
Studies in Systems, Decision and Control 116

Sukhendu Kanrar
Nabendu Chaki
Samiran Chattopadhyay

Concurrency
Control in
Distributed
System Using
Mutual Exclusion

Studies in Systems, Decision and Control

Volume 116

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

About this Series

The series “Studies in Systems, Decision and Control” (SSDC) covers both new
developments and advances, as well as the state of the art, in the various areas of
broadly perceived systems, decision making and control- quickly, up to date and
with a high quality. The intent is to cover the theory, applications, and perspectives
on the state of the art and future developments relevant to systems, decision
making, control, complex processes and related areas, as embedded in the fields of
engineering, computer science, physics, economics, social and life sciences, as well
as the paradigms and methodologies behind them. The series contains monographs,
textbooks, lecture notes and edited volumes in systems, decision making and
control spanning the areas of Cyber-Physical Systems, Autonomous Systems,
Sensor Networks, Control Systems, Energy Systems, Automotive Systems,
Biological Systems, Vehicular Networking and Connected Vehicles, Aerospace
Systems, Automation, Manufacturing, Smart Grids, Nonlinear Systems, Power
Systems, Robotics, Social Systems, Economic Systems and other. Of particular
value to both the contributors and the readership are the short publication timeframe
and the world-wide distribution and exposure which enable both a wide and rapid
dissemination of research output.

More information about this series at http://www.springer.com/series/13304

Sukhendu Kanrar • Nabendu Chaki
Samiran Chattopadhyay

Concurrency Control
in Distributed System Using
Mutual Exclusion

123

Sukhendu Kanrar
Department of Computer Science
Narasinha Dutt College
Howrah, West Bengal
India

Nabendu Chaki
Department of Computer Science &
Engineering

University of Calcutta
Kolkata, West Bengal
India

Samiran Chattopadhyay
Department of Information Technology
Jadavpur University
Kolkata, West Bengal
India

ISSN 2198-4182 ISSN 2198-4190 (electronic)
Studies in Systems, Decision and Control
ISBN 978-981-10-5558-4 ISBN 978-981-10-5559-1 (eBook)
DOI 10.1007/978-981-10-5559-1

Library of Congress Control Number: 2017945702

© Springer Nature Singapore Pte Ltd. 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Preface

The broad area of research presented in this book is designing operating systems
(OS) for distributed systems. The advantages of a distributed system over a tradi-
tional time-sharing mainframe system depend a lot on the underlying operating
system. The expected benefits of a distributed computing platform include distri-
bution transparency, improved price/performance ratio, better system response
through load distributing, higher dependability, etc. This research area has always
been fascinating to explore. Hence, operating systems, as a whole, forms the broad
domain of the research presented in this book while the book focuses on process
synchronization for a distributed system.

Existing mutual exclusion (ME) algorithms are often either symmetric or
token-based. Token-based approaches offer solutions at relatively lower commu-
nication cost. One major limitation of the token-based mutual exclusion algorithms
for distributed environment like Raymond’s well-known work is inability in han-
dling the processes with pre-assigned priority values. Besides, the natural fairness in
terms of first-come-first-serve allocation among equal priority processes too is not
guaranteed in Raymond’s algorithm. This has been the motivation of the first work
discussed in this book. In the book, we discussed a modification of Raymond’s
well-known algorithm to ensure fairness in terms of first-come-first-serve (FCFS)
order among equal priority processes. Subsequently, it was improved and named
Modified Raymond’s Algorithm with Priority (MRA-P). The solution considers the
priority of the requesting processes and allocates resource for the earliest request
when no such request from a higher priority process is pending. In MRA-P, we
introduced a pair of local queues whose union would resemble a single global
queue.

However, MRA-P suffered from some major shortcomings like lack of liveness,
high message complexity, etc. In the next step, we further improved on these and
described a token-based Fairness Algorithm for Priority Processes (FAPP) that
addresses both the issues. FAPP justifies properties like correctness of the algo-
rithm, low message complexity, and fairness in token allocation. Appropriate
simulation has been done to benchmark FAPP and MRA-Pwith other existing
algorithms.

v

Subsequently, the book describes design of a novel mutual exclusion algorithm
that would be compatible to a more flexible underlying topology than the inverted
tree topology on which Raymond’s original algorithm as well as both MRA-P and
FAPP work. It is found that there exists ME algorithms that work on a directed,
acyclic graph (DAG). However, the next algorithm discussed in the book named
Link-failure Resilient Token based ME Algorithm on Graphs (LFRT) works on any
directed graph topology, with or without cycles. Like MRA-P, the LFRT algorithm
ensures liveness, safety, and fairness in allocating the token on a FCFS basis. The
most significant advantage of the LFRT algorithm is its ability to handle the link
failures. This is possible due to redundancy in path in the underlying graph
topology. LFRT was further improved to LFRT for Priority Processes (LFRT-P)
that also considers priority of participating processes.

Besides, token-based solution, the book delves in the area of permission-based
mutual exclusion algorithms. There exist efficient approaches in the literature that
selects one candidate process from many for allowing it to enter its critical section
(CS) on the basis of the number of votes received by the processes. In voting-based
approaches, a process that gets majority of the total number of votes is only to be
allowed for CS. This ensures safety for such an algorithm as no two processes can
earn majority of the total number of polls. However, this may lead to a live-lock
situation where no single process reaches the magic number of majority votes. In
this book, a voting-based algorithm has been discussed to select a process even
when no single process has majority of votes.

Two voting-based algorithms are also described in this book. We have described
a voting-based mutual exclusion algorithm (BMaV) that finds a candidate for CS
when majority consensus is not achieved by any single process. Another algorithm
A New Hybrid Mutual Exclusion Algorithm in Absence of Majority Consensus
(NHME-AMC) has been discussed in the book. In this book, a two-phase, hybrid
ME algorithm has been discussed that works even when majority consensus cannot
be reached. The second phase of the algorithm, in spite of being symmetric, exe-
cutes in constant time. These algorithms aim to find an effective solution when no
single process achieves majority consensus. We have concluded the book by dis-
cussing on the significance of works in this book towards setting future directions
of research for process synchronization in distributed systems.

We hope that researchers in the domain of distributed operating systems and
faculty members teaching this subject will find the book a useful reference during
treatment of distributed control algorithms. The language of the book is lucid and
all algorithms are explained with suitable examples. In spite of our best efforts there
may be shortcomings that might have escaped our notice. We shall be obliged if
suggestions and criticisms are put forward to improve the content of the book. We
also like to gratefully acknowledge Mr. Aninda Bose and Kamiya Khatter without
whose continuous support the book could not be completed.

Howrah, India Sukhendu Kanrar
Kolkata, India Nabendu Chaki
Kolkata, India Samiran Chattopadhyay

vi Preface

Contents

1 Introduction . 1
1.1 Organization of Book . 4
References. 5

2 State-of-the-Art Review . 7
2.1 Definitions of Terminologies . 7
2.2 Token-Based ME Algorithms . 10
2.3 Hierarchical Topology Based ME Algorithms 13
2.4 Graph Topology Based ME Algorithms . 14
2.5 Permission-Based ME Algorithms . 15
2.6 Voting-Based ME Algorithms . 17
2.7 Conclusions . 20
References. 20

3 Tree-Based Mutual Exclusions . 25
3.1 Modified Raymond’s Algorithm (MRA). 26

3.1.1 Data Structure and Algorithm for MRA Algorithm. 26
3.1.2 Limitation of Algorithm MRA . 30

3.2 Modified Raymond’s Algorithm for Priority (MRA-P) 30
3.2.1 Data Structure and Algorithm for MRA-P. 31
3.2.2 Performance Analysis for MRA and MRA-P 34

3.3 Fairness Algorithm for Priority Processes (FAPP) 34
3.3.1 Data Structure and Algorithm for FAPP 36
3.3.2 Performance Analysis for FAPP . 40

3.4 Concluding Remarks on Tree-Based ME Algorithms 45
References. 45

vii

4 A Graph-Based Mutual Exclusion Algorithm Using Tokens 47
4.1 Link Failure Resilient Token-Based ME Algorithm

for Directed Graph (LFRT). 47
4.1.1 Data Structure and Algorithm for LFRT 48
4.1.2 Limitations of LFRT . 56

4.2 Link Failure Resilient Priority Based Fair ME Algorithm
for Distributed Systems (LFRT-P) . 56
4.2.1 Data Structure and Algorithm for LFRT-P 57
4.2.2 Performance Analysis for LFRT and LFRT-P. 64

4.3 Concluding Remarks on Graph-Based ME Algorithms. 74
References. 74

5 Voting-Based Mutual Exclusion Algorithms . 77
5.1 Below-Majority Voting for ME in Distributed

Systems (BMaV) . 77
5.1.1 Description for BMaV. 78
5.1.2 Comments on the BMaV Algorithm 81

5.2 A New Hybrid Mutual Exclusion Algorithm in
Absence of Majority Consensus (NHME-AMC). 81
5.2.1 A Description for NHME-AMC . 82

5.3 Performance Analysis for BMaV and NHME-AMC. 84
5.4 Concluding Remarks on Voting-Based ME Algorithms 90
References. 91

6 Conclusions . 93
6.1 Summary of the Works Described in the Book 93
6.2 Impact of New Algorithms on Future Research for Process

Synchronization in Distributed Systems . 94
References. 95

viii Contents

About the Authors

Sukhendu Kanrar is a faculty member in the
Department of Computer Science, Narasinha Dutt
College, India. He has done Bachelors in Mathematics
from University of Calcutta in 1999. He received MCA
in 2004 and M.Tech. in Computer Science in 2010,
both from the West Bengal University of Technology.
Dr. Kanrar has completed Ph.D. from the University of
Calcutta in early 2016. His primary research interest is
in the design of Operating Systems for distributed
environment.

Nabendu Chaki is a Professor in the Department
Computer Science & Engineering, University of
Calcutta, Kolkata, India. Dr. Chaki did his first grad-
uation in Physics from the legendary Presidency
College in Kolkata and then in Computer Science &
Engineering from the University of Calcutta. He has
completed Ph.D. in 2000 from Jadavpur University,
India. He is sharing six international patents including
four US patents with his students. Prof. Chaki has been
quite active in developing international standards for
Software Engineering and Cloud Computing as a
member of Global Directory (GD) member for
ISO-IEC. Besides editing more than 25 book volumes,
Nabendu has authored six text and research books and
has more than 150 Scopus Indexed research papers in

ix

Journals and International conferences. His areas of
research interests include distributed systems, image
processing and software engineering.

Dr. Chaki has served as a Research Faculty in the
Ph.D. program in Software Engineering in U.S. Naval
Postgraduate School, Monterey, CA. He is a visiting
faculty member for many Universities in India and
abroad. Besides being in the editorial board for several
international journals, he has also served in the com-
mittees of more than 50 international conferences.
Prof. Chaki is the founder Chair of ACM Professional
Chapter in Kolkata.

Samiran Chattopadhyay is a Professor in the
Department of Information Technology, Jadavpur
University. He has served as the Head of the
Department for more than 12 years and as the Joint
Director of the School of Mobile Computing and
Communication since its inception. As a graduate,
postgraduate, and gold medalist from Indian Institute
of Technology, Kharagpur, he received his Ph.D. from
Jadavpur University. He has two decades of experience
in serving reputed industry houses such as Computer
Associates, Interra Systems India, Agilent, Motorola in
the capacity of technical consultant. He led the
development of an open-source C++ infrastructure and
tool set for reconfigurable computing, released under
the GNU GPL 3.0 license. He has visited several
Universities in the United Kingdom as a visiting pro-
fessor. He has been working on Algorithms for
Security, Bioinformatics, Distributed and Mobile
Computing, and Middleware. He has authored and
edited several books and book chapters. Professor
Chattopadhyay acted as a program chair, organizing
chair, and IPC member of over 20 international con-
ferences. He has published more than 120 papers in
reputed journals and international peer-reviewed con-
ferences.

x About the Authors

Chapter 1
Introduction

Availability of powerful yet low-cost processors coupled with advances in com-
munication technology has contributed greatly to the development of distributed
systems [1–4]. These factors made it possible to design and develop distributed
systems comprising many processor nodes, memory nodes, and other computa-
tional devices interconnected by communication networks [5–9].

The primary advantages of distributed systems over traditional time-sharing
mainframe systems include improved price/performance ratio, easier resource
sharing, and better system response through load distribution, higher availability,
reliability, and modular expandability.

Multiple areas of distributed operating systems on which some significant
amount of work has been done were introduced in recent years. The inherent
limitations of distributed systems are often caused by the lack of common memory
and a system-wide common clock that can be shared by all the processes.
Algorithms for distributed computations are difficult to design, as the events of the
computation are occurring at different computers and affect the system state dif-
ferently depending on the order in which they occur. A distributed operating system
uses a set of control algorithms to implement a control function (e.g., mutual
exclusion, deadlock handling, process migration, etc.). In this work, we have tried
to develop different control algorithms for distributed systems. A control algorithm
typically provides a service using a group of resources. It is invoked by the kernel
when a node needs its service, or when an event related to its service occurs in the
system. A resource allocator, an I/O scheduler are typical examples of control
algorithms. Actions for such algorithms are executed in several processes. Often,
the data needed for its decision-making is also maintained in multiple processes.
Further, the state information available at different processes may be incomplete
and/or inconsistent. Use of such information in decision-making or toward action of
a control algorithm may lead to inconsistent states. Misinterpretation of incomplete
data may even result in contradictory and conflicting actions, initiated at different
processes in the system.

© Springer Nature Singapore Pte Ltd. 2018
S. Kanrar et al., Concurrency Control in Distributed System using Mutual Exclusion,
Studies in Systems, Decision and Control 116, DOI 10.1007/978-981-10-5559-1_1

1

Recording global state information is a limitation for any distributed system.
However, the concern for consistency cannot be addressed easily in a distributed
environment due to lack of this global state information. That is the fundamental
difference between control algorithms used in distributed and centralized operation
systems.

Resource sharing is an important aspect of the real-time distributed systems.
Some resources are inherently non shareable and must be accessed in a mutually
exclusive way. The traditional approaches towards implementing mutual exclusion
(ME) cannot be applied to distributed systems where nodes are loosely coupled.

In a distributed OS, a distributed control algorithm and its processes may execute
concurrently on different processors in a single node or in multiple nodes of a
system. A well-known problem in the field of distributed algorithms is the mutual
exclusion problem. It consists of a set of processes which communicate via message
passing and need to exclusively access a shared resource by executing a segment of
code called the critical section (CS). A mutual exclusion algorithm must thus ensure
that exactly one process can execute the critical section at any given time (safety
property) and that all critical section requests will eventually be satisfied (liveness
property). The problem of mutual exclusion in a single-computer system with
shared memory is quite different from that in distributed systems where both the
shared resources and the users may be distributed [10–13]. Consequently,
approaches based on shared variables are not applicable to distributed system and
approaches based on message passing must be used. Hence, design of distributed
mutual exclusion algorithm involves a familiar concern—how to ensure consis-
tency of data structures and actions in various processes of the system? Some
obvious aspects of this concern are mutual exclusion over data and synchronization
between actions.

Typically, ME algorithms ensure that at most one process enters its critical
section (CS) at a particular instance of time [14–16]. Traditional ME algorithms
[3, 17–19] often cannot be applied for distributed systems where nodes are loosely
coupled. Over the last decade the problem of mutual exclusion has received con-
siderable attention and several algorithms to achieve mutual exclusion in distributed
systems have been suggested. These tend to differ in their communication topology
(e.g., tree, ring, and any arbitrary graph) and in the amount of information main-
tained by each site about other sites.

Solutions to the mutual exclusion problem can be either centralized or dis-
tributed. However, a centralized approach with a single coordinator is not suitable
for any distributed system. A distributed algorithm where each node participates in
the decision-making is more appropriate. Distributed mutual exclusions are either
token-based or non-token-based. In token-based mutual exclusion algorithms,
a unique token exists in the system and only the holder of the token can access the
protected resource.

Existing ME algorithms typically follow either a permission-based [5, 20, 21] or
a token-based [17, 20, 22, 23] approach. While the permission-based algorithms
tend to increase the network traffic, token-based approach offers solutions at a lower
communication cost. There exist different ME algorithms for message passing

2 1 Introduction

distributed systems [11, 13, 14, 20, 21, 24, 25]. Some of these algorithms have been
fine tuned to suit the needs of real-time systems [22, 26–28].

Raymond has designed an efficient token-based ME algorithm. Raymond’s
algorithm [28] assumes an inverted tree topology. However, one major limitation of
Raymond’s algorithm is the lack of fairness in the sense that token requests from
two equal priority processes may be processed and granted access to CS out of turn.
Here, the primitive idea of fairness has been assumed in terms of ensuring
first-come-first-serve (FCFS). However, this definition of fairness is often chal-
lenged depending on the context and importance of a process. Considering priority
of processes is in direct conflict with the FCFS fairness definition. An efficient ME
algorithm for a distributed system needs to strike a balance between such
conflicting characteristics. This problem is taken up in the design of fairness
algorithm for priority processes (FAPP) [29].

In some of the earlier works, token-based algorithms for ME are developed for
the distributed environment assuming inverted tree topology [26, 30]. However,
such a stable, hierarchical topology is quite unrealistic for mobile networks where
link failures [15, 25, 31–36] are frequent due to node mobility. In this book, two
new ME algorithms [31, 37] have been developed on graph topology.

In Ricart–Agrawala [27] permission-based algorithm, each requesting process Pi

is allowed to enter the CS only when all of the remaining N − 1 competing pro-
cesses send their concurrences to Pi. On the other hand, the progress condition may
suffer due to loss of control messages from any of these N − 1 nodes. An alternate
approach could be a selection of the process which enters the CS by majority
voting. A simple principle that a process that gets majority of the total number of
votes is allowed for CS ensures safety as no two processes can earn majority of the
total number of polls. However, this may lead to a live-lock situation where no
single process reaches the magic number of majority votes. In this book, two new
dynamic voting algorithms have been presented to handle such situation [38, 39].

Research contributions presented in this book are depicted in Fig. 1.1. This
shows that ME algorithms are divided into two categories: (1) token-based mutual
exclusion algorithm and (2) permission-based mutual exclusion algorithm.
Token-based algorithms are further divided into two categories: (1) tree-based
mutual exclusion algorithm and (2) graph-based mutual exclusion algorithm. We
have designed 3 Tree-based Mutual Exclusion algorithms in this work, namely
modified Raymond’s algorithm (MRA) [30], modified Raymond’s algorithm for
priority (MRA-P) [30] and fairness algorithm for priority processes (FAPP) [29].
We have also designed two graph-based mutual exclusion algorithms in this work,
namely link failure resilient token-based ME algorithm for directed graph
(LFRT) [37] and link failure resilient priority-based fair ME algorithm for dis-
tributed systems (LFRT-P) [31]. We also designed two voting-based ME algo-
rithms, namely below-majority voting for ME in distributed systems consensus
(BMaV) [38] and a new hybrid mutual exclusion algorithm in absence of majority
consensus (NHME-AMC) [39].

1 Introduction 3

1.1 Organization of Book

In Chap. 2, an overview of different types of distributed control algorithms have
been discussed specifically on distributed mutual exclusion (DME) algorithms,
token-based ME algorithms, tree-based ME algorithms, and graph-based ME
algorithms.

Chapter 3 presents our contributions on tree-based mutual exclusion algorithms.
The work starts with analysis and limitations of one of the pioneering tree-based
ME algorithms like Raymond’s algorithm. We have improved on Raymond’s
algorithm in the form of modified Raymond’s algorithm (MRA) to ensure fairness
in terms of first-come-first-serve policy. Subsequently, priorities of requesting
processes have been taken into consideration in modified Raymond’s algorithm for
priority (MRA-P) algorithm. The chapter ends with the introduction of another new
tree-based ME algorithm called fairness algorithm for priority processes
(FAPP) that presents a simpler data structure and hence offers lower complexity.

Designs of graph-based algorithms for ME are introduced in Chap. 4. Solutions
of ME problems in graph when one or more link(s) have failed is also worked out in
this chapter. Link failure resilient token-based ME algorithm for directed graph
(LFRT), a new ME algorithm that works on graph topology and considers priority
processes is presented in this chapter. The algorithm is subsequently improved to
handle processes with different priorities in link failure resilient priority-based fair
ME algorithm for distributed systems (LFRT-P).

Voting-based algorithms are another type of permission-based ME algorithms
used in distributed system. A couple of new voting-based algorithms have been
presented in Chap. 5. These algorithms find an effective solution when no single
process achieves majority consensus. The ME algorithm introduced elects some
next process to enter critical section (CS) even in such situations. The concluding
comments for each of these works are added at the end of the respective chapters.

Token-based Mutual Exclusion
Algorithm

Permission-based Mutual
Exclusion Algorithm

Tree-based Mutual
Exclusion Algorithm

Graph-based Mutual
Exclusion Algorithm

Voting-based Mutual
Exclusion Algorithm

MRA MRA-P FAPP LFRT LFRT-P BMaV NHME-AMC

Fig. 1.1 Novel ME algorithms in the book

4 1 Introduction

References

1. Naimi, M., Trehel, M., Arnold, A.: A log(N) distributed mutual exclusion algorithm based on
path reversal. J. Parallel. Distrib. Comput. 34(1), 1–13 (1996)

2. Sanders, B.: The information structure of distributed mutual exclusion algorithm. ACM
Comput. Syst. 5(3), 284–299 (1987)

3. Agrawal, D., El Abbadi, A.: An efficient and fault tolerant solution for distributed mutual
exclusion. ACM Trans. Comput. Syst. 9(1), 1–20 (1991)

4. Adam, N.R.: New dynamic voting algorithm for distributed database systems. IEEE Trans.
Knowl. Data. Eng. Arch. 6(3), 470–478 (1994)

5. Madria, S.K.: Timestamp based approach for the detection and resolution of mutual conflicts
in real-time distributed systems. Computer Science Technical Reports. Paper 1367, pp. 1–16
(1997)

6. Hardekopf, B., Kwiat, K., Upadhyaya, S.: A decentralized voting algorithm for increasing
dependability in distributed systems. Join MEETING of the 5th World Multiconference on
Systemics, Cybernetics and Informatics (SCI 2001) and the 7th International Conference on
Information System Analysis and Synthesis (ISAS 2001) (2001)

7. Ingols, K.W.: Availability study of dynamic voting algorithms. In: 21st International
Conference on Distributed Computing Systems, pp. 247–254, (2001)

8. Maekawa, M.: A √n algorithm for mutual exclusion in decentralized systems. ACM Trans.
Comput. Syst. 3(2), 145–159 (1985)

9. Agrawal, D., EL Abbadi, A.: An efficient solution to the distributed mutual exclusion
problem. In: Proceeding of the 8th ACM Symposium on Principles of Distributed Computing,
pp. 193–200 (1989)

10. Joung, Y.J.: Asynchronous group mutual exclusion. In: Proceedings of the 17th annual ACM
Symposium on Principles of Distributed Computing (PODC), pp. 51–60 (1998)

11. Suzuki., Kasami, T.: An optimality theory for mutual exclusion algorithms in computer
science. In: Proceedings of IEEE International Conference on Distributed Computing and
System, pp. 365–370 (1982)

12. Singhal, M.: A heuristically-aided algorithm for mutual exclusion for distributed systems.
IEEE Trans. Comput. 38(5), 70–78 (1989)

13. Bernabeu-Auban, J.M., Ahamad, M.: Applying a path-compression technique to obtain an
efficient distributed mutual exclusion algorithm, vol. 392, pp. 33–44 (1989)

14. Carvalho, O.S.F., Roucairol, G.: On mutual exclusion in computer network. Commun. ACM
26(2), 146–147 (1983)

15. Sil, S., Das, S.: An energy efficient algorithm for distributed mutual exclusion in mobile
Ad-hoc networks. World. Acad. Sci. Eng. Technol. 64, 517–522 (2010)

16. Barbara, D., Garcia-Molina, H., Spauster, A.: Increasing availbility under mutual exclusion
constraints with dynamic vote reassignment. ACM Trans. Comput. Syst. 7(4), 394–428
(1989)

17. Saxena, P.C., Rai, J.: A survey of permission-based distributed mutual exclusion algorithms.
Comput. Stan. Interfaces 25(2), 159–181 (2003)

18. Toyomura, M., Kamei, S., Kakugawa, H.: A quorum-based distributed algorithm for group
mutual exclusion. In: PDCAT’03, pp. 742–746 (2003)

19. Manabe, Y., Park, J.: A quorum based extended group mutual exclusion algorithm without
unnecessary blocking. In: Proceedings of 10th International Conference on Parallel and
Distributed Systems (ICPADS’04) (2004)

20. Housini, A., Trehel, M.: Distributed mutual exclusion token-permission based by prioritized
groups. In: Proceedings of ACS/IEEE International Conference, pp. 253–259 (2001)

21. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM
21(7), 558–565 (1978)

22. Mueller, F.: Prioritized token-based mutual exclusion for distributed systems. In: Proceedings
of the 9th Symposium on Parallel and Distributed Processing, pp. 791–795 (1998)

References 5

23. Helary, J.M., Mostefaoui, A., Raynal, M.: A general scheme for token and tree based
distributed mutual exclusion algorithm. IEEE Trans. Parallel. Distrib. Syst. 5(11), 1185–1196
(1994)

24. Mittal, N., Mohan, P.K.: A priority-based distributed group mutual exclusion algorithm when
group access is non-uniform. J. Parallel. Distrib. Comput. 67(7), 797–815 (2007)

25. Walter, J.E., Welch, J.L., Vaidya, M.H.: Mutual exclusion algorithm for Ad hoc mobile
networks. Wirel. Network 7(6), 585–600 (2001)

26. Raymond, K.: A tree-based algorithm for distributed mutual exclusion. ACM Trans. Comput.
Syst. 7, 61–77 (1989)

27. Ricart, G., Agrawala, A.K.: An optimal algorithm for mutual exclusion in computer networks.
Commun. ACM 24(1), 9–17 (1981)

28. Lodha, S., Kshemkalyani, A.: A fair distributed mutual exclusion algorithm. IEEE Trans.
Parallel. Distrib. Syst. 11(6), 537–549 (2000)

29. Kanrar, S., Chaki, N.: FAPP: A new fairness algorithm for priority process mutual exclusion
in distributed systems. Special issue on recent advances in network and parallel computing.
Int. J. Networks 5(1), 11–18 (2010). ISSN: 1796-2056

30. Karnar, S., Chaki, N.: Modified Raymond’s algorithm for priority (MRA-P) based mutual
exclusion in distributed systems. In: Proceedings of ICDCIT 2006. LNCS 4317, pp. 325–332
(2006)

31. Kanrar, S., Chaki, N., Chattopadhyay, S.: A new link failure resilient priority based fair
mutual exclusion algorithm for distributed systems. J. Network. Syst. Manage. (JONS) 21(1),
1–24 (2013). ISSN 1064-7570

32. Panghal, K., Rana, M.K., Kumar, P.: Minimum-process synchronous check pointing in
mobile distributed systems. Int. J. Comput. Appl. 17(4), 1–4 (2011)

33. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving consensus.
J. ACM 43(4), 685–722 (1996)

34. Chen, W., Lin, S., Lian, Q., Zhang, Z.: Sigma: A fault-tolerant mutual exclusion algorithm in
dynamic distributed systems subject to process crashes and memory losses. Microsoft
Research Technical Report MSR-TR-2005-58 (2005)

35. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Kouznetsov, P.: Mutual exclusion in
asynchronous systems with failure detectors. Technical Report in Computer and
Communication Sciences, id: 200227 (2002)

36. Walter, J., Cao, G., Mohanty, M.: A k-mutual exclusion algorithm for ad hoc wireless
networks. In: Proceedings of the First Annual Work Shop on Principles of Mobile Computing
(POMC 2001) (2001)

37. Kanrar, S., Choudhury, S., Chaki, N.: A link-failure resilient token based mutual exclusion
algorithm for directed graph topology. In: Proceedings of the 7th International Symposium on
Parallel and Distributed Computing—ISPDC 2008 (2008)

38. Kanrar, S., Chaki, N., Chattopadhyay, S.: A new voting-based mutual exclusion algorithm for
distributed systems. In: 4th Nirma University International Conference on Engineering
(NUiCONE-2013), pp. 1–5 (2013)

39. Kanrar, S., Chaki, N., Chattopadhyay, S.: A new hybrid mutual exclusion algorithm in
absence of majority consensus. In: Proceedings of the 2nd International Doctoral Symposium
on Applied Computation and security System, ACSS (2015, in press)

6 1 Introduction

Chapter 2
State-of-the-Art Review

A distributed system is a collection of autonomous computers connected via a
communication network. There is no common memory and processes to commu-
nicate through message passing. In many applications, there are critical operations
that should not be performed by different processes concurrently. It may sometimes
be required that a typical resource is used by only one process at a time. This gives
rise to the problem of mutual exclusion. Mutual exclusion (ME) is crucial for the
design of distributed systems.

Due to lack of a common shared memory, the problem of ME becomes much
more complex in the case of distributed systems as compared to the centralized
systems. It needs special treatment. A number of algorithms have been introduced
to solve the ME problem in distributed systems. A good distributed mutual
exclusion (DME) algorithm, besides providing ME, should take care that there are
no deadlocks and starvation does not occur (Fig. 2.1).

The existing DME algorithms typically follow either a token-based [1–4] or a
permission-based [1, 5, 6] approach.

2.1 Definitions of Terminologies

Let us first define the terminologies that we have used in this book. The following
definitions clearly mark the scope of each keyword in the context of this book.

Fairness of token-based Algorithms
The definition of fairness that we follow here implies that if the token holder Phold

receives a token request from some arbitrary process A ahead of the same from
some other process B, then the algorithm ensures that after Phold releases the token,
process A gets it ahead of process B.

© Springer Nature Singapore Pte Ltd. 2018
S. Kanrar et al., Concurrency Control in Distributed System using Mutual Exclusion,
Studies in Systems, Decision and Control 116, DOI 10.1007/978-981-10-5559-1_2

7

Liveness
The liveness property implies that any process A that requests for the token must get
it eventually.

Safety
A mutual exclusion algorithm is safe if it ensures that no two processes would enter
the critical section simultaneously.

Correctness
The correctness of a control algorithm is a combination of the liveness along with
safety. A control algorithm is correct if it confirms to both liveness and safety
aspects. Correctness of an algorithm implies that it should perform correct action
and should avoid performing wrong actions. In case of a distributed control algo-
rithm even the former aspect may be difficult to ensure because processes at which
control actions are performed lack a global view of the system and its control data.

Conflict Between Priority Processing and Liveness
The definitions of priority-based fairness and liveness are directly in conflict with
one another. Let’s assume that a process PA, with a low priority, requests for the
token first. After PA’s request, other processes PB, PC,…, PN all with priorities
higher than that of PA, place their requests for the token. In order to ensure the
priority-based fairness defined above, all the processes PB, PC,…, PN would receive
the token ahead of PA. In fact, process PA will never get the token if there is some
pending token request from a higher priority process, irrespective of its time of the
request. In this situation, the property of liveness is violated. The same had been the
major limitation for one of our earlier works, MRA-P [7]. In our attempt to propose
a solution that would strike the balance between priority-based fairness and liveness

Distributed Mutual
Exclusion Algorithm

Token Based Permission Based

Coterie Based Voting Based

Static Dynamic Logical
Structure-Based

Broadcast

Other Logical
Topologies

-Based

Hierarchical
Topology

Graph Topology

Fig. 2.1 Classification of distributed mutual exclusion algorithm

8 2 State-of-the-Art Review

as defined above, we introduce to dynamically upgrade priorities of token
requesting processes.

Priority-based fairness
We assume that the processes have some pre-assigned priorities. It may be desirable
to consider the priority of a process while handling the token requests from those.
This implies that if the token request from a higher priority process A is pending,
then the token must not be allotted to processes having priority lower than that of A.
Taking into account the priority aspect, we therefore revise the above definition of
fairness with a stronger definition below.

The revised definition of priority-based fairness implies that the token must be
allocated to some process A such that among all the processes having priority
equal to that of A, the token request from A has reached Phold ahead of others and
there is no pending token request from any other process B having priority higher
than that of A.

Dynamic Process Priority
In our attempt to propose a solution that would strike the balance between
priority-based fairness and liveness as defined above, we introduce to dynamically
upgrade priorities of processes waiting in the queue for the token after placing the
token request. The initial proposal had been somewhat like the following:

Example
When the token-holding process, say A, finds a token request from another process
B with priority r and it is found that r is higher than the priority t for some previous
process C whose token request is already stored in the request queue called path list
of A, i.e., PLA, then priority of process C is increased by 1 to t + 1. The list in A is
re-constructed with this increased process priority for C.

The revised value of priority would be updated in the appropriate sorted
sequence of pending requests maintained in the Phold, the token-holding process.
The motivation behind such a solution was to elevate the priority of a process A
every time some higher priority process B supersedes A by virtue of its higher
priority value. This would make sure that even a token request from the otherwise
lowest priority process would eventually be satisfied as the priority itself changes
dynamically. After a process gets the token, it enters the critical section. As it comes
out of the critical section, the priority of a process is reset to its original value.

We explain this solution in Fig. 2.2 with three processes A, B, and C with pri-
ority values 4, 4, and 3, respectively. Process C of priority 3 places the first request

A

B C
1

st

3

C,3

2
ndB,4

4

C,4 |B,1
Fig. 2.2 Working principle
of dynamic priority

2.1 Definitions of Terminologies 9

for the token. It stores the 2-tuple in PLC, i.e., PLC = <C, 3>. This request goes to
root process A from C using 2-tuple <C, 3>. Process A in root stores the 2-tuple in
PLA as <C, 3>. Process B now places the second token request. Here PLB = <B, 4>.
Process B sends the request to A. Root process A finds that process B has a higher
priority and hence places <B, 4> ahead of <C, 3> in PLA. However, as introduced in
rule 1 earlier in this section, the priority of process C would increase by 1, i.e., the
2-tuple modifies as <C, 4>. According to priority, process A arranges the 2-tuples
<C, 4> and <B, 4> into PLA. The 2-tuple for C is placed ahead of that for B as the
updated priority of C and that of last requesting process B are same while the
request from C is older than that of B. The PLA becomes {<C, 4>, <B, 4>}.

In order to improve our solution to ensure liveness and also to minimize the data
structure maintained in the processes, the dynamic update of the process priority is
done only on the request list maintained in the token-holding process.

2.2 Token-Based ME Algorithms

A token is an abstract object which represents a privilege to perform some special
operation. Only a process possessing a token can perform these operations; other
processes cannot. A token can be passed between processes during operation of the
system. This way a privilege can be shared among processes. A single token is
shared among all processes in the system and the process which holds it has the
exclusive right of executing the critical section (CS). The token represents
the privilege to enter a CS. Since single token exists in the system safety of the
algorithm is obvious. A process wishing to enter a CS must obtain the token and the
token is eventually transferred to the requesting process. The token-based
approaches overcome this problem and offer solutions at a lower communication
cost, faster than the non-token-based algorithms. But they are deadlock prone and
their resilience to failures is poor [8]. If the process holding the token fails, complex
token regeneration protocols have to be executed, and when this process recovers, it
has to undergo a recovery phase during which it is informed that the token it was
holding prior to its failure has been invalidated. Fair scheduling of token among
competing processes, detecting the loss of token and regenerating a unique token
are some of the major design issues of the token-based ME algorithm.

There exist different ME algorithms for message passing distributed systems
[1, 5, 9–13]. Some of these algorithms have been fine-tuned to suit the needs of real
time systems in [2, 8, 14, 15].One of the earlier algorithms for group mutual
exclusion (GME) [9, 16–18] was given by Joung in [17]. Later, he proposed two
algorithms RA1 and RA2 based on Ricart–Agrawala algorithm [14] to ensure ME
for message passing systems [11]. There are several token-based algorithms for ME
in distributed systems [19–23]. Mittal–Mohan algorithm [9] considers the concept
of priority. In Mittal–Mohan algorithm a requesting process cannot assign priority
to a request. Raymond has designed an efficient token-based ME algorithm.
Raymond’s algorithm [8] assumes an inverted tree topology. One major limitation

10 2 State-of-the-Art Review

of Raymond’s algorithm is the lack of fairness in the sense that a token request that
is generated at a later instance may be granted ahead of a previous request.

A DME algorithm is static if it does not remember the history of CS execution.
In static algorithms, nodes need not keep information about the current state of the
system. In Raymond’s [12] token-based mutual exclusion algorithm, requests are
set over a static spanning tree of the network, toward the token holder. This logical
topology is similar to that of Housn and Trehel’s approach [5].

In dynamic algorithms, processes keep track of the current state of the system
and the algorithm has a built-in mechanism to make a decision on the basis of this
knowledge. Using dynamic approach, a number of solutions have been proposed
for prioritized mutual exclusion in a distributed system. Some of these approaches
impose a higher message passing overhead.

In broadcast-based algorithms, no such structure is assumed and the requesting
process sends message to other processes in parallel, i.e., the message is broad-
casted. Suzuki and Kasami proposed a broadcast algorithm [11], in which each
process Si, keeps an array of integers RNi[1…N], where RNi[j] is the largest
sequence number received so far from Sj. In Suzuki–Kazami algorithm, 0 or
N messages are sent per critical section executed and synchronization delay is 0 or
T. In Naimi and Thiare [24] implemented the causal ordering in Suzuki–Kasami
token-based algorithm in a distributed system. Based on Suzuki–Kazami algorithm,
Singhal [21] proposed a heuristically aided algorithm that uses state information to
more accurately guess the location of the token. The maximum number of messages
required by these algorithms is of the order of the total number of nodes in the
system.

An interesting algorithm has been proposed in [25] by extending Naimi–Trehel
token-based algorithm [24] that reduces the cost of latency and numbers of mes-
sages exchanged between far hosts. The work is on hierarchical proxy-based
approach for aggregation of request and permission for token by closed hosts. In
[26], another hierarchical token-based algorithm is proposed to solve the GME
[Group Mutual Exclusion] problem in cellular wireless networks. They claim that
the algorithm is the first GME algorithm for cellular networks. In [27], a rooted tree
named “open-cube” is introduced that has noteworthy stability and locality prop-
erties, allowing the algorithm to achieve good performances and high tolerance to
node failures. In [28], a token-based mutual exclusion algorithm is proposed for
arbitrary topologies. This algorithm makes use of the network topology and site
information held by each node to achieve an optimal performance. It reduces the
delay in accessing the CS by allowing the token to service the requesting site which
falls en route its destination. In [29], an algorithm, called “Awareness”, is proposed
that aims at reducing the maximum response time whereas the number of priority
violations remains low. The objective is to both postpone priority increments and
prevent low priorities from increasing too fast. However, in this case, the response
time of low priorities may considerably increase. In [30], the proposed algorithm

2.2 Token Based ME Algorithms 11

can reduce the number of the messages exchanged by 40% when the traffic is light
compared with Suzuki and Kasami’s algorithm [11]. In [31], a general algorithm is
proposed which can represent non-token-based algorithms known as information
structure distributed mutual exclusion algorithms (ISDME). The work also intro-
duced a new deadlock-free ISDME algorithm (DF-ISDME) which operates on a
restricted class of information structures. DF-ISDME allows deadlock-free solu-
tions for a wider class of information structure topologies than Maekawa algorithms
(DF-Maekawa). In [32], an algorithm has been designed which uses a distributed
queue strategy and maintains alternative paths at each site to provide a high degree
of fault tolerance. However, owing to these alternative paths, the algorithm must use
reverse messages to avoid the occurrence of directed cycles, which may form when
the directions of edges are reversed after the token passes through. In [33], research
is done on a distributed mutual exclusion algorithm based on token exchange and is
well suited for mobile ad hoc networks is presented along with a simulation study.
A new algorithm is developed for a dynamic logical ring topology. The simulation
study on a mobile ad hoc network identifies an effective reduction in the number of
hops per application message. This can be achieved by using a specific policy to
build the logical ring on-the-fly. In [34], they presented token based mutual
exclusion algorithms to handle AND synchronization problems where each process
can obtain an exclusive access to a set of resources rather than to a single resource.
The message complexity of the algorithms is independent of the number of the
requested resources. In [35], another hierarchical token-based algorithm is proposed
to solve the GME problem in cellular wireless networks. Arguably, this could be the
first GME algorithm for cellular networks. In this algorithm, a resource-starved
mobile host requires very little data structure and the bulk of the computation is
performed at the resource-rich base station level.

In [36], a simple protocol is proposed that ensures sequential consistency when
the shared memory abstraction is supported by the local memories of nodes. It can
communicate only by exchanging messages through reliable channels. In [37], a
new token-based mutual exclusion algorithm is presented that uses quorum
agreements. When a good quorum agreement is used, the overall performance of
the algorithm compares favorably with the performance of other mutual exclusion
algorithms. In [38], a token-based distributed mutual exclusion algorithm for
multithreaded systems is proposed. Several per-node requests could be issued by
threads running at each node. Their algorithm relies on special-purpose alien
threads running at host processors on behalf of threads running at other processors.
The algorithm uses a tree to route requests for the token. The work in [39] is another
improvement of Suzuki and Kasami’s algorithm [11]. This is rather an extension of
the work in [30] that presents a dynamic token-based mutual exclusion algorithm
for distributed systems. In this algorithm, a site invoking mutual exclusion sends
token request messages to a set of sites possibly holding the token as opposed to all
the sites as in the algorithm proposed by Suzuki and Kasami.

12 2 State-of-the-Art Review

2.3 Hierarchical Topology Based ME Algorithms

The processes in the system are assumed to be arranged in a logical configuration
like tree, ring, etc., and messages are passed from one process to another along the
edges of the logical structure imposed. Token-based algorithms use abstract system
models whose control edges form convenient graph topologies. Abstract ring and
tree topologies are mostly used. We focus on only tree topology. Raymond’s
algorithm, MRA-P and FAPP use an abstract inverted tree as the system model. It is
called an inverted tree because the control edges point toward the root, rather than
away from it. Phold designates the process in possession of the privilege token.
Raymond’s algorithm uses a spanning tree and the number of message exchanged
per CS depends on the topology of the tree. An algorithm, based on a dynamic tree
structure, was proposed by Trehal and Naimi [24]. The Naimi–Trehel algorithm
takes into consideration a second pointer that is used when a node requests to enter
CS before the previous requester leaves it. A major limitation of these two
tree-based algorithms is in maintaining this strictly hierarchical logical topology.
The algorithm proposed by Bernabeu-Auban and Ahamad in [12] uses path
reversal. A path reversal at a node x is performed as the request by node x travels
along the path from node x to the root node. Token based mutual exclusion algo-
rithms provide access to the CS through the maintenance of a single token that
cannot simultaneously be present at more than one process in the system. Requests
for critical section entry are typically directed to whichever process is the current
token holder. The token-based solutions for the mutual exclusion problems have an
inherent safeness property, as the requesting process must get hold of the token
before it enters the critical section. The MRA-P [7] is an improvement over
Raymond’s algorithm that not only overcomes the fairness problem but also han-
dles the priority of the requesting processes [1]. The work on MRA-P has further
motivated others to propose group mutual exclusion algorithms for real time sys-
tems [9]. The work, however, used too many control messages across the network.
In [40], a service level agreement (SLA) aims to support quality of service
(QoS) for services by a cloud provider to its client. Since applications in a cloud
share resources, they build on two tree-based distributed mutual exclusion algo-
rithms (Kanrar–Chaki algorithm [41] and Raymond’s algorithm [8]) that support
the SLA concept. In [42], a good survey work is reported. This analyzes several
DME algorithms according to their relative characteristics like Maekawa-type
approach [43], hybrid approach etc. In [44], a logical grouping of the sites is done
to form a hierarchical structure. This structure is not rigid and can be modified to
achieve different performance criteria. The hybrid algorithm needs only a maximum
of 2√N + 1 messages where N is the number of sites in the distributed system.

In [45], the work on GME deals with sharing a set of mutually exclusive
resources among all n processes of a network. Three new group mutual exclusion
solutions are designed for tree networks. In [46], the work on DME algorithm is for
Grids. Two new DME algorithms are proposed based on Naimi–Trehel token-based

2.3 Hierarchical Topology Based ME Algorithms 13

algorithm [24]. These take into account latency gaps, especially those between local
and remote clusters of machines.

2.4 Graph Topology Based ME Algorithms

Solutions for strictly hierarchical topology, e.g., tree, may not be usable for many
applications. Besides, if the communication media is wireless and/or nodes are
mobile as in MANET, frequent link failures may cause performance problem.
Graph-based solution could be more fault-tolerant for such applications and com-
munication media. Raymond’s algorithm [8] or MRA-P [7] assumes an inverted
tree topology while Walter et al. [47] assume a dynamically re-configurable DAG
structure. Raymond’s work, MRA-P or its extension in [7] are, however, not quite
suitable in a wireless environment, where the topology keeps on changing due to
link instability. The solution proposed in [48] works on a dynamically changing
DAG structure. Their algorithm handles link failures and new link formation.
However, in a constantly changing network environment, absence of cycle in the
topology may not be guaranteed. Hence, a DAG based solution may not be ideal for
the highly dynamic environment. Moreover, Walter’s work does not ensure fair-
ness. In [49], a link failure resilient algorithm has been introduced for mutual
exclusion on directed graph topology.

Token based algorithms for ME are proposed for the distributed environment
assuming inverted tree topology [7, 8]. However, such a stable, hierarchical
topology is quite unrealistic for mobile networks where link failures [10, 47, 49–54]
are frequent due to node mobility. In this book, new ME algorithms have been
introduced on graph topology. In [55], a new fault-tolerant distributed mutual
exclusion algorithm is proposed which can tolerate an arbitrary number of node
failure and the message complexity of the algorithm is relatively very low. They
claimed that the algorithm functions properly when any of the cooperating nodes in
the system fails. In [56], another algorithm is proposed to achieve mutual exclusion
in distributed systems. This tolerates up to t − 1 arbitrary node failures without
executing any recovery procedure and requires O(

ffiffiffiffi

tn
p

) messages in a network of
n nodes. In [57], a dynamic triangular mesh protocol is proposed for mutual
exclusion. Here the protocol is fault-tolerant up to (k − 1) site failures and com-
munication failures in the worst case, even when such failures lead to network
partitioning. In [58], a mutual exclusion mechanism is developed to ensure that
isolated groups do not concurrently perform conflicting operations, when a network
is partitioned. The work formalizes these mechanisms in three basic scenarios:
where there is a single conflicting type of action; where there are two conflicting
types, but operations of the same type do not conflict; and where there are two
conflicting types, but operations of one type do not conflict among themselves.

14 2 State-of-the-Art Review

2.5 Permission-Based ME Algorithms

In this type of ME algorithms, a process Pk can enter in its critical section only after
it obtains permission(s) from other processes in the system that share the same
common resource in the respective critical sections. It requires rounds of message
among the processes to obtain the permission to execute CS. In permission-based
algorithm or symmetric algorithm, a process wishing to enter a critical section
(CS) needs to consult other processes. Processes enter CS in FIFO order. Generally,
priority decisions are made using time stamps. A process wishing to enter CS sends
time-stamped request messages to all other processes and waits till it received a “go
ahead” reply from each of them. A process receiving a request message immedi-
ately sends a “go ahead” reply if it is not interested in using the CS at present or if
the received request precedes its own request in time. Otherwise, it delays its relays
its reply until it has itself used the CS. A number of solutions in both the approaches
have been studied. Permission-based algorithms tend to increase the network traffic
significantly.

Every process has a logical clock and all request messages are time-stamped
with the current value of the sender’s logical clock. Before sending a message, a
process increases its logical clock and, upon reception of a message, a process
updates it with the maximum between the message time-stamp value and its current
value. A total ordering of request messages can thus be established based on the
value of their time stamps and, if necessary, the identity of the sender process in
order to break ties. In other words, a request message whose time stamp is lower
than a second one has priority over it. If the time stamps are equal, the request
message sent by the process with the lowest identifier has priority. In both cases, the
request message with higher priority has precedence over the other one. When a
process receives a request, it answers either if it is not interested in using the
resource (i.e., if the process is in the idle state (I)) or if it is interested, but the
received request message has precedence over its own; otherwise it answers to all
requests it had received upon executing the exit protocol (exiting the critical sec-
tion). At that moment, the process also changes its state to idle.

Permission-based mutual exclusion algorithms exchange messages to determine
which process can access the CS next. As for example, Lamports’ algorithm [5] is a
symmetric, permission-based algorithm that requires 3 * (N − 1) messages to
provide mutual exclusion. The permission-based algorithm proposed by Ricart and
Agrawala, reduced the number of required messages to 2 * (N − 1) messages per
critical section entry [14]. In another work, Carvalho and Roucairol [13] were able
to reduce the number of messages to be between 0 and 2 * (N − 1) and Sanders
[22] gave a theory of information structure to design mutual exclusion algorithms.
An information structure describes which processes maintain information about
what other processes, and from which processes a process must request information
before entering the CS. Singhals’ heuristic algorithm [23] guarantees some degree
of fairness but is not completely fair, as a lower priority request can execute CS
before a higher priority request if the higher priority request is delayed. The

2.5 Permission-Based ME Algorithms 15

algorithm has defined different criteria for fairness. Mueller [2] introduced a pri-
oritized token-based mutual exclusion algorithm. In many of the solutions, the
fairness criterion is considered to be equivalent to the priority, i.e., a job that arrives
early is defined as a higher priority job [24]. In [50], Sil and Das introduced a new
energy efficient mutual exclusion algorithm for a mobile ad hoc network. The
whole network is hierarchically clustered to get a logical tree structure of the
network. They addressed the issue of mobility of nodes extensively. In [3], Saxena
and Rai present a survey of various permission-based distributed mutual exclusion
algorithms and their comparative performance. Permission-based algorithms can be
further subdivided into coterie-based algorithms and voting-based algorithms.

Acoterie is a nonempty set with a collection of elements satisfying two condi-
tions: the minimal condition and intersection property. The elements of a coterie
form overlapping quorum groups or quorum sets or just quorums. If a process wants
to perform an operation in the CS, it must obtain permission from each and every
process of the quorum to which the process belongs. The candidate process may
belong to two or more quorums. It has to get permission from each member of the
overlapping quorums. Since a process grants permission to only one process at a
time and since any two quorums in a coterie have at least one process in common,
mutual exclusion, i.e., safety property is guaranteed [59]. In [60], the primary aim is
to investigate the use of a gossip protocol to an ME algorithm to cope with scal-
ability and fault-tolerant problems in cloud computing systems. They present a
gossip-based mutual exclusion algorithm for cloud computing systems with
dynamic membership behavior. In [61], an algorithm called prioritizable adaptive
distributed mutual exclusion (PADME) is proposed to meet the need for differen-
tiated services between applications for file systems and other shared resources in a
public cloud. In [62], a hybrid distributed mutual exclusion algorithm is designed
that uses Singhal’s dynamic information structure algorithm [21] as the local
algorithm to minimize time delay and Maekawa’s algorithm [43] as the global
algorithm to minimize message traffic. In [63], the author presents an N-process
local-spin mutual exclusion algorithm, based on non-atomic reads and writes. Each
process performs H(log N) remote memory references to enter and exit its critical
section. In [64], authors present a distributed algorithm for solving the GME
problem based on the notion of surrogate-quorum. Intuitively, they use the quorum
that has been successfully locked by a request as a surrogate to service other
compatible requests for the same type of critical section. In [65], an interesting
algorithm based on GME is for the philosophers to ensure that a philosopher
attempting to attend a forum will eventually succeed, while at the same time
encourage philosophers interested in the same forum to be in the meeting room
simultaneously. Another approach, based on the work in [64] offers a high degree
of concurrency of n, where n is the number of processes in the system [66]. The
algorithm can adapt without performance penalties to dynamic changes in the
number of groups. In [67], an FCFS group mutual exclusion algorithm is introduced
that uses only H(N) bounded shared registers. They also present a reduction that
transforms any “abortable” FCFS mutual exclusion algorithm M into a GME
algorithm G. Thus, different group mutual exclusion algorithms can be obtained by

16 2 State-of-the-Art Review

instantiating M with different abortable FCFS mutual exclusion algorithms. In [68],
Vidyasankar introduced a situation where philosophers with the same interest can
attend a forum in a meeting room, and up to k meeting rooms are available. In [69],
a class of Maekawa-type mutual exclusion algorithms [43] is presented that is free
from deadlocks and do not exchange additional messages to resolve deadlocks.

In [70], a new quorum generation algorithm has been presented. A symmetric
quorum can be generated based on this algorithm and the size of the quorum is
about 2√N. This distributed mutual exclusion algorithm has reduced the message
complexity of Maekawa-type distributed mutual exclusion algorithm m messages,
m is the quorum size. In [71], an analysis is done on the shared memory require-
ments for implementing ME of N asynchronous parallel processes in a model where
the only primitive communication mechanism is a general test-and-set operation on
a single shared variable. In [72], the concept of coterie is extended to k-coterie for
k entries to a critical section. A structure named Cohorts is proposed to construct
quorums in a k-coterie. The solution is resilient to node failures and/or network
partitioning and has a low communication cost. In [73], a surficial quorum system
for GME is presented. The surficial quorum system is geometrically evident and so
it is easy to construct. It also has a nice structure based on which a truly distributed
algorithm for GME can be obtained, and loads of processes can be minimized.

2.6 Voting-Based ME Algorithms

In voting-based algorithm, a decision is taken based on voting. Unlike coterie-based
algorithms, each and every process in a system of n processes need not wait for
permission in terms of votes from each of the remaining n − 1 processes in the
system. Hence, the message complexity of voting-based ME algorithms is lower
than the symmetric ME algorithms [74].In voting-based algorithms, each candidate
process seeking entry into CS sends request messages for votes to other processes.
The votes are counted on receipt of the reply messages (votes) from various nodes.
If the number of votes obtained is more than or equal to majority then the corre-
sponding candidate process is granted access to enter its critical section. The voting
schemes [75, 76] are often far from being correct as it may suffer from lack of
liveness. Say, a network is partitioned and only 85% of the n − 1 processes are
connected. If there are two requesting processes, it may lead to a scenario where
both the requesting processes get more than 40% of the votes. However, none of
these would achieve majority consensus. A similar situation may occur when there
are more than two requesting processes even if the network is not partitioned and all
100% of the votes are cast.

Many simple majority voting schema [59, 76–83] are far from being correct as
they may suffer from lack of liveness. Jajodia and Mutchler [84] proposed two
generalizations of voting schemes: dynamic voting and dynamic-linear voting (i.e.,
dynamic voting with linear ordered copies). In dynamic voting, the number of sites
necessary for carrying out an update is a function of the number of up-to-date

2.5 Permission-Based ME Algorithms 17

copies at the time of the update. In case of static algorithms, this depends on the
total number of copies. Moreover, dynamic-linear voting accepts an update
whenever dynamic voting does.

Rabinovich and Lazowska [78] proposed a mechanism that allows dynamic
adjustment of quorum sets when quorums are defined based on a logical network
structure. This improves the availability of the replica control protocols. The basic
principle is to devise a rule that unambiguously imposes a desired logical structure
on a given ordered set of processes. In this protocol, each node is assigned a name
and all names are linearly ordered. Among all the nodes replicating a data item, a
set of nodes is identified as the current epoch. At any instance, the data item may
have only one current epoch associated with it.

Adam [79] also proposed a dynamic voting consistency algorithm, which is
effective in environments where the majority of user requests are “read” types of
requests. This algorithm also works on the majority partition would be available
even if changes in the network topology take place at a higher rate than the update
rate, as long as only simple partitioning takes place.

In [81], works on general voting protocol are discussed that reduces the vul-
nerability of the voting process to both attacks and faults. This algorithm is con-
trasted with the traditional two-phase commit protocols. The algorithm is applicable
to exact and inexact voting in networks where atomic broadcast and predetermined
message delays are present.

In [82], two dynamic voting algorithms are proposed. The “optimistic dynamic
voting”, operates on possibly out-of-date information. On the other hand, “topo-
logical dynamic voting” works on the topology of the network on which the copies
reside to increase the availability of the replicated data.

Paris and Long [83] proposed a dynamic voting protocol that does not need the
instantaneous state information required by other dynamic voting algorithms. This
algorithm also served low cost in traffic similar to that of static majority consensus
voting.

In the existing literature as reviewed, no work is found that handles the situation
when none of the candidate processes achieve majority consensus. The progress
condition demands that at least one of the competing processes must be selected for
CS execution even when majority consensus is not achieved by any process. On the
other hand, the liveness property demands that all competing processes must
eventually be allowed to enter the CS. Our work aims to address this gap in the
existing literature and proposes a new voting-based algorithm that ensures both
progress condition and safety even when no single process wins majority vote. An
innovative solution introduced later in this text is also compatible with any voting
mechanism that ensures liveness.

In static voting algorithm, the processes do not keep information about the
current state of the system and the votes, once assigned, are not changed as the
algorithm evolves [75]. Some of the earliest voting-based distributed mutual
exclusion algorithms were given by Thomas [75] and Gifford [56]. This was static
in nature in which the votes were fixed a priori and the distributed system is
assumed to be fully connected by message passing. A process requesting to enter

18 2 State-of-the-Art Review

the CS must obtain permission from majority of processes in distributed system;
otherwise, it must not enter the CS and wait until it is allowed to enter the critical
section. Xu and Bruck [80] proposed a deterministic majority voting algorithm for
NMR (N Modular Redundant) systems where N computational modules execute
identical tasks and they need to periodically vote on their current states. Agrawal
and Abbadi [85] impose a logical structure on the set of copies of an object and
develop a protocol that uses the information available in the logical structure to
reduce communication requirements for read and write operations and call it “Tree
Quorum Protocol”. This algorithm may be considered as a generalization of the
static voting-based algorithms. However, when a distributed system is partitioned as
a result of node or link failure, a static voting algorithm cannot adapt to the
changing topology toward maintaining system availability. Thus, in order to avoid a
hang-parliament status, it is necessary to change the paradigm to dynamic voting.

In dynamic voting algorithm, the processes keep track of the current state of the
system and in the case of network partitioning, due to link or process failures, new
votes may be assigned so as to make at least one partitioned group of processes
active and to keep the system working [86, 87]. In this category, a distinguished
partition may still have the majority of votes after next partitioning. In order to
avoid data inconsistency, dynamic vote reassignment is only possible inside the
distinguished partition and the votes of other partitions remain unchanged. It is due
to the fact that partitions are unaware of each other. Group consensus and auton-
omous reassignment are two dynamic vote assignment techniques presented in [77].
In the first approach a process that firstly discovered partitioning, initiates itself as a
candidate and establishes an election among the processes in its region. Then, if the
majority of processes agreed on its coordination, it would announce itself as new
coordinator and install a new vote reassignment such that only processes in majority
partition can commit a request. Henceforth, all votes of processes will modify to
new votes and mutual exclusion will be achieved in at most one partition. In the
second approach, there is no centralized coordinator and each process is responsible
for assigning its vote. In order to avoid each process to arbitrarily change its vote
and probably compromise mutual exclusion, an approval of a certain number of
processes must be obtained formerly. Autonomous reassignment is similar to group
consensus except that each node is responsible for deriving its own vote. In sym-
metric algorithm a process wishing to enter a CS sends time-stamped request
messages to all other processes and waits till it received a grant messages from each
of them. The process executes CS whose time stamp is lowest like Ricart–Agrawala
[14]. Singh and Bandyopadhyay [42] presents a work on mutual exclusion that
ensures liveness, and correctness properties. Timed-buffer distributed voting algo-
rithm (TB-DVA) [74] is a secure distributed voting protocol. It is unique for fault
tolerance and security compared to several other distributed voting schemes.
TB-DVA is a radical approach to distributed voting because it reversed the
two-phase commit protocol: a commit phase (to a timed buffer) is followed by a
voting phase. This conceptually simple change greatly enhances security by forcing
an attacker to compromise a majority of the voters in order to corrupt the system.
Recall that in the two-phase commit protocol only one voter must be compromised

2.6 Voting-Based ME Algorithms 19

to corrupt a system. In [88], a vote assignment algorithm is introduced toward
maximizing the reliability. In this approach, the voting weight assigned to each
node is readily determined if the link failure rate is negligible. Majority voting is
commonly used in distributed computing systems to control mutual exclusion, and
in fault-tolerant computing to achieve reliability.

2.7 Conclusions

Ensuring mutual exclusion among the processes is an important aspect. The
existing algorithms follow either a permission-based or a token-based approach.
Studies on a number of solutions in both the approaches reveal that the
permission-based algorithms tend to increase the network traffic significantly. The
token-based approaches perform better from this perspective and offer solutions at a
lower communication cost.

References

1. Housini, A., Trehel, M.: Distributed mutual exclusion token-permission based by prioritized
groups. In: Proceedings of ACS/IEEE International Conference, pp. 253–259 (2001)

2. Mueller, F.: Prioritized token-based mutual exclusion for distributed systems. In: Proceedings
of the 9th Symposium on Parallel and Distributed Processing, pp. 791–795 (1998)

3. Saxena, P.C., Rai, J.: A survey of permission-based distributed mutual exclusion algorithms.
Comput. Stan. Interfaces 25(2), 159–181 (2003)

4. Helary, J.M., Mostefaoui, A., Raynal, M.: A general scheme for token and tree based
distributed mutual exclusion algorithm. IEEE Trans. Parallel Distrib. Syst. 5(11), 1185–1196
(1994)

5. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM
21(7), 558–565 (1978)

6. Madria, S.K.: Timestamp based approach for the detection and resolution of mutual conflicts
in real-time distributed systems. Computer Science Technical Reports. Paper 1367, pp. 1–16
(1997)

7. Karnar, S., Chaki, N.: Modified Raymond’s algorithm for priority (MRA-P) based mutual
exclusion in distributed systems. In: Proceedings of ICDCIT 2006. LNCS 4317, pp. 325–332
(2006)

8. Raymond, K.: A tree-based algorithm for distributed mutual exclusion. ACM Trans. Comput.
Syst. 7, 61–77 (1989)

9. Mittal, N., Mohan, P.K.: A priority-based distributed group mutual exclusion algorithm when
group access is non-uniform. J. Parallel Distrib. Comput. 67(7), 797–815 (2007)

10. Walter, J.E., Welch, J.L., Vaidya, M.H.: Mutual exclusion algorithm for Ad hoc mobile
networks. Wirel. Network 7(6), 585–600 (2001)

11. Suzuki., Kasami, T.: An optimality theory for mutual exclusion algorithms in computer
science. In: Proceedings of IEEE International Conference on Distributed Computing and
System, pp. 365–370 (1982)

12. Bernabeu-Auban, J.M., Ahamad, M.: Applying a path-compression technique to obtain an
efficient distributed mutual exclusion algorithm, vol. 392, pp. 33–44 (1989)

20 2 State-of-the-Art Review

13. Carvalho, O.S.F., Roucairol, G.: On mutual exclusion in computer network. Commun. ACM
26(2), 146–147 (1983)

14. Ricart, G., Agrawala, A.K.: An optimal algorithm for mutual exclusion in computer networks.
Commun. ACM 24(1), 9–17 (1981)

15. Lodha, S., Kshemkalyani, A.: A fair distributed mutual exclusion algorithm. IEEE Trans.
Parallel Distrib. Syst. 11(6), 537–549 (2000)

16. Swaroop, A., Singh, A.K.: A Distributed group mutual exclusion algorithm for soft real-time
systems. In: Proceedings of World Academy of Science, Engineering and Technology, vol.
26, pp. 138–143 (2007)

17. Joung, Y.J.: Asynchronous group mutual exclusion. In: Proceedings of the 17th annual ACM
Symposium on Principles of Distributed Computing (PODC), pp. 51–60 (1998)

18. Manabe, Y., Park, J.: A quorum based extended group mutual exclusion algorithm without
unnecessary blocking. In: Proceedings of 10th International Conference on Parallel and
Distributed Systems (ICPADS’04) (2004)

19. Attreya, R., Mittal, N.: A dynamic group mutual exclusion algorithm using surrogate
quorums. In: Proceedings of the 25th IEEE Conference on Distributed Computing Systems
(ICDCS’05) (2005)

20. Lin, D., Moh, T.S., Moh, M.: Brief announcement: Improved asynchronous group mutual
exclusion in token passing networks. In: Proceedings of PODC’05, pp. 275–275 (2005)

21. Singhal, M.: A heuristically-aided algorithm for mutual exclusion for distributed systems.
IEEE Trans. Comput. 38(5), 70–78 (1989)

22. Sanders, B.: The information structure of distributed mutual exclusion algorithm. ACM
Comput. Syst. 5(3), 284–299 (1987)

23. Singhal, M.: A dynamic information structure mutual exclusion in distributed system. IEEE
Trans. Parallel. Distrib. Syst. 3(1), 121–125 (1992)

24. Naimi, M., Trehel, M., Arnold, A.: A log(N) distributed mutual exclusion algorithm based on
path reversal. J. Parallel. Distrib. Comput. 34(1), 1–13 (1996)

25. Bertier, M., Arantes, L., Sens, P.: Hierarchical token based mutual exclusion algorithms. In:
IEEE International Symposium on Cluster Computing and the Grid, pp. 539–546 (2004)

26. Swaroop, A., Singh, A.K.: A token-based group mutual exclusion algorithm for cellular
wireless networks, In: India Conference (INDICON), pp. 1–4 (2009)

27. Helary J.M., Mostefaoui A.: A O(log2 n) fault-tolerant distributed mutual exclusion algorithm
based on open-cube structure. In: 14th International Conference in Distributed System,
pp. 89–96 (1994)

28. Saxena, P.C., Guptal, S.: A token-based delay optimal algorithm for mutual exclusion in
distributed systems. Comput. Stan. Interfaces 21(1), 33–50 (1999)

29. Lejeune, J., Arantes, L., Sopena, J.: A O(log2 n) fault-tolerant distributed mutual exclusion
algorithm based on open-cube structure. In: 42nd International Conference of Parallel
Processing (ICPP), pp. 290–299 (2013)

30. Chang, YI.: A dynamic request set based algorithm for mutual exclusion in distributed
systems. Operating Syst. Rev. 30(2), 52–62 (1996)

31. Bonollo, U., Sonenberg, E.A.: Deadlock-free information structure distributed mutual
exclusion algorithms. Aust. Comput. Sci. Commun. 18, 234–241 (1996)

32. Chang, Y.I., Singhal, M., Liu.,M.: A fault tolerant algorithm for distributed mutual exclusion.
In: Ninth IEEE Symposium on Reliable Distributed Systems, pp. 146–154 (1990)

33. Baldoni, R., Virgillito, A., Petrassi, R.: A distributed mutual exclusion algorithm for mobile
Ad-hoc networks. In: Seventh International Symposium on Computers and Communications
(ISCC 2002), pp. 539–544 (2002)

34. Maddi, A.: Token based solutions to M resources allocation problem. In: ACM Symposium
on Applied Computing, pp. 340–344 (1997)

35. Swaroop, A., Singh, A.K.: A token-based group mutual exclusion algorithm for cellular
wireless networks. In: India Conference (INDICON-2009), pp. 1–4 (2009)

References 21

36. Raynal, M.: Token-based sequential consistency in asynchronous distributed systems. In: 17th
International Conference on Advanced Information Networking and Applications (AINA
2003), pp. 421–426 (2003)

37. Mizuno, M., Neilsen, M.L., Rao, R.: A token based distributed mutual exclusion algorithm
based on quorum agreements. In: ICDCS, pp. 361-368 (1991)

38. Meza, F., Perez, J., Eterovic, Y.: Implementing distributed mutual exclusion on multithreaded
environments: The alien-threads approach. In: Advanced Distributed Systems, pp. 51–62
(2005)

39. Chang, Y.I., Singhal, M., Liu, M.T.: A dynamic token-based distributed mutual exclusion
algorithm. In: Tenth Annual International Phoenix Conference on Computers and
Communications, pp. 240–246 (1991)

40. Lejeune, J., Arantes, L., Sopena, J., Sens, P.: Service level agreement for distributed mutual
exclusion in cloud computing. In: 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (ccgrid 2012), pp. 180–187 (2012)

41. Kanrar, S., Chaki, N.: FAPP: A new fairness algorithm for priority process mutual exclusion
in distributed systems. Special issue on recent advances in network and parallel computing.
Int. J. Networks 5(1), 11–18 (2010). ISSN: 1796-2056

42. Chang, Y.I.: A simulation study on distributed mutual exclusion. J. Parallel Distrib. Comput.
33(2), 107–121 (1996)

43. Maekawa, M.: A √n algorithm for mutual exclusion in decentralized systems. ACM Trans.
Comput. Syst. 3(2), 145–159 (1985)

44. Madhuram, S., Kumar, A.: A hybrid approach for mutual exclusion in distributed computing
systems. In: Sixth IEEE Symposium on Parallel and Distributed Processing, pp. 18–25 (1994)

45. Beauquier, J., Cantarell, S., Datta, A.K., Petit, F.: Group mutual exclusion in tree networks.
In: Ninth International Conference on Parallel and Distributed Systems, pp. 111–116 (2002)

46. Bertier, M., Arantes, L., Sens, P.: Distributed mutual exclusion algorithms for grid
applications: A hierarchical approach. J. Parallel. Distrib. Comput. 66(1), 128–144 (2006)

47. Walter, J., Cao, G., Mohanty, M.: A k-mutual exclusion algorithm for ad hoc wireless
networks. In: Proceedings of the First Annual Work Shop on Principles of Mobile Computing
(POMC 2001) (2001)

48. Kanrar, S., Choudhury, S., Chaki, N.: A link-failure resilient token based mutual exclusion
algorithm for directed graph topology. In: Proceedings of the 7th International Symposium on
Parallel and Distributed Computing—ISPDC 2008 (2008)

49. Kanrar, S., Chaki, N., Chattopadhyay, S.: A new link failure resilient priority based fair
mutual exclusion algorithm for distributed systems. J. Network. Syst. Manage. (JONS) 21(1),
1–24 (2013). ISSN 1064-7570

50. Sil, S., Das, S.: An energy efficient algorithm for distributed mutual exclusion in mobile
Ad-hoc networks. World. Acad. Sci. Eng. Technol. 64, 517–522 (2010)

51. Panghal, K., Rana, M.K., Kumar, P.: Minimum-process synchronous check pointing in
mobile distributed systems. Int. J. Comput. Appl. 17(4), 1–4 (2011)

52. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving consensus.
J. ACM 43(4), 685–722 (1996)

53. Chen, W., Lin, S., Lian, Q., Zhang, Z.: Sigma: A fault-tolerant mutual exclusion algorithm in
dynamic distributed systems subject to process crashes and memory losses. Microsoft
Research Technical Report MSR-TR-2005-58 (2005)

54. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Kouznetsov, P.: Mutual exclusion in
asynchronous systems with failure detectors. Technical Report in Computer and
Communication Sciences, id: 200227 (2002)

55. Reddy, R.L.N., Gupta, B., Srimani, P.K.: A new fault tolerant distributed mutual exclusion
algorithm. In: ACM/SIGAPP Symposium on Applied computing: Technological Challenges
of the 1990’s, pp. 831–839 (1992)

56. Bouabdallah, A., Koenig, J.C.: An improvement of Maekawa’s mutual exclusion algorithm to
make it fault-tolerant. Parallel Process. Let. 02n03(2), 283–290 (1992)

22 2 State-of-the-Art Review

57. Chang, Y.I., Chang, Y.J.: A fault-tolerant dynamic triangular mesh protocol for distributed
mutual exclusion. ACM SIGOPS Operating Syst. Rev. 31(3), 29–44 (1997)

58. Barbara, D., Garcia-Molina, H.: Mutual exclusion in partitioned distributed systems. Distrib.
Comput. 1(2), 119–132 (1986)

59. Lotem, E.Y., Keidar, I., Dolev, D.: Dynamic voting for consistent primary components. In:
16th ACM Symposium on Principles of Distributed Computing (PODC), pp. 63–71 (1997)

60. Lim, J.B., Chung, K.S., Chin, S.H., Yu, H.C.: A gossip-based mutual exclusion algorithm for
cloud environments. In: Advances in Grid and Pervasive Computing. Lecture Notes in
Computer Science, vol. 7296, pp. 31–45 (2012)

61. Edmondson, J., Schmidt, D., Gokhale, A.: QoS-enabled distributed mutual exclusion in
public clouds. In: On the Move to Meaningful Internet Systems: OTM 2011. Lecture Notes in
Computer Science, vol. 7045, pp. 542–559 (2011)

62. Chang, Y.I.: A hybrid distributed mutual exclusion algorithm. Microproces. Microprogram.
41(10), 715–731 (1996)

63. Vidyasankar, K.: A highly concurrent group mutual L-execution algorithm. Parallel Process.
Let. 16(04), 467–483 (2006)

64. Atreya, R., Mittal, N., Peri, S.: A quorum-based group mutual exclusion algorithm for a
distributed system with dynamic group set. IEEE Trans. Parallel Distrib. Syst. 18(10), 1345–
1360 (2007)

65. Vidyasankar, K.: A simple group mutual l-exclusion algorithm. Inf. Process. Let. 85(2), 79–
85 (2003)

66. Atreya, R., Mittal, N.: A distributed group mutual exclusion algorithm using
surrogate-quorums. In: 25th IEEE International Conference on Distributed Computing
Systems, pp. 251–260 (2005)

67. Jayanti, P., Petrovic, S., Tan, K.: Fair group mutual exclusion. In: Twenty-Second Annual
Symposium on Principles of Distributed Computing, pp. 275–284 (2003)

68. Takamura, M., Altman, T., Igarashi, Y.: Speedup of Vidyasankar’s algorithm for the group
k-exclusion problem. Inf. Process. Let. 91(2), 85–91 (2004)

69. Singhal, M.: A class of deadlock-free Maekawa-type algorithms for mutual exclusion in
distributed systems. Distrib. Comput. 4(3), 131–138 (1991)

70. Li, M.A., Liu, X.S., Wang, Z.: A high performance distributed mutual exclusion algorithm
based on relaxed cyclic difference set. Dianzi Xuebao (Acta Electron. Sinica) 35(1), 58–63
(2007)

71. Burns, J.E., Jackson, P., Lynch, N.A., Fischer, M.J., Peterson, G.L.: Data requirements for
implementation of n-process mutual exclusion using a single shared variable. J. ACM
(JACM) 29(1), 183–205 (1982)

72. Huang, S.T., Jiang, J.R., Kuo, Y.C.: K-coteries for fault-tolerant k entries to a critical section.
In: ICDCS, pp. 74–81 (1993)

73. Joung, Y.J.: Quorum-based algorithms for group mutual exclusion. In: Distributed
Computing, pp. 16–32 (2001)

74. Hardekopf, B., Kwiat, K., Upadhyaya, S.: A decentralized voting algorithm for increasing
dependability in distributed systems. Join MEETING of the 5th World Multiconference on
Systemics, Cybernetics and Informatics (SCI 2001) and the 7th International Conference on
Information System Analysis and Synthesis (ISAS 2001) (2001)

75. Thomas, T.H.: A majority consensus approach to concurrency control for multiple copy
databases. ACM Trans.Database Syst. 4(2), 180–209 (1979)

76. Ahmad, M., Ammar, M.H., Cheung, S.Y.: Multi-dimensional voting: A general method for
implementing synchronisation in distributed systems. In: Proceedings 10th International
Conference on Distributed Computer Systems, pp. 362–369 (1990)

77. Barbara, D., Garcia-Molina, H., Spauster, A.: Increasing availability under mutual exclusion
constraints with dynamic vote reassignment. ACM Trans. Comput. Syst. 7(4), 394–428
(1989)

References 23

78. Rabinowich, M., Lazowska, E.D.: Improving fault-tolerance and supporting partial writes in
structured coterie protocols for replicated objects. In: Proceedings ACM SIGMOD, pp. 226–
235 (1992)

79. Adam, N.R.: New dynamic voting algorithm for distributed database systems. IEEE Trans.
Knowl. Data Eng. Arch. 6(3), 470–478 (1994)

80. Xu, L., Bruck, J.: Deterministic voting in distributed systems using error-correcting codes.
IEEE Trans. Parallel Distrib. Syst. 9(8), 813–824 (1998)

81. Hardekopf, B., Kwiat, K., Upadhyaya, S.: Secure and fault-tolerant voting in distributed
systems. In: IEEE Aerospace Conference (2001)

82. Paris, J.F., Long, D.D.E.: Efficient dynamic voting algorithms. In: Proceedings of the Fourth
International Conference on Data Engineering, pp. 268–275 (1998)

83. Paris, J.F., Long, D.D.E.: A realistic evaluation of optimistic dynamic voting. In: Proceeding
of Seventh Symposium on Reliable Distributed Systems, pp. 129–137 (1988)

84. Jajodia, S., Mutchler, D.: Dynamic voting algorithms for maintaining the consistency of a
replicated data. ACM Trans. Database Syst. 15(2), 230–280 (1990)

85. Agrawal, D., El Abbadi, A.: An efficient and fault tolerant solution for distributed mutual
exclusion. ACM Trans. Comput. Syst. 9(1), 1–20 (1991)

86. Zarafshan, F., Karimi, A., Al-Haddad, S.A.R., Saripan, M.I., Subramaniam, S.: A preliminary
study on ancestral voting algorithm for availability improvement of mutual exclusion in
partitioned distributed systems. In: Proceedings of International Conference on Computers
and Computing (ICCC’11), pp. 61–69 (2011)

87. Garcia-Molina, H., Barbara, D.: How to assign votes in a distributed system. J. Assoc.
Comput. Mach. 32(4), 841–860 (1985)

88. Tong, Z., Kain, R.Y.: Vote assignments in weighted voting mechanisms. In: Seventh
Symposium on Reliable Distributed Systems, pp. 138–143 (1988)

24 2 State-of-the-Art Review

Chapter 3
Tree-Based Mutual Exclusions

In token-based approach of algorithms to solve distributed ME problems [1–4], a
tree-based logical topology has been assumed by many researchers [5–8].
Raymond’s algorithm [9] is one such widely used distributed token-based ME
algorithm [10–12]. In Raymond’s algorithm, there is only one token and only a
process receiving the token has the right to enter CS. Token requests are sent over a
static spanning tree toward the root node holding the token.

One of the concerns with ME algorithms is fairness. This has been illustrated
with an example in Fig. 3.1 for Raymond’s algorithm. Initially, process A is the
holder of the token, i.e., root process. We assume that each process name is con-
sidered as process id. The processes E, D, B, and C place the first, second, third, and
fourth requests to enter the respective critical sections. Figure 3.1 illustrates con-
tents of the local queues after the four requests are placed. Let us assume that
process A exits from its CS now. According to Raymond’s algorithm, process C is
now the root of the tree as A passes the token to process C along with a request to
return the control since its local queue is not empty. Process C, further, sends a
request to process E. The local queue at process E will add the process id of process
C. Process C passes the token to process E and also sends a token request to process
E. Process E removes the id E from its local queue and enters the CS leaving only
C in the queue.

After process E completes its CS, it removes C from its local queue, passes the
token back to process C, and reverses the edge (E, C). Once again, process
C becomes the root. Now, process C removes C from its local queue and process
C completes its CS. Thus, process C enters the CS ahead of process D even though
process D’s request for the token happened earlier then process C. Continuing with
the example, we find that process A too is allowed to enter CS after violating
fairness as explained above. The Modified Raymond’s Algorithm (MRA) [13], as
described below aims to solve this problem.

© Springer Nature Singapore Pte Ltd. 2018
S. Kanrar et al., Concurrency Control in Distributed System using Mutual Exclusion,
Studies in Systems, Decision and Control 116, DOI 10.1007/978-981-10-5559-1_3

25

3.1 Modified Raymond’s Algorithm (MRA)

The proposed algorithm, like Raymond’s algorithm [9] assumes that nodes are
connected using a logical topology of inverted tree, with the node holding the token
Phold at the root of the tree. The proposed algorithm, to be referred as Modified
Raymond’s Algorithm (MRA), keeps the fundamentals of the Raymond’s algo-
rithm as little altered as possible. The fairness problem, however, has been taken
care of by introducing a simple queue structure, request queue, maintained at the
root of the tree. This additional storage requirement is invariant of the size of the
input, i.e., to the number of requests for the token. Thus, the proposed MRA
solution solves the fairness issue at no additional cost Fig. 3.2.

3.1.1 Data Structure and Algorithm for MRA Algorithm

Description for MRA Algorithm
In MRA, a Process Px that wants to enter CS adds its id x in the LDQx. Next, Px

sends a request for the token TKN on its out-edge along with LDQy. When a
process Py 6¼ Phold receives a token request from another process Pk then Py adds
the ids from LDQk into LDQy followed by its own id y. LDQy is sent out with TKN,
where the request is originally from Px. If a request from Py is pending, then only
token request TKN is sent out. When a process Py = Phold receives a token request

A

B C D

E F

1st

2nd3rd 4th

E

B DE C

C D BFig. 3.1 Fairness in a
Tree-based topology

gure4: Data structure of MRA Algorithm

Algorithm MRA

Local double queue (LDQ): Every process Px maintains a local double ended queue
(LDQx). A process Px wishing to enter the CS, enter its own id, x, in the LDQx.

Request queue (RQ): Process Phold maintains a request queue that stores the process ids for
the token requesting processes in an FIFO order. The RQ is transferred to the new root of the
tree along with the token.

Fig. 3.2 Data structure of MRA algorithm

26 3 Tree-Based Mutual Exclusions

TKN from process Pk, then Py adds the ids from LDQk into LDQy followed by its
own id, i.e., y. The processor id x is added to the RQ.
On completing the execution of a CS, Py (current Phold), performs the following. Py

scans the first id k from RQ. It extracts entries starting from k to the first occurrence
of y from LDQy. The extracted sequence of ids is reversed from y to k. Edge Pm to
Py is reversed, where m is the id that follows j in the sequence. Pm is the new Phold

and root—the token and RQ are passed to Pm from Py. If LDQy is not empty and the
last id left in it is y, then Py places a token request to Pm along with the reduced
LDQy. The ids from LDQy are added to LDQm followed by m and LDQy is emptied.
The newly designated process Pm = Phold performs the following. If the first id of
RQ is m, then it is removed from the RQ. The entry m is also removed from the top
of LPQm. Process Pm enters its CS otherwise token goes to another process.
A pseudocode representation for the MRA algorithm is given below.

Begin

1. Step 1: A Process Pi wishing to enter CS.
2. insert <i> in LDQi[]; /* Pi enters its id i in the LDQi */
3. send token_request <i>;

/* Pi sends a request for the token {i} on its out-edge along with LDQj */
4. Step 2: When a process Pj 6¼ Phold receives a token request from another

process Pk.
5. insert <k, j> in LDQj[];

/* Pj adds the ids from LDQk into LDQj followed by its own idj */
6. send token_request <j>;

/* LDQj, is sent out with {i}, where the request is originally from Pi. If a
request from Pj is already pending, then only token request {i} is sent out */

7. Step 3: When a process Pj = Phold receives a token request {i} from process Pk.
8. insert <i, j> in LDQj[];

/* Pj adds the ids from LDQk into LDQj followed by its own id, i.e., j */
9. insert <i> in RQ[]; /* The processor id. i is added to the RQ */

10. Step 4: On completing the execution of a CS, Pj = Phold, performs the
following:

11. k 2 RQ[]; /* Pj scans the first id k from RQ */
12. extract <k,., j>;

/* It extracts entries starting from k to the first occurrence of j from LDQj */
13. reverse <j,., k>; /* The extracted sequence of ids is reversed from j to k */

/* Edge Pm to Pj is reversed, where m is the id that follows j in the sequence */
14. Pm = Phold; /* Pm is the new Phold and root—the token and RQ is passed to Pm

from Pj */
15. if (LDQj[] 6¼ null)

/* If LDQj is not empty and the last id left in it is j, then Pj places a token
request to Pm along with the reduced LDQj */

16. send token_request <j>; /* The ids from LDQj are added to LDQm followed by
m */

3.1 Modified Raymond’s Algorithm (MRA) 27

17. else
18. LDQj[] = null; /* LDQj is emptied */
19. Endif.
20. Step 5: The newly designated process Pm = Phold performs the following:
21. remove the first process tuple <m> from RQ;
22. If (the first id of RQ is m)

/* The first id of RQ, i.e., m, in this case, is removed from the RQ */
23. remove the first process tuple <m> from LDQm;

/* The entry m is removed from the top of LDQm */
24. Pm enters its CS;
25. else
26. Repeat from Step 4;
27. Endif.

End

Illustrating the MRA Algorithm
The inverted tree structure is drawn for the MRA. The processes P8, P11, and P6

have placed the requests to enter the critical section, in that order. As per Step 1 of
the proposed algorithm, LDQ8 stores 8 and the first token request is propagated to
P3 along with a copy of LDQ8 Fig. 3.3.

P3 on receipt of the request from P8, puts the content of LDQ8 followed by its
own id., i.e., 3 into LDQ3. Thus, LDQ3 = {8, 3}. P3, now forwards the token
request along with a copy of LDQ3 = {8, 3} on its out-edge. P1 = Phold now
receives the request and puts {8, 3, 1} in LDQ1. It also puts the first id of the LDQ1,
thus formed, into RQ, i.e., RQ = {8}, in this case.

1

2 3

4 5 6 7 8

9 10 11 12 13 14 15

1st

8

8 | 3

8 |3 | 1

2nd

11

11 | 5

11 | 5 | 2

11 | 5 |2 | 1

3rd

6

6 | 3

3 | 1
8 11 6

Fig. 3.3 An example for the MRA algorithm

28 3 Tree-Based Mutual Exclusions

Let us now consider that, at this point of time, P11 issues the second token
request to enter critical section. So it puts its own process id, i.e., 11 in LDQ11 and
sends the token request along with a copy of LDQ11 = {11} on its outgoing edge.
P1 receives the request from P2 through P5 and following Step 3 of the algorithm,
updates LDQ1 as {{8, 3, 1}, {11, 5, 2, 1}}. The RQ is further updated as par Step 3
to RQ = {8, 11}. Process P6 now places the third token request which updates
LDQ6 to {6}. Also, LDQ3 is set as {{8, 3}, {6, 3}}. As a request from P3 is already
pending, the revised LDQ3 is not carried to P5. Only the token request from P6, i.e.,
{6} is sent to P1. The RQ with P1 is revised to {8, 11, 6}.

Let us assume that now, P1 comes out of its CS and following Step 4, the token
is handed over to P3. Therefore, LDQ3 = {{8, 3}, {6, 3}}. The RQ = {8, 11, 6} is
now with P3. Process P3 further passes the token to P8 following Step 5. At this
stage, RQ with P8 is {8, 11, 6}. The condition for Step 5 matches with and therefore
P8 enters the critical section. RQ is updated to {11, 6} and LDQ8 to {3, 8}.
Therefore, as P8 comes out of the critical section, the entries from LDQ8 {3, 8} are
extracted. The LDQ8 is now reduced to as emptied. The token and RQ = {11, 6} is
handed over to P3. The token along with the RQ is further sent to P1 revising LDQ3

to {6, 3} and LDQ1 to {{11, 5, 2, 1}, {3, 1}}.
Once again, P1 becomes the root of the inverted tree. Following Step 5, the token

along with RQ = {11, 6} is now passed to P5 through P2, while LDQ1 changes to
{3, 1} and LDQ5 to {{11, 5}, {2, 5}}. Then token goes to P11 through P5. Now P11

enters the critical section after removing its id = 11 from the head of RQ and
LDQ11. After, P11 leaves the critical section, the remaining ids are extracted from
LDQ11 leaving it empty and once again the token along with RQ = {6} comes back
to P1. All the ids are extracted from P1 now and the token and RQ is passed to P3.
At this point, LDQ3 = {6, 3}. Therefore the token and RQ = {6} is passed to P6

leaving LDQ3 empty. P6 enters the critical section after removing its id = 6 from
the head of both RQ and LDQ6, both of which are emptied now.

The token stays with P6 = Phold even after the process comes out of the critical
section and till any other request is generated in the system. Table 3.1 is a tabular
representation that illustrates how the content of the LDQs maintained at different
nodes and that of RQ with Phold change in successive iterations as explained above.
The token requests from P8, P11 and P6 have been placed in Step 1, Step 2, and Step
3, respectively. The process P8 enters critical section in Step 4. Process P11 enters
critical section in Step 5 and P6 enters its critical section in Step 6. These are
marked by placing a * before the RQ entries in the appropriate cell of the table. The
token is finally left with P6 as no other request for the token has been issued.

In an identical situation, when the same three processes P6, P11, and P6

requested for token in the same order, the Raymond’s algorithm failed to ensure
fairness. The algorithm MRA, however, supports the desired objective to maintain
fairness as far as servicing the token request in the FCFS order is concerned.

3.1 Modified Raymond’s Algorithm (MRA) 29

3.1.2 Limitation of Algorithm MRA

The MRA algorithm does not consider priorities of requesting processes. It works
only in equal-priority processes. In distributed systems, many processes are of
different priorities which cannot be solved by MRA. Thus, another important aspect
of ME algorithms is to handle the priorities [14–16] of the processes.

3.2 Modified Raymond’s Algorithm for Priority (MRA-P)

We present a new token-based algorithm named Modified Raymond’s Algorithm
for Priority (MRA-P) [13]. It ensures fairness besides serving higher priority jobs
ahead of others. The MRA algorithm is modified to consider processes with dif-
ferent priorities such that a higher priority process gets the token first even if a
lower priority process has placed its request earlier. However, the fairness property
is maintained for two equal-priority processes Fig. 3.4.

Table 3.1 A tabular illustration of the MRA procedure

Pi Queue Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

P1 RQ 8 8, 11 8, 11, 6 – – –

LDQ1 8, 3, 1 8, 3, 1; 11,
5, 2, 1

8, 3, 1; 11, 5,
2, 1; 3, 1

11, 5, 2,
1; 3, 1

– –

P8 RQ – – – *8, 11, 6 – –

LDQ8 8 8 8 1, 3, 8 – –

P3 RQ – – – – 6, 3 –

LDQ3 8, 3 8, 3 8, 3; 6, 3 1, 3; 6, 3 – –

P6 RQ – – – – *6

LDQ6 – – 6 6 –

P11 RQ – – – – *11, 6

LDQ11 – 11 11 11 1, 2,
5, 11

* point of execution

Priority queue(PQx): Every process Px maintains a priority queue PQx. A process Px
wishing to enter the critical section, sends a request for the token along with LDQx and its
priority status on its outgoing edge.

Local double-ended queue (LDQx): A process Px wishing to enter the critical section,
sends a request for the token along with LDQx and its priority status on its outgoing edge.

Request queue (RQ): Process Phold maintains a request queue that stores the process ids
for the token requesting processes in an FIFO order. The RQ is transferred to the new root
of the tree along with the token.

Fig. 3.4 Data structure of MRA-P algorithm

30 3 Tree-Based Mutual Exclusions

3.2.1 Data Structure and Algorithm for MRA-P

Description for MRA-P Algorithm
Suppose that process Px wishes to enter the CS. Px will enter its id x in its local
double-ended queue LDQx in an appropriate position depending on the priority of
Px. The priority of Px is entered in the local priority queue PQx. Process Px sends a
token request TKN along with the priority of Px by using LDQx and Px. When a
process Py 6¼ Phold receives a token request from process Pk, then id for process Py

is added in PQy in ascending order. According to priority, Py adds id ‘k’ in LDQy

followed by its own id y. The revised LDQy and PQy are sent out with token request
TKN. If a request from Py is pending, then only token request TKN is sent out.
When a process Py = Phold receives a token request TKN from process Pk, then Py

adds priority in PQy in descending order. Similarly, Py adds the id ‘k’ into LDQy

according to the priority of Pk followed by its own id y. Token requesting process id
x is added to the RQ.

On completing the execution of CS, Py = Phold performs the following. Process
Py scans the first id ‘k’ from RQ. Process Py extracts the entries in LDQy from ‘k’ to
the first occurrence of ‘y’ in LDQy and removes first element of PQy. The extracted
sequence of ids is reversed from ‘y’ to ‘k’. Directed edge from Pm to Py is reversed,
where m is the id that follows y. Therefore, Phold = Pm. The RQ is passed to Pm

from Py along with the token. If LDQy is not empty then Py places a token request
to Pm along with the reduced LDQy. The ids in LDQy are added to the head of
LDQm followed by m. The following steps are performed with the newly designated
root Pm = Phold. If first id of RQ is ‘m’, then remove this first id from RQ and from
the top of LDQm. Process Pm is allowed to enter its CS. On the contrary, if the first
id of RQ is not ‘m’, and say ‘k’, then ‘k’ will also be the first entry of LDQm. This is
because entries in the LDQs are according to process priorities. Extract entries from
LDQm from ‘k’ to ‘m’. Reverse edge Pm to Pk, if extracted sequence is of length 2 or
more. Pass the token and RQ to this new root Py. If the length of the extracted
sequence is greater than 2, then send a TKN request from Pm.

A pseudo code representation for the MRA-P algorithm is given below.

Begin

1. Step 1: A Process Pi wishing to enter the CS.
2. insert <i> in LDQi[];
3. insert <xi> in PQi[]; /* Pi enters its id i in the LDQi and priority in PQi */
4. send token_request <i, xi>;

/* Pi sends a token request {i} on its out-edge along with LDQj and the priority
of Pi */

5. Step 2: When a process Pm 6¼ Phold receives a token request from process Pk.
6. insert <xk, xm> in PQm;

/* Pm it adds priority in PQm in descending order, xk > xm */
7. insert <k, m> in LDQm;

3.2 Modified Raymond’s Algorithm for Priority (MRA-P) 31

/* According to priority, Pm adds the ids from LDQk into LDQm followed by its
own id, i.e., m in this case */
/* The revised local queue LDQm and PQm, thus formed, is sent along with the
token request {i} to the out-edge */

8. Step 3: When a process Pm = Phold receives a token request {i} from process
Pk.

9. insert <xk> in PQm; /* Pm adds priority in PQm in descending order */
10. insert <k, m> in LDQm;

/* According to priority, Pm adds the ids from LDQk into LDQm followed by its
own id, i.e., m in this case */

11. insert <i> in RQ; /* The token requesting process id i is added to the RQ */
12. Step 4: On completing the execution of CS, Pm = Phold performs the following:
13. k 2 RQ[]; /* Pm scans the first id k from RQ */
14. extract <k,..,m>;

/* Pm extracts entries starting from k to the first occurrence of m from LDQm

and removes the first element of PQm */
15. reverse <m,…, k>;

/* The extracted sequence of ids is reversed from m to k */
/* The directed edge from Pn to Pm is reversed, where n is the id that imme-
diately follows m in the reversed sequence */

16. Phold = Pn;
17. send_tokent <n>; /* Pass RQ to Pn from Pm along with the token */
18. if (LDQj[] 6¼ null)

/* If LDQm is not empty then Pm places a token request to Pn along with the
reduced LDQm */

19. send token_request <m, xm>;
/* The id of LDQm is added to the head of LDQn followed by n; */

20. endif.
21. Step 5: The newly designated root Pn = Phold performs the following:
22. remove the first process tuple <n> from RQ;
23. if the first id of RQ is n, then remove the first id of RQ;

/* i.e., n, in this case, from the RQ */
24. remove the first process tuple <n>from PQ; /* Remove first element of PQ */
25. remove the first process tuple <n> from LDQn;

/* The entry n is removed from the top of LDQn */
26. Pn enters its CS.;
27. else
28. repeat through the Step 4;
29. endif.

End

Illustrating the MRA-P Algorithm
In Fig. 3.5, three processes have requested for the token that is currently held by
Phold = P1. The processes have different priorities. The higher the priority of a

32 3 Tree-Based Mutual Exclusions

process, higher is the integer value representing its priority level. A process with the
highest priority is of priority value 6. In Fig. 3.5, we have shown the priority values
only for the three processes P8, P11, and P6 and these are 2, 3, and 2, respectively.
Processes P8, P11, and P6 have placed requests to enter the respective critical
sections, in that order. However, according to their priorities, the order in which the
processes are to be allowed to enter the respective critical sections is P11, P8, and
P6. We further assume that process P1 remains in its CS until all three requests are
made and the local queues at the nodes are updated.

Table 3.2 is a tabular representation that illustrates how the contents of the
LDQs and RQs maintained at different nodes and that of RQ with Phold change in
successive iterations as explained above. The token requests from P8, P11, and P6

have been placed in Step 1, Step 2, and Step 3, respectively. The RQ in Step 3 is
{11, 8, 6} and is maintained at P1 = Phold. In Step 4, process P11 has come out of its
CS and the RQ is transferred to P8 before it enters its CS. Similarly, P8 enters the
CS in Step 5.

Process P6 enters its critical section next in Step 6. The steps in which the
processes enter the respective critical sections are marked by placing a * in the RQ
entries in the appropriate cell. The token is finally left with P6 and all the data
structures are left empty [Step 6]. In an identical situation, when the same three
processes P8, P11 , and P6 requested for token in the same order, the Raymond’s
algorithm fails to ensure fairness. The MRA algorithm handles the fairness issue
successfully while it does not consider priorities of requesting processes. The
MRA-P algorithm, however, considers both the issues effectively.

2nd

1

2 3

4 5 6 7 8

9 10 11 12 13 14 15

1st

8

8 | 3

11

11 | 5

11 | 5 | 2

3rd

6

6 | 3

3 | 1

2

3

2

2

1 2
3 4 5

7

6

1

4

2

2

3

3

3

11 | 5 |2 | 1 8 |3 | 1

2

2

2 23

Fig. 3.5 An example for the MRA-P algorithm

3.2 Modified Raymond’s Algorithm for Priority (MRA-P) 33

3.2.2 Performance Analysis for MRA and MRA-P

The MRA requires 2 * (H − 1) control message exchanges per access to the critical
section, where H is the height of the tree. In case of a balanced binary tree
H = log2N for total N number of processes. Thus the number of control messages
exchanged per access to the critical section would be O(log2N). This is same as the
Raymond’s algorithm. Thus the proposed MRA achieves fairness without intro-
ducing any additional overhead in terms of message complexity.

Simulation Result
The simulation is done in MATLAB and the simulation setup has been documented
in Table 3.3. The chart in Fig. 3.6 provides a graphical representation of the
comparative performance of the MRA versus the classical Raymond’s algorithm. It
establishes that the fairness aspect is taken care of in the proposed MRA solution
only. Response time in MRA gradually increases but that of Raymond’s algorithm
decreases because it serves one sub-tree then and the other.

3.3 Fairness Algorithm for Priority Processes (FAPP)

Both MRA [13] and MRA-P [13] suffer from high message complexity and rela-
tively complex routing mechanism. Besides, the MRA-P algorithm lacks in
ensuring liveness of token requests, particularly from the low-priority processes.

Table 3.2 A tabular illustration of the MRA-P

Pi Queue Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

P8 RQ – – – – *8, 6 –

PQ8 2 2 2 2 2 –

LDQ8 8 8 8 8 3, 8 –

P1 *RQ 8 11, 8 11, 8, 3 – – –

PQ1 2 3, 2 3, 2, 2 2, 2 2 –

LDQ1 8, 3, 1 11, 5, 2, 1;
8, 3, 1

11, 5, 2, 1;
8, 3, 1; 3, 1

8, 3, 1;
3, 1

3, 1 –

P3 RQ – – – – – –

PQ1 2 2 2, 2 2, 2 2 –

LDQ1 8, 3 8, 3 8, 3; 6, 3 8, 3; 6, 3 1, 3, 6, 3 –

P6 RQ – – – – *6

PQ6 – 2 2 2 2

LDQ6 – 6 6 6 –

P11 RQ – – – *11, 8, 6 – –

PQ11 – 3 3 3 – –

LDQ11 – 11 11 11 – –

*point of execution

34 3 Tree-Based Mutual Exclusions

The FAPP (Fairness Algorithm for Priority Processes) algorithm [17] is a com-
pletely new algorithm that follows a simpler routing, maintains lesser information
in each process, and has significantly lower message complexity compared to
MRA-P. The FAPP algorithm too assumes that nodes are connected in inverted tree
topology [18, 19]. The root process holds the token and is designated as Phold. The
fairness as well as the priority issues is taken care of by introducing one list referred
as request queue. Additional space complexity is proportional to the number of
token requesting processes Fig. 3.7.

Table 3.3 Simulation parameters of MRA

Parameters Value

Connection topology Logical topology of inverted tree

No of process in the tree 20

Edge length Static

Direction of edge Bidirectional

Maximum out-degree 3

Maximum degree 4

Minimum degree 1

Priority of process in the tree Same

Maximum number of token requests Gradually increased (4, 6, 8, 10, 16)
95

Fig. 3.6 Comparative performance of the MRA and Raymond’s algorithm

Path List (PL): An arbitrary process A maintains a path list (PLA) which is a process
request queue as detailed below:

PLA: {[<R, RP>], [<S, SP>], [<T, TP>], …), where R, S, T… are the direct descendants
of A and RP, SP, TP… are the priorities of the respective descendent processes in a non-
increasing sequence, i.e., . RP≥ SP≥ TP…

Fig. 3.7 Date structure of FAPP algorithm

3.3 Fairness Algorithm for Priority Processes (FAPP) 35

3.3.1 Data Structure and Algorithm for FAPP

Description for FAPP Algorithm
A processM with priority {m} wants to enter the critical section (CS). According to
priority m, it adds the tuple <M, m>into PLM. M sends token request using its outer
edge. When a process S 6¼ Phold receives a token request <K, r> and priority {r}
from another process K. Priority of K, i.e., r, is higher than the priority t for some
process C whose token request is sent through S. Priority value t is increased by 1
i.e., t = t + 1. According to priority, it adds the tuple <K, r> into PLS and update
PLS in descending order of entries. S sends token request only when it receives
request with higher priority or after update priority.

When a process J = Phold receives a token request <K, r> and priority {r} and
there is a pending request from K then replace old priority of K with r. The new
request from K must have a higher priority. Revise PLJ in accordance with updated
priority. All intermediate processes from Phold to the requesting process follow the
same logic for processing.

After execution of CS, E = Phold performs the following. Remove the first
process tuple <M, m> from PLE where m is priority of process M. M would be the
new Phold; the token is passed to M from E. If PLE[] 6¼ null then send dummy
token_request <E, x>. E places a token request to M along with the highest priority
which E receives. The new root M = Phold receives token <G, r> and removes the
first tuple <G, r> from PLM. Thus, r is updated priority of process G. If G is same as
M, then M enters CS otherwise token <G, r> is sent. G would be the new Phold and
the token is passed to G from M. If PLM[] 6¼ null then send dummy token_request
<M, x>. G places a token request to M along with the highest priority which
E receives. A pseudo code representation for the MRA-P algorithm is given below.

Begin

1. Step 1: When a process M with priority {r} wants to enter the critical section
(CS).

2. insert <M, r> in PLM[];
/* According to priority r, it adds the tuple <M, r> into PLM */

3. send token_request <M, r>; /* M sends token request using its outer edge */
4. Step 2: When a process S 6¼ Phold receives a token request <K, r> and priority

{r} from another process K.
5. if (r > t)
6. t = t + 1;

/* Priority of K, i.e., r, is higher than the priority t for some process C whose
token request is sent through S. Priority value t is increased by 1 i.e., t = t + 1
*/

7. endif
8. insert <K, r> in PLS[] in the sorted order of descending priority;

/* According to priority, it add the tuple <K, r> into PLS */
/* Update PLS in descending order of entries */

36 3 Tree-Based Mutual Exclusions

9. send token_request (S, r);
/* S sends token request only when it receives request with higher priority or
after update priority */

10. Step 3: When a process J = Phold receives a token request <K, r> and priority
{r} from another K,

11. if(k 2 PLJ[]) /* There is a pending request from Pk */
12. replace old priority of K with r;

/* The new request from Pk must have a higher priority */
13. update PLJ[]; /* Revise PLj in accordance with decreased priority */
14. else
15. repeat Step 2;
16. endif
17. Step 4: On completing the execution of a CS, Ej = Phold performs the

following:
18. remove the first process tuple <M, m> from PLE; /* m is priority of process M

*/
19. send token (M, m); /* M would be the new Phold—the token is passed to M

from E */
20. if (PLE[] 6¼ null)
21. send dummy token_request(E, x);

/* E places a token request to M along with the highest priority which E
receives */
/* According to priority, it add the tuple <K, r> into PLS and no priority
updating is
required */

22. endif
23. Step 5: The newly designated root process M = Phold that receives token (G, r)

performs the following:
24. remove the first tuple <G, r> from PLM;

/* r is priority or updated priority of process G */
25. if (G = = M)

/* After executing CS, process does not update its priority */
26. enter CS;
27. else
28. send token (G, r); /* G would be the new Phold—the token is passed to G from

M */
29. endif
30. if (PLM[] 6¼ null)
31. send dummy token_request <M, x>;

/* G places a token request to M along with the highest priority that E receives.
According to priority, it adds the tuple <K, r> into PLS. No priority updating is
done. */

32. Endif

End

3.3 Fairness Algorithm for Priority Processes (FAPP) 37

Illustrating the FAPP Algorithm
The example under consideration deals with 15 (fifteen) processes with process
ids1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 with the priority values 1, 2, 3,
1, 3, 5, 4, 1, 2, 4, 3, 4, 5, 2, and 4, respectively. We further assume that the priority
5 is highest priority of the process. Process P8 places the first request for the token
with the root node P1 = Phold. Next P11, P6, P4, and P13 processes have placed the
requests for token in that order.

According to Step 1 of the algorithm, PL8 stores <8, 1>. The first token request
is then propagated to 3 along with id of the requesting node, i.e., 8 in this case, and
priority of the requesting process P1. When process P3 receives the request from
process P8, it puts 8 in PL3, thus PL3 = <8, 3>. Process P3, now places a token
request along with its own id 3 and priority of process P8, i.e., 1, again, on its outs
edge. Process P1 = Phold now receives the request and puts <3, 1> in PL1 Fig. 3.8.

Let’s now consider that, at this point of time, P11 issues the second token request
to enter CS. Process P11 has a priority of 3. So it puts its own process id and priority
i.e., <11, 3> in PL11 and sends the token request to P5 along with its own id and
priority on its outgoing edge. Then Process P5 updates as <11, 3> in PL5 and sends
the token request to P2 and Process P2 is updated as <5, 3>. P1 receives the request
and following Step 3 of the algorithm, it modifies PL1 to <11, 3>, <3, 2>. Process
P1, first increases the priority of P3 which originated at P8, by one, then arranges the
requests.

1

2 3

4 5 6 7 8

9 10 11 12 13 14 15

1

3

4
2

1
41 3

2

5

3 5
2

4 4

<8,1>

<11,3>

<11,3>

<5,3>

<6,5>

<2,4><3,5>

<4,1>

<4,1>

<13,5>

<6,5> <8,3><7,5>

1st
3rd

4th

5th

Fig. 3.8 Propagation of token requests to the root

38 3 Tree-Based Mutual Exclusions

Similarly, process P6 issues the third request to enter CS. P6 has a priority of 5.
So, it puts its own process id, i.e., <6, 5> in PL6 and sends the token request along
with its own id and priority on its outgoing edge. Then process P3 receives the
request from process P6, the process P3 puts 6 in PL3, thus PL3 = <6, 5>, <8, 2>.
P3, now places a token request along with its own id 3 and priority of process P6,
i.e., 5, again, on its outs edge. Process P1 = Phold now receives the request and puts
<3, 5> in PL1. Then PL1 is modified to <3, 5>, <2, 4>. Then, process P4 issues the
fourth token request. It enters <4, 1> in PL4. Now process P2 gets the token and
adds <4,1> in PL2. Since priority of P4 is 1, which is lower than the priority of P11.

As process P2 places a token request to P1 along with the highest priority which P2

receives so P2 is just appended of request of P4 into PL2. Then PL2 is updated as
<5, 3>, <4,1>. Now, Process P13 sent fifth request. It enters <13, 5> in PL13. Now
process P7 gets the token and adds <13, 5> in PL7. Then process P3 receives the
request from process P7, the process P3 puts 7 in PL3, thus PL3 = <6, 5>, <7, 5>,
<8, 3>. Since P3 already sends a request on behalf of P6 with same priority as for
P13. So P2 is just appended in PL3. No further request is send to P1 for P13 Fig. 3.9.

After receiving all the token requests, P1 comes out of its CS and following Step
4, the first tuple from PL1 is extracted. The token is handed over to P3. Now,
PL1 = <2, 4>. As PL1 is not empty, a dummy request from P1 is sent to P3 along
with the highest priority, which process P1 receives, i.e., token request as <2, 4>.
The token reaches P3 and at this point, PL3 = <6, 5>, <7, 5>, <1, 4>, <8, 3>.
Process P3 extracted <6, 5>. The condition for Step 5 matches and therefore P6

enters the CS after updating PL6 = <3, 5>, which is shown in Fig. 3.9. Therefore,
as P6 comes out of the CS, the entries from PL6 is extracted once again and the

1

2 3

4 5 6 7 8

9 10 11 12 13 14 15

1

3

4
2

1
41 3

2

5

3 5
2

4 4

<8,1>

<11,3>

<11,3>

<5,3>

<5,3>

<2,4>

<4,1>

<4,1>

<13,5>

<7,5> <8,3><1,4>

1st
3rd

4th

5th
<13,5>

Fig. 3.9 Sequence of the requesting processes to enter the CS

3.3 Fairness Algorithm for Priority Processes (FAPP) 39

token is handed over to P3 and leaving PL6 = (i.e., empty) and once again, P3

becomes the root of the inverted tree.
Similarly, using Step 4 and 5, process P13, P11, P8 and P4 enters CS, respec-

tively. When enters the CS after removing its tuple for PL4, all the lists are emptied.
The token stays with P4 = Phold even after the process comes out of the CS and till
any other request is generated in the system.

Table 3.4 is a tabular representation of how the process P6 enters CS in Step 6,
P13 enters CS in Step 7 and process P4 enters CS in Step 10. These are marked by
placing a * before the PL entries for the process in the CS, in the appropriate cell of
the table. The # symbol indicates that a new token request is issued. The ‘-’ entries
in the cells of the tables are used to indicate null lists. In the case study, the token is
finally left with P4, as no other request for the token has been issued.

3.3.2 Performance Analysis for FAPP

We analyze the performance of our algorithms using the following metrics: mes-
sage complexity per CS request, fairness, correctness of the FAPP algorithm, time
complexity of the FAPP algorithm, synchronization delay, and maximum concur-
rency for FAPP algorithm.

Message Complexity
The control messages for the FAPP algorithm are of two types. A request control
message initiates from a process that requests the token and moves toward the root
Phold of the inverted tree. The token transfer control messages flow from the root
process toward one of the token requesting processes, at a time, and every time after
current Phold completes its own critical section. The complexity of control messages
per CS access are estimated by separately computing the same for both types of
control messages and making a sum thereafter.

When a process Pm requests for a token, its id {m} and the priority value, say
{mp} both moves up to its parent process Pn. The process Pn inserts {m, mp} in PLn

and sends a fresh request {n} along with the priority value {np} to its own parent.
The relaying of token request from Pm continues right up to the root process Phold.
This may stop at any intermediate process Pk, if there is already a pending request
for Pn whose priority is higher than that of Pm. The maximum number of request
control messages for each token request from Pm is same as the level of Pm in the
tree.

Lemma 3.1 The number of request control messages along with the request paths
required for a new token request lies in the interval [0, (H − 1)], where H is the
height of the tree.

Proof The total number of nodes on the unique path from the requesting node Pi to
root node Phold is L + 1, where L is the level of node Pi in the inverted tree. In the
worst case, the request control message from Pi to its parent Pj along with the

40 3 Tree-Based Mutual Exclusions

T
ab

le
3.
4

A
ta
bu

la
r
ill
us
tr
at
io
n
of

FA
PP

P
id

St
ep

1
St
ep

2
St
ep

3
St
ep

4
St
ep

5
St
ep

6
St
ep

7
St
ep

8
St
ep

9
St
ep

10

Fi
rs
t
re
q

Se
co
nd

re
q

T
hi
rd

re
q

Fo
ur
th

re
q

Fi
ft
h
re
q

P
6
ex
e

P
13

ex
e

P
11

ex
e

P
8
ex
e

P
4
ex
e

P
1

<8
,
1>

<2
,
3>

<3
,
2>

<3
,
5>

<2
,
4>

<3
,
5>

<2
,
4>

<3
,
5>

<2
,
4>

<2
,
4>

<2
,
4>

<3
,
3>

<2
,
1>

–

P
11

#<
11

,
3>

<1
1,

3>
<1

1,
3>

<1
1,

3>
<1

1,
3>

<1
1,

3>
*<

11
,
3>

<5
,
3>

–
–

P
6

#<
6,

5>
<6

,
5>

<6
,
5>

*<
6,

5>
<3

,
5>

–
–

–
–

P
3

<8
,
1>

<8
,
1>

<6
,
5>

<8
,
2>

<6
,
5>

<8
,
2>

<6
,
5>

<7
,
5>

<8
,
3>

<7
,
5>

<2
,
4>

<8
,
3>

<2
,
4>

<8
,
3>

<8
,
3>

<1
,
1>

–

P
2

<5
,
3>

<5
,
3>

<5
,
3>

<4
,
1>

<5
,
3>

<4
,
1>

<5
,
3>

<4
,
1>

<5
,
3>

<4
,
1>

<3
,
3>

<4
,
1>

<4
,
1>

–

P
5

<1
1,

3>
<1

1,
3>

<1
1,

3>
<1

1,
3>

<1
1,

3>
<1

1,
3>

<3
,
3>

–
–

P
8

#<
8,

1>
<8

,
1>

<8
,
1>

<8
,
1>

<8
,
1>

<8
,
1>

<8
,
1>

<8
,
1>

*<
8,

1>
<3

,
1>

–

P
7

<1
3,

5>
<1

3,
5>

<3
,
4>

–
–

–

P
4

#<
4,

1>
<4

,
1>

<4
,
1>

<4
,
1>

<4
,
1>

<4
,
1>

*<
4,

1>

P
13

#<
13

,
5>

<1
3,

5>
*<

13
,
5>

<7
,
4>

–
–

–

#
po

in
t
of

re
qu

es
t,
*p

oi
nt

of
ex
ec
ut
io
n

3.3 Fairness Algorithm for Priority Processes (FAPP) 41

priority value of Pi is relayed right up to the root node using the intermediate nodes.
Thus the maximum number of such messages will be L. If Pi happens to be a leaf
node on one of the longest paths of the tree, then L = H − 1 following the defi-
nition of height H of tree. The maximum number of request control message would
thus be L = (H − 1).

It is trivial to prove that in an extreme case, if there is already a pending request
of higher priority from the requesting node Pi to its parent then no request control
message is sent at all. Thus, the total number of request control messages for a new
token request from any node Pi, lies within the closed interval of [0, (H − 1)],
where H is the height of the tree.

Lemma 3.2 The maximum number of token transfer control messages for each CS
access is (H − 1), where H is the height of the tree.

Proof The FAPP algorithm stores the request paths of the tokens using local
queues in each node. When the root node, say Pm, comes out of its critical section, it
will pass the token to some node, say Pi, which is on top of the PLm. This transfer is
performed using the intermediate nodes from Pm to Pi, where a transfer control
message is issued to mobilize the token through each intermediate node.

If the level of node Pi is L, then the total number of nodes on the unique path
from Pm to Pi would be L + 1, inclusive of both the source and the target nodes.
The number of transfer control messages along the path would therefore be L. The
value of L, is again (H − 1) for the extreme case when target node Pi happens to be
leaf node on one of the longest paths of the tree of height H. Thus the statement of
Lemma 3.2 is proved.

Theorem 3.1 The maximum number of control messages per CS access for FAPP
using a N-node balanced binary tree is O(logN).

Proof Lemma 3.1 establishes that the total number of request control messages for
a new token request from any node Pi, lies within the closed interval of [0,
(H − 1)], where H is the height of the tree.

Similarly, from Lemma 3.2, the maximum number of token transfer control
messages for each CS access is again (H − 1), where H is the height of the tree.

Thus the total number of control messages using a N-node balanced binary tree
is 2 * (H − 1) = 2 * (log2N − 1) � O(logN).

The actual number of messages could even be smaller for m-way trees, for
m > 2. The message complexity for such a topology however, remains the same,
i.e., O(logN).

Lemma 3.3 Algorithm FAPP ensures fairness.

Proof Let us prove this by contradiction. In other words, let us assume that, even if
the request from a process Pr reaches the root node first, another equal-priority
process Pj that requested for token after Pr gets it ahead of Pr. Without any loss of
generalization, let us further assume that Pj and Pr are direct descendants of Phold.
This assumption simplifies the scenario as we can do away with the routing through
the intermediate nodes. We know that Pj is to get the token before Pr, and priority

42 3 Tree-Based Mutual Exclusions

of both processes is the same. Further, the allocation of token initiates by extracting
the first element, say Pk, from PLhold and then by passing the token toward Pk using
the intermediate nodes.

Therefore; the occurrence of Pj must precede that of Pr in PLhold: ð3:1Þ
On the other hand, for token requests from two equal-priority processes, the

entries in PLhold are to be made following the order of arrival of request control
messages. Pj and Pr are of equal priority and the token request from Pr arrives
before that from Pj.

Therefore; the occurrence of Pr must precede that of Pj in PLhold: ð3:2Þ

The conditions 1 and 2 are in conflict. This proves that the converse of our initial
hypothesis is correct. Therefore, the Fairness Algorithm for Priority Processes
(FAPP) indeed, meets the fairness criteria.

Correctness of the FAPP Algorithm
The correctness of a distributed control algorithm is often defined as a collection of
two separate characteristics, safety, and liveness. A process synchronization algo-
rithm satisfies the safety property if it ensures that no two processes are allowed to
access the respective critical sections simultaneously. In other words, the algorithm is
safe if the competing processes access the critical sections in a mutual exclusion.
Liveness demands that any process that requests for the token must get it eventually.

Safety
Any token-based mutual exclusion algorithm is inherently safe as there is only one
token and the process that enters CS must get the token first. FAPP is a token-based
algorithm where all the competing processes share the same token. The process
Phold that holds the token can only access its CS. Thus FAPP maintains the safety
property.

Liveness
Apparently liveness and priority-based fairness are just two conflicting aspects to deal
with. If an algorithm prefers a higher priority process, then it is almost obvious that a
lower priority job may suffer from starvation. This will be denial of likeness.
However, this paper aims to strike a balance on this. The dynamics in revising
process priorities described in Step 2 of FAPP ensures that even a token request from
a lowest priority process would eventually be granted as the priority itself changes
dynamically. Thus liveness as defined in Chap. 2 would be maintained for FAPP.

Concurrent Occupancy
In the FAPP algorithm, before a process Pm = Phold starts execution in CS, it
extracts the first id from PLm. If the first id of PLm i.e., {m, Pm}, is equal to the own
priority of Pm, replace the positions of PLm by the id of the sender and the priority
sent by it. This is done only if the PLm is not empty. Then Pm enters its CS. Thus the
requesting process enters in its CS only after it receives the token. Hence, it is
proved that FAPP algorithm satisfies the concurrent occupancy property.

3.3 Fairness Algorithm for Priority Processes (FAPP) 43

Time Complexity
The FAPP algorithm iterates in two stages for each access to CS. As explained in
the proof of theorem 3.1, a maximum number of (H − 1) iterations, H being the
height of the tree, is required for carrying a token request form any node to the root
node. Similarly, in order to pass the token to a requesting leaf node, the number of
iterations will not be more than H − 1. Thus the overall time complexity will be
2 * (H − 1) � O(logN), N being the number of nodes in a balanced binary tree.

Theorem 3.2 The maximum concurrency of the proposed FAPP algorithm is L,
where L is the maximum level of any node in the tree.

Proof In FAPP algorithm, when a node Pi requests for token, its id and the priority
value, say {p} both moves up to its immediate parent node Pj. The node Pj inserts
{i, p} in PLj before sending a fresh request {j} along with the priority value {p} to
its own parent. This relaying of token request from originating node Pi continues
right up to the root node Phold. The process, may however, stop at any intermediate
node Pk, if there is already a pending request for Pj whose priority is higher than
that of Pi. Thus, the maximum number of request control messages for each token
request from Pi could be L, where L is the level of node Pi in the tree. Therefore,
maximum concurrency of our algorithm is L.

Simulation Result
The experimental setup has been documented in Table 3.5. In Fig. 3.10, it is found
that the FAPP algorithm uses more control messages in comparison to the
Raymond’s algorithm.

However, this is justified as FAPP ensures the fairness among the priority
processes competing for the token. This requires a slightly higher number of control
messages per token request.

Table 3.5 Simulation parameters of FAPP

Parameters Value

Platform MATLAB 7.1

Connection topology Inverted tree

Nodes in the tree 15

Edge length Static

Maximum degree 3

Minimum degree 1

Priority of process Per-assign and fixed

Maximum number of request Gradually increased (5,6,7)

Candidate select User choice

Links between the processes Bidirectional.

Measure Execution time and control message

44 3 Tree-Based Mutual Exclusions

3.4 Concluding Remarks on Tree-Based ME Algorithms

The fairness aspect in terms of responding to the token requests from equal-priority
processes in a FIFO order is not always ensured in existing token-based ME
algorithms. MRA solves the fairness problem of Raymond’s algorithm [9]. In
MRA-P [13], the competing processes get token first considering their priorities and
then in the order in which the requests have been entered. This suggests that
MRA-P should be used only when strict priority ordering is required. However,
MRA-P uses many control messages. FAPP [17] algorithm overcomes this and
ensures fairness amongst equal-priority processes too.

References

1. Lin, T., Moh, S., Moh, M.: Brief announcement: improved asynchronous group mutual
exclusion in token passing networks. In: Proceedings of PODC’05, pp. 275–275 (2005)

2. Zarafshan, F., Karimi, A., Al-Haddad, S.A.R., Saripan, M.I., Subramaniam, S.: A preliminary
study on ancestral voting algorithm for availability improvement of mutual exclusion in
partitioned distributed systems. In: Proceedings of International Conference on Computers
and Computing (ICCC’11), pp. 61–69 (2011)

3. Saxena, P.C., Rai, J.: A survey of permission-based distributed mutual exclusion algorithms.
Comput. Stan. Interfaces 25(2), 159–181 (2003)

4. Helary, J.M., Mostefaoui, A., Raynal, M.: A general scheme for token and tree based
distributed mutual exclusion algorithm. IEEE Trans. Parallel. Distrib. Syst. 5(11), 1185–1196
(1994)

5. Naimi, M., Trehel, M., Arnold, A.: A log(N) distributed mutual exclusion algorithm based on
path reversal. J. Parallel. Distrib. Comput. 34(1), 1–13 (1996)

6. Sanders, B.: The information structure of distributed mutual exclusion algorithm. ACM
Comput. Syst. 5(3), 284–299 (1987)

7. Singhal, M.: A dynamic information structure mutual exclusion in distributed system. IEEE
Trans. Parallel. Distrib. Syst. 3(1), 121–125 (1992)

12

16

20

24

5 4 3 2

RA FAPP MRA-P

A
ve

ra
ge

 n
o.

 o
f m

es
sa

ge
s

Average no. of token requests

Control Message Complexity - Set I

Fig. 3.10 Comparative performance for message complexity

3.4 Concluding Remarks on Tree-Based ME Algorithms 45

8. Kakugawa, H., Yamashita, M.: Local coteries and a distributed resource allocation algorithm.
Trans. Inf. Process. Soc. Japan 37(8), 1487–1496 (1996)

9. Raymond, K.: A tree-based algorithm for distributed mutual exclusion. ACM. Trans. Comput.
Syst. 7, 61–77 (1989)

10. Housini, A., Trehel, M.: Distributed mutual exclusion token-permission based by prioritized
groups. In: Proceedings of ACS/IEEE International Conference, pp. 253–259 (2001)

11. Mueller, F.: Prioritized token-based mutual exclusion for distributed systems. In: Proceedings
of the 9th Symposium on Parallel and Distributed Processing, pp. 791–795 (1998)

12. Kanrar, S., Choudhury, S., Chaki, N.: A link-failure resilient token based mutual exclusion
algorithm for directed graph topology. In: Proceedings of the 7th International Symposium on
Parallel and Distributed Computing—ISPDC 2008 (2008)

13. Karnar, S., Chaki, N.: Modified Raymond’s algorithm for priority (MRA-P) based mutual
exclusion in distributed systems. In: Proceedings of ICDCIT 2006. LNCS 4317, pp. 325–332
(2006)

14. Mittal, N., Mohan, P.K.: A priority-based distributed group mutual exclusion algorithm when
group access is non-uniform. J. Parallel. Distrib. Comput. 67(7), 797–815 (2007)

15. Barbara, D., Garcia-Molina, H., Spauster, A.: Increasing availability under mutual exclusion
constraints with dynamic vote reassignment. ACM Trans. Comput. Syst. 7(4), 394–428
(1989)

16. Zarafshan, F., Karimi, A., Al-Haddad, S.A.R., Saripan, M.I., Subramaniam, S.: A preliminary
study on ancestral voting algorithm for availability improvement of mutual exclusion in
partitioned distributed systems. In: Proceedings of International Conference on Computers
and Computing (ICCC’11), pp. 61–69 (2011)

17. Kanrar, S., Chaki, N.: FAPP: A new fairness algorithm for priority process mutual exclusion
in distributed systems. Special issue on recent advances in network and parallel computing.
Int. J. Networks 5(1), 11–18 (2010). ISSN: 1796-2056

18. Naimi, M., Thiare, O.: Distributed mutual exclusion based on causal ordering. J. Comput. Sci.
398-404 (2009). ISSN 1549-3636

19. Chaki, N., Chaki, R., Saha, B., Chattopadhyay, T.: A new logical topology based on barrel
shifter network over an all optical network. In: Proceedings of 28th IEEE International
Conference on Local Computer Networks (LCN ‘03), pp. 283–284 (2003)

46 3 Tree-Based Mutual Exclusions

Chapter 4
A Graph-Based Mutual Exclusion
Algorithm Using Tokens

In some of the earlier works, token-based algorithms for ME are presented for the
distributed environment [1–6]. These are for inverted tree topology. However, such
a stable, hierarchical topology is quite unrealistic for many types of networks, e.g.,
mobile ad hoc networks (MANET), due to frequent link failures. There are existing
ME algorithms that work on a directed, acyclic graph (DAG). Again a DAG-based
[6] solution may not be ideal for the highly dynamic mobile environment [7–10]
too. Moreover, these do not ensure fairness. The solution described in [11] works
on a dynamically changing DAG structure. Their algorithm handles link failures
[11–14] and formation.

4.1 Link Failure Resilient Token-Based ME Algorithm
for Directed Graph (LFRT)

We introduced a new token-based ME algorithm for directed graph topology, with
or without cycles (LFRT) [11]. Besides maintaining the correctness in terms of
liveness and safety, the algorithm ensures fairness in allocating the token on a FCFS
basis. It offers solution paths even in presence of link failures. The most significant
advantages of LFRT [11] algorithm are its ability to handle the link failures. LFRT
algorithm is able to find an alternate path, in case of a link failure. The token request
messages do not form cycles. This keeps message complexity low.

© Springer Nature Singapore Pte Ltd. 2018
S. Kanrar et al., Concurrency Control in Distributed System using Mutual Exclusion,
Studies in Systems, Decision and Control 116, DOI 10.1007/978-981-10-5559-1_4

47

4.1.1 Data Structure and Algorithm for LFRT

(See Fig. 4.1).

Description for LFRT Algorithm
Each process Px maintains an ordered set of 2-tuple Nx = {(x, y) _ (y, x)}, where Py

is included in the set of neighboring processes of Px. The 2-tuple entry is (y, x) or (x,
y), depending on the direction of the link to or away from Px, respectively. The set
Nx, thus represents the topological neighborhood of process Px. We present to refer
set Nx as the neighborhood set for Px. Besides, each process Px maintains a
double-ended local request queue LRQx to store the identifiers of the nodes from
that requested for token.

A process Px must get the token before it enters the CS. Px appends its own id,
i.e., <x, x> in its local request queue LRQx. Process Px initiates a token request
message <x, x, y> and sends it to its neighbor Py, for each 2-tuple (x, y) stored in Px.
The token request message format is <original requesting process id, intermediate
process id, next hop process id>. Process Px need not store the 3-tuple that it sends.
When some process Py receives this request <x, x, y>, it checks LRQy for x. If it
already exists in LRQy, no further request is generated by Py on behalf of Px. On the
contrary, if this is the first request from Px through Py, then Py sends a request
message <x, y, k> to process Pk, for each 2-tuple (y, k) 2 Ny. No such request,
however, is generated on a path if x = k. This ensures that the messages do not face
a count to infinity problem. Process Py also appends id of the process Px in LRQy.
This continues till the request reaches Pt = Phold, the token holder process. The
token holder Pt maintains an additional queue called original request queue (ORQ),
to store the id of the process that generates the token request. This is stored as the
first entry of the 3-tuple. In this case, id ‘x’ is to be appended to ORQ. On return
path, if the local request queue (LRQ) of the token sender process, say Ps, is not
empty then it sends a dummy request <0, s, k> to Pk along with the token. The

Np= Neighborhood set of a node P is an ordered set of 2-tuples NP = {(T, P) v (P, T)},
where T is a node in the set of neighboring nodes of P. The 2-tuple entry is (T, P) or (P,
T), depending on the direction of the link to or away from P respectively.

Ni = {(i, j)} where there exists an edge from Pi to Pj. It's called Neighborhood set.

3-Tuple = <i, j, k> where, i: Id. of the original token requesting node,

 j:Id.ofsome intermediate node and k: Id. of the next hop destination node.

LRQi = {<j, k>}: Local Request Queue in Pi. This is maintained locally in every node
Pi. The entry <j, k> in LRQi, is for the token request initiated by Pj that reaches Pi
through Pk.

ORQ = {i}: Original Request Queue. This is a global list maintained in Phold. Id for
each token request initiating node Pi is stored in ORQ.

Fig. 4.1 Data structure of LFRT algorithm

48 4 A Graph-Based Mutual Exclusion Algorithm Using Tokens

dummy request starts with a special id “0”. On receipt of the token and the dummy
request from Ps, process Pk extracts an id from the LRQk and places <0, s> at the
front of LRQk. The dummy token requests are there to bring the token back to the
predecessor when requests are pending. This ensures fairness in the token allocation
process. A pseudocode representation for the LFRT algorithm is given below.

Begin

1. Step 1: When a process Pi wants to enter the CS,
2. insert {<i, i>} in LRQi; /* Pi adds {<i, i>} into its local request queue LRQi */
3. send token_request <i, i, j>;

/* Pi sends token request messages <i, i, j>, 8 (i, j) 2 Nj, the neighborhood set
of Pi */

4. Step 2: Node Pk 6¼ Phold on receipt of a 3-tuple <i, j, k> from node Pj.
5. if (i 2 LRQk .OR. out-degree of Pk == 0)
6. send <bounce, i, j> to Pj;

/* Node Pk detects that it has earlier received the token request originated by Pi
and sends a bounce message back to Pj */
/* This ensures that control messages do not suffer from the count to infinity
problem even in the presence of cycles in the underling directed graph topology
*/
/* Assumed that the edge between Pj and Pk is temporarily reversed during the
bounce message transmission */

7. else
8. insert <i, j> in LRQk;

/* Appends id of the requesting node Pi and sender Pj as a doublet <i, j> in
LRQk */

9. send token_request <i, k, x>;
/* Node Pk, sends a 3-tuple <i, k, x>, 8 (k, x) 2 Nk, the neighborhood set of Pk.
*/

10. end if
11. Step 3: Node Phold = Pt on receipt of a 3-tuple <i, s, t> from some node Ps.
12. if (i 2 LRQt)
13. send <bounce, i, s> to Ps;
14. else
15. insert <i, s> in LRQt;

/* Phold = Pt appends ids of node Pi and Ps as a doublet <i, s> in LRQt */
16. insert {i} in ORQt;

/* The token holder Pt appends the id of the original token requesting node Pi
into the ORQ maintained with Phold */

17. end if
18. Step 4: Node Pk, on receipt of the message <bounce, i, k>
19. If (count_bounce[i] > 0) then
20. increase count_bounce[i] by 1;

4.1 Link Failure Resilient Token-Based ME Algorithm … 49

21. else
22. create count_bounce[i] = 1;

/* If this is the first bounce message for token request from Pi, then a new local
data structure count_bounce[i] in Pk is created and initialized to 1. If Pk has
earlier received <bounce, i, k>, then count_bounce[i] is increased by 1 */

23. end if
24. if (count_bounce[i] == out-degree of Pk)

/* Condition will be true when all the neighbors of Pk, bounced the request
from Pi */

25. delete <i, j> from LRQk;
/* Deletion of <i, j> in Pk indicates that there is no new route through Pk for the
request */

26. send <bounce, i, j> to Pj;
/* Assumed that the edge between Pj and Pk is temporarily reversed during the
bounce message transmission */

27. end if
28. Step 5: Node Pt = Phold performs the following after it comes out of CS
29. if (ORQ 6¼ NULL)
30. remove the first entry <m, k> from LRQt.
31. read the first process id {m} from ORQ;

/* scans ‘m’ from ORQ. Therefore, node Pm is the original token requesting
node and node Pk happens to be the first node from Phold to Pm */

32. send <token, k>;
33. send <ORQ, k>;

/* The directed edge from Pt to Pk is reversed, and token is sent along with
ORQ */

34. end if
35. if (LRQt 6¼ NULL)
36. send token_request <0, t, k>;

/* If reduced LRQt is not empty then Pt sends a dummy token request to new
Phold */

37. end if
38. Step 6: The newly designated Pk = Phold node performs the following as it

receives <token, k>, <ORQ, k> and the dummy request <0, t, k> [optional]
from Pt:

39. remove the first entry <m, j> from LRQk;
40. if (Pk receives dummy request <0, t, k> from Pt)
41. insert <0, t> as the first entry of LRQk;

/* Phold = Pk replaces the first entry of the local queue with <0, t> */
42. end if
43. read the first process id {m} from ORQ;
44. if ((m == j) && (k == m))
45. remove the id {m} from ORQ;

50 4 A Graph-Based Mutual Exclusion Algorithm Using Tokens

46. enter CS;
47. else
48. send <token, j>;
49. send <ORQ, j>;

/* The directed edge from Pk to Pj is reversed, and token is sent along with
ORQ */

50. if (LRQm 6¼ NULL)
51. send token_request <0, k, j>;

/* If the reduced LRQk is not empty then node Pk, sends a dummy token
request to the new Phold */

52. end if
53. end if
54. Step 7: In case of a link failure {k ! i} during token passing, an intermediate

node K holding the token Pk = Phold performs the following:
55. replace {<i, m} by {<i, k>} in LRQk;

/* Phold = Pk replaces all occurrences of the second entry m by a dummy k in
LRQk */
/* Pm sends a request on behalf of Pi using the 3-tuple <i, m, k> to its neighbors
Pk */

56. delete the 2-tuple ((k, i) _ (i, k)) 2 Nk for node Pk;
/* Pk deletes the 2-tuple (k, i) or (i, k), from the neighborhood set of Nk for node
Pk */

57. TNk = Nk;
/* TNk stores the link information starting from Pk till some link to Pm is stored
in it */
/* TNk needs to be created only in case of a link failure on the shortest path
from Pk */

58. repeat
59. add {(s, h) _ (h, s)} to TNk 8 s 2 TNk 8 Ph 2 Ns;

/* Pk copies all possible neighbor information of its existing neighbors into TNk

after the first iteration and adds next level of neighbors in every new iteration */
60. until ({(n, s) _ (s, n)} 2 Nk)
61. if ({(n, x) _ (x, n)} 2 TNk)

/* If literal ‘n’ occurs in the TNk, then an alternate path from Phold = Pk, to the
token requesting node Pn can eventually be traced starting from Pk through Px
*/

62. replace {<i, k>} by {<i, x>} in LRQk

/* replace all occurrences of the dummy entry ‘k’ in LRQk by ‘x’ */
63. end if

End

Illustration of the Algorithm
In Fig. 4.2, we find a directed graph with six nodes labeled as P1 through P6. Each
node Pi maintains a neighborhood set Ni that consists of a set of 2-tuple. Each

4.1 Link Failure Resilient Token-Based ME Algorithm … 51

2-tuple {(i, j)} represent a directed link from Pi to Pj. As for example, P3 = {(3, 6),
(5, 3), (4, 3), (2, 3)}.

This represents the links that originate from or incident up on P3. The neigh-
borhood sets for the six nodes are shown in the Fig. 4.2.

As shown in Fig. 4.3, the node P4 has placed the first token request. The entries
in LRQ’s and in the ORQ are also shown. As per Step 1 of the LFRT algorithm,
{<4, 4>} is stored in LRQ4. Node P4 sends its request using the 3-tuple <4, 4, 6>
and <4, 4, 3> to the neighbors P6 and P3, respectively. On receipt of the request
from P4, nodes P3 and P6 insert the first two literals of the 3-tuple, i.e., {<4, 4>}
into LRQ3 and LRQ6, respectively. Now P3 sends a request on behalf of P4 using
the 3-tuple <4, 3, 6> to its neighbors P6. Node P6, however, already received the

P5

P1

P2

P6

P4

P3

{(5,3), (1,5), (6,5)}∈N5

{(1,5)}∈N1

{(2,3),(6,2)}∈N2

{ (6,5),(6,2),(3,6),(4,6)}∈N6

{(4,3),(4,6)}∈N4

{(3,6),(5,3),(4,3),(2,3)}∈N3

Fig. 4.2 Initial topology—P5 holds the token

P5

P1

P2

P6

P4

P3

{(5,3), (1,5), (6,5)}

{(1,5)}

{(3,6), (5,3), (4,3), (2,3)}

{(4,3), (4,6)}{(2,3), (6,2)}

{ (6,5), (6,2), (3,6), (4,6)}

LRQ5={<4,6>}

LRQ6={<4,4>}

ORQ={4}

<4,4,3>

<4,4,6>

LRQ4={<4,4>}

Fig. 4.3 Token request from node P4 reached node P5

52 4 A Graph-Based Mutual Exclusion Algorithm Using Tokens

same request form P4 directly. Thus, the 3-tuple from P3 is to be ignored following
Step 2 of the LFRT algorithm.

Now, P6 sends the request of P4 to its neighbors P2 and P5 using the 3-tuple <4,
6, 2> and <4, 6, 5> respectively following Step 2. Similarly, P3 rejects the request
form P2 following Step 2 because 4 is in LRQ3. P5 = Phold, receives the 3-tuple <4,
6, 5> and put <4, 6> in LRQ5. It also puts the first element of 3-tuple in ORQ, i.e.,
ORQ = {4}. Let us now consider that, P1 issues a second token request. So it puts
{<1, 1>} in LRQ1 and sends the 3-tuple <1, 1, 5> on its outgoing edge to P5. Node
P5 receives the 3-tuple and following Step 3 of the LFRT algorithm, updates LRQ5

as {<4, 6>, <1, 1>}. The ORQ is updated to {4, 1}.
The node P6 now places the third request which updates LRQ6 to {<4, 4>, <6,

6>} and sends the 3-tuple <6, 6, 5> and <6, 6, 2> to the neighbors P5 and P2,
respectively. Node P2 sends 3-tuple <6, 2, 3> to P3 and node P3 has no other tuple,
but <6, 3, 6> to be sent to P6 only. However, according to Step 2, node P3 detects
that it has earlier received the token request originated by P6 and sends a bounce
message back to P2. The Step 4 of the algorithm describes how the local request
queues of P2 and P3 are restored as there is no path to Phold from P6 through P2.
Node P5 updates the LRQ5 and ORQ to {<4, 6>, <1, 1>, <6, 6>} and {4, 1, 6}
respectively on receipt of the 3-tuple <6, 6, 5> directly from P6.

The situation after all three token requests from P4, P1 and P6 are registered with
the token holding node P5 is illustrated in Fig. 4.4. Say, P5 now comes out of its
critical section. P5 would pass the token and ORQ to the node from which it
received the request first, as described in line 29, Step 5. The first entry of ORQ is
now ‘4’. Then the first entry <4, 6> is removed from LRQ5. Node P5 has to pass the
token to P4 via P6. As in Step 6, the directed edge from P6 to P5 is reversed and the
token along with the ORQ is passed. Since LRQ5 is not yet empty, a dummy
request <0, 5, 6> is sent to P6. Node P6 becomes the token holder (Fig. 4.5).

P5

P1

P2

P6

P4

P3

{(5,3), (1,5), (6,5)}

{(1,5)}

{(4,3), (4,6)}{(2,3), (6,2)}

{(6,5), (6,2), (3,6), (4,6)}

LRQ 4={<4,4>}

LRQ 5={<4,6>, <1,1>, < 6,6>}

LRQ 6={<4,4>,< 6,6>}

ORQ={4, 1, 6}

3rd

2nd

1st
LRQ 1={<1, 1>}

<6,6,5>

Fig. 4.4 Token requests from node P4, P1 and P6 reached node P5 in that order

4.1 Link Failure Resilient Token-Based ME Algorithm … 53

It removes the first entry <4, 4> from LRQ6 and adds <0, 5> at the beginning of
LRQ6, thus updating it to {<0, 5>, <6, 6>}. Process P6 further passes the token to
P4. According to Step 6, P4 now enters the CS after updating the ORQ to {1, 6}. P4

also receives a dummy request <0, 6, 4> from P6 and LRQ4 is now {<0, 6>}.
Thereafter, P4 comes out of the CS. The LRQ4 is now empty and the token and

ORQ = {1, 6} is further sent to P6. Node P6 extracts <0, 5> from the LRQ6 and
sends the token to P5 along with dummy request <0, 6, 5>. Once again, P5 becomes
the token holder. Following Step 5, the token along with ORQ = {1, 6} is now
passed to P1 while LRQ5 changes to {<6, 6>}. P1 enters the CS after removing its
node number 1 from the head of ORQ. LRQ1, at this point is {<0, 5>}. After P1

leaves the CS, the remaining entry <0, 5> is extracted from LRQ1 leaving it empty.
Once again the token along with ORQ = {6} comes back to P5. Now, P5 passes the
token along with ORQ = {6} to the node P6 leaving LRQ5 empty. Node P6 enters
its CS after removing its own node id from both LRQ6 and ORQ. The token stays
with P6 = Phold even after the process comes out of the CS and till any other request
is generated in the system. The situation has been illustrated in Fig. 4.6. Once
again, as it was initially, the neighborhood lists at the nodes are only populated.

Link Failure Resilience
The LFRT algorithm is self-adaptive and resilient against a link failure. Consider
the network shown in Fig. 4.7. Let us assume that the link between P6 and P5 has
failed and node P5 has just come out of its critical section. The top most nodes in
LRQ5 and ORQ are <4, 6> and ‘4’, respectively. Thus, the path to P4 from P5

should begin with a hop to P6. However, the link between P6 and P5, is assumed as
failed.

LRQ5 is revised to {<4, k>, <1, 1>, <6, k>} following Step 6 of the LFRT
algorithm. Now P5 would extract the neighborhood information of its own
neighbors P1 and P3 from the respective neighborhood sets as per Step 7. The
2-tuple in P5 and the newly extracted data from N3 to N1 constitute TN5. The final

P5

P1

P2

P6

P4

P3

{(5,3), (1,5), (6,5)}

{(1,5)}
{(3,6), (5,3), (4,3), (2,3)}

{(4,3), (4,6)}{(2,3), (6,2)}

{(6,5), (6,2), (3,6), (4,6)}

{<0,6>}

{<1,1>,<6,6>}

{<0,5>, <6,6>}

ORQ={1,6}3rd

2nd

1st

{<1,1>}
dummy request

<0, 5, 6>

dummy request
<0, 6, 4>

Fig. 4.5 Node P4 holds the token and ORQ—the dummy requests are displayed

54 4 A Graph-Based Mutual Exclusion Algorithm Using Tokens

destination P4 is one hop away from P3, and the 2-tuple (4,3) would be a part of
TN5. Therefore, following Step 7, the LRQ5 is revised to {<4, 3>, <1, 1>, <6, 3>}.
LRQ3 would be {<4, 3>, <6, 3>}. The token along with ORQ is transferred to P3. It
also receives a dummy 3-tuple <0, 5, 3> and updates LRQ3 to {<0, 5>, <6, 3>}.
The token along with ORQ and a dummy request <0, 3, 4> is now sent to P4.
Process P4 updates the ORQ as {1, 6} and LRQ4 as {<0, 3>} before entering the
critical section as shown in Fig. 4.6. After P4 comes out of the critical section, <0,
3> is extracted from LRQ4 leaving it empty. The token is sent back to node P3, on
its way back to P5. The entire methodology has been explained in Step 6 of the
LFRT algorithm (Fig. 4.8).

P5

P1

P2

P6

P4

P3

{(5,3), (1,5)}

{(1,5)}

{(3,6), (5,3), (4,3), (2,3)}

{(4,3), (4,6)}{(2,3), (6,2)}

{(6,5), (6,2), (3,6), (4,6)}

{<0,3>}

{<4, λ>,<1,1>,<6, λ>}

{<4,4>,< 6,6>}

{1, 6}

3rd

2nd

1st

{<1,1>} {<0,5>,<6,3>}<0, 5, 3>

<0, 3, 4>

Fig. 4.7 Link between P6 and P5 has failed

P5

P1

P2

P6

P4

P3

{(5,3), (1,5), (6,5)}

{(1,5)}

{(3,6), (5,3), (4,3), (2,3)}

{(4,3), (4,6)}{(2,3), (6,2)}

{ (6,2), (3,6), (5, 6), (4,6)}

{ } {<>}

Fig. 4.6 P4, P1, and P6 completed their critical sections

4.1 Link Failure Resilient Token-Based ME Algorithm … 55

4.1.2 Limitations of LFRT

LFRT does not consider priority of participating processes. This algorithm redefines
fairness and liveness in light of process priorities and proposes new data structure,
algorithm, and evaluates properties of another algorithm. The new token-based link
failure resilient algorithm (LFRT-P) for ME maintains fairness and considers
dynamic process priorities. The underlying topology is directed graph.

4.2 Link Failure Resilient Priority Based Fair ME
Algorithm for Distributed Systems (LFRT-P)

The LFRT-P [15] is a token-based algorithm that works for processes with assigned
priorities on any directed graph topology with or without cycles. In spite of con-
sidering priorities of processes, it ensures liveness in terms of token requests from
low priority processes. Moreover, the algorithm keeps control message traffic
reasonably low. The present work aims to create a new token-based link failure

Np= Neighborhood set of a node P is an ordered set of 2-tuples NP = {(T, P) v (P, T)},
where T is a node in the set of neighboring nodes of P. The 2-tuple entry is (T, P) or (P,
T), depending on the direction of the link to or away from P respectively.

TNK =It would store all the link information starting from K. It needs to be created only in
case of a link failure on the shortest path from K.

4-Tuple = <A, B, C, AP> where, A: Id. of the original token requesting node; B: Id. of
some intermediate node, C: Id. of the next hop destination node and AP: Priority of the
original token requesting node.

RQC = {<A, B, AP>}. This is maintained locally in every node C. The entry <A, B, AP> in
RQC, maintained in C, is for the token request initiated by A with priority AP that reaches
C through B. When a process C receives a token request from another process B, there are
three possibilities:

1. If the RQC is empty, then the process C enters <A, B, AP> in RQC.

2. If the RQC is not empty and priorities of two process are not same, after updates the
priorities, the process C checks which priority is higher and enters the higher priority tuple
first in RQC (i.e. arrange in descending order and assume higher number be the higher
priority) and then the other(s).

3. If the RQC is not empty and priorities of two processes are same, then process C enters
priorities in FCFS.

ORQ ={C}: This is a global list maintained in Phold. The id for each token request
initiating node C is stored in ORQ.

count_sent[S]: The count of number of nodes to which a token request from S is
forwarded by an intermediate node.

Fig. 4.8 Data structure of LFRT-P algorithm

56 4 A Graph-Based Mutual Exclusion Algorithm Using Tokens

resilient ME algorithm that maintains fairness. The underlying topology is any
directed graph. It also takes into consideration priority of participating processes.
This was not in the scope of LFRT [11]. It is assumed without any loss of gen-
eralization that only one requesting process exists in every node. The algorithm is
implemented for two or more requesting processes in the same node.

4.2.1 Data Structure and Algorithm for LFRT-P

Description for LFRT-P Algorithm
When a process P wants to enter the critical section (CS), it has to get hold of the
token first. The algorithm would fetch the request for token to the current Phold, say,
R. When a process S wants to enter the critical section (CS) then based on its
priority r, a new tuple <S, S, r> is inserted into the local request queue RQS. This
local request queue is maintained as a sorted sequence in descending order on the
priority of requesting processes. A fresh token request <S, S, X, r> is sent to X such
that (S, X) 2 NS, the neighborhood set of S. When a process X 6¼ Phold receives a
token request <S, K, X, r>, then X identifies position P at which <S, K, r> is to be
inserted in RQX.
All the priority values for entries RQX beyond P would be increased by 1. The tuple
<S, K, r> would be inserted as the last entry amongst the tuples with priority value
r in the sorted sequence of RQX. Subsequently, process X sends token request <S, X,
Y, r> to all of its neighbor processes Y, if priority r is higher than that of earlier
requests from K to X, if any. The token request would also be sent to the neighbors
of X, if this is the first token request from K to X. Total number of requests sent to
the neighbors for the source process S would be stored in the intermediate process
X. However, the recipient process X does not allow any insertion in RQX and
bounces back the token request <S, K, X, r> to K in case the out-degree of X is 0 or
S 2 RQX. The format for the bounce message to K would be <bounce, S, K>. This
ensures that the process terminates in finite time.

When a process X = Phold receives a token request <S, K, X, r> it bounces back
the request if already another request from the same source S is recorded in RQX.
Otherwise, insertion of the tuple <S, K, r> is made into RQX as described above.
Besides, the source id S is entered into the global queue ORQ maintained at Phold.
Process K, on receipt of the message <bounce, S, K>, increases count_bounce[S] in
K by 1. If this count becomes equal to the total number of requests sent for S from
K, then the entry against S is deleted from RQK.

On completion of a CS, T = Phold sends the token along with ORQ <token, K,
ORQ> to process K where the first entry of RQT is <S, K, r>. The tuple <S, K, r> is
deleted from RQT. If RQT is not empty, a dummy token request <0, T, K, r> is sent
to K. The newly designated Phold checks the first entry S of ORQ. If S = K, then
K deletes S from ORQ and also deletes the first entry from RQK before entering into
the CS. However, if the first entry of the ORQ does not match with the id of the
current process, then the token along with ORQ is forwarded to the process

4.2 Link Failure Resilient Priority Based Fair ME Algorithm … 57

M where the first entry of RQK is <S, M, r>. The process continues till the
requesting process S becomes Phold. The algorithm terminates when both the ORQ
and the RQs maintained in different processes becomes empty. Token remains with
the last process that entered CS.

LFRT-P algorithm is activated only if some link failure is detected during
transmission of tokens. When a link failure (K, I) occurs and process I cannot be
reached from K, The entry I in RQK is replaced by k. An alternate path is estab-
lished from K to I using the neighboring processes of K that still can be reached.
Initially, all the neighbor information of process K is copied into a temporary data
structure TNK. In next iteration, the neighbor of the processes in TNK is also
included into it. The process terminates when I is again found in TNK. An alternate
path may now be established from K to I using the processes in TNK. If C is the first
process on the new path from K to I, then k would be replaced in RQK by C. A
pseudocode representation for the LFRT-P algorithm is given below.

Begin

1. Step 1: When a process S with priority {r} wants to enter the critical section
(CS).

2. insert <S, S, r> in RQS; /* S adds {<S, S, r>} into its local request queue RQS

*/
3. send token_request <S, S, X, r> to all X such that (S, X) 2 NS;

/* S sends token request message <S, S, X, r> to all X such that (S, X) 2 NS,
the neighbor set of S */

4. Step 2: When a process X 6¼ Phold receives a token request <S, K, X, r> from
another process K,

5. if (out-degree of X == 0) then
6. send <bounce, S, K> to K;

/* Node X detects that it has earlier received the token request originated by S
and sends a bounce message back to K */
/* This prevents that control messages does not suffer from the count to infinity
problem even in the presence of cycles in the underling directed graph topology
*/
/* Assume that the edge between K and S is temporarily reversed during the
bounce message transmission */

7. else
8. increase priority value p for all requests in RQX by 1 for all p < r;
9. insert <S, K, r> in RQX in the sorted order of descending priority;

/* While maintaining FCFS order for same priority values of two or more
entries */

10. if the entry <S, K, r> is inserted at the beginning of the new RQX then
11. send token_request <S, X, T, r> to all T;

/* (X, T) € NX, the neighborhood set of X */
12. count_sent[S] = |NX| /* |NX| the cardinality of the neighborhood set of X */

58 4 A Graph-Based Mutual Exclusion Algorithm Using Tokens

13. end if
14. end if
15. Step 3: When a process X = Phold receives a token request <S, K, X, r> from

another process K.
16. increase priority value p for all requests in RQX by 1 for all p < r;
17. insert <S, K, r> in RQX in the sorted order of descending priority;
18. rebuild ORQ by taking the first ids from the triplets of the revised RQX for

X = Phold;
19. Step 4: Node K, on receipt of the message <bounce, S, K>
20. count_sent[S] = count_sent [S] − 1;
21. if (count_sent[S] == 0) then
22. delete <S, J, r> from RQS;

/* Deletion of <S, J, r> in RQS indicates that there is no new route through J for
the request */

23. end if
24. Step 5: On completing the execution of a CS, T = Phold performs the following:
25. if (ORQ 6¼ NULL) then
26. remove the first entry <S, K, r> from RQT;
27. read the first process id {S} from ORQ;
28. send <token, K, ORQ>;
29. end if
30. if (RQT 6¼ NULL) then
31. send token_request <0, T, K, s>, s being priority of process in the head of RQT;

/* If reduced RQT is not empty then T, sends a dummy token request to new
Phold */

32. end if
33. Step 6: The newly designated Phold node performs the following as it receives

<token, K, ORQ> and an optional dummy request <0, T, K, s> from previous
Phold, i.e., T.

34. remove the first entry <S, K, r> from RQK;
35. if (K receives dummy request <0, T, K, TP> from T) then
36. insert <0, T, TP> in proper place of RQK;
37. read the first process id {S} from ORQ;
38. if (S == K) then
39. remove the id {S} from ORQ;
40. enter CS;
41. else
42. send <token, ORQ, X>, where X is the second id in the first entry of RQK;
43. end if
44. end if
45. if (RQK 6¼ NULL) then
46. send token_request <0, K, X, s>, s being the priority of the process in head of

RQK;

4.2 Link Failure Resilient Priority Based Fair ME Algorithm … 59

47. end if.
48. Step 7: In case of a link failure {K ! I} during token passing, an intermediate

node K holding the token does the following:
49. replace {I} by {k} in RQK;
50. delete the 2-tuple ((K, I) _ (I, K)) from NK for node K.
51. TNK = NK;
52. repeat
53. add {(S, H) _ (H, S)} to TNK 8 S 2 TNK where H is a neighbor of S;
54. until ({(M, S) _ (S, M)} 2 NK)
55. if ({(M, X) _ (X, M)} 2 TNK) then
56. replace {k} by {X} in RQK;
57. end if

End

Illustrative Example of the Algorithm
In Fig. 4.9, we find a directed graph with six nodes labeled as A through F. The
example under consideration deals with six processes A, B, C, D, E, and F with the
priority values 1, 3, 4, 3, 5, and 2, respectively. We further assume that the priority
99 is highest and a higher value indicates that the corresponding process has a
greater priority. The neighborhood sets for the six nodes are shown beside each
node in the figure.

As shown in Fig. 4.10, the node D has placed the first token request with priority
3. The entries in RQ’s and the ORQ are also shown. RQD stores <D, D, 3> as par
Step 1 of the LFRT-P algorithm. D sends its request using the 4-tuple <D, D, F, 3>
and <D, D, C, 3> to the neighbor nodes F and C, respectively. On receipt of a
request from D, nodes C and F insert the first two literals and last literal of the
4-tuple, i.e., <D, D, 3> into RQC and RQF, respectively. Now C sends a request on
behalf of D using the 4-tuple <D, C, F, 3> to its neighbor F.

(E,C), (A,E), (F,E)

(A,E)

(B,C),(F,B)

(F,E),(F,B),(C,F),(D,F)

(D,C),(D,F)

(C,F),(E,C),(D,C),(B,C)

E

A

B

F

D

C
3

1

2

3

4

5

Fig. 4.9 Initial topology—E holds the token

60 4 A Graph-Based Mutual Exclusion Algorithm Using Tokens

Node F, however, already received the same request from D directly so the
4-tuple from C is to be ignored and following Step 2 of the LFRT-P algorithm, i.e.,
node C detects that it has earlier received the token request originated by D and
sends a bounce message back to C.

Now, F sends the request from D to its neighbor nodes B and E using the 4-tuple
<D, F, B, 3> and <D, F, E, 3>, respectively following Step 2. Similarly, C rejects
the request from B following Step 2 because D € RQC. E = Phold, receives the
4-tuple <D, F, E, 3> and put <D, F, 3> in RQE. It also puts the first element of
4-tuple in ORQ, i.e., ORQ = {D}. Let us now consider that, A issues a second
token request with priority 1. So it puts <A, A, 1> in RQA and sends the 4-tuple <A,
A, E, 1> on its outgoing edge to E. Node E receives the 4-tuple and following Step
3 of the LFRT-P algorithm, the new request from A must have a lower priority than
earlier request. Revise the queue RQE in accordance with the decreased priority,
updates RQE as {<D, F, 3>, <A, A, 1>}. The ORQ is updated to ORQ = {D, A}.

The node F now places the third request with priority 2. So RQF = <F, F, 2>.
F also sends the 4-tuple <F, F, E, 2> and <F, F, B, 2> to the neighbors E and B,
respectively. E receives the request and following Step 3 of the algorithm, it
modifies RQE to <D, F, 3>, <A, A, 2>, <F, F, 2>. Process E, first increases the
priority of A which originated by A, by one, then arranges the requests, which
updates RQE to {<D, F, 3>, <A, A, 2>, <F, F, 2>} and ORQ = {D, A, F}. Node
B sends 4-tuple <F, B, C, 2> to C and node C has no other tuple, but <F, C, F, 2> to
be sent to F only. This is prohibited by Step 2. Node C detects that it has earlier
received the token request originated by F and sends a bounce message back to
B. The bounce process as mentioned in Step 4 ensures that the local request queues
of B and C are restored as there is no path to Phold from F through B. Node
E updates the RQE and ORQ to {<D, F, 3>, <A, A, 2>, <F, F, 2>} and {D, A, F}
respectively on receipt of the 4-tuple <F, F, E, 2> directly from F. The situation is

E

A

B

F

D

C
3

1

2

3

4

5

D D 3

D D 3

D F 3
D

Fig. 4.10 Token request from node D reached node E

4.2 Link Failure Resilient Priority Based Fair ME Algorithm … 61

illustrated in Fig. 4.11 after all three token requests from D, A, and F are registered
with the token holding node E. Say, E comes out of its critical section now. The
node will pass the token and ORQ to the node from which it received the request
first following procedure of Step 5. It read the first entry ‘D’ from ORQ and
removes the first entry <D, F, 3> from RQE following Step 5. Node E has to pass
the token to F (Fig. 4.12).

Following Step 6, the directed edge from E to F is reversed and the token along
with the ORQ is passed. Since the RQE is not yet empty, a dummy request <0, E, F,

E

A

B

F

D

C

3

1

2

3

4

5

D D 3 F F 2

D D 3

D F 3 A A 2 F F 2

A A 1

3rd

1st

2nd

D A F

Fig. 4.11 Token requests from node D, A and F reached E

E

A

B

F

D

C

3

1

2

3

4

5

0 E 2 F F 2

A A 2 F F 2

A A 1

3rd

1st

2nd

D A F

A F

Fig. 4.12 Node F holds the token

62 4 A Graph-Based Mutual Exclusion Algorithm Using Tokens

2> is sent to F. It removes the first entry <D, D, 3> from RQF and adds <0, E, 2> at
the beginning of RQF, thus updating it to {<0, E, 2>, <F, F, 2>}.

Since priorities of both the processes are same, the dummy request is preferred.
The condition as specified in Step 6 matches and therefore D enters the CS after
updating the ORQ to {A, F}. Thereafter, D comes out of the CS.

The RQD is now empty and following Step 6, the token and ORQ = {A, F} is
further sent to F. Node F becomes the token holder. It removes the first entry <0, E,
2> from RQF and sends the token to E along with dummy request <0, F, E, 2>.
Since the RQF is not yet empty, a dummy request <0, F, E, 2> is sent to E. E further
passes the token to A.

The condition as specified in Step 6 matches and therefore, node A enters its CS
after removing its own node id from both RQA and ORQ. Thereafter, A comes out
of the CS. The RQA is now empty. Thus A cannot send any dummy request. The
token and ORQ = {F} is further sent to E. Now, E passes the token along with
ORQ = {F} to the node F leaving RQE empty. The node F becomes the token
holder. It removes the first entry <F, F, 2> from RQF. The token stays with
F = Phold even after the process comes out of the CS and until any other request is
generated in the system. The situation has been illustrated in Fig. 4.13. Once again,
as was initially, the neighborhood lists at the nodes are only populated.

Illustration Involving Link Failures
The LFRT-P algorithm can also deal with link failures. The steps have been dis-
cussed in Step 7. Consider the network shown in Fig. 4.14. Let us assume that the
link between nodes F and E has failed and node E has just come out of its critical
section. The second tuple in RQE and ORQ are <F, F, 2> and ‘F’, respectively.
However, the link between F and E, as assumed here, has failed. The RQF is revised
to {<D, C, 3>, <A, A, 2>, <F, C, 2>} following Step 7 of the LFRT-P algorithm.
Now E would extract the neighborhood information of its own neighbors A and
C from the respective neighborhood sets as per Step 7.

E

A

B

F

D

C

3

1

2

3

4

5

Fig. 4.13 Nodes D, A and F completed their critical section

4.2 Link Failure Resilient Priority Based Fair ME Algorithm … 63

The 2-tuple in E and this newly extracted information from NC to NA constitute
TNE. The final destination to F is one hop away from C, and the 2-tuple (D,
C) would be a part of TNE. Therefore, following Step 7, the RQF is revised to {<D,
C, 3>, <A, A, 2>, <F, C, 2>}. RQC would be {<D, C, 3>, <F, C, 2>}. The token
along with ORQ is transferred to F. Node F updates the ORQ as {D, A, F} and RQF

as {<0, C, 2>, <F, F, 2>} before entering the critical section as shown in Fig. 4.14.
After D comes out of the critical section, the token is sent back to node C, on its
way back to E. In another example, the link failure may be handled by finding an
alternate path to the desired intermediate node F, in this case. The methodology has
been explained in Step 7 of the LFRT-P algorithm.

4.2.2 Performance Analysis for LFRT and LFRT-P

We evaluate these algorithms from multiple perspectives. We consider correctness,
message complexity, fairness, and other important factors of distributed control
algorithms and evaluate the solution from these aspects.

Low Storage
Using LFRT and LFRT-P, very little data is stored at the participating nodes.
A node need not even know the total number of nodes in the system or the id of the
token holding node to place its request for the token. When a token request occurs,
then some additional data is stored in some of the nodes. This additional data
reduces to NULL after the token is delivered to the requesting node. The neigh-
borhood list, as designated by Ni in Fig. 4.8, is the only permanent data structure
stored in any node i.

E

A

B

F

D

C

3

1

2

3

4

5

0 C 2 F F 2

D λ 3 A A 2 F λ 2

A A 1

3rd

1st

2nd

D A F

Fig. 4.14 Handling link failure

64 4 A Graph-Based Mutual Exclusion Algorithm Using Tokens

Safeness and Fairness
A mutual exclusion algorithm satisfies the safeness specification of the mutual
exclusion problem if it provides mutually exclusive access to the critical section.
One of the concerns with many of the mutual exclusion algorithms is fairness. The
commonly accepted definition of fairness in the context of mutual exclusion is that
requests for access to the CS are satisfied in the order of their occurrences. The
revised definition of priority-based fairness as introduced in Chap. 2, implies that
the token must be allocated to some process A such that among all the processes
having priority equal or lower than that of A, the token request from A has reached
Phold ahead of others and there is no pending token request from any other process
B having a priority higher than that of A.

Lemma 4.1 (Safeness) The LFRT-P token-based algorithm provides safe mutual
exclusion as defined in Sect. 2.6.

Proof The LFRT-P algorithm, being a token-based solution maintains mutual
exclusion by controlling the number of tokens. It is assumed that only one token
will be there for each instance of a sharable resource. Any participating process in
the system needs to get hold of the token before entering the critical section.
Obviously, no two processes can hold the token simultaneously. Hence, the
property of safety is ensured. Thus the statement of Lemma 4.1 is correct.

Lemma 4.2 (Priority based Fairness) The LFRT-P token-based algorithm pro-
vides fair and safe mutual exclusion as defined in Sect. 3.3.2.

Proof Without any loss of generalization, let A be the first request and B be the
second request among all requests ever made until now with equal priority. With
this assumption, the proof follows from Lemma 4.2 in [16].

There could be a second case where A may be the first request with a lower
priority and B be the second request with higher priority. In such cases, the request
A will be after the request B in the RQ of Phold after executing Step 3. Accordingly
the ORQ will also change. Therefore, process A will get the token only after process
B completes its execution in CS. Thus, the statement of Lemma 4.2 holds good for
both of the possible cases.

Liveness
Liveness of a mutual exclusion algorithm is said to be maintained, if every process
that wants to enter its critical section is eventually allowed to do so.

Lemma 4.3 (Liveness) The LFRT-P algorithm achieves liveness.

Proof Let A be the first request among all requests ever registered with the Phold

and B be the last among all the requests until now. Let us also assume that A and
B have the same priority. In [16], it has been shown that A is served before B. The
liveness is satisfied in such cases.

Let request A has higher priority than B while request B for token is made ahead
of A. In order to prove liveness, we have to show that the request B would even-
tually be served. In Step 2 of our algorithm, the priority of B is increased by 1 each

4.2 Link Failure Resilient Priority Based Fair ME Algorithm … 65

time, a request from a higher priority process is logged before the position of B in
the local RQ of any node on the path from the requesting node to Phold. This ensures
that after a finite number of steps, the priority of B will eventually increase to the
maximum priority of M. However, for any other request C also with priority M,
such that C arrives after B, the latter request will be served after B only. This is by
the first part of the proof. Thus, the request B is served eventually.

Correctness
The correctness of control algorithms is typically defined as a collection of safeness
and liveness. Both of these properties have been individually proved in Sect. 4.2.2.
Hence, the correctness of the LFRT-P algorithm is also proved.

Handling Link Failure and Cycles
One of the most significant advantages of the LFRT-P algorithm is its ability to
handle the link failures. In a wireless environment, existing links are dropped
frequently. The LFRT-P algorithm is able to find an alternate path as par algorithm,
in case of a link failure. There are many existing mutual exclusion algorithms that
work on a directed, acyclic graph (DAG). The LFRT-P algorithm works on any
directed graph, with or without cycles. Steps of the LFRT-P algorithm ensure that
the token request messages do not form cycles. This keeps the message complexity
low.

Message Complexity
The number of messages per critical section access can be deterministically
expressed as a measure of concurrency of requests. A site X that wants to enter the
critical section sends 3-tuple through each outgoing link from it. If k be the length
of the shortest directed path from X to Phold, and the number of outgoing links from
an intermediate node K be Lk, then the total number of 3-tuple sent would be

P
Li,

for all i 2 [1 … k]. The number of hops that the token on the return path takes is
exactly k − 1, as the path is predetermined and stored using the local request
queues.

Simulation Results
We present the simulation results for the LFRT-P algorithm [15] and the tree-based
FAPP [16] solution. We have conducted multiple sets of simulations on different
networks by choosing different Phold nodes from a connected graph of 22 nodes.
The requesting nodes and the order of requests are also selected at random for
different sizes of request queues. The average for each selection is plotted. The
simulation is done using MATLAB 7.7.0. The simulation parameters are listed in
Table 4.1. A confidence interval analysis has been done to check the randomness of
the selected data set.

The results that have been plotted in different figures represent average of
multiple executions. The different orders of requests are taken absolutely at random.
Besides, these are executed for different sizes of request sets varying from 4 to 12.
Thus the analysis based on these randomly selected executions may be considered
unbiased and represents the generic behavior of the system for the LFRT-P algo-
rithm. Statistical analysis by computing the confidence intervals, as presented

66 4 A Graph-Based Mutual Exclusion Algorithm Using Tokens

below, confirms the randomness of selection for the sequence of requests. In
Fig. 4.15, five different series are plotted for 4, 6, 8, 10, and 12 requesting nodes,
respectively. Plots against rq1, rq2, and rq3 show the average numbers of control
messages exchanged for three different Phold nodes. The respective response data
plots are marked with rs1, rs2, and rs3. The y-axis representing the number of
control messages has been scaled up nearly 333% for the sake of improved relative
comparison between the nearly parallel series.

The plots for the six different sets in each series in Fig. 4.15 reflect the variation
in performance for arbitrarily built networks and requesting nodes. As the number
of request for CS is increased, in all of the cases the number of control messages
also increased. The small number of messages exchanged is an indirect proof for the
stability of the LFRT-P algorithm for different topologies. The logic of experi-
mentations and the interpretation of the observations are given below. A particular
node is selected as Phold for each set. This is used with four different set of requests
for size = 4 in the format Phold (First request, Second request, Third request, Fourth
request) e.g., P1(P3, P7, P11, P21), P1(P12, P9, P4, P20), P1(P7, P22, P2, P10), etc. The
average of the number of control messages for rq1 are computed from this for
size = 4 and plotted on the graph. Similarly, points have been plotted for other sizes
like 6, 8, 10, and 12. The same method of experimentation has been followed for
rq2 and rq3, but with different nodes as Phold.

0

100

200

300

400

500

600

rq1 rq2 rq3 rs1 rs2 rs3

Size=12 Size=10 Size=8 Size=6 Size=4Fig. 4.15 Control message
complexity for request set size
of 4, 6, 8, 10, and 12

Table 4.1 Simulation parameters

Parameters Value

Connection topology Directed graph with cyclic or without cyclic

Nodes in the graph 22

Edge length Static

Maximum out-degree 2

Maximum degree 3

Minimum degree 2

Priority of nodes in the graph 1…10 (user choice)

Maximum number of token requests Gradually increased (4, 6, 8, 10, 12)

4.2 Link Failure Resilient Priority Based Fair ME Algorithm … 67

Confidence Interval and Randomness of the Simulation
We consider rq1(X) and rs1(Y) as the performance evaluation parameters. Now we
have to test the null hypothesis H0:µX = µY against all H1:µX > µY or H1:µX < µY.
If we put Zi ¼ Xi � YiZ 0 ¼ P

X=N, S02Z ¼ 1=ðN � 1Þð Þ �Pi Zi � Z 0ð Þ2 ¼
1=ðN � 1Þð Þ � P

Z2
i � N � Z 02� �

, SZ′ = √S′Z
2 and observed value of the statistic is

t = (√N * Z′)/S′Z = −2.84. Here, value of N is 5.
The parameters for computation of hypothesis testing have been taken as

(X = rq1, Y = rs1), (X = rq2, Y = rs2) and (X = rq3, Y = rs3), respectively.
Table 4.2 depicts the computation of validity of the hypothesis for the first set. Here
the value for s (tabulated) is s0.05,4 = 2.132. In the Table 4.2, computed |s (ob-
served)| is equal to |−2.84| = 2.84. In all three cases, it has been observed from the
s-distribution that s (observed) > s (tabulated) which is highly significant at 5%
level of significance. Hence, we reject the null hypothesis H0 and conclude that
there is a significant change for control message complexity for response set against
the request set.

The average number of control messages for a particular set depends on the
degree of Phold. As for example, if the Phold has a high degree, then it is found that
the number of control messages involved is relatively low as compared to a Phold of
low degree for the same request size. This is why in Fig. 4.15, the control message
for request set1 (rq1) is always higher than the request set2 (rq2) and the request
set3 (rq3) for a particular request size. It is also observed that the number of control
messages for request and response depends on the size of request set. The control
message increases with increase in the request set size and vice versa.

Next, we would look at the randomness of data sets that have been selected for
the plotted results. The series for rq1 as plotted in Fig. 4.15 shows the number of
control messages for different request sets with node P6 as Phold.

As for example, in the original randomly selected set for requesting nodes for
request size = 4, consists of P6(P14, P18, P8, P20). The total count of control
messages for these requests are 53, as recorded in Table 4.3. In the next three
columns for request set size of 4, the number of control messages for three alternate
sets of requesting nodes with the same Phold = P6 is listed.

The instances of requesting nodes are P6(P2, P4, P8, P16), P6(P2, P7, P12, P17)
and P6(P5, P10, P15, P20) and the total number of control messages exchanged are
30, 42, and 36, respectively. Similarly, alternate data sets are considered for request
size 6, 8, 10, and 12. The observations are recorded in subsequent rows in
Table 4.3. The s (tabulated) value for the tests of significance of 95 and 99% are,
s0.05,4 = 2.132 and s0.01,4 = 3.747 respectively. Since |s (observed)| < s (tabulated)
for all three alternate sets considered are less than the corresponding table values for
both 1 and 5% levels, it may be concluded that the null hypothesis is accepted both
at 1 and 5% levels and we say that it is not significant. So, we have conducted the
remaining part of the simulation using the column for original set of Table 4.3.
Figures 4.16 and 4.17 represent the plots for control messages for request and
response sets, respectively. It is observed that the number of control messages
increases for increased size of request sets (Fig. 4.16) and response sets (Fig. 4.17).

68 4 A Graph-Based Mutual Exclusion Algorithm Using Tokens

T
ab

le
4.
2

C
om

pu
tin

g
te
st
s
of

si
gn

ifi
ca
nc
e

R
eq
ue
st
se
t

rq
1
(X
)

rs
1
(Y
)

Z
=
X
−
Y

Z2
=
Z
*
Z

Z
0 ¼

P
X
=
N

S0
2 Z
¼ð

1=
ðN

�
1Þ
Þ

X
i
Z i

�
Z
0

ð
Þ2

S′
Z
=
√S
′ Z2

t
=
(√
N

*
Z′
)/
S′
Z

4
53

54
−
1

1
−
18

.2
20

5.
2

14
.3
3

−
2.
84

6
73

81
−
8

64

8
80

10
2

−
22

48
4

10
88

12
6

−
38

14
44

12
13

4
15

6
−
22

48
4

4.2 Link Failure Resilient Priority Based Fair ME Algorithm … 69

T
ab

le
4.
3

A
na
ly
si
s
fo
r
al
te
rn
at
e
da
ta

se
t

R
eq
ue
st

se
t
si
ze

O
ri
gi
na
l
se
t

w
ith

P
6
=
P
ho

ld

A
lte
rn
at
e
se
t1

w
ith

P
6
=
P
ho

ld

A
lte
rn
at
e
se
t2

w
ith

P
6
=
P
ho

ld

A
lte
rn
at
e
se
t3

w
ith

P
6
=
P
ho

ld

s
(o
bs
er
ve
d)

fo
r

or
ig
in
al

ve
rs
us

se
t1

s
(o
bs
er
ve
d)

fo
r

or
ig
in
al

ve
rs
us

se
t2

s
(o
bs
er
ve
d)

fo
r

or
ig
in
al

ve
rs
us

se
t3

4
53

30
42

36
−
1.
17

6
−
1.
13

4
−
0.
56

6

6
73

72
63

63

8
80

10
0

97
90

10
88

13
5

11
2

11
9

12
13

4
16

2
16

1
14

4

70 4 A Graph-Based Mutual Exclusion Algorithm Using Tokens

However, as seen in Figs. 4.16 and 4.17 the growth in number of control messages
is somewhat linearly proportional to the growth in the size of the network. Thus the
LFRT-P algorithm is highly scalable.

Computation of tests of significance is done for set1 and set2 for both request
and response message computations. The comparison in Fig. 4.16 is between the
two sets of request control messages for two different Phold nodes. On the contrary,
in Fig. 4.16, the comparison is between the two corresponding sets of response
control messages. As the same 95% confidence interval is selected, s (tabulated) is
same as s0.05,N−1 = 2.132. The s-distribution results have been recorded Table 4.4.
The s-distribution results have been recorded Table 4.4.

0
20
40
60
80

100
120
140
160

Re
qu

es
t c

on
tr

ol
 m

sg
.

4 6 8 10 12

Set 1 Set 2 AverageFig. 4.16 Request control
message complexity against
the size of request sets

0
20
40
60
80

100
120
140
160
180

Re
sp

on
se

 co
m

tr
ol

 m
sg

.

4 6 8 10 12

Set 1 Set 2 AverageFig. 4.17 Response control
message complexity against
the size of request sets

Table 4.4 Tests of
significance for alternate data
set

Sl. Description s
(observed)

s
(tabulated)

1 Request set (Fig. 4.16) 15.12 2.132

2 Response set
(Fig. 4.17)

5.66 2.132

4.2 Link Failure Resilient Priority Based Fair ME Algorithm … 71

In both cases, it is found that |s (observed)| > s (tabulated). Hence, the null
hypothesis, H0 is rejected at 5% level. Thus, it may be concluded that set2 values
are better than set1 values for both request and response diagrams. The control
message complexity depends on the degree of Phold. In this case, degree of the root
node is lowers for set2 as compared to set1.

In Fig. 4.18, the advantage of the LFRT-P algorithm has been demonstrated over
FAPP [16]. In the LFRT-P graph based algorithm, a node has one or more paths
toward Phold. Thus if a link is broken, an alternate path may still be used to pass the
token request or to receive the token from Phold. FAPP, being a tree-based solution,
fails to connect when an edge brakes on the unique path to Phold from any
requesting node.

The simulation result as shown in Fig. 4.18 confirms the same. However, the
LFRT-P graph based solution cannot guarantee 100% link failure resilience. The
LFRT-P algorithm fails in case removal of one or multiple links leaves the
requesting node and Phold in two disjoint graph partitions.

In Fig. 4.19, a comparative performance of the LFRT-P algorithm with FAPP is
presented in terms of the number of response control messages exchanged for
different set of request. The response control message is the control message that
grants permission to a process to enter its CS.

FAPP is expected to offer a lower message complexity as it is a tree-based
implementation as compared to the directed graph topology for the LFRT-P

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

2 4 6 8 10 12

FAPP GraphFig. 4.18 Success rate for
the LFRT-P algorithm versus
FAPP in presence of link
failures

0

20

40

60

80

100

120

140

4 6 8 10 12

FAPP GraphFig. 4.19 Number of control
message of the LFRT-P
algorithm versus FAPP

72 4 A Graph-Based Mutual Exclusion Algorithm Using Tokens

algorithm. However, the LFRT-P algorithm also performs reasonably well here in
terms of message complexity.

This may be primarily attributed to the process that a token request is forwarded
in the LFRT-P algorithm by an intermediate node, only if no higher priority request
is pending.

In Fig. 4.20, a comparative performance of the LFRT-P algorithm is done
against FAPP [16] in terms of the number of request ordering and their execution
ordering among 12 request set. Since the node request depends on priority, in
dynamic priority changes in the FAPP and LFRT-P algorithm and depends on
number of hop changes to reach to Phold. The simulation results confirm that the
LFRT-P algorithm satisfies the properties of liveness, fairness, safety, and stability.

In Fig. 4.21, a comparative performance of the LFRT-P algorithm versus FAPP
for request ordering and their execution ordering among 12 requests set when
priorities are same. As expected, the LFRT-P algorithm follows FCFS. In both the
cases, it maintained fairness. The simulation results confirm that the LFRT-P
algorithm satisfies the properties of liveness, fairness, safety, and stability.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12

Request FAPP Graph

Fig. 4.20 Order of execution for the LFRT-P versus FAPP

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12

Reqest FAPP GraphFig. 4.21 Order of execution
for the LFRT-P algorithm
versus FAPP for equal
priority processes

4.2 Link Failure Resilient Priority Based Fair ME Algorithm … 73

4.3 Concluding Remarks on Graph-Based ME Algorithms

The algorithm considers a network in the form of a connected, directed graph, with
or without cycles. The beauty of LFRT [11] algorithm is that it requires very little
storage space for each process to start with. The token-based LFRT algorithm
handles the node mobility issue by providing a failed link tolerant token request and
release mechanism. Besides a very simple and minimal data structure is required for
the implementation of the algorithm. LFRT has its own mechanism to avoid for-
mation of cycles when token request is forwarded. This makes possible that the
solution works on any directed graph topology with or without cycles. It also helps
keeping the turnaround time and the number of control messages low. LFRT
algorithm maintains safeness and liveness, the two constituent elements of cor-
rectness. LFRT-P [15] algorithm for ME holds fairness while considering a
dynamic process priority. One major limitation of the algorithm is that it is not
serializable. The algorithm could be improved further by making it serializable so
that it could be deployed faster by splitting the parallel components and scheduling
those to different processors in the system.

References

1. Swaroop, A., Singh, A.K.: A Distributed group mutual exclusion algorithm for soft real-time
systems. In: Proceedings of World Academy of Science, Engineering and Technology, vol.
26, pp. 138–143 (2007)

2. Lodha, S., Kshemkalyani, A.: A fair distributed mutual exclusion algorithm. IEEE Trans.
Parallel. Distrib. Syst. 11(6), 537–549 (2000)

3. Madria, S.K.: Timestamp based approach for the detection and resolution of mutual conflicts
in real-time distributed systems. Computer Science Technical Reports. Paper 1367, pp. 1–16
(1997)

4. Paris, J.-F., Darrell, D.E.: Long, efficient dynamic voting algorithms. In: Proceedings of the
Fourth International Conference on Data Engineering, pp. 268–275 (1998)

5. Maekawa, M.: A √n algorithm for mutual exclusion in decentralized systems. ACM Trans.
Comput. Syst. 3(2), 145–159 (1985)

6. Chaki, N., Chaki, R., Saha, B., Chattopadhyay, T.: A new logical topology based on barrel
shifter network over an all optical network. In: Proceedings of 28th IEEE International
Conference on Local Computer Networks (LCN’03), pp. 283–284 (2003)

7. Walter, J.E., Welch, J.L., Vaidya, M.H.: Mutual exclusion algorithm for Ad hoc mobile
networks. Wirel. Network 7(6), 585–600 (2001)

8. Sil, S., Das, S.: An energy efficient algorithm for distributed mutual exclusion in mobile
Ad-hoc networks. World Acad. Sci. Eng. Technol. 64, 517–522 (2010)

9. Zarafshan, F., Karimi, A., Al-Haddad, S.A.R., Saripan, M.I., Subramaniam, S.: A preliminary
study on ancestral voting algorithm for availability improvement of mutual exclusion in
partitioned distributed systems. In: Proceedings of International Conference on Computers
and Computing (ICCC’11), pp. 61–69 (2011)

10. Agrawal, D., EL Abbadi, A.: An efficient solution to the distributed mutual exclusion
problem. In: Proceeding of the 8th ACM Symposium on Principles of Distributed Computing,
pp. 193–200 (1989)

74 4 A Graph-Based Mutual Exclusion Algorithm Using Tokens

11. Kanrar, S., Choudhury, S., Chaki, N.: A link-failure resilient token based mutual exclusion
algorithm for directed graph topology. In: Proceedings of the 7th International Symposium on
Parallel and Distributed Computing—ISPDC 2008 (2008)

12. Chen, W., Lin, S., Lian, Q., Zhang, Z.: Sigma: A fault-tolerant mutual exclusion algorithm in
dynamic distributed systems subject to process crashes and memory losses. Microsoft
Research Technical Report MSR-TR-2005-58 (2005)

13. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Kouznetsov, P.: Mutual exclusion in
asynchronous systems with failure detectors. Technical Report in Computer and
Communication Sciences, id: 200227 (2002)

14. Lin, S., Lian, Q., Chen M., Zhang, Z.: A practical distributed mutual exclusion protocol in
dynamic peer-to-peer systems. In: Proceeding of IPTPS’2004 (2004)

15. Kanrar, S., Chaki, N., Chattopadhyay, S.: A new link failure resilient priority based fair
mutual exclusion algorithm for distributed systems. J. Network. Syst. Manage. (JONS) 21(1),
1–24 (2013). ISSN 1064-7570

16. Kanrar, S., Chaki, N.: FAPP: A new fairness algorithm for priority process mutual exclusion
in distributed systems. Special issue on recent advances in network and parallel computing.
Int. J. Networks 5(1), 11–18 (2010). ISSN: 1796-2056

References 75

Chapter 5
Voting-Based Mutual Exclusion
Algorithms

Concurrency control [1, 2] for a distributed system is always quite challenging and
is getting even more complex with the increasing sophistication of such systems.
Voting is one of the relatively simpler techniques and does not bear high overhead.
A vote to the candidate process, say C, from another process, say A, is to grant
permission against CS request of C. The existing literature points that there exist
various voting approaches to select one candidate process from many to allow its
access to the critical section (CS). A symmetric algorithm proposed by Ricart and
Agrawala [3] for this problem, requires 2(N − 1) messages per CS entry. In such a
classical application of voting, a process can enter into its CS only after receiving
votes from all the other processes. Ricart-Agrawala algorithm fails when one or
more of the reply messages are not delivered for some reason.

An alternate approach could be selection by majority voting. Let’s consider a
scenario where there are three (3) different candidates for CS and each of these get
approximately 30–35% of the votes. In such a scenario, none of these would gain
majority and hence no process is allowed to enter the CS!

5.1 Below-Majority Voting for ME in Distributed
Systems (BMaV)

In the traditional sense, voting is used to find a candidate with majority votes in its
favour. However, there’s no guarantee that such will be the case. We introduced a
voting-based mutual exclusion algorithm, called below-majority voting (BMaV)
algorithm [4] that finds a candidate for CS when majority consensus is not achieved
and even when the network is partitioned. The proposed approach is robust enough
to find a solution where a network with N processes is split into N partitions leaving
only a single process in each partition. The BMaV algorithm considers the occu-
pancies of resources by different processes toward finding the candidate node in a

© Springer Nature Singapore Pte Ltd. 2018
S. Kanrar et al., Concurrency Control in Distributed System using Mutual Exclusion,
Studies in Systems, Decision and Control 116, DOI 10.1007/978-981-10-5559-1_5

77

distributed system. The BMaV algorithm, described later in this chapter, combines
voting with resource allocation information. This leads to a quicker completion of
processes holding more number of resources.

Assumptions
The following set of assumptions form the foundation for the proposed dynamic
mutual exclusion algorithm for distributed environment.

• Initially all processes and links are non-faulty in a singular distinguished
partition.

• It is assumed that failures do not occur during voting. However, the processes or
links may fail before processing the update request in a given site.

• No new process is added during voting.
• A message that is sent eventually reaches the desired destination.
• A process that receives a request will either accept or reject the request.
• On receiving a request, a process A sends its permission to the requesting

process B only if it has not already granted permission to some other process,
say X. Only after receiving a RELEASE message from X, process A grants
permission to B.

• Each process communicates with others unless it has failed. No response after a
predetermined deadline is considered as a process failure.

• All requesting processes store time stamps for their own requests and forward
the same to other processes.

5.1.1 Description for BMaV

A process wishing to enter CS votes itself and requests the remaining N − 1 pro-
cesses for their votes and waits for the responses. If any process Pi gets majority
voting, then Pi is allowed to enter its CS. Otherwise, a pre-defined non-negative
integer threshold, say s, is assumed for execution of the rest of the algorithm. All
the processes that obtain votes greater than s are taken in a set, say S. In the next
phase, any process A 2 S, that holds the maximal number of resources is allowed to
enter its critical section. In the event that there is a tie between two or more
processes holding the same maximal number of resources, the process that has
requested earlier would be allowed access to CS. Subsequently, all these resources
are released and once again made available for other processes (Fig. 5.1).

Procedure BMaV

Begin

Step 1 A process wishing to enter CS votes itself and sends request along with
time-stamp to the remaining N − 1 processes for vote and waits for the
responses;

78 5 Voting-Based Mutual Exclusion Algorithms

Step 2 If any process Pi gets majority voting, then go to Step 6 else Step 3;
Step 3 If there exists any process voted above a pre-set threshold s then Step 4

else reduce threshold s by 1 and return to Step 1 to allow all processes to
put fresh vote requests;

Step 4 Identify all processes voted above threshold s in set S;
Step 5 Identify processes Pi 2 S that is holding maximum resources. In case of

a tie, choose the process Pi with the lowest time stamp and tied with
other process(es) holding the maximum number of resources;

Step 6 Select Pi for entry into its CS;

End

Start

Is there any process Pi that
orit vote?

All processes wishing to enter CS votes itself
and request remaining processes for votes

Yes

No

Pi is selected for CS

Is there any process that is
voted above the Threshold τ?

Yes

No

Identify all processes voted above threshold in set S

Identify processes Pi S holding maximum resources. In case of a
tie, choose process Pi with the lowest time-stamp among those tied.

Stop

τ = τ – 1;

yreceived maj

Fig. 5.1 Flowchart of BMaV algorithm

5.1 Below-Majority Voting for ME in Distributed Systems (BMaV) 79

Illustrating the BMaV Algorithm
In Fig. 5.2, we have an example with which we will study the BMaV algorithm.
There are six arbitrary processes A, B, C, D, E, and F. The use case as illustrated
here with six possible processes (analogous to nodes) are not based on any simu-
lation result and just to illustrate the functionality and usefulness of the BMaV
algorithm.

Let’s further consider that three of these processes, say D, A and F, are to enter
the respective CS. As in Step 1 of BMaV, each of these three candidates sends
time-stamped request messages to other five processes and waits till it receives
votes from other nodes. We also assume time-stamp (D) < time-stamp
(A) < time-stamp (F). All requesting processes store their own time stamps as
well. In Fig. 5.2, there are two resources R1 and R2. Resource R1 consists of two
instances and R2 consists of three instances. We also assume that the two instances
for resource R1 are currently held by process A and process D while process
F requested for resource R1. Resource R2 is held by processes A, D, and
F respectively. We also set threshold value s as 1. There are three requests for CS
and we assume that at least one of the requesting processes gets two votes. There
could be four different scenarios for this given condition and let us study how the
BMaV algorithm behaves for each of these.

Scenario 1: Assume process A gets 4 votes (majority).

A is to be selected for entry into its CS and terminate.

Scenario 2: Assume the network is divided into three partitions as shown in
Fig. 5.2. We also assume that two processes A and F get two votes and process
D gets only one vote.

Process A and F are voted above threshold s as defined in Step 3. Thus, the set S as
mentioned in Step 4 of the BMaV algorithm would be S = {A, F}. Using Step 5,
process A 2 S is found to be holding maximum resources (i.e., 2). The algorithm
would elect process A for entry into its CS.

R1

A *

*
*

*
E

D

C
F

B

R2

Fig. 5.2 Case study for the
BMaV algorithm

80 5 Voting-Based Mutual Exclusion Algorithms

Scenario 3: Assume the network is divided into three partitions as shown in
Fig. 5.2. We also assume that 3 processes A, D and F get two votes each.

Here, all three requesting processes gets vote above threshold. Thus the set S as
mentioned in Step 4 of the BMaV algorithm would be S = {A, D, F}. In the next
step, it is found that processes A and D each hold two resources, while F holds only
1. This is a case of a tie between A and D. The algorithm would elect the process
with a lower time-stamp (i.e., process D) for entry into its CS.

Scenario 4: Assume the network is divided into three partitions as shown in
Fig. 5.2. We also assume that each processes A, D, and F get only one vote
individually.

Since threshold value is one and none of the processes have got enough votes to
cross the threshold, S is NULL. Reduce the threshold s by 1, i.e., set s = 0. All
processes need to put fresh vote request.

5.1.2 Comments on the BMaV Algorithm

The BMaV algorithm identifies a process Pi 2 S that has not only obtained votes
more than the set threshold, but also holds the maximal number of resources while
ensuring a FCFS fairness among multiple such candidates. The algorithm is com-
patible with a simple clock model like Lamport’s logical clock model. However,
even then, it is not quite easy to store such information on all the processes in a
distributed system with multiple sites.

5.2 A New Hybrid Mutual Exclusion Algorithm
in Absence of Majority Consensus (NHME-AMC)

Voting based process synchronization approaches are gaining importance toward
meeting these diverse demands. However, voting often fails to identify a candidate
with amajority support. This may lead to complex scenario unless handled in a proper
manner. NHME-AMC [5] algorithm works for a partitioned network where majority
consensus cannot be reached to elect the next process to enter critical section (CS).

All the voting based mutual exclusion (ME) algorithms that work on majority
consensus inherently conform to safety criterion. However, such algorithms may
violate progress condition when no single process gets majority of votes. In this
section, a new two-phase, hybrid ME algorithm has been NHME-AMC that works
even when majority consensus cannot be reached. Simulation results establish the
superiority of the NHME-AMC algorithm as compared to established as well as
recent algorithms in terms of low message and time complexity. The second phase
of the algorithm, in spite of being symmetric, executes in constant time.

5.1 Below-Majority Voting for ME in Distributed Systems (BMaV) 81

Reduced Assumptions
The following assumptions form an important foundation for the NHME-AMC
algorithm for a distributed system with of n processes labelled as Ni for i 2 1. . .n½ �:
• Initially all processes and links are non-faulty. There is a singular distinguished

partition, i.e., a set of processes which elects one candidate.
• Site cannot arbitrary connect to other processes once it has been repaired.

Addition is only permitted to a distinguished partition.
• Processes or links may fail before processing the update request in a given site.
• On receiving a request message in phase 1, a process would vote the requesting

process only if it has not already voted in favor of some other process.
• On the contrary, in phase 2, a process may vote in favour of any number of

processes depending on the time stamp of a request for the P2V.

5.2.1 A Description for NHME-AMC

The NHME-AMC algorithm works in two phases. In the event that in the first phase
any candidate process receives majority of votes, the algorithm terminates there and
this is no different from conventional majority voting algorithm. However, if no clear
winner is found in phase 1, the second phase is initiated. There is a pre-defined
non-negative integer threshold s assumed for the NHME-AMC algorithm. All the
processes that have obtained votes greater than this threshold s build a set S and elect
the winner in themselves in the second phase of voting. In phase 2, processes that
have already earned votes over the threshold s sends request for a phase 2 vote (P2V).
This time with a request for P2V vote, the time stamp (TS) of the original request for
CS by the respective process is also sent. Any node PY 2 S that has received a request
for P2V from another node PZ sends P2V to Z iff TS(PY) > TS(PZ).

It is to be noted here that phase 2 follows a symmetric algorithm approach to
choose the winner. However, as the maximum cardinality of set S cannot exceed
n=sb c for a total of n competing processes, the overall complexity of the
NHME-AMC algorithm would be quite low as long as s � 0. It is important toward
ensuring both safety and progress condition of the NHME-AMC algorithm so that
neither two different processes can enter the CS simultaneously nor it leads to a
situation where the algorithm comes to a halt without being able to elect a winner.

Procedure NHME-AMC

Begin

Step 1 A process wishing to enter CS votes itself and requests the remaining
N − 1 processes for vote and waits for the responses;

Step 2 If any process Pi gets majority voting, then go to Step 7 else go to Step 3;
Step 3 If there exists a process that gets vote above a pre-set threshold s then

Step 4 else reduce threshold s by 1 and return to Step 1;

82 5 Voting-Based Mutual Exclusion Algorithms

Step 4 All processes PX voted above threshold s are collected in a set S. These
processes request for a phase 2 vote (P2V) along with the time stamp
(TS) of the original request from PX for CS. PX is to wait for certain
predefined time for the responses from all the processes PY 2 S. When
this pre-defined time expires, the process Px goes back to Step 1.

Step 5 Any process PY 2 S that has received a request for P2V from another
process PZ sends P2V to PZ iff TS(PY) > TS(PZ).

Step 6 Identify processes Pi that receives (|S| − 1 − n) P2V from peers, where n
is the number of disconnected processes.

Step 7 Select Pi for entry into its CS.

End

(See Fig. 5.3).

Each process in Phase II
sends fresh rqmsg to others

Is TS of incoming
rsmsg less than TS

for own rsmsg?

Send go_ahead to
the requesting

process

 A enters CS

Phase II

Store requesting process Id in
local queue and send go_ahead
only after the current requested

process comes out of CS Is any process A
receives go_ahead

from all of the
remaining processes

in P2V?

rsmsg Above
threshold τ?

Enter CS Processes above
threshold move to

Phase II

Yes

No

Got rsmsg from
majority?

No

Phase I

Reduce threshold τ by 1 if no
process gets more than

threshold number of votes
Start

Yes

Yes

Yes

NoNo

Start

A process wishing to enter
CS votes itself and

requests the remaining n-1
processes for vote

Fig. 5.3 Flowchart of NHME-AMC algorithm

5.2 A New Hybrid Mutual Exclusion Algorithm in Absence … 83

5.3 Performance Analysis for BMaV and NHME-AMC

In this section, the algorithms BMaV and NHME-AMC are evaluated from multiple
perspectives. Issues considered for performance evaluation include correctness of
the algorithm in terms of both progress condition and safety, message complexity,
fairness and other important factors of distributed algorithms.

Safety
A mutual exclusion algorithm satisfies the safety specification of the mutual
exclusion problem if it provides mutually exclusive access to the critical section.

Lemma 5.1 Only one process in phase 2 will get (|S| − 1 − n) votes where S is the
set of processes shortlisted for phase 2 in the NHME-AMC algorithm, and n is the
number of processes that do not respond.

Proof Without any loss of generalization, one may assume that a standard clock
model like Lamport’s logical clock model or vector clock would be deployed that
puts a unique time-stamp for each and every voting request. In phase 2 of the
NHME-AMC algorithm, the process Pi 2 S which has the smallest time stamp
(TS) of its original request for CS would be the winner.

According to the algorithm, the winner is identified when as it receives P2V
from all other |S| − 1 − n processes short listed for phase 2. Any other process
Pk 2 S for k 6¼ i cannot get more than |S − 2| phase-2 votes. This is because (i) Pk

will not send itself a vote and (ii) Pi will not send P2V to Pk as TS(Pi) < TS(Pk).

Lemma 5.2 (Safety) The NHME-AMC ensures safe mutual exclusion.

Proof A mutual exclusion algorithm is safe if it ensures that no two processes
would enter the respective critical sections simultaneously. In the NHME-AMC
algorithm, the winner is selected either from phase 1 or from phase 2. The safety is
to be considered separately for the two cases.

Case 1: The winner is selected from phase 1.

This implies that there is a process that gains a majority of votes at the end of phase
1 and hence no other processes can get majority vote. So only one process is
allowed to enter the CS satisfying safety criterion.

Case 2: The winner is selected from phase 2.

From Lemma 5.1, only one process would get (|S| − 1) number of votes and will be
allowed entry to CS and the property of safety is ensured.

Lemma 5.3 The value for the threshold s for both the BMaV and NHME-AMC
algorithms will never be negative if it is initialized with some positive integer.

Proof Let s be initialized with X, for some X > 0. In the event that no process could
cross this threshold s for some iteration of these algorithms, the value of s is
reduced by 1 in Step 3 without checking its present value. We shall show that s
cannot be negative by the method of contradiction.

84 5 Voting-Based Mutual Exclusion Algorithms

Let us assume that at some point the value of s becomes −1. This implies (i) in
the previous iteration s was equal to 0 and (ii) no process has obtained any vote
greater than s = 0 in that iteration. However, this is in contradiction with the basic
assumption that each process would get at least 1 vote and that from itself. In other
words, each process would cross the threshold s when its value is 0. Therefore, s
would not be reduced further in Step 3. Thus the assumption of s = −1 is found to
be absurd.

Progress Condition
Progress Condition for a mutual exclusion algorithm demands that one of the
contending processes for critical section will eventually be allowed to enter the CS,
even when no single process gets majority votes.

Lemma 5.4 (Progress Condition) Progress Condition for the NHME-AMC
algorithm is maintained.

Proof The NHME-AMC algorithm selects a process that has earned majority
voting in phase 1, in case such a process exists. The case where no process gets
majority voting is discussed next.

From Lemma 5.3, we can conclude that s cannot be negative and so there are
some processes shortlisted for phase 2. The NHME-AMC algorithm always elects
at least one process in phase 2 from the shortlisted one as has been shown in
Lemma 5.1.

Lemma 5.5 In phase 2, in spite of being symmetric in nature, the NHME-AMC
algorithm runs for constant time.

Proof For a threshold of s, the number of processes that can earn s votes and get
into phase 2 cannot exceed g ¼ n=sb c. In other words, the cardinality for the set
S mentioned in Step 4 of the NHME-AMC algorithm cannot exceed n=sb c. Each of
these nodes would send a request for P2V and receives g� 1 to 0 votes depending
up on the time-stamp of the request for CS. If the threshold is set to as low as 15%
of the total voting processes, then η cannot exceed following the equation g ¼ n=s.
This effectively implies a constant time complexity for phase 2 of the execution.

Correctness
The correctness of control algorithms is typically defined as a collection of safety
and liveness. In Lemma 5.2, the safety property has been proved. In Lemma 5.4,
progress condition of the algorithm has been proved. Any existing mutual exclusion
algorithm [6] that ensures liveness may also be used for this purpose. In this
consideration, the NHME-AMC two-phase solution provides a framework that is
compatible with many different existing voting algorithms that maintain both safety
and liveness. The NHME-AMC two-phase algorithm therefore may be claimed for
correctness in tandem with a voting mechanism that is used in phase 1 which
ensures liveness in execution.

5.3 Performance Analysis for BMaV and NHME-AMC 85

Storage Requirement
The NHME-AMC solution requires storing very little data at the participating
processes. In fact, a process needs to know the total number of processes in the
system and time-stamp of its own request for CS.

Message Complexity
The number of messages per critical section access can be deterministically
expressed as a measure of concurrency of requests. Let us assume that a total of m
out of n processes want to enter respective critical sections. Each of these m
processes would request the remaining n − 1 processes for vote and a total of
m * (n − 1) requests would be sent. In phase 1, one process is allowed to cast only
one vote. Therefore, the number of voting messages would be (n − 1). Thus, in
phase 1, the average number of messages exchanged per CS request would be

K ¼ m � n� 1ð Þþ n� 1ð Þ
m

� O nð Þ ð5:1Þ

For a threshold of s, the number of processes that can earn s votes and get into
phase 2 cannot exceed g ¼ n=sb c. In other words, the cardinality for the set
S mentioned in Step 4 of the NHME-AMC algorithm cannot exceed n=sb c. The
symmetric approach followed in phase 2 involves the exchange of messages
between only these η numbers of processes. Each of these nodes would send a
request for P2V and receives g� 1 to 0 votes depending up on the time stamp of
the request for CS. Hence, the average number of messages exchanged in phase 2
for each request to CS would be

! ¼ gþ g� 1ð Þþ g� 2ð Þþ g� 3ð Þþ � � � þ 1
g

¼ gþ 1
2

i:e:; !� n=sb c

ð5:2Þ

Therefore, adding the cost from Eqs. 5.1 and 5.2, the total number of control
messages exchanged is O(n), for a total of n competing processes. Besides, in the
NHME-AMC algorithm, even when threshold is close to 30% of the total pro-
cesses, the number of such processes η entering to phase 2 of the algorithm cannot
exceed 3. If threshold is set to 15% of the total processes, then η cannot exceed 6
following the equation g ¼ n=s. This effectively implies a constant time complexity
for phase 2 of the execution. Thus, the algorithm terminates faster and with much
lower message complexity compared to what may appear to be the average or even
worst case performances from Eqs. 5.1 and 5.2.

86 5 Voting-Based Mutual Exclusion Algorithms

Simulation Results
Similar to NHME-AMC algorithm, the timed-buffer distributed voting algorithm
(TB-DVA) [7] also uses two phase commit protocol and Lamport’s logical time
stamping. Hence, TB-DVA is considered to benchmark the performance of the
NHME-AMC algorithm in terms of turnaround time for a batch of concurrent
processes.

Simulation Performance of the NHME-AMC Algorithm with TB-DVA and
RA
On the other hand, the NHME-AMC algorithm, if it has to enter in its phase 2, uses
symmetric approach. It’s a well known fact that symmetric algorithms, in spite of
being simple to implement, typically involve very high message complexity.
Hence, in order to assess message complexity, the NHME-AMCalgorithm is
compared with well-established Ricart–Agrawal symmetric algorithm (RA) [8].
The results of simulation for the NHME-AMC method vis-a-vis RA and TB-DVA
are shown in Sect. 5.1 (Table 5.1).

A connected network topology is considered. The size of the network is grad-
ually increased from 6 to 12 with different connections between the nodes. In order
to make a comparative analysis with TB-DVA [7], the value of request time and
release time are selected on the same basis as followed for TB-DVA [7]. The
difference between the release and the request time stamps is taken as the
turn-around time for a particular job. In every case, we compute the average of all
results. We also consider the number of requests as follows:

Network size 6 8 10 12

Number of requests 4 5 6 8

Table 5.1 Simulation parameters

Parameters Value

Connection topology Connected graph topology

Number of processes in the graph Gradually increased from 6 to 12

Edge length Static

Request time Network communication delay

Release time Twice of network communication delay

Length of CS in terms of execution time Pre-defined

Maximum degree of a node 4

Minimum degree of a node 2

Priority of process in the tree Increases with version number

Maximum number of requests Gradually increased (4, 6, 8, 10, 16)
95

5.3 Performance Analysis for BMaV and NHME-AMC 87

We consider the length of CS for different jobs as follows:

Site S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

CS
length
in time
(ms)

3 7 10 2 12 8 11 3 4 7 11 5

Time Complexity of the NHME-AMC Algorithm as Compared to TB-DVA
In the NHME-AMC algorithm, only the request message is sent to each of the
remaining n − 1 nodes in the partition. However, for phase 1, the grant messages
are considered only from majority of the nodes. Thus, the total number of messages
exchanged per token request granted for phase 1 will be nþ n=2, where n is the
total number of nodes in the network.

As in [7], the request time is selected according to the network communication
delay and release time is considered as twice of the network communication delay.
In order to plot the results in graphs, we have assumed that network communication
delay is equal to the total number of nodes in millisecond (Fig. 5.4).

In the NHME-AMC algorithm, we assumed that 50% of candidates are granted
permission in phase 1 and calculated the average turnaround time on that basis.
Thus, the total turnaround time equals to request time for phase 1 added with that
for phase 2 and length of CS. The NHME-AMC algorithm works better than the
TB-DVA algorithm for turnaround time.

In Fig. 5.5, we consider a fixed size network with 32 nodes. The number of
nodes requesting to enter the CS is chosen to be 8(=25%), 16(=50%) and 24
(=75%). In some cases, TB-DVA does not elect any candidate when no single
process gets majority of votes. The NHME-AMC algorithm, however, gives a
solution in all these cases.

Figure 5.5 also establishes that the turnaround time of the NHME-AMC algo-
rithm is less than TB-DVA in all cases.

Another set of simulation results is generated for networks by gradually
increasing its size from 4 to 16. In Fig. 5.6, we see that NHME-AMC algorithm
selects a process irrespective of whether majority votes are obtained or not for

0
5

10
15
20
25
30
35
40
45

6 8 10 12

Tu
rn

ar
ou

nd
 T

im
e

Network size

TB-DVA

NHME-AMC

Fig. 5.4 Turnaround time for
TB-DVA and the
NHME-AMC algorithm

88 5 Voting-Based Mutual Exclusion Algorithms

networks of all sizes. The turnaround time for the NHME-AMC algorithm is
observed to be less than that of TB-DVA algorithm for all the cases.

Message Complexity of NHME-AMC Algorithm as Compared to RA
Algorithm
The simulations setting for comparative performance of the NHME-AMC algo-
rithm with analysis with Raymond’s algorithm is very similar to that for TB-DVA.

However, some variations of these settings such as different number of nodes
have been used in these experiments. These variations are described while
explaining respective results (Table 5.2).

In Fig. 5.7, plots are generated for different network sizes from 4 nodes to 16
nodes. In each of the cases, we consider that 25, 50 and 75% of nodes have
requested to enter the CS. The point to be noted here is that although Ricart–
Agrawala algorithm assumes that the candidate node with the lowest time stamp
receives consent from all of the remaining nodes, this often does not happen in
reality. This is due to message loss or partitioning of the network. In Fig. 5.7, we
observe that the message complexity of the NHME-AMC algorithm is less than that
of Ricart-Agrawala for all the cases.

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

25% 50% 75%
Tu

rn
ar

ou
nd

 T
im

e
Request Rate where size=32

TB-DVA NHME-AMCFig. 5.5 Turnaround times
for TB-DVA and
NHME-AMC algorithms

0

0.1

0.2

0.3

0.4

25% 50% 75%

Tu
rn

ar
ou

nd
 T

im
e

Request Rate

Size=4 TB-DVA Size= 4 NHME-AMC Size=8 TB-DVA

Size=8 NHME-AMC Size= 16 TB-DVA Size=16 NHME-AMC

Fig. 5.6 Execution time of
TB-DVA versus
NHME-AMC for increasing
network size

5.3 Performance Analysis for BMaV and NHME-AMC 89

5.4 Concluding Remarks on Voting-Based ME Algorithms

Voting-based algorithms for mutual exclusion often cannot choose a candidate
process when no single process earns majority voting. In this chapter, two new
voting-based algorithms are discussed that work where majority consensus cannot
be reached to elect the next process to enter critical section. BMaV, the first of the
two algorithms, is discussed in Sect. 5.1. Lemma 5.3 in Sect. 5.3 establishes the
theoretical soundness of BMaV. However, the algorithm requires knowledge about

Table 5.2 Performance comparison of permission-based algorithms

Algorithm Evaluation measures Description

Message complexity Synchronization
delay

Decision
theoryHeavy

load
Light
load

Lamport’s 3(N − 1) 3(N − 1) T Static Prioritize with
time stamp

Ricart–
Agrawala’s
[8]

2(N − 1) 2(N − 1) T Dynamic Get n − 1
permissions

Quorum
dynamic

O(Q) O(Q) 3T Dynamic Generate dynamic
quorum

TB-DVA [7] 5(N − 1) 3(N − 1) 2T Two-phase
voting

Fault-tolerance
and security

NHME-AMC
algorithm

O(N) O(N) 2T Two-phase
voting

No majority
consensus needed

Billiard
quorum’s [9]

√2√N √2√N T Coterie-based Multidimensional
voting

T.H.
Thomas’s

[(N + 1)/
2]

[(N + 1)/
2]

2T Majority
voting

Introduce the
concept of voting

Q is the number of quorum members

0

50

100

150

200

250

300

25% 50% 75%N
um

be
r o

f C
on

tr
ol

 M
es

sa
ge

s

Request Rate

Size=4 RA Size= 4 NHME-AMC Size=8 RA

Size=8 NHME-AMC Size= 16 RA Size=16 NHME-AMC

Fig. 5.7 Control messages
for RA algorithm versus
NHME-AMC algorithm

90 5 Voting-Based Mutual Exclusion Algorithms

the resources allocated to different processes. This could be a considerable overhead
in a run-time environment and shall worsen the overall performance of a distributed
system.

The second voting based approach NHME-AMC discusses in Sect. 5.2 is free
from such issues. It has been proved that the NHME-AMC and BMaV algorithms
maintain progress condition and also ensures safeness and liveness. The solution is
compatible with any majority voting based approach that may be used in phase 1 of
the NHME-AMCalgorithm. Phase 2 essentially selects the candidate process from a
group of processes that get votes above a system-defined threshold s based on time
stamp of the original request for entering into the critical section. The solution
maintains correctness in tandem with an appropriately selected algorithm for voting
in phase 1. The simulation results and the theoretical analysis establish that the
message complexity and execution time for the NHME-AMC solution is better than
the existing solutions compared.

References

1. Thomas, T.H.: A majority consensus approach to concurrency control for multiple copy
databases. ACM Trans. Database Syst. 4(2), 180–209 (1979)

2. Stoica, I., et al.: A scalable peer-to-peer lookup service for internet applications. In:
Proceedings of ACM SIGCOMM 2001 (2001)

3. Ricart, G., Agrawala, A.K.: An optimal algorithm for mutual exclusion in computer networks.
Commun. ACM 24(1), 9–17 (1981)

4. Kanrar, S., Chaki, N., Chattopadhyay, S.: A new voting-based mutual exclusion algorithm for
distributed systems. In: 4th Nirma University International Conference on Engineering
(NUiCONE-2013), pp. 1–5 (2013)

5. Kanrar, S., Chaki, N., Chattopadhyay, S.: A new hybrid mutual exclusion algorithm in absence
of majority consensus. In: Proceedings of the 2nd International Doctoral Symposium on
Applied Computation and security System, ACSS (2015, in press)

6. Carvalho, O.S.F., Roucairol, G.: On mutual exclusion in computer network. Commun. ACM
26(2), 146–147 (1983)

7. Suzuki, I., Kasami, T.: An optimality theory for mutual exclusion algorithms in computer
science. In: Proceedings of IEEE International Conference on Dist. Comp. Syst., pp. 365–370
(1982)

8. Mittal, N., Mohan, P.K.: A priority-based distributed group mutual exclusion algorithm when
group access is non-uniform. J. Parallel Distrib. Comput. 67(7), 797–815 (2007)

9. Singhal, M.: A dynamic information structure mutual exclusion in distributed system. IEEE
Trans. Parallel Distrib. Syst. 3(1), 121–125 (1992)

5.4 Concluding Remarks on Voting-Based ME Algorithms 91

Chapter 6
Conclusions

We divide this rather small chapter in two separate sections. We start with a
summary of the new algorithms discussed in the book in Sect. 6.1. This is followed
by some observations in Sect. 6.2 on the impact of the new algorithms toward
opening up newer, exciting research directions for future.

6.1 Summary of the Works Described in the Book

In this book, we present a collection of new mutual exclusion algorithms that aim to
improve state-of-the-art scenario as far as process synchronization is considered in a
distributed system. MRA-P [1] and FAPP [2] are two token-based algorithms on an
inverted tree topology. The primary motivation behind these algorithms has been to
ensure fairness among equal priority processes while confirming that higher priority
processes are allowed to access CS before lower priority jobs. The most significant
improvement that has been achieved by in MRA-P, is that the competing processes
are given token first considering their priorities and then following the order in
which the requests occur. This is definitely an improvement over the conventional
token-based ME algorithms like Raymond’s solution [3]. However, the major
performance bottleneck for MRA-P is that the algorithm uses large number of
control messages. FAPP [2] overcomes this. The MRA-P algorithm has a message
complexity O(n). In comparison, the total number of control messages used in
FAPP for a N-node balanced binary tree is 2 * (H − 1) = 2 * (log2 N − 1) � O
(logN). FAPP maintains liveness for lowest priority process although higher priority
processes are preferred by the algorithm. However, a stable, hierarchical topology
like tree is often unrealistic for many of the applications on an underlying ad hoc
network where topologies keep on changing due to frequent link failures and
process mobility.

In Chap. 4 of the book, we have discussed a new token-based ME algorithm that
works for directed graph topology, with or without cycles (LFRT) [4]. This solution

© Springer Nature Singapore Pte Ltd. 2018
S. Kanrar et al., Concurrency Control in Distributed System using Mutual Exclusion,
Studies in Systems, Decision and Control 116, DOI 10.1007/978-981-10-5559-1_6

93

overcomes problems that may occur due to the lack of alternate paths with
tree-based topology. Besides maintaining the correctness in terms of liveness and
safeness, the algorithm ensures fairness in allocating the token amongst the com-
peting processes.

We further discussed (LFRT-P) [5] which is a major improvement over LFRT in
the sense that the later approach maintains fairness while considering a dynamic
process priority. LFRT-P is also resilient to link failure. This makes it ready for
deployment where the underlying network is not quite stable in terms of connec-
tivity. Besides, LFRT-P also takes into consideration priority of participating pro-
cesses. This was not in the scope of LFRT.

Voting-based algorithms for ME often cannot choose a candidate process when
no single process earns majority voting. This could be due to communication failure
leading to loss of one or more voting responses. The proposed BMaV [6] and
NHME-AMC [7] algorithms described in Chap. 5 both aim to solve the problem
when majority consensus cannot be reached to elect the next process to enter critical
section (CS). The correctness criteria for both the algorithms are proved.
NHME-AMC [7] is a two-phase solution. It is compatible to any existing
priority-computing approach. The phase two selects the candidate process from a
group of processes that get votes above a predefined threshold s. The solution also
uses aging to ensure that no process continue to starve for an indefinite period. The
message complexity and execution time for the presented solution are lower than
the existing solutions compared. Simulation results and the theoretical analysis both
confirm this.

6.2 Impact of New Algorithms on Future Research
for Process Synchronization in Distributed Systems

The work documented in this book is done since 2005. It is satisfying to note that
some of the new algorithms described in the preceding chapters are cited and
extended in significant manner by other researchers addressing similar research
domains. In this section, we mention couple of instances to demonstrate that the
new algorithms are indeed relevant in the context of future research directions for
process synchronization in distributed systems. MRA-P [1] is cited by seven other
researchers. In [8], the authors use the same approach like MRA-P [1] is good for
solving the unfairness issue by adding extensions to original Raymond’s algorithm.
Therefore, the algorithm proposed by [8] claims that the unfairness issue can be
solved.

FAPP [2] is cited by as many as eight researchers in last few years. Authors of
[9] proposed to add some heuristics on our work in FAPP [2] to slow down the
frequency with which priority of pending requests is increased. They claim that the
algorithm is an extension of FAPP [2] that aims to minimize the number of priority
violations without starvation. Works in [10] demonstrate the potential of our work

94 6 Conclusions

in FAPP [2] on cloud computing. Here, the authors aimed to develop a tree-based
distributed mutual exclusion algorithm that supports the service level agreement
(SLA). FAPP [2] is modified by adding a deadline is associated with every request.
They have claimed to reduce the number of SLA violations with this modification
of our work in FAPP.

References

1. Karnar, S., Chaki, N.: Modified Raymond’s algorithm for priority (MRA-P) based mutual
exclusion in distributed systems. In: Proceedings of ICDCIT 2006. LNCS 4317, pp. 325–332
(2006)

2. Kanrar, S., Chaki, N.: FAPP: A new fairness algorithm for priority process mutual exclusion
in distributed systems. Special issue on recent advances in network and parallel computing.
Int. J. Networks 5(1), 11–18 (2010). ISSN: 1796-2056

3. Raymond, K.: A tree-based algorithm for distributed mutual exclusion. ACM Trans. Comput.
Syst. 7, 61–77 (1989)

4. Kanrar, S., Choudhury, S., Chaki, N.: A link-failure resilient token based mutual exclusion
algorithm for directed graph topology. In: Proceedings of the 7th International Symposium on
Parallel and Distributed Computing—ISPDC 2008 (2008)

5. Kanrar, S., Chaki, N., Chattopadhyay, S.: A new link failure resilient priority based fair
mutual exclusion algorithm for distributed systems. J. Network. Syst. Manage. (JONS) 21(1),
1–24 (2013). ISSN 1064-7570

6. Kanrar, S., Chaki, N., Chattopadhyay, S.: A new voting-based mutual exclusion algorithm for
distributed systems. In: 4th Nirma University International Conference on Engineering
(NUiCONE-2013), pp. 1–5 (2013)

7. Kanrar, S., Chaki, N., Chattopadhyay, S.: A new hybrid mutual exclusion algorithm in
absence of majority consensus. In: Proceedings of the 2nd International Doctoral Symposium
on Applied Computation and Security System, ACSS (2015, in press)

8. Challenger, M., Haytaoglu, E., Tokatli, G., Dagdeviren, O., Erciyes, K.: A hybrid distributed
mutual exclusion algorithm for cluster-based systems. Math. Probl. Eng. 2013, 1–15 (2013)

9. Lejeune, J., Arantes, L., Sopena, J., Sens, P.: Agreement for distributed mutual exclusion in
cloud computing works on cloud computing. In: 12th IEEE/ACM International Symposium
on Cluster, Cloud and Grid, pp. 180–187 (2012)

10. Swaroop, A., Singh, A.K.: A distributed group mutual exclusion algorithm for soft real time
systems. World Acad. Sci. Eng. Technol. Int. J. Comput. Control Quantum Inf. Eng. 1(8)
(2007)

6.2 Impact of New Algorithms on Future Research for Process … 95

	Preface
	Contents
	About the Authors
	1 Introduction
	1.1 Organization of Book
	References

	2 State-of-the-Art Review
	2.1 Definitions of Terminologies
	2.2 Token-Based ME Algorithms
	2.3 Hierarchical Topology Based ME Algorithms
	2.4 Graph Topology Based ME Algorithms
	2.5 Permission-Based ME Algorithms
	2.6 Voting-Based ME Algorithms
	2.7 Conclusions
	References

	3 Tree-Based Mutual Exclusions
	3.1 Modified Raymond’s Algorithm (MRA)
	3.1.1 Data Structure and Algorithm for MRA Algorithm
	3.1.2 Limitation of Algorithm MRA

	3.2 Modified Raymond’s Algorithm for Priority (MRA-P)
	3.2.1 Data Structure and Algorithm for MRA-P
	3.2.2 Performance Analysis for MRA and MRA-P

	3.3 Fairness Algorithm for Priority Processes (FAPP)
	3.3.1 Data Structure and Algorithm for FAPP
	3.3.2 Performance Analysis for FAPP

	3.4 Concluding Remarks on Tree-Based ME Algorithms
	References

	4 A Graph-Based Mutual Exclusion Algorithm Using Tokens
	4.1 Link Failure Resilient Token-Based ME Algorithm for Directed Graph (LFRT)
	4.1.1 Data Structure and Algorithm for LFRT
	4.1.2 Limitations of LFRT

	4.2 Link Failure Resilient Priority Based Fair ME Algorithm for Distributed Systems (LFRT-P)
	4.2.1 Data Structure and Algorithm for LFRT-P
	4.2.2 Performance Analysis for LFRT and LFRT-P

	4.3 Concluding Remarks on Graph-Based ME Algorithms
	References

	5 Voting-Based Mutual Exclusion Algorithms
	5.1 Below-Majority Voting for ME in Distributed 	Systems (BMaV)
	5.1.1 Description for BMaV
	5.1.2 Comments on the BMaV Algorithm

	5.2 A New Hybrid Mutual Exclusion Algorithm in Absence of Majority Consensus (NHME-AMC)
	5.2.1 A Description for NHME-AMC

	5.3 Performance Analysis for BMaV and NHME-AMC
	5.4 Concluding Remarks on Voting-Based ME Algorithms
	References

	6 Conclusions
	6.1 Summary of the Works Described in the Book
	6.2 Impact of New Algorithms on Future Research for Process Synchronization in Distributed Systems
	References

