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Preface

This book is an overview of statistical inference in stationary, discrete time sto-
chastic processes.

We begin our discussion with martingales and strong mixing sequences. We
illustrate how these properties enable us to generate various classes of CAN
estimators in the case of dependent observations.

Next, we discuss likelihood inference for finite and infinite Markov chains,
higher order Markov chains, Raftery’s Mixture Transition Density model and
Hidden Markov chains. In Chap. 3, we discuss a number of processes which have a
non-Gaussian stationary distribution. Such models can be viewed as extensions of
linear Auto-Regressive Moving Average models. Models discussed therein include
standard discrete distributions such as Binomial, Poisson, Geometric, and con-
tinuous distributions such as Exponential, Gamma, Weibull, Lognormal, Inverse
Gaussian and Cauchy.

Chapter 4 deals with semi-parametric methods of estimation wherein few
conditional moments are specified and the form of underlying distribution is not
specified. Here, Conditional Least Squares methods are discussed. The main theme
of the chapter is the estimation and confidence interval procedures based on
estimating functions.

In the last two chapters, we discuss non-parametric methods of estimation. In
Chap. 5, kernel-based estimation of density and conditional expectation are dis-
cussed. Here, it is assumed that the underlying process is strong mixing.
Asymptotic normality of these estimators is reported therein. The last chapter has a
discussion on bootstrap and other resampling procedures for dependent sequences
such as Markov chains, Markov sequences, linear Auto-Regressive Moving
Average sequences. Block-based bootstrap for stationary sequences and other
block-based procedures are discussed in some details. The main result reported
therein is that block-based bootstrap, under certain conditions, is a better
approximation to the sampling distribution than the traditional normal approxi-
mation. The discussion is concluded by bootstrap procedures for confidence
intervals based on estimation functions.
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This book can be useful for researchers interested in knowing developments in
inference in discrete time stochastic processes. It can be used as a material for
advanced level research students. A good background of probability, asymptotic
inference and stochastic processes is desirable.
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Chapter 1
CAN Estimators from Dependent Observations

Abstract In this chapter, we review some basic properties of stationary stochastic
processes. Results on martingale limit theorems and laws of large numbers for mixing
sequences, as well as central limit theorems for sums of dependent random variables
have been discussed. We then discuss weak convergence of empirical processes
obtained from stationary observations. These results have been applied to gener-
ate consistent and asymptotically normal estimators of parameters of a stationary
stochastic process.

1.1 Preliminaries

A stochastic process is a collection of random variables {Xt , t ∈ T } on a probability
space {�,A , P}. The set T is an infinite set, known as time parameter set. Let St

be the collection of values taken by Xt . The set S = ∪t St is known as the state-
space of {Xt , t ∈ T }. Throughout our discussion, S is either �p, the p-dimensional
Euclidean space or a countable set. The set T is assumed to be a countable set which
is frequently {0, 1, 2, . . .} or its subset. Thus, we have a discrete time stochastic
process or a random sequence to be denoted by X.

Definition 1.1.1 A stochastic process X is said to be strictly stationary, if the dis-
tribution of (Xt1 , . . . , Xtn ) is the same as that of (Xt1+h, . . . , Xtn+h) ∀ t1 < t2 <
· · · < tn , ∀ h and ∀ n.

The symbol V denotes variance of a random variable or variance-covariance matrix of
a random vector. The symbol Cov denotes covariance between two random variables.

Definition 1.1.2 A stochastic process X is said to be weakly stationary, if V (Xt )

< ∞ for all t and the followings hold.

1. E(Xt ) = μ and V (Xt ) = σ 2, ∀ t.

M. B. Rajarshi, Statistical Inference for Discrete Time Stochastic Processes, 1
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2 1 CAN Estimators from Dependent Observations

2. Cov(Xs, Xt ) depends on s and t through | s − t | only.

Definition 1.1.3 A random sequence X is said to be a first order Markov sequence if

P[Xt ∈ B | Xt−1 = xt−1, Xt−2 = xt−2, . . . , X0 = x0] = P[Xt ∈ B | Xt−1 = xt−1],

for all t ≥ 1, for all Borel sets B of S and for all {xt−1, xt−2, . . . , x0} such that the
conditional probability on the left-hand side is well-defined.

Higher order Markov sequences can be similarly defined.
A Markov sequence X is said to be time-homogeneous if for all s, t such that
t > s, P[Xt ∈ B | Xs = xs] is a function of t − s only. If S is countable, X is called
a Markov chain and we have P = ((pi j )) as the one-step transition probability matrix
(t.p.m.), where pi j = P[Xt+1 = j |Xt = i]. If S is �p, and if the distribution of
Xt+1 given Xt is absolutely continuous, the corresponding density f (y|x) is known
as the (one-step) transition density.

Definition 1.1.4 A probability mass function (p.m.f.) π on a countable set S is
known as a stationary distribution of a time-homogeneous Markov chain {Xt ,

t ≥ 0}, if
π j =

∑

i∈S

πi pi j , for all j ∈ S. (1.1)

A probability density function (p.d.f.) π on S ⊆ �p, is said to be a stationary density
of a time-homogeneous Markov sequence {Xt , t ≥ 0} with the transition density
f (y|x), if

π(y) =
∫

x∈S

π(x) f (y|x)dx, for all y ∈ S.

The following theorems discuss application of the ergodic theorem to obtain almost
sure convergence of averages of functions of observations from a Markov chain.

Theorem 1.1.1 If {Xt , t = 0, 1, 2, . . .} is an irreducible, time-homogeneous and
non-null persistent Markov chain with {πi , i ∈ S} as the stationary distribution,
then X is strictly stationary if the distribution of X0 is given by {πi , i ∈ S}.
For a background of ergodic theorems, we refer to Sect. 8.6 of Athreya and Lahiri
(2006).

Theorem 1.1.2 Let {Xt , t = 0, 1, 2, . . .} be an irreducible, aperiodic, and non-
null persistent stationary Markov chain and let g be a function on S such that
E(|g(X0)|) < ∞. Then 1

T +1

∑T
t=0 g(Xt ) → E(g(X0)) a.s.

If a Markov sequence X is metrically transitive, i.e., the conditional distribution
(probability measure corresponding to the transition density f (y|x) ) is absolutely
continuous with respect to the stationary distribution (for every x ∈ S), then almost
sure convergence as in Theorem 1.1.2 holds [cf. Chap. 9 of Billingsley (1961a)].

http://dx.doi.org/10.1007/978-81-322-0763-4_8


1.2 Martingales 3

1.2 Martingales

Definition 1.2.1 Martingale. Let {Xt , t ≥ 0} be a sequence of random vari-
ables defined on a probability space {�,A , P}. Let {Ft , t ≥ 0} be a family of
non-decreasing sub-σ -fields, i.e., Ft ⊂ Ft+1 ⊂ A ∀ t. Then, {Xt , t ≥ 0} is said
to be a martingale with respect {Ft , t ≥ 0}, if for all positive t and s, we have

E(Xt+s | Fs) = Xs a.s.

Frequently, Fs = σ {Y0, . . . , Ys}, where {Yt , t ≥ 0} is a stochastic process defined
on {�,A , P}. We give now some examples of martingale sequences.

(i) Symmetric Random Walk. Let Yt be a sequence of i.i.d. random variables with
E(Yt ) = 0 . Then, XT = ∑T

t=1 Yt is a martingale.
(ii) Suppose we have a family of parametric models {Pθ , θ ∈ �} for the sequence X,

where � is an open interval of �. We assume that the conditional p.d.f./p.m.f.
fθ (xt | x0, . . . , xt−1) satisfies the condition that

∫
fθ (u | x0, . . . , xt−1)du

can be differentiated twice with respect to θ under the integral sign and that
E[ ∂ log fθ (Xt |X0,...,Xt−1)

∂θ
]2 < ∞ for all t. Let

St = ∂ log fθ (Xt | X0, . . . , Xt−1)

∂θ

and Zt = ∑t
s=1 Zs . Then, E

[
St |σ {X0, . . . , Xt−1}

] = 0 and {Zt , t ≥ 1} is a
martingale with respect to family of σ -fields of (X0, X1, . . . , Xt ), t ≥ 0.

(iii) Let fθ (x0, x1, . . . , xt ) be the sequence of p.d.f.s or p.m.f.s of (X0, . . . , Xt ),
when θ is the parameter. Suppose that H0 : θ = θ0 and H1 : θ = θ1 are

the null and the alternative hypotheses respectively. Let Lt = fθ1 (X0,X1,...,Xt )

fθ0 (X0,X1,...,Xt )
.

Then,{Lt , t ≥ 1} is a martingale under H0.

Theorem 1.2.1 Martingale Convergence Theorem. Suppose that {Xt , t ≥ 1} is a
uniformly integrable martingale. Then, there exists a random variable X such that
Xt → X a.s.

For a proof of the above theorem, we refer to Athreya and Lahiri (2006), Chap. 13.
We note that if for some p > 1, E(|Xt |)p < C < ∞ for all t , {Xt , t ≥ 1} is
uniformly integrable. The following theorem states a central limit theorem (CLT) for
martingales.
Theorem 1.2.2 Billingsley-Ibragimov CLT for Stationary Martingales Billingsley
(1961a) and Ibragimov (1963). Let {Yt , t ≥ 0} be a strictly stationary ergodic
sequence. Let XT = ∑T

t=1 Yt and assume that E[Yt+1 | X0, . . . , Xt ] = 0 for
all t ≥ 1 and that E(Y1) = 0. Let σ 2 = V ar(Yt ) < ∞. Then,

XT√
T

D→ N (0, σ 2).

http://dx.doi.org/10.1007/978-81-322-0763-4_13


4 1 CAN Estimators from Dependent Observations

Example 1.2.1 Let an auto-regressive sequence X be defined by Xt+1 = ρXt +
εt+1, |ρ| < 1, where {εt } is an i.i.d. sequence which is also independently distributed
of X0. Let E(εt ) = 0, V (εt ) = σ 2. Then, E[Xt+1|X0, X1, . . . , Xt ] = ρXt and
thus, {Yt , t ≥ 1} defined by Yt = (Xt − ρXt−1)Xt−1 is a martingale. If X0 follows
the stationary distribution, i.e., the distribution of

∑
ρtεt , the sequence X is strictly

stationary. It can also be shown to be weakly stationary. Thus,

∑T
t=1 Yt√

T

D→ N
(

0, σ 2 E(X2
1)

)
.

Let ρ̂ = ∑
Xt Xt−1/

∑
X2

t−1. By the ergodic theorem,
∑T

t=1 Yt/T → 0 a.s. and it

follows that ρ̂ → ρ a.s. Further, by the ergodic theorem,
∑T

t=1 X2
t

T → E(X2
1) = σ 2

1−ρ2

a.s. By the Martingale CLT (Theorem 1.2.2), we have

∑[(Xt − ρXt−1)Xt−1]√
T

D→ N

(
0,

σ 4

1 − ρ2

)
.

Consequently, √
T (ρ̂ − ρ)

D→ N (0, 1 − ρ2). (1.2)

Martingale limit theorems, CLTs for martingles, and statistical applications of mar-
tingale asymptotics have been discussed in Hall and Heyde (1980). It is convenient
to have the following definition.

Definition 1.2.2
√

T -Consistent and Asymptotically Normal A sequence of estima-
tors θ̂T of θ is said to be

√
T -CAN if, as T → ∞, θ̂T → θ in probability/ a.s. and the

distribution of
√

T (θ̂T − θ) weakly converges to a normal distribution with mean 0.

1.3 Mixing Sequences

In statistical analysis of stationary sequences, we have information on the conditional
distribution or moments of an observation given the past observations or on the
marginal distribution of observation only. Thus, martingale strong laws of large
numbers and martingale central limit theorems play a prominent role, as seen in
Example 1.2.1. If our information (or assumption) of a statistical model consists of
marginal distributions (or functions thereof) only, mixing properties play a major
role. These are discussed below.
Let {�,A , P} be a probability space and let F and G be sub-σ -fields of A .Various
dependence coefficients between F and G are defined below.
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α(F ,G ) = sup
A∈F
B∈G

P(A ∩ B)− P(A)P(B) | .

β(F ,G ) = E

[
sup
B∈G

| P(B | A)− P(B) |
]
, A ∈ F .

φ(F ,G ) = sup
A∈F , B∈G

P(A)>0

| P(B | A)− P(B) | .

Let L2(H ) be the collection of H -measurable square integrable random variables.
Let Cor(X,Y ) denote the correlation co-efficient between the random variables X
and Y. Then,

ρ(F ,G ) = sup
X∈L2(F)

Y∈L2(G )

Cor(X,Y ).

Theα-mixing coefficient was introduced by Rosenblatt, theβ-mixing coefficient was
introduced by Kolmogorov, the φ-mixing coefficient was introduced by Ibragimov
and the ρ-mixing coefficient was introduced by Kolmogorov. For these and related
earlier references as well as an extensive account of mixing sequences, we refer to
Doukhan (1994) and Bradley (2005).
Let {Xt , t = 0,±1,±2, . . .} be a strictly stationary sequence. Let σ {X,Y, Z , . . .}
denote the σ -field generated by the collection of random variables {X,Y, Z , . . .}.

α(t) = α
(
σ {Xs, Xs−1, Xs−2, . . .}, σ {Xs+t , Xs+t+1, . . .}

)
, ∀ s.

Definition 1.3.1 A stationary sequence {Xt , t = 0,±1,±2, . . .} is said to be strong
mixing or α-mixing, if α(t) → 0 as t → ∞.

Mixing sequences such as β-mixing, φ-mixing and ρ-mixing can be similarly
defined. In our discussion, we assume that the given stationary sequence is
α-mixing, since each of the β-mixing, φ-mixing and ρ-mixing sequences imply
that the sequence is α-mixing, cf. Doukhan (1994). Secondly, α-mixing sequences
have been widely discussed in the literature and a large number of results are available
for such sequences.
Results on estimation of density and estimation of conditional expectation (also
known as regression function) as well as on bootstrap have been recently proved
based on some newly defined types of weak dependence, cf. Bickel and Bühlmann
(1999), Nze, Bühlmann and Doukhan (2002) and Nze and Doukhan (2002). For a
detailed review of mixing sequences, we refer to Bradley (2005).
In the case of independent observations, α(t) = 0 for all t ≥ 1. We follow Bosq
(1996) and define a geometrically strong mixing as follows.

Definition 1.3.2 We say that a stationary process X is Geometrically Strong Mixing
(GSM) if for some constant C and β, 0 < β < 1, the process is α-mixing with
α(t) ≤ Cβ t , t ≥ 1.
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Examples of mixing sequences

Example 1.3.1 An m-dependent sequence

A stationary sequence X is said to be an m-dependent sequence, if the collection of
random variables {Xs, s ≤ t} is independent of the collection {Xs, s ≥ t + m} for
every t. Such a sequence is α-mixing with α(t) = 0 for all t > m. For example, a
moving average sequence defined by Xt = ∑q

s=1 asεt−s, where {εt } is a sequence
of independently and identically distributed (i.i.d) random variables with mean 0 and
E[εtεs] = 0 , s �= t ,is a q-dependent sequence.

Example 1.3.2 A finite irreducible and aperiodic Markov chain

A finite, irreducible, and aperiodic Markov chain is φ-mixing with a geometric decay
of theφ-mixing coefficients, cf. page 166 of Billingsley (1968). Hence, such a process
is α-mixing and in fact, GSM . It follows that an r -order finite irreducible and
aperiodic Markov chain is GSM, though the first r mixing coefficients may not have
such a geometric rate.

Example 1.3.3 Markov sequences

Suppose that the transition density f (y|x) of a Markov sequence satisfies the con-
dition that

sup
x,x ′∈S,A⊂S

∣∣∣∣∣∣

∫

A

f (y|x)dy −
∫

A

f (y|x ′)dy

∣∣∣∣∣∣
< 1.

It is assumed that A is measurable. Then, the Markov sequence is GSM (cf. Götze
and Hipp (1983)). The above condition is satisfied, if there exists a positive measure
μ on S such that

∫

A
f (y|x)dy ≥ μ(A) for all x and A.

Example 1.3.4 A counter-example

Let {εt , t = 0,±1,±2, . . .} be an i.i.d. sequence of Bernoulli random variables with
P[εt = 1] = 1/2. Define the sequence {Xt } by

Xt =
∞∑

s=0

2−s−1εt−s .

It can be shown that the sequence Xt is strictly stationary with U (0, 1) as the station-
ary distribution. But 2Xt+1 = Xt +εt+1 and Xt is the fractional part of 2Xt+1. Thus,
Xt can be uniquely computed (“recovered"), if we know the future. Thus σ {Xt } is
included in σ {Xt+1} and α1 ≥ 1/4, cf. Bosq (1996), page 16. Since α(t) ≤ 1/4 for
all t , it follows that the process {Xt } is not mixing. A similar result holds for any
value of p = P[εt = 1].
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Example 1.3.5 General linear sequences

We now discuss results due to Gorodetskii (1977). Let {εt , t = 0,±1,±2, . . .} be
i.i.d. random variables with p.d.f. f (x). The process {Xt , t = 0,±1,±2, . . .} is
defined by

Xt =
∞∑

s=0

asεt−s .

Let

At (δ) =
∞∑

s=t

| as |δ,

Bt =

⎧
⎪⎪⎨

⎪⎪⎩

∞∑
s=t

[As(δ)]1/(1+δ), δ < 2

∞∑
s=t

max
{[As(δ)]1/(1+δ),

√
As(2) | ln(As(2)) |} , δ ≥ 2.

Theorem 1.3.1 (Gorodetskii 1977). Assume the following.

1.
∞∫

−∞
| f (x + y)− f (x) | dx ≤ C | y | .

2. E(| ε1 |δ) ≤ C < ∞ for some δ > 0. If δ ≥ 1 we assume that E(ε1) = 0. For
δ ≥ 2, we assume that V ar(ε1) = 1.

3. Let g(z) = ∑∞
t=0 at zt . Then, g(z) does not vanish in | z |≤ 1.

4. B0 < ∞.

Then, {Xt , t = 0,±1,±2, . . .} is α-mixing with α(t) ≤ M Bt , for some real posi-
tive M.

We notice that if the theorem holds with the restriction that δ < 1, such a process
can not be described as second order or weakly stationary.
Let us assume that V ar(εt ) = σ 2

ε < ∞,
∑

at �= 0 and as = O(e−γ s), γ > 0.
Further, assume that εt has an absolutely continuous distribution. It has been shown
that {Xt , t = 0,±1,±2, . . .} is β-mixing and in fact, GSM.
Such processes include ARMA(p, q) , AR(p) and MA((q)) processes, if all the roots
of each of the related AR and MA polynomials lie outside the unit circle cf. Withers
(1981) and Athreya and Pantula (1986b).

Example 1.3.6 Harris-recurrent Markov sequences

Let X be a Markov sequence with the state-space S. A Markov chain is said to
be Harris-recurrent, if there exists a non-trivial σ -finite measure μ on S such that
μ(A) > 0 implies that P[Xt ∈ A for some t ≥ 1|X0 = x] = 1 for every x ∈ S.
Suppose that the Markov sequence has a unique stationary distribution. Athreya and
Pantula (1986a) have shown that such a sequence is strong mixing.
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Example 1.3.7 Nonlinear time series

These models have been discussed in Tjøstheim (1994). Let {εt } be a sequence of
i.i.d. random variables with mean 0 and variance 1. Define

Xt = M(Xt−1, Xt−2, . . . , Xt−p, θ1)+ V (Xt−1, Xt−2, . . . , Xt−p, θ2)εt .

The functions M(Xt−1, Xt−2, . . . , Xt−p, θ1) and V 2(Xt−1, Xt−2, . . . , Xt−p, θ2)

are respectively the conditional mean and conditional variance of Xt given the past.
It is assumed that V > 0 a.s. for all (Xt−1, Xt−2, . . . , Xt−p). Here θ1, θ2 are vector
parameters.
Some examples of non-linear models of order 1 are given below.

1. M(x, θ) = θ1x I (x ≤ k)+ θ2x I [x > k] (threshold model)
2. M(x, θ) = x{θ1 +θ2 exp(−θ3x2)}, θ3 > 0 (exponential auto-regression model)
3. M(x, θ) = θ1x + θ2x{[1 + exp{−θ3(x − θ4)}]−1 − 1/2}, θ3 > 0 (logistic AR

model).

These models are very flexible and exhibit rich patterns of stochastic behaviour.

Here, we focus on the case V 2 = σ 2, a constant. We assume that

1. The function M is bounded on compact sets.
2. The function M satisfies the condition that M(x) = a′x +o(‖ x ‖) as ‖ x ‖→ ∞

and the linear model a′x = ∑p
i=1 ai xi is stable in the sense z p − ∑p

i=1 ai z p−i

has its zeroes in the unit circle (it is possible that the vector a is null).
3. The p.d.f. of ε1 is positive on � and E(| ε1 |) < ∞.

Then, the Markov sequence X is geometrically ergodic, so that the t-step tran-
sition probability converges to the invariant distribution at the geometric rate as
t → ∞. Consequently, X is strong mixing . Tjøstheim (1994) discusses a number
of interesting examples of nonlinear functions M.

More examples of strong mixing sequences are discussed in the next chapter. We
state below some important theorems for strong mixing sequences.

Theorem 1.3.2 (Davydov’s inequality) Let Y be a σ {X0, X1, . . . , Xs}-measurable
random variable and let Z be a σ {Xs+t , Xs+t+1, . . . }-measurable random variable.
Suppose that E | Y |p< ∞ and E | Z |q< ∞ for some p and q such that
1/p + 1/q < 1. Let r = (1/p + 1/q)−1. Then, E(Y Z) < ∞ and

| Cov(Y, Z) |≤ 2r [2α(t)]1/r (E | Y |p)1/p(E | Z |q)1/q .

The following result establishes that under appropriate moment conditions, limit of
variance of a mean-like statistic is finite.
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Theorem 1.3.3 Suppose that {Xt , t = 0, 1, 2, . . .} is α-mixing such that for a δ > 0,

E | Xt |2+δ< ∞ and
∞∑

t=1

α(t)δ/(2+δ) < ∞.

Then, the series
∑∞

t=2 Cov(X1, Xt ) converges absolutely.

We observe that, in view of the second order stationarity of the process {Xt },

V ar(X̄T ) = 1

T
V ar(X1)+ 2

T

T −1∑

t=2

(T − t)Cov(X1, Xt ).

Now,
2

T

∣∣∣∣∣

T −1∑

t=2

(T − t)Cov(X1, Xt )

∣∣∣∣∣ < 2r [2α(t)]1/r
(

E | Xt |2+δ)1−1/r
,

in view of the above inequality with r = (2+δ)/δ.Thus, V ar(X̄T ) → 0 as T → ∞.

We further note that as T → ∞,

V ar(
√

T X̄T ) → V ar(X1)+ 2
∞∑

t=2

Cov(X1, Xt ) = σ 2 (say).

If there exists a C such that | Xt |< C , the condition on the α-mixing coefficients
can be relaxed to

∑∞
t=1 α(t) < ∞. We now state a CLT for the sample mean.

Theorem 1.3.4 (CLT for the sample mean obtained from a stationary α-mixing
sequences) Suppose that, in addition to the assumptions of Theorem 1.3.3, 0 < σ 2 <

∞. Then, √
T (X̄T − μ)

D→ N (0, σ 2).

Proofs of the Theorems 1.3.2, 1.3.3, and 1.3.4 have been given in Doukhan (1994),
also see Athreya and Lahiri (2006), Chap. 16.
Combining the above two theorems, it follows that X̄T → μ, in quadratic mean and
that X̄T is a

√
T -CAN estimator of μ.

1.4 Empirical Processes of Dependent Observations

LetXbe a stationary random sequence with the state-space�p .Let (X1, X2, . . . , XT )

be the observations from such a process. Let x = (x1, x2, . . . , x p) and y =
(y1, y2, . . . , yp).We say that x ≤ y if and only if xi ≤ yi for each i. Let the common
distribution function F and the empirical distribution function FT be respectively
defined by

http://dx.doi.org/10.1007/978-81-322-0763-4_16
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F(x) = P[X1 ≤ x]; FT (x) = 1

T

T∑

t=1

I [Xt ≤ x].

The empirical process is defined by

GT (x) = √
T [FT (x)− F(x)], x ∈ �p.

Let D be the space of real valued functions on �p, which are continuous from above
and for which the limit from below exists at each point. Let D be equipped by the
Skorohod metric. Weak convergence of stochastic sequences taking values in D has
been discussed in Billingsley (1968).

Theorem 1.4.1 Bühlmann (1994) Assume that the stationary process X with the
state-space �p is α-mixing with

∞∑

t=1

t8p+7α(t)1/2 < ∞.

Further, assume that the distribution of X1 is continuous. Then, GT → G weakly,
where G is a mean zero Gaussian process with a.s. continuous sample paths such

that E(G(x)G(y)) =
∞∑

t=−∞
Cov(I [X1 ≤ x], I [Xt+1 ≤ y]).

Earlier results in this direction are due to Yoshihara (1975). Deo (1973) proved the
weak convergence of empirical processes obtained from real valued strong mixing
sequences and Billingsley (1968), for φ-mixing sequences. Withers (1975) proves
such results for possibly non-stationary sequences which satisfy various mixing
types. We also refer to Radulović (2002) for a discussion of aspects of weak conver-
gence of empirical processes.
In non-parametric analysis, weak convergence of empirical processes plays an impor-
tant role. Empirical processes are themselves of interest in some applications. More-
over, a large number of statistics can be written as suitable functions of the empirical
distribution function and the above weak convergence result allows a derivation of
their asymptotic distribution, as is discussed below.
Suppose that θ , a parameter of interest can be written as H(F). Its natural estimator is
then θ̂ = H(FT ).A smoothness requirement of θ is described by its differentiability
with respect to F in the following manner.

Definition 1.4.1 Let H be a functional defined on the space F of distribution func-
tions in �p, taking values in �k . Let � denote the space {F − G | F,G ∈ F } and
let η be a norm on �. Let ‖ x ‖ be the usual Euclidean metric on �p. Then, the
functional H is said to be Fréchet differentiable at F ∈ F , if there exists a function
h(F, ·) : � → �k satisfying the following.

(i) h(F, ·) is linear in the sense that
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h(F, aγ1 + bγ2) = ah(F, γ1)+ bh(F, γ2)

for all real a, b and for all γ1, γ2 ∈ �.
(ii) Let G ∈ F . Then,

‖ H(F)− H(G)− h(F,G − F) ‖
η(F − G)

→ 0,

as η(F − G) → 0.

The function h is said to be the Fréchet differential of H at F.

In applications, η(F − G) = supx∈� | F(x) − G(x) |, the Kolmogorov distance
between the two distribution functions and G = FT . When weak convergence of
empirical process holds, η(G − FT ) converges to 0, in probability. Let U (Xt ) be the
d.f. of the random vector Xt and Vt = h(F,U (Xt )− F).We then have the following.

Theorem 1.4.2 Suppose that H is Fréchet differentiable with h as the Fréchet
differential at F. Assume that E(V1) = 0 , E ‖ V1 ‖3< ∞. Let � =
lim

T →∞ V ar
[
T −1/2 ∑T

t=1 Vt

]
. Assume that � is non-singular. Further, we assume

that conditions of Theorem 1.4.1 hold. Then,

√
T (θ̂T − θ)

D→ Nk(0, �).

For a proof of the above results, we refer to Lahiri (2003), Sect. 4.4.2.
Now we discuss the asymptotic normality of L estimators . Suppose that Xt is a real-
valued random variable with the d.f. F.We are interested in estimating the parameter
θ = ∫

J (u)F−1(u). Its estimator is of the type θ̂ = ∫
J (u)F−1

T (u) and is known as
an L estimator. Let F−1 be non-decreasing and left continuous (so that F−1 induces
a measure on �). We assume that the function J : (0, 1) → � satisfies the following
conditions.

1. The function J is bounded and continuous almost everywhere with respect to
F−1 and Lebesgue measure.

2. There exist 0 < a < b < 1 such that J (u) = 0 for all u �∈ [a, b].
It has been shown by Boos (1979) that the above functional is Fréchet differen-

tiable at F with respect to the sup-norm. An important example is the (100α) per

cent trimmed mean defined by θ =
1−α∫
α

F−1(u)du/(1 − 2α) where 0 < α < 0.5. It

may be noted that, if F is symmetric, for any α ∈ (0, 0.5), the parameter θ turns out
to be the median of X1, cf. Serfling (1980), page 237.
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Hadmard differentiability and sample median
It is to be noted that the median of Xt cannot be regarded as an L estimator. It can be
shown that median is a Hadamard differentiable statistical functional. The asymptotic
normality of Hadamard differentiable statistical functionals ( and thus that of the
sample median) follows from the weak convergence of the empirical processes, see
Fernholz (1983). For a discussion of statistical differentiable functionals, we refer to
Sect. 5.2 of Shao (1999).

1.5 CAN Estimation Under Cramér and Other Regularity
Conditions

In this section, we prove a general result concerning estimators obtained from
X0, X1, . . . , XT where {Xt , t ≥ 0} is a discrete time strictly stationary stochas-
tic process. Let, for each t , Ht (θ) be a p × 1 vector, a function of observations
and parameter θ. Let Ht (θ) = (Ht (θ, 1), Ht (θ, 2), . . . , Ht (θ, p))′. The symbol ′
denotes the transpose of a vector or a matrix. We make the following assumptions.
A probability-related or an expectation-related statement holds with respect to the
true probability, i.e, Pθ0 .

A1. The parameter space� is an open set in �p , the p-dimensional Euclidean space.
The true parameter θ0 is an interior point of �.

A2. E[Ht (θ0, i)] = 0, for each t and i.
A3. The partial derivatives ∂Ht (θ, i)/∂θ j exist for each θ ∈ � and for each (i, j).

Let Dt (θ, i, j) = −∂Ht (θ, i)/∂θ j and let Dt (θ) = ((Dt (θ, i, j))), the p × p
matrix of partial derivatives of Ht (θ, i)with respect to θ j ’s, with a negative sign.

A4. For all i, j, k, ∂Ht (θ, i)/∂θ j is differentiable with respect to θk . Let θ0 =
(θ0,1, θ0,2 · · · , θ0,p)

′. There exist random variables M(θ0, t), such that, in a
neighborhood N of θ0, we have for each t and for each (i, j, k),

| ∂2 Ht (θ, i)/∂θk∂θ j |≤ M(θ0, t).

Further, E[M(θ0, t)] is finite for each t.
A5. (i) 1

T

∑
t Dt (θ0) → D(θ0) a.s., where the matrix D(θ0) is a (symmetric) posi-

tive definite matrix.

(ii) 1
T

∑
t Ht (θ0) → 0 a.s.

(iii) There exists a constant M which may depend upon θ0, such that
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1

T

∑

t

M(θ0, t) → M a.s.,

where 0 ≤ M < ∞.

(iv) 1√
T

∑
t Ht (θ0)

D→ Np(0,�), where the matrix � is positive-definite.

Theorem 1.5.1 Under the Assumptions A1–A5 above, we have the following.

(i) There exists a sequence of estimators θ̂T such that

P

[
∑

t

Ht (θ̂T ) = 0

]
→ 1, and θ̂T → θ0 a.s.

(ii)
√

T (θ̂T − θ0)
D→ Np(0,D−1�D−1).

Proof To prove the above theorem, we begin with a lemma.
Lemma. (Aitchison and Silvey (1958)). If g is a continuous function mapping �p

into itself with the property that, for every x such that ‖ x ‖= 1, x ′g(0) < 0, then
there exists a point x such that ‖ x ‖< 1 and g(x) = 0.

Proof of the theorem, part (i). We write θ = (θ1, θ2, . . . , θp)
′ and θ0 = (θ01, θ02,

. . . , θ0p)
′. By the Taylor series expansion of Ht (θ, i) around the true value θ0, we

have

Ht (θ, i)= Ht (θ0, i)−
∑

j

Dt (θ0, i, j)(θ j − θ0, j )+1

2

∑

j

∑

k

(θ j − θ0, j )(θk − θ0,k)
∂2 Ht (θ, i)

∂θk∂θ j

∣∣∣∣
θ∗
,

where θ∗ is an intermediate point on the line segment joining θ and θ0.We note that
‖ θ∗ − θ0 ‖≤‖ θ − θ0 ‖ . Now, consider the last term in the above expression. We
have, in view of A4,

∑

j

∑

k

(θ j − θ0, j )(θk − θ0,k)
∂2 Ht (θ, i)

∂θk∂θ j

∣∣∣∣
θ∗

≤ ‖ θ − θ0 ‖2 p2 M(θ0, t).

Hence, there exists α such that | α |≤ 1,

1

T
Ht (θ, i) = 1

T
Ht (θ0, i)− 1

T

∑

j

Dt (θ0, i, j)(θ j − θ0, j )+ αp2

2
‖ θ − θ0 ‖2 1

T
M(θ0, t).

By A5(ii), the first term on the right-hand side converges to 0 a.s., whereas the second
term converges to −∑

j D(θ0, i, j)(θ j −θ0, j ) a.s. Further, since (1/T )
∑

t M(θ0, t)

a.s. converges to M , the last term eventually does not exceed (1/2)p2 ‖ θ−θ0 ‖2 M
(with probability one).
Now, since the matrix D(θ0) is positive definite, there exists a β > 0 such that
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(θ − θ0)
′ D(θ0)(θ − θ0) > β, θ �= θ0. For a given ε, we choose a δ satisfying the

following.

(i) δ < ε,
(ii) {θ | ‖ θ − θ0 ‖< δ} ⊂ N , and

(iii) δ < β/[(3/2)p2(M + 1)].
We further choose T large enough such that, for all i, j, k

(i) | 1
T

∑
t Ht (θ0, i) |≤ δ2,

(ii) 1
T

∑
t M(θ0, t) ≤ (M + 1),

(iii) | 1
T

∑
t Dt (θ0, i, j)− D(θ0, i, j) |≤ δ.

Then, if ‖ θ − θ0 ‖< δ, we have

∣∣∣∣∣∣
1

T

∑

t

Ht (θ, i)+
∑

j

D(θ0, i, j)(θ j − θ0, j )

∣∣∣∣∣∣

< δ2 + δp ‖ θ − θ0 ‖ +(1/2)p2 ‖ θ − θ0 ‖2 (M + 1)

< (3/2)p2(M + 1)δ2.

Therefore, if ‖ θ − θ0 ‖= δ,

1

T

∑

i

∑

t

(θi − θ0,i )Ht (θ, i)

≤ −
∑

i

∑

j

D(θ0, i, j)(θi − θ0,i )(θ j − θ0, j )+ (3/2)p2(M + 1)δ3

≤ − βδ2 + (3/2)p2(M + 1)δ3,

which is negative in view of the choice of δ, with probability one. By the Aitchison-
Silvey Lemma, proof of part (i) is complete.
Proof of part (ii). We have,

∑

t

Ht (θ) =
∑

t

Ht (θ0)−
∑

t

Dt (θ
∗)(θ − θ0)

Putting θ = θ̂T in above, we have

∑

t

Dt (θ
∗
T )(θ̂T − θ0) =

∑

t

Ht (θ0).

Since
∑

t Dt (θ0)/T in non-singular for a large T (with probability one) and∑
t Dt (θ)/T is continuous, it follows that

∑
t Dt (θ

∗
T )/T is non-singular with prob-
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ability one. Moreover, if θ∗
T is an intermediate point,

√
T (θ̂T − θ0) =

[
1

T

∑

t

Dt (θ
∗
T )

]−1
1√
T

∑

t

Ht (θ0).

It suffices to show that (1/T )
∑

t Dt (θ
∗
T ) → D(θ0) a.s. We note that

∣∣∣∣∣

∣∣∣∣∣
1

T

∑

t

Dt (θ
∗
T )− 1

T

∑

t

Dt (θ0)

∣∣∣∣∣

∣∣∣∣∣ ≤ 1

T

∑

t

Mt (θ0) ‖ θ̂T − θ0 ‖ .

By A5(iii), (1/T )
∑

t Mt (θ0) → M a.s. which is finite and
‖ θ̂T − θ0 ‖→ 0 a.s. in view of consistency of θ̂T . Thus,

√
T (θ̂T − θ0)− [D(θ0)]−1

∑

t

Ht (θ0)/
√

T → 0 a.s.

The asymptotic normality follows in view of A5 (iv).

The above proof follows Billingsley (1961a), who deals with theory of likelihood
equations obtained from stationary ergodic Markov sequences , see Rajarshi (1987),
who deals with general random sequences.

The condition A5(i) may look rather restrictive, but actually, it holds for many
methods of estimation such as maximum likelihood, conditional least squares (which
is discussed in Chap. 4). If the functions Ht ’s are themselves obtained as equations
for minimizing or maximizing a function, the condition of symmetry of D in A5 (i)
is the same as interchangeability of partial derivatives with respect to θi and θ j .

Let St (θ, i) = ∂ ln f (Xt |Xt−1,Xt−2,...,X0)
∂θi

, the i th component of the vector-valued
score function. In the maximum likelihood method, we take Ht (θ, i) = St (θ, i).We
note that E[Ht (θ, i) | Xt , Xt−1, . . . , X0] = 0, if the Cramér regularity conditions
hold for the conditional density. Thus,

∑
Ht (θ, i) is a martingale for each i. The

Central Limit Theorem as required in A5 (iv) follows by the Billingsley-Ibragimov
Martingale CLT . The almost sure convergence as required in Assumptions, follows
from the Ergodic theorem. We also note that the (i, j)th element of I (θ), the Fisher
Information matrix is given by

[I (θ)]i j = lim
T →∞

1

T

∑

t

E[St (θ, i)St (θ, j)].

Moreover, in view of the regularity conditions, � = I (θ) = D, the matrix of
expectations of second order derivatives. We refer to Basawa and Prakasa Rao (1980),
Chap. 7 for discussion of properties of maximum likelihood estimators obtained from
a general random sequence. In the case of stationary Markov sequences of order 1,
this reduces to

http://dx.doi.org/10.1007/978-81-322-0763-4_4
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I (θ) =
((

E

[
∂ ln fθ (Xt | Xt−1)

∂θi

∂ ln fθ (Xt | Xt−1)

∂θ j

]))
.

If E[Ht (θ, i) | Xt , Xt−1, . . . , X0] �= 0, one cannot apply Martingale CLT. The infor-
mation about the parameters is based on a finite dimensional marginal distribution.
If the underlying sequence of observations is strong mixing and if Ht is a function of
Xt (and θ ), the CLT (Theorem 1.3.4) for sums of functions of strong mixing random
variables, can be applied. In the simplest case, the sample mean has been shown to be
a

√
T -CAN estimator . Results for Fréchet differentiable functions, which we have

stated earlier, do not follow from the above theorem. In general, the CAN property
of estimators obtained as solutions of some equations also does not follow from the
above theorem. We state a theorem below, which covers a class of robust estimators
frequently known as Generalized M estimators .
Let the state-space of the observable sequence X be �d . Let a p × 1 parameter be
defined as the unique solution of the equation E[ψ(X1, X2, . . . , Xm, θ)] = 0,where
ψ is a function from �md × �p to �p. An M estimator is defined as a solution of
the following equation in θ.

1

T − m + 1

T −m+1∑

t=1

ψ(Xt , Xt+1, . . . , Xt+m−1, θ) = 0.

We recall that a function g : � → � is said to satisfy a Lipschitz condition of order
κ , if |g(x)− g(y)| ≤ C |x − y|κ , for some constant C. Let Dα denote the differential
operator Dα = ∂α1+α2+···+αk

∂x
α1
1 ···∂x

αk
k

on �k . For a vector x , ‖ x ‖= (
∑

x2
i )

1/2. For a matrix

A, ‖ A ‖ denotes sup{‖ Ax ‖ | ‖ x ‖ = 1}.
Theorem 1.5.2 (Theorem 4.2 of Lahiri 2003) We assume that the above equation
has a unique solution θ̂ , which is a random variable. Let y = (x1, x2, . . . , xm) and
for all t , Yt = (Xt , Xt+1, . . . , Xt+m−1). We assume the followings.

A1. The functionψ(y, θ) is differentiable with respect to θ almost everywhere under
μF , the measure induced by the distribution function F(y) of Y.

A2. The partial derivatives of ψ with respect to θi ’s satisfy a Lipschitz condition of
order κ a.e. μF , where 0 < κ < 1.

A3. E(Y, θ) = 0.

A4. Let � = lim
T0→∞ V ar

(
T −1/2

0

∑T0
t=1 ψ(Yt , θ)

)
, where T0 = T + m − 1. Then,

� is a positive definite matrix.

A5. Let the matrix D be defined by E
[
∂ψi (Y1,θ)
∂θ j

]
as its (i, j)th element. Then, the

matrix D is non-singular.
A6. There exists a δ > 0 such that E

[‖ Dαψ(Y1, θ) ‖2+δ] < ∞ for all α such that∑
αi = 0, 1 and αi ≥ 0 f or each i.Further, the sequence X is strong mixing

with
∑∞

t=1 t[α(t)]δ/(2+δ) < ∞.

Then,θ̂ → θ in probability and
√

T (θ̂ − θ)
D→ Np(0,D−1�D−1′

).
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Theorems in this chapter lead to CAN estimators for parameters of various sto-
chastic models discussed in the Chaps. 2, 3 and 4. Theorems 1.2.2, 1.5.1, and 1.5.2
can be employed to generate CAN estimators in semi-parametric and parametric
models, where likelihood or some partial information is available. Theorems 1.3.4,
1.4.1, and 1.4.2 lead to CAN property for estimators in situations, where apart from
mixing and stationarity properties, very few assumptions have been made regarding
the joint or marginal distributions of observations.
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Chapter 2
Markov Chains and Their Extensions

Abstract This chapter deals with likelihood-based inference for ergodic finite as
well as infinite Markov chains. We also consider extensions of Markov chain models,
such as Hidden Markov chain, Markov chains based on polytomous regression, and
Raftery’s Mixture Transition Density model. These models have less number of
parameters as compared to a higher order finite Markov chain. Lastly, we discuss
methods of estimation in grouped data from finite Markov chains.

2.1 Markov Chains

Let X = (X0, X1, . . .) be an M-state Markov chain with the state-space
S = {1, . . . ,M} and the one-step transition probability matrix (t.p.m.) P =
((pi j ))M×M , pi j ≥ 0,∀ (i, j) and

∑M
j=1 pi j = 1,∀i . We assume that all states

communicate with each other and are aperiodic, which implies that all states are
non-null persistent and hence the chain is ergodic. Let {πi , i = 1, 2, . . . ,M} be the
unique stationary distribution of the Markov chain X. It then follows that for all i, j ,

p(t)i j → π j > 0, as t → ∞.

Let (X0, X1, . . . , XT ) be the T + 1 successive observations from the above Markov
chain. The conditional likelihood (given the initial observation X0) is given by
L(P) = ∏T

t=0 pxt ,xt+1 . Thus,

ln(L(P)) =
∑

i

∑

j

Ni j ln pi j Ni j =
T −1∑

t=0

I [Xt = i, Xt+1 = j].

We need to maximize ln(L(P)) with respect to pi j ’s, subject to the constraints that∑
j pi j = 1,∀i. Let λi ’s be the Lagrangian parameters. We set

M. B. Rajarshi, Statistical Inference for Discrete Time Stochastic Processes, 19
SpringerBriefs in Statistics, DOI: 10.1007/978-81-322-0763-4_2,
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f = ln(L(P))+
M∑

i=1

λi

⎛

⎝
∑

j

pi j − 1

⎞

⎠ .

Then, if pi j > 0, it can be easily shown that

p̂i j = Ni j

Ni+
, where Ni+ =

∑

j

Ni j .

Let Zt = I [Xt = i, Xt+1 = j]. We note that Zt is a Bernoulli random variable. Let
{pi , i = 1, 2, . . . ,M} be the initial distribution of X. Then,

E[Ni j ] =
T −1∑

t=0

E[Zt ] =
T −1∑

t=1

M∑

k=1

(
pk p(t)ki pi j

)
.

Since p(t)ki → πi ,
∑T −1

t=1 p(t)ki /T → πi . Thus, E[Ni j/T ] → πi pi j . Further, we
observe that

Var[Ni j ] =
T −1∑

t=1

M∑

k=1

(
pk p(t)ki pi j

)
⎛

⎝1 −
(

pk p(t)ki pi j

)
+

M∑

k=1

∑

s �=t

(
pk p(s)ki pi j

)
p(t)ki pi j

⎞

⎠

and that V [Ni j/T ] → 0 as T → ∞. It follows that, for all i, j , Ni j/T → πi pi j

in probability and hence p̂i j → pi j in probability. We observe that the above con-
vergence holds for any initial distribution {pi , i = 1, 2, . . . ,M}. It is easy to derive
the Fisher information matrix from the above likelihood. It follows from Theorem
1.5.1 (and also from Theorem 1.1 of Billingsley 1961) that the joint distribution
of

√
T ( p̂i j − pi j ) i, j ∈ S (written in a suitable vector form) is asymptotically

multivariate normal with the mean vector 0 and variances and covariances given by

V (
√

T ( p̂i j − pi j ) ≈ πi pi j (1 − pi j )

Cov(
√

T ( p̂i j − pi j ),
√

T ( p̂ik − pik)) ≈ −πi pi j pik, j �= k.

Cov(
√

T ( p̂i j − pi j ),
√

T ( p̂lk − plk)) ≈ 0, i f i �= l.

It may be remarked that the likelihood function and hence the variance-covariance
matrix resemble the likelihood function and variance-covariance pattern of M inde-
pendent multinomial distributions respectively.

Goodness of fit of a Markov chain
1. LRT and Pearson’s X2 statistics for testing the order. The first order Markov
property can be judged by testing against the second order. Under the assumption
of the second order, the ML estimate of pi j,k = P[Xt+2 = k|Xt = i, Xt+1 = j] is
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given by p̂i j,k = Ni jk
Ni j+ , where Ni jk = ∑T −2

t=1 I [Xt = i, Xt+1 = j, Xt+2 = k] and

Ni j+ = ∑
k Ni jk . We assume that the vector valued Markov chain {(Xt , Xt+1),

t ≥ 0} is irreducible and aperiodic. Thus, the LRT statistic is given by

2

⎧
⎨

⎩
∑

i jk

Ni jk ln p̂i jk −
∑

i j

Ni j ln p̂i j

⎫
⎬

⎭ ∼ χ2
(M−1)2 M ,

as the difference in the numbers of parameters of the two models is M2(M − 1) −
M(M − 1) = (M − 1)2 M. The corresponding Pearson’s X2-statistic is given by

X2 =
∑

i jk

(Ni jk − Ei jk)
2

Ei jk
where Ei jk = Ni++ p̂i j p̂ jk .

The degrees of freedom are the same as that of the LRT. One can similarly obtain
ML estimates of an L order Markov chain and develop a large sample chi-squared
test for an L-th order Markov chains against a Markov chain of order (L + 1).

2. Estimation of the true order of a Markov chain (Selection of a Markov model).
The above method of testing an order L against L + 1 is sequential in nature. We
continue to test until an r -order model is not rejected against the (r + 1)-th order
model. Since this procedure involves a series of tests to be carried out in a sequential
manner, the probability of selecting the underlying true model (of unknown order)
may not asymptotically converge to 1. A better and theoretically valid procedure
is to apply the information criteria such as akaike’s information criterion (AIC) or
bayes information criterion (BIC) . These are defined below. Let K be the number
of parameters of a model under consideration.

AIC = 2 sup
θ

ln L(θ)− T,

BIC = 2 sup
θ

ln L(θ)− K ln(T ).

Both the log-likelihood and the number K of parameters change from model to model.
We select the model which has the smallest AIC/BIC. Katz (1981) has shown that
the BIC procedure gives a consistent estimator of the true order of a Markov model.
The AIC frequently overestimates the true order. Another advantage of both AIC
and BIC is that they can be applied even if the models are not nested. A construction
of LRT requires the nested property, e.g., the L-th order Markov model is included
in the (L + 1)-th order Markov model.
3. Time homogeneity. The assumption of time homogeneity can be tested by dividing
the data into several non-overlapping blocks of consecutive observations of moderate
length. We then compute p̂i j for each (i, j) obtained from each of such blocks and
plot the estimators against the time. If the transition probabilities vary a lot over
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time, such plots would reveal changes. (A formal test is difficult to construct.) The
procedure can be carried out based on overlapping blocks also.
4. Distribution of patterns. Application of a two-state Markov chain to a sequence of
dry (the state 1) and wet (rainy) (the state 0) days over a monsoon at a place requires
fitting of distributions of lengths of wet and dry cycles or spells. Length of a wet cycle
equals r with probability p00

r−1 p01. Observed distribution of wet cycle lengths can
be compared with the distribution with estimated parameters. Visual inspection of
plots suffices in most of the cases. The Pearson’s X2 statistic can be computed while
comparing with other models. It may be pointed out that the X2 statistic does not
have a chi-square distribution. We refer to Table 2.10 (p. 76) of Guttorp (1995) for
such an application.

2.2 Parametric Models

A parametric model with M states for X is given by specifying pi j as functions of θ ,
a p-dimensional parameter, i.e., as pi j (θ) = Pθ [Xt+1 = j |Xt = i]. The parameter
space is�, an open subset of p-dimensional Euclidean space. We make the following
assumptions.

1. The set D = {(i, j)|pi j (θ) > 0} does not depend upon θ .
2. Each of the functions pi j (θ) is twice differentiable with respect to θr ,

r = 1, 2, . . . , p. The second derivatives are continuous.
3. The appropriately constructed matrix

∂pi j (θ)

∂θr
, (i, j) ∈ D, r = 1, 2, . . . , p of

order d × p is of rank p where d is the number of elements in the set D.
4. ∀θ,X is an irreducible, non-null persistent, aperiodic Markov chain .

The above assumptions can be described as extensions of Cramer regularity
conditions, assumed usually in the case of i.i.d. observations. Let πi (θ) denote
the unique stationary distribution of X. For the time being, we assume that the
chain is in equilibrium, i.e., X0 follows the distribution πi (θ). It is easily seen that
ln L(θ) = ∑

i, j
Ni j ln pi j (θ) + ∑

i
I [X0 = i]πi (θ). We ignore the second term as

before. Consequently, the likelihood equations are given by

∂ ln L(θ)

∂θr
=

∑

(i, j)∈D

∂pi j (θ)

∂θr

Ni j

pi j (θ)
= 0, r = 1, 2, . . . , p.

Further,

∂2 ln L(θ)

∂θr∂θs
=

∑

(i, j)∈D

[
Ni j

pi j (θ)

∂2 pi j (θ)

∂θr∂θs
− Ni j

(pi j (θ))2

∂pi j (θ)

∂θr

∂pi j (θ)

∂θs

]
.

Now, since Ni j = ∑T −1
t=0 I [Xt = i, Xt+1 = j], in view of stationarity, we have
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E(Ni j ) = Tπi (θ)pi j (θ).

Since
∑

j pi j (θ) = 1,
∑
(i, j)∈D πi

∂2 pi j (θ)

∂θr ∂θs
= 0 in view of the regularity conditions.

The Fisher Information Matrix is defined by

I (θ) =
((

lim
T →∞

1

T
E

[
∂ ln L(θ)

∂θr

∂ ln L(θ)

∂θs

] ))
.

In view of the regularity conditions, it is then given by

I (θ) = ((
Irs(θ)

))
,

where

Irs(θ) = −
∑

(i, j)∈D

πi (θ)

pi j (θ)

∂pi j (θ)

∂θr

∂pi j (θ)

∂θs
.

The expected values in the above expressions have been derived with respect to
the joint distribution of (X0, X1) under the assumption of stationarity. Let θ̂ be a
consistent solution of the likelihood equations. It follows that

√
T (θ̂ − θ)

D→ Np

(
0, (I (θ))−1

)
.

An estimator of the Fisher Information matrix is needed in construction of confidence
regions and tests of hypotheses. In practice, it is easier to use the observed Fisher
Information matrix, whose (i, j)-th element is given by

Fi j (θ̂) = − ∂2 ln L(θ)

∂θr∂θs

∣∣∣∣
θ=θ̂

and the corresponding estimator of I (θ) is given by

Î (θ) =
((

Fi j (θ̂)/T
))
.

Another estimator of I (θ) is I (θ̂), which is obtained by replacing θ by θ̂ in I (θ).
However, this requires a theoretical derivation of the expectations involved, which
could be tedious in some cases.

Goodness of fit of parametric finite Markov chain. models: This is similar to
goodness-of-fit procedures for parametric multinomial models. We note that under
H0, X follows the above parametric model, EH0(Ni j ) = Tπi (θ)pi j (θ), the estimate
of which is given by Ei j = Ni+ pi j (θ̂), under H0. Thus, the Pearsonian X2 statistic
is given by
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X2 =
∑

(i, j)∈D

(
Ni j − Ni+ pi j (θ̂)

)2

Ni+ pi j (θ̂)

and its asymptotic null distribution isχ2 with (the number of elements in the set D)−
M − p as the degrees of freedom. The LRT statistic has the same asymptotic distri-
bution, under H0.

One can consider the Q–Q plot of
(

Ni j − Ni+ pi j (θ̂)
)/ √

Ni+ pi j (θ̂) for (i, j) ∈ D

by regrading them observations from N (0, 1). Such a plot may reveal cells which
have a sizable contribute to the LRT or X2, cf. Davison (2003), p. 235.

Testing for sub-models. Under the above stated conditions, we also get the chi-
square distribution of the LRT for the null hypothesis H0 : θ ∈ �0, provided that
the regularity conditions hold for the parameter space �0. The degrees of freedom
for the chi-square are given by the p − p0, where p0 is the number of (distinct)
parameters corresponding to H0.

Example 2.2.1 Consider the two-state Markov chain with its t.p.m. given by

0
1

0 1(
1 − θ θ

θ 1 − θ

)
.

The null parameter space is �0 = (0, 1) and for all θ , D = {(0, 0), (0, 1), (1, 0),
(1, 1)}. The vector of derivatives of the elements of the t.p.m., taken row-wise is
given by (−1, 1, 1, − 1), whose rank is 1. Besides, the chain is irreducible and
aperiodic with (1/2, 1/2) as the unique stationary distribution. It is straightforward
that the MLE is given by θ̂ = (N01 + N10)/T . The asymptotic null distribution of
each of the statistics X2 and LRT is χ2

1 .

Example 2.2.2 Let � = (0, 1) and let the t.p.m. of a Markov chain be given by

(
1 0
θ 1 − θ

)
.

The Markov chain is reducible and not ergodic. One can directly study the behavior
of the MLE and verify that it is not consistent, for any initial distribution.

Example 2.2.3 The hypothesis that X is a sequence of i.i.d. random variables within
the hypotheses that X is a first order Markov chain can be represented as a parametric
model where pi j = π j for all i, j , where

∑
j π j = 1. Obviously, π̂ j = N j/T . The

LRT and the Pearson’s X2 statistics are respectively given by

−2 ln� = −2
∑

i, j

ln

(
T Ni j

Ni N j

)
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X2 =
∑

i, j

(Ni j − Ni N j/T )2

Ni N j/T
.

Under H0, both have a chi-square distribution with M(M − 1)− M − 1 = (M − 1)2

d.f. Similarity with testing for independence in a contingency table is obvious.

Example 2.2.4 Let us suppose that X is a second order Markov chain. (For veri-
fication of various conditions, it may be noted that a second order Markov chain
can be represented as a first order vector-valued Markov chain {Yt , t ≥ 0} where
Yt = (Xt , Xt+1).) Let us assume that pi jk > 0 for all i, j, k. The hypothesis
that {Xt , t ≥ 0} is a first order Markov chain represents a parametric model with
pi jk = p jk for all i, j, k. This justifies the large sample distributions of the two
statistics for testing the first order against ( within) the second order, stated earlier.

Example 2.2.5 Consider the Markov chain with the t.p.m.

1
2
3
4
5

1 2 3 4 5⎛

⎜⎜⎜⎜⎝

0 3/4 0 1/4 0
0 θ 1 − θ 0 0
0 θ/2 1 − θ/2 0 0
0 0 0 1 − θ2 θ2

0 0 0 θ 1 − θ

⎞

⎟⎟⎟⎟⎠
,

where 0 < θ < 1. It is easy to see that there are two persistent and minimal closed
classes viz., {2, 3} and {4, 5}. The state 1 is transient. The regularity conditions in
terms of continuity and differentiability are satisfied. But the probabilistic conditions
of a parametric model are not satisfied. It can be shown that the MLE is consistent,
however its asymptotic distribution is a mixture of two normal distributions, if X0=1.

Example 2.2.6 Testing for a specified stationary distribution

The hypothesis of interest is H0 : πi = πi (0) where πi (0), i = 1, 2, . . . ,M is the
specified stationary distribution of the Markov chain. We construct the LRT for this
problem.
Consider the simple case M = 2 first. Let (π0(0), π1(0)), with π0(0)+ π1(0) = 1,
be the stationary distribution under H0. For the sake of notational convenience, let
us denote the specified stationary distribution by (π0, π1). The log-likelihood

N00 ln p00 + N01 ln p01 + N10 ln p10 + N11 ln p11

needs to be maximized subject to the constraints that
(1) π0 p00 + (1 − π0)p10 = π0
(2) π0(1 − p01)+ (1 − π0)(1 − p11) = 1 − π0.
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However, since p00 + p01 = 1 and p10 + p11 = 1, we need to consider only one
of these two constraints. We take the constraint (1). By the Lagrange’s multiplier
theorem, we set

g = N00 ln p00 + N01 ln(1 − p00)+ N10 ln p10 + N11 ln(1 − p10)

+ λ(π0 p00 + (1 − π0)p10 − π0).

Then, we have the following equations to get ML estimator under H0

∂g

∂p00
= N00

p00
− N01

1 − p00
+ λπ0 = 0.

∂g

p10
= N10

p10
− N11

1 − p10
+ (1 − π0)λ = 0.

∂g

∂λ
= π0 p00 + (1 − π0)p10 − π0 = 0.

The above system can be solved by an iterative scheme. For an M state Markov
chain, we set

g =
M∑

i, j=1

Ni j ln pi j +
M−1∑

i=1

λi

⎛

⎝π0i −
M∑

j=1

π0 j p ji

⎞

⎠ +
M∑

i=1

ηi

⎛

⎝
M∑

j=1

pi j − 1

⎞

⎠ ,

where λi ’s and η j ’s are the Lagrangian parameters. The LRT has a large sample
χ2

M−1 distribution, under H0.

Another strategy is to construct the Wald’s test . We compute the stationary distribu-
tion of P̂ , the MLE of P and compare it with πi (0). Let π̂i , i = 1, 2, . . . ,M be the
stationary distribution of P̂ . To construct the Wald’s test for H0, we need to compute
the variance-covariance matrix of π̂i , i = 1, 2, . . . ,M .
There are three vectors to be compared: the observed proportions of various states,
π̂i , i = 1, 2, . . .M (the stationary distribution of P̂) and πi (0). The first vector is
almost the same as the stationary distribution of P̂ for a large T .
It is more convenient to construct a Wald’s test based on a quadratic form in observed
proportions of various states. Let Ut (i) = I [Xt = i], i = 1, 2, . . . ,M, t =
1, 2, . . . , T . Then, π̃i = ŪT (i)= ∑T

t=1 I [Xt = i]/T . Let p(t)i j = P[Xt = j | X0 = i]
denote a t-step transition probability. Then,

Cov
(
ŪT (i), ŪT ( j)

) = 1

T 2

T∑

s=1

T∑

t=1

Cov(Us(i),Ut ( j))

= 1

T 2

T∑

s=1

T∑

t=1

[
πi p(|t−s|)

i j − πiπ j

]
.
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The stationary probabilities can be estimated by the observed proportions π̃i ’s.
Powers of P̂ can be used to estimate p(t)i j ’s in the above.
Another and possibly simpler procedure to estimate the above variances and covari-
ances is as follows. In view of the stationarity, the covariance Cov(Us(i),Ut ( j)) is
a function of |t − s| only. Consider then Cov(U1(i),Ud( j)), d ≥ 1 which can be
estimated by

Ĉov(U1(i),Ud( j)) = 1

T − d − L

T −d−L∑

s=1

(
Us(i)− Ū (1, i)

) (
Us+d+L( j)− Ū (2, j)

)
,

(2.1)

where Ū (1, i)= 1
T −d−L

∑T −d−L
s = 1 Us(i) and Ū (2, j)= 1

T −d−L

∑T −d−L
s = 1 Us+d+L( j)

and L = L(T ) is a sequence of integers such that L → ∞ and
√

L/T → 0.
In practice, for large T , the two means Ū (1, i) and Ū (2, j) can be replaced by
the mean of all the observations, however, in such a case, it is possible that for
some samples, the corresponding estimator of the variance-covariance matrix of(
ŪT (1), ŪT (2), . . . , ŪT (M)

)
is not non-negative definite. We notice that the above

estimator does not depend on the assumed Markov model and it can be shown to be
consistent for sequences more general than Markov chains. Under the assumption
that the covariances of larger lags are negligible, it focuses on the more dominant
terms of the covariance. It is a special case of estimators that we discuss in some more
detail in Sect. 6.6. Under the assumptions that we have made, the Markov chain is
geometrically ergodic (i.e., |p(t)i j −π j | < Cρt , 0 ≤ ρ < 1). As remarked in Example
1.3.2, it is Geometrically Strong Mixing ( It can be shown that such an estimator of
the variance is consistent, cf. Theorem 6.6.1).
Let �̂ be a consistent estimator of the variance covariance of the vector of observed
proportions of states �̃ = (π̃1, π̃2, . . . , π̃M )

′ and let �(0) = (π1(0), π2(0), . . . ,
πM (0))′. Then, the Wald test-statistic is given by

X2 = T
(
�̃−�(0)

)′
�̂+ (

�̃−�(0)
)
, (2.2)

where A+ denotes the Moore-Penrose g-inverse of a matrix A. Under H0, the test-
statistic X2 has asymptotically a χ2

M−1 distribution under H0.

Markov chains with infinitely many states
We take the state-space as S = {0, 1, 2, . . .}. Under the assumptions of Theorem 1.1
of Billingsley (1961), it follows that there is a consistent solution of the likelihood
equations which is asymptotically normal with mean vector 0 and the variance-
covariance matrix [I (θ)]−1.

Example 2.2.7 Poisson Markov Sequence
A Poisson-Markov sequence {Xt , t = 0, 1, . . .} is defined as follows:

http://dx.doi.org/10.1007/978-81-322-0763-4_6
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A1. {Yt , t = 0, 1, . . .} is a sequence of i.i.d. Poisson random variables with
E(Y0) = λ.

A2. P[Zt+1 = z|Xt = x, ...] =
(

x
z

)
pz(1 − p)x−z

A3. Yt is independent of X0, X1, . . . , Xt−1, Z0, Z1, . . . , Zt , for each t .
A4. Xt+1 = Zt+1 + Yt+1.

In applications of a Poisson Markov sequence, Xt stands for the total number
of members of the population at time t and Yt are new recruits or newly joining
members, whereas the random variable Zt denotes survivors from the earlier day.
Assumption A2 is equivalent to the assumption that an existing member survives for
yet another time unit with probability p, irrespective of its age and independently
of other members of the population. Assumption A3 says that Yt , the number of
new arrivals, is independent of the existing and past members (density-independent
recruitment). This is, in fact, a discrete version of the M |M |∞ queuing system.
It follows that the one-step transition probability is given by

pi j = P[Xt+1 = j |Xt = i] =
min(i, j)∑

z=0

(
i
z

)
pz(1 − p)i−z e−λλ j−z

( j − z)!

We notice that pi j > 0 ∀ (i, j), thus the Markov chain is irreducible and aperiodic.
Further, pi j is thrice differentiable in p and λ.

Now,
E(Xt+1|Xt ) = E(Zt+1 + Yt+1|Xt ) = pXt + λ.

If we assume that the process is stationary, E(Xt+1) = E(Xt ) = μ (say), which
implies that μp +λ = μ or μ = λ/(1 − p). A similar argument for variance implies
that Var(Xt ) also equals μ for all t , if we assume stationarity. This suggests that the
stationary distribution of the process is Poisson with mean μ. This is proved based
on the following result, which is easy to prove.

Lemma 2.2.1 If U has a Poisson distribution with mean λ, and if the distribution
of V given U = u is Binomial(u, p) then V is Poisson with mean λp (if U = 0, we
define V = 0).

We recall the following well-known result for Markov chains.

Theorem 2.2.1 A Markov chain {Xt , t = 0, 1, . . .} is strictly stationary, if and only
if, X0 and X1 are identically distributed. Their common distribution is a stationary
distribution .

Proof Let P[X0 = j] = p j , j ∈ S. Then, P[X1 = j] = ∑
i P[X0 = i, X1 =

j] = ∑
i pi pi j . That is, p j = ∑

i pi pi j ∀ j , which satisfies the Definition 1.1.4 of
a stationary distribution.

Now suppose that X0 ∼ Poisson(η). Therefore, X1 ∼ Poisson(ηp + λ) by the
Lemma and the Assumptions A1 and A2. Then X0 and X1 are identically distributed
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if and only f η = ηp + λ. Thus, if η = λ/(1 − p), the stationary distribution of
the process is Poisson with mean μ = λ/(1 − p). Hence, the process is non-null
persistent for all λ, p. We thus see that all the assumptions of a parametric model
are satisfied.
Case I. Suppose {Xt ,Yt }, t = 0, 1, . . . , T are both observed. In this case, maximum
likelihood estimation of parameters is very easy to carry out.
Case II. Now suppose that only Xt ’s have been observed. We re-parametrize the
model in terms ofμ and p. In this case, one can show that X̄ is a good approximation
to the MLE of μ (see Guttorp (1995), page 100). Estimation of p needs to be carried
out by using iterative numerical procedures, such as Newton-Raphson. The Fisher
Information matrix is rather involved and we may use the matrix F̂ as its estimator.

2.3 Extensions of Markov Chain Models

Models based on the Logistic Regression.
Consider a two-state Markov chain. Let us write

ln
P[Xt+1 = 1|Xt = 0]
P[Xt+1 = 0|Xt = 0] = β0 (base-line probability)

and ln
P[Xt+1 = 1|Xt = 1]
P[Xt+1 = 0|Xt = 1] = β0 + β1.

The t.p.m. can be written as

P =
⎛

⎝
1

1+eβ0
eβ0

1+eβ0

1
1+eβ0+β1

eβ0+β1

1+eβ0+β1

⎞

⎠ .

Though this appears to be only a re-parametrization, it serves to be useful and
convenient. The above model in a compact form is written as

ln
P[Xt+1 = 1|Xt ]
P[Xt+1 = 0|Xt ] = β0 + β1 Xt .

The second order Markov chain with two states is modeled as

ln
P[Xt+1 = 1|Xt , Xt−1]
P[Xt+1 = 0|Xt , Xt−1] = β0 + β1 Xt + β2 Xt−1.

The number of parameters in the above model is 3, whereas the saturated second
order two-state Markov chain has 4 parameters. However, it must be pointed out that
in such a model, unlike the saturated model, the transition probabilities are functions
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of the coding or numerical labels used to denote states of the chain. If the state-space
refers to say linguistic classes, such as consonants and vowels, the above model need
not be realistic.
An L order Markov Chain can be similarly defined by

ln
P[Xt = 1|Xt−1, Xt−2, . . . , Xt−L ]
P[Xt = 0|Xt−1, Xt−2, . . . , Xt−L ] = β0 +

L∑

l=1

βl Xt−l .

The above model has L+1 parameters as opposed to the saturated model which has 2L

parameters. A further advantage of such an approach is that we can incorporate time-
dependent regressors also. Let {zt } be the sequence of values of regressors (possibly
vector valued). Either the sequence {zt } is deterministic or if it is stochastic, the
model is a conditional one. We write

ln
P[Xt = 1|Xt−1, Xt−2, . . . , Xt−L , zt ]
P[Xt = 0|Xt−1, Xt−2, . . . , Xt−L , zt ] = β0 +

L∑

l=1

βl Xt−l + γ ′zt .

A major advantage of this approach is that we can use any statistical package which
analyzes logistic regression models.
M state L order Markov chain it based on Polytomous regression model. The logistic
regression model for two categories can be extended to several categories, which
is known as polytomous or multinomial (logistic) regression model. A polytomous
regression model can be used to define an L order Markov chain with M states. Let
P̃[X L+1 = i] = P[X L+1 = i |X1, X2, . . . , X L ], i = 1, 2, . . . ,M . Then,

ln
P̃[X L+1 = i]

P̃[X L+1 = M] = β0i + β1i X1 + · · · + βLi X L , i = 1, 2, . . . ,M − 1.

P̃[X L+1 = M] = 1

1 + ∑M−1
i=1

∑L
�=1 exp{β0i + β�i X�}

.

The above model has (L + 1)(M − 1) parameters, far less than the corresponding
saturated L-order model, which has M L(M − 1) parameters. Thus, such a model
has the advantage of having less parameters and any software which analyzes the
polytomous logistic regression data can be easily used to get the maximum likelihood
estimators and estimators of their asymptotic variance-covariance matrix. Most of the
packages include tests for significance of regression parameters. Such procedures can
be used for testing of an order of a Markov chain . Analysis of higher order Markov
chain models can also be carried out based on log-linear contingency table models,
see Davison (2003).

Raftery’s Mixture Transition Distribution Model
As observed earlier, a higher order M-state Markov chain model has too many
parameters. An important higher order model with a significantly less number of
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parameters is due to Raftery (1985) and it is known as the Mixture Transition Dis-
tribution (MTD) model . The MTD model of order L is defined by

P[Xt = xt |Xt−1 = xt−1, . . . , Xt−L = xt−L , . . . , X1 = x1, X0 = x0]

=
L∑

l=1

λl pxt−l xt ,

whenever the conditional probability on the left-hand side is defined. In the above,
P = ((pi j )) is an M × M stochastic matrix and {λl , l = 1, 2, . . . , L} constitutes
a probability distribution. A probabilistic interpretation of the above model is as
follows. Nature chooses the lag l with probability λl . If the chosen lag is r and if
Xt−r = i , the conditional probability of Xt = j given the chosen lag and the entire
past is pi j . The number of parameters of an MTD model of order L is (L − 1) +
M(M − 1), far less than the corresponding saturated model which has M L(M − 1)
parameters. Adke and Deshmukh (1988) have shown that, if the matrix P is positively
regular, i.e., if there exists a t such that all the elements of Pt are positive, the MTD
model has the property that P[Xt+s = j |Xs = i] converges to π j , as t → ∞
for every i, j , where π j is, in fact, the unique stationary distribution of a Markov
chain whose one-step t.p.m. is given by P . If X0 follows the distribution π j , the
MTD model is stationary with π j as the common distribution of Xt for all t . This
result is useful in establishing properties of the MLE. Further, the MTD model is
a parametric Markov model of order L and it can be shown to satisfy the Cramer
regularity conditions . For a detailed discussion of MTD models including numerical
procedures for estimation of parameters, we refer to Berchtold and Raftery (2002).

2.4 Hidden Markov Chains

Let {Yt , t ≥ 1} be a stationary, irreducible, and aperiodic Markov chain on the state-
space {1, 2, . . . ,M} with P as the one-step t.p.m. and {πi , i = 1, 2, . . . ,M} as the
unique stationary distribution. The chain {Yt , t ≥ 1} is not observable. We observe
the process {Xt , t ≥ 1}, the state-space of which is {1, 2, . . . , N }. The conditional
distribution of Xt is given by

P[Xt = k|Yt = j, Yt−1, . . . Y1, Xt−1, Xt−2, . . . , X1] = P[Xt = k|Yt = j] = q jk,

where Q = ((q jk)) is an M × N matrix. The random sequence {Xt , t ≥ 1} on
the state-space {1, 2, . . . , N } is known as a Hidden Markov chain. (In literature,
{(Xt ,Yt )t ≥ 1} is sometimes described as a Hidden Markov chain.) In general,
{Xt , t ≥ 1} does not satisfy Markov property. There are three important issues to be
addressed.

(1) To derive likelihood function, i.e., P[X1 = x1, X2 = x2, . . . , XT = xT ].
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(2) To carry out state estimation, i.e., to derive the predictive distribution of the
underlying chain :

P[Yt = yt |X1 = x1, . . . , XT = xT ], t = 1, 2, . . . , T .

Prediction of YT + j , j ≥ 1 may also be of interest.
(3) To carry out maximum likelihood estimation of the two unknown matrices P

and Q

It is easy to see why (1) is involved: the likelihood function is a sum over T
variables which correspond to the unobserved states of Yt , t = 1, 2, . . . , T . However,
there exist recursive algorithms for (2) and (3) above, which are easy to implement.

Forward Algorithm. Define

αi (t) = P[X1 = x1, . . . , Xt−1 = xt−1,Yt = i], t = 2, 3, . . . , T, i = 1, 2, . . . ,M,

αi (1) = P[Y1 = i] = πi .

The last equation defines the initialization of the algorithm. If any of the event
X1 = x1, . . . , Xt−1 = xt−1 is not well-defined, we take that event as � instead of
φ, the empty set. In a recursive algorithm, we assume that αi (1) are given for all i
and find αi (t) for ∀ i and ∀ t = 2, · · · , T . We further define

αi (T + 1) = P[X1 = x1, X2 = x2, . . . , XT = xT ,YT +1 = i].

Then, it is easily seen that the likelihood function is given by

P[X1 = x1, X2 = x2, . . . , XT = xT ] =
M∑

i=1

αi (T + 1). (2.3)

Next, by the defining properties of the two processes, we get

αi (2) = P[X1 = x1,Y2 = i]

=
M∑

j=1

P[X1 = x1,Y1 = j,Y2 = i]

=
M∑

j=1

α j (1)q j x1 p ji .

In general,

αi (t + 1) =
M∑

j=1

α j (t)q j xt p ji . (2.4)
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Next, we discuss the following Backward algorithm.

Backward Algorithm. Let

βi (t) = P[Xt = xt , . . . , XT = xT |Yt = i], t = 1, 2, . . . , T, i = 1, 2, . . . ,M,

βi (T + 1) = 1.

We note that

βi (1) = P[X1 = x1, . . . , XT = xT |Y1 = i]
βi (1)πi = P[X1 = x1, . . . , XT = xT ,Y1 = i],
βi (T ) = P[XT = xT |YT = i] = qixT .

The Backward algorithm involves expressing βi (t) in term of (βi (t + 1), . . . ,
βM (t + 1)). We observe that

βi (t) = P[Xt = xt , . . . , XT = xT |Yt = i]
= P[Xt = xt , . . . , XT = xT ,Yt = i]/πi .

Then, from the properties of the Hidden Markov chain,

βi (t) =
M∑

j=1

P[Xt = xt , Xt+1 = xt+1, . . . , XT = xT ,Yt+1 = j |Yt = i]

=
M∑

j=1

P[Xt = xt , Xt+1 = xt+1, . . . , XT = xT ,Yt = i,Yt+1 = j]/P[Yt = i]

=
M∑

j=1

P[Yt = i, Xt = xt ,Yt+1 = j, Xt+1 = xt+1,

Xt+2 = xt+2, . . . , XT = xT ]/P[Yt = i]

=
M∑

j=1

P[Yt = i]P[Xt = xt |Yt = i]P[Yt+1 = j |Xt = xt ,Yt = i]

P[Xt+1 = xt+1, . . . , XT = xT |Yt+1 = j, Xt = xt ,Yt = i]/P[Yt = i]

=
M∑

j=1

qixt pi jβt+1( j).
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Let X = (X1, X2, . . . , XT ) and x = (x1, x2, . . . , xT ). Combining Backward and
Forward Algorithms, we have

P[X1 = x1, . . . , Xt = xt , Xt+1 = xt+1, . . . , XT = xT ,Yt = i]
= P[X1 = x1, . . . ,Yt = i, Xt = xt , Xt+1 = xt+1, . . . , XT = xT ]
= P[X1 = x1, . . . , Xt−1 = xt−1,Yt = i]

× P[Xt = xt , Xt+1 = xt+1, . . . , XT = xT |Yt = i]
= αi (t)βi (t).

Thus,
P[X = x,Yt = i] = αi (t)βi (t)

and therefore,

P[X = x] =
M∑

i=1

αi (t)βi (t).

Now, if we had observed Y1, . . . ,YT also, the ML estimates of pi j and qik would

have been p̂i j =
∑

t I [Yt =i,Yt+1= j]∑
t I [Yt =i] (cf. Sect. 1.1) and q̂ik =

∑
t I [Yt =i,Xt =k]∑

t I [Yt =i] respec-
tively. The Baum-Welsch algorithm which we discuss below, computes conditional
expectation of I [Yt = i,Yt+1 = j] and I [Yt = i, Xt = k] given the observations X.
We have

pt (i, j) = P[Yt = i,Yt+1 = j |X = x]
= P[Yt = i,Yt+1 = j,X = x]

P[X = x] .

Now, from the properties of a Hidden Markov chain,

P[Yt = i,Yt+1 = j,X = x]
= P[X1 = x1, . . . , Xt−1 = xt−1,Yt = i, Xt = xt ,Yt+1 = j,

Xt+1 = xt+1, . . . , XT = xT ]
= αi (t)qixt pi jβ j (t + 1).

Hence, the likelihood is given by

P[X = x] =
M∑

�=1

M∑

k=1

α�(t)q�xt p�kβk(t + 1).

and

http://dx.doi.org/10.1007/978-81-322-0763-4_1
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pt (i, j) = αi (t)qixt pi jβ j (t + 1)
∑M
�=1

∑M
k=1 α�(t)q�xt p�kβk(t + 1)

. (2.5)

We may observe that the likelihood is also given by

L(P, Q) = P[X1 = x1, . . . , XT = xT ] =
M∑

i=1

βi (1)πi . (2.6)

We do not use the likelihood (2.3) or (2.6) for ML estimation, however, it is needed
while comparing the Hidden Markov model with competing models. The recursive
algorithm is as follows. The current estimate of pi j is given by

p̂i j =
∑

t pt (i, j)∑
j
∑

t pt (i, j)
.

Let

γi (t) =
M∑

j=1

pt (i, j)

be the probability that the state i is observed at time t . Let A(k) = {t |I [Xt = k]}.
The current estimate of qik is then given by

q̂ik =
∑N

t∈A(k) γi (t)
∑N

t=1 γi (t)
. (2.7)

We begin the algorithm with arbitrary estimates of the matrices P and Q and update
their values as given above. The procedure continues until successive values differ
by a pre-assigned tolerance. The algorithm is known as Baum-Welch or Forward-
Backward algorithm. It is, in fact, one of the early versions of the EM algorithm,
frequently used in the context of incomplete observations or samples with miss-
ing data.
For State Estimation, we need to obtain

arg max
y1,...,yT

P[Y1 = y1, . . . ,YT = yT |X1 = x1, . . . , XT = xT ].

= arg max
y1,...,yT

P[Y1 = y1, . . . ,YT = yT , X1 = x1, . . . , XT = xT ].

To do so, we apply the Viterbi Algorithm which is also recursive in nature. Let

δ j (t) = max
y1,y2,...,yt−1

P[Y1 = y1, . . . , Yt−1 = yt−1, Yt = j, X1 = x1, . . . , Xt−1 = xt−1].

The initialization is carried out by
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δ j (1) = π j , j = 1, 2, . . . ,M,

the stationary distribution of the chain {Yt , t ≥ 1}. It can be shown that

δ j (t + 1) = max
i=1,2,...,M

[δi (t)pi j q j xt ].

Now, let
ψ j (t + 1) = arg max

i=1,2,...,M
[δi (t)pi j q j xt ].

The variable ψ j (t) records the “node of the incoming arc” that has resulted in this
most probable path. The algorithm terminates with

ŶT +1 = max
i=1,2,...,M

δi (T + 1)

and
Ŷt = ψŶt+1

(t + 1),

which are predictors of Y1,Y2, . . . ,YT . In the above algorithm, if there are ties, we
break them randomly. Also, the algorithm assumes that the model parameters are
known. In practice, it is implemented by replacing the unknown parameters (P, Q)
by their MLEs.
The above discussion of the Backward-Forward algorithm is based on Manning and
Schütze (1999). We refer to MacDonald and Zucchini (1997) for a thorough account
of Hidden Markov processes on general state-spaces and their applications.

2.5 Aggregate Data from Finite Markov Chains

Model I. Here, we observe N i.i.d. finite Markov chains, each having the t.p.m. P .
At each time unit t = 1, 2, . . . , T , we observe the number of Markov chains in the
state i . However, transitions from a state i to a state j of these individual Markov
chains are not available. Let N (t, i) = Number of units or Markov chains in the state
i at time t .

Notice that
∑

i N (t, i) = N ∀t. It is easy to see that

E[N (t, j)|N (t − 1, 1), . . . , N (t − 1,M)] =
M∑

i=1

N (t − 1, i)pi j .

This leads to a regression model, where the vector Y is the responses N (t, j)’s for
t = 2, 3, . . . , N and j = 1, 2, . . . ,M . The regression vector β is the transition
probabilities pi j ’s written in a conveniently chosen column form. Random variables
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N (t − 1, i)’s act as regressors to lead to a regression setup E[Y ] = Xβ, in standard
notations of regression analysis. We then have the Ordinary Least Square(OLS)
estimator β̂ = (X ′ X)−1 X ′Y . (One may take only the first M − 1 elements of each
row of P and N (t, i) for i = 1, 2, . . . ,M − 1). We note that variances of the
response variables are not the same, also, they are not independent. We then need to
consider the Weighted Least Squares (WLS). Both OLS and WLS estimators ignore
the property that the transition probabilities are non-negative. ( It is known that the
OLS satisfies the condition that each of the row sum is 1, ( cf. Lee et al. (1970),
p. 34)) Thus, a better strategy is to minimize

(Y − Xβ)′(Y − Xβ)

subject to the constraints (i) pi j ≥ 0, ∀ (i, j) (ii)
∑M

j=1 pi j = 1 ∀ i . This is a
constrained optimization problem (in fact, a Quadratic Programming Problem) and
it can be shown to have a unique solution. A software package such as MATLAB or
GAUSS can be used to get a solution to the optimization problem.
It can be shown that the sequence of M ×1 random vectors {(N (t, 1), . . . , N (t,M)),
t ≥ 1} forms a Markov chain. Further, the conditional distribution of the random
vector (N (t, 1), N (t, 2), . . . , N (t,M)) is a multinomial distribution with parameters
N and the cell probabilities

∑
i (N (t − 1, i)/N )pi1,

∑
i (N (t − 1, i)/N )pi2, . . . ,∑

i (N (t − 1, i)/N )pi M . Verification of the regularity conditions is straightforward.
Model II. It is not necessary that we observe the same N individuals throughout.
Thus, at each time, we observe N (t, i), i = 1, 2, . . . ,M and

∑
i N (t, i) = N (t)

which need not be the same for all t . Technically, the T random vectors

{N (1, 1), . . . , N (1,M)}, {N (2, 1), . . . , N (2,M)}, . . . , {N (T, 1), . . . , N (T,M)}

are independently distributed. Now,

E[N (t + 1, j)] =
∑

i

πt,i pi j ,

where πt,i is the probability that a randomly chosen person (at time t) is in the
state i . This is a case of moment estimation, where we first estimate πt,i by the
observed proportions N (t, i)/N (t). Replacing this estimate in the above, we again
get the situation similar to Model I and employ the LSEs. Lee et al. (1970) have an
extensive review of the various methods to estimate the transition probabilities.

In each of the above cases, we can allow either T to tend to ∞ or N (t) to tend to
∞ for each t (or both). In either case, it can be shown that LSE/MLE is consistent
and asymptotically normal with appropriate norming. When the process reaches
equilibrium, for large N , the relative frequencies of M states at time t are close to the
unique stationary distribution and therefore to each other. Since they act as regressors,
the matrix X of the above regression model turns out to be nearly singular. This
leads to a multi-collinearity problem. Inderdeep Kaur and Rajarshi (2012) discuss



38 2 Markov Chains and Their Extensions

ridge-regression estimators which offer a considerable improvement over the LSE
in terms of the total mean squared error.

Books by Guttorp (1995), Davison (2003) (Chap. 6) and Lindsey (2004) are good
sources of inference in Markov chains and related topics.
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Chapter 3
Non-Gaussian ARMA Models

Abstract We discuss stationary AR and ARMA time series models for sequences
of integer-valued random variables and continuous random variables. Stationary
distribution of these models is non-Gaussian. Such models can be broadly described
as extensions of Gaussian ARMA models, which have been very widely discussed
in the time series literature. These non-Gaussian AR models share two important
properties with a linear AR(1) model: (i) the conditional expectation of Xt is a
linear function of the past observation and (ii) the auto-correlation function (ACF)
has an exponential decay. However, the conditional variance of an observation is
frequently a function of the past observations. These models are formed so as to
have a specific form of the stationary distribution. Stationary distributions include
standard discrete distributions such as binomial, geometric, Poisson, and continuous
distributions such as exponential, Weibull, gamma, inverse Gaussian, and Cauchy.
In some cases, maximum likelihood estimation is tractable. In other cases, regularity
conditions are not met. Estimation is then carried out based on properties of the
marginal distribution of the process and mixing properties such as strong or φ-mixing
are useful to derive properties of the estimators.

3.1 Integer Valued Non-Negative Auto-Regressive Models

We begin with the definition of a thinning operator.

Definition 3.1.1 Let ρ ∈ [0, 1) and let X be a non-negative integer valued random
variable. Then ρ ◦ X = Binomial(X, ρ) defines a thinning operator ρ ◦ X . If
X = 0, ρ ◦ X = 0.

We notice that ρ ◦ X defines a conditionally Binomial random variable. The Integer
Non-negative AR(1) (INAR(1)) sequence, introduced by Al-Osh and Alzaid (1987)
is defined as follows.
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Definition 3.1.2 INAR(1) Sequence. Let {εt , t ≥ 1} be a sequence of i.i.d.
non-negative integer valued random variables, assumed to be independent of X0.
The INAR(1) sequence is defined by

Xt = ρ ◦ Xt−1 + εt , t ≥ 1.

We write ρ̄ = 1 − ρ, λ = E(ε1) and η2 = Var(ε1), which is assumed to be finite.
The conditional mean and conditional variance of Xt given the past are given by

E[Xt |Xt−1] = ρXt−1 + λ, Var(Xt |Xt−1) = ρρ̄Xt−1 + η2.

The INAR(1) sequence is Markovian and it is stationary, if Y = ∑
s ρ

s ◦ εs is
a proper random variable and if X0 has the same distribution as that of Y . The
INAR(1) sequence is weakly stationary with

E(Xt ) = λ

ρ̄
, Var(Xt ) = ρλ+ η2

1 − ρ2 .

It can be shown that the ACF of the sequence is {ρt , t ≥ 0}. The sequence does not
admit negative correlations of any lag.

Example 3.1.1 Poisson Markov sequence (Example 2.2.7)
The Poisson Markov sequence is INAR(1) sequence with the distribution of ε as
Poisson(λ).

Example 3.1.2 Geometric AR sequence
Let {It , t ≥ 1} and {Et , t ≥ 1} be independent sequences of random variables.
Each of these sequence is a sequence of non-negative integer valued i.i.d. random
variables. Let It be a Bernoulli random variable with E(It ) = ρ and let Et be a
geometric random variable with parameter θ , the probability of “success". Then, the
INAR(1) sequence has a geometric stationary distribution if and only if εt has a distri-
bution which is the same as that of It Et . The first two conditional and unconditional
moments can be simplified in terms of those of a geometric random variable. Let θ̄ =
1 − θ. The one-step transition probability of the Geometric INAR(1) sequence is
given by

pxy =

⎧
⎪⎨

⎪⎩

ρ̄θ̄
y−1∑
k=0

(x
k

)
ρk(ρ̄θ)x−k + (x

y

)
ρ y+1(ρ̄)x−y, y ≤ x

ρ̄θ̄θ y−x (ρ + ρ̄θ)x , y > x .

The above process was introduced and studied by McKenzie (1985, 1986).
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In general, to define a stationary process with the p.g.f. PX (s) of the stationary
distribution, Pε(s), the p.g.f. of εt , needs to satisfy the identity

Pε(s) = PX (s)

PX (1 − ρ + ρs)
.

Example 3.1.3 Negative Binomial AR sequence
An INAR(1) sequence with a Negative Binomial distribution as the stationary dis-
tribution is defined by

Pε(s) =
(
λ+ ρs

λ+ s

)β
,

for λ > 0, β > 0. The p.g.f. of the marginal distribution of X1 is given by
(λ/(λ+ρs))β . The transition probabilities can be obtained in terms of the Binomial
probabilities and the probability distribution of ε.
A detailed analysis of the above examples can be found in McKenzie (1986). A
variation of the above type of AR models is described in the following example.

Example 3.1.4 Binomial Markov sequence
A Binomial Markov sequence is defined by

X0 ∼ Binomial(N , p)

Xt = ρ ◦ Xt−1 + β ◦ (N − Xt−1), t ≥ 1,

whereβ = (1−ρ)p/(1−p), ifβ ≤ 1, cf. McKenzie (1985). Ifβ > 1, we interchange
the role of p and ρ. It is easy to see that the stationary distribution of the sequence is
Binomial(N , p). This Markov chain corresponds to the grouped data with the two
states 0 and 1 and N i.i.d. two state Markov chains. The random variable Xt refers
to the number of individuals in state 1 at time t . The one-step t.p.m. can be found
easily.
The above models are Markovian of order one and in each case, the transition prob-
abilities are easily found. Regularity conditions discussed in the Chap. 2 are also
satisfied and thus we carry out ML estimation.

3.2 Auto-Regressive Models for Continuous Random Variables

Let us consider an auto-regressive equation

Xt = ρXt−1 + εt ,

for t ≥ 1. It is assumed that both Xt and εt are non-negative random variables.
We specify a continuous probability distribution for the stationary distribution of

http://dx.doi.org/10.1007/978-81-322-0763-4_2
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the above sequence and we seek whether there exists an appropriate innovation
distribution. Let φε(s) and φX (s) be the Laplace transforms of εt and Xt respectively.
Under the assumption of independence of εt and Xt−1, we have

φX (s) = φX (ρs)φε(s). (3.1)

A stationary sequence exists, if the unique solution of the above equation in φε(s) is
a proper Laplace transform.

Example 1 Inverse Gaussian AR sequence
Here, we define an Inverse Gaussian p.d.f. by

f (x, μ, λ) =
(

λ

2πx3

)1/2

exp

(−λ(x − μ)2

2μ2x

)
, x > 0; μ > 0, λ > 0.

The Laplace transform of the above distribution is given by

φX (s) = exp

{
λ

μ

(
1 −

(
1 + 2μ2s

λ

)1/2
)}

.

Pillai and Satheesh (1992) have proved that in this case, φε(s) = φX (s)/φX (ρs)
is the Laplace transform of a proper distribution for every ρ ∈ [0, 1]. The Laplace
transform of the corresponding innovation distribution is given by

φε(s) = exp

[
− λ

μ

{(
1 + 2μ2

λ

)1/2

−
(

1 + 2ρμ2

λ

)1/2
}]

.

There is no closed form for the p.d.f. which is obtained by inverting the above
Laplace transform. Abraham and Balakrishna (1999) discuss the special case when
μ → ∞ in the above. In this special case, the Laplace transform φε(s) is given by
exp {−√

(2λs)} and the corresponding transition p.d.f. is given by

f (y|x) =
{[

λ(1−√
ρ)2

2π(y−ρx)3

]1/2
exp

[
−λ(1−√

ρ)2

2(y−ρx)

]
, y ≥ ρx

0, otherwise.
(3.2)

The range of Xt+1 depends upon both ρ and Xt and the regularity assumptions are
not met. However, non-negativity of innovations suggests the following estimator

ρ̂ = min
1≤t≤T

Xt

Xt−1
,

which has been studied by Feigin and Resnick (1992). Their main theorem is as
follows.
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Theorem 3.2.1 (Feigin and Resnick 1992). Let {Xt , t ≥ 1} be a stationary process
defined by Xt = ρXt−1 + εt , where ρ ∈ [0, 1) and {εt , t ≥ 1} is a sequence of i.i.d.
non-negative random variables. Let G be the d.f. of ε1. Assume that the followings
hold.
A1. For some η > 0,

lim
s→∞

1 − G(sx)

1 − G(s)
= x−η

A2.
E

[
ε
−β
1

]
< ∞ for some β > η.

Then P[b(T )(ρ̂ − ρ) > x] → exp[cx−η] as T → ∞, where

b(T ) = [1/(1 − G)] ∗ (T ), (H ∗ (T ) = inf{x |H(x) ≥ T }),

and c is given by

c =
∞∫

0

[
1 −

∞∏

n=0

(
1 − G(ρns)

)
]
ηs−η−1ds.

Abraham and Balakrishna (1999) point out that for the model (3.2) the assumption
A1 is satisfied with η = 1/2. Moreover, since 1/εt has a gamma distribution, all
the moments are finite and A2 is satisfied. However, it is difficult to identify the
limiting distribution. They, therefore, develop an estimator of λ which is based on
the empirical Laplace transform of the marginal distribution of X1. Its CAN property
is established by applying mixing properties of the sequence and the Theorem 1.3.4.
We can develop models based on the characteristic functions instead of Laplace
transforms. If |ρ| < 1 in and if we allow φ(τ) to denote the characteristic function
instead of the Laplace transform in (3.1) φX (τ ) = φX (ρτ)φε(τ ).

Example Cauchy Auto-regressive sequence
With φX (τ ) = exp(−δ | τ |), we have φε(τ ) = exp

( − δ(1− | ρ |) | τ | )
. Thus,

innovations also have a Cauchy distribution. The transition density is also Cauchy
with location ρXt−1 and scale δ(1− | ρ |). However, the likelihood analysis seems
to be cumbersome. It is also not clear whether various regularity conditions are met.
Applying the results of Athreya and Pantula (1986a,b); Balakrishna and Nam-
poothiri (2003) show that the Cauchy AR sequence is GSM . They suggest

√
T -

CAN estimator of δ based on the fact that P[| X1 |≤ x] = (2/π) tan−1(x/δ)
and the strong mixing properties. Further, applying the general results regarding
ρ̂ = ∑

t Xt Xt−1/
∑

t X2
t−1, the sample auto-correlation of lag 1, it is shown that

ρ̂ → ρ in probability and that as T → ∞,
√

T/ ln T (ρ̂ − ρ) has a non-trivial
limiting distribution (cf. Brockwell and Davis 1987, p. 482).
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3.3 Processes Obtained by Minification

In this section, we discuss first order stationary Markov sequences obtained by mini-
fication . These have been introduced by (Tavares, 1980a), also see Gaver and Lewis
(1980), Lewis and McKenzie (1991). Such a sequence is defined by

Xt =
{

X0, t = 0

κ min{Xt−1, εt }, t ≥ 1, κ > 1

where {εt , t ≥ 1} is a sequence of i.i.d. non-negative random variables and X0 is
independent of {εt , t ≥ 1}. Let F(x) = P(X0 > x) and let G(x) = P(ε1 > x).
Then, the above sequence is stationary if and only if,

G(x) = F(κx)

F(x)
, x ≥ 0.

Arnold and Hallett (1989) have shown that if the distribution of X0 is chosen as

F(x) =
∞∏

t=0

G(x/κ t ), (3.3)

then the above system defines a stationary sequence with F(x) as the survival function
of the common marginal distribution (this assumes that the above product is well
defined and positive) . Let us define

X0 = inf
0≤t<∞ κ

tε−t .

Then, the survival function of X0 is given by F(x) given by (3.3).
Let ρ = 1/κ and Vt = Xt/Xt−1, t ≥ 1. Adke and Balakrishna (1992) introduce the
stopping time τ defined by

τ = inf {t | Vt = Vs for some s < t}.

It follows that Xτ = ρ a.s.. Adke and Balakrishna (1992) show that the distribution
of τ is Binomial(2, ρ). This leads to a sequential sampling scheme under which the
parameter ρ is estimated without any sampling error and thus, in a large sample
analysis, one may assume that it is known. Adke and Balakrishna (1992) point out
that such a result holds for the exponential AR (1) model and the gamma AR (1)
model models in Gaver and Lewis (1980). Adke and Balakrishna (1992) derive ML
and BLUE estimators of the mean of the process assuming that ρ is known. They
also discuss two stage estimation procedures for estimation of parameters.
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Based on Lewis and McKenzie (1991), Balakrishna and Jacob (2003) establish that
the above minification sequence is ergodic andφ-mixing with the mixing coefficients
given by φ(t) = ∫ ∞

0 F(κ t x)/F(x)d F(x). Further, they show that the estimator

κ̂ = max
t

Xt

Xt−1

converges to κ a.s. Its limiting distribution has been studied and it has been shown
that the limiting distribution is not Gaussian. One may carry out statistical inference
for other parameters by taking κ̂ as a known value of κ . Balakrishna and Jacob
(2003) study the following exponential minification process in details. With G(x) =
exp(−(κ − 1)x/μ), we have F(x) = exp(−x/μ), so that the stationary distribution
is exponential with mean μ.

3.4 Product AR Models

Let {Xt , t ≥ 1} be a random sequence defined recursively by

Xt = Xρt−1Vt , 0 ≤ ρ < 1,

where Xt and Vt are positive random variables for each t . McKenzie (1982) discusses
the above model mainly for gamma random variables. One specifies a marginal
distribution as the stationary distribution of the above sequence and investigates
existence and form of distribution of Vt . Such processes are clearly Markovian, if Vt

is a sequence of i.i.d. positive random variables.We denote these models by PAR(1).
The conditional mean and variance are respectively given by

E(Xt | Xt−1) = μV Xρt−1, Var(Xt | Xt−1) = σ 2
V X2ρ

t−1,

where μV and σ 2
V respectively denote the mean and the variance of the ran-

dom variable V1. An advantage of these models is that the conditional distribu-
tion of Xt given Xt−1 is absolutely continuous, unlike the exponential, Weibull
and gamma models, discussed earlier. The exponential PAR(1) model is a special
case. The simplest model is the lognormal model: the random variable ln(V1) has
N

(
(1 − ρ)μ, (1 − ρ2)σ 2

)
, |ρ| < 1 distribution. The stationary distribution is log-

normal with parameters μ and σ 2.

A Weibull model
Suppose that the innovation V has the distribution of (λ/Y )ρ/θ , where the positive
random variable Y has a stable distribution with the Laplace transform exp(−λsρ),
( θ, λ > 0 ). It can be then shown that the survival function of the stationary distrib-
ution is given by P[X > x] = exp(−λxθ ) so that X has a Weibull distribution. We
refer to Balakrishna and Shiji (2010) for likelihood analysis of the Weibull model.
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An interesting case is θ = 1, ρ = 1/2, in which case the distribution of V turns out
to be a truncated Normal distribution N (0, 4/λ), truncated from above at 0.

Balakrishna and Lawrence (2012) give a review of PAR(1) models.

3.5 More General Non-Gaussian Sequences

1. Integer valued Non-negative Auto-regressive Moving Average models
Let {εt , t ≥ (1 − q)} be a sequence of i.i.d. non-negative integer valued random
variables. An Integer valued Moving Average model of order q is defined by

Xt = εt +
q∑

i=1

βi ◦ εt+1−i t ≥ 1.

Instead of Binomial thinning operator, we can also define a hyper-geometric thinning
operator and define processes in terms of such an operator.
We now discuss INARMA (1, q) models. Let {Yt , t ≥ 1} be an INAR(1) process
which with {εt , t ≥ (1 − q)} as the corresponding ε-sequence, i.e.,

Yt = α ◦ Yt−1 + εt .

Then, an INARMA (1, q) sequence is defined by

Xt = Yt−q +
q∑

i=1

βi ◦ εt+1−i .

The ACF of the process is the same as that of a standard linear ARMA(1, q) process.
Geometric and Negative binomial ARMA(1, q) sequences are defined by having β ′

i
as random variables.
An ARMA(p, 1) process is defined by

Xt =
p∑

i=1

αi ◦ Xt−i + εt

cf. Du and Li(1991). It is assumed in such a definition that the successive binomial
(thinning) experiments are independent and that innovations εt ’s are independent of
thinning experiments. Further,

∑p
i=1 αi < 1.McCabe et al. (2011) assume that εt fol-

lows the distribution G, the functional form of which is not known. Likelihood of the
process is easily written in terms of the parameters αi ’s gr ’s, where gr = P[εt = r ].
Observations restrict the range of r ’s to max{0,mint=p+1,··· ,T (xt −∑p

i=1 xt−i )} ≤ r
≤ maxt=p+1,··· ,T (xt ). This leads to a non-parametric MLE (NPMLE). If p + 4th
moment of G is finite and if g0 > 0, the NPMLE is consistent and asymptotically nor-
mal, cf. Drost et al. (2009) and McCabe et al. (2011). In McCabe et al. (2011)(Sect. 2.2

http://dx.doi.org/10.1007/978-81-322-0763-4_2
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of the paper), the predictive distribution of future observations is shown to be Fréchet
differentiable as a function of αi ’s and G. This is further used to prove the asymptotic
normal distribution of the estimator of the predictive distribution.

2. DARMA models
These models have been introduced and extensively discussed by Jacobs and Lewis
(1978 a,b, 1983), c. Let {Yt , t ≥ 1} be a sequence of discrete i.i.d. random variables
with P[Y1 = i] = πi . Let {Ut , t ≥ 1} and {Vt , t ≥ 1} be independent sequences
of i.i.d. Bernoulli random variables with parameters β ∈ [0, 1] and ρ ∈ (0, 1)
respectively. Let {Dt , t ≥ 1} and {At , t ≥ 1} be independent sequences of i.i.d.
random variables with

P[Dt = r ] = δr , r = 0, 1, 2, . . . , N ,

P[At = r ] = αr , r = 1, 2, . . . ,M,

where N is a non-negative integer and M is a positive integer. The DARMA
(M, N + 1) sequence {Xt , t ≥ 1} is then defined by

Zt = Vt Zt−At + (1 − Vt )Yt , t = −N ,−N + 1, . . .

Xt = Ut Yt−Dt + (1 − Ut )Zt−(N+1), t = 1, 2, . . . .

The sequence {Zt , t ≥ −N } is known as a DAR(p) sequence. We note that one
needs to define a joint distribution of Z−N−p, . . . , Z−N−1. It can be shown that there
exists a stationary distribution for the process {Zt , t ≥ −N }. Further, if the initial
distribution of the process {Zt , t ≥ −N } is the stationary distribution, the process
{Xt , t ≥ 1} is strictly stationary and its one-dimensional marginal distribution is
given by πi . It has been shown that the DARMA (M, N + 1) process is φ-mixing.
Methods of estimation have been mostly based on equating first few sample auto-
correlations with those of the population auto-correlations. It needs to be stated
that the process admits only non-negative auto-correlations. Special cases such as
DAR(p), DARMA(1,1) are of interest and have auto-correlation structures similar to
those of corresponding Box-Jenkins linear ARMA models. McKenzie (2003) reviews
integer valued sequences of dependent variables.

3. Generalized ARMA models
The Generalized ARMA models have been studied in Benjamin et al. (2003). We
assume that the conditional p.d.f. or p.m.f. of Xt given the past observations is
given by

f (xt | x1, x2, . . . , xt−1) = exp

(
xt vt − b(vt )

ϕ
+ d(xt , ϕ)

)
,

where vt and ϕ are canonical parameters and b(·) and d(·) functions which define an
exponential family of distributions. It follows from the properties of the exponential
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family that μt = E(Xt |X1, X2, . . . , Xt−1) = b′(vt ) and that Var(Xt |X1, X2, . . . ,

Xt−1) = ϕv(μt ) = ϕb′′(vt ). A Generalized ARMA model is given by

g(μt ) = μ+
p∑

j=1

φ j (g(Xt− j )− μ)+
q∑

j=1

θ j (g(Xt− j )− μt− j ),

for an appropriate choice of the function g. Here, φ′
j s and θ ′

j s are respectively known
as the auto-regressive and moving average parameters and μ is a real parameter.

Example 3.5.1 Generalized Poisson ARMA(p,q) model
Here the conditional distribution of Xt is Poisson and

log(μt ) = μ+
p∑

j=1

φ j (log(X∗
t− j )− μ)+

q∑

j=1

θ j (log(X∗
t− j )− μt− j ),

where X∗
s = max(Xs, c) for some c, 0 < c < 1.

Example 3.5.2 Binomial Logistic ARMA(p,q) model
The conditional distribution of Xt is Binomial(Nt , μt ) and g is the logit function
given by g(ut ) = ut/(Nt − ut ). As in the case of the Poisson model above, we need
to introduce a threshold parameter and take X∗

t = min
(

max(Xt , c), Nt − c
)

in the
definition of link function.

Benjamin et al. (2003) also discuss the Gamma ARMA(p, q) model.

The above class of models is very flexible and includes a large number of sequences
studied earlier in the literature. Conditions for stability of marginal mean and vari-
ance, for the identity link function, are as follows (see Appendix of Benjamin et al.
(2003)).

(i) E(Xt ) = μ for all t .
(ii) Let�(B) = [�(B)]−1�(B)where�(B) = 1−φ1 B −φ2 B2 −· · ·−φp B p and

�(B) = 1 + θ1 B + θ2 B2 + · · · + θq Bq are the usual AR and MA polynomials
associated with the AR and MA parameters respectively. The operator B is
defined by B(Xt ) = Xt−1. It is assumed that�(B) is invertible. Let�(2)(B) =
1 + ψ2

1 B + ψ2
2 B2 + · · · . Then, the common marginal variance of Xt is given

by

Var(Xt ) = ϕE
[
�(B)(2)v(μt )

]
.

For example, for the variance stationary Poisson model, the common variance is
given byμ(1+∑∞

t=1 ψ
2
t ). Parameter space is constrained by positivity of conditional

variances.
A limitation is that, except in the case when g is linear, conditions for stationarity
and invertibility are difficult to investigate (in the linear case, the conditions are the
same as those of a standard linear ARMA model). Benjamin et al. (2003) describe
how simulation techniques can be used to determine constraint on the parameters to
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have stationarity. They suggest to simulate time series from a Generalized ARMA
model of various lengths such as 50, 100, 150, 200 and compute mean, variance,
skewness and kurtosis at each stage. Stability of these statistics strongly indicates
stationarity. The stationary distribution of a Generalized ARMA sequence is hard to
derive and here again, one may employ simulation techniques.

4. Generalization of Raftery’s MTD model
We assume that {Xt , t ≥ 1} is an L-order Markov sequence. Let F(y|x1, x2, . . . ,

xL) be the distribution function of X L+1 given that X1 = x1, X2 = x2, . . . , X L =
xL . Then, a MTD model is given by

F(y|x1, x2, . . . , xL) =
L∑

r=1

λr Gr (y|xL−r ),

where Gr (y|xL−r ) is a d.f. in y. In practice, to have a model with less number of
parameters, we take Gr (y|x) = G(y|x). This model has an ACF similar to that of
AR(L) model. Berchtold and Raftery (2002) also modify the MTD model so that
one can have {Xt , t ≥ 1} to be an i.i.d. sequence. The stationary distribution of the
sequence is that of the stationary distribution of a first-order Markov sequence with
G(y|x) as the transition d.f. and under conditions similar to finite Markov chains,
one can show that the sequence is ergodic and the ACF decays geometrically fast.
Raftery and Tavare (1994) give estimation procedures and reference to the relevant
software also.
Weiß (2009) defines an auto-regressive model of order L for a binomial process as
follows. Let π ∈ (0, 1) and ρ ∈ [max{−π/(1 −π), − (1 −π)/π}, 1]. Let, further,
β = π(1 − ρ) and α = β + ρ. Then, given the last L random variables, Xt equals
α ◦ Xt−i + β ◦ (N − Xt−i ) with probability φi , i = 1, 2, . . . , L ,

∑L
i=1 φi = 1.

It is assumed that events corresponding to all thinning operations are independent.
The stationary distribution is B(N , π).
5. Generating non-Gaussian models from a Linear Gaussian model
Here, we discuss a methodology to define a general non-Gaussian sequence
obtained via a Gaussian sequence. This discussion is based on Block et al. (1990).
Let Yt = ∑∞

s=0 ψsεt−s and let Y be the corresponding linear, stationary, invertible
Gaussian time series. We assume that E(Yt ) = 0 and E(Y 2

t ) = 1. Let φ be the
distribution function of Yt . Let H be a continuous distribution function and let H−1

be its right inverse defined by

H−1(p) =
{

inf{x | H(x) > p}, p < 1
sup{x | H(x) < 1}, p = 1.

Then, the stochastic process {Xt } is defined by

Xt = H−1{φ(Yt )}.
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Block et al. (1990) suggest the following approach, when H is an unknown distrib-
ution function. It is assumed that the Gaussian sequence Y is α-mixing (Example
1.3.5) and that conditions of Theorem 1.4.1 are satisfied. It follows that {Xt } is
also a strong mixing sequence. Let HT be the empirical distribution function of
X1, X2, . . . , XT . To estimate θ , consider Ỹt defined by

Ỹt = φ−1[HT (Xt )], t = 1, 2, . . . , T .

We now regard Ỹt ’s as observations from the Gaussian sequence {Yt , t ≥ 1} and
compute the ML estimates. If the process {Yt , t ≥ 1} is ARMA, any standard package
which carries out statistical analysis of a Gaussian ARMA sequence, gives ML
estimation and other diagnostic checks, can be used.
One can generate a parametric family by assuming that the d.f. H is a function of
parameters θ , θ ∈ �. Cauchy , Logistic and Weibull time series can be generated by
taking H−1 as tan(πp), −ln(p−1−1), 1−exp (−μ(x − β)γ ) , x ≥ β respectively.
The Weibull series includes the exponential model with γ = 1. Likelihood can be
written in such a case in terms of likelihood of a Gaussian ARMA sequence.
Thus, models defined above have an operational convenience. Properties such as
mixing are also easy to establish. However, it seems that they have not been fully
explored in statistical analysis of non-Gaussian time series.

Remark 3.5.1 A number of models discussed above form state-space models or
generalized linear models, cf. Fahrmeir and Tutz (2004).

Remark 3.5.2 Elliot et al. (1995) and Cappé et al. (2005) extensively discuss Hidden
Markov Models on a general state-space along with their applications.

3.6 Goodness-of-Fit Procedures

So far, we have seen time series models which have a particular distribution of interest,
as the unique stationary distribution. It is therefore important to have goodness of
fit tests for the proposed stationary distribution. Such procedures can be applied to
models in Chap. 2 also.
We discuss one such procedure which is based on the classes, which form a partition
of the state-space S of the series. We can also consider the classes which form a
partition of S × S. This would allow us to test the bivariate distribution of two
consecutive observations of the time series under consideration and in a sense test for
the conditional distribution also, which actually defines the series. Broadly speaking,
these tests include the well known Pearsonian chi-squared tests routinely applied in
the case of i.i.d. observations.
Suppose we have T observations X1, X2, . . . , XT from a stationary time series with
Pθ as its probability measure when θ is the true parameter. Let � be the parameter
space, an open subset of �p. Let Z(T, θ) = (Z1(T, θ), Z2(T, θ), . . . , ZK (T, θ))′

http://dx.doi.org/10.1007/978-81-322-0763-4_2
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be a K × 1 random vector, where Zi (T, θ) is a function of X1, X2, . . . , XT and θ .
We make the following assumptions.
A1. 1

T Zi (T, θ) → 0 a.s. for each i .
A2. For each i, the function Zi (T, θ) is differentiable with respect to θ j . Let C(i, j) =
∂Zi (T, θ)/∂θ j . Then, for each i, j , CT (i, j)/T → C(i, j), a.s. Let the matrix C
be defined by C = C(i, j).

A3. 1√
T

Z(T, θ)
D→ NK (0, �).

A4. Let, for each θ , V (θ) be a positive semi-definite matrix. For each (i, j), V (i, j)
is twice differentiable with respect to θ .
A5. For each θ , rank(V (θ)) = r > p and rank(C ′V +

T C) = p.
Let A+ denote the Moore–Penrose g-inverse of a matrix A. Define

X2(θ) = 1

T
Z(T, θ)′V (θ)+Z(T, θ).

Let Gi j (θ) = ∂2 X2(θ)
∂θi ∂θ j

. Let the matrix GT (θ) be defined by GT (θ) = ((Gi j (θ))).
A6. There exists a neighborhood N (θ) of θ and a random variable Yt (θ) such that,
for all (i, j),

sup
η∈N (θ)

|Gi j (η)− Gi j (θ)| ≤ |η − θ |YT (θ)

and YT (θ)/T → Y (θ) a.s., where 0 ≤ E(Y (θ)) < ∞. Let

HT (θ, j) = ∂X2(θ)

∂θ j
, j = 1, 2, . . . , p.

Let HT (θ) = (
HT (θ, 1), HT (θ, 2), . . . , HT (θ, p)

)
. Under the above assumptions,

Rajarshi (1987) shows the that

1. 1
T HT (θ, j) → 0, a.s.,

2. GT (θ)
T → 2C ′V +C , a.s.

By making arguments similar to those made in the proof of Theorem 1.5.1, it can
be shown that there exists a sequence of estimators θ̂ such that

P[HT (θ̂) = 0] → 1 and θ̂ → θ a.s.

Moreover,

√
T (θ̂ − θ)

D→ Np(0, DC ′V +�V +C D), where D = (C ′V +C)−1.

In particular, if � = V (θ), X2(θ̂)
D→ χ2

r−p.
A Pearson-type chi-squared test based on the frequencies of various classes is

constructed as follows. Let A1, A2, . . . , AK be a partition of S. It is assumed that
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Pθ (X1 ∈ Ai ) > 0 , i = 1, 2, . . . , K . Let NT (i) = ∑T
t=1 I [Xt ∈ Ai ] be the number

of observations that belong to the class Ai , i = 1, 2, . . . , K . By taking Zi (T, θ) =
NT (i)− Pθ (X1 ∈ Ai ), i = 1, 2, . . . , K and assuming that the assumptions hold, we
get a χ2 statistic with (K − 1 − p) d.f., cf. (2.2). In practice, it is more convenient to
estimate the variance-covariance matrix of the observed frequencies following the
procedure in Example 2.2.6.
Rajarshi (1987) discusses applications to a goodness of fit test of a first order Markov
sequence, where the test is based on the first K conditional moments given the last
observation.

Apart from the formal goodness-of-fit tests based on frequency distributions
(joint or marginal), a number of other procedures need to be attempted for model
validation. If the first order Markov property has been assumed, in most of the
models that we have discussed, the sample ACF should have an exponential decay
and the Sample PACF should have only a spike of order one. Let us assume that
a parametric model admits a score function say, St (θ) = ∂ ln f (Xt |Xt−1)/∂θ .
Then, let S̃t = St (θ̂)/

{
E[S2

t (θ)|Xt−1]
}
θ̂
. The graph of St ’s against the time para-

meter t should resemble that of a white noise, if the model is a good approxi-
mation. If the score function is not defined or if it is complicated, one can plot
{Xt − E

θ̂
[Xt | Xt−1, . . . , X0]}/{V ar

θ̂
(Xt | Xt−1, . . . , X0)}1/2. Similarly, ACF and

PACF of S̃t ’s is likely to reveal departures from assumptions of the model.
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Chapter 4
Estimating Functions

Abstract In this chapter, we discuss methods of estimation of parameters which
assume that the conditional expectation and conditional variance of an observable
given the past observations have been specified. These constitute semi-parametric
methods for stochastic models. We begin with Conditional Least Squares estimation.
Then, we discuss estimating functions in some details. The basic set of estimating
functions can be conditionally uncorrelated or correlated. Optimality results for both
these cases have been established. Asymptotic distribution of the estimator obtained
from estimating equations is stated. Finally, we deal with methods of construction
of confidence intervals based on estimating functions.

4.1 Conditional Least Square Estimation

The method of Conditional Least Squares (CLS) estimation (Klimko and Nelson
1978) is an extension of the Least Squares estimation in a regression model to sto-
chastic processes. Let Yt be a function of (X0, X1, · · · , Xt ) such that Var(Yt ) < ∞.
Let Ht = Yt − E[Yt |X0, X1, · · · , Xt−1], t = 1, 2, · · · . In CLS estimation, the
estimator of θ is the one which minimizes

∑T
t=1 H2

t . If θ is a p×1 vector of real para-
meters and if the conditional expectation E[Yt |X0, X1, · · · , Xt−1] is differentiable
in θ , the CLS Estimators can be obtained by solving

T∑

t=1

(Yt − E[Yt |X0, X1, · · · , Xt−1])∂E[Yt |X0, X1, · · · , Xt−1]
∂θi

= 0,

i = 1, 2, · · · , p. (4.1)

We illustrate the CLS estimation methods by few examples.
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Example 4.1.1 Poisson Markov Sequence (Example 2.2.7 continued)

We recall that E[Xt |X0, X1, · · · , Xt−1] = pXt−1 + λ and take Yt = Xt . The
CLS Estimation equations for (p, λ) are given by

T∑

t=1

(Xt − pXt−1 − λ)Xt−1 = 0

T∑

t=1

(Xt − pXt−1 − λ) = 0,

which can be solved very easily.

Example 4.1.2 Standard linear Auto-regressive sequences.

The CLS Estimators of the auto-regressive parameters turn out to be the same as
those obtained from the sample Yule-Walker equations.

The CAN property of CLS estimators, under regularity conditions, has been estab-
lished in Klimko and Nelson (1978), also see Hall and Heyde (1980), Sect. 6.3. Both
the proofs apply versions of martingale convergence theorem and martingale CLT.

The CLS method can be easily applied to models discussed in the Chap. 3, for
which the conditional first moment is linear in parameters, in particular for INAR(1)
models of Sect. 3.1 and models of Sect. 3.2. Weiβ (2009) discusses CLS method of
estimation for Binomial AR(p) models. Closed form for CLS estimators may not be
available for some models and iteration procedures may be required. It is to be noted
that in some models, the first conditional moment may not be a function of all the
parameters of a interest.

The CLS estimation approach does not take into account the conditional variance
of Yt , and thus corresponds to the Ordinary LS (OLS) estimation. The approach
based on estimating functions that we discuss next, corrects for this shortcoming
of the CLS estimation. However, it requires a statistician to specify the conditional
variance of Yt given the past.

4.2 Optimal Estimating Functions

We begin with the observation that the following widely used methods of estimation
of parameters involve solving simultaneous equations in unknown parameters. In the
single parameter case, we have

(i) ∂ log L
∂θ

= 0 (the likelihood equation),

(ii)
T∑

t=1
(Xt −βzt )zt = 0 (the least square equation for the regression parameter β,

zt is the regressor),

(iii) X − μ(θ) = 0 (the method of moments estimator).

http://dx.doi.org/10.1007/978-81-322-0763-4_6
http://dx.doi.org/10.1007/978-81-322-0763-4_3
http://dx.doi.org/10.1007/978-81-322-0763-4_3
http://dx.doi.org/10.1007/978-81-322-0763-4_3
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The CLS method described in the last section is an important example of an estimating
equation , particularly useful in stochastic models.
Let X be an observable with its probability distribution P and let P = {P} denote
the underlying family of distributions of the observable X .

Definition 4.2.1 The function H (a p × 1 vector) of observations X and θ , a p × 1
vector of parameters, such that the estimator of θ is obtained by solving the simul-
taneous equations H = 0, is called as an estimating function . The equation H = 0
is called as an estimating equation .

Definition 4.2.2 An estimating function H is said to be unbiased , if E(H) =
0, ∀ P ∈ P .

Definition 4.2.3 Let p = 1. An estimating function H is said to be regular , if for
all P ∈ P ,it satisfies

(i) E(H) = 0 and E(H2) < ∞
(ii) 0 < E

∣∣ ∂H
∂θ

∣∣ < ∞ and E ∂H
∂θ

does not vanish.
(iii) ∂

∂θ

∫
H(x; θ) f (x; θ)dx = ∫ ∂

∂θ
[H(x; θ) f (x; θ)]dx .

Let H = {H |H is a regular estimating function} be the class of all regular estimating
functions. When is H∗ ∈ H optimal? We would like to have Var(H) to be small.
Also, the estimating function H should be sensitive to changes in θ. Durbin (1960)
and Godambe (1960) thus propose the following definition of an optimal estimating
function .

Definition 4.2.4 (Durbin 1960; Godambe 1960). An estimating function H∗ ∈ H
is said to be optimal in H , if H∗ minimizes V (H)[

E
(
∂H
∂θ

)]2 ,i.e.,

E(H∗2)
[
E
(
∂H∗
∂θ

)]2 ≤ E(H2)
[
E
(
∂H
∂θ

)]2 , ∀ H ∈ H .

Example 1. Let X ∼ N (θ, 1) and let H1 = X − θ . We have ∂H1/∂θ = −1. Let
H2 = (X − θ)2 − 1 ⇒ E(H2) = 0. But, ∂H2

∂θ
= −2(X − θ) which implies that

E
(
∂H2
∂θ

)
= 0 and thus H2 	∈ H .

Example 2. Let us consider a multinomial random vector (Y1,Y2,Y3,Y4) with
4∑

i=1
Yi = n and the cell probabilities given by 1−θ

4 , 1+θ
4 , 1−θ

4 , 1+θ
4 . Then,

E
[

Y1
n

]
= 1−θ

4 ; E
[

Y2
n

]
= 1+θ

4 . Consider the estimating functions

H1 = Y1

n
− 1 − θ

4
; H2 = Y2

n
− 1 + θ

4
.
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Similarly, H3 and H4 can be obtained from Y3 and Y4 respectively. Then,[
E
(
∂Hi
∂θ

)]2 = 1
16 , i = 1, · · · , 4. Thus, in this case, variances of the estimating

functions allow us to choose between Hi , i = 1, · · · , 4. The estimating function
H1 + H2 = Y1+Y2

n − 1
2 is, however, free of θ and cannot be used for estimating θ . It

is completely insensitive to changes in θ and it is not a regular estimating function.

Explanations regarding Godambe-Durbin criterion
In the scalar parameter case, assuming that the asymptotic works, V (H)[

E
(
∂H
∂θ

)]2 is the

variance of the asymptotic normal distribution of
√

T (θ̂T − θ), where θ̂T is a con-
sistent solution of H = 0, see Sect. 4.5 below. Thus, variance of asymptotic normal
distribution of the estimator obtained by solving the optimal estimating equation
H = 0 is smallest among variances of the asymptotic distribution of consistent solu-
tions obtained by solving competing of the regular estimating equations. Godambe
and Kale (1991) have pointed out convergence of the Newton-Raphson procedure
for obtaining a solution of the optimal estimating equation is faster than that of
the Newton-Raphson procedure for obtaining a solution of any competing regular
estimating equation.

Remark 4.2.1 If H is a regular estimating function and if H1 = cH , where c is a
differentiable function of θ not involving any random variables, then

E(H2)
[
E
(
∂H
∂θ

)]2 = E(H2
1 )[

E
(
∂H1
∂θ

)]2 .

Thus, the objective function does not change, if we multiply H by a constant and an
optimal estimating function is unique up to a constant multiplier.

Semi-parametric models
In some situations, joint distributions of observables are not known, however,
moments and covariances of certain elementary estimating functions can be known.
Let Hi be a function of observations and θ , such that E[Hi ] = 0 for all i and that
each Hi is a regular estimating function. Further, Cov(Hi , Hj ) = 0 for i 	= j , for
all P ∈ P. The estimating functions Hi ’s are known as uncorrelated elementary
estimating functions and we seek to obtain a best linear combination

∑
i wi Hi . Let

H be the class of all estimating functions of linear combinations of H1, · · · , Hn,

i.e.,

H =
{

H =
∑

i

wi Hi | wi ’s are differentiable functions in θ

which do not involve any random variables
}
.

http://dx.doi.org/10.1007/978-81-322-0763-4_4
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We seek an optimal estimating function in H as per the optimality criterion given
in Definition 4.2.4. We observe that, in view of the assumption of uncorrelatedness
and regularity assumptions,

E(H2)
[
E
(
∂H
∂θ

)]2 =
∑

w2
i E(H2

i )

[∑
wi E

(
∂Hi

∂θ

)]2 .

Let H ′
i = ∂Hi/∂θ . It is easy to see that the optimum weights wi ’s which minimize

the above, satisfy

wi =
∑

w2
j E(H2

j )∑
w j E(H ′

j )

E(H ′
i )

E(H2
i )
.

Since constant multipliers do not change a regular estimating function, we take
the optimal weights as

w∗
i = E(H ′

i )

E(H2
i )
.

Thus, we conclude that
∑

Hi
E(∂Hi/∂θ)

E(H2
i )

is optimal in H .

Example 4.2.1 Estimation of common mean

Let Y 1, Y 2 be uncorrelated sample means, based on n1 and n2 independent
observations respectively. Suppose that θ is the common mean of the two pop-
ulations. Let the population variances σ 2

1 and σ 2
2 be known. Now, for every a,

aY 1 + (1 − a)Y 2 is unbiased for θ . The optimal a which minimizes the vari-

ance is given by a =
(

n1
σ 2

1

)/(
n1
σ 2

1
+ n2

σ 2
2

)
. The optimal estimating function with

H1 = Y 1 − θ , H2 = Y 2 − θ and H = w1 H1 + w2 H2 leads to the same estimator.

Example 4.2.2 Linear Regression

Suppose that Hi = Yi − θxi , where Yi ’s are independent responses with means θxi ,
i = 1, 2, · · · , n. Let V (Hi ) = σ 2Vi . Here, x1, · · · , xn are constants (regressors)
and Vi is known for each i . The optimal estimating equation is given by

∑
(Yi − θxi )

xi

σ 2Vi
= 0.

The particular cases (1) Vi ≡ 1, (2) Vi = xi and (3) Vi = x2
i respectively

correspond to Optimal Ordinary Least Squares , Ratio estimator and the mean of
ratios, which are BLUEs under the assumptions on Vi ’s in each case.
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Example 4.2.3 Simultaneous auto-regressive models (Cliff and Ord 1981)

Whittle (1954) proposed the following model in connection with modeling data
on uniformity trial on wheat. Let {εt } be a sequence of i.i.d. random variables with
mean 0 and variance σ 2. Let

Xt = θ
∑

j

At j X j + εt ,

where the sum over j corresponds to appropriate neighbours of t . Here, Att = 0 ∀t .
For the sake of simplicity, we assume that for all t , At,t+1 = At,t−1 = 1 and
that the rest of At j ’s are all zeroes. Here, if we take Ht = Xt − θ(Xt+1 + Xt−1),
E(∂Ht/∂θ) = 0 so that Ht is not a regular estimating function.

Naik-Nimbalkar (1996) suggests that we set

Ht = (Xt − θ(Xt+1 + Xt−1)
)(

Xt+1 − θ(Xt+2 + Xt )
)
, t = 2, · · · , T 1.

We observe that Ht is a regular estimating function and that Ht ’s are uncorrelated
(though they are not independent random variables) . Under the assumptions that the
sequence {Xt , t ≥ 1} is stationary, we have E(∂Ht/∂θ) = c ∀t. Further, Var(Ht ) =
σ 4. Hence, from the above discussion, it follows that

∑
Ht is an optimal estimating

function in the class of estimating functions given by
∑

wt Ht . Ord (1975) derives
the same estimating function from the theory of weighted least squares . He further
shows that the ordinary least square estimator is inconsistent. The above examples
show that when the variances do not depend upon the parameter of interest, the theory
of optimal estimating function gives the same solution as the weighted least squares
estimators. In the next example, variances are functions of parameters in which case,
the estimating function leads to more reasonable estimators than the weighted least
square estimators.

Example 4.2.4 A non-linear regression model

Let Hi = Yi − eθxi , E(Yi ) = eθxi , Var(Hi ) = eθxi for all i = 1, 2, · · · , T .
Models satisfying these conditions include the class of Poisson distributions of

Yi ∼ Poisson(eθxi . ) In this case, E
(
∂Hi
∂θ

)
= xi eθxi . Thus, the optimal estimating

function is given by ∑
(Yi − eθxi )xi = 0.

The above coincides with the score function, if Yi has a Poisson distribution. The
above equation is also obtained by methodology of the Generalized Linear Models.
It needs to be pointed out that when the variances are functions of the unknown
parameter θ , the weighted least square estimation involves minimizing

∑ (Yi − eθxi )2

eθxi
.



4.2 Optimal Estimating Functions 61

The corresponding estimating equation is given by

∑
(Yi − eθxi )xi +

∑ (Yi − eθxi )2xi

eθxi
,

which does not agree with the score function for the Poisson distribution. Further,
in general, it is not an unbiased estimating function. Thus, the theory of estimating
functions attempts to combine strengths of the likelihood approach and the least
square approach.

We conclude our discussion by stating two important properties of an optimal
estimating function in H . Proofs of both the parts are easy.

Theorem 4.2.1 Suppose that the regularity conditions hold.

(i) An Estimating function H∗ is optimal in H , if and only if,

Cor

(
H,
∂ log L

∂θ

)
≤ Cor

(
H∗, ∂ log L

∂θ

)
, ∀ H ∈ H .

(ii) An estimating function H∗ is optimal in H , if and only if,

E

(
H − ∂ log L

∂θ

)2

≥ E

(
H∗ − ∂ log L

∂θ

)2

, ∀ H ∈ H .

Thus, the optimal estimating function is nearest to the score function, which is
optimal in a larger class of regular estimating functions.

4.3 Estimating Functions for Stochastic Models

We now discuss estimating functions for semi-parametric stochastic models. Let X
denote the observations. Let Ft−1 be the σ -field generated by the random vari-
ables (X0, X1, · · · , Xt−1). We note that Ft−1 ⊂ Ft . Suppose that there exist
H1, H2, · · · , HT , where each Ht = Ht (X, θ) is a function of observation Xt and a
scalar parameter θ , such that

(i) E(Ht |Ft−1) = 0, Var(Ht ) < ∞.

(ii) E
[∣∣∣ ∂Ht

∂θ

∣∣∣
]
< ∞ and E ∂Ht

∂θ
does not vanish.

(iii) Each Ht satisfies the following regularity condition

∂

∂θ

∫
(Ht (x, θ)|Ft−1) fθ (x |Ft−1)dx =

∫
∂[Ht (x, θ)|Ft−1) fθ (x |Ft−1)]

∂θ
dx,

with an obvious notation. Here and in the sequel, the integral should be inter-
preted as a sum when the underlying random variables are discrete.
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(iv) Vt = Var(Ht | Ft−1) is positive ∀ t and its functional form is known (it may
involve θ ).

Elementary estimating functions satisfying the above conditions are known as
orthogonal regular estimating functions . Consider the class of estimating functions

H =
{

H =
T∑

t=1

Wt Ht | Wt is a function of (X0, X1, · · · , Xt−1) and θ
}
.

It is also assumed that Wt is a differentiable function of θ . As before, an optimal

estimating function in H is the one that minimizes E(H2)/
[
E
(
∂H
∂θ

)]2
.

Theorem 4.3.1 (Godambe 1985) Suppose {Ht , t = 1, · · · , T } is a collection of
orthogonal and regular elementary estimating functions. Then, the optimal estimat-
ing function is given by H∗ =∑T

t=1 W ∗
t Ht , where

W ∗
t =

E
(
∂Ht
∂θ

∣∣∣Ft−1

)

Var(Ht |Ft−1)
, t = 1, · · · , T .

Proof We have

E

[
∂H

∂θ

]
= E

[
∑

t

E

(
Wt
∂Ht

∂θ

∣∣∣∣Ft−1

)]

= E

[
∑

t

Wt W
∗
t H2

t

]
= Cov

(
∑

t

Wt Ht ,
∑

t

W ∗
t Ht

)
,

in view of the orthogonality of Ht ’s and the fact that both Wt and W ∗
t are measurable

with respect to Ft−1. Therefore, by the Cauchy-Schwarz inequality, we have

[
E

(
∂H

∂θ

)]2

≤ V (H)V (H∗).

But, it can be easily seen that V (H∗) = E[∂H∗/∂θ ]. Hence, V (H)/[E
(
∂H
∂θ

)]2 ≥
V (H∗)/[E

(
∂H∗
∂θ

)
]2.

Example 4.3.1 The Linear Auto-Regression Model

Let Xt = θXt−1 + εt , where {εt } are independent random variables with mean
0 and variance σ 2. We note that εt is independent of X0, · · · , Xt−1. We then have
E(Xt |Ft−1) = θXt−1 and V (Xt |Ft−1) = σ 2. Now, let Ht = Xt − θXt−1, t =
1, 2, · · · , T . Then, it is easily seen that the estimator obtained by solving the optimal
estimating function and the CLS Estimator coincide. This estimator is also the ML
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estimator, if the errors are independent N (0, σ 2) random variables and if we agree
to ignore the information in the initial observation.

We note that if the conditional variance of Ht is a function of constants and
parameters (free from t also) only, the CLS equation coincides with the optimal
estimating equation. Further, if Vt is a non-constant function of past observations, the
optimal estimating function is better than the estimating function corresponding to the
CLS estimation equation. This follows since the estimating function corresponding
to CLS belongs to the class H .

Example 4.3.2 Random Coefficient Auto Regressive (RCAR) model

Suppose that {θt } is a sequence of i.i.d. r.v.s such that E(θt ) = θ and Var(θt ) = σ 2
θ .

Let {εt } be an i.i.d. sequence with E(εt ) = 0, V (εt ) = σ 2. We further assume that
the random sequence {εt } is independent of the random sequence {θt }.
The RCAR model is given by Xt = θt Xt−1+εt . Now, in view of the assumptions, we
have E(Xt |X0, · · · , Xt−1) = E(θt Xt−1|X0, · · · , Xt−1) + E(εt |X0, · · · , Xt−1) =
Xt−1 E(θt |X0, · · · , Xt−1) = θXt−1.

Thus, we take
Ht = Xt − θXt−1, t = 1, 2, · · · , T,

as elementary estimating functions. Then, H2
t = (Xt −θXt−1)

2 = (Xt −θt Xt−1)
2+

[(θt − θ)Xt−1]2 + 2(Xt − θt Xt−1)(θt − θ)Xt−1. Therefore, E(H2
t |Ft−1) = σ 2 +

σ 2
θ X2

t−1. The optimal estimating function for θ is thus given by

H∗ =
∑ (Xt − θXt−1)Xt−1

σ 2 + σ 2
θ X2

t−1

.

The corresponding estimator is given by

θ̂ =
T∑

t=1

Xt Xt−1

σ 2 + σ 2
θ X2

t−1

/
T∑

t=1

X2
t−1

σ 2 + σ 2
θ X2

t−1

. (4.2)

The above discussion assumes that the two variances are known. If the “environ-
mental” variance σ 2

θ is too large as compared to σ 2, the above leads to the estimator
(1/T )

∑
t (Xt/Xt−1).

If these two variances are unknown, we can proceed as follows. We note that
E
[
(Xt − θXt−1)

2|Ft−1
] = σ 2 + σ 2

θ X2
t−1, which, for a known θ , can be taken as

a linear regression model with the two unknown variances as the intercept and the
slope parameters and X2

t−1’s as regressors. This leads to the following two-stage
estimator of θ .

1. Obtain the CLSE θ̂ (C L SE) = 1
T

∑T
t=1

Xt Xt−1

X2
t−1

.

2. Obtain the LSE of σ 2 and σ 2
θ by regressing (Xt − θ̂ (C L SE)Xt−1)

2 on σ 2 +
σ 2
θ X2

t−1, t = 1, 2, · · · , T .



64 4 Estimating Functions

Table 4.1 RMSE for three estimators in RCAR model

Sample sizes 50 500 1000

θ σ 2
θ CLSE EF IT-EF CLSE EF IT-EF CLSE EF IT-EF

0.1 0.16 0.1537 0.1533 0.1525 0.0486 0.0477 0.0467 0.0355 0.0343 0.0340
−0.3 0.25 0.6815 0.2791 0.2408 0.0397 0.0375 0.0369 0.0403 0.0363 0.0358
0.8 0.30 0.1698 0.1626 0.1505 0.0665 0.0507 0.0466 0.0536 0.0346 0.0302
0.3 0.50 0.1929 0.1816 0.1833 0.0798 0.0560 0.0556 0.0627 0.0400 0.0400

3. If either of these is negative or 0, we take the CLSE as the final estimator of θ .
If both are positive, replace the unknown variances by these two in (4.2). We call
this as the EF estimator.

We have two options. We can either stop at the first iteration or we can continue with
an iteration procedure. In the iteration procedure, successive iterations are carried
out by taking Least Squares type estimators of the two variances obtained at the
previous iteration, to compute the optimal estimator in this iteration.

The iteration procedure is terminated by using the usual stopping rules. This
estimator is denoted by IT-EF estimator. Abdullah et al. (2011) compare these three
estimators. It is assumed that εt ∼ N (0, 1) and θt ∼ N (θ, σ 2

θ ). They consider the
sample sizes 50, 500 and 1000 and carry out 1000 simulations for each combination.
The Table 4.1, which is based on the Table 4.1 of Abdullah et al. (2011), gives the
Root Mean Squared Errors (RMSEs) of the three estimators. It is concluded based on
these simulation studies that both the one step EF estimator and the corresponding
iterative procedure estimator perform better than the CLSE in each case and they
perform considerably better, particularly for larger samples and for positive values
of θ . The one step procedure seems to be working quite satisfactorily as compared to
the iterative procedure. Abdullah et al. (2011) also compare the estimators of the two
variances. Their simulations indicate that there is no significant gain in the RMSE
of estimators of variances.

Adke and Balakrishna (1992) consider a special case of RCAR model wherein
a random auto-regression coefficient has a discrete distribution on 0 and a constant
β ∈ (0, 1), so that θ < 1. Further, the stationary distribution of the sequence is
exponential with mean μ. This is the exponential AR(1) model due to Lawrence and
Lewis (1981). This is a minification sequence model and as discussed in Sect. 3.3,
we may assume that the parameter θ is known. Adke and Balakrishna (1992) show
that the BLUE of μ has a smaller variance than the CLSE , though variances of their
asymptotic normal distributions coincide.

http://dx.doi.org/10.1007/978-81-322-0763-4_3
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4.4 Estimating Functions for a Vector Parameter

The following theorem proves optimality of the likelihood equation or the score func-
tion for a family of parametric models with p parameters. Let θ = (θ1, θ2, · · · , θp)

′
be a p × 1 parameter, θ ∈ �, a p-dimensional open set in �p.

Definition 4.4.1 An estimating function H = (H1, H2, · · · , Hp)
′, a function of

observations and the parameters, is said to be regular, if for all P ∈ P ,

(i) E(Hi ) = 0, i = 1, 2, · · · , p.
(ii) E(H2

i ) < ∞ for all i .

(iii) 0 < E
∣∣∣ ∂Hi
∂θ j

∣∣∣ < ∞ for all i, j .

(iv) For all i, j ,

∂

∂θ j

∫
Hi (x; θ) f (x; θ)dx =

∫
∂

∂θ j

[
Hi (x; θ) f (x; θ)]dx .

(v) The matrix D(H) = ((E[∂Hi/∂θ j ])) is non-singular.

We assume that the vector of score functions S(θ) = (∂ ln L(θ)/∂θi ), i =
1, 2, · · · , p exists and also a regular estimating function with I (θ), the Fisher Infor-
mation matrix, as its variance-covariance matrix. Let V (H) denote the variance-
covariance matrix of the random vector H .

Theorem 4.4.1 (Kale 1962). For any regular estimating function H, the matrix
V (H)− D(H)′[I (θ)]−1 D(H) is positive semi-definite.

Proof In view of the regularity conditions,

D(H)i j = E[∂Hi/∂θ j ] = −E[Hi S j ] = −Cov(Hi , S j ).

Therefore, the matrix [
V (H) −D(H)
−D(H) I (θ)

]

is positive semi-definite since it is the variance-covariance matrix of the 2p × 1
random vector (H ′, S(θ)′)′. It follows from the standard multivariate arguments that
the matrix V (H) − D(H)′[I (θ)]−1 D(H) is positive semi-definite. In fact, it is the
variance-covariance matrix of the random vector H − D(H)′ I (θ)−1S(θ).

Definition 4.4.2 Optimal estimating function for a vector parameter

An estimating function H in the class of regular estimating functions is said to be
optimal , if V (H) = D(H)′[I (θ)]−1 D(H).

Corollary The Score function is optimal in the class of regular estimating functions.
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The Corollary follows since, under the regularity conditions, we have V (H) =
−D(H) = I (θ). This leads to the optimality of the Score function. This property
of the score function was proved by Godambe (1960) for a scalar parameter. Both
the term estimating function and its theory have been in use for a long time, see
McLeish and Small (1988), page 10, wherein it is also pointed out that the finite
sample optimality of the score function was known to Barnard.

In stochastic models, we may not know the likelihood and our information may
be limited to conditional moments of an observation given the past. Thus, we seek
an optimal estimating function in an appropriate sub-class of regular estimating
functions H . Optimality of an estimating function is as defined below.

Definition 4.4.3 An estimating function H∗ ∈ H is said to optimal in H , if

D(H)V (H)−1 D(H)′ − D(H∗)V (H∗)−1 D(H∗)′

is positive semidefinite for all H ∈ H and for every member of the family of
distributions of X .

The above criterion for optimal estimating function has been given by Durbin
(1960), Kale (1962), Bhapkar (1972), Godambe and Thompson (1989). We now give
a generalization of Godambe’s result (Theorem 4.3.1) to the case of many parameters.
When the score function exists, the criterion is equivalent to the following.

Definition 4.4.4 An EF H∗ is optimal in H if and only if

E[(S(θ)− H∗)D(H)′] = E[D(H)(S(θ)− H∗)′] = 0.

It can be also shown that, when the score function exists and the regularity
conditions are satisfied, H∗ is nearest to the score function S(θ) in the sense that
E[S(θ − H)((S(θ − H))′]− E[(S(θ − H∗)((S(θ − H∗))′] is a positive semidefinite
or definite matrix. Godambe and Heyde (1987) further show that the confidence set
based on a properly Studentised optimal estimating function has smallest volume in
the class of confidence sets based on competing Studentised estimating functions,
assuming that a CLT holds for all the estimating functions in the class H .

In general, the score function may not exist and in such a case, optimality of an
estimating function needs to be proved directly from the definition of optimality in the
multi-parameter case. We proceed to prove such a result when we have a martingale
structure of the following type.

Definition 4.4.5 Let Ht ( j), t = 1, 2, · · · , T, j = 1, 2, · · · , K be a set of regular
estimating functions such that

1. E[Ht ( j)|Ft−1] = 0.

2. E[Ht ( j)Ht (i)|Ft−1] = 0, i 	= j.

Then, the estimating functions Ht ( j)’s are said to be mutually orthogonal.
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A class of estimating functions H = {H} is defined as follows. Let H =
(H(1), H(2), · · · , H(p))′ be a vector estimating function such that

H( j) =
T∑

t=1

K∑

i=1

Wt (i, j)Ht (i), j = 1, 2, · · · , p,

where Wt (i, j) are random variables measurable with respect to Ft−1.

Theorem 4.4.2 (Godambe and Thompson 1989) An optimal estimating function H∗
in H is given by

W ∗
t (i, j) =

E
[
∂Ht ( j)
∂θi

∣∣∣Ft−1

]

E[Ht ( j)2|Ft−1].

Proof Arguing as before, it can be shown that

[E(∂H( j)/∂θ	)]2 ≤ Var(H( j))Var(H∗
	 ).

Thus, it follows that the matrix

[
V (H) D(H)
D(H)′ V (H∗)

]

is non-negative definite. One can then show that, for the optimal estimating function
H∗ , we have D(H∗) = H∗, see Lemma 1 of Hwang and Basawa (2011).

The condition of mutual orthogonality appears to be somewhat restrictive, how-
ever, it is not. Let 
t (θ) be the conditional variance-covariance matrix of (Ht (1),
Ht (2), · · · , Ht (p))′. Assuming that 
t (θ) is a.s. a positive-definite matrix, we
see that the p estimating functions obtained from [
t (θ)]−1/2(Ht (1), Ht (2), · · · ,
Ht (p))′ are mutually orthogonal. Frequently, we have K = 1.

Example 4.4.1 AR(2) model

Consider the AR(2) model given by Xt = θ1 Xt−1 + θ2 Xt−2 + εt with the usual set
of assumptions. Then, ignoring σ 2 in the denominator in both the equations, we have
the following estimating equations jointly optimal for θ1, θ2

∑
(Xt − θ1 Xt−1 − θ2 Xt−2)Xt−1 = 0

∑
(Xt − θ1 Xt−1 − θ2 Xt−2)Xt−2 = 0.

The above are the same as the sample Yule-Walker equations and the CLS equations.

Example 4.4.2 Poisson Markov sequence (Example 4.1.1 continued)
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In this case, the optimal estimating equations are given by

∑

t

(Xt − pXt−1 − λ)
Xt−1

p(1 − p)Xt−1 + λ
= 0.

∑

t

(Xt − pXt−1 − λ)
1

p(1 − p)Xt−1 + λ
= 0.

The above equations need to be solved iteratively. The starting values can be taken
as the CLS estimators.

Example 4.4.3 Chaotic Processes

Lele (1994) discusses applications of estimating function methodology to chaotic
systems with measurement errors. The measurement error can be additive or mul-
tiplicative. Consider the Logistic map defined by zt+1 = θ zt (1 − zt ). The observ-
able process {Xt } is defined by Xt = zt + εt , where {εt , t ≥ 1} is a sequence of
i.i.d. N (0, σ 2) random variables. It follows that the elementary estimating function
Xt+1 − θXt (1 − Xt ) is not an unbiased estimating function and that the correc-
tion Xt+1 − θXt (1 − Xt )− σ 2 yields an unbiased estimating function. Lele (1994)
shows that, for known σ 2, the corresponding estimator is CAN. He also discusses
the exponential map zt+1 = zt exp(θ(1 − zt )). The corresponding multiplicative
measurement error model is given by Xt = Vt zt , where Vt is a sequence of i.i.d.
lognormal random variables.

Example 4.4.4 Grouped data from finite Markov chains

Consider the grouped data from Markov chains (Sect. 2.5). Let S(P) be the score
function when we have observed all the individual one-step transitions for all the
epochs under consideration. We may recall that the score function is a linear func-
tion of N (i, j, t)’s, where N (i, j, t) is the number of one-step transitions from i
to j at the epoch t. Let Y denote the grouped data as described in Sect. 2.5. The
conditional expectation E(S(P) | Y ) is the optimal estimating function. However, it
amounts to computing E(N (i, j, t)|Y ), which is too complicated to handle. McLeish
(1984) considers the sub-class H1 of unbiased estimating functions which are linear
functions of the observed proportions at various values of t . He projects the score
function to the sub-class H1. It is further shown that there exist CAN solutions of
such estimating equations. For a two-state Markov chain, it is possible to compute
E(N (i, j, t)|Y ) explicitly, see Sect. 5 of McLeish (1984).

Remark 4.4.1 A standardized form of an estimating function H is defined as Hs =
[D(H)]−1 H . In the multi-parameter case, there are a number of criteria of an
optimal estimating function H∗

s . In terms of standardized form, the Matrix, Trace
and Determinant optimality criteria, are respectively defined by

V (Hs)− V (H∗
s ) is nnd, TraceV (Hs) ≥ TraceV (H∗

s ) and |V (Hs)| ≥ |V (H∗
s )|,

http://dx.doi.org/10.1007/978-81-322-0763-4_2
http://dx.doi.org/10.1007/978-81-322-0763-4_2
http://dx.doi.org/10.1007/978-81-322-0763-4_5
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where a matrix A is said to be nnd (non-negative definite), if it is either positive
semi-definite or positive definite. Chandrasekhar and Kale (1984) have shown that
these three criteria are equivalent in the sense that, if an estimating function is optimal
with respect to one of the three, it is also optimal with respect to the remaining two.
In a parametric set-up, the score function is thus optimal with respect to all the above
criteria.

Our discussion here assumes regularity assumptions regarding a class of estimat-
ing functions as well the score function. For a discussion of estimating functions
without such assumptions, we refer to McLeish and Small (1988) (who call such
functions as “Statistical Inference Functions”), Godambe (1991) and Basawa et al.
(1997). These books and monographs contain detailed accounts of theory and appli-
cations of estimating functions.

4.5 Confidence Intervals Based on Estimating Functions

In this section, we discuss confidence intervals for the unknown parameter, based
on a CAN solution of an estimating equation and estimating function itself. The
asymptotic normal distribution of a consistent solution of an estimating function has
been proved by a large number of authors. More recent work is due to Chatterjee
and Bose (2005) (the single parameter case) and Basawa and Hwang (2011) (the
multiparameter case) under various sets of regularity assumptions. We write Wt and
Ht for Wt (θ) and Ht (θ) respectively. Then,

√
T (θ̂T − θ)

D→ N

⎛

⎜⎝0,
E[(W1 H1)

2]
[

E
(
∂W1 H1
∂θ

)]2

⎞

⎟⎠

where θ̂T is a consistent solution of H = 0.
Estimation of variance of the limiting distribution of θ̂ .
Let θ̂ be a consistent solution of an estimating equation H = 0. Estimation of

variance of θ̂ is itself of interest. It is further required to carry out tests of hypotheses
or to construct confidence intervals for θ . The variance of the asymptotic distribution,
in the stationary case, can be estimated as follows. We now explicitly write Ht and
Wt as Ht (θ) and Wt (θ) respectively. Then, estimators of the required functions are
given by

Ê[(W1 H1)
2] = 1

T

T∑

t=1

(Wt Ht )
2(θ̂).

Ê

[
∂W1 H1

∂θ

]
=

T∑

t=1

∂Wt Ht

∂θ

∣∣∣∣
θ=θ̂

.
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Consistency of the above two estimators can be proved by assuming that (i) the
function ∂W1 H1

∂θ
is continuously differentiable (ii) the function in a neighbourhood

of the true parameter
∣∣∣ ∂

2W1 H1
∂θ2

∣∣∣ is bounded by a function, the expectation of which is

finite. The ergodic theorem completes the details. The standard approach of building a
confidence interval for θ is based on the asymptotic normal distribution of θ̂ and a con-
sistent estimator of the variance of the asymptotic normal distribution of

√
T (θ̂−θ).

We call such a confidence interval (c.i.) as Estimator based c.i. . Let Zα/2 be such
that

P[N (0, 1) > Zα/2] = α/2. (4.3)

The confidence interval based on an estimating function
∑

Wt Ht is constructed
from the asymptotic pivotal given by

∑
Wt Ht√∑

W 2
t E(H2

t |Ft−1)

.

We then equate the above pivotal to Zα/2 and solve the corresponding equations
to get upper and lower limit of the required confidence interval. We call such a
confidence interval as EF based c.i.

It has two important properties. It bypasses the estimation of θ. Secondly, the
variance of an estimating function is estimated assuming that θ is known. This pro-
cedure and its variations have been discussed in Godambe (1985) among others, for

stochastic models. The denominator can also be taken to be
√∑

W 2
t H2

t .
We illustrate the two methods of confidence interval with the example of the

auto-regressive parameter in an AR(1) model.

Example 4.5.1 Confidence interval for AR parameter (Example 4.3.1 continued)

To derive the Estimator based c.i., we recall from (1.2) that
√

T (θ̂ − θ)
D→

N
(

0, 1
1−θ2

)
. Let θ̂ = ∑

Xt Xt−1/
∑

X2
t−1 be the usual CLS estimator of θ . The

standard Estimator based c.i. for θ is given by

(
θ̂ − Zα/2

1√
T

1√
1 − θ̂2

, θ̂ + Zα/2
1√
T

1√
1 − θ̂2

)
.

In the AR(1) case, the optimal estimating equation is given by
∑
(Xt−θXt−1)Xt−1 =

0. We take the EF pivotal as

G(θ) =
∑
(Xt − θXt−1)Xt−1√∑
X2

t−1(Xt − θXt−1)2
.

http://dx.doi.org/10.1007/978-81-322-0763-4_1
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The EF based c.i. is conveniently obtained by solving the quadratic G(θ)2 = Z2
α/2.

We simulated 5,000 samples from stationary AR(1) series with T = 25, θ = 0.8 and
σ 2 = 1. In the first case, the error distribution is N (0, 1) and in the second case it is
that of Y − 1, where Y is an exponential r.v. with mean 1. The nominal confidence
coefficient is 95 %. The percentages of times the true value belongs to the confidence
interval are 91.58 (Normal) and 90.54 (exponential) for the Estimator based c.i. and
95.36 (Normal) and 93.44 (exponential) for the EF based c.i.

In general, such upper and lower limits are obtained by solving more complicated
equations by numerical methods such as Newton-Raphson.

Why does one anticipate that EF based c.i. performs better than the one based
on the corresponding Estimator based c.i.? The EF pivotal has mean zero, unlike
the random variable

√
T (θ̂ − θ) except when E(θ̂) = θ. Moreover, the asymptotic

normality of the estimator is derived from the normality of the EF based pivotal.
Typically, the estimator equals the suitably scaled EF plus a random term which
converges to 0 in probability and a CLT is applied to the EF based pivotal. In this
sense, as is often described, the EF pivotal is “more normal” than the estimator, see
McLeish (1984), page 266.

4.6 Combining Correlated Estimating Functions

So far, we have assumed that the elementary estimating functions Ht ’s are orthogonal.
However, in some situations, such an assumption may not be met. Suppose Ht ,

t = 1, 2, · · · , T is a collection of regular elementary estimating functions. Let
H = (H1, H2, · · · , HT )

′ be the random vector of these elementary functions. Let V
denote the variance-covariance matrix of the random vector H and let

D = [E(∂H1/∂θ), E(∂H2/∂θ), · · · , E(∂HT /∂θ)]′.

Consider the class H of linear estimating functions
∑

t wt Ht where wt ’s are
constants which may possibly depend upon unknown parameters. Let w denote the
T × 1 vector (w1,w2, · · · ,wt )

′. The optimality criterion is the same as given in
Sect. 2. Thus, an estimating function is optimal in the class H , if it minimizes

w′V w

E
[∑ ∂(wt Ht )

∂θ

]2

which reduces to
w′V w

(w′ D)2
.

From Rao (1965), page 48, it follows that w′V a/(w′ D)2 is minimum, when w∗ =
V −1 D. Then, the optimal estimating function in this class is given by

http://dx.doi.org/10.1007/978-81-322-0763-4_2
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H∗ = D′V −1 H with Var(H∗) = D′V −1 D.

If the sequence {Ht , t ≥ 1} is weakly stationary , it follows that D = [E(∂H1/∂θ)]
ET ×1, where Ea×b is an a × b matrix with unity everywhere. In general, both
the matrices D and V may depend upon other unknown parameters and in such a
situation, the scope of above optimal estimating function is limited.

We now discuss a special case, wherein the optimal estimating function simplifies
considerably. If D is an eigen-vector of the matrix V with respect to a root λ, D is
an eigen-vector of the matrix V −1 with respect to a root 1/λ. Then, the optimal
linear combination is given by a∗ = V −1 D = (1/λ)D. We recall that optimality
of an estimating function is not affected by multiplication by a constant. If further
D = E(∂H1/∂θ)ET ×1, it follows that the simple estimating function

∑
t Ht is

optimal in H .

Example 4.6.1 Exchangeable random variables

Suppose that {X1, X2, · · · , XT } is a collection of exchangeable random variables
with E(Xt ) = θ and V as the variance-covariance matrix. Let ρ = Cor(Xt , Xs),
which is free from s, t in view of exchangeability. It follows that the row sums of V
are constant and thus ET ×1 is an eigen-vector of the matrix V . Thus, X̄t − μ is an
optimal estimating function for μ in the linear case. Of course, this is a restatement
of the BLUE property of the sample mean in the equi-correlated case. In general, if
{Ht , t ≥ 1} is an exchangeable process, it follows that (1/T )

∑
t Ht is an optimal

estimating function.
If the row sums of V −1 are constant and the process {Ht , t ≥ 1} is weakly

stationary, it follows that the simple estimating function
∑

Ht is optimal. In the
stationary AR(1) model with E(X1) = μ, the row sums of the inverse of variance-
covariance matrix of Xt − μ, t = 1, 2, · · · , T are almost the same, the first and
the last row sums are different than the other row sums, which are the same. Thus,
the estimating function

∑
t (Xt − μ) is nearly optimal and thus the sample mean

may be regarded as a reasonable estimator. There are a number of processes which
have this property, for example the Poisson Markov sequence has this property. A
number of sequences discussed in Chap. 3 have the same ACF as that of the linear
AR(1) model and the sample mean has such an (approximate) optimality property.
Adke and Balakrishna (1992) verify that, in the case of the NEAR(1) model, the
sample mean has the asymptotic variance same as that of the BLUE, which can be
obtained from the theory of optimal estimating functions. In general, an optimal
estimating function needs information on the correlation structure of the observed
process and a modeler may not be willing to assume any structure. We may prefer a
simple estimating function such as

∑
Ht to an optimal estimating function, which

is difficult to obtain and to work with.

Example 4.6.2 Confidence interval for the mean of a stationary process.

Let {Xt , t ≥ 1} be a strictly and weakly stationary process. We first describe the
Estimator based confidence interval. Under appropriate conditions on moments and

http://dx.doi.org/10.1007/978-81-322-0763-4_3
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strong mixing coefficients (Theorem 1.3.4), we have

√
T (X − μ)

D→ N (0, σ 2),

where

σ 2 = Var(X1)+ 2
∞∑

t=1

Cov(X1, Xt+1).

A consistent estimator of σ 2 is given by

σ̂ 2
T = 1

T

∑

t

(Xt − X)2 + 2
L∑

	=1

1

T − 	

T −	∑

s=1

(Xs − X)(Xs+	 − X), (4.4)

where L satisfies the conditions that L → ∞ and L/
√

T → 0 (cf. Theorem 6.6.1).
Thus, the standard confidence interval is based on the approximate pivotal

G1(T ) =
√

T (X − μ)

σ̂T
.

To construct EF based c.i., we consider

σ̂ 2
T (1) = 1

T

∑

t

(Xt − μ)2 + 2
L∑

	=1

1

T − 	

T −	∑

s=1

(Xs − μ)(Xs+	 − μ). (4.5)

Thus, the EF pivotal is given by

G2(T ) =
√

T (X − μ)

σ̂T (1)
,

which has a large sample standard normal distribution. We construct a large sample
confidence interval for the unknown parameterμ, by solving the quadratic G2(T )2 =
Z2
α/2 to get the upper and lower limits of the confidence interval. In very large samples,

difference between the two pivotals may be negligible. However, for moderate sample
sizes, this need not be the case.

We now report a simulation study, where T = 60.We take L = 4. In the first case,
the error distribution is standard normal and ρ = 0.6. The true mean of the series is
0. The proportions of times the Estimator based c.i. and the EF based c.i. included
the true mean are respectively 0.8785 and 0.967 respectively. The same proportions
when the error distribution is that of Y − 1, where Y an exponential random variable
with mean 1 are 0.8655 and 0.9580.

In general, with H̄(θ) = 1
T

∑
t Ht (θ), we have the asymptotic pivotal
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G(T ) =
√

T H̄(θ)

σ̃T
,

where

σ̃ 2
T = 1

T

T∑

s=1

Ht (θ)
2 + 2

L∑

	=1

1

T − 	

T −	∑

s=1

Hs(θ)Hs+	(θ).

In general, the equations G(T ) = ±Zα/2 needs be solved by standard numerical
recipes. Starting values for such iterative procedures can be taken as the end points
of the Estimator based c.i..

The above approach does not require any additional assumption such as differ-
entiability of Ht etc. For example, the confidence interval for θ , the median of X1,
follows in the same manner and is given by taking an elementary estimating function
as Ht (θ) = I [Xt ≤ θ ] − 0.5. This discussion applies to the sample percentiles also.
The estimating functions Ht , t = 1, 2, · · · , T do not satisfy regularity conditions.
However, the pivotal G(T ) can still be constructed. We notice that such a construction
avoids not only estimation of the population median, but it also avoids estimation of
the p.d.f of X1 at the population median.
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Chapter 5
Estimation of Joint Densities and Conditional
Expectation

Abstract This chapter deals with estimation of joint density and conditional expec-
tation when observations form a stationary time series. We describe kernel density
estimation under the assumption that the time series satisfies the strong mixing con-
dition. We give examples wherein kernel density estimation has been applied to real
life data.

5.1 Introduction

We assume that {Xt , t ≥ 1} is a strictly stationary and real valued sequence such
that, for every m, the joint distribution of (X1, X2, . . . , Xm) is absolutely continuous
with the joint p.d.f f (x1, x2, . . . , xm) .
Let km(x) be a bounded p.d.f. of m variables, i.e.,

∫
�m km(x)dx = 1. In what follows,

the number of variables m in x may not be specified. Let T denote the sample size
and let A(T, m) denote an m × m positive definite matrix. In the sequel, we simply
write Am for A(T, m). Let | B | denote the determinant of a matrix B. It is assumed
that each element of Am converges to 0 as T → ∞.
We write

K (Am, x) = km(A−1
m x)

T | Am | , x = (x1, x2, . . . , xm)′.

Functions such as km(x) are known as kernels. In applications, it is convenient to
choose km(x) as the product of m p.d.f.s, i.e., km(x) = ∏m

i=1(1/ai )k1(xi/ai ) where
ai ’s are appropriate positive constants. In this case, Am = diag(a1, a2, . . . , am). We
list below some important kernels in one dimension.

1. k(u) = 1/(2C), | u |< C.

2. k(u) = 1− | u |, | u |< 1.

3. k(u) = (1/
√

2π) exp(−u2/2), − ∞ < u < ∞.
4. k(u) = 3/(4λ3)(λ2 − u2), u2 < λ2, λ > 0.

M. B. Rajarshi, Statistical Inference for Discrete Time Stochastic Processes, 77
SpringerBriefs in Statistics, DOI: 10.1007/978-81-322-0763-4_5,
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Let Yt (m) = (Xt , Xt+1, . . . , Xt+m−1)
′ be the column random vector of m con-

secutive observations starting with Xt . As in the case of i.i.d. random variables, a
kernel estimator of f (x1, x2, . . . , xm) is given by

f̂ (x1, x2, . . . , xm) = 1

(T − m) | Am |
T −m+1∑

t=1

K
(

Am, (x − Yt (m))
)
.

For r < m, the estimator of f (x1, x2, . . . , xr ), the joint p.d.f. of (X1, X2, . . . , Xr ) at
(x1, x2, . . . , xr ) can be similarly defined. The estimator of the conditional p.d.f. of
(Xr+1, Xr+2, . . . , Xm) at (xr+1, xr+2, . . . , xm) given X1 = x1, X2 = x2, . . . , Xr =
xr is then given by

f̂ (xr+1, xr+2, . . . , xm | x1, x2, . . . , xr ) = f̂ (x1, x2, . . . , xm)/ f̂ (x1, x2, . . . , xr ).

In particular,

f̂ (x2 | x1) =
[

T A1

(T − 1)|A2|
] ∑T −1

t=1 k2(A−1
2 [(x1, x2)

′ − Yt (2)])
∑T

t=1 k1(A−1
1 [x1 − Xt ])

.

The above is of particular interest when {Xt , t = 1, 2, . . .} is a stationary and ergodic
Markov sequence of order 1.
Though the above can be used to estimate the conditional expectation of a function
of Xr+1, Xr+2, . . . , Xm given X1 = x1, X2 = x2, . . . , Xr = xr , the following
approach is direct and operationally more convenient.
Let G be a function of Xr+1, Xr+2, . . . , Xm .We wish to estimate

H(G, x1, x2, . . . , xr )

= E[G(Xr+1, Xr+2, . . . , Xm) | X1 = x1, X2 = x2, . . . , Xr = xr ].

Consider the statistic

Ĝ1 = (T − r − m)−1
T −m−r∑

t=1

G(Xt+r , Xt+r+1, . . . , Xt+r+m)

K (Ar , (x1, x2, . . . , xr )
′ − Yt (r)).

Then, the required estimator is given by

Ĥ(G, x1, x2, . . . , xr ) = Ĝ1/ f̂ (x1, x2, . . . , xr ).

The following cases are of interest.

(i) m = r + 1, G(Xr+1) = I [Xr+1 ≤ x], x fixed. This corresponds to the
conditional distribution function of Xr+1 given Xr = x .
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(ii) m = r +1, G(Xr+1) = Xr+1. In this case, we get an estimator of the conditional
expectation of Xr+1 given X1 = x1, X2 = x2, . . . , Xr = xr .

It may be recalled here that the conditional expectation is the best predictor of Xr+1
in terms of X1, X2, . . . , Xr in the class of unbiased predictors with finite variance.
Similar estimator of the predictor of Xr+n can be constructed. An estimator of the
conditional variance of Xr+1 can be also obtained. This gives an estimator of the fore-
casting mean squared error (FMSE) of the estimator of the conditional expectation
of Xr+1.

5.2 Main Results

Roussas (1968, 1969a,b) and Rosenblatt (1970) are some of the earliest works on
kernel-based density estimation for dependent random variables. Roussas (1969b)
assumes that the underlying sequence is a Markov sequence which satisfies Doeblin’s
condition and obtains kernel estimates of the transition density. Here, we discuss
results due to Robinson (1983) and Bosq (1996). References to earlier work can be
obtained from Basawa and Prakasa Rao (1980) and Bosq (1996).

Definition 5.2.1 A function h(y) of m variables (y1, y2, . . . , ym) is said to belong
to the class Cm(x,λ) (where x = (x1, x2, . . . , xm) and λ is a positive constant), if

for some δ > 0, there exists a constant C such that if ‖ y ‖= (∑m
i=1 y2

i

)1/2
< δ, we

have
| h(x − y) − P0 − P1 · · · − Pr |≤ C ‖ y ‖,

where P0 = h(x) and Pj for ( j ≥ 1 ) is a polynomial of degree j in (y1, y2, . . . , ym)

and r is an integer such that r < λ.

We observe that if h has continuous partial derivatives of order r + 1 at x , h(y) ∈
Cm(x, r + 1).

Let B = ((bi j )) be a matrix of order p × p. Then, ‖ B ‖=
(∑

i
∑

j b2
i j

)1/2
.

Robinson (1983) assumes the following.
A1. The stationary sequence {Xt , t ≥ 1} is strong mixing with

∑
t tα(t) < ∞.

A2. The random stationary sequence {Xt , t ≥ 1} is strong mixing such that for an
appropriate ν > 0,

∑
t [α(t)]ν/(2+ν) < ∞.

Theorem 5.2.1 (Robinson 1983) Suppose that the following assumptions hold.

1. The assumption A1 holds.
2. T ‖ Am ‖2λ| Am |→ 0 as T → ∞.
3. The joint density f of m consecutive observations satisfies that f (y) ∈ Cm(x,λ).

4.
∫

xh1
1 xh2

2 · · · xhm
m km(x)dx = 0 for all non-negative integers h1, h2, . . . , hm such

that 0 < h1 + h2 · · · + hm ≤ s where s is the greatest integer less than λ.
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5. The kernel km(x) is bounded with a compact support
| km(x) |≤ C exp(−D ‖ u ‖ρ) for some positive and real C, D such that ρ > 0
and lim infT →∞ ‖ Am ‖ρ log | A(T, m) |> −∞
| km(x) |≤ C (1+ ‖ u ‖)−m−ω and ‖ Am ‖m+ω−λ≤ C | Am |, ω > λ.

Then, as T → ∞,

[T |A(T, m)|]1/2
(

f̂ (x1, x2, . . . , xm) − f (x1, x2, . . . , xm)
)

D→ N

⎛

⎝0, f (x1, x2, . . . , xm)

∫

�m

k2
m(x)dx

⎞

⎠ .

The theorem shows that an optimal kernel is the one which minimizes
∫
�m k2

m(x)dx .
The estimator of the conditional density suggested earlier as ratio of estimators of the
marginal p.d.f.s can be easily shown to be consistent. However, it is not possible to
establish its asymptotic normality. In the next theorem, we state asymptotic normality
of Ĥ(G, x1, x2, . . . , xr ).

Theorem 5.2.2 (Robinson 1983) Suppose that the following assumptions hold.

1. The function G is bounded and the Assumption A1 holds E(Gγ) < ∞, γ > 2
and the Assumption A2 holds.

2. f (x1, x2, . . . , xr ) > 0.

3. The function E
[
G2 | X1 = x1, X2 = x2, . . . , Xr = xr

]
is a continuous function

of x1, x2, . . . , xr .
4. E [G | X1 = y1, X2 = y2, . . . , Xr = yr ] ∈ Cr ((x1, x2, . . . , xr ),λ).
5. sup‖y−x‖<δ E

[
Gγ(1) | X1 = y1, X2 = y2, . . . , Xr = yr

]
< ∞ for γ(1) > γ.

6. The estimation of f (x1, x2, . . . , xr ) satisfies all the requirements of Theorem
5.1.1.

Then,

[T | Am |]1/2(Ĝ − G)
D→ N (0, V ),

where V = (E[G2(x1, x2, . . . , xr )] − (E[G(x1, x2, . . . , xr )])2)/ f (x1, x2, . . . , xr ).

We note that variances of the asymptotic normal distributions in the above two
theorems can be estimated by consistent estimators . This allows one to carry out the
usual statistical tests and to construct confidence intervals for such functions.

Remark 5.2.1 It is well known that performance of kernel based estimation is not so
sensitive to a kernel. It is more affected by the choice of bandwidth. Further, it is more
convenient to choose a kernel in m dimensions as the product of m one-dimensional
kernels. While obtaining a density estimator, it is advisable to allow the bandwidth
to vary with x , the point at which a density estimator is being computed. It may
be pointed out that dependence among observations over a time series has no effect
on the asymptotic variance, as the above results show. In particular, cross-validation
methods may be attempted to select the optimal bandwidth.
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Remark 5.2.2 The kernel km(x) need not be a p.d.f. over �m and the above proof
continues to be valid in such a case. In the case of i.i.d. observations, it is known
that there exist kernels, which take negative values and which are not necessarily
probability density functions and yet have smaller mean squared error cf. Silverman
(1986). This applied to the density estimation in the case of dependent observations
also.

Bosq (1996) discusses estimation of marginal p.d.f. and conditional expectation
when Xt is a d-dimensional random vector under the assumption that the given
series satisfies the following.

sup
A ∈ σ{Xs}

B ∈ σ{Xs+t }

| P(A ∩ B) − P(A)P(B) |≤ Ct−β,

for C and β, both being positive. It should be noted that the above definition is in
terms of σ-fields of random vectors Xs and Xs+t only. We notice that under the
assumption that {Xt , t ≥ 1} is a Markov sequence, the above is equivalent to strong
mixing. Bosq (1996) calls such sequence as 2-α-mixing.
Bosq (1996) assumes the following.

1. The joint p.d.f. f of (Xs, Xt ) is continuously differentiable upto order 2. More-
over,
supx fXt (x) < ∞ and supx,y fXs , Xt (x, y) < ∞.

2. The process is 2-α-mixing.
3. Let g((s, t), (x, y)) = fXs , Xt (x, y) − fXs (x) fXt (y). Then,

sup
|t−s|≥1

{∫
‖ g((s, t), (x, y)) ‖p dxdy

}1/p

< ∞,

for some p > 2. Further β > 2(p − 1)/(2 − p)

or
| g((s, t), (x, y)) − g((s, t), (x ′, y′)) |≤ C ‖ (x, y) − (x ′, y′) ‖. Further,
β > (2d + 1)/(d + 1).

Let

f̂T (x) = 1

T ad
T

T∑

t=1

K ((x − Xt )/aT )

be a kernel estimator of the density of fXt (x), where K (·) is a function satisfying,

lim‖u‖→∞ ‖ u ‖d K (u) = 0 and
∫

�d

‖ u ‖2 K (u) < ∞.
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Further, aT → 0 and T ad
T → ∞. Let aT = CT T −1/(d+4), where CT → C > 0.

Under these assumptions, Bosq (1996) derives a lower bound for the MSE of a density
estimator and shows that a kernel-based estimator attains the optimal bound.
Bosq (1996) further discusses the case when {Xt , t ≥ 1} is GSM. He then shows that
the kernel estimator is uniformly strongly consistent. Further, asymptotic normality
of the kernel estimator is proved by proving a Central Limit Theorem for a triangular
array of α-mixing sequences, i.e., Lindeberg-Feller type CLT . Similar results have
been proved for the above kernel-based estimator of the conditional expectation.
Nze and Doukhan (2002) (see Sects. 5 and 6 of their paper) prove CAN property
of the kernel-based estimators of a marginal p.d.f., under the assumption that the
underlying sequence satisfies a type of weak dependence condition. They also have
a Lindeberg-Feller type CLT for the weakly dependent processes, as defined therein.
It needs to be pointed out that some of the nonlinear time series models discussed in
Tjøstheim (1994), (cf. Example 1.3.7) do not satisfy the smoothness conditions as
required in our discussion above.
Secondly, functional estimation can be inefficient particularly for higher dimensional
data and if a parametric model gives a good fit to the data, estimation and forecasting
procedures based on such a parametric model are superior to the functional estima-
tion.
Methods other than those based on kernel have been discussed in the literature.
Yakowitz (1989) proves consistency of density estimators without assuming any
mixing conditions. He assumes that the process is Markovian and the p.d.f. is esti-
mated based on nearest neighbor methods, cf. Prakasa Rao (1996).
For a review of functional estimation in stochastic models, we refer to Prakasa Rao
(1996). Basawa and Prakasa Rao (1980), (Chap. 11) contains a discussion of earlier
results on kernel density estimation obtained under the assumptions of Doeblin’s
conditions for Markov sequences. It is shown that such estimators are asymptotically
unbiased estimators. Results on density estimation by the orthogonal series under
the assumption of φ-mixing and the delta-sequence method for Markov sequences
(Prakasa Rao 1978) have also been discussed therein.

Some examples of data analysis using density estimation
1. Robinson (1983) illustrates estimation of conditional expectation by analyzing

the well-known Wolfer sunspot series. This series has patterns of nonlinearity and
it does not get explained by a Gaussian distribution. Robinson picks up lag 1 and
lag 9 as the sample ACF shows a strong dependence at these lags. We refer to page
194 of Robinson (1983), where the graphs of estimates of E(Xt | Xt− j , Xt−k)

for ( j, k) = (1, 2), (1, 9), (2, 9) are given. The product kernel with Gaussian
kernel as marginal densities was used. These graphs clearly point out a strong
nonlinear pattern in such conditional expectations. It looks formidable to capture
such patterns by parametric modeling.

2. Yakowitz (1985) applies both the Box-Jenkins ARMA techniques and estimator
of the conditional expectation to obtain one-step ahead predictors of daily flows
of Kooteni river (in USA), between 1911–1933. His analysis shows that the two
methods agree well.

http://dx.doi.org/10.1007/978-81-322-0763-4_1
http://dx.doi.org/10.1007/978-81-322-0763-4_11
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3. The Appendix of Bosq (1996) compares the non-parametric predictors and
Box-Jenkins ARMA-based predictors for simulated time series data as well as
data sets on profit margin, cigar consumption, changes in business inventories,
coal production, French car registrations and French electricity consumption.
To study efficacy of predictors X̃i of Xi of the p future random variables, he
defines the performance criterion Erreur relative Moyenne Observée (EMO) as
EMO = (1/p)

∑
i |Xi − X̃i |/|Xi | i.e., observed mean relative error. In a majority

(12 out of 17) of the cases, the non-parametric predictor is better than the best
ARMA-based predictor with respect to the EMO criterion.
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Chapter 6
Bootstrap and Other Resampling Procedures

Abstract In this chapter, we discuss various resampling procedures, such as
bootstrap, jackknife, and sample re-use procedures for discrete time stochastic
processes. Our discussion begins with bootstrap procedures for finite and infinite
Markov chains. Further, bootstrap for stationary real valued Markov sequences based
on transition density estimators is discussed. This is followed by bootstrap based on
residuals for stationary and invertible linear ARMA time series. We then describe
bootstrap and jackknife procedures based on blocks of stationary observations. Fur-
ther, we discuss a bootstrap procedure based on AR-sieves. Results which prove
superiority of block-based bootstrap over the traditional central limit theorems are
discussed herein. The last section discusses bootstrap procedures for construction of
confidence intervals based on estimating functions.

6.1 Efron’s Bootstrap

It is now well established that resampling procedures such as bootstrap offer easy-
to-use, yet powerful methods for estimation of sampling distribution of estimators,
test statistics and approximate pivotals for construction of confidence intervals. In
the case of i.i.d. observations, the traditional techniques require derivations such as
δ-method (Serfling 1980, Sect. 3.1), CLTs and it is often viable to do so. However,
bootstrap is very easy to use and quite frequently, gives more accurate answers for
estimation of the sampling distributions. Naturally, it has become an integral part of
a number of statistical packages.

In the case of stochastic models, derivations such as required to implement
δ-method or CLT, are quite complicated. As rightly pointed out Künsch (1989),
bootstrap and other procedures are not only a boon but probably more of a necessity
in statistical analysis of stochastic models. In fact, the traditional analysis of para-
metric models can be so cumbersome that parametric bootstrap methods are very
helpful in inference of parametric stochastic models.
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Efron’s bootstrap
Let {X1, X2, . . . , XT } be i.i.d. observations from a population with the distribution
function F . Let θ = H(F) be a function of the distribution function F . Let us
assume that observations are real valued and let FT (x) = (1/T )

∑T
t=1 I [Xt ≤ x]

be the empirical distribution function. Let HT be a symmetric function of {X1, X2,

. . . , XT }, we write θ̂T = H(FT ). A large number of estimators can be written in this
form.

(a) Estimation of variance of θ̂T .
Suppose that we are interested in estimating σ 2

T = Var(θ̂). The bootstrap algo-
rithm is as follows.

1. Draw a simple random sample with replacement (SRSWR) of size T from
{X1, X2, . . . , XT }. As is customary, a star (∗) refers to a bootstrap observation.
For example, a bootstrap sample is denoted by {X∗

1, X∗
2, . . . , X∗

T }.
2. Estimate θ from these T bootstrap observations, exactly the same way θ̂T is

computed from {X1, X2, . . . , XT }.
3. Repeat 1. and 2. above B times to get B estimators, denoted by θ̂∗

T (1), θ̂
∗
T (2),

. . . , θ̂∗
T (B)

4. Let σ̂ 2
T (Boot) be the variance of B values θ̂∗

T (1), θ̂
∗
T (2), . . . , θ̂

∗
T (B) as

obtained in
5. This is the bootstrap estimator of σ 2

T .

The number B needs to be sufficiently large, say, at least 1,000.
(b) Construction of bootstrap confidence interval for θ

A bootstrap confidence interval is constructed as follows. Let σ̂ ∗
T (b) be an esti-

mator based on the bth bootstrap sample (it is computed exactly the same way
σ̂T is computed from the sample that we have actually observed). We have B
values of S∗

T (b) = (θ̂∗
T (b)− θ̂T )/σ̂

∗
T (b), b = 1, 2, . . . , B. The [100(α/2)]th and

[100(1−α/2)]th order statistics of these B values are bootstrap estimates of the
corresponding percentiles of the asymptotic distribution of ST = (θ̂T − θ)/σ̂T .
(We note that T σ̂ 2

T estimates the variance of the asymptotic normal distribution
of

√
T (θ̂T − θ)). We use these percentiles as the “table values”, which replace

the corresponding percentiles of the standard normal distribution. The rest of
the construction of a confidence interval is similar to the standard confidence
interval. We notice that for a bootstrap confidence interval, the upper and lower
limits need not to be equidistant from θ̂T .

Here is an explanation why the Efron’s bootstrap works. To find the standard error of
an estimator or to obtain a confidence interval for an unknown parameter, suppose
for the time being that the underlying distribution function F is known. However,
we are not in a position to carry out any theoretical derivation. For example, consider
the derivation of the t-distribution of the pivotal

√
T (X̂T − μ)/σ̂T , where μ is the

mean of a normal distribution. Since we know F , we can simulate the estimator or the
pivotal for a large number of times and can come up with a very good approximation
to the sampling distribution or the variance of a statistic.
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But, we do not know F! Instead, we have an estimator FT of F . Thus, instead of
simulating from F , we can simulate from FT to get repeated samples. This is what
Efron’s bootstrap does. We note that FT is the distribution function of a discrete
random variable which assigns probability 1/T to each of the observations. Sam-
pling from FT is thus equivalent to obtaining a SRSWR of size T from the sample
X1, X2, . . . , XT . We also note that FT is a uniformly strongly consistent estimator
of F i.e., supx∈� | FT (x) − F(x) |→ 0 a.s. In the case of i.i.d. observations, the
distribution function F together with the i.i.d. assumption constitutes a model for the
observations. This model has been correctly estimated and the estimator has been
used to obtain repeated samples.

For a very useful discussion of bootstrap, we refer to Chernick (2008). Discussion
in Chaps. 5, 8 and 9 of Chernick (2008) particularly refer to bootstrap methods in
stochastic models. Efron and Tibshirani (1993), Shao and Tu (1995) and Davison and
Hinkley (1997) offer extensive discussions of bootstrap procedures. These books also
include bootstrap and its applications in time series models. Lahiri (2003) exclusively
deals with resampling procedures for dependent data.

The symbols P∗, E∗, and Var∗, respectively denote conditional probability of an
event, conditional expectation and conditional variance of a random variable, given
the sample.

It is important to record well-known results on validity as well as superiority of
Efron’s bootstrap in the case of i.i.d. observations. For various classes of estimators,
under mild conditions, a bootstrap estimator of the variance of the asymptotic normal
distribution is consistent. Further, if θ̂ is a continuously differentiable function of
sample moments, under additional assumptions,

sup
x

∣∣∣∣∣P∗
[
θ̂∗

T − θ̂T

σ̂ ∗
T

≤ x

]
− P

[
θ̂T − θ

σ̂T
≤ x

]∣∣∣∣∣ = op

(
1√
T

)

which shows that the bootstrap approximation is better than the traditional CLT
approximation, which has the error rate of the order 1/(

√
T ). For results of this type,

we refer to Singh (1981), Babu and singh (1984) and Hall (1992) for a comprehen-
sive treatment. It needs to be mentioned that without the above Studentization, the
bootstrap gives an approximation which is of the same error rate as that of CLT.

In the sequel, we describe a bootstrap procedure, i.e., a procedure to generate a
bootstrap sample path. The remaining part of the bootstrap methodology is the same
as above, unless a deviation is specified.

6.2 Markov Chains

Let (X0, X1, X2, . . . , XT ) be a realization from a first order finite Markov chain
with P as its one-step t.p.m. We assume that the Markov chain is irreducible and
aperiodic. From Sect. 2.1, we recall that p̂i j = Ni j/

∑
j Ni j , if

∑
j Ni j > 0 and

http://dx.doi.org/10.1007/978-81-322-0763-4_5
http://dx.doi.org/10.1007/978-81-322-0763-4_8
http://dx.doi.org/10.1007/978-81-322-0763-4_9
http://dx.doi.org/10.1007/978-81-322-0763-4_2
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p̂i j = 0 if
∑

j Ni j = 0. Thus, P̂ = (( p̂i j )) is the non-parametric m.l.e. of P .

A suitable estimate of the initial distribution, i.e., the distribution of X0, P̂ and the
assumption of first order Markov property constitute estimate of the statistical model
for {Xt , t = 0, 1, 2, . . .}. If it can be assumed that the Markov chain is stationary,
the initial distribution is estimated by π̂ , the stationary distribution of the chain with
the t.p.m. P̂ . In this case, the distribution of X∗

0 , the initial value of a bootstrap
sample path, is given by π̂ . If the chain cannot be assumed to be in equilibrium, all
bootstrap sample path may start with X0. Further, P∗[X∗(t + 1) = j |X∗(t) = i, X∗
(t−1), . . . , X∗(0)] = p̂i j , for all t, (i, j) and all past values of X∗(t−1), . . . , X∗(0).
Under the assumptions on the Markov chain, for a moderately large T , the effect of
the initial distribution is negligible.

Kulperger and Prakasa Rao (1989) justify the above bootstrap procedure as fol-
lows. Let P and Q be M × M t.p.m.s and let ‖ P − Q ‖= max

i j
| pi j − qi j | be the

distance function on the space of M × M t.p.m.s. Let H(P) be a real valued con-
tinuous function of P with respect to the metric‖ P − Q ‖. We have the following
theorem.

Theorem 6.2.1 (Kulperger and Prakasa Rao 1989) Assume that the limiting distrib-
ution of

√
T (H(P̂)− H(P)) exists. Let E be a P-continuous set, i.e., the measure of

the boundary set of E with respect to the limiting distribution is 0, when P is the true
one-step t.p.m. Suppose that ‖ P − Q ‖< δ, so that for a suitable δ, the Markov chain
with Q as the t.p.m. is irreducible and ergodic. Let [L (

√
T (H(P̂)− H(P))), E; P]

denote the probability of the set E under the limiting law of
√

T (H(P̂) − H(P))
when the underlying Markov chain follows the t.p.m. P. Then, under the model P,

lim
T →∞ lim

δ→0
|[L (

√
T (H(P̂)− H(P))), E; P]

−[L (
√

T (H(Q̂)− H(Q))), E; Q]| = 0.

Validity of bootstrap for such functions of P follows since ‖ P̂ − P ‖→ 0,
a.s.(P). An estimator of a real valued function H of the stationary distribution π of
P , can be bootstrapped. Kulperger and Prakasa Rao (1989) illustrate their results by
the following functional. Let W = inf{t | Xt = j}. Then, H(P) = E[W | X0 = i]
can be shown to be a continuous function of P . We notice that a sizable work will be
required to get the asymptotic distribution of H(P̂), in fact, the estimator of H(P)
itself involves a set of matrix operations. Bootstrap is very handy in this case.

Basawa Mallik McCormick and Taylor (1990) also prove validity of the above
bootstrap for finite Markov chains. They suggest another bootstrap which may
be described as a conditional bootstrap . In the conditional bootstrap, frequencies
of M states are held fixed and multinomial samples are drawn where, the number
of trials is the frequency of a state and the corresponding row of the P̂ is the vec-
tor of multinomial probabilities. This bootstrap is based on the similarity of the
likelihood of finite Markov chains (cf. Sect. 2.1) with likelihood of M independent
multinomials.

http://dx.doi.org/10.1007/978-81-322-0763-4_2
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Infinite Markov chains
Now, let us assume that {Xt , t = 0, 1, 2, . . .} is a first order Markov chain with
a countably infinite state-space. It is assumed that the Markov chain is non-null
persistent, aperiodic, and irreducible. A bootstrap sample path is generated in a
manner similar to that of a finite Markov chain, described above. Validity of bootstrap
in this case has been established by Athreya and Fuh (1992a,b). It is possible that
P̂T , the m.l.e. of P , the one-step transition probability matrix, does not correspond
to an irreducible and aperiodic Markov chain. The matrix P̂T can be then modified
so that the corresponding Markov chain is irreducible and aperiodic. Results on
validity of bootstrap are based on laws of large numbers and central limit theorems
for a double array of Markov chains, developed by Athreya and Fuh (1992a,b). They
prove that the asymptotic conditional distribution of

√
T (P̂∗

T − P̂T ) is the same as that
of

√
T (P̂T − P), for almost all sample paths. The weak convergence here means that

a finite dimensional distribution in each case converges weakly to the same random
variable.

Athreya and Fuh (1992a,b) also suggest another method of bootstrapping Markov
chains, which is based on the property of irreducible non-null persistent Markov
chains, that a state i is visited infinitely often (a.s.) and that times between two such
returns form an i.i.d. sequence. Let N (i) be the number of times the chain returns to
the state i. In view of the ergodic properties, N (i) → ∞ a.s.. We note that for such
a bootstrap, N (i) corresponds to a sample size in the i.i.d. case. (One should choose
the state i which occurs with maximum frequency). Such a bootstrap is known as
“recurrent” bootstrap. An estimator of a proportion of an event is constructed based
on the histories in N (i) cycles. A bootstrap estimator is similarly computed. The
recurrent bootstrap is particularly useful for estimation of the sampling distribution
of the estimator of P[Wk� ≤ x] where k and � are two states and Wk� is the waiting
time to reach the state �, starting from the state k, cf. Sect. 2 of Athreya and Fuh
(1992a,b).

6.3 Markov Sequences

Let {Xt , t = 1, 2, . . .} be a first order Markov sequence with � as the state-space.
A kernel-based estimator of the transition density is given by f̂ (y|x), cf. Chap. 5.
Rajarshi (1990) suggests, given that X∗

t = x∗
t , a bootstrap observation X∗

t+1 is gener-

ated from the density f̂ (xt+1|x∗
t ), so that bootstrap observations follow the Markov

property. However, Paparoditis and Politis (2002) suggest a simpler procedure which
does not explicitly need an estimate of the transition density of the underlying Markov
sequence. Their assumptions are as follows.

A1. Let Yt = (Xt , Xt−1, . . . , Xt−p+1). The stochastic process {Yt , t ≥ p} forms
an aperiodic, strictly stationary, and geometrically ergodic Markov sequence
on the state-space �p. Consequently, {Xt , t = 1, 2, . . .} is aperiodic, strictly
stationary, and geometrically ergodic Markov sequence. Let F(y|x) denote the
one-step transition distribution function of {Xt , t ≥ 1}, i.e.,

http://dx.doi.org/10.1007/978-81-322-0763-4_2
http://dx.doi.org/10.1007/978-81-322-0763-4_5


90 6 Bootstrap and Other Resampling Procedures

F(v|u) = P[Xt+1 ≤ v|Xt = u] for u, v ∈ �.

Further, let

FY (y|x) = P[Yt+1 ≤ y|Yt = x] for x, y ∈ �p

be the one-step transition distribution function of the Markov sequence {Yt , t ≥
p}. (As before, the vector notation Y ≤ y, where Y = (Y1,Y2, . . . ,Yp),
y = (y1, y2, yp) is to be interpreted as ∩ j Y j ≤ y j ). The transition distribution
function F(v|u), u, v ∈ � uniquely characterizes the law of the stationary
process {Xt , t ≥ 1}.

A2. The distribution functions F(y), y ∈ �p of Yt and F(x |y) = P[Xt+1 ≤ x |
Yt = y], x ∈ S are absolutely continuous with respect to the Lebesgue measures
on �p and S, respectively.

A3. For all u ∈ � ∪ ∞,

∣∣∣∣∣∣

u∫

−∞
fYt ,Xt+1(y1, x)dx −

u∫

−∞
fYt ,Xt+1(y2, x)dx

∣∣∣∣∣∣
≤ L(u) ‖ y1 − y2 ‖,

where sup L(u) < ∞ and inf L(u) > 0.
A4. Let f (x |y) denote the conditional p.d.f. of Xt+1 at x given Yt = y. Then, for

x1, x2 ∈ S,
| f (x1|y)− f (v2|y)| ≤ C(y) | x1 − x2 |,

where sup C(y) < ∞. Moreover, there is a compact set A of � such that
Xt ∈ A, a.s. Further, f (x |y) > 0 ∀ x ∈ S.

Assumptions on the kernel K used in generating a bootstrap sequence are
described below. Let K be a probability density on R p. As in the case of density
estimation, the kernel K satisfies the following.

B1. K is a bounded and symmetric probability density on R p satisfying K (y) > 0
for all y. Further,

∫
yK (y)dy = 0 and

∫ ‖ y ‖ K (y)dy < ∞. Moreover, the
kernel K is first order Lipschitz continuous, i.e., there exists a constant C such
that ‖ K (z)− K (y) ‖≤ C ‖ z − y ‖ .

B2. There exist constants c1, c2 such that 0 < c1 ≤ bT δ ≤ c2 for 0 < δ < 1/(2p).
We set following Kc(y) = c−p K (y/c) for all c > 0. Let b(= bT ) be the
bandwidth sequence.

A bootstrap sample path (X∗
1, X∗

2, . . . , X∗
T ) is generated as follows.

1. We set (X∗
1, X∗

2, . . . , X∗
p) = (X1, X2, . . . X p).

2. Suppose we have generated (X∗
1, X∗

2, . . . , X∗
t ). Let Y ∗

t = (X∗
t , X∗

t−1, X∗
t−2, . . . ,

X∗
t−p+1), for t = (p − 1), p, . . . , T . Let N(p,T −1) = {p, p + 1, . . . , T − 1}.
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Then, a discrete random variable J is defined by

P̃[J = j] = Kb(Y ∗
t − Y j )∑

r∈N(p,T −1)

Kb(Y ∗
t − Yr )

, j ∈ N(p,T −1).

If J = j, X∗
t+1, the next observation in a bootstrap Markov sequence is given

by X j+1. This bootstrap is known as a local bootstrap procedure. Like the Efron’s
bootstrap for the i.i.d. observations, the above bootstrap generates as a discrete state-
space sequence (in fact, a Markov chain). This property does not hold for procedure
suggested in Rajarshi (1990).

Paparoditis and Politis (2002) show that, if the kernel K satisfies the assumption
B1 and B2 (for every b > 0), there exists a t0 such that, with probability 1, given the
observations, the bootstrap sequence {Y ∗

t , t ≥ t0} is a positive recurrent, irreducible
and aperiodic Markov chain with at most countable state-space. Further, the bootstrap
sequence {X∗

t , t ≥ t0} is conditionally a p-th order Markov chain. Let

F̂(x |y) = P∗[X∗
t+1 ≤ x |Y ∗

t = y], x ∈ S, y ∈ �p

be the conditional distribution function of X∗
t+1 given Y ∗

t . The main theorem is as
follows.

Theorem 6.3.1 (Paparoditis and Politis (2002)) Under the assumptions A1–A3, B1
and B2,

sup
x∈S, y∈�p

|F̂(x |y)− F(x |y)| → 0 a.s.

In fact, any bootstrap procedure for which an estimator of F(x |y) has the above
property yields asymptotically correct results. Now, let us assume that the underly-
ing Markov sequence is ρ-mixing with a geometric rate of decay. Paparoditis and
Politis (2002) show that, for a large enough T0, the bootstrap Markov sequence is
almost surely ρ-mixing with the same ρ-mixing coefficients. Then, it is proved that
the bootstrap estimator of variance of a mean-like estimator is strongly consistent
and that the sampling distribution of such an estimator is consistently estimated
by the bootstrap for large samples. Rajarshi (1990) obtains these results under the
assumption that the underlying Markov sequence is φ-mixing .

Paparoditis and Politis (2002) give an interesting application of the above boot-
strap procedure to test the null hypothesis that the underlying Markov sequence is
reversible.

6.4 Bootstrap for Stationary and Invertible ARMA Series

Let {Xt , t ≥ (1 − p)} be a stationary ARM A(p, q) process defined by
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Xt =
p∑

i=1

αi Xt−i +
q∑

j=1

β jεt− j + εt ,

where (i) p and q are non-negative integers, (ii) the white noise sequence {εt }
is a sequence of i.i.d. random variables with E(εt ) = 0 and (iii) αi , i =
1, 2, . . . , p; β j , j = 1, 2, . . . , q are real parameters such that each of the poly-
nomials α(z) = 1 − ∑p

i=1 αi zi and β(z) = 1 + ∑q
j=1 β j z j (where z is a complex

number) does not vanish on the set {z| |z| ≤ 1}.Further, α(z) and β(z) have no com-
mon zero. Under these assumptions, the process is causal and invertible. We further
assume αp �= 0 and βq �= 0. Define, for |z| ≤ 1, [β(z)]−1 = ∑∞

j=0 γ j z j . We define
β0 = α0 = 0 and the coefficients α j ’s and β j ’s with negative suffixes are defined to
be 0. Further, for t ≥ 1, εt can be written as

εt =
t−1∑

k

γk

{
Xt−k −

p∑

i=1

αi Xt−k−i

}
.

(cf. Brockwell and Davis (1987)). We write θ = (α1, α2, . . . , αp, β1, β2, . . . , βq).
Let {X1−p, X2−p, . . . , X0, X1, X2, . . . , XT } denote the observed time series. The
estimation procedures for estimating θ is as follows. Let us consider the estimating
function

T (θ) = 1√
T

T∑

t=1

ψ(εt (θ))Z(t − 1, θ),

where

ψ(εt (θ)) =
t−1∑

k=1

γk(θ)

[
Xt−k −

p∑

i=1

αi Xt−k−i

]

and Z(t − 1, θ) is a (p + q)× 1 random vector defined by

Z(t −1, θ) =
t−1∑

k=0

γk(θ)[Xt−k−1, Xt−k−2, . . . , Xt−k−p, εt−k−1(θ), . . . , εt−k−q(θ)]′

with εt (θ) = 0 if t < 0. In the above, the function ψ(·) satisfies the conditions that
E[ψ(εt )] = 0, Var [ψ(εt )] < ∞ and ψ(εt ) is a twice continuously differentiable
function with bounded derivatives ψ ′ and ψ ′′ ( For example, for LSE, we have
ψ(x) = x). Under the additional assumption that E[ε4

t ] < ∞, Kreiss and Franke
(1992) prove that there is a

√
T -CAN solution θ̂ of the above estimating equation.

The following bootstrap procedure is due to Kreiss and Franke (1992) who prove
validity of the bootstrap for a class of M estimators. For carrying out residual-based
bootstrap, we need to recover the white noise process from the observations which
will be mimicked for a given sample using estimates of the auto-regressive and
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moving average parameters. Thus, we have, for 1 ≤ t ≤ T ,

r̃t =
t−1∑

k

γ̂k

{
Xt−k −

p∑

i=1

α̂i Xt−k−i

}
.

Importance of ensuring that the sum of the residuals to be 0 has been emphasized by
several authors. We set

rt = r̃t − 1

T

∑

t

r̃t ,

so that rt ’s have zero mean and can be proxies for εt ’s. A bootstrap time series is
then defined as follows.

1. For t ≤ − max(p, q), set X∗
t = 0, r∗

t = 0.
2. For t > − max(p, q), at each time t , select r∗

t randomly from the set {r1, r2, . . . ,

rT }. (This leads to a SRSWR sample from {r1, r2, . . . , rT }, the set of residuals.)
3. A bootstrap observation X∗

t is then defined recursively:

X∗
t =

p∑

i=1

α̂i X∗
t−i +

q∑

j=1

β̂ j r
∗
t− j + r∗

t .

Consistency of θ̂T ensures that a bootstrap time series is stationary and invertible.
Kreiss and Franke (1992) show that the above bootstrap procedure leads to a consis-
tent estimator of the sampling distribution of

√
T (θ̂ − θ) for a class of M estimators.

Let

�T = 1

T

∑

t

ψ ′(εt )Zt ( j − 1)Zt ( j − 1)tr,

where tr denotes the transpose of a matrix. It can be shown that

√
T (θ̂ − θ) = 1√

T
[�̂T ]−1T + op(1)

which leads to the asymptotic normality of
√

T (θ̂ − θ). Kreiss and Franke (1992)
suggest that the distribution of

√
T (θ̂−θ) be approximated by the conditional distri-

bution of 1√
T
[�̂∗

T ]−1∗
T , instead of following the usual procedure of approximating

it by the conditional distribution of
√

T (θ̂∗ − θ̂ ).
However, Allen and Datta (1999) report that this modification is helpful in MA(1)

model and not very helpful in AR(1) model. Allen and Datta (1999) point out that it
is more appropriate to bootstrap an appropriately studentized pivotal and prove that
the residual-based bootstrap is asymptotically valid for estimation of a studentized
pivotal. They assume that E |εt |3 < ∞. Simulation results in Allen and Datta (1999)
confirm that performance of such an approximation is reasonable and considerably
better than the Kreiss and Franke procedure.
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The following procedure is often recommended. Letψ1(x) = ψ(x)− E∗[ε∗] and
a bootstrap estimator of θ is obtained by solving

∗
T (θ) = 1√

T

T∑

t=1

ψ1(εt (θ))Z(t − 1, θ).

Such a correction results in a (conditionally) unbiased estimating function and has
been noted to be essential for validity of residual-based bootstrap procedures by
many authors, see Lahiri (2003), Sect. 4.3.

Bose (1988) discusses residual-based bootstrap for AR(p) sequences. He proves
that, in this case, the residual-based bootstrap outperforms the traditional central limit
theorem approximation to the sampling distribution of least square estimators. His
results are based on the Edgeworth expansions obtained by Götze and Hipp (1983).
Bose (1990) discusses similar result for bootstrap of the LSE in MA(1) time series.
It may be remarked that, a MA(1) model, the LSE has low efficiency as compared
to the MLE.

6.5 AR-Sieve Bootstrap

Bickel and Bühlmann (1999) suggest an AR sieve-based bootstrap for a linear time
series, though it performs well for other time series also. The AR sieve bootstrap
is based on the property that a stationary and second order stationary, linear and
invertible time series such as ARMA(p, q) can be represented by an infinite order
AR model

Xt − μ =
∞∑

s=t−1

φs(Xs − μ)+ εt ,

where {εt } is an i.i.d. sequence, cf. Brockwell and Davis (1987). In AR(p) sieves
bootstrap procedure, we approximate the above process by a AR(p) model

Xt − μ =
p∑

s=t−1

φs(Xs − μ)+ εt .

For each p, we estimate μ by the sample mean X̄ and the AR parameters φ’s by
solving the sample Yule-Walker equations. We then select p by applying the AIC
assuming that the innovations have a Gaussian distribution. However, the assumption
of a Gaussian distribution is only to allow us to select a data driven p. Let rt =
Xt −∑p

i=1 φ̂i Xt−i , t ≥ (p +1). Let r be their mean and Rt = rt −r . The bootstrap
is carried out by selecting residuals randomly from the set of Rt ’s. Thus, we have
X∗

t − X̂ = ∑p
s=t−1 φ̂s(X∗

s − X̄)+ R∗
t .

http://dx.doi.org/10.1007/978-81-322-0763-4_4
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To achieve stationarity, we set (X∗−u X∗−u+1, . . . , X∗−u+p+1) = (X̄ , X̄ , . . . , X̄)
for a very large value u and then generate the successive observations to reach
(X∗

1, X∗
2, . . . , X∗

T ). Such a bootstrap sample would correspond to a stationary time
series. Let θ̂ be the estimator of θ , a parameter of interest. Since, in general, E∗(θ̂∗) �=
θ̂ , to compute E∗(θ̂∗), we proceed as follows. We generate (X∗

1 , X∗
2, . . . , X∗

N ), where
N is an integer which is very large as compared to T . The estimator of θ , say θ̃ ,
computed from such a very large sample, is taken to define the bootstrap pivotal√

T (θ̂∗ − θ̃ ).

In Rohan and Ramanathan (2011), it is suggested to select the order of an AR
model so as to minimize the mean squared error of an estimator of interest. They also
assume that the underlying model is a linear ARMA series and approximate it by
an AR model. The parameter of interest is the vector of auto-regressive parameters
which are estimated by LSEs. It has been shown there this criterion performs well in
comparison with the AIC and other information-based criteria when the underlying
distribution is Gaussian and other situations also. It would be interesting to employ
this technique to carry out the AR-Sieve bootstrap.

6.6 Block-Based Bootstraps for Stationary Sequences

Probability model of a stationary stochastic process, without any assumptions such
as an ARMA or Markovian property, is specified by its family of finite dimen-
sional distribution functions. In the Markov cases and in structural models, each
finite dimensional distribution function can be written in terms of few parameters
and finitely many distribution functions. Once these are estimated in an appropri-
ate manner, in principle, bootstrap can be carried out based on such estimates. In a
completely non-parametric situation, we assume that the sequence is of short mem-
ory, a property that is frequently characterized by the rate at which strong mixing
coefficients decay. Block-based bootstrap procedures (Künsch 1989, Liu and Singh
1992) estimate the distribution of L consecutive observations by K replicates from
a sample of size T . To capture the distribution of a statistic or a pivotal, L is allowed
to increase at an appropriate rate.

Let F̂m(T ) be defined by

F̂m(T ) = (T − m + 1)−1
T −m+1∑

i=1

δXi+1,Xi+2,...,Xi+m ,

where δy assigns probability one to the point y. The function δy denotes a distribution
function also. Let F(m) denote the distribution function of X1, X2, . . . , Xm . An
estimator θ̂ of the parameter θ(F(m)) is then defined by

θ̂ = θ(F̂m(T )).
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Let Yt = (Xt , Xt+1, . . . , Xt+m), t = 1, 2, . . . , T − m + 1 and let y ∈ �m . We
assume that

I (y, F(m)) = lim
ε↓0

θ
(
(1 − ε)F(m)+ εδy

) − θ
(
F(m)

)

ε

exists for all y ∈ �m . The function I (y, F(m)) is known as the influence function.
It is assumed that E[I (Y1, F(m))] = 0. Let

σ 2 = Var[I (Y1, F(m))] + 2
∞∑

s=1

Cov[I (Y1, F(m)), I (Ys+1, F(m))].

We assume that √
T (θ̂ − θ)

D→ N (0, σ 2).

The above is valid for a large class of estimators such that
θ̂ − θ = (1/T )

∑T
t=1 I [Yt , F(m)] + R(T ), where

√
T R(T ) → 0 in probability.

The block-based bootstrap is defined as follows. Assume that the sample size T
can be written as T = K L . Let T ∗ = T −m +1. Let S1, S2, . . . , SK be i.i.d. random
variables with the common distribution as the Uniform distribution on {0, 1, . . . , T −
L}. The bootstrap version of F̂m(T ) is defined by

F∗
m(T ) = T −1

K∑

k=1

Sk+L∑

t=Sk+1

δYt

and the bootstrap statistic is defined by

θ̂∗ = θ(F∗
m(T )).

In Politis and Romano (1992), such bootstrap is known as blocks of blocks bootstrap
and the integer m is allowed to increase with the sample size to include more general
estimators. An alternative way of describing the block-based bootstrap is as follows.
Let

(Y ∗
1 , . . . ,Y ∗

L ), (Y
∗
L+1, . . . ,Y ∗

2L), . . . , (Y
∗
T −L+1, . . . ,Y ∗

T )

be a SRSWR of size K from the bootstrap population

(Y1,Y2, . . . ,YL), (Y2,Y3, . . . ,YL+1), . . . , (YT −L+1,YT −L+2, . . . , YT )

of T − L + 1 blocks.
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Then, the bootstrap estimator of variance is given by

σ 2
B = Var∗(θ̂∗).

In practice, the above estimator as well the bootstrap estimator of the sampling
distribution of θ̂ is computed with the help of simulations. For m = 1, if we take
θ = ∫

xdF(x) = μ, we have I (x, F(1)) = x −μ, and μ̂X̄ , the sample mean. In this
case, the bootstrap estimator of Var(X) can be computed without any simulations.
We note that

E∗(Ȳ ∗) = 1

L(T − L + 1)

T −L∑

t=0

L∑

�

Xt+� �= X̄

Var∗(Ȳ ∗) = 1

K (T − L + 1)

T −L∑

i=0

(Ȳi − E∗(Ȳ ∗))2 (6.1)

Properties of block-based bootstrap
The following theorem gives consistency of the bootstrap estimator of variance.

Theorem 6.6.1 (Künsch 1989) Suppose that θ̂ = X, the sample mean. We assume
that the stationary process {Xt , t ≥ 1} is strong mixing with

(i) E(|X1|8+δ) < ∞ and
∑

t t2[α(t)]6/(6+δ) < ∞ for some δ > 0.
(ii) L(T ) = o(T ) L(T ) → ∞.

Then, the bootstrap estimator Tσ 2
B → σ 2 in probability. It also converges to σ 2

in the quadratic mean .

Under additional assumptions, Künsch (1989) further proves that the block-based
bootstrap estimates the sampling distribution of

√
T (X − μ) consistently, in the

sense that

sup
x

∣∣P∗[√T
(
X

∗ − X
) ≤ x

] − P
[√

T
(
X − μ

) ≤ x
]∣∣ → 0 a.s.

In block-based bootstrap, it is important to define the bootstrap pivotal carefully. It
is incorrect to use

√
T (θ∗ − θ̂ ), the correct centering is given by

√
T (θ∗ − θ̃ ), where

θ̃ = E∗(θ̂∗). In general, θ̃ �= θ̂ , see (6.1).

Bootstrapping empirical process
We now consider block-based bootstrap to approximate distribution of the empirical
process of m-dimensional strong mixing sequences. Let F∗

T be as defined earlier and
the bootstrap empirical process is defined by

G∗
T (y) = √

T
[
F∗

T (y)− E∗ (
F∗

T (y)
) ]
, y ∈ Rm .

Theorem 6.6.2 (Bühlmann 1994) Under the assumptions and notation of Theorem
1.4.1, we further assume that the block size L is such that L = O(T (1/2)−ε) for some



98 6 Bootstrap and Other Resampling Procedures

ε, 0 < ε < 1/2. Then,
G∗

T → G weakly, a.s.

The above result for the one-dimensional case has been proved in Naik-Nimbalkar
and Rajarshi (1994). In the papers by Naik-Nimbalkar and Rajarshi (1994) and
Bühlmann (1994), under less restrictive conditions, the above convergence has been
shown to hold in probability. For an exhaustive account of bootstrapping empirical
process from stationary sequences, we refer to Radulović (2002).

With the help of the above theorem, one can prove that, if the functional θ satisfies
Hadamard differentiability ( cf. Fernholz (1983)), the bootstrap gives asymptotically
valid approximation to the sampling distribution of

√
T (θ̂T − θ), see Radulović

(2002). As remarked earlier, for studying the sampling distribution of a statistic such
as the sample median, block-based bootstrap is very handy, as an analytical study is
quite difficult.

Lahiri (2003) establishes consistency of the block-based bootstrap estimator of
the sampling distribution of a Fréchet differentiable statistics . His result is as
follows.

Theorem 6.6.3 (Theorem 4.4 of Lahiri 2003) Let T0 = T − m + 1. Under
the assumptions of Theorem 1.4.2, we further assume that L → ∞ such that
L/

√
T → 0. Then,

sup
z

∣∣P∗[√T 0
(
θ̂∗ − θ̃

) ≤ z
] − P

[√
T

(
θ̂ − θ

) ≤ z
]∣∣ → 0, in probability.

Hence, in view of the above theorem, the block-based bootstrap gives a consistent
estimator of the sampling distribution of θ̂ .

Consistency of bootstrap estimator of the sampling distribution of a centralized
statistic viz.,

√
T (θ̂ − θ) has been established in a large number of cases. However,

consistency of bootstrap estimator of the variance σ 2 of the asymptotic normal dis-
tribution of

√
T (θ̂T − θ) has been proved for a number of classes of statistics. For

a very broad class of estimators, we can write (θ̂ − θ) = ∑T
t=1 ψ(Xt , θ) + R(T ).

Asymptotic normality is established (for the sample as well as for a bootstrap sample)
by showing that

√
T R(T ) → 0 in probability. However, for consistency of boot-

strap estimator of the variance, one needs to show that T E[(R(T ))2] → 0 and that
P∗[T E[(R∗(T ))2] → 0] → 1. These convergences appear to be main sources of
difficulty. Parr (1985) proposes that the standard deviation σ be estimated as follows.
Suppose one has proved that

sup
x

∣∣P∗[√T
(
θ̂∗ − θ̃

) ≤ x
] − P

[√
T

(
θ̂ − θ

) ≤ x
]∣∣ → 0 in probability/a.s.,

where θ̃ is an appropriate statistic (which need not be the same as θ̂ ). Then, the
interquartile range of

√
T (θ̂∗ − θ̃ ) (as estimated from a bootstrap array) can be taken

as a consistent estimator of σ . This suggestion is based on the fact that interquar-
tile range, unlike the standard deviation, is a continuous function on the space of
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absolutely continuous distribution functions, provided each p.d.f. is positive for all
real x .

Second order properties of block-based bootstrap
In the i.i.d. case, as remarked in Sect. 6.1, Efron’s bootstrap procedure gives a better
approximation to the sampling distribution of an approximate pivotal than the one
given by the CLT. In the recent years, this result has been extended to block-based
bootstrap in important papers by Götze and Künsch (1996) and Lahiri (1991).

Definition 6.6.1 Smooth function model. We assume that the state-space is �p. Let
μ = (μ1, μ2, . . . , μp)

′ = E(X1) and let a parameter θ be defined by a function
H(μ), where H : �p → �. Let θ̂ = H(X). Suppose that H is differentiable in a
neighborhood of μ given by N = {x |x ∈ �p, ‖ x − μ ‖< η} for some η > 0. Let
DH(μ) = (∂H/∂μ1, ∂H/∂μ2, . . . , ∂H/∂μp)

′ be the p × 1 gradient vector of H .
We assume that DH(μ) is a non-zero vector. The function θ is then said to satisfy
the smooth function model.

A large number of estimators satisfy smooth function model. These include
moment estimators , LSEs , sample auto-correlations and partial auto-correlations
among others. Under appropriate assumptions on rate of decay of mixing co-efficients
(Theorem 1.3.4), we have

√
T (X − μ)

D→ Np(0, �),

and further

√
T

(
H(X)− H(μ)

) D→ N
(

0, [DH(μ)]′�[DH(μ)]
)
.

Let

σ 2 = [DH(μ)]′
( ∞∑

t=−∞
E

[
(X1 − μ)(Xt − μ)′

]
)

[DH(μ)]

σ 2
T = [DH(μ)]′

(
T∑

t=−T

(
1 − t

T

)
E

[
(X1 − μ)(Xt − μ)′

]
)

[DH(μ)].

It follows that σ 2
T → σ 2 as T → ∞. We estimate σ 2

T (and σ 2) by

σ̂ 2
T = [DH(X)]′

(
1

T

T∑

t=1

(Xt − X)(Xt − X)′ + 2
L∑

�=1

T −�∑

t=1

(Xt − X)(Xt+� − X)′
)

[DH(X)].

The asymptotic pivotal is given by
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UStudent =
√

T
(
H(X)− H(μ)

)

σ̂T
.

We implement the block-based bootstrap as described above. Let X
∗

be a bootstrap
sample mean and let H(X

∗
) be the corresponding bootstrap statistic. As remarked

earlier, E∗(X∗
) �= X . Let X̃ = E∗(X∗

). It follows that

X̃ = 1

L(T − L + 1)

T −L∑

t=0

t∑

s=1

Xt+s .

The difference between X̃ and X can be shown to be Op(L1/2/T ), which is larger
than the first term in the Edgeworth expansion of

√
T (X−μ). Therefore, it is essential

to consider the bootstrap pivotal as

U∗
Student =

√
T

(
H(X

∗
)− H(X̃)

)

σ̂ ∗
T

,

where

σ̂ 2∗
T = 1

K

K∑

j=1

[
1

L1/2

L∑

i=1

[DH(X
∗
)]′(Xi+ j − X

∗
)

]2

.

Theorem 6.6.4 (Götze and Künsch 1996) We assume that the followings hold.

A1. E(Xt ) = 0.
A2. E ‖ Xt ‖s+δ< ∞ for some s ≥ 8 and δ > 0.
A3. There exists a sequence Dk of sub-σ fields and a constant d > 0 such that

for j,m = 1, 2, . . . , with m > d − 1, the r.v. X j can be approximated by a
σ {Dp| |p − j | < m}-measurable random vector X j,m with E(‖ X j − X j−m ‖)
≤ d−1 exp(−dm).

A4. There exists a d > 0 such that for all m, j = 1, 2, . . . , A ∈ D−∞, j , B ∈ D j,∞,
we have |P(A ∩ B)− P(A)P(B)| ≤ d−1 exp(−dm).

A5. Let Zt = [DH(μ)]′(Xt − μ). Then, there exists a d > 0 such that for all
m, j = 1, 2, . . . , 1/d < m < j and τ ≥ d,

E |E(exp[iτ(Z j−m + · · · + Z j+m)])|Dk, k �= j | ≤ exp(−d)

and
lim inf
T →∞ Var(Z1 + Z2 + · · · + ZT )/T > 0.

A6 . There exists a d > 0 such that for all m, j, p = 1, 2, . . . and A ∈ D j−p, j+p,

E
∣∣∣P

[
A|D�, � �= j

] − P
[
A|D�, 0 < |�− j | ≤ m + p

]∣∣∣ ≤ d−1 exp(−dm).
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A7. The function H : �p → � is thrice differentiable. The vector DH(μ) �= 0. Fur-
ther, there exist constants C1,C2 > 0 such that ‖ D3 H(x) ‖< C1

(
1+ ‖ x ‖C2

)

for every x ∈ �p.

Let the block size L satisfy the conditions that L < T 1/3 and ln T = o(L). Further,
(ln T )M ≤ L ≤ T 1/3 for a large enough M and the conditions A1–A4 hold with s
replaced by qs, q ≥ 3 and s ≥ 8. Then,

sup
x

∣∣P∗[U∗
Student ≤ x] − P[UStudent ≤ x]∣∣ = OP (T

(−3/4)+ε),

where ε > 2/s.

If all the moments of X1 are finite,

sup
x

∣∣P∗[U∗
Student ≤ x] − P[UStudent ≤ x]∣∣ = OP (T

(−3/4)+ε)

for all ε > 0. Since the normal approximation is O(T −1/2), it follows that bootstrap
approximation gives a better approximation to the sampling distribution of UStudent.

The assumptions A3–A6 of the above theorem hold good for Mixing sequences
discussed in Sect. 1.3. For verification of these assumptions for various processes
including those in Sect. 1.3, we refer to Götze and Hipp (1983); Bose (1988); Götze
and Künsch (1996), and Lahiri (2003), Sect. 6.3

Lastly, it needs to be mentioned that Lahiri (1991, 2003). Section. 6.3 proposes
a different set of assumptions and norming for the Studentization and proves the
second order correctness of the block-based bootstrap. In Lahiri’s modification, we
use the bootstrap pivotal, given by

U∗
1 =

√
T

(
H(X

∗
)− H(X̃)

)

σ̂T
,

where σ̂T is a consistent estimator based on the sample and has been used in defining
the sample pivotal UStudent. In other words, the norming is the same for all bootstrap
samples. Lahiri (1991) shows that

sup
x

∣∣P∗[U∗
1 ≤ x] − P[UStudent ≤ x]∣∣ = oP (T

−1/2).

This proves that the bootstrap gives a better approximation than the CLT approxi-
mation.

Choosing an optimal block size
A natural question is regarding the choice of L which improves the performance of
the variance estimator and that of the confidence interval. Hall et al. (1995) discuss
sample-based choice of the optimal block size L for Künsch’s Block-based bootstrap.
The Chap. 7 of Lahiri (2003) gives a thorough discussion of the optimal block size.
We outline an empirical method due to Hall et al. (1995) to choose the block length

http://dx.doi.org/10.1007/978-81-322-0763-4_1
http://dx.doi.org/10.1007/978-81-322-0763-4_1
http://dx.doi.org/10.1007/978-81-322-0763-4_7
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L for Künsch’s bootstrap. Let us suppose that we are interested in estimating the
sampling distribution of a Studentized asymptotic pivotal UT = (θ̂ − θ)/σ̂T , where
σ̂ 2

T is a consistent estimator of σ 2, the variance of the asymptotic normal distribution
of θ̂T . It is assumed that θ satisfies the smooth function model. Let

F(x) = P[UT ≤ x].

Let L be an initial choice of the block length. A primary bootstrap estimator of F(x)
is given by

F̂(x) = P∗[U∗
T ≤ x],

where U∗
T = (θ̂∗ − θ̂ )/σ̂ ∗

T . Hall et al. (1995), under the assumptions of Götze and
Künsch (1996) described above, show that, for a large T , the MSE of F̂(x) as an
estimator of F(x) is given by

E
[

F̂(x)− F(x)
]2 ≈ 1

T

(
C1

L2 + C2L2

T

)
,

where C1 and C2 are functions of large sample moments of the sample mean vector
and derivatives of the function of the mean vector. The above quantity is obviously
minimized by taking L ∝ T 1/4.

Hall et al. (1995) proceed to suggest the following empirical method to estimate
the optimal length L∗ of the block size. We regard each block of size L as a sample
itself and select L ′ < L as the block size for this sample. Then, we have T − L + 1
estimators of F(x), which we denote by F̂s(x), s = 1, 2, . . . , T − L + 1.We select
L∗

1 as that value of L ′ which minimizes
∑

s[F̂s(x)− F̂(x)]2. The optimal block size
for the sample of size T that we have, is then given by (L/L ′)1/4L∗

1.
Hall et al. (1995) also discuss estimation of bias and variance of a statistic and

estimation of the sampling distribution of |UT |. For the first two, the optimal block
size is of the order of T 1/3, whereas for the last one, it is of the order of T 1/5. In each
case, an empirical rule to compute optimal block size is similar to the one outlined
above. Hall et al. (1995) estimate the optimal L by simulation studies of a model and
show that distribution of the empirically obtained optimal block-lengths, as discussed
earlier, have a mode at the optimal value.

It has been pointed out in the literature that the block-based bootstrap has some
shortcomings. In a bootstrap sample, the first and the last L observations occur with
less frequency than the other observations. Further, a bootstrap sample does not form
a stationary sequence. Politis and Romano suggest circular and stationary bootstrap
to deal with these two problems. In the circular bootstrap procedure (Politis and

Romano 1992), blocks are formed by wrapping i.e., attaching the last observations
with the first observations. For example, with T = 9 and L = 3, we have 2 more
blocks given by (X9, X1, X2),(X8, X9, X1) and in addition to earlier 7 blocks given
by {(X1, X2, X3), . . . , (X7, X8, X9)}. We select 3 blocks on a SRSWR basis from
these blocks, thus the sample size matches with the original sample size 9. In the
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circular bootstrap, the bootstrap sample mean is conditionally unbiased for the sample
mean. In the stationary bootstrap (Politis and Romano 1994), the block lengths
are random variables, with the distribution of a block size given by a geometric
distribution p j = (1 − p) j−1 p, j ≥ 1, where L = 1/p. Thus, in this procedure,
p is allowed to converge to 0 such that pT → λ, 0 < λ < ∞. The block-based
bootstrap due to Künsch and these two bootstraps employ overlapping blocks, one
can have non-overlapping blocks also (which will be less in numbers). The bootstrap
procedures due to Künsch and the Circular bootstrap outperform the stationary and
non-overlapping bootstrap procedures for estimation of bias and variance of a smooth
function of the sample mean vector, cf. Lahiri (2003) Chap. 5,

Block-based bootstrap procedures for confidence interval are somewhat handi-
capped, as the optimal choices for estimation of the variance of a statistic (which
is needed in a Studentization procedure) and for estimation of the sampling distri-
bution are of different orders. Davison and Hall (1993) point out that improvement
obtained by the block-based bootstrap over the CLT approximation heavily depends
upon the way Studentization is carried out and the naive percentile method is as good
as the CLT approximation. They remark that the naive bootstrap does not capture the
sampling distribution of a Studentized pivotal, since it indirectly assumes that the
underlying series is L-dependent. Davison and Hall (1993) suggest a modification to
the estimator for the variance of the sample mean. They consider the model given by
Xt = μ+∑

j w jεt− j ,where {εt } is a sequence of i.i.d. random variables with mean
0 and variance 1 and

∑
t | twt |< ∞,

∑
t wt �= 0. The parameter of interest is the

stationary mean μ. They show that the Studentized pivotal which uses the modified
estimator of the variance (without a bootstrap) leads to an approximation which is
superior to the approximation given by the naive bootstrap.

Edge effects and lack of stationarity are some of the difficulties which have been
solved to some extent. Bühlmann (2002) brings out limitations of the block-based
bootstrap. He points out that performance of block-based bootstrap is not satisfactory
for categorical time series and procedures such as AR-seive bootstrap described in
Bühlmann (2002), outperform block-based bootstrap.

Results of Davison and Hall (1993) and Bühlmann (2002) suggest that there
are some limitations to the block-based bootstrap and in specific cases, there exist
alternative techniques which are superior to the block-based bootstrap. Neverthe-
less, as pointed out earlier, since a theoretical analysis in stochastic models can be
quite formidable, a block-based bootstrap procedures without any assumptions (apart
from that of stationarity and smoothness conditions of a statistic) are quite useful in
practice. They do not need any complicated theoretical computations and we easily
get variance estimators and the estimators of the sampling distribution which are
typically at least as good as the classical CLT approximation.

http://dx.doi.org/10.1007/978-81-322-0763-4_5
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6.7 Other Block-Based Sample Reuse Methods for Stationary
Observations

Subseries Technique (Carlstein 1986)
Let K = T/L . There are K non-overlapping blocks of size L . Carlstein (1986)
proposes the variance of the K estimators of θ obtained from these blocks as the
estimator of variance of θ̂ .

A Direct Estimator
We now explicitly indicate the parameters in the functional form of the Influence
function by writing I F(y, η) instead of I F(y, F(m)). Considering the Influence
function form of the variance of asymptotic normal distribution and assuming that
the parameters η have been estimated by a consistent estimator η̂, define an estimator
of σ 2 as

σ 2
Infl =

L+1∑

k=L−1

w(T, k)
T −|k|∑

t=1

I F(Yt , η̂)I F(Yt + |k|, η̂).

It is assumed that w(T, k) → 1 (for fixed k) as T → ∞ and that L → ∞, L/T → 0.
Smoothness conditions on the influence function are required to show consistency
of σ 2

Infl. General results are known in those cases where the estimator agrees with the
block-based jackknife, which we discuss now.

Block-based Jackknife(Künsch 1989)
Consider the weights wT (t) for t = 1, 2, . . . such that 0 ≤ wT (t) ≤ 1 and wT (t) > 0
if and only if 1 ≤ t ≤ L . Let ‖ wT ‖= ∑

wT (t). Define distribution functions

Fm(T )
(− j) = 1

T − ‖ wT ‖
T∑

t=1

(1 − wT (t − j))δYt ,

where, as before, Yt = (Xt , Xt+1, . . . , Xt+m). Let

θ( j) = θ [Fm(T )
(− j)] , j = 0, 1, . . . , T − �.

The notation (− j) denotes the property that the j-th block has been deleted while
computing an estimator of the d.f. Then, the Jackknife estimator of the variance of
θ̂ is defined by

σ 2
J = 1

(T − ‖ wT ‖)2
1

T (T − L + 1)W (2)

T −L∑

j=0

(
θ( j) − θ̃

)2
,

where W (2) = ∑L
t=1[wT (t)]2 and θ̃ = (T − L + 1)−1 ∑T −L

j=0 θ
( j). We note that

Tσ 2
J estimates the variance of the asymptotic normal distribution of

√
T (θ̂ − θ).
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The weight functions are of the form wT (t) = h((t −1/2)/L), 1 ≤ t ≤ L , where the
function h is symmetric about 1/2 and increasing on (0, 1/2). The simplest choice
is h to be indicator function of the interval (0, 1) and it indicates deletion of a block.
The block length L satisfies the condition that L → ∞ and L/T → 0.
Künsch (1989) shows that the block-based jackknife procedure gives a consistent
estimator of the asymptotic variance for (i) estimators which are smooth functions of
the sample mean vector of functions (ii) von Mises statistics with a symmetric kernel
(iii) estimating function estimators satisfying certain regularity conditions for obser-
vations from ARMA models (Lemma 4.1, 4.2, and 4.3, respectively of his paper).

Sample reuse method(Hall and Jing 1996)
We now describe a procedure which is based on blocks of observations, however, it
does not obtain repeated samples from the given set of observations. We suppose that
we are interested in estimating the sampling distribution of a Studentized asymptotic
pivotal UT = √

T (θ̂ − θ)/σ̂T , where σ̂ 2
T is a consistent estimator of σ 2, the variance

of the asymptotic normal distribution of
√

T (θ̂ − θ). Let

F(x) = P[UT ≤ x].

Let T (1) = T − L + 1 be the number of (overlapping) blocks, each of length L . Let
θ̂s and σ̂s be the corresponding estimators of θ and σ respectively, based on the sth
block. A primary estimator of F(x) is given by

F̂(x) = 1

T (1)

∑

s

I

[√
L(θ̂s − θ̂ )

σ̂(s)
≤ x

]
.

The above estimator needs to be corrected for the fact that the sample sizes do not
match. Hall and Jing (1996) suggest Richardson extrapolation procedure to deal with
this difference. It is assumed that the pivotal

√
T (θ̂ − θ)/σ̂T satisfies conditions of

Götze and Hipp (1983) or Götze and Künsch (1996) so that it admits a first order
Edgeworth expansion. Then, the modified estimator of F(x) is given by

F̃(x) = (
1 − (L/T )1/2

)
�(x)+ (L/T )1/2 F̂(x),

where �(x) is the distribution function of a N (0, 1) random variable. Hall and
Jing (1996) show that the MSE of F̃(x) as an estimator of F(x) is minimum when
L = T 1/3 and the minimum value is of the order of T −2/3. If we are interested in
estimating the distribution of

√
T |θ̂ − θ |/σ̂T , then the optimal value of L is of the

order of T 1/7 and the minimum is of the order T −8/7. They also describe empirical
procedures for selecting L .
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6.8 Resampling Based on Estimating Functions

Bootstrap and other resampling procedures have been extended by several researchers
to estimating functions rather than observations. Bootstrapping estimating functions
was discussed by Hu and Zidec (1995) in the case of robust estimators in a regression
model. Hu and Kalbfleisch (2000) discuss general results and give several applica-
tions. As pointed out by Hu and Zidec (1995), there are two distinct advantages of
obtaining confidence interval directly from an estimating function. First, an estimator
need not be computed for each bootstrap sample. Thus, the bootstrap is less time-
consuming. Second, normal approximation for a Studentized estimating function is
often better than normal approximation to the Studentized estimator obtained by
solving the corresponding equation.

Delete 1 jackknife for uncorrelated estimating functions
Let us suppose that we have T uncorrelated elementary estimating functions Ht ,
t = 1, 2, . . . , T satisfying the regularity conditions. Here, instead of deleting an
observation, we delete an estimating function Ht at a time and estimate θ from the
remaining T − 1 estimating functions. Let θ̂(t) be such an estimator, t = 1, 2, . . . , T
and θ̃ denote their mean. The jackknife estimator of variance of θ̂ is then defined by

σ̂ 2(J ) = T − 1

T

∑

t

(
θ̂(t) − θ̃

)2

Lele (1991a) proves that under certain conditions, the above estimator is a consistent
estimator of variance of the asymptotic normal distribution of the estimator obtained
by solving the estimating equation

∑
t Ht = 0. It may be recalled that elementary

estimating functions which form the CLS estimator and the orthogonal estimation
functions in stochastic models are uncorrelated and Lele’s procedure can be applied
to estimators obtained from such procedures.
Block-based bootstrap for estimating functions
In estimating function bootstrap in the i.i.d. case, instead of resampling from a set of
observations, we obtain a SRSWR sample from {H1(θ̂), H2(θ̂), . . . , HT (θ̂)}, where
Ht (θ) is an elementary estimating function based on the observation Xt alone and
θ̂ is a consistent solution of

∑
Ht = 0.. Here, this procedure is extended to the

block-based bootstrap for stationary observations.
Let Yt = (Xt , Xt+1, . . . , Xt+m), t = 1, 2, . . . , T − m + 1, as before. We now
assume that the elementary function Ht is a function of Yt and θ (the parameter of
interest) only. Define

Ut (θ) = Ht (Yt , θ), t = 1, 2, . . . , T − m + 1, U T = (T − m + 1)−1
∑

Ut .

Let

V 2
T (θ) = 1

T − m + 1

∑

t

U 2
t + 2

∑

�

1

T − �

∑

t

UtUt+�.
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We wish to estimate the sampling distribution of the Studentized estimating function
GT (θ) defined as

GT (θ) = 1√
T

U T

VT (θ)
.

Under appropriate mixing conditions, moment conditions, and conditions on the

block length L (Theorem 1.3.4), it can be shown that (i) U T√
T

converges to N (0, V 2)

in distribution and that (ii) VT (θ) converges to V a.s./in probability. This follows
easily from Künsch (1989), since U T is a mean of consecutive observations from a
stationary and α-mixing random variables, (cf. Theorem 1.3.4 ).
In EF bootstrap, we regard Ut (θ̂)’s as stationary observations and carry out block-
based bootstrap procedure. For the sake of convenience, we write

Ut = Ut (θ̂), t = 1, 2, . . . , T − m + 1,

U t = 1

L

t+L∑

s=t

Us, t = 1, 2, . . . , T − m + 1.

Let U
∗
1,U

∗
2, . . . ,U

∗
T (1) be a SRSWR of size T (1) from U 1,U 2, . . . ,U T (1). Let

H∗
T = 1

T (1)

T (1)∑

t=1

U
∗
t .

It may be pointed out that, in general, E∗(H∗
T ) �= 0, i.e., the estimating function

H∗
T is not a conditionally unbiased estimating function. Let H̃1 = E∗(H∗

T ). Let
ŨT = E∗(U∗

1). Let

G∗
T (θ̂) =

√
T − m + 1(H∗

T − H̃T )

V ∗ ,

where

(V ∗)2 = 1

T − m + 1

∑

t

(
U

∗
t − ŨT

)2
.

Then, the bootstrap approximation to the distribution of GT (θ) is given by

P̂ [GT (θ) ≤ x] = P∗ [
G∗

T (θ̂) ≤ x
]
,

which, in practice, is approximated by simulations.

A generalized bootstrap for estimating equations
Recently, Chatterjee and Bose (2005) have introduced a generalized bootstrap pro-
cedure which is based on estimating equations. This procedure is different than those
by Hu and Kalbfleisch (2000) and Lele (1991b). Let {Ht , t ≥ 1} be orthogonal esti-
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mating functions i.e., E[Ht |X0, X1, . . . , Xt−1] = 0. Let {Wt , t = 1, 2, . . . T } be a
collection of random variables (which depend on T ). The random variables {Wt ,≥ 1}
are independent of observations and independently distributed of {Ht , t ≥ 1}. These
are known as bootstrap weights. Earlier work wherein such bootstraps were studied
are Freedman and Peters (1984) and Rao and Zhao (1992). These weights satisfy the
following conditions.

A1. For each T , {Wt , t = 1, 2, . . . T } are exchangeable random variables. E[Wt ] =
1 for all t .

A2. Let Var(Wt ) = σ 2
t . Then, E(W1W2) = O(1/T ).

A3. E(W 2
1 W 2

2 ) → 1 and E(W 4
1 ) < ∞.

The above conditions are satisfied by Efron’s bootstrap, jackknife, and a num-
ber of resampling plans. For example, Efron’s bootstrap is obtained when
{Wt , t = 1, 2, . . . T } has a multinomial distribution with parameters T and
the cell probabilities (1/T, 1/T, . . . , 1/T ). We confine ourselves to the case
when θ is a scalar parameter. Results of Chatterjee and Bose (2005) are more
general and are applicable to a non-stationary processes.
Let us assume that the underlying sequence is stationary.

A4. Each Ht (θ) admits a first order Taylor series expansion in a neighborhood of
the true parameter.

A5. E[∑T
t=1 H2

t ] → ∞. This is trivially satisfied in the stationary case, since 0 <
E(H2

t ) < ∞.
A6. Let us write the Taylor series expansion as Ht = Ht (θ0) + (θ − θ0)H ′

t (θ0) +
(1/2)(θ − θ0)

2 H ′′
t (θ

∗), where θ0 is the true value and θ∗ is the intermediate
point. Then, sup|θ−θ0|<δ H ′′(θ) < M(θ0), where E[M(θ0)

2] < ∞.

Chatterjee and Bose (2005) (cf. their Theorems 3.1 and 3.2) show that the equa-
tion

∑
Ht = 0 admits a consistent and asymptotically normal solution θ̂ and the

weighted bootstrap approximation to the distribution of the appropriately Studentized
θ̂ is asymptotically valid. Their results are more general and cover non-stationary
processes also.
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