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PREFACE

In 1998, Clyde Martin visited the Royal Institute of Technology in Stock-
holm and taught a course on advanced topics in systems theory. Among
the students were Magnus Egerstedt, and what started as a homework as-
signment quickly led to the discovery that it was possible to generalize the
smoothing splines concepts, as defined by Grace Wahba in the area of statis-
tics, using standard control theoretic ideas. The key enabling (yet rather ob-
vious) observation was that a rich class of smoothing curves can be traced
by the output of a linear control system, driven by an appropriately selected
input. However, that the corresponding class of curves captured almost all
of the traditional splines, as well as leading to useful new areas of investiga-
tion, including monotone splines, splines with continuous data, and splines
on manifolds, was more of a surprise. During the last ten years, a rather
large body of work has been developed, connecting splining concepts to
those found in the systems theory literature. This book is the outcome of
that study.

Everyone who reads this book will realize that the basic material owes a
great deal to the “red book” of David Luenberger. His concept of optimiza-
tion using vector space methods is one of those ideas that has had a major
influence in engineering, economics, mathematics, and every other area that
is concerned with basic optimization. Both authors have taught from and
have been taught from his basic book. We have strived to bring to this book
some of the readability properties that David has mastered, as well as to
connect with the tools and techniques developed by him.

Although the material in this book covers a lot of ground, a word of cau-
tion is in order. We have made no attempt to survey the huge field of splines,
even of smoothing splines. The purely statistical approach to smoothing
splines differs from our approach in the end application, but there is a huge
overlap in basic concepts. Anyone who is interested in the statistical ap-
proach to smoothing splines is urged to read the seminal monograph of
Grace Wahba and the excellent monograph of Randy Eubanks on this topic.

The material in this book relies heavily on a very fruitful collaboration
with Professor Yishao Zhou, and it is fair to say that the book would not
have been the same without her. In particular the chapter on smoothing
splines as integral filters owes much to her and to Professor W. P. (Daya)
Dayawansa. Daya has contributed to the content of the book, but, more
important, he has been a pioneer in the interface between mathematics and
engineering. Both authors are indepted to him for his influence on their
scientific philosophy.

The authors have also been heavily involved with Professor Hiroyuki
Kano in the development of applications of B-splines. We decided not to
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include that material in this book because of our focus on curves generated
by linear control systems with a particular optimization format. However,
there certainly is some overlap in applications areas that the interested reader
is urged to explore through the extensive publications of Professor Kano.

When developing smoothing splines, statistics cannot be ignored. The
second author was patiently reminded to use statistics correctly by Shan
Sun. Professor Sun was a coauthor on the first two major papers in the de-
velopment of control theoretic smoothing splines. When statistics are used
correctly, she deserves the credit, while the authors assume the responsibil-
ity for all statistical bobbles.

The very first paper in this series was a collaborative effort with Professor
Zhimin Zhang. That paper mimicked the classical spline construction, and
the approach used was quite different from the approach used in this book.
Nonetheless, it served as a starting point for our study of the connection
between splines and linear systems theory.

There have been many graduate students involved with the development
and application of control theoretic splines at Texas Tech University, Royal
Institute of Technology in Stockholm, Georgia Institute of Technology, and
Stockholm University. Many of their names can be found on papers in the
bibliography. We are so very grateful for the work that they have done on
this long term project. We thank the past, present, and future students for
their diligence.

Modern research cannot be done without financial support. We have been
fortunate to have been supported by many agencies: NSF, NASA, NSA,
AFOSR, ARO, EPA, NIH, and DARPA. We gratefully acknowledge the
support these agencies have provided over the years.

On a personal note, we want to thank our families and friends for sup-
porting our work. In particular, Danielle Hanson has been a constant source
of joy, energy, and inspiration to Magnus. Not only has she kept Magnus’s
mind (somewhat) straight in terms of providing a big picture, but she has
also been involved in many technical discussions at the dinner table. Thank
you!

Joyce Martin has stood beside Clyde for 45 years and has never flinched.
She has understood when mathematics was first on his mind, and she has
patiently stood by as he traveled even when there were four small children
at home. She has always been ready to be the occasional pro bono editor of
his papers and books. Not only does she deserve the credit for this book but
for all of the work that Clyde has done!

Atlanta and Lubbock – February 2009
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Chapter One

INTRODUCTION

Splines are ubiquitous in science and engineering. Sometimes they play
a leading role as generators of paths or curves, but often they are hidden
inside, for example, software packages for solving dynamic equations, in
graphics, and in numerous other applications.

The standard, classic spline is an interpolating curve. In contrast to this,
smoothing splines are only required to pass “close” to the data points. Such
smoothing splines are well know by name in statistics, but not so well known
outside of this area. The goal of this book is to show that smoothing splines
arise as a natural part of control theory, and that, by using control theoretic
concepts, we can construct and interpret smoothing splines in an efficient,
algorithmic manner.

Throughout the book, this connection between control theory and smooth-
ing splines will be made explicit, and we will find numerous applications for
smoothing splines in path planning for mobile robots, in numerical analysis,
graphics, and other basic applications. This introductory chapter presents
a brief background to interpolating and smoothing splines, as well as sets
up their connection to linear systems theory.

——————————————————————————————

1.1 FROM INTERPOLATION TO SMOOTHING

The basic problem that the classical spline was constructed to solve was as
follows: Given a finite set of data points, find a smooth curve that interpo-
lates through these points. Of course, there are infinitely many such curves,
and the real task is to devise an algorithm that selects a unique (hopefully
exhibiting certain desirable properties) curve. In fact, classical splines solve
this problem by requiring that the curve be piecewise polynomial, that is,
that it be polynomial between the data points, and that the pieces be con-
nected as smoothly as possible. Often additional conditions must be applied
as well at the endpoints to ensure uniqueness.

This idea of producing interpolating polynomials, stitched together at the
data points, works wonderfully if the data are exact, or nearly so. Unfortu-
nately, data often have significant error associated with them, and classical
splines tend to accent these errors. Smoothing splines were developed to
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remedy this very problem, that is, to handle cases when there is error asso-
ciated with the data points. Naturally enough, these smoothing splines were
developed in statistics, where noise is a fact of life, and where error is as-
sumed in almost all data. As such, the restriction of exact interpolation was
dropped, while the restriction remained that the curves should be piecewise
polynomial and as smooth as possible.

Statistics aside, this notion of producing smoothing rather than interpo-
lating curves is rather natural as well in engineering in general, and control
theory in particular. In fact, various notions of controllability have always
played fundamental roles in engineering through the canonical problem of
moving an object at a known position with known dynamics to a new posi-
tion. For example, in air traffic control, ground control typically will dictate
to the pilot of an airplane where it should be at a fixed set of times, and what
its corresponding directions should be, for example, the command could be
to be at 10,000 feet in 2 minutes with a given heading. The pilot will in
fact receive a string of such commands as the plane approaches an airport.
Typically, some deviations from the exact locations are allowed, and the size
of the deviation depends on many factors. For example, passenger comfort
requires that accelerations are minimized, and that transitions are smooth.
As a consequence, exact interpolation is not desirable in this case. In fact,
the pilot is constructing a type of smoothing spline.

Based on this rather informal observation, it seems natural to give a more
explicit description of the general controllability problem in the context of
smoothing splines. It was from this rather straightforward idea that the con-
cept under investigation in this book arose, that is, the concept of control
theoretic splines.

1.2 BACKGROUND

The problem of approximation is almost as old as modern mathematics. In
fact, polynomial interpolation dates back to the mid 1700s, with the work
of Edward Waring (Lagrange interpolation). The ideas of polynomial ap-
proximation were central during the 1800s, with the development of various
families of orthogonal polynomials, and what later became known as the re-
lated Hilbert space theories. The polynomial interpolation problems were of
such importance that a significant part of modern mathematics can trace its
history back to these developments in one form or another. But, if polyno-
mial interpolation is such a well-studied and powerful tool, then why were
polynomial splines invented?1

1By splines, we here mean piecewise polynomial curves that are stitched together at given
nodal points in order to ensure certain regularity properties.
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1.2.1 Polynomial Interpolating Splines

Traditional (pre-spline) polynomial interpolation has at least two very seri-
ous drawbacks, which limit its use in many applications. The first is that
a polynomial of degree n + 1 may have as many as n local extrema. This
causes the curve to be very complex. If, for example, we have n + 2 data
points that are connected by curves that are approximately linear, then the
interpolating polynomial will have degree n + 1, and hence will not at all
be approximately (piecewise) linear. As such, while we may have a locally
good fit, we cannot have a good fit over an arbitrarily large interval.

The second major drawback is an algorithmic problem. To find a polyno-
mial that interpolates a given set of data is equivalent to inverting a van der
Monde matrix. The condition number of a van der Monde matrix can grow
as 22N , with N being the size of the matrix, making the inversion rather in-
tractable in that numerically, the problem of polynomial interpolation may
become highly unstable (see e.g., [42]). So, as beautiful as the theory of
polynomial interpolation is, it is not particularly useful for large problems.

To remedy this, during the early 1940s, splines as we know them were
invented by Isaac Schoenberg at the U.S. Army Ballistic Research Labora-
tory in Aberdeen, Maryland (the Aberdeen Proving Ground). The splines’
early uses are somewhat shrouded in mystery, as this was highly classified
research, and it was not until after the Second World War that Schoenberg
publicly described his invention.

Schoenberg formulated the spline problem in the following manner. Let
D = {(ti, αi) : i = 1, . . . , n} be a set of time-stamped data points
(with ti the time stamp and αi the data point), and let F be the set of
twice continuously differentiable functions that interpolate the data, that is,
F = {f ∈ C2[0, T ] | f(ti) = αi}. Now, the spline problem is given in
terms of the following optimization problem:

min
f∈F

max
t∈ [0,T ]

|f ′′(t)|,

where f ′′ denotes second derivative. What this problem entails is to find the
interpolating function f that has the smallest maximal second derivative on
the interval in question.

While this formulation is very elegant, it is (at least at first glance) not an
easy problem to solve. In fact, this formulation constitutes an optimization
problem over a notoriously difficult Banach space–the space of continuous
functions on a compact set. Luckily, the solution is the classical cubic spline.

The observation that the cubic spline (piecewise polynomial curves of de-
gree three) solved Schoenberg’s problem led to the development of a host
of good numerical algorithms for the construction of the optimal solution,
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based explicitly on the cubic nature of the solution polynomials. As a con-
sequence, the focus shifted to an in-depth study of such piecewise (cubic)
polynomials, while the original optimization problem was largely ignored
for nearly three decades. A comprehensive overview of classical splines
can be found in Carl de Boor’s A Practical Guide to Splines [24].

1.2.2 Polynomial Smoothing Splines

It was not until the early 1970s that Grace Wahba (who appropriately enough
happens to be the I. J. Schoenberg Professor of Statistics at the University of
Wisconsin-Madison) began to study the use of splines with noisy data, that
the underlying optimization problem was revisited. In fact, one of Wahba’s
most important contributions to the subject was to replace the Banach space
problem with the much simpler Hilbert space problem

min
f∈L2[0,T ]

∫ T

0
f ′′(t)2dt + λ

n∑
i=1

(f(ti)− αi)2. (1.1)

Here L2 denotes the Hilbert space of square integrable functions, and
λ > 0 is a weight that determines the tradeoff between the smoothness of
the solution and the closeness between curve and data points. An example
of interpolating and smoothing curves, as formulated by Schoenberg and
Wahba, is given in Figures 1.1 and 1.2.

1.3 THE INTRODUCTION OF CONTROL THEORY

It should be noted already at this point that the formulation in (1.1) requires
a certain leap of faith, since most L2 functions are not differentiable, that
is, the second derivative, f′′, may not be well defined. However, this small
inconvenience can be easily remedied by the use of a little control theory.

Let

f ′′(t) = u(t),

and let

y(t) =
∫ t

0
(t− s)u(s)ds. (1.2)
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Figure 1.1 Interpolating cubic splines.

Then Wahba’s optimization problem can be reformulated as

min
u∈L2[0,T ]

∫ T

0
u(t)2dt + λ

n∑
i=1

(y(ti)− αi)2.

Based on this formulation, we are only one small step away from the full-
fledged control theoretic formulation that will be pursued in this book. In
fact, if we simply assume a control system of the form

ẋ = Ax+ bu, y = cx,

so that

y(t) = ceAtx0 +
∫ t

0
ceA(t−s)bu(s)ds,

we are ready to apply a century of results from linear control theory to the
problem of smoothing splines. Note, for example, that the choice of

A =
(

0 1
0 0

)
, b =

(
0
1

)
, c =

(
1 0

)
corresponds to the situation in (1.2).
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Figure 1.2 Smoothing cubic splines.

1.3.1 When Do Solutions Exist?

It is an easy matter to add additional constraints to the control theoretic for-
mulation of the smoothing spline problem. For example, we can introduce

C = {u ∈ L2[0, T ] | �i(u) = 0, i = 1, . . . ,M},

where each �i is an affine linear functional on L2[0, T ].
We can then ask for the solution to the constrained problem

min
u∈C

∫ T

0
u(t)2dt + λ

n∑
i=1

(y(ti)− αi)2.

For example, we might let

�1(u) =
∫ 1

0
(t− s)u(s)ds− 1

and

�2(u) =
∫ 1

0
(t− s)u(s)ds + 1.



EditedFinal September 23, 2009

INTRODUCTION 7

Here there is obviously no solution since the constraints are contradictory.
A general condition for the solution to this problem to exist is of course that
C is nonempty. In fact, as we see later in the book, C defines an affine
subspace in L2[0, T ], and the optimization problem is simply asking for the
point of minimum norm in that affine space. And, as long as the affine
space is closed there is guaranteed to be a unique solution, as a direct con-
sequence of Hilbert’s famous projection theorem. (See Section 2.3.) As a
consequence, we do not need the full machinery of convex optimization, as
developed by Rockafellar [82].

As a final comment, it should be noted that if the constraints are nonlinear,
the problem is much more difficult. In fact, even if the constraints define a
“nice” subspace of L2, the problem of constructing the optimal control in
this case can be (and usually is) very difficult. We will examine a few such
problems in this book.

1.4 APPLICATIONS

One of the major goals of this book is to provide tools for applications.
To that end, we consider two main categories of applications to which the
control theoretic spline is particularly well suited: path planning and statis-
tics. In fact, even though the major impetus for this work came from path
planning–originally the air traffic control problem–it has evolved into a
much more general problem involving many autonomous vehicles or even
biological entities.

1.4.1 Path Planning

We consider this problem in several chapters in the book. The basic idea is
that we are given a set of way points and times, and we ask that the system
be at, or near, those points at specified times. We are not very interested in
the nature of the error at the way points unless it is too large. If, for example,
we are trying to design a path for an autonomous vehicle, we may have to
impose restrictions on the curvature of the path at particular points, and this
may require iterations over different choices of smoothing parameters (λ) to
deliver a suitable path.

1.4.2 Statistics

The major role of splines in statistics is to smooth noisy data. To this end,
it is important that the residues be well behaved. This observation has led
to a science studying the selection of the smoothing parameter λ in (1.1) to
achieve residues that have suitable statistical properties. Hopefully, λ can
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be chosen so that the residues are identically normally distributed. This is
seldom a goal in engineering. In this book, we use the parameter λ to control
bandwidth and do not study the residues as such. However, we will tie into
a number of statistically motivated applications, including the production of
probability densities using smoothing splines.

1.5 TOPICAL OUTLINE OF THE BOOK

This book is organized into ten chapters (plus the introduction). In Chapter
2, the basic material from control theory is presented as well as the setup
for the solution of the optimal control problem. Fundamental concepts from
the theory of Hilbert spaces are summarized. Notation is established and, as
an example, we revisit the classical controllability problem in the context of
Hilbert’s projection theorem.

In Chapter 3, we describe eight problems that are fundamental in the area
of interpolation and smoothing, and that will serve as motivation for the sub-
sequent chapters. Rather than providing complete solutions to these prob-
lems, this chapter should be thought of more as a road-map for this book
(and beyond). The eight problems are (1) interpolating splines, (2) interpo-
lating splines with constraints, (3) smoothing splines, (4) smoothing splines
with constraints, (5) monotone smoothing splines, (6) dynamic time warp-
ing, (7) model following, and (8) trajectory planning. Problems (1) and (3)
are basic to the material in the book. The other six problems are important
as applications and constitute refinements of the two basic problems.

In Chapter 4, we consider the general problem of smoothing splines from
the viewpoint of Hilbert spaces. In some sense, this chapter is the major
contribution of control theory techniques to the spline problems, and con-
stitutes the core of the book. We show that the general smoothing splines
result from an application of Hilbert’s projection theorem, and that we are
able to add any finite number of linear constraints to the formulation and
still have an effective algorithmic solution.

In Chapter 5, we show that control theoretic splines have the properties
that we expect from splines–suitable approximation properties. We show,
for example, that if we are given a smooth curve, then, as the number of
data points approaches a dense set, the sequence of splines converges in an
appropriate manner to this underlying curve. We also show that if noise is
added, we still maintain convergence.

In Chapter 6, we consider an extension of the smoothing spline problem
with finite/discrete data (a finite/discrete collection of data points) to the
problem of smoothing splines with continuous data. This problem is in
some real sense a filtering problem. The data can be considered to be the



EditedFinal September 23, 2009

INTRODUCTION 9

output of some machine, and we are trying to find a smooth approximation
of these data. The smoothing spline formulation lends itself well to the
problem. In this chapter we also consider the problem of recursive splines
as a natural tool for tackling the continuous data problem.

Chapter 7 deals with the question of how to produce splines with certain
regularity properties. In particular, we discuss how to produce splines that
are monotone in the sense of having nonnegative first or second derivatives.
The main theorem in this chapter is that for nilpotent systems, the opti-
mal curve is still piecewise polynomial despite the monotonicity constraints,
while the problem is completely solved using dynamic programming for the
case of monotone cubic splines. The monotone smoothing problem is of im-
portance in a number of applications ranging from economics to biology. In
this chapter we also discuss the related problem of constructing probability
density functions from data, which is an example of a much larger problem
involving continuous constraints.

In Chapter 8, we further consider the application of smoothing splines to
statistics by showing that the smoothing spline can be considered as an ap-
proximation to an explicit linear filter. The resulting construction will based
on linear-quadratic optimization and its associated theories of Hamiltonians
and Riccati transforms.

In Chapter 9, we consider a variation of the smoothing spline problem–
transfer between affine varieties. An example where this problem arises is
considered in detail (path planning for multi-robot systems), and the prob-
lem of transfer between affine varieties is solved in its full generality, al-
though introduced and motivated by this particular example problem. Inter-
estingly, this transfer problem can be considered as a control problem on the
manifold of affine subspaces.

In Chapter 10, we consider some applications to path planning. In par-
ticular, we study the problem of planning paths for multiple airplanes close
to an airport and the problem of reconstructing the paths executed by sea
turtles, based on telemetric data. As a consequence of this, we are forced to
construct splines on spheres instead of on “flat” Euclidean spaces.

Finally, in Chapter 11, we show that there are classes of problems that
do not fall into the Hilbert space setting but are still important and can be
solved. The particular application under investigation in this context is the
classic problem of selecting appropriate nodal (or data) points. In other
words, where do you put the sensors to obtain the information that you need
for control? In the context of polynomial interpolation, this problem was of
interest a hundred years ago, and it still remains an important and primary
problem in certain engineering fields.
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Chapter Two

CONTROL SYSTEMS AND MINIMUM NORM

PROBLEMS

In this chapter, we establish some basic notation and recall some fundamen-
tal results and definitions that will be used throughout the book. In partic-
ular, we will discuss linear control systems and Hilbert spaces. The reason
for this is that a large portion of the book is dedicated to the problem of gen-
erating curves with desirable characteristics and properties, which will be
achieved using tools from optimal control. However, rather than using tra-
ditional variational methods, we will view a majority of the optimal control
problems as affinely constrained, minimum norm problems in appropriate
Hilbert spaces.

——————————————————————————————

2.1 LINEAR CONTROL SYSTEMS

Given the state of a linear system (e.g., the position and velocity of a car,
the currents in an electric network, or the distribution of susceptible, in-
fected, and immune populations in epidemiology dynamics), denoted by
x(t) ∈ R

n, we will study how this state evolves over time intervals [0, T ].
Moreover, we will be interested in certain measurable aspects of the sys-
tem (e.g., distance traveled in the car, voltage across a particular component
in the network, or the rate at which healthy individuals become infected),
and we denote this measurable output by y(t) ∈ R

p. The final component
needed for understanding the various signals in a linear control system is the
control signal, u(t) ∈ R

m. This is the entity through which the dynamics of
the system can be changed (e.g., by stepping on the gas pedal, changing the
resistance in a variable resistor, or vaccinating segments of the population.)

2.1.1 State Space Representation

The standard state space representation of a finite-dimensional linear control
system is

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t), (2.1)
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where A is an n × n matrix, B is n ×m, and C is p × n. These matrices
may or may not be time-varying, but throughout this book we will assume
that they are constant matrices. Note also that we will use the (lower-case)
notation ẋ = Ax + bu and y = cx to signify that u(t) and y(t) are scalars
rather than vector.

The solution to (2.1) is given by

y(t) = Cx(t) = CeAtx0 +
∫ T

0
CeA(t−s)Bu(s)ds. (2.2)

Hence, if we define the function

�t(s) =

{
BT eAT (t−s)CT , s ≤ t,
0 otherwise,

(2.3)

as well as

βt = eAT tCT , (2.4)

where the superscript T denotes transpose, we can rewrite (2.2) as

y(t) = βT
t x0 +

∫ T

0
�T
t (s)u(s)ds. (2.5)

Now, as this book focuses on the issue of producing curves that pass
through (or close to) given data points α1, α2, . . . , αN at given times t1, t2,
. . . , tN , where 0 < t1 < · · · < tN < T , we note that

y(ti) = βT
ti x0 +

∫ T

0
�T
ti(s)u(s)ds, (2.6)

which is to be compared to the data point αi.
As a final observation, if we stack the �ti and βti together as

�(s) =

⎛
⎜⎜⎜⎝

�t1(s)
�t2(s)

...
�tN (s)

⎞
⎟⎟⎟⎠ , β =

⎛
⎜⎜⎜⎝

βt1

βt2
...

βtN

⎞
⎟⎟⎟⎠ , (2.7)

we can also define the Grammians

G=
∫ T

0
�(s)�T (s)ds, (2.8)

B=ββT , (2.9)

which will prove highly useful.
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2.1.2 The Basic Problem

Again, assume that we are given a set of data points α1, α2, . . . , αN and
corresponding times t1, t2, . . . , tN . Moreover, assume that the data points
are scalars. What we would like to do is to drive the scalar output of a given
linear control system “close to” the data points while using as little control
energy as possible, under the assumption that the control signal is scalar as
well.

If the initial condition is fixed, all we can do is change the control input,
and this problem becomes an optimal control problem. The basic formula-
tion is

min
u∈U

ρ

∫ T

0
u2(s)ds +

N∑
i=1

wi(y(ti)− αi)2, (2.10)

where ρ > 0 is the smoothing parameter and wi > 0, i = 1, . . . , N , is a
weight that determines the relative importance given to the ith data point.
Moreover, U is the space of control signals and y(ti) = yti , given in (2.6),
will belong to Y , that is, the space of output signals.

If we let

α =

⎛
⎜⎜⎜⎝

α1

α2
...

αN

⎞
⎟⎟⎟⎠ , ŷ =

⎛
⎜⎜⎜⎝

yt1

yt2
...

ytN

⎞
⎟⎟⎟⎠ , W =

⎛
⎜⎜⎜⎜⎜⎜⎝

w1 0 0 · · · 0
0 w2 0 · · · 0
0 0 w2 · · · 0

... . . . ...
0 0 0 · · · wN

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(2.11)
then we can rewrite (2.10) as

min
u∈U

ρ

∫ T

0
u2(s)ds + (ŷ − α)T W (ŷ − α). (2.12)

We will solve this and many related problems throughout this book, and
already it should be noted that a number of these problems can be cast as
minimum norm problems over particular functional spaces. This functional
view of linear control systems will prove useful for the developments in this
book; to make matters more precise, we first have to establish just what kind
of spaces these functional spaces might be.
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2.2 HILBERT SPACES

In the previous discussion, we referred to the spaces of input and output
signals U and Y , respectively. In this section, we will discuss some of the
properties of a class of such spaces of functions, namely, Hilbert spaces.

2.2.1 Vector Spaces

A vector space is a set X on which the two operations of addition and scalar
multiplication have been defined. In particular, ω1 + ω2 ∈ X for any two
elements ω1, ω2 ∈ X , while αω ∈ X for any α ∈ R and ω ∈ X . These two
operations, moreover, satisfy the following axioms:

(i) ω1 + ω2 = ω2 + ω1 (Commutative Law)
(ii) (ω1 + ω2) + ω3 = ω1 + (ω2 + ω3) (Associative Law)
(iii) ∃0X ∈ X s.t. ω + 0X = ω, ∀ω ∈ X (Null Element)
(iv)
(v)

{
α(ω1 + ω2) = αω1 + αω2

(α + β)ω = αω + βω
(Distributive Law)

(vi) (αβ)ω = α(βω) (Associative Law)
(vii) 0ω = 0X , 1ω = ω

Since a key issue in this book is to be able to chose the “best” control
input that makes a linear control system behave in a prescribed manner,
some notion of what “best” means is needed. And, in particular, we need
to define a concept of distance in a vector space. In fact, a normed, linear
vector space is a vector space X associated with a norm, satisfying

(i) ‖ω‖ ≥ 0, ∀ω ∈ X , ‖ω‖ = 0 ⇔ ω = 0X
(ii) ‖ω1 + ω2‖ ≤ ‖ω1‖+ ‖ω2‖, ∀ω1, ω2 ∈ X (Triangle Inequality)
(iii) ‖αω‖ = |α| · ‖ω‖, ∀α ∈ R, ω ∈ X .

Equipped with a norm, one can define concepts like convergence of se-
quences {ωm}. A particular type of sequence is the Cauchy sequence, which
satisfies ‖ωm−ωm′‖ → 0 as m,m′ →∞. X is said to be complete if every
Cauchy sequence made up of elements in X also has a limit that remains in
X itself. A complete, normed, linear vector space is called a Banach space.
However, some additional structure is needed, in particular, the important
notion of an inner product.

2.2.2 Inner Products

In order to solve a number of the optimal control problems under considera-
tion in this book, we need a notion of orthogonality. Orthogonality is defined
through the inner product 〈ω1, ω2〉, with the induced norm ‖ω‖ =

√
〈ω, ω〉.
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That this is indeed a norm must of course be checked against the axioms in
the previous section. For example, the properties that

(i) 〈ω1 + ω2, ω3〉 = 〈ω1, ω3〉+ 〈ω2, ω3〉,
(ii) 〈αω1, ω2〉 = α〈ω1, ω2〉,

directly establishes the triangle inequality as follows:

‖ω1 + ω2‖2 = 〈ω1 + ω2, ω1 + ω2〉
= 〈ω1, ω1〉+ 〈ω1, ω2〉+ 〈ω2, ω1〉+ 〈ω2, ω2〉
≤ ‖ω1‖2 + 2|〈ω1, ω2〉|+ ‖ω2‖2.

Now, the Cauchy-Schwarz inequality states that

|〈ω1, ω2〉| ≤ ‖ω1‖ · ‖ω2‖, ∀ω1, ω2 ∈ X ;

hence we have that

‖ω1 + ω2‖2≤‖ω1‖2 + 2‖ω1‖ · ‖ω2‖+ ‖ω2‖2
=(‖ω1‖+ ‖ω2‖)2,

and the triangle inequality follows.
Now, the final construction needed to be able to properly define what we

mean by orthogonality and projections is the notion of a Hilbert space. And,
a Hilbert space is simply a Banach space with an inner product that induces
the norm.

2.3 THE PROJECTION THEOREM

Assume that H is a Hilbert space and that V is a closed subspace of H.
Given an arbitrary point p ∈ H, a classic problem is that of trying to find the
point in V that is closest to p. In the finite-dimensional case, we know that
this point is given by the projection of p onto V . One remarkably powerful
fact about Hilbert spaces is that, in this regard, they behave just like finite-
dimensional spaces. It is, in fact, possible to talk about projections in Hilbert
spaces in a straightforward manner, through the notion of orthogonality.

Two elements p, p′ ∈ H are said to be orthogonal if 〈p, p′〉 = 0, denoted
by p ⊥ p′. (As an example, an immediate consequence of orthogonality
is that if p ⊥ p′ then ‖p + p′‖2 = ‖p‖2 + ‖p′‖2.) We say that p ⊥ S if
p ⊥ s, ∀s ∈ S, where S is any subset of H.

Armed with the notion of orthogonality, we can thus state Hilbert’s famed
projection theorem:
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Theorem 2.1 (Hilbert’s projection theorem) Let p be a point in a Hilbert
space H together with a closed subspace V of H. There exists a unique
point v0 ∈ V that is the closest to p in the sense that ‖p − v0‖ ≤ ‖p −
v‖, ∀v ∈ V . Moreover, v0 is uniquely determined by the condition that
x− v0 ⊥ V .

For example, if we let F : H → R
m be a linear operator that maps points

in H to R
m, we can define the subspace V as

V = {w ∈ H | Fw = 0}.

Moreover, if we let r ∈ R
m, we can translate V to get the affine variety Vr,

given by

Vr = {w ∈ H | Fw = r},

where we note that V0 = V .
As before, let p ∈ H be an arbitrary point in H, and consider the mini-

mum norm problem

min
w∈H

‖w − p‖2 (2.13)

such that w ∈ Vr.

This problem is depicted in Figure 2.1, where it is also shown how the
projection theorem gives the unique minimizer.

Vr

p

w�

Figure 2.1 Solution to the problem in (2.13).
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2.3.1 Finding the Minimizer

Unfortunately, it does not follow that just because it is clear pictorially, it is
clear how to construct the unique solution to the problem in (2.13). Follow-
ing the development in [64], we will describe the solution method that will
be used repeatedly throughout this book.

Vr

V0

p

(a) V0

Vr

V0

V ⊥
0

p

(b) V ⊥
0

Vr

V0

V ⊥
0

V ⊥
0 + p

p

(c) V ⊥
0 + p

Vr

V0

V ⊥
0

V ⊥
0 + p

p

Vr ∩ (V ⊥
0 + p)

(d) Vr ∩ (V ⊥
0 + p)

Figure 2.2 The steps to computing the unique minimizer that solves (2.13).

The first part in solving the problem in (2.13) is to translate Vr back to
a subspace, that is, to find V0, as shown in Figure 2.2(a). Since this is a
subspace, it is easy to compute its orthogonal complement V⊥0 , given by

V ⊥0 = {w ∈ H | w ⊥ V0},

as shown in Figure 2.2(b).
The next step toward finding the unique minimizer is to translate the or-

thogonal complement by p to obtain V⊥0 + p, as

V ⊥0 + p = {w ∈ H | w = ω + p, for some ω ∈ V ⊥0 }.
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This step is shown in Figure 2.2(c), and the unique minimizer w� is now
directly found by computing the intersection

{w�} = Vr ∩ (V ⊥0 + p),

as in Figure 2.2(d).
We summarize these steps below:

Given

• H a Hilbert space,

• Vr ⊂ H an affine variety inH,

• p ∈ H,

• the minimization problem

min
w∈H

‖w − p‖2

such that w ∈ Vr,

the unique minimizer w� is given by the projection of p onto Vr,
computed through:

1. Find V0.

2. Compute the orthogonal complement V⊥0 .

3. Translate to V ⊥0 + p.

4. w� is given uniquely by the intersection Vr ∩ (V ⊥0 + p).

It should noted, at this point that, even though these four steps needed to
solve the problem in (2.13) may seem simple, they are in fact rather powerful
tools that can be used in a number of problems involving smoothing splines.
This will be demonstrated in subsequent chapters.

2.4 OPTIMIZATION AND GATEAUX DERIVATIVES

Most of the problems we will encounter in this book can be reformulated as
minimum norm problems in Hilbert spaces. The constraints will mostly take
on the form of memberships in certain affine varieties. Thus, the projection
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theorem, as discussed in Section 2.3, is directly applicable. However, it will
not always be the case that we can apply this method, which calls for slightly
more complex machinery. Even though the basic smoothing problem, as
discussed in Section 2.1.2, can be cast as a minimum norm problem in a
Hilbert space, variations to this problem cannot. Problems that cannot be
solved using the projection theorem include

• The Sample-Point Selection Problem. Given that the data come from
an underlying generator h(t), how can we pick the best times t1, . . . , tN
so that the corresponding data points α1 = h(t1), . . . , αN = h(tN )
are optimal, in a certain sense?

• The Monotone Smoothing Problem. Given the basic problem formu-
lation in Section 2.1.2, can we solve this problem subject to mono-
tonicity constraints on the output y, or on its derivatives?

In order to address these and related problems, we will need to employ other
techniques for solving the optimal control problems.

2.4.1 Parameter Optimization

Consider the problem of finding the minimizer ξ� ∈ R
m to the function

h : R
m → R, under the constraint that ξ ∈ S ⊂ R

m. The optimality
conditions to this problem typically depend on the constraint set S, and if S
is given by equality constraints S = {ξ | G(ξ) = 0}, with G : R

m → R
p,

under certain regularity conditions on h and G, we get the well-known first-
order necessary optimality conditions.

Equality Constraints
Let ξ� be a (regular) local extremum to h(ξ) under the constraint that
G(ξ) = 0 ∈ R

p. Then there exists a Lagrange multiplier λ ∈ R
p such

that

∂h(ξ�)
∂ξ

+ λT ∂G(ξ�)
∂ξ

= 0.

The corresponding first-order necessary conditions (the so-called Kuhn-
Tucker conditions), when the constraint set is given by inequality conditions
G(ξ) ≤ 0, are as follows:

Inequality Constraints
Let ξ� be a (regular) local extremum to h(ξ) under the constraint that
G(ξ) ≤ 0 ∈ R

p. Then there exists a Lagrange multiplier λ ∈ R
p such

that
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∂h(ξ�)
∂ξ

+ λT ∂G(ξ�)
∂ξ

=0,

λT G(ξ�)=0,
λ≥ 0.

Even though these conditions are standard fare in any book on optimiza-
tion, we choose to include them for the sake of easy reference.

2.4.2 Optimization in Functional Spaces

Similarly, we can treat optimization problems on functional spaces as prob-
lems involving stationary points. However, it is not at all clear what the
operation of ∂/∂ξ actually corresponds to in these spaces. In fact, as nor-
mal derivatives can be thought of as limiting concepts, one can ask how
much a given functional F : H → R increases at a certain point p ∈ H
if we allow a small perturbation of p. In the functional case, this limiting
increment is not independent of the perturbation, and we will have to talk
about directional derivatives rather than normal derivatives.

Let, as before, H be a Hilbert space and let F : H → R. By the Gateaux
differential of F at p along q, we understand

δF (p, q) = lim
ε→0

F (p + εq)− F (ε)
ε

. (2.14)

Analogous to the unconstrained, finite-parameter optimization situation, a
necessary optimality condition is that the Gateaux differential vanishes along
all directions q.

Unconstrained Case
Let p� be a local extremum to F : H → R. Then δF (p�, q) = 0, ∀q ∈ H.

The constrained cases are significantly more involved, but we can, for ex-
ample, obtain the classic optimality conditions in optimal control from the
computation of the Gateaux differential. The way in which these can be ob-
tained is to insist that the control signal u belongs to a Hilbert space, U , and
to view the dynamics as an equality constraint defined for all times. Then
the variation can be computed along the direction v, which is the same as
computing the Gateaux differential at u along v. Ensuring that this differen-
tial vanishes for all directions then produces the classic first-order necessary
optimality conditions in variational calculus. (See, e.g., [10].) The Gateaux
derivative will be put to heavy use in this book in general, and Chapter 5 in
particular.
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2.5 THE POINT-TO-POINT TRANSFER PROBLEM

2.5.1 Control Systems as Linear Operators

For the purpose of establishing and enforcing the fact that linear control sys-
tems may be thought of as mapping control signals, defined over a suitable
functional space, into the state (or output) space, we make use of the clas-
sic point-to-point transfer problem. In fact, this problem is particularly well
suited for this purpose in that it explicitly involves conditions for controlla-
bility.

As before, we assume that the linear dynamics is given by the following
time-invariant system

ẋ(t) = Ax(t) + Bu(t), (2.15)

where x(t) ∈ R
n and u(t) ∈ R

m. However, rather than stressing the fact
that u at a particular time is a vector in R

m, one can view u itself as a
point in a functional space. For example, we can insist that u ∈ Lm

2 [0, T ],
which is the (Hilbert) space of equivalent classes of square-integrable m-
dimensional functions. (We will often suppress the dependence on m and
[0, T ] and simply write L2 whenever it is clear from the context what space
is considered.) With a slight abuse of notation (ignoring the equivalence
class issue), we can think of Lm

2 [0, T ] as

Lm
2 [0, T ] =

{
w : [0, T ]→ R

m such that
∫ T

0
wT (t)w(t)dt < ∞

}
,

with inner product

〈v,w〉L2 =
∫ T

0
vT (t)w(t)dt.

Now, the solution to (2.15), given that the initial state x(0) = x0, is given
by

x(T ) = eAT x0 +
∫ T

0
eA(T−t)Bu(t)dt. (2.16)

And, if we define the linear operator Λ : L2 → R
n as

Λu =
∫ T

0
eA(T−t)Bu(t)dt,

the solution in (2.16) can be reformulated as

x(T ) = eAT x0 + Λu. (2.17)
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2.5.2 Controllability and the Point-to-Point Transfer Problem

The point-to-point transfer problem considers whether it is possible to drive
x from x(0) = x0 to a given x(T ) = xT . In light of (2.17), the point-to-
point transfer problem is exactly that of determining if there exists a u such
that

xT − eAT x0 = Λu,

or equivalently if

xT − eAT x0 ∈ R(Λ),

where the range space of Λ is given by

R(Λ) = {z ∈ R
n | ∃u ∈ L2 such that z = Λu}.

Since L2 is an infinite-dimensional vector space, it may not be a particularly
easy task to characterize this range space. However, we know that

R(Λ) = R(ΛΛ�),

where the adjoint operator Λ� : R
n → L2 is defined through

〈z,Λv〉
R

n = 〈Λ�z, v〉L2 .

Note that ΛΛ� : R
n → R

n is simply an n × n matrix, which means that
R(ΛΛ�) should be easily computed.

What remains is to compute the adjoint operator. We have

〈z,Λv〉
R

n = zT
∫ T

0
eA(T−t)Bu(t)dt =

∫ T

0

(
BT eAT (T−t)z

)T
u(t)dt,

which means that

[Λ�z] (t) = BT eAT (T−t)z,

and

ΛΛ� =
∫ T

0
eA(T−t)BBT eAT (T−t)dt.

This is the controllability Grammian, denoted by Γ, and we have thus de-
rived the classic result that the point-to-point transfer problem has a solution
if and only if

xT − eAT x0 ∈ R(Γ).
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As a special case, we can consider the situation where

rank(Γ) = n.

In this case, it is possible to drive between any initial and final states, and if
the controllability Grammian satisfies this property, we say that the system
is completely controllable.

2.5.3 Minimum Energy Transfer

Now that we know when the point-to-point transfer problem has a solution,
a reasonable question is to try to solve it using as little control effort as
possible. In fact, we would like to solve it while minimizing ‖u‖2L2

. And, if
we let

ρ = xT − eAT x0,

we can define the affine variety

Vρ = {v ∈ L2 | ρ = Λv}.

Based on this notation, we have arrived at a formulation that renders the
projection theorem applicable, namely,

min
u∈L2

‖u‖2L2

such that u ∈ Vρ.

Following the discussion about the projection theorem in Section 2.3, we
know that the unique minimizer is given by

{u�} = V ⊥0 ∩ Vρ,

where V0 = {v ∈ L2 | 0 = Λv} is exactly the null space of Λ, N (Λ). A
fundamental fact about null and range spaces is that

N (Λ) = R(Λ�)⊥,

and hence

V ⊥0 = R(Λ�) = {v ∈ L2 | ∃z ∈ R
n such that Λ�z = v}.

All that remains in order to find the unique minimizer is to compute
the intersection V⊥0 ∩ Vρ. But, v ∈ V ⊥0 ⇔ Λ�z = v for some z ∈
R

n ⇔ ΛΛ�z = Λv for some z ∈ R
n.

We know that ρ = Λv since v ∈ Vρ, and hence

ΛΛ�z = ρ.
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Now, if the system is assumed to be completely controllable, we have that

z = (ΛΛ�)−1ρ,

which in turn gives the unique minimizer as

u� = Λ�(ΛΛ�)−1ρ.

As a result, we have solved an optimal control problem in a purely geo-
metric fashion. If we use the definitions of Γ, Λ�, and ρ, we arrive at the
familiar control law

u�(t) = BT eAT (T−t)Γ−1(xT − eAT x0).

In a similar fashion, we will be able to solve more and more involved opti-
mal control problems that arise in the control theory literature, as well as in
statistics and numerical analysis.
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Chapter Three

EIGHT FUNDAMENTAL PROBLEMS

In this chapter, we introduce a series of eight fundamental problems in the
areas of interpolation and smoothing of increasing complexity. These prob-
lems will serve as basic building blocks for the developments in later chap-
ters; in particular, we show that, although these eight problems have their
origins in optimal control theory, statistics, and numerical analysis, they
can be addressed in a unified manner. It will be shown that splines and lin-
ear optimal control theory are very closely related to the classical numerical
theory of splines. We will also show that all eight problems are very similar
in nature, if not in solution. We will not, at this point, effectively solve all
eight problems, but rather hint as to the solutions that will be derived in
later chapters.

——————————————————————————————

In Problem 1, we show that the theory of interpolating splines is naturally
considered as a problem of minimizing a quadratic cost functional subject
to a set of linear constraints, and in Problem 3, we show that the theory of
smoothing splines can be considered as very close to the theory of interpo-
lating splines, the difference being that the linear constraints are included in
the cost functional as a penalty term. For both Problems 1 and 3, the op-
timization problem is a straightforward problem of minimizing a quadratic
cost functional over the space of square integrable functions.

In Problems 2 and 4, we show that the problem of constructing splines
that pass through intervals instead of points can be reduced to the problem of
minimizing a quadratic cost subject to a set of inequality constraints. While
it is known that not all quadratic programming problems have solutions, this
has not been an issue with problems associated with splines.

In Problem 5, we discuss the problem of constructing splines that are
nondecreasing at the nodes. This will, following the same line of reasoning
as for the previous problems, be reducible to the problem of minimizing a
quadratic cost functional with inequality constraints, and hence reducible to
a quadratic programming problem.

In Problem 6, we restate the curve registration problem of Li and Ramsay
[58] as an optimal output tracking problem. Here, the problem becomes no-
ticeably harder since the cost functional as well as the differential constraints
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are now nonlinear. In Problem 7, we state the general output tracking prob-
lem and show that Problem 6 is indeed a special case of this problem.

Finally, in Problem 8, we state a version of the trajectory planning prob-
lem. The statement of this problem involves the previous seven problems.
Although the solution is not given, we do present an algorithm that will at
least produce a suboptimal solution. It should in fact be stressed that none of
these problems will be solved to completion in this chapter, but rather they
are to be thought of as motivating the further developments in later chapters
as well as future research.

3.1 THE BASIC SET-UP

3.1.1 Assumptions on the Underlying System Dynamics

Following the notation in Chapter 2, we will assume that we are given a
linear, time-invariant dynamical system of the form

ẋ(t)=Ax(t) + bu(t), (3.1)
y(t)= cx(t), (3.2)

where x(t) ∈ R
n. Note that we assume that for this system u(t) and y(t)

are scalars.
We will, furthermore, sometimes find it useful to impose some constraints

on the relative degree of the system through the assumption that

cb = cAb = cA2b = · · · = cAn−2b = 0. (3.3)

This condition can be relaxed, but parts of the exposition are simplified and,
as we will see, maximal smoothness is obtained with this assumption.

A canonical example of a system that satisfies the relative degree assump-
tion is

A=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
... . . . ...
0 0 0 · · · 1
α1 α2 α3 · · · αn

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.4)

b=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
...
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

, c =
(
1 0 · · · 0 0

)
.
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In fact, any system which satisfies the relative degree constraints in (3.3)
is equivalent to a system on this form. For example, consider the problem
of controlling a linear spring connected to a unit mass. If we let y be the
position of the mass, and let u be an externally applied force, then Newton’s
Second Law dictates that

ÿ(t) = −δẏ(t)− ky(t) + u(t),

where k is the spring coefficient and δ is the damping coefficient.
Now, setting x1 = y, x2 = ẏ, and x = (x1, x2)T , we get

ẋ(t) =
(

0 1
−k −δ

)
x(t) +

(
0
1

)
u(t),

y(t) =
(
1 0

)
x(t),

which is of the prescribed form.
The case in which all the αi in (3.4) are zero plays a particularly important

role, for then the solutions to the differential equation are polynomials con-
volved with the control function u. Under this assumption, all that follows
in this chapter reduces to the case of polynomial splines.

3.1.2 The Data Sets

The data sets we consider in this chapter are of two basic types, namely
deterministic and random. For trajectory planning problems, we usually
consider the data to be given in a deterministic form, that is, the coordinates
of the locations and times are given exactly. We denote this ”deterministic
data” set by

DD = {(αi, ti), i = 1, . . . , N | 0 < t1 < t2 < · · · < tN < T}, (3.5)

where DD stands for deterministic data, and where we are interested in the
behavior of the system over the time interval [0, T ].

As an example, consider the problem of air traffic control, where high-
level paths are given in terms of target locations together with the times at
which the aircraft is supposed to be at the different locations. The problem
to be solved in this situation is to plan paths that take the aircraft close to
the target locations at the specified times.

In contrast to this, consider the situation in which the data points are
obtained from noisy measurements of an underlying curve f : [0, T ] → R.
When addressing the problem of reconstructing f , one is faced with the
issue of handling stochastic rather than deterministic data. We denote by

SD = {(f(ti) + εi, ti), i = 1, . . . , N | 0 < t1 < t2 < · · · < tN < T}
(3.6)
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this stochastic data set, where the εi are observed values of a random vari-
able which, in general, we assume is symmetric with mean 0. The term
SD is to be interpreted as ”stochastic data,” and this data set SD is the set
usually encountered in statistics.

3.1.3 Solving the Linear System

Solving the differential equation in (3.1), (3.2), we have

y(t) = ceAtx0 +
∫ t

0
ceA(t−s)bu(s)ds. (3.7)

It is convenient to set x0 = 0 since the initial data can be absorbed into the
data set, as will be shown in later chapters.

We now rewrite this solution based on the one-parameter family of func-
tions in (2.3) from the previous chapter:

�t(s) =

{
ceA(t−s)b, t > s,
0 otherwise, (3.8)

where we have changed the notation slightly from (2.3). However, since
�t(s) is scalar, the two formulations are equivalent.

We can now define an output version of the linear operator from the pre-
vious chapter,

Lt(u) =
∫ T

0
�t(s)u(s)ds, (3.9)

which, together with the assumption that x(0) = 0, gives us the fundamental
relationship

y(t) = Lt(u). (3.10)

We will, moreover, make use of a differential version of this functional,
namely,

DkLt(u) =
∫ T

0

dk�t

dtk
(s)u(s)ds, (3.11)

and we note that this derivative is well defined, provided that k < n − 2,
under the assumption of (3.3). Using this notation, we have

dk

dtk
y(t) = DkLt(u). (3.12)
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3.2 INTERPOLATING SPLINES

In this section, we consider the first fundamental problem, namely, the prob-
lem of constructing a control law u(t) that drives the output function y(t)
through a set of data points at prescribed times. We will construct u so that
the resulting output curve is piecewise smooth and generalizes the classical
concept of polynomial splines. For this, we will consider the data set DD.

The interpolating conditions can be expressed as

αi = y(ti) = Lti(u), i = 1, . . . , N. (3.13)

There are, of course, infinitely many control laws that satisfy these con-
straints. The problem is to identify a scheme that will select a unique con-
trol law in some meaningful way. As already mentioned, linear quadratic
optimal control provides a convenient tool for this selection and, in fact, the
main objective of this book is to show that optimal control plays a natural
role for this.

For the sake of keeping things simple, we will here consider the energy
cost functional

J(u) =
∫ T

0
u2(s)ds. (3.14)

It should be noted that it is possible to increase the complexity of the cost
functional, which is the case in references [4],[5].

3.2.1 Problem 1

As seen in the previous chapter, in order for the optimal control problem to
be well posed, we must specify from what set the control is to be chosen,
and here we insist that u ∈ L2[0, T ]. The first of the fundamental problems
(the interpolation problem) then becomes

Problem 1: Interpolating Splines

min
u∈L2

J(u)

subject to the N constraints

αi = Lti(u), i = 1, . . . , N.
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This problem can be easily solved using the techniques discussed in the
previous chapter. In fact, the affine variety in L2[0, T ] that we are interested
in is defined through the constraints

Vα = {u ∈ L2 | αi = Lti(u), i = 1, . . . , N}.

Following the procedure from the projection theorem, we first have to con-
struct the orthogonal complement to the linear subspace defined by

V0 = {u ∈ L2[0, T ] | Lti(u) = 0, i = 1, . . . , N}.

It is straightforward to see that this set is the same as the set spanned by the
functions �ti(s). Thus, the optimal control is of the form

u�(s) =
N∑

i=1

τi�ti(s), (3.15)

for some scalars τ1, . . . , τN . What is remarkable about this is that the opti-
mal control problem, which is an inherently infinite-dimensional problem,
has been transformed into a finite-dimensional problem involving finding
the parameters τ1, . . . , τN . In statistics, Problem 1 would be referred to as a
nonparametric problem but, due to its solution being reducible to (3.15), it
is in fact a semiparametric problem.

Substituting (3.15) into the equations defining the affine variety, we have
a set of equations

y(t1) = τ1Lt1(�t1) + · · ·+ τNLt1(�tN ),
...

y(tN ) = τ1LtN (�t1) + · · ·+ τNLtN (�tN ).

As in Chapter 2, we now let ŷ = (y(t1), . . . , y(tN ))T , α = (α1, . . . , αN )T ,
and τ = (τ1, . . . , τN )T , which allows us to write the previous set of linear
equations in matrix form as

ŷ = Gτ = α ⇔ τ = G−1α,

where G is the positive definite Grammian

G =

⎛
⎜⎝

Lt1(�t1) · · · Lt1(�tN )
...

...
LtN (�t1) · · · LtN (�tN )

⎞
⎟⎠ =

∫ T

0
�(s)�T (s)ds,

with �(s) = (�t1(s), �t2(s), . . . , �tN (s))
T .



EditedFinal September 23, 2009

EIGHT FUNDAMENTAL PROBLEMS 31

Now, in light of (3.15), we have that

u�(t) = τT �(t);

that is, the optimal solution becomes

u�(t) = αT G−1�(t).

It should be noted that since the matrix G is in fact a Grammian, it has the
potential to be poorly conditioned. However, the advantage of this formu-
lation is that it is immediately clear that there is a unique solution since the
�ti(s) are linearly independent. The conditioning can be greatly improved
by replacing the functions �ti(s) with a set of functions that are nonzero
only on intervals of the form [ti, ti+n]. This procedure is outlined in [58].
The advantage of this is that it reduces the matrix G to a banded matrix
(tridiagonal in the case of n = 2), which somewhat simplifies the solution.

There are several ways to construct splines to solve the basic problem. A
totally different construction that is much better conditioned is developed
in [100]. That construction develops the banded structure directly, but has
the disadvantage of not carrying over to the more general problems that are
pursued in this book.

3.2.2 Example

As an example, consider the classic cubic, interpolating splines, where ÿ(t) =
u(t), that is, where

A =
(

0 1
0 0

)
, b =

(
0
1

)
, c =

(
1 0

)
.

An example of solving Problem 1 for this system is shown in Figure 1.1,
where the paramaters used are

T = 1, N = 4,
t1 = 1/4, t2 = 1/2, t3 = 3/4, t4 = 1,
α1 = 3/4, α2 = 2/5, α3 = 1/4, α4 = 1.

3.3 INTERPOLATING SPLINES WITH CONSTRAINTS

In this section, we consider a somewhat different problem that arises in a
number of applications and that can be solved in much the same manner as
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for the classical interpolating spline. The problem we consider is when the
system must be driven through intervals instead of data points.

3.3.1 Problem 2

Problem 2: Interpolating Splines with Constraints

min
u∈L2

J(u)

subject to the constraints

ai ≤ Lti(u) ≤ bi, i = 1, . . . , N.

This problem is discussed in the survey by Wegman and Wright [97]. In
this section, we show that this type of spline can indeed be recovered using
standard optimal control techniques similar to those in the last section, taken
together with some basic tools from mathematical programming. This is
needed since we no longer have an affine variety in a Hilbert space, and so,
are forced to use somewhat more elaborate tools.

We first note that, because of linearity, the set of controls that satisfy the
constraints is closed and convex.

Lemma 3.1 The set of controls that satisfy the constraints of Problem 2 is
a closed and convex subset of L2[0, T ].

Proof. Variations of the proof can be found in any number of textbooks.
Suppose that, for some finite number M , we have controls uk(s), k =
1, . . . ,M , which satisfy the constraints of Problem 2. Then, for each i, we
have

ai =
M∑

k=1

σkai ≤
M∑

k=1

σkLti(uk) ≤
M∑

k=1

σkbi = bi,

where
M∑

k=1

σk = 1, σk > 0, k = 1, . . . ,M.

Now consider
M∑

k=1

σkLti(uk) = Lti

(
M∑

k=1

σkuk

)
.
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Thus, the convex sum of controls satisfies the constraints if the individual
controls satisfy the constraints. On the other hand, assume that {uk} is
a sequence of controls that each satisfy the constraints. Passing the limit
through the integral, because of the compactness of the interval [0, T ], it
follows that the limit also satisfies the constraints. The lemma follows.

The existence and uniqueness of the optimal control follows from stan-
dard theorems, and we state this without proof. (See, for example, [96].)

Theorem 3.2 There exists a unique control signal u(t) that satisfies the
constraints of Problem 2 and that minimizes J(u).

Now, in order to solve Problem 2, we first let

a = (a1, a2, . . . , aN )T

and

b = (b1, b2, . . . , bN )T .

Since Problem 2 is a constrained optimal control problem, we introduce the
Lagrange multipliers λ, γ. In order to find the unique solution satisfying
the Kuhn-Tucker first-order necessary optimality conditions, we form the
associated optimal control problem

max
γ≥0,λ≥0

min
u∈L2

H(u, λ, γ), (3.16)

where the positivity constraints over λ and γ are taken component-wise, and
where

H(u, λ, γ) =
1
2

∫ T

0
u2(t)dt +

N∑
i=1

λi(ai − Lti(u)) +
N∑

i=1

γi(Lti(u)− bi)

(3.17)
and

γT = (γ1, γ2, . . . , γN )T , λT = (λ1, λ2, . . . , λN )T .

We first minimize the function H over u, assuming that λ and γ are fixed.
This minimum is achieved at the point where the Gateaux derivative of H ,
with respect to u, is zero. This is found by calculating

lim
ε→0

1
ε
(H(u + εv, λ, γ) −H(u, γ, λ))

=
∫ T

0

(
u(t)−

N∑
i=1

λi�ti(t) +
N∑

i=1

γi�ti(t)

)
v(t)dt.
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Setting this expression equal to zero gives that the optimal u� is given by

u�(t) =
N∑

i=1

λi�ti(t)−
N∑

i=1

γi�ti(t) = λT �(t)− γT �(t), (3.18)

where, as before,

�(t)T = (�t1(t), �t2(t), . . . , �tN (t))
T .

We now eliminate u� from H to obtain

H(u�, λ, γ)

=
1
2

∫ T

0
((λT − γT )�(t))2dt +

N∑
i=1

λi(ai − Lti(u
�))−

N∑
i=1

γi(Lti(u
�)− bi)

=
1
2
(λ− γ)T G(λ− γ) + λT a− γT b−

N∑
i=1

λiLti(u
�) +

N∑
i=1

γiLti(u
�)

=
1
2
(λ− γ)T G(λ− γ) + λT a− γT b−

N∑
i=1

N∑
j=1

λiλjLti(�tj )

+
N∑

i=1

N∑
j=1

λjγiLti(�tj ) +
N∑

i=1

N∑
j=1

λiγjLti(�tj )−
N∑

i=1

N∑
j=1

γjγiLti(�tj )

=
1
2
(λ− γ)T G(λ− γ) + λT a− γT b− λT Gλ+ λT Gγ + λT Gγ − γT Gγ

=
1
2
(λ− γ)T G(λ− γ) + λT a− γT b− (λ− γ)T G(λ− γ)

=−1
2
(λ− γ)T G(λ− γ) + λT a− γT b.

We can thus write H(u�, λ, γ) in a form suitable for use in quadratic
programming in the following manner:

H(u�, λ, γ) (3.19)

=−1
2

(
λT γT

)( G −G
−G G

)(
λ
γ

)
+
(

λT γT
)( a

−b

)
.

Thus, to find the optimal u�, we need only solve the quadratic programming
problem

max
λ,γ

H(u�, λ, γ), (3.20)

subject to the component-wise positivity constraints on λ and γ.
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In general, the control laws constructed by this technique are going to
drive the control close to the endpoints of the interval. A better control law
can be obtained by penalizing the control for deviating from the center of
the interval. The derivation is essentially the same in concept, but it is a bit
more complex in calculation.

3.4 SMOOTHING SPLINES

In many problems, to insist that the control drive the output through the
points of the data set is overly restrictive, and in fact leads to control laws
that produce wild excursions of the output between the data points. This
phenomenon was observed by Wahba, who developed a theory of smoothing
splines that corrected this problem to a certain degree.

In this section, we will develop a theory of smoothing splines based on
the same optimal control techniques used to produce interpolating splines.
However, we will penalize the control for missing the data points instead of
imposing hard constraints.

3.4.1 Problem 3

Problem 3: Smoothing Splines
Let

J(u) =
N∑

i=1

wi(Lti(u)− αi)2 + ρ

∫ T

0
u(t)2dt.

The problem is

min
u∈L2

J(u).

The constants wi, i = 1, . . . , N , are assumed to be strictly positive, as
is the smoothing parameter ρ. The choice of the parameters wi and ρ is
important. They control the rate of convergence of the optimal control signal
as the number of data points goes to infinity. This is discussed in detail in
[91]. The choice of the smoothing parameter ρ for fixed data sets is an
important issue and is discussed at length in the monograph by Wahba [96].

Even though Problem 3 can be solved quite elegantly as a minimum norm
problem in Hilbert spaces, the topic of the next chapter, we here follow the
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variational method used in the previous section in order to stress that this
important problem admits multiple solution methods.

We first calculate the Gateaux derivative of J in the form

lim
ε→0

1
ε
(J(u + εv)− J(u))

=
N∑

i=1

2wiLti(v)(Lti (u) + αi) + 2ρ
∫ T

0
v(t)u(t)dt

= 2
∫ T

0

[
N∑

i=1

wi�ti(t)(Lti(u) + αi) + ρu(t)

]
v(t)dt. (3.21)

Now, to ensure that u is a minimum, we must have that the Gateaux
derivative vanishes along all directions v, but this can only happen if

N∑
i=1

wi�ti(t)(Lti(u) + αi) + ρu(t) = 0. (3.22)

To simplify matters, we consider the operator T : L2[0, T ] → L2[0, T ],
given by

[T (u)](t) =
N∑

i=1

wi�ti(t)Lti(u) + ρu(t), (3.23)

or, in an equivalent form,

[T (u)](t) =
∫ T

0

(
N∑

i=1

wi�ti(t)�ti(s)

)
u(s)ds + ρu(t). (3.24)

Our goal is to show that the operator T is one-to-one and onto.

Lemma 3.3 The operator T is one-to-one for all choices of wi > 0, i =
1, . . . , N , and ρ > 0.

Proof. Suppose T (u0) = 0 for some u0 ∈ L2. (3.23) directly gives that

N∑
i=1

wi�ti(t)Lti(u0) + ρu0(t) = 0,

and hence that
N∑

i=1

wi�ti(t)ξi + ρu0(t) = 0,
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where ξi is the constant Lti(u0). This implies that any solution u0 of
T (u0) = 0 is in the span of the set {�ti , i = 1, . . . , N}.

Hence, consider a solution of the form

u0(t) =
N∑

i=1

τi�ti(t)

and evaluate T (u0) to obtain

N∑
i=1

wi�ti(t)Lti

⎛
⎝ N∑

j=1

τj�tj (t)

⎞
⎠+ ρ

N∑
i=1

τi�ti(t) = 0.

Thus, for each i,

wi

N∑
j=1

Lti(�tj )τj + ρτi = 0.

The coefficient τ (τT = (τ1, . . . , τN )T ) is then the solution of a set of linear
equations of the form

(WG + ρI)τ = 0,

where W is the diagonal matrix of the weights wi and G = [gij ] is, as
before, the Grammian with gij = Lti(�tj ).

Now, consider the matrix WG + ρI and multiply it on the left by W−1,
and consider the scalar

zT (G + ρW−1)z = zT Gz + ρzT W−1z > 0,

since both G and ρW−1 are positive definite. Thus, for positive weights and
positive ρ, the only solution is τ = 0.

It remains to show that the operator T is onto.

Lemma 3.4 For ρ > 0 and wi > 0, i = 1, . . . , N , the operator T is onto.

Proof. Suppose T is not onto. Then there exists a nonzero function ω ∈
L2[0, T ] such that ∫ T

0
ω(t)[T (u)](t)dt = 0,

for all u ∈ L2[0, T ]. We have, after some manipulation,∫ T

0
ω(t)[T (u)](t)dt

=
∫ T

0

[∫ T

0

N∑
i=1

wi�ti(t)�ti(s)ω(t)dt + ρω(s)

]
u(s)ds = 0,
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and hence
∫ T

0

N∑
i=1

wi�ti(t)�ti(s)ω(t)dt + ρω(s) = 0, ∀s ∈ [0, T ].

By the previous lemma, the only solution of this equation is ω = 0, and
hence T is onto.

We have arrived at the following proposition.

Proposition 3.5 The functional

J(u) =
N∑

i=1

wi(Lti(u) + αi)2 + ρ

∫ T

0
u2(t)dt

has a unique, global minimum.

Proof. We use (3.22) to find the optimal solution to Problem 3. As in the
proof that T is one-to-one, we look for a solution of the form

u(t) =
N∑

i=1

τi�ti(t).

Substituting this expression into (3.22), we have upon equating coefficients
of �ti(t), i = 1, . . . , N , the system of linear equations (WG+ρI)τ = Wα.
As in the proof of Lemma 3.3, the coefficient matrix is invertible, and hence
the solution exists and is unique.

The resulting curve y(t) is a spline. The major difference between clas-
sic, interpolating splines and smoothing splines is that the nodal points are
determined by the optimization instead of being predetermined. It should,
moreover, be noted that inverting the matrix WG + ρI is not trivial. Since
it is a Grammian, we can expect it to be badly conditioned. However, by
using the techniques in [30], the conditioning can be improved.

As an example, consider again the example in Subsection 3.2.2, but with
the cost functional in Problem 3 with ρ = 5 · 10−6, w1 = · · · = w4 = 1.
The resulting smoothing spline is shown in Figure 1.2.

3.5 SMOOTHING SPLINES WITH CONSTRAINTS

In this section, we consider two different problems. The first problem that
we will consider is a rather straightforward extension of Problem 2. The
derivation, though, is significantly more involved. This is stated as Problem
4, and the resulting spline is of significant practical importance.
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The second class of problems we consider in this chapter, namely, prob-
lems involving stochastic data, is very important. It is often the case that
there is something known about the underlying curve; for example, in SD
we may have some prior knowledge about the function f . For example, if
the data represent growth data on a child from age three months to seven
years, we can be reasonably assured that the function f is monotonously
increasing, and the resulting spline must also be monotonously increasing
if the curve is to have any credibility. There are also cases in which the
underlying curve is convex, or more information is known so that the curve
must satisfy other shape constraints. In this section, we will show that the
techniques we have developed for optimal control can be used to formulate
and solve a version of these problems.

3.5.1 Problem 4

Problem 4: Smoothing Splines with Constraints
Let the cost functional be defined by

J(u) =
1
2

∫ T

0
u2(t)dt +

1
2

N∑
i=1

(Lti(u)− ζi)2,

where

ζi =
ai + bi

2
.

The problem is

min
u∈L2

J(u),

subject to the constraints of Problem 2.

An example of a curve that is obtained through Problem 4 is given in
Figure 3.1.

To solve Problem 4, define H as

H(u, λ, γ) =
1
2

∫ T

0
u2(t)dt +

1
2

N∑
i=1

(Lti(u)− ζi)2

+
N∑

i=1

λi(ai − Lti(u)) +
N∑

i=1

γi(Lti(u)− bi). (3.25)
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Figure 3.1 Interpolating through intervals while penalizing deviations from the midpoints of
the intervals. Here, a second-order system with both eigenvalues equal to -1 was
used to produce the scalar output y = x1, with ẋ1 = −x1 +x2, ẋ2 = −x2 +u.

As before, we want to minimize H with respect to u and maximize with
respect to λ and γ. Calculating the Gateaux derivative of H with respect to
u, we find

lim
ε→0

1
ε
(H(u + εv, λ, γ) −H(u, λ, γ)) (3.26)

=
∫ T

0

[
u(t) +

N∑
i=1

�ti(t)(Lti(u)− ζi)−
N∑

i=1

λi�ti(t) +
N∑

i=1

γi�ti(t)

]
v(t)dt.

Setting this equal to 0, we find the condition that

u(t) +
N∑

i=1

�ti(t)(Lti(u)− ζi)−
N∑

i=1

λi�ti(t) +
N∑

i=1

γi�ti(t) = 0. (3.27)

Thus, we see, once again, that we must have the optimal u as a linear com-
bination of the �ti ,

u�(t) =
N∑

i=1

τi�ti(t). (3.28)



EditedFinal September 23, 2009

EIGHT FUNDAMENTAL PROBLEMS 41

This, again, has the effect of reducing the nonparametric problem to a prob-
lem of calculation of parameters in a finite-dimensional space.

Substituting u� into H , we have

H(τ, λ, γ) (3.29)

=
1
2
τT Gτ +

1
2
τT G2τ − τT G(a + b) + λT a− τT Gλ

+τT Gγ − γT b+ κ,

where κ is a constant that does not affect the location of the optimal point.
The problem is now the following:

max
λ≥0,γ≥0

min
τ∈RN

H(ζ, λ, γ). (3.30)

Calculating the derivative of H with respect to τ , we have

∂H

∂τ
= Gτ� + G2τ� −G(a + b)−Gλ + Gγ = 0, (3.31)

where τ� is optimal. Solving for τ�, we have

τ� = (I + G)−1(a + b+ λ− γ). (3.32)

Now, substituting this into H , we get

H(τ�, λ, γ) (3.33)

=
1
2
(a + b+ λ− γ)T G(I + G)−2(a+ b+ λ− γ)

+
1
2
(a + b+ λ− γ)T G2(I + G)−2(a + b+ λ− γ)

− (a + b + λ− γ)T (I + G)−1G(a + b+ λ− γ)
+ λT a− γT b + κ

= −1
2

(
λT γT

)( (I + G)−1G −(I + G)−1G
−(I + G)−1G (I + G)−1G

)(
λ
γ

)

+
(

λT γT
)( (I + G)−1G(a + b) + a

−(I +G)−1G(a + b)− b

)
+ κ2,

where κ2 is a constant.
What remains is to solve the quadratic programming problem

max
λ≥0,γ≥0

{
−1
2

(
λT γT

)( (I + G)−1G −(I + G)−1G
−(I + G)−1G (I + G)−1G

)(
λ
γ

)

+
(

λT γT
)( (I + G)−1G(a + b) + a

−(I + G)−1G(a + b)− b

)}
. (3.34)
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This problem is easily solved numerically and produces splines which
are quite well behaved. Although the quadratic programming problem is
more complicated in terms of the matrices, these formulations seem to offer
enough improvement over the formulation of Problem 2 to be worthwhile.

3.5.2 Problem 5

The next problem we consider is the problem of constructing monotone
splines. This problem, as we discussed in the beginning of this section, is
very important for many practical applications. We will do less than con-
struct monotone splines here, although it is possible to extend the techniques
we are using to produce an infinite-dimensional quadratic programming
problem that produces monotone splines. We do not make that extension
in this section, but restrict ourselves to ensuring that the spline is nonde-
creasing at each node. This problem has a significant increase in difficulty
over the problems we have considered to this point.

Problem 5: Monotone Smoothing Splines
Let

J(u) = ρ

∫ T

0
u2(t)dt +

N∑
i=1

wi(Lti(u)− αi)2,

and let a set of constraints be imposed as

DLti(u) ≥ 0, i = 1, . . . , N.

The problem then becomes

min
u∈L2

J(u).

We define H as

H(u, λ) = J(u) +
1
2

N∑
i=1

wi(Lti(u)− αi)2 −
N∑

i=1

λiDLti(u). (3.35)

As before, the idea is to minimize H over u and to maximize H over all
component-wise positive Lagrange multipliers λ ∈ R

N . The scheme is to
construct the control that minimizes H as a function of λ, and to use this
parameterized control to convert H to a function of a finite set of parame-
ters. The resulting H will then be minimized with respect to a subset of the
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parameters and H will be reduced to a function of λ alone. Then the prob-
lem reduces to a quadratic programming problem that can be solved using
standard software.

We will use the notation

hti(s) =
d

dt
�ti(s)

for
d

dt
�t(s)

∣∣∣∣
t=ti

,

and we can then rewrite H as

H(u, λ) =
1
2

∫ T

0

(
u2(s)−

N∑
i=1

λi
d

dt
�ti(s)u(s)

)
ds+

N∑
i=1

wi(Lti(u)−αi)2.

(3.36)
We calculate the Gateaux derivative of H with respect to u in the direction
v ∈ L2 to obtain

DuH(u, λ)(v) (3.37)

=
∫ T

0

(
u(s)−

N∑
i=1

λihti(s) +
N∑

i=1

wi(Lti(u)− αi)�ti(s)

)
v(s)ds,

and thus the optimal u must satisfy

u(s)−
N∑

i=1

λihti(s) +
N∑

i=1

wi(Lti(u)− αi)�ti(s) = 0. (3.38)

As a consequence, the optimal u can be represented as

u(s) =
N∑

i=1

λihti(s) +
N∑

i=1

τi�ti(s), (3.39)

and the representation is unique provided that, for each i, i = 1, . . . , N ,
the functions hti and �ti are linearly independent. This linear independence
condition reduces to the condition that An−1 �= 0, and with the conditions
of (3.3) that A �= 0. So we may assume, without loss of generality, that the
representation is unique.

We now substitute u into H to get a function of τ and λ. We first establish
some notation which we will need in order to simplify the formulation. Let

M = [hij ], hij =
∫ T

0
hti(s)htj (s)ds,
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K = [kij ], kij =
∫ T

0
hti(s)�tj (s)ds,

G = [gij ], gij =
∫ T

0
�ti(s)�tj (s)ds.

We now substitute the expression for u into H(u, λ) and obtain, after con-
siderable simplification,

H(τ, λ)=
1
2

[
λT Mλ + λT Kτ + τT KTλ + τT Gτ

]
− λT Mλ− λT Kτ

+
1
2

N∑
i=1

wi

[
λT KT eie

T
i Kλ+ τT Geie

T
i Gτ + α2

i

+ 2λT KT eie
T
i Gτ − 2αiλ

T KT ei − 2αiτ
T Gei

]
,

where ei is the ith unit vector in R
N . We rewrite this after further simplifi-

cation as

H(τ, λ)=−1
2
λT Mλ +

1
2
τT Gτ +

1
2
λT KT WKλ+

1
2
GWGτ

+
1
2
αT Wα+ λT KWGτ − λT KT Wα− τT GWα,

where, as before, W is the diagonal matrix of weights wi.
We now calculate the Gateaux derivative of H with respect to τ and obtain

DτH(τ, λ)(z) = zT (Gτ + GWGτ + GWKTλ−Gα). (3.40)

Setting this equal to zero, we have that the optimal τ must satisfy the equa-
tion

(G +GWG)τ = Gα−GWKλ, (3.41)

or equivalently, since G is invertible,

τ = (W−1 + G)−1(α−Kλ). (3.42)

It is clear that when we substitute this into H we have a quadratic function of
λ, so the problem is reduced to solving a quadratic programming problem.
Some simplification is possible, but the overall form of the matrices involved
becomes rather messy. In fact, we get the general expression for H(λ) as

H(λ) = λT F1λ+ F2λ+ F3α. (3.43)

It is easy enough to generalize this construction to include higher-order
derivative constraints. The only problem that arises is to ensure that the rep-
resentation of the optimal control in (3.39) is unique. If we were to gener-
alize the construction to linear combinations of derivatives and to different
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linear combinations at different points, this obstruction becomes quite se-
vere, and some of the same problems arise here as do in the case of Birkhoff
interpolation, as discussed in [106].

Note that this construction does not guarantee that the spline function
is monotone, but only that the function is nondecreasing at each node. In
numerical experiments, we have found that by adding points we can create
monotone splines using this construction. We have not, however, at this
point proved that the addition of a finite number of points suffices to produce
monotone splines. In Chapter 7 we will return to this important problem.

3.6 DYNAMIC TIME WARPING

Traditionally, statistics has dealt with discrete data sets. However, most
statisticians would agree that information is sometimes lost when data are
considered to be point or vector data. In longitudinal studies, it is clear
that it is the record of an event that is important, not the individual mea-
surements. For example, if one is studying the growth of individuals in an
isolated community, it is not the heights at yearly intervals but the curve that
represents the growth of an individual over a sequence of years that is of in-
terest. These matters are discussed at length in the seminal book of Ramsay
and Silverman [80]. This book makes a very convincing argument for the
study of curves as opposed to discrete data sets.

Often when studying curves it is not clear that the independent variable
(which we will refer to as time) is well defined. Li and Ramsay [58] con-
sider several examples which make this point quite well. This problem has
also arisen when trying to construct weight curves for premature babies–
the time of conception is seldom known exactly, and different ethnic groups
may have different growth curves. This leads to the problem of “dynamic
time warping” or “curve registration” in order to compare curves that have
different bases of time. In this section, we will follow the development of
Li and Ramsay [58] and of Ramsay and Silverman [80]. We will show that
their formulation is equivalent to the problem of optimal output tracking in
control theory, and then give a formulation that is somewhat better behaved
from an optimization point-of-view.

3.6.1 Time-like Functions

Consider a set of curves

DC = {fi(t) ∈ F | i = 1, . . . , N},
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and assume that there is some commonality among the curves encoded
through the set F , for example, they are all growth curves. Choose one
such curve, say f0(t). The choice of this curve is discussed in some detail
in [80].

Let

T = {ξδ(t) | ξδ(t) is “time-like”},

parameterized by δ in some compact set D. What we mean by “time-like” is
quite vague. We would like for the functions to be at least almost monotone,
although at this point we do not want to impose too many conditions. We
can pose the problem in the following manner:

min
δ∈D

‖f0(t)− fi(ξδ(t))‖.

This problem, although elegant in its simplicity, is too general to solve. In
[58], the set of pseudo-times is constructed in a very clever and insightful
manner. In particular, the condition that

ξ̈(t)
ξ̇(t)

= v(t),

with v(t) being “small,” is imposed. The idea behind this construction is
that this will make the curvature of the pseudo-time ξ(t) small and so the
resulting function ξ(t) would be time-like.

3.6.2 Problem 6

We can now reformulate the curve registration and dynamic time warping
problem in the context of optimal control. (We emphasize that we are only
reformulating the problem in [58].)

Problem 6: Dynamic Time Warping

min
u∈L2

∫ T

0
(u2(t) + (fi(t)− f0(x(t)))2)dt,

subject to the constraint

ẍ(t) = u(t)ẋ(t).
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The question of initial data is problem dependent, and we let it fall outside
the scope of this discussion. However, the problem can be solved with or
without the initial data being given. (See Polak [77] for a complete treatment
of this issue.) And, rather than actually solving Problem 6, we simply note
that this is an important problem one would typically like to be able to solve.

3.6.3 Problem 7

Now, consider a control system with output, of the form

ẋ(t) = f(x(t)) + u(t)g(x(t)),
y(t) = h(x(t)), (3.44)

and let a curve z(t) be given which we would like to follow as closely as
possible with the output curve y(t). The classical model following problem
is to construct u so that the distance between y and z is minimized. This
problem is often considered in the asymptotic sense, but in reality the finite
time domain is the most important in almost all applications.

Problem 7: Model Following

min
u∈L2

∫ T

0
(u2(t) + (z(t) − y(t))2)dt,

subject to the constraint that

ẋ(t) = f(x(t)) + u(t)g(x(t)),
y(t) = h(x(t)).

It is clear that Problem 6 is a special case of Problem 7 by taking

z̃ =
(

x
ẋ

)
,

and then noting that

˙̃z =
(

0 1
0 0

)
z̃ + u

(
0 0
0 1

)
z̃,

with z = (10)z̃.
The solution to this problem is given by the solution to the correspond-

ing Euler-Lagrange equations, which in this case is a nonlinear two-point
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boundary value problem. The nonlinearity comes from the fact that the
differential equation has a nonlinearity; in Problem 6 the equation is bilin-
ear and in Problem 7 the equation is nonlinear affine. However, even if
we choose a linear constraint, the Euler-Lagrange equations are nonlinear
because the output function is a nonlinear function of the state. These prob-
lems are in general only solvable by numerical methods. (Again, Polak [77]
is useful here.)

3.7 TRAJECTORY PLANNING

The trajectory planning problem is a fundamental problem in aeronautics,
robotics, biomechanics, and many other areas of application in control the-
ory. The problem comes in two distinct versions. The most general version
is of interest for autonomous vehicles or autonomous movement in general.
There the complete route is not known in advance and must be planned “on-
line.” This problem is far beyond what we can do with the relatively simple
tools we have developed here. The version of the problem we will discuss
in this section is in contrast quite simple. We are given a sequence of target
points and target times, and we are required to be close to the point at some
time close to the target time.

The problem of being close in space is nicely solved by Problems 2 and
4, but the problem of being close in time has been difficult to resolve. The
concept of “dynamic time warping” seems to be the tool that can resolve it.
Neither the problem nor its solution is trivial, and it is unfortunate that there
does not appear to be an analytic solution.

3.7.1 Problem 8

We define an auxiliary system which we will use as the pseudo-time. We
have chosen the system to be linear rather than the more complicated non-
linear system of Li and Ramsay. Let

F =
(

0 1
0 1

)
,

gT = (0, 1), and h = (1, 0). We then consider the system

ż = Fz + gv,
ξ = hz,

(3.45)

with 0 initial data. We then have the output ξ represented as

ξ(t) = t +
∫ T

0
(t− s)v(s)ds,
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so that if v is small, ξ is indeed “time-like.”
We now formulate the trajectory planning problem in the following man-

ner:

Problem 8: Trajectory Planning
Let

J(u, v) =
1
2

N∑
i=1

wi(Lξ(ti)(u)− αi)2

+
1
2

∫ T

0
(u2(t) + ρv2(t))dt +

1
2

N∑
i=1

ωi(ξ(ti)− ti)2.

The problem is

min
v∈L2

min
u∈L2

J(u, v),

subject to the constraints

ż = Fz + gv,
ξ = hz,

and

ξ̇(ti) ≥ 0.

There is no really clean solution to this problem, but we are able to present
an algorithm which gives at least a suboptimal solution. We first minimize
with respect to u (this is just Problem 3), and we find that the optimal u is
of the form

u(t) =
N∑

i=1

τi�ξ(ti)(t), (3.46)

where the τi are chosen as in the solution to Problem 3. Recall that the
vector τ satisfies the matrix equation

(DW + ρI)τ = Wα,

and hence the τi are functions of the as of yet nonoptimal ξ(ti). However,
this choice of u is optimal for any choice of ξ(ti). Substituting u into the
functional J , we reduce J to a function of v alone. We are then faced with
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a highly nonlinear functional to be minimized subject to a differential equa-
tion constraint. That is, we now have an optimal control problem with a
nonlinear cost functional and a very simple linear control system as the con-
straint. It is possible to write the Euler-Lagrange equations for this problem,
but they are somewhat intimidating. Instead, we opt for a suboptimal solu-
tion that has a chance of being calculated using good numerical optimization
procedures.

We assume that the control v will have the form

v(t) =
N∑

i=1

γi(ti − t)+, (3.47)

where the function (ti − t)+ is the standard function of polynomial splines
that is zero when t > ti and is ti − t otherwise, and the γi are to be deter-
mined. Calculating ξ(t) with this choice of v, we see that ξ is a cubic spline
with nodes at times ti. Substituting ξ into the cost functional, we have that
J is now a function of the N parameters γi, i = 1, . . . , N . In other words,
we have reduced the problem to the a finite-dimensional optimization prob-
lem. At this point, we have not taken into account the inequality constraints
on the derivatives of the ξ(ti); this is done by introducing the Hamiltonian,
H , in Problem 5. Because of the nonquadratic nature of the cost functional,
the quadratic programming problem has become a nonlinear programming
problem, and, as such, presents more difficult numerical problems.

SUMMARY

In this chapter, eight different problems originating from optimal control
theory, statistics, and numerical analysis were introduced. We showed that
these problems can be formulated and, to a certain degree, addressed within
a unified framework based on the relationship between optimal control and
conventional or smoothing splines.

The first five problems concerned the minimization of a quadratic cost
functional subject to a set of linear constraints, ranging from exact interpo-
lation or penalized deviations from the nodes, to splines that pass through
intervals or are nondecreasing at the nodes. For these problems, we were
able to come up with explicit solutions.

In Problems 6 and 7, the curve registration problem was addressed by ex-
tending our optimal control formulation to include the concept of “dynamic
time warping.” The last problem concerned trajectory planning where, given
a set of target points and target times, we wanted to be close to the points
at times close to the target times. We were able to formulate these prob-
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lems within our optimal control framework in order to unite them with the
previous problems into one unified theory.

In the coming chapters, we will return to a number of these problems and
see how they can be viewed directly as minimum norm problems in cer-
tain Hilbert spaces, as well as discuss extensions and potential applications.
Thus, this chapter should be thought of as hinting of things to come, rather
than presenting a self-contained set of solutions.
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Chapter Four

SMOOTHING SPLINES AND

GENERALIZATIONS

Estimation and smoothing for data sets that contain random data present
difficulties not present in deterministic data sets. Yet such data sets are very
common in practice and, if the nature of the data is not respected, conclu-
sions may be drawn that have little relation to reality. This book presents a
treatment that unifies the concepts of interpolating and smoothing splines,
and, in this chapter we will study the basic construction–the smoothing
spline–as a minimum norm problem in a suitable Hilbert space. This ap-
proach unifies a series of problems addressed in [31],[33],[69],[91],[101],
[106]. Furthermore, the approach of this chapter gives a unified treatment
of smoothing splines as developed by Wahba [96] and the classical poly-
nomial and exponential interpolating splines. The approach of this chapter
rests on the Hilbert space methods developed by Luenberger in [64].

——————————————————————————————

The theory of smoothing splines is based on the premise that a datum, α, is
the sum of a deterministic part, β, and a random part, ε. It is assumed that ε
is the value of a random variable drawn from some probability distribution.
Smoothing splines are designed to approximate the deterministic part by
minimizing the variance of the random part. Often the random variable
comes from measurement error. We start this chapter with two examples
in which the random error comes either from the measurements or from
estimations based on incomplete data.

Example 4.1 A seemingly straightforward problem is to determine the vol-
ume of water contained in a playa lake in West Texas [89]. These are tran-
sient water supplies that, because of their formation, are almost perfectly
circular. If a transect is made across the center of the lake, it is possible
to obtain a fairly good estimate of the volume. At the boundary of the lake
the depth of the water is 0 cm. However, the depth is typically measured by
a person (e.g., a graduate student) wading through the lake and measuring
the depth at a series of points. The bottom of the lake is silted and so it is not
clear where the bottom of the probe rests. The measurements are made by
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reading the depth of a marked probe. These measurements are indeed quite
random. The data set then consists of two deterministic values at the bound-
ary, and a series of random numbers representing the depth at a series of
predetermined points.

Example 4.2 For most individuals in the United States, their home is the
principal component of their financial portfolio. The question of the value
of the portfolio is of interest in a variety of economic indicators [70]. When
the home is purchased, there is a firm monetary value that can be measured
and when the home is sold, there is another firm value. In between, the
value is less certain. Almost every individual can give you an estimate of
the value, but unless a formal appraisal is done there may be a very large
error in the estimate. This results in a data set with a few deterministic
values, the purchase price, the selling price, and formal appraisals, and
many random values that are estimates by the owner.

These two examples have in common some data that can be assumed to
be exact and some data that are subject to error. In this chapter, we will
consider the problem of approximating discrete data using the dynamics of
a linear controlled system. The system may have hard constraints such as
boundary values or hard constraints at internal values. The data will be as-
sumed to be noisy with known statistics. A contribution of this chapter is to
formulate these problems as a general class of minimum norm problems in
Hilbert spaces, as formulated in [69],[91],[105]. The advantage of this for-
mulation is more than conceptual in that the smoothed data are immediately
available, as is the smooth functional approximation. Thus we are able to
split the problems into an estimation problem and a problem of constructing
interpolating splines on a derived data set. Both of these problems permit
fast numerical solutions.

As before, we will let

ẋ = Ax + bu, y = cx, x(0) = x0 (4.1)

be a controllable and observable linear system, with initial data x(0) = x0.
We will think of this system as the curve generator. As will be seen, we
achieve the smoothest approximation if we impose the conditions for n ≥ 2

cb = cAb = cA2b = · · · = cAn−2b = 0, (4.2)

where n is the dimension of the system.
Now, let the data set be given as

D = {(ti, αi) : i = 1, . . . , N},
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and assume that ti > 0 and let T = tN . We will refer to the points ti as the
“nodes.” Our goal is to find a control u(t) that minimizes

J(u, x0) =
∫ T

0
u2(t)dt + (ŷ − α̂)T Q(ŷ − α̂) + xT

0 Rx0, (4.3)

where Q and R are positive definite matrices. It is not strictly necessary
for these matrices to be positive definite. However, as in the case of the
linear regulator, if they are not positive definite then other conditions must
be imposed to ensure a unique solution. We will discuss this further in
Section 4.1.1. The vector ŷ ∈ R

N has components

yi = y(ti) = ceAtix0 +
∫ ti

0
ceA(ti−s)bu(s)ds,

and, similarly, the vector α̂ ∈ R
N has components αi.

As before, we find it convenient to define the basis functions

�i(s) =

{
ceA(ti−s)b, ti ≥ s,

0, ti < s.
(4.4)

Note that if the assumption in (4.2) holds, then �i(s) is n − 2 times contin-
uously differentiable at ti, that is,

�
(k)
i (t) =

{
cAkeA(ti−s)b, ti ≥ s,
0, ti < s.

(4.5)

As long as cAkb = 0, �
(k)
i (t) is continuous, which by (4.2) holds until

k = n− 2. We can now write

yi = ceAtix0 +
∫ T

0
�i(s)u(s)ds = ceAtix0 + 〈�i, u〉L2 ,

where 〈�i, u〉L2 :=
∫ T
0 �i(s)u(s)ds.

Now, let βi := R−1eAT ticT . Then

yi = ceAtix0 +
∫ T

0
�i(s)u(s)ds = 〈βi, x0〉R + 〈�i, u〉L2 ,

where we define the inner product 〈x,w〉R = xT Rw.
Note that if we take the derivatives of y(t), when u = �i(t), we have

y(2n−2)(t) =
n−2∑
k=0

cAn−2+kb�
(n−2−k)
i (t) +

∫ T

0
cA2n−1eA(t−s)b�i(s)ds.

This derivative is continuous, but the next derivative fails to be so. Thus,
this particular y is 2n−2 times continuously differentiable everywhere, and
real analytic between the nodes.
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4.1 THE BASIC SMOOTHING PROBLEM

In this section we state the basic problem of smoothing splines and con-
struct the solution. Here we show that the construction splits into two parts
in a very natural way. Ultimately, this will allow the implementation of fast
algorithms for smoothing spline constructions. The basic idea of the con-
struction is to define a linear variety, in a Hilbert space, that is defined by the
constraints. The data are then defined as a point in the Hilbert space, and the
optimization reduces to finding the point on the affine variety that is closest
(in the sense of the norm in the Hilbert space) to the data point. We know
that we can construct this point by finding the orthogonal complement of the
linear variety that defines the affine variety and constructing the intersection
of the affine variety with the orthogonal complement. In this process we
follow Luenberger [64].

4.1.1 The Hilbert Space and the Affine Variety

Let

H = L2[0, T ]× R
n × R

N ,

with norm

‖(u;x; d)‖2H =
∫ T

0
u2(t)dt + dT Qd+ xT Rx

and corresponding inner product

〈(u;x; d), (v; z; f)〉H =
∫ T

0
u(t)v(t)dt + xTRz + dT Qf.

Now, since the output at time ti is

yi = 〈βi, x0〉R + 〈�i, u〉L2 ,

we can define the linear subspace of constraints in H, V0, encoding the
dynamics, as

V0 = {(u;x; d) : 0 = −di + 〈βi, x〉R + 〈�i, u〉L2 , i = 1, . . . , N}.
We use the notation V0 for consistency with later notation. (Note that V0

is of infinite dimension since it contains a copy of L2[0, T ], and is of finite
codimension since it is the intersection of a finite number of codimension 1
subspaces.)

With this notation, the basic smoothing spline problem becomes

min
(u;x;d)∈H

‖(u;x; d) − (0; 0; α̂)‖2H, (4.6)
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such that (u; d;x) ∈ V0. We will use p to denote the point (0; 0; α̂) ∈ H.
We will now construct the orthogonal complement of V0 in H.

Lemma 4.3 The orthogonal complement of V0 inH is

V ⊥0 =

{
(v;w; z)

∣∣∣∣∣ w +
N∑

i=1

〈z, ei〉Qβi = 0, v +
N∑

i=1

〈z, ei〉Q�i = 0

}
,

where ei is the ith unit vector in R
N .

Proof. By definition,

V ⊥ = {(v;w; z) | 〈v, u〉L2 + 〈z, d〉Q + 〈w, x〉R = 0,∀ (u;x; d) ∈ V0}.

We have

〈z, d〉Q =
N∑

i=1

〈z, ei〉Qdi =
N∑

i=1

〈z, ei〉Q[〈βi, x〉R + 〈�i, u〉L2 ]

=

〈
N∑

i=1

〈z, ei〉Qβi, x

〉
R

+

〈
N∑

i=1

〈z, ei〉Q�i, u

〉
L2

.

Therefore,

0= 〈v, u〉L2 + 〈w, x〉R + 〈z, d〉Q

= 〈v, u〉L2 + 〈w, x〉R +

〈
N∑

i=1

〈z, ei〉Qβi, x

〉
R

+

〈
N∑

i=1

〈z, ei〉Q�i, u

〉
L2

=

〈
w +

N∑
i=1

〈z, ei〉Qβi, x

〉
R

+

〈
v +

N∑
i=1

〈z, ei〉Q�i, u

〉
L2

.

From the definition of V0 we have that, given a pair (u : x0), there exists a
d so that (u;x0; d) ∈ V0. Thus, the above equality is true for u ∈ L2[0, T ]
and for all x ∈ R

n and, as a consequence, we must have that

0 = w +
N∑

i=1

〈z, ei〉Qβi and 0 = v +
N∑

i=1

〈z, ei〉Q�i.

Note that the latter equality is in the sense of L2[0, T ]. The lemma thus
follows.
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4.1.2 The Intersection

Before constructing the intersection V0 ∩ (V ⊥0 + p), two things must be
verified, namely, that V0 is nonempty and closed. That V0 is nonempty is a
consequence of the fact that every choice of u and x determines a triple in
V0. We state as a lemma the fact that V0 is closed.

Lemma 4.4 V0 is a closed subspace of the Hilbert space H.

Proof. Define the function with domain L2[0, T ] × R
n and range R

N as

Ki((u;x)) = 〈βi, x〉R + 〈�i, u〉L2 . (4.7)

Note that Ki is continuous since it is defined in terms of the inner products,
and note that V0 is the graph of K, where K is the function with components
Ki. It then follows from the closed graph theorem that V0 is closed in H.

Since V0 is closed, we have that the intersection of V0 and V ⊥0 +p consists
of a single point. This point is the solution to the optimal control problem
in (4.3).

Lemma 4.5 The intersection of V0 ∩ (V ⊥0 + p) is

V0∩(V ⊥0 +p) =

{(
N∑

i=1

γi�i;
N∑

i=1

ρiβi; (I + GQ + FQ)−1(GQ + FQ)α̂

)}
,

where G is the Grammian of the βT
i , F is the Grammian of the �i, and where

γi = 〈[I − (I + GQ+ FQ)−1(GQ + FQ)]α̂, ei〉Q,

ρi = 〈[I − (I + GQ+ FQ)−1(GQ + FQ)]α̂, ei〉Q.

Proof. Equating quantities from V0 and V ⊥0 + p (here p = (0; 0; α̂) is the
data point), we have from the definition of V0 and some rearrangement of
terms

di = 〈βi, x〉R + 〈�i, u〉L2

=−
N∑

j=1

〈z, ej〉Q〈βi, βj〉R −
N∑

j=1

〈z, ej〉Q〈�i, �j〉L2 .

Now, equating d with ŷ and z with ŷ − α̂, we get

yi =−
N∑

j=1

〈ŷ − α̂, ej〉Q〈βi, βj〉R −
N∑

j=1

〈ŷ − α̂, ej〉Q〈�i, �j〉L2

=−eT
i GQ(ŷ − α̂)− eT

i FQ(ŷ − α̂).
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Note that since the �i are linearly independent, F is invertible.
In more compact form, we have

ŷ = −(GQ+ FQ)(ŷ − α̂),

or, finally, we have that

(I + GQ + FQ)ŷ = (GQ + FQ)α̂. (4.8)

By rewriting I + GQ + FQ = (Q−1 + F + G)Q, and since F and Q are
positive definite and G is positive semidefinite, the matrix (I +GQ+ FQ)
is invertible and we find ŷ as a linear function of the data α̂ as

ŷ = (I + GQ + FQ)−1(GQ + FQ)α̂.

This ŷ is the optimal smoothed estimate of the data α̂. Using ŷ we can then
calculate both the optimal control and the optimal initial condition using the
defining equations of the orthogonal complement.

To construct the optimal control u∗, we have from Lemma 4.3 and the
identifications above:

u∗(t)=−
N∑

i=1

〈ŷ − α̂, ei〉Q�i(t)

=−
N∑

i=1

〈(I +GQ + FQ)−1(GQ+ FQ)α̂− α̂, ei〉Q�i(t)

=
N∑

i=1

〈[I − (I + GQ + FQ)−1(GQ + FQ)b]α̂, ei〉Q�i(t).

The construction of the optimal initial condition is carried out in a similar
manner. Thus the lemma is proved.

We summarize the results of the section with the following theorem.

Theorem 4.6 Let

ẋ = Ax + bu, y = cx

be a controllable and observable linear system with initial data x(0) = x0,
let a data set be given as

D = {(ti, αi) | i = 1, . . . , N},

and assume that ti > 0 and let T = tN . Let the cost function be given as

J(u, x0) =
∫ T

0
u2(t)dt + (ŷ − α̂)T Q(ŷ − α̂) + xT

0 Rx0,
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where Q and R are positive definite matrices. The vector ŷ has components

yi = y(ti) = ceAtix0 +
∫ ti

0
ceA(ti−s)bu(s)ds,

and the vector α̂ has components αi. Minimizing J over u ∈ L2[0, t] and
x0 ∈ R

n, the optimal smoothed data are given by

ŷ = (I + GQ+ FQ)−1(GQ + FQ)α̂, (4.9)

the optimal control is given by

u =
N∑

i=1

〈[I − (I + GQ+ FQ)−1(GQ + FQ)]α̂, ei〉Q�i, (4.10)

and the optimal initial condition is given by

x0 =
N∑

i=1

〈[I − (I + GQ+ FQ)−1(GQ + FQ)]α̂, ei〉Qβi. (4.11)

4.2 THE BASIC ALGORITHM

In the previous section, we formulated and solved a problem using an algo-
rithm that is, in some sense, just an implementation of the Hilbert projection
theorem. This algorithm is extremely powerful. We will see in this book
many problems in optimal control that can be solved using this algorithm.
We will now formally state the algorithm with some explanation, as a par-
allel to the discussion in Chapter 2. We begin by describing the inputs and
outputs of the algorithm.

INPUTS:

• a quadratic cost function in the control, possibly the initial data, and
the data;

• a given set of constraints that includes a linear control system, and
deterministic constraints on the solution of the control system, and
the initial data.

OUTPUTS:

• smoothed data ŷ;

• optimal control u;

• optimal initial data x0.
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THE ALGORITHM

1. Define the Hilbert space of the control, initial data, and data as H =
H1 × H2 × H3, where H1 is the Hilbert space of the control, H2 is
the Hilbert space of the initial data, andH3 is the Hilbert space of the
data, which may be finite- or infinite-dimensional. The norm is based
on the cost functional.

2. Define the affine subvariety Vc of the constraints. In many of the
applications c is replaced by the parameter from the problem.

3. Define the data through the point p in H.

4. Verify that the variety is well defined in the Hilbert space. Verify that
any point evaluations are well defined.1

5. Verify that the variety is closed. This is an essential step but usually
in these problem is a direct consequence of the closed graph theorem.

6. Calculate the orthogonal complement of V0. This step may or may
not be complicated. It is usually straight forward.

7. Calculate the intersection of (V⊥0 + p) ∩ Vc. This step can be com-
plicated because it reduces to solving a system of linear equations de-
rived from the definitions of Vc, V ⊥0 , and V ⊥0 + p. The equations can
be a mix of integral equations and finite dimensional linear equations,
and may involve several parameters that must be eliminated.

8. The solution to the equations exist and is unique since we know that
the intersection will contain a single point. This point is the optimal
u, x0 and the optimal, smoothed output of the linear system.

To a certain degree, this book can be thought of as an exercise in applying
this algorithm to solve a series of important problems in the theory of control
theoretic smoothing splines. There are of course other methods for solving
these problems. However, no other method seems as straightforward and
intuitive. It is basically just a generalization of the problem from Euclidean
geometry of finding a point on a given line nearest to a given point in the
plane–a problem from high school geometry. (See [64] for many other such
examples.)

1Since L2[0, T ] is a Hilbert space of equivalence classes, point evaluations, for example,
f(α), are not well defined. However, the inner product 〈�t, f〉 =

∫ T

0
�t(s)f(s)ds is well

defined as a function of t.
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In the next section we will explore the application of this algorithm to a
series of problems about splines in various forms. In this chapter we will
assume that the Hilbert space of data is finite-dimensional, and will consider
the more general case in Chapter 6.

4.3 INTERPOLATING SPLINES WITH INITIAL DATA

For interpolating splines we are required to find a control that drives the
output y through the points in the data set D. This can be expressed in
terms of additional constraints of the form

αi = 〈βi, x0〉R + 〈�i, u〉L2

for i = 1, . . . , N . The goal is to find a control and an initial condition that
minimize

J(u, x0) =
∫ T

0
u2(t)dt + xT

0 Rx0

subject to the constraints. Just as for smoothing splines, we let the Hilbert
space be

H = L2[0, T ]× R
n.

Now, the affine variety of constraints is given by

Vα̂ = {(u;x0) : 0 = −αi + 〈βi, x0〉R + 〈�i, u〉L2 , i = 1, · · · , N}.

Here the goal is to find the point in Vα̂ of minimum norm. The procedure
is much the same as for smoothing splines. We first must verify that V̂α is
nonempty. This follows from the hypothesized controllability of the linear
system. We construct V⊥0 and construct the intersection

V ⊥0 ∩ Vα̂,

which consists of a single point (see [64]), provided that V0 is closed.

Lemma 4.7 V0 is closed.

Proof. Let Ki(x,w) = 〈βi, x〉R + 〈�i, w〉L2 . Now Ki is a continuous linear
functional on the Hilbert space H and hence ker(Ki) is a closed subset of
H. Moreover, V0 is the intersection of a finite number of closed subsets and
hence is closed.
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After some calculation we have

V ⊥0 =

{
(v;w)

∣∣∣∣∣ v =
N∑

i=1

τi�i, w =
N∑

i=1

τiβi

}
,

which gives that the optimal u is in fact given by

u =
N∑

i=1

eT
i (F + G)−1α̂�i,

and the optimal initial condition is given by

x0 =
N∑

i=1

eT
i (F + G)−1α̂βi.

Here, the matrices F and G, the vectors βi, and the elements of L2[0, T ],
�i(t), are as in the previous section. This is just a slight generalization of the
construction given in [91], and hence the details are left out.

For cubic splines, the classical construction reduces to solving a system
of equations of the form Mx = ρ, where M is tridiagonal. In [100], the
construction of interpolating splines is reduced to solving banded matri-
ces. However, in both cases, additional constraints are required to make
the problem have a unique solution. With the procedure developed here,
the additional constraints are unnecessary because of the optimization. Nei-
ther classical cubic splines nor the procedure developed in [100] can easily
handle the optimal initial data.

4.4 PROBLEMS WITH ADDITIONAL CONSTRAINTS

In a series of papers, Willsky and coauthors [2],[3], and Krener [57] consid-
ered an estimation problem based on a stochastic boundary value problem.
In this section, we consider a similar problem in which the smoothing spline
is generated by a linear system for which there are hard constraints. The
constraints may occur as boundary values, but they may also occur as fixed
internal values, or even as linear operator constraints on the solution. We
will show that many of these problems can be formulated and solved with
the machinery we have established. The basic idea is that we have a data
set in which each data point is of the form αi = f(ti) + εi, where f(ti) is
deterministic and εi is the value of a random variable. The goal is to pro-
duce a curve (the spline) that better approximates f(t). This is, of course, a
standard statistical formulation (see [96]).
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4.4.1 Two-Point Boundary Value Problems

We begin by considering a general boundary value problem. Let the bound-
ary condition be given by

Φx(0) + Ψx(T ) = h, (4.12)

where we let h ∈ R
k. This, of course, includes the classical two-point

boundary value formulations and other problems of interest. We note that,
since

x(T ) = eAT x(0) +
∫ T

0
eA(T−s)bu(s)ds,

the specific dependence on x(T ) can be removed and the boundary con-
straint simply becomes

Px(0) + Ψ
∫ T

0
eA(T−s)bu(s)ds = h, (4.13)

where

P = Φ+ΨeAT .

Note that if there is any solution to (4.12), then by the controllability hy-
pothesis there is a solution to (4.13). We hypothesize that there is at least
one solution of (4.12).

Define the Hilbert space as

H = L2[0, T ]× R
n × R

N ,

with norm

‖(u;x0; y)‖2H =
∫ T

0
u2(t)dt + xT

0 Rx0 + yT Qy,

and define the constraint variety to be

Vh =
{
(u;x; d)

∣∣∣ di = 〈βi, x〉R + 〈�i, u〉L2 ,

Px+Ψ
∫ T

0
eA(T−s)bu(s)ds = h

}
.

We first prove the following lemma.

Lemma 4.8 V0 is a closed subspace ofH.
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Proof. The mapping

(u;x)→ Ψ
∫ T

0
eA(T−s)bu(s)ds + Px

with domain L2[0, T ] × R
n is continuous, and hence the subspace

W =

{
(u, x) ∈ L2[0, T ] × R

n

∣∣∣∣∣ Px+Ψ
∫ T

0
eA(T−s)bu(s)ds = 0

}

is closed. Now the mapping from W to R
N defined by

di = 〈βi, x〉R + 〈�i, u〉L2 ,

which also is continuous, and again we appeal to the closed graph theorem
to finish the proof.

We now construct V⊥0 .

Lemma 4.9 For some λ ∈ R
k,

V ⊥0 =

{
(v;w; z)

∣∣∣∣∣ w = −
N∑

i=1

〈z, ei〉Qβi + R−1P T λ,

v = −
N∑

i=1

〈z, ei〉Q�i + (ΨeA(T−t))T λ

}
.

Proof. The first part of the construction is exactly the same as in subsec-
tion 4.1.1, and from there we have

V ⊥0 =

{
(v;w; z)

∣∣∣∣∣ 〈w +
N∑

i=1

〈z, ei〉Qβi, x〉+ 〈v +
N∑

i=1

〈z, ei〉Q�i, u〉 = 0

}
.

This relationship does not hold for all x and u, but only for those x and u
for which (4.13) holds. Multiplying by λT , λ ∈ R

k, we can rewrite (4.13)
as

〈R−1P T λ, x〉R + 〈(ΨeA(T−t))T λ, u〉L2 = 0. (4.14)

From this we conclude that

w +
N∑

i=1

〈z, ei〉Qβi = R−1P T λ, v +
N∑

i=1

〈z, ei〉Q�i = (ΨeA(T−t))T λ,

and the lemma follows.
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It remains to construct the intersection Vh ∩ (V ⊥0 + p) to find the optimal
solution. This construction is technically more complicated than the basic
smoothing spline but the underlying technique is identical.

The unique point in the intersection is defined as the solution of the fol-
lowing system of four equations in the unknowns u, x0, y, and λ, obtained
by identifying x and w with x0, d with ŷ, and z with ŷ + α̂ .

u=−
N∑

i=1

〈ŷ − α̂, ei〉Q�i + bT eAT (T−t)ΨT λ, (4.15)

x0 =−
N∑

i=1

〈ŷ − α̂, ei〉Qβi + R−1(Φ + ΨeAT )T λ, (4.16)

h=Px0 +
∫ T

0
ΨeA(T−s)bu(s)ds, (4.17)

yi = 〈βi, x0〉R + 〈�i, u〉L2 . (4.18)

We begin by eliminating x0 and u from (4.18) by substituting (4.15) and
(4.16). After some manipulation we have

yi = eT
i G(ŷ− α̂)− eT

i F (ŷ− α̂)+βT
i P T λ+

∫ T

0
�i(s)bT eAT (T−s)ΨT dsλ.

Since βi = R−1eAT ticT , let

β = R−1(eAT t1cT , . . . , eAT tN cT ) =: R−1E

to obtain

ŷ = −G(ŷ − α̂)− F (ŷ − α̂) + ET R−1P T λ + Λλ,

where

Λ =
∫ T

0
l(s)bT eAT (T−s)ΨT ds.

We will now use (4.17) to obtain a second equation in λ and ŷ.

h=P
[
−

N∑
i=1

〈ŷ − α̂, ei〉Qβi + R−1P T λ
]

+
∫ T

0
ΨeA(T−s)b

[
−

N∑
i=1

〈ŷ − α̂, ei〉Q�i + bT eAT (T−s)ΨT λ
]
ds.

We make the following observation:
N∑

i=1

〈ŷ − α̂, ei〉Qβi =
N∑

i=1

βie
T
i Q(ŷ − α̂) = R−1EQ(ŷ − α̂).
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We now define

M =
N∑

i=1

∫ T

0
ΨeA(T−s)b�i(s)eT

i dsQ,

and hence
N∑

i=1

∫ T

0
ΨeA(T−s)b〈ŷ − α̂, ei〉Q�i(s)ds = M(ŷ − α̂).

Using these two constructions, we then have

h = P (−R−1EQ(ŷ − α̂)) + PR−1P T λ−M(ŷ − α̂) +ΨΓΨT λ, (4.19)

where Γ is the controllability Grammian

Γ =
∫ T

0
eA(T−s)bbT eAT (T−s)ds.

By combining these two expressions, linking ŷ and λ gives the following
system of linear equation(

I + (G + F )Q −ET R−1P T − Λ
PR−1EQ−M PR−1P T +ΨΓΨT

)(
ŷ
λ

)

=
(

(G + F )Qα̂
h + PR−1EQ+ Mα̂

)
.

(4.20)

Note first that the matrix on the left is invertible because of the unique-
ness and existence of the solution to the minimum norm problem. Using
(4.20) we can solve for ŷ and for λ. These values can be used in (4.15) and
(4.16) to uniquely determine the optimal control and optimal initial condi-
tion. As before, we see that the optimal estimate of the data is obtained
independently of the control.

Remark: The matrix E is a Grammian-like matrix that determines whether
the initial data can be recovered from sampled observational data, that is, if
ẋ = Ax, x(0) = ζ, y = cx, and the output is sampled at a set of discrete
points ti, then the output is recoverable from these observations if and only
if E has full rank. Thus E plays the same role as the observability Gram-
mian. There are no known necessary and sufficient conditions for E to have
full rank. This problem was studied originally by Smith and Martin and
was reported in [88]. It is also interesting that the controllability Grammian
arises in the formulation of (4.19). The reason for the controllability Gram-
mian to appear is more obvious when one considers the simpler problem
of optimally moving between affine subspaces. This problem is studied in
Chapter 8.
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4.4.2 Multiple Point Constraints

In this case we have a hard constraint of the form

Φ1x(r1) + · · · +Φkx(rk) = h,

and the data set

D = {(ti, αi) | i = 1, . . . , N},

and we assume, without loss of generality, that

{ri | i = 1, . . . , k} ∩ {ti | i = 1, . . . , N} = ∅.

We again make the assumption that there exists at least one set of vectors ai
such that

Φ1a1 + · · · +Φkak = h.

We construct the variety of constraints and note that we can replace x(ri)
with

eArix(0) +
∫ ri

0
eA(ri−s)bu(s)ds.

Thus the constraint depends only on u and x0. We use the Hilbert space

H = L2[0, T ]× R
n × R

N ,

and the constraint variety Vh is{
(u;x0; ŷ)

∣∣∣ yi = 〈βi, x0〉+ 〈�i, u〉L2 ,

k∑
i=1

Φie
Arix0 +

k∑
i=1

∫ T

0
Φi�ri(s)u(s)ds = h

}
.

As before, we construct the orthogonal complement to V0 and then deter-
mine the intersection

Vh ∩ (V ⊥0 + (0; 0; α̂)).

We leave this construction to the reader.

4.4.3 Examples

In this section we will present some examples of problems that fit this gen-
eralized boundary value formulation. We let
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A =
(

0 1
0 0

)
, b =

(
0
1

)
, c =

(
1 0

)
, T = 1, (4.21)

t1 = 0.2, t2 = 0.3, t3 = 0.5, t4 = 0.7, t5 = 0.8, (4.22)
α̂ =

(
0.8 0.2 0.5 1 0.3

)
, (4.23)

Q = 104I5, R = 104I2, (Ip = p× p identity matrix). (4.24)

Example 4.10 (periodic splines) We first study the situation when we insist
that x(0) = x(T ). In this case we have that Φ = −Ψ = I2, while h = 0.
The solution is depicted in Figure 4.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Figure 4.1 Periodic splines. Here the boundary value is given by x(0) = x(T ). Depicted
are y(t) (solid) and αi, i = 1, . . . , 4 (stars).

Example 4.11 (two-point boundary value problems) We now let the bound-
ary constraint be encoded by Φ = (1, 1), Ψ = −Φ, h = 1, which implies
that the boundary values are given by the set

{(x0, xT ) | (1, 1)x0 − (1, 1)xT = 1}.

The resulting output curve that solves this problem is shown in Figure 4.2.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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1

Figure 4.2 Boundary value problem: (1, 1)x(0) − (1, 1)x(T ) = 1.

4.4.4 Integral Constraints

In many applications ranging from statistics to medicine there are con-
straints of the form ∫ 1

0
y(t) dt = 1.

We will consider a simple problem with ẋ = Ax + bu and a data set D =
{(ti, αi) | i = 1, . . . , N}, and we will further assume that each αi > 0. Our
constraint variety, V1, is given by{

(u;x0; y)
∣∣∣ yi = 〈βi, x0〉R + 〈�i, u〉L2 ,

1 =
∫ T

0
y(t)dt, y(t) = ceAtx0 +

∫ t

0
eA(t−s)bu(s)ds

}
.

As per the algorithm in Section 4.2, we compute V⊥0 . The definition of the
orthogonal complement gives

V ⊥0 = {(v;w; z) | 〈v, u〉+ 〈L2w, x0〉R + 〈z, y〉q = 0,∀(u;x0, y) ∈ V0}.

Using the defining relation (after some calculation using the first relation-
ship in the definition of V0) we have〈

v +
N∑

i=1

〈z, ei〉Q�i, u

〉
L2

+

〈
w +

N∑
i=1

〈z, ei〉Qβi, x0

〉
R

= 0. (4.25)
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From the second and third defining relations for V0 we have

0=
∫ T

0
(eAtx0 +

∫ t

0
eA(t−s)bu(s)ds)dt

=
∫ T

0
eAtdtx0 +

∫ T

0

∫ T

s
eA(t−s)bdtu(s)ds,

and multiplying both sides by λ gives

0 =

〈∫ T

0
R−1eAT tdtλ, x0

〉
R

+

〈∫ T

s
bT eA(t−s)dtλ, u

〉
L2

. (4.26)

Now, using (4.25) and V ⊥0 , we have

V ⊥0 =
{
(v;w; z)

∣∣∣ v = −∑N
i=1〈z, ei〉Q�i +

∫ T
s bT eA(t−s)dtλ,

w = −∑N
i=1〈z, ei〉Qβi +

∫ T
0 R−1eAT tdtλ

}
.

Let p = (0; 0; α̂), where α̂ is the vector of data. Then, in order to con-
struct (V ⊥0 + p) ∩ V1, we must solve the following four equations:

yi = 〈βi, x0〉R + 〈�i, u〉L2 , (4.27)

1=
∫ T

0
eAtdtx0 +

∫ T

0

∫ T

s
eA(t−s)bdtu(s)ds, (4.28)

u=−
N∑

i=1

〈y + α, ei〉Q�i +
∫ T

s
bT eA(t−s)dtλ, (4.29)

x0 =−
N∑

i=1

〈y + α, ei〉Qβi +
∫ T

0
R−1eAT tdtλ. (4.30)

The procedure for solving these four equations is exactly the same as
before, and we leave the details to the reader. Use (4.29) and (4.30) to
eliminate x0 and u from (4.27) and (4.28). This results in a pair of equations
for λ and the optimal y. Solve this system and substitute these values to
obtain the optimal u and x0. After some calculations, the problem of finding
the optimal y and λ reduces to solving a matrix equation. The entries in the
matrix must be calculated separately and involve some integration that can
be done using standard quadrature algorithms. Once y and λ are found, u
and x0 are found by substituting into (4.29) and (4.30.)

SUMMARY

In this chapter we established a common framework for interpolating and
smoothing splines via a Hilbert space approach to control theoretic splines.



EditedFinal September 23, 2009

72 CHAPTER 4

We demonstrated that control theoretic splines can be used to solve a wide
variety of problems. Willsky and colleagues [2],[3] and Krener [57] devel-
oped beautiful machinery based on very sophisticated stochastic analysis
to solve estimation problems based on stochastic two-point boundary value
problems; we showed that the same problems have elegant and simple solu-
tions based on control theoretic splines.
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Chapter Five

APPROXIMATIONS AND LIMITING CONCEPTS

One of the desired properties for any smoothing strategy is that it (some-
how) converges to the “correct” underlying curve as the number of data
points grows. In this chapter we will show that smoothing splines do in fact
converge in a certain statistical sense. For this, we will make a few needed
assumptions, and we continue to use the earlier assumption that the linear
system is controllable and observable as well as the assumption about rel-
ative degree. We add a new assumption about the eigenvalues of the state
matrix and about the target function, in order to be able to capture the ap-
propriate limiting concepts.

——————————————————————————————

5.1 BASIC ASSUMPTIONS

We start by stating the basic assumptions needed to arrive at the main con-
vergence result of this chapter:

Assumption 5.1 cT b = · · · = cT An−2b = 0.

Assumption 5.2 The matrix A has only real eigenvalues.

Assumption 5.3 Let the underlying, true curve, f(t), be a C∞ function on
an interval that contains [0, T ].

Assumption 5.4 x(0) = 0.

We now suppose that there are infinitely many data points available ob-
tained by a repeated sampling of f(t) on the interval [0, T ]. Let

DN = {(tiN , αiN ) : i = 1, · · · , N}

be the N th data set, and let the union of the set of times be dense in the
interval [0, T ].

We now set

y(t) = Lt(u) =
∫ t

0
ceA(t−s)bu(s)ds,
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and let uN be the control that optimizes the functional

JN (u) =
1
2N

N∑
i=1

wiN (LtiN (u)− f(tiN ))2 +
ρ

2

∫ T

0
u2(t)dt. (5.1)

Here we assume that the weights in the summation are predetermined by the
N th data set.

The control, uN , was shown to exist uniquely in Chapter 3, and we now
want to be able to relate uN to the control u∗ that minimizes

J(u) =
1
2

∫ T

0
(Lt(u)− f(t))2dt +

ρ

2

∫ T

0
u2(t)dt. (5.2)

We make the following important assumption:

Assumption 5.5 The sequence of quadratures defined by the numbers

wiN , tiN

converges for all continuous functions defined on [0, T ], that is,

lim
N→∞

1
2N

N∑
i=1

wiNh(tiN ) =
1
2

∫ T

0
h(t)dt.

Before we are ready to state the main results, a few words should be said
about all these assumptions: The assumption about the relative degree is
completely reasonable if one is interested in the approximation of curves
known only at a few points. In our setting, this makes the output of the
system correspond to the position, the second state variable to the velocity,
and so on. Thus the control has the effect of controlling the position. This
is not necessarily a reasonable assumption if one is interested in trajectory
planning, and all of what follows in this chapter can be done in its absence,
at the expense of counting derivatives in each theorem. The resulting spline
functions will not have as high a degree of differentiability if the assumption
is relaxed.

The assumption of real eigenvalues makes certain calculations easier and,
as shown in [100], if the eigenvalues are complex, the resulting splines are
not nearly as well behaved. We would hesitate to apply these techniques
directly to a trajectory planning problem without this assumption.

The assumption of infinite differentiability of the target function can be
relaxed, but, if we assume that it is Ck instead, then we will have to count
derivatives throughout. (There are probably times in which it would be use-
ful to use functions with step discontinuities, but they can be approximated
by C∞ functions.)
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The last assumption on quadrature is critical for understanding the be-
havior of the spline function in the limit as the number of nodes approaches
infinity. The spline functions themselves can be constructed without this as-
sumption but as the number of points increase, we would like to know what
is happening to the spline. This assumption tells us that the smoothing part
of the cost function behaves in an orderly manner. (There are probably other
assumptions that would achieve the same result.)

5.2 CONVERGENCE OF THE SMOOTHING SPLINE

We will prove the following theorem.

Theorem 5.6 Under assumptions 5.1 to 5.5, the sequence of controls

{uN (t)}∞N=1

converges to the function u∗(t) in L2-norm, and the sequence of smoothing
splines {Lt(uN )}∞N=1 likewise converges to Lt(u∗) in L2-norm.

Proof outline. We begin the proof by showing that u∗ exists and is unique.
We show this by explicit construction; we have shown previously that the
functions uN exist and are unique.

Then we will argue that the minimizers of the functionals JN converge to
the minimizer of J . We divide the proof into a series of lemmas.

Lemma 5.7 The function u∗ exists and is unique.

Proof. We first observe that the cost functional J , given by

J(u) =
∫ T

0
(Lt(u)− f(t))2dt +

∫ T

0
u2(t)dt, (5.3)

can be reduced to a standard linear-quadratic optimization problem by a
change of variable. Let

w(t) = Lt(u)− f(t).

By taking a sequence of derivatives we have

w(0)(t)=
∫ t

0
cT eA(t−s)bu(s)ds− f(t), (5.4)
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w(1)(t)=
∫ t

0
cT AeA(t−s)bu(s)ds− f (1)(t), (5.5)

...

w(n−1)(t)=
∫ t

0
cT An−1eA(t−s)bu(s)ds− f (n−1)(t), (5.6)

w(n)(t)= cT An−1bu(t) +
∫ t

0
cT AneA(t−s)bu(s)ds− f (n)(t). (5.7)

Here we have used our assumption that cT Akb = 0 for k ≤ n− 2. Now let

p(t) = tn − ζn−1t
n−1 − · · · − ζ1t− ζ0

be such that p(A) = 0. Now, using (5.4) - (5.7), and taking the appropriate
weighted sum, we have

w(n) − ζn−1w
(n−1) − · · · − ζ0w

= cT An−1bu(t)− f (n) + ζn−1f
(n−1) + · · ·+ ζ0f.

(5.8)

Writing this in state space form gives

d

dt
ŵ(t) = Âŵ(t)+(cT An−1b)enu(t)+(−f (n)+ζn−1f

(n−1)+· · ·+ζ0f)en,

(5.9)
where ŵ = (w(0), . . . , w(n−1))T . In (5.9), en is the nth unit vector and Â is
in companion form and is similar to A. Let

F (s) = (fn(s)− ζn−1f
n−1(s)− · · · − ζ0f(s)).

Now, (5.9) defines a closed affine subspace in L2[0, T ] and hence there is
a unique function u∗ ∈ L2[0, T ] which gives a point of minimal norm in the
affine subspace.

We now characterize the function u∗ of the previous lemma and show that
it is at least C∞.

Lemma 5.8 The optimal spline Lt(u∗) is given by

Lt(u∗) =
(

eT
1 0

)
exp

((
A −eneT

n

−e1e
T
1 −AT

)
t

)(
ŵ(0)
λ(0)

)

−
∫ t

0

(
eT
1 0

)
exp

((
A −eneT

n

−e1e
T
1 −AT

)
(t− s)

)(
en

0

)
F (s)ds,

and the optimal control is given by

u∗(t) = eT
nλ(t),
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where

d

dt

(
ŵ(t)
λ(t)

)
=

(
A −eneT

n

−e1e
T
1 −AT

)(
ŵ(t)
λ(t)

)
−
(

en

0

)
F (s),

with data

ŵ(0) = ŵ0, λ(T ) = 0.

Proof. From the previous lemma we know there is a point of minimal norm
in the affine subspace. We will explicitly construct that point using a con-
struction similar to a calculation found in [28].

Define the linear affine subspace

Af(ŵ0, F (s))=
{
(ŵ;u)

∣∣∣∣ ŵ =
∫ t

0
eÂ(t−s)(cT An−1b)enu(s)ds

}

+

(
eÂtŵ0 +

∫ T

0
eÂ(t−s)F (s)ends, 0

)
. (5.10)

The object is to construct the orthogonal complement to Af(0, 0). At this
point the construction of the complement is found in [28]. We then construct
the intersection of the orthogonal complement to Af(0, 0) and Af(ŵ0, F (s)).
The single point in this intersection is found by solving the two-point bound-
ary value problem

d

dt

(
ŵ(t)
λ(t)

)
=

(
A −eneT

n

−e1e
T
1 −AT

)(
ŵ(t)
λ(t)

)
−
(

en

0

)
F (s), (5.11)

with data

ŵ(0) = ŵ0, λ(T ) = 0,

and where

u(t) = eT
nλ(t).

It is necessary to determine if this two-point boundary value problem has
solutions. We solve the differential equation, assuming that it is an initial
value problem, to obtain.
(

ŵ(t)
λ(t)

)
=exp

((
A −eneT

n

−e1e
T
1 −AT

)
t

)(
ŵ(0)
λ(0)

)

−
∫ t

0
exp

((
A −eneT

n

−e1e
T
1 −AT

)
(t− s)

)(
en

0

)
F (s)ds.
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Setting t = T , we have a linear equation for λ(0), and this equation has a
unique solution if and only if it has a unique solution for F = 0. But for
F = 0 this is the linear two-point boundary value problem associated with
the linear quadratic optimal control problem

J(u) =
∫ T

0
ŵ(t)T e1e

T
1 ŵ(t) + u2(t)dt

with linear constraint

d

dt
ŵ = Âŵ + cT An−1benu(t).

This problem has a unique solution since the pair (e1, Â) is observable and
the pair (Â, en) is controllable. It then follows from linear quadratic optimal
control theory that the two-point boundary value problem has solutions for
all values of ŵ(0), and these solutions exist on the interval [0, T ]. (See, for
example, [67].) We note that λ(0) = P (0)ŵ(0), where P (t) is the solution
of the associated Riccati equation. Thus the lemma is proven.

We now finish the proof of the theorem by proving convergence. From
our assumption that f is C∞, the control u∗ is C∞ as well. We know that
the minimizer of J(u) is unique, and we have shown that the minimizer of
JN (u) is unique. We also know from the general theory of optimization
[64] that the minimizer of a quadratic functional is given by the unique
zero of the Gateaux derivative of the functional. Calculating the Gateaux
derivatives, we have the following two linear functionals:

DJ(u;w) =
∫ T

0
(Lt(u)− f(t))Lt(w)dt +

∫ T

0
u(t)w(t)dt, (5.12)

DJN (u;w) =
N∑

i=1

wiN (LtiN (u)− f(tiN )LtiN (w) +
∫ T

0
u(t)w(t)dt.

(5.13)
It is clear that, for each u and w, DJN (u;w) converges to DJ(u;w) pro-
vided the quadrature scheme converges for a sufficiently general class of
functions.

We now rewrite the Gateaux derivatives in terms of inner products by the
simple expediency of interchanging the order of integration.

DJ(u;w) =
∫ T

0

(∫ T

0
�t(s)(Lt(u)− f(t))dt + u(s)

)
w(s)ds, (5.14)
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DJN (u;w) =
∫ T

0

(
N∑

i=1

wiN�tiN (s)(LtiN (u)− f(tiN )) + u(s)

)
w(s)ds.

(5.15)
From the previous two equations, we have that the convergence is indepen-
dent of w, since

N∑
i=1

�tiN (s)wiN (LtiN (u)− f(tiN )) + u(s) (5.16)

converges to ∫ T

0
�t(s)(Lt(u)− f(t))dt + u(s) (5.17)

for every s ∈ [0, T ]. We are now concerned with the convergence of linear
operators rather than linear functionals.

Let

B(s)(u) =
∫ T

0
�t(s)Lt(u)dt + u(s), (5.18)

and define BN (s) as

BN (s)(u) =
N∑

i=1

�tiN (s)wiNLtiN (u) + u(s). (5.19)

Furthermore, let

b(s) =
∫ T

0
�t(s)f(t)dt

and

bN (s) =
N∑

i=1

�tiN wiNf(tiN ).

Now, it is clear that bN (s) converges to b(s) pointwise and hence in L2-
norm. Thus, given ε, for N sufficiently large we have

|BN (s)(uN − u∗)| < ε.

Now we know that BN (s)x = bN (s) has a unique solution and hence that
BN (s) is nonsingular. We can thus conclude that

uN (s)− u∗(s)

converges to 0 pointwise, and since both are smooth and defined on a com-
pact interval in L2-norm, and the theorem follows.
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5.3 QUADRATURE SCHEMES

The theorem from the previous section is important because it shows exactly
how the continuous spline is dependent on the data. We see from Theorem
5.6 that the spline is the convolution of the function F , with a kernel that is
the semigroup of a Hamiltonian system. We also see that, since the control
is optimal with respect to the cost function, the resulting feedback controlled
system is stable, and hence that perturbations in F are not blown up, but die
quite quickly. This, however, is really just a straightforward result from the
theory of linear quadratic optimal control.

We obtain as corollaries three important results.

Corollary 5.9 Let wiN = 1
N and let the sequence of ti be the observed val-

ues of a random variable uniformly distributed in the interval [0, T ]. Then
the sequence of smoothing splines {Lt(uN )}∞N=1 converges to Lt(u∗) in
L2-norm.

Corollary 5.10 Let wiN = 1
N and let tiN = iT

N (Riemann sum). Then the
sequence of smoothing splines {Lt(uN )}∞N=1 converges to Lt(u∗) in L2-
norm.

Corollary 5.11 Let wiN , tiN be defined by a Gaussian quadrature scheme.
Then the sequence of smoothing splines {Lt(uN )}∞N=1 converges to Lt(u∗)
in L2-norm.

Proof of Corollaries. The corollaries are presented in the order of the rate of
convergence. We begin with Corollary 5.9. This result is based on the “law
of large numbers” and, while the rate of convergence is painfully slow, there
are minimal assumptions about the location of points making it an extremely
useful result. We state this standard result for ease of reference.

Theorem 5.12 (Law of Large Numbers) Let v1, v2, . . . , vm be independent
and identically distributed random variables whose probability density func-
tion is denoted by μ(v). Let

I =
∫ ∞

−∞
f(v)μ(v)dv

exist. Then

1
m

m∑
i=1

f(vi)

converges to I in probability with m.
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For Corollary 5.9 we have taken

μ(v) =
{ 1

T , 0 ≤ v ≤ T,
0 otherwise

in the theorem. It is worth noting that we could have modified the cost
function J(u) to obtain a more general result. If we take

J(u) =
∫ ∞

0
(Lt(u)− f(t))2μ(t)dt +

∫ ∞

0
u2(t)dt, (5.20)

most of the previous results still hold. However, there are problems that
need to be resolved such as the nature of the optimal solution and how one
interprets splines on an infinite interval. For example, if μ(t) = λe−λt, this
would produce a spline-like smoothing function which would have some
predictive value for future times. In fact, the lack of predictive value is one
of the more serious drawbacks of polynomial spline approximation.

For Corollary 5.10, we appeal to the general theory of Riemann sums
and use the following theorem which can be found in Davis’s classical book
[22].

Theorem 5.13 (Convergence of Riemann Sums) Let f(v) be continuous
in [a, b]. Then∣∣∣∣∣

∫ b

a
f(v)dv − h

m∑
i=1

f(a+ kh)

∣∣∣∣∣ ≤ (b− a)w
(

b− a

m

)
,

where

w(δ) = max
v1−v2 ≤δ

|f(v1)− f(v2)|, a ≤ v1, v2 ≤ b.

There are various refinements of this theorem, and we refer the reader to
[23] for a survey and interpretation of the literature. For this result, the rate
of convergence is of the order of 1

m which is an improvement over the rate
of convergence given by the law of large numbers which is only 1√

m
. There

are various improvements which can be made along this line. For example
we can use multiple point trapezoidal rules and multiple point Simpson’s
rules to obtain polynomial convergence of various orders. Again we refer
the reader to [23] for many examples.

The results for Gaussian quadrature are quite diverse. Technically, we
have used the following theorem related to Legendre quadrature.

Theorem 5.14 (Legendre Quadrature) Let

Em(f) =
∫ T

0
f(v)dv −

m∑
k=1

wkf(vk),
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where the vk are the zeros of the Legendre polynomial of degree m and the
weights wk are the weights of the associated quadrature scheme. Then

Em(f) =
22m+1(m!)4

(2m + 1)[(2m)!]3
f (2m)(η).

From this result we see that the order of convergence is nonpolynomial.
We also see that it becomes harder and harder to give precise estimates be-
cause of the difficulty of estimating the higher derivatives of f . In [23] there
are numerous results on the rates of convergence of some of the classical
quadrature schemes, but there does not seem to be a general procedure for
finding rates for arbitrary weight functions.

5.4 RATE OF CONVERGENCE

In this section, we examine the problem of determining the rate of conver-
gence of the optimal control uN to the optimal control u∗. In general the
problem of precise estimates is beyond the scope of this chapter, but we can
determine rates for the important case of cubic smoothing splines.

The rate of convergence depends on ε and on∫ T

0
‖AN (s)‖2ds,

where

AN (s)(u)=
N∑

i=1

wiN �tiN (s)LtiN (u) =
∫ T

0

N∑
i=1

wiN�tiN (s)�tiN (r)u(r)dr.

We then calculate the norm of the linear functional

‖AN (s)‖ =
⎛
⎝∫ T

0

(
N∑

i=1

wiN�tiN (s)�tiN (r)

)2

dr

⎞
⎠

1
2

,

and hence
∫ T

0
‖AN (s)‖2ds =

∫ T

0

∫ T

0

(
N∑

i=1

wiN�tiN (s)�tiN (r)

)2

drds. (5.21)

We now use the assumption that the sequence wiN , tiN defines a conver-
gent quadrature scheme. We have∣∣∣∣∣

N∑
i=1

wiN �tiN (s)�tiN (r)−
∫ T

0
�t(s)�t(r)dt

∣∣∣∣∣ < εN , (5.22)
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for some εN (dependent on the quadrature technique), and hence
∫ T

0
�t(s)�t(r)dt − εN <

N∑
i=1

wiN�tiN (s)�tiN (r)

<

∫ T

0
�t(s)�t(r)dr + εN .

However, we need estimates not on
N∑

i=1

wiN �tiN (s)�tiN (r)

but on (
N∑

i=1

wiN �tiN (s)�tiN (r)

)2

.

This creates some problems since there is in general no reason to assume
positivity.

5.5 CUBIC SPLINE CONVERGENCE BOUNDS

In this section, we restrict ourselves to the case that

A =
(

0 1
0 0

)
, b =

(
0
1

)
, c =

(
1 0

)
,

that is, to the case of cubic splines. We calculate

�t(s) =
{

(t− s), t > s,
0 otherwise.

This is usually denoted as �t(s) = (t− s)+ in the literature, and we will use
this notation in this section. We further assume that the weights wiN > 0.
This is a minor assumption since all stable, convergent quadrature schemes
have this property.

We choose εN sufficiently small that
∫ T
0 �t(s)�t(r)dt−εN is positive, and

we have(∫ T

0
(t− s)+(t− r)+dt− εN

)2

<

(
N∑

i=1

(tiN − s)+(tiN − r)+

)2

<

(∫ T

0
(t− s)+(t− r)+dt + εN

)2

.
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Now, by integrating and using (5.21), we have

∫ T

0

∫ T

0

(∫ T

0
(t− s)+(t− r)+dt− εN

)2

drds ≤
∫ T

0
‖A(s)‖2ds,

which in turn is less than or equal to

∫ T

0

∫ T

0

(∫ T

0
(t− s)+(t− r)+dt + εN

)2

drds.

We now evaluate the integrals
∫ T

0

∫ T

0

∫ T

0
(t− s)+(t− r)+dtdrds

and

∫ T

0

∫ T

0

(∫ T

0
(t− s)+(t− r)+dt

)2

drds.

We first assume that r > s and we have
∫ T

0

∫ T

0

∫ T

0
(t− s)+(t− r)+dtdrds

=
∫ T

0

∫ T

s

∫ T

r
(t− s)(t− r)dtdrds.

This integral is tedious but routine to evaluate. In fact, we have
∫ T

0

∫ T

0

∫ T

0
(t− s)+(t− r)+dtdrds =

1
40

T 5

and

∫ T

0

∫ T

0

(∫ T

0
(t− s)+(t− r)+dt

)2

drds =
11
3360

T 8.

Combining these two integrals we have

11
3360

T 8 − 1
20

T 5εN +
1
2
T 2ε2

N ≤
∫ T

0
‖AN (s)‖2ds

≤ 11
3360

T 8 +
1
20

T 5εN +
1
2
T 2ε2

N .
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So, we have

‖uN − u∗‖≤ εN∫ T
0 ‖A(s)‖2ds

≤ εN
11

3360T 8 − 1
20T 5εN + 1

2T 2ε2
N

<
εN

11
3360T 8 − 1

20T 5εN
.

The rate of the convergence of uN to u∗ is asymptotically the same as the
rate of convergence of the quadrature scheme. This is the rate that would
be expected for the “law of large numbers.”

SUMMARY

In this chapter we showed that the smoothing spline is convergent in the
L2-sense, subject to certain minor assumptions. Moreover, the particular
quadrature schemes of uniform Riemannian sums and Gaussian quadratures
were shown to satisfy the necessary assumptions.

As a final note, the rate of convergence was characterized for cubic smooth-
ing splines, where it was found that the convergence rate is asymptotically
given by the rate of convergence of the quadrature scheme.
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Chapter Six

SMOOTHING SPLINES WITH CONTINUOUS

DATA

In the previous chapters we developed machinery for constructing smooth-
ing splines with discrete data–both deterministic and random. However,
there are many problems for which the data are continuous. EKG, ECG,
and EMG are primary examples for which there is a continuous data stream,
and, as shown in the previous chapter, smoothing splines for discrete data
converge to splines with continuous data as the number of data points grows.
In this chapter, we will develop a corresponding Hilbert space approach for
smoothing continuous data with and without additional deterministic dis-
crete data.
——————————————————————————————

To establish the technique, we will solve the linear quadratic regulator prob-
lem and then use the construction for the smoothing problems. This con-
struction is basically the same as is given in [28]. We are given a cost func-
tion

J(u) =
∫ T

0

[
xT (t)Qx(t) + u2(t)

]
dt

and a controllable linear system

ẋ = Ax+ bu, x(0) = x0,

and we assume that x0 is given. We also assume that the matrix Q is positive
definite. We define a Hilbert space

H = L2[0, T ]× Ln
2 [0, T ],

with norm

‖(u;x)‖2H =
∫ T

0

[
xT (t)Qx(t) + u2(t)

]
dt.

Let the constraint variety be defined as

Vx0 =
{
(u;x)

∣∣∣∣ x(t) = eAtx0 +
∫ t

0
eA(t−s)bu(s)ds

}
.
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Note again that Vx0 (and hence also V0) is closed by the closed graph theo-
rem. As for the discrete case, we can minimize the cost function by finding
the point of minimum norm in Vx0 . Thus we construct the orthogonal com-
plement of V0. We have

V ⊥0 =

{
(v;w)

∣∣∣∣∣
∫ T

0

[
xT (t)Qw(t) + u(t)v(t)

]
dt = 0, ∀(u;x) ∈ V0

}
.

Using this definition, we have

0=
∫ T

0

[
xT (t)Qw(t) + u(t)v(t)

]
dt

=
∫ T

0

[
wT (t)Q

∫ t

0
eA(t−s)bu(s)ds + u(t)v(t)

]
dt

=
∫ T

0

∫ T

s
wT (t)QeA(t−s)bu(s)dtds +

∫ T

0
u(s)v(s)ds

=
∫ T

0

[∫ T

s
wT (t)QeA(t−s)bdt + v(s)

]
u(s)ds.

Thus we have

V ⊥0 =

{
(v;w)

∣∣∣∣∣ v(s) = −
∫ T

s
bT eAT (t−s)Qw(t)dt

}
.

In order to find the intersection Vx0∩V ⊥0 we must solve the following system
of two integral equations:

x(t)= eAtx0 +
∫ t

0
eA(t−s)bu(s)ds, (6.1)

u(s)=−
∫ T

s
bT eAT (t−s)Qx(t)dt. (6.2)

To solve this system, we let u(t) = −bT λ(t). From (6.2) we have

λ(t) =
∫ T

t
eAT (r−t)Qx(r)dr,

and from (6.1) we have

x(t) = eAtx0 −
∫ t

0
eA(t−s)bbT λ(s)ds.

Differentiating these two equations, we have the standard Hamiltonian for-
mulation of the optimal control problem:

d

dt

[
x(t)
λ(t)

]
=

[
A −bbT

−Q −AT

] [
x(t)
λ(t)

]
,

[
x(0)
λ(T )

]
=
[

x0

0

]
. (6.3)
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The solution of the equation is then done by introducing the Riccati trans-
form. (See, for example, [28], or any introductory control text.)

6.1 CONTINUOUS DATA

Continuous data arise, for example, from the output of analog devices.
While we usually assume that such devices are accurate, any observation
of the analog output of a six-lead electrocardiograph over a period of an
hour or so should convince even the most causal observer that the devices
are not exact and are subject to considerable error of a random nature.

The classic problem of this nature is that of determining the bottom pro-
file of a lake. A depth finder is employed and a trace is made as a boat
traverses the lake. Chesser [16] has posed the problem of determining the
radioactivity of the silt at the bottom of the cooling pond at the reactor site
in Chernobyl. A device would be carried along the bottom measuring ra-
dioactivity as a continuous function. Such data would be naturally very
stochastic, and a major problem is to smooth the continuous data so that a
reliable map of the radioactivity can be obtained.

Data such as these also arise in certain cryptological applications. For
example, an encoded signal can be attached to the output of an FM radio
station. Here the object is not to recover the radio signal but to recover
the static. Thus if the received signal is recorded and smoothed it can be
subtracted from the received signal and an approximation of the static re-
covered. The static can then be treated with classical cryptological methods
to recover the message. This problem was studied in [59].

After this rather informal discussion about the nature of continuous data,
we are ready to formulate the basic problem.

6.2 THE CONTINUOUS SMOOTHING PROBLEM

As before, we will assume a model of the form

ẋ = Ax+ bu, y = cx, (6.4)

with boundary data given by

L0x(0) +
N−1∑
i=1

Lix(ti) + LNx(T ) = γ. (6.5)

We make the usual assumptions that x ∈ R
n and that Li is a map from R

n

to R
k. As for the boundary data, we assume that there is at least one solution
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to (6.5), and we will assume the following consistency condition:

If, for every i, aT Li = 0 then aT = 0.

The data will be assumed to be a square integrable function on the interval
[0, T ], that is, f ∈ L2[0, T ]. Following the general algorithm of the previous
chapter, we define a Hilbert space H that (with some minor modifications)
will underlie the rest of this chapter. Let

H = L2[0, T ] × L2[0, T ]× R
n(N+1), (6.6)

where we have

(u; y(t);x(0);x(t1); . . . ;x(tN−1), x(T )) ∈ H,

with norm

‖(u; y(t);x(0);x(t1); . . . ;x(tN−1), x(T )‖H

being equal to
∫ T

0

[
λ1u

2(t) + λ2y
2(t)

]
dt + x̂T Qx̂,

where x̂ = (x(0)T , x(t1)T , . . . , x(tN−1)T , x(T )T )T , Q is positive definite,
and the λi are positive.

The constraints, defined through the boundary data and the system dy-
namics, then generate an affine variety inH. Let

Vγ =
{
((u; y(t);x(0);x(t1); . . . ;x(tN−1);x(T )) ∈ H

∣∣∣
y(t) = ceAtx0 +

∫ t

0
ceA(t−s)bu(s)ds,

L0x(0) + LNx(T ) +
N−1∑
i=1

Lix(ti) = γ
}
.

We first note that under the assumptions we have made the variety is non-
empty. We have assumed that there exists at least one solution to the equa-
tion defining the boundary conditions and thus, by controllability, there ex-
ists a control that drives the solution through those points. Thus the condi-
tions are satisfied for at least one point.

Remark: We identify the data with the point

(0; f ; 0; . . . ; 0) ∈ H.
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Now we have a welldefined problem of finding the unique point in the affine
variety Vγ that is nearest to the point representing the data. It is worth noting
that we have defined the constraint in terms of an initial value problem. Both
Willsky and Krener worked directly with the boundary value problem, but
this is really unnecessary in this context. They were assuming a known
dynamical model that generates the data. We are not assuming any such
model, but are only approximating and smoothing the data using a model to
generate the approximating data. The approach we are using generalizes the
approach used in Chapter 3. There the Hilbert space that contains the data
was finite-dimensional; here it is not.

6.3 THE BASIC TWO-POINT BOUNDARY VALUE PROBLEM

In this section we will consider the simplest set of boundary conditions:

L1 = [I, 0], L2 = [0, I].

We then have

[x(0), x(T )] =L1x(0) + L2x(T ) = γ = [α, β].

This setup is just the point-to-point transfer problem, albeit with an associ-
ated target function, f .

The affine variety we that we will use is

Vγ =
{
(u; y)

∣∣∣ e−AT β − α =
∫ T

0
e−Asbu(s)ds,

y(t) = ceAtα +
∫ t

0
ceA(t−s)bu(s)ds

}
,

and the Hilbert space is

H = L2[0, T ] × L2[0, T ].

The goal is to find y(t) that best approximates the data function

f ∈ L2[0, T ].

Thus we look for the point in Vγ that is closest to the point

(0, f) ∈ H.

We already have stated repeatedly that this point is constructed by first con-
structing the subspace V⊥0 , and then constructing the intersection of

Vγ ∩ (V ⊥0 + (0, f)).
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This intersection consists of a single point, provided that V0 is closed. But
the operators that define Vγ are continuous and hence the space is closed.

Note that we can rewrite Vγ as{(
u; ceAtα +

∫ t

0
ceA(t−s)bu(s)ds

) ∣∣∣∣∣ e−AT β − α =
∫ T

0
e−Asbu(s)ds

}

and so Vγ is described as the graph of an operator with domain a linear
variety.

Now, we have

V0 =

{
(u;

∫ t

0
ceA(t−s)bu(s)ds)

∣∣∣∣∣ 0 =
∫ T

0
e−Asbu(s)ds

}
,

and

V ⊥0 =

{
(v;w)

∣∣∣∣∣
∫ T

0
v(s)u(s)ds +

∫ T

0
w(t)

∫ t

0
ceA(t−s)bu(s)dsdt = 0,

0 =
∫ T

0
e−Asbu(s)ds

}
.

Using the calculations employed in previous chapters, we get
∫ T

0

(
v(s) +

∫ T

s
w(t)ceA(t−s)bdt

)
u(s)ds = 0.

Normally, we would have concluded that

v(s) +
∫ T

s
w(t)ceA(t−s)bdt = 0,

but since u is restricted, we can only conclude that

v(s) +
∫ T

s
ceA(t−s)bw(t)dt = λT e−Asb.

Thus

V ⊥0 =

{
(v;w)

∣∣∣∣∣ v(s) +
∫ T

s
ceA(t−s)bw(t)dt = λT e−Asb, λ ∈ R

n

}
,

(6.7)
and we state this as a lemma.

Lemma 6.1 Let

H = L2[0, T ]× L2[0, T ],
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and let Vγ be given by{(
u; ceAtα +

∫ t

0
ceA(t−s)bu(s)ds

) ∣∣∣∣∣ e−AT β − α =
∫ T

0
e−Asbu(s)ds

}
.

Then

V ⊥0 =

{
(v;w)

∣∣∣∣∣ v(s) +
∫ T

s
ceA(t−s)bw(t)dt = λT e−Asb, λ ∈ R

n

}
.

We now construct the intersection. First, consider V⊥0 + (0; f) and note
that we must have w + f = y and hence w = y − f . Therefore, let

η(t) =
∫ T

t
e−AT (t−s)cT (y(s)− f(s))ds. (6.8)

Thus we have

η̇(t) = −cT (y(t)−f(t))−AT η(t) = −cT cx(t)−AT η(t)+cT f(t) (6.9)

and

ẋ(t) = Ax(t)− bbT η(t) + bbT e−AT tλ. (6.10)

We, therefore, have the forced Hamiltonian system

d

dt

(
x(t)
η(t)

)
=

(
A −bbT

−cT c −AT

)(
x(t)
η(t)

)
+

(
bbT e−Atλ
cT f(t)

)
, (6.11)

with

x(0) = α η(T ) = 0

and the added constraint

x(T ) = β.

Since there exists a unique solution, we see that there will exist a one-to-
one mapping from the terminal conditions to the λ and, for the same reason,
a one-to-one mapping from initial data to the λ. Thus, we can solve the
forced Hamiltonian system using variation of parameters.

Let (
X1 X2

X3 X4

)
= exp

((
A −bbT

−cT c −AT

)
t

)
,
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x(t)
η(t)

)
=
(

X1(t− T ) X2(t− T )
X3(t− T ) X4(t− T )

)(
β
0

)

−
∫ T

t

(
X1(t− s) X2(t− s)
X3(t− s) X4(t− s)

)(
bbT e−Asλ
cT f(s)

)
ds.

It only remains to determine λ. However, we can uniquely solve the
system of equations obtained for λ by setting t = 0. Solving, we have

x(t) = X1(tT )β −
∫ T

t
X1(t− s)bbT e−Asdsλ−

∫ T

t
X2(t− s)cT f(s)ds,

and setting t = 0 we have

α = X1(−T )β −
∫ T

0
X1(−s)bbT e−ASdsλ−

∫ T

0
X2(−s)cT f(s)ds.

We have thus derived the following theorem.

Theorem 6.2 The optimal approximation of the continuous data point, f ,
generated by the two-point boundary value problem

ẋ = Ax + bu, y = cx

with boundary data

x(0) = α, x(T ) = β,

is given by y(t) being equal to

cX1(t− T )β −
∫ T

t
cX1(t− s)bbT e−Asdsλ−

∫ T

t
cX2(t− s)cT f(s)ds,

where λ is given by(∫ T

0
X1(−s)bbT e−Asds

)−1

×
(
−α + X1(−T )β −

∫ T

0
X2(−s)cT f(s)ds

)
.
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6.4 THE GENERAL TWO-POINT BOUNDARY VALUE PROBLEM

We now consider the problem when we have the more interesting boundary
conditions

L1x(0) + L2x(T ) = γ.

Recall that we work under the assumption that there exists at least one so-
lution to the boundary equation. Let x(0) = α and x(T ) = β be one such
solution. Because of the linearity, every solution (x(0), x(T )) can be writ-
ten as

(x(0), x(T )) = (α, β) + (ρ, θ),

where

L1ρ+ L2θ = 0.

This problem includes the special case of controllability from point to line
and from line to line. (These cases will be considered in detail in Chapter
9.)

If there is a unique solution to the boundary conditions then there is noth-
ing left to do. If the solution is not unique, then we have extra degrees of
freedom that must be used. We thus extend the Hilbert space to include the
boundary conditions. Let

H = L2[0, T ]× L2[0, T ]× R
n × R

n.

We construct the affine variety as

Vγ =
{
(u; y;x(0);x(T ))

∣∣∣ y(t) = ceAtx(0) +
∫ t

0
ceA(t−s)bu(s)ds,

L1x(0) + L2x(T ) = γ, e−AT x(T )− x(0) =
∫ T

0
e−Asbu(s)ds

}
.

As before, we must construct V⊥0 , and as in the previous section, we have
that V ⊥0 is given by{
(v;w; τ ;φ)

∣∣∣∣∣
∫ T

0
[v(t)u(t) + w(t)y(t)] dt + τT x(0) + ψT x(T ) = 0

}
.

Substituting the definition of y into the expression gives

0=
∫ T

0

[
v(s) +

∫ T

s
ceA(t−s)bw(t)dt

]
u(s)ds

+
∫ T

0
ceAtx(0)w(t)dt + τT x(0) + ψT x(T ).
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We can break this into two parts, since it must be true for u = 0 and x(0)
and x(T ) arbitrary solutions of the boundary equations, and, likewise, it
must be true for u arbitrary with 0 boundary conditions. Thus, as in the
previous section, we conclude that

v(s) +
∫ T

s
ceA(t−s)bw(t)dt = bT e−AT sλ.

From ∫ T

0
ceAtx(0)w(t)dt + τT x(0) + ψT x(T ) = 0,

we conclude that[∫ T

0
ceAtw(t)dt + τT

]
x(0) + (ψT )x(T ) = 0,

and hence that there exists a vector k such that

kT L1 =
∫ T

0
ceAtw(t)dt + τT

and

kT L2 = ψT .

We then have the following lemma.

Lemma 6.3 LetH = L2[0, T ]× L2[0, T ]× R
n ×R

n and let

Vγ =
{
(u; y;x(0);x(T ))

∣∣∣∣ y(t) = ceAtx(0) +
∫ t

0
ceA(t−s)bu(s)ds,

L1x(0) + L2x(T ) = γ, e−AT x(T )− x(0) =
∫ T

0
e−Asbu(s)ds

}
.

Then V ⊥0 is given by the set{(
−
∫ T

s
ceA(t−s)bw(t)dt + bT e−AT sλ;w(t);

kT L1 −
∫ T

0
ceAtw(t)dt; kT L2

)}
,

where w ∈ L2[0, T ], λ ∈ R
n, k ∈ R

k.
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We now construct (V ⊥0 + (0; f ; 0; 0)) ∩ Vγ . Exactly as in the previous
section, we have the forced terminal value problem

d

dt

(
x(t)
η(t)

)
=

(
A −bbT

−cT c −AT

)(
x(t)
η(t)

)
+

(
bbT e−Atλ
cT f(t)

)
,

with

x(T ) = LT
2 k, η(T ) = 0.

Here, both k and λ are parameters to be determined. Using the notation
from the previous section, we have

x(t) = X1(t−T )LT
2 k−

∫ T

t
X1(t−s)bbT e−Asdsλ−

∫ T

t
X2(t−s)cT f(s)ds

and

x(0) = X1(−T )LT
2 k −

∫ T

0
X1(−s)bbT e−Asdsλ−

∫ T

0
X2(−s)cT f(s)ds.

We now have to determine the values of k and λ. We need n + m equa-
tions. We obtain m equations from the boundary conditions

γ=L1(X1(−T )LT
2 k −

∫ T

0
X1(−s)bbT e−Asdsλ

−
∫ T

0
X2(−s)cT f(s)ds) + L2L

T
2 k,

and n equations from

LT
1 k −

∫ T

0
eAT tcT w(t)dt=X1(−T )LT

2 k −
∫ T

0
X1(−s)bbT e−Asdsλ

−
∫ T

0
X2(−s)cT f(s)ds.

Unfortunately this equation contains w.
Recalling that w = y − f and substituting, we have

LT
1 k −

∫ T

0
eAT tcT y(t)dt +

∫ T

0
eAT tcT f(t)dt

= X1(−T )LT
2 k −

∫ T

0
X1(−s)bbT e−Asdsλ−

∫ T

0
X2(−s)cT f(s)ds.

Now, y(t) becomes

cX1(t−T )LT
2 k−

∫ T

t
cX1(t− s)bbT e−Asdsλ−

∫ T

t
cX2(t− s)cT f(s)ds,
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which, after some manipulation, yields(
LT

1 −
∫ T

0
eAT tcT cX1(t− T )LT

2 dt−X1(−T )LT
2

)
k

+

(∫ T

0

∫ T

t
eAT tcT cX1(t− s)bbT e−Asdsdt

−
∫ T

0
X1(−s)bbT e−Asds

)
λ

= −
∫ T

0

∫ T

t
eAT tcT cX2(t− s)cT f(s)dsdt−

∫ T

0
X2(−s)cT f(s)ds

−
∫ T

0
eAT tcT f(t)dt.

We have thus established the following theorem.

Theorem 6.4 The optimal approximation of the continuous data point, f ,
generated by the two-point boundary value problem

ẋ = Ax+ bu, y = cx,

with boundary data

L1x(0) + L2x(T ) = γ

is given by

y(t)= cX1(t− T )LT
2 k −

∫ T

t
cX1(t− s)bbT e−Asdsλ

−
∫ T

t
cX2(t− s)cT f(s)ds,

where k and λ are the unique solutions of(
LT

1 −
∫ T

0
eAT tcT cX1(t− T )LT

2 dt−X1(−T )LT
2

)
k

+

(∫ T

0

∫ T

t
eAT tcT cX1(t− s)bbT e−Asdsdt

−
∫ T

0
X1(−s)bbT e−Asds

)
λ

= −
∫ T

0

∫ T

t
eAT tcT cX2(t− s)cT f(s)dsdt−

∫ T

0
X2(−s)cT f(s)ds

−
∫ T

0
eAT tcT f(t)dt,
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and

(L1(X1(−T )LT
2 + l2L

T
2 )k −

(∫ T

0
X1(−s)bbT e−Asds

)
λ

=
∫ T

0
X2(−s)cT f(s)ds) + γ.

6.5 MULTIPOINT PROBLEMS

In this section we will examine the case when there are boundary points
interior to the interval. While the general approach is the same as for the
two-point boundary value problems, there are technical difficulties. Prob-
lems such as this arise in map building where there are some known points
of reference. For example, when constructing topographical maps some
points are determined by physical survey. These points are assumed to be
precisely known and must be respected by any path planning algorithm.

As before, we assume as given the standard linear single input single
output system, with boundary conditions given by

L0x(0) +
N−1∑
i=1

Lix(ti) + LNx(T ) = γ.

We assume that there is at least one solution respecting these boundary con-
ditions. We assume that the data are given by a square integrable function
f ∈ L2[0, T ].

We define a Hilbert space H as

H = L2[0, T ] × L2[0, T ]× R
n(N+1),

with norm given by

‖(u; y;x(0);x(T1); . . . ;x(TN−1);x(T ))‖2H
=
∫ T

0
(λ1u

2(t) + λ2y
2(t))dt + ηT Qη,

where

η = (x(0)T ;x(T1)T ; . . . ;x(TN−1)T ;x(T )T )T

and Q is positive definite.
Let

L = [L0, L1, . . . , LN−1, LN ].



EditedFinal September 23, 2009

100 CHAPTER 6

We can then define the linear variety of constraints as

Vγ =
{
(u; y; η) ∈ H

∣∣∣∣ y(t) = ceAtx(0) +
∫ t

0
ceA(t−s)bu(s)ds; Lη = γ

}
.

Because we have assumed that there is at least one solution to the boundary
constraints, the variety is nonempty. As we saw in Section 6.3, we can
replace the boundary condition with the simpler condition

(
N∑

i=0

Lie
ATi

)
x(0) +

∫ T

0

(
N∑

i=1

LiGi(s)

)
u(s)ds = γ.

Thus we can rewrite Vγ in terms of x(0), y(t), and u(t), and can pose the
problem in a simpler Hilbert space. We define a new Hilbert space W as

W = L2[0, T ]× L2[0, T ]× R
n,

with norm

‖(u; y;x)‖2W =
∫ T

0
(λ1u

2(t) + λ2y
2(t))dt + xT Qx,

where Q is a positive definite n× n matrix. We can then rewrite the variety
Vγ as

Vγ =
{
(u; y;x(0)) ∈ W

∣∣∣∣ y(t) = ceAtx(0) +
∫ t

0
ceA(t−s)bu(s)ds,

(
N∑

i=0

Lie
ATi

)
x(0) +

∫ T

0

(
N∑

i=1

LiGi(s)

)
u(s)ds = γ

}
.

We now construct V⊥0 . By definition, we have

V ⊥0 =
{
(v;w; z)

∣∣∣ ∀ (u; y;x(0)) ∈ V0,

∫ T

0
(λ1v(t)u(t) + λ2y(t)w(t))dt

+ zT Qx(0) = 0
}
.

From the definition of V0, we can simplify the condition in the orthogonal
complement by requiring y to satisfy the following expression:

0=
∫ T

0

[
λ1v(t)u(t) + λ2

(
ceAtx(0) +

∫ t

0
ceA(t−s)bu(s)ds

)
w(t)

]
dt

+zT Qx(0).
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Rewriting this after some manipulation involving a change of the order of
integration, we have

0=
∫ T

0

[
λ1v(s) +

∫ T

s
λ2ce

A(t−s)bw(t)dt

]
u(s)ds

[
λ2

∫ T

0
ceAtw(t)dt + zT Q

]
x(0) = 0.

This expression holds for all x(0) and u, and so we have

λ1v(s) +
∫ T

s
λ2ce

A(t−s)bw(t)dt = 0

and ∫ T

0
λ2ce

Atw(t)dt + zT Q = 0.

Thus we have the simpler expression for the complement,

V ⊥0 =

{
(v;w; z)

∣∣∣∣∣ λ1v(s) +
∫ T

s
λ2ce

A(t−s)bw(t)dt = 0,

∫ T

0
λ2ce

Atw(t)dt + zT Q = 0

}
.

Now the data we seek to approximate are a function f ∈ L2[0, T ]. So
we seek the point on Vγ nearest in the sense of the norm to (0; f ; 0). As in
[64], this point is found by finding the intersection of V⊥0 ∩ Vγ . There is a
unique point of intersection, and the construction is basically the same as in
the previous sections. We leave the construction to the reader.

As an application of splines with continuous data, we consider a problem
involving the recursive generation of splines. The basic idea is to encode
past data as a spline and then use this curve (continuous data) together with
new data in order to recursively update the spline. The update is approxi-
mated using a quadrature method that makes the problem computationally
feasible.

6.6 RECURSIVE SPLINES

Splines, both smoothing and interpolating, are ubiquitous in all problems in
which it is required to construct a curve from data. However, for large data
sets, the direct methods of construction involve solving large systems of lin-
ear equations and/or inverting large matrices. In this section, we investigate
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the problem of treating large data sets in a recursive manner in order to keep
the dimensions of problems to be solved under a fixed size.

As in previous sections in this chapter, the particular problem that mo-
tivated this work was boundary reconstruction when the boundary is being
measured at isolated points using a remote device. It is assumed that the
boundary is closed and that arbitrarily many measurements can be made. It
is, moreover, assumed that the device can make a series of measurements in
one complete revolution and that additional revolutions could made. Thus
we assume that N measurement are made at each revolution and a smooth-
ing spline is constructed after the first revolution is complete. After the
second revolution, the second set of data is to be used to modify the first
smoothing spline, and so on. The idea is very similar to the problem of us-
ing new data to update an existing map. (Results of this problem have been
reported in [54].)

Accordingly, we assume a sequence of data sets of equal size,

Dn = {αin : i = 1, . . . , k}. (6.12)

We further assume that the data are of the form

αin = f(tin) + εin,

where f(t) is a continuous function that is at least piecewise smooth and
the εin are values of an iid random variable that is at least symmetrically
distributed about 0. These conditions have been studied in [32] and [104],
and also in Chapter 5.

We assume that the set {tin : i = 1, . . . , k, n = 1, 2, . . .} is dense in the
interval [0, T ]. For n = 1, 2, . . . we let the cost function be given by

Jn(u) =
∫ T

0
u(t)2dt + λn

∫ T

0
(y(t)− yn−1(t))2dt +

k∑
i=1

(y(tin)− αin)2.

We let un(t) and yn(t) be the optimal control and resulting output with
respect to this cost function. Here the idea is that we are encoding the past
data as the spline yn−1(t). The coefficients λn form a sequence of numbers
that approach infinity. One of the main goals of this section is to show that
this sequence can be chosen in such a way that the sequence of smoothing
splines {yn(t)}∞n=1 converges.

In [32] and Chapter 5 we studied the following problem. Let

JN (u) =
∫ T

0
u(t)2dt +

N∑
n=1

k∑
i=1

(y(tin)− αin)2. (6.13)

There we showed that the optimal control and splines converge under mild
assumptions on the data, mainly that the εin are symmetrically distributed
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and that first and second moments exist. The problem with this approach
is that the linear systems that must be solved grow without bound, creating
insurmountable numerical difficulties.

To circumvent this problem we return to the Hilbert space technique, and
formulate the problem as a minimum norm problem in a particular Hilbert
space. We follow closely the development in the previous section. We let

Hn = {(u; g;α) | (u; g;α) ∈ L2[0, T ] × L2[0, T ]× R
k},

with norm

‖(u; g;α)‖2Hn
=
∫ T

0
u(t)2dt + λn

∫ T

0
g(t)2dt + αT α.

As before, let

�in(s) =

{
ceA(tin−s)b, tin − s ≥ 0,
0 otherwise.

We now define a linear affine variety

Vx0 =
{
(u; y; z)

∣∣∣ y(t) = ceAtx0 +
∫ T

0
ceA(t−s)bu(s)ds,

zi = ceAtinx0 +
∫ T

0
�in(s)u(s)ds

}
. (6.14)

We define the data point in Hn to be the point

pn = (0, yn−1(t), αn), (6.15)

where

αn = (α1n, . . . , αkn).

The optimization problem is now to find the unique point in the linear
variety Vx0 that is closest to the data point pn. However, since the data are
continuous this results in solving a system of linear integral equations and
effort reduction is lost. The basic question is “Does there exist a sequence
of λn so that the solutions converge to the underlying the function f(t)?”
The trick to answering this question is to recast the problem as one with
only discrete data. This simplification greatly reduces the complexity of the
problem. We approximate the cost function Jn(u) with a new cost function
Jj

n(u), by replacing the second integral with a finite sum.
A quadrature scheme is defined by two data sets given by two real lower

triangular matrices whose jth rows are given by

Tj = (rj1, . . . , rjj, 0, 0, . . .)
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and

Sj = (βj1, . . . , βjj , 0, 0, . . .).

Let f be any continuous function, and let

Ej(f) =

∣∣∣∣∣∣
∫ T

0
f(t)dt−

j∑
i=1

βjif(rji)

∣∣∣∣∣∣ .
The quadrature scheme is convergent if, for every f ∈ C[0, T ], we have

lim
j→∞

Ej(f) = 0.

Such schemes abound (see, for example, [23]), and we choose any such
convergent scheme.

We now define the new cost function

Jj
n(u) =

∫ T

0
u(t)2dt+λn

j∑
i=1

βij(y(rij)−yn−1(rij))2+
k∑

i=1

(y(tin)−αin)2

(6.16)
in terms of the convergent quadrature scheme. We again rephrase the opti-
mization problem as a minimum norm problem in Hilbert space. Here the
past data are encoded in the spline function, but we are only taking partic-
ular snapshots of the spline. The relationship between these two problems
clearly depends on the accuracy of the chosen quadrature scheme. However,
using the methods of [32] and [104] it can be established that the solutions
of Jj

n converge to those of Jn as j approaches infinity.

6.6.1 The Continuous Case

Let

V k
x0
=
{
(u; y; y(tik))

∣∣∣ y(t) = ceAtx0 +
∫ t

0
ceA(t−s)bu(s)ds,

y(tik) = ceAtix0 +
∫ T

0
�ik(s)u(s)ds

}
.

Then

V k
0 =

{
(u; y; y(tik))

∣∣∣ y(t) = ∫ t

0
ceA(t−s)bu(s)ds,

y(tik) =
∫ T

0
�ik(s)u(s)ds

}
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and V ⊥ is given by{
(w; z;β)

∣∣∣∣∣
∫ T

0
w(s)u(s)ds + λk

∫ T

0
z(t)y(t)dt +

N∑
i=1

y(tik)βi = 0

}
,

from which we conclude that

V ⊥ =

{
(w; z;β)

∣∣∣∣∣ w(s) + λk

∫ T

s
z(t)ceA(t−s)bdt +

N∑
i=1

�ik(s)βi = 0

}
.

Constructing the intersection of Vk
x0

with V ⊥+p, we must solve the follow-
ing system of equations:

u(s)=−λk

∫ T

s
(y(t)− yn(t))ceA(t−s)bdt−

N∑
i=1

�ik(s)(y(tik)− αik),

(6.17)

y(t)= ceAtx0 +
∫ t

0
ceA(t−s)bu(s)ds, (6.18)

y(tjk)= ceAtix0 +
∫ T

0
�jk(s)u(s)ds. (6.19)

Substituting u into the other two equations, we have

y(t)=−λk

∫ t

0

∫ T

s
y(t)ce2A(t−s)bdtds−

N∑
i=1

∫ t

0
ceA(t−s)b�ik(s)dsy(tik)

+ λk

∫ t

0

∫ T

s
yn(t)ceA(t−s)bceA(t−s)bdtds

+
N∑

i=1

∫ t

0
ceA(t−s)b�ik(s)dsαik + ceAtx0,

y(tjk)=−λk

∫ T

0
�jk(s)

∫ T

s
y(t)ceA(t−s)bdtds

−
N∑

i=1

∫ T

0
�jk(s)�ik(s)dsy(tjk)

+ λk

∫ T

0
�jk(s)

∫ T

s
yn(t)ceA(t−s)bdtds

+
N∑

i=1

∫ T

0
�jk(s)�ik(s)dsαik + ceAtjkx0.

Let

L(t)(f) =
∫ t

0

∫ T

s
f(t)ce2A(t−s)bdtds, (6.20)
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and let

Gk =

[∫ T

0
�ik(s)�jk(s)ds

]N

i,j=1

(6.21)

be the Grammian of the set of linearly independent functions �i(s). More-
over, let

Hk =
(∫ t

0
ceA(t−s)b�1k(s)ds, . . . ,

∫ t

0
ceA(t−s)b�Nk(s)ds

)
. (6.22)

By setting

ŷ = (y1k, . . . , yNk)
T
, (6.23)

Ck = [ceAt1kx0, . . . , ce
AtNk x0]

T
, (6.24)

and

L̂k(y) = [L(t1k)(y), . . . , L(tNk)(y)]
T
, (6.25)

we can rewrite the equations as

(I + λkL(t))(y) +Hkŷ

= λkL(t)(yn) + Hkα̂+ ceAtx0λkL̂k(y) + (I + Gk)ŷ

= λkL̂k(yn) + Gkα̂+ [ceAt1kx0, . . . , ce
AtNkx0]

T
.

Since Gk is positive definite, so is I+Gk, and hence we can solve for ŷ and
develop the recursion

(y + λkL(t)(y − yn)) + Hkλk(I + Gk)−1L̂k(yn − y)
= −Hk(I + Gk)−1Gkα̂− (I + Gk)−1Ck + Hkα̂ + ceAtx0.

Dividing by λk, we have

(λ−1
k yn+1 + L(t)(yn+1 − yn)) + Hk(I + Gk)−1L̂k(yn − yn+1)

= λ−1
k (−Hk(I + Gk)−1Gkα̂− (I + Gk)−1Ck + Hkα̂+ ceAtx0).

The right-hand side is bounded and so, if the sequence of λk goes to
infinity, then the right-hand side approaches 0. What remains to be proved
is thus that the sequence of yn is bounded.
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6.6.2 The Discrete Case

In this case, the Hilbert space is

L2[0, T ]× R
N+j ,

with the norm defined as

‖(u;x)‖2 =
∫ T

o
u2(t)dt + xT Qx,

where

Q =
(

Q1 0
0 I

)

and

Q1 = Diag(λkω1j , . . . , λkωjj).

Since there are two different time sequences, we define

℘ij(s) =

{
ceA(rij−s)b, rij − s ≥ 0,
0 otherwise.

The linear variety is

Vx0 =
{
(u; (ρ, γ))

∣∣∣ ρij = ceArijx0 +
∫ T

0
℘ij(s)u(s)ds,

γik = ceAtikx0 +
∫ T

0
�ij(s)u(s)ds

}
.

We define for typographical convenience

ŷ =

(∫ T

0
℘1j(s)u(s)ds, . . . ,

∫ T

0
℘jj(s)u(s)ds

)T

,

x̂ =

(∫ T

0
�1j(s)u(s)ds, . . . ,

∫ T

0
�Nj(s)u(s)ds

)T

,

�̂ = (�1N (s), . . . , �kN )T

and

℘̂ = (℘1j(s), . . . , ℘jj(s))T .
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The computation of V⊥0 reduces to the equation
∫ T

0
u(s)v(s)ds + zT Q1ŷ + wT x̂ = 0,

which reduces to

V ⊥0 = {(v, (z,w)) | v(s) + zT Q1℘̂ + wT �̂ = 0}.

As in the continuous case, to find the intersection of Vx0 and V ⊥0 + p, we
must solve the following system of equations:

u(s)=−(ρT − ŷT )Q1℘̂− (γT − α̂T )�̂,

ρij = ceArijx0 +
∫ T

0
℘ij(s)u(s)ds,

γik = ceAtikx0 +
∫ T

0
�ij(s)u(s)ds.

Abbreviating notation, we have

u(s)=−(ρT − ŷT )Q1℘̂− (γT − α̂T )�̂,

ρ=Cr +
∫ T

0
℘̂u(s)ds,

γ=Ct +
∫ T

0
�̂u(s)ds,

and substituting gives

ρ=Cr −
∫ T

0
℘℘T Q1ρds +

∫ T

0
℘℘TQ1ŷds −

∫ T

0
℘�̂T γds

+
∫ T

0
℘�̂T α̂ds,

γ=Ct −
∫ T

0
�̂℘T Q1ρds +

∫ T

0
�̂℘T Q1ŷds−

∫ T

0
��T γds

+
∫ T

0
��T α̂ds,

Q−1
1 Q1ρ=Cr −

∫ T

0
℘℘T Q1ρds +

∫ T

0
℘℘TQ1ŷds −

∫ T

0
℘�̂T γds

+
∫ T

0
℘�̂T α̂ds,

γ=Ct −
∫ T

0
�̂℘T Q1ρds +

∫ T

0
�̂℘T Q1ŷds−

∫ T

0
��T γds
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+
∫ T

0
��T α̂ds,

Q−1
1 Q1ρ=Cr −

∫ T

0
℘℘T dsQ1ρ +

∫ T

0
℘℘T dsQ1ŷ −

∫ T

0
℘�̂T dsγ

+
∫ T

0
℘�̂T dsα̂,

γ=Ct −
∫ T

0
�̂℘T dsQ1ρ+

∫ T

0
�̂℘T dsQ1ŷ −

∫ T

0
��Tdsγ

+
∫ T

0
��T dsα̂,

(
Q−1

1 + G H
HT I + S

)(
Q1ρ
γ

)
=
(

G H
HT S

)(
Q1ŷn

α̂n

)
+
(

Cr

Ct

)
.

(6.26)
We will now eliminate γ:(

Q−1
1 + G−H(I + S)−1HT 0

(I + S)−1HT I

)(
Q1ρ
γ

)

=

(
G−H(I + S)−1HT H −H(I + S)−1S

(I + S)−1HT (I + S)−1S

)(
Q1ŷn

α̂n

)

+
(

Cr −H(I + S)−1Ct

(I + S)−1Ct

)
.

We thus arrive at

(I + GQ1 −H(I + S)−1HT Q1)ρ
= (GQ1 −H(I + S)−1HT Q1)ŷn

+ H(I + S)−1α̂n + Cr −H(I + S)−1Ct.

Going back to the original notation we have

(I + λn(GQ−Hn(I + Sn)−1HT
n Q))ŷn+1

= λn(GQ−Hn(I + Sn)−1HT
n Q)ŷn

+ Hn(I + Sn)−1α̂n + Cr −Hn(I + Sn)−1Ct,

which we rewrite as

ŷn+1 = (λ−1
n −An)−1Anŷn + (λ−1

n −An)−1λ−1
n Un. (6.27)

Rewriting this gives a less cumbersome form:

ŷn+1 = (εn −An)−1Anŷn + (εn −An)−1εnUn. (6.28)
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We first consider the matrices An and Un. These matrices come from a
compact set since they just depend on the inner products of the �i and the
℘i. The behavior of the matrices (εn−An)−1An and (εn−An)−1εn reduce
to eigenvalue calculations. We assume that we have chosen the parameters
εn so that they approach zero.

Assumption 6.5

{rij | i = 1, . . . , j} ∩ {tiN | i = 1, . . . , N} = ∅
We now state and prove a technical lemma.

Lemma 6.6 For every j the matrix

G−Hj(I + Sj)−1HT
j

is nonsingular.

Proof. The matrix (
Gj Hj

HT
j Sj

)

is the Grammian of a linearly independent set of vectors, by virtue of As-
sumption 6.5, and hence the matrix(

Gj Hj

HT
j I + Sj

)

is positive definite.
Using elementary row and column operations we can reduce the matrix

to (
Gj −Hj(I + Sj)−1HT

j 0
(I + Sj)−1HT

j I

)
,

and the lemma follows.
The matrix Aj is likewise nonsingular for all j and so, by diagonalizing

the Aj (or rather AjQ
−1), we reduce the recursion to the form

zj+1 = (1 + τj)zj + τjuj , (6.29)

where uj is a bounded function of j.
Our goal is to show that we can choose the sequence of τ so that the

solution of this difference equation is given by the infinite sum
∞∑
i=0

τi,
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which, moreover, is bounded.
The solution to (6.29) is of the form

zj =
j∏

i=0

(1 + τj) +
j∑

i=0

j∏
k=i+1

(1 + τk)ui,

so in the limit the following terms must exist:
∞∏
i=0

(1 + τi) (6.30)

and
∞∑
i=0

∞∏
k=i+1

(1 + τk)τiui. (6.31)

It is well known that product of (6.30) is finite provided that
∞∑
i=0

τi

converges (see [83]). The conditions for the sum of (6.31) to converge are
a little more obscure. It is easy to prove that if the ratio test proves the
convergence of

∞∑
i=0

τi,

then the series in (6.31) exists and is finite.

SUMMARY

In this book we present a general approach to interpolating and smoothing
splines that includes all polynomial, exponential, and trigonometric splines.
In this chapter, we proved that with system dynamics governed by ordinary
differential equations, two-point boundary value problems, or multipoint
boundary value problems, the theory is essentially the same. We have shown
that the solution to all of these problems reduces to finding a point on a lin-
ear variety that is nearest in a suitable Hilbert space norm to a given data
point. In this chapter we have worked with continuous data, which com-
plicates implementation, but the problem does arise in applications. The
approach would in principle work in a general Banach space, but in practice
the equations are not solvable. However, the answers obtained by restricting
to a Hilbert space are satisfactory for most problems of interest.
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Chapter Seven

MONOTONE SMOOTHING SPLINES

In this chapter, we consider a variation to the basic theme of this book, by
imposing certain types of regularity conditions on the produced curves that
have to hold for all times–namely, monotonicity conditions. As such, the
solution to the problem of generating curves by driving the output of a par-
ticular nilpotent single-input, single-output linear control system close to
given waypoints is analyzed, when the curves are constrained by an infinite-
dimensional nonnegativity constraint on one of the derivatives of the curve.
The main theorem in this chapter states that the optimal curve is a piecewise
polynomial of known degree. For the two-dimensional case, this problem is
completely solved when the acceleration is controlled directly. The solution
is obtained by exploiting a finite reparameterization of the problem that can
be solved using dynamic programming.
——————————————————————————————

In many cases, the type of construction we have seen so far in this book is
not enough since one sometimes wants the generated curve to exhibit certain
structural properties, such as monotonicity or convexity (see [17],[21],[41],
[47],[49],[66],[76],[85]). These properties correspond to nonnegativity con-
straints on the first and second derivatives of the curve, respectively, and
hence the nonnegative derivative constraint will be the main focus of this
chapter.

7.1 THE MONOTONE SMOOTHING PROBLEM

Consider the problem of constructing a curve that passes close to given data
points, at the same time that we want the curve to exhibit certain monotonic-
ity properties. In other words, if p(t) is our curve, we want (p(ti)−αi)2, i =
1, . . . ,m, to be qualitatively small. Here, (t1, α1), . . . , (tm, αm) are the data
points, with αi ∈ R, i = 1, . . . ,m, and 0 < t1 < t2 < · · · < tm ≤ T , for
some given terminal time T > 0. We do not only, however, want to keep
the interpolation errors small. We also want the curve to vary in a smooth
way, and that

p(n)(t) ≥ 0, ∀t ∈ [0, T ], (7.1)
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for some given positive integer n. We now revisit the conditions for control
theoretic smoothing splines.

Let

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0

... . . . ...
0 0 0 · · · 1
0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, b =

⎛
⎜⎜⎜⎝

0
...
0
1

⎞
⎟⎟⎟⎠ , (7.2)

and

c1 =
(
1 0 · · · 0

)
,

c2 =
(
0 0 · · · 1

)
,

(7.3)

where A is an n×n matrix, b is n×1, and c1 and c2 are 1×n. Here, c1x(t)
takes on the role of p(t), and by our particular choices of A and b in (7.3), x
is a vector of successive derivatives.

The problem can now be cast as

inf
u

{
1
2

∫ T

0
u2(t)dt +

1
2

m∑
i=1

ωi(c1x(ti)− αi)2
}

, (7.4)

subject to ⎧⎨
⎩

ẋ = Ax+ bu, x(0) = 0,
u ∈ L2[0, T ],
c2x(t) ≥ 0, ∀t ∈ [0, T ],

(7.5)

where ωi ≥ 0 reflects how important it is that the curve passes close to a
particular αi ∈ R. The reason for infimizing rather than minimizing is that
it is not clear, at this point, that the minimizer exists.

Now, since ẋ = Ax+ bu, c1x(ti) is given by

c1x(ti) =
∫ ti

0
c1e

A(ti−t)bu(t)dt,

since x(0) = 0. This expression can furthermore be written as

c1x(ti) =
∫ T

0
�i(t)u(t)dt,

where, as before, we make use of the linearly independent basis functions

�i(t) =

{
c1e

A(ti−t)b if t ≤ ti,
0 if t > ti,

i = 1, . . . ,m. (7.6)
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Our infimization over u can then be rewritten as

inf
u

⎧⎨
⎩1
2

∫ T

0
u2(t)dt +

1
2

m∑
i=1

ωi

(∫ T

0
�i(t)u(t)dt − αi

)2
⎫⎬
⎭ , (7.7)

which is an expression that depends only on u.
Since we want c2x(t) to be continuous, we let the constraint space be

C[0, T ], that is, the space of continuous functions. In a similar fashion as
before, we can express c2x(t) as

c2x(t) =
∫ t

0
c2e

A(t−s)bu(s)ds =
∫ t

0
f(t, s)u(s)ds.

This allows us to form the associated Lagrangian [64]

L(u, ν)=
1
2

∫ T

0
u2(t)dt +

1
2

m∑
i=1

ωi

(∫ T

0
�i(t)u(t)dt − αi

)2

−
∫ T

0

∫ t

0
f(t, s)u(s)dsdν(t), (7.8)

where ν ∈ BV [0, T ] (the space of functions of bounded variations, which is
the dual space of C[0, T ]). The optimal solution to our original optimization
problem is thus found by solving

max
0≤ν∈BV [0,T ]

inf
u∈L2[0,T ]

L(u, ν). (7.9)

7.2 PROPERTIES OF THE SOLUTION

Lemma 7.1 Let (Ã, b̃, c̃) be a triple, where Ã is an n×n matrix, b̃ is n×1,
and c̃ is 1×n. If ẋ = Ãx+ b̃u, x(0) = 0, then the set of controls in L2[0, T ]
that make the solution to the differential equation satisfy

c̃x(t) ≥ 0, ∀t ∈ [0, T ]

is a closed, nonempty, and convex set.

Proof. We first show convexity. Given two ui(t) ∈ L2[0, T ], i = 1, 2, such
that ∫ t

0
c̃eÃ(t−s)b̃ui(s)ds ≥ 0, ∀t ∈ [0, T ], i = 1, 2,

then for any λ ∈ [0, 1] we have∫ t

0
c̃eÃ(t−s)b̃(λu1(s) + (1− λ)u2(s))ds ≥ 0, ∀t ∈ [0, T ],
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and convexity thus follows.
Now, consider a collection of controls {ui(t)}∞i=0, where each individual

control makes the solution to the differential equation satisfy c̃x(t) ≥ 0 ∀t ∈
[0, T ], and where ui → û as i → ∞. But, due to the compactness of [0, t],
we have that

lim
i→∞

∫ t

0
c̃eÃ(t−s)b̃ui(s)ds =

∫ t

0
c̃eÃ(t−s)b̃û(s)ds ≥ 0, ∀t ∈ [0, T ].

The fact that L2[0, T ], with the natural norm defined on it, is a Banach space
gives us that the limit, û, still remains in that space. The set of admissible
controls is thus closed.

Furthermore, since x(0) = 0, we can always let u ≡ 0. This gives that
the set of admissible controls is nonempty, which concludes the proof.

Lemma 7.2 The cost functional in (7.4) is convex in u.

The proof of this lemma is trivial since both terms in (7.4) are quadratic
functions of u.

Lemmas 7.1 and 7.2 are desirable in any optimization problem since they
are strong enough to guarantee the existence of a unique optimal solution
(see, e.g., [64]), and we can thus replace inf in (7.8) with min, which directly
allows us to state the following standard theorem about the optimal control.

Theorem 7.3 There is a unique u0 ∈ L2[0, T ] that solves the optimal
control problem in (7.4).

We omit the proof of this and refer to any textbook on optimization theory
for the details. (See for example [64].)

Lemma 7.4 Given the optimal solution u0, the optimal ν0 ∈ BV [0, T ],
ν0 ≥ 0, varies only where c2x(t) = 0. On intervals where c2x(t) > 0,
ν0(T )− ν0(t) is a nonnegative, real constant.

Proof. Since ν0(T ) − ν0(t) ≥ 0 due to the positivity constraint on ν0, we
reduce the value of the Lagrangian in (7.8) whenever ν0 changes, except
when c2x(t) = 0. But, since ν0 maximizes L(u0, ν), we only allow ν0 to
change when c2x(t) = 0, and the lemma follows.

Now, before we can completely characterize the optimal control solution,
one observation to be made is that

c2x(t) =
(
0 0 · · · 1

)
x(t) =

∫ t

0
u(s)ds,
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that is, f(t, s) is in fact equal to 1 in (7.8). This allows us to rewrite the
Lagrangian as

L(u, ν)=
1
2

∫ T

0
u2(t)dt +

1
2

m∑
i=1

ωi

(∫ T

0
�i(t)u(t)dt − αi

)2

−
∫ T

0

∫ t

0
u(s)dsdν(t). (7.10)

By integrating the Stieltjes integral in (7.10) by parts, we can furthermore
reduce the Lagrangian to

L(u, ν)=
1
2

∫ T

0
u2(t)dt +

1
2

m∑
i=1

ωi

(∫ T

0
�i(t)u(t)dt − αi

)2

−
∫ T

0
(ν(T )− ν(t))u(t)dt, (7.11)

which is a more easily manipulated expression.

Definition 7.5 Let PPk[0, T ] denote the set of piecewise polynomials of
degree k on [0, T ]. Let Pk[0, T ] denote the set of polynomials of degree k
on that interval.

Theorem 7.6 The control in L2[0, T ] that minimizes the cost in (7.4) is in
PPn[0, T ]. It furthermore changes from different polynomials of degree n
only at the interpolation times, ti, i = 1, . . . ,m, and at times when c2x(t)
changes from c2x(t) > 0 to c2x(t) = 0 and vice versa.

Proof. Due to the convexity of the problem and the existence and unique-
ness of the solution, we can obtain the optimal controller by calculating the
Gateaux derivative of L with respect to u and setting this equal to zero for
all increments h ∈ L2[0, T ].

By letting Lν(u) = L(u, ν), we get that

δLν(u, h) = lim
ε→0

1
ε
(Lν(u + εh)− Lν(u))

is given by the integral∫ T

0

(
u(t) +

m∑
i=1

ωi

(∫ T

0
�i(s)u(s)ds− αi

)
�i(t)− (ν(T )− ν(t))

)
h(t)dt.

(7.12)
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For the expression in (7.12) to be zero for all h ∈ L2[0, T ], we need to have
that

u0(t) +
m∑

i=1

ωi

(∫ T

0
�i(s)u0(s)ds− αi

)
�i(t)− (ν(T )− ν(t)) = 0.

This especially has to be true for ν = ν0, which gives that

u0(t) +
m∑

i=1

ωi

(∫ T

0
�i(s)u0(s)ds− αi

)
�i(t)− Cj = 0, (7.13)

whenever c2x0(t) > 0. Here Cj is a constant. The index j indicates that
this constant differs on different intervals where c2x0(t) > 0.

Now, the integral terms in (7.13) do not depend on t, while �i(t) is in
Pn[0, ti] for i = 1, . . . ,m. This, combined with the fact that ν0(T ) −
ν0(t) = Cj if ẋ(t) > 0, directly gives us that the optimal control, u0(t), has
to be in PPn[0, T ]. It obviously changes at the interpolation times, due to
the shape of the �i, but it also changes if Cj changes, that is, it changes if
c2x0(t) = 0. It should be noted that if c2x0(t) ≡ 0 on an interval, ν0(t)
may change on the entire interval, but since c2x0(t) ≡ 0 we also have that
u0(t) ≡ 0 on the interior of this interval. But a zero function is, of course,
polynomial. Thus we know that our optimal control is in PPn[0, t], and the
theorem follows.

Corollary 7.7 If n = 2, then the optimal control is piecewise linear (in
PP1[0, T ]), with changes from different polynomials of degree one at the
interpolation times, and at times when c2x(t) changes from c2x(t) > 0 to
c2x(t) = 0 and vice versa.

7.3 DYNAMIC PROGRAMMING

Based on the general properties of the solution, the idea now is to formulate
the monotone interpolation problem as a finite-dimensional programming
problem that can be dealt with efficiently. If we drive the system ẋ = Ax+
bu, where A and b are defined in (7.3), between xi and xi+1 on the time
interval [ti, ti+1], under the constraint c2x(t) ≥ 0, we see that we must at
least have

c2xi ≥ 0,
c2xi+1 ≥ 0,
D(xi+1 − xi) ≥ 0,

(7.14)
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where

D =

⎛
⎜⎜⎜⎝

1 0 · · · 0 0
0 1 · · · 0 0
... . . . ...
0 0 · · · 1 0

⎞
⎟⎟⎟⎠ ,

and the inequality in (7.14) is taken component-wise. We denote the con-
straints in (7.14) by

D(xi, xi+1) ≥ 0.

Since the original cost functional in (7.4) can be divided into one interpo-
lation part and one smoothing part, it seems natural to define the following
optimal value function as
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ŝi(xi)
= min

xi+1|D(xi,xi+1)≥0

{
Vi(xi, xi+1) + Ŝi+1(xi+1)

}
+ ωi(c1xi − αi)2,

Ŝm(xm) = ωm(c1xm − αm)2,
(7.15)

where Vi(xi, xi+1) is the cost for driving the system between xi and xi+1

using a control in PPn[ti, ti+1], while keeping c2x(t) nonnegative on the
time interval [ti, ti+1].

The optimal control problem thus becomes that of finding Ŝ0(0), where
we let ω0 = 0, while α0 can be any arbitrary number. In light of Theorem
7.6, this problem is equivalent to the original problem, and if Vi(xi, xi+1)
could be uniquely determined, it would correspond to finding the n × m
variables x1, . . . , xm, which is a finite-dimensional reparameterization of
the original, infinite-dimensional programming problem.

For this dynamic programming approach to work, our next task becomes
that of determining the function Vi(xi, xi+1). Even though that is typically
not an easy problem, a software package for computing approximations of
such monotone polynomials was developed in [17]. In [47],[49] this prob-
lem of exact interpolation, over piecewise polynomials, of convex or mono-
tone data points was furthermore investigated from a theoretical point of
view. It is thus our belief that showing that the original problem can for-
mulated as a dynamic programming problem involving exact interpolation
is a valuable result since it greatly simplifies the structure of the problem. It
furthermore transforms it to a form that has been extensively studied in the
literature.



EditedFinal September 23, 2009

120 CHAPTER 7

7.4 MONOTONE CUBIC SPLINES

If we change our notation slightly in such a way that our state variable is
given by (x, ẋ), x, ẋ ∈ R, the dynamics of the system becomes

ẍ = u.

The optimal value function in (7.15) thus takes on the form

Ŝi(xi, ẋi)
= min

xi+1 ≥ xi
ẋi+1 ≥ 0

{
Vi(xi, ẋi, xi+1, ẋi+1) + Ŝi+1(xi+1, ẋi+1)

}
+ ωi(xi − αi)2

Ŝm(xm, ẋm) = ωm(xm − αm)2.
(7.16)

7.4.1 Two-Point Interpolation

Given the times ti and ti+1, the positions xi and xi+1, and the corresponding
derivatives ẋi and ẋi+1, the question to be answered, as indicated by Corol-
lary 7.7, is the following. How do we drive the system between (xi, ẋi) and
(xi+1, ẋi+1), with a piecewise linear control input that changes between dif-
ferent polynomials of degree one, only when ẋ(t) = 0, in such a way that
ẋ(t) ≥ 0 ∀t ∈ [ti, ti+1], while minimizing the integral over the square of
the control input? Without loss of generality, for notational purposes, we
translate the system and rename the variables so that we want to produce a
curve defined on the time interval [0, tF ] between (0, ẋ0) and (xF , ẋF ).

Assumption 7.8

ẋ0, ẋF ≥ 0, xF > 0, tF > 0.

It should be noted that if xF = 0, and either ẋ0 > 0 or ẋF > 0, then ẋ(t)
can never be continuous. This case has to be excluded since we demand that
our constraint space be C[0, T ]. If, furthermore, xF = ẋ0 = ẋF = 0, then
the optimal control is obviously given by u ≡ 0 on the entire interval.

One first observation is that the optimal solution to this two-point inter-
polation problem is to use standard cubic splines if that is possible, that is,
if ẋ(t) ≥ 0 for all t ∈ [0, tF ]. In this well-studied case (see [6],[85]), we
simply have that

x(t) =
1
6
at3 +

1
2
bt2 + ẋ0t, (7.17)
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where (
a
b

)
=

6
t3F

(
tF (ẋ0 + ẋF )− 2xF

tF xF − 1
3t2F (2ẋ0 + ẋF )

)
. (7.18)

This solution corresponds to having ν(t) = ν(ti+1), for all t ∈ [ti, ti+1) in
(7.11), and it gives the total cost

I1 =
∫ tF

0
(at + b)2dt = 4

(ẋ0t
2
F − 3xF tF )(ẋ0 + ẋF ) + 3x2

F + t2F ẋ2
F

t3F
,

(7.19)
where the subscript 1 denotes the fact that only one polynomial of degree
one was used to compose the second derivative.
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Figure 7.1 The case where a cubic spline cannot be used if the derivative has to be nonneg-
ative. Plotted is the derivative that clearly intersects ẋ = 0.

However, not all curves can be produced by such a cubic spline if the
curve has to be nondecreasing at all times. Given Assumption 7.8, the one
case where we can not use a cubic spline can be seen in Figure 7.1, and
from geometric considerations we get four different conditions that all need
to hold for the derivative to be negative. These necessary and sufficient
conditions are

(i) a > 0,
(ii) b < 0,
(iii) ẋ(tM ) < 0,
(iv) tM < tF ,

(7.20)
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where a and b are defined in (7.17), and tM is defined in Figure 7.1.
We can now state the following lemma.

Lemma 7.9 Given Assumption 7.8, a standard cubic spline can be used to
produce monotonously increasing curves if and only if

xF ≥ χ(tF , ẋ0, ẋF ) =
tF
3
(ẋ0 + ẋF −

√
ẋ0ẋF ). (7.21)

The proof of this follows from simple algebraic manipulations [34], and
we now need to investigate what the optimal curve looks like in the case
when we cannot use standard cubic splines.

7.4.2 Monotone Interpolation

Given two points such that xF < χ(tF , ẋ0, ẋF ), how should the interpolat-
ing curve be constructed so that the second derivative is piecewise linear,
with switches only when ẋ(t) = 0? One first observation is that it is al-
ways possible to construct a piecewise polynomial path that consists of three
polynomials of degree one and respects the interpolation constraint, and in
what follows we will see that such a path also respects the monotonicity
constraint.

The three interpolating polynomials are given by

u(t) =

⎧⎨
⎩

a1t + b1 if 0 ≤ t < t1,
0 if t1 ≤ t < t2,
a2(t− t2) + b2 if t2 ≤ t ≤ tF ,

(7.22)

where(
a1

b1

)
= 6

t31

(
t1ẋ0 − 2x1

t1x1 − 2/3t21ẋ0

)
,

(
a2

b2

)
= 6

(tF−t2)3

(
(tF − t2)ẋF − 2(xF − x1)

(tF − t2)(xF − x1)− 1/3(tF − t1)2ẋF

)
,

(7.23)
and where x(t1) = x(t2) = x1, together with t1 and t2, is a parameter that
needs to be determined.

Assumption 7.10

ẋ0, ẋF , xF , tF > 0.

We need this assumption, which is stronger than Assumption 7.8, for the
following lemma, but it should be noted that if ẋ0 = 0 or ẋF = 0 we would
then just let the first or the third polynomial on the curve be zero.
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We now state the possibility of such a feasible three-polynomial construc-
tion.

Lemma 7.11 Given (tF , ẋ0, xF , ẋF ) such that xF < χ(tF , ẋ0, ẋF ), then a
feasible, monotone curve will be given by (7.22) as long as Assumption 7.10
holds. Furthermore, the optimal t1, t2, and x1 are given by⎧⎪⎨

⎪⎩
t1 = 3x1/ẋ0,
t2 = tF − 3(xF − x1)/ẋF ,

x1 = ẋ
3/2
0 xF /(ẋ3/2

0 + ẋ
3/2
F ).

(7.24)

The proof is constructive and is based on showing that, with the type of
construction given in (7.22), the optimal choice of t1, t2, x1 gives a feasible
curve. We refer the reader to [34] for the details. We can thus construct
a feasible path, as seen in Figure 7.2, by using three polynomials whose
second derivatives are linear.
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t
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/d

t

Figure 7.2 The dotted line corresponds to a standard cubic spline; the solid line shows the
three construction from Lemma 7.11. Depicted are the position and the velocity.

Theorem 7.12 (Monotone Interpolation) Given Assumption 7.8, the opti-
mal control that drives the path between (0, ẋ0) and (xF , ẋF ) is given by
(7.17) if xF ≥ χ(tF , ẋ0, ẋF ) and by (7.22) otherwise.
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Proof. The first part of the theorem is obviously true. If we can construct a
standard, cubic spline, then this is optimal. However, what we need to show
is that when xF < χ(tF , ẋ0, ẋF ) the path given in (7.22) is in fact optimal.

The cost for using a path given in (7.22) is

I3 =
∫ t1

0
(a1t + b1)2dt +

∫ tF

t2
(a2(t− t2) + b2)2dt =

4(ẋ3/2
F + ẋ

3/2
0 )2

9xF
,

where the coefficients are given in (7.24). We now add another, arbitrary
polynomial, as seen in Figure 7.3, to the path as

u(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a1t + b1 if 0 ≤ t < t1,
0 if t1 ≤ t < t3,
a3(t− t3) + b3 if t3 ≤ t < t4,
0 if t4 ≤ t < t2,
a2(t− t2) + b2 if t2 ≤ t ≤ tF ,

(7.25)

where 0 < t1 ≤ t3 ≤ t4 ≤ t2 < tF . Furthermore, t3, t4, and x2 = x(t4)
(see Figure 7.3) are chosen arbitrarily, while the old variables, t1, t2, and
x1 = x(t1), are defined to be optimal with respect to the new, translated
end-conditions that the extra polynomials give rise to.

After some straightforward calculations, we get that the cost for this new
path is

I5 =
4(ẋ3/2

F + ẋ
3/2
0 )2

9(xF − x2)
+

12(x2 − x1)2

(t4 − t3)3
, (7.26)

where the subscript 5 denotes the fact that we are now using five polynomi-
als of degree one to compose our second derivative. It can be seen that we
minimize I5 if we let x2 = x1 and make t4 − t3 as large as possible. This
corresponds to letting t3 = t1 and t4 = t2, which gives us the old solution
from Lemma 7.11, defined in (7.22).

7.4.3 Monotone Cubic Smoothing Splines

We now have a way of producing the optimal, monotone path between two
points, while controlling the acceleration directly. We are thus ready to
formulate the transition cost function in (7.16), Vi(xi, ẋi, xi+1, ẋi+1), that
defines the cost for driving the system between (xi, ẋi) and (xi+1, ẋi+1),
with minimum energy, while keeping the derivative nonnegative.
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Figure 7.3 Two extra polynomials are added to the produced path. Depicted is the derivative
of the curve.

Based on Theorem 7.12 and given Assumption 7.8, we have that1

Vi(xi, ẋi, xi+1, ẋi+1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4
ẋi(ti+1−ti)

2−3(xi+1−xi)(ti+1−ti)(ẋi+ẋi+1)+3(xi+1−xi)
2+(ti+1−ti)

2ẋ2
i+1

(ti+1−ti)3

if xi+1 − xi ≥ χ(ti+1 − ti, ẋi, ẋi+1),

4(ẋ
3/2
i+1+ẋ

3/2
i )2

9(xi+1−xi)

if xi+1 − xi < χ(ti+1 − ti, ẋi, ẋi+1),
(7.27)

where t0 = x0 = ẋ0 = 0.
If we use this cost in the dynamic programming algorithm formulated in

(7.16), we get the results displayed in Figures 7.4–7.5, which shows that our
approach does not only work in theory, but also in practice.

It should be noted that a major challenge is the construction of monotone
smoothing splines of higher degree than cubic. For example, in some appli-
cations it is necessary to construct a smoothing spline such that y(t) ≥ 0.

1If xi+1 −xi = ẋi = ẋi+1 = 0, then the optimal control is obviously zero, meaning that
Vi(xi, ẋi, xi+1, ẋi+1) = 0.
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Figure 7.4 Monotone smoothing splines with ωi = 1000, i = 1, . . . , 5.

This can be solved by approximating z(t) =
∫ t
0 y(s)ds from the data. But,

since the data are defined over y, some approximation scheme is needed to
obtain the integral expression for z, which can be achieved with a monotone
spline for approximating y by ż. If z is only cubic (as in the previous sec-
tions), y is only quadratic, in which case convergence is bound to be slow.

7.5 PROBABILITY DENSITIES

The monotonicity constraint can be thought of as a special type of contin-
uous constraint (it has to hold for all times), and there are other cases in
which such constraints must be handled. We here investigate that topic in
the context of approximating probability densities from data.

There is ongoing research in the applications and theory of smoothing
splines in statistics. Work by Peter Hall [45] and the book by R. Eubank
[36] are examples of really good work in the area. Eubank’s book is an
excellent up-to-date place to become familiar with the work in the area. In
this section, we propose to use control theoretic splines to attack a series
of problems in the theory of density estimation, as well as outline some
possible solution directions to a collection of fundamental problem.
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Figure 7.5 Monotone smoothing splines with ω4 = 10ωi, i �= 4 (with t4 = 0.8), resulting
in a different curve from that in Figure 7.4, where equal importance is given to
all of the waypoints.

Recalling the definition of the cubic smoothing spline (as in [96]), we
have

J(ÿ) = λ

∫ T

0
ÿ2(t)dt +

1
N

N∑
i=1

(y(ti)− αi)2,

where the data set is

D = {(ti, αi) | i = 1, . . . , N}.

This cost function is minimized over L2[0, T ] to obtain a curve y(t) which
is the smoothing spline. We have already seen that y(t) is the classic inter-
polating cubic spline with a new set of data, where the new data α̂i = y(ti)
are determined by the minimization. In this formulation, there is one design
parameter, λ. The smoothing spline procedure can be thought of as a least
squares minimization based on a norm that is determined by the values ti,
and then using the estimated values to construct a cubic spline. This point
of view is established and exploited in [102].
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In this section, we consider two main sets of problems. The first is the
estimation of probability distributions from sampled data using splines; the
second is the estimation of exponential distributions using splines to esti-
mate the log distribution. The work of Kooperberg and Stone [46],[56] is
directly related to the second set of problems. Also the papers by Hall and
co-authors [13] and Mammen [65] are directly relevant.

7.5.1 Estimation of Probability Distributions

This is, of course, an area of statistics in which there is a tremendous amount
of literature. Surprisingly, there are two distinct bodies of literature, the
statistics literature and the systems identification literature of control theory,
and the two bodies of work only occasionally meet.

Problem l: Given the empirical distribution, use splines to construct a
smooth version of the distribution.

We are not concerned with the specific construction of the empirical dis-
tribution at this point. We simply assume that it is given and that there are
a limited number of levels. A rule of thumb in the use of splines is that
no more than 10 nodal points should be used. This is because there is con-
siderable linear algebra involved and many matrix methods start to show
instability at around dimension 10. Many of the algorithms are required to
solve systems with dimension twice the number of nodes.

Given the empirical distribution, we choose the midpoint of each interval
and the value of the distribution at that point as the datum (ti, αi). Here we
assume that the probability distribution function has finite support on [0, T].
Without loss of generality, we assume that 0 ≤ ti ≤ T and we use the cost
function

J(u, x0) = λ

∫ T

0
u2(t)dt +

N∑
i=1

wi(y(ti)− αi)2 + x′0Qx0.

We impose the added constraint that∫ T

0
y(t)dt = 1.

Our constraint variety is then

Vc =
{
(u;x0; ŷ)

∣∣∣ y(ti) = ceAtix0 +
∫ ti

0
ceA(ti−s)u(s)ds,

∫ T

0
[ceAtx0 +

∫ t

0
ceA(t−s)bu(s)ds]dt

}
.
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The construction of the spline is a straightforward application of the basic
algorithm. We also impose a post hoc constraint that

y(t) ≥ 0.

In the above construction, there is nothing to prevent the spline from being
negative on intervals. This can be remedied by ad hoc methods of looking
at the spline and, at the points where it becomes negative, imposing the
point constraint that the derivative at that point must be positive. This is the
usual technique. A more global method can be applied by insisting that the
inequality

y(t) ≥ 0

be satisfied on the domain. In fact, in the previous chapter (as well as in
[31]), we saw how to enforce such monotonicity constraints. (The downside
of the method in Chapter 7 is that the problem changes from a minimum
norm problem in Hilbert space to a dynamic programming problem.)

An alternative method is to use the fact that the control theoretic splines
are an approximation of a linear filter of the form

y(t) =
∫ t

0
k(t, s)f(s)ds.

This filter is developed in detail in the previous sections. Using this fil-
ter, it is not necessary to impose restrictions on the empirical distribution.
The integral is to be evaluated using any good quadrature scheme, and the
integration can thus be as accurate as we like.

Problem 2: Choose the form of the empirical distribution.

Here we assume that we have sampled the distribution a large number of
times. We know that the choice of intervals makes a significant difference in
the form of the empirical distribution. Gross features are usually relatively
clear, but there can be small differences that are lost if too few subintervals
are chosen. Smoothing splines tend to wash out small differences unless
the weights are chosen carefully. The choice of λ also makes a very large
difference in the shape of the smoothing spline.

In [53], the parameter was chosen in several different ways to reflect long-
term vs. short-term effects in the Dow Jones Industrial Average over a 20-
year period. Choosing λ to be large forces the control to be small and al-
lows for errors in the approximation of the data, and hence large bandwidth.
Choosing λ small allows for large control and forces the error in the approx-
imation of the data to be small, and hence small bandwidth. The bandwidth
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is particularly apparent in the limit when the spline is replaced by the linear
filter; see [101] for numerous examples.

The difficulty with forcing the empirical distribution to reflect the small
deviations in the probability distribution is that it increases the number of
subintervals that must be used and hence increases the risk of numerical
instability in the construction of the spline. We attack that problem directly
in the next problem.

Problem 3: Recursively handle many points and modify the estimated
distribution.

In [55], there is developed a method of recursively generating splines to
avoid the problem of using many points. A similar derivation was done in
Chapter 6, we used a sequence of cost functions of the form

Jk(u, x0)=λ

∫ T

0
u2

k(t)dt + g(k)
∫ T

0
(yk(t)− yk−1(t))2f(t)dt

+
N∑

i=1

wi(yk(tki )− αk
i )

2 + (xk
0)
′Q(xk

0).

In this cost function, we see that previous data are stored in terms of the
spline. Then the new iteration is penalized both for deviations from the
previous estimates and for deviations from the new data.

In the cost function, it is convenient to insist that the weight function f(t)
be positive on the interval [0, T ], but it can be made very small on subinter-
vals where the distribution needs to be modified. The weight function g(k)
is a design parameter to be chosen. It reflects the relative importance of the
past splines and the current data. In [55] it was chosen to be k2, but this was
taken to reflect the fact that the data were not going to change dramatically
on subsequent revolutions and this choice increases the rate of convergence.

7.5.2 Estimating Exponential Distributions

The problems described above have two inherent difficulties that must be
faced; the integral must be equal to 1 and the distribution function must be
positive. This difficulty can be overcome by focusing on a class of distribu-
tions that are somewhat more specialized but still encompass a large number
of examples, namely, the exponential distributions.

In order to estimate such an exponential distribution, ef(x), we take the
logarithm and are then faced with the problem of the estimation of the func-
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tion f(x). There are no restrictions on the sign of f(x), and thus one diffi-
culty is removed.

However, difficulty does arise. We must still insist on the property that∫ ∞

−∞
ef(x)dx = 1.

This is a nonlinear constraint, and the Hilbert space setting is not suit-
able for such constraints. Some of the relevant work in the area includes
[9],[13],[15]. However, it is at least theoretically possible to move the prob-
lem into a Banach space setting and still solve it.

One way to avoid this difficulty is quite artificial but has its merits. The
data used to estimate f come from a finite interval, and yet it is natural
to define exponential distributions on the infinite interval. Let us suppose
that the data for determining f come from the finite interval [−T, T ]. We
determine f using standard smoothing spline techniques so that we know
f(−T ), f(T ), and the first derivative of f at the endpoints. We extend the
definition of f to the entire line by defining the extension to be f(t− T ) to
the right of T + ε and by f(T − t)+ b to the left of T − ε. This extension is
discontinuous if ε = 0, but for positive ε we can use a partition of unity to
connect f and the line segments in a smooth manner.

Now, the f constructed is smooth, and hence so is its exponential. Thus
we can choose the two additional parameters to make the total integral equal
to 1. With this approach we avoid the nonlinear constraint but add a quite
artificial extension. There are two major problems here. The first is that
of incorporating nonlinear constraints. This problem is an active area of
research in control theory and arises when it is necessary to construct splines
on nonlinear surfaces. The second problem is how to extend the construction
of f to the entire line in a manner that is not entirely artificial. Both of these
problems remain to be solved.

SUMMARY

In this chapter, we added a monotonicity constraint to the basic smoothing
spline problem. As a result, we could no longer apply the Hilbert space
techniques, but still, using directional derivatives, found that for nilpotent
systems the optimal solution is piecewise polynomial. For the particular
case of n = 2, the problem was completely solved using dynamic program-
ming, resulting in monotone smoothing, cubic splines. The discussion of
such continuous constraints was moreover extended to the important prob-
lem of approximating probability distributions from data.
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Chapter Eight

SMOOTHING SPLINES AS INTEGRAL FILTERS

In this chapter we construct an integral filter and show that the smooth-
ing spline is the natural approximation of this filter. The construction relies
heavily on linear-quadratic optimization theory and the associated theory
of Hamiltonians and Riccati transforms. Also, we will show how the band-
width of the filter can be controlled directly by the smoothing parameter
and hence we will conclude that smoothing splines can have a very narrow
bandwidth, which is good for picking up local behaviors of the data set.

——————————————————————————————

8.1 SMOOTHING CONCEPTS

A basic problem in statistics is the following. Consider a data set

D = {(ti, αi) : i = 1, . . . , N},

which, for convenience, we will assume is comprised of one-dimensional
data, although this is really not technically necessary. We are given some
class of functions, which may be presented parametrically or nonparamet-
rically. For example, we could be given all lines of the form y = ax + b
(parametrically), or the space of all polynomials or smooth functions (non-
parametrically).

No matter if the problem is parametric or nonparametric, the basic idea is
to, for each point, define a residue. For example,

ri(a, b) = (αi − ati − b)2

provides a simple “distance” from the line to the point. Then a function

R(a, b) =
N∑

i=1

ri(a, b)

can be minimized to select a unique choice of a and b, and hence a fixed
line from the set of all parameterized lines. (Note that the line may not be
unique.) The resulting line “smooths” the data in the sense that the data
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are now replaced by a line. Whether this is a “good” smoothing depends
on the nature of the set of residues and the definition of “good.” We could
just as easily have used the set of all fourth-order polynomials or any other
parameterized set of functions. These techniques are basic tools in statistics
and are used extensively in applications–even when they don’t apply.

Another class of smoothing techniques are the so called kernel methods.
There the discrete data are replaced by a function, often a step function, and
the function is integrated against a kernel, that is,

y(t) =
∫ ∞

−∞
f(s)k(s, t)ds.

Under very weak conditions on the kernel k(s, t), the curve y(t) is smooth.
A typical kernel would be a characteristic function

k(s, t) =

⎧⎨
⎩

0, s < t,
1, t < s < t+ 1,
0, t+ 1 < s.

A more sophisticated kernel is given by

k(s, t) =
1√
2πσ

e
−(t−s−μ)2

2σ2 .

Note that what both kernels are doing is averaging the data in particular
ways: The first over a finite interval and the second over the entire line.
If k(s, t) is a sum of point masses, then, from this viewpoint, we recover
weighted moving averages,

di =
i+τ∑

k=i−τ

wkαk.

We will see that smoothing splines can be viewed either from the view-
point of finding the function from a class that best fits the data or as a kernel
smoother. Both concepts are useful. We begin by recalling some basic con-
structions.

Let the cost functional be given by

J(u) = λ

∫ T

0
u2(t)dt +

N∑
i=1

wi(y(ti)− αi)2,

and we minimize this functional subject to the, by now quite familiar, con-
straint

ẋ = Ax + bu, y = cx, x(0) = x0.
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This is essentially the cost function that was used by Grace Wahba, and by
replacing the constraint with

y(t) = ceAtx0 +
∫ t

0
ceA(t−s)bu(s)ds

we get a well-defined member of the Hilbert space L2[0, T ] (which differ-
entiation would not give). Also, since we can embed the initial condition
into the data, we will assume that the initial data x0 = 0.

In statistics, the wi are usually considered to be design parameters and
most often are taken to be identically equal to 1/N . The parameter λ is
considered to be important. Intuitively, λ is designed so that the residues
have good statistical properties. Ideally, the residues should be identically
independently and normally distributed. This is of course a bit much to hope
for when using real data. Wahba describes the process in great detail.

It is a well understood in the folklore of statistics that polynomial smooth-
ing splines act as smoothing filters on noisy data, and that they are in some
sense band-limited, that is, a small change in one data point has a primary
effect on the spline only in a neighborhood of that point. This was studied
explicitly by B. Silverman in [87] for the cubic spline. In this chapter we
construct an approximate linear filter for control theoretic splines. The con-
struction is based on linear-quadratic optimal control and related filtering
and tracking results. This result shows that smoothing splines can be con-
sidered as a nonparametric smoother, and we have seen that they can also
be viewed parametrically when we consider the basis functions �i(s) as in
previous chapters.

We use a quadratic cost function that contains the function representing
the data to be approximated; the cost function is minimized subject to the
constraints of the control system that is being used to generate the approxi-
mating curve.

The main contributions of this chapter are (1) to show that the control the-
oretic smoothing splines are a discrete approximation of an integral linear
filter; (2) to obtain an explicit, well-motivated linear filter [87]; (3) to show
that the smoothing parameter controls bandwidth and hence can be used to
gain long-term information, or can be used to control the degree of approx-
imation of the smoothing spline to the discrete numerical data; (4) to show
that splines are in fact “local” approximations rather than “global” ones as
is emphasized in the numerical literature; and (5) to show that while splines
are not causal they only depend on the next few data points, not on the entire
future.
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8.2 SPLINES FROM STATISTICAL DATA

In this section we state the basic assumptions needed and formulate the
problems to be solved. For the sake of completeness, we recall the con-
trol used to generate the smoothing spline. The complete derivation is given
in Chapter 4.

We consider (again) the control system

ẋ=Ax + bu, (8.1)
y= cx, (8.2)

where we further assume that the system is controllable and observable.
Because we are primarily interested in approximation rather than control,
we make the assumption that

cb = cAb = · · · = cAn−2b = 0, (8.3)

which gives us the maximal smoothness at the data points.
We assume to be given a data set of the form

DN = {(ti,N , αi,N ) | 0 < t1,N ≤ t2,N ≤ · · · ≤ tN,N < T}, (8.4)

and we make no assumptions about how the data were generated. That is,
we do not necessarily assume that the data are generated by a system of the
form dx = Fxdt+ bdW , where dW is a probabilistic measure. We assume
that T is fixed and finite, for without this assumption the integrals do not
exist.

We assume that there exists a function gN ∈ C[0, T ] such that αi,N =
gN (ti,N )+ εi,N , where εi,N is a symmetrically distributed random variable.
Let SN (t) be a smooth, piecewise polynomial function such that

SN (ti,N ) = αi,N ,

that is, SN is an interpolating polynomial spline function. We assume that
the data are such that there exists a function f ∈ L2[0, T ] such that

lim
N→∞

‖f − SN‖2 = 0, (8.5)

and we further assume that there exists a function g ∈ C[0, T ] such that
the sequence {gN} converges uniformly to g. These assumptions are evi-
dently weaker than assuming that the data are generated by the output of a
dynamical system driven by noise.

We finally assume as given a cost function of the form

JN (u) = λ

∫ T

0
u2(t)dt +

N∑
i=1

wi,N (y(ti,N )− αi,N )2. (8.6)
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We allow u ∈ L2[0, T ].
The choice of λ in this formula is very important. In the statistical litera-

ture, the choice of λ is governed by the need for the differences between the
spline and the data to be iid normal, or that the approximation to the data
be close. We will see that the choice of λ determines the bandwidth of the
filter, and hence whether the filter picks up the long-term behavior of the
data or if it closely approximates the data points. We assume that wi,N > 0
for all indices i,N and a critical assumption is that, for every h ∈ C[0, T ],

lim
N→∞

∣∣∣∣∣
∫ T

0
h(t)dt −

N∑
i=1

wi,Nh(ti,N )

∣∣∣∣∣ = 0, (8.7)

that is, the sampling times and weights form a convergent quadrature al-
gorithm. This assumption is satisfied as long as the weights are chosen to
be the weights associated with a convergent quadrature scheme. (See, e.g.,
[23].)

We define a second cost function in terms of the function f of (8.5):

J(u) =
∫ T

0
λu2(t) + (y(t)− f(t))2dt, (8.8)

and we can now formulate two optimal control problems. The first will
produce the control that drives the output of the linear system to the control
theoretic smoothing spline; the second will produce an approximation to the
spline function and will be the object of interest for this chapter.

Problem 8.1

min
u∈L2[0,T ]

JN (u)

subject to the constraints of the system (8.1) and (8.2).

Problem 8.2

min
u∈L2[0,T ]

J(u)

subject to the constraints of the system (8.1) and (8.2).

As before, we define the function �t(s) as

�t(s) =

{
ceA(t−s)b, t > s,
0, t ≤ s.

(8.9)
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As already shown, the optimal solution to JN must be of the form

u(s) =
N∑

i=1

τi�ti,N (s),

where τ is the solution of

(λW−1
N + G)τ = αN , (8.10)

where G is the Grammian associated with the �ti .
Let uN (t) be the unique solution to Problem 8.1 and let u be the unique

solution to Problem 8.2. It was shown in Chapter 5 that the sequence
{uN (t)} converges to u in a pointwise manner. Thus the solution of Prob-
lem 8.2 is an approximation to the control theoretic spline of Problem 8.1.
A major goal in this chapter is to find a solution to Problem 8.2 such that

y(t) =
∫ T

0
k(t, s)f(s)ds. (8.11)

To simplify the exposition, we will assign wi = 1 in the rest of the chapter.

8.2.1 Reduction to an Operator Equation

In this subsection, we examine some of the properties of the filter from the
somewhat formal view of operator theory. Basic properties of the filter are
obtained in this manner along with existence and uniqueness.

For typographical convenience define an operator

Lt(u) =
∫ T

0
�t(s)u(s)ds. (8.12)

It is clear that y(t) = Lt(u) + ceAtx0 and that by replacing the function f
by f(t) − ceAtx0 the problem remains unchanged. We will thus assume,
without loss of generality, that x0 = 0.

We begin by calculating the Gateaux derivative, DJ(u;w). We have,
after a straightforward calculation,

DJ(u;w) = 2
∫ T

0
[λu(t)w(t) + (Lt(u)− f(t))Lt(w)] dt, (8.13)

and calculating the second derivative with respect to u and evaluating at w,
we have

D2(u)(w) = 2
∫ T

0

[
λw2(t) + Lt(w)2

]
dt. (8.14)
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From this we see that the second derivative is nonnegative and is 0 if and
only if w(t) = 0. Thus the functional is convex and hence has a unique
minimum.

We now return to (8.13) and set it equal to zero to obtain a necessary and
sufficient condition for optimality. After some manipulation, we have

0=
∫ T

0
[λu(t)w(t) + (Lt(u)− f(t))Lt(w)] dt

=
∫ T

0

[
λu(s) +

∫ T

s
(Lt(u)− f(t))�t(s)dt

]
w(s)ds.

Now, this expression is 0 for all w, and hence we have that the optimal u
satisfies the integral equation

λu(s) +
∫ T

s
(Lt(u)− f(t))�t(s)dt = 0. (8.15)

Multiplying this expression by �t(s) and integrating, we have

λy(t) +
∫ t

0
�t(s)

∫ T

s
(y(r)− f(r))�r(s)drds = 0,

and, after a little reorganization,

λy(t)+
∫ t

0

∫ T

s
�t(s)�r(s)y(r)drds =

∫ t

0

∫ T

s
�t(s)�r(s)f(r)drds. (8.16)

We now define the operator K as

K(g) =
∫ t

0

∫ T

s
�t(s)�r(s)g(r)drds (8.17)

for g ∈ L2[0, T ]. Now for every g ∈ L2[0, T ], K(g) is smooth and hence in
L2[0, T ]. Rewriting (8.16) we have

(λI + K)(y) = K(f). (8.18)

Lemma 8.3 The operator K is self-adjoint.

Proof. We prove the lemma by direct calculation. After substitution and
interchanging the order of integration, we have

〈w,Ku〉=
∫ T

0
w(t)K(u)(t)dt

=
∫ T

0

[∫ T

s
w(t)�t(s)dt

] [∫ T

s
�r(s)u(r)dr

]
ds

= 〈Kw,u〉.
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We now decompose K as the sum of two operators by changing the order
of integration. An elementary calculation shows that

K(u) =
∫ t

0

[∫ r

0
�t(s)�r(s)ds

]
u(r)dr +

∫ T

t

[∫ t

0
�t(s)�r(s)ds

]
u(r)dr.

(8.19)
Now, define operators F and B (forward and backward) as

F (u) =
∫ t

0

[∫ r

0
�t(s)�r(s)ds

]
u(r)dr (8.20)

and

B(u) =
∫ T

t

[∫ t

0
�t(s)�r(s)ds

]
u(r)dr. (8.21)

Note that F and B are bounded and hence K is bounded. Also note that
from the proof of the lemma the operator K is positive. Thus the spectrum
of K is bounded below by 0; hence the spectrum of I +K is bounded away
from 0 and the operator I +K is injective.

Lemma 8.4 For λ > 0, the operator λI + K is one-to-one and onto.

Proof. It only remains to prove that I + K is onto. Suppose otherwise.
Then there exists a function x ∈ L2[0, T ] such that, for all y ∈ L2[0, T ],
〈x, (I + K)(y)〉 = 0. We use the fact that the operator is self-adjoint to
conclude that (I + K)x = 0. This is equivalent to the fact that x is the
unique solution to the optimal control problem with cost function

J(u) =
∫ T

0

[
u2(t) + y2(t)

]
dt,

subject to the constraint of the system defined by 8.1 and 8.2. However, it
is easy to see that the optimal control is identically zero and hence that the
corresponding y(t) is identically zero. Thus we conclude that x = 0, and
hence λI + K is onto.

We can thus solve (8.18) to obtain

y = (λI + K)−1K(f). (8.22)

In the next section we will explicitly construct a representation of the oper-
ator (λI + K)−1K in terms of an associated Riccati equation.
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8.3 THE OPTIMAL CONTROL PROBLEM

In this section we return to the optimal control problem to obtain a different
representation of the operator K . With the representation we will obtain,
we can examine the detailed properties of the operator.

We return to (8.15). This representation of the optimal control can be
rewritten as

u(t) = −
∫ T

s

1
λ

ceA(t−s)b(y(t)− f(t))dt,

and in this form we see that it is in dynamic feedback form and is to be fed
back through the system adjoint to the original system (8.1) and (8.2). Our
first goal is to explicitly write out the relationship between the system and
its adjoint.

We begin by letting

g(s) =
∫ T

s
eAT (t−s)cT (y(t)− f(t))dt, (8.23)

where we have replaced ceA(t−s) by its transpose. We calculate the deriva-
tive of g to obtain

ġ(s)=−AT g(s)− cT (y(s)− f(s))
=−AT g(s)− cT cx + cT f(s),

where we have used the fact from (8.2) that y = cx.
We now see that

u(s) = − 1
λ

bT g(s). (8.24)

From 8.1 and 8.2 we have

ẋ(s)=Ax(s) + bu(s)

=Ax(s)− 1
λ

bbT g(s).

From the definition of g, we have

g(T ) = 0

and

x(0) = x0.
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Writing this in the more conventional form of a forced Hamiltonian system,
we have

d

dt

(
x
g

)
=

(
A − 1

λbbT

−cT c −AT

)(
x
g

)
+
(

0
cT

)
f, (8.25)

with boundary conditions

g(T ) = 0 and x(0) = x0. (8.26)

Thus, from the solution of this problem we can explicitly construct the ap-
proximate spline y(t). Note that the symplectic matrix is the matrix associ-
ated with the Hamiltonian for the optimal control problem

min
u

∫ T

0

[
y(t)2 + u(t)2

]
dt, (8.27)

subject to the constraint

ẋ(t) = Ax(t) + bu(t), y(t) = cx(t).

To solve the two-point boundary value problem we introduce the Riccati
transform. (

x
w

)(
I 0

−P (t) I

)(
x
g

)
. (8.28)

Applying this change of basis to the two-point boundary value problem, we
have, after a considerable amount of matrix multiplication

d

dt

(
x
w

)
=

(
A− 1

λbbT P (t) − 1
λbbT

R(t) −(A− 1
λbbT P (t))T

)(
x
w

)

+
(

0
cT

)
f(t),

where

R(t) = −Ṗ − PA− cT c+ P
1
λ

bbT P −AT P.

We set R(t) = 0 and assign it the terminal value P (T ) = 0. Under the con-
ditions we have imposed of observability and controllability of the original
system, this Riccati equation has a unique solution on the interval [0, T ]. We
thus have the following system of equations to solve:

Ṗ =−PA− cT c + P
1
λ

bbT P −AT P, P (T ) = 0, (8.29)
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ẇ=−
(

A− 1
λ

bbT P (t)
)T

w + cT f, w(T ) = 0, (8.30)

ẋ=
(

A− 1
λ

bbT P (t)
)

x− 1
λ

bbT w, x(0) = x0. (8.31)

We begin by solving and storing the solution of the Riccati equation and
substituting this into (8.30). We now have a linear time-varying terminal
value problem to solve. Let Φ(t, τ) be the solution of

d

dt
Φ(t, τ) =

(
A− 1

λ
bbT P (t)

)
Φ(t, τ),

with initial data given by

Φ(τ, τ) = I,

and let Ψ(t, τ) be the solution of

d

dt
Ψ(t, τ) = −

(
A− 1

λ
bbT P (t)

)T

Ψ(t, τ),

with initial data given by

Ψ(τ, τ) = I.

Hence, the solution of (8.30) is given by

w(t) = −
∫ T

t
Ψ(t, τ)cT f(τ)dτ, (8.32)

and the solution of (8.31) is given by

x(t) = Φ(t, 0)x0 −
∫ t

0
Φ(t, s)

1
λ

bbT w(s)ds. (8.33)

Concatenating the two solutions gives

y(t) = cΦ(t, 0)x0 + c

∫ t

0
Φ(t, s)

1
λ

bbT
∫ T

s
Ψ(s, r)cT f(r)drds. (8.34)

Changing the order of integration, we have

y(t)= cΦ(t, 0)x0 +
∫ t

0

∫ r

0
cΦ(t, s)

1
λ

bbTΨ(r, s)cT dsf(r)dr

+
∫ T

t

∫ t

0
cΦ(t, s)

1
λ

bbTΨ(r, s)cT dsf(r)dr. (8.35)
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Thus we have

y(t) = cΦ(t, 0)x0 +
∫ T

0
k(t, σ)f(σ)dσ, (8.36)

where

k(t, σ) =

{
1
λc
∫ σ
0 Φ(t, τ)bbTΨ(τ, σ)cT dτ, 0 ≤ σ ≤ t,

1
λc
∫ t
0 Φ(t, τ)bb

TΨ(τ, σ)cT dτ, t ≤ σ ≤ T.
(8.37)

8.3.1 Simplification of the Formula

We have shown that we can give an explicit expression for the state transi-
tion matrix in terms of the system parameters and the solution of the Riccati
equation. To solve and store the entire solution of the Riccati equation is
very expensive. We will now see that it is sufficient to obtain and store
the initial value for the Riccati equation. This simplification is the critical
technical step of this section.

We consider the system (8.25), with x(0) = x0 and g(T ) = 0. By the
variation of parameters formula, we obtain(

x(t)
g(t)

)
= e(t−T )H

(
x(T )
0

)
+
∫ t

T
e(t−s)H

(
0

cT f(s)

)
ds, (8.38)

where

H =

(
A − 1

λbbT

−cT c −AT

)
.

This yields the relation between boundary values x(T ) and g(0),(
x0

g(0)

)
= e−TH

(
x(T )
0

)
+
∫ 0

T
e−sH

(
0

cT f(s)

)
ds. (8.39)

Now, we partition the matrix etH as follows:

etH =
(

X1(t) X2(t)
Y1(t) Y2(t)

)
,

where Xi, Yi, i = 1, 2 are n× n matrices. Due to the semigroup properties,
we have the following identities which will be used later:

X1(t− s)=X1(t)x1(−s) +X2(t)Y1(−s), (8.40)
0=X1(t)X2(−t) + X2(t)Y2(−t).

The unique positive definite solution to the Riccati equation is given by

P (t) = Y1(t− T )X1(t− T )−1, (8.41)
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using the standard Hamiltonian argument.
Then, solving the first block of equations in 8.39 yields

x(T ) = X1(−T )−1

(
x0 +

∫ T

0
X2(−s)cT f(s)ds

)
, (8.42)

which, together with (8.38), leads to the following expression

x(t)=X1(t− T )X1(−T )−1

(
x0 +

∫ T

0
X2(−s)cT f(s)ds

)

+
∫ T

t
X2(t− s)cT f(s)ds. (8.43)

By the identities from (8.40) and (8.41), we have that x(t) is given by

(X1(t) + X2(t)P (0))x0 +
∫ T

0
(X1(t) +X2(t)P (0))X2(−s)cT f(s)ds

−
∫ T

t
(X1(s)X2(−s) + X2(t)Y2(−s)cT f(s)ds (8.44)

=(X1(t) + X2(t)P (0))x0 +
∫ t

0
(X1(t) + X2(t)P (0))X2(−s)cT f(s)ds

+
∫ T

t
((X1(t) + X2(t)P (0))X2(−s)− (X1(s)X2(−s)

+ X2(t)Y2(−s))) cT f(s)ds (8.45)

=(X1(t) + X2(t)P (0))x0 +
∫ t

0
(X1(t) + X2(t)P (0))X2(−s)cT f(s)ds

+
∫ T

t
(X2(t)(P (0)X2(−s)− Y2(−s))cT f(s)ds. (8.46)

Finally, we obtain the kernel

k(t, σ) =

{
c(X1(t) + X2(t)P (0))X2(−σ)cT , 0 ≤ σ ≤ t,

cX2(t)(P (0)X2(−σ)− Y2(−σ))cT , t ≤ σ ≤ T.

This kernel is the same as the following explicit formula in terms of the
system parameters and the Riccati solution:

k(t, σ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c
(

I 0
)
etH

(
I 0

P (0) 0

)
e−σH

(
0
I

)
cT , 0 ≤ σ ≤ t,

c
(

I 0
)
etH

(
0 0

P (0) −I

)
e−σH

(
0
I

)
cT , t ≤ σ ≤ T.

(8.47)
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Furthermore, we have, by a simple observation, that∫ σ

0
Φ(t, τ)

1
λ

bbTΦ(σ, τ)T dτ =
(

I 0
)
etH

(
I 0

P (0) 0

)
e−σH

(
0
I

)
for 0 ≤ σ ≤ t,∫ t

0
Φ(t, τ)

1
λ

bbTΦ(σ, τ)T dτ =
(

I 0
)
etH

(
0 0

P (0) −I

)
e−σH

(
0
I

)
for t ≤ σ ≤ T,

and

Φ(t, 0) =
(

I 0
)
etH

(
I

P (0)

)
.

Therefore, the transition matrix Φ(t, s) is

Φ(t, s) =
(

I 0
)
etH

(
I

P (0)

)((
I 0

)
esH

(
I

P (0)

))−1

.

We now see that in order to explicitly construct the optimal filter, we need
only find the initial data for the Riccati equation associated with the opti-
mal control problem of (8.27), and the matrix exponential of the symplectic
matrix H .

8.4 THE CUBIC SMOOTHING SPLINE

In this section we consider the most important of the splines, the cubic
spline, and construct the explicit linear filter. In numerical analysis, the
cubic spline is the spline most commonly used. Recall that it is a piecewise
cubic polynomial, and is twice continuously differentiable everywhere. In
light of the previous section, we begin by deriving the associated Riccati
equation.

Let

A =
(

0 1
0 0

)
, b =

(
0
1

)
, c =

(
1 0

)
.

Let

J(u) =
∫ T

0

[
y(t)2 + λ−1u(t)2

]
dt,

where λ is a positive constant. We now solve the following problem:

min
u(t)

J(u)
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subject to the constraints that

ẋ = Ax+ bu, y = cx.

The Hamiltonian matrix associated with this problem is

H =

⎛
⎜⎜⎝

0 1 0 0
0 0 0 − 1

λ
−1 0 0 0
0 0 −1 0

⎞
⎟⎟⎠ .

8.4.1 Explicit Solutions

Our immediate task is to calculate eHt. To do so we need the explicit powers
of H ,

H2 =

⎛
⎜⎜⎝

0 0 0 − 1
λ

0 0 1
λ 0

0 −1 0 0
1 0 0 0

⎞
⎟⎟⎠ , H3 =

⎛
⎜⎜⎜⎝

0 0 1
λ 0

− 1
λ 0 0 0
0 0 0 1

λ
0 1 0 0

⎞
⎟⎟⎟⎠ ,

H4 =

⎛
⎜⎜⎜⎝
− 1

λ 0 0 0
0 − 1

λ 0 0
0 0 − 1

λ 0
0 0 0 − 1

λ

⎞
⎟⎟⎟⎠ .

From this calculation, we see that the eigenvalues of H are the fourth roots
of − 1

λ , namely,
(
1
λ

) 1
4 (
±2−1

2 ± i2
−1
2

)
.

We now give a different form of expHt:

eHt =
∞∑

k=0

Hktk

k!

=
∞∑

k=0

H4kt4k

(4k)!
+

∞∑
k=0

H4k+1t4k+1

(4k + 1)!
+

∞∑
k=0

H4k+2t4k+2

(4k)!

+
∞∑

k=0

H4k+3t4k+3

(4k + 3)!

= I
∞∑

k=0

(− 1
λ)

kt4k

(4k)!
+ H

∞∑
k=0

(− 1
λ )

kt4k+1

(4k + 1)!
+ H2

∞∑
k=0

(− 1
λ)

kt4k+2

(4k + 2)!
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+H3
∞∑

k=0

(− 1
λ)

kt4k+3

(4k + 3)!

= f0(t)I + f1(t)H + f2(t)H2 + f3(t)H3.

We note that

HeHt = f0H + f1H
2 + f2H

3 − 1
λ

f3I = f ′0I + f ′1H + f ′2H
2 + f ′3H

3,

and hence, by linear independence of the powers of H , we have the differ-
ential relations

f ′0 = −
1
λ

f3, f
(2)
0 = − 1

λ
f2, f

(3)
0 = − 1

λ
f1,

so that it suffices to find a closed form for f0.

Lemma 8.5 f0(t) = cosh( ( 1
λ
)1/4

√
2

t) cos( ( 1
λ
)1/4

√
2

t).

Proof. Recall that

cosh t =
∞∑

k=0

t2k

(2k)!

and

cos t =
∞∑

k=0

(−1)kt2k

(2k)!
,

and hence

cosh t + cos t = 2
∞∑

k=0

t4k

(4k)!
.

Using the fact that ( 1√
2
+ i 1√

2
)4 = −1, we have that

cosh
(
1
λ

)1/4 ( 1√
2
+ i

1√
2

)
t + cos

(
1
λ

)1/4 ( 1√
2
+ i

1√
2

)
t

= 2
∞∑

k=0

(−1)k( 1
λ)

kt4k

(4k)!
.

Now, replacing cosh and cos in the above expression by their exponential
representations, we have after a little manipulation

cosh
(
1
λ

)1/4 ( 1√
2
+ i

1√
2

)
t + cos

(
1
λ

)1/4 ( 1√
2
+ i

1√
2

)
t

= 2cosh
( 1

λ)
1/4

√
2

t cos
( 1

λ)
1/4

√
2

t,
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which completes the proof.

Using the differential relations, we have, after some (tedious) calcula-
tions,

f0(t)= cosh
( 1

λ)
1/4

√
2

t cos
( 1

λ )
1/4

√
2

t,

f1(t)=
λ1/4

√
2

(
cos

( 1
λ)

1/4

√
2

t sinh
( 1

λ)
1/4

√
2

t + sin
( 1

λ )
1/4

√
2

t cosh
( 1

λ )
1/4

√
2

t

)
,

f2(t)=λ1/2 sin
( 1

λ )
1/4

√
2

t sinh
( 1

λ )
1/4

√
2

t,

f3(t)=
−λ3/4

√
2

(
sinh

( 1
λ)

1/4

√
2

t cos
( 1

λ)
1/4

√
2

t− cosh
( 1

λ)
1/4

√
2

t sin
( 1

λ )
1/4

√
2

t

)
.

Thus we have a closed form representation of eHt.

eHt =

⎛
⎜⎜⎜⎝

f0 f1
1
λf3 − 1

λf2

− 1
λf3 f0

1
λf2 − 1

λf1

−f1 −f2 f0
1
λf3

f2 f3 −f1 f0

⎞
⎟⎟⎟⎠ .

Now, let

F (t) =
( −f1 −f2

f2 f3

)(
fo f1

− 1
λf3 f0

)−1

.

To show that F (t) is a solution to the Riccati equation, take the derivative
of F (t), using the fact that

d

dt
eHt = HeHt,

and then note that F (0) = 0. The particular solution we want is then given
by

P (t) = F (t− T ).

We now calculate F (t) explicitly. We make the convention that S = sinh(·),
s = sin(·), C = cosh(·), c = cos(·), for typographical convenience.

First

F (t) =
1

f2
0 + 1

λf1f3

(
−f1f0 − 1

λf2f3 f2
1 − f2f0

f2f0 + 1
λf2

3 −f1f2 + f3f0

)
,
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which, after some calculations, yields

f2
1 − f2f0 = λ1/2√

2
(c2S2 + s2C2)

f2
1 − f2f0 = f2f0 + 1

λf3
3

−f1f0 −
1
λ

f2f3 = λ1/4√
2
(−SC− sc)

f3f0 − f1f2 = λ3/4√
2
(−SC + cs)

f2
0 +

1
λ

f1f3 = 1
2(C

2 + c2).

We have now found an explicit form for F (t):

F (t) =

⎛
⎜⎝ −

√
2λ1/4 SC−cs

C2
+c2

λ1/2 S2
+s2

C2
+c2

λ1/2 S2
+s2

C2
+c2

√
2λ3/4 cs−SC

C2
+c2

⎞
⎟⎠ .

Thus the explicit solution of the Riccati equation is

P (t) = F (t− T ).

Remark: It is interesting to note that this derivation is closely related to
the representation theory of the cyclic group of order 8. It is possible to
construct the Riccati equation for general polynomial splines of degree 2n−
1, and the construction is closely related to the representation theory of the
cyclic group of order 4n.

We now construct the explicit filter for the cubic spline and exploit the
linear quadratic optimization theory to obtain a simplified form of the oper-
ator. We first use the fact that P (0) is approximated by the positive definite
solution of the algebraic Riccati equation. The steady state Riccati solution
for the cubic spline is the positive definite

P =

( √
2λ1/4

√
λ√

λ
√
2λ3/4

)
.

The transition matrix is

Φ(t, s) = e(t−s)(A− 1
λ

bbT P ),
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and consequently the kernel k̂(t, σ) is given by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
(
− σ + t√

2λ1/4

)
2
√
2λ1/4

[(
−2 + exp

(√
2σ

λ1/4

))
cos

σ − t√
2λ1/4

+ cos
σ + t√
2λ1/4

− exp

(√
2σ

λ1/4

)
sin

σ − t√
2λ1/4

− sin
σ + t√
2λ1/4

]
, 0 ≤ σ ≤ t,

exp
(
− σ + t√

2λ1/4

)
2
√
2λ1/4

[(
−2 + exp

(√
2t

λ1/4

))
cos σ−t√

2λ1/4 + cos σ+t√
2λ1/4

+exp

(√
2t

λ1/4

)
sin

σ − t√
2λ1/4

− sin
σ + t√
2λ1/4

]
, t ≤ σ ≤ T.

(8.48)
It is known that the feedback matrix A − 1

λbbT P is Hurwitz, that is, the
eigenvalues of the matrix lie in the left-half complex plane and they are
equal to the left-half plane eigenvalues of the matrix H . The following
graphs illustrate the differences between our approximations and the kernel
defined by Silverman in [87]. Silverman’s approximation is given to the
kernel

κ(t, σ) =
1
2
exp

(
−|t− σ|√

2

)
sin

( |t− σ|√
2

+
π

4

)
. (8.49)

It is worthwhile to compare Silverman’s approximation to our approxima-
tion in (8.48). Note that two graphs overlap in the plotted range in Figures
8.1 and 8.3.

2.5 5 7.5 10 12.5 15 17.5 20

0.1

0.2

0.3

Figure 8.1 The kernels κ(t, σ) and k(t, σ) overlap on the plotted interval.



EditedFinal September 23, 2009

152 CHAPTER 8
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Figure 8.2 The approximated kernel in [87] (solid line) and the kernel k(t, σ) (dashed line).

2.5 5 7.5 10 12.5 15 17.5 20

0.1

0.2

0.3

Figure 8.3 The kernels κ(t, σ) and k̂(t, σ) overlap on the plotted interval.

Our approximation is clearly better than Silverman’s. However, the im-
provement is at the expense of complexity of the formula.

8.4.2 Bandwidth of the Kernel

We now turn to a short discussion about the bandwidth of the kernel. The
term bandwidth is frequently used in the statistics literature, but is seldom
explicitly defined. The definition we use here is that the bandwidth is the
interval where one obtains the most information. Concretely, we define the
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number, β, determined by the solution of the equation
∫ min(t+β,T )

max(t−β,0)
k(t, σ)dσ

∫ T

0
k(t, σ)dσ

= 0.9. (8.50)

Then 2β is the bandwidth of the kernel k(t, σ).
This is a nonlinear equation which can be numerically solved by, for ex-

ample, the Newton-Raphson method. We illustrate this by some examples
involving the approximated kernel. In particular, we compute the bandwidth
for (8.48). After integration, we get the denominator (respectively, the nu-
merator) of the left-hand side in (8.50) as follows:

1
2e
− t+T√

2λ1/4

(
−2eT

√
2λ1/4 cos

(
t√

2λ1/4

)
−
(
−1 + e

T√
2λ1/4

)
cos

(
t−T√
2λ1/4

)

+2
(

e
t+T√
2λ1/4 +

(
−e

T√
2λ1/4 + cos

(
T√

2λ1/4

))
sin

(
t√

2λ1/4

)))
;

1
2e
− 3t√

2λ1/4

(
2e

3t√
2λ1/4 − e

−β+t√
2λ1/4

(
−1 + e

√
2β

λ1/4 + 2e
√

2t

λ1/4

)
cos

(
β√

2λ1/4

)

−(e
−β+t√
2λ1/4 + e

β+t√
2λ1/4 ) sin

(
β√

2λ1/4

)
+ e

β+t√
2λ1/4 sin

(
β−2t√
2λ1/4

)
+e

−β+t√
2λ1/4 sin

(
β+2t√
2λ1/4

)
.

Solving the equation in some special cases, we obtain βT,λ for

β10,0.01 = 0.547334, β10,0.1 = 0.968005, β10,10 = 3.22425.

Remark: We have done an explicit construction for the cubic spline. The
same construction can be done for arbitrary polynomial splines and for tor-
sion splines. The limiting difficulty is the explicit calculation of the ex-
ponential of the Hamiltonian matrix. However, for most data sets a 4 × 4
Hamiltonian suffices. It is usually possible to construct the exponential ex-
plicitly in these cases. Higher dimensions are problematic.

SUMMARY

In this chapter, we showed that smoothing splines with discrete data lead
to a problem with continuous data, and that the solution to the continuous
problem leads naturally to an integral filter. This filter is given as a function
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of the solution to a fixed optimal control problem. The kernel of the filter
is obtained exactly. We then showed that the kernel can be significantly
simplified and that the kernel depends only on the matrix exponential of a
well-behaved Hamiltonian matrix and the initial value of a related Riccati
equation. Also, the bandwidth of the filter is related to the smoothing pa-
rameter, and hence we concluded that smoothing splines can have a very
narrow bandwidth, which is good for picking up local behavior of the data
set.
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Chapter Nine

OPTIMAL TRANSFER BETWEEN AFFINE

VARIETIES

The problem of optimally transferring the state of a linear system between
affine varieties arises in a number of applications such as path planning
and robot coordination. In this chapter, this problem, along with some of
its generalizations, is solved as an example of the control theoretic splines
framework in action. In particular, we present an algorithm for obtaining
globally optimal solutions through a combination of Hilbert space methods
and dynamic programming. As a driving application, the problem of leader-
based multi-agent coordination is considered.

——————————————————————————————

9.1 POINT-TO-POINT TRANSFER

Even though the main goal of this chapter is to derive an algorithm for trans-
ferring the state of the system between affine varieties, we will start by
recalling the solution to the point-to-point transfer problem, as previously
defined in Chapter 2.

The point-to-point transfer problem involves driving a linear system of
differential equations between given boundary states,{

ẋ = Ax+ Bu
x(T0) = x0, x(T1) = x1,

where u ∈ R
m is the control signal, x ∈ R

n the state vector, A ∈ R
n×n,

and B ∈ R
n×m.

The point-to-point transfer should be done in such a way that a cost func-
tional is minimized with respect to the control signal. The cost functional
that we choose to study is

J(u) =
∫ T1

T0

uT (t)u(t)dt,

which can be interpreted as the energy of the control signal.
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As seen in Chapter 2, this problem can be formulated as the minimum
norm problem in an infinite-dimensional Hilbert space (for example, see
[62] and [64])

min
u
‖u‖L2 ,

under the condition that

u ∈ Vρ,

where Vρ is the affine variety

Vρ = {v ∈ L2 | Λv = ρ}.
Here, ρ is given by

ρ = x1 − eA(T1−T0)x0,

and the linear operator Λ : L2 → R
n is

Λu =
∫ T1

T0

eA(T1−s)Bu(s)ds.

We recall that this problem has a solution only if ρ ∈ Im(Λ). Let us
assume this is the case. In fact, by assuming that the system is completely
controllable, and using the previously established expressions for Λ∗ and
the controllability Grammian Γ = ΛΛ�, we get

u∗ = Λ�Γ−1ρ = BT eAT (T1−t)Γ−1
(
x1 − eA(T1−T0)x0

)
and

J(u∗) = (x1 − eA(T1−T0)x0)TΓ−1
(
x1 − eA(T1−T0)x0

)
.

This classic result will now be generalized to the problem of driving the
system between multiple affine varieties.

9.2 TRANSFER BETWEEN AFFINE VARIETIES

The goal is to drive the system in such a way that the solution lies on specific
affine varieties at given times, as illustrated in Figure 9.1. The dynamics of
the system may differ between the affine varieties, as seen in Figure 9.2. 1

1Note that this construction is a generalization of the smoothing spline. Here the smooth-
ness at the nodes is not a primary goal and may in fact be lost. However, smoothness at the
nodes could be imposed in much the same way that continuity–the focus in this chapter–is
imposed.
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x0

x1

x2

x(t)

x(t)

xq−1

xq

x(t)

Figure 9.1 Transfer between q + 1 affine varieties.

ẋ(t) = A1x(t) + B1u(t) ẋ(t) = A2x(t) + B2u(t) ẋ(t) = Aqx(t) + Bqu(t)

tT0 T1 Tq−1 TqT2

Figure 9.2 System of q + 1 affine varieties together with a switched linear system.

Again, as in the point-to-point transfer case, we want to minimize the
energy of the control signal. If we denote the affine variety at time Ti by

Si = {x ∈ R
n | Gix = di},

we get

min
u

J(u)

subject to {
ẋ = Aix+ Biu for t ∈ (Ti−1, Ti), i = 1, . . . , q,
x(Ti) ∈ Si, i = 0, . . . , q.

We will use the solution to the optimal point-to-point transfer problem to
formulate a dynamical programming problem from which we can solve for
the optimal intersection points on the affine varieties.

Dynamic programming divides the problem into stages with a decision
required at each stage. Every stage has a state associated with it. In our
case, the stages are represented by the times we are supposed to be on an
affine variety, and the state is the state vector at this time. From the point-to-
point problem, we know that, given the state at a stage, there is a unique path
of minimum cost that takes the system to a specific point at the succeeding
stage. So the decision to be made at each stage is where on the affine variety
at the succeeding stage we want to end up, given the state we are in at the
current stage.

Let ci(a, b) be the cost of going from state a in stage i − 1 to state b in
stage i, and let fi(a) be the minimum cost of going to the affine variety at
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the final stage, via the intermediate affine varieties, when starting at state a
in stage i, as illustrated in Figure 9.3. Let xi = x(Ti) for 0 ≤ i ≤ q, we
then have the following Bellman recursion:

fi−1(xi−1) = min
xi∈Si

(ci(xi−1, xi) + fi(xi)), 0 < i ≤ q.

t
Stage 0 Stage 1 Stage 2 Stage q-1 Stage q
State x0 State x1 State x2 State xq−1 State xq

c1(x0, x1) c2(x1, x2) cq(xq−1, xq), fq−1(xq−1)

f0(x0)

f1(x1)

f2(x2)

Figure 9.3 Transfer costs in the dynamic programming algorithm.

Our problem can then be reformulated as

min
x0∈S0

f0(x0).

Using the cost from the point-to-point problem gives us

ci(a, b) = (b− eAiΔTia)TΓ−1
i (b− e−AiΔTia),

where ΔTi = Ti − Ti−1 and Γi is the controllability Grammian associated
with the pair (Ai, Bi).

We will assume that the systems are completely controllable. Thus Γi is a
symmetric positive definite matrix, and so is its inverse Γ−1

i . For notational
convenience, let us denote Γ−1

i by Qi. Then

ci(a, b) = (b− eAiΔTia)T Qi(b− eAiΔTia) = ‖b− eAiΔTia‖2Qi
.

9.3 TRANSFER THROUGH DYNAMIC PROGRAMMING

Since stage q is the final stage, fq(a) = 0, ∀a ∈ R
n. With this as the start-

ing condition, we can work our way backward using the Bellman recursion
until we get an expression for f0(x0). We then minimize f0(x0) to get the
minimizer x∗0. By this time we will know the relation between x∗0 and the
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remaining optimal points on the affine varieties. Once all the optimal points
on the affine varieties have been determined, all we need to do is to compute
a sequence of point-to-point transfers:

fq−1(xq−1)= min
xq∈Sq

{cq−1(xq−1, xq) + fq(xq)}

= min
xq∈Sq

‖xq − eAqΔTqxq−1‖2Qq
.

Now, define the finite-dimensional Hilbert space Hq = R
n, with inner

product

〈x, y〉Hq = 〈x, y〉Qq = xT Qqy

for x, y ∈ Hq. Since Sq defines an affine variety

V dq
q = {x ∈ Hq | Gqx = dq}

in Hq, what we want is to find the xq ∈ V
dq
q closest to pq = eAqΔTqxq−1 ∈

Hq, that is, to solve

min
xq∈V

dq
q

‖xq − pq‖2Hq
.

Again, according to Hilbert’s projection theorem, this problem has a unique
optimal solution given by

x∗q = V dq
q ∩ (V 0⊥

q + pq),

where

V 0⊥
q = {x | 〈x, y〉Hq = xT Qqy = 0, ∀ y ∈ V 0

q }

is the orthogonal complement of the linear subspace

V 0
q = {x ∈ Hq | Gqx = 0}.

And, since Im(GT
q ) = Ker(Gq)⊥, we have

V 0⊥
q = {x ∈ Hq | ∃λ ∈ R

rank(Gq) s.t. Qqx = GT
q λ}.

Now, since the optimal solution is given by x∗q = V
dq
q ∩ (V 0⊥

q + pq), this
results in the following linear system of equations for the optimal point:{

Gqx
∗
q = dq,

Qq(x∗q − pq) = Qq(x∗q − eAqΔTqxq−1) = GT
q λq,
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or, written in matrix form,

Pq

(
x∗q
λq

)
=
(

Qqpq

dq

)
,

where

Pq =

(
Qq −GT

q

Gq 0

)
.

Since the system has a unique solution according to the projection theo-
rem, P−1

q exists. Denote the upper left n × n matrix of P−1
q by (P−1

q )11
and the upper right n× rank(Gq) matrix of P−1

q by (P−1
q )12.

This gives

x∗q = Hqxq−1 − hq,

where

Hq = (P−1
q )11Qqe

AqΔTq

and

hq = −(P−1
q )12dq.

Proposition 9.6 x∗k can be written as an affine function of xk−1, that is,
x∗k = Hkxk−1 − hk, 0 < k ≤ q.

Proof. We have already seen that this is true for k = q. Let us have a look
at an arbitrary k, 0 < k < q. In fact, assume that the claim holds for all i,
k < i ≤ q.

fk−1(xk−1) = min
xk∈Sk

{ck(xk−1, xk) + fk(xk)},

which can be rewritten as

min
xk∈Sk

⎧⎨
⎩‖xk − pk‖2Qk

+
q∑

j=k+1

‖F (j−k)
k xk − p

(j−k)
k ‖2Qj

⎫⎬
⎭ ,

where

F
(1)
k =Hk+1 − eAk+1ΔTk+1 ,

F
(j)
k =F

(j−1)
k+1 Hk+1, j = 2, . . . , q − k,

pk = eAkΔTkxk−1,

p
(1)
k =hk+1,

p
(j)
k =F

(j−1)
k+1 hk+1 + p

(j−1)
k+1 , j = 2, . . . , q − k.
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Define the finite-dimensional Hilbert space Hk = R
n×, · · · ,×R

n, with
inner product

〈x,y〉Hk
= 〈x, y〉Qk

+
q∑

j=k+1

〈
x(j−k), y(j−k)

〉
Qj

,

for x = (x, x(1), . . . , x(q−k)), y = (y, y(1), . . . , y(q−k)) ∈ Hk. Define the
affine variety V dk

k as

V dk

k = {x ∈ Hk | Gkx = dk, F
(1)
k x(1) = x, . . . , F

(q−k)
k x(q−k) = x}.

Then we can write

fk−1(xk−1) = min
xk∈V

dk
k

{‖xk − pk‖2Hk
}.

So the problem is to find xk = (xk, x
(1)
k , . . . , x

(q−k)
k ) ∈ V dk

k closest
to pk = (pk, p

(1)
k , . . . , p

(q−k)
k ) ∈ Hq. Again, the unique optimal solution is

given by x∗k = V dk
k ∩(V 0⊥

k +pk), where V 0⊥
k is the orthogonal complement

to the linear subspace V 0
k given by{

x ∈ Hk | Gkx = 0, F
(1)
k x(1) = x, . . . , F

(q−k)
k x(q−k) = x

}
,

with V 0⊥
k given by{

x ∈ Hk | ∃λ ∈ R
rank(Gk)

s.t. Qkx+
q∑

j=k+1

F
(j−k)T
k Qjx

(j−k) = GT
k λ
}
.

The optimal point x∗k = V dk
k ∩ (V 0⊥

k + pk) is then given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gkx
∗
k = dk,

F
(1)
k x∗k = x

∗(1)
k ,

...
F

(q−k)
k x∗k = x

∗(q−k)
k ,

Qk(x∗k − pk)

+
q∑

j=k+1

F
(j−k)T
k Qj(x

∗(j−k)
k − p

(j−k)
k ) = GT

k λk,

which is equivalent to⎧⎪⎨
⎪⎩

Gkx
∗
k = dk

Qk(x∗k − pk)+∑q
j=k+1 F

(j−k)T
k Qj(F

(j−k)
k x∗k − p

(j−k)
k ) = GT

k λk.
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Writing this in matrix form yields

Pk

(
x∗k
λk

)
=(

Qkpk +
∑q

j=k+1 F
(j−k)T
k Qjp

(j−k)
k

dk

)
,

with

Pk =

(
Qk +

∑q
j=k+1 F

(j−k)T
k QjF

(j−k)
k −GT

k

Gk 0

)
.

Let (P−1
k )11 be the upper left n×n matrix of P−1

k and (P−1
k )12 the upper

right n× rank(Gk) matrix of P−1
k . We then have

x∗k = Hkxk−1 − hk,

where

Hk = (P−1
k )11Qke

AkΔTk ,

and

hk = −(P−1
k )12dk − (P−1

k )11
q∑

j=k+1

(F (j−k)T
k Qjp

(j−k)
k ).

So, if the claim holds for all i such that k < i ≤ q, then the claim holds
for k. Since the claim holds for k = q, by induction, the claim holds for all
k, 0 < k ≤ q.

Now we know how to compute f0(x0) so all that remains is to find the
minimizing x0:

min
x0∈S0

{f0(x0)} = min
x0∈S0

⎧⎨
⎩

q∑
j=1

‖F (j)
0 x0 − p

(j)
0 ‖2Qj

⎫⎬
⎭ ,

where

F
(1)
0 = H1 − eA1ΔT1 ,

F
(j)
0 = F

(j−1)
1 H1, j = 2, . . . , q,

p
(1)
0 = h1,

p
(j)
0 = F

(j−1)
1 h1 + p

(j−1)
1 , j = 2, . . . , q.
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Analogous to the previous construction, we can define the finite-dimensional
Hilbert space H0 = R

n×, · · · ,×R
n, with inner product

〈x,y〉H0 =
q∑

j=1

〈x(j), y(j)〉Qj

for x = (x(1), . . . , x(q)), y = (y(1), . . . , y(q)) ∈ H0. Define the affine
variety

V d0
0 = {x ∈ H0 | G0x = d0, F

(1)
0 x(1) = x, . . .

F
(q−k)
0 x(q) = x, for some x ∈ R

n}.

We can then write

min
x0∈S0

{f0(x0)} = min
x0∈V

d0
0

{‖x0 − p0‖2H0
},

that is, find x0 = (x(1)
0 , . . . , x

(q)
0 ) ∈ V d0

0 closest to p0 = (p(1)
0 , . . . , p

(q)
0 ) ∈

H0. Again, there exists a unique optimal solution x∗0 ∈ H0, but x∗0 may
not be uniquely defined by x∗0. In fact x∗0 is uniquely defined if and only if
Ker(G0) ∩ Ker(F (1)

0 ) ∩ · · · ∩ Ker(F (q)
0 ) = {0}.

Using the definition of orthogonality in H0, and the fact that Im(GT
0 ) =

Ker(G0)⊥, we get

V 0⊥
0 =

{
x ∈ H0 | ∃λ ∈ R

rank(G0)

s.t.
∑q

j=1 F
(j)T
0 Qjx

(j) = GT
0 λ
}
.

The optimal point, x∗0 = V d0
0 ∩ (V 0⊥

0 + p0), is then given by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G0x
∗
0 = d0,

F
(1)
0 x∗0 = x

∗(1)
0 ,

...
F

(q)
0 x∗0 = x

∗(q)
k ,

q∑
j=1

F
(j)T
0 Qj(x

∗(j)
0 − p

(j)
0 ) = GT

0 λ0,

or equivalently{
G0x

∗
0 = d0,∑q

j=1 F
(j)T
0 Qj(F

(j)
0 x∗0 − p

(j)
0 ) = GT

0 λ0.



EditedFinal September 23, 2009

164 CHAPTER 9

Writing this in matrix form we get
⎛
⎜⎝

q∑
j=1

F
(j)T
0 QjF

(j)
0 −GT

0

G0 0

⎞
⎟⎠
(

x∗0
λ0

)

=

⎛
⎜⎝

q∑
j=1

F
(j)T
0 Qjp

(j)
0

d0

⎞
⎟⎠ .

As mentioned earlier, the solution to this system may not be unique. How-
ever, if we only need to find one solution we can use the Moore-Penrose
inverse to get the minimum norm solution.

9.4 A MULTI-AGENT PROBLEM

Let us now apply this result to a particular multi-agent problem, where the
network of agents is partitioned into followers and leaders. Such hetero-
geneous networks were first introduced in [94],[95], through a study of so-
called anchor node networks. Following this, a number of issues concerned
with leader-follower networks have been covered. For instance, controlla-
bility was discussed in [79],[51], and the problem of transferring the net-
work between quasi-static equilibrium points was the topic of [52]. The
problem of boundary value control was the concern in [40].

The particular example scenario under consideration here is that of re-
peated redeployment, in which the overall mission is specified through a
collection of waypoints. These waypoints are, moreover, defined as pairs of
interpolation times and subformations, characterizing the desired positions
of a subset of the agents at the particular interpolation times. The interpreta-
tion here is that additional degrees of control freedom are obtained from the
fact that the remaining agents are unconstrained at the interpolation times.

9.4.1 Network Dynamics

Consider N mobile robots, each of which is given by a point in R
n. We

will assume that the dynamics associated with each agent are given by ẋi =
ui, i = 1, . . . , N , which means that, along each dimension, the dynamics
can be decoupled. Hence, we can, without loss of generality, consider each
dimension independently. In other words, let xi ∈ R, i = 1, . . . , N , be the
position of the ith agent, and x = (x1, x2, . . . , xN )T be the aggregated state
vector. A widely adopted distributed control strategy for such systems is the
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so-called consensus equation

ẋi = −
∑

j∈N(i)

(xi − xj), (9.1)

where j ∈ N(i) means that there is a connection (i.e., a communication
link) between agents i and j.

We will assume that the network topology is static, that is, N(i) does
not vary over time. In fact, the consensus equation in (9.1) has been thor-
oughly studied for static as well as dynamic networks. (A representative
sample of some of the highlights in this area of research can be found in
[50],[39],[61],[60],[71],[81],[93],[75],[27].)

Algebraic graph theory (see, e.g., [44]) provides us with the tools for
analyzing such control strategies: A graph G = (V,E) consists of a set of
nodes V = {v1, v2, . . . , vN}, which correspond to the different agents, and
a set of edges E ⊂ V × V , which relates to a set of unordered pairs of
agents. A connection exists between agent i and j if and only if (vi, vj) =
(vj , vi) ∈ E; the interpretation here is that (vi, vj) ∈ E if and only if agents
i and j have established a communication link between them.

Furthermore, the decentralized control law in (9.1) can be written as

ẋ = −L(G)x, (9.2)

where L(G) is the graph Laplacian for the graph G given by L(G) = D(G)−
A(G), where D(G) is the degree matrix and A(G) is the adjacency matrix
associated with G.

The leader-follower structure of the heterogeneous network is obtained by
partitioning the nodes (agents) into leaders and followers, respectively. We
will assume that this partitioning is done by assuming that the first Nf < N
robots are followers and the remaining Nl = N − Nf robots are leaders,
that is, x = (xT

f , xT
l )

T , where xf ∈ R
Nf are the followers’ positions and

xl ∈ R
Nl are the leaders’ positions.

The graph Laplacian can then be partitioned as

L(G) =
(
Lf lfl

lTfl Ll

)
,

where Lf ∈ R
Nf×Nf , Ll ∈ R

Nl×Nl , and lfl ∈ R
Nf×Nl . Assuming that

we can control the velocities of the leader agents directly, we thus get the
following dynamics:

ẋ =
( −Lf −lfl

0 0

)
x+

(
0
I

)
u, (9.3)

or ẋ = Ax+ Bu.
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9.4.2 Repeated Deployment

What we want to do is drive this system through a collection of waypoints
defined as pairs of interpolation times and corresponding desired positions
for particular subsets of the agents. This task can be described through a
collection of specific affine varieties (defined at the interpolation times) as

Gix(Ti) = di, i = 0, . . . , q, (9.4)

where q is the total number of waypoints, the Ti are the interpolation times,
and where, for all i, Gi has full rank, rank(Gi) ≤ n, and di ∈ R

rank(Gi).
(For example, in three dimensions {x | Gix = di} represents a plane if
rank(Gi) = 1, a line if rank(Gi) = 2, or a point if rank(Gi) = 3.)

We want to achieve this repeated transfer between affine varieties while
minimizing the control energy expended, that is, while minimizing the quadratic
cost functional

J(u) =
∫ Tq

T0

uT (t)u(t)dt. (9.5)

9.4.3 Solution for an Example Formation

As an example, consider the situation in which the planar agents interact
through a network topology encoded through the graph G, given in Figure
9.4.

v1

v2

v3v4

Figure 9.4 A multi-agent network, where agent v4 is the sole leader.

The graph Laplacian for this system is

L(G) =

⎛
⎜⎜⎝

2 −1 0 −1
−1 3 −1 −1
0 −1 1 0
−1 −1 0 2

⎞
⎟⎟⎠ .
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If we now let x = (x1, x2, x3, x4)T be the agent positions in the x-direction
and y = (y1, y2, y3, y4)T be the agent positions in the y-direction, we ob-
tain the following completely controllable dynamical systems along the two
dimensions

ẋ = −Lx+ e4u, ẏ = −Ly + e4v,

where e4 is the unit vector with a 1 in the fourth position and u, v are the
scalar control inputs.

−20 −10 0 10 20 30 40 50 60 70

−20

−10

0

10

20

30

40

50

x

y

Figure 9.5 Starting at a formation close to (0 50)T at time t = 0 the leader (thick curve)
maneuvers the followers to the new positions close to (0 0)T at t = 5 and close
to (50 0)T at t = 10. This is done while expending the smallest possible control
energy.

Now, the particular repeated redeployment task that we consider is as fol-
lows. Given initial positions for all the agents x(T0) = x0 and y(T0) = y0,
we want to drive the system in such a way that the followers interpolate spe-
cific positions at specific times, that is, xf (Ti) = xfi and yf (Ti) = yfi, i =
1, . . . , q. Since the leader position is unconstrained, we obtain a problem in-
volving affine varieties, and since both the dynamics and the affine varieties
are decoupled along the two dimensions, we can solve the problem along
each dimension independently. In fact, in Figure 9.5, the optimal solution
is given for the minimum energy problem in which all the four agents start
“close to” (xi, yi)T ≈ (0, 50)T , i = 1, . . . , 4, at time t = 0. The leader then
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moves the followers close to (xi, yi)T ≈ (0, 0)T , i = 1, 2, 3, at t = 5 in an
optimal fashion, and finally drives them to (xi, yi) ≈ (50, 0)T , i = 1, 2, 3,
at time t = 10. Figure 9.5 shows this optimal coordinated maneuver.

SUMMARY

In this chapter, we presented the problem of driving a system among dif-
ferent affine varieties. We obtained an algorithm that solves this problem
based on dynamic programming and minimum norm optimization in nested
Hilbert spaces. A multi-agent coordination problem was solved using this
algorithm for computing the optimal leader maneuvers.
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Chapter Ten

PATH PLANNING AND TELEMETRY

In this chapter we consider two different applications in which the smooth-
ing spline can be used in a direct manner to solve a seemingly hard problem.
The first problem we will consider is the telemetry problem in which global
tracking data are measured, and the problem is to reconstruct the noise-free
path that generated this data. This will involve producing smoothing splines
on spheres, for which we will need to map planar splines onto the sphere us-
ing the stereographic projection. The example that we will consider in this
context is that of tracking loggerhead sea turtles that can move across vast
regions in relatively short amounts of time.

The second example application under consideration in this chapter is
how to use the control theoretic splines to generate paths for autonomous
robots to track. We will do this in the context of simultaneous collision
avoidance and mission progress for multiple aircrafts approaching a land-
ing area. It will turn out that monotone smoothing splines play a key role
when solving this particular problem.

——————————————————————————————

10.1 THE TELEMETRY PROBLEM

Radio transmitters are regularly used to track wildlife. A small transmitter
is attached to the subject animal and the animal is released. Over the next
hours, days, or weeks, depending on the animals and on the particular re-
search problem, signals are recorded from multiple locations at generally
nonsynchronized times. These signals are uplinked to a NOAA (National
Oceanic and Atmospheric Administration) weather satellite orbiting above
Earth, where the signals are preprocessed and stored. Later, as the NOAA
satellite passes over a ground station, the information is downlinked.

In order to correctly specify the latitude and longitude of the tracked an-
imal, triangulation techniques are employed, which stresses that a signal
for the animal must be available at different satellites at simultaneous times
[90], which may or may not always be the case. Furthermore, the achievable
accuracy typically depends on the satellite position, with satellites located
near the horizon resulting in less accurate position estimates [78]. Thus, it is
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necessary to construct curves that approximate the data rather than overfit-
ting the noisy data by demanding exact interpolation. Moreover, the signal-
to-noise ratio of the individual signals varyies, depending on such factors
as transmitter battery charge and temperature. This is the case, for exam-
ple, when colder temperatures slow down the chemical reactions in the bat-
tery, thereby reducing the power available to the transmitter [78]. In order
to manage the battery power, signals are normally sent twice a day, on a
13-hour basis and this relatively low sample rate further implies that exact
interpolation may not always be desirable.

An additional complication is that in many marine tracking applications,
such as migration route mapping, schools of fish or groups of marine ani-
mals are tracked. The position of the group is thus given by some combina-
tion of clusters, potentially widely spread, of position estimates [72].

These factors, combined with the noise associated with the transmission
channel itself, all stress that the algorithms used for producing the migra-
tion routes must be approximate in the sense that they should not interpolate
exactly through the recorded data points, but rather produce curves on the
sphere that do not pay too much attention to outliers [22]. Similar problems
arise in many other fields. In animal vision, data are received by the retina,
which is roughly spherical. These data points are recorded discretely be-
cause of the structure of the retina, and the brain does a very good job of
interpolating the data in an approximate fashion [43]. Problems of this type
also arise, for instance, when designing trajectories for satellites so that the
satellites achieve desired orientations at given times.

The problem of interpolation on differentiable manifolds is a very natural
problem and has been studied extensively. In particular, methods have been
proposed for deriving interpolating curves on Lie groups (see [11],[20],[48],
[74],[99]). These methods are, although elegant in formulation, cumber-
some from a computational point of view. One possible remedy to this
computational problem is to use Bezier curves, and in particular the use of
the De Casteljau algorithm has been proposed [7],[18],[19]. However, the
De Casteljau algorithm only works for the exact interpolation case.

In this chapter, we address this problem by projecting the data points
onto the plane, using the stereographic projection. It is then straightfor-
ward to construct smoothing, generalized splines on the plane, resulting in
a trade-off between interpolation and smoothing, as illustrated in [85],[96].
This construction allows the curves to be constructed using optimal control
methods for linear systems, established in [30],[91].
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10.2 SPLINES ON SPHERES

10.2.1 The Stereographic Projection

The problem under investigation can be stated as follows: Given a set of
m data points on the unit sphere, ξi = (z1i, z2i, z3i) ∈ S2, and a set of
corresponding times, t1 < t2 < · · · < tm, at which the data were recorded,
how do we produce continuously differentiable curves that pass suitably
close to these data-points?

If we orient the sphere in such a way that none of the data points coincide
with the north pole, that is, if for all i = 1, . . . ,m, (z1i, z2i, z3i) �= (0, 0, 1),
then we can always define a stereographic projection that allows us to con-
struct the curves on R

2 instead of trying to construct them on the sphere
directly. This strategy makes sense since we are not interested primarily
in constructing geodesics, or curves with a similar, special structure, but
merely in finding computationally feasible curves that pass close to the data
points. These curves should furthermore be at least continuously differen-
tiable everywhere.

The diffeomorphic (rational) stereographic projection, defined on S2 −
{(0, 0, 1)} (the sphere with the ”north pole” removed), is given by

S(z1, z2, z3) = (y1, y2) =
(

z1

1− z3
,

z2

1− z3

)
∈ R

2, (10.1)

with inverse

S−1(y1, y2)= (z1, z2, z3)

=

(
2y1

y2
1 + y2

2 + 1
,

2y2

y2
1 + y2

2 + 1
,
y2
1 + y2

2 − 1
y2
1 + y2

2 + 1

)
∈ S2.

(10.2)

The time derivative on the sphere is given by

ż1 =(1− z3)ẏ1 − z1(z1ẏ1 + z2ẏ2),
ż2 =(1− z3)ẏ2 − z2(z1ẏ1 + z2ẏ2), (10.3)
ż3 =(1− z3)(z1ẏ1 + z2ẏ2).

If we rewrite these derivatives in matrix form we get

d

dt

⎛
⎝ z1

z2

z3

⎞
⎠ =

⎛
⎝ 1− z3 − z2

1 −z1z2

−z1z2 1− z3 − z2
2

(1− z3)z1 (1− z3)z2

⎞
⎠(

ẏ1

ẏ2

)
, (10.4)

or as ż = A(z)ẏ, where z = (z1, z2, z3)T and y = (y1, y2)T .
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The second derivative of z is given by

z̈ =
[

d

dt
A(z)

]
ẏ + A(z)ÿ. (10.5)

However, from the stereographic projection we can evaluate ẏ directly as

ẏ1 =
ż1

1− z3
+

z1ż3

(1− z3)2

and

ẏ2 =
ż2

1− z3
+

z2ż3

(1− z3)2
,

and in matrix form

(
ẏ1

ẏ2

)
=

(
1

1−z3
0 z1

(1−z3)2

0 1
1−z3

z2
(1−z3)2

)⎛⎝ ż1

ż2

ż3

⎞
⎠ , (10.6)

or symbolically as ẏ = B(z)ż. Substituting this into the expression for z̈ in
(10.5) gives

z̈ =
[

d

dt
A(z)

]
B(z)ż + A(z)ÿ. (10.7)

It can be noted that the right-hand side of (10.7) is smooth everywhere ex-
cept at the singular point z3 = 1.

We now have a characterization of how the dynamics on the plane trans-
lates into a dynamics on the sphere, which will prove useful for producing
smoothing curves. In the next sections, we will thus cast the wildlife track-
ing problem as an optimal control problem that can be solved directly in the
plane.

10.2.2 Smoothing Splines on the Sphere

Based on the derivations in the previous section, we see that if we control
ÿ1 and ÿ2 directly, using a piecewise continuous control signal,

ÿ1 = u1,
ÿ2 = u2,

(10.8)

the resulting curves are C2 everywhere except at points where the input is
discontinuous. At these points the curve is C1.
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Substituting (10.8) for ÿ in (10.5) and expressing all variables in terms of
z, ż gives

z̈1 =−z1
ż2
1 + ż2

2 + ż2
3

1− z3
− 2

ż1ż3

1− z3
+ (1− z3 − z2

1)u1 − z1z2u2,

z̈2 =−z2
ż2
1 + ż2

2 + ż2
3

1− z3
− 2

ż2ż3

1− z3
+ (1− z3 − z2

2)u2 − z1z2u1,

z̈3 = ż2
1 + ż2

2 −
1 + z3

1− z3
ż2
3 + z1(1− z3)u1 + z2(1− z3)u2.

If we now introduce a change of variables,(w1 , w2, w3, w4, w5, w6) =
(z1, z2, z3, ż1, ż2, ż3), we can view the system on the sphere as being di-
rectly controlled by the inputs u1, u2:

d

dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

w1

w2

w3

w4

w5

w6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

w4

w5

w6

− w1
1−w3

(w2
4 + w2

5 + w2
6)− 2

1−w3
w4w6

− w2
1−w3

(w2
4 + w2

5 + w2
6)− 2

1−w3
w5w6

w2
4 + w2

5 − 1+w3
1−w3

w2
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

1− w3 − w2
1

−w1w2

w1(1−w3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

u1 +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

−w2w1

1− w3 − w2
2

w2(1− w3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

u2.

(10.9)

Note that this system is not controllable on S2 since the north pole (z =
(0, 0, 1)) cannot be reached by any control in finite time. On the other hand,
the system is controllable when restricted to S2 − {(0, 0, 1)}. This is easy
to check since, if we want to find a control that maps a ∈ S2 to b ∈ S2 in
finite time, we use the stereographic projection and map the two points to
the plane. We then construct the desired control u� in the plane and use that
control to control the system given by (10.9).

Now, since we do not have any reason to search for geodesics or any other
special structure curves, a natural version of the smoothing splines problem
is the problem of finding u1 and u2 in the Hilbert space of square-integrable
functions L2[0, T ] that solve

inf
u1,u2∈L2[0,T ]

{
1
2
ρ

∫ T

0
(u1(t)2 + u2(t)2)dt +

1
2

m∑
i=1

γ(z(ti), ξi)

}
, (10.10)
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where 0 < t1 < · · · < tm < T are the recording times associated with
the data points ξ1, . . . , ξm. Furthermore, ρ > 0 is a positive smoothing
parameter, and γ : S2 × S2 → R+ ∪ {0} is a nonnegative cost associated
with letting z(ti) ∈ S2 pass close to the data point ξi ∈ S2. In fact, we
choose to let γ(z(ti), ξi) be defined as

γ(z(ti), ξi) =
‖S(ξi)‖∑m

j=1 ‖S(ξj)‖
‖S(z(ti))−S(ξi)‖2 = τi‖S(z(ti))−S(ξi)‖2.

(10.11)
The reason for this choice of data-fitting cost is threefold. First of all, since
small distances between points close to z = (0, 0, 1) are translated into large
distances in R

2, when using the stereographic projection, large weights (the
τi) should be assigned to such points. Second, we do not want the controller
to favor points close to the origin. Therefore we need to reduce the weights
associated with points close to the south pole of the sphere, z = (0, 0,−1).
Third, we want the weights to be normalized, that is,

∑m
i=1 τi = 1, for

convergence reasons to be discussed in the following section.
Finally, the reason for penalizing the control inputs quadratically in (10.10)

in this manner is that we get an explicit trade-off between smoothness and
curve-fitting. The parameter ρ can be thought of as dictating the degree of
data-fitting, as proposed in [96]. However, the real benefit from this way of
formulating the wildlife tracking problem is that we can proceed and pro-
duce the curves on the plane instead of on the sphere. This significantly sim-
plifies the numerical burden associated with solving the problem in (10.10).

As such, the problem of producing curves on the sphere can be viewed
as the problem of generating curves in the plane and then lifting them back
to the sphere using the inverse stereographic projection. In this case, we
need to use two independent, decoupled linear control systems. Hence the
optimization problem becomes

min
u1,u2∈L2[0,T ]

{
1
2
ρ

∫ T

0
(u1(t)2 + u2(t)2)dt

+
1
2

m∑
i=1

‖S(ξi)‖∑m
j=1 ‖S(ξj)‖

(
(y1(ti)− S(ξi)1)2 + (y2(ti)− S(ξi)2)2

)}
,

(10.12)

subject to

˙̄xi =
(

0 1
0 0

)
x̄i +

(
0
1

)
ui, yi =

(
1 0

)
x̄i, i = 1, 2, (10.13)

where we let x̄i denote the point (yi, ẏi), i = 1, 2 in R
2. Furthermore,
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S(ξi)j, j = 1, 2, denotes the jth component of the stereographic projection
of the ith data point.
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(a) Smoothing splines on R
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(b) The curve obtained through S−1

Figure 10.1 Smoothing splines on R
2 and S2. The curve is obtained by projecting the data

points (the circles) onto the plane and then lifting the smoothing spline back to
the sphere, which results in a curve that passes close to the data points.
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If we compare this formulation to the problem in (10.10), we have that

κi =
‖S(ξi)‖

m∑
j=1

‖S(ξj)‖
,

αi,j = S(ξi)j , j = 1, 2,

and

z(ti) = S−1(y1(ti), y2(ti)).

It is clear that this problem is equivalent to that in (10.10), and the reason
why inf has been replaced by min is due to the convexity of the problem
[64].

A result from using this strategy is shown in Figure 10.1, where planar
smoothing splines are lifted back onto the sphere.

10.2.3 Example: Tracking of Marine Animals

As an example of using the proposed method in a wildlife telemetry ap-
plication, we consider the problem of mapping the route of loggerhead sea
turtles along the Atlantic coast of North America. Tracking these turtles
in the open sea is done by mounting small transmitters to the backs of the
animals. After 8–10 months, the transmitters quit working, and they are
typically designed to fall off the turtles at this point [14].

The data received from the turtles contain information about current po-
sitions, number of dives taken since last transmission, duration of the most
recent dive, and water temperature. The position data (time-stamped lon-
gitudinal and latitudinal data) are available through WhaleNet at [63], and
given a data point (lat, long), the position on S2 can be obtained as

⎛
⎝ z1

z2

z3

⎞
⎠ =

⎛
⎝ cos(lat) cos(long)

cos(lat) sin(long)
sin(lat)

⎞
⎠ .

In Figure 10.2, the route of the loggerhead sea turtle “Mary-Lee” is tracked
and displayed over a three-month period, with a total of 76 data points.

10.3 SPLINES AND BEZIER CURVES

As Bezier curves, and in particular the De Casteljau algorithm, have been
proposed as ways to generate (interpolating) splines on spheres, we here
say a few words about the connection between splines and Bezier curves.
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In fact, we show that Bezier curves can be thought of as the solutions to
linear optimal control problems, using results from Hermite interpolation,
in combination with traditional linear optimal control. This provides us
with a computational view of Bezier curves that differs from the standard
De Casteljau algorithm, and it furthermore points out the close relationship
between Bezier curves and interpolating dynamic splines.

(a) Mary-Lee’s movements

(b) Close-up

Figure 10.2 Movements of the loggerhead sea turtle “Mary-Lee” during a three-month pe-
riod are reconstructed using smoothing splines. Depicted is only a small subset
of the data points.
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10.3.1 Bezier Curves

Bezier curves constitute a class of approximating curves in that they are de-
fined using control points, but do not necessarily pass through these control
points. Instead, the control points define the shape of the curve as

B(t) =
N∑

i=0

BN,i(t)pi, (10.14)

where pi ∈ R
p, i = 0, . . . , N are the control points, and

BN,i(t) =
(

N
i

)
(1− t)N−iti (10.15)

is a Bernstein polynomial. It is immediately clear from (10.15) that the
Bezier curves are parameterized by t ∈ [0, 1].

From (10.15) it furthermore follows that we need N + 1 control points
in order to define a Bezier curve of degree N . Given N + 1 such control
points in R

p, the Bezier curves can be established by an iterative algorithm,
the De Casteljau algorithm, which produces a single point on the curve for
each iteration of the algorithm. The construction is shown in Figure 10.3,
where the points p0, . . . , p4 are the control points in (10.14). The curve is
produced by letting λ sweep [0, 1] as follows. The control points are con-
nected with lines, and new points are defined on those lines at a fraction λ
of the distance between the endpoints of the individual lines. In Figure 10.3,
those points are p01, p12, p23, p34. This procedure is repeated, generating the
points p012, p123, p234 in the second step and p0123, p1234 in the third step.
The final point p01234 is a point on the Bezier curve, and in this particular
case we have that p01234 = B(λ).

p0

p1

p2

p3

p4

p01 p012
p0123p01234

p12

p123

p1234

p23

p234

p34

Figure 10.3 The standard construction of a single point on the Bezier curve.

The existence of this computationally inexpensive algorithm is what makes
the Bezier curves useful in a number of applications (see, e.g., [19]), and
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they are used extensively in computer graphics, as well as in such areas
as computer aided design. There is a wealth of literature associated with
this topic, and the books by Farin [37],[38] are standard references for this
subject. However, what will be shown here is that while the DeCasteljau
algorithm is elegant, the Bezier curve is in fact a fundamental object from
linear control theory.

The question has been raised of whether or not Bezier curves are intrinsi-
cally better than the dynamic splines discussed in [68],[85],[91],[96],[100],
[103]. We will show that Bezier curves are in fact intimately associated with
a linear optimal control problem, and thus that they can be realized as the
solution to just such a problem. This means that further research is required
before it can be claimed that Bezier curves offer better performance than
other spline methods. In producing this result, we will rely heavily on the
fact that Bezier curves can be related to certain Hermite interpolation prob-
lems, and that in turn these Hermite interpolation problems are in fact linear
optimal control problems.

From (10.15), it is easy to calculate the derivatives of a Bezier curve using
the differential recursion for the Bernstein polynomials, given by

d

dt
BN,i(t) = NBN−1,i−1(t)−NBN−1,i(t), i = 1, . . . , N − 1, (10.16)

and
d
dtBN,0(t) = −NBN−1,0(t),

d
dtBN,N (t) = NBN−1,N−1(t).

(10.17)

We can thus calculate the derivative of the Bezier curve in (10.14) as

d

dt
B(t) = N

N−1∑
i=0

BN−1,i(t)(pi+1 − pi). (10.18)

From (10.18) it follows that the derivative is itself a scalar multiple of a
Bezier curve, calculated from the differences of the original control points.

It is now straightforward to calculate all the derivatives of the curve. As is
shown in [37],[38], these derivatives have a very nice closed form expression
in terms of the forward differencing operators Δk

F , defined recursively as

Δk
F pj = Δk−1

F pj+1 −Δk−1
F pj , k = 1, 2, . . . ,

Δ0
F pj = pj.

(10.19)

Thus the kth derivative is given by

dk

dtk
B(t) =

N !
(N − k)!

N−k∑
i=0

BN−k,i(t)Δk
F pi. (10.20)
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We now note that only one of the Bernstein polynomials in (10.14) is
nonzero at t = 0, namely, BN,0(t), with BN,0(0) = 1. Hence

B(0)= p0,

d

dt
B(0)=NΔF p0,

... (10.21)
dk

dtk
B(0)=

N !
(N − k)!

Δk
F p0.

With this formulation it is possible to calculate the derivatives of the Bezier
curve at the two endpoints p0 and pN . These two points have a special sig-
nificance in the Bezier curve construction since they are the only two points
that the Bezier curve is guaranteed to interpolate. From (10.21), we see that
the interior points determine the derivatives of the Bezier curve at the two
endpoints. This suggests that Bezier curves are associated with certain Her-
mitean interpolation problems. In fact, taking N derivatives gives the two
vectors⎛

⎜⎜⎜⎝
p0

NΔF p0
...

N !ΔN
F p0

⎞
⎟⎟⎟⎠ ∈ R

p(N+1),

⎛
⎜⎜⎜⎝

pN

NΔBpN
...

N !ΔN
B pN

⎞
⎟⎟⎟⎠ ∈ R

p(N+1) (10.22)

of derivatives at the endpoints that we would like to interpolate. Here ΔB

is the backward differencing operator, and it should be pointed out that at
this point we do not know whether we need to take all N derivatives at the
endpoints in order to generate the correct Hermite interpolation problem.

10.3.2 Connections to Linear Systems

We consider a linear system of the form

ẋ = Ax+ Bu, y = Cx, (10.23)

where u, y ∈ R
p and x ∈ R

pq for some q to be determined later. Further-
more, we let A have the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

A 0 · · · 0
0 A · · · 0
... . . . ...
0
· · · A

⎞
⎟⎟⎟⎟⎟⎟⎠

, (10.24)
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where A is the q × q nilpotent matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

... . . . ...
0 · · · 0 0 1
0 · · · · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (10.25)

We furthermore let B be the matrix

B = (eq, e2q, . . . , epq) , (10.26)

where ek is the kth unit vector in R
pq, with 1 in the kth position. The matrix

C is similarly given as

C =

⎛
⎜⎜⎜⎜⎝

eT
1

eT
1+q
...

eT
1+(p−1)q

⎞
⎟⎟⎟⎟⎠ . (10.27)

The system in (10.23) thus consists of p single-input single-output linear
systems in parallel, and hence it suffices to consider the subsystems individ-
ually. The algorithm for constructing the Bezier curve is also a coordinate-
wise algorithm. Thus we will, without loss of generality, consider the old
workhorse, the single-input single-output linear system

ẋ = Ax+ bu, y = cx, (10.28)

where A is described above, b = eq (qth unit vector in R
q), and c = eT

1 (first
unit vector in R

q).
A classical result for this type of system is given by the following.

Theorem 10.1 Let x(0), x(1) ∈ R
q. Then the control, u(t), that minimizes

J(u) =
∫ 1

0
u2(t)dt (10.29)

and drives the controllable system

ẋ = Ax+ bu (10.30)

from x(0) to x(1), is given by

bT eAT (1−t)
(∫ 1

0
eA(1−s)bbT eAT (1−s)ds

)−1

(x(1) − eA1x(0)). (10.31)
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We now recall that if A is given in (10.25) we have that the exponential
is a polynomial matrix. In fact,

eAt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 t t2

2! · · · tp−1

(p−1)!

0 1 t · · · tp−2

(p−2)!

. . . · · · . . . . . .

0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (10.32)

Thus the control in Theorem 10.1 is polynomial, and the degree of the con-
trol is q − 1.

10.3.3 Two-Point Hermite Interpolation

The classical Hermite interpolation problem is discussed in great detail in
almost every elementary numerical analysis book. (In particular, see [22].)
We are interested in a specific form of the general problem, namely, the two-
point problem. At time 0 we specify k values a0, a1, . . . , ak−1, and at time
1 we likewise specify k values b0, b1, . . . , bk−1.

The problem we are interested in is to find a polynomial of minimum
degree such that p(i)(0) = ai and p(i)(1) = bi, i = 0, . . . , k − 1. It is easy
to see that there exists a unique polynomial of degree less than or equal to
2k − 1 which satisfies the requirement.

In the previous section we saw that there exists a control law that drives
a system from a point in R

q to another point in R
q in such a way that the

resulting trajectory is polynomial. Using the notation of Theorem 10.1, we
see that since u(t) is a polynomial of degree at most q − 1, y(t) is in fact
also a polynomial of degree at most 2q − 1. The output y(t) thus satisfies
the constraints of the Hermite interpolation problem discussed above, in
the case when k = q. We can thus conclude that the linear optimal control
problem and the special, two-point Hermite problem have the same solution.

We saw previously that, given N + 1 points in R
p, the Bezier curve is

a polynomial curve of degree N . Since the Bezier algorithm operates at
the level of coordinates, we can restrict ourselves to the case p = 1, which
corresponds to using only the subsystem in (10.28) instead of the full system
in (10.23). For the continuation of this section, we consider two cases based
on the parity of N .

Case 1: N=2M-1

If we want to produce a solution to the Hermite interpolation problem that
has the same degree as the Bezier curve, we need to interpolate between
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points in R
k such that 2k − 1 = N , that is, k = M . In order to produce

such interpolation points in R
M , we need to compute M − 1 derivatives of

the Bezier curve.
Using the expression for the derivative of the Bezier curve in (10.20), we

have that the derivatives of the curve at t = 0 are given by the vector

x(0) =

⎛
⎜⎜⎜⎜⎝

p0

(2M − 1)ΔF p0
...

(2M−1)!
M ! ΔM−1

F p0

⎞
⎟⎟⎟⎟⎠ ∈ R

M , (10.33)

where we have now assumed that p0 ∈ R. The corresponding first deriva-
tives at time 1 are given by

x(1) =

⎛
⎜⎜⎜⎜⎝

p2M−1

(2m− 1)ΔBp2M−1
...

(2M−1)!
M ! ΔM−1

B p2M−1

⎞
⎟⎟⎟⎟⎠ ∈ R

M . (10.34)

Now, the linear system of Theorem 10.1 that drives the system (10.28)
between x(0) and x(1) produces an output curve of degree 2M − 1, which
is equal to N , the degree of the Bezier curve. However, by the Hermite
problem, this curve is unique, and hence the Bezier curve and the curve
produced by the linear optimal control law are one and the same.

The case when N = 2M is a bit more involved.

Case 2: N=2M

As before, the degree of the Bezier curve in (10.14) is N , which is equal to
2M . Let us now proceed by taking M instead of M − 1 derivatives in order
to get the two endpoints in the Hermite interpolation problem. We get

x(0) =

⎛
⎜⎜⎜⎜⎝

p0

2MΔF p0
...

(2m)!
M ! ΔM

F p0

⎞
⎟⎟⎟⎟⎠ ∈ R

M+1, (10.35)

x(1) =

⎛
⎜⎜⎜⎜⎝

p2M

2MΔBp2M
...

(2M)!
M ! ΔM

B p2M

⎞
⎟⎟⎟⎟⎠ ∈ R

M+1. (10.36)
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It is a well-posed problem to construct the polynomial of minimal degree
that solves the Hermite interpolation problem. Since we are interpolating in
R

M+1, we get an upper bound of 2(M + 1) − 1 = 2M + 1 on the degree
of the polynomial obtained from the Hermite interpolation. But the Bezier
curve also interpolates the same data using a polynomial of degree 2M .
Hence, in this case, the degree of the unique Hermite polynomial is actually
2M instead of the generic degree 2M + 1.

We can also construct a polynomial that interpolates these data using
linear control theory. Again, using Theorem 10.1, with the degree of the
system being M + 1, we construct a polynomial of degree 2M + 1 that
interpolates the data. Again appealing to the uniqueness of the Hermite in-
terpolation problem we conclude that the degree is actually 2M .

10.3.4 Main Theorem

Based on the observations in the previous two subsections, we have estab-
lished the following fact that we state as a theorem.

Theorem 10.2 Let {pi | i = 0, . . . , N} be a set of N + 1 points in R, with
the corresponding Bezier curve

B(t) =
N∑

i=0

BN,ipi, (10.37)

where

BN,i =
(

N
i

)
(1− t)N−iti. (10.38)

Let the function y(t) be given by

ẋ = Ax+ bu,
y = cx,

(10.39)

where A, b, c are given in (10.28), and where u(t) solves

min
u

∫ 1

0
u2(t)dt, (10.40)

while interpolating

x(0)=

⎛
⎜⎜⎜⎜⎝

p0

NΔF p0
...

N !
(N−m)!Δ

m
F p0

⎞
⎟⎟⎟⎟⎠ ∈ R

m+1, (10.41)
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x(1)=

⎛
⎜⎜⎜⎜⎝

pN

NΔBpN
...

N !
(N−m)!Δ

m
B pN

⎞
⎟⎟⎟⎟⎠ ∈ R

m+1. (10.42)

Then y(t) is identical to the Bezier curve B(t), with the choice of m = �N2 �,
with �·� being the floor operator.

From Theorem 10.2 it follows that it is possible to use the Bezier curves
for constructing interpolating splines. However, the control points must be
chosen to ensure continuity of the derivatives at each of the nodes; the proce-
dure for doing this is that in [100]. Hence, the usual claim that Bezier splines
are cheaper to compute than interpolating splines to compute is probably not
true if it is desired to have a closed form for the resulting spline and there
are more than two interpolating nodes. Even though we make no claims that
dynamic splines are better than Bezier curves, we have in fact shown that
Bezier curves are also a fundamental construction of linear control theory.

10.4 CONFLICT RESOLUTION FOR AUTONOMOUS VEHICLES

We have now seen how to use splines for reconstructing actual paths from
sampled data points. How about the opposite problem, to use splines to
generate paths? In this section, we will consider this path planning prob-
lem in the particular context of conflict avoidance for multiple (possibly
autonomous) vehicles, such as Unmanned Aerial Vehicles (UAVs).

To make matters more concrete, the problem we consider here is how to
generate paths that lead multiple planar autonomous vehicles to a desired
goal state, such as an airport terminal or a robot docking station, in a safe
and orderly manner. We do not want to solve the problem of controlling the
nonlinear robot dynamics at the same time as we plan collision-free routes,
which typically implies that a hierarchical approach is called for.

We assume that each of the m individual robots’ states evolves on the
smooth manifoldM, and that the dynamics is defined by the control system

ẋi(t) = f(xi(t), ui(t)), xi(0) = xi0, i = 1, . . . ,m,

where xi(t) ∈ M and ui(t) belongs to the set of admissible inputs U . The
problem that we investigate concerns driving these robots toward a terminal
or docking station in the plane, and for this we associate an output equation

yi(t) = h(xi(t)) ∈ R
2

to each robot that projects the robot states onto R
2.
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The specifications when landing airplanes are typically given by discretiz-
ing the plane, resulting in a planar, Cartesian grid, with respect to which the
waypoints are defined. We can, of course, always scale this grid to have
it coincide with Z

2, which will be done throughout this section. This grid
structure will furthermore be referred to as a cell-partitioning of R

2, where
each cell is defined as {y ∈ R

2 | |y(1) − z(1)| ≤ 1/2 and |y(2) − z(2)| ≤
1/2} for a given z ∈ Z

2.
In order to formulate the specifications in terms of the robot dynamics,

we introduce the mapping Z : R
2 → Z

2, that maps points in R
2 to the

midpoint of the particular cell that the point resides within, that is,

Z(y) = argmin‖y − z‖2,

taken over z ∈ Z
2, where ‖ · ‖2 denotes the standard Euclidean norm in R

2.
In order to avoid ambiguities we can furthermore always define Z uniquely
on the boundary of each cell.

On Z
2, we can now define the Manhattan metric ‖z‖M as the minimum

number of cells that must be traversed in order to reach the cell containing
the origin. If we let

pi = ‖Z(h(xi(0)))‖M ∈ Z
2,

we are ready to formulate the multi-agent specifications under consideration
here,

1. Terminal Approach: ‖Z(h(xi(k)))‖M + 1 = ‖Z(h(xi(k − 1)))‖M ,
k = 1, . . . , pi, i = 1, . . . ,m; and

2. Collision Avoidance: Given i, ‖h(xi(t)) − h(xj(t))‖2 > ρ, ∀j �= i,
as long as t satisfies ‖Z(h(xi(t)))‖M �= 0, where ρ is the desired
safety margin.

It should be noted that by specifying the requirements in this way we have
implicitly required an additional property for our solution to exhibit:

3. Docking: ‖Z(h(xi(pi)))‖M = 0, i = 1, . . . ,m.

Instead of explicitly trying to find a controller that satisfies these three
specifications directly, we take advantage of the fact that there are already a
number of efficient tracking algorithms with provable performance, and we
refer to the literature [1],[12],[26],[25],[29],[73],[84] for a treatment of this
topic. Thus, we can focus our attention on the problem of generating paths,
at various levels in the hierarchy, instead of on tracking these paths.
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10.4.1 Discrete Time Planning

At the highest level of abstraction in our hierarchical control architecture,
we let each individual vehicle be in a particular square in the Cartesian grid
for one unit of time. For safety reasons, two vehicles in a square are forbid-
den since this case could potentially result in a “near miss” or a collision.
We let the terminal, or goal point, have coordinates (0,0), and we give the
grid a metric based on the norm ||(a, b)|| = |a|+ |b|, which in the air traffic
control literature is known as the Manhattan metric.

When a vehicle enters the region around the terminal, it should trace a
trajectory of minimal distance to the terminal, while avoiding contact with
all other vehicles. Thus, if the vehicle is at (7,-5), it must reach the terminal
in 12 time units. At the next instant of time, it must be at either (6,-5) or at
(7,-4). We can denote this by the following controlled equation

(xk, yk) = (xk−1, yk−1) + (δ1, δ2),

where |δi| = 1 or 0, and the following rules apply: δ1δ2 = 0, |xk| ≤
|xk−1|, |yk| ≤ |yk−1|, and δ2

1 + δ2
2 = 1. These rules apply any time the

position of the vehicle is described in terms of its location with respect to
the terminal.

It is straightforward to see that the conditions concerning blockages sur-
rounding the terminal can be completely characterized by the following
three examples. The first case is displayed in Figure 10.4(a). It is the sim-
plest blockage case, where it is impossible to move without x2 being in
conflict with either x1 or x3. The real problem is that all three vehicles are
exactly three time units from the terminal, and there are only two possible
routes for them to take.

The fact that there are exactly four directions from which the robots can
enter the terminal means that at most four vehicles may enter at any given
instant of time. Thus, if five or more vehicles are anywhere in the grid,
equidistant from the terminal, there is an unavoidable blockage. This is il-
lustrated in Figure 10.4(b). Similarly, if there are four vehicles equidistant
from the terminal in two adjacent quadrants, this will force four vehicles to
reach the terminal simultaneously from three different directions, as illus-
trated in Figure 10.4(c).

Can any other conflicts occur? The answer is no, and thus only the con-
flicts illustrated in Figures 10.4(a)–(c) lead to inevitable conflicts. This can
be shown by working backward. Suppose that vehicles x and y are in con-
flict at time k + 1. Then at time k they were in a position where they had
no choice on their next move. This requires that either one or the other was
heading straight toward the terminal, or that there were other vehicles on
the same level line. Thus either we are in the situation of Figure 10.4(a) as
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Figure 10.4 The three possible blockage cases.

a consequence of the situation in Figure 10.4(b), or we are in the situation
of Figure 10.4(c), with several vehicles on the same level line in a single
quadrant.

A safe route can thus be planned (and hence q ∈ PX2 can be generated in
the hierarchical control strategy) in a straightforward manner using standard
graph geodesics if and only if the following conditions are satisfied:

1. No more than two vehicles in a single quadrant are equidistant from
the origin.

2. No more than three vehicles in two adjacent quadrants are equidistant
from the origin.

3. No more then four vehicles are equidistant from the origin.

10.4.2 Path Planning Using Monotone Splines

Assume that we are given a set of safe shortest-distance points through the
grid, ξi, i = 1, . . . , N , which constitute one instance of a conflict-free path
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in a multi-vehicle scenario. Furthermore, these points are located in the
middle of squares in the grid, ξi ∈ Gi, i = 1, . . . , N , with side length 1.
Thus Gi has midpoint (ξxi, ξyi), i = 1, . . . , N . What we want to achieve
is to generate a feasible route that goes through only these specified squares
in the grid. We want to do this at the same time as we want to prevent
the trajectories from oscillating, due to the fact that we ultimately want the
vehicles to be able to follow the paths.

Without loss of generality, we assume that we are working with grid
squares in the third quadrant, and the task is to drive the path through the
squares to the terminal, located at the origin. This means that (ξxi+1, ξyi+1)
is either (ξxi + 1, ξyi) or (ξxi, ξyi + 1).

If we decouple the path planning problem into two subproblems, one
along each axis, a preliminary version of the interpolation problem can be
formulated as: Drive (x(t), y(t)) ∈ R

2 close to (ξxi, ξyi) at the correspond-
ing interpolation times, ti, while staying in the specified grid squares for all
times. At the same time we want the path to be smooth, which gives that we
could, for instance, minimize the L2-norm of the second derivatives in the
x- and y-directions. In other words, given the system dynamics

ẍ(t) = ux(t), ÿ(t) = uy(t), ux, uy ∈ L2[0, T ],

what we want to do is minimize∫ T

0

(
ux(t)2 + uy(t)2

)
dt +

N∑
i=1

(
τxi(x(ti)− ξxi)2 + τyi(y(ti)− ξyi)2

)
,

where T is the total time of the maneuver and τxi > 0 and τyi > 0 deter-
mine how much importance should be given to the waypoint fitting around
(ξxi, ξyi). We furthermore impose the following constraint on our optimal
control problem:

∀t ∈ [0, T ] ∃i ∈ {1, . . . , N} | (x(t), y(t)) ∈ Gi.

This last constraint is an infinite-dimensional constraint since it is a prop-
erty that has to hold for all times, making the optimization problem very
hard to solve [64]. Instead we would like to reformulate this as a problem
where the grid constraints are finite. This can be achieved if we require that
the curve is monotonously increasing in both the x- and y-directions (since
we are in the third quadrant) while demanding that (x(ti), y(ti)) ∈ Gi, i =
1, . . . , N , which allows us to trade one infinite-dimensional constraint for
another, that is, that ẋ(t), ẏ(t) ≥ 0 ∀t ∈ [0, T ].

We can thus reformulate the problem as

min
ux,uy

∫ T

0
(u2

x(t) + u2
y(t))dt +

N∑
i=1

(
τxi(x(ti)− ξxi)2 + τyi(y(ti)− ξyi)2

)
,
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subject to

ẍ(t) = ux, ÿ(t) = uy, ux, uy ∈ L2[0, T ],
ẋ(t) ≥ 0, ẏ(t) ≥ 0, ∀t ∈ [0, T ],
(x(ti), y(ti)) ∈ Gi, i = 1, . . . , N,

where we have assumed that x(0), y(0) ∈ G1, ẋ(0), ẏ(0) ≥ 0.
In [34] as well as in Chapter 7, it was found that the set of controls in

L2[0, T ] × L2[0, T ] that satisfy the constraints is a closed, convex, and
nonempty set, which is a strong enough result to guarantee the existence
of a unique optimal solution. And, we now also know that the optimal con-
trol in L2[0, T ]×L2[0, T ] is piecewise linear. Furthermore, ux only changes
from different linear cases at the waypoints, or at times when ẋ(t) = 0, and
similarly for uy.

�3.5 �3 �2.5 �2 �1.5 �1 �0.5 0 0.5

�2

�1.5

�1

�0.5

0

0.5

1

x

y

Figure 10.5 A path planning example corresponding to the solution in Figure 10.6. The
circles and stars correspond to the actual positions at the interpolation times
and the waypoints, respectively.

Based on these two facts it is possible to find the optimal piecewise linear
control inputs in a computationally feasible way by solving a dynamic pro-
gramming problem along each axis. An example of applying this method to
the problem of planning planar, feasible paths are shown in Figures 10.5–
10.6.
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Figure 10.6 In (a), x (top) and ẋ (bottom) are displayed, while (b) shows the solution in
the y-direction. The stars correspond to the waypoints, and the derivatives are
non-negative for all times.

SUMMARY

In this chapter, we discussed some applications of the various smoothing
splines developed in this book. In particular, using the stereographic pro-
jection, it was shown how to produce smoothing splines on the sphere. An
application of this was given in the context of telemetry through the problem
of tracking marine animals.
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We also used monotone smoothing splines for planning collision-free
paths around airports and established a direct correspondence between Bezier
curves and control theoretic, smoothing splines.
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Chapter Eleven

NODE SELECTION

In this chapter, a solution is presented to the problem of selecting sample
points in an optimal fashion. These points are used for interpolation and
smoothing procedures, and, in particular, we derive necessary optimality
conditions for the sample points. An example is presented concerning gen-
eralized smoothing splines that illustrate the generality as well as the nu-
merical feasibility of the proposed approach.

——————————————————————————————

11.1 BACKGROUND

So far in this book, we have seen how to generate a large collection of dif-
ferent curves based on given sets of data points. If these points are to be
selected rather than just given somehow, one can of course ask how they
should be selected. This turns out to be a question that cannot be tackled as
a minimum norm problem in a Hilbert space. Nonetheless, it is such an im-
portant problem that we include it in this book for the sake of completeness.

In particular, we consider the problem of selecting the data points in an
optimal fashion for interpolating or smoothing procedures. What the so-
lution to this problem entails is the computation of how trajectories from
switched, autonomous dynamical systems depend on the sample times. For
this, optimal timing control, based on classic variational techniques, will be
employed in order to find locally optimal sample times.

Historically, the main explicit result relating the selection of interpolation
(or sample) times to the performance of the resulting curve, is given by the
Tschebyscheff polynomials.

Given a function h(t) ∈ CN−1(t0, tf ), the unique polynomial PN−1 that
interpolates the data points h(t1), . . . , h(tN ) satisfies

|h(t) − PN−1(t)| ≤ max
t0≤ξ≤tf

|hN (ξ)| max
t0≤ξ≤tf

∏N
i=1 |ξ − ti|

N !
=H(t1, . . . , tN )

as shown in [22].
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Moreover, the solution to the problem

min
t1,...,tN

H(t1, . . . , tN )

is given by the Tschebyscheff polynomials. However, this result only holds
for exact polynomial interpolation. Since we are interested in solving a
more general problem, with general curve and cost types, the Tschebyscheff
polynomials will unfortunately not provide much assistance in this quest.

11.2 SAMPLING FOR INTERPOLATION AND SMOOTHING

The connection between data interpolation (and smoothing) and optimal
control has been made repeatedly in this book. (See also, for example,
[66],[85],[96].)

However, regardless what method is used for generating the curve, the
optimal control vantage point lets us assume that, from a general point of
view, the underlying system dynamics is given by ẋ = F (x, u), where x ∈
R

n, u ∈ R
q, and F is smooth. Independent of interpolating or smoothing

procedure, the resulting control law will in general depend on time t as well
as the sample times τ = (τ1, . . . , τN )T ∈ R

N . Moreover, u will not be
smooth (or even continuous) at the sample times, while it will be smooth for
all other times. We can thus let the resulting optimal control law be given
by

u(t, τ) = Gi(t, τ), ∀t ∈ [τi−1, τi),

where i = 1, . . . , N + 1, τ0 = t0, and τN+1 = tf . In other words, the now
autonomous yet switched system is given by

ẋ = F (x,Gi(t, τ)) = fi(x, t, τ), ∀t ∈ [τi−1, τi).

Moreover, if we assume that the data points are generated from an underly-
ing curve h(t) ∈ R, and if we let the output from the dynamical system be
y(t) = g(x(t)) ∈ R, we can define L(x(t), t) as

L(x(t), t) = (g(x(t)) − h(t))2,

and try to minimize the cost:

min
τ

J(τ) = min
τ

∫ tf

t0
L(x(t), t)dt,

subject to

ẋ = fi(x, t, τ), t ∈ [τi−1, τi), i = 1, . . . , N + 1
x(t0) = x0.
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This general timing control problem will be addressed in the next sec-
tion, followed by a discussion about how the results should be used when
producing generalized smoothing splines. It should, however, be noted that
if the system dynamics fi(x, t, τ) did not depend on the switching times τ
explicitly, this would be a standard timing control problem that has been
solved, for example, in [35],[86],[92],[98].

In fact, in [35], it was found that the gradient of the cost (if the dynamics
does not depend on the switching times) was given by

dJ

dτi
= λ(τi)

(
fi(x(τi))− fi+1(x(τi)

)
,

given the costate equation

λ̇ = −∂L
∂x − λ∂fi

∂x , t ∈ [τi−1, τi),
λ(tf ) = 0.

Hence, the task undertaken in this chapter is in part to extend this result to
the case when fi does depend on τ .

11.3 OPTIMAL TIMING CONTROL

As before, consider the autonomous, switched dynamical system

ẋ = fi(x, t, τ), t ∈ [τi−1, τi),
x(t0) = x0,

(11.1)

where {fi(x, t, τ)}N+1
i=1 is a given sequence of smooth mappings from R

n×
R × R

N to R
n. Moreover, let L be a smooth function from R

n × R → R,
and let the cost J be given as before by

J(τ) =
∫ tf

t0
L(x(t), t)dt.

Note that J may very well be nonconvex, which means that only local
optima can be expected to be obtained from gradient-based algorithms. The
computation of the gradient of J with respect to the switching times is the
contribution in this section; it will be based on the classic variational ap-
proach where the dynamical constraints are adjoined to the cost function via
the costate variable λ.
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11.3.1 Gradient Computation

We have

J0 =
N+1∑
i=1

(∫ τi

τi−1

(L(x(t), t) + λ(fi(x(t), t, τ) − ẋ)) dt

)
.

By i(t) we understand that i(t) = j when t ∈ [τj−1, τj), and we con-
sider the variation in J due to a perturbation in τk only. Hence, we replace
fi(x, t, τ) with fi(x, t, τk) for the sake of notational ease. The variation is
obtained through the small perturbation τk → τk+εθk, where ε� 1, which
results in the state variation x → x+ εη. The cost function for the perturbed
system is

Jε =
∫ τk

t0

[
L(x+ εη, t) + λ(fi(t)(x+ εη, t, τk + εθk)− ẋ− εη̇)

]
dt

+
∫ τk+εθk

τk

[ L(x + εη, t) + λ(fk(x + εη, t, τk + εθk)− ẋ− εη̇)] dt

+
∫ tf

τk+εθk

[
L(x + εη, t) + λ(fi(t)(x + εη, t, τk + εθk)− ẋ− εη̇)

]
dt.

A first order approximation of the continuously differentiable functions fi
and L gives

Jε − J0 =
∫ tf

t0

(
∂L

∂x
εη + λ

(
∂fi(t)

∂x
εη +

∂fi(t)

∂τk
εθk − εη̇

))
dt

+
∫ τk+εθk

τk

λ(fk(x, t, τk)− fk+1(x, t, τk))dt.

Following the development in [35], we choose the continuous costate

λ̇ = −∂L
∂x − λ∂fi

∂x , t ∈ [τi−1, τi),
λ(tf ) = 0,

(11.2)

which, through integration by parts, simplifies the variation δJ = (Jε −
J0)/ε to

δJ =
(∫ tf

t0
λ

∂fi(t)

∂τk
dt + λ(τk)(fk − fk+1)

∣∣∣
t=τk

)
θk.

We thus have that the kth component of the gradient of J with respect to τ
is given by

dJ

dτk
=
∫ tf

t0
λ

∂fi(t)

∂τk
dt + λ(τk)(fk − fk+1)

∣∣∣
t=τk

, (11.3)
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which allows us to use gradient-based algorithms for selecting locally opti-
mal sample points in our interpolation and smoothing problems, as we will
see in the next section. We start by a brief discussion of the numerical as-
pects of this approach.

11.3.2 Gradient Descent

The reason why the formula derived in the previous paragraphs is particu-
larly easy to work with is that it gives us access to a very straightforward
numerical algorithm.

For each iteration k, let τ(k) be the set of switching times, and compute
the following:

1. Compute x(t) forward in time on [t0, tf ] by integrating (11.1) from
x(t0) = x0.

2. Compute λ(t) backward in time from tf to t0 by integrating (11.2)
from λ(tf ) = 0.

3. Use (11.3) to compute dJ/dτ(τ(k)).

4. Update τ as

τ(k + 1) = τ(k)− l(k)
(

dJ

dτ
(τ(k))

)T

,

where l(k) is the stepsize, e.g., given by the Armijo algorithm [8].

5. Repeat.

Note that this method will only converge to a local minimum. But, as we
will see, it can still give quite significant reductions in cost.

11.3.3 Example - Linear Approximations

In this example, we try to approximate a continuous function h : [t0, tf ]→
R by a function x such that, for i = 1, . . . , N + 1, ∀t ∈ [τi−1, τi),

x(t) = h(τi−1) + (t− τi−1)
h(τi)− h(τi−1)

τi − τi−1
,

where τ0 = t0 and τN+1 = tf . This autonomous switched system is simpler
than the general case considered previously since the derivative function
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ẋ(t) = fi(x(t), τ) on [τi−1, τi) here only depends on τi−1 and τi, that is,

ẋ(t) = fi(τi−1, τi) =
h(τi)− h(τi−1)

τi − τi−1
on [τi−1, τi).

We now apply the algorithm to the problem of determining τ1, . . . , τN in
order to minimize the cost function

J(τ)) =
∫ τN+1

τ0
(h(t) − x(t))2dt.

Figure 11.1 shows how the algorithm converges. The following parame-
ters were used:

{
h(t) = 5 sin

(
2πt
300

)
+ 3 sin

(
2πt
100

)
+ t2

20000 − t
50 ,

[t0, tf ] = [0, 200] , N = 4, l = 1.
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Figure 11.1 Optimal linear approximation.

The lowest figure in Figure 11.1 shows how fast the algorithm converges.
The optimal solution is reached after a very few iterations, in spite of a “bad”
initial guess and a constant step size l.
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11.4 APPLICATIONS TO SMOOTHING SPLINES

The optimal selection of nodes is common in such problems as the air traffic
control problem. If an airplane receives the command to be at 10,000 ft in t+
2 minutes, and if this would violate acceleration constraints, the command
would be changed to, for example, t+4 minutes–an optimal selection of the
node.

As discussed previously, we can view the smoothing problem as a prob-
lem of finding the optimal control that drives the output of a given linear
control system close to given data points. In particular, given the dynamics

ẋ = Ax+ bu, x ∈ R
n,

y = cx,
(11.4)

the (unique) optimal solution to the problem

min
u∈L2[t0,tf ]

∫ tf

t0
u2(t)dt +

N∑
i=1

ωi(y(τi)− ξi)2, (11.5)

was in Chapter 4 found to be

u(t) = �(t)T (I +WG)−1Wξ,

where

W =

⎛
⎜⎜⎜⎝

ω1 0 · · · 0
0 ω2 · · · 0
...

... . . . ...
0 0 · · · ωN

⎞
⎟⎟⎟⎠ , ξ =

⎛
⎜⎜⎜⎝

ξ1

ξ2
...

ξN

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

h(τ1)
h(τ2)

...
h(τN )

⎞
⎟⎟⎟⎠ ,

�(t) =

⎛
⎜⎜⎜⎝

�1(t)
�2(t)

...
�N (t)

⎞
⎟⎟⎟⎠ , �i(t) =

{
ceA(τi−t)b if t ≤ τi,
0 otherwise,

and where the Grammian G is given by

G =
∫ tf

t0
�(s)�(s)T ds ∈ R

N×N .

Note that the definition of the basis functions �i(t) implies that u may be
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discontinuous at τi. In fact, we could define a new set of basis functions

ζi(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

ceA(τi−t)b

ceA(τi+1−t)b
...

ceA(τN−t)b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, t ∈ [τi−1, τi), i = 1, . . . , N,

with ζN+1 = 0. Hence we have the new system

ẋ=Ax + bu

=Ax + bζT
i (t, τ)(I +WG(τ))−1Wξ(τ)

= fi(x, t, τ), t ∈ [τi−1, τi),
y= cx = g(x),

that is in the prescribed form.
In order to be able to apply the gradient-based optimization methods, we

need to obtain expressions for ∂L/∂x, ∂fi/∂x, and ∂fi/∂τk. If, as before,
we let L be given by (y(t)− h(t))2, we get for i = 1, . . . , N + 1

∂fi

∂x
=A,

∂L

∂x
=2c(cx(t) − h(t)),

∂fi

∂τk
= b�(t)T (I +WG)−1Wδξk + bδ�k(t)TW(I +WG)−1ξ

− b�(t)T (I +WG)−1W ∂G

∂τk
(I +WG)−1Wξ,

where

δξk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

∂h
∂t (τk)
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
← kth position
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δ�k(t)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

∂�k
∂τk

(t)
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
← kth position

∂�k

∂τk
(t)=

{
cAeA(τk−t)b if t ≤ τk,
0 otherwise,

∂G

∂τk
=
∫ tf

t0

(
�(s)δ�k(s)T + δ�k(s)�(s)T

)
ds.

Note that for this system (fk − fk+1)|t=τk
= 0, which simplifies the

derivative of the cost to

dJ

dτk
=
∫ tf

t0
λ

∂fi(t)

∂τk
dt.
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Figure 11.2 Movements of the sample times when creating smoothing splines for the under-
lying curve h(t) = sin(5t).
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Figure 11.3 Smoothing splines (solid) obtained at the first and the 40th iterations, together
with the underlying curve (dotted).
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1, . . . , 40.
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11.4.1 Example

In this paragraph we apply the node selection method to the system

A =

⎛
⎝ 0 1 0

0 0 1
0 0 0

⎞
⎠ , B =

⎛
⎝ 0

0
1

⎞
⎠ , C = (1, 0, 0),

which gives the standard quintic smoothing spline.
Results from applying the gradient descent method using the Armijo step-

size over 40 iterations is shown in Figures 11.2–11.4. In that example, the
underlying curve was given by h(t) = sin(5t), and four sample times where
selected with ωi = 1, i = 1, . . . , 4.

SUMMARY

In this chapter we presented a method where variational techniques were
employed to select optimal sample points for interpolation and smoothing
applications. This method, moreover, resulted in a numerically straightfor-
ward algorithm that was put to use in the context of generalized smoothing
splines. It produced results that go well beyond the previously known results
on Tschebyscheff polynomials.



EditedFinal September 23, 2009



EditedFinal September 23, 2009

Bibliography

[1] J. Ackermann. Robust Control. Springer-Verlag, London, 1993.

[2] M.B. Adams, A.S. Willsky, and B.C. Levy. Linear estimation of
boundary value stochastic processes. I. The role and construction of
complementary models. IEEE Transactions on Automatic Control,
29(9):803–811, 1984.

[3] M.B. Adams, A.S. Willsky, and B.C. Levy. Linear estimation of
boundary value stochastic processes. II. 1-D smoothing problems.
IEEE Transactions on Automatic Control, 29(9):811–821, 1984.

[4] N. Agwu. Optimal control of dynamic systems and its application to
spline approximation. Dissertation, Texas Tech University, 1996.

[5] N. Agwu and C. Martin. Optimal control of dynamic systems: Ap-
plication to spline approximations. Applied Mathematics and Com-
putation, 97:99–138, 1998.

[6] A. Ailon and R. Segev. Driving a linear constant system by piecewise
constant control. International Journal of Control, 47(3):815–825,
1988.

[7] C. Altafini. The De Casteljau algorithm on SE(3). In A. Isidori,
F. Lamnabhi-Lagarrigue, and W. Respondek, editors, Nonlinear Con-
trol in the Year 2000. Springer, New York, 2000.

[8] L. Armijo. Minimization of functions having Lipschitz continu-
ous first-partial derivatives. Pacific Journal of Mathematics, 16:1–3,
1966.

[9] A.R. Barron and C.H. Sheu. Approximation of density functions by
sequences of exponential families. Annals of Statistics, 19, 1991.

[10] A.E. Bryson and Y.C. Ho. Applied Optimal Control. Wiley, New
York, 1975.



EditedFinal September 23, 2009

206 BIBLIOGRAPHY

[11] G. Bunnett, P. Crouch, and F. Silva Leite. Spline elements on spheres.
In M. Daehlen, T. Lynch, and L. Schumaker, editors, Mathematical
Methods for Curves and Surfaces, pages 49–54. Vanderbilt Univer-
sity Press, Nashville, TN, 1995.

[12] G. Campion, G. Bastin, and B. D’Andréa-Novel. Structural proper-
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