TM = KMucol (8.3)

TT = KT uped (8.4)

where TM , TT are the magnitude of the forces of the main and tail rotor respectively
while KM , KT are constant parameters.

From the analysis of Chap. 7, using (8.1)–(8.4) and by ignoring the effect of the
anti-torque QM to (7.10) for simplification purposes, a compact form of the external
torque applied to the helicopter is:

τB = Ādvc + B̄ducol (8.5)

where:

vc = (ulatucol ulonucol uped)
T (8.6)

with Ād ∈ R
3×3 and B̄d ∈ R

3×1 being parameter matrices. In this Chapter, the vec-
tor vc is defined in such a way that the effect of the thrust magnitude TM is removed
from the matrices Ād and B̄d .
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From (7.1), (7.14), (7.3), (7.15), (7.5) by using Euler’s implicit method for the
approximation of the continuous derivatives, the following equations are obtained:

pI
k+1 = pI

k + Tsv
I
k (8.7)

vI
k+1 = vI

k + α1Rke3ucol,k + α2e3 (8.8)

ωB
k+1 = ωB

k + Ξ(ωB
k )I(I, Ts) + A′vc,k + B ′ucol,k (8.9)

Θk+1 = Θk + TsΨ (Θk)ω
B
k (8.10)

Rk+1 = Rk + TsRkω̂
B
k (8.11)

where e3 = [0 0 1]T and Ts denotes the sampling period. The subscript k indicates
the discrete sampling instant. In (8.9) Ξ(ωB

k ) is a matrix of R
3×p composed only

by nonlinear functions of the angular velocities while I(I, Ts) is a vector of R
p×1

composed by inertia terms and multiplied by the sampling period Ts . Both of them
satisfy:

Ξ(ωB
k )I(I, Ts) = Ts I −1[IωB

k × ωB
k ] (8.12)

For the rest of the terms in (8.8), (8.9) the following hold:

α1 = −TsKM

m
(8.13)

α2 = Tsg (8.14)

A′ = Ts I −1Ā (8.15)

B ′ = Ts I −1B̄ (8.16)

An important observation should be given regarding the discrete approximation
of (8.11). Integration of translational and rotational dynamics of a rigid body’s mo-
tion under a potential requires special attention. From [57], Runge–Kutta methods
do not preserve the Lie group structure of the configuration space. Most impor-
tantly, the quantity Rk+1R

T
k+1 drifts from the identity matrix as the simulation time

increases. A more accurate integration of (7.3) could take place by using discrete
variational integrators [35, 57], which preserve the geometric properties of the Lie
group. The disadvantage of this approach is that the proposed structure of the dis-
crete equations – although providing more accurate numerical solutions – is very
complicated for controller design. To this extent an important condition for (8.7)–
(8.11) is that the sampling frequency is small enough that (8.11) can be considered
as a perturbation value of the rotation matrix. The experimental results have illus-
trated that a frequency of 50 Hz is adequate enough for (8.11) to provide accurate
results even up to a horizon of two time steps given the current value of the config-
uration matrix and can be used for controller design.

8.3 Discrete Backstepping Algorithm

Consider a helicopter described by the difference equations (8.7)–(8.11). The ob-
jective is to design a nonlinear controller stabilizing the position pI

k and the yaw
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angle ψk to the reference values pI
r,k and ψr,k , respectively. The discrete time back-

stepping design procedure is similar with its continuous time counterpart. The main
difference is that differentiation is substituted by shifting one time step forward in
time.

8.3.1 Angular Velocity Dynamics

Considering (8.9) an obvious control choice for canceling out the nonlinear terms
of the angular velocity dynamics is:

vc,k = A′−1(−ωB
k − Ξ(ωB

k )I(I, Ts) − B ′ucol,k + ṽk) (8.17)

where ṽk = [ṽ1,k ṽ2,k ṽ3,k]T . The angular dynamics become:

ωB
k+1 = ṽk (8.18)

while:
[

ulat,k
ulon,k

uped,k

]

=
[

ucol,k 0 0
0 ucol,k 0
0 0 1

]−1

vc,k (8.19)

The existence of the inverse of the left matrix on the right hand side of (8.19) is
guaranteed by the fact that the collective control ucol,k should be at all times differ-
ent than zero since in flight operation some thrust is needed to compensate for the
weight force.

8.3.2 Translational Dynamics

The equation of translational velocity is given by (8.8). Using the notation of
Chap. 7, let Rk = [ρ1,k ρ2,k ρ3,k], where ρi,k with i = 1,2,3 are the column vectors
of the rotation matrix. The difference equation of the translational velocity can be
written as:

vI
k+1 = vI

k + α1ρ3,kucol,k + α2e3 (8.20)

The column vector ρ3,k is a unit vector with changing direction depending on
the Euler angles. The idea similar to Chap. 7 and [21] is to change the direction of
ρ3,k and at the same time adjust the magnitude of ucol,k to a desired vector that will
control the translational velocity dynamics. Therefore, the dynamics of ρ3,kucol,k
are the function which should be forwarded in time to develop the backstepping
scheme. Let ucol,k+1 = ηk , and by considering (8.11) and also ω̂B

k e3 = −ê3ω
B
k then:

ρ3,k+1ucol,k+1 = Rk+1e3ηk

= Rke3ηk − TsRkê3ω
B
k ηk

= Rk(e3 − Ts ê3ω
B
k )ηk (8.21)
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Fig. 8.1 Interconnection of the helicopter dynamics using (8.23)–(8.27). The term z−1 denotes a
unit time delay

Let ηk+1 = ζk then, by forwarding in time, the above equation becomes:

ρ3,k+2ucol,k+2 = Rk+1(e3 − Ts ê3ω
B
k+1)ηk+1

= Rk+1(e3 − Ts ê3ṽk)ζk

= Rk+1

[
Tsṽ2,kζk

−Tsṽ1,kζk

ζk

]

= Xk (8.22)

where Xk is a vector as defined below. From (8.22) the following equalities hold:

ζk = eT
3 RT

k+1 Xk (8.23)
[

ṽ1,k

ṽ2,k

]

=
[−Tsζk 0

0 Tsζk

]−1 [
ρT

2,k+1 Xk

ρT
1,k+1 Xk

]

(8.24)

Since ζk = ucol,k+2 the existence of the inverse of the left matrix on the right hand
side of (8.24) is guaranteed by the fact that the collective control ucol,k should be
different than zero, since in flight operation some thrust is needed to compensate for
the weight force.

Let Zk+i = ρ3,k+iucol,k+i with i ∈ N. The associated equations related to the
translational dynamics up to now are:

pI
k+1 = pI

k + Tsv
I
k (8.25)

vI
k+1 = vI

k + α1 Zk + α2e3 (8.26)

Zk+2 = Xk (8.27)

Figure 8.1 illustrates the interconnection of the helicopter dynamics. The error
dynamics of the pI , vI and Z state variables are:

ep,k+1 = pI
k+1 − pI

r,k+1 = −pI
r,k+1 + pI

k + Tsv
I
d,k + Tsev,k (8.28)

ev,k+1 = vI
k+1 − vI

d,k+1 = −vI
d,k+1 + vI

k + α1 Zd,k + α2e3 + α1eZd,k
(8.29)

eZ ,k+2 = Zk+2 − Zd,k+2 = −Zd,k+2 + Xk (8.30)

Choose the desired values:

vI
d,k = 1

Ts

[pI
r,k+1 − pI

k + K1ep,k] (8.31)

Zd,k = 1

α1
[vI

d,k+1 − vI
k + K2ev,k − α2e3] (8.32)

Xk = Zd,k+2 + Λ1eZ ,k+1 + Λ2eZ ,k (8.33)
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where K1,K2,Λ1,Λ2 are diagonal gain matrices. After applying the desired val-
ues of (8.31)–(8.33) to the translational dynamics described in (8.28)–(8.30) one
obtains:

⎡

⎢
⎣

ep,k+1
ev,k+1
eZ ,k+2
eZ ,k+1

⎤

⎥
⎦

⎡

⎢
⎣

K1 Ts 0 0
0 K2 0 α1
0 0 Λ1 Λ2
0 0 1 0

⎤

⎥
⎦

⎡

⎢
⎣

ep,k

ev,k

eZ ,k+1
eZ ,k

⎤

⎥
⎦ (8.34)

The eigenvalues of the above equality are determined by the gains K1,K2 and the
polynomial z2 − Λ1z − Λ2. Provided that the eigenvalues of the above system lie
inside the unit circle, the translational dynamics will be globally asymptotically sta-
ble. This result is very important since the convergence rate of the error variables
can be determined by the designer. By tuning the gains of the diagonal matrices
appropriately, smoothness in the flight behavior can be achieved. Real flight impli-
cations of this design are significant. Due to the fact that small-scale helicopters are
very sensitive to control inputs, regulating the convergence rate improves the flight
behavior.

8.3.3 Yaw Dynamics

The yaw dynamics are obtained from (8.10). More specifically:

ψk+1 = ψk + TsΨ3(Θk)ω
B
k (8.35)

where Ψ3(Θk) has been defined in (7.25). Let eψ,k = ψk − ψr,k be the error in the
yaw, then, the yaw error dynamics will be:

eψ,k+1 = −ψr,k+1 + ψk + TsΨ3(Θk)ω
B
k (8.36)

The above equation is shifted forward in time in order for the control commands to
appear. This leads to:

eψ,k+2 = −ψr,k+2 + ψk+1 + TsΨ3(Θk+1)ω
B
k+1

= −ψr,k+2 + ψk+1 + TsΨ3(Θk+1)ṽk

= −ψr,k+2 + ψk+1 + Ts

(
Sφk+1

Cθk+1

ṽ2,k + Cφk+1

Cθk+1

ṽ3,k

)

(8.37)

An obvious choice for the selection of the value of ṽ3,k which will cancel out the
nonlinear terms and stabilize the yaw error dynamics is:

ṽ3,k = Cθk+1

Cφk+1

[

−Sφk+1

Cθk+1

ṽ2,k + 1

Ts

(ψr,k+2 − ψk+1 + Meψ,k+1)

]

(8.38)

where M is a diagonal matrix of gains with the absolute value of each diagonal entry
being smaller than unity. Applying the above value for ṽ3,k , the yaw error dynamics
become eψ,k+2 = Meψ,k+1, which implies the asymptotic convergence of eψ,k to
zero. The control design is summarized by the following algorithm:
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Initialization At the initial step, when the algorithm is executed for first time,
set ucol(0) equal to a very small quantity close to zero. This will guarantee the
existence of the inverse of the matrix in (8.19).

Algorithm executions at time step k At any given time step k the full state vector
is considered available. To calculate the desired control commands obtained by the
backstepping algorithm the following steps should be followed.

Step 1: (i) Calculate Rk+1 from (8.11).
(ii) Calculate vI

k+1 from (8.8).
(iii) Calculate vI

k+2 from:

vI
k+2 = vI

k+1 + α1Rk+1e3ηk + α2e3

Step 2: Calculate sequentially the following equations:

pI
k+1+i = pI

k+i + Tsv
I
k+i

for i = 0,1,2.
Step 3: Calculate sequentially the following equations:

vI
d,k+i = 1

Ts

[−(pI
k+i − pI

r,k+1+i ) + K1(p
I
k+i − pI

r,k+i )]
for i = 0,1,2,3.

Step 4: Calculate sequentially the following equations:

Zd,k+i = 1

α1
{−(vI

k+i − vI
d,k+1+i ) + K2(v

I
k+i − vI

d,k+i ) − α2e3}
for i = 0,1,2.

Step 5: Calculate Xk from (8.33).
Step 6: Calculate ζk from (8.23) and ṽ1,k, ṽ2,k from (8.24).
Step 7: a. Calculate Θk by (8.10).

b. Calculate ṽ3,k from (8.38).
Step 8: Calculate vc,k from (8.17).
Step 9: Calculate the control commands ulat,k, ulon,k and uped,k from (8.19).

Step 10: Set the following values:

ucol,k = ηk

ηk = ζk

The above algorithm summarizes the intermediate calculations that take place at
each time step in order to produce the control commands based on the backstepping
design. The execution of the algorithm requires the knowledge of the discrete time
helicopter nonlinear model parameters. Having established the parametric nonlinear
model, the next Section provides a simple procedure to estimate the unknown model
parameters based on experimental flight data of the helicopter’s inputs and outputs.
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8.4 Parameter Estimation Using Recursive Least Squares

An important part of the design before the implementation of the flight control al-
gorithm is the parameter estimation of the difference equations (8.8), (8.9). Sug-
gestions for online algorithms [81] are RLS or Gradient Descent methods. In this
Chapter a standard RLS algorithm is used. The form of the RLS algorithm can be
found in most textbooks related with parameter identification [69]. Let ym

k be the
measurement vector where ym

k ∈ R
n and Π ∈ R

N is the parameter vector to be esti-
mated. Then, the measurement vector can be modeled as:

ym
k+1 = HkΠ (8.39)

where Hk ∈ R
n×N is a possibly time varying matrix. The measurement are consid-

ered clear from noise. The estimates of the parameter vector are provided by the
iterative execution of the following algorithm each time a new measurement be-
comes available:

Kk+1 = PkH
T
k [HkPkH

T
k + In×n]−1 (8.40)

Pk+1 = [IN×N − Kk+1Hk]Pk (8.41)

Π̃k+1 = Π̃k + Kk + 1[ym
k+1 − HkΠ̃k] (8.42)

where Π̃k denotes the estimated parameter vector at each time step. The series of
calculations for the above RLS algorithm as indicated by [69] is Pk → Kk+1 →
Pk+1 → Π̃k+1. The initialization of the algorithm is suggested to be P0 = αIN×N

where α is a very large number and for Π̃0 either a good initial guess of the param-
eters or just a zero vector.

For the difference equations (8.8), (8.9) that describe the translational and an-
gular velocities of the helicopter, the above RLS algorithm can be modified in the
following way:

ym
k+1 =

[
vI
k+1 − vI

k

ωB
k+1 − ωB

k

]

(8.43)

Hk =
[

Rke3ucol,k e3 0 0
0 0 Ξ(ωB

k ) Γk

]

(8.44)

ΠT = [α1 α2 I
T γ T ] (8.45)

where Γk := Γ (ulon,k, ulat,k, uped,k, ucol,k) is a matrix belonging to R
3×s composed

only by the control commands while the vector γ ∈ R
s denotes the parameters as-

sociated with the unknown parameters of the torque vector in such a manner that
Γkγ = τB .

8.5 Parametric Model

The parameter estimation procedure is an iterative process that requires back and
forth testing between modeling and verification [70, 85]. Based on the system equa-
tions described in (8.8) and (8.9) the proposed system dynamics are developed with
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the dual objective of minimal complexity and satisfactory results. The key feature
is to insert the terms that have a dominant effect in the helicopter dynamics and at
the same time exclude those that deteriorate or do not effect the identifier. Those
key dynamics are obtained from the helicopter dynamic equation for linear and an-
gular velocity by substituting the force and torque generation described in (7.8) and
(7.10), respectively. After working back and forth between the system equations
and the verification of the experimental results, a simplified parametric model is
obtained that has physical rationale.

The translational velocity dynamics are straightforward and easily identified by
(8.8). The actual interest and complications are associated with the identification
of the angular velocity dynamics. To begin with, symmetry with respect to the
principal axes is assumed. This assumption simplifies significantly the angular ve-
locity dynamics. Therefore, Ξ(ωB

k ) = diag(qr,pr,pq) and I(I, Ts) = (I1 I2 I3).
The second simplification assumes that the position vectors �hM and �hT are aligned
with the unitary vectors �jB and �kB , respectively. Therefore, hB

M = [0 0 zm]T and
hB

T = [xt 0 0]T . Then, the parameters associated with the control commands are
given by γ = (γ1 γ2 γ3). The effect of the command controls on the angular ve-
locity dynamics is given by the matrix Γk = diag(ulat,k, ulon,k, uped,k). To facilitate
the control design the effect of the collective control command is completely disre-
garded in the angular velocity dynamics. It is assumed that the collective command
takes the trim value ucol = mg/KM . If ucol takes small values, then the inverse ma-
trix in (8.19) may lead to excessive cyclic and pedal commands. The experimental
results indicate that this additional simplification assumption does not have a signif-
icant impact neither on the parametric identification nor on the performance of the
control algorithm. Then, the parametric model of the angular velocity dynamics is
given by:

pk+1 = pk + I1qkrk + γ1ulat,k

qk+1 = qk + I2pkrk + γ2ulon,k

rk+1 = rk + I3qkpk + γ3uped,k

(8.46)

8.6 Experimental Results

The parameter estimation algorithm and the controller design have been tested on
the Raptor 90 SE model installed in the X-Plane simulator. The use of X-Plane pro-
vides a good indication of the applicability of the approach to real flight applications.
The lack of any a priori knowledge of the system dynamics makes the validation of
the design more realistic.

8.6.1 Time History Data and Excitation Inputs

An integral component of the parameter estimation procedure is the collection of the
experimental flight test data that are required for the identification of the model. The
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flight data of the parametric identification procedure are generated by the execution
of special excitation inputs to the helicopter. Similarly to the frequency identification
case, frequency sweeps are also used for the excitation of the helicopter. Detailed
guidelines of the frequency sweep input signals are given in Sect. 5.7. For each flight
record a computerized frequency sweep is applied to one of the inputs while the rest
remain as uncorrelated as possible from the primary input of interest. During the
execution of the frequency sweep it is important that the helicopter does not diverge
significantly from the operating point.

Apart from the pedal control uped the amplitude of the excitations is adjusted so
that the helicopter will not drift away significantly from the hover trimmed opera-
tion. Since the Raptor model installed in X-Plane does not include a yaw damper or
a gyro, the behavior of the helicopter’s heading was much more sensitive than the
one accounted in actual small-scale helicopters. The design of the excitation signal
was much more challenging than the rest of the controls since for the long period
of the sweep the yaw velocity increases significantly. The excitation signal applied
was based on the frequency sweeps and at the beginning of each sinusoidal waiving
the amplitude was determined to preserve the yaw velocity within certain bounds.

All individual flight records produced by implementing the frequency sweeps
were concatenated in a single record. The concatenated record was processed by the
RLS algorithm for estimating the helicopter’s model parameters. The sampling rate
for the collection of the flight data was set to 50 Hz.

8.6.2 Validation

In order to validate the model the actual helicopter is set to hover mode and dou-
blets (symmetrical pulses) are applied by the control commands. After each doublet
the helicopter returns to the hovering mode until another excitation occurs. Those
excitations are applied to all control inputs.

The comparison between the actual and estimated translational and rotational
velocities is shown in Fig. 8.2 and Fig. 8.3, respectively. Based on the data it can be
seen that the model also provides sufficient estimates for large variations in the linear
velocities. The identified parameters are shown in Table 8.1. The verification results
illustrate the predictive capability of the identified model for the horizon of one time
step. Each estimated point in Fig. 8.2 and Fig. 8.3 is generated by substituting the
actual value of the helicopter’s state and input to the right hand side of the difference
equations (8.8) and (8.9).

8.6.3 Control Design

All of the control commands were saturated in order to be in the interval [−1 1]
since X-Plane does not accept values out of this range. However, (8.19) requires
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Fig. 8.2 Comparison between the actual (solid line) and estimated (dashed line) linear velocities
using the verification data

Fig. 8.3 Comparison between the actual (solid line) and estimated (dashed line) angular velocities
using the verification data
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Table 8.1 Identified system parameters

α1 α2 I1 I2 I3 γ1 γ2 γ3

−0.4857 0.0944 0.0256 0.0046 0.0452 0.7854 0.4994 0.1784

that ucol �= 0 for every time step. Therefore, for the execution of the control algo-
rithm a simple linear transformation is used to modify the values of the collective
command such that ucol ∈ (0 1]. For the presentation of the controller results the
collective signal was again reverted to the interval [−1 1]. The modeling simplifica-
tion involving the matrix Γ resulted in the equality vc = (ulat ulon uped)

T . Instead of
the pedal control input described in (8.17) and (8.38) a simpler PD controller with
bias was applied with sufficient results. The proposed pedal control command used
is:

uped,k = −0.5eψ,k − 0.08ωz,k − 0.18 (8.47)

A second modification that took place was the change of the identified values
γ1, γ2. The backstepping algorithm is designed based on the assumption of perfect
knowledge of the helicopter dynamics. However, although the identification results
were adequate there is still some uncertainty associated with the model parameters
especially with the angular velocity dynamics described by (8.9). In cases of pa-
rameter uncertainty exact dynamics cancellation is not a good practice. Since the
inverse of these values is required for the calculation of the corresponding control
command, the smaller the value the higher the control command will be. To this ex-
tent these values were modified to regulate the cyclic control commands to achieve
the desired tracking performance. The parameters were significantly increased with
the new values being γ1 = 20, γ2 = 10.

In general, the time domain parametric identification was proven to be signifi-
cantly less effective than the frequency domain identification procedure described
in Chap. 5. The main difficulty of the RLS algorithm was encountered in the esti-
mation of the parameters associated with the angular velocity dynamics. Although
the verification results were satisfactory, the estimated parameters exhibit increased
insensitivity of the angular velocity with respect to the control inputs. The poor per-
formance of the time domain identification can be significantly improved if simple
nonparametric models of the frequency domain are used as indicators.

The reference maneuver is a trapezoidal velocity profile in the lateral and longitu-
dinal directions identical to the one described in Sect. 6.7. Throughout the maneuver
the reference heading remains constant with the value ψr = 0. The gains of the di-
agonal matrices used for the backstepping controller are shown in Table 8.2. The

Table 8.2 Values of the
diagonal gain matrices K1 diag(0.92,0.92,0.93)

K2 diag(0.93,0.93,0.94)

Λ1 diag(0,0,0)

Λ2 diag(0.9,0.9,0.95)
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Fig. 8.4 Reference trajectory (dashed line) and actual velocity trajectory (solid line) of the heli-
copter expressed in inertial coordinates with respect to time

tunning of the controller gains is a very straightforward process. The convergence
rate for each error state variable in (8.34) should be faster than the convergence rate
of error variables in the higher levels of the system. This requirement reflects the
natural time scaling between the helicopter dynamics. The translational dynamics
are significantly slower than the attitude dynamics.

The helicopter velocity responses versus the reference trajectory are illustrated
in Fig. 8.4. The Euler angles of the helicopter are depicted in Fig. 8.5. The position
of the helicopter in the inertial coordinates is given in Fig. 8.6. Finally the control
inputs are shown in Fig. 8.7. The performance of the nonlinear controller was ex-
cellent. The change in the values of γ1, γ2 resolved the shortcomings of the time
domain parameter estimation and resulted in a controller design of high tracking
performance.

8.7 Remarks

This Chapter presented a time domain parameter estimation scheme and a nonlinear
discrete time control algorithm for helicopters. A simple RLS algorithm is used
for the parameter estimation procedure. The excitation signals used to produce the
identification data were frequency sweeps for each of the control commands.

The second task of the Chapter was the design of a nonlinear controller based on
the discrete time difference equations of the helicopter. Due to the cascade form of
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Fig. 8.5 Euler’s orientation angles

Fig. 8.6 Reference position trajectory (solid line) and the actual helicopter position (dashed line)
with respect to the inertial axis
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Fig. 8.7 Control inputs

the system, a discrete time backstepping method was derived. The main contribution
of this design is the fact that the convergence rate of the cascade system’s state
variables to their desired values can be determined by the designer. Tunning those
gains appropriately, results in significant improvement of the flight behavior.

The above control design considers perfect knowledge of the helicopter dynam-
ics. However, as illustrated by the identification results there is a parametric error
associated with the angular velocity dynamics. The X-Plane simulator is itself a
source of uncertainty due to small fluctuations in the sampling rate. The experimen-
tal results have illustrated that even in that case the controller is robust enough to
deal with both the endogenous and exogenous uncertainty.

The goal of the next Chapter is the development of an improved time domain
system identification method. The discrete helicopter dynamics are represented by
a Takagi–Sugeno fuzzy model. Instead of using a single nonlinear model for the
representation of the helicopter dynamics, the Takagi–Sugeno fuzzy system acts as
an interpolator of multiple nonlinear models that depend on the helicopter’s operat-
ing condition. The parameters of the Takagi–Sugeno fuzzy system are estimated by
the simple RLS algorithm described in this Chapter. The identification results of the
fuzzy system indicated significant improvement relative to this Chapter’s parameter
estimation approach.





Chapter 9
Time Domain System Identification for
Small-Scale Unmanned Helicopters Using Fuzzy
Models

The system identification method presented in this Chapter is based on a Takagi–
Sugeno fuzzy system that represents the translational and rotational velocity dynam-
ics of the helicopter. For the parameter estimation of the Takagi–Sugeno fuzzy sys-
tem a classical RLS algorithm is used, which allows the identification to take place
on-line since parameter updates are produced whenever a new measurement be-
comes available. The validity of this approach is also tested using the X-Plane sim-
ulator.

9.1 Introduction

This Chapter discusses a time domain identification approach that can be imple-
mented on-line in the sense that estimates can be obtained each time a new state
measurement is available. Results illustrate that this method is successful in produc-
ing a nonlinear discrete model of relatively low complexity and high accuracy. The
resulting model is suitable for the design of model based nonlinear fuzzy controllers.

More specifically, a Takagi–Sugeno fuzzy system is developed based on the dis-
cretized dynamics of translational and angular velocity derived in Chap. 8. After
the development of the Takagi–Sugeno system, a standard RLS algorithm is used to
estimate its parameters. The resulting fuzzy system is an interpolator of nonlinear
discrete systems that depend on the helicopter’s flight condition.

9.2 Takagi–Sugeno Fuzzy Models

This Section discusses how RLS can be used to identify the parameters of a Takagi–
Sugeno fuzzy model [101] used to represent the discrete dynamics of a single state
model. This approach will then be modified to identify the complete helicopter
dynamics. The identification of the Takagi–Sugeno fuzzy system is based on the
method described in [81].

I.A. Raptis, K.P. Valavanis, Linear and Nonlinear Control of Small-Scale Unmanned
Helicopters, Intelligent Systems, Control and Automation: Science and Engineering 45,
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The Takagi–Sugeno fuzzy systems are characterized as “functional fuzzy sys-
tems” [81] since their output is a function rather than a membership function.
The fuzzy system is a static nonlinear mapping between the inputs and the out-
puts composed by Rl rules of the form If–Then. It will be shown how the
Takagi–Sugeno fuzzy system may be used to adjust its parameters in order to
provide the best estimate ỹ(k + 1) of the state variable y(k) at each time in-
stant k, given the inputs to the fuzzy system (x1, x2, . . . , xn) ∈ R

n, the state vector
Y (k) = [y(k), y(k − 1), . . . , y(k − m)] ∈ R

m and the inputs of the plant U (k) =
[u1(k), u2(k), . . . , up(k)] ∈ R

p . Following similar notation as in [96] the ith rule of
the rule base can be written as:

If (Fj
x1 and Fw

x2
and . . . and F l

xn
) Then

ỹi (k + 1) = αi,1�1(Y (k), U (k)) + · · · + αi,D�D(Y (k), U (k))

where ỹi (k + 1) is the estimate of y(k + 1) given by the ith rule. Moreover, Fb
a is a

fuzzy set defined as:

Fb
a := {a,μFb

a
(a) : a ∈ R and μFb

a
(a) ∈ [0 1]} (9.1)

As mentioned in [81, 96] the membership function μFb
a
(a) describes the certainty

that the value of a represented by the linguistic variable ā can be described by the
linguistic value F̄ b

a . The superscript b denotes the linguistic concept of the linguis-
tic variable ā. The specific membership functions considered here are bell shaped
Gaussian functions with or without a saturation portion. There are three types of
Gaussian functions and their form is shown in Table 9.1. Furthermore, αi,j with
j = 1,2, . . . ,D denote the parameters of the ith rule’s output function. Since there
are Rl rules, the Takagi–Sugeno fuzzy system is composed by RlD parameters. The
functions �s(Y (k), U (k)) : R

m+p → R with s = 1,2, . . . ,D indicate that the pa-
rameter identification can be used for nonlinear dynamic systems that are linear in
the parameters. The inference mechanism used to calculate the premise of each rule
is the dot product. Therefore, the membership function representing the premise of
the above ith rule will be:

μi(x1, x2, . . . , xn) = μ
F

j
x1

(x1)μFw
x2

(x2) · · ·μFl
xn

(xn) (9.2)

After center average defuzzification, the estimated output of the identifier is:

ỹ(k + 1) =
∑Rl

i=1 ỹi (k + 1)μi
∑Rl

i=1 μi

(9.3)

Table 9.1 Gaussian
membership functions

Left μl(x) =
{

1 if x ≤ cl

exp(− 1
2 ( x−cl

σ l )2) otherwise

Centers μ(x) = exp(− 1
2 ( x−c

σ
)2)

Right μr(x) =
{

1 if x ≥ cr

exp(− 1
2 ( x−cr

σ r )2) otherwise
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where μi denotes the premise of ith rule μi(x1, x2, . . . , xn) for convenience. Let:

hi = μi
∑Rl

i=1 μi

(9.4)

and:

HT (k) = [�1(k)h1 · · ·�1(k)hRl
· · ·�D(k)h1 · · ·�D(k)hRl

] (9.5)

ΠT
TS = [α1,1 · · ·αRl,1 · · ·α1,D · · ·αRl,D] (9.6)

where H(k) is a vector of R
RlD . The vector ΠTS ∈ R denotes the parameter vec-

tor of the Takagi–Sugeno fuzzy system. From the above the estimated state can be
written as:

ỹ(k + 1) = HT (k)ΠTS (9.7)

Identification of the parameter vector ΠTS is obtained using the RLS algorithm de-
scribed in Sect. 8.4. Similarly to Sect. 8.4, the estimates are provided using the
following algorithm:

K(k + 1) = P(k)H(k)[HT (k)P (k)H(k) + 1]−1 (9.8)

P(k + 1) = [IRlD − K(k + 1)HT (k)]P(k) (9.9)

Π̃TS(k + 1) = Π̃TS(k) + K(k + 1)[y(k + 1) − HT (k)Π̃TS(k)] (9.10)

The series of calculations for the above RLS algorithm as indicated by [69] is
P(k) → K(k + 1) → P(k + 1) → Π̃TS(k + 1). The initialization of the algorithm is
P(0) = αIRlD where α is a very large number, and for Π̃TS(0) a good initial guess
of the parameters, or just a zero vector.

The inputs to the fuzzy system (x1, x2, . . . , xn) could be a subset of the state
vector. In general, the choice of the inputs to the fuzzy system should be descriptive
values of the operational condition of the system to be identified.

9.3 Proposed Takagi–Sugeno System for Helicopters

Based on the system equations presented in (8.8) and (8.9) a Takagi–Sugeno system
is derived with the dual objective of minimal complexity and satisfactory results.
The Takagi–Sugeno model is based on the simplification assumptions of Sect. 8.5.

As indicated by (8.8) the velocity dynamics depend on the orientation of the heli-
copter and the force vector. The proposed Takagi–Sugeno fuzzy system representing
the translational dynamics will have as input the translational velocity vector vI (k).
Let the system be composed of R1 fuzzy rules. Then the ith is:

If (Fj

vI
x

and Fw
vI
y

and Fε
vI
z
) Then

ṽI
x (k + 1)i = vI

x (k) + ai
1[sinφ(k) sinψ(k) + cosφ(k) sin θ(k) cosψ(k)]ucol(k)

ṽI
y (k + 1)i = vI

y (k) + ai
1[sinφ(k) cosψ(k) − cosφ(k) sin θ(k) sinψ(k)]ucol(k)

ṽI
z (k + 1)i = vI

z (k) + ai
1[cosφ(k) cos θ(k)]ucol(k) + ai

2 (9.11)
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where F
j

vI
x
, Fw

vI
y

and Fε
vI
z

are fuzzy sets representing the linguistic values of the lin-

guistic variables v̄I
x , v̄I

y and v̄I
z . For the angular velocities, assume that the fuzzy

system is composed of R2 rules with the ith rule being:

If (Fe
p and F

g
q and Fc

r ) Then

p̃(k + 1)i = p(k) + bi
1q(k)r(k) + γ i

1ulat(k)ucol(k)

q̃(k + 1)i = q(k) + bi
2p(k)r(k) + γ i

2ulon(k)ucol(k)

r̃(k + 1)i = r(k) + bi
3q(k)p(k) + γ i

3uped(k)

(9.12)

where Fe
p , F

g
q and Fc

r are fuzzy sets representing the linguistic values of the lin-
guistic variables p̄, q̄ and r̄ , respectively. The parameters of the fuzzy system are
unknown. Using experimental flight test data, the RLS algorithm can be used to
estimate the parameters of the Takagi–Sugeno fuzzy system.

9.4 Experimental Results

To validate the model, the Raptor 90 SE is also used in the X-Plane simulator. The
sampling rate was set to 50 Hz. For the collection of the identification data the same
excitation inputs were used with the ones described in Sect. 8.6.1.

9.4.1 Tunning of the Membership Function Parameters

The centers and the spreads of the Gaussian membership functions of the rotor-
craft’s Takagi–Sugeno fuzzy system, described by (9.11)–(9.12), are given in Ta-
ble 9.2. Three linguistic concepts are assigned to each linguistic variable. The (∗)

symbol indicates that the specific linguistic variable does not participate in the rule
base. The choice of these parameters has been based on intuitive criteria rather than
an optimization method over the training set. The main idea is that the linguistic
values corresponding to hovering should have a wide spread in order to dominate
over the linguistic variables that correspond to other flight operations. The left and
right membership functions are used as supportive means to describe the behavior
of the system when the helicopter operates outside the bounds of the hover mode.
Instead of this intuitive approach there are many optimizing methods to determine
the membership function parameters over the training set. A gradient descent tuning
method for determining the membership function parameters is given in [81], how-
ever, gradient descent should be used to tune the fuzzy model parameters as well.
Other advanced methods for updating the rule base and the parameters of the fuzzy
system using supervised and unsupervised learning, are presented in [1].
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Table 9.2 Gaussian centers and spreads

Output Linguistic
variables

Left Centers Right

cl σ l c σ cr σ r

ṽI v̄I
x −0.5 0.01 0 1 0.5 0.01

v̄I
y −1 0.03 0 3 1 0.03

v̄I
z −1 0.3 0 0.3 1 0.3

p̃ p̄ ∗ ∗ ∗ ∗ ∗ ∗
q̄ −2 0.03 0 6 2 0.03

r̄ −0.5 0.01 0 8 0.5 0.01

q̃ p̄ −0.5 1 ∗ ∗ 0.5 1

q̄ −1.5 0.01 0 6 1.5 0.01

r̄ −4 0.01 0 8 4 0.01

r̃ p̄ −1.5 0.03 0 6 1.5 0.03

q̄ ∗ ∗ ∗ ∗ ∗ ∗
r̄ −0.5 0.01 0 8 0.5 0.01

9.4.2 Validation

In order to validate the model, the Raptor 90 SE is set to hover mode. The applied
control commands are periodically perturbing the helicopter to a new hover state
until a new excitation occurs. These excitations take place for all control inputs.

The comparison between the actual and estimated translational and rotational
velocities is shown in Fig. 9.1 and Fig. 9.2, respectively. The mean error over the
identification data is shown in Table 9.3. The same Table presents the mean error
of the RLS identification procedure using the straightforward model of (8.8), (8.9)
instead of a Takagi–Sugeno fuzzy model. The fuzzy model illustrates a significant
improvement in the angular velocity dynamics, which represent the biggest identifi-
cation challenge. The verification results show the success of the approach since the

Table 9.3 Mean error of the Takagi–Sugeno RLS in comparison with RLS identification over the
verification data

State
estimate

Mean error Improvement %

Fuzzy RLS RLS

v̄I
x m/sec 0.0456 0.0457 0.2

v̄I
y m/sec 0.0049 0.0052 5.7

v̄I
z m/sec 0.0253 0.0255 0.7

p̃ deg/sec 1.5554 1.8629 16.5

r̃ deg/sec 2.2671 4.0852 43.7

q̃ deg/sec 1.0432 1.2050 13.4
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Fig. 9.1 Comparison between the actual (solid line) and estimated (dotted line) linear velocities
using the verification data

Fig. 9.2 Comparison between the actual (solid line) and estimated (dotted line) angular velocities
using the verification data
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associated errors are small and bounded even in the case of high excitations. Based
on the data it can be seen that the model also provides sufficient estimates for large
variations of the velocities.





Chapter 10
Comparison Studies

This Chapter provides an extensive evaluation and comparison of the controller de-
signs that have been presented in this book. The comparative study is completed by
executing several nonaggressive and aggressive flight maneuvers that test the de-
rived controllers in terms of stability and tracking accuracy. The test maneuvers are
produced by inertial position (or velocity) and yaw reference trajectories. The refer-
ence trajectories are specially designed in order to examine the performance of the
controllers in multiple operating conditions that cover a wide portion of the flight
envelope. Some of the reference trajectories are particularly aggressive investigating
the physical limitations of the helicopter. The controllers were tested for the Raptor
90 SE RC helicopter, which operates in the X-Plane flight simulator environment.

10.1 Summary of the Controller Designs

This comparative study considers three controller designs as summarized below.
The first design is a tracking controller based on the linearized helicopter dynamics.
The control law is separated into two static feedback loops. The first is responsible
for the regulation of the longitudinal/lateral dynamics and the second is responsible
for the regulation of the yaw/heave motion. The controller design is based on the
structure of a parametric linear model proposed in [70]. The parametric linear model
is given in (6.2) and represents the helicopter dynamics at hover. The controller is
additionally enhanced with the integral of the position error. The inclusion of the
integrator dynamics achieves the attenuation of steady-state errors due to parametric
and modeling uncertainty. The Raptor 90 SE linear model identified parameters are
given in Table 5.4. The gain values for the two feedback loops of the control law are
given in Table 6.2.

The second controller design is based on four independent SISO feedback loops.
The control law completely disregards the cross coupling between the helicopter
dynamics and assigns a PID controller in each input of the helicopter. The main ad-
vantage of this approach is its simplicity since the particular design does not require
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any knowledge of the helicopter model and the feedback gains can be empirically
tuned. The gains for each PID feedback loop are given in Table 6.3.

The third design is a discrete time nonlinear backstepping controller based on
the nonlinear helicopter model. The attitude dynamics and the collective command
are used to manipulate the orientation and the magnitude of the thrust vector that is
responsible for the generation of the helicopter propulsive forces. The values of the
nonlinear model parameters are given in Table 8.1. The controller gains are given in
Table 8.2.

10.2 Experimental Results

The performance of the controllers in terms of tracking accuracy and dexterity is
examined by executing four different maneuvers. Two of the maneuvers involve
velocity tracking while the other two require position tracking. Most of the ma-
neuvers require aggressive flight operation, which is translated in increased attitude
angles and thrust magnitude. The maneuvers are specially designed such that the
helicopter transitions to multiple operating flight modes. The execution of the ma-
neuvers forces the helicopter to cover a wide area of the flight envelope and in some
cases forces the helicopter to reach its physical limits.

10.3 First Maneuver: Forward Flight

The first maneuver under investigation requires cruising of the helicopter by tracking
a simple forward flight routine. The reference trajectory is a trapezoidal velocity
profile. The heading of the helicopter remains constant throughout the execution
of the maneuver with ψr = 0. The forward flight maneuver is composed of five
parts. In the first part the helicopter is set to hover by lifting vertically from its
starting point from the ground. In the second part of the maneuver, the helicopter
accelerates forward. After reaching a certain velocity the helicopter is cruising with
constant speed. In the fourth part of the maneuver the helicopter decelerates until its
velocity reaches zero. Then it is set to hover again. The reference velocity profile is
given by:

vI
r (t) = (0 0 0)T for t ≤ 18

vI
r (t) =

(

22 sin

(
π

30
(t − 18)

)

0 0

)T

for 18 < t ≤ 33

vI
r (t) = (22 0 0)T for 33 < t ≤ 48

vI
r (t) =

(

22 sin

(
π

40
(t − 48)

)

0 0

)T

for 48 < t ≤ 68

vI
r (t) = (0 0 0)T for t > 68
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Fig. 10.1 (Color online) First maneuver (Forward flight): Reference velocity trajectory (green
dashed line) and actual velocity trajectory of the linear (solid blue line), PID (red dashed–dotted
line), nonlinear (dashed–dotted black line) controller designs, expressed in inertial coordinates
with respect to time

The reference velocity and the response of the helicopter velocity produced by
the three controllers is depicted in Fig. 10.1. The pitch, roll and yaw angles ac-
quired during the execution of the maneuvers for the three designs are depicted in
Fig. 10.2. The control inputs generated by the flight control systems are shown in
Fig. 10.3. The position and the orientation of the helicopter during the execution of
the maneuvers is shown in Figs. 10.4(a)–10.4(c).

During the execution of the maneuver the helicopter reaches a maximum velocity
of 22 m/sec. Based on extreme flight tests, the maximum possible forward velocity
that the Raptor can reach is 25 m/sec. This is the pick velocity that the RC model can
acquire due to the power limitations of the main rotor. From Fig. 10.2 it is apparent
that the forward velocity and acceleration of the helicopter is manipulated by the
pitch angle θ . All the controller designs successfully tracked the reference velocity
trajectory.

10.4 Second Maneuver: Aggressive Forward Flight

The second maneuver is a more aggressive version of the previous trajectory. The
flight task involves a similar forward flight profile, however, in this case the heli-
copter is expected to acquire higher acceleration. Thus, the helicopter should reach
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Fig. 10.2 (Color online) First maneuver (Forward flight): Orientation angles of the linear (solid
blue line), PID (dashed red line) and nonlinear (dashed–dotted black line) controllers designs

Fig. 10.3 (Color online) First maneuver (Forward flight): Control inputs of the linear (solid blue
line), PID (dashed red line) and nonlinear (dashed–dotted black line) controller designs
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Fig. 10.4 (Color online) First maneuver (Forward flight): Reference position trajectory (solid line)
and actual trajectory of the controller designs (dashed line) with respect to the inertial axis
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Fig. 10.4 (Continued)

its maximum velocity in a shorter time interval. Since the longitudinal/lateral accel-
eration of the helicopter has been proven to be proportional to the pitch/roll angles,
a higher tilting of the fuselage is expected during the execution of this maneuver.
The interest of this maneuver focuses on the acceleration phase. Again, the reference
heading remains constant with ψr = 0. The reference velocity trajectory profile is
given by:

vI
r (t) = (0 0 0)T for t ≤ 18

vI
r (t) =

(

22 sin

(
π

14
(t − 18)

)

0 0

)T

for 18 < t ≤ 25

vI
r (t) = (22 0 0)T for 25 < t ≤ 40

vI
r (t) =

(

22 sin

(
π

40
(t − 40)

)

0 0

)T

for 40 < t ≤ 60

vI
r (t) = (0 0 0)T for t > 60

The reference velocity trajectory and the velocity response of the three designs is
depicted in Fig. 10.5. The pitch, roll and yaw angles during the execution of the
maneuver are illustrated in Fig. 10.6. The generated control inputs for the three
designs are shown in Fig. 10.7. The position and orientation of the helicopter in the
Cartesian space is shown in Figs. 10.8(a)–10.8(c).

Figure 10.6 indicates that due to the aggressive acceleration of the helicopter
the pitch angle takes a significantly higher value compared to the previous case
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Fig. 10.5 (Color online) Second maneuver (Aggressive forward flight): Reference velocity tra-
jectory (green dashed line) and actual velocity trajectory of the linear (solid blue line), PID (red
dashed–dotted line), nonlinear (dashed–dotted black line) controller designs, expressed in inertial
coordinates with respect to time

study. For the nonlinear backstepping design the pitch angle may reach a value of
up to 60°. In addition, during the acceleration phase, the collective command ucol

is saturated to its maximum value. The simultaneous tilting of the fuselage and the
increase of the thrust magnitude produce the propulsive force that is necessary for
the aggressive portion of the maneuver. From the three designs, the PID and the
nonlinear controller exhibit higher pitch angles compared to the MIMO linear de-
sign. During this phase, since the helicopter is already operating with its maximum
available thrust power, the high tilt of the fuselage decreases the vertical compo-
nent of the thrust vector. The decrease of the thrust’s vertical component makes the
weight of the helicopter the dominant force in the vertical direction. This fact re-
sults in the diving motion of the helicopter, which is apparent in Fig. 10.8(b) and
Fig. 10.8(c). In the case of the PID controller, the helicopter almost touches the
ground. The diving motion, continuous until the helicopter accumulates sufficient
momentum in the longitudinal direction, and the absolute value of the pitch angle is
decreased. This effect is purely related to the gain selection of the controllers. In the
PID and nonlinear design the gain choice impose significantly faster convergence
on the longitudinal/lateral motion compared to the heave dynamics. Therefore, the
controllers prioritize these dynamics over the vertical motion. The diving motion
would be negligible in the ideal case that the controller had unlimited power re-



168 10 Comparison Studies

Fig. 10.6 (Color online) Second maneuver (Aggressive forward flight): Orientation angles of the
linear (solid blue line), PID (dashed red line) and nonlinear (dashed–dotted black line) controllers
designs

Fig. 10.7 (Color online) Second maneuver (Aggressive forward flight): Control inputs of the linear
(solid blue line), PID (dashed red line) and nonlinear (dashed–dotted black line) controller designs
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Fig. 10.8 (Color online) Second maneuver (Aggressive forward flight): Reference position trajec-
tory (solid line) and actual trajectory of the controller designs (dashed line) with respect to the
inertial axis
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Fig. 10.8 (Continued)

sources and the magnitude of the thrust force could compensate any decrease to the
vertical component of the main rotor thrust caused by the tilting of the fuselage.

10.5 Third Maneuver: 8 Shaped Trajectory

For the third maneuver the helicopter is required to execute an “8 shaped” curved
path. The heading of the helicopter remains constant throughout the execution of
the maneuver. This maneuver is a position tracking challenge! The maneuver is
composed of three parts. In the first phase the helicopter lifts vertically from the
starting point and it is set to hover mode. In the second part of the maneuver the
helicopter is expected to curve an “8 shaped” path in the longitudinal and lateral
direction while its altitude remains constant. At the end of the path the helicopter is
set to hover again. The reference position trajectory is given by:

pI
r (t) = (0 0 − 5)T for t ≤ 15

pI
r (t) =

(20[1 − cos( π
20 (t − 15))]

−14 sin( π
10 (t − 15))

−5

)

for 15 < t ≤ 55

pI
r (t) = (0 0 −5)T for t > 55

The reference position trajectory versus the position responses of the three con-
trollers are illustrated in Fig. 10.9. The orientation angles of the helicopter during
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Fig. 10.9 (Color online) Third maneuver (8 shaped): Reference position trajectory (green dashed
line) and actual position trajectory of the linear (solid blue line), PID (red dashed–dotted line), non-
linear (dashed–dotted black line) controller designs, expressed in inertial coordinates with respect
to time

the execution of the maneuvers for the three controllers designs are depicted in
Fig. 10.10. The control inputs for the three designs are shown in Fig. 10.11. The
position and orientation of the helicopter in the inertial coordinates are shown in
Figs. 10.12(a)–10.12(c).

The tracking performance of the controller designs was satisfactory. All of the
controllers accurately complete the tracking task of this more involved motion. In
general, tracking controllers require that the reference trajectories are smooth (the
reference functions and their higher derivatives are continuous). A close inspection
of the particular continuous trajectory indicates that its first derivative is a piece-
wise continuous function. The points of discontinuity are located at the end and the
starting points of the “8 shaped” curve execution when the helicopter initiates and fi-
nalizes to hover. The discontinuities in the first derivative of the reference trajectory
result in instantaneous transient jumps in the control inputs. To avoid these tran-
sients, it is preferable to use differentiable functions as references. If the generation
of such trajectories is not practical or limiting, and such transients are hazardous
for the operation of the helicopter, it is suggested that the reference trajectories are
processed by an appropriate low pass filter that attenuates the high frequency com-
ponents of the signal.
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Fig. 10.10 (Color online) Third maneuver (8 shaped): Orientation angles of the linear (solid blue
line), PID (dashed red line) and nonlinear (dashed–dotted black line) controllers designs

Fig. 10.11 (Color online) Third maneuver (8 shaped): Control inputs of the linear (solid blue
line), PID (dashed red line) and nonlinear (dashed–dotted black line) controller designs
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Fig. 10.12 (Color online) Third maneuver (8 shaped): Reference position trajectory (solid line)
and actual trajectory of the controller designs (dashed line) with respect to the inertial axis



174 10 Comparison Studies

Fig. 10.12 (Continued)

10.6 Fourth Maneuver: Pirouette Trajectory

The final maneuver under investigation is the most challenging one, since it involves
the simultaneous and synchronized helicopter motion in all directions of the config-
uration space. Similarly with the previous trajectories, the helicopter is initially set
to hover. In the main part of the maneuver, the helicopter is required to execute a cir-
cular motion in the longitudinal and lateral directions. During the execution of the
circular motion the helicopter is simultaneously ascending vertically with exponen-
tially decreasing velocity. This results to a spiral motion of the helicopter around a
fictional cylinder. At the execution of the fifth spiral, a correction maneuver sets the
helicopter at the center of the cylinder. The reference trajectory is given by:

pI
r (t) = (0 0 − 3)T for t ≤ 15

pI
r (t) =

⎛

⎝

5[1 − cos(π
5 (t − 15))]

−5 sin(π
5 (t − 15))

−23 + 20e−0.06(t−15)

⎞

⎠ for 15 < t ≤ 65

pI
r (t) =

⎛

⎝

2.5[1 − cos(π
5 (t − 65))]

−2.5 sin(π
5 (t − 65))

−23 + 20e−3

⎞

⎠ for 65 < t ≤ 70

pI
r (t) = (0 0 −22.0043)T for t > 70

The reference trajectory and the helicopter position responses for the three con-
troller designs are illustrated in Fig. 10.13. The orientation angles are depicted in
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Fig. 10.13 (Color online) Fourth maneuver (Pirouette): Reference position trajectory (green
dashed line) and actual position trajectory of the linear (solid blue line), PID (red dashed–dot-
ted line), nonlinear (dashed–dotted black line) controller designs, expressed in inertial coordinates
with respect to time

Fig. 10.14. The control inputs generated by the controllers are depicted in Fig. 10.15.
Finally, the position and orientation of the helicopter for each controller design dur-
ing the execution of the maneuver is illustrated in Figs. 10.16(a)–10.16(c).

The last maneuver was the most challenging. It is a relative aggressive trajectory
since in certain time instances the roll angle of the helicopter reaches a value close
to 60°. Obviously, the performance of all the controllers is satisfactory even for this
demanding maneuver.

10.7 Remarks

This comparative provides some very useful observations related to the proposed
designs and the helicopter control problem in general. All controller designs exhibit
robustness and high accuracy tracking capabilities even for reference trajectories
that require composite and aggressive helicopter motion.

The first remark is associated with the MIMO linear controller design. Theoret-
ically, the identified linear model of the Raptor 90 SE provides a quasi-steady dy-
namic description that is limited to mild flight operation (hover, cruising with low
speed). However, the executed maneuvers required flying the helicopter in several
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Fig. 10.14 (Color online) Fourth maneuver (Pirouette): Orientation angles of the linear (solid blue
line), PID (dashed red line) and nonlinear (dashed–dotted black line) controllers designs

Fig. 10.15 (Color online) Fourth maneuver (Pirouette): Control inputs of the linear (solid blue
line), PID (dashed red line) and nonlinear (dashed–dotted black line) controller designs
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Fig. 10.16 (Color online) Fourth maneuver (Pirouette): Reference position trajectory (solid line)
and actual trajectory of the controller designs (dashed line) with respect to the inertial axis
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Fig. 10.16 (Continued)

operating conditions. In certain cases the reference trajectories dictated the opera-
tion of the helicopter in aggressive and high agile maneuvers that required attitude
angles of up to 60°. In such operations even the linearity assumptions of the model
are violated. A single controller, based only on the identified hover model was ade-
quate.

The success of the MIMO linear design is attributed to three key characteris-
tics. The frequency domain identification method produces models of high fidelity
and accuracy. The procedure itself, provides significant understanding of the heli-
copter dynamics. This insight is evaluated and exploited by the controller design.
Furthermore, although theoretically, the model is limited only to a neighborhood of
a certain operating condition, in reality, it covers a relative wide area of the flight
envelope. The second characteristic is the decomposition of the controller design in
two feedback laws, each of them responsible for a different subsystem of the heli-
copter dynamics. This idea “passes” the physical flight intuition to the mathemati-
cal model of the controller. A second remark worth mentioning, is the performance
of the PID design. A similar comment about this issue has already been made in
Sect. 6.7. It was expected that the PID performance would be significantly inferior
compared to the rest of the designs. However, the flight results indicate that the PID
controller exhibits satisfactory behavior. The success of the PID controller is at-
tributed to the attenuated cross coupling effect amongst the Raptor dynamics. This
fact is supported by the off-axis responses of the helicopter illustrated in Fig. 5.3.
This Figure illustrates that the magnitude of the q/ulat and p/ulon responses lie
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in the zone of −20 to −40 dB. This is an indicator of negligible cross coupling
between the helicopter dynamics.

Finally, the most interesting remark is the following observation: The motion
and control responses of all the controller designs are similar given that the tracking
objective is achieved. This fact indicates that during the execution of a reference ma-
neuver the helicopter motion and nominal inputs are constrained. The constrained
motion depends on the reference trajectory itself. For any method that achieves
asymptotic convergence of the helicopter outputs to their reference values, after
the occurrence of some initial transients, the helicopter state and control inputs will
asymptotically reach a manifold, which is dictated by the functional controllability
of the system equations [66]. The simplest approximate description of this manifold
is given by the desired state vector xd presented in Sect. 6.2. For example, based on
(6.30) the desired pitch and roll angles are given by:

θd = 1

−g
[u̇r − Xuur ] φd = 1

g
[v̇r − Yvvr ]

The above equations indicate that the pitch and roll angles at a steady-state condition
are proportional to the reference lateral/longitudinal acceleration and velocity of
the helicopter. Any discontinuities of the reference velocity and acceleration will
appear in the attitude angles as well. The ability of the approximated linear model
to provide the description of this steady-state manifold is attributed to the differential
flatness property [47]. The knowledge of this steady-state vector can be exploited
in the development of trajectory generators. For instance, from the above equation,
the designer will know what attitude angles are expected during the execution of a
predefined reference velocity profile.





Chapter 11
Epilogue

11.1 Introduction

It is true that helicopters are highly nonlinear underactuated systems with significant
dynamic coupling. In general, they are considered to be much more unstable than
fixed-wing aircraft. Their nature imposes significant challenges to the controller de-
sign.

Modern control techniques are model based, in the sense that the controller ar-
chitecture depends on the dynamic description of the system to be controlled. This
principle applies to helicopters as well, therefore, the flight control problem is tightly
connected with the helicopter modeling challenge.

Helicopter dynamics can be represented by both linear and nonlinear models of
ordinary differential equations. The model description should accurately predict the
helicopter response for any given input. The order and the structure of each model
is based on standard laws of physics and aerodynamics, accompanied by certain
simplification assumptions that reduce as much as possible the complexity of the
description. Parametric models encapsulate the dynamic behavior of a large family
of small-scale helicopters. Linearized helicopter models have a limited range of
validity, which is limited to a flight operation in the vicinity of a certain operating
point. On the other hand, nonlinear models provide a relative global description
of the flight envelope. It is important that the mathematical model is accurate, yet,
manageable enough for the design of a controller.

Linear and nonlinear models have been adopted by many researchers dealing
with helicopter control and identification. The linear model adopted by [70] consists
of a coupled system of the helicopter motion variables and the main rotor flapping
dynamics. In the case of the nonlinear representation structure, the model proposed
in [47] is adopted. This model consists of the helicopter nonlinear dynamic equa-
tions of motion enhanced by a simplified model of force and torque generation.

Based on the above parametric model representations, several controller designs
have been presented. The objective of each controller is for the helicopter to track
a predefined position (or velocity) and yaw reference trajectory. All proposed con-
troller designs neglect the coupling between the helicopter forces and moments. In
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particular, disregard the produced forces from the main rotor flapping motion and
the tail rotor in the longitudinal and lateral directions of the body-fixed frame. This
is a typical assumption that takes place in most controllers for helicopters that exist
in the literature. These parasitic forces have a minimal effect on the translational
dynamics compared to the propulsive forces produced by the attitude change of the
helicopter. Therefore, this assumption has physical sense. As indicated in [47] the
approximate model is feedback linearizable and, therefore, in feedback form. The
derived linear and nonlinear controllers use concepts from the backstepping recur-
sive design methodology, which is suitable for systems of this form.

After establishing a mathematical control framework based on a generic para-
metric helicopter model, the final step for the implementation of the controller is the
extraction of the numeric values of the model parameters. The model parameters are
chosen such that the predicted responses of the model match the actual flight data
of the helicopter. The process of extracting the numeric values of the model param-
eters based on experimental flight data lie in the field of system identification. The
system identification procedures may take place in the frequency domain and in the
time domain. The frequency domain identification is significantly superior in terms
of calculation complexity and accuracy compared to the time domain approaches.
However, the main disadvantage of the frequency domain identification is that it is
restricted only to linear models.

However, since the objective of this book relates to the theoretical development
of flight controllers, each derived controller uses the most suitable system identifi-
cation approach in order to experimentally validate the applicability of the design.
In real-life applications the theoretical control framework is worthless if the heli-
copter model parameters are unavailable. The examination of several identification
schemes indicates which are the most suitable practices for the extraction of the
helicopter parameters.

11.2 Advantages and Novelties of the Designs

The following remarks summarize the different attributes of the designs.

• The multivariable tracking controller is based on the linear helicopter dynamics.
This design has significant advantages relative to the internal model and integral
control approach. The main novelty of this design is its ability to pass the intu-
itive notion of helicopter manned piloting to the mathematical derivation of the
controller. This is achieved by separating the helicopter dynamics into two in-
terconnected subsystems representing the longitudinal/lateral and yaw/heave mo-
tion, respectively. By disregarding the effect of the forces produced by the flap-
ping motion of the main rotor, the approximated subsystems are in feedback form
and, therefore, differentially flat. Due to the differential flatness of the system
dynamics, a desired state and input can be determined, composed of the compo-
nents of the reference output and their higher derivatives. The desired state can
be easily and systematically determined by the backstepping approach. When the
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helicopter state is regulated to this desired state, the tracking error tends asymp-
totically to zero. Similarly to [47], the desired state vector can be used for the
design of meaningful trajectories. The overall control law is a superposition of
the desired input and an output feedback component. The output feedback com-
ponent can be chosen by any design that exists in the literature. The design also
allows for scheduling of multiple similar controllers based on linear models of
the same structure.

• The continuous time nonlinear tracking controller is based on the helicopter non-
linear dynamic model adopted by [47]. This design adopts the backstepping de-
sign principle for nonlinear systems in feedback form. The pseudo controls for
each level of the feedback system are appropriately chosen to stabilize the over-
all helicopter dynamics. The pseudo controls combine nested saturation feedback
laws and a novel control strategy for the stabilization of the attitude dynamics.
One of the novelties of this controller is its minimalistic design. By using advance
stability analysis concepts only the necessary pseudo control terms are included
to stabilize the system, which are significantly less than existing backstepping
designs. Furthermore, apart from stabilizing the attitude dynamics, the controller
can guarantee that the helicopter will not overturn for every allowed reference
trajectory. The intense theoretical analysis that is used for the derivation of the
controller brings to surface important concepts that should be accounted for in he-
licopter flight controllers. Such concepts involve the expected range of the pitch
and roll angles for aggressive reference maneuvers and the effects of the actuators
saturation limits in the helicopter performance.

• A third nonlinear tracking controller is based on the discretized nonlinear he-
licopter dynamics. Controller design is performed in discrete time, since time
domain system identification is much simpler and computationally efficient. In
addition, the control algorithms are executed by microprocessors, therefore, the
discretization effect is accounted by the controller. The novelty of this controller
is the design freedom related to the convergence rate for each state variable of the
cascade structure of the feedback system. This is of particular interest since con-
trol of the convergence rate in each level of the cascade structure provides better
flight results. The stability of the resulting dynamics can be simply inspected by
the eigenvalues of a linear error without the necessity of Lyapunov’s functions.
The time domain identification is accomplished via a simple RLS algorithm.

• The time domain identification results may be further improved if the discrete
nonlinear dynamics are represented by a Takagi–Sugeno fuzzy system. After the
development of the Takagi–Sugeno system, a standard RLS algorithm is used to
estimate its parameters. The resulting fuzzy system is an interpolator of nonlinear
discrete systems, which depends on the helicopter flight conditions.

11.3 Testing and Implementation

The MIMO linear controller, the SISO PID controllers, and the discrete-time non-
linear backstepping controller were successfully tested using the X-Plane flight sim-
ulator on a Raptor 90 SE RC helicopter. An extensive comparison took place where
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each flight controller was expected to track several aggressive and dexterous maneu-
vers. Although the linear helicopter model is theoretically limited reliable only in a
neighborhood around hover, a single controller based only on the identified hover
model was adequate. The satisfactory performance of the PID design is attributed to
the attenuated cross coupling effects amongst the Raptor 90 SE dynamics.

For real-life applications, it is common engineering intuition to start with the
less complex approach. Therefore, the first choice should be the PID controller with
the four SISO loops. If the cross coupling effect among the system dynamics is
significant then the MIMO linear tracking controller should be adopted. Finally, if
the linear controller fails to achieve tracking in a wide range of the flight, envelope,
then the nonlinear controller should be applied.

11.4 Remarks

Careful consideration of the designs and their applicability issues dictate that addi-
tional features should be incorporated in the designs at the expense of being more
complex for reliable implementation to actual small-scale helicopters:

• Helicopter dynamics are characterized by significant parametric and model uncer-
tainty. In all designs the certainty equivalence principle was adopted. According
to that, the identified model was considered by the control engineer as the actual
helicopter model. However, a theoretical framework that examines the uncertainty
effects on the controller performance would be an important contribution to the
flight controller design problem.

• Most controller designs neglect the coupling between forces and moments. There-
fore, only practical stability of the helicopter can be achieved based on the approx-
imated models. An interesting research avenue would be to theoretically study the
boundedness and error margins introduced by the approximate models.

• In real-life applications the measured sensor signals exhibit significant noise lev-
els, which are further deteriorated by the helicopter’s engine vibrations. The con-
sequences of noise and the implementation effects of Kalman filtering to the con-
troller design should be further analyzed.



Appendix
Fundamentals of Backstepping Control

This Appendix provides the fundamentals of the recursive backstepping control
method. The presented material is a summary of more detailed descriptions that may
be found in [43, 49]. Lyapunov-based controller design may be systematically tack-
led by a recursive design procedure called backstepping. Backstepping is suitable
for strict-feedback systems that are also known as “lower triangular”. An example
of a strict-feedback systems is:

ξ̇1 = f1(ξ1) + g1(ξ1)ξ2

ξ̇2 = f2(ξ1, ξ2) + g2(ξ1, ξ2)ξ3

... (A.1)

ξ̇r−1 = fr−1(ξ1, ξ2, . . . , ξr−1) + gr−1(ξ1, ξ2, . . . , ξr−1)ξr

ξ̇r = fr(ξ1, ξ2, . . . , ξr ) + gr(ξ1, ξ2, . . . , ξr )u

where ξ1, . . . , ξr ∈ R, u ∈ R is the control input and fi , gi for i = 1, . . . , r are
known functions. A typical feedback linearization approach in most cases leads to
cancellation of useful nonlinearities. The backstepping design exhibits more flexi-
bility compared to feedback linearization since it does not require that the resulting
input–output dynamics be linear. Cancellation of potentially useful nonlinearities
can be avoided resulting in less complex controllers. The main idea is to use some
of the state variables of (A.1) as “virtual controls” or “pseudo controls”, and de-
pending on the dynamics of each state, design intermediate control laws. The back-
stepping design is a recursive procedure where a Lyapunov function is derived for
the entire system. The recursive procedure can be easily expanded from the nominal
case of a system augmented by an integrator. This is also referred to as integra-
tor backstepping. Based on the design principles of the integrator backstepping, the
control design can be easily expanded for the case of strict-feedback systems given
by (A.1).
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A.1 Integrator Backstepping

The baseline design of the recursive procedure is the integrator backstepping. Con-
sider the system:

η̇ = f (η) + g(η)σ (A.2)

σ̇ = u (A.3)

where [η σ ]T ∈ R
n+1 is the state vector and u ∈ R is the control input. The ob-

jective is to design a state feedback control law such that η,σ → 0 as t → ∞. It
is assumed that both f and g are known. This system can be viewed as a cascade
connection of two subsystems. The first subsystem is (A.2) with σ as input and the
second subsystem is the integrator (A.3). The main design idea is to treat σ as a
virtual control input for the stabilization of η. Assume that there exists a smooth
state feedback control law σ = φ(η), with φ(0) = 0, such that the origin of:

η̇ = f (η) + g(η)φ(η) (A.4)

is asymptotically stable. Consider that for the choice of φ(η) a Lyapunov function
V (η) is known such that:

∂V

∂η
[f (η) + g(η)φ(η)] ≤ −W(η), ∀η ∈ R

n (A.5)

where W(η) is positive definite. By adding and subtracting g(η)φ(η) on the right
hand side of (A.2), one has:

η̇ = f (η) + g(η)φ(η) + g(η)[σ − φ(η)] (A.6)

σ̇ = u (A.7)

Denote by eσ the error between the state σ and the pseudo control φ(η), that is:

eσ = σ − φ(η) (A.8)

Writing the initial system in the (η, eσ ) coordinates, one has:

η̇ = [f (η) + g(η)φ(η)] + g(η)eσ (A.9)

ėσ = u − φ̇(η) (A.10)

Since f , g and φ are known, one of the advantages of the backstepping design is that
it does not require a differentiator. In particular, the derivative φ̇ can be computed
by using the expression:

φ̇ = ∂φ

∂η
[f (η) + g(η)σ ] (A.11)

Setting u = v + φ̇, where v ∈ R is a nominal control input, the transformed system
takes the form:

η̇ = [f (η) + g(η)φ(η)] + g(η)eσ (A.12)

ėσ = v (A.13)
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which is similar to the initial system, except that now the first component has an
asymptotically stable origin when the input is zero. Using this procedure, the pseudo
control φ(η) has been “back stepped” through the integrator from u = v+φ(η). The
knowledge of V (η) is exploited in the design of v for the stabilization of the overall
system. Using:

Vc(η,σ ) = V (η) + 1

2
e2
σ (A.14)

as a Lyapunov function candidate, one obtains:

V̇c = ∂V

∂η
[f (η) + g(η)φ(η)] + ∂V

∂η
g(η)eσ + eσ v

≤ −W(η) + ∂V

∂η
g(η)eσ + eσ v (A.15)

The control input v is chosen as:

v = −∂V

∂η
g(η) − keσ , k > 0 (A.16)

Substituting the above choice of v to (A.15), one has:

V̇c ≤ −W(η) − ke2
σ (A.17)

which shows that the origin (η = 0, eσ = 0) is asymptotically stable. Since φ(0) =
0, and eσ → 0 as t → ∞; then, the, origin (η = 0, σ = 0) is asymptotically stable
as well. Substituting for v, eσ , and φ̇, the final form of the control law is:

u = ∂φ

∂η
[f (η) + g(η)σ ] − ∂V

∂η
g(η) − k[σ − φ(η)] (A.18)

A.2 Example of a Recursive Backstepping Design

This Section illustrates the implementation of the backstepping methodology to a
strict feedback system of high order. The construction of the controller for high or-
der systems is based on the recursive implementation of the integrator backstepping
methodology. An illustration of the backstepping procedure based on the generic
formulation of the strict feedback systems given in (A.1), would result in the deriva-
tion of tedious recursive formulas which are difficult to follow. In this Section, a sim-
ple third order strict feedback system is used instead. This approach provides a better
insight to the key features and potentials of the backstepping design. Consider the
following system:

ξ̇1 = f1(ξ1) + ξ2

ξ̇2 = f2(ξ2) + ξ3 (A.19)

ξ̇3 = u

where ξi ∈ R for i = 1,2,3 are the system states, u ∈ R is the control input and
fi(ξi) : R → R are known functions. The objective is to design a state feedback
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control law such that ξ1, ξ2, ξ3 → 0 as t → 0. Similarly to the integrator backstep-
ping case, the idea is to use the state variable ξ2 as an input for the stabilization
of ξ1. Consider the Lyapunov function V1 = 1

2ξ2
1 . The derivative of V1 along the

trajectory of ξ1 is computed as:

V̇1 = ξ1(f1(ξ1) + ξ2) (A.20)

The objective of this step is to find a control law φ2(ξ1) with φ2(0) = 0, such that
when ξ2 = φ2(ξ1) then V̇1(ξ1) ≤ −W1(ξ1) where W1 is a positive definite function
for every ξ1 ∈ R. An obvious choice would be to remove the effect of the function
f1(ξ1) and inject a stabilizing feedback term. Thus, we pick:

φ2(ξ1) = −f1(ξ1) − κ1ξ1 (A.21)

where k1 is a positive gain. This choice yields V̇1 ≤ −k1ξ
2
1 . Denote the error e2 =

ξ2 − φ2(ξ1). Using the new coordinate e2 the system given in (A.19) can be written
as:

ξ̇1 = −k1ξ1 + e2

ė2 = −φ̇2(ξ1) + f2(ξ1, e2) + ξ3 (A.22)

ξ̇3 = u

Similarly to Sect. A.1, the implementation of the derivative φ2(ξ1) does not require
a differentiator since:

φ̇2 = ∂φ2

∂ξ1
[f1(ξ1) + ξ2] (A.23)

Let V2(ξ1, e2) = 1
2ξ1 + 1

2e2
2. The goal of the second design step is to determine a

pseudo control φ3(ξ1, e2) with φ3(0,0) = 0 such that when ξ3 = φ3(ξ1, e2) then
V̇2(ξ1, e2) ≤ −W2(ξ1, e2) where W2 is a positive definite function for every ξ1, e2.
Consequently, the derivative of V2 along the solutions of ξ1, e2 is:

V̇2 = −k1ξ
2
1 + e2(ξ1 − φ̇2(ξ1) + f2(ξ1, e2) + φ3(ξ1, e2)) (A.24)

An obvious choice would be:

φ3(ξ1, e2) = −ξ1 + φ̇2(ξ1) − f2(ξ1, e2) − k2e2 (A.25)

where k2 is a positive constant. In this case V̇2 = −k1ξ
2
1 − k2e

2
2. Using the change

of variables e3 = ξ3 − φ3(ξ1, e2) the system dynamics become:

ξ̇1 = −k1ξ1 + e2

ė2 = −ξ1 − k2e2 + e3 (A.26)

ė3 = −φ̇3(ξ1, e2) + u

Similarly to φ̇2, the computation of φ̇3 does not require a differentiator. Using V3 =
V2 + 1

2e2
3 as a candidate Lyapunov function one has:

V̇3 = −k1ξ
2
1 − k2e

2
2 + e3(e2 − φ̇3(ξ1, e2) + u) (A.27)
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The choice of u is:

u = −e2 + φ̇3(ξ1, e2) − k3e3 (A.28)

where k3 is a positive constant. This choice yields:

V̇3 = −k1e
2
1 − k2e

2
2 − k3e

2
3 (A.29)

therefore the origin of the error system is globally asymptotically stable. Since
φ2(0),φ3(0,0) = 0 then ξ1, ξ2, ξ3 → 0 as t → ∞. The final system dynamics have
the form:

[
ξ̇1
ė1
ė2

]

=
[−k1 1 0

−1 −k2 1
0 −1 −k3

][
ξ1
e2
e3

]

(A.30)

As indicated by [49], an important structural property of the above system is that the
system matrix is composed by the sum of a negative diagonal and a skew-symmetric
matrix. This is a typical structural pattern when the backstepping design is based on
a sequential construction of Lyapunov functions. The key feature of the backstep-
ping methodology is the fact that it provides significant design freedom. The choice
of the pseudo controls φ2, φ3 and the control input u is not unique. For example, we
could have picked:

φ2(ξ1) = −f1(ξ1) − κ1ξ1

φ3(ξ1, e2) = φ̇2(ξ1) − f2(ξ2) − k2e2

u = φ̇3(ξ1, e2) − k3e3

resulting to the system:
[

ξ̇1
ė1
ė2

]

=
[−k1 1 0

0 −k2 1
0 0 −k3

][
ξ1
e2
e3

]

(A.31)

which is obviously asymptotically stable. Thus, the stabilization of the same sys-
tem can be achieved with a much more simpler design. This potential constitutes
the backstepping methodology as a powerful design tool for the development of
simplistic controllers for nonlinear systems.





References

1. P.P. Angelov, D.P. Filev, An approach to online identification of Takagi–Sugeno fuzzy mod-
els. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 34, 484–498
(2004)

2. N. Antequera, M. Santos, J.M. De la Cruz, A helicopter control based on eigenstructure
assignment, in IEEE Conference Emerging Technologies and Factory Automation, 2006

3. J.S. Bay, Linear State Space Systems (McGraw-Hill, New York, 1999)
4. M. Bejar, A. Isidori, L. Marconi, R. Naldi, Robust vertical/lateral/longitudinal control of a

helicopter with constant yaw-attitude, in 44th IEEE Conference on Decision and Control,
and 2005 European Control Conference, CDC-ECC, 2005

5. J.S. Bendat, A.J. Piersol, Random Data: Analysis & Measurement Procedures (Wiley–
Interscience, New York, 1971)

6. P. Bendotti, J.C. Morris, Robust hover control for a model helicopter, in Proceedings of the
American Control Conference, 1995

7. A.R.S. Bramwell, G. Done, D. Balmford, Bramwell’s Helicopter Dynamics (Butterworth
Heinemann, Stoneham, 2001)

8. A. Budiyonoa, S.S. Wibowob, Optimal tracking controller design for a small scale helicopter.
Journal of Bionic Engineering 4(4), 271–280 (2007)

9. C.I. Byrnes, F.D. Priscoli, A. Isidori (eds.), Output regulation of uncertain nonlinear systems
(Birkhäuser, Basel, 1997)

10. G. Cai, B.M. Chen, K. Peng, M. Dong, T.H. Lee, Modeling and control system design for a
UAV helicopter, in 14th Mediterranean Conference on Control and Automation, 2006

11. P. Castillo, R. Lozano, A.E. Dzul, Modelling and Control of Mini-Flying Machines (Springer,
Berlin, 2005)

12. P.C. Chandrasekharan, Robust Control of Linear Dynamical Systems (Academic Press, San
Diego, 1996)

13. R. Chen, Effects of primary rotor parameters on flapping dynamics, Technical report, TP-
1431, NASA, 1980

14. A.J. Prasad, J.V.R. Corban, J.E. Calise, Implementation of adaptive nonlinear control for
flight test on an unmanned helicopter, in Proceedings of the 37th IEEE Conference on Deci-
sion and Control, vol. 4, December 1998, pp. 3641–3646

15. J.E. Corban, A.J. Calise, J.V.R. Prasad, J. Hur, N. Kim, Flight evaluation of adaptive high-
bandwidth control methods for unmanned helicopters, in AIAA Guidance, Navigation, and
Control Conference, 2003

16. J.J. Craig, Introduction to Robotics: Mechanics and Control (Prentice Hall, New York, 2004)
17. J.C. Doyle, B.A. Francis, A. Tannenbaum, Feedback Control Theory (Macmillan, New York,

1992)

I.A. Raptis, K.P. Valavanis, Linear and Nonlinear Control of Small-Scale Unmanned
Helicopters, Intelligent Systems, Control and Automation: Science and Engineering 45,
DOI 10.1007/978-94-007-0023-9, © Springer Science+Business Media B.V. 2011

191

http://dx.doi.org/10.1007/978-94-007-0023-9


192 References

18. M.E. Dreier, Introduction to Helicopter and Tiltrotor Flight Simulation. AIAA Education
Series (AIAA, Washington, 2007)

19. D. Ernst, K. Valavanis, J. Craighead, Automated process for unmanned aerial systems con-
troller implementation using MATLAB, in 14th Mediterranean Conference on Control and
Automation, 2006, MED ’06, 2006

20. B. Etkin, Dynamics of Flight: Stability and Control (Wiley, New York, 1959)
21. I. Fantoni, R. Lozano, Nonlinear Control for Underactuated Mechanical Systems (Springer,

New York, 2001)
22. M. Fliess, J. Levine, P. Martin, P. Rouchon, Flatness and defect of nonlinear systems: Intro-

ductory theory and applications. International Journal of Control 61, 1327–1361 (1995)
23. G.F. Franklin, J.D. Powell, A. Emami-Naeini, Feedback Control of Dynamic Systems (Pren-

tice Hall, New York, 2002)
24. E. Frazzoli, M.A. Dahleh, E. Feron, Trajectory tracking control design for autonomous heli-

copters using a backstepping algorithm, in Proceedings of the American Control Conference,
vol. 6, 2000, pp. 4102–4107

25. D. Fujiwara, J. Shin, K. Hazawa, K. Nonami, H∞ hovering and guidance control for an
autonomous small-scale unmanned helicopter, in International Conference on Intelligent
Robots and Systems, 2004

26. J. Gadewadikar, F. Lewis, K. Subbarao, B. Chen, H∞ static output-feedback control for
rotorcraft. Journal of Intelligent and Robotic Systems, 54, 629–646 (2008)

27. J. Gadewadikar, F. Lewis, K. Subbarao, B. Chen, Structured H∞ command and control-loop
design for unmanned helicopters. Journal of Guidance, Control and Dynamics 31, 1093–
1102 (2008)

28. J. Gadewadikar, F.L. Lewis, K. Subbarao, K. Peng, B.M. Chen, H∞ static output-feedback
control for rotorcraft, in AIAA Guidance, Navigation, and Control Conference and Exhibit,
2006

29. V. Gavrilets, B. Mettler, E. Feron, Dynamical model for a miniature aerobatic helicopter,
Technical report, Massachusetts Institute of Technology, 2001

30. V. Gavrilets, B. Mettler, E. Feron, Nonlinear model for a small-size acrobatic helicopter, in
AIAA Guidance, Navigation, and Control Conference and Exhibit, 2001

31. D.T. Greenwood, Principles of Dynamics (Prentice Hall, New York, 1965)
32. N. Guenard, T. Hamel, V. Moreau, Dynamic modeling and intuitive control strategy for an

“X4-flyer”, in International Conference on Control and Automation, 2005, pp. 141–146
33. T. Hamel, R. Mahony, R. Lozano, J. Ostrowski, Dynamic modeling and configuration stabi-

lization for an X4-flyer, in 15th Triennial World Congress of IFAC, 2002
34. N. Hovakimyan, N. Kim, A.J. Calise, J.V.R. Prasad, N. Corban, Adaptive output feedback

for high-bandwidth control of an unmanned helicopter, in AIAA Guidance, Navigation, and
Control Conference, 2001

35. I.I. Hussein, M. Leok, A.K. Sanyal, A.M. Bloch, A discrete variational integrator for optimal
control problems on SO(3), in 45th IEEE Conference on Decision and Control, 2006

36. A. Isidori, L. Marconi, A. Serrani, Robust Autonomous Guidance (Springer, Berlin, 2003)
37. A. Isidori, L. Marconi, A. Serrani, Robust nonlinear motion control of a helicopter. IEEE

Transactions on Automatic Control 48, 413–426 (2003)
38. E.N. Johnson, S.K. Kannan, Adaptive flight control for an autonomous unmanned helicopter,

in AIAA Guidance, Navigation and Control Conference, 2002
39. E.N. Johnson, S.K. Kannan, Adaptive trajectory control for autonomous helicopters. Journal

of Guidance, Control and Dynamics 28, 524–538 (2005)
40. W. Johnson, Helicopter Theory (Princeton University Press, Princeton, 1980)
41. R.E. Kalman, R.S. Bucy, New results in linear filtering and prediction theory. Journal of

Basic Engineering 83, 95–108 (1961)
42. F. Kendoul, D. Lara, I. Fantoni-Coichot, R. Lozano, Real-time nonlinear embedded control

for an autonomous quadrotor helicopter. Journal of Guidance, Control and Dynamics 30,
1049–1061 (2007)

43. H.K. Khalil, Nonlinear Systems (Prentice Hall, New York, 2002)



References 193

44. H.J. Kim, D.H. Shim, A flight control system for aerial robots: algorithms and experiments.
Control Engineering Practice 11, 1389–1400 (2003)

45. N. Kim, A.J. Calise, N. Hovakimyan, J.V.R. Prasad, E. Corban, Adaptive output feedback
for high-bandwidth flight control. Journal of Guidance, Control and Dynamics 25, 993–1002
(2002)

46. V. Klein, E.A. Moreli, Aircraft System Identification Theory and Practice, AIAA Education
Series (AIAA, Washington, 2006)

47. T.J. Koo, S. Sastry, Output tracking control design of a helicopter model based on approx-
imate linearization, in Proceedings of the 37th IEEE Conference on Decision and Control,
vol. 4, 1998, pp. 3635–3640

48. T.J. Koo, S. Sastry, Differential flatness based full authority helicopter control design, in
Proceedings of the 38th IEEE Conference on Decision and Control, 1999

49. M. Krstic, I. Kanellakopoulos, P.V. Kokotovic, Nonlinear and Adaptive Control Design
(Wiley–Interscience, New York, 1995)

50. R. Kureemun, D.J. Walker, B. Manimala, M. Voskuijl, Helicopter flight control law design
using H∞ techniques, in IEEE Conference on Decision and Control, 2005

51. M. La Civita, Integrated modeling and robust control for full envelope flight of robotic heli-
copters, PhD thesis, Carnegie Mellon University, 2002

52. M. La Civita, W.C. Messner, T. Kanade, Modeling of small-scale helicopters with integrated
first-principles and system identification techniques, in Proceedings of the 58th Forum of the
American Helicopter Society, vol. 2, 2002, pp. 2505–2516

53. M. La Civita, G. Papageorgiou, W. Messner, T. Kanade, Design and flight testing of a high-
bandwidth H∞ loop shaping controller for a robotic helicopter, in AIAA Guidance, Naviga-
tion, and Control Conference and Exhibit, 2002

54. M. La Civita, G. Papageorgiou, W.C. Messner, T. Kanade, Integrated modeling and robust
control for full-envelope flight of robotic helicopters, in Proceedings of IEEE International
Conference on Robotics and Automation, 2003, pp. 552–557

55. M. La Civita, G. Papageorgiou, W.C. Messner, T. Kanade, Design and flight testing of an
H∞ controller for a robotic helicopter. Journal of Guidance, Control, and Dynamics, 485–
494 (2006)

56. E.H. Lee, H. Shim, L. Park, K. Lee, Design of hovering attitude controller for a model heli-
copter, in Proceedings of Society of Instrument and Control Engineers, 1993, pp. 1385–1390

57. T. Lee, N.H. McClamroch, M. Leok, Optimal control of a rigid body using geometrically
exact computations on SE(3), in 45th IEEE Conference on Decision and Control, 2006

58. J.G. Leishman, Principles of Helicopter Aerodynamics (Cambridge University Press, Cam-
bridge, 2000)

59. W. Levine, M. Athans, On the determination of the optimal constant output feedback gains
for linear multivariable systems. IEEE Transactions on Automatic Control 15, 44–48 (1970)

60. F.L. Lewis, V.L. Syrmos, Optimal Control (Wiley–Interscience, New York, 1995)
61. L. Ljung, System Identification (Prentice Hall, New York, 1987)
62. L. Ljung, System Identification: Theory for the User (Prentice Hall, New York, 1999)
63. A. Loria, E. Panteley, Advanced Topics in Control Systems Theory: Lecture Notes from FAP

2004, chapter 2 (Springer, Berlin, 2005), pp. 23–64
64. R. Mahony, T. Hamel, Robust trajectory tracking for a scale model autonomous helicopter.

International Journal of Robust and Nonlinear Control 14(12), 1035–1059 (2004)
65. R. Mahony, T. Hamel, A. Dzul, Hover control via Lyapunov control for an autonomous

model helicopter, in Proceedings of the 38th IEEE Conference on Decision and Control,
vol. 4, 1999, pp. 3490–3495

66. L. Marconi, R. Naldi, Robust full degree-of-freedom tracking control of a helicopter. Auto-
matica 43, 1909–1920 (2007)

67. L. Marconi, R. Naldi, Aggressive control of helicopters in presence of parametric and dy-
namical uncertainties. Mechatronics 1, 381–389 (2008)

68. D. McFarlane, K. Glover, A loop-shaping design procedure using H∞ synthesis. IEEE
Transactions on Automatic Control 37, 759–769 (1992)



194 References

69. J.M. Mendel, Lessons in estimation theory for signal processing, communications, and con-
trol (Prentice Hall PTR, New York, 1995)

70. B. Mettler, Identification Modeling and Characteristics of Miniature Rotorcraft (Kluwer
Academic Publishers, Norwell, 2003)

71. B. Mettler, T. Kanade, M.B. Tischler, System identification modeling of a model-scale heli-
copter, Technical report, Carnegie Mellon University, 2000

72. B. Mettler, M.B. Tischler, T. Kanade, System identification of small-size unmanned heli-
copter dynamics, in Presented at the American Helicopter Society 55th Forum, May 1999

73. S.K. Mitra, Digital Signal Processing: A Computer-Based Approach (McGraw-Hill, New
York, 2006)

74. A. Moerder, D. Calise, Convergence of a numerical algorithm for calculating optimal output
feedback gains. IEEE Transactions on Automatic Control 30(9), 900–903 (1985)

75. R.M. Murray, L. Zexiang, S. Sastry, A Mathematical Introduction to Robotic Manipulation
(CRC Press, Boca Raton, 1994)

76. A.V. Oppenheim, R.W. Shafer, J.R. Buck, Discrete-Time Signal Processing (Prentice Hall,
New York, 1999)

77. A.V. Oppenheim, A.S. Willsky, I.T. Young, Signals and Systems (Prentice Hall, New York,
1983)

78. H. Ozbay, Introduction to Feedback Control Theory (CRC Press, Boca Raton, 1999)
79. G.D. Padfield, Helicopter Flight Dynamics: The Theory and Application of Flying Qualities

and Simulation Modeling, AIAA Education Series (Blackwell Science, Oxford, 1996)
80. G. Papageorgiou, K. Glover, H∞ loop-shaping: Why is it a sensible procedure for designing

robust flight controllers, in AIAA Conference on Guidance, Navigation and Control, 1999
81. K.M. Passino, S. Yurkovich, Fuzzy Control (Prentice Hall, New York, 1998)
82. S. Pieper, J.K. Baillie, K.R. Goheen, Linear-quadratic optimal model-following control of a

helicopter in hover, in American Control Conference, 1994
83. E. Prempain, I. Postlethwaite, Static H∞ loop shaping control of a fly-by-wire helicopter.

Automatica 41, 1517–1528 (2005)
84. R.W. Prouty, Helicopter Performance, Stability and Control (Krieger Publishing Company,

Melbourne, 1995)
85. I.A. Raptis, K.P. Valavanis, A. Kandel, W.A. Moreno, System identification for a miniature

helicopter at hover using fuzzy models. Journal of Intelligent and Robotic Systems 56, 345–
362 (2009)

86. E. Seckel, Stability and Control of Airplanes and Helicopters (Academic Press, San Diego,
1964)

87. J.S. Shamma, M. Athans, Analysis of gain scheduled control for nonlinear plants. IEEE
Transactions on Automatic Control 35, 898–907 (1990)

88. H. Shim, T.J. Koo, F. Hoffmann, S. Sastry, A comprehensive study of control design for
an autonomous helicopter, in Proceedings of the 37th IEEE Conference on Decision and
Control, vol. 4, 1998, pp. 3653–3658

89. H.D. Shim, H.J. Kim, S. Sastry, Control system design for rotorcraft-based unmanned aerial
vehicles using time-domain system identification, in Proceedings of the 2000 IEEE Interna-
tional Conference on Control Applications, 2000, pp. 808–813

90. J. Shin, K. Nonami, D. Fujiwara, K. Hazawa, Model-based optimal attitude and positioning
control of small-scale unmanned helicopter. Robotica 23, 51–63 (2005)

91. H. Sira-Ramirez, M. Zribi, S. Ahmad, Dynamical sliding mode control approach for vertical
flight regulation in helicopters, Control Theory and Applications 141, 19–24 (1994)

92. S. Skogestad, I. Postlethwaite, Multivariable Feedback Control (Wiley, New York, 1996)
93. T. Soderstrom, P. Stoica, System Identification (Prentice Hall, New York, 1989)
94. E.D. Sontag, Remarks on stabilization and input-to-state stability, in Proceedings of the 28th

IEEE Conference on Decision and Control, vol. 2, 1989, pp. 1376–1378
95. M.W. Spong, S. Hutchinson, M. Vidyasagar, Robot Modeling and Control (Wiley, New York,

2005)
96. J.T. Spooner, K.M. Passino, Stable adaptive control using fuzzy systems and neural networks.

IEEE Transactions on Fuzzy Systems 4, 339–359 (1996)



References 195

97. X.D. Sun, T. Clarke, Application of hybrid μ/H∞ control to modern helicopters, in Interna-
tional Conference on Control, 1994

98. H.J. Sussmann, P.V. Kokotovic, The peaking phenomenon and the global stabilization of
nonlinear systems. IEEE Transactions on Automatic Control 36, 424–440 (1991)

99. V.L. Syrmos, C. Abdallah, P. Dorato, Static output feedback: A survey, in 33rd Conference
on Decision and Control, 1994

100. V.L. Syrmos, C. Abdallah, P. Dorato, K. Grigoriadis, Static output feedback: A survey, Tech-
nical report, University of New Mexico, 1995

101. T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and
control. IEEE Transactions on Systems, Man, and Cybernetics 15, 116–132 (1985)

102. A.R. Teel, Global stabilization and restricted tracking for multiple integrators with bounded
controls. Systems & Control Letters 18, 165–171 (1992)

103. A.R. Teel, Using saturation to stabilize a class of single-input partially linear composite sys-
tems, in IFAC NOLCOS’92 Symposium, 1992, pp. 379–384

104. M.B. Tischler, M.G. Cauffman, Frequency-response method for rotorcraft system identifica-
tion: Flight applications to BO-105 coupled fuselage/rotor dynamics. Journal of the Ameri-
can Helicopter Society 3, 3–17 (1992)

105. M.B. Tischler, R.K. Remple, Aircraft and Rotorcraft System Identification, AIAA Education
Series (AIAA, Washington, 2006)

106. K.P. Valavanis (ed.), Advances in Unmanned Aerial Vehicles State of the Art and the Road to
Autonomy, Intelligent Systems, Control and Automation: Science and Engineering, vol. 33
(Springer, Berlin, 2007)

107. M.J. Van Nieuwstadt, Trajectory generation for nonlinear control systems, PhD thesis, Cali-
fornia Institute of Technology, 1997

108. D.J. Walker, I. Postlethwaite, Advanced helicopter flight control using two-degree-of-
freedom H∞ optimization. Journal of Guidance, Control and Dynamics 19, 461–468 (1996)

109. M.F. Weilenmann, U. Christen, H.P. Geering, Robust helicopter position control at hover, in
American Control Conference, 1999

110. M.F. Weilenmann, P. Hans, A test bench for rotorcraft hover control, in AIAA Guidance,
Navigation and Control Conference, 1993, pp. 1371–1382

111. J.H. Williams, Fundamentals of Applied Dynamics (Wiley, New York, 1996)
112. J. Zhao, I. Kanellakopoulos, Adaptive control of discrete-time strict-feedback nonlinear sys-

tems. Proceedings of the American Control Conference 1, 828–832 (1997)
113. K. Zhou, J.C. Doyle, K. Glover, Robust and Optimal Control (Prentice Hall, New York,

1996)


	Cover
	Linear and Nonlinear Control of Small-Scale Unmanned Helicopters
	Copyright
	Preface
	Acknowledgements
	Contents
	Acronyms
	Symbols
	Greek Symbols
	Subscripts and Superscripts
	Operands and Math Symbols
	Introduction
	Background Information
	The Mathematical Problem
	Controller Designs
	Linear Controller Design
	Nonlinear Controller Design

	Outline of the Book

	Review of Linear and Nonlinear Controller Designs
	Linear Controller Designs
	Nonlinear Controller Design
	Remarks

	Helicopter Basic Equations of Motion
	Helicopter Equations of Motion
	Position and Orientation of the Helicopter
	Helicopter Position Dynamics
	Helicopter Orientation Dynamics

	Complete Helicopter Dynamics
	Remarks

	Simplified Rotor Dynamics
	Introduction
	Blade Motion
	Swashplate Mechanism
	Fundamental Rotor Aerodynamics
	Flapping Equations of Motion
	Rotor Tip-Path-Plane Equation
	First Order Tip-Path-Plane Equations
	Main Rotor Forces and Moments
	Remarks

	Frequency Domain System Identification
	Mathematical Modeling
	First Principles Modeling
	System Identification Modeling

	Frequency Domain System Identification
	Advantages of the Frequency Domain Identification
	Helicopter Identification Challenges
	Frequency Response and the Coherence Function
	The CIFER© Package
	Time History Data and Excitation Inputs
	Linearization of the Equations of Motion
	Stability and Control Derivatives
	Model Identification
	Experimental Platform
	Parametrized State Space Model
	Identification Setup
	Time Domain Validation

	Remarks

	Linear Tracking Controller Design for Small-Scale Unmanned Helicopters
	Helicopter Linear Model
	Linear Controller Design Outline
	Decomposing the System
	Velocity and Heading Tracking Controller Design
	Lateral-Longitudinal Dynamics
	Yaw-Heave Dynamics
	Stability of the Complete System Error Dynamics

	Position and Heading Tracking
	PID Controller Design
	Experimental Results
	Remarks

	Nonlinear Tracking Controller Design for Unmanned Helicopters
	Introduction
	Helicopter Nonlinear Model
	Rigid Body Dynamics
	External Wrench Model
	Complete Rigid Body Dynamics

	Translational Error Dynamics
	Attitude Error Dynamics
	Yaw Error Dynamics
	Orientation Error Dynamics
	Angular Velocity Error Dynamics

	Stability of the Attitude Error Dynamics
	Stability of the Translational Error Dynamics
	Numeric Simulation Results
	Remarks

	Time Domain Parameter Estimation and Applied Discrete Nonlinear Control for Small-Scale Unmanned Helicopters
	Introduction
	Discrete System Dynamics
	Discrete Backstepping Algorithm
	Angular Velocity Dynamics
	Translational Dynamics
	Yaw Dynamics
	Initialization


	Parameter Estimation Using Recursive Least Squares
	Parametric Model
	Experimental Results
	Time History Data and Excitation Inputs
	Validation
	Control Design

	Remarks

	Time Domain System Identification for Small-Scale Unmanned Helicopters Using Fuzzy Models
	Introduction
	Takagi-Sugeno Fuzzy Models
	Proposed Takagi-Sugeno System for Helicopters
	Experimental Results
	Tunning of the Membership Function Parameters
	Validation


	Comparison Studies
	Summary of the Controller Designs
	Experimental Results
	First Maneuver: Forward Flight
	Second Maneuver: Aggressive Forward Flight
	Third Maneuver: 8 Shaped Trajectory
	Fourth Maneuver: Pirouette Trajectory
	Remarks

	Epilogue
	Introduction
	Advantages and Novelties of the Designs
	Testing and Implementation
	Remarks

	Appendix  Fundamentals of Backstepping Control
	Integrator Backstepping
	Example of a Recursive Backstepping Design

	References

