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Preface 

Without knowing that both of us were there, the authors of this volume 
were random-walking on the streets of London in 1966 when, due to 
a theorem of Polya, they met. Obviously this occasion called for a beer 
and a chat about mathematics. The beer turned out to be good enough 
to suggest that we should work together, and the idea of writing this book 
was born then. We are deeply indebted to the inkeeper for his hospitality 
on this occasion. 

At that time we did not really know each other, though we had a common 
root in that both of us were students of Alfred Renyi. The first named 
author actually studied mathematics at McGill University in Montreal 
and never took any courses from him. It was the papers and book of 
Renyi at that time, however, which influenced him most, and moulded 
his interest in doing research in probability-statistics. This also led to 
meeting him several times personally, thus directly benefiting from his most 
stimulating and unique way of thinking about mathematics. The second 
named author was a student of Renyi, indeed taking his courses in Budapest, 
and learning the secrets of doing research in probability directly from him. 
Renyi's great enthusiasm for the beauty of doing mathematics has inspired 
him to also try his hands at it. Both of us are deeply convinced that, without 
his lasting influence and help while we were young, we could have never 
written this book. 

Our real collaboration began in 1972. During these past years we were 
fortunate enough to be able to visit each other several times, working in 
Ottawa where M. Csorgo is located and in Budapest where P. Revesz is. 
This intensive collaboration would have been impossible without the under-
standing and support of our respective home institutions, the Department 
of Mathematics at Carleton University and the Mathematical Institute of 
the Hungarian Academy of Sciences. 
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Generous financial support was received in Canada: National Research 
Council Operating Grants throughout these years, Canada Council Leave 
Fellowship (1976-1977), The Carleton University Norman Paterson Centre 
(1976-1977, 1979), Canada Council Killam Senior Research Scholarship 
(1978-1980) and in Hungary: The Bolyai Janos Mathematical Society 
throughout these years, the Institute of Cultural Relations (1976-1977). 
We are deeply indebted to all these institutions and can only say that 
without their support our work together could have never taken place. 

In various stages of development, preprints of the different chapters of 
this book have been distributed to a number of prominent mathematicians 
who have commented on a large number of topics involved. Many of their 
valuable remarks were incorporated in the final version. We express our 
best thanks to all of them, and we especially appreciate the help of M. D. 
Burke (University of Calgary), A. H. C. Chan (Ontario Hydro), S. Csorgo 
(University of Szeged), I. A. Ibragimov (University of Leningrad) and 
R. J. Tomkins (University of Regina). 

The thankless task of reading the semi-final version of all the chapters 
fell to the referees of our book, I. Berkes (Mathematical Institute of the 
Hungarian Academy of Sciences) and K. Tandori (University of Szeged). 
Their expert, inquisitive reading of our manuscript in a very short time, 
resulted in their listing a large number of misprints, oversights and mistakes 
in our text. We are more than grateful to them and our sincere thanks 
are recorded here with much appreciation. We also express our gratitude 
to Mrs. Gill S. Murray of Ottawa for her expert and patient typing of 
the many versions of our manuscript. Similar thanks are due to the 
Hungarian printers of our book. 

While trying to correct all the mistakes of our manuscript which we have 
noticed and/or had been pointed out to us, we must have also left a few in and 
introduced some further ones. We should be very happy to learn of any 
found by the reader together with whatever his or her comments might be. 

Ottawa, October 13, 1979 

M. CsiSrgS P. Revesz 
Department of Mathematics Mathematical Institute of the 
Carleton University Hungarian Academy of Sciences 
Colonel By Drive H-1053 Budapest 
Ottawa Realtanoda u. 13-15 
Canada Hungary 



Introduction 

Let Xl9X29... be i.i.d.r.v. with EX^O, EX*=l and let F be their 
distribution function. Let Yl9 Y2, ... be i.i.d. normal r.v. with mean zero 

and variance one (^€^(0,1)) and put Sn= 2 xu Tn= 2 Yt w i t h 

50=77
0=0. The classical central limit theorem states 

(0.1) P{n~1l2Sn^y} + Hy) = Y= f e~u2/2du 

for any real y as n-+°o. Since 

P{n-v*Tn^y} = Hy) (n = l,2,...), 

the central limit theorem can also be stated as follows: 

(0.2) P{n-V*Sn ^ y}-P{n-v*Tn ^ y} - 0, 

which, roughly speaking, means that the limiting behaviour of Sn and 
Tn is the same. In other words, as time goes on, Sn forgets about the 
distribution function F where it has come from. However, it is also true 
that observing the sequence S19 S2, ... (or, only Sn9 Sn+l9 ... from any 
fixed n on), one can determine F with probability one via the Glivenko-
Cantelli theorem. 

Thus one can say that each individual Sn forgets about F but the 
complete sequence {Sn; n=l9 2 ...} (or a tail of it) remembers F. One 
of the main goals of this book is to investigate to what extent can Sn re-
member F and to what extent can it forget about it. 

The first questions of this type were formulated by Erdos and Kac (1946) 
(cf. also Kac (1946)). They wanted to evaluate the limit distributions 

(i) GxGO = Jim P(n-1/2 max Sk * y)9 

(«) G2(y) = lim P ^ 2 max \Sk\ ̂  y)9 
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(iii) Gz{y) = lim P («-a Z Sg s y), 

(iv) G4(y) = lim P in-*'* J \Sk\ =§ y). 

Erdos and Kac realized that these limit distributions can be easily evalu-
ated for some special distributions F. For example (i) and (ii) can be 
immediately evaluated if F is the distribution P(XX = +1)—P{X1 = — 1)= 
=£, while for (iii) and (iv) the normal law turns out to be a good starting 
point. Hence a program for finding the limits (i)-(iv) may be carried 
out in two steps. First, they should be evaluated for any specific distri-
bution function F, and then one should show that the functionals of {Sn}9 

in any one of the cases (i)-(iv), do not remember the initially taken distri-
bution. 

Indeed, Erdos and Kac proved that the ability of Sn to forget is strong 
enough for the above program, that is, they proved that the limit distri-
butions (i)-(iv) exist and they do not depend on the initial distribution 
of Xx. They called this method of proof the invariance principle, and their 
paper has initiated a new methodology for proving limit laws in probability 
theory. 

The first step in this general development was taken by Donsker (1951). 
Donsker's idea was that from the partial sums S09 Sl9 ...9 Sn one should 
construct a sequence of stochastic processes {Sn(t); O^f^l} on C(0, 1) 
as follows: 

(0.3) Sm(f) = n-^{SM+XM+1(nt--[nt])}. 

Clearly £„! — I = £*///!, and Sn(t) is the linear interpolation of the latter 

k k+1 for — <*< . The advantage of the map (0.3) is that one can study 

n n the limiting behaviour of the sequence SjYn via that of Sn(t) on C(0,1). 
Indeed, using a multivariate version of the central limit theorem, one can 
immediately say that 

(0.4) (Su(tJ, Sn(t2)9 ..., Sn(tk))~^ {W{h)9 W(f& ...9W(Q) 

for any fixed sequence 0 ^ ^ < r 2 < . . . < r k ^ l as n+oo, where W(t) 
is a standard Wiener process. This would then suggest that the distri-



Introduction 13 

butional properties of {Sn(t); O^t^l} should coincide1 with those of 
{W(t); O^t^l} as n^oo. One possible way of saying this precisely is: 

Theorem 0.1. (Donsker 1951). We have 

(0.5) MS„(0)— h(W(t)) 

for every continuous functional h: C(0, l)-*!?1. 

We note here that (0.4) only suggests that (0.5) should also be true and 
a precise proof of it was not at all easy to produce. Indeed, if {Xn(t)}^L0 

is a sequence of stochastic processes taking values from a function space 
M endowed with a metric Q, and 

(0.6) (Zn(0, XM, ..., Xn(tk)) -!* (JTofo), X0(ti, ..., X0(tk)) 

for any fixed sequence f!<f2 <...<**, then the statement that 

(0.7) h(Xn(t))-^h(X0(t)) 

should hold for every continuous functional h: M-+R1, is not necessarily 
true. A complete methodology for proving (0.7), assuming that (0.6) is 
true, was worked out by Prohorov (1956) and Skorohod (1956). 

In fact they proved a stronger statement to the effect that, under some 
conditions, the sequence of probability measures generated by {X„(t)} 
converges (in the so-called weak topology) to the measure generated by 
X0(t). An excellent summary and further development of these ideas 
and techniques can be found in the books of Billingsley (1968) and Partha-
sarathy (1967). 

Replacing the functional h in Theorem 0.1 by . 

h1(f)= sup/(0, *,(/) = sup |/(0l, 

hif) = fPit) dt, hi(f)=f 1/(01 it, 
0 0 

and taking into account that these functionals are continuous with respect 
to the topology of C(0, 1), Theorem 0.1, in particular, also implies that 

1 In this connection we should also mention that Kolmogorov (1931, 1933a) and 
Khinchine (1933) investigated the problem of evaluating the asymptotic probability of the 
event fi(t)^Sn(t)^f2(t) for two functions / i ( / ) < 0 < / , ( 0 , and proved that under 
some conditions on these functions the latter probability is equal to P{A(/)< W(t)^ 
^/a(0}- Their approach is based on the heat equation. 
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Gi(x) (7=1, 2, 3, 4) of (i)-(iv) do not depend on F. That is to say the 
invariance principle of Erdos and Kac follows from Donsker's theorem 
and, at the same time, the latter can also be applied for any other con-
tinuous functional. 

After the development of the theory of weak convergence of probability 
measures on metric spaces, a completely new form of the invariance principle 
was introduced by Strassen (1964). He proposed to construct a Wiener 
process W(t) on the very same probability space where the r.v. {X(} 
live in such a way that \Sn— W(ri)\ would be small in the sense that the 
relation 

(o.8) J^OOL^ 0 

should hold for a suitably increasing function g. In fact the possibility 
of such a construction depends not only on the distribution F but also 
on the structure of the basic space. Hence the question in a more adequate 
form is the following: 

Given a distribution function F with JxdF=0, Jx2dF=l9 can we 
construct a probability space {O, s/, F}9 a sequence {Xt} of i.i.d.r.v. 
with P(X1^y) = F(y) living on Q, and a Wiener process W(f) also 
defined on Q, such that (0.8) should hold? 

Answering this question Strassen (1964) proved the following 

Theorem 0.2. 
\Sn-W(n)\ a., A 

(0.9) . 
ynloglogn 

That is to say for any F with JxdF=0, fx2dF=l, one can construct 
a probability space where the i.i.d. sequence {Xt} and a Wiener process 
W(t) can be realized such that (0.9) holds. 

In order to get a form of Theorem 0.2 resembling that of Theorem 0.1, 
we give the following reformulation of the former. 

* Theorem 0.2 

(0.9*) sup 
osstsii ^loglogn 

Comparing Theorems 0.1 and 0.2 (or 0.2*), a great advantage of the 
latter is that is speaks about almost sure convergence instead of convergence 
in distribution. 
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Strassen used his strong invariance principle (Theorem 0.2) to prove 
the law of iterated logarithm for i.i.d.r.v. with finite second moment (the 
Hartman-Wintner theorem (1941)) via first proving such a theorem for the 

(n-1/2W(nt) ^ 1 
Wiener process. In fact studying the sequence { , = ; 0 ^ f ^ l > 

1̂ 2 log logn J 
of stochastic processes, Strassen also obtained a deeper insight into the 

f Sn(t) 1 
properties of the sequence < , = ; 0 ^ f ^ l > (cf. Theorem 1.3.2). 

In this spirit then Theorem 0.2 is like Theorem 0.1, the latter being 
applicable to prove weak convergence theorems for i.i.d.r.v. using distri-
butional properties of the Wiener process, while the former is useful for 
proving strong theorems via similar properties of the Wiener process. 

Theorem 0.2, however, does not imply Theorem 0.1, and this is because 
the rate of convergence in (0.9) is not strong enough. Should one be able 
to prove (0.8) with g(n)=o(nl/2), then clearly we could also get (0.5) as 
a consequence of such a strong invariance principle. Chapter 2 of this 
book is mainly devoted to the question of the best possible rate in (0.8). 

The precise connection between weak and strong invariance principles 
was established by Strassen (1965a) (cf. also Dudley (1968) and Wichura 
(1970)) via the so-called Prohorov distance of probability measures. In fact 
these results state a kind of equivalence between these two forms of in-
variance. 

Our book is mainly devoted to the overall question of strong invariance 
theorems. 

Our reason for concentrating on strong invariance methodology (instead 
of the weak one) can, perhaps, be justified by the fact that this approach 
has developed so much in recent years that it was capable of producing 
a number of results in probability and statistics which, in spite of the above 
mentioned equivalence of the two principles, would have been quite diflBcult 
to produce by the usual weak convergence methodology. 

When talking about the origin of the invariance principle, another, 
independent source should be also mentioned besides the 1946 paper of 
Erdos and Kac. It is the paper of Doob (1949), entitled "Heuristic approach 
to the Kolmogorov-Smirnov theorems". The idea of this paper is the 
following: Let Ul9 U2,... be a sequence of i.i.d.r.v., coming from the 
uniform U(0, 1) law. Let 

k=l 
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be the empirical distribution function, and let 

a.(x) = tW{E.(x)-x) 

be the empirical process. Observe that the limit of the joint distribution 
of an(Xi), <xn(x2), ...,a„(xfc) (0^x 1 <x 2 < . . .<x k ^ l ; fc=l,2, ...) is the 
corresponding finite dimensional distribution of a Brownian bridge; that 
is to say 

(0.10) {<*„(*!), oa**), ..., ccn(xk)}—-+ {B(Xl), B(x2\ ..., B{xk)} 

as n—oo, where B(x) is a Brownian bridge. This then suggests that the 
limit properties of the empirical process ocn(x) should agree with the 
corresponding properties of a Brownian bridge. For example, the limit 
distribution of sup <xn(x) (resp. sup |an(x)|) should agree with the distri-
bution of supi?(;c) (resp. sup 2*|(x)|). Since the direct evaluation of the 
limit distribution of sup ctn(x) (resp. sup |an(x)|) is rather complicated, 
while the evaluation of the distribution of supi?(x) (resp. sup |2?(x)|) 
is easier, the above sketched approach is obviously useful. Indeed, besides 
posing the above invariance argument, Doob (1949) proceeded to evaluate 
the distribution of these latter functionals of B(x\ leaving the problem 
of justification of his approach open. Donsker (1952) was the first one again 
who attacked this latter problem and succeeded in justifying and extending 
Doob's heuristic approach. 

Comparing this problem to that of Theorem 0.1, we can see that a 
difficulty is coming from the fact that the sample functions of ct.n(x) do not 
belong to C(0,1). This difficulty was again solved by Prohorov (1956) 
and Skorohod (1956), while working on the so-called D(0,1) function 
space. Naturally, an analogue of Theorem 0.1 is also true for a continuous 
approximation of ccn(x) on C(0,1). 

In the light of Strassen's strong invariance principle, it was only natural 
to look for analogous approximations also for the empirical process un{x). 
This task turned out to be quite difficult and it took a bit of time to get 
results. The first one of them is due to Brillinger (1969), and reads as 
follows: 

Theorem 0.3. Given independent 1/(0, 1) r.v. Ul9U29.-.9 there exists 
a probability space with sequences of Brownian bridges {Bn(x); O^x^l} 
and empirical processes {oin(x); O^x^ l} such that 

(0.11) {Stn(x); O ^ x ^ i l } ={<*„(*); O ^ J C ^ I } for each n = l ,2 , . . . , 
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and 

(0.12) sup !*.(*)-B„(x)\ = 0(n-^4(log nfQoglogn)1'4), 

This theorem immediately implies the above mentioned analogue of 
Theorem 0.1. Namely, in terms of weak convergence, we have 

(0.13) a „ ( . ) — * ( • ) • 

On the other hand, in spite of the indicated a.s. convergence in (0.12), 
Theorem 0.3 is not really a strong approximation theorem like Theorem 0.2 
is. The reason for this is that in (0.12) we only have an approximation 
for each n, and only for a version un(x) of ccn(x). More precisely then, 
while Theorem 0.3 is a good first step in the right direction, it does not 
succeed in bringing together the stochastic processes {ocn(x); O^x^ l , 
w=l,2, ...) and {Bn(x); O^x^ l , TZ=1,2, . . .}. Consequently, no strong 
law type behaviour of the process a„(x), say like the law of iterated loga-
rithm, can be deduced from (0.12). 

Kiefer (1969b) was the first one to call attention to the desirability of 
viewing the empirical process ocn(x) as a two parameter process and that 
a strong approximation theorem for ocn(x) should be given in terms of an 
appropriate two dimensional Gaussian process. He also succeeded in giving 
a first solution to this problem (Kiefer 1972; cf. Theorem 4.3.1). Preceding 
this work, Muller (1970) proved a corresponding two dimensional weak 
convergence of a„(x), using Renyi's (1953) exponential representation of 
the empirical process. 

In the present book we intend to summarize and elaborate on a number 
of recent strong invariance type results for partial sums and empirical 
processes of i.i.d.r.v., putting an emphasis on the applicability of strong 
approximation methodology to a variety of problems in probability and 
statistics. This is why, in the title, we use the expression "strong approxi-
mations" instead of "strong invariance principles". 

In Chapter 1 we study the Wiener process together with some further 
Gaussian processes derived from it. In fact, in this Chapter we have intended 
to collect mostly those theorems for Gaussian processes which can be 
extended to partial sums and empirical processes of i.i.d.r.v. via strong 
approximation methods. 

Chapter 2 is addressed to the problem of best possible strong approxima-
tions of partial sums of i.i.d.r.v. by a Wiener process, and it contains those 
theorems which tell us a complete story of this problem. 
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The content of Chapter 3 can be summarized in one sentence: Take 
"almost" any theorem of Chapter 1 concerning the one-time parameter 
Wiener process, then it can be extended to partial sums of i.i.d.r.v. via the 
results of Chapter 2. In most of the cases when the approximation methods 
do not work we can also conclude that the corresponding results cannot be 
extended at all. This Chapter does not intend to give a full systematic 
treatment of the asymptotic behaviour of partial sum processes and we 
concentrate only on those properties which can be deduced from invariance 
principles. For a detailed discussion of sums of random variables we refer 
to Petrov (1975) and Stout (1974). 

Chapter 4 contains strong approximation theorems (in terms of suitable 
Gaussian processes) for the empirical and quantile processes based on 
i.i.d.r.v. 

The role of Chapter 5 in the theory of empirical and quantile processes 
is similar to that of Chapter 3 in the theory of partial sums of i.i.d.r.v. 
Namely, in this Chapter we show that by applying the results of Chapter 4, 
the theorems of Chapter 1 concerning Brownian bridges and the so-called 
Kiefer process are also valid for empirical and quantile processes. This 
phenomenon of inheriting properties from appropriate Gaussian processes 
is not so complete here as in the case of partial sums of i.i.d.r.v. and, to 
some extent, we also touch upon the problem of similar and non-similar 
behaviour beyond invariance (cf. Remark 5.1.1). For a recent and more 
detailed discussion of this topic we refer to the survey paper of Gaenssler 
and Stute (1979). 

In Chapter 6 we show that suitably defined sequences of empirical 
density, regression and characteristic functions can be approximated by 
appropriate Gaussian processes. Here it will be seen that some results 
on Gaussian processes can be extended also to these by strong approxima-
tion methods. 

The aim of Chapter 7 is to demonstrate that strong approximation 
methodology can also be applied to study weak and strong convergence 
properties of random size partial sum and empirical processes. 

A common property of Chapters 3, 5, 6 and 7 is that their respective 
topics are treated only so far as one can see them via strong approximation 
methods, and we did not aim at completeness at all in treating them. 

The subject of this book is restricted to i.i.d.r.v. when the time and state 
parameters belong to the real line. There is an exception in Chapter 1, 
when we also study certain properties of two-time parameter Wiener and 
Kiefer processes. Our reason for this is due to the fact that certain properties 



Introduction 19 

of the empirical process onn{x) can only be described and handled via 
viewing it as a two-time parameter process in x and n. 

We intend to study the problems of strong approximation of multi-time 
parameter partial sum and empirical processes by appropriate multi-time 
parameter Gaussian processes in the second volume of this book. 

The case when the state space is also a higher dimensional Euclidean 
space (or a Banach space) has been investigated by several authors (cf. e.g. 
J. Kuelbs 1973, J. Hoffman-Jorgensen-G. Pisier 1976, Garling 1976) and 
it should be the subject of a third volume. The subject of a fourth volume 
should be the case of non-independent and/or non-identically distributed 
r.v. (for a preliminary version we refer to W. Philipp and W. Stout (1975), 
an excellent survey of the present situation of this topic). However, the 
authors have realized that the lifetime of a human being is not only a 
one-dimensional but also a strictly bounded r.v. Hence, they do not 
intend to write the mentioned third and fourth volumes, though they 
would be glad to live long enough to read these by someone else. 



1. Wiener and some Related Gaussian Processes 

1.0. On the notion of a Wiener process 

The English botanist Brown observed in 1826 that microscopic particles 
suspended in a liquid are subject to continual molecular impacts and 
execute zigzag movements (Brownian motion). Einstein found (1905) that 
these movements can be analysed by laws of probability. One of the simplest 
models for a one dimensional Brownian motion can be given in terms of 
the coin tossing or random walk model. Suppose that a particle is moving 
on the real line, starting from the origin. In each time unit it can only 
move one step to the right, or to the left, with probability one half, and 
these steps are assumed to be independent. Say the fth step of the particle 
is Xt; then Xl9X2, ... are i.i.d.r.v. with 

(1.0.1) P(*i= + l) = P&i = -1 ) = 1/2, 

and after n steps the particle will be located at S ,
n=Z1+Ar

2+...+^r
n. 

The thus created path Sl9 S2, ... imitates Brownian motion quite well 
if the time unit and steps are short enough. 

In a more realistic model of a Brownian motion the particle makes 
instantaneous steps to the right or to the left, that is a continuous time scale 
is used instead of a discrete one, and the lengths Xt of steps are normally 
distributed instead of the distribution (1.0.1). In the next section the defini-
tion of a Wiener process takes into account the just sketched definition of 
a Brownian motion. 

1.1. Definition and existence of a Wiener process 

A stochastic process {W(t; co)=W(t); 0^f<oo}5 where CD£Q, and 
{Q, sf9 P} is a probability space, is called a Wiener process if 

(i) W(t)-W(s)e^\09t-s) for all 0^.y<f<oo and ^(0)=0, 
(ii) W{t) is an independent increment process, that is W(t2)— W(t^)9 
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W(tJ-W(tJ9 ..., Wit^-W{t2i^ are independent r.v. for all 0 ^ ^ < 
<r2^r3<f4^. . .^r2 M</2 l .<oo (/=2, 3,...), 

(iii) the sample path function W(t, at) is continuous in t with proba-
bility one. 

We note that (i) and (ii) imply that the covariance function of a Wiener 
process is 

R(s,t) = EW(s)W(t) = sAt. 

Remark 1.1.1. Conversely, a Gaussian process having the latter co-
variance function must also satisfy properties (i) and (ii), that is to say, 
a continuous or at least separable Gaussian process with the above covariance 
function is a Wiener process. 

The aim of this section is to give a constructive proof for the existence 
of this process. Towards this end, let {/•„} be the sequence of positive 
dyadic rational numbers (i.e., numbers of the form k/2n, fc=l, 3, ..., 
«= 1,2, ...) and let {XFn} be independent Jf (0, 1) r.v. defined on a proba-
bility space {Q, «*/, P}. On this probability space we construct a Wiener 
process as follows: 

For any positive integer k, let 

W(h) = X1+X2+... + Xk 
and 

2 j/4 

Now we wish to define W(k/2n) for fc=l, 3, ... and « = 1, 2, ... . Assume 
that it is already defined for A: =1,2, ... and « = 1,2, ...,n0. Then, for 
&=1,2, ... and n=n0+l, let 

(2k+l\ \2nr \ 2" ) . Xiik+1)2-n ■m-W\-^—\ = r + - fF +1 

Whence, by induction, we have defined our Wiener process at every dyadic 

rational point rn. For an arbitrary 0 < ^ = 2 ' - ^ ~ (e0(0=0,1,2,...; 

ek(t)=0, 1; A:=1,2, ... andefc(0 should not be identically I from some 
k on) we define 

W(t) = lim ^([2^]/2n) = lim W(tn) 

W(e0(t))+ lim 2 (W^-Wit^)), 
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with tn~ 2^X0/2 - The existence of the above limit follows immediately 

from Kolmogorov's Three Series Theorem for every fixed f >0. However, 
the exceptional set of probability zero, where this latter a.s.-convergence 
might not hold, can depend on the particular fixed t. This, however, 
presents no problems, because there exists a set Q0aQ of probability 

zero such that the series 2 {W(tk) — W(tk-$) converges for every t when-

ever co£ Q — Q0. In fact, we are going to prove the stronger statement that 
the above limit representation of W(t) holds uniformly in t with proba-
bility one. In order to see this, it suffices to show 

2 sup \W(fd-W(tk-J\^~ a.s., 
fc=l0srsl 

which, in turn, is simplied by the well known estimation (cf. Feller 1968, 
p. 175) 

<"■» wtir-z)^*1-™*^ x 

as follows. First, we have 

Plsup \W(tk)-W(tk^\^uk^^2Ke-^\ 

where K=2k and uk = cy 2 log K9 C=const>l . Consequently, with 

L = C 
2* 

p\i sup \W{tk)-W{tk^\ ^ d} =S i 

-*0 as C-^oo, 

2*(c«-i) 

2 
2C2-1-1 

gives the desired a.s. convergence. 
A little calculation now shows that the thus defined process {W{t)\ 

0^/<oo} satisfies conditions (i) and (ii). Condition (iii), however, is not 
immediate at all. The rest of this section is devoted to proving and 
further elaborating on condition (iii) for the above constructed process 
{W(t)\ O^f^oo}. The following lemma plays a key role in doing this. 
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Lemma 1.1.1. For any e>0 there exists a constant C=C(e)>0 such that 
the inequality 

c —sL 
(1.1.2) P{ sup sup \W{s + t)-W(s)\^v}/h}^e 2+e 

holds for every positive v and h < 1. 

Proof Using again the above notation, for a positive real number s and 

integer r, let 5-r=[2r^]/2r= 2ej(s)/2j. Also write P=2r . Clearly, for each 
j = o 

cw£& and s, t, r fixed, we have 

+ \W(sr)-W(s)\ ^ |^((s + /)r)-PF(sr)| 

+ i|^(c*+a+i+i)-^((*+a+y)| 

J = 0 

Since sup |(<j+Or-^N* + ^"1» SUP \(s + t)r+j+1-(s + t)r+jU2-^+j+1) 

and ^((.y+Or)— W(s^£rf(p9 (s+t)r—sr), for any positive h, w, Xy and 
integers r,j we have 

P{ sup sup \W((s + t)r)-W(sr)\ ^ u j//i + l/P} 

S 2e-u*l2R(Rh + l), 

P\ sup sup \W((s+t)r+j+1)-W((s+t)r+})\ ^Xj i / - L T | 

^ 2e"*"/a2r+^+1, 
and similarly 

pf sup sup | ^ (5 r + i + 0 -^ ( s r + y ) l^^ -7==7=- l 

^ 2e-x*l22r+j+\ 
Whence 

(1.1.3) p ( sup sup iy(s + 0 - ^ ( s ) l ^ t t y f t + l / * + 2 j J L . ) 

^ 2P(i?ft + l)^-"2/2 +8P J 2^-x?/2. 
j = 0 
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Put Xj = Y2j+u* and R such that 2R>K/h^R, where K is a positive 
constant and will be specified later on. Then 

SR 2 2je~x> ^ ^ 2 (2/eye-»2'* = - ^ e~^\ 

where 

^ = 8 J(2/«y 

and 

where 

* = J l / 5 and G= j?-L. 

Letting now v=u[\/l+2/K+2GfljK} + 2BfljK we get by (1.1.3) that 

P{ sup sup \W(s+t)-W(s)\ S ylb} 
ossai-fc o<ts* 

where the last inequality follows from the inequality 

v-2Bfl/K v 
u = yi+l/K+lGYl/K Yl+e/2 ' 

which, in turn, is true for all v^l and any given s>0 upon taking K large 
enough. This proves our lemma with v^l, while it is trivially true for 
v£(0, 1), since, in the latter case, the right hand side of (1.1.2) is larger 
than one for C big enough. 

With the help of our Lemma 1.1.1 we can also prove now that the above 
constructed {W(t);0^t<°°} is continuous in t with probability one, 
that is condition (iii) is also satisfied. This will immediately follow from 
the next theorem, which also gives more, namely the modulus of continuity 
of the Wiener process. 
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Theorem 1.1.1 (P. Levy 1937, 1948). We have 

sup sup \W(s+t)-W(s)\ 
(1.1.4) 

and 

(1.1.5) 

Proof. Let 

(1.1.6) 

First we prove 

(1.1.7) 

lim 
O^s^l—h 0<r^h 

ilh log \\h 

lim 
h-+0 

sup |PT(s+ft)-)^(s)| 

yih log i//i 
i. 

^, ,= sup sup | ^ ( s + 0 - ^ ( s ) | . 
ossai-fto-crsfc 

^* Em- , 
*-° Ylhlogl/h 

1 a.s. 

We apply the inequality of (1.1.2) with v=(l+e)f2log l/h, s 

1+8}4 | 2(log{)(l+e)^ 
exp — ll/2/ilogl/A 

Take T^l/s and let h=hn=n~T. Then 

4 t 

2+e 

2p\f
 Ahn = ̂ l+fiU i 

»=1 ll/2/U0gl//2„ i »-l ,logl//in 

and the Borel-Cantelli lemma implies that 

A 

Cn Te 

lim ^ 1-fs a.s. 
— ]/2hnlogl/hn 

Let us take hn+1<h<hn. Then, for each co£Q, we have 

Em- Em A h» 

*-° yihiogi/h — m^jogijh~^ 

Ahn Y2hn\ogl/hn = Hm . , 
*~-l2hn\ogllhn ]/2hn+1logl/hn+1 

for all e>0, and whence we have (1.1.7). 
Next we show 

( U 8 ) i:„ „ » W(s + h)-W(8)\ 

^ 1+e, a.s., 

lim sup : — ^ 1 a.s. 
h-+o o^s^i-h \2h log l/h 

Then
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We have by (1.1.1) 

1 1 

Consequently, by property (ii) 

(-) j/{osJr(^i)--(!)h<i-£>l/I¥1} 

Also, for almost all cu£ fi 

\W(s+\ln)-W(s)\ 
(1.1.10) hm sup ' — ^ = = L 4 = ^ 

n 

lim sup I \ n ) \n)\ 
]/2(l/n)logn 

by (1.1.9). 
Considering now hB+1<h<hn with h„=l/n, we get 

lim sup l ^ * ) - * ™ 
*-*o o^s^i-/i j/2/* log 1/ft 

^ hm sup — = = = = 
" ^ - o ^ ^ - ^ |/2—p^-logCn + 1) j/2-i-logn 

~ - | f f (s+0-^(s) l 
— hm sup sup -—v ^ i 

" ' "°* '* 1 -^I°* '*^Ti) p i log n 

where the latter r.v. is ~ o(l) by (1.1.7), and the first one is a.s 
by (1.1.10). Hence we get (1.1.8). 

27 
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Remark 1.1.2. The following trivial generalizations of Theorem 1.1.1 are 
easily obtained: 

sup sup (W(s+t)-W(s)) 
y a^s^b 0<f^/i 
*-o (2Mogl/fc)1/2 

sup sup \W(s+t)-W(s)\ 

= i™ (2Mogl/fc)1/2 

^ l i m f l - s - 6 
sup (W(s+h)-W(s)) 

h-»o (2/ i logl / / i ) 1 / 2 

sup \W(s + h)-W(s)\ 
Slim-a- s- f t 

*-o (Ihlogl/h)1'2 ~ 

for any 0^<Z<ZK°O. 

In fact, in the above relations the statements with two sups can be 
obtained directly from the corresponding statements with one sup. For 
example, (1.1.4) can be obtained as a consequence of (1.1.5). In order 
to see this, it is enough to prove that (1.1.5) implies 

(1.1.11) E ^ T ^ T i — r n ^ m - 1 a-s-> v  (2h log l//i) ' 

where Ah is defined by (1.1.6). Moreover, the following stronger statement 
is also true: 
/ i i i - r— \W(s + t)-W{s)\ t 

(1.1.12) IIS sup sup \ 1 o g 1 / / W 2 ^ 1 a-s-

By (1.1.5) for all e>0 and for almost all a>£Q there exists an 
h0=hQ(cD,s)>0 such that 

\W(s+Xl (o)-W(s\ co)\ ^ (l+6)(2Zlogl/x)1/2 

for all O^s^l , and for all 0<x^A0; that is to say 

oMi- f to^k (2xlogl/#/ 2 

provided /* ̂  /*0. This clearly implies (1.1.12) which, in turn, implies (1.1.11). 
Throughout this Chapter we will several times formulate similar state-

ments with two sups and with one sup. The above sketched idea, which is 
saying that a statement with two sups follows from the corresponding 
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statement with one sup, can be applied also in those cases. Our only reason 
for spelling out also statements with two sups is the fact that the proofs 
of these are generally simpler if we already have the inequality (1.1.2). We 
emphasize however that the inequality (1.1.2) itself does not follow from 
the corresponding inequality with one sup (cf. also Supplementary Remarks 
to Section 1.1). 

1.2. How big are the increments of a Wiener process? 

In Theorem 1.1.1 we saw how large the increments of a Wiener process 
over subintervals of length h of the unit interval can be when h is small. 
In this section we are going to study the similar problem of how large the 
increments of a Wiener process over subintervals of length aT of the 
interval [0, T] can be when T-+ oo and aT is a non-decreasing function 
of T. These two problems are closely related to each other and can be 
studied from the same source of information, namely from Lemma 1.1.1. 
Towards this end we first extend the statement of the latter from the unit 
interval to any finite interval of the positive half-line (Lemma 1.2.1). From 
this latter lemma the main result (Theorem 1.2.1) of this section will follow 
just like Theorem 1.1.1 did from Lemma 1.1.1. This then shows that 
Theorems 1.1.1 and 1.2.1 are closely linked. They do not seem to follow 
directly from each other though (cf., however, Supplementary Remarks, 
Section 1.2). 

The above mentioned immediate analogue of Lemma 1.1.1 is 

Lemma 1.2.1. For any e > 0 there exists a constant C=C(e)>0 such that 
the inequality 

fT Hl_ 
(1.2.1) P{ sup sup \W(s + t)-W(s)\^vfh}^^--e 2+* 

holds for every positive v, T and 0<h<T. 

Proof. This lemma follows from (1.1.1) and from the following 

Observation. For any fixed T > 0 we have 
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Theorem 1.2.1 (Csorgo, Revesz 1979b). Let aT (7^0) be a monotonically 
non-decreasing function of T for which 

(i) 0<ar^T, 
(ii) T/aT is monotonically non-decreasing. 
Then 

(1.2.2) Em sup PT\W(t+aT)-W(t)\ = l9 

(1.2.3) Em pT\W(T+aT)-W(T)\ 

» fim sup pT\W(T+s)-W(T)\ = l 

and 

(1.2.4) Em sup sup pT\W(t+s)-W(t)\= 1, 

j8T = \2aT [log —+loglogrJJ . 

If we have also 
(iii) Km (logT/aT)(loglogT)"1 = » , 

r-̂ o 

(1.2.5) lim sup PT\W(t+aT)-W(t)\ S 1 

(1.2.6) lim sup sup pT\W(t+s)-W(f)\ = l. 

Remark 1.2.1. The proof of this theorem will show that statements 
(1.2.2)-(1.2.6) remain true if any one, two or all of T9 t and s are running 
over all the integers, or if we omit the absolute value signs in these statements. 
Also, because of the symmetry of W, if we replace the lim sup by lim inf 
and sup by inf in (1.2.2)—(1.2.6), then the above results will be true with 
— 1 instead of +1 , when also omitting the absolute value signs. For example 

(1.2.2*) lim inf pT(jy(t+aT)-W(t)) = -l 

if conditions (i)-(ii) hold true and 

(1.2.5*) lim inf pT(W(f+aT)-W(f))S±-l 

if conditions (i)-(iii) hold true. 

and 

where

then
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Choosing aT as c log T, cT and 1 respectively, the following corollaries 
are immediate. 

Corollary 1.2.1. For any c > 0 we have 

(1.2.7) lim sup 
F— oo O^t^T-clogT 

\W(t + c\QgT)-W(t)\ ^ l / T 

ciogr 

This latter statement is the Erdos-Renyi (1970) law of large numbers 
for the Wiener process (cf. also Theorem 2.4.3). 

Corollary 1.2.2. For 0 < c ^ l we have 

, 1 0 Q x r - \W(t+cT)-W(t)\ a.s. % 
(1.2.8) hm sup ' y = 1, 

r-co o^t^r-cT y2crioglog T 

(1.2.8*) Em sup sup ' , 1 .— \—=7^- = 1. 
r— O^T-CTO^SLT (2cTloglogT)1'2 

(1.2.8) and (1.2.8*) also follow from Strassen's law of iterated logarithm 
(1964). In Section 3 of this Chapter we will, however, follow the opposite 
road, proving Strassen's law via (1.2.8*). 

Corollary 1.2.3. We have 

(1.2.9) um sup l ^ ' + D - E W l a i . 
T-» oo osst ̂  r - i y 2 log T 

This is a well-known result which (when T and t run over the integers; 
cf. Remark 1.2.1) in terms of the order statistics Xln) (i = l, 2, ..., n) 
of « independent JV(0, 1) r.v. reads 

(1.2.10) Um /*" S i . 
"-00 K21og« 

Prao/ 0/ Theorem 1.2.1. The proof is formulated in three steps, which 
together will imply our statements. 

Step 1. Let 
A(T)= sup sup PT\W(t+s)-W(t)\. 

Suppose that conditions (i), (ii) of Theorem 1.2.1 are fulfilled. Then 

(1.2.11) I S ^ ( J T ) ^ 1 a.s. 
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Proof. By Lemma 1.2.1 we have for any e>0 

P(A(T) s yT+e) =S C-^-exp {-(1+e) [log-^+loglogr]} 

=cN' — 
KT) (logT)l+°-

Let Tk=& (0>1). Then 

fc=l 

for every e>0, 0>1. Hence by the Borel-Cantelli lemma 

(1.2.12) E m ^ T y s s l . 

We also have 
/?rk (1.2.13) 1 ̂  - ^ - ^ 0 

Prk+1 
if fc is big enough. 

Now choosing 9 near enough to one, (1.2.11) follows from (1.2.12) and 
(1.2.13), because P^XA{T) is non-decreasing and /?r is non-increasing in T 

Step 2. Let 
B(T) = PT\W(T)-W(T-aT)\. 

Suppose that the conditions (i), (ii) of Theorem 1.2.1 are fulfilled. Then 

(1.2.14)  B{T)^\. 

Proof. For any e>0, by (1.1.1), we have 

exp{-( l - £ ) 2 [ log—+loglogr]} 
(1.2.15) P ( B ( T ) S 1 - « ) S = r r 7 J T - ^ yf i^— 

iln |2|k>g-^+loglog7J] 

-\TlogT) 

if T is big enough. Let Tx=l and define Tk+1 by 

Tk+1-aTk+1 = Tk if e < l 
and 

Tk+1 = ek+i if e = i, 

file://-/TlogT
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where 0>1 and lim aT/T=Q. (We note that our conditions (i) and (ii) 
imply that aT is a continuous function of T and that T— aT is a strictly 
increasing function if #<1.) 

In case of £<1, (1.2.14) follows from the simple fact that 

AKTAOZTJ Jt=2\JJkl0gJJk> 

and that the r.v. B(Tk) (fc=l,2,...) are independent. 
In order to see the divergence of the above series, we have 

AI Tk log Tk) - A I i (log r^)1"8 ~ Gog Tnf~' & Tk ' 

and, because — log(l— x)^Ksx for all x€(0,1—5) and some Ks>0, 

logTn= l l o g ^ i - = _ i log( l - f^) S * 1 - ^ - . 

These two statements combined give the stated divergence. 
In case of Q = l,aT ^Tk+1 — Tk (if k is big enough), hence 

B(Tk+1) S PTkJW(Tk+1)-W(Tk)\ -/?Tfc+1 sup \W(v)-W(u)\. 

By Stepl, 

(1.2.16) Em pTk+1 sup |»T(I;)-»F(II)| ^ 20"1/2. 

We also have by (1.1.1) 

mk +j^+ 1)-^ra 
Now for any given a>0, choosing 6 big enough and applying the Borel-
Cantelli lemma we get 

(1.2.17) Em PTk+1\W(Tk+1)-W(Tk)\ ^ 1-8 a.s. 
K-*-oo 

Whence combining (1.2.17) and (1.2.16), and choosing again 0 big, we get 
(1.2.14). 

We note that Q = 1 if and only if aT = T, i.e., in this case (1.2.2) and 
(1.2.4) reduce to the well-known laws of the iterated logarithm. 

Step 3. Let 
C(T) = sup PTW(t+aT)-W(t)\. 

0^t^T-aT 

Suppose the conditions (i)-(iii) of Theorem 1.2.1 are fulfilled. Then 

(1.2.18) H m C ( r ) ^ l a.s. 
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Proof. Since the r.v. 

flT\W({k+\)aT)-W{kaT)\ (fc = 0, 1, 2, ..., [T/aT]-l) 

are independent, by (1.2.15) we have 

P{^km^_JT\W{{k+l)aT)-W{kaT)\ s l - a } 

By condition (iii) we have 

i -Hii^n-
and whence, so far, we have proved 

(1.2.19) Hm C(J) ^ lim max Pj\W((k + l)aj)-W(kaj)\ ^ 1 a.s. 

Considering now the case of in-between-times j^T<j+l, we j&rst 

observe that 0^aT—aj and that, by condition (ii), 0^aT—aj^-J-^ 5aj 

for any <5>0, if j^T^j+l and j is big enough. (The latter inequality 

is immediate, since - ~ ^ - 4 - by (ii), and so, via aT^aj —, we have aT—a^ 

— #/(— — 1 ] = -A) Whence, for j^T<j+l and y large, we have 

(1.2.20) C(T) ^ 0^max]_i / ? y + 1 | ^ + l ) ^ - ^ ( M 

- sup sup PT\W(t+s)-W(t)\. 
0^t^T—daT 0^s^8aT 

On the other hand, by Step 1 we have 

lim sup sup PT\W(t+s)-W(s)\ 

1/2 

( 2 ^ T ( l o g ^ - + l o g l o g r ) ) 

( 2a r ( l og -+ log log r J j 

This, by (1.2.20) and (1.2.19), also completes the proof of (1.2.18) upon 
observing also that Pj+JPj^l as j-*-», 
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Remark 1.2.2. It is possible to prove that in (1.2.2) and (1.2.4) the 
Em cannot be changed to a lim, if condition (iii) fails, that is to say in the 
latter case (1.2.5) and (1.2.6) cannot be true. In fact Deo (1977) has shown 
that 

(1.2.21) lim sup sup PT\W(t+s)-W(t)\<l a.s. 

as well as 

(1.2.22) lim sup PTW(t+aT)-W(t)\^l a.s., 

provided 
Em (log T/aT)(log log T)-1 < oo. 

T-+-oo 

This result suggests the following problem: find the normalizing factor 
ST=8T(aT) such that the left hand side r.v. of (1.2.21), resp. that of (1.2.22), 
should be equal to one almost surely, with 5T replacing fiT in them. 
A partial answer concerning (1.2.22) was given by Book and Shore (1978), 
who showed that 

lim sup pT\W(t+aT)-W(t)\2± - ^ - , 

provided lim log(7af x)/loglog T=r, O^r^oo. 
The similar question in connection with (1.2.21) was studied by Csaki 

and Revesz (1979), who proved that 

l S " 1 ^ lim sup sup 8T\JV(t+s)-W(t)\^46 a.s., 

where ST=(2aT log(l+—[raf^/loglog r))~1/2. The general question 

of finding the exact value of the above lim statement appears to be 

a difficult one. However, if one also has lim log (Ta^ 1)/log log log T=°°, 
T-+oo 

then the just mentioned lim is equal to one. 
The special case of aT = T of these questions was studied by Chung (1948) 

(cf. also Section 1.7) and Hirsch (1965) who evaluated the normalizing 
factor fiT resp. vT for which 

lim sup nTW(t)= Urn sup vT\W(t)\ = \. 

It should be emphasized that \iT and vT are very different, which is 
not the case when studying the Em instead of the Hm of these functional. 
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1.3. The law of iterated logarithm for the Wiener process 

Taking aT=T in (1.2.2) or, equivalently, c= l in (1.2.8) we get P. Levy's 
famous law of iterated logarithm: 

Theorem 1.3.1 (P. Levy 1937, 1948). 

\W(T)\ , s . , 
(1.3.1) Urn , 

r - ~ ^22" log log T 
In fact (1.2.4) with aT=T, also gives 

Theorem 1.3.1*. 

(1.3.2) I S sup W(t)l 

r~~ os«sr })2T log log T 

= fim sup \W(xT)\ 
T-+oo O S x ^ l " S i . 

j/2riogiogr 
Remark 1.3.1. Our Remark 1.2.1 is applicable here and says that (1.3.1) 

and (1.3.2) hold true if T and/or t run over the integers. It also says 
that if we replace Hm by Urn, sup by inf and omit the absolute value 
signs, the right-hand side of (1.3.1) and (1.3.2) will be —1. 

A more complete description of the behaviour of W(xT), O^x^ 1, T-+ <», 
was first given by Strassen. This section is devoted to proving his funda-
mental theorem. 

Let £f be the set of absolutely continuous functions (with respect to 
Lebesgue measure) such that 

I 
/(0) = 0 and f (f'(x)fdx^l. 

o 

The set $f is compact and this follows from the following (cf. also 
Supplementary Remarks, Section 1.3): 

Lemma 13.1 (Riesz, Sz.-Nagy 1955, p. 75). Let fbe a real valued function 
on [0, 1]. The following two conditions are equivalent: 

i 

(i) / is absolutely continuous and j (f')2dx^l, 

,Mhrtal (ii) 2~ -H7 —~l f°rany r = = 1 ' 2 ' 

and f is continuous on [0, 1]. 
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Define 
, , W(nx) Into = , 

\2n\og\ogn 

for x€[0, 1]. Then {tj„(x)} is a sequence of stochastic processes with 
sample paths almost surely in C(0, 1). In this setup Strassen's theorem is 

Theorem 13.2 (Strassen 1964). The sequence {rjn(x)} is relatively compact 
in C(0, 1) with probability one, and the set of its limit points is Sf. 

The meaning of this statement is that there exists an event Q0aQ of 
probability zero with the following two properties: 

(i) for any co$Q0 and any sequence of integers n1^n2^... there 
exist a subsequence nk =nk (co) and a function f££f such that 

r\n. (x; co) -+f(x) uniformly in x€[0, 1], 

(ii) for any feSf and co$Q0 there exists a sequence nk—nk(co9f) 
such that 

*lnk(x, co) -* / (*) uniformly in x6[0,1]. 

Remark 13.2. Since | / ( 1 ) | ^ 1 for any function f€£f9 and f(x)=x£SP, 
Theorem 1.3.2 implies Theorems 1.3.1 and 1.3.1*. 

The proof of Theorem 1.3.2 will be based on the following simple 

Lemma 13.2. Let d be a positive integer and al9 a2, ..., cnd be a sequence 
of real numbers for which 

Further let 

Sn = *JT(ji)+<^{2n)-WW 

Then 

(1.3.3) Bm Sn S 1 
w"*°° ]/2nloglogn 

and 
(1.3.3*) Tjm Sn S - l . 

n-oo y2nloglogn 
Proo/. In the first step we prove that 

file:///2n/og/ogn
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In order to do this, by (1.1.1) we observe that for any e>0 

(1.3.5) P\ . |5»l ^^l+e\^T. L ™ - , 
1 ]/2nloglogn J (logn)<1+e)s 

since S£JT(0,n). Set #*=[#*] (0>1). Then (1.3.5) implies 

(1.3.6) jfpf, |yftl=£l+4<»-

Applying Theorem 1.2.1 one gets 

lim max max 

^ lim sup sup -i-p^==b====^!- ^ yd(0 — 1), 
fc-^oo o^t^dNk o*s**dNk(e-i) \2Nk log log Nk 

and hence 

|s,-s*J (1.3.7) 115 sup J » w ^2dz<2y9-\. 
fc^co Nh^Nk + 1 \2Nkl0gl0gNk 

Choosing 9 near enough to 1 (1.3.6) and (1.3.7) imply (1.3.4). 
Now we turn to the second step and prove 

(1.3.8) ISn S* ^ 1 a.s. n-"°° y2nloglog« 

Put Nk=9k where, given 0 < s < l , we assume that 9 is an integer 
and 9>d/e. Put also 

Then 
E(S*)* = (<4+...+<4)Nk+oZ(Nk-dNk-J = Nk^\dNk^ 

Whence, by (1.1.1), 
£ * "I g-(l-c)2loglogtffc 

1^2^(1-e ) log log iVj J 2J^T log log iVk 
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which, in turn, implies by the Borel-Cantelli lemma that 

(1.3.9) IIS ^ ^ (1 -e)3/2. 
k-~i2Nk\og\ogNk 

Since s is arbitrarily small, (1.3.8) now follows from (1.3.1) and (1.3.9). 
In this way we have (1.3.3) and symmetry of W combined with the latter 
statement implies (1.3.3*). 

Now we introduce some notations. For any real valued function /£ C(0,1) 
and positive integer d, let / (d ) be the linear interpolation of / over the 
points i/d, that is 

Let 
Q = {/ ( d ) : /€C(0,l)}cC(0,l) , 

^ = {/(d):/e<n 
where S%c:Sf by Lemma 1.3.1. 

The statement of Lemma 1.3.2 easily implies: 

Proposition 13.1. The sequence {f]id\x)} is relatively compact in Cd with 
probability one, and the set of its limit points is £f&. 

Proof. By Theorem 1.3.1 and continuity of the Wiener process this 
Proposition holds when d=\. We prove it for d=2. For larger d the 
proof is similar and immediate. Let Zn=(J¥(ri), W(2n) — W{nj) (n = 1,2,...) 
and a, /? be real numbers such that j/a2+j82 = l. Then by Lemma 1.3.2 
and continuity of W the set of limit points of the sequence 

6) f>
z- _ \aW(n)+p(W(2n)-W(n]))~ 

=i 1 |/2nloglogn j w = = 1 [ j/2«loglogn J, 

is the interval [—1, +1]. This implies that the set of limit points of the 

sequence <--======== I is a subset of the unit circle and the boundary 
l ^ log log f l j y 

of the unit circle belongs to this limit set. 
Now let Z*=(W(n\ W(2n)-W(n\ W(3n)-W(2n)). In the same way 

as above one can prove that the set of limit points of \ , n = \ 
lj/2flloglog«J 
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is a subset of the unit sphere of Rz which contains the boundary of this 
sphere. This fact in itself already implies that the set of limit points of 

{ , , " =-} is the unit circle of JR2 and this, in turn, is equivalent 
/2nloglognJ 

to our statement. 
Proof of Theorem 13.2. For each co£Q we have 

sup \rjn(x)-4d\x)\^ sup sup |i?„(*+5)-!jn(*)|,-

hence, by Corollary 1.2.2, we get 

155 sup \rin(x)-r}jt
d)(x)\ ^ d~1/2, a.s. 

Consequently we have the theorem by Lemma 1.3.1 and Proposition 1.3.1, 
where we also use the fact that Lemma 1.3.1 guarantees that Sf is closed. 

The discreteness of n is inessential in Theorem 1.3.2 and, if we define 

we have 

ihfr) = J ^ $ ^ , *€R>,1], 
y2*iogiog* 

Theorem 1.3.2* (Strassen 1964). The net rjt(x) is relatively compact in 
C(0, 1) with probability one, and the set of its limit points is £f. 

We should also mention another version of the law of iterated logarithm 

Theorem 1.3.3 (P. Levy 1937, 1948). 

(1.3.10) 1™ ,„ , , ==- = hm sup T 7 = = = = r " = L 
v } <-° ]/2t log log \\t M O < 4 y 2s log log 1/̂  

This theorem is an immediate consequence of Theorem 1.3.1 and the 
following 

Lemma 1.3.3. Define 
(tW(l/t) if r > 0 , 

where {W(t); 0^f<«>} is a Wiener process. Then ffi(t) is also a Wiener 
process. 

Proof The three properties (i), (ii) and (iii) of Section 1 of a Wiener 
process are easily verified for the above defined stochastic process. 

Clearly Theorem 1.3.3 can be formulated in the following form too: 
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Theorem 1.3.3*. For any *0>0 we have 

^•1 U>> *-o }/2ftloglogl/ft 

It is interesting to compare Theorems 1.1.1 and 1.3.3*. The latter one 
states that the continuity modulus of W(t) for any fixed t0 is not more 
than (2h log log 1/A)l/2 (local continuity modulus). On the other hand, 
(1.1.5) of Theorem 1.1.1 tells us that at some random points the continuity 
modulus can be much larger, namely (2A log 1/A)1/2 (global continuity 
modulus). This means that the sample paths of a Wiener process violate 
the law of iterated logarithm at some random points. A paper of Orey and 
Taylor (1974) investigates "How often on a Brownian path does the law 
of iterated logarithm fail?". 

1.4. Brownian bridges 

A stochastic process {B(t);0^t^l} is called a Brownian bridge if 
(i) the joint distribution of B(tJ9B(t^9 ...,B(tn) (0^r 1 <r 2 <. . .<r n ^l ; 

n= l , 2, ...) is Gaussian, with EB(t)=0, 
(ii) the covariance function of B(t) is 

R{s9 t) = EB(s)B(t) = sM-st, 

(iii) the sample path function of B(t; co) is continuous in t with 
probability one. 

We note that (ii) above implies 2?(0)=2?(1)=0 a.s. 
The existence of such a Gaussian process is a simple consequence of the 

following: 

Lemma 1.4.1. Let {W(t)\ 0^r<oo} be a Wiener process. Then 

(1.4.1) B{t) = W(f)-tW(\) ( O ^ r ^ l ) 

is a Brownian bridge. 

Proof. The above three conditions are easily verified for the represen-
tation (1.4.1). 

Moreover, the continuity modulus of B(t) can also be obtained from 
(1.4.1). Namely we have: 
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Theorem 1.4.1. 
,, A ™ r \B(s + t)-B(s)\ a.s. r \B{s+h)-B(s)\ 
(1.4.2) lim sup sup ' ==r^ = lim sup ' v y - ^ 

i,-o o^s^i-ii o<^/» y2hlogl/h Mo^s^i-ft ylhlogl/h 

S±JIi5 sup l J ( s o + 0 - J ( s o ) l ^ n i 5 l ^ o + ^ - ^ f a ) ! a ± 1 

M O < ^ / . j/2/iloglogl/ft /»-o ^2/i log log l/h 

where s0£[09 1— h] is fixed. 

Proof. (1.4.2) follows immediately from (1.4.1) and from our earlier, 
similar, results for a Wiener process. 

(1.4.1) exhibits a useful relationship between the Wiener process and the 
Brownian bridge. Now we display two further connections for the sake 
of later reference. The first one is 

Proposition 1.4.1. Let {Bt(t)}^l0 be a sequence of independent Brownian 
bridges and let X0=0 and {Xi}TLx be a sequence of independent c/T(0, 1) 
r.v. which is also independent of {Bt(t)}. For any fixed 0 = / 0 < ^ < / 2 < . . . 
define the stochastic process 

(1.4.3) ^(O^/^T^ 
*=o y tj+1-tj vj+i-tj) 

if tj^t^tj+1 (y=0, 1, 2, ...). Then {W(t); 0^t<~>} is a Wiener process. 

Proof The three properties (i), (ii) and (iii) of a Wiener process in 
Section 1 (or, equivalently, the covariance function of W) are easily 
verified for the above defined stochastic process {W(t); 0 ^ *<«>}. 

The second connection between a Wiener process and a Brownian bridge 
is a special form of Doob's transformation (1949). 

Proposition 1.4.2. Let B(t) be a Brownian bridge and define 

(1.4.4) W(t) = (t+i)B[-±j} ( f^O) . 

Then W(t) is a Wiener process. 

Proof. Check again the three properties or the covariance function of 
a Wiener process. 

Remark 1.4.1. (1.4.4) clearly implies 

(1.4.5) B(t) = (l-t)w[1^j) (0^<1). 
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1.5. The distributions of some functional 
of the Wiener and Brownian bridge processes 

For the sake of further reference we summarize here some classical 
distribution results. 

Theorem 1.5.1. Let {W(T); 0^f<°°} be a Wiener process and {B(t); 
O^t^l} a Brownian bridge. Then, for w>0, we have 

(1.5.1) P{sup W(t)>u}=2P(W(T)^u) = 2(l-<p(^j\. 

(1.5.2) P{ sup \W{t)\ ^u} = -LfU i ( - l)'exp M * " ^ " ) 2 ] dx 

(1.5.3) P{ sup B{t) ^ u) = e~2u\ 

(1.5.4) P{ sup |5(0I > u) = j£ ( - 0fc+1 ̂ ~2fc2"2. 

These statements are usually proved by the so-called reflection principle 
(cf. Doob 1949, Billingsley 1968) and their proof will not be repeated here. 

Some further distribution results for functional of a Wiener process 
and a Brownian bridge follow without proof. The first one gives the 

i 

distribution of the square integral co2 = f B2(x)dx of a Brownian bridge. 
o 

The second one characterizes the maximal deviation K=sup B(x)—inf B(x) 
X X 

of a Brownian bridge. The third one is the celebrated arc sine law of P. Levy. 

Theorem 1.5.2 (Smirnov 1937, Anderson-Darling 1952). 

2 oo 2k7C g 

p(o>2^w) = i - - 2 T ( - i ) k + 1 f , 
(2fc-l)7T I 

where 61/4(«) is the Bessel function of parameter 1/4. 



44 Strong Approximations 

Theorem 1.5.3 (Kuiper 1960). 

?(xSa) = l - 2 2(4(ju)*-l)e-2Jtu\ 
J=i 

Theorem 1.5.4 (P. L6vy 1937, 1948). Let U=X{t: W(t)^0, OSfrSl} and 
F=sup{f: W(t)=0, 0=§f=£l}. Then 

P{Usx} = P{V^x} = - f , ds = - a r c s i n ^ , 0 < * < 1 . 

Theorem 1.5.5 (Quails, Watanabe 1972). For — oo<y< + «> we have 

lim P{ sup (W(f+1)-W(0) == a(^, T)} = expC-e-'), 

lim P{ sup \W{t+\)-W(t)\ ^ a(y, T)} = e x p ( - 2 0 . 

a(>;,r) = (>;+21ogr+iloglogr~ilog7r)(21ogr)-1/2. 

1.6. The modulus of non-differentiability of the Wiener process 

In this section we intend to prove the following analogue of Theorem 1.1.1. 

Theorem 1.6.1 (Csorgo, Revesz 1979a). 

lim inf sup ]/5l2|*l \ jy(s+t)-W(s)\!± 1. 

This theorem implies the well-known 

Theorem 1.6.2. Almost all sample functions of a Wiener process are nowhere 
differ entiable. 

Theorem 1.6.1 actually gives the exact "modulus of non-differentiability" 
of a Wiener process. 

The proof of Theorem 1.6.1 is based on the following lemma which, 
in turn, is a simple consequence of (1.5.2). 

where
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Lemma 1.6.1. 

n n\ 3 / 

^ Pi sup T-lf2\W(t)\ ^ x\ si 1 e-*a/8*a. 

The proof of Theorem 1.6.1 will be presented in two steps. 

Step L For any e>0 we have 

(1.6.1) lim inf sup yl0gj! * \W(s+t)-W(s)\ ^ 1 - 8 a.s. 

Proof Put 
s^ihQogh-1)-* (i = 0,1, 2,..., ft), 

where ^=[A~10°g^"1)3]- Then, by Lemma 1.6.1, we have 

p fmin sup f8 1 0!^"1) IWiSi+O-WisM^l-e] 

^ (Qh+1)1 exp { - ^ L ) i " log ft""1} = O(A*0og ft"1)3), 

where <5=(l -e) - 2 - l>0. 
Now let hn=n~T where r > 5 " 1 . Then the above inequality implies: 

(1.6.2) lim min sup f81off
ft|r ) | ^ ( s f + 0 - ^ ( s f ) | ^ l - e a.s. 

where 
s^ i^Oogf t - 1 ) - 3 . 

Consider the interval st^s^si+1. Then applying Theorem 1.1.1 with 

An/(log—J instead of h, we get 

Em max sup \y * * ' \W(s)-W(Si)\^l a.s. 

which, together with (1.6.2), implies 

- l \ l /2 

t*hn 

(1.6.3) lim inf sup f81°f/*wl) \W(s+t)-W(s)\ ^ 1-e a.s. 
n-oo 0&s^l-h„Q<t^h„ \ ft nn ' 
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Finally, choosing hn+1^h<hn and taking into account that hJhn+1-+\ 
(n ->- oo) and that 

, -n1 ' 2 

inf sup (81°!l* *) \W(s+t)-W(s)\ 

inf sup f8 1 0!^"1) \W(s+t)-W{s)\, 

we get (1.6.1). 

Step 2. For any s>0 we have 

(1.6.4) Em inf sup f81°g
2^ *1 \W(s + t)-W(s)\^l+s a.s. 

PAW/. Put 
5| = ift ( i = 0,1, 2, ...,[*-*». 

Then, by Lemma 1.6.1, we have 

p\ min sup P ^ | j p ) I ^ C ^ + O - ^ W I ^ l + s } 

-K-(-^-*ir-(-i*r 

where <5=(l+e)~2<l. Now let hn=n~1. Then the above inequality 
implies 

- l \ l / 2 

(1.6.5) B5 inf sup f ^ f ^ l \W(s + t)-W(s)\ 

s HE min sup f 8 ' 0 ^ " ' ) 1 V f a + O - ^ f c ) ! 

^ 1+fi. 
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Finally, choosing hn+1^h^hn and taking into account that h„/hn+1-+l 
(rt-̂ oo) and 

inf sup (*l0*t~lVw{s+t)-W{s)\ 

=S inf sup f 8 1 0 ^ " 1 ] \W{s+t)-W{s)\, 

we get (1.6.4). 

1.7. How small are the increments of a Wiener process? 

The connection between the results of this Section and those of Section 2 
is similar to that between Theorem 1.6.1 and Theorem 1.1.1. 

Let 
S1 = f1(t)=\W{t+aT)-W{t)\ 

and 
^2 = ^ ( 0 = sup \W(t+s)-W(t)\. 

Now the increment Jx can be much smaller than the increment */2. 
In this section we investigate only the question "How small are the 
increments J%{t) (0^t^T—aT)V9 and, as an answer to it, we prove 

Theorem 1.7.1 (Csorgo, Revesz 1979a). Let aT be a non-decreasing 
function of T for which 

(i) 0^aT^T (7^0), 
(ii) aT/T is non-increasing. 

Then 

(1.7.1) lMyTI(T)=l, 

where 

and 
/ ( D = i?f ^ .(0 

_(S(logTafl+loglogT) 
yT- I -i n*aT 

If we also have 
..... logT/aT , 

\ l / 2 

o o 
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then 

(1.7.2) l i m y r / ( r ) S l . 
T-+00 

The following examples illustrate what this theorem is all about. 
o 

Example 1. aT=—logT. Then yr-*l and our Theorem 1.7.1 says 

that for all T big enough, for any e>0 and for almost all co there exists 
a 0^t=t(T, s, co)^T-aT such that 

sup \W(t+s)-W(t)\^l+e, 8 

o ŝ̂ -=iogr 

but, for all /€[0, T-aT], with probability 1, 

sup \W(t+s)-W(t)\?zl-e. 
g 

0^5^-rlOgr 
7t
Z 

At the same time our Theorem 1.2.1 stated the existence of a t£[0, T aT] 
such that, with probability 1, 

| ^ ( * + ^ l o g r ] - ^ ( o | ^ ( - - e j l ogT , 

sup \W(t+s)-W(t)\ ^ f ~ - e ) l o g r 
8 \n J 

and hence 

8 

o^s -̂̂ iogr 

but, for all te[0, T-aT]9 

sup \W(t+s)-W(t)\ ^ (-+e) logT. 
8 V7C / 

Example 2. Let aT=T. Then our Theorem 1.7.1 says 

\ l / 2 

1 a.s., 

which is the law of iterated logarithm of Chung (1948) when it is applied 
to the Wiener process. 

( o \ ! / 2 

-gj/logrl , and our 

Theorem 1.7.1 says that for all T big enough, for any e>0 and for 
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almost all co there exists a t=t(T, e, co)£[0, T—aT] such that 

sup \w(f+s)-W(t)\ ^ (l+fi)-p=(logr)-1/4. 
o^s (̂iogr)1/8 y8 

That is to say the interval [0,T—aT] has a subinterval of length (log T)l/2 

where the sample function of the Wiener process is nearly constant; more pre-
cisely, the fluctuation from a constant is so small as (1 +fi)7r8~l/2(log r)~"1/4. 

This result is sharp in the sense that for all T big enough, and all 
t£[0, T—aT], we have with probability 1 

sup \w(t+s)-W(t)\ ^ (l-s)-^L(logr)-1/4 . 
ossssKiogr)1^ j/8 

Just like that of Theorem 1.6.1, the proof of Theorem 1.7.1 is also based 
on Lemma 1.6.1 and will be presented in three steps. 

Step 1. For any e>0 we have 

(1.7.3) Km yTI(T)^l-8 a.s. 

Proof. Let Tn=9n ( l<0<( l -e ) - 2 ) , <p(T)=log Taj:1+log log T and 

h = tW = iaTn{cp{Tn)Yz (} = 0,1, 2, ..., eTn), 
where 

Then by Lemma 1.6.1 we have 

Pi min sup f M ^ ! ) . ] 1 / V a + 5 ) - ^ i ) | g l - 8 l 

7i i a T n + 1 j 

^0(l)(logn)3n °<1-fi>2, 

where the inequality — ^ - = -~^- "+1 —- ̂  -— was applied. 
arn+1

 1n tfrn+1 0 0 

Hence we get 

(1.7.4) lim min sup (S^Tn))12\W(ti+s)-W(ti)\ ^ 1-e, a.s. 
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Consider now the interval ff^f<fi+1. Then by Theorem 1.2.1 we get 
almost surely that 

Em max sup 

which, together with (1.7.4), implies 

2aTn(log(^±I (9(Tjy) + loglogTm+M 

X\W(t)-W(td\*U 

1/2 

(1.7.5) Hm inf sup (S^Tn) f*\w(t+s)-W(t)\ ^ 1-6 a.s. 

Finally, choosing Tn^T^Tn+1 and taking into account that 

tpmaj^viTJaj^, T-aT^Tn+1-aTn+1 
and 

sup \W(t+s)-W(t)\^ sup \W(t+s)-W(t)\9 

we get (1.7.3) by (1.7.5) 

Step 2. Let 

O^S^Qf 

B(T) = yT sup \W(T-aT+s)-W(T-aT)\. 

hm B(T)^l+s a.s. 

iCl+e)2 

Then for any £>0 we have 

(1.7.6) 

Proof. By Lemma 1.6.1 we have 

mn a. +.) ■ 4-pf-^ H -115?| 
Since conditions (i) and (ii) imply that ,T—aT is a continuous non-

decreasing function of T, we can define the sequence {Tk} as follows: 
Let Tx=l and define Tk+1 by 

Tk+1-aTk+1 = Tk if - ^ - £ < 1 , 

7 ^ = e<*+i)iog(fc4-i) if f ^ . - * 0 = l. 

In case of g< 1, (1.7.6) follows from the simple fact (cf. Step 2 of Theorem 
1.2.1) that 

\(i+«)2 

&\TklogTk) 

and that the r.v.'s B(Tk) (k=l,2, ...) are independent. 
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In case of Q=1, aT sr t+1—Tk . Hence 

B{Tk+J*yTM sup \W(s)-W{Tk)\ 

+rrt+l sup F f r j - ^ i . 
By the law of iterated logarithm 

^yTk+1 sup 1^(^-^(5)1 = 0 a.s. 

and by Lemma 1.6.1 

P{yTk+1 sup i^(s)-^(r&)Mn-e} 

9 r i T __7,i / i ^(i+e)a 

£7e i">{-a+y108 l08r'«-fTJJECons ,(TKir) • 
The latter combined with our preceding two statements imply (1.7.6) 

if Q = 1. 

Step 3. For any e=-0 we have 

(1.7.7) E y r / ( r ) S l + E a.s., 
y-fr-oo 

provided (iii) /z0/*fc /rwe. 

Proo/. Choose the sequence Tn (/i = l, 2, ...) such that 

and put 
/* = ,'flrfI+i 0" = 0, 1,2, ..., ^Tn), 

where ^ ^ [ r ^ J . 
Then by Lemma 1.6.1 we have 

r S l o g ^ ^ a ^ ^ 
p{ min sup P l 0 g 7 + i a f - ' ) |JF(/ (+s)-If(/ J) |^H-el 

a ( , _ | e x p { - ( l + e ) - . ^ l l o g ( r „ , 0 f . . . , ) } ) ' 

\ t f T + l 

\QT 

A T 
i n + 1 .(i+«)-» 

{1_l(fe") ^ f" = exp(-0(D»1-ft+«)- ,+*<1>), 
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where the last line follows from observing that aT /aT - * 1 , which, in 
turn, follows from Tn+1/Tn-+1 by the definition of Tn in this proof. 
In order to see that Tn+1/Tn-+l9 let 

logT/aT b(T)9 
log log T 

i 

and recall that b(T)/oo by condition (iii). Then Tn=exp(nbVn>). 
Whence 

Tn+1 =exp((« + l)*rn+1> -nKTn))^exp((n + l)*<r"> - « 6 W ) 

^ exp nb<r»>M 1 + —J n - l ) ^ e x p ^ W / n ) - 1 as n -co. 

Hence we get 

Em min sup P ^ ^ ^ ^ ^ ^ V f e + s ) - ^ ^ ) ! ^ 1+g, a.s. J
 n -

1
 n + 1 " 

This implies (1.7.7) immediately. 
In Section 1.2 and in the present Section we studied the properties of 

some increments of a Wiener process. In order to present some further 
problems, let 

Si»(t) = \W(t+aT)-W(t)\, 

Si»(t) = sup \W(t+s)-W(t)\, 
0<s=*aT 

Sf»(f) = W(t+aT)-W(t), 

Sp>(t) = sup (W(t+s)-W(t)), 
0<s=5aT 

/ ,« '» ( r )= sup .//'> (0 (1 = 1,2; ; = 1,2), 

IP^(T)= inf ^ > ( 0 0 = 1,2;j = 1,2). 

Now, our question is to find the normalizing factors nT(i,j,k) and 
vT{i,j,k) (/=1,2;j=l, 2; k=\, 2) for which 

ImMU.k) / / ' •*> (T) = l a.s. 
r-̂ oo and 
limvr(i,;,k)/i°''fc)(r) = l a.s. 
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Of the here mentioned eight lim sup problems four were solved in 
Section 1.2, namely the cases: k=l, 1=1,2,7=1,2. One of the eight 
mentioned lim inf problems is solved in the present section, namely the case 
of (fc=2, /=2,7=1). For a partial solution of the case (1=2,7'= 1, k=l) 
we refer to Remark 1.2.2. Also, for small aT i.e. when condition (iii) of 
Theorem 1.7.1 holds, the lim sup = the lim inf in the just mentioned 
completely solved five cases. Thus, for aT satisfying (i) and (ii), five and, 
for aT satisfying also (iii), ten of the above problems are completely solved. 

1.8. Infinite series representations of the Wiener process 
and Brownian bridge 

Our construction of a Wiener process in Section 1.1 can be slightly 
modified so that it also gives an infinite series representation of W. In 
order to see this, we restrict our procedure to the unit interval [0, 1]. In this 
setup then, the construction of Section 1.1 uses a sequence of independent 
r.v. Xr 6^(0,1) , where rn runs over the dyadic rational numbers of 
the form k/2n (fc=l, 3, 5, ..., 2 n - l ; n=0,1 , 2, ...). In the first step we 
defined W(t) at t=l by W(l)=X±. Now, instead of the latter, we say 
that the first approximation of W(t) should be 

W0(t) = tX1 ( O ^ f ^ l ) . 

In the second step, there we defined W(^)=^X1+^Xy2. Now we say 
that this step should be replaced by the approximation 

W^t) = tX.+h^X^ = h0(f)X1+h1(t)Xv%t 
where 

t 

h0(t) = f w0(x) dx=U 0 ^ t =2 1, 
0 

and 

h1(t)=fWl(x)dX = \t; ***** 

with Wj standing for the y'th Walsh function. 
Our third step in Section 1.1 resulted in the definition of W(%) as 

W® = I F F © +±XVi = ^ ( i ) + ^i^i+^|±^i. 
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Now we say that this third approximation of W should be replaced by 

Wt(t) = lh(f)X1+hl(f)Xin+ht(f) 

where 
= h0(t)Y0+h1(t)Y1+hi(t)Y2+hs(t)Ys, 

t 

h(t) = / w2(x)dx 

t, 0 S < S i 

t-h i ^ ^ J 
[l-t, j s t s l , 

h(t)= f w3(x)dx = 

and 

t, O ^ f s i 

[t-l, f= s / s£ l 

^ — Y V — Y V — ^1/4 + ^3/4 v _ ^ 1 / 4 — ^ 3 / 4 
r 0 - " - A l 5 * 1 — -*l/2> J 2 — "7= > J 3 — ~7F • 

We observe also that Y09 Yl9 Y2, Y3 are independent JV(09 1) r.v. 
Reformulating each step of our construction in Section 1.1 as indicated 

above, the «th approximation of W{t) is 

(1.8.1) Wa(t) = 2 h(t)Yk = 2Ykf wk(x) dx, 
*=0 fc=0 0 

where Y09 Yl9 ..., Yn are independent JV(09 1) r.v. Moreover, 

^ ( ^ ) = ^ i v ( ^ ) whenever N^2n-l9 

where W(>) is the Wiener process as constructed in Section 1.1. Whence, 
applying the fact that our construction of W(*) in Section 1.1 is a 
uniformly (in t) convergent one (with probability one), it follows that 
(1.8.1) is also uniformly (in 0 convergent with probability one. This, in 
turn, implies the following infinite series representation of W 

(1.8.2) W(t)= 2Ykfwk(x)dx9 

where Y09 Yl9 ... is a sequence of independent JV(09 1) r.v. 
Since the Walsh functions {wk} form a complete orthonormal system, 

it is only natural to ask whether {wk} in (1.8.2) could be replaced by any 
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other complete orthonormal system {(pk). Indeed, it is clear that, for any 
f such system of functions {cpk}, the series 2 Yk <Pk(x)dx converges 

k = 0 o*
7 

with probability one for each fixed f£[0, 1]. It is also clear (direct calcula-
tions) that the covariance function of the latter series is that of a Wiener 
process. On the other hand, it is not clear at all that the latter convergence 
should hold uniformly in t. However, Ito and Nisio (1968) showed that it is 
so for any complete orthonormal system {cpk} and also that the thus 
defined limit is a Wiener process, i.e., we have with probability one and 
uniformly in t£[0, 1] that 

(1.8.3) W{t)= 2Ykfcpk(x)dx, 
* = o o 

« 

for any sequence {Yt} of independent ^ ( 0 , 1) r.v. 
As an important special case of (1.8.3), we take {(p0(x)=l, (pk(x) = 

= /l cos nkx; O^x^ l , fc=l, 2, ...} as our complete orthonormal system 
on [0, 1], and get 

oo t 

(1.8.4) W(t) = YQt+Y2 2Yk f cos knxdx 
*=i o 

sin knt 
= Y0t+f2 2Yk kn 

the classical representation of W by Paley and Wiener (1934). 
The latter representation immediately implies a similar representation 

for a Brownian bridge. Since W(\)=Y0 by (1.8.4), and B(t) = 
= W(t)-tW(\) by (1.4.1), we get 

(1.8.5) 5(0 = / 2 i r k ^ , osrsi. 

1.9. The Ornstein-Uhlenbeck process 

Consider the Gaussian process {V(t)=W(t)/ft; 0<f<°°}. Then 
EV(t)=0, EV%t) = l and EV(t)V(s) = Ys/i9 s<t. The form of this co-
variance function immediately suggests that, in order to get a stationary 
Gaussian process out of V(t)9 we should consider 

(1.9.1) 17,(0 = K ( 0 , ~ ~ < t < + ~ (a fixed > 0). 
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This latter process is a stationary Gaussian process, for EUa(t)Ua(s) = 
=e~a"~*5|/2, and it is called the Ornstein-Uhlenbeck process. We will 
use the notation U(t) = U2(t)9 and mention, without proof, the following 

Theorem 1.9.1 (Darling, Erdos 1956). 

(1.9.2) lim P{ sup U(t) ^ a(y, T)} = exp(~^~y), 

(1.9.3) lim P{ sup \U(t)\ ^ a(y, T)\ = exp(-2e~y), 

where 

a (y, T) = {y+2 log T + i log log T - J log n) (2 log T) -V2. _ c 

It follows from definition (1.9.1) that several properties of the Wiener 
process are inherited by Ua(t). For example, the latter process is also 
continuous, non-differentiable and Markovian. 

Remark 1.9.1. Darling and Erdos (1956) evaluated the limit distribution 
of max Skk~l/2 and that of max \Sk\k^1/2, where Sk is the kth 
partial sum of i.i.d.r.v. with mean zero, variance one and finite third moment. 
Doing this, they have actually proved Theorem 1.9.1, without stating 
it explicitly. It is not difficult to see that Theorem 1.9.1 can be proved 
easily from their main results: 

(1.9.4) limP{msiXnk^2Sk^a(y,logn)} = Qxp(-e-y), 

(1.9.5) lim P{ maxn fc-1/2|S*| ^ a(y9 logn)} = exp{ -2e^ \ 

)>< + < 
The above introduction of the Ornstein-Uhlenbeck process via a Wiener 

process suggests a similar investigation of the standardized Brownian 
bridge {B{y)fly(\— y); 0<y<l} . First we observe 

via checking the respective covariance functions. Letting now e'=y(l — y)-\ 
we get 

(1.9.7) {U(t); -oo^t^^^} = \^+et)e'mB\-^^\ - ~ < f < + ~J. 

Consequently, we have also 
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Corollary 1.9.1. Let sn be a decreasing sequence of numbers such that 
en^0. Then, with — ocxjx + oo, we have 

(1.9.8) lim P ( sup B ^ ^ a [y, 2 log 1—^1} = exp(-*r>% 
n-̂ eo U n < x < l - c n y ^ ( l — x ) V 8n / J 

(1.9.9) limPJ sup . | j g ( x ) L ^ a (y, 2 1 o g - ^ L | l = e x p ( - 2 0 -
n-oo U n < x < l - e n KX(1 — * ) V 8n )) 

Proof, By (1.9.6), (1.9.7) and stationarity of the Ornstein-Uhlenbeck 
process U(t) we have 

limPI sup W _ ^a\y,2log 1 " " c " ) | 

= lim P j sup C/(0 ^a(y92 log -^—^1} 

= lim Pf sup U(t)^a (y, 2 log}~**\i . 

Hence (1.9.8) follows from (1.9.2) and a similar argument yields (1.9.9). 

1.10. On the notion of a two-parameter Wiener process 

Consider the lattice points n=(nl9n2) (n—0,1,2, ...; /=1,2) of 
-R+ =[0, °°)X[0, oo). For each n define a r.v. X„ such that the r.v. X„ are 
independent with 

P(jr„= + l) = P(JT„=-l) = l/2. 

Further let 

Sn = 2 Xi = 2* j? -*<*!, I.) > fc? = (*1» W2))« 

This model is a natural two-parameter analogue of the random walk model 
of Section 1.0 and a continuous version of it will serve as a model of the 
two-parameter Wiener process. 
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1.11. Definition and existence of a two-parameter Wiener process 

Let X(z) (z=(x9 y)£R2
+) be a two-parameter stochastic process and 

consider the rectangle R=[xl9 x2)x[yl9 y2)aR2
+ (O^x^x^**, 0^y±< 

<J;2<°°)- Define the "X-measure" X(R) of R by 

X(R) = X(x29 y2)-X(xl9 y2)-X(x29 y1)+X(xl9 yj. 

A stochastic process {W(z)9 z£R2
+} is called a (two-parameter) Wiener 

process if 
(i) W(R)£jr(o9l(R)) for all R=[xl9 x2)x[yl9 y2) where 1(R) = 

=(x2-xi)(y2-yi)9 

(ii) W(09y)=W(x90)=0 (0^x,.y<oo), 
(iii) W(z) is an independent increment process, that is W(R1)9W(R2)9 ... 

..., W(Rn) {ri—29 3, ...) are independent r.v. if Rl9 R29 ..., Rn are disjoint 
rectangles, 

(iv) the sample path function W(z; co) is continuous in z with proba-
bility 1. 

We note that (i)-(iii) imply that the covariance function of a Wiener 
process W(z) is 

R(zl9 z2) = EW{z^W(z2) = (x1Ax2)(y1Ay2) 

where z1=(xl9 yx)9 z2=(x29 y2). 
We also note that for any fixed 0<x0<<*> the process {XQ1I2IV(X09 y)9 

0^y<oo} is a (one-parameter) Wiener process and the same can be said 
about {y-ll2W(x9y0\0^x<~}. 

The aim of this Section is to give a constructive proof for the existence 
of the two-parameter Wiener process. The idea of construction will be 
mainly that of Section 1.1. The existence of the one-parameter Wiener 
process will be also used. 

Let {r„} be the sequence of positive dyadic rational numbers and let 
{Wr (x)} be independent one-parameter Wiener processes. For any positive 
integer k9 let 

W(x9k) = W1(x)+W2(x) + ...+Wk(x) 
and 

2 Y4 

Now we wish to define W(x9 k/2n) for k=\9 2, ... and n = l9 2, ... . 
Assume that it is already defined for A: =1,2, ... and /i = l, 2, ..., n0. 
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Then for fc=l,2,... and n=n0+l we let 

^ ' — J 2 + 7fli-
Whence, by induction, we have defined our Wiener process at every 

(x, r), 0^x<~>, where r is a non-negative dyadic rational number. For 
an arbitrary >>>0 we define 

W{x9y)=Yimw[x}?^9 

where the existence of the limit on the right hand side immediately follows 
from Kolmogorov's Three Series Theorem exactly the same way as in 
Section 1.1. Also, the problem of uniform convergence can be posed and 
settled exactly the same way here, namely via showing that 

i sup \W{x, y)-W(x, yr)\ < ~ a.s. L = S . ) . 

The thus defined process obviously satisfies conditions (i)-(iii). In the 
rest of this Section we intend to prove that our process also satisfies (iv). 
At first we prove the following analogue of Lemma 1.1.1. 

Lemma 1.11.1. For any e>0 there exists a constant C=C(e)>0 such that 
the inequality 

V* 

(1.11.1) P l s u p sup \W(x9y+s)-W(x9y)\^vh1'2}^Ch-1e 2+£ 

holds for every positive v and 0</z<l. 

Proof, Using the notations introduced in the proof of Lemma 1.1.1 
we have 

\W(x9y+s)-W(x9y)\ ^ \W(x9y + s)-W(x9(y + s)r)\ 

+ \W(x9 (y+s)r)-W{x9 y,)\ + \W(x9 yr)-W{x9 y)\ 

^ \w(x9(y+S)r)-w(x9yr)\+2Q\w{x9 (y+s\+J+1)-w{xXy+s)r+J)\ 

+ 2\W(x9yr+J+J-W(x9yr+J)\. 
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Now, by (1.5.1) and (1.1.1) for any positive A, u, zs and integers r,j\ 
we have 

P{ sup sup \W(x, (y+s)r)-W(?c9 yr)\ ^ uQi+R-1?/*} 

^ R(Rh + l)P{ sup \W(x, (y + h\)-W(x, yr))\ ^ u(h+R-^2} 

^4e-u*/2R(Rh + l), 

and 

P{ sup sup \W(x, (y+s)r+J+1)-W(x, (y+s)r+J)\ s Zj2-<r+i+vit} 

^2r+j+3e-z*12. 

From here on the proof is pretty much the same as that of Lemma 1.1.1. 
Hence the details will be omitted. 

Lemma 1.11.1 easily implies 

Lemma 1.11.2. We have 
v \W(x,y+s)-W(x9y)\a.s^ lim sup sup —-— ■—— = 1. A-O o^s^h (x.y)^/2 \2h log \\h 

Proof is the same as that of Theorem 1.1.1, and will be omitted. 
This lemma clearly means that, for almost all co, W(x, y) is continuous 

in y ( 0 ^ J > ^ 1 ) , with the usual modulus of continuity (2h log 1/A)l/2, 
for every x€[0, 1]. The next lemma will say that, for almost all co, W(x, y) 
is continuous in x and y, where x£[0, 1] and y is running over the 
dyadic rationals of [0, 1], 

Lemma 1.11.3. We have 

lim sup sup \W(x+s, y)-W(x, y)\ = 0 

where Ir is the set of the dyadic rationals of [0, 1]. 
Proof This lemma is a straight consequence of the above construction 

of W(x, y) and the following elementary 

Lemma 1.11.4. Let Wx(x), W2(x), ... be a sequence of independent Wiener 
processes. Then 

y WM\ a.s. n 

lim sup ' = 0. n-̂ oo o*;* î log n 
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Lemmas 1.11.2 and 1.11.3 together prove that our above constructed 
process W(x, y) is continuous with probability 1. Thus, it also satisfies 
condition (iv). Hence this W(x9 y) is indeed a Wiener process. While 
Lemmas 1.11.2 and 1.11.3 prove the continuity of W, they do not say 
anything about its modulus of continuity. A kind of modulus of continuity 
will be evaluated in Section 1.13, where we give an analogue of Theorem 
1.1.1. An analogue of Theorem 1.2.1 is presented in the next section. 

1.12. How big are the increments of a two-parameter Wiener process? 

In order to formulate a possible two-time parameter analogue of Theorem 
1.2.1 we introduce the following notations: 

Let RT=R(aT) be the set of rectangles 

R = [xl9 x2]X[yl9 y2] (0 ^ Xl < x2 ^ T^\ 0^y^y2^ T1'2) 

for which A(R)=(x2—x1)(y2—y1)^aT. Let R^=R*(aT)cRr be the set 
of those elements R of R r for which !(R)=aT. 

Theorem 1.12.1. Let W(x, y) (O^x, y<°°) be a Wiener process and let 
aT be a non-decreasing function of T satisfying conditions (i)-(ii) of 
Theorem 1.2.1. Then 

(1.12.1) Em sup PT\W(R)\ ^ lim sup $TW(R)\ = 1 

where pT=(2aT(log Ta^+log log T))~l/2. 
If aT also satisfies condition (iii) of Theorem 1.2.1, then 

(1.12.2) lim sup pT\W(R)\^ lim sup fiT\W(R)\ = 1. 
T-+oo R£RT r-cojR€R* 

It is clear that this theorem can be considered as an analogue of Theorem 
1.2.1 in the 2-parameter case. However it does not imply the law of 
iterated logarithm for the multi-parameter Wiener process in its full richness. 
Especially the following result does not follow from our Theorem 1.12.1. 

Theorem 1.12.2 (Paranjape-Park 1973, Park 1974, Pruitt-Orey 1973, 
Wichura 1973, Zimmermann 1972). We have 

^ \W(x,y)\ S l 

*ZZ faxyloglogxy 
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that is to say 
v Wipe, y)\ a.s. , 
hm sup = 1. T-*OOX^T yAxy log log xy 

It is somewhat surprising that in this theorem the usual constant 2 of the 
denominator is replaced by 4. Some explanation of this phenomenon is 
given in Park (1974) and our Theorems 1.12.3 and 1.12.4 will provide 
further explanation. We also emphasize that in Theorem 1.12.2 it is assumed 
that both x and y go to infinity simultaneously. It is natural to ask 
what happens if this is not the case. Our next theorem is somewhat stronger 
than Theorem 1.12.2 and gives an answer to the latter question. 

Theorem 1.12.3. For any a > i we have 

(1.12.3) I S sup , IW(X>y)l *± VSS sup - S ^ U ^ l , 
T-+oo(x,y)(iDT y 4 r i O g l O g r T^oo(Xty)€D^ y4Tlog\OgT 

where 

DT = DT{T°) = {(x9 y): xy ^ T9 0 ̂  x ^ T\ 0 ̂  y ^ T% 
D*T = DUT") = {(x9y): xy = T9 0^x^Ta

9 O^y^ T«}. 

Applying this theorem for a = l , it can be seen that it is not necessary 
to assume in Theorem 1.12.2 that both variables go to infinity (cf. also 
Consequence 1.12.2). In order to see that Theorem 1.12.3 implies Theorem 
1.12.2, we note that for a = l in the former we get [T, ~>)X|T, oo)c 
c U &u> and for a=0.6, say, (J D$c[T9 <~)X[T, «>). In our next 

theorem we investigate the question of how the function 7"* of Theorem 
1.12.3 can be replaced by an arbitrary increasing function bT. We have 

Theorem 1.12.4. Let bT^T1/2 be a non-decreasing function of T and define 

yT = (2r[iog(iogfcrr-
1/2+i)+iogiogr])-

1/2, 
DT = DT(bT) = {(*, y): xy ^ T9 0 ̂  x ^ bT9 0 ̂  y ^ bT}9 

D% = D*T(bT) = {(*, y): xy = T, 0 ̂  ^ ^ 6T, 0 ̂  j ; ^ 6T}. 

Suppose that 
(i) yr w a non-increasing function of T, 

(ii) /(?r awy e>0 /Aere exw^ a 0o==^o(e)>l suc^ that 

fiS^Sl+e 

// 1<0S0O. 
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Then 

(1.12.4) Em sup yT\W(x,y)\ = 155 sup yT\W(x,y)\^ 1. 

If we also have 

, . . . ,. l o g O o g b r ^ ^ ^ + l) 
(in) lim - — - — = = ° ° , v y r-co log log T 
then 

(1.12.5) lim sup yT\W(x9y)\ = lim sup y T | ^ (x , j ) | = 1. 

We mention some special cases of Theorem 1.12.4: 
1° if bT = Tl/2, we get the simplest form of the law of iterated logarithm 

(the constant in the denominator is the usual 2); 

2° if bj^T^e^^7 ( ? ^ 0 ) , 

then y r ^ (2 (y - | - l ) r i og log r ) ~ l / 2 , that is to say for y = 0 we get again 
the law of iterated logarithm with the constant 2 and the constant is in-
creasing as y is increasing; we get the constant 4 of Theorem 1.12.2 (or 
Theorem 1.12.3) when y = l ; 

3° if bT=eT then y T ^ ( 2 r i o g T)~l/2; that is even the order of mag-
nitude of yT has changed now. In this case (iii) of Theorem 1.12.4 holds, 
that is (1.12.5) holds true; 

4° if bT = eeT then yT^2-1/2T~\ 

Clearly, Theorem 1.12.4 is a generalization of Theorem 1.12.3 (and, 
a fortiori, that of Theorem 1.12.2). However, it is not a generalization of 
Theorem 1.12.1. Now we formulate our main result, which is a generaliza-
tion of both Theorems 1.12.4 and 1.12.1. 

Theorem 1.12.5 (Csorgo, Revesz 1978). Let 0<aT^T,bT^Tl/2 be non-
decreasing functions of T and define 

(5r = (2a r ( lo g rar 1 +log( logfe r af 1 / 2 + l )+ loglogr) ) - 1 / 2 . 

Further let LT=LT(aT, bT) (resp. L^=L^(aT, bT)) be the set of rectangles 
R=[xl9 x2]X[yl9 y2]czDT(bT) for which A(R)^aT (resp. A(R)=aT). 

Suppose that 
(i) ST is a non-increasing function of T, 

(ii) Ta^1 is a non-decreasing function of T, 
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(iii) for any e>0 there exists a 0o=0o(e)>l such that 

if l^0^60. 
Then 

B5 * L s l + 8 

(1.12.6) Em sup ST\W(R)\ 2£ fim sup ST\W(R)\ = 1. 

If we also have 

(IV) Jim : ; — = o o 
v J r-*~ log log T 

then 
(1.12.7) lim sup ST\W(R)\ S lim sup 5T|»F(Jl)| = 1. 

T-+ooR<:LT T-+coReL*, 

The proof of this Theorem is based on an inequality, which is an analogue 
of (1.1.2) and is formulated in the following way. 

Theorem 1.12.6. For any 8>0 there exists a C=C(s)>0 such that 

(1.12.8) P{ sup \W(R)\ ^ ud#*\ 
R€LT 

^ C — ( l + l o g r f l ^ X l + l o g f c r f l ? 1 ^ ^ ^ 2 ^ (II >0), 
fly 

wAere LT—LT(aT9bT) is the class of rectangles defined in Theorem LI2.5 
and aT and bT also satisfy the conditions of the latter. 

At first we introduce some notations and prove a lemma. 
Let ix—ix{T) be the smallest integer for which 

fi ^logfcrtff
1/2 

and, for any integer q, let Q = Q(q)=2q. Define the following sequences 
of real numbers 

zt = zt(q) = Zi(q, T) = a^e™ (i = 0, ±1 , ±2, ..., ±g/i), 

* / 0 = Xj(i9 T) = jz .e" 1 0 = 0,1, 2, ...), 

yj(}) = M*', T)=jaTzf1Q-1 (J = 0,1, 2, ...), 

and the following rectangles 

*i = *,(?) = U«(?, 0, 0) = [0, zjX[0, flrzr1], 

**0\ 0 = **to J\ 0 = *t+(xj(i)9 yt(i)) = {(*, y): (*-*/& y-tt(0)€*,}. 
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Let L^=L^(q) be the set of rectangles Ri(q,j, I) contained in the domain 
DT(bT). For any R=[xl9 x2]X[yl9 y2]£LT define the rectangle R(q)^L^(q) 
as follows: let i0=i0(R) denote the smallest integer for which: z{^x2—xx 

and let j0=j0(R), /0=/0(^) denote the largest integers for which Xj (i0)^xl9 

yx (J0)^J>I and now let 

R(q) = RtotiJo, h) = fooO'o), y,.(W)+[0, *jx[0, aTz^\. 

Lemma 1.12.1. 

(1.12.9) cardL£(?) ^ 823raf1(l+lograf1)(l+log6Taf1 /2), 

(1.12.10) for each R$.L*T we have l(RoR(q))^6aTQ~\ where X is the 
Lebesgue measure and the operation o stands for symmetric 
difference, 

(1.12.11) X(R) = aT for each R£L*T(q). 

Proof At first we evaluate the number of rectangles Rt(q,j9l) belonging 
to L?r(q) for a fixed L Clearly if Rt{q9j9l) belongs to the set Lj{q) 
then its right-upper vertex belongs to the domain 

^ = {(*> yY *i = x ^ ZiTaf1, ajzf1 ^ J> ^ Tx"1}. 

Let MT(i) be the number of elements of the double array (xj(i)9 yt(i))9 

(y=0, 1, 2, ...; /=0, 1, 2, ...)> contained in A and NT(i) be the number 
of those pairs (j, I) for which we have 

[*,(0, xj+1(i)]x[yi(f), yi+i(i)] <= A. 
Then 

^r(0(^+i(0-^(0)(yi+i(0-yi(0) = NT®^J£ 

^X{A)^T\og — 9 aT 
that is 

aT aT 
We also have 

MT[i)-NT(i) ^ f z X - z ^ + 1 = £=^g+ l f \ aT ) Zi aT 

and hence 

MT(t)*2Q*^llog—+l). 
aT \ aT ) 
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That is for a fixed i the number of rectangles Rt{q9j91) belonging to 
L$(q) is not more than MT{i). Since the number of possible values of 
i is not more than 2Qfi+l^l+2Q(logbTaTll2+l)^4Q(logbTa^ll2+l), 
we get (1.12.9). 

Now (1.12.10) resp. (1.12.11) simply follow from the definition of R(q) 
resp. that of L^(q). 

In the proof of Theorem 1.12.6 the following result will also be used: 

Lemma 1.12.2 (Pruitt, Orey 1973). Let R=[xl9 x2]X[yl9 y2] be any 
rectangle and let S=[sx, <y2]X|A, t2] ( O ^ * ^ ^ ^ ^ ^ ^—y^ — h^h^y*)-
Then we have for any w>0, 

P{sup \W(S)\ ^ u) ^ 4P{\W(R)\ ̂  w}. 
ScR 

Now we turn to the 

Proof of Theorem 1.12.6. For any R€LT, the symmetric difference 
R(q)oR(q+l) is the sum of at most 4 rectangles say R(q)oR(q+l) = 
=R(1\q)+Ri2)(q)+Ri3)(q)+Ri*Kq). Denote this class of rectangles E®(q) 
(i = l,2,3,4) by Zj.(q). Since R(q)-+R as q-»°° for any R in L$, 
we have 

(1.12.12) sup \W(R)\^ sup sup \W(S)\+42 sup sup \W(S)\, 
R£LT R£L$SCR i=0R£Ll(q+i)ScR 

where S is a rectangle with edges parallel to the coordinate axes. 
Then by Lemmas 1.12.1 and 1.12.2 we have 

(1.12.13) P{ sup sup \W(S)\ ^ *4/2} ̂  4cardL%(q)e~^ 
R£L${q)Sc:R 

and 

(1.12.14) 

P{ sup sup |»F(S)| ^ ytQbaTQ-1!-*?!*} ^ 4cardZ£(?+i>-y?/2. 

Since card Zj(?+i)^4 card Lj(?+0, by (1.12.12), (1.12.13) and 
(1.12.14) we get 

(1.12.15) P{ sup \W(R)\ ^ xa%*+4 j j ^ T Q ^ " ' ) 1 ' 2 } 

^ 4cardL£(tf)<r*a/2+16 Jca rdLj (?+0c" , ? / 1 . 
»=0 
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Choosing j f=(6/+x2) l /2, we have 

(1.12.16) ^ 1
r

/ 2 + 4 j ^ ( 6 a r e - 1 2 - f ) 1 / 2 

ifl+4(62-1)1/2 J2~i4+24a1
r
/2e-1/2 2 (il-*?** 

t i=0 J i=0 

^ *4 / 2(l +Q-1'2A) + a1
1(

2Q-1/2B ^ (1 +e)xa)!\ 

provided that Q is big enough and x ^ l , where >4=4^6 ^ 2" l /2 and 
i = 0 

£=24 j?('2""Dl/a; further, by (1.12.9), 
i = 0 

(1.12.17) 4cardLK^)^"x2/2 + 16 Jca rdZK^+0^" y ? / 2 

^ Crar1(l+lograf1)(l+logfc ra?1/2)e-^2/2. 

Now given w>l we let (l+e)jc=w, and (1.12.8) follows from (1.12.15), 
(1.12.16) and (1.12.17); otherwise, i.e., when i/^l , (1.12.8) is trivially true. 

Proof of Theorem 1.12.5. This will be given in three steps. 

Step L Let 
A(T)= sup 5T\W(R)\. 

R<LLT 
Suppose that conditions (i), (ii), (iii) of Theorem 1.12.5 are fulfilled. Then 

(1.12.18) JimA(T)^l a.s. 
T-*-oo 

Proof. By Theorem 1.12.6 we have 

P{A(T) S l + 8 } S C ( - ^ ) (1 +log TYi^Xl +log M f ^ - O o g T ) ~ 1 ~ t -

Let r t =0* (6» >1). Then 

fc=l 

for every 8>0, 0>1, hence, by the Borel-Cantelli lemma, 

(1.12.19) I IS^ ( r f c ) ^ l a.s. 

Since sup |JF(i£)| is non-decreasing in T and 

(1.12.20) l S ^ t l sup <5r = <5rt/<5Tk+1^l+£ 
r k a r a r k + 1 
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for any fi>0 if 0 is near enough to 1, (1.12.18) follows from (1.12.19) 
and (1.12.20). 

Step 2. Suppose that conditions (i), (ii), (iii) of Theorem 1.12.5 are satisfied. 
Then for any e>0 

(1.12.21) Hm sup ST\W(R)\ ^1-e. 

Proof First we assume that l im-^-=g<l. Given any 0<e<l , define 

the sequence {Tk} by Tx = \ and Tk_1=e(Tk-aTj), k=2,3, ... . (The 
latter definition of Tk is feasible, since, just like in the case of Theorem 
1.2.1, T—aT is a continuous non-decreasing function of T.) Define also 
L=L(k) to be the largest integer for which we have 

J-L+1 

(Tk-aTk)
Lbrk ' »* f o r a n ^ i v e n f c > 

and the rectangles 
Si(k) = [Xl(i), XaCOMj/iO), y2(0] 

K Tk-aTk)
i+\ (Tk-an)'u } \ Tk.lT

l
k
+1 Tj+1 ] 

~~TT~)
 bT» I 7̂  J bT4Xl(Tk-aTky^bTk> (Tk-aTkybTJ> 

where z=0, 1, ..., L=L(k). 
We observe that 

Tk-! = *i(0>>i(0 < x2(i)y2(i) = Tk, 

0 < ^ ( 0 < x2(i) ^ fcrk, 0 < ^ ( 0 < j2(i) ^ bTk, i = 0, 1, ...,L = L(fe). 

Hence 

and, for each k9 the *%(&) are disjoint rectangles. From the definition 
of Tk (k=l, 2, ...) it also follows that 

(1.12.22) (1 -e)aTk ^ (*2(0-*i(0)0>2(0-J>i(0) ^ *rfc for all i. 

Whence we have for each k 

(1.12.23) P{n^LdTlt\W(St(k))\ s 1-e} 

Sl-2{l-$(KI^(2(logrJtaflc
1+log(log6Tlta?k

1/2+l)+loglogrt))1/2)}'-+1 

fc 1 Ji-ffzk i L_rr + 1 

- 1 l1 lr t logfc^a^+i logrj / 
v l - e >-M-twJ;r+iidry (L+4 
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It follows from the definition of L that 

L + l = L(fc) + 1 ^ Const. - ^ - l o g - ^ , 
aTk

 1k 

and a simple calculation shows that the exponential lower bound of (1.12.23) 
has its minimum at bTk = Tk

112. Whence, by (1.12.23), we have 

(1.12.24) 

P{tSS.SThWsm)\ * ! - > * Const. ( ; ^ r \ l o g r J a r f c ) 1 - « . 

Since 2? I T J* T \ 0°S ^t/^rk)~a"£) diverges (which can be shown 

( aT V""c 

exactly the same way as the divergence of 2? k ^ *n Step 2 
VTjklog Jfc/ 

of Theorem 1.2.1), we get (1.12.21) when £<1 by the Borel-Cantelli 
lemma, (1.12.22) and Step 1 of this proof. 

Considering now the case of lim aT/T=g = l (or, equivalently, the 
case of aT=T), define Tk = 6k (0>1) and L=L(k) as the largest integer 
for which we have 

T I / 2 M L + I = fli/2ML+i ^ b ^ 

where 1<M<0 is a given fixed number. Define also the rectangles 

St(k) = feCO, ̂ a(0]X[yi(0, ya(0] 
= [Tp*Mi

97V*Mi+1]X[Tk-1T1-^M-^T^M-*-1], i = 0,l, ...,L(/c). 

We observe that 
Tk-x = *i(0.Vi(0 < ^a(0ya(0 = ?*, 

0 < x^i) < *a(i) ^ bTk, 0 < ^ ( 0 < j 2(0 ^ Z?Tk, i = 0, 1, ..., L(k). 

Hence, Si(k)czDT —DT , and the S^k) are disjoint rectangles for 
each k. Choosing now M and 0 big enough so that M/0 is small 
enough, it follows that (1.12.22) and (1.12.23) hold again. Our present 
definition of L gives that 

L+2 = L(k)+2 - j - i ^ log bTka^\ 

From here on this proof continues along the lines of that of £<1 above. 

Step 3. Suppose that conditions (i)-(iv) of Theorem 1.12.5 are satisfied. 
Then for any e>0 we have 

(1.12.25) Hm sup ST\W(R)\ ^ 1-e a.s. 
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Proof Let Q be as in Step 2 and let L=L(T) be the largest integer 
for which we have 

(T-aT)<-bT " bT i f e < 1 ' 

ay*ML+1 = T1>!iML+1^bT if g = l. 

Define the rectangles 

s, = s,(T) = [Xl(f), y1(i)]x[x2(i), yM 

[(^fV.(^)W]x[o,1^-] if .-,. 
l[^1/2M^^1/2MI'+1]x[o,^1/2M~,,-1] if <? = i, 

i = 0 , l , . . . ,L = L(T). 
We observe that 

0 = ^(O^iO) < x2(i)y2(i) = T 

0 < XiO) < x2(0 ^ 6T 

0 = yi({) < y,(0 ^ 6 r , i = 0, 1, ..., L = L(T), 

and (1.12.22) also holds. 
Since the sets S((T) (/=0, 1,2, ...,L) are disjoint, we have 

p{^L
sT\nsiCn)\^i-s} 

^ ( l - t f C / l ^ p O o g r a ^ + l o g O o g M f 1 ' ^ 

and from here on the proof is completed along the lines of Step 3 of 
Theorem 1.2.1. 

In the sequel we are going to need such a version of Theorem 1.12.5 
where the symmetric domain DT=DT(bT) is replaced by the non-sym-
metric one: 

D2fT = DttTQ>P9 bp) = {(*, y): xy ^ T, 0 < x ^ b(
T

x\ 0 < y ^ &<?>}. 

Hence, we formulate 

Theorem 1.12.7. Let 0<aT^T, bfib!p=T be non-decreasing functions of 
T and define 

52tT= ( 2 a r ( l o g ^ + l o g ( l o g j / ^ . 
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Further let L2tT=L2tT(aT9 b(}\ tip) (resp. L*2T=L*2 T(aT9 b%\ bf))be the set 
of rectangles R=[xl9 x2]X[yl9 y2]aD2tT for which X(R)^aT (resp. 
X(R)=aT). Suppose that conditions (i), (ii) and (iii) of Theorem 1.12.5 
hold when 5T is replaced by 52tT in them. Then 

(1.12.26) Em sup 52tT\W(R)\^ Em sup 82tT\W(R)\ = I. 
T-+ooR£L2tT ' T-+<x>R£L*tT 

If we also have 

iogrfl?Hiogfiogl/^^+i) 
;™ V. 1 _ a I I (iv) lim i t rr •> 

v ' r-oo log log T 
then 

(1.12.27) lim sup 82tT\W(R)\ = lim sup 82tT\W(R)\ = 1. 

The proof of this theorem is similar to that of Theorem 1.12.5 and will 
not be repeated here. 

In our previous theorem we considered the class L2T (resp. L*2T) 
of all rectangles belonging to the set D2T having an area less than (resp. 
equal to) aT. Now, we replace the above class L2tT (resp. L*2T) by the 
class L3>T (resp. L*3T) containing rectangles of some special shape only. 
We let 

^3,r = Lz,T\aT> bT , bT , cT , cT ), (resp. LZT = LZT(aT9 bT , bT , cT , Cj. )) 

be the set of rectangles R=[xl9 x2] X [ji , J 2 ] c A , r for which x2—xt ^ c^, 
j 2 — yi^dp and A(i*)^ar (resp. A(i^)=ar). 

Theorem 1.12.8. Let0^aT^T9 bfbf^T, c™^b$\ cf^bf, c<pcf^aT 

be non-decreasing functions of T and define 

KT = [2aT ( log-^+log ( l o g | / " i ^ - + l ) + l o g l o g r ) j 1/2. 

Suppose that conditions (i), (ii) and (iii) of Theorem 1.12.5 hold when 8T is 
replaced by <53>r in them. Then 

(1.12.28) Em sup <53 T\W{R)\ 2± Em sup 53 rl^(^)l = 1-
T-+aoReL3tT ' T-+ooReL*T 
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If we also have 

log ra?
1+logflogl/^££!.+1 

(iv) lim L_f... a* 
T-+00 log log T ' 

then 

(1.12.29) lim sup 8Z T\W(R)\ = lim sup <53 T |^CR) |= 1. 

The proof of this theorem is again similar to that of Theorem 1.12.5 and 
will be omitted. 

We note that in case of dp=b$ and dp=tip9 Theorem 1.12.8 implies 
Theorem 1.12.7. Also, if b(^=b(p=bT9 then Theorem 1.12.7 reduces to 
Theorem 1.12.5. 

Choosing specific forms for the parameters of the above theorems of this 
Section, we list a few consequences of them. 

Corollary 1.12.1. Let bT be a function of T satisfying the conditions of 
Theorem 1.12.4 and define 

DT = DT(bT) = U Ds 

with Dg as in Theorem 1.12.3. Then 

lim sup yxy\W(x,y)\^L 
T-+ oo (x,y)£DT 

The domain DT seems to be a rather artificial one. However using this 
corollary one can get similar results for many concrete domains. As an 
example we give: 

Corollary 1.12.2. Let 

Ev = {(x9y): x^hy^U). 
Then 

(1.12.30) lim sup , lW(x>y)l S I , 
u~oo (x^eEu y4xy log log xy 

or equivalently 
jr— Wipe, y)\ a.s. t (1.12.30*) Em sup ' v ' = 1. 
y-ooxsi \Axy\og\ogxy 

Proof (1.12.30) follows from Corollary 1.12.1 and from the trivial 
relationship 

DT(T*t*) aEv(Z DV(U) 

if T is big enough (for example if T^C/4). 

file:///Axy/og/ogxy
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Corollary 1.12.3. Let 0<aT^T and T/aT be non-decreasing functions. 
Then 

(1.12.31) fim sup sup sup 

\W(x29 y+s)-W(xl9 y+s)-W(x29 y)+W(xl9 y)\ „ . { 

l /2a r[log-^-+loglogrJ 

If in addition, we also have log (T/aT)/log log T-^oo as T^°°t then the 
Em in (1.12.31) can be replaced by lim. 

Proof. Let bf=T9bf=\9c
{p=\ and cf=aT in Theorem 1.12.8. 

Corollary 1.12.4. Let 0<aT^T and T/aT be non-decreasing functions. 
Then 

n n ^ v— W(x> y+s)-W(x9 y)\ a.s. * 
(1.12.32) lim sup sup sup - ^ 1. T-+oo 0^y^T-aT 0^s^aT O^x^l 

l /2a r( log-^-+loglogrj 

If again, log (T/aT)/log log T-+ oo as T-+°°9 then the 155 in (1.12.32) 

can be replaced by lim. 

Proof Apply Corollary 1.12.3 with xx=0, x2=x9 and Theorem 1.2.1 
to the process W(\9 y). 

Corollary 1.12.5. Let f(y) be a non-decreasing function of y tending to oo, 
define g(x)=xf(x) and 

(1.12.33) 8{u) = \2u(log(l°S {m
U

(u)+ l )+ loglogn) j ^ 

Assume that 5(u) is a non-decreasing function of u and for any s > 0 there 
exists a QQ = 0o{z)>\ such that 

Then 

1 5 5 — ^ - ^ 1 + e if 1 < 0 ^ 0 O -
+ 1 

(1.12.34) Imi sup 5(xy)\W(x, y)\ ^k 1, 
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or, equivalently, 

(1.12.35) lim sup S(xy)\W(x,y)\^l, 

where VT={(x, y): l^x^f(y), y^T}. 

Proof. Let tip = T, tip=T/inv g(T)9aT=T. Then the appropriate 
conditions of Theorem 1.12.7 are satisfied and we have also 

U DUKV, ^2 )) <= FT c U ^ . ( 6 . w , 6i»>). 
u^Tf(T) u<=T 

Whence we have (1.12.35) by Theorem 1.12.7. 

1.13. A continuity modulus of W(x, y) 

In this section an analogue of Theorem 1.1.1 is given. 

Theorem 1.13.1 (Pruitt, Orey 1973). Let R(A) (resp. R*(A)J be the set of 
rectangles 

R = [*i, *JX[yi,j>J (0 ^ x1 < x2 ^ 1; 0 ^ ^ - : y2 ^ 1) 

w/f/z X(R)^h (resp. X(R)=h). Then 

y W(R)\ 
lim sup = 
h-*oi?€R(ft) ylhlogl/h 

= lim sup ==. = 1. 
h-+oR£R*(h) y2hlog\/h 

The proof of this theorem is based on the following analogue of Lemma 
1.1.1, which is a more natural and stronger analogue of the latter than 
Lemma 1.11.1 is. 

Lemma 1.13.1. For any a > 0 there exists a constant C=C(e)>0 such that 
the inequality 

V* 

(1.13.1) P( sup \W(K)\^vh1'*)^ar1Qogh-ire 2+e 

RtRQi) 

holds for every positive v and A<1. 
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Proof Choosing bT=Tl/2 and aT=Th, this lemma follows from 
Theorem 1.12.6 and from the following trivial 

Observation. For any fixed T>§ we have 

{W{x9 y);0^x^ Tl!\ O^y^ T1/2} JL 

{T1/2W(xT~1/2
9 yT~1/2); O^x^ Tlf\ 0 ^ y ^ T1/2}. 

The proof of Theorem 1.13.1 follows the lines of that of Theorem 1.1.1 
and will not be presented here. 

1.14. The limit points of W(x9 y) asy-+°o 

Several extensions of Theorem 1.3.2 can be formulated in the multivariate 
case (cf. Wichura 1973). We concentrate on one of these, which will be 
applied when investigating similar properties of the empirical process 
(cf. Chapter 5). 

Theorem 1.14.1. Consider the process 

V2jloglogj 

as a function of y, taking values in C(0, 1). Then £y(x)(y-+°°) is relatively 
compact in C(0, 1) with probability one and the set of its limit points is Sf. 

Here, £f is again that set of absolutely continuous functions which was 
defined in Section 1.3. 

The proof of Theorem 1.14.1 will be based on a number of lemmas. 

Lemma 1.14.1. Let {Xt} and { F j be two sequences of r.v. with EX~ 
=EYi=0, and assume that Xn+1 and Yn+1 are both independent of 
(Xl9...9Xn9Yl9...9Yn). Put Sn=X^...+Xn9 Tn=Yx+... + Yn and 
Afn=max (\Sn\9 \Tn\). Then the sequence {Mn} is a sub-martingale sequence, 
i.e., we have 

E(Mn+1\Ml9...9Mn)^Mn a.s. 

Proof It suffices to show that 

E(Mn+1\Xl9...9Xn9Yl9...9Yn)^Mn a.s., 
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since the c-algebra generated by Xt,..., X„, Ylt ..., Yn is larger than that 
generated by M1,...,Mn. We have 

E(Mn+1\X1,...,Xn,Y1,...,Yn) 

= £{max(|5„ + ZB+1|, | r n f r„+ 1 | ) |X1 ; . . . . Xn,Yx, ...,Y„)} 

^E{\Sn+Xn+1\\X1,...,X„,Y1,...,Yn) 

= E(\S„+Xn+1\\Sn) ^ \E(Sn+Xn+1\Sn)\ = \S„\ a.s. 

One shows similarly, that 

EiM^X,, ...,Xn, Ylt ...,Y„) ^ \Tn\ a.s., 

and our lemma is proved. 

Lemma 1.14.2. For every s>0 there exists an A = A{&)>0 so that for any 
u>0 we have 

/ I ^ I N z>f \W(x+t9n)-W(x9n)\ ^ l / r l 
(1.14.1) Pi sup sup sup -—- —p=— —^uyh\ [l^n^N O^x^l-h O^t^h yN J 

A ~ £

-
- he 

where n and N run over the positive integers. 

Proof. First we observe that, by a straightforward generalization of 
Lemma 1.14.1, 

Mn = sup sup \W(x+t\ n)— W{x\ n)\ 

is a sub-martingale, that is to say 

E(Mn+1\Mn,Mn.1,...,M1)^Mn a.s. 

Consequently, exp j^ r^ [ ( />0) is also a submartingale. Now observe that 

(1.14.2) Pi sup Mn^ui~hN\=p\ sup e x p f ^ § } ^ ^ 2 | 
l^n^N [l^n^N Inly J J 

by the sub-martingale inequality (cf. Doob, 1953, p. 314). Also by Lemma 
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{ tM2} 
-j-]rr\ is bounded above whenever t<\, and hence we have 

our statement. 

Lemma 1.14.3. With the notation of Lemma 1.14.2 we have 

(1.14.3) 155 , MN S 1, 
N— YlNhloglogN 

for any 0 < A < 1 . 

Proof First we prove that 

(1.14.4) 115 MN — ^ 1 a.s. 
N-»°° YlNhloglogN 

Let Nk=[0k], 0 > 1 , and u = Y2{l^d)loglogN. Then, by Lemma 1.14.2 
for any <5>0, we have that the series 

2P{ sup Mn ^ Y2(l +S) log log Nk fNJi} 

converges. The desired estimation for N£[Nk_l9 Nk] is carried out the 
usual way, taking 6 near to 1. Whence (1.14.4) is proved. The converse 
inequality follows by applying (1.3.2) to the process {IV (h, ri)/Y7i;n = l,2,...}. 

The next lemma is due to Helen Finkelstein (1971). 

Lemma 1.14.4 (Finkelstein 1971). Let Zl9 Z 2 , . . . be independent identically 
distributed random vectors with values in d-dimensional Euclidean space 
Rd with EZx=0 and assume that the components of ZX (i = l ,2 , ...) are 
independent ^ ( 0 , 1) random variables. Let 

n 

Y2n log log n ' 

Then with probability 1 the sequence {Un} is relatively compact and the set 
Bd of its limit points is the d-dimensional unit ball 

5, = {*€*": ||x|| Si} 

where || • || is the Euclidean norm in Rd. 

Proof. This lemma is true if d= 1 (see Theorem 1.3.1 and Remark 1.3.1). 
We prove it for d=2. For higher dimensions the proof is immediate. 
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Let Zi^Z^Z^ (i = l,2, ...) and a,/? be real numbers such that 
a2+/?2=l. Then aZfl-f/?Zi2 are independent ^(0 ,1) r.v. So (applying 
Theorem 1.3.1) the set of limit points of the sequence 

| (aZ i l + i8Zf 2 ) 

1W "ii^i^r 
is the interval [—1, +1]. This implies that the set of limit points B2 of 
the sequence {Un} is a subset of the unit circle and the boundary of the 
unit circle belongs to B2. 

Let now {ZiZ} be a sequence of independent */F(0, 1) r.v. assumed to 
be independent from the given sequence {ZJ. Let Zf=(Zil9Zi2,Ziz) and 

£/* = — = ^ = - . 
V 2« log log n 

In the same way as above one can prove that the set of limit points of 
{U*} is a subset of the unit sphere of Rz which contains the boundary 
of this sphere. This fact in itself already implies that B2 is equal to the 
unit circle of R2 as stated in the lemma. 

The above Lemmas 1.14.3 and 1.14.4 play the same role in the proof 
of Theorem 1.14.1 as Corollary 1.2.2 and Proposition 1.3.1 do in the proof 
of Theorem 1.3.2 respectively. 

In the same way as we proved Theorem 1.3.2, we can now prove that 
£„(x) is relatively compact in C(0, 1) with probability one, and the set 
of its limit points is £f. This, in turn, easily implies Theorem 1.14.1 (cf. 
Theorem 1.3.2* vs. Theorem 1.3.2). 

For later use we present a further analogue of Theorem 1.1.1. 

Theorem 1.14.2 (Chan 1977). Let {hn} be a sequence of positive numbers 
for which 

(l) l im -; = oo. 
v »-*«> log log n 

Then 

(1.14.5) lim sup yn\W(t+hn, ri)-W(t, n)\ = 1 
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and 

(1.14.6) lim sup sup ym\W(t+s,n)-W(t9n)\ = l9 

where yn=(2nhnlog l/hn)~
l/2. 

Remark 1.2.1, regarding the question of omitting the absolute value 
sign and changing the sup to inf, holds true in this case too. 

The proof of this theorem and that of Theorem 1.2.1 are quite similar. 
Hence only the main steps will be presented here. 

Proof of Theorem 1.14.2. 

Step 1. For any £>0 and 0=0(e)>l let 

A(k) = sup sup sup 7[0fc]|^(f+s, ri)—W(t, n)\. 

Then 

(1.14.7) TSiA(k)^l+e a.s. 
fc-*»oo 

provided 9 is near enough to one. 

Proof By Lemma 1.14.2 and condition (i) we have 

2P(A(k) ^ fTTe) ̂  2 hifo^~ 

and this proves (1.14.7). 

Step 2. Let 

Bitl) = o S W
r B W H 1 ) t n)-W(khn9 ri)\. 

Then 

(1.14.8) l i m £ ( n ) ^ l a.s. 
n-+°o 

Proof Clearly we have 

2 P(B(n) ^ / ITS) g ^ l - J^rjjA < ~ 
«=i n=i V 6 y log l/hn ) 

and this proves (1.14.8). 
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1.15. The Kiefer process 

Let W(x9 y) be a two-parameter Wiener process. A Kiefer process 

{K{x9 y); 0 ̂  x ̂  1, 0 ̂  j ; « » } 
is defined by 

This definition immediately implies the following properties of a Kiefer 
process: 

(i) for any 0<x 0 <l 

W(y) = ! ^ L (y^O) 
Yx0(l-x0) 

is a Wiener process, 

(ii) for any y0>0 

vy0 

is a Brownian bridge, 
(iii) Bn(x)=K(x9 n)—K(x9 n — 1) (O^x^ l ; w=l, 2, ...) is a sequence of 

independent Brownian bridges, 
(iv) EK(x, y)=0 and the covariance function of K(x9 y) is 

EK(xl9 Ji)X(x2, }>2) = (XxAxa-XiXgX^Aja), 

(v) the sample path functions of K(x9 y) are continuous with proba-
bility 1, 

(vi) W(xfy) = (x+l)Ky^9y), x^0,y^0, 

(vii) K(x9y) = {l-x)w\j£-9y}, O^x^Uy^O. 

In establishing (vi) and (vii), we should also use (1.4.4) and (1.4.5). 
Consider the process 

K{x9y) 
ily log logy 

rJy(x) = T7=^^= (0^x^l9y^3) 

as a function of y taking values in C(0, 1). Then we have 

Theorem 1.15.1. The process {riy(x)} is relatively compact in C(0, 1) 
with probability 1 and the set of its limit points (as y-><*>) is & where 
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Pc C(0, 1) is the set of absolutely continuous functions f for which 

/(0)=/(l) = 0 and / ( / ' ( f & s l . 
0 

Proof This theorem is a straight consequence of Theorem 1.14.1. 
From the latter theorem we get 

Corollary 1.15.1. 
sup \K(x,y)\ 

y-~ yy log log}; 

Theorem 1.15.2. The statements (1.14.5) aw/ (1.14.6) o/ Theorem 1.14.2 
remain true if W(x, n) is replaced by K(x, n) in them. 

Proof. This theorem is a straight consequence of Theorem 1.14.2. 
Applying property (vi) (or (vii)) of the Kiefer process and (1.12.30*), 

we immediately get the following analogue of the latter. 

Corollary 1.15.2. 

(1.15.1) B5 sup lK(x>y)l ^ i 
y+ooo<*<i y4x(l — x)yloglogy/x(l—x) 

On the other hand, Theorem 1.15.1 implies 

Corollary 1.15.3. For any 0<e<£ we have 

(1.15.2) I E sup l*(*»30j ju!lt 

y-̂ oo £<x<i-£ y2x(l —x)y log log y 
Comparing (1.15.1) and (1.15.2), it is natural to ask: how does a Kiefer 

process behave on an interval ey<x<l— sy9 when sy is a non-increasing 
positive function? An answer to this question is our next corollary which 
follows from Corollary 1.12.5. 

Corollary 1.15.4. Let 0<ey<% be a non-increasing function of y and 

define f(y) = 1 and g(x)=xf(x). Then 
ey 

(1.15.3) Em sup (2yx(l-x)[logflog ^ + l ) 

+1°8 l08lRfe) ])""«*•'>! 
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Especially if ey=e-(losy)v (O^y^l), then 

(1.15.4) m sup [2yx(l -x)(y+l) loglog y T ' V f r , >0I = 1, 

and if Ey^dy1 log log y, </>0, f/ie/i 

(1.15.5) 115 sup (4yjc(l-*)loglog , / A \K(x,y)\^L 

Supplementary remarks 

Section 1.0. A Wiener process is frequently called a Brownian process 
or Brownian motion. The latter terminology was used only in a physical 
sense by us and the idealized version is called the Wiener process throughout. 

Section 1.1. In the definition of a Wiener process condition (i) can be 
replaced by the weaker condition 

(i*) ^(0) = 0, £ ^ ( 0 = 0, EW*(t) = t (t^O). 

For a proof of this fact see for example Ito's book (1960). 
A Wiener process generates a measure on the Borel sets of C(0, 1) in 

a natural way. Several authors consider this measure as the Wiener process. 
Our inequality (1.1.1) is far from being best possible. Our method is 

capable of producing also the following stronger inequality 

(5.1.1.1) P{ sup sup \W(t+s)-W(t)\^ vh1/2} ^ Cv^h^e-^2 

where C is a positive constant. If we are interested only in the distribution 
of sup \JV(t+h)— W(t)\, then a theorem of Quails and Watanabe 

(1972) implies the sharper inequality 

(5.1.1.2) P{ sup IWit+fy-WW^vh^^Cvh^e-^2 

with a positive constant C (cf. also Theorem 1.5.5). 
In Levy's books (1937, 1948) a little bit weaker form of Theorem 1.1.1 

is formulated. For this form we refer to Orey and T-wlor (1974) or Pruitt 
and Orey (1973). For describing the behaviour of sup (W(t+h)- W(t)) 

in a more exact manner than as it is done in Theorem 1.1.1, we refer to the 
so-called Chung, Erdos, Sirao (1959) test, cf. also Revesz (1979a). 
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Another way of describing the increments of a Wiener process is via 
the following quadratic variation theorems: 

Theorem S. 1.1.1 (L6vy 1940, Baxter 1956). 

(5.1.1.3) Urn 2(W(kl2n)-W((k-l)l2n)f S i . 

Theorem S. 1.1.2 (Dudley 1973). Let 0=x™^x™^...^x™=l be a 
sequence of partitions of the unit interval with kn/°° and assume that 

max | JC/A - *f "> | = o (1/log n). 

(5.1.1.4) lim 2 (»r(xft}
1)-»F(4"))) ,= l. 

n-+°°k=i 

Section 1.2. The statements of (1.2.3) were also proved by Lai (1973) 
under somewhat stronger restrictions on aT. 

Applying the method of proof of Theorem 1.2.1, the following, somewhat 
more general theorem can be also proved. 

Theorem S. 1.2.1. Let 0<aT^bT and assume that bT/aT is a non-decreasing 
function of T. Assume also that one of the following three conditions 
holds true: 

(S. 1.2.1) bT/ + oo, aT is non-decreasing, 

(S.1.2.2) bTjaT/°° and aT,bT are non-increasing, 

(S. 1.2.3) bT\0, aT\0, 

as T-+oo. Then 

(S.l.2.4) Em sup sup yT\W(t+s)-W(t)\ 

S lim sup yTW(t+aT)-W{l)\ S 1, 

where yT= \laT |log^+log(|logZ>r| + l)j . If we also have log | — ) • 

• (logfllogZ^I + l ) - 1 - * ^ as T-^oo, then (S. 1.2.4) holds with lim instead 
of lim. 

We note that this theorem is a generalization of our Theorem 1.2.1 and 
that it also contains two classical theorems, namely Theorems 1.1.1 and 

Then
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1.3.3. Indeed, if bT=T we get Theorem 1.2.1, if Z>r=l and aT=l/T 
then Theorem 1.1.1 follows and, when bT=aT=l/T9 then Theorem 1.3.3 
is obtained. 

Section 1.3. In the book of Riesz and Sz.-Nagy (1955) Lemma 1.3.1 is 
formulated in a slightly different way. Using the same method of proof 
the quoted form can also be obtained. 

In connection with Theorem 1.3.1 we should note that stronger results 
are also available in terms of the so-called upper and lower classes of 
functions, introduced by P. Levy (cf. Supplementary Remarks to Sec-
tion 3.2). 

Exactly the same way as Theorem 1.3.2 is a generalization of Theorem 
1.3.1, the following two theorems are Strassen type generalizations of 
Theorem 1.2.1. 

Theorem S. 1.3.1. Assume conditions (i), (ii) and (iii) of Theorem 1.2.1. 
Let &* be as in Theorem 1.3.2. Then, for every 6>0, feSf, for almost all 
CD£Q and for all T large enough there exists a t=t(co,f e9 T) such that 
0^t(co9f9e9T)^T-aT and 

(S.l.3.1) sup 
W(t+xaT)-W(t) 

}/2aT(\ogTafx+loglogT) 

Conversely, for every e>0, every t£[0, T—aT] and for almost all co£Q9 

there exists an faSf such that (S.l.3.1) holds true whenever T is large 
enough. 

Theorem S. 1.3.2. Assume only the conditions (i) and(ii) of Theorem 1.2.1. 
Then, for every e>0,/€«$^ and for almost all co£Q there exist T=T(s,co,f) 
and t=t(e, a>, / )€[0 , T—aT] such that (S.l.3.1) holds true. However, the 
converse statement of Theorem S.l.3.1 is true as stated. 

We note that the important difference between Theorems S.l.3.1 and 
S. 1.3.2 is the fact that in the former we state that for every T big enough 
and for every faSf there exists a t£[09 T—aT] such that the function 

r,r(*) = 7 W+**T)-wn 
J ^ r O o g r a ^ + l o g l o g r ) 

approximates the given / , while in Theorem S. 1.3.2 we only state that 
for every faSf there exists a T (in fact there exists infinitely many T) 
and a f£[0, T—aT] such that TttT(x) approximates the given / . 
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For a preliminary version of Theorem S. 1.3.2 we refer to Chan, Csorgo, 
Revesz (1978) and for the here quoted form to Revesz (1979b). 

Rates of convergence results in the context of Theorems 1.3.1 and 1.3.2 
are also available (cf. Supplementary Remarks of Section 3.2). 

Section 1.4. A Brownian bridge is frequently called tied-down Brownian 
motion or tied-down Brownian process. 

Section 1.6. Our Theorem 1.6.1 is related to a result of Dvoretzky (1963) 
and that of Taylor (1974). 

Theorem S. 1.6.1 (Dvoretzky 1963). There exists a universal constant 
C>0 such that 

/ o i * ^ • P T— W(t + h)-W(f)\ -
(S. 1.6.1) inf fim - ! — - — ^ ^ ^ ^ C a.s. 

Our Theorem 1.6.1 clearly implies 

(S.l.6.2) IIS inf f 8 1 0 ^ " 1 ) \W(t+h)-W(t)\^l a.s. 

Comparing the respective statements of (S. 1.6.1) and (S.l.6.2), the former 
states that every neighbourhood of every t£[0, 1] contains a point t+h(t) 
such that \W(t+h(t))-W(t)\ is at least so big as Ch1/2(t). On the other 
hand, (S.l.6.2) states that for all A>0 small enough there exists a t=t(h) 

such that \W(t+h)-W(t)\ is so small as [ n h ] . 
\o log h ) 

Now the mentioned result of Taylor is 

Theorem S. 1.6.2 (Taylor 1974). There exists a universal constant C>0 
such that 

floe ft"1 V 
Um U s - — inf sup \W(v)-W(u)\ = C. 

It follows from our Theorem 1.6.1 that Taylor's constant C^n/Yl. 

Section 1.7. It is an interesting question to pose whether Chung's law 
of iterated logarithm (cf. Example 2 of Section 1.7) had also a functional 
form, like Theorem 1.3.2 is a functional form of Theorem 1.3.1. A solu-
tion of this problem was given by Donsker and Varadhan (1977) in terms 
of local times of a Wiener process. For another approach and solution 
to this problem we refer to Csaki (1981). 
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Section 1.9. Comparing Theorems 1.5.5 and 1.9.1 we observe that the 
asymptotic behaviour of the processes sup \W(t+\)— W(t)\ and 

sup \U(t)\ and that of sup (W(t+1)-W(t)) and sup U(t) is the 

same. This surprising fact is due to the following general 

Theorem S. 1.9.1 (Quails, Watanabe 1972). If {X(t); 0^*<oo} fs a 
stationary Gaussian process with 

EX(t) = 0, E(X(t+s)-X(t))2 > 0 
and 

^ Z ( 0 ^ + T ) = ^(T) = 1-|T|+O(T2) as | T | - 0 , 

and also with 
+ 00 

f Q2(t)dt^oo or lim^(01ogr = 0, 
— oo 

then 
lim P{ sup X(t) ^ a(y9 T)\ = exp(-e-y), 

lim P{ sup \X(t)\ =l a(y, T)} = exp(-2e-*), 

where a(y,T) (— oo < y < + oo) is as in Theorem 1.9.1. 

Obviously, the two processes W(t+1)— W(t) and U(i) satisfy the 
conditions of Theorem S. 1.9.1, and whence Theorems 1.5.5 and 1.9.1 are 
special cases of the latter. 

Section 1.10. The process W(x, y) is sometimes called the Yeh process 
(cf. Yeh 1960 and Cencov 1956) or Brownian (Wiener) sheet. 

Section 1.12. As it stands now, Theorem 1.12.8 is comparable to Theorem 
1.2.1. It would be desirable to extend the former the same way as Theorem 
S. 1.2.1 is an extension of the latter. 

Section 1.14. Theorems 1.14.1 and 1.15.1 are closely related to Finkel-
stein's theorem on the empirical process, and both of them can be considered 
as her results. The idea of using the martingale technique in the proof 
of Lemma 1.14.2 is borrowed from a paper of Csaki (1968). 

A natural generalization of Theorem 1.14.2 is 
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Theorem S. 1.14.2 (Chan 1977). Let 0 < A r ^ l , 0<aT^T be functions ot 
T so that T/aT,aT are non-decreasing and hT is non-increasing. Lef 
R=R(x, y; s, t)=[x, x+s]X[y, y+t]. Then 

(S. 1.14.1) fim sup sup sup sup $T\W(R)\ = 1, 

where /? r = 2 f t r a r ( l o g — r - + l o g l o g 7 j 

If we also have 
log (T/aThT) 

l im — — • — = — = o o 
r-oo log log T 

then 1155 in (S. 1.14.1) can be replaced by lim. 

Section 7.75. The Kiefer process appears in a paper by Kiefer (1972) 
proving the first strong embedding theorem for the empirical process. 
A weak convergence version of Kiefer's theorem was given by Miiller (1970). 

An analogue of Theorem S. 1.14.2 can be stated also for a Kiefer process. 
Namely we have 

Theorem S. 1.15.1 (Chan 1977). Let 0 < e r < £ , 0<aT^T be functions of 
T such that eT and aT/T are non-increasing and aT is non-decreasing. 
Define K((xl9 JCJ, t)=K(x2, t)-K(xl91) ( O ^ x ^ X a ^ l ) . Then 

(S.l.15.1) 

fim sup sup sup pT\K((x9 X+S], t+aT)-K((x, x+s], t)\ 

= fim sup sup PT\K((*> x+eT], t+aT)-K((x, x+eT], t)\ = 1, 

where pT = 2a re r ( l — er)llog hloglogTj 

If we also have 

(S.l.15.2) lim 

t l T 
log 

Onr a> T 
r-̂ oo log log T 

then fim in (S. 1.15.1) can be replaced by lim . 



2. Strong Approximations of Partial Sums 
of LI.D.R.V. by Wiener Processes 

2.0. Notations 

Throughout this Chapter Xl9 X2, ... will denote a sequence of i.i.d.r.v. 
with EX^O, EX*=1. S,=Ar

1+Ar
8+...+jr i I (n=l,2,...), S 0 =0 stand 

for the partial sums and Sn(t) is defined by (0.3). 

2.1. A proof of Donsker's theorem with Skorohod's embedding scheme 

In the Introduction we formulated Donsker's invariance principle 
(Theorem 0.1). In this Section we present a proof of this theorem. This 
proof is different from the original idea of Donsker and produces a some-
what stronger result (Theorem 2.1.2). The basic tool of the present proof is the 
so-called Skorohod embedding scheme. The idea of proving Donsker's 
theorem via Skorohod's embedding scheme is due to Breiman (1968). 

Skorohod's theorem (1961) essentially states that for any distribution 
function F with first moment 0 and finite second moment, one can define 
a probability space (Q, #/, P) with a Wiener process W and a stopping 
time T with finite expectation such that the distribution function of W{x) 
is the given F. (Ther.v. T is called a stopping time, if the event {co: r(co)^t} 
is an element of the <r-algebra generated by {W(s); s^t}.) We need 
the following general form of this theorem. 

Theorem 2.1.1 (Skorohod 1961). There exists a probability space (Q, s/, P) 
with a Wiener process {W(t)\ 0^*<°°} and a sequence T 1 } T 2 , ... of non-
negative i.i.d.r.v. defined on it such that 

( 9 W M - . . . + T * ) ; k=l,29...}=L{Sk; k=l,2,...}, 
(ii) {Ti + ...-fTfc; k=l, 2, ...} is a stopping time sequence, 

(iii) Ex1=l. 
Also, if EXlv<°° then ET\^<™ ( V = 1 , 2 , . . .) . 
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We do not prove this theorem here. For an elegant proof of it we refer 
to Breiman's book (1968). Using his proof one can also get the following 
version of Skorohod's theorem. 

Theorem 2.1.1*. There exists a probability space with a Wiener process 
{W(t); 0^ f<°°} and a triangular sequence {if0, . . . , T £ ° } of non-negative, 
r.v. defined on it such that 

(i) {TJ0, . . . , T £ ° } are U.d.r.v. for each n, and T&> JL T<?\ n=l,2, ... 

m ^[Zi^*.).. k.t „}i 

= {SjYn\ fc = l, ..., w} for each « = 1,2, ..., 

and the natural analogues of the further statements of Theorem 2.1.1 also hold. 

We emphasize that this theorem of Skorohod has opened a completely 
new chapter in the area of invariance theorems. Already Skorohod (1961, 
Chapter 7.3) uses it to prove (0.5) with a rate of convergence for a special 
functional h. It provided also the basic tool for Strassen (1964) to prove 
his famous strong invariance principle. 

In order to prove Donsker's theorem we first prove 

Theorem 2.1.2. There exists a probability space with a Wiener process 
{W(t); O^t^l} and a sequence of stochastic processes {Sn(t); O^t^l} 
such that 

(2.1.1) {Sm(ty, O ^ f ^ l J i t e C O ; o s / s l } 

for each n=\,2, ..., and 

(2.1.2) sup 1^(0-^(01-^0 . 

Proof Using the notation of Theorem 2.1.1*, let 

n ) 

Then the relationship of (2.1.1) holds, because of Theorem 2.1.1* (ii). 

£,(,)=Kfi-'+^'au 
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Now to verify (2.1.2) it suffices to show 

(2.1.3) sup L[Ti") + -+Tfe)]] _w(f-\ _L^ o 

and 

(2.1.4) sup \U^ + -+^A 

-^(^t*'))(».-I«l)|^o. 

To show that (2.1.3) holds true, we note that, via Theorem 2.1.1* (i), 
we have 

sup - ^ 0 . 

This latter statement combined with continuity of the Wiener process W{ •) 
(cf. Theorem 1.1.1) gives (2.1.3). One can verify (2.1.4) in a similar way. 

This theorem implies Donsker's invariance principle as follows: 

Proof of Theorem 0.1. From (2.1.2) it follows that 

(2.1.5) h(Sn(tj)-^ h(W(t)) 

and from (2.1.1) we have 

(2.1.6) h(§n(t))-HSn(0) 

for every continuous functional h: C(0, 1)-»1P. Now (2.1.5) and (2.1.6) 
together imply (0.5). 

Remark 2.1.1. If *=1, we get, from (2.1.1) and (2.1.2), that 

(2.1.7) S n ( l ) - ^ ^ 1 ) € ^ ( 0 , 1 ) 

and 

(2.1.8) £,(1) =£= Sn(\) = Sjfr for each n. 

This, however, does not imply that Sjfn itself converges to a r.v. The 
reason for the different behaviour of §n(l) from that of Sjfn (i.e., (2.1.7) 
does not necessarily hold for the latter one) is that the relationship 

{£(1); n = 1,2, ...}=£= {Sjfc n - 1 , 2 , . . . } 
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is not true. In fact, Sjtfn cannot converge in probability to any random 
variable. This follows easily, for example, from the following: 

Theorem 2.13 (Renyi 1958). For every event A of positive probability 
we have 

In order to see how the latter implies that SJ^n cannot converge to 
a r.v., assume that Sjfn—» X, and apply Theorem 2.1.3 with A = 
= {Q>: X(CQ)^0}. This results in a contradiction. 

2.2. The strong invariance principle appears 

As we have already mentioned in the Introduction, Strassen (1964) was 
the first one who introduced the notion of strong invariance principle, when 
proving Theorem 0.2, which we now restate as follows: 

Theorem 2.2.1 (Strassen 1964). A probability space (Q9 s/9 P) with a 
sequence {§„} and a Wiener process {W(t); 0^*<°o} on it can be so 
constructed that 

(2.2.1) {SH; n = 1, 2, ...} =£= {Sn; n = 1, 2,...} 

and 

Y n log log n 

Remark 2.2A. If we are given a probability space {Q, s/,P} with 
a sequence Xl9 X2, ... of i.i.d.r.v., then it is not sure at all that a Wiener 
process W(t) can be defined on the underlying Q for which the relationship 

(2.2.2*) \Sn~W(n)\ a., Q 

}/nloglogn 

would be true. This is the reason why, as a first step, we define a new 
probability space and a new sequence of r.v. (on this new space) which is 
equivalent to the original one in the sense of (2.2.1), and then the statement 
(2.2.2) can be stated for this new sequence. Having only (2.2.2), we can 
still prove any result for Sn itself which (2.2.2*) could have directly pro-
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duced. Indeed, for this very reason, and for the sake of simplicity, we will 
simply say from now on that Sn (itself) can be approximated by a Wiener 
process. That is to say, from now on, we will state our results along the 
lines of (2.2.2*) instead of those of (2.2.2), and we ask the reader to re-
member that they will be meant a la the latter. 

In order to illuminate the relationship of Theorems 2.1.2 and 2.2.1, 
we restate the latter in the following form: 

Theorem 2,2.1*. There exists a Wiener process W{ • ) such that 

(2.2.3) supM)z^2Ml^o. 
o^t^i y log log n 

Caution! Remark 2.2.1 must be applied to understand (2.2.3) correctly. 

Remark 2.2.2. Comparing Theorems 2.1.2 and 2.2.1* we note that 
a disadvantage of the former is that only in-distribution type statements 
can be obtained from it. On the other hand, a disadvantage of (2.2.3) is that 
the rate of convergence in it is weaker than that in (2.1.2). Consequently, 
Donsker's theorem does not follow from Theorem 2.2.1*. (Cf. also 
Theorem 2.2.3.) 

We know (Theorem 2.1.3) that Sn(t) cannot be approximated by a single 
Wiener process W(t) such that 

sup |5„(0-»F(OI^^O 

should hold. Applying the law of iterated logarithm to Sn{\\ one sees 
immediately that the sequence Wn(t)=n~l/2JV(nt) cannot be replaced 
by a single Wiener process in (2.2.3) either. However, it is crucial in (2.2.2) 
or in (2.2.2*) that Sn is approximated by a single Wiener process 
{^(0;0^f<oo}. 

Proof of Theorem 2.2.1. The proof of this theorem again hinges on 
Skorohod's embedding scheme. Let 

(2.2.4) Sn = W(c1 + ...+rJ9 n = 1, 2, ... , 

with the rt as in Theorem 2.1.1. Using Kolmogorov's strong law of large 
numbers we can write: xx +.. . 4- zn=n4-rjn, where „̂ = o (ri). With this 
definition of Sn9 (2.2.2) follows from Theorem 1.3.2 ((2.2.2) also follows 
easily from Theorem 1.2.1). 
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Proof of Theorem 2.2.1*. Using our definition of Sn in (2.2.4), in order 
to verify (2.2.3), it suffices to show 

(2.2.5) S u p ' ^ - ^ " ^ - ± ^ 0 , 
o^/^i j /nloglogn 

(2.2.6) sup i ^ ( ; o - ^ N ] ) i ^ 0 > 
o^r^i (/nloglogn 

(2.2.7) a T F h m - U ( " t - N l ) l ^ n 
o^^i ^« log log n 

The statement of (2.2.5) immediately follows from that of (2.2.2), while 
(2.2.6) and (2.2.7) are trivial. 

We have already remarked that the rate of convergence in Theorem 2.2.1 
is not strong enough to prove Donsker's theorem from it. Indeed to achieve 
this, one needs to replace the denominator of (2.2.2) by n1/2 at least. 
This, however, is impossible (cf., however, Supplementary Remarks, 
Section 2.2, Theorem S.2.2.1) if we assume only the existence of the second 
moment of Xl9 for Breiman proved 

Theorem 2.2.2 (Breiman 1967). There exists a distribution function F with 
mean 0 and variance 1 such that for any i.i.d. sequence {Xt} having 
this distribution and for any Wiener process W(f) we have 

^- \SH-W(n)\ A 

lim ' 1/9 > 0 a.s. 

A stronger result of this type was obtained by Major (1976b) who proved 
that the rate in (2.2.2) cannot be improved if we assume the existence of 
two moments only. His result says 

Theorem 2.2.3 (Major 1976b). For any sequence {an} of real numbers with 
an/ oo there exists a distribution function F with mean 0 and variance 1 
such that for any i.i.d. sequence {X^ having this distribution F and 
for any Wiener process W(f) we have 

The above results suggest that one should investigate the possibility of 
getting better rates for (2.2.3) when higher than second moments are assumed 
for Xx. Towards this end we prove 
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Theorem 2.2.4. Given i.i.d.r.v. Xl9 X2, ... with EX±=0, EX2 = 1, E\X^p«*>, 
2<p^4, there exists a Wiener process W such that 

(2.2.8) lun~W(nl -**- 0 (f 2 ^ 4 , 
v ' n1/p(logn)1/2 

(2-2-9) , , f ' " ^ 1
 W 2 = 0(1) (f p = 4. 

(n log log n)1/4(log n)1/a 

The statement of (2.2.8) (resp. (2.2.9)) was proved by Breiman (1967) 
(resp. Strassen (1965b)), using again the Skorohod Embedding Scheme. 
We do the same here, proving both (2.2.8) and (2.2.9) at the same time. 
In the proof we need the following 

Lemma 2.2.1 (Loeve 1963, p. 243). Let Tl9T2,... be i.i.d.r.v. with ETx=0 
and E\Tx\

q^^ 1^#<2. Then 

(2.2.10) Tl+
ni/f

Tn " ' ( I 

Proof of Theorem 2.2.4. Again, we define Sn as in (2.2.4). Now the 
role played by Kolmogorov's law of large numbers in the proof of Theorem 
2.2.1 is taken over here by the above lemma when proving (2.2.8), while 
in the case of (2.2.9) it is replaced by the Hartman-Wintner law of the 
iterated logarithm for i.i.d.r.v. with finite second moment (cf. (3.2.6)). 
After this, the proof follows the line of thought of that of Theorem 2.2.1, 
definitely using now Theorem 1.2.1. 

We give some details for 2 </? < 4. Applying Lemma 2.2.1 with Tn=xn—1, 
we get T!+...+Tn = n+rjn9 where rjn = o(n2/p). Hence it suffices to 
show that 

\W(n + o(n2^))-W(n)\ a.s. Q 

n1/p yiogn 

Towards this end we note that for every 8>0 there exist QeaQ and 
a sequence of positive numbers an=o(n2/p), satisfying the conditions of 
Theorem 1.2.1, such that 

\rjn\^an if coeQe and P ( 0 £ ) ^ l - e . 

Thus Theorem 1.2.1 implies (2.2.8). 
A Theorem 2.2.1* type version of Theorem 2.2.4 is immediate and from 

it the statement of Donsker's theorem follows when assuming the in-
dicated higher than second moments. 
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Since Lemma 2.2.1 is not true for q^2, it is clear that the method of 
proof of Theorem 2.2.4 will not give a better rate than that of (2.2.9) no 
matter how many moments are assumed to exist. In fact Strassen con-
jectured that the rate of (2.2.9) could not be improved with any further 
conditions and posed the 

Question (Strassen 1965b). Let Xl9 X2, ... be i.i.d.r.v. with mean zero 
and variance one, and let {W(t); 0 ^ / < °o} be a Wiener process such that 

(2.2.11) \SH-W(n)\ Z± ^((nloglogn^aogn)1/2). 

Is then the distribution of the Xx standard normal? 
Similar questions were asked by Breiman (1967) and also by Borovkov 

(1973). As to the question of Strassen, Kiefer (1969a) proved that the order 
of (2.2.9) is indeed the best, provided the S„ are constructed via a Skorohod 
type stopping time procedure. 

In the light of Strassen's problem, one can also ask the 

Question. Should there exist any f{ri)/°° such that 

(2.2.12) \Sn-W(n)\^o(f(n)) 

should imply normality of the A\? 

2.3. The stochastic Geyser problem as a lower limit 
to the strong invariance principle 

Renyi (1962) posed a problem which has nothing to do with our 
question of (2.2.12). A solution of a more general form of it, however, 
turned out to be also an answer to our problem. The original question of 
Renyi went like this: Let Xl9 X2, ... be i.i.d. positive and bounded r.v., 
let {Sn} be their partial sum sequence; can one then determine the distri-
bution function of the Xt with probability one, observing only the sequence 
{[£„]}? This problem was motivated by the following story: Robinson 
Crusoe had a geyser on his island, which kept on erupting at random time 
points. After he had observed the number of eruptions per day for a long 
time, it occurred to him that he should now be able to predict the geyser's 
behaviour, i.e., he should be able to estimate the distribution function of 
the time length between two eruptions. 
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We now formulate a more general form of the geyser problem. Let 
Xl9X29... be i.i.d.r.v. and let F(-) be their distribution function. Put 

where {Rn} is also a random variable sequence, not necessarily independent 
of Sn. Then we can ask whether it is possible to determine the distribution 
function F(«) with probability one via some Borel function of 
{Vn; « = 1,2,...}. In statistical terminology {Rn; n= l ,2 , ...} can be 
viewed as a random error sequence when trying to observe Sn in order 
to estimate F(*). Answering this question Bartfai proved 

Theorem 2.3.1 (Bartfai 1966). Assume that the moment generating function 
R(t)=fetxdF(x) of Xx exists in a neighborhood of t=0 and Rn = o(log n). 
Then, given the values of {Vn; n = l, 2, .. .}, the distribution function F(-) 
is determined with probability one, i.e., there exists ar.v.L(x)=L{Vl9V29...\x) 
measurable with respect to the a-algebra generated by Vl9V2,... such that 
for any given real x, L(x) = F(x). 

The proof of this theorem is given in the next section. Here we show 
why Bartfai's result is also an answer to the question of (2.2.12), via stating 
the following 

Theorem 2.3.2. Let Xl9X%9 ... be i.i.d.r.v. with mean zero and variance 
one. Denote their distribution function by F(») and let {W(t); 0^f<°°} 
be a Wiener process such that 

(2.3.1) Sn-W(n)^o(logn). 

Then F ( . )=#( • ) . 

Proof. Let Rn=W(n)-Sn. Then W(ri)=Vn = Sn+Rn and, assuming 
the existence of the moment generating function of the Xx in a neighborhood 
of zero, we should be able to determine F(>) by Theorem 2.3.1 with 
probability one, having observed {W(n); «=1,2, .. .}. This, however, 
is impossible unless F( •) = # (•). 

In order to complete our proof we show that (2.3.1) is also impossible 
if the moment generating function of X± does not exist. Assume then that 
for any f>0, EetX^ = oo, Then 

2P{ec n > 4 = 2P{Xn>clogn}=°°9 for any o O , 
n = l n = l 
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and the Borel-Cantelli Lemma implies that the inequality Sn+1 — Sn > c log n 
occurs infinitely often with probability 1. On the other hand W(n+l) — 
— W(n)^2 j/logH with probability one for all but finitely many n (cf. 
(1.2.3)). Consequently Sn-W(n)^clogn infinitely often, for any o O , 
with probability one. 

The second part of our proof followed the lines of Breiman (1967). 
We note also that the last lines of our proof above show that, for whatever 

W{t)9 one has 

(2.3.2) EmV^a,, 
V n logtt 

provided R(t) does not exist for any ?>0. 

2.4. The longest runs of pure heads and the stochastic 
Geyser problem 

In connection with a teaching experiment in mathematics, T. Varga posed 
a problem which has nothing to do with the Stochastic Geyser Problem. 
A solution of a more general form of it, however, turned out to be also an 
answer to the latter. The experiment goes like this: his class of secondary 
school children is divided into two sections. In one of the sections each 
child is given a coin which they then throw two hundred times, recording 
the resulting head and tail sequence on a piece of paper. In the other section 
the children do not receive coins but are told instead that they should try 
to write down a "random" head and tail sequence of length two hundred. 
Collecting these slips of paper, he then tries to subdivide them into their 
original groups. Most of the time he succeeds quite well. His secret is 
that he had observed that in a randomly produced sequence of length two 
hundred, there are, say, head-runs of length seven. On the other hand, he 
had also observed that most of those children who were to write down an 
imaginary random sequence are usually afraid of putting down runs of 
longer than four. Hence, in order to find the slips coming from the coin 
tossing group, he simply selects the ones which contain runs longer than five. 

This experiment led T. Varga to ask: What is the length of the longest 
run of pure heads in n Bernoulli trials? 

An answer to this question was given by Erdos and Renyi who proved 

Theorem 2.4.1 (Erdos, Renyi 1970). Let Xl9X2,... be i.id.r.v., each 
taking the values ± 1 with probability \. Put S o=0, Sn=Xx+...+Xn. 
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Then for any c£(0, 1) and for almost all co£Q there exists an nQ=n0(c,ti) 
such that 

< 2 A 1 ) o^W^108'"1"^ = [ c l ° g 2 n ] ' 
if «>«0. 

That is, this theorem guarantees the existence of a run of length [c log2 n] 
for every c£(0, 1) with probability one if n is large enough. 

On the other hand, they also showed for o l that the equality of 
(2.4.1) can only hold for a finite number of values of n with probability 
one. They proved 

Theorem 2.4.2 (Erdos, Renyi 1970). With the above notation one has 

(2.4.2) max Sfc+r l o g 2 w ]-Sf c a,s. t 
0sifc3in-[clog2/tJ [ c l o g 2 n ] 

where a(c)=l for c ^ l , and, if o l , then a(c) is the only solution of 
the equation 

(2.4.3) 4—*(¥)• 
with h(x) =— Jclog2x — (1— x) log2 (1— x)9 0 < x < l ; the herewith defined 
a(-) w a strictly decreasing continuous function for o l with lima(c) = l 

and lim a(c)=0. 

As to the problem of the longest runs of pure heads, these two theorems 
do not give a complete answer (for example, they do not say anything 
about the existence of pure head-runs of length [log2w]; cf. the Supple-
mentary Remarks of Section 2.4). A generalization of Theorem 2.4.2 also 
produced a new proof of the stochastic geyser problem. 

Theorem 2.4.3 (Erdos, Renyi 1970). Let Xl9X2, ... be i.i.d.r.v. with mean 
zero and a moment generating function R(t)=EetXl

9 finite in a neigh-
bourhood of t=0. Let 

Q(x) = infe-txR(t), 

the so-called Chernoff function of Xx. Then for any o O we have 

(2.4.4) max s*+tcu*n\-Sk a.s. t 
v y osfes«-[ciog«] [clogn] 
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where 
(2.4.5) a(c) = sup {x: Q(X) ̂  <r1/c}. 

Remark 2.4.1. Since £(0) = 1 and Q(X) is a strictly decreasing function 
in the interval where Q(X)>0, a(c) is well defined for every c>0 by 
(2.4.5), and it is a continuous decreasing function with lim a(c)=0. 

The proof of Theorem 2.4.1 is elementary and will not be given here. 
The statement of Theorem 2.4.2 is a special case of that of Theorem 2.4.3. 
This can be seen immediately, for in this case R(t)=% (er+e~*) and 

f(l+x)- (1+^ ) / 2(l~x)- (1-^ ) / 2 if 0 ^ * < 1 
C ( * ) a s t 0 if *=*!. 

Remark 2.4.2. In case of ^ 6 ^ ( 0 , 1 ) one gets easily that a(c) of 
(2.4.5) is equal to Yl/c for all c>0. This, naturally, agrees with Theorem 
1.2.1 when taking aN = c log N9 c>0. 

The proof of Theorem 2.4.3 is based on 

Theorem 2.4.4 (Chernoff 1952). Under the assumptions and notations of 
Theorem 2.4.3 we have 

(2.4.6) P(Sn ^ fuc) ^ Qn(x) 

and 

(2.4.7) (P(S„ ^ nx)Y"> - Q(X) 

for any x>0. 

Proof of Theorem 2.4.3. As a first step we prove 

(2.4.8) Em max Sk+l"~Sk ^ a a.s. 

where ln = [c log n] and a=a(c). Put 

An = 4,(c, 8) = ( m a x A t k Z ^ L ^ a + e | 

and 

Then by (2.4.6) we have 

P(An) == nP (-^=- s a+sj s ne
ln(a+e). 
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Applying the definition (2.4.5) it follows that there exists a 5>0 such that 

g(a+s)^exp I 1. Hence 

P(An) ^ n exp [ — [dog ri\), 

and if T is the smallest integer for which 7<5>1, then 

(2.4.9) i P ( ^ ) < o c 
w = l 

This means that only finitely many of the events AnT can occur with proba-
bility 1. Similarly one can see that 

(2.4.9)* JW»<~. 

Taking into account the trivial inequality l(n+1)T —1„T^I for n big, 
we get (2.4.8). 

Our second step is to prove 

(2.4.10) Jim max Sk+l»~~Sk ^ a a.s. 

Put 

Bn = Bn(c,e) = \ max Sk+l»~Sk
 < a - g } . 

Since #(a — e)>e~1/c, for any s>0 and c>0 there exists a S=d(c, e)>0 

such that £(a —e)—5^ exp I 1. Then by (2.4.7) we obtain 

s= (1 _(c(«-8)-«) '-)[-/y s= | l - e x p ( - l - i . /„)) 

if n is big enough. This proves the convergence of the series 2! P(Bn) 
n = l 

which, in turn, implies (2.4.10). 
(2.4.8) and (2.4.10) together prove the theorem. 
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It is clear that tx(c) of Theorem 2.4.3 is uniquely determined by the 
moment generating function R(t) of Xx. The converse of this statement is 
also true and we have 

Theorem 2.4.5 (Erdos, Renyi 1970). The function a(c) of Theorem 2.4.3 
uniquely determines the distribution function of Xx. 

Proof Definition (2.4.5) shows that the function a(c) uniquely deter-
mines the Chernoflf function Q(X). Further, the Chernoff function Q(X) 
uniquely determines the moment generating function R(t) (cf., e.g., 
Bartfai (1977)). Finally, it is well known that the moment generating 
function R(t) uniquely determines the distribution function F of Xx. 

Now we are in the position to give a 

Proof of Theorem 2.3.1. For any c>0 we have 

lim max V^M-Vk 
n—oo O^ft^n-fclogn] [c l o g n] 

2£lim max A t k ^ l Z ^ L »* a(c ) . 
n-^oo o^fe^n-[clog«] [ c l o g W J 

Hence the sequence Vk determines a(c) with probability one which, via 
Theorem 2.4.5, also terminates our proof. 

In passing we note that the way we have proved Theorem 2.3.1 does not 
provide an immediate handle for the construction of the there mentioned 
r.v. L. Thus we can say that, while Theorem 2.3.1 theoretically solves 
the so-called stochastic geyser problem, it does not provide a sequence 
of estimators for F. 

2.5. Improving the upper limit 

When talking about Strassen's question of (2.2.11), we have already 
mentioned that Kiefer (1969a) proved that the rate of convergence of (2.2.9) 
cannot be improved if one were to use the Skorohod Embedding Scheme, 
no matter what further restrictions we might put on the distribution func-
tion F( •) of the i.i.d.r.v. Hence an improvement could only have come 
from a different method of construction. Such a method was developed 
by us (Csorgo, Revesz (1975), cf. also Supplementary Remarks to Section 2.5 
of this Chapter) when, via improving the rate of convergence of (2.2.9), 
we gave the first negative answer to Strassen's question, proving the following 
counterexample. 
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Theorem 2.5.1 (Csorgo, Revesz 1975). Given i.i.d.r.v. X1,X29... with 
a continuous distribution function F( •), 

EXX = EXl = 0, EXl = 1, EXl° <co and Em | JEte**i| < 1, 
|r|-voo 

fAe/z ^Aere ejrata a Wiener process {W(t); 0 ^ / < ° ° } .ywcA /Aatf 

v ' n1/6(logw)13/2 

As a preliminary step to the proof, we wish to approximate SjYn, 
for each given «, by a r.v. JVB6-^"(0, 1). Define N„ by 

(2.5.2) Nu=mv0(Fn(SjYZ))9 

where Fn(-) is the distribution function of SJ]fn. Then Nn£jV(0, 1), 
and knowing, by the central limit theorem, that Fn(<) is near to # ( • ) 
for n large, one expects that our Nn should be also close to Sjtfn. 
Indeed one would hope that a good rate of convergence of Fn( •) to # ( •) 
should also result in a "good nearness" of Nn to SjYn- As to a good rate 
of convergence of Fn(') to # ( • ) we have 

Theorem 2.5.2 (Cramer 1962, p. 220). Assuming the conditions of Theorem 
2.5.1 we have 

\2n *=i n1'2 \n*) 

uniformly in x, where Qt(x) 0 '=1, 2, ..., 8) is a polynomial of degree f+3 
w/fA coefficients depending only on the first ten moments of F(*). (Here 
(2i(*)=0, as a result of our assumption £Xf=0.) 

Applying this theorem of Cramer the following nearness of Nn to SjYn 
is attained: 

Lemma 2.5.1. With the conditions of Theorem 2.5.1 and N„ as in (2.5.2) 
we have 

(2.5.3) lNn-SJ^\ = 0 ( ^ i f l ) , 

provided that \SjYn\^cYlogn, 0<c<^6. 

The next two lemmas are needed in the proof of the latter lemma. 
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Lemma 2.5.2. With the conditions of Theorem 2.5.1 we have 

<P(xn) ~ Fn(xn) and 1-*(*.) « 1-F.fo), 

provided that {xn} is a sequence of real numbers with \xn\ ̂  c ̂ log «, 0 < c < }/8. 

Proo/. This is a simple consequence of Theorem 2.5.2 (cf. also Rubin, 
Sethuraman 1965 and Michel 1974). 

Lemma 2.5.3. Let {an} and {bn} be two sequences of real numbers for 
which 0<aw<l, 0<6„<l, an^bn and l—a„^l—bn. Then, as w — «>, 
we have 

The proof is via elementary calculations. 

Proof of Lemma 2.5.1. By Lagrange's mean value theorem we have 

\inv $(Fn(t))-t\ = \mv<P(Fn(tj)-mv<P(<P(t))\ 

- | F . ( 0 - * ( 0 I ^ ^ | 
ay \y=l;t 

where min (Fn(t), #(t))^ & ̂ max (Fn(t), $(t)). Suppose that \t\^ 
^c(logn)1/2

9 0 < c < / 8 . Hence, by Lemma 2.5.2 £t^$(t) and l - £ ^ 
^ l - ^ ( r ) . By Lemma 2.5.3 we have (inv <£(&))2-f2-0, and this com-
bined with Theorem 2.5.2 implies 

= 0((lognm 

Thus, so far, we have approximated Sn by Yn Nn well enough for each n. 
Our aim, however, was to construct a Wiener process {W(t); 0^f<oo} 
such that {W(n); /i = l,2, ...} should be near to {Sn; n = l9 2, . . .}. As to 
our Yn Nn we only have 

{]fcNn}£={W(n)}, n = l,2,... 
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instead of the desired equality 

(2.5.4) {fiNn; n = 1,2, ...} =£= {W(n); n = l,2, . . . } , 

which we have no reason to believe in at all. If it were to be true by any 
chance, however, we would have also achieved our aim already. Though 
(2.5.4) is not disproved, it seems that it cannot be true in general. Thus, 
our desired Wiener process has yet to be constructed. 

Towards this end we now construct a sequence Uk such that it will be 
a good approximation of Sn for a subsequence of integers nk=[ka] ( a > l ) 
and, also, we will have 

(2.5.5) {Uk; k = 1, 2, ...} =f= {W(nk); k = 1, 2, . . .} . 

Define 

where mJ=nj-nJ,1^aja'1 ( y= l , 2, ...), * y = inv *(F /Z , ) ) , 

Since the jfye./f (0, 1) a r e independent r.v. we immediately have our 
desired relation (2.5.5). As to the nearness of the thus constructed Uk to 
Sn , we prove: 

Lemma 2.5.4. 

(2.5.6) J ^ - 5 J _a±^0> 1 < a < 2 

P/-0O/. Let e—Rj—Zj, 0 < c < / 6 

/ = j l if I Z y l ^ c / l o g m , 
J | 0 otherwise. 

First we evaluate the variance of e}. Consider 

Ee) = Ee)I]+Ee)(\-I]). 

Then, by Lemma 2.5.1 
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Since we are assuming £XX
10<°°, Eef = 0(l) and Holder's inequality 

implies 
Ee)Ij ^ {Eeff^{EIffh = 0(l)(P{\Zj\ ^ cfi^j})** 

£!i. 

Hence 

Ee2 = 0 f ( logm^M ^ p r o v i d e d yj^ c ^ j/6" 

Now let 

_ ejirij 
Qj~ (logm,.)11/2 

and 

tornr*?*! _ 0 ( ( l o g J ) , . « ; ¥ ) . 

Then £ ' ^ = 0 , ^ = 0(1), and Kolmogorov's Three Series Theorem implies 
that the series 

&J1,2logj A Xj 

converges with probability one. Since a < 2 , /l7- is strictly increasing and 
Kronecker's lemma implies that 

fitf^—0. 
This also completes the proof of our lemma, because 

fc2 (logfc)13'2 

Proof of Theorem 2.5.1. Let B^x), B2(x), ... ( O ^ x ^ l ) be a sequence of 
independent Brownian bridges which is also independent from the given 
sequence {Xt}. Clearly it is not sure that such a sequence {Bt(x)} can be 
constructed on the probability space where the r.v. {Xt} live. However, 
it is easy to redefine the sequence {Xt} on a new probability space where 
the desired construction is available (cf. Remark 2.2.1). Now we construct 
a Wiener process W{t) via joining the points (nt_l9 U^ and (ni9 Ut) 
by the independent Brownian bridges Bt(x) ( f=l , 2, ...) (cf. Proposition 
1.4.1). 
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Then Uk=W(nk), and Lemma 2.5.4 gives 

(2.5.7) W(nk)-Snk\ a ^ a 

^ ( logn , ) 1 3 / 2 

In order to complete the proof of our theorem we have to study Win) — Sn 

when nk^n<nk+1. Clearly, 

W(n)-Sn = W(n)-W(nk)+W(nk)-Snk + Snk^Sn 

and, by Theorem 1.2.1, 

(2.5.8) sup ipO^WL^o. 
ifk=s*<nk+1 y mk (log mk)

im 

Also, 

(2.5.9) sup 1 ^ - ^ J a ^ 0 

nk^n<«k+1 ymk(log mk)
13/2 

This latter statement can be checked easily via elementary calculations, or 
apply Theorem 2 of Michel (1974). 

Choosing now a = | , (2.5.1) follows from (2.5.7), (2.5.8) and (2.5.9). 

Remark 2.5.1. The above proof hinges on the choice of the sequence {«,}. 
The larger we choose a > l in «/=[/*], the better is the normal approxima-
tion for our blocks Xn +1 + ...+Xn . The random fluctuation of the 
Brownian bridges Bj(x) connecting the points («/_i, t//_i) and (nj9 U/) 
however, tends to destroy the gains produced by a too large. The choice 
a = | is obtained as a compromise. 

2.6. The best rates emerge 

Re-examining the method of the proof of Theorem 2.5.1 it becomes 
clear that, for any given s>0, there exist further moment conditions which, 
when assumed, enable one to prove 

(2.6.D M ^ o 

instead of (2.5.1) of Theorem 2.5.1. 
Recalling also Theorem 2.3.2 it is reasonable to ask whether there should 

exist any distribution function F(«)^#( # ) such that 

(2.6.2) \Sn-W(n)\*±OQogn\ 
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for a suitably constructed W{ •). It is clear from (2.3.2) that, if such a distri-
bution function F{ •) were to exist, then it must have a moment generating 
function. Indeed, the surprising fact that (2.6.2) holds for all those distri-
butions which do have a moment generating function turned out to be true 
as a result of 

Theorem 2.6.1 (Komlos, Major, Tusnady 1975, 1976). Assume that 
R(t)=EetXl exists in a neighborhood of t=0. Then there exists a Wiener 
process {W(t); 0^*<°o} such that (2.6.2) holds. 

This theorem is a consequence of the following sharp result: 

Theorem 2.6.2 (Komlos, Major, Tusnady 1975, 1976). Given the conditions 
of Theorem 2.6.1, there exists a Wiener process W such that for all real 
x and every n we have 

(2.6.3) P j m a x \Sk-W{k)\ > C l o g n + x } < Ke~Xx, 

where C, K, X are positive constants, depending only on the distribution 
function of Xx. 

As we have already seen, Theorem 2.6.1 is the best possible in the sense 
that no further restrictions on the distribution function of Xx can improve 
the rate of (2.6.2), unless Xx is already a JV(09 1) r.v. It is also the best 
possible in the sense that the assumption that the moment generating 
function of Xx should exist, cannot be dropped (cf. (2.3.2)). Returning, 
however, to (2.6.1) we can still ask what minimal set of moment-assumptions 
should guarantee the there indicated rate for a given e>0. The answer 
to this question is given by 

Theorem 2.6.3 (Komlos, Major, Tusnady 1975, 1976 and Major 1976a). 
Replacing the assumption of Theorem 2.6.1 that the moment generating 
function exists by E\X-,\p«x>9 /?>2, we have 

(2.6.4) l ^ - ^ ( n ) l a . , j ( ) 

n1/p 

Notice that the latter theorem is an improvement of Theorem 2.2.4 
in the case of 2</?^4 . In fact it is not only an improvement in this interval 
but it gives also the best possible rate for all p>2. The fact that this is 
indeed true follows from 
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Theorem 2.6.4. Let p^2. Then 

(2.6.5) 155 Sn~~Z(n) = ~ , 

for whatever W{<), provided E\XX\P does not exist. 

This was proved by Breiman (1967), using the method we have also 
utilized in the proof of Theorem 2.3.2 (cf. (2.3.2)). 

A common generalization of Theorems 2.6.1 and 2.6.3 would be achieved 
if we could answer the 

Question. Given a function H(x)>0 (x^O) such that EHQX^)^°°, 
what is the best possible order of the strong invariance principle? 

Such a question was first studied by Breiman, who, using the Skorohod 
Embedding Scheme, proved 

Theorem 2.6.5 (Breiman 1967). Let H(x)>§ C*=0) be a continuous 
function such that x~2H(x) is non-decreasing and for some r > 0 , H(x)x~A'i'r 

is non-increasing. Assume that EHQX^) <oo. Then there exists a Wiener 
process such that 

ntito SB-W(n) «... 
(2.6.6) - ^ . 0 , 

where g(n)=inv H(ri) yiogij/(n) and {//(n) is any non-decreasing function 
such that for some m>0 , 2! (inv/f(/2))~2(^(«))~m<°o. 

n 

Remark 2.6.1. This theorem clearly implies Theorem 2.2.1 and (2.2.8) 
of Theorem 2.2.4, but it does not imply (2.2.9) of the latter. It is also clear 
that this theorem is not strong enough to imply any of the strong invariance 
principles of this Section or that of Section 2.5. 

Komlos, Major and Tusnady have also contributed greatly towards the 
solution of the above formulated question, proving 

Theorem 2.6.6 (Komlos, Major, Tusnady 1975, 1976 and Major 1976a). 
Let H(x)>0 (x^O) be a non-decreasing continuous function such that 
x~2~yH(x) is non-decreasing for some y > 0 and AT 1 log # (* ) is non-
increasing. Assume that EHQX^)^^. Then we have 

(2.6.7) Sn-W(n) = <9(inv H(nj). . 

Remark 2.6.2. Taking H{x)-etx
9 we immediately get Theorem 2.6.1. 

As to Theorem 2.6.3, it does not follow so immediately. However, the 
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following two simple lemmas will show that it is also a consequence of the 
above theorem. 

Lemma 2.6.1. Let H{*)be a function as in Theorem 2.6.6 with EH(\X-§)< 
< » . Then there exists a function h(x)/<*> (x^O) such that H1(x) = 
=h(x)'H(x) again satisfies the conditions imposed on H(*) in Theorem 
2.6.6 and £(#i( l*i l ))< 0°-

Lemma 2.6.2. Assume that H(x) satisfies the conditions of Theorem 
2.6.6 and h(x) satisfies those of Lemma 2.6.1, i.e., | f H1(x)dF(x)\ = 
= \f H(x)h(x)dF(x)\«*>9 where F(x)=P(X1^x). Then 

(2.6.8) inv H^x) = o(inv H (x)) 

provided 

(2.6.9) U m ^ ^ o 

for all e>0. 

The proof of Lemma 2.6.1 is only routine, that of Lemma 2.6.2 is a little 
harder. Hence we present the 

Proof of Lemma 2.6.2. Suppose that (2.6.8) does not hold. Then there 
exist a (5>0 and a sequence x B / ~ such that 

inv H^Xn) ^ 5 inv H(xn). 
Consider 

xn = H^mwHM) = HiinvH^x^himvH^)). 
We get 

H(inv H^xJ) = o(xn) 
and also 

H(SimH(xn)) = o(xn). 

This, when replacing xn by H(u„\ contradicts condition (2.6.9), and proves 
the Lemma. 

Let now H(x)=xp (x>0, p>2) and let h(x) be as in Lemma 2.6.1. 
Then, applying Theorem 2.6.6 with H1(x)=xp • h(x) we get Theorem 2.6.3. 

We also note that Theorem 2.6.6 gives nearly the best possible rate in 
the sense that if (2.6.7) holds, then 

(2.6.10) £(jy(|Ai|)) < co. 

This can be proved along the lines of the second part of our proof of 
Theorem 2.3.2. However, one does not know in general for what functions 
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# ( • ) of Theorem 2.6.6 would (2.6.10) imply (2.6.7) with o(invH(n)) 
instead of <9(inv H{n)). We have already seen, for example, that if H(x)=etx, 
then O(') of (2.6.7) cannot be replaced by o(*), while this can be done 
if H(x)=xp, /?>2. An example of a case when it is not known whether 
#(•) can replace £>(•) in (2.6.7) is H(x) = ex", 0 < r < l . 

It is also of interest to find an analogue of Theorem 2.6.2 when (2.6.10) 
holds for functions H( •) of Theorem 2.6.6. In this regard we have 

Theorem 2.6.7 (Komlos, Major, Tusnady 1975, 1976). Assume the condi-
tions of Theorem 2.6.6. Then 

(2.6.11) P{mn \Sk-W{k)\ > Xn) S C 2 ^ , 

provided hxw Hir^^x^C^n log«)l/2, where Cl9 C2 and a are positive 
constants depending only on the distribution function of Xx. 

It was an advantage of Theorem 2.6.2 that it implied Theorem 2.6.1. 
Unfortunately the corresponding statement is not true in the case of Theorem 
2.6.7; in fact it does not imply Theorem 2.6.6 and not even Theorem 2.6.3. 

It is clear from our discussion so far that we would have to prove only 
Theorems 2.6.2, 2.6.6 and 2.6.7 in order to complete the treatment of the 
Komlos, Major, Tusnady theorems of this Section. The details of the 
proofs of these theorems are very complicated and would take up a lot 
of space to give them here. The proof of Theorem 2.6.3 in the case of 
2< /?^3 is relatively simple. However this special case was not covered 
by the original paper of Komlos, Major, Tusnady (1975, 1976), who treated 
only the case /?>3. The case 2 < p ^ 3 was settled by Major (1976a), 
whose proof is based on the same construction as that of the proof of 
Theorem 2.5.1 but, instead of Theorem 2.5.2, the following moderate 
deviation theorem is applied. 

Theorem 2.6.8 (Major 1976a). Put 

x , [ * i if l ^ l<c (n logn) 1 / 2 , 
1 JO, otherwise, 

~ _ X(—EXj 
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Then for any 0<e<p — 2 and 0 < x < — ^logn we have 

l-Fn(x) = (l-<P(x))(l+0(n~^JL)) 
and 

Fn(-x) = $(-x)(l + 0 ( « ~ M ) , 

provided the conditions of Theorem 2.6.3 hold with 2</?^3. 

As mentioned already, the proof of Theorem 2.6.2 is very complicated. 
Instead of its details, we will sketch its new ideas as compared to the proof 
of Theorem 2.5.1. First we recall that in the proof of the latter we constructed 
a Wiener process in terms of the sequence of partial sums {Sk} given there. 
When proving Theorem 2.6.2 one does the opposite of this. Namely, the 
sequence {Sk} is constructed in terms of a given Wiener process W. 
Also, in Theorem 2.5.1 first we constructed our Wiener process only at the 
sequence of points nk=[ka], a = | , and then we joined these constructed 
points of W randomly, so that after this randomization we should still 
have a Wiener process. In the proof of Theorem 2.6.2 one first constructs 
the sequence {Sn} at the points «fc=2fc, but then these points are not 
joined randomly. Rather we continue constructing also the values of 
Sn for nk<n<nk+1. For example, when constructing S3NI2=Sink+tlk+i)l2 = 
=^(SN-hS2N)-^(SZN/2~i(SN+S2N)), N=nk, it appears that we should 
construct the r.v. S3NJ2-$(SN+S2N) in terms of W(3N/2)-i(W(N) + 
+ W(2N)). However, there is a bit of difficulty. Namely, while the r.v. 
W(3N/2)-i(W(N)+W(2N)) is independent of the r.v. W(N) and 
W(2N\ the r.v. S3N/2 — $(SN + S2N) is not independent of the already 
constructed r.v. SN and S2N. 

It appears to be reasonable to believe, however, that the r.v. 
SZN/2—i(SN+S2N) should not be effected very much by the already given 
values of SN, S2N. Now the transformation 

where G is the distribution function of the r.v. w(—)-~i(W(N)+ W(2N)) 

and FN is the distribution function of S3N/2 — %(SN + S2N)9 gives us a r.v. 
with the desired distribution FN. Unfortunately, this latter r.v. is still 
not independent of SN and S2N. Whence the joint distribution of 
(SN, S3N/2, S2N) is not the desired one yet. In order to construct the latter 
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properly, Komlos, Major and Tusnady (1975) introduced the conditional 
transformation 

■"g(°Hf)-yw+
2'

,,c'l*'-4 
where F£(x\y)=P{SZN/2-%(SN + S2N)^x\S2N-SN=y}. Continuing along 
these lines, in the next step one constructs the r.v. SN+N/i9 SN+3N^9 and 
then, step by step, all the r.v. Sj '(j=N+l, ..., 2N). It is clear, that the 
joint distribution of the thus constructed sequence is as desired. In order 
to prove now that the constructed sequence Sj is so close to the given 
Wiener process W{j) as stated in Theorem 2.6.2, one has to prove that 
the conditional distribution function F£(x\y) is appropriately near to 
G(x). This means that, instead of Theorem 2.5.2, one now needs a stronger 
theorem and that for conditional distributions. 

Supplementary Remarks 

Section 2.2. 

Theorem S. 2.2.1 (Major 1979). Let a distribution function F(x) be given 
with / xdF(x)=0, f x2dF(x) = l. Define 

o*= f x*dF(x)-{ f xdF(x)f if 2 n ^ f c < 2 " + 1 , n = 1, 2, .... 

A sequence of i.i.d.r.v. Xl9 X2, ..., having the distribution function F as 
above, and a sequence of independent normal random variables Yl9 Y2, ... 
with EYk=09 EY£ = al can be constructed in such a way that the partial 
sums Sn = X1+.. .+jr , I , 7 ; = y 1 + . . . + yn, n=l929 ... ( ^ 0 = ^ = 0 ) satisfy 
the relation 

(S.2.2.1) \Sn-TH\Z±o(n«*). 

Note that in this theorem the partial sum sequence {Sn} is approximated 
by a Gaussian process {Tn} and not by a Wiener process {Win)}. How-
ever, this rate of approximation is better than that of Strassen's theorem 
(cf. (2.2.2*)). On the other hand, Theorem 2.2.3 states that the rate of 
(2.2.2*) is the best possible if Sn is to be approximated by a Wiener 
process. Also, just preceding Theorem 2.2.2, we complained that Donsker's 



Strong Approximations of Partial Sums of I.LD.R. V. 113 

theorem (cf. (0.5)) could not follow from a strong invariance principle 
if Sn were to be estimated by a Wiener process. We are happy now to be 
able to say that Theorem S.2.2.1 is that strong invariance principle which 
implies Donsker's theorem and also that of Strassen. In order to see this, 
define Tn(t) a la Sn(t) of (0.3), i.e., 

Tn(t) = n-v*{Tlntl+Yintl+1(nt-[nt])}9 

and a Wiener process such that 

W(n)=2 — ^ " = 1,2,.... 

Since crw-*l, we have 

(5.2.2.2) sup \Tn{t)-n-^W(nt)\-^^ 

and, by an appropriate law of iterated logarithm (cf. e.g. Feller 1943) 

(5.2.2.3) lim l ^ l g W I a o . 
"■*°° Knloglogn 

Clearly, (S.2.2.2) implies (0.5) and (S.2.2.3) implies (2.2.2*). 

Section 2.4. Concerning the problem of longest runs of pure heads there 
is a gap between the statements of Theorems 2.4.1 and 2.4.2. In a recent 
paper Erdos and Revesz (1976) proved some further related results. 
One of them states: Let Xt be i.i.d.r.v. with P(X1=0)=P(X1 = l)=$, 
Sn=Xx +.. . + Xn and an{k)=[log n - log log log n+log log e - k], where 
the basis of log is two. Then 

(i) for any £>0 and almost all co there exists n0—n0(co9e) such that 

l ^ - a a X „ ( 2 + e ) & + M . + .) - $ * ) = «n(2 + B), 

provided n^n0; 
(ii) for any a>0 and almost all co there exists a sequence {w/co, s)} 

such that 

i ^ ^ u - ^ + V 1 - * - ^ " a";(1 ~£)-

Theorem 2.4.3 is somewhat stronger than the original result of Erdos and 
Renyi (1970). This form as well as its proof is due to P. Bartfai. 

For further developments concerning Erdos-Renyi laws (Theorem 2.4.3) 
we refer to Komlos and Tusnady (1975), Book (1976) and S. Csorgo (1979). 
The result in Theorem 2.4.3 remains true if we require the finiteness of 
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the moment generating function only in some right hand side neigh-
bourhood of the origin (in this case EXX can even be — <»). 

Section 2.5. In dealing with the stochastic geyser problem, B&rtfai (1966) 
used a technique similar to that of the proof of Theorem 2.5.1. Reformulat-
ing his result in strong invariance context, one gets a somewhat weaker 
form of Strassen's result (2.2.9). His work was done independently in about 
the same time as Strassen's. The relatedness of their results, however, 
was only realized later on. 

The form of Theorem 2.5.1 quoted here, differs slightly from that of 
Csorgo and Revesz (1975a). This version achieves the same goal in giving 
a counterexample to Strassen's conjecture (1965b) and also provides a more 
straightforward illustration of our method. 



3. A Study of Partial Sums with the Help of Strong 
Approximation Methods 

3.0. Introduction 

The fundamental aim of Chapter 1 was to study the one dimensional 
Wiener process, keeping a special eye on properties which might be inherited 
by sums of r.v. In this chapter we intend to realize the ones which are 
indeed inherited. This goal is going to be achieved with the help of the 
invariance principles covered in Chapter 2. It is clear from these invariance 
principles that those partial sums whose summands have many moments 
will inherit more than those whose summands have fewer moments. 

3.1. How big are the increments of partial sums of 1.1. D. R.V. 
when the moment generating function exists? 

The message of this section is summarized in the following 

Theorem 3.1.1. Let XlyX2, ... be a sequence of i.i.d.r.v. with mean zero 
and variance one, satisfying also the condition 

(3.1.1) there exists a f0>0 such that EetXl is finite if |f |<f0-

Let {%} be a monotonically non-decreasing sequence of integers satisfying 
the conditions (i), (ii) of Theorem 1.2.1 and assume also that 

(3.1.2) %/logiV-oo as N-+°°. 

Then for the sums Sn=X1-hX2-\-...-\-Xn we have 

(3.1.6) 155 pM\SN+.„-SN\ S 1 
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where 

PN = [2aN [ l og—+ l og log j\rj) . 

If condition (iii) of Theorem 1.2.1 is also satisfied, then 

(3.1.7) Hm, max PN\Sn+ttN-Sn\ S 1 

and 

(3.1.8) lim max max pN\Sn+k~Sn\ = 1. 

Proof. Combining Theorems 1.2.1 and 2.6.1 and noticing that (3.1.2) 
implies that pNlogN-+0 as N-+°°, the result follows. 

Remark 3.LI. Remark 1.2.1 is also applicable here. That is to say 
the absolute value signs can be omitted from formulas (3.1.3)—(3.1.8), 
and changing the lim sup resp. max to lim inf resp. min, the + 1 on the 
right hand sides of (3.1.3)—(3.1.8) will be changed to — 1. 

Remark 3.1.2. It is clear that this theorem plays the same role for partial 
sums of i.i.d.r.v. having moment generating function as Theorem 1.2.1 
does for Wiener processes. However, the extra assumption that %/log iV-̂ oo 
is absolutely crucial here in the sense that if aN=c log N, c>05 then, 
bv Theorem 2.4.3, the left-hand side limit of (3.1.7) still exists, but its value 
will depend on c and the distribution function of Xl9 that is to say this 
latter case cannot be explained from any invariance principle. Thus, 
Theorems 3.1.1 and 2.4.3 together completely describe the almost sure 
behaviour of the increments of length c log N^aN^N of partial sum 
sequences when the moment generating function of the summands exists. 
The case of aN~o(logN) does not appear to be known in general; it is 
clear, however, that this case also cannot be treated from invariance-
principle-like considerations. 

Remark 3.1.3. Besides condition (3.1.2), condition (3.1.1) is also 
necessary in Theorem 3.1.1 in the following sense: Let F(x) be a distri-
bution function with mean 0 and variance 1 not satisfying condition (3.1.1). 
Then there exists a sequence {aN} (depending on F) satisfying conditions 
(i), (ii) of Theorem 1.2.1 (as well as condition (3.1.2) of Theorem 3.1.1) 
such that none of the statements (3.1.3)—(3.1.8) hold true. This fact can be 
seen by going through the following simple steps. 
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+00 

1) If for every e>0 / eexdF(x)=°o (that is (3.1.1) does not hold true), 

then there exists a positive non-increasing function e(x)-+0 such that 

/ e
xeMdF(x) = oo. 

2) Let H(x)=exe(x\ Then the inverse function of H(x) can be written 
as invi/(x)=t;(A:)logx where v(x) is a non-decreasing function, tending 
to +00. 

3) Since 

2P{\Xk\*mvH(k)} = oo 
k = l 

infinitely many of the events {\Xk\^v(k)logk} will occur with probability 1. 
Choosing ak=v(k) logk, we see immediately that the statements 

(3.1.3), (3.1.5) and (3.1.8) cannot be true. As to the others not being true, 
let n1=n1((o)^n2==n2(co)^... be a sequence such that \Xn\^v(nk)lognk 

and consider the sequence S^^-Sni_a^, S^^-S^^, ... . The 
independence of S 1 — S a and Xn for each k now implies our 
claim for (3.1.4), (3.1.6) and (3.1.7) 

3.2. How big are the increments of partial sums of I.LD.R.V. 
when the moment generating function does not exist? 

The aim of this section is to find a theorem which should play the role 
of Theorem 3.1.1 when we assume only the existence of a finite number 
of moments instead of that of the moment generating function. An answer 
to this question is summarized in the following 

Theorem 3.2.1. Let Xl9 X2, ... be a sequence of i.i.d.r.v. with mean zero 
and variance one and let H(x), x>0, be a non-decreasing continuous func-
tion for which the following assumptions hold: 

(3.2.1) EHQXJ)^*, 

(3.2.2) lim ' > 0 for every e > 0 , 
x-»-oo -tlyX) 

(3.2.3) x~(2+8)H(x) is an increasing function of x for some e>0, 
(3.2.4) x"1 log H(x) is non-increasing. 
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Let {%} be a non-decreasing sequence of integers, satisfying conditions 
(i), (ii) of Theorem 1,2,1 and also assume that there exists a C>0 such that 

(325) a ^C^H{N))* 

Then the statements (3.1.3)—(3.1.6) of Theorem 3,1,1 are true. If we also 
assume that condition (iii) of Theorem 1,2,1 is satisfied then the statements 
(3.1.7) and (3.1.8) are also true, 

Proof Combining Theorems 1.2.1, 2.6.6 and Lemma 2.6.2 the result 
follows, since fim fiN inv H(N)*<°°. 

Remark 3,2,1. The condition (3.2.2) is satisfied by all functions varying 
slowly (cf. Feller, 1966, p. 269). 

Remark 3,2.2. An important special case of Theorem 3.2.1 is when we 
take H(x)=xp, /?>2, that is when E\X-$yp>2 is finite. Then conditions 
(3.2.2), (3.2.3) and (3.2.4) are satisfied and the assumption (3.2.5) is equi-
valent to aN^CN2,P'/log N. Hence, for all these latter increments aN, 
Theorem 3.2.1 holds. Similarly, if we take H(x)=xp/(logx)2/p, /?>2, 
then Theorem 3.2.1 is true for aN^N2/p. This latter case was directly 
studied by Lai (1974) who proved (3.1.5) and (3.1.6) in the special case when 
%=]Va, a^lp-1, p>2. 

Another interesting special case of Theorem 3.2.1 is the function 
H(x)=ex°, 0< a <1 , i.e. we assume that 2se1Xl,a<oo. Then all the moments 
of Xx exist but not the moment generating function. Again conditions 
(3.2.2), (3.2.3) and (3.2.4) are satisfied and the assumption (3.2.5) is equi-
valent to tfN^C(log JV)2'*"1. Hence, for all these latter increments %, 
Theorem 3.2.1 holds. 

Remark 3,2.3, Comparing our Theorem 3.1.1 to Theorem 3.2.1, we see 
that the essential difference between them concerns the length aN of the 
increments. That is to say, when we only assume the existence of a finite 
number of moments instead of that of the moment generating function of 
Xl9 then we impose a stronger restriction on aN9 namely the condition 
(3.2.5) instead of (3.1.2). This, of course, is technically due to the fact 
that in the case when only a finite number of moments exist the rate of 
convergence of the strong invariance principle is weaker than in the case 
when moment generating function exists (cf. Theorems 2.6.6 and 2.6.1). 
On the other hand, the assumption (3.2.1) is the best possible one in the 
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following sense: if there exists a function H(x) satisfying conditions 
(3.2.2), (3.2.3), (3.2.4) and EHQX^** then there exists a C>0 (depend-
ing on H) such that 

(in\H(N)Y 
logN 

and none of the statements (3.1.3)—(3.1.8) holds true. In order to see this 

aN = C 

(3.1.J 
remark, observe that in this case 

fe,(20nvgWy'^Wi°;7»-'fSC(inv«W)-. 

and 

i i>{ |ZB | s inv#(n)} = -
11 = 1 

which, in turn, contradicts the statements (3.1.3)—(3.1.8) (cf. Remark 3.1.3). 

Remark 3.2.4. The case which we have not mentioned so far is that of 
H(x)=x2. In order to handle this latter one we have to combine the first 
strong invariance principle, namely that of Strassen (Theorem 2.2.1), 
with Theorem 1.2.1. This way we get, with aN=cN, 0<c^ l , that 

(3.2.6) 115 max J ^ + ^ Z ^ L ^ i 

which, in the case of c= 1, reduces to the classical law of iterated logarithm 
(Hartman-Wintner 1941). We note that Strassen's law of iterated logarithm 
(Theorem 1.3.2) holds also for partial sums. Indeed, applying Theorem 
2.2.1 it follows from Theorem 1.3.2 that 

Theorem 3.2.2 (Strassen 1964). Let Xl9 X2> ... be Li.d.r.v. with mean zero 
and variance one. Let Sn(t) be defined as in (0.3). Define 

(3.2.7) y.(0 = S'(t) 

Yl log log n 

Then the sequence {yn(t)} is relatively compact in C(0, 1) with probability 
one, and the set of its limit points is Sf, where Sf is as in Theorem 1.3.2. 
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3.3. How small are the increments of partial sums of I.I.D.R.V.? 

In Section 2.4. we investigated the length of the longest head run in 
a coin tossing sequence of size N. As we have already noted (cf. Supple-
mentary Remarks 2.4), the length of the longest head run in N experiments 
is more than 

<% = Pog JV—logloglog JV+logloge—2—e] 

(for any a>0, if N is large enough) and it is less than 

[log N—log log log N+log log e — 1 + e] 

for infinitely many N, where the base of log is 2. 
Call a run regular if each tail in it is followed by a head and vice versa 

(that is a regular run goes like HTHTHT... or THTHT...). In a sense 
a converse of the problem of T. Varga (cf. Section 2.4) is to ask for the 
length of the longest regular run. It is not hard to see that the answer 
to this question is exactly the same as that to the original one. 

This remark suggests the following classroom joke. Describe the ex-
periment of T. Varga to the students, and do the experiment in your class 
only after this information had been given. Clearly now, head runs of 
length seven will occur in both groups. For your selection of students 
doing the experiment randomly, pick the ones whose tally would contain 
at least one regular run of length seven. 

An analogue of the above described result on the length of longest regular 
runs can be formulated for partial sums of i.i.d.r.v. as follows: 

Theorem 3.3.1. Let Xl9 Z2, ... be a sequence of i.i.d.r.v. with mean 0 and 
variance 1, satisfying also the condition (3.1.1). Let {an} be a non-decreasing 
sequences of integers satisfying the conditions (i), (ii) of Theorem 1.7.1 and 
assume also that 

(3.3.1) a„(log n)~3 -- «> as n'— » . 

Then for the sum Sn=X1i-X2-\-...-hXn we have 

(3.3.2) Urn min max yN\Sn+k-Sn\ = 1, 

where 
( 8 logiVK+loglogiV^ 2 
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If condition (iii) of Theorem 1.7.1 is also satisfied, then 

(3.3.3) lim min max yN\Sn+k-Sn\ = 1. 

Proof Notice that (3.3.1) implies yN log N-+0 as N-+°° and apply 
Theorems 1.7.1 and 2.6.1. 

In case aN^C log3 N, Theorem 1.7.1 cannot be extended to partial 
sums of i.i.d.r.v. via the invariance principle. However, applying a small 
deviation theorem of A. A. MoguPskii (1974) one can generalize Theorem 
3.3.1 for a wider class of sequences {aN}. The mentioned result of 
MoguPskii is 

Theorem 3.3.2 (MoguPskii 1974). Let Xl9 X2, ... be a sequence of i.i.d.r.v. 
with mean 0 and variance 1. Let {tn} be a sequence of positive numbers, 
for which 

Then 

logP{m«|SJs/k}*~J-
Applying this theorem with 

" I 8 loglognJ 

and repeating the proof of Theorem 1.7.1, one gets the following sharper 
form of Theorem 3.3.1. 

Theorem 3.3.1*. Let Xl9 X29 ... be a sequence of i.i.d.r.v. with mean 0 and 
variance 1. Let {an} be a non-decreasing sequence of integers satisfying 
conditions (i), (ii) of Theorem 1.7.1 and assume also that ^ ( l o g n ) - 1 - ^ ^ . 
Then we have (3.3.2). If condition (iii) of Theorem 1.7.1 is also satisfied then 
we have also (3.3.3). 

Comparing Theorems 3.1.1, 3.2.1, Remarks 3.1.2 and 3.2.3 on one side 
and Theorem 3.3.1* on the other side, one should observe that, when 
investigating big increments of partial sums of i.i.d.r.v., stronger restric-
tions are required for the sequence {an} when less is assumed about the 
existence of moments, but, in case of small increments, the restriction 
^(logw)""1 — oo is already sufficient if only two moments exist. In case 
of an = c log n (c>0), Theorem 2.4.3 solves the problem of big increments. 
The problem of small increments in this case is yet unsolved. For the latter 
we formulate the following 
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Conjecture. Let F(x) be a distribution function with/ xdF=0, fx2dF=\. 
Let Xl9X29... be a sequence of i.i.d.r.v. with P(X1^t)=F(t). Then 

i i m i ^ l 1 1 , 2 " \Sn+k-Sn\ = r(c), 

where % = [clogJV], and r(c) is a function which uniquely determines F. 
It is interesting to consider the special case of Theorem 3.3.1* when 

an=n. In this case we have 

(3.3.4) M{l}2^L)ll2
maxlSkl^L 

This result was proved at first by Chung (1948) under somewhat stronger 
moment restrictions. Jain and Pruitt (1975) were the first to prove tha 
(3.3.4) is still true if only the existence of two moments is assumed. 

3.4. A summary 

In the above sections we investigated how the strong laws proved in 
Chapter 1 can be inherited by partial sums of i.i.d.r.v. applying the strong 
invariance principles of Chapter 2. We saw that in many cases strong 
invariance techniques produced the best results also for partial sums. In 
some cases, however, direct methods produced better ones. When using 
the technique of strong invariance, we always had to pay special attention 
to moment conditions. The question of inheritance is much simpler when 
talking about weak convergence. Indeed, we can simply say that once 
Donsker's theorem (cf. (0.5)) is proved, distribution results for given 
functionals of a Wiener process (cf. e.g. (1.5.1), (1.5.2) and Theorem 1.5.4) 
are inherited by the same functionals of {Sk} in the limit. As to inheriting 
Theorem 1.5.4 we also refer to Erdos, Kac (1947). 

Supplementary remarks 

Section 5.7. In connection with the Erdos-Rinyi law of large numbers 
(Theorem 2.4.3) Komlos and Tusnady (1975) studied the question how 
frequently the event 

Sk + lclo8nl-Sk ^ x (k = Q h 29 n_[cl0g„]; X < «(c)) 

[c log n] v 
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will occur. They proved that the sequence of indices 0^k1<k2<... 
...<ky-^n — [clogw] for which the above inequality holds true forms 
a Poisson process in the limit as «-^o°. For further related results we refer 
to Book (1976), S. Csorgo (1979), Revesz (1978), Steinebach(1979), Csorgo, 
Steinebach (1980) and Guibas, Odlyzko (1980). 

Section 3.2. In connection with the Hartman-Wintner law of iterated 
logarithm ((3.2.6) with c=l) it is of interest to investigate the case EX*=°°. 
This was done by Strassen (1966) who proved that 

Tr-r |-Sri+-A2+v_:+^iil a.s. _ 
»-*~ ^Inloglogn 

if Xl9X29... are i.i.d.r.v. with EX^O, EXf=°o. Later I. Berkes (1972) 
has shown that this result of Strassen is the strongest possible one in the 
following sense: for any function f(n) with lim/(«) = «> there exists 

fl-t-oo 

a sequence Xl9X29... of i.i.d.r.v. for which EX±=0, EX\ — <*> and 

lim 1^1+X2+... + Xn\ a.s. Q 

Z2Z /(")V n log log n 

For further results in this connection we refer to Klass (1976, 1977), 
who evaluated the normalizing factor Xn for which 

p--- \xx+x%+...+xH\ ^s.} 

where EXx=09 EX*=oo. This normalizing factor Xn depends on the 
distribution function F(t)=P(X1^t). 

A more detailed characterization of the behaviour of the partial sum 
sequence {Sn} can be given using the concept of upper and lower classes 
introduced by P. Levy. Levy says that a function f(ri) belongs to the 
upper class if the inequality \Sn\^f(ri) holds with probability 1 for all 
but finitely many n and /(«) belongs to the lower class if the inequality 
\Sn\>f(ri) holds infinitely often with probability 1. Using this terminology 
the law of iterated logarithm says that for any s>0 the function /(«) = 
=((2+e)n log log n)l/2 belongs to the upper class and ((2—e)n log log n)l/2 

belongs to the lower class. 
Feller (1943) gave a test to decide whether a function belongs to the 

upper or lower class in the case when the moment condition E(X% [ l o g ^ l ^ 
<oo holds true. His theorem states that a function f(n)=nl/2*F(ri)9 with 
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*F(ri) non-decreasing, belongs to the upper class if the series 

n = l 

converges and f(ri) belongs to the lower class if it diverges. For example 
for any e>0 the function f(n)=(n(2loglogn + (3+e)logloglogri))l/2 

belongs to the upper class and f(n)=(n(2 log log w + 3 log log log w))l/2 

belongs to the lower class. In a sense this result gives the rate of convergence 
for the law of iterated logarithm. In fact the original form of the law of 
iterated logarithm implies that for any e > 0 and for all but finitely many 
n we have (2nloglogn)~l/2\Sn\£(—l—e, 1+e) with probability one. 
Our last statement implies that (2n log log n)~l/2|Sn\ € (— 1 - en, l+en) 
with probability 1, for all but finitely many n, where 

( 3 + | l o g l o g l o g « 
4 log log n 

The question of how a rate of convergence for Strassen's law of iterated 
logarithm (Theorem 3.2.2) could be produced was investigated by Bolthausen 
(1978). It is not known whether his result is best possible or not. 

We should also mention that the above formulated test of Feller could 
also be proved by the invariance principle (Theorem 2.6.6) with the stronger 
moment condition J E , | Z 1 | 2 + C < ~ (e>0), if we had the same test for a 
Wiener process. 

Section 3.3. In his original paper Chung (1948) assumes the existence 
of the third moments but he proves a stronger result than (3.3.4). In fact 
he gets the following upper-lower class type result: 

P jmax \Sk\ < ann
w i.o.} = \ 1 if Z-K* 8a*: 

n=i na\ 
0 otherwise. 

Hirsch (1965) investigated the properties of the sequence {max Sk = M+} 

and proved 

P{Mn
+ < ann

1/2 i.o.} = 1 if 2*J"=~> 
n=i 

0 otherwise, 

when the third moment exists. Replacing M+ by M B = — m i n 54 

in the formula given above, it clearly remains true. 
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Since M n = m a x \Sk\=ma.x(M+, Mn), formula (3.3.4) implies that 

with probability 1 there are only finitely many n for which 

""*«<I-»(niBpf and M---(l-£)(?rof-
Roughly speaking this means that if M+ is small (smaller than (1— e)« 

( n2n \lf2 ( n2n \l/2 

—— ) then M~ is big (bigger than ( 1 - s ) U n — ; ) 
81oglog«J ' n & v 6& '{Sloglogn) } 

provided that n is big enough. Reasoning along this line of thought, 

( %2n \l/2 

-m—; 
8 log log n) 

then M~ must be much larger. Csaki (1978) proved that this is indeed 
true. Let a(t)>09 b(t)>0 be non-increasing functions such that a(t)>0 
and b(t)>0 are increasing. Then, assuming the existence of two moments, 

P{M+^a(n)in and M~ ^ b(n)]/n i.o.} 

where c(ri) = a(ri)+b(ri). 

1 if 2-^TTie * * » : 
»ti nc*(ri) 

0 otherwise, 

The special case a(n)=b(n) of this theorem also gives Chung's law of 
iterated logarithm (3.3.4). Formally this theorem does not contain Hirsch's 
law of iterated logarithm, but Csaki also proved the validity of Hirsch's 
theorem in the case when only two moments exist. 

In order to illustrate what Csaki's theorem is all about we present here an 

Example. Put 

a(n) = C(log log n)-1'2 (0 < C < Y^/S) 
and 

b(n) = Z>(loglog n)-1'2 (D > 0). 
Then the series 

»=inc3(n) 

is convergent if D^nj^l — C and divergent if D^n/fl-C. Applying 
Csaki's theorem this fact implies that the events 

occur infinitely often with probability 1 if 0<C<)^7r2/8 and D^n/Yl-C. 

one can expect that if M: is much smaller than (1-e).
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However it is not so if D^n/fl — C. That is to say if n is big enough and 

then it follows that 

(

vl/2 __ i ^ y (o-j>-*/ife-c). 
Csaki also proved an analogue of Strassen's converse law of iterated 

logarithm. In fact he proved that if (3.3.4) holds true then the second 
moment of the r.v. X1 exists. 

As we mentioned already, Csaki's theorem states that if one of the r.v. 
M+(ri) and M"(«) is very small then the other one must be big. It is 
interesting to ask what happens if one of the r.v. M+(«) and M~(ri) 
is very big. Strassen's law of iterated logarithm (Theorem 3.2.2) easily 
implies that for any 8>0 the events 

M+ (n) ^ l y ^ (2n log log n)1/2 and M~(n) ^ ^ (2» log log n)1/2 

occur infinitely often with probability 1 but of the events 

M + (n)^^y(2nloglogn)1 / 2 and AT (a) ^ ^ (2n log log n)1'2 

only finitely many can occur with probability 1. That is to say if n is 
big enough and 

then 

M+(w) ^ i y £ (2n log log n)1/2, 

M" (n) ^ i y ^ (2w log log n)1'2. 

In general, one can say that for any e>0 and | ^ # < 1 the events 

M+(n)^(l-e)q(2nloglogri)1/2 and M~(n) ^ ( l - f i ) i^ (2«loglog«) 1 / 2 

occur infinitely often with probability 1 but of the events 

M+(ri) ̂  (1 +c) g(2« log log «)1/2 and M"(«) ^ (1 +e) - ^ (2n log log/z)1/2 

only finitely many occur with probability 1. 



4. Strong Approximations of Empirical Processes 
by Gaussian Processes 

4.1. Some classical results 

The role and development of the various invariance principles in the 
areas of partial sum and empirical processes are similar. Studying the latter, 
this chapter plays the same role as Chapter 2 does in the study of the former. 

In this introduction we are going to introduce some of the classical defini-
tions and results. Let Xl9 X29 ... be i.i.d.r.v. with distribution function 
F(') and define the empirical distribution function of the sample 
Xlt...,X. by 

One can give an equivalent definition of the empirical distribution func-
tion FH(*) in terms of the order statistics X[n)^X™^...^X™ of the 
random sample Xl9..., Xn as follows: 

[0, X^>x9 

k 
Fn(x) 

n 
XF>^x*zXj$l9 fc = l , 2 , . . . , n - l , 

[l, X™*kx. 

Clearly, for every fixed x, Fn(x) is the relative frequency of successes in 
a Bernoulli sequence of trials with EFn(x)=F(x) and Var Fn(x)= 

= — F(x)(l — F(x)\ Consequently, by the classical strong law of large 
n 

numbers, 

(4.1.1) Fn(x)-^- F(x)9 for x fixed. 

Hence, using the language of statistics, Fn(x) is an unbiased and strongly 
consistent estimator of F(x) for each fixed x. 

Viewing {Fn(x); -oo<^<oo} as a stochastic process, its sample functions 
are distribution functions and it is of great importance that F(x) can be 
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uniformly estimated by this process with probability one. This is formu-
lated in

Theorem 4.1.1 (Cantelli 1917 and Glivenko 1933). 

(4.1.2) sup \Fn{x)-F{x)\^^0. 

This theorem is rightly called the fundamental theorem of mathematical 
statistics. It tells us that, sampling ad infinitum, F(x) can be uniquely 
determined with probability one. In fact, (4.1.2) is a simple consequence 
of (4.1.1). 

From a practical point of view it is also of interest to study the rate of 
convergence in (4.1.2). Towards this end we define the empirical process 

pn(x)= fn(Fn(x)-F(x)), - o o < * < o o . 

The pointwise behaviour of f}n(x) is quite simple. One immediately 
has the central limit theorem for each fixed x: 

(4.1.3) /?„(*) — ^(0, F(x)(l-F(x))). 

As to a rate of convergence in (4.1.2) we have 

Theorem 4.1.2 (Kolmogorov 1933 and Smirnov 1939). If F(x) is a conti-
nuous distribution function, then 

(4.1.4) P{ sup \PB(x)\*y}-~K(y) 

where 
— O O < J C < OO 

K(y) = 
2 (-lfe-2k2r\ y>0 

0, otherwise, 
and 

(4.1.5) P{ sup pn(x)^y}-S(y) 

where 

[0, otherwise. 

A large deviation type result for the rate of convergence in (4.1.2) is also 
available: 

Theorem 4.1.3 (Dvoretzky, Kiefer, Wolfowitz 1956). There exists a univer-
sal constant C such that, for all «>0 and r>0, 

(4.1.6) P{ sup \pn(x)\ ^ r} ^ Ce~*\ 
— o o < X - < o o 
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4.2. Why should the empirical process behave like a Brownian bridge? 

As we have seen, the study of J?w(x), for x fixed, can be done on tradi-
tional grounds, as a result of its binomial distribution. The global state-
ments (4.1.4), (4.1.5) and (4.1.6), however, cannot be handled easily. The 
original proofs of Kolmogorov and Smirnov, for example, are very 
complicated (cf. however Feller 1948). 

As mentioned already in the Introduction, Doob (1949) suggested a novel 
approach for the study of the process {P„(x); — oo<x<oo}. j n order 
to describe Doob's idea we let U~F{X^ i = l, 2, ... . Then the Ut are 
C/(0, 1) r.v. provided F(*) is continuous. Let now En(y) be the empirical 
distribution function of the sample Ul9 ..., Un and denote the resulting 
empirical process in this case by 

**(y) = lfr(Eu(y)-y), O^y^L 

Then Eocn(y)=0 and the covariance function of the process {<xn(y); O^y^ 1} 
is 

Q(S, t) = Ectn(s)(xn(t) = sAt—st9 

which coincides with that of a Brownian bridge {B(y); O ^ j ^ l } . Using 
a multivariate version of the central limit theorem one can immediately 
say that 

(4.2.1) (aM(yi), ..., *n(yk))— (B(yi), ..., B(yk))9 

for any fixed sequence 0^y1<y2<...^yk^ 1. This should then suggest 
that the distributional properties of {ocn(y); O ^ j ^ l } should coincide 
with those of {B(y); 0^j>=sl} as w-°o. Indeed, Doob (1949), on this 
heuristic basis, said: "...in calculating asymptotic an(y) process distri-
butions when «-c» we may simply replace the ocn(y) process by the 
B(y) process." 

At this stage we call attention to the fact that this idea is essentially the 
same as the one which led us to Donsker's theorem (cf. (0.4)). Indeed, 
Donsker (1952) was again the first one who justified Doob's heuristic 
approach. 

In order to formulate his result, we give a continuous version F*(*) 
of the empirical distribution function: 
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if 

2 ~ * ~ 2 
It is clear that 

sup | F „ ( x ) - F * ( x ) | ^ l . 
— oo-<JC-<oo Tl 

The corresponding continuous versions /?*(*) and a*(^) of the empirical 
process then become 

R(x)=lfc(F:(?c)-F(x)), - - < * < - , 

Theorem 4.2.1 (Donsker 1952). We have 

(4.2.2) %TO0)—*(*G0) , 

/or euery continuous functional h: C(0, l)-*/?1. 

We are not going to prove this theorem here. It will, however, follow 
from Theorem 4.4.1. 

We also note already here that Theorem 4.2.1 and Theorem 1.5.1 together 
imply Theorem 4.1.2. This is true because, for every co£ Q, ocn(F(x))=pn(x) 
and sup ccn{y) = sup aB(F(jc)) = sup /?„(*), provided F is 

O ^ y ^ l - o o < x < o o - o o < x < o o 

continuous (note: sup is a continuous functional). 

4.3. The first strong approximations of the empirical process 

In the light of Strassen's strong approximation result (2.2.2) it was 
natural to look for analogous approximations concerning the empirical 
process. Indeed, the first one of these is directly based on (2.2.2) and is 
due to Brillinger. 

Theorem 4.3.1 (Brillinger 1969). Given independent U(09 1) r.v. Ul9U2,..., 
there exists a probability space with sequences of Brownian bridges {Bn(y); 
0 ̂ y ^ 1} and processes {xn (y); 0 ̂ y ^ 1} such that 

(4.3.1) {a„00; O^y^ 1 } = KGO; 0 ^ y ^ 1} 
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for each n= l ,2 , ..., and 

(4.3.2) sup \otn(y)-Bn(y)\ 2£ 0{n^{\ognyi\\og\ognf'% 

The fact that such a theorem can be directly based on (2.2.2) is due 
to the construction of the process {otn(y); O ^ j ^ l } , which hinges on the 
observation that for each n = l, 2, ... 

(4.3.3) {£#»>; 1 ^ k ̂  n) =£= {-A-; 1 ^ fc ̂  J , 

where S^i^+.-.+iSfc and the Et are independent exponential r.v. 
with mean one. Consequently, for each n, one can define an empirical 

distribution function En(y) in terms of j c * ; l^k^nl. Then the 

process dLn(y) = Yn{En(y)— y) clearly satisfies (4.3.1) and it is also not 
difficult to arrive at (4.3.2) (e.g. via Theorem 2.2.1). Further details of 
proof are omitted, for Theorem 4.3.1 will follow from Theorem 4.4.1. 

Remark 4.3.1. In the sequel we will not emphasize that a new probability 
space should be introduced. That is to say, in an appropriate sense, Remark 
2.2.1 should be applied in this Chapter too. 

Remark 43.2. Naturally, one can replace (2.2.2) by Theorem 2.6.1 in 
the above sketched proof of Brillinger's theorem. His result however will 
not be improved by doing so. In fact Theorem 2.6.1 will imply that 

a„ l - ^ - J is c l ° s e t 0 Bn j A, but then we would still have to estimate 

sup a j * l~^/i|— • One possible way of doing this is via Theorem 
i^k*n\ \bn+i) \nJ\ 
5.2.1. However, this approach will destroy the gain obtained via Theorem 
2.6.1. 

It is clear that Theorem 4.3.1 immediately implies Theorem 4.2.1. Also, 
it can be immediately generalized to the case of the empirical process 
P„(x) with an arbitrary continuous distribution function F( •) via applying 
again the equality a„(F(x))=pn(x). Moreover, we also have the following 
result with a not necessarily continuous F. 

Theorem 4.3.1*. Given U.d.r.v. Xl9 X2, ... with distribution function F(*)9 

there exists a sequence of Brownian bridges {Bn(y); O^y^l} such that 

(4.3.4) sup \pH(x)-BH(F(x))\ 2£ 0(n~^(log«)1/2(loglog/*)1/2). 
— O O - < J C - < <» 
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Proof. Let Ul9 ..., Un be a C/(0, 1) random sample, and let ocn(y) 
and Bn(y) be as in Theorem 4.3.1. Then, for any U(0, 1) r.v. U, invF(U) 
has distribution function F(x). Define Xk=inv F(Uk), fc=l,2, ...,w, 
and let Fn(x) be the empirical distribution function of these r.v. Since 
P{Xk^x}=F(x), k= 1,2, . . . ,«, we have F„(x)=£n(jF(x)) for every 
o>e Q. Hence ^ ( X ) = ^ ( F „ ( X ) ~ F ( X ) ) = / « ( £ / I ( F ( A : ) ) - F ( X ) ) for every co£ O, 

and sup |j?„(*)-i?n(F(;c))|== sup \fn(En(F(x))-F(x))-Bn(F(x))\^ 
— oo<JC<oo —oo<JC<oo 

s sup Wn(E„(y)-y)-Bn(y)\= sup |a„(>0-^„(j)|; for the latter 

(4.3.2) holds and whence Theorem 4.3.1* is also true. 
We should like to call attention to the fact that though Theorem 4.3.1 

might appear as a strong approximation theorem, it is not at all like 
Theorems 2.2.4. and 2.6.1 are in the area of partial sum approximation in 
Chapter 2. It is rather like Lemma 2.5.1, that is in both of them one has 
only an approximation for each n. More precisely, in the present case 
we have not succeeded in bringing together the stochastic processes 
{a„O0;0^j^l , n = l , 2 , ...} and {Bn(y); O^y^l, n = l, 2, . . . } . Thus 
no strong law type behaviour of the process a„(j), like, e.g., the Smirnov 
(1944), Chung (1949) law of iterated logarithm, can be deduced from 
Theorem 4.3.1. 

Kiefer was the first one to call attention to the desirability of viewing 
the empirical process an(y) as a two-parameter process and that it should 
be approximated by an appropriate two-dimensional Gaussian process. 
He also gave a solution to this problem by proving 

Theorem 4.3.2 (Kiefer 1972). Given independent U(09 1) r.v. Ul9 U2, ..., 
there exists a Kiefer process {K(y, t); O^y^l, 0^f<°°} such that 

(4.3.5) sup |^a„O0-K(y, ri)\ ^ O^Oogn)**) . 

A Theorem 4.3.1* type analogue of this theorem is immediate. 
The above result of Kiefer is the first two-dimensional strong approxi-

mation theorem. Consequently, he had to develop a new technique. He 
did this, generalizing Skorohod's embedding scheme to vectors. An 
elementary proof of Theorem 4.3.2 was given in Csorgo, Revesz (1975b), 
using the technique of Theorem 2.5.1 instead of Skorohod's scheme. 
Subsequently Komlos, Major, Tusnady (1975) have succeeded in applying 
their one dimensional technique to improve Kiefer's above theorem, and 
the next section is devoted to their corresponding results. 



Strong Approximations of Empirical Processes by Gaussian Processes 133 

4.4. Best strong approximations of the empirical process 

First we formulate a result, which improves the rate in (4.3.2), giving 
also the best possible one. 

Theorem 4.4.1 (Komlos, Major, Tusnady 1975). Given independent t/(0, 1) 
r.v. Ul9 U29 ..., there exists a sequence of Brownian bridges {Bn(y); 
O^y^l} such that for all n and x we have 

(4.4.1) P{ sup fc.G0-3.O0l > »-1/2(Clogn+*)}^Le-**, 

where C, L9 X are positive absolute constants. (For example they can be 
chosen as C=100, L=10, A=1/50J Consequently 

(4.4.2) sup My)-Bn(y)\ = 0(n-^logn). 

The following three lemmas play a crucial role in the proof of Theorem 
4.4.1. 

Lemma 4.4.1 (Tusnady 1977b). Let G{x)£Jf fy , ~ ) , i.e., 

( 2 \' x 

id /exp du. 

Then 

(4.4.4) G ^ / c ^ - y ) ^ 2 (n) 2-" ^ G(fc+1), if fc ^ n/2. 

Although the proof of this inequality is elementary, it is not at all simple. 
It will not be given here however. 

Lemma 4.4.2 (Tusnady 1977b). Let Y^Jf j ~ , ^ - j . There exists then a 

r.v. X€@(n, £) such that 

(4.4.5) r - l g l g 7 + v ^ +1 , // Y^n/2, 

and 

Hr)' 
(4.4.6) y ^—1 l g I S 7 + l , j / F s n / 2 . 

http://fc.G0-3.O0l


134 Strong Approximations 

Combining these two inequalities we get 

(4.4.7) | Z - 7 | ^ ~ Z 2 + 1 

and 

+ 1, (4.4.8) \x-j *-l 

i*-i\ ' where Z=2n~l/2\Y——I, i.e. the standardized version of the r.v. Y. 

The role of (4.4.7) will be the same in the sequel as that of (2.5.3) in the 
proof of Theorem 2.5.1. 

Proof. We will detail only (4.4.5). With G of (4.4.3), define the sequence 
of real numbers C!<c2<...-<cn by 

G«*>=i.(")2~-
Next, we define the r.v. X as follows: X equals to k when the event 
Ak={co: ck_1<7(o>)^cife} occurs. Since by Lemma 4.4.1 

<?(<*) = i(")2-sG(fc+l) , 

on the set Ak (k^n/2) we have 

Y-l^ck+l^k = X, 

and the left hand side of (4.4.5) is proved. 
In order to see the right-hand side of (4.4.5), we observe that if Y ^ —n/2 

(Y— n/2)2 

then X^ 1 and Y+~— + 1 ^ 1 . Hence we can assume that Y ^ —n/2. 

By Lemma 4.4.1 for k^n/2 we have 

G H I / 2 - T ) S I G ) 2 " " = G ( C A ) -
Hence 

and so 

( 2 ( k - l ) » ^ ~ s c , . 1 

fc-1S 2^—=C^+ 2^— 
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The latter inequality implies that on the set Ak (k^n/2) we have 

I*--*)'..., K) ' 
and the proof of (4.4.5) is now complete. 

Lemma 4.4.3. Let X„tk (k=\, 2, ..., 2n; w=l, 2, ...) be a triangular array 
of independent JV(0, 1) r.v. Define, for any k,n (l^fc^2"), 

where kQ—k and fcl+1 = | - i - — , /=0, 1, ...,« —2. Then there exists 

a C>0 such that 

2 Pin-1 max Sfk > C}<co. 

Proof. By Theorem 2.4.4 there exists an absolute constant C>0 such that 

p j l ^ ^ l ^cy^*e-n9 fc=i,2, ...,2»; n = l,2,.... 

Hence 

'{.ss.J^rl*c^}-(7r-
and Lemma 4.4.3 is proved. 

Proofof(4A.2). Let us assume that we are given a sequence of Brownian 
bridges {Bn(y); O^y^l}. We define, for each n = l, 2, ..., 

b»(y) = ny + YnBm(y). 

Then 6n (i)€*V(n/29 n/4) and, by (4.4.7), one can define also a binomial 
r.v. an($)€@(n, i) such that 

| 6 . ( i ) - f l . ( i ) l ^ i « ( i ) + l. 
In terms of the thus defined binomial r.v. an(i), we can now define the r.v. 

^(i) = »-x/,(«.(i)-|), 

whose distribution, for each n, is the same as that of a uniform empirical 
process at y—\ and, in addition to this, we have 
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Given this initial step, we define the r.v. 

{a„((2fc+l)2-^+1>); k = 0,1, 2, ..., 2* - l } 

on the basis of 
ft(fc2-<-+1>); fc = 0,l ,2f . . . ,2-+1}, 

assuming that the r.v. 
{an(fc2—), fc=l,2,...,2"} 

are already constructed. 
Before doing this, we put 

*«G0 = ny + Ynocn(y)9 0 ^ y ^ 1, 
and observe 

(4.4.10) E 
(2k+l\ Ml-J+M 2m ) 

an[2m+lj 2 
. (^ r ) . / = 0,l , . . . ,2-

= T(a»(^i)-a"(l^))' * = <U.-.2"-i, 

(4.4.11) T„(k,m) = Bny 2^+rJ 2 

for each A; = 0,1, . . . , 2 m - l 

is independent of the vector of r.v. I ^ B I - ^ J ', 1—0, ..., 2m\. 

Given a„U^, /=(), ...,2m, we have 

m »>=^y^(-.(^)-«.(^))r.̂  - ) ^ t ^ 
(4.4.12) 

k=0, l ) . . . , 2 m - l . 

ffc+n (k) ffc+n fk^ 
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Now we construct 

(4.4.13) Xn(k, m) = a„ g + £ ) - a . ( ± ) € * («„ ( * ± i ) - a , ( A ) , I ) 

« 
in terms of Yn(k9 m) of (4.4.12) via Lemma 4.4.2, and then we put 

f f 2 k + 1 ) 
(4.4.14) 

(k,m) + an[—) 
= tfT 

2fc+l 
2m + 1 

2fc+l 
2 m + l 

for k=0,1, ..., 2 m - l , m=0, 1, 2, ..., M, where M is an integer to be 
picked later on. 

So far we have constructed the process an(y) at y=l/2nl (1=0, 1, ...,2m; 
m=0, 1,2, ..., M) and our construction (4.4.14) shows that the distribution 

of the array of r.v. | a i i | ^ r h /=0, 1, ..., 2m; m=0, 1, 2, ..., M\ is as 

desired. Next we show that this array is as close to the given array 

j ^ f — j ; /=0 ,1 , ..., 2M; m=l ,2 , . . . , Afl as claimed. Towards this end 

we first consider 

(4.4.15) 

'"12m + 1 J 2 p i 2W+1J 2 J 

a | r . ( t > m ) _)^! | / | ( 0 . (w)_ , (^) ) r . ( t , m ) 
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where 

T — 
j 2 — 

Y„(k,m) 

in \ 
(2k+l\ a» y 2m+1 J 

f«»(^)+«-(^-)|| «-(^-)-fl-(^r) 
ifn 

(4.4.16) 

and 

_\X„(k,m)-Yn(k,m)\ 

I ft I 

SB-i/»(i.2-+«(r.(fc,m))«+l), 

(4.4.17) Jt= \rtt(k,m)\. \l-^^^(an(^)-an(±))\ 

= \rm(k, m)\ 

2 m - l 

1 + 
"M^M£)) 

ft 
k 2"-A (k+l\ ( k\\ 

s_|rB(fc,m)|.|«^—J-a„(-]| 
2 " - * , . ,2—" f (k+l\ (k\Y 

We note that the inequality of (4.4.16) is by (4.4.7). Whence we have 

(4.4.18) J1+JM ^ n~V* (3 (2»"*)nn(k9 m)+2»>-* [a„ ( ^ - ) -a„ ( ^ ) J 2
+ ! j 

^n-1/«(5(2"-1)r;(fc,m) + 3), m = 0,1, 2, ..., M, 

where the last inequality is by (4.4.8). The right-hand side term of (4.4.18) 
estimates the error incurred in our construction at the wth step for each 
k=0, 1, ..., 2W— 1. The total error of construction up to M can be esti-
mated by the above error terms. Applying now Lemma 4.4.3 we get 

(4.4.19) 2 P 
M = l 

^oj^J^)-^)! 
M 

for « = 1,2, ... . Choosing M=logn, we have, so far, proved (4.4.2) 
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at the indicated points. As to filling out the gaps in between, we do it via 
observing that 

and 

2P\ sup sup K ( * + ' ) - ^ * ) l c l 

2P\ sup U j x + T j - a „ ( x ) >Clogn[<oo, 

where the first convergence is by Lemma 1.1.1 and the second one follows 
from elementary calculations. The proof of (4.4.2) is now almost complete 
(cf. Remark 4.4.2). 

Remark 4.4.1. We note that, in the above proof, we actually proved a bit 
more than (4.4.2). Namely we showed that there exists an absolute positive 
constant C such that 

(4.4.20) ^ P { s u p fii\<xn(y)-Bn(y)\>Clogn}^<~. 
n=l Ossy^l 

While this is indeed more than the statement of (4.4.2), it is considerably 
less than that of (4.4.1). In order to prove the latter, one would use the 
same construction, but instead of Lemma 4.4.3, we would have to estimate 
the large deviation distribution of 

a bit more exactly. 

max l&Jfc — n\/fn 
isifc=i2n' n,K " 

Remark 4.4.2. We note also that what we have proved above is some-
what different than claimed in the statement of Theorem 4.4.1. Namely, 
there we claimed the existence of sequences {Un} and {Bn{y\ O ^ j ^ l } 
satisfying (4.4.1) and (4.4.2). On the other hand, in our proof of (4.4.2) 
we started out with a given sequence of Brownian bridges and constructed, 
for each /i = l, 2 a vector {UnJ: l^j^n} of independent £7(0, 1) 
r.v. such that the empirical process <xn of these satisfied (4.4.1) and (4.4.2). 
However, we did not say anything about the joint distribution of the 
triangular array of vectors {UnJ: l^j^n), n = l , 2 , . . . . Consequently, 
we cannot really say that we have obtained the sequence {Un} of Theorem 
4.4.1 as desired. Nevertheless (4.4.20) enables us to conclude also what 
we really wanted to say, as a result of the following 
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Lemma 4.4.4. Let /*(•) be a probability measure defined on the Borel 
sets of the Banach space D(09\)XD(09\)9 and let £ (resp.rj) be D(0, 1) 
valued r.v. defined on (Ql9 s/l9 P±) (resp. on (Q29 J/29 ?*)) with 

P^teA} = fi(AxD(0, 1)) resp, P2{^A} = ji(Z>(0, l)XA) 

for any Borel set A of D(09 1). Then there exists a probability measure 
P defined on (QXXQ29 ^1X^2) such that 

P{(flh, co2)eQ1XQ2: (£(<%), !?(«*))€*} = ji(tf), 

/or any £0re/ set B of D(0, l)XD(0, 1). 

The proof of this lemma, which is based on standard measure theoretic 
methods, will not be given here. 

Applying now Lemma 4.4.4 with fi=fi„, n=l,2,..., being the joint 
distribution of (an9Bn)9 (where an and Bn are the processes constructed 
in our proof), and £=a* being the empirical process defined in terms 
of Ul9 U29 ..., Un of Theorem 4.4.1, via (4.4.20) and the Kolmogorov 
extension theorem we get 

(4.4.20*) i P{ sup J^|<£(y)-#G0I > Clogn} < ~ , 
w = l O^ysil 

where, for n=l929 ...9B*=tj of Lemma 4.4.4. 
At the beginning of this paragraph we mentioned that the rate of (4.4.2) 

is the best possible one. Now we show that this is indeed so. 

Theorem 4.4.2 (Komlos, Major, Tusnady 1975). For any sequence of 
Brownian bridges {Bn(y)9 O^y^ 1} on the probability space of our empirical 
process {<xn(y); 0^J>^1} we have 

P{sup \xn(y)-Bn(y)\^±n-vnogn} + l. 

Proof Recall (4.3.3). Then, for any c>0 

(4.4.2D sup nuMmT:i>-^m 

= sup 7 - ^ ^ L _ { ( S t + [ e l o g I l ] - ^ - [ c l o g n ] ) - ^ ^ ( 5 B + 1 - « ) } . 9 
sup . . lSfc^«-[clog«] L^lOg 
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Now Theorem 2.4.3 implies that the limit of the right-hand side of (4.4.21) 
is almost surely equal to 

i- / i\ *Sfc+[ciogn] — Sk — [c\ogn] 
hm sup (— l) % i—^r—2— = a(c)> 
» -̂itfjk^n-iciogii] [clogw] 

where a(c) is as in (2.4.5). Consequently, (4.4.21) implies 

„ , , sup "MlU^-vM*)^^ 
l^k^n-[c\ogn) [C lOg Tl\ 

Similarly, one can also show that 

„!/, sup M^eftpmjusto 
l35*35n-[clogn] [C lOg tl\ 

where a*(c) is as in (2.4.5). We know that a(c) and a*(c) cannot be 
identical. Studying the difference a(c)—a*(c) one finds that for any 

appropriate c we will have that •—- (a(c)—a*(c)) is greater than or equal 

to £. This also completes the proof of Theorem 4.4.2. 
As to the two dimensional Kiefer type approximation of the empirical 

process we have: 

Theorem 4.4.3 (Komlos, Major, Tusnady 1975). Given independent U(0,l) 
r.v. Ul9U29...9 there exists a Kiefer process {K(y, t); O ^ j ^ l , 0^f<°°} 
such that 

(4.4.22) P{ sup sup \klf2(xk(y)-K(y9k)\^(Clogn+x)logn}^Le-Xx 

for all x and n, where C9L9X are positive absolute constants. Consequently, 

(4.4.23) sup \nV**n(y)-K(y9 n)\ S 0(log2n). 

It is clear from Theorem 4.4.2 that the rate of (4.4.23) cannot be improved 
beyond 0(log n). However, the best possible rate is not yet known in 
this case. 

Due to its length and complexity, the proof of Theorem 4.4.3 is omitted 
here. 

Remark 4.4.3. A Theorem 4.3.1* type analogue of Theorems 4.4.1 and 
4.4.3 is also true. 
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Corollary 4.4.1. Theorems 4.4.1 and 4.4.3 imply 

(4.4.24) | sup |a„(y)|- sup \Bn(y)\\ = 0(n-^logn) 

| sup K C ) | - sup fi-^IATCy.^ll^OCB-^log"!!), 

and 

(4.4.25) | / a»G0 dy-f &m(y)dy\ S ^(n-1/2logn(loglogn)1'2) 
0 0 

1 1 

| / oZWdy-n-1/ K*(y> n)dy\ 2 i ©(n^'Mo^ii (log log *)*'»). 
0 0 

/V00/. The two statements of (4.4.24) follow directly from Theorems 
4.4.1 and 4.4.3. As to (4.4.25), we have 

\}{*l{y)--n^K\y9n))dy\ 
o 

= \f(«n(y)-n-ll2K(y, n))(<xn(y)+n-l<*K(y, n))dy\ 
0 

^ sup \oc„(y)-n-^K(y,n)\ sup \oi„{y) + n-^K{y,n)\ 

2^ Oin-1'2 log2 n)0((log log n)1/2), 

by (4.4.23) and by applying the law of iterated logarithm twice (cf. Corollary 
1.15.1 and Theorem 5.1.1). As to the first statement of (4.4.25), the left-
hand side of the latter is bounded above by 

sup K(y)-Bn(y)\ sup \cc„(y)+Bn(y)\ 

S sup K(y)-B„(y)\( sup \Bu(y)-a.(y)\+2 sup \<xn(y)\) 
O^y^l O^y^l O^y^l 

S±0(n-1/2logn)(0(n-1/2logn)+0((loglogn)1/2)) 

S 0(n-^Hog n(loglog n)1/2), 

on applying Theorem 4.4.1 twice to sup Wn(y)-Bn(y)\ and the law of 

iterated logarithm once to sup |a„(.y)| (cf. Theorem 5.1.1). 
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4.5. Strong approximations of the quantile process 

In dealing with the empirical process in the first four sections of this 
chapter, so far we have emphasized that all the results proved for the 
uniform case have an immediate form for the general case with an arbitrary 
continuous distribution function F(«) simply by noticing that (xn(F(x))= 
=/?„(*). Such a substitution will not work immediately for the quantile 
process and we will have to deal with the general case separately. First 
some definitions. 

Let Ul9 U29 ... be a sequence of independent £/(0, 1) r.v. and, for each 
w^l, let 0=C/0

(w)^C/1
(rt)^...^C/^)^C/^1 = l denote the order statistics 

of the random sample Ul9 U29 ..., Un. Define the uniform quantile function 

U„(y) = 
£/•<») if Ll^y*]?., fe= 1,2, ...,«. 

n n 
[0 if y = 0 

and the uniform sample quantile process 

un(y) = n^(Un(y)-y), O^y^L 

Let Xl9X29 ... be a sequence of i.i.d.r.v. with a continuous distribu-
tion function F(*) and let X[n)^...^X^n) denote the order statistics 
of the random sample Xl9 X29 ..., Xn. Define the quantile function 

Qn(y) = X^ if t ± < y s k k = \,2,...,n, 
n n 

and the sample quantile process 

qn(y) = n^Qn(y)-™ny% 0 < ^ 1 . 

This latter process sometimes is called the inverse empirical process. 
The pointwise properties of the empirical process (cf. (4.1.1), (4.1.3)) 

are quite simple and follow from well-known properties of partial sum 
sequences of i.i.d.r.v. The corresponding properties of the quantile process 
are not so immediate. An analogue of (4.1.3) is 

Theorem 4.5.1 (cf., e.g., Renyi 1970, p. 490). Suppose that F(x) is ab-
solutely continuous in an interval around inv F(y0). Then, with f= F\ 
we have 

(4.5.1) P{/(invFO,,)) ( y o ( ^ ) 1 / 2 < *}~ 9 (0 ( n — ) 

provided /(inv F(y0)) is positive and continuous at y0. 
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The proof of this theorem is elementary and will not be presented here. 
Under somewhat stronger restrictions we will approximate the quantile 
process by Brownian bridges (Theorem 4.5.6), and the latter approxima-
tion, in turn, will imply the validity of (4.5.1). 

In order to give an analogue of (4.1.1), it is easily seen that 

lim[Gn(^o)-inv^o)] = 0, 

provided invi'X-) is continuous at y0. Otherwise, the above statement 
cannot be true. 

Towards an analogue of Theorem 4.1.1, we first note that 

P{lim sup \Qn(y)-mvF(y)\=~}=l9 

unless F has finite support. Given Theorem 4.5.1, it appears to be natural 
to consider under what conditions should the statement 

lim sup /(inv F(y))\Qn(y)-invF(y)\ S 0 

be true. We are not going to study this question directly. However, a law 
of iterated logarithm will be proved for the quantile process in Chapter 5. 

Now we turn to the problem of approximating the quantile process by 
a sequence of Brownian bridges and first we prove an analogue of Theorem 
4.4.1. 

Theorem 4.5.2 (Csorgo, Revesz 1975c, 1978b). Given independent C/(0, 1) 
r.v. Ul9U29...9 there exists a sequence of Brownian bridges {Bn(y);0^y^l} 
such that for each « = 1,2, ..., and for all \z\^c^n and c>0 we have 

(4.5.2) F{ sup \un(y)-Bn(y)\ =- n'^{A log n + z)} ̂  Be'Cz
9 

where A, B, C, c are positive absolute constants. Whence we also have 

(4.5.3) sup \un(y)-Bn(y)\=0(n-vnogn). 
k 

Proof. V\ilEk=\og(\IUk),k=\,2, - , S0=0, Sk= 2Ej, k=\, 2, ..., and 

0„(y) = 
SJSB+l if ^ < y 4 > *= 1,2,...,«, 

0 if y = 0, 

a„(y) = n»*{Cn(j)-y), O s ^ l . 
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Then the Ek are independent exponential r.v. with mean value one and, 
for each /i = l, 2, ... (cf. (4.3.3)) 

{On(y);0^y^l}£={Un(y); O^y^l}. 
Whence 

(4.5.4) {an(y);0^y^\}£={un(y);0^y^l}9 n = l ,2, . . . . 

A simple calculation yields 

».(!)-»"'(^7-7)--"^[«-^!<s«--»)]-
Let W(t) be a Wiener process approximating the sequence {S„—n} 
at the rate 0(log») (cf. Theorem 2.6.1). Define 

(4.5.5) Bn(y) = n-^{W{ny)-yW(n)), O s y S l , 

and put l+en=n/S„+1. Now consider 

(4.5.6) 

^ ( D ^ - d ) = » - 1 / 2 [ ( (^ - fe ) -^ /c ) ) - | ( (5 - , , -n ) - fF(n) ) -^£„ + 1 

+en{(Sk-k)~(Sn+1-n))]. 

We have for all z>0 

p{ sup n-l'%Sk-k)-W(k)\ S f Al°8n + Z) „-i/2J s 5e-cz s 
Usfcsn \ 5 J ) 

p{n-ll*\(Su-n)-W(n)\ s (jii2£!i±£_j „-i/«J s j e - c , f 

4-^+ i a(^ i o 8
s

w + z)H-^}g ite-^ 

on choosing A, B, C appropriately, where in the last two inequalities 
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we applied Theorem 2.4.4. Consequently, (4.5.6) and the above inequalities 
imply 

p\ sup Iff ( £ ) - * (111 > n-v\Alogn + z)\^6Be-c*, 

which by Theorem 1.5.1, in turn, gives 

(4.5.7) P{ sup \un(y)-Bn(y)\ > n~V2(A logn + z)} ^ 6^"C z . 

Since (4.5.4) holds and the Bn(y) of (4.5.5) is a Brownian bridge for each 
n, (4.5.7) also completes the proof with applying again Lemma 4.4.4. 

Our next theorem is an analogue statement of (4.4.23) for the uniform 
quantile process un(y). 

Theorem 4.5.3 (Csorgo, Revesz 1975c). Given independent C/(0, 1) r.v. 
Ul9 U29 ..., there exists a Kiefer process {K(y, t); O^j/^1, t^O} such that 

(4.5.8) sup \u„(y)-n~1/2K(y9 n)\ = 0{n~x^(loglogn)1/4(logn)1/2). 

The proof of Theorem 4.5.3 hinges on Theorem 1.15.2 and the following 

Lemma 4.5.1. Let Ul9U2>... be i.i.d. t/(0, 1) r.v. and let {K(y,t); 
O^y^l, t^O} be a Kiefer process on the same probability space. Then 

sup 
l^k^n 

K(Uk
(n\ n ) - * ( - p n)\ = O((nloglog>01/4(logn)1/2). 

Proof Since <xn(U<;n))= -ui—\ = in (— -UfA, by the Chung-Smirnov 

law of iterated logarithm (cf. Theorem 5.1.1) we have 

fim 
n1/2 sup k n 

(loglogn)1'2 = 2"1/2. 

Whence, with an= sup \ujp 1, we have 
l^k^n ' ft ■ 

\zr(k \ „(k ) \ 
sup sup \K\—hs, nl — K\ — , n 

\rJk \ (k V 
sup sup LRTI—l-s, nl—-STI —, nl 

O^s^O(l) I I 
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Iim sup sup -( T\m — * a,s* 
0 = 

almost surely, for all but a finite number of n. Lemma 4.5.1 now follows 

upon taking hn = 0(\) f l o g l ° g " ) in Theorem 1.15.2. 

Proof of Theorem 4.5.3. First we note that *n(U[n))=-un (—j. Hence 

(4.4.23) of Theorem 4.4.3 implies 

sup \un[-)-n-1/2K(U£n\ n)\ = 0(n"1/2log2n). 

Combining now this latter statement with that of Lemma 4.5.1 we get 

sup LJ^l-n-^Ki-, ni^Ofn-^iloglognf^ilogn)1^, 

( k\\ _ k—l k 
— \\^n~112 for

 c^<— 
n)\

 n
 n 

and, by Theorem 1.15.2 

1*(IH-K(I-")I 
\ ( 1V 

with hn=l/n. 

Remark 4.5.1. Observing again that ocn(Uk
(n)) = — wn j — I, it follows 

from the proof of Theorem 4.4.2 that the rate of (4.5.3) is best possible. 
As to the rate of embedding of (4.5.8), it is probably very far from being 
best in spite of the fact that the nearness of Lemma 4.5.1 is best possible 
if K is the Kiefer process of Theorem 4.4.3 (cf. Theorem 5.2.1). 

Our aim now is to prove an analogous statement of (4.5.3) and (4.5.8) 
for the general quantile process qn(y). As we have already mentioned at 
the beginning of this section, there is no such immediate handle in this 
case like simply replacing y by F(x) in Theorem 4.5.1. However, the 
distance between qn(y) and un(y)9 respectively defined in terms of X^n) 

and UJc
ri) = F(Xk

w), can be computed accurately enough, so that Theorems 
4.5.2 and 4.5.3 can actually be used to obtain strong approximations also 
for the quantile process qn{y). 

In order to be able to estimate the distance between qn{y) and un(y) 
we still have to study the latter for a little while. Csaki (1977) investigated 
the limes superior of the sequence 

sup (y(l -J01oglogn)-1/2k6>)|, 

and Theorem 4.5.3 follows, since
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and succeeded in evaluating this lim sup for a wide class of sequences 
{sn}, e„\0. Here we mention only one special case of his many results for 
later use. 

Theorem 4.5.4 (Csaki 1977). With e^dn-1 log log n and rf^0.236... 
we have 

115 sup (y(l -y) log log n)~^\(xn(y)\ S 2. 

For further details we refer to Theorem 5.1.6 and Remark 5.1.1. 
Our next step is to prove an analogue of this theorem for un(y). Actually, 

this analogue is going to be weaker than Theorem 4.5.4. Applying Csaki's 
method, however, it does not seem to be too difficult to get complete 
analogues. The herewith presented one suffices for our purposes in the 
sequel. 

Theorem 4.5.5 (Csorgo, Revesz 1978b). With 5„=25AI—1 log log n we have 

Em sup (y(l— y)loglogn)~~1/2\un(y)\ ^ 4 a.s. 

Proof. Let 
*i = *i0) = j-4(.y(l-3;)n-1loglogn)1/2, 

*2 = x2(y) = y+4(y(l -y)n~1 loglog«)1/2. 

Then, for n^3 

(4.5.9) en ̂  xx < x2 ^ 1 - e n , provided 5n ^ y ^ 1 -dn, 

where again sn=dn~1 log log n (d=0.236...). In order to see that (4.5.9) 
holds for «^3 , we note that 

Xl-en ^ ( ^ - s „ ) + g y ^ - 4 ( n - H o g l o g n y * } y* ^ 0, 

and similarly, 1— x2—eM^0. Hence for xx as defined at the beginning 
of this proof and n large, Theorem 4.5.4 gives 

nFn(Xl) ^ iuc1+2(x1(l-x1)n loglogn)1/2(l+<?(l)) 

= ny—4(y(I — y)n loglogn)1/2 

+2(jcx(l -xjn loglogn)1/2(l +o(l)) ^ ny 

almost surely if n is large enough, where, for n large, the last inequality 
follows from the inequality x1(l-x1)(l+o(l))^4y(l-y). The latter, 
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in turn, is true since xx<y and 

( i + < K i ) ) - ^ = ( i + < K i ^ 

^ ( l + o ( l ) ) ( l + 4 ( l / 2 5 ) 1 / 2 ) < 4 

if n is large enough. Similarly we have nFn(x^)^ny, that is to say we now 
have nFn{x->)^ny^nFn(x^. Hence, for n large, x1^Un(y)^x2 whenever 
Sn^y^l— (5„, since Fn(>) is monotone non-decreasing. This, in turn, 
is the statement of Theorem 4.5.5. 

Now we are in the position to estimate the distance between qn(y) 
and un(y). Namely we have 

Theorem 4.5.6 (Csorgo, Revesz 1978b). Let Xl9 X2i ... be i.i.d.r.v. with 
a continuous distribution function F which is also twice differentiable on 
(a,b), where — °°^a=sup {x: F(x)—0}9 + ° ° ^ 6 = inf {x: F(x)=l} and 
F'=f9±0 on (a, b). Let the quantile process qn(y) resp. un(y) be defined 
in terms of X^ resp. UJc

tt) = F(X^n)). Assume that for some y>0 , 

/ '(*) 
Fix) 

*y. (4.5.10) sup F(x)(l-F(x)) 

Then, with 5n as in Theorem 4.5.5 

n l / 2 

(4.5.11) urn sup \f(mvF{y))qn(y)-un(y)\^K a.s., 

where K=289yl2y. 
If in addition to (4.5.10), we also assume that 

(A 5 11\ \f ^ non-decreasing (non-increasing) on an interval 
^ * [to the right of a (to the left of b), 
then 

(4.5.13) 

sup \f(invF(yj)qn(y)-un(y)\ = 

[0(n-1 / 2 loglogn) if y < 1 
0(n"1 /2(loglogn)2) if y = l 
0(n~1/2(loglog n)^(log n)(1+£)(y-1)) 

if 7>h 

where e>0 is arbitrary. The respective constants of the === # ( • ) of 

(4.5.13) may be taken to be: f46\/25 - r r ~ l 2 + K if y < l , 51 if y = l and 

arbitrarily small if y > l and e > 0 is fixed. 

The following Lemma is going to be useful in the sequel, 
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Lemma 4.5.2. Under condition (4.5.10) of Theorem 4.5.5 we have 

„ . _ v 
(4.5.14) 

for every pair yl9 y2£(0, 1). 

f(mvF(yj) ^ f yiVy2 l - f o A y j y 
f(wvF(yj) - 1 y,Ay2 ' l-faVyji9 

Proof (4.5.10) implies 

— log/(invF(y))| ^ 7(y(l-y))_ 1 = y ^ - l o g -

Whence, if yx>y2, then 

/(invF(vi)) Vi v 2 

f(myF(y2)) \-yi \-y2 

and, if y-i<y2, then 

= 7 log 

l o g { { l n V ^ a y l o g T A r - y l o g T A _ ^ y i o g 
1-J>2 1 - J 1 

yi i - y 2 

^2 1 - J l 

y2 1-J^l 

71 1 - J 2 7(invF(j;2)) 

Hence (4.5.14) is proved. 
k— 1 k 

Proof of Theorem 4.5.6. For <.y ̂  —, 
n n 

f(wvF(y))qn(y) = n ^ / O n v F ^ ^ v F ^ - O - i n v F C y ) ) 

= n^/Onv F(y))(inv F(y + n "1/2 iiB(y)) - inv F(y)) 

where £ is between y and Ufp=y+n-lf2un(y)9 i.e. |^-<y|^«"l/2|wn(.y)| 
Hence 

[/'(invFffl) 
(4.5.15) \f(inwF(y))qn(y)-un(y)\ ^ ^n-^ul(y) f (inv F(y))^ p ( [ m ^ 

Theorem 4.5.5 implies that, uniformly for 5n^y^l—8n9 the right-hand 
side of the above inequality is almost surely majorized for large n by 

(4.5.16) 8n-^(loglogn)y(l-y)f(imF(y)) ft^/Jj^0 +"(D) 

= 8« ^(loglogn) [ - ^ - ^ j [«1 - 0 / 2 ( i n v F ( 0 ) j [ / ( i n V j F ( 0 )J (1 + * 0 » 

with |{ -^ | s4(^( l - j ^ " 1 log log n)l/2(l +o(l)). 
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First we estimate y-—^. Since £>y-4(y(l -y^'Hog log rc)l/2(l +0(1)) 

and y^5n9 for n large enough we have 

y ^x , 4(y(l-y)n-Hog\ognY'^\+o(l)) 
t ~ ^ - 4 ( y ( l - j ) n - 1 l o g l o g n ) 1 / 2 ( l + o ( l ) ) 

4 ( y - H l - ^ ) n - 1 l o g l o g n ) ^ ( l + o ( l ) ) ^ 4/5(1+o(l)) ^ 
+ l - 4 (y - 1 ( l - J ' ) " - 1 l og log«) 1 / 2 ( l+o( l ) ) ~ + 1-4/5(1+0(1)) - 0 ' 

Now applying the inequality £<y+4(y(l— j )« _ 1 loglog«) l / 2 ( l +o( l ) ) , 
1 —v 

where .y^l — 8„, a similar computation yields that for n large -—~-s6 . 

Hence for large enough n 

^ ( 1 - ^ ( 1 - 0 ^ 3 6 , 

and by condition (4.5.10) 

« 1 - 0 | / ' ( i n v Ftf))//»(inv F(Q)| 3= y. 

Finally by Lemma 4.5.2 

/(invF(y)) ^ [g(i-y) , y ( i - 0 1 y ^ 
/(invf(0) " 1 ^ ( 1 - 0 «l-jOJ ~ 

72y. 

From these statements and from (4.5.16) it follows that for large n the 
left-hand side of (4.5.15) is bounded above by 289y 72y «-1/2(loglogw), 
and (4.5.11) follows. 

In order to prove (4.5.13), it suffices to show that 

sup \f(mvF(y))qn(y)-un(y)\ and sup \f(myF(y))qn(y)-un(y)\ 

are = 0( •) as indicated on the right-hand side of (4.5.13). We demonstrate 
this only for the first one of these sups since for the second one a similar 
argument holds. First of all we show that for n large 

(4.5.17) sup |wnO0l ^46n- 1 / 2 log log« a.s. 

The proof of (4.5.17) is as follows: for 0^y^5n 

(4.5.18) \un(y)\ = fi\Un(y)-y\ ^ ]fny ^ 25n~^ log log n, 

whenever y ^ Un(y), and \un(y)\ = in\Un(y)-y\ ^ fHUH(y) ^ fnUftfa, 
whenever y ^ Un(y). 
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In the latter case we consider 

(4.5.19) 

" 1 / 2 ( ^ [ ( ^ 

^ 46n~1/2loglogn a.s. for n large, 

where the above a.s. inequality follows from Theorem 4.5.5. Now (4.5.18) 
and (4.5.19) combined, imply (4.5.17). 

Restricting attention then to the region 0<y^5n, we assume that 
/(inv F(y)) is non-decreasing on an interval to the right of a (cf. (4.5.12)). 

Let hz±-^y*-m if uP^y, 
n n K 

(4.5.20) |/(inv F(y))qn{y)\ = «1/2 / j ^ ^ *» * «.G». 

where the inequality on the right-hand side results from the assumption 
that /(inv F(y)) is non-decreasing on an interval to the right of a. 
If £/fc

(n)<>>, then 

(4.5.21) ■d« 

2y 

1-y 
2* 

n 1 ' ^ 

y - 1 

if v ■*= 1 

„l/«yT(t^(»))-(T-« if y > l 

2n1/2y log 
W"> 

if y = 1. 

Hence (4.5.20) (with the help of (4.5.17)) and (4.5.21) (via 0<j^<5„ and 
in view of lim £/{n)'/i(logn)1+e=<~ for every £>0) together imply 

7l-»-oo 

(4.5.13). This also completes the proof of Theorem 4.5.6. 
A careful investigation of the proof of Theorem 4.5.6 also shows that 

(4.5.11) gives the best possible result in the following sense: 
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Assume that the conditions of Theorem 4.5.6 hold and also assume that 
f is twice differentiable with | / " | = C ond | / ' | ^ £ > 0 on a finite interval 
(a, B)a(a, b). Then we have 

1/2 

E 5 n sup \f(invF(y))qn(y)-un(y)\>K>0 a.s., 
„_oo l O g l O g n a^yzzS 

where the constant K depends on f. 

Remark 4.5.2. Using Theorems 4.5.5 and 4.5.6, a Theorem 4.5.5-type 
result could be proved also for the general quantile process /( inv F(y))qn(y). 
It would be more desirable, however, first to produce complete analogues 
for the uniform quantile process un(y) according to Csaki (1977) and then 
to use these exact analogues, instead of our Theorem 4.5.5, in combination 
with Theorem 4.5.6 to prove the same complete Csaki-type analogues 
for the general quantile process /(inv F(y))qn(y). That is to say Theorem 
4.5.6 may be viewed and can be used as a strong invariance theorem for 
studying the problem of what kind of a.s., in-probability and in-distribution 
properties of un(y) should be inherited by /(inv F(y))qn(y). For example, 
it follows from (4.5.3) and (4.5.13) that /(inv F(y))qn(y) - - B(y), a 
Brownian bridge on [0, 1], given the conditions (4.5.10) and (4.5.12). 
Some further examples are given in Chapter 5, and our next theorem is 
also of this nature. 

Having now Theorem 4.5.6 at our disposal, our desired analogue of 
(4.5.3) and (4.5.8) for the quantile process qn(y) is immediately at hand 
as follows: 

Theorem 4.5.7 (Csorgo, Revesz 1978b). Let Xl9X2, ... be i.i.d.r.v. with 
a continuous distribution function F which is also twice differentiable on 
(a, b), where — °°^a = sup {x: F(x)—0}, + ^^b — inf {x: F(x) = 1} and 
F'=f?±0 on (a9b). One can then define a Brownian bridge {Bn(y);0^y^l} 
for each n, and a Kiefer process {K(y, t); O^y^l, O^t} such that if condi-
tion (4.5.10) of Theorem 4.5.6 is assumed then 

(4.5.22) sup l / O n v F C ^ ^ ^ - ^ C ^ I ^ O ^ - ^ l o g n ) 

and 

(4.5.23) 

sup In^/Onv F(y)) qn(y) -K(y9 n)\ S 0((n log log n)^(log nfl% 
dn^y^l-dn 

where 8n is as in Theorem 4.5.5. 
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If, in addition to (4.5.10), condition (4.5.12) of Theorem 4.5.6 is also 
assumed, then 

i / ^ i . . (0(n_1/2logn) if y < 2 
^ \f(inyF(y))an(y)-BR(y)\ = ( o ^ - ^ , ^ , ^ ^ * , - ^ 

where y is as in (4.5.10) and e>0 is arbitrary; also 

(4.5.25) sup |n^2/(inv F(y))qn(y) -K(y, n)\ i t 0((n loglogn)1/4(log«)1/2). 

/V00/. Let U^n) = F(X^n)) and define wBO0 in terms of these uniform 
order statistics. Let Bn(y) resp. K(y, t) be as in Theorem 4.5.2 resp. in 
Theorem 4.5.3. Then Theorem 4.5.2 resp. Theorem 4.5.3 holds for the 
thus defined un(y) andcombiningthem with Theorem 4.5.6 we get Theorem 

4.5.7. The = 0{n~ll2logn) rate of (4.5.24) for y<2 holds because of 

the first two == O(-) rates of (4.5.13), and by taking a<——j—1 (if 
y - 1 

l<y<2) in the = 0(«"1/2(loglogAz)y (log«)(1+e)(y-1)) rate of (4.5.13). 

Supplementary remarks 

Section 4.2. Donsker's original formulation is slightly different from the 
one given in (4.2.2) in that he works on what is called the D(0, 1) space 
today. 

The idea of studying the empirical process via appropriate Gaussian pro-
cesses can be also found in the papers of Kac (1949), Bartlett (1949) and 
Kendall's remark to the latter. The just quoted paper of Kac is also 
discussed in Chapter 7. 

Section 4.4. The herewith presented proof of Theorem 4.4.1 is different 
from the original proof of Komlos, Major and Tusnady (1975). This 
proof is based on the one given by Tusnady in his dissertation (1977b). 

We note also that Theorem 4.4.1 when combined with the Erdos-Renyi 
law (cf. Komlos, Major and Tusnady 1975a and Tusnady 1977) gives 
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the rate 0(log n/nl/2) for the Prohorov distance of probability measures 

generated by a.n(y) and Bn(y) = B(y), and that the latter rate of log n/nm 

turns out to be also best possible in this case. 

Section 4.5. The non-uniform quantile process was also studied by 
Shorack (1972a, 1972b). Under somewhat different conditions than ours 
he proved a number of results. The sharpest one of them reads as follows 
(Shorack 1972b, Corollary 1): 

s u p l / ( invF( , ) ) , B ( j ; ) -^ (y) | = o ( 1 ) 

for certain functions g. 
In a recent paper (Csorgo, Revesz 1980a) we noted that the condition 

(4.5.12) of Theorems 4.5.6 and 4.5.7 can be replaced by the following 
conditions: 

(5.4.5.1) A = lim/(jc) ■<«>, B = lim/(*) < ~ , 

(5.4.5.2) one of the following conditions hold 
(a) min(^,5)>0, 
(b) if A = 0 (resp. -5 = 0) then / is non-decreasing (resp. 

non-increasing) on an interval to the right of a (resp. 
to the left of b). 

In the sequel we will often refer to Theorems 4.5 6 and 4.5.7 as well 
as to (4.5.12). Whenever we do so, the just mentioned two conditions 
are to replace (4.5.12). 



5. A Study of Empirical and Quantile Processes 
with the Help of Strong Approximation Methods 

5.0. Introduction 

The role of this chapter in relation to Chapters 1 and 4 is similar to that 
of Chapter 3 to Chapters 1 and 2. This is why, in addition to studying 
the Wiener process, in Chapter 1 we also studied certain distributional 
and almost sure fluctuational properties of Brownian bridges and the 
Kiefer process with the aim that they might be directly inherited by the 
empirical and quantile processes via the invariance principles covered in 
Chapter 4. A look at these strong invariance principles makes it clear 
that, unlike in the case of sums of r.v., the number of finite moments of 
the original r.v. sequence does not play a role as to what might be inherited 
by the empirical and quantile processes themselves. Thus, in the latter 
sense, our job of sorting out almost sure inheritance is somewhat easier here. 
On the other hand, the job of sorting out in distribution-type inheritance 
is made somewhat more difficult by the numerous statistical-type questions 
one can ask and answer in terms of these processes. Indeed, apart from the 
first three sections, this chapter is entirely devoted to tackling these latter 
problems. 

5.1. The law of iterated logarithm for the empirical process 

Let Xl9 Z2 , . . . be a sequence of i.i.d.r.v. with distribution function F. 
A trivial consequence of the simplest form of the law of iterated logarithm 
(Theorem 3.2.2 or Remark 3.2.4) is: 

Let x be any real number for which 0<F(x)<l . Then 

^ i n 1ST n«*\Fn(x)-F{x)\ a., 1 
(XiA) ™ (2F(x)(l -F(x))\og\ogn)^ — 
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This implies: 

Suppose that F is a distribution function for which there exists a real 
m such that F(m) = %. Then 

/rmx r - n1/2\Fn(x)-F(x)\ _ 1 / a (5.1.2) fim sup — ' "; J
 X1/,

 n ^ 2 ~ 1 / 2 a.s. v (loglogn)1 '2 
H-*-oo —oo<jf-<o 

Formulas (5.1.1) and (5.1.2) suggest the question: how can the rate of 
convergence of sup \Fn(x) — F(x)\ to 0 (cf. Theorem 4.1.1) be estimated? 
An answer to this question was obtained by Smirnov (1944) and, inde-
pendently, also by Chung (1949). Their result says: 

Theorem 5.1.1 (Smirnov 1944, Chung 1949). Suppose that Fis continuous. 
Then 

<5U> S ( k i E i i f - X - "•«-'W - 2"'"' 
(This Theorem will be a consequence of Theorem 5.1.2 and is also 

a consequence of Theorem 4.4.3 and Corollary 1.15.1.) 
As we saw in Chapter 3, having the law of iterated logarithm, a natural 

next step was to look for the accumulation points of the functions yn(t) 
(of Theorem 3.2.2). In the case of the empirical process this was done by 
Finkelstein (1971), who proved: 

Theorem 5.1.2 (Finkelstein 1971). Let F be a continuous distribution over 
the real line. Then the sequence 

*w - $$*$> - {-js^rTi'^*w>-A •«>-. 
w relatively compact with probability 1, and the set of its limit points (with 
respect to the sup norm) is the set . fcCfO, 1) of absolutely continuous 
functions, defined in Theorem 1.15.1. 

Proof. This theorem is a straight consequence of Theorems 1.15.1 
and 4.4.3. 

Studying the properties of the set & by standard calculus of variation 
methods, Finkelstein proves: 
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Lemma 5.1.1. We have 
(5.1.4) sup sup |/(x)| = i 

and 
i 

(5.1.5) sup [f*(x)dx = n-K 

(5.1.4) and Theorem 5.1.2 clearly imply Theorem 5.1.1. Similarly (5.1.5) 
and Theorem 5.1.2 together imply 

Theorem 5.1.3. Let F be an arbitrary continuous distribution function. Then 

155 —— \ f {Fn-FfdF^n-\ 
n̂ co 21oglogn _i y n } 

Relation (5.1.1) suggests that, having studied fin(y) (cf. Theorem 5.1.2), 
we should also study the behaviour of the sequence of processes 

R*M = n«*(Fn(x)-F(x)) 
PnW (2(F(JC)(l-JF(^))loglogn)1/2 ' 

As a straight consequence of (1.15.2) and Theorem 4.4.3, we get 

Theorem 5.1.4. Let F be a continuous distribution function. Then for any 
0<£<£ we have 

(5.1.6) BE sup |/S(*)I = 1-

The latter suggests that we should also be interested in the properties 
of the sequence 

sup |tf(*)l, 

where 0<eM<i is a sequence tending to 0 in a given order. Applying 
(1.15.4) as well as Theorem 4.4.3, we get 

Theorem 5.1.5. Let F be a continuous distribution function and let 
en=sexp(-(log«)c) ( 0 ^ c < l , 0 < e < i ) . Then 

115 sup \PU*)\ = (c + l)1/2. 

In case c=0, we obtain Theorem 5.1.4 as a special case. 
When proving Theorem 5.1.5, in the application of Theorem 4.4.3 we 

needed to apply the relation e„H(log w)-3-*°°. The case of cll^/i~1(logii)8 



Empirical and Quantile Processes 159 

cannot be treated via strong approximation methods, since they do not 
imply that the processes 

K(F(x)9 n) n(Fn(x)-F(x)) 
(F(x)(l-F(x)))^ a n Q (F(xKl-F(x)))v* 

are near enough to each other when F(x)^e„=o(n~1 log3n). Surprisingly 
enough, in spite of this fact, the limiting behaviour of the suprema of 
these processes are the same if d0n~1loglogn^F(x)^l—d0n~1loglogn, 
where d0=0.236...; they behave differently when F(x) is outside this 
interval. In fact Csaki (1977) proved the following: 

Theorem 5.1.6 (Csaki 1977). If F is a continuous distribution function 
and sn=dn~1 log log «, then 

(5.1.7) m sup |jSn*(x)|5±max{2^, ( 4 ) 1 2 ( ^ - 1 ) } 

where bd>\ is the solution of the equation 

bd(logbd-l) = d-1(l-d). 

Remark 5.1.1. One gets by simple numerical methods that d1/2(bd — \)=2 
if d=d0=0.236..., which means that the limiting behaviour of the Kiefer 
process and that of the empirical process is the same if s^df/i'1 log log n, 
and different if en^(d0—^)«~1 log log « (0<e<d0) (cf. also (1.15.5)). 

In Chapter 3, besides the law of iterated logarithm (Remark 3.2.4), 
we also presented Chung's theorem (cf. (3.3.4)). An analogue of the latter 
one for empirical processes was found by MoguFskii (1977), who proved 

Theorem 5.1.7 (MoguFskii 1977). Let F be a continuous distribution 
function. Then 

(5.1.8) Hm (nloglog«)1/2sup \Fn(x)-F(x)\ = S~1,2n
n-*-oo x 

and 

i 

(5.1.9) Hm (nloglogn)1 /2( f (Fn(x)-F(x)fdF(x))112^ 8"1'2. 
n - ° ° o 

The proof will not be presented here. 
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5.2. The distance between the empirical and the quantile processes 

Bahadur (1966) was the first to investigate the distance between the 
empirical and quantile processes in the case when the sample is coming 
from the uniform U(0, 1) distribution. The best result, concerning this 
problem, is due to Kiefer (1970). He proved 

Theorem 5.2.1 (Kiefer 1970). Let Xl9X2,... be U.d.r.v. with a twice 
differentiable distribution function F on the unit interval. Let f— F', 

Rn = sup \(Fn(myF(y))-y)~(imF(y)-Qn(y))f(inwF(y))\ 

and assume that inf f(x)>0 and sup |/ '(*)l<oe>- Then 

«-~ (log n)1/2(log log n)1/4 

Applying this theorem in the uniform case and our Theorem 4.5.6, we 
immediately get the following extension of the former. 

Theorem 5.2.2. Let Xl9 X2, ... be i.i.d.r.v. with a continuous distribution 
function F which is also twice differentiable on (a,b), where —°°^a= 
= sup{x: F(x)=0}, + ~ ^ £ = inf {x: F(x) = l} and F'=f?±0 on (a,b). 

Assume that F also satisfies conditions (4.5.10) and (4.5.12) of Theorem 
4.5.6. Then the statement of (5.2.1) is still true. 

Remark 5.2.1. We wish to emphasize here that the conditions (4.5.10) 
and (4.5.12) of Theorem 4.5.6 are much weaker than those of Theorem 5.2.1. 
Especially it is not assumed here that a and b are necessarily finite. 
We should, however, also emphasize that Theorem 5.2.1 in the uniform 
case is applied in the proof of Theorem 5.2.2. 

Studying the properties of Rn, Kiefer (1970) also obtained the limit 
theorem: 

Theorem 5.2.3 (Kiefer 1970). Under the conditions of Theorem 5.2.1 we have 

(5.2.2) lim P{n3/4(logn)~^Rn > t} = 2 j j ( - l)m+1 e~2m** (t =- 0). 
n - ° ° m = l 

As a matter of fact, (5.2.2) states that, under the conditions of Theorem 
5.2.1, n3/4(logrc)~1/2#M has the same limiting distribution as the square 
root of the Kolmogorov-Smirnov statistic Dn=n1/2 sup \Fn(x)-F(x)\ 
(cf. Theorem 4.1.2). Indeed, Kiefer proved (5.2.2) via the more fundamental 
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Theorem 5.2.4 (Kiefer 1970). Under the conditions of Theorem 5.2.1, 
as n-*«>, 

(523) ^ - ^ 1 

The latter theorem implies (5.2.2) at once. Kiefer (1970) also noted that 
(5.2.3) was actually true with probability one, but did not publish his proof. 

Applying this theorem in the uniform case and our Theorem 4.5.6, 
we can extend the former again to the case when only the weaker conditions 
of the latter are assumed. However this extension is not so immediate as 
in the case of Theorem 5.2.1. In fact Theorem 5.1.7 will be also applied 
in the proof of 

Theorem 5.2.5. Under the conditions of Theorem 5.2.2 on F, the statement 
of (5.2.3) and hence also that of '(5.2.2) are still true. 

Proof. Let U\c
ri)=F(X%l)) and define Un(y) in terms of these uniform 

order statistics. Put kn=nm(Dnlogri)~l/2. Then, applying Theorems 
4.5.6 and 5.1.7, we get 

(5.2.4) lim sup \(y-UMy(imF(y)^Qn(y))f(imF(y))\kn 
n-»»<x> 0 < y < l -

liEn1 '2 sup \{y-Un{y))-(mvF(y)-Qn(y))f(im F(y))\ 

(lim (log log n)1/2A,)x/2 

■ nl/* 0og n) ~1/2 (log log n)1'4 = 0. 

For k„R„, we have the following estimation 

sup \(Fn(imF(y))-y)-(y-Un(y))\K 

- ^ \(y-Un(y))-(™F(y)-Qn(y))f(invF(y))\kn^ k„Rn 

° ^ < 1 =§ sup \(F„(imF(y))-y)-(y-Un(y))\kn 
0 < y < l 

+ sup \(y-Un(y))-(imF(y)-Qn(y))f{mvF(yj)\kn. 

Taking the in-probability limit as « + oo? and applying Theorem 5.2.4 in 
the uniform case and the above (5.2.4), we get Theorem 5.2.5. 

Remark 5.2.1. An application of the almost sure version of (5.2.3) pro-
duces an almost sure version of Theorem 5.2.5. 
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5.3. The law of iterated logarithm for the quantile process 

In Section 4.5 we called attention to the fact that the analogue of the 
Glivenko-Cantelli theorem for the quantile process does not hold true 
without further restrictions. In this section we intend to point out that most 
of the strong laws proved for the empirical process are also true for the 
quantile process if we assume the conditions (4.5.10) and (4.5.12) of 
Theorem 4.5.6. We can do this in three ways: (i) apply Theorem 4.5.7 
saying that the quantile process is near to a Kiefer process and deduce that 
theorems proved for a Kiefer process are also true for the quantile process; 
(ii) apply Theorem 5.2.2 saying that the quantile process is near to an 
empirical process and deduce that theorems proved for empirical processes 
are also true for quantile processes; (iii) apply Theorem 4.5.6 saying that 
a quantile process is near to a suitable uniform quantile process, hence 
theorems for the uniform quantile process extend to more general quantile 
processes. We followed the latter approach in the proofs of Theorems 
5.2.2 and 5.2.5. 

Applying any of the methods (i) and (ii) one gets (5.3.1)—(5.3.5) im-
mediately, while method (iii) together with Theorem 4.5.6 implies (5.3.6). 
Thus we have: 

Theorem 5.3.1. Under the conditions of Theorem 5.2.2 on F we have 

(5.3.1) 115 (loglogn)-1'2 sup /(invF(y))|ft(y)| = 2"1'2, 
w-*oo 0«<y-<l 

1 

(5.3.2) 115 (21oglogn)"1 f P(mvF(y))q2
n(y)dy^ n~\(cf.Theorem5.1.3), 

0 

(5.3.3) lim (loglogn)1'2 sup f(invF(y))\qn(y)\ = 8-1/2*> (cf.(5.1.8)) 

(5.3.4) Um(loglogn)1/2( f f*(mwF(y))q*n(y)dy)112^ 8 "^ , (cf. (5.1.9)), 

(5.3.5) US (2 log log n)"1'2 sup (y (1 -y))-^f (iny F(y))\q,(y)\ 2£ 1. 

Assume that conditions (4.5.10), (4.5.12) with y<l hold true. Then 
there exists a C>0 such that 

(5.3.6) Em sup (^(l~^)loglogn)-1/2|/(invF(3;))^(>;)| ^ C a.s. 

where 5B=25n~1loglog«. 
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The version of Theorem 5.1.2 in terms of /(inv F(y))qn(y) is also 
straightforward. However the generalization of Theorem 5.1.5 resp. 5.1.6 
to the quantile process is not immediate at all. The only such version we 
have at present is that of (5.3.6). 

5.4. Asymptotic distribution results for some classical functionals 
of the empirical process 

We have already seen that Donsker's theorem for the empirical process 
(Theorem 4.2.1) is a direct consequence of any one of the Brillinger and/or 
Kiefer type approximation theorems of Sections 4.3 and 4.4, and hence 
that, for example, Theorem 4.1.2 is implied by (1.5.3) and (1.5.4) of Theorem 
1.5.1. Some further Corollary 4.4.1 type results follow here. 

Corollary 5.4.1. Consider the empirical process P„(x)=oin(F(x)). Let 
y=F(x) be a continuous distribution function and let g(y)^0 be a real 
valued function for which we also have 

(5.4.1) sup|g(>0|<oo. 
y 

There exist then a sequence of Brownian bridges {Bn(y); O^y^l} and 
a Kiefer process {K(y9 t); O^y^l, 0^^<«>} such that 

(5.4.2) | sup pn(x)g(F(xj)- sup Bn(y)g(y)\ = 0(n~^ log n)9 

| sup pn(x)g(F(x))- sup n-^K(y,n)g(y)\^0(n-unog*n), 

(5.4.3)| sup \pn(x)g(F(x))\- sup \Bn(y)g(y)\\Z±0(n-«nogn), 

| sup \pa(x)g(F(x))\- sup \n-v*K(y,ri)g(y)\\*JLO(n-^\og*n), 

(5.4.4) | /~fl(*)g»(F(*))dF(x)- f]%(y)g2(y)dy\ 
— oo 0 

^ 0(n ~1/2 log n (log log n)l'% 

| / ft(x)?(F(x))dF(x)-fn-*K'(y,n)?(y)dy\ 
— oo 0 

!£ 0(n-1/2 log2n(loglog n)1'2) 
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and 

(5.4.5) ^ / ^ - ( s u p BMg(y)-^Bn{y)g{y))\ = 0(«-1/2log n), 

\n^Rn-(s^n-^K{y, n)g(y)-mfn-^K(y,n)g(y))\ S 0(n-^\ogn), 

where 

Rn = D^+D- = s u p C ^ W - F ^ g C F C ^ - i n f (F„(x)-JF(x))g(F(x)). 

9) 
Since £„(>>) = £(;>), and also n~1,2K(y, n) = K(y, 1) = 5(^), a 

Brownian bridge for each n, we see that the limit distributions of the 
above-presented functional of the empirical process agree with the distri-
butions of the corresponding functional of a Brownian bridge. For 
example, (5.4.2) and (5.4.3) with g(y) = 1 give the asymptotic distribu-
tion of the classical Kolmogorov-Smirnov statistics ■ (cf. Theorem 4.1.2) 
via (1.5.3) and (1.5.4). Again with g(y) = l and applying (5.4.4), we get 
the limit distribution of the Cramer-von Mises statistic. Namely, Theorem 
1.5.2 implies 

+ oo 

(5.4.6) lim P { f PI(x) dF(x) ^ u} = P{co2 ^u}, u^O, 

where the latter distribution function is given in Theorem 1.5.2. Another 
classical result, the distribution of the Kuiper (1960) statistic, can be 
obtained from (5.4.5) with g(y) = l by Theorem 1.5.3. Namely we have 

lim P{n1/2Rn ^ u) = 1 - 2 2MjuY-l)e-2j2u\ u^O. 
n-*oo

 J =
1 

Taking now for example 
f 0 if 0 ^ v ^ e 

< 5 A 7 > fcOH,-! if . < y S i . 

giW | Q if { < y g l , 
respectively 

f(y(l-y))-^ if 0 < e s y s ^ < l 
(5.4.8) g,,t(y) = { 0 o t h e m i s e > 

in (5.4.2) and (5.4.3), we conclude that the limit distributions of the Renyi 
(1953) statistics, respectively those of the Anderson-Darling (1952) statistics 
can be evaluated via the distributions of the corresponding functional of 
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a Brownian bridge. We mention only two typical results obtainable this 
way. The first one of these is 

(5.4.9) lim P{ sup - § § - s „} = P j s u p ^ - ^ u\ 

= 2<P luij^A -1 M^O, e>0. 

The latter equality is true, since 

and hence 

'{3^-"}-'{3"f-?)-»} 
= P{ sup ^ ( O S M } , 

e 

which by (1.5.1) now gives the desired result. The second one we have 
in mind is 

(5.4.10) lim p\ sup - M . ^ «} = p j s u p l M ^ «} 

= - 2 7 ^ 7 7 e x p {-(2fc+ l)27i2(l -s)/8eu2}, u > 0, a > 0. 

The above two results ((5.4.9) and (5.4.10)) were first given by Renyi (1953) 
via classical limiting arguments. For a proof of these and some further 
similar ones along these lines via the invariance principle, we refer to 
Csorgo (1966, 1967). 

So far we have seen how strong invariance principles (cf. Corollary 5.4.1) 
can be used to prove asymptotic distribution result like e.g., (5.4.6), (5.4.9), 
(5.4.10). In proving these results, we have not utilized the rates of approxima-
tion of Corollary 5.4.1 at all, and did not say anything about the problem 
of how fast these distribution functions themselves converged to their 
limits. The next result gives an answer to this problem. 

Corollary 5.4.2 (Komlos, Major, Tusnady 1975a). Let Bn9 ocn be as in 
Theorem 4.4.1, and let \j/ be a functional defined on Z>(0, 1), satisfying 
the Lipschitz condition 

(5.4.11) \il/(u)-xl/(v)\^L sup \u(y)-v(y)\ 
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with some positive constant L. Assume further that the distribution of the 

random variable ij/(B(y)) = \j/{Bn(y)) («=1, 2,...) has a bounded density 
with respect to Lebesgue measure. Then 

(5.4.12) sup \PM«M)^x}-P{m(y))^x}\ = o{l^f\. 

The proof of this corollary is similar to that of Corollary 5.4.3 whose 
proof is given below. 

As to the nearness of the processes a„ and Bn9 Theorem 4.4.1 gives the 
best possible rate. It is an open question whether the rate of (5.4.12) is 
the best possible or not for any given Lipschitzian functional xj/. For 
example, in the Kolmogorov-Smirnov case (that is when xj/ is the sup-
functional) the rate of convergence is known to be 0(n~l/2) (cf. Gnedenko, 
Korolyuk and Skorohod 1960; Bickel 1974). 

The rate in (5.4.12) does not hold necessarily for functional not satisfying 
the Lipschitzian condition (5.4.11), but Theorem 4.4.1 might still give us 
a handle on occasions. The case we have in mind is that of the Cramer-

I 
von Mises statistic col=f(xl(y)dy. Let Nn(x)=P{co2

n^x}, N(x)= 
1 0 

=P{f B\y)dy^x) and put An= sup \NH(x)-N(x)\. We have, of 
l
0

J
 0<x<«> 

course, that lim Nn(x)=N(x) for every real x (cf. (5.4.6)) and, in addition 
to this, it can be easily deduced from the first statement of (4.4.25), or from 
that of (5.4.4) that An=0(n-l/2 log n (log log «)l/2). But, if we are a bit 
more circumspect, we can actually prove also 

Corollary 5.4.3 (S. Csorgo 1976). 

(5.4.13) An = 0(n-^logn). 

The latter statement is of interest, because it turns out to be a refinement 
of the best available result of this kind so far for the distribution of co2

n. 
Namely Orlov (1974) proved that for any e>0 there exists a positive 
constant b{e) such that for each n A„^b(e)ne/n112. For a complete set of 
earlier work on this problem we refer to S. Csorgo (1976). We should 
also remark here that, though the rate of convergence of An in (5.4.13) 
is the best available one so far, it is probably far away from the best possible 
one. Indeed, a complete asymptotic expansion for the Laplace transform 
of co2

n is given by S. Csorgo (1976) and, on the basis of his work, he 
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conjectures that An has the order of l/n (concerning this latter problem 
we refer also to S. Csorgo and Stacho, 1979). For an improved result in 
this direction we refer to Gotze (1979). 

I 

Proof of Corollary 5.4.3. Let co\n) = / B2(y)dy9 where {Bn(y); O^y^l} 
o 

is the sequence of Brownian bridges for which the statement of Theorem 
i 

4.4.1 holds true, and let w2= f B2(y)dy9 where B(y) is an arbitrary 
o 

Brownian bridge. We will use the elementary fact that, if X, Y, Z are 
arbitrary r.v. such that P{\X— Y\>Z}<e for some 6>0, then, for every 
real x9 

(5.4.14) P{Y^x-Z}-e^P{X^x}^P{Y^x+Z}+e. 

In (4.4.1) let x = — l o g n , D=C+-Tr. Then, with the notation Dn= 

= sup \<xn(y)-Bn(y)\ and en=Dlogn/Yn9 we have 

P{|^-co2(«)l>eH2e„(o(n)} 

= P{\f («n(y)-B„(y))(«n(y)+Ba(y))<ly\ > «2+2v»(n)} 
0 

s P{f {«n<j)-Bn(y))2dy+2 f K(y)-Bn(y)\\B„(y)\dy >^+2enco(n)}. 
0 0 

Let the event of the latter probability statement be denoted by E(en). 
Then, from the above inequality, 

P{\co2
n-co2(ri)\ > s2

n+2enCD(n)} ^ P{E(en)9 Dn * sn}+P{Dn > en} 

^ P{e2
n+2en f \Bn(y)\ dy > e$+2eMn)}+n-v*L 

o 

= P{f \B.(y)\ dy > <o(n)}+n-«*L 
0 

^ P{co(n) > co(n)}+n^2L = n~ll2L9 

where the last inequality follows from that of Schwartz, and L is the positive 
absolute constant of (4.4.1). 

Now we apply (5.4.14) with X=co2
n, Y=co(ri), Z=el+2e„co(n) and 

s=n~1/2L9 and get 

P{An(x)}-n-^L ^ P{co2
tt ^x}^ P{Gn(x)}+n^2L9 

where An(x) = {co2^x-e2
l-2enCD}9 Gn(x)={(Q2^x+e2

l+2enCQ} and *>0. 
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Solving the corresponding quadratic inequalities for the events An{x) 
and Gn(x) we find that P{An(x)}=0 if x^s2

n9 while 

PUn(x)} = P{co2^x+e2
n-(4e2

nx)1/2}^P{co2^x-8nl if x^el 

and 

Gn{x)a {(o2^x+Sn} with Sn = 3e2
n+(Se*+4e2

nx)1/2, x>0. 

Hence, with 8n=5n(x) (x>0) as in the preceding line, 

N(x-8n(x))-n-1/2L 35 Nn(x) ^ N(x+8n(x)) + n-1/2L, 

and whence 

An ^ sup P{x-8n(x) < (o2 ^ x+5n(x)}+n-1/2L 

x + 2dn(x) 

= sup f v (y) dy + n ~ll2L ^ 2 sup (8n (x) sup t; (y)) + n ~1/2L 
x x x x^y^x + 2dn(x) 

s2Ks\ip(S„(x) sup (y+iy^+n-V'L 
x x&ySx+2S„(x) 

^ 2*sup ̂ + 1 ^ y ^ ^ + »-*L 

= 0.(0 = 0(»-1/Mogii), 

where v(x) = — N(x), and the third inequality for An above is by 

v(y)(y+l)1,2^v(y)(yl/2+l)^K uniformly in j>€(0, <*>), since it is known 
that not only the density function v(x) of co2 but v(x)xl/2 too is bounded 
on the positive half-line (cf. Lemma 8 in § 5, S. Csorgo 1976). 

While Corollary 5.4.1 provides us with weak convergence results for the 
classical functionals of the empirical process with weight functions g(y) 
satisfying the condition (5.4.1), the weight function g(y)=(y(l— y))~l/2> 
0 < J > < 1 , which is probably the most natural one, does not fit into its 
framework. An application of Theorem 4.4.1, however, turns out to be 
a good initial step also towards this direction of weak convergence problems, 
which we are going to consider now. 

Let Vn(x)=nl/2(Fn(x)-F(x))/(F(x)(l -F(x)))l/2
9 where Fisa continuous 

distribution function and, for 0^e<<5^1, define Vtt(e, <5) = sup Vn{x) 
e<F(x)<5 

and Wn(s9 <5) = sup \Vn(x)\. We note that Anderson and Darling (1952) 
e<F(x)<d 
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derived the Laplace transform of the asymptotic distribution of Wn(e, 5) 
with 0 < e < <5 < 1. It is also natural to ask how one could choose normalizing 
factors for given sequences en9 5n so that Vn(en9 <5„), Wn(en9 8n)9 V

n(09 1) 
and Wn(09 1) should have a non-degenerate asymptotic distribution. 
Indeed this question was asked and answered recently by Jaeschke (1975) 
and Eicker (1976, 1979) and further studied and developed by Jaeschke 
(1976, 1979). 

For the construction of confidence intervals for F9 

'■«-{.■ 0, if Fn(x) = 0 or 1 
^{Fn(x)-F(x))l(Fn(x)(\ -F.ix)))"*, otherwise, 

is more convenient than Vn(x). It is shown by Jaeschke (1976) that for 
Vn the same assertions hold as for Vn9 including also the case e„=0, <5n=l. 
The latter is also a generalization of the earlier results of Eicker (1976). 
Here we formulate these results with en=09 <5n=l. 

Towards stating these results, let 2?c(f)=exp( — cexp( — t)) (c^O) and 
a(«, •) be as in Theorem 1.9.1. 

Theorem 5.4.1 (Jaeschke 1976). We have 

(5.4.15) Urn P{Vn(09 1) ̂  a(t9 log n)} = E^t) 
JJ-+-00 

and 

(5.4.16) lim P{W(0,1) =§ a(t, logn)} = Et(t), -«><<< + «,. 

Theorem 5.4.2 (Eicker 1976, Jaeschke 1976). Let 

Vn(s95) = sup Vn{x) and Wn(e95) = sup \Vn(x)\. 

Then 

(5.4.17) lim ^{^(0,1) ^ a(t9 log n)\ = ^ ( f ) 
H-»-oo 

(5.4.18) lim P{^"(0,1) ^ a(t9 log n)} = £2(r), - - < t < + ~. 
n-*-oo 

Just as in the case of the classical empirical process /?„(#) = a„(F(x)), 
we may from now on take F€ U(09 1), since F is assumed to be continuous. 
As to the proof of the two theorems formulated above, we give only the 
main steps, in order to demonstrate how Theorem 4.4.1 can be applied 
in this situation. Here we follow Jaeschke (1976). 

The proof of Theorem 5.4.1 is based on the following lemma: 
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Lemma 5.4.1 (Jaeschke 1976). For — «></<:+ «> we have 

(5.4.19) lim P{Wn(0, sn)VWn(l -£„, 1) ̂  a(t, log n)} = 1, 

where en=n~xlogzn. 

For a proof of this lemma we refer to that of Lemma 4 in Jaeschke (1976). 

Proof of Theorem 5.4.1. Since by Theorem 4.4.1 

(2 log log ny'^ mj>^ \vn(y)-Bn(y)l(y(i-y))1,2\ 

Corollary 1.9.1 and Lemma 5.4.1 imply Theorem 5.4.1. 
For a similar proof of the second theorem we need two further lemmas. 

Lemma 5.4.2 (Jaeschke 1976). For s^n^logn and an=(2loglogn)1/2 

we have 

(5.4.20) ant"(zn, 1 - O S± a„V(en, 1 -stt)+o(l). 

Proof. Due to Theorem 5.1.6 we have 

sup |1 - y - ^ O O l = 0((log log n/log n)1'2) 
n"1 l ogn<y<l 

and 
sup |1 - (1 -Fu(y))/(1 -y)\ 2S 0((loglog n/log nf'% 

0-=y-<l—n-1logn 

Whence 

fl^fe,, 1 - O Si fl.F-fc, 1 -sM)(l +0(Goglog n/log « ) . 

Again Theorem 5.1.6 implies anV
n(sn9l—8„) == 0(loglogn), and this 

is the assertion of (5.4.20). 

Lemma 5.4.3 (Eicker 1976, Jaeschke 1976). With en=n""1log« and 
— oo< t< -f oo, we have 

(5.4.21) lim P{Wn(0, e„)V ^"(1 -e,,, 1) ^ a(f, log n)} = 1. 
/ | - * - 00 

For a proof of this lemma we refer to that of Lemma 6 in Jaeschke (1976). 

Proof of Theorem 5.4.2. A combination of Lemmas 5.4.2, 5.4.3 and 
Theorem 5.4.1 yields (5.4.17) and (5.4.18). 



Empirical and Quantile Processes 111 

5.5. Asymptotic distribution results for some classical functionals 
of the quantile process 

On the basis of Theorems 4.5.6 and 4.5.7 it is quite immediate to construct 
a Corollary 5.4.1 type statement for the quantile process /(inv F(y))qn(y), 
provided we assume conditions (4.5.10) and (4.5.12). Such an analogue 
of Corollary 5.4.1 immediately implies, among others, the following typical 
statements: 

(5.5.1) lim P{ sup /(inv F(y)) qn(y) ̂  u} = P{ sup B(y) ^ u} 

= l-c-2"*, ui=0, (cf. (1.5.3)), 

(5.5.2) lim P{ sup |/(inv F(y))qn(y)\ ^"} = H sup 1*001 ̂  u} 

= 1 - 2 ( - i y + 1 e - * w , " S O , (cf. (1.5.4)), 

(5.5.3) lim P{m„ S u} = P{ sup B(y)- inf B(y) ^ u} 

= 1 - 22(4(juy-l)e-2J,ut, « s 0 , (cf. Theorem 1.5.3), 

where J#„ = sup f (invF(y))qtt(y)- inf f (inv F(yj)q„(y), 

(5.5.4) lim pLgfli"v*(y))fc(r) s „} = p { S U p ^ M ^ „} 

= 2# |u ( - ^ j j - 1 , « S 0, 8 > 0, (cf. (5.4.9)), 

and 

(5.5.5) limpUW&WtoM ^ 1 = , f , Iff l l ^ 1 

= 4 i rferTTexP<-<2fc+ ^ ^ - 8 ) / 8 e " 2 } . « > 0, a > 0, 
(cf. (5.4.10)). 

We again call attention to the fact that the above asymptotic results hold 
true, assuming only the reasonably weak conditions (4.5.10) and (4.5.12). 

An analogue of Corollary 5.4.2 is also immediate. 

Corollary 5.5.1. Let Bn9 qn be as in Theorem 4.5.7, and let ij/ be defined 
on D(09 1), satisfying the Lipschitz condition of (5.4.11). Assume further 
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that the distribution of the r.v. \l/(B(y)) = \l/{Bn{y)) (w = l, 2, ...) has 
a bounded density with respect to Lebesgue measure. Then, under conditions 
(4.5.10) and (4.5.12) we have 

(5.5.6) sup \Pfy(f(imF(y))qn(y)) ^ x}-P{ilf(Bn(y)) ^ x}\ 
o<JC<oo 

-i: \0(n~lf2logn) if 7 < 2 

[O^-^iloglognyilognY1^^^) if y^2, 

where y is as in (4.5.10) and s > 0 is arbitrary. 

Unlike in the case of un(y), it does not even appear to be known whether 
the Kolmogorov-Smirnov functionals of /(inv F(y))qn(y) themselves 
have a limit distribution of rate l/nl/2 in (5.5.6) or not. Hence the rates 
of (5.5.6) appear to be the best available. Now in the case of the uniform 
quantile process un(y), the rate of (5.5.6) is 0(n~1/2logri). It is easy 
to see that for the Kolmogorov-Smirnov functionals of un(y) the rate is 
0(l/nl/2). Hence it is again an open question whether all the Lipschitzian 
functionals of un(y) have a limit distribution of rate l/nl/2 or not. 

As to an analogue of Corollary 5.4.3, we have: 

I 

Corollary 5.5.2. Let co2
n = j (/(inv F(y)) qn (y))2dy. Assume conditions 

o 
(4.5.10) and (4.5.12). Then 

I 

(5.5.7) sup \p{cQ$^x}-P{f B2(y)dy^x}\ 

f p o g n ( l o g k ) g n ) ^ j .f y ^ 2 

= I Q ((log log ny
+1/2 (log n^+')(y "D -j 

where y is as in (4.5.10) and s > 0 is arbitrary. 

The proof of this corollary goes along the lines of that of Corollary 5.4.3, 
but here we use (4.5.24) instead of a possible analogue of (4.4.1) for 
/(inv F(y))qn(y)9 which, in turn, is not yet known. The non-availability 
of the latter analogue of (4.4.1) results in the appearance of the extra 
factor (log log n)1'2 in the above rates. 

We have seen so far that most of the results of Section 5.4 extend im-
mediately to the quantile process. The extension of Theorems 5.4.1 and 
5.4.2 is not so immediate and requires some further attention. 
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Let 
\f(invF(y))qn(y)l(y(l-y)yt\ 1/n < n < 1 - 1/n, 

0, otherwise, 
and, for 0<£<<5<1, define 

/(invFO0)<7„O0 = {J 

Q"(e,5)= supf(imF(y))qn(y), 
e<y-<d 

Q»(e,S)= sup /(invF(y))\q„(y)\-

Using the notation of Theorems 5.4.1 and 5.4.2 we have 

Theorem 5.5.1 (Csorgo, Revesz 1979). Let Xl9 X29 ... be i.i.d.r.v. with 
a continuous distribution function F which is also twice differentiable on 
(a, b), where — o°^a=sup {x: F(x) =0}, + o°^6=inf {#: F(x) = 1} and 
F'=f^§ on (a,b). Assume condition (4.5.10) of Theorem 4.5.6. Then 

(5.5.8) lim P{Qn(0,1) ^ a(t9 logn)} = £x(0, 
n-*c© 

(5.5.9) lim P{Q n(0,1)si a(f, logn)}=E2(t), - o = < i < + <=c. 

Towards a proof of this theorem we need four further lemmas. 

Lemma 5.5.1. Let en=«_1 (log log rif. Then for a uniform quantile process 
un(y) we have 

(5.5.10) limP{ sup un(y)l(y(l-y))1/2^a(t,logn)} = E1(t), 

(5.5.11) limP{ sup \un(y)\/(ya~y))1/2^ci(tAogn)} = E2(t)9 

— o o < f < - j - oo. 

Proo/. Put 

nW I 0, otherwise, 

where En(y) is the empirical distribution function of a uniform (0, 1) 
random sample, and un(y)=nl/2(En(y) — y). First we note that 

(5.5.12) sup &n(y) = sup -um(y)/(y(l -y))1/2. 
0 < y < l lln^y^l—lfn 

For 0^£<(5^1 we define, as before, 

Fn(£,<5)= sup 4,00 and ^(£,<5) = sup \Stn(y)l 
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Concerning these standardized empirical processes with e^n^logn, 
the following statements hold by Corollary 1.9.1, Theorem 4.5.7 and 
Lemma 5.4.1. 

lim P{Vn(e*n9 1 -8„*) ̂  a(t, logn)} = E^t), 

lim P{WH(e*n, 1 -6B*) S a(t, log n)} = E2(t), 

(5.5.13) 

(5.5.14) 
and 

(5.5.15) lim P{Wn(0,e*n)\/Wn(l-e*n9l)^a(t, log H)} = 1, - o o < , < + oo. 

A combination of (5.5.13), (5.5.14) and (5.5.15) with (5.5.12) now gives 
Lemma 5.5.1. 

Remark 5.5.1. We note that Lemma 5.5.1 holds even with en=l/n. 
The only reason we have defined sn as in the statement of Lemma 5.5.1 
is just for the sake of the method of proof of our next lemma. 

Lemma 5.5.2. Let the quantile processes qn(y) resp. un(y) be defined 
in terms of Zfe

(n) resp. U^n)=F(XJ^). Under the conditions of Theorem 
5.5.1 and with sn=n~1 (log log n)\ we have 

(5.5.16) Bin sup f(invF(y))qn(y)— u„(y) 
(yd-y))112 

Proof. It follows from (4.5.11) and the definition of sn that 

o ((log logn)"1/2). 

sup f^FiyU^-J^^ 

-JTTT^WK ™p \f(invF(y))qn(y)-un(y)\ 
\Gn\L bn)) dn<y<l-dn 

„ . Ojloglogn/n^) ( /2) 

— (n-^log log n)J* ° W ° g 10g n) >9 

where Sn above is as in Theorem 4.5.5. 

Lemma 5.5.3. Let en=n"1(log log rif. Then 

u„(y) lim Pi sup 
iy 

(loglogn)1/4| = 0. 

The proof of this lemma is based on (1.9.5) via using the relationship 
(4.5.4). 
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Lemma 5.5.4. Let eB=n-1(loglog«)*. Then 

(5.5.17) Urn P{Q"(p, e„)VQ»(l -e„, 1) =£ a(t, logn)} = 1. 

Proof. Let the quantile process qn(y) resp. un(y) be as in Lemma 
5.5.2, and consider Qn(0, sn) (for Qn{\ — en, 1) a similar argument holds). 
It follows from the definition of a(t9 log ri) that, in order to show 
lim P{Qn(09 en)^tf(f, log «)}=!, it suffices to show 

(5.5.18) lim P {Q (0, en) > (log log n)1'2} = 0. 

Restricting our attention then to the region 0<y^en, it suffices to consider 
/(inv F(yj)qn(y)/yl/2 instead of /(inv F(y))qn(y)/(y(l-y))l/2. Hence we 
are going to show that 

(5.5.19) limP{ sup f(imF(y))\qn(y)\/y1'*>(loglogny'*} = 09 
n-*oo l 

-<^«„ 

which, in turn, implies (5.5.18). 
k — 1 A: 

Now for <j>^ —, by Lemma 4.5.2, we have 
n n 

(5.5.20) 

|/(inv F(y)) qn{y)lyVi\ = «1/2/0iv F(y)) |(inv F(Ctf»>) -inv F(y))/y*\ 

= n1'*f(mvF(y))\(mvF(y+n-1'*un(y))-invF(yj)ly1>*\ 

u,,(y)|/(invF(jO) ^ |«aO0.|/yVl l - (yAQ\ T 

j ^ | /(invfCO) ~ | / / 2 |lyA£* l-(yV€)J 

«,(y)|frd-0 , ^d-Mya., l«.(y)l fy , Q* , n 
y1'2 \\Z(i-y) yV-O) ym U yt K)' 

where |{-^S«- l A |a;(y) | and ^(O.eJ. 
Hence by (5.5.19) and (5.5.20) we are to show now that 

(5.5.21) 

UmP 
n-*oo v kOOl 

' „l/2 

+ ■ 

v , KOOl 
(log log n)1'* > = 0. 

? | ",- g x i is uniformly bounded in y and 

n on any bounded interval containing JC=1. This implies that, as n-~°°, 

First we observe that — P{ 
dx 



176 Strong Approximations 

we have 

(5.5.22) P sup 
v l«.(y)l 
y nm 

+-
y+ n1/2 

(log log n)1'4 ■0 , 

where a>„=(log log log «)/«. 
We observe also that, with the same co„, we have 

Hence 

(5.5.23) P 

s»p tgLuo. as . . . . 
<»n^y^en n y 

sup 
v \um(y)\ 
y n i / 2 

■+-

v , k(y)l 
^"^ n1/2 

(log log n)1/4 r-*o. 

Now Lemma 5.5.3 together with (5.5.22) and (5.5.23) implies (5.5.21), and 
this also completes the proof of (5.5.17). 

Proof of Theorem 5.5.1. Combining Lemmas 5.5.1, 5.5.2 and 5.5.4 we get 
(5.5.8) and (5.5.9). 

We note that Theorem 5.5.1 in its present form, and also the weak con-
vergence results of (5.5.1)-(5.5.5), can be used to construct confidence 
intervals for /(invF(^))?B(^) = ^/(invF(^))(gB(^)-invF(y)) and also 
to test the null hypothesis that Xx has a given, completely specified density 
function / ( • ) . For the sake of confidence intervals for inv F(y) in terms 
of Qn(y) one should estimate the factor /(inv F(y)) of /(inv F(y))qn(y). 

We begin with estimating inv F{y) by the quantile function Qn(y). 
First we note that the law of iterated logarithm holds for the process 
/(inv F(y))qn(y) (cf. (5.3.1)), and hence we have 

(5.5.24) sup ia,G0-invfG0| ^0((\oglogn/ny>% 
0 < y < l 

provided inf /(inv F(y))>0. 
Next we estimate the density function / ( • ) by any of the empirical 

density functions / , ( • ) of Chapter 6 for which the Glivenko-Cantelli 
theorem holds (cf. Theorem 6.2.1): 

(5.5.25) 

and prove 

sup | / , ( J C ) - / ( X ) | S 0 , 
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Theorem 5.5.2. Let f„(*) be a sequence of empirical density functions 
satisfying the conditions of Theorem 6.2.1 and assume that inf /(x)>0 

a<x<b 
and sup ]/ '(*)!< c o over [a9b] of Theorem 4.5.6, assumed to be finite. a<x<b 

There exists then a sequence of Brownian bridges {Bn(y); O^y^l} such 
that, as n-^oo, 

(5.5.26) sup \fn(Q„(y)Hiy)-BM\^-0. 

Proof By (4.5.22) it suffices to show that 

sup \fn(Qn(y))qn{y)-f(;mvF{y))qn{y)\-^0. 

This, in turn, is true because q„(y)—* B(y)/f (inv F(y)) by (4.5.22), and 
SUP \fn(Qn(y))—f(invF(y))\~^l~* 0- As to the latter statement, we write 

sup |/.(fi.(y))-/(invF(y))| 

^ sup |/.(fi.(y))-/(e.(y))|+ sup |/(e.(y))-/(invFO0)| 

and use (5.5.24), (5.5.25) and continuity of / ( • ) to conclude that the 
right hand side of the above inequality goes to zero almost surely as n->°°. 

As a consequence of (5.5.26) we have 

(5.5.27) /.(fi.(y))*.(y) — * G 0 , 

and, hence, distribution free confidence intervals for inv F(y) in terms 
°f Qn(y) c a n be constructed under the conditions of Theorem 5.5.2. 

In our Theorem 5.5.1 we investigated the Kolmogorov-Smirnov func-
tional of the standardized quantile process, i.e., that of the quantile process 
q„(y) with the weight function /(inv F(y))Wy(\—y). Now we are going 
to study a Cramer-von Mises functional of the quantile process qn{y) 
with the weight function (/(inv F(y)))l/2(inv F(y))ix"m

9 A = l,2, . . . . 
In order to describe the latter, we let 

(5.5.28) rf(y) = n"y(inv F(y))(fi2(y) -inv F(y)) 

where Q0
n(y)=X<? if - j ^ < ^ _ * k=l929...9n9 and define our 
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Cramer-von Mises type statistic as follows: 

(A = 1,2,...), 
where it is clearly assumed that / = F V 0 . 

We note that Q°n(y) of (5.5.28) is slightly different from Qn(y) of 
Section 4.5. The former is introduced here for technical reasons. It is 
easy to see that our Theorem 4.5.7 remains true with q*(y) replacing 
/(inv F(yj)qn(y)=nl!2f(iw F(y))(Qn(y)-im F(y)). Arguing heuristically 
with the latter theorem in mind, we should have 

(5.5.30) M„°(A) - M°(X) = f B*(y)X-i d(invF(y)f, (A = 1, 2, ...), 
0 

which coincides with the usual Cramer-von Mises limit if F(y)£ £/(0, 1) 
and A=l. If F$U(0,1), M\X) is seen to be a Cramer-von Mises type 
non-distribution free limit. It can be used to test the completely specified 
goodness-of-fit statistical hypothesis saying that a random sample is from 
a given F9 provided we can also evaluate the distribution of M°(X) for 
the underlying F, 

Our aim now is to prove that (5.5.30) is indeed true. Towards this, we 
first prove 

Lemma 5.5,5. Assume that F is absolutely continuous with a density 
function / , strictly positive in the interval (a, b) of Theorem 4,5,6 and, 
in addition, we also have 

(5.5.31) lim j;1/r|inv,FO0| = lim(l - j ^ i n v F G O = 0 

for some r>X. Then the integral Af°(A) of (5.5.30) exists, i.e., 

(5.5.32) P{|M°(A)|< + oo}=l, A = 1,2,.... 

'Proof Since {B(y); 0 ^ = 1 } = {n~l/2K(y9ri); O ^ j ^ l } , 11=1,2, ..., 
by Corollary 1.15.2 we have 

p { £ 2 i yd -y) log* g 0>(i - JO)-1 < + ° ° l = L 
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We have also 
B\y) 

|M°(A)|=i sup 
0*3-1 y(\-y)\og\og(y(\-y)) 1 

■ \f y(l-y)log\og(y(l -y))-id(imF(y)y\. 
0 

Since B{y) isanalmostsurely continuous function, the statement of lemma 
follows from 

\f y(l-y)loglog(y(l-y))-id(imF(y)y\ 
o 

^ f\mvF(y)\*d[y\oglogj)+f \inw F(y)\*d{(l-y)loglogjl-j} 

^ / y-v d [y log log - ) + / ( ! -yYx'r d ((1 -y) log log j^—) + Const. 

< + °°, 

where m is such that inv F(m)—0 and the first inequality is by inte-
gration by parts combined with (5.5.31) and the second one is by the latter. 

Next we prove 

Theorem 5.5.3. Let Xl9 X2, ..., Xn be a random sample with a continuous 
distribution F which is also twice differentiable on (a, b) where a and 
b are as in Theorem 4.5.6, and F'=f?±0 on (a, b). Assume that F also 
satisfies conditions (4.5.10) and (4.5.12) of Theorem 4.5.6 and those of 
(5.5.31) with some r>2X. Then there exists a sequence of Brownian bridges 
{Bn} such that 

(5.5.33) 

H>-»-'jM;r£r)/4-f tsr)]} (invF trrlH " ,(ft 

and 

(5.5.34) \M!W-f ^OOA-'dflnvFGO)*!-^ 0, X = 1, 2, .... 
0 

Proof. We first note that applying condition (4.5.12) we get that the 
function (inv JF(>y))A"1//(inv F(y)) is monotone on an interval to the 
right of a (to the left of b)9 and by condition (4.5.10) it is bounded away 
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from infinity if y is bounded away from a and b. Let Bn be as in 
Theorem 4.5.7. Then the left-hand side of (5.5.33) is bounded above by 

■HM'" 
^ ( s u p \q°„(y)-Bn(y)\)( sup \Btt(y)-q°n(y)\ + sup \2q°n(y)\) 

0<y-cl 0<y<l 0<y<l 

•|,lhf(^r7"4invFfe))l 
n(n+l)-i 

^ © ^ ^ ( O ^ . ^ + O C O o g l o g ^ ) ) ! / A-M(invFO0)A| 
(n+l)"1 

££ O^^Ooglogn)^ |invF(l - j ^ ) ) ' - (invF^)]] 

t t o(i) a = 1,2), 

by (5.5.31), where the rates rf(«) (i = l, 2) are those of (4.5.24), and the 
first = line above is by (4.5.24) applied twice and by the law of iterated 
logarithm for the process q%(y) (cf. Theorem 5.3.1). Hence (5.5.33) 
is proved, and (5.5.34) follows from (5.5.33) combined with Lemma 5.5.5. 

A statistic, similar to M*(X)9 was studied by DeWet and Venter (1972) 
in the special case of F= <P. Their statistic is 

(5.5.35) « = (|(;r,<..-inv*(_y,_fl: 

_ f M4T)) ' , 

where 
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DeWet and Venter (1972) proved 

(5.5.36) K-?-~ i fc-Hr | - i ) , 
* = 1 

where Yl9 Y29 ... are independent standard normal r.v. 

Remark 5.5.2. Exactly the same way we proved Lemma 5.5.5 and 
Theorem 5.5.3, we can prove also with 2 = 1,2,... and 5=0,1 that 

i 

(5.5.37) f B(y)(in\ F(y))xdy exists with probability one, 

(5.5.38) 

(5.5.39) 

(5.5.40) 

" 1̂4î ) h f (ir^ V * w(inv fw)* * 

-fBn(y)-^d(™mY+1\-L* o, 

- ^ o , 

provided all the conditions of Theorem 5.5.3 are assumed. 

5.6. Asymptotic distribution results for some classical functional 
of some A;-sample empirical and quantUe processes 

Let Xji (l^i^n(j)) be k independent sequences (k^2) of i.i.d.r.v. 
with respective distribution functions Fj{x) (1 ^j^k). A classical statistical 
problem is to test whether these k samples come from a common popula-
tion with distribution function F, whose form might or might not be 
given to us. Thus we wish to test the following null hypotheses: 

(5.6.1) H0: Fx = F2 =... = Fk (homogenity), 

(5.6.2) H0: Fx = F2 =... = Fk = F (goodness-of-fit). 
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The fe-sample based empirical processes which we are to study here are 
going to be constructed with the null assumptions (5.6.1) and (5.6.2) in 
mind. Towards this end let F^])(x) = FnU)(x) denote the empirical distri-
bution functions based on the outcomes of they'th sample Xn, Xj2, ..., XMjy 

For each vector N=(n(l), w(2), ...,n(k)) of positive integers, we define 
the A>sample empirical process SN(x) by 

SN(x) = 2 Cj(N9 x)in{j)FnU)(x\ (5.6.3) 

where the coefficients Cj(N, x) satisfy 

(5.6.4) 2 Cj(N, x) fn(j) = 0 for all N and x, 

sup sup \Cj(N, x)\ «< oo for all j = 1,2,..., fc. 
N x

 J 

Again for the sake of testing the hypotheses of (5.6.1) and (5.6.2), we define 

(5.6.5) ZN(y) =f(mvF(y)) 2 Cj(N9 y)VnUJQn(j)(y), 0 < j ; < 1, 

where Qn(J) = Qfy is the quantile function of the Xjl9 ..., XMjy Then 
we have (cf. also Kiefer 1959; Burke, Csorgo 1976b): 

Proposition 5.6.1. Given any of the null hypotheses (5.6.1), (5.6.2), assuming 
that the true common distribution function F is continuous and that condition 
(5.6.4) holds, there exist k independent sequences {B^}={BnU)} of 
Brownian bridges and k independent Kiefer processes Kj such that for 
SN(x) of (5.6.3) we have 

(5.6.6) 

and 

(5.6.7) 

sup 

sup 

as all n(J)-+oo. 

SN(x)-£cj(N9 x)BnU)(F(xj) 

= a ( f f i f c
( ( w 0 , ) ) " 1 / 2 1 ° g n a ) ) ) 

SN(x) - 2 (n(J))-1,2Cj(N9 x)Kj(F(x)9 n(j)) 

S 0 ( m a x ((n(j))-1/2log2«a))), 
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If we also assume (4.5.10) and (4.5.12) of Theorem 4.5.6, then 

(5.6.8) 

l<9(max (n\ 

sup \Z»W-£cj{N,y)BmU)(y)\ 

^0(m&Xk(n(j))-^(logn(j))) if y < 2 

)(max(nO-))-1/2Ooglogna))v(log«0))<1+e)(,'-1)) if V s 2, 

where y is as in (4.5.10) and e>0 is arbitrary; also 

(5.6.9) sup 
0<y<l 

z w O 0 - ^ 0 W y X n a ) ) - ^ ^ , "(7)) 

S 0( m u (n(j))-1/*(loglog n(;))1/40og »a))1/2), 

ay a// n(j)-+<». 

* _ 
Praa/. Using (5.6.4), ^ ( x ) can be written as SN(x)= ^ Cj(N9x)\n{j)» 

]=i 

•(FnU)(x) — F(x)). By Theorem 4.4.1 we can construct k sequences 
{BnU)(y); O^y^ 1} of Brownian bridges such that 

™p\ftUJ(F«0)(x)-F(x))-Bna)(nx))\ = O((n(;))-1/2logn0-)). 

Since our k samples are assumed to be independent, the k sequences 
{Bn(j)} can be constructed independently. Now our first assertion follows 
from having assumed (5.6.4). The proof of the rest of the statements 
goes along similar lines. 

Corollary 5.6.1. Suppose that the coefficients Cj depend only on x through 
F and write Cj=Cj(N9 F(x)). Then, under the conditions of Proposition 
5.6.1 leading up to (5.6.6) and (5.6.7) we have, when the n(j)-+°°, 

(5.6.10) 

(5.6.11) 

fSfi(x)dF(x)^f[j2iCj(N, t)(n(j)-K*Kj(t, n(J)))Jdt\ 

2£ 0(max (nt/))-1/2log2n(j)(loglogn(j))1/2), 

sup ISivC*)!-sup 
- o o < X < + o o O ^ f ^ l 

Zcj(N,t)(n(j))-«*Kj(t,n(j)) 
J=i 

StO(mj«((ii(/))-^log«na))), 
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and if we also assume (4.5.10) and (4.5.12) of Theorem 4.5.6, then 

\2 

(5.6.12) /zJOOdy-f[2cj(N, y)(nV))-*Kj(y, n(j)))*dy\ 
o o v-f=1 ' I 

S 0(max (n0))-1/4(loglogna))s/40ognO))1/2), 

(5.6.13) sup |Z„O0|- sup ^^WyXnO^^Cy.nO)) 

i t 0(max (n(j))-1/4(loglogn(j))1/4(logn(j))1/2). 

Proa/. The second statement is a direct consequence of Proposition 
5.6.1 and of the transformation t=F(x), since F is assumed to be 
continuous. The first statement is also based on Proposition 5.6.1 and it is 
proved like (4.4.25) of Corollary 4.4.1 upon observing that, under the 
conditions (5.6.4), the law of iterated logarithm holds for SN(x) (cf. 

Theorem 5.1.1) and also for 2 cj(N> t){n{j)Yll2Kj{t, n(j)) (cf. Corollary 

1.15.1). (5.6.12) and (5.6.13) are proved along similar lines. 
We note here that the statements of Corollary 5.6.1 could be also stated 

in terms of Brownian bridges with logn(j) replacing log2«(/) in (5.6.10) 
and (5.6.11). Also, in (5.6.12) the new rate will be 

0(maxfc(«(y))-1/2log«a)aoglog«(7))1/2), 

while that of (5.6.13) will be that of (5.6.8). 

Corollary 5.6.2. Suppose that the coefficients Cj depend only on j and 
N and write Cj = Cj(N). Assume that these {cj(N)})=1 also satisfy, in 

k 
addition to (5.6.4), the condition 2 tf(N) = l. Then 

i = i 

BN(0 = i^W(nO))"-1/2^(y, nO)) i B(t), 

a Brownian bridge for each iV, and Corollary 5.6.1 holds accordingly. 

On the basis of the above results the limiting distributions for the 
usual functionals can be written down immediately. We illustrate what 
we have in mind with the two sample situation, spelling out only a few 
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examples. Applying Corollary 5.6.1 with 

. _ i/ »Q) 
2 _ V n( l )+n(2) ' 

C l _ F n(l)+n(2) 
respectively with 

y^Sf '-«*■— 
o, otherwise, 

Co = p n(l) + n(2) j> 
0, otherwise, 

we get 

Corollary 5.6.3 

= P{ sup £(y) ^ u} = 1 -e~2u\ a sO , 

(5.6.15) lim PJ sup / " ( ! ^ I W * ) - W * ) I ^ " } 

= lim p{ sup / ( i n v F ( y ) ) l / l 2 S ^ ^ | f i ^ - g (y)| =§ „} 
n(l),n(2)-^eo lo<y<l f tt(l) + n ( 2 ) J 

= i>{ sup |£(y)| ^ w} = 1 - 2 ( - l)k+1e-2*2"2, u ̂  0, 

= P{sup £(}>)/}> ̂ u} = 20 \u ( j 3 j ) - 1 , w ^ 0, g > 0, 

<5-6-i7> .oxfe.. 4 s $ £ ^ - iV.o»<*>-W*>W*) * 4 
= P{f B*(y) dy s u}, u^0, (cf. Theorem 1.5.2). 
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Clearly, the above statements involving the empirical distributions hold 
true under the conditions of Proposition 5.6.1 leading up to (5.6.6). The 
statements in terms of the quantiles Qn(1) and Qn(2) are true if all the 
conditions of Proposition 5.6.1 are assumed. All the results (5.6.14)-(5.6.17) 
can be used to test the null hypothesis of (5.6.2). The statements of (5.6.14) 
and (5.6.15) concerning Fn(1) and Fn(2) are applicable to (5.6.1). Using 
the Glivenko-Cantelli Theorem, it can be easily shown that, in the statement 
of (5.6.16) involving Fn(1) and Fn(2), F can be replaced by any of F„(1), 
Fn(2) and (n(l)Fn(1)+n(2)Fn(2))/(n(l)+n(2)). Thus modified, it can be 
used to test for H0 of (5.6.1). Applying the method of Theorem 5.5.2, 
we can estimate f(imF(y)) as there, and then all the statements of 
(5.6.14)—(5.6.17) which involve the two sample quantile process become 
applicable to (5.6.1). As to the application of (5.6.17) in case of the two 
sample empirical process to the problem of testing for (5.6.1), we prove 

Corollary 5.6.4. Given (5.6.1) and assuming that the common distribution 
function F of the two samples is continuous, we have 

= P {f B2(y) dy^u}9 u ^ 0, (cf. Theorem 1.5.2) 
o 

where n=n(l)+n(2) and Fn(x)= n(^(1)(x)+n(2)Fn(2)(X) 

Proof. Without loss of generality we can assume that F(x)£ C/(0, 1). 
The same way as we proved (5.6.10), we get 

XS)/«<»-f-<->)w--/w 0. 

Hence, in order to prove (5.6.18), it suffices to show that for any given 
£>0 and 0<<5<1 there exists an n0=n0(s, S) such that 

i I 

(5.6.19) P{\fB2
n(y)dFn(y)-fBl(y)dy\> s} ^ 3 whenever n^nQ. 
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Now for any given integer m, C>0 and e>0 we have 

(5.6.20) P{|/ aj(y)dFn(y)- f B*„(y) dy\>s} 
0 

M _ l ft+p/m 

f m-X I <* + « /« f / fc ̂  I 

^ H Z / k(y)-«(^)U(F.(y)-y) 

m 

• 2 max F. — +— > T [ 
|os*sm-i| ImJ m| mj 2J 

+J»{m«up J5(y)[ max U ^ l - F ^ l - i - l ] - | } 

SPJ2 max sup k 2 (—+s)-^(—)| > -U 
m 

+ PJ2 max sup l ^ f A + j l - ^ f A j L 3 

m 

+ p\J max UjL)-±|],>3 

+ i>Umax |FB(^i)-F„(A)-±L-l]/ |} 

= /»! + /», +J», + P4 + i»B. 

Given e>0 and <5>0, we can choose w so big that P^—and P2<-^-. 

Let C>0 be now so big that P4<-T-. For the already given m9 C>0 and 
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a>0 we choose n so big that PZ<~F
 a nd P^-F- This proves (5.6.19) 

and hence also (5.6.18). 

Remark 5.6.1. In a similar way one can also show via (5.6.10) and an 
appropriate extension of (5.6.19) that 

(5.6.21) / s%(x)dFn(x)-- f { 2 Cj(N, t)Kj(t91)) dt 

where Fn(x)= 2 nti)FnU)(x)ln, with n=n(l)+...+n(k). 

5.7. Approximations of the empirical process when parameters are 
estimated 

From a statistical point of view, Theorems 4.4.1 and 4.4.3 are useful 
to construct confidence intervals for an unknown distribution function 
F and also to construct goodness-of-fit tests for a completely specified F. 
Most goodness-of-fit problems arising in practice, however, do not usually 
specify F completely and, instead of one specific F, we are frequently 
given a whole parametric family of distribution functions {F(x; 0); 
0£ Q Q Rp}. From a goodness-of-fit point of view the unknown parameters 
0 are a nuisance (nuisance parameters), which render most goodness-of-fit 
null hypotheses to become composite ones. There are many possible 
ways of "getting rid of 0" so as to reduce composite goodness-of-fit 
null hypotheses to simple ones. As far as the empirical process is concerned, 
one natural way of doing this is to "estimate out 0" by using some kind 
of a "good estimator" sequence {$„}, based on random samples 
X19X29 ...,X„ (#i = l,2, ...) on F(x; 0). 

Concerning the classical Cramer-von Mises and Kolmogorov-Smirnov 
statistics, Darling (1955), and Kac, Kiefer and Wolfowitz (1955) investigated 
their asymptotic distributions when the unknown parameters of a specified 
distribution function were to be estimated first. Durbin (1973a) considered 
the more global question of weak convergence of the empirical process 
under a given sequence of alternative hypotheses when parameters of 
a continuous unspecified distribution function F(x; 0) are estimated 
from the data. The estimators themselves were to satisfy certain maximum 
likelihood-like conditions. Durbin (1973a) showed that, for such a general 
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class of estimators, the estimated empirical process converged weakly 
to a Gaussian process, whose mean and covariance functions he also gave. 

In this section we are going to use the strong approximation methodology 
of Chapter 4 to study the problem of obtaining asymptotic in-probability 
and almost sure representations, in terms of Gaussian processes, of the 
empirical process when parameters are estimated. 

For an i.i.d. sequence Xl9X29 ... from a family of distribution functions 
{F(x;9);x£R99£0QRp}, let {8,}= {(8*, ..., 9np)} be a sequence of 
estimators of the row vector 9 based on the random sample Xl9 X29 ..., Xn. 
Consider the estimated empirical process defined by 

(5.7.1) U*) = n1,2[Fn{x)-F{x-Jtt)], x£R\ 

where Fn is the empirical distribution function of Xl9 ...9Xn. 
First we list the set of all conditions which will be used in our main 

theorem (cf. Theorem 5.7.1). We emphasize that only subsets of it will be 
used at appropriate places. 

(5.7.2) (i) » ^ ( 0 . - ^ = » -* i / ( JO ,0o)+« i . , 
j = l 

where 90=(9Ql9 ..., 90p) is the true value of 9,l(*990) is 
a measurable /7-dimensional row vector valued function, 
and sln converges to zero in a manner to be specified later on. 

(ii) El(Xj9 9^=0. 
(iii) M(9Q)=E{1(XJ, 9Q)t'l(Xj9 0Q)} is a finite nonnegative definite 

matrix. 
(iv) The vector VeF(x;9) is uniformly continuous in x and 

9£A where A is the closure of a given neighbourhood of 0Q. 
(v) Each component of the vector function l(x9 0Q) is of bounded 

variation on each finite interval. 
(vi) The vector VeF(x, 90) is uniformly bounded in x9 and the 

vector V%F(x;9) is uniformly bounded in x and 9£A, 
where A is as in (iv). 

(vii) lim (s.log log 1/Syi2\\l(im F(s; 0O), 60)\\ = 0 

and 

lim ((1 -s) log log 1/(1 -*))^||/(inv F(s; 0O), 0,)|| = 0, 

where inv F(s; 0o)=inf {x: F(x; 0o)ss}. 
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(viii) s||@/&)/(inv F(s; 90)9 90)\\ ^ C, 0 < s^ \ 

and 

(1 -s) \\(d/ds)l(iav F(x; 90), 90)\\ ^ C, * < s < 1 

for some positive constant C, where the vector of partial 
derivatives of the components of /(inv F(x; 90), 0Q) with 
respect to s, (d/ds)l(inv F(x; 0O), 0O), exists for all s£(0,1). 

The estimated empirical process ftn(x) of (5.7.1) will be approximated 
by the two-parameter Gaussian process 

(5.7.3) G(x9 n) = n-ll2K(F(x; 9Q), n) 

-{/«*, 90)dxn-V*K(F(x; 0O), n)} V9F(x; 0Q)<, 

where K is the Kiefer process of Theorem 4.4.3 (cf. also Remark 4.4.3). 
G has mean function EG(x, n)=0 and covariance function 

(5.7.4) EG(x9 n)G(y9 m) = min (n, m) • (nm)'112 

.{F(min (*, y); 90)-F(x; 9,)F(y; 90) 

-J(x)-V9F(y; 9oy-J(y)-VeF(x; 0O)' 

+VeF(x; 90).M(90)-VdF(y; 0O)<}, 

where M(0O) is defined by (5.7.2) (iii) and 

/ ( * )= f l(z990)dzF(z;90). 
— oo 

(Here, of course, i^min (x9 y); 90) = min (F(x; 0O), F(y; 90)).) Since 
M(90) is nonnegative definite, there is a nonsinguiar matrix D(90) such that 

(5.7.5) D(90yM(90)D(90) = ^ 9 

where / is the identity matrix and rank 7=rank Af (0O). Hence G(x9 n) 
of (5.7.3) can be written as 

(5.7.6) G(x9n) = n~ll2K(F(x; 0Q),n)-iT*%W(fl)-D-i{Oj)-VaF(x; 0Q)<, 

where W(n)=fl(x990)dxK(F(x;90)9n)-D(90) is a vector-valued Wiener 
process with covariance structure: min (n9 m) multiplied by (5.7.5). 

Clearly we have for each n that 

(5.7.7) G(x, ri) =£= D(x) = B(F(x; 0O)) 

-{JK*> 90)dxB(F(x; 0o))}Ve F(x; 90)\ 
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where =£= stands for the equality of all finite-dimensional distributions 
and B(x) is a Brownian bridge. Thus ED(x)D(y) = { }, where { } is 
the right-hand side factor in 5.7.4. 

Theorem 5.7.1 (Burke, Csorgo, Csorgo, Revesz 1979). Suppose that the 
sequence {§„} satisfies (5.7.2) (i), (ii), (iii), and let 

s2n = sup \fin(x)-G(x9n)\. 
- o o < J C < < » 

Then 

(a) e2n —^ 0, if conditions (5.7.2) (iv), (v) hold and sln-^ 0; 
(b) e2n^^ 0, if conditions (5.7.2) (vi)-(viii) hold and sln-^^ 0; 
(c) e2n = 0{max(/i(w), «~£)} /or same e>0, */ conditions (5.7.2) 

(vi)-(viii) Ao/rf owrf eln = 0{h(n)}9 h(n)>0, h(n)-+0. 

Remark 5.7.1. Durbin's (1973a) result (under his null hypotheses -
Corollary 1 in Durbin (1973a)), i.e., /J„(inv F(-Jn))-^ D(inv F ( - ; 0O))> 
follows from part (a) of Theorem 5.7.1, because of (5.7.7). Here — -* 
denotes weak convergence in the function space Z)[0, 1]. (This will also 
be the case under his sequences of alternatives (cf. Theorem 5.7.3 and 
Remark 5.7.4 concerning Durbin's original setup).) We should point out 
that Durbin used conditions (5.7.2) (i)-(iv), with eln —^ 0, to prove this 
weak convergence, but not (v). This slight regularity condition (5.7.2) (v) 
(satisfied, sure enough, in each practical situation) is the only price we 
pay for obtaining our in-probability representation of the limiting Gaussian 
process in both x and n. Nevertheless, if one still would like to get rid 
of this condition, then the use of Theorem 5.7.1 is still advantageous. As 
the proof of part (a) will show, we have (without (v)) 

(5.7.8) sup\fin(x)-Ym(F(x; 0O)) |— 0, 

where 

Yn(s) = n-^K(s9 «)-{«-1/2 J2I(Xj9 0O)} VaF(inv F(s; 90); 0O)<. 

In this way we could save a tightness-proof, since the tightness of {Yn} 
reduces to the a.s. continuity of the Kiefer process. But one still has to 
prove the convergence of the finite-dimensional distributions of Yn to 
those of D(>) in (5.7.7), which is, at one hand, again easier than for ^n, 
but, on the other hand, is essentially a repetition of the proof of Lemma 3 
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in Durbin (1973a). We should also note however, that, unlike in Durbin 
(1973a), the continuity of F(x,9) in x is not used in Theorem 5.7.1. 
Conditions (5.7.2) (iv) and (vi) can be satisfied without the continuity 
of F (example: the binomial distribution). 

Remark 5.7.2. Conditions (5.7.2) (vi)-(viii) are the extra ones used to 
obtain our a.s. representation (in case of part (c) with a rate sequence) 
of the limiting Gaussian process in both x and n. The thus gained results 
(cf. Theorems 5.7.1 and 5.7.3) are analogues of a Kiefer type approximation 
of the empirical process (cf. Theorem 4.4.3), while Durbin's result (cf. 
Remarks 5.7.1 and 5.7.4) is an analogue of Donsker's theorem (cf. Theorem 
4.2.1). Commonly used distributions such as the normal and exponential 
and, in fact, all those density functions whose tail behaviour in the sense 
of the requirements (5.7.2) (vi)-(viii) is like that of the exponential density, 
satisfy these conditions when maximum likelihood estimators are employed. 

Introduce the following 

(5.7.9) s3n(s) = n1'2 [Fn(inv F(s; 0J)-s] -n~^2K{s9 n), 

where K is the Kiefer process of Theorem 4.4.3. We have 

s3n(F(x; 0O)) = n^[Fm(x)^F(x; 0O)]-""1/2K(F(x; 0Q), n). 

Our proof of Theorem 5.7.1 hinges on the following two lemmas. 

Lemma 5.7.1 Suppose that the vector function l(x9 0Q) satisfies conditions 
(5.7.2) (hi) and (v). Then, as H-*°°, 

Ln=fl(x, 90)dxe3n(F(x; ft))-i. 0. 

Proof. Let Tj(x) denote the total variation of the jth component 
(/(•>0o) of l('>Qo) on the interval [-x9 x]9j=l9 ...,/?, and let T(x)= 
=(rx(x), ..., Tp(x)). Clearly we can choose a sequence of positive numbers 
un tending so slowly to infinity that ||r(t/n)||>r1/2log2«-0. (If \\T(n)\\ 
is bounded, then any */n-^°° sequence will suffice, while if \\T(n)\\/,^>, 
then we take un=inv T(vn), where vn/'» so that vn=o{nll2/log2n}9 

and invT(y)=inf{x: \\T(x)\\z=y}). With this u„ then, consider 

Ln= f l(x9eQ)dxn^[Fn(x)-F(x;0o)] 
\x\>un 

- / /(*, e0) dxn^2K(F(x; 0O), n) 

+ / l(x,e0)dxe3n(F(x;e0)) = Lln-L2n+LZn. 
\x\^un 
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Integrating by parts and using Theorem 4.4.3 one obtains 

IIAdl ^ || f"hn(Hx; d0))dl(x, e0)\\ + \\te3n(F(x; d0))l(x, 0O)>=-J| 
—un 

^O{n-imog*n}\\T(u„)\\~0. 

If the components in JL1W and Z/2n are denoted respectively by L^ and 
Lg,j=l, ...,p, then we have EL<£>=EL(g>=0 and 

(5.7.10) E(L$Y = E(L$? = f l)(x, 0O) dF(x; 60) 

-( / ij&ejdF^ejY-l f ij&ejdF^Oo))2. 

Whence, by the Chebishev inequality with e>0, 

P{\\Lln\\ + ||LJ| - 2e} ^ A 2 f f?(x, 90) dF(x; 90)9 

and this latter bound tends to zero by condition (5.7.2) (iii), since wn-*°°. 

Lemma 5.7.2. Suppose that the vector function /(inv F(x; 0O), 0O) satisfies 
conditions (5.7.2) (vii) and (viii). Then, as « —°°, 

i 
Ln= f l(imF(s; 0O), eo)deSn(s) 2 i 0{n'% 

o 

for some e>0, w/iere s3n(s) is again that of (5.7.9). 

Proof We have 
i 

K = f £3„(s)(^s)/(invf(s; 0O), d0)ds. 
0 

This latter equality is correct provided the function £3n(s
,)/(inv F(s; 0O), 0O) 

at ,s=0 and ^=1 is almost surely the zero vector. This, in turn, is true 
by condition (5.7.2) (vii) and by the fact that the Kiefer process K(s, n) 
(cf. Theorem 1.4.1) and the empirical process nl/2[Fn(invF(s; 60))-s'] 
behave like (s log log 1 /s)1/2 and ((l-s) log log 1/(1-^))l/2 as ^ \ 0 and 
s/\, respectively. 

Consider now 
n - l /3 1 / 2 l _ „ - l / 3 1 

L» =f + f + f + f = i i+ i*+i i+ i i . 
0 n -

1
^ 1/2 l - / i "

l /8 
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By Theorem 4.4.3 and the first part of (5.7.2) (viii) we have almost surely 

1/2 

l i t ! ^ 0{n~v*lo?n} f \\(d/ds)l(invF(s; 60)9 0o)\\ds 
n-r/3 

1/2 

^0{n-^log2n} f s-ids 
B-r/s 

= 0{n-1/2log3n}. 
Also, 

n - l /3 

||L*,|| ^ jf |A,(invF(s; 0O))|. ||@/&)J(invF(s; 0O), 0o)||<fo 
0 

+ / In-wjSTfo n)| • \\(d/ds)l(mwF(s; 0O), 0O)|| <fo. 
0 

Since by (S.5.1.4) 

(5.7.11) sup |/S„(inv F(s; 0o))(s(l -s))-^a| S 0{log n}, 

and by (1.15.1) 

(5.7.12) Em sup |A:(s,n)[4/is(l-s)loglog(«/(s(l-s)))]-1/a|^l, 

we have by the first part of (5.7.2) (viii) 

\\LU^O{logn}f (loglogin/syy^s-^ds, a.s., 

The terms Lj, and LJ, are estimated similarly and hence the lemma. 

Proof of Theorem 5.7.1. Using the one-term Taylor expansion of F with 
respect to 0O we obtain 

(5.7.13) fax) = n^[Ftt(x)-F(x; 0Jl-n*[F(x; 8j-F(x; 60)] 

= n-**K(FQc; 60), n)-n«*0tt-8o)VeF(x; W+e*(F(x; 00)) 

= n-«*K(F(x;eo),n)-n-«*0n-eo)VeF(x; 0J+e*(F(x; d0))+Sin(x), 

where s3„ is defined by (5.7.9), and by Theorem 4.4.3 

(5.7.14) sup {e^Fix; 0O))| S 0{n~^ log**}, 

while \\d*-90\\^\\d„-90\\ and 

e4(1(x) = n^(9„-0o)(VflF(x; e«)-V,JF(x; #))'. 
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It follows from (5.7.2) (i), (ii) and (iii) that n1,20n-9o) is asymptotically 
a normal vector, and thus | |0w-0o l l-^ 0- Hence, using also (5.7.2) (iv), 
we have 

(5.7.15) Sup| |a4 n(x) | | -^0. 

Also, by conditions (5.7.2) (i) and (ii) 

(5.7.16) n^0n-6o) = ii-i'«£l(X j9 90)+eln 

= fl(x990)dxn^Fn(x) + sln 

= fl(x,e0)dxnU*[Fn(x)-F(x; 90)]+sln 

= fl(pc9 90) dxn'^K(F(x; 0O), n)+Ln+elR9 

where Ln is of Lemma 5.7.1. Since the vector YeF(x; 0O) is uniformly 
bounded in x by (5.7.2) (iv), part (a) of the theorem follows from (5.7.14), 
(5.7.15) and (5.7.16). 

To prove parts (b) and (c) we use the two-term Taylor expansion of 
F with respect to 0O in the second term of the first row in (5.7.13). Applying 
also (5.7.16), we obtain 

fax) = n-«*K(F(x; 0O), n)-n«20n-9o)VdF(x; 0O)< 

- in 1 / 2&-0 o) 2V|F(x, e:y+eZn(F(x; 0O)) 

= G(x9 n)HLn+eln)VdF(x; 9oy 

-i"1/2(0«-0o)2V|fX*, W+*»(F(x; 90))9 

where \\9*-90\\^\\dn-90\\. If e l n - ^ - 0, then it follows from (5.7.2) (i) 
that 9* -^-> 0O. Hence the vector V2

eF(x\ 0*) is almost surely uniformly 
bounded in x and n by (5.7.2) (vi). Because of (5.7.2) (iii) the law of 
iterated logarithm can be applied componentwise to the partial sum 

sequence in (5.7.2) (i). Whence we get \\n1,20„ - 0O)2|| = O {n~l12 log log «}, 
that is 

sup \n«*0n-9oyV$F(x; e^\^0{n-^loglogn). 

Thus, if (5.7.2) (i), (ii), (iii) and (vi) hold and eln = 0, then 

fax)-G(x9n) ^e5n(x)+0{n-Vnog*n}9 
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where e5n(x)=(Ln+eln)VeF(x; 90)
f. If (5.7.2) (vii), (viii) hold, then by 

Lemma 5.7.2 Ln = 0{n~e}. Whence by (5.7.2) (vi) 

s u p | s 5 n ( x ) | ^ - 0 , 

and if, in addition, sln = 0{h(n)}, h(n)>0, h(ri)^0, then 

sup \s5n(x)\ = 6>{max(/i(n), n~% 

The last sentence also completes the proof of parts (b) and (c) of Theorem 
5.7.1. 

The limiting Gaussian process G of Theorem 5.7.1 depends, in general, 
not only on F but also on 90, the true value of 9. Thus, in general, 
Theorem 5.7.1 cannot be used to test the composite hypothesis 

HQ: F£{F(x;0): 0£<9 Q R*>}. 

In order to give an asymptotic theoretical solution to the latter problem, 
we define the process G(x9 ri) by 

(5.7.17) 6(x9 n) = n-v*K(F(x; Qn), n)-n-^W(n)^D^0n)^eF(x; 0„)<, 

where M(9) (cf. (5.7.2) (iii)) is assumed to exist and is nonnegative definite 
for 0£A9 and D(9)1M(9)D(9) is assumed to satisfy (5.7.5). For W(n) 
see (5.7.6). We have 

Theorem 5.7.2. Suppose that the column vectors qj(9)=(d/d9j)D~1(9) 
• VeF(x;9)\ l^j^p, of partial derivatives exist and are uniformly 
bounded on RXA. Then, under the conditions (5.7.2) (i), (ii), (iii) and (vi) 

(5.7.18) sup \6(x9 n)-G(x, n)\ = s6lI, 

where £6w~-* 0 tf ein - ^ 0, and e6n = 0(n~6) for some <5>0, if eln—-*- 0 
as «->«>. Consequently, 

(5.7.19) sup |j8(*)-(5(*f n)| = et, 

where s%n converges to zero like e2n of (a) or (b) or (c) in Theorem 5.7.1, 
C is defined by (5.7.17) and eln by (5.7.2) (i). 

Proof Assume eln -^-*- 0, for it will be clear from the proof where to 
make the obvious changes to arrive at the conclusion of Theorem 5.7.2 



Empirical and Quantile Processes 197 

in the case when sln —-* 0. We have 

<?(*, n)-G(x, ft) = n-^{K(F(x; B„), n)-K(F(x; 60), »)} 

- n - ^ W C n X Z ) - 1 ^ ) ^ ^ ; 6^-D-1(e^V^(x; 0„)'}-

On letting /j„=w-l/2(loglog«)l/2 in Theorem 1.15.2, we have yn= 
= {2(n log log «)l/2 log [«1/2 (log log n)- l / 2]}" l / 2 * {2(« log log H)l/2log/il/2}~l/2 

and hence, using Taylor's theorem, 

(5.7.20) n-1'2 sup \K[F(x; 0„), n]-K[F(x; 80), n]\ 
X 

= n-*/2 sup \K[F(x; 6J+0.-OJP,F(x; Otf 
X 

+i(0.-0«) ,V?f ,(x; e*J, n]-K[F(x; 0o), n]\ 

£± Ofn-1/* (log log n)1/4(log n)1/2}, 

where ||0*-0O||3S||0„-0O||. The latter equality of (5.7.20) holds by con-

dition (5.7.2) (vi) and the fact that \\dn-90\\ = 0{«_1/2(loglogn)l/2} 
if a l n ^ ^ 0 . 

Let Q(x9 9) be the pXp matrix whose jth column is the vector qj{9). 
Then we have 

n-^W(n).[D-i0n)-VdF(x; 6j-D-*(0J-V9F(x; 90)<] 

= n-«W(n)[0u-OJ-Q(x9O3Y 
^0{n~1/2loglogn}9 

by the law of the iterated logarithm for the Wiener process W(n) and 
for the partial sum sequence of (5.7.2) (i), and the uniform boundedness 
of Q on RxA, where ||0*-0o||==E||0n-0o||. This, together with (5.7.20), 

implies e6n == 0(n~8) for some<5>0 if eln-^-+ 0, and hence the theorem. 

Remark 5.7.3. (5.7.9) says that G(x9 n) is just as good an approximation 
of j§„ as G(x9 n) was. Now let m{99 a) (0<a< l ; 9^0) be the number 
for which 

P{ sup \G(x9 n; 9)\ > m(99 a)} = a. 

Clearly the function m (9, a) is uniquely determined in this way and it is 
continuous in 9 and a. This implies 

a = lim P{ sup \G(x9 n; dn)\ > m 0 n 9 a)} 

S lim P { sup |&(;c)| > „ (0„ a)}, 
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provided sln of (5.7.2) (i) goes to zero almost surely. Theoretically, one can 
therefore propose the following test of level a: reject the composite 
hypothesisH0: F£{F(x, 9);9£0QRp}if sup |j3„(x)\>*n(0X, a), where 

— e » < X < + o o 

91 is the numerical value of §n in a given experiment. We should note, 
of course, that the evaluation of m(99 a) itself appears to be quite difficult 
for any given F. 

Our method can be also applied to give an analogue of Theorem 5.7.1 
under a sequence of alternatives. Suppose that the continuous distribution 
function of the i.i.d. sequence is F(x; X9 0), where X is a /^-dimensional 
vector of parameters which is assumed to be known, and 0 is a /^-dimen-
sional vector of unknown parameters which is estimated by {Bn}9 based 
on Xl9 X29 ..., Xn. Consider the null hypothesis 

(5.7.21) H0: (X99) = (X0990)9 

where 90 stands for the true value of 9. Let 

(5.7.22) &(*) = n*[FH(x)-F(?c; A0, 0J], xtR1, 

where Fn is the empirical distribution function. In addition to H09 

we also wish to study fin under a sequence of alternatives {Hn} defined 
as follows: 

Let {Xn} be a sequence of /^-dimensional (nonrandom) vectors satisfying 
the condition 

(5.7.23) ^ A o + y n - 1 ' 2 , 

where y is a given constant vector. Let Ax denote the closure of a given 
neighbourhood of X0 and let m=min {k; Att€Al9 for all n^k>2}. Then, 
consider 

(5.7.24) Hn: (X99) = (X0990)9 

for n=m9 m+l9 ... where X„ satisfies (5.7.23). If we choose An=/l0 

for all n9 i.e., y=0, then Hn and H0 are identical. 
First we list all the conditions whose appropriate subcollections will be 

used in Theorem 5.7.3. These conditions are, of course, parallel to those 
of (5.7.2). 

(5.7.25) (i) Under Hn: 

3 = 1 
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where A is a given finite matrix of order p2Xpl9 I is 
a measurable /?2-dimensional vector valued function, and 
e7n converges to zero in a manner to be specified. 

(ii) E{l(Xj9X0>00)\Hn}=0 for n=Q and n^m. 
(iii) E{l(Xj9X09e0)U(Xj,X09e0)\Hn}=M(Xn9e0)9 a finite non-

negative definite matrix for each n^m which converges to 
a finite non-negative matrix M=M(X0990) as n-+°°. 

(iv) The vector VxF(x; X, 0O) is uniformly continuous in x 
and X£Al9 and the vector V$F(x; Ao,0) is uniformly 
continuous in x and 0£A29 where A2 is the closure of 
a given neighbourhood of 0O. 

(v) Each component of l(x9 X09 0O) is of bounded variation 
on each finite interval. 

(vi) The vectors VxF(x\ XQ9 0O), VeF(x; X09 0O) are uniformly 
bounded in x9 while the vector V\F{x\ X9 0O) is uniformly 
bounded in x and X£Al9 and the vector VjjF(x; A0,0) 
is uniformly bounded in x and 06 y42. 

(vii) Condition (5.7.2) (vii) holds for the vector 
/(inv F(s; XO90O)9 X09 0O), where inv FCs; X9 0) 
=inf {*: F(A:; X, 0)^s}. 

(viii) Condition (5.7.2) (viii) holds for the vector 
l(imF(s;X0990)9X09e0). 

The estimated empirical process fin(x) of (5.7.22), under the sequence 
of alternatives {Hn} of (5.7.24), will be estimated by the two-parameter 
Gaussian process 

(5.7.26) Z(x, n) = G(x9 n ) - ^ / V e F ( x ; X09 Otf+yVxF(x; X0, 0O)<, 

with 
G(x9 n) = n'^K(F(x; X09 0O), n) 

- { / / ( * , A0, 0o)4n"1 / 2^(F(x; X09 0O), n)} V0F(x; A0, 0O)<. 

This process G(x9 n) is the same process as defined by (5.7.3). The mean 
of Z is 

EZ(x9 n) = -AfVeF(x\ XQ9 eoy+yVxF(x; X09 0O)', 

and its covariance is given by (5.7.4), with the obvious changes in notation. 
On letting 

2(x9 n) = (?(*, n ) - ^ V „ F ( ; t ; X09 6j+yVxF{x; X09 0„)<, 
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where G is defined by (5.7.17) (with the notation suitably modified), the 
results corresponding to Theorem 5.7.2 continue to hold under the sequence 
of alternatives {Hn}. 

Theorem 5.7.3. Suppose that conditions (5.7.25) (i)-(iii) hold, and let 

e8„= sup \fln(x)-Z(x9n)\. 

Then, under the sequence of alternatives {Hn}9 

(a) 88n-?->- 0, if conditions (5.7.25) (iv), (v) hold and e 7 n - ^ 0; 
(b) Sgii-^5^ 0> if conditions (5.7.25) (vi)-(viii) hold and e7n—+ 0; 

(c) eSn = 0{max(h(ri), w~8)} for some e>0, i/ conditions (5.7.25) 

(vi)-(viii) Ao# am/ e7n = O {/*(")}> A(w)>0, A(/i)->0. 

Remark 5.7A. Here the whole content (modified to the present situation) 
of Remarks 5.7.1 and 5.7.2 can be repeated. Specifically, Durbin (1973a) 
proved the weak convergence of j5„(inv F(- ; A0, Qn)), under {Hn}, to 
a process that can be represented by putting a Brownian bridge B{ •) into 
the definition (5.7.26) of Z in place of «"1/aJf(«, w). He used conditions 
(5.7.25) (i)-(iv) (with e7n — + 0) to prove this (he requires (5.7.25) (iv) in 
a slightly stronger form than ours), and the extra condition that F(x; A, 9) 
is continuous in x for all (A, 0) in some neighbourhood of (A0, 0O). If 
we want to prove this weak convergence (but not the two-parameter repre-
sentation in (a)) without condition (5.7.25) (v), then the method proposed 
in Remark 5.7.1 works again with 

Yn(s) = n-^K(s,n) 

-{w"1/2 J 1(XJ9 Ao, e0)+AyjveF(mvF(s; A0, 0O); A0, 0O)< 

+yVAF(inv F(s; A0, 0O); A0, 0O)<. 

Remark 5.7.5. Durbin (1973a) proves the weak convergence of 

Sn(s) = n^[Fn(s)-sl 0 ^ 5 ^ 1, 

where Fn(s) is the proportion of F(XX\ A0, Sn)9 ..., F(Xn; A0, Bn) which 
satisfy F(Xj; A0, 9„)^,y. The processes Sn and j8B are asymptotically 
equivalent. In order to see this we first note that $n(s)=fin(mv F(s; A0, Bn)), 
where now inv F(s; A0, 0)=sup {x: F(x; A0, 9)^s}. Secondly, if we 
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assume that we have already carried out the program of the last sentence 
of Remark 5.7.4 concerning the finite dimensional distributions of Yn, 
we prove also easily that 

sup \fim(?c)-Yu(F(x; I*, 6n))\ - ^ 0, 

Hence on putting x=inv F(s; 20, §n), we have 

sup \§n(s)-Yn(s)\-+09 as 

as n—oo. 

n -*oo 

which establishes asymptotic equivalence. 
The proof of Theorem 5.7.3 is similar to that of Theorem 5.7.1. For 

details we refer to Burke, Csorgo, Csorgo, Revesz (1979). 

Remark 5.7.6. If we assume that the function / possesses not only a finite 
second (cf. (5.7.25) (iii)) but a finite absolute moment of order r, r>2, 
then we can proceed the following way. Let D(Xn,90) be the nonsingular 
matrix for which D(Xn, 9oyM(Xn, 9Q)D(An,9Q) satisfies (5.7.5). Then, 
by Theorem 2.6.3, 

2 KXJ9 Xo, 00)D(Xn, 0 o ) - i -^(J H: o(^), 
I J=X || 

where W{n) is a vector-valued Wiener process (cf. (5.7.6)). If the underlying 
probability space is still richer (if necessary), then there exists a Kiefer 
process K such that W(n) = fl(x, X0, 90)dxK(F(x; A0, 0O), n)D(An990). 
Let a9n=sup \fin(x) — Z(x, n)\, where Z(x9 n) has the same form as 
Z(x, n) in (5.7.26) with G(x, n) in place of G(x9 n), where 

(5.7.27) G(x, n) = n-1/2K(F(x; A0, 0O), n) 

- {f l(x; 20, 60) dxn-v*K(F(x; A0, 0O), n)} VdF(x; A0, 0O)<. 

The above proof shows the following. Under the rth moment condition and 
(only) (5.7.25) (i)-(iv) we have e9n ~-^ 0, if e7„ —- 0, while under the rth 
moment condition and (only) (5.7.25) (i)-(iii), (vi) we have e9n — - 0, if 
e7»—-* 0- Moreover, if in the latter case e7n = 0{h(ri)}9 then e9n = 
O {max (h(n), n~x)}, for some x>0 (cf. Remark 8 in Burke, Csorgo, 
Csorgo, Revesz (1979)). Naturally, the same type of "results" hold in 
the simpler setting of Theorem 5.7.1. These "results" are entirely useless 
at the present stage, since we do not know anything about the joint distri-
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bution of K and R in (5.7.27). Since e9rt-*0, it follows from Durbin's 
weak convergence theorem that &(*,n) converges weakly to £>(•) of 
(5.7.7.). The problem is how to replace R by K in (5.7.27), so that we 
should not have to fall back to Durbin's weak convergence theorem in 
order to make sense out of G(x, ri). This was achieved in Lemmas 5.7.1 
and 5.7.2 by imposing (very mild) extra restrictions on /. However, we 
conjecture that this should be possible without the latter restrictions. It 
appears that the proof of this conjecture (under the rth moment condition 
and only (5.7.25) (i)-(iii)) would require an extension of the proof of 

n 

Theorem 4.4.3 to simultaneously approximating fln and ]? l{Xj). 

5.8. Asymptotic quadratic quantile tests for composite 
goodness-of-fit 

In the previous section we investigated the problem of testing for the 
composite goodness-of-fit hypothesis 

H0: F 6 ^ = {F(x; 9): 0£0 c RP} 

via the estimated empirical process and proposed a Kolmogorov-Smirnov 
type statistic (cf. Theorem 5.7.2) for the latter H0. It is clear that applying 
the method of that section we could have also talked about the estimated 
quantile process. Other statistics, like, for example, the Cramer-von Mises 
types, could have been also proposed in terms of the estimated empirical 
as well as the estimated quantile process. In this section we continue to 
study this problem, using the estimated quantile process, and will propose 
a Cramer-von Mises type statistic. However, we will restrict ourselves 
to the case when we have only scale and shift as nuisance parameters. 
A description of this problem now follows. 

Let F be a continuous distribution function with unknown location 
and scale parameters — oo<^<-foo and d>0 respectively, and assume 

that F is of the form F(x; \i, o)=F01 — I, x£R\ where F0 is a known 

distribution function with mean zero and variance one. Let fF be the 
class of all continuous distribution functions of this latter form, i.e., 

(5.8.1) &={F(x;»9a):F(x;ix9a) = F0{-Z^y — < / i < + - , <* > o } 
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where F0 is a known distribution function with 

+ 0 0 + 0 0 + 0 0 

f xdF0 = 0, f x2dF0 = l, f x*dF0< 00. 
— 00 — 00 — 00 

Further let Xl9 X2, ..., Xn be a random sample from a distribution F. 
Our task is to test the composite null hypothesis 

(5.8.2) H0: Fe&. 

In case of the normal family, i.e., when F0 of (5.8.1) is equal to <P, 
the literature is enormous. We intend to give here only those steps of 
development concerning this specific problem of testing for normality, 
which led us to our approach to the more general problem of (5.8.2). 
We begin with the Shapiro-Wilk (1965) approach. In order to describe 
the latter, we first note that our random sample is then of the form 

(5.8.3) JT, = OZ,+JI (i = l,2, ...,n), 

where the Zt are i.i.d.r.v. with distribution function F 0 =$ . Let the 
elements of the ordered random sample be denoted by Z/n) and X[n) 

(i=l, 2, ..., n), the expectation of Z[n) by mi9 the column vectors with 
coordinates Z/w), X[n)

9 rrii by Z, X, m, and the covariance matrix of 
Z by V. The minimum variance linear estimate of <r, based on X, is 

n mtV~1Y m ^ - l 
(5.8.4) » ,= 2 c ^ 5 m* , where (c1? ...,c„) = ™- i -

We note that the latter is the same as the minimum variance linear estimator 
of a when the mean \x is known. The Shapiro-Wilk (1965) statistic for 
testing H0 of (5.8.2) with F 0 =# is 

(5.8.5) H ; = _ _ ^ , With Xn = ^ZXt. 
2(Xi-xny 

In order to evaluate Wn9 one needs to know the elements of V9 which 
are evaluated only for sample sizes up to 20 (cf. Sarahan, Greenberg 1956). 
In their quoted paper Shapiro and Wilk developed approximations for 
calculating the elements of V up to sample sizes 50. They also tabulated 
the critical values of the distribution of Wn for n = l , 2, ..., 50. Prompted 
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by these tabulation difficulties and arguing heuristically that for large n 
V should be close to the nXn identity matrix I, Shapiro and Francia 
(1972) proposed to substitute V~x in (5.8.4) by / for large samples and 
tabulated the critical values of their new statistic 

(5.8.6) W'n = ̂  '-, with (b l 5 . . . ,bn)= ™ 

i=l 

for 50^7*^100. (For a justification of replacing V1 by / we refer to 
Ali and Chan (1964).) Now only the values of m remain to be known 
and they are given by Harter (1961) for sample sizes 2^«^100 and for 
some specific n up to 400. W'n is closely related to the statistic 

(5.8.7) K = &[ S. m ' ) ' 

where, as before, m~E(Z\n\ and S ^ = — J (Zf-Zn)2. In fact, the 
fl i = i 

following relationship can be seen by elementary calculations: 

(5.8.8) L'n = 2nll2{2 m?)1/2(l -(n2 rf)-1/2(WZ)ll2)+(n1/2-(Z mf)1/2)2. 

Now using the statistic L^, it is natural to reject the hypothesis H0 of 
(5.8.2) with F0=4> for large values of L'n which is equivalent to rejecting 
the same H0 for small values of W'n resp. for those of Wn (cf. (5.8.8)). 

DeWet and Venter (1972) proposed to substitute mt of (5.8.7) by 

inv # I j , the approximate expectation of Zfn) under H0, and introduced 

the statistic 

(5.8.9) ^.^l&jL.-toil-^-a.. 

where an is a sequence of norming factors, defined in terms of cp (inv #( •))> 
whose approximate values they also tabulated. They also derived the 
asymptotic distribution of Ln with tables provided. The mentioned 
asymptotic distribution of Ln can be viewed as the first large sample 
theory for the Shapiro-Wilk Wn and the Shapiro-Francia W'n tests for 
normality. 
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Considerations, similar to those which led us to introduce the statistic 
Mn°(A) of (5.5.29) suggest that, for the family & of (5.8.1), we should 
consider the estimated quantile process 

(5.8.10) 4n(y) = 4n(y;xn,sn) 
= n**fo(invF0(y))((Q°n(y)- JB)/S„ -invF0(y)), 0 < y < 1, 

and the statistic 

(5.8.11) 

A = 1, 2, . . . , 

for testing the composite goodness-of-fit null hypothesis H0 of (5.8.2). 
An advantage of looking at Mn(X) instead of Ln is in that no normalizing 
factor like an is needed for the asymptotic distribution of Mn(X) to exist. 
Hence, the calculation of Mn(X) is easier than that of Ln. We also note 
that, in the definition of Mn(X), F0 is not assumed to be the unit normal 
distribution. 

The main result of this section is 

Theorem 5.8.1 (Csorgo, Revesz 1980). Let Xl9X29 ...,Xn be a random 
sample with a distribution function F^tF of (5.8.1). Assume that F0 

also satisfies conditions (4.5.10) and (4.5.12) of Theorem 4.5.6. Further 
assume (5.5.31) with r>2(A+l) and 

(5.8.12) inf frfovf.Cr>)l > 0 , i n f , l / o O " v y ) l > 0 v ' o^y^i y* o<y<l (1— yf 

for some 1 ̂  5 < 3/2, 

(5.8.13) f fi(x)dx^ + ~>. 
— oo 

Then, there exists a sequence of Brownian bridges {Bn} such that for 
A=1, 2, ... we have 

(5.8.14) \M„(X)-G„(X)\-^0, 
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where 
x 

(5.8.15) Gm(X)= / ^ W A - ^ O n v F o ^ + ^ T ^ - ^ + W ) 2 ^ ^ ^ 
o 

and where 

(5.8.16) 9? = / Bn(y) d(inv F0(y)), 91 = / BM^1 d(imF0(y))\ 
0 0 

(5.8.17) /<«>=//o(invFo(y))(invFoO0)«^ = / tt{x)x"dx, 
0 — oo 

a = A—1, A, A+l , 

(5.8.18) ®P = fBa(y)(imF0(y))"dy, a = A - 1 , 1 
0 

Remark 5.8.1. We note that by Lemma 5.5.5 and (5,5.37), all the random 
integrals occurring in the definition of Gn(X) exist on assuming (5.5.31) 
with r>2(A+1) and (5.8.13) implies the existence of the non-random ones. 

The proof of this theorem is based on a number of preliminary results. 
For the sake of further reference we repeat here our zero mean, variance 

one initial conditions on F0 of 3F of (5.8.1) as: 

JL -foo 

(5.8.19) / invF 0 0/ )dy= f xdF0(x) = 0, 
0 —oo 

1 + 00 

(5.8.20) f(mwF0(y)ydy= f x*dF0(x) = l. 
0 - o o 

Lemma 5.8.1. Given (5.8.19) and (5.5.31) with r>2A, we have 

"-'M,mF'iM=»<"-'">• (5.8.21) 

Proof. 

In"* 2 i n v F 0 ( - y | = |n-i 2 mv F0(-^r) - f mv F0(y) 4y I *=a \n-tU\ I fc«i \n-\-ij g 

Un 1 

^ / |invF0(y)|<fy + / inwF0(y)dy = GO*"1'2). 
0 1-1/n 

file:///n-/-ij
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Corollary 5.8.1. If, in addition to (5.8.19) and (5.8.20), F ^ / o ^ O on 
(a, b), where a and b are as in Theorem 4.5.6, then 

(5.8.22) * „ - £. = „-! i*£z*L 
* = 1 

= W-\ l( i^L- i n V F»(nTT))+ 0 ("-1 / 2 ) 

rf1 

= n-^lZ+oin-1'*), 

where / ^n" 1 j j + , am/ ?° is as in (5.5.28) vwfA F=F 0 . 

Lemma 5.8.2. Given (5.8.20) am/ (5.5.31) w/fA r>2(A+l), we Aaw; 

(5.8.23) "■iiH-(iTi)),-iho<»"1^ 
/V00/. By (5.8.20) and an argument similar to that of (5.8.21). 

Lemma 5.8.3. Assume that F0 of (5.8.1) satisfies condition (4.5.10) of 
Theorem 4.5.6. Assume also (5.8.12). Then 

(5.8.24) „- ,„ i Mi£-J *0 . 

Proof By Markov's inequality it suffices to show that 

(5.8.25) a-« i _ p I + [ L _ « „ - / . i J + W " ^ 
M * M T £ I ) ) , = ' ^ M ^ I ) ) 

1-1/ / I 
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Now by condition (4.5.10) and (5.8.12) we have 

(5.8.26) 
l~V' y(l_v) if* i dy 
& /J(mv f0W) , _ 7 . |/i(invf,(y))| 

1 - 1 / n « 1 -X/n * 

fO(logn) if 5 = 1 
" l o ^ " 1 ) if 1 < 5 < 3/2, 

which, in turn, implies (5.8.25), and Lemma 5.8.3 is proved. 

Lemma 5.8.4.If,inadditionto(5.8.19),(5.8.20)and(5.5.31) with r>2(A+1), 
F0 also satisfies the conditions of Lemma 5.8.3, then 

S„-o 
(5.8.27) 

where 

■ = n-K*I}+oP(n-V*), 

?"L + lJ 
'"'="~'Jv.M_y h>& 

Proof By Corollary 5.8.1, (5.8.23) and (5.8.24), we have 

-+invF0 f — ) 

}l/2 

- 1 

' - 9 / 2 ^ r 

= (l + 2n-1/2/„1+oP(«-1/2))1/i!-l 
= n-^tf+tfpOi-1'2), 

+oP(n-1'2) 

1/2 

- 1 
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where op(n~l12) of the third equality above results from observing that, by 
Corollary 5.8.1, I^n^^Opin'1"). 

Corollary 5.8.2. If the conditions of Lemma 5,8,4 are satisfied, then the 

estimated quantile process qn\ -I (cf (5.8.10),) can be written in terms 

of the process q* I J as follows: 

(5.8.28) A ( J L . ) = ^ J ^ X.,S.) 

-«/. [*»* (^y) (-f, (^))}+of(i>/. (ton (-jt-J) 

+ » , ( l ) / . ( i n v F o ( 1 A I ) ) ( i n v F „ ( 7 i I ) ) . 

IV00/. By Corollary 5.8.1 and Lemma 5.8.4 we have 

-(l-')h^(^r))} 
= i + . - ^ U o . - ^ - kit) -«+<"<■»/. (i-v f. (j^)] 

and the statement of (5.8.28) is proved upon observing also that, by 
Corollary 5.8.1, «-1/»iJ=o,(l). 
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Proof of Theorem 5.8.1. In the light of Corollary 5.8.2 Mn{X) can be 
written as 

(5.8.29) 

M„a) = j J „ - ^ ^ ) ) 7 / 0 ( i n v ^ 0 ( ^ ) ) } ( i n v F 0 ( ^ ) ) A - 1 

= l+
l
0p(l) {M2(X)+(W2 J«u-1}HW J!x+1) 

-2WR?-»+i;Rj,»-imjj»)} 

+oP(l){J«-»+Jix+»}+2oP(l){R«-1> - £ / « - » 

- / „ V « + ^ ) - / B V W - / B V « + 1 } , (A = 1, 2, ...), 

where M°(A), J° and /;} are respectively denned in (5.5.29), Corollary 
5.8.1 and Lemma 5.8.4, and 

(5.8.30) 

^ ^ n - i / o f i n v F o ^ ^ i n v F . ^ ) ) : a = A- l ,A,A + l , 

(5.8.31) ^-^Irf^lh^^ll a = A~1'A-
We have already remarked that the integral 7(a) of (5.8.17) exists, 

and hence 

(5.8.32) /„(a)-/<*>, as n -*«*>, (a = A- l , A, A+l). 

By (5.5.39) and (5.8.18) we also have 

(5.8.33) |i*<a>-^<a)|-^0, as n-*~ , (a = A-l,A). 

Hence, in (5.8.29) the terms R^ ( a = 1 - 1 , A) have limit distributions 
and the terms J™ (<x=A — 1, A, A-f1) have finite limits. Also, by Corollary 
5.8.1, resp. by Lemma 5.8.4, 7° resp. 7* converges in distribution to 

a JT(Q, 1) r.v. resp. to a ^rfo, — £ ^ - — 1 r.v. These facts together 

imply that the term 
oF(Wix-1) + Jix+1)}+ 

+2oP(D{R<x-1)-i!J!x-1)-ilJ(
n

xy+Kx)-i2 JiX) -HJ!X+1)} 

of (5.8.29) goes to zero in probability for A=1,2, ... . Thus, by Theorem 
5.5.3, (5.5.40) with 5=0 and 1, and by (5.8.32) and (5.8.33) we get our 
statement (5.8.14). 
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Theorem 5.8.1 now, in principle, gives the asymptotic distribution of 
Mn(X). Let 

1 

(5.8.34) G(X) = f B%y)X-1d(imF0(y)yH^°yja~1)H^1)2J(X+1} 

o 

- 2 Cr° ̂ (A-X) + ^ ^(A) - ^ ° ^ / ( A ) ) 
where A = l, 2, ... and 

I I 

(5.8.35) 2T« = / *(y) d(inv F0(y)), ^ = / i * ^ " 1 d(invF0(j;))
2, 

0 0 
1 

(5.8.36) ^ ( a ) = / B(y) (inv F0(y))a rfy, a = A-1 , A. 
o 

Since, for every «, Gn(A) = (/(A), (A = l, 2, ...), we have 

Corollary 5.8.3. The conditions of Theorem 5.8.1 imply 

(5.8.37) Mn(X)-^G(X), A = 1, 2, .... 

In the case when the parameters \x and a are known then, naturally, 
we use the statistic M°(A) of Theorem 5.5.3 instead of Mn(X) of Theorem 
5.8.1, and the proof of the latter reduces to that of the former. In fact in 
the \x and <r specified case, ^ ° and &% resp. ^"° and 3T1 should be 
simply replaced by zero in (5.8.15) resp. in (5.8.34). 

We note that the distribution of G(X) does not depend on the unknown 
parameters \i and a of ^ , i.e., the nuisance parameters of H0 of (5.8.2) 
are now eliminated. This means that via Corollary 5.8.3 we have a possibility 
of testing for H0, provided we can evaluate the distribution of G(X) 
for a given F0. However this task will not be simple in general. We 
observe, however, that the distribution of G(X) is somewhat simpler 
when FQ is symmetric around zero. In the latter case / (A)=0 if A is an 
odd integer, and /(A~1)=Jr(A+1)=0 if A is an even integer; i.e., 

i 

(5.8.38) G(A)= f ^2(y)A-1d(invfTo(y))A+(^ro)V(A"1) + (^rl)V(A+1) 

-2(5 r°^ ( A-1 )+^1^ ( A0> 
if A is an odd integer and F0 is symmetric around zero, while 

(5.8.39) 
I 

G(A)= f £2(y)A-M(invF00>))A-2(^^ 
o 

if A is an even integer and F0 is symmetric around zero. 
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Further simplifications are gained if one of the parameters \i and a 
are assumed to be known. If a is assumed to be known, then 91 in 
(5.8.34) should be replaced by zero and then (5.8.37) reads 

I 

(5.8.40) Mn{X)-*-+ f ^2(^)^^1^(invF0(>;))A+(^ro)V(X"1)-2^ro^A-1>, 
o 

while, if \x is assumed to be known, then 9** should be taken to be zero, 
and then (5.8.37) results in 

i 

(5.8.41) M„(A)-^ / ^2(^)A-1d(invF0(};))A+(^rl)2Jr<A+1>-2^rl^A>. 
o 

Combining now (5.8.39) with (5.8.40) and (5.8.41), we get 

x 
(5.8.42) Mn(A)-̂ - f B^y)*-1 d(inv F^y-iyo^-V, 

o 

if A is an even integer, F0 is symmetric around zero and a is assumed 
to be known, and 

i 

(5.8.43) Mn(X) - i * f B*(y)l~i d(invF0(y)y-2^rl^A>, 
o 

if A is an even integer, F0 is symmetric around zero and \x is assumed 
to be known. 

However, it is of no use to combine (5.8.38) with (5.8.40) and (5.8.41), 
for then we get again (5.8.40) and (5.8.41) only. 

Going back to the definition of Mn(X) (cf. (5.8.11)), we observe that it is 
a positive r.v. when A is an odd integer and it is a real valued r.v. when 
A is an even integer (the same observation holds for M%(X) of (5.5.29)). 
Hence, if A is an odd integer, we should reject the null hypothesis H0 

of (5.8.2) when Mn(X) is too large and, if A is an even integer, we should 
reject H0 when Mn(X) is too large or too small. We also observe that, 
if A is an odd integer, and if H0 is not true then Mn(X) -^L+ <~ as n-+°°. 
This means that the proposed test is consistent against any alternative 
hypothesis when A is an odd integer. On the other hand, the proposed 
test is not necessarily consistent against all alternatives when A is an even 
integer. For example, if F0 is symmetric around zero then the proposed 
test is definitely not consistent against symmetric alternatives in the case 
of A even. 
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5.9. On testing for exponentiality 

In the definition of the estimated quantile process qn of (5.8.10) the 
sample mean Xn and the sample standard deviation Sn were used to 
estimate \i and a respectively. Any other method of estimation for 
fi and (7, like for example maximum likelihood estimators, could have 
been used. Indeed, it is desirable to work out an analogue of Theorem 
5.8.1 in a more general context, like that of Section 5.7, for example. 
Instead of taking this general route, however, in this section we are going 
to concentrate only on testing for exponentiality. 

We consider the family of exponential density functions 

(5.9.1) Exp (A, B) = {f(x; A, B):f(x; A, B) = B^f, (^~) 

= ^ e x p (-(x-A)/B), x > AZR\ B > 0}. 

First we observe that f0(x) = e~x
9 JC>0 is not like F0 of (5.8.1) in the 

oo 1 

sense that here we have f xf0(x)dx= f(x— l)2f0(x)dx=l instead of 
o o mean zero and variance one. However, the methodology of our preceeding 

section is applicable. 
Let Xl9X2, --.,Xn (n^2) be i.i.d.r.v. with a density function / and, 

on the basis of this random sample, we wish to test the following composite 
null hypotheses 

(5.9.2) flr
0

(1):/€Exp(0,20, B>09 

and 

(5.9.3) H™:f£Exp(A9B), A£R\ B>0. 

First we deal with H™ of (5.9.2). In this case Xl9 X2,..., Xn are 
assumed to be independent positive random variables and, given Hff\ Xn 

is the maximum likelihood estimator of B of Exp (0, B). It is natural 
then to define the estimated quantile process of the family Exp (0, B) by 

(5.9.4) 

«■ UT) - "B(€-"»'• Ur) ) ' °h F >& k- ■•2 "• 
where, given H™ of (5.9.2), X™ (l^k^n) are the order statistics of the 
independent Exp (0, B) r.v. Xk (O^k^n). 
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We note that the above estimated quantile process of (5.9.4) is different 
from that of (5.8.10). Also FQ(x) of (5.9.2) is F0(x)=l-e-x, x^O, and 

hence ta,.(-i-) = ,og (./(1 - - ^ J ) and /„ (inv * ( - * , ) ) = . - - ^ 

(1 ==£=§«). 
Now the process q° of the family Exp (0, B) is 

(5.9.5) 

and our Theorem 4.5.7 holds for the latter with y = l in (4.5.10). Also, 
CO 

since f xdFQ(x)—l, instead of Lemma 5.8.1 we now have 

(5.9.6) 

and hence 

n-i 1 inv Fof -^ j - l - l l = o ( n - n 

(5.9.7) 

§ -»-,!? - ■-i(¥-toF-(^)]+"-,ito*(^r) 
= n-1/2/n°+l+o(n-1/2), 

where 7W° is as in (5.8.22), but now defined with #° of (5.9.5). 
Consequently we have (cf. (5.9.4), (5.9.5) and (5.9.7)) 

<»■*> ^ ) -^{^- '» ' . ( . - | r ) -&- ' ) -

+Ml)/,(i„,f.(-|jr)](ta»F.(;;|r)), 

D 1 

where w = n via (5.9.7). 
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As to the appropriate analogue of the statistic M„{X) of (5.8.11) with 
q„ as in (5.9.8), for 1 = 1,2,... we have 

(5.9.9) Mn(X) = 2 
k=l 

(xs*> 
X. 

-log- 1 

1 -
n + l 

(-dr) log- 1 

1 -
n + 1 

x-i 

1 
{Af;(A)+(OVW+» -2I^»}+oP(DJnlx+" +2o,(l) • 

1+0,(1) 
•(^(4>-^Jr.(a+1>), 

where M°(A) is as in (5.5.29), but now defined in terms of q% of (5.9.5), 
7<A+1) is as in (5.8.30) and R™ is as in (5.8.31) with q*n of (5.9.5). 

Consequently, for Mn(X) of (5.9.9) we have the following (5.8.14) 
type statement 

(5.9.10) 

\Mn(X)-{f BZ(y)X-id(iwF0(y)y + m*J<x+»-2^®<,»}\ = o,(l), 
0 

X =1 ,2 , . . . , 

where «̂ ° is as in (5.8.16), /(A+1) is as in (5.8.17) and ^<A)is as in (5.8.18), 
all of them in terms of FQ(x) = l— e~x, x^O. 

Whence we have 

Theorem 5.9.1. Given H™ of (5.9.2), and Mn(X) as in (5.9.9), F* resp. 
<#(A) as in (5.8.35) resp. /# (5.8.36), 

I 

(5.9.10) Ar„(A)-£~{/ #GOA-M(invF0GO)*+(^V(i+1>-2^ ,0«{i> 

-2fT=j*yf*(y)(toBihj)l*y' x = l>2-■■■■ 

If A=l, then (5.9.10) implies 

(,,n, «.<,,-*./^♦ty'^ 
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As to testing for #<1} of (5.9.2), we should reject H™ when Mn{X) 

is too large, whatever the value of A might be, since inv F0(>^)=log -j >0 
(0<>><1). l~y 

If we are to test H^ of (5.9.3), we can make the following transforma-
tion: Xx-X[n\ X2-X[n\ ..., Xn-X[n) and delete from it the term which 
equals to zero (with probability one there is only one such term). Let us 
denote the resulting variables by Yl9 Y29..., Yn_± and let 7^-1}< yj*""1^... 
...< yjLl1} be their order statistics. Given H™ of (5.9.3), Yl9 Y29 ..., Yn_1 

are independent Exp (0, B) r.v., and the above procedure thus modified, 
can now be used also to test for #0

(2) of (5.9.3). 
We note in passing, that the very first test for exponentiality, which was 

proposed by Fisher (1929), can be viewed as a predecessor of our test 
statistic Mn(X) of (5.9.9). In order to test for if0

(1) of (5.9.2), Fisher (1929) 
proposed the statistic X^lnXn9 and tabulated its critical values. 

Supplementary remarks 

Section 5.1. An analogue of Theorem S. 1.15.1 for the uniform empirical 
process is immediate. Define x((yl9 y^—nll2{oLn{y2)--(xn{y^j). We have 

Theorem S. 5.1.1. Let 0<eN<i, 0<aN^N, where aN is a sequence of 
integers, such that sN and aN/N are non-increasing and aN is non-decreasing 

in N. Assume also that 
(5.5.1.1) aNsN(logN)-^ ^ C > 0 . 
Then 

(5.5.1.2) Em sup sup sup PN\x((y9y+s]9n+aN)->c((y9y+s]9n)\ 

= Imi sup sup pN\x((y9y+eN]9n+aN)-x((y9y+sN]9n)\ = l9 

where PN = l2aNeN(l -eN) (k)g^--+loglog N)\ 

If we also have 

i l N 
log 

(5.5.1.3) lim — ^ = co, 

then fim in (S.5.1.2) can be replaced by Jim. 
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This result can be viewed as an analogue to Theorem 3.1.1 and the Erdos-
Renyi law (cf. Theorem 2.4.3). Clearly, one can formulate several other 
analogues of these Erdos-Renyi-type laws. We do not study this question 
here, and for further insight we refer to the paper of S. Csorgo (1979). 

The following question, which can be considered as an analogue of 
Theorem 5.1.4, was studied in several papers: if g(y) is a function on 
[0, 1], then what are the limit properties of the sequence 

SUp | F w ( f ~ y } | a s ^ o o (Cf., e.g., James 1975). 
-co<JC<+eo g(r{X)) 

Studying the process /?„ over the whole real line Csaki (1975) proved 
also 

i 

( WAx)\ \log log n 

provided F is continuous. 

Section 5.3. The analogue of Theorem S.5.1.1 for quantile processes 
is straightforward. 

Section 5.4. The herewith given proof of Corollary 5.4.3 differs slightly 
from that in the paper of S. Csorgo (1976). The present version is also 
due to him. 

Section 5.5. Theorem 5.5.2 proposes a two-step estimation of /(invF(>>)) 
via estimating / and inv F separately. In a recent paper (Csorgo, Revesz 

1980b) we proposed a direct, one-step estimation of -777—_,, xX for the 
/(mvFOO) 

sake of producing confidence band for inv F(y). 

Section 5.7. The special case of Theorems 5.7.1 and 5.7.2 when BeGQR1 

was studied in Csorgo, Komlos, Major, Revesz, Tusnady (1977). For some 
further elaboration on this problem under a sequence of alternatives we 
refer to Burke, Csorgo (1976). 

Maximum likelihood estimators often satisfy (5.7.2) (i) with eln -^-* 0 
or £ i „ -^ 0 (cf., e.g., Ibragimov, Has'minskii 1972, 1973a) and 

l(x,eo)=Velogf(x;00).I-i(00), 

where / is the density function of F and /"H^o) is the inverse of Fisher's 
information matrix: 

/(0O) = E(V9logf(x;0$.(y9logf(x; Oj). 
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For illuminating comments re. this matter (the familiar Cramer-type 
conditions) we refer to Section 4 in Durbin (1973a). In particular, we 
find ourselves in agreement with his suggestion that for any particular 
problem a maximum likelihood or other putative efficient estimator should 
be first constructed and then the validity of (5.7.2) (i) should be checked 
directly. It can be shown, however, that maximum likelihood estimators, 
under certain regularity conditions, have a sum representation with 

sln === 0(n~s), for some e>0, in (5.7.2) (i), via extending the technique 
for 9 one-dimensional of Ibragimov and Has'minskii (1973b) to the 
9 multi-dimensional case (cf. Burke, Csorgo, Csorgo, Revesz (1979)). 

Durbin (1973b) points out that if 9 is estimated by a sequence of 
maximum likelihood estimators based on a randomly chosen half of 
Xl9 X2, ...,Xn9 then the resultant empirical process converges weakly to 
a Brownian bridge (cf. also Durbin 1976). This line of thinking was 
initiated by K. C. Rao (1972). Let 

Pm(x) = n«*[Fm{x)-F(x;Bj\9 

where {Bn} is a sequence of maximum likelihood estimators based on 
a randomly chosen half of Xl9 X2, ..., Xn and Fn is based on the full 
sample. Then assuming that sln of (5.7.2) (i) goes to zero in probability, 
resp. a.s., pn(x) can be approximated in probability, resp. almost surely, 
by a Kiefer process n~1,2K(F(x; 0O), n), uniformly in x^R1. Thus, 
/?„ behaves asymptotically as if 9 were completely specified. For a proof 
of this result, we refer to Csorgo, Komlos, Major, Revesz, Tusnady(1977) 
and to Burke and Csorgo (1976). (Cf. also Theorem 4.2 in Burke, Csorgo, 
Csorgo, Revesz 1979.) 



6. A Study of Further Empirical Processes 
with the Help of Strong Approximation Methods 

6.0. Introduction 

Let Xl9X29 ... be a sequence of i.i.d.r.v. with distribution function 
Fix), density function fix) and characteristic function c(t). We saw 
in Chapters 4 and 5 that the empirical distribution function Fn(x) of the 
sample Xl9 X29 ..., Xn is a natural estimation of F(x) and also that the 
quantile function Qn(y) can play a similarly natural role when estimating 
inv F(y). In this chapter we intend to study some related problems 
concerning density and characteristic functions. A similar problem arises 
when a regression function r(x)=E(Y1\X1=x) is to be estimated from 
a sequence (Xl9 Yx), (X29 Y2)9 ...,iXn9 Yn) of i.i.d.r.v. 

In the above formulated three estimation problems a fundamental 
question is to find the natural estimators. This chapter is divided into 
four sections. The first two are on empirical densities, Section 6.3 is 
concerned with empirical regression, while Section 6.4 is on empirical 
characteristic functions. 

6.1. Strong invariance principles and limit distributions 
for empirical densities 

Let Xl9 X2, ...9Xn be a sequence of i.i.d.r.v. with density function fix). 
Let Kn(a9b) be the number of elements of the sample Xl9 X29..., Xn 

b 
lying in the interval (a9 b). Then the probability P(a<X1<b)= f f(t)dt 

a 

can be estimated by the relative frequency n~xKn{a9 b) (if n is big enough) 
and the value of a continuous fix) (a<x<6) can be estimated by 

b 
(b—a)-1 f f{t) dt (if the interval (a, b) is short enough), i.e., 

a 

b 

f(x) - (fc-a)"1 ffit)dt ~ (nib-a))-iK„ia9 b) (a < x < 6). 
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(Here the sign ~ does not stand for any precise mathematical statement; 
it only indicates an intuitive near equality.) 

Hence an empirical density function /„(*), in the interval (a, b)9 can be 
defined as 

fn(x) = (n(b-a))-iKn(a9b) {a^x^b). 

Roughly speaking this is the idea behind most of the definitions of an 
empirical density function. When attempting a definition of this type one 
makes two errors. The first one occurs when the function f(x) is estimated 

b 

by its integral mean (b—a)"1 f f(t)dt, and the second error, in turn, is 
a 

b 

made when the probability f f(t) dt is estimated by the relative frequency 
a 

n~xKn(a9 b). The first error is small if the interval is short while the second 
one is small if the interval (a, b) contains a large enough number of 
elements of the sample, that is when (a9 b) is not too short. Hence one of 
the main problems is how to find a good compromise between these two 
opposing tendencies. 

Now we turn to some exact definitions of the empirical density function. 
In these definitions and also in the sequel of this chapter, {hn} is a de-
creasing sequence of real numbers tending to 0 and {/„} is an increasing 
sequence of integers tending to + «>. 

Definition 1 (Hystogram). Let 

...< x_i(n) ■< x0(ri) < x^ri)... 

be a partition of the real line such that 

*i+iO0-*iOO = K (» = °> ±U ±2,...) 
and define 

/»(*) =/ i 1 ) = (nhJ^Knfain), xi+1(n)) if xt(n) < x < xi+1(n). 

The basic idea of the next definition is to collect those elements of the 
sample which are near to a fixed x. 

Definition 2. Let 

/„(*) =/»(2)(*) = inhr1^ ( x - k , x+Q for any x. 

This definition can be reformulated as follows: set 

1 if ~ i < x < i , - I I 1A otherwise. 
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Then clearly we have 

(6.1.1) /„<*> = {nK)-1 2 eiix-X^h-1). 

Rosenblatt (1956) (cf. also Parzen (1962)) proposed a generalization 
of (6.1.1) so that e(x) should be replaced by an arbitrary density function L 
Whence the following: 

Definition 5. Let A(x) be an arbitrary density function and define 

fn(x)=fniX) = (nhnr
i2K(x-xdk1) = K1 f X{(x-y)K*)dFn(y\ 

where Fn is the empirical distribution function based on the sample 
Xl9 X29 ...9Xn. For an optimal choice of X we refer to Epanechnikov 
(1969). 

Suppose that the density function / is vanishing outside an interval 
— °°^A<B^ + °o and is square-integrable inside. Let <p = {(pk(x)}Z=i 
be a complete orthonormal sequence defined on (A, B). Consider the 
Fourier expansion of / : 

B 

2ck<Pk(x)> [ck= f<Pk(x)f(x)dx). 
*=i A 

The next definition of an empirical density function is based on an estima-
B 

tion of the Fourier coefficients ck. Since £*= / q>k(x)f(x)dx=E(pk(X1), 
A 

we give our 

Definition 4 (Cencov 1962, van Ryzin 1966, Schwartz 1967). Let 

/.(*) =fn
(<p) = 2ek<pk(x) (A^x^B) 

k = l 

where 

Finally we give a very general definition which contains the previous 
ones as special cases. 

Definitions (Foldes, Revesz 1974). Suppose that f(x) is vanishing 
outside the interval -o°^C<Z>^ + °° and let \l/ = {\l/k(x9 y)} be a sequence 
of Borel-measurable functions defined on the square (A, B)2 where 
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(C,D)Q(A,B). Then an empirical density function can be defined as 
follows: 

/.(*) =/P} = n-1 2 <A»(*> *k) = f *.(*, y)dFn(y). 

Choosing now 

(6.1.2) *m(x,y)= 2 <Pj(x)q>j(y) 

resp. 

(6.1.3) *l'n(x,y) = KH((x-y)K*) 

we get our Definition 4 resp. Definition 3. In order to get Definition 1 as 
a special case, simply let 

(6.1.4) ^n(x,y) = h^ 2 «^>(x)«j->(y), 
J = - o o 

where 

a ( - ) W = / 1 i f */-i(")s*<*»> 

^ lO otherwise 
and xJ+1(n)-Xj(n)=hn. 

Now we say that the sequence ^ = {^(^,7)} (defined on (A, B)2) 
produces an asymptotically unbiased estimation of / if for fn=f™ 

(6.1.5) Efn = E f fu(jc, y)dFn(y) = / #u(x9 y)dF(y) - / ( * ) 
A A 

for every x£{A, B). The estimator f^ will be called uniformly asympto-
tically unbiased if the convergence in (6.1.5) is uniform in x, f^ will be 
called a 7i=7i(ri) estimation of / if 

(6.1.6) sup \Efn(x)-f(x)\ = 7i(n) = 7i(n;A,B). 

Suppose that f^ is a n estimator of / . Then, applying Theorem 4.4.1 
resp. Theorem 4.4.3 and assuming that the functions i//k(x, y) have uni-
formly bounded variations, say, supvar \l/k(x, y)="Vk, and 

x y 

(6.1.7) Um Wm(x, y)\ ]/F(y) log l o g - ^ 

= Um |^(x, y)\ ] /( l - F(y)) log log {J = 0, x£ (A, B), 
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we get 
/ .(*)"/(*) = (fn-Efn) + (Efn-f) 

= «-1/2 / tn(x, y)dn^(Fn(y)-F(y))+Efn-f 
A 

= n-M f n^{Fn{y)-F(j))dy^n{x, y)+Ef„-f 
A 

5± n-«* f Bn{F{y))d^n(x, y) + 0(n-Wnlogn)+Efn-f 
A 

± n~^ f Bn(y)dMx9 invF(y))+0(n^Vnlogn + n(n)), 

resp. 
B 

n1/2(f„-f) = n~112 fK(F(y), n)dyiltn(x, y)+0(n-^Vnlog*n+n^n(n)) 
A 

1 

^ n"1/2 / ^ ( ^ ^ ^ ^ ^ ^ i n v ^ C ^ + O ^ - i ^ ^ l o g ^ + n 1 / 2 ; ! ^ 
o 

where {Bn} is a suitable sequence of Brownian bridges and K is a suitable 
Kiefer process. 

Consider the following Gaussian processes: 
I i 

(6.1.8) rn(x) = f^n{x, inv F(y))dBn(y) = f Bn(y)dy^n(x, invF{y% 
0 0 

and 

(6.1.9) 
I I 

r(x, n) = / fH(x9 inv F(y)) dK(y, n) = f K(y, n) dy^n{x, inv F{y% 
o o 

where integration by parts is justified by (6.1.7). Then the above results 
can be summarized as follows: 

Theorem 6.1.1. Let f(x) be a density function vanishing outside an interval 
— oo^C<Z)^ + o°. Further let ^ = {il/n(x9 y)} be a sequence of functions 
defined on (A, B)2 with -°°^A^C<D^B^+oo and 

(6.1.10) sup var ^ (x , y) = Vn = Vn(A, B). 
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Suppose fW is a n estimator of f Then 

(6.1.11) sup!«!/«( / ; - / ) - r j = 0(n^^Vnlogn + n1/2n(n)) 

and 

(6.1.12) sup \n(fn-f)-r(x, n)\ = 0(Fnlog2n + n7c(n)). 

In order to get concrete results we have to evaluate the value of Vn and 
7i (n) in specific cases. This can be achieved by standard methods of classical 
analysis and the required results are known for several ifr. We list a number 
of these in the sequel. 

Lemma 6.1.1 (Revesz, 1972). Let \J/ be defined by (6.1.4) and assume that 
hn-+0 as n-+°°. Then 

Efnix) -+f(x) (n -*oo), 

if x is a continuity point of f If we assume also that fix) is uniformly 
continuous on an interval — °°^A<B^ + °°, then for any e>0 we also have 

sup \Efn(x)-f(x)\~0. 
A+e^x^B-e 

If f{x) has a bounded derivative on an interval — ^^A^B^-h^, then 
for any e>0 we have 

sup \Efn(x)-f(x)\ = 0(hn). 
A+e^x^B-e 

Further we have 
supvar \l/nix9y) = Vn = h-\ 

x y 

(Clearly we mean — <*>+£ = — 00, -f 00—g = + 00.) 

Lemma 6.1.2 (Bochner 1955, Parzen 1962, Revesz 1972). Let \j/ be defined 
6y (6.1.3). Assume that X(x) is a bounded density function for which 

lim xX(x) = 0. 
1*1"*'°° 

Then 
EL(x)-*f{x) ( n - ~ ) , 

for any continuity point of f 
If we also assume that: 
(i) fix) has a bounded second derivative on an interval — °°^A<B^ + °°, 

(«) lim x*kix) = Q 
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and 
+ 0 0 

(iii) f xA(x)dx = 0, 
—00 

then, for any e>0, we have 

sup \Efn(x)-f(x)\=0(hl). 

Further if A is a function of bounded variation, then we have 

sup var ij/n(x, y) = Vn = OQ1;1). 
x y 

Lemma 6.1.3 (Zygmund 1968, p. 64, Theorem 10G). Let \j/ be defined by 
(6.1.2) where (A9B)=(09n) and (pk(x) = y2/n cos kx. Suppose that f{x) 
is differentiable on (0, n) and its derivative has a bounded variation. Then, 
for any e>0 

sup \Efn-f\ =0 (/-1) 

and 

J(Efa-fydx = 0(l;*). 
0 

Further 
sup var ^ (x , y) = Vn = 0(ln). 

Theorem 6.1.1 and Lemmas 6.1.1, 6.1.2 and 6.1.3 enable us to study 
the Gaussian processes Tn(x) and rn(x) of (6.1.8) and (6.1.9) instead of 
directly studying the process n1,2(fn(x) — /(*)), which is usually more 
difficult to handle. In order to do so, the following simple theorem for 
general Gaussian processes will be useful in the sequel. 

Theorem 6.1.2. Let Gn(x)(A<x<B;n=l929 ...)be a sequence of Gaussian 
processes with 

EGn(x) = 09 Rn(u9v) = EGn(u)Gn(v) 
and 

B B B 

E f G2
n(x)dx= f EG2

n(x)dx = f Rn(x, x)dx=mn^ + «>. 
A A A 

Assume that Rn{u9 v)((u9 v)£(A, B)2) is continuous at any point (u9u) 
(A<u<B)9 square integrable, 

B B B 

(6.1.13) A\ = Var / G2
n(x)dx = 2 f f Rl(u9 v) du dv — („ -*«>) 

A A A 
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and 
B B 

f (f Rn{u,v)f(v)dvfdu 
(6.1.14) A \ B ^0 (n-~) 

J J Rl(u9 v)du dv 
A A 

for any f£L%A, B). 
Then 

(6.1.15) A^(f G*n(x)dx-mn)^ JIT®, 1). 
A 

Proof. Define the integral operator @neL2(A, B)-+L2(A, B) by 

B 

0lHf= f Rn(u9v)f(v)do 
A 

and let qfp resp. $> be the sequence of eigenfunctions resp. eigenvalues 
of 9tn.' Then the Karhunen-Loeve expansion of G„ (cf., e.g., Yeh 1973, 
p. 283, Theorem 19.4) is 

(6.1.16) Gn(x)= 2(ttn))1/2rin)(x)Nln), 
i=l 

where, for any n, {N^}^ is a sequence of independent Jf (0, 1) r.v., 
and by (6.1.16) we mean 

as n -*oo. / (<?■(*)- 2(Mn))1,2<pln)(x)N^ dx-^~ 0 

Now (6.1.16) implies 
B 

(6.1.17) f G*(x)dx = 2 WKNPy 
A »-i 

and 

(6.1.18) mn=ZMn', Al = 2Z(XP)\ 
i = l 1 = 1 

Since (6.1.14) implies 
max A£° 

(6.1.19) - r - ^ r ^ - 0 (ii-co), 

we have (6.1.15) by (6.1.16) and (6.1.18) and the central limit theorem. 
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Now we are in the position to study the Gaussian process Tn of (6.1.8). 
First we show that for some \J/ the conditions of Theorem 6.1.2 are satisfied, 
so we can conclude that (6.1.15) holds in such cases. 

As an initial step, instead of Tn, we investigate the Gaussian processes 
i 

(6.1.20) r*„(x)= f iJ,n(x,mvF(y))dW(y) (A^x^B) 
0 

where W is a Wiener process. Clearly, the covariance function of the 
] process T* is 

(6.1.21) 

RUu, v) = Ert(u)r:(v) = f ^(u, mwF(y))ilfn(v9 inwF(y)) dy 
o 

B 

= f *A„(w> y)*l>n(P, y)f(y) dy. 
A 

The next lemma can be obtained by elementary computations. 

Lemma 6.1.4. Let R*(u,v) be defined by (6.1.21). Then for the mn and 
An defined by (6.1.18), and when Rn is replaced by R*, we have 

\h~x if \jj is defined by (6.1 A), 

(6.1.22) mn={ 
K1 f w du *f * isdefined br (6-L3j 

j> and X is square integrable, 
B ^ f /GO 2 <P*j(y) dy if <A is defined by (6.1.2), 

K1 JP(u) du if i// is defined by (6.1.4), 
A 

(6.1.23) j ; = J ( 1 + ° ( 1 ) ) * - " 1 JfKu)du J [J X{x+y)X{x)dx)2dy 

if \j/ is defined by (6.1.3), 
B In 

/ / 2 ( w ) 2 <Pjto du if if is defined by (6.1.2), 

provided f£L2(A, B). 
Let g£L2(A, B). Then 

B B 

(6.1.24) f ( f R*(u, v)g(v)dv)2du = 0(1) if xj/ is defined by (6.1.4), 
A A 

(6.1.3) or (6.1.2). 
This lemma and Theorem 6.1.2 together imply 
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Theorem 6.1.3. Let T* be defined by (6.1..20). Then 

A-1 ( / (r„*(x)f dx-mn)-£* ^(0 ,1) , 

wAere mn resp. An is defined by (6.1.18) resp. (6.1.13). 

Having our Theorem 6.1.3 for T* and taking into consideration that 
B(x)=W(x)-xW(\) and that by (6.1.13) 4 - ° ° , by (6.1.24) we get 

Theorem 6.1.4. Let Tn be defined by (6.1.8) and suppose that ^ is any 
one of the functions defined by (6.1.2), (6.1.3) and (6.1.4). Then 

A^(frl(x)dx-mn)-^ ^ ( 0 , 1), 
A 

where mn resp. An is defined by (6.1.18) resp. (6.1.13). 

The relationship (6.1.11) stated that nl/2(fn—f) can be uniformly esti-
mated by the Gaussian process F„ if \j/ satisfies some regularity conditions, 
that is to say, if Vn and n(n) defined by (6.1.10) resp. (6.1.6) are small 
enough. Up to now we have evaluated n(ri)=n(n; A+s, B—s) and 
Vn for some concrete \j/. Now, applying Theorem 6.1.4, the statement 
of (6.1.11), Lemmas 6.1.1, 6.1.2 and 6.1.3 for Vn and n(n) we get: 

Theorem 6.1.5. Suppose that f is vanishing outside a finite interval 
- o o < C < D < + oo, 

(a) Let \j/ be defined by (6.1.4) and assume that f has a bounded derivative 
on (C9D). Then 

[hn fpdx)-112 [nhn f(fm-fTdx-i\ - ^ JT(091), 
c c 

provided that n~xh~zl<l log2 n-+0 and h%2 n-+0. For example if hn=n~* 
then it is assumed that 2/5<a<2/3. 

(b) Let ij/ be defined by (6.1.3) and assume that 
(i) X is vanishing outside a finite interval (A9 B) with var A (x)^ C 

B 

and f xX(x) dx=09 
A 

(ii) / has a bounded second derivative on (C, D). Then, with 
D B B 

o*= fP(u)du f(f X(x+y)X(x)dxfdy, 
C A A 
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we have 
B B 

K1'**-1" [K f Un-ffdx- f X*(x)dx] - ^ JT{0,1), 
A A 

provided that (log2 w)«_1/z^3/2->0 and nh9J2-+0. For example if h„=n~* 
then it is assumed that 2/9<a<2/3. 

is) Let x// be defined by (6.1.2) where (pk(x) = y2/n cos kx (O^x^n). 
Suppose that f is vanishing outside the interval [0, n] and absolutely 
continuous inside. Suppose also that f'(x) (0<x<7r) has a bounded 
variation. Then 

Q" (ff'(u)du)-1 [n/-1 f(fm-fydu-l] -*-~ ^(0,1), 
0 0 

provided that (log2«)w_1/*/2-*0 and «/~7/2—0. For example if ln=np, 
then it is assumed that 2/7</?<2/3. 

We note that the proof of (c) also hinges on the following simple facts 

- 2 ff(u)cpl(u)du - 1 and - | [f*(u)q>l(u)du - ff\u)du. 

Remark 6.1.1. In Theorem 6.1.5 we had a great freedom to choose the 
sequences {hn} and {/„}, but we did not say anything about their optimal 
choice, if any. One possible criterion of optimality could be to choose them 

D 

so that E f (f„—f)2dx should be minimum. In this remark it will be 
c 

assumed that / is vanishing outside of a finite interval (C, D). 
Since Ef (fn-f)*=Ef (fn-Efn)*+ f (Efn-f)\ one can estimate the 

two terms of the right-hand side separately. By Lemmas 6.1.1, 6.1.2, 
and 6.1.3 we have: 

| O (hi) if xj/ is defined by (6.1.4) and / has a bounded 
j derivative in (C, D\ 
\0(hfy if if/ is defined by (6.1.3) and / and X satisfy 

/ (Ef„ -f)2 = I the conditions of Lemma 6.1.2, 
<9(/~3) if \// is defined by (6.1.2), where (pj = y2/n cos jx 

and / has a derivative of bounded variation in 
(0, n) and vanishing outside the latter interval, 
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and, given the above conditions for estimating f (Ef„-f)2, elementary 
calculations also yield (cf. Revesz 1972) 

Ej{fn-Efny = 
Oih^n-1) if i// is defined by (6.1.4), 
OQi^n'1) if xj/ is defined by (6.1.3), 
0(lnn^) if ij/ is defined by (6.1.2). 

On equating their respective error terms, the above two formulae imply 
that the expectation Ef (f„—f)2 will be the smallest possible if 

(i) hl^OQi^n-1), i.e., A„=0(«~l/3) in the case of (6.1.4), 
(ii) h^Oih^n-1), i.e., hn=0{n~ljb) in the case of (6.1.3), 
(iii) l~z=0{lnn-1\ i.e., ln=0(n1!*) in the case of (6.1.2). 

Comparing these optimal choices with the respective bounds in Theorem 
6.1.5, one can see that, unfortunately, the results of the latter cannot be 
applied when {hn} resp. {/„} are chosen in the best possible way. Indeed, 
there are no Theorem 6.1.5 type results available with {hn} and {/„} 
chosen optimally. 

6.2. Strong theorems for empirical densities 

Under very weak restrictions on \j/ one can prove that Definition 5 of 
Section 1 produces a uniformly strongly consistent estimator of / ; that is 
to say sup \fn(x)— f(x)\ -^-+ 0. A simple result of this type is: 

Theorem 6.2.1. Let f™ be a n estimator of f (cf. (6.1.6)) and assume 
that (6.1.7) holds, and 

(6.2.1) sup var \l/n(x, y) = Vn = o(n1/2(log log n)"1^) 
x y 

and 

(6.2.2) n (n) = o(l). 

Then 
l imsup| / r t (^)- /(x) |^0. 

Proof. By (6.1.12) it is enough to prove that 

lim supn-MfOc, n)| = 0. 
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By (6.1.7) and (6.1.9) we have 

i 

sup i i -^f (x, n)\ S sup n-1 f \K(y, n)\ dy^n{x, invF(y)) 

Sn" 1 sup \K(y,n)\'Vn, 

and our theorem now follows by (6.2.1) and the law of iterated logarithm 
for a Kiefer process (cf. Corollary 1.15.1). 

It is of some interest to check for the conditions (6.2.1) and (6.2.2) in 
some special cases. It will be seen that the latter will hold only over some 
restricted intervals (cf. (6.2.3) and (6.2.4)). 

Corollary 6.2.1. Let \J/n be defined by (6.1.4) and assume that f is 
uniformly continuous on an interval —°°^A<B^ + °°9 

h^1 = o(n1/2(loglognyi/2) and A n - 0 . 

Then, for any e >0 

(6.2.3) lim sup \fn(x)-f(x)\ ^ 0. 

Corollary 6.2.2. Let ij/n be defined by (6.1.3) and assume that the conditions 
(i), (ii), (iii) of Lemma 6.1.2 are satisfied, h~1=o(nl/2(log\ogn)~l/2) and 
hn-+0. Then 6.2.3 holds true. 

Corollary 6.2.3. Let i]/n be defined by (6.1.2) and assume that the condi-
tions of Lemma 6.1.3 are satisfied, ln=o(n1,2(loglogn)~l/2) and /„-oo. 
Then for any e>0 we have 

(6.2.4) lim sup \fm(x)-f(x)\ = 0 a.s. 
j!-»oo e«£x-<7t—e 

Theorem 6.2.1, as well as Corollaries 6.2.1, 6.2.2 and 6.2.3, are far from 
being best possible. Especially the restrictions on {hn} and {/„} are too 
strong (cf. Revesz 1972). A much sharper result will be presented when 
Definition 3 of Section 6.1 is used. However, further conditions will have 
to be assumed on / for the sake of this sharper result. In order to handle 
this case, first we present some further theorems for Gaussian process 
which are similar to Tn(x) and F(x, n). 
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From now on it will be assumed that 

La. / is vanishing outside the interval [0,1], 
Lb. / is twice differentiate over (0, 1) and | / " | ^ C , 
I.e. / is strictly positive on (0, 1), say / ^ a > 0 . 

Let A be a density function for which 

2.a. A^C, 
2.b. A(-x)=X(x)9 

2.c. lim JC4AOO=0, 

2.d. X is twice differentiate on an interval — «> ^ — a < - f a ^ + °o. 

Define the Gaussian process (cf. (6.1.3) and (6.1.7)) 

G = Gh(x) = (f(x))-«* f W{F(y))dyX{(x-y)h-T) 
0 

= (f^))-1'2 f K(x~y)h-1)dyW(F(y)) 
0 

= (fix))-112 f X((x-mvF(y))h-*)dW(y). 

Then we have 

Theorem 6.2.2. For any 0<6<^ there exists a C=C(e)>0 and an 
A0=A0(a)>0 such that 

(6.2.5) P{ sup sup \Gs(x)\ ^ Ahl!*z) ^ Ch^e~ 
0<s-cfc e*zx*<l—e 

+ 00 

for any 0<A<A0 and z>0 where A2= f X2(x) dx. 
— oo 

The proof of this theorem is based on the following two lemmas. 

Lemma 6.2.1. Using the conditions and notations of Theorem 6,2,2 we have 

(6.2.6) P{ sup \Gh(x)\ ^ Ah1/2z} ^ Ch^e 2+«. 

Proof For any 8<x<l — e we have 

EG\{x) = (f(x))~* f X*((x-mvF(y))h-*)dy 
o 

= (f(x))~l fV((x-y)h-*)f(y)dy = A*h+0(h*) 
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and 
E(Gh(x+Ax)-Gh(x))2 = Const. Ax 

if 8<x<l—8 and 0<Jx<A^A0. 
Let T be a positive integer. Then 

(6.2.7) P{ sup IGOT-1)! ^Ah^z} ^ Clfe 2+« 

and 

(6.2.8) P{ sup |G((i + l)2- fcr-1)-G(z2-kr~1)|^C^(2kr)^2} 

* k 

^ C2fcTk 2+e. 
Since 

sup \G(x)\^ sup IGOT"1)! 

+ 2 sup |G((i + l)2-kr-1)-G(i2-kr-1) | , 

(6.2.7) and (6.2.8) together imply # 

pi sup |G(x)| ^ i l f t^z+r-^C J Jck2-fc/2} 
U^X^l-8 *«1 ' 

Z
8
 oo * k 

^ cre~^+cr j j 2ke~2+l 

Let r=MA""1yl"2 and xk = (4k + z2)l/2, where Af is a positive constant, 
to be specified later on. Then 

Ahll2z + CT-V* 2 **2"*/2 ^ Ah1/2z [ 1 + CM~1/2 j j 2"*/2] 

+^lCft1/2M-1/2 J 2fc1'22~*/2 ^ 7lft1/2[z(l +e)+e] 

if M is large enough. Further 

*' co *k —fir - —i*Jl 
CTe 2+' + CT22ke , + I ^CMfc- 1 i l -«e 2+8 1+2*2** 2+e . 

k = l V * = 1 ' 

By the choice z(l+8)-fe=t/, we get (6.2.6). 
The next lemma can be proved the same way as the latter one, hence the 

details will be omitted. 
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Lemma 6.2.2. Let 0<Ah<h<h0. Then 

(6.2.9) P{ sup \Gh+Ah(x)^Gh(x)\^C(Ahr2z}^C(Ah)^e^ 

Proof of Theorem 6.2.2. Let T be a positive integer. Then by Lemmas 
6.2.1 and 6.2.2 we have 

(6.2.10) P{ sup sup \GihT-i(x)\ ^ Ah^z} 

^ P{ sup sup \GihT-i(x)\ ^ Ah1/2T~1,2z} ^ CTh^e 2 + c , 

and 

(6.2.11) P{ sup sup |G(2f+1)/l2-kr-i(^)-G2l7l2.kr-i(A:)| 

^ c^-^r-1)1'2**} ^ c- 22*r2/r1e 2+«. 
Since 

sup sup |G^(;t)| ̂  sup sup \GihT-i(x)\ 

§ 
+ 2 sup sup |C?(2l+1)/l2-»cT-i(x)-G2ifc2-»cr-i(A:)|, 

(6.2.10) and (6.2.11) together imply 

p\ sup sup \G+(x)\ ^ Ah^z+C 2 (hl^T-1)11^] 
lo<^^fc e^x^l—e fc=l ' 

z» oo *k 

^CTh^e 2+c + C2'22fcT2A-1e 2+e. 
fc=l 

Let xfc=(5fc+z2)1/2. Then 

^Ah^zil + CA-iT-1'* 2^W\^Ch^T-^ J (5fe)1/22"k/2 

^ f t l / 2 z ( l+e ) + ftl/2S 

if T is big enough. Further 

CTh^e 2+e + C 222kT2h-1e t+'^CTh^e *+'\\+ 2^?* 2+eJ-

By the choice ylz(l+6)+e=t/yl, we get (6.2.5). 
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Define the Gaussian process 

(6.2.12) r„(x, y) = {f(x))~* fX((x-u)h-i) d.W(F(u), y). 
0 

Now we prove: 

Theorem 6.2.3. We have 

(6.2.13) P{ sup sup sup \ra(x, y)\ ^ Ah1/2Y^z} 

^Ch^e 2+c. 

Proof. First we observe that 

My= sup sup \rs(x,y)\ 

is a sub-martingale (cf. Lemma 1.14.1), i.e., 

E(My\Mt, t^x)^ Mx a.s. (y > x). 

Consequently etMl is also a sub-martingale. Now by the sub-martingale 
inequality we have 

P{sup My ^ QiYY'*Az} = p{sup exp [ ^ \ ^ exp tz^ 

( tM2 \ 
2

 y is bounded above whenever f<£, 

and hence we have our statement. 
With the help of the inequality (6.2.13) it is going to be easy now to prove 

a strong theorem for the process rh(x9 y). Let {hn} be a sequence of 
positive numbers for which the following two conditions hold 

3.a.  nhn/<~9 

3b log4" , 0 nhj Q 

nhjogh;1 "* ' log ft-1 "* 

and define the Gaussian process (cf. (6.2.12)) 

r(x, ri) = (nhnyv*rhn(x9 n) = (nhnf(x))-v* f k{(x-u)h^)duW(F(u)> n). 
o 

Then we have 

By Theorem E exp
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Theorem 6.2.4. For any e=-0 we have 

(6.2.14) lim(2yl2log/j-1)-1/2 sup \r(x,n)\Z±l. 
n-+oo e^x^l—e 

Proof. StepL Let 0>1 and put 

An= sup (2yl2logftfc-
1)-1/2 sup |r(jc,fe)|. 

At first we prove 

(6.2.15) Em 4 , ^ 1 a.s. 

By Theorem 6.2.3 we have 

for a suitable (5=<5(e)>0. Our conditions on {h„} imply the convergence 
oo of the series J£ fyVr Hence we have (6.2.15) by the Borel-Cantelli lemma. 

Step 2. For any s>0 one can find a positive number Q=Qe and 
a density function Ae(x) satisfying Conditions 2.a-2.d of this section 
such that 

/ (X(x)-Xe(x)fdx^s 
— oo 

and Ae(x)=0 if \x\^Q. Put 

re(x9 n) = (nhnf(x)Y^ f K((x-u)K*)duW(F(u\ n)9 

and 
B » = . ^ i ^ los Klr^rt{(2k-\)(AQhn)-\ n). 

Now we prove that 

(6.2.16) Hm Bn S 1. 

Clearly we have 

00 °° f ft1""8 1 
1 

and this series is convergent by our conditions. Hence we have (6.2.16), 
and our theorem follows from (6.2.15) and (6.2.16). 
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Theorem 6.2.4 and the trivial relation 

(hlog h^y^hl^WiU n ) - ^ 0 
clearly imply: 

Corollary 6.2.4. Let 

F(x9 n) = (nhnf(x))-^ f k{{x-u)K*) dyK(F(y)9 n). 
o 

Then for any £>0 we have 

(6.2.17) lim (2yl2log ft"1)1'2 sup \F(x, n)\ = 1. 

Now we can present a much sharper result than that of Theorem 6.2.1, 
but only in the case when Definition 3 is used. Our result is summarized by 

Theorem 6.2.5. Suppose that Conditions La-Lc, 2.a-2.d and 3.a, 3.b of 
this section are satisfied. Then for any e>0 we have 

(6.2.18) lim I " \ , sup / ■ ( * ) - / ( * ) 
f1,2(x) 

S i 

+ oo 

where A2= f X2(x)dx. 

Proof This theorem simply follows from Corollary 6.2.4, Theorem 
6.1.1 and Lemma 6.1.2. 

6.3. Empirical regression 

Let (X9 Y)9 (Xl9 Y^)9 (X29 F2), ... be a sequence of i.i.d.r.v. with 

(6.3.1) 0^X^l9 Y£R\ 

(6.3.2) E(Y\X = x) = r(x) (0 ^ x ^ 1), 

where r(x) is differentiable with \r'(x)\^C*<<*>, 
t 

(6.3.3) P(X^t) = F(t)= f f(x)dx where fix) s e > 0 , 
o 

(6.3.4) P(Y-r(X) =s t\X = x) = G(t) ( - ~ < t < + ~ , 0 S x == 1), 

(6.3.5) £ ( ( r - r (* ) ) 2 | Z=x ) = <r2>0 ( O ^ x g l ) , 

(6.3.6) J* ^"dG(x)<°° on some interval |f| < tQ. 
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Here we are interested in introducing and investigating two non-
parametric estimators of the regression function r(x) based on the 
sample (Xl9 YJ, (X29 Y2)9 ..., (Xn9 Yn\ 

Our first definition is based on the &n-nearest neighbour method. Let 
0<Z1

( n )<Z^)<.. .<Z^) be the ordered sample based on the sample 
Xl9X29 ...9Xn9 and let Y\n) be that Yj which corresponds to X$H\ that 
is to say 

Y}n) = Yj if X^ = Xj. 
Further let kn be an increasing sequence of even integers for which 

(6.3.7) fcBn-2/3logn-0, k^flognf-^O (n-*«>). 

Now we give the following definition of an empirical regression function 

.(*)=i 
i + * n / 2 - l 

K1 2 Y}n) if x^^x^xii\ 

(i = kn/29 kJ2+l9 ..., (n + l)-fc„/2), 

K1 2 Yj(n) if x^X^kn. j=n-kn+l 

Making use of this definition of an empirical regression function we 
can get: 

Theorem 6.3.1 (Revesz 1979). Assume that conditions (6.3.1)—(6.3.7) 
are fulfilled. Then 

(6.3.8) Urn P{k]J2o-1 sup \rn(x)-r(x)\ ^ a{n\kn9 y)} 

where 
= exp (— 2e~y) (— oo < y < + oo), 

a(u9 v) = (2logu+£loglog u-ilog TC+I;)(2logu)^1/2 

( u > £, — oo < 1? < + oo). 

In any possible application of this theorem the major difficulty is coming 
from the presence of o in (6.3.8), for a is unknown in most practical 
cases. This difficulty can be overcome via introducing the estimator 

( n Y '^[n-1 2i(Yi-r.&dr') 

and proving: 

\ l / 2 



Study of Further Empirical Processes 239 

Theorem 63.2 (Revesz 1979). Assume that conditions (6.3.1H6.3.7) are 
fulfilled. Then 

(6.3.9) lim P{k^a^ sup \rn(x)-r(x)\ ^ a(n/kn9 y)} = e x p ( - 2 0 , 

(— oo < y -< -|- °°). 

As to our second definition of an empirical regression function (cf., e.g., 
Nadaraya 1964, 1965), let K(x) ( -oo<x< + oo) be an arbitrary density 
function and {an} be a decreasing sequence of positive numbers tending 
to 0. We define 

* (x) = i=2 ^ a" ' 

Here we only consider the special case of this definition when K is the 
uniform law. Hence we let 

•1 if | x | 3 * 
e(x) = j 

and 

fl 
e(x) = { 

[0 otherwise 

M v a„ ) 

Theorem 6.3.3 (Revesz 1979). Assume that conditions (6.3.1)-(6.3.6) are 
fulfilled. Also assume 

(6.3.10) f(x) is differentiate with | / '(*)| 5 .£<«>, 

(6.3.11) a*nlogn-0 , (naj-1 log n - 0 (n - » ) . 

Then we have 

(6.3.12) lim P{(nanyl*o;1 sup (fB(x))^\Qlt(x)-r(x)\S a(a~\ y)} 

where 
= exp (— 2e~y) (— oo < ^ < + oo)} 

Remark 6.3.1. Using a hystogram-type definition of the empirical 
regression function, Major (1973) proved a result, similar to the above ones. 



240 Strong Approximations 

We note that the role of a„ in Theorem 6.3.3 is that of kJn in Theorem 
6.3.1. 

For further reference we introduce the following notations: 

Z/»> = 7,<»>-r(X,<»>) (» = 1,2 n; n = 1,2,...) 
and 

(i=feii/2, *J2+1, ..., (n + l)-fc„/2), 
?.(*)={ 

U.T1 2 r(Xf>) if x ^ i J U . 

First a few simple lemmas. 

Lemma 6.3.1. 

Iff i£ sup (Z/»>kn-JSr/">)̂ 2/fi a.s. 

where 8>0 & defined in (6.3.3). 
The proof of this lemma is trivial. 
Applying the above lemma as well as conditions (6.3.2) and (6.3.7), by 

Taylor's expansion one gets 

Lemma 6.3.2. 
lim(fc>g>01/2 sup |fn(x)-r(x)|2i0. 

By a simple transformation Theorem 1.5.5 implies 

Lemma 6.3.3. For -oo<^< + oo) we have 

lim Pfc 1 ' 2 max \W(j+kn)-W(j)\ ^ a(n/k„, y)} = exp(~2e->). 

Lemma 6.3.4. Under the conditions of Theorem 6.3.1 we have 

(6.3.13) lim Pfc 1 **" 1 sup |r.(x)-r.(x)| S a(n/*», y)} = exp(-2<r»), 
11-00 0:5*2=1 

where
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Proof By Theorem 4.4.1 one can construct a sequence of Wiener processes 
{Wn(x\ x^0}~=1 for which 

(6.3.14) lim(logw)"1 max G-*Zzf-wn{j) ^ C a.s., 

where C is a constant depending only on the distribution G of (6.3.4). 
Since 

tk^Zzy if x<X£»\ 
i + * „ / 2 - l 

(i = kJ2, kJ2+l,..., (n + l)-kJ2), 
r„(x)-r„(x)=< 

U„-x 2 zf if x^x<i\_kn, 
j=n-k+l 

(6.3.14), Lemma 6.3.3 and condition (6.3.7) imply (6.3.13). 

Proof of Theorem 6.3.1. Lemmas 6.3.2 and 6.3.4 immediately imply 
(6.3.8). 

Proof of Theorem 6.3.2. Theorem 2.4.4 implies 

J|^_lU4n-1/2logn}^«-2 

Now (6.3.9) follows from Theorem 6.3.1 and the above line. 
For the sake of the proof of Theorem 6.3.3 we need some further notation 

and lemmas. 
Let i=i(x) resp. j=j(x) be the smallest resp. largest integer for which 

e{—a—H reSp- e(—T-H-
Let j(x)-i(x)=v„(i)=nanfn(x). Put also 

Qn(x) ■■ 

Then we have 
i t i v an ) 



242 Strong Approximations 

Lemma 63.5. 

limOuUogn)1'* sup {fn(x))w\Ux)-r{x)\Z±(S. 

The proof is trivial by Taylor's expansion and condition (6.3.11). 
Applying our previous notations we have 

Lemma 63.6. With F and f as in (6.3.3) 

i ^ i > i s ( n a » / ( i n v F ( { ) ) ) 1 / 2 | ^ ( ' +»«» / ( i nvF( i - ) ) ) - ^ (o | 

^ a (a-1, y)} = exp ( - 2e~y) ( - c o < } ; < + co), 

Proof. This lemma can be obtained by applying Lemma 6.3.3 for small 

intervals m/-j>(l+l)~y) (/=0,1,2,... ,</-1 and d is big enough) 

where / invFl — II can be viewed as a constant. 

The following simple lemma is a consequence of Theorem 6.2.5. 

Lemma 6.3.7. 

Lemma 63.8. Let {vn(/), i= 1, 2,. . . ,«; n = 1, 2,...} be as in the proof 
of Theorem 63.2. Then 

Km P{max (v„(0)-1/2|^(i+vw(0)-^(/)| ^ afa\ y)} 

= exp (— 2e~y) (— oo < ^< + cx>), 

provided that {vn(/), j = l, 2, ..., n; w = l,2, ...} 0«d {fF(;c), x^O} are 
independent. 

Proof This lemma easily follows from Lemmas 6.3.6 and 6.3.7. 

Proof of Theorem 633. Applying again the approximation (6.3.14), 
one gets (6.3.12) by Lemmas 6.3.5 and 6.3.8. 

6.4. Empirical characteristic functions 

In the previous sections of this chapter we have seen that empirical 
density and regression functions can be defined several reasonably plausible 
ways. Empirical characteristic functions have a most natural definition. 
It seems to have appeared first in Cramer's book (1946) and then in 
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Parzen (1962). A first related weak convergence result was proved by 
Kent (1975), whose work was inspired by Kendall (1974). A systematic 
study of its limiting behaviour was initiated by Feuerverger and Mureika 
(1977) and carried out by S. Csorgo (1980). 

Let Xl9 X29 ... be i.i.d.r.v. with distribution function F(x) and charac-

teristic function c(/)= / eitxdF{x). Let Fn(x) be the empirical distribution 
— eo 

function based on the sample Xl9X29 -->9Xn. The empirical characteristic 
function cn(t) of a random sample is defined as 

v° 
(6.4.1) cn(t) = n-1 2*** = I ^txdFn{x)9 _ o o < f < + oo. 

First we prove a Glivenko-Cantelli type theorem. 

Theorem 6.4.1 (Feuerverger, Mureika 1977, S. Csorgo 1980). For 
arbitrary F we have 

(6.4.2) sup k „ ( 0 - c ( 0 | — ^ 0 as n -oo, 

where r ^ l ^ l V l ^ l ^ f t i i / l o g l o g i i ^ ) . 

Proof. Let An= sup \cn{t)-c(t)\. 

Let 0<e< l , and choose K>0 so that F(-K), l-F(K)<s/6. For 
(random) large enough n we have by the Glivenko-Cantelli theorem a.s. 
that Fn(-K)9 l-Fn(K)>e/69 and hence also \Fn(±K)-F(±K)\^e/6. 
For still larger (if necessary) n9 with probability 1, 

K 

An ^ e + sup I- it f (Fn (x) - F(x)) exp (itx) dx I 

= s+2KTn sup |F.(*)-F(*)| 
— O O < J C < OO 

5? e+MT.Oi - 1 log log n)1'2
, 

by the log log law for the empirical process (cf. Theorem 5.1.1). 
Next we define the empirical characteristic process Yn(t) by 

(6.4.3) r„(0 = n1 / 2(cn(0-c(0)= f ^*dn1"(Fm0c)-F(pe)) 
— oo 

= / e"xdp„(x), — < t < + «. 
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It is natural to replace /?„(*) in (6.4.3) by its approximating process 
Bn(F(x)) of Theorem 4.4.1, and compare the Gaussian process 

(6.4.4) Zn(t)= f eUxdxBn(F(x))= f *<*"*™ d,Bm(y) 
- o o 0 

1 

= / e/r(invHy)) dyB(y) = 7(0, - ~ < t < + ~, 
o 

where K ( 0 = 7 ( - 0 , £ 7 ( 0 = 0 and EY(t)Y(s) = c(t+s)-c(t)c(s), to 
that of (6.4.3). Clearly we hope that Theorem 4.4.1 should guarantee some 
closeness of these processes. Actually this problem of nearness turns out 
to be quite complicated, and Yn(t) is going to be close to Zn{t) only 
if F satisfies some moment conditions. The mentioned difficulty is due 
to the fact that, in general, the function e

it(invF(y)) does not have a bounded 
variation. This is demonstrated by the proof of the following: 

Theorem 6.4.2. Assume that F has a bounded support, say F(a)=0, 
F(b) = l (—oo<a<6< + oo), and is arbitrary otherwise. Then, for any 
— ocxT^r2< + oo we have 

(6.4.5) sup \Yn(t)-Zn(t)\^0(n-VHogn). 

Proof. Clearly we have (cf. Theorem 4.4.1 and Remark 4.4.3) 

b 

sup \Yn(t)-Zn(t)\ = sup \f e"xdx(Pn(x)-Bn(F(x)))\ 

^ sup f \Pn(x)-BB(F(x))\d%** 
r^t^T2; 

^0(n~1/2logn) sup var eitx 

with probability one. Hence the constant of 0(n~l/2logn) in (6.4.5) 
depends on the total variation of eitx, i.e., it depends on a, b and Tl9 T2. 

The above proof shows that if the support of F is infinite, then Theorem 
4.4.1 is not enough to prove a (6.4.5)-type result. Indeed, in order to 
describe the behaviour of the process Zn{t) vis-a-vis the process Yn(t), 
in addition to Theorem 4.4.1, one also needs a careful investigation of the 
influence of the tail properties of F. The best available positive result of 
this nature is 
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Theorem 6.4.3 (S. Csorgo 1980). Let - c x x r ^ T ^ o o and let h(x) 
be a continuous function on (0, °°) such that 

(6.4.6) — T - / 0 0 * as * — ~ , 
x 

with some positive a. Assume that 

(6.4.7) h(x)F(-x) = 0(l), h(x)(l-F(x)) = 0(\) as x - c o . 

Then there exist for each n a Brownian bridge Bn( •) and a Kiefer process 
K{ •, •) such that for the processes 

CO 

{Z„(0 = / e»* dBtt{F(x)); T ^ t * T2}, 
CO 

CO 

{Kn(t) = / e"xd(n-^K(F(x), n)); 7\ S f=§ T2} 
— co 

one has 

(6.4.8) P{ sup |r.(0-Z.(OI=-C1r1(n)}sZ1 i i-<1+«>, 

(6.4.9) i>{ sup |r . (0-A-, , (0I^C,r 1 ( i i )}^£ 1»-< 1+') , 

w/zere <5>0 w arbitrary large, and the constants O ^ Q , C2 depend only on 
S,F,Tl9T2, while Ll9 L2 on T2 — T1. The rate-functions rk(x), k=l9 2, 
are defined as 

(6.4.10) rk(x) = uk(x)x-^(logx)*, 

w/zere uk(x) is a function, whose inverse inv uk(x), for large enough x, 
is defined by 

(6 411) inv«t(x) fcf , 2 
1 • - U J (log(invuJt(x)))2k-1 " W * • 

From (6.4.8) and (6.4.9) it follows that 

(6.4.12) 4 » = sup |r„(0-ZB(OI = <%(»)), 

(6.4.13) J « > = sup |r„(O-K„(OI = 0(r2(n)). 

Applying (6.4.12) or (6.4.13), it is easy to see that (with F as in Theorem 
6.4.3) the distribution of appropriate functionals of {Yn(t); T^t^T2) 
converge to those of {Y(t); Tx^t^T2) of (6.4.4), since for each n 

{Zn(t); T^t^Tt}^ {Kn(t); T^t&TjI* {7(0; 1\ ^ t ** T2). 



246 Strong Approximations 

Let C2=C2(Tl9 T2) = C(Tl9 T2)xC(Tl9 T2)9 ~oo<7 i<r 2 < + oo, where 
C(Tl9 Tg) is the Banach space of continuous functions on [Tl9T2] endowed 
with the supremum norm. 

Corollary 6.4.1 (S. Csorgo 1980). Consider the following functionals on C2: 
T 

M»)= f\u{t)\*dG(t), 

T 

rj,2(u)= f(Reu(t)fdG(t), 
Tx 

T 

^3(u) = JImu(t))2dG(t)9 
Tl 

where G is some distribution function with support [Tl9 T2]. Also, let 
î 4 (w) be an arbitrary real-valued functional, for which the Lipschitz condition 

WM-Mvy^L sup \u(t)-v(t)\9 u,veC* 

holds with some positive constant L. Suppose that xl/k(Y) has the density 
function fk(x), k=l9 2, 3, 4, with respect to the Lebesgue measure. Then, 
under the conditions of Theorem 6.4.3, 

(6.4.14) 

sup \P{xl/k(Y„) < x}-P{il/k(Y) < x}\ = 0(ri{n% k = 1, 2, 3, 4, 

provided that the functions f^(x), xl/2fk(x), fc=l,2, 3, are bounded. 

The proof of this Corollary is similar to that of Corollary 5.4.3. 

Corollary 6.4.2 (S. Csorgo 1980). If h(x)=xa in (6.4.7), with some 
positive a9 then for rt(ri) of (6.4.8), (6.4.12) and (6.4.14) one has 

a a+l 

rx(n)^n 2fl+4 (log n)a+2
9 

and for r2(n) of (6.4.9), (6.4.13) one has 
a 2q+l 

r2(n)^n 2«+4(logw)a+2. 
CO 

Specifically, if f \x\adF(x)< <*>for arbitrary large a9 then rx{ri) ̂  n~1/2 log n9 
— CO 

r2(«)^n"l/2(log n)2
9 the respective rate-functions of Theorems 4.4.1 and 4.4.3. 
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S. Csorgo (1980) also showed that the left hand sides of (6.4.12) and 
(6.4.13) cannot converge to zero a.s. if the supremum is extended to an 
infinite interval. However, it can be extended to an interval [r„(1), rn

(2)] 
whose end points tend to infinity at a moderate rate. Studying also the 
sequence of stochastic processes 

{(2 log log n)-«*Kn(t); T^t* T2}9 

he proves via Theorem 6.4.3 the following 

Theorem 6.4.4 (S. Csorgo 1980). Let F be as in Theorem 6.4.3. Then 
the sequence 

{(2iogiogn)-»«r.(0; *€Pi,rj} 
is a.s. relatively compact in C*[Tlt JJ, and the set of its limit points is 

oo 

9(F) = {g(0 = / exp (itx) df(F(x% t€Pi, TJ; /&}, 
— oo 

where & is the set of those absolutely continuous functions f of C(0, 1) 
for which we have 

/(0)=/(l) = 0 md f(f'(yftdy*\. 
0 

As mentioned already, a Theorem 6.4.3-type statement cannot be proved 
without some conditions which make the tails of F behave regularly. 
Now for m=2, 3, ... and e>0, put 

(6.4.15) g«(*) = 0 o g * ) ( # l o & * ) , 
1 

where logy denotes the j times iterated logarithm and JJ is under-
* = 2 

stood as 1. Then we have 

Theorem 6.4.5 (S. CsorgS 1980). For each m=2, 3, ... there exists 
a distribution function F such that gm(x)F(—x) = 0(l)9 as x-+ oo, and 

oo 

any version of the process Y(t)= f exp (itx)dB(F(x)) is almost surely 
— oo 

discontinuous on each finite interval. 

Hence, if 7rt(-) is defined with an F as in Theorem 6.4.5, then it 
cannot converge weakly in C2 to F(-)-

The proof of Theorem 6.4.5 hinges on constructing a discrete distribution 
function F so that the resulting process Y( •) becomes a discontinuous 



248 Strong Approximations 

random Fourier series. On the other hand, a necessary and sufficient 
condition for the sample-continuity of F(-) is also given by S. Csorgo 
(1980) in terms of the behaviour of the characteristic function c(t) around 
the origin. This condition is, of course, a necessary one for weak convergence 
of Yn( •) to Y( •) and his conjecture that it is also sufficient for the latter 
was subsequently proved to be true by Marcus (1980). 

Supplementary remarks 

Section 6.1. A number of further empirical density function definitions 
are used in the literature. Most of them (like, e.g., the definitions by spline 
functions) are special cases of our Definition 5. Here we mention one 
which is not a special case of Definition 5. 

Definition 6 

/.(*) = K{n{X[%J2,-Xl%nm))^ if XF> ^ x < X$l\. 

This definition is closely related to Definition 2. Only the length of the 
"window" here depends on x and the sample. The window will be narrow 
where the sample is dense. This definition appears to be natural, however 
its mathematical treatment is quite complicated. Some results are obtained 
by Tusnady (1974) and Csorgo, Revesz (1980c). 

The idea of using the method of strong approximation in the investigation 
of the properties of empirical density functions is due to M. Rosenblatt(1971) 
(cf. also Bickel-Rosenblatt (1973)). These papers also study the limit 
distribution of the maximal deviation via evaluating the limit distribution 
of the supremum of rn(x). Our Theorem 6.1.1 gives a framework for the 
evaluation of the limit distribution of the maximal deviation in more general 
cases than those of Rosenblatt, provided one could only evaluate the limit 
distribution of the supremum of Tn in these more general situations. 
The latter, however, seems to be quite difficult to do. Case (b) of Theorem 
6.1.5 is essentially due to Bickel and Rosenblatt (1973). 

The proof of Theorem 6.1.2 is based on the Karhunen-Loeve expansion 
of a Gaussian process (cf. Karhunen 1946, 1947). This theory was not 
covered at all in this book. For details we refer to Yeh ((1973), p. 283) 
and here we give a short hint of it. Let {G(x); A<x<B) be a Gaus-
sian process with 

EG(x) = 0, EG(x)G(y) = R(x9y) 
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and assume that 
B B 

f f R2(x,y)dxdy<<~. 
A A 

Then we can consider the integral operator 
B 

Mf= f R(x, y)f(y) dy: L*(A, B) - L\A, B). 
A 

Let cpk(u) resp. Xk be the sequence of eigenfunctions resp. eigenvalues of 
the operator 0t. It is well known (cf. Riesz, Sz.-Nagy 1955, p. 243) that 
{(pk(x); A<x<B, k — \, 2, ...} is an orthonormal sequence, 

B B B 

f R(x, x)dx= 2 K and f f R2(x, y)dxdy= 2*1 
A *«i A A * - i 

The theory of Karhunen-Loeve expansion says that the Gaussian process 
G(x) can be written in the form 

G(x)= 2$/%<Pk(x)Nk9 
fc=l 

where {Nk} is a sequence of independent ^ ( 0 , 1) r.v. and the nature of 
convergence of the above series is meant to be 

as m -* o-. f f 2 W*9k(x)Nk-G(x)) dx-^^0 

This expansion of G{x) immediately implies that 

f <?(x)dx= ZhNl 
A * - l 

E f G\x)dx = 2h= f R(x, x) dx, 
A * - l A 

E(fG\x)dxf = E\21lN2+2 2 h^NfMi] 

= 3Z%+2 2 hh 

and 
B M 

Var/ G*(x)dx = 2 2A 2 

k = l 

Section 6.3. For the consistency of a general class of non-parametric 
regression estimators we refer to Stone (1977). 



7. Random Limit Theorems via Strong 
Invariance Principles 

7.0. Introduction and some historical remarks 

One of the earliest papers dealing with random sum limit theorems was 
published by Kac (1949). He introduced Poisson random-size samples for 
the sake of making the problem of weak convergence of the empirical 
process easier. His idea of Poissonization turned out to be very useful also 
later on, when the need for tackling the problem of strong invariance 
principles for multivariate empirical processes became apparent after 
Kiefer's 1972 paper (cf. e.g. Wichura 1973, Csorgo, Revesz 1975b, 1975d, 
Revesz 1976). 

Let Nx be a Poisson r.v. with mean X and, for every A>0, let Nx, 
Ul9 U29 ... be independent r.v., where for i = l, 2, ...the Ut are £/(0, 1) r.v. 

Kac (1949) defines his modified empirical distribution function by the 
formula 

(7.0.1) Et(y) = A-* 2 W ^ ) > 0 ss y ^ 1, 

where the sum is taken to be zero if Nx—09 and his modified empirical 
process by 

(7.0.2) Kx(y) = yi(Et(y)-y)9 O^y^l, X ̂  0, 

and notes that, for every fixed X9 {Kx(y); O^y^l} is an independent 
increment process and EKx(y)=0, EKl(y)=y. Moreover if X-+°°9 then, 
for every fixed y, Kx(y) tends in distribution to a ^T(0, y) r.v. He then 
writes (cf. Kac (1949), pp. 253-254): "Thus it is natural to expect that the 
limiting properties of the process Kx(y) will be those of a Gaussian process 
X(y) (X(0)=0) with independent increments and such that EX(y)=09 

EX2(y)=y. These are characteristics of a Wiener process." Kac does not 
actually prove 

(7.0.3) ^(o—*no> A — -
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Hewever, he proves rigorously that 

(7.0.4) sup \Kx(y)\-±» sup \W(y)\, 

using the fact that Kx(y) is an independent increment process. With 
proving (7.0.4) however, Kac came pretty close to proving also 

(7.0.5) sup | a„O0 | -^ sup \B(y)\9 as n-*~, 
O^y^l 0<y<l 

the very question Doob (1949) posed and argued. 
Just to see how <xn(y) and Kx{y) hang together, we may write 

Kx(y) = j / ^ lffi(ENx(y)-y)+y(Nx-X)lfi 

= y%*NA(y)+y(Nx-X)/Yi, 0*y*l. 

Since Nx is independent of <x„(y), by (4.2.2) we have aNJi')—+ B(>) 
as A-*»«>, and, since NJA—-+ 1 as 2-*o°, we also have 

(7.0.6) | ^ S « W A ( . ) _ ^ B ( . ) , A^~. 

Also, y(Nx—X)/yi-^~+ yffi(l)9 where vV{\) is a standard normal r.v. and, 
since by assumption Nx is independent of the sequence {(/,}, ffi(l) is 
independent of the Brownian bridge £(•) of (7.0.6). Hence W(y)= 
=B(y)+ylVr(l) is again a standard Wiener process, and so we have 
K*(') -^-* Ŵ( • )• Viewing and getting (7.0.3) this way, also throws further 
light on why Kac's idea works for a direct verification of (7.0.4). 

We could, of course, also argue the other way around, saying that 
^ A ( - ) — W(*)9 NrfX - - 1 andy(Nx-A)/]/I — _ yft(\\ and then conclude 
that ccN (•)-^-* £(•)• Another simple step now takes us to the statement 
a n ( - ) — B(-) as n - ~ . 

The example of the process Kx(y), the quoted further papers which use 
the idea of Poissonization and, indeed, also the very stopping time theorem 
of Skorohod itself, show that the notion of randomly stopped processes 
has played a significant role in the development of our view of invariance. 
One of the aims of this chapter is to call attention to the fact that the now 
extensive theory and methodology of strong invariance principles can, 
in turn, be applied to studying similar and weak convergence properties 
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of randomly selected sequences. We demonstrate this in Section 7.3 for 
partial sums of r.v. and, in Section 7.4, for empirical and quantile processes. 
In Section 7.2 we review some almost sure and in-probability convergence 
statements for randomly selected sequences, which will then be applied 
in Sections 7.3 and 7.4. 

This whole chapter is based on a recent paper by M. Csorgo, S. Csorgo, 
Fischler and Revesz (1975), where a somewhat more extensive bibliography 
than that of this chapter can be also found (cf. also Karlsson and Szasz 
(1974)). 

7.1. Laws of large numbers for randomly selected sequences 

Let {Zn} be a sequence of random variables and let {v„} be a sequence 
of positive integer valued random variables defined on the same probability 
space. We have 

Theorem 7.1.1. (a) Let r and s be real numbers, r^\ and ^ > r + 2 . 
Assume that for any e > 0 we have 

2ns~2P{\Zn\ > e } < o o and Znr-2p\\^—v\ > e [ < - > , 
«=i «=i l| n | J 

where v is a positive random variable with P{a^v^b}=l for some 
0 < a < 6 < o o . Then 

in'-2P{|ZvJ> e}<~. 

(b) Zn-*±+ 0 and v „ - ^ - ~ imply Z V n ^ - 0. 
(c) Zn - ^ - 0 and vn —■* <*> imply Zv^—-+ 0. # 

(d) Zn -£-► 0 and vn -£-*- oo do not necessarily imply Zv -£-+■ 0. 
(e) Zn — - 0 and vjf(n) -£-*- v, where v is an arbitrary positive r.v. and 

n 

/ (n ) /oo 5 imply Zv -£-* 0, provided that Z„ = 2! Xiln> where Xl9 X2, ... 

are independent r.v. 

Proof The statements (b), (c), (d) and (e) are well known and immediate. 
The proof of (b) can, for example, be found in Csorgo (1968) while that 
of (c) in Csorgo-Fischler (1970), where we also deal with (d). The statement 
(e) was proved by Mogyorodi (1965). Also Revesz ((1968), Theorem 10.2) 
proves (e) via replacing the condition vn//(«)~— v by the weaker one: 
for every e>0 there exist 0<a=tf(e)<&=&(e)<°o and n0(e) such that 
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P{af(n)<vn<bf(ri)}^l-e, whenever n>n0(e)9 where f{ri)/<*>. Hence 
we prove only (a) here, which, roughly speaking, says that the total con-
vergence of {Zn} and {vjn — v} implies that of {Zv }. 

Clearly, for any n and e>0, and for a, b as in (a), we have 

P{\ZVn\ > e} ^ P{\ZVn\ > e, n(a-e) ^ vn ^ n (&+ e )}+p{ |^ -v | > e j 

^P{ SUP |Zm |^6} + p { ^ - v L e } 

^ 2 P{|ZJ>£}+p{^-vLe}. 
m=[n(a-e)] [\ K | J 

Given our assumptions in (a), we have P {\Zm\>s}=(\/m)s~2o(l) for 
s>r+2, r ^ l . Let 9 be an arbitrary positive number. There exists then 
m0=m0(s,9) so that, whenever m^m0, we have 

i P{|ZJ>e}=§ i - J L . , s > r + 2 , r s l . 

Whence, in order to prove (a), it suffices to consider the following problem 
of convergence: 

©o oo 1 

8 2 n'~2 2 - 4 T 
n=l m=[n(a-e)] m 

~ (a-s)s-3 „ t i n s - 3 r s-3>T 

The latter sum is finite for every r ^ l , provided we choose ^>r+2 as 
stipulated in our assumptions. This also completes the proof of (a) of 
Theorem 7.1.1. 

Example 7.1.1. Let Xk be a sequence of i.i.d.r.v. with EXx=0 and 
n 

let Sn= ^Xk, SQ=0. Let {v„} be a sequence of Poisson r.v. with Evn=n 
fc=i (n = l, 2, ...). Then we know (cf. Katz (1963)) that the statements 

(i) EX1 = 0, £!*!! '< oo, r ^ l , 

and 

(ii) i J ' f ' ^ f l S J ^ n f i H 0 0 for any a > 0 
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are equivalent (the equivalence of (i) and (ii) was first proved by Spitzer 

(1956) for r = l and, for r=2, by ErdSs (1949, 1950)). Now v.«£= f,Yu 

where the Yf are i.i.d. Poisson r.v. with EYt=l. Whence, for any r £ l , 

J n ' - 2 p | p . - l > e | < o o , fi>0. 
«=i II n | J 

Consequently, 

(7.1.1) i n ^ P f l S J r - M H ~, 
71 = 1 

provided that, in addition to JET1=0, we also assume Z?|J?i|*<oo for 
s>r+2, r ^ l . 

We also note that a special case of r=2 of (a) of Theorem 7.1.1 was 
proved by Szynal (1973) for a sequence of quantiles of a random-size 
sample. Szynal (1972) proved also (7.1.1) for r=2. Example 7.1.1 shows 
that (a) of Theorem 7.2.1 always implies an Erdos-Spitzer-Katz type 
statement for randomly selected partial sums of i.i.d.r.v., provided the 
summands have at least 3+5 (<5>0) moments. 

Example 7,1.2. It is clear from the proof of (a) of Theorem 7.1.1 that 
P {\ZV | >e} converges to zero exponentially fast, provided P {\Zn\ >e} 

"flv I 1 
and P{ — — v >e | , with v as in (a), do so themselves. In the latter case 

we have 

i g ( n ) P { | Z J ^ 8 } < ~ , fi>0, 
n=l 

for any polynomial function g(n) of n. An example for this situation is 
provided by letting Zn of (a) be Zn=n~l/2 sup |an(}>)|, where <xn(y) 

is the empirical process. Then, by (4.1.6), P{|Z„|>fi} converges to zero 
exponentially fast, and so does also P {\ZV \ >e}, provided that 

AH-} does the same (e.g. if vn = 2 Yi ls a s m Example 7.1.1). 
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7.2. Invariance (strong and weak) principles for random-sum 
limit theorems 

While it is true that in this book we deal only with the problem of strong 
approximation of partial sums and empirical processes of i.i.d.r.v., it will 
be seen that the main idea of this section and also that of the next one simply 
amount to saying that whatever processes one might have succeeded in 
strongly approximating by appropriate Gaussian processes, then weak 
convergence properties of certain randomized versions of the latter will be 
also inherited by the former. In order to be able to fully utilize also this 
latter type of inheritance for partial sums, we are going to deviate now 
somewhat from our i.i.d. setting. Philipp and Stout (1975) (cf. also Berkes 
and Philipp (1979)) developed methods to prove almost sure invariance 
principles for sums of weakly dependent (e.g. strongly mixing, lacunary 
trigonometric, Gaussian, asymptotic martingale difference sequences and 
certain Markov processes) random variables. In order to be able to 
"summarize" their results in a single statement, here we are not going to 
make the notion of weak dependence precise but will simply call all those 
sequences of random variables weakly dependent for which Philipp and 
Stout (1975), and Berkes and Philipp (1979) proved relation (7.2.1) under-
neath. In this setting then, we have: 

Proposition 7.2.1. Let Xl9 X29 be a sequence of weakly dependent r.v. 
with EXt=0 and E\Xt\

2+5^<x> for some <5>0, and z = l,2, . . . . Assume 
also that lim n^ES^l. Then, possibly under further conditions which, 

II-*- oo 

in turn, would depend on any given specific notion of weak dependence, 
there exists a Wiener process {W{t)\ 0^f<°°} such that, with St= ^,Xi9 

we have 

(7.2.1) \St-W{t)\ = 0(t1/2-% 

where rj is a positive number, depending only on the sequence {Xt}. 

Combining first (a) of Theorem 7.1.1 with Theorem 2.6.7, we get 

Theorem 7.2.1. Let {v„} be as in (a) of Theorem 7.1.1, i.e., 

» - * II * I J 
for some r^l and any a>0, where v is such a positive r.v. that for some 
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0<a<Z><°° we have P{a<v<b}=l. Further let X1,X2,... be i.i.d.r.v. 
with EX1=0, EX* = l. Assume also that £|Z1|p<oo for some z?>2r+4 
(^6) . Then, if the sequences ofr.v. {vn} and {Xn} are defined on the same 
probability space, there exists a Wiener process {W(t); 0^f<o°} such that, 
for any e>0, we have 

(7.2.2) J n ' " 2 P{ | sup SiVntl -W(ymt)\ > efa} < ~ . 

Proof Letting now pjl>s>r+2 and Zn= sup \Sintl — W(nt)\/Yn9 

it follows by Theorem 2.6.7 that 

and (a) of Theorem 7.1.1, in turn, implies (7.2.2). 
Replacing the conditions of Theorem 7.2.1 on {v„} by v„-^-^oo 

as n-oo , then, by (2.6.4) and (b) of Theorem 7.1.1, instead of (7.2.2), we get 

(7.2.3) v-^sup \SiVntl-W(vnt)\^0, p>29 
0s=r^x 

and, if we only assume that vn — -*■ o o a s « - ^ 5 then, by (2.6.4) and (c) of 
Theorem 7.1.1, 

(7.2.4) v " 1 " sup \SiVntl-W(vnt)\ - ? - 0, p > 2. 

Since /?>2, (7.2.3) implies 

(7.2.5) v ' ^ s u p I S ^ - J ^ O I — 0 as i t - ~ , 

and (7.2.4) implies 

(7.2.6) v-1/2 sup \SVnt-W(vnt)\ - ^ 0 as n - * « . 

Remark 7.2J. In the sequel we are going to study the question of how 
a (7.2.4)-type statement should imply weak convergence of a (properly 
normed) sequence of processes {S[v t]; O ^ f ^ l } . We should also note that 
(b) of Theorem 7.1.1, (7.2.1) and v ^ — - ° ° ( n - ~ ) i m p i y (7.2.5), and (c) 
of Theorem 7.1.1, (7.2.1) and vw—-oo (w + oo) imply (7.2.6), with 5 [ v ] 

in the general terms of Proposition 7.2.1 both times. 
As just mentioned, our aim now is to study how our results so far should 

imply weak convergence for randomly selected partial sum type processes. 
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A general formulation of the latter problem can be described as follows. 
Let {Sk} be a sequence of partial sums of any r.v., and let {vj be a se-
quence of positive integer valued r.v. on the same probability space. 
Assuming that n~^S[n.} — - W(-)9 where {W(t); O^t^l} is a standard 
Wiener process, then for what kind of r.v. is it going to be also true that 
v~ll2S[v .]—-*- W('), where it is also assumed that the sequence {vn} 
satisfies the 

Condition (cf. (e) of Theorem 7.1.1) 

(7.2.7) v„/ / (n)-^v, P{v=-0}=1, / (n ) /*~ as n — . 

Such a general formulation of our problem was initiated by Billingsley 
(1962), and general methods for its solution were given, for example, by 
M. Csorgo and S. Csorgo (1973), Fischler (1976) and Rootzen (1974). 
A common property of the latter four papers is that, in order to solve the 
above problem of weak convergence, they work directly with the random-
sequence of stochastic processes {v~ll2S[vt]; O ^ / ^ l } . Our thesis now 
amounts to saying that the above invariance principles enable one to 
work with the generally simpler random sequence of stochastic processes 
{v~1/2W(vnO; O^f^l} in order to obtain a weak convergence statement 
for the latter and then to translate the thus obtained weak convergence to 
that of { v - 1 ^ , , ; O ^ s i l } . 

As to the Condition (7.2.7), we note that stonger conditions like those of 
Theorem 7.2.1 on {v„} are only assumed for the sake of having rate of 
convergence statements like, e.g., that of (7.2.2) in mind. In general, the 
least we must assume is that v„ -̂ — <*> as n -* «>. On the other hand, the latter 
condition is not enough (cf. pp. 143-144 in Billingsley 1968) if we do not 
wish to assume anything re. the independence of {vw} and {Sn}. While 
the latter independence assumption can be very helpful on occasions 
(cf., e.g., Section 0 of this chapter), we do not wish to, and, indeed, we cannot 
assume it in general. For this reason we must, therefore, postulate some-
thing about the way vn goes to infinity in probability as compared to 
a sequence of numbers / («) /«) . Since an example of Renyi (1960) shows 
that it is also not enough to require only the convergence in distribution 
°f v»//(«) to a positive r.v. v, we can, therefore conclude that (7.2.7) 
is indeed the most general and meaningful condition to assume for our 
problem at hand (cf. also Aldous 1978). 
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Theorem 7.2.2. Let {X(} be such a sequence of r.v. for which (7.2.1) 
of Proposition 7.2.1 holds, and let {vn} be a sequence of positive integer 
valued r.v. defined on the probability space of the latter. Assume also that 
{vj satisfies Condition (7.2.7). Then 

(7.2.8) v;inW(vn-)^W(-), 

and whence, 

(7.2.9) v - i / i s ^ . j - i - t f X O . 

The proof of this theorem is based on three lemmas. 

Lemma 7.2.1. Under the conditions of Theorem 7.2.2 we have 

(7.2.10) sup 
W(yj) W(f(n)vt) 

h* Yf(n)v 
0 as n -*oo, 

Proof. -TyT~=v+en. Then by Condition (7.2.7) we have that for any 

e>0 there exist 0<<5<a<6<«> and an integer n0 such that 

(7.2.11) P{a^v^b}^l-s, P{\sn\ ^ 3} ^ 1-e, 

whenever n^n0. 
Now on the set {a ̂  v ̂  b} 0 {|en| ̂  8} we have 

sup 
hu Kf(»)v 

= sup 
W(f(n)vt+enf(n)t) 1 / v FF(/(n> 

Vv/(n) r v+6B j / ^ j 
>o 

> SUp 
W(f(n)vt+enf(n)t) W(f(n)vt) 

kl 
„ ^ SUP 

S sup sup 

\W(f(n)vt+sJ(n)t)\ 

|/v/(n) 

|FT(S+S)-W(JC)| 

+ 
kl 

Uf(n) 
\W(x)\ 

sup 
a-dosxs/(n)(n-«) yaf(n) 

= /1(»)+-^L/2(n). 
a—-d 
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By (7.2.11) and the above inequalities, we get for any y>0, 

PI sup — 7 ^ - Vv ' ' \ >yl 
\ o ^ i | fvn Yf(n)v | J 

where W/i («)>y}-0 by Lemma 1.2.1, and pf J^L/ 2 («)^ | - | - -0 since 

eB~— 0. Hence (7.2.10) is now proved. 

Lemma 7.2.2. Let A be any event of positive probability. Then 

(7.2.12) ffi^l; 0 ^ t^ \\A}-^ {W{t)\ 0 ^ t^ 1}, 
V \ n J 

where (7.2.12) means that the sequence of conditional probability measures 

generated by the process —\=-̂  given A, converges to the Wiener measure. 
fn 

The proof of this lemma is quite simple. Here we mention only that, for 
example, the proof of Renyi's mixing theorem (cf. Theorem 2.1.3) can be 
adopted also in this situation. Another possibility is to check that the 
conditional finite dimensional distributions of W(nt)ftn converge to the 
finite dimensional distributions of W and then (7.2.12) follows from 
continuity of the latter. 

Now Lemma 7.2.2 implies 

Lemma 7.2.3. Let v be any positive r.v. Then we have 

(7.2.13) { ^ ! ; 0 S * S l } ^ {W(t); 0 =S , S 1}. 

Proof of Theorem 7.2.2. (7.2.8) follows by Lemmas 7.2.1 and 7.2.3 and 
(7.2.9) is a consequence of (7.2.6) (cf. Remark 7.2.1) and (7.2.8). 

Remark 7.2.2. Naturally (7.2.9) implies that for every continuous func-
tional h: C(0,1)-C(0, 1) we have 

(7.2.14) JA^]-£_. h(W(tj). 
{ ^n ) 

We have also 
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provided that h satisfies also the Lipschitz condition of (5.4.11). Let us 
now consider the functional h(x(t))=x(\). Then by Lemma 7.2.2, and 
given the conditions of Theorem 7.2.2, we have 

(7.2.16) lim P{SVn =5 * / * » } = / *(-^=) dP{v *y), 

— oo < X •< + °° • 

The latter result is proved for an i.i.d. sequence {X(} by Wittenberg (1964) 
with f(ri)=n and, independently, also by Mogyorodi (1966) in the above 
form. In their case only two moments are needed for (7.2.16) with i.i.d.r.v. 
Whence their result does not follow from the more general but 2+S 
moments-setting of our (7.2.16). Indeed in many important theorems 
concerning weak convergence of partial sums of r.v. one assumes only 
the existence of the second moments of the summands (e.g. Donsker's 
theorem; cf. Theorem 0.1). Hence, results like the randomized version 
of Donsker's theorem (cf. Theorem 17.2 in Billingsley 1968 and also the 
predecessor of the latter, namely the random sum central limit theorem of 
Mogyorodi 1962 and Blum, Hanson and Rosenblatt 1963), and also the 
just mentioned Wittenberg-Mogyorodi theorem as well as S. Csorgo's 
(1974) random versions of the Erdos-Kac (1946) theorems do not follow 
from our Theorem 7.2.2. However, in case of two moments only, it is again 
possible to prove a Theorem 7.2.2 type statement for partial sums of 
i.i.d.r.v. This result will imply also the just mentioned ones. The latter 
program is feasible on account of Theorem S.2.2.1. 

Corollary 7.2.1 (Horvath 1978). Let Xl9X2, ... and Yl9 Y2, ... be r.v. 
as in Theorem S.2.2.1, and let {vn} be a sequence of positive integer valued 
r.v. defined on the probability space of the latter. Assume also that {vn} 
satisfies Condition (7.2.7). Then 

(7.2.17) vj'2 sup |S[ V n t ] - r [ V n f ] | -^ 0. 

Also, 

(7.2.18) v£/2r[VB. 3 -£-FF( . ) , 

and, whence, 

(7.2.19) vJ/ 25 ' [vB . ] - -^(-) , 

where Tn is as in Theorem S.2.2.1. 
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Proof. Condition (7.2.7) and Theorem S.2.2.1 imply (7.2.17) by (c) of 
Theorem 7.1.1. The rest of the proof is similar to that of Theorem 7.2.2. 
For details we refer to Horvath (1978). 

Remark 7.23. We note that in case of two moments only, a direct 
approach like that of M. Csorgo and S. Csorgo (1973) and especially that 
of Aldous (1978) for example, leads to more general results than the ones 
we can deduce from Corollary 7.2.1. We will now see that a more natural 
application of our method is to empirical processes with random size 
samples. 

7.3. Invariance (strong and weak) principles for random size 
empirical processes 

Our first theorem is a parallel of Theorem 7.2.1. 

Theorem 7.3.1. Let ocn(y) and K(y, n) be as in Theorem 4 A3 and let 
{vw} be a sequence of positive integer valued random variables such that 
for some number r^l we have 

n=i [\n I J 
V > £ f < oo 

for any s>0, where v is a positive random variable with P{a^v^b}=\ 
for some 0<fl<Z><oo. Then 

(7.3.i) J^~ i p {«S£i \«°n(y)-v;1/2K(y>Vn)\ ^ } <«. 

Proof. For an arbitrary e>0, let x=—fn/logn in (4.4.22). Then, 

by the latter inequality, we have (for n large) 

P„(e) = p\ sup fo,G0-JS:(y, n)/n^| > 81 ̂  Le~X tVnn°*n. 

Whence, for any polynomial function g(ri) of n, we have 

ig(")P w (s)<oo. 

The latter combined with (a) of Theorem 7.1.1 now gives (7.3.1). 
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Theorem 73.2. Let <xn(y\ un(y), qn(y\ K(y9 ri) be as in Theorems 4.4,3, 
4,5,3 and 4.5.7 respectively, and let {vn} be a sequence of positive integer 
valued random variables, and assume that vn —► °° as n-* °°. Then 

(7.3.2) sup \«Vn(y)-v;V*K(y,Vn)\-^0, 

(7.3.3) sup \u.m(y) - y-^K(y, v„)| - i * 0, 

(7.3.4) sup \f(F^(y))qVn(y)-v71,2K(y, v^-^0. 
0-cy<l 

We note that (7.3.2) also holds true with y=F(x) for <xn(F(x))=pn(x). 
Further, if instead of v„ -^* « we have that vB -^-* OO, then (7.3.2)-(7.3.4) 
also hold true with probability one. 

Proof of Theorem 7.3.2. Combining the respective statements (b) and 
(c) of Theorem 7.1.1 with (4.4.23), (4.5.8) and (4.5.25), the above statements 
follow. 

Theorem 7.3.3. If vn of Theorem 7.3.2 also satisfies the condition (7.2.7), 
then 
(7.3.5) a j . ) - ± . j B ( . ) , 

(7.3.6) / ( ^ ( O ) ^ - ) - 5 - ^ - ) -

Proof First we note that (7.2.7) implies that vn — •*■ ooasn-^oo. It follows 
then from (7.3.2) and (7.3.4) that, in order to prove (7.3.5) and (7.3.6), it 
suffices to show that 

(7.3.7) v - i / i ^ v j - S ^ . ) . 

Now the proof of (7.3.7) can be done along the lines of that of (7.2.8). 

Remark 7.3.1. The first paper on the random sample size empirical 
process av was written by Pyke (1968). He proved (7.3.5) under the 
assumption that v„/«— -* 1. The above method of proof also extends to 
empirical processes defined in terms of multivariate random variables 
(cf. M. Csorgo, S. Csorgo, Fischler and Revesz 1975). As to random sum 
limit theorems, one of the first papers was that of Anscombe (1952) (cf. 
also Doeblin 1938, 1940). 
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Summary of Notations and Abbrevations 

This list includes only symbols used systematically throughout the book 
in some special way. 

Probability Space, Random Variables, Expectation 

(Q9 s/9 P) is a probability space, with P a probability measure on a 
measurable space (Q, s/). Events (elements of s/) are usually denoted 
by A, B9 ... etc.; co is the generic element of Q. Random variable(s) 
(r.v.) are usually denoted by X9 Y, ... etc., {Xt} is a sequence of r.v. and 
for independent identically distributed r.v. we write: i.i.d.r.v. EX denotes 
the expected value of the r.v. X. VarX is the variance, while var/( .) 
is the total variation of the function / ( . ) . P{X^x) denotes the probabil-
ity of the event {co: X(co)^x}. IA is the indicator function of the event A 
and card A is the cardinality of A. 

Distributions, Densities 

F9G9... etc. usually stand for distribution functions, and/, g,... etc. for 
density functions of r.v. Jf(\i9 a

2) stands for the normal family of distribu-
tion functions with mean JJL^R1 and variance <r2>0, where Rk is Euclidean 
A>space (fc^l). We frequently write X£JV(JI, a2) or F$.Jf(p.9 a

2), both 
having the same meaning and for F£Jf(0,1) we use the notation # with 
density function q>. °U(a9 b), a and b£R\ stand for the family of uniform 
distributions on (a, b); Exp(a, b)9 a£R\ 6>0 denote the exponential 
family of distributions 6~1exp(—ft"1^-^), JC^«. @(ri9p) is the bi-
nomial family with parameters w^l, 0</?< 1. The inverse of a distribution 
function F is denoted by inv F. The derivative of a function / is usually 
denoted by / ' , / " is the second derivative of / , etc. 
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Convergence and Equality in Distribution Notions 

& stands for equality in distribution, —► means convergence in distribu-
tion, —► is convergence in probability, and = resp. —-*• stands for a.s. 
(almost sure) equality resp. convergence of r.v. The symbols o(.)> 0(.) 
are used in the usual, Landau sense. When the corresponding relations 
hold in probability, then we frequently write oP(,)0P(.). The symbol 
^ stands for asymptotic equality. 

Special Stochastic Processes 

W(t) = {W(t); t^O} stands for the standard Wiener process, B(t) = 
= {B(t); O^f^l} is the Brownian bridge, W(s, t)={W(s,t); s,t^0} 
is two parameter Wiener process, K(s,t) = {K(s9t); O^s^l; t^O} is 
Kiefer process. When emphasizing sample path properties of a stochastic 
process X(t), then we sometimes write X(t, co). 

Special Metric Spaces 

C=C(0, 1) is the space of continuous functions x(.) on [0, 1] with the 
uniform metric Q(x,y)=sup \x(t)-y(t)\. D=D(0, 1) is the space of 
functions x(.) on [0, 1], having points of discontinuity of the first kind 
only, endowed with the Skorohod topology. 

Special Notation for Section 5.7 

The transpose of a vector V is V*. The norm ||. || on RP is defined by 
IIO'i,^, -,yP)\\ =^fip\yi\- F o r a function g(x; 0), where 0 = 
= (9l902, .-.,Op)£Rp,V0g(x; 0O) denotes the vector of parial derivatives 

((d/de1)g(x;0)9...,(d/d9p)g(x;9)) 

evaluated at 0=0O. Similarly, V^g{x\ 0O) denotes the vector 

((d*/d0l)g(x; 0) , . . . , (d2 /^)^(^; 0)) 

evaluated at 0=0O. The matrix [{d^ldO^d^gix; 0)]u is denoted by 
g'ee(x'> #)• F o r a matrix or vector V=(vu), \V\ denotes the matrix (|ity|), 
and / V stands for (/ vu)9 while Vs is meant to be (tfj). 
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