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Chapter 1

Introduction

Most physical systems possess parametric uncertainties or unmeasurable
disturbances. Examples in chemical engineering include reaction rates, activation
energies, fouling factors, and microbial growth rates. Since parametric uncertainty
may degrade the performance of model predictive control (MPC), mechanisms to
update the unknown or uncertain parameters are desirable in application. One possi-
bility would be to use state measurements to update the model parameters offline. A
more attractive possibility is to apply adaptive extensions of MPC in which parameter
estimation and control are performed online.

The literature contains very few results on the design of adaptive nonlinear MPC
(NMPC) [1, 125]. Existing design techniques are restricted to systems that are linear
in the unknown (constant) parameters and do not involve state constraints. Although
MPC exhibits some degree of robustness to uncertainties, in reality, the degree of
robustness provided by nominal models or certainty equivalent models may not be
sufficient in practical applications. Parameter estimation error must be accounted for
in the computation of the control law.

This book attempts to bridge the gap in adaptive robust NMPC. It proposes a
design methodology for adaptive robust NMPC systems in the presence of distur-
bances and parametric uncertainties. One of the key concepts pursued is set-based
adaptive parameter estimation. Set-based techniques provide a mechanism to esti-
mate the unknown parameters as well as an estimate of the parameter uncertainty set.
The main difference with established set-based techniques that are commonly used
in optimization is that the proposed approach focusses on real-time uncertainty set
estimation. In this work, the knowledge of uncertain set estimates are exploited in the
design of robust adaptive NMPC algorithms that guarantee robustness of the NMPC
system to parameter uncertainty. Moreover, the adaptive NMPC system is shown to
recover nominal NMPC performance when parameters have been shown to converge
to their true values.

The book provides a comprehensive introduction to NMPC and nonlinear adap-
tive control. In the first part of the book, a framework for the study, design, and
analysis of NMPC systems is presented. The framework highlights various mecha-
nisms that can be used to improve computational requirements of standard NMPC
systems. The robustness of NMPC is presented in the context of this framework.

The second part of the book presents an introduction to adaptive NMPC. Starting
with a basic introduction to the problems associated with adaptive MPC, a robust
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set-based approach is developed. The key element of this approach is an internal
model identifier that allows the MPC to compensate for future moves in the parameter
estimates and more importantly, the uncertainty associated with the unknown model
parameters. It is shown that the proposed adaptive NMPC can recover the performance
of the nominal MPC problem once the parameters have converged to their true value.

The third part of the book is dedicated to the practical realization of the adaptive
NMPC methodology. An alternative approach to adaptive parameter estimation is
first developed that yields a systematic set-based parameter estimation approach. This
approach is integrated to the design of adaptive NMPC and robust adaptive NMPC
control systems. An application for the design of adaptive economic NMPC systems
is presented.

The last part of the book presents a treatment of the discrete-time generalization
of the continuous-time algorithms proposed in the third part of the book. It is shown
how the set-based estimation can be extended to the discrete-time case. The discrete-
time techniques can be integrated easily using the concept of internal model identifiers
to provide designs of adaptive robust NMPC systems.



Chapter 2

Optimal control

When faced with making a decision, it is only natural that one would aim to select the
course of action which results in the “best” possible outcome. However, the ability
to arrive at a decision necessarily depends upon two things: a well-defined notion
of what qualities make an outcome desirable and a previous decision defining to
what extent it is necessary to characterize the quality of individual candidates before
making a selection (i.e., a notion of when a decision is “good enough”). Whereas the
first property is required for the problem to be well defined, the latter is necessary for
it to be tractable.

The process of searching for the “best” outcome has been mathematically formal-
ized in the framework of optimization. The typical approach is to define a scalar-valued
cost function, that accepts a decision candidate as its argument, and returns a quanti-
fied measure of its quality. The decision-making process then reduces to selecting a
candidate with the lowest (or highest) such measure.

2.1 Emergence of optimal control

The field of “control” addresses the question of how to manipulate an input u in
order to drive the state x of a dynamical system

ẋ = f (x, u) (2.1)

to some desired target. Ultimately this task can be viewed as decision-making, so
it is not surprising that it lends itself toward an optimization-based characterization.
Assuming that one can provide the necessary metric for assessing quality of the
trajectories generated by (2.1), there exists a rich body of “optimal control” theory
to guide this process of decision-making. Much of this theory came about in the
1950s and 1960s, with Pontryagin’s introduction of the Minimum (a.k.a. Maximum)
Principle [135] and Bellman’s development of Dynamic Programming [19, 20]. (This
development also coincided with landmark results for linear systems, pioneered by
Kalman [83, 84], that are closely related.) However, the roots of both approaches
actually extend back to the mid-1600s, with the inception of the calculus of variations.

The tools of optimal control theory provide useful benchmarks for characteriz-
ing the notion of “best” decision-making, as it applies to control. However applied
directly, the tractability of this decision-making is problematic. For example, Dynamic
Programming involves the construction of a n-dimensional surface that satisfies a
challenging nonlinear partial differential equation, which is inherently plagued by
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the so-called curse of dimensionality. This methodology, although elegant, remains
generally intractable for problems beyond modest size. In contrast, the Minimum
Principle has been relatively successful for use in offline trajectory planning, when
the initial condition of (2.1) is known. Although it was suggested as early as 1967
in Reference 103 that a stabilizing feedback u = k(x) could be constructed by con-
tinuously re-solving the calculations online, a tractable means of doing this was not
immediately forthcoming.

2.2 MPC as receding-horizon optimization

Early development [43, 141, 142] of the control approach known today as MPC orig-
inated in the process control community, and was driven much more by industrial
application than by theoretical understanding. Modern theoretical understanding of
MPC, much of which developed throughout the 1990s, has clarified its very natural
ties to existing optimal control theory. Key steps toward this development included
such results as in References 33, 34, 44, 85, 124, and 128, with an excellent unifying
survey in Reference 126.

At its core, MPC is simply a framework for implementing existing tools of optimal
control. Taking the current value x(t) as the initial condition for (2.1), the Minimum
Principle is used as the primary basis for identifying the “best” candidate trajectory
by predicting the future behavior of the system using model (2.1). However, the actual
quality measure of interest in the decision-making is generally the total future accu-
mulation (i.e., over an infinite future) of a given instantaneous metric, a quantity rarely
computable in a satisfactorily short time. As such, MPC only generates predictions
for (2.1) over a finite time horizon, and approximates the remaining infinite tail of
the cost accumulation using a penalty surface derived from either a local solution of
the Dynamic Programming surface, or an appropriate approximation of that surface.
As such, the key benefit of MPC over other optimal control methods is simply that
its finite horizon allows for a convenient trade-off between the online computational
burden of solving the Minimum Principle, and the offline burden of generating the
penalty surface.

In contrast to other approaches for constructive nonlinear controller design,
optimal control frameworks facilitate the inclusion of constraints, by imposing fea-
sibility of the candidates as a condition in the decision-making process. While these
approaches can be numerically burdensome, optimal control (and by extension, MPC)
provides the only real framework for addressing the control of systems in the pres-
ence of constraints—in particular those involving the state x. In practice, the predictive
aspect of MPC is unparalleled in its ability to account for the risk of future constraint
violation during the current control decision.

2.3 Current limitations in MPC

While the underlying theoretical basis for MPC is approaching a state of relative matu-
rity, application of this approach to date has been predominantly limited to “slow”
industrial processes that allow adequate time to complete the controller calculations.
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There is great incentive to extend this approach to applications in many other sectors,
motivated in large part by its constraint-handling abilities. Future applications of sig-
nificant interest include many in the aerospace or automotive sectors, in particular
constraint-dominated problems such as obstacle avoidance. At present, the signifi-
cant computational burden of MPC remains the most critical limitation toward its
application in these areas.

The second key weakness of the model predictive approach remains its suscepti-
bility to uncertainties in the model (2.1). While a fairly well-developed body of theory
has been developed within the framework of robust-MPC, reaching an acceptable bal-
ance between computational complexity and conservativeness of the control remains
a serious problem. In the more general control literature, adaptive control has evolved
as an alternative to a robust-control paradigm. However, the incorporation of adaptive
techniques into the MPC framework has remained a relatively open problem.

2.4 Notational and mathematical preliminaries

Throughout the remainder of this book, the following is assumed by default (where
s ∈ R

s and S represent arbitrary vectors and sets, respectively):

● All vector norms are Euclidean, defining balls B(s, ε) � {s′|‖s − s′‖ ≤ ε}, ε ≥ 0.
● Norms of matrices S ∈ R

m×s are assumed induced as ‖S‖ � max‖s‖=1 ‖Ss‖.
● The notation s[a,b] denotes the entire continuous-time trajectory s(τ ), τ ∈ [a, b],

and likewise ṡ[a,b] the trajectory of its forward derivative ṡ(τ ).
● For any set S ⊆ R

s, define
i. its closure cl{S}, interior S̊, and boundary ∂S = cl{S} \ S̊

ii. its orthogonal distance norm ‖s‖S � infs′∈S‖s − s′‖
iii. a closed ε-neighborhood B(S, ε) � {s ∈ Rs| ‖s‖S ≤ ε}
iv. an interior approximation

←−
B (S, ε) � {s ∈ S|infs′∈∂S‖s − s′‖ ≥ ε}

v. a (finite, closed, open) cover of S as any (finite) collection {Si} of (open,
closed) sets S

i ⊆ Rs such that S ⊆ ∪iS
i

vi. the maximal closed subcover cov{S} as the infinite collection {Si} contain-
ing all possible closed subsets S

i ⊆ S; that is, cov{S} is a maximal “set of
subsets.”

Furthermore, for any arbitrary function α : S →R we assume the following
definitions:

● α(·) is Cm+ if it is at least m-times differentiable, with all derivatives of order m
yielding locally Lipschitz functions.

● A function α : S → (−∞, ∞] is lower semicontinuous (LS-continuous) at s if it
satisfies (see Reference 40):

lim inf
s′→s

α̇(s′) ≥ α(s). (2.2)

● A continuous function α : R≥0 → R≥0 belongs to class K if α(0) = 0 and α(·) is
strictly increasing on R>0. It belongs to class K∞ if it is furthermore radially
unbounded.
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● A continuous function β : R≥0 × R≥0 → R≥0 belongs to class KL if (i) for every
fixed value of τ , it satisfies β(·, τ ) ∈ K, and (ii) for each fixed value of s, then
β(s, ·) is strictly decreasing and satisfies limτ→∞ β(s, τ ) = 0.

● The scalar operator satb
a(·) denotes saturation of its arguments onto the interval

[a, b], a < b. For vector- or matrix-valued arguments, the saturation is presumed
by default to be evaluated element-wise.

2.5 Brief review of optimal control

The underlying assumption of optimal control is that at any time, the pointwise cost
of x and u being away from their desired targets is quantified by a known, physically
meaningful function L(x, u). Loosely, the goal is to then reach some target in a man-
ner that accumulates the least cost. It is not generally necessary for the “target” to
be explicitly described, since its knowledge is built into the function L(x, u) (i.e., it is
assumed that convergence of x to any invariant subset of {x | ∃u s.t. L(x, u) = 0} is as
acceptable). The following result, while superficially simple in appearance, is in fact
the key foundation underlying the optimal control results of this section, and by exten-
sion all of MPC as well. Proof can be found in many references, such as Reference 143.

Definition 2.5.1 (Principle of Optimality). If u∗
[t1,t2] is an optimal trajectory for the

interval t ∈ [t1, t2], with corresponding solution x∗
[t1,t2] to (2.1), then for any τ ∈ (t1, t2)

the sub-arc u∗
[τ , t2] is necessarily optimal for the interval t ∈ [τ , t2] if (2.1) starts from

x∗(τ ).

2.5.1 Variational approach: Euler, Lagrange, and Pontryagin

Pontryagin’s Minimum Principle (also known as the Maximum Principle [135]) repre-
sented a landmark extension of classical ideas of variational calculus to the problem
of control. Technically, the Minimum Principle is an application of the classical
Euler–Lagrange and Weierstrass conditions1 [78], which provide first-order nec-
essary conditions to characterize extremal time-trajectories of a cost functional.2

The Minimum Principle therefore characterizes minimizing trajectories (x[0,T ], u[0,T ])
corresponding to a constrained finite-horizon problem of the form

VT (x0, u[0,T ]) =
∫ T

0
L(x, u) dτ + W (x(T )) (2.3a)

s.t. ∀τ ∈ [0, T ] :

ẋ = f (x, u), x(0) = x0 (2.3b)

g(x(τ )) ≤ 0, h(x(τ ), u(τ )) ≤ 0, w(x(T )) ≤ 0 (2.3c)

1 Phrased as a fixed initial point, free endpoint problem.
2 That is, generalizing the nonlinear program (NLP) necessary condition ∂p

∂x = 0 for the extrema of a function
p(x).
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where the vector field f (·, ·) and constraint functions g(·), h(·, ·), and w(·) are assumed
sufficiently differentiable.

Assume that g(x0) < 0, and, for a given (x0, u[0,T ]), let the interval [0, T )
be partitioned into (maximal) subintervals as τ ∈ ∪p

i=1 [ti, ti+1), t0 = 0, tp+1 = T ,
where the interior ti represent intersections g < 0 ⇔ g = 0 (i.e., the {ti} represent
changes in the active set of g). Assuming that g(x) has constant relative degree r
over some appropriate neighborhood, define the following vector of (Lie) deriva-
tives: N (x) � [g(x), g(1)(x), . . . , g(r−1)(x)]T , which characterizes additional tangency
constraints N (x(ti)) = 0 at the corners {ti}. Rewriting (2.3) in multiplier form

VT =
∫ T

0
H(x, u) − λT ẋ dτ + W (x(T )) + µww(x(T )) +

∑

i

µT
N (ti)N (x(ti)) (2.4a)

H � L(x, u) + λT f (x, u) + µhh(x, u) + µgg(r)(x, u) (2.4b)

Taking the first variation of the right-hand sides of (2.4a) and (2.4b) with respect to
perturbations in x[0,T ] and u[0,T ] yields the following set of conditions (adapted from
statements in References 24, 28, and 78) which necessarily must hold for VT to be
minimized.

Proposition 2.5.2 (Minimum Principle). Suppose that the pair (u∗
[0,T ] and x∗

[0,T ]) is a
minimizing solution of (2.3). Then for all τ ∈ [0, T ], there exists multipliers λ(τ ) ≥ 0,
µh(τ ) ≥ 0, µg(τ ) ≥ 0, and constants µw ≥ 0, µi

N ≥ 0, i ∈ I, such that

i. Over each interval τ ∈ [ti, ti+1], the multipliers µh(τ ), µg(τ ) are piecewise
continuous, µN (τ ) is constant, λ(τ ) is continuous, and with (u∗

[ti , ti+1], x∗
[ti , ti+1])

satisfies

ẋ∗ = f (x∗, u∗), x∗(0) = x0 (2.5a)

λ̇T = ∇xH a.e., with λT (T ) = ∇xW (x∗(T )) + µw∇xw(x∗(T )) (2.5b)

where the solution λ[0,T ] is discontinuous at τ ∈ {ti}, i ∈ {1, 3, 5...p}, satisfying

λT (t−i ) = λT (t+i ) + µT
N (t+i )∇xN (x(ti)) (2.5c)

ii. H(x∗, u∗, λ, µh, µg) is constant over intervals τ ∈ [ti, ti+1], and for all τ ∈
[0, T ] it satisfies (where U(x) � {u | h(x, u) ≤ 0 and (g(r)(x, u) ≤ 0 if g(x) =
0)} )

H(x∗, u∗, λ, µh, µg) ≤ min
u∈U (x)

H(x∗, u, λ, µh, µg) (2.5d)

∇uH(x∗(τ ), u∗(τ ), λ(τ ), µh(τ ), µg(τ )) = 0 (2.5e)

iii. For all τ ∈ [0, T ], the following constraint conditions hold

g(x∗) ≤ 0 h(x∗, u∗) ≤ 0 w(x∗(T )) ≤ 0 (2.5f )

µg(τ )g(r)(x∗, u∗) = 0 µh(τ )h(x∗, u∗) = 0 µww(x∗(T )) = 0 (2.5g)

µT
N (τ )N (x∗) = 0

(
and N (x∗) = 0, ∀τ ∈ [ti, ti+1], i ∈ {1, 3, 5...p}) (2.5h)
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The multiplier λ(t) is called the co-state, and it requires solving a two-point boundary-
value problem for (2.5a) and (2.5b). One of the most challenging aspects to locating
(and confirming) a minimizing solution to (2.5) lies in dealing with (2.5c) and (2.5h),
since the number and times of constraint intersections are not known a priori.

2.5.2 Dynamic programming: Hamilton, Jacobi, and Bellman

The Minimum Principle is fundamentally based upon establishing the optimality of a
particular input trajectory u[0,T ]. While the applicability to offline, open-loop trajec-
tory planning is clear, the inherent assumption that x0 is known can be limiting if one’s
goal is to develop a feedback policy u = k(x). Development of such a policy requires
the consideration of all possible initial conditions, which results in an optimal cost
surface J ∗ : R

n → R, with an associated control policy k : R
n → R

m. A constructive
approach for calculating such a surface, referred to as Dynamic Programming, was
developed by Bellman [19]. Just as the Minimum Principle was extended out of the
classical trajectory-based Euler–Lagrange equations, Dynamic Programming is an
extension of classical Hamilton–Jacobi field theory from the calculus of variations.

For simplicity, our discussion here will be restricted to the unconstrained problem

V ∗(x0) = min
u[0,∞)

∫ ∞

0
L(x, u)dτ (2.6a)

s.t. ẋ = f (x, u), x(0) = x0 (2.6b)

with locally Lipschitz dynamics f (·, ·). From the Principle of Optimality, it can be
seen that (2.6) lends itself to the following recursive definition:

V ∗(x(t)) = min
u[t,t+�t]

{∫ t+�t

t
L(x(τ ), u(τ ))dτ + V ∗(x(t + �t))

}
(2.7)

Assuming that V ∗ is differentiable, replacing V ∗(x(t + �t) with a first-order Taylor-
series and the integrand with a Riemannian sum, the limit �t → 0 yields

0 = min
u

{
L(x, u) + ∂V ∗

∂x
f (x, u)

}
(2.8)

Equation (2.8) is one particular form of what is known as the Hamilton–Jacobi–
Bellman equation. In some cases (such as L(x, u) quadratic in u, and f (x, u) affine
in u), equation (2.8) can be simplified to a more standard-looking partial differ-
ential equation (PDE) by evaluating the indicated minimization in closed-form.3

Assuming that a (differentiable) surface V ∗ : R
n → R is found (generally by offline

numerical solution) which satisfies (2.8), a stabilizing feedback u = kDP(x) can be
constructed from the information contained in the surface V ∗ by simply defining
kDP(x) � {u | ∂V ∗

∂x f (x, u) = −L(x, u)}.4
Unfortunately, incorporation of either input or state constraints generally violates

the assumed smoothness of V ∗(x). While this could be handled by interpreting (2.8)

3 In fact, for linear dynamics and quadratic cost, (2.8) reduces down to the linear Ricatti equation.
4 kDP(·) is interpreted to incorporate a deterministic selection in the event of multiple solutions. The
existence of such a u is implied by the assumed solvability of (2.8).
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in the context of viscosity solutions (see Reference 40 for definition), for the purposes
of application to MPC it is more typical to simply restrict the domain of V ∗ : � → R

such that � ⊂ R
n is feasible with respect to the constraints.

2.5.3 Inverse-optimal control Lyapunov functions

While knowledge of a surface V ∗(x) satisfying (2.8) is clearly ideal, in practice analyti-
cal solutions are only available for extremely restrictive classes of systems, and almost
never for systems involving state or input constraints. Similarly, numerical solution
of (2.8) suffers the so-called “curse of dimensionality” (as named by Bellman) which
limits its applicability to systems of restrictively small size.

An alternative design framework, originating in Reference 155, is based on the
following definition.

Definition 2.5.3. A control Lyapunov function (CLF ) for (2.1) is any C1, proper,
positive definite function V : R

n → R≥0 such that, for all x �= 0:

inf
u

∂V

∂x
f (x, u) < 0. (2.9)

Design techniques for deriving a feedback u = k(x) from knowledge of V (·) include
the well-known “Sontag’s controller” of Reference 153, which led to the development
of “pointwise min-norm” control of the form in References 64, 65, and 150

min
u

γ (u) s.t.
∂V

∂x
f (x, u) < −σ (x) (2.10)

where γ , σ are positive definite, and γ is radially unbounded. As discussed in
References 65 and 150, relation (2.9) implies that there exists a function L(x, u),
derived from γ and σ , for which V (·) satisfies (2.8). Furthermore, if V (x) ≡ V ∗(x),
then appropriate selection of γ , σ (in particular that of Sontag’s controller [153])
results in the feedback u = kclf (x) generated by (2.9) satisfying kclf (·) ≡ kDP(·). Hence
this technique is commonly referred to as “inverse-optimal” control design, and can be
viewed as a method for approximating the optimal control problem (2.6) by replacing
V ∗(x) directly.





Chapter 3

Review of nonlinear MPC

The ultimate objective of a model predictive controller is to provide a closed-loop
feedback u = κmpc(x) that regulates (2.1) to its target set (assumed here x = 0) in a
fashion that is optimal with respect to the infinite-time problem (2.6), while enforcing
pointwise constraints of the form (x, u) ∈ X × U in a constructive manner. However,
rather than defining the map κmpc : X → U by solving a PDE of the form (2.8) (i.e.,
thereby pre-computing knowledge of κmpc(x) for every x ∈ X), the MPC philosophy is
to solve for, at time t, the control move u = κmpc(x(t)) for the particular value x(t) ∈ X.
This makes the online calculations inherently trajectory-based, and therefore closely
tied to the results in Section 2.5.1 (with the caveat that the initial conditions are
continuously referenced relative to current (t, x)). Since it is not practical to pose
(online) trajectory-based calculations over an infinite prediction horizon τ ∈ [t, ∞),
a truncated prediction τ ∈ [t, t + T ] is used instead. The truncated tail of the integral
in (2.6) is replaced by a (designer-specified) terminal penalty W : X f → R≥0, defined
over any local neighborhood X f ⊂ X of the target x = 0. This results in a feedback of
the form

u = κmpc(x(t)) � u∗
[t, t+T ](t) (3.1a)

where u∗
[t, t+T ] denotes the solution to the x(t)-dependent problem

u∗
[t, t+T ] � arg min

u p
[t, t+T ]

(
VT (x(t), up

[t, t+T ]) �
∫ t+T

t
L(xp, up) dτ + W (xp(t + T ))

)

(3.1b)

s.t. ∀τ ∈ [t, t + T ] : d
dτ

xp = f (xp, up), xp(t) = x(t) (3.1c)

(xp(τ ), up(τ )) ∈ X × U (3.1d)

xp(t + T ) ∈ X f (3.1e)

Clearly, if one could define W (x) ≡ V ∗(x) globally, then the feedback in (3.1) must
satisfy κmpc(·) ≡ kDP(·). While W (x) ≡ V ∗(x) is generally unachievable, this motivates
the selection of W (x) as a CLF such that W (x) is an inverse-optimal approximation
of V ∗(x). A more precise characterization of the selection of W (x) is the focus of the
next section.
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3.1 Sufficient conditions for stability

A very general proof of the closed-loop stability of (3.1), which unifies a variety of
earlier, more restrictive, results is presented1 in the survey [126]. This proof is based
upon the following set of sufficient conditions for closed-loop stability:

Criterion 3.1.1. The function W : X f → R≥0 and set X f are such that a local
feedback kf : X f → U exists to satisfy the following conditions:

1. 0 ∈ X f ⊆ X, X f closed (i.e., state constraints satisfied in X f )
2. kf (x) ∈ U, ∀x ∈ X f (i.e., control constraints satisfied in X f )
3. X f is positively invariant for ẋ = f (x, kf (x))
4. L(x, kf (x)) + ∂W

∂x f (x, kf (x)) ≤ 0, ∀x ∈ X f .

Only existence, not knowledge, of kf (x) is assumed. Thus by comparison with (2.9),
it can be seen that C4 essentially requires that W (x) be a CLF over the (local) domain
X f , in a manner consistent with the constraints.

In hindsight, it is nearly obvious that closed-loop stability can be reduced
entirely to conditions placed upon only the terminal choices W (·) and X f . View-
ing VT (x(t), u∗

[t,t+T ]) as a Lyapunov function candidate, it is clear from (2.3) that VT

contains “energy” in both the
∫

L dτ and terminal W terms. Energy dissipates from
the front of the integral at a rate L(x, u) as time t flows, and by the Principle of Opti-
mality one could implement (3.1) on a shrinking horizon (i.e., t + T constant), which
would imply V̇ = −L(x, u). In addition to this, C4 guarantees that the energy transfer
from W to the integral (as the point t + T recedes) will be non-increasing, and could
even dissipate additional energy as well.

3.2 Sampled-data framework

3.2.1 General nonlinear sampled-data feedback

Within the (non-MPC) nonlinear control literature, the ideas of “sampled-data (SD)”
control [72, 130], “piecewise-constant (PWC) control” [37–39], or “sample-and-hold
feedback” [86] are all nearly equivalent. The basic idea involves:

Algorithm 3.2.1. Closed-loop implementation of general SD controller:

1. define a partition, π , of the time axis, consisting of an infinite collection of
sampling points: π � {ti, i ∈ N | t0 = 0, ti < ti+1, ti → ∞ as i → ∞}

2. define a feedback k(x), or more generally use a parameterized family of feed-
backs kT (x, T )

3. at time ti, sample the state xi � x(ti)

1 In the context of both continuous- and discrete-time frameworks.
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4. over the interval t ∈ [ti, ti+1) implement the control via the zero-order hold:
u(t) = k(xi), or alternatively u(t) = kT (xi, ti+1 − ti)

5. at time ti+1, repeat back to (3).

Depending upon the design of the feedback k(x), stability of these approaches gener-
ally hinges upon the fact that π � supi(ti+1 − ti) has a sufficiently small upper bound.
Within this context, Fontes [63] demonstrated that the choice k(xi) � κmpc(xi) is stabi-
lizing, where κmpc is as defined in (3.1) (i.e., minimized over arbitrary signals u[t,t+T ]).
Although implemented within a SD framework, the approach of Fontes [63] does not
really qualify as “SD-MPC,” which we will discuss next.

As highlighted in Reference 58, while the notion of “sample and hold” necessarily
applies to the measurement signal of x, there is no fundamental reason why the
input signal u necessitates using a hold of any kind. This means that one could
easily implement over the interval t ∈ [ti, ti+1) a time-varying SD feedback of the
form u(t) = k(t, xi, π ). In other words, the SD framework can be generalized to involve
implementing open-loop control policies during the inter-sample interval, with the
feedback loop being closed intermittently at the sampling times of π . MPC, which
inherently involves the generation of open-loop control trajectories, is an ideal choice
for the design of such “time-varying” feedback laws.

3.2.2 Sampled-data MPC

The distinguishing characteristic of SD-MPC, in comparison to other frameworks for
SD control, is the manner in which the inter-sample behavior is defined. This involves:

Algorithm 3.2.2. Closed-loop implementation of SD-MPC:

1. define π as above
2. at time ti, sample the state xi � x(ti)
3. “instantaneously” solve the finite-horizon optimal control problem in (3.1) for

a prediction interval τ ∈ [ti, ti+N ], yielding solution ui∗
[ti ,ti+N ]

4. while t ∈ [ti, ti+1), implement u(t) = ui∗
[ti ,ti+N ](t); i.e., implement, in open loop, the

first [ti, ti+1) segment of the solution ui∗
[ti ,ti+N ]

5. at time ti+1, repeat back to (2).

A thorough treatment of this approach is provided in Reference 59. Of fundamental
importance is that over any given interval, the actual trajectories (x[ti ,ti+1), u[ti ,ti+1))
of the system “exactly”2 correspond to the prediction (xp

[ti ,ti+1), ui∗
[ti ,ti+1)) generated at

time ti. This means that at time ti+1, the Principle of Optimality (Definition 2.5.1)
can be used (together with condition (C4)) to claim that the new N -step optimal
cost V ∗

N (xi+1, ui+1∗
[ti+1,ti+N+1]) must be bounded by the remaining portion of the previ-

ous solution: V ∗
N (xi+1, ui+1∗

[ti+1,ti+N+1]) ≤ V ∗
N−1(xi+1, ui∗

[ti+1,ti+N ]), the so-called monotonicity
property.

2 Assuming a perfect system model.
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While in most situations the time required to solve (3.1) over “arbitrary” trajec-
tories u[ti , ti+N ] is unreasonable, it is clear that one can easily restrict the search in (3.1)
to any desired subclass of signals u[ti ,ti+N ] ∈ U[ti ,ti+N ](π ) which are locally supported3

by π . Therefore, approaches such as References 112 and 115 that couple a piecewise
constant PWC parameterization of up together with a zero-order hold on the imple-
mentation u(t) are encompassed by defining U[ti ,ti+N ](π ) to be the class of trajectories
constant over intervals of π .

3.2.3 Computational delay and forward compensation

In practice, SD implementation of a model predictive controller almost never proceeds
as described above. The selection of π is generally based on the computation time
required to solve (3.1), so it is unlikely that the solutions are achievable in a faster
timescale than the intervals of π .

If the computational lag �t satisfies �t � ti+1 − ti, then one might hope to just
ignore it and implement the control u(t + �t) = ui∗

[ti ,ti+N ](t) as soon as it becomes
available. It can be shown that the resulting mismatch between (2.1) and (3.1c)
can be encompassed into the claim of nominal robustness of the SD control (see
Reference 59). This means that the lag will not be destabilizing as long as �t is
“sufficiently small.”

For the more typical case where �t ≈ ti+1 − ti, it is better to use the method of for-
ward compensation detailed in References 36 and 57. Assume that a bound �it ≥ �t
is known (often �it ≡ ti+1 − ti, but this is not required). When posing the optimal
control problem (3.1), the additional constraint up

[ti ,ti+�i t] ≡ ui−1∗
[ti ,ti+�i t] is imposed upon

the class of signals over which (3.1) is minimized. This means that by construction,
the first portion t ∈ [ti, ti + �it] of the optimal trajectory ui∗

[ti ,ti+N ] is “known” even
before solution of (3.1) is complete. This is equivalent to saying that, based on xi

and the input ui−1∗
[ti ,ti+�i t], the prediction xp(ti + �it) is used as the initial condition for

solving (3.1) over the interval τ ∈ [ti + �it, ti+N ].

3.3 Computational techniques

The last two decades have seen significant development in the area of numerical
methods for the online solution of dynamic optimization problems such as (3.1). Early
MPC implementations generally made use of “off-the-shelf” sequential quadratic
programming (SQP) solvers, developed originally for offline minimization of the
optimal control problem (2.3). However, the relatively poor performance of these
solvers in online implementation has motivated the development of new, or sometimes
modified, methods more suitable for use in (3.1).

Solving (3.1) inherently involves two tasks: the search for the optimal trajectory
u∗

[t,t+T ] and the solution of (3.1c) to generate the corresponding state trajectory xp
[t,t+T ].

3 That is, individual sub-arcs u[tj ,tj+1], u[tk ,tk+1], j 
= k , as partitioned by π can be chosen independently of
each other in U[ti ,ti+N ](π ).
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Numerical methods can be classified into two categories, based upon how these tasks
are handled.

1. Sequential approaches:
These approaches parameterize the input trajectory up

[t,t+T ], and solve a NLP
to minimize V (x, u[t,t+T ]) over that parameter space. The prediction xp

[t,t+T ] is
removed from the optimization by cascading the NLP solver with a standard
ordinary differential equation (ODE) solver for generating solutions to (3.1c).
In doing so, the state constraints are transformed into additional constraints in
the parameter space for up

[t,t+T ], which are imposed on the NLP. Examples of this
approach include the Newton-type algorithms proposed in References 45, 46,
and 107, or for example, those applied to large-scale systems in References 97
and 127.

2. Simultaneous approaches:
These methods parameterize both the input and state trajectories (up

[t,t+T ], xp
[t,t+T ]),

and solve a constrained NLP over this combined parameter space. Approaches
for parameterizing xp

[t,t+T ] such that it satisfies (3.1c) include
● Orthogonal collocation. These involve parameterizing xp

[t,t+T ] according to
linear weighting of a basis function expansion, and defining a collection of
time-points in [t, t + T ] at which the vector field f (xp, up) must be satisfied.
This generates very large, but sparse, NLPs. Examples of this approach
include References 11, 25, and 26.

● Direct multiple shooting. These approaches partition the prediction horizon
[t, t + T ] into N segments, and assign a (n-dimensional) parameter for the
value of xp at each node point. An ODE solver is then applied to each interval
independently, using the xp parameters as initial conditions for each interval.
Continuity of the xp

[t,t+T ] trajectory at the node points is enforced by adding
equality constraints into the NLP. Essentially, this has the structure of a
constrained NLP (in the combined (xp, up) parameter space) cascaded with a
collection of N , parallel-computed, ODE solvers. Examples of this method
for real-time application include References 52, 54, 55, 145, and 146.

In all approaches, finding the precise location of the minimizing solution to
(3.1) is a challenging task for any solver to perform in a computationally-limited
online implementation. Fortunately, as was shown in References 128 and 148, early
termination of the search can still result in a stabilizing feedback as long as the
resulting parameterization of up

[ti ,ti+N ] and corresponding solution xp
[ti ,ti+N ] of (3.1c)

are feasible (albeit suboptimal), and the cost V (x(t), up
[ti ,ti+N ]) decreases in comparison

to that of the previous instance. As discussed in Reference 121, a key property of
many online solvers is therefore their ability to generate strictly feasible paths, so that
termination may occur at any time.

Since large open-loop intervals (i.e., in a SD implementation) are undesirable
for robustness considerations, several different approaches have been developed to
simplify calculations. These approaches aim to maximize the input–output sampling
rate of the feedback, by extending the idea of early termination to the limiting case of an
incrementally-evolving search. We briefly present on a few of these approaches below.
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3.3.1 Single-step SQP with initial-value embedding

An interesting SQP approach is presented in References 52, 54, and 55. This SD
approach aims to avoid the need for forward compensation by attempting to minimize
the lag �t between sampling and implementation. The approach is based upon a simul-
taneous multiple-shooting method, and allows for the dynamics (3.1c) to be described
by very general parameter-dependent differential-algebraic equations. However for
consistency of presentation, the approach can be viewed as solving within (3.1) an
optimal control problem of the form (with notation following (2.3))

P(x0) : min
su
0,...su

N−1,

sx
0,...sx

N

N−1∑

i=0

L(sx
i , su

i ) + W (sx
N ) (3.2a)

subject to d
dτ

xp
i = f (xp

i (τ ), su
i ), xp

i (τi) = sx
i , τ ∈ [τi, τi+1], ∀i 
= N (3.2b)

sx
i+1 − xp

i (τi+1) = 0 i = 0, . . . , N − 1 (3.2c)

sx
0 − x0 = 0 (3.2d)

h(sx
i , su

i ) ≤ 0 i = 0, . . . , N (3.2e)

w(sx
N , su

N ) ≤ 0 (3.2f )

The vector su contains the parameters used in the (PWC) parameterization of
the input up

[τ0,τN ], while sx defines the multiple-shooting parameterization of xp
[τ0,τN ]

over the same time-partition π of the horizon. The continuity constraints in (3.2c)
ensure that the minimizing solution generates a continuous xp

[τ0,τN ], although feasibility
of xp

[τ0,τN ] is only tested at the partition points sx in (3.2e) (note that the constraint
g(x) ≤ 0 of (2.3c) is assumed to be encompassed in (3.2e)).

The NLP in (3.2) can therefore be summarized as follows

min
z

F(z) subject to
{

G(z) = 0

H (z) ≤ 0
(3.3)

where z � [sx
0, su

0, . . . , sx
N−1, su

N−1, sx
N ], with G(z) containing (3.2c) and (3.2d) and any

equalities in (3.2e) and (3.2f), and H (z) the remaining inequalities. Starting from an
initial guess z0, the SQP proceeds by generating iterates

zk+1 = zk + αk�zk , αk ∈ (0, 1) (3.4a)

where �zk � arg min
�z

(∇F(zk )T �z + 1
2�zT Ak�z

)
(3.4b)

subject to G(zk ) + ∇G(zk )T �z = 0 (3.4c)

H (zk ) + ∇H (zk )T �z ≤ 0 (3.4d)

where Ak denotes any approximation of the hessian ∇2
z H of the Lagrangian function

H = F(z) + µT
GG(z) + µT

H H (z).
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Although (3.2)–(3.4) is a straightforward multiple-shooting-based SQP formu-
lation, the main contribution of this work consists of the following two unique
characteristics:

● The update (3.4a) is terminated after a single iteration, meaning the parameters
(sx, su) are only updated by a single step per sampling interval of π . Contractiv-
ity and convergence of the single-step iteration is shown in Reference 55, with
nominal robustness shown in Reference 56.

● In the calculation of the direction vector �z:
– by linearizing the equality and active inequality constraints in (3.3), the

variables sx
1 · · · sx

N are eliminated, and the calculations projected onto the con-
densed space of sx

0, su
0, · · · su

N−1. This results in a very dense, low dimensional
approximation of (3.4a).

– the expansion back to the full space of z, and calculation of the next round of
gradients/hessians for both the full and condensed versions of (3.4a) are all
done prior to the next sample ti+1.

– upon sampling of xi+1, one only needs to solve for �su (given �sx
0) in the

condensed version of (3.4a) to generate ui+1, where all necessary matrices
have been pre-computed.

Overall, it is suggested that these modifications result in a very fast calculation, which
therefore allow the sampling intervals of π to be chosen as small as possible.

3.3.2 Continuation methods

Rather than explicitly posing a NLP to search for the optimal trajectory u∗
[t,t+T ], the

approaches in References 132 and 133 instead assume that initially the optimal solu-
tion u∗

[t0,t0+T ] is known, and focus on continuously propagating u∗
[t,t+T ] as t evolves.

The problem setup is similar to (2.3), except that only equality constraints of the form4

h(x, u) = 0 are included; inequalities require somewhat ad-hoc use of penalties.
The basic idea is to try and propagate the input trajectory u∗

[t,t+T ] and the multiplier
µ∗

[t,t+T ] (denoting µ ≡ µh) such that they remain in the kernel of the first-order opti-
mality conditions in (2.5). This is done by discretizing the prediction horizon using
a very fine partition of N (uniform) intervals, with u∗

[t,t+T ] and µ∗
[t,t+T ] thus described

by the discretization

U (t) � [u∗
0(t), µ∗

0(t), u∗
1(t), µ∗

1(t), . . . , u∗
N−1(t), µ∗

N−1(t)]T ∈ R
(mu+mh)N (3.5)

As seen by the notation in (3.5), this discretization is fundamentally different
than that of a SD partition. Whereas parameterizations in a SD approach are based
on a partition π of the actual time coordinate t ∈ [t0, ∞), the discretization in (3.5) is
based on a partition of the horizon length τ ∈ [0, T ], which is treated as an orthogonal
coordinate to the actual time t.

4 The results in Reference 132 actually allow for a known time-dependent parameter vector p(t) in
f (x, u, p(t)) and h(x, u, p(t)), which we omit for clarity.



18 Robust and adaptive model predictive control of nonlinear systems

According to Reference 132, the optimality conditions (2.5e) and (2.5f) can be
treated as defining the system of equations

F(U (t), x(t)) �

⎡

⎢⎢⎢⎢⎢⎢
⎣

∇T
u H(x∗

0(t), λ∗
1(t), u∗

0(t), µ∗
0(t))

h(x∗
0(t), u∗

0(t))

...

∇T
u H(x∗

N−1(t), λ∗
N (t), u∗

N−1(t), µ∗
N−1(t))

h(x∗
N−1(t), u∗

N−1(t))

⎤

⎥⎥⎥⎥⎥⎥
⎦

= 0 (3.6)

where the terms {x∗
i , λ∗

i }N
i=0 are interpreted as x∗

i (t) ≡ x∗
i (x(t), U (t)) and λ∗

i (t) ≡
λ∗

i (x(t), U (t)) under the assumption that they are generated by recursively solving
the discretized equivalent of (2.5a, b):

x∗
i+1(t) = x∗

i (t) + f (x∗
i (t), u∗

i (t))
(

T (t)
N

)
(3.7a)

λ∗
i (t) = λ∗

i+1(t) + HT
x (x∗

i (t), λ∗
i+1(t), u∗

i (t)u∗
i (t), µ∗

i (t))
(

T (t)
N

)
(3.7b)

subject to x∗
0(t) = x(t) and λ∗

N (t) = ∇xW T (x∗
N (t)). In other words, {x∗

i , λ∗
i }N

i=0 are
assumed to be available from (x(t), U (t)) by solving, in a faster timescale than
F(U (t), x(t), t), the two-point boundary value problem in (2.5a) and (2.5b) by what
is essentially an Euler-based ODE solution technique.

As mentioned, it is assumed that U (0) initially satisfies F(U (0), x(0)) = 0. The
continued equality F(U (t), x(t)) = 0 is preserved by selecting a Hurwitz matrix As,
and determining U̇ such that

Ḟ(U , x) = AsF(U , x) (3.8)

from which it is clear that U̇ is obtained by

U̇ = (∇U F)−1(AsF − ∇xFẋ) (3.9)

For numerical calculation of ∇U F (which essentially consists of the hessian ∇2
U H

and gradient ∇U h), it is suggested that a set of forward difference equations can
be efficiently solved using a particular linear equation solver (i.e., the generalized
minimum residual method of Reference 87).

It is therefore proposed that U (t), which defines the control according to u = u∗
0(t),

be propagated online by continuous integration of (3.9). The author describes this
as a “continuation method,” based on its similarity to numerical methods such as
Reference 12, which track changes in the root y(σ ) of an expression F̃( y(σ ), σ ) = 0
for variations in σ . However unlike true continuation methods, online implementation
of (3.9) requires that the solution U (t) be generated incrementally in strictly forward
time, which makes it ambiguous in what sense the author claims that this approach
is fundamentally different from using an optimization-based approach (assumed to
start at a local minimum F(U (0), x(0)) = 0).

Presumably, a rigourous treatment of inequality constraints is prevented by the
difficulty in dealing with the discontinuous behavior (2.5c) of the multiplier λ, induced
by the active set. Even in the absence of inequality constraints, the optimal trajectory
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u∗
[0,T ] characterized in (2.5) is not guaranteed to be continuous on [0, T ], and neither

is the optimal solution u∗
[0,∞) of (2.6). Since the states {u∗

i (t)}N
i=0 parameterizing u∗

[0,T ]
flow continuously in time, and in particular the control is generated by the continuous
flow u(t) = u∗

0(t), this means that the ability of the closed-loop control to approxi-
mate optimal discontinuous behavior is limited by scaling considerations in (3.9). In
particular, this will be the case when aggressive penalty functions are used to tightly
approximate the inequalities.

A second point to note is that the proof of stability of this method makes the
inherent assumption that T

N ≈ 0+. This is compounded by the inability to enforce a
terminal inequality xp(T ) ∈ X f , which implies that instead T needs to be maintained
large enough for xp(T ) ∈ X f to be guaranteed implicitly. Therefore, the underlying
dimension N of the calculations may need to be chosen quite large, placing a heavy
burden on the calculations of ∇U F .

3.3.3 Continuous-time adaptation for L2-stabilized systems

Although it is not really a computational result, and is very limited in its applicability,
we briefly review here the approach of References 29 and 30, which solves a con-
strained predictive control problem using an adaptive (i.e., incrementally updating)
approach. The optimal control problem is assumed to be of the form5

JQ(x(t), up
[t,∞)) �

∫ ∞

t
‖ep‖2 + λ‖up‖2dτ , ep � h(xp) (3.10a)

s.t. ∀τ ≥ t : ẋp = f (xp) + g(xp)up, xp(t) = x(t) (3.10b)

up(τ ) ∈ {u | u0 ≤ u ≤ u0 and u1 ≤ u̇ ≤ u1} (3.10c)

ep(τ ) ∈ {e | e0 ≤ e ≤ e0 and e1 ≤ ė ≤ e1} (3.10d)

The approach differs from most receding-horizon NMPC approaches in that, rather
than using a finite-horizon approximation of the cost, it is assumed that a stabilizing
feedback k(x) is known, such that u = k(x) generates trajectories whose cost JQ is
L2-integrable. It is further assumed that the system is passive, such that functions
Vu(t) ≡ Vu(x(t)) and Ve(t) ≡ Ve(x(t)) can be found satisfying

Vu(t + τ ) ≥ εu

∫ τ−t
t ‖u p(σ )‖2dσ V̇u(t + τ ) ≤ u p(τ )e p(τ ) (3.11)

Ve(t + τ ) ≥ εe

∫ τ−t
t ‖e p(σ )‖2dσ V̇e(t + τ ) ≤ −e p(τ )k(x p(τ )) (3.12)

5 The problem presented here is modified substantially for clarity and consistency with the rest of the book,
but can be shown equivalent to results in References 29 and 30.
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for all τ ≥ t. The input is defined as

up(τ ) = k(xp(τ )) + φT (τ − t)cφ(τ ) (3.13)

where φ represents a vector of exponential basis functions φT (σ ) = φT
0 eAφσ , with the

corresponding (matrix-valued) weights cφ being a state of the controller. This results
in closed-loop dynamics of the form

ż �
[

ẋ
ċφ

]
�

[
f (x) + g(x)(k(x) + φT

0 cφ)
Aφcφ + v

]
(3.14)

where v is an additional control input. For online calculation, the cost JQ is replaced
by the bound (where the necessary term γ (εe, εu) is defined in Reference 29)

J (z(t)) � Ve(x(t)) + Vu(x(t)) + γ (εe, εu)cT
φ Pccφ ≥ JQ(x(t)) (3.15a)

Pc = PT
c s.t. : PcAφ + AT

φ Pc = −φ0 φT
0 (3.15b)

which, in the absence of constraints, is a strictly decreasing Lyapunov function for
(3.14) with v ≡ 06. The expression for v used in Reference 29 is of the form

v = Proj{−∇cφ
J , Sc(x)} (3.16)

where “Proj” denotes a parameter projection law (similar to such standard projections
in Reference 99). This projection acts to keep cφ in the set Sc(x) � {cφ | z ∈ S}, in which
S denotes a control-invariant subset of the feasible region.

The expression ∇cφ
J is calculable in closed-form (due to the L2-nature of φ), and

does not require online predictions. Since a priori knowledge of S is highly unlikely,
the predictive aspect of the controller lies in the fact that one requires online prediction
of the dynamics, “sufficiently far” into the future, to guarantee containment of z in S.

3.4 Robustness considerations

As can be seen in Proposition 2.5.2, the presence of inequality constraints on the state
variables poses a challenge for numerical solution of the optimal control problem in
(3.1). While locating the times {ti} at which the active set changes can itself be a
burdensome task, a significantly more challenging task is trying to guarantee that the
tangency condition N (x(ti+1)) = 0 is met, which involves determining if x lies on (or
crosses over) the critical surface beyond which this condition fails.

As highlighted in Reference 70, this critical surface poses more than just a
computational concern. Since both the cost function and the feedback κmpc(x) are
potentially discontinuous on this surface, there exists the potential for arbitrarily small
disturbances (or other plant-model mismatch) to compromise closed-loop stability.
This situation arises when the optimal solution u∗

[t,t+T ] in (3.1) switches between

6 Of course, then the control is essentially just a dissipativity-based design, so it cannot really be classified
as “predictive” is any sense.
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Figure 3.1 Examples of nonconvexities susceptible to measurement error

disconnected minimizers, potentially resulting in invariant limit cycles (e.g., as a
very low-cost minimizer alternates between being judged feasible/infeasible.)

A modification suggested in Reference 70 to restore nominal robustness, similar
to the idea in Reference 119, is to replace the constraint x(τ ) ∈ X of (3.1d) with one of
the form x(τ ) ∈ X

o(τ − t), where the function X
o : [0, T ] → X satisfies X

o(0) = X, and
the strict containment X

o(t2) ⊂ X
o(t1), t1 < t2. The gradual relaxation of the constraint

limit as future predictions move closer to current time provides a safety margin that
helps to avoid constraint violation due to small disturbances.

The issue of robustness to measurement error is addressed in Reference 157.
On one hand, nominal robustness to measurement noise of an MPC feedback was
already established in Reference 69 for discrete-time systems, and in Reference 59
for SD implementations. However, Reference 157 demonstrates that as the sampling
frequency becomes arbitrarily fast, the margin of this robustness may approach zero.
This stems from the fact that the feedback κmpc(x) of (3.1) is inherently discontinuous
in x if the indicated minimization is performed globally on a nonconvex surface, which
by References 42 and 77 enables a fast measurement dither to generate flow in any
direction contained in the convex hull of the discontinuous closed-loop vector field.
In other words, additional attractors or unstable/infeasible modes can be introduced
into the closed-loop behavior by arbitrarily small measurement noise.

Although Reference 157 deals specifically with situations of obstacle avoid-
ance or stabilization to a target set containing disconnected points, other examples
of problematic nonconvexities are depicted in Figure 3.1. In each of the scenarios
depicted in Figure 3.1, measurement dithering could conceivably induce flow along
the dashed trajectories, thereby resulting in either constraint violation or convergence
to an undesired equilibrium.

Two different techniques were suggested in Reference 157 for restoring robust-
ness to the measurement error, both of which involve adding a hysteresis-type behavior
in the optimization to prevent arbitrary switching of the solution between separate
minimizers (i.e., making the optimization behavior more decisive).





Chapter 4

A real-time nonlinear MPC technique

4.1 Introduction

The rigourous theoretical underpinnings of NMPC evolved historically within the
contexts of both continuous-time [34, 81, 124] and discrete-time [85, 112] systems
(see review in Reference 126), despite the fact that the vast majority of applications
involve continuous-time physical processes. Although more meaningful from a physi-
cal perspective, the implementation of a truly continuous-time framework is generally
intractable due to the infinite dimensionality of the required search. While the jus-
tification for using discrete-time models is ostensibly to simplify the calculations,
it generally comes at the expense of neglecting potentially important inter-sample
behavior. As well, the success of discrete-time control designs hinge critically upon
appropriate selection of the underlying discretization period to balance losses in model
accuracy and performance versus computational complexity, a fact which tends to be
neglected in much of the MPC literature.

The SD framework discussed in Section 3.2.2 has the advantage of explicitly
considering the continuous-time evolution of the process. This allows for the consid-
eration of important inter-sample behavior, as well as enabling the use of more accurate
variable-step ODE solvers than are likely to be inherent in a discretized process model.
In the most literal interpretation, imposing a SD framework upon the process does not
itself simplify the calculation of the necessary optimal control problem; the search
is still infinite-dimensional and “instantaneous,” but performed less often. In prac-
tice however, computational tractability is achieved in two distinct manners: (1) by
restricting the search for the optimal input to some finitely parameterized class of
trajectories, locally supported by the sampling partition, and (2) distributing the cal-
culations throughout the sampling interval by way of either the forward compensation
[36, 57] or initial-value embedding [52, 54, 55] techniques described in Chapter 3.

The primary downside to any SD implementation (regardless of whether
continuous-time or discrete-time predictions are used) is the ensuing interval of
open-loop operation that occurs between sampling instants. Reducing the duration
of this open-loop operation is the motivation behind the single-step computational
approach of References 52, 54, and 55 discussed in Section 3.3.1. While the compu-
tational method itself is a relatively efficient SQP algorithm, the achievable sampling
frequency is fundamentally limited by the fact that the dimension of the SQP grows
with the sampling frequency, thereby increasing the necessary computation time.
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As with any SD implementation, achieving a satisfactory balance between closed-
loop performance and computational feasibility depends critically upon selection of
the sampling period.

While the continuation-based approach of References 132 and 133 in Section
3.3.2 is algorithmically very different from the SD implementation described above,
one can draw similar conclusions regarding its computational requirements. The
algorithm provides a numerically efficient means of updating the parameteriza-
tion of the prediction trajectories. However, the liberal use of simplistic first-order
approximations throughout the model necessitates a very fine discretization of the
prediction-time coordinate that imposes a limitation on how closely the algorithm
can approach the assumed “continuous-time” implementation.

In contrast to either of the two approaches discussed above, stability of the
adaptation-based approach in Reference 29 (Section 3.3.3) is not fundamentally tied
to the dimension of the calculations, since the input parameterization does not depend
upon the actual sampling rate of the “continuous-time” implementation. Not only is
the approach quite limited in the class of systems that can be addressed, but more
importantly, the parameterization of the input trajectory is not locally supported across
the prediction-time coordinate. Therefore, the exponential basis used in the parameter-
ization may require a very large dimension to provide an acceptable approximation of
the nonsmooth behavior of the true optimal input trajectory, or to find feasible param-
eter values. Such nonsmooth, or even discontinuous, behavior of the trajectories is
very typical when dealing with constrained systems.

In this chapter, we provide a framework for implementing real-time predictive
control calculations. As in all of the above approaches, the objective is to maximize
the rate of input–output sampling frequency such that the controller approaches a
continuous-time state feedback. This fast sampling rate is again achieved by sim-
plifying the parameter search to involve only incremental improvements, so that the
parameter values evolve incrementally as additional controller states in a dynamic
feedback law. In contrast to any of the previous methods, however, our results do
not require any assumption on the dimension of the parameterization, other than to
assume that an initial set of feasible parameter values exists. The advantage of this
approach is that the role of the adaptation mechanism is entirely reduced to that of
performance improvement, and thus its performance may be arbitrarily suboptimal
in terms of both the update increment and the parameterization basis, while still pre-
serving stability and feasibility. As such, the most important focus and contribution
of the result is the manner in which the optimization is posed at each instant, rather
than the specifics of how it is solved.

4.2 Problem statement and assumptions

We consider the general, continuous-time nonlinear system

ẋ = f (x, u). (4.1)

The primary objective of the control design is assumed to be practical asymptotic
regulation of the state variables x ∈ Rn to the origin (x = 0) using an arbitrary state
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feedback u = κmpc(x, ·). The mapping f : Rn × Rm → Rn is assumed to be suffi-
ciently smooth (at most C2+ required), and satisfies f (0, 0) = 0. The state and input
trajectories are required to satisfy the pointwise-in-time constraints x ∈ X and u ∈ U,
with X ⊆ Rn and U ⊆ Rm assumed closed, convex sets such that X̊ is nonempty.

A secondary objective of the control design is to achieve satisfactory closed-loop
performance with respect to a given cost function J∞(x[t0,∞), u[t0,∞)) = ∫ ∞

t0
L(x, u)dτ .

Since online prediction of the cost-to-go J∞(x p
[t,∞), u p

[t,∞)) is impractical (where x p, u p

denote arbitrary predictions), J∞ is approximated over a finite-horizon as

Jrh(x p
[t, tf ], u p

[t, tf ]) =
∫ tf

t
L(x p, u p) dτ + W (x p(tf )) (4.2)

where the horizon length tf − t is not necessarily fixed. The penalty W : Xf → R≥0

is assumed (strictly) positive definite and C1+ on its convex domain Xf ⊂ X̊, with
X̊f nonempty. The function L : X × U → R≥0 is assumed C1+, and for convenience1

we assume γ
L
(‖x, u‖) ≤ L(x, u) ≤ γ L(‖x, u‖), for some γ

L
, γ L ∈ K. Furthermore, to

preclude certain pathological situations, we assume the constraint limits X × U and
penalty L(x, u) have been selected to satisfy the following assumption.

Assumption 4.2.1. The selection of X, U, and L(x, u) satisfy at least one of the
following two conditions. Either

1. X is compact, or
2. each of the following hold:

i. γ
L
, γ L ∈ K∞.

ii. the “extended velocity set” {(v, �) ∈ Rn × R≥0 | v = f (x, u), � ≥ L(x, u),
u ∈ U} is convex for all x ∈ X.

iii. there exist constants c1, c2 > 0 such that

min
u∈U

(
L(x, u)

‖f (x, u)‖
)

≥ c2

‖x‖ ∀x ∈ X\B(0, c1) (4.3)

Assumption 4.2.1 provides a sufficient condition for establishing compactness of
optimal closed-loop trajectories, as indicated in the following claim.

Claim 4.2.2. Let J ∗
∞(x) denote the infinite-time optimal cost-to-go function (i.e.,

J ∗
∞(x) � minu(·)

∫ ∞
0 L(x, u) dτ , subject to indicated constraints). Then for every c > 0,

the corresponding set �(c) � {x ∈ Rn | J ∗
∞(x) ≤ c} ∩ X is compact.

Remark 4.2.3. Assumptions 4.2.1 2i and 2ii are identical to the assumptions in
Reference 63, and stem from standard sufficient conditions for global optimality
such as discussed in Reference 159. Assumption 4.2.1 2iii is sufficient for radial

1 It is well known, see Reference 126, that more general L(x, u) ≥ 0 can be used if the system satisfies an
appropriate detectability condition with respect to L.
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unboundedness of J ∗
∞(x), and is weaker than the assumed linear growth bound on

f (x, u) that is typical in optimal control sources such as [60].

As will be seen in Section 4.4, our approach is based upon minimizing Jrh with
respect to the restricted class of trajectories u p

[t, tf ] which are PWC functions of the
prediction-time τ ∈ [t, tf ]. (However, this does not necessarily imply that the closed-
loop implementation of u = κmpc(x, ·) should result in PWC behavior as x evolves in
actual time t.) As a result, the set of conditions in Reference 126 for W (x) and Xf

which are sufficient to guarantee closed-loop stability of a continuous-time NMPC
must be modified slightly.

The conditions in Reference 126 essentially require the existence of locally sta-
bilizing feedback u = κ(x) ∈ U with (invariant) domain of attraction Xf , over which
W (x) is a CLF. Motivated by such works as References 37, 86, and 130, we will
instead assume knowledge of a family of locally Lipschitz feedbacks κ(x, Tκ ), param-
eterized by Tκ ∈ (0, MT ] for some constant MT > 0. The stabilizer κ(x, Tκ ) is designed
to guarantee practical-asymptotic stability of the origin when implemented in the
sample-and-hold fashion u(t) = κ(x(ti), Tκ ), t ∈ [ti, ti + Tκ ), a notion made more
precise in Assumption 4.2.4 below. The period length Tκ is itself assumed gener-
ated by a feedback Tκ = δ(x), with δ : Xf → (0, MT ] a known locally Lipschitz
function that is lower bounded by some class K function γδ(‖x‖). The resulting
feedback κδ(x) ≡ κ(x, δ(x)) is therefore a local stabilizer under the sample-and-hold
implementation u[ti , ti+1] ≡ κδ(x(ti)), ti+1 � ti + δ(ti), with corresponding solutions of
ẋ = f (x, κδ(x(ti))) denoted xκδ

[ti , ti+1].
In the analysis presented in this chapter, we will focus on stabilization of x to a

target set �x, which we assume to be a closed neighborhood of the origin of the form
�x = {

x : W (x) ≤ c�x

}
for some c�x ≥ W (0) = 0. Furthermore, we will make use

of the following inner approximation of �x:

�ε
x �

{
x : W (x) ≤ (c�x − ε)

} ⊂ �x (4.4)

for any ε > 0. Note that ε > c�x is allowed, with the implication then that �ε
x = ∅. In

order to ensure stability of the closed-loop algorithm to be presented in Section 4.4,
the selection of the above feedbacks κ(·, ·) and δ(·) are assumed to obey the following
assumption.2

Assumption 4.2.4. Let �x ⊂ Xf denote the target set. Denoting t′ � t + δ(x), and
x′ � xκδ (t′), the functions κ(·, ·), δ(·), W (·) and the set Xf are chosen to satisfy:

1. Xf ⊂ X̊, Xf closed, 0 ∈ �x ⊂ X̊f .
2. �x compact, �x = {

x : W (x) ≤ c�x

}
, c�x ≥ 0.

3. κδ(x) ∈ U for all x ∈ Xf .
4. x ∈ X̊f implies xκδ

[t, t′] ∈ X̊f (point-wise).

Specifically, inner approximations X
ε
f � ←−

B (Xf , ε) are invariant for ε ∈ [0, ε∗],
for some ε∗ sufficiently small.

2 Representing a strengthening of the sufficient conditions presented previously in Section 3.1.
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5. For ε > 0 sufficiently small, ∃ γ (·) ∈ K such that for all x ∈ Xf \�̊ε
x ,

W (x′) − W (x) +
∫ t′

t
L(xκδ , κδ(xκδ )) dτ ≤ −γ (‖x‖) (4.5)

By focussing on stabilization to a neighborhood �x of the origin, we enable
the use of design methods for the local stabilizer κδ(x) which achieve only practi-
cal stability of the origin. As discussed in References 37 and 130 (and references
therein), sampled-and-hold feedbacks are able to (practically) stabilize a much larger
class of systems than can be stabilized using continuous feedbacks. For our purposes
however, the primary advantage is that from the results in Reference 37 it follows
that one potential approach for constructing a practical-stabilizer κδ(x) is to simply
pass a continuous-time stabilizing feedback through an appropriately short zero-order
hold. This motivates the (potentially) variable period Tκ = δ(x), since, as observed in
Reference 37, stabilizing arbitrarily small �x may require arbitrarily fast switching
near the origin. It is important to note, however, that although the expression κδ(x)
will ultimately factor into our MPC controller design, this does not imply that the
closed-loop behavior of the model predictive feedback will result in PWC-in-time
behavior of u(t).

4.3 Preliminary results

4.3.1 Incorporation of state constraints

As a means of enforcing the state constraints x p ∈ X and x p(tf ) ∈ Xf , both active-
set and interior-point approaches offer well-established alternatives (see References
121, 140, and 161 and references therein). The advantages of selecting an interior-
point-based approach include that constraint satisfaction is guaranteed at every instant
along the continuous-time trajectory, while the primary downside is that the constraint
handling is inherently conservative, and may result in performance degradation (with
respect to the optimal cost attainable by an active-set approach).

Since the approach in Section 4.4 will emphasize the advantages of using a
crudely partitioned prediction horizon, the guarantee of feasibility within partition
intervals motivates our preference for an interior-point approach over active sets. To
this end, we assume sufficiently differentiable convex barrier functions Bx and Bf

are defined on the respective domains X̊ and X̊f , satisfying limx→∂X( f ) Bx( f ) → ∞.
Following Reference 161, we center the barriers about the origin by defining

Bo
x (x) = Bx(x) − Bx(0) − ∇Bx(0)T x. (4.6)

(with analogous definition for Bo
f (x)), and incorporate the state constraints into the

controller design by augmenting the functions L(·, u) and W (·)
La(x, u) � L(x, u) + µBo

x (x) (4.7a)

W a(xf ) � W (xf ) + µf Bo
f (xf ) (4.7b)
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As in Reference 161, the values µ, µf > 0 are constant design parameters, chosen
large enough to ensure robustness of the calculations. While this increases the conser-
vatism of the constraint handling, it also simplifies the online controller calculations.
To ensure stability, we will require the following assumption.

Assumption 4.3.1. The barriers Bx(·), Bf (·), and weightings µ, µf are chosen to
satisfy

µf

(
Bo

f (x′) − Bo
f (x)

) + µ

∫ t′

t
Bo

x (xκδ (τ )) dτ ≤ γ (‖x‖) (4.8)

∀ x ∈ X̊f \�̊ε
x , where x′, t′, and ε are from Assumption 4.2.4.

Assumption 4.3.1 is admittedly somewhat restrictive on the selection of Bx and
Bf , although a design approach satisfying (4.8) for systems with stabilizable lin-
earizations is given in Reference 172. Alternatively, we motivate the practicality of
Assumption 4.3.1 by the following result.

Lemma 4.3.2. Suppose that Assumption 4.2.4 holds with Xf compact, and �̊x �= ∅.
Suppose further that there exists a C1+ function V : Xf → R≥0 and constants 0 ≤
cf 1 < cf 2 such that every arbitrary level set X

cf
f �

{
x ∈ Xf |V (x) ≤ cf , cf ∈ [cf 1, cf 2]

}

satisfying the strict containment

X
cf 1
f ⊂ X

cf
f ⊂ X

cf 2
f ≡ Xf (4.9)

is positive invariant with respect to (4.1) for u = κδ(x) on t ∈ [0, δ(x)]. Define
Bf � B̃f ◦ V , with B̃f : [0, cf 2] → R≥0 ∪ {∞} a non-decreasing function satisfying
lims→cf 2 B̃f → ∞. Then (4.8) is satisfied for sufficiently small µ, µf > 0.

If Xf is a compact level set of W (x), then V (x) ≡ W (x) satisfies Lemma 4.3.2.

4.3.2 Parameterization of the input trajectory

To reduce the optimization of (4.2) to a finite-dimensional nonlinear programming
problem, the horizon [t, tf ] is partitioned into N intervals defined by the (ordered)
time-support tθ ∈ RN , with the trajectory u p

[t,tf ] generated by the parameterized

mapping v : R≥0 × � × RN → Rm defined as

u p(τ ) = v(τ , θ , tθ ) �

⎧
⎪⎨

⎪⎩

θ1, τ ∈ [t, tθ1 ]

θi, τ ∈ (tθi−1, tθi ], i = {2 · · · N }
0, otherwise

. (4.10)

Definition 4.10 is clearly equivalent to a PWC (a.k.a. zero-order hold) parameteri-
zation, where each parameter vector θi ∈ Rm defines u p over the i’th interval of tθ ,
and θ ∈ RmN contains the {θi}. However, we choose to refer to the θi as “parameters”
(rather than “control values”) to highlight the fact that selection of a PWC basis for
defining v(τ , θ , tθ ) is an entirely arbitrary choice which can be easily generalized, as
will be seen in Chapter 5.
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Definition 4.3.3. A control parameterization will refer to the pair (θ , tθ ) ∈RmN ×RN

which defines the trajectory u p
[t, tf ] according to (4.10).

Let (t0, x0) ∈ R × X̊ be an arbitrary initial condition for system (4.1), and
let (θ , tθ ) be an arbitrary control parameterization satisfying t0 ≤ tθ1 . We denote
the resulting solution (in the classical sense) to the prediction model (4.1) and
(4.10), along the time-coordinate τ ∈ [t0, tθN ] from initial condition x p(t0) = x0, by
x p(τ , t0, x0, θ , tθ ) and u p(τ , t0, x0, θ , tθ ). At times we will suppress this notation to
x p(τ ), u p(τ ), when the omitted arguments are considered obvious.

Definition 4.3.4. A control parameterization (θ , tθ ) will be declared feasible (with
respect to (t0, x0)), if on the interval τ ∈ [t0, tθN ], the solution x p(τ ; t0, x0, θ , tθ ),
u p(τ ; t0, x0, θ , tθ ) exists and satisfies x p(τ ) ∈ X̊, u p(τ ) ∈ U, and x p(tθN ) ∈ X̊f .

Definition 4.3.5. For given (t0, x0) and given N , we denote by �N (t0, x0) ⊆ RmN ×RN

the set of all feasible control parameterizations.

Throughout this chapter, we interpret the statement θ ∈ U
N to imply θi ∈ U,

∀i ∈ {1, . . . , N }. The following property is important in that it ensures the use of
(4.10) does not unduly restrict the stabilizable region, and can essentially be viewed
as a corollary of various results from Reference 37, or as a slightly less-restrictive
restatement of Reference 154, Proposition 3.7.2.

Corollary 4.3.6. Let X 0 ⊆ X̊ denote the set of initial states x0 for which there
exists continuous open-loop trajectories x[t0, tf ], u[t0, tf ] solving (4.1), and satisfying

the constraints x(t) ∈ X̊, u(t) ∈ U and x(tf ) ∈ X̊f for some tf ≥ t0. Then, for every
(t0, x0) ∈ R × X 0, there exists N ∗(x0) such that �N (t0, x0) has positive Lebesgue
measure in U

N × RN for all N ≥ N ∗(x0).

Corollary 4.3.6 ensures that by selecting N sufficiently large, a feasible initial
parameterization (θ , tθ ) ∈ �N (t0, x0) is locatable in finite-time (FT).

4.4 General framework for real-time MPC

4.4.1 Description of algorithm

Below we outline the steps involved in calculating our MPC controller, beginning
from an arbitrary initial condition (t0, x0) ∈ R × X 0. For convenience of notation,
we define z � [xT , θT , tθ T ]T , the vector of closed-loop states. To begin, with ε the
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same as in Assumption 4.2.4 point 5, we define the following smoothed version of an
indicator function for (the complement to) �x:

ρ(x) �

⎧
⎪⎨

⎪⎩

1 x �∈ �x

ρ0(W (x)) x ∈ �x\�ε
x

0 x ∈ �ε
x

(4.11)

where ρ0 : [c�x − ε, c�x ]→ [0, 1] can be any monotone C1+ function satisfying
limW↑c�x

ρ0 = 1, limW↑c�x

dρ0
dW = 0, limW↓(c�x−ε) ρ0 = 0, and limW↓(c�x−ε)

dρ0
dW = 0.

The function ρ : X → [0, 1] is therefore C1+ over Rn (and likewise could be made
C2+ if necessary). We then use the following modified version of (4.2) as the cost
function:

J (t, z) ≡ J (t, x, θ , tθ ) �
∫ tθN

t
La

ρ(x p(τ , t, z), u p(τ , t, z)) dτ + W a
ρ (x p(tθN , t, z)) (4.12a)

La
ρ(x, u) � ρ(x)

(
L(x, u) + µBo

x (x)
)

(4.12b)

W a
ρ (x) � ρ(x)

(
W (x) + µf Bo

f (x)
)

(4.12c)

Since W (·) is not necessarily a CLF inside �ε
x , replacing (La, W a) with (La

ρ , W a
ρ )

prevents the minimization of J from compromising the forward invariance of �ε
x

achieved under κδ(x).
The steps of the algorithm are as follows:

Step 1: Initialization of control parameterization
If X 0 ⊆ Xf , then (θ , tθ )0 could be generated by simulation of (4.1) under the local
stabilizer κδ(x). In general however, a dual programming problem [23] may need
to be solved to identify an acceptable (θ , tθ )0 ∈ �N (t0, x0), with finiteness of the
search guaranteed by Corollary 4.3.6. Assuming knowledge of a feasible initial control
parameterization is a common starting point for many numerical NMPC approaches,
so we omit further details in this regard.

Step 2: Continuous flow under dynamic feedback
At any instant t ∈ [t0, tθ1 ], we assume that the current model prediction x p

[t, tθN ]
(·, t, z),

u p

[t, tθN ]
(·, t, z) and predicted cost (4.12) are “instantaneously” available (this assump-

tion is discussed further in Section 4.5.2). Unlike SD approaches, the predictions
are continuously updated using continuous online measurement3 of the current x(t).
The closed-loop dynamics (with respect to ordinary time t) evolve over the interval
t ∈ [t0, tθ1 ] as

ż =
⎡

⎣
ẋ
θ̇

ṫθ

⎤

⎦ =
⎡

⎣
f (x, θ1)
�(t, z)

0

⎤

⎦ (4.13)

in which θ evolves as a dynamic controller state.

3 Assumed to be available. In practice, this means that measurements are sampled in a faster timescale than
the dynamics of the closed-loop process.
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Criterion 4.4.1. The update law �(t, z) must be chosen to ensure the following:

1. 〈 ∇θJ , �(t, z) 〉 ≤ 0
2. (θ (t), tθ ) ∈ �N (t, x(t)), ∀t ∈ [t0, tθ1 ], where θ[t0, tθ1 ] and x[t0, tθ1 ] are prescribed by

(4.13).
3. �(t, z) is continuous in t and locally Lipschitz in z, for all (θ , tθ ) ∈ �N (t, x).

The term ∇θJ is the gradient of (4.12) with respect to θ , the calculation of which
is discussed in Section 4.6. Examples of update laws satisfying Criterion 4.4.1 are
discussed in Section 4.5.

Step 3: Discrete transitions at switching times
Upon equality t = tθ1 , the control parameterization is updated by the “instantaneous”
reset:

z+ =

⎡

⎢⎢⎢
⎣

x+

θ+

tθ+

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

x
ϒ(t, z){

tθi+1 i = {1, . . . , N −1}
tθN + δ(x p(tθN )) i = N

⎤

⎥⎥⎥
⎦

(4.14)

where z and z+ denote pre- and post-reset values, both at time t.

Criterion 4.4.2. The jump mapping ϒ(t, z) is chosen to ensure the following:

1. J (t, z+) − J (t, z) ≤ 0
2. (θ+, tθ+) ∈ �N (t, x)

Step 4: Iteration of Steps 2 and 3
Criterion 4.4.2 point 2 ensures that the new control parameterization is feasible for
the current state (t, x). Thus the procedure can iterate back to Step 2.

It is worth noting that the terminal prediction time tf ≡ tθN recedes in a discrete
fashion during the reset (4.14), while remaining fixed during the flow (4.13). The
possibility of assigning more general dynamics ṫθ = �t(t, z) and tθ+ = ϒt(t, z) in
(4.13)–(4.14) is discussed in Chapter 5.

4.4.2 A notion of closed-loop “solutions”

The feedback u = κmpc(t, z) resulting from implementing the above algorithm is a
dynamic, time-varying control law which is technically set-valued at the switching
instances of Step 3. The notion of a “solution” to (4.1) is therefore unclear, since
neither classical nor “sample-and-hold” [37] notions of solution apply, while Filippov
solutions are much too unwieldy. To facilitate analysis, we pose our dynamics as
a hybrid system, thus adopting a notion of solutions from Reference 67 in which
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trajectories simultaneously evolve over an orthogonal pair (t, k) of continuous- and
discrete-time coordinates,4 jointly referred to as “hybrid time.”

By augmenting z to include time as an additional state (i.e., za � [zT , π ]T , π0 =
t0, π̇ = 1, π+ = π ), then (4.13) has the form of a continuous flow ża = �z(za) on the
“flow domain”

S� �
{
za | π ≤ tθ1 and (θ , tθ ) ∈ �N (π , x)

} ⊂ Rn+mN+N+1. (4.15a)

Similarly, (4.14) has the form z+
a = ϒz(za), defined on the “jump domain”

Sϒ �
{
za | π ≥ tθ1 and (θ , tθ ) ∈ �N (π , x)

} ⊂ Rn+mN+N+1. (4.15b)

The dynamics of za therefore define a hybrid system of the exact form discussed
in References 67 and 111, where (4.15) follows the notations of Reference 67.
Since za(t, k) and za(t, k + 1) occur at different instances in hybrid time, the feed-
back u(t, k) = κmcp(za(t, k)) is no longer set-valued, and so meaningful guarantees
of existence and uniqueness of (hybrid-time) solutions to (4.13), (4.14) follow from
Reference 111, Lemma III. 1, 2. This enables the stability analysis of the main result
below to be based upon direct application of an invariance principle developed for
hybrid systems in Reference 144, which can be shown to be nearly equivalent to that
in Reference 111.

Remark 4.4.3. To be completely correct, an invariance principle cannot be applied
to the hybrid system in (4.13), (4.14) since the controller state tθ grows without
bound, thus violating the assumption of pre-compactness inherent in any invariance
principle. While one could get around this by defining a state transformation in which
tθ is replaced with coordinates defined relative to current time t, this would render
the interpretation of many expressions in the analysis (e.g., terms appearing in dJ

dt )
rather non-intuitive. A simpler approach is to recognize that the resulting feedback
u(t) = κmpc(x, t, z) is unchanged if all occurrences of time t in (4.12) are replaced with
“time since reset” π (where π̇ = 1, π+ = 0), and similarly the jump-map (tθ )+ is
modified by subtracting tθ1 from all entries (i.e., thereby redefining tθ as being relative
to the time of last reset). Since the boundedness of δ(x) ensures that a reset must occur
at least every MT time-units, this ensures boundedness of the (re-defined) controller
state tθ . For simplicity, we neglect this technicality in the remainder.

4.4.3 Main result

We are now ready to present the main result of this chapter. While the theorem
itself may appear to be a straightforward consequence of Criteria 4.4.1 and 4.4.2, the
usefulness of its generality will become apparent in Section 4.5 when we provide
specific examples of �(t, z) and ϒ(t, z) which meet these criteria.

4 In other words, the notation z(t′, k ′) denotes the value of state z after exactly t′ units of ordinary time and
k ′ event executions have occurred. If time t′ is not in the interval between the switching times of the k ′ and
(k ′ + 1) events, then by the convention of Reference 60 the state z(t′, k ′) is undefined.
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Theorem 4.4.4. Let L(·, ·), κδ(·), W (·), X, Xf be chosen to satisfy Assumptions 4.2.1
and 4.2.4 for given �x, and let Bx, Bf , µ, µf satisfy Assumption 4.3.1. For any initial
conditions (t0, x0) ∈ R × X 0 of (4.1), and any initial feasible control parameteri-
zation (θ , tθ )0 ∈ �N (t0, x0), the set x ∈ �x is asymptotically stabilized under (4.13)
and (4.14). Furthermore, the resulting closed-loop trajectories satisfy all point-wise
input, state, and terminal constraints.

4.5 Flow and jump mappings

As shown in Theorem 4.4.4, asymptotic convergence to x ∈ �x is guaranteed as long
as �(t, z) and ϒ(t, z) do not result in increase of J (t, z). In this section, we look at how
these mappings can be designed to satisfy Criteria 4.4.1 and 4.4.2, and how either �

or ϒ can be used to improve the control parameterization.

4.5.1 Improvement by ϒ: the SD approach

The most defining characteristic of the hybrid-time framework presented here is the
time-varying nature of the trajectory θ[t0, tθ1 ] during Step 2 of Section 4.4.1. However,
if we make the following choices for �(·, ·) and ϒ(·, ·)

�(t, z) ≡ 0 (4.16a)

ϒ(t, z) = arg min
θ+∈UN

J (t, x, θ+, tθ+) (4.16b)

(where tθ+ is given by (4.14)), then the closed-loop control action u = κmpc(z) exhibits
PWC behavior with respect to actual time t. In this case, our framework is equivalent
to the SD result in Reference 115 (modulo our interior-point approach to constraint
handling). It can be observed that the practice in Reference 115 of using a shorter
control horizon Nc < N can simply be viewed as imposing upon the optimization in
(4.16b) the constraints θ+

i = κ(x p(tθi−1), tθi − tθi−1) for i > Nc.
Satisfaction of Criterion 4.4.1 is trivial, as is Criterion 4.4.2 when x ∈ �ε

x . For
x �∈ �ε

x ,

J (t, z+) − J (t, z) =
∫ tθ+

N

t
La

ρ (x p(τ , t, z+), u p(τ , t, z+)) dτ + W a
ρ (x p(tθ

+
N , t, z+))

−
∫ tθN

t
La

ρ (x p(τ , t, z), u p(τ , t, z)) dτ − W a
ρ (x p(tθN , t, z))

≤
∫ tθ+

N

tθN

La
ρ (x p(τ , tθN , z̄), u p(τ , tθN , z̄)) dτ + W a

ρ (x p(tθ
+

N , tθN , z̄)) − W a
ρ (x p

f )

≤ ρ(x p
f )

[∫ tθ+
N

tθN

La(x p(τ , tθN , z̄), u p(τ , tθN , z̄)) dτ + W a(x p(tθ
+

N , tθN , z̄)) − W a(x p
f )

]

≤ 0 (4.17)

where x p
f � x p(tθN , t, z), and z̄ � [x p

f , θ+, tθ+]. The inequalities hold by virtue of the
(suboptimal) choice θ+

i = θi+1, i < N , θ+
N = κδ(x

p
f ), from which both Criterion 4.4.2

point 1 and 2 follow (since violation of Criterion 4.4.2 point 2 would necessitate
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J → ∞). It is then clear that given (4.16), Theorem 4.4.4 holds and therefore encom-
passes most stable results from the SD-MPC literature that are based upon PWC
control parameterizations, such as Reference 115.

The chief downside to (4.16) is the required assumption that the optimal control
problem posed in (4.16b) is solved “instantaneously,” an assumption that is inherent
in much of the SD literature. This assumption could be overcome using forward
compensation (i.e., by imposing on (4.16b) the constraint θ+

1 = θ2, which makes θ+
1

available for immediate feedback from knowledge of the previous solution), but at
the cost of adding a one-sample delay in the feedback path. In either case, the fact
that the feedback path in (4.16) is only closed at the switching instants of tθ implies
that robustness considerations impose an upper bound MT on the allowable switching
period T = δ(x) used in the control parameterization (thereby requiring N to be large
enough to ensure sufficient horizon length to satisfy the terminal constraint).

4.5.2 Improvement by �: a real-time approach

As discussed in Section 4.1, our interest lies in establishing that stability can be
preserved when the minimization in (4.16b) is replaced by a gradient-based search
involving the simplest possible calculation, allowed to evolve throughout the interval
t ∈ [t0, tθ1 ]. The motivating benefit of this approach would be the nearly continuous
closing of the feedback path, effectively eliminating intervals of open-loop operation
and thereby improving disturbance attenuation. Within our framework this implies
that the burden of cost improvement is carried by �, allowing ϒ to be simplified
to an expression more realistically “instantaneous” than (4.16b). The simplest such
definition is of the form

ϒ(t, z) := θ+
i =

{
θi+1 i ∈ {1, . . . , N −1}
κδ

(
x p(tθN , t, z)

)
i = N

(4.18a)

�(t, z) = Proj
{
ϑ(t, z), �(t, z), θ , U

N
}

(4.18b)

ϑ(t, z) = −kθ�(t, z)∇θJ (4.18c)

where � : R × X × �N → RmN×mN is a locally Lipschitz matrix-valued function sat-
isfying �(t, z) = �T (t, z) > 0, which defines the metric by which the descent direction
is selected. The gain kθ > 0 describes the rate of descent in the chosen direction.

The Proj{·, ·, ·, ·} operator is a locally Lipschitz parameter projection, identical
to those discussed in the nonlinear adaptive control literature such as Reference 99,
which is designed to ensure θ ∈ U

N . For constraints Ů �= ∅ with smooth boundary
∂U, one such appropriate definition is

Proj
{
ϑ , �, θ , UN

}
�

⎧
⎨

⎩

ϑ θ ∈ Ů
N
r or vT

⊥ ϑ ≤ 0(
I − sat1

0

(
r − ε(θ )

r

)
�

v⊥vT
⊥

vT
⊥�v⊥

)
ϑ θ ∈ U

N \Ů
N
r and vT

⊥ϑ > 0
(4.19)
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where U
N
ε , ε ∈ [0, r], denotes a family of closed inner approximations to U

N sat-
isfying the strict containments U

N
ε ⊂ U

N
ε′ , ε > ε ′, and where ∂U

N
ε continuously

approaches ∂U
N as ε ↓ 0. The vector v⊥ ≡ v⊥(θ ) is the outward normal vector to

the specific level set U
N
ε(θ ) at the point θ ∈ ∂U

N
ε(θ ). The term sat1

0(·) implies saturation
with respect to the interval [0, 1].

Satisfaction of Criterion 4.4.2 by (4.18a) follows from (4.17). Satisfaction of
Criterion 4.4.1 point 1 by (4.18)–(4.19) is obvious for the first case of (4.19), while
in the second case

〈 ∇θJ , �(t, z) 〉 = (∇θJ )T

(
I − sat1

0

(
r − ε(θ )

r

)
�

v⊥vT
⊥

vT
⊥�v⊥

)
ϑ

≤ − 1

kθ

ϑT

(
�−1 − v⊥vT

⊥
vT

⊥�v⊥

)
ϑ ≤ 0 (4.20)

By Reference 99, Lemma E.1 (4.19) is a locally Lipschitz operator, and guaran-
tees that θ (t) ∈ U

N for all t ≥ 0. The remaining requirements of Criterion 4.4.1,
that x p(τ , t, z) ∈ X for all τ ∈ [t, tθN ] and x p(tθN , t, z) ∈ Xf , follow from the fact that
Criterion 4.4.1 point 1 ensures J̇ < 0 (seeTheorem 4.4.4 proof), and that J (t, z) → ∞
continuously as x p(tf ) approaches ∂Xf or any point x p(τ ) approaches ∂X.

Remark 4.5.1. The operator (4.19) is essentially an active-set for the constraint
θ ∈ U

N . While this constraint could alternatively be enforced by a barrier function
(as recommended by Reference 161), in many practical situations the computation
of (4.19) is acceptably simple, and less conservative. In particular, for hypercubic
U the projection (4.19) can be implemented as element-wise saturation within the
(eventually discretized) implementation of the update of θ in (4.13).

Remark 4.5.2. While (4.18b) will admittedly require at least some computation time,
our purpose here is to demonstrate the limiting behavior of using a single-step,
gradient-based solution method for minimizing J . Since the complexity of comput-
ing any gradient-based update (with (4.18b) being one example) obviously scales
strongly with dimension mN of θ (in a manner depending on �), it is therefore crit-
ical to recognize that the only restriction on N in Theorem 4.4.4 is that a feasible
initialization (θ , tθ )0 exists. Beyond this, the partition of the prediction horizon by tθ

may be arbitrarily coarse. “Instantaneous” computability of an incremental step for
(4.18b), an approximation shared with other works such as References 132 and 133,
is therefore justified here more on the basis of achievable dimensional reduction of
the calculations than by any requirement of efficiency of the calculations themselves.

Remark 4.5.3. While a coarse partition tθ would obviously result in significant loss
of performance with respect to (4.12), it will be shown in Chapter 5 that by changing
the underlying basis of parameterization (4.10), this performance degradation can
be substantially reduced.
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4.5.3 Other possible definitions for � and ϒ

The above two sections present perspectives in which the burden of performance
improvement is transferred entirely to either � or to ϒ . Other intermediate options
include:

● Defining ϒ to involve any type of (crude, quasi-) global search, most likely
making use of forward compensation, which can be used to overcome the local
nature of � by occasional resetting of the local search.

● Defining ϒ (together with an appropriately-defined ϒt) as a mechanism for further
partitioning the intervals of tθ during a reset, in order to increase the “resolution” of
the parameterization defining u p(τ ) as the prediction time τ nears t (i.e., such that
u p

[t, tθN ]
is always parameterized more coarsely for distant parts of the prediction).

This essentially generalizes the idea of using different control and prediction
horizons advocated in Reference 115, which can be viewed as a lumping of the
parameters {θi} for i ∈ {Nc, . . . , N }.

4.6 Computing the real-time update law

4.6.1 Calculating gradients

In addition to solving the model predictions x p(τ ) and u p(τ ), incremental propagation
of (4.18b) requires calculation of the gradient vector ∇θJ . By definition, ∇θJ is
given by

∇θJ =
∫ tθN

t

(
∂La

ρ

∂x

∂x p

∂θ
+ ∂La

ρ

∂u

∂u p

∂θ
dτ

)
+ dW a

ρ

dx

T
∂x p

∂θ
(tθN ) (4.21)

where ∂La

∂x , ∂La

∂u , and dW a

dx are evaluated along the prediction trajectory x p(τ ), u p(τ ).
If the dimensions satisfy n < m(N − 1), then instead of propagating the full state
sensitivity matrix ∂x p

∂θi
along the prediction horizon, the computation can be more

efficiently decomposed by propagating within each interval τ ∈ [tθi−1, tθi ] (where tθ0 ≡ t)
the sensitivities Su ∈Rn×m, Sx ∈Rn×n

Ṡu = ∂f

∂x
Su + ∂f

∂u
Su(tθi−1) = 0 (4.22a)

Ṡx = ∂f

∂x
Sx Sx(tθi−1) = I (4.22b)

where the expressions for ∂f
∂x and ∂f

∂u are evaluated along the arguments x p

[tθi−1, tθi ]
and

u p

[tθi−1, tθi ]
. Then for each θi, the sensitivity ∂x p

∂θi
(τ ) is calculated over τ ∈ [t, tθN ] as

∂x p

∂θi
(τ ) �

⎧
⎪⎨

⎪⎩

0 τ < tθi−1

Su(τ ) τ ∈ [tθi−1, tθi )

Sx(τ ) ∂x p

∂θi
(tθj−1) τ ∈ [tθj−1, tθj ], j > i

(4.23)
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from which it can be seen that the drift dynamics corresponding to all previous inter-
vals are tracked as linear combinations of Sx (since the ∂x p

∂θi
(tθj−1) terms are effectively

known constants). Calculating the integral portion of (4.21) can be similarly decom-
posed, which is equivalent to augmenting the definition of the state x p in (4.22)–(4.23)
to include a scalar accumulator for La

ρ(x, u).
Numerical solution of (4.22) is a well-studied problem, for which numerous

efficient techniques exist ([105, 106] and references therein). While solving (4.22)–
(4.23) may appear challenging, we emphasize that calculating ∇θJ for (4.18c) is
comparable to performing a single gradient evaluation within an iterative gradient-
based solver (such as an SQP) applied to (4.16b).

4.6.2 Selecting the descent metric

The matrix �(t, z) in (4.18) defines the metric used for selecting the descent direction
(i.e., viewing (4.18c) as a Newton-like update, � = �T > 0 approximates the inverted
hessian). Depending on computational resources available, this approximation could
be selected from any number of standard forms, some examples being:

4.6.2.1 (Scaled) Steepest descent
Setting �(t, z) ≡ I generates steepest-descent behavior, where the diagonal elements
could be weighted (specified offline) to help improve scaling.

4.6.2.2 Approximate second-order hessian
Computing the full hessian ∇θ2 J is almost always impractical, in particular since the
second-order sensitivities cannot be decomposed as efficiently as (4.23) due to cross
terms. However, neglecting interaction terms between intervals (i.e., ∇2

θiθj
J , i �= j)

allows for the block-diagonal approximation �(t, z) = diag{�i}, i = {1 . . . N }, with

�i �
[
∇2

θ2
i
J + εi(t, z)I

]−1
(4.24)

where εi(t, z) > 0 is a convexification term satisfying εi(t, z) > −min{0, λmin(∇2
θ2

i
J )}.

The second-order derivatives can be generated in analogous fashion to (4.22)–(4.23)
by solving over successive intervals τ ∈ [tθj−1, tθj ]

Ṡk
uu = ∂2fk

∂u∂x
Su + S

T
u

∂2fk

∂x2
Su + ∂2fk

∂u2
+

n∑

�=1

∂fk

∂x�

S�
uu, Suu(tθj−1) = 0 (4.25a)

Ṡk
xx = S

T
x

∂2fk

∂x2
Sx +

n∑

�=1

∂fk

∂x�

S�
xx, Sxx(tθj−1) = 0 (4.25b)

∂2x p
k

∂θ2
i

(τ ) �

⎧
⎪⎪⎨

⎪⎪⎩

0 i > j

Suu i = j

Sk
x

∂2x p
k

∂θ2
i

(tθj−1) + ∂2x p
k

∂θ2
i

(tθj−1) Sk
xx

∂2x p
k

∂θ2
i

(tθj−1) τ ∈ [tθj−1, tθj ], i > j

(4.25c)
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where Sxx ∈ Rn×n×n, Suu ∈ Rn×m×m, and ∂2x p

∂θ2
i

∈ Rn×m×m, and the k , � ∈ {1 . . . n}
denote the indexing of the first coordinate. The integral portions of the individual
∇2

θ2
i
J in (4.24) can again be calculated in similar manner to (4.25), or by simply

appending to the definition of x p. The complexity of these calculations scale very
poorly with the system dimensions n and m, but only super-linearly with the number
of partitions N due to the omission of cross-terms in (4.24).

4.6.2.3 Approximate Gauss–Newton
Motivated by a similar approach in Reference 54, L(x, u) and W (x) can be taken
to be of the form L(x, u) = ‖l(x, u)‖2, W (x) = ‖w(x)‖2 so that (4.12) has the form
La

ρ = ‖la
ρ(x, u)‖2, W a

ρ = ‖wa
ρ(x)‖2, where la

ρ(x, u) � ρ
1
2 [lT , (µBo

x )
1
2 ]T and wa

ρ(x) �
ρ

1
2 [wT , (µf Bo

f )
1
2 ]T . Neglecting interval-interaction terms as above, the individual

interval hessians ∇2
θ2

i
J in (4.24) can be replaced with Gauss–Newton approximations

of the form

∇2
θ2

i
J ≈ Gi � 2

∫ tθN

tθi−1

Li(τ )T
Li(τ ) dτ + 2 W

T
i Wi (4.26a)

Li �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂la
ρ

∂x

∂x p

∂θi
+ ρ

1
2
∂l

u
τ ∈ [tθi−1, tθi )

∂la
ρ

∂x

∂x p

∂θi
τ ≥ tθi

Wi �
∂wa

ρ

∂x

∂x p

∂θi
(tθN ) (4.26b)

with ∂x p

∂θi
given by (4.23). As long as lim supx→�x

‖ ∂l
∂x ‖ and lim supx→�x

‖ ∂w
∂x ‖ are

bounded, then ρ(x) and B(x) can always be chosen such that
∂la

ρ

∂x and
∂wa

ρ

∂x are bounded
on X̊ and X̊f , respectively (and in particular in a neighborhood of �x). Other-
wise, an element-wise saturation can be added into (4.26b) to ensure Gi remains
bounded as x p → �x. Since Gi = GT

i ≥ 0 is guaranteed by (4.26a), then εi(t, z)
in (4.24) can be taken as a small constant εi > 0. From (4.23) and (4.26b), it
can be seen that over the interval τ ∈ [tθj−1, tθj ], the quadrature associated with
each Gi, i < j, can be reconstructed from a common accumulator of the form
∂x p

∂θi

T
(∫ tθj

tθj−1
ST

x
∂la

ρ

∂x

T ∂la
ρ

∂x Sx dτ

)
∂x p

∂θi
.

4.7 Simulation examples

4.7.1 Example 4.1

To illustrate the concept of real-time optimization (RTO) proposed in this book, we
consider the nonlinear system given in Reference 34, with constraint U = [−2, 2] and
cost L(x, u) = 0.5‖x‖2 + u2,

ẋ1 = x2 + (0.5 + 0.5x1)u ẋ2 = x1 + (0.5 − 2x2)u
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The stabilizer κδ(x) was designed by exact discretization of the linearized process
with constant δ = 0.5, yielding the optimal feedback κδ(x) = [0.1402, 0.1402]x. The
terminal penalty

W (x) = xT

[
3.6988 2.8287
2.8287 3.6988

]
x

was obtained from a Lyapunov equation, and the corresponding terminal region
Xf = {x : W (x) ≤ 0.141} was enforced using a logarithmic barrier.

The system was simulated from the initial condition x0 = [−0.6830, −0.8640]
using a standard SD controller based on the full solution of (4.16), as well as
four different “real-time” controllers (RT-1 through RT-4) based on (4.18). All four
real-time controllers used steepest-descent updates, starting from (tθ , θ )0 values corre-
sponding to the first 1.5 seconds of the RT-1 trajectory. Controller parameters and their
accumulated costs are given in Table 4.1, with the resulting trajectories depicted in
Figure 4.1. As one would expect, the performance of the real-time controller
approaches the SD control as kθ is increased, since the convergence of (4.18b)
approaches the instantaneous behavior of (4.16b). Although negligible in this case,
the controller RT-4 slightly outperforms the SD controller. This results from the fact
that (4.18b) continually readjusts θ as the interval [t, tθ1 ] shrinks.

4.7.2 Example 4.2

To better illustrate the generality of our framework, we consider regulation of the
following two-state system, with cost function L(x, u) = ‖x‖2 + 0.1u2, and input
constraint U = [−4, 4]. For clarity, we express the (x1, x2) dynamics in standard
polar coordinates (r, φ) as

ṙ = −1

2
r cos(2φ) + u sin(φ) φ̇ = 1

r

The trajectories of this system rotate around the origin in the (x1, x2)-plane, and
the sign of the gain between u and r changes between the upper and lower (x1, x2)-half-
planes. The unforced flows are open-loop unstable, and the linearization at (x1, x2) = 0
is neither controllable nor stabilizable. Since the angular rate of rotation increases

Table 4.1 Definition of controllers used in Example 4.1

Name ϒ � � δ N kθ Cost1

RT-1 (4.18a) (4.18b) 0 0.5 3 0 6.329
RT-2 (4.18a) (4.18b) I 0.5 3 1 5.134
RT-3 (4.18a) (4.18b) I 0.5 3 10 4.822
RT-4 (4.18a) (4.18b) I 0.5 3 100 4.800
SD (4.16b) (4.16a) – 0.5 3 – 4.807

1
∫ 7

0 L dτ + W (x(7)), although in all cases W (x(7)) ≈ 0



40 Robust and adaptive model predictive control of nonlinear systems

0 1 2 3 4 5 6 7
–1

–0.5

0

0.5

x 1

0 1 2 3 4 5 6 7
–1

–0.5

0

0.5

x 2

0 1 2 3 4 5 6 7
0

0.5
1

1.5
2

u

Time

RT-1
RT-2
RT-3
RT-4
SD

Figure 4.1 Closed-loop response of different controllers for Example 4.1

as the origin is approached, true convergence to the origin requires arbitrarily fast
switching of the input.

It can be shown that the origin x = 0 is globally stabilized by the feedback u =
−r cos(φ) = −x2, which motivates our selections κ(x, Tκ ) = −x2, Xf ≡ R2, �x ≡
{0}, with the corresponding CLF W (x) = 1.65‖x‖2 satisfying Ẇ ≤ −1.5L(x, −x2).
Rather than solving explicitly for a function δ(x) satisfying Assumption 4.2.4 point
5, δ(x) is instead defined implicitly as the largest δ ≤ 2 over which W (x p(t + δ)) −
W (x p(t)) ≤ 1.25

∫ t+δ

t L(x, −x2(t))dτ holds, the testing of which can be easily incorpo-
rated as a termination criterion of the first model prediction following a reset of (4.14).

Figure 4.2 depicts the closed-loop response of several different controllers,
including two standard SD controllers (SD-1, SD-2) based on the full solution of
(4.16), two real-time controller (RT-1, RT-2) based on the proposed (4.18), and a con-
tinuous (C) feedback u = −x2. The controllers are listed in Table 4.2. Controller RT-1
is essentially an un-optimized sample-and-hold implementation of κδ(x), which still
outperforms “C” by virtue of δ(x). The significant performance difference between
RT-2 (based on steepest-descent) and SD-1 stems mostly from the ability of RT-1
to continually readjust throughout the first interval in particular, providing a major
advantage considering the coarseness of the interval spanned a sign change in the
input gain. The final controller SD-2 used a fixed δ = 0.5, and although difficult to
distinguish on Figure 4.2, it was the only controller which failed to have converged to
x = 0 by time t = 50, instead exhibiting a stable periodic limit cycle. The final cost
of each controller is shown in Table 4.2.
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Figure 4.2 Closed-loop response of different controllers for Example 4.2

Table 4.2 Controllers used in Example 4.2

Name ϒ � � δ N kθ Cost1

C – – – 0 0 u = −x2 8.23
RT-1 (4.18a) (4.18b) – δ(x) 4 0 6.87
RT-2 (4.18a) (4.18b) I δ(x) 4 10 5.41
SD-1 (4.16b) (4.16a) – δ(x) 4 – 6.51
SD-2 (4.16b) (4.16a) – 0.5 4 – 6.22

1
∫ 10

0 L dτ + W (x(10)), where W (x(10)) ≈ 0 for all but SD-2

4.8 Summary

In this chapter, we have studied a limiting case involving the application of fast,
incrementally-improving gradient methods for MPC of continuous-time nonlinear
systems. Unlike existing results involving real-time calculations, our study empha-
sizes the equal importance of computational simplifications not only in how the
optimal control problem is solved, but also in how it is posed. We have shown that for
applications in which computational speed is of high priority, a fast gradient-based
solution approach can be embedded within a framework that allows for crude, low-
dimensional parameterization of the input trajectory. Of key importance is that this
input-parameterization involves a time-support which is independent of the controller



42 Robust and adaptive model predictive control of nonlinear systems

input–output cycle-time (treated here as a faster timescale), allowing for control calcu-
lations to be continually fed back to the process at the fastest possible rate. Ultimately,
we have demonstrated that the philosophy from Reference 148 that “feasibility implies
stability,” exploited by many real-time computational methods to reduce calculation
time, is applicable not only to arbitrarily-suboptimal termination of the search, but
also to arbitrarily-suboptimal restriction of the class of input trajectories over which
the search is posed.

4.9 Proofs for Chapter 4

4.9.1 Proof of Claim 4.2.2

If X is compact then Claim 4.2.2 is obvious, so we focus on sufficiency of the second
condition in Assumption 4.2.1. From Reference 159, conditions 2i,ii are sufficient to
ensure global solvability of the analogous unconstrained, infinite-time optimal control
problem (whose cost-to-go we denote J UC∗

∞ ). The presence of constraints imposes

J ∗
∞(x0) ≥ J UC∗

∞ (x0) (4.27)

from which it is clear that proving radial unboundedness of J UC∗
∞ is sufficient to prove

Claim 4.2.2. This we do next.
Let c1 and c2 be arbitrary constants satisfying (4.3), and define

a1 � min
x∈∂B(�x ,c1)

J UC∗
∞ (x) > 0. (4.28)

which is well-defined by the global solvability of the optimal control problem for
J UC∗
∞ . Then, for arbitrary x0 �∈ B(�x, c1), one has

J UC∗
∞ (x0) ≥ a1 +

∫ t1

t0

L(x∞∗, u∞∗) dτ (4.29)

where (x∞∗, u∞∗) denote any minimizing pair (with respect to J UC∗
∞ ) satisfying

x∞∗(t0) = x0, and t2 denotes the (first) time that x∞∗ intersects B(�x, c1).
By the time-invariance of the vector field (4.1), it follows that for any x0, there

must exist5 a lower bound cf ≡ cf (x0) > 0 such that

min
τ∈[t0,t1]

‖f (x∞∗(τ ), u∞∗(τ ))‖ ≥ cf (x0) > 0 (4.30)

This implies the existence of a diffeomorphism π : R≥0 → R≥0 that defines the length
s = π (τ ) of the optimal arc x∞∗

[t0,τ ] connecting x0 and x∞∗(τ ); i.e., satisfying s(t0) = 0.

This implies that the integral cost in (4.29) can be expressed as (denoting s1 � π−1(t1),

5 Note that a constant cf > 0 does not necessarily hold uniformly for all x0 ∈ Rn.
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and the abuse of notation x∞∗(s) ≡ x∞∗(π−1(s)) and u∞∗(s) ≡ u∞∗(π−1(s)))
∫ t1

t0

L(x∞∗(τ ), u∞∗(τ )) dτ =
∫ s1

0

L(x∞∗(s), u∞∗(s))

‖f (x∞∗(s), u∞∗(s))‖ds

≥
∫ s1

0

c2

‖x∞∗(s)‖ ds

≥
∫ s1

0

c2

c1 + s1 − s
ds

It then follows from (4.29) that

J UC∗
∞ (x0) ≥ a1 + ln

(
c1 + s1(x0)

c1

)
. (4.31)

Since ‖x0‖ → ∞ implies s1(x0) → ∞, this proves radial unboundedness of the sur-
face J UC∗

∞ (x). Compactness of level sets of J ∗
∞ follows from (4.27), completing the

claim.

4.9.2 Proof of Lemma 4.3.2

From (4.6), we have that ∀ x ∈ Xf (with x′ as per Assumption 4.2.4)

Bo
f (x′) − Bo

f (x) = Bf (x′) − Bf (x) + ∇Bf (0)T
(
x′ − x

)

≤ B̃f (V (x′)) − B̃f (V (x)) + ‖∇Bf (0)‖ max
x, x′∈Xf

(‖x′ − x‖)

≤ B̃f (cf 1) + ‖∇Bf (0)‖ max
x, x′∈Xf

(‖x′ − x‖) � b1

where b1 < ∞ is well defined by the compactness of Xf and the strict inequality
cf 1 < cf 2 (recalling that limcf →cf 2 B̃f (cf ) → +∞). The second inequality follows

from x ∈ X
cf 1
f being the worst-case, since otherwise x ∈ X

cf 2
f \X

cf 1
f would imply

Bf (x′) − Bf (x) < 0 by invariance of the level sets of V . Furthermore,
∫ t′

t
Bo

x (xκδ (τ )) dτ ≤ MT max
x∈Xf

(Bo
x (x)) � b2

where maxx∈Xf

(
Bo

x (x)
)

< ∞ exists by the compactness of Xf and strict containment

Xf ⊂ X̊. Finally, the nonemptiness of �̊x guarantees that ε > 0 can be chosen such
that

b3 � min
x∈Xf \�̊ε

x

γ (‖x‖) > 0

exists. The result follows for any µ, µf ∈ (0, µ∗], µ∗ � b3
b1 + b2

, as seen by substitution
into (4.8).

4.9.3 Proof of Corollary 4.3.6

Let xo
[t0, tf ], uo

[t0, tf ] denote a continuous feasible solution to (4.1) from x0 ∈ X 0 such
that mint∈[t0, tf ] minx′∈∂X ‖x′ − xo(t)‖ ≥ c and minx′∈∂Xf ‖x′ − xo(tf )‖ ≥ c, for some
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c ≡ c(x0) > 0. Define the compact sets Tx � ∪t∈[t0,tf ]xo, T
c
x � {x | minx′∈Tx ‖x −

x′‖ ≤ c} and Tu � ∪t∈[t0,tf ]u p, and let KT denote the Lipschitz constant (w.r.t x) of
f (x, u) over T

c
x × Tu.

For an arbitrary N , define tθ ≡ tθ (N ) � {tθi , i = 1 . . . N | tθi = t0 + i
N (tf −

t0)} with corresponding parameters θ ≡ θ (N ) � {θi, i = 1 . . . N | θi = uo(tθi−1)}. Let
w[t0,tf ], uw

[t0,tf ] denote a solution to (4.1) with input uw(t) = v(t, θ , tθ ) from (4.10),
whose dynamics can be written

ẇ = f (w, uo(t)) + g(t, w), w(t0) = x0

g(t, w) � f (w, uw(t)) − f (w, uo(t))

By the continuity of the (w-parameterized) time-function f ◦ uo : R → Rn, there
exists an integer N ∗ ≡ N ∗(x0) such that the bound

max
(t,w)∈[t0,tf ]×Tc

x

‖g(t, w)‖ <
c KT

exp
(
KT(tf −t0)

) − 1
(4.32)

holds ∀N ≥ N ∗, since the left-hand side can be made arbitrarily small. This implies,
by standard results on continuity of solutions with respect to parameters [94, Therom
3.4], the (pointwise) bound ‖x[t0,tf ] − w[t0,tf ]‖ < c, and hence �N (t0, x0) contains the
particular (θ , tθ ) defined above, as well as arbitrarily close neighbors satisfying (4.32).

4.9.4 Proof of Theorem 4.4.4

As is standard in MPC approaches, we will prove stability by using the finite hori-
zon cost (4.12) as a Lyapunov function. Since our closed-loop trajectory za(t, k) =
[xT , tθ T , θT , π ]T (t, k) evolves in hybrid time (as per Section 4.4.2), and Criterion 4.4.2
only guarantees nonincrease of the (hybrid-time) cost J during the reset (4.14), we
rely upon a hybrid-systems version of the invariance principle given by [144, Theorem
4.1, Corollary 4.2].

By assumption, the initial parameterization (θ , tθ )0 selected during the initial-
ization step corresponds to a bounded prediction trajectory with bounded initial cost
J0 � J (0, z0) given by (4.12). It then follows by Claim 4.2.2 that this trajectory is
contained within the compact set �(J0), since the optimal cost-to-go (whose level
sets define �) underbounds the cost in (4.12). If the cost J of (4.12) can be shown
non-increasing in hybrid time, then compactness of the state x follows. This we
demonstrate next.

Ordinary-time evolution
We start by noting that Criterion 4.4.1 point 3, together with the discussion in Sec-
tion 4.4.2, guarantees that the continuous trajectory z(t, k) exists over some nonzero
interval. We use the notation J̇k to denote d

dt Jk (t) on a (closed) interval of constant k
(i.e., between switches). Then from (4.12)

J̇k = ∇tJ + 〈∇xJ , f (x(t, k), u(t, k))〉 + 〈∇θJ , θ̇〉 (4.33)
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where u(t, k) � v(t, θ (t, k), tθ (k)). Differentiating (4.12), the term ∇tJ includes the
effects of both the integration limit and Lie derivatives associated with the initial con-
dition. This implies ∇tJ = −La

ρ(x(t, k), u(t, k)) − 〈∇xJ , f (x(t, k), u(t, k))〉, in which
the second term cancels the middle term in (4.33) (necessarily so, since uniqueness
of solutions implies that the locus x p

[t,tf ] remains invariant if x(t) flows along the locus).
This implies

J̇k = −La
ρ(x(t, k), u(t, k)) + 〈∇θJ , θ̇〉

≤ −L(x(t, k), u(t, k)) + 〈∇θJ , θ̇〉, ∀x ∈ X\�̊x

≤ −γL(‖x(t, k), u(t, k)‖), ∀x ∈ X\�̊x (4.34)

where the second inequality follows from Criterion 4.4.1 point 1. From (4.11), the
first line of (4.34) implies that J̇k ≤ 0 when x ∈ �̊x.

Event-time evolution
Defining S �

{
za | (θ , tθ ) ∈ �N (π , x)

}
as the set of feasible states, we have

Sϒ = S\S̊� , guaranteeing that the jump mapping ϒz(za) is defined whenever
continuous evolution is not possible. Criterion 4.4.2 point 1 then directly gives that
Jk+1(t) ≤ Jk (t) under mapping ϒz(·).

This demonstrates compactness of the state trajectory x[0,∞). Since the interval-
lengths of the time-support tθ are underbounded by the class-K function γδ(‖x‖),
it follows that the parameter vector θ must also remain bounded (otherwise x[0,∞)

could not remain compact). Boundedness of tθ is discussed in Remark 4.4.3. Hence,
the trajectories of the closed-loop states za are guaranteed to remain compact. From
the invariance principle in Reference 144, Theorem 4.1, Corollary 4.3, the above
implies that za converges asymptotically to the invariant set M = {za : Jk+1 − Jk = 0
under ϒz} ∩ {za : J̇k = 0 under �z}. From (4.34), it follows za ∈ M =⇒ x ∈ �x.
Feasibility of all the pointwise constraints follows directly from Criteria 4.4.1 points
1 and 2 and Definitions 4.3.4 and 4.3.5.





Chapter 5

Extensions for performance improvement

5.1 General input parameterizations, and optimizing
time support

The vast majority of MPC implementations are based upon the approximation of
u p

[t,tf ] as being PWC in time, making use of a zero-order hold both in the input imple-
mentation as well as in the model predictions (potentially in the form of a model
discretization). From a theoretical perspective, there is nothing preventing the use
of more general parameterizations to describe sub-arcs u p

[ti ,ti+1] when implemented
within a SD framework; for example, the SD result in Reference 58 allows for arbi-
trary arcs u p : [ti, ti+1] → Rm. In general, higher-order parameterizations involving
increased number of parameters (per interval) are able to describe u p over significantly
longer intervals [ti, ti+1], resulting in an overall decrease in the number of parameters
required to comparably describe u p

[t,tf ]. However, the open-loop nature of the SD inter-
vals requires that their duration be kept reasonably short, thereby eliminating most of
the benefits associated with increasing the order of the parameterization. As such, it is
rarely practical for SD control designs to make use of any parameterizations beyond
the basic PWC selection.

In contrast to a SD framework, in the approach of Chapter 4 the input–output
sampling behavior is completely decoupled from the partition tθ used in parame-
terizing the trajectory u p

[t,tf ] via (4.10). Since there are no longer any robustness or

stability concerns associated with selecting tθ arbitrarily coarse, redefining (4.10)
creates the potential for a substantial reduction in the total number of parameters used
to describe u p

[t,tf ], without significantly impacting the overall performance (i.e., with
respect to the cost J ). This section will briefly demonstrate how the results of Chap-
ter 4 can be extended using a more general version of (4.10). A second contribution
of this chapter is to demonstrate that the time support vector tθ , viewed simply as a
parameter used to define u p

[t,tf ], is amenable to online optimization just as is θ . This
could be of particular interest for systems with restrictive state constraints, where
optimizing the timing of discontinuities in u[t,tf ] using a crude partition tθ could yield
better performance than a computationally-comparable increase in the number of
intervals N .
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5.1.1 Revised problem setup

The problem of interest is essentially the same as that described in Section 4.2; that is,
the creation of a stabilizing continuous-time model-predictive feedback based upon
solutions of finite horizon optimal control problems of the nominal form

min
u p

[t,t+T ]

{∫ t+T

t
L(x p, u p)dτ + W (x p(t + T ))

}
(5.1a)

s.t. ẋ p = f (x p, u p), x p(t) = x (5.1b)

(x p
[t,t+T ], u p

[t,t+T ]) ∈ X × U (5.1c)

x p(t + T ) ∈ Xf . (5.1d)

However, to simplify the presentation and to slightly generalize the result, we will
re-define some of the assumptions underlying the function L(x, u).

The control objective is to regulate x to any arbitrary compact set �x ⊂ Rn (i.e.,
not necessarily a ball around the origin), which is control-invariant for dynamics
(4.1) using inputs in some compact set1 u ∈ �u. Defining � � �x × �u, the map-
ping L : X × U → R≥0 is assumed to satisfy γ

L
(‖x, u‖�) ≤ L(x, u) ≤ γ L(‖x, u‖�)

for some γ
L
, γH ∈ K∞, which, in particular, implies2 L(�x, �u) ≡ 0. Similarly,

Assumption 4.2.1 is assumed to hold, with (4.3) interpreted as

min
u∈U

(
L(x, u)

‖f (x, u)‖
)

≥ c2

‖x‖�x

∀x ∈ X \ B(�x, c1) (5.2)

For reasons that will become apparent shortly, it is convenient to enforce the
constraint U in (5.1c) using a barrier function. We therefore assume non-emptiness
of Ů in addition to that of X̊ and X̊f , and furthermore assume knowledge of generic
barrier functions Bu, Bx, Bf satisfying the following.

Criterion 5.1.1. Denoting (s, S) a placeholder for any pair {(u, U), (x, X), (xf , Xf )},
each barrier Bs is assumed to satisfy

1. Bs: S → R≥0 ∪ {∞}, and Bs is C1+ on the open set S̊.
2. s → ∂S (from within) implies Bs(s) → ∞.
3. Bs ≡ 0 on s ∈ �s, and Bs ≥ 0 on s ∈ S \ �s. (With interpretation �xf ≡ �x)

The constraints in (5.1) will therefore be replaced using the following version of (4.7)

La(x, u) � L(x, u) + µ(Bx(x) + Bu(u)) (5.3a)

W a(xf ) � W (xf ) + µf Bf (xf ) (5.3b)

1 Note the results of this section can be easily modified to allow �u ≡ �u(x), a dependence we will omit
for clarity of presentation.
2 In practice this property could be achieved using an expression ρ(x, u) similar to (4.11) as was done in
Chapter 4, the details of which will not be pursued here.
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Since the convexity of the constraint sets previously assumed in Section 4.2 was
only ever used in the recentering (4.6) and projection algorithm (4.19), satisfaction
of Criterion (5.1.1) relaxes the need for U, X, Xf to be convex sets, or for the barriers
Bu, Bx, Bxf to be convex functions.

Remark 5.1.2. While nonconvexity of the barriers or constraint sets will admittedly
add non-convexities into the optimal control problem, this has no impact on the
stability result due to the fact that the optimal control problem is already generically
non-convex (resulting from nonconvexities in any of f (x, u), L(x, u), or W (x)). The
problem of improving performance in the presence of such nonconvexities is discussed
in Section 5.2.

5.1.2 General input parameterizations

Rather than assuming that the control input remains constant within the intervals
of the partition tθ , as was the case in (4.10), we will assume here that the behavior
within intervals is described by any general, smooth set of basis functions φ : [0, T ] ×
� →Rm. In particular, we emphasize that it is not necessary for φ(τ , θi) to be linearly
weighted in θi ∈ �, where � ⊂ Rp denotes the associated parameter space. Typical
examples might include such definitions as polynomials, exponentials, or radial-basis
functions (see examples in Sections 5.1.6 and 5.1.7).

Assumption 5.1.3. The mapping φ : R≥0 × � → Rm and the set � are selected such
that (1) � is compact and convex, (2) φ is C1+ on an open cover of R≥0 × �, and
(3) the image of � under φ satisfies U ⊆ φ(0, �).

We note that Assumption 5.1.3 is not particularly restrictive, as it is unrelated
to feasibility with respect to U. In practice, Assumption 5.1.3 simply helps avoid
problematic singularities or degeneracies of φ by appropriately defining �.

For reasons which become clear in subsequent sections, the (ordered) vector tθ

used in parameterizing the trajectory u p
[t,tf ] is augmented with an additional element

tθ0 , such that tθ ∈RN+1. We can then define the following replacement for (4.10)

u p(τ ) = v(τ , θ , tθ ) �

⎧
⎪⎨

⎪⎩

φ(τ − tθ0 , θ1) τ ∈ [tθ0 , tθ1 ]

φ(τ − tθi−1, θi) τ ∈ (tθi−1, tθi ], i = {2 · · · N }
0 otherwise

(5.4)

Using Assumption 5.1.3, it can be easily shown that existence of feasible para-
meter sets is still guaranteed by Corollary 4.3.6, modulo the fact that now 	(t0, x0) is
interpreted to take values in �N × RN+1 rather than U

N × RN .

5.1.3 Requirements for the local stabilizer

One advantage to using the PWC parameterizations in Chapter 4 is that signifi-
cant research focus on the properties of sample-and-hold feedback has resulted in
a well-developed body of theory, complete with various constructive approaches for
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designing such a control policy. In Chapter 4, a local stabilizer u = κ(x, Tκ ), with
associated period Tκ = δ(x), could be readily designed according to any of those
methods in order to initialize the parameter vector θN .

In the context of (5.4) the parameter vector θ no longer has the nice interpretation
of containing “values of the input,” and so it is admittedly less clear in what sense one
can use a “local stabilizer” to initialize θ . To clarify this notion, we will first present
an analog to Assumption 4.2.4 which defines exactly the conditions such a stabilizer
must satisfy. Following that, we discuss the practicality of obtaining such a feedback.

5.1.3.1 Stability requirements
Similarly to Chapter 4, we assume knowledge of a pair of feedbacks κδ : Xf → �

(defining the input) and δ : Xf → (0, MT ] (defining the associated period), designed
to be implemented in a sampled framework of the form: u = uκδ (τ ) = φ(τ , κδ(x(ti)))
for τ ∈ [ti, ti+1], with ti+1 � ti + δ(x(ti)). As before, solutions corresponding to
ẋ = f (x, uκδ (τ )) on τ ∈ [ti, ti+1] are denoted xκδ

[ti , ti+1].

Assumption 5.1.4. The penalty W : Xf → R≥0, the sets Xf and �, the mapping φ,
and the feedbacks δ : Xf → R>0 and κδ : Xf → � are all chosen such that

1. ���x×�u and Xf are both compact, satisfying �x ⊂ X̊f and Xf ⊂ X̊.
2. there exists a constant εδ > 0 such that δ(x0) ≥ εδ for all x0 ∈ Xf .
3. x0 ∈ X̊f implies (xκδ

[0,δ(x0)], uκδ

[0,δ(x0)]) ∈ X̊f × Ů (specifically, sufficiently small inner
approximations of Xf × U are positively invariant)

4. x0 ∈ �x implies (xκδ

[0,δ(x0)], uκδ

[0,δ(x0)]) ∈ � (pointwise)

5. there exists γ ∈ K such that for all x0 ∈ Xf (with xf � xκδ (δ(x0))),

W (xf ) − W (x0) +
∫ δ(x0)

0
L(xκδ , φ(τ , κδ(x0))) ≤ −γ (‖x‖�x ) (5.5)

Similarly, it is assumed that the general barrier functions Bx, Bu, Bf satisfy the
following analog of Assumption 4.3.1.

Assumption 5.1.5. For given choices of κδ( · ), δ( · ), and φ(·, ·), it follows that the
barriers Bu, Bx, Bf , and weightings µ, µf are chosen to satisfy

µf

(
Bf (xf ) − Bf (x0)

) + µ

∫ δ(x0)

0
Bx(xκδ (τ )) + Bu(φ(τ , κδ(x0))) dτ ≤ γ (‖x‖�x )

(5.6)

∀ x0 ∈ X̊f , where xf � xκδ (δ(x0)).

Just as in Chapter 4, the easiest way to satisfy Assumption 5.1.5 is to ensure that (i)
level curves of Bf are invariant, for example, aligning with level curves of W ; (ii) the
growth rates of Bx and Bu ◦ φ ◦ κδ are less than that of γ near �; and (iii) µ and µf

are selected sufficiently small.
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5.1.3.2 Design considerations for κδ(x) and δ(x)
For the purposes of the results here, any pair κδ(x), δ(x) satisfying Assumptions 5.1.4
and 5.1.5 can be used. As mentioned in Chapter 4, for the special case φ(τ , θi) ≡ θi

there are multiple approaches in the literature for designing κδ and δ. As one pos-
sible means of constructing κδ and δ for more general φ, we present here a simple
modification of the design approach3 in [37].

1. Assume that a known feedback u = kf (x) and associated CLF W (x) satisfy

∂W

∂x
f (x, kf (x)) + L(x, kf (x)) ≤ −γk (‖x‖�x ) ∀x ∈ Xf (5.7)

for some γk ∈ K, with �̊ 
= ∅ (if necessary, take � as a small neighborhood of
the true target). Furthermore, let X

ε
f and �ε denote families of strictly nested

inner approximations of Xf and � (i.e., satisfying X
0
f ≡ Xf and �0 ≡ �). Then

for some ε∗ > 0, all sets X
ε
f and �ε, ε ∈ [0, ε∗], are assumed to be strictly

forward-invariant with respect to the dynamics ẋ = f (x, kf (x)).
2. Without loss of generality, assume a number r ∈ {0, 1, . . . , floor(nθ /m) − 1} is

known such that kf ∈ Cr+, and

spanθi∈�

⎡

⎢
⎣

φ(0, θi)
...

∂rφ

∂τ r (0, θi)

⎤

⎥
⎦ = U ⊕ Rrm. (5.8)

Select any C1+ mapping κ(x) : Xf → {
 ∈ � | 
 satisfies (5.9) for given x},
whose range is guaranteed to be nonempty by (5.8) and Assumption 5.1.3. In
other words, find 
 by inverting (non-uniquely) the R(r+1)m equations of (5.9).

⎡

⎢⎢⎢⎢⎢⎢
⎣

kf (x)

∂kf

∂x
f (x, kf (x))

...

Lr
f kf

⎤

⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢
⎣

φ(0, 
 )
∂φ

∂τ
(0, 
 )

...
∂ rφ

∂τ r
(0, 
 )

⎤

⎥⎥⎥⎥⎥⎥
⎦

(5.9)

(where Lr
f kf denotes a Lie derivative (of order r) to the function kf (x) along the

vector field f (x, kf (x))).
3. Using the definition γ (‖x‖�x ) �

∫ δ(x)
0

1
2γk (‖xκδ‖�x ) dτ , simulate the dynamics

of xκδ

[0,τ ] forward from xκδ (0) = x using control uκδ = φ(τ , 
 ) until one of the
conditions in Assumption 5.1.4 fails, at a time τ = δ∗. Set δ(x) = cδδ

∗, for any
cδ ∈ (0, 1).

This approach effectively assigns κ(x) by fitting a series approximation of order
r, centered at time τ = 0, to the input trajectory generated by u = kf (x). By the
invariance (and compactness) of the inner approximations X

ε
f and �ε for some ε∗ > 0,

3 It should be noted that the contribution of Reference 37 extends much beyond simply proposing the
(somewhat obvious) design approach for which we have given it credit.
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there exists a sufficiently small constant εδ which is a lower bound for the function
δ(x) generated by this approach.

An alternative approach for initializing input trajectories is used in Reference
58, where forward simulation of the closed-loop dynamics ẋ = f (x, kf (x)) is used
to directly generate u p

[0,�t] over any desired interval. A key distinction however, is
that Reference 58 does not consider the effects of finitely parameterizing the input
trajectory u p

[0,�t]. In our context, a trajectory u p
[0,�t] generated by forward simulation of

u = kf (x) would require projection onto the space of time-functions spanned by φ(·, θi)
(i.e., by solving an appropriate min-norm problem to identify the θi that provides the
closest fit to u p

[0,�t]). However, this would necessitate the min-norm calculation for
θi being part of an inner loop nested within the search for δ(x), and thus (in our
context) this approach could be numerically challenging for online implementation.
However, since (5.8) guarantees that the finitely parameterized basis φ(τ , θi) can
approximate u p

[0,�t] to within arbitrary precision over a sufficiently short interval, this
type of approach may be practical if a valid δ(x) can be generated from a suboptimal
lower-bound, rather than performing a search.

5.1.4 Closed-loop hybrid dynamics

Despite superficial appearances, it was relatively easy to justify that the underly-
ing hybrid dynamics of the closed-loop behavior in Chapter 4 are autonomous, and
amenable to an invariance principle. While the use of a more general parameteriza-
tion (5.4) does not really violate the arguments of Remark 4.4.3, the introduction of a
non-trivial update law for ṫθ does, since it is no longer obvious that the time between
resets (i.e., executions of (4.14)) will be finite.

To this end, the vector of closed-loop states z is defined in this chapter as
z � [xT θT tθ T

π ]T ∈ Rn ⊕ �N ⊕ RN+1 ⊕ R, where π represents “time since last
reset,” and likewise tθ is interpreted as being relative to the time of last reset. The cost
function is therefore interpreted

J (z) =
∫ tθN

π

La(xp(τ , z), u p(τ , z))dτ + W a(xp(tθN , z)) (5.10)

where xp(τ , z) and u p(τ , z) denote solutions on the interval τ ∈ [π , tθN ] to the system

ẋp = f (xp, v(τ , θ , tθ )), xp(π ) = x, (5.11)

5.1.4.1 Evolution of continuous flows
Similarly to Chapter 4, the continuous dynamics have the form ż = �z(z) on the flow
domain z ∈ S� � {z | π ≤ tθ1 and (θ , tθ ) ∈ 	N (π , x)}, where �z(z) is of the form

ż =

⎡

⎢⎢
⎣

ẋ
θ̇

ṫθ

π̇

⎤

⎥⎥
⎦ �

⎡

⎢⎢
⎢
⎣

f (x, v(π , θ , tθ ))
Proj{−kθ�θ (z)∇θJ (z), �θ , θ , �N }

Proj{−ktθ (z)�tθ (z)∇tθ J (z), �tθ , tθ , �}
1

⎤

⎥⎥⎥
⎦

(5.12)

ktθ (z) � ktθ sat1
0

(
min

{
tθ1 −π

εk
,

π−tθ0
εk

})
, ktθ , εk > 0
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Definition of v(π , θ , tθ ) is given by (5.4), and the projection algorithm for θ is identical
to that in (4.19), which simply maintains θ ∈ �N by projecting θ̇ onto the boundary
∂�N (using a notion of orthogonality defined by �θ ).

The definition of ktθ (z) ensures both that the inequality π ≥ tθ0 is preserved, and
that any intersection tθ1 = π occurs transversally (included primarily for the conve-
nience of implying deterministic uniqueness of the trajectories). Note that if �tθ is

diagonal, then the terms sat1
0

(
π−tθ0

εk

)
and sat1

0

(
tθ1 −π

εk

)
could be applied individually to

ṫθ0 and ṫθ1 , respectively (i.e., after projection). If desired, θ and tθ could be appended
into a single update law, to allow for θi − tθi cross-terms in the definition of a common
�(z).

The projection for ṫθ ensures ordering of tθ by preserving inclusion in the convex
region � � {tθ | tθi ≥ tθi−1, i = 1 · · · N , and tθN − tθ0 ≤ T }. Since the region � is a
convex linear polytope (and hence has a smooth boundary), the projection operator
defined in (4.19) does not technically apply. However, more applicable definitions
of the operator can be found in the adaptive control literature (e.g., an appropriate
modification of the hypercubic version in Reference 88 would suffice).

Using the hybrid-time notation described in Chapter 4, the ordinary-time
evolution of Jk (t) � J (z(t, k)) for z(t, k) ∈ S� therefore satisfies

J̇k = ∇πJ + 〈∇xJ , ẋ〉 + 〈∇θJ , θ̇〉 + 〈∇tθ J , ṫθ 〉 (5.13a)

= −L(x(t, k), u(t, k)) + 〈∇θJ , θ̇〉 + 〈∇tθ J , ṫθ 〉 (5.13b)

≤ −γ
L
(‖x, u‖�). (5.13c)

5.1.4.2 Discrete evolution
On the jump domain z ∈ Sϒ � {z | π ≥ tθ1 and (θ , tθ ) ∈ 	N (π , x)}, the discrete reset
dynamics z+ = ϒz(z) are given by

z+ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

x+

θ+

(tθ )+

π+

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

�

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

x{
θi+1 i = 1 · · · N −1

κδ̃(x
p(tθN )) i = N

{
tθi+1 − tθ1 i = 0 · · · N −1

tθN − tθ1 + δ̃(xp(tθN )) i = N
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(5.14a)

δ̃(x) = min{δ(x), T − tθN + tθ1 } (5.14b)

from which it can be seen that the elements of tθ are reset relative to the instant at
which the jump occurs. Recognizing that J (z) in (5.10) is invariant with respect to
any uniform translation of the states π and tθ , it follows that (defining x̄0 � xp(tθN , z))

J (z+) − J (z) = W a(xκδ (x̄0)) − W a(x̄0) +
∫ δ(x̄0)

0
La(xκδ , φ(τ , κδ(x̄0))) dτ ≤ 0.

(5.15)
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5.1.5 Stability results

The main intention of this chapter has been to show that the claims of Remark 4.4.3
remain valid for the proposed modifications to the controller design, and therefore
the analysis is concluded with the following restatement of Theorem 4.4.4. Despite
(5.13) and (5.15), the proof is not yet completely obvious due to the fact that the
required boundedness of z(t, k) has yet to be established.

Theorem 5.1.6. Let L(·, ·), κδ( · ), W ( · ), X, Xf be chosen to satisfy Assumptions
4.2.1 and 4.2.4.

Let L(·, ·), φ(·, ·), δ( · ), κδ( · ), W ( · ), X, Xf be chosen to satisfy Assumptions
4.2.1 and 5.1.3–5.1.4 (for given �), and let Bx, Bu, Bf , µ, µf satisfy Assumption 5.1.5.
For any initial condition x0 ∈ X 0 (as defined in Corollary 4.3.6) of the dynamics (4.1),
and any initial feasible control parameterization (θ , tθ )0 ∈ 	N (π0, x0), the target x ∈
�x is asymptotically stabilized under the closed-loop dynamics (5.12) and (5.14) using
the control parameterization (5.4). Furthermore, the resulting closed-loop trajectories
satisfy all point-wise input, state, and terminal constraints.

Proof of Theorem 5.1.6
The main property to prove is the boundedness of the “time since reset” state π with
respect to both coordinates of hybrid time (i.e., boundedness of π (t, k)). This comes
down to disproving that the adaptation of tθ could result in tθ1 perpetually “keeping
ahead” of π (which grows at the constant rate π̇ = 1). Boundedness of all remaining
states will then follow by the same arguments as used in proving Theorem 4.4.4. To
this end, we begin with a (contradictory) assumption:

CA1 Let � ⊆ X 0 ⊕ �N ⊕ � ⊕ {0} be a compact set such that π = tθ0 = 0 and
(θ , tθ ) ∈ 	N (0, x) for every z ∈ �. Then for some z∗(0, 0) ∈ �, there exists a
constant k∗ ∈ {0, 1, 2 . . .} and a corresponding tk∗ ∈ R≥0 such that π∗

k∗ (t) ≡
π∗(t, k∗) is defined (and thus radially unbounded) on t ∈ [tk∗ , ∞).

Then, since no resets occur for t ≥ tk∗ , the state z∗(tk∗ , k∗) can be viewed as
the initial condition of a (non-hybrid) continuous-time flow on t ∈ [tk∗ , ∞), gen-
erated by (5.12). From standard results, (5.13) implies limt→∞ J ∗

k∗ (t) = 0, and thus
limt→∞ x∗

k∗ (t) → �x. More useful is the fact that by defining tk∗ sufficiently large (but
finite), the “initial condition” x∗(tk∗ , k∗) can be assumed within any arbitrarily small
neighborhood of �x.

It can be seen that the expression

∇tθ1
J ∗

k∗ = La(xp(tθ1 ), φ(tθ1 − tθ0 , θ1)) − La(xp(tθ1 ), φ(0, θ2))

+
∫ tθN

tθ1

∂La

∂x

∂xp

∂tθ1
dσ −

∫ tθ2

tθ1

∂La

∂u

∂φ

∂τ
dσ + ∂W a

∂xf

∂xp
f

∂tθ1
(5.16)
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must continuously approach zero as x∗(tk∗ , k∗) → �x, since the terms La, ∂La

∂x , ∂La

∂u ,
and ∂W a

∂x all continuously approach zero, and the remaining terms are bounded. This
implies that ∇tθ1

J ∗
k∗ (tk∗ ), and thus ṫθ1 , can be assumed arbitrarily small ∀t ≥ tk∗ . How-

ever, the fact that π̇∗
k∗ ≡ 1 then violates the inherent assumption in CA1 that the

condition π∗
k∗ ≤ tθ1 holds indefinitely.

This proves boundedness of π (t, k). The boundedness of tθ (t, k) follows by the
definition of � and the fact that π ∈ [tθ0 , tθ1 ]. Boundedness of θ (t, k) comes from
compactness of �. The boundedness of x follows as before from Claim 4.2.2.
Having established the boundedness of z(t, k), the result follows from (5.13) and
(5.15) by the same invariance principle [144, Theorem 4.1, Corollary 4.2] used to
prove Theorem 4.4.4.

5.1.6 Simulation Example 5.1

We consider regulation of the (constant level) stirred tank reactor from Reference
112, with exothermic reaction A −→ B resulting in dynamics

ĊA = v

V
(CAin − CA) − k0 exp

( −E

R Tr

)
CA

Ṫr = v

V
(Tin − Tr) − �H

ρ cp
k0 exp

( −E

R Tr

)
CA + UA

ρ cp V
(Tc − Tr)

Constants are taken from Reference 112: v = 100 �/min, V = 100 �, ρ cp = 239 J/� K,
E/R = 8750 K, k0 = 7.2 × 1010 min−1, UA = 5×104 J/min K, �H = −5×104 J/mol,
CAin = 1 mol/�, and Tin = 350 K. The objective is to regulate the unstable equilibrium
Ceq

A = 0.5 mol/�, T eq
r = 350 K, T eq

c = 300 K, using the coolant temperature Tc as the
input, subject to the constraints 0 ≤ CA ≤ 1, 280 ≤ Tr ≤ 370, and 280 ≤ Tc ≤ 370.

We use the cost function4 L(x, u) = x′Qx + u′Ru, with x = [CA − Ceq
A , Tr −

T eq
r ]′, u = (Tc − T eq

c ), R = 1/300, and Q = diag(2, 1/350), where “diag” denotes a
diagonal matrix containing the indicated values. By linearizing around x = 0, the local
controller kf (x) = [109.1, 3.3242] x and terminal penalty function W (x) = x′Px,
P = [17.53, 0.3475; 0.3475, 0.0106] were chosen according to a Ricatti equation.
Four different choices of the basis function φ : R≥0 × � → Rm defining (5.4) were
tested:

φC(s, θi) = θi1 φL(s, θi) = θi1 + θi2s

φQ(s, θi) = θi1 + θi2s + θi3s2 φE(s, θi) = θi1exp (−θi2s) .

The piecewise-exponential parameterization is of particular interest, since it has the
potential to efficiently approximate the optimal input trajectories for systems which
exhibit linear-like response over large intervals. In each case, the gains kθ = 0.1 and

4 Values for Q and R taken from Reference 112.
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Table 5.1 Definition and performance of different controllers in
Example 5.1

Linear quadratic
Controller regulator (LQR) φC φL φQ φE

N – 8 4 3 4
dim(θ ⊕ tθ ) – 16 13 13 12
Worst CPU time1 (ms) – 0.8 1.1 0.7 0.6

(CA, Tr)0 Accumulated Cost2

(0.3, 363) 0.285 0.310 0.281 0.278 0.279
(0.3, 335) 1.74 1.80 1.55 1.42 1.41
(0.6, 335) 0.596 0.723 0.570 0.567 0.558

1For one incremental evaluation of θ̇ and ṫθ
2For x(10) ≈ 0, so J∞ ≈ ∫ 10

0 L(x, u) dτ + W (x(10))

ktθ = 0.5 were used in the update laws, with �t ≡ I and �θ a diagonally scaled identity
matrix.

The feedbacks κ(x) were derived by analytically solving (5.9), while δ(x) was
chosen using forward simulation as described in Section 5.1.3. In all cases, the initial
conditions (θ , tθ )0 were chosen offline such that the initial parameterized input tra-
jectory up

[0,1.5] best approximates (in an integral least-squares sense) the closed-loop
trajectory u[0,1.5] = Tc [0,1.5] − T eq

c that results under the Linear quadratic (LQ) feed-
back u = kf (x). In each case, the parameter N defining the number of intervals in
tθ was specified such that the total number of optimization variables in θ and tθ, and
thus the computational requirements5 were comparable for all controllers, as seen in
Table 5.1.

Three different initial conditions were tested, with closed-loop state profiles
depicted in Figures 5.1–5.4, and corresponding closed-loop costs reported inTable 5.1.
Using higher-order parameterizations such as φE and φQ over coarse time-intervals
generally resulted in better performance than the low-order φC , despite the fact that φC

used substantially more intervals in tθ and was allotted more optimization variables.
Although the equilibrium of this system is open-loop unstable, large interval-lengths
were not problematic since (5.12) does not involve open-loop operation.

5.1.7 Simulation Example 5.2

Consider the problem of state-feedback regulation of a jacketed non-isothermal
reactor with van de Vusse kinetics. The reaction mechanism is

A
k1−→ B

k2−→ C 2A
k3−→ D

5 Gradient calculations were performed on anAthlonXP 2000+, in Fortran (called from within MATLAB®),
using the sensitivity-ODE solver ODESSA [105]. However, limited effort was devoted to optimizing code
efficiency.
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Figure 5.1 Closed-loop profiles from different initial conditions in Example 5.1
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Figure 5.2 Closed-loop concentration profiles from (CA, T) = (0.3, 335) in
Example 5.1
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Figure 5.3 Closed-loop temperature profiles from (CA, T) = (0.3, 335) in
Example 5.1
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Figure 5.4 Closed-loop input profiles from (CA, T) = (0.3, 335) in Example 5.1
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The states of the system consist of concentrations of components A and B, as well as
the temperatures T and TK occurring in the reactor and cooling jacket, respectively.
The manipulated variables consist of the dilution rate V̇

VR
and the rate of heat removal

from the jacket. All four states are assumed to be measured, and evolve according to

ĊA = V̇

VR

(
CA0 − CA

) − k1(T )CA − k3(T )C2
A

ĊB = − V̇

VR
CB + k1(T )CA − k2(T )CB

Ṫ = V̇

VR
(T0 − T ) + kwAR

ρcpVR
(Tk − T ) − 1

ρcp

(
k1(T )CA�HRAB

+ k2(T )CB�HRBC + k3(T )C2
A�HRAD

)

Ṫk = 1

mkcpk

(
Q̇k + kwAR(T − Tk)

)

where the rate constants ki(T ) follow theArrhenius law, and the values of all necessary
system parameters are reported in Reference 93. The steady state to be regulated is
given by xr = [CA, CB, T , Tk ]r = [2.14 mol

L , 1.09 mol
L , 114.2◦C, 112.9◦C] beginning

from the initial conditions (x0 + xr) = [1 mol
L , 0.5 mol

L , 100◦C, 100◦C] using inputs u =
[ V̇

VR
, Q̇k ]. At steady state, [ V̇

VR
, Q̇k ]r = [14.19 hr−1, −1118 kJ

hr ]. The input constraints

are given by 3 ≤ V̇
VR

≤ 35 hr−1 and −9000 ≤ Q̇k ≤ 0 kJ
hr , enforced using logarithmic

barrier functions.
The cost function is taken to be L(x, u) = xT Qx + uT Ru, with the diagonal

matrices Q = diag(0.2, 1, 0.5, 0.20) and R = diag(0.5, 5 × 10−7). The terminal cost
W = xT Px and nominal local controller k(x) = sat(Kx, U) were derived from the
algebraic Ricatti equation for the linearized system, and are given by

K =
[ −0.0381 −0.0405 −0.1004 −0.0244

12.7532 6.2581 5.9558 3.6523

]

,

P =

⎡

⎢⎢⎢
⎣

70.1 36.6 20.1 6.4

36.6 33.6 9.9 3.1

20.1 9.9 10.6 3.0

6.4 3.1 3.0 1.8

⎤

⎥⎥⎥
⎦

.

The operator sat(·, U) denotes componentwise saturation to the input constraints.
Although k(x) is not necessarily globally asymptotically stabilizing, the above
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Figure 5.5 Closed-loop dilution rate trajectories for Example 5.2

initial conditions are within its domain of attraction and thus the solution trajec-
tory u(t) = k(x(t)) solving ẋ = f (x, k(x)) was used as the basis for all parameter
initializations.

The same four input parameterizations as in the previous example were used:

φC(τ , θi) � [θi1, θi2]T φL(τ , θi) �
[

θi1 + θi2τ

θi3 + θi4τ

]

φQ(τ , θi) �
[

θi1 + θi2τ + θi3τ
2

θi4 + θi5τ + θi6τ
2

]
φE(τ , θi) �

[
θi1e−θi2τ

θi3e−θi4τ

]

Closed-loop simulation results for each of the four controllers, as well as
those of the nominal controller u = sat(Kx, U) and the “optimal” solution (solved
using 200 uniform 5 s intervals), are depicted in Figures 5.5–5.8. In all cases, a
(diagonally-scaled) steepest-descent definition was used for both �θ and �tθ , and
the adaptation gains were specified as kθ = 5, ktθ = 0.1. The feedback κδ(x) was
calculated from k(x) using the approach in Section 5.1.3, where the saturation oper-
ation k(x) was first smoothed over a small interior approximation of U. The function
δ(x) was nominally specified as a constant δ = 1000/N , reduced as necessary to
validate (5.5).

It can be seen from the figures, and the values reported in Table 5.2, that the
performance of all of the real-time controllers were essentially comparable, with a
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Figure 5.6 Closed-loop heat removal trajectories for Example 5.2
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Figure 5.7 Closed-loop concentration trajectories for Example 5.2

slight advantage demonstrated by the higher-order parameterizations. As expected,
each of these controllers was somewhat suboptimal (due to the suboptimality of
(θ , tθ )0), but significantly out performed the (saturated) LQ controller upon which the
initializations (θ , tθ )0 and κ(x) were based. Calculations were performed in the same
computing environment as indicated in Example 5.1.
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Figure 5.8 Closed-loop temperature trajectories for Example 5.2

Table 5.2 Definition and performance of different controllers in
Example 5.2

Controller: LQR OPT φC φL φQ φE

N – 200 8 4 3 4
Nominal1 δ(x) (s) – 5 125 250 333 250
dim(θ ⊕ tθ ) – – 24 21 22 21
Worst CPU time2 (ms) – – 4.5 4.5 5 5
Accumulated cost3 (×103) 8.91 7.48 7.72 7.68 7.65 7.60

1Subject to validation of 5.5
2For one incremental evaluation of θ̇ and ṫθ
3For x(1800) ≈ 0, so J∞ ≈ ∫ 1800

0 L(x, u) dτ + W (x(1800))

5.2 Robustness properties in overcoming locality

5.2.1 Robustness properties of the real-time approach

As was discussed in Section 3.4, the generically defined MPC feedback of (3.1)
has the potential to exhibit a lack of even nominal robustness to arbitrarily small
errors in either the prediction model or measurement signal. In the case of model
error/disturbance d(t), the underlying problem lies with constraint-induced discon-
tinuities in the (infinite-horizon) optimal value function V ∗ : X → R, which end up
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being passed along to both the (finite-horizon) optimal cost J ∗ : X → R and the corre-
sponding feedback map κmpc : X → U. In contrast, the susceptibility to measurement
error e(t) stems from the fact that the arg minu(·) in (3.1) generically involves a global
optimization. If the problem is nonconvex (i.e., nonconvexity in any of L(x, u), W (x),
f (x, u), X, Xf or U), this optimization can potentially inject discontinuities into κmpc(x)
by switching between disconnected minimizers.

In contrast, the robustness properties of the real-time approach of Section 5.1 are
summarized in the following claim. With some abuse of the notation from previous
sections, we will here represent the continuous flow-field of (5.12) in the condensed
form

ẋ = f (x, v(ω)) ω̇ = �ω(x, ω) (5.17)

where ω = [π ; θ ; tθ ] contains the controller states, and v(ω) is given by (5.4); that is,
the closed-loop dynamics consist of the vector z = [x; ω]. Note that for the purposes
of the claim, it is not necessary to consider the discrete evolution ω+ = ϒω(x, ω)
of (5.14), since its evolution along event-coordinate k is orthogonal to the time-
evolution of d(t) and e(t) (where the assumption that e(t, k+1) ≡ e(t, k) is justified
on the basis that x does not need to be resampled between multiple event-executions,
since x(t, ki+1) ≡ x(t, ki) ≡ x(t)).

Definition 5.2.1 (Input-to-state stability (ISS) [90, Definition 4.7]). The system
with dynamics ẏ = g(y, d) is said to be ISS if there exist a class KL function β and
a class K function γ such that for any initial state y(t0) and any bounded input d(t),
the solution y(t) exists for all t ≥ t0 and satisfies

‖y(t)‖Y ≤ β(‖y(t0)‖Y, t − t0) + γ

(
sup

t0≤τ≤t
‖d(τ )‖

)
.

The following claim demonstrates that the closed-loop dynamics exhibit nominal
robustness to disturbance and measurement error, in the sense that they are ISS
with respect to perturbations of “sufficiently small” magnitude. Not surprisingly,
the robustness margin depends upon the initial condition of the entire closed-loop
state z = [x; ω], implying that appropriately-conservative initialization of the control
parameters ω is required to guarantee robustness.

Claim 5.2.2. Given any initial condition z0 ∈ Z � {z | (θ , tθ ) ∈ 	N (π , x)}, there exist
constants Md � Md(z0) > 0 and Me � Me(z0) > 0 such that under the conditions of
Theorem 5.1.6, the target x ∈ �x under perturbed dynamics

ẋ = f (x, v(ω)) + d ω̇ = �ω(x + e, ω) (5.18)

(i.e., a perturbation of (5.12)) is ISS with respect to arbitrary signals d(t) and e(t)
satisfying pointwise bounds ‖d‖ ≤ Md and ‖e‖ ≤ Me.
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Proof of Claim 5.2.2
By the assumed differentiability of relevant functions, it follows by standard results
on continuity of solutions [90, Theorem 3.5]6 that at any time t ∈ [ti, ti+1] between
resets:

● the prediction xp

[π ,tθN ]
(z) varies continuously with respect to perturbation e in its

initial condition.
● ∇θJ and ∇tθ J in (5.12) are locally Lipschitz in xp

[π ,tθN ]
, and thus �ω(x + e, ω)

varies continuously with e.
● the closed-loop solution z[ti ,ti+1] of (5.12) varies continuously with respect to the

additive disturbances d and �̃ω � �ω(x + e, ω) − �ω(x, ω) entering (5.17).

It then follows that under perturbation, (5.13) has the form

J̇k ≤ −γ
L
(‖x, u‖�) + 〈∇xJ , d〉 + 〈∇ωJ , �̃ω〉

By definition of Z , the unperturbed trajectories satisfy z̄0 ∈ Z =⇒ z(t) ∈ Z ,
∀t ≥ t0. Taking any sufficiently small, strictly feasible compact tube T[t0,∞) surround-
ing the (unperturbed) trajectory z̄[t0,∞), it follows that both ∇xJ and ∇ωJ have a finite
upper bound M∇ over T[t0,∞). The claim then follows from [90, Theorem 4.19].

Claim 5.2.2 is neither particularly surprising, nor is it particularly strong. The
robustness to measurement error is the more useful result, which is a consequence
of the fact that e(t) enters (5.17) via the update law �ω rather than directly in the
feedback u = κmpc(x) (as was the case in Section 3.4). The robustness stems from the
fact that �ω is only a local search, and is aided by the fact that ω provides an “inertia”
to filter out high frequencies in e(t).

In contrast, the robustness to d(t) in Claim 5.2.2 is relatively weak, since it
depends entirely upon the conservativeness of the interior-point barrier to provide
robustness. In practice, the approach in Section 3.4 of increasing the conservativeness
of the constraint handling along the prediction horizon τ ∈ [t, tθN ] would significantly
improve the robustness to disturbance (i.e., increasing the value of Md in Claim
5.2.2). One approach would be to replace the constraints X and Xf with strictly
nested functions of the form X

τ : [0, T ] → cov {X}, as discussed in Section 3.4, hence
resulting in barrier functions in (5.3) of the form Bx(τ −π , x), Bf (τ −π , x). However,
a much simpler approach is to simply define µ and µf to be of the form µ(τ , ω) =
µ0 + µτ (τ −π ), where µ0 > 0 and µτ ∈ K. Clearly, either approach will add an

additional negative-definite term of the form −
(∫ tθN

π
d

dτ
(µBx) dσ + d

dτ
(µf Bf )

)
into

the right-hand side of (5.13), which provides additional robustness to perturbation.

6 While the piecewise continuity in τ of (5.4) does not quite meet the continuity condition of [90,
Theorem 3.5], the theorem can easily be applied successively over the N intervals of tθ .
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5.2.2 Robustly incorporating global optimization methods

To avoid the optimization variables θ and tθ from becoming trapped by local minima,
it was hinted in Section 4.5.3 that one could potentially make use of the reset mapping
ϒ . However, as discussed in Section 3.4, there are potential robustness issues (with
respect to measurement error) associated with the incorporation of global search
methods, in particular when an excessively coarse partition tθ makes it undesirable
to wait for the next occurrence of π = tθ1 before applying such a reset. Ironically,
one approach recommended in Reference 157 to address this robustness issue is
to augment the controller (in a discrete-time framework) with a set of “memory
variables” to retain knowledge of the previous solution for comparison purposes, thus
providing a sense of inertia to controller decision-making. As highlighted in Claim
5.2.2, the gradient-based approach presented here already exhibits this property by
its very nature.

A simple, but effective method for addressing nonconvexity is to pose the con-
troller as being a selector between multiple (potentially cooperative) agents. For
example, assume that resources allow for the parallel computation of multiple parame-
ter sets of the form7 ωj , j ∈ {1, . . . , j̄} � J (where each ω j may involve unique choices
N j , φj , κ

j
δ , δj defining vj in (5.4)). Furthermore, let j∗ ∈ J record the particular index

selected to be “active” (i.e., j∗ is an integer-valued state of the system). For the remain-
der, let z be interpreted to include all of the closed loop states: system x, parameter
sets ω j , ∀j, and the selector j∗.

Let η ∈ (0, 1) be a chosen discount factor, and let J (x, ωj) denote the obvious
interpretation of (5.10) for any j ∈ J . Furthermore, we denote by J	 ≡ J	(z) the
set of feasible indices J	 �

{
j ∈ J | (θ , tθ ) j ∈ 	N (π , x) j

}
. Then on the domain

Sϒz �
{

z
∣∣ (θ , tθ ) j∗ ∈ 	N (π , x) j∗ and

(∃ j ∈ J s.t. π j ≥ (tθ1 ) j or ∃ j ∈ J	 s.t. J (x, ω j) ≤ η J (x, ω j∗ )
)}

the reset action z+ = ϒz(z) is defined to have the form

x+ = x (5.19a)

(ωj)+ =
{

ϒ j
ω(x, ωj) π j = (tθ1 )j

ωj otherwise
∀j ∈ J (5.19b)

( j∗)+ =
⎧
⎨

⎩

choose{arg min
j∈J	

J (x, ωj)} ∃ j ∈ J	 s.t. J (x, ω j) ≤ η J (x, ωj∗ )

j∗ otherwise
(5.19c)

where ϒ j
ω(x, ωj) denotes the reset for (π , θ , tθ ) defined in (5.14), using the particular

δj(x) and κ
j
δ(x). The “choose” operator denotes an arbitrary, deterministic selection

rule for the case of multiple minimizers.

7 Using notation from (5.17).
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Similarly, the continuous flow-field ż = �z(z) is defined on the domain

S�z �
{

z
∣∣ ((θ , tθ ) j∗ ∈ 	N (π , x) j∗) and (π j ≤ (tθ1 )j , ∀j ∈ J )

and (J j(x, ωj) ≥ η J (x, ωj∗ ), ∀j ∈ J	 \ {j∗})
}

with the vector fields given by

ẋ = f (x, v j∗(ω j∗ )) (5.20a)

ω̇ j =
{

� j∗
ω (x, ωj∗ ) j = j∗

�j(z) otherwise
∀j ∈ J (5.20b)

j̇∗ ≡ 0 (5.20c)

The expression � j∗
ω (x, ωj∗ ) denotes the feasibility-preserving, descent-based update

law of (5.12), which is used to update the active parameter set. In contrast, the update
laws �j(z) applied to the non-active parameter sets need not satisfy any of these
properties; it need not preserve feasibility or generate a descent-direction, and it is
allowed to cooperate with other agents.

The obvious reason why �j(z) does not need to satisfy any conditions for sta-
bility is that it does not feed back into the control law, and is simply excluded from
consideration in (5.19c) if it is infeasible. Thus the most fundamental property of
the real-time approach, that is, the guaranteed invariance of the feasibility-inclusion
z(t, k) ∈ Z along evolution of both t and k , is not impacted by the modifications in
(5.19) or (5.20). Stability of the switched controller therefore follows directly from
Theorem 5.1.6, given the fact that the hysteresis effect introduced by η prevents zeno-
like switching between multiple minimizing agents. This hysteresis therefore also
provides some nominal robustness to measurement errors e(t), by essentially elimi-
nating noise-induced dithering behavior (a.k.a. zeno-like switching), as long as e(t)
is “sufficiently small.” Thus, the system exhibits nominal robustness against the type
of noise-induced instability or infeasibility discussed in Reference 157.

We specifically distinguish between separate update behavior for the active and
inactive update laws not just for the sake of generality, but also because there are
significant potential benefits in doing so. Without any attempt to be rigorous, there is
the potential to incorporate any of the following ideas into the design of �j(z).

5.2.2.1 Infeasible-point handling
Methods such as References 21, 22, and 158 combine the use of interior-point bar-
riers with exterior-point penalties to allow a descent-based NLP to temporarily pass
through infeasible regions. By alternately relaxing and re-tightening feasibility con-
straints, it is claimed that the solver is not only less likely to become trapped by local
minima (specifically, those which result from nonconvexities in the constraint), but
also follows a shorter search path to the feasible minimizer.

Whether by these particular methods or otherwise, the ability of �j(z) to remain
defined for infeasible ωj is necessary since, for inactive parameterizations, the vector
field for the true state x does not lie in the tangent space of xp(π j , x, ω j). In other
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words, it may be impossible to avoid the condition (θ , tθ ) j ∈ 	(π j , x) j , j 
= j∗, from
becoming infeasible if x evolves in a very different direction under ω j∗ than it would
have under the input move defined by ω j .

5.2.2.2 Quasi-global “roaming” of the surface
Various methods in the global optimization literature attempt to modify local search
methods such that over time, the search will visit many different (local) minima.
One example is the approach in Reference 82, which toggles between ascent and
descent modes of operation. A second example is the so-called “heavy ball” method
of Reference 16, which augments a typical NLP with additional “velocity” states,
whose (dissipative) inertia helps the search to escape from the basin of attraction
surrounding shallow local minima.

5.2.2.3 Cooperative behavior
As mentioned above, the difference between the actual flow of x and that predicted
under inactive ωj acts as a disturbance to the search of inactive agents. However,
since the future behavior of x under the current ωj∗ is predictable, there is potential
to introduce a feedforward term into �j(z) to counteract the effects of ωj∗ .

Another benefit of cooperation is the ability to prevent the individual searches
from clustering in a common region of the parameter-space, for example, by penal-
izing parameterizations that become “too similar,” or by posing the different �j(z)
as multi-objective searches which simultaneously try to maximize some measure of
distance8 between the individual ω j .

Ultimately, whether or not it is beneficial or computationally realistic to incor-
porate any of these approaches will depend on the nature of the system of interest.
For systems in which the non-convexity is not too excessive, it may be more advanta-
geous to devote all available CPU resources to improving a single local search, rather
than splitting resources between multiple searches. However, it should be noted that
one could easily modify the definition of the individual ϒ j

ω in (5.19) such that the
discretization-level N j of a particular parameterization (θ , tθ ) j changes when ω j tran-
sitions between active/inactive status. This implies that one could devote the majority
of computational resources to the active search, while still parallel-computing some
very coarsely parameterized additional searches, which could still yield beneficial
results if the active search becomes trapped by an excessively suboptimal local
minimum.

5.2.3 Simulation Example 5.3

In order to illustrate the basic idea of this section, we consider a simple exothermic
reaction A → B taking place in a non-isothermal, gas-phase continuously stirred tank
reactor (CSTR). The system is comprised of three states; although many equivalent
coordinate systems can be used, the equations are most clearly expressed for the
choice: n (total moles of gas in reactor), nA (moles of A), and T (reactor temperature).

8 For example, measures of the form
∫ ‖up(τ , ωj) − up(τ , ωj2)‖2dτ , which allows φj1 
= φj2.
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Figure 5.9 System trajectories in the P − T plane for Example 5.3. Small circle
indicates switch in active ω j

The control objective is specified as regulation to the target (n, nA, T )ss = (2.5 kmol,
0.25 kmol, 500 K), corresponding to a system pressure of 1040 kPa, from the ini-
tial state (n, nA, T )0 = [2, 0.5, 350]. Manipulated variables are the outlet molar flow
Fout , and rate of heat removal Q̇. Using several simplifying assumptions, the system
equations are

ṅ = Fin − Fout (5.21a)

ṅA = Fin − nA

n
Fout − k(T )nA (5.21b)

Ṫ = Fin
Tin − T

n
−k(T )

�Hr

cp

nA

n
+ Q̇

cp n
(5.21c)

where k(T ) = k0e− E
RT . System parameters are

�Hr = −5000 kJ
kmol R = 8.314 m3 kPa

kmol K E = 8000 m3 kPa
kmol cp = 10 kJ

kmol K

V = 10 m3 Tin = 300 K k0 = 6.2 s−1 Fin = 0.25 kmol s−1

An important objective of the controller is to ensure the system trajectories avoid
passing through the shaded region in the P − T plane shown in Figure 5.9, for example,
to avoid undesirable thermodynamic behavior of other components in the gas stream
occurring in that region. This constraint in the P − T space was transformed into a
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Figure 5.10 Closed-loop system trajectories for Example 5.3

constraint X in the statespace (n, nA, T ) using the algebraic ideal gas law P(n, T ) �
n R T 1

V .
The cost function was L(x, u) = xT Qx + uT Ru, Q = diag(10, 10, 10−3), R =

diag(0.2, 0.5), where xT = [n, nA, T ]dev and uT = [Q̇, Fout]dev are deviations from the
indicated steady state. The terminal penalty W (x) is the quadratic solution to an
algebraic Riccati equation for the linearized (5.21), and the local control law κ(x)
was derived from the optimal linear controller using the method in Section 5.1.3.

Using simple PWC parameterizations, two sets of parameters ω1 and ω2 (both
with N = 15, δ(x) = 1, shown in Figure 5.10) were adapted online. The initial-
izations ω1

0 and ω2
0 corresponded to different paths around the constraint region in

the P–T plane (whose image X is a skewed infinite cylinder in the actual x-space).
For simplicity, the mapping �j(z) in (5.20) for the inactive parameterization was cal-
culated in similar fashion to the active gradient-based update � j∗ (x, ωj∗ ), except that a
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quadratic was used to penalize constraint violation for the inactive parameterization,
while a logarithmic barrier was used for the active parameterization.

As can be seen in Figure 5.9, neither initialization started very close to the
(infinite-horizon) optimal solution. The controller initially selected the active parame-
terization ω1 (i.e., passing “over” the constraint in Figure 5.9), but as the dynamics and
adaptation progressed, the active parameterization switched to ω2 in time to feasibly
pass under the constraint region.



Chapter 6

Introduction to adaptive robust MPC

In this book, we focus on the more typical role of adaptation as a means of coping
with uncertainties in the system model. A standard implementation of MPC using a
nominal model of the system dynamics can, with slight modification, exhibit nom-
inal robustness to disturbances and modeling error. However in practical situations,
the system model is only approximately known, so a guarantee of robustness which
covers only “sufficiently small” errors may be unacceptable. In order to achieve a
more solid robustness guarantee, it becomes necessary to account (either explicitly,
or implicitly) for all possible trajectories which could be realized by the uncertain
system, in order to guarantee feasible stability. The obvious numerical complexity of
this task has resulted in an array of different control approaches, which lie at various
locations on the spectrum between simple, conservative approximations versus com-
plex, high-performance calculations. Ultimately, selecting an appropriate approach
involves assessing, for the particular system in question, what is an acceptable balance
between computational requirements and closed-loop performance.

6.1 Review of NMPC for uncertain systems

While a vast majority of the robust-MPC literature has been developed within the
framework of discrete-time systems,1 for consistency with the rest of this book most of
the discussion will be based in terms of their continuous-time analogs. The uncertain
system model is therefore described by the general form

ẋ = f (x, u, d) (6.1)

where d(t) represents any arbitrary L∞-bounded disturbance signal, which takes
point-wise2 values d ∈ D. Equivalently, (6.1) can be represented as the differential
inclusion model ẋ ∈ F(x, u) � f (x, u, D).

In the next two sections, we will discuss approaches for accounting explicitly for
the disturbance in the online MPC calculations. We note that significant effort has
also been directed toward various means of increasing the inherent robustness of the
controller without requiring explicit online calculations. This includes the suggestion

1 Presumably for numerical tractability, as well as providing a more intuitive link to game theory.
2 The abuse of notation d[t1, t2] ∈ D is likewise interpreted pointwise.
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in Reference 116 (with a similar discrete-time idea in Reference 44) to use a modi-
fied stage cost L(x, u) � L(x, u) + 〈∇xV ∗

T (x), f (x, u)〉 to increase the robustness of a
nominal-model implementation, or the suggestion in Reference 95 to use an presta-
bilizer, optimized offline, of the form u = Kx + v to reduced online computational
burden. Ultimately, these approaches can be considered encompassed by the banner
of nominal-model implementation.

6.1.1 Explicit robust MPC using open-loop models

As seen in Chapters 3, 4, and 5, essentially all MPC approaches depend critically upon
the Principle of Optimality (Def 2.2.1) to establish a proof of stability. This argument
depends inherently upon the assumption that the predicted trajectory xp

[t, t+T ] is an
invariant set under open-loop implementation of the corresponding up

[t, t+T ]; that is,
that the prediction model is “perfect.” Since this is no longer the case in the presence
of plant-model mismatch, it becomes necessary to associate with up

[t, t+T ] a cone of
trajectories {xp

[t, t+T ]}D emanating from x(t), as generated by (6.1).
Not surprisingly, establishing stability requires a strengthening of the conditions

imposed on the selection of the terminal cost W and domain Xf . As such, W and Xf

are assumed to satisfy Criterion 3.1.1, but with the revised conditions:

C3a. Xf is strongly positively invariant for ẋ ∈ f (x, kf (x), D).

C4a. L(x, kf (x)) + ∂W
∂x f (x, kf (x), d) ≤ 0, ∀(x, d) ∈ Xf × D.

While the original C4 had the interpretation of requiring W to be a CLF for the
nominal system, so the revised C4a can be interpreted to imply that W should be a
robust-CLF like those developed in Reference 65.

Given such an appropriately defined pair (W , Xf ), the model predictive controller
explicitly considers all trajectories {xp

[t, t+T ]}D by posing the modified problem

u = κmpc(x(t)) � u∗
[t, t+T ](t) (6.2a)

where the trajectory u∗
[t, t+T ] denotes the solution to

u∗
[t, t+T ] � arg min

u
p
[t, t+T ]

T∈[0,Tmax]

(
max

d[t, t+T ]∈D
VT (x(t), up

[t, t+T ], d[t, t+T ])
)

(6.2b)

The function VT (x(t), up
[t, t+T ], d[t, t+T ]) appearing in (6.2) is as defined in (3.1), but

with (3.1c) replaced by (6.1). Variations of this type of design are given in
References 35, 104, 123, 128, and 139, differing predominantly in the manner by
which they select W (·) and Xf .

If one interprets the word “optimal” in Definition 2.2.1 in terms of the worst-case
trajectory in the optimal cone {xp

[t, t+T ]}∗
D, then at time τ ∈ [t, t + T ] there are only

two possibilities:

● The actual x[t,τ ] matches the subarc from a worst-case element of {xp
[t, t+T ]}∗

D, in
which case the Principle of Optimality holds as stated.
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● The actual x[t,τ ] matches the subarc from an element in {xp
[t, t+T ]}∗

D which was not
the worst case, so implementing the remaining u∗

[τ , t+T ] will achieve overall less
cost than the worst-case estimate at time t.

One will note however, that the bound guaranteed by the Principle of Optimality
applies only to the remaining subarc [τ , t + T ], and says nothing about the ability to
extend the horizon. For the nominal-model results of Chapter 3, the ability to extend
the horizon followed from C4 of Criterion 3.1.1. In the present case, C4a guarantees
that for each terminal value {xp

[t, t+T ](t + T )}∗
D there exists a value of u rendering W

decreasing, but not necessarily a single such value satisfying C4a for every {xp
[t, t+T ](t +

T )}∗
D. Hence, receding of the horizon can only occur at the discretion of the optimizer.

In the worst case, T could contract (i.e., t + T remains fixed) until eventually T = 0, at
which point {xp

[t, t+T ](t + T )}∗
D ≡ x(t), and therefore by C4a an appropriate extension

of the “trajectory” u∗
[t,t] exists.

Although it is not an explicit min–max type result, the approach in Reference 119
makes use of global Lipschitz constants to determine a bound on the worst-case
distance between a solution of the uncertain model (6.1), and that of the underlying
nominal model estimate. This Lipschitz-based uncertainty cone expands at the fastest
possible rate, necessarily containing the actual uncertainty cone {xp

[t, t+T ]}D. Although
ultimately just a nominal-model approach, it is relevant to note that it can be viewed
as replacing the “max” in (6.2) with a simple worst-case upper bound.

Finally, we note that many similar results [30, 94] in the linear robust-MPC
literature are relevant, since nonlinear dynamics can often be approximated using
uncertain linear models. In particular, linear systems with polytopic descriptions of
uncertainty are one of the few classes that can be realistically solved numerically,
since the calculations reduce to simply evaluating each node of the polytope.

6.1.2 Explicit robust MPC using feedback models

Given that robust control design is closely tied to game theory, one can envision
(6.2) as representing a player’s decision-making process throughout the evolution of
a strategic game. However, it is unlikely that a player even moderately skilled at such
a game would restrict themselves to preparing only a single sequence of moves to be
executed in the future. Instead, a skilled player is more likely to prepare a strategy
for future game-play, consisting of several “backup plans” contingent upon future
responses of their adversary.

To be as least-conservative as possible, an ideal (in a worst-case sense) decision-
making process would more properly resemble

u = κmpc(x(t)) � u∗
t (6.3a)

where u∗
t ∈ Rm is the constant value satisfying

u∗
t � arg min

ut

(

max
d[t, t+T ]∈D

min
up

[t, t+T ]∈U (ut )
VT (x(t), up

[t, t+T ], d[t, t+T ])

)

(6.3b)
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with the definition U(ut) � {up
[t, t+T ] | up(t) = ut}. Clearly, the “least conservative”

property follows from the fact that a separate response is optimized for every pos-
sible sequence the adversary could play. This is analogous to the philosophy in
Reference 149, for system x+ = Ax + Bu + d, in which polytopic D allows the max to
be reduced to selecting the worst index from a finitely indexed collection of responses;
this equivalently replaces the innermost minimization with an augmented search in
the outermost loop over all input responses in the collection.

While (6.3) is useful as a definition, a more useful (equivalent) representa-
tion involves minimizing over feedback policies k : [t, t + T ] × X → U rather than
trajectories:

u = κmpc(x(t)) � k∗(t, x(t)) (6.4a)

k∗(·, ·) � arg min
k(·,·)

max
d[t, t+T ]∈D

(
VT (x(t), k(·, ·), d[t, t+T ])

)
(6.4b)

VT (x(t), k(·, ·), d[t, t+T ]) �
∫ t+T

t
L(xp, k(τ , xp(τ ))) dτ + W (xp(t + T )) (6.4c)

s.t. ∀τ ∈ [t, t + T ] :
d

dτ
xp = f (xp, k(τ , xp(τ )), d), xp(t) = x(t) (6.4d)

(xp(τ ), k(τ , xp(τ ))) ∈ X × U (6.4e)

xp(t + T ) ∈ Xf (6.4f )

There is a recursive-like elegance to (6.4), in that κmpc(x) is essentially defined as a
search over future candidates of itself. Whereas (6.3) explicitly involves optimization-
based future feedbacks, the search in (6.4) can actually be (suboptimally) restricted to
any arbitrary sub-class of feedbacks k : [t, t + T ] × X → U. For example, this type
of approach first appeared in References 94, 104, and 123, where the cost functional
was minimized by restricting the search to the class of linear feedback u = Kx (or
u = K(t)x).

The error cone {xp
[t, t+T ]}∗

D associated with (6.4) is typically much less conservative
than that of (6.2). This is due to the fact that (6.4d) accounts for future disturbance
attenuation resulting from k(τ , xp(τ )), an effect ignored in the open-loop predictions
of (6.2). In the case of (6.3) and (6.4) it is no longer necessary to include T as an
optimization variable, since by condition C4a one can now envision extending the
horizon by appending an increment k(T + δt, ·) = kf (·).

This notion of feedback MPC has been applied in References 113 and 114 to
solve H∞ disturbance attenuation problems. This approach avoids the need to solve
a difficult Hamilton–Jacobi–Isaacs (HJI) equation, by combining a specially selected
stage cost L(x, u) with a local HJI approximation W (x) (designed generally by solv-
ing an H∞ problem for the linearized system). An alternative perspective of the
implementation of (6.4) is developed in Reference 101, with particular focus on
obstacle-avoidance in Reference 138. In this work, a set-invariance philosophy is
used to propagate the uncertainty cone {xp

[t, t+T ]}D for (6.4d) in the form of a control-
invariant tube. This enables the use of efficient methods for constructing control
invariant sets based on approximations such as polytopes or ellipsoids.
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6.1.3 Adaptive approaches to MPC

Despite the fact that the ability to adjust to changing process conditions was one
of the earliest industrial motivators for developing predictive control techniques, the
progress in this area has been negligible. The small amount of progress that has been
made is restricted to systems which do not involve constraints on the state, and which
are affine in the unknown parameters. We will briefly describe two such results.

6.1.3.1 Certainty-equivalence implementation
The result in Reference 125 implements a certainty equivalence nominal-model3 MPC
feedback of the form u(t) = κmpc(x(t), θ̂ (t)), to stabilize the uncertain system

ẋ = f (x, u, θ ) � f0(x, u) + g(x, u)θ (6.5)

subject to an input constraint u ∈ U. The vector θ ∈ Rp represents a set of unknown
constant parameters, with θ̂ ∈ Rp denoting an identifier. Certainty equivalence
implies that the nominal prediction model (3.1c) is of the same form as (6.5), but
with θ̂ used in place of θ .

At any time t ≥ 0, the identifier θ̂ (t) is defined to be a (min-norm) solution of
∫ t

0
g(x(s), u(s))T

(
ẋ(s) − f0(x(s), u(s))

)
ds =

∫ t

0
g(x(s), u(s))T g(x(s), u(s))ds θ̂

(6.6)

which is solved over the window of all past history, under the assumption that ẋ
is measured (or computable). If necessary, an additional search is performed along
the nullspace of

∫ t
0 g(x, u)T g(x, u)ds in order to guarantee θ̂ (t) yields a controllable

certainty-equivalence model (since (6.6) is controllable by assumption).
The final result simply shows that there must exist a time 0 < ta < ∞ such that

the regressor
∫ t

0 g(x, u)T g(x, u)ds achieves full rank, and thus θ̂ (t) ≡ θ for all t ≥ ta.
However, it is only by assumption that the state x(t) does not escape the stabilizable
region during the identification phase t ∈ [0, ta]; moreover, there is no mechanism to
decrease ta in any way, such as by injecting excitation.

6.1.3.2 Stability-enforced approach
One of the early stability results for nominal-model MPC by Primbs [136, 137]
involved the use of a global CLF V (x) instead of a terminal penalty. Stability was
enforced by constraining the optimization such that V (x) is decreasing, and perfor-
mance achieved by requiring the predicted cost to be less than that accumulated by
simulation of pointwise min-norm control.

This idea was extended in Reference 1 to stabilize unconstrained systems of the
form

ẋ = f (x, u, θ ) � f0(x) + gθ (x)θ + gu(x)u (6.7)

3 Since this result arose early in the development of NMPC, it happens to be based upon a terminal-
constrained controller (i.e., Xf ≡ {0}); however, this is not critical to the adaptation.
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Using ideas from robust stabilization, it is assumed that a global ISS-CLF4 is known
for the nominal system. Constraining V (x) to decrease ensures convergence to a
neighborhood of the origin, which gradually contracts as the identification proceeds.
Of course, the restrictiveness of this approach lies in the assumption that V (x) is
known.

6.2 An adaptive approach to robust MPC

Both the theoretical and practical merits of model-based predictive control strategies
for nonlinear systems are well established, as reviewed in Chapter 3. To date, the vast
majority of implementations involve an “accurate model” assumption, in which the
control action is computed on the basis of predictions generated by an approximate
nominal process model, and implemented (unaltered) on the actual process. In other
words, the effects of plant-model mismatch are completely ignored in the control
calculation, and closed-loop stability hinges upon the critical assumption that the
nominal model is a “sufficiently close” approximation of the actual plant. Clearly, this
approach is only acceptable for processes whose dynamics can be modeled a priori
to within a high degree of precision.

For systems whose true dynamics can only be approximated to within a large
margin of uncertainty, it becomes necessary to directly account for the plant-model
mismatch. To date, the most general and rigourous means for doing this involves
explicitly accounting for the error in the online calculation, using the robust-MPC
approaches discussed in Section 6.1. While the theoretical foundations and guarantees
of stability for these tools are well established, it remains problematic in most cases to
find an appropriate approach yielding a satisfactory balance between computational
complexity, and conservatism of the error calculations. For example, the framework
of min–max feedback-MPC [113, 149] provides the least-conservative control by
accounting for the effects of future feedback actions, but is in most cases compu-
tationally intractable. In contrast, computationally simple approaches such as the
open-loop method of Reference 119 yield such conservatively large error estimates,
that a feasible solution to the optimal control problem often fails to exist.

For systems involving primarily static uncertainties, expressible in the form of
unknown (constant) model parameters θ ∈ � ⊂ Rp, it would be more desirable to
approach the problem in the framework of adaptive control than that of robust control.
Ideally, an adaptive mechanism enables the controller to improve its performance
over time by employing a process model which asymptotically approaches that of the
true system. Within the context of predictive control, however, the transient effects
of parametric estimation error have proven problematic toward developing anything
beyond the limited results discussed in Section 6.1.3. In short, the development of a
general “robust adaptive-MPC” remains at present an open problem.

4 That is, a CLF guaranteeing robust stabilization to a neighborhood of the origin, where the size of the
neighborhood scales with the L∞ bound of the disturbance signal.
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Figure 6.1 Adaptive robust feedback structure

In the following two chapters, we make no attempt to construct such a “robust
adaptive” controller; instead we propose an approach more properly referred to as
“adaptive robust” control. The approach differs from typical adaptive control tech-
niques, in that the adaptation mechanism does not directly involve a parameter
identifier θ̂ ∈ Rp. Instead, a set-valued description of the parametric uncertainty,
�, is adapted online by an identification mechanism. By gradually eliminating values
from � that are identified as being inconsistent with the observed trajectories, �

gradually contracts upon θ in a nested fashion. By virtue of this nested evolution of
�, it is clear that an adaptive feedback structure of the form in Figure 6.1 would retain
the stability properties of any underlying robust control design.

The idea of arranging an identifier and robust controller in the configuration
of Figure 6.1 is itself not entirely new. For example, the robust control design of
Reference 41, appropriate for nonlinear systems affine in u whose disturbances are
bounded and satisfy the so-called “matching condition,” has been used by various
authors [27, 41, 156] in conjunction with different identifier designs for estimating
the disturbance bound resulting from parametric uncertainty. A similar concept for
linear systems is given in Reference 91.

However, to the best of our knowledge this idea has not been well explored
in the situation where the underlying robust controller is designed by robust-MPC
methods. The advantage of such an approach is that one could then potentially embed
an internal model of the identification mechanism into the predictive controller, as
shown in Figure 6.2. In doing so the effects of future identification are accounted
for within the optimal control problem, the benefits of which are discussed in
Chapter 6.3.

In order to demonstrate that this methodology is not tied to any one particular
robust-MPC technique, Chapters 6 and 7 each develop the idea within robust-MPC
frameworks that represent opposing extremes with respect to computational com-
plexity. The results in Chapter 6 focus upon demonstrating how this approach can
further improve upon even the best-performing robust-MPC design, if computational
limitations are not restrictive. In contrast, Chapter 7 seeks to show that at least some
of these same benefits are realizable within even the most computationally simplistic
framework for robust-MPC.
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Robust-MPC

Identifier

−

Plant
ẋ = f (x, u, q)

U x
ẋp ∈ f (xp, u,  − p)

Identifier − p

Figure 6.2 Adaptive robust MPC structure

A key result of both of Chapters 6 and 7 is that the internal model of the adaptive
mechanism can be approximated suboptimally, to absolutely any degree of subopti-
mality. This implies that the adaptive methodology itself (in particular the form in
Chapter 7) is amenable to real-time calculations, in the sense that its computational
requirements can be restricted to within any desired margin of that of the underlying
robust controller.

6.3 Minimally conservative approach

6.3.1 Problem description

The problem of interest is to achieve robust regulation, by means of state feedback,
of the system state to some compact target set �o

x ∈ Rn. Optimality of the resulting
trajectories are measured with respect to the accumulation of some instantaneous
penalty (i.e., stage cost) L(x, u) ≥ 0, which may or may not have physical significance.
Furthermore, the state and input trajectories are required to obey pointwise constraints
(x, u) ∈ X × U ⊆ Rn × Rm.

It is assumed that the system dynamics are not fully known, with uncertainty
stemming from both unmodeled static nonlinearities and additional exogenous inputs.
As such, the dynamics are assumed to be of the general form

ẋ = f (x, u, θ , d(t)) (6.8)

where f is a locally Lipschitz vector function of state x ∈ Rn, control input u ∈ Rm,
disturbance input d ∈ Rd , and constant parameters θ ∈ Rp. The entries of θ may
represent physically meaningful model parameters (whose values are not exactly
known a priori), or alternatively they could be parameters associated with any (finite)
set of universal basis functions used to approximate unknown nonlinearities. The
disturbance d(t) represents the combined effects of actual exogenous inputs, neglected
system states, or static nonlinearities lying outside the span of θ (such as the truncation
error resulting from using a finite basis).
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Assumption 6.3.1. θ ∈ �o, where �o is a known compact subset of Rp.

Assumption 6.3.2. d(·) ∈ D∞, where D∞ is the set of all right-continuous L∞-
bounded functions d :R→D; that is, composed of continuous subarcs d[a,b), and
satisfying d(τ ) ∈ D, ∀τ ∈ R, with D ⊂ Rd a compact vector space.

Unlike much of the robust or adaptive MPC literature, we do not necessar-
ily assume exact knowledge of the system equilibrium manifold, or its stabilizing
equilibrium control map. Instead, we make the following (weaker) set of assumptions.

Assumption 6.3.3. Letting �o
u ⊆ U be a chosen compact set, assume that L : X ×

U → R≥0 is continuous, L(�o
x , �o

u ) ≡ 0, and L(x, u) ≥ γ
L

(‖(x, u)‖�o
x ×�o

u

)
, γ

L
∈ K∞.

As well, assume that Assumption 4.2.1 holds, with (4.3) interpreted as

min
(u,θ ,d)∈U×�o×D

(
L(x, u)

‖f (x, u, θ , d)‖
)

≥ c2

‖x‖�o
x

∀x ∈ X \ B(�o
x , c1) (6.9)

Definition 6.3.4. For each �⊆�o, let �x(�)⊆�o
x denote the maximal (strongly)

control-invariant subset for the differential inclusion ẋ ∈ f (x, u, �, D), using only
controls u ∈ �o

u .

Assumption 6.3.5. There exists a constant N� < ∞, and a finite cover of �o (not
necessarily unique), denoted {�}� , such that

i. the collection {�̊}� is an open cover for the interior �̊o.
ii. � ∈ {�}� implies �x(�) �= ∅.

iii. {�}� contains at most N� elements.

The most important requirement of Assumption 6.3.3 is that, since the exact loca-
tion (in Rn × Rm) of the equilibrium5 manifold is not known a priori, L(x, u) must be
identically zero on the entire region of equilibrium candidates �o

x × �o
u . One exam-

ple of how to construct such a function would be to define L(x, u) = ρ(x, u)L(x, u),
where L(x, u) is an arbitrary penalty satisfying (x, u) �∈ �o

x × �o
u =⇒ L(x, u) > 0,

and ρ(x, u) is a smoothed indicator function of the form

ρ(x, u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 (x, u) ∈ �o
x × �o

u‖(x, u)‖�o
x×�o

u

ερ

0 < ‖(x, u)‖�o
x×�o

u
< ερ

1 ‖(x, u)‖�o
x×�o

u
≥ ερ

(6.10)

The restriction that L(x, u) is strictly positive definite with respect to �o
x ×�o

u is made
for convenience, and could be relaxed to positive semi-definite using an approach

5 We use the word “equilibrium” loosely in the sense of control-invariant subsets of the target �o
x , which

need not be actual equilibrium points in the traditional sense.
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similar to that of Reference 71 as long as L(x, u) satisfies an appropriate detect-
ability assumption (i.e., as long as it is guaranteed that all trajectories remaining in
{x | ∃u s.t. L(x, u) = 0} must asymptotically approach �o

x ×�o
u ).

The first implication of Assumption 6.3.5 is that for any θ ∈ �o, the target �o
x

contains a stabilizable “equilibrium” �(θ ) such that the regulation problem is well-
posed. Second, the openness of the covering in Assumption 6.3.5 implies a type
of “local-ISS” property of these equilibria with respect to perturbations in small
neighborhoods � of θ . This property ensures that the target is stabilizable given
“sufficiently close” identification of the unknown θ , such that the adaptive controller
design is tractable.

6.4 Adaptive robust controller design framework

6.4.1 Adaptation of parametric uncertainty sets

Unlike standard approaches to adaptive control, this work does not involve explicitly
generating a parameter estimator θ̂ for the unknown θ . Instead, the parametric uncer-
tainty set �o is adapted to gradually eliminate sets which do not contain θ . To this
end, we define the infimal uncertainty set

Z(�, x[a,b], u[a,b]) � {θ ∈ � | ẋ(τ ) ∈ f (x(τ ), u(τ ), θ , D), ∀τ ∈ [a, b]} (6.11)

By definition, Z represents the best-case performance that could be achieved by any
identifier, given a set of data generated by (6.8), and a prior uncertainty bound �.
Since exact online calculation of (6.11) is generally impractical, we assume that the
set Z is approximated online using an arbitrary estimator �. This estimator must be
chosen to satisfy the following conditions.

Criterion 6.4.1. �(·, ·, ·) is designed such that for a≤b≤c, and for any � ⊆ �o,

1. Z ⊆ �

2. �(�, ·, ·) ⊆ �, and closed
3. �(�1, x[a,b], u[a,b]) ⊆ �(�2, x[a,b], u[a,b]), for �1 ⊆ �2 ⊆ �o

4. �(�, x[a,b], u[a,b]) ⊇ �(�, x[a,c], u[a,c])
5. �(�, x[a,c], u[a,c]) ≡ �(�(�, x[a,b], u[a,b]), x[b,c], u[b,c])

The set � represents an approximation of Z in two ways. First, both �o and �

can be restricted a priori to any class of finitely parameterized sets, such as linear
polytopes, quadratic balls, and so on. Second, contrary to the actual definition of
(6.11), � can be computed by removing values from �o as they are determined to
violate the differential inclusion model. As such, the search for infeasible values can
be terminated at any time without violating Criterion 6.4.1.

The closed loop dynamics of (6.8) then take the form

ẋ = f (x, κmpc(x, �(t)), θ , d(t)), x(t0) = x0 (6.12a)

�(t) = �(�o, x[t0,t], u[t0,t]) (6.12b)
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where κmpc(x, �) represents the MPC feedback policy, detailed in Section 6.4.2. In
practice, the (set-valued) controller state � could be generated using an update law �̇

designed to gradually contract the set (satisfying Criterion 6.4.1). However, the given
statement of (6.12b) is more general, as it allows for �(t) to evolve discontinuously
in time, as may happen, for example, when the sign of a parameter can suddenly be
conclusively determined.

6.4.2 Feedback-MPC framework

In the context of min–max robust MPC, it is well known that feedback-MPC, because
of its ability to account for the effects of future feedback decisions on disturbance
attenuation, provides significantly less conservative performance than standard open-
loop MPC implementations. In the following, the same principle is extended to
incorporate the effects of future parameter adaptation.

In typical feedback-MPC fashion, the receding horizon control law in (6.12) is
defined by minimizing over feedback policies κ : R≥0 × Rn × cov {�o} → Rm as

u = κmpc(x, �) � κ∗(0, x, �) (6.13a)

κ∗ � arg min
κ(·,·,·)

J (x, �, κ) (6.13b)

where J (x, �, κ) is the (worst-case) cost associated with the optimal control problem:

J (x, �, κ) � max
θ∈�

d(·)∈D∞

∫ T

0
L(xp, up)dτ + W (xp

f , �̂f ) (6.14a)

s.t. ∀τ ∈ [0, T ]

d

dτ
xp = f (xp, up, θ , d), xp(0) = x (6.14b)

�̂(τ ) = �p(�(t), xp
[0,τ ], up

[0,τ ]) (6.14c)

xp(τ ) ∈ X (6.14d)

up(τ ) � κ(τ , xp(τ ), �̂(τ )) ∈ U (6.14e)

xp
f � xp(T ) ∈ Xf (�̂f ) (6.14f )

�̂f � �f (�(t), xp
[0,T ], up

[0,T ]) (6.14g)

Throughout the remainder, we denote the optimal cost J ∗(x, �) � J (x, �, κ∗), and
furthermore we drop the explicit constraints (6.14d)–(6.14f) by assuming the
definitions of L and W have been extended as follows:

L(x, u) =
{

L(x, u) < ∞ (x, u) ∈ X × U

+∞ otherwise
(6.15a)

W (x, �) =
{

W (x, �) < ∞ x ∈ Xf (�)

+∞ otherwise
(6.15b)
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The parameter identifiers �p and �f in (6.14) represent internal model approx-
imations of the actual identifier �, and must satisfy both Criterion 6.4.1 and the
following criterion.

Criterion 6.4.2. For identical arguments, Z ⊆ � ⊆ �f ⊆ �p.

Remark 6.4.3. We distinguish between different identifiers to emphasize that, depend-
ing on the frequency at which calculations are called, differing levels of accuracy can
be applied to the identification calculations.The ordering in Criterion 6.4.2 is required
for stability, and implies that identifiers existing within faster timescales provide more
conservative approximations of the uncertainty set.

There are two important characteristics which distinguish (6.14) from a standard
(non-adaptive) feedback-MPC approach. First, the future evolution of �̂ in (6.14c)
is fed back into both (6.14b) and (6.14e). The benefits of this feedback are analogous
to those of adding state-feedback into the MPC calculation; the resulting cone of
possible trajectories xp(·) is narrowed by accounting for the effects of future adaptation
on disturbance attenuation, resulting in less conservative worst-case predictions.

The second distinction is that both W and Xf are parameterized as functions of
�̂f , which reduces the conservatism of the terminal cost. Since the terminal penalty W
has the interpretation of the “worst-case cost-to-go,” it stands to reason that W should
decrease with decreased parametric uncertainty. In addition, the domain Xf would be
expected to enlarge with decreased parametric uncertainty, which in some situations
could mean that a stabilizing CLF-pair (W (x, �), Xf (�)) can be constructed even
when no such CLF exists for the original uncertainty �o. This effect is discussed in
greater depth in Section 6.5.2.

6.4.3 Generalized terminal conditions

To guide the selection of W (xf , �̂f ) and Xf (�̂f ) in (6.14), it is important to outline
(sufficient) conditions under which (6.12)–(6.14) can guarantee stabilization to the
target �o

x . The statement given here is extended from the set of such conditions for
robust MPC from Reference 126 that was outlined in Sections 3.1 and 6.1.1.

For reasons that are explained later in Section 6.5.2, it is useful to present these
conditions in a more general context in which W (·, �) is allowed to be LS-continuous
with respect to x, as may occur if W is generated by a switching mechanism. This
adds little additional complexity to the analysis, since (6.14) is already discontinuous
due to constraints.

Criterion 6.4.4. The set-valued terminal constraint function Xf : cov {�o} →
cov {X} and terminal penalty function W : Rn × cov {�o} → [0, +∞] are such that
for each � ∈ cov {�o}, there exists kf (·, �) : Xf → U satisfying

1. Xf (�) �= ∅ implies that �o
x ∩ Xf (�) �= ∅, and Xf (�) ⊆ X is closed

2. W (·, �) is LS-continuous with respect to x ∈ Rn

3. kf (x, �) ∈ U, for all x ∈ Xf (�)
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4. Xf (�) and �x(�) ⊆ {
�o

x ∩ Xf (�)
}

are both strongly positively invariant with
respect to the differential inclusion ẋ ∈ f (x, kf (x, �), �, D)

5. ∀x ∈ Xf (�), and denoting F � f (x, kf (x, �), �, D),

max
f ∈F

(

L(x, kf (x, �))+ lim inf
v→f
δ↓0

(
W (x + δv, �) − W (x, �)

δ

))

≤ 0

Although condition Criterion 6.4.4 point 5 is expressed in a slightly non-standard
form, it embodies the standard interpretation that W must be decreasing by at least an
amount −L(x, kf (x, �)) along all vector fields in the closed-loop differential inclusion
F ; i.e., W (x, �) is a robust-CLF (in an appropriate non-smooth sense) on the domain
Xf (�). Lyapunov stability involving LS-continuous functions is thoroughly studied
in Reference 40, and provides a meaningful sense in which W can be considered a
“robust-CLF” despite its discontinuous nature.

It is important to note that for the purposes of Criterion 6.4.4, W (x, �) and
Xf (�) are parameterized by the set �, but the criterion imposes no restrictions on
their functional dependence with respect to the � argument. This �-dependence is
required to satisfy the following criteria:

Criterion 6.4.5. For any �1, �2 ∈ cov {�o} such that �1 ⊆ �2,

1. Xf (�2) ⊆ Xf (�1)
2. W (x, �1) ≤ W (x, �2), ∀x ∈ Xf (�2)

Designing W and Xf as functions of � satisfying Criteria 6.4.4 and 6.4.5 may
appear prohibitively complex; however, the task is greatly simplified by noting that
neither criterion imposes any notion of continuity of W or Xf with respect to �.
A constructive design approach exploiting this fact is presented in Section 6.5.2.

6.4.4 Closed-loop stability

Theorem 6.4.6 (Main result). Given system (6.8), target �o
x , and penalty L satisfying

Assumptions 6.3.1–6.3.3rd, 6.3.5, assume the functions �, �p, �f , W and Xf are
designed to satisfy Criteria 6.4.1, 6.4.2, 6.4.4 and 6.4.5. Furthermore, let X0 �
X0(�o) ⊆ X denote the set of initial states, with uncertainty �(t0) = �o, for which
(6.14) has a solution. Then under (6.12), �o

x is feasibly asymptotically stabilized from
any x0 ∈ X0.

Remark 6.4.7. As indicated by Assumption 6.3.5, the existence of an invariant
target set �o

x (�o), robust to the full parametric uncertainty �o, is not required for
Theorem 6.4.6 to hold. The identifier �̂f must be contained in a sufficiently small
neighborhood of (the worst-case) θ such that nontrivial Xf (�̂f ) and W (·, �̂f ) exist,
for (6.14) to be solvable. While this imposes a minimum performance requirement on
�f , it enlarges the domain X0 for which the problem is solvable.
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6.5 Computation and performance issues

6.5.1 Excitation of the closed-loop trajectories

Contrary to much of the adaptive control literature, including adaptive-MPC
approaches such as Reference 125, the result of Theorem 6.4.6 does not depend
on any auxiliary excitation signal, nor does it require any assumptions regarding the
persistency or quality of excitation in the closed-loop behavior.

Instead, any benefits to the identification which result from injecting excitation
into the input signal are predicted by (6.14c) and (6.14g), and thereby are automatically
accounted for in the posed optimization. In the particular case where �p ≡ �f ≡ �,
then the controller generated by (6.14) will automatically inject the exact type and
amount of excitation which optimizes the cost J ∗(x, �); that is, the closed-loop behav-
ior (6.12) could be considered “optimally-exciting.” Unlike most a priori excitation
signal design methods, excess actuation is not wasted in trying to identify parameters
which have little impact on the closed-loop performance (as measured by J ∗).

As �p and �f deviate from �, the convergence result of Theorem 6.4.6 remains
valid. However, the non-smoothness of J ∗(x, �) (with respect to both x and �) makes
it difficult to quantify the impact of these deviations on the closed-loop behavior.
Qualitatively, small changes to �p or �f yielding increasingly conservative identi-
fication would generally result in the optimal control solution injecting additional
excitation to compensate for the de-sensitized identifier. However, if the changes to
�p or �f are sufficiently large such that the injection of additional excitation is insuf-
ficient to prevent a discontinuous increase in J ∗, then it is possible that the optimal
solution may suddenly involve less excitation than previously, to instead reduce actu-
ation energy. Clearly this behaviour is the result of nonconvexities in the optimal
control problem (6.13), which is inherently a nonconvex problem even in the absence
of the adaptive mechanisms proposed here.

6.5.2 A practical design approach for W and Xf

Proposition 6.5.1. Let {(W i, Xi
f )} denote a finitely-indexed collection of terminal

function candidates, with indices i ∈ I, where each pair (W i, Xi
f ) satisfies Criteria

6.4.4 and 6.4.5. Then

W (x, �) � min
i∈I

{W i(x, �)}, Xf (�) �
⋃

i∈I
{Xi

f (�)} (6.16)

satisfy Criteria 6.4.4 and 6.4.5.

Using Proposition 6.5.1, it is clear that one approach to constructing W (·, ·) and
Xf (·) is to use a collection of pairs of the form

(
W i(x, �), X

i
f (�)

) =
{(

W i(x), X
i
f

)
� ⊆ �i

(+∞, ∅) otherwise
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This collection can be obtained as follows:

1. Generate a finite collection {�i} of sets covering �o.
● The elements of the collection can, and should, be overlapping, nested, and

ranging in size.
● Categorize {�i} in a hierarchical (i.e., “tree”) structure such that

i. level 1 (i.e., the top) consists of �o. (Assuming �o ∈ {�i} is w.l.o.g.,
since W (·, �o) ≡ +∞ and Xf (�o) = ∅ satisfy Criteria 6.4.4 and 6.4.5),

ii. every set in the l’th vertical level is nested inside one or more “parents”
on level l − 1,

iii. at every level, the “horizontal peers” constitute a cover6 of �o.
2. For every set �j∈ {�i}, calculate a robust CLF W j(·) ≡W j(·, �j), and

approximate its domain of attraction X
j
f ≡X

j
f (�j).

● Generally, W j(·, �j) is selected first, after which Xf (�j) is approximated
as either a maximal level set of W j(·, �j), or as some other controlled-
invariant set.

● Since the elements of {�i} need not be unique, one could actually define
multiple (W i, Xi

f ) pairs associated with the same �j .
● While not an easy task, this is a very standard robust-control calculation. As

such, there is a wealth of tools in the robust control and viability literatures
(see, e.g., Reference 17) to tackle this problem.

3. Calculate W(·, �) and Xf (�) online:
i. Given �, identify all sets that are active: I∗ = I∗(�) �

{
j | � ⊆ �j

}
.

Using the hierarchy, test only immediate children of active parents.
ii. Given x, search over the active indices to identify I∗

f = I∗
f (x, I∗) � { j ∈

I∗ | x ∈ X
j
f }. Define W (x, �) � minj∈I∗

f
W j(x) by testing indices in I∗

f ,
setting W (x, �) = +∞ if I∗

f = ∅.

Remark 6.5.2. Although the above steps assume that �j is selected before X
j
f , an

alternative approach would be to design the candidates W j(·) on the basis of a
collection of parameter values θ̂ j . Briefly, this could be constructed as follows:

1. Generate a grid of values {θ i} distributed across �o.
2. Design W j(·) based on a certainty-equivalence model for θ̂ j (e.g., by lineariza-

tion). Specify X
j
f (likely as a level set of W j), and then approximate the maximal

neighborhood �j of θ̂ j such that Criterion 6.4.4 holds.
3. For the same (θ j , W j) pair, multiple (W j , Xj

f ) candidates can be defined
corresponding to different �j .

6.6 Robustness issues

One could argue that if the disturbance model D in (6.8) encompasses all possible
sources of model uncertainty, then the issue of robustness is completely addressed

6 Specifically, the interiors of all peers must together constitute an open cover.
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by the min–max formulation of (6.14). In practice this is not realistic, since it is
generally desirable to explicitly consider significant disturbances only, or to exclude
D entirely if � represents the dominant uncertainty. The lack of nominal robustness
to model error in constrained NMPC is a well-documented problem, as discussed in
Reference 70. In particular, References 69 and 119 establish nominal robustness (for
“accurate-model,” discrete-time MPC) in part by implementing the constraint x ∈ X

as a succession of strictly nested sets. We present here a modification to this approach,
that is, relevant to the current adaptive framework.

In addition to ensuring robustness of the controller itself, using methods sim-
ilar to those mentioned above, it is equally important to ensure that the adaptive
mechanism �, including its internal models �f and �p, exhibits at least some level
of nominal robustness to unmodeled disturbances. By Criterion 6.4.1.4, the online
estimation must evolve in a nested fashion and therefore the true θ must never be
inadvertently excluded from the estimated uncertainty set. Therefore, just as Z in
(6.11) defined a best-case bound around which the identifiers in the previous sections
could be designed, we present here a modification of (6.11) which quantifies the type
of conservatism required in the identification calculations for the identifiers to possess
nominal robustness.

For any γ , ε ≥ 0, and with τa � τ − a, we define the following modification
of (6.11):

Zε,γ (�, x[a,b], u[a,b]) � {θ ∈� | B(ẋ, ε + γ τa) ∩ f (B(x, γ τa), u, θ , D) �= ∅, ∀τ }.
(6.17)

Equation (6.17) provides a conservative outer approximation of (6.11) such that Z ⊆
Zε,γ . The definition in (6.17) accounts for two different types of conservatism that can
be introduced into the identification calculations. First, the parameter ε > 0 represents
a minimum tolerance for the distance between actual derivative information from
trajectory x[a,b] and the model (6.8) when determining if a parameter value can be
excluded from the uncertainty set. For situations where the trajectory x[a,b] is itself
a prediction, as is the case for the internal models �f and �p, the parameter γ > 0
represents increasingly relaxed tolerances applied along the length of the trajectory.
Throughout the following we denote Zε ≡ Zε,0, with analogous notations for �, �f ,
and �p.

The following technical property of definition (6.17) is useful toward establishing
the desired robustness claim.

Claim 6.6.1. For any a<b<c, γ ≥0, and ε≥ε′ ≥0, let x′
[a,c] be an arbitrary,

continuous perturbation of x[a,b] satisfying

i. ‖x′(τ ) − x(τ )‖ ≤
{

γ (τ − a) τ ∈ [a, b]

γ (b − a) τ ∈ [b, c]



Introduction to adaptive robust MPC 87

ii. ‖ẋ′(τ ) − ẋ(τ )‖ ≤
{

ε − ε′ + γ (τ − a) τ ∈ [a, b]

γ (b − a) τ ∈ [b, c]

Then, Zε,γ satisfies

Zε,γ
(
Zε′

(�, x′
[a,b], u[a,b]), x′

[b,c], u[b,c]

)
⊆ Zε,γ (�, x[a,c], u[a,c]). (6.18)

Based on (6.17), we are now able to detail sufficient conditions under which the
stability claim of Theorem 6.4.6 holds in the presence of small, unmodeled distur-
bances. For convenience, the following proposition is restricted to the situation where
the only discontinuities in W (x, �) and Xf (�) are those generated by a switching
mechanism (as per Proposition 6.5.1) between a set of candidates {W i(x, �), Xi

f (�)}
that are individually continuous on x ∈ X

i
f (�) (i.e., a strengthening of Criterion 6.4.4

point 2). With additional complexity, the proposition can be extended to general
LS-continuous penalties W (x, �).

Proposition 6.6.2. Assume that the following modifications are made to the design
in Section 6.4:

i. W (x, �) and Xf (�) are constructed as per Proposition 6.5.1, but with Criterion
6.4.4 point 2 strengthened to require the individual W i(x, �) to be continuous
w.r.t x ∈ X

i
f (�).

ii. For some design parameter εx > 0, (6.15) and (6.16) are redefined as:

L̃(τ , x, u) =
{

L(x, u) (x, u)∈←−
B (X, εx

τ

T ) × U

+∞ otherwise

W̃ i(x, �) =
{

W i(x) x∈←−
B (Xi

f (�), εx)

+∞ otherwise

iii. The individual sets X
i
f are specified such that there exists εf > 0, for which

Criterion 6.4.4 point 4 holds for every inner approximation
←−
B (Xi

f (�), ε′
x), ε′

x ∈
[0, εx], where positive invariance is with respect to all flows generated by the
differential inclusion ẋ ∈ B(f (x, ki

f (x, �), �, D), εf )
iv. Using design parameters ε > ε′ > 0 and γ > 0, the identifiers are modified as

follows:
● � in (6.12b) is replaced by �ε′ ≡ �ε′, 0

● �p and �f in (6.14) are replaced by �ε,γ
p and �

ε,γ
f , respectively

where the new identifiers are assumed to satisfy Criteria 6.4.1 and 6.4.2, and a
relation of the form (6.18).

Then for any compact subset X̄0 ⊆ X0(�o), there exists c∗ = c∗(γ , εx, εf , ε, ε′, X̄0) > 0
such that, for all x0 ∈ X̄0 and for all disturbances ‖d2‖ ≤ c ≤ c∗, the target �o

x and
the actual dynamics
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ẋ = f (x, κmpc(x, �(t)), θ , d(t)) + d2(t), x(t0) = x0 (6.19a)

�(t) = �ε′
(�o, x[t0,t], u[t0,t]) (6.19b)

are ISS; i.e., there exists αd ∈ K such that x(t) asymptotically converges to
B(�o

x , αd(c)).

6.7 Example problem

To demonstrate the versatility of our approach, we consider the following nonlinear
system:

ẋ1 = −x1 + |2 sin(x1 + πθ1) + 1.5θ2 − x1 + x2|x1 + d1(t)

ẋ2 = 10 θ4aθ4bx1(u + θ3) + d2(t)

The uncertainty D is given by |d1|, |d2| ≤ 0.1, and �o by θ1, θ2, θ3 ∈ [−1, 1], and
θ4a ∈ {−1, +1}, θ4b ∈ [0.5, 1]. The control objective is to achieve regulation of x1

to the set x1 ∈ [−0.2, 0.2], subject to the constraints X � {|x1| ≤ M1 and |x2| ≤ M2},
U � {|u| ≤ Mu}, with M1, M2 ∈ (0, +∞] and Mu ∈ (1, +∞] any given constants. The
dynamics exhibit several challenging properties: (i) state constraints, (ii) nonlinear
parameterization of θ1 and θ2, (iii) potential open-loop instability with finite escape,
(iv) uncontrollable linearization, (v) unknown sign of control gain, and (vi) exogenous
disturbances. This system is not stabilizable by any non-adaptive approach (MPC or
otherwise), and furthermore fits very few, if any, existing frameworks for adaptive
control.

One key property of the dynamics (which is arguably necessary for the regulation
objective to be well-posed) is that for any known θ ∈ � the target is stabilizable and
nominally robust. This follows by observing that the surface

s � 2 sin(x1 + πθ1) + 1.5θ2 − x1 + x2 = 0

defines a sliding mode for the system, with a robustness margin |s| ≤ 0.5 for |x1| ≥
0.2. This motivates the design choices:

Xf (�) � {x ∈ X | − M2 ≤ �(x1, �) ≤ x2 ≤ �(x1, �) ≤ M2}
� � x1 − 1.5θ 2 − 2 sin(x1 + πθ

avg
1 ) − 2π (θ 1 − θ

avg
1 ) + 0.5

� � x1 − 1.5θ2 − 2 sin(x1 + πθ
avg
1 ) − 2π (θ1 − θ

avg
1 ) − 0.5

where θ i, θ i denote upper and lower bounds corresponding to � ⊆ �o, and θavg �
θ + θ

2 . The set Xf (�) satisfies Criterion 6.4.5 and is nonempty for any � such that
θ2 − θ 2 + π (θ1 − θ 1) ≤ 0.5, that defines minimum thresholds for the performance
of �f and the amount of excitation in solutions to (6.14).
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It can be shown that |s| ≤ 0.5
∀θ∈�o=⇒ |x1 − x2| ≤ 4, and that Xf (�) is control-

invariant using u ∈ [−1, 1], as long as the sign θ4a is known. This motivates the
definitions �o

u � [−1, 1], �1 = [−0.2, 0.2], �12 = [−4, 4], and �o
x � {x | (x1, x1 −

x2) ∈ �1 × �12}, plus the modification of Xf (�) above to contain the explicit require-
ment �4a = {−1, +1} =⇒ Xf (�) = ∅. Then on x ∈ Xf (�), the cost functions

W (x, �) � 1
2‖x1‖2

�1
and L(x, u) � 1

2

(
‖x1‖2

�1
+ ‖x1 − x2‖2

�12
+ ‖u‖2

�o
u

)
satisfy all the

claims of Criterion 6.4.4, since W ≡ L ≡ 0 on x ∈ Xf ∩ �o
x , and on x ∈ Xf \ �o

x one
has:

Ẇ ≤ ‖x1‖�1

(
−1

2
|x1| + 0.1

)
≤ −1

2
‖x1‖2

�1
≤ −L(x, u).

6.8 Conclusions

In this chapter, we have demonstrated the methodology for adaptive MPC proposed
in Section 6.2, in which the adverse effects of parameter identification error are
explicitly minimized using a robust MPC approach. As a result, it is possible to
address both state and input constraints within the adaptive framework. Another key
advantage of this approach is that the effects of future parameter estimation can
be incorporated into the optimization problem, raising the potential to significantly
reduce the conservativeness of the solutions, especially with respect to design of
the terminal penalty. While the results presented here are conceptual, in that they
are generally intractable to compute due to the underlying min–max feedback-MPC
framework, this chapter provides insight into the maximum performance that could
be attained by incorporating adaptation into a robust-MPC framework.

6.9 Proofs for Chapter 6

6.9.1 Proof of Theorem 6.4.6

This proof will follow the so-called “direct method” of establishing stability by
directly proving strict decrease of J ∗(x(t), �(t)), for all x �∈ �o

x . Stability analysis
involving LS-continuous Lyapunov functions (e.g., Reference 40, Theorem 4.5.5)
typically involves the proximal subgradient ∂pJ ∗ (a generalization of ∇J ), which
is a somewhat ambiguous quantity in the context here given (6.12b). Instead, this
proof exploits an alternative framework involving subderivates (generalized Dini-
derivatives), which is equivalent by Reference 40, Proposition 4.5.3. Together, the
following two conditions can be shown sufficient to ensure decrease of J ∗, where
F � f (x, κmpc(x, �(t)), �(t), D)

i. max
f ∈F

−→
D J ∗(x, �) � max

f ∈F
lim inf

v→f
δ↓0

J ∗(x + δv, �(t + δ)) − J ∗(x, �(t))

δ
< 0

ii. min
f ∈F

←−
D J ∗(x, �) � min

f ∈F
lim sup

v→f
δ↓0

J ∗(x − δv, �(t − δ)) − J ∗(x, �(t))

δ
> 0
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that is, J ∗ is decreasing on both open future and past neighborhoods of t, for all t ∈ R,
where

−→
D J ∗,

←−
D J ∗ ∈ [−∞, +∞].

To prove condition (i), let xp, Lp, W p, �̂p correspond to any worst-case mini-
mizing solution of J ∗(x(t), �(t)), defined on τ ∈ [0, T ]. Additional notations which
will be used: Tδ � T + δ, �̂

p
T � �̂f (T ), �̂

p
Tδ

� �̂f (Tδ); that is, both sets represent
solutions of the terminal identifier �f , evaluated along xp

[0,T ] and xp
[0,Tδ ], respectively.

Likewise, for an arbitrary argument S ∈ {�̂p
T , �̂

p
Tδ

}, we define W p
T (S) � W (xp(T ), S)

and W p
Tδ

(S) � W (xp(Tδ), S).
With the above notations, it can be seen that if the minimizing solution xp

[0,T ]

were extended to τ ∈ [0, Tδ] by implementing the feedback up(τ ) = kf (xp(τ ), θ̂ p
T ) on

τ ∈ [T , Tδ] (i.e., with θ̂
p
T fixed), then Criterion 6.4.4 point 5 guarantees the inequality

lim
δ↓0

1

δ

(
δL(xp

T , kf (xp
T , �̂p

T )) + W p
Tδ

(�̂p
T ) − W p

T (�̂p
T )

)
≤ 0.

Using this fact, the relationship (i) follows from:

max
f ∈F

−→
D J ∗(x, �) = max

f ∈F
lim inf

v→f
δ↓0

1

δ

[
J ∗(x + δv, �(t + δ)) −

∫ T

0
Lpdτ − W p

T (�̂p
T )

]

≤ max
f ∈F

lim inf
v→f
δ↓0

1

δ

[
J ∗(x + δv, �(t + δ)) −

∫ δ

0
Lpdτ −

∫ T

δ

Lpdτ − W p
T (�̂p

T)

−
(
δL(xp

T , kf (xp
T , �̂p

T )) + W p
Tδ

(�̂p
T ) − W p

T (�̂p
T )

) ]

≤ max
f ∈F

lim inf
v→f
δ↓0

1

δ

[
J ∗(x + δv, �(t + δ)) −

∫ T

δ

Lpdτ −
∫ Tδ

T
Lpdτ − W p

Tδ
(�̂p

T ) − δLp|δ
]

≤ max
f ∈F

lim
δ↓0

1

δ

[
J ∗(xp(δ), �̂p(δ)) −

∫ Tδ

δ

Lpdτ − W p
Tδ

(�̂p
Tδ

)
]

− δLp|δ
≤ −L(x, κmpc(x, �))

The final inequalities are achieved by recognizing:

● The
∫

Lpdτ + W p term is a (potentially) suboptimal cost on the interval [δ, Tδ],
starting from the point (xp(δ), �̂p(δ)).

● The relation �̂
p
Tδ

⊆ �̂
p
T holds by Criterion 6.4.1 point 4, which implies by Criterion

6.4.5 point 2 that W p
Tδ

(�̂p
Tδ

) ≤ W p
Tδ

(�̂p
T ).

● By Criterion 6.4.2, �(t + δ) � �(�(t), x[0,δ], u[0,δ]) ⊆ �p(�(t), x[0,δ], u[0,δ]),
along any locus connecting x and x + δv.

● The lim inf v applies over all sequences {vk} → f , of which the particular sequence
{v(δk ) = xp(δk ) − x

δ
} is a member.

● There exists an arbitrary perturbation of the sequence {v(δk )} satisfying
�p(�(t), x[0,δ]) = �̂p(δ). The lim inf v includes the limiting cost J ∗(xp(δ), �̂p(δ))
of any such perturbation of {v(δk )}.
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● The cost J ∗(xp(δ), �̂p(δ)) is optimal on [δ, Tδ], and passes through the same point
(xp(δ), �̂p(δ)) as the trajectory defining the Lp and W p expressions. Thus, the
bracketed expression is non-positive.

For the purposes of condition (ii), let xv denote a solution to the prediction model
(6.14b) for initial condition xv(−δ) = x − δv. Condition (ii) then follows from:

min
f ∈F

←−
D J ∗(x, �) = min

f ∈F
lim sup

v→f
δ↓0

1

δ

[∫ T−δ

−δ

Lvdτ + W v
T−δ(�̂

v
T−δ) − J ∗(x, �)

]

≥ min
f ∈F

lim sup
v→f
δ↓0

1

δ

[
δLv|−δ +

∫ T−δ

0
Lvdτ + W v

T−δ(�̂
v
T−δ) − J ∗(x, �)

+
(
δL(xv

T−δ , kf (xv
T−δ , �̂

v
T−δ)) + W v

T (�̂v
T−δ) − W v

T−δ(�̂
v
T−δ)

) ]

≥ min
f ∈F

lim sup
v→f
δ↓0

1

δ

[
δLv|−δ +

∫ T

0
Lvdτ + W v

T (�̂v
T−δ) − J ∗(x, �)

]

≥ min
f ∈F

lim
δ↓0

1

δ

[
δLp|−δ +

∫ T

0
Lpdτ + W p

T (�̂p
T ) − J ∗(x, �)

]

≥ L(x, κmpc(x, �))

The above derivation made use of the fact that the reverse subderivate
←−
D W satisfies

min
f ∈F

lim sup
v→f
δ↓0

(
−L(x − δv, kf (x − δv, �))+

(
W (x − δv, �) − W (x, �)

δ

))
≥ 0

which follows from a combination of Criterion 6.4.4 point 5 and the LS-continuity
of W .

Using the above inequalities for
←−
D J ∗(x, �) and

−→
D J ∗(x, �) together with

Assumption 6.3.3, it follows that J ∗(t) is strictly decreasing on x �∈ �o
x and non-

increasing on x ∈ �o
x . It follows that limt→∞ (x, �) must converge to an invariant

subset of �0
x × cov {�o}. Assumption 6.3.1 guarantees that such an invariant sub-

set exists, since it implies ∃ε∗ > 0 such �x(B(θ∗, ε∗)) �= ∅, with θ∗ the actual
unknown parameter in (6.8). Continued solvability of (6.14) as (x(t), �(t)) evolve
follows by: (1) x(τ ) �∈ X0(�(τ )) ⇒ J ∗(τ ) = +∞ and (2) if x(t) ∈ X0(�(t)) and
x(t′) �∈ X0(�(t′)), then (t′ − t) ↓ 0 contradicts either condition (i) at time t, or (ii) at
time t′.

6.9.2 Proof of Proposition 6.5.1

The fact that Criterion 6.4.5 holds is a direct property of the union and min operations
for the closed sets X

i
f , and the fact that the �-dependence of individual (W i, Xi

f )
satisfies Criterion 6.4.5. For the purposes of Criterion 6.4.4, the � argument is a
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constant, and is omitted from notation. Properties Criterion 6.4.4 point 1 and 2 follow
directly by (6.16), the closure of X

i
f , and (2.2). Define

If (x) = {i ∈ I | x ∈ X
i
f and W (x) = W i(x)}

Denoting F i � f (x, ki
f (x), �, D), the following inequality holds for every i ∈ If (x):

max
f i∈F i

lim inf
v→f i
δ↓0

W (x + δv) − W (x)

δ
≤ max

f i∈F i
lim inf

v→f i
δ↓0

W i(x + δv) − W (x)

δ
≤ − L(x, ki

f (x))

It then follows that u = kf (x) � ki(x)
f (x) satisfies Criterion 6.4.4 point 5 for any arbi-

trary selection rule i(x) ∈ If (x) (from which Criterion 6.4.4 point 3 is obvious).
Condition Criterion 6.4.4 point 4 follows from continuity of the x(·) flows, and observ-
ing that by (6.15), Criterion 6.4.4 point 5 would be violated at any point of departure
from Xf .

6.9.3 Proof of Claim 6.6.1

By contradiction, let θ∗ be a value contained in the left-hand side of (6.18), but not
in the right-hand side. Then by (6.17), there exists τ ∈ [a, c] (i.e., τa ≡ (τ − a) ∈
[0, c − a]) such that

f (B(x, γ τa), u, θ∗, D) ∩ B(ẋ, ε + γ τa) = ∅ (6.20)

Using the bounds indicated in the claim, the following inclusions hold when τ ∈ [a, b]:

f (x′, u, θ∗, D) ⊆ f (B(x, γ τa), u, θ∗, D) (6.21a)

B(ẋ′, ε′) ⊆ B(ẋ, ε + γ τa) (6.21b)

Combining (6.21) and (6.20) yields

f (x′, u, θ∗, D) ∩ B(ẋ′, ε′) = ∅ ⇒ θ∗ �∈ Zε′
(�, x′

[a,τ ], u[a,τ ]) (6.22)

which violates the initial assumption that θ∗ is in the LHS of (6.18). Meanwhile, for
τ ∈ [b, c] the inclusions

f (B(x′, γ τb), u, θ∗, D) ⊆ f (B(x, γ τa), u, θ∗, D) (6.23a)

B(ẋ′, ε + γ τb) ⊆ B(ẋ, ε + γ τa) (6.23b)

yield the same contradictory conclusion:

f (B(x′, γ τb), u, θ∗, D) ∩ B(ẋ′, ε + γ τb) = ∅ (6.24a)

⇒ θ∗ �∈ Zε,γ
(
Zε′

(�, x′
[a,b], u[a,b]), x′

[b,τ ], u[b,τ ]

)
(6.24b)

It therefore follows that the containment indicated in (6.18) necessarily holds.
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6.9.4 Proof of Proposition 6.6.2

It can be shown that Assumption 6.3.3, together with the compactness of �x, is
sufficient for an analog of Claim 4.2.2 to hold (i.e., with J ∗

∞ interpreted in a min–max
sense). In other words, the cost J ∗(x, �) satisfies

αl(‖x‖�o
x
, �) ≤ J ∗(x, �) ≤ αh(‖x‖�o

x
, �)

for some functions αl , αh which are class-K∞ w.r.t. x, and whose parameterization
in � satisfies αi(x, �1) ≤ αi(x, �2), �1 ⊆ �2. We then define the compact set X̄ ↑

0 �
{x | min�∈cov{�o} J ∗(x, �) < maxx0∈X̄0

αh(‖x0‖�o
x
, �0)}.

By a simple extension of Reference 90, Theorem 4.19, the ISS property follows
if it can be shown that there exists αc ∈ K such that J ∗(x, �) satisfies

x∈ X̄ ↑
0 \B(�o

x , αc(c))⇒
{

maxf ∈Fc

−→
D J ∗(x, �) < 0

minf ∈Fc

←−
D J ∗(x, �) > 0

(6.25)

where Fc � B(f (x, κmpc(x, �(t)), �(t), D), c). To see this, it is clear that J decreases
until x(t) enters B(�o

x , αc(c)). While this set is not necessarily invariant, it is con-
tained within an invariant, compact level set �(c, �) � {x | J ∗(x, �) ≤ αh(αc(c), �)}.
By Criterion 6.4.1 point 4, the evolution of �(t) in (6.19b) must approach some
constant interior bound �∞, and thus limt→∞ x(t) ∈ �(c, �∞). Defining αd(c) �
maxx∈�(c,�∞) ‖x‖�o

x
completes the proposition, if c∗ is sufficiently small such that

B(�o
x , αd(c∗)) ⊆ X̄ ↑

0 .
Next, we only prove decrease in the forward direction, since the reverse direction

follows analogously, as it did in the proof of Theorem 6.4.6. Using similar procedure
and notation as the Theorem 6.4.6 proof, xp

[0,T ] denotes any worst-case prediction at
(t, x, �), extended to [T , Tδ] via kf , that is assumed to satisfy the specifications of
Proposition 6.6.2. Following the proof of Theorem 6.4.6,

max
f ∈Fc∗

−→
D J ∗(x, �)

≤ max
f ∈F

lim inf
v→f
δ↓0

1

δ

[
J ∗(x + δv, �(t + δ)) −

∫ Tδ

δ

Lpdτ − W p
Tδ

(�̂p
T )

]
− Lp|δ

≤ max
f ∈F

lim inf
v→f
δ↓0

1

δ

[
J ∗(x + δv, �(t + δ)) −

∫ Tδ

δ

Lvdτ − W v
Tδ

(�̂v
Tδ

)
]

− Lp|δ

+ 1

δ

[∫ Tδ

δ

Lvdτ + W v
Tδ

(�̂v
Tδ

) −
∫ Tδ

δ

Lpdτ − W p
Tδ

(�̂p
T )

]
(6.26)

where Lv, W v denote costs associated with a trajectory xv
[0,Tδ ] satisfying the following:

● initial conditions xv(0) = x, �v(0) = �
● generated by the same worst-case θ̂ and d(·) as xp

[0,Tδ ]
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● dynamics of form (6.19) on τ ∈ [0, δ], and of form (6.14b),(6.14c) on τ ∈ [δ, Tδ],
with the trajectory passing through xv(δ) = x + δv, �v

p(δ) = �(t + δ)
● the minκ in (6.14) is constrained such that κv(τ , xv, �v) = κp(τ , xp, �p); that is,

uv
[0,Tδ ] ≡ up

[0,Tδ ] ≡ u[0,Tδ ]

Let Kf denote a Lipschitz constant of (6.8) with respect to x, over the compact domain
X̄ ↑

0 × �o × D. Then, using the comparison lemma [90, Lemma 3.4] one can derive
the bounds

τ ∈ [0, δ] :
{ ‖xv − xp‖ ≤ c

Kf
(eKf τ − 1)

‖ẋv − ẋp‖ ≤ c eKf τ
(6.27a)

τ ∈ [δ, Tδ] :

{
‖xv − xp‖ ≤ c

Kf
(eKf δ − 1) eKf (τ−δ)

‖ẋv − ẋp‖ ≤ c(eKf δ − 1) eKf (τ−δ) (6.27b)

As δ ↓ 0, the above inequalities satisfy the conditions of Claim 6.6.1 as long as
c∗ < min{γ , (ε − ε′), γ eKf T , γ

Kf
eKf T }, thus yielding

�̂v
f = �

ε,γ
f (�ε′

(�, xv
[0,δ], u[0,δ]), xv

[δ,Tδ ], u[δ,Tδ ]) ⊆ �
ε,γ
f (�, xp

[0,Tδ ], u[0,Tδ ]) = �̂
p
f

as well as the analog �̂v
p(τ ) ⊆ �̂p

p(τ ), ∀τ ∈ [0, Tδ].
Since xp

[0,T ] is a feasible solution of the original problem from (t, x, �) with τ ∈
[0, T ], it follows for the new problem posed at time t + δ that xv is feasible with
respect to the appropriate inner approximations of X and X

i∗
f (�̂p

T ) ⊆ Xf (�̂v
Tδ

) (where
i∗ denotes an active terminal set for xp

f ) if

‖xv − xp‖ ≤
{

δ
εx

T
τ ∈ [δ, T ]

δεf τ ∈ [T , Tδ]

which holds by (6.27) as long as c∗ < min{εf , εx
T }e−Kf T . Using arguments from the

proof of Theorem 6.4.6, the first term in (6.26) can be eliminated, leaving:

max
f ∈Fc

−→
D J ∗(x, �)

≤ max
f ∈F

lim inf
v→f
δ↓0

1

δ

[∫ Tδ

δ

Lvdτ + W v
Tδ

(�̂v
Tδ

) −
∫ Tδ

δ

Lpdτ − W p
Tδ

(�̂p
T )

]
− Lp|δ

≤ max
f ∈F

lim inf
v→f
δ↓0

1

δ

(∫ Tδ

δ

KL‖xv − xp‖dτ + KW ‖xv(T ) − xp(T )‖ − Lp|δ
)

≤ lim
δ↓0

(
c(eKf δ − 1)

Kf δ

[
KW + TKL

]
eKf T − Lp|δ

)

≤ −L(x, kMPC(x, �)) + c(KW + TKL)eKf T

< 0 ∀x ∈ X̄ ↑
0 \B(�o

x , αc(c))
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with αc ∈ K given by

αc(c) � γ −1
L

(
c(KW + TKL) eKf T

)

where KW is a Lipschitz constant of W i∗ (x, �) over the compact domain X̄ ↑
0 ∩ X

i∗
f (�),

maximal over all � ∈ cov {�o}. Likewise, KL is a Lipschitz constant of L(x, u) with
respect to x, maximal over u ∈ U.

This proves the forward case in (6.25), with the reverse case following similarly.
As argued previously, this is sufficient to yield the ISS property of (6.19) with respect
to ‖d2‖ ≤ c ≤ c∗, which completes the proof.





Chapter 7

Computational aspects of robust adaptive MPC

7.1 Problem description

In contrast to the previously discussed general dynamics (6.8), for the purposes of
this chapter the system of interest is assumed to be of the following parameter-affine
form

ẋ = f (x, u) + g(x, u)θ + d(t) (7.1)

where θ ∈ Rp represents unknown parameters, which are assumed to lie within an
initially known, compact ball around the origin θ ∈ �0 = B(0, Mθ ).As before, the sys-
tem is assumed to be subject to pointwise constraints x ∈ X ⊆ Rn and u ∈ U ⊆ Rm,
and the mappings f : X × U → Rn, g : X × U → Rn × Rm are assumed to be both
locally Lipschitz in x and continuous in u. The disturbance d(t) is assumed to sat-
isfy a known pointwise bound ‖d(t)‖ ≤ Md < ∞ for all t ∈ R. Although the results
of this chapter technically hold for any Md < ∞, in practice it is assumed that
Md � Mθ .

The control objective is to feasibly stabilize x to a given compact set �o
x , that is not

necessarily robustly invariant with respect to the full uncertainty �0. Following the
development in Section 6.3.1, it is assumed that a set �o

u and instantaneous cost L(x, u)
are selected such thatAssumptions 6.3.3 and 6.3.5 are satisfied, where Definition 6.3.4
is interpreted in the context of (7.1).

The robust control design proposed in Section 7.2 depends on the knowledge
of appropriate Lipschitz bounds for the x-dependence of the dynamics f (x, u) and
g(x, u), and for the penalty functions L(x, u) and W (x, �). To this end, we assume the
following:

Assumption 7.1.1. A set of functions Lo
j : cov {X} × U → R≥0, j ∈ {f , g, L} and

Lo
W : cov {X} × cov {�o} → R≥0 are known which satisfy

Lo
f (�x, u) ≥ min

{
Lf

∣
∣ sup

x1, x2∈�x

(‖ f (x1, u) − f (x2, u)‖ − Lf ‖x1 − x2‖
) ≤ 0

}
(7.2a)

Lo
g(�x, u) ≥ min

{
Lg

∣∣ sup
x1, x2∈�x

(‖g(x1, u) − g(x2, u)‖ − Lg‖x1 − x2‖
) ≤ 0

}
(7.2b)
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Lo
L(�x, u) ≥ min

{
LL

∣∣ sup
x1, x2∈�x

(
L(x1, u) − L(x2, u) − LL‖x1 − x2‖

) ≤ 0
}

(7.2c)

Lo
W (�x, �) ≥ min

{
LW

∣∣ sup
x1, x2∈�x

(
W (x1, �) − W (x2, �) − LW ‖x1 − x2‖

)≤ 0
}

(7.2d)

where (7.2b) is interpreted in the sense of an induced norm. Furthermore, the Lo

are such that for any sets �1
x ⊆ �2

x ⊆ X and any u ∈ U, � ⊆ �0, it follows that
Lo

j (�1
x , u) ≤ Lo

j (�2
x , u), j ∈ {f , g, L}, and likewise Lo

W (�1
x , �) ≤ Lo

W (�2
x , �).

We emphasize that the Lipschitz bounds in Assumption 7.1.1 are with respect to
the x-dependence only, where the functions Lo

f , Lo
g , Lo

L can be parameterized in terms
of u. The vector fields f , g and the function L need only to be continuous in u, and the
functions Lo themselves need only to be piecewise continuous with respect to either
of their arguments. Similarly, Assumption 7.1.1 deals only with the x-dependence of
W (x, �), where the �-dependence is characterized in Section 7.2.3.

Remark 7.1.2. Definition of the functions Lo
f , Lo

g, Lo
L, Lo

w can involve varying
degrees of offline or online calculation. One could specify Lo

j , j ∈ { f , g, L}, to be
constants, determined offline to be maximal over compact X and U. Alternatively,
one could perform the indicated search online, thus providing the tightest possible
bound. A practical compromise could be to perform a partial search offline, for exam-
ple, by defining the Lo

j to be of the form Lo
j (�x, u) � L̂o

j (maxx′∈�x‖x′‖, ‖u‖), where

the surface L̂o
j : R≥0 × R≥0 → R≥0 is calculated offline by searching over level sets

of ‖x‖ × ‖u‖ in Rn × Rm. Then the online search is limited to the evaluation of
maxx′∈�x ‖x′‖.

Remark 7.1.3. One important technique for reducing the conservativeness of the
robust-control design in this chapter would be to use weighted norms of the form
‖x‖2 = xT �xx, where �x = �T

x > 0 can be selected to provide the tightest possi-
ble Lipschitz bounds. Similarly, the conservativeness of the adaptive mechanism
in the subsequent sections could be adjusted by incorporating a weighting matrix
�θ = �T

θ > 0 into the norm used to define the ball �0. This is equivalent to performing

a transformation of the form θ̄ = �
− 1

2
θ θ , ḡ(x, u) = g(x, u)�θ�

− 1
2

θ . For convenience of
presentation, explicit tuning matrices of this type are omitted throughout the chapter
under the pretense that they could be incorporated via such transformations.

7.2 Adaptive robust design framework

7.2.1 Method for closed-loop adaptive control

The adaptive controller presented in Section 6.3 was premised upon the idea of adapt-
ing a set-valued description of the parameter uncertainty, rather than the more typical
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adaptation of nominal parameter estimates. In this chapter, the set being adapted
is restricted to be a ball around a nominal estimate θ̂ , whose radius is based upon a
(scalar) error bound zθ ≥ ‖θ̃‖, where θ̃ � θ − θ̂ is the (unknown) identification error.
A defining characteristic of the result presented in this chapter is the propagation of
this uncertainty ball in a manner that satisfies the essential characteristics required
of the general identifiers of Chapter 6.3.

The results presented throughout Sections 7.2 and 7.3 assume that an output of the
form y = ẋ + e(t) is continuously available, by either measurement or calculation, in
which e(t) represents an arbitrary error with known bound ‖e(t)‖ ≤ Me < ∞, ∀t ∈ R.
A discussion on removing this assumption by the incorporation of an asymptotically
convergent observer is contained in Section 7.4.

The adaptive controller is implemented according to Algorithm 7.2.1 below, that
updates successively the uncertainty set � in a discrete fashion. It is important to
note that, although a continuous-time identifier ψ̇ is calculated online, the underlying
robust control calculation is based upon the fixed value θ̂ , which is only updated at
the reset step. Similarly, the uncertainty radius zθ is only contracted during a reset,
despite the fact that the contraction ratio εz(t) is continuously recalculated online. The
feedbacks κmpc and κε appearing in the algorithm will be specified in Section 7.2.2.

The behavior of Algorithm 7.2.1 is technically that of a hybrid system, and thus
all states would be most properly described as evolving in a hybrid time domain
as in Chapter 4. However, since successive resets of the algorithm are necessarily
separated by intervals of nonzero (real) time, we simplify the notation by omitting
the explicit dependence upon an event-time coordinate. Instead, we denote pre-reset
and post-reset values at time ti using t−i and t+i , respectively.1

Algorithm 7.2.1. Specify design constants Tmax > 0, cλ > 0, and 0 < εz � 1.
Starting from time t0, the controller is implemented in the following iterative fashion:

1. Initialization: zθ = Mθ , θ̂ = 0.
2. While the following condition holds (where λ{·} denotes the least eigenvalue):

(

2 <

1

2
ε∗

z (2 − ε∗
z )z

2
θ + (Md + Me)
1

)
AND

(
λ{�2} <

(Md + Me)�1 + cλ

(1 − ε∗
z )zθ

)

(7.3a)

Implement the following dynamic feedback (recalling y � ẋ + e(t)) over a
maximal interval t ∈ [ti, ti+1):

u � κmpc(x, θ̂ , zθ , φ, �, ψ , 
) (7.3b)

ε∗
z � κε(x, θ̂ , zθ , φ, �, ψ , 
) ≥ εz (7.3c)

1 For the states which evolve differentially, values at t−i and t+i are respectively equivalent to standard left
and right limits limδ↑0 ti + δ and limδ↓0 ti + δ, respectively. However, since ε∗

z (t) is defined algebraically,
its trajectory ε∗

z (·) need not be continuous in any meaningful sense, and thus ε∗
z (t−i ) �= limτ↑ti ε∗

z (τ ) is
possible. This implies that the same evaluation of ε∗

z must be applied for both the test condition and reset
mappings in (7.4).
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ψ̇ = gT(x, u)(y − f (x, u) − g(x, u)ψ) ψ(t+i ) = θ̂ (7.3d)


̇1 = ‖y − f (x, u) − g(x, u)ψ‖ 
1(t+i ) = 0 (7.3e)


̇2 = ‖y − f (x, u) − g(x, u)ψ‖2 
2(t+i ) = 0 (7.3f )

φ̇ = gT(x, u)(y − f (x, u) − g(x, u)θ̂ ) φ(t+i ) = 0 (7.3g)

�̇1 = ‖g(x, u)‖ �1(t+i ) = 0 (7.3h)

�̇2 = gT(x, u)g(x, u) �2(t+i ) = 0 (7.3i)

3. When the following condition is (first) satisfied at an arbitrary time t = ti+1,
(


2 ≥ 1

2
ε∗

z (2 − ε∗
z )z

2
θ + (Md + Me)
1

)
OR

(
λ{�2} ≥ (Md + Me)�1 + cλ

(1 − ε∗
z )zθ

)

(7.4a)

Then select the new parameter estimate

θ̂ o �

⎧
⎨

⎩
ψ 
2 ≥ 1

2
ε∗

z (2 − ε∗
z )z

2
θ + (Md + Me)
1

θ̂ + �−1
2 φ otherwise

(7.4b)

and perform the resets (denoting z+
θ ≡ zθ (t+i+1), etc.):

z+
θ = (

1 − ε∗
z

(
t−i+1

))
zθ

(
t−i+1

)
(7.4c)

θ̂+ = ϒθ

(
θ̂ o, θ̂

(
t−i+1

)
, zθ

(
t−i+1

)
, ε∗

z

(
t−i+1

))
(7.4d)

ϒθ

(
θ̂ o, θ̂ , zθ , ε∗

z

)
� θ̂ + (θ̂ o − θ̂ )

√
ε∗

z (2 − ε∗
z ) zθ

‖θ̂ o − θ̂‖ sat1
0

(
‖θ̂ o − θ̂‖

√
ε∗

z (2 − ε∗
z ) zθ

)

(7.4e)

where sat1
0(·) denotes saturation to the scalar interval [0, 1] ⊂ R.

4. Iterate back to Step 2, incrementing i := i + 1.

The above algorithm differs from many approaches for online estimation and
adaptive control, such as the results in References 92, 125, 151, and 152, that are based
upon continuous re-solving of least-squares estimation problems over moving hori-
zons of past history. In contrast, Algorithm 7.2.1 actually contains two independent
identification mechanism, as represented by the groups (ψ , 
1, 
2) and (φ, �1, �2).
Both of these mechanisms are driven entirely by current measurement signals, and
are not as computationally expensive as moving horizon estimation approaches.

The underlying principle behind Algorithm 7.2.1 is that the uncertainty descrip-
tion θ ∈ B(θ̂ , zθ ) remains fixed until such time as one of the identifiers can generate
θ̂o satisfying θ ∈ B(θ̂ o, (1 − ε∗

z ) zθ ), for some contraction ε∗
z ∈ (0, 1). The asymptotic

identifier ψ in (7.3d) is driven by error observed between the plant and model, with
dynamics

˙̃
ψ = −g(x, u)T

(
g(x, u)ψ̃ + e(t) + d(t)

)
, ψ̃ � θ − ψ. (7.5)
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Together, the accumulators (7.3e) and (7.3f) measure the worst-case progress of the
identifier in the presence of noise, and trigger a reset if ‖ψ̃‖ ≤ (1 − ε∗

z ) zθ can be
guaranteed. Although the identifier of (7.3d)–(7.3f) could technically be omitted,
its inclusion improves transient performance of the adaptation by providing quick
response when significant plant-model mismatch is observed.

The second estimator (7.3g)–(7.3i) accumulates the effects of any plant-model
mismatch based upon the constant value θ̂ . Only once the regressor matrix
2 achieves
sufficient magnitude in all of its eigen-directions is the least-squares estimation prob-
lem then solved. This means that rather than assuming a persistency of excitation
condition holds over horizons of pre-specified length, the algorithm selects the inter-
val length according to the observed excitation in the system. The advantage of this
estimator, versus that in (7.3d)–(7.3f), is that it continues to trigger contractions of
the uncertainty bound zθ even in the absence of observed plant-model mismatch
(e.g., when θ̂ has converged to θ , but zθ remains large). In order to prevent
“double accounting” of the excitation in the system, it is necessary that all accu-
mulators be reset to zero irrespective of the specific identifier that triggered the
update. Admittedly, this means that some useful excitation can be lost during the
reset of 
2. However, this approach does avoid the failure to register excitation
due to a moving window that has been selected too short, as in References 92,
151, and 152.

Although the test condition (7.4a) ensures that θ ∈ B(θ̂ o, (1 − εz) zθ ) immediately
prior to reset, there is no guarantee that this ball is contained within the previous
B(θ̂ , zθ ). It is expected from Criterion 6.4.1 that the underlying robust controller will
require an uncertainty description � whose reset behavior satisfies both θ ∈ �(t+i )
and �(t+i ) ⊆ �(t−i ). The following proposition demonstrates how the update (7.4d)
can be used to generate such a set.

Proposition 7.2.2. Define the set �(t) ≡ �(θ̂ (t), zθ (t), ε∗
z (t)) � B(θ̂ , ζθ ), where ζθ ≡

ζθ (zθ , ε∗
z ) �

(√
2−ε∗

z
ε∗

z

)
zθ , and assume that (7.3c) is specified as being any constant

ε∗(t) ≡ εz ∈ [εz, 1], ∀t ≥ t0. Then the reset behavior of � under Algorithm 7.2.1
satisfies

a. �(t+i ) ⊆ �(t−i ).
b. θ ∈ B(θ̂ (t−i ), zθ (t−i )) ⊆ �(t−i ) implies θ ∈ B(θ̂ (t+i ), zθ (t+i )) ⊆ �(t+i ).

which by induction implies

c. �(τ2) ⊆ �(τ1), for all t0 ≤ τ1 ≤ τ2.
d. θ ∈ B(θ̂ (τ1), zθ (τ1)) ⊆ �(τ1) implies θ ∈ B(θ̂ (τ2), zθ (τ2)) ⊆ �(τ2), ∀t0 ≤ τ1 ≤ τ2.

The intuition which underlies the claim of Proposition 7.2.2 is demonstrated
in Figure 7.1, for the worst-case scenario in which the unknown θ lies on the
boundary θ ∈ ∂B(θ̂ , zθ ). It can be seen from the figure that saturating the step-size



102 Robust and adaptive model predictive control of nonlinear systems

1

s ez (2 – ez)

 (1 – e)
 (1 – e)

(2 – ez)   –1 (1  – ez)eZ

(2 – ez)  – 1
ez

q

q°

q+

q

Q+

Q

Figure 7.1 Nested evolution of the uncertainty set � during a reset in Algorithm
7.2.1. Bold outer circles denote �, for pre-reset (solid) and post-reset
(dash) conditions. Dimensions normalized with respect to zθ (t−i )

‖θ̂+ − θ̂−‖ ≤ √
εz(2 − εz) zθ preserves the nested property of �, while at the same

time ensuring that for any θ̂ ∈ B(θ , zθ ), the saturation does not violate θ̂+ ∈ B(θ , zθ ).
The set � is clearly a conservative outer bound for the actual uncertainty B(θ̂ , zθ ),

since the additional margin (1 − εz) zθ is required solely to ensure that the successive
� are nested. However, we note that as εz → 1, then � approaches the actual uncer-
tainty B(θ̂ , zθ ), and Algorithm 7.2.1 reduces to a (non-adaptive) implementation of
the underlying robust controller.

7.2.2 Finite-horizon robust MPC design

To achieve robustness of the closed-loop system in the presence of constraints,
the parametric uncertainty can be explicitly accounted for using tools from the
robust-MPC literature. In Chapter 6.3, this was achieved by selecting a min–max
feedback MPC as the underlying robust controller. It would be trivial to show that
the feedback-MPC of Chapter 6.3 could be replaced with a simpler, more conserva-
tive controller based on open-loop model predictions, as long as the calculations are
still performed within a min–max framework. However, it is our goal here to demon-
strate that adaptation can be incorporated into even the most simple of robust control
designs which do not make use of min–max calculations. In the following, the idea
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of using simple Lipschitz-based error bounds to generate an uncertainty cone around
a nominal state prediction is extended2 from Reference 119.

The resulting feedbacks κmpc and κε in (7.3b) and (7.3c) are of the form:

κmpc(x, θ̂ , zθ , φ, �, ψ , 
) = up∗(0) (7.6a)

κε(x, θ̂ , zθ , φ, �, ψ , 
) = ε∗
z (7.6b)

(up∗
[0, T∗], ε∗

z , T ∗) � arg min
u

p
[0,T ]

εz∈[εz , 1]
T∈[0,Tmax]

J (x, up
[0,T ], T , θ̂ J , zJ

θ , εz, �J ) (7.6c)

(θ̂ J , z J
θ , �J

1 , �J
2 )

�

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(ψ , (1 − εz)zθ , 0, 0) 
2 ≥ 1

2
εz(2 − εz) z2

θ + (Md + Me)
1

(θ̂ + �−1
2 φ, (1 − εz) zθ , 0, 0) λ{�2} ≥ (Md + Me)�1 + cλ

(1 − εz) zθ

(θ̂ , zθ , �1, �2) otherwise

where the function ζθ (zθ , εz) is defined in Proposition 7.2.2. The underlying robust-
control calculation used to evaluate J (detailed below) is based upon the expanded
uncertainty set � of radius ζθ defined in Proposition 7.2.2, rather than the actual
uncertainty zθ . The optimization of εz dictates the conservatism of the approximation
of zθ by ζθ . In doing so, it follows that the overall cost can never exceed that of a non-
adaptive implementation (i.e., realizable by selecting εz = 1). Note that the testing
of the reset conditions in (7.6) prior to solving the robust-MPC problem improves
performance but is not essential, and can be omitted (i.e., by setting (θ̂ J , z J

θ , �J ) ≡
(θ̂ , zθ , �)) if calculating �−1

2 within the optimization is not practical.
The cost J is defined as follows:

J (x, up
[0,T ], T , θ̂ J , zJ

θ , εz,�J )=
∫ T

0
L′(xp, up, zp

x ) dτ + W ′(xp(T ), zp
x (T ), ζ p

θ (T ), �)

(7.7a)

s.t. for τ ∈ [0, T ] : ẋp = f (xp, up) + g(xp, up)θ̂ J , xp(0) = x (7.7b)

żp
x =

(
Lp

f + Lp
gM�

)
zp

x + ‖g(xp, up)‖ζ J
θ

+ Md , zp
x (0) = 0 (7.7c)

X p(τ ) ⊆ X, u(τ ) ∈ U (7.7d)

X p(T ) ⊆ X
′
f (ζ p

θ (T ), �) (7.7e)

2 The manner in which we explicitly incorporate the error bound into the cost functional (7.7a) by defining
L′ and W ′ relaxes the very restrictive assumptions in Reference 119 regarding strict decrease of Ẇ , and
allows us to quantify the robustness beyond the simple nominal robustness proven in Reference 119.
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where L′(xp, up, zp
x ) � L(xp, up) + Lp

L zp
x (7.7f )

W ′(xp, zp
x , ζ p

θ , �) � max
�

p
T ∈�(ζ p

θ ,�)
{W (xp, �p

T ) + Lp
W (X p, �p

T ) zp
x } (7.7g)

X
′
f (ζ p

θ , �) �
⋂

�
p
T ∈�(ζ p

θ ,�)

Xf (�p
T ) (7.7h)

X p(τ ) � B(xp(τ ), zp
x (τ )) (7.7i)

ζ J
θ � ζθ (z

J
θ , εz) (7.7j)

� � B(θ̂ J , ζ J
θ ) (7.7k)

�(ζ p
θ , �) �

{
�

p
T

∣∣ ∃θ̄ s.t. �
p
T � B(θ̄ , ζ p

θ (T )) ⊆ �
}

(7.7l)

Lp
j (τ ) � Lo

j (X p(τ ), up(τ )), j ∈ {f , g, L} (7.7m)

M� � satMθ

0 (‖θ̂ J ‖ + ζ J
θ ) (7.7n)

We note that ζ J
θ in (7.7j) is a constant with respect to prediction time τ in problem (7.7).

In contrast, ζ p
θ (T ) is the final value in a predicted trajectory ζ

p
θ (τ ), whose computation3

is discussed in Section 7.3. The interpretation of (7.7g), (7.7k) is that W ′ is defined
according to the worst-case ball of radius ζ

p
θ (T ) existing in �.

The state zp
x (τ ) provides an upper bound on the deviation maxθ∗∈� ‖xp(τ ) −

x∗(τ )‖, where xp denotes the nominal estimate of (7.7b), while x∗ denotes the worst-
case solution for the actual system (7.1). Therefore, X p

[0,T ] has the form of a quadratic
cone, centered around the nominal trajectory xp

[0,T ], with radius defined by zp
x [0,T ].

Furthermore, (7.7f) and (7.7g) are defined such that evaluation of L′ and W ′ along
the nominal trajectory xp provides an upper bound on the worst-case values L and W
for the cone X p.

Using only a nominal model prediction (i.e., (7.7b,c)), it is not possible to pre-
dict the future behavior of the parameter estimator θ̂ , as was possible in the min–max
framework of Chapter 6.3. However, based upon the excitation of the nominal pre-
diction xp

[0,T ], one can generate from X p
[0,T ] a lower bound on the future contraction

of the uncertainty-radius zθ (or equivalently ζθ , since they contract together, and εz

is presumed constant with respect to the prediction time-coordinate). Even without
knowledge of future values of θ̂ , the fact that zθ contracts faster along some trajectories
is potentially useful to the optimization. This is why (7.7g,h) are defined according
to the worst-case future behavior of θ̂ , given the predicted error bound ζ

p
θ (T ). By

Proposition 7.2.2, this worst-case search can be restricted to balls contained within
the current uncertainty set � = B(θ̂ J , ζ J

θ ).

3 Note that the indicated dependence of (7.7) on the arguments εz and � is due solely to the dependence
of the estimator ζ

p
θ (T ).
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Remark 7.2.3. The implication of (7.7c, f) is that the functions Lo
j , j ∈ {f , g, L} are

continuously re-calculated along τ ∈ [0, T ] as X p(τ ) expands. If this is not feasible,
the variables Lp

j can be treated as constants with respect to τ ∈ [0, T ], and their values
can be added as minimization variables in (7.6c), subject to the additional constraints
(assuming the Lo

j are appropriately re-defined to accept a set-valued argument �u in
place of u)

Lp
j ≥ Lo

j

(
⋃

τ∈[0,T ]

X p(τ ),
⋃

τ∈[0,T ]

{u(τ )}
)

, j = {f , g, L}. (7.7o)

Remark 7.2.4. The greatest source of conservatism in the calculation of (7.7) is in the
generation of the error bound zp

x ≥ ‖xp − x‖ in (7.7c), which exhibits unstable linear
growth. At the expense of increased online computation, the results in the remainder
of this chapter could be re-developed with (7.7c) replaced by the significantly less
conservative bound (where f p ≡ f (xp, u), f s ≡ f (s, u), etc.)

zp
x = √

2Vx, zp
x (0) = Vx(0) = 0 (7.8a)

V̇x = max
s∈∂B(xp,zp

x )

{
(xp−s)T (f p−f s+gpζ J

θ )+‖(xp−s)T (gp−gs)‖M�+‖xp−s‖Md

}

(7.8b)

This results in the construction of the tightest quadratic cone centered around the
nominal estimate xp. The substantial benefit of using (7.8) over (7.7c) is to account
for stabilizing terms appearing in f (x, u) that can partially counteract the effects of
the uncertainty.

7.2.3 Stability of the underlying robust MPC

The identifier ζ
p
θ ≡ ζθ (zp

θ , εz) in (7.7g, h, k) represents an internal model of the iden-
tifier state ζθ (zθ , εz), which means that Algorithm 7.2.1, together with (7.6)–(7.7),
defines an adaptive robust feedback structure of the form depicted in Figure 6.2.
Noting that the underlying robust control calculation in (7.7) is non-standard, we
first demonstrate the robust stability of the controller in the absence of this internal
identification model.

The first step to establish robust stability requires a characterization of the require-
ments imposed on the terminal functions W (x, �) and Xf (�), similar to those given
previously in Section 6.4.3. Note that for the purpose of the following criteria, � is
interpreted as an arbitrary set-valued parameter, that need not take the form of a ball.

Criterion 7.2.5. The set-valued terminal constraint function Xf : cov {�0} →
cov {X} and terminal penalty function W : Rn × cov {�0} → [0, +∞] are such that
for each � ∈ cov {�0}, there exists kf (·, �) : Xf → U satisfying

1. Xf (�) �= ∅ implies that �o
x ∩ Xf (�) �= ∅ and Xf (�) ⊆ X is closed,

2. W (·, �) is locally Lipschitz w.r.t. x ∈ Xf (�), satisfying (7.2d),
3. kf (x, �) ∈ U, ∀x ∈ Xf (�),
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4. Xf (�) and �x(�) ⊆ {
�o

x ∩ Xf (�)
}

are both strongly positive invariant with
respect to the differential inclusion ẋ ∈ F � f (x, kf (x, �)) + g(x, kf (x, �))� +
D, where D � B(0, Md).

5. for all x ∈ Xf (�),

max
f ′∈F

(
L(x, kf (x, �)) + Ẇ (x, �)

) ≤ 0

where Ẇ denotes the forward derivative of W in the direction f ′.

As well, we assume that the �-dependence of the functions W (x, �) and Xf (�)
satisfies the following extension of Criterion 6.4.5.

Criterion 7.2.6. For any �1, �2 ∈ cov {�0} such that �1 ⊆ �2,

1. Xf (�2) ⊆ Xf (�1)
2. W (x, �1) ≤ W (x, �2), for all x ∈ Xf (�2)
3. LW (X p, �1) ≤ LW (X p, �2), for all X p ⊆ X.

Remark 7.2.7. The switching-based construction of W (x, �p
T ) and Xf (�p

T ) in
Section 6.5.2 can be incorporated into (7.7) by designing an indexed collection of
candidates (W i(x), X

i
f , Lo

W (X p)i, �i
0), in which W i(x) is a robust CLF with respect

to θ ∈ �i
0 ⊆ �0, with domain of attraction X

i
f ⊆ X, and Lipschitz bound Lo

W (X p)i.
Then (7.7g) and (7.7h) could be replaced with expressions of the form

W ′ � max
�

p
T ∈�

min
i∈IX (�p

T )
{W ′i(x) + Lo

W (X p)i}, IX �= ∅ (7.9)

given definitions

I�(�p
T ) �

{
i | �

p
T ⊆ �i

0

}
, IX �

{
i ∈ I� | X p(T ) ⊆ X

′i
f

}
(7.10)

As in Chapter 6.3, this provides a constructive approach for ensuring that the �-
dependence of W ′ and X

′
f satisfies Criterion 7.2.6. However, to preserve clarity of

presentation we do not pursue this extension here.

Criteria 7.2.5 and 7.2.6 are sufficient to yield the following claim of robust
stability, in the absence of an internal model for the identifier ζ

p
θ :

Theorem 7.2.8. (Robust stabilization) Given system (7.1), target �o
x , and

penalty L satisfying the assumptions of Section 7.1, assume that functions W
and Xf are designed to satisfy Criteria 7.2.5 and 7.2.6. Let X0 ≡ X0(�0)
denote the domain of attraction of a non-adaptive implementation of the robust
controller u = κmpc(x, θ̂ , zθ , φ, �, ψ , 
) ≡ κmpc(x, 0, Mθ , 0, 0, 0, 0) defined by (7.6).
Furthermore, let X 1

0 � X 1
0 (�0) ⊆ X denote the set of initial states, with uncertainty

�(t0) = �0, for which (7.6) has a solution when (7.7) is calculated under the condi-
tion ζ

p
θ (T ) ≡ ζ J

θ . Then under the closed-loop control ofAlgorithm 7.2.1, �o
x is feasibly

asymptotically stabilized from any initial state x0 ∈ X 1
0 , and furthermore X 1

0 ⊇ X0.
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Theorem 7.2.8 proves robust stabilization for an adaptive control structure of the
form depicted in Figure 6.1. Incorporation of an internal model of the identifier that
yields a control structure of the form in Figure 6.2 is the subject of the next section.

7.3 Internal model of the identifier

Unlike the feedback-MPC results of Section 6.3, the trajectory xp of (7.7b) and
the integral component of the cost in (7.7a) are independent of the estimator ζ

p
θ (τ ).

This admittedly reduces the effectiveness of embedding an internal model of the
identifier within the model predictions, since narrowing the uncertainty cone X p(τ )
by anticipating the effects of future adaptation was a major advantage highlighted
in Section 6.3. However, the fact that ζ

p
θ (T ) appears in the terminal expressions of

(7.7a) and (7.7e) implies that its estimation can improve the overall performance by
reducing the conservatism of the terminal penalty (i.e., the robust-CLF estimate of
the remaining cost-to-go). In particular, calculation of ζ

p
θ can counteract the effects

of a large initial uncertainty �0 that prevents the design of any suitable robust-CLF
W (x), or results in an unacceptably small domain Xf .

For convenience, we define the function

G(x, u) � g(x, u)T g(x, u), (7.11)

about which we make the assumption.

Assumption 7.3.1. A known functionLo
G : cov {X} × U → R≥0 satisfies the following

Lipschitz-like bound for G:

Lo
G(�x, u) ≥ min

⎧
⎨

⎩
LG

∣∣∣∣∣∣
sup

x1,x2∈�x
‖v‖=1

(
vT
[
G(x1, u) − G(x2, u)

]
v − LG‖x1 − x2‖

)≤ 0

⎫
⎬

⎭

(7.12)

where additionally �1
x ⊆ �2

x ⊆ X implies Lo
G(�1

x , u) ≤ Lo
G(�2

x , u).

In order to clarify discussions throughout the remaining sections,4 we consider
the following definition.

Definition 7.3.2. Let A be an arbitrary symmetric matrix, with eigenvalues {λi} and
(ortho-normal) eigenvectors {vi}, and let ‖v‖ = 1 be an arbitrary direction. Then the
magnitude of A in direction v refers to the quantity vT Av = ∑

i λ
i〈vi, v〉.

While the above quantity could be viewed as defining a norm for the vector v, our
perspective here relates to vT Av as quantifying the total eigen-contributions of A in
the direction v.

4 And for lack of better terminology.
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The error bound ζ
p
θ [0,T ] can be determined from xp

[0,T ], up
[0,T ], zp

x [0,T ] using Algo-
rithm 7.3.4 below, in a way that mimics the reset behavior of Algorithm 7.2.1. Note
that Algorithm 7.2.1 can be implemented either simultaneously or sequentially with
the generation of xp

[0,T ], up
[0,T ], zp

x [0,T ]. For computational considerations, it may be
desirable to limit the frequency (with respect to the prediction coordinate τ ) with
which the eigenvalues λ{�} are queried. This is why the procedure allows for spec-
ifying a schedule of times Iλ(t) ∈ [0, T ] at which the eigenvalues are tested5. This
schedule may contain any combination of points or intervals (i.e., of nonzero measure)
in [0, T ], as long as it is defined relative to actual time in the following sense.

Assumption 7.3.3. The schedule Iλ : R → [0, T ] is selected such that τ ∈ Iλ(t)
implies (τ − δ) ∈ Iλ(t + δ), for any τ ∈ [0, T ], δ ∈ [0, τ ].

In practice, such a Iλ(t) could be easily defined using modular arithmetic. Note
that Assumption 7.3.3 need only apply in the forward direction δ ≥ 0. Qualitatively,
this implies that the “density” of the sampling schedule may not increase along the
prediction horizon.

Algorithm 7.3.4. Given the trajectories xp
[0,T ], up

[0,T ], zp
x [0,T ]:

1. Initialize: z p
θ = zJ

θ (t), �
p
10 = �J

1 (t), �
p
20 = �J

2 (t)
2. While the following condition holds:

(
τ �∈ Iλ

)
OR

(
λ{�p

2} <
(Md + Me)�p

1 + cλ

(1 − εz)z
p
θ

)

Calculate the following accumulation over a maximal interval of the form
τ ∈ [τi, τi+1), where τi+1 ∈ (τi, T ]:

�̇
p
1 = ‖g(xp(τ ), up(τ ))‖ + Lo

g(X
p(τ ), up(τ ))zp

x (τ ), �
p
1(τ+

i ) = �
p
10 (7.13a)

�̇
p
2 = G(xp, up) − (Lo

G(X p, up) zp
x )I , �

p
2(τ+

i ) = �
p
20 (7.13b)

3. When the following condition is (first) satisfied, at some arbitrary τ = τi+1,

(
τ ∈ Iλ

)
AND

(
λ{�p

2} ≥ (Md + Me)�p
1 + cλ

(1 − εz)z
p
θ

)
(7.14)

Then perform the resets

zp
θ

+ = (1 − εz) zp
θ (τ−

i+1) �
p
10

+ = 0 �
p
20

+ = 0 (7.15)

4. If τ < T Then Iterate to Step 2, Else Exit

The most important property of (7.13) is that the lower bound provided by the
eigenvalues of �

p
2(τ ), and the upper bound of �

p
1(τ ), are both path-independent

5 A similar testing schedule could easily be incorporated into Algorithm 7.2.1, although the difference in
timescales implies that assuming continuous testing of λ{�2} is more realistic for Algorithm 7.2.1 than for
Algorithm 7.3.4.
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bounds with respect to the antagonists x∗
[0,T ] ∈ X p

[0,T ]. In other words, the magnitude
of �

p
2(τ ), in any arbitrary direction, must accumulate slower than the correspond-

ing accumulation in (7.3i) under the worst-case θ ∈ � ≡ B(θ̂ J , zJ
θ ). This property is

quantified in the following claim.

Claim 7.3.5. At any instant t such that
(
λ{�p

2} <
(Md+Me)�p

1+cλ

(1−εz )zp
θ

)
, the following is a

consequence of (7.13) for any sufficiently small δ > 0:

sup
‖v‖=1

x∗[0,δ]∈X p
[0,δ]

(
vT

[
�

p
2(δ) −

∫ δ

0
G(x∗, up) dτ − �2(t)

]
v
)

≤ 0 (7.16a)

inf
x∗

[0,δ]∈X p
[0,δ]

(
�

p
1(t) −

∫ δ

0
‖g(x∗, up)‖ dτ − �1(δ)

)
≥ 0 (7.16b)

where the supremum is taken over arbitrary piecewise-continuous x∗
[0,δ] ∈ X p

[0,δ].

Clearly, the likelihood of (7.13b) accumulating sufficient magnitude to trigger
a reset worsens along the prediction horizon τ ∈ [0, T ] as the error bound zp

x grows.
Practical considerations suggest that computational resources would be best employed
by defining a testing schedule Iλ focussed on the early portions of the prediction
horizon where the occurrence of a reset is the most likely.

Proposition 7.3.6. (Adaptive robust stabilization) Let the identifier ζ
p
θ (T ) �

ζθ (z
p
θ (T ), εz) in (7.7) be generated by Algorithm 7.3.4. Then the statement of Theorem

7.2.8 applies, for some new domain of attraction x0 ∈ X 2
0 satisfying X 1

0 ⊆ X 2
0 ⊆ X.

In the interest of improving the performance resulting from application of
(7.13b), but without significantly increasing online computational complexity,
Assumption 7.3.1 can be generalized to allow for the use of tighter Lipschitz-like
bounds of the following form.

Assumption 7.3.7. A known matrix-valued function Mo
G : cov {X} × U → R

p×p
�0 ,

where R
p×p
�0 denotes the space of positive semi-definite symmetric matrices, satisfies

the following:

Mo
G(�x, u) ≥ min

⎧
⎨

⎩
MG ∈ R

p×p
�0

∣∣

sup
x1,x2∈�x

‖v‖=1

(
vT
[
G(x1, u) − G(x2, u) − MG‖x1 − x2‖

]
v
) ≤ 0

⎫
⎬

⎭
(7.17)

where additionally, �1
x ⊆ �2

x ⊆ X =⇒ sup‖v‖=1 vT (Mo
G(�1

x , u) − Mo
G(�2

x , u))
v ≤ 0.
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Assumption 7.3.1 can be viewed as a special case of Assumption 7.3.7, in which
the matrix function Mo

G happens to takes values within the class of positive scalar mul-
tiples of identity, and is hence parameterizable by Lo

G . Similarly, one could moderate
performance versus the complexity involved in defining Mo

G by searching over other
subsets of Rp×p

�0 , such as the class of diagonal matrices MG ∈ R
p×p
�0 parameterized by

p scalar functions LGi , i = 1 . . . p. This yields the following result.

Corollary 7.3.8. Let the identifier ζ
p

θ (T ) in (7.7) be generated by Algorithm 7.3.4,
with the update law in (7.13b) replaced by

�̇
p
2 � G(x p, u p) − Mo

G(X p, u p) z p
x (7.18)

Then the statement of Theorem 7.2.8 applies, for some new domain of attraction
x0 ∈ X 3

0 satisfying X 2
0 ⊆ X 3

0 ⊆ X.

There is the potential to define more general update laws for (7.13), based upon
knowledge of the eigenvectors of G(x p, u p). This would provide a clear benefit in
terms of performance, since it would then be possible to maintain the accumulator
�

p
2 in (7.13b) positive semi-definite, as the true �2 in (7.3i) is guaranteed to be.

However, this would result in a substantial increase in computational requirements,
which in most cases could be put to more beneficial use elsewhere in the underlying
robust controller calculation, such as implementing the modification in Remark 7.2.4.

7.4 Incorporating asymptotic filters

The results in Sections 7.2 and 7.3 were based on the assumption that an output
signal of the form y = ẋ + e(t) was available for identification purposes. If this is not
the case, then it becomes necessary to construct a state predictor, whose prediction
error drives the parameter identification. For example, one could use an approach
similar to that in References 73 and 74 to decouple the dynamics of the observer and
identification mechanisms. We will describe briefly the impact of this modification
on the design presented in Sections 7.2 and 7.3.

The parameter estimator (ψ , 
) in (7.3d)–(7.3f) can be augmented with a state
predictor of the form

˙̂xψ = f (x, u) + g(x, u)ψ + kc(x − x̂ψ) + 1

kc
cψ̇ , xψ (0) = x(0) (7.19a)

with kc > 0 a design constant, ψ̇ an update law yet to be defined, and c the output of
the filter

ċ = kc(g(x, u) − c), c(0) = 0. (7.19b)

Defining the error signal x̃ψ � x − x̂ψ and the quantity ηψ � x̃ − 1
kc

cψ̃ , it can be
shown that the dynamics of ηψ satisfy

η̇ψ = −kcηψ + d(t) ηψ (0) = 0
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and thus ηψ is bounded ‖ηψ‖ ≤ Md
kc

for all t ≥ 0. This means that kcx̃ = cψ̃ + kcηψ (t)
can be viewed as a measurable replacement for the expression (y − f (x, u) −
g(x, u)ψ) ≡ gψ̃ + e(t) + d(t) used in (7.3d)–(7.3f). The new update laws then take
the form

ψ̇ = kcc
T x̃ψ 
̇1 = ‖kcx̃ψ‖ 
̇2 = ‖kcx̃ψ‖2 (7.19c)

and the test condition for 
 in (7.4a) remains unchanged (interpreted with Me ≡ 0).
A similar filter for the (φ, �) identifier in (7.3g)–(7.3i) would take the form

x̂φ = f (x, u) + g(x, u)θ̂ + kc(x − x̂φ) (7.20a)

φ̇ = kc cT x̃φ (7.20b)

�̇1 = ‖c‖ (7.20c)

�̇2 = cT c (7.20d)

where c is given by (7.19b), and once again the corresponding test condition is
unchanged. With the above definitions, it can be shown that all of the results in
Section 7.2 hold; that is, satisfaction of condition (7.4a) is sufficient to ensure that
‖θ̂ o − θ‖ ≤ (1 − ε∗

z )zθ , and hence a contraction of zθ is allowed.
Unfortunately, the approach in Section 7.3 for calculating the internal model z p

θ

becomes somewhat more challenging with (7.19) and (7.20). Although it is straight-
forward to predict the trajectory c p

[0,T ] used in defining �
p
1 and �

p
2 , it becomes

difficult to compensate for the effects of deviation away from the nominal trajectory,
since analogous replacements for Lo

g and Lo
G would involve the propagation of the

differential sensitivity equations for the filter c. Such an approach is generally not
practical. A more tractable approach would be to recognize that c ≈ g(x, u) for suf-
ficiently large kc, although in practice, sensitivity to measurement noise will impose
an upper limit on kc. Nonetheless, this would motivate replacing (7.13) with

�̇
p
1 = ‖c(τ )‖ + k�Lo

g(X
p(τ ), u p(τ ))z p

x (τ ), �
p
1 (τ+

i ) = �
p
10 (7.21a)

�̇
p
2 = c(τ )T c(τ ) − k�(Lo

G(X p, u p) z p
x )I , �

p
2 (τ+

i ) = �
p
20 (7.21b)

in which the constant k� > 1 is chosen “sufficiently large,” dependent upon kc.

7.5 Simulation example

In order to demonstrate the lack of robustness of nominal model MPC in the presence
of state constraints, Grimm et al. [70] presented a state-constrained version of the
classic “Artstein’s Circles” problem first proposed in Reference 15. Although Art-
stein’s problem is an interesting nonlinear control challenge for a variety of reasons,6

the features most relevant toward the robustness results in Reference 70 are that the
dynamics of the 2-state system are drift-free, while the affine control vector field steers

6 The most notable being that the system does not admit any smooth Lyapunov function, and is thus not
controllable by any continuous feedback [15]. The system contains a control-singularity at the origin.
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the state toward the origin along directions of circular rotation (and hence the direction
of rotation is determined by the sign of the input). The robustness issue addressed in
Reference 70 corresponds to the question of robustly selecting the feasible direction
of rotation when one path is blocked by a state constraint.

The example problem presented here is in some respects very different from
Artstein’s original problem,7 yet it too meets the general description provided above,
and exhibits the same lack of nominal robustness with respect to direction of rotation
as studied in Reference 70.

7.5.1 System description

The system under consideration is given by the dynamics

ẋ1 = −x2x3 ẋ2 = (x1 − θ1)x3 ẋ3 = (1 + 0.5θ2)u (7.22)

subject to the uncertainty ‖θ‖ ≤ 0.2 � Mθ . The objective is to regulate to the tar-
get �o

x = {x ∈ R3 | x2 = 0}, subject to the constraints X = {x ∈ R3 | |x1| ≤ 1 and
|x3| ≤ 1} and U = {|u| ≤ 1}. It can be seen that in the x1 − x2 plane, the flows of
the system rotate around the (uncertain) point (x1, x2) = (θ1, 0), with angular velocity
x3. As is shown in Figure 7.2, identification of the parameter θ1 helps to expand the
domain of feasible attraction by enabling the controller to select the correct direction
of rotation to feasibly reach the x1 axis. The true parameter values used in (7.22) are
θ = (−0.18, 0.05).

The cost function is taken to be L(x, u) = 0.1
1+Mθ

|x2| + 0.9 |u|, which can be seen to
satisfy L(x, u) ≤ 1 along any feasible trajectory of the uncertain system. It is assumed
that an output signal y = ẋ + e(t) is available, with accuracy ‖e‖ ≤ 0.01 � Me. Other
parameters used in the controller are selected as εz = 0.05, cλ = 0.005, and Tmax = 1.
For ease of computation, the optimal control problem (7.6) was minimized over the
class of PWC control signals u p(τ ) supported by a uniform time-discretization of
0.1 seconds, with (7.6) only re-solved at the switching nodes.

7.5.2 Terminal penalty

Since it is known that the system flows along circular orbits, a terminal penalty sat-
isfying Criterion 7.2.5 can be constructed by (analytically) calculating the minimum
time to the target using control values u ∈ {−1, +1}. The calculation is relatively
inexpensive, so it is computed both for the current uncertainty set � (based on the
tightest square containing the ball � = B(θ̂ , ζθ )), as well as for each element in a
covering consisting of 30 evenly distributed hypercubic subsets. Since the most dom-
inant uncertainty is that of the θ1 parameter, these subsets are chosen as hypercubes

7 Our reason for modifying the dynamics from those proposed by Artstein was due primarily to the fact
that linearly parameterized perturbations of the dynamics skew the circularity of the orbits, and do not lend
themselves to any intuitive geometrical interpretation.
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Figure 7.2 Stabilizable regions in the x1 − x2 plane. The lightly-shaded area
represents the maximal region (projected onto x3 = 0) stabilizable by
a standard, non-adaptive robust-MPC controller. The darker area
represents the limiting bound on the stabilizable region achievable by
the proposed adaptive method, as the adaptation mechanism
approaches perfect, instantaneous identification of θ

of size ζ cov
θ × ζθ in the θ1 and θ2 coordinate directions respectively, where the dimen-

sion ζ cov
θ � ζ

p
θ (T ) + ζθ −ζ

p
θ (T )

30 is the smallest possible value for which an arbitrary ball
B(θ̄ , ζ p

θ (T )) ⊆ � is guaranteed to be contained within at least one member of the sub-
cover. Using the procedure outlined in Section 6.5.2, the terminal cost is then taken
to be of the form W (xf , �) = min{W 0(xf ), maxi=1...30{W i(xf )} }, where W 0 repre-
sents the calculation involving the full uncertainty set (and assuming the convention
xf �∈ X

j
f =⇒ W j = +∞ as indicated in Section 6.5.2).

For each of the 31 candidate uncertainty sets �j , the minimum-time to the x1-axis
is calculated by determining the amount of time (and radians traveled) spent in each
of acceleration, coast, and deceleration phases (or decelerate-accelerate-decelerate if
an overshoot is unavoidable), for both clockwise and counter clockwise rotation. The
penalty W j is then defined to be the lesser (feasible) of these two costs. In all cases,
the worst-case value of θ2 is given by θ̂2 + ζθ , while the worst-case value of θ1 is the
limit value which results in the longer arc-length.

Satisfaction of the terminal state constraint Xf is determined in similar fashion by
explicit testing for potential constraint violation along the minimum-time path. This
simply involves testing whether the worst-case circular path intersects the constraint
in question, and if so, whether the required stopping distance (in radians) is less than
the worst-case distance to the constraint. In other words, the region Xf is defined
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Figure 7.3 Closed-loop trajectories of the system states and applied control input
for Example 7.5, for initial condition (x1, x2, x3) = (0, 0.82, 0)

implicitly by declaring xf to be in Xf if the minimum-time trajectory in at least
one direction of rotation does not violate any constraints. The sequence of logical
tests involved is rather lengthy, but involves a straightforward testing for each of the
different manners in which a constraint could be violated. Since construction of the
terminal penalty and constraint region are not the main contribution of this work, we
omit further details.

7.5.3 Simulation results

The system was simulated from an initial state of x0 = (x1, x2, x3)0 = (0, 0.82, 0).
Given the initial uncertainty bound ‖θ‖ ≤ Mθ = 0.2, it is clear that rotation in at
least one direction must result in feasible stabilization to the origin. However, without
more accurate knowledge of θ1 it is impossible to guarantee which direction is the



Computational aspects of robust adaptive MPC 115

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−0.2

−0.1

0

0.1
Pa

ra
m

et
er

 e
st

im
at

es

0

0.05

0.1

0.15

0.2

U
nc

er
ta

in
ty

, z
q

0

0.2

0.4

0.6

0.8

1

Time (s)

C
on

tra
ct

io
n 

fa
ct

or
, e
z*

q1

q2

Figure 7.4 Closed-loop trajectories of the identifier states for Example 7.5, for
initial condition (x1, x2, x3) = (0, 0.82, 0)

feasible choice, and thus it can be seen from Figure 7.2 that these initial conditions
are not stabilizable using a standard (non-adaptive) robust-MPC calculation (i.e., the
necessary optimal control problem would not admit a feasible solution).

In contrast, the feasible closed-loop trajectories generated by the implementa-
tion of Algorithm 7.2.1 are presented in Figures 7.3 and 7.4. By choosing to initially
perturb the system using fairly aggressive control action, the reduction in parametric
uncertainty occurring at time t = 0.5 was predicted by the internal model ofAlgorithm
7.3.4 within the initial control problem solved at time t = 0. This allowed the con-
troller to proceed with a feasible control solution, despite the fact that the initial
(arbitrary) selection of counter clockwise rotation eventually proved to be the wrong
choice.

Following the first reduction of zθ at time t = 0.5, the new uncertainty set
θ ∈ B(θ̂ , zθ ) = B([−0.17, 0.06], 0.082) enabled the controller to conclusively select
clockwise rotation as the appropriate course of action. For this reason the optimal
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value of εz switched to ε∗
z ≈ 1, the value which minimizes the diameter zx(τ ) of

the uncertainty cone in (7.7c). However, by time t = 0.9s it became possible to
more precisely characterize θ ∈ B([−0.187, 0.032], 0.04), which briefly satisfied the
current-time test condition in (7.6) for an optimal value ε∗

z = 0.5.

7.5.4 Discussion

A key property of the above example is that the control problem involves making
a choice between various alternative outcomes (in this case the choice was essen-
tially between stabilization to either the positive or negative x1-axis, although in
general the number of candidates need not be finitely indexed). In the presence
of the full initial uncertainty θ ∈ B(0, 0.2), the worst-case scenarios involve the
extreme values θ1 ∈ {−0.2, 0.2}, and lead to the smaller stabilizable region indicated
in Figure 7.2. In contrast, as the predicted uncertainty bound z p

θ (T ) ≤ zθ approaches
zero, the maximization in (7.7g) approaches a search for the single-worst value that
a practically-known θ could take, which in this case would be θ = 0. The reason the
domain of attraction increases is because the worst-case value of θ1 differs for the two
candidate decisions; that is, choosing to stabilize to {x1 < 0, x2 = x3 = 0} involves
a different worst-case θ1 than the alternative target {x1 > 0, x2 = x3 = 0}. Thus, by
reducing the uncertainty bound it is guaranteed that at least one of these worst-case
scenarios will improve, even if it can’t be predicted in advance.

Admittedly, this type of behavior in the worst-case scenarios is not exhibited by
all systems. In practice, these type of situations could occur whenever the controller
must make some sort of decision, where the optimal choice is parameter-dependent.
Examples could include such problems as obstacle-avoidance in the presence of some
sort of uncertain bias (cross-wind, a preferential turning radius, etc.), or problems
of balancing the load between parallel process equipment with different operating
properties (reactor beds with different activity, heat exchangers with uncertain fouling
effects, etc.).

For systems which do not exhibit the above type of behavior, that is, systems where
there is a unique worst-case parameter value that applies to all candidate decisions,
then the worst-case maximization in (7.7g) is unaffected by z p

θ (T ). In these cases, the
proposed algorithm is not able to improve upon the domain of attraction of a non-
adaptive robust controller (e.g., if the above simulation problem were modified such
that the negative x1-axis {x1 < 0, x2 = x3 = 0} were the only allowable target, then
the proposed method would be unable to improve upon the domain of attraction of the
non-adaptive controller). However, even without expanding the domain of attraction,
there is still the potential for the internal model z p

θ (τ ) to improve the performance
of the closed-loop adaptive control. By designing the terminal penalty W (x, �) such
that large values of z p

θ (τ ) are explicitly penalized, the optimization will automatically
favor trajectories that result in improved identification.8 This enables the controller to
preserve the benefits of an optimization-based approach to injecting excitation into the

8 In fact, one could easily replace L(x, u) with an appropriate L(x, u, z p
θ ) that likewise penalizes z p

θ (τ ), which
would have a similar effect.
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system, as discussed in Chapter 6.3. By improving the closed-loop convergence rate
of the identifier, the conservatism of the overall control action will be more quickly
reduced as the closed-loop system evolves.

7.6 Summary

This chapter has demonstrated that by posing the adaptive control problem within the
framework of a simplistic robust-MPC design, a numerically tractable adaptive feed-
back can be designed for a general class of constrained, parameter-affine nonlinear
systems. Although the approach here is potentially quite conservative, it preserves
many of the important properties of the more computationally challenging min–max
feedback approach developed in Chapter 6. Embedding an internal model approxi-
mation of the identification mechanism within the controller predictions enables one
to account for the impact of trajectory excitation within the optimal control prob-
lem, and to construct less-conservative terminal CLF-penalty functions based upon
subsets of the original parametric uncertainty. The approach proposed here errs inten-
tionally on the side of computational simplicity, just as Chapter 6 erred on the side of
performance, irrespective of complexity. However, the most valuable implication of
Chapters 6 and 7 is that the overall methodology presented in Section 6.2 is amenable
to any robust-MPC design involving any desired tradeoff between computational
complexity and conservatism of the solutions.

7.7 Proofs for Chapter 7

7.7.1 Proof of Proposition 7.2.2

Using the upper bound on the magnitude of the update in (7.4d), Claim (a) follows
from a simple triangle inequality (see Figure 7.1):

sup
w∈�+

‖w − θ̂‖ ≤ sup
w∈�+

‖w − θ̂+‖ + ‖θ̂+ − θ̂‖

≤ (1 − εz)

(√
2 − εz

εz
zθ

)

+ √
εz(2 − εz) zθ =

(√
2 − εz

εz

)

zθ

which proves w ∈ �+ =⇒ w ∈ �, and hence �(t+i ) ⊆ �(t−i ).
To address the second claim, we will first demonstrate that the reset condi-

tion (7.4a), together with the previous bound ‖θ̂ − θ‖ ≤ zθ , together imply that
‖θ̂ o − θ‖ ≤ (1 − εz) zθ . In other words, θ̂ o ∈ B(θ , (1 − εz)zθ ), the dotted circle in
Figure 7.1.

Case 1: Reset based on �

Using (7.5) we define the simple Lyapunov function (arguments of g(x, u) omitted)

Vψ̃ = 1

2
ψ̃T ψ̃ , V̇ψ̃ = −ψ̃T gT

(
gψ̃ + e + d

)
, ∀t ∈ [t+i−1, t−i ) (7.23)



118 Robust and adaptive model predictive control of nonlinear systems

The inclusion ψ(t−i ) ∈ B(θ , (1 − εz)zθ ) follows directly from

Vψ̃ (t−i ) = Vψ̃ (t+i−1) +
∫ ti

ti−1

V̇ ψ̃(τ ) dτ

≤ 1

2
z2
θ −

∫ ti

ti−1

ψ̃T gT (gψ̃ + e + d) dτ

≤ 1

2
z2
θ −

∫ ti

ti−1

(gψ̃ + e + d)T(gψ̃ + e + d) dτ

+
∫ ti

ti−1

(e + d)T(gψ̃ + e + d) dτ

≤ 1

2
z2
θ − 
2 + (Me + Md)
1

≤ 1

2
z2
θ −

(
1

2
εz(2 − εz)z2

θ + (Me + Md)
1

)
+ (Me + Md)
1

= 1

2
(1 − εz)2z2

θ

Case 2: Reset on �

Defining θ̃ � θ − θ̂ and θ̃ o � θ − θ̂o, we have that

Vθ̃ (t−i ) = 1

2
θ̃ o T

θ̃ o = 1

2
‖θ − θ̂ − �−1

2 φ‖2

= 1

2

∥∥∥∥∥
θ̃ −

(∫ ti

ti−1

gT g dτ

)−1 [∫ ti

ti−1

gT gθ̃ dτ +
∫ ti

ti−1

gT (d(τ ) + e(τ )) dτ

]∥∥∥∥∥

2

≤ 1

2

∣∣∣∣
1

λ{�2}
(∫ ti

ti−1

‖g‖ dτ

)
(Md + Me)

∣∣∣∣

2

≤ 1

2

∣∣∣∣∣
∣

⎛

⎝ (1 − εz)zθ(∫ ti
ti−1

‖g‖ dτ
)

(Me + Md) + cλ

⎞

⎠
(∫ ti

ti−1

‖g‖ dτ

)
(Me + Md)

∣∣∣∣∣∣

2

≤ 1

2
(1 − εz)2z2

θ

This completes Case 2, and it can be concluded that in all cases, ‖θ̂ o − θ‖ ≤
(1 − εz)zθ in the pre-reset state t−i .
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Having proven θ̂ o ∈ B(θ , (1 − εz) zθ ), it needs to be shown that the orthogonal
projection in (7.4d) preserves θ̂+ ∈ B(θ , (1 − εz) zθ ). For the worst-case situation
depicted in Figure 7.1, values of θ̂ o occurring in the shaded region are pro-
jected orthogonally onto the spherical shell ∂B(θ̂ ,

√
εz(2 − εz)zθ ). The inclusion

θ̂+ ∈ B(θ , (1 − εz) zθ ) (i.e., that θ̂+ remains in the dotted circle in Figure 7.1, for
any θ̂ in the shaded region) then follows from the orthogonality of the intersection
between ∂B(θ , (1 − ε) zθ ) and ∂B(θ̂ ,

√
εz(2 − εz)zθ ) (i.e., angle ∠θsθ̂ in Figure 7.1).

This orthogonality holds by

(
(1 − εz) zθ

)2 + (√
εz(2 − εz) zθ

)2 = z2
θ . (7.24)

Clearly, if the unknown θ lies in the interior of B(θ̂ , zθ ) (i.e., the dotted circle
in Figure 7.1 is translated downwards an arbitrary distance), then the inclusion
θ̂+ ∈ B(θ , (1 − εz) zθ ) will hold with additional conservatism. The implied bound
‖θ̂+ − θ‖ ≤ (1 − εz) zθ therefore completes the proof of claim (b).

Claims (c) and (d) follow directly by induction, given that for constant ε∗
z , �(τ )

is fixed over intervals of continuous evolution (i.e., during Step 2 of Algorithm 7.2.1),
its reset behavior satisfies (a) and (b), and initially θ ∈ B(0, Mθ ) ≡ B(θ̂ (t0), zθ (t0)).

7.7.2 Proof of Theorem 7.2.8

The constraints (7.7d)–(7.7e) can be implicitly incorporated into the analysis by
extending the interpretation of L′ and W ′ in (7.7a) to involve the convention

L′(x p, u p, z p
x ) ≡

{
(7.7f) (X p, u) ∈ X × U

+∞ otherwise

W ′(x p, z p
x , ζ p

θ , �) ≡
{

(7.7g) X (T ) ⊆ X
′
f (ζ p

θ (T ), �)

+∞ otherwise

Note that this has no impact on the Lipschitz constants LL, LW , which apply to L and
W , but not L′, W ′.

It then follows that both stability and feasibility of the closed-loop dynamics are
guaranteed if the optimal cost J ∗(x, �, �) � J (x, up∗

[0,T∗], T ∗, θ̂ J , ζ J
θ , ε∗

z , �J ) resulting
from (7.6) and (7.7) is strictly decreasing for x �∈ �o

x . To conclude the decrease of J ∗

over both flows and resets of the closed-loop behavior of Algorithm 7.2.1, the same
two conditions as were used in Theorem 6.4.6 are sufficient:

i. max
f ′∈F

−→
D J ∗ � max

f ′∈F
lim inf

v→f ′
δ↓0

J ∗(x + δv, �(t + δ), �(t + δ)) − J ∗(x, �, �)

δ
< 0

ii. min
f ′∈F

←−
D J ∗ � min

f ′∈F
lim sup

v→f ′
δ↓0

J ∗(x − δv, �(t − δ), �(t − δ)) − J ∗(x, �, �)

δ
> 0

where F � f (x, κmpc(x)) + g(x, κmpc(x))B(θ̂ J , ζ J
θ ) + B(0, Md), with κmpc(x) denoting

the feedback (7.6a) (arguments omitted). Note that it is sufficient to take the worst
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case over only uncertainties in θ ∈ B(θ̂ J , ζ J
θ ) ⊆ B(θ̂ , ζθ ), since it follows from Propo-

sition 7.2.2 that in the event that (θ̂ J , ζ J
θ ) �= (θ̂ , ζθ ) in (7.6), then θ ∈ B(θ̂ J , ζ J

θ ) is
guaranteed.

To begin, we first dispose of the special case where T = 0. In this case, the
requirement x ∈ Xf (�) implies J ∗(x, �, �) ≡ W (x, �), from which the combination
of the Lipschitz continuity of W and Criterion 7.2.5 point 5 is sufficient to satisfy both
conditions (i) and (ii). For the remainder, it is assumed that 0 < δ < T . We begin by
proving condition (i) for

−→
D J ∗.

At an arbitrary time t, we let (x p, z p
x , ζ p

θ ) denote solutions of (7.7), correspond-
ing to a feasible solution (u p

[0,T ], εz, T ) of the optimization problem (7.6) posed at
time t. The trajectories therefore originate from initial conditions (x p, z p

x , z p
θ )τ=0 =

(x(t), 0, zJ
θ (t)). Similarly, we denote by (xv, zv

x , zv
θ ) a set of solutions of (7.7) with

initial conditions (xv, zv
x , zv

θ )τ=δ = (x(t) + δv, 0, zJ
θ (t + δ)), but which correspond to

the same choices of uv
[δ,T ] ≡ u p

[δ,T ] and εz. Here zJ
θ (t + δ) denotes the (potentially

uncertain) value of zJ
θ that would result under the test in (7.6) at time (t + δ), using

Algorithm 7.2.1, with open-loop implementation of u[t,t+δ] = u p
[0,δ] while keeping ε∗

z

fixed at ε∗
z (τ ) ≡ ε∗

z (t) for τ ∈ [t, t + δ]. We similarly denote ζ
p

θ (τ ) � ζθ (z
p
θ (τ ), εz)

and ζ v
θ (τ ) � ζθ (zv

θ (τ ), εz) for all τ ∈ [0, T ], where εz ≡ ε∗
z (t). Throughout the proof,

the superscripts p or v on any expression will indicate association with either the x p

or xv solutions.
At prediction time τ = 0, it follows from (7.7b), (7.7c) that

max
f ′∈F

∥∥ẋ p(0) − f ′∥∥ = max
θ∈�(t)
d∈D

∥∥g(x, u p(0))
(
θ̂ J − θ

)
+ d

∥∥ (7.25a)

≤ ∥∥g(x, u p(0))
∥∥ζ J

θ + Md (7.25b)

= ż p
x (0) (7.25c)

where the inequality results from Proposition 7.2.2.b. From definition (7.7i), the con-
tinuity of x p(τ ) and z p

x (τ ) ensures that there exists v ≡ v(δ) satisfying limδ↓0 v(δ) = f ′

such that (x + δv) ∈ X p(δ). Without loss of generality, we assume xv(δ) ∈ X p(δ).
Since zv

x (δ) = 0, it follows that ‖x p(δ) − xv(δ)‖ ≤ z p
x (δ) − zv

x (δ). Defining the
variable ez � z p

x − zv
x − ‖x p − xv‖, it follows that X v ⊆ X p andLv

j ≤ L p
j , j ∈ {f , g, L}

on the domain ez ∈ R≥0. On this domain, the dynamics of ez satisfy

ėz = ż p
x − żv

x − ‖ẋ p − ẋv‖
= (L p

f + L p
g M�)z p

x − (Lv
f + Lv

gM�)zv
x

− ‖ f (x p, u) − f (xv, u) + (g(x p, u) − g(xv, u))θ̂ J ‖

≥
(
L p

f + L p
g M�

)
(z p

x − zv
x ) −

(
L p

f + L p
g θ̂ J

)
‖x p − xv‖

≥
(
L p

f + L p
g M�

)
ez



Computational aspects of robust adaptive MPC 121

from which the initial condition ez(δ) ≥ 0 guarantees that ez(τ ) ≥ 0, ∀τ ∈ [δ, T ].
This implies that X v(τ ) ⊆ X p(τ ) ⊆ X and Lv

j ≤ L p
j for all τ ∈ [δ, T ], from which

one obtains

L′(x p, u) = L p + L p
L z p

x ≥ (Lv − L p‖x p − xv‖) + L p
L z p

x

≥ Lv + L pzv
x ≥ L′(xv, u) (7.26)

for all τ ∈ [δ, T ]. From the non-increase of zθ , and the fact that εz is presumed
constant, one has ζ v

θ (T ) ≡ ζ J
θ (zθ (t + δ), εz(t)) ≤ ζ J

θ (t) ≡ ζ
p

θ (T ). It then follows that
�v � �(ζ v

θ , �(t + δ)) ⊆ �(ζ p
θ , �(t)) � � p. This implies by (7.7h) that X v(T ) ⊆

X p(T ) ⊆ X
′ p
f ⊆ X

′v
f , which yields

W ′ p � max
�

p
T ∈� p

{
W p + L p

W z p
x

} ≥ max
�

p
T ∈� p

{
W (xv, � p

T ) − L p
W ‖x p − xv‖ + L p

W z p
x

}

≥ max
�

p
T ∈� p

{
W (xv, � p

T ) + L p
W zv

x

}

≥ max
�v

T ∈�v

{
W v + Lv

W zv
x

}
� W ′v. (7.27)

This results in the desired conclusion

max
f ′∈F

−→
D J ∗ ≤ max

f ′∈F
lim inf

v→f ′
δ↓0

1

δ

(∫ T

δ

(L′v − L′ p) dτ − δL p|0 + W ′v − W ′ p

)

≤ −L(x, u) (7.28)

in which the first inequality holds by the suboptimality of the choices (uv
[δ,T ], εz) used

to generate the xv solution at time t + δ.
Condition (ii) can be proven in an analogous fashion to the above development.

Because a similar analogy between (i) and (ii) was demonstrated in the proof of 6.4.6,
our treatment here will be brief. This involves:

● Redefining the xv trajectory to be defined over the interval τ ∈ [−δ, T ], satisfying
initial conditions (xv, zv

x , ζ v
θ )τ=−δ = (x(t) + δv, 0, ζ J

θ (zθ (t − δ), εz(t))), where the
corresponding input uv

[−δ,T ] satisfies uv
[−δ,0] ≡ u[t−δ,t] and uv

[0,T ] ≡ u p
[0,T ]. Without

loss of generality, it is assumed v(δ) is such that xv(−δ) ∈ X .
● Defining ez � zv

x − z p
x − ‖xv − x p‖, it can be shown ez(0) ≥ 0, and ėz ≥ 0 for all

τ ∈ [0, T ]. This implies X p(τ ) ⊆ X v(τ ) and L p
j (τ ) ≤ Lv

j (τ ) for all τ ∈ [0, T ].
● The analogs of (7.26) and (7.27) become

L′(xv, u) = Lv + Lv
Lzv

x ≥ L p + Lvz p
x ≥ L′(x p, u)

W ′ v ≥ max
�v

T ∈�v

{
W (x p, �v

T ) + Lv
W z p

x

} ≥ max
�

p
T ∈� p

{
W p + L p

W z p
x

}
� W ′ p.

from which the desired result is obtained:

min
f ′∈F

←−
D J ∗ ≥ min

f ′∈F
lim sup

v→f ′
δ↓0

1

δ

(∫ T

0
L′v − L′ pdτ + δLv|−δ + W ′v − W ′ p

)

≥ L(x, u)
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This completes the proof of feasible stabilization from any point x ∈ X 1
0 . The contain-

ment X0 ⊆ X 1
o follows from the fact that suboptimally specifying ε∗

z ≡ 1 prevents the
reset condition (7.4a) from ever being satisfied. This results in �(t) ≡ B(θ̂ (t), zθ ) ≡
�0, and thus the control is equivalent to κmpc(x, 0, Mθ , 0, 0, 0, 0).

7.7.3 Proof of Claim 7.3.5

Since
(
λ{� p

2 (0)} <
(Md+Me)� p

1 (0)+cλ

(1−εz )zJ
θ

)
we can assume δ > 0 is small enough that no

reset occurs in �
p
2 [0,δ]. Then

sup
‖v‖=1

x∗[0,δ]∈X p
[0,δ]

(
vT

[
�

p
2 (δ) −

∫ δ

0
G|x∗ dτ − �2(t)

]
v
)

= sup
‖v‖=1

x∗[0,δ]∈X p
[0,δ]

(
vT

[∫ δ

0
�̇

p
2 − G|x∗ dτ

]
v
)

= sup
‖v‖=1

x∗[0,δ]∈X p
[0,δ]

(
vT

[∫ δ

0
G|x p − LG(X p, u) z p

x I − G|x∗ dτ

]
v
)

= sup
‖v‖=1

x∗[0,δ]∈X p
[0,δ]

(∫ δ

0
vT
[
G|x p − G|x∗

]
v − LG(X p, u) z p

x dτ

)

≤ sup
x∗

[0,δ]∈X p
[0,δ]

(∫ δ

0
sup

‖v(τ )‖=1
v(τ )T

[
G|x p − G|x∗

]
v(τ ) − LG(X p, u)z p

x dτ

)

≤ 0 (7.29)

as claimed. Note that it is not necessary to consider the scenario of “resets in �∗
2[0,δ],”

since x∗
[0,δ] simply represents a point-wise maximizer of the indicated expression, and

does not represent an actual trajectory of the system. The second inequality follows
as (denoting g∗ ≡ g(x∗, u p), g p ≡ g(x p, u p)):

inf
x∗

[0,δ]∈X p
[0,δ]

(
�

p
1 (t) −

∫ δ

0
‖g∗‖ dτ − �1(δ)

)

≥ inf
x∗

[0,δ]∈X p
[0,δ]

(∫ δ

0
‖g p‖ − ‖g∗‖ + Lo

gz p
x dτ

)

≥ inf
x∗

[0,δ]∈X p
[0,δ]

(∫ δ

0
‖g p‖ − ‖g∗‖ + ‖g∗ − g p‖ − Lo

g‖x∗ − x p‖ + Lo
gz p

x dτ

)

≥ inf
x∗

[0,δ]∈X p
[0,δ]

(∫ δ

0
‖g∗‖ − ‖g p + (g∗ − g p)‖ + Lo

g(z
p
x − ‖x∗ − x p‖) dτ

)

≥ 0
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7.7.4 Proof of Proposition 7.3.6

The identifier ζ
p

θ only factored into the proof of Theorem 7.2.8 in establish-
ing (7.27). However, the previous assumption z p

θ (T ) ≡ zθ (t) was not explicitly
used, other than to establish the relationship zv

θ (T ) ≤ z p
θ (T ) upon which (7.27)

depends. Therefore, to prove Proposition 7.3.6 it is sufficient to extend the proof
of Theorem 7.2.8 by demonstrating that Algorithm 7.3.4, together with (7.13), results
in zv

θ (T ) ≤ z p
θ (T ).

We begin with the proof in the forward direction, to establish property (i) given
in the proof of Theorem 7.2.8. Using notations from the proof of Theorem 7.2.8,
we denote �

p
1 [0,T ] and �

p
2 [0,T ] to be solutions generated by Algorithm 7.3.4 from

initial condition (�
p
1 (0), � p

2 (0)) = (�1(t), �2(t)). Similarly, �v
1[0,T ] and�v

2[0,T ] denote
solutions from (�v

1(δ), �v
2(δ)) = (�1(t + δ), �2(t + δ)), under the same conditions

as described in the proof of Theorem 7.2.8.
Depending on whether any resets occur in � p

[0,δ] or �[t, t+δ], one of the following
cases must hold for δ > 0 sufficiently small.

Case 1, no resets : then zv
θ (δ) = z p

θ (δ) = zJ
θ , and from Claim 7.3.5 it follows:

sup
‖v‖=1

vT
(
� p(δ) − �v(δ)

)
v ≤ sup

‖v‖=1
x∗[0,δ]∈X p

[0,δ]

vT

(
� p(δ) −

∫ δ

0
G|x∗ dτ − �(t)

)
v ≤ 0

(7.30a)

�
p
1 (δ) − �v

1(δ) ≥ inf
x∗

[0,δ]∈X p
[0,δ]

(
�

p
1 (δ) −

∫ δ

0
‖gx∗‖ dτ − �1(t)

)
≥ 0

(7.30b)

Case 2, �[t,t+δ] contains reset, but not �
p
[0,δ]: then zv

θ (δ) < z p
θ (δ)

Case 3, both �[t,t+δ] and �
p
[0,δ] contain reset : Taking δ > 0 as sufficiently

small, this implies that the resets are simultaneous. Then zv
θ (δ) = z p

θ (δ) =
(1 − εz) zJ

θ , and (7.30) holds, by integrating forward from the time of the jump.
Case 4, �

p
[0,δ] contains reset, but not �[t,t+δ] : This would require that there

exist a δ′ ∈ (0, δ) such that

λ{� p
2 (δ′)} ≥ (Me + Md)�

p
1 (δ′) + cλ

(1 − εz)zθ

≥ (Me + Md)�1(t + δ′) + cλ

(1 − εz)zθ

> λ{�2(t + δ′)}.

However, the specific choice v = v(t + δ′) (i.e., associated with λ{�2(t + δ′)})
violates (7.16) for time δ′. Therefore, this scenario cannot occur.
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Proceeding by contradiction, we assume that zv
θ (T ) > z p

θ (T ). It can then be seen
from Algorithm 7.3.4 and the above cases that there must then exist arbitrary times
0 ≤ τ1 < τ2 < T , such that: (i) τ1, τ2 ∈ Iλ(t), (ii) z p

θ (τ+
1 ) = zv

θ (τ+
1 ), (iii) z p

θ resets at
τ2 but zv

θ does not, and (iv) no resets occur on τ ∈ (τ1, τ2).
Without loss of generality, we can take τ1 as being infimal, which implies that

either it is a switching time of z p
θ , or τ1 = 0. In the following, we use the same notation

as before to denote by time τ−
2 the pre-reset states that occur at time τ2. Furthermore,

we denote by v p(τ ) an eigen-direction corresponding to λ{� p
2 (τ )}, with vv(τ ) defined

analogously.

λ{� p
2 (τ−

2 )} − λ{�v
2(τ−

2 )}

= v p(τ−
2 )T �

p
2 (τ−

2 )v p(τ−
2 ) − vv(τ−

2 )T �v
2(τ−

2 )vv(τ−
2 )

≤ vv(τ−
2 )T

[
�

p
2 (τ−

2 ) − �v
2(τ−

2 )
]
vv(τ−

2 ) (hereinafter vv ≡ vv(τ−
2 ))

= vvT

[∫ τ2

τ1

(
G p − L p

Gz p
x I − Gv + Lv

Gzv
x I
)

dτ

]
vv + vvT [

�
p
2 (τ1) − �v

2(τ1)
]
vv

≤ vvT

[∫ τ2

τ1

(
(Gv + L p

G‖x p − xv‖ I ) − L p
Gz p

x I − Gv + Lv
Gzv

x I
)

dτ

]
vv

≤ −
∫ τ2

τ1

L p
G(z p

x − zv
x − ‖x p − xv‖) dτ ≡ −

∫ τ2

τ1

L p
G ez dτ ≤ 0. (7.31a)

Similarly,

�
p
1 (τ−

2 ) − �v
1(τ−

2 ) ≥
∫ τ2

τ1

(‖g p‖ − L p
g z p

x − ‖gv‖ + Lv
gzv

x

)
dτ

≥
∫ τ2

τ1

(‖g p‖|‖gv − g p‖−‖gv‖+L p
g (z p

x −zv
x −‖x p−xv‖)) dτ

≥
∫ τ2

τ1

(‖g p‖|‖gv − g p‖ − ‖gv‖ + L p
g ez

)
dτ ≥ 0 (7.31b)

However, if λ{� p
2 (τ−

2 )} ≤ λ{�v
2(τ−

2 )} and �
p
1 (τ−

2 ) ≥ �v
1(τ−

2 ), then byAlgorithm 7.3.4
it is impossible that the assumed reset of z p

θ at time τ2 could precede a reset in zv
θ , since

εz ≡ ε p
z ≡ εv

z . Hence no such τ2 exists, implying z p
θ (τ ) ≥ zv

θ (τ ), for all τ ∈ [0, T ]. The
result then follows from the proof of Theorem 7.2.8.
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7.7.5 Proof of Corollary 7.3.8

The statement of Claim 7.3.5 can be seen to hold, since the final inequality in (7.29)
takes the form

sup
x∗

[0,δ]∈X p
[0,δ]

(∫ δ

0
sup

‖v(τ )‖=1
v(τ )T

[
G|x p − G|x∗ − Mo

G(X p, u)z p
x

]
v(τ ) dτ

)

≤ 0 (7.32)

This implies (7.30a) holds, and replacing LGzxI with Mo
Gzx throughout (7.31a) yields

λ{� p
2 (τ−

2 )} − λ{�v
2(τ−

2 )} ≤ −
∫ τ2

τ1

ez(τ )
(
vvT M p

G(τ ) vv
)

dτ ≤ 0 (7.33)

from which the result follows by the positive definiteness of Mo
G .





Chapter 8

Finite-time parameter estimation
in adaptive control

8.1 Introduction

There are two major approaches to online parameter identification of nonlinear sys-
tems. First is the identification of parameters as a part of state observer while the
second deals with parameter identification as a part of controller. In the first approach,
the observer is designed to provide state derivatives information and the parameters
are estimated via estimation methods such as least squares method [131] and dynamic
inversion [62]. The second trend of parameter identification is much more widespread,
as it allows identification of systems with unstable dynamics. Algorithms in this area
include parameter identification methods based on variable structure theory [162,
163] and those based on the notion of passivity [100].

In the conventional adaptive control algorithms, the focus is on the tracking of
a given reference trajectory and in most cases parameter estimation errors are not
guaranteed to converge to zero due to lack of excitation [80]. Parameter convergence
is an important issue as it enhances the overall stability and robustness properties of the
closed-loop adaptive systems [109]. Moreover, there are control problems whereby the
reference trajectory is not known a priori but depends on the unknown parameters of
the system dynamics. For example, in adaptive extremum-seeking control problems,
the desired target is the operating setpoint that optimizes an uncertain cost function
[73, 160].

Assuming the satisfaction of appropriate excitation conditions, asymptotic and
exponential parameter convergence results are available for both linear and nonlinear
systems. Some lower bounds which depends (nonlinearly) on the adaptation gain and
the level of excitation in the system have been provided for some specific control and
estimation algorithms [96, 118, 147]. However, it is not always easy to characterize
the convergence rate.

The performance of any adaptive extremum-seeking control is dictated by the
efficiency of its parameter adaptation procedure. This chapter presents a parameter
estimation scheme that allows exact reconstruction of the unknown parameters in FT
provided a given persistence of excitation (PE) condition is satisfied. The true param-
eter estimate is recovered at any time instant the excitation condition is satisfied. This
condition requires the integral of a filtered regressor matrix to be invertible. The FT
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identification procedure assumes the state of the system x(·) is accessible for measure-
ment but does not require the measurement or computation of the velocity state vector
ẋ(·). The robustness of the estimation routine to bounded unknown disturbances or
modeling errors is also examined. It is shown that the parameter estimation error can
be rendered arbitrarily small for a sufficiently large filter gain.

A common approach to ensuring a PE condition in adaptive control is to intro-
duce a perturbation signal as the reference input or to add it to the target setpoint or
trajectory. The downside of this approach is that a constant PE deteriorates the desired
tracking or regulation performance. Aside from the recent results on intelligent exci-
tation signal design [10, 32], the standard approach has been to introduce such PE
signal and remove it when the parameters are assumed to have converged. The fact
that one has perfect knowledge of the convergence time in the proposed framework
allows for a direct and immediate removal of the added PE signal. The results in this
chapter have been published in Reference 5.

8.2 Problem description and assumptions

The system considered is the following nonlinear parameter affine system

ẋ = f (x, u) + g(x, u)θ (8.1)

where x ∈ Rnx is the state and u ∈ Rnu is the control input. The vector θ ∈ Rnθ is
the unknown parameter vector whose entries may represent physically meaningful
unknown model parameters or could be associated with any finite set of univer-
sal basis functions. It is assumed that θ is uniquely identifiable and lie within
an initially known compact set �0. The nx-dimensional vector f (x, u) and the
(nx × nθ )-dimensional matrix g(x, u) are bounded and continuous in their arguments.
System (8.1) encompasses the special class of linear systems,

f (x, u) = A0x + B0u

g(x, u) = [A1x + B1u, A2x + B2u, . . . , Anθ
x + Bnθ

u],

where Ai and Bi for i = 0 . . . nθ are known matrices possibly time varying.

Assumption 8.2.1. The following assumptions are made about system (8.1).

1. The state of the system x(·) is assumed to be accessible for measurement.
2. There is a known bounded control law u = α(·) and a bounded parameter update

law ˙̂
θ that achieves a primary control objective. �

The control objective can be to (robustly) stabilize the plant and/or to force the output
to track a reference signal. Depending on the structure of the system (8.1), adaptive
control design methods are available in the literature [98, 117].

For any given bounded control and parameter update law, the aim of this chapter
is to provide the true estimates of the plant parameters in FT while preserving the
properties of the controlled closed-loop system.
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8.3 FT parameter identification

Let x̂ denote the state predictor for (8.1), the dynamics of the state predictor is
designed as

˙̂x = f (x, u) + g(x, u)θ̂ + kw(t)e + w ˙̂
θ , (8.2)

where θ̂ is a parameter estimate generated via any update law ˙̂
θ , kw > 0 is a design

matrix, e = x − x̂ is the prediction error, and w is the output of the filter

ẇ = g(x, u) − kww, w(t0) = 0. (8.3)

Denoting the parameter estimation error as θ̃ = θ − θ̂ , it follows from (8.1) and
(8.2) that

ė = g(x, u)θ̃ − kw e − w ˙̂
θ. (8.4)

The use of the filter matrix w in the above development provides direct information
about parameter estimation error θ̃ without requiring a knowledge of the velocity
vector ẋ. This is achieved by defining the auxiliary variable

η = e − wθ̃ (8.5)

with η, in view of (8.3, 8.4), generated from

η̇ = −kwη, η(t0) = e(t0). (8.6)

Based on the dynamics (8.2), (8.3), and (8.6), the main result is given by the following
theorem.

Theorem 8.3.1. Let Q ∈ Rnθ ×nθ and C ∈ Rnθ be generated from the following
dynamics:

Q̇ = wT w, Q(t0) = 0 (8.7a)

Ċ = wT (wθ̂ + e − η), C(t0) = 0 (8.7b)

Suppose there exists a time tc and a constant c1 > 0 such that Q(tc) is invertible i.e.,

Q(tc) =
∫ tc

t0

wT (τ )w(τ ) dτ � c1I , (8.8)

then

θ = Q(t)−1C(t) for all t ≥ tc. (8.9)

Proof: The result can be easily shown by noting that

Q(t) θ =
∫ t

t0

wT (τ )w(τ )
[
θ̂ (τ ) + θ̃ (τ )

]
dτ. (8.10)
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Using the fact that wθ̃ = e − η, it follows from (8.10) that

θ = Q(t)−1

∫ t

t0

Ċ(τ ) dτ = Q(t)−1C(t) (8.11)

and (8.11) holds for all t ≥ tc since Q(t) � Q(tc).
The result in Theorem 8.3.1 is independent of the control u and parameter iden-

tifier ˙̂
θ structure used for the state prediction (8.2). Moreover, the result holds if a

nominal estimate θ 0 of the unknown parameter (no parameter adaptation) is employed
in the estimation routine. In this case, θ̂ is replaced with θ 0 and the last part of the

state predictor (8.2) is dropped ( ˙̂
θ = 0).

Let

θ c � Q(tc)−1 C(tc) (8.12)

The FT identifier (FTI) is given by

θ̂ c(t) =
{

θ̂ (t), if t < tc

θ c, if t ≥ tc.
(8.13)

The piecewise continuous function (8.13) can be approximated by a smooth
approximation using the logistic functions

ψ1 � θ̂ (t)

2

(
1 − tanh ν1(t − tc)

) = θ̂ (t)

1 + exp2ν1(t−tc)
(8.14a)

ψ2 � θ c

2

(
1 + tanh ν2(t − tc)

) = θ c

1 + exp−2ν2(t−tc)
(8.14b)

θ̂ c̃ = ψ1 + ψ2 (8.14c)

where largerν1, ν2 correspond to a sharper transition at t = tc and lim(ν1,ν2)→∞ θ̂ c̃ = θ̂ c.
An example of such approximation is depicted in Figure 8.1 where the function

z(t) =
{

6 + t0.3, if t < 5
4, otherwise

is approximated by (8.14) with ν1 = ν2 = 5.
The invertibility condition (8.8) is equivalent to the standard PE condition

required for parameter convergence in adaptive control. The condition (8.8) is satis-
fied if the regressor matrix g is PE. To show this, consider the filter dynamic (8.3),
from which it follows that

w(t) =
∫ t

t0

exp−kw(t−τ ) g(τ )dτ = 1

s + kw
[g(t)] (8.15)
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Figure 8.1 Approximation of a piecewise continuous function. The function z(t) is
given by the full line. Its approximation is given by the dotted line

Since g(t) is PE by assumption and the transfer function 1
s+kw

is stable, minimum
phase, and strictly proper, we know that w(t) is PE [129]. Hence, there exists tc and a
c1 for which (8.8) is satisfied. The superiority of the above design lies in the fact that
the true parameter value can be computed at any time instant tc the regressor matrix
becomes positive definite and subsequently stop the parameter adaptation mechanism.

The procedure in Theorem 8.3.1 involves solving matrix valued ordinary dif-
ferential equations (8.3, 8.7) and checking the invertibility of Q(t) online. For
computational considerations, the invertibility condition (8.8) can be efficiently tested
by checking the determinant of Q(t) online. Theoretically, the matrix is invertible at
any time det(Q(t)) becomes positive definite. The determinant of Q(t) (which is a poly-
nomial function) can be queried at pre-scheduled times or by propagating it online
starting from a zero initial condition. One way of doing this is to include a scalar
differential equation for the derivative of det(Q(t)) as follows [68]:

d

dt
det(Q) = Trace

(
Adjugate(Q) wT w

)
, det(Q(t0)) = 0 (8.16)

where Adjugate(Q), admittedly not a light numerical task, is also a polynomial
function of the elements of Q.

8.3.1 Absence of PE

If the PE condition (8.8) is not satisfied, a given controller and the corresponding
parameter estimation scheme preserve the system established closed-loop properties.

When a bounded controller that is robust with respect to input (θ̃ , ˙̂
θ ) is known, it can
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be shown that the state prediction error e tends to zero as t → ∞. An example of such
robust controller is an ISS controller [98].

Theorem 8.3.2. Suppose the design parameter kw in (8.2) is replaced with kw(t) =
kw1 + kw2 (t), kw1 > 1

4 I , and kw2 (t) = 1
4 gγ gT . Then the state predictor (8.2) and the

parameter update law

˙̂
θ = γ (wT + gT ) e (8.17)

with γ = γ T > 0 a design constant matrix, guarantee that

1. ( e, η, θ̃ ) ∈ L∞ and ( e, η ) → 0 as t → ∞
2. limt−→∞ θ̃ (t) = θ̄ , a constant.

Proof:

1. Consider a Lyapunov function

V = 1

2

(
eT e + θ̃T γ −1θ̃ + ηT η

)
. (8.18)

It follows from (8.4)–(8.6) and (8.17) that

V̇ = −eT kw1 e − eT

(
1

4
gγ gT + wγ wT + wγ gT

)
e

− θ̃T wT wθ̃ − θ̃T wT η − ηT kw(t)η (8.19)

≤ −eT kw1 e − λmin(γ )

∥∥∥∥wT e + 1

2
gT e

∥∥∥∥

2

− ηT kw3η −
∥∥∥∥wθ̃ + 1

2
η

∥∥∥∥

2

(8.20)

≤ −(eT kw1 e + ηT kw3η). (8.21)

where kw3 = kw1 − 1
4 . This implies uniform boundedness of (η, e, θ̃ ) as well as

global asymptotic convergence of (η, e) to zero. Hence, it follows from (8.5) that
limt−→∞ wθ̃ = 0.

2. This can be shown by noting from (8.17) that θ̃ (t) = θ̃ (t0) − γ
∫ t

t0
(wT + gT ) e dσ .

Since g(·) and e are bounded signals and e → 0, the integral term exists and it is
finite.

8.4 Robustness property

In this section, the robustness of the FTI to unknown bounded disturbances or
modeling errors is demonstrated. Consider a perturbation of (8.1):

ẋ = f (x, u) + g(x, u)θ + ϑ(t, x, θ ) (8.22)
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where ϑ(·) is a disturbance or modeling error term that satisfies ‖ϑ(t)‖ ≤ Mϑ (t) < ∞
If the PE condition (8.8) is satisfied and the disturbance term is known, the true
unknown parameter vector is given by

θ c
ϑ � θ = Q(t)−1

∫ t

t0

wT (τ )[w(τ )θ̂ (τ ) + e(τ ) − ηϑ (τ )] dτ , for all t ≥ tc, (8.23)

with e = x − x̂ and the signals x̂, w, ηϑ = e − wθ generated from (8.2), (8.3), and

η̇ϑ = −kwηϑ + ϑ(·), ηϑ (t0) = e(t0) (8.24)

respectively.
Since ϑ(·) is unknown, we provide a bound on the parameter identification error

θ̃ c = θ c
ϑ − θ c when (8.6) is used instead of (8.24).

Considering (8.9) and (8.23), it follows that

θ̃ c = Q(t)−1

∫ t

t0

wT (τ ) (−ηϑ (τ ) + η(τ )) dτ (8.25)

= −Q(t)−1

∫ t

t0

wT (τ )η̃(τ ) dτ. (8.26)

where η̃ = ηϑ − η is the output of

˙̃η = −kwη̃ + ϑ(·), η̃(t0) = 0. (8.27)

Since kw ≥ kw1 > 0, it follows that

‖η̃(t)‖ ≤ Mϑ

kw1

(8.28)

and hence

‖θ̃ c(t)‖ ≤ ‖Q(t)−1‖
{

w̄Mϑ (t − t0)

kw1

}
, for all t ≥ tc. (8.29)

where w̄ = maxσ∈[t0, t] ‖wT (σ )‖.
This implies that the identification error can be rendered arbitrarily small by

choosing a sufficiently large filter gain kw1. In addition, if the disturbance term ϑ

and the system satisfies some given properties, then asymptotic convergence can be
achieved as stated in the following theorem.

Theorem 8.4.1. Suppose ϑ ∈ Lp, for p = 1 or 2 and limt→∞ λmin(Q) = ∞, then
θ̃ c → 0 asymptotically with time.

To prove this theorem, we need the following lemma.

Lemma 8.4.2. [53]: Consider the system

ẋ(t) = Ax(t) + u(t) (8.30)
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Suppose the equilibrium state xe = 0 of the homogeneous equation is exponentially
stable,

1. if u ∈ Łp for 1 < p < ∞, then x ∈ Łp and
2. if u ∈ Łp for p = 1 or 2, then x → 0 as t → ∞.

Proof of theorem 8.4.1. It follows from Lemma 8.4.2.2 that η̃ → 0 as t → ∞ and
therefore limt→∞

∫ t
t0

wT (τ )η̃(τ ) dτ is finite. So

lim
t→∞ θ̃ c = lim

t→∞

{
Q(t)−1

∫ t

t0

wT (τ )η̃(τ ) dτ

}
= 0. (8.31)

�

8.5 Dither signal design

The problem of tracking a reference signal is usually considered in the study of
parameter convergence and in most cases, the reference signal is required to provide
sufficient excitation for the closed-loop system. To this end, the reference signal
yr(t) ∈ Rr is appended with a bounded excitation signal d(t) as

yrd(t) = yr(t) + d(t) (8.32)

where the auxiliary signal d(t) is chosen as a linear combination of sinusoidal
functions with � distinct frequencies:

d(t) :=
�∑

k=1

ak (t) sin(ωk t) = A(t)ζ (t) (8.33)

where

A(t) =
⎡

⎢
⎣

a11 · · · a1�

...
...

ar1 · · · ar�

⎤

⎥
⎦

is the signal amplitude matrix and

ζ (t) = [ sin ω1t . . . sin ω�t]T , ωi 	= ωj for i 	= j

is the corresponding sinusoidal function vector.
For this approach, it is sufficient to design the perturbation signal such that the

regressor matrix g is PE. There are very few results on the design of persistently
exciting (PE) input signals for nonlinear systems. By converting the closed-loop PE
condition to a sufficient richness condition on the reference signal, attempts have been
made to provide verifiable conditions for parameter convergence in some classes of
nonlinear systems [4, 10, 109, 110].
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8.5.1 Dither signal removal

Let H ≤ (� × r) denotes the number of distinct elements in the dither amplitude
matrix A(t) and let a ∈ RH be a vector of these distinct coefficients. The amplitude
of the excitation signal is specified as

a(t) =
{

a, if t < tc

0, otherwise
(8.34)

or approximated by

a(t) ≈ a

1 + exp2ν(t−tc)
(8.35)

where equality holds in the limit as ν → ∞.

8.6 Simulation examples

8.6.1 Example 1

We consider the following nonlinear system in parametric strict feedback form [110]:

ẋ1 = x2 + θ1x1

ẋ2 = x3 + θ2x1

ẋ3 = θ3x3
1 + θ4x2 + θ5x3 + (1 + x2

1)u (8.36)

y = x1,

where θT = [θ1, . . . , θ5] are unknown parameters. Using an adaptive backstepping
design, the control and parameter update law presented in Reference 110 were used
for the simulation. The pair stabilize the plant and ensure that the output y tracks
a reference signal yr(t) asymptotically. For simulation purposes, parameter values
are set to θT = [−1, −2, 1, 2, 3 ] as in Reference 110 and the reference signal is
yr = 1, which is sufficiently rich of order one. The simulation results for zero initial
conditions are shown in Figure 8.2. Based on the convergence analysis procedure
in Reference 110, all the parameter estimates cannot converge to their true values
for this choice of constant reference. As confirmed in Figure 8.2, only θ1 and θ2

estimates are accurate. However, following the proposed estimation technique and
implementing the FTI (8.14), we obtain the exact parameter estimates at t = 17s.
This example demonstrates that, with the proposed estimation routine, it is possible
to identify parameters using perturbation or reference signals that would otherwise
not provide sufficient excitation for standard adaptation methods.

8.6.2 Example 2

To corroborate the superiority of the developed procedure, we demonstrate the robust-
ness of the developed procedure by considering system (8.36) with added exogenous
disturbances as follows:
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Figure 8.2 Trajectories of parameter estimates. Solid(–): FT estimates θ̂ c̃;
dashed(– –): standard estimates θ̂ [110]; dashdot(–.): actual value

ẋ1 = x2 + θ1x1 + [1 0]ϑ

ẋ2 = x3 + θ2x1 + [1 x1]ϑ

ẋ3 = θ3x3
1 + θ4x2 + θ5x3 + (1 + x2

1)u + [0 1]ϑ

y = x1,

(8.37)

where ϑ = [0.1 sin(2π t/5), 0.2 cos(π t)]T and the tracking signal remains a constant
yr = 1.

The simulation result, Figure 8.3, shows convergence of the estimate vector to a
small neighborhood of θ under FTI with filter gain kw = 1 while no full parameter
convergence is achieved with the standard identifier. The parameter estimation error
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Figure 8.3 Trajectories of parameter estimates. Solid(–): FT estimates for the
system with additive disturbance θ̂ c̃; dashed(– –): standard estimates θ̂

[110]; dashdot(–.): actual value

θ̃ (t) is depicted in Figure 8.4 for different values of the filter gain kw. The switching
time for the simulation is selected as the time for which the condition number of
Q becomes less than 20. It is noted that the time at which switching from standard
adaptive estimate to FT estimate occurs increases as the filter gain increases. The con-
vergence performance improves as kw increases, however, no significant improvement
is observed as the gain is increased beyond 0.5.
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Figure 8.4 Parameter estimation error for different filter gains kw

8.7 Summary

The work presented in this chapter transcends beyond characterizing the parameter
convergence rate. A method is presented for computing the exact parameter value at
a FT selected according to the observed excitation in the system. A smooth transition
from a standard estimate to the FT estimate is proposed. In the presence of unknown
bounded disturbances, the FTI converges to a neighborhood of the true value whose
size is dictated by the choice of the filter gain. Moreover, the procedure preserves
the system’s established closed-loop properties whenever the required PE condition
is not satisfied.



Chapter 9

Performance improvement in adaptive control

9.1 Introduction

The FT identification method developed in Chapter 8 has two distinguishing features.
First, the true parameter estimate is obtained at any time instant the excitation condi-
tion is satisfied, and second, the procedure allows for a direct and immediate removal
of any perturbation signal injected into the closed-loop system to aid in parameter
estimation. However, the drawback of the FT identification algorithm is the require-
ment to check the invertibility of a matrix online and compute the inverse matrix when
appropriate.

To avoid these concerns and enhance the applicability of the FT method in
practical situations, the procedure is hereby exploited to develop a novel adaptive
compensator that (almost) recovers the performance of the FTI. The compensator
guarantees exponential convergence of the parameter estimation error at a rate dictated
by the closed-loop system’s excitation. It was shown how the adaptive compensator
can be used to improve upon existing adaptive controllers. The modification proposed
guarantees exponential stability of the parametric equilibrium provided the given PE
condition is satisfied. Otherwise, the original system’s closed-loop properties are
preserved.

9.2 Adaptive compensation design

Consider the nonlinear system 8.1 satisfying Assumption 8.2.1 and the state
predictor

˙̂x = f (x, u) + g(x, u) θ 0 + kw(x − x̂) (9.1)

where kw > 0 and θ0 is the nominal initial estimate of θ . If we define the auxiliary
variable

η = x − x̂ − w(θ − θ 0) (9.2)

and select the filter dynamic as

ẇ = g(x, u) − kww, w(t0) = 0 (9.3)
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then η is generated by

η̇ = −kwη, η(t0) = e(t0). (9.4)

Based on (9.1)–(9.4), our novel adaptive compensation result is given in the
following theorem.

Theorem 9.2.1. Let Q and C be generated from the following dynamics:

Q̇ = wT w, Q(t0) = 0 (9.5a)

Ċ = wT (w θ0 + x − x̂ − η), C(t0) = 0 (9.5b)

and let tc be the time such that Q(tc) � 0, then the adaptation law

˙̂
θ = �(C − Q θ̂ ), θ̂ (t0) = θ0 (9.6)

with � = �T � 0 guarantees that ‖θ̃‖ = ‖θ − θ̂‖ is non-increasing for t0 ≤ t ≤ tc

and converges to zero exponentially fast, starting from tc. Moreover, the convergence
rate is lower bounded by E(t) = λmin(�Q(t)).

Proof: Consider a Lyapunov function

Vθ̃ = 1

2
θ̃T θ̃ , (9.7)

it follows from (9.6) that

V̇θ̃ (t) = −θ̃T (t) �
(

C(t) − Q(t)θ̂ (t)
)
. (9.8)

Since wθ = wθ 0 + x − x̂ − η (from (9.2)), then

C(t) =
∫ t

t0

Ċ(τ ) dτ =
∫ t

t0

wT (τ )w(τ ) dτ θ = Q(t) θ (9.9)

and (9.8) becomes

V̇θ̃ (t) = −θ̃T (t) � Q(t) θ̃ (t) (9.10)

≤ −E(t) Vθ̃ (t) (9.11)

This implies non-increase of ‖θ̃‖ for t ≥ t0 and the exponential claim follows from
the fact that � Q(t) = �

∫ t
t0

w(τ )T w(τ )dτ is positive definite for all t ≥ tc. The
convergence rate is shown by noting that

V̇θ̃ (t) = −θ̃T (t) �

(
Q(tc) +

∫ t

tc

w(τ )T w(τ ) dτ

)
θ̃ (t), ∀t ≥ tc (9.12)

≤ − θ̃T (t) � Q(tc) θ̃ (t) ≤ −E(tc) V (t) (9.13)
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which implies

‖θ̃ (t)‖ ≤ exp−E(tc)(t−t0) ‖θ̃ (t0)‖, ∀t ≥ tc (9.14)

Both the FT identification (8.9) and the adaptive compensator (9.6) use the
static relationship developed between the unknown parameter θ and some measur-
able matrix signals C, that is, Qθ = C. However, instead of computing the parameter
values at a known FT by inverting matrix Q, the adaptive compensator is driven by
the estimation error C − Qθ̂ = Qθ̃ .

9.3 Incorporating adaptive compensator
for performance improvement

It is assumed that the given control law u and stabilizing update law (herein denoted

as ˙̂
θ s) result in closed-loop error system

Ż = AZ + �T θ̃ s (9.15a)

˙̃
θ s = −��Z (9.15b)

where the matrix A is such that A + AT < −2 kA I < 0, � is a bounded matrix function
of the regressor vectors, θ̃ s = θ − θ̂ s and Z = [z1, z2, . . . , znx ]T is a vector function of
the tracking error with z1 = y − yr . This implies that the adaptive controller guaran-
tees uniform boundedness of the estimation error θ̃ s and asymptotic convergence of
the tracking error Z dynamics. Such adaptive controllers are very common in the
literature. Examples include linearized control laws [117] and controllers designed
via backstepping [98, 110].

Given the stabilizing adaptation law ˙̂
θ s, we propose the following update law

which is a combination of the stabilizing update law (9.15b) and the adaptive
compensator (9.6)

˙̂
θ = �(�Z + C − Q θ̂ ). (9.16)

Since C(t) = Q(t) θ , the resulting error equations becomes
[

Ż
˙̃
θ

]

=
[

A �T

−�� −�Q

] [
Z
θ̃

]
. (9.17)

Considering the Lyapunov function V = 1
2 (zT z + θ̃T �−1θ̃ ), and differentiating

along (9.17) we have

V̇ = 1

2
zT (A + AT ) z − θ̃T Qθ̃ ≤ −kA zT z − θ̃T Q θ̃ (9.18)

Hence θ̃ → 0 exponentially for t ≥ tc and the initial asymptotic convergence of Z is
strengthened to exponential convergence.
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For feedback linearizable systems

ẋi = xi+1 1 ≤ i ≤ n − 1

ẋn = f1(x) + f2(x)u + θT gn(x)

y = x1

the PE condition Q(tc) � 0 translates to a priori verifiable sufficient condition on
the reference setpoint. It requires the rows of the regressor vector gn(x) to be lin-
early independent along a desired trajectory xr(t) on any finite interval t ∈ [t1, t2),
t1 < t2 < ∞. This condition is less restrictive than the one given in Reference 79
for the same class of system. This is because the linear independence requirement
herein is only required over a finite interval and it can be satisfied by a non-periodic
reference trajectory while the asymptotic stability result in Reference 79 relies on a
T-periodic reference setpoint. Moreover, exponential rather than asymptotic stability
of the parametric equilibrium is achieved.

9.4 Dither signal update

Perturbation signal is usually added to the desired reference setpoint or trajectory to
guarantee the convergence of system parameters to their true values. To reduce the
variability of the closed-loop system, the added PE signal must be systematically
removed in a way that sustains parameter convergence.

Suppose the dither signal d(t) is selected as a linear combination of sinusoidal
functions as detailed in Section 8.5. Let a0 be the vector of the selected dither ampli-
tude and let T > 0 be the first instant for which d(T ) = 0, the amplitude of the
excitation signal is updated as follows:

a(t) =
{

a0, t ∈ [0, T )
exp−γ Ē T a( j − 1)T , t ∈ [ jT , ( j + 1)T ), j ≥ 1

(9.19)

where the gain γ > 0 is a design parameter, a(0) = a0 and

E(0) = 0, E(τ ) = λmin(Q(τ ))

Ē = max{E( jT ), E(( j − 1)T )}.
It follows from (9.19) that the reference setpoint will be subject to PE with con-

stant amplitude a0 if t ∈ [0, T ). After which the trajectory of a(t) will be dictated by
the filtered regressor matrix Q. The amplitude vector a(t) will start to decay expo-
nentially when Q(t) becomes positive definite. Note that parameter convergence will
be achieved regardless of the value of the gain γ selected as the only requirement for
convergence is Q(t) � 0.

Remark 9.4.1. The other major approach used in traditional adaptive control is
parameter estimation-based design. A well-designed estimation-based adaptive con-
trol method achieves modularity of the controller – identifier pair. For nonlinear
systems, the controller module must possess strong parametric robustness properties
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while the identifier module must guarantee certain boundedness properties indepen-
dent of the control module. Assuming the existence of a bounded controller that is

robust with respect to (θ̃ , ˙̂
θ ), the adaptive compensator (9.6) serves as a suitable

identifier for modular adaptive control design.

9.5 Simulation example

To demonstrate the effectiveness of the adaptive compensator, we consider the
example in Section 8.6 for both the nominal system (8.36) and the system under
additive disturbance (8.37). The simulation is performed for the same reference set-
point yr = 1, disturbance vectorϑ = [0.1 sin(2π t/5), 0.2 cos(π t)]T , parameter values
θ = [−1, −2, 1, 2, 3] and zero initial conditions.

The adaptive controller presented in Reference 110 is also used for the simulation.
We modify the given stabilizing update law by adding the adaptive compensator (9.6)
to it. The modification significantly improve upon the performance of the standard
adaptation mechanism as shown in Figures 9.1 and 9.2. All the parameters converged
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Figure 9.1 Trajectories of parameter estimates. Solid(−): compensated estimates;
dashdot(−·): FT estimates; dashed(−−): standard estimates [110]
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Figure 9.2 Trajectories of parameter estimates under additive disturbances.
Solid(−): compensated estimates; dashdot(−·): FT estimates;
dashed(−−): standard estimates [110]

to their values and we recover the performance of the FTI (8.14). Figures 9.3 and 9.4
depict the performance of the output and the input trajectories. While the transient
behavior of the output and input trajectories is slightly improved for the nominal
adaptive system, a significant improvement is obtained for the system subject to
additive disturbances.
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9.6 Summary

This chapter demonstrates how the FT identification procedure can be used to improve
the overall performance (both transient and steady state) of adaptive control systems in
a very appealing manner. First, we develop an adaptive compensator which guarantees
exponential convergence of the estimation error provided the integral of a filtered
regressor matrix is positive definite. The approach does not involve online checking
of matrix invertibility and computation of matrix inverse or switching between para-
meter estimation methods. The convergence rate of the parameter estimator is directly
proportional to the adaptation gain and a measure of the system’s excitation. The
adaptive compensator is then combined with existing adaptive controllers to guarantee
exponential stability of the closed-loop system. The application reported in Section 9.3
is just an example, the adaptive compensator can easily be incorporated into other
adaptive control algorithms.



Chapter 10

Adaptive MPC for constrained nonlinear systems

10.1 Introduction

This chapter is inspired by References 47 and 49. While the focus in References 47
and 49 is on the use of adaptation to reduce the conservatism of robust MPC controller,
this study addresses the problem of adaptive MPC and incorporates robust features
to guarantee closed-loop stability and constraint satisfaction. Simplicity is achieved
here-in by generating a parameter estimator for the unknown parameter vector and
parameterizing the control policy in terms of these estimates rather than adapting a
parameter uncertainty set directly.

First, a min–max feedback nonlinear MPC scheme is combined with the adapta-
tion mechanism developed in Chapter 8. The parameter estimation routine employed
guarantees non-increase of the norm of the estimation error vector and provides
exponential parameter convergence when an excitation condition is satisfied. The
estimates are used to update the parameter uncertainty set, at every time step, in
a manner that guarantees non-expansion of the set leading to a gradual reduction
in the conservativeness or computational demands of the algorithms. The min–max
formulation explicitly accounts for the effect of future parameter estimation and auto-
matically injects some useful excitation into the closed-loop system to aid in parameter
identification.

Second, the technique is extended to a less computationally demanding robust-
MPC algorithm. The nominal model rather than the unknown bounded system state
is controlled, subject to conditions that ensure that given constraints are satisfied
for all possible uncertainties. State prediction error bound is determined based on
assumed Lipschitz continuity of the model. Using a nominal model prediction, it is
impossible to predict the actual future behavior of the parameter estimation error as
was possible in the min–max framework. It is shown how the future model improve-
ment over the prediction horizon can be considered by developing a worst-case upper
bound on the future parameter estimation error. The conservativeness of the algorithm
reduces as the error bound decreases monotonically over time.

Finally, it is shown how the FTI developed in Chapter 8 can be incorporated in the
proposed adaptive MPC algorithms. The true value of the uncertain parameter vector
is recovered in a known FT when an excitation condition is satisfied. Subsequently,
the adaptive and robustness features of the MPC is eliminated and the complexity of
the resultant controller reduces to that of nominal MPC.
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10.2 Problem description

The system considered is the following nonlinear parameter affine system

ẋ = f (x, u) + g(x, u)θ � F(x, u, θ ) (10.1)

θ ∈ R
nθ is the unknown parameter vector whose entries may represent physically

meaningful unknown model parameters or could be associated with any finite set
of universal basis functions. It is assumed that θ is uniquely identifiable and lie
within an initially known compact set �0 � B(θ 0, z0

θ ), a ball described by an initial
nominal estimate θ0 and associated error bound z0

θ = sups∈�0 ‖s − θ 0‖. The mapping
F : R

nx × R
nu × R

nθ → R
nx is assumed to be locally Lipschitz with respect to its

arguments. The state and the control input trajectories are assumed to be subject to
pointwise constraints x ∈ X ∈ R

nx and u ∈ U ∈ R
nu , respectively. The objective of the

study is to (robustly) stabilize the plant by means of state feedback adaptive MPC.
Optimality of the resulting trajectories are measured with respect to the accumulation
of some stage cost L(x, u) ≥ 0. The cost is assumed to be continuous, L(0, 0) = 0, and
L(x, u) ≥ µL(‖x, u‖), where µL is a K∞ function.1

10.3 Estimation of uncertainty

10.3.1 Parameter adaptation

Since parameter convergence is fundamental to the overall goal of this book, the
estimation algorithm presented in Chapter 9 is used. The adaptive update law, driven by
the parameter estimation error θ̃ = θ − θ̂ , remains active until parameter convergence
is achieved and results in faster convergence than any traditional update laws that
depends only on tracking or prediction error.

For ease of reference, the adaptive law is given by

˙̂
θ = �(C − Q θ̂ ), θ̂ (t0) = θ0 (10.2)

where the adaptive gain � = �T � 0 and

Q̇ = wT w, Q(t0) = 0 (10.3a)

Ċ = wT (w θ0 + x − x̂ − η), C(t0) = 0 (10.3b)

˙̂x = f (x, u) + g(x, u) θ0 + kw(x − x̂), x̂(t0) = x(t0) (10.3c)

η = x − x̂ − w(θ − θ 0) (10.3d)

ẇ = g(x, u) − kww, w(t0) = 0 (10.3e)

η̇ = −kwη, η(t0) = e(t0). (10.3f )

1 A continuous function µ : R
+ → R

+ is of class K∞ if µ(0) = 0, µ(·) is strictly increasing on R
+ and is

radially unbounded.
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The vector x̂ is the adaptive predictor for (10.1), the constant kw > 0 is the filter gain,
θ0 is the nominal initial estimate of θ , w is a first-order filter, η is an auxiliary variable
defined to provide a direct relationship between the parameter estimation error θ̃ and
the prediction error x − x̂. As shown in Section 9.2, the parameter estimation error
‖θ̃‖ is non-increasing for t ≤ tc and converges to zero exponentially for t ≥ tc where
tc is the time at which the matrix Q(tc) = ∫ tc

t0
wT (τ )w(τ ) dτ > 0. This was achieved

by defining a Lyapunov function

Vθ̃ = 1

2
θ̃T θ̃ (10.4)

and using the fact that C(t) = Q(t) θ , to show

V̇θ̃ (t) = −θ̃T (t) � Q(t) θ̃ (t) ≤ −E(t) Vθ̃ (t) (10.5)

where

E(t) = λmin(�Q(t)) .

10.3.2 Set adaptation

The uncertainty set � � B(θ̂ , zθ ) is updated online by updating the parameter estimate
θ̂ and its associated error bound zθ = sups∈� ‖s − θ̂‖. The vector θ̂ is updated via
(10.2) while zθ is updated based on the observed system’s excitation contained in E(t)
according to the following algorithm.

Algorithm 10.3.1. Let E(σ ) = λmin(�Q(σ )), beginning from time ti−1 = t0, the
parameter and set adaptation is implemented iteratively as follows:

1. Initialize zθ (t0) = z0
θ , �(t0) = B(θ̂ (t0), zθ (t0)), Ē = E(t0) = 0

2. Implement the following adaptation law over the interval τ ∈ [ti−1, ti)

żθ (τ ) = −Ēzθ (τ ) (10.6)

3. At time ti, perform the updates

Ē =
{

E(ti), if E(ti) ≥ E(ti−1)

E(ti−1), otherwise
(10.7)

(
θ̂ , �

)
=

⎧
⎨

⎩

(
θ̂ (ti), �(ti)

)
, if zθ (ti) ≤ zθ (ti−1) − ‖θ̂ (ti) − θ̂ (ti−1)‖

(
θ̂ (ti−1), �(ti−1)

)
, otherwise

(10.8)

4. Iterate back to Step 2, incrementing i = i + 1.
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The advantage of updating zθ according to (10.6) is that contraction of zθ can be
triggered even when the actual parameter estimation error is zero. The uncertainty
set � when implemented according to Algorithm 10.3.1 contracts in a strictly nested
fashion without excluding θ as shown in the following lemma.

Lemma 10.3.2. The evolution of � � B(θ̂ , zθ ) under (10.2), (10.6), and Algorithm
10.3.1 is such that

i. �(t2) ⊆ �(t1), t0 ≤ t1 ≤ t2

ii. θ ∈ �(t0) ⇒ θ ∈ �(t), ∀t ≥ t0

Proof:

i. If �(ti+1) � �(ti), then

sup
s∈�(ti+1)

‖s − θ̂ (ti)‖ ≥ zθ (ti). (10.9)

However, it follows from triangle inequality and Algorithm 10.3.1 that �, at
update times, obeys

sup
s∈�(ti+1)

‖s − θ̂ (ti)‖ ≤ sup
s∈�(ti+1)

‖s − θ̂ (ti+1)‖ + ‖θ̂ (ti+1) − θ̂ (ti)‖

≤ zθ (ti+1) + ‖θ̂ (ti+1) − θ̂ (ti)‖ ≤ zθ (ti),

which contradicts (10.9). Hence, � update guarantees �(ti+1) ⊆ �(ti) and the
strict contraction claim follows from the fact that � is held constant over update
intervals τ ∈ (ti, ti+1).

ii. The θ inclusion claim is proven by showing that

‖θ̃ (t)‖ ≤ zθ (t), ∀t ≥ t0 (10.10)

which in turn establish that θ ∈ �(t0) ⇒ θ ∈ B(θ̂ (t), zθ (t)), ∀t ≥ t0. We know that
‖θ̃ (t0)‖ ≤ zθ (t0) (by definition). It follows from (10.5) that

V̇θ̃ (τ ) = −θ̃T (τ )�
(

Q(ti) +
∫ τ

ti

w(σ )T w(σ )dσ )
)

θ̃ (τ ), τ ∈ [ti, ti+1)

≤ −θ̃T (τ ) � Q(ti) θ̃ (τ ) ≤ −E(ti) Vθ̃ (τ ). (10.11)

and using (10.4), (10.6), and (10.11) we have ‖ ˙̃
θ (t)‖ ≤ żθ (t). Hence, by

comparison lemma (89, Lemma 3.4) we have (10.10).
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10.4 Robust adaptive MPC—a min–max approach

In this section, the concept of min–max robust MPC is employed to provide robust-
ness for the MPC controller during the adaptation phase. The resulting optimization
problem can either be solved in open-loop or closed-loop. In the approach proposed,
we choose the least conservative option by performing optimization with respect to
closed-loop strategies. As in typical feedback-MPC fashion, the controller chooses
input u as a function of the current states. The formulation consists of maximizing a
cost function with respect to θ and minimizing over feedback control policies κ .

The receding horizon control law is defined by

u = κmpc(x, θ̂ , zθ ) � κ∗(0, x, θ̂ , zθ ) (10.12a)

κ∗ � arg min
κ(τ , x p,θ̂ p,zθ )

J (x, θ̂ , zθ , κ) (10.12b)

where J (x, θ̂ , zθ , κ) is the (worst-case) cost associated with the optimal control
problem:

J (x, θ̂ , zθ , κ) � max
θ∈�� B(θ̂ ,zθ )

∫ T

0
L(xp, up)dτ + W (xp(T ), θ̃ p(T )) (10.13a)

s.t. ∀ τ ∈ [0, T ]

ẋp = f (xp, up) + g(xp, up) θ , xp(0) = x (10.13b)

ẇp = gT (xp, up) − kwp, wp(0) = w (10.13c)

Q̇p = wp T
wp, Qp(0) = Q (10.13d)

˙̂
θp = � Qp θ̃ p, θ̃ p = θ − θ̂ p, θ̂ p(0) = θ̂ (10.13e)

up(τ ) � κ(τ , xp(τ ), θ̂ p(τ )) ∈ U (10.13f )

xp(τ ) ∈ X, xp(T ) ∈ Xf (θ̃ p(T )) (10.13g)

In the formulation, the effect of future parameter adaptation is accounted for,
which results in less conservative worst-case predictions. Also, the conservativeness
of the terminal cost is reduced by parameterizing both W and Xf as functions of θ̃ (T ).
Parameterizing the terminal penalty as a function of θ̃ ensures that the algorithm will
seek to reduce the parameter error in the process of optimizing the cost function J .
This may require the algorithm to automatically inject some useful excitation into the
closed-loop system.

10.4.1 Implementation algorithm

Algorithm 10.4.1. The min–max MPC algorithm performs as follows: At sampling
instant ti

1. Measure the current state of the plant x and obtain the current values of matrices
w and Q from (10.3e) and (10.3a), respectively.
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2. Update the parameter estimates θ̂ and the uncertainty set �(t) � B(θ̂ (t), zθ (t))
using (10.2) and Algorithm 10.3.1.

3. Solve the optimization problem (10.12, 10.13) and apply the resulting feedback
control law to the plant until the next sampling instant.

4. Repeat the procedure from Step 1 for the next sampling instant, incrementing
i = i + 1.

An alternative to the � update (10.8) is to define the uncertainty set

�(t) �
⋂

τ∈[t0, t]

B(θ̂ (τ ), zθ (τ )), (10.14)

and replace Step 2 of Algorithm 10.4.1 with the following alternative Step 2:

2. Obtain the current value of parameter estimates θ̂ and uncertainty bound zθ from
(10.2) and (10.6). Then update the MPC quantities � and θ̂ as

� = �(ti) � �(ti−1)
⋂

B(θ̂ (ti), zθ (ti)) (10.15a)

θ̂ = θ̄ (10.15b)

where θ̄ is any point in �.

We note that the evolution of � when updated according to (10.15) satisfies the
main requirement for the MPC performance. The set contracts in a strictly nested
fashion without excluding θ . The set contraction follows by definition:

�(t2) = �(t1)
⋂

B
(
θ̂ (t2), zθ (t1)

) ⊆ �(t1), ∀t2 ≥ t1. (10.16)

Moreover, since zθ is such that ‖θ̃ (t)‖ ≤ zθ (t) ∀t ≥ t0, the θ inclusion claim fol-
lows by noting that θ ∈ �(t0) ⇒ θ ∈ B(θ̂ (t), zθ (t)), ∀t ≥ t0. Hence, θ ∈ �(tj) :=⋂j

i=0 B(θ̂ (ti), zθ (ti)). The benefit of using (10.15) is that the size of the uncertainty
description � reduces faster over time but this is achieved at the expense of increased
online computation due to the additional task of calculating the intersection of sets.

In the remainder of this section, we drop the explicit constraint (10.13g) by using
the convention that if some of the constraints are not satisfied, then the value of J is
+∞, that is,

L(x, u) =
{

L(x, u) < ∞ if (x, u) ∈ X × U

+∞ otherwise

W (x, θ̃ ) =
{

W (x, θ̃ ) < ∞ if x ∈ Xf (θ̃ )
+∞ otherwise

10.4.2 Closed-loop robust stability

Robust stability is guaranteed if predicted state at terminal time belong to a robustly
invariant set for all possible uncertainties. Let �̃0 = {θ̃ : ‖θ̃‖ ≤ z0

θ )}, a sufficient
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conditions for the robust MPC (10.12) to guarantee stabilization of the origin is
outlined below.

Criterion 10.4.2. The terminal penalty function W : Xf × �̃0 → [0, +∞] and
the terminal constraint function Xf : �̃0 → X are such that for each (θ , θ̂ , θ̃ ) ∈
(�0 × �0 × �̃0), there exists a feedback kf (·, θ̂ ) : Xf → U satisfying

1. 0 ∈ Xf (θ̃ ) ⊆ X, Xf (θ̃ ) closed
2. kf (x, θ̂ ) ∈ U, ∀x ∈ Xf (θ̃ )
3. W (x, θ̃ ) is continuous with respect to x ∈ R

nx

4. ∀ x ∈ Xf (θ̃ ), Xf (θ̃ ) is strongly positively invariant under kf (x, θ̂ ) with respect to
the differential inclusion ẋ ∈ f (x, kf (x, θ̂ )) + g(x, kf (x, θ̂ ))�

5. W (x(t + δ), θ̃ (t)) − W (x(t), θ̃ (t)) ≤ −∫ t+δ

t L(x, kf (x, θ̂ ))dτ , ∀ x ∈ Xf (θ̃ ).

In addition to Criterion (10.4.2), the θ̃ dependence of W and Xf is required to
satisfy the following.

Criterion 10.4.3. For any θ̃1, θ̃2 ∈ �̃0 s.t. ‖θ̃2‖ ≤ ‖θ̃1‖,

1. W (x, θ̃2) ≤ W (x, θ̃1), ∀x ∈ Xf (θ̃1)
2. Xf (θ̃2) ⊇ Xf (θ̃1)

Note that Criterion (10.4.2) requires only the existence, not knowledge, of kf (x, θ̂ ) and
the stability condition requires the terminal penalty function W (x, θ̃ ) to be a robust-
CLF on the domain Xf (θ̃ ). Criterion (10.4.3) requires W to decrease and the domain
Xf to enlarge with decreased parametric uncertainty as expected.

Theorem 10.4.4. Let X0 � X0(�0) ⊆ X denote the set of initial states with uncertainty
�0 for which (10.12) has a solution. Assuming Criteria 10.4.2 and 10.4.3 are satisfied,
then the closed-loop system state x, given by (10.1, 10.2, 10.6, 10.12), originating
from any x0 ∈ X0 feasibly approaches the origin as t → +∞.

The proof of the theorem is given in Section 10.9.

10.5 Robust adaptive MPC—a Lipschitz-based approach

Due to the computational complexity associated with (feedback) min–max optimiza-
tion problem for nonlinear systems, it is (sometimes) more practical to use more
conservative but computationally efficient methods. Examples of such approaches
include Lipschitz-based methods [120, 128] and those based on the concept of
reachable sets [108].

In this section, we present a Lipschitz-based method whereby the nominal model
rather than the unknown bounded system state is controlled, subject to conditions
that ensure that given constraints are satisfied for all possible uncertainties. State
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prediction error bound is determined based on the Lipschitz continuity of the model.
A knowledge of appropriate Lipschitz bounds for the x-dependence of the dynamics
f (x, u) and g(x, u) are assumed as follows.

Assumption 10.5.1. A set of functions Lj : X × U → R
+, j ∈ {f , g} are known

which satisfy

Lj(X, u) ≥ min
{
Lj

∣∣ sup
x1,x2∈X

(‖j(x1, u) − j(x2, u)‖ − Lj‖x1 − x2‖
) ≤ 0

}
,

where for j ≡ g is interpreted as an induced norm since g(x, u) is a matrix.

10.5.1 Prediction of state error bound

In order to consider the effect of the uncertainty θ̃ in the controller synthesis, we have
to compute a bound on the difference between the nominal state trajectory and the
solution of the actual system. To this end, consider the actual system

ẋ = f (x, u) + g(x, u) θ , (10.18)

and the nominal model controlled by the same input u

ẋ p = f (x p, u) + g(x p, u) θ̂ , (10.19)

it follows that

‖ẋ − ẋ p‖ ≤ ‖f (x, u) − f (x p, u)‖ + ‖g(x, u)θ − g(x p, u)θ‖
+ ‖g(x p, u)θ − g(x p, u)θ p‖

≤ Lf ‖x − x p‖ + Lg‖θ‖‖x − x p‖ + ‖g(x p, u)‖‖θ − θ̂‖.

Therefore, a worst-case deviation z p
x ≥ maxθ∈� ‖x − x p‖ can be generated from

ż p
x = (Lf + Lg
)z p

x + ‖g(x p, u)‖zθ , z p
x (t0) = 0 (10.20)

where 
 = zθ + ‖θ̂‖.

10.5.2 Lipschitz-based finite horizon optimal control
problem

The model predictive feedback is defined as

u = κmpc(x, θ̂ , zθ ) = u∗(0) (10.21a)

u∗(·) � arg min
u p

[0,T ]

J (x, θ̂ , zθ , u p) (10.21b)
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where J (x, θ̂ , zθ , u p) is given by the optimal control problem:

J (x, θ̂ , zθ , u p) =
∫ T

0
L(x p, u p)dτ + W (x p(T ), z p

θ (T )) (10.22a)

s.t. ∀τ ∈ [0, T ]

ẋ p = f (x p, u p) + g(x p, u p)θ̂ , x p(0) = x (10.22b)

ż p
x = (Lf + Lg
)z p

x + ‖g(x p, u p)‖zθ , z p
x (0) = 0 (10.22c)

X p(τ ) � B(x p(τ ), z p
x (τ )) ⊆ X, u p(τ ) ∈ U (10.22d)

X p(T ) ⊆ Xf (z p
θ (T )) (10.22e)

In the proposed formulation, the parameter estimate θ̂ and the uncertainty radius zθ

which appears in (10.22b) and (10.22c) are updated at every sampling instant and held
constant over the prediction horizon. However, the effect of the future model improve-
ment along the prediction horizon is incorporated in the formulation by parameterizing
the terminal expressions in (10.22a) and (10.22e) as a function of zθ (T ). This enlarges
the terminal domain and hence reduces the conservatism of the robust MPC. Using
a nominal model prediction, it is impossible to predict the actual future behavior of
the parameter estimation error as was possible in the min–max framework. However,
based upon the excitation of the real system at sampling instants ti, one can generate an
upper bound on the future parameter estimation error according to Algorithm 10.3.1,
(10.6), that is,

z p
θ (τ ) = exp−Ē(τ−ti) zθ (ti) τ ∈ [ti, ti + T ) (10.23)

where

Ē ≥ E(ti) = λmin(�Q(ti))

10.5.3 Implementation algorithm

Algorithm 10.5.2. The Lipschitz-based MPC algorithm is implemented as follows:
At sampling instant ti

1. Measure the current state of the plant x = x(ti).
2. Update the parameter estimates θ̂ = θ̂ (ti) and uncertainty bounds zθ = zθ (ti) and

z p
θ (T ) = z p

θ (ti + T ) via (10.2), (10.6), and (10.23), respectively.
3. Solve the optimization problem (10.21, 10.22) and apply the resulting feedback

control law to the plant until the next sampling instant.
4. Repeat the procedure from Step 1 for the next sampling instant, incrementing

i = i + 1.

The conservatism of the Lipschitz-based approach is mainly due to the computa-
tion of the uncertainty cone B(x p, z p

x ) around the nominal trajectory. The rate at which
the cone expands over the prediction horizon reduces at each sampling instant as zθ

reduces. When zθ is zero, the effect of parameter uncertainty on the state prediction
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can be totally eliminated from the adaptive framework by replacing the error dynamic
(10.22c) with ż p

x = 0 when zθ ≈ 0.

Theorem 10.5.3. Let X ′
0 � X ′

0(�0) ⊆ X denote the set of initial states for which
(10.21) has a solution. Assuming Assumption 10.5.1 and Criteria 10.4.2 and 10.4.3
are satisfied, then the origin of the closed-loop system given by (10.1, 10.2, 10.6,
10.21) is feasibly asymptotically stabilized from any x0 ∈ X ′

0.

The proof can be found in Section 10.9.

10.6 Incorporating FTI

The performance and computational demand of the adaptive MPC schemes developed
depend on the performance of the parameter and set adaptation mechanism employed.
An identification mechanism that provides faster convergence of θ̃ to zero (in a known
time) is beneficial. In this section, we employ the FTI, presented in Chapter 8, in
developing an adaptive predictive control structure that reduces to a nominal MPC
problem when exact parameter estimates are obtained.

Let the parameter estimate θ̂ , matrices Q and C be generated from (10.2), (10.3a),
and (10.3b), respectively. Also, let tc be a time such that Q(tc) is invertible, the FTI is
given by

θ̂ c(t) =
{

θ̂ (t), if t < tc

Q(tc)−1 C(tc), if t ≥ tc.
(10.24)

The revised algorithm based on the FTI is given in the following.

10.6.1 FTI-based min–max approach

Let the filter (10.13c) and excitation dynamics (10.13d) be replaced by

ẇ p = β
(
gT (x p, u p) − kw p

)
, w p(0) = w (10.25)

Q̇ p = β(wp T
w p), Q p(0) = Q (10.26)

with β ∈ {0, 1} a design parameter. The proposed FTI-based algorithm is as follows:

Algorithm 10.6.1. FT min–max MPC algorithm: At sampling instant ti

1. Measure the current state of the plant x.
2. Obtain the current value of matrices Q and C from (10.3a) and (10.3b)

respectively.
3. If det(Q) = 0 or cond(Q) is not satisfactory update the parameter estimates θ̂

and the uncertainty set �(t) � B(θ̂ (t), zθ (t)) according to Algorithm 10.3.1.
Else if det(Q) > 0 and cond(Q) is satisfactory, set β = 0 and update

θ̂ = Q−1(ti)C(ti), zθ = 0

End
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4. Solve the optimization problem (10.12, 10.13) and apply the resulting feedback
control law to the plant until the next sampling instant.

5. Increment i = i + 1. If zθ > 0, repeat the procedure from Step 1 for the next sam-
pling instant. Otherwise, repeat only Steps 1 and 3 for the next sampling instant.

Implementing the adaptive MPC controller according to Algorithm 10.6.1 guaran-
tees that the uncertainty ball � � B(θ̂ , zθ ) is contained in the previous one, that is,
�(ti) ⊆ �(ti−1). Hence, a successive reduction in the computational requirement of
(10.12) is ensured. Moreover, when the parameter estimate θ c becomes available, the
uncertainty set � reduces to a single point with θ̃ = 0 and the predictive robust control
structure becomes that of a nominal MPC:

u = κmpc(x) � κ∗(0, x) (10.27a)

κ∗ � arg min
κ(·,·)

J (x, κ) �
∫ T

0
L(x p, u p)dτ + W (x p(T )) (10.27b)

s.t. ∀τ ∈ [0, T ]

ẋ p = f (x p, u p) + g(x p, u p)θ c, x p(0) = x (10.27c)

u p(τ ) � κ(τ , x p(τ )) ∈ U, x p(τ ) ∈ X, x p(T ) ∈ Xf (10.27d)

10.6.2 FTI-based Lipshitz-bound approach

For the Lipshitz-based approach, the error bound dynamic (10.22c) is replaced by

ż p
x = β(Lf + Lg
)z p

x + ‖g p‖zθ , z p
x (0) = 0, (10.28)

with β ∈ {0, 1} and the controller is implemented according to the following
algorithm.

Algorithm 10.6.2. FT Lipschitz-based MPC algorithm: At sampling instant ti

1. Measure the current state of the plant x.
2. Obtain the current value of matrices Q and C from (10.3a) and (10.3b)

respectively.
3. If det(Q) = 0 or cond(Q) is not satisfactory, set β = 1 and update the parameter

estimates θ̂ = θ̂ (ti) and uncertainty bounds zθ = zθ (ti) and z p
θ (T ) = z p

θ (ti + T )
via (10.2), (10.6), and (10.23), respectively.
Else if det(Q) > 0 and cond(Q) is satisfactory, set β = 0 and update

θ̂ = Q−1(ti)C(ti), zθ = 0

End
4. Solve the optimization problem (10.21, 10.22) and apply the resulting feedback

control law to the plant until the next sampling instant.
5. Increment i = i + 1. If zθ > 0, repeat the procedure from Step 1 for the next

sampling instant. Otherwise, repeat only Steps 1 and 3 for the next sampling
instant.
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Implementing Algorithm 10.6.2 ensures that the size of the uncertainty cone
around the nominal state trajectory reduces as zθ shrinks and when exact parameter
estimate vector θ c is obtained, z p

x = 0, which implies that the problem becomes that
of a nominal MPC (10.27).

10.7 Simulation example

Consider the regulation of a continuous stirred tank reactor where a first order, irre-
versible exothermic reaction A → B is carried out. Assuming constant liquid level,
the reaction is described by the following dynamic model [112]:

ĊA = q

V
(CAin − CA) − k0 exp

(−E

RTr

)
CA

Ṫr = q

V
(Tin − Tr) − �H

ρcp
k0 exp

(−E

RTr

)
CA + UA

ρcpV
(Tc − Tr)

The states CA and Tr are the concentrations of components A and the reactor tem-
perature, respectively. The manipulated variable Tc is temperature of the coolant
stream.

It is assumed that reaction kinetic constant k0 and heat of reaction �H are only
nominally known and parameterized as k0 = θ1 × 1010 min−1 and �H k0 = −θ2 × 1015

J/mol min with the parameters satisfying 0.1 ≤ θ1 ≤ 10 and 0.1 ≤ θ2 ≤ 10. The
objective is to adaptively regulate the unstable equilibrium Ceq

A = 0.5 mol/l,
T eq

r = 350 K, T eq
c = 300 K while satisfying the constraints 0 ≤ CA ≤ 1, 280 ≤ Tr ≤

370, and 280 ≤ Tc ≤ 370. The nominal operating conditions, which corresponds
to the given unstable equilibrium are taken from Reference 112: q = 100 l/min,
V = 100 l, ρ = 1000 g/l, cp = 0.239 J/g K, E/R = 8750 K, UA = 5 × 104 J/min K,
CAin = 1 mol/l, and Tin = 350 K.

Defining x =
[

CA − Ceq
A

0.5 , Tr − T eq
r

20

]′
, u = Tc − T eq

c
20 , the stage cost L(x, u) was selected

as a quadratic function of its arguments:

L(x, u) = xT Qxx + uT Ruu (10.29a)

Qx =
[

0.5 0
0 1.1429

]
Ru = 1.333. (10.29b)

The terminal penalty function used is a quadratic parameter-dependent Lyapunov
function W (x, θ ) = xT P(θ )x for the linearized system. Denoting the closed-loop sys-
tem under a local robust stabilizing controller u = kf (θ ) x as ẋ = Acl(θ )x. The matrix
P(θ ) := P0 + θ1P1 + θ2P2 + · · · θnθPnθ was selected to satisfy the Lyapunov system
of linear matrix inequalities (LMIs)

P(θ ) > 0

Acl(θ )T P(θ ) + P(θ )Acl(θ ) < 0
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Figure 10.1 Closed-loop reactor state trajectories

for all admissible values of θ . Since θ lie between known extrema values, the task
of finding P(θ ) reduces to solving a finite set of LMIs by introducing additional
constraints [66]. For the initial nominal estimate θ0 = 5.05 and z0

θ = 4.95, the matrix
P(θ0) obtained is

P(θ0) =
[

0.6089 0.1134
0.1134 4.9122

]
(10.30)

and the corresponding terminal region is

Xf = {x : xT P(θ0) x ≤ 0.25}. (10.31)

For simulation purposes, the true values of the unknown parameters were chosen
as k0 = 7.2 × 1010 min−1 and �H = −5.0 × 104 J/mol which implies θ1 = 7.2 and
θ2 = 3.6. The Lipschitz-based approach was used for the controller calculations and
the result was implemented according to Algorithm 10.5.2. Since the regressor matrix
for this reactor model is diagonal, we define uncertainty bound zθ for each parameter
estimate and adapt the pairs (θ̂1, zθ1 ) and (θ̂2, zθ2 ) separately.

The system was simulated from three different initial states (CA(0), Tr(0)) =
(0.3, 335), (0.6, 335) and (0.3, 363). The closed-loop trajectories are reported in
Figures 10.1–10.4. The results demonstrate that the adaptive MPC regulates the system
states to the open loop unstable equilibrium values and satisfies the imposed state
and input constraints. The parameter estimates converge to the true values and the
uncertainty bound zθ reduces over time.
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Figure 10.2 Closed-loop reactor input profiles for states starting at different initial
conditions (CA(0), Tr(0)): (0.3, 335) is the solid line, (0.6, 335) is the
dashed line, and (0.3, 363) is the dotted line

10.8 Conclusions

In this chapter, we presented an adaptive MPC design technique for constrained non-
linear systems with parametric uncertainties. The system’s performance is improved
over time as the adaptive control updates the model online. The controller para-
meters is updated only when an improved parameter estimate is obtained. Robustly
stabilizing MPC schemes are incorporated to ensure robustness of the algorithm to
parameter estimation error during the adaptation phase. The two robust approaches,
min–max and Lipschitz-based method, presented provides a tradeoff between com-
putational complexity and conservatism of the solutions. In both cases, the controller
is designed in such a way that the computational requirement/conservativeness of the
robust adaptive MPC reduces with reduction in parameter uncertainty. Moreover, the
complexity of the resultant controller reduces to that of nominal MPC when a FTI is
employed and an excitation condition is satisfied.

10.9 Proofs of main results

10.9.1 Proof of Theorem 10.4.4

Feasibility: The closed-loop stability is based upon the feasibility of the control
action at each sample time. Assuming, at time t, that an optimal solution u p

[0,T ] to
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Figure 10.3 Closed-loop parameter estimates profile for states starting at different
initial conditions (CA(0), Tr(0)): (0.3, 335) is the solid line, (0.6, 335)
is the dashed line, and (0.3, 363) is the dotted line

the optimization problem (10.12) exist and is found. Let � p denote the estimated
uncertainty set at time t and �v denote the set at time t + δ that would result with the
feedback implementation of u[t,t+δ] = u p

[0,δ]. Also, let x p represent the worst-case state
trajectory originating from x p(0) = x(t) and xv represents the trajectory originating
from xv(0) = x + δv under the same feasible control input uv

[δ,T ] = u p
[δ,T ]. Moreover,

let X a
�b � {xa| ẋa ∈ F(xa, u p, �b) � f (xa, u p) + g(xa, u p)�b}.
Since the u p

[0,T ] is optimal with respect to the worst-case uncertainty scenario, it
is suffice to say that u p

[0,T ] drives any trajectory x p ∈ X p
� p into the terminal region X

p
f .

Since � is non-expanding over time, we have �v ⊆ � p implying xv ∈ X p
�v ⊆ X p

� p .
The terminal region X

p
f is strongly positively invariant for the nonlinear system (10.1)

under the feedback kf (· · ·), the input constraint is satisfied in X
p
f and X

v
f ⊇ X

p
f by

Criteria 2.2, 2.4, and 3.2, respectively. Hence, the input u = [u p
[δ,T ], kf [T ,T+δ]] is a

feasible solution of (10.12) at time t + δ and by induction, the optimization problem
is feasible for all t ≥ 0.

Stability: The stability of the closed-loop system is established by proving strict
decrease of the optimal cost J ∗(x, θ̂ , zθ ) � J (x, θ̂ , zθ , κ∗). Let the trajectories
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Figure 10.4 Closed-loop uncertainty bound trajectories for initial condition
(CA, Tr) = (0.3, 335)

(x p, θ̂ p, θ̃ p, z p
θ ) and control u p correspond to any worst-case minimizing solution

of J ∗(x, θ̂ , zθ ). If x p
[0,T ] were extended to τ ∈ [0, T + δ] by implementing the feed-

back u(τ ) = kf (x p(τ ), θ̂ p(τ )) on τ ∈ [T , T + δ], then criterion 10.4.2(5) guarantees
the inequality

∫ T+δ

T
L(x p, kf (x p, θ̂ p))dτ + W (x p

T+δ , θ̃
p

T ) − W (x p
T , θ̃ p

T ) ≤ 0 (10.32)

where in (10.32) and in the remainder of the proof, x p
σ � x p(σ ), θ̃ p

σ � θ̃ p(σ ), for
σ = T , T + δ.

The optimal cost J ∗(x, θ̂ , zθ )

=
∫ T

0
L(x p, u p)dτ + W (x p

T , θ̃ p
T )

≥
∫ T

0
L(x p, u p)dτ + W (x p

T , θ̃ p
T ) +

∫ T+δ

T
L(x p, kf (x p, θ̂ p))dτ + W (x p

T+δ , θ̃
p

T ) − W (x p
T , θ̃ p

T )

(10.33)

≥
∫ δ

0
L(x p, u p)dτ +

∫ T

δ

L(x p, u p)dτ +
∫ T+δ

T
L(x p, kf (x p, θ̂ p))dτ + W (x p

T+δ , θ̃
p

T+δ)

(10.34)

≥
∫ δ

0
L(x p, u p)dτ + J ∗(x(δ), θ̂ (δ), zθ (δ)) (10.35)
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Then, it follows from (10.35) that

J ∗(x(δ), θ̂ (δ), zθ (δ)) − J ∗(x, θ̂ , zθ ) ≤ −
∫ δ

0
L(x p, u p)dτ

≤ −
∫ δ

0
µL(‖x, u‖)dτ. (10.36)

where µL is a class K∞ function. Hence x(t) → 0 asymptotically.

Remark 10.9.1. In the above proof,

● (10.33) is obtained using inequality (10.32)
● (10.34) follows from Criterion 10.4.3.1 and the fact that ‖θ̃‖ is non-increasing
● (10.35) follows by noting that the last 3 terms in (10.32) is a (potentially)

suboptimal cost on the interval [δ, T + δ] starting from the point (x p(δ), θ̂ p(δ))
with associated uncertainty set B(θ̂ p(δ), z p

θ (δ)).

10.9.2 Proof of Theorem 10.5.3

Feasibility: Let u p
[0,T ] denotes the initial optimal or feasible solution of (10.21) and

let X p � B(x p, z p
x ) denotes the corresponding predicted ball of possible trajectories

that starts at (x p, z p
x , z p

θ )|τ=0 = (x(t), 0, zθ (t)). Similarly, let X v � B(xv, zv
x ) denote the

resulting cone originating from (xv, zv
x , zv

θ )|τ=δ = (x + δv, 0, zθ (t + δ)), under the same
feasible control input uv

[δ,T ] = u p
[δ,T ].

At time τ = 0, it follows from (10.22b) and (10.22c) that ż p
x provides an upper

bound on ‖ẋ p − ẋ‖, for ẋ ∈ F(x, u p, �). Thus the continuity of the trajectories x p(τ )
and z p

x (τ ) ensures that for a small enough δ > 0, x + δv ∈ X p(δ). Therefore, we
assume, without loss of generality, that xv(δ) ∈ X p(δ). Since zv

x (δ) = 0, it follows that
X v(δ) ⊆ X p(δ) and ‖x p(δ) − xv(δ)‖ ≤ z p

x (δ) − zv
x (δ).

Next, we establish that the inclusion X v(τ ) ⊆ X p(τ ) holds for all τ ∈ [δ, T ]
by showing that ‖x p(τ ) − xv(τ )‖ ≤ z p

x (τ ) − zv
x (τ ), ∀τ ∈ [δ, T ]. Defining the variable

ez � z p
x − zv

x − ‖x p − xv‖, the dynamics of ez satisfy

ėz = ż p
x − żv

x − ‖ẋ p − ẋv‖
= (Lf + Lg
)z p

x − (Lf + Lg
)zv
x − ‖f (x p, u) − f (xv, u)

+ (g(x p, u) − g(xv, u))θ̂‖

≥ (
Lf + Lg


)
(z p

x − zv
x ) −

(
Lf + Lg‖θ̂‖

)
‖x p−xv‖

≥ (
Lf + Lg


)
ez,

from which the initial condition ez(δ) ≥ 0 guarantees that ez(τ ) ≥ 0, ∀τ ∈ [δ, T ]. This
implies that X v(τ ) ⊆ X p(τ ) ⊆ X and X v(T ) ⊆ X p(T ) ⊆ X

p
f . Moreover, from the
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non-increase of the uncertainty bound zθ , we have zv
θ ≤ z p

θ which implies that X
p
f ⊆

X
v
f . Therefore, the input u = [u p

[δ,T ], kf [T ,T+δ]] serves as a feasible solution for (10.21)
at time t + δ and the feasibility result can be achieved by induction.

Stability: closed-loop stability is established by showing that the optimal value
function is non-increasing. The proof is similar to that of Theorem 10.4.4.



Chapter 11

Adaptive MPC with disturbance attenuation

11.1 Introduction

In general, modeling error consists of parametric and non-parametric uncertainties
and the system dynamics can be influenced by exogenous disturbances as well. In
this chapter, we extend the adaptive MPC framework presented in Chapter 10 to
nonlinear systems with both constant parametric uncertainty and additive exogenous
disturbances.

Intuitively, an adaptive controller should lead to controller with better robust-
ness properties than their non-adaptive counterpart since they use more information
on the systems uncertainties. However, this is not generally the case. Under exter-
nal disturbance input, adaptive controllers can lead to inferior transient behavior,
infinite parameter drift, and burstiness in the closed-loop system. To address these
problems, parameter projection [98] is used to ensure the estimate remains in a con-
vex set and the parameter estimates are updated only when an improved estimate
is obtained. The formulation provides robustness to parameter estimation error and
bounded disturbances ϑ ∈ D. While the disturbance set D remains unchanged over
time, the parametric uncertainty set � is adapted in such a way that guarantees its
contraction.

11.2 Revised problem set-up

Consider the uncertain nonlinear system

ẋ = f (x, u) + g(x, u)θ + ϑ � F(x, u, θ , ϑ) (11.1)

where the disturbance ϑ ∈ D ⊂ Rnd is assumed to satisfy a known upper bound
‖ϑ(t)‖ ≤ Mϑ < ∞. The objective of the study is to (robustly) stabilize the plant to
some target set � ⊂ Rnx while satisfying the pointwise constraints x ∈ X ∈ Rnx and
u ∈ U ∈ Rnu . The target set is a compact set, contains the origin, and is robustly
invariant under no control.
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11.3 Parameter and uncertainty set estimation

11.3.1 Preamble

Consider the dynamical system (14.1) and assume we use the same adaptive
compensator (10.2) and (10.3). Since ϑ is not known, the true η dynamic is

η̇ϑ = −kwηϑ + ϑ , ηϑ (t0) = e(t0) (11.2)

which results in the estimation error η̃ = ηϑ − η and dynamic

˙̃η = −kwη̃ + ϑ , η̃(t0) = 0. (11.3)

Considering the Lyapunov function

Vθ̃ = 1

2
θ̃T θ̃ (11.4)

Since wθ = w θ0 + x − x̂ − η + η̃ in this case, we have

C(t) = Q(t) θ +
∫ t

t0

wT (σ )η̃(σ ) dσ (11.5)

hence, it follows that

V̇θ̃ (t) = −θ̃T (t) � Q(t) θ̃ (t) − θ̃T (t) �

∫ t

t0

wT (σ )η̃(σ ) dσ , (11.6)

which guarantees boundedness of the parameter estimation error. To compute zθ ,
the upper bound on the estimation error that must depend on measurable signal, we
replace (11.6) with

V̇θ̃ (t) ≤ −E(t)Vθ̃ (t) + kd

√
Vθ̃ (t)

∫ t

t0

‖wT (σ )‖dσ (11.7)

where

E(t) = λmin (�Q(t)) and kd = λmax(�)
Mϑ

kw
.

Though the adaptive compensator gives a stronger convergence result for systems
subject to uncertainties, its usefulness in developing robust adaptive MPC for systems
subject to disturbances is limited. Updating the uncertainty bound zθ based on (11.7)
would result in a very conservative design, mainly because of the integral in the
positive term. To obtain a tighter parameter estimation error bound, we present an
alternative update law that is based on the closed-loop system states and Mϑ .

11.3.2 Parameter adaptation

Let the estimator model for 14.1 be selected as

˙̂x = f (x, u) + g(x, u)θ̂ + kw e + w ˙̂
θ , kw > 0 (11.8)

ẇ = g(x, u) − kw w, w(t0) = 0. (11.9)
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resulting in state prediction error e = x − x̂ and auxiliary variable η = e − wθ̃

dynamics:

ė = g(x, u)θ̃ − kw e − w ˙̂
θ + ϑ e(t0) = x(t0) − x̂(t0) (11.10)

η̇ = −kw η + ϑ , η(t0) = e(t0). (11.11)

Since ϑ is not known, an estimate of η is generated from

˙̂η = −kw η̂, η̂(t0) = e(t0). (11.12)

with resulting estimation error η̃ = η − η̂ dynamics

˙̃η = −kw η̃ + ϑ , η̃(t0) = 0. (11.13)

Let 	 ∈ Rnθ ×nθ be generated from

	̇ = wT w, 	(t0) = α I � 0, (11.14)

based on (12.3), (12.4), and (11.12), our preferred parameter update law is given by

	̇−1 = −	−1wT w	−1, 	−1(t0) = 1

α
I (11.15a)

˙̂
θ = Proj

{
γ 	−1wT (e − η̂), θ̂

}
, θ̂ (t0) = θ0 ∈ �0 (11.15b)

where γ = γ T > 0 and Proj{φ, θ̂} denotes a Lipschitz projection operator such that

−Proj{φ, θ̂}T θ̃ ≤ −φT θ̃ , (11.16)

θ̂ (t0) ∈ �0 ⇒ θ̂ (t) ∈ �0
ε , ∀ t ≥ t0. (11.17)

where �0
ε � B(θ0, z0

θ + ε), ε > 0. More details on parameter projection can be found
in Reference 98.

Lemma 11.3.1. The identifier (11.15a) is such that the estimation error θ̃ = θ − θ̂

is bounded. Moreover, if

ϑ ∈ L2 or
∫ ∞

t0

[‖η̃‖2 − γ ‖e − η̂‖2
]

dτ < +∞ (11.18)

with γ = λmin (γ ) and the strong condition

lim
t→∞ λmin(	) = ∞ (11.19)

is satisfied, then θ̃ converges to zero asymptotically.

Proof: Let Vθ̃ = θ̃T 	 θ̃ , it follows from (11.15a) and the relationship wθ̃ = e −
η̂ − η̃ that

V̇θ̃ ≤ −2γ θ̃T wT (e − η̂) + θ̃T wT wθ̃

= −γ (e − η̂)T (e − η̂) + ‖η̃‖2, (11.20)
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implying that θ̃ is bounded. Moreover, it follows from (11.20) that

Vθ̃ (t) = Vθ̃ (t0) +
∫ t

t0

V̇θ̃ (τ )dτ (11.21)

≤ Vθ̃ (t0) − γ

∫ t

t0

‖e − η̂‖2 dτ +
∫ t

t0

‖η̃‖2 dτ (11.22)

Considering the dynamics of (11.13), if ϑ ∈ L2, then η̃ ∈ L2 (Lemma 8.4.2). Hence,
the right-hand side of (11.22) is finite in view of (11.18), and by (11.19) we have
limt→∞ θ̃ (t) = 0.

11.3.3 Set adaptation

An update law that measures the worst-case progress of the parameter identifier in the
presence of disturbance is given by:

zθ =
√

Vzθ

λmin(	)
(11.23a)

Vzθ (t0) = λmax

(
	(t0)

)
(z0

θ )2 (11.23b)

V̇zθ = −γ (e − η̂)T (e − η̂) +
(

Mϑ

kw

)2

. (11.23c)

Using the parameter estimator (11.15) and its error bound zθ (11.16), the uncertain
ball � � B(θ̂ , zθ ) is adapted online according to the following algorithm.

Algorithm 11.3.2. Beginning from time ti−1 = t0, the parameter and set adaptation
is implemented iteratively as follows:

1. Initialize zθ (ti−1) = z0
θ , θ̂ (ti−1) = θ̂ 0 and �(ti−1) = B(θ̂ (ti−1), zθ (ti−1)).

2. At time ti, using (11.15) and (12.16) perform the update

(
θ̂ , �

)
=

{
(θ̂ (ti), �(ti)), if zθ (ti) ≤ zθ (ti−1) − ‖θ̂ (ti) − θ̂ (ti−1)‖
(θ̂ (ti−1), �(ti−1)), otherwise

(11.24)

3. Iterate back to Step 2, incrementing i = i + 1.

The algorithm ensures that � is only updated when zθ value has decreased by an
amount which guarantees a contraction of the set. Moreover zθ evolution as given in
(12.16) ensures non-exclusion of θ as shown below.

Lemma 11.3.3. The evolution of � = B(θ̂ , zθ ) under (11.15), (11.16), and Algo-
rithm 12.3.2 is such that

i. �(t2) ⊆ �(t1), t0 ≤ t1 ≤ t2

ii. θ ∈ �(t0) ⇒ θ ∈ �(t), ∀t ≥ t0
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Proof:

i. The proof of the first claim is the same as that of Lemma 10.3.2i
ii. We know that Vθ̃ (t0) ≤ Vzθ (t0) (by definition) and it follows from (11.20) and

(12.16c) that V̇θ̃ (t) ≤ V̇zθ (t). Hence, by the comparison lemma, we have

Vθ̃ (t) ≤ Vzθ (t), ∀t ≥ t0. (11.25)

and since Vθ̃ = θ̃T 	 θ̃ , it follows that

‖θ̃ (t)‖2 ≤ Vzθ (t)

λmin(	(t))
= z2

θ (t), ∀t ≥ t0. (11.26)

Hence, if θ ∈ �(t0), then θ ∈ B(θ̂ (t), zθ (t)), ∀t ≥ t0.

11.4 Robust adaptive MPC

11.4.1 Min–max approach

The formulation of the min–max MPC consists of maximizing a cost function with
respect to θ ∈ �, ϑ ∈ D and minimizing over feedback control policies κ . The robust
receding horizon control law is

u = κmpc(x, θ̂ , zθ ) � κ∗(0, x, θ̂ , zθ ) (11.27a)

κ∗ � arg min
κ(·,·,·,·)

J (x, θ̂ , zθ , κ) (11.27b)

where

J (x, θ̂ , zθ , κ) � max
θ∈�, ϑ∈D

∫ T

0
L(x p, u p)dτ + W (x p(T ), θ̃ p(T )) (11.28a)

s.t. ∀ τ ∈ [0, T ]

ẋ p = f (x p, u p) + g(x p, u p)θ + ϑ , x p(0) = x (11.28b)

ẇ p = gT (x p, u p) − kw w p, w p(0) = w (11.28c)

(	̇−1) p = − (	−1) pwT w(	−1) p, (	−1) p(0) = 	−1 (11.28d)

˙̂
θ p = Proj

{
γ (	−1) pwT (e − η̂), θ̂

}
θ̃ p = θ − θ̂ p, θ̂ p(0) = θ̂ (11.28e)

u p(τ ) � κ(τ , x p(τ ), θ̂ p(τ )) ∈ U (11.28f )

x p(τ ) ∈ X, x p(T ) ∈ Xf (θ̃ p(T )) (11.28g)

The effect of future parameter adaptation is also accounted for in this formulation.
The conservativeness of the algorithm is reduced by parameterizing both W and Xf

as functions of θ̃ (T ). While it is possible for the set � to contract upon θ over time,
the robustness feature due to ϑ ∈ D will still remain.

Algorithm 11.4.1. The MPC algorithm performs as follows: At sampling instant ti

1. Measure the current state of the plant x(t) and obtain the current value of
matrices w and 	−1 from (11.9) and (11.15a), respectively.
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2. Obtain the current value of parameter estimates θ̂ and uncertainty bound zθ

from (11.15a) and (11.23), respectively

If zθ (ti) ≤ zθ (ti−1) − ‖θ̂ (ti) − θ̂ (ti−1)‖
θ̂ = θ̂ (ti), zθ = zθ (ti)

Else

θ̂ = θ̂ (ti−1), zθ = zθ (ti−1)

End

3. Solve the optimization problem (11.28) and apply the resulting feedback control
law to the plant until the next sampling instant.

4. Increment i = i + 1. Repeat the procedure from Step 11.4.3 for the next sampling
instant.

11.4.2 Lipschitz-based approach

Assuming a knowledge of the Lipschitz bounds for the x-dependence of the dynamics
f (x, u) and g(x, u) as given as follows:

Assumption 11.4.2. A set of functions Lj : X × U → R+, j ∈ { f , g} are known which
satisfy

Lj(X, u) ≥ min
{
Lj

∣∣ sup
x1, x2∈X

(‖j(x1, u) − j(x2, u)‖ − Lj‖x1 − x2‖
) ≤ 0

}
,

where for j ≡ g is interpreted as an induced norm since g(x, u) is a matrix.

Let � = zθ + ‖θ̂‖, a worst-case deviation z p
x ≥ maxθ∈� ‖x − x p‖ can be

generated from

ż p
x = (Lf + Lg�)z p

x + ‖g(x p, u)‖zθ + Mϑ , z p
x (t0) = 0. (11.30)

Using this error bound, the robust Lipschitz-based MPC is given by

u = κmpc(x, θ̂ , zθ ) = u∗(0) (11.31a)

u∗(·) � arg min
u p

[ 0,T ]

J (x, θ̂ , zθ , u p) (11.31b)

where

J (x, θ̂ , zθ , u p) =
∫ T

0
L(x p, u p)dτ + W (x p(T ), z p

θ ) (11.32a)

s.t. ∀ τ ∈ [0, T ]

ẋ p = f (x p, u p) + g(x p, u p)θ̂ , x p(0) = x (11.32b)

ż p
x = (Lf + Lg�)z p

x + ‖g p‖zθ + Mϑ , z p
x (0) = 0 (11.32c)

X p(τ ) � B(x p(τ ), z p
x (τ )) ⊆ X, u p(τ ) ∈ U (11.32d)

X p(T ) ⊆ Xf (z p
θ ) (11.32e)
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The effect of the disturbance is built into the uncertainty cone B(x p(τ ), z p
x (τ ))

via (11.31c). Since the uncertainty bound is no more monotonically decreasing in
this case, the uncertainty radius zθ which appears in (11.31c) and in the terminal
expressions of (11.31a) and (11.31e) are held constant over the prediction horizon.
However, the fact that they are updated at sampling instants when zθ shrinks reduces
the conservatism of the robust MPC and enlarges the terminal domain that would
otherwise have been designed based on a large initial uncertainty zθ (t0).

Algorithm 11.4.3. The Lipschitz-based MPC algorithm performs as follows: At sam-
pling instant ti

1. Measure the current state of the plant x = x(ti)
2. Obtain the current value of the parameter estimates θ̂ and uncertainty bound zθ

from (11.15a) and (11.23a), respectively,

If zθ (ti) ≤ zθ (ti−1)

θ̂ = θ̂ (ti), zθ = zθ (ti)

Else
θ̂ = θ̂ (ti−1), zθ = zθ (ti−1)

End

3. Solve the optimization problem (11.31a) and apply the resulting feedback control
law to the plant until the next sampling instant

4. Increment i:=i+1; repeat the procedure from Step 1 for the next sampling
instant.

11.5 Closed-loop robust stability

Robust stabilization to the target set � is guaranteed by appropriate selection of the
design parameters W and Xf . The robust stability conditions require the satisfaction
of Criteria 10.4.2 and 10.4.3, with Criteria 10.4.2.4 strengthened to account for the
effect of the disturbance ϑ ∈ D. The criteria are given below for ease of reference.

Criterion 11.5.1. The terminal penalty function W : Xf × �̃0 → [0, +∞] and the
terminal constraint function Xf : �̃0 → X are such that for each (θ , θ̂ , θ̃ ) ∈ (�0 ×
�0 × �̃0

ε), there exists a feedback kf (., θ̂ ) : Xf → U satisfying

1. 0 ∈ Xf (θ̃ ) ⊆ X, Xf (θ̃ ) closed
2. kf (x, θ̂ ) ∈ U, ∀x ∈ Xf (θ̃ )
3. W (x, θ̃ ) is continuous with respect to x ∈ Rnx

4. ∀ x ∈ Xf (θ̃ )\�, Xf (θ̃ ) is strongly positively invariant under kf (x, θ̂ ) with respect
to ẋ ∈ f (x, kf (x, θ̂ )) + g(x, kf (x, θ̂ ))� + D

5. L(x, kf (x, θ̂ )) + ∂W
∂x F(x, kf (x, θ̂ ), θ , ϑ) ≤ 0, ∀ x ∈ Xf (θ̃ )\�.
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Criterion 11.5.2. For any θ̃1, θ̃2 ∈ �̃0 s.t. ‖θ̃2‖ ≤ ‖θ̃1‖,

1. W (x, θ̃2) ≤ W (x, θ̃1), ∀x ∈ Xf (θ̃1)
2. Xf (θ̃2) ⊇ Xf (θ̃1)

The revised condition 11.5.1.5 requires W to be a local robust CLF for the
uncertain system 11.1 with respect to θ ∈ � and ϑ ∈ D.

11.5.1 Main results

Theorem 11.5.3. Let Xd 0 � Xd 0(�0) ⊆ X denote the set of initial states with uncer-
tainty �0 for which (11.27) has a solution. Assuming Criteria (11.5.1) and (11.5.2)
are satisfied, then the closed-loop system state x, given by (11.1,11.15,11.23,14.14),
originating from any x0 ∈ Xd 0 feasibly approaches the target set � as t → +∞.

Proof: The closed-loop stability is established by the feasibility of the control action
at each sample time and the strict decrease of the optimal cost J ∗. The proof follows
from that of Theorem 10.4.4 since the control law is optimal with respect to the worst
case uncertainty (θ , ϑ) ∈ (�, D) scenario and the terminal region X

p
f is strongly

positively invariant for 14.1 under the (local) feedback kf (·, ·).
Theorem 11.5.4. Let X ′

d 0 � X ′
d 0(�0) ⊆ X denote the set of initial states for

which (14.18) has a solution. Assuming Assumption (14.4.2) and Criteria (11.5.1)
and (11.5.2) are satisfied, then the origin of the closed-loop system given by
(14.1,11.15,11.23,11.30) is feasibly asymptotically stabilized from any x0 ∈ X ′

d 0 to
the target set �.

The proof of the Lipschitz-based control law follows from that of Theorem 10.5.3.

11.6 Simulation example

To illustrate the effectiveness of the proposed design, we consider the regulation of
the CSTR in Example 10.7, subject to an additional disturbance on the temperature
dynamic:

ĊA = q

V
(CAin − CA) − k0 exp

( −E

R Tr

)
CA

Ṫr = q

V
(Tin − Tr) − �H

ρ cp
k0 exp

( −E

R Tr

)
CA + UA

ρ cp V
(Tc − Tr) + ϑ

where ϑ(t) is an unknown function of time. We also assume that the reaction kinetic
constant k0 and �H are only nominally known. The operating conditions and sys-
tem constraints are as detailed in Section 10.7. The control objective is to robustly
regulate the reactor temperature and concentration to the (open loop) unstable equi-
librium Ceq

A = 0.5 mol/l, T eq
r = 350 K, T eq

c = 300 K by manipulating the temperature
of the coolant stream Tc.

For simulation purposes, the disturbance is selected as a fluctuation of the inlet
temperature ϑ(t) = 0.01 Tin sin(3t) and the true values of the unknown parameters
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Figure 11.1 Closed-loop reactor trajectories under additive disturbance ϑ(t)

were also chosen as k0 = 7.2 × 1010 min−1 and � H = −5.0 × 104 J/mol. The stage
cost (10.29), terminal penalty (10.30), and terminal region (10.31) were used. The
Lipschitz-based approach was used for the controller calculations and the result was
implemented according to Algorithm 11.4.3. As depicted in Figures 11.1–11.3, the
robust adaptive MPC drives the system to a neighborhood of the equilibrium while
satisfying the imposed constraints and achieves parameter convergence. Figure 11.4
shows that the uncertainty bound zθ also reduces over time, although at much
more conservative rate compared to Figure 10.4 obtained for systems with no
disturbances.

11.7 Conclusions

The adaptive MPC design technique is extended to constrained nonlinear systems
with both parametric and time-varying disturbances. The proposed robust controller
updates the plant model online when model improvement is guaranteed. The embed-
ded adaptation mechanism enables us to construct less conservative terminal design
parameters based upon subsets of the original parametric uncertainty. While the
introduced conservatism/computation complexity due to the parametric uncertainty
reduces over time, the portion due to the disturbance ϑ ∈ D remains active for all
time.
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Figure 11.2 Closed-loop input profiles for states starting at different initial
conditions (CA(0), Tr(0)): (0.3, 335) is solid line, (0.6, 335) is dashed
line, and (0.3, 363) is the dotted line
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Figure 11.3 Closed-loop parameter estimates profile for states starting at different
initial conditions (CA(0), Tr(0)): (0.3, 335) is solid line, (0.6, 335) is
dashed line, and (0.3, 363) is the dotted line
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Figure 11.4 Closed-loop uncertainty bound trajectories for initial condition
(CA, Tr) = (0.3, 335)





Chapter 12

Robust adaptive economic MPC

In this chapter, we propose the design of economic MPC systems based on a single-
step approach of the adaptive MPC technique proposed for a class of uncertain
nonlinear systems subject to parametric uncertainties and exogenous variables. The
framework considered assumes that the economic function is a known function
of constrained system’s states, parameterized by unknown parameters. The objec-
tive and constraint functions may explicitly depend on time, which means that our
proposed method is applicable to both dynamic and steady-state economic optimiza-
tion. A simulation example is used to demonstrate the effectiveness of the design
technique.

12.1 Introduction

One of the key challenges in the process industry is how to best operate plants in
light of varying processing and economic conditions. If one focusses on economic
considerations, it may be extremely difficult to know, a priori, what the optimal
operating conditions may be. Several technologies have been developed to address this
problem. The leading and most popular approach remains RTO [18, 102], which refers
to the online economic optimization of a process plant. RTO attempts to optimize
process performance (usually measured in terms of profit or operating cost) thereby
enabling companies to push the profitability of their processes to their true potential as
operating conditions change. RTO systems are usually designed to solve steady-state
optimization problems. It is therefore generally assumed that the process dynamics
can be neglected if the optimization execution time interval is long enough to allow
the process to reach and maintain steady state.

The integration of RTO and control for an optimal plant operation is an active area
of research. RTO is in the family of adaptive extremum-seeking control techniques.
Many techniques have been developed in the literature to address the regulation of
processes to optimal (unknown) setpoints. The main challenge has been to address the
combined task of steady-state optimization and transient performance. One approach
proposed in Reference 75 is to use the profit (or cost) function to construct a
Lyapunov function. Since the profit function is not generally measured and may
depend on unknown model parameters, an adaptive control approach is usually
required to ensure that the control system can reach the true unknown optimum without
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any bias associated with model and parametric uncertainties. In the context of MPC,
the problem has been treated in Reference 8 where the integration of RTO and MPC
is considered. The technique in Reference 8 is particularly well suited as it provides
a robust adaptive integrated control approach that can effectively deal with uncer-
tainties and economic objectives. It is based on the robust adaptive MPC techniques
proposed in Reference 9 and provides robustness to parametric uncertainties. The
approach of Reference 8 proposes integration of a nonlinear adaptive model predic-
tive controller and an adaptive RTO approach. The adaptive real-dynamic optimization
routine provides the best reference trajectory, given estimates of the parameters,
that meets process constraints and asymptotically converges to the unknown opti-
mal setpoint. Under the assumption that there exists an input trajectory that can
steer the system to this optimal steady-state point, an adaptive MPC design tech-
nique is proposed that can robustly stabilize the nonlinear system about the unknown
setpoint.

Another approach that has been proposed in the literature is a framework for
integration of RTO and MPC called economic MPC. The leading approach pro-
posed in [13]. In contrast to the two step approach proposed in [8], the economic
MPC approach proposes to use the economic objective cost in the stage cost of
the MPC. Assuming that the cost function is exactly known, the resulting MPC
can be shown to asymptotically convergence to a neighborhood of the best feasi-
ble operating conditions for the control system. Questions associated with transient
performance and stability of the control system remain open. Stability results are
limited to linear systems subject to convex cost and convex constraints. Recent
studies [14, 53] provide a summary of results for economic MPC for nonlinear
systems.

In this chapter, we propose the design of economic MPC systems based on a
single-step approach of the adaptive MPC technique proposed for a class of uncertain
nonlinear systems subject to parametric uncertainties and exogenous variables. The
framework considered assumes that the economic function is a known function of
constrained system’s states, parameterized by unknown parameters. The objective and
constraint functions may explicitly depend on time, which means that our proposed
method is applicable to both dynamic and steady-state economic optimization. The
control objective is to simultaneously identify and regulate the system to the operating
point that optimizes the economic function. The control input and state trajectories of
the closed-loop system may also be required to satisfy some constraints. The approach
proposed in this paper generalizes the results in Reference 8 by incorporating the cost
information directly in the MPC stage cost. The cost information is integrated in a
very specific way that allows one to address stability and robustness issues for the
class of economic MPC control systems. The approach is based on a set-based robust
adaptive estimation method that provides estimates of the unknown parameters along
with an uncertain region guaranteed to contain the true value. The main result states
that the economic MPC technique robustly stabilizes a neighborhood of the minimizer
of the cost function.
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12.2 Problem description

Consider a constrained optimization problem of the form

min
x∈Rn

p(x, θ ) (12.1a)

s.t. cj(x) ≤ 0 j = 1 . . . nc (12.1b)

with θ representing unknown parameters, assumed to be uniquely identifiable and lie
within an initially known convex set �0 � B(θ0, z0

θ ) where B(θ0, z0
θ ) denotes the ball

of radius zθ
0 centered at θ0. The functions p and cj are assumed to be C2 in all of their

arguments (with locally Lipschitz second derivatives). The constraint cj ≤ 0 must be
satisfied along the system’s state trajectory x(t).

In contrast to existing economic MPC techniques, it is assumed that the optimum
solution depends on unknown parameters, θ . As a result, the cost function p(x, θ ) is
not known exactly and its value must be inferred from plant measurements. This is
in line with standard RTO where plant data must be used to update unknown optimal
operating conditions.

Assumption 12.2.1. The following assumptions are made about (12.1).

1. There exists ε0 > 0 such that ∂2p
∂x∂xT ≥ ε0I and ∂2c

∂x∂xT ≥ 0 for all (x, θ ) ∈ (Rn ×
�ε), where �ε is an ε neighborhood of �.

2. The feasible set

X = {x ∈ Rnx | max
j

cj(x) ≤ 0},
has a nonempty interior.

Assumption 12.2.1 states that the cost surface is strictly convex in x and X is a non-
empty convex set. Standard nonlinear optimization results guarantee the existence
of a unique minimizer x∗(x, θ ) ∈ X to problem 12.1. In the case of non-convex cost
surface, only local attraction to an extremum can be guaranteed.

Consider the uncertain nonlinear system

ẋ = f (x) +
m∑

i=1

gi(x)ui +
p∑

j=1

qj(x)θi + ϑ � F(x, u, θ , ϑ) (12.2)

where x ∈ R
n are the state variables, u ∈ R

m are the input variables, θ ∈ R
p are

unknown system parameters, and ϑ ∈ R
n is a vector of unstructured exogenous

disturbances. It is assumed that all vector fields f (x), gi(x) (i = 1, . . . , m) and
qj(x) ( j = 1, . . . , p) are smooth vector valued functions. It is assumed that θ is
uniquely identifiable and lie within an initially known compact set �0 = B(θ0, zθ )
where θ0 is a nominal parameter value, zθ is the radius of the parameter uncer-
tainty set. The disturbance ϑ ∈ D ⊂ Rnd is assumed to satisfy a known upper bound
‖ϑ(t)‖ ≤ Mϑ < ∞.
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Remark 12.2.2. In this study, the exogenous variable ϑ represents an unstructured
bounded time-varying uncertainty.

The control objective is to stabilize the nonlinear system (12.2) to the optimum
operating point or trajectory given by the solution of (12.1) while obeying the input
constraint u ∈ U ∈ Rm in addition to the state constraint x ∈ X ∈ Rn.

In this next section, we present the first element of the proposed design method.
It consists of a set-based adaptive parameter estimation technique that can be used
to estimate the unknown parameters while simultaneously monitoring the size of the
parameter uncertainty set.

12.3 Set-based parameter estimation routine

The set-based parameter estimation technique proposed requires two adaptive esti-
mation mechanisms to estimate the uncertainty set B(θ0, zθ

0 ). A suitable adaptive
parameter estimation technique is first proposed to estimate the center of the param-
eter uncertainty set, θ0. A update algorithm is then proposed to estimate the radius of
the uncertainty ball, zθ

0 .

12.3.1 Adaptive parameter estimation

Using a standard estimation technique, we first consider the state prediction:

˙̂x = f (x) + g(x)u + q(x)θ̂ + kw(x − x̂) + w ˙̂
θ , (12.3)

where x and u are the state and input variables from the system (12.2), θ̂ are the para-
meter estimates, g(x) = [g1(x), . . . , gm(x) ] and q(x) = [ q1(x), . . . , qp(x)], kw > 0
are a strictly positive constant gain to be assigned, and w is a n by p matrix solution
of the matrix differential equation,

ẇ = q(x) − kww (12.4)

with initial condition w(0) = 0n×p.
Let us define the state prediction error e = x − x̂ and the parameter estimation

error ˙̂
θ = θ − θ̃ . For the specific choice of the state prediction dynamics (12.3), the

error dynamics are given by:

ė = q(x)θ̃ − kwe − w ˙̂
θ + ϑ. (12.5)

We then define the vector of auxiliary variable η = e − wθ̃ . The η dynamics are
as follows:

η̇ = −kwη + ϑ. (12.6)

By definition, the initial conditions of η are η(0) = e(0).
In the proposed estimation technique, an estimate of η, η̂, is required to filter the

impact of the uncertainties ϑ on η. The η̂ dynamics are chosen as follows:

˙̂η = −kwη̂ (12.7)
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with initial condition η̂(0) = e(0). As a result, the η estimation error η̃ = η − η̂ has
dynamics of the form:

˙̃η = −kwη̃ + ϑ (12.8)

with η̃(0) = 0.
Next, we present the proposed parameter estimation update. One key element

to monitor the parametric uncertainty is the definition of the matrix � ∈ Rp×p. The
matrix � is defined as the solution of the matrix differential equation:

�̇ = wT w, �(0) = αI � 0, (12.9)

where α > 0 is a positive constant to be assigned. It follows that the inverse of �,
�−1 is defined as the solution of the matrix differential equation:

�̇−1 = −�−1wT w�−1, �−1(0) = 1

α
I . (12.10)

Finally, the preferred parameter update law is defined as:

˙̂
θ = Proj

{
�−1wT (e − η̂), θ̂

}
, θ̂ (0) = θ 0. (12.11)

where θ0 ∈ �0 is the center of the initial parameter uncertainty set. The notation
Proj{φ, θ̂} denotes a Lipschitz projection operator. This operator is defined such that

−Proj{φ, θ̂}T θ̃ ≤ −φT θ̃ , (12.12)

θ̂ (t0) ∈ �0 ⇒ θ̂ (t) ∈ �0
ε , ∀ t ≥ t0. (12.13)

where �0
ε � B(θ0, z0

θ + ε), ε > 0. More details on the choice of parameter projection
operators and their properties can be found in Reference 98. The main property of
the proposed estimation technique can be summarized in the following lemma due to
Reference 99.

Lemma 12.3.1. The identifier (12.10), (12.11) is such that the estimation error
θ̃ = θ − θ̂ is bounded. Moreover, if

ϑ ∈ L2 or
∫ ∞

t0

[‖η̃‖2 − ‖e − η̂‖2
]

dτ < +∞ (12.14)

with the strong condition

lim
t→∞ λmin(�) = ∞ (12.15)

is satisfied, then θ̃ converges to zero asymptotically.

12.3.2 Set adaptation

An update law that measures the worst-case progress of the parameter identifier in the
presence of disturbance is given as follows. We let zθ represent the current estimate
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of the radius of the uncertainty. The update law is given by:

zθ =
√

Vzθ (t)

λmin(�)
(12.16a)

Vzθ (t0) = λmax

(
�(t0)

)
(z0

θ )2 (12.16b)

V̇zθ = −(e − η̂)T (e − η̂) +
(

Mϑ

kw

)2

(12.16c)

where Vzθ (t) represents the solution of the ordinary differential equation (12.16c)
with initial condition (12.16b). The function Vzθ is used as an upper bound of the rate
of change of the function Vθ̃ = 1

2 θ̃
T �θ̃ . The purpose of the update law (12.16a) is to

estimate the radius of the uncertainty. The next step yields to provide a mechanism to
update uncertainty set with desirable invariance properties.

Using the parameter estimator (12.11) and its error bound zθ (12.16a), the
uncertain ball � � B(θ̂ , zθ ) is adapted online according to the following algorithm.

Algorithm 12.3.2. The parameter and set adaptation is implemented iteratively as
follows:

1. Initialize zθ (0) = z0
θ , θ̂ (0) = θ̂ 0 and �(0) = B(θ̂ (0), zθ (0)).

2. At time ti−1 ≤ t ≤ ti, using (12.11) and (12.16a) perform the update

(
t, θ̂ (t), �(t)

)
=

⎧
⎨

⎩

(
ti, θ̂ (ti), �(ti)

)
, if zθ (ti) ≤ zθ (ti−1) − ‖θ̂ (ti) − θ̂ (ti−1)‖

(
ti−1, θ̂ (ti−1), �(ti−1)

)
, otherwise

(12.17)

3. Iterate back to Step 2, incrementing, i = i + 1, if t = ti.

The algorithm ensure, that � is only updated when zθ value has decreased by an
amount which guarantees a contraction of the set. Moreover zθ evolution as given in
(12.16a) ensures non-exclusion of θ as shown below.

Lemma 12.3.3. [10] The evolution of � = B(θ̂ , zθ ) under (12.11), (12.16a) and
Algorithm 12.3.2 is such that

i) �(t2) ⊆ �(t1), 0 ≤ t1 ≤ t2

ii) θ ∈ �(0) ⇒ θ ∈ �(t), ∀t ≥ 0

Lemma 12.3.3 establishes the key properties of the update algorithm. The algorithm
guarantees that the uncertainty set estimate always contains the true value of the
parameters. It also ensures that each set �(ti) is always contained in the previous
uncertainty set �(ti−1). It provides an effective mechanism for the uncertainty in
the parameter estimate that reflects the information content of the dynamical system
trajectories. The next section proposes an adaptive MPC algorithm that utilizes the
set-based estimation technique to achieve the extremum-seeking objective.
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12.4 Robust adaptive economic MPC implementation

In this section, we propose a design technique to achieve the integrated RTO/MPC
task using a one-step approach. As reported in Reference 13, RTO objectives can be
integrated by incorporating the cost function directly in the stage cost for the MPC.
The main disadvantage of this technique is that the problem of RTO is transformed
artificially to a dynamic optimization problem.

12.4.1 Alternative stage cost in economic MPC

One alternative to economic MPC is to consider stage cost that is associated with the
best possible transient performance achievable for a gradient system. Consider the
cost to be minimized y = p(x) and assume that the closed-loop system is such that:

ẋ = −∂p

∂x

Then the rate of change of the cost is given by:

ẏ = −
∥∥∥∥
∂p

∂x

∥∥∥∥

2

.

Note that if the hessian of p(x) is such that

∂2p(x)

∂x∂xT
≥ αIn, ∀x ∈ X

then the closed-loop system would converge exponentially to the local minimum of
p(x). This simple observation would suggest that a suitable stage cost to the combined
problem would be:

L(x, u) =
∥∥∥∥
∂p

∂x

∥∥∥∥

2

The ultimate objective in the integration of RTO and MPC is to achieve a closed-loop
system that behaves like a gradient system with respect to the cost function p(x).

In practice, one must also contend with the presence of constraints that must be
enforced by the control system. For the solution of the constrained problem (12.1),
we propose the application of an interior point method. To achieve this, we consider
the modified cost:

pm(x, µ) = p(x) − µ

nc∑

i=1

λiψ(−µ−1ci(x) + 1) (12.18)

where µ > 0 is a positive constant and λi acts as Lagrange multipliers. The function
ψ(·) is a barrier function. Standard barrier function candidates include logarithmic
barrier function, ψ(c) = ln(c), or the inverse function ψ(c) = 1

c . In this study, we
primarily focus on logarithm barrier functions.
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If p(x) and all constraints ci(x) are convex, it follows by standard arguments that
the modified cost is also convex. Let x∗(µ) denote unique point such that:

∇xpm(x∗(µ), µ) = ∇xp(x∗(µ)) +
n∑

i=1

1

−µ−1ci(x∗(µ)) + 1
∇xci(x∗(µ)) = 0

The unconstrained minimization of (12.18) provides an O(µ) approximation of the
optimum x∗. Thus, as µ decreases, the approximate solution x∗(µ) of problem (12.18)
approaches the optimal solution x∗ of (12.1).

In order to avoid numerical problems associated with barrier functions, a standard
approach is to approximate the barrier by a quadratic function close to the boundary
of the feasible region. Thus for each constraint ci(x) such that ci(x) ≥ ε, we use the
quadratic approximation:

ψ(ci) = a1 + b1(ci(x) − ε) + 1

2
q1(ci(x) − ε)2

where a1 = ψ(ε), b1 = ψ ′(ε), and q1 = ψ ′′(ε), ψ ′ is first derivative of ψ with respect
to its argument, ci(x).

As a simple demonstration, we consider the following simple example.
Consider the quadratic optimization problem:

min
x

[−2, 0]x + 1

2
xT

[
1 0

0
1

10

]

x

subj. to.
x1 ≥ 0, x2 ≥ 0
1 − x1 − x2 ≥ 0

The optimal solution occurs at x∗ = [1, 0]T . We fix µ = 0.01, ε = 10−4 and
consider the modified cost in the gradient descent formula:

ẋ = −k∇xpm(x, µ). (12.19)

where k = 10.
Figure 12.1 shows the corresponding trajectory system (12.19) for the choice of

tuning parameters, with initial conditions x(0) = [0.5, 0.5]T . Figure 12.2 shows the
performance of the same update formula starting from the infeasible initial condition
x(0) = [2, −2], the use of the quadratic approximation described above allows one to
enter the feasible region in order to eventually converge to the correct constrained opti-
mum. The barrier function approach provides a very effective mechanism to encode
constraints in RTO approaches. The design of barrier functions in the formulation
of model predictive controllers has been investigated in References 50 and 161. It
has also been considered in the solution of extremum-seeking control problems [48].
Within the context of the current study, the barrier function approach is used to address
the design of integrated RTO/MPC systems. The integration is handled by posing the
MPC using the stage cost

L(x, u) =
∥
∥∥∥
∂pm(x, µ)

∂x

∥∥∥
∥

2

. (12.20)
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Figure 12.1 Trajectories of the gradient descent for the barrier function
method (12.19) with initial condition x(0) = [0.5, −0.5]
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Figure 12.2 Trajectories of the gradient descent for the barrier function method
12.19 with initial condition x(0) = [2, −2]

Throughout this chapter, it is understood that the MPC system using the modified
stage cost (12.20) is operated for a constant value of the parameter µ leading to an
O(µ) approximation of the optimum x∗. In what follows, we propose two formulations
of the RTO/MPC system that can handle systems subject to parametric uncertainties
and disturbances.
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12.4.2 A min–max approach

Most robust-MPC techniques consider some form of min–max approach to handle the
effect of uncertainties. When one considers adaptive MPC, one must also consider
the effect of parametric uncertainties in addition to the impact of bounded model
uncertainties such as exogenous disturbances. In this section, we propose a minmax
MPC approach that implements a one-step RTO procedure. The approach guarantees
robust performance of the closed-loop to a neighborhood of the optimum x∗ of the
optimization problem (12.1).

The formulation of the min–max MPC consists of maximizing a cost function
with respect to θ ∈ �, ϑ ∈ D and minimizing over feedback control policies κ . The
feedback control policy is assumed to be a time-varying function of the state variables,
and the parameter estimates can be viewed as a robust adaptive feedback. To account
for the uncertainty in the parameter estimates, the robust-MPC formulation takes into
account the predicted change in the parameter estimates subject to the predicted state
trajectories. This allows one to incorporate the impact of the state trajectories on the
uncertainty reduction in the parameter estimates. One monitors the impact of the para-
metric uncertainties by using a form of adaptive CLF as a terminal cost. Doing so, one
is able to assign a cost to the parametric uncertainty that can be adjusted by the MPC
without the need for external perturbations or dither signals. Thus, we treat both para-
metric uncertainties and disturbances but only the impact of parametric uncertainties
can be accounted for in the formulation since no disturbance model is assumed.

The robust receding horizon control law is given as follows:

u = κmpc(x, θ̂ , zθ ) � κ∗(0, x, θ̂ , zθ ) (12.21a)

κ∗ � arg min
κ(·,·,·,·)

J (x, θ̂ , zθ , κ) (12.21b)

where

J (x, θ̂ , zθ , κ) � max
θ∈�,ϑ∈D

∫ T

0
L(‖γ p‖, up) dτ + W (xp(T ), θ̃ p(T )) (12.22a)

s.t. ∀ τ ∈ [0, T ]

ẋp = f (xp) + g(xp)up + q(xp)θ + ϑ , xp(0) = x (12.22b)

γ p = ∂p(xp, θ̂ p)

∂x
(12.22c)

˙̂xp = f (xp) + g(xp)up + q(xp)θ̂ p + kw(xp − x̂p) + w ˙̂
θ , x̂p(0) = x̂

˙̂ηp = −kwη̂p, η̂p(0) = η̂ (12.22d)

ẇp = gT (xp, up) − kwwp, wp(0) = w (12.22e)

(�̇−1)p = −(�−1)p(wp)T (wp)(�−1)p, (�−1)p(0) = �−1 (12.22f )

˙̂
θ p = Proj

{
(�−1)pwT (xp − x̂p − η̂p)θ̂

}
,

θ̃ p = θ − θ̂ p, θ̂ p(0) = θ̂ (12.22g)

up(τ ) � κ(τ , xp(τ ), θ̂ p(τ )) ∈ U (12.22h)

xp(τ ) ∈ X, xp(T ) ∈ Xf (θ̃ p(T )) (12.22i)
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The effect of future parameter adaptation is also accounted for in this formulation.
Constraints (12.22d)–(12.22h) are used to model the effect of the parameter estima-
tion routine. The conservativeness of the algorithm is reduced by parameterizing the
terminal cost W and the terminal set Xf as functions of the predicted parameter esti-
mation error θ̃ (T ). The maximization step utilizes the current value of the parametric
uncertainty set �(t). As a result, the proposed MPC will eventually reduce to a robust
MPC as the set � will contract around the true unknown parameter vector θ over
time. The robustness feature due to ϑ ∈ D is retained. The stage cost L(‖γ p‖, up)
is assumed to be a function of the predicted gradient γ p, given by (12.22d), of the
modified RTO cost as presented in the previous section. It is also a function of the
input energy, if required. The design criterion for this MPC formulation is given in
the following. The state constraints X encodes the constraints of the system. If the
set X is identified with the feasible set of the problem (12.1) then one can rely on
the barrier function entering the gradient γ p in the stage cost to ensure feasiblity
of X .

We first consider the implementation algorithm. A standard receding horizon
implementation is assumed in which only the current value of the control is fed back
to the process.

Algorithm 12.4.1. The MPC algorithm performs as follows: At sampling instant ti

1. Measure the current state of the plant x(t) and obtain the current value of matrices
w and �−1 from (12.4) and (12.10), respectively.

2. Obtain the current value of parameter estimates θ̂ and uncertainty bound zθ

from (12.11) and (12.16a), respectively. Update the uncertainty sets following
(12.17).

3. Solve the optimization problem (12.21) and apply the resulting feedback control
law to the plant until the next sampling instant.

4. Increment i = i + 1. Repeat the procedure from Step 1 for the next sampling
instant.

The following criteria are required to guarantee robust stability of the unknown
approximate optimal equilibrium x∗(µ) of the closed-loop MPC system. We let �̃0

ε

denote an ε inner approximation of the set of parameter estimation error θ̃ ( = θ − θ̂ ).
This set can be approximated by a ball of radius 2zθ centered at the origin. The set
� represents the target set which is a forward invariant set containing the unknown
optimum x∗. The unknown optimum is written as x∗(θ ) to indicate its dependence on
the unknown parameters.

Criterion 12.4.2. The terminal penalty function W : Xf × �̃0 → [0, +∞] and the
terminal constraint function Xf : �̃0 → X are such that for each (θ , θ̂ , θ̃ ) ∈ (�0 ×
�0 × �̃0

ε), there exists a feedback kf (·, θ̂ ) : Xf → U satisfying

1. x∗(θ ) ∈ Xf (θ̃ ) ⊆ X, Xf (θ̃ ) closed
2. kf (x, θ̂ ) ∈ U, ∀x ∈ Xf (θ̃ )
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3. W (x, θ̃ ) is continuous with respect to x ∈ Rnx

4. ∀ x ∈ Xf (θ̃ )\�, Xf (θ̃ ) is strongly positively invariant under kf (x, θ̂ ) with respect
to ẋ ∈ f (x) + g(x)kf (x, θ̂ )) + q(x)� + D

5. L
(
γ , kf (x, θ̂ )

)
+ ∂W

∂x F(x, kf (x, θ̂ ), θ , ϑ) ≤ 0,

∀ x ∈ Xf (θ̃ )\�, γ =
∥∥∥ ∂p(x,θ̂ )

∂x

∥∥∥ .

We also require the following assumption concerning the impact of parametric
uncertainty on the terminal cost and the terminal set.

Criterion 12.4.3. For any θ̃1, θ̃2 ∈ �̃0 s.t. ‖θ̃2‖ ≤ ‖θ̃1‖,

1. W (x, θ̃2) ≤ W (x, θ̃1), ∀x ∈ Xf (θ̃1)
2. Xf (θ̃2) ⊇ Xf (θ̃1)

The target set � has the same significance as in other standard robust-MPC
approaches. In this case, � ∈ X is a set containing the unknown optimal setpoint
x∗. The use of the gradient of p(x) in the stage cost allows one to force convergence
of the closed-loop system in a neighborhood of an estimated optimal setpoint x∗(θ̂ ).
Convergence to the set � comes as a result of the set-based parameter identification
routine proposed which guarantees convergence of the parameter estimates θ̂ to a
neighborhood of the true value, θ . The choice of stage cost proposed attempts to
combine the goals of MPC and RTO. By minimizing a measure of the estimated gra-
dient of the objective function, one can guarantee that the MPC controller achieves
the RTO while ensuring some degree of transient performance. The robust stabi-
lization of the target set required a revised condition C5 stating that the function
W is a local robust CLF for the uncertain system (12.2) with respect to θ ∈ �

and ϑ ∈ D.
The main challenge with this formulation is that the resulting optimal equilibrium

to be stabilized cannot be known in advance. This particular property of the proposed
MPC formulation requires some care in the definition of a suitable terminal cost and
terminal set.

We state the robust stability of the closed-loop MPC system to the target set �,
that is, a set containing the unknown optimal setpoint.

12.4.3 Main result

We now state the main result of the paper.

Theorem 12.4.4. Let Xd 0 � Xd 0(�0) ⊆ X denote the set of initial states with uncer-
tainty �0 for which (12.21) has a solution. Assuming Criteria 12.4.2 and 12.4.3
are satisfied, then the closed-loop system state x, given by (12.2, 12.11, 12.16a,
12.21), originating from any x0 ∈ Xd 0, feasibly approaches the target set � as
t → +∞.
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Proof:
Feasibility: The closed-loop stability is based upon the feasibility of the control
action at each sample time. Assuming, at time t, that an optimal solution up

[0,T ]

to the optimization problem (12.21) exists and is found (where up
[0,T ] denotes the

feedback policy defined in (12.22i)). Let �p denote the estimated uncertainty set
at time t and �v denote the set at time t + δ that would result with the feedback
implementation of u[t,t+δ] = up

[0,δ]. Also, let xp represents the worst-case state trajec-
tory originating from xp(0) = x(t) and xv represents the trajectory originating from
xv(0) = x + δv under the same feasible control input uv

[δ,T ] = up
[δ,T ]. Moreover, let

X a
�b � {xa| ẋa ∈ F(xa, up, �b, D) � f (xa) + g(xa)up + q(xa)�b + D}.

Since the up
[0,T ] is optimal with respect to the worst-case uncertainty

scenario, it follows hat up
[0,T ] steers any trajectory xp ∈ X p

�p to the terminal region
X

p
f . Since � is guaranteed not to increase in size over time, it follows that �v ⊆ �p.

This, in turn, implies that xv ∈ X p
�v ⊆ X p

�p . Since the terminal region X
p
f is strongly

positively invariant for the nonlinear system (12.2) under the feedback kf (·, ·) and
since the input constraints are satisfied in X

p
f and X

v
f ⊇ X

p
f by Criteria 2.2, 2.4, and

3.2 respectively, one can conclude that the input u = [up
[δ,T ], kf [T ,T+δ]] is a feasible solu-

tion of (12.21) at time t + δ. By induction, it follows that the dynamic optimization
problem is feasible for all t ≥ 0.

Stability: The stability of the closed-loop system is established by proving strict
decrease of the optimal cost J ∗(x, θ̂ , zθ ) � J (x, θ̂ , zθ , κ∗). Let the trajectories
(xp, θ̂ p, θ̃ p, zp

θ ) and control up correspond to any worst-case minimizing solution of
J ∗(x, θ̂ , zθ ). Let

γ p =
∥∥∥∥∥
∂p(xp, θ̂ p)

∂x

∥∥∥∥∥
.

If xp
[0,T ] were extended to τ ∈ [0, T + δ] by implementing the feedback u(τ ) =

kf (xp(τ ), θ̂ p(τ )) on τ ∈ [T , T + δ], then Criterion 12.4.2(5) guarantees the inequality

∫ T+δ

T
L(γ p, kf (xp, θ̂ p))dτ + W (xp

T+δ , θ̃
p
T ) − W (xp

T , θ̃ p
T ) ≤ 0 (12.23)

where in (12.23) and in the remainder of the proof, xp
σ � xp(σ ), θ̃ p

σ � θ̃ p(σ ), for
σ = T , T + δ.

The optimal cost

J ∗(x, θ̂ , zθ ) =
∫ T

0
L(γ p, up)dτ + W (xp

T , θ̃ p
T )

≥
∫ T

0
L(γ p, up)dτ + W (xp

T , θ̃ p
T ) +

∫ T+δ

T
L(γ p, kf (xp, θ̂ p))dτ

+ W (xp
T+δ , θ̃

p
T ) − W (xp

T , θ̃ p
T ) (12.24)
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≥
∫ δ

0
L(γ p, up)dτ +

∫ T

δ

L(xp, up)dτ +
∫ T+δ

T
L(γ p, kf (xp, θ̂ p))dτ

+ W (xp
T+δ , θ̃

p
T+δ) (12.25)

≥
∫ δ

0
L(γ p, up)dτ + J ∗(x(δ), θ̂ (δ), zθ (δ)) (12.26)

Then, it follows from (12.25) that

J ∗(x(δ), θ̂ (δ), zθ (δ)) − J ∗(x, θ̂ , zθ ) ≤ −
∫ δ

0
L (γ p, up) dτ (12.27)

Since the stage cost is assumed to be such that L(0, up) = 0, and locally convex with
respect to the gradient of p(xp, θ̂ p), it follows that x(t) converges to a neighborhood
of x∗(θ̂ ) asymptotically where x∗(θ̂ ) is the critical value of p(x, θ̂ ).

The closed-loop stability is established by the feasibility of the control action at
each sample time and the strict decrease of the optimal cost J ∗. The proof follows
from the fact that the control law is optimal with respect to the worst-case uncertainty
(θ , ϑ) ∈ (�, D) scenario and the terminal region X

p
f is strongly positively invariant

for (12.2) under the (local) feedback kf (·, ·).
If the conditions of Lemma 12.3.1 are met, it follows that zθ → 0 and therefore

the closed-loop system reaches a neighborhood of the true unknown setpoint x� subject
to the worst-case disturbance ϑ ∈ D.

12.4.4 Lipschitz-based approach

The min–max approach presented above can constitute an insurmountable com-
putational problem. As shown in Reference 9, it is possible to substitute the
min–max approach with a simplified, but more conservative, approach termed the
Lipschitz-based method. In this approach, the nominal model rather than the unknown
bounded system state is controlled, subject to conditions that ensure robust feasibil-
ity of given constraints. To this end, the uncertain state prediction error bound is
approximated using Lipschitz bounds.

It is assumed that appropriate Lipschitz bounds for the x-dependence of the
dynamics f (x), g(x) and q(x) are known. They are given as follows:

Assumption 12.4.5. A set of functions Lj : X → R+, j ∈ { f , g, q} are known which
satisfy

Lj(X) ≥ min
{
Lj

∣
∣ sup

x1,x2∈ X

(‖j(x1) − j(x2)‖ − Lj‖x1 − x2‖
) ≤ 0

}
, (12.28)

where for j ≡ g and j ≡ q is interpreted as an induced norm since g(x) and q(x) are
matrices.
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Assuming a knowledge of the Lipschitz bounds for the x-dependence of the dynamics
f (x), g(x), and q(x) as given in Assumption 12.4.5 and let � = zθ + ‖θ̂‖, a worst-case
deviation zp

x ≥ maxθ∈� ‖x − xp‖ can be generated from

żp
x = (Lf + Lg‖u‖ + Lq�)zp

x + ‖q(xp)‖zθ + Mϑ , zp
x (t0) = 0. (12.29)

Using this error bound, the robust Lipschitz-based MPC is given by

u = κmpc(x, θ̂ , zθ ) = u∗(0) (12.30a)

u∗(·) � arg min
up

[0,T ]

J (x, θ̂ , zθ , up) (12.30b)

where

J (x, θ̂ , zθ , up) =
∫ T

0
L(γ p, up)dτ + W (xp(T ), zθ ) (12.31a)

s.t. ∀ τ ∈ [0, T ]

ẋp = f (xp, up) + g(xp, up)θ̂ , xp(0) = x (12.31b)

żp
x = (Lf + Lg�)zp

x + ‖gp‖zθ + Mϑ , zp
x (0) = 0 (12.31c)

X p(τ ) � B(xp(τ ), zp
x (τ )) ⊆ X, up(τ ) ∈ U (12.31d)

X p(T ) ⊆ Xf (zp
θ ) (12.31e)

The effect of the additive disturbances on the predicted trajectories takes the
form of the uncertainty cone B(xp(τ ), zp

x (τ )) computed using the bound (12.31c). The
uncertainty radius zθ which appears in (12.31c) and in the terminal expressions of
(12.31a) and (12.31e) are held throughout the prediction horizon. However, the update
algorithm for the bounds zθ provides a mechanism to reduce the conservatism of the
robust MPC. The shrinking of this uncertainty enlarges the terminal region.

Algorithm 12.4.6. The Lipschitz-based MPC algorithm performs as follows: At
sampling instant ti

1. Measure the current state of the plant x = x(ti)
2. Obtain the current value of the parameter estimates θ̂ and uncertainty bound zθ

from (12.11) and (12.16a), respectively,

If zθ (ti) ≤ zθ (ti−1)

θ̂ = θ̂ (ti), zθ = zθ (ti)

Else

θ̂ = θ̂ (ti−1), zθ = zθ (ti−1)

End
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3. Solve the optimization problem (12.30) and apply the resulting feedback control
law to the plant until the next sampling instant

4. Increment i: = i + 1; repeat the procedure from Step 1 for the next sampling
instant.

Theorem 12.4.7. Let X ′
d 0 � X ′

d 0(�0) ⊆ X denote the set of initial states for which
(12.30) has a solution. Assuming Assumption 12.4.5 and Criteria 12.4.2 and 12.4.3
are satisfied, then the local minimizer of the cost function y = p(x, θ ) is feasibly
asymptotically stabilized from any x0 ∈ X ′

d 0 to the target set � for the closed-loop
system given by (12.2, 12.11, 12.16a, 12.30).

The proof of the Lipschitz-based control law follows from that of Theorem 12.4.4.

12.5 Simulation example

Consider the parallel isothermal stirred-tank reactor in which reagent A forms prod-
uct B and waste-product C (as presented in Reference 50). Let x = [A1, A2]T ,
θ = [k11, k12, k21, k22]T and u = [Fin

1 , Fin
2 ]T where Ai denote the concentration of

chemicalA in reactor i, kij are the reaction kinetic constants, which are only nominally
known. The inlet flows Fin

i are the control inputs. The dynamics of the system can be
expressed in the form:

ẋ = −

⎡

⎢⎢
⎣

x1kV 1(ξ1 − V 0
1 + ξ3)

ξ1
x2kV 2(ξ2 − V 0

2 + ξ4)

ξ2

⎤

⎥⎥
⎦

︸ ︷︷ ︸
f

+
⎡

⎢
⎣

Ain

ξ1
0

0
Ain

ξ2

⎤

⎥
⎦

︸ ︷︷ ︸
g

u −
[

x1 2x2
1 0 0

0 0 x2 2x2
2

]

︸ ︷︷ ︸
q

θ + ϑ ,

where ξ1, ξ2 are the two tank volumes and ξ3, ξ4 are the PI integrators. The system
parameters are V 0

1 = 0.9, V 0
2 = 1.5, kv1 = kv2 = 1, PA = 5, PB = 26, p11 = p21 = 3

and p12 = p22 = 1. The disturbances are ϑ = [0.001 sin(0.1t), 0.001 sin(0.1t)].
The economic cost function is the net expense of operating the process at steady

state.

p(Ai, s, θ ) =
2∑

i=1

[(pi1si + PA − PB)ki1AiV
0
i + (pi2si + 2PA)ki2A2

i V 0
i ] (12.32)

where PA, PB denote component prices, pij is the net operating cost of reaction j
in reactor i. Disturbances s1, s2 reflect changes in the operating cost (utilities, etc.)
of each reactor. The control objective is to robustly regulate the process to the opti-
mal operating point that optimizes the economic cost (12.32) while satisfying the
following state constraints 0 ≤ Ai ≤ 3, cv = A2

1V 0
1 + A2

2V 0
2 − 15 ≤ 0 and input con-

straint 0.01 ≤ Fin
i ≤ 0.2. The reaction kinetics are assumed to satisfy 0.01 ≤ ki ≤ 0.2.

A logarithmic barrier function is first with parameters µ = 0.00001 and ε = 10−7.
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The sampling time is take to be 0.1 s. The robustness of the adaptive controller is
guaranteed via the Lipschitz bound method. The stage cost is selected as a quadratic

cost L(γ , u) = 1
2

∑2
i=1

(
∂p(Ai s, θ̂ )

∂Ai

)2
.

12.5.1 Terminal penalty and terminal set design

A Lyapunov function for the terminal penalty is defined as the input to state stabilizing
CLF (iss-clf):

W (x) = 1

2

∥∥∥∥∥
∂p(x, s, θ̂ )

∂x

∥∥∥∥∥

2

= 1

2
‖γ ‖2 (12.33)

Let � = ∂2p(x,s,θ̂ )
∂x∂xT and ϒ = ∂2p(x,s,θ̂ )

∂x∂θ̂T .

Choosing a terminal controller

u = kf (x) = −g−1
(−f + q(x)θ̂ + k1�

−1γ + k2qqT �γ + k3�γ + ϒ
˙̂
θ
)
,

(12.34)

with design constants k1, k2 > 0, the time derivative of (12.33) becomes

Ẇ (x) = −k1 γ T γ − γ T �gθ̃ − k2γ
T �ggT �γ − k3γ

T ��γ (12.35)

≤ −k1‖γ ‖2 + 1

4k2
‖θ̃‖2 + 1

4k3
‖ϑ‖2 (12.36)

Since the stability condition requires Ẇ (x(T )) + L(T ) ≤ 0, we choose the
weighting matrices of L as Q = 0.5I and R = 0. The terminal state region is
selected as

Xf = {x : W (x) ≤ α} (12.37)

such that

kf (x) ∈ U, Ẇ (T ) + L(T ) ≤ 0, ∀(θ , x) ∈ (�, Xe) (12.38)

Since θ̃ and ϑ have known upper bounds, it follows that there exists k1, k2, and k3

such that

Ẇ + L = −(k1 − 0.5)‖γ ‖2 − γ T � g θ̃ − γ T �ϑ − k2γ
T � g gT �γ − k3γ

T ��γ ≤ 0

∀ θ ∈ � and ∀ ϑ ∈ D, outside a small neighborhood of x∗. The task of computing
the terminal set is then reduced to computing the largest possible α such that for
kf (·) ∈ U for all x ∈ Xf yields the terminal set. The terminal cost (12.33) is used for
this simulation and the terminal set is re-computed at every sampling instant using
the current setpoint value.

The system is first simulated subject to a ramping measured economic disturbance
in s2 from t = 6 to 10. The simulation results are presented in Figures 12.3–12.7. The
phase trajectories displayed in Figure 12.3 show that the reactor states x1 and x2 obey
the imposed constraints. The concentration of A in reactor x1 is shown to approach
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Figure 12.4 Optimal and actual profit functions

its upper bound. The system trajectories are also shown to approach the constraints
toward the end of the simulation.

Figure 12.4 shows that the cost p(t, x, θ ) converges to the optimal, unknown
p∗(t, x∗, θ ). The initial effect of the parameter estimation is observed initially but
vanishes quickly. As soon as the parameter estimates reach their unknown true values,
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Figure 12.5 Closed-loop states trajectories
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the economic MPC approach converges quickly to the unknown optimum, as expected.
Figure 12.5 confirms the effectiveness of the adaptive MPC in tracking the desired
setpoint. Figure 12.6 demonstrates that the convergence of the parameter estimates to
their true values. Note that the adaptive MPC has a self-exciting feature that penalizes
large estimation errors. The simulation results show that this approach is extremely
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Figure 12.7 Closed-loop system’s inputs
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Figure 12.8 Uncertainty set radius and the true parameter estimate error norm

successful for the design of the adaptive control system. The control variables are
shown in Figure 12.7. The required control action is implementable and satisfies the
given constraints. Figure 12.8 compares the estimated uncertainty radius zθ and the
actual parameter estimation error ‖θ̃‖. As predicted, the estimated bound provides
an accurate upper bound on the parameter estimation error. It also shows that the
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Figure 12.10 Optimal and actual profit functions

uncertainty set always contains the true value of the parameters. The proposed robust
adaptive extremum-seeking model predictive controller performs extremely well for
this specific problem, despite the absence of any external perturbation (apart from the
contribution of ϑ) or dither signal.

In this specific case, the input trajectories demonstrate a considerable amount
of chatter as the system approaches the constraints. One can reduce the sensitivity
by increasing the value of µ. Figures 12.9–12.11 show the simulation results for
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Figure 12.11 Closed-loop system’s inputs
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Figure 12.12 Optimal and actual profit functions for disturbance s2(t) =
6
5 + 4

5 cos
(

1
2 t
)

µ = 0.001. The state trajectories are shown along with the constraints are shown in
Figure 12.9. Figure 12.10 compares the true and estimated optimal profit trajectories.
The input trajectories are shown in Figure 12.11. As expected, the input is shown to be
less sensitive close to the constraints. However, the estimated profit function is shown
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to deviate from the the true profit. Nevertheless, the system is shown to perform
adequately and the system converges effectively to the true unknown optimum.

The choice of s2 considered in this simulation study is arbitrary. In order to
demonstrate that this specific choice is not unique we consider a simulation where
the value s2 is chosen as

s2(t) = 6

5
+ 4

5
cos

(
1

2
t

)
.

Figure 12.12 shows the resulting optimal profit function and the estimated profit. The
MPC controller effectively steers the system to the optimum of the profit function. As
in the previous case, all constraints are satisfied and the parameter estimates converge
to their true values.

12.6 Conclusions

This chapter provides a formal design technique for solving economic optimization
problems for a class of constrained nonlinear uncertain systems subject to parametric
and disturbance uncertainties. The approach proposed implements a new direct adap-
tive extremum-seeking MPC approach for a class of uncertain nonlinear systems. The
main advantage of the direct approach is that it naturally leads to a robust adaptive
economic MPC approach that guarantees robust stabilization of the unknown optimal
operating conditions. The technique is also readily implemented for discrete-time
nonlinear systems.





Chapter 13

Set-based estimation in discrete-time systems

In this chapter, we present new techniques for parameter identification for nonlinear
dynamical discrete-time systems. The methods presented are intended to improve
the performance of adaptive control systems such as RTO schemes and adaptive
extremum-seeking systems. Using recent results on FT adaptive control, we develop
alternative techniques that can be used to guarantee the convergence of parameter
estimates to their true values in the presence of model-mismatch and exogenous vari-
ables. Three methods are presented. The first two methods rely on system excitation
and a regressor matrix, in either case, the true parameters are identified when the
regressor matrix is of full rank and can be inverted. The third method is based on
a novel set-based adaptive estimation method proposed in Chapter 10 to simultane-
ously estimate the parameters and the uncertainty associated with the true value. The
uncertainty set is updated periodically when sufficient information has been obtained
to shrink the uncertainty set around the true parameters. Each method guarantees
convergence of the parameter estimation error, provided an appropriate PE condition
is met. The effectiveness of each method is demonstrated using a simulation example,
displaying convergence of the parameter error estimation error.

13.1 Introduction

Parameter identification is an important feature in many control situations. In many
adaptive control algorithms, the reference trajectory is unknown and dependent on
system dynamics, which can rely on a set of unknown system parameters. For example,
in adaptive extremum-seeking control, the system is optimized using a cost function
that may rely on unknown parameters [73, 160]. The performance of the system is
dependent on the performance of the parameter identification method. It has been
shown that efficient parameter convergence increases the robustness properties of
closed-loop adaptive systems [109].

Few studies are available regarding parameter identification for discrete-time
systems in the context of adaptive control. The problem of output feedback systems
and strict feedback systems [165, 166] have been proposed where the parameter
identification algorithm is separated from some control task. This algorithm uses
a two-phase approach to identify parameters then apply some appropriate control
to achieve a desired objective. This approach is limited by the assumption that the
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system is free from noise, though robustness is shown for a small additive random
noise. Several recent studies solve similar identification problems with a variety of
methods. The application of a neural network identification approach is shown in
Reference 164. Results from this study demonstrate convergence of the internal state
of the neural network to the true system state. A similar problem with the addition of
time-varying parameters is solved in Reference 61.

This chapter adapts parameter estimation methods developed in Chapters 8, 9 and
10. The first method, the FT identification method, allows the direct and exact recovery
of parameters immediately once a PE condition is met. This method requires the
online inversion and computation of rank of a regressor matrix. Since the parameters
are identified in FT, it is possible to remove the excitation signal, at the moment the
parameters are recovered. Several results on intelligent excitation signals, where the
magnitude of the excitation signal is adjusted as needed, have become available [2,
31]. Traditionally, the excitation signal is removed when the parameters are assumed
to have converged. The method presented in this chapter allows the excitation signal to
be removed once the parameters are guaranteed to have converged. The second method
is a refinement of the first: it uses an adaptive compensator to eliminate the need for
online inversion and rank computation of a matrix. The parameter estimation error can
be shown to be non-increasing once a PE condition is met. The third method defines
a parameter uncertainty set that evolves based on a worst-case estimate. Further, the
parameter estimates are not allowed to fall outside the uncertainty set. This method
ensures convergence of the parameter uncertainty set to the true parameters provided
the true parameters fall within the initial uncertainty set, as the update algorithm
ensures non-exclusion of the true parameter estimate.

13.2 Problem description

The parameter identification methods discussed in this paper are:

xk+1 = xk + F(xk , uk ) + G(xk , uk )θ (13.1)

where xk is a state at some time step k , uk is a control input at some time step k, and
θ is a column vector of system parameters.

Assumption 13.2.1. The state of the system xk is available for measurement at any
time step k.

Assumption 13.2.2. There is some known, bounded control law, uk that achieves
some control objective.

Given the bounded control law, the objective of the three methods presented
below is to determine the true values of the plant parameters.
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13.3 FT parameter identification

Consider the following state predictor

x̂k+1 = x̂k + F(xk , uk ) + G(xk , uk )θ̂k+1

+ Kkek − ωk (θ̂k − θ̂k+1)

+ Kkωk (θ̂k − θ̂k+1) (13.2)

where θ̂k is the vector of parameter estimates at time step k given by any update law,
Kk is a correction factor at time step k , and ek = xk − x̂k is the state estimation error
at time step k . The variable ωk is the following output filter at time step k

ωk+1 = ωk + G(xk , uk ) − Kkωk , ω0 = 0 (13.3)

Let the parameter estimation error at some time step k be θ̃k = θ − θ̂k . Now from
(14.2) and (13.1) the state estimation error at time step k + 1 is given by

ek+1 = ek + G(xk , uk )θ̃k+1 − Kkek

+ ωk (θ̂k − θ̂k+1) − Kkωk (θ̂k − θ̂k+1). (13.4)

Define the auxiliary variable

ηk = ek − ωk θ̃k . (13.5)

From (14.3), (13.4), and (13.5) it follows that

ηk+1 = ηk − Kkηk , η0 = e0. (13.6)

Let Q ∈ R
p×p and C ∈ R

p be defined as

Qk+1 = Qk + ωT
k ωk

Q0 = 0 (13.7)

Ck+1 = Ck + ωT
k (ωk θ̂k + ek − ηk )

C0 = 0. (13.8)

Lemma 13.3.1. If there exists some time step kc such that Qkc is invertible, that is,

QN =
N∑

i=0

ωT
i ωi � 0 (13.9)

then the parameters are given by θ = Q−1
k Ck , ∀k ≥ kc.

Proof: This results can be shown from

QN θ =
N∑

i=0

ωT
i ωi[θ̂i + θ̃i]. (13.10)
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Upon substitution of (13.5), it follows that

θ = Q−1
k

k∑

i=0

ωT
i (ωiθ̂i − +ei − ηi)

= Q−1
k Ck ∀k ≥ kc, (13.11)

which proves the result.

13.4 Adaptive compensation design

Application of the FTI is problematic since it requires that one checks the nonsingu-
larity of Qk at all step k . In this section, an adaptive compensation design is proposed
that recovers exponential stability of the parameter estimation error in FT without the
need to test the matrix Qk .

Consider the state predictor for system (13.1)

x̂k+1 = x̂k + F(xk , uk ) + G(xk , uk )θo

+ Kk (xk − x̂k ) (13.12)

where Kk > 0 and θo is the vector of initial parameter estimates.
As above, define the auxiliary variable and the filter dynamic as:

ηk = xk − x̂k − ωk (θ − θ o) (13.13)

ωk+1 = ωk + G(xk , uk ) − Kkωk ω0 = 0 (13.14)

The auxiliary variable ηk can be generated from:

ηk+1 = ηk − Kkηk , η0 = e0 (13.15)

Let Q and C be generated by

Qk+1 = Qk + ωT
k ωk , Q0 = 0, (13.16)

Ck+1 = Ck + ωT
k (ωkθ

o + ek − ηk ), C0 = 0 (13.17)

and let kc be a time step at which Qkc � 0.
The parameter update law proposed in Reference 6 is given by:

θ̂k+1 = θ̂k + �k (Ck − Qk θ̂k ). (13.18)

It follows from (13.18) that the dynamics of the parameter estimation error are

θ̃k+1 = θ̃k − �k (Ck − Qk θ̂k ). (13.19)

For all time steps k ≥ kc, Qkθ = Ck , it follows that ∀k ≥ kc

θ̃k+1 = θ̃k − �k (Qkθ − Qk θ̂k ). (13.20)
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Define the variable �k = 1
‖Qk ‖ + ε

, where ε is some small positive number

θ̃k+1 =
(

I − Qk

‖Qk‖ + ε

)
θ̃k (13.21)

It follows from (13.21) that for all time steps k ≥ kc that θ̃ is non-increasing, and

lim
k→∞

θ̃ = 0. (13.22)

13.5 Parameter uncertainty set estimation

The adaptive compensator design provides an effective mechanism to recover the FTI
performance. However, the properties of this design can be lost in the presence of
exogenous disturbance variables and model mismatch. In this section, a parameter
estimation technique is proposed to handle nonlinear systems subject to exogenous
variables. The technique relies on an uncertainty set update formulation that provides
robust performance.

13.5.1 Parameter update

Consider the uncertain nonlinear system

xk+1 = xk + F(xk , uk ) + G(xk , uk )θ + ϑk (13.23)

where ϑ is a bounded disturbance that satisfies ‖ϑk‖ ≤ Mϑ < ∞. It is assumed that θ

is uniquely identifiable and lies within an initially known compact set defined by the
ball function �0 = B(θ0, zθ ) where θ0 is an initial estimate of the unknown parameters
and zθ is the radius of the parameter uncertainty set.

Using the state predictor defined in (14.2) and the output filter defined in (14.3),
the prediction error ek = xk − x̂k is given by

ek+1 = ek + G(xk , uk )θ̃k+1 − Kkek

+ ωk (θ̂k − θ̂k+1) − Kkωk (θ̂k − θ̂k+1) + ϑk

e0 = x0 − x̂0. (13.24)

The auxiliary variable ηk dynamics are as follows:

ηk+1 = ek+1 − ωk+1θ̃k+1 + ϑk

η0 = e0. (13.25)

Since ϑk is unknown, it is necessary to use an estimate, η̂, of η. The estimate is
generated by the recursion:

η̂k+1 = η̂k − Kk η̂k . (13.26)

The resulting dynamics of the η estimation error are:

η̃k+1 = η̃k − Kk η̃k + ϑ. (13.27)
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Let the identifier matrix 	k be defined as

	k+1 = 	k + ωT
k ωk , 	0 = αI � 0 (13.28)

with an inverse generated by the recursion

	−1
k+1 = 	−1

k − 	−1T

k ωT
k

(
I + wk	

−1
k wT

k

)−1
ωk	

−1
k , 	−1

0 = 1

α
I � 0. (13.29)

From (14.2), (14.3), and (14.6) and based on the preferred parameter update law
proposed in Reference 7, the parameter update law is

θ̂k+1 = θ̂k + 	−1
k ωT

k

(
I + wk	

−1
k wT

k

)−1
(ek − η̂k ). (13.30)

To ensure that the parameter estimates remain within the constraint set �k , we
propose to use a projection operator of the form:

¯̂
θk+1 = Proj{θ̂k + 	−1

k ωT
k

(
I + wk	

−1
k wT

k

)−1
(ek − η̂k ), �k}. (13.31)

The operator Proj represents an orthogonal projection onto the surface of the uncer-
tainty set applied to the parameter estimate. The parameter uncertainty set is defined
by the ball function B(θ̂c, zθ̂c), where θ̂c and zθ̂c are the parameter estimate and set
radius found at the latest set update.

Following, Goodwin and Sin (1995), the projection operator is designed such
that

● θ̂k+1 ∈ �k

●
¯̃
θT

k+1	k+1
¯̃
θk+1 ≤ θ̃T

k+1	k+1θ̃k+1

It can be shown that the parameter update law defined in (13.30) guarantees con-
vergence of parameter estimates to the true values.

Lemma 13.5.1. [80] Consider the system

xk+1 = Axk + Buk (13.32)

where A is a stable matrix with eigenvalues inside the unit circle and B is a matrix of
appropriate dimension. Then it can be shown that

K−1∑

k=0

xT
k+1xk+1 ≤ δ2

K−1∑

k=0

uT
k uk (13.33)

for some δ > 0 and K − 1 > 0.

Let l2 denote the space of square finitely summable signals and consider the following
lemma.
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Lemma 13.5.2. The identifier (13.29) and parameter update law (13.31) are such
that θ̃k = θk − θ̂k is bounded. Furthermore, if

ϑk ∈ l2 or
∞∑

k=0

[‖η̃k‖2 − γ‖ek − η̂k‖2] < +∞ (13.34)

and

lim
k→∞

	k = ∞ (13.35)

are satisfied, then θ̃k converges to 0 asymptotically.

Proof: Let Vθ̃k = θ̃T
k 	k θ̃k . It follows from the properties of the projection operator

that:

Vθ̃k+1 − Vθ̃k = ¯̃
θT

k+1	k+1
¯̃
θk+1 − θ̃T

k 	k θ̃k ≤ θ̃T
k+1	k+1θ̃k+1 − θ̃T

k 	k θ̃k .

Using the parameter update law, one can write θ̃k+1 as:

θ̃k+1 = θ̃k − 	−1
k ωT

k

(
I + wk	

−1
k wT

k

)−1
(ek − η̂k )

= θ̃k − 	−1
k ωT

k

(
I + wk	

−1
k wT

k

)−1
(wk θ̃k + η̃k )

or,

θ̃k+1 = 	−1
k+1	k θ̃k − 	−1

k ωT
k

(
I + wk	

−1
k wT

k

)−1
η̃k . (13.36)

Upon substitution of the parameter update law, the identifier matrix dynamics, the
filter dynamics, and the auxiliary variable dynamics, the rate change of the Vθ̃k is
given by:

Vθ̃k+1 − Vθ̃k ≤ −(ek − η̂k )T
(
I + wk	

−1
k wT

k

)−1
(ek − η̂k ) + η̃T

k

(
I + wk	

−1
k wT

k

)−1
η̃k

(13.37)

From the η̃k dynamics given in (13.27), it follows from Lemma 13.5.1 if ϑk ∈ l2 then
η̃k ∈ l2. Taking the limit as k → ∞, the inequality becomes

lim
k→∞

Vθ̃k = Vθ̃0 +
∞∑

k=0

Vθ̃k+1 − Vθ̃k (13.38)

≤ Vθ̃0 −
∞∑

k=0

[
(ek − η̂k )T

(
I + wk	

−1
k wT

k

)−1
(ek − η̂k )

]
(13.39)

+
∞∑

k=0

[
η̃T

k

(
I + wk	

−1
k wT

k

)−1
η̃k

]
(13.40)

By the boundedness of the trajectories of the system, it follows that there exists
a number γ > 0 such that

1 ≥ ‖ (
I + wk	

−1
k wT

k

)−1‖ ≥ γ.
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as a result, one obtains the following inequality:

lim
k→∞

Vθ̃k ≤ Vθ̃0 − γ

∞∑

k=0

[
(ek − η̂k )T (ek − η̂k )

] +
∞∑

k=0

[
η̃T

k η̃k

]
(13.41)

Therefore, if the conditions (13.34) are met then the right-hand side of (13.41)
is finite. As a result, one concludes that

lim
k→∞

θ̃k = 0 (13.42)

as required.

13.5.2 Set update

An update law that measures the worst-case progress of the parameter update law is
adapted from the one proposed in Reference 7

zθ̂k =
√

Vzθ̂k

4λmin(	k )
(13.43)

Vzθk+1 = Vzθ̂k − (ek − η̂k )T
(
I + wk	

−1
k wT

k

)−1
(ek − η̂k ) +

(
Mϑ

Kk

)2

(13.44)

Vzθ̂0 = 4λmax(	0)(zθ̂0)2 (13.45)

The parameter uncertainty set, defined by the ball function B(θ̂c, zc), is updated
using the parameter update law (4.10) and the error bound (13.43) according to the
following algorithm.

Algorithm 13.5.3. Beginning at time step k = 0, the set is adapted according to the
following iterative process:

1. Initialize zθ̂c = zθ̂0, θ̂c = θ̂0

2. At time step k, using (13.30) and (13.43) perform the update

(θ̂c, zθ̂c) =
{

(θ̂k , zθ̂k ) if zθ̂k ≤ zc − ‖θ̂k − θ̂c‖
(θ̂c, zθ̂c) otherwise

(13.46)

3. Return to Step 2 and iterate, incrementing to time step k + 1.

Lemma 13.5.4. The algorithm ensures that

1. the set is only updated when updating will yield a contraction
2. the dynamics of the set error bound described in (13.43) are such that they ensure

the non-exclusion of the true value θ ∈ �k , ∀k if θ0 ∈ �0.
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Figure 13.1 Time course plot of the parameter estimates and true values under the
FT estimation algorithm: the dashed lines (- -) represent the true
parameter values and the solid lines (–) represent the parameter
estimates

Proof:

1. If �k+1 � �k then

sup
s∈�k+1

‖s − θ̂k‖ ≥ zθ̂k . (13.47)

However, it is guaranteed by the set update algorithm presented, that �, at update
times, obeys the following:

sup
s∈�k+1

‖s − θ̂k‖

≤ sup
s∈�k+1

‖s − θ̂k+1‖ + ‖θ̂k+1 − θ̂k‖ (13.48)

≤ zθ̂k+1 + ‖θ̂k+1 − θ̂k‖ ≤ zθ̂k (13.49)

This contradicts (13.47). Therefore, �k+1 ⊆ �k at time steps where � is updated.
2. It is known, by definition, that

Vθ̃0 ≤ Vzθ0, ∀k ≥ 0 (13.50)
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Figure 13.2 Time course plot of the parameter estimates and true values under the
adaptive compensatory algorithm: the dashed lines (- -) represent the
true parameter values and the solid lines (–) represent the parameter
estimates

Since, Vθ̃k = θ̃T
k 	k θ̃k ,

‖θ̃k‖ ≤ Vzθ̂k

λmin(	k )
= 4z2

θ̂k
, ∀k ≥ 0 (13.51)

Therefore, if θ ∈ �0, then θ ∈ �k ∀k ≥ 0.

13.6 Simulation examples

Consider the following nonlinear system:

x1,k+1 = 0.01
(−x2,k + u3,k + x3,kθ1 + ϑ1,k

)

x2,k+1 = 0.01
(
(1 + x3,k )u1,k − x1,kθ2 + ϑ2,k

)
(13.52)

x3,k+1 = 0.01
(−x1,k + u2,k + x2,kθ3 + ϑ3,k

)

where θT = [θ1, θ2, θ3]. The input is taken as constant, uk = [−0.1 0.1 0.2]T . The
true parameter values are θ = [1.5 3 0.02]T .
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Figure 13.3 Time course plot of the state prediction error ek = xk − x̂k

In the first two examples (Figures 13.1 and 13.2), we consider system (13.52) with
ϑi,k = 0, i = 1, 2, 3. To demonstrate the parameter uncertainty set approach (Figure
13.4), a bounded noise term is added to the state equation, as shown in (13.23). The
bounded noise term is

ϑk = [ϑ1,k , ϑ2,k , ϑ3,k ] = [sin(k) sin(k) sin(k)]T .

The input is taken as constant, uk = [−0.1 0.1 0.2]T . The true parameter values are
θ = [34 3 0.02]T .

13.6.1 FT parameter identification

In the first simulation study, we consider the FT parameter identification. Figure 13.1
shows the parameter estimates converging to the true values almost immediately at
the time step when the regressor matrix Qk has full rank.

13.6.2 Adaptive compensation design

Consider the system described by (13.52). We consider the application of the adaptive
compensator. The results are shown in Figure 13.2. Consistent with the result shown
in (13.21), Figure 13.2 shows that after time step kc the parameter estimate errors
converge to their true values at an exponential rate.
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Figure 13.4 Time course plot of the parameter estimates and true values under the
parameter uncertainty set algorithm: the dashed lines (- -) represent
the true parameter values and the solid lines (–) represent the
parameter estimates
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Figure 13.5 The progression of the radius of the parameter uncertainty set at time
steps when the set is updated



Set-based estimation in discrete-time systems 213

13.6.3 Parameter uncertainty set estimation

In the third simulation, we consider the system (13.52) with the bounded noise term
is ϑ . Figure 13.3 shows the trajectories of the state prediction error. As expected,
the error is shown to converge to a neighborhood of zero. The parameter estimates
are shown to converge to a neighborhood of their true values in Figure 13.4. The
ability of the estimation routine to recover the true parameter value in the presence
of exogenous disturbances is clearly demonstrated. The size of this neighborhood is
limited by the magnitude of the injected noise. The size of the uncertainty set, zθ is
shown in Figure 13.5.

13.7 Summary

In this chapter, three methods for parameter identification for nonlinear systems were
presented. Each method presented guarantees convergence of the parameter estima-
tion error to zero, provided an appropriate PE condition is met. Each identification
algorithm has been implemented to demonstrate its performance, each algorithm
demonstrates convergence of the parameter estimation error.





Chapter 14

Robust adaptive MPC for
discrete-time systems

14.1 Introduction

In this chapter, we establish a sound theoretical for the analysis of robust adaptive
MPC control system subject to exogenous disturbances for a class of discrete-time
nonlinear control systems. As in the previous chapters, no claims are made concern-
ing the computational requirements of the proposed min–max approach to adaptive
MPC technique. However, it is argued that a Lipschitz-based approach provides a
conservative approximation of the min–max approach that retains all of the stability
and robustness properties.

The uncertainties associated with the parameters is handled using the set-based
estimation approach for a class of discrete-time nonlinear systems presented in this
chapter. In this chapter, it is shown how this set-based approach can be formulated
in the context of nonlinear adaptive MPC approach for discrete-time systems in the
presence of parameter uncertainties and exogenous disturbances.

The chapter is structured as follows. The problem description is given in Section
14.2. The parameter estimation routine is presented in Section 14.3. Two approaches
to robust adaptive MPC are detailed in Section 14.4. This is followed by a simulation
example in Section 14.5 and brief conclusions in Section 14.6.

14.2 Problem description

Consider the uncertain discrete-time nonlinear system

xk+1 = xk + F(xk , uk ) + G(xk , uk )θ + ϑk � F(xk , uk , θ , ϑk ) (14.1)

where the disturbance ϑk ∈ D ⊂ Rnd is assumed to satisfy a known upper bound
‖ϑk‖ ≤ Mϑ < ∞. The objective of the study is to (robustly) stabilize the plant to
some target set � ⊂ Rnx while satisfying the pointwise constraints xk ∈ X ∈ Rnx

and uk ∈ U ∈ Rnu , ∀k ∈ Z. The target set is a compact set, contains the origin and
is robustly invariant under no control. It is assumed that θ is uniquely identifiable
and lie within an initially known compact set �0 = B(θ0, zθ ) where θ0 is a nominal
parameter value, zθ is the radius of the parameter uncertainty set.
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Remark 14.2.1. In this study, the exogenous variable ϑk represents an unstructured
bounded time-varying uncertainty. We do not provide any additional structure, such
as a state-dependent disturbance matrix, since this is assumed to be expressed by the
term g(xk , uk )θ in (14.1).

14.3 Parameter and uncertainty set estimation

14.3.1 Parameter adaptation

In this section, we revisit the parameter update law proposed in Chapter 13.
Consider the following state predictor

x̂k+1 = x̂k + F(xk , uk ) + G(xk , uk )θ̂k+1

+ Kkek − ωk (θ̂k − θ̂k+1)

+ Kkωk (θ̂k − θ̂k+1) (14.2)

where θ̂k is the vector of parameter estimates at time step k given by any update law,
Kk is a correction factor at time step k , and ek = xk − x̂k is the state estimation error
at time step k . The variable ωk is the following output filter at time step k

ωk+1 = ωk + G(xk , uk ) − Kkωk , ω0 = 0 (14.3)

Using the state predictor defined in (14.2) and the output filter defined in (14.3), the
prediction error ek = xk − x̂k is given by

ek+1 = ek + G(xk , uk )θ̃k+1 − Kkek

+ ωk (θ̂k − θ̂k+1) − Kkωk (θ̂k − θ̂k+1) + ϑk

e0 = x0 − x̂0. (14.4)

The auxiliary variable ηk dynamics are as follows:

ηk+1 = ek+1 − ωk+1θ̃k+1 + ϑk

η0 = e0. (14.5)

Since ϑk is unknown, it is necessary to use an estimate, η̂, of η. The estimate is
generated by the recursion:

η̂k+1 = η̂k − Kk η̂k (14.6)

The resulting dynamics of the η estimation error are:

η̃k+1 = η̃k − Kk η̃k + ϑ (14.7)

Let the identifier matrix �k be defined as

�k+1 = �k + ωT
k ωk , �0 = αI � 0 (14.8)

with an inverse generated by the recursion

�−1
k+1 = �−1

k − �−1T

k ωT
k

(
I + wk�

−1
k wT

k

)−1
ωk�

−1
k , �−1

0 = 1

α
I � 0. (14.9)
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From (14.2), (14.3), and (14.6) and based on the the preferred parameter update law
proposed in Reference 7, the parameter update law is

θ̂k+1 = θ̂k + �−1
k ωT

k

(
I + wk�

−1
k wT

k

)−1
(ek − η̂k ). (14.10)

To ensure that the parameter estimates remain within the constraint set �k , we
propose to use a projection operator of the form:

¯̂
θk+1 = Proj{θ̂k + �−1

k ωT
k

(
I + wk�

−1
k wT

k

)−1
(ek − η̂k ), �k}. (14.11)

The operator Proj represents an orthogonal projection onto the surface of the uncer-
tainty set applied to the parameter estimate. The parameter uncertainty set is defined
by the ball function B(θ̂c, zθ̂c), where θ̂c and zθ̂c are the parameter estimate and set
radius found at the latest set update.

Following, Goodwin and Sin (1995), the projection operator is designed such
that

● θ̂k+1 ∈ �k

●
¯̃
θT

k+1�k+1
¯̃
θk+1 ≤ θ̃T

k+1�k+1θ̃k+1.

It can be shown that the parameter update law defined in (14.10) guarantees
convergence of parameter estimates to the true values.

14.3.2 Set update

An update law that measures the worst-case progress of the parameter update law is
adapted from the one proposed in Reference 7

zθ̂k =
√

Vzθ̂k

4λmin(�k )
(14.12a)

Vzθk+1 = Vzθ̂k

− (ek − η̂k )T
(
I + wk�

−1
k wT

k

)−1
(ek − η̂k ) +

(
Mϑ

Kk

)2

(14.12b)

Vzθ̂0 = 4λmax(�0)(zθ̂0)2 (14.12c)

The parameter uncertainty set, defined by the ball function B(θ̂c, zc) is updated
using the parameter update law (14.10) and the error bound (14.12) according to the
following algorithm:

Algorithm 14.3.1. Beginning at time step k = 0, the set is adapted according to the
following iterative process.

1. Initialize zθ̂c = zθ̂0, θ̂c = θ̂0
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2. At time step k, using (14.10) and (14.12) perform the update

(θ̂c, zθ̂c) =
{

(θ̂k , zθ̂k ) if zθ̂k ≤ zc − ‖θ̂k − θ̂c‖
(θ̂c, zθ̂c) otherwise

(14.13)

3. Return to Step 2 and iterate, incrementing to time step k + 1

14.4 Robust adaptive MPC

14.4.1 A min–max approach

The formulation of the min–max MPC consists of maximizing a cost function
with respect to θ ∈ �, ϑ ∈ D and minimizing over feedback control policies κ .
This formulation is a simple application of the min–max approach proposed in the
continuous-time setting.

The proposed robust receding horizon control law is given by:

u = κmpc(x, θ̂ , zθ ) � κ∗(0, x, θ̂ , zθ ) (14.14a)

κ∗ � arg min
κ(·,·,·,·)

J (x, θ̂ , zθ , κ) (14.14b)

where

J (x, θ̂ , zθ , κ) � max
θ∈�, ϑ∈D

T−1∑

k=0

L(xp
k , up

k )dτ + W (xp
T , θ̃ p

T ) (14.15a)

s.t. ∀k ∈ [0, T ]

xp
k+1 = xk + f (xp

k , up
k ) + g(xp

k , up
k )θ + ϑk , xp

0 = x (14.15b)

x̂p
k+1 = x̂p

k + F(xp
k , up

k ) + G(xp
k , up

k )θ̂ p
k+1 (14.15c)

+ Kkep
k − ω

p
k (θ̂ p

k − θ̂
p
k+1) + Kkω

p
k (θ̂ p

k − θ̂
p
k+1) (14.15d)

wp
k+1 = wk + G(xp

k , up
k ) − kwwp

k , wp
0 = w (14.15e)

(�−1
k+1)p = (�−1

k )p − (�−1T

k )p(ωp
k )T

(
I + wp

k (�−1
k )p(wp

k )T
)−1

ω
p
k (�−1

k )p (14.15f )

(�−1
0 )p = �−1 (14.15g)

θ̂
p
k+1 = Proj{θ̂p

k + (�−1
k )p(ωT

k )p
(
I + wp

k (�−1
k )p(wT

k )p
)−1

(ep
k − η̂

p
k ), �} (14.15h)

θ̃ p = θ − θ̂
p
k , θ̂

p
0 = θ̂ (14.15i)

up(τ ) � κ(τ , xp(τ ), θ̂ p(τ )) ∈ U (14.15j)

xp(τ ) ∈ X, xp(T ) ∈ Xf (θ̃ p(T )) (14.15k)

As before, the effect of future parameter adaptation is also accounted for in
this formulation but the proposed discrete-time parameter estimation and set-based
approach is considered.
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The conservativeness of the algorithm is reduced by parameterizing both W and
Xf as functions of θ̃ (T ). While it is possible for the set � to contract upon θ over
time, the robustness feature due to ϑ ∈ D will still remain.

Algorithm 14.4.1. The MPC algorithm performs as follows: At sampling instant k

1. Measure the current state of the plant xk and obtain the current value of matrices
w and �−1 from (14.3) and (14.9), respectively.

2. Obtain the current value of parameter estimates θ̂ and uncertainty bound zθ from
(14.10) and (14.12), respectively

If zθk ≤ zθk−1 − ‖θ̂k − θ̂k−1‖
θ̂ = θ̂k , zθ = zθk ,

Else

θ̂ = θ̂k−1, zθ = zθk−1

End

3. Solve the optimization problem (14.14) and apply the resulting feedback control
law to the plant until the next sampling instant.

4. Increment k = k + 1. Repeat the procedure from Step 1 for the next sampling
instant.

The min–max approach guarantees robust stability but remains impractical in
application. The next approach adopts a tube-based approach that retains robust
stability.

14.4.2 Lipschitz-based approach

In this section, we present a Lipschitz-based method whereby the nominal model
rather than the unknown bounded system state is controlled, subject to conditions
that ensure that given constraints are satisfied for all possible uncertainties. State
prediction error bound is determined based on the Lipschitz continuity of the model.
A knowledge of appropriate Lipschitz bounds for the x-dependence of the dynamics
F(x, u) and G(x, u) are assumed as follows:

Assumption 14.4.2. A set of functions Lj : X × U → R+, j ∈ { F , G} are known
which satisfy

Lj(X, u) ≥ min
{
Lj

∣∣ sup
x1, x2∈X

(‖j(x1, u) − j(x2, u)‖ − Lj‖x1 − x2‖
) ≤ 0

}
,

where for j ≡ G is interpreted as an induced norm since G(x, u) is a matrix.

Assuming a knowledge of the Lipschitz bounds for the x-dependence of the
dynamics F(x, u) and G(x, u) as given in Assumption 14.4.2 and let � = zθ + ‖θ̂‖,
a worst-case deviation zp

x,k ≥ maxθ∈� ‖xk − xp
k‖ can be generated from

zp
x,k+1 = (Lf + Lg�)zp

x,k + ‖G(xp
k , uk )‖zθ + Mϑ , zp

x,0 = 0. (14.17)
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Using this error bound, the robust Lipschitz-based MPC is given by

u = κmpc(x, θ̂ , zθ ) = u∗(0) (14.18a)

u∗(·) � arg min
up

[0,T ]

J (x, θ̂ , zθ , up) (14.18b)

where

J (x, θ̂ , zθ , up) =
T−1∑

k=0

L(xp
k , up

k )dτ + W (xp
T , zp

θ ) (14.19a)

s.t. ∀k ∈ [0, T ]

xp
k+1 = xp

k + F(xp
k , up

k ) + G(xp
k , up

k )θ̂ , xp
0 = x (14.19b)

zp
x,k+1 = (Lf + Lg�)zp

x,k + ‖Gp(xp
k , up

k )‖zθ + Mϑ , zp
x,0 = 0 (14.19c)

X p(τ ) � B(xp
k , zp

x,k ) ⊆ X, up
k ∈ U (14.19d)

X p(T ) ⊆ Xf (zθ ) (14.19e)

The effect of the disturbance is built into the uncertainty cone B(xp
k , zp

x,k ) via
(14.19c). Since the uncertainty bound is no more monotonically decreasing in this
case, the uncertainty radius zθ which appears in (14.19c) and in the terminal expres-
sions of (14.19a) and (14.19e) are held constant over the prediction horizon. However,
the fact that they are updated at sampling instants when zθ shrinks reduces the con-
servatism of the robust MPC and enlarges the terminal domain that would otherwise
have been designed based on a large initial uncertainty zθ0 .

Algorithm 14.4.3. The Lipschitz-based MPC algorithm performs as follows: At
sampling instant k

1. Measure the current state of the plant x = xk .
2. Obtain the current value of the parameter estimates θ̂ and uncertainty bound zθ

from (14.10) and (14.12) respectively,

If zθk ≤ zθk−1

θ̂ = θ̂k , zθ = zθk

Else

θ̂ = θ̂k−1, zθ = zθk−1

End

3. Solve the optimization problem (14.18a) and apply the resulting feedback control
law to the plant until the next sampling instant.

4. Increment k := k + 1; repeat the procedure from Step 1 for the next sampling
instant.



Robust adaptive MPC for discrete-time systems 221

14.5 Closed-loop robust stability

Robust stabilization to the target set � is guaranteed by appropriate selection of the
design parameters W and Xf . The robust stability conditions require the satisfaction
of the following criteria.

Criterion 14.5.1. The terminal penalty function W : Xf × �̃0 → [0, +∞] and the
terminal constraint function Xf : �̃0 → X are such that for each (θ , θ̂ , θ̃ ) ∈ (�0 ×
�0 × �̃0

ε), there exists a feedback kf (·, θ̂ ) : Xf → U satisfying

1. 0 ∈ � ⊆ Xf (θ̃ ) ⊆ X, Xf (θ̃ ) closed
2. kf (x, θ̂ ) ∈ U, ∀x ∈ Xf (θ̃ )
3. W (x, θ̃ ) is continuous with respect to x ∈ Rnx

4. ∀ x ∈ Xf (θ̃ )\�, Xf (θ̃ ) is strongly positively invariant under kf (x, θ̂ ) with respect
to x+ ∈ x + F(x, kf (x, θ̂ )) + G(x, kf (x, θ̂ ))� + D

5. L(x, kf (x, θ̂ )) + W (x+, θ̂ ) − W (x, θ̂ ) ≤ 0, ∀ x ∈ Xf (θ̃ )\�.

The condition 5 from Criteria 14.5.1 require, W to be a local robust CLF for the
uncertain system 14.1 with respect to θ ∈ � and ϑ ∈ D.

Criterion 14.5.2. For any θ̃1, θ̃2 ∈ �̃0 s.t. ‖θ̃2‖ ≤ ‖θ̃1‖,

1. W (x, θ̃2) ≤ W (x, θ̃1), ∀x ∈ Xf (θ̃1)
2. Xf (θ̃2) ⊇ Xf (θ̃1)

14.5.1 Main results

Theorem 14.5.3. Let Xd 0 � Xd 0(�0) ⊆ X denote the set of initial states with uncer-
tainty �0 for which (14.14) has a solution. Assuming Criteria 14.5.1 and 14.5.2 are
satisfied, then the closed-loop system state x, given by (14.1–14.3, 14.6, 14.9, 14.10,
14.12, 14.14), originating from any x0 ∈ Xd 0 feasibly approaches the target set � as
t → +∞.

Proof:
Feasibility: The closed-loop stability is based upon the feasibility of the control action
at each sample time. Assuming, at time t, that an optimal solution up

[0,T ] to the optimiza-
tion problem (14.14) exist and is found. Let �p denote the estimated uncertainty set
at time t and �v denote the set at time t + 1 that would result with the feedback imple-
mentation of ut = up

0. Also, let xp represents the worst-case state trajectory originating
from xp

0 = xt and xv represents the trajectory originating from xv
0 = x + v for v ∈{

F(xa, up) + G(xa, up)�b + D
}

under the same feasible control input uv
[1,T ] = up

[1,T ].

Moreover, let X a
�b � {xa | xa

+ ∈ xa + F(xa, up) + G(xa, up)�b + D} which represents
the set of all trajectories of the uncertain dynamics.

Since the up
[0,T ] is optimal with respect to the worst-case uncertainty scenario, suf-

fice to say that up
[0,T ] drives any trajectory xp ∈ X p

�p into the terminal region X
p
f . Since
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� is non-expanding over time, we have �v ⊆ �p implying xv ∈ X p
�v ⊆ X p

�p . The ter-
minal region X

p
f is strongly positively invariant for the nonlinear system (14.1) under

the feedback kf (·, ·), the input constraint is satisfied in X
p
f and X

v
f ⊇ X

p
f by Criteria

14.5.1(2), 14.5.1(4), and 14.5.2(2), respectively. Hence, the input u = [up
[1,T ], kf [T ,T+1]]

is a feasible solution of (14.14) at time t + 1 and by induction, the optimization prob-
lem is feasible for all t ≥ 0.

Stability: The stability of the closed-loop system is established by proving strict
decrease of the optimal cost J ∗(x, θ̂ , zθ ) � J (x, θ̂ , zθ , κ∗). Let the trajectories
(xp, θ̂ p, θ̃ p, zp

θ ) and control up correspond to any worst-case minimizing solution of
J ∗(x, θ̂ , zθ ). If xp

[0,T ] were extended to k ∈ [0, T + 1] by implementing the feedback

up
T+1 = kf (xp

T+1, θ̂ p ) then Criterion 14.5.1(5) guarantees the inequality:

L(xp
T , kf (xp

T , θ̂ p
T ) ) + W (xp

T+1, θ̃ p
T ) − W (xp

T , θ̃ p
T ) ≤ 0. (14.20)

The optimal cost

J ∗(xt , θ̂t , zθt ) =
T−1∑

k=0

L(xp
k , up

k ) + W (xp
T , θ̃ p

T ) ≥
T−1∑

k=0

L(xp, up) + W (xp
T , θ̃ p

T )

+ L(xp
T , kf (xp

T , θ̂ p
T )) + W (xp

T+1, θ̃ p
T ) − W (xp

T , θ̃ p
T ) (14.21)

≥ L(xp
0, up

0) +
T∑

k=1

L(xp
k , up

k )

+ L(xp
T , kf (xp

T , θ̂ p
T )) + W (xp

T+1, θ̃ p
T+1) (14.22)

≥ L(xp
0, up

0) + J ∗(xt+1, θ̂t+1, zθt+1 ). (14.23)

Then, it follows from (14.23) that

J ∗(xt+1, θ̂t+1, zθt+1 ) − J ∗(xt , θ̂t , zθt ) ≤ −L(xt , ut) ≤ −µL(‖x‖). (14.24)

where µL is a class K∞ function. Hence x(t) enters � asymptotically.

Remark 14.5.4. In the above proof,

● (14.21) is obtained using inequality (14.20)
● (14.22) follows from Criterion 14.5.1.1 and the fact that ‖θ̃‖ is non-increasing
● (14.23) follows by noting that the last three terms in (14.22) is a (potentially)

suboptimal cost on the interval [δ, T + δ] starting from the point (xp(δ), θ̂ p(δ))
with associated uncertainty set B(θ̂ p(δ), zp

θ (δ)).

The closed-loop stability is established by the feasibility of the control action at
each sample time and the strict decrease of the optimal cost J ∗. The proof follows
from the fact that the control law is optimal with respect to the worst-case uncertainty
(θ , ϑ) ∈ (�, D) scenario and the terminal region X

p
f is strongly positively invariant

for (14.1) under the (local) feedback kf (· , ·).
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Theorem 14.5.5. Let X ′
d 0 � X ′

d 0(�0) ⊆ X denote the set of initial states for which
(14.18a) has a solution. Assuming Assumption 14.4.2 and Criteria 14.5.1 and 14.5.2
are satisfied, then the origin of the closed-loop system given by (14.1–14.3, 14.6,
14.9, 14.10, 14.12, 14.18a) is feasibly asymptotically stabilized from any x0 ∈ X ′

d 0 to
the target set �.

The proof of the Lipschitz-based control law follows from that of Theorem 14.5.3.

Remark 14.5.6. Note that the min–max approach can be prohibitively difficult to
implement in practice to the computational complexity associated with the min–max
optimization. However, the Lipschitz-based approach can be implemented using any
standard RTO algorithm currently used for the solution of standard MPC problems.
This latter technique will be employed in the simulation example presented in the next
section.

14.6 Simulation example

A
k1−→ B

k2−→ C

2A
k3−→ D (14.25)

In discrete-time, the system of equations that describe the non-isothermal dynamic
response can be represented by (14.26). The system states are the concentrations
of the components A (x1) a B (x2) and the reactor temperature (x3). In addition,
two manipulated variables were considered, the dilution rate (u1) and the jacket
temperature (u2).

x1(k + 1) = x1(k) + �tu1(k)[Cae − x1(k)] − �tθ1e−α1/x3(k)x1(k)

− �tθ3e−α3/x3(k)x2
1(k)

x2(k + 1) = x2(k) − �tu1(k)x2(k) + �tθ1e−α1/x3(k)x1(k) − �tθ2e−α2/x3(k)x2(k)

x3(k + 1) = x3(k) + �t

ρCp

(
θ1e−α1/x3(k)x1(k)�H1

+ θ2e−α2/x3(k)x2(k)�H2 + θ3e−α3/x3(k)x2
1(k)�H3

)

+ �tu1(k)[T0 − x3(k)] + �t
KwAR

ρcpV
[u2(k) − x3(k)] (14.26)

This system can be represented by:

x(k + 1) = x(k) + F(x(k), u(k)) + G(x(k), u(k))θ + vk . (14.27)
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Table 14.1 Model parameters

Parameter Value

α1 9758.3 K
α2 9758.3 K
α3 8560.0 K

�H1 4.2
kJ

molA

�H2 −11
kJ

molB

�H3 −41.85
kJ

molA
ρ 0.9342 kg/l

Cp 3.01
kJ

kg · K
AR 0.215 m2

kw 4032
kJ

hm2K
T0 403.15 K

For θ = [θ1 θ2 θ3]T , these matrices can be defined as:

F(x(k), u(k)) =
⎛

⎝
u1(k)[Cae − x1(k)]

−u1(k)x2(k)
u1(k)[T0 − x3(k)] + KwAR

ρcpV [u2(k) − x3(k)]

⎞

⎠�t (14.28)

G(x(k), u(k)) =

⎛

⎜⎜⎜⎜
⎝

−e−α1/x3(k)x1(k) 0 −e−α3/x3(k)x2
1(k)

e−α1/x3(k)x1(k) −e−α2/x3(k)x2(k) 0

e−α1/x3(k)x1(k)�H1

ρCp

e−α2/x3(k)x2(k)�H2

ρCp

e−α3/x3(k)x2
1(k)�H3

ρCp

⎞

⎟⎟⎟⎟
⎠

�t

(14.29)

The parameters used in this work were obtained from Reference 93 and are
reproduced in Table 14.1.

The true value of the parameter vector is θ r = [1.287 1.287 9.043]T .
The control objective is to regulate the desired product concentration (x2) and the

reactor temperature (x3) to a setpoint and simultaneously estimating the frequency
(or pre-exponential) factors of the Arrhenius equation that are assumed to lie inside
of a ball of known radius. This is a real industrial problem that can be found in
some reactors in which catalyst deactivation is present and, consequently, the kinetics
parameters may change after the system start-up. An example of this kind of chemical
system is the deactivation of hydrotreating catalysts by coke deposition [134].
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The MPC cost function was quadratic and can be written in deviation variables as:

�(x̃, ũ) = x̃T Qx̃ + ũT Rũ (14.30)

In which x̃ = x − xeq and ũ = u − ueq. The subscript eq denotes the equilibrium
point. The terminal penalty function used was parameter dependent using quadratic
stability:

W (x̃, θ ) = x̃T P(θ )x̃ (14.31)

It was obtained using the approach proposed by Reference 66, solving a finite set
of LMIs. For this purpose, the MATLAB® LMI toolbox [122] was used to represent
the system and to find the solution.

The terminal region was estimated by the algorithm presented in Reference 34,
which the main step is to find the value α that satisfies x̃T P(θ )x̃ ≤ α by solving
the optimization problem 14.32 decreasing the value of α until the optimal value is
nonpositive.

max
x̃

{x̃T P(θ )φ(x̃) − κ · x̃T P(θ )x̃} (14.32)

In the problem 14.32, the value κ must satisfy the inequality:

κ ≤ −λmax(Ak ) (14.33)

in which Ak is the closed-loop response of the linearized system under the local
controller and φ(x̃) is the difference between the nonlinear and linear response

φ(x̃) = f (x̃, Kx̃) − Ak x̃. (14.34)

For the initial nominal estimate, the matrix P(θ ) is given by

P(θ ) =
⎡

⎣
2.9776 0 0

0 2.9760 0
0 0 3.5916

⎤

⎦ . (14.35)

Using this matrix, the problem 14.32 was solved. The maximum point was
x̃max = [2.9776 2.9760 3.5916]. This solutions leads to the terminal region:

x̃T P(θ )x̃ ≤ 177. (14.36)

14.6.1 Open-loop tests of the parameter estimation routine

The uncertainty-based estimation routine for discrete-time systems was tested for the
frequency factors estimation in a open-loop test. Two scenarios were evaluated. In the
first one, the disturbance added to the system is a pulse in the manipulated variables.
In the second test, a persistent bounded periodical signal was added to the reactor
temperature. In both cases it is showed that the true parameters values were recovered.
For this simulations the initial parameter estimates were

θ0 = [5 6 7]T (14.37)

In the first simulation, the disturbance inserted into the system is a 10% pulse in
the jacket temperature as showed in Figure 14.1.
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Figure 14.1 Disturbance inserted in the jacket temperature u2
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Figure 14.2 Time evolution of the parameter estimates and true values, using a
pulse as disturbance

In Figure 14.2, the time evolution of the parameters during the simulation is
showed. The excitation added by the pulse disturbance improves the convergence
and accelerates the set contraction as showed in Figure 14.3. The true values of the
parameters are recovered and the prediction error converges to zero (Figure 14.4).

In the next simulation, a persistent disturbance was added to the jacket
temperature in the form of the function:

u2(k) = u2,nom + B · sin
(

k

C

)
(14.38)
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Figure 14.4 State prediction error ek = xk − x̂k versus time step (k)

The parameters were B = 1 and C = 50, the time course of the jacket temperature is
show in Figure 14.5.

The sine disturbance provides more excitation to the reactor system than the pulse
signal, it leads to a faster convergence to the true values. The complete simulation is
show in the Figure 14.6. Due to the difference in the rate of parameters convergence,
the beginning of the simulation is show in Figure 14.7. As one can see, the kinetic

constant of the side product reaction (2A
k3−→ D), represented by the parameter θ3, has
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Figure 14.6 Time evolution of the parameter estimates and true values, using a
sine function as disturbance

the slowest rate of convergence. The Figure 14.8 shows the estimator error and the
Figure 14.9 displays the uncertainty set radius contraction.

14.6.2 Closed-loop simulations

For the closed-loop simulations, the Lipschitz constraints were used to replace the
min–max problem and maintain the robustness of the controller. The initial val-
ues of the parameters are assumed to lie in a ball of radius zθ̂0 and centered in
the initial estimate θ0 = [5 6 7]T . The true value of the parameter vector is
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Figure 14.7 Time evolution of the parameter estimates and true values during the
beginning of the simulation, using a sine as disturbance
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Figure 14.8 State prediction error ek = xk − x̂k versus time step (k) for a sine
disturbance
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Figure 14.10 Concentration trajectory for the closed-loop system (x2) versus time

θ r = [1.287 1.287 9.043]T . The matrices for the cost function 14.30 were chosen to
be:

Q =
[

35 0
0 7

]
R =

[
0.1 0
0 1

]
(14.39)

The control objective is to regulate the system to the setpoint:

xsp = [x2,sp x3,sp] = [1.079(mol/l) 394.7(K)] (14.40)

while satisfying the constraints:

0 ≤ u1 ≤ 500

0 ≤ u2 ≤ 600

0 ≤ �u1 ≤ 10

0 ≤ �u2 ≤ 30

0 ≤ x1 ≤ 10

0 ≤ x2 ≤ 800 (14.41)

In Figures 14.10 and 14.11 the concentration and reactor temperature are showed,
the states achieve the desired setpoint without offset. The manipulated variables are
showed in Figures 14.12 (reactor flowrate) and 14.13 (jacket temperature). Moreover,
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Figure 14.13 Manipulated jacket temperature (u2) versus time

the parameter estimates converge to the true value, the parameter θ3 has the slowest
convergence rate (Figure 14.14). Figure 14.15 shows that the uncertainty set radius
reduces over time.

14.6.3 Closed-loop simulations with disturbances

In order to simulate a disturbance in the closed-loop system, a fluctuation in the inlet
temperature was inserted as a periodic function:

T0(k) = 403.15 + sin(k) (14.42)
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The control objective is to regulate the system to the setpoint presented in
Section 14.6.2. As depicted in Figures 14.16 and 14.17 the parameter convergence and
the set radius reduction is more conservative in comparison with the disturbance-free
case (Figures 14.14 and 14.15), however the true values of the parameters are recov-
ered. The reactor temperature and concentration oscillate around the setpoint (Figures
14.18 and 14.19). In Figures 14.20 and 14.21 the control actions are showed. Finally, in
Figure 14.22 a comparison between the two scenarios for the evolution of the
uncertanity set radius is presented.
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14.7 Summary

The adaptive MPC design technique is proposed for the control of constrained
nonlinear systems subject to both parametric and time-varying disturbances. The
proposed robust controller updates the plant model online when model improvement
is guaranteed. The adaptation mechanism enables the construction of terminal design
parameters based upon subsets of the original parametric uncertainty in a minimally
conservative approach. The conservativeness and the complexity due to the para-
metric uncertainty is effectively reduced over time using a self-exciting mechanism
arising from the adaptive MPC formulation. The portion due to the disturbance ϑ ∈ D
remains active for all time with guaranteed robust stability.
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