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Preface

One of the authors (MN) had an opportunity to give a series of lectures
on quantum computing at Materials Physics Laboratory, Helsinki University
of Technology, Finland during the 2001-2002 Winter term. The audience
included advanced undergraduate students, postgraduate students and re-
searchers in physics, mathematics, information science, computer science and
electrical engineering among others. The host scientist, Professor Martti M.
Salomaa, suggested that the lectures, mostly devoted to theoretical aspects
of quantum computing, be published with additional chapters on physical
realization. In fact Martti himself was willing to contribute to the physical
realization part, but his unexpected early death made it impossible. After
Martti passed away, MN asked his longstanding collaborator, TO, to coau-
thor the book. This is how this book was created. Part I, the theory part, was
written by MN, while Part II, the physical realization part, was written jointly
by MN and TO. Both authors have reviewed the final manuscript carefully
and are equally responsible for the whole content.

Quantum computing and quantum information processing are emerging
disciplines in which the principles of quantum physics are employed to store
and process information. We use classical digital technology at almost every
moment in our lives: computers, mobile phones, mp3 players, just to name a
few. Even though quantum mechanics is used in the design of devices such as
LSI, the logic is purely classical. This means that an AND circuit, for example,
produces definitely 1 when the inputs are 1 and 1. One of the most remarkable
aspects of the principles of quantum physics is the superposition principle
by which a quantum system can take several different states simultaneously.
The input for a quantum computing device may be a superposition of many
possible inputs, and accordingly the output is also a superposition of the
corresponding input states. Another aspect of quantum physics, which is far
beyond the classical description, is entanglement. Given several objects in a
classical world, they can be described by specifying each object separately.
Given a group of five people, for example, this group can be described by
specifying the height, color of eyes, personality and so on of each constituent
person. In a quantum world, however, only a very small subset of all possible
states can be described by such individual specifications. In other words, most
quantum states cannot be described by such individual specifications, thereby
being called “entangled.” Why and how these two features give rise to the
enormous computational power in quantum computing will be explained in
this book.

xiii
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Part I is devoted to theoretical aspects of quantum computing, starting
with Chapter 1 in which a brief summary of linear algebra is given. Some
subjects in this chapter, such as spectral decomposition, singular value de-
composition and tensor product, may not be taught in a standard physics
curriculum. The principles of quantum mechanics are outlined in Chapter 2.
Some examples introduced in this chapter are important for understanding
some parts in Part II. Qubit, the quantum counterpart of bit in classical in-
formation processing, is introduced in Chapter 3. Here we illustrate the first
application of quantum information processing, namely quantum key distri-
bution. By making use of the theory of measurement, a cryptosystem that
is 100% secure can be realized. Quantum gates, the important parameters
for quantum computing and quantum information processing, are introduced
in Chapter 4, where the universality theorem is proved. Quantum gates are
quantum counterparts of the elementary logic gates such as AND, NOT, OR,
NAND, XOR and NOR in a classical logic circuit. In fact, it will be shown
that all these classical gates can be reproduced with the quantum gates as
special cases. A few simple but elucidating examples of quantum algorithms
are introduced in Chapter 5. They employ the principle of quantum physics
to achieve outstanding efficiency compared to their classical counterparts.
Chapter 6 is devoted to the explanation of quantum circuits that implement
integral transforms, which play central roles in several practical quantum al-
gorithms, such as Grover’s database search algorithm (Chapter 7) and Shor’s
factorization algorithm (Chapter 8). Chapter 9 describes a disturbing issue of
decoherence, which is one of the obstacles against the physical realization of a
working quantum computer. A quantum system gradually loses its coherence
through interactions with its environment, a phenomenon known as decoher-
ence. Quantum error correcting codes (QECC) introduced in Chapter 10 are
designed to overcome certain kinds of decoherence. We will illustrate QECC
with several important examples.

Part II starts with Chapter 11, where the DiVincenzo criteria, the criteria
that any physical system has to satisfy to be a candidate for a working quan-
tum computer, are introduced. The subsequent chapters introduce physical
systems wherein the DiVincenzo criteria are evaluated for respective realiza-
tions. Liquid state NMR, the subject of Chapter 12, is introduced first since
it is one of the well-understood systems. The subject of liquid state NMR
has a long history, and numerous theoretical techniques have been developed
for understanding the system. The liquid state NMR system has, however,
several drawbacks and cannot be the ultimate candidate for a scalable quan-
tum computer — at least not in its current form. The molecular Hamiltonian
for the liquid state NMR system is determined very precisely, and the agree-
ment between the theory and experiments is remarkable. Chapters 13 and 14
are devoted to ionic and atomic qubits, respectively. The ion trap quantum
computer is one of the most promising systems: the largest quantum register
with 8 qubits has been reported. Atomic qubits trapped in an optical lattice
are expected to have very small decoherence due to their charge neutrality.
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Chapters 15 and 16 describe solid state realization of a quantum computer.
Chapter 15 introduces several types of Josephson junction qubits. The inter-
action among them is analyzed in detail. Chapter 16 describes quantum dots
realization of qubits. There are two types: charge qubits and spin qubits, and
they are treated separately.

Suggestion to readers and instructors: The whole book may be used for
a one-year course on quantum computing. Using Part I for a semester and
Part II for the subsequent semester is ideal. Alternatively, Part I may be used
for a single semester course for physics, mathematics or information science
graduate students. It may not be a good idea to use only Part II for lectures.
Instead, Chapters 1 through 4 followed by Part II may be reasonable course
materials for physics graduate students. An instructor may choose chapters in
Part II depending on his/her preference. Chapters in Part II are only loosely
related with each other.

MN used various parts of the book for lectures at several universities in-
cluding Kinki University, Helsinki University of Technology, Shizuoka Uni-
versity, Kyoto University, Osaka City University, Ehime University, Kobe
University and Kumamoto University. He would like to thank Yoshimasa
Nakano, Martti M Salomaa, Mikko Paalanen, Jukka Pekola, Akihiko Mat-
suyama, Takao Mizusaki, Tohru Hata, Katsuhiro Nakamura, Ayumu Sugita,
Taro Kashiwa, Yukio Fukuda, Toshiro Kohmoto and Masaharu Mitsunaga for
giving him opportunities to improve the manuscript and also for the warm
hospitality extended to him.

Tero Heikkild, Teemu Ojanen and Juha Voutilainen at Helsinki University
of Technology worked as course assistants for MN’s lectures. MN would like
to thank them for their excellent course management.

We are also grateful to Takashi Aoki, Koji Chinen, Kazuyuki Fujii, Toshi-
masa Fujisawa, Shigeru Kanemitsu, Go Kato, Toshiyuki Kikuta, Sachiko
Kitajima, Yasushi Kondo, Hiroyuki Miyoshi, Mikko Mo&ttonen, Yumi Naka-
jima, Hayato Nakano, Kae Nemoto, Antti Niskanen, Manabu Ozaki, Robabeh
Rahimi Darabad, Akira SaiToh, Martti Salomaa, Kouichi Semba, Fumiaki
Shibata Yasuhiro Takahashi, Shogo Tanimura, Chikako Uchiyama, Juha Var-
tiainen, Makoto Yamashita and Paolo Zanardi for illuminating discussions
and collaborations.

We would like to thank Ville Bergholm, David DiVincenzo, Kazuyuki Fu-
jii, Toshimasa Fujisawa, Saburo Higuchi, Akio Hosoya, Hartmut Héaffner, Bob
Joynt, Yasuhito Kawano, Seth Lloyd, David Mermin, Masaharu Mitsunaga,
Hiroyuki Miyoshi, Bill Munro, Mikko Mo6ttonen, Yumi Nakajima, Hayato
Nakano, Kae Nemoto, Harumichi Nishimura, Antti Niskanen, Izumi Ojima,
Kouichi Semba, Juha Vartiainen, Frank Wilhelm, Makoto Yamashita and
Paolo Zanardi for giving enlightening lectures at Kinki University.

Takashi Aoki, Shigeru Kanemitsu, Toshiyuki Kikuta, Yasushi Kondo, Yuki-
hiro Ohta, Takayoshi Ootsuka, Juha Pirkkalainen, Robabeh Rahimi Darabad,
Akira SaiToh and Hiroyuki Tomita have pointed out numerous typos and
errors in the draft. Their comments helped us enormously to improve the
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Part 1

From Linear Algebra to
Quantum Computing






1

Basics of Vectors and Matrices

The set of natural numbers {1,2,3,...} is denoted by N. The set of integers
{...,—2,-1,0,1,2,...} is denoted by Z. Q denotes the set of rational num-
bers. Finally R and C denote the sets of real numbers and complex numbers,
respectively. Observe that

NcZcQcRcC

The vector spaces encountered in physics are mostly real vector spaces and
complex vector spaces. Classical mechanics and electrodynamics are formu-
lated mainly in real vector spaces while quantum mechanics (and hence this
book) is founded on complex vector spaces. In the rest of this chapter, we
briefly summarize vector spaces and matrices (linear maps), taking applica-
tions to quantum mechanics into account.

The Pauli matrices, also known as the spin matrices, are defined by

(01 (0—i (10
9%==\10) %= \io) 727 \o0o-1)"

They are also referred to as 01,02 and o3, respectively.

The symbol I,, denotes the unit matrix of order n with ones on the di-
agonal and zeros off the diagonal. The subscript n will be dropped when
the dimension is clear from the context. The arrow — often indicates logical
implication. We use e* and exp(x) interchangeably to denote the exponential
function.

For any two matrices A and B of the same dimension, their commutator,
or commutation relation, is a matrix defined as
[A,B] = AB — BA,
while the anticommutator, or anticommutation relation, is

{A,B} = AB + BA.

The symbol g denotes the end of a proof.
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1.1 Vector Spaces

Let K be a field, which is a set where ordinary addition, substraction, multi-
plication and division are well-defined. The sets R and C are the only fields
which we will be concerned with in this book. A vector space is a set where
the addition of two vectors and a multiplication by an element of K, so-called
a scalar, are defined.

DEFINITION 1.1 A vector space V is a set with the following properties;
(0
(0-2

1) For any u,v € V, their sum u +v € V.

For any v € V and ¢ € K, their scalar multiple cu € V.

(1-2

-1)
-2)
(1-1) (u+v)+w=u+ (v+w) for any u,v,w € V.
-2) u+v=v+u for any u,v € V.

-3)

(1-3) There exists an element 0 € V such that v 4+ 0 = u for any u € V. This

element 0 is called the zero-vector.

(1-4) For any element u € V, there exists an element v € V such that u+v = 0.
The vector v is called the inverse of v and denoted by —u.

clx+y)=cr+cyforany ce K,u,veV.
(c+d)u=cu+duforany c,d e K,ueV.

(cd)u = ¢(du) for any ¢,d € K,u € V.

Let 1 be the unit element of K. Then 1u = u for any u € V.

It is assumed that the reader is familiar with the above properties. We will
be concerned mostly with the complex vector space C" in the following.
There are, however, occasional instances where the real vector space R" is
considered.

An element of V' = C™ will be denoted by |x), instead of u, and expressed
as a column of n complex numbers z; (1 <i <n) as

€
lzy =1 |, xe€C (1.1)
Ty,
It is often written as a transpose of a row vector, as |z) = (z1,Z2,...,7,)",

to save space. The integer n € N is called the dimension of the vector space.
In some literature, C" is denoted by V(n,C). Similary we define the real
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vector space R" = V(n,R) as the set of column vectors with real entries.
An element |x) is also called a ket vector or simply a ket. We will later
introduce another kind of vector called a bra vector, which, combined with
a ket vector, yields the bracket (see Eq. (1.6)). For |z),|y) € C" and a € C,
vector addition and scalar multiplication are defined as

1 Y1 T+ U ary
T2 Y2 T + Y2 ax2
== T = aw =]
Tn Yn Ty + Yn ATn
(1.2)

respectively. All the components of the zero-vector |0) are zero. The zero-
vector is also written as 0 in a less strict manner. The reader should verify
that these definitions satisfy all the axioms in the definition of a vector space.
Note, in particular, that any linear combination c;|z) + ca|y) of vectors
|z), ly) € C™ with ¢1,cq € C is also an element of C".

1.2 Linear Dependence and Independence of Vectors

Let us consider a set of k vectors {|x1),...,|xg)} in V = C™. This set is said
to be linearly dependent if the equation

k
> i) =10) (1.3)
i=1
has a solution cy,...,ck, at least one of which is non-vanishing. In other

words, vectors {|x;)} are linearly dependent if one of the vectors is expressed
as a linear combination of the other vectors. This definition implies that any
set containing the zero-vector |0) is linearly dependent.

If, in contrast, the trivial solution ¢; =0 (1 < ¢ < k) is the only solution of
Eq. (1.3), the set is said to be linearly independent.

EXERCISE 1.1 Find the condition under which two vectors

T 2
y={y |, lve)=|2—y | R
3 1

are linearly independent.

THEOREM 1.1 If a set of k vectors in C" is linearly independent, then the
number k satisifies & < n. The set is always linearly dependent if k > n.
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The proof is left as an exercise for the readers. Suppose there are n lin-
early independent vectors {|v;)} in C™. Then any |z) € C™ can be expressed
uniquely as a linear combination of these n vectors;

n
|z) = Zcim), ¢ € C.
i=1
The set of n linearly independent vectors is called a basis of C™ and the
vectors are called basis vectors. The vector space spanned by a basis {|v;)}
is often denoted as Span({|v;)}).

EXERCISE 1.2 Show that a set of vectors

1 1 1
|U1> = 1 5 |’UQ> = 0 5 |U3> = -1
1 1 -1

is a basis of C3.

1.3 Dual Vector Spaces
A function f: C" — C (f : |z) — f(Jz)) € C) satisfing the linearity condition
flelz) + ealy)) = enf(|x) + c2f (1)),
Viz),|y) € C*,Ver,e0 € C

(1.4)

is called a linear function. To express f in a component form, let us intro-
duce a row vector (¢,

(o] = (a1,...,ap), «a; €C (1.5)

A row vector is called a bra vector or simply a bra in the following. Let us
define the inner product of a bra vector («| and a ket vector |x) by

(alz) = Za Z; (1.6)

Note that this product is nothing but an ordinary matrix multiplication of a
1 X n matrix and an n x 1 matrix.

A bra vector with the above inner product induces a linear function
(af(|z)) = (a|z). In fact,

{af(cr|x) + caly)) Z ai(crm; + cayi) = 1 Z 0T + Co Z ;Y

1<alx> +ealaly).
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Conversely, any linear function can be expressed as a linear function induced
by a bra vector. The bra vector is explicitly constructed once a dual basis is
introduced as we will see below.

The vector space of linear functions on a vector space V' (C™ in the present
case) is called the dual vector space, or simply the dual space, of V
and denoted by V*. The symbol * here denotes the dual and should not be
confused with complex conjugation. As mentioned above, we may identify the
set of all bra vectors with

™ = {{a| = (au,...,an)|a; € C}. (1.7)

The reader is encouranged to verify directly that C™* indeed satisfies the
axioms of a vector space.

An important linear function is a bra vector obtained from a ket vector.
Given a vector |z) = (z1,...,z,)" € C", define a bra vector (z| associated to
) by

|x) — (x| = (27,...,2)) € C™, (1.8)

Note that each component is complex-conjugated under this correspondence.
When a norm of a vector |z) is defined by

)] = v/ (z|z), (1.9)

it takes a non-negative real value due to this convention. In fact, observe that

1/2 n 1/2
Vielz) = [Zx ,’Ez‘| = lz |;vi|2] > 0.
i=1

Given vectors |z), |y) € C", their inner product is given by

(aly) = Zx vi. (1.10)

In the mathematical literature, complex conjugation is taken rather with re-
spect to the y;. In the present book, however, we stick to physicists’ convention
(1.10), which should not be confused with Eq. (1.6).

Note the following sesquilinearity:*

(zle1yr + caya) = cr{z|yr) + ca(w|y2) (1.11)
(c1z1 + camaly) = ¢ (w1ly) + c5(w2ly), (1.12)

where |c1y1 + caye) = cily1) + caly2).

*sesqui = 1.5.
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EXERCISE 1.3 Let

1 2—14
lZy={ @ |, lw=| 1
24+ 241
Find [||z)[], (z]y) and (y|z).
EXERCISE 1.4 Prove that
(zly) = (yl=)". (1.13)

1.4 Basis, Projection Operator and Completeness
Relation

1.4.1 Orthonormal Basis and Completeness Relation

Any set of n linearly independent vectors {|v1),...,|v,)} in C™ is called the
basis, and an arbitrary vector |x) € C" is expressed uniquely as a linear com-
bination of these basis vectors as |z) = Y. | ¢;|v;). The n complex numbers
¢; are called the components of |z) with respect to the basis {|v;)}.

A basis {|e;)} that satisfies

(eilej) = dij (1.14)

is called an orthonormal basis. Clearly the choice of {|e;)} which satisfies
the above condition is far from unique. It turns out that orthonormal bases
are convenient for many purposes.

Let |z) = >""" | ¢;le;). The inner product of [z) and (e;| yields

n n
(ejlz)y = ZcZ (ejle;) = Zciéji =cj — ¢j = (ej]z).
i=1 =1

Substituting this result into the expansion of |x), we obtain

n

|$> = Z 81|ZE |81 Z |ez €z|x = <Z |81><81|> |$>

i=1
Since |z) is arbitrary, we finally obtain the completeness relation

n

D leiedl =1 (1.15)

i=1

The completeness relation is quite useful and will be frequently made use of
in the following.
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[v) = Plv)

lex)

FIGURE 1.1
A vector |v) is projected to the direction defined by a unit vector |ex) by the
action of P = |eg)(ek|. The difference |v) — Pg|v) is orthogonal to |eg).

1.4.2 Projection Operators

The matriz
Pi. = lek)(ex] (1.16)

introduced above is called a projection operator in the direction defined
by |ex). This projects a vector |v) to a vector parallel to |eg) in such a way
that |v) — Pg|v) is orthogonal to |e) (see Fig. 1.1).

The set { Py = |ex)(ex|} satisfies the conditions

G  PE=n, (1.17)

(i)  BP=0 (k#)), (1.18)

(iii) Z P, =1 (completeness relation). (1.19)
k

The conditions (i) and (ii) are obvious from the orthonormality (e;|ex) = J;%.

EXAMPLE 1.1 Let

1= (w-5(%)

They define an orthonormal basis as is easily verified. Projection operators

are
11

P=laal =5 (1) Po=leatel =5 (7).

They satisfy the completeness relation

;Pk:(é(f):l

and the orthogonality condition

00
ne- (00).

The reader should verify that P} = P.
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EXERCISE 1.5 Let {|ex)} be as in Example 1.1 and let

o) = (‘;’) =3 cxlen).

Find the coefficients ¢; and cs.

1.4.3 Gram-Schmidt Orthonormalization

Let us construct a set of k orthonormal vectors, given a linearly independent
set of k vectors {|v;)} in C™ (k < mn). The first step is to define a vector

[v1)
ler) = =1
lfon)l
which is clearly normalized; |||e1)|| = 1. Before we proceed further, let us

recall that the component of a vector |u) along |ey) is given by (e|u). Then
we define, in the next step, a vector

| f2) = [v2) — |e1){e1]v2),

which is clearly orthogonal to |e1); (e1|f2) = (e1]|v2) — (e1]e1){e1|v2) = 0. This
vector must be normalized as

1)
IE31R

Similarly we find, in the jth step, the vector
j—1
o) = |v;) — 3320 (ealvj)leq)
Jr i—1
o3} — 3231 (eilvi)led)]
By construction, {|e1),|es),...,|ex)} is an orthonormal set, which spans a k-

dimensional subspace in C™. This is called the Gram-Schmidt orthonor-
malization. When k = n, it spans the whole vector space C".

|e2)

(1<j<k).

EXAMPLE 1.2 Let

Then we obtain

b= (3) A0 (1) (2)

from which we find

Moreover
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EXERCISE 1.6 (1) Use the Gram-Schmidt orthonormalization to find an
orthonormal basis {|ex)} from a linearly independent set of vectors

lv1) = (—1,2,2)%,  |we) = (2,-1,2)", |vs) = (3,0, -3)".

) = (1,-2,7)" = 3 culen).
k

(2) Let

Find the coefficients cj,.

EXERCISE 1.7 Let
lui) = (1,4, 1), Jua) = (3,1,4)".

Find an orthonormal basis for a two-dimensional subspace spanned by

{lv1), [v2) }.

1.5 Linear Operators and Matrices
A map A:C" — C" is a linear operator if
A(er|z) + ealy)) = c1A|z) + c2Aly) (1.20)

is satified for arbitrary |z),|y) € C"™ and ¢, € C. Let us choose an arbitrary
orthonormal basis {|ex)}. It is shown below that A is expressed as an n X n
matrix.

Let |v) = Y_,_, vk|ex) be an arbitrary vector in C". Linearity implies that
Alv) = >, viAlex). Therefore, the action of A on an arbitrary vector is fixed
provided that its action on the basis vectors is given. Since Ale) € C", it

can be expanded as
A|€;€> = Z |ei>Aik'
i=1

By taking the inner product between (e;| and the above equation, we obtain
Aji = (ej|Aler). (1.21)

This is the matrix element of A given an orthonormal basis {|eg)}.
It is easy then to show that

A= Ajiles)ex] (1.22)

since by multiplying the completeness relation I = Y, |e;)(e;| from the left
and the right on A simultaneously, we obtain

A= IAI—Z|6J (ej]Aler)(ex| = ZAJMeJ (e

7,k
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1.5.1 Hermitian Conjugate, Hermitian and Unitary Matri-
ces

Hermitian matrices play important role in many areas in mathematics and
physics. To define a Hermitian matrix, we need to introduce the Hermitian
conjugate operation, denoted 1.t

DEFINITION 1.2 (Hermitian conjugate) Given a linear operator A :
C"™ — C", its Hermitian conjugate A' is defined by

(ul AJv) = (ATulo) = (u]AT|u)", (1.23)
where |u), |v) are arbitrary vectors in C™.

The above definition shows that (e;|Alex) = (ex|AT|e;)*. Therefore, we find
the relation A, = (AT),’;J-, namely

(AT)jk = A} (1.24)

In other words, the matrix elements of AT are obtained by the transpose and
the complex conjugation of A.
This definition also applies to a ket vector |x). We have

|x>T = (z7,...,z}) = (z|.

Namely, the procedure to produce a bra vector from a ket vector is regarded
as a Hermitian conjugation of the ket vector.

EXERCISE 1.8 Let A and B be n x n matrices and ¢ € C. Show that

(cA)f = Al (A+B) = AT+ B, (4B)f = B'Al. (1.25)

DEFINITION 1.3 (Hermitian matrix) A matrix A : C* — C" is said to
be a Hermitian matrix if it satisifies AT = A.

Let {|e1),...,|en)} be an orthonormal basis in C™. Suppose a matrix U :
C" — C" satisifes UTU = I. By operating U on {|ex)}, we obtain a vector
|fx) = Ulex). These vectors are again orthonormal since

(filfr) = (e;|UTUlex) = (ejlex) = b0 (1.26)

Note that |det U| = 1 since det UTU = det UT det U = |det U|? = 1.

TMathematicians tend to use * to denote Hermitian conjugate. We will follow the physicists’
convention here.
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DEFINITION 1.4 (Unitary matrix) Let U : C* — C"™ be a matrix which
satisfies UT = U~'. Then U is called a unitary matrix. Moreover, if U is
unimodular, namely det U = 1, U is said to be a special unitary matrix.

The set of unitary matrices is a group called the unitary group, while
that of the special unitary matrices is a group called the special unitary
group. They are denoted by U(n) and SU(n), respectively.

Remarks: If a real matrix A : R® — R" satisfies A* = 471, A is called an
orthogonal matrix. From det(AA?) = det Adet A® = (det A)? =det =1, we
find that det A = +1. If A is unimodular, det A = 1, it is called a special
orthogonal matrix. The set of orthogonal (special orthogonal) matrices is
a group called the orthogonal group (special orthogonal group) and

denoted by O(n) (SO(n)).

1.6 Eigenvalue Problems

Suppose we operate a matrix A on a vector |v) € C", where |v) # |0). The
result A|v) is not proportional to |v) in general. If, however, |v) is properly
chosen, we may end up with Alv), which is a scalar multiple of |v);

Alv) = Av), AeC. (1.27)

Then A is called an eigenvalue of A, while |v) is called the corresponding
eigenvector. The above equation being a linear equation, the norm of the
eigenvector cannot be fixed. Of course, it is always possible to normalize
|v) such that |||v)|| = 1. We often use the symbol |A) for an eigenvector
corresponding to an eigenvalue A to save symbols.

Let {|ex)} be an orthonormal basis in C™ and let (e;|Ale;) = A;; and
v; = {e;|v) be the components of A and |v) with respect to the basis. Then
the component expression for the above equation is obtained from

Alv) = 2:|eZ (ei|Alej){ejlv) = ZA”UJ|€Z

,J

as

ZAij’Uj = )\’UZ‘. (128)
J

Let us find the eigenvalue A next. Note first that the eigenvalue equation is
rewritten as

Z(A - /\I)l-jvj =0.

J
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This equation in v; has nontrivial solutions if and only if the matrix A — A
has no inverse, namely

D()\) =det(A — AI) =0. (1.29)

If it had the inverse, then |[v) = (A — AI)7!|0) = 0 would be the unique
solution. This equation (1.29) is called the characteristic equation or the
eigen equation of A.

Let A be an n x n matrix. Then the characteristic equation has n solutions,
including the multiplicity, which we write as {A1, A2,..., An}. The function
D()) is also written as

n

D) = [T~ )

=1
= (=" NN+
7 =1

= (=" +tr A(=N)"Y 4 4 det 4, (1.30)
where use has been made of the facts tr A = )", \; and det A =[], \;.

1.6.1 Eigenvalue Problems of Hermitian and Normal
Matrices

The eigenvalue problems of Hermitian matrices and unitary matrices are par-
ticularly important in practical applications.

THEOREM 1.2 All the eigenvalues of a Hermitian matrix are real num-
bers. Moreover, two eigenvectors corresponding to different eigenvalues are
orthogonal.

Proof. Let A be a Hermitian matrix and let A|JA) = A|A). The Hermitian
conjugate of this equation is (\|[A = A*(\|. From these equations we obtain
(AJA|A) = AAIA) = A*(A\|A), which proves A = A* since (A|A) # 0.

Let Alp) = plp) (@ # ), next. Then (u|A = p(u| since p € R. From
(u|AIX) = XMu|X) and (u]A|N) = u{u|)), we obtain 0 = (A — p){u|A). Since
1 # A, we must have (u|A\) = 0. 1

Suppose A is k-fold degenerate. Then there are k independent eigenvectors
corresponding to \. We may invoke to the Gram-Schmidt orthonormaliza-
tion, for example, to obtain an orthonormal basis in this k-dimensional space.
Accordingly, the set of eigenvectors of a Hermitian matrix is always chosen
to be orthonormal. Therefore, the set of eigenvectors {|A;)} of a Hermitian
matrix A may be made into a complete set

Z|)\k></\k| =1
=1
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EXAMPLE 1.3 The Pauli matrix

(0=
b=\ o0
is Hermitian. Let us find its eigenvalues and corresponding eigenvectors. From
det(o, — M) =A* -1 =0,

we find the eigenvalues \; = 1 and X\s = —1. Let |\) = (x,y)* be an
eigenvector corresponding to Aj;

wi =i = (§9)(5)= () - {22

These relations are satified with x = 1,y = 7. Thus the normalized eigenvector

” =g (1)

-5 (1)

It is easy to verify that they are orthogonal

(Mi]A2) = %(1,—1) (i) -

and satisfy the completeness relation

S =5 (1) +5 (L) -1

k

Similarly we obtain

Finally let us find a unitary matrix U which diagonalizes o, as

A O
1 . 1
UUyU—<O/\2).

Let us consider a matrix

U= (e = o5 (1)

oyU = (oy|A1),04|A2)) = (A|A1), A2 A2))

from which we find

Uto,U = (E:\\;D (AL|A1), A2l A2)) = ((1) _01>

as promised. Note that the unitarity of U is attributed to the orthonormality

Then
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EXAMPLE 1.4 (1) The eigenvalues and the corresponding eigenvectors of
o, are found in a similar way as the above example as A\; = 1, A\ = —1 and

=5 (1) pa=as ()

(2) Let us consider the eigenvalue problem of a matrix

1000
0100
0001
0010

A:

Note that this matrix is block diagonal with diagonal blocks I and o,. It
is found from this observation that the eigenvalues are 1,1,1 and —1. The
corresponding eigenvectors are obtained by making use of the result of (1) as

1 0 0 0
0 1 1L {o 1|0
of>lo]"val1] val| 1
0 0 1 ~1

(3) Let us consider the eigenvalue problem of a matrix

0001
0100
0010
1000

Although this matrix is not block diagonal, change of the order of basis vectors
from |e1), |ea), es), |ea) to |es), |e2), |e1),|e4) maps the matrix B to A in (2).
Therefore the eivenvalues of B are the same as those of A. (Note that the
characteristic equation is left unchanged under a permutation of basis vectors.)
By putting back the order of the basis vectors, the eigenvectors of A are
mapped to those of B as

0 0 1 1
0 1 110 1 [ o
1l lo)valo] Va2l o
0 0 1 -1

EXERCISE 1.9 Let

_ 10 1+i
A‘ﬁ(l—i 0 )

Find the eigenvalues and the corresponding normalized eigenvectors. Show
that the eigenvectors are mutually orthogonal and that they satisfy the com-
pleteness relation. Find a unitary matrix which diagonalizes A.



Basics of Vectors and Matrices 17

It has been shown above that eigenvalues of a Hermitian matrix are real.
Note that converse is not true. For example,

A= (_ab_ba> a,beR

has real eigenvalues ++/a? — b2 for |a| > |b|. How about the orthonormality
of the eigenvectors?
A matrix A is normal if it satisfies

AAT = ATA. (1.31)

THEOREM 1.3 Let A be a normal matrix. Then its eigenvectors corre-
sponding to different eigenvalues are orthogonal.

Proof. Let us write the eigenvalue equation as (A—A;)|A;) = 0. Then we find,
from the assumed condition [4, AT] = 0, that

(AT = A7) (A = X)) = (y[(A = X)) (AT = A)Ix) =0,
which implies (A;|A = A;(\;|. Then it follows that
AlAG) = Al Ag) = A (Al Ag)
which proves that (Ag|\;) =0 for A\; # M. 1

If some of the eigenvalues are degenerate, we may use the Gram-Schmidt
procedure to make the corresponding eigenvectors orthonormal. Therefore it
is always possible to assume the set of eigenvectors of a normal matrix satisfies
the completeness relation.

Important examples of normal matrices are Hermitian matrices, unitary
matrices and skew-Hermitian matrices; see the next exercise.

EXERCISE 1.10 (1) Suppose A is skew-Hermitian, namely AT = —A.
Show that all the eigenvalues are pure imaginary.

(2) Let U be a unitary matrix. Show that all the eigenvalues are unimodular,
namely |A;| = 1.

(3) Let A be a normal matrix. Show that A is Hermitian if and only if all
the eigenvalues of A are real.

EXERCISE 1.11 Let
00

U=[040
i00
Find the eigenvalues (without calculation if possible) and the corresponding
eigenvectors.
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EXERCISE 1.12 Let H be a Hermitian matrix. Show that
U= (I+iH)I—iH)™*

is unitary. This transformation is called the Cayley transformation.

1.7 Pauli Matrices

Let us consider spin 1/2 particles, such as an electron or a proton. These parti-
cles have an internal degree of freedom: the spin-up and spin-down states. (To
be more precise, these are expressions that are relevant when the z-component
of an angular momentum S, is diagonalized. If S, is diagonalized, for example,
these two quantum states can be either “spin-right” or “spin-left.”) Since the
spin-up and spin-down states are orthogonal, we can take their components

to be
|T>=((1))= |l>=((1)>. (1.32)

Verify that they are eigenvectors of o, satisfying o.| 1) = | 1) and o.| |) =
—| 1). In quantum information, we often use the notations |0) = | 1) and |1) =
| |). Moreover, the states |0) and |1) are not necessarily associated with spins.
They may represent any two mutually orthogonal states, such as horizontally
and vertically polarized photons. Thus we are free from any physical system,
even though the terminology of spin algebra may be employed.

For electrons and protons, the spin angular momentum operator is conve-
niently expressed in terms of the Pauli matrices oy as Sy = (h/2)or. We
often employ natural units in which & = 1. Note the tracelessness property
trop = 0 and the Hermiticity 0';2 = 03} In addition to the Pauli matrices,
we introduce the unit matrix I in the algebra, which amounts to expanding
the Lie algebra su(2) to u(2). The Pauli matrices satisfy the anticommutation
relations

{O'i,Uj}ZO'in-i-UjUi 2251']'1. (133)

Therefore, the eigenvalues of oy, are found to be +1.
The commutation relations between the Pauli matrices are

[UZ‘,UJ‘] = 0'in — UjUi = 22’251’]’1607@7 (134)
k

fMathematically speaking, these two properties imply that iy are generators of the su(2)
Lie algebra associated with the Lie group SU(2).
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where €, is the totally antisymmetric tensor of rank 3, also known as the
Levi-Civita symbol,

1, (i,4,k)
5ijk == -1 (iajv k)
0 otherwise.

(1,2,3),(2,3,1
(27 173)7 (1737 2)7( )

The commutation relations, together with the anticommutation relations,
yield

3
0,0; = izgijkok + 0i;1 . (1.35)
k=1

The spin-flip (“ladder”) operators are defined by

1 . 01 1 . 00
U+:§(U””+Zay):<00>’ a'_:i(a'm—la'y):<10>. (136)

Verify that 04| 1) = o_| 1) = 0, ou| 1) = | 1), o-| ) = | 1). The
projection operators to the eigenspaces of o, with the eigenvalues £1 are

Pe= I =340 = (o).

(1.37)
=l =4-a0=(39).
In fact, it is straightforward to show
Pel 1) =11), Pell) =0, P[1)=0, P-|])=1]]) .
Finally, we note the following identities:
01 =0, Pi=Py, P,P_=0. (1.38)

1.8 Spectral Decomposition

Spectral decomposition of a normal matrix is quite a powerful technique in
several applications.

THEOREM 1.4 Let A be a normal matrix with eigenvalues {\;} and eigen-
vectors {|A;)}, which are assumed to be orthonormal. Then A is decomposed

as
A= X)L,
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which is called the spectral decomposition of A.

Proof. This is a straightforward consequence of the completeness relation

If we operate A on the above equation from the left, we obtain
A= A=Al = Al (Al
i=1 i=1

which proves the theorem. ]

Let us recall that P; = |\;)(\;| is a projection operator onto the direction of
|A;}. Then the spectral decomposition claims that the operation of A in the
one-dimensional subspace spanned by |);) is equivalent with a multiplication
by a scalar \;. This observation reveals a neat way to obtain the spectral
decomposition of a normal matrix. Let A be a normal matrix and let {\,} and
{JAa,p) (1 < p < gq)} be the sets of eigenvalues and eigenvectors, respectively.
Here we use subscripts «, 3, . . . to denote distinct eigenvalues, while g, denotes
the degeneracy of the eigenvalue \,, namely A\, has g, linearly independent
eigenvectors, which are indexed by p. Therefore we have

Zlgn, Zga221:n.

Now consider the following expression:

[T 2a(Aa = 25)°

This is a projection operator onto the g,-dimensional space corresponding to
the eigenvalue \,. In fact, it is straightforward to verify that

Ao — A
Pa|)‘a-,p> = %Ma,ﬁ = |)\a-,p> (1 <p< ga)

P, (1.39)

and

Ilﬁ;éa()\fs - )‘B)
Pa|)\5,q> H»Y?ga()\oz — )\7) |)\6,q> 0 (6 7é a, 1< q = 95)

since one of B(# «) is equal to 6(# «) in the numerator. Therefore, we
conclude that P, is a projection operator

Jo
Po = Z |)‘a,p></\a,p| (1.40)
p=1
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onto the g,-dimensional subspace correcponding to the eigenvalue A,. It
follows from Eq. (1.40) that rank P, = g,. Note also that

APy = Ao Pa. (1.41)

The above method is particularly suitable when the eigenvalues are degener-
ate. It is also useful when eigenvectors are difficult to obtain or unnecessary.

EXAMPLE 1.5 Let us take o, as an example. We found in Example 1.3
that the eigenvalues are \; = +1 and Ay = —1, from which we obtain the
projection operators directly by using Eq. (1.39) as

n- B3 (7). m-g (L)

We find the spectral decomposition of o, as

1 /1 —i 1/1
Uy:ZAiPizi@ 1)”‘”5(—@1)'

One of the advantages of the spectral decomposition is that a function of a
matrix is evaluated quite easily. Let us prove the following formula.

PROPOSITION 1.1 Let A be a normal matrix in the above theorem. Then
for an arbitrary n € N, we obtain

A" =" X\IP,. (1.42)
If, furthermore, A~! exists, the above formula may be extended to n € Z by
noting that A\;! is an eigenvalue of A~1.
Proof. Let n € N. Then
A"Py = AA" Py = ... = \N'"HAP, = A1 P,

from which we obtain
A" =A"Y Py =3 A"Po=Y M.Pa.

To prove the second half of the proposition, we only need to show that A~!
has an eigenvalue A\ !, provided that A~! exists (and hence A, # 0), and the
corresponding projection operator is P,. We find

|)‘a,p> = A_1A|)‘oz,p> = /\aA_1|/\a,p> - A_1|)‘oz,p> = /\;1|)‘a,p>'

Therefore the projection operator corresponding to the eivengalue A1 is P,.
The case n = 0, [ = ) Py, is nothing but the completeness relation. Now
we have proved that Eq. (1.42) applies to an arbitrary n € Z. 1
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From the above proposition, we obtain for a normal matrix A and an arbi-
trary analytic function f(z),

FA) = f(Xa)Pa (1.43)

Even when f(z) does not admit a series expansion, we may still formally
define f(A) by Eq. (1.43). Let f(z) = /z and A = gy, for example. Then we
obtain from Example 1.5 that

Ty = (1) P + (£i) Ps.

It is easy to show that the RHS squares to o,. However, there are four possible
\/o depending on the choice of + for each eigenvalue. Therefore the spectral
decomposition is not unique in this case. Of course this ambiguity originates
in the choice of the branch in the definition of \/x.

EXAMPLE 1.6 Let us consider o, again. It follows directly from Example
1.5 that

o0 . k .
(iaoy) - ; cosa sina
; — Y Qe —ix
exp(iao,) = E =e' %P 4+e Py = . .
p(iaoy) Pt k! ! 2 —sina cos

EXERCISE 1.13 Suppose a 2 x 2 matrix A has eigenvalues —1,3 and the
corresponding eigenvectors

-5 w5 ()

respectively. Find A.
EXERCISE 1.14 Let
e 21
T\12
(1) Find the eigenvalues and the corresponding normalized eigenvectors of A.
(2) Write down the spectral decomposition of A.
(3) Find exp(iaA).

EXERCISE 1.15 Let

5 —2 -4
A= -22 2
-4 2 5

(1) Find the eigenvalues and the corresponding eigenvectors of A.
(2) Find the spectral decomposition of A.
(3) Find the inverse of A by making use of the spectral decomposition.
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Now we prove a formula which will turn out to be very useful in the follow-
ing. This is a generalization of Example 1.6

PROPOSITION 1.2 Let 71 € R? be a unit vector and « € R. Then
exp (ian - o) = cosal + i(f - o) sinq, (1.44)
where o = (0, 0y,02).

Proof. Let

Ng +1iny  —n;
The eigenvalues of A are \; = +1 and Ay = —1. It then follows that
(A+1) 1( 1+mn, nm—iny)

P=——=3 Ng +1iny, 1—n,

2 2
Py — (A-1) 1( 1—n, —nm—i—zny),

—MNg —iny 1+n,

-2 2
from which we readily find

eiOZA_eia< 1+nz nac_iny)_i_e_ia( 1_nz —nm—i—iny)

Nng +1iny 1—mn; —Ng —iny 1+n,

2
=cosal +i(n-o)sina.

EXERCISE 1.16 Let f : C — C be an analytic function. Let nn be a real
three-dimensional unit vector and a be a real number. Show that

)= 1) +2f(—04)1_|_ f(a) —2f(—a>ﬁ o (1.45)

flan- o

(c.f., Proposition 1.2.)

1.9 Singular Value Decomposition (SVD)

A subject somewhat related to the eigenvalue problem is the singular value
decomposition. In a sense, it is a generalization of the eigenvalue problem to
arbitrary matrices.

THEOREM 1.5 Let A be an m X n matrix with complex entries. Then it
is possible to decompose A as

A=UxVT, (1.46)
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where U € U(m),V € U(n) and ¥ is an m X n matrix whose diagonals
are nonnegative real numbers, called the singular values, while all the off
diagonal components are zero. The matrix X is called the singular value
matrix.

The decompostion (1.46) is called the singular value decomosition and
is often abbreviated as SVD.

We now sketch the proof of the decomposition. Let us assume m > n for
definiteness. Consider the eigenvalue problem of an n X n Hermitian matrix
AT A:

ATADNG) = XilA) (1 <i<n),

where ); is a nonnegative real number, where nonnegativity follows from the
observation \; = (\;|\i|\i) = (\|ATA|N;) = [|A|A\;)[|? > 0. Note that the set
{|A\;)} satisfies the completeness relation

if they are made orthonormal by the Gram-Schmidt orthonormalization. We
assume 7 of the eigenvalues are strictly positive and n — r are zero. The
set {\;} is arranged in nonincreasing order A\; > Ay > ... > A, > 0 while
Arg1 = ... =X, = 0. Now define

V= (l/\1>7 |/\2>7 ERE} |)‘T>= |)\r+1>7 R |/\n>)7

and
U= (|N1>7 |/1'2>7 ) |MT>7 |/1'T+1>7 ) |Mm>) )
where )
i) = —A|X\g 1<k<r),
k) NS M) ( )
while other orthonormal vectors |p,41), ..., |tm) are taken to be orthogonal

to |ux) (1 <k <r). Note that V € U(n) and U € U(m) by construction.
Then we find

Al
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1 .
< AN, = Al VA_TA|AT>,|WH>,...,|um>> VRO

=AY Pyl =AD"
i=1 i=1

where we noted that A|\;) = 0 for r + 1 < ¢ < n and use has been made of
the completeness relation of {|\;)}. The reader should examine the case in
which m < n. ]

EXAMPLE 1.7 Let
11

A=100
11

22

TA—

i (22)

The eigenvalues of ATA are \; =4 and Ay = 0 with the corresponding eigen-

T e () s ()

Unitary matrix V' and the singular value matrix 3 are found from these data
as

for which

20
1 _
V=— (1 11> and X =100
V2 00
To construct U, we need
1 1 N
=-Al\M)=—(1,0
|M1> 2 | 1> \/5( ) 77’)
and two other vectors orthogonal to |p1). By inspection, we find
1
=(0,1,0)" and =—(1,0,—1)?,
|k2) = (0,1,0) |p3) \/5( )
for example. From these vectors we construct U as
1 10 1
U=—710v20
V2 i 0 —1
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The reader should verify that UXVT really reproduces A.

EXERCISE 1.17 Find the SVD of

102
1=(i01)-

1.10 Tensor Product (Kronecker Product)

DEFINITION 1.5 Let A be an m x n matrix and let B be a p X ¢ matrix.
Then
a1 B,a12B,...,a1,B

ang, CLQQB, ceey agnB

A®B = (1.47)

am1B,amaB, ..., amnB

is an (mp) x (ng) matrix called the tensor product (Kronecker product)
of A and B.

It should be noted that not all (mp) X (ng) matrices are tensor products
of an m x n matrix and a p X ¢ matrix. In fact, an (mp) x (np) matrix has
mnpq degrees of freedom, while m x n and p X ¢ matrices have mn + pq in
total. Observe that mnpg > mn + pq for large enough m,n,p and ¢. This
fact is ultimately related to the power of quantum computing compared to its
classical counterpart.

EXAMPLE 1.8

o

o O O
[t

0o0.\ _
Oy R0, = (Uz O) =
EXAMPLE 1.9 We can also apply the tensor product to vectors as a special

case. Let
0= (5): 0-)

ac

meb= ()=
bd

O = OO
o O O
o O |

Then we obtain

The tensor product |u) ® |v) is often abbreviated as |u)|v) or |uv) when it
does not cause confusion.
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EXERCISE 1.18 Let A and B be as above and let C' be an n x r matrix
and D be a ¢ x s matrix. Show that
(A® B)(C® D) = (AC) ® (BD). (1.48)
It similarly holds that
(A1 ® B1)(Az ® Bs)(As ® Bs) = (A14243) ® (B1B2B3),

and its generalizations whenever the dimensions of the matrices match so that
the products make sense.

EXERCISE 1.19 Show that

AR (B+0)=A®B+ARC (1.49)
(A® B)f = At @ Bt (1.50)
(AB)Y ' =A"1'@ B! (1.51)

whenever the matrix operations are well-defined.

Show, from the above observations, that the tensor product of two unitary
matrices is also unitary and that the tensor product of two Hermitian matrices
is also Hermitian.

EXERCISE 1.20 Let A and B be an m X m matrix and a p X p matrix,
respectively. Show that

tr(A
det(A ®

B) = (trd)(trB),

B) = (det A)P(det B)™

EXERCISE 1.21 Let |a), |b), |c), |d) € C". Show that
(la)(b]) @ (le){d]) = (la) @ |))({b] @ (d]) = |ac){bd].

THEOREM 1.6 Let A be an m X m matrix and B be a p X p matrix.
Let A have the eigenvalues A1, ..., A\, with the corresponding eigenvectors
[u1),. .., |um) and let B have the eigenvalues 1, ..., 1, with the correspond-
ing eigenvectors |v1), ..., |vp). Then A ® B has mp eigenvalues {\;ux} with
the corresponding eigenvectors {|ujvy)}.

Proof. We show that |u;vg) is an eigenvector. In fact,
(A @ B)(Jujor)) = (Aluy)) @ (Blow)) = (Ajlu;)) @ (pklv))
= A (lujor)) -

Therefore, the eigenvalue is \juy, with the corresponding eigenvector |u;vy).
Since there are mp eigenvectors, the vectors |u;vy) exhaust all of them. 1

EXERCISE 1.22 Let A and B be as above. Show that A® I, + I,, ® B
has the eigenvalues {); + ux} with the corresponding eigenvectors {|u;jvi)},
where I, is the p x p unit matrix.






2

Framework of Quantum Mechanics

Quantum mechanics is founded on several postulates, which cannot be proven
theoretically. They are justified only through an empirical fact that they are
consistent with all the known experimental results. The choice of the postu-
lates depends heavily on authors’ taste. Here we give one that turns out to be
the most convenient in the study of quantum information and computation.
For a general introduction to quantum mechanics, we recommend [1, 2, 3, 4],
for example. [5] and [6] contain more advanced subjects than those treated
in this chapter.

2.1 Fundamental Postulates

Quantum mechanics was discovered roughly a century ago. In spite of its long
history, the interpretation of the wave function remains an open question.
Here we adopt the most popular one, called the Copenhagen interpreta-
tion.

A 1 A pure state in quantum mechanics is represented in terms of a normal-
ized vector |¢) in a Hilbert space H (a complex vector space with an
inner product): (1|t)) = 1. Suppose two states [1)1) and |i)2) are physi-
cal states of the system. Then their linear superposition c; Y1) 4 ¢a|1)2)
(c, € C) is also a possible state of the same system. This is called the
superposition principle.

A 2 For any physical quantity (i.e., observable) a, there exists a corre-
sponding Hermitian operator A acting on the Hilbert space H. When
we make a measurement of a, we obtain one of the eigenvalues A; of
the operator A. Let A; and Az be two eigenvalues of A: A|\;) = ;| \;).
Suppose the system is in a superposition state c1|A1) + ca|A2). If we
measure a in this state, then the state undergoes an abrupt change to
one of the eigenstates corresponding to the observed eigenvalue: If the
observed eigenvalue is A1 (A2), the system undergoes a wave function
collapse as follows: c1|A1) + c2|A2) — |A1) (JA2)), and the state imme-
diately after the measurement is |A1) (JA2)). Suppose we prepare many

29
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copies of the state ¢1|A1) 4+ c2|\2). The probability of collapsing to the
state |\g) is given by |cx|? (K = 1,2). In this sense, the complex coeffi-
cient ¢; is called the probability amplitude. It should be noted that a
measurement produces one outcome \; and the probability of obtaining
it is experimentally evaluated only after repeating measurements with
many copies of the same state. These statements are easily generalized
to states in a superposition of more than two states.

The time dependence of a state is governed by the Schrédinger equa-
tion | >
v
=H 2.1
L = ), (21)

where 7 is a physical constant known as the Planck constant and H
is a Hermitian operator (matrix) corresponding to the energy of the
system and is called the Hamiltonian.

Several comments are in order.

In Axiom A 1, the phase of the vector may be chosen arbitrarily; |4)
in fact represents the “ray” {e!®|¢y) |a € R}. This is called the ray
representation. In other words, we can totally igonore the phase of a
vector since it has no observable consequence. Note, however, that the
relative phase of two different states is meaningful. Although |(¢|e**¢)|?
is independent of a, [(¢[th1 + €"*9)3)|? does depend on c.

Axiom A 2 may be formulated in a different but equivalent way as
follows. Suppose we would like to measure an observable a. Let
A =37, \i|Ai)(Ai| be the corresponding operator, where A|X;) = Ai|\;).
Then the expectation value (A) of a after measurements with respect to
many copies of a state |¢) is

(4) = (WlAlY). (2.2)

Let us expand [¢) in terms of [\;) as |[¢) = >, ¢i|\i) to show the equiv-
alence between two formalisms. According to A 2, the probability of
observing A\; upon measurement of a is |¢;|?, and therefore the expec-
tation value after many measurements is >, \;|c;|?. If, conversely, Eq.
(2.2) is employed, we will obtain the same result since

|A|1/} ZC Cl /\ |A|/\ 20;01A151J = Z)\1|CZ|2
i, %

This measurement is called the projective measurement. Any par-
ticular outcome A; will be found with the probability

leif? = (WIPi[¥), (2:3)
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where P; = |\;)(\;] is the projection operator, and the state immediately
after the measurement is |\;) or equivalently

VIR

where the overall phase has been ignored.

e The Schrodinger equation (2.1) in Axiom A 3 is formally solved to yield

(1)) = = (0)), (2.5)
if the Hamiltonian H is time-independent, while
.ot
=Texp|—~ | H 4 0 2.6
w(0) = Tewp |~ [ HOat] 1600} (2.6

if H depends on t, where 7 is the time-ordering operator defined by
A(tl)B(tg) t1 > to
T[A(t1)B(t2)] = ’ ,
[ ( 1) ( 2)] {B(tQ)A(tl), t2 Z tl

for a product of two operators. Generalization to products of more
than two operators should be obvious. We write Eqgs. (2.5) and (2.6) as
[(t)) = U(t)]1(0)). The operator U(t) : [1(0)) — |t(t)), which we call
the time-evolution operator, is unitary. Unitarity of U(¢) guarantees
that the norm of [¢(t)) is conserved:

WO (0)U (£)[1(0)) = ((0)]1(0)) = 1.

EXERCISE 2.1 (Uncertainty Principle)
(1) Let A and B be Hermitian operators and [¢)) be some quantum state on
which A and B operate. Show that

[(WI[A, Bl[$)|* + [(W[{ A, B})|* = 4|(|ABJ) |
(2) Prove the Cauchy-Schwarz inequality
[(WIAB[p)* < (0| A%[) (| B?[¢).

(3) Show that
[(WI[A, Bll)[* < 4| A%[) (| B2[4)).
(4) Show that

A(A)A(B) >
where A(A) = \/<1/)|A2|1/;> — WA,
(5) Suppose A = Q and B =P = ’_?i
that

[(¥1[A, Bll4)], (2.7)

DN =

. Deduce from the above arguments

A(QA(P) =

N St

The uncertaintly principle in terms of standard deviation has been formu-
lated first in [7] and [8].
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2.2 Some Examples

We now give some examples to clarify the axioms introduced in the previous
section. They turn out to have relevance to certain physical realizations of a
quantum computer.

EXAMPLE 2.1 Let us consider a time-independent Hamiltonian

h
H = —5W0s. (2.8)
Suppose the system is in the eigenstate of o, with the eigenvalue +1 at time
t=0;

The wave function [¢(t)) (¢t > 0) is then found from Eq. (2.5) to be

6(6) = exp (iS04t [1:0))- (2.9)

The matrix exponential function in this equation is evaluated with the help
of Eq. (1.44) and we find

coswt/2 isinwt/2 1 coswt/2
wey = (o)=( ) ew
isinwt/2 coswt/2 isinwt/2
Suppose we measure the observable o,. Note that [i(t)) is expanded in terms
of the eigenvectors of o, as

|¥(t)) = cos %t|az = +1) 4+ isin §t|az =—1).

Therefore we find the spin is in the spin-up state with the probability P;(t) =
cos?(wt/2) and in the spin-down state with the probability P (t) = sin?(wt/2)
as depicted in Fig. 2.1. Of course, the total probability is independent of time
since cos?(wt/2) + sin?(wt/2) = 1. This result is consistent with classical
spin dynamics. The Hamiltonian (2.8) depicts a spin under a magnetic field
along the z-axis. Our initial condition signifies that the spin points the z-
direction at t = 0. Then the spin starts precession around the z-axis, and the
z-component of the spin oscillates sinusoidally as is shown above.
Next let us take the initial state

won=—(1).
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) Py(t) Py(t)
0.8
0.6
0.4
0.2
wt/m
0.5 1 1.5
FIGURE 2.1

Probability P;(t) with which a spin is observed in the T-state and Py (t) ob-
served in the |-state.

which is an eigenvector of o, (and hence the Hamiltonian) with the eigenvalue
+1. We find |¢(t)) in this case as

o(t)) = coswt/2 isinwt/2) 1 (1Y _ e“2 (] 211)

- \usinwt/2 coswt/2 ) 2 \1) 2 \1)° :
Therefore the state remains in its initial state at an arbitrary ¢ > 0. This is an
expected result since the system at ¢ = 0 is an eigenstate of the Hamiltonian.

EXERCISE 2.2 Let us consider a Hamiltonian

H = —gway. (2.12)

Suppose the initial state of the system is

won = (1) (213

(1) Find the wave function |¢(t)) at later time ¢ > 0.

(2) Find the probability for the system to have the outcome +1 upon mea-
surement of o, at t > 0.

(3) Find the probability for the system to have the outcome +1 upon mea-
surement of o, at t > 0.

Now let us formulate Example 2.1 and Exercise 2.2 in the most general
form. Consider a Hamiltonian

H= —gwﬁ ‘o, (2.14)

where 7 is a unit vector in R3. The time-evolution operator is readily ob-
tained, by making use of the result of Proposition 1.2, as

U(t) = exp(—iHt/h) = cos %t I+i(n-o)sin %t. (2.15)
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Suppose the initial state is

for example. Then we find

cos(wt/2) + in. sin(wt/ 2>) (2.16)

[¥(8)) = U (0)) = ( i(ng + iny) sin(wt/2)

The reader should verify that |1 (t)) is normalized at any instant of time ¢ > 0.

EXAMPLE 2.2 (Rabi oscillation) This example is often employed for a
quantum gate implementation as will be shown later. We will take the natural
unit 7 =1 to simplify our notation throughout this example. Let us consider
a spin-1/2 particle in a magnetic field along the z-axis, whose Hamiltonian is
given by

Hy=——0.. (2.17)
Suppose the particle is irradiated by an oscillating magnetic field of angular

frequency w, which introduces transitions between two energy eigenstates of
Hjy. Then the perturbed Hamiltonian is modelled as

B wo w1 O eiwt B 1 —wp wleiwt
H=——o0.+ 7 <e—iwt 0 > - 5 <wle—iwt wo ’ (218)

where w; > 0 is a parameter proportional to the amplitude of the oscillating
field. Let us evaluate the wave function [¢(¢)) at time ¢ > 0 assuming that
the system is in the ground state of the unperturbed Hamiltonian

won = () 2.19)

at t = 0. Note that we cannot simply exponentiate the Hamiltonian since it
is time-dependent. Surprisingly, however, the following trick makes it time-
independent. Let us consider the following “gauge transformation”:

|6()) = e 72 [(t)). (2.20)
A straightforward calculation shows that |¢(t)) satisfies

. d ~
i=|9(t)) = Hg(2)), (2.21)
where

dt w1 wy—w

[ = e iwost/2[fpiwost/2 _ ;,—iwost/2 d plwost/2 _ % (—wo +w wp )
1)
= 2o+ Y, (2.22)
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is, in fact, time-independent. Here 0 = wp — w stands for the “detuning”
between w and wy. Note that the Hamiltonian H can be put into the form

(2.14) as

Now it is easy to solve Eq. (2.21). The time evolution operator is obtained
using Eq. (2.15) as

U(t) = cos %I —i (ﬂaw - éUz) sin At

A A 2
cos—t—i—iésinﬁ it sing
_ 2 T'ATT AT | (2.2
LA A
i sin cos —- —i-esin—
The wave function |¢(¢)) with the initial condtion |¢(0)) = (1,0)* is
0 At
_ COoS — + 'LZ S 7
[6(t)) = U(t)|p(0)) = : (2.25)
i sin g
A 2
We find |¢(¢)) from Eq. (2.20) as
etwt/2 <cos At + P2 sin g)
wozt/2 2 A 2
[¥(t) =e 6(1)) = A - (2.26)
_je—iwt/291 ) B
ie X 5

Suppose the applied field is in resonance with the energy difference of two
levels, namely w = wg. We obtain § = 0 and A = w; in this case. The wave
function |¢(t)) at later time ¢ > 0 is

; wlt
eu.uot/Q coS ——

[9(t)) = e™7=*2|g(1)) = - (2.27)

o . wit
—je T wot/2 smT

The probability with which the system is found in the ground (excited) state
of Hy is given by

Py = cos’wit/2 (P = sin®wyt/2). (2.28)

This oscillatory behavior is called the Rabi oscillation. The frequency w is
called the Rabi frequency, while A in Eq. (2.23) is called the generalized
Rabi frequency
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2.3 Multipartite System, Tensor Product and Entangled
State

So far, we have assumed implictly that the system is made of a single com-
ponent. Suppose a system is made of two components; one lives in a Hilbert
space H; and the other in another Hilbert space Hz. A system composed of
two separate components is called bipartite. Then the system as a whole
lives in a Hilbert space H = H; ® Ha, whose general vector is written as

W) = cijlers) ® lea), (2.29)
¥

where {|eq,i)} (a = 1,2) is an orthonormal basis in H, and >, ; eii|* = 1.

A state |¢p) € H written as a tensor product of two vectors as |[¢) =
[1) @ |¥2), (|$a) € Ha) is called a separable state or a tensor prod-
uct state. A separable state admits a classical interpretation such as “The
first system is in the state |t¢1), while the second system is in [¢2).” Tt is
clear that the set of separable states has dimension dimH; + dimHs. Note
however that the total space H has different dimensions since we find, by
counting the number of coefficients in (2.29), that dimH = dimH;dimHs.
This number is considerably larger than the dimension of the sparable states
when dimH, (a = 1,2) are large. What are the missing states then? Let us
consider a spin state

!
V2

of two separated electrons. Suppose |¢)) may be decomposed as

[9) = (1| T) +ca| 1) @ (da| T) +d2| 1))
=cdi| )@ |T) +teade )@ 1) +eadi| ) @[ 1) +cad2| 1) @] ]).

|¥) Ineln+ihell) (2.30)

However this decomposition is not possible since we must have

1
01d2 = 02d1 = O, Cldl = ngg = —

V2
simultaneously, and it is clear that the above equations have no common
solution. Therefore the state |¢) is not separable.
Such non-separable states are called entangled in quantum theory [9]. The

fact
dimH;dimH, > dimH, + dimHs

tells us that most states in a Hilbert space of a bipartite system are entangled
when the constituent Hilbert spaces are higher dimensional. These entangled
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states refuse classical descriptions. Entanglement will be used extensively as
a powerful computational resource in quantum information processing and
quantum computation.

Suppose a bipartite state (2.29) is given. We are interested in when the
state is separable and when entangled. The criterion is given by the Schmidt
decomposition of |¢)).

PROPOSITION 2.1 Let H = H; ® Hz be the Hilbert space of a bipartite
system. Then a vector |¢)) € H admits the Schmidt decomposition

W) = 3 VEilfia) @ |fa) with Y s =1, (2.31)
=1 7

where s; > 0 are called the Schmidt coefficients and {|f, )} is an orthonor-
mal set of H,. The number r € N is called the Schmidt number of |¢).

Proof. This is a direct consequence of SVD introduced in §1.9. Let |¢) be ex-
panded as in Eq. (2.29). Note that the coefficients ¢;; form a dimH; x dimH,
matrix C. We apply the SVD to obtain C = UXV', where U and V are
unitary matrices and ¥ is a matrix whose diagonal elements are nonnegative
real numbers while all the off-diagonal elements vanish. Now [¢) of Eq. (2.29)
is put in the form

W) =" UnSwVjileri) @ lea,;).
1,5,k

Now define | f1,x) = >_; Uirlers) and | fo5) = >°; Vji|e2 ;). Unitarity of U and
V guarantees that they are orthonormal bases of H; and Hs, respectively. By
noting that Xy = didg;, we obtain

) = > dilf1:) @ |f2i),
=1

where 7 is the number of nonvanishing diagonal elements in 3. The wave
function (2.31) is obtained by replacing the positive number d; by d; = \/s;.
Moreover, the normalization condition implies (1|¢) = >, s; = 1. 1

It follows from the above proposition that a bipartite state |¢) is separable
if and only if its Schmidt number r is 1.

EXAMPLE 2.3 Consider a bipartite state

1 . .
) = §(|€1,1>|€2,1> + le1,1)]e2,2) +ilers)|ea) +ile1s)|ez2)),

whose coefficients form a matrix
11
1
C=-100
2

11
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Note that this is essentially the same matrix whose SVD was analyzed in
Example 1.7. By making use of the result obtained there, we find

|"/]> = |f1,1>|f2,1>7

where

|fi1) = ZUzllelz = —(|61 1) +iler3))

S

and

1
| f2,1) Z 1lez, ) = \/5(|€2,1>+|€2,2>)-

Therefore the Schmidt number is 1 and the state is separable.

Generalization to a system with more components, i.e., a multipartite
system, should be obvious. A system composed of N components has a
Hilbert space

H=H1®Ho®...®Hn, (2.32)

where H,, is the Hilbert space to which the ath component belongs. Classifi-
cation of entanglement in a multipartite system is far from obvious, and an
analogue of the Schmidt decompostion is not known to date for N > 3.*

2.4 Mixed States and Density Matrices

It might happen in some cases that a quantum system under considertation is
in the state |1¢;) with a probability p;. In other words, we cannot say definitely
which state the system is in. Therefore some random nature comes into the
description of the system. This random nature should not be confused with a
probabilistic behavior of a quantum system. Such a system is said to be in a
mixed state, while a system whose vector is uniquely specified is in a pure
state. A pure state is a special case of a mixed state in which p; = 1 for some
iand p; =0 (§ #1).
Mixed states may happen in the following cases, for example.

e Suppose we observe a beam of totally unpolarized light and measure
whether photons are polarized vertically or horizontally. The measure-
ment outcome of a particular photon is either horizontal or vertical.
Therefore when the beam passes through a linear polarizer, the inten-
sity is halved. The beam is a mixture of horizontally polarized photons
and vertically polarized photons.

*See, however, [10, 11].
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e A particle source emits a particle in a state |¢;) with a probability

e Let us consider a canonical ensemble. If we pick up one of the members
in the ensemble, it is in a state |¢);) with energy F; with a probability
p; = e~ Fi/kBT | 7(T), where Z(T) = Tre~H/*8T is the partition func-
tion.

In each of these examples, a particular state |1;) € H appears with proba-
bility p;, in which case the expectation value of the observable a is (1;| A|;),
where we assume |v;) is normalized; (1;|1);) = 1. The mean value of a is then
given by

N
(A) =" pilil Algs), (2.33)
i=1
where N is the number of available states. Let us introduce the density
matrix by

N
p=> pilthi)(thil. (2.34)
i=1
Then Eq. (2.33) is rewritten in a compact form as

(A) = Tr(pA). (2.35)

EXERCISE 2.3 Let A be a Hermitian matrix. A is called positive-
semidefinite if ()| A|) > 0 for any |¢) in the relevant Hilbert space H. Show
that all the eigenvalues of a positive-semidefinite Hermitian matrix are non-
negative.

Conversely, show that a Hermitian matrix A, whose eigenvalues are all non-
negative, satisfies (¢|A|y) > 0 for any [¢)) € H.

Properties which a density matrix p satisfies are very much like axioms for
pure states.

A 1’ A physical state of a system, whose Hilbert space is H, is completely
specified by its associated density matrix p : H — H. A density matrix
is a positive semi-definite Hermitian operator with tr p = 1 (see remarks
below).

A 2’ The mean value of an observable a is given by

(A) = tr (pA). (2.36)

A 3’ The temporal evolution of the density matrix is given by the Liouville-
von Neumann equation,

d
h—p=H 2.37
ihp [H, p], (2.37)

where H is the system Hamiltonian (see remarks below).
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Several remarks are in order.

e We assume {|1;)} is not necessarily an orthogonal basis of H, although
it is assumed (¢;]1);) = 1. The density matrix (2.34) is Hermitian since
p; € R. Tt is positive semi-definite since

(@lplg) = Epwwzmw E}n%@?>o

where |¢) is an arbitrary vector. We also find

trp = Z(eklplek> = Z<€k|pi|1/fi><1/fi|€k>

& ik
= sz<1/)z| <Z|ek ek|> W}z sz 1/)1|1/}z =1,

where {|ex)} is an orthonormal basis of H.

e Each |¢);) follows the Schrodinger equation

d
ih i) = HIt)

in a closed quantum system. Its Hermitian conjugate is

_Zh <1/}z| - <1/}Z|H

We prove the Liouville-von Neumann equation from these equations as
L d L d
i p = ih— S pila) (Wil =Y piH ) (Wil = > piltb) (Wi H
= [H, p].

We denote the set of all possible density matrices as S(H), where H is the
Hilbert space associated with a system under consideration. It is easy to verify
that tp; + (1 —t)p2 for p1,2 € S(H) is also a density matrix, which shows that
S(H) is a convex set.

EXAMPLE 2.4 A pure state [¢) is a special case in which the corresponding
density matrix is

p = [) (. (2.38)

Therefore p in this case is nothing but the projection operator onto the state
|t)). Observe that

(A) = trpA =3 (Wulv)(WlAlvi) = 3 (WIAR)Wilv) = (wlAl).

%
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A general density matrix is a convex combination of pure states.

Let us consider a beam of photons. We take a horizontally polarized state
le1) = | <) and a vertically polarized state |ea) = | |) as orthonormal basis
vectors. If the photons are a totally uniform mixture of two polarized states,
the density matrix is given by

1 1 1/10 1
p= gl + glealeal =5 (o)) = 57

This state is a uniform mixture of | [) and | <) and called a maximally

mixed state.
If photons are in a pure state [¢)) = (e ) + |e2))/v/2, the density matrix,

with {|e;)} as basis, is
1/11
p=tovl =3 (11)-

If |¢) itself is used as a basis vector, the other vector being |¢p) = (Je; ) —
le2))/v/2, the density matrix with respect to the basis {|¢), |¢)} has a com-

ponent expression
(10
P=\oo0)"

Verify that they all satisfy Hermiticity, positive semi-definitness and trp = 1.

Let A = >, Aa|Aa)(Xa| be the spectral decomposition of an observable
A and let p = Y. pit);)(¥;| be an arbitrary state. Then the measurement
outcome of A is A\, with the probability

pla) = Zpi|<)\a|¢i>|2 = (AalplAa) = tr (Pap), (2.39)

where P, = |A\q)(A,| is the projection operator. The state changes to a pure
state [Aq) (Aq| immediately after the measurement with the outcome A,. This
change is written as p — P,pP,/p(a).

Now, we are interested in when p represents a pure state or a mixed state.

THEOREM 2.1 A state p is pure if and only if p? = p.

Proof. Since p is Hermitian, all its eigenvalues \; (1 < i < dimH) are
real and the corresponding eigenvectors {|\;)} are made orthonormal. Let
p = Y. NilAi)(\i| be the spectral decomposition of p. Suppose p? =
> AZINi)(Ai| = p. Then the eigenvalue \; satisfies A7 = \; for any i. There-
fore \; is either O or 1. It follows from trp = Zi A; = 1 that A\, =1 for some
p and A; = 0 for i # p, namely, p is a pure state [A,)(Ap|.

The converse is trivial. I

EXERCISE 2.4 Show that a state p is pure if and only if tr p? = 1.
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We classify mixed states into three classes, similar to the classification of
pure states into separable states and entangled states. We use a bipartite
system in the definition, but generalization to multipartitle systems should
be obvious.

DEFINITION 2.1 A state p is called uncorrelated if it is written as

p=p1& pa. (2.40)
It is called separable if it is written in the form
p= Zpipu @ p2,is (2.41)

2

where 0 < p; < 1and ), p; = 1. It is called inseparable if p does not admit
the decompostion (2.41),

It is important to realize that only inseparable states have quantum cor-
relations analogous to that of an entangled pure state. However, it does not
necessarily imply separable states have no non-classical correlation. It was
pointed out that useful non-classical correlation exists in the subset of sepa-
rable states [12].

In the next subsection, we discuss how to find whether a given bipartite
density matrix is separable or inseparable.

2.4.1 Negativity

Let p be a bipartite state and define the partial transpose pP' of p with
respect to the second Hilbert space as

Pijkl = Pil,kj» (2.42)

where
pijh = ({e1,i] @ (e2,5]) p (le1r) ® lea)).

Here {|e1,k)} is the basis of the first system, while {|e2 1)} is the basis of the
second system. Suppose p takes a separable form (2.41). Then the partial
transpose yields

PP = pipri @ ph . (2.43)

K3

Note here that p’ for any density matrix p is again a density matrix since
it is still a positive semi-definite Hermitian with unit trace. Therefore the
partial transposed density matrix (2.43) is another density matrix. It was
conjectured by Peres [6] and subsequently proved by the Hordecki family [14]
that positivity of the partially transposed density matrix is a necessary and
sufficient condition for p to be separable in the cases of C? ® C? systems and
C? ® C? systems. Conversely, if the partial transpose of p of these systems is
not a density matrix, then p is inseparable. Instead of giving the proof, we
look at the following example.
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EXAMPLE 2.5 Let us consider the Werner state

220 0 0
0 42 _2 o
pP = 0 _4£ ﬁ 0 ) (244)
2 4
0 0 0 2

where 0 < p < 1. Here the basis vectors are arranged in the order

|61.,1>|62,1>, |€1,1>|€2,2>7 |61,2>|62.,1>, |€1,2>|€2,2>-

Partial transpose of p yields

500 -4
[ 0 5E 00
P27 o 0 2o

1—

-5 0 0 =

Note that we need to consider off-diagonal matrix elements only when we
partically transpose the elements. We have, for example,

p1221 = ((e1,1] ® (e2.2]) p (Je12) ® lea 1))
— ((e11] ® (e2.1]) p (le1,2) ® |e2,2)) = piy 9.

For pP! to be a physically acceptable state, it must have non-negative eigen-
values. The characteristic equation of pP* is

D(N) = det(pPt — \I) = </\ - %)3 </\ 1 _431’) =0.

There are threefold degenerate eigenvalues A = (1+p)/4 and a nondegenerate
eigenvalue A = (1 — 3p)/4. This shows that pP' is an unphysical state for
1/3 < p < 1. If this is the case, p is inseparable.

From the above observation, inseparable states are characterized by non-
vanishing negativity defined as

SN =1
v DAL -
Note that negativity vanishes if and only if all the eigenvalues of pP' are
nonnegative.
Negativity is one of the so-called entanglement monotones [15], which also
include concurrence, entanglement of formation and entropy of entanglement.

EXAMPLE 2.6 It was mentioned above that vanishing negativity is equiv-
alent with separability only for C? ® C? systems and C? ® C? systems. A
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counter example in a C2 ® C* system has been given in Horodecki [16]. Let

us consider

b000
0b00
00b0
000b

0000
b000
0b00O

00b0

+ © O O O

—
=

o Ow‘

b0
0b
00
00
00
b0
0b

V=8 )

0
0
b
0

JiTF

—-
w‘-{— (en] Om
o

which is known to be inseparable. The partial transposed matrix with respect
to the second system is

5000 0 00 0
0600 b 00 0
0060 0 b0 0
1 |ooos 0 05 o
P =1 0b00 L oo E (247)
0060 0 b0 0
0006 0 0b 0
+b

0000200 !

M‘

The eigenvalues of pP' are
b 2b 2b
"Th4+17Tb+17Th+1

1+ 1452 + 9b — /98b% — 7003 + 23b% + 12b+ 1
2 (4902 +14b+ 1) ’

0,0,0

1+ 1452 + 9b + /98b% — 7003 + 23b2 + 12b + 1
2 (4902 +14b+ 1)

It can be shown that the seventh eigenvalue takes the maximum value (25 —
2¢/10)/130 at b = (47 — 104/10)/31 and the minimum value 0 at b = 0,
and hence all the eigenvalues are non-negative for 0 < b < 1 in spite of
inseparability of p.

EXERCISE 2.5 Verify that

1+
HERE
I 31%;) 0 0<p<1) (2.48)
1+
5 0 0 FF

is a density matrix. Show that the negativity does not vanish for p > 1/3.
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EXERCISE 2.6 Verify that

g0 o
0 i=r 1=p g

p=lpiZahy| Ospsy (2.49)
00

is a density matrix. Show that the negativity vanishes only for p = 1/2.

2.4.2 Partial Trace and Purification

Let H = H1 ®Hz be a Hilbert space of a bipartite system made of components
1 and 2 and let A be an arbitrary operator acting on H. The partial trace
of A over Hs is an operator acting on H; defined as

Ay =tryA=) (I® (k)A(I @ |k)). (2.50)
k

Let p = |¢)(¢| € S(H) be a density matrix of a pure state |¢)). Suppose
we are interested only in the first system and have no access to the second
system. Then the partial trace allows us to “forget” about the second system.
In other words, the partial trace quantifies our ignorance of the second sytem.

To be more concrete, let us consider a pure state of a two-dimensional
system

1
) = E(Ieﬁleﬁ + lez)lez)),

where {|e;)} is an orthonormal basis. The corresponding density matrix is

1001
~1{0000
P=3 (0000 |"

1001

where the basis vectors are ordered as {|e1)|e1), |e1)|ez2), |ea)|e1), |ea)|e2)}. The
partial trace of p is

p=trp= S (o tehotoled =3 (o1). (5D

. 2
1=1,2

Note that a pure state |1) is mapped to a maximally mixed state p;.
Observe that
tr (prd) =tr(p(A®I)) (2.52)

for an observable A acting on the first Hilbert space. The expectation value
of A under that state p is equally obtained by using p;.
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EXERCISE 2.7 Let

/—ie €2) — |€2)|€
[9) = 5 (lerdlea) = fea)ler)).

Find the corresponding density matrix. Then partial-trace it over the first
Hilbert space to find a density matrix of the second system.

We have seen above that the partial trace of a pure state density matrix of
a bipartite system over one of the constituent Hilbert spaces yields a mixed
state. How about the converse? Given a mixed state density matrix, is
it always possible to find a pure state density matrix whose partial trace
over the extra Hilbert space yields the given density matrix? The answer
is yes and the process to find the pure state is called the purification. Let
p1 = >k Pk|¥k) (i be a general density matrix of a system 1 with the Hilbert
space Hi. Now let us introduce the second Hilbert space Hs whose dimension
is the same as that of H;. Then formally introduce a normalized vector

W) =" VDrlve) @ o), (2.53)
k

where {|¢r)} is an orthonormal basis of Hy. We find

o UN(T| =Y (I ® (i) [ VBRI 65) (rl(del] (T © |3))

i3,k
= lvr) (el = pr. (2.54)
k
Thus it is always possible to purify a mixed state by tensoring an extra Hilbert
space of the same dimension as that of the original Hilbert space. It is easy

to see, by construction, that purification is far from unique. In fact, there are
an infinite number of purifications of a given mixed state density matrix; see

Exercise 2.9.
_1(10
Pr=%3\o3

be a density matrix with a basis {|¢;)}. Find a purification of p;.

EXERCISE 2.8 Let

EXERCISE 2.9 Let
©) = VPrlvr) © ¢w)
P

be a purification of p1 = >, pr|vr) (¥r| € S(H). Show that

U = > V/Prlvw) @ Uldy)
K

is another purification of p;, where U is an arbitrary unitary matrix in
U(dimH).



Framework of Quantum Mechanics 47

2.4.3 Fidelity

It often happens that one has to compare two density matrices and tell how
much they are close to each other. An experimentalist, for example, conducts
an experiment and then wants to compare the resulting quantum state with
the theoretical prediction. A good measure for this purpose is fidelity, which
we now define [17].

DEFINITION 2.2 Let p; and p2 be two density matrices belonging to the
same state space S(H). Then the fidelity is defined by

F(p1,p2) = tr < \/0102\/Pl> ) (2.55)
where ,/p1 is chosen such that all the squre-roots of the eivenvalues are
positive-semidefinite.

A few comments are in order.

e Let p1 = Y, pilpi)(pi| be the spectral decomposition of p;. Then the
requirement in the definition claims that \/p1 = Y. \/pi|pi) (pil-

e F(p,p) =1 since

F(p,p) = tr (W) =trp=1.

e I is non-negative by definition and F(p1, p2) < 1 for p1 # pa. See [17]
for the proof.

EXAMPLE 2.7 Let p1 = |[1){(¢1] and pa = |w2){th2]. We note (/p; =
[1i)(1i| = p; by definition. Then the fidelity for them is

F(p1,p2) = trv/|to1) (W1 |[1h2) (P ][t1) (1
= [(P1[2)[tr [P01) (1] = [(P1[1h2)]-

Let [p1,p2] = 0. Then they are simultaneously diagonalizable. Let p; =
> pili)(t] and pa = >, ¢;]i)(i| be their spectral decompositions, where {|i)}
is the set of simultaneous eigenvectors, which is assumed to be an orthnormal
set. Then the fidelity is

F(p1,pa) = tr [ \/Dipwg;li) (il) (1) (k| = Z\/pyqy

ijk

EXERCISE 2.10 Let U be a unitary operator acting on p; and ps. Show
that
FUp U, UpaUT) = F(p1, po). (2.56)
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EXERCISE 2.11 Let

1000 1001
10000 10000
Pr=510000 | ”~3|0000
0001 1001

Find the fidelity F(p1, p2).

Now we are ready to proceed to the world of quantum information and
quantum computation. Variations on the themes introduced here and in the
previous chapter will appear repeatedly in the following chapters.

References

[1] P. A. M. Dirac, Principles of Quantum Mechanics (4th ed.), Clarendon
Press (1981).

[2] L. I Shiff, Quantum Mechanics (3rd ed.), McGraw-Hill (1968).
[3] A. Messiah, Quantum Mechanics, Dover (2000).

[4] J.J. Sakurai, Modern Quantum Mechanics (2nd Edition), Addison Wes-
ley, Boston (1994).

[5] L. E. Ballentine, Quantum Mechanics, World Scientific, Singapore
(1998).

| A. Peres, Quantum Theory: Concepts and Methods, Springer (2006).
] E. H. Kennard, Z. Phys. 44, 326 (1927).

| H. P. Robertson, Phys. Rev. 34 163, (1929).

| R. Horodecki et al., eprint, quant-ph/0702225 (2007).

] A. Acin et al., Phys. Rev. Lett. 85, 1560 (2000).

] A. Acin et al., Phys. Rev. Lett. 87, 040401 (2001).

]

C. H. Bennett et al., Phys. Rev. A 59, 1070 (1999) and D. P. DiVincenzo,
D. W. Leung and B. M. Terhal, IEEE Trans. Info. Theory 48, 580
(2002). See also A. SaiToh, R. Rahimi and M. Nakahara, e-print quant-
ph/0703133.

[13] A. Peres, Phys. Rev. Lett. 77, 1413 (1996).
[14] M. Horodecki et al., Phys. Lett. A 223, 1 (1996).
[15] G. Vidal, J. Mod. Opt. 47, 355 (2000).



Framework of Quantum Mechanics

[16] P. Horodecki, Phys. Lett. A 232, 333 (1997).
[17] R. Jozsa, J. Mod. Opt. 41, 2315 (1994).

49






3

Qubits and Quantum Key Distribution

3.1 Qubits

A (Boolean) bit assumes two distinct values, 0 and 1. Bits constitute the

building blocks of the classical information theory founded by C. Shannon.

Quantum information theory, on the other hand, is based on qubits.
General references for this chapter are [1] and [2].

3.1.1 One Qubit

A qubit is a (unit) vector in the vector space C2, whose basis vectors are

denoted as
10) = (é) and [1) = ((1)) (3.1)

What these vectors physically mean depends on the physical realization em-
ployed for quantum-information processing.

e In some cases, |0) stands for a vertically polarized photon | [), while
|1) represents a horizontally polarized photon | <). Alternatively they
might correspond to photons polarized in different directions. For ex-
ample, |0) may represent a polarization state

|\ SUD A+,

S\

while |1) represents a state
8 = =D ==
= — — | >
V2

Note that if | [) (] <)) corresponds to an eigenstate of o, with the eigen-
value +1 (—1), respectively, then | ) (|~.)) corresponds to an eigenstate
of o, with the eigenvalue +1 (—1), respectively.

Similarly, the states

== +il <), IU‘—TII—ZI

lo

7

o1
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correspond to the eigenstates of o, with the eigenvalues £1 and repre-
sent circularly polarized photons.

e They may represent spin states of an electron, |0) = | 7) and |1) =
| 1). Electrons are replaced by nuclei with spin 1/2 in NMR quantum
computing.

e Truncated two states from many levels may also be employed as a qubit.
Take the ground state and the first excited state of ionic energy levels
or atomic energy levels, for example. We may assign |0) to the ground
state and |1) to the first excited state.

In any case, we have to fix a set of basis vectors when we carry out quantum
information processing. All the physics should be described with respect to
this basis. In the following, the basis is written in an abstract form as {|0), |1)},
unless otherwise stated.

A remark is in order. The third example of a qubit above suggests that a
quantum system with more than two states may be employed for information
storage and information processing. If a quantum system admits three differ-
ent states, it is called a qutrit, while if it takes d different states, it is called a
qudit. A spin S particle, for example, takes d = 25+ 1 spin states and works
as a qudit. The significance of qutrits and qudits in information processing is
still to be explored.

It is convenient to assume the vector |0) corresponds to the classical value
0, while |1) to 1 in quantum computation. Moreover it is possible for a qubit
to be in a superposition state:

|¥) = al0) + b|1) with a,b € C, |a*> + [b]* = 1. (3.2)

The fundamental requirement of quantum mechanics is that if we make mea-
surement on |1) to see whether it is in |0) or |1), the outcome will be 0 (1) with
the probability |a|? (|b|?), and the state immediately after the measurement
is 0) (1))

Although a qubit may take infinitely many different states, it should be kept
in mind that we can extract from it as the same amount of information as that
of a classical bit. Information can be extracted only through measurements.
When we make measurement on a qubit, the state vector “collapses” to the
eigenvector that corresponds to the eigenvalue observed. Suppose that a spin
is in the state a|0) + b|1). If we observe that the z-component of the spin
is +1/2, the system immediately after the measurement is definitely in the
state |0). This happens with probability (4]0)(0]¢)) = |al?>. The outcome
of a measurement on a qubit is always one of the eigenvalues, which we call
abstractly 0 and 1, just like for a classical bit. We are tempted to think
that by making measurements of a large number of copies of this system, we
may be able to determine the coefficients a and b (or, at least, |a| and |b]) of
the wavefunction. But this is not the case due to the “no-cloning theorem”
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proved later. It is impossible to duplicate an unknown quantum system with
a unitary transformation.

3.1.2 Bloch Sphere

It is useful, for many purposes, to express a state of a single qubit graphically.
Let us parameterize a one-qubit state ) with 6 and ¢ as

[1(6, @)) = cos g|0> + €i? sing|1>. (3.3)

We are not interested in the overall phase, and the phase of |¢) is fixed in
such a way that the coefficient of |0) is real. Now we show that |¢(0, ¢)) is
an eigenstate of n(6, ¢) - o with the eigenvalue +1. Here o = (04,0,,0,) and
n(0, ¢) is a real unit vector called the Bloch vector with components

(0, ¢) = (sin @ cos ¢, sin fsin ¢, cos H)*.

In fact, a straightforward calculation shows that
cosf sinfe cos ¢
N . = . . 2
(0, 9) - o|¥(0, 9)) (sin@e“z’ —cos ) (e“i’ sin%)
_ cos & cosf + sin & sin @
~\ e (cos &sinf — cosfsin §)

0
= (520 ) = wio.on.

It is therefore natural to assign a unit vector n(6, ¢) to a state vector |1(6, ¢)).
Namely, a state [1)(6, ¢)) is expressed as a unit vector 1.(8, ¢) on the surface of
the unit sphere, called the Bloch sphere. This correspondence is one-to-one
if the ranges of # and ¢ are restricted to 0 < 6 < 7 and 0 < ¢ < 27.

EXERCISE 3.1 Let |¢(6, ¢)) be the state given by Eq. (3.3). Show that

(W(0, 9)|al(d, ) =n(0, ), (3.4)
where 7 is the unit vector defined above.

It is possible to express a density matrix p of a qubit using a unit ball this
time. Since p is a positive semi-definite Hermitian matrix with unit trace, its
most general form is

1
p:§ I—l—‘z w;o; |, (3.5)
1=x,Y,z

where u; are components of a real vector w with |u| < 1. The reality fol-
lows from the Hermiticity requirement, and Trp = 1 is easy to check. The
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eigenvalues of p are

A+=%(1+\/M),A_=%(1—\/M) (3.6)

and therefore non-negative. In case |u| = 1, the eigenvalue A_ vanishes and
rank p = 1. Therefore the surface of the unit ball corresponds to pure states.
The converse is also shown easily. In contrast, all the points w inside a unit
ball correspond to mixed states. The ball is called the Bloch ball, also called
the Bloch sphere in a mathematically less strict sense, and the vector w is
also called the Bloch vector. The normalized vector n of the Bloch sphere is
a special case of u restricted in pure states.

EXERCISE 3.2 Find the density matrix of a pure state (3.3) and write it
in the form of Eq. (3.5).

EXERCISE 3.3 Let p be given by Eq. (3.5). Show that

(o) =tr (po) = u. (3.7)

3.1.3 Multi-Qubit Systems and Entangled States

Let us counsider a group of many (n) qubits next. Such a system behaves
quite differently from a classical one, and this difference gives a distinguishing
aspect to quantum information theory. An n-qubit system is often called a
(quantum) register in the context of quantum computing.

Consider a classical system made of several components. The state of this
system is completely determined by specifying the state of each component.
This is not the case for a quantum system. A quantum system made of
many components is not necessarily described by specifying the state of each
component as we have learned in §2.3.

As an example, let us consider an n-qubit register. Suppose we specify
the state of each qubit separately in analogy with a classical case. Each of
the qubits is then described by a two-dimensional complex vector of the form
a;|0) + b;|1), and we need 2n complex numbers {a;, b; }1<i<n to specify the
state. This corresponds the the tensor product state

(@1]0) 4+ 01]1)) ® (a2|0) + b2|1)) @ ... ® (an|0) + b, |1))

introduced in §2.3. If the system is treated in a fully quantum-mechanical
way, however, we have to include superposition of such tensor product states,
which is not necessarily decomposable into a tensor product form. Such a state
is entangled (see §2.3). A general state vector of the register is represented
as

) = Y Girin i |in) ® in) @ ... @ |in)

i,=0,1
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and lives in a 2"-dimensional complex vector space. Note that 2™ > 2n
for a large number n. The ratio 2"/2n is ~ 6.3 x 10?7 for n = 100 and
~ 5.4 x 10%7 for n = 1000. These astronomical numbers tell us that most
quantum states in a Hilbert space with large n are entangled, i.e., they do not
have classical analogy which tensor product states have. Entangled states that
have no classical counterparts are extremely powerful resources for quantum
computation and quantum communication as we will show later.

Let us consider a system of two qubits for definiteness. The combined
system has a basis {]|00), |01), |10}, |11)}. More generally, a basis for a system
of n qubits may be taken to be {|b,—1bp—2...bo)}, where by,—1,b,—2,...,bo €
{0,1}. Tt is also possible to express the basis in terms of the decimal system.
We write |x), instead of |b,_1b,_2...bo), where x = b, 12"~ ! + b, 92772 +
...+ bg is the decimal expression of the binary number b,,_1b,,—2 ...bg. Thus
the basis for a two-qubit system may be written also as {|0),[1),|2), |3)} with
this decimal notation. Whether the binary system or the decimal system is
employed should be clear from the context. An n-qubit system has 2" =
exp(nIn 2) basis vectors.

The set
1 _ 1
{|o*) = 7§(|00> +1]11)), [®7) = ﬁ(|00> - [11)), )
1 _ 1 )
|oF) = 7§(|01> +110)), |¥7) = 7§(|01> — [10))}

is an orthonormal basis of a two-qubit system and is called the Bell basis.
Each vector is called the Bell state or the Bell vector. Note that all the
Bell states are entangled.

EXERCISE 3.4 The Bell basis is obtained from the binary basis {|00), |01),
|10),|11)} by a unitary transformation. Write down the unitary transforma-
tion explicitly.

Among three-qubit entangled states, the following two states are important
for various reasons and hence deserve special names. The state

1
V2

is called the Greenberger-Horne-Zeilinger state and is often abbreviated
as the GHZ state[3]. Another important three-qubit state is the W state

[4],

|GHZ) = —=(|000) + |111)) (3.9)

1

V3

EXERCISE 3.5 Find the expectation value of o, ® o, measured in each of
the Bell states.

W) (1100) + 010) + [001)). (3.10)
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3.1.4 Measurements

Classical information theory is formulated independently of measurements of
the system under consideration. This is because the readout of the result is al-
ways the same for anyone and at any time, provided that the system processes
the same information. This is completely different in quantum information
processing. Measurement is an essential part of the theory as we see below.

By making a measurement on a system, we project the state vector to one
of the basis vectors that the measurement equipment defines.* Suppse we
have a state vector |¢)) = a|0) 4+ b|1) and measure it to see if it is in the state
|0) or |1). Depending on the system, this means if a spin points up or down
or a photon is polarized horizontally or vertically, for example. The result is
either 0 or 1. In the first case, the state “collapses” to |0) while in the second
case, to |1). We find, after many measurements, the probability of obtaining
outcome 0 (1) is |al? (|b]?).

To be more formal, we construct a measurement operator M, such that
the probability of obtaining the outcome m in the state [¢)) is

p(m) = (| M}, My |), (3.11)
and the state immediately after the measurement is
M,
|m) = [4) . (3.12)
p(m)

In the above example, the measurement operators are nothing but projection
operators; My = |0)(0] and M; = |1)(1]. In fact, we have

p(0) = (| M Mo|tp) = (|0)(0]¢b) = |al?,

and
Molg)  a
= 7-10) ~0),
p(0)  lal
and similarly for the other case M;. It should be noted that a quantum state
is defined up to a phase and hence a/|a| does not play any role. [Remark: See
[2] for the difference between a general measurement operator and a projective
measurement operator.]
Suppose we are given many copies of a particular state |1). If we measure
an observable M in each of the copies, the expectation value of M is given,
in terms of the projection operators, by

E(M) = mp(m) =Y m{i|Pnl¢)

= (Y mPul|y) = (G| M|v), (3.13)

*This is called a projective measurement as was noted in Chapter 2. We will be concerned
only with projective measurements, unless stated otherwise.
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where use has been made of the spectral decomposition M = > mP,,. The
standard deviation is given by

A(M) = V(M — (M))?) = \/(M?) — (M)2. (3.14)

Let us analyze measurements in a two-qubit system in some detail. An
arbitrary state is written as

) = al00) + BlOL) + ¢[10) + d[11), [af® + B[ + |ef? + |d]* = 1,

where a,b,c,d € C. We make a measurement of the first qubit with respect
to the basis {|0),|1)}. To this end, we rewrite the state as

al00) + b|01) + ¢|10) + d|11)

=10) @ (al0) + b[1)) + |1) ® (c[0) + d[1))

a b c d
= u|0 —10)+—|1 1 —-10) + -1
o) (20)+ 21)) + ol o (£10)+ Iy )
where u = /|a|]? 4+ [b]? and v = +/|¢|? + |d|?>. The measurement operators

acting on the first qubit are
My =100 I, M =|1)1|®I. (3.15)

Note that we need to specify ®I explicitly since we are working in a two-qubit
Hilbert space C*. Upon a measurement of the first qubit, we obtain 0 with
the probability

(Y| Molv) = u® = |a|* + [b]?,

projecting the state to

Moly) _ a b
L= e (S0 + 7).

while we obtain |1) with the probability v? = |c|? + |d|?, projecting the state
d

to |1) ® <E|O> + —|1>>. Note that the state after the measurement has unit
v v

norm in both cases. The measurement of the second qubit can be carried out
similarly. Measurements on an n-qubit system can be carried out by repeating
one-qubit measurement n times.

In the two-qubit example above, the Hilbert space for the system is sepa-
rated into a direct sum of Hy, where the first qubit is in the state |0), and H,
where it is in |1): H = Ho @ H1. An arbitrary two-qubit state |¢)) is uniquely
decomposed into two vectors, each of which belongs to Hy or H; as

(10)0[ @ Dl¢) € Ho, (1)1 @ DY) € Ha,

where normalization has been ignored. More generally, an observation of k
qubits in an n-qubit system yields 2* possible outcomes m; (1 < i < 2F).
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Accordingly, the 2"-dimensional Hilbert space of the system is separated into
the direct sum of mutually orthogonal subspaces Hon,, Himy s - - - s Him,, as H =
Hony EHomy .. .@Hmzk . When the result of the observation of the k qubits is
m;, the state after the observation is projected to the subspace H,,,. It should
be clear from the construction that each subspace H,,, has dimension 27 /2% =
2"~k The measurement device projects the state before the observation

|1/}> = Cm1|1/}m1> + Cm2|¢m2> +...t Cm |1/)m2k>a (|1/}m1> € Hmz)
into one of the subspaces H,,, randomly with the probability |c;,, |
Measurement gives an alternative viewpoint to entangled states. A state
is not entangled if a measurement of a qubit does not affect the state of the
other qubits. Suppose the first qubit of the state

1
V2

was measured to be 0 (1). Then the outcome of the measurement of the
second qubit is definitely 0 (1). Therefore the measurement of the first qubit
affects the outcome of the measurement on the second qubit, which shows
that the initial state is an entangled state. In other words, there exists a
strong correlation between the two qubits. This correlation may be used for
inlformation processing as will be shown later. In contrast with this, the state
V2

(100) +[11))

(|00) + |01)) is not entangled since it can be written as

1 1
—(|00) 4+ 101)) = |0) ® —=(]|0) + |1)).
ﬁ(l ) +101)) = |0) \/5(|> 1))
Irrespectively of the measurement of the second qubit, the measurement of
the first qubit definitely yields 0. Moreover, the second qubit is measured to
be 0 (1) with the probability 1/2, independently of whether the first qubit is
measured or not.

EXERCISE 3.6 In many quantum algorithms, the result of an action of a
function f on x is encoded into the form

Up : N [2)]0) = N Y [a)lf (@),

where |z) stands for the tensor product state |b,_1b,_2...bp) with z =
bp_12" "1 +b,_92"2 4+ ... by and N is the normalization constant. The first
register is for the input x, while the second one is for the corresponding output
f(z). Note that Uy acts on all possible states simultaneously.

Let f(z) = a® mod N, where a and N are coprime, and consider the state

1 511 1 511 .
o [ﬁ > |x>|o>] = /57 2 oMa” mod M)
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FIGURE 3.1

EPR pair produced by a source in the middle. One particle is sent to Alice
and the other to Bob.

with ¢ = 6 and N = 91. Suppose the measurement of the first register results
in (1) z =11, (2) x = 23 and (3) = 35. What is the state immediately after
each measurement?

3.1.5 Einstein-Podolsky-Rosen (EPR) Paradox

Einstein, Podolsky and Rosen (EPR) proposed a Gedanken experiment which,
at first glance, shows that an entangled state violates an axiom of the special
theory of relativity [5]. Suppose a particle source produces the so-called EPR
pair in the state
1
V2

and it sends one particle to Alice and the other to Bob, who may be separated
far away (see Fig. 3.1). Alice measures her particle and obtains her reading
|0) or |1). Depending on her reading, the EPR state is projected to |01) (|10)),
and Bob will definitely observe |1) (]0)) in his measurement. The change of
the state

=) (l01) — [10))

1
V2

takes place instantaneously even when they are separated by a large distance.
It seems that Alice’s measurement propageted to Bob’s qubit instantaneously,
and it violates the special theory of relativity. This is the very point EPR
proposed to defeat quantum mechanics.

Note, however, that nothing has propagated from Alice to Bob and wvice
versa, upon Alice’s measurement. Clearly no energy has propagated. What
about information? It is impossible for Alice to control her and hence Bob’s
readings. Therefore it is impossible to use EPR pairs to send a sensible
message from Alice to Bob. If they could, the message would be sent in-
stantaneously, which certainly violates the special theory of relativity. If a
large number of EPR pairs are sent to Alice and Bob and they independently

(101) — 10)) — |01) or [10) (3.16)

T Alice and Bob are names frequently used in information theory.
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measure their qubits, they will observe random sequences of 0 and 1. They
notice that their readings are strongly correlated only after they exchange
their sequences by means of classical communication, which can be done at
most with the speed of light.

3.2 Quantum Key Distribution (BB84 Protocol)

A large number of qubits and gate operations on them are involved in most
practical applications of quantum computing. We will postpone these appli-
cations in the subsequent chapters. Is there any practical use of single qubits
then? There is a suprisingly secure way of distributing a cryptographic key
using a sequence of individual qubits [6] called BB84 protocol, which is al-
ready available commercially [7]. Quantum key distribution (QKD) is a
secure way of distributing an encryption and decryption key by making use of
qubits. The sender and the receiver can detect a possible third party eaves-
dropping their communication by comparing the sequence sent with that of
the received one.

One-time pad is an absolutely secure cryptosystem if and only if the key
for encoding and decoding is shared only between the sender and the receiver
and used once for all. Suppose we want to send a message 1100101001 in a
binary form using a key 1001010011, for example. The message is encrypted
by adding the message to the key bitwise modulo 2, which we denote by i @ j.
We have explicitly 060 = 0, 01 =1, 140 =1, 161 = 0. For the above case,
we have the encrypted message 0101111010. For decryption, the receiver is
required only to add the same key bitwise again since (i67)®j = i. Decryption
of an encrypted message is impossible without the key since there are 2"
possible keys for an n-bit string and many of them yield sensible messages.
This cryptosystem is not secure any more if the same key is used many times.

A key must be sent from the sender to the receiver, or in the opposite
direction, each time this cryptosystem is used. If the key is sent through a
classical communication channel, there always exists a possibility of eaves-
dropping. However, this problem is completely solved if a quantum channel is
employed as we show now. Suppose Alice wants to send Bob a one-time pad
key to encode and decode her secret message. They can communicate with
each other using a bidirectional classical channel. There also exists a quan-
tum channel that is unidirectional from Alice to Bob. See Fig. 3.2. There
is a possibility that their communication is being eavesdropped by a third
party, which we call Eve. Alice sends Bob many qubits, one by one, and Bob
measures the states of each of the qubits he receives. To make our discussion
concrete, we assume qubits are made of polarized photons.

Alice employs two coding systems when she sends photons to Bob. The
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Quantum Channel
(Unidirectional)

Classical Channel
(Bidirectional)

- === --
et - - - -

FIGURE 3.2
Quantum key distribution protocol BB84.

coding systems are

coding system (1) 0—11), 1|,
coding system (2) 0—|N), 1 |2).

They are chosen at random for each photon. Bob also chooses coding systems
(1) and (2) randomly, independently of Alice, to measure the polarization of
each photon Alice sends. Suppose 4N photons are sent from Alice to Bob.
After all the photons have been sent, Alice and Bob exchange the sequence of
the coding systems they employed using the classical communication channel
(so this is not 100 % secure), without disclosing the bits (0 or 1) Alice sent and
Bob received. They will know, as a result, for which photons they employed
the same coding systems. They discard all the cases for which they employed
different coding systems since the sent bits and the received bits agree only
with probability 1/2 in these cases. Now ~ 2N photons, on average, should
be correctly transmitted and they share ~2N bits of binary numbers in their
hands. To make sure that no one eavesdrops their quantum channel, they
choose N cases randomly out of 2N cases with the same coding systems
employed and exchange N bits (0 or 1) associated with these N cases over
the classical channel. If there are no eavesdroppers operating, they should
have the same bits for all the N cases. After verifying that they are free from
eavesdroppers, they discard these N cases (since the classical channel may be
eavesdropped) and use the remaining N bits to generate a one-time pad key.

Suppose Eve is in action. After eavesdropping the photons, she immedi-
ately sends Bob her results in order to hide her presence. Note that Bob
will immediately notice the presence of an eavesdropper from missing pho-
tons unless Eve sends some photons to Bob. Eve’s coding system is different
from Alice’s also with probability 1/2, and she sends Bob the results of her
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measurement with the same coding system as she used to eavesdrop. Then
there exist cases in which the photon Alice sends disagrees with the one Bob
receives, even when Alice and Bob employ the same coding system. This
happens with probability 1/4 as is shown now. Suppose both Alice and Bob
happen to employ the coding system (1) and Alice sends Bob 0. Eve will use
the coding system (1) with probability 1/2, in which case Eve measures 0 and
sends Bob | ). Bob, also employing the coding system (1), will obtain 0 with
probability 1. If, in contrast, Eve employs coding system (2), which happens
with probability 1/2, then Eve measures 0 or 1 with probability 1/2 for each
photon and sends Bob her result with coding system (2). Then Bob, with
coding system (1), will obtain 0 or 1 both with probability 1/2. In the end of
the day, Bob obtains 0 with probability 3/4 and 1 with probability 1/4, even
though Alice and Bob employ the same coding system. Suppose 4N photons
are sent from Alice to Bob, as before. They find their codings agree in 2N
cases and discard the remaining cases. Comparing N cases to check if Eve is
in action, they find approximately N/4 bits disagree, from which they detect
there is an eavesdropper in the quantum channel. They may try different
quantum channels until they find one whose security is verified.

EXAMPLE 3.1 Suppose the sent and received sequences are

Alicesends 0 1 0 0 1 1 0 1 0 O 1 O ...

Alice’s code (1) (2) (1) (2) (2) (1) (2) (1) (2) (2) (1) (1) .. (3.17)
Bob’s code (1) (2) (2) (1) (2) (2) (1) (2) (1) (2) (2) (1) ... '
Bobreads 0 1 ? 7?2 1 7?2 7?2 72 7 0 7?7 0.

where 7 stands for 0 or 1. Alice and Bob keep the sequence 0,1,1,0,0,... to
check the security of the channel and to generate a key.

Suppose Eve eavesdrops their communication. Then their readings may, for
example, be

Alicesends 0 1 0 0 1 1 0 1 0 O 1 O ...

Alice’s code (1) (2) (1) (2) (2) (1) (2) (1) (2) (2) (1) (1) ..

Bve’s code (1) (2) (1) (2) ()2 (D) (D Q) (D @)oo 5
Evereads 0 1 0 O 7?7 ? ? 2?2 72 0 1 7 ... )
Bob’s code (1) (2) (2) (1) (2) (2) (1) (2) (1) (2) (2) (1) ...

Bobreads 0 1 ? ? 2?2 ? 7?7 7 7 0 7 2?7 ...

The 5th and 12th bits Bob obtains may not be the correct ones, even though
Alice and Bob employ the same coding system.

Other QKD protols are E91 protocol [8] and B92 protocol [9].
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4

Quantum Gates, Quantum Circuit and
Quantum Computation

4.1 Introduction

Now that we have introduced qubits to store information, it is time to consider
operations acting on them. If they are simple, these operations are called
gates, or more precisely quantum gates, in analogy with those in classical
logic circuits. More complicated quantum circuits are composed of these
simple gates. A collection of quantum circuits for executing a complicated
algorithm, a quantum algorithm, is a part of a quantum computation.

DEFINITION 4.1 (Quantum Computation) A quantum computation
is a collection of the following three elements:

(1) A register or a set of registers,

(2) A unitary matrix U, which is taylored to execute a given quantum al-
gorithm, and

(3) Measurements to extract information we need.

More formally, we say a quantum computation is the set {H,U,{M,}},
where H = C?" is the Hilbert space of an n-qubit register, U € U(2") repre-
sents the quantum algorithm and {M,,} is the set of measurement operators.

The hardware (1) along with equipment to control the qubits is called a
quantum computer.

Suppose the register is set to a fiducial initial state, |¢in) = ]00...0), for
example. A unitary matrix U, is designed to represent an algorithm which
we want to execute. Operation of Uag 0n |9)in) yields the output state [out) =
Ualg|¥in). Information is extracted from |t)ous) by appropriate measurements.

Actual quantum computation processes are very different from those of a
classical counterpart. In a classical computer, we input the data from a key-
board or other input devices and the signal is sent to the I/O port of the
computer, which is then stored in the memory, then fed into the micropro-
cessor, and the result is stored in the memory before it is printed or it is

65
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displayed on the screen. Thus information travels around the circuit. In con-
trast, information in quantum computation is stored in a register, first of all,
and then external fields, such as oscillating magnetic fields, electric fields or
laser beams are applied to produce gate operations on the register. These
external fields are designed so that they produce desired gate operation, i.e.,
unitary matrix acting on a particular set of qubits. Therefore the information
sits in the register and they are updated each time the gate operation acts on
the register.

One of the other distinctions between classical computation and quantum
computation is that the former is based upon digital processing and the latter
upon hybrid (digital + analogue) processing. A qubit may take an arbitrary
superposition of |0) and |1), and hence their coefficients are continuous com-
plex numbers. A gate is also an element of a relevant unitary group, which
contains continuous parameters. An operation such as “rotate a specified
spin around the z-axis by an angle 7” is implemented by applying a partic-
ular pulse of specified amplitude, angle and duration. These parameters are
continuous numbers and always contain errors. These aspects might cause
challenging difficulties in a physical realization of a quantum computer.

Parts of this chapter depend on [1, 2] and [3].

4.2 Quantum Gates

We have so far studied the change of a state upon measurements. When
measurements are not made, the time evolution of a state is described by
the Schrédinger equation. The system preserves the norm of the state vector
during time evolution. Thus the time development is unitary. Let U be
such a time-evolution operator; UUT = UTU = I. We will be free from the
Schrédinger equation in the following and assume there exist unitary matrices
which we need. Physical implementation of these unitary matrices is another
important area of quantum information processing and is a subject of the
second part of this book.

One of the important conclusions derived from the unitarity of gates is that
the computational process is reversible.

4.2.1 Simple Quantum Gates

Examples of quantum gates which transform a one-qubit state are given below.
We call them one-qubit gates in the following. Linearity guarantees that the
action of a gate is completely specified as soon as its action on the basis
{]0), |1)} is given. Let us consider the gate I whose action on the basis
vectors are defined by I : |0) — |0), |1) — |1). The matrix expression of this
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gate is easily found as
10
r=ool+a= (7). (1)

Similarly we introduce X : |0) — [1), |1) — |0), Y : |0) — —|1), |1) — |0),
and Z: |0) — |0), |1) — —|1), whose matrix representations are

X=UMm+maw:Gﬁ>:am (12)
v =0 o= (1) = i, (4.3)
z =0l mwal=(y ) = .4

The transformation I is the trivial (identity) transformation, while X is the
negation (NOT), Z the phase shift and Y = X Z the combination of them. It
is easily verified that these gates are unitary.

The CNOT (controlled-NOT) gate is a two-qubit gate, which plays
quite an important role in quantum computation. The gate flips the sec-
ond qubit (the target qubit) when the first qubit (the control qubit) is
|1), while leaving the second bit unchanged when the first qubit state is |0).
Let {|00), |01),]10),|11)} be a basis for the two-qubit system. In the following,
we use the standard basis vectors with components

100) = (1,0,0,0)", |01) = (0,1,0,0)", |10) = (0,0,1,0)", |11) = (0,0,0,1)".

The action of the CNOT gate, whose matrix expression will be written as
Ucnor, is

Ucnot : |00) = |00), [01) = [01), [10) + [11), |11) = |10).
It has two equivalent expressions

Ucnor = [00)(00[ 4 [01)(01] + [11){10] + [10)(11]

=0)(0|@I+]1)(1| ® X, (4.5)
having a matrix form
1000
0100
Uenor = [ 5501 | (4.6)
0010

The second expression of the RHS in Eq. (4.5) shows that the action of Ucnor
on the target qubit is I when the control qubit is in the state |0), while it is o,
when the control qubit is in |1). Verify that UcnoT is unitary and, moreover,
idempotent, i.e., Udnor = 1.
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Let {|i)} be the basis vectors, where i € {0,1}. The action of CNOT on
the input state |i)|j) is written as |i)|i @ j), where ¢ @ j is an addition mod 2,
that is, 00 =0,001=1,1G0=1and 141 =0.

EXERCISE 4.1 Show that the UsnoT cannot be written as a tensor prod-
uct of two one-qubit gates.

EXERCISE 4.2 Let (a|0) + b|1)) ® |0) be an input state to a CNOT gate.
What is the output state?

It is convenient to introduce graphical representations of quantum gates. A
one-qubit gate whose unitary matrix representation is U is depicted as

input 1 77 |— output

The left horizontal line is the input qubit state, while the right horizontal line
is the output qubit state. Therefore the time flows from the left to the right.
A CNOT gate is expressed as

control bit

target bit

where e denotes the control bit, while € denotes the conditional negation.
There may be many control bits (see CCNOT gate below).
More generally, we consider a controlled-U gate,
=10)(0| ®I+|1)(1] ® U, (4.7

in which the target bit is acted on by a unitary transformation U only when
the control bit is |1). This gate is denoted graphically as

control bit T

target bit — U f—

EXERCISE 4 3 (1) Find the matrix representation of the “upside down”
CNOT gate (a) in the basis {]|00), |01> [10), [11)}

L] lTl
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(2) Find the matrix representation of the circuit (b).
(3) Find the matrix representation of the circuit (¢). Find the action of the
circuit on a tensor product state [¢)1) ® [2).

The CCNOT (Controlled-Controlled-NOT) gate has three inputs, and
the third qubit flips when and only when the first two qubits are both in the
state |1). The explicit form of the CCNOT gate is

Uccnot = (]00)(00] + [01)(01| + [10)(10[) ® I + [11)(11]| ® X. (4.8)

This gate is graphically expressed as

control bit ] ——@——

control bit 2 ——¢——

target bit ——H——

The CCNOT gate is also known as the Toffoli gate.

4.2.2 Walsh-Hadamard Transformation
The Hadamard gate or the Hadamard transformation H is an important

unitary transformation defined by

mVMH%w+m

1
) — ﬁ(|0> — 1)

It is used to generate a superposition state from |0) or |1). The matrix repre-
sentation of H is

(4.9)

1 1 1 11
Ui = —5(10) + )01+ 5500 - = = (1 1 ). @0

A Hadamard gate is depicted as

— H —

There are numerous important applications of the Hadamard transforma-
tion. All possible 2™ states are generated, when Uy is applied on each qubit
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of the state |00...0):

(HeH®...® H)[00...0)
_ 1 1 1

\/§(|O>+|1>)®\/§(|O>+|1>)®"'ﬁ(|0>+|1>)
2" —1
_ \/12_n 3 Ja). (4.11)
x=0

Therefore, we produce a superposition of all the states |z) with 0 <z < 2"—1
simultaneously. This action of H on an n-qubit system is called the Walsh
transformation, or Walsh-Hadamard transformation, and denoted as
W.,.. Note that

Wi =Un, Wpt1=Ug®W,. (4.12)
EXERCISE 4.4 Show that W, is unitary.

EXERCISE 4.5 Show that the two circuits below are equivalent:

—H+P HI—

This exercise shows that the control bit and the target bit in a CNOT gate
are interchangeable by introducing four Hadamard gates.

EXERCISE 4.6 Let us consider the following quantum circuit

a— g

92 s> (4.13)

where ¢ denotes the first qubit, while ¢go denotes the second. What are the
outputs for the inputs |00),]01),]10) and |11)?

4.2.3 SWAP Gate and Fredkin Gate

The SWAP gate acts on a tensor product state as

Uswap ¥, ¥2) = |2,91). (4.14)
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The explict form of Uswap is given by
Uswap = [00)(00] + |01){10] 4 [10)(01] + [11)(11]
1000
0010
=lo100 | (4.15)
0001

Needless to say, it works as a linear operator on a superposition of states. The
SWAP gate is expressed as

l11) |12)

[¥2) [¥1)

Note that the SWAP gate is a special gate which maps an arbitrary tensor
product state to a tensor product state. In contrast, most two-qubit gates
map a tensor product state to an entangled state.

EXERCISE 4.7 Show that the above Uswap is written as
Uswap = (10)(0] @ I + [1)(1] ® X)(I ®[0){(0] + X @ [1)(1])
(|0Y(0] ® I + |1){1| ® X). (4.16)

This shows that the SWAP gate is implemented with three CNOT gates as
given in Exercise 4.3 (3).

The controlled-SWAP gate

is also called the Fredkin gate. It flips the second (middle) and the third
(bottom) qubits when and only when the first (top) qubit is in the state |1).
Its explicit form is

Ukredkin = |0><0| ® Iy + |1><1| ® UswaAp- (4.17)

4.3 Correspondence with Classical Logic Gates

Before we proceed further, it is instructive to show that all the elementary
logic gates, NOT, AND, XOR, OR and NAND, in classical logic circuits can
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be implemented with quantum gates. In this sense, quantum information
processing contains the classical one.

4.3.1 NOT Gate

Let us consider the NOT gate first. It is defined by the following logic
function,
0 =1

DT (4.18)

NOT(z) = —x = {
where —z stands for the negation of z. Under the correspondence 0 «
[0), 1 < |1), we have already seen in Eq. (4.2) that the gate X negates the
basis vectors as

X|z) = |-2) = [NOT(z)), (z=0,1). (4.19)

Now let us measure the output state. We employ the following measurement
operator:
M, =|1)(1]. (4.20)

M; has eigenvalues 0 and 1 with the eigenvectors |0) and |1), respectively.
When the input is |0), the output is |1) and the measurement gives the value
1 with the probability 1. If, on the other hand, the input is |1), the output
is |0) and the measurement yields 1 with probability 0, or in other words, it
yields 0 with probability 1. It should be kept in mind that the operator X
acts on an arbitrary linear combination [¢)) = a|0) + b|1), which is classically
impossible. The output state is then X |¢) = a|1) + b|0).

We show in the following that the CCNOT gate implements all classical
logic gates. The first and the second input qubits are set to |1) to obtain the
NOT gate as

UCCNQT|1,1,;E> = |1,1,ﬁ!E>. (4.21)

4.3.2 XOR Gate

Since a quantum gate has to be reversible, we cannot construct a unitary gate
corresponding to the classcial XOR gate whose function is z,y — z@y (z,y €
{0,1}), where @y is an addition mod 2; 060 =0, 01 =160=1, 141 =0.
Clearly this operation has no inverse. This operation may be made reversible
if we keep the first bit « during the gate operation, namely, if we define

flz,y) = (x, 2 ®y), z,y€{0,1}. (4.22)

We call this function f, also the XOR gate. The quantum gate that does this
operation is nothing but the CNOT gate defined by Eq. (4.5),

Uxor = Ucnot = [0)(0| @ I + [1){(1]| ® X. (4.23)
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Note that the XOR gate may be also obtained from the CCNOT gate.
Suppose the first qubit of the CCNOT gate is fixed to |1). Then it is easy to
verify that

Uccenor|l, 2, y) = |1z, @ y). (4.24)

Thus the CCNOT gate can be used to construct the XOR gate.

4.3.3 AND Gate
The logical AND gate is defined by

1 z=y=1

0 otherwise Y €{0,1}. (4.25)

AND(z,y) :xAy:{

Clearly this operation is not reversible and we have to introduce the same sort
of prescription which we employed in the XOR gate.
Let us define the logic function

f(z,9,0) = (z,y,2 Ay), (4.26)

which we also call AND. Note that we have to keep both = and y for f to be
reversible since z = x A y = 0 implies both x =y =0 and x = 0,y = 1. The
unitary matrix that computes f is
Uanp = (|00)(00] + [01){01] 4 [10)(10[) & I
+11){(11| ® X. (4.27)

It is readily verified that
UAND|‘T7y70> = |:E,y,x/\y>, T,y € {071} (428)

Observe that the third qubit in the RHS is 1 if and only if x =y =1 and 0
otherwise. Thus the CCNOT gate may be employed to implement the AND
gate. It follows from Eq. (4.28) that the AND gate is denoted graphically as

|) |)
) ly)
0) lx Ay)

4.3.4 OR Gate
The OR gate represents the logical function

0 z=y=0

OR(z,y) =xVy= { 1 otherwise ©Y € {0,1}. (4.29)
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This function OR is not reversible either and special care must be taken.
Let us define

f(z,y,0) = (-z,~wy,zVy), z,y€{0,1}, (4.30)

which we also call OR. Although the first and the second bits are negated, it
is not essential in the construction of the OR gate. These negations appear
due to our construction of the OR gate based on the de Morgan theorem

xVy=-(-zA-y). (4.31)

They may be removed by adding extra NOT gates if necessary.
Let |z,y,0) be the input state. The unitary matrix that represents f is

Uor = [00){11] ® X +]01)(10| ® X + |10)(01| ® X + [11){00| @ I.  (4.32)
EXERCISE 4.8 Verify that the above matrix Upogr indeed satisfies
UOR|ZC,y,O> = |jx7ﬁy7x\/y>7 T,y € {071} (433)

Now it is obvious why negations in the first and the second qubits appear in
the OR gate. Since we have already constructed the NOT gate and AND gate,
we take advantage of this in the construction of the OR gate. The equality
(4.31) leads us to the following diagram:

PO o R B
) — x |- =)
0) i X i Xz Vy)

Accordingly, the first and the second qubits are negated. The unitary matrix
obtained from this diagram is

Uor = (I®I®X)
-(]00)(00] @ I + [01){(01] ® I +]10)(10| ® I + |11){11] ® X)
(XeX®I). (4.34)
The matrix products are readily evaluated to yield
Uor = (]00)(00] ® X 4 |01)(01| ® X + |10)(10] ® X + [11)(11| ® I)
(XX®I)
=100)(11| ® X + |01){10| ® X +]10)(01| ® X + |11){(00| ® I,

which verifies Eq. (4.32).
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Observe that the OR gate is implemented with the X and the CCNOT gates
and, moreover, the X gate is obtained from the CCNOT gate by putting the
first and the second bits to |1).

If we want to have a gate Vor|z,y,0) = |z,y,x V y), we may multiply
X ® X ®1I to Upr from the left so that Vor = (X ® X ® I)Upr.

EXERCISE 4.9 Show that the NAND gate can be obtained from the CC-
NOT gate. Here NAND is defined by the function

0 z=y=1

1 otherwise DY €101} (4.35)

NAND(z,y) = ~(z Ay) = {

In summary, we have shown that all the classical logic gates, NOT, AND,
OR, XOR and NAND gates, may be obtained from the CCNOT gate. Thus
all the classical computation may be carried out with a quantum computor.
Note, however, that these gates belong to a tiny subset of the set of unitary
matrices.

In the next section, we show that copying unknown information is impos-
sible in quantum computing. However, it is also shown that this does not
restrict the superiority of quantum computing over the classical counterpart.

4.4 No-Cloning Theorem

We copy classical data almost every day. In fact, this is amongst the most
common functions with digital media. (Of course we should not copy media
that are copyright protected.) This cannot be done in quantum information
theory! We cannot clone an unknown quantum state with unitary operations.

THEOREM 4.1 (Wootters and Zurek [4], Dieks [5]) An unknown quantum
system cannot be cloned by unitary transformations.

Proof. Suppose there would exist a unitary transformation U that makes a
clone of a quantum system. Namely, suppose U acts, for any state |¢), as

U : |0) — |pp). (4.36)

Let |p) and |¢) be two states that are linearly independent. Then we should
have Ulp0) = |pp) and U|¢0) = |p¢@) by definition. Then the action of U on

) = %(I@ 1 16)) yields

UL0) = S=(U10) + U1o0) = —=(lpe) + [66)).
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If U were a cloning transformation, we must also have

UN0) = ) = 5 (90 + od) + [9) + [66)),

which contradicts the previous result. Therefore, there does not exist a unitary
cloning transformation. 1

Clearly, there is no way to clone a state by measurements. A measurement
is probabilistic and non-unitary, and it gets rid of the component of the state
which is in the orthogonal complement of the observed subspace.

EXERCISE 4.10 Suppose U is a cloning unitary transformation, such that

W) = U)|0) = |¥)[4)
@) = Ul$)[0) = |9)[#)

for arbitrary |¢) and |¢).
(1) Write down (¥|®) in all possible ways.
(2) Show, by inspecting the result of (1), that such U does not exist.

It was mentioned in the end of the previous section that a quantum com-
puter can simulate arbitrary classical logic circuits. Then how about copying
data? It should be kept in mind that the no-cloning theorem states that we
cannot copy an arbitrary state |¢)) = a|0) + b|1). The loophole is that the
theorem does not apply if the states to be cloned are limited to |0) and |1).
For these cases, the copying operator U should work as

U :]00) — |00), :]10)— |11).

We can assign arbitrary action of U on a state whose second input is |1) since
this case does not happen. What we have to keep in our mind is only that U
be unitary. An example of such U is

U = (|00){00] + |11)(10]) + (]J01)(01] + |10)(11|), (4.37)

where the first set of operators renders U the cloning operator and the second
set is added just to make U unitary. We immediately notice that U is nothing
but the CNOT gate introduced in §4.2.

Therefore, if the data under consideration are limited within [0) and |1),
we can copy the qubit states even in a quantum computer. This fact is used
to construct quantum error correcting codes.

4.5 Dense Coding and Quantum Teleportation

Now we are ready to introduce two simple applications of qubits and quantum
gates: dense coding and quantum teleportation. The Bell state has
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been delivered beforehand, and one of the qubits carries two classical bits of
information in the dense coding system. In the quantum teleportation, on
the other hand, two classical bits are used to transmit a single qubit. At first
glance, the quantum teleportation may seem to be in contradiction with the
no-cloning theorem. However, this is not the case since the original state is
destroyed.

Entanglement is the keyword in both applications. The setting is common
for both cases. Suppose Alice wants to send Bob information. Each of them
has been sent each of the qubits of the Bell state

1

[®*) = —=(00) + [11)) (4.38)

Sl

2

in advance. Suppose Alice has the first qubit and Bob has the second.

4.5.1 Dense Coding

Classical ; i
assica Alice Ouantum Bob Classical

input (2 bits) output (2 bits)
. Channel
—_ | Encoder \—» Decoder >
FIGURE 4.1

Communication from Alice to Bob using dense coding. Each qubit of the Bell
state |®) has been distributed to each of them beforehand. Then two bits
of classical information can be transmitted by sending a single qubit through
the quantum channel.

Alice: Alice wants to send Bob a binary number z € {00,01,10,11}. She
picks up one of {I, XY, Z} according to x she has chosen and applies the
transformation on her qubit (the first qubit of the Bell state). Applying the
transformation to only her qubit means she applies an identity transformation
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to the second qubit which Bob keeps with him. This results in

x  transformation U  state after transformation

0 =00 I®1 o) = %(|00>+|11>)
1=01 Xol 1) = 7(|10> +101)) (4.39)
2=10 YolI |tha) = 7(|10> 01))
3=11 Zel [¥3) = %(|00> —[11)).

Alice sends Bob her qubit after the transformation given above is applied.
Note that the set of four states in the rightmost column is nothing but the
four Bell basis vectors.

Bob: Bob applies CNOT to the entangled pair in which the first qubit, the
received qubit, is the control bit, while the second one, which Bob keeps, is
the target bit. This results in a tensor-product state:

Received state Output of CNOT  1st qubit 2nd qubit

o) %<|oo>+|1o>> 7<|o>+|1>> 0)
1) 7<|11>+|01>> 7<|1>+|o>> ) (4.40)
) 7<|11> 01)) 7<|1> ) )
w00 =[10) —=(0) =) [0

Note that Bob can measure the first and second qubits independently since
the output is a tensor-product state. The number x is either 00 or 11 if the
measurement outcome of the second qubit is |0), while it is either 01 or 10 if
the meansurement outcome is |1).
Finally, a Hadamard transformation H is applied on the first qubit. Bob
obtains
Received state  1st qubit  Ug|lst qubit)

[0) 7(|0> +11) 0)
Y1) 7(|1> +10)) 10) (4.41)
[42) 7(|1> 0y =)
[¢s) (|0> 1) 1)

Sl -
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Alice | | Bob
0) 4 H Ux I H I~
quantum
|fl)+> : channel :

0) D | i

€

FIGURE 4.2

Quantum circuit implementation of the dense coding system. The leftmost
Hadamard gate and the next CNOT gate generate the Bell state. Then a
unitary gate U, depending on the bits Alice wants to send, is applied to the
first qubit. Bob applies the rightmost CNOT gate and the Hadamard gate to
decode Alice’s message.

The number z is either 00 or 01 if the measurement of the first qubit results
in |0), while it is either 10 or 11 if it is |1). Therefore, Bob can tell what x is
in every case.

Quantum circuit implementation for the dense coding is given in Fig. 4.2

4.5.2 Quantum Teleportation

The purpose of quantum teleportation is to transmit an unknown quan-
tum state of a qubit using two classical bits such that the recipient reproduces
exactly the same state as the original qubit state. Note that the qubit itself is
not transported but the information required to reproduce the quantum state
is transmitted. The original state is destroyed such that quantum teleporta-
tion should not be in contradiction with the no-cloning theorem. Quantum
teleportation has already been realized under laboratory conditions using pho-
tons [6, 7, 8, 9], coherent light field [10], NMR, [11], and trapped ions [12, 13].
The teleportation scheme introduced in this section is due to [11]. Figure
4.3 shows the schematic diagram of quantum teleportation, which will be
described in detail below.

Alice: Alice has a qubit, whose state she does not know. She wishes to
send Bob the quantum state of this qubit through a classical communication
channel. Let

|¢) = al0) + b|1) (4.42)

be the state of the qubit. Both of them have been given one of the qubits of
the entangled pair
1

|@F) = —=(100) +[11))

Sl

2

as in the case of the dense coding.



80 QUANTUM COMPUTING

Quantum Alice Classical Channel Bob Quantum

State > State
Encoder -~ Decoder
FIGURE 4.3

In quantum teleportation, Alice sends Bob two classical bits so that Bob
reproduces a qubit state Alice used to have.

Alice applies the decoding step in the dense coding to the qubit |¢) =
a|0) + b|1) to be sent and her qubit of the entangled pair. They start with the
state

|p) @ |®T) = [a]0) ® (|00) + |11)) 4+ b]1) @ (|00) + [11))]

2

-5 (a]000) + a|011) + b[100) + b|111)), (4.43)

where Alice has the first two qubits while Bob has the third. Alice applies
Ucnot ® I followed by Uy ® I ® I to this state, which results in

H&“H

(Ua @ I®I)(Ucnor @ I)(|¢) @ |®T))
— Un® &) (Uonor & I)% (a[000) + a|011) + b[100) + b|111))
— L 14(1000) 4 1011) + [100) + |111)) + B(|010) + [001) — [110) — |101))]

N — N

[100)(al0) + b[1)) +101)(a]1) +0]0))
+[10)(al0) — b1)) + [11)(al1) — b[0))]. (4.44)

If Alice measures the two qubits in her hand, she will obtain one of the states
|00),]01), |10) or |11) with equal probability 1/4. Bob’s qubit (a qubit from the
Bell state initially) collapses to a|0) +b|1), a|1) 4+ b|0), a|0) — b|1) or a|1) — |0),
respectively, depending on the result of Alice’s measurement. Alice then sends
Bob her result of the measurement using two classical bits.

Notice that Alice has totally destroyed the initial qubit |¢) upon her mea-
surement. This makes quantum teleportation consistent with the no-cloning
theorem.

Bob: After receiving two classical bits, Bob knows the state of the qubit in
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his hand,;
Received bits Bob’s state Decoding
00 al0) + b[1) I
01 all) + b|0) X (4.45)
10 al0) — b|1) Z
11 a|l) — b|0) Y

Bob reconstructs the intial state |¢) by applying the decoding process shown
above. Suppose Alice sends Bob the classical bits 10, for example. Then Bob
applies Z to his state to reconstruct |¢) as follows:

Z: (al0) = b[1)) = (al0) +b[1)) = |¢)-

Figure 4.4 shows the actual quantum circuit for quantum teleportation.

Alice Bob
Encoding and .
measurement Decoding
o e
i classical .
i channel 1

0) & ©

quantum channel

FIGURE 4.4

Quantum circuit implementation of quantum teleportation. Alice operates
gates in the left side. The first Hadamard gate and the next CNOT gates
generate the Bell state |®T) from |00). The bottom qubit is sent to Bob
through a quantum channel while the first and the second qubits are measured
after applying the second set of the CNOT gate and the Hadamard gate on
them. The measurement outcome z is sent to Bob through a classical channel.
Bob operates a unitary operation U,, which depends on the received message
x, on his qubit.

EXERCISE 4.11 Let [¢) = a|00) + b[11) be a two-qubit state. Apply a
Hadamard gate to the first qubit and then measure the first qubit. Find the
second qubit state after the measurement corresponding to the outcome of
the first qubit measurement.
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4.6 Universal Quantum Gates

It can be shown that any classical logic gate can be constructed by using a
small set of gates, AND, NOT and XOR, for example. Such a set of gates
is called the wuniversal set of classical gates. Since the CCNOT gate can
simulate these classical gates, quantum circuits simulate any classical circuits.
It should be noted that the set of quantum gates is much larger than those
classical gates which can be simulated by quantum gates. Thus we want to
find a universal set of quantum gates from which any quantum circuits, i.e.,
any unitary matrix, can be constructed.

In the following, it will be shown that

(1) the set of single qubit gates and

(2) CNOT gate
form a universal set of quantum circuits (universality theorem).

We will prove the following Lemma before stating the main theorem. Let
us start with a definition. A two-level unitary matrix is a unitary matrix
which acts non-trivially only on two vector components. Suppose V is a two-
level unitary matrix. Then V has the same matrix elements as those of the
unit matrix except for certain four elements V., Vap, Via and Vi, An example
of a two-level unitary matrix is

a* 00 6*
o100 2 a2

600 «

where a = 1 and b = 4.

LEMMA 4.1 Let U be a unitary matrix acting on C?. Then there are
N < d(d — 1)/2 two-level unitary matrices Uy, Us, ..., Uy such that

U=UU,...Un. (4.46)

Proof. The proof requires several steps. It is instructive to start with the case

d = 3. Let
adyg

U=\|beh
cfy
be a unitary matrix. We want to find two-level unitary matrices Uy, Us, Us
such that
UsUULU = 1.

Then it follows that
U =Uluiul.
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(Never mind the daggers! If U is two-level unitary, U,I is also two-level
unitary.) We prove the above decomposition by constructing Uy explicitly.

(i) Let

0

O 9
1

J

=

|

|

o
oslee S

where u = /|a|? + |b|?. Verify that U; is unitary. Then we obtain

a/ dl g/
u=110¢en ],
/ ! sl
dfh
where d/,...,j' are some complex numbers, whose details are not necessary.

Observe that, with this choice of Uy, the first component of the second row
vanishes.

(ii) Let
(:;’* 0 i;/* a™* 0 c*
U= 010 )= o010],
_;—’, 0 Z—: — 0 da
where v/ = /]a’|2 + |¢/|?> = 1. Then
1d" g" 100
U= [0ew | =[oen |,
O f// j// O f// j//

where the equality d”’ = ¢g”” = 0 follows from the fact that UsU1U is unitary,
and hence the first row must be normalized.

(iii) Finally let
10 0
Us = (U2UhU)' = | 0 e [
0 h//* j//*

Then, by definition, UsUsU1U = I is obvious. This completes the proof for
d=3.

Suppose U is a unitary matrix acting on C? with a general dimension d.
Then by repeating the above arguments, we find two-level unitary matrices
Ui,Us,...,Uys_1 such that

—
o
o
o

o
*
*
*

Ud_l...U2U1U= 0% * ...

*
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namely the (1,1) component is unity and other components of the first row
and the first column vanish. The number of matrices {Ux} to achieve this
form is the same as the number of zeros in the first column, hence (d — 1).

We then repeat the same procedure to the (d — 1) x (d — 1) block unitary
matrix using (d—2) two-level unitary matrices. After repeating this, we finally
decompose U into a product of two-level unitary matrices

U=WVy...Vy,
where N < (d—1)+(d—-2)+...+1=d(d—1)/2. I

EXERCISE 4.12 Let U be a general 4 x 4 unitary matrix. Find two-level
unitary matrices Uy, Us and Us such that

1000
0 * % %
UsUahU = 0 * % %
0 * % %
EXERCISE 4.13 Let
11 1 1
111 4 —1—4
U_§ 1211 -1 |- (4.47)
1 -7 -1 1

Decompose U into a product of two-level unitary matrices.

Let us consider a unitary matrix acting on an n-qubit system. Then this
unitary matrix is decomposed into a product of at most 2"(2" — 1)/2 =
27=1(2" — 1) two-level unitary matrices. Now we are in a position to state
the main theorem.

THEOREM 4.2 (Barenco et al.)[14] The set of single qubit gates and
CNOT gate are universal. Namely, any unitary gate acting on an m-qubit
register can be implemented with single qubit gates and CNOT gates.

Proof. We closely follow [1] for the proof here. Thanks to the previous
Lemma, it suffices to prove the theorem for a two-level unitary matrix. Let
U be a two-level unitary matrix acting nontrivially only on |s) and [t) ba-
sis vectors of an n-qubit system, where s = s,_12" "1 4+ ... + 5,2 + 59 and
t=t,_12" 1 +...+t,2+1tg are binary expressions for decimal numbers s and
t. This means that matrix elements U, Ug, Urs and Uy are different from
those of the unit matrix, while all the others are the same, where |s) stands for
|Sn_1)|Sn—2) ... |s0), for example. We can construct U, the non-trivial 2 x 2
unitary submatrix of U. U may be thought of as a unitary matrix acting on
a single qubit, whose basis is {|s), |t)}.
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STEP 1: U is reduced to U € U(2).

The basis vectors |s) and [t) may be put together to form a basis for a
single qubit using the following trick. This is done by introducing Gray
codes. For two binary numbers s = s,_1...5150 and t = t,_1...t1tg, a
Gray code connecting s and ¢ is a sequence of binary numbers {g1,...,gm}
where the adjacent numbers, g and gg1, differ in exactly one bit. Moreover,
the sequence satisfies the boundary conditions g1 = s and g¢,, = t.

Suppose s = 100101 and ¢ = 110110, for example. An example of a Gray
code connecting s and ¢ is

s =g = 100101
g2 = 110101
gs = 110111
gs = 110110 = ¢,

where the digit with ~ has been renewed. It is clear from this construction
that if s and t differ in p bits, the shortest Gray code is made of p+1 elements.
It should be also clear that if s and ¢ are of n digits, then m < (n + 1) since
s and t differ at most in n bits.

With these preparations, we consider the implementation of U. The strat-
egy is to find gates providing the sequence of state changes

Is) = lg1) = |g2) — - — |gm—1)- (4.48)

Then g,,—1 and g,, differ only in one bit, which is identified with the single
qubit on which U acts. In the example above, we have |g3) = [11011) @ |1)
and [t) = |g4) = [11011) ®|0). Now the operator U may be introduced so that
it acts on a two-dimensional subspace of the total Hilbert space, in which the
first five qubits are in the state |[11011). Then we undo the sequence (4.48)
so that |gm-1) — |gm—2) — ... — |g1) = |s). Each of these steps can be
easily implemented using simple gates that have been introduced previously
(see below).

Let us consider the following example of a three-qubit system, whose basis
is {|000), |001),...,]|111)}. Let

a000000¢
01000000
00100000
po| 000100001 g ()
00000100
00000010

b000000d

be a two-level unitary matrix which we wish to implement. Note that U acts
non-trivially only in the subspace spanned by |000) and |111). The unitarity
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FIGURE 4.5
Example of circuit implementing the gate U.

of U ensures that the matrix

U= (Z 2) (4.50)

is also unitary. An example of a Gray code connecting 000 and 111 is

q1 42 g3
gg=000
g=100 (4.51)
gg=110
g4=1 11

Since g3 and g4 differ only in the third qubit, which we call g3, we have to
bring g1 to g3 and then operate U on the qubit g3 provided that the first and
the second qubits are in the state |11). (Namely we have a controlled-U gate
with the target bit g3 and the control bits ¢; and ¢o.) After this controlled
operation is done, we have to put |g3) = |110) back to the state |000) as

[110) — |100) — ]000).
This operation is graphically shown in Fig. 4.5. Here O denotes the negated

control node. This means that the unitary gate acts on the target bit only
when the control bit is in the state |0). This is easily implemented by adding

two X gates as

It is easy to see that this gate indeed implements U. Suppose the input is
|101), for example. Figure 4.6 shows that the gate has no effect on this basis
vector since U should act as a unit matrix on this vector. The operation of U
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|101) |101) |101) |101) |101) |101)
) \{ T T \{
43 o o U o o
FIGURE 4.6
U-gate has no effect on the vector |101).
on the input «|000) + 8|111) is
a000000c¢ @ aa + fBe
01000000 0 0
00100000 0 0
00010000 0 0
U(a|000) + B]111)) = 00001000 o= 0 (4.52)
00000100 0 0
00000010 0 0
b000000d) \ 3 ab+ Ad

If we use the circuit shown in Fig. 4.5, we produce the same result as shown
in Fig. 4.7

«|000) al100) al110)  (aa+cB)[110)  (aa+¢B)|100)  (aa+c3)|000)
FBI1IL) A1) 4B[111) +(ba+dB)[111) +(ba+dB)|111) +(ba+dB)|111)
Pany Pany
L] [ T
RN [ ]
45— 8 o 8 8
FIGURE 4.7

U-gate acting on «|000) + 3|111) yields the desired output (ac + ¢5)|000) +
(bar + dB)|111).

This construction is easily generalized to any two-level unitary matrix U €
U(2™). It will be shown below that all the gates in the above circuit can
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be implemented with single-qubit gates and CNOT gates, which proves the
universality of these gates.

EXERCISE 4.14 (1) Find the shortest Gray code which connects 000 with
110.

(2) Use this result to find a quantum circuit, such as Fig. 4.5, implementing
a two-level unitary gate

a00000c0
01000000
00100000
00010000 | ~_ (ac
U=1o00001000 | U:<bd)€U@)
00000100
500000d0
00000001

You may use various controlled-NOT gates and controlled-U gates.

STEP 2: Two-level unitary gates are decomposed into single-qubit gates and
CNOT gates.

A controlled-U gate can be constructed from at most four single-qubit gates
and two CNOT gates for any single-qubit unitary U € U(2). Let us prove
several Lemmas before we prove this statement.

LEMMA 4.2 Let U € SU(2). Then there exist o, 5,y € R such that U =
R, (a)Ry(B)R(7y), where

) eia/2 0
R.(a) = expliac./2) = (7 0.

na == (T )

Proof. After some calculation, we obtain

i(aty)/2 D) a=)/2gin(B/2
R, (O‘)RU (ﬁ)Rz (7) = (_eei(—a—i—'y)/gossiilﬁ(g/é) ee_i(a.;_»y)/zscoi(ﬁg/;)) : (453)

Any U € SU(2) may be written in the form

a b cosfe™  sinfet
U= (—b* a*> - <— sin e~ cos 96_i>‘> ’ (4.54)
where we used the fact that detU = |a|? + |b|> = 1. Now we obtain U =
R, (a)Ry(B)R () by making identifications
p aty a—v

o= 2= -
2 5 HT T

(4.55)
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LEMMA 4.3 Let U € SU(2). Then there exist A, B,C € SU(2) such that
U=AXBXC and ABC = I, where X = o,.

Proof. Lemma 4.2 states that U = R,(a)R,(8)R. () for some «, 3,7 € R.
Let

A=R.(a)R, (g) ,B=R, <—g> R. (—a;w) .C =R, <—°‘§7).

Then

AXBXC = R.( Ry(§>XRy< §>Rz(—o‘;7)XRz(—a;7>

where use has been made of the identities X2 = I and X0y, . X = —0, ..
It is also verified that

o= ()5, (5] () (25

= R, (a0)R,(0)R,(—a) =1I.

This proves the Lemma. 1

FIGURE 4.8
Controlled-U gate is made of at most three single-qubit gates and two CNOT
gates for any U € SU(2).

LEMMA 4.4 Let U € SU(2) be factorized as U = AXBXC as in the
previous Lemma. Then the controlled-U gate can be implemented with at
most three single-qubit gates and two CNOT gates (see Fig. 4.8).

sl M (=) (2

gl

)
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Proof. The proof is almost obvious. When the control bit is 0, the target bit
|¢) is operated by C, B and A in this order so that

) = ABCly) = [¢),

while when the control bit is 1, we have
[) = AXBXCly) =Uly).

So far, we have worked with U € SU(2). To implement a general U-gate
with U € U(2), we have to deal with the phase. Let us first recall that any
U € U(2) is decomposed as U = e'*V, V € SU(2),a € R.

LEMMA 4.5 Let ”
i et 0
w0 =1 = (g )

o —ig/2 /2 10
D = R.(-¢)® (5) = <e 0 ei¢/2> <e 0 em/z) = <06i¢)'

Then the controlled-®(¢) gate is expressed as a tensor product of single qubit
gates as

and

Ucoppy =D R 1. (4.56)

Proof. The LHS is
Uca(s) = [0)(0] @ I + [1)(1] @ ®(¢) = [0)(0] & I + [1)(1] @ "1
= |0)(0| ® T +€e?1)(1| @I,

while the RHS is

10
Del= <Oei¢>®j

= [10){0] + e [1)(1]] ® I = Uca(s),
which proves the lemma. 1

Figure 4.9 shows the statement of the above lemma.

EXERCISE 4.15 Let us consider the controlled-V; gate Ucy, and the
controlled-V,> gate Ucy,. Show that the controlled-V; gate followed by the
controlled-V5 gate is the controlled-V2V1 gate Uc(v,y,) as shown in Fig. 4.10.
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—— 2+

 L(%))

FIGURE 4.9
Equality ch>(¢) =D®I.

1 -1

|41 Va —VaVi—

FIGURE 4.10
Equality Ucv,Ucv, = Ucvar)-

Now we are ready to prove the main proposition.

PROPOSITION 4.1 Let U € U(2). Then the controlled-U gate Ucy can
be constructed by at most four single-qubit gates and two CNOT gates.

Proof. Let U = ®(¢p)AXBXC. According to the exercise above, the
controlled-U gate is written as a product of the controlled-®(¢) gate and the
controlled-AX BXC' gate. Moreover, Lemma 4.5 states that the controlled-
®(¢) gate may be replaced by a single-qubit phase gate acting on the first
qubit. The rest of the gate, the controlled-AX BX C' gate is implemented with
three SU(2) gates and two CNOT gates as proved in Lemma 4.3. Therefore
we have the following decomposition:

Ucv = (D® A)Ucnor(I @ B)Ucnor(I @ C), (4.57)
where
D = R.(—¢)®(¢/2)
and use has been made of the identity (D ® I)(I ® A) = D ® A. 1

Figure 4.11 shows the statement of the proposition.

STEP 3: CCNOT gate and its variants are implemented with CNOT gates
and their variants.

Now our final task is to prove that controlled-U gates with n — 1 control
bits are also constructed using single-qubit gates and CNOT gates. Let us
start with the simplest case, in which n = 3.
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[ -1 ] ~

| L — — " CroB o4
DO)AXBXC — AXBXC — ®(0)

FIGURE 4.11

Controlled-U gate is implemented with at most four single-qubit gates and
two CNOT gates.

T

FIGURE 4.12
Controlled-controlled-U gate is equivalent to the gate made of controlled-V
gates with U = V2 and CNOT gates.

LEMMA 4.6 The two quantum circuits in Fig. 4.12 are equivalent, where
U=V2

Proof. If both the first and the second qubits are 0 in the RHS, all the gates
are ineffective and the third qubit is unchanged; the gate in this subspace
acts as |00)(00] ® I. In case the first qubit is 0 and the second is 1, the
third qubit is mapped as |¢) — VIV|y) = [¢); the gate is then [01)(01| ® I.
When the first qubit is 1 and the second is 0, the third qubit is mapped as
|¥) +— VVT|y) = |); hence the gate in this subspace is [10)(10| ® I. Finally
let both the first and the second qubits be 1. Then the action of the gate on
the third qubit is |[¢) — VV|¢) = U|y); namely the gate in this subspace is
[11)(11| ® U. Thus it has been proved that the RHS of Fig. 4.12 is

(100)(00| + |01)(01| + |10)(10]) ® I + |11){11| ® U, (4.58)
namely the controlled-controlled-U gate. 1

This decomposition is explained intuitively as follows. The first V operates
on the third qubit |¢) if and only if the second qubit is 1. VT is in action
if and only if 1 ® zo = 1, where xj, is the input bit of the kth qubit. The
second V' operation is applied if and only if the first qubit is 1. Thus the
action of this gate on the third qubit is V2 = U only when z; A 22 = 1 and
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FIGURE 4.13
Decomposition of the C3U gate.

I otherwise. This intuitive picture is of help when we implement the U gate
with more control qubits.

EXERCISE 4.16 Prove Lemma 4.6 by writing down the action of each gate
in the RHS of Fig. 4.12 explicitly using bras, kets and I, U, V, V1. (For exam-
ple, UcnoT = [0)(0] ® I + |1)(1| ® X for a two-qubit system.)

A simple generalization of the above construction is applied to a controlled-
U gate with three control bits as the following exercise shows.

EXERCISE 4.17 Show that the circuit in Fig. 4.13 is a controlled-U gate
with three control bits, where U = V2.

Now it should be clear how these examples are generalized to gates with
more control bits.

PROPOSITION 4.2 The quantum circuit in Fig. 4.14 with U = V2 is a
decomposition of the controlled-U gate with n — 1 control bits.

The proof of the above proposition is very similar to that of Lemma 4.6
and Exercise 4.17 and is left as an exercise to the readers.
Theorem 4.2 has been now proved. 1

Other types of gates are also implemented with single-qubit gates and the
CNOT gates. See Barenco et al. [14] for further details. A few remarks are in
order. The above controlled-U gate with (n — 1) control bits requires ©(n?)
elementary gates.*T Let us write the number of the elementary gates required

*We call single-qubit gates and the CNOT gates elementary gates from now on.

TWe will be less strict in the definition of “the order of.” In the theory of computational
complexity, people use three types of “order of magnitude.” One writes “f(n) is O(g(n))”
if there exist ng € N and ¢ € R such that f(n) < cg(n) for n > ng. In other words, O sets
the asymptotic upper bound of f(n). A function f(n) is said to be Q(g(n)) if there exist



04 QUANTUM COMPUTING
I I Iriv v

\ 4
1

FIGURE 4.14
Decomposition of the C("~D U gate. The number on the top denotes the layer
refered to in the text.

to construct the gate in Fig. 4.14 by C(n). Construction of layers I and III
requires elementary gates whose number is independent of n. It can be shown
that the number of the elementary gates required to construct the controlled
NOT gate with (n — 2) control bits is ©(n) [14]. Therefore layers IT and IV
require ©(n) elementary gates. Finally the layer V, a controlled-V gate with
(n — 2) control bits, requires C'(n — 1) basic gates by definition. Thus we
obtain a recursion relation

C(n) —C(n—1) =06(n). (4.59)
The solution to this recursion relation is
C(n) = ©(n?). (4.60)

Therefore, implementation of a controlled-U gate with U € U(2) and (n — 1)
control bits requires ©(n?) elementary gates.

no € N and ¢ € R such that f(n) > cg(n) for n > ng. In other words, Q sets the asymptotic
lower bound of f(n). Finally f(n) is said to be ©(f(n)) if f(n) behaves asymptotically as
g(n), namely if f(n) is both O(g(n)) and Q(g(n)).
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4.7 Quantum Parallelism and Entanglement

Given an input z, a typical quantum computer computes f(z) in such a way
as

U+ [2)|0) = [2)[ f(2)), (4.61)

where Uy is a unitary matrix that implements the function f.

Suppose Uy acts on the input which is a superposition of many states. Since
Uy is a linear operator, it acts simultaneously on all the vectors that constitute
the superposition. Thus the output is also a superposition of all the results;

Uy 12)0) = D )| f (). (4.62)

Namely, when the input is a superposition of n states, Uy computes n values
f(zr) (1 <k < n) simultaneously. This feature, called the quantum paral-
lelism, gives a quantum computer an enormous power. A quantum computer
is advantageous compared to a classical counterpart in that it makes use of
this quantum parallelism and also entanglement.

A unitary transformation acts on a superposition of all possible states in
most quantum algorithms. This superposition is prepared by the action
of the Walsh-Hadamard transformation on an n-qubit register in the state
[00...0) =10) ® |0) ®...® |0) resulting in

2" -1
1

1
\/2_n(|oo...o>+|oo...1>+...|11...1>):W ;J |). (4.63)

This state is a superposition of vectors encoding all the integers between 0
and 2" — 1. Then the linearity of Uy leads to

Uy (% ) |x>|o>) - X U0 = <= S i) (460

Note that the superposition is made of 2" = e™!"2 states, which makes quan-
tum computation exponentially faster than the classical counterpart in a cer-
tain kind of computation.

What about the limitation of a quantum computer? Let us consider the
CCNOT gate, for example. This gate flips the third qubit if and only if the
first and the second qubits are both in the state |1), while it leaves the third
qubit unchanged otherwise. Let us fix the third input qubit to |0). It was
shown in §4.3.3 that the third output is |z Ay), where |x) and |y) are the first
and the second input qubit states, respectively. Suppose the input state is a
superposition of all possible states while the third qubit is fixed to |0). This
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can be achieved by the Walsh-Hadamard transformation as

Unl0) © Unl0) @ 10) = = (10) + 1)) &

V2 V2
- %(|000> +1010) + [100) + [110)). (465

(10) + 1)) @ 10)

By operating CCNOT on this state, we obtain
1
Uccnot(Un|0) ® Unl0) ® |0)) = 5(|000> +1010) + [100) + [111)).  (4.66)

This output may be thought of as the truth table of AND: |z,y,x A y). It
is extremely important to note that the output is an entangled state and the
measurement projects the state to one line of the truth table, i.e., a single
term in the RHS of Eq. (4.66). The order of the measurements of the three
qubits does not matter at all. The measurement of the third qubit projects
the state to the superposition of the states with the given value of the third
qubit. Repeating the measurements on the rest of the qubits leads to the
collapse of the output state to one of |x,y,x A y).

There is no advantage of quantum computation over classical at this stage.
This is because only one result may be obtained by a single set of measure-
ments. What is worse, we cannot choose a specific vector |z,y,z A y) at our
willl Thus any quantum algorithm should be programmed so that the partic-
ular vector we want to observe should have larger probability to be measured
compared to other vectors. This step has no classical analogy and is very
special in quantum computation. The programming strategies to deal with
this feature are [2]

1. to amplify the amplitude, and hence the probability, of the vector that
we want to observe. This strategy is employed in the Grover’s database
search algorithm.

2. to find a common property of all the f(x). This idea was employed
in the quantum Fourier transform to find the order! of f in the Shor’s
factoring algorithm.

Now we consider the power of entanglement. Suppose we have an n-qubit
register, whose Hilbert space is 2"-dimensional. Since each qubit has two basis
vectors |0) and |1), there are 2n basis vectors (n |[0)’s and n |1)’s) involved to
span this 2"-dimensional Hilbert space. Imagine that we have a single quan-
tum system, instead, which has the same Hilbert space. One might think
that the system may do the same quantum computation as the n-qubit reg-
ister does. One possible problem is that one cannot measure the “kth digit”

fLet m, N € N (m < N) be numbers coprime to each other. Then there exists P € N such
that m” =1 (mod N). The smallest such number P is called the period or the order.
It is easily seen that m*t* =m?® (mod N), Vz € N.
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leaving other digits unaffected. Even worse, consider how many different basis
vectors are required for this system. This single system must have an enor-
mous number, 2", of basis vectors! Let us consider 20 spin-1/2 particles in
a magnetic field. We can employ the spin-up and spin-down energy eigen-
states of each particle as the qubit basis vectors. Then there are merely 40
energy eigenvectors involved. Suppose we use energy eigenstates of a certain
molecule to replace this register. Then we have to use 22° ~ 106 eigenstates.
Separation and control of so many eigenstates are certainly beyond current
technology. These simple consideration shows that multipartite implemen-
tation of a quantum algorithm requires an exponentially smaller number of
basis vectors than monopartite implementation since the former makes use of
entanglement as a computational resource.
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Simple Quantum Algorithms

Before we start presenting “useful” but rather complicated quantum algo-
rithms, we introduce a few simple quantum algorithms which will be of help
for readers to understand how quantum algorithms are different from and
superior to classical algorithms. We follow closely Meglicki [1].

5.1 Deutsch Algorithm

The Deutsch algorithm is one of the first quantum algorithms which showed
quantum algorithms may be more efficient than their classical counterparts.
In spite of its simplicty, full use of the superposition principle has been made
here.

Let f:{0,1} — {0,1} be a binary function. Note that there are only four
possible f, namely

f1:020,1—0, fo:0—1, 11,
f3:00,1—1, f4:0—1, 1—0.
The first two cases, f1 and fs, are called constant, while the rest, f3 and fy,
are balanced. If we only have classical resources, we need to evaluate f twice
to tell if f is constant or balanced. There is a quantum algorithm, however,
with which it is possible to tell if f is constant or balanced with a single
evaluation of f, as was shown by Deutsch [2].
Let |0) and |1) correspond to classical bits 0 and 1, respectively, and consider
the state [1o) = 3(|00) —[01) +|10) — [11)). We apply f on this state in terms

of the unitary operator Uy : |z,y) — |z,y @ f(x)), where @ is an addition
mod 2. To be explicit, we obtain

[91) = Uslo)
= 200, F0)) ~ 0,1@ FO) + |1, (1)) ~ 1,1 & F(1))

= 200, £(0)) ~ [0,~(0)) + 1, 7(1)) ~ [1,~7(1)),

where — stands for negation. Therefore this operation is nothing but the
CNOT gate with the control bit f(z); the target bit y is flipped if and only if

99
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f(x) =1 and left unchanged otherwise. Subsequently we apply a Hadamard
gate on the first qubit to obtain

|1a) = (UH @ I)[th1)
[(10) + [I)(1£(0)) — [=£(0))) + (10) — [1))(|f(1)) — [=f(D)))].

2\f
The wave function reduces to
1
ltha) = ﬁ|0>(|f(0)> = [=f(0))) (5.1)
in case f is constant, for which |f(0)) = |f(1)), and
lth2) = \f|1>(|f(0)> = [=f(0))) (5.2)

if f is balanced, for which |-f(0)) = |f(1)). Therefore the measurement of
the first qubit tells us whether f is constant or balanced.

Let us consider a quantum circuit which implements the Deutsch algorithm.
We first apply Walsh-Hadamard transformation Wy = Uy ® Uy on |01) to
obtain [19). We need to introduce a conditional gate Uy, i.e., the controlled-
NOT gate with the control bit f(x), whose action is Uy : |z, y> |z, y® f(z)).
Then a Hadamard gate is applied on the first qubit before it is measured.
Figure 5.1 depicts this implementation.

oo Hul-

) — H

fan
YV

FIGURE 5.1
Implementation of the Deutsch algorithm.

In the quauntum circuit, we assume the gate Uy is a black box for which
we do not ask the explicit implementation. We might think it is a kind of
subroutine. Such a black box is often called an oracle. The gate Uy is called
the Deutsch oracle. Its implementation is given only after f is specified.

Then what is the merit of the Deutsch algorithm? Suppose your friend
gives you a unitary matrix Uy and asks you to tell if f is constant or balanced.
Instead of applying |0) and |1) separately, you may construct the circuit in
Fig. 5.1 with the given matrix Uy and apply the circuit on the input state
|01). Then you can tell your friend whether f is constant or balanced with a
single use of Uy.
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5.2 Deutsch-Jozsa Algorithm and Bernstein-Vazirani
Algorithm

The Deutsch algorithm introduced in the previous section may be generalized
to the Deutsch-Jozsa algorithm [3].

Let us first define the Deutsch-Jozsa problem. Suppose there is a binary
function

f:8,=10,1,...,2" =1} — {0,1}. (5.3)

We require that f be either constant or balanced as before. When f is constant,
it takes a constant value 0 or 1 irrespetive of the input value xz. When it is
balanaced the value f(x) for the half of z € S, is 0, while it is 1 for the rest of
x. In other words, |f~1(0)] = |f~1(1)| = 2"~ !, where |A| denotes the number
of elements in a set A, known as the cardinality of A. Although there are
functions which are neither constant nor balanced, we will not consider such
cases here. Our task is to find an algorithm which tells if f is constant or
balanced with the least possible number of evaluations of f.

It is clear that we need at least 2"~! + 1 steps, in the worst case with
classical manipulations, to make sure if f(z) is constant or balanced with
100% confidence. It will be shown below that the number of steps reduces to
a single step if we are allowed to use a quantum algorithm.

The algorithm is divided into the following steps:

1. Prepare an (n + 1)-qubit register in the state |1)o) = [0)®™ ® |1). First
n qubits work as input qubits, while the (n + 1)st qubit serves as a
“scratch pad.” Such qubits, which are neither input qubits nor output
qubits, but work as a scratch pad to store temporary information are
called ancillas or ancillary qubits.

2. Apply the Walsh-Hadamard transforamtion to the register. Then we
have the state

1) = UF" " |ho) =

2" —1

(10) +1))°" @ %um — 1)

w
3

ﬂ_n2| © <5(0) = I1). (5.4)

3. Apply the f(x)-controlled-NOT gate on the register, which flips the
(n + 1)st qubit if and only if f(x) = 1 for the input x. Therefore
we need a Uy gate which evaluates f(z) and acts on the register as
Urlz)le) = |z)|c® f(x)), where |c) is the one-qubit state of the (n+1)st
qubit. Observe that |¢) is flipped if and only if f(x) = 1 and left
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unchanged otherwise. We then obtain a state

o) = Uf|1/11>
2" —1
\/2—71 Z |2) = [=f(@)))
\/272 \/—(I0> 1)) (5.5)

Although the gate Uy is applied once for all, it is applied to all the
n-qubit states |z) simultaneously.

The Walsh-Hadamard transformation (4.11) is applied on the first n
qubits next. We obtain

2" —1

[s) = (W ® I)[ihs) = ﬁﬁEj “Wﬁmw§;m—u» (5.6)

It is instructive to write the action of the one-qubit Hadamard gate in
the following form,

1 211y = 1)
UH|x>:E(|O>+(_1) |1>)—\/§y€%1}( D*1y),

where x € {0,1}, to find the resulting state. The action of the Walsh-
Hadamard transformation on |z) = |2,,—1 ... z120) yields

Wylz) = (Unlrn-1))(Unlzn-2)) ... (Unlzo))

= 1 Z (_1)1n—1yn—1+1n72yn72+~..+woyo
2 Yn—1,Yn—2,.-,Y0€{0,1}
X|Yn-1Yn—2 - - Yo)
2" —1
= m Y 5.7
/yZ ). (5.7)

where Y = Tp—1Yn—1D Tn—2Yn—2PD...BToy. Substituting this result
into Eq. (5.6), we obtain

|w=;<ivwWewa%mwm» (53)

The first n qubits are measured. Suppose f(z) is constant. Then |¢)3)
is put in the form

) = 5 Y (-1)lo) =

z,y

(10) —11))

Sl -
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up to an overall phase. Now let us consider the summation

2"—1
1
- —1)=v

=0

with a fixed y € S,. Clearly it vanishes since x - y is 0 for half of x and
1 for the other half of x unless y = 0. Therefore the summation yields
dy0. Now the state reduces to

L
V2

and the measurement outcome of the first n qubits is always 00...0.
Suppose f(z) is balanced next. The probability amplitude of |y = 0) in
|13) is proportional to

[¥s) = 10)" —=(|0) — 1)),

2" —1 2" —1

> ()= 3 (1) =,

x=0 =0

Therefore the probability of obtaining measurement outcome 00. . .0 for
the first n qubits vanishes. In conclusion, the function f is constant if
we obtain 00...0 upon the meaurement of the first n qubits in the state
|13), and it is balanced otherwise.

EXERCISE 5.1 Let us take n = 2 for definiteness. Consider the following
cases and find the final wave function [¢)3) and evaluate the measurement
outcomes and their probabilities for each case.

(1) f(x) =1Vx € S,.

(2) £(00) = £(01) = 1, £(10) = f(11) = 0.

(3) f(00) =0, f(01) = f(10) = f(11) = 1. (This function is neither constant
nor balanced.)

The above exercise shows that the measurement gives |00) with probability
1if f is constant and with probability 0 if balanced. If f is neither constant
nor balanced [i3) is a superposition of several states including |00), which is
attributed to “incomplete” interference.

A quantum circuit which implements the Deutsch-Jozsa algorithm is given
in Fig. 5.2. The gate Uy is called the Deutsch-Jozsa oracle.

The Bernstein-Vazirani algorithm is a special case of the Deutsch-Jozsa
algorithm, in which f(z) is given by f(x) = ¢z, where ¢ = ¢p—1¢p—2...¢o
is an n-bit binary number [4]. Our aim is to find ¢ with the smallest number
of evaluations of f. If we apply the Deutsch-Jozsa algorithm with this f, we
obtain

1 — cx z-y 1
¥3) = 5 D (D=1 Yy) \/5(|0> I1))-

z,y=0
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0)—HH/} HH—
0)—HH/} HH—
f
0)—HH HHF
1) — HH—b
Uy

FIGURE 5.2
Quantum circuit implementing the Deutsch-Jozsa algorithm. The gate Uy is
the Deutsch-Jozsa oracle.

Let us fix y first. If we take y = ¢, we obtain

Z(_l)c-m(_l)m-c — Z(_l)Zc»w —9n

x x

If y # ¢, on the other hand, there will be the same number of z such that
c-x =0 and z such that ¢- 2 = 1 in the summation over x and, as a result,
the probability amplitude of |y # ¢) vanishes. By using these results, we end
up with

1

|ths) = |C>\/§

(10) = [1)). (5.9)

We are able to tell what ¢ is by measuring the first n qubits. Note that this
is done by a single application of the circuit in Fig. 5.2.

EXERCISE 5.2 Consider the Bernstein-Vazirani algorithm with n = 3 and
¢ = 101. Work out the quantum circuit depicted in Fig. 5.2 to show that the
measurement outcome of the first three qubits is ¢ = 101.
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5.3 Simon’s Algorithm

The final example of simple quantum algorithms is Simon’s algorithm. Let
us consider a function (oracle) f: {0,1}™ — {0,1}" such that

1. fis 2 to 1; namely, for any z1, there is one and only one x5 # x; such

that f(xl) = f(:ZZQ)

2. f is periodic; namely, there exists p € {0,1}" such that f(z @ p) =
f(z), Yz € {0,1}", where @ is a bitwise addition mod 2.

The function f is made of n component functions f; : {0,1}"™ — {0,1} as
f = (flv.va"'vfn)'

Suppose we want to find the period p, given an unknown oracle f. Since p
can be any number between 00...0 and 11...1, we have to try ~ 2™ possi-
bilities classically before we hit the right number. It is shown below that the
number of trials required to find p is reduced to O(n) if Simon’s algorithm is
employed.

The algorithm is decomposed into the following steps:

1. Prepare two sets of n-qubit regiters in the state [1)g) = |0)|0). Then the
Walsh-Hadamard transformation W,, is applied on the first register to
yield

2" —1

Y1) = (Wi ® I)|tho) = \FZ"” 0).

2. Introduce n controlled-NOT gates with control qubits fx(z) (1 <k < n)
and the target bit is the kth qubit of the second register. We write

U : [2)|0) = [2)[f(2)),

where |0) is an n-qubit register state and | f(x)) = | f1(x))|f2(x)) . .. | fn(2)).
Linearity implies the state |¢2) after the Uy gate operation on [¢)1) is

2" —1

[2) = Z )| f (2 (5.10)

\/2—71

3. Now we measure the second register. In fact, we do not need to know
the measurement outcome. What we have to do is to project the sec-
ond register to a certain state |f(zp)), for example. After one of these
operations, the state is now projected to

hps) = %um 1 |70 @ p))\f (z0)). (5.11)

where we noted that there are exactly two states |zg) and |zo @ p) that
give the second register state |f(zo)) in step 2.
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4. Now we apply W,, again on the first register to obtain

1) = 5= O [(F1 4 ()] ) | )
y=0

2" —1

- %\% ST D4 (1P y) @ [f@o)).  (5.12)
y=0

The inner product p-y takes two values 0 and 1. We immediately notice
that such y which satisfies 1 + (—1)?"¥ = 0, namely, p-y = 1 does not
contribute to the summation in Eq. (5.12). Now we are left with

Yo (=1™y)

p-y=0

2 1

|9a) = NoRGT

@ [f(x0))- (5.13)

5. Finally we measure the first register. Upon this measurement, we obtain
ly) such that p-y = 0. Of course, this equation is not enough to identify
the period p. Now we repeat the algorithm many times to obtain

Py1=p-y2=...=p Ym =0. (5.14)

It should be clear that we need at least n trials since not all equations
are linearly independent. For a sufficiently large number of trials m,
we are able to solve Eq. (5.14) for p classically. The number of trials
necessary for this is O(n) with a good probability.

Figure 5.3 shows the quantum circuit to implement Simon’s algorithm for
the case n = 3.

Simon’s algorithm has been improved so that it may be executed in deter-
ministic polynomial time [6].
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0y —HH H Ht—
0) 1 H fif2 /3 H—
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|0) b %

FIGURE 5.3

Quantum circuit implementing Simon’s algorithm. The second register is
measured only for projection purposes, and reading the outcome is not nec-
essary.






6

Quantum Integral Transforms

We demonstrated in the previous chapter that there are some quantum algo-
rithms superior to their classical counterparts. It is, however, rather difficult
to find any practical use of these algorithms. There are two quantum algo-
rithms, known to date, which are potentially useful: Grover’s search algorithm
and Shor’s prime number factorization algorithm. Both of them depend on
quantum integral transforms, which will be introduced in the present chapter.
We mainly follow [1] in our presentation.

6.1 Quantum Integral Transforms

DEFINITION 6.1 (Discrete Integral Transform) Let n € N and S,, =
{0,1,...,2™ — 1} be a set of integers. Consider a map

K:S5,xS,—C. (6.1)

For any function f : S, — C, its discrete integral transform (DIT) f :
S,, — C with the kernel K is defined as:

2" —1

fy) =Y Kyo)f(). (6.2)
=0

The transformation f — f is also called the discrete integral transform.

We define N = 2" to simplify our notations. The kernel K is expressed as
a matrix,
K(0,0) ... K(O,N-1)
1

g=| KO KON (63
K(N-1,0)... K(N—-1,N—1),

and the function f as a vector,

109
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The definition of DIT then reduces to the ordinary multiplication of a matrix
on a vector as

f=Kf.

PROPOSITION 6.1 Suppose the kernel K is unitary: K" = K='. Then
the inverse transform f — f of a DIT exists and is given by

N-1
f@) = 3 K@) ). (6.4)
y=0

Proof. By substituting Eq. (6.2) into Eq. (6.4), we prove

N-1 ) N—1 N—1
S K@) fy) =Y Kixy) [Z K(y,Z)f(Z)]
y=0 y=0 z=0

N—-1

N
Il
o

N—-1
> KT(:E,y)K(y,Z)] f(2)
y=0

2
L

0:2f(2) = f(x).

N
Il
o

Let U be an N x N unitary matrix which acts on the n-qubit space H =
(C?)®", Let {|z) = |vpn_1,Tn_2...,70)} (7 € {0,1}) be the standard binary
basis of H, where £ = 2,_12" ' + 2,_22" "2 + ... 4+ 202°. Then

N-1 N-1
Ulz) =Y ) @lUlz) =Y Uy, )ly)- (6.5)
y=0 y=0

The complex number U(x,y) = (x|U]y) is the (x,y)-component of U in this
basis.

PROPOSITION 6.2 Let U be a unitary transformation, acting on ‘H =
(C%)®", Suppose U acts on a basis vector |z) as

N-1
Ule) = K(y,z)ly)- (6.6)
y=0

Then U computes® the DIT f(y) = Zi\[:—ol K(y,x)f(x) for any y € S, in the
sense that

N—-1 N—l~
v zf<x>|x>] Y F) 6.1
=0 y=0

*The proposition claims that U maps a state with the probability amplitude f(z) to another
state with the probability amplitude f(y) that is related with f(z) through the kernel K.
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Here |x) and |y) are basis vectors of H.

Proof. In fact,

N—

N—1
S )l ] ot
x=0

,_.

8
Il
o

N-1 N-1 N—1[N—

=Y f@) | Y Ky, ] > [ZK (y,x ] y)
=0 y=0 y=0 Lz=0
N-1

=) _ fWly). (6.8)
y=0

Note that the unitary matrix U computes the discrete integral transform
f (y) for all variables y by a single operation if it acts on the superposition
state > f(x)|xz). There are exponentially large numbers 2" of y for an n-
qubit register, and this fact provides a quantum computer with exponentially
fast computing power for a certain kind of computations compared to classical
alternatives.

The unitary matrix U implementing a discrete integral transform as in
Eq. (6.7) is called the quantum integral transform (QIT).

EXERCISE 6.1 Let f — f be a DFT with a unitary kernel K. Prove
Parseval’s theorem

N-1 N-1 ~
S I@PP =Y 1P (6.9)
=0 y=0

6.2 Quantum Fourier Transform (QFT)

One of the most important quantum integral transforms is the quantum
Fourier transform. Let w,, be the Nth primitive root of 1;

wy, = 2TV (6.10)
where N = 2" as before. The complex number w,, defines a kernel K by
K(z,y) = —w;zy. (6.11)
Wi

The discrete integral transform with the kernel K,

1 N-1
==Y W) (6.12)
r=0
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is called the discrete Fourier transform (DFT).
The kernel K is unitary since

(KK)(@,y) = (@|K Y |2){=K |y) = Y K(z,2)K (2,9)
1 —xz yz_l —(x—y)z _
7 el = e =y

The quantum integral transform defined with this kernel is called the quan-
tum Fourier transform (QFT).
The kernel for n =1 is

oA 5(0) e

which is nothing but our familiar Hadamard gate. For n = 2, we have ws =

e2™/% = j and
11 1 1 11 1 1
1wyt wy?wy?® 11 —i—1 34
Ka=3 lw2wywy® [ "2 1-11 -1 |° (6.14)

6 -9 1

1wy wy® w; i =1 —i

The inverse DFT is given by

NZ (6.15)

ﬂ\

It is important to note that

2" —1

1
UqrTn|0) 6.16

where Uqry, is the n-qubit QFT gate. This equality shows that the QFT of
f(x) = 040 is f(y) = 1/+/2™, which is similar to the FT of the Dirac delta

function d(z). Observe that a single application of UgrT,, on the state |0) has
produced the superposition of all the basis vectors of H.

EXERCISE 6.2 Let

be an n-qubit state.
(1) Normalize |9).
(2) Find UQFTn|1/}>
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TABLE 6.1

Coefficient of a vector |z)|f(y)). Only the diagonal
combination |z)|f(z)) has nonvanishing amplitude in
the initial state |¥). Moreover all the non-vanishing
coeflicients have vanishing phase.

syl ol ol olol] o] o (1) %
if6nl ol ool oo (1) 7| 0
iGNl ol o] o o (3 & 00
F@y | o | o | o (1) = o]o]o
@) o | o (1) Fl oo
lf2)| o (1) 7 olol]o]olo
|f(1)) (1) 7 olojo]o|lolo
o) || oo oo fo]o]o

0 [ T2 13 [[4)]5]16]I17)

6.3 Application of QFT: Period-Finding

There is a cool application of QFT, which is essential in Shor’s factorization
algorithm. The following example is taken from [2]. Let |[REG;) € H; be the
input register and |REGsy) € Ha be the output register. Each register is a
3-qubit system, to make our argument concrete, and the total system Hilbert
space is Hy ® Hz. Let the initial state of [REG1) be

000) + 001) + ... +[111)) = (|0> 4.+, (6.17)

%|

—
NeH

Let S3 = {0,1,...,23 —1 =7} and let f : S3 — S3 be a function. Apply f
on the initial state to obtain

v wam)qu %mmmmwwm

(6.18)
It is interesting to visualize the coeflicient of each vector as in Table. 6.1.
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TABLE 6.2

Coefficient of a vector |y)|f(z)) in |¢). The
amplitude is 1/8 for all the coefficients. The
arrow denotes the phase associated with each

coefficient. /* denotes e'™/%, for example.
SO =N L[ A= N[ TS
f6) | =Ll T =]l ]«]1
O [ = LT INI<= |11 [N\
B [ =N L | A< |IN|T 1/
feh =t el l=1T]«]]
fO) [ = [ LT IN <=1 1 [\
0) [ 11) [[2) [ [3) [ [4) [ [5) [ [6) | [7)
Let us apply the following QFT,
17
= —2mizy/8
|) 7 ;e ly), (6.19)
on the first register. Then we obtain
1 .
W) = £ ST ey, f(a))
z,y

= %I0> [FO)+ W)+ +[F(T)] (y=0)

+%I1> ® [1£0) + 2B ) 4+ T @)y =1)

+§I7> ® [1£0)) + e F() 44 eI ()] (=)
(6.20)

The coefficient of each component |y)|f(x)) is shown in Table 6.2.

Suppose f(z) is a periodic function satisfying f(x + P) = f(z), P € N.
This period is found from the measurement outcome of |[REG;). Let P = 2,
for example. Then it follows that

fO)=F2)=f4)=f(6)=a, [f(1)=FB)=/f()=/f(7)=0b,

where a,b € S3 and a # b. The state |¥’) now reduces to

W)= 3 e, fa)

z,y€S3



Quantum Integral Transforms 115

TABLE 6.3
Coefficient of a vector |y)|f(z)) in the state
W) in which f(0) = £(2) = f(4) = /(6) = a
and f(1) = f(3) = f(5) = f(7) = b. The
amplitude of all the non-vanishing
coefficients is 1/2.

by | =] 0] 0| 0|«
[a)] =] 0]JO0O]JO|—=]0]01]0O0
0) [ 11) 112) [ 13) | 14)

1
= 510) ® [la) + )]
+%|1> ® [|a) (1 4 e b22mi/8 | —142mi/8 | e—1~6-27'ri/8)

1B (6—1-1~27ri/8 4o 132mi/8 4 —152mi/8 | e—1~7-27ri/8):|

(6.21)
As a result, all the vectors but
|0,a),|0,b), |4, a), |4, b)
cancel out to vanish, and we are left with
) = 5 (10,) +10,0) + |4, a) + =714, ) (6.22)

(see Table 6.3).

If we measure the first register |[REG1), the result is either 0 or 4, which is
the direct consequence of the periodicity P = 2 of f(z).

EXERCISE 6.3 Suppose each register above is an n-qubit system. Let f(x)
be a periodic function with the period P. Show that the observed value of
the first register is one of

1.2 2.27 3.2n (P —1)2"

0 5 T (6.23)

where it is assumed that 2"/P € N.

The cancellation observed above is extensively made use of in Shor’s fac-
torization algorithm.
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6.4 Implementation of QFT

We now consider a quantum circuit UqrT, which implements the n-qubit

QFT. The circuit Uqrr, maps a state ), f(z)|z) to a state >, F@)ly),
where

o) = g S, =

Thus for f(2') = 042, we obtain f(y) = w;*Y/v/N, namely

Uqrrn|z) = e 2N |y,
Q \/— Z

Let us start our implmentation of QFT with n = 1,2 and 3 to familiarize
ourselves with the problem.

n=1
Eq. (6.13) shows that the kernel for n = 1 QFT is the Hadamard gate H,
whose action on |z), z € {0, 1}, is concisely written as

1
Uglz) = —(|0) + )Y 6.24
H|) \/§(| )+ (-1 Z ly)- (6.24)
In fact, this is the defining equation for n =1 QFT as
Uqgrti|7) = wy Py) = 1)*]y). (6.25)
arnle) = 75 3l = 5 2

It is instructive to demonstrate Eq. (6.7) explicitly here. Let |1) = f(0)|0)+
f(1)|1) be any one-qubit state. Then

UQFT1|¢>:f(O)%(|O>+|1>)+ F)—=(10) = (1))

§|H

(f(0) + f(1)[0) +

Sl -

n=2

This case is considerably more complicated than the case n = 1. It also
gives important insights into implementing QFT with n > 3. Let us introduce
an important gate, the controlled-Bj; gate. The B;; gate is defined by the
matrix

1 0 27
By, = (o e‘wik> L Ok = i (6.26)

where j,k € {0,1,2,...} and k > j.
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T Bijk

Bjk l

(a) (b)

FIGURE 6.1
(a) Controlled-Bj;, gate. The inverted controlled-B;; gate (b) and the
controlled- B, gate are equivalent (see Lemma 6.1).

LEMMA 6.1 The controlled-B,; gate Uji in Fig. 6.1 (a) acts on |z)|y),
x,y € {0,1}, as

b 2ms
Ujkla,y) = ez, y) = exp <_W$y) |z, ). (6.27)

Proof. The controlled-Bj;, gate is written as
Ujr =10)(0| ® I + [1)(1| ® By, (6.28)
and its action on |z,y) is

Ujklz, y) = 10)(0lz) @ [y) + [1)(1]x) @ Bjrly)

{ lz) @ly) =0
= (6.29)
|z) ® Bjkly) v = 1.

Moreover, when z = 1 we have

ly) y=0
Bikly) = _ (6.30)
e rly) y = 1.

Thus the action of Ujx on |y) is trivial if zy = 0 and nontrivial if and only if
2 =y = 1. These results may be summarized as Eq. (6.27). 1

The action of the controlled-B;j gate on a basis vector |z)|y) is detemined
by the combination xy and not by z and y independently. Therefore the
controlled-Bj;, gate and the “inverted” controlled-Bj;, gate are equivalent; see
Fig. 6.1.

The DFT for n = 2 is defined as

3

3 1 —z i .

f) =5 w™f@), w=e"1"=i yes (6.31)
z=0
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Equation (6.6) in Proposition 6.2 states that our task is to find a unitary
matrix UQFTQ such that

Uqrra|r) = Zw;mﬂy (6.32)

Let us write x and y in the binary form as x = 2z1 + zg and y = 2y1 + yo,
respectively. The action of Ugpr2 on |z) is

3

—_

Uarrzlaizo) = 2 Z S/ ) Z e 2miz(2y1+y0)/2° ly10)
y=0 yo y1=0
1 i ] 2
= 5 Z e—2mmyl/2|y1> ® Z e—2mmy0/2 |y0>
2t 70
1 3 .
=3 (|O> + 6_2””/2|1)) ® (|0> + e—2ﬂ11/22|1>)
= % (|O> + e—2wi(211+m0)/2|1>) ® (|0> + e—2ﬂi(2m1+zo)/22|1>)
1 ) . .
= 5 (|0> + e_ﬂ'zgco|1>) ® (|()> 4 e—frzz1e—z(7r/2)zo|1>)
1

5 (100 + (=1)*[1) ® B3 (|0) + (=1)"[1)), (6.33)

where use has been made of the fact 612 = 27/2271*! = 7/2 to obtain the
last expression. Note that ByS is the controlled-Bi2 gate with the control bit
xo and the target bit x1; BY = I while Bf, = Bj2. Note also that, in spite of
its tensor product looking appearance, the last line of Eq. (6.33) is entangled
due to this conditional operation. Equation (6.33) suggests that the n = 2
QFT are implemented with the Hadamard and the Uy, gates. Before writing
down the quantum circuit realizing Eq. (6.33), we should note that the first
qubit has a power (—1)*°, while the second one has (—1)**, when the input
state is |z120). If we naively applied the Hadamard gate to the second qubit,
we would obtain

(I ® Un)a120) = |11) ® %um +(=1)% 1)),

These facts suggest that we need to swap the first and second qubits at the
beginning of the implementation so that

Ugrralmizo) = %2_ (10) + (=1)% 1)) @ B (10) + (—1)=* 1))

= (Un @ U12(I ® Un)|xo, x1)
= (Ug @ INU12(I ® Un)Uswap|z120). (6.34)

Since Eq. (6.34) is true for any |z1z0), we should have Ugrre = (Un ®
IU12(I @ Ug)Uswap, which proves the following proposition.
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PROPOSITION 6.3 The n =2 QFT gate is implemented as

Ugrt2 = (U ® I)U12(I ® UH)USWAP (6.35)
(see Fig. 6.2).
SWAP
|z1) Hf= |
[ s
y=0
o) HHBuf——

FIGURE 6.2
Implementation of the n = 2 QFT, UgpT2.

The reader should verify the above implementation by explicitly writing
down the gates as matrices.

EXERCISE 6.4 It is also possible to have the SWAP gate in the very end
of the implementation. Design such an n =2 QFT gate.

This construction is easily generalized to n > 3 as we see next.
n = 3 and beyond

It is instructive to rewrite the construction of n =2 QFT in a more gener-
alizable form. The state |z1x0) has been transformed as in Eq. (6.33):

221
1 . 2
z130) = —= Y I/ 2 y)
V22 ¥=0
1 —2mix —2mi(x T 2
= ﬁ(loHe 2miro/2|1)) @ (|0) 4 e 7P/ 22 ),

This observation suggests the following construction of n = 3 QFT:

Uqrrs|zax120)

1 ; . 2
= (10} + €70 1)) @ (J0) + &2 2450 2] )
V23
®(|0> _|_e—27ri(12/2+11/22+w0/23)|1>)
1 xr T xr
= ﬁum + (D)™ 1)) @ Byl (|0) + (=1)"[1))

®Bgs Bi3 (10) + (=1)"[1))
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=Uu®I1NUn(I®Ug®IUpUi2(I®IQUy)|lzorizs)
= (UH &® 1 & I)UOl(I ® UH &® I)U02U12(I ® I ® UH)P|{E25L'1JJQ>, (636)

where Uy, is the controlled-Bj;, gate with the control qubit z;, and the gate
P reverses the order of the qubits as P|xaxi20) = |zoz122). For a three-qubit
QFT, P is a SWAP gate between the first qubit (z2) and the third qubit (xg).
Again note here that we should be careful in ordering the gates so that the
control bit xz; acts in Uy, before it is acted by a Hadamard gate.

EXERCISE 6.5 Let © = 225 + 221 + 20 and y = 2%ys + 2y1 + vo.
(1) Write down the RHS of

231

1 .
UQFT3|x2Qj1;pO> = ﬁ Z e—Qﬂzmy/23|y> (637)
y=0

explicitly in terms of z; and y;.
(2) Show that the RHS of Eq. (6.37) agrees with the first line of the RHS of
Eq. (6.36).

Since Eq. (6.36) is true for any |zax120), we have found
UQFT3 = (UH RIR® I)Uol (I & UH ® I)UQQUlz(I RI® UH)P (638)

Equation (6.38) readily leads us to the quantum circuit in Fig. 6.3.

|x2) o T— HE

7
1 o
x P B —E ws y)
1) I H HBo VP =

|z0) — — H HB12HBo2

FIGURE 6.3
Implementation of the n =3 QFT.

EXERCISE 6.6 Design a quantum circuit UgpTs in which the permutation
gate P is at the very end of the circuit.

Now the generalization of the present construction to n > 4 should be easy.
The equation that generalizes Eq. (6.36) is

Uqrrn|Tn-1...T120)
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= (0] + 72D  (0) 4 =2 242 )
®(]0) + e—27ri(12/2+11/22+10/23)|1>) ...
.. ®(]0) + 6—27”'(%—1/2+mn—2/22+~»11/2"71+zo/2")|1>)
=UgRI®... NUn(I@Ug®I®...QI)UyU:
xIRIQUE®...®I)...
XUpn—1U1n-1.. . Up—apn_1(I®@... @I @ Un)lxox1 ... Tn-1)
=UaRI®... NUn(I@Ug®I®...QI1)UyU:
XIQIQUH®...®1)... Upn-1Utn-1...Un_sn_1
X(I®...9IQ®@Uu)Plrp_1...2120), (6.39)

where P reverses the order of x as P|x,—1...2120) = |ToT1 ... Tp—1)-
We finally find the following decompostion of UgrTn:

Ugrtn = Un®I1®...0 NUn(I@Ug®@1®...0 I)UpUs
xI@IUp®...01)...
XU07n_1U17n_]_ . Un—Z,n—l(I® LRI UH)P (640)

A quantum circuit which implements Ugpr, is found from Eq. (6.40) as in
Fig. 6.4. It may be proved, by induction, for example, that the circuit in

|2n—1)

|-77n—2> 7

lz1) 7

|zo)

FIGURE 6.4
Implementation of the n-qubit QFT.

Fig. 6.4 really implements the n-qubit QFT.

PROPOSITION 6.4 The n-qubit QFT may be constructed with ©(n?)
elementary gates.

Proof. The n-qubit QFT is made of a P gate, n Hadamard gates and (n —
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)+ (n—2)+...+2+4+1 = n(n—1)/2 controlled-B,; gates (see Fig. 6.4).
It has been shown in §4.2.3 that it requres three CNOT gates to construct
a SWAP gate. Furthermore, a P gate for n qubits requires [n/2| SWAP
gates,’ assuming that there exists a SWAP gate for any pair of qubits. Thus
a P gate requires 3 x [n/2] = O(n) elementary gates. Proposition 4.1 states
that a controlled-B;; gate is constructed with at most six elementary gates.
Thus it has been proved that the n-qubit QFT is made of ©(n?) elementary
gates. 1

The above proposition is quite important in estimating the efficiency of
quantum algorithms. If we look at the definition

2" —1

- 1 —_—-—
f(y)—\/—ﬁwz:%w f(z),

we naively expect that N = 2" steps (including the evaluation of exponential
functions followed by multiplication) are required for each y and N x N steps
for all 3’s. In other words, it takes exponentially large steps (~ N2 = ¢27112)
to carry out the QFT. The above proposition states that this is done in ©(n?)
steps with the QFT gate if the initial state is a superposition of all x’s.

6.5 Walsh-Hadamard Transform

There are two other quantum integral transforms, the Walsh-Hadamard trans-
form and the selective phase rotation transform, which are often employed in
quantum computing.

We have already encountered the Walsh-Hadamard transform in §4.2.2 and
§5.2. Letz,y € S, = {0,1,..., N—1} with binary expressions &, _1&,—2 ... 2Zo
and Yn—1Yn—2 - - - Yo, where N = 2", The Walsh-Hadamard transform, written
in the form of Eq. (5.7), shows that it is a quantum integral transform with a
kernel W, : S,, x S,, — C defined by

Wy (x,y) = (=D)"Y  (x,y € Sn), (6.41)

-

where Y = Tp—1Yn—1 P Tn—2Yn—2®...Dxoyo. This kernel defines a discrete

integral transform
N-—

,_.

)5 f (@ (6.42)

ﬂ\

m:O

T|z] is the largest integer which is less than or equal to € R and called the floor of .
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6.6 Selective Phase Rotation Transform

DEFINITION 6.2 (Selective Phase Rotation Transform) Let us de-
fine a kernel ‘
Kn(z,y) = €%6,,, Y,y € Sy, (6.43)

where 6, € R. The discrete integral transform

Z K(z,y)f Z ewféwf = ewyf(y) (6.44)

with the kernel K, is called the selective phase rotation transform.

EXERCISE 6.7 Show that K, defined above is unitary. Write down the
inverse transformation K, .

The matrix representations for K7 and K are

e 0 0 0
7;00 7:‘91
e 0 0 e 0 O
= ( 0 ei91> v Be= g g i g
0 0 0 e

The implementation of K, is achieved with the universal set of gates as
follows. Take n = 2, for example. The kernel K, has been given above. This
is decomposed as a product of two two-level unitary matrices as

KQ = A()Al, (645)
where )
e 0 00 10 0 0
0 €100 01 0 0
Ado=1 g o 10| M= |o0ee o | (6.46)
0 001 00 0 eifs
Note that

e
Ao =100l U+ D01, Uo= (% 5. ).

ef2
&=WW@IHDM®W=MZ(06%)

Thus A; is realized as an ordinary controlled-U; gate while the control bit
is negated in Ag. Then what we have to do for Ag is to negate the control
bit first and then to apply ordinary controlled-Uj gate and finally to negate
the control bit back to its input state. In summary, Ay is implemented as in
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Fig. 6.5. In fact, it can be readily verified that the gate in Fig. 6.5 is written
as

(X ®I)(10)(0] @ I + [1)(1] @ Up)(X @ I)
= X[0)(0|X @ I + X|1){(1|X @ Uy = [1)(1] @ I + [0)(0] ® Uy = Ap.

Thus these gates are implemented with the set of universal gates. In fact, the
order of A; does not matter since [Ag, A1] = 0.

Suasns

FIGURE 6.5
Implementation of Ay.

EXERCISE 6.8 Repeat the above arguments for n = 3. In this case K3 is
written as a product of four two-level unitary matrices. Write down these ma-
trices and find the quantum circuits similar to that in Fig. 6.5 that implements
these two-level unitary matrices.
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Grover’s Search Algorithm

Suppose there is a stack of IV unstructured files and we want to find a par-
ticular file (or files) out of the N files. To find someone’s phone number in a
telephone directory is an easy structured datebase search problem, while to
find a person’s name who has a particular phone number is a more difficult
unstructured database seach problem, with which we are concerned in this
chapter. It is required to take O(IN) steps on average if a classical algorithm
is employed. If we check the files one by one, we will hit the right file with
probability 1/2 after N/2 files are examined. It turns out that this takes only
O(V/'N) steps with a quantum algorithm, first discovered by Grover [1, 2, 3].
Our presentation in this chapter closely follows [4] and [5].

7.1 Searching for a Single File

Suppose there is a stack of N = 2" files, randomly placed, that are numbered
by z € S, ={0,1,...,N — 1}. Our task is to find an algorithm which picks
out a particular file which satisfies a certain condition.

In mathematical language, this is expressed as follows. Let f: S, — {0,1}
be a function defined by

flz) = {é ((f;j)) (7.1)

where z is the address of the file we are looking for. It is assumed that
f(x) is instantaneously calculable, such that this process does not require any
computational steps. A function of this sort is often called an oracle as noted
in Chapter 5. Thus, the problem is to find z such that f(z) = 1, given a
function f : S, — {0,1} which assumes the value 1 only at a single point.
Clearly we have to check one file after another in a classical algorithm,
and it will take O(N) steps on average. It is shown below that it takes only
O(V/'N) steps with Grover’s algorithm. This is accomplished by amplifying
the amplitude of the vector |z) while cancelling that of the vectors |x) (z # z).
We describe the algorithm in several steps.

STEP 1 (Selective phase rotation transform; see §6.6.)

125
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Define the kernel of the selective phase rotation transform R; by
Ki(z,y) = ™5, = (-1)/@s,,, (7.2)

where z,y € S,,. Since Ry maps |z) — —|z), while leaving all the other vectors
unchanged, it can be expressed as

Ry =1—2[z)(z|. (7.3)
Let us consider a state
N-1
o) =Y walz), Y |wel=1. (7.4)
=0 x
Then it is easy to verify
Rylo) = wol0) + ...+ (—)w,|z) + ...+ wn_1|N — 1). (7.5)

(In other words, Ry changes the sign of w, while leaving all other coefficients
unchanged.)
STEP 2 Define a unitary matrix

D =W, RoW,, (7.6)

where W,, is the Walsh-Hadamard transform,

Wa(z,y) = \/Lﬁ(—l)z'y, (z,y € Sn) (7.7)

and Ry is the selective phase rotation transform defined by
Ro(a,y) = 707005, = (~1)17005,, (7.8)

PROPOSITION 7.1 Let

p Nl
o) = 7 2 1) (79)
Then
D = —1I+ 2[po)(¢ol- (7.10)
Moreover
N-1
Dip) = ) (0 — (wy — w)) |z), (7.11)
=0

W= % > w, (7.12)
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is the avarage of w, over S,.
Proof. Let us evaluate the matrix elements of the RHS of Eq. (7.10). We
obtain from

—I+2[po)(pol = -1+ — Z|CE Z Z—I‘F—ZVC

that the (z,y)-component of the RHS is

2
(x| RHS|y) = =04y + N (7.13)

Let us turn to the LHS next. The (z,y)-component of D = W,, RgyW,, is

(@[ Wy RoWaly) = Y (@| Wi u) (ul Rolv) (v| Wi y)

1
=% Z(_
X (=1)170u0 5, (—1)V.

The summation over u is evaluated as

N-1

3 (1P (1) 0w,
u=0
N-1
= (_1)0(_1)05011 - Z (=1)* 0w
u=1
N-1
= 200, — Z (_1)w7171un71+---+w1u1+wouo5u”71vn71 ~5u1v15u0v0
u=0

1 1
= 2501} - Z (_1)1n71un715un71vn71 ce [Z (_1)w11h6u11/1‘|

Up—1=0

1
Z (_1)w0u05u01}0‘| :

(%) =0

ul =0

X

Then the LHS becomes

N-1 1
1
<$|D|y> = N E 250@ - § (_1)17171“"71511",1@”,1
v=0
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— 3 _ i i (_1)1n—1un—1+vn—1yn—16
Un—1VUn—1
N N Up—1,Vn—1=0
1
Z 10u0+voy05u0v
2 1 z +y zo+y
YN [1+( L)fn-ttyn=1] {14 (—1)%0tve]
2 2"
= N - Néwnflynfl o '510?/0
2
= N - 5wy7

which proves Eq. (7.10).
Equation (7.11) is proved as

Dly)

(~I+ 2pgaDle) = (—I+ >3 |y><z|) 5 wala)
:_wa|$>+% sz|y Tz — — Zwmkf sz|y>

== welr) +2Y aly) = Z_: (@ — (w, — )] |z).

|
Equation (7.11) shows that D is an operator that produces “inversion about

the average” since the quantity w—(w, —@) = 2wW—w, is obtained by reflecting
w, about w.

STEP 3 Now let us consider the unitary transformation Uy defined by

Up = DRy = (=1 + 2|po)(pol) (I —2[z)(z]) (7.14)

and consider its action on [¢) = > w,|x). Direct application of the results
in step 1 and step 2 yields

Urle) = D | D wale) —wl2) | =D [0 — (we — @)][a) + [@ + (w +)]|2)

T#z T#z
N—-1
= > 20— wy)le) + (20 + w.)|z), (7.15)

r#z
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where Zi\f:_ol |wz|? =1 and

1 N—-1
0= 7oz¢ Wy — W, (7.16)

is the average value of the coefficients of the state Ry|y).

This result shows that the amplitude of |z) has increased upon the operation
of Uy while that of |x) (z # z) has decreased, assuming that all the weights
w, are positive. Thus repeated applications of Uy increase the amplitude of
|z) so that this particular state is observed with probability close to 1 when
the system is measured. Let us find the state obtained after U; is applied &
times on the initial state |¢g).

PROPOSITION 7.2 Let us write

Ullfc|<ﬂo> = ak|z) + b Z |) (7.17)
T#z
with the initial condition .
ap =by = —=.
0 0 JN

Then the coefficients {ay, by} for k > 1 satisfy the recursion relations

N —2 2(N —1
L AN

ap = N Af—1 N bk}—lu (7.18)
2 N -2
b = —Nak_l + N br_1 (7.19)

fork=1,2,....

Proof. It is easy to see the recursion relations are satified for £k = 1 by making
use of Eqs. (7.15) and (7.16). Let Uf~"[@o) = ar—1|2) +bx—1_,.. [«). Then

Uflpo) = Uy | ar-12) + bx—1 Z |z)
T#z

= (=1 +2[po)(eol) | —an-1l2) + b1 Y |2)
T#£z

2 2(1;.3_1

= by lz) + ap—1lz) + (N = 1)be—1]0) — |0)
1 wgz 1 \/N 1140 \/N 0
= bt Y )+ ol (N b Y )~ 2 Sy
T#£z x x
= |:N]\_7 2ak_1 + wbk—l} |2)
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2 N —2
+ —Nak—l'i‘ N bk—l}%@%

and proposition is proved. 1

PROPOSITION 7.3 The solutions of the recursion relations in Proposition
7.2 are explicitly given by

ar = sin[(2k + 1)0], by = cos[(2k + 1)6], (7.20)

1
VN -1
for k=0,1,2,..., where

1 1
sin@:wﬁ, cosf = I—N. (7.21)

Proof. Let ¢, = +/N — 1b,. The recursion relations (7.18) and (7.19) are

written in a matrix form,

(o) =) = (2 W ) = (s oman)

Note that M is a rotation matrix in R2?, and its kth power is another rota-
tion matrix corresponding to a rotation angle 2k6. Thus the above recursion
relation is easily solved to yield

ar\ _ k(@0 _ ( cos 2k0 sin 2k6 sinf\ [ sin[(2k + 1)6]
ck ) co )  \ —sin2kf cos2kf ) \ cosf )~ \ cos[(2k +1)0] )
Replacing ¢ by by, proves the proposition. 1

We have proved that the application of Uy k times on |pg) results in the
state

Uf|o) = sin[(2k + 1)0]|z) + cos[(2k + 1)0] Y _ |x). (7.22)

T#z

1
vN —1
Measurement of the state U ]’5|900> yields |z) with the probability

P, 1. = sin®[(2k + 1)4). (7.23)

It is instructive to visualize what is going on with a simple example. Let

us take n = 4, for which N = 2" = 16. The probabilities (aj, b) are given by
2[(2k +1)0
a2 =1 =1/16, a? = sin2[(2k + 1)6],02 = W’

where 6 = sin"!(1/4). Figure 7.1 shows the probability distributions for
k =1,2,3 and 4 where we have chosen z = 10.
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1 1
.
0.8 0.8
0.6 0.6
.
0.4 0.4
0.2 0.2
2 4 6 8 10 12 14 2 4 6 8 10 12 14
(a) (b)
1 . 1
0.8 0.8
0.6 0.6 .
0.4 0.4
0.2 0.2
2 4 6 8 10 12 14 2 4 6 8 10 12 14
(c) (d)
FIGURE 7.1

Probability distribution of U J’?|<p0>, where z is chosen as 10. The number & of
iteration is (a) 1, (b) 2, (¢) 3 and (d) 4. Observe that P, j takes its maximum
value ~ 1 when k = 3.

It should be noted that a; does not increase monotonically with k, but
there is a k (= 3 in the present case) that maximizes P, = a3.

STEP 4 Our final task is to find the k£ that maximizes P, ;. A rough estimate
for the maximizing k is obtained by putting

T 1 /7
(2k+1)9_§—>k_5(%—1). (7.24)
The previous example gave k = 3, which is consistent with this estimate:

0 = sin"'(1/4) ~ 0.25268 — k ~ 2.6.

This can be refined as the following proposition.

PROPOSITION 7.4 Let N > 1 and let

m = {%J , (7.25)
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where |z| stands for the floor of x. The file we are searching for will be
obtained in U*[po) with the probability

1
P,pm>1— N (7.26)
and
m = O(VN). (7.27)

Proof. Equation (7.25) leads to the inequality w/460 — 1 < m < 7/46. Let us
define m by

m us 1
2m+1)0 = = n=-———.
@mF1i=5=m=1"3
Observe that m and m satisfy
. 1
|m —m| < 3 (7.28)
from which it follows that
[(2m + 1)0 — (2 + 1)0] = |(2m + 1)0 — g <. (7.29)

Considering that § ~ 1/v/N is a small number when N > 1 and sinz is
monotonically increasing in the neighborhood of x = 0, we obtain

0<sin|(2m+1)0 —7/2| < sinf

or
1

cos?[(2m 4+ 1)0] < sin? 0 = N (7.30)

Thus it has been shown that

1
P = sin?[(2m +1)0] = 1 — cos?[(2m + 1)0] > 1 — ¥ (7.31)
It also follows from 6 > sin# = 1/v/N that
™ ™ o
=|—| <= <=VN. :

" LwJ <w<7"V (7:32)
1

It is important to note that this quantum algorithm takes only O(\/N )
steps and this is much faster than the classical counterpart which requires
O(N) steps.

Figure 7.2 shows the quantum circuit which implements Grover’s search
algorithm. We gave working space for oracles explicitly.
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—w, | — CIIoD [ measure
“— o= ~
1 & [ < [~ """ —
5 5 5
ST I IS i (<
Uy
] w, I ry H w, H
Ry —__ 1
D
FIGURE 7.2

Implementation of Grover’s search algorithm. Details of the box denoted by
Uy = DRy are given in the lower diagram. The box Uy is repeated m times to
maximize P, ;. The gate Ry is the oracle, and working qubits to implement
the oracle are given explicitly.

7.2 Searching for d Files

Suppose there are d (1 < d < N) files that satisfy a given condition and we
are asked to find all of them. This problem is formulated with a help of an

oracle
fla) = {(1) ((; ; :))' (7.33)

where A is the subset of S,,, whose elements satisfy the given condition. The
subset A is of course unknown to us beforehand.

This problem is solved similarly to the single-file searching problem. Let us
define

Rp=T-2) |2)(z]. (7.34)

z€A

Then an application of Ry on |¢) = Zivz_ol welz) (3, |we]? = 1) yields

Relg) = 3 wala) = 3 wile). (7.35)

A z€A
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Consider

Us = DRy = (=1 + 2[0){0) ( —22| )

z€A

(7.36)

where D = W, RyW,, has been defined in Eq. (7.6). Application of Uy on |p)

produces the state

Uple) = > (20 — wy)|a) + Y (20 +w.)|2),

g A z€A

where

o (ge-ge)

zg A z€A
EXERCISE 7.1 Prove Eq. (7.37).

EXERCISE 7.2 Let |po) = (1/VN) YN |z). Show that

Ufleo) =ar Y l2)+bi Y |a),

zEA T A
where ag = by = 1/v/N and
— N —d
U =~ k-1 + (Tbk—l
po_ 2 N2
k= Ty Ok N Ok

where d = |A].

The above recursion relations are easily solved to yield

ap = 1 sin[(2k + 1)6], b, = L cos[(2k + 1)6),

Vd VN —d

[ d d
sinf = N’ cosf = 1_N'

EXERCISE 7.3 Prove Eq. (7.42).

where

(7.37)

(7.38)

(7.39)

(7.40)

(7.41)

(7.42)

(7.43)

The above solution shows that the application of Uy on |¢o) k times yields

the state

cos[(2k + 1)6

1
UJ’?|<,00> sin[(2k + 1)0 Z|z

\/E zEA Y —d

(7.44)
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In order to maximize the probability with which the desired files are ob-
served upon measurements, we have to maximize

2
Py = Z; (% sin[(2k + 1)9]) = sin?[(2k 4 1)6). (7.45)

By repeating the arguments in the previous section, we arrive at the following
conclusions. Suppose d < N and define

T
=|—]. 7.46

mn LwJ (7.46)
Then the probability P4 ,, with which one of the files in A is observed in the
state Uf"|ipo) satisfies

d

and, moreover,

m = O(/NJd). (7.48)

EXERCISE 7.4 Prove Eqs. (7.47) and (7.48).

Implementation of the Grover’s algorithm with many search files is also
given by the quantum circuit in Fig. 7.2 provided that the oracle Ry is properly
modified.
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Shor’s Factorization Algorithm

Shor’s factorization algorithm is one of the prime examples in which a quan-
tum computer demonstrates enormous power surpassing its classical counter-
part [1, 2]. Although the factorization algorithm may be carried out with a
classical computer, it takes an exponentially longer time (i.e., practically im-
possible) compared to Shor’s quantum algorithm. Shor’s algorithm is almost
identical with the classical one; it consists of a sequence of classical steps with
one exception, which is replaced by a quantum algorithm. Our presentation
here closely follows [3] and [4].
Let us first consider why factorization of a large number is important.

8.1 The RSA Cryptosystem

The RSA public-key cryptosystem and its variations are widely used to trans-
mit messages over public lines, such as Internet communications, securing the
privacy. It is based on the assumption that
“It takes an enormous time to factor a large integer.”
The current chapter is written with a PC with a 1.4 GHz Pentium M CPU.
The table below shows how long it takes for this PC to factor a large integer
N by using FactorInteger commmand of Mathematica;

N time(s]
45878443254366745 0.02
7536576836238936804738907362515346578697687343 3.084

753657683628743673389368047389675407362518902115346578697687 98.88

As the number of digits grows up, it takes more and more time to factorize an
integer. Readers who are interested in challenging large number factorization
should visit the RSA Security website

http://www.rsasecurity.com/rsalabs/node.asp?id=2092
Factorization of a 617-digit decimal number is worth a $200,000 reward!

It should be noted that it is easier to verify whether a number is prime or
not [5], but it is very difficult to find the factors of a big number. The RSA
cryptography [6] makes use of this fact to encode and decode messages.

137
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Let us start with an example. Bob wants to send Alice a message through
a public communication channel. He encrypts his message with a key Alice
publicizes. Although the key is publicly available, Alice is the only person
who can decode the message.

1. Alice prepares two large prime numbers p and ¢, which she keeps secret
and publishes the product N of them. We use the following example

here:

p = 9281013205404131518475902447276973338969
and

q = 9591715349237194999547050068718930514279,
for which

N = 89020836818747907956831989272091600303613264603794247
032637647625631554961638351.

It takes quite long (in practical situations with more digits for N) to
factor NV into p and g. Alice also prepares a number called an exponent
e (< N), which is relatively prime to (p —1)(¢ — 1). She can easily find
such a number:

e = 1234567, gedle, (p— 1)(¢ — 1)) =1,

for example. This number e is also published along with N. She then
calculates the modular inverse d of e mod (p — 1)(qg — 1):

de=1mod (p—1)(g—1) —
d = 378539914571696887228359644724123026498967098699116993
55437019132668645737270799.

Alice keeps d secret.

2. Bob wants to send Alice a message, “hello,” for example. This mes-
sage is transformed into a sequence of decimal numbers less than N
under a certain scheme (ASCII etc.). Suppose his scheme transforms
the message as

hello — 123000456000789000123,

for example. He encodes his message as hello® mod N and sends Alice
the result through an open channel:

encrypted = hello® mod N
= 378539914571696887228359644724123026498967098699
11699355437019132668645737270799.
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3. Alice now decodes the message she received, using d, as

encrypted? mod N = 123000456000789000123.

We outline how the RSA system works below. Readers who are eager to
proceed to Shor’s algorithm may skip this part and jump to the next section.
Let us start with Fermat’s little theorem.

THEOREM 8.1 Let p be an odd prime number and a be any positive in-
teger which is not a multiple of p. Then

a?~' =1 mod p. (8.1)

Proof. First we prove the congruence
m? —m =0 mod p (8.2)

for any m € N by induction. Equation (8.2) is true for m = 1. Let (8.2) be
satisfied with m = k. Then we obtain for m =k +1

(k417 — (k1) = K + (fl’)kp—1+<§>kp—2+...+ (pf1>k_k
= kP — k mod p,

where we noted that (i) is a multiple of p for any k satisfying 1 < k <p—1.
Since we assumed kP — k = 0 mod p, we obtain (k + 1) — (k+ 1) = 0 mod p.

Now let m = a and write Eq. (8.2) as a”? —a = a(a?~! — 1) = 0 mod p.
Since a is not divisible by p by assumption, a?~! — 1 must be divisible by p.
In other words, a?~! — 1 = 0 mod p, and Eq. (8.1) has been proved. ]

Suppose N = pq, p and ¢ being primes, and e (1 <e < (p—1)(g — 1)) is
the encryption exponent which is coprime to (p — 1)(¢ — 1) as was assumed
previously. The modular inverse d of e satisfies de = 1 mod (p — 1)(¢ — 1) and
1<d<(p—1)(g—1). Let m (< N) be a message to be encrypted using the
public key e as Mencrypted = m® mod IN. Decryption is possible only with the
secret key d since

mgmypmd = m® = m mod N.
In fact, the congruence de = 1 mod (p — 1)(¢ — 1) leads to de = s(p — 1)(q —

1)+ 1 (s eN) and
mde — ms(p—l)(q—1)+1 =m |:ms(q_1):|17—1 '

Now suppose m is not a multiple of p. Then Fermat’s little theorem asserts
that [ms(q_l)}p_l = 1mod p. If m is a multiple of p, then m? = 0 mod p.
By making a trade of p for ¢, we obtain [m*®~1]9=1 = 1 mod g if ¢ does not
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divide m, while m% = 0 mod ¢ if ¢ divides m. Since p and ¢ are prime, these
equalities imply m? = m mod N.

The RSA cryptosystem depends heavily on the belief that factorization of a
large number into its prime factors is practically impossible. Shor’s algorithm
would demolish this myth, as we will see below.

8.2 Factorization Algorithm

Let p and ¢ be prime numbers and let N = pq. We want to factor N into a
product of p and ¢. A naive method for the factorization takes v/N trials, in
the worst case, before p and ¢ are found. Since VN = (/2102 for N = 27,
this method is inefficient. It turns out that the following algorithm is best
suited for our purpose.

STEP 1 Take a positive integer m less than N randomly. Calculate the greatest
common divisor ged(m, N) by the Euclidean algorithm. If ged(m, N) #
1, we are extremely lucky: m is either p or ¢, and we are done. Suppose
ged(m, N) = 1.

STEP 2 Define fy : N — N by a — m® mod N. Find the smallest P € N, such
that m” = 1 mod N. The number P is called the order or period.
It is known that this takes exponentially large steps in any classical
algorithm, but it takes only polynomial steps in Shor’s algorithm. A
quantum computer is required only in this step, and the rest may be
executed in polynomial steps even with a classical computer.

STEP 3 If P is odd, it cannot be used in the following steps. Go back to step 1
and repeat the above steps with different m until an even P is obtained.
If P is even, proceed to step 4.

STEP 4 Since P is even, it holds that
(m*? —1)(m*? +1) = m"” —1=0mod N. (8.3)

If m*/2 +1 = 0mod N, then gcd(m*/? —1,N) = 1; go back to step 1
and try with different m. If m®/2 +1 % 0 mod N, m*/? — 1 contains
either p or ¢, and we proceed to step 5. Note that the number m/2 — 1
cannot be a multiple of IV in the latter case. If this is the case, it leads
to m?/2 = 1 mod N, which contradicts the assumption that P is the
smallest number which satisifes m? = 1 mod N.

STEP 5 The number
d = ged(m®/? —1,N) (8.4)

is either p or ¢, and factorization is done.
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EXAMPLE 8.1 An example will clarify the above steps. Let N = 799 =
17477

STEP 1: The choice m = 7 leads to gcd(799,7) = 1. So this is OK.

STEP 2: It follows from Fig. 8.1 that 73%® = 1 mod 799. Thus P = 368.
Of course we have cheated here and a quantum computer must be used for a
large N.

STEP 3: The order thus found is even: P/2 = 184. Let us proceed to step 4.

STEP 4: (7' — 1)(7'¥ 4+ 1) = 0 mod 799. It is easy to see that
ged (718 +1,799) = 17 # 1,
and we proceed to step 5.

STEP 5: 7% — 1 and N = 799 must have a common prime factor. Indeed,
it is found that d = ged(7'%* —1,799) = 47. It is also found that 799/47 = 17,
which leads to 799 = 47 - 17.

EXERCISE 8.1 Let N = 35. Repeat the above steps to find the factors
of N. (There are m whose orders are less than 10. If your m does not give
P < 10, try another m. Good luck!)

It should be emphasized again that a quantum computation is required only
in step 2, where the order P of the function f : N — Z/NZ (a — m® mod N)
must be found. Here Z/NZ stands for the set of equivalence classes in which
z and x + kN (k € Z) are identified. Clearly, we may take x satisfying
0 <x < N —1 as a representative of each equivalence class.t

8.3 Quantum Part of Shor’s Algorithm
8.3.1 Settings for STEP 2

Let N = pg € N be a number to be factored, where p and ¢ are primes. Find
n € N, such that

N? < 2" < 2NZ. (8.5)
Let us write @ = 2™ hereafter. Denote f : a — m® mod N restricted on
Sp,={0,1,...,Q — 1} (8.6)

*This example is repeatedly studied in due course.
fIn fact = 0 is omitted since m and N are coprime to each other.
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(a) Graph of 7* mod 799. (b) The same graph as (a) with the range 0 ~ 10.
The point encircled is at z = 368, which shows that P = 368 is the smallest

positive integer satisfying 7 = 1 mod 799.
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by the same symbol f : S, — Z/NZ.*.
Our quantum computer has two n-qubit registers which we call | REG1) and
IREG2):

|REG1>|REG2> = |a>|b> = |6Ln_1 .. .a1a0>|bn_1 .. .b1b0>, (87)

where decimal numbers a, b € S,, are expressed in binary numbers in the RHS;

n—1 n—1
a:Zaﬂj,b:Zbﬂj.
j=0 j=0

In the following, extensive use of QFT will be made on an n-qubit system,
which is given by

|z) — Ugrralz) = \/_ Z W y), (8.8)

where z,y € S,, and w,, = exp(27i/Q). We will denote Uqpry, by F hereafter.

8.3.2 STEP 2

Let us have a closer look at step 2.

STEP 2.0: Set the registers to the initial state
|tbo) = |IREG1)|REG2) = |00...0)|00...0). (8.9)

n qubits n qubits

STEP 2.1: The QFT F is applied on the first register;
Q-1

o) = [0)10) +5" ) = f 2 [2)10) (8.10)
The first register is in a superposition of all the states |z) (0 < 2 < Q — 1),
as remarked in Chapter 6.
STEP 2.2: Let us define a function f : S,, — Z/NZ by
f(z) =m®mod N, =z€S,. (8.11)

Suppose that the unitary gate Uy realizes the action of f on x in such a way
that Us|x)|0) = |z)|f(x)). Apply Uy on the state prepared in step 2.1 to yield

@
L

Uslhr) = liha) = | (@) (8.12)

0

al-

8
Il

1t is clear that the range of f is Z/NZ since 0 < f(z) < N—-1</Q—-1<Q—1,VYx € S,.
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This shows that the two registers are entangled in general.

STEP 2.3: Apply QFT on |[REG1) again to yield

| Q1o
i) = (F@Dla) = 5 3 > wn™lull @)
z=0 y=0
BRI 15 ) 1T
=g 2 oI 2 IO Wy G199
where
Q-1
T) = 3wl )). (8.14)
=0

STEP 2.4: |REG1) is measured. The result y € S,, is obtained with the
probability

Prob(y) = 7”|Té22)>”27 (8.15)

and, at the same time, the state collapses to

()
@D

The measurement process generates a random variable following a classical
probability distribution S over S, in which “symbols” y € S,, are generated
with the probability (8.15).

ly)

STEP 2.5: Extract the order P from the measurement outcome.

EXERCISE 8.2 Let N =21 and m = 11. Find n which satisifes Eq. (8.5).
Find also the order P.8 Repeat the above steps to find the wave function |t3)
and Prob(y) (y € S»).

8.4 Probability Distribution
Let us study the probability distribution Prob(y) in detail.

8The order is less than 10 in this case.
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PROPOSITION 8.1 Let Q = 2" = Pqg+r, (0 <r < P), where ¢ and r
are uniquely determined non-negative integers. Let Qg = Pq. Then

rsin? (52 (92 +1)) + (P —r)sin? (750 - @

) (Py # 0 mod Q)

Prob(y) = Q7 sin (T)
2 2
r(Qo+ Pép—;éP )% (Py =0 mod Q).
Proof. Tt is found from the definition that¥
Qo—1
Zw‘”lf Z W™ f(x Z W™ f(x
z=Qo
P-1Qo/P-1
=3 30 W (P )
zo=0 x1=0
r—1
3w P@IPlY f(P(Qo/P) + )
xo=0
P-1 Qo/P—1 r—1
= Z w0y Z w T | | £(z0)) + Z w Ty~ PY(Qo/P)| £ (7))
zo=0 x1=0 x0=0
Qo/P—1
S DU SR
xo=0 x1=0
Qo/P-1 r—1
FY Y ) 3 b )
xTo=T x1=0 xo=0
r—1 Qo/P
=Y WY W | f(o)
xo=0 x1=0
P-1 Qo/P—-1
Y WY W f(wo)).
xo=T x1=0
Note that the map f: a— m mod Nis1l:1on{0,1,2,...,P—1}, which we

prove now. Suppose m® = m® mod N (a > b); then mb( b—l) =0 mod N.
Since m and N are coprime, so are m? and N. Then m” > m®~? = 1 mod
N, which contradicts the assumption that P is the smallest natural number
such that m¥ =1 mod N. This implies that |£(0)), |f(1)),...,|f(P —1)) are

Y We drop n from wy, to simplify our notation.
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mutually orthogonal. Accordingly

Qo/P 2 Qo/P—-1 2
AT =r| S w | 4 (Por)| 3 w P
11:0 $1:0

In case Py = 0 mod @, we put Py = aQ, a € N and obtain

w—wal — e—27m(Py/Q)m1 — e—27rza11 - 1.

Therefore

ey =r-(Le1) +p-n (%)

which leads to the result independent of y,

Prob(y) = r(Qo + PLQQQ( —r)Q3 _ g+ 1)252(13 — r)qz' (5.16)

If Py # 0 mod @, on the other hand, we obtain

+(P—r)

w—Py(Qo/P+1) _q 2

w—Py—1

w—Py(Qo/P) _ 1
w— Py —1
e—(2mi/Q)Py(Qo/P) _ q
e—(2mi/Q)Py _

(TW)IT(y)) =

2
+(P-r)

e—(2mi/Q)Py(Qo/P+1) _ | 2

e—@ri/QPy _ |

Here we find from

, 6
le?® — 1|2 = 2(1 — cos #) = 4sin? 3

that
sin? gpy <% + 1> sin apy%)
(TWIL () =r 27 p + (P—T)ﬁ
Sin- — Ssin- —
Q" Q’

Therefore, the probability distribution is given by

rsin? il @ >] — ) sin { @]

Iz " G (Fen)] s ne (G
Q? QQSin2%Py 7
(8.17)

which proves the proposition. 1

Prob(y) =
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COROLLARY 8.1 Suppose Q/P € Z (namely Qo = Q). Then the proba-
bility of obtaining a measurement outcome y is

0 (Py#0mod Q)
Prob(y) =

1 J—
2 (Py =0mod Q)

Proof. When Py # 0 mod @, r = 0 implies Q = Pq. Therefore

Psin® my
@Q? sin T
In case Py = 0 mod @, we obtain
PQ? 1

Figure 8.2 shows the probability distribution Prob(y) with the parameters
N =799 = 17-47, P = 368,Q = 220 = 1,048,576. Note that N? = 638,401
and 2N? = 1,276,802 so that they satisfy N2> < Q < 2N?2. Then Q =
144 mod 368 — r = 144,Q¢ = Q —r = 1,048,432, — ¢ = Qo/P = 2849.
Accordingly, Prob(y) exhibits sharp peaks at integral multiples of ¢ = 2849.
Figure 8.3 shows Prob(y) for 8,520 < y < 8,580. Observe that it has a sharp
peak at y = 8548, for which 8548/2849 = 3.00035. Compare the numbers

Prob(8547) = 0.00005393, Prob(8548) = 0.00245753, Prob(8549) = 0.00010892.

For neighboring numbers, we obtain 8547/2849 = 3 and 8549/2849 = 3.0007.
Note that there are P = 368 sharp peaks, and Prob(y) at each peak is roughly
on the order of 1/386 ~ 0.00272.

Since y is restricted within the range 0 < y < Q—1, repeated measurements
reveal that the minimal distance between the peaks is ~ 2849, which yields
the approximate order P = @/2849 ~ 368.0505. The order thus obtained is
probabilistic, and its plausibility must be checked by carrying out step 3 ~
step 5. Needless to say, this strategy is not practical when N is considerably
large. There is a powerful method of continued fraction expansion by which
we find the order P with a single measurement of the first register, which is
the subject of §8.5.

It will be shown that factorization of a number N = pq is carried out
efficiently by a quantum computer. A quantum algorithm is employed to find
the order of the function f(xz) = m® mod N, and the other steps are done
with classical algorithms. The quantum circuit in Fig. 8.4 implements the
quantum part of the algorithm where Uy and F stand for the map

Uslx)|0) = |a)|m® mod N)
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FIGURE 8.2
(a) Probability distribution Prob(y) for 0 <y < 10,000. (b) Same graph for
the range 100,000 < y < 110, 000.

and the QFT, respectively.

It is instructive to recollect step 2 with our example of 799 = 17 - 47, for
which n = 20. We take m = 7 as before.
STEP 2.0: The initial state is

[%0) = 10)[0). (8.18)
STEP 2.1: The QFT on the first register results in

1) =

Q—
Z Y, (8.19)

ﬁ\
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FIGURE 8.3
Probability distribution Prob(y) for 8,520 < y < 8, 580.
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FIGURE 8.4
Quantum circuit to find the order of f(z) = m?® mod N.

where Q = 220 = 1048576.

STEP 2.2: Application of Uy on |¢1) produces

Q-1

|h2) = | )[7* mod 799)

S\H

= T{ 1)+ [1)[7) +12)|49) + [3)[343) + [4)|4) + [5)[28)
o [368)[1) + [369)]7) + [370)]49) +
+]Q — 2)|756) + |Q — 1)]498) |. (8.20)

Note that there are only P = 368 different states in the second register.

STEP 2.3: The QFT with w = €27/?9, Q = 27, is applied to the first register.
This results in

Q-
vs) = \/— Z \/— Z w™™y)|7* mod 799)
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I
¢

Ql =

)T (), (8.21)
0

<
Il

where

Q-1
IT(y)) = Z w™™|7% mod 799)

H
Ho

Z e 2™/ Q|7 mod 799)

— 1)+ T w0 a9) P 3a3) +
+w —368y|1> —369y|7> + w—370y|49> —37ly|343> +

+ot
+w T BIL) + WY T) 4w |49) + wTTY|343) +
+.o+

+w—1048432y|1> +w—1048433y|7> +w—1048434y|49> +w—1048435y|343>

.. w 1098575V 498)
= (14 w308y 4 =736y |y ,—1048482y) )

(WY 4w |, TTITY g, — 1048433y 7y

+(w_2y 4w 30 T8 w_1048434y)|49>

+(w_3y 4wy L w_1048435y)|343>

+...

(w8 T T8 L )|704). (8.22)

There are 368 ket vectors in the above expansion. The coefficient of each

vector becomes sizeable when and only when y is approximately a multiple of
2849. For example,

2849 2849
> w IR = 0.608696 + 0.000262611i, | Y~ w2 | = 0.608696
k=0 k=0
for y = 1 while
2849 2849
D w kY = 2315.79 + 1408.034, | Y w S| = 2710.25
k=0 k=0
for y = 8548. The previous result is recovered as
2
Prob(8548) = 368 (271620'25) = 0.00245848. (8.23)

The order P may be inferred by repeating measurements. However, the
number of measurements required to guess P grows rapidly as N becomes
larger and larger. We certainly need a technique with which we may find P
with a single measurement, which is the subject of the next section.
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8.5 Continued Fractions and Order Finding

We introduce a few symbols. For Vx € R, we define the ceiling [z] =
inf{n € Z|xr < n}. In other words, [x] = n, where n — 1 < z < n. For
example, [2] = 2, [2.6] = 3, [-4.5] = —4 and [—5] = —5. Similarly the
floor is defined as [z| = sup{n € Z|n < z} for Yz € R. The floor function
|x] is also called the integer part of . For example, [4.5| =4, |2] = 2 and
| —4.7] = —5. The floor function has been already introduced in §6.4.

Let us consider continued fraction expansion of a rational number.
Continued fraction expansion exists also for an irrational number, but it does
not terminate. The continued fraction expansion of x € Q is

1
T = ap+ 1 , (8.24)
a1 + 1

as + ——
I
...+a_q

where a; € N for j > 1. This number is also written as
x = lag, a1, .., 0aq)- (8.25)

Let us consider @ = 17/47, for example. z is written in a continued fraction
form as

17 1
17 17
1 1
2+
2+ 1
4 14+ ——
1+ — 1
13 3+ -

4

Let us summarize what we have done to obtain this expansion. We first
find the integer part of z as ap = [17/47] = 0 and the fractional part as
ro=x —ap = 17/47. We invert 17/47 and find that the integral part of 1/r¢
isay = |[1/ro] = [47/17] = 2, and the fractional part is ry = 1/rg — |1/r¢] =
13/17. The interger part of 1/rq is ag = |1/r1| = 1, and the fractional part
isrg =1/r1 —|1/r1] = 4/13. The integer part of 1/r3 is [1/r2| = 3, and the
fractional part is r3 = 1/ro — |1/72] = 1/4. The expansion terminates when
r; has the numerator 1 (j = 3 in the present example).

EXERCISE 8.3 Find the continued fraction expansions of x = 61/45 and
x =121/13.

The algorithm to obtain a continued fraction expansion is summarized as
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1. Let = be a rational number to be expanded. Let ag = |x] and rg =

1/z — ao.
2. Let m = 1 and set a,, = and r,, = — am. Repeat this
Tm—1 Tm—1
step until 3y = 0 is reached. M is always finite when z is a rational

number.

3. The continued fraction expansion of x is

1
T =ao+ i = lag,a1,...,an—1,anm].

aj + i
1

as +

1
ap—-1+—
an

Given = = [ag, a1, ...,anm], the continued fraction [ao, a1,...,q;] (j < M)
is called the jth convergent of x. The Mth convergent is z itself. Note that
[ag, a1, ...,an] = [ag,a1,...,ap — 1,1]. Thus the number M may be made
either even or odd.

With the above preliminaries, we come back to Shor’s algorithm. Suppose
y is obtained upon the measurement of the first register in Shor’s algorithm.
Then y/Q is a rational number close to n/P with some n € N. Now we show
that the following algorithm finds the order P of m® mod N.

1. Find the continued fraction expansion [ag, a1, ...,ap] of y/Q. We al-
ways have ag = 0 since y/Q < 1.

2. Let pg = ag and ¢ = 1.
3. Let p1 = a1po+ 1 and ¢1 = a1qp.

4. Let p; = aipi—1 + pi—2 and ¢; = aiqi—1 + ¢i—2 for 2 < 7 < M. We
obtain the sequence (po,qo), (P1,q1),---,(Pa,qr). It is shown below
that p;/q; is the jth convergent of y/Q).

5. Find the smallest k (0 < k < M) such that |pr/qx — y/Q| < 1/(2Q).
Such k is unique.

6. The order is found as P = qy.

EXAMPLE 8.2 Let us consider our favorite example. Let N = 799, Q =
220 = 1048576 and m = 7. The error bound is 1/(2Q) = 4.76837 x 10~ 7.
Suppose we obtain y = 8548 as a measurement outcome of the first register.
We expect that y/@ is an approximation of n/P for some n € N.

1. The continued fraction expansion of 8548/1048576 is [0, 122, 1, 2,44, 5, 3]
and M = 6.
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2. Let pg = ag =0 and g9 = 1.

3. Weobtain p; = a1pp+1 =122x0+1=1and ¢ = a1qo = 122x1 = 122.
We find |p1/q1 — y/Q| = |1/122 — 8548/1048576| = 4.47133 x 1075 >

1/(2Q).

4. py =aspr +po =1, @2 = a2q1 + qo = 123 and |p2/q2 — y/Q| = [1/123 —
8548/1048576 = 2.19 x 107> > 1/(2Q).

5. p3 = azpa +p1 =3, g3 = azq2 + q1 = 368 and [p3/q3 — y/Q| = |3/368 —
8548,/1048576| = 1.65856 x 10~7 < 1/(2Q). We have obtained k = 3.

6. The order is found to be P = g3 = 368.

EXERCISE 8.4 Suppose y = 37042 is the measurement outcome in the
above example. Find the order P by repeating the above algorithm. Suppose
y = 65536 has been obtained in the next measurement. Apply the above
algorithm. What is the “order” you find?

We must know when we obtain the correct order and when not. Here is the
sufficient condition.

The correct order P is obtained in the above algorithm when the measure-
ment outcome y belongs to the set

d_£<

Cz{y}ﬂde{l,z...,P—l}, ’F z _%, gcd(P,d)zl}. (8.26)

The set C is not an empty set. In fact, for any P < @ there always exists
y € {0,1,2,...,Q — 1} such that —P/2 < Q — yP < P/2, from which we
obtain

‘i _ g‘ L

P Q] 2Q
Therefore, the set C contains at least one element y, for which d/P =1/P. It
is important to note that it is impossible to tell whether a particular outcome
y is in C or not since P is not known in advance.

Let us look at the second case y = 65536 in the exercise above. Although
we verify that [23/368 — 65536/Q| = 0, we also have ged(368,23) = 23. The
next smallest |[d/P —y/Q)| is attained when d = 22 and d = 24, for which case
|d/368 — 65536/Q| = 0.00271 > 1/(2Q). Therefore an integer d € C does not
exist for this case.

We outline the proof of the factor-finding algorithm based on the contin-

ued fraction expansion. We have y/Q = [ag,a1,...,apn] in our mind in the
following lemmas.
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LEMMA 8.1 The sequences ag, a1, - .. ,ay and (po, o), (p1,q1), - - - (P, qar)
obtained in the algorithm introduced in this section satisfy

[a()] = @, [a(), a1] = ]ﬂ, ceey [CL(), A1,y ..., CLM] = p—M (827)
qo q1 qm
Proof. We prove this by induction. It is easily verified that [ag] = po/qo and
[a0,a1] = p1/q1. Suppose [ag, a1, ..., ax] = pr/qx. Then

[ag, a1, ..., ak, ag+1] = [ao, a1, ..., ak + 1/ag41]
_ (ap +1/aps1)pr—1 + pr—2
(ar +1/ag1)qu—1 + qr—2
apy1(axpr—1 + pr—2) + Pr—1
ap+1(arqe—1 + qe—2) + qr—1
k+1Pk +Pk—1 _ Pk41
h1Qk + Q-1 Qrt1

LEMMA 8.2 All the fractions p1/q1,p2/q2, ..., pa/qu are irreducible.

Proof. We first prove
Pe-1ak — qr—1Pk = (—1)* (8.28)

for 1 < k < M by induction. This is obviously satisfied for k¥ = 1 since
Poq1 — qop1 = 0 — 1 and for k£ = 2 since P192 — q1p2 = (a1a2 + 1) —ajay = 1.
Suppose pr_a2qr—1 — qr—2pk—1 = (—1)*~1 is satisfied. Then

Ph—1Gk — Qk—1Pk = Pk—1(0kqr-1 + qr—2) — qr—1(CkPK—1 + Dr—2)
k

= Pr—1Qk—2 — Qr—1Pk—2 = (—1)".

Now suppose pi and g are not coprime and let ged(pk, qx) = di, > 2. Put
pr = dipj, and g = diqj, where ged(py, q;,) = 1. Then pr_1gr — qr—1pK =
di(pr—14), — qk—1P,) = (—1)¥. The second equality is a contradiction since
di > 2. |

LEMMA 8.3 Let p and ¢ be positive integers such that ged(p,¢) = 1 and =
be a positive rational number. The rational number p/q is a convergent of x
if they satisfy the inequality

p 1

-z < —. 8.29

‘q 1= 2 (8.29)
Proof. Let p/q = |aog, a1, .- ., an]. We assume, without loss of generality, that

m is even. Note that p = p,, and ¢ = g,
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Let § = 2¢%(x — p/q). We find |§| < 2¢?/(2¢%) = 1 by assumption. The
statement of the lemma is trivial when ¢ = 0. Suppose 0 < 6 < 1. (Redefine
d by =6 if § < 0.) There is a rational number « such that

aPm + Gm—1
r=——"""= [a’Ova/lv"'va/maa]'
Adm + dm—1
The condition a > 1 must be satisfied for [ag, a1, ..., am, @] to be a continued

fraction expansion of x. By inverting the above relation, we obtain

_ Pm—-1—Tqm—-1 2Qm(pm—1 - me—l)
 ZGm — DPm )

2(Pm—14m — Gm-1Pm)  Gm-1

) Gm

It has been shown in the proof of Lemma 8.2 that p.,_1¢m — ¢m_1pm = 1 for
an even m, from which we obtain &« = 2/6 — ¢;n—1/¢m > 1, where we noted
0<d<1and gy > ¢n_1. Therefore o has a continued fraction expansion
[bo, . - ., byp] with by > 1 and we obtain « = [ag, . .., am, bo, - . ., by, from which
p/q = [ao, - .., am] is shown to be a convergent of . 1

«

We note that the above lemma does not claim the uniqueness of the con-
vergent p/q = pm/qm. There may be many convergents py/qr of x, which
satisify
< L
=0

Pk
qk
It simply claims that a rational number p/q satisfying |p/q— x| < 1/2¢? is one
of the convergents of z. It should be also noted that there may be convergents
of x, which do not satisfy the above inequality.

— T

LEMMA 8.4 For a given N, a measurement outcome y and @, such that
N? < @ < 2N?, there exists a unique rational number d/P such that 0 <

P < N and J

Y 1
— - < —. 8.30
P Q| 20 (8.30)
Proof. Suppose there are two sets of (d, P) satisfying this condition, which we
call (dq, P1) and (dz2, P2). Then we find

G _da)_ |y Yy b
Pl P2 Pl Q Q P2
<|g-Ll |- s mtam-sswe
P Q| Q@ P29 20 Q~ N?
It follows from P; < N that
1 > di dy _ |di Py — da Py S |dy Py — da P |
N2 = |P P PP N2 ’

from which we obtain |dy P, — doPi| < 1, namely dq Py = do Py = 0. 1
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Now we are ready to justify the order-finding algorithm.

PROPOSITION 8.2 Suppose y € C. Then the number P obtained by
the algorithm in this section is the correct order of the modular exponential
function m® mod N.

Proof. Let [ag, a1, .. .,apn] be the continued fraction expansion of y/Q. Since
y € C, there exists d € {1,2,..., P — 1} such that

d y 1
diP,d)=1, |=—=| < —.
ged(P,d) ,‘P Q}_ZQ
Such d must be unique due to Lemma 8.4. By noticing that P < N and
P? < N? < @Q, we also obtain

d y 1 1 1

< <<
P 0|20 27 a2
It then follows from Lemma 8.3 that d/P is one of the convergents of y/Q =
[ag, a1, ..., an]. Let us call this convergent p, /qm.
Now we show that this m is the smallest k which satisfies

Dk y<1

o QT 2Q

It is obvious that this inequality is satisfied for any py/qx such that m < k <
M. However, Lemma 8.4 tells us that there is only one py/qr which satisfies
gr < N and the above inequality. Therefore ¢ > N for k£ > m and we have
shown d/P = pm,/qm. Since ged(d, P) = ged(pm, ¢m) = 1 due to Lemma 8.2,
we must have g, = P. 1

In summary, a single measurement of the first register provides the correct
order if the measurement outcome y belongs to the set C. We have seen in
Example 8.2 that y = 8548 satisfies |[3/P — y/Q] < 1/(2Q) and hence y € C.
It should be kept in mind that P, and hence C, is not known in advance.

8.6 Modular Exponential Function

The block diagram of the quantum circuit to find the order of f(x) = m* mod
N is depicted in Fig. 8.4. It has been shown in §6.4 that an n-qubit QFT
circuit may be implemented with ©(n?) elementary gates. We now work out
the implementation of the other component in Shor’s algorithm, the modular
exponential function,

Us|x)|0) = |z)|m® mod N).
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There are several proposals for the implementation of this function; some save
computational steps while the other saves the number of qubits required. Here
we follow the standard implementation given in [7] and [4].

Implementation of a modular exponential function is divided into several
steps. We need to implement

1. Adder, which outputs a 4+ b given non-negative integers a and b.
2. Modular adder, which outputs a + b mod N.
3. Modular multiplexer, which outputs ab mod N.

4. Modular exponential function, which outputs m* mod N.

8.6.1 Adder

Let a = an_12”_1 + &n_22n_2 +...+a124+ag and b = bn_12n_1 + bn_22"‘2 +
...+b124+ by be non-negative integers and s = 5,27 +5,_12" ' +...+ 512+ 50
be their sum. Let ¢ denote the carry bit. The binary numbers sy, satisfy the
following recursion relations,

50 = ag @ by, co = agbo, sk = ar O by O c_1,
(8.31)
ek = apbr B apcr—1 P brcr—1, (1 <k <n),

where & is addition mod 2, axby = ap A by and we formally put a,, = b, = 0.
Note that s, = ¢,—1. Carry bit ¢k is 1 only when at least two of ay, by and
ck—1 are 1. This condition is expressed in the final relation in Eq. (8.31).

It is instructive to examine how two-digit numbers are added quantum
mechanically. Let a = a12+ag and b = by2+ by, for which s = 59224 5,2+ 5.
It follows from Eq. (8.31) that

80 = ag @ by, co = agby, s1 = a1 ® b1 D agbo,
(8.32)
s =c1 = a1b1 ® apbo(a1 & b1).

Now we want to implement a quantum circuit, which we call ADD(2), carrying
out the above algebra. Our implementation is generalized to an n-qubit adder
ADD(n) subsequently. We have to align qubits in such a way that the gate
acts on them in a nice way. It turns out that the following order is the most
convenient one in our implementation;

ADD(2)|O, aop, b(), 0, ai, bl, 0> = |0, ap, So, 0, aj, S, 52>, (833)

where the first and the second 0 are scratch qubits to deal with carry bits,
while the third 0 is ultimately replaced by the sum ss. We choose a; to remain
their input values while b; (i = 0,1) are updated to s;. We further decompose
ADD(2) into a one-bit adder SUM and carry bit gate CARRY.
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FIGURE 8.5
Quantum circuit to sum two binary bits and a carry bit. It will be also denoted
as a black box called SUM.

The action of SUM is defined as
SUM|ck—1, ag, br) = |ck—1, ak, ar D b B k1), (8.34)

where ci_1 is the carry bit from the last bit. We drop all the subscripts
to simplify our notation hereafter. By recalling that the CNOT gate, whose
action is Ucnorla,b) = |a,a & b), works as a mod 2 adder, we immediately
find the circuit given in Fig. 8.5 implements the SUM gate. Let us make sure
it works OK. We abuse the notation so that CNOT};; denotes the CNOT gate
with the control bit ¢ and the target bit j whose action on a qubit k(# i,7)
is trivial. For example CNOT5 really means CNOT15 ® I. According to this
notation, we obtain

SUM]|¢, a,b) = CNOT93CNOT3|¢, a,b) = CNOTaslc, a,b @ c)
=lc,a,a &b & c).

Next we consider the CARRY gate whose action is defined as

CARRY |ck—1, ag, bk, 0) = |ck—1, ak, ar D by, cx = arbr ® agcr—1 D brcr—1).
(8.35)
By considering that the carry bit ¢ is 1 if and only if two or more of ay, bx
and ci—; are 1, we find that the quantum circuit given in Fig. 8.6 implements
the CARRY gate. In fact, we verify

CCNOT13.4CNOT33CCNOTa3.4c, a, b, 0)

= CCNOT13.4CNOTa3|c, a, b, ab) = CCNOT13.4|c, a,a O b, ab)
=lc,a,a®b,ab® c(a® b)) = |c,a,a P b,ab® ac P be)

= CARRY]|c, a, b, 0),

where we have dropped the subscripts for a,b and ¢ for simplicity. Here
CCNOT;;., stands for the CCNOT gate with the control bits ¢ and j and
the target bit k. We have explicitly written nontrivial gates only, and all the
other qubits are acted by the unit matrix I as before.
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FIGURE 8.6
Quantum circuit which implements the CARRY gate.
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FIGURE 8.7

Quantum circuit to implement the ADD(2) gate, which adds two 2-bit num-
bers.

EXERCISE 8.5 Suppose the fourth input qubit is not 0 but a binary num-
ber ¢/. Show that the output state of the CARRY gate shown in Fig. 8.6 on
this state is

CARRY|c,a,b,¢) = |c,a,a ® b,ab® ac ® be ® c'). (8.36)

Now we are ready to implement ADD(2) with these gates, which is explicitly
shown in Fig. 8.7. Note that carry bits are required to compute s;. Therefore
we evaluate ¢y and c; first to compute s; and so The bit by is updated to
ao @ by during this process. We need to apply the inverse gate CARRY !
on |0, ag, ag ® by, ¢p) to put it back to |0, ag, by, 0) so that the state produces
|0, ao, o, 0) after applying the SUM gate of the layer VI. Thus the prescription
is

Layer I Compute ¢g = agbg from ag and by with the first CARRY.
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FIGURE 8.8

Inverse of the CARRY gate.

Layer II Compute ¢; = s5 from a1,b; and ¢y with the second CARRY.

Layer III If follows from Eq. (8.35) that the input by is updated to a1 @ by in the
layer IT and we need to put this bit back to b; to evaluate s;. This is done
by the CNOT gate as CNOT|a1,a1 D b1) = |a1, a1 B b1 S a1) = |a, b1).
We need by for the next step.

Layer IV Apply the SUM gate on |cp, a1, b1) to obtain s; = a3 & by P co.

Layer V. We need to compute sg = ag ® by, for which we have to retrieve bg.
(Note that by is mapped to ag @ by in the second layer.) This is done by
applying the CARRY ! gate. This gate also puts the carry bit ¢y back
to the initial state |0) for further use.

Layer VI Finally the SUM gate is applied on the input bits |0, ag, by) to produce
|07 ap, SO> .

Before we verify the circuit in Fig. 8.7 indeed implements the ADD(2) gate,
we look at the newly introduced CARRY ~! gate in some details. We obtain,
from the implementation of the CARRY gate in Fig. 8.6, that

CARRY ! = (CCNOT3,4CNOT23CCNOT3.4)"
= CCNOT};,,CNOT};CCNOT},,,
= CCNOT43,4CNOT3CCNOT) 3.4, (8.37)

where we noted that CCNOTT = CCNOT and CNOT' = CNOT. Therefore
CARRY ! is obtained by reversing the order of the constituent controlled
gates in the CARRY gate as depicted in Fig. 8.8.

EXERCISE 8.6 Show explicitly that
CARRY “'i¢,a,b,¢) = |c,a,a ® b, a(a ®b) @ (be) @ ). (8.38)

Now we are ready to verify the implementation of the ADD(2) in Fig. 8.7.
We denote the unitary matrix correspoinding to the kth layer by Uy. We have

ADD(2)|05 ag, b07 0; at, bl; O>
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= UviUvUrvUmUnUi|0, ag, bo, 0, a1, b1, 0)

= UviUvUrvUmUn |0, ag, ap @ bo, aobo, a1, b1, 0)

= UviUvUrvUni|0, ag, ap @ bo, agbo, a1, a1 @ by, a1by © araobo @ biagbo)
= UviUvUrv|0, ag, ag @ bo, agbo, a1, b1, a1by © aiagbo © biagbo)

= Uy1Uv|0, ag, ag @ bo, agbo, a1, a1 ® by ® agbo, a1by & ajagbo ® bragbo)
= Uv1l|0, ag, bo, 0, a1,a1 ® b1 & agbo, a1by & araoby ® biagbo)

=10, ap, ap ® by, 0, a1, a1 ® by ® agbg, a1b1 ® arapby ® bragby).

The last line of the above equation is identified with |0, ag, so, 0, a1, $1, S2).

The adder for n-bit numbers, which we call ADD(n), is obtained immedi-
ately by generalizing the above implementation. Figure 8.9 shows the ADD(n)
gate. The most significant sum bit s, of a + b is evaluated first. We need
to calculate all the carry bits ¢; for this purpose, and the left layers of the
gates before s, is obtained are devoted for calculating the carry bits. Then
we reverse all the operations, except for the most significant bit, to restore
{a;} and {b;} with which {s;} are evaluated as b; — s; = a; ®b; ® c;—1. The
readers should verify the circuit indeed implements n-bit addition.

8.6.2 Modular Adder

Let us consider the modular adder, denoted MODADD(n), which evaluates
a + bmod N for given inputs a and b, where a,b < N. We need to introduce
an n-qubit subtraction circuit to this end. It is shown that ADD(n)~!, the
inverse of ADD(n) does the job. Instead of giving a general proof, we will be
satisfed with demonstration of this statement for the simplest case, in which
both a and b are 2-bit numbers, a = a12 + ag,b = b12 + by.

Subtraction is carried out by introducing a two’s complement in a similar
way as in a classical computer. Let a = a,,_12" ' +...a12 + ag be a positive
n-bit number. A negative number —a is stored in a computer memory as
its two’s complement, which is defined as 2”t! — a. By noting that 2"+ =
(2n + 271 4. 4+241)+ 1, we obtain

2" g =2"4+ (1 —a,_1)2" ' +...(1—a1)2+(1—ag) +1.  (8.39)

Note that 21 — @ is an (n + 1)-bit number for a postive number a. In sum-
mary, the two’s complement of a number a = a,_1an_2...a1ap is obtained
by flipping each bit as ay — 1 —ay, adding 2™ and finally adding 1. Let a = 2,
in decimal notation, for example. Then its binary expression is 10 and the
two’s complement of —2 is 101 + 1 = 110.

EXERCISE 8.7 Let n = 3. Find the two’s complements of negative num-
bers from —7 to —1.
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FIGURE 8.9

(a) Quantum circuit to implement the ADD(n) gate, which adds two n-bit
numbers a and b. The result is encoded in the qubits {|sx)}. (b) The black box
representation of ADD(n). Note the order of the input bits and the output
bits. We have explicitly added |a,) = |b,) = |0).
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Let us concentrate on the case in which n = 2. Then the two’s complement
of —ais 2> —a=2%+(1—a1)2+ (1 —ag) + 1. It is also written as

23 —a =22+ (ag ®a1)2+ ap
e (CLQ Da; D a0a1)22 + (ao D a,1)2 + aog, (840)

where we noted that a > 0 and ag ® a1 @ (apa1) = 1. Let us evaluate b — a,
where both a and b are 2-bit numbers. We carry out this subtraction as
b+ (2% — a) by making use of the two’s complement of —a. We find

b+ (2° —a) = (b12+ bo) + [(ao ® a1 ® apa1)2® + (ap ® a1)2 + ag
= [(ap @ a1 @ apa1) ® (ap B a1)b1 ® agbo(ap ® a1 @ bl)]22
+(ao ® a1 ® by @ aobo)2 + (ao @ by)
= 5922 + 512 + 50, (8.41)

where

52 = (ap ® a1 @ apar) ® (ap @ a1)bi @ agbo(ao ® a1 ® by)
= ag P a1 P apar P agb1 E a1b1 B agby P apai1by B agboby,
s1 = ao ® a1 © b1 ® aobo, (8.42)

So = ag P by.
Now we show that
ADD(2)740, ag, bo, 0, a1, b1,0) = |0, ag, 50,0, a1, s1, s2). (8.43)
In fact, we verify

ADD(2) "0, ag, b, 0, a1, by, 0)
= UlUnUmUrv Uy Uvil0, ag, bo, 0, a1, by, 0)
= UiUnUmUrvUvy|0, ag, ap @ bo, 0, a1, b1,0)
= UiUnUmUrv |0, ag, bo, ao @ agbo, a1, b1,0)
= UrUn1Um10, ao, bo, ao @ aobo, a1, a1 & by @ ag @ agbo, 0)
= UrU11)0, ag, bo, ap ® aobo, a1, b1 & ag ® agbo, 0)
= U110, ag, bo, ao @ agbo, a1, a1 & by © agbo,
ap P a1 @ apai ® agby B apby D a1b1 & agboar @ agbpby, 0)
=10, ag, ap @ by, 0, a1, a0 ® a; & by @ apbo,
ap ® a1 B apar B apbi B a1b1 B apbo B apaibo & aobobi)

= |Oa agp, S0, Oa ai, S1, 52>

where we noticed that U,I = Uy, in all the layers in the circuit. This shows
that the action of ADD(2)™" yields b+ (2"+! — a) as promised.
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FIGURE 8.10

(a) Modular adder which computes a + b mod N. The gray line shows the
information flow of the second register, corresponding to the input b and the
output a + b mod N. Uy denotes the unitary operation of the kth layer. The
white circle in U, denotes a negated control node, which flips the bottom
qubit when the control bit is 0, while does nothing when it is 1. (b) Modular
adder is symbolically denoted as MODADD(n). The third register |[N) and
the carry qubit |0) are omitted.

The n-qubit subtraction is similarly obtained by inverting ADD(n) as

ADD(n)_1|O, ao, b9,0,a1,b1,0,...,an_1,b5_1, 0>
= |07 agp, $0,0,01,81,0,...,an-1,8n—1, Sn>' (844)

The output bits sg ~ s,_1 represent b — a, while the last digit s, is 1 if
b—a<0and 0ifb—a > 0.

EXERCISE 8.8 Let a and b be 2-bit numbers. Verify that so in Eq. (8.42)
is 1 when b < a, while 0 when b > a.

Now we are ready to implement the modular adder. We find the quantum
circuit depicted in Fig. 8.10 indeed performs modular addition a + b mod N,
where a,b and N are n-bit numbers satisfying 0 < a,b < N. Therefore, we
have either 0 < a+b < N or N < a+b < 2N. We write the input state
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as |a, b, N,0), where the last qubit |0) will be used as a scratch space. Let us
verify its operations.

e The gate U; is an ordinary adder;

Uila,b,N,0) = |a,a + b, N,0). (8.45)

e The gate Uy swaps the first and the third registers;

Usl|a,a + b, N,0) = |N,a+ b,a,0). (8.46)

e The gate Uz subtracts NV from a + b;
Us|N,a+b,a,0) = |N,a+b— N,c,a,0). (8.47)

The (n + 1)st output bit ¢ of the second register is 1 when a +b < N
and 0 when a +b > N.

e The gate Uy changes the scratch bit |0) to |1) if ¢ = 0, while it is left
unchanged when ¢ = 1;

Us|N,a+b— N,c¢,a,0) = |N,a+b— N,c,a,1—c). (8.48)
e The gate Us resets the first register | V) to |0) when the temporary qubit
is |1) while it remains in the state |N) when it is |0);
IN;a+b— N,c,a,0) (c=1)

Us|N,a+b— N,c,a,1—c) =
0,a+b— N,c,a,1) (¢=0)

=|cN,a+b— N,c,a,1—c). (8.49)
Unitarity of Us requires that Us|0, a+b—N, ¢, a,1) = [N, a+b—N, ¢, a, 1).
e The gate Us is a simple adder;
Us|cN,a+b—N,c,a,1—c) = |cN,a+b—(1—c)N,1—¢,a,1—c). (8.50)
Note that the carry bit ¢ has been flipped.

e The gate Uy is the same as the layer 5. The first register is mapped to
|N) when ¢ = 0, and it remains in [N) when ¢ = 1;

Ur|leN,a+b—(1—¢)N,1—c,a,1—c) = |N,a+b—(1—c)N,1—c,a,1—c).
(8.51)

e The gate Ug swaps |a) and |N) so that

Ug|N,a+b—(1—¢c)N,1—¢c,a,1—c¢)=|a,a+b—(1—¢)N,1—¢,N,1—c).
(8.52)
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e The gate Uy subtracts a from a + b — (1 — ¢)N;

Ugla,a+b—(1—¢)N,1—¢,N,1—¢) =|a,b— (1 —¢)N,1—¢,N,1—¢).
(8.53)

e The gate Uy transforms the temporary qubit to (1 —¢) & (1 —¢) = 0;

Upla,b—(1—¢)N,1—¢,N,1—¢) =|a,b— (1—¢c)N,1—¢, N,0). (8.54)

e The final gate Uy adds the first and the second registers;
Uiila,b—(1—=¢)N,1—¢,N,0) = |a,a+b—(1—¢)N,1—¢, N,0). (8.55)

In case a + b > N, for which ¢ = 0, the second register in the output
state is |a + b — N). If, in contrast, a + b < N, for which ¢ = 1, the
second register is |a + b). These results are conveniently written as
|a + b mod N).

We call this quantum circuit an mn-qubit modular adder, denoted
MODADD(n); see Fig. 8.10 (b).

8.6.3 Modular Multiplexer

It turnes out that a controlled-modular multiplexer

le,z,0,az mod N) (c=1)
CMODMULTI(n)|e, z,0,0) = (8.56)
lc,x,0,z) (¢=0)

is requried to construct the modular exponential gate, which computes a® mod
N, rather than the ordinary modular multiplexer circuit.

Fig. 8.11 depicts the controlled-modular multiplexer circuit. The con-
trol bit is denoted as |c¢), while two registers are initially set to |z) and |0).
There is also a temporary register which is also set initially to |0). We need to
evaluate az mod N for various & with the numbers a and N fixed. Therefore
a and N are hardwired as parts of the circuit, while x is one of the input
parameters. Let us verify it works as expected.

Suppose |c) = |1) first. Let x = 2, 12" '+... 212420 and a = a,,_12" "1+
...a12 + ag be binary expressions of positive integers = and a, respectively.
The product of these numbers is

ar = axp_12"" '+ ...+ a2+ axo = Z a2k

:Ekzl

The RHS tells us that the az mod N is obtained by adding a2* mod N with
respect to those k for which xz; = 1. The modular adder MODADD(n) in
Fig. 8.11 adds a2’ mod N for such i as ; = 1 to the second register whose ini-
tial state is |0). Each MODADD(n) is accompanied with a pair of controlled
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FIGURE 8.11
(a) Quantum circuit of an n-qubit controlled-modular multiplexer

CMODMULTI(n). There are n layers of MODADD(n), where the kth layer
adds a2*~! mod N to the second register when ¢ = 1 and zp_1 = 1. The
numbers a and N are fixed and are hardwired. The output of the second
register is ax mod N. This circuit is denoted as (b), where the temporary
register has no external input and output ports and is not shown explicitly.
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gates. Let us concentrate on the kth MODADD(n) gate. The first con-
trolled gate, denoted as k in Fig. 8.11 associated with the kth MODADD(n)
gate stores 2! in the temporary register if z;_; = 1, while it stores 0 if
r—1 = 0. MODADD(n) adds z,_12*"! to Zf:_OQ ax;2" and updates the sec-
ond register to Zf;ol ax;2'. The second controlled gate immediately after the
kth MODADD(n), denoted as k', undoes the operation of the first controlled
gate when xx_1 = 1, so that the first register is now put back to 0 for recycled
use for the (k+1)st MODADD(n). Both controlled gates leave the temporary
gate to |0) when x;_1 = 0. In this way, we finally obtain axz mod N in the
second register.

Let ¢ = 0 next. Then the temporary register remains in |0) and each
MODADD(n) just adds 0 to the second register. We will obtain |0, z, 0) after
the nth MODADD(n) has been applied. We need to act a set of controlled
gates to copy the first register |x) to the second register so that the output is
|0, 2, ). This is done by n CNOT gates, which act on each pair of qubits of the
first and the second registers as Ucnor|0, 24, 0;) = |0, 24,0; © ;) = |0, 24, 4).

In summary, the CMODMULTI gate works as

|1, 2,az mod N) (¢ =1)
CMODMULTI|c, z, 0) = (8.57)
|0, z, =) (c=0).

8.6.4 Modular Exponential Function

Let a = ap_12" ' 4+...+a12+apand x = z,_12" ' 4+ ...+ 212 + ¢ be two
natural numbers. We need to implement a quantum circuit which outputs
a® mod N.
Figure 8.12 shows the quantum circuit which implements the modular ex-
ponential function. Let us verify how it works to produce the correct result.
Let £ = £,12" ' + 2,92 2+ ... + 212 + 9. Then the power a® is
expressed as

n—1
n—1 n—2 k
a® =a %" xa" " x . .a"? x " = H a’ . (8.58)
k=0

:Ekzl

Namely, terms of the form a?" are multiplied with respect to k for which
zr, = 1 to evaluate a®. The modular exponential a* mod N is obtained by

multiplying a2’ fromk=0to k =n—1 modN for those k satisfying zp = 1.

e Let us look at the first layer composed of gates I and II in Fig. 8.12.
The output of the gate I is

CMODMULTI|x, 1,0) = |z, 1,a”® mod N).
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FIGURE 8.12

Quantum cirucuit which implements the modular exponential function
a®” mod N. The numbers a and N are hardwired. The number z is initially
input to the first register, while the second register is set to |1). The result
of the modular exponential function is stored in the second register. There is
an extra temporary register which is set initially to |0).

The output states |1) and |a® mod N) are exchanged by the permuta-
tion gate P before they are fed to the gate II so that

Plz,1,a"° mod N) = |z,a™ mod N, 1).
Now the gate II acts on this state is

CMODMULTI Y|z, a™ mod N, 1) = |z,a™ mod N, 0).

e The next layer is comprised of two gates: III and IV. The output of the
gate III is

CMODMULTI|z, a® mod N, 0) = |z,1,a"%a® mod N),
which is followed by P and then CMODMULTI ! to produce
CMODMULTI Pz, 1, a*%a* mod N) = |z, a®%a™ mod N, 0).

e The factor a®2" is multiplied to Hf;é a mod N each time a new

layer comprised of a pair of gates CMODMULTI and CMODMULTI !
is applied. Eventually we obtain the output

0J
;2

MODEXP|z,1,0) = |z, a” mod N, O0).
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8.6.5 Computational Complexity of Modular Exponential
Circuit

We evaluate the complexity of the modular exponential circuit before we close
this chapter. The evaluation is divided into several steps.

e Let us first look at ADD(n) given in Fig. 8.9. It follows from this figure
that ADD(n) requires n SUM, n — 1 CARRY !, n CARRY and one
CNOT. Therefore the complexity Tapp(n) of ADD(n) is

Tapp(my = nTs + (2n — 1)Tc + 1, (8.59)

where Ts and T¢ are numbers of elementary gates in SUM and CARRY,
which are clearly independent of n.

e Figure 8.10 shows that the modular adder MODADD(n) is composed of
three ADD(n), two ADD(n)™!, two permutation gates, two controlled
gates and four CNOT gates. Therefore the complexity is

TrniopaDD(n) = YTADD(n) + 2Tp + 2Ty + 4, (8.60)

where Tp and Ty are numbers of elementary gates in P and the control-
led-U gate, respectively. It can be shown that these gates can be imple-
mented with the Toffoli gates and each Toffoli gate is implemented with
a polynomial number of elementary gates. The power of polynomial
depends on the actual implementation. Implementation with a mini-
mal number of qubits requires O(n?) elementary gates, but it may be
reduced to O(n) if some extra qubits are added.

e The controlled modular multiplexer depicted in Fig. 8.11 requires n
MODADD(n), n controlled gates of type k (see Fig. 8.11) and n con-
trolled gates of type k’, two CNOT gates and one “copy” gate which
works as |20) — |zz) when the control bit is ¢ = 0. The copy
gate, controlled gates of types k and k' are all implemented with Tof-
foli gates. The number of elementary gates required to implement
CMODMULTI(n) is therefore

TemopMmuLT(n) = MIMopADD(n) + N1k + 1Tk + Teopy + 2, (8.61)

where T}, and T}/ are the numbers of elementary gates in the controlled
gates of types k and k', respectively, and Teopy is the number of elemen-
tary gates in the copy gate.

e The modular exponential gate MODEXP(n) depicted in Fig. 8.12 re-
quires n CMODMULTI(n), n CMODMULTI(n)~! and n exchange gates
P. The complexity is

TvmoDpEXP(n) = 2nTeMopMULTI(R) + P P- (8.62)
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In summary, the number of elementary gates in the modular exponential
circuit MODEXP(n) is of polynomial order in n. The maximum power of
the polynomial depends on actual circuit implementation and algorithms em-
ployed to design the circuit. It may happen that adding extra qubits makes
the maximum power smaller. Alternatively, the number of qubits required
to implement a given algorithm may be reduced by sacrificing the number of
elementary gates.

It was also shown in Chapter 6 that the quantum Fourier transform circuit
is implemented with O(n?) number of elementary gates. Therefore prime
number factorization for a number N ~ 2" is carried out with a polynomial
number of steps in n in contrast with a classical algorithm which requires an
exponentially large number of steps.
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