

Monographs in
Computational Science
and Engineering 1
Editors

Timothy J. Barth
Michael Griebel
David E. Keyes
Risto M. Nieminen
Dirk Roose
Tamar Schlick

Joakim Sundnes Glenn Terje Lines Xing Cai
Bjørn Fredrik Nielsen Kent-Andre Mardal
Aslak Tveito

Computing the Electrical
Activity in the Heart

With 99 Figures and 23 Tables

ABC

Joakim Sundnes
Glenn Terje Lines
Xing Cai
Bjørn Fredrik Nielsen
Kent-Andre Mardal
Aslak Tveito
Simula Research Laboratory
P.O. Box 134
1325 Lysaker, Norway
email: sundnes@simula.no

glennli@simula.no
xingca@simula.no
bjornn@simula.no
kent-and@simula.no
aslak@simula.no

Aslak Tveito has received financial support from the NFF – Norsk faglitterær forfatter- og oversetterforening

Library of Congress Control Number: 2006927369

Mathematics Subject Classification: 35Q80, 65M55, 65M60, 92C50, 92C0510

ISBN-10 3-540-33432-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-33432-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
c© Springer-Verlag Berlin Heidelberg 2006

Printed in The Netherlands

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: by the authors and techbooks using a Springer LATEX macro package
Cover design: design & production GmbH, Heidelberg

Printed on acid-free paper SPIN: 11737407 46/techbooks 5 4 3 2 1 0

Preface

The heart is a fantastic machine; during a normal lifetime it beats about 2.5 billion
times and pumps 200.000 tons of blood through an enormous system of vessels
extending 160.000 kilometres throughout the body.

For centuries, man has tried to understand how the heart works, but there remain
many unsolved problems, problems that have captured the attention of thousands
of researchers worldwide. There is, for example, a huge amount of research being
devoted to the analysis of single heart cells. Other areas of research include trying
to understand how it works as a complete muscle, and how blood flows through the
heart. The entire process is extremely complex.

The history of bioelectricity can be traced back to the late eighteenth century
and the experiments of Luigi Galvani. A century later, in 1887, Augustus Wallers
managed to measure the electrical signal generated by the heart at the surface of
the body [142]. His dog Jimmy earned a place in history by being the first to have
his heart measured in this way; see Figure 1.1. In 1903 Willem Einthoven [34] de-
veloped the first commercial device for recording electrocardiograms (ECGs); see
Figure 1.2.

This book is about computing the electrical activity in the heart. In order to do
so, we will need mathematical models of how the electrical signals are generated
in the heart. Furthermore, we will need mathematical models of how the signals
are transported through the heart and distributed in the body. All these models are
formulated in terms of differential equations. Based on these models, we will derive
discrete models suitable for numerical simulations. We will base our methods on a
finite element approach and will solve the equations that arise on parallel computers.

In order to understand this book, you will need to have a basic course in partial
differential equations, and it is definitely an advantage to know a bit about finite
element methods; but that is about it. We will explain all the biology you will need.
We will provide a detailed introduction to parallel computing and how to solve linear
systems of equations.

This book is about computational science; in fact, its main objective is to present
a large project in computational science. We will begin by giving you the necessary
physiological background. What is going on in the heart and how can we use a
recording on the body surface to say anything about the condition of the heart?
These questions are discussed briefly in Chapter 1.

In Chapter 2 we jump straight to the mathematical models. A wonderful fea-
ture of mathematics is its ability to phrase extremely complex phenomena in rather
simple equations. Yet despite this ability, the equations we describe in Chapter 2

VI Preface

are rather complicated. These models are absolutely necessary in order to be able
to compute the electrical activity on a computer. We guide you through the basic
physics of the process, ranging from models of what happens within a single cell to
a complete mathematical model of the electrical activity in the entire heart.

In Chapter 3 we discuss how to discretize the equations derived in Chapter 2.
We will do this using the finite element method. The approach is straightforward,
but matters become complicated due to the complexity of the mathematical models.
Chapter 3 will motivate three specific problems that have to be considered carefully.
First, the finite element method leads to large systems of linear equations. It is well
known from other fields that these equations may be very challenging to solve, and
in Chapter 4 we introduce and analyze preconditioning techniques to solve the linear
system that arises from the finite element discretizations. Second, systems of ordi-
nary differential equations that model the processes going on in single cells have to
be solved. We discuss appropriate methods for this in Chapter 5. Third, the problem
that we are going to solve is huge, and therefore has to be solved on parallel com-
puters. We introduce such computers in Chapter 6 and demonstrate their usefulness
for the problems at hand.

Our primary goal is to contribute to the development of machinery that can
compute the location and geometry of a myocardial infarction. This is a huge task
occupying the minds of many researchers around the world, but a technologically
feasible solution still lies in the future. In Chapter 7 we initiate a discussion of how to
utilize our ability to simulate the electrical activity in the heart and the body in order
to detect an infarction. This is, in fact, an inverse problem; we measure the result of
a process and we then compute its cause. In the present setting, the measurements
are electrocardiograms and the cause is the infarcted area of the heart. The process
is the transport of electrical signals in the heart and the distribution of these in the
body.

We hope this book can serve as an introduction to this field for applied math-
ematicians and computational scientists and also for researchers in bioengineering
who are interested in using the tools of computational science in their research. The
book presents the authors’ view of the field, with a strong emphasis on the math-
ematical models and how to solve them numerically. There are few new scientific
results in the book. Most of the material presented here is based on already published
material.

Fornebu, Norway Joakim Sundnes
March 2006 Glenn Terje Lines

Xing Cai
Bjørn Fredrik Nielsen

Kent-Andre Mardal and Aslak Tveito

Table of Contents

1 Physiological Background . 1
1.1 The Electrocardiogram . 2

1.1.1 Physics and Physiology . 5
1.1.2 Cellular Electrical Activity . 9
1.1.3 Signal Conduction . 11
1.1.4 Diagnosis and the Inverse Problem . 12

1.2 Computer Simulations . 14
1.2.1 Why Simulate? . 14
1.2.2 State of the Art . 15

2 Mathematical Models . 21
2.1 Modelling the Body as a Volume Conductor . 21

2.1.1 A Volume Conductor Model . 21
2.2 A Model for the Heart Tissue . 24

2.2.1 Excitable Tissue . 24
2.2.2 The Bidomain Model . 25
2.2.3 The Monodomain Model . 30

2.3 Coupling the Heart and the Body . 32
2.4 Models for the Ionic Current . 33

2.4.1 The FitzHugh-Nagumo Model . 34
2.4.2 The Cell Membrane . 36
2.4.3 The Nernst Equilibrium Potential . 38
2.4.4 Models for Ionic Flux . 40
2.4.5 Channel Gating . 42
2.4.6 The Hodgkin-Huxley Model . 44
2.4.7 A Model for Cardiac Cells . 46
2.4.8 Models for Ventricular Cells . 48
2.4.9 Second Generation Models . 51

2.5 Summary of the Mathematical Model . 53

3 Computational Models . 57
3.1 The Finite Element Method for the Torso . 57

3.1.1 A Simplified Model Problem . 57
3.1.2 A Dipole Model of the Heart . 63
3.1.3 Known Potential on the Heart Surface . 67

3.2 The Heart Equations . 70
3.2.1 Operator Splitting . 71
3.2.2 Operator Splitting for the Monodomain Model 75
3.2.3 Operator Splitting for the Bidomain Model 78

3.3 Coupling the Heart and the Torso . 82

VIII Table of Contents

3.4 Numerical Experiments . 85
3.4.1 Convergence Tests . 85
3.4.2 Simulation on a 2D Slice . 92
3.4.3 Normal Propagation . 93
3.4.4 Ischemia . 94

4 Solving Linear Systems . 99
4.1 Overview . 99
4.2 Iterative Methods . 100

4.2.1 The Richardson Iteration . 101
4.2.2 The FDM Discretization Poisson Equation in 1D 103
4.2.3 The Richardson Iteration Revisited . 106
4.2.4 Preconditioning . 109
4.2.5 The Jacobi Method . 110
4.2.6 The Relaxed Jacobi Method . 112
4.2.7 The Exact and the Inexact Block Jacobi Methods 113
4.2.8 The Gauss–Seidel Method . 114
4.2.9 The Relaxed Gauss–Seidel Method . 115
4.2.10 The Symmetric Gauss–Seidel Method . 115
4.2.11 The Exact and the Inexact Block Gauss–Seidel Method 115

4.3 The Conjugate Gradient Method . 116
4.3.1 The CG Algorithm . 116
4.3.2 Convergence Theory . 120
4.3.3 Numerical Experiments . 121

4.4 Multigrid . 123
4.4.1 Idea . 123
4.4.2 Theoretical Framework . 125
4.4.3 Convergence Theory . 127
4.4.4 Numerical Experiments . 128

4.5 Domain Decomposition . 128
4.6 Preconditioning Revisited . 133

4.6.1 Idea . 133
4.6.2 Spectral Equivalence . 133
4.6.3 The Richardson Iteration Re-Revisited . 134
4.6.4 Preconditioned Conjugate Gradient Method 135
4.6.5 Convergence Analysis Revisited . 136
4.6.6 Variable Coefficients . 137
4.6.7 Numerical Experiments . 138

4.7 The Monodomain Model . 140
4.7.1 Multigrid . 141
4.7.2 Numerical Experiments . 141
4.7.3 Domain Decomposition . 142

4.8 The Bidomain Model . 142

Table of Contents IX

5 Solving Systems of ODEs . 149
5.1 Simple ODE Solvers . 149

5.1.1 The Euler Methods . 149
5.1.2 Stability Analysis for the Euler Methods 151

5.2 Higher-Order Methods . 154
5.2.1 Multistep Methods . 154
5.2.2 Runge-Kutta Methods . 156

5.3 Solving Nonlinear Equations . 160
5.3.1 Newton’s Method . 161
5.3.2 Newton’s Method for Higher-Order Solvers 162

5.4 Automatic Time Step Control . 164
5.5 The Cell Model Equations . 168

5.5.1 Explicit versus Implicit Methods . 168
5.5.2 Simulation Results . 171

6 Large-Scale Electrocardiac Simulations 175
6.1 The Electrocardiac Simulator . 175

6.1.1 The Numerical Strategy . 176
6.1.2 Software Components of the Electrocardiac Simulator 176

6.2 Requirements for Large-Scale Simulations . 177
6.2.1 The Memory Requirement . 178
6.2.2 Realistic Estimates for Memory and Time Usage 179

6.3 Introduction to Parallel Computing . 181
6.3.1 Hardware and Programming Models . 181
6.3.2 Division of Work and the Resulting Overhead 182
6.3.3 Speedup and Parallel Efficiency . 184

6.4 Two Simple Examples . 186
6.4.1 Adding Two Vectors . 186
6.4.2 Inner Product . 188

6.5 Domain-Based Parallelization . 191
6.5.1 Division of Data for FDM . 192
6.5.2 Division of Data for FEM . 194
6.5.3 Summary of Principles . 196

6.6 Explicit FDM in Parallel . 197
6.6.1 Discretization by Finite Differences . 197
6.6.2 A Sequential Program . 198
6.6.3 Parallelization . 200

6.7 Parallel Conjugate Gradient Iterations . 201
6.7.1 Conjugate Gradient Revisited . 202
6.7.2 Parallel CG and FDM . 203
6.7.3 Parallel CG and FEM . 203

X Table of Contents

6.8 Domain Decomposition as Parallel Preconditioners 207
6.8.1 Additive Schwarz Preconditioner . 208
6.8.2 Parallel DD for the Monodomain Equation 210
6.8.3 Parallel DD for the Bidomain Equations 210
6.8.4 Extension to the Torso . 211

6.9 Parallelizing Electrocardiac Simulations . 212
6.9.1 The Overall Simulation Process . 212
6.9.2 Partitioning the Domains . 213
6.9.3 Straightforward Parallelization Tasks . 214
6.9.4 Solving the Block Linear System in Parallel 215

6.10 Simulation on a Realistic Geometry . 215
6.11 Summary . 216

7 Inverse Problems . 219
7.1 A Simple Example . 221

7.1.1 Problem Formulation . 222
7.1.2 Fourier Analysis . 224
7.1.3 Ill-Posedness . 225
7.1.4 Discretization and an Output Least Squares Formulation

of the Problem . 229
7.1.5 Regularization Techniques . 231

7.2 The Classical Inverse Problem of Electrocardiography 238
7.2.1 Mathematical Formulation . 239
7.2.2 A Linear Problem . 241
7.2.3 Discretization . 243
7.2.4 The Time-Dependent Problem . 246
7.2.5 Numerical Experiments . 249

7.3 Computing the Location and Orientation of a Dipole 253
7.3.1 Preliminaries . 255
7.3.2 The Inverse Problem . 256
7.3.3 Parameterizations Leading to Linear Problems 257
7.3.4 A Numerical Example . 261
7.3.5 Parameterizations Leading to Nonlinear Problems 265
7.3.6 A Numerical Experiment . 270

7.4 Computing the Size and Location of a Myocardial Infarction 271
7.4.1 Modelling Infarctions, the Direct (Forward) Problem 272
7.4.2 Modelling Infarctions, the Inverse Problem 274
7.4.3 Differentiation of the Objective Function 276
7.4.4 Numerical Experiments . 281

Table of Contents XI

A Color Figures . 287

B Rate Functions and Ionic Currents . 297
B.1 The Hodgkin-Huxley Model . 297
B.2 The Noble Model for Purkinje Cells . 297
B.3 The Beeler-Reuter Model . 298

C Coefficients for the Implicit RK Solvers 300

Bibliography . 301

Index . 308

Chapter 1

Physiological Background

Our knowledge about the heart dates back more than two millenia. Already in the
days of Aristotle (350 b.c.) the importance of the heart was recognized, and it was,
in fact, considered to be the most important organ in the body. Other vital organs,
such as the brain and lungs, were thought to exist merely to cool the blood. Over two
thousand years later, the heart maintains its position as one of the most important,
and also most studied, organs in the human body.

During the last few decades, the quest for knowledge of the heart has been mo-
tivated, not only by a desire to uncover the secrets of this vital organ, but also by its
growing clinical importance. In the western world, heart failure is by far the most
frequent cause of death, and the related financial and personal costs are huge. An
improved understanding of how the heart works may lead to new techniques for
the diagnosis and treatment of heart problems, and this serves as motivation for the
enormous resources that are invested in heart-related research.

The pumping function of the heart is the result of a rhythmic cycle of contraction
and relaxation of about 1010 muscle cells, a process that is controlled by a complex
pattern of electrical activation. Electrical activity is essential for the function of the
heart, and many heart problems are closely linked to disturbances of the electrical
activity. In fact, most serious heart problems either result from, or cause, abnormal-
ities in the electrical activity.

This close link between the electrical activity and heart problems is the basis
of the diagnostic power of the electrocardiogram, or ECG, which is the oldest non-
invasive tool for diagnosing heart conditions. The ECG is a recording of electrical
potential differences on the body surface that result from the electrical activity in
the heart. These potential differences are caused by sources of electrical current in
the active heart muscle, and they change in characteristic patterns when the elec-
trical activity is disturbed. Worldwide, it is estimated that about one million ECG
recordings are performed every day, which makes it the most widely-used tool for
heart diagnosis. It may be used to detect a variety of different pathological con-
ditions, such as rhythm disturbances caused by conduction system abnormalities,
infarctions, and ischemic heart disease.

The electrical activity of the heart is a well-studied process, and there exists a
vast store of knowledge, both of the small scale processes occurring in the cells
and of the organ-level pattern of electrical activation. Even so, there are a large
number of mechanisms that are not fully understood. The organ-level electrical ac-
tivity of the heart is the result of billions of small-scale processes occurring in the
cells, and the existing knowledge of how all these processes interact is very lim-
ited. A very promising technique to extend our knowledge in this field is the use of

2 1. Physiological Background

mathematical modelling and computer simulations. By formulating precise, quan-
titative descriptions of the small-scale processes, these models can be combined to
form mathematical models of larger systems. This field is often referred to as inte-
grative physiology, and has the potential to improve significantly our understanding
of how small-scale processes interact to form the functioning organ.

In addition to their efficacy, experiments based on mathematical models and
computations often represent a simpler, and less expensive, alternative to experi-
ments with real hearts. As noted in the Financial Times on February 6, 2004 [90]:

Researchers are experimenting with virtual hearts partly because it is
easier than tinkering with or peering into a living, beating one. As Alan
Garfinkel, a cardiologist at the University of California, Los Angeles, says,
“You can’t get the light into the meat.”

For the case of the electrical activity of the heart, improved understanding may lead
to improved treatment techniques and diagnosis, for instance in the form of more
precise ECG analysis.

The focus of this book is on computer simulations of the electrical activity of the
heart. Particular emphasis is placed on simulating ECGs, but the simulation results
have a number of other applications as well. We do not attempt to give a detailed
description of the general physiology of the heart, but focus on the mathematical
models and related computational issues. However, to motivate the mathematical
models, we will here provide a very brief description of the ECG and the electro-
physiology of the heart. Readers interested in a more thorough discussion of these
fields may consult, for instance, [71] or a general textbook on physiology, such as
[11].

1.1 The Electrocardiogram

The first human ECG was published in 1887 by Augustus D. Waller [142]. Waller
gave several demonstrations of his techniques, many of them involving his bulldog
Jimmy standing with his paws in buckets of saline, see Figure 1.1. The conducting
solutions in the buckets acted as electrodes, and were connected to a device that
recorded the electrical potential difference between the two electrodes. The poten-
tial difference was seen to pulsate in rhythm with Jimmy’s heart beats, and Waller
presented evidence to support the idea that the potential differences resulted from
electrical activity in the heart. Waller was also the first to use the term electrocar-
diogram.

One of Waller’s demonstrations was attended by Dutch physiologist Willem
Einthoven. He refined Waller’s technique and invented a more robust and sensi-
tive device for recording the potential differences (the string galvanometer). To
record the human electrocardiogram, Einthoven used three electrodes, attached to
the left and right arm and to the left leg. Early methods used saline-filled buckets as
electrodes, as seen in Figure 1.2, but these were later replaced by more convenient

1.1. The Electrocardiogram 3

Fig. 1.1. The famous demonstration by Augustus D. Waller, recording the electrocardiogram
of his bulldog Jimmy.

electrodes. Strictly speaking, it is not possible to measure the electrical potential
in a point; only potential differences may be measured. As illustrated in Figure 1.1,
Waller recorded the potential difference between two of Jimmy’s legs, and similarly,
Einthoven used the three limb electrodes to record three potential differences. The
potential differences were called leads I, II, and III, and are illustrated in Figure 1.2.

Fig. 1.2. An illustration of the original leads defined by Einthoven.

4 1. Physiological Background

If we introduce the notation φLA, φRA, and φLL for the potential on the left arm,
right arm, and left leg, respectively, the leads are defined by

I = φLA − φRA, (1.1)

II = φLL − φRA, (1.2)

III = φLL − φLA. (1.3)

The leads form a triangle on the torso, as illustrated in Figure 1.2.
Since the Einthoven leads record changes in the potential difference between

two point electrodes, they are called bipolar leads. The potential changes recorded
by one lead will be the combined result of potential variations in the two electrodes
that define that lead. For instance, we may assume that a given electrical source in
the body causes an increase in the potential φLA and φRA, and a decrease of φLL.
It is easy to see from (1.1)–(1.3) that the result will be a fairly large, negative signal
in lead II and lead III, while for lead I the potential will increase in both electrodes,
resulting in a small or zero signal being recorded by that lead.

A schematic view of a typical ECG, i.e. a recording from one of the leads, is
shown in Figure 1.3. The figure shows how the potential difference recorded by
one lead changes during a heart cycle. Time is shown along the horizontal axis and
the potential difference on the vertical axis. The straight line segments in the ECG,
where the recorded potential difference is zero, corresponds to intervals in the heart
cycle when there are no sources of electrical current in the heart. The five deflections
in the ECG are results of current sources arising in the heart during the electrical
activation of the tissue. The five deflections were first identified by Einthoven, who
introduced the notation P, Q, R, S, and T. The first signal is the P-wave, while the
next three signals form a combined signal called the QRS-complex. The last signal
of the normal ECG is called the T-wave. Understanding the physiological origin of
each signal requires some basic knowledge of the signal propagation in the heart,
and will be described below.

-0.5

0

0.5

1.0

mV P QRS T

100 500 900 ms

Fig. 1.3. Sketch of a typical ECG, showing the potential variations recorded by one lead
during a heart cycle.

1.1. The Electrocardiogram 5

Fig. 1.4. A real ECG, from a healthy 30-year old male.

Figure 1.3 shows a very schematic and idealized ECG. In practice, the shape
and amplitude of each signal will be different in the three leads, and it might be
that not all five signals are visible in all leads. Figure 1.4 shows a real ECG, from
lead V1, of a healthy 30-year old male. In this figure, showing several heart beats,
the QRS-complexes are easily identified. The P-wave and the T-wave are visible,
although they both have fairly low amplitude in this lead.

1.1.1 Physics and Physiology

The current sources that give rise to the ECG are caused by the electrical activation
of the heart muscle cells. Because of the conductive properties of the body, these
sources result in currents and potential variations that can be recorded on the body
surface. The ECG is hence closely connected to cellular electrophysiology, but very
useful interpretations of the ECG can be made with little attention to the underlying
physiology. For instance, Waller and Einthoven introduced the very powerful sim-
plification of viewing the heart as a dipole embedded in a volume conductor. This
approach enables very simple and powerful interpretations of the ECG, and is still
an essential part of modern electrocardiology.

The idea is based on the assumption that the body has the properties of a vol-
ume conductor, and that the sources of electrical current in the heart can be viewed
as dipoles. A volume conductor is simply a three-dimensional conducting medium,
while a dipole is a pair of opposite electrical charges with equal magnitude (−q, q),
separated by a small distance d. Strictly speaking, a dipole has only two point
charges, but various arrangements of multiple charges or charge distributions may
also have properties similar to a dipole. A dipole generates an electrical field, and
in a volume conductor this electrical field leads to currents throughout the medium.
The relation between the electrical field and the current will be described in more
detail in Chapter 2. The strength of a dipole, and the strength of the electrical field it
generates, is characterized by the dipole moment, which is the product of the charge
in each pole and the distance between the poles. The dipole moment has an associ-
ated direction, which is the direction from the negative to the positive pole. Denoting
the dipole moment by p, we have

6 1. Physiological Background

I

II III

Fig. 1.5. The Einthoven triangle, formed by the three lead vectors I, II, and III. The signal
recorded in each lead is the projection of the heart vector onto the lead vector.

p = qd,

where d is the vector pointing from the negative to the positive pole.
The current sources present during the activation of the heart muscle can be

approximated by a number of dipoles, with associated dipole moments. The sum of
all the dipole moments gives a vector describing a single dipole, which characterizes
the sources of electrical current in the heart. This vector is called the heart vector,
and has been a central part of ECG analysis since it was introduced by Einthoven in
the early 20th century. The position of the heart vector is assumed to be static, but
its strength and orientation varies during the heart cycle.

The potentials recorded by the three Einthoven leads can be interpreted as pro-
jections of the heart vector onto the three lead vectors of the Einthoven triangle, as
illustrated in Figure 1.5. Hence, the signal amplitude recorded in each lead can be
used to construct the heart vector, and in this way it is possible to identify changes
in the activation pattern. For instance, the current sources present in the heart during
the QRS complex (see Figure 1.3) can be approximated by a dipole that is oriented
downwards and to the left. The resulting heart vector is illustrated in Figure 1.5. We
see that the vector is almost parallel to lead II, and nearly perpendicular to lead III.
As illustrated by the vector projections, we therefore expect to see a large amplitude
of the QRS complex in lead II, and a small amplitude in lead III. The amplitude in
lead I will have an intermediate value. The directions of the three Einthoven leads
have been chosen so that a normal activation pattern gives positive R-waves (the
largest signal of the QRS-complex) in all three leads.

A surprisingly large amount of information can be extracted from the three limb
leads used by Einthoven. In fact, since the three leads are sufficient to find the direc-
tion and strength of the heart vector, one may think that no additional information
can be obtained by adding more leads. This would be the case if the heart were
truly a dipole oriented in the frontal plane of the body, i.e. the plane defined by
the position of the three limb electrodes. However, this simplified view of the heart
is not always sufficient. Specifically, the heart vector is not always oriented in the
frontal plane of the body, and the dipole approximation does not fully reproduce the

1.1. The Electrocardiogram 7

complicated electrical activity in the heart. Therefore, more leads have been added,
to produce a more accurate picture of the condition of the heart.

As noted above, the electrical potential at a point must always be measured rel-
ative to some reference potential, and the three limb leads defined by Einthoven
are all bipolar leads. To obtain a good picture of the potential changes in a single
point, it will be useful to have an independent reference, or a zero electrode, which
changes very little during the course of a heart cycle. This concept was introduced
by Wilson [144] and his group, who constructed an independent reference by con-
necting the three limb electrodes of Einthoven. The idea is that since no electrical
charge enters or leaves the body during the heart cycle, the sum of all changes of
potential in the body must be zero. Ideally, therefore, one would construct a zero
electrode by connecting a large number of electrodes, distributed over the entire
body. This would obviously be an inconvenient solution, and the connection of the
three limb electrodes has been shown to give a reference electrode with sufficiently
small variations. The obtained reference potential is referred to as the Wilson cen-
tral terminal, and is used to construct unipolar leads, i.e. leads that characterize the
potential changes at a single point only.

The six unipolar leads V1-V6 were constructed by placing six electrodes on the
front of the chest, as illustrated in Figure 1.6, and recording the potential difference
between these electrodes and the Wilson central terminal. Together with the origi-
nal limb leads of Einthoven, these leads formed a standard nine-lead ECG in 1938.
In 1942, three additional leads were introduced by Goldberger [48]; the augmented
limb leads aVR, aVL, and aVF. These leads are defined by comparing the potential
in each of the three limb electrodes to a reference defined by connecting the two
other limb electrodes. They are normally referred to as unipolar leads, although the
zero electrode is constructed using only two leads. These 12 leads still form the
standard ECG, although there is an ongoing debate regarding the possible advan-
tages of using additional leads; see e.g. [20]. Table 1.1 shows the definition of the
12 leads. The left column shows the name of each lead, the middle column shows
the so-called exploring electrode, while the rightmost column lists the leads used
to construct the zero electrode. The concept of a lead that consists of an exploring
electrode and a zero electrode is common for unipolar leads, and for simplicity we
use the same notation for the Einthoven leads.

Figure 1.7 shows a standard 12-lead ECG. One heart cycle is shown for all leads,
and the position of each lead is standardized. The bottom line shows the recording of
lead II for several heart cycles, included to give a better picture of the heart rhythm.
The box-shaped signal to the right on every curve is a calibration artifact resulting
from a 1 mV pulse. The position of each lead on the paper is standardized, as is
the paper itself. Although barely visible in the figure, the ECG paper is divided
into squares. The smallest squares are 1 mm x 1 mm and the larger squares are
5 mm× 5 mm. (The ECG shown in the figure has been scaled, so the dimensions do
not match here.) In the horizontal direction each large square represents 0.2 seconds,
while in the vertical direction one large square represents 0.5 mV. This standard,
with 1 mV being represented by 1 cm, is so well-established that ECG signals are
very often described in terms of millimeters rather than millivolts.

8 1. Physiological Background

Fig. 1.6. The position of the chest electrodes. The leads V1-V6 are constructed by measuring
the potential difference between each of these electrodes and the Wilson central terminal.

Table 1.1. The leads of the 12-lead ECG. The notation LL, LA, and RA is used for the left
leg, left arm, and right arm electrodes, respectively. The six chest electrodes are denoted 1-6.

Lead Exploring Zero
I LA RA
II LL RA
III LL LA
aVR RA LA and LL
aVL LA RA and LL
aVF LL RA and LL
V1-V6 1-6 RA, LA, and LL

1.1. The Electrocardiogram 9

Fig. 1.7. A 12-lead ECG, showing indications of ischemic heart disease. (T.B. Garcia and
N.E. Holtz, 12-lead ECG – The art of interpretation, 2001: Jones and Bartlett Publishers,
Sudbury, MA, www.jbpub.com. Reprinted with permission.)

The ECG shown in Figure 1.7 is not normal; it shows signs of an acute heart
infarction. We will provide a brief discussion of these signs below.

1.1.2 Cellular Electrical Activity

Approximating the heart as a rotating dipole with varying strength is a very useful
simplification, but a true understanding of the ECG must be based on the underlying
physiology. Specifically, since the electrical activity is the result of electrochemical
reactions in the heart cells, an understanding of the ECG must be based on knowl-
edge of the fundamentals of cellular electrophysiology. This topic will be discussed
in more detail in Chapter 2, where we present mathematical models for the cellular
processes. However, to ease the understanding of the ECG, we will here give a very
brief introduction to the essential behaviour of heart cells. Readers interested in a
more detailed description are referred to, e.g., [72,64]

From the perspective of electrical activity, the most important property of car-
diac cells is that they are excitable, i.e. they have the ability to respond actively
to an electrical stimulus. Under resting conditions, the cells maintain internal ionic
concentrations different from those of their surroundings. Because of the electrical
charge of the ions, this results in a potential difference across the cell membrane,
which is called the transmembrane potential, or simply the membrane potential.
More specifically, the potential in the internals of the cells will be negative compared
to their surroundings, with typical transmembrane potential values in the range of
−70 to −100 mV. The actual value of the resting transmembrane potential varies
between different species and different cell types.

If an electrical stimulus is applied to a cell, the result is a change in the trans-
membrane potential. An excitable cell may respond to such a potential change in

10 1. Physiological Background

one of two ways. If the change is small, the conductive properties of the membrane
remain unchanged, and the potential quickly returns to its resting value when the
applied current is removed. However, if the applied stimulus is strong enough to
raise the transmembrane potential above a certain threshold value, the response will
be different. In this case the conductive properties of the cell membrane change,
resulting in a rapid flux of positive ions into the cell. This causes a depolarization
of the membrane, where the transmembrane potential increases from its negative
resting value to a value around, or significantly above, zero.

After the depolarization, the potential returns to its negative resting state, a
process referred to as repolarization. The complete process of depolarization and
repolarization is called an action potential. In many excitable cells, such as nerve
cells and skeletal muscle cells, the repolarization occurs almost immediately after
the depolarization, producing very short action potentials. Heart muscle cells how-
ever, stay at their depolarized value for a significant period of time, called the plateau
phase.

Figure 1.8 shows a typical action potential for a ventricular muscle cell. The
figure shows the transmembrane potential (in mV) plotted along the y-axis, while
time (in ms) is shown along the x-axis. We see that fast depolarization, often called
the upstroke phase, is followed by a fairly long plateau phase, before repolarization
returns the cell to the resting state. The detailed mechanisms of the action potential
will be discussed in more detail in Chapter 2. From a computational point of view,
the rapid upstroke of the action potential generates a number of challenges. When
modelling a single cell only, very small time steps are needed in the upstroke region
to capture the rapid change. Additional challenges arise when we attempt to model
the electrical activation of the complete heart. This will be described in greater detail
below.

0 100 200 300 400
−100

−50

0

50

Fig. 1.8. An action potential of a ventricular muscle cell from a dog. The potential is computed
with a model by Winslow et al. [145].

1.1. The Electrocardiogram 11

1.1.3 Signal Conduction

The pumping function of the heart relies on a collective, systematic contraction
of billions of muscle cells. This operation can not be achieved without significant
communication and synchronization between the cells. To ensure that each part of
the heart contracts at the correct time, the activation is controlled by a complex
system for signal conduction. The mathematical models we derive in this book will
not pay particular attention to the conduction system, but a basic understanding of
the signal propagation in the heart is useful for understanding the characteristics of
the ECG.

The electrical signal in the heart starts in the sinoatrial node, which is located
above the right atrium; see Figure 1.9. The cells in the sinoatrial node are so-called
self-oscillatory cells, often referred to as pacemaker cells. This means that they
spontaneously produce action potentials, not relying on any external stimulus. The
frequency of the action potentials in the sinoatrial node are controlled by external
signals, for instance to adjust the heart rate to different activity levels.

The electrical activation of the sinoatrial node stimulates neighbouring atrial
muscle cells. The muscle cells are connected by so-called gap junctions, which are
large proteins that form channels between adjacent muscle cells. These channels
allow a flux of electrical current in the form of ions, and hence provide a direct
electrical connection between the internals of neighbouring cells. When one cell is
depolarized this coupling will affect the potential in neighbouring cells, and may
raise the transmembrane potential above the threshold value. Stimulating a small
region of the atria hence results in a propagating wavefront of depolarization, which
activates the complete atria and causes them to contract.

Right atrium

Left atrium

Right ventricle

Left ventricle

Sinoatrial node

Atrioventricular node

Fig. 1.9. A schematic view of the pathways of electrical conduction in the heart. The acti-
vation starts in the sinoatrial node, then activates the atria, and the signal is then conducted
through the atrioventricular node to activate the ventricles.

12 1. Physiological Background

The atria are separated from the ventricles by a non-conductive layer, so the
depolarization wavefront does not propagate directly into the ventricles. Instead, the
only place where the electrical signal can be transmitted to the ventricles is through
the atrioventricular node; see Figure 1.9. Conduction through the atrioventricular
node is quite slow, which results in a small time delay between the activation of
the atria and the ventricles. The effect of this delay is that the atria contract while
the ventricles are still relaxed, which improves the filling of the ventricles and the
pumping function of the heart.

From the atrioventricular node, the signal enters the atrioventricular bundle, also
referred to as the common bundle or the bundle of His. This bundle branches out
into a tree-like structure of Purkinje fibres, which provide rapid conduction of the
electrical signal. The muscle cells are stimulated at the ends of the Purkinje network,
which are located near the endocardiac (inner) surface of the ventricles. Like the
atrial cells, the ventricular muscle cells are also connected by gap junctions. The
stimulus hence causes wavefronts of depolarization, which eventually activates the
complete mass of the ventricles, and triggers the contraction of the cells.

As shown in Figure 1.8, the depolarization of the cell is a very fast process.
At the tissue level, this results in the propagating wavefront of depolarization be-
ing very sharp, with a variation in the transmembrane potential of approximately
100 mV over a spatial range of less than 1 mm. This steep, moving gradient repre-
sents a significant source of electrical current, and because of the volume conduc-
tor properties of the body it results in currents and potential variations that can be
recorded on the body surface. The current source that Waller and Einthoven mod-
elled as a single dipole is hence a moving, curved wavefront of depolarization.

We noted above that the rapidity of the upstroke generates computational chal-
lenges, in that a high temporal resolution is needed to resolve the fast depolarization.
When modelling signal propagation in the tissue, the steepness of the wavefront
places strict demands on the spatial resolution as well. This issue will be described
in more detail below.

Having provided a brief overview of the electrical activation pattern in the heart,
it is now possible to relate the signals in the ECG (see, e.g., Figure 1.3), to the
specific events. The P-wave occurs first, and is the result of the depolarization of
the atria. The next signal, the QRS-complex, corresponds to the depolarization of
the ventricles. The larger amplitude of this signal compared to the P-wave is a result
of the larger mass of the ventricular muscles. The final event that produces a current
source strong enough to be visible on ECG is the repolarization of the ventricles,
which shows up as the T-wave. The smoothness and smaller amplitude of this signal
compared to the QRS-complex is a result of the repolarization phase being less steep
than the depolarization, as shown in Figure 1.8.

1.1.4 Diagnosis and the Inverse Problem

The diagnostic power of the ECG lies in the fact that the signal changes charac-
teristically in response to a number of different heart conditions. The field of heart
diseases and their relation to the ECG is huge, and the description we give here is

1.1. The Electrocardiogram 13

nowhere near being complete. However, a couple of examples are useful, to illustrate
the diagnosis of heart problems based on the ECG, and to serve as a background for
computer simulations that will be presented later.

The ECG is a recording of the electrical activity of the heart, and it therefore
seems obvious that abnormalities in the sinoatrial node or the conduction system
will change the ECG. For instance, abnormal activity in the sinoatrial node may
cause an increased or decreased heart rate, which is easily detected on the ECG.
Other disturbances of the electrical activity are also fairly easy to detect. For in-
stance, the presence of P-waves with missing QRS-complexes is a sign that the atria
are activated successfully, but that the signal is blocked before it can activate the
ventricles. This indicates a conduction block in the atrioventricular node or bundle
(AV block).

Many pathological conditions in the heart are identified by using the lead poten-
tials to reconstruct the imaginary heart vector that was described above. We men-
tioned that during the activation of the ventricles, i.e. during the QRS-complex of
the ECG, the current sources in the heart may be approximated by a dipole, the ori-
entation of which is down and to the left, as shown in Figure 1.5. Abnormalities in
the activation pattern will lead to a shift in the heart vector, which can be identified
by changes in the signal amplitudes recorded in each lead.

Conditions such as myocardial infarction and ischemic heart Disease are also
commonly diagnosed using the ECG. Although they are not always easy to detect,
several changes of the ECG are characteristic for these conditions. One character-
istic change is a shift in the ST segment, which is the interval between the QRS-
complex and the T-wave. In the normal ECG, this is a straight line that is on a level
with the TP segment, i.e. the interval between the T-wave and the P-wave. When a
portion of the heart lacks a sufficient blood supply, electrophysiological changes in
this area will cause a shift in the ST-segment. Depending on the size and location
of the ischemic area, the ST-segment will shift either up or down compared to the
TP-segment. In the 12-lead ECG shown in Figure 1.7, there are large ST elevations
in lead V1-V4, and also small signs of elevation in aVL. In leads II, III, and aVF
we see a small depression of the ST-segment. As described in [46], this ECG is typ-
ical for an anteroseptal infarction, i.e. an infarction that affects the frontal wall of
the heart and the wall between the left and right ventricle. The topic of ST-segment
shifts will be discussed further in Chapter 3, where we will present simulations of
the ECG changes that result from ischemic heart disease.

The list of heart conditions mentioned here is far from complete. A thorough
description of the relation between heart conditions and the ECG can be found in a
general textbook on heart physiology, e.g. [71], or a book devoted to ECG interpre-
tation, such as [46].

In the examples listed here we have mentioned various changes in the electri-
cal activity of the heart, and then described the results that show up on the ECG.
Such a situation, in which we want to find the effect of a known cause, is commonly
referred to as a forward problem. The situation faced everyday by physicians ana-
lyzing ECGs is the exact opposite. From an observed effect (ECG results), they have
to make inferences to determine the cause (the underlying condition of the heart).

14 1. Physiological Background

In mathematical terms, this kind of problem is referred to as an inverse problem.
As will be discussed below, both the forward problem and the inverse problem may
be formulated mathematically. Most of this book will be devoted to mathematical
models and solution techniques for the forward problem, but the inverse problem
will be discussed in Chapter 7.

1.2 Computer Simulations

Over the last few decades, there has been a huge increase in the amount of available
information about the mechanisms of the heart, and of biological systems in gen-
eral. Techniques to observe cellular, and even molecular level, processes are refined
continuously, leading to remarkable progress in discovering the innermost secrets
of living organisms. In parallel with this development, there has been a rapid de-
velopment of techniques for non-invasive examination of the function of the heart.
Although the ECG is still the most widely-used tool for heart diagnosis, the use of
other techniques that improve our ability to produce functional images of the heart,
such as ultrasound and magnetic resonance imaging (MRI), is increasing rapidly.

Despite the above mentioned advances, there remain several unresolved ques-
tions. A good example is defibrillation; the application of a large electrical shock
to end ventricular fibrillation. Ventricular fibrillation is a state in which leaves the
heart muscle cells contract in a seemingly random manner, which the heart unable
to pump blood. Defibrillation shocks are applied regularly, both by implanted de-
vices and by the well-known external defibrillators used by rescue squads and in
the emergency room. The success rate is remarkably high, but our understanding of
the phenomenon is very limited. The Financial Times [90], quoting Richard Gray, a
biomedical engineer at the University of Alabama, Birmingham, describes the situ-
ation as follows:
It is a medical miracle, and no one can explain how it works. “We don’t even know
how the electric current gets into the heart,” says Mr Gray. Nor does anyone really
know how ventricular fibrillation gets started, or why a big shock ends it.

1.2.1 Why Simulate?

Initially, our limited understanding of a widely-used process such as defibrillation
would seem to be somewhat unexpected. However, if one considers the complexity
of the process, the situation becomes much less surprising. Although there exists a
remarkable amount of knowledge about the processes on a cellular and sub-cellular
level, it is very difficult to understand the details of how these processes interact
to form the functioning organ. Even if we only consider a single cell, the electrical
activity is the result of a complex interaction between a variety of electrochemical
phenomena. Furthermore, as described above, the electrical activity of the complete
heart is the result of the collective activity of billions of cells that form a complex
heterogeneous system for conduction and contraction.

The result of this complexity is that it becomes very difficult to integrate knowl-
edge of small-scale processes into an understanding of complete organ function.

1.2. Computer Simulations 15

In fact, although complete understanding can be obtained of a number of sepa-
rate, small-scale processes, it may be almost impossible to understand how these
processes will interact to form a complex system. The behaviour of the heart un-
der pathological conditions such as fibrillation, or the extreme conditions induced
by defibrillation, is even more difficult. As noted in the introduction to this chap-
ter, a promising method by which this problem may be overcome is to describe
the processes in terms of mathematical models. If the small-scale processes are de-
scribed in terms of precise, quantitative models, the task of combining these models
into a model for the complete organ is at least feasible, although still a serious chal-
lenge.

The field of mathematical modelling in physiology is rapidly gaining popularity,
and the potential both for increasing general knowledge and for clinical applications
is huge. Although mathematical modelling has been applied to a large number of
different biological phenomena, the function of the heart is a field that has received
particular attention. As mentioned above, the quest for knowledge in this field is
driven both by the curiosity that has inspired physiologists for millennia, and by the
growing health problems related to the heart. In fact, the promising aspects of math-
ematical models applied to analyze the behaviour of the heart is the main motivation
for writing this text.

1.2.2 State of the Art

Computer simulations of physical phenomena, as discussed in this text, are based on
mathematical models. For the case of the electrical activity of the heart, a number of
different mathematical models have been developed that describe the electrophysi-
ology on many different scales. The concept of a heart vector, which was introduced
more than 100 years ago, is one example of a mathematical model of the heart. How-
ever, this model was based on a top-down approach and did not take into account
the underlying physiology. A significant breakthrough in this respect was the work
of Hodgkin and Huxley [66,65] in the 1950s. Their model for signal propagation
along an axon (part of a nerve cell) was based on detailed models for several ionic
currents in the cell, which were combined to give a description of the complete elec-
trical activity of the cell. Models for the electrical activity of heart cells, which are
all based on the framework introduced by Hodgkin and Huxley, will be described in
Chapter 2.

Since the publication of the Hodgkin-Huxley model more than 50 years ago, the
modelling and simulation of biological phenomena has grown much more complex
and realistic. The development of experimental techniques provides more and more
information about biological systems, and this information drives the development
of successively more sophisticated models. This development has been accompa-
nied by a rapid development in hardware and numerical techniques, which allow us
to perform simulations based on the increasingly sophisticated models.

The Hodgkin-Huxley model includes only four ordinary differential equations:
one that describes the transmembrane potential and three others that characterize
the permeability of the membrane. Models with a similar structure, for other types

16 1. Physiological Background

of excitable cells, were developed subsequently [104,9]. More and more properties
of the single cell have been incorporated into the mathematical models, and the
number of variables has increased more than tenfold compared to the Hodgkin-
Huxley model. The increasing physiological accuracy increases the possible impact
of the models, but also gives rise to computational challenges. In general, it is not
very difficult to solve a system of, say, 40 ordinary differential equations. However,
when a cellular model is used for full-scale simulations of the electrical activity
in the heart, the equations have to be represented in millions of grid points. The
resulting computation is a challenge for any existing computer.

One may wonder what the purpose is of all the variables included in recent
models for cellular activity. Many are related to the permeability of the membrane,
just as in the Hodgkin-Huxley model. In the cell membrane there are embedded
proteins that control the traffic of substances across the membrane. These proteins
are typically very specific, allowing only one kind of substance to pass. In models
of electrophysiology it is necessary to track the flow of ions through such channels,
and many variables are used to characterize the dynamics of channels as they open
and close.

The intracellular calcium concentration is important in muscle cells, because
it forms the link between electrical activation and the contraction of the cell. The
concentration is controlled by intracellular buffers and compartments. The more
recent models include the dynamic control of intracellular calcium [87,68].

Most or all variables in the electrophysiology models are thus used to describe
membrane properties and ionic concentrations, often with special emphasis on the
intracellular calcium.

As more information becomes available, the models will continue to be refined.
New ionic channels will probably be discovered and modelled. A further considera-
tion is that the heart muscle is not homogeneous, but consists of different cell types.
It is well known that the cells in the atria are different from ventricular cells, and
there are also regional differences in the ventricular wall [2]. Cells close to the in-
ner surface of the ventricles have different action potentials from the mid-wall cells,
which in turn are different from the cells near the outer surface of the muscle. These
differences are important for the signal conduction pattern in the heart, and must
be included in realistic, organ level simulations. From a clinical point of view, it is
important to make models specific to humans, and also models for how the cells be-
have under pathological conditions. Most recent models are based on measurements
from non-human cells, but several groups have started to develop models based on
human cells [115,125]. Models of cellular behaviour under conditions such as in-
sufficient blood supply (ischemia) are also emerging as adjustments of the normal
models.

A further improvement of the cell models would be to track energy consumption.
Some models for the metabolism in heart muscle cells have been proposed [123,26].
Combining models of electrical and metabolic activity could be important for the
study of the behaviour of the heart during ischemic conditions.

As the level of detail in the models increases, it is possible to create simulations
that not only reproduce data from experiments, but that also have predictive power.

1.2. Computer Simulations 17

As described in Section 1.2.1, one of the key features of mathematical models is
their ability to predict complex interactions between different processes. Because
of the complexity of biological systems, it is often difficult to predict every effect
that results from, for instance, a drug-induced or pathological change in one cellular
process. The increasing realism and complexity of the mathematical models enable
simulations of secondary effects that are otherwise difficult to predict.

In order to simulate the electrical activity of the complete heart and its relation
to the ECG, the models for electrical activity of the cells need to be combined to
form tissue models and, eventually, models of complete organs. Because of the large
number of cells, it is difficult to base organ-level simulations directly on the models
for the behaviour of single cells. In fact, present-day computers are not powerful
enough to facilitate such simulations. Instead, the mathematical models described
in this book use a continuum approach to describe the tissue. The basic assumption
is that the heart consists of two separate, continuous domains: the intracellular and
the extracellular spaces. The domains are separated by the cell membrane, and the
model is derived by requiring conservation of current and a quasi-static assumption
on the electrical fields in the two domains. The model, referred to as the bidomain
model, was first proposed by Tung [137] in the seventies, and has proven to be a
lasting framework for studying the flow of current in the heart. We will return to the
derivation of the bidomain model in Chapter 2.

A complete description of the heart will include both physiological and anatom-
ical data, and the mathematical models must, of course, be completed with such data
in order to perform realistic simulations. For electrophysiological simulations, such
data include the shape of the heart and the orientation of its muscle fibres. To sim-
ulate electrical signals outside the heart, such as ECG signals, the conductive prop-
erties of organs such as lungs and skeletal muscle must be included in the model.
The development of imaging techniques, such as MRI, has facilitated the acquisi-
tion of accurate anatomical data. The techniques enable accurate descriptions of the
geometry of internal organs, and even internal structures, such as the orientation of
muscle fibres in the heart, can be obtained using diffusion tensor MRI [136].

Performing realistic simulations depends not just on setting up accurate mod-
els with suitable data, but also on the ability to solve the resulting equations. The
complex models that describe the heart are impossible to solve analytically, so in
order to be of any use the equations must be solved on a computer using numer-
ical techniques. This involves a discretization of the equations in space and time,
using, for instance, finite difference or finite element methods. We noted above that
the sharp depolarization wavefront in the heart leads to strict requirements on res-
olution when the equations are discretized. The required resolution depends on the
actual cell model used and the desired accuracy. For realistic heart cell models the
upstroke is very fast, and resolving the fast dynamics properly requires a spatial dis-
cretization of about 0.2 mm and a temporal resolution of about 0.1 ms. For the entire
volume of the heart this translate to 40 million points, and a complete heart cycle
corresponds to approximately 5000 time steps. It is clear that the resulting problem
will be very large and that the most efficient solution techniques must be employed.
Techniques for solving the ODE systems describing the cellular activity will be pre-

18 1. Physiological Background

sented in 5, while techniques for discretizing PDEs are discussed in Chapter 3 and
Chapter 4.

At present, it is not possible to perform accurate full-scale simulations of the
heart’s electrical activity using existing scalar computers. A number of simplifica-
tions can be made to make the problem less demanding, such as studying a small
slab of tissue, or restricting the problem to two space dimensions. Another option
is to use simpler models for the cellular activity, which involve fewer variables, and
where the requirements on discretization are less strict. However, for organ-scale
simulations based on physiologically accurate models, the only option is to use fast,
parallel computers in combination with efficient numerical methods. Parallel solu-
tion techniques for the bidomain model will be described in Chapter 6

Numerical techniques give an approximate solution to the equations of the math-
ematical model. Typically, the approximate solution is simply a huge amount of
numbers that describe the value of the involved quantities in a number of discrete
points. Hence, the solution must normally be visualized in order to be of any use.
Scientific visualization is a field of research in itself, and for complicated problems
the presentation of the obtained information is, indeed, a non-trivial task. For the
case of the electrical activity of the heart, we are mostly interested in visualizing
electrical potentials and currents. This is easily achieved in two space dimensions,
but for full three-dimensional datasets, the task is much more difficult. Maps of the
electrical potential on the surface of the heart and the body are fairly easy to pro-
duce, and give results that can be compared to real measurements. However, one of
the advantages of using computations is the ability to see what is going on inside the
tissue, and this requires much more advanced visualization techniques. The topic of
scientific visualization is of great relevance for biological modelling, but will not be
discussed in detail in this book.

Following the visualization of the numerical solution, the results have to be val-
idated by comparing them to physical measurements. For a complex phenomenon
such as the electrical activity of the heart, it is likely that significant differences will
be observed between measured and simulated values. If the equations of the math-
ematical model are solved correctly, the differences must be caused by limitations
in the mathematical model. In this case, a refinement of the mathematical model is
required, and in most cases we will enter an iterative process of mathematical mod-
elling, numerical simulations, and comparison with physical measurements. This
process is illustrated in Figure 1.10.

The bidomain model is widely accepted as a good model for describing the
electrical activity in muscle tissue. However, because of the high resolution require-
ments, which result in huge computational demands for accurate simulations, the
model has not yet been validated for a complete organ. Accurate full-scale simu-
lations based on the bidomain model will therefore be an important achievement,
valuable both for validating the model and for improving our understanding of heart
physiology.

Although forward simulations based on the bidomain model have the potential
to have a strong impact, the inverse problem may be even more interesting from a
clinical point of view. A precise formulation of the inverse problem, followed by a

1.2. Computer Simulations 19

Physical phenomenon

Mathematical model

Numerical method

Software

Computing

00.20.40.60.8
1 0

0.2
0.4

0.6
0.8

1

−4
−3
−2
−1
0
1
2
3
4

x

δ=2

y

u

Visualization

Fig. 1.10. The mathematical models are developed through a continuous interaction between
modelling, computer simulations, and physical experiments.

sufficiently accurate solution, has the potential to revolutionize the field of electro-
cardiology. Ideally, the condition of the heart can then be determined directly from
the electrical potentials on the surface, by means of mathematics and large-scale
computations. However, it is not clear that this scenario will be realized in the near
future, because of the difficulty of solving the inverse problem. The forward prob-
lem is itself difficult to solve, and the inverse problem poses a number of additional
difficulties. Even to give a precise mathematical formulation of the problem may be
difficult, and the mathematical problem will be ill-posed, which makes it very chal-
lenging to solve. The inverse problem and techniques for its solution are discussed
in Chapter 7.

Chapter 2

Mathematical Models

2.1 Modelling the Body as a Volume Conductor

As described in the previous chapter, the human body consists of billions of cells,
which may be connected by various coupling mechanisms depending on the type
of tissue under consideration. When constructing mathematical models for electri-
cal activity in the tissue, one possible approach would be to model each cell as a
separate unit, and couple them together using mathematical models for the known
coupling mechanisms. However, the large number of cells will prohibit using this
type of model for anything but very small samples of tissue. When studying elec-
trical phenomena on the level of complete organs or even organisms, the level of
detail provided by such an approach also goes far beyond what it is necessary, or
even possible, to utilize.

In continuum mechanics, a standard technique is to study averaged volume
quantities to avoid the difficulties of modelling the molecular structure of fluids
and solids; see e.g. [45,67]. With this kind of volume-averaging approach, a quan-
tity at a point P is viewed as an average over a small volume around P . The chosen
volume over which the quantity is averaged must be small compared to the scales of
the problem under study, but large compared to the molecular size of the material.

This averaging of volumes can also be used at the level of cells, to obtain a con-
tinuous description of biological tissue. The chosen volume over which the averag-
ing is performed should now be small compared to the dimension of the problem
under study, but large compared to the volume of a single cell. At each point P
within the tissue, a quantity is defined as the average over a small but multicellular
volume around P . In this way we avoid the difficulties of modelling the discrete
nature of the tissue.

2.1.1 A Volume Conductor Model

For the case of electrophysiology, the local volume averaging introduced above al-
lows us to model the body as a volume conductor. From Maxwell’s equations we
have that for a volume conductor, the relation between the electric and magnetic
fields is given by

∇× E +
∂B

∂t
= 0, (2.1)

where E and B are the strengths of the electric and magnetic fields, respectively.
For a description of Maxwell’s equations and electromagnetism in general, see e.g.
[32].

22 2. Mathematical Models

Throughout this book we describe the electrical activation of the heart as a fast
process, but in the context of volume conductor theory, the variations in the resulting
electric and magnetic fields are fairly slow. In fact, for the frequencies and conduc-
tance values that are relevant for the heart, the effects of the temporal variations
may be disregarded, and for each moment in time the fields may be treated as static
[113]. The fields are termed quasi-static, and the assumption that the time variations
are insignificant is called the quasi-static condition.

Assuming quasi-static fields, (2.1) becomes

∇× E = 0,

which entails that the electric field E may be written as the gradient of a scalar-
valued potential. Denoting the potential by u, we have

E = −∇u, (2.2)

where the negative sign is a convention. Note that following the ideas introduced
above, the potential u, the electrical field E, and all other quantities introduced
in this section must be viewed as quantities averaged over a small multicellular
volume. The current J in a conductor is given by the general relation

J = ME,

where M is the conductivity of the medium. Inserting (2.2) gives

J = −M∇u. (2.3)

We now assume that there are no current sources or sinks in the medium, and that
there is no build-up of charge in any point. For a small volume V , we then have that
the net current leaving the volume must be zero. Denoting the surface of V by S,
we have ∫

S

n · J dS = 0,

where n is the outward surface normal of S. Application of the divergence theorem
gives

−
∫

V

∇ · J dV = 0.

This relation must hold for all volumes V , which implies that the integrand itself
must be zero throughout the domain. We get

∇ · J = 0,

and if we insert (2.3) in this equation, we get

∇ · (M∇u) = 0, (2.4)

which is the relation describing the electric potential in a volume conductor with no
current sources.

2.1. Modelling the Body as a Volume Conductor 23

Equation (2.4) is only valid for a volume conductor with no current sources.
The active heart tissue does generate such sources, and to simulate this activity the
equation has to be adjusted slightly. A commonly used approach is to model the
current sources in the active heart as one or more dipoles. The dipoles give rise to
a source term on the right hand side of (2.4), and the resulting equation is valid
throughout the body, including the heart muscle.

It is natural to assume that the body is surrounded by air or some other electri-
cally insulating medium. This implies that on the surface of the body, the normal
component of the current must be zero. We have

n · J = 0,

where n is the outward unit normal on the surface of the body. Inserting (2.3) in this
expression gives

n · M∇u = 0

on the surface of the body. The electrical activity in the body is now described by

∇ · (M∇u) = f, x ∈ Ω, (2.5)

n · M∇u = 0, x ∈ ∂Ω. (2.6)

Here Ω is the body including the heart, ∂Ω is the surface of the body, and f is a
given source term. For the boundary value problem to have a solution the source
term has to satisfy ∫

Ω

fdx = 0.

The value of the conductivity M will vary throughout the body, because different
types of tissue have different conductive properties. Conductivity values for a num-
ber of different tissue may be found in, e.g., [76] and [51].

A different approach to computing the potential distribution in the body is to
employ (2.4) only to those areas of the body immediately surrounding the heart.
Since this domain is viewed as a passive conductor, there is no need to include a
source term on the right hand side. We denote this domain by T , and the respective
conductivity and potential by MT and uT . The outer boundary of the domain, i.e. the
surface of the body, is denoted by ∂T . Since the domain does not include the heart,
we also have an inner boundary, which is the interface between the heart and the
surrounding torso. This part of the boundary is denoted by ∂H; see Figure 2.1. As
above, we assume that the torso is surrounded by air, so that on the outer boundary
the normal component of the current is zero. However, to solve the equations we
also need boundary conditions on the inner boundary ∂H . A natural condition here
is to assume that the potential distribution is known. We then have

∇ · (MT∇uT) = 0 x ∈ T, (2.7)

n · MT∇uT = 0 x ∈ ∂T, (2.8)

uT = u∂H x ∈ ∂H, (2.9)

24 2. Mathematical Models

T

∂T

∂H

H

Fig. 2.1. Schematic view of the heart domain H and the surrounding torso T . The outer
boundary of the torso is denoted by ∂T , while ∂H denotes the interface between the heart
and the torso.

where u∂H is the known potential distribution on the surface of the heart. For prac-
tical purposes, this potential distribution may be derived either from computations
based on mathematical models for the electrical activity in the heart, or from direct
measurements of the surface potential on the heart. The system (2.7)–(2.9) may then
be solved to compute the potential distribution in the surrounding body. Of particu-
lar interest is the potential distribution on the body surface, which is directly related
to ECG recordings. Assuming that we know the potential distribution u∂H for a se-
ries of time points through a heart cycle, we may also compute approximate ECG
curves by solving a series of problems (2.7)–(2.9).

Another interesting problem, especially from a clinical point of view, is the in-
verse problem. This involves finding the potential distribution on ∂H that results in
a given potential distribution on ∂T . This is the classical inverse problem of elec-
trocardiology, and has great potential for clinical applications. We will discuss this
problem in Chapter 7.

2.2 A Model for the Heart Tissue

2.2.1 Excitable Tissue

The heart muscle cells belong to a class of cells known as excitable cells, which have
the ability to respond actively to an electrical stimulus. As described in Chapter 1
the heart cells are also connected, so that a stimulated cell may pass the electrical
signal on to neighbouring cells. This ability enables an electric stimulation of one
part of the heart to propagate through the muscle and activate the complete heart.

The signal propagation in excitable tissue takes the form of a so-called depolar-
ization of the cells. When the cells are at rest, there is a potential difference across
the cell membrane. The potential inside the cells, called the intracellular potential, is
negative compared to the extracellular potential, which is the potential in the space
between the cells. When excitable cells are stimulated electrically they depolarize,
i.e. the difference between intracellular and extracellular potential chenges from its
normal negative value to being positive or approximately zero. The depolarization

2.2. A Model for the Heart Tissue 25

is a very fast process, and it is followed by a slower repolarization that restores the
potential difference to its resting value. The complete cycle of depolarization and
repolarization is called an action potential. It is this action potential that initiates the
contraction of muscle cells, and which allows both nerve cells and heart muscle cells
to respond to an incoming electrical signal by passing the signal on to neighbouring
cells.

Because the potential difference across the cell membrane is essential for the be-
haviour of excitable tissue, we need to construct a mathematical model that is able
to describe this difference. The simple volume conductor model introduced in Sec-
tion 2.1.1 is, therefore, not suitable. A natural approach would be to model each cell
as a separate unit, thus enabling complete control of all variations in the intracel-
lular and extracellular potentials. However, as discussed above, the number of cells
in the heart is too large to model each cell separately. Hence, we are constrained to
consider continuous approximations of the tissue, which must be able to distinguish
between the intracellular and extracellular domains.

2.2.2 The Bidomain Model

The mathematical model for the heart tissue is based on a volume-averaged ap-
proach similar to the one introduced in the previous section. However, to include
the effects of the potential difference across the membrane, the tissue is now divided
into two separate domains: the intracellular and the extracellular. Both domains are
assumed to be continuous, and they both fill the complete volume of the heart mus-
cle. The justification for viewing the intracellular space as continuous is that the
muscle cells are connected via so-called gap junctions. These are small channels
embedded in the cell membrane, which form direct contact between the internals
of two neighboring cells. Because of the gap junctions, substances such as ions or
small molecules may pass directly from one cell to another, without entering the
space between the two cells (the extracellular domain).

In each of the two domains we define an electrical potential, which at each point
must be viewed as a quantity averaged over a small volume. An important conse-
quence of these definitions is that every point in the heart muscle is assumed to be
in both the intracellular and the extracellular domains, and consequently is assigned
both an intracellular and an extracellular potential.

The intracellular and extracellular domains are separated by the cell membrane.
We have assumed that both domains are continuous and fill the complete volume of
the heart, and this assumption must also apply to the cell membrane, which is also
viewed as a distributed continuum that fills the complete tissue volume. The mem-
brane acts as an electrical insulator between the two domains, since otherwise we
could not have a potential difference between the intracellular and extracellular do-
mains. However, although the resistance of the cell membrane itself is very high, it
allows electrically charged molecules (ions), to pass through specific channels em-
bedded in the membrane. An electrical current will therefore cross the membrane,
the magnitude of which depends on the potential difference across the membrane
and on its permeability to the ions. The potential difference across the membrane is

26 2. Mathematical Models

called the transmembrane potential. It is defined for every point in the heart, as the
difference between the extracellular and intracellular potential.

The quasi-static condition introduced in the previous section also applies to the
heart tissue. The currents in the two domains are hence given by

Ji = −Mi∇ui, (2.10)

Je = −Me∇ue, (2.11)

where Ji is the intracellular and Je the extracellular current, Mi and Me are the
conductivities in the two domains and ui and ue are the respective potentials. In
Section 2.1.1 we assumed that there was no build-up of charge at any point. This is
a reasonable assumption, since any build-up of charge will generate large electrosta-
tic forces, which tend to restore the uniform distribution. In the bidomain model, the
cell membrane acts as an insulator between the two domains, and therefore has the
ability to separate charge. It is therefore natural to assume that there may be some
accumulation of charge in each domain. However, because of the small thickness of
the membrane, any accumulation of charge on one side of the membrane immedi-
ately attracts an opposite charge on the other side of the membrane. This balance in
charge accumulation implies that the total charge accumulation in any point is zero,
described mathematically by

∂

∂t
(qi + qe) = 0, (2.12)

where qi is intracellular charge and qe is extracellular charge.
In each domain, the net current into a point must be equal to the sum of the rate

of charge accumulation at that point and the ionic current exiting the domain at that
point. This is expressed as

−∇ · Ji =
∂qi

∂t
+ χIion, (2.13)

−∇ · Je =
∂qe

∂t
− χIion, (2.14)

where Iion is the ionic current across the membrane. The ionic current is most con-
veniently measured per unit area of the cell membrane, while densities of charge
and current are measured per unit volume. The constant χ represents the area of cell
membrane per unit volume. Therefore, while Iion is ionic current per unit cell mem-
brane area, χIion is ionic current per unit tissue volume. The positive direction of
the ionic current is defined to be from the intracellular to the extracellular domain.

Combining (2.12) with (2.13) and (2.14) gives

∇ · Ji + ∇ · Je = 0,

which states that the total current is conserved. Inserting (2.10) and (2.11) into this
equation gives

∇ · (Mi∇ui) + ∇ · (Me∇ue) = 0. (2.15)

2.2. A Model for the Heart Tissue 27

The amount of charge that may be separated by the cell membrane depends on
the transmembrane potential and the capacitive properties of the membrane. The
transmembrane potential v, defined as v = ui − ue, is related to the amount of
separated charge by the relation

v =
q

χCm
, (2.16)

where Cm is the capacitance of the cell membrane and

q =
1
2
(qi − qe). (2.17)

Again, we must introduce the membrane area to volume ratio χ, since Cm is mea-
sured per unit membrane area while the quantities v and q are defined with respect
to volume. Combining (2.16) and (2.17) and taking the time derivative yields

χCm
∂v

∂t
=

1
2

∂(qi − qe)
∂t

,

and from (2.12) we get
∂qi

∂t
= −∂qe

∂t
= χCm

∂v

∂t
.

Inserted into (2.13), this gives

−∇ · Ji = χCm
∂v

∂t
+ χIion,

and using (2.10) gives

∇ · (Mi∇ui) = χCm
∂v

∂t
+ χIion, (2.18)

Equations (2.15) and (2.18) describe the variations in the three potentials ui, ue

and v. Using the definition of v, we are able to eliminate the intracellular potential
from the equations. We have ui = ue + v, which gives

∇ · (Mi∇(ue + v)) = χCm
∂v

∂t
+ χIion,

∇ · (Mi∇(ue + v)) + ∇ · (Me∇ue) = 0,

and a rearrangement of the terms gives

∇ · (Mi∇v) + ∇ · (Mi∇ue) = χCm
∂v

∂t
+ χIion, (2.19)

∇ · (Mi∇v) + ∇ · ((Mi + Me)∇ue) = 0. (2.20)

This is the standard formulation of the bidomain model, which was introduced by
Tung [137] in the late 70s.

28 2. Mathematical Models

The conductive properties of heart muscle tissue are strongly Anisotropic, which
implies that the parameters Mi and Me are tensor quantities. The anisotropy results
from the fact that the heart muscle consists of fibres, and the conductivity is higher in
the direction of the fibres than in the cross-fibre direction. Furthermore, the muscle
fibres are organized in sheets, which gives three characteristic directions for the
conductive values of the tissue: parallel to the fibres, perpendicular to the fibres but
parallel to the sheet, and perpendicular to the sheet. The fibre directions, and hence
the conductivity tensors, will vary throughout the heart muscle. At a given point, we
may define a set of perpendicular unit vectors al, at, and an, where al is directed
along the fibres, at is perpendicular to the fibres in the sheet plane, and an is normal
to the sheet plane. Expressed in the basis formed by these three unit vectors, the
local conductivity tensor M∗ is diagonal:

M∗ =

σl 0 0

0 σt 0
0 0 σn

 . (2.21)

For an electrical field E∗ = (e1, e2, e3)T , defined in terms of the local basis vectors
al, at, and an, Ohm’s law gives the corresponding current as

J∗ = M∗E∗ = (σle1, σte2, σne3)T = (j1, j2, j3)T . (2.22)

The current vector is mapped to the global coordinates by

J = j1al + j2at + j3an = AJ∗, (2.23)

where A is a matrix having al, at, and an as columns. An electrical field E expressed
in the global coordinate system is mapped to the local coordinates through the in-
verse mapping E∗ = A−1E. Since the column vectors of A are perpendicular unit
vectors, we have A−1 = AT . Combining this relation with (2.22) and (2.23), we
obtain the relation between the electrical field E and the current J , both expressed
in the global coordinate system:

J = AM∗AT E. (2.24)

The global conductivity tensors Mi and Me are hence defined as

Mi = AM∗
i AT , (2.25)

Me = AM∗
e AT , (2.26)

where M∗
i and M∗

e are the intracellular and extracellular conductivity tensors ex-
pressed in the local coordinate system. These are diagonal tensors defined as in
(2.21), and this may be used to simplify expressions (2.25)–(2.26). An entry Mij in
the global conductivity tensor in (2.24) is given by

Mij = ai
la

j
l σl + ai

ta
j
tσt + ai

naj
nσn, (2.27)

2.2. A Model for the Heart Tissue 29

for i, j = 1, 2, 3. Values of the local conductivities σl, σt, and σn, are given in
Table 2.1. The table also specifies the surface to volume ratio χ and the membrane
capacitance Cm. The conductivity values are taken from Klepfer et al. [76], while
the surface to volume ratio is taken from Henriquez et al. [62], and the membrane
capacitance from Pollard et al. [114].

Table 2.1. Values of the parameters used in the bidomain equations.

Cm 1.0 µF/cm2

χ 2000 cm−1

σi
l 3.0 mS/cm

σi
t 1.0 mS/cm

σi
n 0.31525 mS/cm

σe
l 2.0 mS/cm

σe
t 1.65 mS/cm

σe
n 1.3514 mS/cm

For a given ionic current Iion, and a distribution of fibre directions, i.e. a specifi-
cation of the local basis vectors al, at, and an at each point, we now have a complete
specification of the parameters in (2.19)–(2.20). However, to be able to solve these
equations we also need boundary conditions for ue and v. Assuming that the heart
is surrounded by a non-conductive medium, we require the normal component of
both the intracellular and extracellular current to be zero on the boundary. We have

n · Ji = 0,

n · Je = 0, (2.28)

where n is the outward unit normal vector of the boundary of the heart. Using the
expressions for the two currents, and eliminating ui, we get

n · (Mi∇v + Mi∇ue) = 0, (2.29)

n · (Me∇ue) = 0. (2.30)

For the ionic current term Iion in (2.19), the simplest choice is to assume that it
is a function of the transmembrane potential only:

Iion = f(v). (2.31)

A popular choice is to define f to be a cubic polynomial in v:

f(v) = A2(v − vrest)(v − vth)(v − vpeak), (2.32)

where A is a parameter that determines the upstroke velocity, i.e. the rate of change
of the transmembrane potential in the depolarization phase. Furthermore, vrest is the

30 2. Mathematical Models

Table 2.2. Values for the parameters in the cubic ionic current model.

A 0.04
vrest −85 mV
vth −65 mV
vmax 40 mV

resting potential, vth is the so-called threshold potential, and vmax is the maximum
potential. We require vmax > vth > vrest. Possible values of the parameters are
listed in Table 2.2.

With the ionic current term given by (2.31)–(2.32), the equations (2.19)–(2.20)
and boundary conditions (2.29)–(2.30) form a complete system, which may be
solved for the potentials ue and v. The given choice of ionic current function yields
two stable stationary points for v; vrest and vmax, and one unstable stationary point
vth. Let us, for a moment, disregard the diffusive terms in (2.19)–(2.20), i.e. let us
assume that the conductivities Mi and Me are both zero. Then, at a given point, v
will approach either the resting potential or the maximum potential, depending on
whether the initial value of v is above or below vth.

With non-zero conductivities, diffusive effects may bring the transmembrane po-
tential at a point that lay, initially, below the threshold to a value above the thresh-
old vth, making v approach the stable stationary point vmax. If we have initially
v = vrest in most of the tissue, but v > vth in a small region Ωi, the value of v in
Ωi will rapidly approach the maximum potential vmax. For sufficiently high conduc-
tivity values, diffusive effects will bring v above vth in a small region surrounding
Ωi, and this process continues until v = vmax throughout the tissue. Stimulating the
tissue in a small region hence creates a wavefront of depolarization that propagates
through the tissue. The sharpness of the wavefront, and also the propagation speed ,
depends on the value of the parameter A. A more detailed discussion of this model,
with a specification of the conductivity values necessary to ensure propagation, is
given in [72].

Since vmax is a stable stationary point for v, the ionic current specified by
(2.31)–(2.32) is not able to reproduce the repolarization phase, where v is supposed
to return to the resting value vrest. Hence, this simplified ionic current model is
not suitable for simulating the complete cardiac cycle. However, it is still a popular
choice for some applications of modelling, because it captures essential parts of the
tissue behaviour with a very simple model.

2.2.3 The Monodomain Model

The bidomain model for the electrical activity in the heart is a system of partial dif-
ferential equations, which is difficult to solve and analyze. By making an assump-
tion on the conductivity tensors Mi and Me, it is possible to simplify the system to
a scalar equation, describing only the dynamics of the transmembrane potential v.
If we assume equal anisotropy rates, i.e., Me = λMi, where λ is a constant scalar,

2.2. A Model for the Heart Tissue 31

then Me can be eliminated from (2.19)–(2.20), resulting in

∇ · (Mi∇v) + ∇ · (Mi∇ue) = χCm
∂v

∂t
+ χIion (2.33)

∇ · (Mi∇v) + (1 + λ)∇ · (Mi∇ue) = 0. (2.34)

From (2.34) we get

∇ · (Mi∇ue) = − 1
1 + λ

∇ · (Mi∇v),

and if we insert this into (2.33) we get

∇ · (Mi∇v) − 1
1 + λ

∇ · (Mi∇v) = χCm
∂v

∂t
+ χIion.

A simple rearrangement of the terms gives the standard formulation of the mon-
odomain model,

λ

1 + λ
∇ · (Mi∇v) = χCm

∂v

∂t
+ χIion. (2.35)

With the assumption of equal anisotropy rates, the boundary conditions (2.29)–
(2.30) become

n · (Mi∇v + Mi∇ue) = 0,
n · (λMi∇ue) = 0.

The second equation gives
n · (Mi∇ue) = 0,

and inserting this into the first equation gives

n · (Mi∇v) = 0. (2.36)

The monodomain model, given by (2.35) and (2.36), is a significant simpli-
fication of the original bidomain equations, with advantages both for mathemati-
cal analysis and computation. However, the model also has some important lim-
itations. One weakness is directly related to the assumption of equal anisotropy
rates. Measurements of intracellular and extracellular conductivities contradict this
assumption, and it is difficult to specify the parameter λ so as to obtain the clos-
est approximation of the physiological conductivities. Furthermore, some important
electrophysiological phenomena vanish when we have equal anisotropy rates in the
intracellular and extracellular domains. Therefore, while the monodomain model
is useful for analysis and simplified computational studies, realistic simulations of
many important phenomena must still be based on the complete bidomain model.

32 2. Mathematical Models

2.3 Coupling the Heart and the Body

In Section 2.2.2 we presented the bidomain model for the electrical activity in the
heart, under the assumption that the heart was electrically insulated from its sur-
roundings. While this may be a good approximation for some experimental settings,
the normal physiological situation is that the heart is surrounded by a body, which
in Section 2.1.1 was modelled as a passive volume conductor. This is also represen-
tative for many experimental situations, where, for instance, a small tissue sample
is surrounded by a conductive bath. In the following we will refer to the domain
surrounding the heart as the extracardiac domain. The electrical potential in the ex-
tracardiac domain is described by (2.7)–(2.8), but the condition on ∂H , given by
(2.9), will be modified slightly because the equation must be coupled with the bido-
main equations (2.19)–(2.20).

With the heart surrounded by a conductor, the normal component of the total
current must be continuous across the boundary of the heart. More precisely, on the
boundary we have that the normal component of the current in the heart must be
equal to the normal component of the current in the surrounding tissue. This fol-
lows from the arguments of conservation of charge and current, which were used to
derive mathematical models for both passive and excitable tissue. The total current
in the heart tissue is the sum of the intracellular and extracellular current. Using the
notation from Section 2.1.1 for the extracardiac current, we have

n · (Ji + Je) = n · JT ,

where n is the outward unit normal of the surface of the heart. Inserting the expres-
sions for Ji, Je, and JT , and writing the currents in terms of the main variables
ue, v, and uT , we get

n · (Mi∇v + (Mi + Me)∇ue) = n · (MT∇uT) (2.37)

This condition is not sufficient to close the equation system (2.19)–(2.20), so
we need to make additional assumptions on the coupling between the heart and the
surrounding tissue. Several different choices have been made for this coupling (see
e.g., [62,119]), but we restrict our discussion to the original boundary conditions
proposed by Tung [137].

This set of boundary conditions is based on the assumption that the extracellu-
lar domain is in direct contact with the extracardiac domain, while the intracellular
domain is completely insulated from its surroundings. If two volume conductors are
directly connected there cannot be a discontinuity in their potentials on the bound-
ary, so the first condition implies that on the boundary of the heart the extracellular
potential must be equal to the extracardiac potential:

ue = uT . (2.38)

The assumption that the intracellular domain is completely insulated implies
that the normal component of the intracellular potential must be zero on the heart
surface. We have

n · Ji = 0,

2.4. Models for the Ionic Current 33

and written in terms of ue and v we get

n · (Mi∇v + Mi∇ue) = 0 (2.39)

on the heart surface. Inserting this expression into (2.37) gives

n · (Me∇ue) = n · (MT∇uT). (2.40)

The three boundary conditions (2.38), (2.39), and (2.40) couple the equation
system (2.19)–(2.20) to (2.7)–(2.8). Combined with an expression of the form (2.31)
and (2.32) for the ionic current term, the equations form a complete system that may
be solved for the unknown potentials ue, v, and uT .

2.4 Models for the Ionic Current

In Section 2.2.2 we introduced a simplified model for the ionic current term Iion, in
the form of a cubic polynomial in v. Although this model conveniently reproduces
essential parts of the behaviour of the heart tissue, other important phenomena, such
as the repolarization of the tissue, are neglected. Furthermore, the model was cho-
sen based on observations of the macroscopic behaviour of excitable cells, rather
than on a correct physiological description of the cell membrane. For more realistic
simulations of the process of cardiac activation and deactivation, we need to use
more realistic models of ionic current. A number of such models exist, which are
commonly grouped into three categories:

– First, there are phenomenological models, which are simple models constructed
to reproduce the macroscopically observed behaviour of the cells. The cubic
polynomial introduced above falls into this model category.

– Second, there is a group of models often referred to as first generation models.
These attempt to describe not only the observed cellular behaviour, but also the
underlying physiology. They describe the ionic currents that are most impor-
tant for the action potential, but use a simplified formulation of the underlying
physiological details.

– The third group of models, referred to as second generation models, offer a
very detailed description of the physiology of the cells. The models are based
on advanced experimental techniques, enabling observations of very fine-scale
details of cell physiology.

The purely phenomenological models, like the cubic polynomial used above,
may be useful for a number of applications. However, the full potential of the sim-
ulations can only be reached by using more sophisticated models, because an im-
portant purpose of mathematical modelling and simulation is to investigate how
changes in physiology on a cellular, or even subcellular, level affect the function of
the muscle tissue and the complete heart. In this section, we describe some of the
most well-known models for cardiac cells, and also provide a short description of
the basic physiology of the cells, and of the cell membrane in particular.

34 2. Mathematical Models

The models will, in this section, be discussed in the context of modelling a single
cell. In this situation, all the charge transported by the ionic current accumulates at
the membrane to change the transmembrane potential v. We have

Cm
dv

dt
= −Iion + Iapp,

where Iion is the ionic current that also occurs in the bidomain equations. The sec-
ond term Iapp is an applied stimulus current,which is used to trigger the action
potential of the cell.

2.4.1 The FitzHugh-Nagumo Model

As described above, the cubic polynomial introduced for the ionic current term is
not capable of reproducing the repolarization phase of the cardiac cycle. To obtain a
qualitatively correct description of this phase, the cubic model (2.31)–(2.32) must be
extended by introducing a second variable w, called a recovery variable. The result-
ing two-variable model is the FitzHugh-Nagumo model [40], which in its original
formulation is given by

dv

dt
= c1v(v − a)(1 − v) − c2w + iapp, (2.41)

dw

dt
= b(v − c3w). (2.42)

Here a, b, c1, c2, and c3 are given parameters, which may be adjusted to simulate
different cell types. The parameter values used in the original formulation of the
model are specified in Table 2.3. These parameter choices give a normalized action
potential, with the resting potential being zero and the peak potential approximately
0.9. The applied current iapp is also scaled to match this normalized model. Plots of
v and w are shown in the left panel of Figure 2.2. The action potential shown in the
figure results from applying a stimulus current iapp of strength 0.05, lasting from
t = 50 to t = 60.

Several variations have been derived to address various limitations of the orig-
inal model. One detail of the original formulation that does not match well with
physiological data is that the cell hyperpolarizes in the repolarization phase. This

Table 2.3. The values of the parameters used in the original formulation of the FitzHugh-
Nagumo model.

a 0.13
b 0.013
c1 0.26
c2 0.1
c3 1.0

2.4. Models for the Ionic Current 35

0 100 200 300 400
−0.5

0

0.5

1
Original FitzHugh−Nagumo model

0 100 200 300 400
−0.5

0

0.5

1
Modified FitzHugh−Nagumo model

Fig. 2.2. Plots of v (solid) and w (dashed) for the original and modified FitzHugh-Nagumo
model.

is seen clearly in the left panel of Figure 2.2, where v reaches values significantly
below the resting potential before returning to the resting state. A modification of
the equations to overcome this problem was suggested by Rogers and McCulloch
[118]. By a slight modification of the last term in (2.41), the model becomes

dv

dt
= c1v(v − a)(1 − v) − c2vw + iapp, (2.43)

dw

dt
= b(v − c3w). (2.44)

The right panel of Figure 2.2 shows the action potential computed with the modi-
fied model. We see that the undershoot in the transmembrane potential is eliminated,
giving a more physiologically realistic solution. However, the actual values of the
transmembrane potential are incorrect. To give realistic values for the transmem-
brane potential, it is necessary to change the parameters for the model. Following
the notation introduced for the polynomial ionic current model, we introduce a rest-
ing potential vrest and a peak potential vpeak. The total amplitude of the action
potential is then vamp = vpeak −vrest. We define new variables V and W , given by

V = vampv + vrest, (2.45)

W = vampw. (2.46)

Since the original variable v has a resting value of zero, and peaks at approximately
1.0, the new scaled potential will have a resting value equal to vrest and a peak
value close to vpeak. The scaled recovery variable W is introduced for convenience
of notation only, since w has no physiological interpretation. Solving (2.45)–(2.46)

36 2. Mathematical Models

for v and w, and inserting into (2.43)–(2.44) gives

dV

dt
=

c1

v2
amp

(V − vrest)(V − vth)(vpeak − V)

− c2

vamp
(V − vrest)W + Iapp, (2.47)

dW

dt
= b(V − vrest − c3w). (2.48)

Here, we have defined the threshold potential vth = vrest + avamp, and the rest
of the parameters are the same as in the original model. The new applied current
Iapp is given by Iapp = vampiapp. Figure 2.3 shows a plot of the action potential
computed with the scaled model, where we have chosen vrest = −85 and vpeak =
40. With the parameter choices listed in Table 2.3 this gives a threshold potential
vth = −68.75. The shape and amplitude of the action potential is fairly realistic,
but the upstroke velocity is lower than the realistic value for heart muscle cells.
However, by tuning the parameters of the model it is possible to obtain an action
potential with approximately correct amplitude, duration, and upstroke velocity.

0 100 200 300 400
−100

−80

−60

−40

−20

0

20

40
Reparameterized FitzHugh−Nagumo model

Fig. 2.3. Plots of v and w for the reparameterized FitzHugh-Nagumo model.

2.4.2 The Cell Membrane

We have seen that it is possible to reproduce the most important characteristics of
the action potential with a simple two-variable model. However, an important goal
for the modelling of physiological phenomena is to investigate how changes in the
physiology on a cellular, or sub-cellular, level affects the function of tissues and
complete organs. To attain this goal, it is necessary to employ models that give

2.4. Models for the Ionic Current 37

a more detailed description of the cell physiology than the simplified FitzHugh-
Nagumo model. In order to understand the foundation of this type of model, it is
necessary to provide a brief introduction to the physiology of cardiac cells, and in
particular the cell membrane.

The cell membrane separates the extracellular space from the myoplasma, the
intracellular space that contains the contractile units. The cell membrane consists
mainly of lipids, which have a polar head that is attracted to water, and a nonpo-
lar tail that repels water. When brought into contact with water, a lipid will tend
to spread out until the layer has a thickness of one molecule, with the polar heads
facing the water and the nonpolar tails directed away from the water. The cell mem-
brane consists of a double layer of such lipids, which are organized such that the
polar heads are directed towards the internals of the cell and the space surrounding
the cell, while the tails form the centre of the membrane. The hydrophobic lipid tails
act as an insulator, preventing the passage of ions through the membrane.

Although the cell membrane itself is impermeable to ions, it has embedded in it
a number of large proteins that form channels through the membrane where the ions
can pass. Figure 2.4 gives a schematic view of the structure of the cell membrane,
with an embedded transport protein. Some transport proteins form pumps and ex-
changers, which are important for maintaining the correct ionic concentrations in the
cells. Both pumps and exchangers have the ability to transport ions in the opposite
direction of the flow generated by concentration gradients and electrical fields. This
process, which increases the potential energy of the ions, is accomplished either by
using the concentration gradient of a different ion (exchangers) or by consuming
chemically stored energy in the form of ATP. For a general discussion of cellular
reactions and physiology in general, see, e.g., [11].

In addition to the pumps and exchangers, certain transport proteins form chan-
nels in the membrane, through which ions may flow. The flow of ions through these
channels is passive, being driven by concentration gradients and electric fields. Still,
the channels are extremely important for the behaviour of excitable cells. One rea-
son for this is that most of the channels are highly selective regarding which ions

 +

 +

Fig. 2.4. Schematic view of the cell membrane, with an embedded protein forming a channel
through which ions can pass.

38 2. Mathematical Models

are allowed to pass, and as we will see later, this specificity of the channels is es-
sential for generating and maintaining the potential difference across the membrane.
The channels also have the ability to open and close in response to changes in the
electrical field and ionic concentrations, and this ability is essential for the signal
propagation in excitable tissue.

To illustrate how the specificity of the ionic channels generates a potential dif-
ference across the membrane, consider two compartments i and e, separated by a
thin membrane. Ions are added to both compartments, for example, in the form
of NaCl. In compartment i we add NaCl to a concentration of 100 mM, while in
compartment e the concentration is only 10 mM. Now, if the membrane had been
completely permeable to all ions, diffusive effects would drive ions from compart-
ment i to compartment e, until the concentrations in the two compartments were
equal. Assume now that the membrane is only permeable to Na+ ions. In this case,
diffusive forces will drive Na+ ions over to compartment e, where the concentration
is low, but the Cl− ions remain in compartment i. The result is a surplus of posi-
tive Na+ ions in compartment e, and of negative Cl− ions in compartment i. This
charge difference sets up an electric field across the membrane, which tends to drive
the Na+ ions back to compartment i. An equilibrium will be reached where the flux
of Na+ caused by diffusion is equal and in a direction opposite to the Na+ flux
caused by the electric field. In this situation of equilibrium, there will be a potential
difference between the two compartments.

Because the ion channels in the cell membrane are specific with respect to which
ions are allowed to pass, the same situation will occur across the cell membrane. The
result is that in the equilibrium situation there will be a potential difference across
the membrane, which we refer to as the transmembrane potential.

2.4.3 The Nernst Equilibrium Potential

In this section, we consider the flux of only one type of ion, and derive a mathemat-
ical expression for the equilibrium situation where the diffusive flux is equal to the
electrically driven flux. Assuming first that there are no concentration gradients, the
ion flux JE due to an electrical field is given by Planck’s equation; see, e.g., [72]:

JE = m
z

|z|cE,

where m is the mobility, z the charge and c the concentration of the ion. Further-
more, E is the electrical field, which may be written as the negative gradient of a
scalar potential φ, which gives

JE = −m
z

|z|c∇φ. (2.49)

In the presence of concentration gradients, the electrically driven flux will be sup-
plemented by ionic flux caused by diffusion. Ions will tend to move from areas with
high concentration towards areas with low concentration. The diffusive flux JD is
given by Fick’s law:

JD = −D∇c ,

where D is the diffusion coefficient for the ion.

2.4. Models for the Ionic Current 39

For a functioning cell, we normally have differences in both electrical potential
and ionic concentrations across the membrane, and the total flux will be given by

J = JD + JE . (2.50)

The mobility m is related to the diffusion coefficient D through the following rela-
tion:

m = D
|z|F
RT

,

where R is the ideal gas constant, T is the temperature, and F is Faraday’s constant.
Inserting this expression into (2.49), (2.50) gives

J = −D

(
∇c +

zF

RT
c∇φ

)
. (2.51)

This equation for the total flux is called the Nernst-Planck equation.
We are interested in the equilibrium situation in which the total current J is

zero. Note that we may still have fluxes caused both by concentration gradients
and electrical fields, as long as we have JE = −JD. For the cell membrane, it is
natural to assume that the variations in potential and concentrations occur only in
the direction across the membrane. It is, therefore, natural to study the flux in only
one space dimension. Setting J = 0, we then get from (2.51):

dc

dx
+

zF

RT
c
dφ

dx
= 0.

Dividing this equation by c and integrating from x = 0 to x = L gives

∫ L

0

1
c

dc

dx
dx +

∫ L

0

zF

RT

dφ

dx
dx = 0.

Here, L is the thickness of the membrane, and the coordinate system is orientated
so that x = 0 is the inside of the membrane and x = L is the outside. Performing
the integration gives

ln(c)|c(L)
c(0) = − zF

RT
(φ(L) − φ(0)) =

zF

RT
v,

where we have used the definition of the transmembrane potential, v = φi − φe,
i.e. the difference between the intracellular and extracellular potential. The value of
the transmembrane potential that gives zero flux, for given intra- and extracellular
concentrations, is now given by

veq =
RT

zF
ln
(

ce

ci

)
, (2.52)

where ce and ci are the extra- and intracellular concentrations, respectively. The
potential veq is referred to as the Nernst equilibrium potential.

40 2. Mathematical Models

2.4.4 Models for Ionic Flux

Although we were able to find an expression for the equilibrium potential from the
Nernst-Planck equation (2.51), it is more difficult to use the equation to compute
the actual flux for non-equilibrium situations. The difficulty is that we do not know
the details of how the concentration and the electrical potential vary across the mem-
brane. For the equilibrium situation, this problem was avoided because the flux is
known to be zero, which enabled us to integrate the rest of the terms in the equation
over the membrane thickness. However, any expression for passive ionic flux should
at least satisfy (2.52), giving zero flux for v = veq. The simplest formulation which
satisfies this condition is a linear model, giving the flux as

J = G(v − veq), (2.53)

where G is the permeability of the membrane for the particular ion under study.
Depending on the type of ionic flux we want to model, G may be constant or a
function of time, membrane potential and, in some cases, ionic concentrations.

Equation (2.53) is motivated only by the need to satisfy the Nernst equilibrium
potential, and has very little relation to the Nernst-Planck equation (2.51) itself. By
making an assumption about the properties of the electric field across the membrane,
it is possible to derive an alternative expression for the ionic flux that is more directly
based on (2.51). We assume that the electric field across the membrane, expressed by
the potential gradient ∇φ, is constant, with respect to both the spatial variable x and
the flux J . In reality, any flux of ions will transport charge across the membrane and
will, therefore, affect the transmembrane potential and hence the electric field. The
assumption of a constant field is therefore justified only in the steady state situation,
i.e. where we have more than one ionic current and the net current is zero, or if the
flux J is too small to cause significant changes in the transmembrane potential. If
the electrical field is constant, we can write ∇φ = v/L, and inserted into (2.51) this
gives

dc

dx
− zFv

RTL
c +

J

D
= 0.

This is an ordinary differential equation in c, with known values at both endpoints
and J as an additional unknown. Solving the equation, we get

J =
D

L

zFv

RT

ci − ce exp
(−zFv

RT

)
1 − exp

(−zFv
RT

) . (2.54)

This expression is commonly referred to as a Goldman-Hodgkin-Katz (GHK) for-
mulation for the ionic flux.

2.4. Models for the Ionic Current 41

To see that the fairly complex expression (2.54) also satisifies the Nernst equi-
librium potential, we insert v = veq into (2.54), with veq given by (2.52). We have

J =
D

L

zFveq

RT

ci − ce exp(−zFveq

RT)

1 − exp(−zFveq

RT)

=
D

L
ln(

ce

ci
)

(
ci − ce exp(− ln(ci

ce
))

1 − exp(− ln(ci

ce
))

)

=
D

L
ln(

ce

ci
)

(
ci − ce(ci

ce
)

1 − ci

ce

)

=
D

L
ln(

ce

ci
)

(
ci − ci

1 − ci

ce

)
= 0.

If we only require that the flux should satisfy the Nernst equilibrium, it is of
course possible to derive a number of alternative expressions for the ionic flux.
However, the most commonly used expressions are (2.53) and (2.54), which are
both used for important ionic currents in models for cardiac cells. The choice of
which formulation to use for a specific current is made by considering which model
best reproduces the experimental data. A more detailed discussion of expressions
(2.53) and (2.54) is given in [72].

In the discussion so far, we have only considered the flux of one type of ion. In
the physiological situation, there are a number of different ions, both in the intracel-
lular and extracellular domains, all of which affect the transmembrane potential. To
illustrate the effect of this, recall the situation described in Section 2.4.2 where we
had two compartments, i and e, separated by a thin membrane. The compartments
contained NaCl in different concentrations. Assume now that instead of being com-
pletely impermeable to Cl− ions, the membrane allows both ions to pass, but with
different permeabilities. The difference in permeability for the two ions will cause
a potential difference across the membrane, and the flux of each ion may reach an
equilibrium situation where the net flux is zero. The equilibrium potential for both
ions may be computed from (2.52). Introducing the notation vNa and vCl for the two
equilibrium potentials, we have

vNa =
RT

F
ln
(

[Na]e
[Na]i

)
,

vCl = −RT

F
ln
(

[Cl]e
[Cl]i

)
.

The two equilibrium potentials will, in general, not be equal. It is therefore impos-
sible to reach a state of equilibrium for both ions simultaneously. Instead, we may
have a different type of equilibrium situation, where the net current of both Cl− and
Na+ is non-zero, but the total current is zero. We may compute an expression for
the transmembrane potential in this equilibrium state, based on applying the linear

42 2. Mathematical Models

model (2.53) for each ionic flux. We have

JNa = GNa(v − vNa),
JCl = GCl(v − vCl),

where GNa and GCl describe the permeability of the membrane to the two ions. To
have a non-trivial equilibrium situation, with v �= 0, we must have GNa �= GCl. We
want to compute the value of v which gives zero total current. We have

Jtot = JNa + JCl = 0,

which gives
GNa(v − vNa) + GCl(v − vCl) = 0.

This equation is easily solved for v, giving

v =
GNavNa + GClvCl

GNa + GCl
. (2.55)

We see that if, for example, the membrane’s permeability to Cl− is zero, the total
equilibrium potential is equal to vNa. Furthermore, changes in the permeability of
one ion, e.g. as a result of channels opening and closing, causes changes in the total
equilibrium potential. The result is a flux of ions across the membrane, which brings
the transmembrane potential to the new equilibrium value.

2.4.5 Channel Gating

As described in Section 2.4.2, ion channels that open and close in response to an
electrical stimulus are essential for the behaviour of excitable cells. We have also
stated that the ion channels are formed by large proteins embedded in the membrane.
The mechanisms by which these channels open and close lie beyond the scope of
this text, and the reader is referred to, e.g., Hille [64] or Plonsey and Barr [112]
for a more detailed description. We will here focus on mathematical models for
the ion channels, which are normally constructed by considering the channels to be
composed of several sub-units. Each sub-unit may be either open or closed, and ions
can only pass when all units are open. Consider first a channel that consists of only
one sub-unit. We denote the concentration of channels in the open and closed state
by [O] and [C], respectively. We assume that the total concentration of channels,
[O]+[C], is constant. The change between the open and closed state may be written
as

C
α

�
β

O, (2.56)

where α is the rate of opening and β is the rate of closing. These rates typically
depend on the transmembrane potential v The law of mass action (see, e.g., [72]),
says that in a reaction like (2.56), the rate of change from the open state to the closed
state is proportional to the concentration of channels in the open state. Similarly, the

2.4. Models for the Ionic Current 43

rate of change from closed to open is proportional to the concentration of closed
channels. We get

d[O]
dt

= α(v)[C] − β(v)[O].

This equation may be divided with the total concentration [O] + [C] to give

dg

dt
= α(v)(1 − g) − β(v)g, (2.57)

where g = [O]/([O] + [C]) is the portion of open channels. If we look at a single
channel, g may be viewed as the probability that the channel is open. The total
number of channels is assumed to be large enough for these two interpretations of g
to be completely equivalent.

Since α and β depend on v, it is not possible to find a general solution of (2.57).
However, to illustrate the behaviour of the reaction, let us for a moment assume that
α and β are constants. Equation (2.57) can be rewritten as

dg

dt
= (g∞ − g)/τg, (2.58)

with
g∞ = α/(α + β) and τg = 1/(α + β).

With α and β constant, the solution of (2.58) is

g(t) = g∞ + (g0 − g∞)e−t/τg .

Here, g0 is the initial value for g, and we see that g approaches the steady state
value g∞ as t increases. The rate at which g approaches g∞ is determined by the
magnitude of the time constant τg. In our setting the rates are not constants, and
(2.58) is therefore not a correct solution to (2.57). However, if the time constant is
small, g may be assumed to reach its steady-state value almost immediately, so that
g∞ may be used as a reasonable approximation to g(t). For many important ionic
channels, the time constant is small enough for this approximation to be used, while
for other channels τg is too large for this simplification to be valid, and the activity
of the channel must be modelled with equations such as (2.57).

Most ionic channels consist of several subunits, which may all be either open or
closed. In this context, (2.57) is viewed as the probability that one subunit is in the
open state. Assuming that the subunits open and close completely independent of
each other, the probability that a channel is open is equal to the product of the prob-
ability for each subunit being open. For a channel that consists of n equal subunits,
the probability O that the channel is open is given by

O = gn, (2.59)

with g given from (2.57). From the definition of g and O it is clear that we have
O, g ∈ [0, 1].

44 2. Mathematical Models

A channel may also consist of several different subunits. The dynamics of each
unit is then described by (2.57), but the rate functions α and β are different for each
unit. For example, we may have a channel that consists of two different subunits.
We denote the probability of one unit being open by g, and the probability of the
other unit being open is denoted by h. The dynamics of both g and h are described
by expressions like (2.57), with respective rates αg, βg and αh, βh. If the channel
consists of m units of type g and n units of type h, the probability that the channel
is open is given by

O = gmhn. (2.60)

The current through the membrane may be computed as the product of the max-
imum current, i.e. the current we would have if all channels were open, and the
proportion of open channels. The maximum current is computed from expressions
such as (2.53) and (2.54), derived in Section 2.4.4. If, for instance, we study an ionic
current described by the linear model (2.53), the ionic current I is given by

I = GmaxO(v − veq), (2.61)

where O is defined as products on the form (2.59) and (2.60), veq is the equilib-
rium potential for the specific ion, and Gmax is the maximum conductance, i.e. the
conductance if all channels are open.

The simple channel-gating expressions derived here are all based on the assump-
tion that the opening and closing of each subunit is independent of the state of the
other subunits. Other types of channel-gating models exist, which are not based on
this assumption. Examples of such models may be found in, e.g., [68], [73].

2.4.6 The Hodgkin-Huxley Model

In a normally functioning cell, several ionic currents contribute to the changes in
the transmembrane potential. Among the most important ions are sodium, potas-
sium and calcium. A model for the total ionic current across the membrane may be
constructed by describing each current with an expression of the form (2.61), and
combining these expressions to form a model for the total current. The first model
of this kind was that of Hodgkin and Huxley [65], which was published in 1952 and
for which they won the Nobel Prize in Medicine in 1963. The model describes the
action potential of a squid giant axon, a particularly large nerve cell found in squid.
The model is, therefore, not directly relevant for studies of the heart, but it serves as
a nice example of how the cell models are constructed. The formulations of the ionic
currents introduced in the Hodgkin-Huxley model also serve as building blocks in
subsequent models for both nerve and heart cells.

The Hodgkin-Huxley model describes three ionic currents; a sodium current, a
potassium current, and one unspecified current called a leakage current. The currents
are denoted by INa, IK, and IL, respectively, and are illustrated in Figure 2.5. The
arrows indicate the main direction of the current during the action potential. The
sodium current and the potassium current are both gated, while the leakage current

2.4. Models for the Ionic Current 45

INa IK IL

Myoplasm

Fig. 2.5. The ionic currents in the Hodgkin-Huxley model.

is time independent and formulated as a simple linear function of the transmembrane
potential. The currents are given by

INa = ḠNam
3h(ν − νNa),

IK = ḠKn4(ν − νK),
IL = GL(ν − νL).

Here, ν is the deviation from the resting potential, defined as ν = v− veq. Similarly
νNa, νK, and νL are shifted equilibrium potentials for each current, defined by

νNa = vNa − veq, νK = vK − veq, νL = vL − veq,

where vNa, vK, and vL are the true equilibrium potentials for the three currents. Fur-
thermore m,h, and n are gate variables described by equations of the form (2.57),
and ḠNa, ḠK, and ḠL are the maximum conductances for each current, i.e. the cur-
rents we would have if all channels were open. In view of the discussion of ion
channels in Section 2.4.5, we see that the model describes the sodium channels as
consisting of four subunits, three of them identical, while the potassium channel
consists of four identical subunits. When the model was developed there existed no
method for actually examining the detailed structure of the ion channels, and the ex-
pressions used for the ionic current were based on observations of the overall gating
behaviour for the currents.

The total ionic current is given as the sum of the three currents above,

Iion = INa + IK + IL,

and may be plugged directly into models like the bidomain model (2.19)–(2.20),
derived in Section 2.2.2. However, in the context of single cell models, we have that
the transmembrane potential is governed by

Cm
dv

dt
= −Iion + Iapp.

This may be seen as a special case of (2.19), where the diffusive effects are ignored.
Inserting the expressions for the currents, the rate of change of the shifted membrane

46 2. Mathematical Models

potential ν becomes

Cm
dν

dt
= −ḠNam

3h(ν − νNa) + ḠKn4(ν − νK) + GL(ν − νL), (2.62)

with the gate variables given by equations of the form

dg

dt
= αg(ν)(1 − g) − βg(ν)g, (2.63)

for g = m,h, n. The rate functions αg, βg are specified in Appendix B. A detailed
discussion of the Hodgkin-Huxley model is given in [72].

The action potential computed with the Hodgkin-Huxley model is shown in Fig-
ure 2.6. We see that the shape of the action potential is substantially different from
the action potential shown in Figure 2.3, which we described as being fairly re-
alistic for cardiac cells. The difference between the two models is not surprising,
since they describe entirely different cell types. Therefore, while the membrane cur-
rent of the Hodgkin-Huxley model may, in principle, be plugged directly into the
bidomain equations, the results will not be very meaningful. Although we would
be able to reproduce both the depolarization and the repolarization of the tissue,
both the propagation velocity and the time interval between depolarization and re-
polarization would be incorrect. Hence, to obtain physiologically meaningful re-
sults we must use models that give a more accurate description of the behaviour of
heart cells. One such model is the reparameterized FitzHugh-Nagumo model, but for
many simulations it is attractive to use models with a more detailed representation
of the underlying cellular physiology.

2.4.7 A Model for Cardiac Cells

The first model to describe the action potential in cardiac cells was proposed by
Noble [104] in 1962, to describe Purkinje fibre cells. The model is based on the

0 5 10 15 20
−20

0

20

40

60

80

100

120
The Hodgkin−Huxley model

Fig. 2.6. The action potential produced by the Hodgkin-Huxley model.

2.4. Models for the Ionic Current 47

Hodgkin-Huxley model, but the parameters have been refitted to reproduce the ac-
tion potential of the Purkinje cells, which is markedly different from that of the squid
giant axon. In particular, the action potential has a pronounced plateau phase, and
the duration is 300-400 ms, compared to about 3 ms for the squid giant axon. The
Noble model is still very similar to the Hodgkin-Huxley model, in that it describes
a transmembrane current that carries two different ions: sodium and potassium. The
passive leakage current present in the Hodgkin-Huxley model is assumed to be zero
in the Noble model. The ionic currents included in the model are shown in Fig-
ure 2.7. We see that, in contrast to the Hodgkin-Huxley model, the Noble model
assumes two separate potassium currents, IK1 and IK2.

INa IK1 IK2

Myoplasm

Fig. 2.7. The ionic currents in the 1962 Noble model.

Both the sodium and the potassium current are assumed to be linear in v, and
the equation for v is given by

−Cm
dv

dt
= gNa(v − vNa) + (gK1 + gK2)(v − vK) + Iapp.

Here, gNa is the sodium conductance, and gK1 and gK2 are the conductances for the
two potassium currents. As usual, vNa and vK are the respective Nernst equilibrium
potentials for the two ions. The conductance gK2 is given by an expression similar
to that used in the Hodgkin-Huxley model,

gK2 = ḡK2n
4,

where ḡK2 is the maximum conductance and n is a gate variable governed by an
equation of the form (2.63). However, the parameters are adjusted so that the re-
sponse of n is much slower than in the Hodgkin-Huxley model, in order to prolong
the action potential. The conductance gK1 is assumed to be dependent only on volt-
age, and given by

gK1 = 1.2 exp
(
−v + 90

50

)
+ 0.015 exp

(
v + 90

60

)
.

The sodium conductance is also similar to that of the Hodgkin-Huxley model:

gNa = ḡNam
3h + gi,

48 2. Mathematical Models

where ḡNa is the maximum conductance and the constant term gi represents a leak-
age current of sodium, which has the effect of prolonging the action potential. The
dynamics of the gate variables n,m, and h are described by equations on the form
(2.63). The rate functions, and the constants in the model, are specified in Appendix
B.

A plot of the action potential computed with the model is shown in Figure 2.8.
The prolonged action potential is clearly visible when compared to the Hodgkin-
Huxley action potential in Figure 2.6. In addition to prolonging the action potential,
the constant gi added to the sodium conductance has the effect of making the model
self-oscillatory, which is realistic for Purkinje cells. See, e.g., [72] for details. As
seen in Figure 2.8, the potential gradually increases after the cell has repolarized,
and this eventually brings the membrane potential above the threshold value, trig-
gering a new action potential.

0 200 400 600 800
−100

−80

−60

−40

−20

0

20

40

Fig. 2.8. Action potential for a Purkinje fibre cell, computed with the Noble model.

The Noble model was a successful attempt to simulate the action potential of
Purkinje fibres with a simple model of Hodgkin-Huxley type. However, because
the model was created before detailed data on ionic currents in cardiac cells became
available, the underlying physiology is incorrect. An improvement of the model was
presented by McAllister, Noble and Tsien [102] in 1975. The new model includes
more ionic currents, and gives a much more accurate description of the underlying
activity of different channels than the original model. However, the action potential
computed with the improved model is essentially the same as that generated by the
original Noble model.

2.4.8 Models for Ventricular Cells

For the purpose of simulating the electrical activity of the whole heart, and in par-
ticular its relation to ECG recordings, the most important cells are probably not the

2.4. Models for the Ionic Current 49

Purkinje fibres, but rather the ventricular muscle cells. The first model to describe
these cells was proposed by Beeler and Reuter [9] in 1975. An important difference
between Purkinje cells and ventricular muscle cells is the role of calcium, which is
essential for the contractile mechanism of the muscle cells.

The Beeler-Reuter model is based on experimental data from the guinea pig, and
describes four ionic currents: the usual fast inward current carried by sodium, a slow
inward current carried mostly by calcium, and two outward potassium currents. The
currents are illustrated in Figure 2.9. The currents are controlled by six gating vari-
ables, and the model describes the intracellular calcium concentration in addition to
the transmembrane potential. This gives a total of eight state variables, described by

−Cm
dv

dt
= INa + IK + Ix + Is + Iapp

dc

dt
= 0.07(1 − c) − Is

dg

dt
= αg(1 − g) − βgg (2.64)

with g = m,h, j, d, f, x, since all the gating variable equations have the same struc-
ture. The two outward potassium currents are denoted by IK and Ix, and Is denotes
the inward current of calcium. The intracellular calcium concentration is described
by the variable c, which has been scaled for convenience of notation, c = 107[Cai].
The ionic currents, rate functions, and constants are specified in Appendix B.

Although the Beeler-Reuter model was the first mathematical model for ventric-
ular cells, it is still widely used. The main reason for this is its relative simplicity
compared to more recent models. Increasingly complex models are not greatly prob-
lematic when simulating the behaviour of a single cell, but computational efficiency
becomes very important when the cell models are used for simulating the electrical
activity of the complete heart. In this setting, relatively simple models, such as the
Beeler-Reuter model, have a significant advantage over more recent models, which
tend to be far more computationally demanding.

Another classic ventricular cell model that is still widely used is the Luo-Rudy
model [88] from 1991. The model is a development of the Beeler-Reuter model,
and includes six ionic currents, controlled by a total of seven gate variables. The

INa IK Ix

Is

Myoplasm

Fig. 2.9. The ionic currents in the Beeler-Reuter model.

50 2. Mathematical Models

0 100 200 300 400
−100

−80

−60

−40

−20

0

20

40
The Beeler−Reuter model

Fig. 2.10. Action potential for a ventricular cell, computed with the Beeler-Reuter model.

two additions to the Beeler-Reuter model are a time-independent potassium current
called a plateau current, and a passive, linear background current. The ionic currents
in the model are illustrated in Figure 2.11.

Similar to the Beeler-Reuter model, the Luo-Rudy model describes the dynam-
ics of the intracellular calcium concentration in addition to the transmembrane po-
tential. With the seven gate variables, the model consists of nine differential equa-
tions:

−Cm
dv

dt
= INa + Isi + IK + IK1 + IKp + Ib + Iapp,

d[Ca]i
dt

= −0.0001Isi + 0.07(0.0001 − [Ca]i),

dg

dt
= αg(1 − g) − βgg,

with g = m,h, j, d, f,X,Xi being the gate variables that control the ionic cur-
rents. Here, INa is the normal fast sodium current and Isi is a slow inward current of

INa IK IK1

Isi

IKp

Ib
Myoplasm

Fig. 2.11. The Luo-Rudy 1991 model for ventricular cells.

2.4. Models for the Ionic Current 51

calcium. Furthermore, IK is the time-dependent and IK1 the time-independent potas-
sium current, IKp is the plateau potassium current, and Ib is the passive background
current, which is similar to the leakage current in the Hodgkin-Huxley model. For a
complete specification of model parameters, including expressions for ionic currents
and rate functions, we refer the reader to the original publication [88].

2.4.9 Second Generation Models

The Beeler-Reuter model and the first Luo-Rudy model have a number of known
limitations, related to their description of the physiology underlying the action po-
tential. More recent models have been developed that give a more realistic descrip-
tion of the underlying details.

In 1994, Luo and Rudy [87] published a substantial upgrade of their 1991 model,
often referred to as the Luo-Rudy phase two model. Compared to the first Luo-Rudy
model, the new model gives a much more detailed description of the specific ionic
currents across the membrane. The model describes a total of twelve membrane
currents, including a number of important pumps and exchangers, and offers a more
complete description of intracellular ionic concentrations. While the Beeler-Reuter
model and the first Luo-Rudy model only describe the intracellular calcium con-
centration, the phase two model also models changes in intracellular sodium and
potassium. From the Nernst equation (2.52) it is clear that changes in ionic concen-
trations will affect the equilibrium potential and hence the flux of the various ions,
and this effect is included in the upgraded model.

In addition to a more detailed description of the membrane current and ionic
concentrations, the Luo-Rudy phase two model also describes a number of internal
fluxes. These include calcium flux in and out of the sarcoplasmic reticulum (SR),
as well as buffering of calcium. The SR is a network inside the cell that takes up
calcium from the myoplasm, and later releases it back to the myoplasm in response
to an activation of the cell. The resulting variations in myoplasm calcium concen-
tration are extremely important for the contractile ability of the muscle cells. The
SR is divided into two separate compartments. The network sarcoplasmic reticulum
(NSR) takes up the calcium from the myoplasm, while the junctional sarcoplasmic
reticulum (JSR) is the cistarnae that releases the calcium back into the myoplasm.
The two compartments of the SR, and the related calcium fluxes, are illustrated in
Figure 2.12. The figure also shows the membrane currents included in the model,
and illustrates the increased complexity compared to the earlier models. For an ex-
planation of each current we refer to [87].

To describe the calcium dynamics of the SR, the Luo-Rudy phase two model
describes three different intracellular calcium concentrations: the usual myoplasm
calcium concentration [Ca]i, and the two SR concentrations [Ca]NSR and [Ca]JSR.
The model describes four currents related to the uptake and release of calcium from
the SR. The uptake of calcium to the NSR from the myoplasm, Jup, is a passive
current that depends only on the myoplasm calcium concentration [Ca]i. This uptake
current is the primary current between the NSR and the myoplasm, but the model
also includes a small leakage back from the NSR to the myoplasm, called Jleak.

52 2. Mathematical Models

Myoplasm

NSR

JSR

ICa INa IK IK1 IKp

INa,b Ip(Ca)

INaCa

INaK

Ins,Na

Ins,K

ICa,b

Jup

Jleak

Jtr

Jrel

Fig. 2.12. A schematic view of the Luo-Rudy phase two model.

This current depends only on the NSR calcium concentration, and is described by a
simple linear formulation. The third current directly related to the SR is a transfer
current Jtr, which describes the transfer between the NSR and the JSR. This current
is also described by a linear formulation, depending on the calcium concentrations
in the two compartments. The final SR-related current is the release current Jrel,
which releases calcium from the JSR back to the myoplasm. This calcium release
is induced by an increase in the myoplasm calcium concentration, and is described
by a complex relation related to the accumulation of calcium in the myoplasm. For
a detailed specification of the model, the reader is again referred to the original
publication [87].

Although the Luo-Rudy phase two model offers a very detailed description of
the ventricular cell, a number of more recent models have been proposed, in which
important processes in the cells are handled differently. One area where recent mod-
els differ substantially from the Luo-Rudy phase two model is the handling of cal-
cium ions. Although the Luo-Rudy model includes both the sarcoplasmic reticulum
and a number of calcium buffers, more recent experimental findings have led to the
development of new models for calcium handling. A concept used in a model by
Noble et al. [105] in 1998 is that of a restricted subspace, or diadic space, located
between the cell membrane and the sarcoplasmic reticulum. Both the inward mem-
brane current (L-type) of calcium, and the calcium release from the JSR end up in
this restricted subspace, before the calcium ions diffuse into the bulk myoplasm.
The resulting calcium concentration in the subspace is several orders of magnitude
higher than in the myoplasm. The high calcium concentration is important both
for triggering the calcium release from the JSR and for the calcium-induced in-
activation of the L-type membrane current. The 1998 Noble model also includes
effects related to the mechanical behaviour of the heart cells, through the addition
of length-dependent and tension-dependent electrophysiological processes. Like the

2.5. Summary of the Mathematical Model 53

Luo-Rudy phase two model, the 1998 Noble model is too complex to be described
in full detail here, and the reader is referred to the original publication [105] for a
complete specification of the model.

The restricted subspace in which the calcium channels empty is also included
in a model by Jafri et al. [68]. The model uses a formulation that was originally
proposed by Keizer and Levine [73] for the release of calcium from the SR. It also
introduces a new model for the L-type calcium channels, featuring a new “mode
switching” behaviour for the calcium-induced inactivation of this channel. Apart
from the significantly different handling of calcium, most of the ionic currents of
this model are similar to those of the Luo-Rudy phase two model.

Like the Luo-Rudy models and the Noble models described here, the 1998 Jafri
model is for ventricular cells from guinea pigs. A later model by Winslow et al. [145]
uses the same framework as the model by Jafri et al. for the calcium dynamics, but
the model was adapted to fit experimental data from dogs. This adaptation involves
adding more ionic currents, for instance the transient outward potassium current
(Ito1), which is known to be significant in the dog but unimportant in the guinea
pig. With more than 30 state variables to control 13 membrane current, the Winslow
et al model is among the more advanced cardiac cell models available. Figure 2.13
shows the ionic currents included in the model, and the action potential is shown
in Figure 2.14. For a complete specification of the model, the reader is referred to
[145].

Myoplasm

NSR

JSR

Subspace

ICa INa IKr IKs Ito1

INaK

INaCa

ICa,K

IKp

IK1

Ip(Ca) ICa,b INa,b

Jup

Jtr

Jrel

Jxfer

Fig. 2.13. A schematic view of the ionic currents in the 1999 model by Winslow et al.

2.5 Summary of the Mathematical Model

In this chapter we have presented a complete mathematical model for the electrical
activity in the heart and the surrounding body. The body surrounding the heart is
modelled as a passive volume conductor, while the model for the heart tissue was

54 2. Mathematical Models

0 100 200 300 400
−100

−50

0

50

Fig. 2.14. Action potential for a dog ventricular cell, computed with the model by Winslow
et al.

based on viewing the tissue as two continuous domains: intracellular and extracel-
lular. For the heart tissue, the flux of ions across the cell membrane is essential for
the activation of the cells, and for this process we have presented models based on
the underlying physiology of the cell membrane. The complete model is given by

∂s

∂t
= F (s, v, t) x ∈ H (2.65)

∇ · (M∗
i ∇v) + ∇ · (M∗

i ∇ue) =
∂v

∂t
+ I∗ion x ∈ H, (2.66)

∇ · (M∗
i ∇v) + ∇ · ((M∗

i + M∗
e)∇ue) = 0 x ∈ H, (2.67)

∇ · (M∗
T∇uT) = 0 x ∈ T, (2.68)

ue = uT x ∈ ∂H, (2.69)

n · (M∗
i ∇v + (M∗

i + M∗
e)∇ue) = n · (M∗

T∇uT)x ∈ ∂H, (2.70)

n · (M∗
i ∇v + M∗

i ∇ue) = 0 x ∈ ∂H, (2.71)

n · M∗
T∇uT = 0 x ∈ ∂T. (2.72)

Equation (2.65) is a system of ordinary differential equations that describe the elec-
trophysiological behaviour of the heart cells, while (2.66)–(2.67) describes the sig-
nal propagation in the heart tissue. Furthermore, (2.68) describes the potential dis-
tribution in the body surrounding the heart. The connection between the heart and
the surrounding body is described by the boundary conditions (2.69)–(2.71), while
(2.72) specifies the boundary conditions on the surface of the body.

Note that the system (2.66)–(2.72) has been scaled with the membrane capaci-
tance Cm and the surface area to volume ratio χ. The resulting scaled quantities are

2.5. Summary of the Mathematical Model 55

given by

M∗
i =

1
Cmχ

Mi, M∗
e =

1
Cmχ

Me, (2.73)

M∗
o =

1
Cmχ

Mo, I∗ion =
1

Cm
Iion. (2.74)

For the remainder of this book we will use the scaled version of the equations, but
for notational convenience we will omit the the stars on the scaled conductivities and
ionic current. Values of the intra- and extracellular conductivities are found in Table
2.1, with the conductivity tensors computed from (2.27). Suitable values for the
conductivity MT in (2.68) may be found in e.g. [76] and [51]. For the experiments
described later in this book, we have modelled the torso surrounding the heart as
isotropic, so that MT is a scalar. For most of the simulations we have used MT =
2.39 mS/cm, but for the more realistic cases we distinguish between the lungs and
the rest of the torso, with a conductivity value of MT = 0.96 mS/cm in the lungs.

For the ionic current term Iion and the description of the cells in (2.65), we
have presented a number of widely used models, with large variations in complex-
ity and physiological realism. However, we have only given a brief overview of a
small selection of the available models for cardiac cells. Several other models ex-
ist, some of which may be at least as important as the models mentioned here. A
large collection of available cell models may be found on the CellML web page
[21], which uses the XML markup language to give a precise specification of the
models. The CellML model repository is updated regularly with recent advances
in both cellular electrophysiology, contractile mechanisms, and other physiological
phenomena. The experimental techniques upon which the models are based are be-
ing developed continuously, and the ever-increasing sophistication allows greater
physiological detail to be observed in the cells. The increasing amount of available
data allows models of greater and greater complexity to be constructed, offering an
accurate description of very small-scale details of the physiology of cardiac cells.

As noted in the discussion of the Beeler-Reuter model, a problem faced when us-
ing the most recent models for large-scale simulations is that they tend to be compu-
tationally demanding. The more accurate description requires an increasing number
of state variables, such as ionic concentrations and gate variables. Adding further to
the computational demand is that some of the processes underlying the action po-
tential occur on a very small time scale. As will be discussed later in this book, the
effect of this is that the equations describing the reactions become stiff, and there-
fore challenging to solve numerically. A consequence of the increasing complexity
of the cell models is that the older models, such as the Beeler-Reuter model and
the first Luo-Rudy model, are still widely used. In many cases, these models give
a sufficiently realistic representation of the action potential, and the computational
advantage over the more sophisticated models is significant. For some studies, even
simple models of FitzHugh-Nagumo type may be sufficient, if the main interest is
the qualitative behaviour of the tissue rather than a quantitatively accurate descrip-
tion.

56 2. Mathematical Models

Although simplified models in some form may be sufficient for many simula-
tion purposes, an important motivation for this type of mathematical modelling is to
integrate small-scale information up to the level of a complete organ. To fully ac-
complish this task, and investigate how small changes in cellular physiology affect
the function of the complete heart, a fairly detailed description of the cells will, in
most cases, be required. For full-scale simulations of this type the computational
demand of solving the cell model equations will be significant, and using efficient
numerical techniques becomes essential. This topic is discussed further in Chapter 5.

Chapter 3

Computational Models

The mathematical models derived in the previous chapter give a quantitative descrip-
tion of the electrical activity in the heart, from the level of electrochemical reactions
in the cells to body surface potentials that may be recorded as ECGs. However,
the models are formulated as systems of nonlinear partial and ordinary differential
equations, for which analytical solutions are not available. To be of any practical
use, the equations of the models must therefore be solved with numerical methods.
The choice of numerical methods that may be applied to the equations is large, see
e.g. [83], but we have chosen to focus entirely on finite element methods (FEM).
One reason for this is that the geometries of the heart and the body are irregular, and
this is more conveniently handled by FEM than, for instance, by finite difference
methods.

3.1 The Finite Element Method for the Torso

To introduce the finite element method, we start with the simpler mathematical mod-
els derived in Chapter 2, which give the potential distribution in the body that results
from a given source term. In contrast to the more advanced monodomain and bido-
main models, these are stationary models, and the reduced complexity makes them
suitable for introducing numerical techniques. However, to further ease the intro-
duction of FEM computations, we first consider an even simpler model problem.

3.1.1 A Simplified Model Problem

In order to introduce the finite element method, we consider a simple model problem
of the form

−∇2u = f(x), x ∈ Ω, (3.1)

u = 0 x ∈ ∂Ω. (3.2)

We see that this problem is fairly similar to (2.5)–(2.6), discussed in Chapter 2,
which describes the potential distribution that results from a dipole representation
of the heart. The difference is that the Neumann boundary conditions along ∂Ω
have been replaced by Dirichlet conditions for u, and we assume a constant, scalar
conductivity M = 1 (isotropic and homogeneous material).

We now choose Ω to be the 2D unit square Ω = [0, 1] × [0, 1], and

f(x) = f(x, y) = −2x(x − 1) − 2y(y − 1).

58 3. Computational Models

The boundary value problem (3.1)–(3.2) then has the analytical solution

u = x(x − 1)y(y − 1). (3.3)

Hence, for this simple equation, there is no need for numerical solution techniques,
but to investigate the convergence properties of the numerical schemes it is conve-
nient to study a problem with known analytical solution.

The foundation of the finite element method is the weak form, or variational
formulation, of the PDE. To obtain a weak form of (3.1), we introduce a suitable
function space V , in which we seek the solution u. The space V will be a Hilbert
space; see, e.g., [69,38] for a more detailed discussion. We then multiply (3.1) with
an arbitrary function ψ ∈ V , called a test function, and integrate over the domain
Ω. This gives

−
∫

Ω

∇2uψdx =
∫

Ω

fψdx. (3.4)

The variational problem is then to find a solution u ∈ V that satisfies (3.4) for
all choices of the test function ψ ∈ V . Now, applying Green’s lemma (see, e.g.,
[69,79]) to the left hand side of (3.4) gives

∫
Ω

∇u · ∇ψ −
∫

∂Ω

n · ∇uψdx =
∫

Ω

fψdx. (3.5)

If we choose the function space V such that all functions ψ ∈ V satisfy the boundary
condition (3.2), we see that the boundary integral vanishes and we end up with the
variational problem:

Find u ∈ V so that ∫
Ω

∇u · ∇ψdx =
∫

Ω

fψdx for all ψ ∈ V. (3.6)

This is the weak form, or variational formulation, of (3.1)–(3.2).
While the original formulation required the PDE (3.1) to be satisfied at all points

in Ω, the weak form only requires the integral equation (3.6) to be satisfied for all
choices of ψ ∈ V . The integral represents a form of averaging, and so this formu-
lation is, in some sense, weaker than the original formulation of the problem, hence
the term “weak form”. The solution of the weak form is called a weak solution of
the PDE. That the variational formulation is weaker than the original PDE form may
also be seen from the fact that while the weak formulation involves only first deriv-
atives of u, the original PDE includes second derivatives, which imposes stricter
smoothness requirements on the solution.

It is easy to see that any solution u satisfying (3.1)–(3.2) also satisfies (3.6).
Based on the requirement that (3.6) is to be satisfied for all ψ, it can be proven that
any solution of (3.6) that is sufficiently smooth, i.e. twice differentiable, is also a
solution of (3.1). The details of this proof lie beyond the scope of this text, and the
reader is referred to [69,38]

The weak formulation (3.6) is a continuous mathematical problem, and the so-
lution space V has infinite dimension. To be suitable for solution on a computer,

3.1. The Finite Element Method for the Torso 59

the problem needs to be discretized, i.e. we need to introduce a finite dimensional
space within which to seek the solution. Any function belonging to this space may
then be described by a finite number of parameters, which may be determined by
solving a discretized version of the weak formulation. Formulating the weak form
of the equation, defining the discrete subspace, and solving the resulting discretized
weak form are the essential steps of the finite element method.

Several alternatives exist for the finite dimensional space Vh ⊂ V ; see e.g. [79].
In this text we will restrict the discussion to classical finite element formulations, in
which the solution domain Ω is divided into a number of polygonal domains, and
Vh is defined in terms of piecewise polynomial functions over these domains. In
general, any kind of polygonal shapes can be used for the partition of Ω, but we will
here restrict our attention to triangulations of Ω, where the domain is partitioned
into non-overlapping triangles. We will later consider three-dimensional problems,
in which it is natural to extend the triangulations by partitioning the domain into
tetrahedra. Other common choices are quadrilateral elements in 2D and hexahedra
in 3D, see e.g. [69].

We assume that the domain Ω may be partitioned into a set of non-overlapping
triangles τk, k = 1, . . . , m, which are orientated such that no corner of one triangle
lies on the interior of a side of another triangle. The union of the triangles form a
polygonal domain Ωh ⊂ Ω, such that the boundary vertices of Ωh lie on ∂Ω. If Ω
is a polygonal domain, as we have chosen for our simple model problem, we have
Ωh = Ω, but in the general case Ωh is a polygonal approximation to Ω. The left
panel of Figure 3.1 shows a possible triangulation of the unit square used for our
model problem, and the right panel shows a triangulation of a cross section of the
heart muscle.

0
0 1

1

8 9 10 11 12 13 14 15 16
10.05

11

12

13

14

15

16
16.42

Fig. 3.1. Triangulations of two different computational domains: the unit square and a cross
section of the heart muscle.

60 3. Computational Models

iφ

i

N

Fig. 3.2. The shape of the piecewise linear basis functions defined over the triangulation Ωh.

We now want to use the triangulation Ωh to define a finite dimensional function
space Vh ⊂ V . Again, several choices exist, but one common choice is to define Vh

as a space of piecewise polynomial functions defined over Ωh. In principle, any or-
der of polynomial may be used. For a given partition Ωh, higher-order polynomials
offer more degrees of freedom and yield generally higher accuracy1. The polyno-
mial basis functions may also be used to describe the geometry of the elements
(see, e.g., [69]), and high-order polynomials are, therefore, particularly suited for
describing smooth, irregular geometries.

The basic steps in the finite element method are independent of the chosen parti-
tion of Ω and of the chosen order of polynomials. We will here focus on the simplest
possible choice, which is to define the functions in Vh as piecewise linear functions.
To give a precise definition of this choice of finite element space Vh, we define n to
be the total number of vertices in the triangulation Ωh, and denote the coordinates
of the vertices by xi, i = 1, . . . n. The discrete function space Vh is now defined
as the space spanned by the basis functions φj , j = 1, . . . n, defined as piecewise
linear functions satisfying

φj(xi) =
{

1 if j = i
0 otherwise

. (3.7)

This definition gives basis functions with local support, restricted to a few triangles.
The shape of a basis function is shown in Figure 3.2. The basis function φi depicted
in the figure will be nonzero only over the triangles in which the node Ni is a corner.
By definition, any function ψh in Vh may be written as a linear combination of the

1 For instance, commonly used finite element formulations of the equations for the electri-
cal activity in the heart are based on polynomials of orders two and three, defined over
hexahedron shaped elements [10].

3.1. The Finite Element Method for the Torso 61

basis functions φj ,

ψh =
n∑

j=1

αjφj , (3.8)

where αj , j = 1, . . . , n are scalars.
Formulated in the discrete space, the variational formulation (3.6) reads as fol-

lows:

Find uh ∈ Vh such that∫
Ωh

∇uh · ∇ψh =
∫

Ωh

fψhdx, for all ψh ∈ Vh. (3.9)

We require that (3.9) is fulfilled for all functions ψh ∈ Vh. However, if we insert the
representation (3.8) into (3.9), it is easy to see that the equation is fulfilled for all
ψh ∈ Vh if it holds for all the basis functions {φi}. Since the approximate solution
uh lies in Vh, the representation (3.8) may also be used for the solution,

uh =
n∑

j=1

ujφj , (3.10)

where uj , j = 1, . . . , n are scalars. Inserting this representation of uh into (3.9)
gives ∫

Ωh

∇

 n∑

j=1

ujφj

 · ∇φi =

∫
Ωh

fφidx, i = 1, . . . , n. (3.11)

This type of finite element formulation, where the same basis functions are used
both to approximate the solution and as test functions, is called a Galerkin method.
Other choices of test function are possible, and may be more suitable for certain
applications; see, e.g., [149] for details.

Using the linearity of the differential operators, (3.11) may be rewritten as

n∑
j=1

uj

∫
Ωh

∇φj · ∇φi =
∫

Ωh

fφidx, i = 1, . . . , n. (3.12)

The basis functions φi, φj are known, so both integrals in this equation can be com-
puted. The problem is reduced to finding the scalars uj that satisfy this discrete
variational formulation.

Equation (3.12) is a system of linear equations, which may be written in matrix
form:

Au = fn, (3.13)

with

Aij =
∫

Ωh

∇φi · ∇φj ,

fn
i =

∫
Ωh

fφidx.

62 3. Computational Models

The solution u of this linear system is the vector formed by the scalar coefficients
uj , j = 1, . . . , n. The approximate solution uh is given by (3.10), and will be a
piecewise linear function that approximates the solution u of the continuous prob-
lem (3.6). In fact, it can be proven that uh is the function in Vh that best approx-
imates the solution u of the original weak form (3.6). This is a property of the
Galerkin finite element method; see, e.g., [69,149] for details.

Handling essential boundary conditions. The discussion so far has been based on
the assumption that the boundary condition (3.2) is automatically satisfied for all
functions in the solution space V , and in the discrete subspace Vh. It is not particu-
larly difficult to construct a solution space Vh that satisfies this requirement, but in
practice a slightly different approach is normally adopted. The solution space Vh is
constructed as piecewise linear functions with no attention to the Dirichlet boundary
condition, and this condition is instead incorporated by adjusting the linear system
(3.13). Following the definition of the basis functions {φi}, the system (3.13) has
one equation for each node in the grid. The Dirichlet boundary condition can be
incorporated by deleting all equations that correspond to boundary nodes, and re-
placing them with explicit statements that enforce uj = 0 if xj is a boundary node.
It might be feared that this approach is in conflict with the removal of the bound-
ary integral in (3.5), which was based on the functions in V satisfying the Dirichlet
boundary condition. However, since we use basis functions φi with local support,
the boundary integral term in (3.5) will only contribute to those equations that will
be replaced by statements to enforce the boundary condition. Hence, even with this
more practical approach, it is appropriate to disregard the boundary integral in (3.5).
The same approach can be used for nonhomogeneous Dirichlet conditions, i.e. if
the solution takes given, nonzero values on the boundary. For practical applications,
slightly more sophisticated methods for adjusting the linear system are often used,
in order to conserve the symmetry of the matrix A in (3.13). A description of such
a symmetric incorporation of Dirichlet boundary conditions can be found in [79].
The principle of this method is exactly the same as described here: the equations are
adjusted to force the solution in the boundary nodes to the prescribed value.

An estimate of the error. It is possible to derive an estimate of the error uh − u. We
assume that the shapes of the triangles in Ωh satisfy certain restrictions; see, e.g.,
[69] for details. We then define the quantity h to be the maximum length of a side in
the triangulation. More precisely, if we define hk to be the longest side in a triangle
τk belonging to the triangulation Ωh, we have

h = max
τk∈Ωh

hk.

It can then be proven that the L2 norm of the error uh −u is proportional to h2, i.e.,
we have

‖uh − u‖L2 = O(h2), (3.14)

3.1. The Finite Element Method for the Torso 63

where the L2 norm is defined by

‖u‖L2 =
(∫

Ω

u2dx

)1/2

,

for a given function u defined over the domain Ω. The detailed proof of this error
estimate lies beyond the scope of this text, and may be found in, e.g., [69,79].

Since we know the analytical solution of our model problem, we can easily
perform numerical experiments to see whether the convergence is in accordance
with (3.14). In Table 3.1 we present the L2 norm of the error, ‖u − uh‖, with u
given by (3.3), for different choices of the discretization parameter. The L2 norm
of the error is shown, and n is the number of nodes in the triangulations, i.e. the
number of degrees of freedom in the numerical solution. In the rightmost column
we have divided the error by the square of the maximum side length h, and we see
that this number is approximately constant. Hence, the error is proportional to h2,
as predicted by the theoretical result.

Table 3.1. Convergence results for the finite element method applied to the test problem
(3.1)–(3.2).

n h ‖uh − u‖ ‖uh − u‖/h2

36 2.828 · 10−1 3.454 · 10−3 4.317 · 10−2

121 1.414 · 10−1 8.964 · 10−4 4.482 · 10−2

441 7.071 · 10−2 2.262 · 10−4 4.524 · 10−2

1681 3.535 · 10−2 5.669 · 10−5 4.535 · 10−2

6561 1.767 · 10−2 1.418 · 10−5 4.538 · 10−2

25921 8.838 · 10−3 3.545 · 10−6 4.538 · 10−2

Plots of the solution of (3.1)–(3.2) are shown in Figure 3.3. The upper left plot
is computed with 36 nodes and 50 elements, and the upper right plot is computed
with 121 nodes and 200 elements. The 200 element grid is shown in Figure 3.1. The
solutions in the the two lower plots are computed with an 800 element grid with
441 nodes, and a 3200 element grid with 1681 nodes. We see that there is very little
difference between these two solutions. The solution computed with the finest grid
is visually almost identical to the analytical solution.

3.1.2 A Dipole Model of the Heart

In Chapter 2 we derived a simplified model for computing the electrical potential
in the body, where the heart was represented by a source term in the form of a
dipole. This model gives the potential distribution as the solution of (2.5)–(2.6). For
convenience we repeat the equations here:

−∇ · (M∇u) = f, x ∈ Ω, (3.15)

n · (M∇u) = 0, x ∈ ∂Ω, (3.16)

64 3. Computational Models

0
0 1

1

50 triangles

0

0.00558

0.0112

0.0167

0.0223

0.0279

0.0335

0.0391

0.0447

0.0502

0.0558

0
0 1

1

200 triangles

0

0.0062

0.0124

0.0186

0.0248

0.031

0.0372

0.0434

0.0496

0.0558

0.062

0
0 1

1

800 triangles

0

0.00624

0.0125

0.0187

0.025

0.0312

0.0374

0.0437

0.0499

0.0561

0.0624

0
0 1

1
3200 triangles

0

0.00625

0.0125

0.0187

0.025

0.0312

0.0375

0.0437

0.05

0.0562

0.0625

Fig. 3.3. Plots of the solution u of (3.1)–(3.2) for four different levels of grid refinement. (For
the color version, see Figure A.1 on page 287).

where we again note that the source term f needs to satisfy∫
Ω

fdx = 0,

for the boundary value problem to have a solution. As noted above, this problem is
fairly similar to the model problem (3.1)–(3.2) considered in the previous section.
The differences lie in the boundary conditions and the fact that we allow anisotropic
conductivity properties, which implies that M is a tensor quantity. The source term
f must also be adjusted to represent the dipole model of the heart. Many suitable
choices exist for this function. One example is

f(x) = a(e−‖x−x1‖/d − e−‖x−x2‖/d) (3.17)

where x1 and x2 denote the position of the positive and negative poles, respectively;
d is a parameter describing the size of each pole, and a describes the strength of
the poles. Figure 3.4 shows a plot of this function for a domain with dimensions
[−20, 20] × [−20, 20], and where x1 = (−4,−4), x2 = (4, 4), d = 5, and a = 1.

3.1. The Finite Element Method for the Torso 65

−20 −10 0 10 20
−20

−10

0

10

20

dipole

−0.994

−0.795

−0.596

−0.398

−0.199

−2.78e−17

0.199

0.398

0.596

0.795

0.994

Fig. 3.4. An example of the function f(x) in (3.15). (For the color version, see Figure A.2 on
page 288).

Following the procedure introduced above, we derive a weak formulation of this
problem by multiplying (3.15) by a test function ψ, and integrating over the domain
Ω. We get

−
∫

Ω

∇ · (M∇u)ψdx =
∫

Ω

fψdx, (3.18)

which by application of Green’s lemma gives∫
Ω

M∇u · ∇ψdx −
∫

∂Ω

n · M∇uψdx =
∫

Ω

fψdx. (3.19)

We see that the boundary integral vanishes because of the boundary condition (3.16),
and the result is the following weak formulation:

Find u ∈ V such that∫
Ω

M∇u · ∇ψdx =
∫

Ω

fψdx for all ψ ∈ V. (3.20)

Introducing a finite dimensional subspace Vh ⊂ V , and expanding the approximate
solution uh in terms of the basis functions in Vh, yields a system of linear equations

Au = b, (3.21)

66 3. Computational Models

that must be solved for the unknown nodal values uj , j = 1, . . . , n. The entries in
A and b are given by

Aij =
∫

Ω

M∇φi · ∇φjdx

bi =
∫

Ω

fφidx.

In the previous section, we discussed two alternative procedures for incorporat-
ing the Dirichlet boundary condition, either by adjusting the space V of possible
solutions, or by adjusting the final linear system. For the present case, the boundary
condition (3.16) is not explicitly present, either in the linear system or the spaces V
and Vh. However, this boundary condition was naturally incorporated in the weak
formulation, through the cancellation of the boundary integral in (3.19). Boundary
conditions that enter the finite element equations in this implicit manner are referred
to as natural boundary conditions. Boundary conditions such as (3.2), which must
be explicitly fulfilled by adjusting the linear systems, are called essential boundary
conditions.

It is important to note that the solution of (3.15)–(3.16) is only unique up to
an additive constant. This is easy to see by a simple examination of the equations.
For any function u that satisfies (3.15)–(3.16), we can add a constant, and the re-
sulting function will still satisfy both the differential equation and the boundary
condition. This is different from the problem (3.1)–(3.2), for which the specification
of u on the boundary ensures a unique solution. For the linear system (3.21), the
nonuniqueness of the solution has the effect that the matrix A is singular. This re-
quires some attention when solving the equations, because direct methods, such as
Gaussian elimination, will not work. One would assume that a mathematical model
with a nonunique solution would also cause problems for the practical applications
of the model. However, the main application of a model of this kind is to simulate
ECG signals, and for this purpose we are only interested in the potential difference
between different points on the surface of the body. These differences do not change
when a constant is added to the solution.

Figure 3.5 shows the solution of (3.15)–(3.16), with the source term defined by
(3.17), and the geometry and parameters specified above. The left panel shows the
potential distribution u, while the right panel shows the magnitude of the resulting
current. As described in Chapter 2, the current J is defined by

J = −M∇u.

For this example we have used a constant, scalar conductivity, corresponding to a
homogeneous, isotropic medium. The current will, therefore, be directly propor-
tional to the gradient of u, and in the figure it is easy to see that the magnitude of
the current is largest between the two dipoles, where we also have the largest gra-
dients in the potential field. Note also that although the boundary condition (3.16)
states that no current exits the domain, the magnitude of the current is not zero at
the boundary. It is sufficient that the current component normal to the boundary is
zero, i.e. that the current flows parallel to the boundary.

3.1. The Finite Element Method for the Torso 67

−20 −10 20100
−20

−10

0

10

20

u

−17.4

−13.9

−10.4

−6.96

−3.48

−0.003

3.48

6.95

10.4

13.9

17.4

−20 −10 20100
−20

−10

0

10

20

flux_magnitude

1.95e−06

0.349

0.698

1.05

1.4

1.75

2.1

2.44

2.79

3.14

3.49

Fig. 3.5. The solution resulting from the source term function f(x) given above. The left
panel shows the potential, while the right panel shows the magnitude of the current. (For the
color version, see Figure A.3 on page 288).

For practical applications, it is, of course, more relevant to consider (3.15)–
(3.16) in three space dimensions. The finite element discretization procedure in 3D
is completely analogous to the 2D case. For the purpose of using piecewise lin-
ear basis functions, the domain Ω is divided into nonoverlapping tetrahedra. The
basis functions are then defined according to (3.7), as piecewise linear functions
where basis function number i is equal to one in grid node i and zero in all other
grid nodes. Both the weak forms and the resulting linear equations given above
are independent of whether the geometry is two- or three-dimensional. Hence, the
linear system we need to solve is identical to (3.21), but with the integration now
performed over a three-dimensional domain, and the basis functions φi, φj defined
over the tetrahedron-shaped elements.

An example of a 3D simulation is shown in Figures 3.6 and 3.7. The dipole is
given by (3.17), with a = 100 and d = 1. The location of the two poles are shown
in Figure 3.6, while Figure 3.7 shows the resulting potential distribution on the torso
surface. The dipole is located closer to the front of the torso surface than to the back,
which results in the potential gradients on the front surface being more visible.

3.1.3 Known Potential on the Heart Surface

In Chapter 2 we also derived an alternative approach for computing the electrical
potential in the torso, based on the assumption that the potential distribution on
the surface of the heart is known. The situation is described by (2.7)–(2.9). For
convenience we repeat the equations here:

∇ · (M∇u) = 0 x ∈ T, (3.22)

n · M∇u = 0 x ∈ ∂T, (3.23)

u = u∂H x ∈ ∂H. (3.24)

68 3. Computational Models

Fig. 3.6. The location of the poles are shown as red and blue spheres. (For the color version,
see Figure A.4 on page 289).

Fig. 3.7. The electrical potential set up by the dipole. The colour scale is from -4mV to 4mV.
Note that the field is stronger on the front (left). (For the color version, see Figure A.5 on
page 289).

3.1. The Finite Element Method for the Torso 69

A schematic view of the two boundaries ∂T and ∂H is shown in Figure 2.1 in Chap-
ter 2. There are two important differences between this model and the previous ones:
there is no source term on the right hand side and the model has two distinct bound-
aries, each with different boundary conditions. On the outer surface of the body we
have a homogeneous Neumann condition similar to the dipole case, while on the in-
ner boundary, corresponding to the surface of the heart, we have a nonhomogeneous
Dirichlet condition.

A finite element discretization of this problem may be derived in the same way
as for the model problems above. The weak form associated with (3.22) is

∫
T

M∇u · ∇ψdx −
∫

∂H

(n · M∇u)ψdx −
∫

∂T

(n · M∇u)ψdx = 0, (3.25)

which is to be fulfilled for all choices of ψ within some suitable function space V . As
usual, n is the outward unit normal vector on the boundary. On the inner boundary
∂H , n will point out of the body, and into the heart. We see that the Neumann
boundary condition (3.23) on the outer boundary ∂T makes the surface integral
vanish on this part of the boundary. This is hence a natural boundary condition,
which is implicitly incorporated in the weak form.

Handling the essential boundary condition. For the Dirichlet condition on the inner
boundary ∂H , we use a technique similar to that introduced in Section 3.1.1. We
modify the technique slightly because for the present problem, the specified bound-
ary values u∂H are nonzero. As above, we first present a theoretical treatment of the
boundary conditions, and then a slightly different procedure that is more suitable for
practical use.

We first assume, as above, that all functions in V are zero on the inner boundary
∂H . We then construct a discrete subspace Vh ⊂ V , and approximate the solution
u as

u = ξ(x) +
n∑

j=1

ujφj , (3.26)

where ξ(x) is a known function that takes on the given values u∂H on the inner
boundary.

With this approximation of u, the problem is again reduced to determining the
parameters uj , j = 1, . . . , n. Following the standard Galerkin method, we use the
basis functions φi as test functions, and obtain

∫
T

M∇u · ∇φidx −
∫

∂H

n · M∇uφidx = 0 i = 1, . . . , n.

Since the basis functions φi vanish on ∂H , the boundary integral is zero, and we are
left with ∫

T

M∇u · ∇φidx = 0 i = 1, . . . , n.

70 3. Computational Models

Inserting the approximation (3.26) for u, we get

n∑
j=1

uj

(∫
T

M∇φj · ∇φidx

)
= −

∫
T

M∇ξ · ∇φidx for i = 1, . . . , n. (3.27)

This is a linear system that can be written in matrix form:

Au = b,

where the coefficients uj have been collected in the vector u. The coefficient matrix
A is given by

Aij =
∫

Ω

M∇φj · ∇φi,

and the right hand side vector contains integrals of the function ξ.
Expanding the approximate solution uh as (3.26) is suitable for a theoretical

discussion of the finite element method, but for practical applications it is common
to use a different technique. Instead of the expansion (3.26), we define the solution
space Vh with no assumption that the functions are zero on the boundary, and ex-
pand the solution according to (3.10). As for the case described in Section 3.1.1,
the essential boundary condition is then enforced by replacing the equations corre-
sponding to the boundary nodes with explicit statements that ensure that uh = u∂H

on the inner boundary. As described earlier, the equations that are adjusted in this
way are precisely the the ones that receive a contribution from the surface integral
over ∂H in (3.25). Hence, although this surface integral is not zero in this case, the
enforcement of the essential boundary condition ensures that it will not be present
in the final linear system. We can, therefore, safely disregard this boundary integral
in the finite element formulation.

3.2 The Heart Equations

The models considered so far in this chapter all give a very simplified description of
the electrical activity in the heart and the surrounding torso. They are all stationary
models, which describe the potential distribution in the body resulting from a given
source term. For a full description of the dynamical behavior of the potentials in the
heart and the body, we need more sophisticated models. We recall from Chapter 2
that the most complete model we derived was the bidomain model, given by (2.65)–
(2.72). To ease the discussion of computational techniques for this model, we repeat
the equations here.

∂s

∂t
= f(s, v, t) x ∈ H, (3.28)

∇ · (Mi∇v) + ∇ · (Mi∇ue) =
∂v

∂t
+ Iion(v, s) x ∈ H, (3.29)

∇ · (Mi∇v) + ∇ · ((Mi + Me)∇ue) = 0 x ∈ H, (3.30)

3.2. The Heart Equations 71

∇ · (Mo∇uo) = 0 x ∈ T, (3.31)

ue = uo x ∈ ∂H, (3.32)

n · (Mi∇v + (Mi + Me)∇ue) = n · (Mo∇uo)x ∈ ∂H, (3.33)

n · (Mi∇v + Mi∇ue) = 0 x ∈ ∂H, (3.34)

n · Mo∇uo = 0 x ∈ ∂T. (3.35)

In Section 2.2.3 we derived a simplified version called the monodomain model,
given by (2.35) and (2.36). If we combine this model with one of the models derived
in Section 2.4 for the ionic current term, we have a complete model given by

∂s

∂t
= f(s, v, t) x ∈ H, (3.36)

λ

1 + λ
∇ · (Mi∇v) =

∂v

∂t
+ Iion(v, s) x ∈ H, (3.37)

n · (Mi∇v) = 0 x ∈ ∂H. (3.38)

Compared with the models discussed in Section 3.1, both the monodomain
model and the bidomain model are significantly more complex. They are time-
dependent systems, which must be discretized in time as well as in space. They
also involve coupled systems of nonlinear ODEs and PDEs, which makes it much
more challenging to derive efficient numerical methods.

In this section we will present numerical methods for solving both the mon-
odomain model and the bidomain model. The methods are based on a technique
known as operator splitting, in combination with a finite difference discretization in
time. The spatial discretization of the equations will be based on a finite element
procedure, similar to the one we used for the simpler equations considered above.

3.2.1 Operator Splitting

Operator splitting is an attractive technique for solving coupled systems of PDEs,
since complex equation systems may be split into smaller parts that are easier to
solve. Several operator splitting techniques exist, but we will apply a class of meth-
ods often referred to as fractional step methods; see, e.g., [82]. To introduce this
technique, consider an initial value problem of the form

du

dt
= (L1 + L2)u, (3.39)

u(0) = u0, (3.40)

where L1 and L2 are operators on u, and u0 is a given initial condition. If we choose
a small time step ∆t, an approximate solution at t = ∆t may be computed by first
solving the problem

dv

dt
= L1(v) (3.41)

v(0) = u0, (3.42)

72 3. Computational Models

for t ∈ [0,∆t]. Thereafter, we solve the problem

dw

dt
= L2(w), (3.43)

w(0) = v(∆t), (3.44)

for t ∈ [0,∆t]. Note that the final value of the solution of (3.41), v(∆t), is used as
an initial condition in this step.

Although it may now seem that we have found an approximate solution after
a time interval 2∆t, we have only included parts of the right hand side in each
integration step. To see that the result w(∆t) is in fact a consistent approximation
to u(∆t), we perform a Taylor series expansion of both the original solution u, and
the approximation w obtained by the operator splitting. We have

u(∆t) = u0 + ∆t
du

dt

∣∣∣∣
0

+
∆t2

2
d2u

dt2

∣∣∣∣
0

+ O(∆t3).

From (3.39) we have
du

dt
= (L1 + L2)u,

and if L1 and L2 do not depend explicitly on t, we obtain by direct differentiation

d2u

dt2
= (L1 + L2)(L1 + L2)u,

for which we introduce the shorter notation

d2u

dt2
= (L1 + L2)2u.

Repeating these steps n times gives the general result

dnu

dtn
= (L1 + L2)nu,

where the notation (L1 +L2)n simply means that the operator (L1 +L2) is applied
n times to u.

Inserted into the Taylor series, this gives

u(∆t) = u0 + ∆t(L1 + L2)u0 +
∆t2

2
(L1 + L2)2u0 + O(∆t3). (3.45)

A similar Taylor expansion can be made for the solution v of the simplified equation
(3.41). We get

v(∆t) = u0 + ∆tL1u0 + ∆t2L2
1u0 + O(∆t3).

We now use the same series expansion for the solution of (3.43), with v(∆t) as the
initial condition. We get

w(∆t) = v(∆t) + ∆tL2v(∆t) + ∆t2L2
2v(∆t) + O(∆t3),

3.2. The Heart Equations 73

and inserting the series expansion for v(∆t) gives

w(∆t) = u0 + ∆t(L1 + L2)u0 +
∆t2

2
(L2

1 + 2L2L1 + L2
2)u0 + O(∆t3). (3.46)

The splitting error at t = ∆t is the difference between the operator splitting
solution w(∆t) and the solution u(∆t) of the original problem. Inserting the series
expansions (3.45) and (3.46), we get

w(∆t) − u(∆t) =
∆t2

2
(L1L2 − L2L1)u0 + O(∆t3).

We see that the error after one time step is proportional to ∆t2, and we expect this
error to accumulate to n∆t2 after n time steps. When solving the equations over
a fixed time interval, e.g. t ∈ [0, b], the number of time steps n is proportional to
∆t−1, and the error at t = b is therefore proportional to ∆t. The splitting method,
commonly referred to as Godunov splitting, is hence a first-order method.

By a small modification it is possible to make the splitting algorithm second-
order accurate. The idea is that instead of first solving (3.41) for a full time step of
length ∆t, we solve the problem for a time step of length ∆t/2. We then solve the
problem (3.43) for a full step of length ∆t, and finally (3.41) once more, again for
a time interval of length ∆t/2. The details of the three steps of the algorithm are as
follows. We first solve the problem

dv

dt
= L1(v), (3.47)

v(0) = u0, (3.48)

for t ∈ [0,∆t/2]. Then the problem

dw

dt
= L2(w), (3.49)

w(0) = v(∆t/2), (3.50)

is solved for t ∈ [0,∆t]. Finally, we solve

dv

dt
= L1(v), (3.51)

v(∆t/2) = w(∆t), (3.52)

for t ∈ [∆t/2,∆t]. This three-step algorithm is called Strang splitting.
To see that the Strang splitting gives second-order accuracy, we compute the

Taylor series expansion of the approximate solution v at t = ∆t. Following the
steps outlined above for the Godunov splitting, we first find a Taylor expansion of
the solution v of (3.47)–(3.48), at t = ∆t/2;

v(∆t/2) = u0 +
∆t

2
L1u0 +

∆t2

4
L2

1u0 + O(∆t3).

74 3. Computational Models

Using this as the initial condition for a Taylor expansion of the solution w(∆t) from
the second step, we get

w(∆t) = u0+
∆t

2
L1u0+∆tL2u0+

∆t2

8
L2

1u0+
∆t2

2
L2L1u0+

∆t2

2
L2

2u0+O(∆t3).

And finally, by a Taylor expansion of the third step, we find

v(∆t) = u0 + ∆t(L1 + L2)u0 +
∆t2

2
(L2

1 + L1L2 + L2L1 + L2
2)u0 + O(∆t3).

Comparing this with the Taylor expansion (3.45) of the solution of (3.39), we see
that the second-order terms in the local splitting error cancel, and we have

v(∆t) − u(∆t) = O(∆t3).

With the local error proportional to ∆t3, the accumulated error after n ∼ ∆t−1

steps is hence proportional to ∆t2.
We can derive a more compact notation for the operator splitting methods by

introducing the concept of solution operators. We introduce operators V and W ,
defined so that for a given time step ∆t, V (∆t) applied to u0 gives the solution of
(3.41) at t = ∆t, with u0 as initial condition. Similarly, W (∆t)u0 gives the solution
of (3.43) at t = ∆t, with u0 as initial condition. With this notation, the solution un

obtained by Godunov splitting at t = tn = n∆t is given by

un = (W (∆t)V (∆t))nu0.

As above, this is just a short notation for applying the combined operator (W (∆t)
V (∆t)) to u0 n times. The solution obtained with Strang splitting may be written
as

un = (V (∆t/2)W (∆t)V (∆t/2))nu0.

By introducing a parameter θ ∈ [0, 1], we can formulate a more general operator-
splitting algorithm, for which Godunov and Strang splitting are obtained as special
cases. One step of the general formulation may be written as

u(∆t) = V ((1 − θ)∆t)W (∆t)V (θ∆t)u0.

Noting that V (0) is simply the identity operator, we see that choosing θ = 0 or
θ = 1 gives two different versions of the Godunov splitting. The Strang splitting is
obtained by choosing θ = 1/2. By a Taylor series expansion similar to that above,
it can be shown that all choices of θ �= 1/2 give a first-order splitting scheme.
We are mostly interested in choosing θ so that we get either Strang splitting or
Godunov splitting, but other choices are possible. The greatest advantage of the
general θ-formulation of the operator splitting is that it leads to a very convenient
implementation of the algorithm, where the splitting method used can be varied by
adjusting a single parameter.

3.2. The Heart Equations 75

3.2.2 Operator Splitting for the Monodomain Model

So far, we have introduced the ideas of Godunov and Strang splitting for the general
initial value problem (3.39)–(3.40). To concretize the ideas, let us now apply the
algorithm to the monodomain model (3.37)–(3.38), as proposed by Qu and Garfinkel
[117].

Equation (3.37) can be written in the form (3.39), with the two operators defined
by

L1v = −Iion(v, s),

L2v =
λ

1 + λ
∇ · (Mi∇v).

With this definition of the two operators, the two subproblems in the splitting
method defined above become

∂v

∂t
= −Iion(v, s), (3.53)

∂v

∂t
=

λ

1 + λ
∇ · (Mi∇v). (3.54)

We see that the nonlinear PDE is reduced to a linear PDE and a nonlinear ODE.
Recall that in order to solve the monodomain model we are already required to solve
the ODE system (3.36), and this system may now be solved simultaneously with the
ODE (3.53) resulting from the splitting of the PDE. Assuming that vn = v(tn)
and sn = s(tn) are known, one time step of the splitting algorithm consists of the
following three operations:

1. Solve the system

∂v

∂t
= −Iion(v, s), v(tn) = vn,

∂s

∂t
= f(v, s), s(tn) = sn,

for tn < t ≤ tn + θ∆t. The solutions v and s at t = tn + θ∆t are denoted by
vn

θ and sn
θ , respectively.

2. Solve the linear PDE

∂v

∂t
=

λ

1 + λ
∇ · (Mi∇v), v(tn) = vn

θ , (3.55)

for tn < t ≤ tn+∆t, with the boundary condition (3.38). The resulting solution
v(tn + ∆t) is denoted by vn+1

θ .

3. Solve the system

∂v

∂t
= −Iion(v, s), v(tn + θ∆t) = vn+1

θ ,

∂s

∂t
= f(v, s), s(tn + θ∆t) = sn

θ ,

76 3. Computational Models

for tn + θ∆t < t ≤ tn + ∆t, to obtain the approximate solutions vn+1 and
sn+1 at t = tn + ∆t.

We are primarily interested in choosing θ = 1/2 and θ = 1, corresponding to the
Strang and Godunov splitting.

In the general discussion of the fractional step methods we did not comment
on the solution of the subproblems, implicitly assuming that these could be solved
analytically. For some problems this may be the case, but for all reasonably realistic
choices of cell models and geometry it is impossible to find analytical solutions of
the subproblems that result from the monodomain model. We will, therefore, need
to apply some numerical method for solving these problems. To obtain the over-
all second-order accuracy of the Strang splitting, we need to solve both the ODE
systems in Steps 1 and 3 and the PDE in Step 2 with at least second-order accu-
racy. Solving the subproblems with an accuracy much higher than second order will
yield no benefit, since the overall accuracy will still be limited by the splitting error.
Similarly, if Godunov splitting is used, it is of no benefit to solve the subproblem
equations with greater than first-order accuracy.

A large variety of methods exist for solving nonlinear ODE systems; see, e.g.,
[58,59]. Realistic ODE models for the cellular processes normally describe chemical
reactions with very different time scales. As will be discussed in more detail in
Chapter 5, this makes the equations stiff, and therefore challenging to solve with
numerical methods. Restrictions imposed by the coupling to the PDEs, as well as
the overall splitting error, must also be considered when choosing an ODE solver.
Among the methods that have been found suitable are various implicit Runge-Kutta
methods, preferably with a fairly low order of accuracy to match the accuracy of
the operator splitting. These methods will be described in more detail in Chapter 5.
Here, we focus on the discretization of the PDEs.

For solving the PDE in Step 2, we use a time discretization based on a θ-rule;
see, e.g., [79]. The θ-rule is a commonly used technique for the time discretization of
PDEs, in which the terms in the equation are computed as weighted averages of the
values from the current and the next time step. As for the operator splitting method
described above, θ is a parameter in [0, 1]. For different choices of the parameter θ
we get methods with different accuracy and characteristics. In our case, the use of
the θ-rule enables the accuracy of the PDE discretization to be matched easily to
that of the operator splitting scheme. Assuming that the current value vn = v(tn)
is known, we want to find the unknown field vn+1 at the next time step. A time
discretization based on the θ-rule approximates vn+1 from

vn+1 − vn

∆t
= θ

(
λ

1 + λ
∇ · (Mi∇vn+1)

)

+
(

(1 − θ)
λ

1 + λ
∇ · (Mi∇vn)

)
. (3.56)

We see that a simple finite difference approximation is used for the time derivative,
and the right hand side is a weighted average of values from the current and the
next time step. For the choice θ = 1, the diffusion term on the right hand side is

3.2. The Heart Equations 77

approximated at time tn+1, giving the implicit backward Euler method. For θ = 0
the scheme is easily recognized as the forward Euler scheme, which gives an explicit
formula for the unknown field vn+1. Because of its poor stability properties (see,
e.g., [139]) or the discussion of ODE solvers in Chapter 5, this method is not very
suitable for our application. Setting θ = 1/2 gives the Crank-Nicolson scheme,
which is second-order accurate with respect to time2. It can be shown that for all
choices of θ �= 1/2, the resulting scheme is first-order accurate. By using the same
value of θ for the PDE discretization and the operator splitting, we see that the
accuracy matches well.

The time-discrete PDE (3.56) may be discretized in space with a finite element
method similar to the ones introduced for the simple model problems. As above,
we multiply the equation with a test function and integrate over the entire domain
H . Applying Green’s lemma, we find that the weak formulation corresponding to
(3.56) is∫

H

vn+1ψdx + θγ

∫
H

Mi∇vn+1 · ∇ψdx − θγ

∫
∂H

n · Mi∇vn+1ψds

=
∫

H

vnψdx + (1 − θ)γ
∫

∂H

n · Mi∇vnψds

− (1 − θ)γ
∫

H

Mi∇vn · ∇ψdx for all ψ ∈ V.

For convenience of notation, we have introduced

γ =
∆tλ

1 + λ
.

We see that the boundary integral terms vanish because of the boundary condition
(3.38), and we obtain the following weak form:
Find vn+1 ∈ V such that∫

H

vn+1ψdx + θγ

∫
H

Mi∇vn+1 · ∇ψdx

=
∫

H

vnψdx − (1 − θ)γ
∫

H

Mi∇vn · ∇ψdx for all ψ ∈ V,

(3.57)

for some suitable function space V .
As above, we introduce a finite dimensional subspace Vh ⊂ V , and approximate

vn+1 as a linear combination of basis functions,

vn+1 =
n∑

j=1

vjφj ,

2 Recall from above that the finite element method for the simple stationary problems was
second-order accurate with respect to space. This will also be the case when the finite
element method is applied to the present problem, so that the spatial discretization is always
second-order accurate.

78 3. Computational Models

where φj , j = 1, . . . , n are basis functions spanning Vh, and vj are scalars. We insert
this approximation into (3.57), and use the basis functions φi as weight functions.
This gives the finite element equations

n∑
j=1

vj

∫
H

φjφidx + θγ
n∑

j=1

vj

∫
H

Mi∇φj · ∇φidx

=
∫

H

vnφidx − (1 − θ)γ
∫

H

Mi∇vn · ∇φidx, i = 1, . . . , n

(3.58)

which is a system of linear equations that can be written in the form

Av = b.

The matrix and the right side vector are given by

Aij =
∫

H

φjφidx + θγ

∫
H

Mi∇φj · ∇φidx,

and

bi =
∫

H

vnφidx − (1 − θ)γ
∫

H

Mi∇vn · ∇φidx.

To summarize, we have seen that we can solve the monodomain model, given
by (3.36)–(3.38), in a sequential manner, by alternately solving a nonlinear system
of ODEs and a linear PDE. The PDE may be discretized in time with a θ-rule,
and in space with a finite element method. Solving the original problem has thus
been reduced to solving nonlinear systems of ODEs, and solving the discretized
PDE in the form of a system of linear algebraic equations. Methods for solving the
ODE systems will be presented in Chapter 5, while solvers for linear systems are
discussed in Chapter 4.

3.2.3 Operator Splitting for the Bidomain Model

The splitting algorithm outlined above for the monodomain model may also be ap-
plied to the full bidomain model, as described in [132]. Assuming now that the
operators L1 and L2 in (3.39) can also be functions of the extracellular potential ue,
we write (3.29) on the form (3.39), with

L1v = −Iion(v, s),
L2v = ∇ · (Mi∇v) + ∇ · (Mi∇ue).

Applying the θ-formulation of the operator splitting introduced above, the result
is a three-step algorithm very similar to the one used for the monodomain model.
Again, we assume that vn = v(tn) and sn = s(tn) are known, and perform the
following steps to determine vn+1 and sn+1.

3.2. The Heart Equations 79

1. Solve the system

∂v

∂t
= −Iion(v, s), v(tn) = vn,

∂s

∂t
= f(v, s), s(tn) = sn,

for tn < t ≤ tn + θ∆t. As above, the solutions v and s at t = tn + θ∆t are
denoted by vn

θ and sn
θ , respectively.

2. Solve the linear PDE system

∇ · (Mi∇v) + ∇ · (Mi∇ue) =
∂v

∂t
, in H (3.59)

∇ · (Mi∇v) + ∇ · ((Mi + Me)∇ue) = 0, in H (3.60)

∇ · (Mo∇uo) = 0, in T (3.61)

with v(tn) = vn
θ , for tn < t ≤ tn + ∆t, with the boundary conditions (3.32)–

(3.35). The resulting solution v(tn + ∆t) is denoted by vn+1
θ .

3. Solve the system

∂v

∂t
= −Iion(v, s), v(tn + θ∆t) = vn+1

θ ,

∂s

∂t
= f(v, s), s(tn + θ∆t) = sn

θ ,

for tn + θ∆t < t ≤ tn + ∆t, to obtain the final approximate solutions vn+1

and sn+1 at t = tn + ∆t.

We see that Step 1 and Step 3 in this algorithm are equal to the steps described for
the monodomain model. However, Step 2 is considerably more complex, because
we now have to solve three coupled PDEs, defined over two different domains.

For simplicity, we first consider the simpler case of a heart that is surrounded by
an insulating material. In this case (3.61) does not apply, and Step 2 in the algorithm
reduces to solving the PDE system (3.59)–(3.60), with boundary conditions

n · (Mi∇v + Mi∇ue) = 0, on ∂H, (3.62)

n · (Me∇ue) = 0, on ∂H. (3.63)

We want to derive a discrete version of these equations. We use an approach similar
to the one used for the monodomain model in Section 3.2.3, with a θ-rule for time
discretization and a finite element method in space. Applying this scheme to (3.59)–
(3.60) gives the time discrete PDE system

vn+1
θ − vn

∆t
= θ∇ · (Mi∇vn+1

θ) + (1 − θ)∇ · (Mi∇vn
θ)

+ ∇ · (Mi∇un+θ
e), (3.64)

θ∇ · (Mi∇vn+1
θ) + ∇ · ((Mi + Me)∇un+θ

e) = −(1 − θ)∇ · (Mi∇vn
θ), (3.65)

80 3. Computational Models

which must be solved to find the unknown potential fields vn+1
θ and un+θ

e . Here
un+θ

e denotes an approximation to ue at time tn + θ∆t. For instance, ue will be
approximated at the midpoint of each time step if we choose θ = 1/2.

The time-discrete system (3.64)–(3.65) must also be discretized in space. As for
the monodomain model, we use a finite element method, for which the starting point
is the weak formulation of the equations. To simplify the notation, we introduce the
inner products

(ϕ, φ) =
∫

H

ϕφ dx, for ϕ, φ ∈ V,

aI(ϕ, φ) =
∫

H

Mi∇ϕ · ∇φ dx, for ϕ, φ ∈ V,

aI+E(ϕ, φ) =
∫

H

(Mi + Me)∇ϕ · ∇φ dx, for ϕ, φ ∈ V.

As above, V denotes the function space in which we seek the solution. The upper-
case subscripts on the inner products are used to avoid confusion with the use of the
index i for the basis functions.

Multiplying (3.64)–(3.65) with a test function φ and integrating over the domain
gives the following weak formulation:

Find vn+1
θ , un+θ

e ∈ V such that

(vn+1
θ , ψ) + θ∆taI(vn+1

θ , ψ) + ∆taI(un+θ
e , ψ)

− θ∆t

∫
∂H

ψ[(Mi∇vn+1
θ) · n]ds −

∫
∂H

ψ[(Mi∇un+θ
e) · n]ds

= (vn
θ , ψ) − (1 − θ)∆taI(vn

θ , ψ)

+ (1 − θ)∆t

∫
∂H

ψ[(Mi∇vn
θ) · n]ds for all ψ ∈ V, (3.66)

− θaI(vn+1
θ , ψ) − aI+E(un+θ

e , ψ) + θ

∫
∂H

ψ[(Mi∇vn+1
θ) · n]ds

+ (1 − θ)
∫

∂H

ψ[(Mi∇vn
θ) · n]ds +

∫
∂H

ψ[(Mi∇un+θ
e) · n]ds

+
∫

∂H

ψ[(Me∇un+θ
e) · n]ds = 0 for all ψ ∈ V. (3.67)

The boundary condition (3.63) must be fulfilled for all time steps, and this causes
the last boundary integral term in (3.67) to vanish. The other boundary condition,
(3.62), is slightly more complicated to include because our numerical scheme will,
in general, approximate v and ue at different time points. We therefore introduce a
time-discrete version of this condition, given by

n · (θMi∇vn+1
θ + (1 − θ)Mi∇vn

θ + Mi∇un+θ
e) = 0. (3.68)

3.2. The Heart Equations 81

This condition causes the three boundary integrals in (3.66) to cancel, as well as the
remaining three boundary terms in (3.67). The equations are hence reduced to

(vn+1
θ , ψ) + θ∆taI(vn+1

θ , ψ) + ∆taI(un+θ
e , ψ)

= (vn
θ , ψ) − (1 − θ)∆taI(vn

θ , ψ) for all ψ ∈ V, (3.69)

∆taI(vn+1
θ , ψ)+

∆t

θ
aI+E(un+1

e , ψ) = −∆t
1 − θ

θ
aI(vn

θ , ψ) for all ψ ∈ V.

(3.70)

We multiplied the second equation by ∆t/θ in order to obtain a symmetric coeffi-
cient matrix in the final linear system. Recall that choosing θ = 0 corresponds to the
forward Euler method, which, as noted above, is not of interest for this application.
Hence, dividing the equation by θ does not cause any problems.

Introducing a finite element representation of the heart domain, with basis func-
tions φj , j = 1, . . . , n, the solution fields u and v can be approximated by

vn+1
θ ≈ vh =

n∑
j=1

vjφj ,

un+θ ≈ uh =
n∑

j=1

ujφj .

Inserting these expressions into (3.69)–(3.70), we get finite element equations of the
form

n∑
j=1

vj(φj , φi) + θ∆t

n∑
j=1

vjaI(φj , φi) + ∆t

n∑
j=1

ujaI(φj , φi)

= (vn
θ , φi) − (1 − θ)∆taI(vn

θ , φi) i = 1, . . . , n, (3.71)

∆t

n∑
j=1

vjaI(φj , φi) +
∆t

θ

n∑
j=1

ujaI+E(φj , φi)

= −∆t
1 − θ

θ
aI(vn

θ , φi) i = 1, . . . , n. (3.72)

This is a linear system of equations with unknowns vj , uj , j = 1, . . . , n. Collecting
the unknowns into vectors v and u, the linear system may be written in matrix form:

[
A B

BT C

] [
v
u

]
=
[

a
b

]
(3.73)

82 3. Computational Models

The block matrices in this linear system arise from the terms in (3.71)–(3.72), and
are given by

Aij = (φj , φi) + θ∆taI(φj , φi),
Bij = ∆taI(φj , φi),

Cij =
∆t

θ
aI+E(φj , φi),

ai = (vn
θ , φi) − (1 − θ)∆taI(vn

θ , φi),

bi = −∆t
1 − θ

θ
aI(vn

θ , φi).

We see that the result of applying the operator-splitting algorithm to the bido-
main model is very similar to that which we observed above for the monodomain
model. The original system of nonlinear PDEs and ODEs is reduced to systems of
nonlinear ODEs and linear PDEs, which are solved sequentially to obtain an ap-
proximate solution. The difference from the monodomain model is that we have to
solve a system of PDEs in Step 2 of the algorithm. Using a θ-rule for the time dis-
cretization and a Galerkin finite element method in space, we end up with a block
structured linear system of the form (3.73) to be solved for each time step. As will be
described in Chapter 4, the structure of the linear system may be utilized to construct
efficient solvers for this system.

3.3 Coupling the Heart and the Torso

In the previous section we studied the monodomain model and the bidomain model
for a heart surrounded by a nonconductive material. While this may be relevant for
various experimental settings, we are more interested in the case where the heart
is surrounded by a conducting body. In this case, we need to solve the full system
(3.59)–(3.61), with boundary conditions (3.32)–(3.35), in Step 2 of the operator-
splitting algorithm. To derive the weak form in this case we first introduce two
function spaces for the solutions v, ue, and uo. As above, v and ue will be found
in a function space V , defined over the domain H . We now denote this function
space by V (H). The extracardiac potential field uo is found in a similar function
space defined over the torso domain T , which we denote by V (T). Again we refer
to Figure 2.1 in Chapter 2 for a schematic view of the two domains. To simplify the
notation, we define an additional inner product:

aT (ϕ, φ) =
∫

T

Mo∇ϕ · ∇φdx, for ϕ, φ ∈ V (T).

Multiplying (3.59)–(3.60) with a test function ψ ∈ V (H), and (3.61) with a test
function η ∈ V (T), and integrating over the respective domains, gives the weak

3.3. Coupling the Heart and the Torso 83

formulations

(vn+1
θ , ψ) + θ∆taI(vn+1

θ , ψ) + ∆taI(un+θ
e , ψ)

− θ∆t

∫
∂H

ψ[(Mi∇vn+1
θ) · n]ds − θ

∫
∂H

ψ[(Mi∇un+θ
e) · n]ds

= (vn
θ , ψ) − (1 − θ)∆taI(vn

θ , ψ)

+ (1 − θ)∆t

∫
∂H

ψ[(Mi∇vn
θ) · n]ds for all ψ ∈ V (H), (3.74)

− θaI(vn+1
θ , ψ) − aI+E(un+θ

e , ψ) + θ

∫
∂H

ψ[(Mi∇vn+1
θ) · n]ds

+ (1 − θ)
∫

∂H

ψ[(Mi∇vn
θ) · n]ds +

∫
∂H

ψ[(Mi∇un+θ
e) · n]ds

+
∫

∂H

ψ[(Me∇un+θ
e) · n]ds = 0 for all ψ ∈ V (H), (3.75)

− aT (un+1
o , η) +

∫
∂H

φ[(Mo∇un+θ
o) · nT]ds

+
∫

∂T

η[(Mo∇un+θ
o) · nT]ds = 0 for all φ ∈ V (T). (3.76)

Note that uo is approximated at time points tn + θ∆t, indicated by the notation
un+θ

o . Approximating this field at the same time points as ue is natural because of
the boundary conditions along ∂H , which give a strong coupling between these two
fields. The boundary condition (3.34) is identical to the case of an insulated heart,
and the time-discrete version (3.68) causes the boundary integrals in (3.74), as well
as the first two boundary integrals in (3.75), to vanish. Furthermore, the condition
(3.35) forces the integral over the outer boundary in (3.76) to zero. The system is
reduced to

(vn+1
θ , ψ) + θ∆taI(vn+1

θ , ψ) + ∆taI(un+θ
e , ψ)

= (vn
θ , ψ) − (1 − θ)∆taI(vn

θ , ψ), for all ψ ∈ V (H), (3.77)

− θaI(vn+1
θ , ψ) − aI+E(un+θ

e , ψ)

+
∫

∂H

ψ[(Me∇un+θ
e) · n]ds = 0 for all ψ ∈ V (H), (3.78)

−aT (un+θ
o , η) +

∫
∂H

η[(Mo∇un+θ
o) · nT]ds = 0 for all η ∈ V (T). (3.79)

We can use the continuity condition (3.32) to construct a new field u, defined
over the complete domain H ∪ T ,

un+θ =
{

un+θ
e for x ∈ H

un+θ
o for x ∈ T

.

84 3. Computational Models

We also define a function space V (H ∪ T), where this new field belongs. Because
all functions u ∈ V (H ∪ T) must be continuous over ∂H , it is natural to define the
space V (H ∪ T) to be the set of functions defined over H ∪ T that belong to both
V (H) and V (T), and are continuous over ∂H . We also assume that all functions in
V (H) and V (T) can be obtained as restrictions of functions in V (H∪T). Following
this definition, the test functions ψ and η used in (3.78) and (3.79) may be replaced
by a single test function ϕ ∈ V (H ∪ T). The two weakly formulated equations can
now be written

− θaI(vn+1
θ , ϕ) − aI+E(un+θ

e , ϕ)

+
∫

∂H

ϕ[(Me∇un+θ
e) · n]ds = 0 for all ϕ ∈ V (H ∪ T),

−aT (un+θ
o , ϕ) −

∫
∂H

ϕ[(Mo∇un+θ
o) · n]ds = 0 for all ϕ ∈ V (H ∪ T).

Note here that the negative sign in front of the boundary integral in the second equa-
tion occurs because n is a unit normal vector pointing into the domain T , instead
of the outward normal vector that is normally used. The definition of the space
V (H ∪ T), and the requirement that all functions in V (H) and V (T), can be seen
as restrictions of functions in V (H ∪T), ensures that these equations are equivalent
to (3.78)–(3.79). If we add these two equations, we see that the boundary integrals
cancel. If we also replace the fields ue and uo with the combined field u, we get

−θaI(vn+1
θ , ϕ) − aI+E(un+θ, ϕ) − aT (un+θ, ϕ) = 0. (3.80)

Again, the definition of the function space V (H ∪ T), and the fact that the inner
products aI+E(·, ·) and aT (·, ·) are defined over nonoverlapping domains, ensures
that we can add the equation without any loss of information.

With (3.78) and (3.79) replaced by (3.80), the complete weak formulation can
be written as:

Find vn+1 ∈ V (H) and un+θ ∈ V (H ∪ T) such that

(vn+1
θ , ψ) + θ∆taI(vn+1

θ , ψ) + ∆taI(un+θ, ψ)
= (vn

θ , ψ) − (1 − θ)∆taI(vn, ψ) for all ψ ∈ V (H), (3.81)

∆taI(vn+1, ϕ) +
∆t

θ
aI+E(un+θ, ϕ) +

∆t

θ
aT (un+θ, ϕ)

= −1 − θ

θ
aI(vn

θ , ϕ) for all ϕ ∈ V (H ∪ T). (3.82)

As above, we discretize the weak formulation by defining finite element grids
for the domains H and H ∪ T , and use these grids to define discrete subspaces
Vh(H) and Vh(H ∪ T). Since the domain H ∪ T is an extension of the H domain,
the discrete space Vh(H ∪ T) will normally have more basis functions than the
space Vh(H). As usual, the two solutions are approximated by the sums

3.4. Numerical Experiments 85

vn+1
θ ≈ vh =

n∑
j=1

vjφj ,

un+θ ≈ uh =
m∑

j=1

ujφj ,

where n and m are the number of basis functions in V (H) and V (H ∪ T), re-
spectively. We will normally have m > n. Inserting these approximations into the
weak form (3.81)–(3.82), and using the basis functions as test functions, we obtain
a system of linear equations that can be written in matrix-vector form:[

A B
BT C

] [
v
u

]
=
[

a
b

]
. (3.83)

We see that the structure of this system is identical to the one we obtained for the
insulated heart, but the definition of the blocks is slightly different:

Aij = (φj , φi) + θ∆taI(φj , φi), i, j = 1, . . . n,

Bij = ∆taI(φj , φi), i = 1, . . . n, j = 1, . . . ,m,

Cij =
∆t

θ
aI+E(φj , φi) +

∆t

θ
aT (un+θ, φ),i, j = 1, . . . m,

ai = (vn
θ , φi) − (1 − θ)∆taI(vn, φi), i = 1, . . . , n,

bi = −∆t
1 − θ

θ
aI(vn

θ , φi), i = 1, . . . ,m.

Comparing with the block matrices resulting from the insulated heart model, we
see that there is an additional term in block C, involving an integral over the torso
domain T . Another important difference is the fact noted above that in general n �=
m, which implies that the dimensions of the matrices are not equal. Specifically,
blocks A and C will be square matrices with different sizes, i.e.,

A ∈ R
n,n,

C ∈ R
m,m,

and B will be a rectangular matrix,

B ∈ R
n,m.

However, in spite of these differences the method for solving this system will be the
same as that used for the system that results from the insulated heart model. Algo-
rithms for solving such systems of linear equations will be presented in Chapter 4.

3.4 Numerical Experiments

3.4.1 Convergence Tests

For the simple test cases in Section 3.1, we found the convergence rate by compar-
ing our numerical results to the analytical solution. For the bidomain model we do

86 3. Computational Models

not know the analytical solution, and this complicates the process of determining
convergence rates for the numerical method.

When analytical solutions are not available, an alternative approach for comput-
ing convergence rates is to use a numerical solution as the reference. For the error
estimates to be reliable it is, of course, essential that this numerical solution is very
accurate, which places strict demands on the spatial and temporal resolution. For
problems in two and three spatial dimensions, the resolution requirements may eas-
ily lead to a problem that is almost impossible to solve, because of the huge number
of unknowns.

A very accurate numerical solution may be computed if we restrict ourselves to
the consideration of problems with circular or spherical geometries. For a suitable
choice of initial conditions and conductivity values the solution will, in this case,
always be symmetric, with the spatial variations depending only on the distance r
from the centre of the domain. Therefore, if formulated in polar coordinates, the
equations may be solved as a one-dimensional problem, which allows a very high
spatial resolution. The 1D solution may then be converted back to the two- or three-
dimensional case, and used as a reference solution for checking numerical errors
and convergence rates.

A potential problem with using a numerical solution as reference, regardless
of whether a radial formulation or a more general numerical solution is used, is
that the results may converge towards the wrong solution. It is convenient to use
the same software for computing the reference solution that we use for the normal
solutions, by simply increasing the spatial and temporal resolutions. Then, if there is
something wrong in the implementation, the convergence tests may very well give
good results, but the convergence will be towards the wrong solution. However, for
complicated problems such as the present one, there are few options other than to
use a numerical solution as the reference. Still, the problem needs to be considered
when the tests are performed, so that care is taken to avoid this type of error.

In the two-dimensional case, the relations between Cartesian and polar coordi-
nates are given by

x = r cos φ, y = r sinφ,

with the inverse relations

r =
√

x2 + y2, φ = arctan
(y

x

)
. (3.84)

From this, we get
∂u

∂x
=

∂u

∂r

∂r

∂x
+

∂u

∂φ

∂φ

∂x
,

and since we have assumed circular symmetry, ∂u/∂φ = 0. From (3.84) we have
∂r/∂x = cos φ, and we get

∂u

∂x
=

∂u

∂r

∂r

∂x
= (cos φ)

∂u

∂r
.

We differentiate this expression once more to obtain

∂2u

∂x2
=

∂

∂x

(
(cos φ)

∂u

∂r

)
=

∂(cos φ)
∂x

∂u

∂r
+ (cos φ)

∂

∂x

∂u

∂r
,

3.4. Numerical Experiments 87

and using the chain rule gives

∂2u

∂x2
=

∂(cos φ)
∂φ

∂φ

∂x

∂u

∂r
+ (cos φ)

∂

∂r

∂u

∂r

∂r

∂x
.

Inserting
∂φ

∂x
= − (sin φ)

r
,

which we get from (3.84), gives

∂2u

∂x2
=

sin2 φ

r

∂u

∂r
+ (cos2 φ)

∂2u

∂r2
.

Similar calculations give
∂u

∂y
= (sin φ)

∂u

∂r
,

and
∂2u

∂y2
=

cos2 φ

r

∂u

∂r
+ (sin2 φ)

∂2u

∂r2
.

A radial formulation of the monodomain model. For simplicity, we assume con-
stant, scalar conductivities. This does not lead to a serious loss of generality, since
we already know that the conductivity must be constant in the φ direction to get a
symmetric solution. In addition, it can be shown for this circular symmetric case
that the only significant value in the conductivity tensor is the conductivity in the
r direction. Denoting the scalar intracellular conductivity by mi, the monodomain
model can be written as

∂v

∂t
+ Iion =

miλ

1 + λ

(
∂2v

∂x2
+

∂2v

∂y2

)
.

Inserting the expressions above for the spatial derivatives, we get

∂v

∂t
+ Iion =

miλ

1 + λ

(
(cos2 φ)

∂2v

∂r2
+

sin2 φ

r

∂v

∂r
+ (sin2 φ)

∂2v

∂r2
+

cos2 φ

r

∂v

∂r

)
,

which reduces to
∂v

∂t
+ Iion =

miλ

1 + λ

(
∂2v

∂r2
+

1
r

∂v

∂r

)
.

After multiplication with r, this equation can be written

r
∂v

∂t
+ rIion =

miλ

1 + λ

∂

∂r

(
r
∂v

∂r

)
. (3.85)

This equation can be discretized with the technique used for the original mon-
odomain model. An operator splitting technique is used to separate the nonlinear
term from the PDEs, resulting in a three-step algorithm as presented in Section

88 3. Computational Models

3.2.2. The nonlinear ODE system in Steps 1 and 3 is identical to the one for the
original model. The linear PDE, now defined over a one-dimensional domain, is
slightly different from the Cartesian formulation, but the steps in the discretization
of the equation are still exactly the same. We use the θ-rule in time, and introduce
a 1D finite element space for the solution. Deriving a weak form and following the
steps described above then gives a system of linear equations:

Av = b.

The unknown vector v contains the nodal values vj , j = 1, . . . , n, and A and b are
defined as

Aij =
∫

H

rφiφjdx + θγ

∫
H

rmi∇φi · ∇φj ,

bi =
∫

H

rvnφidx − (1 − θ)γ
∫

H

rmi∇vn · ∇φidx.

The left panel of Figure 3.8 shows a circular grid used for convergence tests
with the monodomain model. The right panel shows the transmembrane potential
at t = 40 ms, computed with this fairly coarse grid. The dimension of the grid is
given in centimeters, which gives a node spacing of approximately 2 mm, and the
size of the time step is 1 ms. The FitzHugh-Nagumo model is used for the cellular
reactions, and the initial condition is

v =
{
−20 mV for r ≤ 0.2 cm,
−80 mV for r > 0.2 cm.

This initial condition produces a circular excitation wave that travels from the centre
of the circle towards the boundary. We see that the contours shown in the right panel

−1 0 1
−1

0

1

−1 0 1
−1

0

1
−80

−80

−8
0

−80

−80

−
80

−8
0

−50

−50

−50

−5
0

−50

−2
0

−20
−20

−20

−20

10

10

10

10

Fig. 3.8. The left panel shows the circular grid used in convergence tests for the monodomain
model, while the right panel is a coarse numerical solution at t = 40 ms.

3.4. Numerical Experiments 89

0 0.5 1
−100

−80

−60

−40

−20

0

20

40

0 0.5 1
−100

−80

−60

−40

−20

0

20

40

Fig. 3.9. The solution of the monodomain model for a circular domain. A 2D solution plotted
along two different lines is compared to a reference solution computed with the radial formu-
lation of the equations. The left panel shows solutions for t = 20 ms, and the right panel at
t = 50 ms.

of the figure are not completely circular, which indicates that the grid used for this
computation is too coarse to produce satisfactory results.

Figure 3.9 shows solutions from the coarse circular grid compared to a reference
solution computed with the radial formulation of the equations. The solid lines show
the reference solution at t = 20 ms and t = 50 ms, the dotted curves show the 2D
solutions plotted along the line from (0,0) to (1,0), while the dashed curves are
plotted along the line from (0,0) to (

√
2,
√

2). We see that there is a significant
difference between the 2D solutions and the reference solution. Because the 2D
solution is not completely circular, there is also a visible difference between the
curves plotted along the two lines.

Convergence results for the monodomain model coupled to the FitzHugh-Nagumo
equations are shown in Table 3.2. The table shows the L2 norm of the error, which
is computed by comparing circular 2D solutions to the reference solution obtained
using the radial formulation of the model. The reference solution is computed with
θ = 1/2, ∆t = 0.001 ms and h = 0.00625 mm. The errors are computed at t = 10
ms, and results are presented for both Strang splitting (θ = 1/2) and Godunov
splitting (θ = 1). We see that the solutions converge to the reference solution with
the expected convergence rates. For Godunov splitting, the convergence is approx-
imately first-order, and close to second-order convergence rates are observed for
Strang splitting.

A radial formulation of the bidomain equations. Although more complicated, for-
mulating the bidomain equations in polar coordinates involves exactly the same
steps as the transformation of the monodomain model. Again, we assume scalar,

90 3. Computational Models

Table 3.2. Convergence results for the monodomain model, with the FitzHugh-Nagumo cell
model. The columns marked eθ=1 and αθ=1 show the L2 error and the estimated convergence
rate for Godunov splitting, while the columns marked eθ=1/2 and αθ=1/2 show similar results
for Strang splitting. The unit for the time step size is milliseconds, while the spatial resolution
h is given in millimeters.

∆t h eθ=1 αθ=1 eθ=1/2 αθ=1/2

0.25 0.5 0.18979 - 0.160208 -
0.125 0.25 0.08159 1.217 0.04121 1.958

0.0625 0.125 0.04066 1.004 0.01044 1.980
0.03125 0.0625 0.02085 0.963 0.00261 1.999

constant conductivities, and each term involving spatial second derivatives is han-
dled exactly as for the monodomain model. We end up with the system

∂

∂r

(
mir

∂v

∂r

)
+

∂

∂r

(
mir

∂ue

∂r

)
= r

∂v

∂t
+ rIion r ∈ H, (3.86)

∂

∂r

(
mir

∂v

∂r

)
+

∂

∂r

(
(mi + me)r

∂ue

∂r

)
= 0 r ∈ H, (3.87)

∂

∂r

(
mT r

∂uo

∂r

)
= 0 r ∈ T, (3.88)

with boundary conditions

∂v

∂r
+

∂ue

∂r
= 0 r ∈ ∂H, (3.89)

ue = uo r ∈ ∂H, (3.90)

∂

∂r
(meue) =

∂

∂r
(mT uo) r ∈ ∂H, (3.91)

∂

∂r
(mT uo) = 0 r ∈ ∂T. (3.92)

These equations can be discretized and solved in exactly the same way as for the
standard, Cartesian formulation of the bidomain equations. The result is a block-
structured linear system of the form (3.83). With a redefinition of the inner products
defined above, to

(v, φ) =
∫

H

rvφ dx,

aI(v, φ) =
∫

H

rmi∇v · ∇φ dx,

aI+E(v, φ) =
∫

H

r(mi + me)∇v · ∇φ dx,

aT (v, φ) =
∫

H

rmo∇v · ∇φ dx,

the definition of the matrix blocks is also the same as for the system (3.83).

3.4. Numerical Experiments 91

Table 3.3. Convergence results for the bidomain model, with the cell model by Winslow et al.
[145]. The columns marked eθ=1 and αθ=1 show the L2 error and the estimated convergence
rate for Godunov splitting, while the columns marked eθ=1/2 and αθ=1/2 show similar results
for Strang splitting.

∆t h eθ=1 αθ=1 eθ=1/2 αθ=1/2

0.25 0.5 10.9339 - 7.65882 -
0.125 0.25 4.69081 1.2209 2.7012 1.5035
0.0625 0.125 2.79365 0.7477 2.16758 0.3175
0.03125 0.0625 1.84566 0.5980 0.745513 1.5398
0.015625 0.03125 1.09955 0.7472 0.196549 1.9233

The radial formulation of the bidomain model has been used to compute a
reference solution, on a circular domain where the heart H occupies the region
0 < r ≤ 1.0 and the surrounding torso T is 1.0 < r ≤ 1.4. The reference solution
was computed on a grid with a total of 2241 nodes, which gives a nodal distance h
of 0.00625 mm. The time step used is ∆t = 0.001 ms. It is clear that this resolution
level would be difficult to achieve on a two- or three-dimensional domain, because
the number of unknowns would become too large to handle. Table 3.3 shows con-
vergence results for the bidomain model, using the cell model by Winslow et al.
[145]. Only the errors in the transmembrane potential v are reported,and the error
is measured at t = 3 ms. As above, the error is measured in the L2 norm. We see
that the results are similar to those for the monodomain model, although the conver-
gence results are slightly less favourable. For the choice θ = 1, which combines a
Godunov splitting with the backward Euler method, we see less than first-order ac-
curacy, while the algorithm that combines Strang splitting with the Crank-Nicolson
discretization gives an accuracy close to order two on the finer grids. The more vari-
able results seen in this computation compared to the previous one may be caused
by the very rapid dynamics of the applied cell model. Compared to the FitzHugh-
Nagumo model, the model by Winslow et al. has a very rapid upstroke, which leads
to sharp gradients in the solution. This places stricter demands on the spatial reso-
lution required to observe consistent convergence results.

The limitations of the present approach, where a numerical solution is used as
the reference for convergence estimates, were discussed above. Although the con-
vergence of the algorithms is confirmed, our confidence in the results depends on
our confidence in the correctness of the numerical reference solution. Furthermore,
the tests are performed on highly idealized geometries, and we can only assume
that the demonstrated convergence properties hold for more realistic experiments.
Still, for a complex model like the bidomain model, it is difficult to come up with
good alternatives to this type of convergence experiment. Analytical solutions can
only be obtained after substantial simplifications of the equation, and the value of
using these solutions for convergence tests is, therefore, also very limited. Although
the results should be used with some care, the convergence tests presented here are,

92 3. Computational Models

therefore, valuable for examining the accuracy of the complex numerical schemes
that are employed.

The formulation of the equations in polar coordinates can also be performed in
3D, using the spherical coordinates (r, θ, ϕ). By making the same assumptions as for
the 2D case, i.e. spherical symmetry and scalar, constant conductivities, we obtain
systems of equations very similar to those presented above. The equations can be
solved as 1D problems depending only on the radius r, and used as a reference for
checking the convergence of 3D solutions. However, the convergence tests in 3D
are not as easy to perform as in the 2D case. To get a picture of the convergence
the experiments must be performed for a number of different grid refinement levels,
and in 3D this will quickly lead to a very large number of nodes, which easily
exceeds the capacity of the available computers. Therefore, until computer speed
and memory have increased sufficiently, it is easier to base convergence tests on 2D
experiments.

3.4.2 Simulation on a 2D Slice

The results shown in previous sections were only suitable for showing the conver-
gence properties of the numerical methods. The practical value of simulations with
perfect circular symmetry is, of course, very limited. To illustrate how the numeri-
cal simulations can be used for practical purposes, we will now present a different
set of experiments. The geometry used for the experiments is a two-dimensional
slice through the heart and torso. The advantages of doing 2D studies, rather than
3D, are that the computational burden is much smaller and it is easier to visualize
the results. The disadvantage is that the results may be unrealistic in many respects;
particularly, in our case, regarding the propagation pattern. Forcing the signal propa-
gation to occur in only one plane will not give a realistic activation pattern. However,
2D simulations can still provide insight into several important mechanisms of the
heart. The goal of the present study is to investigate the relation between ischemic
heart disease and shifts in the ST segment of the ECG. ST segment deflection is an
important indicator for ischemic heart disease, and so the relation is important from
a clinical point of view.

Geometry and data. The geometry used for the simulations is shown in Figure 3.10.
The torso boundary is based upon a cross section from the Visible Human dataset
[141]. This dataset consists of photographs of horizontal cross sections of a male
torso body. The chosen section cuts through the middle of the ventricles. The Visible
Human dataset was not used for the heart boundary, because the heart cavities are
not so clear in the photographs. The boundary was traced from a different set of
photographs [84].

The tissue is stimulated at three different locations, as indicated in Figure 3.10
(a). The locations represent the endings of fibres in the Purkinje network. The left
ventricular sites are triggered 20 ms before the right ventricular site, the difference
in timing being based on the activation map of Dürrer [33].

3.4. Numerical Experiments 93

10 cm
a) b)

Fig. 3.10. a) The heart and torso boundaries. The black dots on the endocardial surface in-
dicate stimulation points. The plus and minus poles on the torso surface show the location
where the surface potential is recorded. b) The fibre directions in the heart. The large arrows
are the selected directions and the small arrows are interpolations.

The directions of the fibres are shown in Fig. 3.10b). They run tangentially to
the heart surfaces. The directions are not based directly on measurements, but are
selected to give a reasonable representation of the orientation in the two-dimensional
slice. The out-of-plane component of the fibres is not taken into account.

3.4.3 Normal Propagation

For the simulation under consideration, there were 61167 nodes in the heart and a
total of 292417 in the body. The average node density was about 0.2 mm in the heart
and 0.4 mm in the body. The time step was 0.125 ms and the simulation time was
500 ms, giving a total of 4000 steps. The computational loads of the ODE and the
PDE steps of the operator-splitting algorithm were approximately equal.

Figure 3.11 shows four snapshots of the simulation. After 25 ms, we see that
the depolarization front has spread out from the two stimulation points on the left
endocardial surface and we also see the early contribution from the third stimula-
tion point. Notice from the position of the wave front that the propagation velocity
is larger in the direction along the fibres than across them. This reflects the larger
conductivity in the direction of the fibres. After 75ms, most of the tissue has been
depolarized. The third image shows the situation after 220 ms. The whole heart has
now depolarized and we see the beginnings of repolarization in some areas. These
areas coincide with the initial depolarization. The reason that the repolarization fol-
lows the same pattern as the depolarization is that the action potential duration is
the same in all locations This is not realistic, since it has been reported that the en-
docardial cells, and in particular the cells near the middle of the heart wall, have
longer action potential durations than epicardial cells. The effect of this is that al-
though the depolarization of the tissue starts at the endocardium, the repolarization

94 3. Computational Models

Fig. 3.11. The transmembrane potential (mV) at four stages during normal propagation. (For
the color version, see Figure A.6 on page 290).

wave starts at the epicardium. In our model we use identical cells throughout the
myocardium, which results in both the depolarization wave and the repolarization
wave starting from the endocardium. In the last snapshot the repolarization is further
advanced. Notice that the repolarization front is less steep than the depolarization
front. This reflects the shape of the action potential, which has a fast upstroke and a
much slower repolarization.

3.4.4 Ischemia

In this section we look at the effect of changing the ionic model in parts of the tissue.
Figure 3.12 shows the area where the model has been modified. The dark area rep-
resents ischemic tissue, and the ionic model is modified to reflect this. Figure 3.13
shows the normal action potential used in the healthy part of the tissue, along with
the modified action potential used in the ischemic region.

Four changes have been made to the model, to reflect the changes occurring
in the cells during ischemia. The extracellular potassium concentration has been in-
creased from 4 mM to 9 mM; the maximum conductance of the fast sodium channels
is reduced by 25%; the maximum conductances for Ito, IKr, and IKs have been re-
duced by 50%; and conductance of the time independent potassium current IK1 has
been reduced by 60%. These changes may not correspond exactly to the changes
taking place during ischemia, but the resulting action potential is reasonable, which

3.4. Numerical Experiments 95

Fig. 3.12. In the dark area the ODE model is modified to represent ischemic tissue.

0 100 200 300 400
−100

−50

0

50
Normal and ischemic action potentials

ms

m
V

Normal
Ischemic

Fig. 3.13. The normal and modified action potential of the Winslow model.

is sufficient for our present purpose. The resting potential is elevated, the action po-
tential duration is reduced and there is no notch after the upstroke. The upstroke
velocity is also reduced, although that is not visible on the figure.

The simulation from Section 3.4.3 was repeated with the modified model. Fig-
ure 3.14 shows four snapshots of the transmembrane potential. After 40 ms we see
that the propagation has spread out through a large part of the myocardium. No-
tice that the potential around the stimulation site located in the ischemic area is
larger than the potential around the second stimulation point in the left ventricle.
The reason is that the action potentials for the ischemic cells have a higher value
during the early part of the plateau phase; see Figure 3.13. The scale in this panel
has been magnified to make this easier to see. The second snapshot shows that when
the complete heart has been depolarized, the ischemic heart, in contrast to a normal
heart, is not iso-electric. The time interval when the whole muscle is depolarized
corresponds to the ST segment in the ECG, and this difference is one of the causes

96 3. Computational Models

Fig. 3.14. Four stages during ischemic propagation. (For the color version, see Figure A.7 on
page 290).

for the ST segment shifts observed during ischemic heart disease. The third im-
age illustrates the effect of the difference in action potential duration between the
healthy and ischemic area; the repolarization is completed in the ischemic area but
has barely started in the other parts of the tissue. The last snapshot shows that the
heart is not iso-electric in the TP interval either; the ischemic cells have a higher
resting potential. This effect also contributes to the ECG changes during ischemia.

It is interesting to look at the extracellular potential during the ST phase (e.g.
at 125 ms) and the TP phase (e.g. at 400 ms). Figure 3.15 shows a magnified image
of part of the ischemic area. We see that a gradient in the transmembrane potential
also gives a gradient in the extracellular potential. This is in contrast to the normal,
nonischemic case, in which the potential in the area will be comparatively flat both
in the ST and TP phases. There is hence a local difference in the extracellular po-
tential between the healthy and the ischemic case, and this difference will generate
changes in body surface potential.

Note in Figure 3.15 that the polarity during the ST segment is opposite to that
during the TP segment. This is the underlying mechanism for the ST changes seen
during ischemia. What is typically observed in patients suffering from ischemia is
either an elevation or a depression in the ST segment. These changes are partly due
to the gradient observed in Figure 3.15a), and partly due to the opposite polarity of
the field in Figure 3.15b). Whether we see an elevation or a depression depends on
the location of the electrodes and of the ischemic area. If we have an ST elevation the

3.4. Numerical Experiments 97

Fig. 3.15. The extracellular potential around the ischemic area during a) the ST segment b)
the TP segment. The heart boundary is indicated by the solid line. (For the color version, see
Figure A.8 on page 291).

0 100 200 300 400
−15

−10

−5

0

5

10

15

ms

m
V

Normal
Ischemic

0 100 200 300 400
−15

−10

−5

0

5

10

15

ms

m
V

Normal
Ischemic

Fig. 3.16. The surface potential recorded at the two pairs indicated in Figure 3.10. The left
panel shows the front-to-back electrodes and the right panel shows the left-to-right electrodes.

TP segment will be depressed, and vice versa. In the normal ECG, the TP segment
is normally taken as the baseline, and consequently both contributions will add up
to an apparent ST change only. If one is only interested in the ST segment shift,
this can also be studied with a simpler stationary version of the bidomain model, as
described in [92].

Figure 3.16 shows the simulated ECGs, corresponding to the electrode posi-
tions shown in Figure 3.10. For both electrode pairs we see changes between the
normal and the ischemic conditions. There is relatively little change during the de-
polarization phase (the first 100 ms), but obvious changes in the ST segment. The
discrepancies do not have the same magnitudes in the different directions. This is
as expected, because the orientation of the potential gradients will influence where
the signal is strongest. It is well known that pathological condition can be visible
in some leads, but not in others. Indeed, this is what makes it possible to determine
where an infarction or ischemic region is located.

Chapter 4

Solving Linear Systems

The physical relevance of computations based on the model problems arising from
the electrical activity in the heart depends on high accuracy of the solution. High
accuracy requires the solution of large linear or nonlinear systems of ODEs and
PDEs. This chapter deals with solution algorithms for the discretization of (linear)
PDEs, which is a huge research field around the world. Much of the research in this
field has been centred around simple model problems such as the Poisson problem,
where a solid theoretical framework has been developed. We will briefly review this
theory in the simplest possible manner. Then, at the end of the chapter, we explain
how the powerful concept of (block) preconditioning extends these algorithms to
systems of PDEs that arise from the discretization of the Bidomain model.

4.1 Overview

As discussed in the previous chapter, the computation of the electrical activity in the
heart and body requires the solution of large linear systems. With today’s extremely
fast computers, when even desktop computers are capable of performing more than
109 floating point operations per second, this might not seem to be a problem; but
it is. In our quest for more and more accurate solutions to models of physical prob-
lems, we tend to solve larger and larger linear systems. This trend is unavoidable,
because the accuracy of the solution is proportional to some power of the number of
unknowns.

Let us, for the moment, consider a linear system arising from a finite element
discretization of a partial differential equation on the form

−∇2u = f, (4.1)

equipped with suitable boundary conditions. The linear system then becomes

Auh = b, (4.2)

where A typically is large and very sparse. We have used the subscript h to empha-
size that uh is an approximation of u and that the accuracy depends on h, which
is the typical distance between the vertices in the grid. Because uh approaches u
as h approaches zero, we want to be able to choose as small a value of h as pos-
sible. The smallest possible h is dictated by the largest number of unknowns that
can be handled by the computer. On a modern desktop computer we can solve (4.2)
with N ∼ 107 unknowns, provided that we use an order-optimal solution algorithm.

100 4. Solving Linear Systems

However, we may want even larger values of N and, as we have already seen, we
want to solve systems of partial differential equations leading to even larger linear
systems. In addition, the linear systems arising from the Bidomain equations are
more challenging to solve than the system (4.2) generated by the Poisson equation
(4.1).

The matrices that arise from low-order discretization of PDEs are typically very
sparse, that is, relatively few entries are non-zeros. In fact, the number of non-zeros
in each row is usually a fixed small number, e.g., between five and ten, and the ma-
trices therefore require O(N) floating point numbers of storage. For such matrices,
it is essential that only the nonzero entries are stored. The matrix may be banded
or completely unstructured, depending on the structure of the underlying grid. For
banded matrices it is possible to develop an unpivoted factorization procedure using
O(Nb2) floating point operations, where b is the bandwidth of the system. How-
ever, the bandwidth is usually at least O(N1/2), which entails that the total solution
algorithm will require O(N2) floating point operations. The storage requirement
is usually somewhat smaller, O(N3/2) floating points. The case is even worse for
unstructured matrices.

Improvements in computing power has, for the last 30 years, been predicted re-
markably well by Moore’s law, which states that the number of transistors per area
will double every 18 months1. A consequence of this is that the speed of the CPU
and the amount of RAM double in the same period. In fact, CPU speed has improved
roughly by a factor 105 over the last 30 years. In recent years, the amount of RAM
has increased at a similar rate. Assuming that Moore’s law will continue to hold for
the next 10 years, we can expect computers with CPUs that are 50 times faster, and
with 50 times more RAM. Still, it may very well be that the accuracy is questionable
and that we need as many unknowns as possible. Hence, for simplicity we assume
that it is possible to generate the matrix with 50N unknowns. It would then not be
possible to solve the system, because the banded Gaussian elimination is O(N3/2))
in storage, which in this concrete case means ≈ 350N . However, the situation is
even worse for the number of floating point operations, which is O(N2), or 2500N ,
in this concrete case. Because the CPU is able to perform 50N operations per sec-
ond, we would then need to wait 50 times longer for the answer than today. This
is not acceptable and we must, therefore, search for faster methods that require less
storage. More precisely, we shall seek order–optimal methods that require O(N)
operations and O(N) memory allocations for a system with N unknowns.

4.2 Iterative Methods

As discussed above, direct methods have two main problems:

– the required storage is O(Nα) floating point numbers, and

– the required floating points operations are O(Nβ),

1 Moore never formulated the law clearly, but this is commonly known as Moore’s law. The
doubling period may vary.

4.2. Iterative Methods 101

Table 4.1. The CPU time (in seconds) required to solve a Poisson problem in 2D, using dif-
ferent types of solution algorithms, with respect to the number of unknowns. For the iterative
algorithms, the stopping criterion requires that the discrete L2-norm of the residual is reduced
by a factor of 108. The measurements were obtained on an Itanium2 1.3 GHz processor.

Unknowns Gauss Elim. CG CG/MILU MG CG/MG
652 0.29 0.12 0.04 0.04 0.04
1292 4.30 1.07 0.28 0.15 0.18
2572 68.49 12.30 2.77 0.64 0.92
5132 - 123.06 18.65 2.89 4.08
10252 - 969.21 111.31 12.07 16.90

where α, β > 1 and the matrix to be solved is very sparse; in fact, the required
storage is O(N). These observations have led to the development of algorithms
that take advantage of the particular structures of the matrices. This field of re-
search is huge and successful. As seen in Table 4.1, the computational time needed
to solve the problem with a highly efficient multigrid algorithm is about 1% of
the banded Gaussian elimination, when using 2572 unknowns. Moreover, banded
Gaussian elimination runs out of memory at this point and cannot be compared with
the iterative methods. Still, it is worth noting that the multigrid algorithms using
10252 unknowns outperforms banded Gaussian elimination with 2572 unknowns.

4.2.1 The Richardson Iteration

Here we will briefly introduce iterative methods designed to solve linear systems.
We will begin with classical schemes and then move on to more advanced methods.
Our ultimate goal is to derive an order-optimal method for the linear system arising
from discretizations of the Bidomain model. We want to solve the linear system,

Au = b.

The matrix, A, is sparse, but A−1 is, in general, full and requires the storage of N2

floating points. When N ∼ 107, which is quite common, the inverse can neither be
computed nor stored. However, the matrix-vector product, w = Av, requires only
O(N) operations. Therefore, a first attempt for a more memory-efficient algorithm
might be a fixed-point iteration,

un = un−1 − τ(Aun−1 − b). (4.3)

This algorithm is commonly called the Richardson iteration or the simple iteration.
The obvious question is whether the iteration converges to the solution or not. A
standard approach to analyze iterative methods is to assume that the solution u is
known, so that we can investigate how the error behaves. The error in the n’th iter-
ation is defined as

en = un − u. (4.4)

102 4. Solving Linear Systems

Hence, by subtracting u from both sides of (4.3) and using the relation, Au = b, we
obtain a recursion for the error,

en = en−1 − τAen−1. (4.5)

The error at the n’th iteration, en, should then be smaller, in some sense, than the
previous ones. To quantify the error behaviour in “some sense” we introduce the
discrete L2-norm,

‖e‖L2 =

(
1
N

N∑
i=1

e2
i

)1/2

, (4.6)

and the discrete L2-inner product,

(e, f)L2 =

(
1
N

N∑
i=1

eifi

)
. (4.7)

The corresponding matrix norm is defined by

‖A‖ = sup
v

(Av, v)L2

(v, v)L2

.

We will, in what follows, drop the subscript L2.
A necessary and sufficient condition for convergence is that the error decreases

during the iteration
‖en‖ ≤ ρ‖en−1‖,

where 0 ≤ ρ < 1. This implies that the Richardson iteration is a contraction and
convergent if and only if

‖I − τA‖ ≤ ρ < 1, (4.8)

or
0 < (1 − ρ) ≤ ‖τA‖ ≤ (1 + ρ) < 2, (4.9)

From (4.5) and (4.8) the error will decrease

‖en‖ = ‖(I − τA)en−1‖ ≤ ‖I − τA‖‖en−1‖ ≤ ρ‖en−1‖.

A more detailed mathematical description of this method and the corresponding
convergence proofs can be found in Chapter 3 in [57].

Let the parameter τ be τ = c
‖A‖ , with c < 2, then (4.8) (or (4.9)) is satisfied

and the Richardson iteration will converge. However, ‖A‖ has to be computed or
estimated. In the general case, the computation of ‖A‖ is not easy, but for the ap-
plications considered in this chapter it is sufficient to assume that it is on the form
τ2N

2/d, where d is the number of space dimensions, and manually tune τ2. The es-
timate does not need to be very accurate, but too small a τ2 will lead to divergence.

This iteration has some of the basic characteristics we are seeking. The matrix
requires O(N) floating points in storage, which imply that

4.2. Iterative Methods 103

– Each iteration involves O(N) floating point operations.

– The entire method requires only the storage of O(N) floating points.

This is a potential advantage over direct methods, but we will see that it is not
enough. The Richardson iteration performs poorly when the matrices come from
the discretization of PDEs. To explain this we introduce a FDM discretization of
the Poisson problem in 1D. This example is very simple, but it still has the basic
features of the problems that we want to address.

4.2.2 The FDM Discretization Poisson Equation in 1D

Efficient algorithms take advantage of particular properties of the matrix. The classi-
cal iterations; Jacobi, Gauss–Seidel, SOR, and SSOR are usually more efficient than
the Richardson iteration, but they are not general-purpose algorithms. Some proper-
ties are required. This also apply to the Conjugate Gradient method. Order-optimal
solution algorithms, such as multigrid and domain decomposition, need even more
properties to ensure convergence. Since multigrid was introduced in 1960 (domain
decomposition having been introduced as early as 1870), these algorithms have been
extensively studied by many researchers and the theoretical framework has reached
a high degree of sophistication and abstraction [13] and [57]. We will start by ex-
plaining the underlying ideas in the simplest possible fashion. In this respect, the
exposition is similar to that in [15].

First, the basic properties of the FDM discretization of the Poisson problem in
1D are reviewed. This model problem reads

−u′′(x) = f(x), x = (0, 1), u(0) = 0, u(1) = 0. (4.10)

We are not interested in any particular solution, but rather the class of problems on
this form. We therefore introduce the differential operator L = − ∂2

∂x2 , such that the
problem can be written as

Lu = −u′′(x) = f(x), x = (0, 1), u(0) = 0, u(1) = 0. (4.11)

The operator L has the following properties:

– It is positive definite; this means that (Lu, u) > 0 for all relevant functions u.

– It is symmetric; this means that (Lu, v) = (u, Lv) for all relevant functions u.

– It is invertible for any f ∈ C(0, 1); this means that the problem (4.10) has a
unique solution for f ∈ C(0, 1).

These properties can be derived directly from the definition of L; see, e.g., [139].
Much of the intuition concerning the solution of PDEs and the corresponding

solution algorithms is closely connected to eigenvalues and eigenfunctions for the
differential operators. The definition of eigenvalues and eigenfunctions for differen-
tial operators is equivalent to the definition for matrices in linear algebra, i.e., λ is
an eigenvalue of L if

Lw = λw, λ ∈ C, (4.12)

104 4. Solving Linear Systems

and w is the corresponding eigenfunction. Because the operator is symmetric and
positive definite, the eigenvalues are real and positive, and the eigenfunctions are
orthogonal. In fact, it is known that the eigenvalues for L in (4.11) are

µk = π2k2, for k = 1, . . . ,∞,

and the eigenfunctions are

wk(x) = sin(kπx), for k = 1, . . . ,∞.

These properties can be derived directly from the definition of L; see, e.g., [139].
The first four eigenfunctions are shown in Figure 4.1. Notice that for small k,

the eigenvalues are small and the corresponding eigenfunctions are low-frequency
functions. However, as k → ∞, µk → ∞ and the eigenfunctions oscillates between
1 and −1 with a period π

k that approaches zero. This relation between the smooth-
ness of the eigenfunctions and the magnitude of the eigenvalues is typical for elliptic
PDEs, regardless of dimensions, domains and boundary conditions.

This 1D problem can be solved analytically, but this is not feasible for the Pois-
son problem on general domains in 2D or 3D. However, discretization techniques,

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Eigenfunction for k=1

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
Eigenfunction for k=2

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
Eigenfunction for k=3

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
Eigenfunction for k=4

Fig. 4.1. The first four eigenfunctions.

4.2. Iterative Methods 105

such as the finite element method (FEM)2 or the finite difference method, (FDM)3

are general-purpose strategies. The next step is to make a discrete approximation of
the problem such that we arrive at a linear system that can be solved. Let the grid
consist of grid points xi = ih. A FDM discretization of (4.10) reads

−ui−1 − 2ui + ui+1

h2
= fi, i = 1, . . . N, (4.13)

u0 = 0, (4.14)

uN+1 = 0. (4.15)

These equations can be written as the linear system

Auh = f, (4.16)

where

A =
1
h2

2 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 2

, u =

u1

.

.

.
uN

 , f =

f1

.

.

.
fN

 . (4.17)

The unknowns ui are pointwise approximations of u, ui ≈ u(xi) and fi = f(xi).
This matrix will be used extensively throughout this chapter to explain the behaviour
of the various algorithms. Although this matrix is very simple, it has the character-
istic properties that will be studied and used throughout most of this chapter.

The eigenvalues of this system are

µk =
4
h2

sin2

(
kπh

2

)
, k = 1, . . . , N, (4.18)

and the corresponding eigenfunctions are

vk,i = vk(xi) = sin(kπxi), k = 1, . . . , N, (4.19)

where vk,i is the value associated with the node i at the point xi and the k’th
eigenfunction. Similar to the continuous case, large eigenvalues correspond to high-
frequency eigenvectors, whereas smooth eigenfunctions are associated with small
eigenvalues. This property is exactly what is exploited in the multigrid algorithm
that we will discuss later.

A more detailed description of the continuous and discrete Poisson problem can
be found in [139].

2 FEM requires that it is possible to generate a reasonable grid.
3 FDM is difficult to apply in general geometries.

106 4. Solving Linear Systems

4.2.3 The Richardson Iteration Revisited

We saw in Section 4.2.1 that the Richardson iteration is a memory-efficient method
for solving general matrix equations, given a reasonable estimate on ‖A‖. In order
to estimate the computational work needed by the method, it is necessary to estimate
the number of floating point operations the CPU has to perform. To this end, it is
necessary to estimate the number of iterations that will be needed.

The first thing to consider is a stopping criterion, designed to prevent endless
iterations. We are seeking a numerical approximation uh of the actual unknown
u and have introduced an error, eh, inherited from the numerical method. In the
previous Chapter 3 we saw that the error could be estimated:

‖eh‖ = ‖u − uh‖ ≤ chα,

where h is a characteristic grid size that depends directly on the number of un-
knowns. The discretization error eh determines the level of accuracy needed by the
iterative method. Let en

h be the error at the n’th iteration. We can split this error
into two parts: en

h = en + eh, where en is the part induced by the iterative method,
and eh, which is the discretization error. It is then reasonable to require that both
contributions are equally sized, en ≈ eh. Hence, we will stop the iteration when
‖en‖ ≤ ‖eh‖. The concretization of such a stopping criterion is not an easy task.
The discretization error, eh, is of course, in general not available. However, the
residual can be computed:

rn = b − Aun.

From the residual-error equation

Aen = rn,

we obtain
‖en‖ ≤ ‖A−1‖‖rn‖.

Another possible technique is to check un − un−1. We will not go deeply into a
discussion about various stopping criteria here. However, a frequently used criterion
stops the sequence of iterations when

‖rn‖ < γ,

where γ is a small number that is usually found by numerical experiments.
The second parameter that determines the number of iterations is the conver-

gence rate or minimal error reduction per iteration, which will be explained below.
We remember from Section 4.2.1 that the error at the n’th iteration is governed by

en = (I − τA)en−1. (4.20)

Given that ‖I−τA‖ < 1, we saw that the iteration was convergent, but we have still
not estimated the number of iterations needed to reach a given stopping criterion.
Let the convergence rate ρ be defined as

ρ = ‖I − τA‖.

4.2. Iterative Methods 107

Then
‖en‖ ≤ ρ‖en−1‖. (4.21)

Moreover,
‖en‖ ≤ ρn‖e0‖. (4.22)

Assuming that ε is the discretization error, we can tolerate an iteration error:

‖en‖ ≤ ε. (4.23)

If we assume equality in (4.22) and (4.23) we get

‖en‖ = ρn‖e0‖ = ε. (4.24)

Hence, the number of iterations can be estimated as

n =
log ε

‖e0‖
log ρ

. (4.25)

The goal of this chapter is to present algorithms where ρ ≤ c, where c < 1 is a
constant independent of the grid size. If the convergence criterion ε is fixed, inde-
pendent of the grid size, n will be bounded independent of the grid size. This is
referred to as an order-optimal algorithm.

Finally, we will consider some additional properties that are typical for the type
of matrix we are working with. The matrices are symmetric positive definite and for
these matrices it is known that

‖A‖ = λmax(A), ‖A−1‖ = λ−1
min(A),

where λmax and λmin are the largest and smallest eigenvalues of A, respectively.
From the eigenvalues for the 1D discretization of the Poisson equation (4.18) we
have

λmax(A) ≈ 4
h2

, λmin(A) ≈ π2.

The ratio between the largest and the smallest eigenvalues is commonly called the
condition number of the matrix, κ(A):

κ(A) =
λmax(A)
λmin(A)

. (4.26)

Hence, the condition number of the matrix A in (4.17) is O(h−2). Notice that
this condition number is typical for elliptic PDEs, regardless of the dimension, the
boundary conditions and the domain.

These eigenvalues are now used to gain more insight into what will happen
during the iteration. Let the initial error be expanded in terms of eigenvectors:

e0 =
N∑

k=1

ckwk,

108 4. Solving Linear Systems

where, by orthonormality, the coefficients are determined by

ck = (e0, wk).

Let τ = c
λmax

. Then, the error at the n’th iteration is from (4.20):

en =
N∑

k=1

(
1 − cλk

λmax

)n

ckwk.

If 0 < c < 2, the iteration is convergent in the sense that

‖en‖ → 0, as n → ∞.

To see this, we note that

‖en‖ = (en, en)1/2 =

(
1
N

N∑
k=1

(
1 − cλk

λmax

)n

ckwk,

(
1 − cλk

λmax

)n

ckwk

)1/2

=

(
1
N

N∑
k=1

(
1 − cλk

λmax

)2n

c2
k

)1/2

≤ (1 − c)n‖e0‖,

where we have used that {wk}N
k=1 are orthonormal.

Still, different parts of the error will decrease at different speeds. This is made
clear in what follows, by considering the error components that correspond to the
high and low eigenvalues. Let the initial error, e0, be dwN , where d is a constant
and wN is the N ’th eigenvector, corresponding to the largest eigenvalue. The error
after the first iteration will then be

e1 =
(

1 − cλmax

λmax

)
wN = (1 − c)e0.

For instance, the choice c = 0.9 implies an error reduction by a factor 0.1 for
the error component associated with wN . We also notice that choosing a smaller c
leads to slower convergence. Similarly, all the high-frequency parts of the error are
removed rather efficiently.

However, the situation is quite different for the low-frequency parts of the error.
Let e0 be dw1, where d is a constant and w1 is the eigenvector corresponding to the
lowest eigenvalue. Then we have

e1 =
(

1 − cλmin

λmax

)
w1 =

(
1 − c

K(A)

)
w1 ≈ e0,

where κ(A) is the condition number of the matrix. As observed for the 1D dis-
cretization of the Poisson equation, the condition number is ∼h−2, which is very
bad. Moreover, reducing c only makes things worse.

4.2. Iterative Methods 109

The second disadvantage of using the Richardson iteration is that it relies on
the estimation of the largest eigenvalue. The iteration will diverge if τ is not chosen
properly.

However, despite the fact that this method is primitive and cannot be used for
large linear systems, it captures the basics of the classical iterations. Some parts of
the error are dealt with efficiently, while others remain essentially unchanged. In
particular, the smooth components are troublesome. This property will be exploited
later, when we consider the (relaxed) Jacobi and Gauss–Seidel methods.

4.2.4 Preconditioning

An “obvious” generalization of the Richardson iteration is to include a matrix B,
usually called a preconditioner, in the following way:

un = un−1 − τB(Aun−1 − b). (4.27)

The error iteration will then be

en = en−1 − τBAen−1, (4.28)

which is convergent if and only if

‖I − τBA‖ < 1. (4.29)

Although this idea seems quite simple, it is remarkably powerful. In fact, nearly
all the methods we will consider in what follows, multigrid and domain decompo-
sition as well as Jacobi and Gauss–Seidel, fit into this framework. It is the general
form of any linear iteration. The only exception in this chapter is the Conjugate
Gradient method.

Notice that we will refer to B as both a linear operator and a matrix. The reason
is that if B represents a linear operator it can, in principle, always be represented
as a matrix. Still, it is usually easier and more efficient to implement B as an al-
gorithm. To be more specific, only the action of B on a vector, u = Bv, has to be
implemented.

We will now briefly go through the classical iterations. These methods cannot,
in general, be used to solve matrices with more than 1000 unknowns. Still, they
deserve attention, at least for the following four reasons:

– They are used as smoothers in multigrid algorithms.

– They serve to illustrate important aspects of the multigrid method.

– Domain decomposition algorithms are generalizations of the block versions of
these algorithms.

– Our final order-optimal block preconditioner is an inexact variant of the block
Jacobi method.

110 4. Solving Linear Systems

4.2.5 The Jacobi Method

The simplest algebraic operator-splitting technique is the Jacobi method. This algo-
rithm is easily explained by considering the i’th equation in the matrix equation

N∑
j=1

aijuj = bi.

Rearranging the i’th equation, we get

ui =
1
aii

bi −

∑
i�=j

aijuj

 .

The problem is, of course, that the other unknowns, uj , have not yet been computed.
However, we can assume that we have either initial guesses or the values from the
previous iteration, which suggests the Jacobi iteration:

un
i =

1
aii

bi −

∑
j �=i

aiju
n−1
j

 , for i = 1, . . . N. (4.30)

Notice that all the variables in (4.30) can be updated independently. This is impor-
tant when parallel computers are used, because on such computers the unknowns
may be distributed on different processors and the update can then be done in paral-
lel. This issue is discussed in Chapter 6.

The strength of the Richardson iteration (4.27) now becomes apparent because
the Jacobi iteration can be seen as a preconditioned Richardson iteration. To see
this, consider

un = un−1 − D−1(Aun−1 − b),

with B = D−1, D = diag(A) and τ = 1. Hence, the convergence properties can be
studied in the same way as the convergence of the Richardson iteration.

Properties and Problems. To understand when the Jacobi method is convergent we
consider the error iteration,

en = en−1 − D−1Aen−1. (4.31)

Hence, the iteration is convergent if and only if

ρ = ‖I − D−1A‖ < 1,

or
0 < ‖D−1A‖ < 2.

4.2. Iterative Methods 111

It is not easy to understand the behaviour of this algorithm directly from these
inequalities. Hence, we will, briefly, go through the 1D discretization of the Poisson
equation. The Jacobi iteration matrix associated with (4.17) is

J = I − D−1A =
1
2

0 1
1 0 1

. . .
. . .

. . .
1 0 1

1 0

.

Inserting the eigenfunctions of (4.17),

wk = sin(kπxj), k = 1, . . . N. (4.32)

where xj = jh, gives

(I − D−1A)wk = wk − D−1µkwk =
(

1 − h2

2
µk

)
wk,

where µk is given in (4.18). Therefore, wk is an eigenfunction of J , with the corre-
sponding eigenvalue

λk = 1 − h2

2
µk = 1 − h2

2
4
h2

sin2

(
kπh

2

)
= cos(kπh), k = 1, . . . , N. (4.33)

The eigenvalues are shown in Figure 4.2.
Notice that from Figure 4.2 it seems that the eigenvalues λk ∈ [−1, 1]. In fact,

λk ∈ (−1, 1) and the iteration is therefore convergent. However, the convergence

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Eigenvalues for the Jacobi method

x
k
 = kh

λ k =
 c

os
(π

 x
k)

Fig. 4.2. Eigenvalues of the Jacobi Matrix.

112 4. Solving Linear Systems

Table 4.2. Number of iterations for the Jacobi method to achieve an error reduction by a
factor of 10−4 for the 1D discretization of the Poisson problem.

Unknowns Convergence rate Iterations
10 1 − 8.2e−2 108
100 1 − 9.7e−4 9514
1000 1 − 9.8e−6 9.4·105

10000 1 − 9.9e−8 9.3·107

rate, determined by λmax and λmin, depends strongly on the number of unknowns.
To see this, we use the Taylor expansion of cos(x) around x = π,

cos(x) = cos(π) − sin(π)(x − π) − cos(π)(x − π)2 + . . . (4.34)

Letting x = Nπ
N+1 in (4.34), corresponding to the N ’th eigenvector in (4.33), we get

λN =cos
(

Nπ

N + 1

)
≈cos(π)−cos(π)

(
πN

N + 1
− π

)2

=1−
(

π

N + 1

)2

=1−(πh)2.

A similar estimate can be obtained for the lowest eigenvalue, with N = 1, using
the Taylor expansion around x = 0. This means that the error corresponding to the
most high frequent eigenfunction, k = N , and the most low frequent eigenfunction,
k = 1, only decreased by a factor 1−(πh)2. The number of Jacobi iterations needed
to reduce the error by a factor of 10−4 is shown in Table 4.2.

Still, for a subset of the eigenfunctions, N
4 ≤ k ≤ 3N

4 , the convergence is fast,
in the sense that ρ < 0.71. Hence, the Jacobi method performs quite well for at
least half of the error components. The iteration would, therefore, be efficient if
the initial error only contained these parts. Naturally, it is difficult to make such an
initial guess.

4.2.6 The Relaxed Jacobi Method

By looking at the Jacobi iteration (4.30) we see that ui is computed based on uj for
j �= i. A natural extension is to include information from the previous iteration,

un
i = (1 − ω)un

i +
ω

aii

bi −

∑
j �=i

aiju
n−1
j

 , for i = 1, . . . N, (4.35)

where ω can be chosen. The inclusion of the data from the previous iteration is
commonly called relaxation. As before, we can express this iteration in terms of the
Richardson iteration (4.3)

un = un−1 − ωD−1(Aun−1 − b),

4.2. Iterative Methods 113

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1
Eigenvalues for the Jacobi method

x
k
 = kh

µ k =
 1

+
2/

3(
co

s(
π

x k)−
1)

Fig. 4.3. Eigenvalues of the Relaxed Jacobi iteration Matrix.

where B = D = diag(A) and ω = τ . The necessary condition for convergence is
that

0 < ‖ωD−1A‖ < 2.

Again, we briefly review the properties of this iteration in terms of eigenvalues and
eigenfunctions. The eigenfunctions are the same as for Jacobi (4.32), and a simple
calculation shows that the eigenvalues are

λk(ω) = 1 + ω(cos(kπh) − 1), k = 1, . . . , n. (4.36)

The eigenvalues for ω = 2/3 are shown in Figure 4.3. The spectrum has changed
from (−1, 1) for ω = 1 to (− 1

3 , 1) for ω = 2/3. Hence, changing the parameter
ω dramatically changes the behaviour of the relaxed Jacobi for the high frequency
parts of the error. However, low frequency or smooth parts of the error are ineffi-
ciently handled for any ω. Even so, the news is good, because it is the high frequency
parts of the error that are most problematic. A simple idea might be to compute the
solution on a coarser grid and use this as the initial guess. Multigrid methods are
generalizations of this idea.

4.2.7 The Exact and the Inexact Block Jacobi Methods

Another natural extension of the pointwise Jacobi algorithm expressed above consti-
tutes what we will call the block Jacobi method. This iteration arise when replacing
the numbers aij , uj , and bj in (4.30) with the matrices Aij , and the vectors uj and
bj , respectively. Consider the linear system

Au = b,

114 4. Solving Linear Systems

where

A =

A11 A12 · · · A1N

A21 A22

.
. . .

. . .
. . .

.
AN1 ANN

, u =

u1

.

.

.
uN

 , b =

b1

.

.

.
bN

 . (4.37)

Here, Aij are matrices, and ui and bi are vectors. The algorithm takes the form

un
i = A−1

ii

bi −

∑
j �=i

Aiju
n−1
j

 . (4.38)

In order for this method to be applicable we have to assume that the block matrices,
Aii, are invertible.

As for the previous Jacobi variants, this iteration can be written in terms of the
Richardson iteration (4.3):

un = un−1 − D−1(Aun−1 − b),

where D contains the diagonal blocks matrices Aii. The iteration is convergent if

0 < ‖D−1A‖ < 2.

Of course, Aii may be large blocks and in such cases we do not necessarily want to
invert Aii, but rather make an approximation of D−1, i.e.,

un = un−1 − D̂−1(Aun−1 − b).

The convergence is determined by ‖D̂−1A‖.
We will postpone the discussion of the merits of this algorithm. However, notice

that this framework covers both the order-optimal preconditioner for the Bidomain
model and the domain decomposition method of additive Schwarz type.

4.2.8 The Gauss–Seidel Method

Looking at the Jacobi iteration, we observe that when computing the unknown un
i

the unknowns un
j for j < i have already been computed. Moreover, un

j should be
”closer” to the actual solution than un−1

j . Therefore, it seems natural to modify the
Jacobi iteration to use the new values instead. This is the Gauss–Seidel iteration,

un
i =

1
aii

bi −

∑
j<i

aiju
n
j −

∑
j>i

aiju
n−1
j

 , for i = 1, . . . N. (4.39)

Let
A = D + U + L,

4.2. Iterative Methods 115

where D is the diagonal, and U and L are the strictly upper and lower diagonal
parts of A, respectively. Then the Gauss–Seidel iteration can be written in terms of
the preconditioned Richardson iteration (4.27),

un = un−1 − (D + L)−1(Aun−1 − b),

where B = (D + L)−1 and τ = 1.

4.2.9 The Relaxed Gauss–Seidel Method

The Gauss–Seidel method can be relaxed in the same way as the Jacobi method:

un
i = (1−ω)un−1+ω

 1

aii

bi −

∑
j<i

aiju
n
j −

∑
j>i

aiju
n−1
j

 , for i = 1, . . . N.

(4.40)
Written in terms of the preconditioned Richardson iteration, we obtain

un = un−1 − ω(D + wL)−1(Aun−1 − b).

4.2.10 The Symmetric Gauss–Seidel Method

The Gauss–Seidel method is not symmetric (unless A is a diagonal matrix). How-
ever, symmetry is an important property for some solution algorithms, such as the
Conjugate Gradient method described later. If the matrix is symmetric, it is fairly
straightforward to derive a symmetric version of the Gauss–Seidel method. The
symmetric Gauss–Seidel simply consists of one standard Gauss–Seidel sweep fol-
lowed by an additional sweep using the unknowns numbered backwards.

u
n−1/2
i =

1
aii

bi −

∑
j<i

aiju
n−1/2
j −

∑
j>i

aiju
n−1
j

 , for i = 1, . . . N,

un
i =

1
aii

bi −

∑
j>i

aiju
n
j −

∑
j<i

aiju
n−1/2
j

 , for i = N, . . . 1.

Written in terms of the preconditioned Richardson iteration,

un = un−1 − (D + L)−1D(D + U)−1(Aun−1 − b).

4.2.11 The Exact and the Inexact Block Gauss–Seidel Method

The block version of Gauss–Seidel method is a straightforward extension of the
pointwise Gauss–Seidel. This is similar to the extension we performed with the

116 4. Solving Linear Systems

Jacobi method. The algorithm is as follows:

un
i = A−1

ii

bi −

∑
j<i

Aiju
n
j −

∑
j>i

Aiju
n−1
j

 . (4.41)

A necessary condition is that Aii is invertible, which was also the case with the
block Jacobi.

For the inexact block Gauss–Seidel method, we may use an approximate inverse
Â−1

ii , instead of A−1
ii . This leads to the iteration

un
i = ˆA−1

ii

bi −

∑
j<i

Aiju
n
j −

∑
j>i

Aiju
n−1
j

 . (4.42)

The Multiplicative Schwarz algorithm is a variant of this iteration.

4.3 The Conjugate Gradient Method

So far, we have considered classical iterative methods for solving linear systems on
the form

Au = f. (4.43)

The classical schemes are easily derived and their motivation is rather simple.
In 1952, Hestenes and Stiefel [63] broke this tradition and published a completely
different algorithm. Initially, they viewed their scheme as an alternative to Gaussian
elimination; i.e. they derived a direct method that would, in exact arithmetics, give
the exact solution in at most N iterations. Here, N is the number of unknowns in
(4.43) and the matrix A is supposed to be symmetric and positive definite. Later
on, it was realized that the approximate solution obtained after much fewer than N
iterations was actually quite good. Soon, it became common to use the Conjugate
Gradient (CG) method of Hestenes and Stiefel as an iterative method rather than as
a direct method.

One of the most important ideas in numerical analysis is that of “best approx-
imation”. Given a large space of functions V and a subspace with fewer functions
VN ; how is it possible to find the best approximations vN ∈ VN of the “true” solu-
tion v ∈ V . This approach is the basis of the finite element method and, as we shall
see, the fundamental idea of the CG method as well. In this text, we shall merely
sketch the development of the method. For a full story we refer the reader to, e.g.,
Golub and van Loan [49] or to Stoer and Bulirsch [129].

4.3.1 The CG Algorithm

As mentioned above, the CG method seeks the best possible approximation in a cer-
tain subspace. To this end, the method consists of two basic ingredients: computing
a proper subspace and computing the best approximation in this subspace.

4.3. The Conjugate Gradient Method 117

In the CG method, we use two inner products: the standard one

(u, v) =
1
N

N∑
i=1

uivi, (4.44)

and the A-inner product

(u, v)A = (Au, v). (4.45)

Since A is symmetric and positive definite, (4.45) defines an inner product. Simi-
larly, we define the associated norms:

‖u‖ = (u, u)1/2, (4.46)

and
‖u‖A = (Au, u)1/2. (4.47)

The algorithm computes the best solution measured in the A-norm. Furthermore,
we will derive a set of search vectors that are A-orthogonal, thus spanning the subset
in which we seek an approximate solution. Suppose the subspace of R

N is denoted
by W , and let w be the best approximation of u measured in the A-norm, i.e.

‖u − w‖A ≤ ‖u − v‖A, ∀ v ∈ W. (4.48)

Then, it is generally known that

(u − w, v)A = 0, ∀ v ∈ W, (4.49)

i.e. the error is orthogonal to the subspace. This result is fundamental in the deriva-
tion of the CG-method.

Let us now assume that we have already computed k search vectors

p0, p1, . . . , pk−1,

that are mutually A-orthogonal, i.e.

(pi, pj)A = 0 i �= j. (4.50)

Let
Wk = span{p0, . . . , pk−1}, (4.51)

and note that

dim(Wk) = k. (4.52)

We assume that

uk ∈ Wk, (4.53)

satisfies
‖u − uk‖A ≤ ‖u − v‖A, ∀ v ∈ Wk, (4.54)

118 4. Solving Linear Systems

such that uk ∈ Wk is the best approximation of the exact solution u measured in
the A-norm. It is fairly obvious that if Wk spans all of R

N , then uk = u so we will
have the exact solution in at most N iterations.

Let us also define the residual

rk = f − Auk, (4.55)

which, of course, is zero if uk = u. The residual has a very interesting property
that can be derived from the best approximation property. It follows from (4.49) and
(4.54) that

(u − uk, v)A = 0, ∀ v ∈ Wk. (4.56)

By using the definition of the A-norm, we get

(A(u − uk), v) = 0, ∀ v ∈ Wk, (4.57)

and since Au = f , we have

(rk, v) = 0, ∀ v ∈ Wk. (4.58)

So rk is orthogonal to all the vectors in Wk, and in particular

(rk, pj) = 0, j = 0, 1, . . . , k − 1. (4.59)

We now want to step from iteration k to iteration k + 1, and in order to do so,
we need to increase the dimension of Wk = span{p0, . . . , pk−1} and then compute
the best approximation in the new and larger subspace. In order to increase the di-
mension of Wk, we will apply the Gram–Schmidt algorithm. This is an algorithm
that computes an orthogonal basis based on linearly independent vectors. Now, we
already have k linearly independent, and in fact also A-orthogonal, vectors. In order
to apply the Gram–Schmidt algorithm, we will need a vector that is linearly inde-
pendent of all vectors in Wk. Since we have already seen that rk is orthogonal to all
vectors in Wk we can use this vector to increase the dimension to k + 1, and then
use the Gram–Schmidt orthogonalization process to generate an orthogonal basis.
Using this algorithm, we find that

pk = rk + βk−1pk−1, (4.60)

where

βk−1 = − (rk, pk−1)A

(pk−1, pk−1)A
. (4.61)

Now we have Wk+1 = span{p0, p1, . . . , pk} and we want to find the best ap-
proximation uk+1 ∈ Wk+1. We seek uk+1 ∈ Wk+1 of the form

uk+1 = uk + αkpk, (4.62)

and the task is to determine αk such that

‖u − uk+1‖A ≤ ‖u − v‖A, ∀ v ∈ Wk+1. (4.63)

4.3. The Conjugate Gradient Method 119

Because of (4.49), we require that

(u − uk+1, v)A = 0, ∀ v ∈ Wk+1, (4.64)

such that, in particular, we have

(u − uk+1, pk)A = 0. (4.65)

Using (4.62), we have

αk =
(u − uk, pk)A

(pk, pk)A
. (4.66)

Here we notice that

(u − uk, pk)A = (A(u − uk), pk)A = (rk, pk)A,

such that

αk =
(rk, pk)A

(pk, pk)A
. (4.67)

By (4.62) we have
uk+1 = uk + αkpk, (4.68)

and the derivation is complete.
The CG-method can be formulated in many variants using the orthogonality

properties discussed above. All these variants are mathematically equivalent, but
may behave differently on a computer due to round-off issues. The version we give
here has been applied successfully in many practical computations.

The Conjugate Gradient Algorithm
Let A ∈ R

N,N , f ∈ R
N ,u0 ∈ R

N , and 0 < ε < 1 be given. The matrix
A is supposed to be symmetric and positive definite.
u = u0

r = f − Au
p = r
ρ0 = (r, r)
k = 0
While ρk/ρ0 > ε do

z = Ap (4.69)

γ = (p, z) (4.70)

α = ρk/γ (4.71)

u = u + αp (4.72)

r = r − αz (4.73)

ρk+1 = (r, r) (4.74)

β = ρk+1/ρk (4.75)

p = r + βp (4.76)

k = k + 1 (4.77)

end

120 4. Solving Linear Systems

The update of rk is worth noting. Recall that

rk = f − Auk, (4.78)

since, according to (4.68),

uk+1 = uk + αkpk, (4.79)

and we have

rk+1 = f − Auk+1

= f − A(uk + αkpk)
= f − Auk − αkApk

= rk − αkApk. (4.80)

Since we have already computed Apk (see (4.69)), we can avoid an extra matrix-
vector multiplication by using (4.80).

4.3.2 Convergence Theory

As mentioned above, the CG method is now considered to be an iterative scheme
and it is important to study the convergence behaviour of the method. It transpires
that the convergence can be studied in terms of the condition number of the matrix
A in (4.43). Recall that

K = K(A) =
λmax

λmin
, (4.81)

where λmax and λmin are the largest and smallest eigenvalues of A, respectively.
It is well known (see, e.g., Knabner and Angermann [77]), that the error after k
iterations with the CG method can be bounded as follows:

‖ek‖A

‖e0‖A
≤ 2

(√
K − 1√
K + 1

)k

, (4.82)

where the error is given by

ek = u − uk. (4.83)

We observe from (4.82) that if K is small (close to one), the convergence is very
fast, and if K is large the convergence may be very slow. As discussed above, linear
systems on the form (4.43) that arise from the discretization of partial difference
equations are often poorly conditioned, i.e. K is very large.

Suppose K is large and we want to compute the number of iterations k such that

‖ek‖A

‖e0‖A
≤ ε, (4.84)

4.3. The Conjugate Gradient Method 121

for a given ε, 0 < ε < 1. Then, from (4.82) we need

k ≥ ln(ε/2)

ln
(√

K−1√
K+1

) (4.85)

iterations. Since K is large, we have
√

K − 1√
K + 1

≈ 1 − 1√
K

,

and since

ln(1 + x) = x + O(x2),

we have

ln

(√
K − 1√
K + 1

)
≈ −1/

√
K,

and thus

k � ln(2/ε)
√

K. (4.86)

This formula explains the importance of the condition number for the conver-
gence of the CG method. We return to this issue on several occasions below. It is
clear that if (4.86) is a sharp estimate, then the number of iterations is O(

√
K) and

thus increases quite rapidly as the condition number increases.

4.3.3 Numerical Experiments

In this section, we will present some numerical experiments using the CG method.
To this end, we consider the following two problems:

−∆u2 = f2 (x, y) ∈ Ω = [0, 1]2, u2 = 0 at ∂Ω, (4.87)

−∆u3 = f3 (x, y) ∈ Ω = [0, 1]3, u3 = 0 at ∂Ω. (4.88)

We use

f2 = exy, (4.89)

f3 = exyz, (4.90)

and discretize (4.87) and (4.88) using straightforward finite differences. In a 1D
finite difference discretization we use n internal nodes leading to a grid spacing of

h =
1

1 + n
. (4.91)

122 4. Solving Linear Systems

Table 4.3. The table shows the number of nodes (N), the number of iterations (k2), and
c2 = k2/N

1/2.

N k2 c2 = k2/N
1/2

10 404 287 2.81
40 804 579 2.87

161 604 1167 2.90
643 204 2361 2.94

2 566 404 4770 2.98

Table 4.4. The table shows the number of nodes (N), the number of iterations (k3), and
c3 = k3/N

1/3.

N k3 c3 = k3/N
1/3

1 728 34 2.83
10 648 69 3.14
74 088 138 3.29
551 368 278 3.39

4 251 528 558 3.44

In 2D we use n2 internal nodes and n3 internal nodes in 3D. Based on the PDEs
above, this leads to linear systems on the form

A2u2 = g2, (4.92)

A3u3 = g3. (4.93)

It can be shown that the condition numbers of A2 and A3 are O(h−2); see, e.g.,
[77]. Since the number of iterations is given by (4.86), we have k = O(

√
K) =

O(h−1). In 2D, the number of nodes is N ≈ 1/h2 and in 3D, we have N ≈ 1/h3,
hence k2 ≈ c2N

1/2 in 2D, and k3 ≈ c3N
1/3 in 3D. Using ‖rk‖

‖r0‖ ≤ 10−7, we have
applied the CG-method to the systems (4.92) and (4.93). The number of iterations
are given in Table 4.3 and Table 4.4.

We observe from the tables that the number of iterations is about

k2 ≈ 3N1/2

in 2D and

k3 ≈ 3.5N1/3

in 3D. Since the amount of work in each iteration is O(N), we have that the solu-
tion process requires O(N3/2) in 2D and O(N4/3) in 3D. The order-optimal result
would be O(N) and we will derive methods that are order-optimal in this sense later
in the text.

4.4. Multigrid 123

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Eigenvalues for the Jacobi method

x
k
 = kh

µ k =
 1

+
2/

3(
co

s(
π

x k)−
1)

ω=1
ω=2/3
ω=1/2
ω=1/3

Fig. 4.4. Eigenvalues of the Jacobi iteration Matrix.

4.4 Multigrid

4.4.1 Idea

In this section, we will first try to motivate multigrid methods with the intuition
derived from the classical iterations in the previous section, before we present the
polished and abstract framework. Readers interested in the theory of multigrid meth-
ods can consult [13] and [57]. More practical introductions to multigrid methods are
given in [15], [98], and [135]. An overview of multigrid methods and generalizations
thereof can be found in [14] and the references therein.

In the previous section we observed that both the standard and the relaxed Ja-
cobi iterations had problems with some parts of the error (associated with certain
eigenfunctions), but were very good for other parts of the error. The Jacobi method
showed poor performance for errors associated with eigenfunctions correspond-
ing to either the larger or the smaller eigenvalues, whereas the relaxed Jacobi with
ω = 2

3 was rather effective for all the higher frequencies. We recall that the error
iteration associated with the relaxed Jacobi method can be written

en = en−1 − ωD−1Aen−1. (4.94)

Using the eigenfunction expansion of en and (4.94), we arrived at an estimate for
the error after n iterations, en, in terms of the eigenvalues for the relaxed Jacobi
method in (4.33). We restate the eigenvalues here for convenience:

λk(ω) = 1 + ω(cos(kπh) − 1), k = 1, . . . , N. (4.95)

For the high frequencies, this results in

max
k≥n

2

|λ
(

2
3

)
| ≤ 1

3
. (4.96)

124 4. Solving Linear Systems

However, the performance is bad for the smooth components. A natural idea for
improving the performance is to combine the strengths of Jacobi with some other
method. Earlier, we suggested that a coarse grid solution could be used as an initial
guess. The initial error would then only contain the high frequency components and
the relaxation would be highly efficient. In this section we will develop this idea
further, and eventually arrive at the multigrid algorithm.

Let us assume that we have performed a number, m, of relaxed Jacobi iterations.
The error is then smooth and the continuing iterations barely alter um. It is clear that
we need another strategy. The first step is to observe that instead of solving

Au = b.

We can solve
Aem = rm,

where
em = u − um,

and
rm = Aum − b.

The solution u is then obtained as

u = um + em.

The multigrid idea is based on the observation that while u can be any function, the
error is smooth after a number of relaxations. Hence, the error can be represented
well on a coarse grid. Moreover, the computations on a coarse grid is, of course,
cheaper than on a fine grid. To clarify this idea, we again consider the 1D discretiza-
tion of the Poisson problem. The generalization is performed afterwards.

In our 1D example it is easy to define a coarse grid. Let the fine grid be

Ωh = {xj = jh, j = 0, 1, . . . , N + 1}.

Then a coarser grid can be defined analogously,

ΩH = {xj = jH, j = 0, 1, . . . , M + 1}.

An obvious choice is H = 2h, which for simplicity is assumed in what follows.
Hence, instead of solving

Aheh = rh,

we solve
AHeH = rH ,

because we know that the Jacobi iterations have removed the high frequency error.
Given the grid ΩH we are able to define the coarse grid matrix AH . However, a
coarse-grid representation of the residual on the fine grid, rh, is also needed. Such a
representation may be constructed by using a restriction operator such that

rH = IH
h rh.

4.4. Multigrid 125

The notation indicates that IH
h generates an approximation rH on the coarse scale,

based on the fine-scale version represented by rh. A suitable choice, in this case, is
the weighted restriction operator defined by

uH
j = (IH

h uh)j =
1
4
(u2j−1 + 2u2j + u2j+1), j = 1, . . . , M.

With this restriction operator we are able to compute the coarse error

AeH = rH = IH
h rh.

Finally, it is necessary to represent the coarse error on the fine grid. A suitable
interpolation is

Ih
H = 2(IH

h)T ,

which, componentwise, reads

uh
2j = uH

j , j = 1, . . . , M,

uh
2j+1 =

1
2
(uH

j + uH
j+1) j = 0, . . . , M.

4.4.2 Theoretical Framework

It is now time to generalize the ideas and present a more polished theoretical frame-
work of multigrid methods; see also [13] and [146]. Let Ω0 ⊂ Ω1 ⊂ . . . ⊂ ΩL be
a nested sequence of quasi-uniform grids, where ΩJ is the finest grid and Ω0 the
coarsest. We assume that the coarsest grid is significantly coarser than the finest,
such that the cost of the solution of the coarse-grid problem can be neglected when
compared to a smoothing operation on the finest grid. Furthermore, let VJ be a finite
element space on ΩJ that consists of piecewise continuous polynomials of degree r;
typically r is 1 or 2. Then V0 ⊂ V1 ⊂ . . . ⊂ VL ⊂ H1

0 . Notice that this assumption
about nested grids and finite element spaces is not essential, but that it simplifies the
analysis significantly.

The next thing to notice is that the restriction and the interpolation operators are
defined naturally by the finite element spaces. The natural restriction operator is the
L2 projection, QJ : L2 → VJ , defined by

(QJf,N) = (f,N), ∀N ∈ VJ and f ∈ L2,

where (·, ·) is the continuous L2 inner product defined by

(f, g) =
∫

Ω

fg ∂Ω.

This inner product is the natural extension of the discrete L2 inner product in (4.7).
The interpolation operator is defined implicitly because VJ−1 ⊂ VJ . In other words,

126 4. Solving Linear Systems

a basis function NJ−1
j on the coarse grid ΩJ−1 can be expressed by a sum of basis

functions {NJ
i } on the fine grid ΩJ ,

NJ−1
j =

∑
i

αijN
J
i .

Hence, if the solution on grid J − 1 is uJ−1 =
∑

j uJ−1
j Nj , then the interpolation

operator IJ
J−1, mapping uJ−1 to uJ , is defined by:

uJ = IJ
J−1uJ−1 =

∑
j

uJ−1
j

∑
i

αijN
J
i .

Next, we must define the linear systems on the different grids. In the previous
Chapter 2 we defined the weak formulation of the Poisson problem,

−∆u = f, in Ω, (4.97)

u = 0, on ∂Ω. (4.98)

The weak formulation, introduced in Chapter 2 of (4.97)–(4.98) is:

Find u ∈ V such that

(Au, v) = (∇u,∇v), ∀u, v ∈ V,

where V was some Hilbert space.
We are now able to define the linear systems to be solved approximately on the

different grids by using the weak formulation on the different finite element spaces
VJ . The linear systems are

AJuJ = fJ , J ∈ [0, L],

where
fJ = QJf, AJ = QJA.

The explicit expressions for the matrices and right-hand sides are as follows. Let
{NJ

j } be the finite element basis functions that span VJ . Then

fj =
∫

Ω

fNJ
j dx, AJ

ij =
∫

Ω

∇NJ
i ∇NJ

j dx.

Finally, we need to specify sufficient conditions for the approximate solvers
(smoothers) on the different grids to ensure convergence. Let SJ denote a smoother.
As an example, the relaxed Jacobi method would correspond to SJ = ωD−1

J , with
DJ being the diagonal of AJ . As before, these smoothers need to be convergent;
that is

ρ(SJAJ) ≤ σ, J ∈ [0, L], (4.99)

where σ ⊂ (0, 2). The other condition basically says that the smoother has to be
close to A−1

J for the high frequency components. This can be stated as

(S−1
J v, v) ≤ α(AJv, v), ∀v ∈ (I − QJ−1)VJ , J ∈ [1, L] (4.100)

4.4. Multigrid 127

where α > 0. This condition can be seen as a generalization of the eigenvalue result
for the relaxed Jacobi (4.96).

Finally, we state the V-cycle multigrid algorithm. Notice that there are a number
of generalizations of this algorithm, e.g., W-cycle and full multigrid; see e.g., [15]
and [135].

The Multigrid V-cycle Algorithm

I: B1 = A−1
1

II: Bjg = v3 where
v0 = 0
v1 = v0 − Sj(Ajv

0 − f)
v2 = v1 − Bj−1Qj−1(Ajv

1 − f)
v3 = v2 − Sj(Ajv

2 − f)

4.4.3 Convergence Theory

In Section 4.2.3 we described how the efficiency of iterative methods can be stated
in terms of the convergence rate

ρ = ‖I − τBA‖,

where,
‖en‖ ≤ ρ‖en−1‖.

For order-optimal algorithms ρ ≤ c < 1 independent of h and this leads to a
bounded number of iterations independent of h. In the following we set τ = 1
for simplicity.

We used the norm ‖ · ‖ for convenience, but in fact, any norm can be used4; see
[57], Chapter 3. Another common norm in the convergence analysis of multigrid
methods (and domain decomposition methods) is the ‖ · ‖A-norm. The A-norm of v
is defined as

‖v‖A = (Av, v)1/2,

and the corresponding A-norm of a matrix C is

‖C‖A = sup
v

(Cv, v)A

(v, v)A
.

With these norms the convergence rate is

ρA = ‖I − BA‖A,

and the error estimate is
‖en‖A ≤ ρA‖en−1‖A.

4 As long as the matrix norm corresponds to the vector norm.

128 4. Solving Linear Systems

It is shown in [4] and [146] that given that the smoothers SJ satisfy the assumptions
(4.99) and (4.100), we have ρA < 1 independent of h. In fact,

ρA ≤ 1 − 2 − σ

α
< 1.

As a rule of the thumb, the convergence rate ρA ≤ 1
10 in the case of a discretization

of the Poisson equation on a simple geometry.

4.4.4 Numerical Experiments

We now present an experiment with multigrid. Let the model problem be

−∆u = f, in Ω,

u = exy, on ∂Ω,

where the solution is u = exy and Ω = [0, 1] × [0, 1]. The grid hierarchies are
constructed as successive refinements of a 2 × 2 partition of the unit square. The
initial guess is a highly oscillating random function. This random function is used
to make the stress test for multigrid as difficult as possible. It should contain “every
possible” error. We use ‖rk‖

‖r0‖ ≤ 10−8 as the stopping criterion. The number of
iterations needed to achieve convergence is shown in Table 4.5. The number of
iterations seems to be independent of h, which is as it should be .

Table 4.5. The number of iterations, n, to achieve convergence with for a Poisson problem
with respect to the grid size h.

h 2−2 2−3 2−4 2−5 2−6 2−7

n 5 6 6 6 6 6

In Figure 4.5 the dramatic improvement of the solution during one V-cycle is
displayed. It should be clear that the combination of smoothing and coarse grid
correction is powerful.

4.5 Domain Decomposition

Due to the development of parallel computers, domain decomposition methods have
become very popular, particularly over the last two decades. Many researchers have
worked on such methods and the result is an abstract and mature theoretical foun-
dation, at the same level as multigrid methods. The idea was introduced as early as
1870 by Schwarz, who made an algorithm for computing the solution on a com-
pound domain Ω = Ω1 ∪ Ω2, by successively solving similar problems on the

4.5. Domain Decomposition 129

Fig. 4.5. The upper left picture shows the initial vector. It is a random vector that should con-
tain “all possible” errors. In the upper right picture the solution after one symmetric Gauss–
Seidel sweep is displayed. It is clear that the random high-frequency behaviour in the initial
solution has been effectively removed. The picture down to the left shows the solution after
the coarse grid correction. The smooth components of the solution have improved dramat-
ically. In the last picture the solution after the post smoothing is displayed. The solution is
now very close to the actual solution. (For the color version, see Figure A.9 on page 291).

simpler domains Ω1 and Ω2. Later, in particular from the 1980s and onwards, re-
searchers discovered that the technique was a powerful algorithm for the efficient
solving of linear systems that arise from the discretizations of various PDEs, partic-
ularly on parallel computers. For a more detailed description of domain decomposi-
tion methods, see [22] and [128].

We begin this section by reviewing the results from Schwarz’s early paper [124],
because it is a very good illustration of the method. Schwarz was interested in find-
ing the solution to the following Poisson problem5

−∆u = f, in Ω,

u = g, on ∂Ω,

where the domain Ω = Ω1 ∪ Ω2 is depicted in Figure 4.6.

5 Schwarz actually studied the Laplace equation, i.e., the Poisson problem with a homoge-
neous right-hand side, f = 0. However, the algorithm works for any f .

130 4. Solving Linear Systems

ΩΩ1 2

Γ

Γ2

1

Fig. 4.6. Schwarz problem domain.

The solutions of the Poisson problem on the simpler domains Ω1 and Ω2 were
known. Schwarz’s powerful idea was to perform an iteration that repeatedly reuses
the solutions in Ω1 and Ω2 to get the proper boundary conditions on Γ1 and Γ2, and
thereby the solution in the compound domain Ω. The algorithm can be summarized
as follows. First, the solution in Ω1 is computed as the solution of the following
problem:

−∆un
1 = f, in Ω1,

un
1 = g, on ∂Ω1\Γ1,

un
1 = un−1

2 , on Γ1.

The unknown boundary condition on Γ1 is based on the previous solution in the
domain Ω2 or an initial guess. Once un

1 is computed, it is used on the unknown
boundary Γ2 such that un

2 can be computed by

−∆un
2 = f, in Ω2,

un
2 = g, on ∂Ω2\Γ2,

un
2 = un

1 , on Γ2.

After the new solution, un
2 , is computed, the next iteration starts with the computa-

tion of un+1
1 with new boundary conditions based on un

2 and the iteration continues.
Schwarz was able to prove that this iteration converges to the actual solution in Ω.

We will now generalize the alternating Schwarz algorithm to handle many sub-
domains and make it suitable for parallel computers. However, we will not go into
the parallelization here. This is a large field of its own and is covered in Chapter 6.
Instead, we will focus on the mathematical properties of the algorithm. Let Ωh be a
triangulation of Ω and furthermore let Ω1, . . . , Ωp be an overlapping subdivision of
Ωh, where p will typically equal the number of processors on the parallel computer.
The subdomains are usually constructed as follows. Let Ω̂1, . . . , Ω̂p be a partition
of non-overlapping domains such that Ω = Ω̂1 ∪ . . . ∪ Ω̂p and Ω̂i ∩ Ω̂j = 0 for
i �= j. Each of the subdomains Ω̂i is then extended with a distance βH such that
the subdomains become overlapping.

4.5. Domain Decomposition 131

A convenient assumption is that the subdomains are nested in the sense that
Ωi ⊂ Ωh. This assumption is not necessary, but simplifies the exposition. Inherited
from the nestedness of the grids there exists a restriction matrix Ri : Ωh → Ωi,
such that

Ri(xj) = 1, if xj ∈ Ωi, (4.101)

Ri(xj) = 0, elsewhere. (4.102)

Here, xj are the vertices (or nodal points) in the grid Ωh. The corresponding inter-
polation operator is simply the transposed of the restriction matrix, RT

i . Finally, the
subdomain matrices are defined by

Ai = RiART
i .

With the above definitions of Ai, Ri and RT
i we can now state the additive Schwarz

algorithm.

The Additive Schwarz Algorithm

for i = 1, . . . , p:
un+1 = un − τRT

i A−1
i Ri(Aun − b)

The additive Schwarz algorithm can be expressed as a preconditioner, Ba, for the
Richardson iteration (4.27), as follows:

Ba =
p∑

i=1

RT
i A−1

i Ri. (4.103)

Notice also that the previously computed un is used in each step. This means that
the algorithm is parallel by nature. Furthermore, if A is symmetric then so is Ba. It
may be necessary to adjust τ to ensure convergence.

The multiplicative Schwarz algorithm is very similar to the additive Schwarz
algorithm. The only difference is that the most recently computed values of u are
always used. Further, the multiplicative Schwarz is convergent with τ = 1 and
therefore the τ parameter is usually avoided.

The Multiplicative Schwarz Algorithm

for i = 1, . . . , p:

un+ i
p = un+ i−1

p − RT
i A−1

i Ri(Aun+ i−1
p − b)

The multiplicative Schwarz can also be represented in terms of a preconditioned
Richardson iteration. We have the identity

I − BmA = (I − RT
p A−1

p Rp) · · · (I − RT
1 A−1

1 R1), (4.104)

where Bm is the preconditioner in the Richardson iteration (4.27).

132 4. Solving Linear Systems

The multiplicative Schwarz algorithm is generally more efficient than the addi-
tive Schwarz algorithm on a scalar computer. However, the multiplicative Schwarz
is a sequential algorithm and is not suitable for parallel computers. In its present
form, the algorithm is not symmetric. However, a symmetric version can be made
by one standard multiplicative Schwarz iteration followed by an additional iteration
with the domains numbered backwards. These algorithms are generalizations of the
block Jacobi (additive Schwarz) and block Gauss–Seidel (multiplicative Schwarz)
to overlapping blocks.

There is one major problem with the algorithms as stated above which is that
their efficiency depends on the number of subdomains p. In fact, the efficiency dete-
riorates quite rapidly as p increases. A cheap, but efficient solution to the problem of
the p dependency is to introduce a coarse grid ΩH , with characteristic grid size H ,
where H is much larger than h. This grid can be very coarse (in contrast to multigrid
methods). We refer to the matrix on the coarse grid as AH and the restriction oper-
ator is RH . Notice that the restriction operator is not on the form (4.101)–(4.102),
but is instead similar to the restriction operator used for multigrid methods.

The above definition of the Schwarz algorithms can easily employ coarse grid
correction. Instead of the previous numbering where Ω1, . . . , Ωp is an overlapping
partition of Ωh; we number the domains as Ω2, . . . , Ωp′

, where p′ = p + 1. In
addition, the coarse grid is used. Let Ω1 = ΩH . With this numbering of the domains
and the corresponding matrices Ai and Ri, the above algorithms extend directly to
the case with a coarse grid, given that p is replaced with p′.

The following results are known for the additive and multiplicative Schwarz pre-
conditioners. For the additive Schwarz preconditioner with a coarse grid correction,
Ba, the condition number of BaA is independent of h. In fact,

K(BaA) ≤ C(1 + β−1).

Notice that this does not mean that the additive Schwarz algorithm with coarse grid
correction is necessarily convergent. However, τ can be chosen such that the con-
vergence rate,

ρA = ‖I − τBaA‖A < 1,

is independent of h and H . The choice of τ is dealt with in more detail later, in
Section 4.6.

On the other hand, the multiplicative Schwarz method with coarse grid correc-
tion is convergent and the convergence rate, ρA < 1, is independent of h and H ,
where

ρA = ‖I − BmA‖A.

The proof can be found in, e.g, [22] and [128]. Without a coarse grid correction
the convergence rate typically deteriorates as O(H−2).

There are also nonoverlapping domain decomposition algorithms where the un-
derlying domains are not overlapping. Moreover, the domains may not even be mo-
tivated geometrically. We will not go into these algorithms here, instead we refer to,
e.g., [22] and [128].

4.6. Preconditioning Revisited 133

4.6 Preconditioning Revisited

4.6.1 Idea

We have now introduced the classical iterations, the multigrid method, domain de-
composition and the Conjugate Gradient method as separate methods. It is now time
to combine them to derive a framework suitable for handling the equations of the
Bidomain model. The gluing concept is preconditioning.

As before, we want to solve the linear system

Au = b. (4.105)

We saw earlier that the efficiency of both the Richardson and the Conjugate Gradient
method depends on the condition number of A, which was typically of order h−2.
The idea of preconditioning is simply to multiply (4.105) with a matrix or linear
operator B to obtain an equivalent system,

BAu = Bb, (4.106)

where B is usually called the preconditioner. The system (4.106) has the same solu-
tion as (4.105) provided that B has full rank6. The hope is then that (4.106) is easier
to solve than (4.105). The preconditioner B can be any matrix or linear operator that
in some sense resembles A−1. For instance, it may be based on an approximate fac-
torization of A, or it may be a sweep with the Jacobi or the multigrid method. What
is crucial is that B should be a good approximation of A−1 and also inexpensive
with respect to storage and evaluation.

Earlier, we considered order-optimal solution algorithms, and we will now relate
these algorithms to order-optimal preconditioners. First, we need the concept of
spectral equivalence, which describes what a “good” approximation of A−1 is.

4.6.2 Spectral Equivalence

Notice that A and B are families of matrices with respect to the triangulations Ωh

of Ω, where h approaches zero in the limit. It is, therefore, common to let A and B
have the subscript h, Ah and Bh.

The two linear operators or matrices, A−1
h and Bh, which are assumed to be

symmetric and positive definite7, are spectrally equivalent (independent of h) if
there exist constants c1 and c2, independent of h such that

c1(A−1
h v, v) ≤ (Bhv, v) ≤ c2(A−1

h v, v), ∀v. (4.107)

Alternatively, we may express this property as

c1(Ahv, v) ≤ (AhBhAhv, v) ≤ c2(Ahv, v), ∀v. (4.108)

6 A matrix has full rank if it is invertible.
7 If Ah and Bh are symmetric and positive definite then so are A−1

h and B−1
h .

134 4. Solving Linear Systems

It is known that if A−1
h and Bh are spectrally equivalent, the condition number of

BhAh is bounded by the constants c1 and c2,

K(BhAh) ≤ c2

c1
. (4.109)

It is common to denote spectral equivalence of A−1
h and Bh by A−1

h ∼ Bh.
With the definition of spectral equivalence we can now state what a well-designed

preconditioner should look like:

– Bh should be spectrally equivalent to A−1
h ,

– the evaluation of Bh on a vector v, Bhv, should cost O(N) operations,

– the storage of Bh should be similar to the storage of Ah, O(N) floating point
numbers.

In what follows we will see that an order-optimal preconditioner leads to an
order-optimal solution algorithm, in the case of both the Richardson and the Conju-
gate Gradient methods.

4.6.3 The Richardson Iteration Re-Revisited

We can now derive what the spectral equivalence of B and A−1 means in the context
of the preconditioned Richardson iteration. We remember from (4.28) that the error
at the n iteration, en, could be stated in terms of the error at the previous iteration,
en−1:

en = (I − τBA)en−1. (4.110)

The convergence rate in the A-norm is

ρA = ‖I − τBA‖A, (4.111)

and the error reduction can be estimated as

‖en‖A ≤ ρA‖en−1‖A.

Because BA is symmetric with respect to the A inner product, ρA can be stated in
terms of the eigenvalues of BA, µi,

ρA = ‖I − τBA‖A = sup
µi

|1 − τµi|.

Hence, ρA is a linear polynomial in µi and its maximum is obtained at the extreme
values of µi,

|1 − τµ0| or |1 − τµN |,
where µ0 and µN are the smallest and largest eigenvalues, respectively. We choose
τ as the minimizer of |1 − τµi|. The minimum is obtained when

1 − τµ0 = τµN − 1.

4.6. Preconditioning Revisited 135

which makes

τ =
2

µ0 + µN

the optimal choice. With this choice of τ , ρA is

ρA = 1 − τµ0 = 1 − 2µ0

µ0 + µN
=

µN − µ0

µN + µ0
=

K − 1
K + 1

, (4.112)

and we have the corresponding error estimate,

‖en‖A ≤
(

K − 1
K + 1

)n

‖e0‖A.

Hence, when A and B−1 are spectrally equivalent, the condition number K is in-
dependent of h, and therefore the convergence rate, ρA, is independent of h (with a
reasonable choice of τ).

4.6.4 Preconditioned Conjugate Gradient Method

In this section, we will extend the Conjugate Gradient method with a precondi-
tioner. This is nearly always done in practice, at least when CG is used to compute
the numerical solution of PDE problems. First, observe that BA is not necessarily
symmetric, even if A and B are. Symmetry is required to ensure convergence of the
Conjugate Gradient method, as we saw in Section 4.3. However, the algorithm can
be stated in any inner product. The inner product of choice when using a precondi-
tioner is (·, ·)B−1 defined as

(u, v)B−1 = (B−1u, v).

The preconditioner B is positive definite and symmetric, which means that B−1

also is positive definite and symmetric. Consequently, also B−1 defines an inner
product. Moreover, BA is obviously symmetric in the B−1 inner product, because

(BAu, v)B−1 = (Au, v) = (u,Av) = (u,BAv)B−1 .

Still, we do not want to form either B−1 or BA. In fact, when using either multigrid
or domain decomposition as preconditioner, the only available action is evaluation
on a vector, Bv. Fortunately, the Conjugate Gradient method applied to BA in the
B−1 inner product can be stated similarly to the Conjugate Gradient algorithm on
page 119. The only difference is the use of an additional vector and the evaluation
of B.

136 4. Solving Linear Systems

The Preconditioned Conjugate Gradient Algorithm
Let A ∈ R

N,N , B : R
N → R

N , f ∈ R
N ,u0 ∈ R

N , and 0 < ε < 1
be given. The matrix A and the preconditioner B are supposed to be
symmetric and positive definite.
u = u0

r = f − Au
s = Br
p = s
ρ0 = (s, r)
k = 0
While ρk/ρ0 > ε do

z =Ap (4.113)

t = Bz (4.114)

γ = (p, z) (4.115)

α = ρk/γ (4.116)

u = u + αp (4.117)

r = r − αz (4.118)

s = s − αt (4.119)

ρk+1 = (s, r) (4.120)

β = ρk+1/ρk (4.121)

p = s + βp (4.122)

k = k + 1 (4.123)

end

4.6.5 Convergence Analysis Revisited

The convergence analysis in Section 4.3 extends directly to the case with a precon-
ditioner, but the condition number is K = K(BA) instead of K(A):

‖en‖A ≤
(√

K − 1√
K + 1

)n

‖e0‖A.

In the case where B ∼ A−1, K ≤ c2
c1

by (4.109) and is bounded independently of
h. This is always an improvement over the preconditioned Richardson iteration,

√
K − 1√
K + 1

=
K − 1

K + 2
√

K + 1
<

K − 1
K + 1

.

However, if K is small, the improvement is not large. This is the case for the Pois-
son equation, because the multigrid methods or domain decomposition methods are
highly efficient. In fact, in the case of multigrid preconditioning, a convergence rate

4.6. Preconditioning Revisited 137

of about 1
10 should be expected. Using the relation (4.112) the condition number can

be estimated to K ≈ 1.2, which makes
√

K ≈ 1.1. Moreover, each iteration with
the Conjugate Gradient method is slightly heavier than an Richardson iteration and
there is, therefore, not much to gain by accelerating an efficient multigrid method
with the Conjugate Gradient method. However, if robustness is an issue, the precon-
ditioned Conjugate Gradient method should be considered. This will be exemplified
in the next section.

4.6.6 Variable Coefficients

In this section we will briefly consider the case of elliptic equations with a vari-
able coefficient. The reason for this study is that the electrical conductivity in the
heart and body vary spatially. In fact, the ratio between the largest and the small-
est conductivities may be almost as large as 100 (between blood and bone) and the
conductivity is discontinuous. Here, we will consider how such variations affect the
multigrid and domain decomposition performance. The model problem is

−∇ · (M∇u) = f, in Ω, (4.124)

u = 0, on ∂Ω, (4.125)

where M(x) in general is a matrix that describes the electrical conductivity of the
media. Let the corresponding linear system be

Au = b.

Both multigrid and domain decomposition have problems removing the error
associated with the jumps in M . In fact, even divergence may occur, depending on
the jump and the geometry of M , see also [135].

By contrast, the preconditioned Conjugate Gradient method always converges,
given that the matrix and the preconditioner are positive definite and symmetric.
However, the efficiency of the Conjugate Gradient method depends on the condition
number. We know from Sections 4.4 and 4.5 that efficient multigrid and domain
decomposition algorithms can be made for discretizations of the Poisson problem

−∆u = f, in Ω, (4.126)

u = 0, on ∂Ω. (4.127)

The corresponding linear system is denoted by

Cu = c.

In this case, we know that it is possible to construct a preconditioner, B, based on,
e.g., multigrid or domain decomposition techniques, that is spectrally equivalent to
the inverse of C,

c0(Bv, v) ≤ (C−1v, v) ≤ c1(Bv, v), ∀v,

138 4. Solving Linear Systems

where c0 and c1 are independent of h. Furthermore, C and A are spectrally equiva-
lent, because

m0

∫
Ω

∇u∇v dx ≤
∫

Ω

M∇u∇v dx ≤ m1

∫
Ω

∇u∇v dx,

where
m0 = min(M), m1 = max(M).

Because A ∼ C ∼ B−1, we end up with the following estimate on the condition
number:

K(BA) =
m1

m0

c1

c0
. (4.128)

Hence, it appears that an order-optimal preconditioner for the Poisson problem
yields an order-optimal preconditioner also in the case with a variable coefficient.
However, the condition number depends on the coefficient M .

Finally, we remark that although we in the above analysis assumed that the
multigrid or the domain decomposition algorithms employed matrices based on dis-
cretizations of the Poisson equation, this is not necessarily best in practice. Instead,
one should base the multigrid or the domain decomposition solvers on matrices
containing the variable coefficient on all levels. In this case, one does not have an
equally solid theoretical framework as for the Poisson equation, but the preformance
of the preconditioners, in particular in combination with the Conjugate Gradient
method, are usually quite good.

4.6.7 Numerical Experiments

In this example we will consider three different solution algorithms; 1) multigrid as
a stand-alone solver, with matrices based on the problem with variable coefficient
(4.124), 2) multigrid as a preconditioner for the Conjugate Gradient method with
matrices based on (4.124), and 3) multigrid as a preconditioner with matrices based
on the Laplacian (4.126). Let the model problem be

−∇ · (M∇u) = f, in Ω,

u = 0, on ∂Ω,

where Ω is the unit square and the conductivity M is given as

M(x, y) =

{
m, if 0.45 ≤ x ≤ 0.55 and 0.1 ≤ y ≤ 0.9,

n, else,
(4.129)

and f is given as

f(x, y) =

{
1 if

√
(x − 0.3)2 + (y − 0.3)2 ≤ 0.1,

0 else.
(4.130)

The conductivity M and the source function f are shown in Figure 4.7.

4.6. Preconditioning Revisited 139

m
f

n

Fig. 4.7. The jump in the conductivity M.

The grid hierarchies are made as successive refinements of a 2 × 2 partition
of the unit square with bilinear elements. The initial guess is a highly oscillat-
ing random function and we use ‖rk‖

‖r0‖ ≤ 10−8 as the stopping criterion. We let
m = 1, 1/10, 1/100, 1/1000, while n = 1. As seen in Table 4.6, multigrid even
diverges, if the jump in the conductivity is as large as 1000. However, when the
jump is less than or equal to 100, which is the case in our body, all methods con-
verge8. The multigrid preconditioner based on the matrices with variable coefficient
is performing better than the other methods.

Table 4.6. The number of iterations with respect to M , h and the different multigrid solvers.
The ‘-’ means that the solver diverges.

MG-Variable Coeff. CG/MG-Laplacian CG/MG-Variable Coeff.
h\M 1 10 100 1000 1 10 100 1000 1 10 100 1000
2−3 6 7 7 7 5 13 14 14 5 5 5 5
2−4 6 13 17 18 5 18 27 30 5 6 7 7
2−5 7 10 16 - 5 24 44 54 5 7 9 15
2−6 7 12 15 - 5 23 41 53 5 8 10 16
2−7 7 12 14 - 5 27 54 81 5 8 9 14
2−8 7 16 20 - 5 27 55 75 5 9 10 15

8 One should notice that if the size of the elements vary, then this variation induces extra
variation in the numerical conductivity.

140 4. Solving Linear Systems

4.7 The Monodomain Model

Recall the equation for the Monodomain model introduced in Chapter 2;

ut −∇ · (M∇u) = f(u), in Ω, t > 0,

u(0) = u0, in Ω, t = 0,

u(x) = 0, on ∂Ω,

where u is the transmebrane potential, M is a scaled conductivity, and f(u) is a
nonlinear function. One way to solve the equation is to split it in two parts:

ut = ∇ · (M∇u), in Ω, t > 0, (4.131)

and
ut = f(u), in Ω, t > 0, (4.132)

and assign suitable boundary and initial conditions to these equations.
The main reason for performing the splitting is that efficient solution algorithms

exist for both (4.131) and (4.132). Solution algorithms for (4.132) are described in
Chapter 5. Here, we will focus on (4.131) and consider both multigrid and domain
decomposition.

Using either implicit Euler or Crank–Nicholson for the time discretization and
either FDM or FEM in space, we need to solve the following linear system at each
time step:

(I + ∆tA)uk = uk−1, (4.133)

where A is similar-to the positive Laplacian. Notice that this linear system corre-
sponds to the discretization of a reaction-diffusion equation:

u − ε∆u = f, (4.134)

where ε � 1. One of the characteristics of this equation is that boundary layers may
be present as ε approaches zero. This causes the solution u to be less regular than
for standard elliptic equations, which again causes a deterioration of the approxi-
mation on coarse grids. The quality of the coarse-grid correction is important for
both multigrid and domain decomposition, but is expected to decrease in the case of
(4.134). This is not the case for the system (4.133), due to the particular right-hand
side, which is the solution at the previous time step, uk−1.

In the following sections we will describe multigrid and domain decomposition
preconditioners that are independent of both h and ∆t, in the sense that

c0(Bu, u) ≤ ((I − ∆tA)−1u, u) ≤ c1(Bu, u), ∀u,

where c0 and c1 are independent of h and ∆t.
Finally, we remark that the difference between two time steps decreases as ∆t →

0,
‖uk − uk−1‖ ≤ C∆t.

4.7. The Monodomain Model 141

Therefore, the solution from the previous time step, k−1, provides a very good start
vector at the next time step, k. With this start vector, the error reduction required
by the linear solvers is only ∼∆t. Hence, when using iterative methods, the linear
system at each time step becomes less expensive to solve as ∆t decreases.

4.7.1 Multigrid

The multigrid methods considered in Section 4.4 extend to the problem (4.133) c.f.
[7], [107] and [134] and are independent of both ∆t and h. This is described below.

As earlier, we have a sequence of nested quasi-uniform grids, Ω0 ⊂ Ω1 ⊂ . . . ⊂
ΩL. For each grid the corresponding linear system is

(I − ∆tAJ)uk
J = uk−1

J , J = 0, . . . , L. (4.135)

The smoothers, restriction and interpolation operators are defined as in Section 4.4.
In Section 4.4 we saw that multigrid is an efficient algorithm for solving the

following equation:
cu −∇ · (a∇u) = f, (4.136)

where c and a are bounded below and above. However, we did not mention the case
where a → 0. This is the case here. We begin by considering the situation when
a = 0. (In this case the solution has already been found at the previous time step and
there is no need to solve a linear system. Look aside from this point.) The solution
of (4.136) reduces to solving a linear system where the matrix is a mass matrix (with
boundary conditions). This can be done optimally with standard classical iterations,
because the mass matrix has a condition number independent of h and is diagonally
dominant.

Hence, in the limit case of a = 0, the coarse grid correction is not needed. This
is the general case with this equation. The performance of the smoothers improves
as ∆t decreases. In fact, it has been shown in [107] that the improved smoothing
balance the loss in the approximation on the coarse grid, such that multigrid is an
order-optimal method independently of ∆t, even for the more difficult case of the
reaction-diffusion equation. In Table 4.7 we see that the performance improves as
∆t decreases for (4.133).

4.7.2 Numerical Experiments

Let the model problem be

u − ε∆u = 1, in Ω,

u = 0, on ∂Ω.

The linear system is solved with multigrid as a stand-alone solver. The grid hierar-
chies are constructed as successive refinements of a 2×2 partition of the unit square
with bilinear elements. The initial guess is a highly oscillating random function. We

142 4. Solving Linear Systems

Table 4.7. The number of iterations as a function of ε and h.

h\ε 1 2−1 2−2 2−3 2−4 2−5 2−6 2−7

2−3 4 4 3 3 4 3 2 2
2−4 4 4 4 4 4 4 3 2
2−5 5 5 5 4 5 5 4 3
2−6 5 5 5 5 5 5 4 4
2−7 4 4 4 5 4 4 4 4
2−8 4 4 4 4 4 4 4 4
2−9 4 4 4 4 4 4 4 4
2−10 4 4 4 4 4 4 4 4

remark that although an oscillating random function will not be used in practice be-
cause the solution on the previous time step is a very good start vector, it is a good
stress test for the multigrid method. We use ‖rk‖

‖r0‖ ≤ 10−6 as the stopping criterion.
Multigrid seems to be robust with respect to both h and ε; in fact, the performance
of multigrid seems to improve slightly as ε decreases.

4.7.3 Domain Decomposition

The domain decomposition methods considered in Section 4.5 extend to the problem
(4.133) (c.f. [18], [19] and [22]) and are independent of both ∆t and h. This is
described in what follows.

As earlier in Section 4.5, the domain is divided into p overlapping subdomains,
Ωh = Ω1

h ∪ . . . ∪ Ωp
h, with an additional coarse grid ΩH . The restriction and inter-

polation operators, Ri and RT
i , are derived from the geometrical relation between

the subdomain Ωi
h and Ωh, with no reference to the matrix to be solved. Therefore,

these operators can also be used in this application. This also applies to the restric-
tion and interpolation operators for the coarse grid. Therefore, the subdomain matrix
is constructed as

(I − ∆tA)i = Ri(I − ∆tA)RT
i .

With these subdomain matrices, the Schwarz algorithms in Section 4.5 can be used
directly.

In the previous section, where we considered the multigrid methods, we noticed
that the smoothers improved as ∆t → 0. In addition, for domain decomposition
methods, the error appears to be become more local as ∆t decreases. In fact, if
∆t ≤ CH2, the coarse grid solver is not necessary; see [18] and [19].

4.8 The Bidomain Model

In the previous sections we saw that it is possible to construct order-optimal precon-
ditioners for both of the matrices A and I −∆tA, where A was similar to a discrete
Laplacian. However, the Bidomain model contains a system of PDEs in which each

4.8. The Bidomain Model 143

component is similar to either A or I −∆tA. It is not easy to extend the theoretical
framework developed for A and I − ∆tA to this model problem directly, but it is
possible. However, that is not what we will do here. Instead, we will show that these
components can be reused in the powerful concept of (block) preconditioning, to
give an order-optimal preconditioner.

Block preconditioners for the Bidomain model are described in, e.g., [96], [111],
[130]. It can be proven, see [95], that both the block Jacobi preconditioner and the
symmetric block Gauss–Seidel preconditioners are order-optimal. We briefly review
the theory for the block Jacobi preconditioner here. Numerical experiments, using
a combination of multigrid and domain decomposition on a parallel computer, are
presented in Section 6.8.4 in Chapter 6. Block preconditioners for other systems of
PDEs have been considered in, e.g., [5], [35], [36], [75], [97], [122], and [138].

To clarify the description we restate the equations that were derived in Chapter 2,

vt = ∇ · (Mi∇v) + ∇ · (Mi∇u),
0 = ∇ · (Mi∇v) + ∇ · ((Mi + Me)∇u).

In Chapter 3, these equations were discretized by the finite element method in space
and a Crank–Nicholson scheme in time, such that we arrive at the following system
of algebraic equations:

Ivn +
∆t

2
Aiv

n +
∆t

2
Aiu

n = Ivn−1 − ∆t

2
Aiv

n−1 − ∆t

2
Aiu

n−1,

∆t

2
Aiv

n +
∆t

2
Ai+eu

n = −∆t

2
Aiv

n−1 − ∆t

2
Ai+eu

n−1.

Recall that the matrices Ai and Ai+e are discretizations of the above differential
operators, i.e.,

Ai = (∇ · Mi∇)h,

Ai+e = (∇ · Mi+e∇)h,

and I is the mass matrix in the finite element method. Later we will also need the
discrete Laplacian,

A0 = ∆h.

The right-hand sides are not of particular importance when considering pre-
conditioners. In fact, we construct the preconditioners such that they handle any
right-hand side. That is, letting bn−1 and cn−1 to be the respective right-hand sides,

(
bn−1

cn−1

)
=
(

Ivn−1 − ∆t
2 Aiv

n−1 − ∆t
2 Aiu

n−1

−∆t
2 Aiv

n−1 − ∆t
2 Ai+eu

n−1

)
,

then we can write (4.137) as
(

I + ∆t
2 Ai

∆t
2 Ai

∆t
2 Ai

∆t
2 Ai+e

)(
vn

un

)
=
(

bn−1

cn−1

)
. (4.137)

144 4. Solving Linear Systems

The matrix in (4.137) is symmetric and positive definite. This makes the Conjugate
Gradient method an appropriate iterative solver, when combined with a suitable
preconditioner. In what follows we will describe a block preconditioner, where the
blocks are constructed by preconditioners for Ai and I + ∆t

2 Ai+e. These were de-
scribed earlier in this chapter.

We will now describe an order-optimal preconditioner for the Bidomain model.
The matrix in (4.137) is

T =
(

I + ∆t
2 Ai

∆t
2 Ai

∆t
2 Ai

∆t
2 Ai+e

)
. (4.138)

In what follows we will show that T is spectrally equivalent to the inverse of the
block Jacobi preconditioner. Let

S =
(

I + ∆t
2 A0 0
0 ∆t

2 A0

)
. (4.139)

The exact Jacobi preconditioner will then be S−1, but, of course, inverting S is too
costly. However, in Sections 4.4, 4.5 and 4.7, order-optimal preconditioners for A0

and I + ∆t
2 A0 were described. Therefore, we know that it is possible to construct

an order-optimal preconditioner for S. This is, indeed, the main motivation behind
constructing the preconditioner on this block diagonal form. Let this preconditioner
be R, defined as

R =

(
̂(I + ∆t

2 A0)−1 0

0 ̂(∆t
2 A0)−1

)
, (4.140)

where the notation (̂·)
−1

denotes an approximate inverse. Spectral equivalence is
associative, in the sense that if A, B, and C are three matrices and A ∼ B and
B ∼ C, then A ∼ C. We have that R−1 ∼ S. Therefore, it remains to show that
S ∼ T , and this would imply that R−1 ∼ T . Then, we can deduce that the condition
number of the preconditioned system is bounded9,

K(R T) ≤ c. (4.141)

where c is independent of h and ∆t.
Hence, the concept of block preconditioning allow us to build an order-optimal

preconditioner by reusing standard algorithms based on multigrid and domain de-
composition for linear scalar PDEs that are either elliptic or parabolic. These meth-
ods have been studied extensively in the literature.

The last piece of the puzzle is to prove that S and T are spectrally equivalent, S ∼ T ,
c.f. Section 4.6.2. This is achieved in the rest of this section.

Assumptions We assume that there exist constants c0 and c1, independent of h and
∆t, such that

c0(A0v, v) ≤ (Aαv, v) ≤ c1(A0v, v), (4.142)

for α = i, e.
9 Notice that we assume that S, T and R−1 are spectrally equivalent independent of h and
∆t, c.f. Section 4.6.2.

4.8. The Bidomain Model 145

The assumption simply states that the matrix generated by the Laplace operator
is spectrally equivalent to the matrices generated by the variable coefficient prob-
lems.

Notice that, since

(Ai+eu, u) = (Aiu, u) + (Aeu, u),

we have from (4.142) that

2c0(A0v, v) ≤ (Ai+eu, u) ≤ 2c1(A0v, v). (4.143)

The proof is split in two parts, the upper and the lower bound. We start with the
upper bound.

Upper bound
Let

W =
(

v
u

)
.

We start by proving that

(TW,W) ≤ c(SW,W), ∀W,

for a suitable choice of c (which is independent of h and ∆t). First, we compute a
more direct expression for (TW,W),

(TW,W) =
((

I + ∆t
2 Ai

∆t
2 Ai

∆t
2 Ai

∆t
2 Ai+e

)(
v
u

)
,

(
v
u

))

=
((

(I + ∆t
2 Ai)v + ∆t

2 Aiu, ∆t
2 Aiv + ∆t

2 Ai+eu
)
,

(
v
u

))

= ((I +
∆t

2
Ai)v, v) + ∆t(Aiv, u) +

∆t

2
(Ai+eu, u).

The corresponding expression for the preconditioner is

(SW,W) =
((

I + ∆t
2 A0 0
0 ∆t

2 A0

)(
v
u

)
,

(
v
u

))

=
((

(I + ∆t
2 A0)v, ∆t

2 A0u
)(v

u

))

= ((I +
∆t

2
A0)v, v) +

∆t

2
(A0u, u).

146 4. Solving Linear Systems

By using (4.142) and (4.143), we get

(TW,W) ≤
((

I +
∆t

2
Ai

)
v, v

)
+

∆t

2
(Ai+eu, u) + ∆t(Aiv, u)

+
∆t

2
(Ai(v − u), (v − u))

=
((

I +
∆t

2
Ai

)
v, v

)
+

∆t

2
(Ai+eu, u) + ∆t(Aiv, u)

+
∆t

2
(Aiv, v) +

∆t

2
(Aiu, u) − ∆t(Aiv, u)

= ((I + ∆tAi)v, v) + ∆t(Aiu, u) +
∆t

2
(Aeu, u)

≤ c1((I + ∆tA0)v, v) + c1∆t(A0u, u) + c1
∆t

2
(A0u, u)

≤ 3c1

{
((I +

∆t

2
A0)v, v) +

∆t

2
(A0u, u)

}
.

Hence
(TW,W) ≤ 3c1(SW,W). (4.144)

Lower bound

(TW,W) =
((

I +
∆t

2
Ai

)
v, v

)
+ ∆t(Aiv, u) +

∆t

2
(Ai+eu, u)

= (Iv, v) +
∆t

2
(Ai(v + u), v + u) +

∆t

2
(Aeu, u)

≥ c0(v, v) +
∆tc0

2
(A0(v + u), v + u) +

∆tc0

2
(A0u, u)

≥ c0(v, v) +
∆tc0

2
(A0(v + u), v + u) +

∆tc0

2
(A0u, u)

−∆tc0

2

(
A0

(
εu +

1
ε
v

)
, εu +

1
ε
v

)
,

where ε > 0 is to be determined. Here(
A0

(
εu +

1
ε
v

)
, εu +

1
ε
v

)
= ε2(A0u, u) +

1
ε2

(A0v, v) + 2(A0v, u),

so

(TW,W) ≥ c0

{
(v, v) +

∆t

2
(A0v, v) +

∆t

2
(A0u, u)

+∆t(A0v, u) +
∆t

2
(A0u, u) − ∆t

2
ε2(A0u, u)

− ∆t

2ε2
(A0v, v) − ∆t(A0v, u)

}

= c0

{
(v, v) +

∆t

2
(1 − 1

ε2
)(A0v, v) +

∆t

2
(2 − ε2)(A0u, u)

}
.

4.8. The Bidomain Model 147

By picking ε2 = 3/2, we have 1 − 1
ε2 = 1/3 and 2 − ε2 = 1/2, and then

(TW,W) ≥ c0

{
(v, v) +

∆t

6
(A0v, v) +

∆t

4
(A0u, u)

}

≥ c0

3

{((
I +

∆t

2
A0

)
v, v

)
+

∆t

2
(A0u, u)

}

=
c0

3
(SW,W). (4.145)

Summarizing the results from (4.144) and (4.145), we have

c0

3
(SW,W) ≤ (TW,W) ≤ 3c1(SW,W).

Hence, T and S are spectrally equivalent. This implies that the condition number of
S−1T is bounded. In fact,

κ(S−1T) = 9
c1

c0
.

An interesting consequence of this result is that we can obtain a relation between the
computational cost of the bidomain model and the monodomain model; see [133].

Chapter 5

Solving Systems of ODEs

The operator splitting algorithms introduced in Chapter 3 reduced the solution of
the bidomain equations to solving linear PDE systems and nonlinear systems of
ODEs. Techniques for discretizing the PDE system were presented in Chapter 3,
while techniques for solving the resulting linear systems were discussed in Chapter
4. What remains to have a complete computational method for the bidomain model
is to find an efficient method for solving the nonlinear ODE systems. Note that the
spatial discretization of the bidomain equations results in one ODE system for each
node in the finite element grid. Realistic simulations may require several millions
of nodes, and it is therefore of the utmost importance to solve the ODE systems
efficiently.

Solvers for systems of ODEs is a large research field, and there exists a huge
amount of available literature on theoretical and computational aspects of the vari-
ous solvers. In this chapter, we provide only a brief introduction to the most widely
used classes of solvers, and comment on their applicability for solving the cell model
ODEs. For a thorough presentation of ODE solvers, the reader is referred to, e.g.,
[58,59].

5.1 Simple ODE Solvers

In Chapter 3 we introduced the so-called θ-rule for time discretization of PDEs. The
θ-rule is a general formulation from which well known methods such as the forward
and backward Euler methods method are derived as special cases. In this chapter,
we will provide a short description of these simple discretization techniques for
ordinary differential equations. Although none of these techniques are among the
most suitable for solving the cell model ODE systems, they serve as a foundation
for describing the more advanced methods.

5.1.1 The Euler Methods

Consider a general initial value problem of the form

dy

dt
= f(t, y), t > t0, (5.1)

y(t0) = y0, (5.2)

where y0 is a given initial value. The simplest algorithm for numerical solution of
this problem is the forward Euler method. This method can be motivated in a number

150 5. Solving Systems of ODEs

of different ways. In Chapter 3 it was derived as a special case of the θ-rule, in which
the time derivative was simply replaced by a finite difference approximation, and a
weighted average was used to approximate the right hand side. Here, we apply a
slightly different approach. Assuming that the value of y is known at t = tn, the
solution at t = tn+1 can be found by integrating (5.1). We have

∫ tn+1

tn

dy

dt
dt =

∫ tn+1

tn

f(t, y)dt,

which gives

y(tn+1) = y(tn) +
∫ tn+1

tn

f(t, y)dt. (5.3)

In general, the integral on the right hand side cannot be computed directly and
needs to be approximated. A simple approximation is obtained by inserting the
known values tn, yn into the function f(t, y). The integrand then becomes constant,
and the integral is approximated by

∫ tn+1

tn

f(t, y)dt ≈ ∆tf(tn, yn),

where ∆t = tn+1 − tn. Inserting this into (5.3) gives

y(tn+1) = y(tn) + ∆tf(tn, yn), (5.4)

which is the forward Euler method.
The forward Euler method can also be derived by performing a Taylor series

expansion of the solution around t = tn. Truncating the series after the first two
terms then gives (5.4). Using this approach, it is also very easy to see that the local
error of the forward Euler method is proportional to the square of the time step
∆t. This leads to the well known fact that the forward Euler method is first-order
accurate, i.e., the accumulated error after n ∼ ∆t−1 steps is proportional to ∆t.

Starting from (5.3), different approximations of the right hand side integral will
yield numerical methods with different properties. For instance, the left end-point
approximation used above may be replaced by

∫ tn+1

tn

f(t, y)dt ≈ ∆tf(tn+1, yn+1),

which approximates the integral using the values at the right end-point. This gives
the backward Euler method

y(tn+1) = y(tn) + ∆tf(tn+1, yn+1), (5.5)

where we see that the unknown value yn+1 occurs as an argument to the function
f(t, y). For this method it is therefore not possible to derive an explicit formula for
y(tn+1). Instead, we are required to solve a system of generally nonlinear algebraic
equations.

5.1. Simple ODE Solvers 151

The backward Euler method can also be derived from a Taylor series expansion
around the point tn+1. With this approach, it is easy to see that this method is also
first-order accurate.

More accurate ODE solvers are obtained by using more accurate approximations
of the right hand side integral in (5.3). For instance, approximating the integral with
the trapezoidal rule, i.e.

∫ tn+1

tn

f(t, y)dt ≈ ∆t
f(tn, yn) + f(tn+1, yn+1)

2
,

gives the second-order accurate Crank-Nicolson scheme.
As described in Chapter 3, the two Euler methods and the Crank-Nicolson

method are all special cases of a general scheme known as the θ-rule. In the present
setting, the θ-rule is derived by approximating the integral as a weighted average of
the two endpoint values:

∫ tn+1

tn

f(t, y)dt ≈ ∆t[(1 − θ)f(tn, yn) + θf(tn+1, yn+1)],

for θ ∈ [0, 1].

5.1.2 Stability Analysis for the Euler Methods

The order of accuracy is not the only important property of a numerical method. In
many cases, the stability of the method is at least as important. In particular, this is
the case for the equations that describe the cellular reactions, because the multiple
time scales of these problems tend to make them stiff . The concept of stiffness,
although very often described in terms of multiple time scales, may be difficult to
define precisely. For homogeneous, linear equations, stiffness can be related to the
eigenvalues of the problem. Consider, for instance, the Dahlquist test equation:

y′ = λy, (5.6)

y(0) = 1, (5.7)

where λ may be a complex number. As described in [6], this equation is stiff for an
interval [0, b] if the real part of λ satisfies

bIR(λ) � −1.

Note that we assume
IR(λ) ≤ 0,

since this is required for the equation to be stable. For the general non-linear problem
(5.1)–(5.2), the stiffness can be related to the eigenvalues λi of the local Jacobian
matrix J , defined by

Jij =
∂fi(t, y)

∂yj
.

152 5. Solving Systems of ODEs

The problem is stiff for an interval [0, b] if

b min
i

IR(λi) � −1.

More pragmatic definitions of stiffness have been given by, for instance, Curtiss and
Hirschfelder [27] and Ascher and Petzold [6], who define an equation to be stiff if
the time step needed to maintain stability of an explicit method is much smaller than
the time step dictated by the accuracy requirements. This indicates that a problem’s
being stiff is not simply a function of the equation itself, but also of the interval of
integration and of the chosen accuracy requirement. A detailed discussion of stiff
ODE systems is given in, e.g., [6,59].

The stability of ODE solvers can be studied by investigating their behaviour
when applied to the test problem (5.6)–(5.7). For instance, applying one time step
of the forward Euler method to (5.6)–(5.7), gives the approximate solution

y(∆t) = 1 + λ∆t = R(λ∆t),

where we have defined
R(z) = 1 + z. (5.8)

The function R(z) is called the stability function for the forward Euler method. The
stability function can be defined in the same way for other methods, by applying
one time step of the method to the test problem (5.6)–(5.7). For instance, for the
backward Euler method we get

y(∆t) =
1

1 − λ∆t
,

so the stability function for this method is

R(z) =
1

1 − z
.

By similar calculations it is easy to see that the stability function for the θ-rule is

R(z) =
1 + (1 − θ)z

1 − θz
,

which for θ = 0 and θ = 1 corresponds to the stability functions of the forward and
backward Euler methods, as expected.

As the name suggests, the stability function gives an indication of the stability
of the method. As noted above, the analytical solution of (5.6)–(5.7) is stable for
IR(λ) ≤ 0. Ideally, we want a numerical method to retain this property, i.e., we want
the numerical solution to be stable at least for IR(λ) ≤ 0. Clearly, the numerical
solution of (5.1)–(5.2) will be bounded if we have

|R(z)| ≤ 1, (5.9)

for z = λ∆t. Since we allow λ to be complex, z will be a complex number. The
region in the complex plane for which (5.9) holds is called the region of absolute

5.1. Simple ODE Solvers 153

−5 −4 −3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

−5 −4 −3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

Fig. 5.1. The shaded area is the stability domain for the forward Euler method (left) and the
backward Euler method (right).

stability, or simply the stability domain, for the method. More precisely, the stability
domain S for an ODE solver with stability function R(z) is defined as

S = {z ∈ C; |R(z)| ≤ 1}. (5.10)

The stability domain for the forward Euler method is a circle with centre in IR(z) =
−1,�(z) = 0, and radius 1, as shown in the left panel of Figure 5.1. The right
panel of Figure 5.1 shows the stability domain for the backward Euler method. The
method is stable for all values of z = λ∆t lying outside the circle with centre (1, 0)
and radius 1. The backward Euler method is hence very stable.

An attractive property of a numerical method is that for the test equation (5.6)–
(5.7), it reproduces the essential stability property of the analytical solution, i.e. it
is stable for all step sizes when IR(λ) ≤ 0. Methods having this stability property
are referred to as A-stable methods [28]. In other words, an A-stable method is a
method which is stable on the entire negative half-plane, i.e. its stability domain
satisfies

S ⊃ C− = {z; IR(z) ≤ 0}.
From the stability domains plotted in Figure 5.1 we see that the backward Euler
method is A-stable, while the forward Euler method is not. The θ-rule is A-stable
for θ ∈ [1/2, 1].

Although A-stability is a desirable property of a numerical method for stiff sys-
tems, it is not always sufficient. For instance, although for an A-stable method
we know that as long as all eigenvalues λi have a nonpositive real part, oscil-
lations in the solution will not grow. However, the definition of A-stability only
required |R(z)| ≤ 1. This may present a problem in the very stiff case, where
λ � −1. Then, the analytical solution of (5.6)–(5.7) decays very rapidly, imply-
ing y(tn + ∆t) � y(tn) for a small time step ∆t. The definition of A-stability
only ensures y(tn + ∆t) ≤ y(tn), and does therefore not rule out situations where

154 5. Solving Systems of ODEs

y(tn + ∆t) ≈ yn. This potential problem has motivated the concept of L-stability.
A method is said to be L-stable if it is A-stable and, in addition,

lim
z→−∞

R(z) = 0. (5.11)

See, e.g., [59] for more details. L-stability is a highly attractive feature for very stiff
problems, since reasonably accurate solutions can be obtained without resolving
the sharpest transition layers. An inspection of the stability functions listed above
reveals that the backward Euler method satisfies (5.11) and is hence L-stable. The
forward Euler method is, of course, not L-stable because (i) it is not A-stable and (ii)
its stability function fails to satisfy (5.11). The θ method is L-stable for θ ∈ (1/2, 1].
For θ = 1/2, the only choice of θ that yields second-order accuracy, this method is
hence A-stable but not L-stable. For a thorough discussion of stability properties for
stiff problems we refer the reader to [59] and [6].

5.2 Higher-Order Methods

We saw in the previous section that the two Euler methods for solving ODEs had
very different properties in terms of stability, but they are both only first-order ac-
curate. The Crank-Nicolson/trapezoidal rule obtained by the θ-rule for θ = 1/2
increased the accuracy to order 2. We recall that the operator splitting algorithms
introduced in Chapter 3 were only second-order accurate, so it may seem suffi-
cient to solve the resulting ODE systems with second-order accuracy. However, as
noted above, the Crank-Nicolson scheme is A-stable but not L-stable. L-stability is
an attractive feature when solving stiff systems, and this leads us to consider more
advanced ODE solvers.

5.2.1 Multistep Methods

Several techniques exist for improving the accuracy of the ODE solvers described
above. We have already introduced the idea of improving the accuracy by using
more accurate approximations of the integral in (5.3). The two Euler methods were
based on using a constant approximation of the right hand side function f in the
interval from tn to tn+1, while a linear approximation based on the trapezoidal rule
yielded a second-order accurate numerical method. A natural extension of these
ideas is to interpolate the solution using polynomials of higher order.

We now assume that we know not only the solution at the previous step, yn, but
also the preceding solutions yn−k+1, . . . , yn−1 for some integer k. The integrand
in (5.3) can then be replaced by a polynomial p(t), which interpolates the known
points (ti, fi), i = n − k + 1, . . . , n. This leads to a family of methods known as
explicit Adams methods. The accuracy of the methods is limited by the fact that
the integration interval lies outside the interpolation interval of the polynomial. The
accuracy may be increased by replacing p(t) with a polynomial that also interpolates
the unknown point (tn+1, fn+1). This gives the implicit Adams methods.

5.2. Higher-Order Methods 155

The Adams methods belong to a class of methods called multistep methods,
because the solution yn+1 is computed based not only on yn, but also on the solution
at previous steps. A general multistep method can be written as

α0yn+1 + α1yn + . . . + αkyn−k+1 = ∆t(β0fn+1 + . . . + βkfn−k+1), (5.12)

where k denotes the number of steps in the method, and αi, βi, i = 1, . . . , k are
given, method-specific coefficients. For simplicity we use the notation fi = f(ti, yi).

The Adams methods are widely used for solving non-stiff ODEs, but another
class of multistep methods, known as backward differentiation formulae (BDF), are
more popular for stiff systems. The idea behind these methods is different from
the Adams methods, in that they are not derived by approximating the integral in
(5.3). Instead, the solution is approximated by a polynomial q(t) that interpolates
the points (ti, yi), i = n−k+1, . . . , n+1. The polynomial q(t) is often represented
in terms of backward differences, which gives rise to the name of the methods. As
above, the values yi, i = n − k + 1, . . . , n are assumed to be known. The unknown
yn+1 is computed so that the polynomial q(t) satisfies the differential equation in at
least one point, i.e.,

dq(tn+1−r)
dt

= f(tn+1−r, yn+1−r),

where r is normally either zero or one. Setting r = 1 gives explicit formulas for
yn+1. As above k denotes the number of interpolation points in q(t); hence the
number of steps in the method. For instance, choosing r = 1 and k = 1 gives the
explicit Euler method. For r = 0 the BDF method is implicit, and if the step size is
constant it may be written as

α0yn+1 + α1yn + . . . + αkyn−k+1 = ∆tβ0fn+1. (5.13)

Here the coefficients α0, . . . , αk are constants. Implicit BDF methods are of order k
and have good stability properties, and hence are very suitable for solving stiff ODE
systems. For k = 1 the method is equal to the backward Euler method, for which
the good stability properties were demonstrated above. The stability of the method
decreases as k is increased, and for k ≥ 7 the methods are unstable; see, e.g., [59]
for details.

The multistep methods are based on knowing the solution at the time points
tn−k+1, . . . , tn. Obviously, this causes problems when starting a computation, be-
cause we normally only have the initial value y0 available. Different methods exist
to overcome this problem. One is to use another method of sufficient order to com-
pute the first k − 1 steps, and then start the multistep method. Another possibility
is to start the method with k = 1, and increase the order as the necessary informa-
tion becomes available. The low order used for the first steps must be compensated
by using smaller time steps in this region. The problem of starting, and restarting, a
multistep method is handled efficiently and automatically by modern ODE software.

Normally, storing the values of y for k time points, as required by a k-step
method, does not cause any problems. For very big systems of ODEs the required

156 5. Solving Systems of ODEs

memory may become significant, but compared to other methods of high order the
memory requirement is not particularly large. Recall, however, that the spatial dis-
cretization of the bidomain model leads to one ODE system for each node in the
finite element grid. Realistic computations require up to several millions of grid
nodes, and each ODE system may consist of 30 or more ODEs. In this context, the
memory requirement of the multistep methods becomes very significant. This po-
tential storage problem has led us to focus mainly on other methods as subproblem
solvers in the operator splitting algorithm presented in Chapter 3. For simulations
of a single cell, BDF methods have proven to be highly efficient, but for full-scale
simulations of the heart it may be more suitable to employ methods that only require
storing the solution at one time step.

5.2.2 Runge-Kutta Methods

It is possible to increase the accuracy of the numerical integration in (5.3) without
interpolating the solution over a large number of points. A second-order method was
obtained above by using a trapezoidal rule to approximate the integral, and meth-
ods of higher order can be constructed by using even more accurate techniques for
numerical integration. One possibility is to compute a number of intermediate val-
ues of f(t, y) in the interval [tn, tn+1], and approximate the integral as a weighted
sum of these values. This leads to the large family of methods known as Runge-
Kutta (RK) methods, which includes both implicit and explicit methods that vary
significantly with respect to their accuracy and stability. Denoting the intermediate
approximations of f(t, y) by ki, the approximation of the right hand side integral in
(5.3) becomes ∫ tn+1

tn

f(t, y)dt ≈ ∆t
s∑

i=1

biki,

for given weights bi and a given number of stages s. The values ki are normally
referred to as the stage derivatives of the method. Obviously, a higher number of
stages enables a better approximation of the integral and therefore higher accuracy
of the method. A general RK method with s stages can be written as

ki = f

tn + ci∆t, yn + ∆t

s∑
j=1

aijkj

 , for i = 1, . . . , s (5.14)

yn+1 = y0 + ∆t

s∑
i=1

biki. (5.15)

Here ci, bi, aij , for i, j,= 1, . . . , s are method-specific, given coefficients. All RK
methods can be written in this form, and a method is uniquely determined by the
number of stages s and the values of the coefficients. In the ODE literature one
often sees these coefficients specified in the form of a Butcher tableau. The Butcher

5.2. Higher-Order Methods 157

tableau of a general RK method is written as

ci a11 · · · a1s

...
...

...
cs as1 · · · ass

b1 · · · bs

and offers a short notation for the method.
An explicit RK (ERK) method is one in which aij = 0 for j ≥ i. From the

formulas presented above, we see that the expression for each stage derivative ki

then only includes previously computed stage derivatives. We therefore have an
explicit formula for each ki, and there is no need for solving nonlinear equations.
ERK methods are simple to implement, and the amount of computational work for
each time step is fairly small. The methods can also be constructed to have a high
order of accuracy, and are therefore very popular methods for solving systems of
ODEs. Numerous explicit RK methods have been derived, see e.g. [58], with large
variations in number of stages and order of accuracy. For instance, the forward Euler
method is a one-stage ERK method with first-order accuracy. A two-step method
with second-order accuracy is given by the Butcher tableau

0 0 0
1 1 0

1/2 1/2

which inserted into (5.14)–(5.15) gives

k1 =f(tn, yn),
k2 =f(tn + ∆t, yn + ∆tk1),

yn+1 =y0 +
∆t

2
(k1 + k2).

This method can be seen as an explicit version of the trapezoidal rule introduced
above, and is often referred to as the improved Euler method. An example of a
widely used ERK method is one derived by Dormand and Prince (see, e.g., [30,58]),
with six stages and order five. Its coefficients are

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45 − 56

15
32
9

8
9

19372
6561 − 25360

2187
64448
6561 − 212

729

1 9017
3168 − 355

33
46732
5247

49
176 − 5103

18656
35
384 0 500

1113
125
192 − 2187

6784
11
84

where obvious zeros have been omitted.

158 5. Solving Systems of ODEs

From the fact that the ERK methods are indeed explicit, and the brief stability
analysis we presented above for the forward Euler method, it might be supposed
that these methods are not very stable. A quick inspection of the stability properties
of the methods confirms this supposition. The stability function for the improved
Euler method defined above is

R(z) = 1 + z +
z2

2
,

while the stability function of the Dormand-Prince method is

R(z) = 1 + z +
z2

2
+

z3

6
+

z4

24
+

z5

120
+

z6

600
.

In fact, it can be shown (see, e.g., [59]), that the stability function for an ERK method
with s stages is a polynomial with degree at most s. Since no polynomial can satisfy
the condition (5.10) for all z having a negative real part, we may conclude that no
A-stable explicit Runge-Kutta method exists. The stability domains of the improved
Euler method and the Dormand-Prince method are shown in Figure 5.2. We see that
the methods are slightly more stable than the forward Euler method, but it is easily
seen that they are not A-stable.

−5 −4 −3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

−5 −4 −3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

Fig. 5.2. The left plot shows the stability domain for the improved Euler method, and the right
plot is the stability domain of the 5th order explicit Dormand-Prince method.

Implicit RK (IRK) methods are RK methods where at least one of the coeffi-
cients aij , j ≥ i is non-zero. From (5.14)–(5.15), we see that it will then no longer
be possible to compute all ki with explicit formulae. At least one stage derivative
must be computed by solving a generally nonlinear algebraic equation. If the method
is applied to a system of ODEs, we need to solve a system of nonlinear equations.

Many special cases of IRK methods exist, differing in a sense in their degree
of implicitness. Methods where all coefficients aij , i, j = 1, . . . , s are non-zero are

5.2. Higher-Order Methods 159

known as fully implicit methods. At the other end of the scale, there are methods for
which aij = 0 for j > i, i.e. if aij is viewed as a matrix, all entries above the diag-
onal are zero. These methods are referred to as diagonally implicit (DIRK) methods
or semi-explicit methods. Special cases of these methods exist, for instance if all the
diagonal entries aii are equal, i.e. aii = λ, i = 1, . . . , s. These methods are called
singly diagonally implicit (SDIRK) methods, and offer some computational advan-
tages that will be discussed below. Furthermore, a special version of the SDIRK
methods is obtained if the coefficient a11 is zero. In this case, the first stage of the
method is explicit, while the subsequent steps are all implicit. The SDIRK meth-
ods generally require fewer computations for each time step than the fully implicit
methods, a difference that will be discussed in greater detail in Section 5.3 below.
However, the accuracy and stability properties are also not as good as for the fully
implicit methods. The stability function of all implicit RK methods can be written
on the form

R(z) =
P (z)
Q(z)

, (5.16)

where P and Q are polynomials of degree at most s for a fully implicit method, and
at most s − 1 for a DIRK method, see e.g. [59].

It is easily seen from (5.16) that the IRK methods may give better stability prop-
erties than explicit methods. Consider, for instance, the backward Euler method,
which is the simplest possible IRK method. As described above this method has a
stability function on the form (5.16) with P (z) of degree zero and Q(z) of degree
one, and the method was found to be both A-stable and L-stable. A popular group
of fully implicit RK methods are derived using Radau quadrature formulae, see e.g.
[17]. A three-stage method of order five is given by

k1 = f(tn + c1∆t, yn + ∆t(a11k1 + a12k2 + a13k3)), (5.17)

k2 = f(tn + c2∆t, yn + ∆t(a21k1 + a22k2 + a23k3)), (5.18)

k3 = f(tn + c3∆t, yn + ∆t(a31k1 + a32k2 + a33k3)), (5.19)

yn+1 = yn + ∆t(b1k1 + b2k2 + b3k3), (5.20)

with coefficients specified in Appendix C. The stability function of this method is
given by

R(z) =
1 + 2z/5 + z2/20

1 − 3z/5 + 3z2/20 − z3/60
,

and the region of z-values that give R(z) ≤ 1 is plotted in the left panel of Figure
5.3. More methods of the Radau family, as well as other fully implicit RK methods,
are discussed in [59]. An example of a third-order SDIRK method (see [78]), with
an explicit first step is

0
c2 a21 γ
c3 a31 a32 γ
c4 a41 a42 a43 γ

b1 b2 b3 b4

160 5. Solving Systems of ODEs

where the values of the coefficients can be found in Appendix C. Inserted into the
RK formula, this gives

k1 = f(tn, yn) (5.21)

k2 = f(tn + c2∆t, yn + ∆t(a21k1 + γk2)), (5.22)

k3 = f(tn + c3∆t, yn + ∆t(a31k1 + a32k2 + γk3)), (5.23)

k4 = f(tn + c4∆t, yn + ∆t(a41k1 + a42k2 + a43k3 + γk4)), (5.24)

yn+1 = yn + ∆t(b1k1 + b2k2 + b3k3 + b4k4)). (5.25)

The stability domain of the method is shown in the right panel of Figure 5.3. We see
that both of the implicit RK methods are very stable, although they are both slightly
less stable than the backward Euler method. It is easy to see that the methods are
A-stable, and it can be shown that their stability functions also satisfy (5.11), so
both methods are L-stable. These methods therefore seem quite suitable for solving
stiff problems. Their performance when applied to the cell model equations will be
investigated below.

−5 0 5 10 15
−10

−8

−6

−4

−2

0

2

4

6

8

10

−5 0 5 10 15
−10

−8

−6

−4

−2

0

2

4

6

8

10

Fig. 5.3. Stability domains for the fifth-order Radau method (left) and the third-order SDIRK
method (right).

5.3 Solving Nonlinear Equations

As noted above, all the implicit methods require some degree of equation solving
for each time step. This is the main drawback of implicit methods, adding both to
the computational cost and the complexity of implementing the methods. Solving
the nonlinear equation systems efficiently is crucial for the overall performance of
the ODE solver, and so choosing the right method will be important. The standard
technique for solving nonlinear algebraic systems of equations is Newton’s method,
but many variations of this method have been derived and applied in ODE solvers.

5.3. Solving Nonlinear Equations 161

5.3.1 Newton’s Method

As an example, consider again the simplest implicit method available; the backward
Euler method. This method requires solving algebraic systems of the form (5.5) for
each time step. This equation system can be written in the form

yn+1 − ∆tf(yn+1) − yn = 0. (5.26)

Since f is generally nonlinear, this equation must be solved with an iterative tech-
nique, typically some form of Newton’s method. For a general (scalar) equation of
the form

g(u) = 0,

Newton’s method involves making an appropriate initial guess u0, and performing
iterations on the form

ul+1 = ul − g(ul)
g′(ul)

(5.27)

until a given convergence criterion is satisfied. Each iteration represents a lineariza-
tion of the nonlinear equation around the current solution ul. If the initial guess
u0 is sufficiently close to the exact solution, Newton’s method yields a quadratic
convergence, i.e.,

‖ul+1 − u‖ ≤ C‖ul − u‖2, (5.28)

for some constant C. We want to terminate the iterations when ul is sufficiently close
to the exact solution u. However, since u is not known, the convergence criteria are
normally based on the residual g(ul) or the difference ul+1 − ul. Commonly used
variants include

‖ul+1 − ul‖ ≤ εu,

and
‖g(ul+1)‖ ≤ εr,

where εu and εr are specified tolerances.
When the backward Euler method is applied to a system of ODEs, (5.26) will

be a system of nonlinear equations. In this case, (5.27) cannot be applied directly,
and the Newton iteration takes a slightly different form. Given a first guess y0

n+1,
the solution yn+1 is found through iterations involving two steps:

1. Solve the linear system

(I − ∆tJ(yl))δyl+1 = −(yl
n+1 − ∆tf(yl

n+1) − yn), (5.29)

where J(yl) is the Jacobian of f evaluated at yl, and I is the identity matrix.

2. Set
yl+1

n+1 = yl
n+1 + δyl+1. (5.30)

162 5. Solving Systems of ODEs

For large systems of ODEs it may become quite expensive to compute the Ja-
cobian J(yl) and solve the linear system (5.29) for each iteration, and these tasks
may easily dominate the computation load of solving an ODE system. Various tech-
niques have been proposed to reduce this cost, resulting in different forms of mod-
ified Newton methods. A simple approach commonly used in ODE solvers is to
keep the Jacobian constant for several iterations, and even for several consecutive
time steps. This reduces the convergence of the method, but this is compensated by
the fact that each iteration is considerably less expensive. The most obvious cost
reduction comes from the reduced number of Jacobian evaluations, which are quite
expensive, but keeping the Jacobian constant also offers benefits when solving the
linear system in (5.29). For ODE systems of moderate size, this system is normally
solved by LU factorization followed by forward-backward substitution. If J is kept
constant for several iterations, there is no need to perform a new LU factorization
for each iteration. The factorized matrix can hence be reused for several iterations,
reducing the work of each iteration to a simple forward-backward substitution. If ∆t
is kept constant, the LU factorization of (I − ∆tJ) may also be reused for several
time steps.

5.3.2 Newton’s Method for Higher-Order Solvers

We have seen that the backward Euler method requires solving one nonlinear system
of size n for each time step. The more advanced implicit methods require solving
similar systems, but there are important differences between the methods. Recall the
formulation of the implicit BDF methods, given in (5.13). This nonlinear equation
system can be written as

αkyn+1 − ∆tβ0f(yn+1) + αk−1yn + . . . + α0yn−k+1 = 0.

We see that for any number of steps k this system is very similar to the equation
system that arises from the backward Euler method. This is also reflected in the
linear system that must be solved for each Newton iteration, which is given by

(αkI−∆tβ0J(yl
n+1))δy

l+1 = −(αkyl
n+1−∆tf(yl

n+1)+αk−1yn+. . .+α0yn−k+1.

Note that the evaluation of the right hand side involves only one evaluation of the
function f . This is an attractive feature of the BDF methods; high order is obtained
by solving nonlinear systems similar to those arising from the backward Euler, of
size n and where each Newton iteration involves only one evaluation of the right
hand side function f .

Recall that for a fully implicit RK method all the coefficients aij in (5.14) are
non-zero. This implies that each stage derivative ki depends implicitly on all other
stage derivatives. All the stage derivatives must hence be computed simultaneously,
and for an s-stage method applied to a system of n ODEs, this involves solving
a system of sn nonlinear algebraic equations. For large systems this task may be-
come computationally demanding, and constitutes the main drawback of implicit
RK methods compared to multistep methods such as the BDF.

5.3. Solving Nonlinear Equations 163

Consider, for instance, the Radau method defined by (5.17)–(5.20). Eqs. (5.17)–
(5.19) is a coupled system of nonlinear equations that must be solved to determine
the stage derivatives k1, k2, and k3. Contrary to the backward Euler and the BDF
methods, we are hence required to solve a system of 3n nonlinear equations. The
linear system arising from applying Newton iterations to (5.17)–(5.19) is given by

 I − a11∆tJ a12∆tJ a13∆tJ

a21∆tJ I − a22∆tJ a23∆tJ
a31∆tJ a32∆tJ I − a33∆tJ

 δkl+1

1

δkl+1
2

δkl+1
3

 =

F1

F2

F3

 , (5.31)

with

Fi = −kl
i + f

tn + ci∆t, yn + ∆t

n∑
j=1

aijk
l
j

 . (5.32)

In addition to the larger linear systems to be solved, we see from (5.31)–(5.32)
that each iteration also requires three evaluations of the right hand side function f .
This is an additional drawback compared to the BDF methods, which only required
one function evaluation for each iteration. Fortunately, fully implicit RK methods
require only a few stages to obtain high order, and their stability properties make
them well suited for stiff computations.

For ODE systems of moderate size, it is possible to solve the linear system
in (5.31) with a direct method, even though it is larger than that of the backward
Euler and BDF methods. The considerations described above regarding the cost of
computing and factorizing the Jacobian will also apply in this case. A simplified
Newton algorithm, where the factorized Jacobian is reused for several iterations, is
normally the most efficient technique for the fully implicit RK methods as well.

Earlier, we introduced DIRK and SDIRK methods as an alternative to fully im-
plicit methods. The main reason for applying (and developing) these methods is to
reduce the nonlinear equation solving required for fully implicit RK methods. With
a diagonally implicit method the stage derivatives k1, . . . , ks may be determined
one by one, although each of them must be computed by solving a system of non-
linear equations. The size of the equation systems that must be solved is the same as
for the backward Euler and BDF methods, but several such systems must be solved
for each time step. Consider, for instance, the four-stage SDIRK method described
above. Here the first stage is explicit, so k1 can be computed directly. The nonlin-
ear systems required to determine k2, k3 and k4 are given by (5.22)–(5.24). When
solving these systems with Newton’s method they lead to linear systems of the form

(I − γ∆tJ)δkl
i = −kl

i + f

tn + ci∆t, yn + ∆t

i−1∑
j=1

aijki + ∆tγki

 ,

for i = 2, 3, 4. We see that the matrix of this linear system is independent of whether
we solve for k2, k3 or k4. This is an important feature of the SDIRK methods. For a
general DIRK method, with γ replaced by diagonal coefficients aii that are different
for each stage, we see that the matrix of the linear system will also be different for

164 5. Solving Systems of ODEs

each stage. This will limit the benefits of using modified Newton techniques, since
the changed matrix would require a new LU factorization at each stage. For an
SDIRK method the factorized matrix may be reused for all stages in a time step,
to be recomputed only if convergence is slow. In theory, the possibility of choosing
the parameters aii independently allows the design of methods with better accuracy
and stability properties, compared to restricting the methods to aii = γ. However, in
practice this additional freedom does not purchase much, and the SDIRK methods
are usually a better alternative.

5.4 Automatic Time Step Control

In practical computations, one is interested in obtaining a certain accuracy with the
minimum amount of computational work. For a given method, this implies that we
want to use the largest possible value of the time step ∆t. The step size will obvi-
ously depend on the demanded accuracy, as well as the order of the applied method,
but it will also be influenced by the characteristics of the solution. In quiescent ar-
eas large steps can be taken without introducing a large error, while if there are
fast variations in the solution the time step has to be small. Obviously, the solution
of a nonlinear ODE system may show fast variations in some regions, and be very
smooth in others. This is illustrated well by the cell model ODEs, see e.g. Figure 5.4,
where the solution changes extremely quickly in the upstroke phase and is nearly
stationary in the plateau and resting phases. This motivates methods that can adjust
the time step to the properties of the solution. Commonly referred to as adaptive
methods or methods with automatic time step control, this is an important part of
successful ODE software.

0 100 200 300 400
−100

−50

0

50

Fig. 5.4. The action potential produced by the cell model by Winslow et al., clearly showing
very fast variations in the upstroke and smoother behaviour in other intervals.

5.4. Automatic Time Step Control 165

For many problems, automatic step size control can be based on certain charac-
teristics of the solution. For instance, in the case of the cell model ODEs, it is easy
to construct an algorithm that checks for large variations in v, corresponding to the
upstroke, and chooses a smaller time step in this region. This approach was used by
Rush and Larsen [121] in their clever algorithm for solving the cell model ODEs.
It may work well for many problems, but its applicability is not very general, and
the criteria for choosing the time step must be chosen carefully based on known
properties of the problem to be solved. A much more general approach to adaptive
time steps is obtained by basing the step size on estimates of the error introduced in
each step. The length of each time step can then be chosen such that this local error
falls below a certain threshold. While this approach offers algorithms for adaptive
time steps that are capable of handling any system of differential equations, a ques-
tion arises as to how the error estimate should be computed. Since the true solution
is not known, the error can, of course, not be computed directly, and must instead
be based on numerical estimates. A common technique is to approximate the error
using two numerical solutions of different accuracy, and this will be the basis of all
the approaches discussed in this section.

A simple approach to estimating the local error, which works for any numerical
method, is to use step doubling; see, e.g., [6]. Assume that for a given initial value
y(t0) = y0 we perform two steps of length ∆t with a method of order p. The error
after the first step is given by

e1 = ‖y1 − y(t0 + ∆t)‖ = ‖ψ(tn, y(tn))‖∆tp+1 + O(∆tp+2),

where ψ is called the principal error function; see, e.g., [6,58] for further details.
The error e2 after two steps consists of the error carried over from the first step as
well as the error introduced in the second step, see [58]. We here assume (see [6]),
that the error after two steps is twice as large as that after one step. We have

e2 = ‖y(t0 + 2∆t) − y2‖ = 2‖ψ(tn, y(tn))‖∆tp+1 + O(∆tp+2). (5.33)

Similarly, we can estimate the error after one step of length 2∆t as

ẽ2 = ‖y(t0 + 2∆t) − ỹ2‖ = ‖ψ(tn, y(tn))‖(2∆t)p+1 + O(∆tp+2). (5.34)

From (5.33) and (5.34), we get

‖y2 − ỹ2‖ = (2p − 1)2‖ψ(tn, y(tn))‖hp+1,

and this can be used to eliminate the unknown ψ from e2, to give

e2 =
‖y2 − ỹ2‖

2p − 1
.

The estimated local error can be compared to an error tolerance tol specified for the
given application. If we have

e2 ≤ tol (5.35)

166 5. Solving Systems of ODEs

the step is accepted and the step size for the next step is computed from

hnew = h

(
tol

e2

)1/(p+1)

. (5.36)

If the estimated error does not satisfy (5.35), the step is rejected and is recomputed
with a smaller step. The new step may also, in this case, be based on a formula such
as (5.36). In practice, (5.36) is normally modified slightly, by introducing a safety
factor to keep the steps slightly below the optimal size, and limiting the amount by
which the step size may vary from one step to the next. See, e.g., [58,6] for further
details.

The step-doubling procedure offers a good estimate of the local error, but it
is also quite expensive. Consequently, automatic step size control in modern ODE
software is normally based on other estimates of the local error. For multistep meth-
ods, a number of factors interplay to make the issue of adaptive time steps fairly
complicated. First, the methods described above were based on interpolating values
yn+1, . . . , yn+1−k (BDF) or fn+1, . . . , fn+1−k (Adams) with a polynomial. For a
constant step size this leads to a constant set of coefficients αi, βi in (5.12), whereas
for a variable time step the coefficients must be recomputed for each step. Second,
recall that the multistep methods also have variable order. It is therefore possible to
vary the order in addition to the step size to satisfy a given error tolerance. The best
combination of method order and step size will depend on the (local) behaviour of
the solution. In spite of these difficulties, many successful ODE solvers are based
on multistep methods. The ability to adjust the order as well as the time step en-
ables very flexible solvers, and various techniques have been developed to handle
the problem related to recomputing the coefficients. Multistep methods also offer a
fairly simple way to estimate the local errors. Since the main focus of the present
text is on Runge-Kutta methods, we refer the reader to, e.g., [6] and [58,59] for a
description of automatic step size control for multistep methods.

Implicit and explicit Runge-Kutta methods offer some advantages over the mul-
tistep methods in terms of automatic step size control. Since they are one-step meth-
ods, there is no need to recompute coefficients or perform additional interpolation
when the step size is changed. However, while multistep methods offer a direct es-
timate of the local truncation error and thereby the local error (see [6]), this is not
readily available for the Runge-Kutta methods. We therefore return to the idea in-
troduced above; to compute two numerical solutions with different accuracy, and
use the difference to estimate the local error. One possibility was the step-doubling
technique introduced above, but a more practical alternative is to use two numerical
solutions computed with the same step size, but with a different order of accuracy.
For a numerical method of order p, we can use a numerical solution computed with
a method of order p + 1 to estimate the local error. Assume that y1 is a numerical
solution computed with a method of order p, and ỹ1 is a solution obtained with a
method of order p+1. The difference ‖y1− ỹ1‖ then provides an estimate of the lo-
cal error of y1. Using this estimate of the local error, the time step can be controlled
by formulae such as (5.36).

5.4. Automatic Time Step Control 167

The remaining issue is how we should compute the two different solutions y1

and ỹ1. If we are to apply two entirely different methods to obtain these solutions,
the adaptive time step algorithm becomes very expensive. Fortunately, the error esti-
mate can often be obtained by so-called embedded methods. For a given RK method,
an embedded method is a method that uses the same stage computations as the orig-
inal method, but obtains a different order of accuracy. Since most of the work in
RK methods is in the stage computations, error estimates based on embedded meth-
ods are very cheap to evaluate. Introducing an embedded error estimator involves
augmenting (5.14)–(5.15) with an additional line, yielding

ki = f

tn + ci∆t, yn + ∆t

s∑
j=1

aijkj

 for i = 1, . . . , s (5.37)

yn+1 = y0 + ∆t

s∑
i=1

biki, (5.38)

ŷn+1 = y0 + ∆t

s∑
i=1

b̂iki. (5.39)

Although the idea is to reuse the same stage computations to compute both ŷn+1 and
yn+1, it is not uncommon to introduce one additional stage in the method to obtain
the error estimate. For instance, the Dormand-Prince method described above can be
equipped with an error estimator by introducing one additional stage, which yields
a seven-stage method with coefficients:

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45 − 56

15
32
9

8
9

19372
6561 − 25360

2187
64448
6561 − 212

729

1 9017
3168 − 355

33
46732
5247

49
176 − 5103

18656

1 35
84 0 500

1113
125
192 − 2187

6784
11
84

yn
35
384 0 500

1113
125
192 − 2187

6784
11
84 0

ŷn
5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

We see that the seventh step is only used only for the error estimator ŷn. A particular
feature of this method, and of many other explicit RK methods, is that the highest-
order method is used to advance the solution, while the lower-order method is used
only for error estimation. A Runge-Kutta method with an embedded error estimator
is often referred to as an RK pair of order n(m), where n is the order of the main
method and m the order of the error estimator.

Implicit RK methods can also be equipped with embedded methods. Consider,
for instance, the SDIRK method given by (5.21)–(5.25). This can be extended to an

168 5. Solving Systems of ODEs

SDIRK pair of order 3(2) of the form

0
c2 a21 γ
c3 a31 a32 γ
c4 a41 a42 a43 γ

b1 b2 b3 b4

b̂1 b̂2 b̂3 b̂4

where again the coefficients can be found in Appendix C. This method uses the
same technique as the Dormand-Prince pair; the highest-order method is used to
advance the solution while the lowest-order method is used only for error estimation.
Similar embedded methods can be added to other implicit methods, such as the
Radau method presented above; see [59] for details.

Although the idea of error estimation and time step control that is based on
embedded methods is very simple, there are numerous matters to be considered re-
garding its practical use. While (5.36) offers a very simple formula for the next step
size, improved formulae have been derived that may give better results, in particular
for stiff problems. Also particular to stiff problems is the fact that the stability prop-
erties of both the main method and the embedded error estimator must be good, in
order to ensure reliable error estimates. The reader is referred to [6] and [58,59] for
a detailed discussion of automatic time step control for ODEs.

5.5 The Cell Model Equations

The main purpose of this chapter is to introduce ODE solvers suitable for solving
the ODE systems that result from the operator splitting approach described in 3.
Quite a few models are listed in Chapter 2, although they represent only a small
selection of the wide range of existing models for cellular activity. The models are
dramatically different in terms of complexity and physiological realism, and they
also possess very different characteristics in terms of stiffness and stability prop-
erties. We will here demonstrate the properties of some of the methods described
above, by applying them to a small selection of the cell model ODE systems.

5.5.1 Explicit versus Implicit Methods

The simplest model we considered in Chapter 2 was the two-variable FitzHugh-
Nagumo model, given by (2.45)–(2.46). To simplify the discussion, we repeat the
equations here:

dv

dt
=

c1

v2
amp

(v − vrest)(v − vth)(vpeak − v)

− c2

vamp
(v − vrest)w + Iapp, (5.40)

dw

dt
= b(v − vrest − c3w). (5.41)

5.5. The Cell Model Equations 169

The values of the model parameters are listed in Chapter 2. Although this is a very
simple cell model, the ODE system is nonlinear, and so the stability properties
are somewhat more complicated to analyze than for linear equations. As described
above, the stiffness of a nonlinear ODE system is related to the eigenvalues of the
Jacobian of the right hand side function f .

For a simple system such as (5.40)–(5.41), it is possible to compute analyti-
cal expressions for the components of the Jacobian. Recall the definition Jij =
∂fi(y)/∂yj , where f is the vector-valued right hand side function and y is the vec-
tor of unknowns. However, for the more complex models described in Chapter 2
it becomes difficult to compute the Jacobian matrix analytically. Consider, for in-
stance, the model by Winslow et al. [145], where the right hand side function f has
more than 30 components, involving highly complicated expressions. One option
for computing the Jacobian and its eigenvalues is to use automatic differentiation
tools present in software such as Maple and Mathematica [94,100], but even then
the resulting expressions may become quite difficult to handle. Another option is to
estimate the eigenvalues numerically. This can be accomplished by simply running
a normal simulation with a given model, and storing the values of all variables at
all time steps. The Jacobian at each time step can then be evaluated by finite dif-
ferences, and its eigenvalues can be computed by using, for instance, Matlab [101]
tools.

Table 5.1. The largest negative eigenvalues occurring in some popular cell model systems,
along with the time step required for stability of the forward Euler method. The unit for the
time step is milliseconds.

Model λmin ∆tmax

Fitzhugh-Nagumo −0.146 13.74
Beeler-Reuter −82.15 0.0243
Luo-Rudy phase 2 −365 0.0055
Winslow et al. −19167 1.04 · 10−4

Table 5.1 shows numerically estimated eigenvalues for a few popular cell model
systems. We only show the real part of the largest negative eigenvalue that occurs
during a typical simulation, since this gives a reasonable indication of the stiffness of
each model1. We see that all the models are considerably stiffer than the Fitzhugh-
Nagumo model, but the model by Winslow et al. stands out as particularly stiff.
Recall from Section 5.1.2 that to obtain stable solutions the time step must be chosen
such that the complex number λ∆t lies inside the stability region of the applied
method. The rightmost column shows the largest time steps that satisfy this criterion

1 The stiffness of a system is related to the existence of fast and slow time scales, and there-
fore to the ratio between the smallest and largest eigenvalues. However, all the models
considered here contain some eigenvalues quite close to zero, and the largest negative
eigenvalue therefore gives a reasonable picture of the stiffness.

170 5. Solving Systems of ODEs

for the forward Euler method. We see that, for instance, for the model by Winslow
et al., the largest possible time step predicted by this analysis is 1.04 · 10−4 ms.
Numerical experiments with the forward Euler method applied to this model reveal
that a time step up to ∆t = 1.07 · 10−4 gives a satisfactory solution, while for
∆t = 1.08 · 10−4 the solution becomes unstable. The results are similar for the
other cell models, which indicates that the time step estimates predicted from the
eigenvalues are quite sharp.

It is easily seen that the forward Euler method is not very efficient for a stiff
system such as the model by Winslow et al. Even though each time step is very
cheap, the extremely small values required give rise to unacceptable computation
times. Applying more advanced explicit solvers does not help, since they offer a
very small increase in stability at the cost of significantly increased computational
effort per step. Consider, for instance, the Dormand-Prince method described above,
with the stability domain plotted in Figure 5.2. For λ = −19167, we must choose
∆t ≈ 1.56 · 10−4, which is a very small improvement considering that each step
of this method is approximately six times as expensive as for the forward Euler
method.

A nonlinear ODE system can be stiff in some regions and nonstiff in others.
The time steps presented in Table 5.1 are dictated by the interval where the models
are stiffest, and larger steps may be allowed in other regions. The performance of
explicit methods may therefore be enhanced by using adaptive time stepping tech-
nique, but in practice the performance increase is limited. Although the stiffness of
the models varies through a typical simulation interval, the more complex models
tend to be quite stiff through all of the action potential. Adaptive time stepping algo-
rithms used with explicit solvers therefore typically demand very small time steps,
leading to quite inefficient computations.

Figure 5.5 illustrates the different stability properties of explicit and implicit RK
solvers. The top row shows the action potential of the modified FitzHugh-Nagumo
model described above, computed with the explicit Dormand-Prince method of or-
der 5(4) and the SDIRK method of order 3(2) given by (5.21)–(5.25). Both solvers
use automatic step size control with the same relative error tolerance (tol = 10−4),
and all computations are performed using the ODE solver library Godess; see [108].
The explicit solver uses just 35 steps, marked by crosses in the figure, to compute
a solution within the required local error tolerance. The SDIRK method requires
98 steps to give a solution with the same error tolerance. This result is not surpris-
ing since we have seen that the FitzHugh-Nagumo equations are not stiff, implying
that the time steps are chosen based on accuracy requirements rather than stabil-
ity. The Dormand-Prince method has a higher order of accuracy than the SDIRK
method, and therefore requires fewer steps. One time step of the Dormand-Prince
method, consisting of seven explicit stages, is also significantly cheaper than that of
the SDIRK method, which consists of one explicit and three implicit stages. Hence,
for the nonstiff FitzHugh-Nagumo equations, explicit solvers are clearly the best
choice.

The bottom row of Figure 5.5 shows the completely different results obtained for
the cell model by Winslow et al. Here, the explicit solver requires 54162 time steps,

5.5. The Cell Model Equations 171

0 100 200 300 400
−100

−50

0

FitzHugh−Nagumo, fifth order ERK method

0 100 200 300 400
−100

−50

0

FitzHugh−Nagumo, third order SDIRK method

0 100 200 300 400
−100

−50

0

50
Winslow et al, fifth order ERK method

0 100 200 300 400
−100

−50

0

50
Winslow et al, third order SDIRK method

Fig. 5.5. Illustration of time steps used by explicit and implicit methods, for two different cell
model systems. Top row: The FitzHugh-Nagumo equations solved with the 5(4) Dormand-
Prince pair (left) and an SDIRK method of order 3(2) (right). Bottom: The model by Winslow
et al. solved with the Dormand-Prince method (left) and the SDIRK method (right).

leading to a very inefficient computation. The implicit solver gives more reasonable
step sizes, 432 steps in total, dictated by accuracy requirements rather than stability.
Although each time step of the SDIRK method is more expensive than for the ex-
plicit solver, the CPU time for solving the system was reduced by approximately 97
% when switching to the SDIRK scheme.

5.5.2 Simulation Results

If one is interested in modelling only a single cell, efficiency of the numerical
method is not a very important issue. Although some methods will lead to im-
practical computation times when applied to complex cell models like the model
by Winslow et al., more advanced explicit methods with adaptive time step control
typically give acceptable results. After all, although the CPU time can easily be re-
duced by a factor of 20–30 by applying a more appropriate stiff solver, this is of
limited value if the computation can be performed by an explicit solver in less than
30 seconds. In many cases, this increase in speed is not considered to be worth the
increased complexity of implementing an implicit solver.

172 5. Solving Systems of ODEs

The situation is entirely different when simulating the electrical activity in the
complete heart, or in large volumes of heart tissue. As described in Chapter 2 the
operator splitting algorithm reduced the nonlinear PDE system to systems of linear
PDEs and nonlinear ODEs. Furthermore, the spatial discretization resulted in one
ODE system per node in the computational grid. The number of nodes can easily
exceed ten million, and for the more complex cell model systems it is easy to see
that this represents a substantial computational effort. Choosing an efficient solver
then becomes very important for reducing the CPU time of the complete computa-
tion. The relative importance of solving the ODEs efficiently will also be influenced
by the complexity of the applied PDE model. The scalar PDE in the monodomain
model is considerably less demanding to solve than the system of two PDEs that oc-
curs in the bidomain model, while the effort for solving the ODEs will be virtually
the same regardless of which PDE model is used. Using the monodomain model
in combination with one of the more realistic cell models can lead to computations
that are completely dominated by time spent for solving ODEs.

A number of things must be considered when the ODE systems are solved as
part of an operator splitting algorithm. First, recall that the accuracy of the operator
splitting was limited to order two. It is therefore not very useful to apply ODE
solvers with high order of accuracy, because the global accuracy will still be limited
by the splitting error. Second, the time step of the ODE solver will be limited by the
time step of the operator splitting algorithm. A typical time step used for the splitting
algorithm and the PDE solver is 0.125 ms, which means that a simulation interval of
400 ms, as used in Figure 5.5, will require at least 3200 time steps. This will reduce
the efficiency of the implicit methods, which normally require much fewer steps
than this, but will have virtually no effect on the performance of explicit solvers. A
more detailed discussion of issues related to ODE solvers used for complete heart
simulations can be found in [131].

In order to illustrate the performance of the different ODE solvers we have per-
formed a number of 2D experiments with different choices of cell models. The
geometry and fibre orientation used for the computations is the same as in Chapter
3.4.2, depicted in Figure 3.10. The experiments were performed using a grid with
15607 nodes in the heart, and we did not include a surrounding body, since this is
of limited interest when comparing ODE solvers. The experiments were performed
on Itanium 1.3 GHz processors with 4 GBytes of memory.

Simulations were performed using both the monodomain model and the bido-
main model, combined with the cell models of FitzHugh-Nagumo [40], Beeler-
Reuter [9] and Winslow et al. [145]. The results obtained using an explicit solver
for the ODE systems are shown in Table 5.2. We see that the CPU time required for
solving the ODE systems is dramatically different for the three models. Solving the
ODE systems is an almost insignificant task for the FitzHugh-Nagumo model, but
completely dominates the CPU time for the model by Winslow et al. We see that the
time required to solve the PDEs is not much affected by the choice of cell model, but
the CPU time required for the ODEs is different depending on whether the model
is monodomain or bidomain. This is somewhat surprising, since the ODE systems
to be solved are independent of the applied PDE model, but a likely explanation is

5.5. The Cell Model Equations 173

Table 5.2. CPU time spent on the two main parts of the solution process, using a fifth-order
ERK method for the ODEs, and a finite element method combined with multigrid block
preconditioning for the PDEs. Results are shown for both the monodomain and the bidomain
model.

Bidomain model Monodomain model
Cell model PDE ODE PDE ODE
FitzHugh-Nagumo 2002 35 427 34
Beeler-Reuter 2060 877 430 826
Winslow et al. 2052 32187 425 43651

Table 5.3. CPU time spent on the two main parts of the solution process, using a third-order
SDIRK method for solving the ODE systems. Results are shown for both the monodomain
model and the bidomain model.

Bidomain model Monodomain model
Cell model PDE ODE PDE ODE
FitzHugh-Nagumo 2000 202 427 206
Beeler-Reuter 2079 1346 430 1330
Winslow et al 2053 4344 426 4944

that the two models give different propagation speeds. This will affect the number
of ODE systems that are in the different phases of the action potential, and since the
solvers choose the time step adaptively this will affect the total computation time.

Table 5.3 shows similar CPU results, obtained using the SDIRK 3(2) method de-
scribed above to solve the ODEs. We see that the results are roughly what we would
expect from the single cell experiments. The SDIRK method gives an increase in
CPU time both for the FitzHugh-Nagumo model and the Beeler-Reuter model, and
a dramatic performance improvement for the model by Winslow et al. For this model
the time required to solve the ODEs is reduced by 85-90 %, resulting in a 80% re-
duction in total CPU time for the bidomain model, and an almost 90 % reduction
for the monodomain model. Using appropriate stiff ODE solvers is hence almost a
necessity for using this advanced model in full-scale heart simulations, and clearly
worth the additional complexity of implementing the implicit solver. However, our
experiments also show that even for a fairly realistic heart cell model such as the
Beeler-Reuter model, an explicit ODE solver is clearly the best choice. Hence, to
achieve the greatest possible efficiency, one must base the choice of ODE solver on
the properties of the applied cell model.

Chapter 6

Large-Scale Electrocardiac Simulations

In the preceding chapters, we have discussed various numerical techniques for solv-
ing the different parts of our mathematical model problem. Now it is time to turn
our attention to simulating the complete mathematical model. First, we will explain
the diverse computational tasks that constitute an electrocardiac simulator. Then, we
will estimate the computational resources needed to carry out high-resolution simu-
lations. It will be shown that parallel computing is an essential technique for large-
scale electrocardiac simulations. Thereafter, this chapter will focus on the general
principles for parallelizing a sequential simulator, as well as on major software com-
ponents needed to achieve this end. These software components will be described
in a general setting, without reference to specific programming languages. On the
other hand, a simple pseudo language will be used to explain certain details when
necessary. Some performance measurements of electrocardiac simulations will also
be presented.

6.1 The Electrocardiac Simulator

Let us first recall the complete mathematical model from Chapter 2. In the heart
domain H , the Bidomain equations are valid and consist of a parabolic PDE and
an elliptic PDE. The transmembrane potential v and the extracellular potential ue

are the primary unknowns. For treating the ionic current Iion(s, v, t), which is in-
volved in the parabolic PDE, we adopt a system of ODEs that evolves v together
with a vector of membrane state variables s. In the torso domain T , a single ellip-
tic PDE models the distribution of the electrical potential uT within T . This PDE,
which models what is called the forward problem, is coupled with the Bidomain
equations through suitable boundary conditions on ∂H . For a detailed description
of the complete mathematical model, we refer the reader to Chapter 2.

Throughout this chapter, the term electrocardiac simulation refers to the numer-
ical solution of the complete mathematical model from t = 0 until a given stopping
time, where the initial conditions are given in terms of prescribed values for v and
s at t = 0. Among the three PDEs involved in the complete mathematical model,
i.e., (2.66)–(2.68), the parabolic equation (2.66) requires special care, due to both
the time dependency and its nonlinearity. Using an operator-splitting technique (see
Chapter 3), we split the parabolic equation into two parts:

∂v

∂t
= −Iion(s, v, t) (6.1)

and
∂v

∂t
= ∇ · (Mi∇v) + ∇ · (Mi∇ue). (6.2)

176 6. Large-Scale Electrocardiac Simulations

The first part of the splitting will become one equation of the ODE system modelling
v and s, whereas the second part will be discretized together with the other two
elliptic PDEs.

6.1.1 The Numerical Strategy

The overall numerical strategy is based on dividing the time domain into discrete
time levels:

0 = t0 < t1 < t2 · · ·
During each time step, tl−1 < t ≤ tl, the already computed solutions vl−1, ul−1

e ,
ul−1

T , and sl−1 are used as the starting values for computing vl, ul
e, ul

T , and sl.
Based on a flexible θ-rule, where 0 ≤ θ ≤ 1, we can dissect the computational work
per time step into three substeps:

1. Solve the ODE system for t ∈ (tl−1, tl−1 + θ(tl − tl−1)]. This needs to be done
at every computational point in H , using vl−1 and sl−1 as the initial values. As
pointed out in Chapter 5, implicit ODE-solving algorithms are usually needed
for treating this stiff ODE system. This might involve an adaptive time stepping
strategy with variable inner time steps. The computed results from this substep
are an intermediate transmembrane potential solution ṽl−1 and an updated s̃l−1

vector.

2. Solve a system of three discretized PDEs for t ∈ (tl−1, tl], where (6.2) replaces
the original parabolic PDE (2.66), and ṽl−1, ul−1

e , and ul−1
T are used as the

initial values. The computational work of this substep amounts to solving a
global system of linear equations, which comprises all the degrees of freedom
of the electrical potential fields v, ue, and uT . As stated in Chapter 3, finite
differences and the θ-rule are applied in the temporal discretization, and finite
elements are used in the spatial discretization. Combining the unknowns of ue

and uT into one vector u, we can derive a linear system that has a 2×2-blocked
structure; see Chapter 4. The resulting 2 × 2 block linear system can be solved
by preconditioned CG iterations. The computed results from this substep are ul

e

and ul
T , plus a new intermediate transmembrane potential solution v̂l.

3. Solve the ODE system in the same way as in the first substep, for t ∈ (tl−1 +
θ(tl − tl−1), tl], using the initial values v̂l and s̃l−1. The computed results be-
come vl and sl.

6.1.2 Software Components of the Electrocardiac Simulator

In order to run electrocardiac simulations based on the above numerical strategy, we
must implement the numerics as a computer program, hereafter called the electro-
cardiac simulator. The following software components constitute such a simulator:

– The preprocessing component is responsible for choosing the simulation-related
parameters, such as θ, the size of the time step, and the stopping criterion for

6.2. Requirements for Large-Scale Simulations 177

Table 6.1. An example of measuring the CPU usage (in seconds) by the main computational
tasks during one time step of a small-scale electrocardiac simulation.

Task Solving ODEs Discretizing PDEs Solving 2 × 2 system
CPU 99.31 67.04 134.37

the CG iterations. This information can be gathered by prompting a user for
answers through a menu interface. The preprocessing component is also re-
sponsible for constructing the computational grids for H and T . The other tasks
of the preprocessing component include building up the internal data structure,
preparing the conductivity fields, and enforcing the initial conditions.

– The ODE component is responsible for solving the ODE system, which is based
on a chosen ionic current model and an implicit ODE-solving algorithm. Each
time this component is invoked, it traverses the heart domain and solves the
ODE system for each point in the heart grid.

– The PDE component is responsible for solving the PDEs. The work of this
component involves carrying out finite element discretizations and running pre-
conditioned CG iterations for the resulting 2 × 2 block linear system.

– The time-stepping component is responsible for the entire time integration process.
It invokes the ODE and PDE components during each time step to compute vl,
ul

e, ul
T , and sl, using vl−1, ul−1

e , ul−1
T , and sl−1 as the initial values. In ad-

dition, it is responsible for storing the computed results as data files at chosen
time levels.

– The postprocessing component is responsible for summarizing the computa-
tional results and releasing the memory allocated for the internal data structure.

Table 6.1 indicates the relative time consumption by the main computational
tasks during one time step of a typical simulation. The measurements are obtained
on a single Pentium III 1 GHz processor, where the electrocardiac simulation uses
a 3D heart grid with 82, 768 points and a 3D body grid (comprising H and T)
with 219, 398 points. This particular example uses the Winslow model for the ionic
current Iion and an implicit ODE solver, see Chapter 5. The 2 × 2 block system is
solved by 20 preconditioned CG iterations.

Conventionally, the electrocardiac simulator is implemented for single-processor
computers. In the following section, we will argue that such a sequential implemen-
tation has obvious limits regarding the size of feasible simulations. For real-life elec-
trocardiac simulations, the sequential electrocardiac simulator must be parallelized.
This topic is discussed in Sections 6.3–6.9.

6.2 Requirements for Large-Scale Simulations

It should not be difficult to agree on the following observation: computing the elec-
trical activity in the heart and torso is a highly complicated task. This is due to

178 6. Large-Scale Electrocardiac Simulations

rapidly changing cardiac processes, complex geometry, anisotropic muscle tissue
properties, etc. Such a simulation task requires very high resolutions in both time
and space.

According to [55,16], a temporal resolution of 0.1ms and a spatial resolution
of 0.2mm seem to be desirable for highly accurate simulations. For the temporal
discretization, this means that the simulation of a single heart beat should be divided
into about 104 time steps, where the computational cost per time step depends on
the number of degrees of freedom involved. In the following, we will show roughly
what the spatial resolution of 0.2mm means for the electrocardiac simulator.

6.2.1 The Memory Requirement

To achieve the desired spatial resolution of 0.2mm, it can be estimated that the
3D domain of the heart should contain around 5 × 107 grid points. In addition,
a considerable amount of grid points should also be placed in the torso domain,
although the spatial resolution there does not need to be so high as that in the heart.
For simplicity, let us assume that 107 grid points are needed in the torso. Then, for
the electrocardiac simulator that solves the Bidomain equations coupled with the
forward problem in the torso, we can roughly estimate the minimum amount of data
needed as follows:

– Consider the ODE system that is applicable in the heart domain H:

dv

dt
= −Iion(s, v, t),

ds

dt
= F (s, v, t).

If the number of state variables is 30, e.g., as in the Winslow model, then there
are in total 30×5×107 = 1.5×109 degrees of freedom. This is because an ODE
system needs to be solved at each grid point in the heart, and it is necessary to
store all these s solutions as the initial values for subsequent ODE solves.

– For the 2 × 2 block linear system
[

I + θ∆tAv θ∆tÂv

θ∆tÂT
v θ∆tÂu

] [
v
u

]
=
[

b
0

]
, (6.3)

which arises from discretizing the coupled PDEs, see Chapter 3, the vector v is
of length 5 × 107, and the vector u is of length 6 × 107. The right-hand side
vectors are of the same lengths as v and u. Therefore, v, u, and the right-hand
side vectors require in total

5 × 107 + 6 × 107 + 5 × 107 + 6 × 107 = 2.2 × 108

floating point numbers. Suppose that there are on average 20 nonzero entries
per row in the four sparse matrices that constitute the 2 × 2 block matrix in
(6.3). Then, the entire 2 × 2 block matrix has in total(

5 × 107 + 5 × 107 + 5 × 107 + 6 × 107
)
× 20 = 4.2 × 109

6.2. Requirements for Large-Scale Simulations 179

nonzero entries, each represented as a floating point number. We remark that the
off-diagonal blocks Âv and ÂT

v have essentially the same number of nonzero
entries as Av.

Therefore, for setting up the ODE and PDE systems alone, it needs as many as

(1.5 + 0.22 + 4.2) × 109 = 5.92 × 109

floating point numbers. In the standard case that each floating point number in dou-
ble precision occupies 8 bytes in the computer memory, these floating point numbers
amount to more than 45GB! We can of course utilize the fact that the 2 × 2 block
matrix is symmetric and reduce its storage by half. Nevertheless, there are many
other memory consuming quantities needed by the electrocardiac simulator, such as

– some internal vectors needed by a Krylov solver,

– some additional matrices and vectors associated with the linear systems for the
coarser grid levels in a multigrid preconditioner,

– some additional matrices working as the restriction and interpolation operators
between grid levels inside the multigrid preconditioner,

– the x-, y-, and z-coordinates of all the grid points,

– each grid point in the heart grid has to store its associated conductivity tensors
Mi and Me (note that each symmetric 3 × 3 tensor needs to store six values),

– each grid point in the torso grid has to store its associated conductivity tensor
MT ,

– the element-to-point mapping information (represented as integer arrays) for all
the finite element grids; e.g., a 3D grid with E tetrahedral elements (four points
per tetrahedron) needs a mapping array of length 4E,

– the locations (represented as integer arrays) of the nonzero entries in all the
involved sparse matrices, etc.

Consequently, the actual amount of memory needed by a sufficiently accurate
electrocardiac simulation, which satisfies the desired spatial resolution of 0.2mm,
is likely to be several times the estimate of 45GB. Clearly, there exists no single-
processor computer that has this amount of memory. In fact, even for a grid having
one tenth of the desired spatial resolution, e.g., with 5× 106 degrees of freedom for
v, the memory requirement is still too high for a single-processor computer.

6.2.2 Realistic Estimates for Memory and Time Usage

By extrapolating a memory or time usage model built on the basis of measuring
small-scale simulations, we can come up with realistic estimates for large-scale sim-
ulations. Let us look at Table 6.2 that shows some actual measurements of memory
and CPU usage. These measurements are obtained by running the first time step of
a 3D electrocardiac simulation on several small grids. We have used the Winslow

180 6. Large-Scale Electrocardiac Simulations

Table 6.2. Some measurements of memory and CPU usage associated with running the first
time step of a 3D electrocardiac simulation. The measurements are obtained on a single
R14000 600 MHz processor.

Grid levels N Memory usage CPU usage CPU/N
1 39,589 55 MB 83.77 s 2.12 × 10−3 s
2 302,166 425 MB 491.63 s 1.63 × 10−3 s
3 1,552,283 2254 MB 3261.64 s 2.10 × 10−3 s

model for the ionic current Iion, whereas CG iterations are used for solving the 2×2
block linear system. The blockwise multigrid preconditioner (see Chapter 5) is used
for the CG iterations, and convergence is claimed when the L2-norm of the residual
is reduced by a factor of 104. The symbol N denotes the total number of unknowns
in v and u. Calculations show that the measured memory requirement in Table 6.2
satisfies the following model:

Memory(N) = 1.22 × 10−3 · N1.012 MB. (6.4)

Therefore, for the desired high spatial resolution with 5× 107 heart grid points plus
107 torso grid points, i.e., N = 5 × 107 + 6 × 107 = 1.1 × 108, the memory
requirement can be estimated to be about 160GB. Note that this measurement-
based estimate is almost four times the above theoretical estimate of the minimum
memory requirement (45GB).

Another observation from Table 6.2 seems to suggest that the CPU usage per
unknown does not increase with N . This nice property is due to the use of the
order-optimal blockwise multigrid preconditioner. We also remark that the first time
step of an electrocardiac simulation is more time consuming than the subsequent
time steps. This is due to the work on determining the sparsity pattern of Av and Âu,
diverse data storage allocations, and an especially costly finite element discretization
and assembly of the 2×2 block system. Let us for the sake of argument assume that,
using software optimization and a faster processor, we can improve the average CPU
usage model per time step from Table 6.2 by a factor of more than twenty, i.e.,

CPU(N) = 1.0 × 10−4 · N seconds. (6.5)

Even so, the value of N = 1.1× 108 will mean that an average CPU usage per time
step is 1.1× 104 seconds, i.e., more than three hours. If five thousand time steps are
needed for simulating a full cardiac cycle, the required total CPU usage on a single-
processor computer will be 636 days, almost two years! This is clearly a formidable
computational task for a single-processor computer.

We can conclude that for large-scale electrocardiac simulations, the huge de-
mand of memory calls for the use of multiple memory units, whereas the huge
amount of computational work also suggests employing many processors. There-
fore, we have to resort to a “special” computer that has multiple processors and
memory units. The simulation program may thus be fitted inside the collective
memory of such a computer, and the computation time can be shortened due to the

6.3. Introduction to Parallel Computing 181

involvement of multiple processors. This motivates the adoption of parallel comput-
ing, which will be explained in Sections 6.3–6.5. Of course, readers who are already
familiar with the subject may proceed directly to Section 6.6.

6.3 Introduction to Parallel Computing

Parallel computing roughly refers to involving multiple processors in solving a
global computational task, where some kind of collaboration exists between the
processors. The first motivation for adopting parallel computing is the wish of short-
ening the computation time. The second motivation, especially of relevance for
memory-intensive computations such as solving PDEs, is the need of larger memory
capacity than that of a single-processor computer.

6.3.1 Hardware and Programming Models

With respect to hardware, parallel computing relies on computing systems that in
some way integrate multiple processors and have a total memory capacity equiva-
lent to the sum of many single-processor memory units. There are many variants of
such parallel computing systems. At one end of the spectrum, there exist so-called
shared-memory parallel computers, on which there is a single global memory space
shared equally by all the processors. We remark that the single global memory space
on a shared-memory parallel computer is enabled either directly by hardware tech-
nology or by a combination of hardware and software technologies.

Besides such shared-memory systems, most of the other parallel computers are
based on the concept of distributed memory. In a distributed-memory parallel com-
puter, each processor has its local memory space that can not be accessed directly by
other processors. Collaboration between the processors implies some kind of inter-
processor communication of information, on some kind of network. Distributed-
memory systems can be further categorized with regard to the involved communi-
cation network. Two examples are expensive massively parallel processing systems
that use a tightly coupled high-speed network, and clusters of PCs that often use a
cheap local area network. Assuming the same strength of the processors, we note
that the better the performance of the communication network, the better the possi-
bility of achieving good overall performance of parallel computing.

Different types of hardware naturally give rise to different models of parallel
programming. For distributed-memory systems, the standard programming model
is message passing, where processors “talk to each other” by sending and receiving
short or long messages. Here, the messages simply refer to arrays of values, such as
characters, integers, floating point numbers, etc. Communication in this program-
ming model can be of two types. The first type of communication is so-called one-
to-one, where one processor sends a message to another receiving processor. On the
other hand, in collective communication, a group of processors participate collec-
tively in exchanging messages with each other inside the group. Typical collective
communication operations include one-to-all operations such as “broadcast”, all-to-
one operations such as “gather”, and all-to-all operations such as “all-reduce” (see,

182 6. Large-Scale Electrocardiac Simulations

e.g., [110]). For example, finding the sum of P numbers that are distributed on P
processors can be done by an all-reduce add operation. The obtained result is then
available on all the processors. See Section 6.4.2 for a concrete example.

Message-passing programs consist of standard sequential statements that are in-
terleaved with additional communication commands. During a parallel execution,
each processor runs a copy of the parallel program independently. The communi-
cation commands ensure necessary information exchange and synchronization be-
tween the processors. We mention here that the message passing interface (MPI)
library is the de-facto standard of message passing commands, see [53,41,110]

As counterpart to the message-passing programming model, the shared-memory
programming model is achievable on shared-memory systems. In this programming
model, programs have mainly an appearance of sequential execution, which spawns
multiple “execution threads” whenever entering a code region typically involving
computation over long loops, and returns to the single “execution thread” immedi-
ately after exit. Necessary information exchange and synchronization between the
processors are normally hidden in some special system calls, such as those in the
OpenMP standard (see [23,109]). However, this parallel programming model will
not be adopted in this chapter due to the following reasons:

– Distributed-memory systems are the dominating hardware platforms.

– Message-passing programs can execute on both distributed-memory and shared-
memory systems. But shared-memory programs rely completely on shared-
memory platforms.

– Although the shared-memory programming model is easy to use, it is often not
flexible enough to treat complicated situations. On the other hand, message-
passing programming is a versatile tool at the cost of some additional program-
ming effort.

– Performance of message-passing programs is normally better than that of shared-
memory programs.

Therefore, we will only consider the message-passing programming model in the
remainder of this chapter, and the sequential electrocardiac simulator will be paral-
lelized in this style.

6.3.2 Division of Work and the Resulting Overhead

We recall that the motivation for adopting parallel computing is the wish to re-
duce computation time and memory requirement per processor. This is in principle
achieved by employing multiple processors and dividing the global computational
work and data among them. In the message-passing programming model, the way
of dividing the work and data must be decided and explicitly implemented by the
programmer.

However, continuing the discussion of work division, we need to mention the
non-parallelizable tasks. There is always a portion of a sequential program that is
not parallelizable, meaning that for certain tasks it is not possible to reduce the

6.3. Introduction to Parallel Computing 183

computation time by use of multiple processors. Such non-parallelizable tasks typ-
ically contain either too few operations, or operations that are subject to an execu-
tion sequence dependency, thus destroying the parallelism. Two examples of non-
parallelizable tasks are adding two scalar numbers and reading command-line user
inputs. During parallelization, non-parallelizable tasks have to be either handled by
one “master” processor or replicated on all the processors. Quite often, the percent-
age of non-parallelizable work within a large-scale sequential program is very small
and often diminishes when the size of the global computational task increases.

Having mentioned the non-parallelizable tasks, let us now move on to the dis-
cussion of work division. When we handle the parallelizable portion of a global
computational task, it is important to use a “fair” division scheme for all the proces-
sors. It is also important to note that the division scheme should be enforced in the
very beginning of a parallel program and kept, if possible, throughout the execution.
This approach avoids unnecessary work associated with re-division and shuffling lo-
cal data between the processors. Obviously, we would like to divide a parallelizable
task into P equal-sized parts, so that the processors can finish their assigned work
simultaneously, without having to spend much time on waiting for each other. This
issue is often referred to as load balancing. However, it is not enough to only have
an equal division of the work and data, we should also try to minimize the overhead
due to parallelization. Some common cases of parallelization-caused overhead are
discussed below.

Overhead due to Communication. Even an idealized procedure for sending a mes-
sage from processor A to processor B involves several substeps. First, processor
A writes the message into a local array. Then, the system might have to copy the
message into a system message buffer. Finally, the message is transferred over the
network and copied into a waiting array on processor B. A simple cost model for
one-to-one transfer of a message of length L can be formulated as:

τC(L) = τ0 + ξL, (6.6)

where τ0 is the so-called latency, which represents the system startup time for com-
munication. The coefficient 1/ξ is often referred to as the bandwidth, which in-
dicates the rate at which messages can be exchanged between two processors. We
remark that the unit of message length is typically one floating point number in dou-
ble precision. An all-to-all communication operation is typically decomposed into
log2 P sub-stages, where each sub-stage involves a two-way one-to-one message
exchange. Thereby, the cost of an all-to-all communication is typically log2 P times
the cost of (6.6).

Overhead due to Synchronization. Very often, it is impossible to achieve an entirely
equal division of work among the processors, possibly due to some unstructured
nature of the computations. Also, if the local computation has a dynamic work load,
perfect load balance is not achievable. So it may sometimes happen that the proces-
sors are executing their copy of a parallel program at their own pace. However,
in many cases of numerical computation, such as iterations of a Krylov subspace

184 6. Large-Scale Electrocardiac Simulations

solver, we can not allow some processors to progress too far ahead of the others.
Synchronization is thus needed, which can be achieved either implicitly or explic-
itly through a special system call. An example of implicit synchronization is to
combine it with a collective communication. In general, the worse the situation of
uneven load balance, the larger the synchronization overhead.

Overhead due to Duplicated Computation. Ideally, the work of a global computa-
tion should be divided equally and also disjointly among the processors. It is how-
ever not always possible to achieve a disjoint division. As an example, let us con-
sider the division of a finite element grid. While it is possible to divide the elements
disjointly, the grid points lying on the element boundaries between the neighbors
have to be replicated. This often gives rise to a situation where the sum of all the lo-
cal computations exceeds the amount of the original global computation. We remark
that the overlapping domain decomposition methods (see Section 4.5) requires even
more duplicated computation, because the elements from neighboring subdomains
should have a certain number of overlapping layers. Moreover, overhead of memory
usage is often associated with duplicated computations.

Considering the different types of overhead that may be introduced by paral-
lelization, we arrive at the following principles for dividing the computational work
of a sequential program:

– A chosen division of the work and data should be enforced in the beginning
of a parallel program and remain unchanged, if possible, throughout the whole
parallel execution. In this way, each processor can concentrate on its assigned
local data and computation, without having to shuffle data with the neighbors.

– Preferably, we should avoid situations where a global data structure is first built
on one master processor and then divided and distributed to the other proces-
sors. Each processor should be responsible for building up its own local data
structure.

– The “areas” of the local computations should be approximately the same. This
is for reducing the overhead due to synchronization.

– The “shapes” of the local computations should be of such a form that the num-
ber of “neighbors” each processor has is small and the size of upcoming com-
munication messages is also small. This is for reducing the overhead due to
communication and possibly also duplicated local computation.

6.3.3 Speedup and Parallel Efficiency

To measure the quality of a parallelized program, we introduce the important con-
cept of speedup, which is defined as

S(P) =
T (1)
T (P)

. (6.7)

6.3. Introduction to Parallel Computing 185

Here, P is the number of processors involved, and T (1) denotes the time usage
of the original sequential program. Moreover, T (P) denotes the time usage of the
parallelized program using P processors. In case of different time usages by the
P processors, which actually is quite usual, T (P) refers to the time usage by the
“slowest” processor.

As we have seen in Section 6.3.2, parallelization normally introduces different
types of overhead. Therefore, the following relation is generally valid:

T (P) ≥ T (1)
P

.

Consequently, we normally have

S(P) =
T (1)
T (P)

≤ T (1)
T (1)

P

= P. (6.8)

Another equivalent metric for the quality of a parallelization is parallel effi-
ciency, which is defined as

η(P) =
S(P)

P
. (6.9)

Following (6.8), we can arrive at

η(P) ≤ P

P
= 1.

This means that the best result of parallelization is that we achieve 100% parallel
efficiency. However, due to the possible existence of overhead in a parallelized pro-
gram, we should normally be satisfied with an efficiency close to 100%. In general,
the efficiency is a decreasing function with respect to P .

Remarks. There is one factor that actually has the potential of improving the par-
allel efficiency when more processors are used. The possibility of local data being
able to fit entirely inside the cache1 of a processor increases when the size of the
local computation decrease, i.e., when P increases. We may find cases where the
sequential computation is too large to fit in a cache, while using a certain number
of processors can considerably improve the local cache performance, therefore re-
ducing T (P) noticeably. Nevertheless, we are mainly concerned with large-scale
parallel computations that have too large local computations to be located entirely
inside a cache. So the positive cache effect on the parallel efficiency is not consid-
ered in this chapter.

1 A cache can be regarded as a special memory area located between a processor and its
main memory, see, e.g., [47]. The memory size of a cache is relatively small but its access
speed is much higher than that of the main memory. If the data of a small computational
task can be programmed to fit entirely inside the cache, exceptionally good performance
may arise.

186 6. Large-Scale Electrocardiac Simulations

For the parallel solution of a global computational task of a fixed size, increasing
the number of processors P normally results in a reduced parallel efficiency η(P).
This is because that the amount of different overhead normally does not scale down
proportionally with 1/P . Therefore, the parallel efficiency η(P) normally decreases
with increasing P . On the other hand, for a fixed number of processors P , if the
size of the global computation increases, the amount of local computation increases
proportionally. The percentage of overhead in T (P) normally decreases in this case.
Consequently, the parallel efficiency η(P) normally increases together with the size
of the global computation.

6.4 Two Simple Examples

Now let us look at two simple examples of parallelization. The purpose is to let
the reader familiarize with the division of work, speedup analysis, and a pseudo
programming language.

6.4.1 Adding Two Vectors

We first consider a global computational task of adding two long vectors u =
(u1, u2, . . . , uN) and v = (v1, v2, . . . , vN), both of length N . The result of the ad-
dition is to be stored in another vector of the same length: w = (w1, w2, . . . , wN). It
is obvious that adding two vectors can be done in the following way, entry by entry:

wi = ui + vi ∀i ∈ I, (6.10)

where I is an index set containing 1, 2, . . . , N .
Note that the above N adding operations of two scalar values need not be exe-

cuted in an increasing order of the index i. Actually, any random order of traversing
I produces the same numerical result. That is, the N scalar adding operations can
be executed completely independently of each other. This immediately gives rise to
parallelism.

The first step of parallelization is to divide the global computational work among
P processors. For simplicity, let us divide the work disjointly. So processor number
p is responsible for Np adding operations, where

N =
P∑

p=1

Np.

There are, however, many different ways of achieving this division of work and
data. One approach is a cyclic distribution of the entries, such that entries number
1, P + 1, 2P + 1, . . . are given to processor number 1, and entries number 2, P +
2, 2P + 2, . . . are given to processor number 2, and so on. Another approach is a
blockwise distribution where entries number 1, 2, 3, . . . , N1 are given to processor
number 1, and entries number N1 + 1, N1 + 2, N1 + 3, . . . , N1 + N2 are given to
processor number 2, and so on.

6.4. Two Simple Examples 187

Here, it is not important to know exactly which scheme is used to divide the
global work. This is because adding two vectors is a frequently encountered oper-
ation in numerical computations, so the division of work and data is typically “in-
herited” from a preceding computational task. For the moment, it suffices with an
assumption that there exists a set of local indices Ip = {1, 2, . . . , Np} , 1 ≤ p ≤ P .
The P values of Np should be either identical or have very small differences. This
is for achieving a good load balance. In fact, the result of a division of data can be
expressed by the following mapping:

i → (p, j), i ∈ I, 1 ≤ p ≤ P, and j ∈ Ip. (6.11)

We remark that a disjoint division of data implies a unique mapping from i to
(p, j). Very often, the mapping (6.11) is not explicitly used in every part of a paral-
lel program. On each processor, a copy of the parallel (message-passing) program
works primarily with its assigned local data. Each processor distinguishes itself from
other processors by its unique rank p. In this example, the local data for each proces-
sor are three local vectors up, vp, and wp. If we assume that the three local vectors
are ready, typically “inherited” from a preceding computational task in the same
parallel program, a pseudo code segment for a parallel addition of two vectors can
be as follows:

Parallel Add(up, vp, wp)
Input: up and vp on processor number p
Output: wp on processor number p

for all j ∈ Ip

wp(j) := up(j) + vp(j)
end for

Speedup Analysis. For this extremely simple parallelization example, there is no
need to use communication between the processors. We can derive the following
model for T (P):

T (P) = max
p

NpτA, (6.12)

where τA loosely denotes the cost of one floating point arithmetic operation. In
fact, τA also includes the cost of reading data from the memory and writing them
back. This is because the data structure for almost any PDE simulator is in form
of long (and multi-dimensional) arrays, so memory access tightly accompanies the
arithmetic operations.

Similarly, the time usage by a sequential addition is

T (1) = NτA. (6.13)

Therefore, the speedup S(P) becomes

S(P) =
T (1)
T (P)

=
NτA

max
p

NpτA
=

N

max
p

Np
. (6.14)

188 6. Large-Scale Electrocardiac Simulations

In case of a perfect load balance and a disjoint division of data, i.e., max
p

Np =

N/P , we can see that (6.14) is reduced to S(P) = P . In other words, the following
three factors together give rise to a perfect speedup result: the absence of communi-
cation overhead, a disjoint division of work, and identical amount of local work per
processor.

Non-Disjoint Division of Data. Although the mapping (6.11) does not appear in
the pseudo code of Parallel Add, it is implied by the “inherited” division of work
and data, i.e., Ip. Very often, it suffices with such a “distributed view” of a paral-
lel program, without having to know how exactly a global index i can be mapped
to (p, j) in every part of the parallel program. We have so far assumed a disjoint
division of data, which means that the mapping (6.11) is unique and N =

∑
Np.

However, in many large-scale parallel programs, the division of work and data is
non-disjoint (see Section 6.3.2). That is, there is a small amount of overlap between
the local vectors on different processors and thus N <

∑
Np. A natural question is

whether a non-disjoint division affects the implementation of Parallel Add. The an-
swer is that Parallel Add remains the same for a non-disjoint division, even though
the mapping (6.11) is no longer unique and the size of Ip becomes larger. We re-
quire, of course, that if an entry of u or v is distributed to more than one processor,
the value of the entry should be replicated on all the involved processors. Regard-
ing the parallel efficiency, the local work load is increased due to some duplicated
computation, so the speedup S(P) becomes less perfect.

One solution to the above problem of duplicated computation is to use an ad-
ditional disjoint division Id

p ⊂ Ip and thus let processor number p only compute
a portion of wp, j ∈ Id

p . Then, the processors exchange results with each other to
fill the rest of wp. Note that we can not simply skip the computation for these en-
tries of wp, because they are typically needed by other parts of a parallel program.
This solution, however, is typically too expensive due to the new communication
overhead.

6.4.2 Inner Product

As another example of parallelization, we consider the inner product of two vectors:
u = (u1, u2, . . . , uN) and v = (v1, v2, . . . , vN). That is, we want to compute

c = (u, v) ≡
N∑

i=1

ui · vi. (6.15)

To reveal parallelism for this case, we give an equivalent reformulation of (6.15),
i.e., starting with c = 0 and accumulating the value of c by

c = c + ui · vi ∀i ∈ I, (6.16)

where I = {1, 2, . . . , N}. The purpose with (6.16) is to show that the contribution
from ui · vi can be accumulated by traversing I in any order.

6.4. Two Simple Examples 189

Following the previous example, we assume again that there exists a division of
work and data, in form of Ip on each processor. The basic idea for doing a paral-
lel inner product is to first let each processor compute a portion of c and then use
communication and some follow-up additions to obtain the correct value of c. As-
suming that the two local vectors up and vp are available, arising from an inherited
disjoint division of data, we can write the following pseudo code segment for the
computation of a parallel inner product:

Parallel Inner(up, vp, c)
Input: up and vp on processor number p
Output: c on every processor

cp := 0
for all j ∈ Ip

cp := cp + up(j) · vp(j)
end for
c := cp

for 1 ≤ i ≤ P and i �= p
Send(cp,i)
Receive(ci,i)
c := c + ci

end for

In the above code segment, we have used Send(cp,i) to denote a communication
operation of sending the value cp to processor number i. Similarly, Receive(ci,i)
denotes a communication operation of receiving the value ci from processor
number i.

Speedup Analysis. The main difference between the present example and the pre-
vious one is that communication is now involved. Each processor has to exchange
P − 1 small messages, each containing only one scalar value, with P − 1 other
processors. Therefore, the parallel time usage model T (P) is as follows:

T (P) =
(

max
p

(2Np − 1)τA

)
+ (P − 1) (τC(1) + τA) , (6.17)

where we have used the cost model for one-to-one communication (6.6). In addition,
we have assumed that one multiplication operation takes the same amount of time
(τA) as one addition. In case of a perfect load balance max

p
Np = N/P and also

190 6. Large-Scale Electrocardiac Simulations

Table 6.3. The wall-clock time measurements of Parallel Inner on a Linux cluster.

N = 106 N = 107

P = 1 4.605365 × 10−2 s 4.548842 × 10−1 s
P = 2 2.499276 × 10−2 s 2.287801 × 10−1 s
P = 4 1.505762 × 10−2 s 1.161581 × 10−1 s
P = 8 8.052347 × 10−3 s 5.977540 × 10−2 s
P = 16 6.118934 × 10−3 s 3.206090 × 10−2 s

N � P , the speedup can be found as

S(P) =
T (1)
T (P)

=
(2N − 1)τA(

max
p

(2Np − 1)τA

)
+ (P − 1) (τC(1) + τA)

=
(2N − 1)τA(

2N
P − 1

)
τA + (P − 1) (τC(1) + τA)

≈ P

1 + P (P−1)
2N

(
τc(1)
τA

+ 1
) < P. (6.18)

It can be observed from (6.18) that the speedup result is not perfect due to com-
munication overhead and a very small amount of duplicated computation, which is
associated with the follow-up additions c =

∑
cp. Two factors decide the actual

quality of the speedup: the size of the global computational task N and the commu-
nication speed τC . More specifically, the following two observations are in general
true for any parallel program:

– The smaller the ratio P
N , the better the speedup result. This means that a larger

global work load is favorable for speedup.

– The larger the ratio τc(1)
τA

, the worse the speedup result. This means that a rela-
tively slow communication speed is not favorable for speedup.

Let us consider Parallel Inner(up, vp, c) for two cases: N = 106 and N = 107.
The chosen parallel computing system is a Linux cluster consisting of Pentium III
1 GHz processors, which are connected through a fast Ethernet network. For the
Pentium processors, the value of τA is measured as about 2.3 × 10−8 s, which is
mainly determined by the memory speed. For the Linux cluster, which uses MPI
for communication, the cost of exchanging one message containing one double-
precision number, i.e., τC(1), is measured as about 1.4 × 10−4 s. The wall-clock
timing results for Parallel Inner are displayed in Table 6.3, and the associated par-
allel efficiency values are showed in Figure 6.1. We can observe from Figure 6.1
that a larger value of N is clearly favorable for achieving better speedup and paral-
lel efficiency.

Collective Communication. We can see that the communication part in Paral-
lel Inner becomes quite costly if P is large. This is because handling P − 1 dif-
ferent messages on each processor is not a simple task. To improve the performance

6.5. Domain-Based Parallelization 191

2 4 8 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
η(

P
)

Number of processors: P
2 4 8 16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η(
P

)

Number of processors: P

Fig. 6.1. The parallel efficiency of Parallel Inner on a Linux cluster for two cases: N = 106

(left) and N = 107 (right).

of such a frequently encountered operation, we should communicate by means of a
global reduction operation, which combines the message exchanges and the follow-
up additions in Parallel Inner into one special command: AllReduce Add(cp, c).
This all-to-all communication command typically involves log2 P sub-stages, thus
having an improved cost model, e.g., log2 P (τC(1) + τA). Using AllReduce Add,
we can write an improved parallel inner product as follows:

Parallel Inner2(up, vp, c)
Input: up, vp on processor number p
Output: c on every processor

cp := 0
for all j ∈ Ip

cp := cp + up(j) · vp(j)
end for
AllReduce Add(cp, c)

Non-Disjoint Division of Data. In case of a non-disjoint division of u and v, nei-
ther Parallel Inner nor Parallel Inner2 will compute the correct result c. This is
because some of the entries in up and vp are also duplicated on other processors.
One solution to this problem is to find another local index set Id

p ⊂ Ip on processor
number p. The requirement is that Id

p , 1 ≤ p ≤ P , should form a disjoint division of
the global data u and v. Then, we just need to replace Ip with Id

p in Parallel Inner2.

6.5 Domain-Based Parallelization

In the preceding section, we have looked at parallel versions of a vector addition and
an inner product. Both operations are frequently encountered in the computational
task of solving PDEs. So far it has been said that the division of the global data and
work is “inherited” from other parts of a parallel program. In this section, we will
show how the division of data and work can be achieved.

192 6. Large-Scale Electrocardiac Simulations

We recall that a PDE problem normally has a spatial domain Ω in which the
PDE is valid. For parallelizing a PDE simulator, the division of the global work and
data is most naturally realized by partitioning the global solution domain Ω into
P subdomains. Then, each subdomain Ωp, 1 ≤ p ≤ P , becomes the “territory”
of one processor, so that each processor can construct its own local data restricted
to Ωp. The global data are represented by the set of subdomain data collectively.
There is normally no need to construct and store the global data physically, they ex-
ist only in a “logical” sense. The division of the global data is thus enforced, and the
division of the global work arises accordingly, such that each processor only does
computations using its local data. These local computations are done concurrently
in parallel, interleaved with inter-processor communication when necessary. The
collective effect of these coordinated local computations becomes the same as using
one processor for the entire global work. We mention that this domain-based paral-
lelization approach is quite different from using the shared-memory model, where
the global data are physically constructed and the work load is divided typically at
the loop/array level.

6.5.1 Division of Data for FDM

Normally, the finite difference method (FDM) uses a uniform or structured lattice
grid covering the global solution domain Ω. Solutions are sought on each of the grid
points and computations typically involve FDM stencils that couple each grid point
with a few neighboring points.

The division of the global work and data in the FDM is achievable by parti-
tioning the grid points evenly between the processors. Using cutting lines or planes,
see Figure 6.2, we produce subdomains also of a rectangular shape. So the original
sequential FDM program can in principle be re-applied for local computations on
the subdomains. Additional inter-processor communication commands must be in-
serted at the appropriate locations. We note that the cutting lines/planes are located
between the grid points, so that all the grid points are divided disjointly between
the subdomains. The computational task on each subdomain is to find the solution
on the local grid points. We will use the term internal boundary points to refer to
the grid points in a subdomain that lie immediately beside the cutting lines/planes.
We also remark that a FDM lattice grid can be partitioned using cutting lines of
lower spatial dimensions. For example, a 3D lattice grid can also be partitioned
one-dimensionally or two-dimensionally. A lower dimensional partitioning results
in fewer neighbors, but larger volume of communication.

The above disjoint partitioning of the grid points and the consequent disjoint
division of the global computational work are straightforward. However, we can
observe from Figure 6.2 that computations associated with the internal boundary
points require values on some grid points lying in the neighboring subdomains.
Such values should therefore be provided by the neighboring subdomains, i.e., each
subdomain needs to send the values on its internal boundary points to its neighbors
and also receive the required values. This exchange of values is carried out by sev-
eral one-to-one communication operations. Let us consider subdomain number one

6.5. Domain-Based Parallelization 193

3

4

1

2

Fig. 6.2. Partitioning of the points of a FDM lattice grid and data dependency of a five-point
FDM stencil.

in Figure 6.2 for example. Every time the subdomains have updated values on their
local points, subdomain number one has to send the new values on its right-side
internal boundary nodes, as an array, to subdomain number three. In return, subdo-
main number one should receive an array, containing the new values on the left-side
internal boundary nodes in subdomain number three. A similar two-way one-to-one
data exchange has to be done between subdomains number one and number two.

To handle the above type of communication, one may extend the local data struc-
ture of each subdomain to include one layer of so-called ghost boundary points. Of
course, if a FDM stencil covers more than one layer of the surrounding points, more
layers of ghost boundary points should be included in a subdomain. This is done in
order to obtain a convenient storage of the values associated with the ghost bound-
ary points. It may also prevent special implementations of the local computations
for the internal boundary points. A sample partitioning of a FDM lattice grid is
shown in Figure 6.3. We stress that the responsibility of finding solutions on the
ghost boundary points belongs to the neighboring subdomains. The ghost boundary
points only participate in local computations associated with the internal boundary
points. The subdomain computational points arise from a disjoint division of the
global computational work.

For explicit finite difference schemes, a parallelized program typically involves
the same type of loops as in the original sequential program. The only differences
are that the loops are now restricted to the subdomain computational points, and
communication must be added for updating the ghost boundary points, as shown
above. Section 6.6 presents such an example.

For implicit finite difference schemes, which involve the solution of a global
linear system in form of Ax = b, each subdomain builds its local linear system

194 6. Large-Scale Electrocardiac Simulations

6

5

4

3

2

1

Fig. 6.3. An example of partitioning a global FDM lattice grid into subdomain lattice grids,
each with one layer of ghost boundary points.

associated with the division of the global data:

Apxp = bp. (6.19)

This local discretization arises from traversing the computational points in the sub-
domain, while applying the FDM stencil. The number of equations in (6.19) is de-
termined by the number of subdomain computational points, i.e., not including the
ghost boundary points. The same is the length of the right-hand side vector bp,
whereas the vector of unknowns xp includes the ghost boundary points. This is be-
cause the FDM stencil relates the ghost boundary points with the internal boundary
points. So the subdomain system matrix Ap has more columns than rows. Of course,
the local system (6.19) can not be solved independently. We have to solve the P
subdomain local systems collectively to find the global solution, which is always
distributed as xp, 1 ≤ p ≤ P . A parallel iterative procedure is most appropriate
for such a distributed linear system. Section 6.7 demonstrates how the kernel linear
algebra operations can be parallelized using such distributed matrices and vectors.

6.5.2 Division of Data for FEM

The FEM typically uses unstructured computational grids, where elements are the
basic computational units. Following the approach of domain-based parallelization,
we need to partition the global finite element grid into P subdomain grids, so that the
elements are divided between the subdomains. This can be a complicated process
when the global finite element grid is unstructured. As discussed in Section 6.3.2,
we want the number of elements per subdomain to be approximately the same, and
the “shape” of the subdomains to be such that the parallelization-induced commu-
nication overhead is limited. We will not discuss further the topic of partitioning

6.5. Domain-Based Parallelization 195

Fig. 6.4. A non-overlapping partitioning of a finite element grid.

unstructured finite element grids, but rather refer the reader to, e.g., [39,70,140].
Throughout the following text, it will be assumed that any finite element grid can be
partitioned into a set of subdomain grids, with sufficiently good load balance.

When a set of subdomain grids is ready, parallelization of the finite element dis-
cretization and assembly process is straightforward. No communication is needed at
this stage. Each processor simply restricts its operations to the subdomain grid. The
result is that the global linear system is distributed as a set of local linear systems
arising from the subdomains. It is important to note that the global linear system
needs only to exist logically, not physically as a whole. During the solution of the
distributed global linear system, the work of each processor consists of local linear
algebra operations and message exchanges with its neighbors. The details will be
presented in Section 6.7.

Non-Overlapping Subdomains. Unlike the cutting lines or planes that are used to
divide the points in a FDM lattice grid, the cutting curves or surfaces for parti-
tioning a global finite element grid can not “cut through” the elements. The cut-
ting curves/surfaces must coincide with some of the element edges or sides. These
element edges or sides constitute the internal boundaries between the neighboring
subdomains. Therefore, although the elements can be divided disjointly between the
subdomains, i.e., there is no overlap in terms of the elements, neighboring subdo-
mains always share some grid points that lie on the internal boundaries. Figure 6.4
depicts such a situation, where elements e1 and e2 belong to one subgrid, e3 and e4

belong to another subgrid, whereas e5 and e6 belong to a third subgrid. Grid points
that are marked with a circle in Figure 6.4 lie on the internal boundaries, and are
therefore shared between neighboring subdomains. Consequently, when the global
vectors are divided using this partitioning, some entries of each subdomain vector
have to be replicated among the neighbors. The details on how to divide the data
and computation associated with a global matrix or vector are given in Section 6.7.

196 6. Large-Scale Electrocardiac Simulations

Overlapping Subdomains. Very often, the mathematical design of a numerical com-
ponent, such as a parallel preconditioner, requires that the neighboring subdomains
should have some amount of overlap between each other. That is, there should be
at least one layer of overlapping elements between two neighboring subdomains.
This typically arises from two non-overlapping subdomains by “pushing” the inter-
nal boundary of one subdomain towards the interior of its neighbor. An equivalent
requirement for overlapping subdomains is that every internal boundary point in one
subdomain must have at least one of its duplicates as an interior point in a neighbor-
ing subdomain. In a sense, the internal boundary points in overlapping subdomains
have the same role as the ghost boundary points in a parallelized FDM program. This
is because the responsibility of finding the solution on an internal boundary point is
now given to a neighboring subdomain, which has the duplicated point lying in its
interior, see Section 6.7. Normally, an overlapping partitioning arises from enlarg-
ing a set of non-overlapping subdomains. Consequently, the number of duplicated
grid points will be higher than that in the non-overlapping case. This results in an
increased amount of local computations, thus a decrease in the speed-up. We leave
the details on parallelizing linear algebra operations associated with an overlapping
partitioning to Section 6.7.

6.5.3 Summary of Principles

In the following, we summarize the principles of the domain-based parallelization
approach to be used in the present chapter:

– The general hardware model of distributed memory is assumed.

– The division of work and data is done through grid partitioning, which in fact
gives a domain division.

– A subdomain works only with its local matrices and vectors. It has no direct
access to other subdomains’ local data.

– A processor is assigned with one subdomain. There is no master-slave relation
between the processors, which execute the same simulation code. However, the
progression of code may differ between the processors at a given time instant.
Synchronization is enforced when necessary, either explicitly by a specific com-
mand or implicitly as a result of some collective communication operations.

– Communication between neighboring subdomains is either in form of one-to-
one exchange of arrays of values, or in form of collective communication oper-
ations involving very short messages, such as AllReduce Add.

6.6. Explicit FDM in Parallel 197

6.6 Explicit FDM in Parallel

In order to illustrate the parallelization procedure for a sequential FDM program, let
us consider the following simple parabolic PDE:

∂v

∂t
= ∇2v in Ω × (0, T], (6.20)

∂v

∂n
= 0 on ∂Ω, (6.21)

v(x, 0) = v0(x) x ∈ Ω, (6.22)

where n in (6.21) is the outward unit normal vector on ∂Ω. We remark that (6.20)
can be considered as a simplified version of the Monodomain equation (2.35), after
we have chosen Mi ≡ 1 and ignored the ionic current.

6.6.1 Discretization by Finite Differences

For simplicity, let us assume that Ω is the unit box (x, y, z) ∈ [0, 1]3. In addition, let
us use the Forward Euler scheme for the temporal discretization and a seven-point
FDM stencil in the spatial discretization. Suppose we use a uniform N × N × N
spatial grid, i.e.,

∆x = ∆y = ∆z =
1

N − 1
= h

and each grid point is identified by a triplet of subscripts (i, j, k), such that

xi = (i − 1)∆x, yj = (j − 1)∆y zk = (k − 1)∆z, 1 ≤ i, j, k ≤ N.

Treating the Boundary Conditions. Since the boundary conditions (6.21) are of the
Neumann type, it is convenient to introduce a layer of ghost boundary points around
the computational points. That is, we introduce

x0,j,k, xN+1,j,k, 1 ≤ j, k ≤ N,

yi,0,k, yi,N+1,k, 1 ≤ i, k ≤ N,

zi,j,0, zi,j,N+1, 1 ≤ i, j ≤ N.

Using the above ghost boundary points, we can discretize the homogeneous Neu-
mann boundary condition on the left side x = 0 by

∂v

∂x

∣∣∣∣
x=0

≈ v2,j,k − v0,j,k

2∆x
= 0 ⇒ v0,j,k = v2,j,k, 1 ≤ j, k ≤ N.

Using a superscript l to denote the time level, such that tl = l∆t, we can write
the numerical strategy for solving (6.20)–(6.22) as follows:

198 6. Large-Scale Electrocardiac Simulations

1. Enforce the initial condition (6.22) at t = 0.

v0
i,j,k = v0(xi, yj , zk), 1 ≤ i, j, k ≤ N. (6.23)

2. Enforce the boundary conditions (6.21) at t = 0.

v0
0,j,k = v0

2,j,k, 1 ≤ j, k ≤ N,

v0
N+1,j,k = v0

N−1,j,k, 1 ≤ j, k ≤ N,

v0
i,0,k = v0

i,2,k, 1 ≤ i, k ≤ N,

v0
i,N+1,k = v0

i,N−1,k, 1 ≤ i, k ≤ N,

v0
i,j,0 = v0

i,j,2, 1 ≤ i, j ≤ N,

v0
i,j,N+1 = v0

i,j,N−1, 1 ≤ i, j ≤ N.

3. Repeat time stepping until t = T is reached. The work at each time step consists
of updating values on the computational points, i.e.,

ul+1
i,j,k − ul

i,j,k

∆t
= (6.24)

ul
i,j,k−1 + ul

i,j−1,k + ul
i−1,j,k − 6ul

i,j,k + ul
i+1,j,k + ul

i,j+1,k + ul
i,j,k+1

h2

for 1 ≤ i, j, k ≤ N , and enforcing the boundary conditions afterwards:

vl+1
0,j,k = vl+1

2,j,k, 1 ≤ j, k ≤ N,

vl+1
N+1,j,k = vl+1

N−1,j,k, 1 ≤ j, k ≤ N,

vl+1
i,0,k = vl+1

i,2,k, 1 ≤ i, k ≤ N,

vl+1
i,N+1,k = vl+1

i,N−1,k, 1 ≤ i, k ≤ N,

vl+1
i,j,0 = vl+1

i,j,2, 1 ≤ i, j ≤ N,

vl+1
i,j,N+1 = vl+1

i,j,N−1, 1 ≤ i, j ≤ N.

(6.25)

6.6.2 A Sequential Program

A straightforward implementation of the above numerical strategy should use two
arrays v̄ and v, which are of the dimension (N +2)× (N +2)× (N +2). The lower
bound of the array indices is 0 and the upper bound is N + 1. The array v̄ contains
values on the computational points plus the ghost boundary points at time level l,
whereas v stores the values for time level l + 1. In addition, three one-dimensional
arrays x, y, and z are used to store the coordinates of the computational points.

Before showing the main program Sequential Heat, let us first introduce two
assistant functions: Enforce BC and Update, which can be used to enforce the
boundary conditions (6.21) and update the computational points following (6.24),
respectively.

6.6. Explicit FDM in Parallel 199

Enforce BC(v,N1, N2, N3)
Input: v,N1, N2, N3

Output: v
for all (j, k) ∈ [1, N2] × [1, N3]

v(0, j, k) := v(2, j, k)
v(N1 + 1, j, k) := v(N1 − 1, j, k)

end for
for all (i, k) ∈ [1, N1] × [1, N3]

v(i, 0, k) := v(i, 2, k)
v(i,N2 + 1, k) := v(i,N2 − 1, k)

end for
for all (i, j) ∈ [1, N1] × [1, N2]

v(i, j, 0) := v(i, j, 2)
v(i, j,N3 + 1) := v(i, j,N3 − 1)

end for

Update(v̄, v,N1, N2, N3,∆t, h)
Input: v̄, N1, N2, N3,∆t, h
Output: v

for all (i, j, k) ∈ [1, N1] × [1, N2] × [1, N3]
v(i, j, k) := v̄(i, j, k)

+∆t
h2 [v̄(i, j, k − 1) + v̄(i, j − 1, k) + v̄(i − 1, j, k)

−6v̄(i, j, k) + v̄(i + 1, j, k) + v̄(i, j + 1, k) + v̄(i, j, k + 1)]
end for

We note that both the functions Enforce BC and Update are designed to accept
different lengths in different dimensions for the v̄ and v arrays. This is particularly
convenient for the parallelized program to be presented in Section 6.6.3. For the
sequential implementation, we use the following pseudo code:

Sequential Heat(N,T,∆t, v)
Input: N , T , ∆t
Output: v

Construct arrays v̄ and v
Construct and fill one-dimensional arrays x, y, and z
t := 0
for all (i, j, k) ∈ [1, N] × [1, N] × [1, N]

v̄(i, j, k) := v0(x(i), y(j), z(k))
end for
Enforce BC(v̄, N,N,N)
while t < T do

t := t + ∆t
Update(v̄, v,N,N,N,∆t, h)
Enforce BC(v,N,N,N)
v̄ := v

end while

200 6. Large-Scale Electrocardiac Simulations

6.6.3 Parallelization

Following the domain-based parallelization approach in Section 6.5.1, we divide
the global computational points into P rectangular parts. Although writing a general
three-dimensional partitioning scheme for any arbitrary value of P is not trivial, it is
relatively easy for common values of P , such as 2, 4, 8, etc. Anyway, the partitioning
result is that subdomain number p is assigned with N1,p×N2,p×N3,p computational
points. For the current example, it is sufficient to assume that there exists a function

Partitioning(N, p, P,N1,p, N2,p, N3,p, xp, yp, zp)

that takes N , p, and P as input, and produces N1,p, N2,p, N3,p, xp, yp, and zp. The
partitioning determines where each subdomain is located (through xp,yp,zp), and
implies a mapping from a local triplet of indices (i, j, k) on processor number p to
a unique global triplet of indices. This mapping is needed if the final local solutions
vp, which are distributed on the P processors, are desired to be “glued” back into a
global solution v.

We also note that the local computational operations on each subdomain are
exactly the same as those in the sequential case, so the function Update can be
re-used as is. In the following, we list the parallelized program:

Parallel Heat(P,N, T,∆t, v)
Input: P , N , T , ∆t on every processor
Output: vp on processor number p

Partitioning(N, p, P,N1,p, N2,p, N3,p, xp, yp, zp)
Construct arrays v̄p and vp using N1,p, N2,p, N3,p

t := 0
for all (i, j, k) ∈ [1, N1,p] × [1, N2,p] × [1, N3,p]

v̄p(i, j, k) := v0(xp(i), yp(j), zp(k))
end for
Parallel Enforce BC(v̄p, N1,p, N2,p, N3,p)
while t < T do

t := t + ∆t
Update(v̄p, vp, N1,p, N2,p, N3,p,∆t, h)
Parallel Enforce BC(vp, N1,p, N2,p, N3,p)
v̄p := vp

end while

Comparing Parallel Heat against Sequential Heat, we can see that the main
change is the use of a new function Parallel Enforce BC, instead of Enforce BC.
It is inside this new function that several one-to-one communication operations are
embedded. Here, we assume the general situation of partitioning a 3D FDM lattice
grid, i.e., there can be up to six neighbors for each subdomain, one “lower-end”
neighbor and one “upper-end” neighbor in each direction. If a supposed neighbor on
one side does not exist, it means that the subdomain borders the physical boundary
on that side, therefore having to enforce the Neumann condition (6.21). In case of
an existing neighbor on that side, one-to-one communication must be carried out to

6.7. Parallel Conjugate Gradient Iterations 201

exchange data with the neighbor. Therefore, the function Parallel Enforce BC can
be programmed as follows:

Parallel Enforce BC(vp, N1,p, N2,p, N3,p)
Input: vp, N1,p, N2,p, N3,p on processor number p
Output: vp on processor number p

if the lower-end x-neighbor exists, then
n := rank of the lower-end x-neighbor
collect the values of vp(1, j, k) into mout

Send(mout,n)
Receive(min,n)
copy min into the locations of vp(0, j, k)

else
for all (j, k) ∈ [1, N2,p] × [1, N3,p]

vp(0, j, k) := vp(2, j, k)
end for

end if
if the upper-end x-neighbor exists, then

n := rank of the upper-end x-neighbor
collect the values of vp(N1,p, j, k) into mout

Send(mout,n)
Receive(min,n)
copy min into the locations of vp(N1,p + 1, j, k)

else
for all (j, k) ∈ [1, N2,p] × [1, N3,p]

vp(N1,p + 1, j, k) := vp(N1,p − 1, j, k)
end for

end if
same work for the y-direction
same work for the z-direction

6.7 Parallel Conjugate Gradient Iterations

We can see from the preceding section that parallelizing an explicit FDM scheme
is quite straightforward. But what is the case for parallelizing an implicit FDM
scheme? For this purpose, let us modify the numerical strategy from Section 6.6.1
by using the Backward Euler scheme, instead of the Forward Euler scheme. That is,
(6.24) is replaced by

ul+1
i,j,k − ul

i,j,k

∆t
= (6.26)

ul+1
i,j,k−1 + ul+1

i,j−1,k + ul+1
i−1,j,k − 6ul+1

i,j,k + ul+1
i+1,j,k + ul+1

i,j+1,k + ul+1
i,j,k+1

h2

202 6. Large-Scale Electrocardiac Simulations

for 1 ≤ i, j, k ≤ N . Consequently, the work of a sequential solver at each time step
now becomes solving a linear system of the following form:

Avl+1 = vl, (6.27)

which arises from combining the implicit scheme (6.26) and the discretized Neu-
mann boundary conditions (6.25). We note that the values on the ghost boundary
points of the global lattice grid are not explicitly included as unknowns in (6.27),
which has N3 equations in total.

The system matrix A in (6.27) consists of one main diagonal and six off diago-
nals. It is symmetric and positive-definite, making the CG method a good candidate
for solving (6.27). In the following, we will first see how the CG iterations can be
parallelized in association with the implicit FDM. Then, we will treat the general
case of parallelizing the CG iterations associated with finite element discretizations
on unstructured grids.

6.7.1 Conjugate Gradient Revisited

Let us first repeat the mathematical formulation of the CG method, which is an
iterative solution process. For a linear system of the form:

Ax = b,

the CG iterations are expressed as follows.

r = b − Ax (matrix-vector product and vector addition)
p = r
π0

r,r = (r, r) (inner product)
while not converged

w = Ap (matrix-vector product)
πp,w = (p, w) (inner product)
ξ = π0

r,r/πp,w

x = x + ξp (vector addition)
r = r − ξw (vector addition)
π1

r,r = (r, r) (inner product)
β = π1

r,r/π0
r,r

p = r + βp (vector addition)
π0

r,r = π1
r,r

We note from above that the computational kernels in the CG method are matrix-
vector products, inner products between two vectors, and vector additions. These
three kernels are also the main building blocks of all the other Krylov subspace
methods. This means that if we manage to parallelize these three kernels, we can
parallelize almost all the Krylov subspace methods.

6.7. Parallel Conjugate Gradient Iterations 203

6.7.2 Parallel CG and FDM

We can use the same division of data as in Section 6.6.3 when parallelizing an
implicit FDM program. That is, the function Partitioning is still valid. The only
difference is that in an implicit FDM program, the unknowns are organized as a
vector v, instead of a three-dimensional array. Similarly, subdomain number p needs
to arrange a local vector vp to contain the values on all its N1,p × N2,p × N3,p

computational points plus the additional ghost boundary points.
We recall from Section 6.5.1 that each subdomain can independently build its

local linear system of form (6.19) through a local discretization. This local dis-
cretization traverses only the N1,p×N2,p×N3,p computational points, but the ghost
boundary points also participate due to the seven-point FDM stencil. Therefore, the
local matrix Ap has N1,p × N2,p × N3,p rows but more columns. Together, the P
local linear systems (6.19) represent the global linear system (6.27). It is important
to note that all the matrices and vectors are distributed in this way. The division
of work follows the division of data, in that each subdomain only executes local
operations on its assigned grid points.

Parallel Vector Addition. Additions such as r = r − ξw are parallelized by letting
each subdomain execute

rp = rp − ξwp

on all its local points, including the ghost boundary points. No communication is
needed. The reason for including the ghost boundary points is that rp is related to
pp, which must have correct values on the ghost boundary points for participating
in a parallel matrix-vector product, see below.

Parallel Inner Product. We recall that the subdomain computational points arise
from a disjoint division of the global computational points. So a global inner prod-
uct, such as (p, w), can be parallelized by first letting each subdomain execute a
local inner product over its computational points, (pp, wp), followed by an AllRe-
duce Add function. See Section 6.4.2 for more details.

Parallel Matrix-Vector Product. For parallelizing w = Ap, we first execute a local
matrix-vector product on each subdomain:

wp = Appp,

which only affects the values of wp on the subdomain computational points. Then,
for updating the values of wp on the ghost boundary points, every subdomain needs
to carry out message exchanges with all its neighbors. The message exchange process
is similar to that in the function Parallel Enforce BC from Section 6.6.3.

6.7.3 Parallel CG and FEM

Although the FEM often uses unstructured grids, the parallelization follows the
same idea of “divide-and-conquer”. The main difference from the FDM case is

204 6. Large-Scale Electrocardiac Simulations

that communication is more complex, because the internal boundaries are no longer
straight lines or planes, and the number of neighbors per subdomain may not be a
fixed number.

We recall from Section 6.5.2 that the partitioning of a finite element grid, which
is typically unstructured, is based on the idea of dividing the elements between the
subdomains, either disjointly or non-disjointly. Correspondingly, this gives rise to
non-overlapping or overlapping subgrids. One important observation is that such a
partitioning strategy does not produce a disjoint division of the global grid points,
which is different from partitioning a finite difference lattice grid. Consequently,
there are always some overlapping grid points in each subdomain that have dupli-
cates in the neighboring subdomains.

Since the partitioning typically has an unstructured nature, unlike the straight
cutting lines or planes in the case of FDM, the neighbor information is often com-
plex and must be handled with care. Let us denote by Op a set that contains the local
indices of all the overlapping points in subdomain number p. For non-overlapping
subgrids, Op contains only the local indices of the internal boundary points. For
overlapping subgrids, Op contains the local indices of both the internal boundary
points and the other overlapping points.

For each overlapping point in Op, we also denote by op,k the so-called degree of
duplication, where k is between 1 and the size of Op. That is, op,k is the number of
subdomains, including subdomain number p, that share the particular overlapping
point. For example, points number 3, 5, and 7 in Figure 6.4 on page 195 have a
degree of duplication of two, whereas point number 1 has a degree of duplication
of three. Also, it is necessary for each overlapping point on a subdomain to know
which neighboring subdomains possess the other duplicates of itself.

Division of Data. As in the case of parallel FDM, all the matrices and vectors in
parallel FEM also have a distributed representation. The division of data follows the
non-disjoint division of the global grid points, arising from either a non-overlapping
or an overlapping grid partitioning. The global system matrix A, which is only logi-
cally existing, is represented by the set of P subdomain matrices Ap. On subdomain
number p, Ap is built independently by running the finite element discretization and
assembly procedure over the subdomain. No communication is needed. We note that
the resulting rows in Ap associated with the internal boundary points do not have
the same entries as the corresponding rows in A. This is because some contribu-
tions from elements belonging to the neighboring subdomains are excluded. (The
other rows of Ap have entirely correct entries.) The same situation applies to the
corresponding entries in the local right-hand side vector bp. However, this does not
prevent us from obtaining correct results from a distributed matrix-vector product,
which needs to be supplemented by communication, as will be explained below.
For the other distributed vectors wp, pp, and rp, which are used in a parallelized CG
method, it is always required that an entry that is associated with an overlapping
point must be correctly replicated on all the possessing subdomains.

We remark that we avoid building the global matrix A first on one processor
and then distributing the rows of A to other processors through communication.

6.7. Parallel Conjugate Gradient Iterations 205

Although this approach can produce a disjoint division of data, the excessive mem-
ory and communication usage constitute too much overhead.

Parallel Vector Addition. Since any overlapping entry in a subdomain vector, except
bp, is correctly replicated over the possessing subdomains, parallel execution of,
e.g.,

rp = rp − ξwp

can be done straightforwardly without communication. All the entries in rp and wp

participate in the local vector addition. We remark that the speedup result may suffer
a little due to some duplicated computation overhead. But for a sufficiently large
global grid that is partitioned into non-overlapping subgrids, this loss of speedup is
normally negligible.

Parallel Inner Product. We recall from Section 6.4.2 that both Parallel Inner and
Parallel Inner2 assume a disjoint division of data. In our approach to partitioning
a finite element grid, however, such a disjoint division is not readily achievable. We
note that we can not simply skip the overlapping points when computing a local
inner product, because the contribution from the overlapping points will thus be
missing on all the subdomains. So the remedy is to either find a disjoint division
of the entries in a global vector, based on the existing non-disjoint division, or re-
move the excessive contribution from the overlapping points. We explain the second
approach by the following pseudo program function.

Parallel Inner3(up, vp, c)
Input: up, vp on processor number p
Output: c on every processor

cp := 0
for all j from 1 to length of up

cp := cp + up(j) · vp(j)
end for
for all k from 1 to size of Op

j := entry number k in Op

cp := cp − op,k − 1
op,k

· up(j) · vp(j)

end for
AllReduce Add(cp, c)

We note that the second for-loop above is namely used to remove the excessive
contribution inside cp from the first-loop. Clearly, some overhead arises both due
to duplicated computation in the first for-loop and due to extra computation in the
second for-loop.

Parallel Matrix-Vector Product. The subdomain matrix Ap and right-hand side vec-
tor bp arise from a local discretization and assembly process on subdomain number

206 6. Large-Scale Electrocardiac Simulations

p. The rows of Ap and entries of bp, which are associated with the internal bound-
ary points, do not have the same values as those in a logically existing global lin-
ear system. This is because each internal boundary point on subdomain number p
also needs contributions from elements belonging to the neighboring subdomains.
Therefore, to achieve the correct collective result of, e.g., r = b − Ax using the
subdomain matrices and vectors, we have to supplement the local computation

rp = bp − Apxp (6.28)

with communication and additional computation. Note we have assumed that the
entries in xp, which are associated with the overlapping points, are already correctly
replicated among the neighbors.

Let us first consider the case of non-overlapping subgrids. On subdomain num-
ber p, the local index j for an internal boundary point is stored as entry number k in
Op. This internal boundary point belongs to op,k subdomains including subdomain
number p. The value of rp(j) obtained from the local computation (6.28) needs to
be added by op,k − 1 other values possessed by the neighboring subdomains. So
communication is needed here. Subdomain number p should prepare, for each of its
neighbors, one input array and one output array for exchanging values. The length
of one such pair of input and output arrays is the number of internal boundary val-
ues shared between two neighboring subdomains. Using such a setup, the parallel
computation of r = b − Ax can be done by the following steps:

1. Each subdomain independently carries out the local computation (6.28).

2. For each of its neighbors, subdomain number p fills an output array using some
of the values of rp and sends it out as a message. Then, a corresponding incom-
ing message is received into an input array.

3. Afterwards, each internal boundary value rp(j) retrieves needed values from
the input arrays and adds the values to itself.

Work is needed to create these input/output arrays and prepare information about
how each internal boundary value should retrieve needed values from the input ar-
rays. This complicated “book-keeping” task can be termed as communication prepa-
ration, and needs to be done only once before the CG iterations start.

For overlapping subgrids, there are more overlapping points per subdomain.
Still, only the internal boundary values need special treatment. This is because all
the other overlapping values obtain correct values after the local computation (6.28).
We also recall for overlapping subgrids that each internal boundary point has at least
one of its duplicates lying in the interior of a neighboring subdomain. This means
that the correct value can be provided entirely by such a neighbor. Therefore, the
first two steps involved in a parallel matrix-vector product are the same as above,
namely carrying out the local computation (6.28) and exchanging input/output ar-
rays. In the third step, the local values for the internal boundary points are simply
discarded, and then replaced with values retrieved from the input arrays.

Of course, the task of communication preparation for overlapping subgrids is
slightly different from that for non-overlapping subgrids. Such preparation tasks,

6.8. Domain Decomposition as Parallel Preconditioners 207

together with the work spent on handling the input/out arrays during every parallel
matrix-vector product, should preferably be programmed as generic functions that
are re-usable for different parallel PDE solvers.

We also mention that the overhead due to duplicated computation, which is
present in the above parallel matrix-vector product based on overlapping subgrids,
can be eliminated with the help of an enlarged volume of communication. The strat-
egy is to find a disjoint division of the rows in A, on the basis of the existing non-
disjoint division that is represented by Ap, 1 ≤ p ≤ P . Then, each subdomain only
computes an assigned subset of the rows in Ap during the local matrix-vector prod-
uct. Afterwards, each subdomain has to provide more of its computed values to its
neighbors. The number of input and output arrays does not change, but the length
of the arrays becomes longer.

6.8 Domain Decomposition as Parallel Preconditioners

Preconditioners are often needed to improve the convergence of Krylov subspace
solvers such as CG. That is, an equivalent linear system

B−1Ax = B−1b (6.29)

is solved instead of the original system Ax = b. During the Krylov iterations, the
work of the frequently applied preconditioner B−1 is in the following form:

Given r, compute z = B−1r. (6.30)

When B is represented explicitly as a matrix, we need to solve a linear system

Bz = r, (6.31)

which should be simpler than the original system, to obtain z inside each precon-
ditioning operation. Otherwise, the effect of applying B−1 is realized by carrying
out a set of linear algebra operations. The main requirements for B−1 are good
resemblance to A−1 plus ease of construction and computation.

Parallel preconditioning is obviously important for a parallel PDE solver to
achieve the convergence rate of its sequential counterpart. However, parallelizing
a sequential preconditioner strictly following its original mathematical definition
is often a difficult task, because many preconditioners are inherently sequential,
such as SOR, SSOR, and incomplete LU factorizations. When the matrices Bp and
vectors rp, zp are already distributed on the subdomains, the most straightforward
approach to building a parallel (and modified) preconditioner is to first run the pre-
conditioner locally on all the subdomains in parallel:

zp = B−1
p rp.

Then, we enforce some kind of averaging between neighboring subdomains for zp

to obtain the values associated with the overlapping points. In other words, the basic

208 6. Large-Scale Electrocardiac Simulations

idea is to use parallel local computations plus communication, similar for the paral-
lel matrix-vector products. The effect of such a parallel preconditioner depends on
the choice of B−1

p , and whether there exists some kind of global correction between
the subdomains. The DD methods (see Section 4.5) suit nicely the above framework
for building parallel preconditioners, and theory and practice have shown that these
methods sometimes result in optimal convergence. That is, the required number of
iterations for achieving convergence is independent of the number of unknowns.

6.8.1 Additive Schwarz Preconditioner

Throughout the rest of this chapter, we will only consider additive Schwarz itera-
tions, which are one variant of the DD methods. This is because additive Schwarz
iterations are parallel by nature, and no special interface solvers are needed.

The mathematical description of an additive Schwarz preconditioner is

B−1 =
P∑

p=0

RT
p Ã−1

p Rp, (6.32)

where Ã−1
p , 1 ≤ p ≤ P , means that an approximate subdomain solver is allowed.

It is required that the subdomains should have a certain amount of overlap between
them. The symbols Rp and RT

p in (6.32) denote the associated restriction and in-
terpolation matrices, needed by the mathematical formulation. However, since we
always work directly with distributed subdomain matrices and vectors, instead of
global matrices and vectors, the restriction and interpolation matrices, 1 ≤ p ≤ P ,
are never explicitly needed in the parallel computations. We therefore omit Rp and
RT

p in our subsequent formulas. The special matrix A0 is associated with a dis-
cretization on a very coarse global grid. The use of so-called coarse grid corrections
in (6.32) is necessary to achieve convergence independent of the number of subdo-
mains P .

The additive Schwarz iterations are parallel by nature. The reason is that the
subdomain solvers, i.e., Ã−1

p , can carry out its local computation completely inde-
pendent of each other. This fits nicely into the domain-based parallelization strategy
presented in Section 6.5. That is, the global solution domain is partitioned into P
overlapping subdomains. Each subdomain is assigned to one processor, which is
responsible for the local discretization that gives rise to Ap and bp. During a paral-
lel solution process of Ax = b by preconditioned Krylov subspace iterations, the
involved linear algebra operations are parallelized as explained in Section 6.7. A
parallel additive Schwarz iteration (6.32) can work as the preconditioner. The fol-
lowing four tasks are involved in each parallel additive Schwarz preconditioning
operation:

1. The coarse grid correction

A0z0 = r0 (6.33)

6.8. Domain Decomposition as Parallel Preconditioners 209

is performed. The right-hand side vector r0 refers to a projection of a global
vector r onto the global coarse grid. Since the global vector r is distributed
as rp, 1 ≤ p ≤ P , each processor carries out a partial projection from rp

(the subdomain part of a global fine-scale vector) to rp,0 (the subdomain part
of a global coarse-scale vector). Then, the distributed projection results rp,0,
1 ≤ p ≤ P , are summed to form r0 by help of collective communication. We
assume that the size of the coarse grid problem is too small for parallelization,
so (6.33) is solved on every processor.

2. Each processor solves (approximately) a local linear system:

Ãpzp = rp. (6.34)

3. Neighboring subdomains exchange values of zp for the interior overlapping
points, i.e, not including the internal boundary points. The exchange of val-
ues is done by one-to-one communication. For every point that is an interior
overlapping point in more than one subdomain, an average of the multiple val-
ues is used. The values of zp on the internal boundary points are discarded and
replaced with corresponding values provided by the neighbors.

4. The coarse grid correction z0 is projected back to the subdomain grid, before
being added to the above zp.

Scalability and MG as Subdomain Solver. A desired objective of solving large-scale
linear systems Ax = b is to keep the total computational effort linearly proportional
to the number of unknowns. In the context of parallel computing, an additional
objective is to avoid an increase of the total computational effort as the number of
processors grows. To achieve both objectives, the following two requirements must
be satisfied:

– The required number of Krylov iterations must remain constant, independent of
the number of unknowns and the number of subdomains.

– The computational cost for solving a subdomain problem (6.34) must be a linear
function with respect to the number of unknowns in the subdomain.

For certain PDEs, the first requirement can be fulfilled by using the additive Schwarz
preconditioner. In this connection, coarse grid corrections (6.33) must be used. For
handling the second requirement, MG cycles are a good candidate in general. One
MG V-cycle can often work as a sufficiently good subdomain solver. Of course, a
hierarchy of subgrids must be built on each subdomain to enable a subdomain MG
solver.

Overhead in Additive Schwarz. In fact, even the aforementioned combination of an
additive Schwarz preconditioner and a multigrid subdomain solver can not produce
the perfect scalability. First, it is difficult for real-life PDE applications to achieve
optimal convergence of the Krylov iterations. Second, there exist different types of
overhead:

210 6. Large-Scale Electrocardiac Simulations

– Overhead due to communication is present in both the first task (coarse grid
corrections) and the third task (data exchange between neighbors) of an additive
Schwarz iteration.

– Overlap between the neighboring subdomains is required by the mathemati-
cal definition of the additive Schwarz preconditioner. However, this results in
some overhead due to duplicated computation. Similar type of overhead is also
present when the coarse grid problem (6.33) is solved on every processor. Par-
allelizing the coarse grid solver can reduce the overhead of duplicated compu-
tation, but it introduces more communication overhead at the same time.

– The subdomain problems may not have exactly the same size, so some subdo-
main solvers may have to wait for others to finish. Therefore, overhead due to
synchronization may arise.

6.8.2 Parallel DD for the Monodomain Equation

To discretize the Monodomain equation, we can use the technique of operator split-
ting and an associated θ-rule in the temporal direction, together with finite elements
in the spatial direction, see Section 3.2.2. Consequently, the following linear system
needs to be solved at each time step:

AMov
l+1 = bl

Mo,

where AMo = I + θ∆tAv, (6.35)

bl
Mo = −(1 − θ)Avv

l.

Here, I refers to the mass matrix associated with finite element discretizations, and
Av arises from dicretizing the term −∇ · (Mi∇v).

Parallelization relies on an overlapping partitioning of the heart domain H , so
that each processor is responsible for a subdomain Hp. The global matrices I and
Av are distributed as subdomain matrices Ip and Av,p. The additive Schwarz pre-
conditioner can then be defined as

B−1
Mo =

P∑
p=0

B−1
Mo,p where B−1

Mo,p ≈ (Ip + θ∆tAv,p)
−1

. (6.36)

One or multiple MG V-cycles can be applied as the approximate subdomain
solver B−1

Mo,p.

6.8.3 Parallel DD for the Bidomain Equations

For the Bidomain equations, a similar discretization strategy as above will result in
a 2× 2 block linear system. That is, the following system needs to be solved at each
time step:

ABi

[
vl+1

ul+1

]
=
[

b
0

]
, where ABi =

[
I + θ∆tAv θ∆tAv

θ∆tAT
v θ∆tAu

]
. (6.37)

6.8. Domain Decomposition as Parallel Preconditioners 211

As before, an overlapping partitioning of H is used. For obtaining a parallel
preconditioner for the 2 × 2 block system (6.37), we suggest a layered structure.
First, the approximate inverse of the diagonal block matrix[

I + θ∆tAv 0
0 θ∆tAu

]
(6.38)

works as the overall preconditioning framework. Then, one additive Schwarz itera-
tion works as a parallel approximate solver for the upper diagonal block I +θ∆tAv,
and another additive Schwarz iteration handles the lower diagonal block θ∆tAu.
More specifically, the parallel preconditioner for (6.37) is defined as

B−1
Bi =

P∑
p=0

B−1
Mo,p 0

0
P∑

p=0

B−1
u,p

 ,

where B−1
Mo,p ≈ (Ip + θ∆tAv,p)

−1
, (6.39)

B−1
u,p ≈ θ∆tA−1

u,p.

One or multiple MG V-cycles can be applied as both the approximate subdomain
solvers B−1

Mo,p and B−1
u,p.

6.8.4 Extension to the Torso

We have shown in Section 3.3 that the forward problem, which is an elliptic PDE
valid in the torso T , can be discretized together with the Bidomain equations. This
results in an “enlarged” 2×2 block system (6.3) that needs to be solved at each time
step.

Comparing (6.3) with (6.37), we can see that the main difference is that Âu in
(6.3) arises from a finite element discretization on the entire body domain Ω =
H ∪ T , instead of only on H . In addition, the matrices Av and AT

v are padded with
extra zero columns and rows, respectively, to form Âv and ÂT

v .
To form an overlapping partitioning of Ω, which is required for the parallel

solution of Âu, we suggest the following partitioning strategy: First, we partition the
heart domain H , as before, into the overlapping subdomains Hp. Then, we partition
the torso domain T into P overlapping subdomains Tp, 1 ≤ p ≤ P . Afterwards,
each pair of Hp and Tp is patched together to work as Ωp = Hp∪Tp, see Figure 6.5.
The reason for not using a general partitioning of Ω is that we normally can not
obtain Hp as a part of Ωp. In case Hp is not a part of Ωp, a conflict will arise
between the partitions of the equations in Âv and ÂT

v . This will result in additional
communication overhead.

A parallel preconditioner for (6.3) uses the same approach as for the Bidomain
equations. That is, we also use (6.38) as the overall preconditioning framework
and (6.39) as the detailed definition. The only difference is that the lower diagonal
block θ∆tÂu, which now also includes contributions from T , must use an additive
Schwarz iteration based on the overlapping subdomains Ωp = Hp∪Tp, 1 ≤ p ≤ P .

212 6. Large-Scale Electrocardiac Simulations

H2H1

H3H4

T1

T2

T3

T4

Fig. 6.5. A schematic view of domain partitioning used for the parallel computation.

Table 6.4. The number of CG iterations needed to solve (6.3) during one time step, using the
parallel block preconditioner.

Grid # unknowns
levels (v + u) P = 2 P = 4 P = 8 P = 16 P = 32 P = 64

2 302,166 9 9 10 10 12 11
3 1,552,283 9 9 10 10 11 11
4 10,705,353 13 13 14
5 81,151,611 14 15 15

Numerical Experiments. Table 6.4 is concerned with a set of numerical experiments
about solving (6.3) by parallel CG iterations, which use the above block precondi-
tioner. The table displays the number of CG iterations, needed during the first time
step, for reducing the L2-norm of the global residual by a factor of 104. The used
value of θ is 0.5 and ∆t has been chosen as 0.125 ms. We observe that the conver-
gence of the parallel CG iterations is clearly independent of P and is quite insensi-
tive to the total number of unknowns. This demonstrates the desired scalability of
the parallel block preconditioner.

6.9 Parallelizing Electrocardiac Simulations

In this section, we will describe how to parallelize the electrocardiac simulator from
Section 6.1.2 using the parallelization components that are presented in the preced-
ing sections.

6.9.1 The Overall Simulation Process

Roughly, an electrocardiac simulation consists of three stages. The first stage, which
is often referred to as preprocessing, deals with preparatory work, such as reading
user input, choosing the ODE model, determining the values of the parameters,
construction of the grids for the heart and torso domain, allocation of the internal
data structure, enforcing initial conditions, etc. The second stage, which is often

6.9. Parallelizing Electrocardiac Simulations 213

referred to as computing, executes a time stepping loop until reaching the desired
stopping time for t. The work per time step involves solving the ODE system and
the 2 × 2 block linear system (6.3) that arises from discretizing the PDEs. At the
end of some chosen time steps, the computational results of v and u may need to be
stored into data files. We note that the 2 × 2 block matrix in (6.3) normally remains
the same for all the time levels, while the right-hand side vector needs to be updated
at each time level. We also remark that the ODE system needs to be solved at every
heart grid point during each time step. The third stage, which is often referred to as
postprocessing, summarizes some key computational results and frees the memory
allocated for the internal data structure.

Most of the tasks in the above three stages can be parallelized following the
domain-based approach. We enforce an overlapping partitioning of H and Ω in
connection with the grid construction. Each processor is responsible for one heart
subdomain and one body subdomain. There exists almost no physical storage of
global data. Instead, all the global data are divided into local units belonging ex-
clusively to the processors. Parallel computing is realized in such a way that each
processor mostly executes local operations independently, but occasionally commu-
nicates with the other processors. For the few non-parallelizable tasks, we can either
replicate them on all the processors or use a master processor, which is responsible
for first carrying out a task and then broadcasting the result to all the other proces-
sors.

6.9.2 Partitioning the Domains

The basic idea of partitioning H and Ω into overlapping subdomains has been pre-
sented in Section 6.8.4. Figure 6.6 shows an example of the partitioning result,
where we have used different colors to denote different subdomains.

Recall that we want to use MG V-cycles as subdomain solvers in the additive
Schwarz iterations for approximating (I + θ∆tAv)−1 and A−1

u . This requires two
associated hierarchies of subdomain grids, one on Hp and the other on Ωp. One
approach is that we start with a global H grid and a global T grid, both of medium
resolution. Then, we partition the two global grids into P overlapping parts, respec-
tively. Afterwards, the subdomain Hp and Tp grids are refined several times on each
subdomain independently, giving rise to a hierarchy of subdomain Hp grids and a
hierarchy of subdomain Tp grids. Note that a hierarchy of subdomain Ωp grids arises
from a union of the associated hierarchies of subdomain Hp and Tp grids. Based on
the subgrids, two sets of communication preparation work have to be carried out,
one for the upcoming parallel computations within the heart and the other for the
upcoming parallel computations within the body. We remark that the global medium
grids for H and Ω are not used in later computations, so they can be discarded im-
mediately after the subdomain grid hierarchies are built.

When the subdomain grid hierarchies are ready and the communication prepara-
tion work is done, each processor can concentrate on building its local data structure.
This includes allocating subdomain matrices and vectors. During a parallel electro-

214 6. Large-Scale Electrocardiac Simulations

Fig. 6.6. An example of partitioning the heart domain (left) and the body domain (right). (For
the color version, see Figure A.10 on page 292).

cardiac simulation, the work on processor number p consists of local computational
operations that are restricted to the subdomains Hp and Ωp.

6.9.3 Straightforward Parallelization Tasks

During each time step, processor number p solves the ODE system associated with
every grid point in Hp. Since solving the ODE system on one grid point does not
rely on values from the other grid points, the processors can carry out their local
ODE computations in parallel. An existing sequential ODE solver can be re-used
on each processor. Communication is in principle not needed.

However, if we want to eliminate the overhead due to duplicated ODE compu-
tations, recalling that the subdomains Hp are overlapping, we have to find a dis-
joint division of all the global heart grid points among the processors. Then, each
processor only needs to solve the ODE system on an assigned subset of the points
in Hp. After these local ODE computations are done, each subdomain has to pro-
vide some of the computed S and v values to its neighbors. This exchange of val-
ues is achieved by one-to-one communication operations. Therefore, elimination of
the duplicated ODE computations comes at the cost of additional communication
overhead. Whether it is advantageous to adopt this communication-assisted paral-
lelization of the ODE solver depends on factors such as the amount of overlap, the
number of neighbors per subdomain, etc.

Also, the finite element discretization can be parallelized in a straightforward
manner, without any need for communication. The subdomain matrices Ip and Av,p

arise from discretizations on the finest subdomain heart grid for Hp, whereas Au,p

arises from discretizations on the finest subdomain body grid. The existing func-
tionality for sequential finite element discretization should be re-used by all the

6.10. Simulation on a Realistic Geometry 215

processors. In addition, we also need to build subdomain matrices associated with
the coarser levels of the subdomain grids. These subdomain matrices will be used
in the local MG V-cycles, which work as the approximate subdomain solvers in the
parallel additive Schwarz preconditioners, see Section 6.8.

Storing the v and u solutions at the end of some chosen time steps is also easy to
parallelize. We simply let each processor write its portions of v and u to its own data
file, independent of the other processors. Each processor can thus re-use the existing
functionality for sequential data output. This avoids a considerable amount of I/O
and communication overhead, which will arise if, e.g., the distributed subdomain v
solutions are to be stored into a single data file. Later analysis of a set of subdomain
data files can be done by a specially designed program.

6.9.4 Solving the Block Linear System in Parallel

At this point, the parallel solution of the 2 × 2 block linear system (6.3) is the
remaining major computational task. As mentioned above, the logically existing
global matrices I , Av, and Au are distributed as subdomain matrices. In addition,
Âv in (6.3) is partitioned in the same way as Av, whereas ÂT

v in (6.3) is partitioned
in the same way as Âu. All the involved vectors are also partitioned accordingly.

Using such a setup for data distribution, we can follow the idea outlined in Sec-
tion 6.7.3 to parallelize the Krylov iterations. That is, we use two separate “commu-
nicators” during the parallel inner products and matrix-vector products. One com-
municator is for the v-part associated with the heart subdomains, the other commu-
nicator is for the u-part associated with the body subdomains. The preconditioner
in form of (6.38), which involves two additive Schwarz iterations, is parallelized as
described in Section 6.8, making use of the two separate communicators.

Therefore, during a parallel solution process for (6.3), each processor mostly ex-
ecutes sequential computations within Hp and Ωp. Inter-processor communication
sporadically interleaves these sequential local operations, in form of both one-to-one
message changes and collective operations.

6.10 Simulation on a Realistic Geometry

In this section we show some results from a simulation performed on a realistic
geometry. The heart grid is based on data from The Bioengineering Research group
at The University of Auckland [81]. They have made detailed measurements on a
series of dog hearts. In particular the fiber directions have been recorded throughout
the myocardium. Figure 6.7 shows a visualization. The torso grid has been con-
structed from slices of the Visible Human Data, see Figure 6.9 b). The heart has
been scaled to a human size.

The depolarization process was initiated at five endocardial locations, corre-
sponding roughly to the activation map published by Dürrer [33]. Some snapshots
of the solution are shown in Figures 6.8 and 6.9.

In Figure 6.10 the potentials at chest leads are shown. The QRS complex and the
T wave can be seen in most leads. It is clear that the duration of the QRS complex

216 6. Large-Scale Electrocardiac Simulations

Fig. 6.7. a) The fiber directions and b) the sheet planes. (For the color version, see Figure
A.11 on page 292).

Fig. 6.8. A snapshot of the transmembrane potential during the depolarization phase. The
right figure shows an iso-surface of the potential at the time instant when two fronts meet.
(For the color version, see Figure A.12 on page 293).

is longer than it should be, yielding a very short ST-segment before the T-wave. The
reason is that the conduction velocity in the simulation was too low. This is an effect
of the coarse grid used for this simulation.

6.11 Summary

The basic idea behind the parallelization approach explained in this chapter is to
let domain partitioning give rise to a division of the global work among P proces-
sors. Each processor mostly executes sequential operations that are restricted to its

6.11. Summary 217

Fig. 6.9. The extra cardiac potential on the torso surface (left) and on some iso-surfaces
(right). (For the color version, see Figure A.13 on page 293).

local data structure. Collaboration between the processors happens sporadically in
form of inter-processor communication. This generic parallelization approach can
be applied to any sequential PDE program, and it allows to a large extent re-use of
existing sequential functionality.

To handle the demanding task of ensuring good parallel efficiency when solving
the system of PDEs, we have used the combination of three powerful numerical
techniques:

1. a block preconditioning strategy that ensures rapid overall convergence of the
CG iterations,

2. additive Schwarz iterations (with coarse grid corrections) that efficiently solve
the diagonal blocks in parallel, and

3. multigrid V-cycles that approximately solve the subdomain problems with order-
optimal complexity.

For electrocardiac simulations, perfect parallel efficiency is difficult to achieve
due to different types of overhead, such as the inevitable inter-processor communi-
cation and duplicated computation associated with overlapping DD methods. How-
ever, satisfactory performance can still be achieved by an electrocardiac simulator
that is parallelized by the approach explained in this chapter.

218 6. Large-Scale Electrocardiac Simulations

100 200 300 400 500

−4

−2

0

2

4

6

V1
m

V

100 200 300 400 500

−4

−2

0

2

4

6

V2

m
V

100 200 300 400 500

−4

−2

0

2

4

6

V3

m
V

100 200 300 400 500

−4

−2

0

2

4

6

V4

m
V

100 200 300 400 500

−4

−2

0

2

4

6

V5

m
V

100 200 300 400 500

−4

−2

0

2

4

6

V6

m
V

Fig. 6.10. The leads correspond to the six electrodes placed on the chest during a standard 12
lead recording. Time is in milliseconds.

Chapter 7

Inverse Problems

We have seen how mathematical models, numerical methods, software and com-
puters can be used to simulate the electrical activity in the human body. Provided
that the physical characteristics of the involved tissues are known, such techniques
can, in particular, be applied to compute the electrical potential along the surface of
the body generated by the heart. This can be very useful for gaining a better insight
into these biological processes, improving the interpretation of ECG recordings, and
may serve as a starting point for developing suitable educational tools and training
facilities.

From a practical point of view, there are a number of other simulation tasks that
are equally important. This chapter is devoted to three of these problems:

a) Is it possible to determine the electrical potential at the epicardial surface from
body surface measurements?

b) Can the model (2.65)–(2.72) be simplified? More precisely, is it possible to “re-
place” the bidomain equations, and thus the model for the electrical activity in
the heart, by some sort of simplified source?

c) Can models of the form (2.65)–(2.72) be used to determine the physical charac-
teristics of an infarction in the myocardium?

The potential medical importance of challenges a) and c) is evident, and they will
be treated in detail in Sections 7.2 and 7.4, respectively.

The issue introduced in b) is sometimes referred to as the task of determining
an “equivalent source”. This problem is closely linked to the traditional view of the
heart as a source of electrical current positioned in a volume conductor. The aim of
such studies is to represent the electrical activity of the heart by a set of suitable cur-
rent dipoles, and thereby obtain a better qualitative and quantitative understanding
of this organ. We will return to this issue in Section 7.3.

Problems a)–c) have in common that they are so-called inverse problems. What
are inverse problems, and how do they differ from direct problems? These questions
are not easy to answer; see, e.g. Colton, Ewing and Rundell [25], Engl, Hanke and
Neubauer [37] and Kirsch [74]. Usually, two problems are referred to as inverse to
each other if the formulation of each of them requires full or partial knowledge of
the other. Which of the two problems we call direct and which we call inverse is
determined by their mathematical properties and the historical development of this
subject.

220 7. Inverse Problems

Roughly speaking, the direct problem is usually the one that satisfies the Lapla-
cian paradigm of computing continuously depending effects of a known set of causes.
Thus, the direct problem is, in most cases, well-posed in the sense of Hadamard1:

I) A solution exists

II) The solution is unique

III) The solution depends continuously on the data

Note that direct problems are, in some contexts, also referred to as forward prob-
lems.

By contrast, the solution of an inverse problem determines the cause of an ob-
served effect2. As we will see below, attempts to solve an inverse problem will
frequently lead to a set of equations that fail to satisfy one, or more, of conditions
I)–III). Hence, such problems are often ill-posed. In particular, their solutions do
not necessarily depend continuously on the data at hand. This means that even very
small measurement and/or roundoff errors may become critical for their stable nu-
merical solution. Consequently, they are, in general, much more difficult to solve
than their well-posed direct counterparts.

In many cases, the cause we want to identify by solving an inverse problem is
described by a set of parameters that appear in one or more equations. For example,
the goal could be to determine an unknown coefficient that appears in a differen-
tial or integral equation from measurements of the solution of the associated direct
problem. Therefore, inverse problems are sometimes referred to as parameter iden-
tification problems; see Banks and Kunisch [8]. At the present stage, it might be
useful to consider some examples.

Example 1. Let us illustrate the concepts of direct and inverse problems for a phe-
nomenon that most readers will have met in earlier studies of partial differential
equations. Suppose that we have a uniform rod of unit length that has some sort
of initial (time t = 0) temperature distribution. As will probably be recalled from
basic courses, the temperature evolution is governed by the so-called heat equation.
So, by solving this equation, we are able to find the temperature distribution at later
times (t > 0). This is a typical direct problem. Now suppose, by contrast, that we
know the temperature at time t = 1, and that we want to know the initial tempera-
ture distribution. Is that possible? It will readily be appreciated that this is a really
challenging inverse problem. For instance, if the rod has a uniform temperature dis-
tribution at t = 1 equal to the temperature of its surroundings, it is easy to realize
that lots of different initial distributions can give this uniform distribution and thus
computing backwards in time has to be very unstable. �

1 Jacques Hadamard (1865–1963), famous French mathematician. He introduced, in the
early twentieth century, the concept of a well-posed mathematical problem.

2 “You see, there is only one constant, one universal, it is the only real truth: Causal-
ity. Action. Reaction. Cause and effect.” Merovingian in The Matrix Reloaded; see
www.zionmainframe.net

7.1. A Simple Example 221

Example 2. Assume that the size and location of an infarction is known. The effect
of this ischemia on the electrical activity in the body can, as we will see in Section
7.4, be incorporated into the model (2.65)–(2.72) by introducing a suitable set of
parameters. Consequently, changes in the ECG recordings, due to the presence of
an infarction, can easily be simulated by solving such models. In the present context,
this is a direct problem; we compute the effect of a given cause, the ischemia.

Of course, from a medical point of view, it is more interesting to try to compute
the physical properties of an infarction based on ECG recordings. That is, to deter-
mine the source of an observed effect, the electrical potential at the body surface.
Hence, this is an inverse problem. �

Issues a) and b), mentioned above, have been studied thoroughly by several
scientists. Our goal is not to give a state-of-the-art presentation of the methodology
developed for solving these problems. Instead we will focus on basic principles,
the problem formulations and their properties. Thus, this chapter might serve as a
starting point for conducting research within this field.

As far as the authors know, challenge c) has not previously been formulated as
a parameter identification problem for a system of differential equations. Our goal
regarding this problem has been to define a suitable framework for investigating the
possibilities for applying mathematics and computers to determine the characteris-
tics of an infarction. Our results so far are summarized in Section 7.4.

The only prerequisites for reading this chapter are some familiarity with cal-
culus, partial differential equations, linear algebra, Fourier analysis and the theory
presented in Chapters 1–4. We do not assume that the reader has any experience
with inverse problems. Let us therefore start our investigations of inverse problems
by analyzing a simple example in detail.

Throughout this chapter it might be useful to keep the following in mind:

– Direct (forward) problem: Compute the effect of a given cause, well-posed

– Inverse problem: Compute the cause of a given effect, ill-posed

7.1 A Simple Example

As mentioned above, no particular knowledge about inverse problems is assumed
for reading the present chapter. This section is therefore devoted to the analysis of
a simple inverse problem suitable for introducing some of the most important con-
cepts of this field; ill-posedness, output least squares formulations, regularization
techniques, etc. Thus, this example has not been included for its physical relevance.
Readers already familiar with the theory of inverse problems might, therefore, wish
to skip this section and instead turn their attention towards Sections 7.2–7.4. How-
ever, the simple model problem studied below will reveal some of the typical fea-
tures of the classical inverse problem of electrocardiography a) in a particularly easy
and explicit fashion.

222 7. Inverse Problems

7.1.1 Problem Formulation

Consider the Laplace equation posed on the unit square Ω = (0, 1) × (0, 1)

∆u = 0 for (x, y) ∈ Ω, (7.1)

with boundary conditions

∇u · n = 0 for (x, y) ∈ σ1 ∪ σ2 ∪ σ4, (7.2)

u = g for (x, y) ∈ σ3, (7.3)

where n is a vector normal to the boundary of Ω, and

σ1 = {(x, 0); 0 ≤ x < 1} ,

σ2 = {(1, y); 0 ≤ y < 1} ,

σ3 = {(x, 1); 0 < x ≤ 1} ,

σ4 = {(0, y); 0 < y ≤ 1} ,

see Figure 7.1. Provided that g is a well-behaved3 function, equations (7.1)–(7.3)
have a unique solution u; see, e.g., Hackbusch [56] or Evans [38]. Note, however,
that this solution depends on the function g used to specify the Dirichlet boundary
condition (7.3), i.e. u = u(g).

Suppose that Ω represents a passive conductor, with unity conductivity, sur-
rounded by an insulator, e.g. air, rubber or some sort of plastic. If an electrical
potential g is applied along the boundary segment σ3 of ∂Ω, then the resulting
electrical potential u = u(g), throughout Ω, is governed by equations (7.1)–(7.3).
Throughout this section, it might be helpful to keep this physical phenomenon in
mind.

Assume that we, for some reason, are particularly interested in the potential
u(g)|σ1 along σ1, and let us introduce a mapping

R : Sσ3 → Sσ1 , (7.4)

by defining
R(g) = u(g)|σ1 . (7.5)

Here, Sσ3 and Sσ1 denote suitable spaces of functions defined along σ3 and σ1,
respectively. Clearly, R(g) can be computed by the following procedure:

– Solve (7.1)–(7.3), applying g in the Dirichlet boundary condition (7.3), for u

– Record the simulated field u(g) along the boundary segment σ1. This value is
denoted u(g)|σ1 .

3 Well-behaved means that the function is sufficiently smooth. Precise conditions are given
by, e.g., Hackbusch [56].

7.1. A Simple Example 223

1

 4

 3

x

 y

 σ

σ σ

 σ

2Ω

u=g

Fig. 7.1. The domain Ω = (0, 1)× (0, 1), and its boundary ∂Ω = σ1 ∪ σ2 ∪ σ3 ∪ σ4, of the
elliptic model problem (7.1)–(7.3).

In the present context, this is the direct, or forward, problem; we compute the effect
u(g)|σ1 generated by a given cause g.

From a physical point of view, it seems reasonable that small changes in the
boundary date g will only introduce minor changes in the electrical potential through-
out Ω, and consequently only small changes in the potential along the boundary
segment σ1. Indeed, it can been shown that the solution u(g) of (7.1)–(7.3) de-
pends continuously on g, provided that the changes in g and u(g) are measured in
proper norms. Thus, the direct problem at hand is well-posed. Further information
on Laplace’s equation and its mathematical properties can be found in, e.g., Hack-
busch [56] or Evans [38].

Let us now turn our attention to the inverse problem in the present situation.
Assume that we want to recover the function g based on an observed electrical
potential d = u(g)|σ1 along σ1. Expressed in mathematical symbols, this problem
takes the form: Find a function g ∈ Sσ3 , defined along σ3, such that

R(g) = d. (7.6)

Note that, if R is invertible, then the solution of (7.6) is given by

g = R−1(d).

We will now show that the problem (7.6) is ill-posed. More precisely, even
though R is invertible, it turns out that the solution g of (7.6) does not depend con-
tinuously on small changes in the observation d.

The starting point of our analysis of this problem is to characterize fully the
action of both R and R−1 in terms of simple trigonometric and hyperbolic functions.

224 7. Inverse Problems

7.1.2 Fourier Analysis

By a straightforward application of the method of separation of variables (see, e.g.,
Tveito and Winther [139]), it follows that any function of the form

Nk(x, y) = cos(kπx) cosh(kπy), k = 0, 1, . . .

satisfies both equations (7.1) and (7.2). Therefore, by the linearity of Laplace’s equa-
tion and the super position principle, we find that any linear combination4

u(x, y) =
∞∑

k=0

ck cos(kπx) cosh(kπy) (7.7)

of these functions, where {ck}∞k=0 are constants, also fulfills both (7.1) and (7.2).
Along the boundary segment σ3, a function of the form (7.7) is simply given by

the series

u(x, 1) =
∞∑

k=0

ck cos(kπx) cosh(kπ).

Consequently, if the function g can be expressed in terms of a Fourier cosine series,
say

g(x) =
∞∑

k=0

pk cos(kπx), (7.8)

then the solution u(g) of the boundary value problem (7.1)–(7.3) is given by the
formula

u(g)(x, y) = u(x, y) =
∞∑

k=0

pk

cosh(kπ)
cos(kπx) cosh(kπy). (7.9)

Let S denote the space of functions defined on the unit interval that admits a
Fourier cosine series, i.e.

S = {φ(x) =
∞∑

k=0

ck cos(kπx), x ∈ (0, 1); this series converges and allows for

term-wise differentiation}. (7.10)

Recall the definition (7.4)–(7.5) of the solution operator R of the direct problem. By
choosing Sσ1 = Sσ3 = S, it follows from formulae (7.8) and (7.9) that

R(g) = R

(∞∑
k=0

pk cos(kπx)

)
= u(g)(x, 0) =

∞∑
k=0

pk

cosh(kπ)
cos(kπx), (7.11)

and we have thus derived a very simple expression for the action of R : S → S.

4 We assume that the constants {ck}∞k=0 have been chosen such that the sum (7.7) converges
and allows for term-wise differentiation.

7.1. A Simple Example 225

Next, suppose that an observation of the electrical potential d along σ1 is avail-
able. Our goal is to use this observation to determine the corresponding potential
g ∈ S along σ3. That is, we want to compute the source g of the observed effect d.
As mentioned above, this can be accomplished by solving the equation

R(g) = d (7.12)

for g.
Assume that the data d is in S. Thus, d is given in terms of a Fourier series, i.e.

d(x) =
∞∑

k=0

dk cos(kπx), (7.13)

where {dk}∞k=0 are given such that the series is convergent and can be differentiated
term-wise. Is it possible to find constants p1, p2, . . . such that the source term

g(x) =
∞∑

k=0

pk cos(kπx)

satisfies (7.12)? From formula (7.11), it follows that equation (7.12) can be written
in the form: Find {pk}∞k=0 such that

∞∑
k=0

pk

cosh(kπ)
cos(kπx) =

∞∑
k=0

dk cos(kπx),

which clearly holds for

pk = dk cosh(kπ) for k = 0, 1,

Hence, we obtain the following simple formula for R−1

g(x) = R−1(d) = R−1

(∞∑
k=0

dk cos(kπx)

)
=

∞∑
k=0

dk cosh(kπ) cos(kπx),

(7.14)
provided that all the involved series converge and allow for term-wise differentia-
tion. In short, given the potential u = d at σ1, written in the form (7.13), we have
found that the source g at σ3 generating this potential is given by (7.14).

Having found simple expressions for both R and R−1, we are now ready to
analyze the properties of these operators in more detail.

7.1.3 Ill-Posedness

Let us first consider the direct problem (7.4)–(7.5). That is, we want to study the
properties of R(g) for functions g on the form (7.8). Recall that

cosh(kπ) =
ekπ + e−kπ

2
≥ 1 for k = 0, 1, . . . ,

226 7. Inverse Problems

and therefore the magnitude of the Fourier coefficients of R(g), cf. (7.11), will be
smaller than the magnitude of the corresponding coefficients of g, i.e.∣∣∣∣ pk

cosh(kπ)

∣∣∣∣ ≤ |pk|, k = 1, 2,

Furthermore, even for relatively small numbers of k, cosh(kπ) is large; for example

cosh(5π) ≈ 3.32 · 106.

This means that any oscillatory features present in g are damped efficiently by R.
Roughly speaking, R(g) will “always” be very smooth and have low variation.

Example 3. For example, if

g(x) = cos(πx),
gδ(x) = cos(πx) + δ cos(5πx),

where 0 < δ � 1 is a small number, then

g(x) − gδ(x) = δ cos(5πx) = O(δ)

and

R(g) − R(gδ) =
δ

cosh(5π)
cos(5πx) = O(10−6δ).

This shows clearly that R has a tendency to diminishing small changes in g. In fact,
it is easy to see that any sum of high frequency cosine modes can be added to g
without introducing large changes to R(g).

In Figure 7.2 we have plotted the solution u(gδ) of (7.1)–(7.3) for δ = 0 (corre-
sponding to u(g)), δ = 0.5, δ = 1 and δ = 2. Recall that

gδ = u(gδ)(x, 1) for x ∈ (0, 1),
R(gδ) = u(gδ)(x, 0) for x ∈ (0, 1),

and we observe that R(gδ) is almost independent of δ. This is clearly in accordance
with our theoretical investigations above! �

Next, from (7.11) and simple properties of the cosine function, it follows that

‖R(g2) − R(g1)‖L2(0,1) ≤ ‖g2 − g1‖L2(0,1)

for any g1, g2 ∈ S, see (7.10). This means that R is a continuous mapping. Thus,
if g is based on physical measurements, small errors in these measurement will not
introduce major changes in the simulation results obtained by solving the forward
problem. The direct problem (7.4)–(7.5) is well-posed!

We will now see that these nice features of the direct problem makes it very diffi-
cult to solve the inverse problem (7.6). In particular, it turns out that the smoothing5

property of R, discussed above, makes it very difficult to determine which potential
g that was the source of an observed field d along σ1. This is easily realized by
considering a simple example.

5 Strictly speaking, the oscillatory damping effect of R.

7.1. A Simple Example 227

Fig. 7.2. Plots of the solution u(gδ) of (7.1)–(7.3) for δ = 0 (corresponding to u(g)), δ = 0.5,
δ = 1 and δ = 2 in Example 3. Note that, even though gδ = u(gδ)(x, 1) depends heavily on
δ, R(gδ) = u(gδ)(x, 0) is almost identical for these four values of δ.

Example 4. Suppose that the data at σ1 is given by

d(x) =
1

cosh(π)
cos(πx),

and that we want to compute the associated source g = R−1d. By (7.11)

R(cos(πx)) =
1

cosh(π)
cos(πx),

and it follows that the solution of the equation

R(g) = d(x)

is given by the cosine mode
g(x) = cos(πx).

Now assume that we introduce a slight perturbation of the data d;

dδ(x) = d(x) + δ cos(5πx)

=
1

cosh(π)
cos πx + δ cos(5πx),

228 7. Inverse Problems

where δ is a small positive number. According to (7.14), the solution gδ of the prob-
lem

R(gδ) = dδ

is a sum of two cosine modes

gδ(x) = cos(πx) + δ cosh(5π) cos(5πx)
≈ g(x) + 3.32 · 106 δ cos(5πx).

Thus, even if dδ ≈ d, it does not in general follow that gδ is a good approximation
of g. For example, if

‖dδ − d‖L∞ = O(10−3)

then
‖gδ − g‖L∞ = O(103).

This means that a tiny perturbation of the observed data at σ1 implies a huge differ-
ence in the source at σ3. �

In fact, for any function d in the range of R and any error level δ > 0, it is always
possible to find an order δ perturbation dδ of d that leads to an arbitrary large change
in the solution of the inverse problem (7.6). This is easily accomplished by adding
high-frequency errors to d. We conclude that equation (7.6) is ill-posed.

Theoretical Considerations. From a more theoretical point of view, this property of
the inverse problem can be characterized as follows. Formula (7.11) implies that

R(cos(kπx)) =
1

cosh(kπ)
cos(kπx) for k = 0, 1, . . . ,

and consequently, the eigenvalue-eigenfunction pairs of the forward mapping R are
easily seen to be

λk =
1

cosh(kπ)
, ek(x) = cos(kπx) for k = 0, 1, (7.15)

Observe that, since cosh(kπ) → ∞ as k → ∞, zero is a cluster point6 for the
eigenvalues. This means that the inverse mapping R−1 of R is not “well-behaved”,
i.e. R−1 is unbounded. Consequently, even very small observation errors in the data
d for the inverse problem will, in most cases, be critical; it is, in general, impossible
to bound the error in the solution of (7.6) generated by small changes in d!

In real world simulations, the function d will typically be based on physical
measurements of the electrical potential along σ1. The above discussion shows that
even very small measurement errors present in d and/or roundoff errors arising in
numerical computations may become critical for solving (7.6).

6 Point of accumulation

7.1. A Simple Example 229

We conclude that, unless d has a very simple structure, it is, in general, impos-
sible to determine the exact solution g of (7.6). The nature of this problem is such
that even small errors in d have a tendency to lead to large errors in g. The best we
can hope for is that it is possible to compute good approximations of g. The next
two sections are devoted to this topic.

By formula (7.11) and the property that cosh(kπ) ≥ 1 for any integer k, it
follows that R is well-defined for every g ∈ S. On the other hand, equation (7.14)
shows that R−1 can only be defined on a subset of S, namely in the range

R(S) = {R(φ); φ ∈ S}

=

{ ∞∑
k=0

ck

cosh(kπ)
cos(kπx);

∞∑
k=0

ck cos(kπx) ∈ S

}
⊂ S (7.16)

of R. The value of cosh(kπx) increases rapidly as k grows. Hence, a function of the
form

d(x) =
∞∑

k=0

dk cos(kπx)

will only belong to R(S) if the Fourier coefficients {dk}∞k=0 decrease very fast as k
increases; cf. (7.16).

We conclude that the domain of R−1 is “small”. Thus, in many applications the
right hand side d of equation (7.6) will not belong to the range of R, and conse-
quently, the inverse problem does not have any solution g ∈ S. We will not dwell
any further upon this issue for the continuous problem. Instead, we turn our attention
to discrete approximations of (7.6).

7.1.4 Discretization and an Output Least Squares Formulation
of the Problem

For a fixed positive integer n, we introduce the finite dimensional subspace

Sn =

{
φ(x) =

n∑
k=0

ck cos(kπx)

}
(7.17)

of S, and the associated restriction

Rn = R|Sn
(7.18)

of the forward mapping R to Sn. A first approach towards defining an approximation
of (7.6) could typically be formulated as follows: Find gn ∈ Sn such that

Rn(gn) = d. (7.19)

However, unless d is in the range

Rn(Sn) = {Rn(φ); φ ∈ Sn}

230 7. Inverse Problems

of Rn, there does not exist any gn ∈ Sn satisfying (7.19). This difficulty can be han-
dled in a number of ways. Let us consider two “natural” possibilities for overcoming
this problem:

– Replace d in (7.19) by some sort of approximation d̃ ∈ Rn(Sn), leading to the
equation

Rn(gn) = d̃,

that will have a unique solution gn ∈ Sn. Typically, d̃ could be determined by
computing a suitable projection of d onto the range Rn(Sn) of Rn.

– We can “replace” equation (7.19) by a minimization problem in the form

min
gn∈Sn

‖Rn(gn) − d‖2
L2(σ1)

, (7.20)

and thereby try to minimize the deviation between the observation data d and
the simulated electrical potential along σ1. The formulation (7.20) is commonly
referred to as an Output Least Squares (OLS) formulation of the problem.

Given proper assumptions, it can be shown that these two approaches are mathemat-
ically equivalent. They lead to the same approximate solution of the inverse problem
(7.6). We will not dwell upon this issue, but instead turn our attention towards the
challenge of solving (7.20).

From definitions (7.17), (7.18), and formula (7.11) we find that

Rn(gn) = R

(
n∑

k=0

pk cos(kπx)

)
=

n∑
k=0

pk

cosh(kπ)
cos(kπx) (7.21)

for

gn(x) =
n∑

k=0

pk cos(kπx) ∈ Sn.

Thus, it follows that the problem (7.20) can be written in the form

min
p0,...,pn∈R

∥∥∥∥∥
n∑

k=0

pk

cosh(kπ)
cos(kπx) − d(x)

∥∥∥∥∥
2

L2(σ1)

(7.22)

or
min

p0,...,pn∈R
Jn(p0, . . . , pn),

where

Jn = Jn(gn)
= ‖Rn(gn) − d‖2

L2(σ1)

= Jn(p0, . . . , pn)

=

∥∥∥∥∥
n∑

k=0

pk

cosh(kπ)
cos(kπx) − d(x)

∥∥∥∥∥
2

L2(σ1)

. (7.23)

7.1. A Simple Example 231

Differentiation of the cost-functional Jn with respect to pi yields

∂Jn

∂pi
= 2

∫
σ1

(
n∑

k=0

pk

cosh(kπ)
cos(kπx) − d(x)

)
1

cosh(iπ)
cos(iπx) dx

for i = 0, . . . , n. Combining this expression with the first-order necessary condition
for a minimum

∂Jn

∂pi
= 0 for i = 0, . . . , n,

we obtain the following formula for the solution gn of (7.20)

gn(x) =
n∑

k=0

pk cos(kπx),

pk = 2 cosh(kπ)
∫

σ1

d(x) cos(kπx) dx = dk cosh(kπ) for k = 1, . . . , n,

p0 =
∫

σ1

d(x) dx = d0,

where

dk = 2
∫

σ1

d(x) cos(kπx) dx, k = 1, . . . , n,

d0 =
∫

σ1

d(x) dx.

We conclude that the discrete output least squares solution of our inverse prob-
lem is uniquely determined by the n + 1 first Fourier coefficients {dk}n

k=0 of the
observed electrical potential d along σ1. This result is consistent with the character-
ization (7.14) of R−1, and should not come as any surprise!

7.1.5 Regularization Techniques

We have seen that the task of identifying the source g : σ3 → R of an observed
electrical potential d along σ1 leads to an ill-posed problem. More precisely, zero is
a cluster point for the eigenvalues of the solution operator R of the associated direct
problem. Consequently, R−1 is unbounded and small errors in the observation data
d and/or roundoff errors may become critical. This leads to severe difficulties for
designing numerical schemes suitable for computing g such that

R(g) = d. (7.24)

At the end of Section 7.1.3, we concluded that we have to be content with solving
(7.24) approximately. Generally, errors present in d, say of the order δ, will have a
tendency to increase and lead to errors in g of order > δ.

This discussion shows that ill-posed problems, in their original form, are not
suitable for performing computer simulations. Even though their ill-posedness in

232 7. Inverse Problems

many cases reflects properties of the underlying physical process, they must some-
how be approximated by well-posed problems to allow stable numerical compu-
tations. Methods for approximating ill-posed equations by well-posed problems
are referred to as regularization techniques. Throughout the last three decades a
wide range of regularization methods have been suggested and analyzed; see, e.g.
Engl, Hanke, and Neubauer [37], Kirsch [74] or Louis [85]. In what follows, we
will briefly discuss two of these techniques, regularization by discretization and
Tikhonov regularization, for our model problem (7.24).

Regularization by Discretization. Consider the discrete approximation Rn of R de-
fined in equations (7.17) and (7.18). From formula (7.21) we find that the eigenvalue-
eigenvector pairs of Rn are

λn
k =

1
cosh(kπ)

, en
k (x) = cos(kπx) for k = 0, 1, . . . , n.

Thus, the eigenvalues are uniformly positive, i.e.

λn
k =

1
cosh(kφ)

≥ 1
cosh(nφ)

> 0 for k = 0, 1, . . . , n,

and it follows that the inverse

R−1
n (d) = R−1

n

(
n∑

k=0

dk cos(kπx)

)
=

n∑
k=0

dk cosh(kπ) cos(kπx), (7.25)

of Rn is bounded for every fixed positive integer n. Consequently, the approxima-
tion of (7.24) defined in terms of the minimization problem

min
gn∈Sn

‖Rn(gn) − d‖2
L2(σ1)

, (7.26)

is well-posed; the solution gn of (7.26) depends continuously on d, cf. Section 7.1.4.
We conclude that the discretization (7.26) defines a regularization7 of (7.24) for any
fixed positive integer n. In this framework, the dimension n of the space Sn serves
as a so-called regularization parameter. The size of n determines the strength of the
regularization; in this method, the degree of regularization increases as n decreases.

Note that, if n is small, then the problem (7.26) is well-behaved; cf. (7.25). On
the other hand, such high degrees of regularization may result in a poor approxima-
tion of the original problem (7.24). The challenge is to balance the size of the error

7 In this case, the space Sn is spanned by a finite number of eigenfunctions of R.
More precisely, Sn is spanned by the constant function 1 and the cosine modes
cos(πx), . . . , cos(nπx). Consequently, the regularization obtained by discretizing (7.24),
in terms of Sn, will lead to the same scheme as a technique referred to as Truncated Singu-
lar Value Decomposition (TSVD). We will not dwell upon this issue. However, it should be
mentioned that, generally, TSVD and discretization techniques lead to different regulariza-
tion methods. Further information on the TSVD approach can be found in, e.g., Groetsch
[52].

7.1. A Simple Example 233

introduced by discretizing (7.24), and choices of n leading to fairly well-behaved
approximations of it.

Example 5. Let us reconsider the problem studied in Example 4,

d(x) =
1

cosh(π)
cos(πx), (7.27)

dδ(x) =
1

cosh(π)
cos(πx) + δ cos(5πx), (7.28)

where d and dδ represent the “exact” and error-prone observation data defined along
σ1, respectively. Our goal is to recover the source g, defined at σ3, of the observation
d.

If 1 ≤ n ≤ 4, then the solution of

Rn(gδ,n) = dδ

is identical to the function g(x) = cos(πx) satisfying

R(g) = d.

Thus, in such cases, this technique provides the correct solution8. On the other hand,
for n ≥ 5

gδ,n = gδ, (7.29)

implying that
gδ,n(x) − g(x) = δ cosh(5π) cos(5πx) (7.30)

and consequently, the regularization does not have any effect. �

This feature is typical for ill-posed problems. The appropriate degree of regu-
larization to apply depends on the size of the errors present in the data. Roughly
speaking, the degree of regularization needed increases with the size of the errors.
This relation between the regularization parameter and the level of the error is a
delicate issue, and has been thoroughly studied by several scientists; see, e.g. Engl,
Hanke and Neubauer [37] and references therein. We will not pursue this matter in
any detail. However, it is important to notice that, for many ill-posed problems, dis-
cretizing the involved equations defines a regularized approximation of the problem
at hand.

8 In this example, the error in the date has a very simple form; it is given in terms of a single
cosine mode, i.e. dδ(x) − d(x) = δ cos(5πx). Hence, it becomes easy to determine an
optimal value for the regularization parameter n. This is, of course, generally not the case.
Often, it is extremely difficult to find optimal, or close to optimal, values for n.

234 7. Inverse Problems

Tikhonov Regularization. This section is devoted to a commonly applied and well-
known regularization method; namely, Tikhonov regularization. Inspired by the dis-
crete Output Least Squares formulation (7.20), we will now consider a similar ap-
proach for the continuous problem (7.24). To this end, let us introduce the function

J(g) = ‖R(g) − d‖2
L2(σ1)

for g ∈ S,

cf. definitions (7.4), (7.5), (7.10) and Figure 7.1. With this notation at hand, we can
“replace” equation (7.24) by the minimization problem:

min
g∈S

J(g). (7.31)

Of course, merely formulating (7.24) as a minimization problem will not help; the
ill-posed of nature of (7.24) is inherited by (7.31). The basic idea of Tikhonov regu-
larization is to approximate (7.31) by a well-behaved problem. This is accomplished
by adding a regularization term, preferably small, to the cost-functional J ,

Jε(g) = J(g)+ ε‖g‖2
L2(σ3)

= ‖R(g)−d‖2
L2(σ1)

+ ε‖g‖2
L2(σ3)

for g ∈ S, (7.32)

where ε > 0 is a regularization parameter. This leads to the following approximation
of (7.31) (and hence of (7.24))

min
g∈S

Jε(g). (7.33)

Note that, if ε is large, then the regularization term in (7.32) becomes dominant,
i.e. Jε(g) ≈ ε‖g‖2

L2(σ3)
. Furthermore, g = 0 solves the problem

min
g∈S

ε‖g‖2
L2(σ3)

. (7.34)

Consequently, minimization of Jε is a compromise between minimizing the norm
of the residual, and keeping the size of g small.

For every ε > 0, (7.34) is well-posed. We will now show that adding this reg-
ularization term to our originally ill-posed problem enforces stability. Recall that
every function g ∈ S can be written in the form

g(x) =
∞∑

k=0

pk cos(kπx),

for suitable real numbers p0, p1, Thus,

Jε(g) = Jε(p0, p1, . . .),

and the first-order necessary condition

∂Jε

∂pi
= 0 for i = 1, 2, . . .

for a minimum, leads to the formula

pk =
dk cosh(kπ)

1 + ε cosh2(kπ)

7.1. A Simple Example 235

for the Fourier coefficients of the solution g of (7.33). That is,

g(x) =
∞∑

k=0

dk cosh(kπ)
1 + ε cosh2(kπ)

cos(kπx)

solves (7.33), where

d0 =
∫

σ1

d(x) dx,

dk = 2
∫

σ1

d(x) cos(kπx) dx, k = 1, 2, . . . ,

are the Fourier coefficients of the observation data d.
Thus, Tikhonov regularization leads to the following approximation R−1

ε of the
inverse R−1 of the transfer mapping9 R, see (7.4)–(7.5),

R−1
ε (d) = R−1

ε

(∞∑
k=0

dk cos(kπx)

)

=
∞∑

k=0

dk
cosh(kπ)

1 + ε cosh2(kπ)
cos(kπx)

=
∞∑

k=0

dk
λk

λ2
k + ε

cos(kπx), (7.35)

where

λk =
1

cosh(kπ)
for k = 0, 1, . . . ,

are the eigenvalues of R; cf. (7.15). Comparing this expression, for small values of
ε, with formula (7.14) for R−1, we observe that

– For the low-frequency components of the data d, the action of R−1 and R−1
ε

are almost identical

– The high-frequency components of d are damped efficiently by R−1
ε

This means that the amplification of high-frequency errors, as observed for R−1, is
avoided; the regularization term serves as a mollifier. Furthermore, from (7.35) we
find that the eigenvalue-eigenvector pairs of R−1

ε are

λ−1
ε,k =

cosh(kπ)
1 + ε cosh2(kπ)

, eε,k = cos(kπx) for k = 0, 1,

9 Recall that R can be thought of as a transfer mapping that maps the electrical potential
along σ3 to the corresponding potential along σ1; cf. Figure 7.1

236 7. Inverse Problems

Clearly,

λ−1
ε,k ≤ ε−1(1 + ε cosh2(kπ))

1 + ε cosh2(kπ)
=

1
ε
, k = 0, 1, . . . ,

λ−1
ε,k > 0, k = 0, 1, . . . ,

and it follows that R−1
ε is a bounded linear operator10 for every fixed ε > 0.

A bounded linear operator is continuous. Hence, we conclude that the prob-
lem (7.33) is well-posed, provided that ε > 0. However, as ε approaches zero, the
ill-posed nature of the limit problem (7.31) will become dominant, and lead to se-
vere difficulties for solving (7.33). The challenge is to find the right balance be-
tween the order of the errors present in the data d, and the size of the regularization
parameter ε.

Example 6. We consider the exact and error-prone data d and dδ defined in equa-
tions (7.27) and (7.28), respectively. Recall that d and dδ are functions defined along
σ1, and that we want to recover the source g at σ3 of the electrical potential d; see
Figure 7.1.

In this case

R−1(d) = cos(πx),

R−1
ε (dδ) =

1
1 + ε cosh2(π)

cos(πx) +
δ cosh(5π)

1 + ε cosh2(5π)
cos(5πx),

and the Tikhonov scheme thus yields the L2-error

E(ε, δ) = ‖R−1(d) − R−1
ε (dδ)‖2

L2(σ3)

=
1
2

[
ε cosh2(π)

1 + ε cosh2(π)

]2

+
1
2

[
δ cosh(5π)

1 + ε cosh2(5π)

]2

.

In Figure 7.3 we have plotted E(ε, δ), as a function of ε, for three different values
of δ. Observe that care must be taken when choosing the regularization parameter
ε: too small a value may result in large errors, leading to the ill-posed nature of
the problem becoming dominant; while values of ε that are too large will not work
properly.

10 As a by-product of this analysis, we find that

Rε(g) = Rε

(∞∑
k=0

gk cos(kπx)

)
=

∞∑
k=0

gk
1 + ε cosh2(kπ)

cosh(kπ)
cos(kπx)

provides an approximation of the transfer operator R. Note that the eigenvalues {λε,k}∞k=0

of Rε satisfy the inequality

λε,k ≥ ε > 0 for k = 0, 1,

Consequently, and contrary to the properties of R, zero is not a cluster point for the eigen-
values of Rε.

7.1. A Simple Example 237

0 1 2
x 10

−5

x 10
−5

0

1

2

3

4
δ=10−1

δ=10−2

δ=10−3

Fig. 7.3. Plots of the error function E(ε, δ), as a function of ε, for three different values of the
noise level δ in the observation data.

In the present situation, it can be shown that the optimal value ε̂ of ε is given
approximately by the formula

ε̂(δ) ≈ 4.74 · 10−5
√

δ for δ ∈ [10−6, 10−1].

This optimal value yields the error

E(ε̂(δ), δ) ≈ 4.05 · 10−5δ,

and we conclude that Tikhonov regularization handles this case fairly well. �

Higher-order Tikhonov Regularization. Throughout the last forty years a variety of
techniques have been suggested that are closely related to Tikhonov regularization.
Two of these are first- and second-order Tikhonov regularization11, which, in our
case, are defined in terms of the cost-functionals

J1,ε(g) = ‖R(g) − d‖2
L2(σ1)

+ ε‖gx‖2
L2(σ3)

for g ∈ S,

J2,ε(g) = ‖R(g) − d‖2
L2(σ1)

+ ε‖gxx‖2
L2(σ3)

for g ∈ S,

respectively.
For both of these methods, the added regularization term will have a strong

smoothing effect. For example, minimizing J2,ε(g) with respect to g, leads to the

11 The technique (7.32)–(7.33) is nowadays frequently referred to as zero order Tikhonov
regularization.

238 7. Inverse Problems

approximation

R−1
2,ε(d) = R−1

2,ε

(∞∑
k=0

dk cos(kπx)

)

=
∞∑

k=0

dk
cosh(kπ)

1 + ε(kπ)4 cosh2(kπ)
cos(kπx)

of R−1. Comparing this expression with formula (7.35) for R−1
ε , we observe that

R−1
2,ε(d) has a stronger smoothing effect on the high frequency components of d than

R−1
ε .

Example 7. As in Example 6, we use the data given in equations (7.27) and (7.28).
Applying the second-order Tikhonov scheme to this problem gives the following
error function:

E2(ε, δ) = ‖R−1(d) − R−1
2,ε(dδ)‖2

L2(σ3)

=
1
2

[
επ4 cosh2(π)

1 + επ4 cosh2(π)

]2

+
1
2

[
δ cosh(5π)

1 + ε(5π)4 cosh2(5π)

]2

.

The optimal value of ε, as a function of the error level δ, is now given approximately
by the formula

ε̂(δ) ≈ 1.94 · 10−8
√

δ.

This value of the regularization parameter yields a least L2-error of the form

E2(ε̂(δ), δ) ≈ 6.48 · 10−8δ,

and we can conclude that the second-order scheme provides more accurate results
than its zero-order counterpart, cf. Example 6. �

7.2 The Classical Inverse Problem of Electrocardiography

Is it possible to use recordings of the electrical potential along the body surface,
mathematical methods, and computer software to compute the epicardial potential
distribution? This challenge is commonly referred to as the inverse problem of elec-
trocardiography. It has been thoroughly studied by several scientists; see, e.g. Fran-
zone, Taccardi and Viganotti [44], MacLeod and Brooks [93], Rudy and Oster [120],
Dössel [31], Greensite and Huiskamp [50], Yamashita and Takahashi [148], Shahidi,
Savard and Nadeau [126], Gulrajani [54], Cheng, Bodley and Pullan [24], to name
but a few.

Our goal is not to give a state-of-the-art presentation of this field. Instead, we
will focus on the relevant mathematical formulations and problems, and illuminate
the theory and its challenges by a series of numerical experiments.

7.2. The Classical Inverse Problem of Electrocardiography 239

7.2.1 Mathematical Formulation

Recall that the electrical potential in the torso is governed by an elliptic partial dif-
ferential equation in the form

∇ · (Mo∇uo) = 0 in T,

where T , Mo and uo represent the physical domain occupied by the torso, the con-
ductivity of the involved tissue and the electrical potential, respectively. Moreover,
as in Chapter 2, we assume that the body is completely insulated, leading to the
boundary condition

(Mo∇uo) · n = 0 along ∂T.

Here, ∂T represents the surface of the body, and n the outward directed normal
vector of ∂T ; see Figure 7.4. Observe that, denoting the epicardial surface by ∂H ,
the boundary of the torso T is given by the set

∂H ∪ ∂T,

cf. Figure 7.4. Throughout this section we will, for the sake of ease of notation,
write u for uo.

T

∂T

∂H

H

Fig. 7.4. An illustration of the domains H and T .

Assume for a moment that the potential at the epicardial surface ∂H is known
and given in terms of a function g. Then we could easily solve the boundary value
problem

∇ · (Mo∇u) = 0 in T, (7.36)

(Mo∇u) · n = 0 along ∂T, (7.37)

u = g along ∂H (7.38)

for u, and record the electrical potential

u|∂T

240 7. Inverse Problems

at the surface of the body. Actually, we could do this for any g ∈ H1(∂H), and
thereby define a mapping12

R : H1(∂H) → L2(∂T) (7.39)

by
R(g) = u(g)|∂T , (7.40)

where u = u(g) is the solution of (7.36)–(7.38) associated with g ∈ H1(∂H).
The function R can be though of as a transfer mapping that maps the epicardial

potential to the body surface potential. Among applied mathematicians, it is well-
known that, for a given g ∈ H1(∂H), (7.36)–(7.38) is a well-posed problem; its
solution u = u(g) depends continuously on g and can be computed efficiently by a
wide range of numerical methods; see, e.g. Hackbusch [56] or Evans [38].

In the present context, the task of determining the body surface potential u(g)|∂T ,
for a given epicardial potential g, is referred to as the direct, or forward, problem.
From the considerations given above, it follows that this is a well-posed problem,
the solution to which present no great difficulty. However, this is not what we want
to do; our aim is to try to determine the epicardial potential from measurements of
the body surface potential!

In mathematical terms, this problem can be expressed as follows. Let

d ∈ L2(∂T)

represent the recorded potential along the body surface ∂T at a fixed time t. Can we
compute the corresponding epicardial potential

g ∈ H1(∂H)

at time t, such that
u(g)|∂T = d?

Here, u(g) denotes the solution of (7.36)–(7.38) generate by g.
In short, this problem takes the form: Find g such that

R(g) = d, (7.41)

where R is the operator defined in (7.39)–(7.40). If d is in the range of R, i.e. d ∈
R(H1(∂H)), and R is invertible, then

g = R−1(d).

We will see below, in the section on numerical experiments, that equation (7.41) is
ill-posed, and therefore very difficult to solve accurately. In the present situation,

12 Under proper conditions, (7.36)–(7.38) has a solution for every element g in the abstract
fractional order Sobolov space H1/2(∂H) ⊂ H1(∂H). Consequently, from a mathemati-
cal point of view, it would have been natural to let H1/2(∂H) be the domain of the operator
R. In the present, more practical situation, this issue is not important. More information
about this topic can be found in, e.g., Hackbusch [56], Marti [99] and Adams [1].

7.2. The Classical Inverse Problem of Electrocardiography 241

(7.41) is referred to as the inverse problem, i.e. the inverse problem of electrocar-
diography.

The similarity between the boundary value problems (7.1)–(7.3) and (7.36)–
(7.38) is evident. Consequently, the inverse problem studied in Section 7.1 is closely
related to that defined in (7.41); see also the discussion leading to (7.6). However,
the conductivity Mo, of the involved tissues, will typically depend on the spatial
position, and the domain T is not regular. In general, the method of separation of
variables cannot be applied to such problems. Hence, more advanced techniques
must be used to analyze (7.36)–(7.38) and the associated inverse problem (7.41).

The Time-Dependent Problem. What is the role of time in this context? Naturally, in
many cases we would be interested in how the epicardial potential g = g(t) evolves
with time t. Thus, we may want to compute g(t) at several time instances, say for
t = t0, . . . , tM , based on the corresponding measurements of the electrical potential
d = d(t) at the body surface. In this case, a problem of the form (7.41) must be
solved for t = tτ , τ = 0, . . . , M . This issue, along with a suitable regularization
technique, is treated in detail in Section 7.2.4 below. Meanwhile, we will focus on
the “stationary” version of equation (7.41), and investigate how this problem can be
solved approximately at a fixed time t.

7.2.2 A Linear Problem

Our goal is to show that the mapping R, defined in (7.39)–(7.40), is linear. This
will, of course, simplify the mathematical and numerical treatment of the inverse
problem (7.41).

Let u = u(g) denote the solution of (7.36)–(7.38) associated with a given epi-
cardial potential g ∈ H1(∂H). For an arbitrary real constant c ∈ R, consider the
function v = cu. By straightforward computations, we find that

∇ · (Mo∇(v)) = c∇ · (Mo∇(u)) = 0 in T,

(Mo∇(v)) · n = c(Mo∇(u)) · n = 0 along ∂T,

and
v = cu = cg along ∂H.

Consequently, v = cu solves the problem

∇ · (Mo∇v) = 0 in T,

(Mo∇v) · n = 0 along ∂T,

v = cg along ∂H,

and we conclude that u(cg) = cu(g) for any real constant c.
Next, by the linearity of the restriction operator

u → u|∂T ,

242 7. Inverse Problems

it follows that

R(cg) = cR(g) for any g ∈ H1(∂H) and c ∈ R. (7.42)

Let g1, g2 ∈ H1(∂H) be two arbitrary epicardial potentials, and consider their
associated boundary value problems

∇ · (Mo∇u1) = 0 in T,

(Mo∇u1) · n = 0 along ∂T,

u1 = g1 along ∂H,

and

∇ · (Mo∇u2) = 0 in T,

(Mo∇u2) · n = 0 along ∂T,

u2 = g2 along ∂H.

What sort of problem will the sum w = u1 + u2 of u1 and u2 satisfy? Clearly,

∇ · (Mo∇w) = ∇ · (Mo∇u1) + ∇ · (Mo∇u2) = 0 in T,

(Mo∇w) · n = (Mo∇u1) · n + (Mo∇u2) · n = 0 along ∂T,

and
w = u1 + u2 = g1 + g2 along ∂H.

This means that w is the unique solution of the problem

∇ · (Mo∇w) = 0 in T,

(Mo∇w) · n = 0 along ∂T,

w = g1 + g2 along ∂H,

and it follows that

u(g1 + g2) = w = u(g1) + u(g2) for any g1, g2 ∈ H1(∂H).

This fact, along with the linearity of the restriction operator and the property
expressed in (7.42), implies that R is a linear mapping, i.e.

R(c1g1 + c2g2) = c1R(g1)+ c2R(g2) for any g1, g2 ∈ H1(∂H) and c1, c2 ∈ R.
(7.43)

We conclude that the inverse problem of electrocardiography (7.41), is a linear prob-
lem!

7.2. The Classical Inverse Problem of Electrocardiography 243

7.2.3 Discretization

Our goal is to derive a discrete approximation that is suitable for performing numer-
ical simulations of (7.41). This is accomplished by applying the famous Rayleigh-
Ritz-Galerkin methodology to the problem. In the present situation, this may be
formulated as follows:

Let
g1, . . . , gn ∈ H1(∂H)

be a set of linearly independent functions defined on the surface ∂H of the heart,
and define the subspace Vn of H1(∂H) by

Vn = span{g1, . . . , gn} ⊂ H1(∂H).

The restriction of the transfer mapping R to Vn is denoted by Rn, i.e.

Rn = R|Vn
: Vn → L2(∂T). (7.44)

Since the linearity of R is inherited by Rn, it is particularly easy to characterize
the action of Rn. More precisely, every function g ∈ Vn can be represented uniquely
by n real numbers, say p1, . . . , pn,

g =
n∑

i=1

pigi. (7.45)

Consequently, if

ri = Rn(gi) = u(gi)|∂T for i = 1, . . . , n, (7.46)

then the linearity of Rn implies that

Rn(g) =
n∑

i=1

piri. (7.47)

Hence, the range
Rn(Vn) = {Rn(q); q ∈ Vn} (7.48)

of Rn is fully characterized by the functions r1, . . . , rn defined in (7.46). In fact,
from these considerations, it follows that

Rn(Vn) = span {r1, . . . , rn} .

Moreover, the functions r1, . . . , rn are easily computed by the following procedure:
Set g = gi in (7.38), solve (7.36)–(7.38) for u = u(gi), and put

ri = u(gi)|∂T

for i = 1, . . . , n. Thus, the action of the discrete transfer mapping Rn ≈ R is
completely determined by solving n linear elliptic boundary value problems of the
form (7.36)–(7.38).

244 7. Inverse Problems

A first approach towards defining a finite dimensional approximation of the in-
verse problem (7.41) could typically be as follows: Find g =

∑n
i=1 pigi ∈ Vn such

that
Rn(g) = d. (7.49)

However, unless d is in the range Rn(Vn) (see (7.48)), of Rn, there does not exist
any g ∈ Vn solving (7.49). As in Section 7.1.4, this difficulty is handled by “replac-
ing” equation (7.49) by a minimization problem of the form

min
g∈Vn

‖Rn(g) − d‖2
L2(∂T). (7.50)

That is, we will try to minimize the L2-difference between the observation data d
and the simulated electrical potential at the surface ∂T of the body.

Let us now turn our attention towards the problem of solving (7.50) on a com-
puter. So far, we have assumed that the date d is given in terms of a function defined
at every point x ∈ ∂T . Recall that d represents physical measurements of the elec-
trical potential at the surface of the body. Most likely, this potential can only be
recorded at a finite number of locations, referred to as the leads, along ∂T – say in
the regions

Γ1, . . . Γm ⊂ ∂T, (7.51)

see Figure 7.5. Thus, we assume in what follows that

Fig. 7.5. Typical positions of the leads, i.e. the locations used to produce ECG recordings.

d : ∪m
j=1Γj → R and d ∈ L2(∪m

j=1Γj).

From this perspective, (7.50) should be replaced by the problem

min
g∈Vn

‖Rn(g) − d‖2
L2(Γ), (7.52)

7.2. The Classical Inverse Problem of Electrocardiography 245

provided that
Γ = ∪m

j=1Γj .

Every function g ∈ Vn can be written in the form (7.45), for a suitable set of
real numbers p1, . . . , pn, and

Rn(g) =
n∑

i=1

piri,

where r1, . . . , rn are the functions given in (7.46). Inspired by this fact, and (7.52),
we introduce the cost-functional

J = J(p1, . . . , pn) =

∥∥∥∥∥
n∑

i=1

piri − d

∥∥∥∥∥
2

L2(Γ)

.

The problem (7.52) may then be rewritten in the form

min
p1,...,pn∈R

J(p1, . . . , pn). (7.53)

Differentiation of J yields

∂J

∂pi
= 2

∫
Γ

 n∑

j=1

pjrj − d

 ri dx for i = 1, . . . , n,

and then the necessary first-order condition for a minimum point

∂J

∂pi
= 0 for i = 1, . . . , n,

gives the n × n linear system

n∑
j=1

∫
Γ

rjri dx pj =
∫

Γ

dri dx for i = 1, . . . , n, (7.54)

for the parameters p1, . . . , pn. By introducing the notation

B = [bij] ∈ Rn×n, bij =
∫

Γ

rjri dx, (7.55)

p = (p1, . . . , pn)T ∈ Rn, (7.56)

c =
(∫

Γ

dr1 dx, . . . ,

∫
Γ

drn dx

)T

∈ Rn, (7.57)

(7.54) can be written on matrix-vector form: Find p ∈ Rn such that

Bp = c. (7.58)

246 7. Inverse Problems

Summary. The methodology derived above can be summarized as follows:

a) Pick n linearly independent functions

g1, . . . , gn ∈ H1(∂H),

defined at the surface ∂H of the heart H

b) For i = 1, . . . , n, set g = gi in (7.38) and solve (7.36)–(7.38) for u = u(gi)

c) Compute
ri = u(gi)|∂T , i = 1, . . . , n

d) Compute the matrix B defined in (7.55)

e) Compute the vector c defined in (7.57)

f) If possible, solve the linear system (7.58)

g) Compute the epicardial potential g by applying formula (7.45)

This algorithm requires the solution of n elliptic boundary value problems of the
form (7.36)–(7.38). Having solved these equations, the action of the discrete transfer
mapping Rn is fully characterized by the functions r1, . . . , rn, cf. step c) and (7.47).

Consequently, if we want to solve (7.58) for several recordings of the potential
at the surface of the body, steps a)–d) only have to be executed once. In other words,
for each new observation d at the leads Γ1, . . . , Γm only steps e)–g) need to be car-
ried out, provided that the basis functions g1, . . . , gn used to describe the epicardial
potential are fixed.

7.2.4 The Time-Dependent Problem

As mentioned in Section 7.2.1, the time dependency of the epicardial potential is
often of major interest. From a clinical point of view, this information is important
for determining the condition of the heart. This section is devoted to incorporating
the time dimension into the theory developed above.

Suppose that we have recorded the electrical potential at M +1 chronologically
ordered time instances t0, . . . , tM , and that the associated data is represented by the
functions

d0, . . . , dM ∈ L2(Γ).

Here, Γ denotes the union of the leads Γ1, . . . , Γm, cf. Section 7.2.3 and Figure 7.5.
By the methodology presented in Section 7.2.3, it follows that we might com-

pute the epicardial potential, as a function of time, by solving a minimization prob-
lem on the form (7.52) at each time step t0, . . . , tM . This leads to a sequence of
minimization problems,

min
gτ∈Vn

‖Rn(gτ) − dτ‖2
L2(Γ) for τ = 0, . . . ,M, (7.59)

where Rn is the discrete transfer mapping defined in (7.44). That is, Rn maps the
discrete epicardial potential to the discrete body surface potential.

7.2. The Classical Inverse Problem of Electrocardiography 247

Note that each of the problems in (7.59) can be solved individually. However,
as we will see in the numerical experiments section below, each of these problems
is ill-posed. This is also what we would expect based on the discussion in Section
7.1.3. Hence, some sort of regularization technique must be applied. As usual for
linear problems, there is a wide range of methods available: Tikhonov regulariza-
tion, iterative regularization schemes, TSVD13 etc.; see Section 7.1.5. However, for
this time dependent problem, there seems to be one particularly attractive approach.
For a small parameter ε ≥ 0, we introduce the following regularized approximation
of (7.59)

min
gτ∈Vn

[
‖Rn(gτ) − dτ‖2

L2(Γ) + ε‖gτ − gτ−1‖2
L2(∂H)

]
for τ = 0, . . . ,M.

(7.60)
That is, expressed in a somewhat rough and ready style, we apply a Tikhonov regu-
larization technique that ensures that the change in the epicardial potential is small
from one time step to the next. From a physical point of view, this requirement
seems to be reasonable, provided that the time step

tτ − tτ−1

is small.
Observe that, for τ = 0, an undefined function g−1 is involved in the minimiza-

tion problem (7.60). This function can, of course, be specified in a number of ways.
A typical choice could be to apply Tikhonov regularization in its purest form, i.e.
defining g−1 = 0, or the second-order Tikhonov scheme. If the first time step in the
simulation process coincides with the start of the depolarization phase, the heart sur-
face at that instance is isoelectric; that is, g−1 is constant. For the sake of simplicity,
we will throughout this section stipulate g−1 = 0.

Consider the functional associated with time step tτ in (7.60). According to
equation (7.45), the unknown function gτ ∈ Vn can be expressed as a linear combi-
nation of the basis functions of Vn,

gτ =
n∑

i=1

pτ
i gi, (7.61)

where pτ
1 , . . . , pτ

n are real numbers that we want to determine such that gτ satisfies
(7.60). Furthermore, by formula (7.47) we find that, letting {ri}n

i=1 be the functions
defined in (7.46),

Rn(gτ) =
n∑

i=1

pτ
i ri.

Hence, (7.60) may be written in the form

min
pτ
1 ,...,pτ

n∈R

[
‖

n∑
i=1

pτ
i ri − dτ‖2

L2(Γ) + ε‖
n∑

i=1

pτ
i gi − gτ−1‖2

L2(∂H)

]
(7.62)

13 Truncated Singular Value Decomposition, cf. e.g. Groetsch [52]

248 7. Inverse Problems

for τ = 0, . . . , M . Note that gτ−1 is already known since

gτ−1 =
n∑

i=1

pτ−1
i ri,

where {pτ−1
i }n

i=1 were computed at the previous time-step.
If we define the cost-functionals

Jτ
ε = Jτ

ε (pτ
1 , . . . , pτ

n) =

∥∥∥∥∥
n∑

i=1

pτ
i ri − dτ

∥∥∥∥∥
2

L2(Γ)

+ ε

∥∥∥∥∥
n∑

i=1

pτ
i gi − gτ−1

∥∥∥∥∥
2

L2(∂H)

for τ = 0, . . . , M , then (7.62) can be written compactly as

min
pτ
1 ,...,pτ

n∈R
Jτ

ε (pτ
1 , . . . , pτ

n) for τ = 0, . . . ,M. (7.63)

Let us consider the minimization process (7.63) associated with a fixed time
instance tτ . Suppose that we have already computed gτ−1. By the chain rule of
differentiation, it follows that

∂Jτ
ε

∂pτ
i

= 2
∫

Γ

 n∑

j=1

pτ
j rj − dτ

 ri dx + 2ε

∫
∂H

 n∑

j=1

pτ
j gj − gτ−1

 gi dx

for i = 1, . . . , n, and the first-order condition for a minimum

∂Jτ
ε

∂pτ
i

= 0, i = 1, . . . , n,

yields the linear system

n∑
j=1

[∫
Γ

rjri dx + ε

∫
∂H

gjgi dx

]
pτ

j =
∫

Γ

dτri dx+ε

∫
∂H

gτ−1gi dx, i = 1, . . . , n.

By defining

Bε =[bε,ij] ∈ Rn×n, bε,ij =
∫

Γ

rjri dx + ε

∫
∂H

gjgi dx, (7.64)

pτ =(pτ
1 , . . . , pτ

n)T ∈ Rn,

cτ−1
ε =

(∫
Γ

dτr1 dx+ε

∫
∂H

gτ−1g1 dx, . . . ,

∫
Γ

dτrn dx+ε

∫
∂H

gτ−1gn dx

)T

∈Rn,

we may write this system in the matrix-vector form

Bεp
τ = cτ−1

ε .

To summarize, the minimization problems given in (7.60) can be solved for
g0, . . . , gM , in a successive manner, by solving the linear systems

Bεp
τ = cτ−1

ε , τ = 0, . . . ,M. (7.65)

7.2. The Classical Inverse Problem of Electrocardiography 249

Recall that the action of the discrete transfer mapping Rn (see (7.44)), is fully char-
acterized by the functions r1, . . . , rn defined in (7.46). This property of Rn is “in-
herited” by the matrix Bε in the sense that Bε is independent of the time instance tτ ,
see (7.64). On the other hand, the right hand side cτ−1

ε in (7.65) must be computed
for every τ = 0, . . . , M .

Finally, having computed

p0 =
(
p0
1, . . . , p

0
n

)T
,

...

pM =
(
pM
1 , . . . , pM

n

)T
,

we can easily find the corresponding approximate epicardial potentials by applying
formula (7.61).

7.2.5 Numerical Experiments

The data for the numerical experiments in this section were taken from the simu-
lations presented in Section 3.4.2. That is, the data were generated by solving the
model (2.65)–(2.72), involving the bidomain equations, on a two-dimensional slice
of the human body. From these experiments we extracted the potentials both at the
heart and the torso surfaces, respectively. In this section, we will try to recover the
epicardial potentials using the simulated body surface potentials as observation data.

In the computations below, there are m = 104 leads positioned along the surface
∂T of the body; cf. equation (7.51) and Figure 7.5. Moreover, n = 632 functions,
defined along the surface ∂H of the heart, have been used to discretize (7.41). Fur-
ther details on this topic can be found in Section 7.2.3.

We consider the simulation results, obtained by solving (2.65)–(2.72), at time14

t = 30 ms. Thus, the observation data consists of the simulated body surface poten-
tial at that time instance. Our task is to try to identify the associated extra cellular
potential that is present at the epicardial surface.

With no regularization, the transfer matrix B (see equations (7.55)–(7.57)), is
so ill-conditioned that the system (7.58) cannot be solved accurately using normal
machine precision. In order to be able to compute a solution of this linear system, a
very small amount of zero-order Tikhonov regularization (ε = 10−15) was applied.
The results are shown in Figure 7.6a). Clearly, the approximate solution of the in-
verse problem (7.41) oscillates wildly in this case. However, the observation data,
recorded along the surface ∂T of the body, is reproduced almost exactly; see Fig-
ure 7.6b). This illustrates the ill-posed nature of the problem at hand. We are able
to find an epicardial potential that reproduces the observed data, but the estimated
potentials at the heart surface are not correct.

In the next test, the regularization parameter in the zero-order Tikhonov scheme
is increased to ε = 10−3. The results obtained in this way are depicted in the second

14 More precisely, we consider the results of these simulation at time 30 ms after the initial
stimulation of the tissue

250 7. Inverse Problems

row of Figure 7.6. Clearly, the estimated epicardial potential is now closer to the
correct potential, but large oscillations are still present in the solution. We also ob-
serve that the match with the body surface potential has begun to deteriorate. This is
as expected, since using a “large” regularization parameter will obviously put more
weight onto the regularization term in the associated cost-functional. Consequently,
the precision of the data-fitting procedure (the output least squares requirement) is
reduced.

Recall that the second-order Tikhonov regularization scheme has a stronger
smoothing effect on the high-frequency components of the data than the zero-order
method; cf. Section 7.1.5. Therefore, since the presence of large oscillations in the
estimated epicardial potential is such a major problem, it is natural to try the second-
order scheme. In the present situation, this method is implemented by minimizing
the following cost-functional:

J2,ε(g) = ‖R(g) − d‖2
L2(Γ) + ε‖∆∂Hg‖2

L2(∂H). (7.66)

Here
∆∂Hgτ = curl∂H curl∂Hgτ

denotes the so-called Laplace-Beltrami operator, which can be thought of as a gen-
eralization of the Laplacian to functions defined on curved surfaces. We will not
dwell any further upon the technical issues of this operator. Further information can
be found in, e.g., Dautray and Lions [29].

Figure 7.7 shows the effect of using this technique. With no noise in the obser-
vation data, ε = 10−8 is a good choice. The solution is smooth and the epicardial
potential is computed accurately by the second-order Tikhonov scheme. The second
row of this figure shows the results generated by adding 1% noise to the observa-
tion data (still recorded along the body surface!). In this case, a larger value of the
regularization parameter ε is needed in order to get a smooth solution. The depicted
solution was generated by choosing ε = 1.

A drawback with the regularization strategies used to generate the results shown
in Figures 7.6 and 7.7 is that they do not exploit the fact that the epicardial potential
is correlated in time. Consequently, the estimated epicardial potential might fluctu-
ate from time step to time step, even though it is smooth in the spatial direction.

Hence, temporal regularization, as described in Section 7.2.4, was tested from
t = 30 ms to t = 35 ms, applying 40 time steps in all. The noise level was set as
above, i.e. 1% noise was added to the body surface potentials. The results are shown
in Figure 7.8 a). The beneficial effect of temporal correlated signals at the epicardial
surface was achieved (but this cannot be seen in this “stationary” figure).

A disadvantage of this temporal regularization strategy is that small oscillations
in the estimated epicardial potential have a tendency to appear as time evolves. To
overcome this difficulty, we tested a “hybrid” scheme, combining temporal and spa-
tial regularization techniques. More precisely, the method (7.60) was modified in or-
der to include a second-order Tikhonov term. This was accomplished by minimizing
a cost-functional of the form

Jτ
ε,β(gτ) = ‖Rn(gτ) − dτ‖2

L2(Γ) + ε‖gτ − gτ−1‖2
L2(∂H) + β‖∆∂Hgτ‖2

L2(∂H),
(7.67)

7.2. The Classical Inverse Problem of Electrocardiography 251

100 200 300 400 500 600

8

10

12

14

16

18

20

22

24

Potentials at the heart surface

Epicardial node number

P
ot

en
tia

l

Estimated
True

20 40 60 80 100

12

14

16

18

20

Potentials at the torso surface

Body surface node number

P
ot

en
tia

l

Computed
True

a) b)

100 200 300 400 500 600

8

10

12

14

16

18

20

22

24

Potentials at the heart surface

Epicardial node number

P
ot

en
tia

l

Estimated
True

20 40 60 80 100

12

14

16

18

20

Potentials at the torso surface

Body surface node number

P
ot

en
tia

l

Computed
True

c) d)

Fig. 7.6. The results obtained by applying the zero-order Tikhonov scheme to the problem
studied in Section 7.2.5: a) The correct and estimated epicardial potentials with virtually no
regularization, ε = 10−15. b) The body surface potentials generated by the two epicardial
potentials shown in Figure a). There is no visible difference between the measured and the
computed signal, even though the estimated epicardial values are obviously wrong. c) Here
ε = 10−3, and the estimated epicardial potentials are much closer to the correct signal than
in the case considered in Figure a). However, the solution still contains large oscillations.
d) The electrical potentials along the body surface associated with the epicardial potentials
depicted in Figure c). With this amount of regularization, a discrepancy between the measured
potential and the body surface potential associated with applying the zero-order Tikhonov
scheme is present.

where now both ε and β are regularization parameters. The results obtained by ap-
plying this technique are shown in Figure 7.8 b). The computed epicardial potential
is now smooth as well as correlated in time!

252 7. Inverse Problems

100 200 300 400 500 600

8

10

12

14

16

18

20

22

24

Potentials at the heart surface

Epicardial node number

P
ot

en
tia

l

Estimated
True

20 40 60 80 100

12

14

16

18

20

Potentials at the torso surface

Body surface node number

P
ot

en
tia

l

Computed
True

a) b)

100 200 300 400 500 600

8

10

12

14

16

18

20

22

24

Potentials at the heart surface

Epicardial node number

P
ot

en
tia

l

Estimated
True

20 40 60 80 100

12

14

16

18

20

Potentials at the torso surface

Body surface node number

P
ot

en
tia

l
Computed
True

c) d)

Fig. 7.7. The results obtained by applying the second-order Tikhonov scheme to the problem
discussed in Section 7.2.5. In the second row noise has been added to the observation data
(still recorded along the body surface ∂T , cf. Figure 7.4). a) Estimates obtained by using
the regularization parameter ε = 10−8. b) The body surface potentials associated with the
epicardial potentials shown in Figure a). c) In this case, 1% noise has been added to the
observation data, and ε = 1. The figure shows the epicardial potential computed by the
second order scheme along with the correct potential. d) The noisy observation data and
the simulated body surface potential associated with the epicardial potentials depicted in
Figure c).

For both the simulation results shown in Figure 7.8, the associated body surface
potentials were reproduced accurately. In fact, they were very similar to the potential
depicted in Figure 7.7d).

7.3. Computing the Location and Orientation of a Dipole 253

100 200 300 400 500 600

15

20

25

30

Potentials at the heart surface

Epicardial node number

P
ot

en
tia

l

Estimated
True

100 200 300 400 500 600

15

20

25

30

Potentials at the heart surface

Epicardial node number

P
ot

en
tia

l

Estimated
True

a) b)

Fig. 7.8. a) Temporal regularization with ε = 0.01 in equation (7.60). b) “Hybrid” regular-
ization with ε = 0.01 and β = 1 in equation (7.67).

7.3 Identifying a Simplified Source – Computing the Location
and Orientation of a Dipole

The electrical signal that can be measured on the surface of the human body is gen-
erated by the heart. The heart can thus be viewed as a current source positioned in
a volume conductor. In Chapter 2 a simple model of this phenomenon was intro-
duced,:

∇ · (M∇u) = f in Ω, (7.68)

(M∇u) · n = 0 along ∂Ω (= ∂T), (7.69)∫
Ω

u dx = 0, (7.70)

cf. the discussion preceding equations (2.5)–(2.6). Here u, M , f and Ω denote the
electrical potential, the conductivity of the involved tissues, the current source(s)
and the region occupied by the human body, respectively. Throughout this section
we will focus on this simple elliptic boundary value problem. Note that Ω = H ∪T
(see Figure 7.4), and thus the solution domain of (7.68) consists of both the heart H
and its surrounding body T .

In these kinds of models, the function f represents the electrical activity of the
heart. As mentioned in Chapter 1, this activity is frequently modelled by a so-called
dipole; see Figure 3.4. This means that f is, at least approximately, defined in terms
of two opposite point charges15.

15 In many cases more than two point charges are used to represent the electrical activity of
the heart. This leads to models of the form (7.68)–(7.70), involving several dipoles. In the
present text, we will only consider the case of a single dipole.

254 7. Inverse Problems

Models of this kind, and the heart vector interpretation of them, go back as far
as Einthoven’s work in the early 20th century. They have always been a central
part of ECG analysis; see, e.g. Keener and Sneyd [72]. The purpose of the present
section is not to discuss the physiological or biological reasons for studying models
of the form (7.68)–(7.70) in detail. Rather, we will focus on various mathematical
and computational properties of these equations.

Assume that the characteristics of M , Ω and f are known. Then we can use
the Finite Element Method (FEM), discussed in Chapter 3, to solve (7.68)–(7.70)
numerically for u. Consequently, we can simulate ECG recordings along the surface
∂Ω of the body, and study how various changes in the dipole (heart) influence the
electrical signal. In the present situation, this is the direct problem: we compute the
effect (ECG) of a dipole (the cause) on the electrical potential.

In this section, our ultimate goal is not to solve this direct problem, but to de-
sign methods for computing the characteristics of the current source f from body
surface measurements of the electrical potential u. That is, we will try to use ob-
servations of u|∂Ω to compute the properties of f . From a medical point of view,
solving this inverse problem can hopefully improve our qualitative and quantitative
understanding of the heart; see, e.g. Gulrajani [54], Pullan, Paterson and Greensite
[116], Yamashita and Geselowitz [147], and references therein.

Typically, the position and strength of the point charges in the dipole f will de-
pend on time; they will move around during a heart beat. Consequently, f should
ideally be a function of both space x ∈ Ω and time t ∈ [0, t∗], where [0, t∗] rep-
resents the time interval of interest. This means that the inverse problem described
above must be solved for every t ∈ [0, t∗]. Assuming that we have a method for
solving this inverse problem at a fixed time, this can be easily be accomplished by
applying similar techniques to those introduced in Section 7.2.4. However, to keep
things simple, we will throughout this section focus on the stationary version of this
task.

Note that, if u satisfies (7.68)–(7.69), the function u + c, where c is an arbitrary
constant, also satisfies these two equations. Thus, condition (7.70) has been added
to ensure the uniqueness of the solution. The role of the constant c in the present
framework will be studied in detail in Section 7.3.5 below.

A Remark. In Chapter 2 we introduced the highly complex model (2.65)–(2.72)
for the electrical activity in the human body. Now we want to study the heart by
considering the simple system of equations (7.68)–(7.70). Is it possible to justify
this approach? Comparing these two models in a precise mathematical sense is,
of course, a very challenging scientific problem. Nevertheless, it is actually quite
simple to establish a rough link between (2.65)–(2.72) and (7.68)–(7.70). This can
be accomplished as follows.

From equation (2.67) in Chapter 2 it follows that

∇((Mi + Me)∇ue) = −∇(Mi∇v) in H. (7.71)

7.3. Computing the Location and Orientation of a Dipole 255

Moreover, in the tissue surrounding the heart, the propagation of the electrical po-
tential is governed by a model of the form

∇ · (Mo∇uo) = 0 in T, (7.72)

cf. (2.65)–(2.72) and Figure 7.4. Thus, by simply putting

M =
{

Mi + Me in H,
M0 in T,

f =
{
−∇(Mi∇v) in H,
0 in T,

u =
{

ue in H,
u0 in T,

(7.73)

we see that u, as defined in (7.73), satisfies an equation on the form (7.68).
A further investigation of the link/relationship between these two models would

require a deep and lengthly analysis of the involved PDEs. That topic certainly lies
beyond the scope of this text.

7.3.1 Preliminaries

Prior to presenting the mathematics of the inverse problem described above, we
will derive a property that the source term f in (7.68)–(7.70) must satisfy; cf. also
Hackbusch [56] or Marti [99].

Assume that u solves (7.68)–(7.70), and let φ be a smooth function defined on
Ω. From (7.68) it follows that∫

Ω

fφ dx =
∫

Ω

∇ · (M∇u)φ dx,

and by Gauss’ divergence theorem, and equation (7.69), we conclude that∫
Ω

fφ dx = −
∫

Ω

M∇u · ∇φ dx +
∫

∂Ω

φM∇u · nds = −
∫

Ω

M∇u · ∇φ dx.

(7.74)
Since φ was arbitrary, we may choose

φ(x) = 1 for all x ∈ Ω,

and then (7.74) implies that ∫
Ω

f dx = 0. (7.75)

Consequently, if (7.68)–(7.70) has a solution, f must satisfy (7.75). That is, this
boundary value problem cannot have a solution unless f fulfills (7.75). Thus, we
will throughout this section assume that the involved source term belongs to the
following subspace V of the classical L2(Ω) space,

V =
{

f ∈ L2(Ω);
∫

Ω

f dx = 0
}

. (7.76)

256 7. Inverse Problems

7.3.2 The Inverse Problem

Our goal is to derive a mathematical formulation of the inverse problem described
above. Clearly, the solution u of (7.68)–(7.70) depends on the source term f , i.e.

u = u(f).

Having computed u(f) we can read off the trace (restriction)

u(f)
∣∣∣
∂Ω

of this function along the boundary ∂Ω of Ω. Thus, we may define the operator

Q : V → L2(∂Ω), (7.77)

by

Q(f) = u(f)
∣∣∣
∂Ω,

(7.78)

where V is the space of functions defined in (7.76). In the present context, the task
of computing Q(f), for a given f , is the direct problem. In other words, the di-
rect problem consists of solving (7.68)–(7.70), for a given source f , and thereafter
recording the simulated electrical potential u along the boundary ∂Ω of the torso Ω.

Assume that we want to apply noninvasive methods for characterizing the cur-
rent source. Only observations of the potential along the surface ∂Ω of Ω are then
available to us as data. That is,

u(f)
∣∣∣
∂Ω

(7.79)

is the available data and f represents the unknown source. So, as mentioned above,
our challenge can be described as follows: Can we use data in the form (7.79) and
the model (7.68)–(7.70) to determine f?

In mathematical terms this problem takes the form: Let d be an observation of
the potential along ∂Ω, solve the equation

Q(f) = d (7.80)

for f . Note that, if Q is invertible, then

f = Q−1(d).

Throughout this section we will assume that f depends on the spatial variable
x, and that this function is parameterized by a set of parameters p1, . . . , pn, i.e.

f = f(x; p1, . . . , pn).

Our task is to determine p1, . . . , pn such that (7.80) is (approximately) satisfied.
Depending on the sort of parameterization that is used, this will lead to either a
linear system of algebraic equations or a nonlinear minimization problem defined in
terms of a suitable cost-functional.

7.3. Computing the Location and Orientation of a Dipole 257

7.3.3 Parameterizations Leading to Linear Problems

We will now show that the operator Q, defined in (7.77), is a linear mapping. There-
after, this property will be used to design a discrete approximation of (7.80), which
in turn leads to a linear system of algebraic equations.

Assume that f ∈ V , and let u = u(f) denote the solution of (7.68)–(7.70). For
an arbitrary constant c ∈ R, consider the function v = cu. Clearly

∇ · (M∇(cu)) = c∇ · (M∇u) = cf, (7.81)

M∇(cu) · n = cM∇u · n = 0 along ∂Ω, (7.82)

and ∫
Ω

cu dx = c

∫
Ω

u dx = 0. (7.83)

This means that v = cu satisfies the following set of equations

∇ · (M∇v) = cf in Ω,

M∇v · n = 0 along ∂Ω,∫
Ω

v dx = 0.

Thus, since
(cu)

∣∣∣
∂Ω

= c · u
∣∣∣
∂Ω

,

we conclude from (7.81)–(7.83) that

Q(cf) = cQ(f) (7.84)

for any c ∈ R and f ∈ V .
Next, consider the boundary value problems

∇ · (M∇u1) = f1 in Ω,

M∇u1 · n = 0 along ∂Ω,∫
Ω

u1 dx = 0,

and

∇ · (M∇u2) = f2 in Ω,

M∇u2 · n = 0 along ∂Ω,∫
Ω

u2 dx = 0,

where f1 and f2 are functions in V ; see (7.76). Clearly,

∇ · (M∇(u1 + u2)) = ∇ · (M∇u1) + ∇ · (M∇u2) = f1 + f2 in Ω,

M∇(u1 + u2) · n = M∇u1 · n + M∇u2 · n = 0 along ∂Ω,∫
Ω

u1 + u2 dx =
∫

Ω

u1 dx +
∫

Ω

u2 dx = 0,

258 7. Inverse Problems

and hence it follows that v = u1 + u2 solves the problem

∇ · (M∇v) = f1 + f2 in Ω,

M∇v · n = 0 along ∂Ω,∫
Ω

v dx = 0.

This means that
Q(f1 + f2) = Q(f1) + Q(f2),

and by combining this property with (7.84) we conclude that Q is a linear mapping,
i.e.

Q(a1f1 + a2f2) = a1Q(f1) + a2Q(f2) (7.85)

for any real numbers a1 and a2 and any functions f1, f2 ∈ V .

Discretization. In order to solve the inverse problem (7.80) on a computer, it must be
discretized by suitable numerical methods. We will now apply the famous Rayleigh-
Ritz-Galerkin idea to this equation. However, prior to doing so, we must discuss a
practical issue highly relevant for the framework presented above.

Our goal is to solve, at least approximately, equation (7.80). In this equation,
d represents an observation of the electrical potential along the surface ∂Ω of the
torso Ω. Above, we assumed that d was a function defined at every point along
the boundary ∂Ω of the torso. However, from a practical point of view, it is only
possible to record the electrical potential at a finite number of locations (referred to
as the leads), say, in the regions

Γ1, Γ2, . . . , Γm ⊂ ∂Ω.

From now on, we will let dm denote the observed electrical potential at these loca-
tions, i.e.

dm = (dΓ1 , dΓ2 , . . . , dΓm
)T ∈ Rm,

where, for j = 1, . . . , m, and dΓj
represents the measured potential in the region

Γj . We assume that each dΓj
is constant over the area Γj .

In Section 7.2.3 a discrete approximation of the inverse problem of electrocar-
diography was derived by minimizing the deviation between the simulated and the
observed electrical potentials along the body surface, cf. (7.50). In the present sit-
uation, we will apply a somewhat different approach. A discrete approximation of
(7.80) will be obtained by comparing the arithmetic average of the simulated poten-
tial at the leads with the observation data.

Recall the definition (7.77)–(7.78) of the operator Q. The associated mapping
Qm, with discrete range,

Qm : V → Rm, (7.86)

is defined by

Qm(f) = (Q(f)Γ1 , Q(f)Γ2 , . . . , Q(f)Γm
)T ∈ Rm (7.87)

7.3. Computing the Location and Orientation of a Dipole 259

for f ∈ V . Here, Q(f)Γj
represents the arithmetic average of Q(f) in Γj , i.e.

Q(f)Γj
=

1
|Γj |

∫
Γj

Q(f) dx =
1

|Γj |

∫
Γj

u(f) dx for j = 1, . . . , m.

By straightforward considerations, it follows that the linearity of Q is inherited by
Qm.

How can Qm(f), for a given f , be computed? This can easily be accomplished
by first solving the boundary value problem (7.68)–(7.70) for u, and thereafter
recording the function values of u in the regions Γ1, . . . , Γm, positioned along the
boundary ∂Ω of the torso Ω.

With this notation to hand, we can approximate equation (7.80) by the problem
of finding f ∈ V such that

Qm(f) = dm. (7.88)

The Rayleigh-Ritz-Galerkin methodology can now be applied to this latter problem
as follows. Let

g1, g2, . . . , gn ∈ V

be n linearly independent functions in V , and define

Vn = span{g1, g2, . . . , gn}. (7.89)

If Qm
n denotes the restriction of Qm to Vn, i.e.

Qm
n = Qm

∣∣∣
Vn

: Vn → Rm, (7.90)

then the fully discrete approximation of (7.80) is given by this problem: Find fn ∈
Vn such that

Qm
n (fn) = dm. (7.91)

Since Qm
n is a linear operator on a discrete space, we can realize (7.91) in terms of

a matrix-vector linear system.

Matrix-Vector Representation. For every function fn ∈ Vn there exists a unique set
of real numbers p1, p2, . . . , pn such that

fn = p1g1 + p2g2 + · · · + pngn. (7.92)

Let p = (p1, p2, . . . , pn)T and define the linear mapping

Bm
n : Rn → Rm

by
Bm

n (p) = Qm
n (p1g1 + p2g2 + · · · + pngn),

where Qm
n is the operator introduced in (7.90).

260 7. Inverse Problems

Clearly, since Qm
n is linear, it follows that Bm

n is a linear mapping between
Euclidean spaces, and it can thus be represented by a matrix-vector product:

Bm
n (p) = Bp,

where

B = [bkl], k = 1, . . . , m and l = 1, . . . , n,

is a matrix and
p = (p1, p2, . . . , pn)T

is a vector of length n. More precisely, let

e1, e2, . . . , en

be the standard Euclidean basis for Rn. Then the columns of B are given by the
formula

b1l

b2l

...
bml

 = Bm

n (el) for l = 1, . . . , n,

see any introductory text on linear algebra.
Thus, we conclude that each column of the matrix B can be computed by solving

(7.68)–(7.70) with a source term f that equals the l’th basis function of Vn; see
(7.89). That is, by solving (7.68)–(7.70) with

f = gl

for u = u(gl), and by putting

bkl =
1

|Γk|

∫
Γk

u(gl) dx for k = 1, . . . ,m.

This means that n elliptic boundary value problems have to be solved in order to
determine the matrix entries of B.

Having introduced this formalism, we may replace equation (7.91) by the linear
system

Bp = dm, (7.93)

where B ∈ Rm,n, p ∈ Rn, dm ∈ Rm.
Recall that m represents the number of locations along the boundary of the torso

at which we record the electric potential, and that n is the number of parameters used
to describe the unknown source f . Of course, in most applications m �= n, and the
system (7.93) may be over- or underdetermined.

For the sake of simplicity, let us now assume that

m ≥ n.

7.3. Computing the Location and Orientation of a Dipole 261

In this case, it is natural to consider the normal equations associated with (7.93),

BT Bp = BT dm, (7.94)

see, e.g., Golub [49]. This is a system of n equations with n unknowns p1, p2, . . . , pn,
and BT B is a symmetric matrix with non-negative eigenvalues.

In the numerical experiments section below, we will see that the system (7.94) is
extremely ill-conditioned, thus reflecting the ill-posed nature of the inverse problem
(7.80) at hand. Consequently, some sort of regularization scheme must be applied.
Let us consider the zero-order Tikhonov method for this problem.

It is well-known (see, e.g., Golub [49]), that the solution of (7.94) also solves
the minimization problem

min
p∈Rn

‖Bp − dm‖2,

where ‖ · ‖ represents the Euclidean norm on Rm. Therefore, Tikhonov regulariza-
tion can be applied by considering a cost-functional of the form

J(p) = ‖Bp − dm‖2 + ε‖p‖2 for p ∈ Rn, (7.95)

where ε is a small positive parameter. Minimizing J leads to the following regular-
ized approximation of (7.94),

(BT B + εI)p = BT dm, (7.96)

see, e.g., Hämmelin and Hoffmann [60].

7.3.4 A Numerical Example

To illustrate the techniques described above we study the following problem. The
domain is a square Ω = [−50, 50]2, and the conductivity is set to M = 1. The
observations are recorded at m = 124 equidistant locations around the boundary
∂Ω of Ω. The basis Vn (see equation (7.89)), for the dipole consists of functions of
the form

g(x;xi) = exp−||x−xi||2/γ2
for i = 1, . . . , n,

where the centres {xi}n
i=1 are given points. The basis functions are positioned in

a uniform lattice defined over Ω. If the spacing of the lattice is h, the width is
set to γ = h/2

√
log(2). This ensures that neighbouring functions have suitable

overlapping supports, specifically

g((h/2, 0); (0, 0)) = g((h/2, 0); (h, 0)) =
1
2
.

Figure 7.9 shows a one-dimensional cross section at y = 0, with h = 1, of the basis
functions centreed at (1, 0) and (2, 0).

First, we investigate the case where the dipole can be expressed exactly as a
linear combination of the basis functions in Vn. We use a spacing h = 20 and
n = 36 basis functions. The basis functions centred at xi = (−10,−10) and xj =

262 7. Inverse Problems

−1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Fig. 7.9. A one-dimensional view of two neighbouring basis functions.

(10, 10) are given the weights pi = 1 and pj = −1, respectively. The rest of the
entries of p = (p1, . . . , pn)T are set to zero; see equation (7.92). Figure 7.11a)
shows this dipole f , and the corresponding solution of the direct problem (7.68)–
(7.70) is shown in Figure 7.10.

In this case, the approximate solution of the inverse problem (7.80), defined by
the normal equations (7.94), reproduces p almost exactly. The error in the nonzero
components of p = (p1, . . . , pn)T is less than 0.1%. This is as expected, since the
data is noise free.

Is it also possible to recover the position of the dipole in the case of noisy data?
We denote the noisy signal by d̂m, i.e.

d̂m = dm + eρ, (7.97)

where the elements of eρ are drawn from a normal distribution with zero mean and
standard deviation

σ = ρ
√

π/2 · ¯|d|,
where

¯|d| =
1
m

m∑
i=1

|di|.

This ensures that the expected magnitude of the noise, E(|eρ|), is a given fraction ρ
of the magnitude of the signal, i.e.

E(|eρ|) = ρ ¯|d|.

Figure 7.10b) shows the body surface potential, i.e. the observation data dm,
along with the added 1% noise (corresponding to ρ = 0.01). The estimated dipole
obtained by solving the normal equations (7.94) is depicted in Figure 7.11b). It is
clear that, in this case, this method does not work well when noise is present. The
ill-posed nature of the problem becomes dominant.

7.3. Computing the Location and Orientation of a Dipole 263

−50 −25 0 25 50
−50

−25

0

25

50
Solution, u(f)

−100

−80

−8
0

−80

−6
0

−60
−60

−
40

−40
−40

−20

−20

−20

0

0

0

0

20

20

20

40

40

40

60
60

60
80

8080

10
0

1 32 63 94 124
−80

−40

0

40

80
Potentials at the leads on the surface

Lead numbers
P

ot
en

tia
l

a) b)

Fig. 7.10. a) The potential distribution throughout Ω = [−50, 50]2 generated by the source
term shown in Figure 7.11a). b) The body surface potential generated by the source term
shown in Figure 7.11a) (thick line). Noise is added to this signal as described in equation
(7.97). The thin line represents the noise (1%). Leads 1, 32, 63, and 94 are located at the
corners of the domain Ω.

Next, we apply the Tikhonov scheme derived in equations (7.95)–(7.96) to this
problem. Recall that the level of regularization is controlled by the parameter ε > 0.
In general, it is not easy to determine a good value for ε; see, e.g. Skipa, Sachse
and Dössel [127], Franzone, Guerri, Taccardi and Viganotti [42], Franzone, Guerri,
Tentonia, Viganotti and Baruffi [43], Miller [103] and Hansen and O’Leary [61].
However, in the present case, we are fortunate in that the exact solution is known
to us! We can, therefore, evaluate the performance of this regularization technique
with respect to various choices of ε. To this end, we consider the relative error

r(ε) =

∫
Ω
|f(x; p(ε; d̂m)) − f(x; p∗)| dx∫

Ω
|f(x; p∗)| dx

of the estimated dipole. Here, p∗ represents the parameters of the true/correct dipole
and p = p(ε; d̂m) is the estimate that depends upon the noisy data d̂m and the
regularization parameter ε.

Figure 7.12a) shows this relative error of the estimated dipole as a function of
ε. For large values of ε, the solution becomes too smooth, and the relative error is
large. An optimal value seems to be given by ε ≈ 2.4 · 10−4. Even for this choice of
ε, r(ε) is not small. In fact, 1% noise in the observation data leads to an error of at
least ≈ 38% in the computed position of the dipole; the problem is ill-posed! Figure
7.11c) shows the estimated dipole for the optimal value of ε.

Finally, for various values of the noise level ρ, we computed the relative error
generated by the optimal choice of ε. The results are shown in Figure 7.12b). Ob-
serve that, even with an optimal regularization parameter, the error becomes large

264 7. Inverse Problems

−50 −25 0 25 50
−50

−25

0

25

50
Dipole, f

0.9

0.5

0.5

0.1

0.1

0.1

−0.1

−0
.1

−0.1

−0.5

−0.5

−0
.9

−50 −25 0 25 50
−50

−25

0

25

50
Estimated dipole, no regularization

−20

−15−10

−1
0

−5

−5

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

5

5

5

5

5

10

1015

a) b)

−50 −25 0 25 50
−50

−25

0

25

50
Estimated dipole

−0.8
−0.6

−0.4

−0
.4

−0.2

−0.2

−0
.2

0 0

0

0

0

0

0

0

0

0

0

0.
2 0.2

0.2
0.2

0.4

0.4
0.4

0.6

−50 −25 0 25 50
−50

−25

0

25

50
Estimated dipole

−0.2

−0.1

−0.1

−0.1

0

0
0

0

0

0

0

0

0

0

0.
1

0.1

0.1
0.

1

0.1

0.1

0.1

0.2

c) d)

Fig. 7.11. a) The chosen dipole f . b) The computed dipole with 0.1% noise added to the
observation data, no regularization. c) As in b), but Tikhonov regularization with ε = 2.4 ·
10−4 has been used. d) The computed dipole with 1% noise added to the observation data.
Optimal Tikhonov regularization, ε = 6.3, has been applied.

for relatively moderate levels of noise. Figure 7.11d) shows the estimated dipole in
the case of 1% noise.

We may conclude that parameterizing a dipole in terms of a set of basis functions
covering Ω may not provide very accurate results for the inverse problem at hand.
The performance of the numerical schemes derived in this fashion will tend to be
dominated by the ill-posed nature of equation (7.80). Even with only 1% noise, we
were not able to accurately recover the position of the source term f . Furthermore,
the solutions we computed did not have the typical characteristic form of a dipole.
In the next section, a parameterization that enforces a dipole structure is proposed.
The drawback of this approach is that it leads to a system of nonlinear equations for
(approximately) solving (7.80).

7.3. Computing the Location and Orientation of a Dipole 265

10
−4

10
−3

10
−2

0

0.2

0.4

0.6

0.8

1

regularization parameter ε

Relative error of estimated dipole

10
−6

10
−4

10
−2

10
0

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
er

ro
r

Noise level

a) b)

Fig. 7.12. a) The relative error of the computed dipole as a function of the regularization
parameter ε. b) The relative error of the estimated dipole as a function of the noise level ρ.
For each value of ρ, the error generated by the optimal value of ε is plotted. The “sudden
shift” that appears close to ρ = 0.01 in the graph is caused by a jump in the optimal value for
ε at that point.

7.3.5 Parameterizations Leading to Nonlinear Problems

We have seen that the solution u of (7.68)–(7.70) depends linearly on the source
term f . Consequently, if f is approximated by a finite linear sum of the form (7.92),
then we may formulate the inverse problem (7.80) as a linear system of the form
(7.94). However, in order to compute the matrix entries of B, we have to solve n
elliptic boundary value problems of the form (7.68)–(7.70), where n represents the
number of basis functions that are used to discretize f . Consequently, if a large
number of basis functions are needed to represent f accurately, this methodology
might become quite CPU-expensive. In addition, as n grows, the condition number
of BT B becomes very large and the ill-posed nature of the problem becomes domi-
nant. Thus, it seems to be important to keep the number of parameters p1, p2, . . . , pn

at a minimum.
Let us now consider a somewhat different approach to this problem. Keep in

mind that we are searching for a dipole, and not some sort of general source term.
Somehow, it should be possible to exploit this a priori information available to us.
We will now use this insight to reduce the number of parameters n that are used to
characterize the dipole.

For example, assuming that we consider a two-dimensional problem, it seems to
be reasonable that a dipole can be accurately represented by

f(x, y) = e−[(x−p1)
2+(y−p2)

2]/γ2 − e−[(x−p3)
2+(y−p4)

2]/γ2
, (7.98)

where (p1, p2) and (p3, p4) represent the centres of the two poles in the dipole, and
γ their radius. However, if parameterizations of this kind are applied, f cannot be
expressed as an elementary linear sum of basis functions. That is, f cannot in gen-
eral be approximated by a function fn of the form (7.92). Hence, the mathematical

266 7. Inverse Problems

framework presented above cannot be used. The purpose of this section is to derive
methods suitable for implementing this kind of strategy.

As above, the dipole f is parameterized by the parameters p1, p2, . . . , pn, i.e.

f = f(x; p1, . . . , pn).

We will also assume that this function is sufficiently regular that, for i = 1, . . . , n,

∂

∂pi

∫
Ω

fφ dx =
∫

Ωpi

fpi
φ dx

for every test function φ. Here, fpi
denotes

∂f

∂pi
, i = 1, . . . , n.

Recall the definition (7.77)–(7.78) of the mapping Q. A reasonable criterion
for determining the parameters p1, p2, . . . , pn, seems to be to require that the er-
ror in the simulated electrical potential should be as small as possible at the leads
Γ1, . . . , Γm. With this in mind, we introduce the cost-functional

J = J(p1, . . . , pn) =
m∑

j=1

∫
Γj

[Q(f(p1, . . . , pn)(x) − dj]
2

dx

=
m∑

j=1

∫
Γj

[u(x; p1, . . . , pn) − dj]
2

dx, (7.99)

and the associated minimization problem

min
(p1,...,pn)∈Rn

J(p1, . . . , pn). (7.100)

Hence, our goal is to solve (7.100), using a moderate number n of parameters, and
thereby recover the position of the dipole f .

The Role of the Undetermined Constant in the Solution of the Neumann Problem.
Assume that u solves the homogeneous Neumann problem

∇ · (M∇u) = f in Ω, (7.101)

(M∇u) · n = 0 along ∂Ω. (7.102)

Then any function of the form u + c, where c is an arbitrary constant, also satisfies
these two equations. The condition

∫
Ω

u dx = 0 (7.103)

was added above to this boundary value problem in order to obtain a complete set of
equations, i.e. to enforce the uniqueness of its solution. From a mathematical point

7.3. Computing the Location and Orientation of a Dipole 267

of view, (7.103) is convenient. If this condition is used along with a parameterization
of the form (7.92), then the operator Q, defined in (7.77)–(7.78), becomes linear.
Consequently, the methodology developed in Section 7.3.3 can be applied.

However, from a biological point of view, there is no reason to require that
(7.103) should hold. This means that we are “free” to use the constant c to mini-
mize the deviation between the observation data and the simulated potential along
∂Ω.

Let u be an arbitrary integrable function defined in Ω = Ω ∪ ∂Ω, and consider
the function

û = u + c,

where c ∈ R. Inspired by (7.99), we introduce a function on the form

g(c) =
m∑

j=1

∫
Γj

[û − dj]
2

dx =
m∑

j=1

∫
Γj

[u + c − dj]
2

dx for c ∈ R.

From the criterion
g′(c) = 0

for a minimum, we obtain the following formula:

c =
1

m|Γ1|

 m∑

j=1

∫
Γj

dj dx −
m∑

j=1

∫
Γj

u dx

 , (7.104)

provided that the leads are of uniform size, i.e.

|Γ1| = . . . = |Γm|.

Next, the sum of the integrals of the function

û = u +
1

m|Γ1|

 m∑

j=1

∫
Γj

dj dx −
m∑

j=1

∫
Γj

u dx

over the leads is
m∑

j=1

∫
Γj

û dx =
m∑

j=1

∫
Γj

dj dx.

Consequently, we will throughout this section apply a condition of the form

m∑
j=1

∫
Γj

u dx =
m∑

j=1

∫
Γj

dj dx (7.105)

instead of (7.103). That is, we consider the boundary value problem that consists of
equations (7.101)–(7.102) and (7.105).

A condition of the form (7.105) cannot be applied in the technique described in
Section 7.3.3. More precisely, if (7.105) is used, the linearity of Q is lost. It is not

268 7. Inverse Problems

sufficient to simply use a parameterization of the form (7.92), cf. the mathematical
derivations of the linearity of the operator Q. On the other hand, an approximation
of a dipole, already computed by the scheme (7.94), can easily be improved by
adding the constant (7.104). Thus, our analysis is invoked as a post-process. We
will not dwell further upon this issue, but instead focus on the nonlinear approach
introduced above.

Differentiation of the Cost-Functional. Many minimization algorithms for solving
problems of the form (7.100) require the partial derivatives

∂J

∂p1
, . . . ,

∂J

∂pn

of the cost-functional J . This is, for instance, the case for the Method of Steepest
Descent and for Newton’s method; see, e.g. Luenberger [86]. Of course, these partial
derivatives can be computed in a straightforward manner by finite differences. That
is, if {∆pi}n

i=1 are small numbers, then we may define the approximations

∂J

∂pi
≈ J(p1, . . . , pi + ∆pi, . . . , pn) − J(p1, . . . , pi, . . . , pn)

∆pi

for i = 1, . . . , n. However, this approach requires the solution of n + 1 boundary
value problems of the form (7.101), (7.102), (7.105); see (7.99). More precisely, the
following values

J(p1, . . . , pn), J(p1 + ∆p1, . . . , pn), J(p1, . . . , pn + ∆pn),

of the cost-functional are needed to approximately determine the gradient ∇J of J
at the point (p1, . . . , pn). For fairly large values of n, this may lead to an unaccept-
able workload.

Can we perform this task in a more efficient way? Yes, it turns out that by intro-
ducing a single auxiliary problem, all of the partial derivatives of J can be computed
by solving one extra elliptic boundary value problem. This approach, frequently re-
ferred to as the adjoint method, can be derived as follows.

From (7.99) we find that

∂J

∂pi
= 2

m∑
j=1

∫
Γj

[u(x) − dj] upi
(x) dx, (7.106)

where upi
denotes the partial derivative of u with respect to pi, i.e.

upi
=

∂u

∂pi
.

Let H1(Ω) denote the classical Sobolev space of square-integrable functions with
square-integrable weak derivatives defined on Ω, i.e.

H1(Ω) =
{

φ ∈ L2(Ω);
∫

Ω

|∇φ|2 dx < ∞
}

,

7.3. Computing the Location and Orientation of a Dipole 269

where ∇φ is defined in terms of the distributional derivatives of φ. Then, the weak
form of the problem (7.101), (7.102), (7.105) can be written in the following form.
Find u such that

∫
Ω

∇φ · (M∇u) dx = −
∫

Ω

fφ dx for all φ ∈ H1(Ω), (7.107)

m∑
j=1

∫
Γj

u dx =
m∑

j=1

∫
Γj

dj dx. (7.108)

Next, if we differentiate with respect to pi in (7.107)–(7.108), we find that upi
must

satisfy the equations
∫

Ω

∇φ · (M∇upi
) dx = −

∫
Ω

fpi
φ dx for all φ ∈ H1(Ω), (7.109)

m∑
j=1

∫
Γj

upi
dx = 0. (7.110)

Note that (7.109)–(7.110) hold for i = 1, . . . , n, and thus the equations satisfied by
the partial derivatives up1 , . . . , upn

of u with respect to the parameters p1, . . . , pn

are very similar; only the right hand side of (7.109) depends on which of the deriv-
atives are considered! We will now see how this observation can be exploited to
derive an efficient scheme for computing all of the partial derivatives of our cost-
functional J .

Consider the auxiliary problem: Find w such that

∫
Ω

∇φ · (M∇w) dx = 2
m∑

j=1

∫
Γj

[u(x) − dj] φ(x) dx for all φ ∈ H1(Ω), (7.111)

∫
Ω

w dx = 0. (7.112)

If w solves this problem, then by putting φ = upi
in (7.111) it follows that

∫
Ω

∇upi
· (M∇w) dx = 2

m∑
j=1

∫
Γj

[u(x) − dj] upi
(x) dx, (7.113)

and from (7.106) we find that

∂J

∂pi
= 2

m∑
j=1

∫
Γj

[u(x) − dj] upi
(x) dx =

∫
Ω

∇upi
· (M∇w) dx. (7.114)

Now, recall that M is a symmetric tensor. Therefore

∂J

∂pi
=
∫

Ω

∇w · (M∇upi
) dx,

270 7. Inverse Problems

and by choosing φ = w in equation (7.109) we conclude that

∂J

∂pi
= −

∫
Ω

fpi
w dx for i = 1, . . . , n. (7.115)

This means that all of the partial derivatives

∂J

∂p1
, . . . ,

∂J

∂pn

of the cost-functional J , at a point (p1, . . . , pn), can be computed by the following
procedure:

1. Solve equations (7.107)–(7.108) for u

2. Solve equations (7.111)–(7.112) for w

3. Use formula (7.115) to compute the partial derivatives of J

7.3.6 A Numerical Experiment

The numerical experiment described here is similar to the one studied in Section
7.3.4. A source term f for (7.68) of the form (7.98) is selected by picking values for
the parameters p1, . . . , p4. Thereafter, the corresponding forward problem (7.101),
(7.102), (7.105) is solved and the solution of these equations at the boundary ∂Ω
provides the “artificial” observation data d for the inverse problem (7.80). As ex-
plained above, this inverse problem is not linear with the parameterization given in
(7.98). Solving (7.100) thus leads to a nonlinear optimization problem.

Several types of minimization algorithm exist. Here, we will compare the steep-
est decent algorithm with Nelder-Mead’s simplex method. The first method uses
gradient information; the latter does not. Since we have derived an efficient method
for computing the gradient of the cost-functional J , it will be interesting to compare
these two methods.

A reference solution was generated by choosing p = (−1, 0, 1, 0), i.e. a dipole
with centres at (−1, 0) and (1, 0). The minimization algorithms can be sensitive
to the initial guess, or the starting point, of the search. They might get stuck in
a local minimum instead of converging to the global solution. To investigate the
sensitivity of the starting points, ten different initial guesses were drawn randomly
from a normal distribution with zero mean and a standard deviation of 10.

The Simplex method converged to the correct solution in 50% of the cases. The
average number of function evaluations for the successful searches was 340. The
steepest decent method converged for all 10 initial guesses, and about 50 function
evaluations were needed to obtain convergence.

The experiments were repeated twice, with 1% and 10% noise added to the
“artificial” data d. The results were very similar to those obtained in the noise-free
cases. The main difference was that the steepest decent algorithm failed to identify
the correct parameters in one out of the ten cases.

Overall, the steepest decent algorithm performed very well. The reason for that
is that the cost-functional J is well-behaved; Figure 7.13 shows two cross sections
of this function.

7.4. Computing the Size and Location of a Myocardial Infarction 271

−40 −20 0 20 40
−40

−30

−20

−10

0

10

20

30

40

Cost function, with p
1
 = −1, p

2
 = 0

p
3

p 4

−40 −20 0 20 40
−40

−30

−20

−10

0

10

20

30

40

Cost function, with p
1
 = 10, p

2
 = 10

p
3

p 4
Fig. 7.13. The cost-functional J depends upon four parameters: p1, p2, p3, p4. In order to
make a 2D visualization of J , p1 and p2 are kept fixed. The plot on the left shows a cross
section with the correct values for p1 and p2, i.e. p1 = −1 and p2 = 0. The plot on the
right shows a cross section with p1 = p2 = 10, i.e. very different from the correct values. A
steepest decent algorithm will converge quickly to the correct values for p3 and p4 in the first
case, but not in the latter. This shows that the parameters cannot be computed independently.
Both plots suggest that the four-dimensional cost-functional J is convex and ideally suited
for a steepest descent search. (For the color version, see Figure A.14 on page 294).

7.4 Computing the Size and Location of a Myocardial
Infarction

In the Western world, ischemic heart disease is one of the most widespread illnesses,
killing approximately one million people every year [3,143,106]. In many cases,
traditional ECG based methods will fail to detect the ischemia [80]. Moreover, ECG
recordings provide only a rather crude picture of the position and size of infarctions
[12]. Thus, there is a need for improving this technology.

Based on the theory presented in the previous chapters, one might feel tempted
to ask the following question:

Is it possible to use mathematical models and computer simulations to

determine the size and location of a myocardial infarction? (7.116)

This section is devoted to this extremely challenging and important problem. More
precisely, we will present a conceptual framework, based on the models presented
in Chapter 2, for investigating the possibilities of computing the physical character-
istics of an ischemia.

To the knowledge of the authors, the challenge (7.116) has not previously been
formulated as an inverse problem for the bidomain equations. Thus, our goal is
to derive a parameter identification problem for (2.65)–(2.72), and hence propose a
methodology for analyzing (7.116). This will lead to a highly nonlinear and ill-posed
optimization problem. The potential of this framework will be illuminated through

272 7. Inverse Problems

T

∂T

∂H

H

Fig. 7.14. The domains H and T .

a series of numerical experiments. Moreover, we will derive an efficient technique
for computing the partial derivatives, needed by several optimization schemes, of
the involved cost-functional.

We would like to emphasize that we do not provide any complete solution to the
challenge (7.116). This section merely contains some preliminary investigations and
results concerning future possibilities for using computers to detect and characterize
myocardial infarctions. Further information about this issue can be found in [89,91].

7.4.1 Modelling Infarctions, the Direct (Forward) Problem

Consider the model (2.65)–(2.72) for the electrical activity in the heart H and in the
surrounding body T , cf. Figure 7.14. For the sake of simplicity, we will throughout
this section use a somewhat simplified model, and assume that the ionic current
across the cell membrane Iion depends only on the transmembrane potential v, i.e.

Iion = Iion(v).

In principle, it is not very difficult to do similar considerations in the presence of
complex cell-models, but we prefer the simplified model in order to reduce the com-
plexity. This leads to the mathematical model

∂v

∂t
+ Iion(v) = ∇ · (Mi∇v) + ∇ · (Mi∇ue) in H, (7.117)

∇ · (Mi∇v) + ∇ · ((Mi + Me)∇ue) = 0 in H, (7.118)

∇ · (Mo∇uo) = 0 in T, (7.119)

(7.120)

and suitable interface and boundary conditions specified along ∂H and ∂T , respec-
tively.

These equations, as explained in Chapter 2, may serve as a model for the prop-
agation of the electrical potential in an individual with a healthy heart. In order to
simulate the effects of an ischemia on the ECG signal, (7.117)–(7.119) must be
changed. To this end, let us introduce the n parameters

p1, p2, . . . , pn

7.4. Computing the Size and Location of a Myocardial Infarction 273

to represent the geometrical characteristics of an infarction. These variables will, in
what follows, be referred to as the infarction parameters.

According to biological observations, the cells in an infarcted region in the heart
are not excitable. This means that the tissue in such a zone behaves like a passive
conductor. Consequently, an ischemia can be incorporated into the model (7.117)–
(7.119) by removing the ion transport in the infarcted area. In mathematical terms,
we will use a function

g = g(x, t; p1, p2, . . . , pn)

to model this effect. More precisely, the term Iion, in equation (7.117), is simply
replaced by gIion(v), which leads to the model

∂v

∂t
+ gIion(v) = ∇ · (Mi∇v) + ∇ · (Mi∇ue) in H, (7.121)

∇ · (Mi∇v) + ∇ · ((Mi + Me)∇ue) = 0 in H, (7.122)

(7.123)

(Mi∇v + Mi∇ue) · n = 0 on ∂H, (7.124)

ue = uo on ∂H, (7.125)

Me∇ue · n = Mo∇uo · n on ∂H, (7.126)

(7.127)

∇ · Mo∇uo = 0 in T, (7.128)

Mo∇uo · n = 0 on ∂T. (7.129)

Typically, the function g will be very small in infarcted regions, and elsewhere ap-
proximately equal to one. Throughout this section we will assume that g is a given
smooth function that depends on both the spatial position x and the infarction para-
meters p1, . . . , pn.

Example 8. Let the infarcted area of the heart be denoted by M , and assume that it
can characterized by the function F (x; p1, p2, . . . , pn) in the following way:

M = {x : F (x) < 0}.
For convenience, we further assume that the minimal value of F is −1. In view of
the discussion above, the function g should be equal to one in the healthy part of the
heart tissue and zero in the centre of the infarcted area. A possible choice for g is
then:

g(x) =
1 + tanh(F (x)/τ)

2
Here, τ > 0 is a small parameter that controls the steepness of the transition between
health and infarcted tissue.

In the numerical experiments below, we will let M be a circle with radius r and
centred at the point (a, b), i.e.

F (x) =
(

x1 − a

r

)2

+
(

x2 − b

r

)2

− 1.

�

274 7. Inverse Problems

The direct problem, in the present context, can now be described as follows.
For a given set of infarction parameters p1, p2, . . . , pn, compute the effect of the
infarction on the ECG signal by solving (7.121)–(7.129). Note that the solution of
this direct problem depends on the parameters used to describe the properties of the
infarction, i.e.,

v = v(x, t; p1, p2, . . . , pn),
ue = ue(x, t; p1, p2, . . . , pn),
uo = uo(x, t; p1, p2, . . . , pn).

In this setting, we compute the effect of a given cause, namely the infarction. Thus,
we refer to this procedure as the direct, or forward, problem.

For the sake of ease of notation, let us introduce the mapping

R : [0, t∗] × Rn → L2(∂T),

by defining
R(t, p1, p2, . . . , pn) = uo(x, t; p1, p2, . . . , pn)|∂T ,

where [0, t∗] represents the time interval under consideration. That is, R is the so-
lution operator of the forward problem discussed above. Generally, R is a non-
linear function of n + 1 real variables. For a given set of infarction parameters
p1, p2, . . . , pn, R(t, p1, p2, . . . , pn) can be determined by a two-step procedure:

– Solve (7.121)–(7.129) in the time interval [0, t∗]

– Record, for every t ∈ [0, t∗], the simulated electrical potential uo along the
boundary ∂T of the body

7.4.2 Modelling Infarctions, the Inverse Problem

Given a set of ECG recordings of a patient, can we determine whether or not this
individual suffers from a myocardial infarction? If so, can we somehow recover the
geometrical characteristics of the infarction? In the present context, this challenge
is what we refer to as the inverse problem (or the parameter identification problem);
we want to find the cause of a potentially observable effect.

In mathematical terms, this means that we want to use the data from the ECG
recordings to compute the parameters p1, . . . , pn describing the properties of the
infarction. The purpose of this section is to define a suitable, and rather general,
mathematical framework for doing so. Ideally, this problem could be solved by in-
verting the operator R defined above. However, computing R−1 is, if not impossible,
an extremely difficult task. It seems like we must be content with minimizing, with
respect to the infarction parameters, the deviation between the simulated potential
at the leads and the observation data.

To this end, we need to introduce some notation. Let

d1(t), d2(t), . . . , dm(t)

7.4. Computing the Size and Location of a Myocardial Infarction 275

be functions of time, t ∈ [0, t∗], representing the data obtained from the ECG mea-
surements. Next, let

Γ1, Γ2, . . . , Γk ⊂ ∂T

denote the leads, used to produce the ECG recordings, positioned along the surface
∂T of the body. In this section, the mean values of a function φ(x, t), defined along
a lead Γi, will be denoted by φ(Γi, t), i.e.

φ(Γi, t) =
1

|Γi|

∫
Γi

φ(x, t) dx for i = 1, . . . , k. (7.130)

The data recorded by the ECG measurements will typically be of the form16

di(t) ≈ ũo(Γi+k/2, t) − ũo(Γi, t) for i = 1, . . . ,m, (7.131)

assuming that there is an even number k of leads and that m = k/2. Here, ũo(x, t),
for x ∈ ∂T , represents the actual (physical) electrical potential measured at the
surface of the patient’s body.

In order to recover the characteristics of a potential infarction from the observa-
tion data {di(t)}m

i=1 we introduce an objective function

J = J(p1, . . . , pn) : Rn → Rn,

by defining

J(p1, . . . , pn) =
∫ t∗

0

m∑
i=1

[
di(t) −

{
u(Γi+ k

2
, t) − u(Γi, t)

}]2
dt. (7.132)

For a given set of infarction parameters p1, . . . , pn, J(p1, . . . , pn) measures the er-
ror, or deviation, between the simulation results, obtained by solving the model
(7.121)–(7.129), and the data {di(t)}m

i=1 of the ECG recordings. Consequently, we
can try17 to compute the characteristics of the myocardial infarction by solving a
minimization problem of the form

min
(p1,...,pn)∈P

J(p1, . . . , pn). (7.133)

Here, P represents an admissible set of infarction parameters.

16 ECG recording devices typically measure the difference between the potential at two leads
(or the difference between the potential at one specific lead and the average of the potential
at the remaining leads). In Sections 7.2 and 7.3 we assumed, for the sake of simplicity,
that the observation data was of a simpler form; more precisely, that the electrical potential
itself at the leads were measured. This is, however, not usually the case. In the present
situation, we want to show that we are able to handle data of the form (7.131). The theory
presented in Sections 7.2 and 7.3 can also, in a straightforward manner, be modified to
incorporate such cases.

17 The purpose of the present section is to investigate the possibilities for characterizing an
ischemia by this approach!

276 7. Inverse Problems

7.4.3 Differentiation of the Objective Function

In order to solve the problem (7.133), we must apply some sort of optimization pro-
cedure. As mentioned in Section 7.3.5, such minimization algorithms often require
the partial derivatives of the involved objective function with respect to all of its
variables. That is, we need to compute

∂J

∂p1
,

∂J

∂p2
, . . . ,

∂J

∂pn
. (7.134)

This can, as already discussed in Section 7.3.5, be accomplished by a straightfor-
ward finite difference approach, i.e. by applying the approximations

∂J

∂pi
≈ J(p1, . . . , pi + ∆pi, . . . , pn) − J(p1, . . . , pi, . . . , pn)

∆pi
(7.135)

for i = 1, . . . , n. Note that, to compute the fraction (7.135) we must solve our model
problem (7.121)–(7.129), not only in the case of the parameter set p1, p2, . . . , pn,
but also for the perturbated “infarction” parameters p1, . . . , pi +∆pi, . . . , pn. Thus,
n + 1 coupled problems, of the form (7.121)–(7.129), must be solved in order to
compute all of the partial derivatives of J at a single point. This leads to an extremely
CPU-demanding procedure. For a fairly large number n of infarction parameters,
this cannot, within reasonable time limits, be done by even the fastest computers
available today.

The Adjoint Problem Approach

Our aim is to develop an efficient technique suitable for differentiating J with re-
spect to the infarction parameters. It turns out that all of the n partial derivatives
(7.134) of J can be computed by solving a single auxiliary problem. Magic? No, it
follows by a mathematical trick involving the so-called adjoint problem of (7.121)–
(7.129). In fact, the derivation presented below, is similar to the argument presented
in Section 7.3.5.

In the following, we will write I(v) instead of Iion(v), and we define the func-
tion

u =
{

ue in H,
u0 in T.

With this notation at hand, we may write the model (7.121)–(7.129) on its variational
form, also integrating in time,

∫ t∗

0

∫
H

vtφ dx dt +
∫ t∗

0

∫
H

Mi∇v · ∇φ dx dt +
∫ t∗

0

∫
H

Mi∇u · ∇φ dx dt

+
∫ t∗

0

∫
H

gI(v)φ dx dt = 0 for all φ ∈ V (H), (7.136)

∫ t∗

0

∫
H

Mi∇v · ∇ψ dx dt +
∫ t∗

0

∫
H

(Mi + Me)∇u · ∇ψ dx dt

+
∫ t∗

0

∫
T

Mo∇u · ∇ψ dx dt = 0 for all ψ ∈ V (H ∪ T), (7.137)

7.4. Computing the Size and Location of a Myocardial Infarction 277

where V (H) and V (H∪T) represent suitable spaces of functions defined on H and
H ∪ T , respectively. The derivation of weak forms of systems of partial differential
equations was discussed in detail in Chapter 3. Hence, we will not dwell any further
upon this issue in the present context.

As mentioned above, since the function g = g(x, t; p1, . . . , pn) depends on the
infarction parameters, the solution (u, v) of the system (7.136)–(7.137) will also
depend on p1, . . . , pn. Let j ∈ {1, . . . , n} be arbitrary and define, for the sake of
simple notation, p = pj . Our goal is to compute the partial derivative of the cost-
functional J with respect to the variable p. From (7.132) it follows that

∂J

∂p
= −2

∫ t∗

0

m∑
i=1

[
di(t)−

{
u(Γi+ k

2
, t) − u(Γi, t)

}] [
up(Γi+ k

2
, t) − up(Γi, t)

]
dt,

(7.138)
where

up(Γi, t) =
1

|Γi|

∫
Γi

up(x, t) dx for i = 1, . . . , k, (7.139)

cf. (7.130). In (7.139), up(x, t) denotes the partial derivatives of u(x, t) with respect
to the infarction parameter p, i.e.

up(x, t) =
∂u

∂p
(x, t).

We differentiate (7.136)-(7.137) with respect to p and find that

∫ t∗

0

∫
H

vptφ dx dt +
∫ t∗

0

∫
H

Mi∇vp · ∇φ dx dt

+
∫ t∗

0

∫
H

Mi∇up · ∇φ dx dt +
∫ t∗

0

∫
H

gpI(v)φ dx dt

+
∫ t∗

0

∫
H

gI ′(v)vpφ dx dt = 0 for all φ ∈ V (H), (7.140)

∫ t∗

0

∫
H

Mi∇vp · ∇ψ dx dt +
∫ t∗

0

∫
H

(Mi + Me)∇up · ∇ψ dx dt

+
∫ t∗

0

∫
T

Mo∇up · ∇ψ dx dt = 0 for all ψ ∈ V (H ∪ T) (7.141)

If we define the operator

A : [V (H) × V (H ∪ T)]2 → R

278 7. Inverse Problems

by

A [(r, τ), (φ, ψ)] =
∫ t∗

0

∫
H

rtφ dx dt +
∫ t∗

0

∫
H

Mi∇r · ∇φ dx dt

+
∫ t∗

0

∫
H

Mi∇τ · ∇φ dx dt +
∫ t∗

0

∫
H

gI ′(v)rφ dx dt

+
∫ t∗

0

∫
H

Mi∇r · ∇ψ dx dt+
∫ t∗

0

∫
H

(Mi + Me)∇τ · ∇ψ dx dt

+
∫ t∗

0

∫
T

Mo∇τ · ∇ψ dx dt,

then it follows from (7.140)-(7.141) that (vp, up) satisfies

A [(vp, up), (φ, ψ)] = −
∫ t∗

0

∫
H

gpI(v)φ dx dt (7.142)

for all (φ, ψ) ∈ V (H) × V (H ∪ T).
Next, consider the auxiliary problem: find (w, q) such that

A [(φ, ψ), (w, q)] = (7.143)

−2
∫ t∗

0

m∑
i=1

[
di(t) −

{
u(Γi+ k

2
, t) − u(Γi, t)

}] [
ψ(Γi+ k

2
, t) − ψ(Γi, t)

]
dt

for all (φ, ψ) ∈ V (H) × V (H ∪ T). The right hand side of this equation should be
compared with the expression (7.138) for the partial derivative of J with respect to
p. Clearly, by putting (φ, ψ) = (vp, up) in (7.143), we conclude from (7.138) that

∂J

∂p
= A [(vp, up), (w, q)] ,

provided that (w, q) solves (7.143). Moreover, choosing (φ, ψ) = (w, q) in (7.142)
yields that

∂J

∂p
= A [(vp, up), (w, q)] = −

∫ t∗

0

∫
H

gpI(v)w dx dt.

Recall that the index j ∈ {1, . . . , n}, and hence p = pj , was arbitrary. There-
fore, we conclude that

∂J

∂pj
= −

∫ t∗

0

∫
H

gpj
I(v)w dx dt for j = 1, . . . , n, (7.144)

where

gpj
=

∂g

∂pj
.

7.4. Computing the Size and Location of a Myocardial Infarction 279

Thus, it follows that it is sufficient to solve equations (7.136)-(7.137) and the auxil-
iary problem (7.143) in order to compute all of the partial derivatives

∂J

∂p1
, . . . ,

∂J

∂pn

of J by the expression (7.144). Consequently, the workload for computing all of
these derivatives is almost independent of the number n of infarction parameters
that is used in the model (7.121)–(7.129). Only the number of integrals in (7.144)
that must be calculated will grow as n increases.

The Adjoint Problem. From these considerations, it follows that we might want
to solve problems of the form (7.143). Yet what sort of problem is this auxiliary
equation? The next step is to investigate this issue in detail, and derive a form of this
problem suitable for applying numerical discretization procedures.

By choosing ψ = 0 in (7.143) we find that

A [(φ, 0), (w, q)] = 0 for all φ ∈ V (H),

or
∫ t∗

0

∫
H

φtw dx dt +
∫ t∗

0

∫
H

Mi∇φ · ∇w dx dt +
∫ t∗

0

∫
H

gI ′(v)φw dx dt

+
∫ t∗

0

∫
H

Mi∇φ · ∇q dx dt = 0 for all φ ∈ V (H). (7.145)

From Gauss’ divergence theorem, and by choosing appropriate test functions φ, we
conclude from this expression that w and q must satisfy the equation

−wt + gI ′(v)w = ∇ · (Mi∇w) + ∇ · (Mi∇q) in H. (7.146)

Next, choosing φ = 0 in (7.143) yields that

A [(0, ψ), (w, q)] =

−2
∫ t∗

0

m∑
i=1

[
di(t) −

{
u(Γi+ k

2
, t) − u(Γi, t)

}] [
ψ(Γi+ k

2
, t) − ψ(Γi, t)

]
dt

for all ψ ∈ V (H ∪ T), or

∫ t∗

0

∫
H

Mi∇ψ · ∇w dx dt +
∫ t∗

0

∫
H

(Mi + Me)∇ψ · ∇q dx dt

+
∫ t∗

0

∫
T

Mo∇ψ · ∇q dx dt (7.147)

= −2
∫ t∗

0

m∑
i=1

[
di(t) −

{
u(Γi+ k

2
, t) − u(Γi, t)

}] [
ψ(Γi+ k

2
, t) − ψ(Γi, t)

]
dt.

280 7. Inverse Problems

All the leads Γ1, . . . , Γk are located along the boundary ∂T of the body. Hence, by
choosing test functions ψ with support in the interior of H and T , respectively, we
conclude from (7.147) that (w, q) must satisfy the equations

∇ · (Mi∇w) + ∇ · ((Mi + Me)∇q) = 0 in H, (7.148)

∇ · (Mo∇q) = 0 in T. (7.149)

So far, we have seen that a smooth solution (w, q) of (7.143) must satisfy the
partial differential equations (7.146), (7.148), and (7.149). The next step, in order
to obtain a complete set of equations, is to derive suitable temporal and boundary
conditions for w and q.

From equation (7.145) and Gauss’ divergence theorem we find that
∫

H

φ(x, t∗)w(x, t∗) dx −
∫

H

φ(x, 0)w(x, 0) dx

−
∫ t∗

0

∫
H

φwt dx dt +
∫ t∗

0

∫
H

Mi∇φ · ∇w dx dt

+
∫ t∗

0

∫
H

gI ′(v)φw dx dt +
∫ t∗

0

∫
H

Mi∇φ · ∇q dx dt = 0. (7.150)

Let t̃ ≈ t∗, and pick a test function φ̃ such that

φ̃(x, t) = 0 for t ∈ [0, t̃].

Inserting φ = φ̃ into (7.150) implies that
∫

H

φ̃(x, t∗)w(x, t∗) dx ≈ 0,

and thus we have derived the following final condition for w

w(x, t∗) = 0 for x ∈ H. (7.151)

The interface and boundary conditions along ∂H and ∂T , respectively, can be
derived in a similar manner. More precisely, by choosing suitable test functions,
with support only in the vicinity of ∂H and ∂T , we find that the auxiliary problem
(7.143) can be written in the “classical” form: find (w, q) such that

−wt + gI ′(v)w = ∇ · (Mi∇w) + ∇ · (Mi∇q) in H, (7.152)

∇ · (Mi∇w) + ∇ · ((Mi + Me)∇q) = 0 in H,

w(x, t∗) = 0 in H,

(Mi∇w + Mi∇q) · n = 0 on ∂H,

(Me∇q) · n = (Mo∇q) · n on ∂H,

∇ · (Mo∇q) = 0 in T,

7.4. Computing the Size and Location of a Myocardial Infarction 281

and∫
∂T

ψ(Mo∇q) · ndx =

−2
m∑

i=1

[
di(t) − [u(Γi+ k

2
, t) − u(Γi, t)]

] [
[ψ(Γi+ k

2
, t) − ψ(Γi, t)]

]
(7.153)

for all smooth test functions ψ ∈ C∞(∂T) and t ∈ [0, t∗]. The boundary condition
(7.153) involves the mean values of both the potential u and the test function ψ along
the leads Γ1, . . . , Γk. Therefore, this equation cannot be written in a “classical”,
point-wise form.

The similarity between our original model (7.121)–(7.129), for the forward prob-
lem, and (7.152)–(7.153) is striking. In mathematical terms, we refer to (7.152)–
(7.153) as the adjoint problem of (7.152)–(7.153). Note that condition (7.151) is
specified at time t = t∗, i.e. (7.151) is a final condition for w. This is in “agreement”
with the minus sign that appears in front of the term involving the time derivative of
w in (7.152).

We have seen that all of the partial derivatives of the cost-functional J can be
computed efficiently by solving the adjoint problem. More precisely, the procedure
for doing this is as follows:

– For a given set p1, . . . , pn of infarction parameters, solve (7.121)–(7.129) for v
and

u =
{

ue in H,
u0 in T

– Solve the adjoint problem (7.152)–(7.153) for w and q

– Compute the partial derivatives of J by applying formula (7.144)

The CPU time needed by this algorithm will thus be almost independent of the
number n of infarction parameters used to describe the ischemia! Observe that, as
soon as v and u have been determined, the adjoint problem (7.152)–(7.153) is, in
contrast to (7.121)–(7.129), linear.

7.4.4 Numerical Experiments

Numerical experiments were carried out on an idealized, circular geometry. The
heart domain H was modelled by a disk with radius 5 cm and the torso T had a
radius of 7 cm. A small radius of the torso was chosen in order to reduce the com-
putational load. Initially the tissue was at rest, but a stimulation current was applied
inside a circle. It was centred 3 cm off the origin of the heart-disk, and had a radius
of 1 cm. Figure 7.15 shows a schematic. The extracardiac potential was recorded at
100 locations on the torso surface. The infarcted area was characterized by a cir-
cle with a given position (a, b) and radius r. Each simulation was carried out for
100 ms, which in most cases was enough time for all of the tissue to be depolarized.
The ionic current was modelled by applying the formula

282 7. Inverse Problems

Fig. 7.15. The figure shows the idealized geometry used in the experiments in Section 7.4.4.
The white circle represents the area in which stimulus current was applied. It was fixed
throughout all the simulations. The yellow area represents an area with no active propaga-
tion. It had the same shape in all the simulations, but varied in size and location. The dots
on the outer boundary represent leads, i.e. locations where the extra cellular potential was
recorded. (For the color version, see Figure A.15 on page 294).

Iion(v) = −0.042(v + 85)(v + 65)(v − 40),

which means that there was no repolarisation phase in the simulations.
Figure 7.16 shows the solution of our modelled problem (7.121)–(7.129) at three

time instances. In this case, an infarction was located at the point (−2,2) and had a
radius of 1.5 cm. The propagation of the electrical potential was (see Figure 7.16),
clearly influenced by the presence of the infarction!

In Figure 7.17 the extra cardiac potential at two locations at the body surface ∂T
is plotted. Note the relationship between this figure and the second row in Figure
7.16. For example, the potential at (0,7) changed from being positive at time t =
15 ms to negative at time t = 25 ms, while the potential at (7,0) stayed negative
throughout most of the simulation. Simulation results generated without an infarcted
area are plotted for comparison. Note that large deviations in the surface potentials
did not occur until the wavefront reached the infarcted area, about 15 ms into the
simulation.

Let us now turn our attention to the cost-functional J defined in (7.132). Syn-
thetic ECG recordings were generated by the following procedure:

– A circular infarction with radius 1 cm and centre (3, 3) was incorporated into
the model (7.121)–(7.129), cf. also Example 8

– We computed the solution of the resulting forward problem

– The electrical potential at the surface ∂T of the body was recorded and “ECG”
measurements were produced by applying formula (7.131)

7.4. Computing the Size and Location of a Myocardial Infarction 283

Fig. 7.16. Simulation results generated with an infarction located at (−2,2). The left column
shows the transmembrane potential in the heart, and the right column illustrates the extra
cellular and extra cardiac potential in Ω = H ∪ T . At time t = 25 ms, the presence of the
infarction is clearly visible in the propagation pattern. (For the color version, see Figure A.16
on page 295).

284 7. Inverse Problems

0 5 10 15 20 25 30 35 40 45 50
−30

−25

−20

−15

−10

−5

0

5

10

15

20

ms

m
V

Extra cardiac potentials

Lead (0,7), normal
Lead (0,7), infarced
Lead (7,0), normal
Lead (7,0), infarced

Fig. 7.17. “ECG data” from the simulation results shown in Figure 7.16. The data was
recorded at the leads positioned at (0, 7) and (7, 0). Measurements were performed for both
a healthy (solid lines) and an infarcted (dashed lines) heart. (For the color version, see Figure
A.17 on page 296).

In this procedure for generating “observation data”, k = 100 uniformly distributed
leads positioned along ∂T were used; see Figure 7.15. Consequently, we obtained
m = k/2 = 50 artificial ECG recordings of the form (7.131).

Let p1 and p2 be two infarction parameters that represent the centre (p1, p2) of
an infarction with radius 1 cm. This leads to the following version of the objective
function J defined in (7.132):

J(p1, p2) =
∫ t∗

0

50∑
i=1

[di(t) − {u(Γi+25, t) − u(Γi, t)}]2 dt. (7.154)

Here,
u = u(x, t; p1, p2)

denotes the simulated electrical potential obtained by solving (7.136)–(7.137), and
Γ1, . . . , Γ100 the involved leads. Hence, in order to compute J(p1, p2), for a given
centre (p1, p2), the model (7.121)–(7.129) must be solved. Note that, since the data
{di}50

i=1 was produced by the procedure described above,

J(3, 3) = 0.

Figure 7.18 shows three plots of J(p1, p2) for various levels of noise in the
observation data. Clearly, our objective function seems to be well-behaved:

7.4. Computing the Size and Location of a Myocardial Infarction 285

Fig. 7.18. Plots of the cost-functional J = J(p1, p2) as a function of the centre (p1, p2) of
the infarction for various levels of noise in the observation data. The size of the parameters
p1 and p2 are represented by the ‘x’ and ‘y’ axes, respectively. (For the color version, see
Figure A.18 on page 296).

– In the cases of no and 5% noise in the data, J is fairly convex and has a unique
minimum. Moreover, the minimum is located at the right position ≈ (3, 3)

– Even with a noise level of 100%, our cost-functional seems to capture the ba-
sic properties of the problem at hand. However, in such cases, it seems to be
extremely difficult to actually compute the minimum of J .

Considering these results, one might ask the question; is the problem (7.133)
well-posed? As explained in Section 7.1.5, discretizing an ill-posed system of equa-
tions often leads to a regularized approximation of the underlying problem. Based
on physical considerations, it seems to be reasonable to conclude that the continu-
ous counterpart, using infinitely many infarction parameters, of (7.133) is ill-posed.
Thus, the number n of infarction parameters used in (7.133) defines a regulariza-
tion parameter. In the present example n = 2, and consequently we obtain a well-
behaved minimization problem (7.154).

We have seen that if the number n of infarction parameters is low, then the ob-
jective function J is well-behaved. Thus, it seems to be important to investigate the
number of parameters needed to accurately characterize an infarction. In addition,
efficient minimization algorithms, using the adjoint problem approach described in
Section 7.4.3, for solving (7.133) should be implemented and tested. Such methods
will typically require the solution of (7.121)–(7.129) and (7.152)–(7.153) for many
different choices of the infarction parameters p1, . . . , pn. Both of these problems
are extremely CPU-demanding. Hence, the methods for solving the direct problem
modelling the electrical activity in the human body must be further improved. We
hope to return to these issues in our future work.

Appendix A

Color Figures

0 1
0

1

50 triangles

0

0.00558

0.0112

0.0167

0.0223

0.0279

0.0335

0.0391

0.0447

0.0502

0.0558

0 1
0

1

200 triangles

0

0.0062

0.0124

0.0186

0.0248

0.031

0.0372

0.0434

0.0496

0.0558

0.062

0 1
0

1

800 triangles

0

0.00624

0.0125

0.0187

0.025

0.0312

0.0374

0.0437

0.0499

0.0561

0.0624

0 1
0

1

3200 triangles

0

0.00625

0.0125

0.0187

0.025

0.0312

0.0375

0.0437

0.05

0.0562

0.0625

Fig. A.1. Plots of the solution u of (3.1)–(3.2) for four different levels of grid refinement.
(This is a color version of Figure 3.3 on page 64).

288 A. Color Figures

−20 −10 20100
−20

−10

0

10

20

dipole

−0.994

−0.795

−0.596

−0.398

−0.199

−2.78e−17

0.199

0.398

0.596

0.795

0.994

Fig. A.2. An example of the function f(x) in (3.15).(This is a color version of Figure 3.4 on
page 65).

−20 −10 20100
−20

−10

0

10

20

u

−17.4

−13.9

−10.4

−6.96

−3.48

−0.003

3.48

6.95

10.4

13.9

17.4

−20 −10 20100
−20

−10

0

10

20

flux_magnitude

1.95e−06

0.349

0.698

1.05

1.4

1.75

2.1

2.44

2.79

3.14

3.49

Fig. A.3. The solution resulting from the source term function f(x) given above. The left
panel shows the potential, while the right panel shows the magnitude of the current. (This is
a color version of Figure 3.5 on page 67).

289

Fig. A.4. The location of the poles are shown as red and blue spheres. (This is a color version
of Figure 3.6 on page 68).

Fig. A.5. The electrical potential set up by the dipole. The colour scale is from −4 mV to
4 mV. Note that the field is stronger on the front (left). (This is a color version of Figure 3.7
on page 68).

A. Color Figures

290 A. Color Figures

Fig. A.6. The transmembrane potential (mV) at four stages during normal propagation. (This
is a color version of Figure 3.11 on page 94).

Fig. A.7. Four stages during ischemic propagation. (This is a color version of Figure 3.14 on
page 96).

291

Fig. A.8. The extracellular potential around the ischemic area during a) the ST segment b)
the TP segment. The heart boundary is indicated by the solid line. (This is a color version of
Figure 3.15 on page 97).

Fig. A.9. The upper left picture shows the initial vector. It is a random vector that should con-
tain “all possible” errors. In the upper right picture the solution after one symmetric Gauss–
Seidel sweep is displayed. It is clear that the random high–frequency behaviour in the initial
solution has been effectively removed. The picture down to the left shows the solution after
the coarse grid correction. The smooth components of the solution have improved dramat-
ically. In the last picture the solution after the post smoothing is displayed. The solution is
now very close to the actual solution. (This is a color version of Figure 4.5 on page 129).

A. Color Figures

292 A. Color Figures

Fig. A.10. An example of partitioning the heart domain (left) and the body domain (right).
(This is a color version of Figure 6.6 on page 214).

Fig. A.11. a) The fiber directions and b) the sheet planes. (This is a color version of Figure
6.7 on page 216).

293

Fig. A.12. A snapshot of the transmembrane potential during the depolarization phase. The
right figure shows an iso-surface of the potential at the time instant when two fronts meet.
(This is a color version of Figure 6.8 on page 216).

Fig. A.13. The extra cardiac potential on the torso surface (left) and on some iso-surfaces
(right). (This is a color version of Figure 6.9 on page 217).

A. Color Figures

294 A. Color Figures

−40 −20 0 20 40
−40

−30

−20

−10

0

10

20

30

40

Cost function, with p
1
 = −1, p

2
 = 0

p
3

p 4

−40 −20 0 20 40
−40

−30

−20

−10

0

10

20

30

40

Cost function, with p
1
 = 10, p

2
 = 10

p
3

p 4

Fig. A.14. The cost-functional J depends upon four parameters: p1, p2, p3, p4. In order to
make a 2D visualization of J , p1 and p2 are kept fixed. The plot on the left shows a cross
section with the correct values for p1 and p2, i.e. p1 = −1 and p2 = 0. The plot on the
right shows a cross section with p1 = p2 = 10, i.e. very different from the correct values. A
steepest decent algorithm will converge quickly to the correct values for p3 and p4 in the first
case, but not in the latter. This shows that the parameters cannot be computed independently.
Both plots suggest that the four-dimensional cost-functional J is convex and ideally suited
for a steepest descent search. (This is a color version of Figure 7.13 on page 271).

Fig. A.15. The figure shows the idealized geometry used in the experiments in Section 7.4.4.
The white circle represents the area in which stimulus current was applied. It was fixed
throughout all the simulations. The yellow area represents an area with no active propaga-
tion. It had the same shape in all the simulations, but varied in size and location. The dots
on the outer boundary represent leads, i.e. locations where the extra cellular potential was
recorded. (This is a color version of Figure 7.15 on page 282).

295

Fig. A.16. Simulation results generated with an infarction located at (−2,2). The left column
shows the transmembrane potential in the heart, and the right column illustrates the extra
cellular and extra cardiac potential in Ω = H ∪ T . At time t = 25 ms, the presence of the
infarction is clearly visible in the propagation pattern. (This is a color version of Figure 7.16
on page 283).

A. Color Figures

296 A. Color Figures

0 5 10 15 20 25 30 35 40 45 50
−30

−25

−20

−15

−10

−5

0

5

10

15

20

ms

m
V

Extra cardiac potentials

Lead (0,7), normal
Lead (0,7), infarced
Lead (7,0), normal
Lead (7,0), infarced

Fig. A.17. “ECG data” from the simulation results shown in Figure 7.16. The data was
recorded at the leads positioned at (0, 7) and (7, 0). Measurements were performed for both
a healthy (solid lines) and an infarcted (dashed lines) heart. (This is a color version of Figure
7.17 on page 284).

Fig. A.18. Plots of the cost-functional J = J(p1, p2) as a function of the centre (p1, p2) of
the infarction for various levels of noise in the observation data. The size of the parameters
p1 and p2 are represented by the ‘x’ and ‘y’ axes, respectively. (This is a color version of
Figure 7.18 on page 285).

Appendix B

Rate Functions and Ionic Currents

B.1 The Hodgkin-Huxley Model

The parameters in the Hodgkin-Huxley model are the membrane capacitance, the
maximum conductances, and the shifted equilibrium potentials. The values are

Cm = 1.0,

ḠNa = 120.0,

ḠK = 36.0,

GL = 0.3,

νNa = 115.0,

νK = −12.0,

νL = 10.6.

The rate functions in (2.63) are given in terms of the shifted transmembrane
potential ν, i.e. the deviation from the resting potential. The expressions are

αm = 0.1
25 − ν

exp(25−ν
10) − 1

, βm = 4.0 exp
(

−ν

18.0

)
,

αh = 0.07 exp
(
−ν

20

)
, βh =

1.0
exp(30−ν

10) + 1
,

αn = 0.01
10 − ν

exp(10−ν
10) − 1

, βn = 0.125 exp
(
−ν

80

)
.

Combined with the differential equations presented in Section 2.4.6 this gives a
complete specification of the Hodgkin-Huxley model.

B.2 The Noble Model for Purkinje Cells

The values of the constants in the model are

Cm = 12.0,

ḡNa = 400,
ḡK2 = 1.2
gi = 0.14

vNa = 40,

vK = −100,

298 B. Rate Functions and Ionic Currents

The rate functions αg , βg for the gate variables in the Noble model for Purkinje
fibers are all of the form

αg =
C1 exp(C2(v − v0)) + C3(v − v0)

1 + C4 exp(C5(v − v0))
. (B.1)

Here v0 and C1, . . . , C5 are constants specific to each rate function. The constants
are specified in Table B.1.

Table B.1. Parameters in the Noble model for Purkinje cells.

C1 C2 C3 C4 C5 v0

αm 0 - 0.1 -1.0 -1/15.0 -48.0
βm 0 - -0.12 -1.0 0.2 -8.0
αh 0.17 -1/20.0 0 0 - -90
βh 1.0 0 0 1.0 -0.1 -42.0
αn 0 - 0.0001 -1.0 -0.1 -50.0
βn 0.002 -1/80.0 0 0 - -90

B.3 The Beeler-Reuter Model

The rate functions αg and βg for the Beeler-Reuter model are all on the form (B.1),
with constants specified in Table B.2. For notational convenience the intracellular
calcium concentration has been scaled, c = 107[Ca]i. The ionic currents are given

Table B.2. The constants in the rate functions of the Beeler-Reuter model

C1 C2 C3 C4 C5 v0

αm 0 - 1 −1 −0.1 −47.0
βm 40 −0.5599 0 0 - −72
αh 0.126 −0.25 0 0 - −77
βh 1.7 0 0 1 −0.082 −22.5
αj 0.055 −0.25 0 1 −0.2 −78.0
βj 0.3 0 0 1 −0.1 −32
αd 0.095 −0.01 0 1 −0.0719 5.0
βd 0.07 −0.0171 0 1 0.05 −44
αf 0.012 −125.0 0 1 0.15 −28.0
βf 0.0065 −0.02 0 1 −5.0 −30.0
αx 0.0005 −0.0833 0 1 0.0571 −50.0
βx 0.0013 −0.06 0 1 0.04 −20.0

B.3. The Beeler-Reuter Model 299

by

INa = (4m3hj + 0.003)(v − 50),

IK = 1.4
exp(0.04(v + 85)) − 1

exp(0.08(v + 53)) + exp(0.04(v + 53))
,

Ix = 0.8x
exp(0.04(v + 77)) − 1

exp(0.04(v + 35))
,

Is = 0.09fd(v + 66.18 + 13.0287 ln[Ca]i).

We see that in these expressions the correct values for the equilibrium potentials
have already been inserted. The only remaining constant that must be specified is
the membrane capacitance, which is set to Cm = 1.0. With the equations specified
in Section 2.4.8, the expressions given here for the rate functions and ionic currents
give a complete specification of the Beeler-Reuter model.

Appendix C

Coefficients for the Implicit RK Solvers

The coeffcients for the Radau solver (5.17)–(5.20) are

c1 =
4 −

√
6

10
, c2 =

4 +
√

6
10

, c3 = 1,

a11 =
88 − 7

√
6

360
, a12 =

296 − 169
√

6
1800

, a13 =
−2 + 3

√
6

225
,

a21 =
296 + 169

√
6

1800
, a22 =

88 + 7
√

6
360

, a23 =
−2 − 3

√
6

225
,

b1 = a31 =
16 −

√
6

36
, b2 = a32 =

16 +
√

6
36

, b3 = a33 =
1
9
.

The coefficients for the SDIRK 3(2) method given by (5.21)–(5.24), and the error
estimator described in Section 5.4, are

γ = 0.4358665215,

c2 = 2γ, c3 = 1, c4 = 1,

a21 = γ,

a31 = b̂1 =
−4γ2 + 6γ − 1

4γ
, a32 = b̂2 =

−2γ + 1
4γ

,

a41 = b1 =
6γ − 1
12γ

, a42 = b2 =
−1

(24γ − 12)γ
, a43 = b3 =

6γ2 + 6γ − 1
6γ − 3

,

b̂3 = γ, b̂4 = 0,

b4 = γ.

See [78] for an explanation of these values.

Bibliography

1. R. A. Adams. Sobolev Spaces. Academic Press, 1975.
2. C. Antzelevitch, S. Sicouri, S. Litovsky, A. Lukas, S. Krishnan, J. Diego, G. Gintant,

and D. Liu. Hetrogeneity within the ventricular wall. electrophysiology and pharma-
cology of epicardial, endocardialm and m cells. Circ. Res. 69(6), pages 1427–1449,
1991.

3. E. Arias, R. N. Anderson, K. Hsiang-Ching, S. L. Murphy, and K. D. Kochanek. Deaths.
final data for 2001. Technical Report 52(3), National vital statistics report, 2003.

4. D. N. Arnold, R. S. Falk, and R. Winther. Preconditioning in H(div) and applications.
Math. Comp. 66, 1997.

5. D. N. Arnold, R. S. Falk, and R. Winther. Preconditioning discrete approximations of
the Reissner–Mindlin plate model. M2AN, 31:517–557, 1997.

6. U. M. Ascher and L. R. Petzold. Computer methods for ordinary differential equations
and differential-algebraic equtions. SIAM, 1998.

7. R. E. Bank and T. Dupont. An optimal order process for solving finite element equa-
tions. Math. Comp., 36:35–51, 1981.

8. H. T. Banks and K. Kunisch. Estimation Techniques for Distributed Parameter Systems.
Birkhäuser, 1989.

9. G. W. Beeler and H. Reuter. Reconstruction of the action potential of ventricular my-
ocardial fibres. Journal of Physiology, 268:177–210, 1977.

10. M. E. Belik, T. P. Usyk, and A. D. McCulloch. Computational models for cardiac
electrophysiology. In Numerical methods handbook. Elsevier, 2003.

11. R. M. Berne and M. N. Levy. Physiology. Elsevier Science, 1998.
12. Y Birnbaum and B. J. Drew. The electrocardiogram in ST elevation acute myocardial

infarction: correlation with coronary anatomy and prognosis. Postgrad. Med. J., 79,
2003.

13. J. H. Bramble. Multigrid Methods, volume 294 of Pitman Research Notes in Mathe-
matical Sciences. Longman Scientific & Technical, Essex, England, 1993.

14. A. Brandt. Multiscale scientific computation review 2001. In T. J. Barth, T. F. Chan, and
R. Haimes, editors, Multiscale and Multiresolution Methods: Theory and Applications.
Springer, 2001.

15. W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial. SIAM Books,
2nd edition, 2000.

16. M. L. Buist and A. J. Pullan. The effect of torso impedance on epicardial and body
surface potentials: A modeling study. IEEE Trans. Biomed. Eng., 50(7):816–824, 2003.

17. J. C. Butcher. Integration processes based on Radau quadrature formulas. Mathematics
of Computation, 18:233–244, 1964.

18. X.-C. Cai. Additive schwarz algorithms for parabolic convection-diffusion equations.
Numer. Math., 60:41–62, 1991.

19. X.-C. Cai. Multiplicative schwarz methods for parabolic problems. SIAM J. Sci. Com-
put., 15(3):587–603, 1994.

20. S. D. Carley. Beyond the 12 lead: Review of the use of additional leads for the early
electrocardiographic diagnosis of acute myocardial infarction. Emergency medicine,
15:143–154, 2003.

21. Cellml. http://www.cellml.org .

302 Bibliography

22. T. F. Chan and T. P. Mathew. Domain decomposition algorithms. Acta Numerica, pages
61–143, 1994.

23. R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, and J. McDonald. Parallel
Programming in OpenMP. Morgan Kaufmann, 2000.

24. L. K. Cheng, J. M. Bodely, and J. Pullan. Comparison of potential- and activation-
based formulations for the inverse problem of electrocardiology. IEEE Transactions on
Biomedical Engineering, 50(1):11–22, January 2003.

25. D. Colton, R. Ewing, and W. Rundell, editors. Inverse Problems in Partial Differential
Equations. SIAM, 1991.

26. S. Cortassa, M. A. Aon, E. Marbán, R. L. Winslow, and B. O’Rourke. An integrated
model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophysical
J, 84:2734–2755, 2003.

27. C. F. Curtiss and J. O. Hirschfelder. Integration of stiff equations. Proc. Nat. Acad. Sci.,
38:235–243, 1952.

28. G. Dahlquist. A special stability problem for linear multistep methods. BIT, 1963.
29. R. Dautray and J. Lions. Mathematical Analysis and Numerical Methods for Science

and Technology, volume 4. Springer, 1990.
30. J. R. Dormand and P. J. Prince. A family of embedded Runge-Kutta formulae. J. Comp.

Appl. Math, 6:19–26, 1980.
31. O. Dössel. Inverse problem of electro- and magnetocardiography: Review and recent

progress. International Journal of Bioelectromagnetism, 2(2), 2000.
32. W. J. Duffin. Electricity and Magnetism. McGraw-Hill, 1990.
33. D. Durrer, R. T. van Dam, G. E. Freud, M. J. Janse, Meijler FL, and Arzbaecher RC.

Total excitation of the isolated human heart. Circulation, 41:899–912, 1970.
34. W. Einthoven. Die galvanometrische registrirung des mensclichen elektrokardio-

gramms, zugleich eine beurtheilung der anwendung des capialr-elektrometers in der
physiologie. Pfluegers Arch, 99:472–480, 1903.

35. H. C. Elman. Preconditioners for saddle point problems arising in computational fluid
dynamics. Appl. Numer. Math., 43:75–89, 2002.

36. H. C. Elman, D. J. Silvester, and A. J. Wathen. Block preconditioners for the discrete in-
compressible Navier–Stokes equations. Int. J. Numer. Meth. Fluids, 40:333–344, 2002.

37. H. W. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse Problems. Kluwer
Academic Publishers, 1996.

38. L. C. Evans. Partial differential equations. American Mathematical Society, 1998.
39. C. Farhat and M. Lesoinne. Automatic partitioning of unstructured meshes for the paral-

lel solution of problems in computational mechanics. Internat. J. Numer. Meth. Engrg.,
36:745–764, 1993.

40. R. A. FitzHugh. Impulses and physiological states in theoretical models of nerve mem-
brane. Biophysical Journal, 1:445, 1961.

41. Message Passing Interface Forum. MPI: A message-passing interface standard. Inter-
nat. J. Supercomputer Appl., 8:159–416, 1994.

42. C. P. Franzone, L. Guerri, B. Taccardi, and Viganotti C. Finite element approximation
of regularized solutions of the inverse potential problem of electrocardiography and
applications to experimental data. Calcolo, 22:91–186, 1985.

43. C. P. Franzone, L. Guerri, S. Tentonia, C. Viganotti, and S. Baruffi. A mathematical
procedure for solving the inverse potential problem of electrocardiography. analysis of
the time-space accuracy from in vitro experimental data. Math. Biosci., 77:353–396,
1985.

44. P. C. Franzone, B. Taccardi, and C. Viganotti. An approach to inverse calculation of
epicardial potentials from body surface maps. Adv. Cardiol, 21:50–54, 1978.

Bibliography 303

45. Y. C. Fung. Foundation of Solid Mechanics. Prentice-Hall, 1965.
46. T. B. Garcia and N. E. Holtz. 12-Lead ECG, The art of interpretation. Jones and

Bartlett, 2001.
47. S. Goedecker and A. Hoisie. Performance Optimization of Numerically Intensive

Codes. SIAM, 2001.
48. E. Goldberger. A simple, indifferent, electrocardiographic electrode of zero poten-

tial and a technique of obtaining augmented, unipolar, extremity leads. Am. Heart J.,
23:483–492, 1942.

49. G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins University
Press, 1989.

50. F. Greensite and G. Huiskamp. An improved method for estimating epicardial potentials
from the body surface. IEEE Transactions on Biomedical Engineering, 45(1):98–104,
January 1998.

51. S. Grimnes and Ø. G. Martinsen. Bioimpedance and Bioelectricity Basics. Academic
Press, 2000.

52. C. W. Groetsch. Inverse Problems in the Mathematical Sciences. Vieweg, 1993.
53. W. Gropp, E. Lusk, and A. Skjellum. Using MPI – Portable Parallel Programming with

the Message-Passing Interface. The MIT Press, 2nd edition, 1999.
54. R. M. Gulrajani. Forward and inverse problems of electrocardiography. IEEE Engi-

neering in Medicine and Biology, 17(5):84–101, September 1998.
55. R. M. Gulrajani, M. C. Trudel, and L. J. Leon. A membrane-based computer heart

model employing parallel processing. Biomedizinische Technik, 46:20–22, 2001.
56. W. Hackbusch. Elliptic differential equations. Theory and numerical treatment.

Springer-Verlag, 1992.
57. W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations. Springer-

Verlag, 1994.
58. E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I,

Nonstiff Problems. Springer-Verlag, 1991.
59. E. Hairer and G. Wanner. Solving Ordinary Differential Equations II, Stiff and Differ-

ential Algebraic Problems. Springer-Verlag, 1991.
60. G. Hämmerlin and K. Hoffmann. Numerical Mathematics. Springer-Verlag, 1991.
61. P. C. Hansen and D. P. O’Leary. The use of the l-curve in the regularization of discrete

ill-posed problems. SIAM J. Sci. Stat. Comput., 14:1487–1503, 1993.
62. C. S. Henriquez, A. L. Muzikant, and K. Smoak. Anisotropy, fibre curvature and bath

loading effects on activation in thin and thick cardiac tissue preparations. J Cardiovas-
cular Electrophysiology, 7:424–444, 1996.

63. M. R. Hestenes and E. Stiefel. Methods of conjungate gradients for solving linear
systems. J. Res. Nat. Bur. Standards, 49:409–436, 1952.

64. B. Hille. Ion channels of excitable membranes. Sinauer Associates, Inc., 2001.
65. A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its

application to conduction and excitation in nerve (reprinted from Journal of Physiology,
vol 117, pg 500-544, 1952). Bulletin of Mathematical Biology, 52:25–71, 1990.

66. A. L. Hodgkin and A. F. Huxley. A quantitative description of of membrane current
and its aplication to conduction and excitation in nerve. J Physiol, 117:500–544, 1952.

67. S. C. Hunter. Mechanics of continuous media. Ellis Horwood Ltd., 1983.
68. M. S. Jafri, J. J. Rice, and R. L. Winslow. Cardiac Ca2+ dynamics: The roles of

ryanodine receptor adaption and sarcoplasmic reticulum load. Biophysical Journal,
74:1149–1168, 1998.

69. C. Johnson. Numerical Solutions of Partial Differential Equations by the Finite Element
Method. Cambridge University Press, 1987.

304 Bibliography

70. G. Karypis and V. Kumar. Metis: Unstructured graph partitioning and sparse matrix
ordering system. Technical report, Department of Computer Science, University of
Minnesota, Minneapolis/St. Paul, MN, 1995.

71. A. M. Katz. Mechanisms of disease. Medicine., 328:1244–1251, 1993.
72. J. Keener and J. Sneyd. Mathematical Physiology. Springer-Verlag, 1998.
73. J. Keizer and L. Levine. Ryanodine receptor adaptation and Ca2+ induced Ca2+

release-dependent Ca2+ oscillations. Biophysical journal, 71:3477–3487, 1996.
74. A. Kirsch. An Introduction to the Mathematical Theory of Inverse Problems. Springer,

1996.
75. A. Klawonn. An optimal preconditioner for a class of saddle point problems with a

penalty term. SIAM J. Sci. Comput., 19:540–552, 1998.
76. R. N. Klepfer, C. R. Johnson, and R. S. Macleod. The effects of inhomogeneities and

anisotropics on electrocardiographic fields: A 3D FE study. IEEE Transactions on
Biomedical Engineering, 44:706–719, 1997.

77. P. Knabner and L. Angermann. Numerical Methods for Elliptic and Parabolic Partial
Differential Equations. Springer, 2003.

78. A. Kværnø. Singly diagonally implicit Runge-Kutta methods with an explicit first stage.
Technical report, Norwegian university of science and technology, 2004.
See http://www.math.ntnu.no/prerint/numerics/2004/N1-2004.pdf.

79. H. P. Langtangen. Computational Partial Differential Equations - Numerical Methods
and Diffpack Programming. Textbooks in Computational Science and Engineering.
Springer, 2nd edition, 2003.

80. J. Lau, J. P. Ioannidis, E. M Balk, C. Milch, N. Terrin, P. W. Chew, and Salem D.
Diagnosing acute cardiac ischemia in the emergency department: a systematic review
of the accuracy and clinical effect of current technologies. Ann. Emerg. Med., 37:453–
460, 2001.

81. J. Legrice, B. H. Smaill, L. Z. Chai, S. G. Edgar, J. B. Gavin, and P. J. Hunter. Laminar
structure of the heart: ventricular myoctye arrangement and connective tissue architec-
ture in the dog. Lam. Org. of Ventric. Myocar., pages 571–582, 1995.

82. R. J. LeVeque. Numerical Methods for Conservation Laws. Birkhäuser, 1992.
83. G. Lines, M. L. Buist, P. Grttum, A. J. Pullan, J. Sundnes, and A. Tveito. Mathematical

models and numerical methods for the forward problem in cardiac electrophysiology.
Computing and Visualization in Science, 5(4):215–239, 2003.

84. G. T. Lines, P. Grøttum, and A. Tveito. Modeling the electrical activity of the heart, a
bidomain model of the ventricles embedded in a torso. Computing and Visualization in
Science, 5(4):195–213, 2002.

85. A. K. Louis. Inverse und schlecht gestellte Probleme. B. G. Teubner, 1989.
86. D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, 1984.
87. C. H. Luo and Y. Rudy. A dynamic model of the cardiac ventricular action potenial.

Circulation Research, 74:1071–1096, 1994.
88. C. H. Luo and Y. Rudy. A model of the ventricular cardiac action potential: Depo-

larisation, repolarisation, and their interaction. Circulation Research, 68:1501–1526,
1991.

89. O. M. Lysaker and B. F. Nielsen. Towards a level set framework for infarction model-
ing: An inverse problem. International Journal of Numerical Analysis and Modeling,
3(4):377–394, 2006.

90. Dana Mackensie. Quest to solve the riddle of the heart’s circuitry. Financial Times,
February 6 2004.

Bibliography 305

91. M. C. MacLachlan, B. F. Nielsen, O. M. Lysaker, and A. Tveito. Computing the size
and location of myocardial ischemia using measurements of st-segment shift. IEEE
Transactions on Biomedical Engineering, 2006.

92. M. C. MacLachlan, J. Sundnes, and G. T. Lines. Simulation of st segment changes dur-
ing subendocardial ischemia using a realistic 3-d cardiac geometry. IEEE Transactions
on Biomedical Engineering, 52(5):799–807, 2005.

93. R. S. MacLeod and D. H. Brooks. Recent progress in inverse problems in electrocardi-
ology. IEEE Engineering in Medicine and Biology, 17(1):73–83, January 1998.

94. Maple. See http://www.maplesoft.com.
95. K.-A. Mardal, B. F. Nielsen, X. Cai, and A. Tveito. An order optimal solver for the

discretized bidomain equations. 2005. Research Report, Simula 2005-04,
URL: http://www.simula.no/departments/scientific/.artifacts/BidomainPrec.

96. K.-A. Mardal, J. Sundnes, H. P. Langtangen, and A. Tveito. Block preconditioning
and systems of PDEs. In H. P. Langtangen and A. Tveito, editors, Advanced Topics
in Computational Partial Differential Equations - Numerical Methods and Diffpack
Programming, Lecture Notes in Computational Science and Engineering, pages 199–
236. Springer-Verlag, 2003.

97. K.-A. Mardal and R. Winther. Uniform Preconditioners for the Time Dependent Stokes
Problem. Numerische Mathematik, 98:305–327, 2004.

98. K.-A. Mardal, G. Zumbusch, and H. P. Langtangen. Multigrid methods in Diffpack.
In H. P. Langtangen and A. Tveito, editors, Advanced Topics in Computational Partial
Differential Equations - Numerical Methods and Diffpack Programming, Lecture Notes
in Computational Science and Engineering, pages 97–152. Springer-Verlag, 2003.

99. J. T. Marti. Introduction to Sobolev Spaces and finite element solution of elliptic bound-
ary value problems. Academic Press, 1986.

100. Mathematica. See http://www.wolfram.com.
101. See http://www.mathworks.com.
102. R. E. McAllister, D. Noble, and R. W. Tsien. Reconstruction of the electrical activity

of cardiac purkinje fibres. J Physiol, 251:1–59, 1975.
103. K. Miller. Least squares methods for ill-posed problems with a prescribed bound. SIAM

J. Math. Anal., 1:52–74, 1970.
104. D. Noble. A modification of the hodgkin–huxley equations applicable to purkinje fibre

action and pace-maker potentials. Journal of Physiology, 160:317–352, 1962.
105. D. Noble, A. Varghese, P. Kohl, and P. Noble. Improved guinea-pig ventricular cell

model incorporating a diadic space, iKr and iKs, and length- and tension-dependent
processes. Can. J. Cardiol., 14(1):123–134, 1998.

106. Statistics Norway. Dødsrsaker 2001. http://www.ssb.no/dodsarsak/.
107. M. A. Olshanskii and A. Reusken. On the convergence of a multigrid method for linear

reaction-diffusion problems. Computing, 65(3):193–202, 2000.
108. H. Olsson. Runge-Kutta Solution of Initial Value Problems. PhD thesis, Department of

Computer Science, Lund Institute of Technology, Lund University, 1998.
109. OpenMP Home Page. http://www.openmp.org.
110. P. S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann Publishers, 1997.
111. M. Pennacchio and V. Simoncini. Efficient algebraic solution of reaction-diffusion sys-

tems for the cardiac excitation process. Journal of Computational and Applied Mathe-
matics, 145:49–70, 2000.

112. R. Plonsey and R. C. Barr. Bioelectricity. A quantitative approach. Kluwer Acad-
emic/Plenum Publishers, 2000.

113. R. Plonsey and D. B. Heppner. Considerations of quasi-stationarity in electrophysolog-
ical systems. Bulletin of Mathematical Biophysics, 29:657–64, 1967.

306 Bibliography

114. A. E. Pollard, N. Hooke, and C. S. Henriquez. Cardiac propagation simulation. Crit
Rev in Biomed Eng, 20:171–210, 1992.

115. L. Priebe and D. J. Bueckelmann. Simulation study of cellular electric poperties in
heart failure. Circ. Res., 82:1206–1223, 1998.

116. A. Pullan, D. Paterson, and F. Greensite. Non-invasive imaging of cardiac electrophys-
iology. Phil. Trans. R. Soc. Lond., 359:1277–1286, 2001.

117. Z. Qu and A. Garfinkel. An advanced algorithm for solving partial differential equation
in cardiac conduction. IEEE Transactions on Biomedical Engineering, 46(9):1166–
1168, 1999.

118. J. M. Rogers and A. D. McCulloch. A collocation-galerkin fem of cardiac action po-
tential propagation. IEEE Transactions on Biomedical Engineering, 41:743–757, 1994.

119. B. J. Roth. A comparison of two boundary conditions used with the bidomain model of
cardiac tissue. Annals of Biomedical Engineering, 19:669–678, 1991.

120. Y. Rudy and H. S. Oster. The electrocardiographic inverse problem. CRC Critical
Reviews in Biomedical Engineering, 20:25–46, 1992.

121. S. Rush and H. Larsen. A practical algorithm for solving dynamic membrane equations.
IEEE Transactions on Biomedical Engineering, 25(4):389–392, 1978.

122. T. Rusten and R. Winther. A preconditioned iterative method for saddle point problems.
SIAM J. Matrix Anal., 13:887–904, 1992.

123. J. E. Salem, G. M. Saidel, W. C. Stanley, and M. E. Cabrera. Mechanistic model of
myocardial energy metabolism under normal and ischmic conditions. Ann Biomed Eng,
30:202–216, 2002.

124. H. A. Schwarz. Gesammelte Mathematische Abhandlungen. Springer, Berlin, 2:133–
143, 1890. First published in Vierteljahrsschrift Naturforsch, Ges. Zürich, 15:272-286,
1870.

125. G. Seemann, F. B. Sachse, D. L. Weiss, and O. Dössel. Quantitative reconstruction of
cardiac electromechanics in human myocardium: Reginal heterogeneity. J Cardiovasc
Electropysiol, 14:1–10, 2003.

126. A. V. Shahidi, P. Savard, and R. Nadeau. Forward and inverse problems of electrocar-
diography: Modeling and recovery of epicardial potentials in humans. IEEE Transac-
tions on Biomedical Engineering, 41(3):249–256, March 1994.

127. O. Skipa, F. B. Sachse, C. D. Werner, and O. Dössel. Simulation study of the effect
of modelling errors on the solution of inverse cardiac source imaging problem using
realistic source patterns. Proc. Computers in Cardiology, 28:41–44, September 2001.

128. B. F. Smith, P. E. Bjørstad, and W. D. Gropp. Domain decomposition, Parallel Multi-
level Methods for Elliptic Partial Differential Equations. Cambridge University Press,
1996.

129. J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer-Verlag, 1993.
130. J. Sundnes, G. T. Lines, K. A. Mardal, and A. Tveito. Multigrid block preconditioning

for the coupled bidomain and forward problem. Computer Methods in Biomechanics
and Biomedical Engineering, 5 (6):397–409, 2003.

131. J. Sundnes, G. T. Lines, and A. Tveito. Efficient solution of ordinary differential equa-
tions modeling electrical activity in cardiac cells. Mathematical Biosciences, 172:55–
72, 2001.

132. J. Sundnes, G. T. Lines, and A. Tveito. An operator splitting method for solving the
bidomain equations coupled to a volume conductor model for the torso. Mathematical
biosciences, 194(2):233–248, 2005.

133. J. Sundnes, B. F. Nielsen, Kent-A. Mardal, X. Cai, G. T. Lines, and A. Tveito. On
the computational complexity of the bidomain and the monodomain models of electro-
physiology. Annals of biomedical engineering, 2006.

Bibliography 307

134. V. Thomée. Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag,
2nd edition, 1997.

135. U. Trottenberg, C. Oosterlee, and A. Schuller. Multigrid. Academic Press, 2001.
136. W. Y. Tseng, V. J. Wedeen, T. G. Reese, R. N. Smith, and E. F. Halpern. iffusion

tensor mri of myocardial fibers and sheets: correspondence with visible cut-face texture.
Journal of Magnetic Resonance Imaging, 17(1):31–42, 2003.

137. L. Tung. A Bi-domain model for describing ischemic myocardial D-C potentials. PhD
thesis, MIT, Cambridge, MA, 1978.

138. S. Turek. Efficient Solvers for Incompressible Flow Problems. Springer-Verlag, 1999.
139. A. Tveito and R. Winther. Introduction to Partial Differential Equations – A Computa-

tional Approach. Springer-Verlag, 1998.
140. D. Vanderstraeten and R. Keunings. Optimized partitioning of unstructured finite ele-

ment meshes. Internat. J. Numer. Meth. Engrg., 38:433–450, 1995.
141. The visible human project. See

http://www.nlm.nih.gov/research/visible/visible human.html .
142. A. D. Waller. A demonstration on man of electromotive changes accompanying the

heart’s beat. J. Physiol, 8:229–234, 1887.
143. WHO. mortality database. http://www.who.int/healthinfo/statistics/mortality/.
144. F. N. Wilson, A. G. MacLeod, and P. S. Barker. The distribution of the currents of

action and of injury displayed by heart muscle and other excitable tissues. Univeristy
of Michigan Press, Ann Arbor, 1933.

145. R. L. Winslow, J. Rice, S. Jafri, E. Marban, and B. O’Rourke. Mechanisms of altered
excitation-contraction coupling in canine tachycardia-induced heart failure, II, model
studies. Circulation Research, 84:571–586, 1999.

146. R. Winther. Iterative methods for partial differential equations, part ii. Lecture notes in
IMPD.

147. Y. Yamashita and D. Geselowitz. Source-field relationships for cardiac generators on
the heart surface based on their transfer coefficients. IEEE Transactions on Biomedical
Engineering, 32:964–970, 1985.

148. Y. Yamashita and T. Takahashi. Use of the finite method to determine epicardial from
body surface potentials under a realistic torso model. IEEE Transactions on Biomedical
Engineering, BME-31(9):611–621, September 1984.

149. O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method, Vol I & II. McGraw-
Hill, 4 edition, 1989/91.

Index

L2 norm, 63
θ-rule, 151
12-lead ECG, 7, 8

A-stability, 153
action potential, 10, 25
Adams methods, 154
adaptive methods, 164
additive Schwarz preconditioner, 208
adjoint, 268, 276
anisotropic, 28
anteroseptal infarction, 13
atrioventricular bundle, 12
atrioventricular node, 12
automatic time step control, 164
AV block, 13
axon, 44

backward differentiation formulae (BDF),
155

backward Euler method, 150
bidomain model, 17, 25, 27, 70
boundary conditions, 23, 29, 32, 54, 62, 66
– Dirichlet, 62, 66
– Neumann, 57
buffering, 51
bundle of His, 12
Butcher tableau, 157

calcium, 52
capacitance, 27
cell membrane, 36
cell model
– Beeler-Reuter, 49
– FitzHugh-Nagumo, 34
– Hodgkin-Huxley, 44
– Jafri et al., 53
– Keizer and Levine, 53
– Luo-Rudy, 49, 51
– Noble, 47
– ventricular cells, 48
– Winslow et al., 53
CellML, 55
channel gating, 42
channels, 37

conductance, 44
conduction velocity, 30, 93
conductivity, 22, 29
conductivity tensors, 28
conjugate gradient method, 116, 135
continuum, 21
contraction, 12, 25
convergence rate, 106
cost-functional, 231, 234, 245, 261, 266
Crank-Nicolson scheme, 151
current, 22

defibrillation, 14
depolarization, 10, 24, 93
diadic space, 52
diffusion, 38
dipole, 5, 23, 63, 68, 219, 289
dipole moment, 5
direct problems, 219
discretization, 17
divergence theorem, 22
domain decomposition, 142, 143, 207

ECG, 1, 2
eigenvalues
– of cell models, 169
Einthoven triangle, 6
electric and magnetic fields, 21
electrical activation, 11
electrical potential, 2
electrocardiac simulator, 176
– The ODE component, 177
– The PDE component, 177
– The postprocessing component, 177
– The preprocessing component, 176
– The time-stepping component, 177
electrocardiogram, 1, 2
electrodes, 2
endocardiac surface, 12
epicardial potential, 238
equal anisotropy, 30
error estimate, 62
– embedded methods, 167
– step doubling, 165
exchangers, 37

310 Index

excitability, 9
excitable cells, 24
extracardiac domain, 32
extracellular potential, 24

fibres, 28
fibrillation, 14
Fick’s law, 38
finite dimensional function space, 60
finite element method, 57
FitzHugh-Nagumo model, 34, 88
forward Euler method, 149
forward problem, 13, 220

Galerkin method, 61
gap junctions, 11, 25
Gauss-Seidel method, 114
– block Gauss-Seidel, 115
Godunov splitting, 74
Goldman-Hodgkin-Katz (GHK), 40
Green’s lemma, 58, 65

heart vector, 6
Hilbert space, 58
Hodgkin-Huxley model, 15, 44

ill-posed, 220
infarction, 219, 221
infarction parameters, 273
intracellular and extracellular domains, 25
intracellular potential, 24
inverse problem, 14, 219
ionic current, 26, 29, 33
ischemia, 94, 221, 271
ischemic heart disease, 13, 92
isotropic medium, 66

Jacobi Method, 110
– block Jacobi, 113
– block Jacobi preconditioner, 143
– relaxed, 112

L-stability, 154
law of mass action, 42
lead, 3, 7
linear equations, 61
lipids, 37
local support, 60
Luo-Rudy model, 49

maximum potential, 30
Maxwell‘s equations, 21
membrane area to volume ratio, 27
membrane potential, 9
memory-requirement, 178
mobility, 39
monodomain model, 30, 71
MRI, 14
multigrid, 141, 143
multistep method, 155
myocardial infarction, 13
myoplasma, 37

Nernst equilibrium potential, 38, 39
Nernst-Planck equation, 39
nerve cell, 44
Newton’s Method, 161
– for BDF, 162
– for DIRK and SDIRK, 163
– for implicit RK, 162
nonunique solution, 66

objective function, 275
Ohm‘s law, 28
operator splitting, 71, 75
– bidomain model, 78
– monodomain model, 75
order optimal preconditioners, 133
order-optimal algorithm, 107
– bidomain model, 142
– domain decomposition, 128
– – additive Schwarz, 131
– – multiplicative Schwarz, 131
– monodomain model, 140
– multigrid, 123
output least squares, 230
overhead, 183, 184

P-wave, 4
pacemaker cell, 11
parallel computing, 175, 178
– distributed memory, 181
– division of work, 182
– hierarchies of subdomain grids, 213
– inter-processor communication, 181
– memory, 178
– message passing, 181
– non-overlapping subdomains, 195
– overhead, 182

Index 311

– overlapping subdomains, 195
– parallel efficiency, 185
– shared-memory, 181
– speedup, 184
parameter identification problems, 220
piecewise polynomial functions, 60
Planck’s equation, 38
plateau phase, 10
polar coordinates, 86
positive definite, 103, 133
potassium current, 44
potential, 22
potential distribution, 63
preconditioned conjugate gradient, 135
preconditioning, 109, 133
propagation, 11
propagation velocity, 30, 93
pumps, 37
Purkinje fibre, 12, 46

QRS-complex, 4
quasi-static, 22
quasi-static condition, 26

reference potential, 7
region of absolute stability, 153
regularization, 232
– discretization, 232
– parameter, 232, 234
– Tikhonov, 234
– truncated singular value decomposition

(TSVD), 232
repolarization, 10, 25, 93
residual, 106
resting potential, 30
resting state, 10
Richardson iteration, 101, 106, 134
Runge-Kutta method, 156
– diagonally implicit, 159
– explicit, 157
– implicit, 158

sarcoplasmic reticulum (SR), 51

SDIRK method, 159
sheet, 28
signal conduction, 11
simple iteration, 101
sionatrial node, 11
smoother, 126
sodium current, 44
spectral equivalence, 133
speedup, 187, 190
ST-segment, 13, 92
stability, 151
stability domain, 153
stability function, 152
stiff ODEs, 151, 168
Strang splitting, 74
sub-units, 42
subspace, 52
surface, 12
symmetric, 103, 133

T-wave, 4
Taylor series, 72
tensor quantities, 28
threshold potential, 30
TP-segment, 13
transmembrane potential, 9, 26, 27
transport protein, 37
trapezoidal rule, 151

upstroke, 10
upstroke velocity, 29

variable coefficients, 137
variational problem, 58
ventricular cells, 48
visualization, 18
volume conductor, 5, 21
volume-averaging, 21, 25

wavefront, 11, 30
weak form, 58
well-posed, 220
Wilson central terminal, 7

Editorial Policy

1. Monographs on topics in the field of computational science and engineering will
be considered. They should be written to last as an information source for consider-
able time. More short-term monographs should be submitted to the companion series
Lecture Notes in Computational Science and Engineering. Multidisciplinary topics
and multidisciplinary teams of authors are especially welcome.

2. Format: Only works in English will be considered. They should be submitted in
camera-ready form according to Springer-Verlag’s specifications. Electronic material
can be included if appropriate. Please contact the publisher. Technical instructions
and/or LaTeX macros are available via http://www.springer.com/sgw/cda/frontpage/-
0,11855,5-40017-2-71391-0,00.html

3. Those considering a book which might be suitable for the series are strongly ad-
vised to contact the publisher or the series editors at an early stage.

General Remarks

MCSE books are printed by photo-offset from the master-copy delivered in camera-
ready form by the authors. For this purpose Springer-Verlag provides technical in-
structions for the preparation of manuscripts. See also Editorial Policy.

Careful preparation of manuscripts will help keep production time short and ensure
a satisfactory appearance of the finished book.

The following terms and conditions hold:
Regarding free copies and royalties, the standard terms for Springer mathematics
monographs and textbooks hold. Please write to martin.peters@springer.com for de-
tails.

Authors are entitled to purchase further copies of their book and other Springer books
for their personal use, at a discount of 33,3 % directly from Springer-Verlag.

Series Editors

Timothy J. Barth
NASA Ames Research Center
NAS Division
Moffett Field, CA 94035, USA
e-mail: barth@nas.nasa.gov

Michael Griebel
Institut für Numerische Simulation
der Universität Bonn
Wegelerstr. 6
53115 Bonn, Germany
e-mail: griebel@ins.uni-bonn.de

David E. Keyes
Department of Applied Physics
and Applied Mathematics
Columbia University
200 S. W. Mudd Building
500 W. 120th Street
New York, NY 10027, USA
e-mail: david.keyes@columbia.edu

Risto M. Nieminen
Laboratory of Physics
Helsinki University of Technology
02150 Espoo, Finland
e-mail: rni@fyslab.hut.fi

Dirk Roose
Department of Computer Science
Katholieke Universiteit Leuven
Celestijnenlaan 200A
3001 Leuven-Heverlee, Belgium
e-mail: dirk.roose@cs.kuleuven.ac.be

Tamar Schlick
Department of Chemistry
Courant Institute of Mathematical
Sciences
New York University
and Howard Hughes Medical Institute
251 Mercer Street
New York, NY 10012, USA
e-mail: schlick@nyu.edu

Editor at Springer: Martin Peters
Springer-Verlag,MathematicsEditorial IV
Tiergartenstrasse 17
D-69121 Heidelberg, Germany
Tel.: *49 (6221) 487-8185
Fax: *49 (6221) 487-8355
e-mail: martin.peters@springer.com

Monographs in Computational Science
and Engineering
Vol. 1 J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.-A. Mardal, A. Tveito. Computing the Electrical
Activity in the Heart. 2006. XI, 318 pp. Hardcover. ISBN 3-540-33432-7

For further information on this book, please have a look at our mathematics catalogue at the following
URL: www.springer.com/series/7417

Texts in Computational Science
and Engineering
Vol. 1 H. P. Langtangen, Computational Partial Differential Equations. Numerical Methods and Diff-
pack Programming. 2nd Edition 2003. XXVI, 855 pp. Hardcover. ISBN 3-540-43416-X

Vol. 2 A. Quarteroni, F. Saleri, Scientific Computing with MATLAB and Octave. 2nd Edition 2006. XIV,
318 pp. Hardcover. ISBN 3-540-32612-X

Vol. 3 H. P. Langtangen, Python Scripting for Computational Science. 2nd Edition 2006. XXIV, 736 pp.
Hardcover. ISBN 3-540-29415-5

For further information on these books, please have a look at our mathematics catalogue at the following
URL: www.springer.com/series/5151

Lecture Notes
in Computational Science
and Engineering

Vol. 1 D. Funaro, Spectral Elements for Transport-Dominated Equations. 1997. X, 211 pp. Softcover.
ISBN 3-540-62649-2

Vol. 2 H. P. Langtangen, Computational Partial Differential Equations. Numerical Methods and Diff-
pack Programming. 1999. XXIII, 682 pp. Hardcover. ISBN 3-540-65274-4

Vol. 3 W. Hackbusch, G. Wittum (eds.), Multigrid Methods V. Proceedings of the Fifth European Multi-
grid Conference held in Stuttgart, Germany, October 1-4, 1996. 1998. VIII, 334 pp. Softcover.
ISBN 3-540-63133-X

Vol. 4 P. Deuflhard, J. Hermans, B. Leimkuhler, A. E. Mark, S. Reich, R. D. Skeel (eds.), Computational
Molecular Dynamics: Challenges, Methods, Ideas. Proceedings of the 2nd International Symposium
on Algorithms for Macromolecular Modelling, Berlin, May 21-24, 1997. 1998. XI, 489 pp. Softcover.
ISBN 3-540-63242-5

Vol. 5 D. Kröner, M. Ohlberger, C. Rohde (eds.), An Introduction to Recent Developments in Theory
and Numerics for Conservation Laws. Proceedings of the International School on Theory and Numer-
ics for Conservation Laws, Freiburg / Littenweiler, October 20-24, 1997. 1998. VII, 285 pp. Softcover.
ISBN 3-540-65081-4

Vol. 6 S. Turek, Efficient Solvers for Incompressible Flow Problems. An Algorithmic and Computational
Approach. 1999. XVII, 352 pp, with CD-ROM. Hardcover. ISBN 3-540-65433-X

Vol. 7 R. von Schwerin, Multi Body System SIMulation. Numerical Methods, Algorithms, and Software.
1999. XX, 338 pp. Softcover. ISBN 3-540-65662-6

Vol. 8 H.-J. Bungartz, F. Durst, C. Zenger (eds.), High Performance Scientific and Engineering Comput-
ing. Proceedings of the International FORTWIHR Conference on HPSEC, Munich, March 16-18, 1998.
1999. X, 471 pp. Softcover. ISBN 3-540-65730-4

Vol. 9 T. J. Barth, H. Deconinck (eds.), High-Order Methods for Computational Physics. 1999. VII, 582
pp. Hardcover. ISBN 3-540-65893-9

Vol. 10 H. P. Langtangen, A. M. Bruaset, E. Quak (eds.), Advances in Software Tools for Scientific Com-
puting. 2000. X, 357 pp. Softcover. ISBN 3-540-66557-9

Vol. 11 B. Cockburn, G. E. Karniadakis, C.-W. Shu (eds.), Discontinuous Galerkin Methods. Theory,
Computation and Applications. 2000. XI, 470 pp. Hardcover. ISBN 3-540-66787-3

Vol. 12 U. van Rienen, Numerical Methods in Computational Electrodynamics. Linear Systems in Prac-
tical Applications. 2000. XIII, 375 pp. Softcover. ISBN 3-540-67629-5

Vol. 13 B. Engquist, L. Johnsson, M. Hammill, F. Short (eds.), Simulation and Visualization on the Grid.
Parallelldatorcentrum Seventh Annual Conference, Stockholm, December 1999, Proceedings. 2000. XIII,
301 pp. Softcover. ISBN 3-540-67264-8

Vol. 14 E. Dick, K. Riemslagh, J. Vierendeels (eds.), Multigrid Methods VI. Proceedings of the Sixth Eu-
ropean Multigrid Conference Held in Gent, Belgium, September 27-30, 1999. 2000. IX, 293 pp. Softcover.
ISBN 3-540-67157-9

Vol. 15 A. Frommer, T. Lippert, B. Medeke, K. Schilling (eds.), Numerical Challenges in Lattice Quan-
tum Chromodynamics. Joint Interdisciplinary Workshop of John von Neumann Institute for Computing,
Jülich and Institute of Applied Computer Science, Wuppertal University, August 1999. 2000. VIII, 184
pp. Softcover. ISBN 3-540-67732-1

Vol. 16 J. Lang, Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems. Theory, Algorithm,
and Applications. 2001. XII, 157 pp. Softcover. ISBN 3-540-67900-6

Vol. 17 B. I. Wohlmuth, Discretization Methods and Iterative Solvers Based on Domain Decomposition.
2001. X, 197 pp. Softcover. ISBN 3-540-41083-X

Vol. 18 U. van Rienen, M. Günther, D. Hecht (eds.), Scientific Computing in Electrical Engineering. Pro-
ceedings of the 3rd International Workshop, August 20-23, 2000, Warnemünde, Germany. 2001. XII, 428
pp. Softcover. ISBN 3-540-42173-4

Vol. 19 I. Babuška, P. G. Ciarlet, T. Miyoshi (eds.), Mathematical Modeling and Numerical Simulation
in Continuum Mechanics. Proceedings of the International Symposium on Mathematical Modeling and
Numerical Simulation in Continuum Mechanics, September 29 - October 3, 2000, Yamaguchi, Japan.
2002. VIII, 301 pp. Softcover. ISBN 3-540-42399-0

Vol. 20 T. J. Barth, T. Chan, R. Haimes (eds.), Multiscale and Multiresolution Methods. Theory and Ap-
plications. 2002. X, 389 pp. Softcover. ISBN 3-540-42420-2

Vol. 21 M. Breuer, F. Durst, C. Zenger (eds.), High Performance Scientific and Engineering Computing.
Proceedings of the 3rd International FORTWIHR Conference on HPSEC, Erlangen, March 12-14, 2001.
2002. XIII, 408 pp. Softcover. ISBN 3-540-42946-8

Vol. 22 K. Urban, Wavelets in Numerical Simulation. Problem Adapted Construction and Applications.
2002. XV, 181 pp. Softcover. ISBN 3-540-43055-5

Vol. 23 L. F. Pavarino, A. Toselli (eds.), Recent Developments in Domain Decomposition Methods. 2002.
XII, 243 pp. Softcover. ISBN 3-540-43413-5

Vol. 24 T. Schlick, H. H. Gan (eds.), Computational Methods for Macromolecules: Challenges and Ap-
plications. Proceedings of the 3rd International Workshop on Algorithms for Macromolecular Modeling,
New York, October 12-14, 2000. 2002. IX, 504 pp. Softcover. ISBN 3-540-43756-8

Vol. 25 T. J. Barth, H. Deconinck (eds.), Error Estimation and Adaptive Discretization Methods in Com-
putational Fluid Dynamics. 2003. VII, 344 pp. Hardcover. ISBN 3-540-43758-4

Vol. 26 M. Griebel, M. A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations. 2003.
IX, 466 pp. Softcover. ISBN 3-540-43891-2

Vol. 27 S. Müller, Adaptive Multiscale Schemes for Conservation Laws. 2003. XIV, 181 pp. Softcover.
ISBN 3-540-44325-8

Vol. 28 C. Carstensen, S. Funken, W. Hackbusch, R. H. W. Hoppe, P. Monk (eds.), Computational Elec-
tromagnetics. Proceedings of the GAMM Workshop on "Computational Electromagnetics", Kiel, Ger-
many, January 26-28, 2001. 2003. X, 209 pp. Softcover. ISBN 3-540-44392-4

Vol. 29 M. A. Schweitzer, A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differen-
tial Equations. 2003. V, 194 pp. Softcover. ISBN 3-540-00351-7

Vol. 30 T. Biegler, O. Ghattas, M. Heinkenschloss, B. van Bloemen Waanders (eds.), Large-Scale PDE-
Constrained Optimization. 2003. VI, 349 pp. Softcover. ISBN 3-540-05045-0

Vol. 31 M. Ainsworth, P. Davies, D. Duncan, P. Martin, B. Rynne (eds.), Topics in Computational Wave
Propagation. Direct and Inverse Problems. 2003. VIII, 399 pp. Softcover. ISBN 3-540-00744-X

Vol. 32 H. Emmerich, B. Nestler, M. Schreckenberg (eds.), Interface and Transport Dynamics. Compu-
tational Modelling. 2003. XV, 432 pp. Hardcover. ISBN 3-540-40367-1

Vol. 33 H. P. Langtangen, A. Tveito (eds.), Advanced Topics in Computational Partial Differential Equa-
tions. Numerical Methods and Diffpack Programming. 2003. XIX, 658 pp. Softcover. ISBN 3-540-01438-1

Vol. 34 V. John, Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical
Results for a Class of LES Models. 2004. XII, 261 pp. Softcover. ISBN 3-540-40643-3

Vol. 35 E. Bänsch (ed.), Challenges in Scientific Computing - CISC 2002. Proceedings of the Confer-
ence Challenges in Scientific Computing, Berlin, October 2-5, 2002. 2003. VIII, 287 pp. Hardcover.
ISBN 3-540-40887-8

Vol. 36 B. N. Khoromskij, G. Wittum, Numerical Solution of Elliptic Differential Equations by Reduc-
tion to the Interface. 2004. XI, 293 pp. Softcover. ISBN 3-540-20406-7

Vol. 37 A. Iske, Multiresolution Methods in Scattered Data Modelling. 2004. XII, 182 pp. Softcover.
ISBN 3-540-20479-2

Vol. 38 S.-I. Niculescu, K. Gu (eds.), Advances in Time-Delay Systems. 2004. XIV, 446 pp. Softcover.
ISBN 3-540-20890-9

Vol. 39 S. Attinger, P. Koumoutsakos (eds.), Multiscale Modelling and Simulation. 2004. VIII, 277 pp.
Softcover. ISBN 3-540-21180-2

Vol. 40 R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Wildlund, J. Xu (eds.), Domain Decompo-
sition Methods in Science and Engineering. 2005. XVIII, 690 pp. Softcover. ISBN 3-540-22523-4

Vol. 41 T. Plewa, T. Linde, V.G. Weirs (eds.), Adaptive Mesh Refinement – Theory and Applications.
2005. XIV, 552 pp. Softcover. ISBN 3-540-21147-0

Vol. 42 A. Schmidt, K.G. Siebert, Design of Adaptive Finite Element Software. The Finite Element Tool-
box ALBERTA. 2005. XII, 322 pp. Hardcover. ISBN 3-540-22842-X

Vol. 43 M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations II.
2005. XIII, 303 pp. Softcover. ISBN 3-540-23026-2

Vol. 44 B. Engquist, P. Lötstedt, O. Runborg (eds.), Multiscale Methods in Science and Engineering.
2005. XII, 291 pp. Softcover. ISBN 3-540-25335-1

Vol. 45 P. Benner, V. Mehrmann, D.C. Sorensen (eds.), Dimension Reduction of Large-Scale Systems.
2005. XII, 402 pp. Softcover. ISBN 3-540-24545-6

Vol. 46 D. Kressner (ed.), Numerical Methods for General and Structured Eigenvalue Problems. 2005.
XIV, 258 pp. Softcover. ISBN 3-540-24546-4

Vol. 47 A. Boriçi, A. Frommer, B. Joó, A. Kennedy, B. Pendleton (eds.), QCD and Numerical Analysis
III. 2005. XIII, 201 pp. Softcover. ISBN 3-540-21257-4

Vol. 48 F. Graziani (ed.), Computational Methods in Transport. 2006. VIII, 524 pp. Softcover.
ISBN 3-540-28122-3

Vol. 49 B. Leimkuhler, C. Chipot, R. Elber, A. Laaksonen, A. Mark, T. Schlick, C. Schütte, R. Skeel
(eds.), New Algorithms for Macromolecular Simulation. 2006. XVI, 376 pp. Softcover. ISBN 3-540-25542-7

Vol. 50 M. Bücker, G. Corliss, P. Hovland, U. Naumann, B. Norris (eds.), Automatic Differentiation:
Applications, Theory, and Implementations. 2006. XVIII, 362 pp. Softcover. ISBN 3-540-28403-6

Vol. 51 A.M. Bruaset, A. Tveito (eds.), Numerical Solution of Partial Differential Equations on Parallel
Computers 2006. XII, 482 pp. Softcover. ISBN 3-540-29076-1

Vol. 52 K.H. Hoffmann, A. Meyer (eds.), Parallel Algorithms and Cluster Computing. 2006. X, 374 pp.
Softcover. ISBN 3-540-33539-0

Vol. 53 H.-J. Bungartz, M. Schäfer (eds.), Fluid-Structure Interaction. 2006. VII, 388 pp. Softcover.
ISBN 3-540-34595-7

For further information on these books please have a look at our mathematics catalogue at the following
URL: www.springer.com/series/3527

