

Lecture Notes in Computer Science 2387
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Tokyo

Oscar H. Ibarra Louxin Zhang (Eds.)

Computing
and Combinatorics

8th Annual International Conference, COCOON 2002
Singapore, August 15-17, 2002
Proceedings

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Oscar H. Ibarra
University of California, Department of Computer Science
Santa Barbara, California 93106, USA
E-mail: ibarra@cs.ucsb.edu

Louxin Zhang
Department of Mathematics, National University of Singapore
Singapore, Singapore 117543
E-mail: matzlx@nus.edu.sg

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Computing and combinatorics : 8th annual international conference ;
proceedings / COCOON 2002, Singapore, August 15 - 17, 2002. Oscar H. Ibarra ;
Louxin Zhang (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ;
London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 2002

(Lecture notes in computer science ; Vol. 2387)
ISBN 3-540-43996-X

CR Subject Classification (1998): F.2, G.2.1-2, I.3.5, C.2.3-4, E.1, E.4, E.5

ISSN 0302-9743
ISBN 3-540-43996-X Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York,
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2002
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 10870538 06/3142 5 4 3 2 1 0

Preface

The abstract and papers in this volume were presented at the Eighth Annual
International Computing and Combinatorics Conference (COCOON 2002), held
on August 15-17 in Singapore. The topics cover various aspects of theoretical
computer science and combinatorics related to computing.

Submissions to the conference this year were conducted electronically. The 60
papers were selected for presentation from a total of 106 submitted papers from
Australia (6), Canada (3), China (6), Germany (9), India (5), Japan (11), Korea
(10), Singapore (5), Taiwan (8), United States (29), and 11 other countries and
regions (14). The papers were evaluated by an international program commit-
tee consisting of Mikhail Atallah, Jik Chang, Tim Ting Chen, Siu-Wing Cheng,
Omer Egecioglu, Fan Chung Graham, Susanne Hambrusch, Sorin Istrail, Sam-
path Kannan, Ming-Yang Kao, Shlomo Moran, Koji Nakano, Takao Nishizeki,
Steve Olariu, Gheorghe Paun, Pandu Rangan, Sartaj Sahni, Arto Salomaa, Igor
Shparlinski, Janos Simon, Paul Spirakis, Chung Piaw Teo, Jan van Leeuwen,
Paul Vitanyi, Peter Widmayer, and Hsu-Chun Yen. It is expected that most of
the accepted papers will appear in a more complete form in scientific journals.
In addition to the contributed papers, three invited lectures were presented by
Eugene W. Myers, Sartaj Sahni, and Arto Salomaa.

We wish to thank all who have made this meeting possible: the authors
for submitting papers, the program committee members and external referees
(listed in the proceedings) for their excellent work, and the three invited speak-
ers. Finally, we wish to express our sincere appreciation to the sponsors, local
organizers, and our colleagues for their assistance and support.

August 2002 Oscar H. Ibarra, Louxin Zhang

Program Committee

Oscar H. Ibarra (Co-chair), UC Santa Barbara, USA
Louxin Zhang (Co-chair) Nat. U. of Singapore, Singapore

Mikhail Atallah, Purdue U., USA
Jik Chang, Sogang U., Korea
Tim Ting Chen, U. of Southern Calif., USA
Siu-Wing Cheng, HKUST, Hong Kong
Omer Egecioglu, UC Santa Barbara, USA,
Fan Chung Graham, UC San Diego, USA
Susanne Hambrusch, Purdue U., USA)
Sorin Istrail Celera Genomics Corp., USA
Sampath Kannan, U. of Penn, USA
Ming-Yang Kao, Northwestern U., USA
Shlomo Moran, Technion, Israel
Koji Nakano, JAIST, Japan
Takao Nishizeki, Tohuko, Japan
Steve Olariu, Old Dominion U., USA
Gheorghe Paun, Inst. of Math., Romania
Pandu Rangan, IIT Madras, India
Sartaj Sahni, U. of Florida, USA
Arto Salomaa, Turku U., Finland
Igor Shparlinski, Macquarie U., Australia
Janos Simon, U. of Chicago, USA
P. Spirakis, CTI, Greece
Chung Piaw Teo, NUS, Singapore
Jan van Leeuwen, U. of Utrecht, The Netherlands
Paul Vitanyi, CWI, The Netherlands
Peter Widmayer, ETHZ, Switzerland
Hsu-Chun Yen, Nat. Taiwan U., Taiwan

Organizing Committee

Khee Meng Koh (Co-chair), NUS, Singapore
Hon Wai Leong (Co-chair), NUS, Singapore

Fengming Dong, NTU, Singapore
Ee-Chien Chang, NUS, Singapore
Chung Piaw Teo, NUS, Singapore

Conference Secretary

Lynette M. L. Wong

VIII Organization

Referees

Stephen Alstrup
Luzi Anderegg
Maria Andreou
Dan Archdeacon
Abdullah Arslan
Dorit Batler
Giuseppe Di Battista
Jacir Luiz Bordim
Ran Canetti
Alberto Caprara
Xin Chen
Sung-Woo Cho
Francisco Coelho
Barry Cohen
Zhe Dang
Mart de Graaf
Joerg Derungs
Stephan Eidenbenz
Panagiota Fatourou
Mike Fellows
Vladimir Filkov
Eldar Fischer
Dimitris Fotakis
Pierre Fraignaud
Jozef Gruska
Nicolas Hanusse
Tero Harju
Sariel Har-Peled
Joel Hass

Thomas Hofmeister
Ed Hong
Tao Jiang
Sungwon Jung
Michael Kaminski
George Karakostas
Dimitris Kavvadias
Daesan Kim
Spyros Kontogiannis
Jeff Lagarias
Donghoon Lee
Hanno Lefmann
Chin-Laung Lei
Stefano Lonardi
Hsueh-I Lu
Meena Mahajan
Ross McConnell
Janos Makowski
Pablo Moisset
Tal Mor
Matthias Mueller
Sotiris Nikoletseas
Roderic D. M. Page
Aris Pagourtzis
Vicky Papadopoulou
Jungheum Park
Kunsoo Park
Eynat Rafalin
Md. Saidur Rahman

S. Rajasekaran
B. Ravikumar
Hein Roehrig
Brigitte Servatius
Diane Souvaine
Mike Steel
Pavel Sumazin
Wing Kin Sung
Subhash Suri
Gabor Szabo
Laszlo Szekely
Arie Tamir
Joseph A. Thas
Takeshi Tokuyama
Nicholas Tran
John Tromp
Ming-Jer Tsai
Sam Wagstaff
Yuan-Fang Wang
Birgitta Weber
David Wei
Hongjun Wu
Jihoon Yang
Sheng Yu
Christos Zaroliagis
Shiyu Zhou
Xiao Zhou

Sponsoring Institutions

Department of Mathematics, NUS
Lee Foundation, Singapore

Organizing Institutions

Department of Mathematics, NUS
School of Computing, NUS
The Logistics Insitute - Asia Pacific, NUS

Table of Contents

Invited Lectures

The Assembly of the Human and Mouse Genomes . 1
Gene Myers

Data Structures for One-Dimensional Packet Classification
Using Most-Specific-Rule Matching . 2

Sartaj Sahni

DNA Complementarity and Paradigms of Computing 3
Arto Salomaa

Complexity Theory I

On Higher Arthur-Merlin Classes . 18
Jin-Yi Cai, Denis Charles, A. Pavan, and Samik Sengupta

(2 + f(n))-SAT and Its Properties . 28
Xiaotie Deng, C.H. Lee, Yunlei Zhao, and Hong Zhu

On the Minimal Polynomial of a Matrix . 37
Thanh Minh Hoang and Thomas Thierauf

Computable Real Functions of Bounded Variation
and Semi-computable Real Numbers . 47

Robert Rettinger, Xizhong Zheng, and Burchard von Braunmühl

Discrete Algorithms I

Improved Compact Routing Tables for Planar Networks
via Orderly Spanning Trees . 57

Hsueh-I Lu

Coloring Algorithms on Subcubic Graphs . 67
Harold N. Gabow and San Skulrattanakulchai

Efficient Algorithms for the Hamiltonian Problem
on Distance-Hereditary Graphs . 77

Sun-yuan Hsieh, Chin-wen Ho, Tsan-sheng Hsu, and Ming-tat Ko

Extending the Accommodating Function . 87
Joan Boyar, Lene M. Favrholdt, Kim S. Larsen, and Morten N. Nielsen

X Table of Contents

Computational Biology and Learning Theory I

Inverse Parametric Sequence Alignment . 97
Fangting Sun, David Fernández-Baca, and Wei Yu

The Full Steiner Tree Problem in Phylogeny . 107
Chin Lung Lu, Chuan Yi Tang, and Richard Chia-Tung Lee

Inferring a Union of Halfspaces from Examples . 117
Tatsuya Akutsu and Sascha Ott

Dictionary Look-Up within Small Edit Distance . 127
Abdullah N. Arslan and Ömer Eğecioğlu

Coding Theory and Cryptography

Polynomial Interpolation of the Elliptic Curve
and XTR Discrete Logarithm . 137

Tanja Lange and Arne Winterhof

Co-orthogonal Codes . 144
Vince Grolmusz

Efficient Power-Sum Systolic Architectures
for Public-Key Cryptosystems in GF(2m) . 153

Nam-Yeun Kim, Won-Ho Lee, and Kee-Young Yoo

A Combinatorial Approach to Anonymous Membership Broadcast 162
Huaxiong Wang and Josef Pieprzyk

Parallel and Distributed Architectures

Solving Constraint Satisfaction Problems with DNA Computing 171
Evgeny Dantsin and Alexander Wolpert

New Architecture and Algorithms for Degradable VLSI/WSI Arrays 181
Wu Jigang, Heiko Schröder, and Srikanthan Thambipillai

Cluster: A Fast Tool to Identify Groups of Similar Programs 191
Casey Carter and Nicholas Tran

Broadcasting in Generalized de Bruijn Digraphs . 200
Yosuke Kikuchi, Shingo Osawa, and Yukio Shibata

Graph Theory

On the Connected Domination Number of Random Regular Graphs 210
William Duckworth and Bernard Mans

On the Number of Minimum Cuts in a Graph . 220
L. Sunil Chandran and L. Shankar Ram

Table of Contents XI

On Crossing Numbers of 5-Regular Graphs . 230
G.L. Chia and C.S. Gan

Maximum Flows and Critical Vertices in AND/OR Graphs 238
Yvo Desmedt and Yongge Wang

Radio Networks

New Energy-Efficient Permutation Routing Protocol
for Single-Hop Radio Networks . 249

Amitava Datta and Albert Y. Zomaya

Simple Mutual Exclusion Algorithms Based on Bounded Tickets
on the Asynchronous Shared Memory Model . 259

Masataka Takamura and Yoshihide Igarashi

Time and Energy Optimal List Ranking Algorithms
on the k-Channel Broadcast Communication Model . 269

Koji Nakano

Energy-Efficient Size Approximation of Radio Networks
with No Collision Detection . 279

Tomasz Jurdziński, Miros�law Kuty�lowski, and Jan Zatopiański

Automata and Formal Languages

A New Class of Symbolic Abstract Neural Nets: Tissue P Systems 290
C. Mart́ın-Vide, J. Pazos, G. Păun, and A. Rodŕıguez-Patón

Transducers with Set Output . 300
Jurek Czyzowicz, Wojciech Fraczak, and Andrzej Pelc

Self-assembling Finite Automata . 310
Andreas Klein and Martin Kutrib

Repetition Complexity of Words . 320
Lucian Ilie, Sheng Yu, and Kaizhong Zhang

Internet Networks

Using PageRank to Characterize Web Structure . 330
Gopal Pandurangan, Prabhakar Raghavan, and Eli Upfal

On Randomized Broadcasting and Gossiping in Radio Networks 340
Ding Liu and Manoj Prabhakaran

Fast and Dependable Communication in Hyper-rings 350
Tom Altman, Yoshihide Igarashi, and Kazuhiro Motegi

XII Table of Contents

Computational Geometry I

The On-Line Heilbronn’s Triangle Problem
in Three and Four Dimensions . 360

Gill Barequet

Algorithms for Normal Curves and Surfaces . 370
Marcus Schaefer, Eric Sedgwick, and Daniel Štefankovič

Terrain Polygon Decomposition, with Application
to Layered Manufacturing . 381

Ivaylo Ilinkin, Ravi Janardan, and Michiel Smid

Computational Biology and Learning Theory II

Supertrees by Flipping . 391
D. Chen, O. Eulenstein, D. Fernández-Baca, and M. Sanderson

A Space and Time Efficient Algorithm
for Constructing Compressed Suffix Arrays . 401

Tak-Wah Lam, Kunihiko Sadakane, Wing-Kin Sung, and Siu-Ming Yiu

Sharpening Occam’s Razor . 411
Ming Li, John Tromp, and Paul Vitányi

Approximating 3D Points with Cylindrical Segments 420
Binhai Zhu

Discrete Algorithms II

Algorithms for the Multicolorings of Partial k-Trees . 430
Takehiro Ito, Takao Nishizeki, and Xiao Zhou

A Fault-Tolerant Merge Sorting Algorithm . 440
B. Ravikumar

2-Compromise Usability in 1-Dimensional Statistical Databases 448
Ljiljana Branković and Jozef Širáň

Computational Geometry II

An Experimental Study and Comparison of Topological Peeling
and Topological Walk . 456

Danny Z. Chen, Shuang Luan, and Jinhui Xu

On-Line Maximizing the Number of Items Packed in Variable-Sized Bins . . 467
Leah Epstein and Lene M. Favrholdt

On-Line Grid-Packing with a Single Active Grid . 476
Satoshi Fujita

Table of Contents XIII

Bend Minimization in Orthogonal Drawings Using Integer Programming . . 484
Petra Mutzel and René Weiskircher

Combinatorial Optimization

The Conditional Location of a Median Path . 494
Biing-Feng Wang, Shan-Chyun Ku, and Yong-Hsian Hsieh

New Results on the k-Truck Problem . 504
Weimin Ma, Yinfeng Xu, Jane You, James Liu, and Kanliang Wang

Theory of Equal-Flows in Networks . 514
K. Srinathan, Pranava R. Goundan, M.V.N. Ashwin Kumar,
R. Nandakumar, and C. Pandu Rangan

Minimum Back-Walk-Free Latency Problem . 525
Yaw-Ling Lin

Complexity II

Counting Satisfying Assignments in 2-SAT and 3-SAT 535
Vilhelm Dahllöf, Peter Jonsson, and Magnus Wahlström

On the Maximum Number of Irreducible Coverings
of an n-Vertex Graph by n− 3 Cliques . 544

Ioan Tomescu

On Reachability in Graphs with Bounded Independence Number 554
Arfst Nickelsen and Till Tantau

On Parameterized Enumeration . 564
Henning Fernau

Quantum Computing

Probabilistic Reversible Automata and Quantum Automata 574
Marats Golovkins and Maksim Kravtsev

Quantum versus Deterministic Counter Automata . 584
Tomohiro Yamasaki, Hirotada Kobayashi, and Hiroshi Imai

Quantum DNF Learnability Revisited . 595
Jeffrey C. Jackson, Christino Tamon, and Tomoyuki Yamakami

Author Index . 605

The Assembly
of the Human and Mouse Genomes

Gene Myers, Ph.D

VP, Informatics Research
Celera Genomics

Gene.Myers@celera.com

Paired-read shotgun sequencing of a genome consists of randomly sampling seg-
ments of a fixed length, say 10,000 base pairs (10Kbp), and directly determining a
“read” of 500 to 700bp at the two ends of each segment with an automated DNA
sequencing instrument. Reconstructing or “assembling” a very large genome from
such a data set was considered impossible at the time Jim Weber and I proposed
it for the Human Genome (2.9Gbp) in 1996. Critics claimed that the computa-
tion would involve an impossible amount of computer time, that the size and
repetitiveness of the genome would confound all attempts at assembly should
sufficient computer efficiency be achieved, and that even if an assembly were
produced it would be of an extremely poor quality and partial nature.

In mid-1998 Celera was formed and by the close of 1999 the informatics
research team at Celera had assembled the 130Mbp Drosophila genome after
producing a whole genome shotgun data set with enough reads to cover genome
13 times over, a 13X data set. An assembly of the Human genome followed in
2000 from a 5.1X data set and synthetic reads generated from public data. In
April 2001, we produced an assembly of the Mouse genome from a 5.3X data set
of three different mouse strains in equal proportions.

Our results from these projects prove unequivocally that whole genome shot-
gun sequencing is effective at delivering highly reliable reconstructions. The fact
that assembly is achieved with only 5X data implies that a relatively complete
picture of a large vertebrate genome can be obtained in six to nine months at
very competitive cost with current technology. We demonstrate that the 5.3X
mouse assembly is a solid substrate for annotation, and together with the hu-
man genome, many structural features become apparent through evolutionary
conservation.

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, p. 1, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Data Structures
for One-Dimensional Packet Classification

Using Most-Specific-Rule Matching

Sartaj Sahni

CISE Department, University of Florida
Gainesville, FL 32611
sahni@cise.ufl.edu

We review the data structures that have been proposed for one-dimensional
packet classification. Our review is limited to data structures for the case when
ties among the rules that match an incoming packet are broken by selecting
the matching rule that is most specific. For the case when the rule filters are
destination-address prefixes or are nonintersecting ranges, this tie breaker corre-
sponds to longest-prefix or shortest-range matching, respectively. When the rule
filters are arbitrary ranges, this tie breaker resolves the tie only when the rule
set is conflict free. Data structures for both static and dynamic rule tables are
discussed.

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, p. 2, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

DNA Complementarity
and Paradigms of Computing

Arto Salomaa

Turku Centre for Computer Science
Lemminkäisenkatu 14, 20520 Turku, Finland

asalomaa@cs.utu.fi

Abstract. Watson-Crick complementarity is one of the central compo-
nents of DNA computing, the other central component being the massive
parallelism of DNA strands. While the parallelism drastically reduces
(provided the laboratory techniques will become adequate) the compu-
tational complexity, the complementarity is the actual computational
tool “freely” available. It is also the cause behind the Turing universal-
ity of models of DNA computing. This paper makes this cause explicit,
reducing the matter to some previously known issues in computability
theory. We also discuss some specific models.

1 Adleman’s Experiment

Adleman, [2], demonstrated how standard methods of molecular biology could
be used to solve a (small instance of a) computationally hard problem. The
interest on “DNA-based computers” has been growing rapidly, both as regards
the development of laboratory techniques and the study of theoretical models.
This paper deals exclusively with the latter aspect.

There are still considerable obstructions to creating a practical molecular
computer, and also very pessimistic views have been expressed. On the other
hand, the possibilities in many fields such as cryptography seem quite amazing,
see, for instance, [1].

Although the real practical feasibility of molecular computers remains still in
doubt, the field has opened new vistas and important research problems both for
computer scientists and biologists. The computer scientist and mathematician is
looking for new models of computation. I would like to call such models “Watson-
Crick machines” because of the Watson-Crick complementarity in DNA: the
four bases A (adenine), T (thymine), C (cytosine) and G (guanine) form two
complementary pairs (A,T) and (C,G). In a Watson-Crick machine, Turing’s slow
diligent clerk is replaced by DNA strands acting in a test tube. In this way the
massive parallelism of DNA strands may render tractable some computational
problems that were beyond the reach of the diligent clerk; not because the DNA
strands are smarter but simply because they can make many tries at once. For the
biologist, the unexpected results in DNA computing indicate that models of DNA
computers could be significant also for the study of important biological problems

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 3–17, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

4 Arto Salomaa

such as evolution. Moreover, the techniques of DNA manipulation developed
originally for computational purposes could find relevant applications in genetic
engineering. However, because of the rather diverse research traditions, it will
not be easy to establish common idioms, let alone common vocabulary, for the
researchers in computer science and biology.

In the issue of Science containing Adleman’s seminal work, David Gifford
wrote, [7]: “If we are able to construct a universal machine out of biologi-
cal macromolecular components, then we could perform any computation by
means of biological techniques. There are certainly powerful practical motiva-
tions for this approach, including the information-encoding density offered by
macromolecules and the high energy efficiency of enzyme systems. At present,
there is no known way of creating a synthetic universal system based on macro-
molecules. Universal systems require the ability to store and retrieve information,
and DNA is certainly up to the task if one could design appropriate molecular
mechanisms to interpret and update the information in DNA. This ultimate goal
remains elusive, but once solved, it will revolutionize the way we think about
both computer science and molecular biology.”

Although such an ultimate goal still remains elusive, there are by now already
many DNA-based universal computational models. (For instance, see [3,4,6,10,11,9,22].)
That there are many diverse ways of constructing DNA-based universal comput-
ers is due to the following overall observation. Watson-Crick complementarity
guarantees universal computations in any model of DNA computers having suf-
ficient capabilities of handling inputs and outputs. This is a consequence of
the close similarity between the Watson-Crick complementarity and the twin-
shuffle language. This observation was first made in [12], and developed further in
[3,10,13,16,17]. The twin-shuffle language is a language over four letters, known,
[5], to be powerful enough to serve as a basis for arbitrary computations. This
state of affairs can be viewed also as a mathematical explanation to the number
of nucleotides in DNA being four, rather than three or five.

It seems obvious that theoretical studies about DNA computing must make
use of the following two advantages stemming from DNA molecules. (i) Watson-
Crick complementarity which can be viewed as the actual computational tool,
and (ii) the multitude of DNA molecules which brings massive parallelism to
the computing scene. It seems that theoretical studies have so far concentrated
on (i). It is still quite an open area to model (ii) mathematically, as well as to
combine (i) and (ii) into one model of DNA computing.

The purpose of this paper is an overall discussion of the significance of the
Watson-Crick complementarity in an arbitrary theoretical setup of DNA com-
puting. Sections 2 and 3 are devoted to a general discussion. Specific setups,
“case studies”, are then presented in the following sections.

The paper assumes practically no background on the part of the reader. The
necessary prerequisites about formal languages can be found, for instance, in
[14] or [15].

DNA Complementarity and Paradigms of Computing 5

2 Complementarity

DNA consists of polymer chains, usually referred to as DNA strands. A chain is
composed of nucleotides, also referred to as bases. Sometimes the chains are also
referred to as oligonucleotides, briefly oligos. The four DNA nucleotides or bases
are customarily denoted by A, C, G and T .

According to a chemical convention, each strand has a 5′ end and a 3′ end,
for instance,

5′CATTAG3′ or 3′GTAATC5′.

Thus, the strands are oriented. The familiar double helix of DNA arises by
the bondage of two separate strands. Actually, single strands are fragile and,
consequently, information is stored in double strands.

The phenomenon known as Watson-Crick complementarity comes into the
picture in the formation of double strands. Bonding happens by the pairwise
attraction of bases: A bonds with T , and C bonds with G. Therefore, the two
unordered pairs (A, T) and (C,G) are known as complementary pairs of bases.
Bonding will only occur if the bases in the two strands are pairwise complemen-
tary and, moreover, the strands have opposite orientations: one of them extends
from 5′ to 3′, and the other from 3′ to 5′. This is the case with the two strands
mentioned above and, consequently, they form the double strand

5′CATTAG3′

3′GTAATC5′

Double strands can again be dissolved into single strands by heating the solu-
tion. This process is usually referred to as melting. The reverse process, referred
to as annealing, is performed by cooling the solution. We do not try to give here
any survey about the operations possible or feasible with DNA strands, or about
the error-freeness of such operations. We will also ignore the orientation in the
sequel. Studies of DNA computing have brought forward many significant new
problem areas along these lines. However, for our purposes, the following observa-
tion is important. Watson-Crick complementarity gives us something important
“for free”: whenever bondage happens, we know that the bases at corresponding
places must be complementary. If A appears in one of the strands, we know
that T appears in the corresponding place in the other strand. If we know one
member of a bond, we know also the other member “without looking”. Other-
wise, bondage would not have taken place. This observation is very basic for
DNA computing. As we will see, it means that we have the twin-shuffle lan-
guage freely available. This leads to universality of models of DNA computing
satisfying certain requirements of handling inputs and outputs.

The observation mentioned is relevant also for simple tasks of DNA com-
puting. It is also behind Adleman’s fundamental experiment, [2], of solving an
instance of the Hamiltonian path problem, HPP.

Given a directed graph, we want to solve its HPP. Each vertex is encoded
by an oligonucleotide. (Adleman used strands of length 20.) Edges are encoded
by oligonucleotides of the same length such that the first (resp. second) half of

6 Arto Salomaa

the oligonucleotide encoding an edge equals the (Watson-Crick) complement of
the second (resp. first) half of the oligonucleotide encoding the outgoing (resp.
incoming) vertex of the edge.

In symbols, let x and y, |x| = |y| = 20, be the oligonucleotides encoding two
vertices such that there is an edge from x to y. Write

x = x1x2, y = y1y2, |x1| = |x2| = |y1| = |y2| = 10.

(As already mentioned, we ignore the orientation markers 5′ and 3′. Consider the
alphabet ΣDNA = {A,G, T,C}, referred to as the DNA-alphabet in the sequel.
Define the letter-to-letter morphism hW : Σ∗

DNA → Σ∗
DNA by

hW (A) = T, hW (T) = A, hW (C) = G, hW (G) = C.

(The morphism hW will be called the Watson-Crick morphism.) Then the edge
from x to y is encoded by the oligo hW (x2y1).

The experiment begins by forming a “DNA soup” containing, in large quan-
tities, oligos of the vertices, as well as of the edges of the graph. Now the ligation
reaction resulting from the Watson-Crick complementarity will link together
compatible edges. This “domino game” continues, identifying longer and longer
paths. In this way DNA molecules encoding random paths through the graph
are formed. By a filtering procedure consisting of several operations possible for
DNA strands one can check whether or not paths satisfying HPP are present.

It will be seen below that any model of DNA computing, where the filtering
procedures available can simulate gsm mappings, is capable of Turing machine
computations. Opinions may differ as to whether computational universality
is of practical relevance. It is quite reasonable to argue that one should not
aim to fit DNA models too tightly to Turing models, but should rather try to
completely rethink the notion of computation. For some specific classes of hard
computational problems, Turing universality might not at all be important. On
the other hand, in a specific model of DNA computing, where computational
universality is unknown, one could suddenly face a situation that numerous
practical efforts of solving a particular problem are proven to have been futile.

3 Déjà vu: Complementarity and Universality

So far quite many and diverse theoretical models have been proposed for DNA-
based computing. The early ones are discussed in [10], see also [3]. While the
models have been based on different ideas and principles, Watson-Crick com-
plementarity is somehow present in a computation or derivation step. This is
natural, in view of the central role of complementarity in DNA operations. A
typical model of DNA computing consists of augmenting a computational aspect
of complementarity with some input-output format.

A property shared by most of the models is that they produce all recursively
enumerable sets, that is, are universal in the sense of Turing machines. This
property seems to be completely independent, for instance, of a model being

DNA Complementarity and Paradigms of Computing 7

grammatical or a machine model. Complementarity, augmented with adequate
input-output facilities, seems to guarantee universality.

Why is this not surprising? Because this is something we have already seen
before in theoretical computer science. We will now establish a link with certain
fairly old results from computability theory, with the purpose of showing that
complementarity is, in fact, a source of universality. Complementarity is such
a powerful tool because it brings, in a certain sense, the universal twin-shuffle
language to the computing scene. We are now ready for the formal details.

Consider the DNA-alphabet ΣDNA = {A,G, T,C}, as well as the Watson-
Crick morphism hW . Following chemical terminology, A andG are called purines,
and T and C pyrimidines. Clearly, the square of hW is the identity. Words
over ΣDNA can be viewed as single strands. Two single strands x and y are
complementary (and, thus, subject to bondage) if x = hW (y) or, equivalently,
y = hW (x). The morphism hW is denoted also by an upper bar: hW (x) = x.
Thus, in this notation, the double bar will be the identity: x = x. Moreover, we
will view the DNA-alphabet as an extended binary alphabet {0, 1, 0, 1}, with the
conventions:

A = 0, G = 1, T = 0, C = 1.

(Observe that this agrees with the bar notation for the Watson-Crick morphism.)
A generalization of the DNA-alphabet and our extended binary alphabet is

the DNA-like alphabet

Vn = {a1, . . . , an, a1, . . . , an}, n ≥ 2.

The letters in the unordered pairs (ai, ai), 1 ≤ i ≤ n, are called complementary.
Again, the morphism hW mapping each letter to its complementary one is called
the Watson-Crick morphism and also denoted by a bar. Extending the termi-
nology concerning the DNA-alphabet, the non-barred letters are called purines
and the barred ones pyrimidines.

We can now define the twin-shuffle language TS. Consider the binary alpha-
bet {0, 1}, as well as its “complement” {0̄, 1̄}. For a word x over {0, 1}, we denote
by x̄ the word over {0̄, 1̄}, where every letter of x is replaced by its “barred ver-
sion”. (Observe that the bar defines in this fashion a letter-to-letter morphism
of {0, 1}∗ onto {0̄, 1̄}∗.) For instance, if x = 001100, then x̄ = 0̄0̄1̄1̄0̄0̄.

For two words x and y, denote by x y the set of words obtained by shuffling
x and y, without changing the order of letters in x or y. For instance, each of
the words

00̄00̄11̄11̄00̄00̄, 0̄0̄1̄1̄0̄0̄001100, 0̄0010̄101̄1̄0̄00̄

is in x x̄, where x = 001100, but 001̄1̄0̄0̄00110̄0̄ is not in x x̄).

Definition 1 The twin-shuffle language TS consists of all words x ∈ w w̄
over the alphabet {0, 1, 0, 1}, where w over {0, 1} is arbitrary. The generalized
twin-shuffle language TSn over the DNA-like alphabet is defined exactly as TS
except that now w ranges over the words over the alphabet {a1, . . . , an}.

8 Arto Salomaa

We now come to the universality of the twin-shuffle language TS. The univer-
sality is due to the following basic representation result for recursively enumerable
languages.

Theorem 1 For every recursively enumerable language L, a gsm-mapping g
such that L = g(TS) can be effectively constructed.

Here“gsm” refers to“generalized sequential machine”, a device obtained by pro-
viding a finite automaton with outputs. The result was established in [5]. For
various proofs and the history of this result, the reader is referred to [15].

The basic representation result shows why TS is universal: It remains the
same for all languages. Only the mapping g (that can be viewed to constitute the
input-output format) has to be specified differently according to each particular
L, in other words, according to the needs of each particular “task”. The result
is also highly invariant, which shows its fundamental character. The reader is
referred to [13,15,16,17].

A further analysis of the mapping g leads to various strengthenings of the
basic representation result. Strengthenings are needed for specific needs of par-
ticular models of DNA computing. We mention the following modifications.

Theorem 2 An arbitrary recursively enumerable language L over the alphabet
V can be represented as

L = pV (TSn ∩R)

where TSn is the generalized twin-shuffle language, R is a regular language and
pV is the projection on the alphabet V (leaving letters of V unchanged and erasing
other letters.) The language L can also be represented in the forms

L = pV (E(g, h) ∩R), L = pV (g(E(g, h)) ∩R),

where g, h are morphisms and E(g, h) is their equality set

E(g, h) = {x|g(x) = h(x)}.

The items R, p, n, g, h are effectively constructable, provided L is effectively
given. We refer to [15] for a proof of this modified representation result. The
modified version is stronger than the basic one, because it tells us that we may
restrict the attention to a particular kind of gsm-mappings. Altogether the mod-
ified version fits very well to machine models of DNA computing, [6]. Many
examples are given in [10].

The representation results presented above exhibit the universality of the
twin-shuffle language TS. On the other hand, the interconnection between TS
and Watson-Crick complementarity is rather obvious and will be discussed below.

The interconnection between the language TS and Watson-Crick comple-
mentarity can be presented in various ways, depending on the method of reading
double strands as single strands. We now discuss some such methods. Instead of
the DNA-alphabet {A,G, T,C}, we use the extended binary alphabet {0, 1, 0, 1}

DNA Complementarity and Paradigms of Computing 9

in the way described above. Thus (disregarding orientation) the DNA double
strands Z are of the form

x1 x2 . . . xn

x1 x2 . . . xn

where each xi is a letter of the extended binary alphabet, and double bars can
be ignored in the way described above. We will first construct a single strand
(or a word) from the double strand Z by the up-down method, taking letters
alternately from upper and lower strands, beginning from the upper strand. The
result is

UD(Z) = x1x1x2x2 . . . xnxn.

The word UD(Z) is always in TS. Indeed, words of the form UD(Z) constitute
the regular subset {00, 00, 11, 11}∗ of TS.

Consider now the reverse problem of constructing a double strand from a
word in TS. Let y be a nonempty word in TS. Necessarily, y is of even length,
|y| = 2m. Moreover, the scattered subword y′ (resp. y′′) of y consisting of non-
barred (resp. barred) letters is of length m. For 1 ≤ i ≤ m, we denote by y′

i

(resp. y′′
i) the ith letter of y′ (resp. y′′). Because y is in TS, the unordered pair

(y′
i, y

′′
i) equals either (0, 0) or (1, 1). When we speak of y′

i or y′′
i , we have these

particular occurrences in mind. The occurrences may lie far apart in y. However,
one of them is always to the left of the other. The left occurrence is referred to
as the up-occurrence at position i, the right occurrence is similarly referred to as
the down-occurrence at position i.

Consider now the double strand of length m, where for 1 ≤ i ≤ m, the
ith letter in the upper (resp. lower) strand is the up- (resp. down-) occurrence
at position i in y. This double strand is called the left parse of y and denoted
LP (y). Clearly, LP (y) satisfies the complementarity requirement for DNA dou-
ble strands. Observe that LP is not injective, for instance,

LP (1010 = LP (1100).

On the other hand, for all double strands Z, we have LP (UD(Z)) = Z. The
equation UD(LP (y)) = y is valid if y belongs to the aforementioned subset
{00, 00, 11, 11}∗ of TS.

We have shown how to go from words in TS to DNA double strands, and
vice versa. Our observations can be summarized as follows.

Theorem 3 For any nonempty word y in the twin-shuffle language TS, LP (y)
is a unique DNA double strand. For any DNA double strand Z, UD(Z) is a
unique word in the subset {00, 00, 11, 11}∗ of TS. When restricted to this subset,
LP is the inverse of UD.

The strength of the representation results (such as the basic and modified result
presented above) is shown also by their invariance. For instance, the universality
results are not affected if one assumes that one of the strands in the double
strands contains only purines (non-barred letters).

Watson-Crick complementarity is a phenomenon provided for us ”for free” by
nature. When bondage takes place (under ideal conditions) between two single

10 Arto Salomaa

strands, we know that the bases opposite each other are complementary. This
information is ”free”; there is no need to check it in any way. At a first glance,
it might seem that not much information is obtained: one just reads the same
information twice when investigating a double strand. However, conclusions can
be made from the history of a double strand, from the knowledge of how it came
into being. The conclusions in Adleman’s experiment are made in this way. If we
know how information was encoded on the DNA strands subjected to bondage,
we may learn much from the fact that bondage has actually taken place.

4 Watson-Crick Finite Automata

We will now briefly discuss some models of DNA-based computing, emphasizing
computational universality. The reader is referred also to [6,10,16]. The proofs,
omitted here, are based on the representation theorems in the preceding section.
Some kind of interplay between complementarity and TS is always essential.

Consider the DNA-like alphabet Vn = {a1, . . . , an, ā1, . . . , ān}, n ≥ 1. Ob-
serve that in complementary pairs one member is a purine and the other a
pyrimidine – exactly as in case of DNA.

Generalizing the idea of a DNA double strand, we now introduce a data
structure called a double strand over Vn. The set of all double strands over Vn will
be denoted by DS(Vn). By definition, DS(Vn) is the free monoid generated by
all ordered pairs (ai, āi) and (āi, ai), where i runs through the numbers 1, . . . , n.

Thus, an element Z of DS(Vn) is a catenation of pairs of the form (ai, āi)
and (āi, ai). The first (resp. second) members in the pairs define a word, referred
to as the upper (resp. lower) strand of Z. We denote double strands similarly as
before. For instance,

(a2, ā2)(ā1, a1)(a1, ā1)(a1, ā1) =
a2ā1a1a1
ā2a1ā1ā1

where a2ā1a1a1 (resp. ā2a1ā1ā1) is the upper (resp. lower) strand.

Definition 2 A Watson-Crick finite automaton is a construct

A = (Vn, Q, q0, F, δ),

where Vn is a DNA-like alphabet, Q is a finite set (states), q0 ∈ Q (initial state),
F ⊆ Q (final states), and δ is a finite set of ordered quadruples (q, xu, xd, q

′),
where q, q′ ∈ Q and xu, xd ∈ V ∗

n (transitions).

Intuitively, the automaton A consists of a control box, being at any moment
in one of finitely many possible states, and two read-only heads, moving inde-
pendently of each other from left to right. The inputs of A are double strands Z
belonging to DS(Vn). The overall behavior of A is nondeterministic. The reading
heads Hu and Hd read the upper and lower strands of Z, respectively. Consider a
quadruple (q, xu, xd, q

′). Assume that A is in the state q and that xu (resp. xd)

DNA Complementarity and Paradigms of Computing 11

appears in the upper (resp. lower) strand of Z, immediately to the right of the
position scanned by Hu (resp. Hd). Then it is possible for A to pass Hu (resp.
Hd) over xu (resp. xd) and go to the state q′. (Observe that δ might contain
also the quadruple (q, x′

u, x
′
d, q

′′), where x′
u and x′

d are prefixes of xu and xd,
respectively. Then A can also go to the state q′′, by reading x′

u and x′
d.) Note

that one or both of the middle elements in the quadruples may be the empty
word. Thus, it is possible for the automaton A to read a portion of one strand
only during a step of the computation.

A double strand Z belonging to DS(Vn) is accepted by the automaton A if
the following computation is possible, using the quadruples in δ. Initially, A is
in the state q0 and the head Hu (resp. Hd) is positioned to the left of the whole
upper (resp. lower) strand of Z. At the end of the computation, A is in a state
belonging to F and the head Hu (resp. Hd) is positioned to the right of the
whole upper (resp. lower) strand of Z.

(This informal definition can be formalized in the usual way by introducing
instantaneous descriptions and a yield relation for computational steps, based on
δ. In such a formalization the elements of DS(Vn) have to be decomposed further,
because the heads move at different speeds. A similar further decomposition will
be needed also below, in connection with matching systems.)

The language L(A) ⊆ V ∗
n accepted by the Watson-Crick finite automaton A

consists of all upper strands of the double strands Z accepted by A.
We are now ready to state the universality result. Several modifications of it

are possible. By a weak coding we mean a morphism mapping every letter either
to a letter or to the empty word.

Theorem 4 Every recursively enumerable language is a weak coding of a lan-
guage accepted by a Watson-Crick finite automaton.

A Watson-Crick finite automaton, as a construct, is essentially the same
as a finite automaton with two one-way reading heads. (For such automata,
though, we are not aware of any result analogous to the above theorem.) There
is no difference if one reads twice the same single strand or once a double strand.
However, in considerations involving DNA-based computing, there is a difference:
something can be learned from the history of the double strands, how they came
into being.

5 Matching Systems

As another case study, we consider a grammatical model. We need the set of
extended double strands over Vn, in symbols, EDS(Vn). Intuitively, elements of
EDS(Vn) are double strands having a “sticky” single strand at the end.

Define the alphabets

V u
n = {(x,#)|x ∈ Vn}, V d

n = {(#, x)|x ∈ Vn}.
Intuitively, # is used to denote blank. The letters of V u

n (resp. V d
n) are used to

construct “sticky” upper (resp. lower) strands which may become double strands
by rules of complementarity.

12 Arto Salomaa

By definition,

EDS(Vn) = DS(Vn)((V u
N)∗ ∪ (V d

n)∗).

Definition 3 A matching system is a construct

M = (Vn, A, Su, Sd),

where Vn is a DNA-like alphabet, A ⊆ EDS(Vn) is a finite set (axioms), and
Su ⊆ (V u

n)∗, Sd ⊆ (V d
n)∗ are finite sets (upper and lower strands, respectively).

A matching system M generates a set

S(M) ⊆ EDS(Vn)

as follows. Each element Z ∈ S(M) possesses a derivation, a finite sequence of
elements of EDS(Vn). The derivation begins with an element of A and ends with
Z. Every element of the derivation is obtained from the preceding element by
extending it with some element of Su or Sd. Elements of Sd (resp. Su) have to be
used to extend elements of DS(Vn)(V u

n)∗ (resp. DS(Vn)(V d
n)∗). (Thus, elements

of DS(Vn) can be extended by elements of both Sd and Su.) The result of the
extension has to be again an element of EDS(Vn). Each element of Sd and Su

can be used arbitrarily many times in the same derivation.
The formal definition, based again on a yield relation, should be clear by the

above informal remarks. Let us consider an example of a matching system M.

The alphabet will be the DNA alphabet {A, G, T, C}. The only axiom is
CAT
G##

and the set Su has the strands
GT
and

AT
as its elements, whereas

####
TACA

is the only element of Sd.
Every derivation necessarily begins with the sequence

CAT
G## ⇒

CAT##
GTACA

⇒ CATGT
GTACA

After this, any of the three elements of Su ∪ Sd can be applied. However, the

application of
GT
leads to the element

CATGTGT
GTACA##

after which the derivation necessarily blocks. The other two elements of Su ∪Sd

lead to an extended double strand from which it is possible to continue. Alto-
gether the possibilities are very limited, and the reader should have no difficulties
in characterizing the set S(M).

DNA Complementarity and Paradigms of Computing 13

The elements of S(M) are extended double strands. A language can be
“squeezed out” of S(M) in various ways. Only regular languages result in this
way in the above setup. This is due to the unrestricted use of elements in Su∪Sd.
To reach universality, some restrictions must be imposed on the derivations.

Consider a matching system M. Assume that the sets Su and Sd are of the
same cardinality k. Label the elements of Su and Sd by the integers 1, . . . , k.
The upper (resp. lower) control word Cu(D) (resp. Cd(D)) of a derivation D is
the sequence of labels of elements of Su (resp. Sd) used in the derivation D, in
their order of application. A derivation D is termed coherent if Cu(D) = Cd(D)
and, moreover, the last element of D is a double strand, that is, an element in
DS(Vn). The coherent set Sc(M) ⊆ DS(Vn) generated by a matching system
M (satisfying the assumption about the cardinalities of Su and Sd) consists of
the last elements of coherent derivations according to M.

Theorem 5 Every recursively enumerable language L ⊆ Σ∗ can be represented
in the form

L = f(g−1(Sc(M))),

for some matching system M, morphism g : Σ∗ → DS(Vn) and weak coding
f : Σ∗ → Σ∗.

6 Lindenmayer Systems and Complementarity

Complementarity can be viewed also as a language-theoretic operation. As such
hW is only a morphism of a special kind. However, the operational complemen-
tarity can be considered also as a tool in a developmental model: undesirable
conditions in a string trigger a transition to the complementary string. Thus, the
class of “bad” strings is somehow specified. Whenever a bad string x is about
to be produced by a generative process, the string hW (x) is taken instead of
x. If the generative process produces a unique sequence of strings (words), the
sequence continues from hW (x). The class of bad strings has to satisfy the fol-
lowing soundness condition: whenever x is bad, the complementary string hW (x)
is not bad. This condition guarantees that no bad strings are produced.

While the operational complementarity can be investigated in connection
with any generative process for words, it seems particularly suitable for Lin-
denmayer systems, the systems themselves being developmental models. The
simplest L system, namely the D0L system, has been thoroughly investigated,
[11]. A D0L system generates a sequence of words. When it is augmented with
a trigger for complementarity transitions, as described above, the resulting se-
quences contain no bad words. However, even very simple triggers yield amazing
computational possibilities. We will now mention some fundamental results con-
cerning such Watson-Crick D0L systems. Because of their strength, especially
in comparison with ordinary D0L systems, they have been quite widely stud-
ied, for instance, see [9,8,18,19,20,22,21,4]. For completeness, we begin with the
definition of a D0L system.

14 Arto Salomaa

Definition 4 A D0L system is a triple G = (Σ, g, w0), where Σ is an alphabet,
w0 ∈ Σ∗ (the axiom) and g is an endomorphism of Σ∗. A D0L system defines the
sequence S(G) of words wi, i ≥ 0, where wi+1 = g(wi), for all i ≥ 0. It defines
also the language L(G), consisting of all words in S(G), the length sequence
|wi|, i ≥ 0, as well as the growth function f(i) = |wi|.

A Watson-Crick D0L system is simply a D0L system augmented with a trig-
ger. Below we consider just one trigger, namely, the language over the DNA-
like alphabet, consisting of words, where the pyrimidines form a majority. Such
Watson-Crick D0L systems are customarily referred to as standard in the liter-
ature. We will now give the formal definitions.

For a word x over a DNA-like alphabet Vn, we denote by pur(x) (resp.
pyr(x)) the scattered subword of x consisting of all purines (resp. pyrimidines)
in x. (Recall that pyrimidines are the barred letters.) Thus, for any x,

|x| = |pur(x)|+ |pyr(x)| and |pur(x)| = |pyr(hW (x))|.
These equations and the definition of the Watson-Crick morphism hW give rise
to the following basic lemma.

Lemma 1 Let x be an arbitrary word over the DNA-like alphabet Vn. Then
either |pur(x)| = |x|

2 or else exactly one of the inequalities

|pur(x)| > |x|
2

and |pur(hW (x))| > |x|
2

holds.

Definition 5 A Watson-Crick D0L system is a construct G = (Vn, g, w0),
where Vn is a DNA-like alphabet, g : V ∗

n → V ∗
n is a morphism and w0 ∈ V ∗

n (the
axiom) satisfies 2|pur(w0)| ≥ |w0|.

The sequence SW (G) generated by a Watson-Crick D0L system G is the
sequence of words w0, w1, w2, . . ., defined by

wi+1 =
{
g(wi) if |pur(g(wi))| ≥ |g(wi)|

2 ,
hW (g(wi)), otherwise,

where i ≥ 0. The language, length sequence and growth function of a Watson-
Crick D0L system are defined as for D0L systems.

The following result is now immediate.

Lemma 2 Every word x in the sequence SW (G) generated by a Watson-Crick
D0L system G satisfies the condition |pur(x)| ≥ |x|

2 .

A celebrated problem concerning D0L systems, whose solution turned out to
be rather involved, [11], is the (sequence) equivalence problem: given D0L systems
G1 and G2, decide whether or not S(G1) = S(G2). The same problem can be

DNA Complementarity and Paradigms of Computing 15

posed also when G1 and G2 are Watson-Crick D0L systems: decide whether or
not SW (G1) = SW (G2). It is not our purpose to enter the intricacies of this
problem. However, it is easy to see that there are D0L systems G1 and G2 such
that S(G1) = S(G2) but SW (G1) 	= SW (G2), and also D0L systems G3 and G4
such that S(G3) 	= S(G4) but SW (G3) = SW (G4).

Growth functions of Watson-Crick D0L systems can exhibit very weird be-
havior, even in the case of the 4-letter DNA-alphabet, [9,20].

We now come to the universality results. A Watson-Crick D0L scheme is a
Watson-Crick D0L system without the axiom.

Definition 6 Consider a Watson-Crick D0L scheme GW . A partial recursive
function f mapping a subset of the set of nonnegative integers into nonnegative
integers is computed by GW if its alphabet contains the letters B, b, E, e with
the productions E → E and e→ e and satisfying the following condition. For all
i ≥ 0, the equation f(i) = j holds exactly in case there is a derivation according
to GW

Bbi =⇒∗ Eej

and, moreover, the letters E and e appear in this derivation at the last step only.
A function f is Watson-Crick computable if it is computed by some Watson-
Crick D0L scheme GW .

(We have used here the customary terminology involving productions and
derivations.) The universality result, due originally to [22], can now be stated as
follows.

Theorem 6 Every partial recursive function is Watson-Crick computable.

Language-theoretic counterparts will be expressed in the following theorem,
[4]. The definitions of the Lindenmayer systems involved can be found in [11],
whereas their Watson-Crick variants are defined analogously to Watson-Crick
D0L systems.

Theorem 7 Let L be a recursively enumerable language. Then there exists a
Watson-Crick EDT0L system Σ such that L = L(Σ). Moreover, the number of
nonterminals of Σ is bounded by a constant not depending on L. There exists
(effectively) also a Watson-Crick EDT0L system Σ with two tables such that
L = L(Σ), as well as a Watson-Crick E0L system Σ such that L = L(Σ).

7 Conclusion

We are still lacking a killer app of DNA-based computing, that is, an application
which

– fits the DNA model,
– cannot be solved by the current or even future electronic machines,
– is of value (people are willing to pay for it).

16 Arto Salomaa

Therefore, we do not want make any predictions about the ultimate fate of
DNA-based computing, or its success or failure versus quantum computing.

We conclude by emphasizing some issues discussed above, as well as raising
some questions.

– Watson-Crick complementarity amounts to the presence of the twin-shuffle
language TS.

– The number four of the bases A,G, T,C is ideal: we get exactly the alphabet
of TS.

– Universality results remain valid under several restrictions of the double
strands. For instance, one strand may contain only purines A,G. What is
the significance (computing, biology) of such restrictions?

– The pair (G,C) bonds stronger than the pair (A, T). What are the implica-
tions (computing, biology)?

References

1. L.M. Adleman, P.W.K. Rothemund, S. Roweiss and E. Winfree, On applying
molecular computations to the Data Encryption Standard. In: E. Baum, D. Boneh,
P. Kaplan, R. Lipton, J. Reif and N. Seeman (eds.), DNA Based Computers. Proc.
of the Second Annual Meeting, Princeton (1996) 28-48.

2. L. M. Adleman, Molecular computation of solutions to combinatorial problems.
Science 266 (1994) 1021–1024.

3. M. Amos, G. Paun, G. Rozenberg and A. Salomaa, DNA-based computing: a
survey. To appear in Theoretical Computer Science.

4. J. Csima, E. Csuhaj Varjú and A. Salomaa, Power and size of extended Watson-
Crick L systems, TUCS report 424, Turku Centre for Computer Science, Turku,
2001, to appear in Theoretical Computer Science.

5. J. Engelfriet and G. Rozenberg, Fixed-point languages, equality languages, and rep-
resentations of recursively enumerable languages. J.Assoc.Comput.Mach. 27 (1980)
499-518.

6. R. Freund, G. Paun, G. Rozenberg and A. Salomaa, Watson-Crick finite automata.
Proceedings of the 3rd DIMACS Conf. on DNA Based Computers, 1997, 305–317.

7. D. Gifford, On the path to computation with DNA. Science 266 (1994) 993–994.
8. J. Honkala and A. Salomaa, Watson-Crick D0L systems with regular triggers.

Theoretical Computer Science 259 (2001) 689–698.
9. V. Mihalache and A. Salomaa, Language-theoretic aspects of DNA complementar-

ity. Theoretical Computer Science 250 (2001) 163-178.
10. G. Păun, G. Rozenberg and A. Salomaa, DNA Computing. New Computing

Paradigms. Springer-Verlag, Berlin, Heidelberg, New York (1998).
11. G. Rozenberg and A. Salomaa (eds.), Handbook of Formal Languages, Vol. 1–3.

Springer-Verlag, Berlin, Heidelberg, New York, 1997.
12. G. Rozenberg and A. Salomaa, Watson-Crick complementarity, universal compu-

tations and genetic engineering. Leiden University, Computer Science Technical
Report 28 (1996).

13. G. Rozenberg and A. Salomaa, DNA computing: new ideas and paradigms.
Springer LNCS 1644 (1999) 106-118.

DNA Complementarity and Paradigms of Computing 17

14. A. Salomaa, Formal Languages. Academic Press, New York, 1773.
15. A. Salomaa, Jewels of Formal Language Theory. Computer Science Press,

Rockville, Md. (1981).
16. A. Salomaa, Turing, Watson-Crick and Lindenmayer. Aspects of DNA complemen-

tarity. In: C.S. Calude, J. Casti and M.J. Dinneen (eds.), Unconventional Models
of Computation. Springer-Verlag, Singapore (1998) 94-107.

17. A. Salomaa, Computability paradigms based on DNA complementarity. In
V. Keränen (ed.), Innovation in Mathematics, Proc. 2nd Intern. Mathematica
Symposium, Computational Mechanics Publications, Southampton, Boston (1997)
15–28.

18. A. Salomaa, Watson-Crick walks and roads in D0L graphs. Acta Cybernetica 14
(1999) 179–192.

19. A. Salomaa, Uni-transitional Watson-Crick D0L systems. TUCS report 389, Turku
Centre for Computer Science, Turku, 2001, to appear in Theoretical Computer
Science.

20. A. Salomaa, Iterated morphisms with complementarity on the DNA alphabet.
In M. Ito, G. Paun and S. Yu (eds.) Words, Semigroups, Transductions, World
Scientific Publ. Co. (2001) 405–420.

21. A. Salomaa and P. Sośık, Watson-Crick D0L systems: the power of one transition.
TUCS report 439, Turku Centre for Computer Science, Turku, 2002. Submitted
for publication.

22. P. Sośık, D0L Systems + Watson-Crick Complement = Universal Computation.
Springer LNCS 2055 (2001) 308–320.

On Higher Arthur-Merlin Classes

Jin-Yi Cai1,�, Denis Charles2,��, A. Pavan3,��, and Samik Sengupta

1 Computer Sciences Department, University of Wisconsin, Madison, WI 53706
jyc@cs.wisc.edu

2 Computer Sciences Department, University of Wisconsin, Madison, WI 53706
cdx@cs.wisc.edu

3 NEC Research Institute, 4 Independence Way, Princeton, NJ 08540
apavan@research.nj.nec.com

4 Department of Computer Science and Engineering, University at Buffalo, Buffalo,
NY 14260

samik@cse.buffalo.edu

Abstract. We study higher Arthur-Merlin classes defined via several
natural probabilistic operators BP, R and coR. We investigate the com-
plexity classes they define, and a number of interactions between these
operators and the standard polynomial time hierarchy. We prove a hi-
erarchy theorem for these higher Arthur-Merlin classes involving inter-
leaving operators, and a theorem giving non-trivial upper bounds to the
intersection of the complementary classes in the hierarchy.

1 Introduction

Arthur-Merlin Games were introduced by Babai [6,7] to study the power of
randomization in interaction. Goldwasser and Sipser [13] proved soon afterwards
that these classes are equivalent in power to Interactive Proof Systems introduced
by [12]. In the last 15 years, this study has proved to be exceedingly successful in
complexity theory [21,9,22,16,17]. Eventually the study of these proof systems
(and multi prover systems) led to perhaps the most spectacular achievement in
the Theory of Computing in the last decade [16,17,4,3].

It is well known that some traditional complexity classes can be characterized
by operators. For example NP = ∃ · P, Σ2 = ∃ · ∀ · P, using the P-time bounded
existential and universal operators ∃ and ∀ respectively (we omit the superscript
P in this paper). They have been used fruitfully to prove (or to give simpler
proofs of known) relations between complexity classes [22,18,20,19]. For example,
Toda’s Theorem was proved in this framework [18]. In this approach, Zachos and
Fürer [22] showed that AM can also be characterized by the operator BP, i.e.
AM = BP · NP. By successfully employing this operator machinery, they were
able to give a simple and natural proof that the one-sided error version of AM
coincides with the two-sided error version, and thus AM ⊆ Π2.

� Research supported in part by NSF grant CCR-0196197
�� Work done while the author was at University at Buffalo

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 18–27, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

On Higher Arthur-Merlin Classes 19

In this paper, we define higher Arthur-Merlin classes using several natural
probabilistic operators BP, R and co-R. We consider the hierarchy of classes
BP · Σk, for k ≥ 1, and prove some intricate relations among these classes and
Σ� and ZPP. The class BP · Σk can also be thought of as an Arthur-Merlin
game where Arthur has access to Σk−1 oracle. By investigating the interactions
between the BP operators and the polynomial-time hierarchy, we are able to
obtain some non-trivial containments; for example, we show that ΣAM

k = Σk+1
for k ≥ 2, whereas the näıve argument gives ΣAM

k ⊆ Σk+2 (a special case of
this is noted in [8] p. 253). Similarly, by interleaving n levels of Σk classes and
n levels of BP · Σ� classes, we obtain results that improve trivial containments
by n levels.

Recently classes ZPPNP,SP
2 and AM∩ co-AM have received much attention.

Arvind and Köbler [1] and Goldreich and Zuckerman [14] proved that MA is
contained in ZPPNP. Köbler and Watanabe [15] and Bshouty et al. [10] proved
that the polynomial-time hierarchy is in ZPPNP, if NP has polynomial-size cir-
cuits. More recently Arvind and Köbler [2] proved that AM ∩ co-AM is low for
ZPPNP, i.e., ZPPNPAM∩co-AM ⊆ ZPPNP. Cai [11] has shown that SP

2 ⊆ ZPPNP,
this combined with the observation of Sengupta that if NP has polynomial-size
circuits then PH ⊆ SP

2 gives the strongest version of the Karp-Lipton theorem.
We consider a generalization of the class AM ∩ co-AM. Let Ek be BP ·Σk ∩

BP ·Πk. We prove NPE1 ⊆ ZPPNP. We then prove a far reaching extension of
this upper bound. Arvind and Köbler’s result follows as a corollary, and thereby,
we obtain an alternative proof of their lowness theorem. By interleaving n levels
of Ek and n levels of Σl classes, we obtain an upper bound that improves over
the trivial bound by n levels.

Our proofs illustrate the power of the operator machinery, when properly
deployed. The apparent ease (even a tautness) with which these theorems on
the hierarchy are revealed speaks to its effectiveness. While the formalism of
this operator machinery may appear austere and less vivid intuitively, it should
also be pointed out that only through such a formalism can we even begin to
state some of the delicate relations in this hierarchy. While lacking intuitive
appeal, there is also a certain beauty in its succinctness. We also note that a
certain amount of care must be exercised in giving the correct definition of these
classes by operators. For instance in [8] on page 243, the authors claim that
MA = NP ·BPP, but this is incorrect. The predicate which is used to define the
BPP language need not exhibit a BPP type computation, if we have a “Yes”
instance but the non-deterministic guess is not the “correct” Merlin proof.

2 Preliminaries

We give formal definitions in this section. An Arthur-Merlin game is a combi-
natorial game, played by Arthur–a probabilistic polynomial-time machine (with
public coins), and Merlin–a computationally unbounded Turing machine.

Given a string x, Merlin tries to convince Arthur that x belongs to some
language L. The game consists of a finite number of moves. In the end Arthur

20 Jin-Yi Cai et al.

either accepts or rejects x. Babai [6,7] defines a language L to be in AM as
follows. For every string x of length n, the game consists of a random move by
Arthur and a reply by Merlin. If x ∈ L, then the probability that there exists a
move by Merlin that leads to acceptance by Arthur is at least 3

4 ; on the other
hand, if x /∈ L, then the probability that there exists a move by Merlin that
leads to acceptance by Arthur is at most 1

4 .
This definition has error on both sides. One can define the one-sided error

version, temporarily denoted as AM1, which is defined the same way as AM,
except that when x is in the language then for every random choice by Arthur
there exists a move by Merlin that leads to the acceptance of x by Arthur.

Babai [6,7] also defined the class MA. Here Merlin, instead of Arthur, moves
first.

Proposition 1. We know the following relationships about AM. i) AM = AM1
[22], ii) AM ⊆ Π2 [7], iii) AM ∩ co-AM ⊆ ZPPNP, and iv) AM ⊆ co-RPNP ⊆
BPPNP.

The following inclusions are known about MA: i) MA ⊆ SP
2 ⊆ ZPPNP

[1,14,11], and ii) NPBPP ⊆ MA [22].
The probabilistic operator BP is the following:

Definition 1. Given a class C, a language L is in BP·C if there exists a language
L′ in C and a polynomial p(·) such that the following holds:

x ∈ L =⇒ Pr
r∈{0,1}p(n)

[〈x, r〉 ∈ L′] ≥ 3
4

x /∈ L =⇒ Pr
r∈{0,1}p(n)

[〈x, r〉 ∈ L′] ≤ 1
4
.

Zachos and Fürer [22] showed that AM = BP · NP. We can define the one-
sided error version of BP · C using the operator co-R. Again, the difference is if
x ∈ L then for every r ∈ {0, 1}p(n) the tuple 〈x, r〉 is in L′. Then, by using the
fact that AM = AM1 we obtain BP · NP = co-R · NP. Similarly we can define
the operator R. Note that for any complexity class C, co-(R · C) = co-R · co-C.

We define higher Arthur-Merlin classes using these operators. Observe that
we do not obtain any new classes by applying the operator R (co-R) to Σk (Πk

respectively). Therefore, only co-R ·Σk and R ·Πk are possibly new classes, and
since AM = co-R ·NP, co-R ·Σk will be a generalization of AM. However, as the
following proposition shows, we can equivalently consider BP·Σk as an extension
of AM.

Proposition 2. Proposition 1 can be easily extended as follows: i) BP · Σk =
co-R · Σk, ii) co-R · Σk ⊆ Πk+1, iii) co-R · Σk ∩ R · Πk ⊆ ZPPΣk , and iv)
BP ·Σk ⊆ co-RPΣk ⊆ BPPΣk .

Now, we consider the relativizations of the class AM. Given a class C, AMC

is defined similar to the class AM where Arthur has access to some L ∈ C as the
oracle. This generalization coincides with the classes we obtained by operators;
namely, we can prove the following, given a class of languages C,

On Higher Arthur-Merlin Classes 21

Proposition 3. AMC = co-R ·NPC = BP ·NPC.

Hence, in particular AMΣk = BP · Σk+1. Similarly, given class C, we can
define the class MAC . Arvind and Köbler [2] proved a non-trivial result about
the class AM∩ co-AM. They showed that AM∩ co-AM is low for ZPPNP, which
means ZPPNPAM∩co-AM ⊆ ZPPNP. Note that a näıve attempt, that just uses the
fact AM ∩ co-AM ⊆ ZPPNP, yields ZPPNPAM∩co-AM ⊆ ZPPΣ2 .

The rest of the paper is organized as follows. In section 3, we shall prove
results about BP ·Σk, culminating in Theorem 2 about the hierarchy with inter-
leaving levels of BP·Σl and Σk. In section 4, we concentrate on BP·Σk∩BP·Πk.
We extend the lowness results about AM ∩ co-AM and prove Theorem 5 about
interleaving levels of BP · Σl ∩ BP · Πl and Σk. Finally, in section 5, we give
examples of languages in BP ·Σk, for every k ≥ 2.

3 On BP · Σk

We begin with the following result and generalize it later.

Lemma 1. NPAM ⊆ MANP.

Proof. (Sketch.) Let L ∈ NPAM. Then there is a language A ∈ AM and a
polynomial-time bounded non-deterministic oracle Turing machine NA, that
accepts the language L. We will assume (without loss of generality) that the
predicate that we use to decide A has 1-sided error, and our proof will yield a
predicate that has 2-sided error. However the 2-sided error version of MANP is
the same as the 1-sided error version. Consider the following MANP protocol:
Merlin provides an accepting computation of NA with query answers filled in.
Arthur, here, is a BPPNP machine. Since both AM and co-AM are in BPPNP,
Arthur can verify that the path given by Merlin is indeed a correct accepting
computation. �

The following theorem is a natural extension of the above Lemma.

Theorem 1.

NPBP·Σl ⊆ MAΣl ⊆ SP
2

Σl ⊆ ZPPΣl+1 , for l ≥ 0.

Proof. Note that when l = 0, the theorem is saying NPBPP ⊆ MA ⊆ SP
2 ⊆

ZPPNP. All these inclusions are known [1,14,22,11]. The proof of the case l ≥ 1
is similar to the proof of previous lemma. For the first containment, Merlin
gives an accepting computation of the NP machine with query answers filled in.
Arthur, now a BPPΣl machine can verify the all the query answers are correct,
as BP · Σl and co-BP · Σl are subsets of BPPΣl . The second inclusion follows
from relativizing the proof of MA ⊆ SP

2 ⊆ ZPPNP. �

The following two equalities can be easily proved using the fact that NPZPP =
NP. Here k ≥ 1 and l ≥ 0.

Lemma 2. i) ΣZPPΣl

k = Σk+l, ii) BP ·ΣZPPΣl

k = BP ·Σk+l.

22 Jin-Yi Cai et al.

Next, we consider a hierarchy with interleaving levels of BP · Σl and Σk.
The upper bound in this theorem is an improvement of n levels over the trivial
bounds.

Theorem 2. 1. For k1, . . . , kn ≥ 1 and l1, · · · ln ≥ 0, where n ≥ 1

Σ
BP·Σ···

Σ
BP·Σln
kn

l1
k1

⊆ ZPPΣk1+k2+···+kn+l1+l2+···+ln .

2. For k1 ≥ 2, k2, . . . , kn ≥ 1, and l1, · · · ln ≥ 0, where n ≥ 1

Σ
BP·Σ···

Σ
BP·Σln
kn

l1
k1

= Σk1+k2+···+kn+l1+l2+···+ln .

Proof. We prove the first equality, by induction on n, the number of levels. Our
base case is

ΣBP·Σl

k ⊆ ZPPΣk+l , for k ≥ 1, l ≥ 0,

which we shall prove by induction on k. We know, by Theorem 1, that
NPBP·Σl ⊆ ZPPΣl+1 . So when k = 1 the base case is true. Now consider the
case k ≥ 2. Assume ΣBP·Σl

k−1 ⊆ ZPPΣk+l−1 , for k ≥ 2. Now,

ΣBP·Σl

k = NPΣ
BP·Σl
k−1 ⊆ NPZPPΣk+l−1 = Σk+l ⊆ ZPPΣk+l

The second inclusion is by assumption and the last equality is by Lemma 2.
Let us assume that, for k2, . . . , kn ≥ 1 and l2, . . . ln ≥ 0

Σ
BP·Σ···

Σ
BP·Σln
kn

l2
k2

⊆ ZPPΣk2+···+kn+l2+···+ln .

The following inclusions prove item 1.

Σ
BP·Σ···

Σ
BP·Σln
kn

l1
k1

⊆ ΣBP·ΣZPP
Σk2+···+kn+l2+···+ln

l1
k1

(by assumption)

= Σ
BP·Σk2+···+kn+l1+l2+···+ln

k1
(by Lemma 2)

⊆ ZPPΣk1+k2+···+kn+l1+l2+···+ln (By base case)

We omit the proof of second item due to space constraints. �

4 On BP · Σk ∩ BP · Πk

Definition 2. Let Ek ≡ BP ·Σk ∩ BP ·Πk, and if C is a class of languages we
define EC

k ≡ BP ·ΣC
k ∩ BP ·ΠC

k .

On Higher Arthur-Merlin Classes 23

Note that EΣl

k = Ek+l. In this section we study the interaction of the class Ek

with Σl classes. Recall that AM∩co-AM ⊆ ZPPNP; in fact Arvind and Köbler [2]
proved that AM∩ co-AM is low for ZPPNP. This lowness result is a corollary of
the following theorem. Thus we offer a different proof of their result, which we
believe is intuitively clearer.

Theorem 3.

NPEl ⊆ ZPPΣl , for l ≥ 1.

The proof is by induction. The base case is the following lemma.

Lemma 3.

NPAM∩co-AM ⊆ ZPPNP

Proof. Let L ∈ E1 = AM ∩ coAM. By definition there exist two deterministic
polynomial-time computable predicates A(·, ·, ·) and B(·, ·, ·) and a polynomial
p(·) such that the following holds: ∀x ∈ {0, 1}∗ : let m = p(|x|)

x ∈ L ⇒ ∀r ∈ {0, 1}m : ∃w ∈ {0, 1}m : A(x,w, r)

AND Pr
r∈{0,1}m

[∀w ∈ {0, 1}m : ¬B(x,w, r)] ≥ 3
4

(1)

x /∈ L ⇒ Pr
r∈{0,1}m

[∀w ∈ {0, 1}m : ¬A(x,w, r)] ≥ 3
4

AND ∀r ∈ {0, 1}m : ∃w ∈ {0, 1}m : B(x,w, r)

We will show that NPL ⊆ ZPPNP. Let S ∈ NPL and let N be an oracle
Turing machine which witnesses this membership.

Let T (·) be the bound on running time of N . Hence, N can query strings of
length at most T (n) for input size n. We first amplify the success probability for
A and B such that the following holds for each string q, with |q| ≤ T (n):

q ∈ L ⇒ Prr∈{0,1}l(n) [∀w ∈ {0, 1}p(|q|) : ¬B(q, w, r)] ≥ 1− 1
2T (n)+n+1

q /∈ L⇒ Prr∈{0,1}l(n) [∀w ∈ {0, 1}p(|q|) : ¬A(q, w, r)] ≥ 1− 1
2T (n)+n+1 .

To achieve this amplification it suffices to take l(n) = nd for some large
enough constant d > 0. Thus we have

Pr
r∈{0,1}l(n)

[
∀q, |q| ≤ T (n),

[
q ∈ L⇒(∀w ∈ {0, 1}p(|q|) : ¬B(q, w, r)

)]]≥1− 1
2n

Pr
r∈{0,1}l(n)

[
∀q, |q| ≤ T (n),

[
q /∈ L⇒(∀w ∈ {0, 1}p(|q|) : ¬A(q, w, r)

)]]≥ 1− 1
2n
.

Now we define the non-deterministic Turing machine N ′. Let |x| = n and r
be a string of length l(n).

24 Jin-Yi Cai et al.

N ′ on input 〈x, r〉 operates as follows. It simulates N on input x. Whenever
N poses a query q to the oracle L, N ′ non-deterministically guesses an answer
aq ∈ {Yes,No} and then uses r, as random bits and also guesses a “proof” w and
verifies that if aq = Yes, then A(q, w, r) holds and if aq = No, then B(q, w, r)
holds.

Now we construct a probabilistic oracle Turing machine M with oracle access
to SAT that recognizes S. Given an x with |x| = n, it generates a random string
r of length l(n). Then, M poses the query to the SAT oracle asking (using Cook
reduction) whether there is an accepting path of N ′ on input 〈x, r〉 and if so, M
finds such a path C using the self-reducibility of SAT. If the answer was “No”
then M rejects x. If the answer was “Yes” then M checks for contradictions to
the query answers on the path C. In other words, for every query answered “Yes”
we ask the SAT oracle if there is a w′ such that B(q, w′, r) holds, and similarly
for every query answered “No” we ask the SAT oracle if there is a w′′ such that
A(q, w′′, r) holds. If for every query along C there were no contradictions then
we accept x, otherwise we output “?”.

Clearly M rejects x only if the SAT oracle did not find any accepting path
of N ′. If x ∈ L there always is an accepting path of N ′ regardless of r so we
are correct in rejecting the string. Now if M accepts x then we obtained a path
C of N ′ where there were no contradictions to the queries. If any of the queries
were answered wrongly there always is a contradiction. This is because if for any
query q such that q ∈ L, but the SAT-oracle found a w′ such that B(q, w′, r)
then by (1) there is also a w′′ such that A(q, w′′, r) regardless of r. Similarly for
q /∈ L if the SAT-oracle found a w′′ such that A(q, w′′, r) then again by (1),
irrespective of r there is also a w′ such that B(q, w′, r). Thus x ∈ L if M accepts
x. Hence M is always right in accepting or rejecting a string.

The proof is complete if we can argue that we output a “?” with low prob-
ability. Now a “?” is reached only if there was a contradiction to some query
along the path C. By our amplification the probability that there exists a con-
tradiction to any query of length bounded by T (n) is at most 1

2n . We note that
a contradiction happens at a query only if either q ∈ L and ∃w′ : B(q, w′, r) or
q /∈ L and ∃w′′ : A(q, w′′, r). �

Proof. (of theorem 3) It is clear that the above lemma relativizes. So we have

NPEl = NPE
Σl−1
1 ⊆ ZPPNPΣl−1 = ZPPΣl .

�

Now ZPPNPAM∩co-AM ⊆ ZPPZPPNP
= ZPPNP. Thus we obtain an alternate

proof of Arvind and Köbler’s result.

Corollary 1 [2] AM ∩ co-AM is low for ZPPNP.

We will generalize Theorem 3 further culminating in Theorem 6. First we
have

Theorem 4.

ΣEl

k = Σk+l−1 for k ≥ 1, l ≥ 1.

On Higher Arthur-Merlin Classes 25

Proof. We again prove this by induction. Base case is NPNPEl = Σl+1.

NPNPEl ⊆ NPZPPΣl (by Theorem 3)
= Σl+1 (by Lemma 2).

Let us assume ΣEl

k−1 ⊆ ZPPΣk+l−2 , for k ≥ 3. Now,

ΣEl

k = NPΣ
El
k−1

⊆ NPZPPΣk+l−2 (by assumption)
= Σk+l−1 (by Lemma 2).

Since El clearly contains Σl−1 the other inclusion also holds. �

We obtain the following corollary.

Corollary 2 AM ∩ co-AM is low for Σk, k ≥ 2.

Theorem 5.

EZPPΣl

k = Ek+l for k ≥ 1, l ≥ 1

Proof.

EZPPΣl

k = BP ·ΣZPPΣl

k ∩ BP ·ΠZPPΣl

k = BP ·Σk+l ∩ BP ·Πk+l

The last equality is by Lemma 2. �

Theorem 6. 1. For l1, l2, . . . , ln, k1, k2, . . . , kn ≥ 1, n ≥ 1,

Σ
E

Σ···
Σ

Ekn
ln

l2
k1

l1
⊆ ZPPΣl1+l2+···+ln+k1+k2+···+kn−n .

2. For l1 ≥ 2 and l2, . . . , ln, k1, k2, . . . , kn ≥ 1, n ≥ 1,

Σ
E

Σ···
Σ

Ekn
ln

l2
k1

l1
= Σl1+l2+···+ln+k1+k2+···+kn−n.

Note the presence of “−n” appearing on the right hand side. This is a drastic
improvement over the näive bound.

Proof. We prove the first inclusion by induction. Our base caseΣEk

l ⊆ ZPPΣk+l−1

is due to Theorem 4 and Theorem 3. Now assume

Σ
E

Σ···
Σ

Ekn
ln

l3
k2

l2
⊆ ZPPΣl2+···+ln+k2+···+kn−(n−1) .

26 Jin-Yi Cai et al.

Now,

Σ
E

Σ···
Σ

Ekn
ln

l2
k1

l1
⊆ ΣEZPP

Σl2+···+ln+k2+···+kn−(n−1)
k1

l1
(by assumption)

= Σ
El2+···+ln+k1+k2+···+kn−(n−1)

l1
(by Theorem 5)

⊆ ZPPΣk1+k2+···+kn+l1+···ln−n(by Theorem 4 and Theorem 3).

We omit the proof of second item due to space constraints. �

5 Examples of Languages in BP · Σk

We know that Graph non-isomorphism is in AM ∩ co-NP and is not known to
be in NP. Agrawal and Thierauf [5] proved that the complement of boolean iso-
morphism is in BP · Σ2 ∩ Π2. We generalize their result (the proof is omitted
here) to give examples of languages in BP · Σk ∩ Πk. We consider circuit iso-
morphism problem with oracle gates which is similar to boolean isomorphism
problem. Recall that two circuits C1 and C2 (with n inputs) are equivalent if for
every x ∈ {0, 1}n C1(x) = C2(x). The following definition holds for any k ≥ 0.

Definition 3. Circuit Isomorphism with Σk-oracle gates (CIk) : {〈C1,
C2〉 : C1 and C2 are circuits with n inputs and have Σk oracle gates, and there
exists permutation π of {x1, x2, . . . , xn} such that for all x̂ = (x1, x2, · · ·xn)
C1(x̂) = C2(π(x̂)) holds}.
Clearly, CI0 is same as CI and CIk ∈ Πk+2. We claim that CIk ∈ BP · Σk+2.
Given C, a circuit with n inputs and Σk-oracle gates, and an input x̂ ∈ {0, 1}n,
C(x̂) can be determined in PΣk . Secondly, given circuits C1, C2 (also with Σk-
oracle gates), a PΣk+1 machine can determine an x̂ such that C1(x̂) �= C2(x̂)
(if such an x̂ exists). To see this, define L = {〈C1, C2〉 : ∃x̂ ∈ {0, 1}n C1(x̂) �=
C2(x̂)}. Clearly L ∈ Σk+1 and by self-reducibility, x̂ can be determined in PΣk+1.
Again, note that C1 and C2 are equivalent if and only if 〈C1, C2〉 /∈ L and so one
call to L determines the equivalence. Given these two facts, we can argue as in
[5] to get the following theorem.

Theorem 7. CIk ∈ BP ·Σk+2, for k ≥ 0.

6 Conclusions

We have considered natural extensions of the class AM using the BP operator.
We have established several non-trivial relations involving these classes and the
polynomial hierarchy. However, it would be interesting to give more natural
examples of languages in BP ·Σk ∩Πk.

Another possible extension is to study the relationship of the class SΣk
2 and

Ek+1. Even the case k = 0 is interesting: we know that AM ∩ co-AM ⊆ ZPPNP

and SP
2 ⊆ ZPPNP, but we do not yet know how the classes AM∩ co-AM and SP

2
are related.

On Higher Arthur-Merlin Classes 27

References

1. V. Arvind and J. Köbler, On Pseudorandomness and Resource-Bounded Measure,
Proc. 17th FST and TCS, Springer-Verlag, LNCS 1346, 235-249, 1997.

2. V. Arvind and J. Köbler, Graph isomorphism is low for ZPP NP and other lowness
results, STACS 2000.

3. S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy, Proof verification and
hardness of approximation problems. Proceedings of the 33rd IEEE Symposium on
Foundations of Computer Science, 14–23, 1992.

4. S. Arora and S. Safra, Approximating clique is NP-complete., Proceedings of the
33rd IEEE Symposium on Foundations on Computer Science, 2–13, 1992.

5. M. Agrawal and T. Thierauf, The Boolean isomorphism problem, Proc. 37th Annual
Symposium on Foundations of Computer Science, 422–430.

6. L. Babai, Trading group theory for randomness, STOC 17:421–429(85).
7. L. Babai and S. Moran, Arthur-Merlin Games : a randomized proof system, and a

hierarchy of complexity classes, Journal of Computer and System Sciences, 36:254-
276, 1988.

8. J. L. Balcázar, J. Dı́az, J. Gabarró, Structural Complexity II, EATCS Monographs
on Theoretical Computer Science, Springer-Verlag, 1988.

9. R. Boppana, J. Hastad and S. Zachos, Does co-NP have short interactive proofs?,
Information Processing Letters, 25:127-132, 1987.

10. N. Bshouty, R. Cleve, S. Kannan and C. Tamon, Oracles and Queries that are
sufficient for Exact Learning, Proceedings of the 17th Annual ACM conference on
Computational Learning Theory, 130–19 (1994).

11. Jin-Yi Cai, SP
2 ⊆ ZPPNP, ECCC Tech-report TR-02-30, also to appear in FOCS

2001.
12. S. Goldwasser, S. Micali and C. Rackoff, The Knowledge Complexity of Interactive

Proofs, Proc. 17th ACM Symp. om Computing, Providence, RI, 1985, pp. 291-304.
13. S. Goldwasser and M. Sipser, Private coins versus public coins in interactive proof

systems, STOC 18:59–68(1986).
14. O.Goldreich and D.Zuckerman, Another Proof that BPP ⊆ PH (and more), ECCC,

TR97-045, October 1997.
15. J. Köbler and O. Watanabe, New collapse consequences of NP having small circuits

ICALP, LNCS 944:196–207(1995).
16. C. Lund, L. Fortnow, H. Karloff and N. Nisan, Algebraic Methods for Interactive

Proof Systems, Journal of the ACM, 39(4):859-868, October 1992.
17. A. Shamir, IP = PSPACE, Journal of the ACM, 39(4):869-877, October 1992.
18. S. Toda, PP is as hard as polynomial-time hierarchy. SIAM Journal on Computing,

20(5):865–877, 1991.
19. H. Vollmer and K. Wagner, The complexity of finding middle elements. Interna-

tional Journal of Foundations of Computer Science, 4:293–307, 1993.
20. O. Watanabe and S. Toda, Polynomial time 1-Turing reductions from #PH to #P.

Theoritical Computer Science, 100(1):205–221, 1992.
21. S. Zachos and H. Heller, A Decisive characterization of BPP, Information and

Control, 69:125–135(1986).
22. S. Zachos and M. Fürer, Probabilistic quantifiers vs Distrustful adversaries,

FSTTCS 1987, LNCS-287:449–455.

(2 + f(n))-SAT and Its Properties�

Xiaotie Deng1, C.H. Lee1, Yunlei Zhao1,2, and Hong Zhu2

1 Department of Computer Science
City University of Hong Kong, Hong Kong
{csdeng,cschlee,csylzhao}@cityu.edu.hk

2 Department of Computer Science
Fudan University, Shanghai, China

Abstract. Consider a formula which contains n variables and m clauses
with the form Φ = Φ2 ∧ Φ3, where Φ2 is an instance of 2-SAT which
contains m2 2-clauses and Φ3 is an instance of 3-SAT which contains m3

3-clauses. Φis an instance of (2 + f(n))-SAT if
m3

m2 + m3
≤ f(n). We

prove that (2 + f(n))-SAT is in P if f(n) = O
(log n

n2

)
, and in NPC if

f(n) =
1

n2−ε
(∀ε : 0 < ε < 2). Most interestingly, we give a candidate(

2 +
(log n)k

n2

)
-SAT (k ≥ 2), for natural problems in NP − NPC − P

(denoted as NPI) with respect to this (2 + f(n))-SAT model. We prove
that the restricted version of it is not in NPC under the assumption P
�= NP. Actually it is indeed in NPI under some stronger but plausible
assumption, specifically, the Exponential-Time Hypothesis (ETH) which
was introduced by Impagliazzo and Paturi.

1 Introduction

In 1975, Lander had shown that there exist some languages in NP −NPC − P
(denoted as NPI) under the assumption P �= NP [1]. But the language con-
structed there is not a natural one because the construction needs to run all
Turing machines. So far, no natural problems have been proven to be in NPI
under P �= NP and finding such a natural problem is considered an important
open problem in complexity theory [2, 3]. The problems of GI (Graph Isomor-
phism) and Factoring, which were suggested by Karp, are regarded as two most
likely candidates [2, 3].

The satisfiability problem of Boolean formula (SAT) has played a central
role in the field of computational complexity theory. It is the first NP-Complete
problem. And up to now, all known algorithms to find a solution for 3-SAT
require exponential time in problem size in the worst case. In practice, the time
complexity of the fastest algorithm for 3-SAT is (4

3)n, where n is the variable
number in the formula [4]. It is also an important open question whether sub-
exponential time algorithms exist. The plausibility of such a sub-exponential
� This research is supported by a research grant of City University of Hong Kong

7001023.

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 28–36, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

(2 + f(n))-SAT and Its Properties 29

time algorithm for 3-SAT was investigated in [5], using sub-exponential time
reduction. It was shown there that linear size 3-SAT is complete for the class
SNP (Strict−NP) with respect to such reduction. It implies that if there exists
a sub-exponential time algorithm for 3-SAT then all the languages in SNP
can be decided in sub-exponential time. Note that some well-studied problems,
such as k-SAT, k-Colorability, for any k ≥ 3, and so on, have been proven
to be SNP-Complete. In light of both the practical and theoretical supports,
Impagliazzo and Paturi introduced the ETH (Exponential-Time Hypothesis)
for 3-SAT: 3-SAT does not have a sub-exponential-time algorithm [6]. Although
ETH is stronger than NP �= P, it is still quite reasonable. In recent advances
of cryptography, many important cryptographic primitives and protocols were
constructed under the ETH for the one-way functions: DLP or RSA, e.g.,
verifiable pseudorandom functions [7], verifiable pseudorandom generator [8] and
resettable zero-knowledge arguments systems for NP [9, 10] and so on.

On the other hand, recently there has been a growth of interests to study the
link between the hardness of computational complexity of decision problems and
the phase boundaries in physical systems [11, 12]. It was observed that, similar
to physical systems, across certain phase boundaries dramatic changes occur
in the computational difficulty and solution character. NP-Complete problems
become easier to solve away from the boundary and the hardest problems occur
at the phase boundary [11, 13].

To understand the onset of exponential complexity that occurs when going
from a problem in P(2-SAT) to a problem that is NP-Complete (3-SAT), the
(2+p)-SAT model was introduced in [14, 11], where p is a constant and 0 ≤ p ≤ 1.
An instance of 2+p-SAT is a formula with m clauses, of which (1−p) ·m contain
two variables (2-clauses) and pm contain three variables (3-clause). 2 + p-SAT
smoothly interpolates between 2-SAT (p = 0) and 3-SAT (p = 1) when the
instances are generated randomly. The median computation cost scales linearly
with n (the number of variables) when p < p0 and exponentially for p > p0,
where p0 lies between 0.4 and 0.416 [11]. However, for the worst case complexity,
(2 + p)-SAT is NP-Complete for any constant p, p > 0 [11, 12].

In this work, we further explore the worst case complexity boundary of P and
NPC when p is further reduced (not a constant but a function of n). Somewhat
surprisingly, such an extension allows us to suggest another candidate for natural
problems in NPI under NP �= P. In fact, we present a natural problem in
NPI under ETH . In Section 2, we present the necessary definitions and the
related important properties for our study. In Section 3, we present a candidate
for natural problems in NPI and prove it not in NPC under NP �= P. In
Section 4, we prove it is not in P under ETH. We conclude with discussions in
Section 5.

2 Properties of (2 + f(n))-SAT

In this section, we introduce the (2+f(n))-SAT model. We are mainly concerned
with the boundary of f(n) that separates the problems between P and NPC.

30 Xiaotie Deng et al.

Let Φ is an formula and denoted |Φ| as the number of clauses in Φ. We
introduce the definition of (2 + f(n))-SAT:

Definition 1. Consider a formula which contains n variables and m clauses
with the form Φ = Φ2 ∧ Φ3, where Φ2 is an instance of 2-SAT which contains
m2 2-clauses, and Φ3 is an instance of 3-SAT which contains m3 3-clauses.An
instance of (2 + f(n))-SAT is one satisfying the condition:

|Φ3|
|Φ| =

m3

m
=

m3

m2 +m3
≤ f(n).

Throughout the paper, we restrict our discussion to instances with f(n) =
|Φ3|
|Φ| . Indeed, all our claims hold if they hold under this restriction. Note that
m2 ≤ 4n2

2, m3 ≤ 8n3
3, n2 ≤ 2m2, n3 ≤ 3m3, n ≤ 3m, and that the variables

which appear in Φ2 may appear in Φ3, and vice versa, i. e., n ≤ n2 + n3 ≤ 2n .

Theorem 1. For any constant k > 0,
(

2 + k log n
n2

)
-SAT is in P.

Proof. Consider any instance of
(

2 + k log n
n2

)
-SAT (k > 0), a formula Φ =

Φ2 ∧ Φ3, where m3
m2+m3

= k log n
n2 . We get

m3 =
k log n ·m2

n2 − k log n
≤ km2 log n+ k log n

n2 ≤ (k · 4n2 + k) · log n
n2

= (4k +
k

n2) · log n ≤ 5k · log n.

Note that the variables which appear in Φ2 may appear in Φ3, and vice versa.
For the 5k · log n variables which appear in Φ3, we can enumerate all the at most
n5k truth assignments and then for each truth assignment we can determine Φ2

in polynomial time of n, and thus the
(

2 + k log n
n2

)
-SAT (k ≥ 0) is in P. ��

Claim 1. Given n variables, we can construct a satisfiable formula Φ, where Φ
is an instance of 2-SAT and |Φ| ≤ 3

2n
2 − 3

2n .

Proof. We construct 2-clauses as follows: (1
2n

2 − 1
2n) clauses with the form

(xi ∨ xj)(i �= j, 1 ≤ i, j ≤ n), (n2 − n) clauses with the form (xi ∨ ¬xj), (i �=
j, 1 ≤ i, j ≤ n). From all these 2-clauses, we select k, 1 ≤ k ≤ 3

2n
2 − 3

2n, clauses
to construct the formula Φ we need, then Φ is satisfiable when all these n variable
are assigned the value “true”. ��
Theorem 2.

(
2 + 1

n2−ε

)
-SAT (∀ε, 0 < ε < 2) is in NPC.

Proof. We show that there is a many-one reduction from 3-SAT to
(
2 + 1

n2−ε

)
-

SAT (0 < ε < 2). Let Φ3 be an instance of 3-SAT that contains n3 variables and
m3 3-clauses. Without loss of generality, we assume that m3 ≥ 2. Then we add
n2 = m

8
ε
3 new variables and using these new variables to construct a satisfiable

formula Φ2 which contains m2 2-clauses.

(2 + f(n))-SAT and Its Properties 31

Let m3
m2+m3

= 1
n2−ε (0 < ε < 2) then

m3

m2 +m3
=

1
n2−ε

≥ 1
(n2 + n3)2−ε

m2 ≤
(
(n2 + n3)2−ε − 1

) ·m3 ≤ (n2 + n3)2−ε ·m3 ≤
(
m

8
ε
3 + 3m3

)2−ε

·m3.

But note that m3 ≥ 2, we get
(
m

8
ε
3 + 3m3

)2
·m3 ≤

[
3
2

(
m

8
ε
3

)2
− 3

2
m

8
ε
3

]
· (m3)8

=
(

3
2
n2

2 −
3
2
n2

)
·m8

3

≤
(

3
2
n2

2 −
3
2
n2

)
·
(
m

8
ε
3 + 3m3

)ε

.

That is,

m2 ≤ (m
8
ε
3 + 3m3)2−ε ·m3 ≤ 3

2
n2

2 −
3
2
n2 ⇒ m2 ≤ 3

2
n2

2 −
3
2
n2.

The satisfiable formula Φ2 can be constructed according to Claim 1 .
Let Φ = Φ2 ∧Φ3, then Φ is an instance of

(
2 + 1

n2−ε

)
-SAT (0 < ε < 2) and Φ

is satisfiable if and only if Φ3 is satisfiable.
Note that the above many-one reduction indeed can be constructed in poly-

nomial time of m3 (also in polynomial time of n3, since n3 ≤ 3m3, m3 ≤ 8n3
3).

Obviously,
(
2 + 1

n2−ε

)
-SAT (0 < ε < 2) is in NP, so the theorem does hold.

��
One open problem related to our (2 + f(n))-SAT model is:

Open Problem Does there exist some f(n), s.t. k log n
n2 < f(n) < 1

n2−ε , where
k ≥ 0 and 0 < ε < 2, so that (2 + f(n))-SAT is in (NP −NPC)−P (denoted as
NPI) under the assumption P �= NP?

Note that
(

2 + k log n
n2

)
-SAT is in P, k ≥ 0 and

(
2 + 1

n2−ε

)
-SAT (0 < ε < 2)

is in NP-Complete according to the above theorems.
Now, we give another candidate and also another open problem with regard

to our (2 + f(n))-SAT for natural problems in NPI under P �= NP:

Open Problem In the (2 + f(n))-SAT model, is
(

2 + (log n)k

n2

)
-SAT (k ≥ 2)

in (NP-NPC)-P under the assumption NP �= P?

Note that k1 log n
n2 < (log n)k

n2 (k ≥ 2) < 1
n2−ε , where k1 ≥ 0 and 0 < ε < 2.

3 A Candidate for Natual Problems
in NPI Under NP �= P

Now, we give another candidate for natural problems in NPI under P �= NP
which is a restricted version of

(
2 + (log n)k

n2

)
-SAT (k ≥ 2). We will prove that

32 Xiaotie Deng et al.

it is not NP-Complete under the assumption P �= NP. Actually it is indeed in
NPI under some stronger but reasonable assumptions.

Theorem 3. In the (2 + f(n))-SAT model, if the variables which appear in Φ2

do not appear in Φ3, and vice versa, then
(

2 + (log n)k

n2

)
-SAT is not in NPC

under the assumption NP �= P, k ≥ 2.

Proof. Clearly this problem is in NP. We prove this theorem by showing that
3-SAT can not be reduced to

(
2 + (log n)k

n2

)
-SAT by many-one reduction, where

k ≥ 2.
Assume that there exists a many-one reduction(denoted as F) from 3-SAT to(

2 + (log n)k

n2

)
-SAT (k ≥ 2). It means that for any instance of 3-SAT, a formula

Φ0 which contains n0 variables and m0 3-clauses, we can construct the F (Φ0)
which is an instance of

(
2 + (log n)k

n2

)
-SAT (k ≥ 2) in polynomial time of n0,

where F (Φ0) contains n variables amd m clauses, and F (Φ0) is satisfiable if and
only if Φ0 is satisfiable. Let F (Φ0) = Φ2 ∧ Φ3, where Φ2 is an instance of 2-SAT
which contains m2 2-clauses and n2 variables and Φ3 is an instance of 3-SAT
which contains m3 3-clauses and n3 variables, then (log n)k

n2 = |Φ3|
|Φ| = m3

m = m3
m2+m3

,
k ≥ 2.

We consider the relation between m3 and m0. there are two cases:

Case 1. m3 ≥ m0.

Claim 2. m = m2 +m3 can not be expressed as a polynomial of m3.

Proof. (of Claim 2) Firstly, for sufficiently large n, (log n)k

n2 = m3
m ≤ 1

2 (i.e.
m ≥ 2m3), where k ≥ 2. Secondly,

m = m2 +m3 ≤ 4n2 +m3 =⇒ n2 ≥ m−m3

4
.

Then, for sufficiently large n, the following holds

m3

m
=

(log n)k

n2 ≤ 4(log 3m)k

m−m3

=⇒ 4(log 3m)k ≥ m3 · m−m3

m
≥ 1

2
·m3

=⇒ m ≥ 1
3
· 2(m3

8)
1
k

��
According to Claim 2, in Case 1, we get the fact that m can not be expressed

as a polynomial of m3, and since m3 ≥ m0, so m also can not be expressed as a
polynomial of m0 (of course m also can not be expressed as a polynomial of n0
since m0 ≤ 8n3

0). It’s absurd since the many-one reduction F (Φ0) must be done
in polynomial time of n0.

(2 + f(n))-SAT and Its Properties 33

Case 2 m3 < m0.

Since we assume F (Φ0) can be constructed in polynomial time of n0, then
m2 must can be expressed as P (n0), where P (·) is a polynomial. So, if m3 < m0
it means that we can decrease the 3-clause number in Φ0 by adding P (n0) 2-
clauses (by imposing F on Φ0). However, note that we assume the variables
which appear in Φ2 do not appear in Φ3, and vice versa, then we can impose F
on Φ3, and so on. Repeat the above process at most m0 times we can eliminate
all 3-clauses in F (Φ0) to get a formula Φ′ and guarantee that Φ′ is satisfiable if
and only if F (Φ0) is satisfiable if and only if Φ0 is satisfiable, where Φ′ contains
only 2-clauses and | Φ′ | is at most m0P (n0), or at most 8n3

0 · P (n0), another
polynomial of n0. This means that there exists a many-one reduction from 3-SAT
to 2-SAT , which contradicts our assumption P �= NP.

So, from the arguments above, we can conclude that
(

2 + (log n)k

n2

)
-SAT (k ≥

2) is not in NP-Complete under the assumption P �= NP. ��

4 Can the Candidate Be in P?

In this section, we further show that the candidate presented in the previous
section is indeed in NPI under ETH.

Definition 2. (SE) A language L ∈ SE if for any x ∈ L there exists an algo-
rithm to find a y so that |y| ≤ m(x) and R(x, y) in time poly(|x|)2εm(x) for every
fixed ε, 1 > ε > 0, where R is a polynomial time relation called the constraint,
and m is a polynomial-time computable and polynomial bounded complexity pa-
rameter.

Definition 3. (SERF) The sub-exponential reduction family SERF from A1
with parameter m1 to A2 with parameter m2 is defined as a collection of Turing
reduction MA2

ε , such that for each ε, 1 > ε > 0:

1. MA2
ε (x) runs in time at most poly(|x|)2εm1(x)

2. If MA2
ε (x) queries A2 with the input x′, then m2(x′) = O(m1(x)) and |x′| =

|x|O(1).

If such a reduction family exists, A1 is SERF -reducible to A2. If each prob-
lem in SNP is SERF -reducible to a problem A, then A is SNP-Hard under
SERF -reduction. And if A is also in SNP then we say A is SNP-Complete
under SERF -reductions. Note that the SERF -reducibility is transitive, and, if
(A1,m1) SERF -reduces to (A2,m2), and (A2,m2) ∈ SE, then (A1, m1) ∈ SE
[5].

Definition 4. (Strong many-one reduction) Let A1 be a problem with complexity
parameter m1 and constraint R1 and A2 be a problem with complexity parameter
m2 and constraint R2. A many-one reduction f from A1 to A2 is called a strong
many-one reduction if m2(f(x)) = O(m1(x)). Strong many-one reduction is a
special case of SERF -reduction [5].

34 Xiaotie Deng et al.

Lemma 1. 3-SAT with complexity parameter n, the number of variables, is
SERF -reducible to 3-SAT with complexity parameter m, the number of clauses
[5].

Lemma 2. 3-SAT is SNP-Complete under SERF -reductions, with either
clauses or variables as the parameter. [5]

Definition 5. (3-ESAT) 3-ESAT is a variant of 3-SAT, for any instance of
3-ESAT, say a formula Φ, in which the clause number is equal to the number of
variables which appear in Φ.

Claim 3. Given n (n ≥ 5) variables, we can construct a satisfiable formula Φ
in polynomial time of n, where Φ is an instance of 3-SAT and |Φ| ≤ 2n.

Proof. We construct 2n 3-clauses with the form xi∨xj ∨xk, where 1 ≤ i, j, k ≤
n, i �= j, i �= k, j �= k. This can be done since there are C3

n ≥ 2n 3-clauses with
such form. Then we select k, 1 ≤ k ≤ 2n, 3-clauses to construct the formula Φ.
Φ is satisfiable when all these n variables are assigned the value “true”. ��
Theorem 4. 3-ESAT is SNP-Hard under SERF -reductions, with either
clauses or variables as the parameter. Consequently, 3-ESAT ∈ SE implies
SNP ⊆ SE.

Proof. According to Lemma 1, Lemma 2 and the definition of strong many-one
reduction, we only need to show there exists a strong many-one reduction from
3-SAT with m (the clause number) as complexity parameter to 3-ESAT with m
as complexity parameter.

For any given instance of 3-SAT, a formula Φ0 which contains n0 variables
and m0 clauses, we construct the many-one reduction respectively according to
whether m0 > n0 or not.

Firstly, if m0 > n0, we add 3
2 (m0 − n0) new variables and use them to

construct a formula Φ1 which contains 1
2 (m0 − n0) clauses, in which each of all

those 3
2 (m0 − n0) new variables appears once and only once. This means that

Φ1 is always satisfiable. Let Φ = Φ1 ∧ Φ0 then we get the instance of 3-ESAT
since m0 + 1

2 (m0 − n0) = n0 + 3
2 (m0 − n0), and Φ is satisfiable if and only if Φ0

is satisfiable, and the reduction can be done in polynomial time of n0.
Note that m0 + 1

2 (m0 − n0) < 2m0.
In the second case, we add n1 new variables, where n1 = max{n0 −m0, 5}

and construct a satisfiable formula Φ1, with the size (n1 + n0 −m0). This can
be done according to Claim 3 since n1 + n0 − m0 ≤ 2n1. Then similar to the
first case, let Φ=Φ1 ∧Φ0, we get the instance of 3-ESAT with parameter n1 +n0
and Φ is satisfiable if and only if Φ0 is satisfiable. Thus the reduction is done in
polynomial time of n0.

Note that

(n1 + n0 −m0) +m0 = max{2n0 −m0, 5 + n0} ≤ max{5m0, 3m0 + 5}.

(2 + f(n))-SAT and Its Properties 35

Then according to the properties of SERF reduction, the theorem does hold.
��

From the above proof, it is also easy to see that 3-ESAT is alsoNP-Complete.

Definition 6. Define s to be the infimum of {δ: there exists an O(2δn) algorithm
for solving 3-ESAT}. Define ETH (Exponential-Time Hypothesis) for 3-ESAT
to be that: s > 0. In other words, 3-ESAT does not have sub-exponential time
algorithm.

Note that this hypothesis is stronger than NP �= P but yet plausible accord-
ing to both theoretical and practical arguments presented in Section 1. Under
this assumption, we have the following result.

Theorem 5. In the (2 + f(n))-SAT model, if the variables which appear in Φ2

do not appear in Φ3, and vice versa, then the
(

2 + (log n)k

n2

)
-SAT is indeed in

NPI under ETH for 3-ESAT, k ≥ 2.

Proof. Consider the special case of
(

2 + (log n)k

n2

)
-SAT, where Φ3 is an instance

of 3-ESAT and n3 = m3 = (logn)k and Φ2 is always satisfiable. That is,

m3

m
=

m3

m2 +m3
=

(log n)k

n2 =
m3

(n2 + n3)2
.

m2 = (n2 + n3)2 −m3 ≤ (n2 + n3)2.

Note that n2 = n − n3 = n − (log n)k, n3 = (log n)k, for sufficiently large n we
get

(n2 + n3)2 ≤ 3
2
n2

2 −
3
2
n2.

This means the special case of
(

2 + (log n)k

n2

)
-SAT indeed exists according to

Claim 1.
Then for this special case of

(
2 + (log n)k

n2

)
-SAT (k ≥ 2), Φ3 can not be solved

in polynomial time of n under ETH for 3-ESAT since there are (logn)k variables
in Φ3, so does Φ = Φ2 ∧Φ3 since the variables which appear in Φ2 do not appear
in Φ3, and vice versa.

Thus,
(

2 + (log n)k

n2

)
-SAT is indeed not in P under ETH for 3-ESAT, k ≥ 2,

and according to theorem 3 the theorem does hold. ��
The more general case of

(
2 + (log n)k

n2

)
-SAT (k ≥ 2), where the variables

which appear in Φ2 may appear in Φ3, and vice versa, is currently under inves-
tigation.

5 Remarks and Conclusion

In this work, we study the boundary between P and NPC for the model of
(2 + p)-SAT when p is considered as a function of n, the number of variables in

36 Xiaotie Deng et al.

the Boolean formula. The model allows us to obtain a natural problem in NPI
under the ETH assumption. It is an interesting open problem whether this can
be further shown to be in NPI under the weaker assumption NP �= P.

Acknowledgments

The authors are indebted to Shirley Cheung for her many valuable helps.

References

1. R. E. Lander. On the Structure of Polynomial Time Reducibility. Jour. of ACM,
22, 1975, pp. 155-171.

2. H. Papadimitriou. Computational Complexity, 329-332, Addison-Wesley (1994)
3. O. Goldreich. Introduction to Complexity, 23-25 (1999). Also available from

http://theory.lcs.mit.edu/∼oded/
4. Uwe Schoning. A Probabilistic Algorithm for k-SAT and Constraint Satisfaction

Problems. In FOCS 1999: 410-420.
5. Russell Impagliazzo and Ramamohan Paturi. Which Problems Have Strongly Ex-

ponential Complexity? In FOCS 1998: 653-664.
6. Russell Impagliazzo and Ramamohan Paturi. Complexity of k-SAT. JCSS 62 (2):

367-375, 2001.
7. S. Micali, M. Rabin and S. Vadhan. Verifiable random functions. In FOCS 1999:

120-130.
8. C. Dwork and M. Naor. Zaps and their applications. In FOCS 2000: 283-293. Also

available from http://www.wisdom.weizmann.ac.il/∼naor/
9. R. Canetti, O. Goldreich, S. Goldwasser and S. Micali. Resettable zero-knowledge.

In STOC 2000: 235-244.
10. S. Micali and L. Reyzin. Soundness in the public-key model. In Crypt 2001:542-565.

Also available from http://www.cs.bu.edu/∼reyzin/
11. R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman and L. Troyansky. Determin-

ing computational complexity from characteristic ‘phase transitions’, Nature 400,
133-137 (1999).

12. W. Anderson. Solving problems in finite time, Nature 400, 115-116 (1999).
13. S. Kirkpatrick and B. Selman. Critical behavior in the satisfiability of random

Boolean expressions, Science, (264): 1297-1301 (1994).
14. R. Monasson and R. Zecchina. Tricritical points in random combinatorics: the 2+p

SAT case, J. Phys. A (31): 9209-9217 (1998).

On the Minimal Polynomial of a Matrix�

Thanh Minh Hoang and Thomas Thierauf

Abt. Theoretische Informatik
Universität Ulm

89069 Ulm, Germany
{hoang,thierauf}@informatik.uni-ulm.de

Abstract. We investigate the complexity of the degree and the constant
term of the minimal polynomial of a matrix. We show that the degree of
the minimal polynomial behaves as the matrix rank.
We compare the constant term of the minimal polynomial with the con-
stant term of the characteristic polynomial. The latter is known to be
computable in the logspace counting class GapL. We show that this
holds also for the minimal polynomial if and only if the logspace exact
counting class C=L is closed under complement. The latter condition is
one of the main open problems in this area.
As an application of our techniques we show that the problem to decide
whether a matrix is diagonalizable is complete for AC0(C=L), the AC0-
closure of C=L.

1 Introduction

A rule of thumb says that Linear Algebra is in NC2. However, if we look more
closely, we see that this is a very rough statement. In particular, we are not able
to show that the various problems in Linear Algebra are equivalent under, say,
logspace many-one reductions.

It seems to be more appropriate to express the complexity of problems in
Linear Algebra in terms of logspace counting classes. The initial step in this
direction was done by Damm [5], Toda [17], Vinay [19], and Valiant [18]. They
showed that the determinant of an integer matrix characterizes the complexity
class GapL (see [13] for more details on the history). Toda [17] showed more
problems to be complete for GapL, including matrix powering, and the inverse
of a matrix. There are also graph theoretic problems related to counting the
number s-t-paths in a graph.

The verification of GapL functions is captured by the class C=L. An example
of a complete problem is to decide whether an integer matrix A is singular, i.e.,
whether det(A) = 0. More general, the decision problem, whether the rank of A
is less than some given number k, is complete for C=L. The problem whether the
rank of A equals k can be expressed as the conjunction of problems in C=L and
in coC=L, a class that we denote by C=L∧ coC=L. The problem to determine
the rank of a matrix is captured by the AC0-closure of C=L, which we denote
� This work was supported by the Deutsche Forschungsgemeinschaft

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 37–46, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

38 Thanh Minh Hoang and Thomas Thierauf

by AC0(C=L). Finally, the problem to decide whether two matrices have the
same rank is complete for AC0(C=L). The results on the rank were shown by
Allender, Beals, and Ogihara [2].

The complexity of the minimal polynomial has been studied before [11](see
also [9,10]). In this paper, we show that there is a strong relationship between
the degree of the minimal polynomial of a matrix and the matrix rank problem.
Namely, the problems to decide whether the degree of the minimal polynomial is
less than k or equal k, for some given k, are complete for C=L and C=L∧coC=L,
respectively. To decide whether the degrees of the minimal polynomials of two
matrices are equal is complete for AC0(C=L).

We also investigate the complexity of the constant term of the minimal poly-
nomial. The constant term of the characteristic polynomial is GapL-complete.
By analogy, we ask whether the constant term of the minimal polynomial can be
computed in GapL, too. We show that this question is strongly connected with
another open problem: the constant term of the minimal polynomial can be com-
puted in GapL if and only if C=L is closed under complement . This connection
is a consequence of a hardness result: to decide whether the constant terms of
the minimal polynomials of two matrices are equal is complete for AC0(C=L).

Whether C=L is closed under complement is one of the big open questions
in this area. Recall that many related classes have this property: NL [12,16],
SL [14], PL (trivially), and nonuniform UL [15]. Thus our results on the constant
term of the minimal polynomial might offer some new points to attack this
problem.

A final observation is about the diagonalizability of matrices. In [10] it is
shown that this decision is hard for AC0(C=L). We show that this class also
is an upper bound for this problem. It follows that diagonalizability is complete
for AC0(C=L). We extend the result to simultaneous diagonalizability where
one has to decide whether all of k given matrices are diagonalizable by the same
diagonalizing matrix.

2 Preliminaries

We assume familiarity with some basic notions of complexity theory and linear
algebra. We refer the readers to the papers [2,3] for more details and proper-
ties of the considered complexity classes, and to the textbooks [6,8,7] for more
background in linear algebra.

Complexity Classes. For a nondeterministic Turing machine M , we denote the
number of accepting and rejecting computation paths on input x by accM (x)
and by rejM (x), respectively. The difference of these two quantities is gapM , i.e.,
for all x : gapM (x) = accM (x)− rejM (x). The function class GapL is defined as
the class of all functions gapM (x) such that M is a nondeterministic logspace
bounded Turing machine. GapL has many closure properties: for example it is
closed under addition, subtraction, and multiplication (see [3]). In [1] (Corollary
3.3) it is shown that GapL is closed under composition in a very strong sense:

On the Minimal Polynomial of a Matrix 39

if each entry of an n× n matrix A is GapL-computable, then the determinant
of A is still computable in GapL.

A set S is in C=L, if there exists a function f ∈ GapL such that for all x
we have x ∈ S ⇐⇒ f(x) = 0. Since it is open whether C=L is closed under
complement, it makes sense to consider the Boolean closure of C=L, i.e., the
class of sets that can be expressed as a Boolean combination of sets in C=L. For
our purposes, it suffices to consider the following two classes: a) coC=L is the
class of complement sets L where L ∈ C=L, b) C=L ∧ coC=L [2] is defined as
the class of intersections of sets in C=L with sets in coC=L, i.e.,

L ∈ C=L ∧ coC=L⇐⇒ ∃L1 ∈ C=L, L2 ∈ coC=L : L = L1 ∩ L2.

For sets S1 and S2, we say that S1 is AC0-reducible to S2, if there is a logspace
uniform circuit family of polynomial size and constant depth that computes S1
with unbounded fan-in AND- and OR-gates, NOT-gates, and oracle gates for S2.
In particular, we consider the classes AC0(C=L) and AC0(GapL): the sets that
are AC0-reducible to a set in C=L, respectively a function in GapL. The known
relationships among these classes are as follows:

C=L ⊆ C=L ∧ coC=L ⊆ AC0(C=L) ⊆ AC0(GapL) ⊆ TC1 ⊆ NC2.

Furthermore, we say that S1 is (logspace many-one) reducible to S2, if there
is a function f ∈ L (deterministic logspace) such that for all x we have
x ∈ S1 ⇐⇒ f(x) ∈ S2. In an analogous way one can define AC0- or NC1-many-
one reductions. Unless otherwise stated, all reductions in this paper are logspace
many-one.

Linear Algebra. Let A ∈ F n×n be a matrix over the field F . The characteristic
polynomial of A is the polynomial χA(x) = det(xI − A). A nonzero polyno-
mial p(x) over F is called an annihilating polynomial for A if p(A) = 0. The
Cayley-Hamilton Theorem states that χA(x) is an annihilating polynomial for A.
The characteristic polynomial is a monic polynomial : its highest coefficient is
one. The minimal polynomial of A, denoted by µA(x), is the unique monic an-
nihilating polynomial for A with minimal degree. Note that if A is an integer
matrix, then all coefficients of χA(x) and of µA(x) are also integer. Let’s denote
the degree of a polynomial p by deg(p). Then we have 1 ≤ deg(µA(x)) = m ≤ n.

Two matrices A,B ∈ F n×n are called similar if there is a nonsingular matrix
P ∈ F n×n such that A = PBP−1. Furthermore, A is called diagonalizable if A is
similar to a diagonal matrix. The matrices A1, . . . , Ak are called simultaneously
diagonalizable if there is a nonsingular matrix P such that PA1P

−1, . . . , PAkP
−1

are diagonal.

Problems. Unless otherwise stated the domain for the algebraic problems are the
integers. By Determinant we denote the problem to compute the determinant
of a given n×n matrix A. In PowerElement there is additionally given an in-
teger m and have to compute (Am)1,n, the element of Am at position (1, n). Both
PowerElement and Determinant are complete for GapL [4,5,17,18,19].

40 Thanh Minh Hoang and Thomas Thierauf

Various decision problems are based on GapL-functions. The verification
of a GapL-function is captured by the class C=L. A GapL-complete function
yields a C=L-complete verification problem. For example, to verify whether the
determinant is zero, i.e., testing singularity, is complete for C=L. Similarly, to
verify whether Am at position (1, n) is zero, is complete for C=L. The latter
problem we denote by PowerElement=.

With respect to the minimal polynomial, MinPolynomial is the problem to
compute the i-th coefficient di of µA(x) for given A and i. MinPolynomial is
computable in AC0(GapL) and is hard for GapL [10,11]. With respect to the
degree of the minimal polynomial, DegMinPol is the set of all triple (A, k, b),
where b is the k-th bit of deg(µA(x)).

There is a bunch of decision problems related to MinPolynomial and
DegMinPol: Given two matrices A and B, and k ≥ 1,

– EqMinPolynomial is to decide whether µA(x) = µB(x),
– EqCTMinPol is to decide whether the minimal polynomials of A and B

have the same constant term,
– EqDegMinPol is to decide whether the minimal polynomials of A and B

have the same degree,
– DegMinPol= is to decide whether deg(µA(x)) = k,
– DegMinPol≤ is to decide whether deg(µA(x)) ≤ k.

Finally, the set of all diagonalizable matrices is denoted by Diagonalizable.
The set of all simultaneously diagonalizable matrices is denoted by
SimDiagonalizable.

3 The Minimal Polynomial

In this section we investigate the complexity of the degree and the constant term
of the minimal polynomial of a matrix. The upper bounds on the complexity
of these problems follow easily from the predecessor paper [10,11]. The main
contributions here are the lower bounds for these problems. In particular, we
want to point out that the degree of the minimal polynomial has essentially the
same complexity as the matrix rank.

3.1 Upper Bounds

In [10] it is shown that the minimal polynomial of a matrix A can be computed
in AC0(GapL). The algorithm was based on the following observation. Define
ai = vec(Ai), where vec(Ai) is the vector of length n2 that is obtained by
putting the columns of Ai below each other, for i = 0, 1, 2, . . . , n. Then the
minimal polynomial µA(x) with degree m is characterized by the following two
properties:

(i) µA(A) = 0. Equivalently we can say that a0,a1, . . . ,am are linearly depen-
dent, and

On the Minimal Polynomial of a Matrix 41

(ii) for every monic polynomial p(x) with degree m − 1, we have p(A)
= 0.
Equivalently we can say that a0,a1, . . . ,am−1 are linearly independent.

Note that am, . . . ,an linearly depend on a0,a1, . . . ,am−1 in this case. Define
the n2 × j matrices Cj and the symmetric j × j matrices Dj as

Cj = (a0 a1 · · · aj−1), Dj = CT
j Cj , for j = 1, . . . , n.

Then Cm, . . . , Cn and Dm, . . . , Dn all have the same rank m, which is precisely
the degree of µA(x). Hence we have deg(µA(x)) = rank(Dn).

Let χDn
(x) = xn + cn−1x

n−1 + · · · + c1x + c0. Since Dn is symmetric, we
have rank(Dn) = n− l, where l is the smallest index such that cl
= 0. Because
GapL is closed under composition [1], each of the coefficients cn−1, . . . , c0 is
computable in GapL. Therefore, in C=L we can test whether one or several of
the ci’s are zero (note that C=L is closed under conjunction). In particular, we
get a method to verify the degree of the minimal polynomial.

Proposition 1. 1. DegMinPol≤ is in C=L.
2. DegMinPol= is in C=L ∧ coC=L,
3. DegMinPol, EqDegMinPol are in AC0(C=L),

Part 1 and 2 of the proposition follow directly from the discussion above. The
problems in part 3 can be solved with some extra AC0-circuitry.

Next, we consider the coefficients of µA(x) = xm +dm−1x
m−1 + · · ·+d0. The

vector (d0, d1, . . . , dm−1)T is the unique solution of the system of linear equations
Cmx = −am. Hence we get

(d0, d1, . . . , dm−1)T = −D−1
m CT

mam. (1)

Notice that Dm nonsingular for m = deg(µA(x)), and each element of D−1
m can

be computed in GapL [1].
Let B be another matrix and we want to know whether A and B have the

same minimal polynomial, or, whether their minimal polynomials have the same
constant term. We can express the coefficients of µB(x) analogously as for A in
equation (1). It follows that we can compare the coefficients in AC0(C=L).

Proposition 2. EqMinPolynomial and EqCTMinPol are in AC0(C=L).

3.2 Lower Bounds

Allender, Beals, and Ogihara [2] showed that the decision problem Feasible Sys-
tems of Linear Equations, FSLE for short, is complete for AC0(C=L). More
precisely, an input for FSLE are an m× n matrix A and a vector b of length m
over the integers. One has to decide whether the system of linear equations
Ax = b has a rational solution. We use FSLE as reference problem to show the
hardness results.

Theorem 1. EqDegMinPol, EqMinPolynomial, and EqCTMinPol are
hard for AC0(C=L).

42 Thanh Minh Hoang and Thomas Thierauf

Proof . Let A and b be an input for FSLE. Define the symmetric matrix B =(
0 A
AT 0

)
and vector c = (bT ,0)T of length m+ n. We prove that

(A, b) ∈ FSLE ⇐⇒ (B, c) ∈ FSLE (2)

⇐⇒ C =
(

B 0
0 · · · 0 0

)
is similar to D =

(
B c

0 · · · 0 0

)
(3)

⇐⇒ D ∈ Diagonalizable (4)
⇐⇒ µC(x) = µD(x) (5)
⇐⇒ deg(µC(x)) = deg(µD(x)) (6)
⇐⇒ ct(µCα(x)) = ct(µDα(x)), (7)

where ct(µM (x)) denotes the constant term of µM (x), and Cα = C + αI and
Dα = D + αI for an appropriate positive integer α to be chosen later.

Equivalences (2), (3), and (4) were shown in [10]. For completeness, we in-
clude a proof.

Equivalence (2). Note that the system ATx = 0 is always feasible.

Equivalence (3). Let x0 be a solution of the system Bx = c. Define the nonsin-

gular matrix T =
(
I x0
0 −1

)
. It is easy to check that CT = TD, therefore C is

similar to D. Conversely, if the above system is not feasible, then C and D have
different ranks and can therefore not be similar.

Equivalence (4). Observe that matrix C is symmetric. Therefore, C is always
diagonalizable, i.e., C is similar to a diagonal matrix, say C ′. Now, if C is similar
to D, then D is similar to C ′ as well, because the similarity relation is transitive.
Hence D is diagonalizable as well. Conversely, if D is diagonalizable, then D has
only elementary divisors of the form (x− γi) where γi is any of its eigenvalues.
Since C is diagonalizable, its elementary divisors are also linear. Note further-
more that C and D have the same characteristic polynomial. Therefore, they
must have the same system of elementary divisors, i.e., they are similar.

Equivalence (5). If C is similar to D, then it is clearly that µC(x) = µD(x). Con-
versely, if µC(x) = µD(x), then µD(x) contains only linear irreducible factors,
because µC(x) has this property (since C is symmetric matrix). Therefore D is
diagonalizable.

Equivalence (6). Recall that deg(µC(x)) is exactly the number of all distinct
eigenvalues of C. Since C and D have the same characteristic polynomial, they
have the same eigenvalues, and therefore deg(µC(x)) ≤ deg(µD(x)). These de-
grees are equal iff every root of µD(x) has multiplicity 1. The latter holds iff D
is diagonalizable.

On the Minimal Polynomial of a Matrix 43

Equivalence (7). Observe that equivalences (2) to (6) still hold when we replace
Cα and Dα for C and D, respectively, for any α. For an appropriate choice
of α we show: if the constant terms of µCα(x) and µDα(x) are equal, then these
polynomials are equal.

Fix any α. Let λ1, . . . , λk be the distinct eigenvalues of C. Then the distinct
eigenvalues of Cα are λ1 + α, . . . , λk + α. Since Cα is symmetric and since Cα

and Dα have the same eigenvalues, we can write

µCα(x) =
k∏

i=1

(x− (λi + α)) and µDα(x) =
k∏

i=1

(x− (λi + α))ti ,

where ti ≥ 1 for i = 1, 2, . . . , k. In order to prove that µCα
(x) = µDα

(x), we
have to show that all ti = 1, for an appropriate α.

Note that the constant terms of these polynomials are the product of the
eigenvalues (in the case of Dα, with multiplicities ti each). Hence it suffices to
choose α such that all eigenvalues of Cα are greater than 1. This is done as
follows. By ρ(C) we denote the spectral radius of C, i.e. ρ(C) = max1≤i≤k |λi|.
The maximum column sum matrix norm of C = (ci,j) is defined as

||C|| = max
1≤j≤2n+1

2n+1∑
i=1

|ci,j |.

It is well known that ρ(C) ≤ ||C||. Therefore, if we choose (in logspace)
α = ||C||+ 2, then we have λi + α > 1, for i = 1, 2, . . . , k.

�

Corollary 1. EqDegMinPol, EqMinPolynomial, and EqCTMinPol are
complete for AC0(C=L).

Recall that the constant term of the characteristic polynomial can be com-
puted in GapL. Now assume for a moment, that the constant term of the
minimal polynomial is in GapL as well. It follows that EqCTMinPol is in
C=L, because this is asking whether the difference of two constant terms (a
GapL-function) is zero. By Corollary 1, it follows that AC0(C=L) = C=L.
This argument is a proof of the following corollary:

Corollary 2. If the constant term of the minimal polynomial of a matrix is
computable in GapL, then C=L is closed under complement.

Theorem 2. 1. DegMinPol≤ is hard for C=L, and
2. DegMinPol= is hard for C=L ∧ coC=L.

Proof . 1) To show the first claim, we reduce PowerElement= to
DegMinPol≤. Let A be a n × n matrix and m ≥ 1 be an input for
PowerElement=. One has to decide whether (Am)1,n = 0. In [11] (see
also [10]) it is shown how to construct a matrix B in logspace such that

µB(x) = x2m+2 − axm+1, where a = (Am)1,n.

44 Thanh Minh Hoang and Thomas Thierauf

Let C be the companion matrix of the polynomial x2m+2, that is, a (2m+ 2)×
(2m + 2) matrix, where all the elements on the first sub-diagonal are 1 and all
the other elements are 0. Then we have χC(x) = µC(x) = x2m+2.

Define D =
(
B 0
0 C

)
. It is known that the minimal polynomial of D is the

least common multiple (for short: lcm) of the polynomials µB(x) and µC(x).
Therefore we have

µD(x) = lcm{xm+1(xm+1 − a), x2m+2}

=

{
x2m+2, if a = 0,
x2m+2(xm+1 − a), if a
= 0.

It follows that (Am)1,n = 0⇐⇒ deg(µD(x)) = 2m+ 2.
2) To show the second claim, we reduce an arbitrary language L ∈ C=L ∧

coC=L to DegMinPol=. Namely, we compute (in logspace) matrices A1 and
A2 of order n1 and n2, respectively, and integers 1 ≤ m, l ≤ n such that for all w

w ∈ L⇐⇒ (Am
1)1,n1 = 0 and (Al

2)1,n2
= 0.

We show in Lemma 1 below that we may assume w.l.o.g. that m > l. Let
a1 = (Am

1)1,n1 and a2 = (Al
2)1,n2 . As explained in the first part of the proof, we

can compute matrices B1 and B2 such that

µB1(x) = x2m+2 − a1x
m+1,

µB2(x) = x2l+2 − a2x
l+1.

By C we denote again the companion matrix of x2m+2. For the diagonal block
matrix D =

(
B1

B2
C

)
, we get (for m > l)

µD(x) = lcm{µB1(x), µB2(x), µC(x)}
= lcm{xm+1(xm+1 − a1), xl+1(xl+1 − a2), x2m+2}

=

2m+ l + 3, for a1 = 0, a2
= 0,
3m+ 3, for a1
= 0, a2 = 0,
2m+ 2, for a1 = 0, a2 = 0,
3m+ 3 + r, for a1
= 0, a2
= 0, where r > 0.

In summary, we have

w ∈ L⇐⇒ a1 = 0 and a2
= 0⇐⇒ deg(µD(x)) = 2m+ l + 3.

�
The following lemma completes the proof of Theorem 2

Lemma 1. Let A be an n × n matrix and m ≥ 1. For any k ≥ 1 there is a
matrix Ã of order p = n(mk + 1) such that (Am)1,n = (Ãkm)1,p.

Proof . Define the following (mk + 1)× (mk + 1) block matrix Ã

On the Minimal Polynomial of a Matrix 45

0 A
0 I

.
0 I

0 A
0 I

.
0 I

.
0 I

0

Each block of Ã is a matrix of
order n. All blocks are zero except
for the ones on the first block super-
diagonal. Here we start with A followed
by (k− 1)-times I. This pattern occurs
m-times in total.

An elementary calculation shows
that Ãmk has Am as its upper right
block at position (1,mk+ 1). All other
blocks are 0. This proves the lemma.

�

4 Diagonalizability

In [9] it is shown that the decision whether two matrices are similar is complete
for AC0(C=L). It is well known that Diagonalizable is hard for AC0(C=L)
(see Theorem 1) and is contained in AC0(GapL) [10]. In this section we show
that Diagonalizable and SimDiagonalizable are complete for AC0(C=L).

Theorem 3. Diagonalizable is complete for AC0(C=L).

Proof . It remains to prove that Diagonalizable is in AC0(C=L). Given
matrix A. In Section 3.1 we shown how to construct a matrix Cn such that
deg(µA(x)) = rank(Cn).

Matrix A is diagonalizable iff its minimal polynomial contains only linear
irreducible factors. This is the case iff deg(µA(x)) equals the number of distinct
eigenvalues of A. The latter number can be determined as the rank of the Hankel
matrix HA associated with A (see Chapter XV. in [6]). Therefore, we have

A is diagonalizable ⇐⇒ deg(µA(x)) = # of distinct eigenvalues of A
⇐⇒ rank(Cn) = rank(HA). (8)

Since each element of Cn and HA can be computed in GapL, equation (8) can
be checked in AC0(C=L). �

We consider the problem SimDiagonalizable. Given matrices A1, . . . , Ak of
order n and k ≥ 1. We have to test whether there is a nonsingular matrix S such
that SAiS

−1 are diagonal, for all 1 ≤ i ≤ k. If all matrices Ai are diagonalizable
then they are simultaneously diagonalizable iff they are pairwise commutable,
i.e. Ai Aj = Aj Ai for all i, j. The latter test can be done in NC1. Therefore the
main part is to test whether Ai ∈ Diagonalizable, for all i. By Theorem 3 we
get the following:

Corollary 3. SimDiagonalizable is complete for AC0(C=L).

46 Thanh Minh Hoang and Thomas Thierauf

References

1. E. Allender, V Arvind, and M. Mahajan. Arithmetic complexity, Kleene closure,
and formal power series, 1999.

2. E. Allender, R. Beals, and M. Ogihara. The complexity of matrix rank and feasible
systems of linear equations. Computational Complexity, 8:99–126, 1999.

3. E. Allender and M. Ogihara. Relationship among PL, #L, and the determinant.
RAIRO-Theoretical Informatics and Applications, 30:1–21, 1996.

4. S. Berkowitz. On computing the determinant in small parallel time using a small
number of processors. Information Processing Letters, 18:147–150, 1984.

5. C. Damm. DET = L(#L). Technical Report Informatik-Preprint 8, Fachbereich
Informatik der Humboldt Universitaet zu Berlin, 1991.

6. F. Gantmacher. The Theory of Matrices, volume 1 and 2. AMS Chelsea Publishing,
1977.

7. R. Horn and C. Johnson. Matrix Analysis. Cambridge University Press, 1985.
8. R. Horn and C. Johnson. Topics in Matrix Analysis. Cambridge University Press,

1991.
9. T. M. Hoang and T. Thierauf. The complexity of verifying the characteristic

polynomial and testing similarity. In 15th IEEE Conference on Computational
Complexity (CCC), pages 87–95. IEEE Computer Society Press, 2000.

10. T. M. Hoang and T. Thierauf. The complexity of the minimal polynomial. In
26th International Symposium, MFCS 2001, pages 408–420. Springer, 2001.

11. T. M. Hoang and T. Thierauf. The complexity of the characteristic and the
minimal polynomial. Invited paper to the special issue in Theoretical Computer
Science of the 26th MFCS conference 2001, to appear, 2002.

12. N. Immerman. Nondeterministic space is closed under complement. SIAM Journal
on Computing, 17:935–938, 1988.

13. M. Mahajan and V Vinay. Determinant: Combinatorics algorithms, and complex-
ity. Chicago Journal of Theoretical Computer Science, 5, 1997.

14. N. Nisan and A. Ta-Shma. Symmetric logspace is closed under complement.
Chicago Journal of Theoretical Computer Science, 1995.

15. K. Reinhardt and E. Allender. Making nondeterminism unambiguous. SIAM
Journal on Computing, 29:1118–1131, 2000.

16. R. Szelepcsényi. The method of forced enumeration for nondeterministic automata.
Acta Informatica, 26(3):279–284, 1988.

17. S. Toda. Counting problems computationally equivalent to the determinant. Tech-
nical Report CSIM 91-07, Dept. of Computer Science and Information Mathemat-
ics, University of Electro-Communications, Chofu-shi, Tokyo 182, Japan, 1991.

18. L. Valiant. Why is Boolean complexity theory difficult. In M.S. Paterson, editor,
Boolean Function Complexity, London Mathematical Society Lecture Notes Series
169. Cambridge University Press, 1992.

19. V Vinay. Counting auxiliary pushdown automata and semi-unbounded arithmetic
circuits. In 6th IEEE Conference on Structure in Complexity Theory, pages 270–
284, 1991.

Computable Real Functions of Bounded
Variation and Semi-computable Real Numbers

(Extended Abstract)

Robert Rettinger1, Xizhong Zheng2,�, and Burchard von Braunmühl2

1 FernUniversität Hagen, 58084 Hagen, Germany
2 BTU Cottbus, 03044 Cottbus, Germany

zheng@informatik.tu-cottbus.de

Abstract. In this paper we discuss some basic properties of computable
real functions of bounded variation (CBV-functions for short). Especially,
it is shown that the image set of semi-computable real numbers un-
der CBV-functions is a proper subset of the class of weakly computable
real numbers; Two applications of CBV-functions to semi-computable
real numbers produce the whole closure of semi-computable real num-
bers under total computable real functions, and the image sets of semi-
computable real numbers under monotone computable functions and
CBV-functions are different.

1 Introduction

Continuity of a real function is one of the most important property in analy-
sis. The effective counterpart of a continuous real function is the computable
real function which can be computed by some algorithm with the respect to
the effectively convergent Cauchy representation of real numbers. Computable
real functions are widely discussed in literature, e.g., [4,5,11]. There are many
problems, especially in applications to physical science, where more precise in-
formation about a function than continuity or computability are required. For
example, it is very useful to be able to measure how rapidly a real function f
oscillates on some interval [a; b]. However, the oscillatory character of a function
is not easily determined from its continuity or even its computability. For this
reason, the notion of the variation of a function was introduced in mathemat-
ics by Camille Jordan (1838–1922). Concretely, the variation V b

a (f) of f on the
interval [a; b] is defined as the supremum sup (

∑
i<k |f(xi) − f(xi+1)|) which is

taken over all possible subdivision a = x0 < x1 < x2 < · · · < xk = b of the in-
terval (cf. [7]). This quantity turns out to be very useful for problems in physics,
engineering, probability theory, Fourier series, and so forth.

A function f is called of bounded variation (BV for short) on an interval [a; b],
if the variation V b

a (f) of f on this interval is finite. Denote by BV[a; b] (CBV[a; b])
the class of all (computable) real functions f : [a; b]→ [a; b] which are of bounded
� Corresponding author

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 47–56, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

48 Robert Rettinger, Xizhong Zheng, and Burchard von Braunmühl

variation on [a; b]. Especially, BV[0; 1] and CBV[0; 1] are denoted simply by BV

and CBV, respectively. The class BV is widely discussed in classical mathematics.
In this paper, we are more interested in the class CBV. For example, we will
discuss which classes of real numbers are closed under CBV and clarify the
relationships among the image sets of CBV for different classes of real numbers.

Let’s remind the definition of several interesting classes of real numbers dis-
cussed in effective analysis. A real number x is called computable if there is
a computable sequence (xs) of rational numbers which converges effectively
to x in the sense that |x − xs| ≤ 2−s for any s ∈ N; x is left (right) com-
putable if there is an increasing (decreasing) computable sequence of rational
numbers which converges to x; Left and right computable real numbers are
called semi-computable; x is weakly computable if there are two left computable
real numbers y and z such that x = y − z, and x is recursively approximable if
there exists a computable sequence of rational numbers which converges to x.
We denote by EC,LC,RC,SC,WC and RA the classes of computable, left
computable, right computable, semi-computable, weakly computable and recur-
sively approximable real numbers, respectively. These classes have been widely
discussed in literature ([1,3,8,12,14]). Their relationship can be summarized as
follows: EC = LC ∩RC � SC = LC ∪RC � WC � RA. Besides, the classes
EC,WC and RA are algebraic fields, i.e., they are closed under the arithmetical
operations +,−,× and ÷. For WC, another characterization is shown in [12]
that, x ∈WC iff there is a computable sequence (xs) of rational numbers which
converges weakly effectively to x in the sense that

∑
s∈N |xs − xs+1| is finite.

Obviously, the classes EC and RA are closed under the CBV-functions.
Furthermore, the function f defined by f(x) := 1− x is a CBV-function which
maps left computable real numbers to right computable ones and vice versa.
Moreover, g ◦ f ∈ CBV iff g ∈ CBV for any g. This observation implies that
CBV(LC) = CBV(RC) = CBV(SC), where CBV(C) := {g(x) : x ∈ C & g ∈
CBV} denotes the image set of C under functions of CBV. In [6], it is shown that
both the classes SC and WC are not closed under CBV and that the image of
a semi-computable real number under a CBV-function is weakly computable. In
other words, SC � CBV(SC) ⊆WC and WC � CBV(WC) hold. On the other
hand, it is also shown in [6] that WC � CTF(SC) = CTF(WC) � RA, where
CTF is the set of all computable total real functions f : [0; 1] → [0; 1]. Namely,
the image sets of semi-computable and weakly computable real numbers under
total computable real functions are the same and they locate strictly between the
classes WC and RA. Two interesting questions remain open. That is, whether
CBV(SC) = WC? and CBV(WC) = CTF(WC)? For the first question, we will
show a negative answer. A positive answer to the second question follows from the
stronger result CBV2(SC) = CTF(SC). This result shows that any application
of a total computable real function to a semi-computable real number can be
realized by two consecutive applications of the CBV-functions to some (possibly
different) semi-computable real number. Finally, we will show that the image
sets of weakly computable real numbers under computable monotone functions
and under usual total computable real functions are different.

Computable Real Functions 49

2 Preliminaries

In this section we will recall some known results, notions and notations which
will be used later.

Let Σ be any alphabet. Σ∗ and Σω are the sets of all finite strings and infinite
sequences of Σ, respectively. For u, v ∈ Σ∗, denote by uv the concatenation of
v after u. u is an initial segment of w (denoted by u � w) if w = uv for some
v and u � w means u � w & w 	= w. If w ∈ Σ∗ ∪ Σω, then w[n] denotes its
n-th element. Thus, w = w[0]w[1] · · ·w[n − 1], if |w|, the length of w, is n, and
w = w[0]w[1]w[2] · · ·, if |w| =∞. The unique string of length 0 is denoted by λ
(so-called empty string). For any finite string w ∈ {0; 1}∗, and number n ≤ |w|,
the restriction w � n is defined by (w � n)[i] := w[i] if i < n and (w � n)[i] := ↑,
otherwise. Then the length |w � n| = n.

We denote by N,Q and R the sets of all natural, rational and real numbers,
respectively. [0; 1]Q is the set of all rational numbers x ∈ [0; 1]. For any sets A and
B, f :⊆ A → B is a partial function such that dom(f) ⊆ A and range(f) ⊆ B,
while f : A → B denotes a total function from A to B, i.e., dom(f) = A. If
I ⊂ R is an interval, then its length is denoted by l(I).

The computability notions on subsets A ⊆ N and functions f :⊆ Nk → N

are well defined and developed in classical computability theory (cf. [9,10]). For
other countable set, say, Q , the corresponding notions of computability can be
defined accordingly by means of some coding. For example, if 〈·, ·〉 : N2 → N

is a computable pairing function, then we can define a coding σ : N → Q by
σ(〈〈n,m〉 , k〉) := (n − m)/(k + 1)) for any n,m, k ∈ N and call a set A ⊆ Q

recursive or recursively enumerable if the set σ−1(A) := {n ∈ N : σ(n) ∈ A}
is recursive or recursively enumerable, respectively. A function f :⊆ N → Q is
computable if there is a computable function g :⊆ N → N such that f(n) =
σ ◦ g(n) for any n ∈ dom(σ ◦ g), and so forth. Especially, we call a sequence (xs)
of rational numbers computable if there is a computable function f : N → Q

such that xs = f(s) for any s.
The computability of real functions can be defined by type-2 Turing machines

(Weihrauch [10,11]). A type-2 Turing machine M extends the classical Turing
machine in such a way that it accepts infinite sequences as well as finite strings
as inputs and outputs. For any input p, M(p) outputs a finite string q if M(p)
halts after finite steps with q in its write-only output tape, while M(p) outputs
an infinite sequence q means that M(p) will never halt and keep writing the
sequence q on its output tape. A real function f :⊆ R → R is computable, if
there is a type-2 Turing machine M which computes f in the sense that, for any
x ∈ dom(f) and any sequence p (of rational numbers) which converges effectively
to x, M(p) outputs a sequence q (of rational numbers) which converges effectively
to f(x). Therefore, any computable function is continuous on its domain.

The closure properties of the real number classes mentioned in the last section
under the class CPF of computable partial real functions are first discussed
in [13]. These discussions are extended to the case of CTF in [6], where the
divergence bounded computability is also introduced. For any sequence (xs)
and n ∈ N. The n-divergence of (xs) is defined as the maximal m such that,

50 Robert Rettinger, Xizhong Zheng, and Burchard von Braunmühl

for some chain i0 < j0 ≤ i1 < j1 ≤ · · · ≤ im < jm of natural numbers,
|xis
− xjs

| ≥ 2−n holds for any s ≤ m. A real number x is called divergence
bounded computable if there is a recursive function h and a computable sequence
(xs) of rational numbers converging to x such that the n-divergence of (xs) is
bounded by h(n) for any n. The class of all divergence bounded computable real
numbers is denoted by DBC. We can summarize some of the main results of
[13,6] as follows.

Theorem 2.1 (Zheng [13] and Rettinger et al. [6]).
1. CPF(LC) = CPF(RC) = CPF(RA) = RA.
2. CTF(LC) = CTF(RC) = CTF(WC) = DBC.
3. WC � CBV(WC) ⊆ CTF(WC) � RA.
4. SC � CBV(LC) = CBV(RC) = CBV(SC) ⊆WC.

Let δ : N → N+ and N∗
δ := {w ∈ N∗ : ∀n < |w| (w[n] < δ(n))}. We define a

δ-interval tree (δ-i.t., for short) on [0; 1] as a function I : N∗
δ → I, where I is the

set of all rational intervals on [0; 1], such that I(λ) = [0; 1];
⋃

i<δ(|w|) I(wi) =
I(w), for any w ∈ N∗

δ and lims→∞ l(I(ws)) = 0 for any sequence (ws) of N∗
δ

with ws � ws+1. For any δ-i.t. I and w ∈ N∗
δ , the interval I(w) is denoted by

I(w) := [aδ
w; bδw]. A δ-i.t. I is called computable if the functions a, b : N∗

δ →
[0; 1]Q defined by a(w) := aδ

w and b(w) := bδw, respectively, are computable. A
δ-i.t. I is called canonical if, for any w ∈ N∗

δ , the interval I(w) is divided into
subintervals I(w0), I(w1), · · · , I(w(δ(|w|)−1)) disjunctively and equally, in other
words, aδ

w :=
∑

i<|w|
(
w[i] ·∏j≤i δ(j)

−1
)

and bδw := aδ
w +

∏
j<|w| δ(j)

−1.

Furthermore, for any δ1, δ2 : N → N+, a function ι :⊆ N∗
δ1
→ N∗

δ2
is called

(δ1, δ2)-compatible if the domain dom(ι) of ι is infinite and alternate in the sense
that, w(i−1), w(i+1) 	∈ dom(ι) & i 	= 0, δ1 for any w ∈ N∗

δ1
and i < δ1(|w|) such

that wi ∈ dom(ι); ∀w, v ∈ N∗
δ1

(w ∈ dom(ι) & v � w =⇒ v ∈ dom(ι) & ι(v) �
ι(w))) and ∀u, v ∈ dom(ι) (|u| = |v| =⇒ |ι(u)| = |ι(v)|).

The most important application of this notion is the following technical
lemma which is very useful to construct some computable real functions.

Lemma 2.2 (Rettinger et al. [6]). Let δ1, δ2, e : N→ N+ be computable func-
tions, I1 a canonical δ1-i.t., and I2 a computable δ2-i.t. with l(I(w)) ≤ 2−e(|w|)

for all w ∈ N∗
δ2

. If ι :⊆ N∗
δ1
→ N∗

δ2
is a (δ1, δ2)-compatible computable func-

tion, then there is a computable function f : [0; 1]→ [0; 1] such that f(I1(w)) ⊆
I2(ι(w)) and f(aδ1

w) = aδ2
ι(w) for all w ∈ dom(ι).

3 Computable Functions of Bounded Variation

In this section, we will discuss some basic properties of CBV. Especially, we
investigate which properties of continuous functions of bounded variation can
be extended to that of CBV accordingly. For the BV-functions, we have at first
the following simple properties which hold obviously for the CBV-functions too.

Computable Real Functions 51

Proposition 3.1. 1. If f, g ∈ BV, then f + g, f − g, f · g ∈ BV. If, in addition,
(∃c > 0)(∀x ∈ [0; 1])(|g(x)| ≥ c) holds, then f/g ∈ BV;

2. Let Lb
a(f) denote the length of the graph of function f on the interval [a; b],

then V b
a (f) + (b− a) ≥ Lb

a(f) ≥ [(V b
a (f))2 + (b− a)2]1/2. Therefore, f ∈ BV[a; b]

iff the graph of f on [a; b] has finite length.
3. There are f, g ∈ BV such that f ◦ g /∈ BV, i.e., BV is not closed under

composition.

Some other properties of CBV are summarized in the following lemma.

Lemma 3.2. 1. If f ∈ CBV, then V 1
0 (f) = supQ (

∑
i<m |f(ri)−f(ri+1)|), where

the supremum supQ is taken over all rational subdivision 0 = r0 < r1 < r2 <
· · · < rm = 1 for ri ∈ Q.

2. If both f : [0; 1] → [0; 1] and its first order derivative f ′ are computable,
then f ∈ CBV and vf is a computable function, where vf (x) := V x

0 (f).
3. For f ∈ CBV, the variation V 1

0 (f) is a left computable real number. And
for any y ∈ LC, there is a function f ∈ CBV such that V 1

0 (f) = y.

Classically, for any f ∈ BV, there are nondecreasing functions g, h such that
f(x) = g(x)− h(x) for all x ∈ [0; 1]. Moreover, if f is continuous, then g, h can
also be chosen to be continuous. Unfortunately, the result cannot be extended
immediately to CBVas shown in [15]. However this claim can still be true if we
require that V 1

0 (f) is computable as well. This observation belongs essentially
to Douglas Bridges [2].

Theorem 3.3 (Bridges [2]). Let f ∈ CBV. If V 1
0 (f) is computable, then there

are two computable nondecreasing function g, h : [0; 1]→ [0; 1] such that f(x) =
g(x)− h(x) for any x ∈ [0; 1].

4 CBV(SC) and WC

By Theorem 2.1.4, the image of a semi-computable real number under a CBV-
function is weakly computable. In this section we will show that not every weakly
computable real number is such an image. To this end, let’s look at an important
property of CBV-functions.

Given an interval J ⊆ [0; 1] of length δ and a continuous function f : [0; 1]→
[0; 1], a pair (x1, x2) of real numbers is called a crossing of f over J if f(x1) and
f(x2) locate on different sides of the interval J . Denoted by z(f, J) the number
of crossings of f over J , namely

z(f, J) := max{n ∈ N : (∃(xi)i≤n)(0 ≤ x0 < x1 < · · · < xn ≤ 1 &
(∀i < n)((xi, xi+1) is a crossing of f over J))}.

If f ∈ CBV and [0; 1] is divided equally into n-subintervals Ji of length 1/n for
i < n. Then

∑
i<n z(f, Ji)/n ≤ V b

a (f) holds for any n ∈ N. This implies that,
(∀e ∈ N)(∃n ∈ N)(∃i < n)(z(f, Ji)/n ≤ 2−e). Because this observation is very
essential for the proof of the following Theorem 4.2, we state it as a separate
lemma.

52 Robert Rettinger, Xizhong Zheng, and Burchard von Braunmühl

Lemma 4.1. Let f ∈ CBV and I ⊆ [0; 1]. For any e ∈ N, there are δ > 0 and
a0, a1, a2, a3 ∈ I such that the intervals Ii := (ai; ai+1) have the same length δ
for i < 3 and z(f, I1) · 3 · δ ≤ 2−e.

Theorem 4.2. CBV(LC) � WC.

Proof. (sketch) The inclusion part is quite straightforward. Here we prove only
the inequality part. Namely we show that there is a weakly computable real
number y such that y 	= f(x) for any x ∈ LC and any f ∈ CBV.

Let (ϕs) and (γs) be effective enumerations of computable functions ϕs :⊆
R → R, and γs :⊆ N → Q, respectively. It suffices to construct effectively a
computable sequence (ys) of rational numbers which converges weakly effectively
to some y and y satisfies, for any i, j ∈ N, the requirement

R〈i,j〉 : ϕi ∈ CBV & ∀s(γj(s) ≤ γj(s+ 1)) =⇒ y 	= lim
s→∞ϕi(γj(s))).

The strategy to satisfy a single requirement Re (e = 〈i, j〉) is simple. For
example, we can fix a rational interval I ⊆ [0; 1] as a base interval and choose
arbitrarily two open subintervals I1 and I2 of I such that they have at least a
positive distance. Then, one of these subintervals is a witness interval of Re in
the sense that each element of this interval satisfies Re. Actually, this witness
interval can be determined in finite steps, if ϕi ∈ CBV & ∀s(γj(s) ≤ γj(s+ 1))
holds. Namely, we choose at first I1, then change to I2 if some ϕi(γj(s)) enters
I1, and change to I1 again whenever ϕi(γj(s)) enters I2 for a larger s, and so on.
If the limit lims→∞ ϕi(γj(s)) exists, we can change the interval only finitely often
and the last interval we have chosen is the witness interval of Re. Otherwise, if
the limit does not exist, then both I1 and I2 are witness intervals of Re.

To satisfy all requirements Re simultaneously, we will try to find a sequence
(Is) of nested open intervals such that Is+1 � Is. For each s, Is and Is+1
are base and witness interval of Rs, respectively. If we require in addition that
lims→∞ l(Is) = 0, and define ys := mid(Is) (the middle point of Is), then the
sequence (ys) converges to a limit y which belongs to all intervals Ie and hence
satisfies all requirements Re. To ensure that the sequence (ys) converges weakly
effectively, we choose the witness intervals in such a way that l(Is) ≤ 2−s for
any s ∈ N. This implies that |ys − ys+1| ≤ 2−s and hence

∑
s∈N |ys − ys+1| ≤ 2.

Unfortunately, the sequence (ys) mentioned above is not computable, because
the sequence (Is) of witness intervals is not computable. However we can con-
struct one of its effective approximation (Ie,s)e<ds,s∈N such that lims→∞ ds =∞,
Ie,s and Ie+1,s are current base and witness intervals at stage s, respectively, of
the requirement R〈i,j〉 for (ϕi,s, γj,s) instead of (ϕi, γj). At the same time, define
ys := mid(Ids,s). Of course, the “injury” phenomenon could appear in this con-
struction. For example, given (Ie,s)e≤ds , we might define a new witness interval
Ie1,s+1 for some e1 < ds at stage s+ 1. In this case, all Ie,s for e1 < e ≤ ds are
destroyed and have to be redefined later again. We say that the corresponding
requirements Re is injured (by Re1). Fortunately, any requirement Re can be
injured finitely often and its witness interval Ie := lims→∞ Ie,s exists.

Computable Real Functions 53

Nevertheless, the injury in the above construction introduces also extra jumps
of the sequence (ys). To guarantee that the sum

∑
s∈N |ys − ys+1| is still finite,

more efforts are needed. Concretely, given a current base interval Ie,s of Re, we
choose at stage s+ 1, according to Lemma 4.1, three subintervals I0, I1 and I2
of length δ such that z(f, I1) ·3δ ≤ 2−(e+be,s) where be,s is the number of injuries
that Re received up to stage s and let I0 or I2 be the witness interval of Re. This
implies that, Re contributes to the jumps of (ys) hereafter at most 2−(e+be,s)

whenever it is not injured again. Generally, let Se be the set of all e-stages s at
which ys is defined according to Re. Then, we have

∑
s+1∈Se

|ys−ys+1| ≤ 2−e. In
other words, the e-stages contribute at most 2−e to the sum

∑
s+1∈N |ys−ys+1|.

Therefore,
∑

s∈N |ys − ys+1| =
∑

e∈N

∑
s+1∈Se

|ys − ys+1| ≤
∑

e∈N 2−e ≤ 2.
That is y := lims→∞ ys is a weakly computable real number which satisfies all
requirements Re. Thus, x ∈WC/CBV(LC).

Corollary 4.3. CBV(LC) � CTF(LC).

5 CBV2(LC) and CTF(LC)

In the last section we have shown that one application of CBV-functions to SC
produces a proper subset of WC. However, we will show in this section that
two applications of CBV-functions suffice to produce the set CTF(LC). In the
following, let CBV2 := {f ◦ g : f, g ∈ CBV}.
Theorem 5.1. CBV2(LC) = CTF(LC) = DBC

Proof. (sketch) The inclusion CBV2(LC) ⊆ CTF(LC) is trivial because CBV2 ⊆
CTF. We prove now that DBC ⊆ CBV2(LC).

Given a y ∈ DBC, there is a recursive function b : N→ N and a computable
sequence (ys) of rational numbers converging to y such that, for any n ∈ N, the
n-divergence of (ys) is bounded by b(n). Assume w.l.o.g. that b(n) ≥ 1. We will
construct two computable functions g, h ∈ CBV and an increasing computable
sequence (xs) of rational numbers converging to x such that g ◦ h(x) = y.

By definition, for any f ∈ CBV, f can only have few big jumps or many
small jumps. Since CBV(LC) 	= CTF(LC), the composition g ◦ h cannot be of
bounded variation. That is, to satisfy gh(x) = y, the function g ◦ h should have
a lot of big jumps but g and h should not. The essential idea is that, we let h
have a lot of small jumps and then let g amplify them to the big ones.

Let δ1(n) := 2b(3n) + 1, δ2(n) := 2n+1 ·∏i≤n(b(3i) + 1) + 1 and δ3(n) :=
2 be computable functions. I1 and I2 are canonical δ1- and δ2-interval trees,
respectively. We define I3 as a δ3-interval tree in such a way that, for any w ∈
{0, 1}∗ and i ∈ {0, 1}, the interval I3(w) is covered by intervals I3(w0) and
I3(w1) which are overlapped in the middle of the interval I3(w) for a length
of 2−3|w|+1. More precisely, the interval I3(w) := [aδ3

w ; bδ3
w] has the length of

lδ3
w :=

∏
i<|w|(2

−1 + 2−3i) for aδ3
w , b

δ3
w defined by

aδ3
w :=

∑
i<|w|

w[i] · (2−1 + 2−3(i+1)) ·
∏
j<i

(2−1 + 2−3j) and

54 Robert Rettinger, Xizhong Zheng, and Burchard von Braunmühl

bδ3
w :=

∑
i<|w|

w[i] · (2−1 + 2−3(i+1)) ·
∏
j<i

(2−1 + 2−3j) +
∏

i<|w|
(2−1 + 2−3i).

Furthermore, we define two functions ι1 : N∗
δ1
→ N∗

δ2
and ι2 : N∗

δ2
→ N∗

δ3

inductively by ι1(λ) := λ, ι2(λ) := λ and

ι1(wi) := (ι1(w)1 if ∃j(i = 4j + 1); ι1(w)3 if ∃j(i = 4j + 3); ↑ otherwise)
ι2(wi) := (ι2(w)0, if i = 1; ι2(w)1 if i = 3; ↑ otherwise)

for any w ∈ N∗. Obviously, both ι1 and ι2 are computable functions. They
are also (δ1, δ2)- and (δ2, δ3)-compatible, respectively. By Lemma 2.2, there are
computable real functions g, h : [0; 1]→ [0; 1] such that

h(I1(w)) ⊆ I2(ι1(w)) & g(I2(u)) ⊆ I3(ι2(u)) (1)

for any w ∈ dom(ι1) and u ∈ dom(ι2). It is not difficult to see that both g and h
are of finite variations. It remains to construct an increasing computable sequence
(xs) of rational numbers. Notice that, for any w ∈ dom(ι1), ι1(w) ∈ dom(ι2)
and hence gh(aδ1

w) = g(aδ2
ι1(w)) = aδ3

ι1ι2(w). We define xs := aδ1
ws

where (ws) is a
computable sequence in N∗

δ1
which is defined as follows.

Stage s = 0. Define simply w0 = λ and hence x0 := 0.
Stage s+1. Given ws ∈ dom(ι1). If ys ∈ I3(ι2ι1(ws)), then define ws+1 := ws1

if ys ∈ I3(ι2ι1(ws1)) and ws+1 := ws3 otherwise.
Suppose now that ys 	∈ I3(ι1ι2(ws)). Then choose an n ≤ |ws| such that ys ∈

I3(ι1ι2(ws) � n), ys 	∈ I3(ι1ι2(ws) � (n+ 1)) and let ws+1 = (ws � n)(ws[n] + 2).
Notice that, ι1(ws+1)[n] = 1 if ι1(ws)[n] = 3 and ι1(ws+1)[n] = 3 otherwise. This
implies that ι2ι1(ws+1)[n] = 1 ·− ι2ι1(ws)[n], and hence ys ∈ I3(ι2ι1(ws+1)[n]).

We can show that (xs) constructed above is an increasing computable se-
quence and lims→∞ gh(xs) = lims→∞ ys = y.

Corollary 5.2. CBV(WC) = CTF(WC)

Proof. This follows immediately from Theorem 2.1 and Theorem 5.1.

6 CMF(WC) and CTF(WC)

In this section we will show that the image sets of WC under CTF and CMF are
different, where CMF is the class of computable monotone functions f : [0; 1]→
[0; 1]. Notice first that, y ∈ CMF(WC) iff there is an x ∈ WC and a strictly
monotone and computable function f such that y = f(x). For strictly monotone
functions, we have the following useful lemma.

Lemma 6.1. Let f : [0; 1]→ [0; 1] be a strictly monotone function, J ⊆ [0; 1] a
non-empty rational interval. There is a t0 ∈ N such that, for any r ≥ t0, there
are rational numbers a1 < a2 < a3 < a4 which belong to the interval J and
satisfy the following condition:

a3 − a2 ≥ 2−(2r+2) & |f(a1)− f(a4)| ≤ 2−(r+1). (2)

Computable Real Functions 55

Theorem 6.2. CMF(WC) � CBV(WC) = DBC

Proof. It suffices to prove the inequality part. We will construct a recursive
function h and a computable sequence (ys) of rational numbers converging to y
so that the n-divergence of (ys) is bounded by h(n) for any n. Thus y ∈ DBC =
CTF(WC). Furthermore, y satisfies, for all i, j ∈ N, the requirement

R〈i,j〉 :
If ϕi is a strictly monotone total function and γj is total such
that

∑
s∈N |γj(s)−γj(s+1)| ≤ 1, then lims→∞ ϕi(γj(s)) 	= y,

where (ϕe) and (γe) are effective enumerations of all computable functions ϕe :⊆
[0; 1]→ [0; 1] and γe :⊆ N→ [0; 1]Q. Thus, y /∈ CMF(WC).

Given a strictly monotone function ϕi and a weakly convergent sequence
(γj(s)) with

∑
s∈N |γj(s)− γj(s+ 1)| ≤ 1, we consider a base interval J ⊆ [0; 1].

Let r and a1, a2, a3, a4 satisfy Lemma 6.1 and define I1 := [a1; a2], I2 := [a3; a4],
J1 := ϕi(I1) and J2 := ϕi(I2). Now, if ϕi(γj(s)) enters J1 (hence γj(s) enters
I1), then we define ys+1 as the middle point of J2. Similarly, if ϕi(γj(s)) enters
J2 (hence γj(s) enters I2), then we define ys+1 to be the middle point of J1. This
guarantees that the limits y := lims→∞ ys and lims→∞ ϕi(γj(s)) have at least a
distance of |ϕi(a2)−ϕi(a3)|, hence y satisfies the requirement R〈i,j〉. Notice that
the ys’s can be redefined according to this strategy at most 22r+2 times because
a3 − a2 ≥ 2−(2r+2) and

∑
s∈N |γj(s)− γj(s+ 1)| ≤ 1. On the other hand, every

redefinition of ys contributes only a jump which is bounded by 2−(r+1) because
of (2).

To satisfy all requirements Re simultaneously, let’s begin with the base in-
terval I0 := [0; 1] and search for the minimal e := 〈i, j〉 such that we can apply
Lemma 6.1 for the function ϕi. Choose r1 and a1, a2, a3, a4 which satisfy Lemma
6.1 and let I1

e := [a1; a2], I2
e := [a3; a4] and Ju

e := ϕi(Iu
e) for u := 1, 2. By default,

let I1 := I1
e be a new base interval, define ys1 to be the middle point of J1

e . If
at a later stage s2 > s1, ϕi(γj(s2)) enters the interval J1

e , then set I1 := I2
e . If

there is another s3 > s2 such that ϕi(γj(s2)) enters the interval J2
e , then rede-

fine I1 := I1
e , and so on. In each case, we will define a new value of (ys) as the

middle point of I1. Of course, this redefinition can appear at most 2(2r1+1) times
if
∑

s∈N |γj(s)− γj(s+ 1)| ≤ 1.
Now on the base interval I1 we will look for another minimal e1 := 〈i1, j1〉 > e

such that Lemma 6.1 can be applied to ϕi1 . Define r2, Iu
e1

, Ju
e1

(u := 1, 2),
I2 and new ys similarly. This procedure can be carried out further. By the
above strategy, we can see that, first, the limit y := lims→∞ ys exists. In fact
it is the unique common point of a nested interval sequence (Ie)e∈N; Second,
every requirement R〈i,j〉 is satisfied, because lims→∞ ϕi(γj(s)) and y have at
least the distance |ϕi(a2) − ϕi(a3)| (for some a2 < a3), if ϕi and γj satisfy
the premise of R〈i,j〉; Third, the n-divergence of (ys) is bounded by a recursive
function h defined by h(n) :=

∑
m<n 22m+2. Here the third claim follows from

the observation that we define new ys only according to some requirement and
some natural number r which satisfies Lemma 6.1 and any jump which is related
to this r is not greater than 2−(r+1). Different requirements relate to different
such r and, for any fixed r, there are at most 22r+2 jumps related to this r.

56 Robert Rettinger, Xizhong Zheng, and Burchard von Braunmühl

Unfortunately, the construction above is not effective, because, first, we can-
not decide whether ϕi is a monotone total function and, second, we can’t cal-
culate the value ϕi(γj(s)) in finite steps, even if it is defined. To solve this
problem, let βi :⊆ [0; 1]Q × N → [0; 1]Q be an approximation of ϕi such that
|ϕi(x) − βi(x, n)| ≤ 2−n and use the function pair (βi,s, γj,s) in the construc-
tion instead of (ϕi, γj). In this case, the finite injury priority method should be
applied.

References

1. K. Ambos-Spies, K. Weihrauch, and X. Zheng. Weakly computable real numbers.
Journal of Complexity, 16(4):676–690, 2000.

2. D. Bridges. A constructive look at functions of bounded variation. Bull. London
Math. Soc., 32(3):316–324, 2000.

3. C. S. Calude. A characterization of c.e. random reals. Theoretical Computer
Science, 217:3–14, 2002.

4. K.-I. Ko. Complexity Theory of Real Functions. Progress in Theoretical Computer
Science. Birkhäuser, Boston, 1991.

5. M. B. Pour-El and J. I. Richards. Computability in Analysis and Physics. Per-
spectives in Mathematical Logic. Springer, Berlin, 1989.

6. R. Rettinger, X. Zheng, R. Gengler, and B. von Braunmühl. Weakly computable
real numbers and total computable real functions. In J. Wang, editor, Computing
and Combinatorics, volume 2108 of Lecture Notes in Computer Science, pages 586–
595, Berlin, 2001. Springer. 7th Annual International Conference, COCOON 2001,
Guilin, China, August 20-23, 2001.

7. H. L. Royden. Real Analysis. The Macmillan Company, New York, 1963.
8. R. Soare. Recursion theory and Dedekind cuts. Trans. Amer. Math. Soc., 140:271–

294, 1969.
9. R. I. Soare. Recursively enumerable sets and degrees. A study of computable func-

tions and computably generated sets. Perspectives in Mathematical Logic. Springer-
Verlag, Berlin, 1987.

10. K. Weihrauch. Computability, volume 9 of EATCS Monographs on Theoretical
Computer Science. Springer, Berlin, 1987.

11. K. Weihrauch. Computable Analysis. Springer, Berlin, 2000.
12. K. Weihrauch and X. Zheng. A finite hierarchy of the recursively enumerable real

numbers. In L. Brim, J. Gruska, and J. Zlatuška, editors, Mathematical Foun-
dations of Computer Science 1998, volume 1450 of Lecture Notes in Computer
Science, pages 798–806, Berlin, 1998. Springer. 23rd International Symposium,
MFCS’98, Brno, Czech Republic, August, 1998.

13. X. Zheng. Closure properties on real numbers under limits and computable oper-
ators. In D.-Z. Du, P. Eades, V. Estivill-Castro, X. Lin, and A. Sharma, editors,
Computing and Combinatorics, volume 1859 of Lecture Notes in Computer Science,
pages 170–179, Berlin, 2000. Springer. 6th Annual Conference, COCOON’2000,
Sydney, Australia, July 2000, full version to appear in Theor. Comput. Sci.

14. X. Zheng. Recursive approximability of real numbers. Mathematical Logic Quar-
terly, 48, 2002. (to appear).

15. X. Zheng, R. Rettinger and B. von Braunmühl. On the Jordan decomposability
for computable functions of bounded variation. Manuscript, 2002.

Improved Compact Routing Tables
for Planar Networks via Orderly Spanning Trees

Hsueh-I Lu�

Academia Sinica, Taiwan
http://www.iis.sinica.edu.tw/˜hil/

hil@iis.sinica.edu.tw

Abstract. We address the problem of designing compact routing tables
for an unlabeled connected n-node planar network G. For each node r
of G, the designer is given a routing spanning tree Tr of G rooted at r,
which specifies the routes for sending packets from r to the rest of G.
Each node r of G is equipped with ports 1, 2, . . . , dr, where dr is the
degree of r in Tr. Each port of r is supposed to be assigned to a neighbor
of r in Tr in a one-to-one manner. For each node v of G with v �= r, let
portr(v) be the port to which r should forward packets with destination
v. Under the assumption that the designer has the freedom to determine
the label and the port assignment of each node in G, the routing table
design problem is to design a compact routing table Rr for r such that
portr(v) can be determined only from Rr and the label of v.
Compact routing tables for various network topologies have been exten-
sively studied in the literature. Planar networks are particularly impor-
tant for routing with geometric metrics. Based upon four-page decom-
positions of G, Gavoille and Hanusse gave the best previously known
result for this problem: Each portr(v) is computable in O(log2+ε n) bit
operations for any positive constant ε; and the number of bits required to
encode their Rr is at most 8n+o(n). We give a new design that improves
the code length of Rr to at most 7.181n + o(n) bits without increasing
the time required to compute portr(v).

1 Introduction

We address the problem of designing compact routing tables for an unlabeled
connected planar network G over an n-node set V . For each node r of G, we are
given a routing spanning tree Tr of G rooted at r, which specifies the routes for
sending packets from r to the rest of G. For example, Tr could be a precomputed
shortest-path tree rooted at r for some weighted version of G. It is reasonable
to assume that those n routing spanning trees are consistent, i.e., if s and v are
two nodes such that s is on the path of Tr between r and v, then the path of Ts

between s and v is identical to the path of Tr between s and v. Each node r of G
is equipped with ports 1, 2, . . . , dr, where dr is the degree of r in Tr. Each port
� Research supported in part by NSC grant NSC 90-2213-E-001-018. Institute of Infor-

mation Science, Academia Sinica, 128 Academia Road, Sect. 2, Taipei 115, Taiwan.

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 57–66, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

58 Hsueh-I Lu

of r is supposed to be assigned to a neighbor of r in Tr in a one-to-one manner.
We assume the freedom to determine the label and the port assignment of each
node in G. For each neighbor s of r in Tr, let portr(s) denote the port of r that
is assigned to s. For each node v of G with v �= r, define portr(v) = portr(s),
where s is the neighbor of r in Tr whose removal disconnects v and r in Tr. That
is, if r receives a packet whose destination is v, then r should pass the packet
to its port with index portr(v). The routing table design problem is to come up
with a compact routing table Rr for each node r of G such that portr(v) can be
determined only from Rr and the label of v. Natural objectives of this problem
include

– minimizing the number λr(n) of bits to encode the label of node r;
– minimizing the number βr(n) of bits to encode Rr for node r; and
– minimizing the time τr(n) to obtain portr(v) from Rr and the label of v.

Based upon four-page decompositions of G [39], Gavoille and Hanusse [20] gave
the best formerly known result for this problem, which outperformed several
previous trade-offs among the above objectives. Specifically, their design achieves
λr(n) = �log2 n�, βr(n) ≤ 8n + o(n),

∑
r∈V βr(n) ≤ 8n2 + o(n2), and τr(n) =

O(log2+ε n) for any positive constant ε, where τr(n) is measured in terms bit
operations1. In [20], they also mentioned a lower bound βr(n) ≥ n − O(log n)
for the routing table design problem on G. In the present paper, we improve the
code length to βr(n) < 7.181n+ o(n) while maintain the same bounds on λr(n)
and τr(n). Moreover, our design has the feature that Tr can be recovered from
Rr.

Planar networks are important in routing with geometric metrics [3, 23, 27].
For example, some of the best network topology maps used by ISPs and Internet
Backbone Networks can be modeled as planar or almost planar graphs [17, 26,
28]. The near-shortest routes in wireless ad hoc networks are obtained through
various types of planar subnetworks with low stretch factors [4, 5, 28, 32]. Other
results related to routing in planar networks can be found in [2, 15, 30].

Compactness of routing tables has been extensively studied in the litera-
ture [1, 8, 9, 12–14, 18, 19, 21, 22, 33, 34, 37]. Our improved compact routing tables
are based upon succinct encodings for planar graphs with efficient query sup-
port [6, 7, 24, 31]. The best of such results for an n-node m-edge planar graph
without multiple edges and self-loops, due to Chiang, Lin, and Lu [6], takes
2m+2n+o(m+n) bits, is obtainable in O(m+n) time, and supports O(1)-time
adjacency and degree queries. Chiang et al.’s encoding is based on an algorithmic
tool called orderly spanning tree, which generalizes the concept of realizers [36]
and canonical orderings [10, 25] for planar graphs. Besides graph encoding, or-
derly spanning tree also finds applications in graph drawing [6] and VLSI floor
planning [29]. Our improved routing tables rely heavily on Chiang et al.’s tech-
niques for encoding planar graphs via orderly spanning trees. Therefore, our
results can be regarded as an application of orderly spanning tree in computer
networks.
1 The base of each logarithm is two for the rest of the paper.

Improved Compact Routing Tables 59

3 6
7

1

12
10

11

8
9

5
4

2

Fig. 1. A plane graph G with it orderly spanning tree T rooted at node 1 drawn in
dark. The node labels show the counterclockwise preodering of the nodes in T .

The rest of the paper is organized as follows. Section 2 gives the preliminar-
ies. Section 3 describes our design of routing tables. Section 4 explains how to
efficiently obtain the correct port from the routing table and the label of the
destination. Section 5 concludes the paper with a couple of open questions.

2 Preliminaries

All graphs in this paper do not contain multiple edges and self-loops. Let |X|
denote the number of bits in a binary string X. Let |S| denote the number of
elements in a set S. Unless explicitly stated otherwise, the rest of the paper sticks
with the log n-bit word model of computation [16, 38] that assumes operations
read, write, and add on O(log n) consecutive bits take O(1) time. Clearly, O(t)
time in log n-bit word model implies O(t log n) time in terms of bit operations.
For brevity of notation, let Õ(t) denote O(t) ·O((log log n)O(1)). Clearly, τr(n) =
Õ(t) implies τr(n) = O(t logε n) for any positive constant ε.

Let T be a rooted spanning tree of a plane graph G. Two nodes are unrelated
in T if they are distinct and neither of them is an ancestor of the other in T . Let
v1, v2, . . . , vn be the counterclockwise preordering of the nodes in T . A node vi is
orderly in G with respect to T if the neighbors of vi in G form the following four
blocks in counterclockwise order around vi, where each block could be empty:
the parent p(vi) of vi in T ; V1(vi) consisting of the unrelated neighbors vj of vi

with j < i; V2(vi) consisting of the children of vi in T ; and V3(vi) consisting of
the unrelated neighbors vj of vi with j > i. T is an orderly spanning tree of G if
v1 is on the boundary of G’s exterior face, and each vi, 1 ≤ i ≤ n, is orderly in
G with respect to T . An example of orderly spanning tree is shown in Figure 1.
For any connected planar graph G, Chiang et al. [6] gave a linear-time algorithm
that computes a plane embedding H of G, and an orderly spanning tree of H.

Let us review the technical details of Chiang et al.’s encoding [6] that are
relevant to our improved routing tables. A key step of their encoding algorithm
is to find an orderly spanning tree T for a plane embedding of the input n-node
m-edge planar graph G. For each i = 1, 2, . . . , n, let vi be the i-th node in the
counterclockwise preordering of the nodes in T . Chiang et al.’s encoding for G

60 Hsueh-I Lu

has 2n + 2m + o(m + n) bits and contains (i) a compact representation X for
a string S consisting of 2n parentheses and 2m − 2n + 2 brackets, and (ii) an
auxiliary string χ that supports efficient queries on X and S. The parentheses
(respectively, brackets) are balanced in S, i.e., each of them has a matching
parenthesis (respectively, bracket) in S. Each matching parenthesis pair in S
corresponds to a node in G. For each i = 1, 2, . . . , n, let (i denote the i-th open
parenthesis in S; and let)i denote the parenthesis that matches (i in S. The
matching (i and)i is the pair corresponds to vi. Moreover, vi is an ancestor of vj

in T if and only (i and)i enclose (j and)j in S. Also, each matching bracket pair
in S corresponds to an edge in G−T . For each k = 1, 2, . . . ,m−n+ 1, let [k be
the k-th open bracket in S, and]k its matching close bracket in S. The matching
pair [k and]k corresponds the edge ek = (vi, vj), where)i (respectively, (i) is
the rightmost parenthesis that precedes [k (respectively,]k) in S. We call k
the rank of edge (vi, vj). A naive representation of S requires 4m + O(1) bits,
since S has length 2m+O(1) and contains four distinct symbols. However, due
to some property of orderly spanning tree, S can be encoded into a string X
with 2m + 2n + O(1) bits. Moreover, the first 2n bits of X is the above string
of balanced parentheses. The auxiliary string χ has o(m + n) bits, supporting
several efficient queries of T and G as summarized in the following lemma.

Lemma 1 (See [6]). There is an O(n)-time computable 2m + 2n + o(n)-bit
encoding for G and T from which each of the following queries can be answered
in O(1) time:

– p(vi), |V1(vi)|, |V2(vi)|, and |V3(vi)|;
– the j-th neighbor nbr(vi, j) of vi in G− T ;
– the rank rank(vi, vj) of each edge (vi, vj) ∈ G− T ; and
– the endpoints of the edge with rank k.

The result stated in Lemma 1 takes advantage of auxiliary strings for strings
of parentheses, as summarized in the next two lemmas, which are also needed
by our routing tables.

Lemma 2 (see [11]). Let Z1, . . . , Zk be binary strings. If
∑k

i=1 |Zi| ≤ nO(1)

and k = O(1), then there exists an o(n)-bit string ζ, obtainable in O(n) time,
such that given the concatenation of ζ, Z1, Z2, . . . , Zk, the position of the first bit
of each Zi in the concatenation can be computed in O(1) time.

Let Z1⊕Z2⊕· · ·⊕Zk denote the concatenation of ζ, Z1, Z2, . . . , Zk as in Lemma 2.

Lemma 3 (See [31]). Let P be a string of n balanced parentheses. There is
an o(n)-bit string µ(P), computable in O(n) time from P , such that each of
the following queries can be answered in O(1) time from P and µ(P) for each
i = 1, 2, . . . , n:

– the position of the parenthesis that matches the parenthesis P [i] in P ;
– the position of the i-th open parenthesis in P ; and
– the number of open parentheses in P [1], P [2], . . . , P [i].

Improved Compact Routing Tables 61

For any binary string B, let rank(B, i) denote the number of one bits in
B[1], B[2], . . . , B[i]; and select(B, i) denote the position j such that B[j] is the
i-th one bit in B. Let e denote the base of the natural logarithm. Our routing
tables also need the following information-theoretically optimal representation
of a binary string with efficient query support.

Lemma 4 (See [35]). Let B be an n-bit string with k one bits. Then B can
be encoded in expected O(k) time into a compressed string Z(B) with log

(
n
k

)
+

o(n) = k log en
k +o(n) bits such that each B[i] and select(B, i) can be determined

directly from Z(B) in O(1) time. Moreover, if B[i] = 1, then rank(B, i) can also
be obtained from Z(B) in O(1) time.

3 The Improved Design of Routing Tables

In this section, we present a design of routing table satisfying λr(n) = �log n�
and βr(n) < 7.181n+o(n). We first compute in O(n) time a plane embedding G
of the input n-node planar graph and an orderly spanning spanning T for G [6].
Let v1, v2, . . . , vn be the counterclockwise preordering of the nodes in T . For each
i = 1, 2, . . . , n, let i−1 be the label of vi, which can be encoded into �log n� bits.
As for the port assignment, for each j = 1, 2, . . . , dr, we simply assign port j of
r to the neighbor of r in Tr with the j-th smallest label. It remains to describe
the content of Rr.

It is not difficult to see that the edges of G not in T ∪ Tr are irrelevant to
the information to be stored in Rr. The rest of the section focuses on the mr-
edge planar graph Gr = T ∪ Tr. Clearly, both T and Tr are spanning trees of
Gr. Moreover, T remains an orderly spanning tree of Gr. Let pr(vi) denote the
parent of vi in Tr. An edge (vi, vj) of Tr with i < j is forward (respectively,
backward) in Gr if vi = pr(vj) (respectively, vj = pr(vi)). Clearly, each edge in
Gr − T is either forward or backward. However, an edge of T may be neither
forward nor backward, since some edge of T might not be in Tr. Define

L1 = �(log n)(log log n)�;
L2 =

⌈
(log log n)2

⌉
.

Clearly, L1 = Õ(log n) and L2 = Õ(1). A node is popular if it has at least L1
neighbors in Gr. A node is lonely if it is has at most L2 neighbors in Gr. Since
Gr is planar, the number of popular nodes is O(n/L1). Similarly, Gr contains
O(n/L2) nodes that are not lonely. To define Rr, we still have to choose O(n/L1)
special nodes from Tr as follows. Choose an arbitrary leaf u with maximum depth
in Tr. Let w be the highest ancestor of u in Tr whose distance from u in Tr is
no more than L1. (Observe that if w �= r, then w is the ancestor of u whose
distance from u in Tr is exactly L1.) We then choose w as a special node, delete
the subtree of Tr rooted at w from Tr, and then repeat the above steps until all
nodes are deleted from Tr. By the above choice of special nodes, each node in
Tr either has depth less than L1 or has a special ancestor whose distance from
u is at most L1. Define

62 Hsueh-I Lu

Rr = S1 ⊕ S2 ⊕ S3 ⊕ S4 ⊕ S5 ⊕ S6 ⊕ S7 ⊕ S8,

where S1, . . . , S8 are defined as follows.

1. The encoding S1 forGr and T with 2mr+2n+o(n) bits as stated in Lemma 1.
2. An (mr − n + 1)-bit string S2 that encodes the direction of each edge in
Gr − T . Specifically, S2[k] = 1 if and only if the edge of Gr − T with rank k
is forward.

3. A string S3 = Z(S′
3), where S′

3 encodes whether each edge in T ∩ Tr is
backward or not. Specifically, for each i = 2, . . . , n, S′

3[i] = 1 if only if the
edge (vi, p(vi)) is in Tr and is backward.

4. A string S4 = Z(S′
4)⊕ S′′

4 , where S′
4 encodes whether each node is popular,

and S′′
4 stores the parent of each popular node in Tr. Specifically, for each

i = 1, 2, . . . , n, S′
4[i] = 1 if and only if vi is popular. S′′

4 [i] stores the O(log n)-
bit index of the parent of the i-th popular node in Tr.

5. A string S5 = Z(S′
5) ⊕ S′′

5 , where S′
5 encodes whether each node is lonely,

and S′′
5 is a table storing the rank of pr(v) among the neighbors of v in

Gr for each node v that is not lonely. Specifically, for each i = 1, 2, . . . , n,
S′

5[i] = 0 if and only if vi is lonely. If S′
5[i] is the j-th one bit in S′

5 (i.e.,
select(S′

5, j) = i), then S′′
5 [j] keeps the number kj such that pr(vi) is the

neighbor of vi in Gr with the kj-th smallest label.
6. A string S6 = Z(S′

6) ⊕ S′′
6 ⊕ µ(S′′

6), where S′
6 is a string consisting of three

kinds of distinct characters (,), and 0 defined as follows, and S′′
6 is the string

obtained from S′
6 by deleting its 0 characters. Recall that the first 2n bits of

S1 keeps a string of 2n balanced parentheses. For each vi with pr(vi) �= p(vi)
that is not lonely, let S′

6[j1] = (and S′
6[j2] =), where

– j1 is the index with S1[j1 − 1] = (i, and
– j2 is the index with S1[j2] =)� and v� = pr(vi).

Let the remaining characters of S′
6 be 0. Clearly, the parentheses in S′

6 are
balanced. Moreover, the parentheses at S′

6[j1] and S′
6[j2] as defined above

match each other in S′
6.

7. A string S7 = Z(S′
7)⊕S′′

7 , where S′
7 encodes whether a node is special, and S′′

7
stores portr(v) for each special node v. Specifically, for each i = 1, 2, . . . , n,
let S′

7[i] = 1 if and only if vi is special. The i-th �log n�-bit word of S′′
7 keeps

portr(vj), where vj is the i-th special node, i.e., select(S′
7, i) = j.

8. A string S8 = S′
8 ⊕ S′′

8 . For each j1 = 1, 2, . . . , �n/L1�, the j1-th �log n�-bit
word of S′

8 stores the number of r’s neighbors in Tr from v1 to vj1L1 . For each
j2 = 1, 2, . . . , �n/L2�, the j2-th �logL1�-bit word of S′′

8 stores the number of
r’s neighbors in Tr from vj to vj2L2 , where j = 1 + j2L2 −
j2L2/L1�L1.

Lemma 5. Rr is computable in expected O(n) time and |Rr| < 7.181n+ o(n).

Proof. (Sketch) One can verify that |S4|+|S5|+|S6|+|S7|+|S8| = o(n) and Rr is
computable in expected O(n) time. Therefore, βr(n) = |S1|+ |S2|+ |S3|+o(n) =
3mr +n+(2n−mr) log en

2n−mr
+o(n) = βr(n) = 7n+t

(
log en

t − 3
)

+o(n), where
t = 2n−mr. By verifying that the maximum of βr(n) occurs at t = 1

8n, we have
βr(n) ≤ (7 + 1

8 log e
)
n+ o(n) < 7.181n+ o(n).

Improved Compact Routing Tables 63

4 Determining the Correct Port Efficiently

In this section, we demonstrate how to determine portr(vi) from the routing
table Rr and the number i in Õ(log n) time.

Lemma 6. It takes Õ(log n) time to determine portr(v) from Rr and v’s label.

Proof. (Sketch) The task of determining portr(v) in Õ(log n) time can be reduced
to the task of determining each pr(v) from Rr and the label of v in Õ(1) time
as follows. If pr(v) is obtainable from Rr and the label of v in Õ(1) time, then
we can traverse Tr from vi toward r in Õ(1) time per step. Clearly, the traversal
always reaches a node vj that is either special or a neighbor of r in O(L1) =
Õ(log n) steps, i.e., Õ(log n) · Õ(1) = Õ(log n) time. Observe that whether vj is
special can be determined from S7 in O(1). Also, by Lemma 1, whether vj is
a neighbor of r can be determined in O(1) time from S1. If vj is special, then
portr(vi) = portr(vj) = S′′

7 [rank(S′
7, j)], which, by Lemma 4, is obtainable from

S7 in Õ(1) time. If vj is a neighbor of r, then let j1 =
j/L1� and j2 =
j/L2�.
By the definition of S8, portr(vj) equals S′

8[j1] + S′′
8 [j2] plus the number of r’s

neighbors in Tr from vj2L2+1 to vj . By Lemmas 1 and 4, portr(vi) = portr(vj)
is obtainable from S1 and S8 in Õ(1) time.

It remains to show how to determine pr(vi) in Õ(1) time from Rr and the
number i. First of all, we look up S4 to determine if vi is popular. If vi is popular,
then we can obtain pr(vi) from S′′

4 in O(1) time. Therefore, the rest of the proof
assumes that vi is not popular.

Clearly, pr(vi) is a neighbor of vi in either one of the edge sets Gr − T and
T . Before looking for pr(vi) among the neighbors of vi in Gr, we look up S5 in
O(1) time (by Lemma 4) to see whether vi is lonely.
Case 1 : vi is not lonely. By Lemma 4, we can compute ki = S′′

5 [rank(S′
5, i)] from

S5 in Õ(1) time. Since T is an orderly spanning tree of Gr, we know which edge
set to look for pr(vi) by ki, |V1(vi)|, |V2(vi)|, and |V3(vi)|, which, by Lemma 1,
are obtainable in O(1) time from S1.
Case 2 : vi is lonely. Observe that pr(vi) ∈ V1(vi) if and only if exactly one of
the edges between vi and V1(vi) is forward. Also, pr(vi) ∈ V3(vi) if and only if
exactly one of the edges between vi and V3(vi) is backward. Since vi is lonely,
we can afford checking the direction of each incident edges of vi in Gr − T : By
Lemma 1, the direction of each edge in Gr − T can be determined from S1 and
S2 in O(1) time, and, thus, we know whether pr(vi) is a neighbor of vi in Gr−T
in Õ(1) time. Moreover, if we find out that pr(vi) is a neighbor of vi in Gr − T ,
pr(vi) can also be computed from S1 in O(1) time.

After figuring out whether pr(vi) is a neighbor of vi in Gr − T or T , we can
compute pr(vi) in Õ(1) time as follows. We first consider the case that pr(vi) is
a neighbor of vi in Gr − T . If vi is not lonely, then pr(vi) is either nbr(vi, ki) or
nbr(vi, ki−|V2(vi)|); otherwise, pr(vi) can be computed from S1 as stated above.

It remains to consider the case that pr(vi) is a neighbor of vi in T . Clearly,
pr(vi) is either p(vi) or a child of vi in T . We first determine whether vi is a
leaf of T by the value of |V2(vi)|, which, by Lemma 1, is computable in O(1)

64 Hsueh-I Lu

time. It suffices to consider the case |V2(vi)| > 0, since otherwise pr(vi) = p(vi).
If vi is lonely, then we can afford checking the direction of the edge between vi

and each child of vi in T . Since the direction of each edge can be determined
from S1 and S3 in O(1) time, one can figure out whether pr(vi) is a child of vi

in T in O(L2) = Õ(1) time. If pr(vi) turns out to be a child of vi in T , then
pr(vi) can also be determined from S1 and S3 in O(1) time. Otherwise, we know
pr(vi) = p(vi), which can be obtained from S1 in O(1) time. As for the case that
vi is not lonely, one can compute pr(vi) in Õ(1) time from S6 as follows. Let j
be the index such that S1[j − 1] = (i in S1. Let j′ be the rank of (in S′

6. Let
S′′

6 [j′′] be the close parenthesis that matches the j′-th open parenthesis in S′′
6 .

Suppose j∗ is the rank of) in S′
6. Let � be the index such that)� = S1[�′], where

S′
6[�′] is the j∗-th close parenthesis in S′

6. One can verify v� = pr(vi).
The main theorem of the paper follows immediately from Lemmas 5 and 6.

Theorem 1. Given an n-node planar network G, there is a design of routing
tables for G such that λr(n) = �log n�, βr(n) < 7.181n+ o(n), τr(n) = Õ(log n),
and Rr is computable in expected O(n) time for each node r of G.

5 Concluding Remarks

Some questions might worth further investigation. For example, closing the gap
between the lower and upper bounds on βr(n) is an interesting one. Also, if
λr(n) > �log n�, e.g., 10�log n� or O((log n)O(1)), can one significantly reduce
the upper bound on βr(n)? If λr(n) > �log n�, is there still an Ω(n)-bit lower
bound on βr(n)?

Acknowledgments

We thank several anonymous referees for their helpful comments which signifi-
cantly improve the presentation of the paper. We thank Cyril Gavoille for bring-
ing [20] to our attention at SODA 2001. We thank Kunihiko Sadakane, Rasmus
Pagh, Rajeev Raman, and Venkatesh Raman for helping with Lemma 4. We also
thank Kuan-Ling Chen for discussion and Nen-Fu Huang and Jia-Shung Wang
for interesting comments.

References

1. B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg. Improved routing strategies
with succinct tables. Journal of Algorithms, 11(3):307–341, 1990.

2. M. Becker and K. Mehlhorn. Algorithms for routing in planar graphs. Acta Infor-
matica, 23(2):163–176, 1986.

3. P. Bose and P. Morin. Competitive online routing in geometric graphs. In Pro-
ceedings of the 8th International Colloquium on Structural Information and Com-
munication Complexity, pages 35–44, 2001.

4. P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed delivery
in ad hoc wireless networks. Wireless Networks, 7(6):609–616, 2001.

Improved Compact Routing Tables 65

5. L. P. Chew. There are planar graphs almost as good as the complete graph. Journal
of Computer and System Sciences, 39:205–219, 1989.

6. Y.-T. Chiang, C.-C. Lin, and H.-I. Lu. Orderly spanning trees with applica-
tions to graph drawing and graph encoding. In Proceedings of the 12th An-
nual ACM-SIAM Symposium on Discrete Algorithms, pages 506–515, Washing-
ton, DC, 7–9 Jan. 2001. A revised and extended version can be found at
http://xxx.lanl.gov/abs/cs.DS/0102006.

7. R. C.-N. Chuang, A. Garg, X. He, M.-Y. Kao, and H.-I. Lu. Compact encodings
of planar graphs via canonical ordering and multiple parentheses. In K. G. Larsen,
S. Skyum, and G. Winskel, editors, Proceedings of the 25th International Collo-
quium on Automata, Languages, and Programming, Lecture Notes in Computer
Science 1443, pages 118–129, Aalborg, Denmark, 1998. Springer-Verlag.

8. L. Cowen and C. G. Wagner. Compact roundtrip routing in directed networks.
In Prooceedings of the 19th Annual ACM Symposium on Principles of Distributed
Computing, pages 51–59. ACM PRESS, 2000.

9. L. J. Cowen. Compact routing with minimum stretch. Journal of Algorithms,
38(1):170–183, 2001.

10. H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid.
Combinatorica, 10:41–51, 1990.

11. P. Elias. Universal codeword sets and representations of the integers. IEEE Trans-
actions on Information Theory, IT-21:194–203, 1975.

12. P. Fraigniaud and C. Gavoille. Routing in trees. In F. Orejas, P. G. Spirakis,
and J. v. Leeuwen, editors, Proceedings of the 28th International Colloquium on
Automata, Languages and Programming, Lecture Notes in Computer Science 2076,
pages 757–772. Springer, July 2001.

13. P. Fraigniaud and C. Gavoille. A space lower bound for routing in trees. In
Proceedings of the 19th Annual Symposium on Theoretical Aspects of Computer
Science, Lecture Notes in Computer Science 2285, pages 65–75. Springer, Mar.
2002.

14. G. N. Frederickson and R. Janardan. Designing networks with compact routing
tables. Algorithmica, 3(1):171–190, 1988.

15. G. N. Frederickson and R. Janardan. Efficient message routing in planar networks.
SIAM Journal on Computing, 18:843–857, 1989.

16. M. L. Fredman and D. E. Willard. Trans-dichotomous algorithms for minimum
spanning trees and shortest paths. Jouranl of Computer and System Sciences,
48(3):533–551, June 1994.

17. J. Gao, L. J. Guibas, J. Hershburger, L. Zhang, and A. Zhu. Geometric spanner
for routing in mobile networks. In Proceedings of the ACM Symposium on Mobile
Ad Hoc Networking & Computing (MobiHoc), 2001.

18. C. Gavoille. A survey on interval routing. Theoretical Computer Science,
245(2):217–253, 2000.

19. C. Gavoille and M. Gengler. Space-efficiency of routing schemes of stretch factor
three. Journal of Parallel and Distributed Computing, 61:679–687, 2001.

20. C. Gavoille and N. Hanusse. Compact routing tables for graphs of bounded genus.
In J. Wiedermann, P. van Emde Boas, and M. Nielsen, editors, 26th International
Colloquium on Automata, Languages and Programming, Lecture Notes in Com-
puter Science 1644, pages 351–360. Springer, July 1999. A full version is available
at http://dept-info.labri.fr/˜gavoille/article/ GH99 up.ps.gz.

21. C. Gavoille and D. Peleg. The compactness of interval routing. SIAM Journal on
Discrete Mathematics, 12(4):459–473, Oct. 1999.

66 Hsueh-I Lu

22. C. Gavoille and D. Peleg. The compactness of interval routing for almost all graphs.
SIAM Journal on Computing, 31(3):706–721, 2001.

23. Y. Hassin and D. Peleg. Sparse communication networks and efficient routing in
the plane. Distributed Computing, 14(4):205–215, 2001.

24. G. Jacobson. Space-efficient static trees and graphs. In Proceedings of the 30th
Annual Symposium on Foundations of Computer Science, pages 549–554, Research
Triangle Park, North Carolina, 30 Oct.–1 Nov. 1989. IEEE.

25. G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica,
16(1):4–32, 1996.

26. B. N. Karp. Geographic Routing for Wireless Networks. PhD thesis, Harvard
University, Cambridge, MA, Oct 2000.

27. B. N. Karp and H. T. Kung. GPSR: Greedy perimeter stateless rouring for wireless
networks. In Proceedings of the Sixth Annual ACM/IEEE International Conference
on Mobile Computing and Networking (MobiCom), pages 243–254, Boston, 2000.

28. X.-Y. Li, G. Calinescu, and P.-J. Wan. Distributed construction of a planar spanner
and routing for ad hoc wireless networks. In Proceedings of the 21st Annual Joint
Conference of the IEEE Computer and Communications Societies (InfoCom), New
York City, 2002. To appear.

29. C.-C. Liao, H.-I. Lu, and H.-C. Yen. Floor-planning via orderly spanning trees. In
Proceedings of the 9th International Symposium on Graph Drawing, Lecture Notes
in Computer Science 2265, pages 367–377, Vienna, Austria, 2001. Springer.

30. G. Lin. Fault tolerant planar communication networks. In Proceedings of the 24th
Annual ACM Symposium on the Theory of Computing, pages 133–139, 1992.

31. J. I. Munro and V. Raman. Succinct representation of balanced parentheses, static
trees and planar graphs. SIAM Journal on Computing, 31(3):762–776, 2001.

32. G. Narasimhan and M. Smid. Approximating the stretch factor of euclidean graphs.
SIAM Journal on Computing, 30(3):978–989, 2000.

33. D. Peleg. Distributed Computing: A Locality-Sensitive Approach. Monographs on
Discrete Mathematics and Applications. SIAM, 2000.

34. D. Peleg and E. Upfal. A trade-off between space and efficiency for routing tables.
Journal of the ACM, 36(3):510–530, 1989.

35. R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with ap-
plications to representations of k-ary trees and multisets. In Proceedings of the
13th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 233–242, San
Francisco, 6–8 Jan. 2002.

36. W. Schnyder. Embedding planar graphs on the grid. In Proceedings of the First
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 138–148, 1990.

37. M. Thorup and U. Zwick. Compact routing schemes. In Proceedings of the 13th
Annual ACM Symposium on Parallel Algorithms and Architectures, pages 1–10.
ACM PRESS, 2001.

38. P. van Emde Boas. Machine models and simulations. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, volume A, chapter 1, pages 1–60.
Elsevier, Amsterdam, 1990.

39. M. Yannakakis. Embedding planar graphs in four pages. Jouranl of Computer and
System Sciences, 38(1):36–67, Feb. 1989.

Coloring Algorithms on Subcubic Graphs

Harold N. Gabow and San Skulrattanakulchai

Department of Computer Science, University of Colorado at Boulder,
Boulder CO 80309 USA

{hal,skulratt}@cs.colorado.edu

Abstract. We present efficient algorithms for three coloring problems
on subcubic graphs (ones with maximum degree 3). These algorithms
are based on a simple decomposition principle for subcubic graphs. The
first algorithm is for 4-edge coloring, or more generally, 4-list-edge color-
ing. Our algorithm runs in linear time, and appears to be simpler than
previous ones. As evidence we give the first randomized EREW PRAM
algorithm that uses O(n/ log n) processors and runs in O(log n) time
with high probability, where n is the number of vertices of the input
graph. The second algorithm is the first linear-time algorithm to 5-total-
color subcubic graphs. The third algorithm generalizes this to the first
linear-time algorithm to 5-list-total-color subcubic graphs.

1 Introduction

We present efficient algorithms for three coloring problems on subcubic graphs.
(A subcubic graph has maximum degree 3.) The algorithms are based on a
simple decomposition principle for subcubic graphs. The problems we attack
are by now well-studied generalizations of standard vertex and edge coloring.
Our first algorithm is for 4-edge coloring, or more generally, 4-list-edge coloring.
Our algorithm runs in linear time, and appears to be simpler than previous
ones. As evidence we give the first randomized EREW PRAM algorithm that
uses O(n/ log n) processors and runs in O(log n) time with high probability.
The second algorithm is the first linear-time algorithm to 5-total-color subcubic
graphs. The third algorithm generalizes this to the first linear-time algorithm to
5-list-total-color subcubic graphs. We now give relevant definitions and discuss
the problems and previous work in detail.

We follow the terminology of [1]. Let G = (V,E) be a (multi)graph having n
vertices and m edges. A total coloring is a map ϕ : V ∪E → IN satisfying (i) no
adjacent vertices or edges have the same image, and (ii) the image of each vertex
is distinct from the images of edges incident with it. To k-total-color G is to find
a total coloring map whose image is included in [k] = {1, 2, . . . , k}. The graph is
k-total-colorable when such a map exists. The total chromatic number χ′′ is the
least k for which G is k-total-colorable.

Let X ∈ {V,E, V ∪E} and let λ : X → 2IN be an assignment of lists of colors
to elements of X. A λ-coloring on X is a map ϕ : X → IN such that ϕ(x) ∈ λ(x)
for all x ∈ X, and ϕ(x1) = ϕ(x2) implies x1 is neither adjacent nor incident

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 67–76, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

68 Harold N. Gabow and San Skulrattanakulchai

to x2. A λ-vertex-coloring is a λ-coloring on V . A λ-edge-coloring is a λ-coloring
on E. A λ-total-coloring is a λ-coloring on V ∪ E.

A graph is k-choosable if there exists a λ-vertex-coloring for any λ satisfy-
ing |λ(v)| = k for all v ∈ V . The notions of k-edge-choosability and k-total-
choosability are defined similarly. The choice number ch(G) is the least k for
which G is k-choosable. The list chromatic index χ′

� is the least k for which
G is k-edge-choosable. The total choosability χ′′

� is the least k for which G is
k-total-choosable.

By Vizing’s Theorem [2] the chromatic index χ′ of any simple graph with
maximum degree ∆ is either ∆ or ∆ + 1. A simple graph can be edge-colored
using ∆ + 1 colors in O(m

√
n log n) time [3]. However, Holyer [4] shows that

deciding whether the chromatic index of a given simple cubic graph equals 3
or 4 is NP-complete [5]. Reference [6] gives an algorithm to 4-edge-color any
(not necessarily simple) subcubic graph in O(n) time. The List Coloring Con-
jecture (LCC) states that the list chromatic index χ′

� of a graph equals its
chromatic index χ′. (See [7,8].) Only a handful of special families of graphs are
known to satisfy the LCC. (See [9].) Clearly χ′

� ≥ χ′. A simple graph would
satisfy χ′

� ≤ ∆ + 1 if the LCC were true. Even this upper bound has not been
established. Independently, Vizing [10] and Erdős et al. [11] prove the following
list version of Brooks’ theorem [12]: the choice number of any connected simple
graph that is not complete or an odd cycle does not exceed its maximum degree.
Reference [13] gives an O(m+n)-time algorithm to ∆-list-vertex-color any graph
satisfying the hypotheses of the above theorem. Suppose G is a subcubic graph.
By reducing the problem of list-edge-coloring G to that of list-vertex-coloring its
line graph and using the above theorem we see that G is 4-edge-choosable. Thus
G can be 4-list-edge-colored in O(n) time by executing the algorithm of [13]
on the line graph of G. The authors of reference [14] introduce the term sub-
cubic graphs and show that they are 4-edge-choosable. They examine subcubic
graphs with halfedges, i.e., edges with only one endpoint. They obtain their re-
sult through complicated case-by-case analysis of 4-edge-coloring of paths and
cycles with halfedges and of some special types of graphs; reduction of the input
graph to a specific form; and coloring procedures that avoid known obstruction.
Even though the algorithm derived from their proof has a linear time bound, it
appears to be too complicated for practical use. We will present a direct and sim-
ple O(n)-time sequential algorithm, and a work-optimal, O(log n)-time with high
probability, randomized EREW PRAM algorithm to 4-list-edge-color subcubic
graphs.

The Total Coloring Conjecture (TCC) states that the total chromatic
number χ′′ of a simple graph is at most ∆ + 2. Clearly χ′′ ≥ ∆ + 1. How-
ever, deciding whether or not a given simple graph satisfies χ′′ = ∆ + 1 is
NP-complete [15,16]. The TCC has been shown to hold for some families of
graphs [17]. Rosenfeld [18] shows that the TCC holds for subcubic graphs. Vi-
jayaditya [19] shows that the TCC holds for simple subcubic graphs. The proof
of [18] yields a super-linear time algorithm because it has to find a shortest cycle
in each recursive step. The algorithm in [19] requires a routine to find a perfect

Coloring Algorithms on Subcubic Graphs 69

matching in a bridgeless, cubic graph. The current best known algorithm [20] to
find such a matching runs in O(n log4 n) time. We will present the first-known
O(n)-time algorithm to 5-total-color subcubic graphs.

The authors of reference [21] (and also those of reference [22]) conjecture that
the total choosability χ′′

� of any graph equals its total chromatic number χ′′.
They also show that subcubic graphs are 5-total-choosable. They claim that
their proof gives a polynomial-time algorithm, without specifying the degree of
the polynomial. Their algorithm has a super-linear running time because it has
to find a shortest cycle in each recursive step. We will present the first-known
O(n)-time algorithm to 5-list-total-color subcubic graphs.
Definitions. A cycle is a connected graph every vertex of which has degree 2.
It is even if it has an even number of vertices, and odd otherwise. A vertex of a
tree is pendant if its degree is one. A tree edge is pendant if it is incident with
a pendant vertex. Let C be a cycle in G. A chord is an edge of G joining two
vertices of C but is itself not an edge of C. A triple bond is a graph consisting of
2 vertices and 3 parallel edges. We use the term available color at several places
in this paper. Let x be either a vertex or an edge and let λ(x) be its list of colors.
By a neighbor of x we mean any vertex/edge adjacent/incident to x. During the
execution of an algorithm, a color α ∈ λ(x) is available for x if no neighbor of x
has yet been assigned color α by the algorithm; it is unavailable otherwise.

2 Decomposition Theorem & List Coloring Lemmas
This decomposition theorem (see also [6]) is at the heart of our coloring method.

Theorem 1. A subcubic graph G can be decomposed in linear time into edge-
disjoint subgraphs C and T , where C is a collection of vertex-disjoint cycles, and
T is a forest of maximum degree at most 3. Furthermore, G admits a decompo-
sition without chords unless it contains a triple bond.

Proof. Let C be a maximal collection of edge-disjoint cycles in G. Any two cycles
of C are vertex-disjoint since G is subcubic. The forest T = G−E(C) obviously
has maximum degree at most 3. If G contains no triple bond then we can choose
the cycles of C to be chordless. ��
We can classify the edges as cycle edges or tree edges for a given decomposition.

Lemma 1. Let C be a cycle with color lists L(·) assigned to its vertices. If every
list has at least 2 colors, then C is L-vertex-colorable in linear time unless C is
odd and all lists are the same list of size 2.

Proof. The following procedure produces an L-vertex-coloring of C if it runs to
completion. Its input consists of a labeled cycle C = 〈v1, v2, . . . , vk, v1〉, color
lists L(·), and a color α ∈ L(v1).

1. assign color α to v1
2. for i← 2 to k − 1 do
3. assign to vi any color in L(vi) distinct from that of vi−1
4. assign to vk any color in L(vk) distinct from that of vk−1 or v1

70 Harold N. Gabow and San Skulrattanakulchai

Statements 1 & 3 can always be carried out since all vi have |L(vi)| ≥ 2. We
show Statement 4 too can always be carried out by judiciously labeling C and
picking the color α. First suppose some adjacent vertices x, y satisfy L(x) �=
L(y); say that L(y) \ L(x) �= ∅. Label C so that x = vk and y = v1 and pick
α ∈ L(v1) \ L(vk). Next suppose |L(x)| > 2 for some x. Label C so that x = vk

and pick any α ∈ L(v1). The remaining possibility is for every vertices x, y to
satisfy L(x) = L(y) and |L(x)| = 2. Assume C is even or else there is nothing to
prove. Choose any valid labeling of C and pick any α ∈ L(v1). ��
Lemma 2. Let C = 〈v1, v2, . . . , vk, v1〉 be an odd cycle. For each i let L(vi)
be a list of colors for vertex vi such that |L(v1)| = 1, |L(v2)| = |L(vk)| = 2,
L(vi) ⊇ L(v2) for 3 ≤ i < k, L(v1) ⊂ L(v2), and L(vk) �= L(v2). Then C is
L-vertex-colorable in linear time.

Proof. By throwing away all excess colors, we may assume L(vi) = L(v2) for all
3 ≤ i < k. Color v1, v2, . . . , vk in that order, using any color available for each
vertex. It is easy to see that this coloring procedure never fails. ��
To edge-color a graph is the same as to vertex-color its line graph. Since a cycle
is isomorphic to its line graph, these corollaries follow from the above Lemmas.

Corollary 1. Let C be a cycle with color lists L(·) assigned to its edges. If every
list has at least 2 colors, then C is L-edge-colorable in linear time unless C is
odd and all lists are the same list of size 2. ��
Corollary 2. Let C = 〈v1, e1, . . . , vk, ek, v1〉 be an odd cycle. For each i let
L(ei) be a list of colors for edge ei such that |L(e1)| = 1, |L(e2)| = |L(ek)| = 2,
L(ei) ⊇ L(e2) for 3 ≤ i < k, L(e1) ⊂ L(e2), and L(ek) �= L(e2). Then C is
L-edge-colorable in linear time. ��

3 List Edge Coloring Algorithms

3.1 Sequential Algorithm

Let G be a subcubic graph every edge e of which has a list λ(e) of 4 colors. The
algorithm has two stages. The first stage obtains, by Theorem 1, a decomposition
of G into a forest T and a collection C of cycles. The second stage does the
coloring. The trees are colored first; the cycles are colored later. For each tree
T in T , start a depth-first search [23] from some arbitrary vertex in T . Assign
some available color to each tree edge when it is first discovered by the search.
Since ∆(T) ≤ 3 and |λ(e)| = 4 for every edge e, when a tree edge e is discovered
by the search no more than two colors in λ(e) are unavailable for e. So coloring
of T can be carried out to completion.

Each cycle C ∈ C is colored by invoking Corollary 1. For each e ∈ E(C), let
L(e) be the set of colors available for e. Any edge of C has at least 2 available
colors. So Corollary 1 applies unless C is odd and every edge in it has the same
2 colors available. Take any vertex in C. It has degree 3, so we can change the
color of its pendant edge. This changes the available colors for some but not all
edges of C (since C has ≥ 3 edges). So again Corollary 1 applies.

Coloring Algorithms on Subcubic Graphs 71

3.2 Parallel Algorithm

We now describe how to implement the 2 stages of the sequential algorithm to
obtain a randomized EREW PRAM algorithm that uses O(n/ log n) processors
and runs in time O(log n) with high probability.

To decompose G into cycles and trees, take a spanning tree T of G. Each
nontree edge e has an associated fundamental cycle C(e). Let C be the direct
sum, i.e., the mod-2 sum, of all fundamental cycles C(e1), C(e2), . . . , C(em−n+1).
Then C is a collection of edge-disjoint cycles. In fact, C is a collection of vertex-
disjoint cycles since G is subcubic. Also, C contains all the nontree edges ei. So
we need only compute C and output the decomposition consisting of cycles C
and forest T = T − {edges of C}.

To find C, we have to compute, for each tree edge f , the parity of the number
of fundamental cycles C(ei) containing f . Edge f is in C if and only if this number
is odd. This can be done as follows. First make T into a rooted out-tree. Take
any tree edge f = wv, where w is the parent of v. Then compute the parity
of the sum, over all descendants u of v, of the vertex degrees dG−T (u) in the
graph G−T . To find a spanning tree T of G, use the randomized O(log n)-time,
O(m+n)-work, EREW PRAM algorithm of [24]. Computing the desired parity
of the sum can be done on an EREW PRAM in O(log n) time using O(m+ n)
work by parallel prefix computation on the Euler tour of T [25,26].

To color a tree, number every vertex by its depth. Each vertex r of even depth
will color the subtree of ≤ 6 edges that descend from it and no other even-depth
vertex. Let the subtree consist of edges rai for i = 1, 2, and aiaij for i = 1, 2 and
j = 1, 2. Some of these edges may not exist. The coloring is in 2 parallel steps.

Step 1 There are two substeps.
1. Assign each edge rai 2 colors from its list, such that the 4 colors assigned

to these 2 edges are distinct. This can be done since all lists have length 4.
2. For i = 1, 2 do

(a) Let c1, c2 be the colors on rai.
(b) Assign color dj to aiaij for j = 1, 2, where dj is in the edge’s list

and c1, c2, d1, d2 are 4 distinct colors. This can be done since all lists
have length 4.

Step 2 Color rai with c1 or c2, whichever is distinct from the color of r’s parent
edge.

Clearly this tree coloring is an EREW algorithm that can be made work-optimal
by counting the number of vertices on even levels, which can be done.

To color a cycle, first determine the first edge e1 and its appropriate color as
in the proof of Corollary 1. The remaining edges can then be colored by pointer
jumping.

4 Total Coloring Lemmas

Lemma 3. A tree of maximum degree ≤ 3 is 4-list-total-colorable in linear time.

72 Harold N. Gabow and San Skulrattanakulchai

Proof. Let us be given a tree of maximum degree at most 3, every vertex/edge of
which has its own list of 4 colors. Start a depth-first search from some arbitrary
vertex. Assign an available color for each vertex/edge when it is discovered by the
search. (While scanning an edge e = {v, w} out of a vertex v, if both e and w are
discovered for the first time, then we’ll say edge e is discovered before vertex w.)
It is easy to check that this greedy procedure gives a list-total coloring. ��

Lemma 4. A cycle C = 〈v1, e1, . . . , vk, ek, v1〉 is L-total-colorable in linear time
if the sizes of the lists L(vi) of vertices vi and lists L(ei) of edges ei satisfy

|L(vi)| ≥

5, if i = 1,
2, if i = 2,
3, if 3 ≤ i ≤ k,

and |L(ei)| ≥

1, if i = 1,
3, if 2 ≤ i < k,
4, if i = k.

Proof. Color vertices/edges e1, v2, e2, v3, . . ., ek−1, vk, ek, v1 in that order,
using any color available for each. It’s easy to check that when a vertex/edge x
is about to be colored, some color is available for it because fewer than |L(x)| of
its neighbors are already colored. ��

5 Total Coloring Algorithms

Let G be a connected subcubic graph every vertex/edge x of which has its
own list λ(x) of 5 colors. We have to find a λ-total-coloring. To specialize the
following description to the 5-total-coloring problem, simply set λ(x) = [5] for
all x. The only difference between the general λ-total-coloring algorithm and the
5-total-coloring algorithm is in Case 2 of the ensuing description.

A triple bond is clearly λ-total-colorable; so assume G is not a triple bond.
By Theorem 1, let G be decomposed into trees T and chordless cycles C. For
each T ∈ T , let T ′ be the vertex-deleted tree T − { v : v is a pendant vertex of
T on some cycle in C }. The coloring algorithm has two steps.

Step 1 for each T ∈ T , total-color T ′ using Lemma 3.
Step 2 for each C ∈ C, color those pendant edges incident with C whose non-

incident endpoints are already colored, and then total-color C.

The algorithm maintains the invariant that no two neighbors receive the same
color. How Step 2 performs its task depends on each cycle C. Let us adopt the
following naming convention. Let C = 〈v1, e1, . . . , vk, ek, v1〉 be a labeled cycle.
If vi is incident with a pendant tree edge, name that edge fi, and name fi’s other
endpoint wi. Note that no wi is the same as any vi since the decomposition is
chordless. However, it is possible that wi = wj for some distinct i, j. For each
vertex/edge x of G, write L(x) for the set of colors still available for x. If x
is colored, let ϕ(x) denote its color. When i = 1 (resp. i = k), vertex vi−1
(resp. vi+1) refers to vk (resp. v1); similarly for vertex wi−1 (resp. wi+1) and
edge fi−1 (resp. fi+1). There are two possibilities for each cycle C.

Coloring Algorithms on Subcubic Graphs 73

Case 1. Some vertex x on C is incident with no pendant tree edge, or its
pendant edge {x, y} has y still uncolored. First label C so that x = v1. Then,
maintaining the invariant, color all existing fi whose wi are already colored. All
the hypotheses of Lemma 4 are satisfied; so C can be total-colored.
Case 2. Every vertex x on C is incident with a pendant edge {x, y} with y
already colored. Choose any valid labeling of C. Observe that each fi has at
most 3 colored neighbors; and thus |L(fi)| ≥ 2 in the current coloring ϕ.

5.1 Case 2 of the 5-Total-Coloring Algorithm

Subcase 2.1 Some index i satisfies ϕ(wi) �= ϕ(wi+1). By relabeling if necessary,
we may assume ϕ(wk) �= ϕ(w1). We will color all the fi and ei so that, for all i,
either ϕ(ei) = ϕ(wi) or ϕ(ei−1) = ϕ(wi). We do this as follows.

for i← 1 to k do {
ϕ(fi)← any color in L(fi) \ {ϕ(wi−1)};
if ϕ(wi) ∈ L(ei) then ϕ(ei)← ϕ(wi) }

for i← 1 to k do if ei is still uncolored then ϕ(ei)← any color in L(ei)

It is easy to see the above procedure never gets stuck and it extends ϕ to cover
all fi and ei while maintaining the invariant. It also results in |L(vi)| = 2 for
every i. The last statement follows from the fact that 4 neighbors of vi, viz. wi,
fi, ei−1, and ei, are colored, with exactly 2 of them colored the same. If all the
hypotheses of Lemma 1 are satisfied, then ϕ can be extended to a total-coloring
of C and we are done. So suppose C is odd and every L(vi) contains the same
2 colors. Consider edge ek. Since L(vk) = L(v1), we have {ϕ(ek−1), ϕ(fk)} =
{ϕ(e1), ϕ(f1)}. Hence there exists some color α ∈ L(ek) different from the current
color ϕ(ek) of ek. Change the color of ek to α. This affects L(vk) and L(v1) but
leaves the remaining L(vi) intact. Following this color change (and relabeling
of C if necessary), either all the hypotheses of Lemma 1 or all the hypotheses of
Lemma 2 are satisfied. Therefore, ϕ can be extended to a total-coloring of C.
Subcase 2.2 All wi receive the same color. Color all the fi and vi as follows.

Procedure A
ϕ(f1)← any color in L(f1);
for i← 2 to k do {
ϕ(fi)← any color in L(fi) \ {ϕ(fi−1)}; ϕ(vi)← ϕ(fi−1) }

if ϕ(fk) �= ϕ(f1) then ϕ(v1)← ϕ(fk) else ϕ(v1)← any color in L(v1)

It is easy to see that the above procedure never gets stuck and it extends ϕ to
cover all fi and vi while maintaining the invariant. It results in either

(i) ϕ(fi) = ϕ(vi+1) and ϕ(fi) �= ϕ(fi+1) for all 1 ≤ i ≤ k, or
(ii) ϕ(fk) = ϕ(f1), but ϕ(fi) = ϕ(vi+1) and ϕ(fi) �= ϕ(fi+1) for all 1 ≤ i < k.

In both cases we have |L(ei)| ≥ 2 for all i. If all the hypotheses of Corollary 1
are satisfied, then ϕ can be extended to a total-coloring of C and we are done.
So suppose C is odd and every L(ei) contains the same 2 colors, say α and β.
Letting γ, δ, and ε be the colors of f1, f2, and v1 respectively, we see that 3 | k
and for all 1 ≤ i ≤ k we have

74 Harold N. Gabow and San Skulrattanakulchai

ϕ(fi) = ϕ(vi+1) =

γ, if i ≡ 1 (mod 3),
δ, if i ≡ 2 (mod 3),
ε, if i ≡ 0 (mod 3).

(1)

Change the color of v2 to the only remaining color in [5] \ {γ, δ, ε, ϕ(w2)}. This
changes L(e1) and L(e2) but leaves the remaining L(ei) intact. Following this
color change and appropriate relabeling of C, all the hypotheses of Corollary 2
are satisfied. Therefore, ϕ can be extended to a 5-total-coloring of C.

5.2 Case 2 of the λ-Total-Coloring Algorithm

First some definitions. An edge ei is safe if |L(ei)| ≥ 2. A vertex vi is safe if any
of the following holds (and unsafe otherwise): (i) ϕ(wi) /∈ λ(vi) (ii) fi is colored
and ϕ(fi) /∈ λ(vi) (iii) for j = i− 1 or j = i, ej is colored and (ϕ(ej) /∈ λ(vi) or
ϕ(ej) = ϕ(wi)). Let σ(i) = (λ(ei) \ λ(vi)) ∪ (λ(ei) ∩ {ϕ(wi)}) for all 1 ≤ i ≤ k.
(A color in σ(i) makes vi safe.) These 3 facts easily follow from the definitions.
Fact 1. Suppose that for all 1 ≤ i ≤ k no ei is colored but all fi, vi are colored.
Then edge ei is safe if and only if {ϕ(fi), ϕ(vi), ϕ(fi+1), ϕ(vi+1) } \ λ(ei) �= ∅ or
ϕ(fi) = ϕ(fi+1) or ϕ(fi) = ϕ(vi+1) or ϕ(vi) = ϕ(fi+1).
Fact 2. Suppose none of v1, . . . , vk is colored. Then vertex vi is safe if and only if
|L(vi)| ≥ 2, with equality holding only when fi, ei−1, ei are colored and exactly
one of the conditions in (i)–(iii) holds.
Fact 3. If ϕ(wi) ∈ λ(vi) then σ(i) is nonempty. In particular, σ(i) is nonempty
if vi is unsafe. Furthermore, σ(i) ⊆ λ(ei) and assigning any color in σ(i) to ei

makes vi safe.
There are 3 subcases to consider. In subcases 2.1 & 2.2, we’ll first color all

the fi and ei so as to make all vi safe, and then extend ϕ to cover all the vi as
well, after making any necessary color changes on some edges. In subcase 2.3,
we’ll first color all the fi and vi so as to make all ei safe, and then extend ϕ to
cover all the ei as well, after making any necessary color change on a vertex.
Subcase 2.1 Some index i satisfies ϕ(wi) /∈ λ(vi) or L(fi) \ λ(vi) �= ∅. By
relabeling if necessary, we may assume i = k satisfies the condition. Color all
the fi and ei as follows.

for i← 1 to k do {
if L(fi) \ λ(vi) �= ∅ then ϕ(fi)← any color in L(fi) \ λ(vi)
else ϕ(fi)← any color in L(fi);
if vi is unsafe /∗ always false if i = k ∗/ then
ϕ(ei)← any color in σ(i) }

for i← 1 to k do if ei is still uncolored then ϕ(ei)← any color in L(ei)

Subcase 2.2 Subcase 2.1 does not apply, and some valid labeling of C has some
index i satisfying σ(i) �= σ(i − 1) or |σ(i)| > 1. By relabeling if necessary, we
may assume i = 1 satisfies the condition. Let α ∈ σ(1) and β ∈ σ(k) be distinct
colors. Define a function c by setting c(1) = α, c(k) = β, and setting c(i) to be
any color in σ(i) for each 1 < i < k. Color all the fi and ei as follows.

Coloring Algorithms on Subcubic Graphs 75

ϕ(f1)← any color in L(f1) \ {c(k)}; ϕ(e1)← c(1);
for i← 2 to k do {
ϕ(fi)← any color in L(fi) \ {c(i− 1)};
if c(i) ∈ L(ei) then ϕ(ei)← c(i) }

for i← 2 to k do if ei is still uncolored then ϕ(ei)← any color in L(ei)

It is easy to see that the coloring procedures in subcases 2.1 & 2.2 extend ϕ to
cover all fi and ei while maintaining the invariant. They also result in safe vi

for all i. If all the hypotheses of Lemma 1 are satisfied, then ϕ can be extended
to a λ-total-coloring of C and we are done. So suppose C is odd and every L(vi)
consists of the same 2 colors, say α and β. Consider edge ei such that either
(ϕ(ei) ∈ λ(vi) and ϕ(ei) �= ϕ(wi)) or (ϕ(ei) ∈ λ(vi+1) and ϕ(ei) �= ϕ(wi+1)).
Existence of such an edge is guaranteed because k ≥ 3 and |L(vi)| = 2 for all i.
By relabeling if necessary, we may assume ϕ(ei) ∈ λ(vi) and ϕ(ei) �= ϕ(wi).

First suppose L(ei) ⊃ {ϕ(ei)}. Say that the current color of ei is γ /∈ {α, β}.
Change the color of ei to some other color in L(ei). This color change affects
only lists L(vi) and L(vi+1) in the following manner. Suppose the new color is
either α or β, say wlog that it is α. Then L(vi) becomes {γ, β}; and L(vi+1)
becomes either {γ, β} or {β}. Thus either Lemma 1 or Lemma 2 applies. Now
suppose the new color is δ /∈ {α, β}. Then L(vi) becomes {γ, α, β}; and L(vi+1)
becomes either {γ, α, β} or stays {α, β} like before. Thus Lemma 1 applies.

Next suppose L(ei) = {ϕ(ei)}, but L(ei+1) ⊃ {ϕ(ei+1)}. Say γ is the cur-
rent color of ei+1 and δ is some other color in L(ei+1). Recolor ei+1 by δ. If
either Lemma 1 or Lemma 2 applies, then we are done. Otherwise we have
(γ /∈ λ(vi+1) ∪ λ(vi+2)) or (γ = ϕ(wi+1) /∈ λ(vi+2)) or (γ = ϕ(wi+2) /∈ λ(vi+1))
or (γ = ϕ(wi+1) = ϕ(wi+2)). In that case, also recolor ei by γ. Now Lemma 2
applies.

Lastly suppose L(ei) = {ϕ(ei)} and L(ei+1) = {ϕ(ei+1)}. Then we can switch
the colors of ei and ei+1 and still maintain the invariant! Lemma 1 applies after
the color switch.
Subcase 2.3 Subcase 2.1 does not apply, and every valid labeling of C has
all σ(i) as the same one-color set, say {α}. This can happen only when there
exist distinct colors β, γ, δ, ε all different from α such that for each i we have
λ(ei) = {α, β, γ, δ, ε} and either λ(vi) = λ(ei) or ({α} = λ(ei) \ λ(vi) and
{ϕ(wi)} = λ(vi) \ λ(ei)). Color all the fi and vi using Procedure A. It is easy
to see that Procedure A extends ϕ to cover all fi and vi while maintaining the
invariant. It also results in safe ei for all i. If all the hypotheses of Corollary 1
are satisfied, then ϕ can be extended to a λ-total-coloring of C and we are done.
So suppose C is odd and every L(ei) consists of the same 2 colors, say α and β.
By the way Procedure A works, this can happen only when 3 | k and there exist
distinct colors γ, δ, ε all different from α, β such that Equation (1) holds for all i.
Change the color of v2 to the only color in λ(v2) \ {γ, δ, ε, ϕ(w2)}. This changes
L(e1) and L(e2) but leaves the remaining L(ei) intact. After the color change
and appropriate relabeling of C, all the hypotheses of Corollary 2 are satisfied.
So ϕ can be extended to a λ-total-coloring of C.

76 Harold N. Gabow and San Skulrattanakulchai

References

1. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Macmillan (1976)
2. Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Metody Diskret.

Analiz. 3 (1964) 25–30 In Russian.
3. Gabow, H.N., Nishizeki, T., Kariv, O., Leven, D., Terada, O.: Algorithms for

edge-coloring graphs. Technical Report TRECIS-8501, Tohoku University (1985)
4. Holyer, I.J.: The NP-completeness of edge-coloring. SIAM Journal on Computing

10 (1981) 718–720
5. Gary, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. W.H. Freeman & Co., San Francisco, CA (1979)
6. Skulrattanakulchai, S.: 4-edge-coloring graphs of maximum degree 3 in linear time.

Information Processing Letters 81 (2002) 191–195
7. Bollobás, B., Harris, A.J.: List-colourings of graphs. Graphs and Combinatorics 1

(1985) 115–127
8. Chetwynd, A.G., Häggkvist, R.: A note on list-colorings. Journal of Graph Theory

13 (1989) 87–95
9. Jensen, T.R., Toft, B.: Graph Coloring Problems. John Wiley & Sons (1995)

10. Vizing, V.G.: Coloring the vertices of a graph in prescribed colors. Metody Diskret.
Anal. v Teorii Kodov i Schem 29 (1976) 3–10

11. Erdős, P., Rubin, A.L., Taylor, H.: Choosability in graphs. In: Proceedings of the
West-Coast Conference on Combinatorics, Graph Theory and Computing. Volume
XXVI of Congressus Numerantium., Arcata, California (1979) 125–157

12. Brooks, R.L.: On colouring the nodes of a network. Proceedings of the Cambridge
Philosophical Society. Mathematical and Physical Sciences 37 (1941) 194–197

13. Skulrattanakulchai, S.: ∆-list vertex coloring in linear time. In: Proc. SWAT ’02.
LNCS (2002) To appear.

14. Juvan, M., Mohar, B., Škrekovski, R.: On list edge-colorings of subcubic graphs.
Discrete Mathematics 187 (1998) 137–149

15. Sánchez-Arroyo, A.: Total colourings and complexity. Master’s thesis, University
of Oxford (1989)

16. Sánchez-Arroyo, A.: Determining the total colouring number is NP-hard. Discrete
Mathematics 78 (1989) 315–319

17. Yap, H.P.: Total Colourings of Graphs. LNM Volume 1623. Springer (1996)
18. Rosenfeld, M.: On the total coloring of certain graphs. Israel Journal of Mathe-

matics 9 (1971) 396–402
19. Vijayaditya, N.: On total chromatic number of a graph. Journal of the London

Mathematical Society 3 (1971) 405–408
20. Biedl, T.C., Bose, P., Demaine, E.D., Lubiw, A.: Efficient algorithms for Petersen’s

Matching Theorem. Journal of Algorithms 38 (2001) 110–134
21. Juvan, M., Mohar, B., Škrekovski, R.: List total colorings of graphs. Combinatorics,

Probability & Computing 7 (1998) 181–188
22. Borodin, O.V., Kostochka, A.V., Woodall, D.R.: List edge and list total colourings

of multigraphs. Journal of Combinatorial Theory Series B 71 (1997) 184–204
23. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.

Second edn. McGraw-Hill, New York (2001)
24. Halperin, S., Zwick, U.: Optimal randomized EREW PRAM algorithms for finding

spanning forests. Journal of Algorithms 39 (2001) 1–46
25. Tarjan, R.E., Vishkin, U.: An efficient parallel biconnectivity algorithm. SIAM

Journal on Computing 14 (1985) 862–874
26. Reif, J.H., ed.: Synthesis of Parallel Algorithms. Morgan Kaufmann, CA (1993)

Efficient Algorithms for the Hamiltonian
Problem on Distance-Hereditary Graphs

Sun-yuan Hsieh1, Chin-wen Ho2, Tsan-sheng Hsu3, and Ming-tat Ko3

1 Department of Computer Science and Information Engineering,
National Cheng Kung University, Tainan, Taiwan

hsiehsy@mail.ncku.edu.tw
2 Department of Computer Science and Information Engineering,

National Central University, Chung-Li, Taiwan
hocw@csie.ncu.edu.tw

3 Institute of Information Science, Academia Sinica, Taipei, Taiwan
{tshsu,mtko}@iis.sinica.edu.tw

Abstract. In this paper, we first present an O(|V |+ |E|)-time sequen-
tial algorithm to solve the Hamiltonian problem on a distance-hereditary
graph G = (V, E). This algorithm is faster than the previous best result
which takes O(|V |2) time. Let Td(|V |, |E|) and Pd(|V |, |E|) denote the
parallel time and processor complexities, respectively, required to con-
struct a decomposition tree of a distance-hereditary graph on a PRAM
model Md. We also show that this problem can be solved in O(Td(|V |, |E|)
+ log |V |) time using O(Pd(|V |, |E|) + (|V | + |E|)/ log |V |) processors
on Md. Moreover, if G is represented by its decomposition tree form,
the problem can be solved optimally in O(log |V |) time using O((|V | +
|E|)/ log |V |) processors on an EREW PRAM.

1 Introduction

A graph is distance-hereditary [2,11] if the distance stays the same between any
of two vertices in every connected induced subgraph containing both (where the
distance between two vertices is the length of a shortest path connecting them).
Distance-hereditary graphs form a subclass of perfect graphs [6,10,11] that are
graphs G in which the maximum clique size equals the chromatic number for
every induced subgraph of G [8]. Two well-known classes of graphs, trees and
cographs, both belong to the class of distance-hereditary graphs. Properties of
distance-hereditary graphs are studied by many researchers
[2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18] which resulted in sequential or parallel
algorithms to solve several interesting graph-theoretical problems on this special
class of graphs.

A cycle in a graph G is called a Hamiltonian cycle if it contains every vertex
of G exactly once. A graph is said to be Hamiltonian if it contains a Hamiltonian
cycle. The Hamiltonian problem is to determine whether there exists a Hamil-
tonian cycle in a given graph and find one if such a cycle does exist. Previous

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 77–86, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

78 Sun-yuan Hsieh et al.

related works on distance-hereditary graphs are summarized below. By investi-
gating the neighborhood of the last pendant vertex in a one-vertex extension-
sequence, Müller and Nicolai developed anO(|V |(|V |+|E|))-time sequential algo-
rithm to solve the Hamiltonian problem on bipartite distance-hereditary graphs,
where |V | (respectively, |E|) is the number of vertices (respectively, edges) of
the given graph [17]. In [18], Nicolai presented an O(|V |3)-time sequential al-
gorithm to solve the Hamiltonian problem on distance-hereditary graphs. Hung
et al. [16] further reduced the above sequential complexity to O(|V |2). To the
best of our knowledge, there is no parallel algorithm to solve the problem on
distance-hereditary graphs in the literature.

In this paper, we first present an O(|V |+ |E|)-linear-time algorithm to solve
the Hamiltonian problem on distance-hereditary graphs. Let Td(|V |, |E|) and
Pd(|V |, |E|) denote the parallel time and processor complexities, respectively, re-
quired to construct a decomposition tree representation of a distance-hereditary
graph on a PRAM model Md. We show that the Hamiltonian problem can be
solved in O(Td(|V |, |E|)+log |V |) time using O(Pd(|V |, |E|)+(|V |+|E|)/ log |V |)
processors on Md. The best known result to construct a decomposition tree needs
O(log2 |V |) time using O(|V | + |E|) processors on a CREW PRAM [15]. If G
is given in its decomposition tree form, the problem can be solved in O(log |V |)
time using O((|V | + |E|)/ log |V |) processors on an EREW PRAM. This time-
processor complexity matches the best sequential algorithm.

2 Preliminaries

This paper considers finite, simple and undirected graphs G = (V,E), where
V and E are the vertex and edge sets of G, respectively. Let n = |V | and
m = |E|. For two graphs G1 = (V1, E1) and G2 = (V2, E2), the union of G1
and G2, denoted by G1 ∪G2, is the graph (V1 ∪ V2, E1 ∪ E2). Let G[X] denote
the subgraph of G induced by X ⊆ V . For graph-theoretic terminologies and
notations not mentioned here, see [8].

Definition 1 [4] A graph consisting of a single vertex v is a primitive distance-
hereditary graph with the twin set {v}. Let G1 and G2 be distance-hereditary
graphs with the twin sets S1 and S2, respectively. Then, (1) The graph obtained
fromG1 andG2 by connecting every vertex of S1 to all vertices of S2 is a distance-
hereditary graph with the twin set S1∪S2; (2) The graph obtained from G1 and
G2 by connecting every vertex of S1 to all vertices of S2 is a distance-hereditary
graph with the twin set S1; (3) The union of G1 and G2 is a distance-hereditary
graph with the twin set S1 ∪ S2.

A distance-hereditary graph G is said to be formed from G1 and G2 by
the true twin (respectively, attachment) operation if G is obtained through (1)
(respectively, (2)) of Definition 1, and by the false twin operation if G is obtained
through (3) of Definition 1.

For a rooted tree T , we use root(T) to denote the root of T . A distance-
hereditary graph can be represented by a binary tree form, called a decomposition
tree DG, which is defined as follows.

Efficient Algorithms for the Hamiltonian Problem 79

Definition 2 [4] (1) The tree consisting of a single vertex v is a decomposition
tree of a primitive distance-hereditary graph G = ({v}, ∅).
(2) Let DG1 and DG2 be decomposition trees of distance-hereditary graphs G1
and G2, respectively. (a) If G is formed from G1 and G2 by the true twin opera-
tion, then a tree DG with root(DG) being represented by ⊗ and with root(DG1)
and root(DG2) being the two children of root(DG) is a decomposition tree of G.
(b) If G is formed from G1 and G2 by the attachment operation, then a tree
DG with root(DG) being represented by ⊕ and with the roots of DG1 and DG2

being the left and right children of root(DG), respectively, is a decomposition
tree of G. (c) If G is formed from G1 and G2 by the false twin operation, then a
tree DG with root(DG) being represented by � and with the roots of DG1 and
DG2 being the two children of root(DG) is a decomposition tree of G.

For a node v in DG, let DG(v) be the subtree of DG rooted at v, and let Gv

be a subgraph of G induced by the leaves of DG(v). Also let Sv be the twin set
of Gv.

Note that a decomposition tree of a distance-hereditary graph can be con-
structed in O(n+m) sequential time[4], and constructed in parallel in O(log2 n)
time using O(n+m) processors on a CREW PRAM.

A closed integer interval is an ordered pair of integers [t1, t2], with t1 ≤ t2.
The interval [t1, t2] represents the set {t ∈ Z| t1 ≤ t ≤ t2}. A path partition
of a graph G = (V,E) is a set of pairwise vertex disjoint paths such that the
union of the vertices of these paths equals V . Given a distance-hereditary graph
G with the twin set S, a path partition of G is said to be crucial if the end-
vertices of each path are in S. Let PS(G) denote a crucial path partition of
G. Furthermore, a crucial k-path partition of G, Pk

S(G) = {P1, P2, . . . , Pk} is
a crucial path partition of G composed of exactly k paths P1, P2, . . . , Pk. Since
all path partitions under consideration throughout this paper are crucial, the
subscripts S in the notations PS(G) and Pk

S(G) are omitted if no ambiguity
arises. Let N(G) = (l1, l2, . . . , lt) denote the set of integers in the increasing
order, i.e., l1 < l2 < · · · < lt, such that G has a crucial li-path partition. As we
will show later, the elements of N(G) form a segment of consecutive integers,
that is, li+1 = li + 1 for all 1 ≤ i ≤ t − 1. Thus N(G) can be represented
by a closed integer interval [l1, lt]. In particular, let l1 (respectively, lt) be the
left (respectively, right) end-point of N(G), denoted by l(N(G)) (respectively,
r(N(G))). We also define N(G) = [0, 0] if G does not contain any crucial path
partition.

3 A Sequential Algorithm

In the following sections, let G be a distance-hereditary graph with the twin set
S, which is formed from two distance-hereditary graphs G1 and G2 with the
twin sets S1 and S2, respectively.

Lemma 1 Let G = G1⊗G2. A crucial q-path partition Pq(G) can be constructed
from a crucial i-path partition Pi(G1) and a crucial j-path partition Pj(G2),
where Max {1,Max{i, j} −Min{i, j}} ≤ q ≤ i+ j.

80 Sun-yuan Hsieh et al.

Lemma 2 Let G = G1⊕G2. A crucial path partition Pi−j(G) can be constructed
from Pi(G1) and Pj(G2) if i > j.

According to the above lemmas, we can further obtain the following results.

Lemma 3 Assume that G = G1 ⊗G2. Let ai and bi be positive integers for i ∈
{1, 2}. If N(G1) = [a1, b1] and N(G2) = [a2, b2], then N(G) equals (1) [1, b1 +b2]
when [a1, b1] ∩ [a2, b2]
= ∅; (2) [a2 − b1, b1 + b2] when [a1, b1] ∩ [a2, b2] = ∅ and
a2 > b1; (3) [a1 − b2, b1 + b2] when [a1, b1] ∩ [a2, b2] = ∅ and a1 > b2.

Corollary 1 Assume that G = G1 ⊗ G2. Let ai and bi be positive integers for
i ∈ {1, 2}. If N(G1) = [a1, b1] and N(G2) = [a2, b2], then N(G) = [Max{1, a2−
b1, a1 − b2}, b1 + b2].

Lemma 4 Assume that G = G1 ⊕G2. Let ai and bi be positive integers for i ∈
{1, 2}. If N(G1) = [a1, b1] and N(G2) = [a2, b2], then N(G) equals (1) [0, 0] when
a2 ≥ b1; (2) [1, b1−a2] when [a1, b1]∩[a2, b2]
= ∅ and a2 < b1; (3) [a1−b2, b1−a2]
when [a1, b1] ∩ [a2, b2] = ∅ and a2 < b1.

Corollary 2 Assume that G = G1⊕G2. Let ai and bi be positive integers for i ∈
{1, 2}. If N(G1) = [a1, b1] and N(G2) = [a2, b2], then N(G) = [Min{Max{0, b1−
a2},Max{1, a1 − b2}},Max{0, b1 − a2}].

By the structure characterization that each vertex of G1 is not adjacent to
any vertex of G2, we have the following result.

Lemma 5 Assume that G = G1 �G2. Let ai and bi be positive integers for i ∈
{1, 2}. If N(G1) = [a1, b1] and N(G2) = [a2, b2], then N(G) = [a1 + a2, b1 + b2].

Theorem 1 Let DG be a decomposition tree of a distance-hereditary graph G. If
N(G)
= [0, 0], then N(Gv) = [av, bv] for all nodes v in DG, where av ≤ bv ∈ Z+.

Theorem 2 Let G = G1 ⊗ G2 or G = G1 ⊕ G2 and let |V (G)| ≥ 3. Then, G
has a Hamiltonian cycle if and only if N(G1) ∩N(G2)
= ∅ and N(Gi)
= [0, 0],
i ∈ {1, 2}.

In the remaining of this section, we develop an O(n+m)-linear-time sequen-
tial algorithm to solve the Hamiltonian problem on distance-hereditary graphs.
Consider a Hamiltonian distance-hereditary graph G. Let x be an arbitrary non-
root node of DG. Given a Hamiltonian cycle C of G, it is clear that this cycle in
Gx forms a crucial k-path partition of Gx for some 1 ≤ k ≤ |V (Gx)|. In particu-
lar, we refer such a k to be the target number tarC(x) of Gx (the subscript C can
be omitted from the notation if no ambiguity aries). Note that tar(l) = 1 if l is a
leaf of DG. For a non-root internal node v ∈ V (DG) with the two children u and

Efficient Algorithms for the Hamiltonian Problem 81

w, Ptar(v)(Gv) can be constructed from Ptar(u)(Gu) and Ptar(w)(Gw) by aug-
menting some specified edges in Su×Sw. These edges are called marked edges of
Ptar(v)(Gv), denoted by M(Ptar(v)(Gv)). Clearly, Ptar(u)(Gu) and Ptar(w)(Gw)
interleaved with M(Ptar(v)(Gv)) form Ptar(v)(Gv).

Assume that N(G1) = [a1, b1] and N(G2) = [a2, b2]. Given N(G) and a fixed
non-zero number q ∈ N(G), we can summarize the values of q1 and q2 in O(1)
time such that Pq(G) can be constructed from Pq1(G1) and Pq2(G2). We now
describes our algorithm in details.

Phase 1: ComputeN(Gx) for each non-root node x ofDG. Initially, letN(Gl)=
[1, 1] for each leaf l. By Lemmas 3–5, the desired values can be computed
by a bottom-up evaluation process. During the progress of computation,
if N(Gv) = [0, 0] for some node v, we terminate the algorithm and exit.
Otherwise, all nodes of DG are associated with the desired values. Clearly,
this phase takes O(n) time.

Phase 2: Compute the target number tar(x) for each non-root node x. Assume
that y and z are the left and right children of root(DG), respectively. Select
an arbitrary number k ∈ N(Gy) ∩ N(Gz) and let tar(y) = tar(z) = k. For
each non-root internal node v with the two children u and w, select tar(u)
and tar(w) such that Ptar(v)(Gv) can be constructed from Ptar(u)(Gu) and
Ptar(w)(Gw). This phase takes O(n) time.

Phase 3: Find a set of edges to form a Hamiltonian cycle of G in O(n + m)
time using the information obtained in the previous two phases.

4 A Parallel Algorithm

4.1 Computing N(Gv)

Let u and w be the left and right children, respectively, of an internal node v in
DG. Also let N(Gu) = [a1, b1] and N(Gw) = [a2, b2]. If v is ⊗ (respectively, �),
then the formulas in Corollary 1 (respectively, Lemma 5) are used to compute
N(Gv), after relaxing the original constraint of requiring two numbers ai and bi,
i ∈ {1, 2}, being positive integers to integers. For ease of parallel implementation,
we adopt the following formula to compute N(Gv) instead of that in Corollary 2:

N(Gv) = [Max{1, a1 − b2}, b1 − a2]. (1)

Recall that the input graph G considered in this paper is connected with
n > 2. In fact, the type of root(DG) (that is, ⊗-node or ⊕-node) does not
effect the correctness of our algorithms. From now on, we further assume that
root(DG) is a ⊗-node for convenience. By a bottom-up evaluation process, the
following result can be obtained.

Lemma 6 Assume that N(Gu) is computed for each non-leaf node u using
Equation 1 and the formulas described in Corollary 1 and Lemma 5. Let y
and z be the two children of root(DG). Then, G is Hamiltonian if and only
if r(N(Gv)) > 0 for all nodes v, and N(Gy) ∩N(Gz)
= ∅.

82 Sun-yuan Hsieh et al.

In the rest of this section, we apply the binary tree contraction technique
described in [1] to compute N(Gv) using Equation 1 and the formulas described
in Corollary 1 and Lemma 5. This technique recursively applies the two opera-
tions, prune and bypass, to a given binary tree. Prune(u) is the operation which
removes a leaf node u from the current tree, and bypass(v) is the operation that
removes a node v with exactly one child w and then let the parent of v become
the new parent of w.

Lemma 7 [1] If the prune operation and the bypass operation can be performed
by one processor in a constant time, then the binary tree contraction algorithm
can be implemented in O(log n) time using O(n/ log n) processors on an EREW
PRAM, where n is the number of nodes in the input binary tree.

Definition 3 A pair of binary functions F (x, y) = [f(x, y), g(x, y)], where f, g :
Z2 �→ Z, possess the closed form if the following two conditions hold. (1) f(x, y)=
Max{x+ c1,−y+ c2, d}, where ci, d ∈ Z∪ {−∞} and c1, c2, d cannot be −∞ at
the same time; (2) g(x, y) = e−Max{x+h1,−y+h2, j}, where hi, j ∈ Z∪{−∞},
e ∈ Z, and h1, h2, j cannot be −∞ at the same time.

For a pair of binary functions F (x, y) = [f(x, y), g(x, y)], let l(F) and r(F)
be f(x, y) and g(x, y), respectively.

Lemma 8 Let F1 and F2 be two arbitrary function pairs possessing the closed
form. Then, F1 ◦ (l(F2), r(F2)) also possess the closed form.

Given a decomposition tree DG, we next develop a parallel algorithm to
compute N(Gv) for each node v in DG. For a node u in the current tree H,
let parH(u) (respectively, childH(u)) denote the parent (respectively, children)
of u, and let sibH(u) denote the sibling of u. The subscript H can be omitted
if no ambiguity arises. Recall that l(N(Gu)) (respectively, r(N(Gu))) is the left
(respectively, right) end-point of the N(Gu).

During the process of executing the tree contraction, we aim at constructing
a pair of binary functions [fv(x, y), gv(x, y)] associated with each node v of the
current tree such that both functions possess the closed form and satisfies the
invariant described below. Let v be an internal node in the current tree whose
left and right children are u and w, respectively. Also let δ(u, v) and δ(w, v) be
the left and right children of v in the original tree, respectively. Note that δ(u, v)
and δ(w, v) are ancestors of u and w in the original tree, respectively. From now
on, we call δ(u, v) (respectively, δ(w, v)) replacing ancestors of u (respectively,
w) with respect to v, and abbreviate it to δ(u) (respectively, δ(w)) if no ambiguity
arises.

Invariant: Once l(N(Gu)), r(N(Gu)), l(N(Gw)), and r(N(Gw)) are computed
and provided as the inputs of [fu(x, y), gu(x, y)] and [fw(x, y), gw(x, y)], the fol-
lowing three statements hold:
S1: N(Gδ(u)) = [fu(l(N(Gu)), r(N(Gu))), gu(l(N(Gu)), r(N(Gu)))];

Efficient Algorithms for the Hamiltonian Problem 83

S2: N(Gδ(w)) = [fw(l(N(Gw)), r(N(Gw))), gw(l(N(Gw)), r(N(Gw)))];
S3: N(Gv) can be computed using N(Gδ(u)) and N(Gδ(w)).

For a node v in the current tree, we call the above functions fv(x, y) and
gv(x, y) the crucial functions of v. We next describe the details of our algorithm.
Initially, for each node v in the given tree we construct fv(x, y) = Max{x +
0,−y + (−∞),−∞} and gv(x, y) = 0 −Max{x + (−∞),−y + 0,−∞}. More-
over, if v is a leaf, then let l(N(Gv)) = r(N(Gv)) = 1. In the execution of
the tree contraction, assume that prune(u) and bypass(par(u)) are performed
consecutively. Let par(u) = v and sib(u) = w in the current tree. Assume that
[fu(x, y), gu(x, y)] and [fw(x, y), gw(x, y)] are crucial functions of u and w in the
current tree, respectively. Thus we have N(Gδ(u)) = [fu(l(N(Gu)), r(N(Gu))),
gu(l(N(Gu)), r(N(Gu)))]; N(Gδ(w)) = [fw(l(N(Gw)), r(N(Gw))), gw(l(N(Gw)),
r(N(Gw)))]. Since u is a leaf, l(N(Gu)) = r(N(Gu)) = 1. Therefore, N(Gδ(u))
can be obtained through the function evaluation. On the other hand, since w
may not be a leaf in the current tree, l(N(Gw)) and r(N(Gw)) are indeterminate
values represented by the variables x and y, respectively. Hence, N(Gδ(w)) can be
represented by the interval [fw(x, y), gw(x, y)]. Let s = fu(l(N(Gu)), r(N(Gu)))
= fu(1, 1); t = gu(l(N(Gu)), r(N(Gu))) = gu(1, 1); l(N(Gδ(w))) = fw(l(N(Gw)),
r(N(Gw))) = fw(x, y) = Max{x+ c1,−y+ c2, d}; r(N(Gδ(w))) = gw(l(N(Gw)),
r(N(Gw))) = gw(x, y) = e −Max{x + h1,−y + h2, j}. We then construct the
following two intermediate functions in order to form N(Gv) from those of δ(u)
and δ(w):

Case A: v is a ⊗-node. According to Corollary 1, we construct the following
functions.

Case A1: w is the left child of v. Then, N(Gv) = [Max{1, l(N(Gδ(u))) −
r(N(Gδ(w))), l(N(Gδ(w)))− r(N(Gδ(u)))}, r(N(Gδ(w))) + r(N(Gδ(u)))]
= [Max{x+Max{s−e+h1, c1−t},−y+Max{s−e+h2, c2−t},Max{1, s−
e+ j, d− t}}, (e+ t)−Max{x+ h1,−y + h2, j}]

Case A2: w is the right child of vi. The construction is similar to that of Case
A1.

Case B: v is a ⊕-node. According to Equation 1, we construct the following
functions.

Case B1: w is the left child of v. Then, N(Gv) = [Max{1, l(N(Gδ(w))) −
r(N(Gδ(u)))}, r(N(Gδ(w))) − l(N(Gδ(u)))] = [Max{x + (c1 − t),−y + (c2 −
t),Max{1, d− t}}, (e− s)−Max{x+ h1,−y + h2, j}].

Case B2: w is the right child of vi. The construction is similar to Case B1.

Case C: v is a �-node. According to Lemma 5, N(Gv) = [l(N(Gδ(w))) +
l(N(Gδ(u))), r(N(Gδ(w))) + r(N(Gδ(u)))] = [Max{x+ (c1 + s),−y+ (c2 + s), d+
s}, (e+ t)−Max{x+ h1,−y + h2, j}].

Therefore, the functions representing N(Gv) in Cases A–C all possess the
closed form. Let H denote the current tree. We construct the above functions
after executing prune(u). Given the two functions l(N(Gv)) and r(N(Gv)) con-
structed above, the contribution to the left and right end-points of N(GparH(v))

84 Sun-yuan Hsieh et al.

can be obtained using fv(l(N(Gv)), r(N(Gv))) and gv(l(N(Gv)), r(N(Gv))). The
functions are constructed for w after executing bypass(parH(u)) = bypass(v).
By Lemma 8, the above functions possess the closed form. Therefore, during
the process of executing the binary tree contraction, the crucial functions con-
structed after executing prune(u) and bypass(par(u)) can be implemented in
O(1) time using one processor. This implies that the interval N(Gv) for each
node v ∈ V (DG), can be computed in O(log n) time using O(n/ log n) proces-
sors on an EREW PRAM.

After computing N(Gv), we check whether G is Hamiltonian by Lemma 6.
This can be implemented in O(1) time using O(n) processors on an EREW
PRAM. If G is Hamiltonian, then a Hamiltonian cycle of G can be generated
using the method described in Section 4.2.

4.2 Computing tar(x)
Given a decomposition tree DG associated with N(Gx), x ∈ V (DG), we present
an algorithm to compute tar(x) in O(log n) time using O(n/ log n) processors
on an EREW PRAM based on the binary tree contraction technique.

For an internal node v with the two children u and w in DG, recall that
Gv is constructed from Gu and Gw using one of the three operations defined
in Definition 1. For a positive integer qv ∈ N(Gv), we call qu ∈ N(Gu) and
qw ∈ N(Gw) contributing numbers of qv if a crucial qv-path partition Pqv (Gv)
can be constructed from crucial path partitions Pqu(Gu) and Pqw (Gw). Two
functions fu : N(Gv) �→ N(Gu) and fw : N(Gv) �→ N(Gw) are said to be
contributing functions of v if fu(qv) = qu and fw(qv) = qw.

On the other hand, consider a distance-hereditary graph G obtained from the
two distance-hereditary graphs G1 and G2. Recall that, for a fixed q ∈ N(G),
we can return the contributing numbers q1 ∈ N(G1) and q2 ∈ N(G2) of q in
O(1) time. For ease of parallel implementation, we further observe that given
q ∈ N(G), N(G1) = [a1, b1] and N(G2) = [a2, b2], two values of q1 (respectively,
q2) can be obtained using the closed formula.

Observation 1 For each non-root internal node v ∈ DG with the two children
u and w, we can construct contributing functions of v having the unique form
Min{Max{±x+ c, a}, b}, where x is a variable drawn from Z+, a ∈ Z∪{−∞},
b ∈ Z ∪ {∞}, and c ∈ Z.

We call the form min-max form and call the function with the min-max form
min-max function.

Lemma 9 The class of min-max functions is closed under composition.

In the rest of this section, we assume that the input of our algorithm is a
decomposition tree DG satisfying the following condition. For each non-root in-
ternal node v with the two children u and w, the edges (u, v) and (w, v) are
associated with the contributing functions fu and fw of v, respectively. In par-
ticular, two edges incident with root(DG) are associated with two identity func-
tions. Note that the identity functions clearly possess the min-max form. Our
parallel algorithm consists of two stages, called the tree contraction stage and

Efficient Algorithms for the Hamiltonian Problem 85

the unwrapping stage. In the tree contraction stage, we use the binary tree con-
traction technique to contract the given tree into a tree-node tree T3. During the
contraction, we also construct min-max functions (described latter) associated
with the remaining edges of the current tree. In the unwrapping stage, we restore
T3 into the original tree to compute the target values progressively.
The Tree Contraction Stage. In the execution of the tree contraction, assume
that prune(u) and bypass(par(u)) are performed consecutively. Without loss of
generality, assume that u is the left child of par(u) = v (the case of u being the
right child can be handled similarly). Let sib(u) = w and v′ be the parent of v in
the current tree. Also assume that fv, fu and fw are three contributing min-max
functions associated with (v, v′), (u, v) and (w, v), respectively. After executing
prune(u) and then bypass(v), the edge (w, v′) is associated with the function
fw ◦ fv. Note that fw ◦ fv also possesses the min-max form by Lemma 9.

After executing the binary tree contraction, a three-node tree T3 is ob-
tained. Note that the two functions associated with two edges of T3 are both
constant functions 1. Assume that y and z be the left and right children of
DG. Let N(Gy) = [ay, by] and N(Gz) = [az, bz]. We first set tar(root(DG)) =
tar(root(T3)) = q ∈ [ay, by] ∩ [az, bz] and then go on the next stage.
The Unwrapping Stage. This stage is to restore T3 into DG together with
some function evaluations. Define two operations arcprune and arcbypass, de-
noted by prune−1 and bypass−1, respectively. Prune−1 (respectively, bypass−1)
is the operation that restores the node deleted by prune (respectively, bypass),
that is, prune−1(prune(u)) = u (respectively, bypass−1(bypass(v)) = v). Con-
sider an internal node w of the current tree from which two nodes u and v will
be restored as the two children of w in the next step. Let T (w) be the subtree
rooted at w in the current tree T and parT (w) = t. Without loss of generality,
assume that bypass−1(bypass(v)) = v and prune−1(prune(u)) = u are restored
consecutively such that in the current tree T ′, u is the leaf-child of v and w is
the other child of v in T ′. Also assume that gv and gu are two min-max functions
associated with (v, t) and (u, v), respectively. Note that tar(t) is obtained in the
previous step. We evaluate tar(v) = gv(tar(t)) and let tar(u) = 1 because gu

must be the constant function 1.
Lemma 10 Given a decomposition tree DG, the target values for all nodes can
be computed in O(log n) time using O(n/ log n) processors on an EREW PRAM.

Given a decomposition tree DG with tar(x) being associated with each node
x ∈ V (DG), we can find those edges to form a Hamiltonian cycle in O(log n)
time using O(m/ log n) processors on an EREW PRAM. The details are omitted
due to limited space. Let Td(n,m) and Pd(n,m) denote the parallel time and
processor complexities, respectively, required to construct a decomposition tree
of a distance-hereditary graph G = (V,E) on a PRAM model Md.

Theorem 3 The Hamiltonian problem on distance-hereditary graphs can be
solved in O(Td(n,m)+log n) time using O(Pd(n,m)+(n+m)/ log n) processors
on Md. Moreover, if a decomposition tree is given, the problem can be solved in
O(log n) time using O((n+m)/ log n) processors on an EREW PRAM.

86 Sun-yuan Hsieh et al.

References

1. K. Abrahamson, N. Dadoun, D. G. Kirkpatrick, and T. Przytycka, A simple parallel
tree contraction algorithm, Journal of Algorithms, 10:287–302, 1989.

2. H. J. Bandelt and H. M. Mulder, Distance-hereditary graphs, Journal of Combi-
natorial Theory Series B, 41(1):182–208, 1989.

3. A. Brandstädt and F. F. Dragan, A linear time algorithm for connected γ-
domination and Steiner tree on distance-hereditary graphs, Networks, 31:177–182,
1998.

4. M. S. Chang, S. Y. Hsieh, and G. H. Chen, Dynamic programming on distance-
hereditary graphs, Proceedings of 7th International Symposium on Algorithms and
Computation (ISAAC’97), LNCS 1350, pp. 344–353, 1997.

5. B. Courcelle, J. A. Makowsky, and U. Rotics, Linear time solvable optimiza-
tion problems on graphs of bounded clique-width, Theory of Computing Systems,
33:125–150, 2000.

6. A. D’atri and M. Moscarini, Distance-hereditary graphs, steiner trees, and con-
nected domination, SIAM Journal on Computing, 17(3):521–538, 1988.

7. F. F. Dragan, Dominating cliques in distance-hereditary graphs, Algorithm Theory-
SWAT’94-4th Scandinavian Workshop on Algorithm Theory, LNCS 824, Springer,
Berlin, pp. 370–381, 1994.

8. M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic press,
New York, 1980.

9. M. C. Golumbic and U. Rotics, On the clique-width of perfect graph classes,
WG’99, LNCS 1665, pp. 135–147, 1999.

10. P. L. Hammer and F. Maffray, Complete separable graphs, Discrete Applied Math-
ematics, 27(1):85–99, 1990.

11. E. Howorka, A characterization of distance-hereditary graphs, Quarterly Journal
of Mathematics (Oxford), 28(2):417–420, 1977.

12. S.-y. Hsieh, C. W. Ho, T.-s. Hsu, M. T. Ko, and G. H. Chen, Efficient parallel
algorithms on distance-hereditary graphs, Parallel Processing Letters, 9(1):43–52,
1999.

13. S.-y. Hsieh, C. W. Ho, T.-s. Hsu, M. T. Ko, and G. H. Chen, Characterization
of Efficiently Solvable Problems on Distance-Hereditary Graphs, Proceedings of
9th International Symposium on Algorithms and Computation (ISAAC’98), LNCS
1533, pp. 257–266, 1998.

14. S.-y. Hsieh, C. W. Ho, T.-s. Hsu, M. T. Ko, and G. H. Chen, A faster implementa-
tion of a parallel tree contraction scheme and its application on distance-hereditary
graphs, Journal of Algorithms, 35:50–81, 2000.

15. S.-y. Hsieh, Parallel decomposition of distance-hereditary graphs, Proceedings of the
4th International ACPC Conference Including Special Tracks on Parallel Numerics
(ParNum’99) and Parallel Computing in Image Processing, Video Processing, and
Multimedia (ACPC’99), LNCS 1557, pp. 417–426, 1999.

16. R. W. Hung, S. C. Wu, and M. S. Chang, Hamiltonian cycle problem on distance-
hereditary graphs, manuscript.

17. H. Müller and F. Nicolai, Polynomial time algorithms for Hamiltonian problems on
bipartite distance-hereditary graphs, Information Processing Letters, 46:225–230,
1993.

18. Falk Nicolai, Hamiltonian problems on distance-hereditary graphs, Technique re-
port, Gerhard-Mercator University, Germany, 1994.

Extending the Accommodating Function�

Joan Boyar, Lene M. Favrholdt, Kim S. Larsen, and Morten N. Nielsen

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

http://www.imada.sdu.dk/∼{joan,lenem,kslarsen,nyhave}

Abstract. The applicability of the accommodating function, a rela-
tively new measure for the quality of on-line algorithms, is extended.
If a limited amount n of some resource is available, the accommodat-
ing function A(α) is the competitive ratio when input sequences are
restricted to those for which the amount αn of resources suffices for an
optimal off-line algorithm. The accommodating function was originally
used only for α ≥ 1. We focus on α < 1, observe that the function now
appears interesting for a greater variety of problems, and use it to make
new distinctions between known algorithms and to find new ones.

1 Introduction

The Accommodating Function. The accommodating function A is a new
performance measure for on-line optimization problems with a limited amount n
of some resource. Informally, A(α) is the competitive ratio when input sequences
are restricted to those for which an optimal off-line algorithm does not benefit
from having more than the amount αn of resources. The accommodating function
was recently defined in [6], and it was applied to various problems in [6] and [1],
but only for α ≥ 1. In this paper, values of α < 1 are considered for the first
time. The accommodating function is formally defined in Section 2.

Background and Motivation. The original motivation for considering this
type of restriction of request sequences is from the Seat Reservation Problem
[5], the problem of assigning seats to passengers in a train on-line, in a “fair”
manner, to maximize earnings. For the unit price version, the competitive ratio
for this problem is Θ(1

k), where k is the number of stations where the train stops.
This very discouraging performance cannot occur, however, for realistic request
sequences. Since the management is often able to judge approximately how many
cars are necessary to accommodate all requests, it is more realistic to consider
only request sequences that can be fully accommodated by an optimal off-line
algorithm. Such sequences, corresponding to α = 1, are called accommodating
sequences. For the unit price problem, A(1) ≥ 1

2 [5].

� Supported in part by the Future and Emerging Technologies program of the EU
under contract number IST-1999-14186 (ALCOM-FT) and in part by the Danish
Natural Science Research Council (SNF).

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 87–96, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

88 Joan Boyar et al.

The idea of restricting the adversary to only giving accommodating sequences
carries over to any optimization problem with some limited resource, such as the
seats in a train. Thus, for instance, it can be used on the k-Server Problem,
where the servers constitute a limited resource since there are only k of them,
or scheduling problems, where there is only a fixed number of machines.

In addition to giving rise to new interesting algorithmic and analytical prob-
lems, the accommodating function, compared to just one ratio, contains more
information about the on-line algorithms. This information can be exploited in
several ways. The shape of the function, for instance, can be used to warn against
critical scenarios, where the performance of the on-line algorithm compared to
the off-line can suddenly drop rapidly when fewer resources are available.

In [6] a variant of bin packing is investigated, for which the number of bins
is fixed and the goal is to maximize the number of items packed. The bins have
height k and the items are integer sized. It is shown that, in general, Worst-Fit
has a strictly better competitive ratio than First-Fit, while, in the special case
of accommodating sequences, First-Fit has a strictly better competitive ratio
than Worst-Fit. In this case, the competitive ratio on accommodating sequences
seems the more appropriate measure, since it is constant while, in the general
case, the competitive ratio is Θ(1

k), basically due to some sequences which seem
very contrived. This shows that in addition to giving more realistic performance
measures for some problems, the competitive ratio on accommodating sequences
can be used to distinguish between algorithms, showing, not surprisingly, that
the decision as to which algorithm should be used depends on what sort of
request sequence is expected. The obvious question at this point was: Where is
the cross-over point? When does First-Fit become better than Worst-Fit? This
is another motivation for considering the accommodating function.

Main Contribution. In [6], the accommodating function was investigated for
α ≥ 1. In this paper we extend the definition of the accommodating function
to include α < 1. As example problems, we first consider two maximization
problems. For Unrestricted Bin Packing, we show upper and lower bounds for
First-Fit and investigate a new variant of Unfair-First-Fit [1], called Unfair-
First-Fitα, which turns out to be better than First-Fit for α close to 1. For
Seat Reservation, we consider three deterministic algorithms, which asymptot-
ically have the same competitive ratio on accommodating sequences, and show
that these algorithms can be distinguished using the proposed extension of the
accommodating function. Finally, we consider well known on-line minimization
problems to emphasize the broad scope of the accommodating function for α < 1.

The Accommodating Function for Two Maximization Problems. For
the Seat Reservation Problem, considering the accommodating function for α <
1 corresponds to the situation where the management has provided more cars
than needed by an optimal off-line algorithm to accommodate all passenger re-
quests. This seems to be a desirable situation, since the only way the train com-
pany can hope to accommodate all requests on-line is by having more resources
than would be necessary if the problem was solved optimally off-line.

Extending the Accommodating Function 89

In this paper, we obtain positive and negative results on the accommo-
dating function for the problem in general and for First-Fit and Worst-Fit in
particular. The results for First-
Fit and Worst-Fit are depicted
in Figure 1 to the left of the
line α = 1. To the right of this
line, general results from [6] are
shown.

The competitive ratio on ac-
commodating sequences fails to
distinguish between fair algo-
rithms for the Seat Reservation
Problem (they all have ratio 1

2
in the limit). In contrast, we
investigate the accommodating

�

�

α0 12
3

1
3

1

1
2

on-line
off-line

�FF lower

�WF upper

�
General upper

�General lower

Fig. 1. Bounds on A(α) for the Seat Reservation
Problem.

function at α = 1
3 for three different algorithms and discover that Worst-Fit is

the worst there, First-Fit is better, and Kierstead-Trotter has competitive ratio
1 at α = 1

3 .
We also consider another maximization problem, a variant of bin packing

called Unrestricted Bin Packing. We obtain positive and negative results on
the accommodating function for
the problem in general and for
First-Fit in particular. The re-
sults for First-Fit are depicted
in Figure 2 to the left of the
line α = 1. The results to the
right of the line are from [6].
Moreover, we show how posi-
tive results for accommodating
sequences can be extended in a
fairly general manner to better
bounds on the competitive ratio
for more restricted sets of input

�

�

α11
2

1

5
8

on-line
off-line

�
FF lower

� FF upper

Fig. 2. Bounds on AFF(α) for Unrestricted Bin
Packing.

sequences. Thus, accommodating sequences play a more important role than
originally anticipated. One can also see from the graphs in Figures 1 and 2 that
accommodating sequences have unique properties; the shape of the curve seems
to often change significantly at α = 1. In addition, for Unrestricted Bin Packing,
we investigate a new algorithm, Unfair-First-Fitα, showing that knowledge of α
can be exploited to obtain a better performance ratio.

The Connection to Resource Augmentation. Resource augmentation is
another technique which is used to give more realistic results when the standard
competitive ratio seems too negative [12]. With resource augmentation analysis,
the on-line algorithm is given more resources than the off-line algorithm, but
the performance ratio is still the worst case over all request sequences. There
is clearly a similarity between resource augmentation and the accommodating

90 Joan Boyar et al.

function with α < 1. The similarities and differences are discussed in section
5, which includes examples showing that the accommodating function can give
more optimistic results.

Due to space limitations, the proofs below have been eliminated. See the full
paper [4].

2 The Accommodating Function

If A is an on-line algorithm for a maximization (minimization) problem, then, for
any input sequence I for the problem, A(I) denotes the value (cost) of running
A on I. For any maximization (minimization) problem, OPT denotes an optimal
off-line algorithm for the problem, and OPT(I) denotes the value (cost) of OPT
when run on I. For a problem with some limited resource, OPTn denotes the
value (cost) of OPT when the amount n of the limited resource is available.

Definition 1. Let P be an on-line problem with a fixed amount n of resources.
For any α > 0, an input sequence I is said to be an α-sequence, if OPTαn(I) =
OPTn′(I), for all n′ ≥ αn. 1-sequences are also called accommodating sequences.

If an input sequence is an α-sequence, then OPT does not benefit from having
more than the amount αn of resources. Thus, if an input sequence is an accom-
modating sequence, then OPT does not benefit from having more resources than
the amount already available. For many problems, the amount n of the resource
is always a natural number. In that case, one should only consider values of α
such that αn ∈ N. If not, we define A(α) to have the same value as A(�αn�

n).
Thus, A becomes a step function.

Definition 2. Let A be an on-line algorithm for a maximization (minimiza-
tion) problem. Then A is c-competitive on α-sequences, if there exists a con-
stant b, such that A(I) ≥ c · OPT(I) − b

(
A(I) ≤ c · OPT(I) + b

)
, for any

α-sequence I. The accommodating function is defined as AA(α) = sup{c |
A is c-competitive on α-sequences} (inf{c | A is c-competitive on α-sequences}).

3 Unrestricted Bin Packing

In this section we consider a maximization variant of Bin Packing, called Unre-
stricted Bin Packing, in which the objective is to maximize the number of items
accepted within n bins all of the same size k ∈ N. An input sequence consists
of integer-sized items, and an α-sequence can be packed (by an optimal off-line
algorithm) within αn bins.

We use the following notation for a given α ≤ 1. Assume that we have a
numbering of the bins from 1 to n. The first αn bins, denoted BA, are called
internal bins, and the remaining n − αn bins, denoted BX , are called external
bins. Whenever we consider a fixed request sequence, we let A denote the set of
items accepted within internal bins, and let X denote the set of items accepted
within the external bins. The set R contains the remaining (rejected) items. The
bounds on First-Fit found in this section are depicted in Figure 2.

Extending the Accommodating Function 91

Definition 3. An algorithm for Unrestricted Bin Packing is called fair if it
never rejects an item that it is able to pack.

Theorem 1. Any fair algorithm A for Unrestricted Bin Packing has AA(α) ≥
1

1+α− 1
k

, when α ≤ 1.

This performance guarantee is asymptotically tight due to Worst-Fit’s be-
havior.

The proof of Theorem 1 shows that fair algorithms will reject less than αn
items. When considering First-Fit, a stronger fact can be shown, namely that αn
is an upper bound on the number of items not packed in the internal bins, i.e.,
|R|+ |X| < αn. Similar results can be shown for a broader class of algorithms.

Definition 4. Consider any α-sequence I with α ≤ 1 and an algorithm A. Let
X ′ be the set of items in I which A places as the first in some external bin, so
X ′ ⊂ X. Define f(I) to be the subsequence of I consisting of those requests in
A ∪X ′ ∪ R. An algorithm A is said to be uniform if, for any sequence I, when
A processes f(I) using αn bins (and any α the algorithm may use internally set
to 1), it accepts exactly those items in A.

Lemma 1. For any fair, uniform algorithm A and any α-sequence, with α ≤ 1,
|R|+ |X ′| < αn and whenever |R| > 0, |X ′| = n− αn.

Note that, by Lemma 1, any fair, uniform algorithm is optimal when α ≤ 1
2 .

This can be seen in the following way. For α ≤ 1
2 , |R| + |X ′| < αn and |X ′| =

n − αn cannot both be fulfilled. Thus, for any fair, uniform algorithm, |R| = 0
when α ≤ 1

2 .
First-Fit is a fair, uniform algorithm, as are other algorithms, such as Best-

Fit. For such algorithms, the theorem below extends good performance guar-
antees obtained on accommodating sequences to results for the accommodating
function for α < 1. The theorem can also be applied to some algorithms which
are not fair.

Theorem 2. Suppose the following four conditions hold for an on-line algorithm
A: (1) AA(1) ≥ β, (2) A is uniform, (3) |R|+ |X ′| ≤ αn, (4) whenever |R| > 0,
|X ′| = n− αn. Then for α ≤ 1, we have AA(α) ≥ min

(
1−α−β+2αβ

α , 1
)

.

The first corollary to this theorem concerns the fair algorithms First-Fit and
Best-Fit.

Corollary 1. For α ≤ 1, AFF(α) ≥ min
(3+2α

8α , 1
)

and ABF(α) ≥ min
(3+2α

8α , 1
)
.

The second corollary to the theorem above concerns a slight variation of
the algorithm Unfair-First-Fit [1]. Unfair-First-Fit behaves just like First-Fit

92 Joan Boyar et al.

unless the given item has size larger
than k

2 . In this case, the item is re-
jected on purpose, if the number of
currently accepted items is at least
2
3 of the number of items in the en-
tire sequence seen so far. The new
algorithm given in Figure 3, called
Unfair-First-Fitα (UFFα), assumes
that α is known in advance. Us-
ing this knowledge, the algorithm di-
vides the bins into BA and BX . Note
that the ratio considered in the if-

Input: S = 〈o1, o2, . . . , on〉
while S �= 〈〉
o:=hd(S);S:= tail(S)
if size(o) ≤ k

2 or |A|
|A|+|X|+|R|+1 <

2
3

Try to pack o using First-Fit
else

Try to pack o in BX using First-Fit
Update A,X,R accordingly

Fig. 3. The algorithm Unfair-First-Fitα.

statement of the algorithm is the number of items in the internal bins, compared
to all items given. If this ratio is at least 2

3 , the item is rejected if it does not fit
in an external bin.

Corollary 2. AUFFα(α) ≥ min
(1+α

3α − ε, 1
)
, for α ≤ 1 and αn ≥ 9, where

ε = 4α−2
(4n+1)α < 1

n .

The theorem below extends a result in [6] and it shows that any (even ran-
domized) on-line algorithm A for Unrestricted Bin Packing has AA(α) < 1, for
α > 4

5 .

Theorem 3. Any on-line algorithm A for Unrestricted Bin Packing has AA(α)
≤ 2α+4

7α +O(1
n), when 4

5 ≤ α ≤ 1 and k ≥ 5.

The following theorem extends a hardness result for First-Fit on accommo-
dating sequences in [1] and shows that, when n is sufficiently large, AUFF(α) ≥
AFF(α), for 7+

√
85

18 < α ≤ 1.

Theorem 4. For Unrestricted Bin Packing, the accommodating function for
First-Fit is at most AFF(α) ≤ 5

9α−1 +O(1√
n

), when 2
3 + 1

3n ≤ α ≤ 1.

4 Unit Price Seat Reservation

A train with n seats travels from a start station to an end station, stopping
at k ≥ 2 stations, including the first and last. Reservations can be made for
any trip from a station s to a station t. The passenger is given a single seat
number when the ticket is purchased, which can be any time before departure.
For political reasons, the problem must be solved in a fair manner, i.e., the ticket
agent may not refuse a passenger if it is possible to accommodate him when he
attempts to make his reservation. For this problem an α-sequence can be packed
by an optimal off-line algorithm using αn seats. The algorithms (ticket agents)
attempt to maximize income, i.e., the sum of the prices of the tickets sold. In
this paper, we consider only the pricing policy in which all tickets have the same
price, the unit price problem.

The performance guarantee for fair algorithms on accommodating sequences
found in [5] can be extended to a general performance guarantee for α ≤ 1.

Extending the Accommodating Function 93

Theorem 5. For α ≤ 1, any fair algorithm for Unit Price Seat Reservation is
1

1+α -competitive on α-sequences.

This result is asymptotically tight due to Worst-Fit’s behavior:

Theorem 6. AWF(α) ≤ 1
1+α− 1

k−1 − 1
n

, for α ≤ 1.

It was shown in [5] that First-Fit’s competitive ratio on accommodating se-
quences is not strictly better than 1

2 , the performance guarantee for any fair
algorithm. In contrast, for α ≤ 1

2 , it is possible to prove that First-Fit’s perfor-
mance is better than Worst-Fit’s.

Theorem 7. AFF(α) ≥ 2l−1(1−lα)+(2l−1)α
2l−1(1−lα)+(2l)α ≥ 1− 1

2l , where l = 	 1
α
 and α ≤ 1.

This performance guarantee is not tight. Kierstead and Qin [13] have shown
that First-Fit colors every interval graph using at most 25.72 times as many
colors as necessary, so the competitive ratio on α-sequences is 1 when α ≤

1
25.72 ≈ 0.039.

The following theorem shows that for any fair algorithm A, for k sufficiently
large, AA(α) < 1, for α > 4

5 . The proof is based on Theorem 3.1 in [3], which is
based on a proof from [5].

Theorem 8. For α ≤ 1 and k ≥ 9, no fair on-line algorithm for Unit Price
Seat Reservation is more than (8−α

9α +O(1
k))-competitive, even on α-sequences.

We consider a class of fair algorithms called Any-Fit which will use an empty
seat, only if there is not enough space on partially used seats. Any-Fit includes
both First-Fit and Best-Fit.

Theorem 9. For an Any-Fit algorithm A, AA(α) ≤ 1
3α−1+O(1

k) for 1
3 < α ≤ 1.

Kierstead and Trotter’s algorithm [14] has a competitive ratio of 1 on 1
3 -

sequences. Their algorithm solves the problem of minimizing the number of seats
(colors) used; it is undefined for values of α > 1

3 when applied to the maximiza-
tion problem where the number of seats is limited. However, their algorithm can
obviously be extended in many ways so that it solves this maximization problem.

Chrobak and Ślusarek [8] have shown that there exists a sequence where
First-Fit uses more than 4.4 times as many seats (colors) as OPT, and thus is
not 1-competitive on 1

3 -sequences. Thus, Kierstead and Trotter’s algorithm has
a better competitive ratio on 1

3 -sequences than First-Fit.
Kierstead and Trotter’s algorithm is not, however, better than First-Fit on

1-sequences, since it has been shown [5] that no fair algorithm has a competitive
ratio on accommodating sequences which is strictly better than 1

2 asymptotically.
In conclusion, we have that the competitive ratio on α-sequences, where

α < 1, can be useful in distinguishing between algorithms.

Theorem 10. Kierstead and Trotter’s algorithm, First-Fit, and Worst-Fit, all
have asymptotic competitive ratio 1

2 on accommodating sequences, but have dif-
ferent competitive ratios on 1

3 -sequences.

94 Joan Boyar et al.

5 Comparison with Resource Augmentation

The concept of the accommodating function should not be confused with re-
source augmentation introduced in [12]. Resource augmentation analysis gives
the on-line algorithm more resources than the optimal off-line algorithm that it
is compared to, but there is no restriction on the input sequences.

Note 1. In the resource augmentation setting, the on-line algorithm has the
amount m of resources and the optimal off-line algorithm has the amount n ≤ m
of resources. Positive results (upper bounds for minimization problems and lower
bounds for maximization problems) obtained in this setting are also valid for the
case where all input sequences are n

m -sequences. This is because, even though
the optimal off-line algorithm in our setting has the same amount of resources
as the on-line algorithm, the result it obtains cannot be improved with extra
resources beyond n when considering n

m -sequences.

The contrapositive of the observation above gives that when considering neg-
ative results, it is the other way around: negative results for the accommodating
function carry over to the resource augmentation setting.

Resource augmentation does not always give as realistic or optimistic results
as the accommodating function for α < 1. In order to obtain the same results,
one needs to restrict to accommodating sequences while also doing resource aug-
mentation. To see that resource augmentation alone can be insufficient, consider
the algorithm First-Fit for the Seat Reservation Problem. Theorem 7 gives a
lower bound on First-Fit’s accommodating function for α ≤ 1: AFF(α) ≥ 1− 1

2l ,
where l = 	 1

α
. In contrast, resource augmentation cannot give a constant lower
bound on First-Fit’s accommodating function.

Theorem 11. For α > 2
n , the competitive ratio of First-Fit for the Seat Reser-

vation Problem is at most 1+α
(α− 2

n)(k−1) , when First-Fit has at most 1
α times as

many seats as OPT.

For Unrestricted Bin Packing, one can also show that resource augmentation
analysis alone gives results which are much more pessimistic than the correspond-
ing accommodating function results. Recall that the performance guarantee from
Corollary 1 for First-Fit for α ≤ 1 is AFF(α) ≥ 3+2α

8α .

Theorem 12. For Unrestricted Bin Packing, the competitive ratio of First-Fit
is at most 1

αk , when First-Fit has at most 1
α times as many bins as OPT.

5.1 Paging

We consider the Paging Problem in the page fault model, i.e., the algorithm
maintains a fast memory (cache) consisting of k pages of memory and the input
is a sequence of page requests. If a page in cache is requested, no cost is incurred;
otherwise the requested page must be transferred from the slow memory at a
cost of 1 and another page must be evicted from the cache. The goal is to choose

Extending the Accommodating Function 95

an eviction strategy which minimizes cost. Before the first page request is served,
the cache is empty. In this problem, the limited resource is the cache.

When an optimal off-line algorithm serves an α-sequence, it will have the
same cost for every cache size k′ ≥ αk. To see why such a sequence can consist
of more than αk different pages, consider the following example: For k = 6, the
following sequence is a 1

2 -sequence, S = 〈1, 2, 3, 4, 5, 6, 7, 1, 2, 8, 9, 10, 1, 2, 11, 12〉.
Keeping the two pages 1 and 2 in the cache will give a cost of 12 with a cache
of size k′ for all k′ ≥ 3.

Using Note 1 and a result from [16], we find that FIFO (First-In/First-Out)
and LRU (Least-Recently-Used) are k

(1−α)k+1 -competitive. Sleator and Tarjan
[16] have shown that their performance guarantee is tight, and a very similar
proof shows that it is also tight for α-sequences.

Theorem 13. Any deterministic Paging algorithm A has AA(α) ≥ k
(1−α)k + 1 ,

when α ≤ 1.

Using Note 1 and a result from [17], we find that when α < 1, the randomized
algorithm MARK is 2-competitive when 1

1−α < e and 2(ln 1
1−α−ln ln 1

1−α + 1
e−1)-

competitive when 1
1−α ≥ e. Young’s hardness result [17] for any randomized

algorithm can be used directly for the competitive ratio on α-sequences for α <
1, since his sequences are α-sequences. Thus, any randomized algorithm has a
competitive ratio of at least ln 1

1−α−ln ln 1
1−α− 3

k(1−α) when 1
1−α ≥ e, so MARK

is within a factor of approximately 2 of optimal.

5.2 Other Problems

The k-server problem and machine scheduling minimizing makespan are consid-
ered in the full paper [4]. Resource augmentation results for these problems are
used to give accommodating function results.

6 Conclusion

The accommodating function for α ≤ 1 seems to be interesting for a variety of
on-line problems, possibly for a greater variety than when α > 1. For example,
the accommodating function for deterministic algorithms for the Paging Problem
has a very uninteresting shape for α > 1; the value is constant at k, while for
α ≤ 1, A(α) = k

(1−α)k+1 .
The study of the accommodating function in general and in particular for

α ≤ 1 has given rise to new algorithms, Unfair-First-Fit and Unfair-First-Fit α.
In addition, the Seat Reservation Problem demonstrates the utility of the ac-

commodating function with α < 1 in distinguishing between different algorithms.
Three algorithms, which all have competitive ratio close to 1

2 on accommodating
sequences, have different competitive ratios on 1

3 -sequences.
The proofs of positive results seem, in general, to be more interesting than

the proofs of negative results. This appears less true for those problems where

96 Joan Boyar et al.

positive results concerning resource augmentation can be used directly, giving
positive results for the accommodating function with α ≤ 1. However, the origi-
nal proofs in the resource augmentation setting tend to be interesting, and those
results become even more interesting given their application to this setting where
the set of request sequences is limited. On the other hand, the accommodating
function with α ≤ 1 sometimes gives much more useful information than resource
augmentation. Examples of this were given for the Seat Reservation Problem and
Unrestricted Bin Packing, using First-Fit.

References

1. Y. Azar, J. Boyar, L. Epstein, L. M. Favrholdt, K. S. Larsen, and M. N. Nielsen.
Fair versus Unrestricted Bin Packing. Algorithmica. To appear. Preliminary version
in SWAT 2000.

2. Y. Azar, L. Epstein, and R. van Stee. Resource Augmentation in Load Balancing.
In SWAT 2000, volume 1851 of LNCS, pages 189–199, 2000.

3. E. Bach, J. Boyar, L. Epstein, L. M. Favrholdt, T. Jiang, K. S. Larsen, G.-H. Lin,
and R. van Stee. Tight Bounds on the Competitive Ratio on Accommodating
Sequences for the Seat Reservation Problem. Journal of Scheduling. To appear.
Preliminary version in COCOON 2000.

4. J. Boyar, L. M. Favrholdt, K. S. Larsen, and M. N. Nielsen. Extending the Ac-
commodating Function. Technical report PP-2002-02, Department of Mathematics
and Computer Science, University of Southern Denmark, Odense, 2002.

5. J. Boyar and K. S. Larsen. The Seat Reservation Problem. Algorithmica, 25:403–
417, 1999.

6. Joan Boyar, Kim S. Larsen, and Morten N. Nielsen. The Accommodating Function:
a generalization of the competitive ratio. SIAM Journal on Computing, 31(1):233–
258, 2001.

7. M. Brehop, E. Torng, and P. Uthaisombut. Applying Extra Resource Analysis to
Load Balancing. Journal of Scheduling, 3:273–288, 2000.

8. M. Chrobak and M. Ślusarek. On Some Packing Problems Related to Dynamic
Storage Allocation. RAIRO Informatique Théoretique et Applications, 22:487–499,
1988.

9. E. Koutsoupias. Weak Adversaries for the k-Server Problem. In FOCS, pages
444–449, 1999.

10. R. L. Graham. Bounds for Certain Multiprocessing Anomalies. Bell Systems
Technical Journal, 45:1563–1581, 1966.

11. T. R. Jensen and B. Toft. Graph Coloring Problems. John Wiley & Sons, 1995.
12. B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. In FOCS,

pages 214–221, 1995.
13. H. A. Kierstead and J. Qin. Coloring Interval Graphs with First-Fit. Discrete

Mathematics, 144:47–57, 1995.
14. H. A. Kierstead and W. T. Trotter. An Extremal Problem in Recursive Combina-

torics. Congressus Numerantium, 33:143–153, 1981.
15. M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Competitive Algorithms for

Server Problems. Journal of Algorithms, 11(2):208–230, June 1990.
16. D. D. Sleator and R. E. Tarjan. Amortized Efficiency of List Update and Paging

Rules. Communications of the ACM, 28(2):202–208, 1985.
17. N. Young. On-Line Caching as Cache Size Varies. In SODA, pages 241–250, 1991.

Inverse Parametric Sequence Alignment�

Fangting Sun1, David Fernández-Baca1, and Wei Yu2

1 Department of Computer Science, Iowa State University, Ames, IA 50010
{ftsun,fernande}@cs.iastate.edu

2 Department of Computer Science, Washington University, St. Louis, MO 63130
weiyu@ccrc.wustl.edu

Abstract. We consider the inverse parametric sequence alignment prob-
lem, where a sequence alignment is given and the task is to determine
parameter values such that the given alignment is optimal at that param-
eter setting. We describe a O(mn log n)-time algorithm for inverse global
alignment without gap penalty and a O(mn log m) time algorithm for
global alignment with gap penalty, where m, n (n ≤ m) are the lengths
of input strings. We then discuss algorithms for local alignment.

1 Introduction

Finding the best alignment of two DNA, RNA or amino acid sequences has
become a standard technique for determining similarity between biological se-
quences. There are hundreds of papers written on this topic and its applications
to biology. The review [1] gives relevant references.

Given two sequences S and T of lengths n and m, n ≤ m, an alignment is
obtained by inserting special space characters into the two sequences in such a
way as to build sequences S′ and T ′ of equal length, denoted by A = (S′, T ′).
A match is a position where S′ and T ′ have the same characters. A mismatch
is a position in which S′ and T ′ have different characters, neither of which is a
space. An indel is a position in which one of S′ and T ′ has a space. A gap is a
sequence of one or more consecutive spaces in S′ and T ′ .

An alignment A can be characterized by its number of matches, mismatches,
indels and gaps, denoted w, x, y, z, respectively. In scoring an alignment matches
are rewarded, while mismatches, indels and gaps are penalized. Let α, β and γ
denote the mismatch, indel and gap penalties. Then the score of A is

scoreA = w − αx− βy − γz
The case where the weight of the matches is a parameter is ignored since we
can divide all the parameters by this value and reduce it to the above case. The
optimal alignment problem is to find a maximum-score alignment A between two
strings. For fixed weights, this problem can be solved in O(mn) time [11]. The
problem we have just defined is often referred to as global alignment, so as to
distinguish it from its local version, which is defined later (see Section 4).
� Research partially supported by grant CCR-9988348 from the National Science Foun-

dation.

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 97–106, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

98 Fangting Sun, David Fernández-Baca, and Wei Yu

The parametric sequence alignment problem is to compute optimal align-
ments for two fixed sequences as a function of varying penalties. The value of
an alignment is a linear function of the parameters; thus the parameter space
can be partitioned into optimal regions such that in every region one alignment
is optimal throughout and the regions are maximal for this property. This ap-
proach was proposed by Fitch and Smith [4] at first. Later, both mathematical
formulations and algorithms for parametric sequence alignment were obtained
by Gusfield et al. [7,8]. Additional work is found in [3,12,13,14].

In inverse parametric optimization [2] one is given a parametric optimization
problem and a desired optimal solution and the task is to determine parame-
ter settings such that the given solution is optimal for those values. The inverse
parametric sequence alignment problem is to find parameter values such that ref-
erence alignment is optimal for those values or, if no such settings exist, find a
parameter setting minimizing the numerical difference between the score of the
optimal alignment and the score of the reference alignment. These parameter
values define an inverse optimal point on the parameter space. Inverse para-
metric computation is useful for deducing parameter settings where the optimal
alignment is likely to reconstruct correct alignments that have been determined
by other methods.

One way to locate the “correct” parameter settings is to first construct the
entire decomposition of the parameter space and then choose the correct values.
Alternatively, one can try to find the parameter settings directly. This can be
done by gradient descent [8], although it is not clear how to obtain bounds on
the worst-case performance of this method. Megiddo’s method of parametric
search [9,10] can be used instead, leading to a O(m2n2) method for the case
where only one parameter is varied. While powerful, Megiddo’s method has the
drawback that it leads to complex algorithms. Improvements in the running time
are possible by relying on the existence of a parallel algorithm for the problem,
but this only complicates the results further. Here we give an approach that
is much simpler than Megiddo’s method and exploits the integer nature of the
scoring of sequence alignments.

Since the optimal regions are bounded by the intersection of hyperplanes,
all regions are convex polygons [4,7,8,3]. Hence, the inverse optimal parameter
setting(s) must occur at a single vertex (intersection point of three or more
optimal regions), at a single edge (intersection line between two optimal regions),
or at a single complete polygon of the polygonal decomposition of the parameter
space. The main idea of our algorithms is to find the inverse-optimal point in
the parameter space using binary search. Our main contribution is a proof that
this simple algorithm converges quickly.

The rest of this paper is organized as follows. Section 2 gives a O(mn log n)
algorithm for global alignment without gap penalty. A O(mn logm) algorithm
for global alignment with gap penalty is described in Section 3. Further results
are discussed in Section 4.

Inverse Parametric Sequence Alignment 99

2 Global Alignment without Gap Penalty

In this section we consider global alignment where the gap penalties are ignored
(γ = 0). Then, the score function is score = w − αx − βy. Given a reference
alignment A0 with w0 matches, x0 mismatches and y0 indels, we must find an
inverse-optimal point for A0 in the α, β plane. We need some preliminary results.
Theorem 1 (Gusfield et al. [7]). Any line forming a boundary between two
regions is of the form β = c+ (c+ 0.5)α, for some c > −1/2.

Corollary 1. Suppose (α0, β0) is an inverse-optimal point for reference align-
ment A0 in the α, β space. Then all points on the line that goes through (−1,
−1/2) and (α0, β0) are inverse-optimal for A0.

Lemma 1 ([7]). The positive β-axis intersects all the region boundaries. Let
A1,A2, . . . ,Ak be the optimal alignments encountered by β axis in order of in-
creasing β-value. Then yi+1 < yi for all Ai(i < k).

Let Ai,Aj be the optimal alignments in two neighboring optimal regions
encountered by β axis, with score wi −αxi − βyi and wj −αxj − βyj . Then the
equation of the boundary line between the regions is:

β =
wi − wj

yi − yj
+
xj − xi

yi − yj
α (1)

A breakpoint along any given line is the point where the line moves between
two adjacent optimal regions.

Lemma 2. The length of the interval between any two successive breakpoints
along the β-axis is greater than 1/n2.

Proof. According to Equation (1), the boundary line of two neighboring optimal
regions where Ai,Aj are optimal respectively intersects the β axis at (0, wi−wj

yi−yj
).

Let Ai,Aj ,Ak (i < j < k) be the optimal alignments in three consecutive
optimal regions when going along the β axis and let ∆w1 = wj − wk, ∆w2 =
wi−wj , ∆y1 = yj−yk, ∆y2 = yi−yj . Then the interval between two breakpoints
on the β axis is:

∆β =
wj − wk

yj − yk
− wi − wj

yi − yj
=
∆w1∆y2 −∆w2∆y1

∆y1∆y2

Since ∆w1, ∆w2, ∆y1, ∆y2 are all integers and ∆β > 0, then ∆w1∆y2 −
∆w2∆y1 ≥ 1. Notice that m− n ≤ y ≤ m+ n, then ∆y1 +∆y2 = yi− yk≤(m+
n)− (m− n)≤2n. Therefore ∆y1∆y2 ≤ ((∆y1 +∆y2)/2)2 ≤ n2. It follows that
∆β > 1/n2. �

The main idea of our algorithm is to use binary search on the β axis. The details
are given below:

100 Fangting Sun, David Fernández-Baca, and Wei Yu

Algorithm 1
1. high = n; low = 0;
2. while ((high− low) > 1/n2)
3. mid = low + (high− low)/2;
4. compute the optimal global alignment A(w, x, y) at point (0,mid);
5. if (y == y0) then
6. return the line passing through (−1,− 1

2) and (0,mid);
7. else
8. if (y > y0) then low = mid else high = mid end if;
9. end if
10. end while
11. compute optimal global alignments Ahigh, Alow for points (0, high), (0, low);
12. mid = low + (high− low)/2;
13. if (Ahigh is the same as Alow) then
14. return the line passing through (−1,− 1

2) and (0,mid);
15. else
16. compute β0 such that whigh − β0yhigh = wlow − β0ylow;
17. compute optimal alignment A for point (0, β0);
18. if (w0 − β0y0 == w − β0y) then
19. return the line passing through (−1,− 1

2) and (0, β0);
20. else
21. return the line passing through (−1,− 1

2) and (0,mid);
22. end if
23. end if

Theorem 2. Algorithm 1 correctly solves the inverse parametric alignment
problem for global alignment without gaps in O(mn log n) time.

Proof. From equation (1), all breakpoints on the β axis lie below (0, n), so it is
correct to restrict the search space to the portion on the β-axis between (0, 0)
to (0, n). Lemma 1 guarantees that binary search works for this problem, since
the algorithm can decide to go up or down along the β axis according to the
number of indels.

If the algorithm finds a point (0, β0) such that the optimal alignment A
for that point has the same number of indels as the reference alignment, then
(0, β0) is either inverse-optimal (w = w0) or it is approximately inverse-optimal
(w �= w0). Following Corollary 1, the algorithm returns a line.

Lemma 2 shows that when the length of the search interval is smaller than
1/n2, it cannot contain a complete optimal region. It includes either part of one
optimal region (Ahigh equals Alow) or one breakpoint. In the first case, all points
in the remaining search space are approximately inverse-optimal. In the second
case, the breakpoint is inverse-optimal or all points in the remaining search space
are approximately inverse-optimal. Thus Algorithm 1 gives the correct answer.

Steps 1, 3, 5-9, 12 need O(1) time; step 11 and 13-22 need O(mn) time; step
4 needs O(mn) time, and the while statement can loop at most 3 logn times.
Therefore, the total time is 3 log n ·O(mn) = O(mn log n). �

Inverse Parametric Sequence Alignment 101

3 Global Alignment with Gap Penalty

In this section we solve the inverse global alignment problem with gap penalty.
There are now three parameters to consider, α, β and γ. Given a reference align-
ment A0 with w0 matches, x0 mismatches, y0 indels and z0 gaps, we need to
find a point on the α, β, γ space where A0 is optimal or approximately optimal.

First, let us describe the boundary lines of the optimal regions in the α, β, γ
and an important property about the centroid of the convex polyhedra.

Theorem 3 (Gusfield et al. [7]). Any line forming a boundary between three
or more regions is of the form β = c+ (c+ 1/2)α, γ = d+ dα.

Corollary 2. All region boundaries intersect with either the positive β, γ coor-
dinate plane or with the positive α, γ coordinate plane.

Theorem 4 (Grunbaum [5]). Let S be a convex body of volume 1 in Rd. Let
v1 be the larger of the two volumes in a division of S by a hyperplane through its
centroid. Then v1 ≤ 1− (d

d+1)d.

Finally, as in Equation (1), the boundary line between optimal regions on
the β, γ plane associated with alignments Ai and Aj has the form

β =
wi − wj

yi − yj
− zi − zj

yi − yj
γ (2)

A vertex is the intersection point of three or more optimal regions. Suppose
vertex v is intersection point of optimal regions whose optimal alignments are
A1,A2,A3. Let ∆w1 = w1 −w2, ∆w2 = w2 −w3, etc. Then v = (βv, γv), where

βv =
∆w1∆z2 −∆w2∆z1
∆y1∆z2 −∆y2∆z1 and γv =

∆w1∆y2 −∆w2∆y1
∆z1∆y2 −∆z2∆y1 (3)

According to Corollary 2, if there exists inverse-optimal point(s) in the search
space, then there exists inverse-optimal point(s) on either the positive β, γ or
positive α, γ coordinate plane. Thus we can search on the β, γ (α = 0) coordinate
plane first. If an inverse-optimal point is found on the β, γ coordinate plane,
algorithm terminates; otherwise, continue to search on the α, γ coordinate plane.
If an inverse-optimal point is found on the α, γ coordinate plane, then return
it. If there is no inverse-optimal point on the α, γ coordinate plane either, then
return an approximate inverse-optimal point.

The algorithm uses the following idea to reduce the search space. Let v =
(0, βv, γv) be a point in the current search space on the β, γ plane and let Av

be the optimal alignment at v, with wv matches, xv mismatches, yv indels and
zv gaps. If reference alignment A0 is optimal at v, then v is an inverse-optimal
point. Otherwise, suppose A0 is optimal at point (0, β, γ). By the optimality of
A0 and Av, it follows that:

w0 − βy0 − γz0 ≥ wv − βyv − γzv and wv − βvyv − γvzv > w0 − βvy0 − γvz0.

102 Fangting Sun, David Fernández-Baca, and Wei Yu

Therefore,

(yv − y0)β + (zv − z0)γ > (yv − y0)βv + (zv − z0)γv (4)

The boundary line l of the halfplane defined by inequality (4) passes through
v and divides the remaining search space into two regions. The region whose
points do not satisfy inequality (4) can be discarded, thereby reducing the search
space. Line l becomes a new boundary line for the remaining search space; we
say that this boundary line is defined by point v and alignment Av. According
to Theorem 4, if the centroid of the present search space is selected as point v,
the search space will reduce by a factor of at least 4/9.

If A0 is not an optimal alignment at any point on the β, γ plane, then suppose
(0, β, γ) is an approximately inverse-optimal point that minimizes the numerical
difference between the score of the optimal alignment and the score of A0, and
that Â is optimal at that point. Thus, we have: (wv−βvyv−γvzv)−(w0−βvy0−
γvz0) ≥ (ŵ−βŷ−γẑ)− (w0−βy0−γz0) and (ŵ−βŷ−γẑ) ≥ (wv−βyv−γzv).
Therefore (yv − y0)β+ (zv − z0)γ ≥ (yv − y0)βv + (zv − z0)γv, which is the same
boundary line as inequality (4).

Using the centroid as described above, we repeatedly reduce the search region
until its area is smaller than 1

2m7 . By Lemma 3, which is proved later, when the
region is smaller than this size, it cannot include a complete optimal region.

After the binary search terminates, if there exists an inverse-optimal point,
there must exist an inverse-optimal vertex in the remaining search space. From
Lemma 5, proved later, if there exists inverse-optimal vertex (β∗, γ∗) in the
remaining search space, there exist two distinct boundary lines l1 and l2, defined
by A1 and by A2, such that A1,A2 are optimal at (β∗, γ∗); that is, (β∗, γ∗) is
the intersection of the scores of A0, A1, and A2, and we say (β∗, γ∗) is located
(determined) by l1 and l2 or by A1 and A2. From Lemma 6, if there exists
inverse-optimal vertex, when m is big, we can use the two longest boundary
lines to locate that vertex; when m is small enough, we need check different
pairs of boundary lines to locate the inverse-optimal vertex.

We now describe the algorithm:

Algorithm 2
1. set the search space R = {(0, β, γ)|0 ≤ β ≤ m2, 0 ≤ γ ≤ m2};
2. while (Area(R) > 1/2m7)
3. compute the centroid v(βv, γv) of search space R;
4. compute the optimal global alignment Av at point v on β, γ space;
5. if (Av is the same as A0) then
6. return the line passing through (−1,− 1

2 , 0) and (0, βv, γv);
7. else
8. R← R ∩ the halfplane defined by Equation (4);
9. end if
10. end while
11. d = max{|uv|∣∣u,v are points on the boundary of R};
12. if (d < 1/m3 or m > 80) then

Inverse Parametric Sequence Alignment 103

13. select the two longest boundary lines defined by alignments A1,A2;
14. compute (β̂, γ̂) so that A0,A1,A2 have same score at (β̂, γ̂);
15. if ((β̂, γ̂) is in R) then
16. compute the optimal global alignment Â at point (β̂, γ̂);
17. if (Â and A0 have same score at (β̂, γ̂)) then
18. return the line passing through (−1,− 1

2 , 0) and (0, β̂, γ̂)
19. end if
20. end if
21. else
22. store all pairs of different boundary lines of R into stack S;
23. while (S is not empty)
24. pop a pair of boundary lines defined by alignments A1,A2 from S;
25. compute (β̂, γ̂) so A0,A1,A2 have same score at (β̂, γ̂);
26. if ((β̂, γ̂) is in R) then
27. compute the optimal global alignment Â at point (β̂, γ̂);
28. if (Â and A0 have same score at (β̂, γ̂)) then
29. return the line passing through (−1,− 1

2 , 0) and (0, β̂, γ̂)
30. end if
31. end if
32. end while
33. end if
34. continue to search on α, γ plane;

To show that Algorithm 2 is correct, we first need to prove some results.

Lemma 3. The area of any complete optimal region on the β, γ plane is greater
than 1

2m6 .

Proof. According to Equation (2) and (3), select a boundary line l of optimal
regions and a vertex v = (βv, γv) as:

l : β =
∆wi

∆yi
− ∆zi

∆yi
γ and

βv =
∆w1∆z2 −∆w2∆z1
∆y1∆z2 −∆y2∆z1 , γv =

∆w1∆y2 −∆w2∆y1
∆z1∆y2 −∆z2∆y1

Then the distance between v and l is:

d =
∣∣∣∣βv +

∆zi

∆yi
γv − ∆wi

∆yi

∣∣∣∣ · |∆yi|√
∆y2

i +∆z2
i

Since −m < ∆wi, ∆yi, ∆zi < m, when d > 0, d > 1/m3

Since the distance between any two vertices should be greater than the dis-
tance between a vertex and a boundary line of an optimal region, the distance
between any two vertices is greater than 1/m3.

A complete optimal region is composed of at least three vertices. Suppose
the minimal complete optimal region is made with 3 vertices, then the base and

104 Fangting Sun, David Fernández-Baca, and Wei Yu

the height of this triangle are both greater than 1/m3. Therefore, the area is
greater than 1

2m6 . �

The precondition for the following results is that the area of the remaining
search space is smaller than 1

2m7 .

Lemma 4. Suppose reference alignment A0(w0, y0, z0) is optimal at vertex (β∗,
γ∗) in the remaining search space. Let l be a boundary line of the remaining
search space defined by (βv, γv) and alignment Av. If Av is not optimal at
(β∗, γ∗), then the distance between (β∗, γ∗) and l is greater than 1

m3 .

Proof. According to inequality (4), the boundary line l is

(yv − y0)β + (zv − z0)γ = (yv − y0)βv + (zv − z0)γv (∗)
Suppose Av is not optimal at (β∗, γ∗). From the optimality of A0,Av, we have:

w0 − β∗y0 − γ∗z0 = wv − β∗yv − γ∗zv +∆c1, ∆c1 > 0 (∗∗)
wv − βvyv − γvzv = w0 − βvy0 − γvz0 +∆c2, ∆c2 > 0 (∗ ∗ ∗)

Adding (**) and (***) we obtain

(yv − y0)β∗ + (zv − z0)γ∗ = (yv − y0)βv + (zv − z0)γv +∆c1 +∆c2 (∗ ∗ ∗∗)
Equations (*) and (****) define two parallel lines, and (****) passes through
(β∗, γ∗). Thus the distance between (β∗, γ∗) and line l equals the distance be-
tween line (****) and line l. Hence the distance is:

d =

∣∣∣∣∣
∆c1 +∆c2
yv − y0 · yv − y0√

(y0 − yv)2 + (z0 − zv)2

∣∣∣∣∣ =

∣∣∣∣∣
∆c1 +∆c2√

(y0 − yv)2 + (z0 − zv)2

∣∣∣∣∣
According to (**), ∆c1 = w0 − wv − (y0 − yv)β∗ − (z0 − zv)γ∗ > 0. Since

(β∗, γ∗) is a vertex, according to Equation (3), it is clear that ∆c1 > 1/m2, then
d > | 1

m2
1√

(y0−yv)2+(z0−zv)2
| > 1

m3 . �

Lemma 5. If there exists an inverse-optimal vertex (β∗, γ∗) in the remaining
search space, then there exist two boundary lines that are defined by (β1, γ1), A1,
and (β2, γ2), A2 such that alignments A1,A2 are optimal at (β∗, γ∗).

Proof. Suppose reference alignment A0 is optimal at vertex (β∗, γ∗) in the re-
maining search space. Assume that no boundary line that is defined by (βi, γi),
alignment Ai such that Ai is optimal at (β∗, γ∗). Then from Lemma 4, the dis-
tance between (β∗, γ∗) and any point on the boundary of the remaining search
space is greater than 1

m3 . Hence the area of the remaining search space is greater
than 1

m6 . But the area of the remaining search space is smaller than 1
2m7 , a con-

tradiction. So there exists at least one boundary line that is defined by (β1, γ1),
alignment A1 and A1 is optimal at (β∗, γ∗).

If there is only one boundary line that satisfies the above requirements, we
can find a contradiction from similar reasoning. Thus there exist at least two
boundary lines that satisfy above requirements. �

Inverse Parametric Sequence Alignment 105

Lemma 6. If there exists an inverse-optimal vertex in the remaining search
space, then when m > 80, it can be located using the two longest boundary lines.

Proof. Suppose that there exists an inverse-optimal vertex in the remaining
search space. Notice that if the distance of the two farthest points on the bound-
ary is smaller than 1/m3, then any two boundary lines can be used to locate the
inverse-optimal vertex (according to Lemma 4).

Since the search space can be initially restricted to 0 ≤ β ≤ m2, 0 ≤ γ ≤ m2,
the area of remaining search space is smaller than 1/2m7, and every iteration
reduces the search by at least 4/9 and increases the number of boundary lines by
at most one, there are at most log 9

5
2+11 log 9

5
m boundary lines of the remaining

search space.
If the length of a boundary line l is more than 1/m4, then l can be used

to locate that inverse-optimal vertex. Thus if the lengths of the two longest
boundary lines are greater than 1/m4, then the inverse-optimal vertex can be
located by them. If there are no two boundary lines whose lengths are greater
than 1/m4, then the distance of two farthest points on the boundary is smaller
than d = (log 9

5
2 + 11 log 9

5
m) · 1

m4 . When m > 80, d < 1
m3 . Thus if m > 80, the

two longest boundary lines can be used to locate the inverse-optimal vertex. �

Now we prove the correctness of Algorithm 2 and analyze its running time.

Theorem 5. If there exists an inverse-optimal point on the β, γ coordinate
plane, then Algorithm 2 can find it in O(mn logm) time.

Proof. According to Equation 3, the maximum coordinate for a vertex is (m2,
m2). Thus, we can restrict the search space to 0 ≤ β ≤ m2, 0 ≤ γ ≤ m2. If
the algorithm finds an inverse-optimal point (βv, γv) during the binary search,
it returns a line. Lemma 3 shows when the area of the remaining search space
is smaller than 1/2m7, it cannot include a complete optimal region. So binary
search terminates and the algorithm begins to check the vertices in the remaining
region. If there exists an inverse-optimal vertex in the remaining search space,
from Lemma 5 and Lemma 6, step 11-33 can find it. So if there exists inverse-
optimal point on β, γ coordinate plane, Algorithm 2 can find that point.

The initial area of search space is m4; the binary search terminates when
the area is less than 1/2m7. Every iteration reduces the area of search space
by at least 4/9 and increases the number of boundary lines by at most 1, so
there are O(logm) iterations and O(logm) boundary lines. In every iteration,
the algorithm computes one optimal alignment which takes O(mn) time. Thus
steps 1-10 need O(mn logm) time. Step 11 needs O(logm) time, since there are
O(logm) intersection points on the boundary and the two farthest points must
both be intersection points. Step 12-20 need O(mn) time. In step 22-32, since
m < 80, we can consider the number of different pairs of boundary lines as
constant, then the time that step 22-32 need is O(mn). Thus the total time need
by Algorithm 2 is O(mn logm). �

The above algorithm also works for searching on the α, γ plane, only that,
in step 34, when we have found that the reference alignment cannot be optimal

106 Fangting Sun, David Fernández-Baca, and Wei Yu

on the α, γ coordinate plane, we need to return the centroid of the remaining
search space as an approximately inverse-optimal point.

4 Further Results and Open Problems

Given two sequences S and T , a local alignment is obtained by finding substrings
S′ and T ′ of S and T , respectively, whose optimal global alignment score is
maximum over all pairs of substrings from S and T [6]. This problem can be
solved in O(mn) time [6], where m,n are the lengths of S and T .

The inverse local alignment problem without gap penalty (γ = 0) asks to find
an inverse-optimal or approximately inverse-optimal point on the α, β coordinate
plane. This problem can be solved by slightly modifying Algorithm 2 of Section 3
in O(mn logm) time.

An open problem is to extend our binary search strategy into fixed-dimen-
sional space. For example, this could lead to an efficient algorithm for inverse
local alignment with gap penalty, which is a search problem in the α, β, γ space.

References

1. A. Apostolico and R. Giancarlo. Sequence alignment in molecular biology. Journal
of Computational Biology, 5(2):173–196, 1998.

2. D. Eppstein. Setting parameters by example. Proc. 40th Symp. Foundations of
Computer Science, IEEE, pages 309–318, 1999.

3. D. Fernández-Baca, T. Seppäläinen, and G. Slutzki. Bounds for parametric se-
quence comparison. Discrete Applied Mathematics, 2002, to appear.

4. W. Fitch and T. F. Smith. Optimal sequence alignments. Proceedings of the
National Academy of Sciences of the USA, 80:1382–1386, 1983.

5. B. Grunbaum. Partitions of mass distributions and of convex bodies by hyper-
planes. Pacific Journal of Mathematics, 10:1257–1261, 1960.

6. D. Gusfield. Algorithms on strings, trees, and sequences: Computer science and
computational biology. Cambridge University press, Cambridge, New York, Mel-
bourne, 1997.

7. D. Gusfield, K. Balasubramanian, and D. Naor. Parametric optimization of se-
quence alignment. Algorithmica, 12:312–326, 1994.

8. D. Gusfield and P. Stelling. Parametric and inverse-parametric sequence alignment
with XPARAL. Methods in Enzymology, 226:481–494, 1996.

9. N. Megiddo. Combinatorial optimization with rational objective functions. Math.
Oper. Res., 4:414–424, 1979.

10. N. Megiddo. Applying parallel computation algorithms in the design of serial
algorithms. Journal of the ACM, 30(4):852–865, 1983.

11. D. Sankoff and E. J. Kruskal. Time warps, string edits, and macromolecules: the
theory and practice of sequence comparison. Addison-Wesley, 1983.

12. M. Vingron and M. Waterman. Sequence alignment and penalty choice: review of
concepts, case studies, and implications. J. of Molecular Biology, 235:1–12, 1994.

13. M. S. Waterman. Parametric and ensemble sequence alignment. Bulletin of Math-
ematical Biology, 56(4):743–767, 1994.

14. M. S. Waterman, M. Eggert, and E. Lander. Parametric sequence comparisons.
Proceedings of the National Academy of Sciences of the USA, 89:6090–6093, 1992.

The Full Steiner Tree Problem in Phylogeny

Chin Lung Lu1, Chuan Yi Tang2, and Richard Chia-Tung Lee3

1 National Center for High-Performance Computing, P.O. Box 19-136,
Hsinchu, Taiwan 300, R.O.C., cllu@nchc.gov.tw

2 Department of Computer Science, National Tsing Hua University,
Hsinchu, Taiwan 300, R.O.C., cytang@cs.nthu.edu.tw

3 Department of Computer Science and Information Engineering, National Chi-Nan
University, Puli, Nantou Hsien, Taiwan 545, R.O.C., rctlee@ncnu.edu.tw

Abstract. Motivated by the reconstruction of phylogenetic tree in bi-
ology, we study the full Steiner tree problem in this paper. Given a com-
plete graph G = (V, E) with a length function on E and a proper subset
R ⊂ V , the problem is to find a full Steiner tree of minimum length in G,
which is a kind of Steiner tree with all the vertices of R as its leaves. In
this paper, we show that this problem is NP-complete and MAX SNP-
hard, even when the lengths of the edges are restricted to either 1 or 2.
For the instances with lengths either 1 or 2, we give a 5

3 -approximation
algorithm to find an approximate solution for the problem.

1 Introduction

Given a graph G = (V,E), a subset R ⊆ V of vertices, and a length (or distance)
function d : E → R+ on the edges, a Steiner tree is a connected and acyclic sub-
graph of G which spans all vertices in R. The vertices in R are usually referred
to as terminals and the vertices in V \R as Steiner (or optional) vertices. Note
that a Steiner tree might contain the Steiner vertices. The length of a Steiner
tree is defined to be the sum of the lengths of all its edges. The so-called Steiner
tree problem is to find a Steiner minimum tree (i.e., a Steiner tree of minimum
length) in G. The Steiner tree problem has been extensively studied in the past
years because it has many important applications in VLSI design, network rout-
ing, wireless communications, computational biology and so on [1,2,3,4]. This
problem is well known to be NP-complete [5], even in the Euclidean metric [6]
or rectilinear metric [7]. However, it has many approximation algorithms with
constant performance ratios [4,8].

Motivated by the reconstruction of phylogenetic (or evolutionary) tree in
biology, we study a variant of the Steiner tree problem, called the full Steiner
tree problem, in this paper. A Steiner tree is full if all terminals are the leaves
of the tree [4]. The full Steiner tree problem is to find a full Steiner tree with
minimum length. If we restrict the lengths of edges to be either 1 or 2, then
the problem is called the (1,2)-full Steiner tree problem. From the viewpoints of
biologists, the terminals of a full Steiner tree T can be regarded as the extant
taxa (or species, morphological features, biomolecular sequences), the internal

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 107–116, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

108 Chin Lung Lu, Chuan Yi Tang, and Richard Chia-Tung Lee

vertices of T as the extinct ancestral taxa, and the length of each edge in T
as the evolutionary time along it. Then T might correspond to an evolutionary
tree of the extant species, which trends to minimize the tree length according
to the principle of parsimony (i.e., nature always finds the paths that require a
minimum evolution) [9]. Hence, the problem of reconstruction of such kind of
phylogenetic tree can be considered as the full Steiner tree problem. We refer the
readers to [10,11] for other models of evolutionary trees and time-complexities
of their constructions.

To our knowledge, little work has been done on the full Steiner tree problem.
In [12], Hwang gave a linear-time algorithm for constructing a relatively minimal
full Steiner tree T with respect to G in the Euclidean metric, where G is the given
topology of T . In this paper, we show that the full Steiner tree problem is NP-
complete and MAX SNP-hard, even when the lengths of edges are restricted to
be either 1 or 2. However, we give a 5

3 -approximation algorithm for the (1,2)-full
Steiner tree problem.

2 Preliminaries

To make sure that a full Steiner tree exists, we restrict the given graphG = (V,E)
to be complete and R to be a proper subset of V (i.e., R ⊂ V) in the full Steiner
tree problem (FSTP for short).
FSTP (Full Steiner Tree Problem)
Instance: A complete graph G = (V,E), a length function d : E → R+ on the
edges, a proper subset R ⊂ V , and a positive integer bound B.
Question: Is there a full Steiner tree T in G such that the length of T is less
than or equal to B?

The length function d is called a metric if it satisfies the following three
conditions: (1) d(x, y) ≥ 0 for any x, y in V , where equality holds if and only if
x = y, (2) d(x, y) = d(y, x) for any x, y ∈ V , and (3) d(x, y) ≤ d(x, z) + d(z, y)
for any x, y, z in V (triangle inequality). If we restrict that all edge lengths are
either 1 or 2 (i.e., d : E → {1, 2}), then we call this restricted FSTP as (1,2)-
full Steiner tree problem (FSTP(1,2) for short), where such length function is a
metric. For convenience, we use MIN-FSTP and MIN-FSTP(1,2) to be referred
as the optimization problems of FSTP and FSTP(1,2), respectively.

Given two optimization problems Π1 and Π2, we say that Π1 L-reduces to
Π2 if there are polynomial-time algorithms f and g and positive constants α and
β such that for any instance I of Π1, the following conditions are satisfied. (1)
Algorithm f produces an instance f(I) of Π2 such that OPT(f(I)) ≤ α ·OPT(I),
where OPT(I) and OPT(f(I)) stand for the optimal solutions of I and f(I),
respectively. (2) Given any solution of f(I) with cost c2, algorithm g produces
a solution of I with cost c1 in polynomial time such that |c1 − OPT(I)| ≤
β · |c2 − OPT(f(I))|. A problem is said to be MAX SNP-hard if a MAX SNP-
hard problem can be L-reduced to it. In [13], Arora et al. showed that if any
MAX SNP-hard problem has a PTAS (Polynomial Time Approximation
Scheme), then P=NP, where a problem has a PTAS if for any fixed ε > 0, the

The Full Steiner Tree Problem in Phylogeny 109

problem can be approximated within a factor of 1+ ε in polynomial time [14]. In
other words, it is very unlikely for a MAX SNP-hard problem to have a PTAS.
On the other hand, if Π1 L-reduces to Π2 and Π2 has a PTAS, then Π1 has a
PTAS [15].

3 NP-Completeness Result

In this section, we will show that FSTP(1,2) is an NP-complete problem by a
reduction from the exact cover by 3-sets problem (X3C for short), which is well
known to be NP-complete [16].
X3C (Exact Cover by 3-Sets Problem)
Instance: A finite set X with |X| = 3n and a collection S of 3-element subsets
of X with |S| = m.
Question: Does S contain an exact cover for X, i.e., a subcollection S ′ ⊆ S
such that every element of X occurs in exactly one member of S?

Theorem 1. FSTP(1,2) is an NP-complete problem.

Proof. In the following, we only show that FSTP(1,2) is NP-hard by reducing
X3C to it. Let X = {x1, x2, · · · , x3n} and S = {S1, S2, · · · , Sm} be an instance
of X3C. Without loss of generality, we assume that m > n. Then we transform
X and S into an instance of FSTP(1,2) as follows.

• A complete graph G = (V,E) with V = X ∪ S ∪ {y}, R = X and B = 4n.

• For each edge e, d(e) =
{

1, if e ∈ {(xi, Sj)|xi ∈ Sj} ∪ {(y, Sj)|1 ≤ j ≤ m},
2, otherwise.

See Figure 1 for an example of the reduction with X={x1, x2, x3, x4, x5, x6}
and S = {S1, S2, S3, S4} = {{x1, x3, x5}, {x2, x3, x5}, {x2, x4, x5}, {x2, x4, x6}},
where only the edges of length 1 in G are shown and the white circles and the
black boxes denote the Steiner vertices and the terminals, respectively.

Next, we claim that X3C has a positive answer (i.e., S has an exact cover) if
and only if there is a full Steiner tree in G with length less than or equal to B,

y

S4S3S2S1

x6x5x4x3x2x1

Fig. 1. A reduction of X3C to FSTP(1,2).

G1 G2

v5
v5

v4 v4v3 v3

v2
v2

v1 v1z1,2

z2,3

z3,4

z4,5

z1,5

Fig. 2. An L-reduction of VC-B to MIN-
FSTP(1,2).

110 Chin Lung Lu, Chuan Yi Tang, and Richard Chia-Tung Lee

where B = 4n. First, suppose that S has an exact cover S ′. Then we can build a
tree T with the set E(T) of edges, where E(T) = {(xi, Sj), (y, Sj)|Sj ∈ S ′, xi ∈
Sj}. It is not hard to see that T is a full Steiner tree in G and its length is 4n.

Conversely, suppose that there is a full Steiner tree T in G with length less
than or equal to 4n. For convenience, we call the edges in {(Si, Sj)|1 ≤ i < j ≤
m} as the type-1 edges and the edges in {(y, xi)|1 ≤ i ≤ 3n} as the type-2 edges.
Note that the length of each type-1 or type-2 edge in G is 2 by the reduction.
Then we can transform T into T ′ using the following two methods such that T ′

contains no type-1 or type-2 edge. (1) Replace each type-1 edge (Si, Sj) of T
with the edges (y, Si) and (y, Sj). (2) Replace each type-2 edge (y, xi) of T with
the edges (y, Sj) and (xi, Sj), where xi ∈ Sj . Clearly, T ′ is still a full Steiner tree
of G, which can be obtained from T in polynomial time, and its length is less
than or equal to that of T (i.e., ≤ 4n) since we always use two edges of length 1,
which might be in T already, to replace an edge of length 2. Since T ′ contains no
type-1 or type-2 edge, its leaves are adjacent to some vertices in S, all of which
are then adjacent to y. For convenience, we use Y to denote the set of internal
vertices of T ′ which are adjacent to y. Then the length of T ′ is greater than or
equal to |X | + |Y| = 3n + |Y|, which is less than or equal to 4n. This implies
that |Y| ≤ n. On the other hand, since each vertex in Y is adjacent to at most
3 leaves, 3 · |Y| ≥ 3n and hence |Y| ≥ n. In other words, we have |Y| = n and
clearly, Y corresponds to a vertex cover of S. �	

The proof of Theorem 1 can be used to prove the NP-completeness of FSTP,
even when the length function is metric.

4 MAX SNP-Hardness Result

In this section, we will show that the optimization problem of FSTP(1,2), re-
ferred to as MIN-FSTP(1,2), is MAX SNP-hard by an L-reduction from the
vertex cover-B problem (VC-B for short), which was shown to be MAX SNP-
hard by Papadimitriou and Yannakakis [15].
MIN-FSTP(1,2) (Minimum (1,2)-Full Steiner Tree Problem): Given a
complete graph G = (V,E) with a length function d : E → {1, 2} on the edges
and a proper subset R ⊂ V of terminals, find a full Steiner tree of minimum
length in G.
VC-B (Vertex Cover-B Problem): Given a graph G = (V,E) with degree
bounded by a constant B, find a vertex cover of minimum cardinality in G.

Let G1 =(V1, E1) and B be an instance I1 of VC-B with V1 = {v1, v2, · · · , vn}.
(Without loss of generality, we assume that G1 is connected and n ≥ 3.) Then
we transform I1 into an instance I2 of MIN-FSTP(1,2), say G2 and R, as follows.

• A complete graph G2 = (V2, E2) with V2 = V1 ∪ {zi,j |(vi, vj) ∈ E1}, and
R = V2 \ V1 = {zi,j |(vi, vj) ∈ E1}.

• For each edge e ∈ E2, d(e) =
{

1, if e ∈ E ,
2, otherwise,

where E = {(vi, vj)|1 ≤ i < j ≤ n} ∪ {(vi, zi,j), (zi,j , vj)|(vi, vj) ∈ E1}.

The Full Steiner Tree Problem in Phylogeny 111

See Figure 2 for an example of the reduction, where G1 is a C5 (i.e, a cycle
of length 5) and only the edges of length 1 in G2 are shown.

Lemma 1. Let T be a solution of length c to MIN-FSTP(1,2) on the instance
I2 which is obtained from a reduction of an instance I1 of VC-B. Then in poly-
nomial time, we can find another solution T ′ of length no more than c to MIN-
FSTP(1,2) on instance I2 such that T ′ contains no edge of length 2.

Proof. In the following, we only show how to replace an edge of length 2 from
T with some edges of length 1 in polynomial time without increasing the length
of the resulting T . Then by repeatedly applying this procedure to T , we will
finally obtain T ′ in polynomial time. Let (x, y) be an edge of length 2 in T .
Since both x and y cannot belong to R or V1 at the same time, one of them
must be a terminal and the other must be a Steiner vertex according to the
rules to construct G2. Without loss of generality, we assume that x is a terminal
and y is a Steiner vertex. Since we assume that G1 is connected and n ≥ 3, x
must be connected to some one terminal z with a path of two edges of length
1, say (x, v) and (v, z). Let u be the Steiner vertex of T which is adjacent to
z. Then we consider the following two possibilities. Case 1: (x, u) ∈ E1. This
means that the length of (x, u) is 1. Then we replace (x, y) with (x, u). Case 2:
(x, u) /∈ E1. This means that the length of (x, u) is 2. Then we replace (x, y)
with (x, v) and (v, u) of length 1. It is easy to see that the resulting T is still
a full Steiner tree of G2, which can be obtained in polynomial time, without
increasing the length. �	
Theorem 2. MIN-FSTP(1,2) is a MAX SNP-hard problem.

Proof. Let f denote the polynomial-time algorithm (as described in the begin-
ning of this section) to transform an instance I1 of VC-B to the instance I2 of
MIN-FSTP(1,2) (i.e., f(I1) = I2). We design another polynomial-time algorithm
g as follows. Given a full Steiner tree T in G2 of length c, we transform it into
another full Steiner tree T ′ using the method described in the proof of Lemma 1.
Clearly, T ′ contains no edge of length 2 and its length is no more than c, which
implies that the number of vertices in T ′ is less than or equal to c+ 1 (since T ′

is a tree). Then the collection of those internal vertices of T ′ which are adjacent
to the leaves of T ′ corresponds to a vertex cover of G1 whose size is less than or
equal to c−|E1|+ 1. Next, we prove that algorithms f and g are an L-reduction
from VC-B to MIN-FSTP(1,2) by showing the following two inequalities.

(1) OPT(f(I1)) ≤ α ·OPT(I1), where α = 2B. Note that B ·OPT(I1) ≥ |E1|
since each vertex in G1 covers at most B edges. Let u be a vertex in G1 whose
degree is B. Then we can build a star T with u as its center and R as its leaves.
Clearly, T is a feasible solution of MIN-FSTP(1,2) on f(I1) whose length is
B + 2 · (|E1| −B) = 2 · |E1| −B. Hence, OPT(f(I1)) ≤ 2 · |E1| −B ≤ 2 · |E1| =
2B · |E1|

B ≤ 2B · OPT(I1).
(2) |c1 − OPT(I1)| ≤ β · |c2 − OPT(f(I1))|, where β = 1. Given a vertex

cover C in G1 of size c, we can create a full Steiner tree T in G2 of length
c + |E1| − 1 in the following way. Connect each edge of E1 (corresponding a

112 Chin Lung Lu, Chuan Yi Tang, and Richard Chia-Tung Lee

terminal in G2) to an arbitrary vertex in C (corresponding a Steiner vertex
in G2) and connect all vertices of C by c − 1 edges of length 1 in G2. Hence,
OPT(f(I1)) ≤ OPT(I1)+ |E1|−1. Conversely, by algorithm g, a full Steiner tree
T of G2 with length c2 can be transformed into a vertex cover of G1 of size c1
less than or equal to c2−|E1|+ 1 (i.e., c1 ≤ c2−|E1|+ 1). Then c1−OPT(I1) ≤
(c2−|E1|+1)−OPT(I1) = c2− (OPT(I1)+ |E1|−1) ≤ c2−OPT(f(I1)). Hence,
|c1 − OPT(I1)| ≤ 1 · |c2 − OPT(f(I1))|. �	

Clearly, the proof of Theorem 2 can be applied to show that MIN-FSTP is
still MAX SNP-hard, even though the length function is metric.

5 A 5
3-Approximation Algorithm for MIN-FSTP(1,2)

For MIN-FSTP(1,2), it is not hard to see that any star with an arbitrary Steiner
vertex as its center and all terminals as its leaves is an approximate solution
with performance ratio within 2 of the optimal one. In this section, we give a 5

3 -
approximation algorithm for MIN-FSTP(1,2) using the so-called average length
(or distance) heuristics [17,18].

Let Steiner star be a star T with a Steiner vertex as its center(T) and the
terminals as its leaves(T), where center(T) and leaves(T) denote the center and
the leaves of T , respectively. For a Steiner star T with |leaves(T)| ≥ 2, we define

its average length to be f(T) =
∑

v∈leaves(T) d(center(T),v)
|leaves(T)|−1 . For convenience, we use

Xk-star to denote a Steiner star T with k leaves and d(center(T), v) = 1 for each
v of leaves(T). By definition, we have the following lemmas immediately.
Lemma 2. Let T be a Steiner star with k terminals, where k ≥ 2. If T contains
no leaf at distance 1 from center(T), then f(T) = 2 + 2

k−1 .

Lemma 3. Let T be a Steiner star with k terminals, where k ≥ 2. If T contains
only one leaf at distance 1 from center(T), then f(T) = 2 + 1

k−1 .

Lemma 4. Let T be a Steiner star with k terminals, where k ≥ 2. If T contains
exactly two leaves at distance 1 from center(T), then f(T) = 2.

Lemma 5. Let T be a Xk-star with k ≥ 3. Then f(T) = 1 + 1
k−1 .

Lemma 6. Let T1 be an Xk-star with k ≥ 3 and let T2 be the Steiner star
obtained from T1 by adding a new terminal z with d(center(T1), z) = 2. Then
f(T1) < f(T2).

Next, we describe our approximation algorithm for MIN-FSTP(1,2) in the
following algorithm APX-FSTP(1,2). Without loss of generality, we assume that
|R| ≥ 8, since for |R| < 8, the optimal solution can be found by an exhaustive
search in polynomial time. According to Lemmas 2 to 6, our algorithm APX-
FSTP(1,2) always selects an Xk-star with maximum k, k ≥ 3, to do the reduction
if it exists, since its average length must be minimum. If only X2-stars are found
in the (resulting) instance, then the average length of the minimum Steiner star

The Full Steiner Tree Problem in Phylogeny 113

APX-FSTP(1,2)
Input: A complete graph G = (V, E) with d : E → {1, 2} and a subset R ⊂ V .
Output: A full Steiner tree TAPX in G.
1: Let E be an empty set;
2: /* Choose a Steiner star with the minimum average length */

if there are two or more remaining Steiner vertices then
Find a Steiner star T with minimum average length;
if f(T) = 2 then /* Transform T into an X2-star */

Remove from T those leaves at distance 2 from center(T) if they exist;
else Let T be the Steiner star with the only Steiner vertex as its center

and all remaining terminals as its leaves;
3: Let E = E ∪ {(center(T), v)|v ∈ leaves(T)}; /* Perform a reduction */

Replace the Steiner star T by a single new terminal, say z;
Let d(z, u) = d(center(T), u) for each remaining vertex u;

4: if there is still more than one terminal then Go to Step 2;
else Let TAPX be the full Steiner tree induced by E ;

must be 2 by Lemmas 2 to 4. In this case, the minimum Steiner star selected
by APX-FSTP(1,2) might contain some leaves at distance 2 from the center. To
avoid this situation, APX-FSTP(1,2) will transform it into an X2-star without
changing its average length by Lemma 4. If the (resulting) instance does not con-
tain a Xk-star with k ≥ 2, then APX-FSTP(1,2) will perform only one reduction
by Lemmas 2 and 3. As discussed above, we can find that APX-FSTP(1,2) will
always select an Xk-star, k ≥ 2, to do the reduction except the last one.

We analyze the time-complexity of APX-FSTP(1,2) as follows. Let n and m
be the numbers of the terminals and the Steiner vertices in G, respectively (i.e.,
n = |R| and m = |V \ R|). Clearly, the time-complexity of APX-FSTP(1,2) is
dominated by the cost of Step 2, which needs to find a Steiner star with minimum
average length. It can be implemented by first finding an optimal Steiner star
with each Steiner vertex as the center and then selecting the best one among
these optimal Steiner stars. For each Steiner vertex v, we can find an optimal
Steiner star with v as its center in O(n′) time, where n′ denotes the number
of the resulting terminals. The reason is that we just calculate the number of
terminals at distance 1 from v and then we are able to know what its optimal
Steiner star is by Lemmas 2 to 6. Suppose that there are m′ Steiner vertices
in each reduction. Then Step 2 can be done in O(n′m′ + m′) time. Since each
reduction eliminates one Steiner vertex and at least one terminal, the number
of the iterations is at most min{n,m} and hence the total time-complexity of
APX-FSTP(1,2) is polynomial.

Let the performance ratio of our approximation algorithm APX-FSTP(1,2)
for instance I be ratio(I) = APX(I)

OPT(I) , where OPT(I) denotes the length of an
optimal full Steiner tree for I and APX(I) denotes the length of TAPX obtained
by APX-FSTP(1,2). In the following, we assume that I is a worst-case instance
among all instances. That is, ratio(I ′) ≤ ratio(I) for each I ′
= I.

Lemma 7. If instance I contains an Xk-star for k ≥ 5, then ratio(I) ≤ 5
3 .

114 Chin Lung Lu, Chuan Yi Tang, and Richard Chia-Tung Lee

Proof. Let T be an arbitrary Xk-star in I whose k is maximum and let E(T) be
the set of its edges. Then by Lemmas 2 to 6, the first iteration of our algorithm
APX-FSTP(1,2) will reduce T since its average length f(T) is minimum. Let I ′

be the resulting instance of APX-FSTP(1,2) after T is reduced. Clearly, we have
APX(I ′) = APX(I)− k. Let TOPT be an optimal full Steiner tree of I, and let H
be the resulting graph obtained by adding the k edges of E(T) to TOPT. Then by
removing from H some edges not in E(T) and adding some one edge if possible,
we can build a full Steiner tree T ′ of I such that it contains all edges of E(T). In
the worst case, the k edges of E(T) and the center(T) are not in TOPT. Then we
need to add edge (center(T), v) to build a full Steiner tree T ′, where v is a Steiner
vertex in TOPT. Clearly, the length of T ′ is less than or equal to OPT(I)+2 since
d(center(T), v) ≤ 2. If we reduce T in T ′, then we obtain a full Steiner tree T ′′ of
instance I ′ whose length is less than or equal to OPT(I)−k+ 2. In other words,
OPT(I ′) ≤ OPT(I) − k + 2. Hence, ratio(I ′) = APX(I′)

OPT(I′) ≥ APX(I)−k
OPT(I)−k+2 . Recall

that ratio(I ′) ≤ ratio(I). Then we have APX(I)−k
OPT(I)−k+2 ≤ APX(I)

OPT(I) ⇐⇒ k · OPT(I) ≥
(k − 2) · APX(I)⇐⇒ k

k−2 ≥ APX(I)
OPT(I) = ratio(I). Hence, we have ratio(I) ≤ 5

3 . �	
In the following, we assume that I contains no such an Xk-star with k ≥ 5

and we will then show that ratio(I) ≤ 5
3 . Given an instance I consisting of

G = (V,E) and R ⊂ V , we say that a vertex v ∈ V 1-dominates (or dominates
for simplicity) itself and all other vertices at distance 1 from v. For any D ⊆ V ,
we call it as a 1-dominating set (or dominating set) of R if every terminal in R
is dominated by at least one vertex of D. A dominating set of R with minimum
cardinality is called as a minimum dominating set of R.

Lemma 8. Given an instance I of MIN-FSTP(1,2), let D be a minimum dom-
inating set of R. Then OPT(I) ≥ n+ |D| − 1, where n = |R|.
Proof. Let TOPT be an optimal full Steiner tree of I (i.e., OPT(I) = |TOPT|) and
let R′ ⊆ R be the set of terminals that are dominated by the vertices of D′, where
D′ ⊆ V \R is the set of Steiner vertices in TOPT. Note that for those vertices in
D′, TOPT needs to contain at least |D′| − 1 edges to connect them. Clearly, the
length of TOPT is |TOPT| ≥ |R′|+(|D′|−1)+2 · |R\R′| = |R|+ |D′|+ |R\R′|−1.
Since the union of D′ and R \R′ is a dominating set of R and they are disjoint,
|D| ≤ |D′ ∪ (R \ R′)| = |D′| + |R \ R′|. In other words, we have OPT(I) ≥
|R|+ |D| − 1 = n+ |D| − 1. �	

Let D be a minimum dominating set of R. Then we can partition R into
many subsets in a way as follows. Assign each terminal z of R to a member of D
which dominates it. If two or more vertices of D dominate z, then we arbitrarily
assign z to one of them. Let C1, C2, · · · , Cq be the partitions consisting of exactly
4 terminals.

Lemma 9. OPT(I) ≥ 4n
3 − q

3 − 1.

Proof. According to the partition of R, we have 4 · q + 3(|D| − q) ≥ n, which
means that |D| ≥ n−q

3 . Recall that OPT(I) ≥ n+ |D| − 1 by Lemma 8. Hence,
OPT(I) ≥ n+ n−q

3 − 1 = 4n
3 − q

3 − 1. �	

The Full Steiner Tree Problem in Phylogeny 115

Lemma 10. If instance I contains no Xk-star with k ≥ 5, then ratio(I) ≤ 5
3 .

Proof. Assume that APX-FSTP(1,2) totally reduces j Xki
-stars, where 1 ≤ i ≤ j

and ki ≥ 2. Note that Xki
is a subtree of the full Steiner tree TAPX produced by

APX-FSTP(1,2) and its length is ki. Since the reduction of Xki
merges ki old

terminals into a new one, the number of the terminals is decreased by ki − 1.
After reducing Xkj , the number of the remaining terminals is n−∑j

i=1(ki − 1).
To reduce these terminals, APX-FSTP(1,2) creates a Steiner star with length
less than or equal to 2 · (n −∑j

i=1(ki − 1)). Hence, the total length of TAPX is
less than or equal to (

∑j
i=1 ki) + (2 · (n−∑j

i=1(ki − 1))) = 2n−∑j
i=1(ki − 2).

In other words, we have APX(I) ≤ 2n− p, where p =
∑j

i=1(ki − 2).
Recall that we partition R into many disjoint subsets in which C1, C2, · · · , Cq

are the partitions with each consisting of exactly 4 terminals. In other words,
there are at least q disjoint X4-stars in I. Next, we claim that p > 5q

9 . The best
situation is that each partition Ci, 1 ≤ i ≤ q, corresponds to an X4-star which will
be reduced by APX-FSTP(1,2). In this case, each such an X4-star contributes
2 to p and hence we have p ≥ 2q > 5q

9 . Otherwise, we consider the case with
the following four properties, where for simplicity of illustration, we assume that
q2 ≡ 0 (mod 2), q3 ≡ 0 (mod 3) and q4 ≡ 0 (mod 4), and q1 + q2 + q3 + q4 = q.

(1) There are q1 partitions Ci1 , · · · , Ciq1
in which each partition Cih

1 ≤ h ≤ q1,
corresponds to an X4-star reduced by APX-FSTP(1,2);

(2) There are q2 partitions Ciq1+1 , · · · , Ciq1+q2
in which every other two consec-

utive partitions Ciq1+h+1 and Ciq1+h+2 , 0 ≤ h ≤ q2 − 2 and h ≡ 0 (mod 2),
correspond to an X4-star reduced by APX-FSTP(1,2);

(3) There are q3 partitions Ciq1+q2+1 , · · · , Ciq1+q2+q3
in which every other three

consecutive partitions Ciq1+q2+h+1 , Ciq1+q2+h+2 and Ciq1+q2+h+3 , 0 ≤ h ≤ q3−3
and h ≡ 0 (mod 3), correspond to an X4-star reduced by APX-FSTP(1,2);

(4) There are q4 partitions Ciq1+q2+q3+1 , · · · , Ciq1+q2+q3+q4
in which every other

four consecutive partitions Ciq1+q2+q3+h+1 , Ciq1+q2+q3+h+2 , Ciq1+q2+q3+h+3 and
Ciq1+q2+q3+h+4 , 0 ≤ h ≤ q4 − 4 and h ≡ 0 (mod 4), correspond to an X4-star
reduced by APX-FSTP(1,2).

It is not hard to see that the reduction of X4-stars of property (1) (respec-
tively, (2), (3) and (4)) will contribute 2q1 (respectively, 2q2

2 , 2q3
3 and 2q4

4) to
p and in the worst case, produce 0 (respectively, 0, 2q3

3 and q4) X3-star in
the remaining instance. In the worst case, the (0 + 0 + 2q3

3 + q4 = 2q3+3q4
3)

produced X3-stars will further contribute
2q3+3q4

3
3 to p. Hence, we have p ≥

2q1+ 2q2
2 + 2q3

3 + 2q4
4 + 2q3+3q4

9 = q1+ 18(q1+q2+q3+q4)−2q3−3q4
18 ≥ q1+ 13q

18 (since q1+
q2 + q3 + q4 = q and 2q3 + 3q4 ≤ 5q) > 5q

9 . As discussed above, we have p > 5q
9

(i.e., q < 9p
5). Recall that OPT(I) ≥ 4n

3 − q
3 − 1 by Lemma 9. Then we have

ratio(I) = APX(I)
OPT(I) ≤ 2n−p

4n
3 − q

3 −1 = 6n−3p
4n−q−3 ≤ 6n−3p

4n− 9p
5 −3

. Clearly, 6n−3p

4n− 9p
5 −3

≤ 5
3 if

n ≥ 8. Hence, ratio(I) ≤ 5
3 for n ≥ 8. Note that for n < 8, the optimal solution

can be found by an exhaustive search in polynomial time. �	
According to Lemmas 7 and 10, we have the following theorem immediately.

116 Chin Lung Lu, Chuan Yi Tang, and Richard Chia-Tung Lee

Theorem 3. APX-FSTP(1,2) is a 5
3 -approximation algorithm for the minimum

(1,2)-full Steiner tree problem (MIN-FSTP(1,2)).

References

1. Cheng, X., Du, D.: Steiner Trees in Industry. Kluwer Academic Publishers, Dor-
drecht, Netherlands (2001)

2. Du, D., Smith, J., Rubinstein, J.: Advances in Steiner Trees. Kluwer Academic
Publishers, Dordrecht, Netherlands (2000)

3. Foulds, L., Graham, R.: The Steiner problem in phylogeny is NP-complete. Ad-
vances in Applied Mathematics 3 (1982) 43–49

4. Hwang, F., Richards, D., Winter, P.: The Steiner Tree Problem. Annals of Discrete
Mathematics 53. Elsevier Science Publishers B. V., Amsterdam (1992)

5. Karp, R.: Reducibility among combinatorial problems. In Miller, R.E., Thatcher,
J.W., eds.: Complexity of Computer Computations. Plenum Press, New York
(1972) 85–103

6. Garey, M., Graham, R., Johnson, D.: The complexity of computing Steiner minimal
trees. SIAM Journal on Applied Mathematics 32 (1977) 835–859

7. Garey, M., Johnson, D.: The rectilinear Steiner problem is NP-complete. SIAM
Journal on Applied Mathematics 32 (1977) 826–834

8. Gröpl, C., Hougardy, S., Nierhoff, T., Prömel, H.: Approximation algorithms for
the Steiner tree problem in graphs. In Cheng, X., Du, D., eds.: Steiner Trees in
Industry. Kluwer Academic Publishers, Dordrecht, Netherlands (2001) 235–279

9. Graur, D., Li, W.: Fundamentals of Molecular Evolution. 2nd edition, Sinauer
Publishers, Sunderland, Massachusetts (2000)

10. Kim, J., Warnow, T.: Tutorial on phylogenetic tree estimation. Manuscript, De-
partment of Ecology and Evolutionary Biology, Yale University (1999)

11. Wareham, H.T.: On the computational complexity of inferring evolutionary trees.
Technical Report 93-01, Department of Computer Science, Memorial University of
Newfoundland (1993)

12. Hwang, F.: A linear time algorithm for full Steiner trees. Operations Research
Letters 4 (1986) 235–237

13. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. Journal of the Association for Computing
Machinery 45 (1998) 501–555

14. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamelai, A.,
Protasi, M.: Complexity and Approximation—Combinatorial Optimization Prob-
lems and Their Approximability Properties. Springer Verlag, Berlin (1999)

15. Papadimitriou, C., Yannakakis, M.: Optimization, approximization and complexity
classes. Journal of Computer and System Sciences 43 (1991) 425–440

16. Garey, M., Johnson, D.: Computers and Intractability—A Guide to the Theory of
NP-Completeness. San Francisco, Freeman (1979)

17. Bern, M., Plassmann, P.: The Steiner problem with edge lengths 1 and 2. Infor-
mation Processing Letters 32 (1989) 171–176

18. Rayward-Smith, V.: The computation of nearly minimum Steiner trees in graphs.
International Journal of Mathematical Education in Science and Technology 14
(1983) 15–23

Inferring a Union of Halfspaces from Examples

Tatsuya Akutsu1,2 and Sascha Ott3

1 Bioinformatics Center, Institute for Chemical Research, Kyoto University,
Uji-city, Kyoto 611-0011, Japan
takutsu@kuicr.kyoto-u.ac.jp

2 Graduate School of Informatics, Kyoto University,
Sakyo-ku, Kyoto 606-8501, Japan

3 Human Genome Center, Institute of Medical Science, University of Tokyo,
Minato-ku, Tokyo 108-8639, Japan

ott@ims.u-tokyo.ac.jp

Abstract. We consider the following problem which is motivated by
applications in Bioinformatics: given positive and negative points in d-
dimensions, find a minimum cardinality set of halfspaces whose union
covers all positive points and no negative points. We prove that approx-
imation of this problem is at least as hard as approximation of graph
coloring. On the other hand, we show that the two-dimensional case of
the problem can be solved in polynomial time. Other related results are
shown, too.

1 Introduction

Separation of positive examples from negative examples using a hyperplane is an
important problem in both machine learning and statistics [2,3,6,13]. Though
it is a classic problem, extensive studies are still being done motivated by the
invention of the support vector machine [6]. Recent studies focus on finding large
margin classifiers [6] and minimizing the number of misclassified examples [3].

Learning a mixture of models is another important problem in machine learn-
ing and statistics, because a single model (or a single set of parameters) is not
always enough to characterize the given data (the given examples). Using mul-
tiple sets of parameters is also important in Bioinformatics, because parameter
sets (for example, amino acid scores) sometimes depend on environments [7,16].
For example, Dirichlet mixture was effectively applied to sequence analysis [7].
Many techniques have been proposed for deriving a mixture of probability dis-
tributions such as the EM algorithm and local search heuristics [4,7]. Recently,
Arora and Kannan proposed approximation algorithms for deriving a mixture
of Gaussian distributions [4].

However, to our knowledge, there had been no algorithmic study on deriv-
ing a union or a mixture of halfspaces from examples. Therefore, we study the
computational complexity of this problem and derive inapproximability as well
as approximability results. Furthermore, we show that this problem has a close
relationship to the problem of deriving a PSSM (Position Specific Score Matrix)

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 117–126, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

118 Tatsuya Akutsu and Sascha Ott

from examples [1], where PSSMs are widely used in Bioinformatics [7]. Usu-
ally, PSSMs are derived from positive examples using simple statistical methods
based on residue frequencies or local search algorithms (such as the EM algo-
rithm) [7]. However, almost no theoretical results had been known. Recently, we
proved that derivation of a PSSM (resp. derivation of a mixture of PSSMs) from
both positive and negative examples is NP-hard [1].

We define the problem of deriving a union of halfspaces in the following way
(see also Fig. 1), where a halfspace means a closed halfspace.

Problem 1. Given point sets POS and NEG in d-dimensional Euclidean space,
find a minimum cardinality set of halfspaces {h1, . . . , hk} such that POS ⊆
∪i=1,...,khi and NEG ∩ (∪i=1,...,khi) = ∅.
Along with the above, we consider the following decision problem.

Problem 2. Given point sets POS and NEG in d-dimensional Euclidean space
and an integer K, find a set of halfspaces {h1, . . . , hK} such that POS ⊆
∪i=1,...,Khi and NEG ∩ (∪i=1,...,Khi) = ∅.
It should be noted that there is a solution for K in Problem 2 if there is a
solution for K − 1. Hereafter, we let n = |POS| and m = |NEG|.

In this paper, we prove that approximation of Problem 1 is at least as hard as
approximation of graph coloring. We also prove that Problem 2 is NP-hard even
for K = 2. This result is interesting because Problem 2 can be trivially solved in
polynomial time using linear programming if K = 1. On the other hand, we show
that the two-dimensional case of Problem 1 can be solved in polynomial time. We
present approximation algorithms for a special case of Problem 1 and variants
(maximization of the number of correctly classified examples) of Problem 2.

Though the Boosting technique [10] might be applied to these problems, it
would not solve the problems optimally or near optimally because we derive
strong hardness results.

We can consider the dual problems in which a union of halfspaces is replaced
by an intersection of halfspaces. We can obtain analogous results for these prob-
lems by exchanging POS and NEG.

The organization of the paper is as follows. First, we show hardness results
and a close relationship between a halfspace and a PSSM. Next, we present a
polynomial time algorithm for the two-dimensional case of Problem 1. Then, we
present approximation algorithms. Finally, we conclude with future work.

2 Hardness Results

We briefly introduce the problem of deriving a mixture of PSSMs [1]. Let
POSpssm and NEGpssm be sets of strings of length l over an alphabet Σ. For
a string S, S[i] denotes the i-th letter of S. A PSSM is a function fi(a) from
[1, . . . , l]×Σ to the set of real numbers, where i ∈ [1, . . . , l] and a ∈ Σ. For a string
S and a PSSM fi(a), we define f(S) (the score of S) by f(S) =

∑
i=1,...,l fi(S[i]).

Problem 3. (Derivation of a Mixture of PSSMs)
Given Σ, POSpssm, NEGpssm and a positive integer K, find a set of K PSSMs

Inferring a Union of Halfspaces from Examples 119

h1

h2

Fig. 1. Separation of positive points from negative points using two halfspaces. White
circles and black circles denote positive points and negative points, respectively.

and a threshold Θ which satisfy the following conditions: (i) for all S ∈ POSpssm,
fk(S) ≥ Θ for some k ∈ [1, . . . ,K], (ii) for all S ∈ NEGpssm and for all
k ∈ [1, . . . ,K], fk(S) < Θ, where fk denotes the k-th PSSM.

It was proven in [1] that Problem 3 is NP-hard even for K = 2 and Σ = {0, 1}.
Theorem 1. Problem 2 is NP-hard even for K = 2.

Proof. We use a polynomial time reduction from Problem 3.
We identify Σ with {1, 2, . . . , |Σ|}. For a point p in (l|Σ|)-dimensional Eu-

clidean space, p[i] denotes the i-th coordinate value of p. From each string S of
length l in POSpssm ∪NEGpssm, we create a point s by s[|Σ|(i− 1) +S[i]] = 1
for i = 1, . . . , l, s[j] = 0 for the other j.

We identify a PSSM fi(a) with an (l|Σ|)-dimensional vector a by a[|Σ|(i−
1) + a] = fi(a) for i = 1, . . . , l and a = 1, . . . , |Σ|.

Then, we have the following relation: f(S) ≥ Θ iff. a · s ≥ Θ, where a · s
is the inner product between a and s. That is, each PSSM corresponds to a
halfspace. It should be noted that each halfspace a · s ≥ θ can be normalized so
that the righthand side value takes Θ.

From this relation, it is straight-forward to see the following:

there exists a solution ({f1, . . . , fK}, Θ) for Problem 3 iff.
there exists a solution { a1 · x ≥ Θ, . . . , aK · x ≥ Θ } for Problem 2.

Therefore, the theorem follows from the NP-hardness of Problem 3 [1]. ��
On the minimization of the number of PSSMs, we have a strong inapprox-

imability result as shown below, where ZPP (Zero-error Probabilistic Polyno-
mial time) is the class of languages that have Las Vegas algorithms running in
expected polynomial time [15]. We say that a minimization problem (resp. a
maximization problem) can be approximated within a factor of f(n) if there is
an algorithm for which max(APR

OPT ,
OPT
APR) ≤ f(n) holds where APR and OPT are

the scores of an approximate solution and an optimal solution, respectively.

120 Tatsuya Akutsu and Sascha Ott

Theorem 2. Problem 3 can not be approximated within a factor of O(n1−ε) for
any ε > 0 in polynomial time unless ZPP = NP , where n denotes the number
of positive strings.

Proof. We use an approximation preserving reduction from Minimum Graph Col-
oring (GT4 in [11]) to Problem 3. Let G = (V,E) be an undirected graph. We
define POSG as POSG = {0i−110n−i | xi ∈ V }, where we choose an arbi-
trary ordering of the vertices in V and n = |V |. Furthermore, we define NEGG

as NEGG = {0i−110j−i−110n−j | (xi, xj) ∈ E, i < j} ∪ {0n}.
I = (POSG, NEGG) forms an input for Problem 3. We denote strings of POSG

corresponding to vertex xi as wxi
and strings of NEGG corresponding to e ∈ E

as we.
It suffices to show, that there is a solution for I with K matrices, iff G can

be colored with K colors. Let g : V → {1, . . . ,K} be a coloring for G. For
k ∈ {1, . . . ,K}, we define a PSSM fk. Let i ∈ {1, . . . , n} and a ∈ {0, 1}.

fk
i (a) =

0 if a = 0
1 if a = 1, g(xi) = k
-1 if a = 1, g(xi) �= k

With Θ = 1, fk accepts all strings of POSG, which correspond to a vertex
colored with color k. Since every string in NEGG corresponds to an edge of G
and all edges of G connect vertices with different colors, all negative strings are
rejected by all PSSMs. Therefore, f1, . . . , fK is a solution for I with K PSSMs.

For the proof of the opposite direction, suppose there is a solution for I with
K PSSMs. For every vertex xi, we choose a PSSM fk accepting wxi

and color
xi with color k. If there were an edge (xi, xj) ∈ E with both xi and xj colored
with the same color k, we could conclude

fk(w(xi,xj)) + fk(0n) = fk(wxi
) + fk(wxj

) ≥ 2Θ,

which is a contradiction to fk rejecting both w(xi,xj) and 0n.
Thus, the above construction of an input for Problem 3 yields an approxima-

tion preserving reduction from Minimum Graph Coloring to Problem 3. Since
Minimum Graph Coloring can not be approximated within O(|V |1−ε) unless
ZPP = NP ([9]), we have the theorem. ��
Using the reduction in the proof of Theorem 1, we have:

Corollary 1. Problem 1 can not be approximated within a factor of O(n1−ε)
for any ε > 0 in polynomial time unless ZPP = NP .

In [1], it was shown that a set of |POS| PSSMs can be computed by linear
programming. Though it is a trivial solution to compute one PSSM for each
positive string, this simple algorithm is surprisingly nearly optimal, since The-
orem 2 implies that the minimal number of PSSMs can not be approximated
within a factor of O(|POS|1−ε).

Inferring a Union of Halfspaces from Examples 121

Ω
δΩ

h

h’

Fig. 2. Explanation of Proposition 1.

3 A Polynomial Time Algorithm in Two-Dimensions

In this section, we show that the two-dimensional case of Problem 1 can be
solved in polynomial time.

We assume without loss of generality that all points in POS ∪NEG are in
general positions (i.e., no three points are collinear), where we can modify the
algorithm for a general case without increasing the order of the time complexity.

For sets X and Y , X − Y denotes the subset of X obtained by removing
X ∩Y from X. Let Ω denote the convex hull [8] of NEG, where the boundary is
included in Ω. Let δΩ denote the boundary of Ω and Ω− = Ω − δΩ. Similarly,
δh denotes the boundary of a halfplane h.

Proposition 1. For each halfplane h such that h∩NEG = ∅ and h∩POS �= ∅,
there exists a halfplane h′ satisfying the following conditions: (i) h′ ∩ Ω− = ∅,
(ii) (h ∩ POS) ⊆ (h′ ∩ POS), (iii) |h′ ∩NEG| = 1, (iv) |δh′ ∩ POS| = 1.

Proof. First, simply translate h so that the intersection with NEG consists
of exactly one point. Next, rotate the halfplane around the point so that the
intersection of the boundary with POS consists of exactly one point. ��

It follows that there exists a solution (a set of halfplanes) for Problem 1 and
Problem 2 in which each halfplane is obtained by slightly perturbing a halfplane
satisfying the conditions of Proposition 1.

Let H be the set of halfplanes satisfying the conditions of Proposition 1,
where the number of such halfplanes is O(n). We fix an arbitrary element h0 in
H. For each halfplane h, we define angle(h) (the angle of h to h0) as follows.
Let q be the intersection point of δh and δh0. Assume that h0 coincides with h
if h0 is rotated clockwise around q by A radian (0 ≤ A < 2π). Then, we define
angle(h) = A.

We define the order on halfplanes by

h ≺ h′ iff. angle(h) < angle(h′) .

For example, h0 ≺ h∗
j ≺ hj ≺ h∗

i ≺ hi holds for halfplanes in Fig. 3. It should be
noted that angle(h) is a bijection from H to [0, 2π) if the domain of angle(h)

122 Tatsuya Akutsu and Sascha Ott

is restricted to H (note that there may be two parallel hyperplanes tangent to
δΩ, but they have different angles because the domain of angles is defined to be
[0, 2π)). Since each h ∈ H is tangent to Ω, the ordering gives the total order on
H. This ordering allows us to use dynamic programming.

Let < q1, q2, . . . , qh > be the points in δΩ ∩ NEG, where these points are
arranged in the clockwise order. For each h ∈ H, h∗ is the halfplane such that
h∗ ⊃ {qi, qi−1} and h∗ ∩Ω− = ∅ hold, where qi = h ∩NEG and q0 = qh. Let
< h0, h1, . . . , hN > be the sorted list of H. For each pair of halfplanes (hj , hi)

such that j < i, we define h∗
j,i by h∗

j,i =
(⋃

k=j,...,i h
∗
k

)
− h∗

j , where h∗
j,i = ∅ if

h∗
j = h∗

i .
Algorithm 1 shown below (see also Fig. 3) outputs the minimum number

of halfplanes, where it can be easily modified for computing the halfplanes.
Though we assume that h∗

0 �= h∗
ik

holds for the optimal solution < hi1 =
h0, hi2 , . . . , hik

>, Algorithm 1 can be modified for the case of h∗
0 = h∗

ik
without

increasing the order of the time complexity.

ALGORITHM 1
Construct the convex hull Ω of NEG;
if POS ∩Ω �= ∅ then output “no solution” and halt;
k ← +∞;
for all h0 ∈ H do k ← min(k,SUBPROC(h0));
Output k;

SUBPROC(h0)
Let < h0, h1, . . . , hN > be the sorted list of H;
if h0 ∩ POS = POS return 1;
T [0]← 1;
for i = 1 to N do T [i]← +∞;
for i = 1 to N do

for j = 0 to i− 1 do
if
(
h∗

j,i

⋂
POS

) ⊆ hj ∪ hi then T [i]← min(T [i], T [j] + 1);
for i = 1 to N do

if
(
POS − h∗

0,i

)− (h0 ∪ hi) �= ∅ then T [i]← +∞;
return min{T [i] | i = 1, . . . , N, h∗

i �= h∗
0};

Theorem 3. The two-dimensional case of Problem 1 can be solved in polyno-
mial time.

Proof. First, we show the correctness of Algorithm 1. Clearly, Problem 1 has a
solution if and only if POS ∩Ω = ∅.

From Proposition 1, it suffices to find a minimum cardinality set of halfplanes
satisfying POS ⊆ ∪hi and the conditions of Proposition 1. Let Hopt be such a
set.

Then, we can put the total order on Hopt by choosing an arbitrary element h0
in Hopt. Let < h0 = hi1 , hi2 , . . . , hik

> be the ordered list of Hopt. Since all the

Inferring a Union of Halfspaces from Examples 123

h 0

hj

h i

h j
*

hi
*

Fig. 3. Explanation of Algorithm 1. T [i] is updated if the halftone region (h∗
j,i−hj−hi)

does not contain a point of POS.

elements in POS must be covered by ∪hik
,
(
h∗

ij ,ij+1
∩ POS

)
⊆ hij

∪hij+1 must

hold for j = 1, . . . , k − 1 and
(
POS − h∗

0,ik

) ⊆ (h0 ∪ hik
) must hold. Moreover,

any hk such that k > i > j can not cover h∗
j,i − hj − hi. Therefore, we can

use dynamic programming technique for computing the minimum number of
halfspaces required to cover ∪i

j=0hj for each i, where the number will be stored
in T [i]. Since all h0 are examined, Algorithm 1 will find Hopt.

Next we analyze the time complexity. The convex hull of NEG can be con-
structed in O(m logm) time [8]. Before applying the dynamic programming, we
compute h∗

i,j ∩ POS for all i, j. It takes O((n+m)2n) time using an incremen-
tal procedure, where we omit details. Since both |H| and |POS| are O(n), the
dynamic programming procedure takes O(n3) time per h0.

Therefore, Algorithm 1 takes O(n4 +m2n) time in total. ��

4 Approximation Algorithms in d-Dimensions

In this section, we assume that all points in POS∪NEG are in general positions.
It is easy to see that Problem 2 can be solved in polynomial time if both d and
K are fixed.

Proposition 2. Problem 2 can be solved in O((n+m)dK+1) time for constants
d and K.

Proof. It is easy to see that if Problem 2 has a solution, then there exists a
solution in which the boundary of each halfspace is defined by d points in POS∪
NEG, where we slightly perturb it so that each halfspace does not contain
the point(s) in NEG on the boundary. Therefore, it is enough to examine all
combinations of K such halfspaces. Since the number of halfspaces mentioned
in the above is O((n+m)d), the number of the combinations is O((n+m)dK).
For each combination, O(n+m) time is required for checking the conditions of
Problem 2. ��

124 Tatsuya Akutsu and Sascha Ott

Proposition 3. Problem 1 can be approximated within a factor of O(log n) in
O((n+m)d+1) time if d is a constant.

Proof. We reduce the problem to the set cover problem [11,12].
From an instance of Problem 1, we construct a family of sets S over POS in

the following way. Let H be the set of halfspaces in which the boundary of each
halfspace is defined by d points in POS ∪NEG as in the Proposition 2. Let H ′

be the subset of H obtained by removing halfspaces which contain at least one
point in NEG. We let S = {h ∩ POS| h ∈ H ′}.

Then, a cover of POS corresponds to a set of halfspaces satisfying the con-
ditions of Problem 1. Therefore, the proposition follows from a fact [12] that the
set cover problem can be approximated within a factor of O(log n). ��

From a practical viewpoint, it is more important to develop algorithms for
minimizing the number of misclassified examples or maximizing the number of
correctly classified examples, where the number of halfspaces is bounded by a
constant K. We consider the latter case in this paper, because it seems difficult
to develop a good approximation algorithm for the former problem [3]. Let H
be a set of halfspaces. p ∈ POS (resp. p ∈ NEG) is called a true positive (resp.
a false positive) if p ∈ h for some h ∈ H. p ∈ NEG (resp. p ∈ POS) is called a
true negative (resp. false negative) if p /∈ h for any h ∈ H. Let #TP and #FP
denote the numbers of true positives and false positives, respectively. Let #TN
and #FN denote the numbers of true negatives and false negatives, respectively.
The following proposition is almost trivial (or directly follows from the result of
Amaldi and Kann [2]).

Proposition 4. The maximization problem of #TP + #TN can be approxi-
mated within a factor of 2 in polynomial time.

Proof. We can use the following simple algorithm: output a halfspace which
covers all elements in POS ∪ NEG if |POS| ≥ |NEG|, otherwise output a
halfspace which covers no element in POS ∪NEG. ��

We are also interested in maximizing #TP under the condition that #FP =
0 since it is sometimes important not to output false positives. We call it Prob-
lem 4. Clearly, Problem 4 is NP-hard even for K = 2. We propose a simple
randomized approximation algorithm (Algorithm 2) for the case of K = 2.

ALGORITHM 2
Let R be a set of r points randomly selected from POS;
Hmax ← ∅;
for all partition R1 ∪R2 of R do
H ← ∅;
if there is a halfspace h1 such that h1 ∩R1 = R1 and h1 ∩NEG = ∅
then H ← H ∪ h1;
if there is a halfspace h2 such that h2 ∩R2 = R2 and h2 ∩NEG = ∅
then H ← H ∪ h2;
if |H ∩ POS| > |Hmax ∩ POS| then Hmax ← H;

Output Hmax;

Inferring a Union of Halfspaces from Examples 125

The performance of Algorithm 2 is poor if #TP in the optimal solution is
small (e.g., #TP is O(log n)). However, such a case is meaningless since we
need a classifier with small errors. Therefore, we are interested in the case where
#TP is large enough in the optimal solution. In order to analyze Algorithm 2
for such a case, we use β-center points. A point c ∈ Rd is called a β-center
point of a point set P if every closed halfspace containing c contains at least
βn points of P [5]. Clarkson et al. showed that

(
1

d+1 − ε
)

-center point can be

found in O((d/ε)2 log(d/ε))d+O(1) log(1/δ)) time with probability 1− δ by using
O((d/ε) · log(d/ε) · log(1/δ)) elements randomly sampled from P .

Theorem 4. Let K = 2. Suppose that #TP > n/2 holds in the optimal solution
for Problem 4. For any constants d, δ > 0 and ε > 0, Algorithm 2 outputs a pair
of hyperplanes such that #FP = 0 and #TP ≥ n

4 ·
(

1
(d+1) − ε

)
in O(n + m)

time with probability 1− δ.

Proof. Let (ha, hb) be an optimal solution, where we assume without loss of
generality that |ha ∩ POS| ≥ |hb ∩ POS|.

Using a sufficiently large constant r, there exists R1 with high probability
which can be considered as a random sample of size O((d/ε) · log(d/ε) · log(1/δ))
from ha ∩ POS. Since h1 contains R1 and |ha ∩ POS| ≥ n

4 holds, h1 contains
n
4 ·
(

1
d+1 − ε

)
points of POS with high probability.

Since r is a constant and linear programming can be done in linear time for
fixed d [14], Algorithm 2 works in linear time. ��
It should be noted that Problem 4 can be solved exactly in O((n+m)dK+1) time
for fixed d and K as in Proposition 2.

5 Concluding Remarks

In this paper, we studied the complexity of inferring a union of halfspaces from
positive and negative examples. Though this problem was motivated by appli-
cations in Bioinformatics, we believe that it has applications in other areas, too.
We presented a polynomial time algorithm for Problem 1 in two-dimensions.
However, it is left as an open problem whether or not Problem 1 is NP-hard in
three-dimensions (or higher dimensions).

From a practical viewpoint, maximization of the number of correctly classi-
fied examples (or, minimization of the number of misclassified examples) is more
important. We presented approximation algorithms for this purpose. However,
the performances of the algorithms are far from enough to be practical. Devel-
opment of better algorithms is important future work as well as deriving lower
bounds on the performance ratios.

Acknowledgement

Tatsuya Akutsu was supported in part by a Grant-in-Aid for Scientific Re-
search on Priority Areas (C) for “Genome Information Science” and Grant-

126 Tatsuya Akutsu and Sascha Ott

in-Aid #13680394 from the Ministry of Education, Culture, Sports, Science and
Technology (MEXT) of Japan. We thank Jean-Phillipe Vert for helpful discus-
sions.

References

1. Akutsu, T., Bannai, H., Miyano, S., Ott, S.: On the complexity of deriving position
specific score matrices from examples. Proc. CPM 2002. Lecture Notes in Computer
Science (to appear)

2. Amaldi, E., Kann, V.: The complexity and approximability of finding maximum
feasible subsystems of linear relations. Theoretical Computer Science 147 (1995)
181–210

3. Amaldi, E., Kann, V.: On the approximability of minimizing nonzero variables or
unsatisfied relations in linear systems. Theoretical Computer Science 209 (1998)
237–260

4. Arora, S., Kannan, R.: Learning mixtures of arbitrary gaussians. Proc. 33rd ACM
Symp. Theory of Computing (2001) 247–257

5. Clarkson, K.L., Eppstein, D., Miller, G.L., Sturtivant, C., Teng S-H.: Approximat-
ing center points with iterated radon points. Proc. 9th ACM Symp. Computational
Geometry (1993) 91–98

6. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20 (1995) 273–
297

7. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequence Analysis. Prob-
abilistic Models of Proteins and Nucleic Acids. Cambridge University Press, New
York (1998)

8. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer-Verlag, Berlin
Heidelberg New York (1987)

9. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. J. Computer and
System Sciences 57 (1998) 187–199

10. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. J. Computer and System Sciences 55 (1997) 119–
139

11. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, New York
(1979)

12. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Computer
and System Sciences 9 (1974) 256–278

13. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory.
The MIT Press, Cambridge, MA (1994)

14. Megiddo, N.: Linear programming in linear time when the dimension is fixed. SIAM
J. Computing 12 (1983) 759–776

15. Motowani, R., Raghavan, P.: Randomized Algorithms. Cambridge University
Press, New York (1994)

16. Radivojac, R., Obradoviv, Z., Brown, C.J., Dunker, A.K.: Improving sequence
alignments for intrinsically disordered proteins. Pacific Symp. Biocomputing 7
(2002) 589–600

Dictionary Look-Up within Small Edit Distance

Abdullah N. Arslan and Ömer Eğecioğlu�

Department of Computer Science
University of California, Santa Barbara

Santa Barbara, CA 93106 USA
{arslan,omer}@cs.ucsb.edu

Abstract. LetW be a dictionary consisting of n binary strings of length
m each, represented as a trie. The usual d-query asks if there exists a
string in W within Hamming distance d of a given binary query string
q. We present an algorithm to determine if there is a member in W
within edit distance d of a given query string q of length m. The method
takes time O(dmd+1) in the RAM model, independent of n, and requires
O(dm) additional space.

1 Introduction

LetW be a dictionary consisting of n binary strings of length m each. A d-query
asks if there exists a string in W within Hamming distance d of a given binary
query string q. Algorithms for answering d-queries efficiently has been a topic
of interest for some time, and have also been studied as the approximate query
and the approximate query retrieval problems in the literature. The problem was
originally posed by Minsky and Papert in 1969 [10] in which they asked if there
is a data structure that supports fast d-queries.

The cases of small d and large d for this problem seem to require different
techniques for their solutions. The case when d is small was studied by Yao and
Yao [14] . Dolev et al. [5,6] and Greene et al. [7] have made some progress when
d is relatively large. There are efficient algorithms only when d = 1; proposed
by Brodal and Venkadesh [3], Yao and Yao [14], and Brodal and Gasieniec [2].
The small d case has applications in password security [9]. Searching biological
sequence databases may also use the methods of answering d-queries.

Previous studies for the d-query problem have focused on minimizing the
number of memory accesses for a d-query, assuming other computations are
free, and used cell or bit probe models to express complexity. We assume a RAM
model with constant memory access time and take into account all computations
in the complexity analysis. Dolev et al. [6] presented bounds for the space and
time complexity of the d-query problem under certain assumptions using various
notions of proximity. In the model, W is stored in buckets, and preprocessing of
W is allowed.

� Supported in part by NSF Grant No. EIA–9818320.

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 127–136, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

128 Abdullah N. Arslan and Ömer Eğecioğlu

0

0

1

0

1

0

1

1

1

1

0
Root

0

0

1

0

0

1

1

0

1

1

1

1

Root

1

1

1

2

2

2

2

4

2

1

1

3

0

1

0

1

1

0
3

3

(a) (b)

Fig. 1. a) An example trie with binary words 00011, 01001, and 11111 . b) The numbers
in italic are the node weights computed with respect to query string 00100.

In this paper we consider answering d-queries efficiently without limiting our-
selves to the construction of a new data structure parametrized by d. The variant
of the original d-query problem that we consider is when the string-to-string edit
distance is used as the distance measure instead of the ordinary case of Hamming
distance. We assume that W is stored as a trie Tm, and propose two algorithms
for the d-query problem in this case. Our algorithms use the hybrid tree/dynamic
programming approach [4]. The first one (Algorithm LOOK-UPed, Figure 4) re-
quires O(dmd+2) time in the worst case, and O(dmd+1) space (in addition to the
space requirements of the trie Tm). This complexity is of interest for small values
of d under investigation. The second algorithm (Algorithm DFT-LOOK-UPed,
Figure 7) has time complexity O(dmd+1), and additional space complexity of
only O(dm).

There is reason to believe that the average performance of both algorithms
is much better when W is sparse.

2 Motivation: Hamming Distance Based Methods

Hamming distance between two binary strings is the number of positions they
differ. A d-query asks if there is a member in a dictionary W whose Hamming
distance is at most d from a given binary query string q.

We assume a trie representation Tm for W, and assume for simplicity that
W consists of binary words of length m each. A trie is a tree whose arcs are
labeled by the symbols of alphabet Σ, in this case Σ = {0, 1}. The leaf nodes of
Tm correspond to the words in W, and when concatenated, the labels of arcs on
a path from the root to a given intermediate node gives a prefix of at least one
word in W. Clearly, in the RAM model assumed, accessing a word in W takes
O(m) time. Figure 1 part (a) shows an example trie T5 representing a dictionary
W = {00011, 01001, 11111}.

Dictionary Look-Up within Small Edit Distance 129

0

0

0

0

1

1

11

1

12 2

2

2

3

3

0 1 1 2 1 2 2 3 1 2 2 3 2 3 4

Level

0

1

2

3

4

0

0

0

0 0 0 0 0 0 0 0

0 0 0

1

1

1

1 1 1 1 1 1 1 1

111

0 1

Fig. 2. In a complete binary trie of height 4, weights with respect to a given binary
query string are shown in italic.

A naive method for answering a d-query is to generate the whole set of∑d
k=0

(
m
k

)
strings differing from q in at most d positions, and with every string

generated, perform a dictionary look-up in Tm for an exact member in W. This
naive generate and test algorithm takes O(md+1) time and O(m) additional space
to store a generated string at a time. Another naive method is to add all strings
within Hamming distance d from any member inW to obtain a bigger dictionary
W ′ . Then any d-query can be answered in O(m) time using the corresponding
trie T ′

m for an exact member. This latter method significantly increases the size
of W by a number roughly O(nmd) m-bit members. Cost of constructing and
maintaining T ′

m may be extremely high.
For Hamming distance, we can improve the first naive algorithm above as

follows. Let s(v) denote the prefix corresponding to trie node v. Given a query
string q, suppose that we assign weight wh to each trie node v in Tm as

wh(v) = h(s(v), q1···|s(v)|), (1)

where h denotes Hamming distance. As an example, in Figure 1 (b) the weights
of the nodes have been computed with respect to query string q = 00100. The
idea is that we can prune the trie in our search for q at the nodes in Tm with
wh(v) > d.

Lemma 1. Let N be the number of nodes in Tm with weight ≤ d as defined in
(1). Then N = O(md+1) .

Proof. It is easy to see that N is maximized over all tries Tm when Tm is a
complete trie over Σ, i.e. Tm contains all binary strings of length m. Figure 2
shows node weights of a complete trie with respect to q up to level 4 starting
with the root at level 0. The root has weight 0. For any other vertex v at level
l, if the arc from its parent to v has label ql (the lth symbol of query string q)

130 Abdullah N. Arslan and Ömer Eğecioğlu

Algorithm LOOK-UPh(d)
S0 = {(v0, 0)}
for k = 1 to m do

Sk = {(v[a], w(v) + h(a, qk)) | (v, w(v)) ∈ Sk−1, w(v) + h(a, qk) ≤ d,
and a ∈ Σ}

Return YES if the minimum weight in Sm is ≤ d, NO otherwise

Fig. 3. Algorithm LOOK-UPh for dictionary look-up within Hamming distance d.

then v and its parent have the same weight; otherwise, weight of v is 1 more
than that of its parent . Let L(l, w) denote the number of vertices with weight w
at level l of the complete trie Tm. At any level l, the largest weight is l . Using
these observations we see that L(l+ 1, w) = L(l, w) +L(l, w− 1) with l ≥ w and
L(l, 0) = 1 . Therefore L(l, w) is the binomial coefficient

(
l
w

)
. Furthermore since

the smallest level at which weight w appears in Tm is l = w, the total number
of vertices with weight w in Tm is

(
w
w

)
+
(
w+1

w

)
+ · · ·+ (mw) =

(
m+1
w+1

)
. Hence

N =
d∑

w=0

(
m+ 1
w + 1

)
= O(md+1)

Based on the above lemma, Figure 3 outlines Algorithm LOOK-UPh for
dictionary look-up within Hamming distance d. The algorithm explores all nodes
v in Tm with weight wh(v) ≤ d, i.e. s(v) is a prefix of a word in W whose
Hamming distance from q is potentially within d. Sk stores the set of node-
weight pairs (v, wh(v)) for all nodes v at levels ≤ k with weight wh(v) ≤ d. The
algorithm iteratively computes Sk from Sk−1 by collecting all pairs (v[a], w(v) +
h(a, qk)) in Sk where (v, w(v)) ∈ Sk−1, w(v) +h(a, qk) ≤ d, and a ∈ Σ = {0, 1} .
Clearly, if there is a member in W within Hamming distance d then it will be
captured in Sm in which case the algorithm returns YES; otherwise it returns
NO.

Sk contains O(md+1) node-weight pairs by Lemma 1. Therefore the time
complexity in the assumed model is O(md+2). It also requires additional space
to store O(md+1) trie nodes. The time complexity is no better in the worst case
than that of the naive algorithm which generates and tries all possible strings
within Hamming distance d from q. However for a sparse dictionaryW Algorithm
LOOK-UPh is bound to be much faster on the average.

3 Edit Distance Based d-Queries

Algorithm LOOK-UPh essentially computes the Hamming distance between q
and a selected part of dictionary W. Next we investigate the possibility of using
a similar idea for d-queries defined with respect to the edit distance.

For the purposes of this paper, we use a simple type of edit distance. Given
two strings p = p1 · · · pm and q = q1 · · · qm, the edit distance ed(p, q) is the

Dictionary Look-Up within Small Edit Distance 131

minimum number of edit operations which transforms p into q. The edit oper-
ations are of three types: insert, delete, and substitute. Substituting a symbol
by itself is called a match. A match operation is the only operation that does
not contribute to the number of steps of the transformation. In terms of costs,
all edit operations have cost 1 except for the match whose cost is 0. The usual
framework for the analysis of edit distance is the edit graph. Edit Graph Gp,q

is a directed acyclic graph having (m + 1)2 lattice points (u, v) as vertices for
0 ≤ u, v ≤ m. Horizontal and vertical arcs correspond to insert and delete op-
erations respectively. The diagonal arcs correspond to substitutions. Each arc
has a cost corresponding to the edit operation it represents. If we trace the arcs
of a path from node (0, 0) to an intermediate node (i, j), and perform the in-
dicated edit operations in the given order on p1 · · · pi then we obtain q1 · · · qj .
Edit distance between prefixes pi and qj is the cost of the minimum-cost path
from (0, 0) to (i, j), and can be computed from the distances achieved at nodes
(i−1, j), (i−1, j−1), and (i, j−1). Hence it has a simple dynamic programming
formulation [13]:

Di,j = min{ Di−1,j + 1, Di−1,j−1 + h(pi, qj), Di,j−1 + 1} (2)

for 1 ≤ i, j ≤ m, with Di,j = 0 whenever i = 0 or j = 0.

3.1 Algorithm LOOK-UPed

With respect to a given binary query string q, we assign weight wed to any trie
node v in Tm as

wed(v) = min{ed(s(v), r) | r is a prefix of q} (3)

where ed denotes the edit distance.

Lemma 2. Let N be the number of nodes in Tm with weight ≤ d as defined in
(3). Then N = O(md+1) .

Proof. Proof is similar to the proof of Lemma 1 for the Hamming distance case.
Analysis of N over a complete binary trie gives the maximum N . We omit the de-
tails. We remark however that in general wed(v) �= wh(v), and for non-complete
binary tries the distribution of weights over the nodes can differ significantly for
Hamming and edit distances.

Algorithm LOOK-UPed shown in Figure 4 extends the dynamic program-
ming formulation (2) of the edit distance computation by considering all pre-
fixes of all members inW. Si,j stores all the node-weight pairs (v, wed(v)) where
s(v) = p1 · · · pi for some p ∈ W, and wed(v) = ed(p1 · · · pi, q1 · · · qj) .

The computations in LOOK-UPed involve sets, as opposed to just scores
of the ordinary edit distance computations. Edit operation and the trie nodes
involved determine an action on the sets. Consider the operations resulting in
at node (i, j) of the edit graph as shown in Figure 5. Let the operation be the

132 Abdullah N. Arslan and Ömer Eğecioğlu

Algorithm LOOK-UPed(d)
Si,−1 = ∅ for all i, 1 ≤ i ≤ d
S−1,j = ∅ for all j, 1 ≤ j ≤ d
S0,0 = {(v0, 0)}
for i = 0 to m do

for j = max{0, i− �d/2�} to min{m, i + �d/2�} do
{
if (i = 0 and j = 0) then continue with the next iteration
else
{
S′

i−1,j = {(v[a], t + 1) | t + 1 ≤ d, (v, t) ∈ Si−1,j and a ∈ Σ }
S′

i,j−1 = {(v, t + 1) | t + 1 ≤ d, (v, t) ∈ Si−1,j }
S′

i−1,j−1 = {(v[a], t + h(a, qj) | t + h(a, qj) ≤ d, (v, t) ∈ Si−1,j−1, a ∈ Σ }
Si,j = {(v, t) | t is the minimum weight

paired with leaf v in S′
i−1,j ∪ S′

i,j−1 ∪ S′
i−1,j−1}

}
}

Return YES if the minimum weight in Sm,m is ≤ d; otherwise NO

Fig. 4. Algorithm LOOK-UPed for dictionary look-up within edit distance d.

(m
- d/2 ,m

)

p=
p

p
...

p
1

m
2

in
 di

cti
on

ar
y W

all
 pr

ef
ix

es

qj

qj

(0, d/2)(0,0)

query string q=q q ... q 1 2 m

(d/2 ,0)

(m,m- d/2) (m,m)

(i-1,j-1)

delete subs.

(i-1,j)
insert

(i,j)(i,j-1)

pi for pi

Fig. 5. Part of the edit graph explored during the computations.

deletion of symbol pi ∈ Σ. For (v, t) ∈ Si−1,j if there is an arc from v to v[a] with
label a ∈ Σ then the delete operation causes weight t+ 1 in v[a]. This potential
weight assignment is reflected in set S′

i−1,j , and realized in set Si,j only if no
weight smaller than t + 1 is achieved by other edit operations resulting in v[a].
Now consider the insertion of qj . For each (v, t) ∈ Si,j−1, the pair (v, t + 1) is
inserted into S′

i,j−1 . Similarly for each (v, t) ∈ Si−1,j−1, (v[a], t + h(a, qj)) is
inserted into S′

i−1,j−1 . Subsequently, all node-weight pairs in sets S′
i−1,j , S′

i,j−1,

Dictionary Look-Up within Small Edit Distance 133

, 1){ , ...}v1(

v0(, 0){ , ...}

v0
v1

v2

v3

v4

v5

0

1

1

0

1

1

1

Root

1

11

0

0

0

1

(, 1){ , ...}v2

(, 1){ , ...}v3

({ , 1) , ...}v4

(, 2){ , ...}v5

q = 0 0 1 0 0
(,){ , ...}v0 1

insert 0

match

match

match

match

delete 1

Fig. 6. Partial results on an edit path for a member within edit distance 2 of q.

and S′
i−1,j−1 are collected into set Si,j by including for each node at most one

pair, namely the one with the minimum weight.
The computations on the edit graph can be restricted to a narrow diagonal

band of the edit graph as shown in Figure 5, since any edit path with total
weight at most d completely lies in this band.

We can easily show by induction that for all i, j with 0 ≤ i ≤ m, and
max{0, i − �d/2�} ≤ j ≤ min{i, i + �d/2�}, (v, t) ∈ Si,j iff there exists a trie
node v such that |s(v)| = i and ed(s(v), q1 · · · qj) = t . This implies that Sm,m

includes a node-weight pair with weight ≤ d for a leaf node iff there exists a
member in W within edit distance d. Therefore the algorithm is correct.

Figure 6 shows an example edit path with partial results which identify mem-
ber 01001 as within edit distance 2 of q = 00100.

By Lemma 2, computing each Si,j from Si−1,j , Si,j−1, Si−1,j−1 takesO(md+1)
time since the size of each of these sets is bounded by O(md+1) . Therefore
the time complexity of Algorithm LOOK-UPed is O(dmd+2), and it requires
O(dmd+1) additional space since it is enough to store the sets of the previous
and current rows as the processing is done row by row.

3.2 Algorithm DFT-LOOK-UPed

Next we propose Algorithm DFT-LOOK-UPed with which we improve the time
complexity of the d-query problem with respect to edit distance to O(dmd+1),
and space complexity to O(dm). The steps of the algorithm are shown in Fig-
ure 7. The algorithm is based on depth-first traversal (DFT) of trie Tm, during
which the entries of the dynamic programming matrix are computed row by
row. For trie node v, i = level(v) (Figure 9), and max{0, i − �d/2�} ≤ j ≤
min{m, i+ �d/2�} we define Dv,i,j as

Dv,i,j = ed(s(v), q1 · · · qj)

Algorithm DFT-LOOK-UPed performs the initialization of scores for the first
row, and invokes Procedure DFT-COMPUTE-Ded for each arc from root v0 to

134 Abdullah N. Arslan and Ömer Eğecioğlu

Algorithm DFT-LOOK-UPed(d)

Dv0,0,j = 0 for all j, 0 ≤ j ≤ �d/2�
for each arc from v to v[a] on any a ∈ Σ do

if DFT-COMPUTE-Ded(v0, a, v0[a]) ≤ d then return YES
return NO

Fig. 7. Algorithm DFT-LOOK-UPed for dictionary look-up within edit distance d.

Procedure DFT-COMPUTE-Ded(u, a, v)

i = level(v)
for j = max{0, i− �d/2�} to min{m, i + �d/2�} do

Dv,i,j = min{ Du,i−1,j + 1, Du,i−1,j−1 + h(a, qj), Du,i,j−1 + 1}
weight = min{Dv,i,j | max{0, i− �d/2�} ≤ j ≤ min{m, i + �d/2�}
if v is a leaf node or weight > d then return weight
return min{DFT-COMPUTE-Ded(v, a, v[a]) | there is an arc

incident from v to v[a] on a ∈ Σ}

Fig. 8. Procedure DFT-COMPUTE-Ded for computing the minimum edit distance
achieved in subtrie rooted at v.

v0[a] with label a. If any of these invocations returns a value ≤ d then the
algorithm returns YES; otherwise returns NO.

Given a parent node u, children node v, and symbol a ∈ Σ of the arc con-
necting these two, Procedure DFT-COMPUTE-Ded(u, a, v) first computes the
values in the row of node v using the values in the row of parent node u in
the edit graph (Figure 9). If all computed entries in this row are > d, then the
procedure returns the minimum of these numbers. Otherwise it traverses the
subtrie rooted at v in depth-first manner, computes and returns the minimum
edit distance achievable in the leaf nodes of this subtrie.

To show correctness, we claim that Dv,i,j stores ed(s(v), q1 · · · qj) where i =
level(v). This can be shown by induction. Assume that before v is visited for
the parent of v, and corresponding entries, the claim is true then following the
computations for v we can easily see that the claim will be true for v after the
processing is done for the entries of v. Another induction on the subtries of
v reveals that the procedure call on v will return the minimum edit distance
achieved in the leaves of the subtrie rooted at v. Therefore the algorithm returns
YES iff there is a member in W within edit distance d of q.

Depth-first traversal visits O(md+1) trie nodes by Lemma 2. With every
node visited O(d) operations are performed. Therefore the time complexity of
the algorithm is O(dmd+1). Dept-first traversal requires that a branch of O(m)
trie nodes be stored. For each node O(d) entries are maintained. Hence the space
complexity of the algorithm is O(dm).

We can adapt DFT-LOOK-UPed (and DFT-COMPUTE-Ded) to Hamming
distance computations as well. In this case, we only need to consider the diag-
onal entries of the edit graph, and each entry is computed using only the value
of the parent which is stored in the diagonal of the previous level. The result-

Dictionary Look-Up within Small Edit Distance 135
(m

- d/2 ,m
)a

level
0

v0

i=level(v)

m

(0,0) (d/2 ,0)

(m, m- d/2)

(0, d/2)

q = q ... q1 m

s(v)

a
v

(i-1,j-1) (i-1,j)

(i,j)

insert
q

(i,j-1)

delete
a

j

q for aj
subs.

u

row of v

row of u

(m,m)

Fig. 9. Depth-first traversal on the trie, and the region of the dynamic programming
matrix in which the computations are performed.

ing algorithm DFT-LOOK-UPh for Hamming distance based d-queries has time
complexity O(md+1) and space O(m).

4 Remarks

For clarity of presentation, we have assumed a dictionary of words of equal
length. With some additional care our method can be generalized to the cases in
which different word lengths, and larger alphabets are allowed for the dictionary.

Restricting the dynamic programming computation to a diagonal band of
edit graph was used by Ukkonen [12]. We have essentially incorporated this idea
in our method. For the purpose of developing new methods for d-queries, the
idea of using sets to keep track of partial results may also be used in conjunction
with suitable edit distance algorithms such as by Myers [11], and Kim et. al [8].
The algorithm in [8] is interesting in particular because it extends the definition
of edit distance by allowing swaps.

As we remarked in section 2, the naive generate and test d-query algorithm
for Hamming distance requires O(md+1) time and O(m) space. If there exists an
efficient algorithm to generate all binary strings within edit distance d of q then
we can devise a similar generate and test d-query algorithm for the edit distance
case. Similarly, the naive method for the Hamming distance in section 2 obtained
by enlargingW can be adapted to the case of edit distance by efficient generation
of words that are within edit distance d of the words in W if we agree to pay a
very high cost for constructing, and maintaining the extended dictionary.

5 Conclusion

We have presented two algorithms LOOK-UP and DFT-LOOK-UP for answer-
ing d-queries in a dictionary of n binary words of length m. The algorithms

136 Abdullah N. Arslan and Ömer Eğecioğlu

incorporate the proximity search as part of the distance computation. This ap-
proach does not yield improved worst-case time complexity result in the case
of Hamming distance compared to a naive generate and test approach. When
edit distance is used we achieve worst-case O(dmd+1) time and O(dm) space
complexities independent of n.

The average case analysis of the two algorithms presented for edit distance
over larger alphabets and dictionaries consisting of arbitrary length words are
additional topics of investigation.

Acknowledgement

The authors would like to thank the anonymous referee for pointing out the
reference [1] in which suffix trees are used in regular expression pattern matching,
and the hybrid tree/dynamic programming approach in [4], which is essentially
the method presented here for a set of problems involving patterns in strings.

References

1. P. Bieganski. Genetic Sequence Data Retrieval and Manipulation based on Gen-
eralized Suffix Trees. PhD thesis, University of Minnesota, 1995.

2. G. S. Brodal and L. Gasieniec. Approximate dictionary queries, in: Poc. 7th
Combinatorial Pattern Matching, LNCS, Vol. 1075, Springer, Berlin, 65–74, 1996.

3. G. S. Brodal and S. Velkatesh. Improved bounds for dictionary look-up with one
error. IPL, 75, 57–59, 2000.

4. D. Gusfield. Algorithms on strings, trees, and sequences : computer science and
computational biology. Cambridge University Press, 1997.

5. D. Dolev, Y. Harari, N. Linial, N. Nisan and M. Parnas. Neighborhood preserving
hashing and approximate queries. Proceedings of the Fifth ACM SODA, 1994.

6. D. Dolev, Y. Harari and M. Parnas. Finding the neighborhood of a query in a
dictionary. Proceedings of the Second Israel Symposium on Theory of Computing
and Systems, 1993.

7. D. Greene, M. Parnas and F. Yao. Multi-index hashing for information retrieval.
Proceedings of 1994 IEEE FOCS, pp. 722–731, November 1994.

8. D. K. Kim, J. S. Lee, K. Park and Y. Cho. Algorithms for approximate string
matching with swaps. J. of Complexity, 15, 128–147, 1997.

9. U. Manber and S. Wu. An algorithm for approximate membership checking with
applications to password security. IPL, 50, 191–197, 1994.

10. M. Minsky and S. Papert. Perceptrons. MIT Press, Cambridge, MA, 1969.
11. E. W. Myers. An O(ND) difference algorithm and its variations. Algorithmica,

1(2):251–266, 1986.
12. E. Ukkonen. Algorithms for Approximate String Matching. Information and Con-

trol, 64, 100-118, 1985.
13. R. A. Wagner and M. J. Fisher. The string-to-string correction problem. JACM,

21(1):168–173, January 1974.
14. A. C. Yao and F. F. Yao. Dictionary look-up with one error. J. of Algorithms,

25(1), 194–202, 1997.

Polynomial Interpolation of the Elliptic Curve
and XTR Discrete Logarithm

Tanja Lange1 and Arne Winterhof2

1 Chair for Information Security, Ruhr-University Bochum, Universitätsstr. 150,
44780 Bochum, Germany

lange@exp-math.uni-essen.de
2 Institute of Discrete Mathematics, Austrian Academy of Sciences,

Sonnenfelsgasse 19, A-1010 Wien, Austria
arne.winterhof@oeaw.ac.at

Abstract. We prove lower bounds on the degree of polynomials inter-
polating the discrete logarithm in the group of points on an elliptic curve
over a finite field and the XTR discrete logarithm, respectively.

1 Introduction

In cryptographic applications an important primitive used in the protocols is
the discrete logarithm problem: Given a cyclic group G =< γ > of order l
and an element ρ ∈ G determine the exponent x such that ρ = γx, 0 ≤ x ≤
l − 1. The integer x is called the discrete logarithm of ρ to the base γ. (For
surveys on discrete logarithms see e. g. [2,5,6,7].) The first group suggested for
use in practice was the multiplicative group of a finite field. In this particular
case subexponential algorithms for solving the discrete logarithm problem are
known which motivates considering other groups. An alternative used in practice
is the group of points on an elliptic curve. Recently, Lenstra and Verheul [4]
introduced a public key system called XTR which is based on a special method
to represent elements of a multiplicative subgroup of a finite field. The security
of this cryptosystem depends on the intractability of the XTR discrete logarithm
(XTRDL) problem defined in Section 4.

For solving the discrete logarithm problem in the multiplicative group of a
finite field (DL problem), the elliptic curve discrete logarithm (ECDL) problem,
or the XTRDL problem it would be sufficient to have a polynomial over a finite
field of low degree which reveals information on the DL, ECDL, or XTRDL,
respectively, for a large set of elements. In the DL case it has been shown that
such a polynomial does not exist [3,8,9]. In this paper we prove analogue results
for the ECDL (Section 3) and the XTRDL (Section 4). Since the XTRDL prob-
lem is computationally equivalent to the discrete logarithm problem in a certain
subgroup of a finite field we investigate this case (Section 5), as well. For the
latter problem we also prove a lower bound on the weight, i. e. the number of
nonzero coefficients, of a polynomial representing the discrete logarithm.

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 137–143, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

138 Tanja Lange and Arne Winterhof

2 Basic Notations and Preliminaries

We use the following ordering of the elements of the finite field Fq of order q = pr

with a prime p and an integer r ≥ 1. Let {β0, . . . , βr−1} be a basis of Fq over
Fp and define ξk for 0 ≤ k < q by

ξk = k0β0 + k1β1 + . . .+ kr−1βr−1

if
k = k0 + k1p+ . . .+ kr−1p

r−1 with 0 ≤ ki < p for 0 ≤ i < r.

The following result may be of independent interest (cf. [8, Lemma 3.3]).

Lemma 1. Let γ ∈ Fq be an element of order l and f(X) ∈ Fq[X] a nonzero
polynomial of degree at most l − 1 with at least b zeros of the form γx with
0 ≤ x ≤ l − 1. Then for the weight of f(X) we have

w(f) ≥ l

l − b .

Proof. Put t =w(f), let N ≤ l−b be the number of 0 ≤ x ≤ l−1 with f(γx) �= 0
and T the number of pairs (y, i), 0 ≤ y ≤ l − 1, 0 ≤ i ≤ t− 1 with f(γy+i) �= 0.
Since γx = γx+l we have T = tN . Using properties of Vandermonde matrices
we can verify that for every 0 ≤ y ≤ l − 1 there exists an 0 ≤ i ≤ t − 1 with
f(γy+i) �= 0 and thus t(l − b) ≥ tN = T ≥ l. ��

3 The Elliptic Curve Discrete Logarithm

In this section we restrict ourselves to odd characteristic. Let E be an elliptic
curve defined over Fq, q ≥ 7, given by an equation of the form

E : Y 2 = X3 + a2X
2 + a4X + a6, ai ∈ Fq, i ∈ {2, 4, 6}.

(As usual we write the group law on elliptic curves additively.)
Let P be a point of order l on E and assume that we have a polynomial f(X) ∈
Fq[X] satisfying

f(x) = ξn, 1 ≤ n ≤ �l/2� ⇐⇒ ∃y ∈ Fq : (x, y) = nP, (1)

for n ∈ S ⊆ {N + 1, . . . , N +H} ⊆ {1, . . . , �l/2�}. (Thus from the result of f(x)
one determines the discrete logarithm of (x, y) to the base P for admissible values
(x, y) = ±nP, n ∈ S, in the sense that one is left with at most two choices for the
index and can easily determine the correct one. Moreover, note that �l/2� < q
by the Hasse-Weil bound.) Now we derive a lower bound on the degree of f(X).

Theorem 1. Let E be an elliptic curve over Fq q ≥ 7 odd, P be a point on E
of order l let f(X) satisfy (1), and put |S| = H − s. Then we have

deg(f) ≥
(

1− 2
p

)
H − 2

3
− s− 2

3
.

Polynomial Interpolation of the Elliptic Curve and XTR Discrete Logarithm 139

Proof. Let R ⊆ S consist of those n ∈ S such that {n − 1, n, n + 1} ⊆ S,
n �∈ {1, N +H}, and such that ξn±1 = ξn ± ξ1 (i. e. n �≡ 0, p− 1 mod p). For the
size of R we have |R| ≥ H − 3s− 2− 2(�(N +H)/p� − �(N + 1)/p�).
Put m = deg(f) and f(X) =

∑m
i=0 fiX

i, fm �= 0. Put nP = (xn, yn) for
n ∈ {1, . . . , �l/2�}. We consider the following system of equations

f(xn+1)− f(xn)− ξ1 = ξn+1 − ξn − ξ1 = 0, (2)
f(xn−1)− f(xn) + ξ1 = ξn−1 − ξn + ξ1 = 0,

which holds for all n ∈ R.
By the usual addition formula on E we have

xn±1 =
a(xn)∓ 2yny1

(xn − x1)2

where
a(X) = x1X

2 + (x2
1 + 2a2x1 + a4)X + a4x1 + 2a6.

Inserting this value into (2) leads to

f(xn±1)− f(xn)∓ ξ1 =
m∑

i=0

fi

(
a(xn)∓ 2yny1

(xn − x1)2

)i

− f(xn)∓ ξ1

=
u(xn)∓ ynv(xn)

(xn − x1)2m
− f(xn)∓ ξ1

= 0

with uniquely determined polynomials u(X) and v(X) and thus

u(xn)
(xn − x1)2m

− f(xn) = 0,

where deg(u) ≤ 2m. Hence the polynomial

h(X) = (X − x1)2mf(X)− u(X)

of degree 3m has at least |R| zeros and thus

3m ≥ |R| ≥ H − 3s− 2− 2(�(N +H)/p� − �(N + 1)/p�)
from which the result follows. ��
Remarks:

1. For even q ≥ 8 a similar result can be obtained. We define analogously a set
R but with n ≡ 2 mod 4 instead of n �≡ 0, p− 1 mod p. In this case we have
ξn+1 = ξn +ξ1 and ξn−1 = ξn +ξ3 and |R| ≥ (H−5)/4−s. Using the known
formula for adding points we obtain a polynomial h(X) of degree 2m with
at least |R| zeroes and thus

deg(f) ≥ H − 5
8
− s

2
.

2. Determining the weight of f(X) is an interesting problem, however the
method in the proofs of [8, Theorem 4.1] and [9, Theorem 1] does not carry
through since the weight of u(X) is not related to the weight of f .

140 Tanja Lange and Arne Winterhof

4 The XTR Discrete Logarithm

Let p be a prime, l > 3 a prime divisor of p2 − p + 1, and γ ∈ Fp6 an element
of order l. For α ∈ Fp6 we denote by Tr(α) = α + αp2

+ αp4 ∈ Fp2 the trace
of α. Given ξ ∈ Tr(< γ >), the XTRDL problem is to find 0 ≤ x ≤ l − 1 such
that ξ = Tr(γx). (Note that x is not unique but the least residues of p2x and
p4x modulo l are the only other solutions of ξ = Tr(γx).)

For breaking XTR it would be sufficient to have a polynomial f(X) ∈ Fp2 [X]
of low degree such that f(Tr(γx)) = ξx for a large number of 0 ≤ x ≤ l − 1,
where as before ξx ∈ Fp2 , 0 ≤ x ≤ l − 1, is defined by

ξx = x0β0 + x1β1 if x = x0 + x1p, 0 ≤ x0, x1 ≤ p− 1,

where {β0, β1} is a fixed basis of Fp2 over Fp.

Theorem 2. Let f(X) ∈ Fp2 [X] be a polynomial of degree d such that

f(Tr(γx)) = ξx for x ∈ S
for a subset S ⊆ {0, 1, . . . , l − 1}. Then

d ≥ |S|(|S| − 1)
5(l − 1)(2p− 1)

.

Proof. Since otherwise the result is trivial we may assume that |S| ≥ 2 (hence
d > 0). Consider

D = {1 ≤ a ≤ l − 1 | a ≡ y − x mod l, x, y ∈ S}.
Obviously, there exists a ∈ D such that there are at least

|S|(|S| − 1)
|D| ≥ |S|(|S| − 1)

l − 1

representations a ≡ y − x mod l, x, y ∈ S. Choose this a and put

R = {x ∈ S | a+ x ≡ y mod l with y ∈ S}.
We have |R| ≥ |S|(|S| − 1)/(l − 1). For x ∈ R there are at most five different
ω ∈ Fp2 , namely ω = ξa, ξa + β1, ξa − ξl, ξa − ξl + β1, or ξa − ξl − β1, such that

f(Tr(γa+x)) = ξx + ω = f(Tr(γx)) + ω.

Therefore at least one of the five polynomials hω(X) ∈ Fp6 [X],

hω(X) = Xdp
(
f(γaX + (γaX)p−1 + (γaX)−p)− f(X +Xp−1 +X−p)− ω)

has at least |R|/5 zeros, where we used

Tr(γx) = γx + γp2x + γp4x = γx + γ(p−1)x + γ−px.

Polynomial Interpolation of the Elliptic Curve and XTR Discrete Logarithm 141

The leading coefficient of hω(X) is γad(p−1) − 1 times the leading coefficient of
f(X) and thus d ≥ l or

d(2p− 1) = deg(hω) ≥ |R|
5
≥ |S|(|S| − 1)

5(l − 1)
.

��
Remarks:

1. Since Tr(γx) =Tr(γp2x) =Tr(γp4x) the largest possible S has cardinality
|S| = (l + 2)/3 ≤ (p2 − p+ 3)/3.

2. It would be interesting to have a lower bound on the weight of a polynomial
f(X) with the properties of Theorem 2. Unfortunately, the method in the
proofs of [8, Theorem 4.1] and [9, Theorem 1] fails.

5 The Discrete Logarithm in Multiplicative Subgroups
of a Finite Field

Now we consider the case that the cyclic group is a multiplicative subgroup of Fq

generated by some γ ∈ Fq of order l and prove bounds on the degree and weight
of a polynomial interpolating the discrete logarithm in parts of this subgroup.
This is of special interest in the setting of XTR:

Let Tr(γx) = g, then γx, γp2x, and γp4x are zeros of the polynomial X3 −
gX2 + gpX − 1. Since cubic equations over finite fields can be solved efficiently
(see e. g. [1, Theorem 7.8.6]), we may consider the discrete logarithm problem in
the subgroup < γ > of F∗

p6 instead of the XTRDL problem.

Theorem 3. Let γ ∈ Fq be an element of order l and 0 ≤ N < N +H ≤ l. Let
f(X) ∈ Fq[X] be a polynomial such that

f(γx) = ξx for x ∈ S,

for a subset S ⊆ {N, . . . , N +H − 1} of cardinality |S| = H − s. Then

deg(f) >
(

1− 1
p

)
(H − 2)− 2s

and for the weight of f(X) we have

w(f) ≥ l

l − (1− 1/p)(H − 2) + 2s
.

Proof. Let R be the set of N ≤ x ≤ N + H − 1 for which both x ∈ S and
x+ 1 ∈ S. Then |R| ≥ H − 2s− 1. We have ξx+1 = ξx + ξ1 if x �≡ p− 1 mod p.
Hence

f(γx+1) = f(γx) + ξ1

142 Tanja Lange and Arne Winterhof

for x ∈ R with x �≡ p− 1 mod p. Therefore the polynomial

h(X) = f(γX)− f(X)− ξ1
has at least

|R| − �(N +H − 1)/p�+ �N/p�
zeros in F∗

q and is not identical to zero as h(0) = −1. Thus

deg(f) ≥ deg(h) ≥ |R| − �(N +H − 1)/p�+ �N/p�

and by Lemma 1 we have

w(f) + 1 ≥ w(h) ≥ l

l −H + 2s+ 1 + �(N +H − 1)/p� − �N/p�
from which the claim follows. ��

Theorem 3 is only nontrivial if |S| ≥ H
2

(
1 + 1

p

)
+ 1− 1

p . Now we extend the
range of |S| for nontrivial results on the degree of f(X).

Theorem 4. Let γ ∈ Fq be an element of order l. Let f(X) ∈ Fq[X] be a
polynomial of degree d such that

f(γx) = ξx for all x ∈ S,

for a subset S ⊆ {0, . . . , l − 1}. Then

d >
|S|(|S| − 1)

2 · 3t−1(l − 1)
,

where t = �logp(l)�.
Proof. Consider

D = {1 ≤ a ≤ l − 1|a ≡ y − x mod l, x, y ∈ S}.

Obviously, there exists a ∈ D such that there are at least

|S|(|S| − 1)
|D| ≥ |S|(|S| − 1)

l − 1

representations a ≡ y − x mod l, x, y ∈ S. Choose this a and put

R = {x ∈ S | a+ x ≡ y mod l with y ∈ S}.

Due to the carries and reduction modulo l in the exponent, there are at most
2t−1 + 3t−1 possible elements ω ∈ Fq such that

f(γa+x) = f(γx) + ω,

Polynomial Interpolation of the Elliptic Curve and XTR Discrete Logarithm 143

namely the 2t−1 elements ω =
∑

i∈I βi with I ⊆ {0, 1, . . . t− 2} in the case that
a+x < l and the 3t−1 elements ω =

∑
i∈I(±βi) with I ⊆ {0, 1, . . . , t− 2} in the

case that a+ x ≥ l. Therefore at least one of the polynomials

hω(X) = f(γaX)− f(X)− ω

has at least |R|/(2t−1 + 3t−1) zeros in Fq. We choose this ω. The leading coef-
ficient of hω(X) is γad − 1 times the leading coefficient of f(X) and thus d ≥ l
or hω(X) is not identical to zero. Thus

d = deg(hω) ≥ |R|
2t−1 + 3t−1 ≥

|S|(|S| − 1)
(2t−1 + 3t−1)(l − 1)

.

��

Acknowledgment

Parts of this paper were written during a visit of the first author to the Austrian
Academy of Sciences. She wishes to thank the Institute of Discrete Mathematics
for hospitality and financial support.
We would also like to thank Igor Shparlinski for suggesting the XTRDL.

References

1. E. Bach and J. O. Shallit, Algorithmic number theory, Vol.1: Efficient algorithms.
Cambridge: MIT Press 1996.

2. J. Buchmann and D. Weber, Discrete logarithms: recent progress. Coding theory,
cryptography and related areas (Guanajuato, 1998), 42–56, Springer, Berlin, 2000.

3. D. Coppersmith and I. E. Shparlinski, On polynomial approximation of the discrete
logarithm and the Diffie-Hellman mapping, J. Cryptology 13 (2000), 339–360.

4. A. K. Lenstra and E. R. Verheul, The XTR public key system, Advances in
cryptology—CRYPTO 2000 (Santa Barbara, CA), 1–19, Lecture Notes in Comput.
Sci., 1880, Springer, Berlin, 2000.

5. K. S. McCurley, The discrete logarithm problem. Cryptology and computational
number theory (Boulder, CO, 1989), 49–74, Proc. Sympos. Appl. Math., 42, Amer.
Math. Soc., Providence, RI, 1990.

6. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of applied cryp-
tography. CRC Press Series on Discrete Mathematics and its Applications. CRC
Press, Boca Raton, FL, 1997.

7. A. M. Odlyzko, Discrete logarithms and smooth polynomials. Finite fields: theory,
applications, and algorithms (Las Vegas, NV, 1993), 269–278, Contemp. Math., 168,
Amer. Math. Soc., Providence, RI, 1994.

8. I. E. Shparlinski, Number theoretic methods in cryptography. Complexity lower
bounds. Progress in Computer Science and Applied Logic, 17. Birkhäuser Verlag,
Basel, 1999.

9. A. Winterhof, Polynomial interpolation of the discrete logarithm, Des. Codes Cryp-
togr. 25 (2002), 63–72.

Co-orthogonal Codes
(Extended Abstract)

Vince Grolmusz

Department of Computer Science, Eötvös University, Budapest
Address: Pázmány P. stny. 1/C, H-1117, Budapest, Hungary

grolmusz@cs.elte.hu

Abstract. We define, construct and sketch possible applications of a
new class of non-linear codes: co-orthogonal codes. The advantages of
these codes are twofold: first, it is easy to decide whether two codewords
form a unique pair (this can be used in decoding information or iden-
tifying users of some not-publicly-available or non-free service on the
Internet or elsewhere), and the identification process of the unique pair
can be distributed between entities, who perform easy tasks, and only
the information, gathered from all of them would lead to the result of
the identifying process: the entities, taking part in the process will not
have enough information to decide or just to conjecture the outcome of
the identification process.
Moreover, we describe a fast (and general) method for generating (non-
linear) codes with prescribed dot-products with the help of multi-linear
polynomials.

Keywords: non-linear codes, co-orthogonal codes, codes and set-
systems, multi-linear polynomials, composite modulus

1 Introduction

In the present paper, we define, construct and sketch possible applications of
a new class of non-linear codes: co-orthogonal codes. The advantages of these
codes are twofold: first, it is easy to decide whether two codewords form a unique
pair (this can be used in decoding information or identifying users of some not-
publicly-available or non-free service on the Internet or elsewhere). Second, the
identification process of the unique pair can be distributed between entities,
who perform easy tasks, and only the information, gathered from all of them
would lead to the result of the identifying process: the entities, taking part in
the process will not have enough information to decide or just to conjecture the
outcome of the identification process.

The identification is done by the following procedure: two sequences, a =
(a1, a2, . . . , an) and b = (b1, b2, . . . , bn) forms a pair, say, modulo 6, if 6 is a
divisor of the sum

n∑
i=1

aibi.

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 144–152, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Co-orthogonal Codes 145

If, for every a there is exactly one b which forms a pair with a (and this fact
can be decided easily), then, for example, keeping b secret would identify a. Our
main result is that these codes (co-orthogonal codes) contain much more code-
words, than the orthogonal codes, where the pairs are identified by the fact that
in the sum above 6 is not a divisor of the sum. We also note, that taking 6 (or
a non-prime power other small integer) is an important point here: we will get
more code-words than in the case of primes!

1.1 Orthogonal Codes

Definition 1. Let n > 0 and r > 1 be integers, and let Zr denote modulo-r ring
of integers. We call A ⊂ Zn

r an orthogonal code, if we can list the elements of
A as A = {a1, a2, . . . , a�} ∪ {b1, b2, . . . , b�}, such that for all ai ∈ A: ai · bi �≡ 0
(mod r), but for all i �= j: ai · bj ≡ 0 (mod r).

In the definition above we allow ai = bi, and u · v denotes the dot-product
(or scalar-product) of vectors u and v.

Example 1. Let n = 2, r = 5, and A = {a1, a2, b1, b2}, where a1 = (1, 1), b1 =
(4, 2), a2 = (4, 2), b2 = (3, 2). Then the pairwise dot-products can be given as a
2× 2 matrix:

(b1 b2

a1 a1 · b1 a1 · b2
a2 a2 · b1 a2 · b2

)
=
(

6 5
20 16

)
≡
(

1 0
0 1

)
(mod 5).

The Advantages of Orthogonal Codes. The orthogonal codes have very
attractive properties:

– For each ai ∈ A it is easy to verify that a given vector u ∈ A would serve as
bi: if ai · u �≡ 0 (mod r) then u = bi.

– The dot-product can be computed in a small memory: only modulo r com-
putations (multiplications and additions) are needed.

– Suppose, that we have three players P1, P2, P3, and the coordinates of the
code-words of ai and u are partitioned between them: suppose, that the first
n/3 coordinates of the vectors are known for P1, the second n/3 to P2 and
the third n/3 to P3 (assume, that n is a multiple of 3). Then they can verify
collectively whether u = bi: for j = 1, 2, 3, Pj compute the dot-product of
their known coordinates, and the mod r sum of their result gives the answer:
if the value is not 0 modulo r, then u = bi. Let us note, that the players
alone tipically will not know the answer.

– An easy and fast parallel algorithm computes the dot-product of the two
vectors, with n processors for the length-n vectors it can be done in c log n
time.

Let us remark, that a trivial code with the highest possible rate has almost all
properties mentioned above: indeed, consider code B = {0, 1}n, and let a, b ∈ B

146 Vince Grolmusz

form a pair if a = b. Since a = b can be verified bitwise, it follows that the
pair-verification can be done in parallel. However, as was noticed by Király [6],
if a �= b then it will be witnessed by one or more processors or players, who
knows only the bits (or sub-sequences) of a and b, so if a and b does not form a
pair then it will be known for a player. This property can be fatally bad if our
goal is to hide the outcome of the verification process.

The Disadvantage of Orthogonal Codes. It is easy to see, that if r is a
prime, then the maximum size of an orthogonal code (that is, the cardinality of
A, |A|) is at most 2n, if the length of the code-words are n: (simply the matrix
in Example 1 has full rank, because of the orthogonality property). That shows,
that the rate of orthogonal codes are extremely low for r primes. It is not difficult
to show, that the situation is not much better if r is a composite number: if r
has � prime divisors, then |A| is at most 2�n, which is still very small.

1.2 Co-orthogonal Codes

Definition 2. We call A ⊂ Zn
r a co-orthogonal code, if we can list the elements

of A as A = {a1, a2, . . . , a�}∪{b1, b2, . . . , b�}, such that for all ai ∈ A: ai · bi ≡ 0
(mod r), but for all i �= j: ai · bj �≡ 0 (mod r).

Example 2. Let n = 2, r = 6, and A = {a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6},
where a1 = (2, 1), a2 = (5, 1), a3 = (2, 3), a4 = (2, 2), a5 = (1, 2), a6 = (3, 5), and
b1 = (5, 2), b2 = (1, 1), b3 = (3, 2), b4 = (1, 5), b5 = (2, 5), b6 = (1, 3). Then the
pairwise dot-products can be given as a 6× 6 matrix:

b1 b2 b3 b4 b5 b6

a1 12 3 8 7 9 5
a2 27 6 17 10 15 8
a3 16 5 12 17 19 11
a4 14 4 10 12 14 8
a5 9 3 7 11 12 7
a6 25 8 19 28 21 18

≡

0 3 2 1 3 5
3 0 5 4 3 2
4 5 0 5 1 5
2 4 4 0 2 2
3 3 1 5 0 1
1 2 1 4 3 0

(mod 6).

Note, that for code-length is 2 again, but we have |A| = 12.

We have shown in [2], that if r is a prime, then the rate of co-orthogonal
codes are not much larger than the rate of orthogonal codes: there exist at most
O(nr−1) co-orthogonal code-words for any n . However, quite surprisingly, for
non-prime-power, composite r′s (e.g., r = 6), there are co-orthogonal codes of
much larger rate (see Theorem 1).

The Advantages of Co-orthogonal Codes. It is obvious, that the co-
orthogonal codes have the same advantages as the orthogonal codes: It is very
easy to identify the matching code-word pairs; the computations can be done
modulo a small number (in our example this number is 6); the identification

Co-orthogonal Codes 147

process can be shared between players, not knowing the outcome of the identifi-
cation. However, we can show, that the serious problem of the orthogonal codes,
i.e., their very low rate does not appear here. We show this in the next section,
with algorithmically fast constructions.

2 Constructing Co-orthogonal Codes Modulo
a Composite Number

We give here some constructions for co-orthogonal codes. These constructions
use techniques from papers [3], [2], and especially from [4]. The existence of
(special) mod 6 co-orthogonal codes with high rate falsified old conjectures in
extremal set theory (see [3] for details). This high rate of our codes facilitates
the possible application of co-orthogonal codes. We note, that our codes here
are binary (i.e., only 0 and 1 will appear in the code-words), but r, the modulus
is a non-prime-power composite number.

Theorem 1. Let m be a positive integer, and suppose that m has r > 1 different
prime divisors: m = pα1

1 pα2
2 ...pαr

r . Then there exists c = c(m) > 0, such that for
every integer N > 0, there exists an explicitly constructible binary co-orthogonal

code H modulo m, of length N , such that |H| ≥ exp
(
c (log N)r

(log log N)r−1

)
. Moreover,

the minimum Hamming-distance between any two codewords of H is

c′N log logN
logN

for a positive c′.

Note, that |H| grows faster even for m = 6 than any polynomial in n. Note
also, that the code-generation is a fast polynomial algorithm (see Section 3.3).

2.1 k-Wise Co-orthogonal Codes

A generalization of the co-orthogonal codes is the k-wise co-orthogonal codes.
While co-orthogonal codes are useful since their easy pair-identification prop-
erty, k-wise co-orthogonal codes can be used for group-identification. Since dot-
product (or scalar-product) can be defined only between only two vectors, we
need a natural generalization here.

Definition 3. Let A = {aij} and B = {bij} two u × v matrices over a ring R
with unit element 1. Their Hadamard-product is an u × v matrix C = {cij},
denoted by A � B, and is defined as cij = aijbij, for 1 ≤ i ≤ u, 1 ≤ j ≤ v. Let
k ≥ 2. The k-wise dot product of vectors of length n, a1, a2, . . . , ak is computed
as

(a1 � a2 � · · · � ak) · 1,
where 1 denotes the length n all-1 vector.

148 Vince Grolmusz

Note, that if ai is a characteristic vector of a subset Ai of an n-element
ground-set (for i = 1, 2, . . . , k), then a1 � a2 � · · · � ak is a characteristic vector
of
⋂k

i=1Ai, and the k-wise dot-product of a1, a2, . . . , ak gives the size of this
intersection.

Definition 4. For a k ≥ 2 we call A ⊂ Zn
r a k-wise co-orthogonal code modulo

m, if the following holds:

– ∀a1 ∈ H there exist a2, a3, . . . , ak ∈ H such that (a1 � a2 � · · · � ak) · 1 ≡ 0
(mod m),

– If {a2, a3, . . . , ak} �= {b2, b3, . . . , bk}, bi ∈ H, i = 2, 3, . . . , k, then

(a1 � b2 � b3 � · · · � bk) · 1 �≡ 0 (mod m).

Now we can formulate the following result. The construction is – surprisingly
– exactly the same as the construction for proving Theorem 1, and it is an
improvement of a construction appeared in [5] for set-systems.

Theorem 2. Let n, t ≥ 2 integers, and let p1, p2, . . . , pr be pairwise different
primes, and let m = p1p2 · · · pr. Then there exists a cm > 0 and an explicitly
constructible code H of length N , such that |H| ≥ exp

(
cm(log N)r

(log log N)r−1

)
, and H is

k-wise co-orthogonal for any k ≥ 2.

The identification of a group is done with the easy computation of the k-wise
dot-product of the codes of the members of the group. If this number is 0 modulo
m, then the group is passed the identification, otherwise it failed.

3 Constructing Code f(A) from f and A

Our construction is based on a method given in [4] and the BBR-polynomial
[1]. In paper [4], we gave a general construction for hypergraphs with prescribed
intersection sizes. Our construction described here can also be applied for con-
structing codes with prescribed dot-product matrices. For a detailed discussion
of this problem, see [4].

Here we re-formulate this method in a form which is more suitable for our
purposes in the present work.

Definition 5. Let f(x1, x2, . . . , xn) =
∑

I⊂{1,2,...,n} αIxI be a multi-linear poly-
nomial, where xI =

∏
i∈I xi. Let w(f) = |{αI : αI �= 0}| and let L1(f) =∑

I⊂{1,2,...,n} |αI |.
Definition 6. Let A = {a1, a2, . . . , a�} ⊂ {0, 1}n be a binary code. Then the
matrix of A, denoted by M(A), is an n × � 0-1 matrix, with column j equal to
the code-word aj, for j = 1, 2, . . . , �.

Definition 7. Let A = {a1, a2, . . . , a�} ⊂ {0, 1}n be a binary code, and let f
be an n-variable multi-linear polynomial with positive integer coefficients. Then
binary code f(A) = {c1, c2, . . . , c�} ⊂ {0, 1}L1(f) is defined as follows: The rows
of M(f(A)) correspond to monomials xI ’s of f ; there are αI identical rows of
M(f(A)), corresponding to the same xI . The row, corresponding to xI , is defined
as the Hadamard-product of those rows i of M(A), with i ∈ I.

Co-orthogonal Codes 149

Example 3. Let f(x1, x2, x3, x4) = x1 + x2 + 2x3x4, and let the matrix M(A) of
code A = {a1, a2, a3} be

M(A) =

a1 a2 a3

1 0 1 1
2 1 1 1
3 1 0 1
4 0 0 1

.

Then the matrix of code f(A) is

M(f(A)) =

c1 c2 c3

x1 0 1 1
x2 1 1 1
x3x4 0 0 1
x3x4 0 0 1

.

The most important property of code f(A) is given in the following Theorem:

Theorem 3. Let t ≥ 2 and let ai� ∈ A for � = 1, 2, . . . , t. Then

f(ai1 � ai2 � · · · � ait) = (ci1 � ci2 � · · · � cit) · 1. (1)

An analogous theorem for set-systems appeared in [4]. We reproduce here its
short proof.

Proof. Consider a monomial xI of f , for some I ⊂ {1, 2, . . . , n}. Let us observe,
that monomial xI contributes one to the left hand side of equation (1) exactly
when for all j ∈ I, the jth coordinate of every code-word ai1 , ai2 , . . . , ait are equal
to 1. This happens exactly if the coordinate of ci1 � ci2 �· · ·� cit , corresponding
to monomial xI , is 1, that means, that one is contributed to the right hand side
of 3.
�

3.1 Our Main Construction

Our binary co-orthogonal code will be constructed as f(A), from a well-chosen
polynomial f and a dense code A. For simplicity, in this preliminary version of
this work, we prove Theorems 1 and 2 only for modulus m = 6.

Our f will be the BBR-polynomial. Barrington, Beigel and Rudich [1] showed,
that for integers α and β, there exists an explicitly constructible, symmetric, n-
variable, degree-O(min(2α, 3β)) polynomial f , (the BBR-polynomial), satisfying
over x = (x1, x2, . . . , xn) ∈ {0, 1}n:

f(x) ≡ 0 (mod 6) ⇐⇒
n∑

i=1

xi ≡ 0 (mod 2α3β). (2)

Our A is defined as follows. Let A0 denote all the weight-2α3β − 1 binary
code-words of length n−1. Code A is got from code A0 if we add a leading 1 for

150 Vince Grolmusz

all codewords in A0, consequently, each word in A is binary, has weight 2α3β ,
and the dot-product of any two different words in A is non-zero, but less than
2α3β . However, the dot-product of any a ∈ A with itself is equal to 2α3β .

Let us remark, that A itself is a co-orthogonal code modulo 2α3β .
Moreover, for any k ≥ 2, the dot-product of any k words (containing at least

two different words) in A (see Definition 3) is also non-zero, and less than 2α3β .
Now let α be the smallest integer that n1/3 < 2α, and let β be the smallest

integer such that n1/3 < 3β . Then the degree of f is O(n1/3).
Let us consider now code H = f(A). It contains at least

(
n

n2/3

)
code-words

of length N = L1(f) = O(nn1/3
), so

|H| = |f(A)| = exp
(
c

(logN)2

(log logN)

)
.

And, from Theorem 3, for any a ∈ H a forms a pair only with b = a, for
any b ∈ H, modulo 6, this proves the first part of Theorem 1. The k-wise co-
orthogonality follows also from Theorem 3.

For computing the minimum-distance of the code (for proving Theorem 1),
we should note, that any two elements ai and aj of A differs in at least one
bit. The weight of ai is 2α3β = Θ(n2/3), that means — because polynomial f is
symmetric – that the corresponding code-word of f(A), ci has weight at least

n1/3∑
k=1

(
2α3β

k

)
>

(
n2/3

n1/3

)
.

If we flip one 1-bit to zero, then at least
(
n2/3

n1/3

)
−
(
n2/3 − 1
n1/3

)

monomials of f become zero, that is, at least that many coordinates of ci become
zero by flipping any bit. Now the result follows.

3.2 Alternative Constructions

We would get more dense codes if we had a BBR polynomial with smaller degree,
but, unfortunately, it is not known whether there exists such polynomial with
lower degree. (For other applications of the BBR polynomial see [3] and [2]).

Alternatively, we can choose different codes A for the construction. For ex-
ample, consider the following code A. Let vectors ai be all the weight-2α3β code-
words of length n, and let bi be the complement of ai, for i = 1, 2, . . . ,

(
n

2α3β

)
.

Then it is easy to see, that A is co-orthogonal code modulo 2α3β . Then, from
Theorem 3, with the BBR-polynomial f , code f(A) is also a co-orthogonal code,
but now modulo 6.

We list some further variants of codes A in Section 4.

Co-orthogonal Codes 151

3.3 Algorithmic Complexity of Computing f(A)

Let ai be a code-word of A and let ci the corresponding code-word of f(A).
Then the coordinates of ci is computed as the values of monomials of f with
substituting ai: f(ai). The value of a degree-d monomial can be computed in
O(d) steps; so the length-N ci can be computed in N logN steps.

4 Cryptographic Applications

Perhaps the most straightforward application is the following one: keep secret
vector ai, and accept vector x only if ai·x ≡ 0 (mod m). From the co-orthogonal
code, only x = bi satisfy this relation, but outside that code, many more x’s may
satisfy it; for example, x = 0 always satisfies this requirement.

Consequently, for any cryptographic application first we should verify whether
x is in the code or not. We call this phase membership testing. If x fails the
membership test, reject it. If x passes the membership test, then compute y =
ai · x mod m (even in a distributed way), and accept x iff y is 0, modulo m, and
reject it otherwise.

Another problem with our main construction (Section 3.1) is the following:
The pair of any a ∈ f(A) is the same a itself!. That means, that if the verification
process is distributed among players, any player who finds that a coordinate is
different in a and b will know that they are not pairs. This problem can be
avoided by applying some linear transformations for the codes, as described in
Section 4.2.

4.1 Membership Testing

It is easy to see, that in any polynomial f , satisfying property (2), must contain
monomials of degree one xi (i = 1, 2, . . . , �) with a non-zero coefficient. That is
also true for the BBR-polynomial f used in our construction.

Now, suppose that we need to verify whether c ∈ f(A). We know, that which
coordinates of a code-word c should correspond to monomials xi (i = 1, 2, . . . , n),
then, first we read only these (at most n) coordinates of c. The values of xi should
be equal to the coordinates of some aj ∈ A: xi = aj

i , for i = 1, 2, . . . , n. If this
will not be satisfied, discard c, it is not in our code. Otherwise, compute from
aj and from f the code-word cj . If c = cj , accept c, otherwise reject.

This algorithm can be performed in O(|c| log(|c|) steps by the most straight-
forward implementation.

4.2 Non-binary, Non-self-paired Codes

We describe a quite general method to get non-binary from the binary co-
orthogonal codes generated in Section 3.1. Note, that if the pair of a was a
itself in the original construction, this property will disappear in the modified
one:

152 Vince Grolmusz

Our idea comes from the following well-known identity:

x′A · y = x′ · yAT ,

where x′, y are length-n q-ary code-words, and A is an n× n matrix.
So, if m is a prime we can consider the m-element-field, and transform our

code C into code CA for any non-singular matrix A over the field as follows:

CA = {xA−1 : x ∈ C} ∪ {yAT : y ∈ C}.
Clearly, if x′A = x, then x · y = x′A · y = x′ · yAT , so if C was a co-

orthogonal code, then CA is also a co-orthogonal code over the field, and the
pair of x′ = xA−1 is xAT = x′AAT , which tipically differs from x′ (we should
avoid unitary A’s).

However, in our main construction m is composite, say m = 6. So, we should
choose a non-singular n× n matrix A over the 2 element field, and another one,
B, over the 3 element field. Suppose now, that C is a co-orthogonal code modulo
6. Then certainly

CA,B = {3xA−1 + 2xB−1 : x ∈ C} ∪ {3yAT + 2yBT : y ∈ C}
is a co-orthogonal code mod 6, and the pair of 3xA−1 +2xB−1 is exactly 3xAT +
2xBT (Note that A−1 is the inverse of A over GF2, and B−1 is the inverse of B
over the three element field.)

Acknowledgment

We are grateful to Zoltán Király and to Lajos Rónyai for discussions on this
topic. The author acknowledges the partial support of János Bolyai Fellowship
and research grants EU FP5 IST FET No. IST-2001-32012, OTKA T030059 and
an ETIK grant.

References

1. David A. Mix Barrington, Richard Beigel, and Steven Rudich. Representing Boolean
functions as polynomials modulo composite numbers. Comput. Complexity, 4:367–
382, 1994. Appeared also in Proc. 24th Ann. ACM Symp. Theor. Comput., 1992.

2. Vince Grolmusz. Low-rank co-diagonal matrices and Ramsey graphs. The Electronic
Journal of Combinatorics, 7:R15, 2000. www.combinatorics.org.

3. Vince Grolmusz. Superpolynomial size set-systems with restricted intersections mod
6 and explicit Ramsey graphs. Combinatorica, 20:73–88, 2000.

4. Vince Grolmusz. Constructing set-systems with prescribed intersection sizes.
Technical Report DIMACS TR 2001-03, DIMACS, January 2001.
ftp://dimacs.rutgers.edu/pub/dimacs/TechnicalReports/TechReports/2001/
2001-0 3.ps.gz.

5. Vince Grolmusz. Set-systems with restricted multiple intersections and explicit
Ramsey hypergraphs. Technical Report DIMACS TR 2001-04, DIMACS, January
2001. ftp://dimacs.rutgers.edu/pub/dimacs/TechnicalReports/TechReports/2001/
2001-0 4.ps.gz.

6. Zoltán Király. personal communication.

Efficient Power-Sum Systolic Architectures
for Public-Key Cryptosystems in GF(2m)

Nam-Yeun Kim, Won-Ho Lee, and Kee-Young Yoo

Department of Computer Engineering,
Kyungpook National University,

Deagu, Korea 702-701
knyeun@hanmail.net, purmi@purple.knu.ac.kr, yook@knu.ac.kr

Abstract. The current paper presents a new algorithm and two archi-
tectures for the power-sum operation (AB2 + C) over GF(2m) using a
standard basis. The proposed algorithm is based on the MSB-first scheme
and the proposed architectures have a low hardware complexity and
small latency compared to conventional approaches. In particular, the
hardware complexity and latency of the proposed parallel-in parallel-out
array are about 19.8% and 25% lower, respectively, than Wei’s. In addi-
tion, since the proposed architectures incorporate simplicity, regularity,
modularity, and pipelinability, they are well suited to VLSI implementa-
tion and can be easily applied to inverse/division architecture.

1 Introduction

Finite or Galois fields GF(2m) are widely used in many practical applications,
such as error-correcting codes [1], public-key cryptography [2,3,4], digital sig-
nal processing [5], and so on. These applications usually require the compu-
tation of multiplication, power-sum, inverse/division, and exponentiation oper-
ations in GF(2m). However, since these operations are quite time consuming,
the design of a high speed and low-complexity arithmetic circuit with an ef-
ficient algorithm is needed. Among these operations, a power-sum is used as
an efficient basic operation in decoding error-correcting codes. For example,
the computation of (S1)6 + S3(S1)3 + S5(S1)1 + (S3)2 is required in a triple-
error-correcting binary BCH step-by-step decoder, where S1, S3, and S5 are the
syndrome values calculated from the received words. The computation can be
performed using only three power-sum operations and one multiplication; that
is, [(S1)3 + S3]2 + S1[S3(S1)2 + S5] [6]. In addition, a power-sum is known as
a basic operation for public-key cryptosystems, such as a Diffie-Hellman key
exchange, ElGamal, RSA, and ECC [2,3,4] over GF(2m). For example, when
implementing an RSA cryptosystem, the modular exponentiation is a signifi-
cant computational problem accomplished by performing iterations of the mod-
ular multiplication and squaring using large numbers (usually > 500bits),
βN = βN0 [βN1 [βN2 [· · · [βNm−2(βNm−1)2]2]2]2]2. A simple computation algorithm
for computing exponentiations in GF(2m) is presented as [6]:

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 153–161, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

154 Nam-Yeun Kim, Won-Ho Lee, and Kee-Young Yoo

STEP 1 : If Nm−1 = 1 then P = β else P = α0

STEP 2 : For i = m− 2 downto 0
STEP 3 : If Ni = 1 then P = P 2β else P = P 2α0

The final result is P = βN . In this case, AB2 operations can be used to
compute the step 3 operations.

Systolic arrays for performing power-sum operations have already been pro-
posed in [6,7,8] using a standard basis representation in GF(2m). In [7], a sys-
tolic power-sum architecture is proposed along with a modified basic cell that
can perform eight different types of computations by adding one MUX and one
DEMUX. Wei [6] then presented architectures for an inverse and division in
GF(2m) based on the architecture in [7]. Yet these systolic array power-sum cir-
cuits still have certain shortcomings as regards cryptographic applications due
to their high circuit complexity and long latency. As such, further research on
an efficient power-sum circuit is needed.

In addition, many architectures over GF(2m) have been developed using dif-
ferent bases; a normal, dual, and standard basis. A normal basis representation
is very efficient for performing squaring and exponentiation or finding the inverse
element, yet normal-basis multipliers require a basis conversion. A dual basis rep-
resentation is also unsuitable for large finite fields in cryptography. Therefore,
a standard basis offers the most regular and extensible features for hardware
implementation and is easiest to use among the other representations.

Accordingly, the following concentrates on a power-sum operation for GF(2m)
using a standard basis. The proposed algorithm is then used as the basis for
introducing a parallel-in parallel-out and serial-in serial-out systolic architecture.
The hardware complexity and latency of the two architectures are lower than
conventional architectures, plus they are well suited to VLSI implementation
and can be easily applied to exponentiation architecture.

2 Algorithm

A finite field GF(2m) has 2m elements and it is assumed that all the (2m−1) non-
zero elements of GF(2m) are represented using a standard basis. Let A(x) , B(x),
and C(x) be three elements in GF(2m) and F (x) be the primitive polynomial,
where,

A(x) = am−1x
m−1 + am−2x

m−2 + · · ·+ a1x+ a0

B(x) = bm−1x
m−1 + bm−2x

m−2 + · · ·+ b1x+ b0

C(x) = cm−1x
m−1 + cm−2x

m−2 + · · ·+ c1x+ c0

F (x) = fm−1x
m−1 + fm−2x

m−2 + · · ·+ f1x+ f0

The coefficients ai, bi, ci, and fi are the binary digits 0 and 1. If α is the root of
F (x), then F (α) = 0, and F (α) ≡ αm = fm−1α

m−1+fm−2α
m−2+· · ·+f1α+f0,

F ′(α) ≡ αm+1 = f ′
m−1α

m−1 + f ′
m−2α

m−2 + · · · + f ′
1α + f ′

0 where fi and f ′
i ∈

GF (2)(0 ≤ i ≤ m− 1).

Efficient Power-Sum Systolic Architectures 155

To compute an AB2 +C operation, the proposed algorithm commences with
the following equation:

P = AB2 + C mod F (x)
= A(bm−1α

2m−2 + bm−2α
2m−4 + · · ·+ b1α

2 + b0) + cm−1α
m−1 + cm−2α

m−2

+ · · ·+ c1α+ c0 mod F (x)
= (· · · (· · · ((Abm−1)α2 mod F (x) +Abm−2)α2 mod F (x) + · · ·+Ab� m

2 �)α2

mod F (x) + · · ·+Ab1 + c3α+ c2)α2 mod F (x) +Ab0 + c1α+ c0) (1)

A recursive relation is derived that is suitable for efficient power-sum systolic-
array implementation. The computation sequence of eq.(1) is written as the
following algorithm:

Input : A(x), B(x), C(x) and F (x)
Output : P (x) = A(x)B(x2) + C(x) mod F (x)
STEP 1 : P1 = Abm−1 mod F (x)
STEP 2 : For i = 2 to m− 1
STEP 3 : Pi = Pi−1α

2 mod F (x) +Abm−i + c2(m−i)+1 + c2(m−i)

where the result P is equal to Pm. As shown in the upper computation sequence,
the first term is very simple without any modulo reduction.

Beginning with the first term of eq.(1), Abm−1, the subsequent terms in the
above equation are accumulated until reaching the end. The procedure of the
new algorithm is as follows:

First,

P1 = Abm−1

=
m−1∑
k=0

akbm−1α
k

=
m−1∑
k=0

p1
kα

k (2)

where, eq. (3) can be obtained;

p1
k = akbm−1 (3)

In the general case,

Pi =
(
Pi−1α

2 +Abm−i + c2(m−i)+1 + c2(m−i)
)

mod F (x)

=

(
m−1∑
k=0

pi−1
k αkα2 +

m−1∑
k=0

akbm−iα
k + c2(m−i)+1 + c2(m−i)

)
mod F (x)

156 Nam-Yeun Kim, Won-Ho Lee, and Kee-Young Yoo

=

(
m−1∑
k=0

pi−1
k αk+2 +

m−1∑
k=0

akbm−iα
k + c2(m−i)+1 + c2(m−i)

)
mod F (x)

=
(
pi−1

m−1α
m+1 + pi−1

m−2α
m + · · ·+ pi−1

0 α2 + am−1bm−iα
m−1

+am−2bm−iα
m−2 + · · ·+ a1bm−iα+ a0bm−i + c2(m−i)+1

+c2(m−i)

)
mod F (x)

=
m−1∑
k=0

pi
kα

k (4)

From the above procedures, eq. (5) can be derived.

pi
k = pi−1

m−1f
′
k + pi−1

m−2fk + akbm−i + cik; (5)

where,

y =

ci1 = c2(m−i)+1
ci0 = c2(m−i)

cik = pi−1
k−2 (for 3 ≤ k ≤ m)

Thus the product P for AB2 + C in GF(2m) can be computed efficiently
using the above new recursive algorithm.

3 Systolic Architectures in GF(2m)

3.1 Parallel-in Parallel-out

From the new power-sum algorithm, a corresponding parallel-in parallel-out sys-
tolic array architecture can be obtained by following the process in [10,11]. Fig.1
shows the proposed systolic power-sum circuit over GF(24). The inputs A, F ,
and F ′ enter the array in parallel from the top row, while B is from the left-
most column. The output P is transmitted from the bottom row of the array in
parallel. Inputs A and B are both read into the system in the same order using
the MSB-first,plus the output is also produced in the same order as the inputs.
The MSB-first scheme supports pipelinability for a circuit that requires repeat
operations, such as exponentiation and inverse/division, more easily than the
LSB-first scheme.

In Fig.1, there is a traverse line in the (i, k) cell. This is required to pass the
signal from the (i− 1, k− 1) cell to the (i, k+ 1) cell. When the cell is located in
the first row; k = m−1, pi

k must be connected to the pi
m−1 signal line, while pi−1

k

must be connected to the pi
m−2 signal line. Fig. 2 shows PE1 which represents

the logic circuits of the top cells of the array, while Fig. 3 shows PE2 which
represents the logic basic circuits. Fig 3 shows the basic cell for the general case
where the circuit function is primarily governed by eq. (5), where the k-th bit
(pi

k) of Pi is the partial product. If the cell is located in the lowest two columns,
pi−1

k−2 is zero. Note that the cells in the first row only need to calculate p1
k, as

Efficient Power-Sum Systolic Architectures 157

0p

3b

2b

1b

0b

1p2p3p

k

i

��� ��� ��� ���

���
��

��� ��� ���

��� ��� ��� ���

��� ��� ��� ���

3
'

33 ffa 2
'

22 ffa 1
'

11 ffa

�� ��
������ ������

0
'

00 ffa

�������

�

�

��

��

�

��

��

�

��

�� �� �� �

2c
3c

0c
1c

��

��

��

�	

0

0

0

0

Fig. 1. Parallel-in parallel-out systolic architecture for AB2 + C in GF(24)

i
kp

�imb −

0

ka '
kf kf

Fig. 2. Circuit for PE1(Processing Element 1)

i
kp

1
2

−
−

i
mp

1
1

−
−

i
mp �

�imb −

�

1
2

−
−

i
kp

ka '
kf kf

���

���

Fig. 3. Circuit for PE2

158 Nam-Yeun Kim, Won-Ho Lee, and Kee-Young Yoo

0003210 ffff

� � � � �

3210 bbbb

03210 aaaa

000'
3

'
2

'
1

'
0 ffff

� � � � �

PE3 PE3 PE3 PE4

CS1

CS2

3210 pppp� � � �

Fig. 4. Serial-in serial-out AB2 systolic architecture in GF(24)

shown in Fig. 2. As such, the top cell circuit is very simple and reduces the total
cell complexity compared to previous architectures. Since the vertical path of
each cell only requires two delay elements, except for the cells in the first row,
the latency is 3m− 1.

3.2 Serial-in Serial-out

From eq. (5); pi
k = pi−1

m−1f
′
k + pi−1

m−2fk + akbm−i + pi−1
k−2, two relations can be

derived as in the following equations;

di
k = pi−1

k + akbm−i;
pi

k = di
m−1f

′
k + di

m−2fk + di
k−2 (6)

Using eq. (6), a one-dimensional systolic AB2 array is derived along the
horizontal direction, which follows the cut-set systolization procedure described
in [10]. The result is shown in Fig.4. Dn denotes an n-unit delay element. The
system receives serial inputs of A, B, F′, and F at the leftmost cell and then
generates a serial output P from the rightmost cell. All inputs, A, B, F′, and
F , enter the system in the order of the most significant bit first. Fig. 5 shows
the logic circuit for the basic cells, while Fig. 6 represents the logic circuit of
the rightmost cell of the array, which only has to compute dm

k . PE3 requires
three multiplexers (MUXs), which are needed to store the values di

m−1, di
m−2

and bm−iin the i-th cell, and two control signals(CSs), CS1 and CS2, which are
used to sustain or refresh these values during computations. Only the first bit
among the m bits of CS1 contains the value 1, while the first three bits among
the m bits of CS2 contain the value 1. If the input data arrives continuously,
the output results are yielded at a rate of one per 1cycle after an initial delay of
2m− 1.

4 Analysis

The new arrays were simulated and verified using an ALTERA MAX+PLUS
simulator and FLEX10K device.

Efficient Power-Sum Systolic Architectures 159

������

������

�

� �

�

�

�

�

� �

� �

�

�

���

���

��� �

����	
�

����	
�

b_i

a_i

p_i

f’_i

f_i

a_o

p_o

f’_o

f_o

b_o

Fig. 5. The basic circuit for PE3

������

������

��� �

����	
�

����	
�

b_i

a_i

p_i

f’_i

f_i

b_o

a_o

p_o

f’_o

f_o

Fig. 6. The circuit for PE4

Table 1 shows a comparision between the proposed parallel architecture and
the related circuit described in [7]. In [7], Wei proposed systolic arrays for per-
forming a power-sum operation. Yet, as mentioned by Wang in [8], the systolic
power-sum circuit proposed in [7] is inaccurate, therefore, to ensure its proper
operation, three 1-bit latches need to be added to each cell of the circuit. Ac-
cordingly, Wang’s assumption in [8] was followed for a proper comparison. The
following assumptions were made in the comparison: 1) TAND2 and TXORi de-
note the propagation delay through a 2-input AND gate and i-input XOR gate,
respectively, 2) the 2-input AND gate, 2-input XOR gate, and 1-bit latch con-
sisted of six, fourteen, and eight transistors, respectively [13], 3) the 2-input AND
gate and 2-input XOR gate had 2.4ns and 4.2ns gate delays, respectively[13],
and 4) the 3-input XOR gate and 4-input XOR gate were constructed using two
and three 2-input XOR gates, respectively. Accordingly, the two arrays being
compared had the same propagation delay of TAND2 + 2TXOR2 through one
cell [8]. The results clearly showed that the proposed array achieved the same

160 Nam-Yeun Kim, Won-Ho Lee, and Kee-Young Yoo

Table 1. Comparison of two parallel-in parallel-out systolic architectures for Comput-
ing power-sum in GF(2m)

Circuit
Item Wei [7] Wang [8] Proposed [Fig. 1]

No.of cells m2 m2/2 m2

Function AB2 + C AB2 + C AB2 + C
Throughput 1 1 1
Critical path TAND2 + TXOR3 TAND2 + TXOR4 TAND2 + TXOR4

Latency 4m 2m−m/2 3m− 1
Cell Complexity

1. AND gate 3m2 6m2 3m2 − 2m
2. XOR gate 3m2 6m2 3m2 − 2m
3. Latches 13m2 17m2 9m2 − 5m− 3
Data flow Bi-directional Unidirectional Unidirectional
Algorithm LSB MSB MSB
I/O format parallel parallel parallel

Table 2. Comparison of two serial-in serial-out systolic architectures in GF(2m)

Circuit
Item Yeh [12] Proposed [Fig. 4]

No.of cells m m
Function AB AB2

Throughput 1/m 1
Latency 3m 3m− 1

Cell Complexity
1. AND gate 3m 4m− 3
2. XOR gate 2m 3m− 2
3. Latches 11m2 14m− 13

4. Mux m 3m− 3
I/O format serial serial

CS 2 2

throughput performance as that in [6, 7], yet exhibited advantages in terms of la-
tency and hardware complexity [8]. The cell complexity of Wei’s architecture was
m2(3AND+3XOR+13Latch), whereas that of the proposed parallel architecture
was m2(3AND+3XOR)-m(2AND+2XOR)+(9m2 − 5m− 3)Latch. As such, the
proposed architecture reduced the cell complexity by m(2AND+2XOR)+(4m2+
5m+ 3)Latch. The latency of Wei’s architecture[7] was 4m, whereas that of the
proposed architecture was 3m − 1. In particular, the hardware complexity and
latency of the proposed parallel-in parallel-out array were about 19.8% and 25%
lower, respectively, than Wei’s over GF(2m). The cell complexity of Wang’s ar-
chitecture was m2/2(6AND+6XOR+17Latch). Therefore, it would seem that
the proposed architecture reduced the cell complexity by m(2AND+2XOR)-
(0.5m2−5m−3)Latch. The latency of the architecture of Wang [8] was 2m−m/2
when the number of cells was m2/2.

Efficient Power-Sum Systolic Architectures 161

Table 2 shows a comparision between the proposed serial architecture and
the related circuit described in [12]. The serial architecture had a hardware com-
plexity of m(4AND+3XOR+14Latch)-(3AND+2XOR+13Latch) and latency of
3m− 1. In addition, the circuit had a throughput of 100%. Since Yeh [12] only
computed an AB function, it is reasonable that the proposed serial AB2 archi-
tecture exhibited a higher hardware complexity.

5 Conclusion

The current paper presented a new algorithm and a parallel-in parallel-out and a
serial-in serial-out systolic architectures for performing the power-sum operation
over GF(2m) using a standard basis. The algorithm is based on the MSB-first
scheme. Furthermore, since the proposed architectures have a low hardware com-
plexity and small latency, they are efficient for computing exponentiation and
inverse/division in GF(2m) and well suited to VLSI implementation due to their
simplicity, regularity, modularity, and pipelinability.

Acknowledgement

This work was supported by grant No. 2000-2-51200-001-2 from the Korea Sci-
ence & Engineering Foundation

References

1. W.W. Peterson, E.J. Weldon: Error-correcting codes. MIT Press, MA (1972)
2. D.E.R. Denning: Cryptography and data security. Addison-Wesley, MA (1983)
3. A. Menezes : Elliptic Curve Public Key Cryptosystems, Kluwer Academic Pub-

lishers, Boston (1993)
4. R.L. Rivest, A. Shamir, and L. Adleman: A Method for Obtaining Digital Signa-

tures and Public-key Cryptosystems. Comm. ACM. 21 (1978) 120–126
5. I.S. Reed and T.K. Truong: The use of finite fields to compute convolutions.IEEE

Trans. Inform. Theory,21 (1975) 208–213
6. S.W. Wei: VLSI architectures for computing exponentiations, multiplicative in-

verses, and divisions in GF(2m). Proc. IEEE Trans. Circuits and Systems. 44
(1997) 847–855

7. S.W. Wei: A Systolic Power-Sum Circuit for GF(2m). IEEE Trans. Computers. 43
(1994) 226–229

8. C.L. Wang and J.H. Guo: New systolic arrays for C+AB2, inversion, and division
in GF(2m). IEEE Trans. Computers 49 (2000) 1120–1125

9. C.W. Wu and M.K. Chang: Bit-Level Systolic Arrays for Finite-Field Multiplica-
tions. Journal of VLSI Signal Processing. 10 (1995) 85–92

10. S. Y. Kung: VLSI Array Processors. Prentice-Hall. 43 (1987)
11. K. Y. Yoo: A Systolic Array Design Methodology for Sequential Loop Algorithms.,

Ph.D. thesis, Rensselaer Polytechnic Institute, New York (1992)
12. C. S. Yeh, I. S. Reed, and T. K. Truong: Bit-Level Systolic Arrays for Finite-Field

Multiplications. Journal of VLSI Signal Processing. 10 (1995) 85–92
13. Daniel D. Gajski: Principles of Digital Design. Prentice-Hall international, INC.

(1997)

A Combinatorial Approach
to Anonymous Membership Broadcast

Huaxiong Wang and Josef Pieprzyk

Centre for Advanced Computing – Algorithms and Cryptography
Department of Computing, Macquarie University, Australia

{hwang,josef}@comp.mq.edu.au

Abstract. A set system (X,F) with X = {x1, . . . , xm) and F =
{B1, . . . , Bn}, where Bi ⊆ X, is called an (n,m) cover-free set
system (or CF set system) if for any 1 ≤ i, j, k ≤ n and j �= k,

|Bi| ≥ 2
∣∣∣Bj

⋂
Bk

∣∣∣+ 1.

In this paper, we show that CF set systems can be used to construct
anonymous membership broadcast schemes (or AMB schemes), al-
lowing a center to broadcast a secret identity among a set of users
in a such way that the users can verify whether or not the broad-
cast message contains their valid identity. Our goal is to construct
(n,m) CF set systems in which for given m the value n is as large
as possible. We give two constructions for CF set systems, the first
one from error-correcting codes and the other from combinatorial
designs. We link CF set systems to the concept of cover-free family
studied by Erdös et al in early 80’s to derive bounds on parameters
of CF set systems. We also discuss some possible extensions of the
current work, motivated by different application.

1 Introduction

Given a center and a set of users U = {P1, . . . , Pn}. The center wishes to broad-
cast information to all users in such a way that (1) a single user from the group
is sure that she is the intended recipient while (2) the other users are certain
that the information is not intended for them. The security goal is that the users
are not able to identify the intended recipient. Ideally, one would expect that
the probability of guessing the right recipient by users is no better than 1

n−1
(a non-intended user knows that the intended user must be someone different
from him). Note that the probability of guessing the intended user by outsiders
is expected to be no better than 1/n. The above scheme is called anonymous
membership scheme and have various applications in cryptographic protocols.
The applications range from anonymous delegation (where one member of the
group performs action on the behalf of the group), hiding the order of interac-
tions (between the center and members of the group), cheating prevention (by
hiding the order in which cryptographic operations are performed), etc.

A solution to the problem of anonymous membership could be based on
public key cryptography in which the center encrypts some unambiguous text

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 162–170, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

A Combinatorial Approach to Anonymous Membership Broadcast [-4mm] 163

txti (also called secret identity) that indicates that the user Pi is the chosen one.
The center broadcasts the cryptogram Epki

(txti), where pki is the public key of
Pi. Since only Pi knows the private key corresponding to pki can decrypt the
cryptogram and get the message txti, the secrecy of the anonymous membership
is guaranteed. However, such a solution has two important drawbacks. The first
the public-key encryption algorithm needs to be key private in the sense that
an eavesdropper in possession of a ciphertext should not be able to tell which
specific key out of the n known public keys is the one under which the ciphertext
has been created. Obviously no all the public-key cryptosystems are key private.
For example, in the RSA encryption, it is well known that the public modulus for
different users must not be different thus the ciphertexts under different public
keys may not be of the same length, so ciphertexts can be linked to the public key
used. The second drawback is that all users in the group must perform expensive
decryption no matter whether or not they are chosen. In many circumstances this
may be unreasonable or unacceptable. The problem of key privacy in public-key
encryption has been addressed in literature (see, for example, [1]).

This paper deals with unconditionally secure anonymous membership that
typically offer a very efficient solution. Being more precise, our solutions require
private communication to set up the system but once set up, users can very
efficiently verify whether or not they are chosen.

Our work. We introduce anonymous membership broadcast schemes (AMB
schemes for short) that allow a center to anonymously broadcast a secret iden-
tity to a group of users in a such way that only a single user learns that she has
been chosen while the others know that they have not been. Our approach is
combinatorial in nature and is secure against adversaries with unlimited com-
putational power (unconditionally secure). We propose AMB schemes, based on
a special set system, called cover-free set system (or CF set system for short).
We give constructions of CF set systems from error-correcting codes, and cer-
tain combinatorial designs, such as µ-designs. The CF set systems give AMB
schemes with significantly improved efficiency. The scheme based on error cor-
recting codes deserves a special attention as it offers a logarithmic complexity
for both communication and storage. This compares favorably with with trivial
solutions that require linear complexity and storage. We link the CF set systems
with extensively studied cover-free families introduced by Erdös et al in early
80’s [5]. The established relation between AMB schemes and cover-free fami-
lies allows us to derive bounds on various parameters for CF set systems and
use them to assess the performance of AMB schemes. We also discuss possible
extensions of the current work.

Related work. Anonymity is one of basic human rights that is guarded by the
legal systems of all democratic countries. Anonymity has been studied in the
context of secure electronic elections as their major security goal (for example,
[4,9,10]). Although various aspects of anonymity have been studied, to our best
knowledge, there is no efficient solution for the anonymous membership broad-
cast problem. There are, however, two works that are closely related to the AMB

164 Huaxiong Wang and Josef Pieprzyk

problem that we should mention. The first work by Fiat and Naor [6] considers
broadcast encryption in which a center broadcasts a message to a dynamically
changing subset of privileged users in such a way that only users in the sub-
set learn the message. This is to say that the main security goals of broadcast
encryption are the secrecy and integrity of the messages. The AMB problem
addresses a different aspect of broadcast security, namely, the secrecy of the in-
tended recipient’s identity. Another concept relating to the AMB schemes is the
secret set introduced by Molva and Tsudik [8]. A secret set is a subset of U that
any user in U can test his/her membership in the subset but cannot determine
neither the other users of the subset nor the cardinality of the subset. Obviously,
the AMB problem can be seen as a special case of secret sets if only single users
are considered as potential secret sets.

2 Anonymous Membership Broadcast Schemes

Assume that there is a trusted center and a universal set U , consisting of n users
P1, . . . , Pn, in an open communication network. The network is a collection of
broadcast channels, i.e., the channels are publicly accessible and any information
transmitted by the center will be received by every user in U . During the setup
of the system, the center generates and distributes secret information to each
user through secure communication channels. Later on, the center wishes to
broadcast an anonymous membership for a single user Pi in a such way that
each user can verify his/her membership. In particular, Pi is able to make sure
that she is the intended recipient while Pj (j �= i) is sure that he/she is not. We
also assume that the secret identity is not known ahead of time. A cryptographic
scheme (with the center and the group U) that allows the center to broadcast
secret identity that satisfies the two above-mentioned conditions, is called an
anonymous membership broadcast scheme (or AMB schemes).

For the AMB schemes, we define the following three phases:

– Initialization: the center distributes secret information to each user in U
(typically the center uses private communication channels existing between
it and users).

– Broadcast: a secret identity of the chosen recipient Pi is broadcast to all users
in U .

– Verification: after seeing the broadcast message s, each user can verify his/her
own membership, but gets no more information than he/she is supposed to
known about the secret identity (or equivalently about the intended recipi-
ent).

Quality of an AMB scheme is measured by its security and by its efficiency.

– Security requires that each user except the intended one (whose secret iden-
tity has been broadcast) is not able to determine the secret identity of the
recipient. More precisely, the probability that a user guesses the secret iden-
tity should be bounded by a fixed and pre-determined value. We call a AMB

A Combinatorial Approach to Anonymous Membership Broadcast [-4mm] 165

scheme perfect if the probability is 1/(n−1) or each non-intended user knows
that the intended recipient is somebody different from him/her.

– Efficiency is measured by the size of storage for secret information of the
center and users, by the amount of communication overhead for broadcast
and by computation performed by the center and the users. In this paper
we are mainly concerned with the two first measures, i.e. storage and com-
munication overhead.

Consider the following two trivial solutions for AMB schemes.

– Solution 1. The center randomly chooses a vector α = (a1, . . . , an) ∈ GF (2)n,
and secretly gives ai to Pi; i = 1, . . . , n. For a secret identity of Pi, the cen-
ter broadcasts (b1, . . . , bn) = (a1, . . . , ai−1, ai +1, ai+1, . . . , an). Each user Pj

can verify his/her membership by checking if aj = bj . The system is used
once only.

– Solution 2. The center randomly chooses a permutation π on {1, . . . , n}, and
secretly gives π(j) to user Pj ; 1 ≤ j ≤ n. For a secret identity of Pi, the center
simply broadcasts π(i). Each user Pj compares her secret information π(j)
and the broadcast π(i) to verify her membership. The scheme is one-time.

We note that both the trivial solutions offer the perfect security, but have
different communication and storage requirements. In Solution 1, the storages
for the center and each user are n bits and 1 bit, respectively. The center needs
to broadcast n bits. Solution 2 requires n log n and logn bits storage for the
center and each user, respectively. The communication requires log n bits.

2.1 The Basic AMB Scheme

We observe that the cover-free set system can be used as a mathematical model
of the AMB system. This observation gives us an advantage that security and
efficiency parameters can be derived from parameters of the cover-free set system.

Definition 1. Let X = {x1, . . . , xm} be a finite set and F = {B1, . . . , Bn} be
a family of subsets of X. We call the set system (X,F) an (n,m) cover-free set
system (or CF set system) if the following condition is satisfied:

|Bi| ≥ 2
∣∣∣Bj

⋂
Bk

∣∣∣+ 1, for all 1 ≤, i, j, k ≤ n and j �= k.

Given an (n,m) CF set system (X,F) with d = min{�|Bi|/2�−1 : 1 ≤ i ≤ n}.
We construct an AMB scheme from (X,F) as follows.

– Initialization – the center randomly chooses a vector (a1, . . . , am) ∈ GF (2)m,
and secretly sends ai to user Pj if xi ∈ Bj , for all 1 ≤ i ≤ m, 1 ≤ j ≤ m.

– Broadcast of identity of Pi – the center randomly chooses a d-subset D
from Bi and a d-subset C from X \ Bi. The center computes a vector β =
(b1, . . . , bm) defined by

bi =
{
ai + 1 if xi ∈ Bi \D, or xi ∈ C,
ai otherwise,

and broadcasts β = (b1, . . . , bm) as the secret identity of Pi.

166 Huaxiong Wang and Josef Pieprzyk

– Verification – each user Pj verifies his/her membership as follows. Assume
that Pj has secret information aj1 , . . . , aj�

(i.e. Bj = {xj1 , . . . , xj�
}), then Pj

computes the vector γj = (aj1 + bj1 , . . . , aj�
+ bj�

), if the Hamming weight
of γj is greater than d than Pj is the intended user, otherwise he/she is not.

Now we are ready to establish the relation between the CF set system and
the AMB system.

Theorem 1. Let (X,F) be an (n,m) CF set system. The above construction
from (X,F) results in an AMB scheme with m bits broadcast, m bits storage for
the center and |Bi| bits storage for Pi for all 1 ≤ i ≤ n.

Proof. The parameters in the theorem are obvious. It is also clear that each user
can verify his/her membership correctly. What we need is to prove the security
of the resulting AMB scheme. A user Pj who is not the intended one, tries to
guess the secret identity from the broadcast β. Pj ’s best strategy is to use his/her
the secret information together with the public β to distinguish the identity of
the chosen user Pi from the identities of the other users. The only information
Pj can use to guess the membership of a user of Pi is the sub-vector of γ that
corresponds to Bj ∩Bi, denoted by γij . If the Hamming weight of γij is greater
than d, then Pi is the user of the secret identity. However, for each i, i �= j,
the Hamming weight of γij runs between 0 and d, no matter whether Pi is the
intended user or not. Thus, Pj will never be certain which one is the chosen one.

We note that the above construction does not provide perfect security for
the resulting AMB scheme. Indeed, from Pj ’s point of view the probability that
Pk is the intended user is higher than that of Pi if the Hamming weight of γjk is
larger than γji. So Pj ’s best strategy is to choose i as the secret identity if the
Hamming weight of γji is maximal. To provide sound security for the scheme,
the probability of success of this attack must be bounded by some pre-designated
value. For the applications for AMB schemes, from Theorem 1 we would like to
have (n,m) CF set system with n as large as possible.

3 Constructions of Cover-Free Set Systems

Two constructions of (n,m) CF set systems are given. The first construction is
based on error-correcting codes and the other uses combinatorial designs.

3.1 CF Set Systems from Error-Correcting Codes

Let Y be an alphabet of q elements. An (N,M,D, q) code is a set C of M vectors
in Y N such that the Hamming distance between any two distinct vectors in C is
at least D.

Theorem 2. If there is an (N,M,D, q) code, then there exists an (M,Nq) CF
set system provided N < 2D.

A Combinatorial Approach to Anonymous Membership Broadcast [-4mm] 167

Proof. Let C be an (N,M,D, q) code. We write each codeword as ci = (ci1, . . . ,
ciN) with cij ∈ Y , where 1 ≤ i ≤ M, 1 ≤ j ≤ N . Set X = {1, . . . , N} × Y and
F = {Bi : 1 ≤ i ≤ M}, where for each 1 ≤ i ≤ M we define Bi = {(j, cij) : 1 ≤
j ≤ N}. It is easy to check that |X| = Nq, |F| = M and |Bi| = N . For each pair
of i, k, we have |Bi ∩ Bk| = |{(j, cij) : 1 ≤ j ≤ N} ∩ {(j, ckj) : 1 ≤ j ≤ N}| =
|{j : cij = ckj}| ≤ N − D. The condition that N = |Bi| > 2|Bk ∩ B�| follows
directly from the assumption that N < 2D. So (X,F) is a CF set system.

The advantage of the construction from error-correcting codes is that the re-
sulting AMB schemes have a very promising performance. For example, we know
that there are algebraic-geometric codes breaking Gilbert-Varshamov bound.
That is, for given q and N < 2D, we can construct (N,M,D, q) code with
N = O(logM). Thus, we obtain the following corollary.

Corollary 1. There exist (n,m) CF set systems with m = O(log n).

3.2 CF Set Systems from Combinatorial Designs

Although constructions based on error-correcting codes produce CF set systems
with very good performance. However, the performance is in general asymptotic,
that is to say, the larger n gives better performance. Sometimes, when n is small,
constructions from combinatorial designs can give better performance.

A µ− (v, r, λ) design is a set system (X,F), where |X| = v, |B| = r for every
B ∈ F , and every µ-subset of X occurs in exactly λ blocks in B. We will only be
interested in µ− (v, r, 1) designs. It is well known that in a µ− (v, r, 1) design,
the number of blocks n is exactly

(
v
µ

)
/
(

r
µ

)
. Assume that there exists a µ−(v, r, 1)

design (X,B). Then for each pair Bi, Bj ∈ B, we trivially have |Bi∩Bj | ≤ µ−1.
The following result is immediate.

Theorem 3. If there exists a µ−(v, r, 1) design, then there exists a (
(

v
µ

)
/
(

r
µ

)
, v)

CF set system provided r > 2(µ− 1).

There are many results on existence and constructions of µ− (v, r, 1) designs
for r = 2, 3 [2]. On the other hand, no µ−(v, r, 1) design with v > r > µ is known
to exist for µ ≥ 6. Furthermore, it is known that for 3 ≤ r ≤ 5, a 2 − (v, r, 1)
design exists if and only if v ≡ 1, or r mod (r2 − r). Taking r = 3, we obtain
that there exist (v(v − 1)/6, v) CF set systems for all v ≡ 1, or 3 mod 6. Using
a similar argument, it is not difficult to show that other combinatorial designs,
such as BIBDs, Steiner systems, orthogonal arrays, packing designs and many
others can also be used to construct CF set systems for different parameters.

4 Bounds on CF Set Systems

In this section, we show that CF set systems are closely related to the well-known
combinatorial objects of cover-free families studied by Erdös et al [5].

168 Huaxiong Wang and Josef Pieprzyk

Definition 2. A set system (X,F) with X = {x1, . . . , xm} and F = {Bi ⊆
X | i = 1, . . . , n} is called an (n,m, t)-cover-free family (or (n,m, t)-CFF) if for
any subset ∆ ⊆ {1, . . . , n} with |∆| = t and any i �∈ ∆, |Bi\

⋃
j∈∆Bj | ≥ 1.

Constructions and bounds for (n,m, t)-CFF were studied by numerous au-
thors (see, for example, [3,5,12]). It is shown in [12] that for (n,m, t)-CFF with
t ≥ 2, m ≥ c t2

log t log n for some constant c. On the other hand, Erdös et al [5]
showed that for any n > 0, there exists an (n,m, t)-CFF with m = O(t2 log n)
and |Bi| = O(t log n). This result is, however, non-constructive. Although Ku-
mar et al [7] gave a probabilistic construction of CFF that meets the bound,
explicit constructions that can achieve or get close to Erdös et al bounds (see,
for example, [7,12,13]), are still of high interest.

The following lemma establishes the link between CF set system and CFF.

Lemma 1. An (n,m) CF set system is an (n,m, 2)-CFF.

Proof. Let (X,F) be an (n,m) CF set system. For any triple i, j, k, we have,
from the definition of CF set system, |Bi| > 2|Bi ∩Bj | and |Bi| > 2|Bi ∩Bk|, it
follows that |Bi \ (Bj ∪ Bk)| ≥ |Bi| − (|Bi ∩ Bj | + |Bi ∩ Bk|) ≥ 1. So (X,F) is
an (n,m, 2)-CFF.

It is easy to give examples to prove that the reverse implication to that in
Lemma 1 is not true. So that not all (n,m, 2)-CFFs are (n,m) CF set systems.
This indicates that there is a need for a further study of the CF set systems.

Let M(n) denote the minimal value of m for which an (n,m) CF set system
exists. From Lemma 1 and the bounds on CFF, we have the following result.

Theorem 4. M(n) = Θ(n).

5 Generalizations

AMB Systems Secure against Collusion Attacks. In the basic AMB systems, it is
assumed that single users from U may try to attack the system. It is easy to see
that the system does not provide protection against a collusion of the users in U .
We say an AMB scheme is w-resilient if any up to w users, even if they collude,
cannot correctly guess the identity of the intended user, unless the intended user
is one of the attackers. The basic AMB scheme based on CF set systems, can be
converted into its w-resilient version in a straightforward manner. We only need
to modify the condition |Bi| > 2|Bj ∩Bk| in the CF set system to the following
condition for the system (X,F):

|Bi| ≥ 2|Bj ∩ (Bj1 ∪ · · · ∪Bjw
)|+ 1,

for any i and any w+ 1 distinct elements j, j1, . . . jw in {1, . . . , n}. We call a set
system (X,F) satisfying the above condition a w-resilient CF set system. Using
a similar approach to that we have applied for the design of AMB schemes from
CF set systems, we can construct w-resilient AMB-schemes from w-resilient CF
set systems.

A Combinatorial Approach to Anonymous Membership Broadcast [-4mm] 169

Constructions of Secret Sets. As we have already mentioned, the AMB schemes
are relevant to the concept of secret sets introduced by Molva and Tsudik [8].
A set, more precisely a subset of a universal U , is called a secret set if the
following conditions are satisfied: (C1) any user (whether a set user or not) can
verify his/her memberships in the set; (C2) no one, with the exception of the
originator of the set, can verify another user’s membership in the set; (C3) no
one, with the exception of the originator of the set, can determine with certainty
the number of users in the set.

The major difference between a AMB scheme and a secret set is that the
latter has the additional security requirements of (C2) and (C3). It is obvious
that a secret set can be constructed from an AMB scheme. Indeed, for an AMB
scheme to achieve C2, it only needs to execute multiple, parallel AMB schemes,
each independently broadcasts an anonymous membership. For C3, some dummy
anonymous membership broadcasts are added to the system to raise the uncer-
tainty of the cardinality of the anonymous users, that is to include AMB scheme,
but no one is the anonymous membership. Such a construction is inefficient, as
to achieve C3, it requires n single AMB schemes to be executed. Depending on
the application in hand, if the secret set is defined by C1 and C2 only and the
size of the set is small, then the constructions of secret set from AMB schemes
should offer some advantages.

Computationally Secure Schemes. The basic AMB scheme is unconditionally
secure if the key initialization is implemented through the privately secure chan-
nels. It is also one-time in the sense that every key bit can be used once only.
The basic schemes, however, can be efficiently implemented for multiple usage
in the conditionally secure setting. Note that in the initialization phases, the
center needs to securely send a subset of bits to each user, and a secret bit may
be shared by a subset of users. A natural question is: how can this be achieved
in the conditionally secure setting? Each xi ∈ X, 1 ≤ i ≤ m, is associated with
a subset of users Ui = {Pj | if xi ∈ Bj}. Instead of having a common bit ai dis-
tributed from the center, Ui and the center execute a conference key agreement
protocol to obtain a common secret key kUi . A common secret bit (or many
secret bits) can be extracted from kUi

using certain cryptographic techniques.
For example, using kUi

as the seed of a pseudorandom number generator results
in many common secret bits for the users in Ui. These secret bits can be later
used as ai’s for the basic AMB schemes. Each user Pi needs to involve in |Bi|
different conference key agreement protocols.

Acknowledgment

The work was in part supported by Australian Research Council grant
A00103078.

References

1. M. Bellare, A. Boldyreva, A. Desai and D. Pointcheval, Key-Privacy in Public-Key
Encryption, Advances in Cryptology – Asiacrypt’01, LNCS, 2248(2001), 566-582.

170 Huaxiong Wang and Josef Pieprzyk

2. P. J. Cameron and J. H. Van Lint, Designs, Graphs, Codes, and their Links, Cam-
bridge University Press, Cambridge 1991.

3. Y. Desmedt, R. Safavi-Naini, H. Wang, L. M. Batten, C. Charnes and J. Pieprzyk,
Broadcast Anti-jamming Systems, Computer Networks, 35(2001), 223-236.

4. D. Chaum, The dining cryptographers problem: unconditional sender and recipient
untraceability, J. of Cryptology, 1 1988, 65-75.

5. P. Erdös, P. Frankl, and Z. Furedi, Families of finite sets in which no set is covered
by the union of r others, Israel Journal of Mathematics, 51(1985), 79-89.

6. A. Fiat and M. Naor, Broadcast encryption, Advances in Cryptology– Crypto ’93,
LNCS, 773(1994), 480-490.

7. R. Kumar, S. Rajagopalan and A. Sahai. Coding constructions for blacklisting
problems without computational assumptions, Advances in Cryptology – CRYPTO
’99, LNCS, 1666(1999), 609-623.

8. R. Molva and G. Tsudik, Secret sets and applications, Information Processing
Letters, 65(1998), 47-55.

9. M. Reiter and A. Rubin, Crowds: Anonymity for Web transactions, ACM Trans-
actions on Information and System Security, 1(1998), 66-92.

10. A. Salomaa, Verifying and recasting secret ballots in computer networks, New
Results and New Trends in Computer Science, LNCS, 555(1991), 283-289.

11. D. R. Stinson. On Some Methods for Unconditionally Secure Key Distribution and
Broadcast Encryption. Designs, Codes and Cryptography 12(1997), 215-243.

12. D. S. Stinson, R. Wei and L. Zhu, Some new bounds for cover-free families, Journal
of Combinatorial Theory, A, 90(2000), 224-234.

13. H. Wang and C. Xing, Explicit constructions of perfect hash families from algebraic
curves over finite fields, Journal of Combinatorial Theory, A, 93(2001), 112-124.

Solving Constraint Satisfaction Problems
with DNA Computing

Evgeny Dantsin and Alexander Wolpert

School of Computer Science, Roosevelt University
430 South Michigan Ave., Chicago, IL 60605, USA

{edantsin,awolpert}@roosevelt.edu

Abstract. We demonstrate how to solve constraint satisfaction prob-
lems (CSPs) with DNA computing. Assuming that DNA operations can
be faulty, we estimate error probability of our algorithm. We show that
for any k-CSP, there is a polynomial-time DNA algorithm with bounded
probability of error. Thus, k-CSPs belong to a DNA analogue of BPP.

1 Introduction

After eight years of intensive research in DNA computing it is still not clear
whether DNA computing can compete (or will be able to compete in the near
future) with existing “silicon” computing. So far problem instances solved with
DNA are much smaller than instances of the same problems cracked by electronic
computers. Another question that should be addressed is the ability to control
errors in DNA computation. Note that electronic computers are faulty too but it
is possible to control their errors. In this paper we join the hunt for applications
utilizing advantages of DNA computing; in particular we attack the question of
error control.

The paper presents a DNA algorithm for solving constraint satisfaction prob-
lems (CSPs). Many particular problems that can be stated as CSPs have been
already studied in publications on DNA computing. For example, Lipton [10]
proposed a DNA algorithm for SAT, Bach et al [4] proposed a DNA algorithm
for the 3-colorability problem, etc. We show how to satisfy general constraints
with DNA. Our algorithm makes use of the join operation (the name is inspired
by “join” in databases, see also [15]). This operation is natural for CSPs as well
as for DNA computing. For k-CSPs, the algorithm runs in polynomial time.

The join operation is implemented using well known biochemical DNA ma-
nipulations such as extract, append, merge and others, e.g. [5,13,15]. Some
of them can introduce errors. For example, extract can have two kind of er-
rors: false negative error (a strand containing a given substrand is not extracted)
and false positive error (a strand not containing a given substrand is extracted).
We analyze how such errors affect the result of our algorithm to estimate its
probability of error.

To decrease error probabilities, we employ the technique proposed by Karp
et al [9]. This method [9] makes extract error-resilient without a big sacrifice

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 171–180, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

172 Evgeny Dantsin and Alexander Wolpert

in the running time. More exactly, extract is converted into a DNA algorithm
whose error probability δ is arbitrary small and whose running time is O(log2 δ).
Using this construction, we convert our join-based algorithm into a DNA al-
gorithm with error probability bounded by an arbitrary small constant. For
k-CSPs, its running time is still polynomial. That is, any k-CSP can be solved
by a polynomial-time DNA algorithm with bounded probability of error. Thus,
any k-CSP belongs to a complexity class that can viewed as a DNA analogue of
BPP (for BPP see e.g. [12]).

The paper is organized as folows. Section 2 contains definitions and notation
related to CSPs. In Section 3 we define the join operation and show how to
solve CSPs with join. Basic DNA operations used in our model of DNA com-
putation are described in Section 4. Section 5 gives a DNA implementation of
our algorithm for CSPs. In Sections 6 and 7 we modify our algorithm into an
error-resilient algorithm.

2 Constraint Satisfaction Problems

In a constraint satisfaction problem (CSP) we are given: (i) a finite set of vari-
ables that range over a finite domain D, and (ii) constraints C1, . . . , Cm on
values of these variables. We need to determine whether there is a valuation of
the variables that satisfies all C1, . . . , Cm. For example, the satisfiability problem
(SAT) can be naturally restated as a CSP in which constraints are disjunctions
of literals. Other examples are the graph colorability and solving equations over
finite domains.

More formally, each CSP is specified by a finite domain D and a set of predi-
cates defined on D. The predicates are required to be computable in polynomial
time. Any atomic proposition p(x1, . . . , xk), where p is a predicate symbol and
x1, . . . , xk are variables ranging over D, is called a constraint. A CSP instance
is a finite set {C1, . . . , Cm} of constraints.

An assignment for variables x1, . . . , xl is a valuation of these variables in D.
We denote such an assignment by {x1←d1, . . . , xl←dl} where d1, . . . , dr ∈ D.
An assignment for one variable is called a unit assignment. An assignment for
all variables occurring in a CSP instance I is called a full assignment for I. A
full assignment α for I is called a solution to I if α satisfies every constraint
in I, i.e., every constraint evaluates to true under α. By a CSP we mean the
following decision problem: given a CSP instance I, determine whether there a
solution to I. Such a problem is called a k-CSP if each predicate has its arity at
most k, i.e., each constraint contains at most k variables.

Let C be a constraint and α be an assignment for the variables occurring in
C. We call α a solution to C if α satisfies C. Any constraint C can be identified
with the set of all solutions to C.

For an assingnment α, the set of all variables occuring in α is denoted by
Var(α). For a set S of assignments, we write Var(S) to denote ∪α∈SVar(α).

Solving Constraint Satisfaction Problems with DNA Computing 173

3 Solving CSPs with Joins

Assignments α1 and α2 are called consistent if they agree on the common vari-
ables in V ar(α1)∩V ar(α2). We define the join of consistent assignments α1 and
α2 to be the following assignment denoted by α1 �� α2:

– α1 �� α2 agrees with α1 on all variables in V ar(α1)− V ar(α2);
– α1 �� α2 agrees with α2 on all variables in V ar(α2)− V ar(α1);
– α1 �� α2 agrees with both α1 and α2 on all variables in V ar(α1) ∩ V ar(α2);
– α1 �� α2 assigns values to only variables in V ar(α1) ∪ V ar(α2).

For example, the join of consistent assignments {x1← 0, x3← 1} and {x2←
1, x3←1} is the assignment {x1←0, x2←1, x3←1}.

We also extend the join operation to sets of assignments. For sets S1 and S2
of assignments, we define the join operation as follows:

S1 �� S2 = {α �� β | α ∈ S1, β ∈ S2, α andβ are consistent}
In particular, if all pairs α, β are inconsistent, S1 �� S2 is empty. Our operation
is essentially the same as the natural join of relations in databases, e.g. [1]. A
similar (but different) DNA operation was introduced in [15].

We present an algorithm that uses the join operation for step-by-step gen-
eration of solutions to a CSP instance. Given an instance {C1, . . . , Cm}, the
algorithm runs in m steps. At step i the algorithm modifies the current set S of
assignments (satisfying C1, . . . , Ci−1) in order to satisfy Ci. After m steps the
algorithm returns the set S of all solutions to {C1, . . . , Cm}.
Algorithm 1 (Join-based algorithm for CSPs).

Input: Sets S1, . . . , Sm of assignments that represent constraints C1, . . . , Cm,
i.e., each Si is the set of all solutions to Ci.

Output: The set S of all solutions to the input instance {C1, . . . , Cm}.
1. S ← S1
2. for i← 2 to m do

(a) S ← S �� Si

(b) if S = ∅ then return (“no solution”)
3. return (S)

The algorithm takes time O(m · t��) where t�� is the maximum running time of
the join operation. The space is O(n · |D|n) where n is the number of variables
occurring in {C1, . . . , Cm} and |D| is the number of elements in D. Our next
step is to implememnt Algorithm 1 with DNA.

4 DNA Operations

Most papers on the comlexity of DNA algorithms use DNA computation models
based on more or less close collections of DNA operations. In this paper, we use
a collection of operations similar to the operations in [5].

174 Evgeny Dantsin and Alexander Wolpert

To solve CSPs with DNA, assignments are encoded by DNA strands. For now,
a strand can be thought of as a string over the alphabetΣ = {A,C,G, T}, see e.g.
[2,13]. Given a CSP instance, we fix an encoding of unit assignments by strands
(note that the set of all possible unit assignments for the instance is finite). For
a unit assignment α, we denote a strand that encodes α by E (α). We assume
that all unit assignments are encoded by strands of the same length. Encodings
of unit assignments induce encodings of arbitrary assignments: if an assignmnet
α consists of unit assignments α1, . . . , αr, we encode α by a concatenation of
strands E (α1), . . . ,E (αr).

Strands are contained in tubes. We associate with each tube T the set ST of
all assignments encoded by the strands in T , i.e., ST consists of all assignments
α such that T contains E (α).

A DNA computation is a computation of a Turing machine augmented by op-
erations on tubes. Operations take tubes and/or assignments (written on Turing
machine tapes) as inputs and return tubes and/or assignments.

Extract. This operation takes a tube T and a unit assignment α as input and
returns a tube with all strands that contain E (α) as a substrand. The extraction
is a variation of the operation separate which separates the strands in a tube
T into two tubes T1 and T2 such that T1 consists of the strands containing a
given string s ∈ Σ∗ and T2 contains the rest of T . The extraction operation is
denoted by extract(T, α).

Append. This operation takes a tube T and a unit assignment α as input and
returns a tube that contains all strands of T concatenated with E (α). The op-
eration is denoted by append(T, α).

Merge. This operation takes tubes T1 and T2 as input and returns a tube that
contains all strands of T1 and T2. The operation is denoted by merge(T1, T2, R).

Detect. This operation is a Boolean operation that returns true if an input
tube T contains at least one strand and retuns false otherwise. The operation is
denoted by detect(T).

Duplicate. This operation takes a tube T as input and returns another tube with
the same set of strands as in T without destroying T . The duplication (as well
as amplify) can be implemented with anneal and polymerase, see e.g. [6].
The operation is denoted by duplicate(T).

Create. To start a DNA computation, we need to create the contents of an initial
tube. The create operation takes a set S of assignments as input and returns a
tube with strands that are encodings of the assignments in S. The operation is
denoted by create(S).

Solving Constraint Satisfaction Problems with DNA Computing 175

5 DNA Implementation of the Join-Based Algorithm

To implement Algorithm 1, we introduce a new DNA operation for computing
joins. This operation is denoted by join. We show how to implement join using
the basic DNA operations above.

Loosely speaking, the join operation takes a tube T and a set S of assign-
ments as input and returns a tube containing strands that encode ST �� S. The
input also contains additional information, namely the set Var(ST) of variables.
Of course this set is determined by T , however the computation of ST from T
with our DNA operations has high complexity. Instead, Algorithm 2 maintains
the list Var(ST) and passes it to the join operation as part of input.

In the description of Procedure join and Algorithm 2 below, we use the
following notation. DNA operations are written using arrows, for example T1 ←
extract(T, α). This means that T1 contains the result of extract(T, α) even
if the operation required several tubes and the result was first returned in a
different tube. In particular, we write T ← extract(T, α) to denote that the
contents of T changes to the result returning by extract(T, α). We denote the
operation of emptying a tube T by writing T ← ∅.

If an assignment α contains a unit assignment for a variable x then this unit
assignment is denoted by α|x.

Procedure join(T, S, V)

Input: A tube T with strands; a set S of assignments; the set V of variables
occurring in ST .

Output: A tube T1 with strands that encode the join of ST and S, i.e., ST1 =
ST �� S.

1. T1 ← ∅; U ← V ∩Var(S); W ← Var(S)− U
2. for each assignment α ∈ S do

(a) T2 ← duplicate(T)
(b) for each variable x ∈ U do T2 ← extract(T2, α|x)
(c) if detect(T2) then for each variable y ∈W do T2 ← append(T2, α|y)
(d) T1 ← merge(T1, T2)

3. return (T1)

Comment: Step 1 of the procedure divides the set Var(S) of variables into
two subsets: the set U of variables ”occurring” in T and the set W of variables
“not occurring” in T . Then for each assignment α in S, the procedure extracts
all strands that “agree” with α on the common variables of U and expands
these strands by adding the projection of α onto the “new” variables of W . All
extracted and expanded strands are accumulated in a tube T1 that eventually
contains the join of ST and S.

Procedure join, we now implement Algorithm 1 with DNA.

176 Evgeny Dantsin and Alexander Wolpert

Algorithm 2 (DNA implementation of the join-based algorithm).

Input: Sets S1, . . . , Sm of assignments that represent constraints C1, . . . , Cm,
i.e., each Si is the set of all solutions to Ci.

Output: A tube T containing strands that encode all solution to {C1, . . . , Cm},
i.e., ST is the set of all solutions to {C1, . . . , Cm}.
1. T ← create(S1); V ← Var(S1)
2. for i← 2 to m do

(a) T ← join(T, Si, V); V ← V ∪Var(Si)
(b) if not detect(T) then return (“no solution”)

3. return (T)

The running time of DNA algorithms is measured by the number of appli-
cations of the basic DNA operations. The space complexity is called the volume
and is measured by the maximum number of strands in all tubes, where the
maximum is taken over all steps of the algorithm.

Proposition 1. Given a k-CSP instance, Algorithm 2 makes O(mk|D|k) appli-
cations of DNA operations, where m is the number of constraints in the instance
and |D| is the cardinality of the domain. The volume is at most |D|n where n is
the number of variable in the instance.

Proof. The algorithm performs one create operation plus m − 1 join opera-
tions plus m−1 detect operations. When running join(T, S, V), the number of
applications of each of duplicate, detect, and merge is at most |S|, which is
not greater than |D|k. The number of applications of extract and append for
one assignment α ∈ S is at most |Var(S)|, which is not greater than k. There-
fore, the overall number of applications is O(mk|D|k). The volume is obviously
bounded by the number of all possible assignments, i.e., by |D|n.

6 Probabilistic Nature of DNA Operations

So far we have assumed that DNA computations are error-free, i.e., they work
perfectly without any errors. However, in reality DNA computations can be
faulty because some DNA operations can introduce errors. In particular, among
the operations defined in Section 4, the operation append, merge, and create
are error-free, while extract, detect, and duplicate are faulty.

Extract. It is well known that extract is probabilistic in nature [3,9,7,11].
Recall that this operation takes a tube T and a unit assignment α as input and
returns a tube T1 with those strands of T that contain the substrand E (α).
However, the following errors can occur:

1. A false negative error: a strand s ∈ T containing E (α) does not end up in
T1. The probability of false negative error is denoted by ε and is estimated
as ε ≈ 10−1, see e.g. [11].

2. A false positive error: a strand s ∈ T not containing E (α) ends up in T1.
The probability of false positive error is denoted by γ and is estimated as
γ ≈ 10−6, see e.g. [11].

Solving Constraint Satisfaction Problems with DNA Computing 177

Single and double strands. To examine duplicate and detect, we need to
distinguish between different types of strands. By a single strand we mean a
string over Σ = {A,C,G, T} together with its linear orientation, either with
orientation 5′ → 3′ or with orientation 3′ → 5′, see [14] for details. These two
types of strands are denoted by ↑ s and ↓ s respectively. A double strand
 s
consists of a single strand ↑s intertwined with its Watson-Crick complement ↓s,
see [14]. The operations duplicate and detect can be implemented using the
following three operations, see [8,6]:

1. Transformation of every pair of single strands ↑ s and ↓ s into the double
strand
s.

2. Denaturation of every double strand
 s into its single strand components
↑s and ↓s.

3. Shortening every strand by a sequence of length l, where l is the length of
encodings of unit assignments.

Note that these operations can be regarded as error-free, see e.g. [11,9].

Duplicate. Let T be an input tube for duplicate. Let t be a tail tag, i.e., a
strand not occurring in encoding of unit assignments. We assume that t has
the same length as encodings of unit assignments. To implement duplicate, we
append t to every strand in T (using append). Then we apply the transformation
of each strand ↑ s into
 s. Furthemore we apply the denaturation of double
strands into their single strand components. Finally, we use extract to find
strands containing the tag t and shorten them to eliminate t. Note that errors
of duplicate can appear only because of errors occurring in extract.

Detect. This operation can be implemented in different ways. In our method, we
decide that a tube is not empty if its volume is greater than a threshold volume
τ . We double the volume of T until its volume becomes greater than τ . If after
�log τ� doubles the volume of T is not greater than τ , we decide that T is empty.
Since these doubles change the original contents of T , we start detect with
duplicating of T . Therefore, detect can be faulty because of using duplicate.

7 Error-Resilient Computation

Our purpose is to analyze errors of Algorithm 2 and to estimate their probabil-
ities. Like the extract operation, Algorithm 2 can have two types of error:

1. A false negative error: the resulting tube T does not contain an encoding of
some solution to the input CSP instance, i.e., a false negative error is the
loss of a solution.

2. A false positive error: the resulting tube T contains an encoding of an assign-
ment that is not a solution to the input CSP instance, i.e., a false positive
error is the acquisition of a pseudo-solution.

178 Evgeny Dantsin and Alexander Wolpert

7.1 Probabilities of False Negative Error and False Positive Error

Clearly, Algorithm 2 returns its result with a false negative error if at least one
of the operations extract, duplicate, or detect introduces a false negative
error. Recall that the algorithm invokes join(T, Si, V) for i = 2, . . . ,m and also
invokes detect(T). In turn, each run of join(T, Si, V) includes:
– |Si| runs of duplicate; let E i

dup be the event that at least one of these runs
has a false negative error;

– |Si| runs of detect; let E i
det be the event that at least one of these runs has

a false negative error;
– at most |Si| · k runs of extract; let E i

ext be the event that at least one of
these runs has a false negative error.

Now we estimate probabilities Pr[E i
dup], Pr[E i

det], and Pr[E i
ext]. Suppose that

for each run of extract and for each strand s, the probability that s contains
a given substrand but does not end up in the resulting tube is not greater than
ε. Then we have

Pr[E i
dup] ≤ 2 ε |D|n

Pr[E i
det] ≤ 2 ε |D|n

Pr[E i
ext] ≤ k ε |D|n

The first inequality holds because duplicate involves two extracts, and any
test tube contains at most |D|n strands. The second inequality holds because
detect invokes one duplicate. The third inequality holds because E i

ext happens
if at least one of k consequitive extracts introduces a false negative error. Note
that the number of strands in any tube does not exceed |D|n. The probability
that a false negative error occurs in join(T, Si, V) is not greater than

Pr[E i
dup ∪ E i

det ∪ E i
ext] ≤ (4 + k) ε |D|n

Finally, the probability that Algorithm 2 has a false negative error is the sum
the probabilities of false negative error for all join(T, Si, V) where i = 2, . . . ,m
plus the probability of false negative error of the final detect. Thus we have
for Algorithm 2:

Pr[Algorithm 2 has a false negative error] ≤ ((m− 1)(4 + k) + 2) ε |D|n (1)

The probability that Algorithm 2 has a false positive error can be estimated
in a similar way. Assume that for each run of extract and for each strand s,
the probability that s does not contain a given substrand but ends up in the
resulting tube is not greater than γ. Then, repeating the arguments above, we
have

Pr[Algorithm 2 has a positive error] ≤ (((m− 1)(4 + k) + 2) γ |D|n (2)

These bounds O(mkε|D|n) and O(mkγ|D|n) use the upper bound |D|n on
the number of strands in any tube. Instead, we could estimate the number of
strands at each step i: when join(T, Si, V) is performed, the number of strands
in a tube does not exceed |D|ik. Then we would have the bounds O(kε|D|mk)
and O(kγ|D|mk) respectively.

Solving Constraint Satisfaction Problems with DNA Computing 179

7.2 Bounded Probabilities of Error

The above bounds on probabilities of error depend on ε and γ. Is it possible
to modify extract so that these probabilities decreases? The answer is yes. It
is shown in [9] that for any given constant δ, the operation extract can be
converted into a DNA algorithm such that its false negative and false positive
errors are not greater than δ. The running time of this algorithm depends on
ε, γ, and δ, namely the complexity of the algorithm is Θ(�logε δ��logγ δ�). This
result is proved in [9] for a slightly less general settings: strands are encodings
of bit strings, and extract returns strands that encode strings containing a
given bit in a given position. However, this case can be easily generalized for our
settings.

Proposition 2 (Karp et al [9]). There exists a DNA algorithm er-extract
(error-resilient extraction) with the following properties:

1. The algorithm runs on the following input: a tube T , a unit assignment α,
and a number δ such that 0 < δ < 1. The algorithm returns a tube T1.

2. For each strand s ∈ T such that s contains E (α), the probability that s does
not end up in T1 is not greater than δ.

3. For each strand s ∈ T such that s does not contain E (α), the probability that
s ends up in T1 is not greater than δ.

4. Assuming that the basic DNA operations extract and merge run in con-
stant time, the algorithm er-extract runs in time Θ(�logε δ��logγ δ�),
where ε and γ have the same meaning as above.

Proof. Straighforward generalization of the proof of [9, Theorem 3.1].

Using Proposition 2, we can solve a k-CSP in polynomial time with bounded
two-sided error probability. More exactly, the probabilities of false negative and
false positive errors are both less than a constant c < 1/2. The constant c does
not depend on the input size. Loosely speaking, we show that any k-CSP belongs
to a DNA counterpart of BPP (for BPP see e.g. [12]).

Proposition 3. For any k-CSP P, there is a DNA algorithm AP that solves P
in polynomial time with bounded error probability. Namely, the probabilities of
false negative and false positive errors of AP are less than 1/4.

Proof. We obtain AP from Algorithm 2 by replacing every extract operation
(including those in duplicate and detect) by the er-extract algorithm.
Namely, we take er-extract with

δ ≤ 1
4 ((m− 1)(4 + k) + 2) |D|n . (3)

Then, according to inequalities (1) and (2), we have

Pr[AP has a false negative error] ≤ ((m− 1)(4 + k) + 2) δ |D|n ≤ 1/4
Pr[AP has a false positive error] ≤ ((m− 1)(4 + k) + 2) δ |D|n ≤ 1/4

180 Evgeny Dantsin and Alexander Wolpert

It remains to estimate the running time of AP . It follows from Proposition 2
that er-extract with δ satisfying (3) runs in time

Θ(�logε δ��logγ δ�) = Θ(�logε(m
−1|D|−n)��logγ(m−1|D|−n)�)

= Θ(n2 log2m).

Since Algorithm 2 uses a polynomial number of applications of extract (Propo-
sition 1), we have a polynomial bound on the running time of AP .

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. L. M. Adleman. Molecular computation of solutions to combinatorial problems.
Science, 266:1021–1024, November 1994.

3. L. M. Adleman. On constructing a molecular computer. In R. Lipton and E. Baum,
editors, DNA Based Computers, volume 27 of DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, pages 1–21. American Mathematical
Society, 1995.

4. E. Bach, A. Condon, E. Glaser, and C. Tanguay. DNA models and algorithms for
NP-complete problems. In Proceedings of the 11th Annual IEEE Conference on
Computational Complexity, pages 290–300, 1996.

5. R. Beigel and B. Fu. Solving intractable problems with DNA computing. In
Proceedings of the 13th Annual IEEE Conference on Computational Complexity,
pages 154–169, 1998.

6. D. Boneh, C. Dunworth, and R. J. Lipton. Breaking DES using a molecular com-
puter. In R. Lipton and E. Baum, editors, DNA Based Computers, volume 27 of
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages
37–66. American Mathematical Society, 1995.

7. D. Boneh, C. Dunworth, R. J. Lipton, and J. Sgall. Making DNA computers
error resistant. In DNA Based Computers II, volume 44 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, pages 163–170. American
Mathematical Society, 1996.

8. K. Chen and V. Ramachandran. A space-efficient randomized DNA algorithm for
k-SAT. In Proceedings of the 6th International Workshop on DNA-Based Comput-
ers, pages 199–208, 2000.

9. R. M. Karp, C. Kenyon, and O. Waarts. Error-resilient DNA computation. Random
Structures and Algorithms, 15(3-4):450–466, 1999.

10. R. J. Lipton. DNA solutions of hard combinatorial problems. Science, 268:542–548,
April 1995.

11. C. C. Maley. DNA computation: theory, practice, and prospects. Evolutionary
Computation, 6(3):201–230, 1998.

12. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

13. G. Păun, G. Rozenberg, and A. Salomaa. DNA Computing: New Computing
Paradigms. Springer, 1998.

14. P. A. Pevzner. Computational Molecular Biology. MIT Press, 2000.
15. J. H. Reif. Parallel molecular computation: models and simulations. Algorithmica,

25(2):142–176, 1999.

New Architecture and Algorithms
for Degradable VLSI/WSI Arrays

Wu Jigang1, Heiko Schröder2, and Srikanthan Thambipillai1

1 Centre for High Performance Embedded Systems,
School of Computer Engineering, Nanyang Technological University,

Singapore,639798, Republic of Singapore
{asjgwu,astsrikan}@ntu.edu.sg

2 School of Computer Science and Information Technology,
RMIT, Melbourne, Australia

heiko@cs.rmit.edu.au

Abstract. The problem of reconfiguring a two-dimensional degradable
VLSI/WSI array under the row and column routing constraints is NP-
complete. This paper aims to decrease gate delay and increase the har-
vest. A new architecture with six-port switches is proposed. New greedy
rerouting algorithms and new compensation approaches are presented
and used to reform the reconfiguration algorithm. Experimental results
show that the new reconfiguration algorithm consistently outperforms
the latest algorithm, both in terms of the percentages of harvest and
that of degradation of VLSI/WSI array.

Keywords: Degradable VLSI/WSI array, reconfiguration, greedy algo-
rithm, fault-tolerance, NP-completeness.

1 Introduction

The mesh-connected processor array has a regular and modular structure and
allows fast implementation of most signal and image processing algorithms. With
the advancement in VLSI (very large scale integration) and WSI (wafer scale in-
tegration) technologies, integrated systems for mesh-connected processor arrays
can now be built on a single chip or wafer. As the density of VLSI/WSI arrays
increases, probability of the occurrence of defects in the arrays during fabrication
also increases. In addition, when the arrays are installed in space-flight instru-
ments such as satellite, defects possibly occur due to harsh environments. These
defects obviously affect the reliability of the whole system. Thus fault-tolerant
technologies must be employed to enhance the yield and reliability of VLSI/WSI
arrays.

Generally, two methods for reconfiguration, namely, redundancy approach
and degradation approach, are used in fault tolerant technologies. In the re-
dundancy approach, a system is built with some of its components called spare
elements. These spare elements are used to replace faulty elements in the re-
configurable system. Various techniques for redundancy approach have been de-
scribed in [1]-[9]. The disadvantage of this approach is the dimension of the

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 181–190, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

182 Wu Jigang, Heiko Schröder, and Srikanthan Thambipillai

arrays is fixed. If spare elements cannot replace all the faulty elements, the sys-
tem is not reconfigurable and has to be discarded. In the degradation approach,
all elements in a system are treated in uniform way, there are no spare element.
This approach uses as many fault-free elements as possible to construct a target
system. [10], [11] and [12] have studied the problem of two-dimensional degrad-
able arrays under the following three different routing constraints, 1) row and
column bypass, 2) row bypass and column rerouting, and 3) row and column
rerouting on the four-port switch model with bypass link. They have shown that
most problems that arise under these constraints are NP-complete. The problem
turns out to be very difficult if rerouting in both row and column direction is
considered at the same time.

In this paper, we consider the reconfiguration problem of two-dimension
VLSI/WSI arrays under the constraint row and column rerouting. This problem
has been proved to be NP-complete[10]. We propose a six-port switch model to
replace the four-port switch model. For the column rerouting on the selected
rows, we present a new greedy column rerouting algorithm based on a new idea
called local compensation. The time complexity of the proposed reconfiguration
algorithm is of the same order as that of Low’s algorithm[12], denoted RCRoute
in this paper, but the performance becomes significantly more powerful.

2 Definitions and Preliminaries

The original array after manufacturing is called a host array (degradable ar-
ray) which contains faulty elements. Degradable subarray of a host array which
contains no faulty element is called a target array (logical array). The rows
(columns) in the host array and target array are called physical rows (columns)
and logical rows (columns), respectively.

An element in the host array is represented by e(i, j), where i is its row index
and j is its column index, all switches and links in an array are assumed to be
fault-free since they have very simple structure[10][11][12].

In a host array, if e(i, j+ 1) is a faulty element, e(i, j) can communicate with
e(i, j + 2) directly and data will bypass e(i, j + 1). This scheme is called row
bypass scheme. If the element e(i, j) can connect directly to e(i′, j + 1) with
external switches, where |i′− i| ≤ d, this scheme is called row rerouting scheme,
d is called row compensation distance.

The column bypass scheme and the column rerouting scheme can be simi-
larly defined. By limiting the compensation distance to 1, we essentially localize
the movements of reconfiguration in order to avoid complex reconfiguration al-
gorithm. In all figures of this paper, the shaded boxes stand for faulty elements
and the white ones stand for the fault-free elements.

In this paper, row(e) (col(e)) denotes the physical row (column) index of
element e. H (S) denotes the host (logical) array. N denotes the number of
fault-free elements in host array. Ri denotes the ith logical row. e(i, j) (er(i, j))
denotes the element located in the ith row and in the jth column of host (logical)
array.

New Architecture and Algorithms for Degradable VLSI/WSI Arrays 183

3 New Architecture

Algorithm RCRoute[12] is based on four-port switch model shown by Fig. 1(a).
In Fig. 1(a), each element has four ports to connect its up, down, left and

right neighbors, respectively. In the row bypass scheme, the data will bypass the
faulty element through an internal bypass link from its left port to its right port
without being processed, i.e., a faulty element can be converted into a connecting
element. No external switch is needed. But in the row rerouting scheme, each
row have both bypass and rerouting capacities. External switches are necessary
between two neighboring elements in two adjacent columns. The pros of this
switch model is its simple construction. But it is due to its simple construction
which provides less functions that the reported reconfiguration algorithms can
not obtain high harvest. Assume the fault-free elements u and v are the neighbors
located in same physical row, this switch model does not support reconfiguring
u and v into same logical column.

bypass link

(a) Array with four-port switches (b) Array with six-port switches

processor cell

column rerouting switch

row rerouting switch column rerouting channel

row rerouting channel

Fig. 1. Old architecture and new architecture

We design a new switch model shown in Fig. 1(b) to replace the four-port
switch model. The new model combines one four-port switch and one bypass
link into one six-port switch which consists of pass gates to establish all possible
connection pair among the six input rails. In other words, a new switch has 6
ports, these ports can arbitrarily be connected pairwise. The only restriction is
that no port can be connected to more than 1.

The new model overcomes the weakness of the old model in its switch func-
tion. In Fig. 1(a), there is a two-gate delay (for row and column rerouting) when
one processor is faulty, and no column rerouting is supported for two neighboring
processors in same physical row. But in Fig. 1(b), there is no gate delay when
processor is faulty. Especially, the six-port model supports the rerouting of two
neighboring processors in same physical row into same logical column. Fig. 2(a)
shows the different cases for the rerouting of u, v and w into same logical column.

184 Wu Jigang, Heiko Schröder, and Srikanthan Thambipillai

or

u

v

case 1

v

u

case 2

u

v or

case 3

fault

compensate

fault-free

examined

w w

u

v w w

u

v

����
����
���� w

u

v w

�����
�����
�����

u

v

����
���� not column-reroutable for v

(a) Rerouting v and w into same logical column (b) Local compensation for v

Fig. 2. Rerouting scheme and local compensation scheme

4 Algorithms

4.1 New Column Rerouting

For each fault-free element u in row Ri, we use Adj(u) to denote the set of the
elements in Ri+1, where i = 0, 1, · · · , k − 1. The definition of Adj(u) is

Adj(u) = {v : v ∈ Ri+1 and |col(u)− col(v)| ≤ 1}.
Assume the elements in Adj(u) is ordered in increasing column numbers for each
u ∈ Ri. Due to the compensation distance is no more than 1, the size of each
Adj(u) is no more than 3.

The local compensation is shown by Fig. 2(b), where v is the leftmost un-
marked element of Adj(u) but it is not available due to faulty, the upper (lower)
neighbor of v, which is located in column col(v) and in row row(v)−1 (row(v)+
1), will be examined to compensate the element v whenever possible when v is the
current element in the column rerouting. The upper neighbor of v is examined
first. If the upper neighbor is not available, then the lower neighbor of v is exam-
ined. Connected on the six-port switch model, a target array is said to contain
all selected rows if each logical column in this target array contains exactly one
fault-free element from each of the selected rows under the local compensation.
We use Local Comp to stand for the procedure to short the paper.

In column rerouting algorithm, each step attempts to connect the current ele-
ment u to the leftmost element of Adj(u) that has not been previously examined.
In Greedy Column Rerouting[12] (GCR in short), if this step fails in doing so,
no logical column that contains the current element u can be formed, the back-
track is doing next. But in New GCR shown by Fig. 3, the local compensation
will be experimented. If this local compensation fails either, the New GCR has
to backtrack to previous element, say p, that was connected to u and attempts
to connect p to the leftmost element of Adj(p) − {u} that has not been previ-
ous examined. For the sake of simplicity in column rerouting, it is not allowed
rerouting vi+1 into the successor of vi if row(vi+1) < row(vi) in the New GCR.

New Architecture and Algorithms for Degradable VLSI/WSI Arrays 185

That means for the result logical column with elements v0, v1, · · · , vk−1, their
index of the physical row satisfy row(v0) ≤ row(v1) ≤ · · · ≤ row(vk−1).

Input: the host arrary H and the logical rows R0, R1, …, Rk-1

Output: the target array with n columns.
Procedure New_GCR (H, R0, R1, …, Rk-1, n)
begin
 n:=0;
 for each u in R0, R1, …, Rk-1 do
 begin unmark u; pred(u):=nil; end;
 while there are unmarked elements in R0 do
 begin
 cur0 := the leftmost unmarked element in R0 ,
 while cur0 is faulty do
 begin /* find the initial cur in R0 */
 Local_Comp(cur0 , cur0 , cur0);
 if (cur0 is fault-free) then cur:= cur0
 else begin
 mark cur0 ;
 cur0 :=the leftmost unmarked element in R0
 end; /* of if */
 end; /* of while */
 mark cur;
 repeat
 if there are unmarked elements in Adj(cur)
 then begin
 v:= leftmost unmarked element in Adj(cur);
 Local_Comp(pred(cur), cur, v);
 if (v is fault-free) and (
 row(cur)<row(v) or (
 row(cur)=row(v) and
 col(pred(cur)) ≠ col(v)))
 then begin pred(v):=cur; cur:=v; mark v end
 else Restore the changed elements in local
 compensation into their original state;

 end /* of if */
 else if cur ∉ R1 then cur:=pred(cur);
 /* backtrack to p */
 until (cur∈ Rk-1) or (cur∈ R0);
 if (cur∈ Rk-1) then n:=n+1;
 /* new logical column obtained */
 end; /* of while*/
end.

12 13

11 22 23 24

31 33 34

43 44

41 51 52

62 53 63

14

3221

42

6461

54

11 12

21 22

31 32

42

51

62

41

61

52

Running result of GCR

Running result of New_GCR

Fig. 3. New GCR and running example

The analysis of time complexity of New GCR is similar to that of GCR. In
detail, for each u ∈ Ri, at most 8 interconnections (from local compensation Fig.
2(b)) are examined at each step. Thus the number of valid interconnections in a
host array with N fault-free elements is no more than 8N . The time complexity
of New GCR is O(N) since each valid interconnection is examined at most twice
in New GCR.

4.2 New Row-Compensation Strategy

Given the logical rows R0, R1, · · ·, Rs, assume the element er(t, j) is a fault-free
one in their jth column, where 0 < t ≤ s. In order to express our idea shortly,
we give the following definition.

1. The elements er(1, j), er(2, j),· · ·, er(t− 1, j) are called the upper elements
of er(t, j), the rows R0, R1, · · · , Rt−1 are called upper rows of the row Rt.

186 Wu Jigang, Heiko Schröder, and Srikanthan Thambipillai

2. The element er(up, j) is called the nearest upper defective element of er(t, j)
if and only if er(up, j) is defective and er(up+1, j), er(up+2, j),· · ·, er(t−1, j)
are fault-free elements, where 0 ≤ up < t.

3. The correspond row Rup is called the nearest upper defective row to Rt.

Similarly, the nearest lower defective element er(down, j) and the correspond
nearest lower defective row Rdown can be defined. If t−up < down−t, the nearest
defective element of er(t, j) is er(up, j), otherwise, er(down, j).

In our algorithm, when Rγ becomes an excluded row, the nearest upper
defective element er(up, j) will be found, and then it will be compensated with
er(up + 1, j), er(up + 1, j) will be replaced by er(up + 2, j), · · ·, er(γ − 1, j)
will be replaced by er(γ, j). If this compensation process is terminated in some
step due to the constraint of compensation distance, it means the nearest upper
defective element er(up, j) can not be compensated. The algorithm will turn
to find the nearest lower defective element er(down, j), and then the similar
process for compensation will be done in these lower elements. The aim of doing
so is to utilize fault-free elements as many as possible in the reconfiguration
procedure. Fig. 4 shows the comparison between old compensation scheme and
new compensation scheme for a 6× 6 host array.

Rγ

Old method for compensation New method for compensation

Fig. 4. Row-compensation schemes

The function Up Comp(m′, γ) shown in Fig. 5(a) is used to search for the
nearest upper defective element er(up, j) of the given fault-free element er(γ, j)
in jth column, then do compensations and replacements from er(up + 1, j) to
er(γ, j), one after the other. The worst case in step 1 is up = 0 and γ = m′−1, i.e.,
all interconnections on fault-free elements in jth column have been tested, thus
at most O(Nj) tests are spend, where Nj is the number of the fault-free elements
in jth column. This is also the worst case of step 2.2 and the same number of
tests are spend. Hence, the worst complexity of the function is O(Nj).

Symmetrically, we can describe a function Down Comp(m′, γ) with the same
worst complexity as that of the Up Comp(m′, γ), which is used to search for
the lower nearest defective element er(down, j) of er(γ, j) and implement the
compensation for it if necessary. Up Comp(m′, γ) and Down Comp(m′, γ) form

New Architecture and Algorithms for Degradable VLSI/WSI Arrays 187

Input: the logical array {Ri},0≤ i≤ m’ with Rγ .
Output: the value of integer variable flag.
Function Up_Comp(m’, γ);
/* Find the nearest upper defective element and do compensations*/
begin
1 Search for the nearest upper defective element
 er(up, j) among the upper elements of the er(γ, j);
2 if (up = -1) /* without fault elements */

 then flag := 0
 else /* do compensation and some replacements */
 begin
 2.1 k:=up+1;
 2.2 while (k ≤ γ) do
 switch (row(er(k, j)) - row(er(k-1,j)))
 begin
 case 1: /* for the neighbor row */
 if (er(k,j) = ’y’) /* successful */
 then {er(k-1,j):=’d’; k:=k+1}
 else/* unsuccessful, jump over while-loop*/
 k:= γ +1;
 break;
 case 2: /* for the next to neighbor row */
 if (er(k,j) = ’u’) /* successful */
 then {er(k-1,j):=’d’; k:=k+1}
 else /*unsuccessful, jump over while-loop*/
 k:= γ +1;
 break;
 default: /* over the compensation distance */
 k:= γ +1;
 end of switch & while;
 2.3 if (k ≠ γ +1) /* successful compensation */

 then flag:=1
 else {flag:=0;
 Restore the changed elements to their
 original state;}
 end of if ;
3. return(flag) ;
end.

(a)

(b).(i)

(b).(ii)

Input: the logical array {Ri},0≤ i≤ m’ with Rγ .
Output: the compensated logical row;
 Procedure Overall_Comp(m’, γ)
 /*Compentate a defective element with Rγ */
begin
for j:= 0 to n do
 if (m’ > 2) then
 begin
 if er(γ,j) ≠ ’n’ then
 begin
 flag := Up_Comp(m’, γ);
 if flag = 0 then Down_Comp(m’, γ);
 end of if;
 end of if;
end.

Input: the host array H, the given constants r, c.
Output: a target array
Procedure New_Row_First(H, m, n, r, c)
begin
1. Let S={ R0, R1 , …, Rm },

New_GCR (H, S, n);
 /* Construct initial target arrays */
2. m' := m;
3. while (m' ≥ r) and (n < c) do
 begin
 3.1 Call approach[13] to select Rγ from S;
 3.2 Overall_Comp(m’,γ) ; /* compensate other rows with Rγ*/

 3.3 Delete the row Rγ from S;
 3.4 New_GCR (H, S, n);
 3.5 m':=m'-1;
 end of while;
4. if (m' ≥ r) and (n' > c)
 then the target array is obtained
 else "algorithm failed";
 end.

Fig. 5. Algorithms for compensation

the procedure Overall Comp shown in Fig. 5(b).(i). It runs before Rγ is excluded
and implements the compensations for whole logical array with all fault-free el-
ements in Rγ . The complexity of Overall Comp is O(

∑
0≤j<n

Nj), i.e., O(N).

4.3 Reconfiguration Algorithm

New Row First shown in Fig. 5(b).(ii) is used to find a target array of maxi-
mum size based on row. Let m′ be the number of logical rows and n′ be the
number of logical column of target array. The current logical array is S =
{R0, R1, · · · , Rm′}. Initially, all rows in the host array are selected for inclu-
sion into the target array. Thus each logical row in S is also a physical row and
each of them has only bypass capability. Its time complexity is O((m − r)N).
Similarly, we can describe a procedure New Column First to find a target array
of maximum size based on column. Its time complexity is O((n− c)N). We ends
this subsection with the following description of main algorithm.

188 Wu Jigang, Heiko Schröder, and Srikanthan Thambipillai

Algorithm New RCRoute
begin
1. Call New Row First to find a maximal target arrays m1 × n1 based on row.
2. Call New Column First to find a maximal target arrays m2 × n2 based on column.
3. The result target arrays is max{m1 × n1, m2 × n2}.
end.

The largest array derived from New Row First and New Column First is
taken as the target array for H. The time complexity of algorithm New RCRoute
is O(max{(m− r)N, (n− c)N}).

5 Experimental Results

In order to make a fair comparison between New RCRoute and RCRoute, we
have implemented them in C on a personal computer—Intel Pentium-II 233
MHZ. The harvest and degradation[12] for each target array are calculated for
the same random host arrays in which the faults were generated by a uniform
random generator. In our experiments, the size of each target array obtained by
New RCRoute is compared with 1) an upper bound on the size of target array
and 2) the size of the target array obtained by RCRoute[12]. The upper bound
of the target array size is calculated with the same method used by RCRoute.
Tables 1-2 summarize the experimental results for the random host arrays with
different size.

Table 1. The Comparison of Maximal Target Arrays with Theoretical Maximums

Host array RCRoute New RCRoute
——————————– ——————————– ——————————–

Size Fault Theorical Target Harvest Degrad. Target Harvest Degrad.
r × c (%) Maximum Array (%) (%) Array (%) (%)

64× 64 0.1 64× 63 64× 63 98.53 1.56 64× 63 98.53 1.56
64× 64 1.0 63× 64 64× 61 96.25 4.69 63× 63 97.86 3.10
64× 64 10.0 61× 60 63× 49 83.72 24.63 60× 59 96.01 13.57

128× 128 0.1 127× 128 128× 127 99.32 0.78 127× 128 99.31 0.78
128× 128 1.0 127× 127 126× 124 96.32 4.64 127× 126 98.65 2.33
128× 128 10.0 117× 126 125× 99 83.92 24.47 121× 117 96.01 13.59

256× 256 0.1 255× 256 255× 254 98.93 1.17 255× 255 99.31 0.78
256× 256 1.0 255× 254 255× 248 97.47 3.50 253× 254 99.03 1.94
256× 256 10.0 234× 252 256× 196 85.07 23.44 240× 236 96.03 13.57

512× 512 0.1 511× 512 512× 508 99.32 0.78 512× 510 99.71 0.39
512× 512 1.0 509× 509 511× 498 98.06 2.92 509× 507 99.44 1.56
512× 512 10.0 469× 503 512× 388 84.20 24.22 505× 452 96.75 12.93

New Architecture and Algorithms for Degradable VLSI/WSI Arrays 189

Table 1 shows the comparison in the sizes of the target arrays derived from
RCRoute, New RCRoute and the Theorem Upper Bound[12], respectively. For
a same random instance, e.g., a host array of size 256×256 with 6553 faulty ele-
ments, we calculate the target array with Theorem Upper Bound[12], RCRoute
and New RCRoute, respectively. The size of its theoretical maximal target ar-
ray is 234× 252. The size of the target array derived from the New RCRoute,
240× 236, is more closer to the theoretical maximal size than that derived from
RCRoute, 256 × 196. Furthermore, the harvest of New RCRoute is 96.03%,
which is greater than that of RCRoute, 85.07%. Meanwhile, the degradation of
New RCRoute is less than that of RCRoute.

Table 2. The Comparison of Maximal Square Arrays

Host array RCRoute New RCRoute
——————– ——————————– ——————————–

Size Fault Target Harvest Degrad. Target Harvest Degrad.
r × c (%) Array (%) (%) Array (%) (%)

64× 64 0.1 63× 63 96.99 3.10 64× 63 98.53 1.56
64× 64 1.0 62× 62 94.77 6.15 63× 63 97.86 3.10
64× 64 10.0 54× 53 77.62 30.13 58× 59 92.81 16.49

128× 128 0.1 127× 127 98.54 1.56 127× 127 98.54 1.56
128× 128 1.0 124× 124 94.79 6.15 125× 125 96.32 4.63
128× 128 10.0 106× 106 76.20 31.42 118× 118 94.43 15.01

256× 256 0.1 254× 254 98.54 1.56 255× 255 99.32 0.78
256× 256 1.0 249× 249 95.56 5.39 253× 254 99.05 1.94
256× 256 10.0 208× 207 73.00 34.30 237× 237 95.23 14.29

512× 512 0.1 509× 509 98.93 1.17 511× 510 99.51 0.59
512× 512 1.0 498× 498 95.56 5.39 508× 507 99.24 1.75
512× 512 10.0 413× 413 72.30 34.93 474× 473 95.03 14.47

Table 2 shows the performance comparisons for the maximal square tar-
get array between New RCRoute and RCRoute. For each random instance,
we compare the maximal square target arrays derived from RCRoute with the
maximal square target arrays derived from New RCRoute. The size of square
target array derived from RCRoute is far less than the size of square target array
derived from New RCRoute for the same random host array. For example, for
a random host array with size 128 × 128 and 10% faulty elements, the size of
square target array derived from RCRoute is only 106 × 106 which is far less
than 118×118 derived from New RCRoute for the same random host array. The
harvest is increased from 76.20% derived from RCRoute into 94.43% derived
from New RCRoute. In addition, the related degradation is decreased.

190 Wu Jigang, Heiko Schröder, and Srikanthan Thambipillai

6 Conclusions

We have discussed the reconfiguration algorithms for the degradable VLSI/WSI
array using row and column rerouting. We have presented a new switch model
and new greedy column rerouting algorithms for the selected rows included in
target array. The improved algorithms have been implemented and experimental
results demonstrate the efficiency of the proposed algorithms. The effect of mul-
tiple row exclusion and partial row exclusion in each iteration, on the efficiency
of the algorithm will be an interesting topic for future investigation.

Acknowledgment

We are grateful to Mr. Ashish Panda for pointing out oversights in an earlier
draft of this paper.

References

1. Mangir T. E. and Avizienis A.: Fault-tolerant design for VLSI: effect of interconnec-
tion requirements on yield improvement of VLSI design. IEEE Trans. Computers.
31 (1982) 609-615

2. Greene J. W. and Gamal A. E.: Configuration of VLSI array in the presence of
defects. J. ACM. 31 (1984) 694-717

3. Lam C. W. H., Li H. F., Jakakumar R.: A study of two approaches for reconfiguring
fault-tolerant systoric array. IEEE Trans. Computers. 38 (1989) 833-844

4. Koren I., Singh, A. D.: Fault tolerance in VLSI circuits. Computer. 23(1990) 73-83
5. Chen Y. Y., Upadhyaya S. J., Cheng C. H.: A comprehensive reconfiguration

scheme for fault-tolerant VLSI/WSI array processors. IEEE Trans. Computers.
46(1997) 1363-1371

6. Horita T., Takanami I.: Fault-tolerant processor arrays based on the 1.5-track
switches with flexible spare distributions. IEEE Trans. on Computers. 49 (2000)
542-552

7. Kuo S. Y., Fuchs W. K.: Efficient spare allocation for reconfigurable arrays. IEEE
Design and Test. 4 (1987) 24-31

8. Wey C. L., Lombardi F.: On the repair of redundant RAM’s. IEEE Trans. on CAD
of Integrated Circuits and Systems. 6 (1987) 222-231

9. M. G. Sami and R. Stefabelli. Reconfigurable architectures for VLSI processing
arrays. Proc. IEEE. 74 (1986) 712-722

10. Kuo S. Y., Chen I. Y.: Efficient reconfiguration algorithms for degradable
VLSI/WSI arrays. IEEE Trans. Computer-Aided Design. 11 (1992) 1289-1300

11. Low C. P., Leong H. W.: On the reconfiguration of degradable VLSI/WSI arrays.
IEEE Trans. Computer-Aided Design of integrated circuits and systems. 16 (1997)
1213-1221

12. Low C. P.: An efficient reconfiguration algorithm for degradable VLSI/WSI arrays.
IEEE Trans. on Computers. 49 (2000) 553-559

Cluster: A Fast Tool to Identify Groups
of Similar Programs

Casey Carter1 and Nicholas Tran2

1 Department of Computer Science, University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA
ccarter@cs.uiuc.edu

2 Department of Mathematics & Computer Science, Santa Clara University
Santa Clara, CA 95053-0290, USA

ntran@math.scu.edu

Abstract. cluster is a tool to partition a large pool of C programs into
groups according to structural similarity. Its method involves calculating
an alignment score for each program against a mosaic made of randomly
selected code fragments of fixed size from the pool. The scores are then
grouped together so that the distance between two adjacent members of
a group is at most some threshold value. cluster is effective in iden-
tifying tight clusters of similar programs and is capable of distributing
its workload over a network of workstations to achieve very fast run-
ning times. As a tool, cluster is highly configurable: the user can adjust
its alignment scoring scheme and clustering threshold as well as obtain
visual alignments of programs suspected to be similar.

1 Introduction

The problem of detecting plagiarism in programming assignments can be di-
vided into two subproblems: a) defining and measuring similarity between two
programs; and b) grouping mutually similar programs together. A robust solu-
tion to the first subproblem is to use string alignment methods, which can be
made to be resistant to systematic name changes, variations in white spaces and
comments, and reordering of statements and functions [5,7]. The best alignment
for two strings of length s and t can be found using dynamic programming in time
O(st). A software tool based on this approach has been implemented and shown
to be effective against simple plagiarism techniques such as name changes, re-
ordering of statements and functions, and adding/removing comments and white
spaces [2].

For the second subproblem, a natural approach is to identify the desired
clusters with connected components of a graphG whose vertices are the programs
under consideration. The edges of G connect pairs of programs whose alignment
scores exceed a given threshold value V . The running time of this algorithm is
dominated by the time it takes to compute the best alignments for all O(n2)
possible pairs of programs; finding the connected components takes only O(n)
time [1].

Thus a naive implementation of a plagiarism detector using the string align-
ment and connected-component clustering methods would have running time

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 191–199, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

192 Casey Carter and Nicholas Tran

Θ(n2l2), which becomes impractical even for small values of n and average pro-
gram size l. The bulk of this computation would be wasted however, since the
number of plagiarism incidents found in a set of programs is usually small.

In this paper we describe the design and implementation of cluster, which
is a randomized alignment-based plagiarism detector with running time O(n2l).
cluster constructs a mosaic from randomly selected code fragments of fixed size
taken from each program in the pool and finds the best alignment score between
the mosaic and each of the programs. The list of n scores is then sorted and
clustered according to a threshold value as before. cluster is effective because
alignment scores against the mosaic for similar programs are approximately the
same and very likely to be higher than the rest (especially if the group of similar
programs is large.) It is fast because the code size of each contribution is kept
to a fixed constant, i.e. the size of the mosaic is O(n); the average time for
one alignment is O(nl), so the total running time for n alignments is O(n2l).
Furthermore, since the n alignments can be performed independently, cluster
can distribute its workload on a network of w workstations using the parallel
virtual machine simulator PVM to achieve a speedup factor of w. Experimental
data show that cluster is practical for all realistic values of n and l. For example,
for n = 200 programs, average length l = 25 KBytes, and fragment size f = 1.25
KBytes (= .05 ∗ l), cluster takes about 45 minutes using a network of six
400-MHz Pentium PCs running Debian/GNU Linux 2.1.

cluster is highly configurable. The user can customize its scoring scheme for
computing best alignments as well as its cluster threshold value. Effectiveness of
values chosen for these parameters may be judged from cluster’s visual display
of the clusters and of alignments of programs clustered together. cluster is a
significantly improved extension of the work reported in [2], which is concerned
mainly with the subproblem of aligning two programs. cluster is implemented
in C++ and Tcl/Tk on a Linux platform, although it can be easily ported to
Windows NT.

The rest of this paper is organized as follows. Section 2 and 3 explain the
underlying string alignment and clustering algorithms. Section 4 describes the
design and implementation of cluster, Section 5 presents experimental data
obtained from running cluster on various data sets, and Section 6 discusses
possible future improvements.

2 Alignment Algorithm

This section explains the string alignment algorithm used by cluster to measure
similarity between two programs. An alignment of two strings s and t (of possibly
different lengths) is obtained by inserting spaces in the strings so that their
lengths become the same. Note that there are many possible alignments. For
example, two alignments of the strings “mastery” and “stars” are

_masters masters
sta___rs __stars

Cluster: A Fast Tool to Identify Groups of Similar Programs 193

Each column of an alignment is a pair of characters, which can either be a
match (score m), a mismatch (score d), or a gap (score g). The score of a consec-
utive block of columns is simply the sum of the individual scores, and the score
of an alignment is defined as that of its highest-scoring block(s) (computational
biology literature calls this local alignment.) For the above example, if m = 1,
d = −1, and g = −2, then “rs/rs” and “sters/stars” are the highest-scoring
blocks in the first and second alignments respectively. The alignment scores are
then 2 and 3. Alignment scores are related to edit distances and are used ex-
tensively in computational biology to detect relationships between DNA strands
[4,6].

The optimal alignment score between two strings is the maximum score
among all alignments. This value can be computed using dynamic programming.
Formally, given two strings s and t, define D(i, j) to be the optimal alignment
score between the two substrings s[1..i] and t[1..j]; max1≤i≤|s|,1≤j≤|t|D(i, j) is

the value we are looking for. Define score(s[i], t[j]) =
{
m, if s[i] = t[j],
d, otherwise.

. The

following recurrence relation gives us a method to compute the solution:

D(i, j) = max

D(i− 1, j − 1) + score(s[i], t[j]),
D(i− 1, j) + g,
D(i, j − 1) + g,
0

Boundary conditions are given by D(1, i) = i∗g and D(j, 1) = j∗g. Elements
of the matrix D can be computed by initializing the first row and column with
the boundary conditions and then evaluating the elements from left to right and
top to bottom. This is possible since D(i, j) depends only on D(i − 1, j − 1),
D(i − 1, j), and D(i, j − 1). Running time of evaluating the best alignment is
O(|s||t|). Space requirement is O(min(|s|, |t|)), since only two rows are needed
by the computation at any time.

Finding a best alignment (i.e. the positions where spaces are inserted) as
opposed to only the best alignment score can be done trivially in linear time
with access to the full matrix D as follows. Starting at the position (r, c) of
an element with the largest value in D, determine whether a space should be
inserted at position r of the first string or at position c of the second string
by examining D(r − 1, c − 1), D(r − 1, c), and D(r, c − 1) (see the recurrence
relation above.) Repeat this process for the selected neighbor until its value is 0.
However, the space required to store D is O(|s||t|), which becomes prohibitive
even for medium-sized s and t, so this method is not practical. Instead a more
sophisticated algorithm is used to obtain the alignment in O(|s||t|) time and
O(|s|+ |t|) space [3].

3 Clustering Algorithm

This section explains the method of clustering mutually similar programs by
finding connected components of a graph. Given n programs, a graph G of n

194 Casey Carter and Nicholas Tran

vertices is constructed so that two vertices a and b of G are connected by an
edge with their alignment score as weight, but only if the weight exceeds a user-
selected threshold value th. Connected components of this graph can be naturally
identified with the desired clusters. The connected components of G can be found
in time O(n) with a simple modification of any tree traversal algorithm. This
running time is dominated by the time required to find the best alignment score
for each pair of vertices, which is O(n2).

4 Design and Implementation

The heart of cluster was implemented in 4,600 lines of C++ and its graphical
user interface in 3,200 lines of Tcl/Tk. It takes as input a set of programs,
a scoring scheme consisting of weights for alignment, and a cluster threshold.
First each program is parsed to generate a much smaller token stream. Next
a mosaic is generated from these token streams and the best alignment scores
between the mosaic and each token stream are computed. This is repeated a
small number of times (default value is 5) to ensure that only similar programs
will consistently earn high scores. The alignment scores for each program are
added together and normalized. Finally, the scores are separated into clusters
using the input threshold value. The algorithm of cluster appears in Figure 1.

4.1 Input/Output Formats

Upon startup, cluster asks the user to select a set of programs using a stan-
dard file selection dialog box. The programs are then clustered, and non-singleton
groups are displayed in a linear list separated by markers. Highest-scoring pro-
grams appear at the top. The user can change the cluster threshold value to get
an instant update of the grouping. Figure 2 shows the result output by cluster
on a set of programs.

cluster also provides a visual alignment of any two programs belong to
the same cluster upon request. The alignment displays the full text of the first
program. Portions perfectly matched with the second program are displayed in
green. Two matched tokens representing different strings (eg. string literals) are
displayed in green and enclosed in a box. Two mismatched tokens are displayed
in red and enclosed in a box. A gap is enclosed in a solid maroon box. Finally,
portions of text which were not used in the alignment are displayed in black. An
example appears in Figure 3.

4.2 parse()

The function parse() is a lexical analyzer generated by the Unix tool flex
to convert a C program into a stream of tokens, each representing either an
arithmetic or logical operation, a punctuation symbol, a C macro, a keyword,
a numeric or string constant, or an identifier. Token numbers for keywords and
special symbols are predefined. Those for identifiers are assigned dynamically

Cluster: A Fast Tool to Identify Groups of Similar Programs 195

Input: Programs p[0], ..., p[n-1], scoring scheme S, cluster threshold V
Output: Non-singleton clusters C1, C2, ..., Ck of similar programs

cluster(p[0], ..., p[n-1], S, V)
{

for (i = 0; i < n; ++i)
t[i] = parse(p[i]);
score[i] = 0;

endfor

for (j = 0; j < iterations; ++j)
tm = make_mosaic(t[0], ..., t[n-1]);
for (i = 0; i < n; ++i)

score[i] += align(t[i], tm, S);
endfor

endfor

ave = average(score[0], ..., score[n-1]);
std = std_dev(score[0], ..., score[n-1]);
for (i = 0; i < n; ++i)

score[i] = (score[i] - ave) / std;
endfor

return group(score[0], ..., score[n-1], V);
}

Fig. 1. cluster algorithm.

with the use of a symbol table (shared by both programs), so that two occur-
rences of a variable name are replaced by two occurrences of some integer. White
spaces and comments are discarded. The purpose of this tokenizing process is
two-fold: to reduce a program to its parse tree, which is usually much shorter;
and to remove inessential information before is performed. A token stream can
be divided into a series of modules, which are defined as blocks of text beginning
right after one top-level right brace and ending at the next top-level right brace.
(Actually, if the preceding right brace belongs to a structure definition, then the
new module begins after the semicolon ending the definition.)

4.3 make mosaic()

The function make mosaic() selects a random fragment from each program’s
token stream and concatenates them to form a new mosaic token stream. The
size f of the fragments is a constant; its default value is 100 tokens, but this
value can be set at run-time by the user. To select a fragment, a random starting
position in the token stream is picked, which belongs to some module M in the
original program. The next f tokens are returned, but only if they all belong to
M ; otherwise, the last f tokens of M are returned. If M has less than f tokens,

196 Casey Carter and Nicholas Tran

Fig. 2. Clustering of similar programs.

Fig. 3. Visual alignment of two similar programs.

then the whole module is returned, and another random fragment of size f−|M |
is selected.

4.4 align()

Given two token streams t1 and t2, align() finds a best alignment and its score
between each module of t1 and the whole stream t2. This technique guarantees
a high score in the case t1 is simply a reordering of the modules of t2. align()
uses the following default scheme to compute the alignment score:

– matches of two identifier tokens are considered very significant and have
weight 2; other matches have weight 1;

– mismatches of two identifiers may be due to systematic name changes and
are disregarded, i.e. they have weight 0; other mismatches (eg. between an

Cluster: A Fast Tool to Identify Groups of Similar Programs 197

Fig. 4. Modifying weights used by cluster’s scoring scheme.

operator and an identifier) are considered more significant and have weight
−1;

– gaps should be introduced with restraint and thus have weight −2.

Weights used by the scoring scheme are user-configurable as shown in Fig-
ure 4.

4.5 group()

The function group() takes a list of real numbers, sorts it, and then inserts a
boundary between two consecutive elements if their values differ more than the
cluster threshold. Only clusters with at least two members are displayed. Note
that this method is much simpler than the connected-component algorithm; it
is based on the assumption that two similar programs are likely to have similar
alignment scores with the same mosaic.

4.6 Optional Features

Although cluster is designed as a stand-alone application, its computation can
be distributed over a network of workstations to achieve even faster running
time with the help of the parallel virtual machine simulator PVM. An on-going
research project in distributed computing at the University of Tennessee, PVM
is a software package that simulates a message-passing parallel machine with a
heterogeneous network of computers running Unix and/or Windows NT. Pro-
grams for PVM can be written in C, C++, and Fortran. This software allows
the user to distribute computations over a network of computers to solve much
larger problems than possible with a single machine. PVM is very easy to install
and use and can be downloaded from http://www.epm.ornl.gov/pv.

When used with PVM over a network of p processors, cluster achieves a
perfect speedup factor of p, due to independence of the n alignment computa-
tions.

On the other hand, if quality of the clustering is more important than speed,
the user can run cluster in the slow mode, which will perform all O(n2)

198 Casey Carter and Nicholas Tran

n f Time (min.)
25 5% 2:06
25 10% 4:11
25 25% 10:24
50 5% 8:23
50 10% 16:41
50 25% 41:33
100 5% 33:31
100 10% 66:34
100 25% 166:29

Fig. 5. cluster’s running times on one processor.

n f Time (min.) Speed up
25 5 % 0:23 5.479
25 10% 0:44 5.725
25 25% 1:47 5.831
50 5 % 1:27 5.792
50 10% 2:52 5.825
50 25% 7:05 5.865
100 5% 5:45 5.831
100 10% 11:33 5.764
100 25% 28:06 5.923

Fig. 6. cluster’s running times on six processors using PVM.

alignments and cluster the results using the connected-component algorithm
described in Section 3.

5 Experimental Setup and Result

We ran cluster on a set of 24 real-life homework programs of average size 18
KBytes on one processor, with a contribution of 5% from each program to the
mosaic. cluster identified correctly all groups of similar programs in this set in
80 seconds. The running time of the naive implementation of finding alignments
for all pairs took 1503 seconds.

We tested cluster on a 400-MHz Pentium II PC running Debian/GNU
Linux using programs of average size 13 KBytes and different values for n and
f . The running times shown in Figure 5 agree with our theoretical analysis. Even
on a set of 100 programs, with a contribution of 25% from each program to the
mosaic, cluster took less than 3 hours. We reran cluster on the same dataset
using PVM to distribute the computations across six identical 400-MHz proces-
sors. The obtained running times shown in Figure 6 show that PVM achieved
an almost perfect speedup factor of 6.

Cluster: A Fast Tool to Identify Groups of Similar Programs 199

6 Discussion

We have designed and implemented a fast tool to partition a large pool of C
programs into groups according to structural similarity. Our tool uses string
alignment methods to measure similarity between input programs and a mosaic
consisting of fragments randomly selected from each input program. Clusters of
mutually similar programs are deduced from these scores. The user can choose to
display alignments between two programs belonging to a suspected cluster with
similar blocks of code highlighted. Scoring scheme as well as similarity threshold
values are easily configurable. Experimental data obtained by running cluster
on real-life homework programs show that our tool is effective (see [2] for a
real-life example) and achieves a significant speedup over the naive method of
aligning all pairs of programs.

Future improvements include smarter handling of header files, detection of
extraneous program fragments (dead code), and parsers for other languages such
as C++ and Java.

It would be interesting to perform a rigorous analysis of the probability that
cluster fails to detect similarity between programs. It should be pointed out,
however, that a good theoretical performance guarantee may not measure up in
practice, because plagiarism can be a subjective notion, and string alignment is
but one method to measure similarity between two strings. In the end, detec-
tion plagiarism requires human intervention; the main utility of cluster is in
making the job easier for the human operator by i) quickly narrowing the pool
of suspects; ii) allowing customization of similarity criteria; and iii) providing
visual evidence of similarity between two programs.

References

1. Cormen, T., Leiserson, C., and Rivest, R. Introduction to Algorithms. MIT Press
and McGraw Hill, 1992.

2. Gitchell, D., and Tran, N. Sim: A utility for detecting similarity in computer pro-
grams. SIGCSE Bulletin (ACM Special Interest Group on Computer Science Edu-
cation) 31 (1999).

3. Hirschberg, D. A linear space algorithm for computing maximal commonsubse-
quences. Communications of the ACM 18 (1975), 341–343.

4. Huang, X., Hardison, R. C., and Miller, W. A space-efficient algorithm for local
similarities. Computer Applications in the Biosciences 6, 4 (1990), 373–381.

5. Hunt, J. W., and Szymanski, T. G. A fast algorithm for computing longest common
subsequences. Communications of the ACM 20, 5 (May 1977), 350–353.

6. Myers, E. W., and Miller, W. Optimal alignments in linear space. Computer Ap-
plications in the Biosciences 4, 1 (1988), 11–17.

7. Smith, T. F., and Waterman, M. S. Identification of common molecular subse-
quences. Journal of Molecular Biology 147 (1981), 195–197.

Broadcasting in Generalized de Bruijn Digraphs
(Extended Abstract)

Yosuke Kikuchi, Shingo Osawa, and Yukio Shibata

Department of Computer Science, Gunma University,
1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515 Japan
{kikuchi,shingo,shibata}@msc.cs.gunma-u.ac.jp

Abstract. This work deals with a broadcasting on generalized de Bruijn
digraphs. Broadcasting on digraphs corresponds to one on networks with
monodirection communication links in practice. The efficiency of broad-
casting is affected by network topology. Generalized de Bruijn digraph is
one of useful network models. We propose protocols for broadcasting on
generalized de Bruijn digraphs using Kronecker product of graphs. The
protocol presented in this paper constructs a k-ramified tree.

Keywords: generalized de Bruijn digraph, Imase Itoh digraph, broad-
casting, Kronecker product, k-ramified tree.

1 Introduction

In communication networks including interconnection networks for parallel com-
puters, it is important that each processor element(PE) has common informa-
tion. Broadcasting is one of the such communication schemes. Broadcasting is
used for loading copies of a single message originated by one PE, called the orig-
inator, to all other PEs in the network. Due to the importance of broadcasting,
a great deal of researches have been devoted to obtaining efficient broadcasting
algorithms. Whereas the topology of the communication network has an effect
on the efficiency of broadcasting. On inquiring into broadcasting, there are some
constraints concerned with ability of elements and links in the network. Fur-
thermore, the network is synchronous, that is, PE’s in the network are able to
communicate simultaneously each other by using their ports. The required time
of sending one message from one PE to another PE by one link is called the
round. So, the constraints in the network are summarized as follows;

1. Each PE is able to send a message to at most one PE in a round;
2. Each PE is able to receive a message from at most one PE in a round;
3. Each PE is not able to send and receive messages simultaneously in a round;
4. Each PE is able to communicate to at most one adjacent PE.

The constraints 1. and 2. implicate that store and forward routing is used in
the network. Given a network and a PE that is a message originator, there arises
one question, “what is the minimum number of rounds required to complete
broadcasting from the message originator?” Thus, given issue is the minimiza-
tion of the number of rounds required to complete broadcasting from the message

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 200–209, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Broadcasting in Generalized de Bruijn Digraphs 201

originator. To investigate broadcasting theoretically, a communication network
is modeled by a graph or a digraph. A PE corresponds to a vertex of the graph or
the digraph and a link corresponds to an edge or an arc. Monodirectional links
are represented by arcs. Bidirectional half duplex links are represented by edges.
Bidirectional full duplex links are represented by symmetric arcs. Digraphs, thus
networks with monodirectional links, are only dealt with in this paper. It is pre-
ferred that a network has fewer links, for example in the design of VLSI systems,
many links increase the design cost. Whereas it is desirable to complete broad-
casting in fewer rounds. There is a trade off between the number of links and
the number of rounds required to complete broadcasting. For completing broad-
casting efficiently, it is important to choose an appropriate network topology.
There are various studies on broadcasting in complete graphs[3], hypercubes
[4,5,11], Cayley graphs [7] and de Bruijn digraphs [2] and there is a survey on
broadcasting and gossiping [8]. One executing broadcasting, de Bruijn digraph
has a good property as network topology. De Bruijn graph has more vertices
than hypercube does, when the diameter and the maximum degree are fixed [1].
Generalized de Bruijn digraphs are independently introduced by Imase and Itoh
[9,10], and Reddy, Pradhan and J. Kuhl [14], so called Imase Itoh digraphs. This
generalization removes the restriction on the cardinality of vertex sets of these
digraphs and makes these digraphs more valuable as network models. We deal
with broadcasting in generalized de Bruijn digraphs. The rest of the paper is
organized as follows. Section 2 gives definition and terminology. We introduce
the k-ramified tree that plays an important role in the broadcasting protocol in
Section 4. In Section 3 we state simple lower bounds on the number of rounds
to complete broadcasting on symmetric complete digraphs in which the arcs of
this symmetric complete digraphs do not represent full duplex links. Section 4
deals with protocols to execute broadcasting on generalized de Bruijn digraphs.
For the design of our protocols, we use Kronecker product of digraphs. Section
5 concludes with discussions and further studies.

2 Definition and Terminology

We state some classes of digraphs needed in this paper and Kronecker prod-
uct of graphs. V (G) and A(G) are the vertex set and the arc set of a digraph
G(V,A), respectively. There is an arc from u to v if (u, v) ∈ A(G). The dis-
tance from a vertex u to a vertex v, denoted d(u, v), is the length of the shortest
path from u to v. We will use ecc(u) to denote the eccentricity of the vertex u,
that is, maxv∈V (G) d(u, v). The diameter of a digraph G, denoted diam(G), is
given by diam(G) = maxu∈V (G){ecc(u)}. If a digraph is not strongly connected,
then diam(G) = ∞. The generalized de Bruijn digraph GB(n, d) is defined by
congruence equations.{

V (GB(n, d)) = {0, 1, 2, . . . , n− 1},
A(GB(n, d)) = {(x, y)|y ≡ dx+ i (mod n), 0 ≤ i < d}.

If n = dD, GB(n, d) is the de Bruijn digraph B(d,D).

202 Yosuke Kikuchi, Shingo Osawa, and Yukio Shibata

��� �

��� �

��� � ��� �

��� �

��� �

��� � ��� �

��� �

��� � ��� �

��� �

��� �

��� �

��� � ��� �

��� �

��� � ��� �

��� �

��� � ��� �

��� �

��� �

��� �

��� �

��� � ��� �

��� �

��� �

��� � ���� �

��� �

��� � ���� �

��� �

��� �

��� �

��� � ��� �

��� �

��� � ��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

Fig. 1. The 2-ramified trees for t = 1, 2, 3 and 4.

The path Pn has n vertices and n− 1 arcs. For V (Pn) = {v1, v2, . . . , vn}, the
arc set A(Pn) = {(vi, vi + 1)|1 ≤ i ≤ n − 1}. Pn can be drawn so that all of its
vertices and same directed arcs lie on a single line.

For a strongly connected digraphG, the shortest path spanning tree (breadth-
fast search tree) with root r, denoted by ST (r), is a spanning tree with root r
and contains a shortest path between r and v in G for each vertex v in G. The
shortest path spanning tree has an important role in studies for broadcasting
and also in this paper. We consider the designing of the efficient protocol for
broadcasting, applying the shortest path spanning tree.

We introduce the k-ramified tree. The k-ramified tree with depth t is denoted
by Tr(k, t), where k and t are positive integers and k ≥ 2. Each vertex of Tr(k, t)
has a label 〈c, l〉, l means the depth in Tr(k, t). A child of 〈c, l〉 has a label either
〈c, l+1〉 or 〈c′, l+1〉. Children of 〈c, l〉 are classified into two types: the 〈c, l+m〉
(m ≥ 1) is called the lineal child, then the arc is said to be the lineal arc.
The 〈c′, l + 1〉 is the collateral child, then the arc is called the collateral arc. In
addition, arcs connecting vertices on depths k and k+ 1 are called depth (k+ 1)
arcs. For the vertex 〈c, l〉, the collateral child of 〈c, l〉 and the collateral children
of lineal children of 〈c, l〉 are called collateral descendants of 〈c, l〉. There is an
arc from the vertex 〈c, l〉 to its each child in Tr(k, t). The definition of Tr(k, t)
is recursively done. The Tr(k, 0) is the trivial graph. Tr(k, 1) is the complete
binary tree with depth 1. The root’s label is 〈c, 0〉. One of the children has the
label 〈c, 1〉 and another child has the label 〈c′, 1〉. The subgraph induced by all
vertices whose depths are less than or equal to t − 1 of Tr(k, t) is Tr(k, t − 1).
The vertex 〈c, t− 1〉 has children 〈c, t〉 and 〈c′t〉 if the vertex 〈c, t− k − 1〉 does
not exit in Tr(k, t−1). The vertex 〈c, t−1〉 has only one child 〈c, t〉 if the vertex
〈c, t− k − 1〉 exits in Tr(k, t− 1).

Figure 1 shows examples for the 2-ramified tree. Each vertex in Tr(k, t) has
at most two children. Thus Tr(k, t) is a kind of binary tree and if t ≤ k, then
Tr(k, t) is the complete binary tree whose depth is t.

Broadcasting in Generalized de Bruijn Digraphs 203

The quasi k-ramified tree with depth t is denoted by qu-Tr(k, t), where k
and t are positive integers and k ≥ 2. There is an arc from the vertex 〈c, l〉 to its
each child in Tr(k, t). The definition of qu-Tr(k, t) is recursively given as well as
Tr(k, t). The qu-Tr(k, 0) is the trivial graph. qu-Tr(k, 1) is P2. Then the label
of the root is 〈c, 0〉 and the label of child of the root is 〈c, 1〉. The subgraph
induced by all vertices whose depths are less than or equal to t − 1 of Tr(k, t)
is Tr(k, t − 1). The vertex 〈c, t − 1〉 has children 〈c, t〉 and 〈c′t〉 if the vertex
〈c, t−k−1〉 does not exit in Tr(k, t−1). The vertex 〈c, t−1〉 has only one child
〈c, t〉 if the vertex 〈c, t−k−1〉 exits in qu-Tr(k, t−1). Each vertex in qu-Tr(k, t)
also has at most two children. Thus qu-Tr(k, t) is a kind of binary tree.

Let lk,s−1 (respectively, qu-lk,s−1) be the number of vertices with depth s−1
in Tr(k, t) (respectively, qu-Tr(k, t)). Then qu-l2,s−1 is equal to the sth Fibonacci
number F (s), whereas lk,s−1 is equal to F (s+ 2)− 1. For a given integer n and
a k-ramified tree, fk(n) denotes the integer r so that the maximum lk,r is the
maximum value not exceeding n. For a given integer n and a quasi k-ramified
tree, qu-fk(n) denotes the integer r so that the maximum qu-lk,r is the maximum
value not exceeding n.

We use Kronecker product to design protocol to construct a spanning tree
of generalized de Bruijn digraph. The Kronecker product (also known as the
tensor product, composition, or categorical product) results in a graph G =
G1 × G2 whose vertex set is V (G) = V (G1) × V (G2) and arc set A(G) =
{((u1, u2), (v1, v2))|u1v1 ∈ A(G1) and u2v2 ∈ A(G2)}, where V (Gi) is the vertex
set of Gi and A(Gi) is the arc set of Gi.

3 Broadcasting in the Network

We suppose that the length of one message can be equal to the amount of
data sent per 1 round. For a broadcasting in the network, links used in the
broadcasting induce a tree structure with originator at the root. That means this
constructs a spanninig tree with originator at the root in the graph corresponding
to the network. Then we design a protocol to obtain a suitable spanninig tree for
the broadcasting, when given a root. For broadcasting with a rooted vertex u,
the broadcasting time of u is the number of rounds to complete the broadcasting.
For a digraph G and the vertex u, bG(u) denotes the minimum broadcasting time
of u and b(G) denotes the minimum broadcasting time of any broadcasting on G.
For a digraph G such that |V (G)| = n and the vertex u, it is clear that the lower
bound of bG(u) is max{ecc(u), �log2 n	}. Furthermore it is also obvious that the
lower bound of b(G) is max{diam(G), �log2 n	} for digraph G with |V (G)| = n.
For an arbitrary graph G, determining b(G) is known to be NP-complete [15].
The vertex which has received a message can send the message to a neighbor
vertex. Thus if m vertices have received a message in a round, then 2m or fewer
vertices will be able to receive the message at the next round. For a k-regular
digraph G without loops, each vertex may send message to at most k vertices.
In the k-ramified tree Tr(k, t), the vertex 〈c, l〉 may have at most k collateral
descendants. The rounds of broadcasting on k-regular digraph G without loops

204 Yosuke Kikuchi, Shingo Osawa, and Yukio Shibata

correspond to the depth of k-ramified tree. Then the number of vertices with
depth s in the k-ramified tree is an upper bound of the number of vertices which
could have received message up to s rounds. From this fact, we obtain the next
statement.

Lemma 1. If G is a k-regular digraph without loops and |V (G)| = n, then the
lower bound of b(G) is max{fk(n) + 1, diam(G)}

The symmetric complete digraph is the simple example which satisfies
Lemma 1. Next we consider the case that G is a k-regular digraph and has
at most one loop. The loop is unnecessary for broadcasting. If an originator has
a loop, the originator has k − 1 neighbor vertices in G.

Lemma 2. If G is a k-regular digraph which has at most one loop and |V (G)| =
n, then the lower bound of b(G) is max{qu-fk(n) + 1, diam(G)}.

4 Broadcasting in the Generalized de Bruijn Digraphs

There always exist several loops in the generalized de Bruijn digraph as well as in
the de Bruijn digraph. The generalized de Bruijn digraph GB(n, d) has exactly
gcd(d − 1, n)�d/ gcd(d − 1, n)	 loops [6,12]. Then we make a digraph from the
generalized de Bruijn digraph GB(n, d) by deleting loops and this digraph is
denoted G−

B(n.d). We consider the broadcasting by a shortest spanning tree
on GB(n, d). The diameter of the generalized de Bruijn digraph GB(n, d) is
�logd n	. Thus the depth of the shortest path spanning tree of GB(n, d) is at most
�logd n	. We give two protocols for broadcasting on the generalized de Bruijn
digraphs. One of the protocols is using the shortest path spanning tree, another
is using a tree related to k-ramified tree. These two protocols are designed using
Kronecker product of the generalized de Bruijn digraph G−

B(n, d) and the path
P2. One of the vertices of P2 is labeled 0, another is labeled 1. The vertices
whose second order label is 0 are called 0 level vertices and the vertices whose
second order label is 1 are called 1 level vertices in G−

B(n, d)× P2. We describe
a protocol by constructing a shortest path spanning tree and giving a procedure
of broadcasting using this tree simultaneously.

procedure Make SPS-tree protocol
{ u is an originator of GB(n, d).}

Construct G−
B(n, d)× P2;

Let V1 be a set of level 1 verteies in G−
B(n, d)× P2;

Assign 0 to the vertex (u, 0);
S := {(u, 0)};
Delete the vertex (u, 1) from the set V1;
repeat

Set k up the minimum among numbers assigned to vertices in the set S;
Choose the vertex (v, 0) which is assigned k in S;

Broadcasting in Generalized de Bruijn Digraphs 205

1

0

9

87

6

5

23

4

0

1

22

3

4

3

4 5

3

Fig. 2. Broadcasting using the shortest path spanning tree rooted at the vertex 0
obtained by SPS-tree protocol for GB(10, 3).

for i := 0 to d− 1 do begin
k := k + 1;
Assign k to (dv + i, 1) ∈ V1 and (dv + i, 0);
Delete the vertex (dv + i, 1) from the set V1;
S := S ∪ {(dv + i, 0)};

end
Delete the vertex (v, 0) from the set S;

until V1 is empty.

Lemma 3. SPS-tree protocol generates a shortest path spanning tree of the gen-
eralized de Bruijn digraph.

The thick arc is the arc used in the broadcasting from vertex 0 of GB(10, 3)
in Figure 2. The numbers written inside the vertices are the labels of vertices of
GB(10, 3). Each number which is assigned to the vertex indicates the round of
receiving the message of the vertex 0 in the broadcasting. Figure 2 shows that
the depth of the spanning tree obtained by SPS-tree protocol is 3. Due to the
relation between the number of vertices and the out degree of each vertex, it
is unable to construct a spanning tree with depth 2 for GB(10, 3). The vertex
8 receives the message at round 5 in Figure 2. However if we can construct a
spanning tree using the arc from vertex 6 to vertex 8 instead of the arc from
vertex 2 to vertex 8, then we obtain a broadcasting completed in 4 rounds.

Next we present a protocol constructing a spanning tree related to d-ramified
tree and quasi q-ramified tree, and giving the procedure of broadcasting using
this tree simultaneously for GB(n, d).

206 Yosuke Kikuchi, Shingo Osawa, and Yukio Shibata

procedure Make STd-ramified protocol
{u is originator of GB(n, d);
Let S1

N(v,0) be the set of neighbor vertices of (v, 0) with unassigned numbers;
Let S0

N(v,0) be the set of vertices corresponding to vertices in S1
N(v,0);

Let AS1
N(v,0) be the set of neighbor vertices of (v, 0) with assigned numbers.}

Construct G−
B(n, d)× P2;

Let V1 be a set of level 1 verteies in G−
B(n, d)× P2;

Assign 0 to the vertex (u, 0);
S := {(u, 0)};
Delete the vertex (u, 1) from the set V1;
repeat

A is empty;
Sort members in S by assigned number in increasing order;
Set k up the maximum among numbers assigned to vertices in the set S;
foreach (v, 0) in S do begin

Compute S1
N(v,0) and S0

N(v,0);
Find the neighbor of (v, 0) such that
|S1

N(dv+i,0)| − |AS1
N(dv+i,0)| is the largest number;

Assign k + 1 to (dv + i, 0) and (dv + i, 1);
Delete the vertex (dv + i, 1) from the set V1;
A := A ∪ {(dv + i, 0)};

end
S := S ∪A;

until V1 is empty.

Obtained spanning trees are not necessarily the shortest path spanning trees.
Each number which is assigned to the vertex indicates the round at which the
message from u is received in the broadcasting.

Lemma 4. STd-ramified protocol generates a spanning tree of the generalized
de Bruijn digraph.

In Figure 3, the thick arc is the arc used in the broadcasting from vertex 0 by
applying STd-ramified protocol for GB(10, 3). Figure 3 shows that the depth of
the spanning tree obtained by STd-ramified protocol is 4. The vertex 8 receives
the message at round 4 in Figure 3 and this broadcasting is completed in 4
rounds.

Lemma 5. For any SPS-tree protocol for GB(n, d), there is a STd-ramified pro-
tocol such that it assigns the number less than the number assigned by the SPS-
tree protocol for each vertex.

We construct the following trees from the spanning trees of GB(n, d) obtained
by above two protocols, then each label of the tree contains two elements. One
of the elements is the label of GB(n, d), another is the round at which the vertex
receives the message. If the vertex u ∈ GB(n, d) receives a message at round k,
then the vertex corresponding to u has the label 〈u, k〉 in this tree. There is an

Broadcasting in Generalized de Bruijn Digraphs 207

1

0

9

87

6

5

23

4

0

1

22

3

4

3

4 4

3

Fig. 3. Broadcasting using the spanning tree rooted at the vertex 0 obtained by STd-
ramified protocol for GB(10, 3).

arc from the vertex u to the vertex u′ in the spanning tree if and only if there is
an arc from 〈u, k〉 to 〈u′, k+1〉. We call the tree constructed by SPS-tree protocol
the SPS tree and the tree constructed by STd-ramified protocol the STR tree,
respectively. From Lemma 5, the next corollary holds.

Corollary 1. The depth of STR tree is less than or equal to that of SPS tree.

There is a following relation between the STR tree of GB(n, d) and the d-ramified
tree.

Lemma 6. Let the root of STR tree correspond to the vertex which has no loop
in GB(n, d). If the depth of STR tree is t, then t ≥ fk(n) + 1 and the STR tree
is a subgraph of Tr(d, t).

Lemma 7. Let the root of STR tree correspond to the vertex which has a loop
in GB(n, d). If the depth of STR tree is t, then t ≥ fk(n) + 1 and the STR tree
is a subgraph of qu− Tr(d, t).

It is difficult to determine the number of rounds for broadcasting using STd-
ramified protocol. Whereas we consider the generalized Fibonacci numbers in-
volved in the number of rounds for broadcasting using STd-ramified protocol
[3]. We give an upper bound for the number of rounds for broadcasting using
STd-ramified protocol.

Theorem 1. For the generalized de Bruijn digraph GB(n, d),

�logd n	 ≤ b(GB(n, d)) ≤ d�logd n	.

208 Yosuke Kikuchi, Shingo Osawa, and Yukio Shibata

The lower bound �logd n	 is the diameter of GB(n, d). We prepare some
lemmas to give the proof for the upper bound in Theorem 1. Since the generalized
de Bruijn digraph GB(n, d) has vertices with loops, we consider the broadcasting
from the vertex with loops on GB(n, d).

Lemma 8. There is a broadcasting from the vertex with loops such that the
number of rounds is at most d�logd n	 − 1 for GB(n, d).

Proof. We consider a broadcasting using a shortest path spanning tree from
the vertex u which has a loop. The vertex u has d − 1 neighbor vertices in
GB(n, d). The vertex u and the d − 1 neighbor vertices of u have consecutive
labels, that is, du+i (0 ≤ i ≤ d−1) in GB(n, d). These d vertices have a message
from u by (d− 1)-th round. Furthermore the k vertices which have consecutive
labels are adjacent to dk vertices which may precede k vertices. Hence d�logd n�

vertices which may include the vertex u have received a message from u down
to (d�logd n	 − 1)-th round. ��
Next lemma states the broadcasting from the vertex which has no loop.

Lemma 9. There is a broadcasting from the vertex with no loop such that the
number of rounds is at most d�logd n	 for GB(n, d).

Proof. We consider a broadcasting using shortest a path spanning tree from the
vertex u which has no loop. The vertex u has d neighbor vertices in GB(n, d).
There is no guarantee that the vertex u and d neighbor vertices of u have consec-
utive labels in GB(n, d). The d neighbor vertices have a message from u by d-th
round. Furthermore the k vertices which have consecutive labels are adjacent to
dk vertices which may include preceding k vertices. Hence d�logd n� vertices which
may include the vertex u have received a message from u down to d�logd n	-th
round. ��

Since the vertex u and its neighbor vertices do not always have the consec-
utive labels in GB(n, d), the upper bound of Lemma 9 is not sharper than that
of Lemma 8. Theorem 1 is the direct consequence of Lemma 8 and 9.

5 Conclusion and Further Studies

We propose protocols for broadcasting using Kronecker product of the gener-
alized de Bruijn digraph and a path. We introduce k-ramified trees and quasi
k-ramified trees concerned with an efficient broadcasting. We also estimate the
minimum broadcasting time of the generalized de Bruijn digraphs.

The design of protocol for broadcasting using Kronecker product seems to
be applicable to other classes of graphs and digraphs. The k-ramified tree and
the quasi k-ramified tree will give an easy method to analyze the minimum
broadcasting time of other classes of graphs and digraphs. The bounds of the
minimum broadcasting time of the generalized de Bruijn digraphs will be made
better by investigating the relation between the k-ramified trees (the quasi k-
ramified trees) and the generalized de Bruijn digraphs.

Broadcasting in Generalized de Bruijn Digraphs 209

Acknowledgement

This research is partly supported by Grant-in-Aid for Scientific Research (C)
(No. 13680392) of Japan Society for the Promotion of Science.
This research has also been partly supported by the Kayamori Foundation of
Informational Science Advancement.

References

1. J.-C. Bermond and C. Peyrat, De Bruijn and Kautz networks: a competitor for the
hypercube?, Hypercube and Distributed Computers, (F. Andrè and J. P. Verjus,
Eds.), Elsevier North-Hollamd, Amsterdam, 1989.

2. J.-C. Bermond and P. Fraigniaud, Broadcasting and gossiping in de Bruijn net-
works, SIAM J. Comp., 23(1994) 212–225.

3. J. Bruck, R. Cypher and C-H Ho, Multiple message Broadcasting with generalized
Fibonacci trees, 4th IEEE Symposium on parallel and Distributed Processing,
(1992) 424–431.

4. G.-M. Chiu, A fault-tolerant broadcasting algorithm for hypercubes, Info. Pro-
cessing letters, 66(1998) 93–99.

5. K. Diks, S. Dobrev, E. Kranakis, A. Pelc and P. Ružička, Broadcasting in unlabeled
hypercubes with a linear number of messages, Info. Processing letters, 66(1998)
181–186.

6. D. Z. Du and F. K. Hwang, Generalized de Bruijn digraphs, Networks, 18(1988)
27–38.

7. C. GowriSankaran, Broadcasting on recursively decomposable Cayley graphs, Dis-
crete Appl. Math., 53(1994) 171–182.

8. S. T. Hedetniemi, S.Hedetniemi and A. Liestman, A survey of gossiping and
broadcasting in communication networks, Networks, 18(1986) 319–349.

9. M. Imase and M. Itoh, Design to minimize diameter on buildin-block network,
IEEE Trans. Comp., C-30 (1981) 439–442.

10. M. Imase and M. Itoh, A design for directed graphs with minimum diameter, IEEE
Trans. Comp., C-32 (1983) 782–784.

11. S. Johnsson and C.-T. Ho, Optimum broadcasting and personalized communication
in hypercubes, IEEE Trans. Comp., C-38 (1989) 1249–1268.

12. M. Mora, O. Serra and M. A. Fiol, General properties of c-circulant digraphs, Ars
Comb., 25C (1998) 241–252.

13. F. T. Leighton, Introduction to parallel algorithms and architectures: arrays · trees
· hypercubes, Morgan Kaufmann, San Mateo, 1992.

14. S. M. Reddy, D. K. Pradhan and J. Kuhl, Directed graphs with minimal diame-
ter and maximum node connectivity, School of Engineering Oakland Univ. Tech.
Report, 1980.

15. P. J. Slater, E.J. Cockayne and S.T. Hedetniemi, Information dissemination in
trees, SIAM J. Comp., 10 (1981) 692–701.

On the Connected Domination Number
of Random Regular Graphs

William Duckworth and Bernard Mans

Department of Computing, Macquarie University
Sydney NSW 2109 Australia
{billy,bmans}@ics.mq.edu.au

Abstract. A connected dominating set (CDS) of a graph, G, is a set of
vertices, C ⊆ V (G), such that every vertex in V (G) \ C is incident to
at least one vertex of C in G and the subgraph induced by the vertices
of C in G is connected. In this paper we consider a simple, yet efficient,
randomised greedy algorithm for finding a small CDS of regular graphs.
We analyse the average-case performance of this heuristic on random
regular graphs using differential equations. In this way we prove an upper
bound on the size of a minimum CDS of random regular graphs.

1 Introduction

A dominating set of a graph, G, is a set of vertices, D ⊆ V (G), such that every
vertex of G either belongs to D or is incident with a vertex of D in G. A connected
dominating set, C, of a graph, G, is a dominating set such that the subgraph
induced by the vertices of C in G is connected. Define the minimum cardinality
of all connected dominating sets of G as the connected domination number of
G and denote this by γc(G). This problem is of interest in many contexts, in
particular, it has many applications in distributed and network environments.

For an arbitrary graph, G, the problem of determining γc(G) is a well known
NP-hard optimisation problem (see, for example, [10]) and is polynomially equiv-
alent to the maximum leaf spanning tree problem. The non-leaf vertices of a
spanning tree of a graph form a connected dominating set of the graph. Define
λ(G) to be the maximum number leaves in any spanning tree of G, so that for
any n-vertex graph, G, λ(G) = n− γc(G).

Solis-Oba [11] showed that the maximum leaf spanning tree problem is ap-
proximable within 2. Galbiati, Maffioli and Morzenti [7] showed that the same
problem is not approximable within 1 + ε for any ε > 0 (unless P=NP).

A graph, G, is said to be d-regular if every vertex of G is incident with pre-
cisely d other vertices of G. When discussing any d-regular graph on n vertices,
it is assumed that dn is even, d is constant and d ≥ 3. We consider such graphs
that are undirected, unweighted and contain no loops or multiple edges.

Storer [12] showed that for every connected cubic (i.e. 3-regular) graph, G,
λ(G) ≥ �(n/4) + 2�. Griggs, Kleitman and Shastri [8] showed that for every
cubic graph, G, that has no subgraph isomorphic to “K4−e” (K4 with one edge
removed) λ(G) ≥ �(n/4) + (4/3)�.

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 210–219, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

On the Connected Domination Number of Random Regular Graphs 211

Griggs and Wu [9] showed that for every connected n-vertex graph, G, with
minimum degree at least 4, λ(G) ≥ (2n + 8)/5 and for every connected n-
vertex graph, G, with minimum degree at least 5, λ(G) ≥ (n + 4)/2. For a
connected, n-vertex graph, G, with minimum degree k ≥ 6, the exact value of
λ(G) remains unknown. The results of [9,12] are essentially the best possible
since there exist infinite families of n-vertex, d-regular graphs such that λ(G) ≤
�(d− 2)n/(d+ 1)�+ 2.

Duckworth and Wormald [6] gave a new derivation, at least to within an
additive constant, of the main result of [12] and also showed that for every cubic
graph, G, of girth at least 5, γc(G) ≤ 2n/3 + O(1). The linear programming
technique that was used to analyse the performance of the algorithms that were
presented, also demonstrated the existence of infinitely many cubic graphs for
which the algorithms only achieve these bounds. An example was given of a
family of cubic graphs of girth at least 5 for which γc(G) ≥ 4n/7−O(1).

We focus our attention on regular graphs that are generated u.a.r. (uniformly
at random). We use the notation P (probability), E (expectation) and say that
a property, B = Bn, of a random regular graph on n vertices holds a.a.s. (asymp-
totically almost surely) if limn→∞ P(Bn)=1.

As far as the authors are aware, the only bound known on γc(G) for random
regular graphs is due to Duckworth [5] who showed that for a random cubic
graph, G, γc(G) is a.a.s. less than 0.5854n. This bound was achieved by using
differential equations to analyse the performance of a randomised algorithm.

For a d-regular graph on n vertices, G, a trivial lower bound on γc(G) may be
derived by considering the degrees of the vertices in the spanning tree that has
a set of internal vertices of size γc(G). Let I denote this set of internal vertices.
Note that all vertices of I have degree at most d in the tree. All other vertices
in the tree have degree 1 and there are n − 1 edges in the tree. This implies
dI + n− I ≥ 2(n− 1) hence, γc(G) ≥ n/(d− 1) (asymptotically).

Alon [1] proved by probabilistic methods that, for n sufficiently large, the
size of a smallest dominating set of a n-vertex graph with minimum degree d is
at least (1+od(1))(1+ln(d+1))n/(d+1). Therefore, clearly, for such a graph, G,
the same bound also holds for γc(G). In fact, Caro, West and Yuster [3] showed
that, for n-vertex graphs of minimum degree d, the size of a minimum connected
dominating set is essentially the same as the size of a minimum dominating set,
for n and d sufficiently large.

In this paper we consider a simple, yet efficient, randomised greedy algorithm
for finding a small connected dominating set of regular graphs. We analyse the
average-case performance of this heuristic on random regular graphs using differ-
ential equations. In this way we prove an upper bound on the size of a minimum
connected dominating set of random regular graphs.

The columns UB in Table 1 summarise our results and give a.a. sure upper
bounds on γc(G) when G is a random d-regular graph on n vertices; these are
the main results of this paper. For each d we also include the values n/(d − 1)
(as a comparison to the trivial lower bound) and the value ln(d + 1)n/(d + 1)
(as a comparison to the results of Alon [1]).

212 William Duckworth and Bernard Mans

Table 1. Bounds on γc(G) for a random d-regular graph, G

d UB n/(d− 1) ln(d+1)n
(d+1) d UB n/(d− 1) ln(d+1)n

(d+1)

3 0.5854n 0.5000n 0.3466n 20 0.1493n 0.0526n 0.1450n
4 0.4565n 0.3333n 0.3219n 30 0.1121n 0.0345n 0.1108n
5 0.3860n 0.2500n 0.2986n 40 0.0910n 0.0256n 0.0906n
10 0.2397n 0.1111n 0.2180n 50 0.0771n 0.0204n 0.0771n

2 Random Graphs and Differential Equations

In this section we introduce the model we use to generate a regular graph u.a.r.
and give an overview of an established method of analysing the performance of
randomised algorithms.

The model we use was first described in its simplest form by Bollobás [2]. For
a d-regular graph on n vertices, first take dn points in n buckets labelled 1 . . . n
with d points in each bucket and then choose u.a.r. a disjoint pairing of the dn
points. The buckets represent the vertices of the randomly generated graph and
each pair represents an edge whose end-points are given by the buckets of the
points in the pair. With probability bounded below by a positive constant, loops
and multiple edges do not occur (see, for example, Wormald [13, Section 2.2]).

One method of analysing the performance of a randomised algorithm is to use
a system of differential equations to express the expected changes in variables
describing the state of the algorithm during its execution. Wormald [14] gives
an exposition of this method and Duckworth [4] applies this method to several
graph-theoretic optimisation problems. In order to analyse an algorithm using
a system of differential equations, we incorporate the algorithm as part of a
pairing process that generates a random regular graph. In this way, we generate
the random graph in the order that the edges are examined by the algorithm.

We may consider the generation process as follows. Initially, all vertices have
degree zero. Throughout the execution of the generation process vertices will
increase in degree until all vertices have degree d. Once the degree of a vertex
reaches d, the vertex is said to be saturated and the generation is complete when
all vertices are saturated. During the generation process, we refer to the graph
being generated as the evolving graph.

During the generation of a random regular graph we choose the pairs sequen-
tially. The first point, pi, of a pair may be chosen by any rule but in order to
ensure that the regular graph is generated u.a.r., the second point, pj , of that
pair must be selected u.a.r. from all the remaining free (i.e. unpaired) points.
The freedom of choice of pi enables us to select it u.a.r. from the vertices of a
particular degree in the evolving graph and we say that selecting pj u.a.r. from
all the remaining free points denotes selecting a mate for pi. Using B(pk) to de-
note the bucket that the point pk belongs to, we say that the edge from B(pi) to
B(pj) is exposed and that the vertex represented by B(pj) is hit by this exposed
edge.

On the Connected Domination Number of Random Regular Graphs 213

In what follows, we denote the set of vertices of degree i of the evolving graph,
at time t, by Vi = Vi(t) and let Yi = Yi(t) denote |Vi|. (For such variables, in
the remainder of the paper, the parameter t will be omitted where no ambiguity
arises.) We can express the state of the evolving graph at any point during
the execution of the algorithm by considering the variables Yi where 0 ≤ i ≤
d− 1. In order to analyse a randomised algorithm for finding a small connected
dominating set, C, of regular graphs, we calculate the expected change in this
state over a predefined unit of time in relation to the expected change in the
size of C. Let C = C(t) denote |C| at any stage of an algorithm (time t) and let
E∆X denote the expected change in a random variable X conditional upon the
history of the process. We then use the equations representing E∆Yi and E∆C
to derive a system of differential equations. The solutions to these differential
equations describe functions which represent the behaviour of the variables Yi.
Wormald [14, Theorem 6.1] describes a general result which guarantees that the
solutions of the differential equations almost surely approximate the variables Yi

and C with error o(n). The expected size of the connected dominating set may
be deduced from these results.

3 A Simple Heuristic

In order to analyse our algorithm for finding a small connected dominating set,
C, of a random, n-vertex, d-regular graph, we combine the algorithm with a
pairing process that u.a.r. generates the graph as described in Section 2. Recall
that Vi denotes the set of vertices of current degree i in the evolving graph, G.
For a vertex, v ∈ V (G), N(v) denotes the set of vertices incident with v in G
along exposed edges and we let deg(v) = |N(v)|. The combined algorithm and
pairing process is given in Figure 1; a description is given below.

We say that the combined algorithm and pairing process proceeds in opera-
tions. Each operation represents the process of selecting a vertex, u, for possible
inclusion in C along with the exposing of a number of edges incident with u.

The first operation is unique in the sense that it is the only operation in which
u is selected from V0. From this point, until the completion of the algorithm,
there will always exist a non-saturated vertex in the evolving graph that has
degree strictly greater than zero. This follows from the well-known fact that
random regular graphs are a.a.s. connected (see, for example, [13]). The first
vertex of C, u, is selected u.a.r. from V0 and all its incident edges are exposed.
Note that after the first operation, Y1 is non-zero.

The remainder of the algorithm is divided into two stages denoted by the two
while loops. The first stage represents the period of time after the first operation
up until the first time Y1 reaches zero. The second stage represents the remainder
of the process.

For each operation in the first stage, we select a vertex, u, u.a.r. from V1. We
then expose one edge incident with u to a vertex v (say). If v now has degree 1,
we add u to C and expose its remaining incident edges. Otherwise, the operation
terminates without increasing the size of C.

214 William Duckworth and Bernard Mans

Select u u.a.r. from V0;
C ← {u};
Expose all remaining edges incident with u;

while (Y1 > 0) do
Select u u.a.r. from V1;
Expose an edge incident with u;
if ({N(u) ∩ V1} �= ∅) C ← C ∪ u;

Expose all remaining edges incident with u;
enddo
while (Y0 > 0) do

k ← min
v∈V (G){deg(v) > 1};

if (Y1 > 0) Select u u.a.r. from V1;
Expose k − 1 edges incident with u;

else Select u u.a.r. from Vk;
Expose an edge incident with u;

if ({N(u) ∩ V1} �= ∅) C ← C ∪ u;
Expose all remaining edges incident with u;

enddo

Fig. 1. Combined algorithm and pairing process

Throughout the second stage, we let k denote the current minimum degree
of all vertices that have non-zero degree. If k = 1, we select a vertex, u, u.a.r.
from V1 and expose k−1 edges incident with u. Otherwise, we select a vertex, u,
u.a.r. from Vk and expose one edge incident with u. If any of the new neighbours
of u now have degree 1, u is added to C and all remaining edges incident with u
are exposed. Otherwise, the operation terminates without increasing the size of
C.

For operations that select u u.a.r. from V1 during the second stage, the ra-
tionale behind exposing k − 1 edges incident with u is an attempt to control
the current minimum degree of the vertices that have non-zero degree. Notice
then how the current minimum degree of all vertices that have non-zero degree
is increasing throughout the process.

At the start of the process all vertices have degree zero and the first vertex of
C is chosen u.a.r. from V0. Each subsequent vertex, u, chosen for possible addition
to C, is selected u.a.r. from those vertices of a particular non-zero degree. This
ensures that C remains connected in G. Once u has been chosen, one or more
edges incident with u are exposed. We add u to C if one or more neighbours of
u, along these exposed edges, now has degree 1. This ensures C is dominating in
G at the end of the process.

Several variations of this algorithm were considered. For reasons of brevity,
we do not give the full details here but the algorithm presented gave the best
performance of all the algorithms that we analysed.

On the Connected Domination Number of Random Regular Graphs 215

4 Algorithm Analysis

In what follows, we refer to the combined algorithm and pairing process as the
algorithm. The actual algorithm itself, to be run on a random regular graph once
it has been generated, may be extracted from this process.

For each operation after the first, a non-saturated vertex is selected for pos-
sible addition to C. We define a Type k operation to be one in which in which
the chosen vertex is selected u.a.r. from Vk.

Once the first vertex of C has been chosen, and all its incident edges have
been exposed, we split the remainder of the analysis into d− 1 distinct ordered
phases; Phase 1, Phase 2, . . . , Phase d− 1. We informally define Phase k as the
period of time from the first Type k operation up to but not including the first
Type k′ operation where k′ > k. Phase k terminates as soon as Yk reaches zero.

We define a clutch to be a series of operations in Phase k from a Type k
operation up to but not including the next Type k operation. Note that in Phase
1, a clutch consists of just one Type 1 operation but a clutch in later phases may
consist of more than one operation. In particular, a clutch in later phases will
consist of one Type k operation and possibly some Type 1 operations.

We calculate the expected change in the variables Yi, 0 ≤ i ≤ d− 1, and the
expected change in the size of C for a clutch in each Phase. These equations are
then used to form a system of differential equations.

For each edge exposed in the evolving graph two points are chosen. The first
is chosen u.a.r. from a given set and the second is chosen u.a.r. from all the
remaining free points. Let s denote the number of free points available in all
buckets at a given stage (time t). Note that s = s(t) =

∑d−1
i=0 (d − i)Yi. For our

analysis it is convenient to assume that s > εn for some arbitrarily small but
fixed ε > 0. Later, we discuss the last steps of the algorithm, where s ≤ εn.

The probability that, when selecting a free point u.a.r. from all the remaining
free points (at time t), the point belongs to a vertex of degree j is Pj where

Pj = Pj(t) =
(d− j)Yj

s
, 0 ≤ j ≤ d− 1.

The expected change in Yi due to changing the degree of a vertex from i to
i + 1 by exposing an edge to it (at time t) is ρi + o(1) = ρi(t) + o(1) where
ρ0 = −P0 and ρi = Pi−1 − Pi, 1 ≤ i ≤ d − 1. To justify this, note that when
the second point in a pair is selected u.a.r., the number of free points in the
buckets corresponding to vertices of degree i is (d− i)Yi. Selecting one of these
points causes Yi to decrease. However, the number of free points in the buckets
corresponding to vertices of degree i − 1 (when i > 0) is (d + 1 − i)Yi−1 and
selecting one of these points causes Yi to increase. For i > 0, these two quantities
are added because expectation is additive. The o(1) term is due to the fact that
the values of all these variables may change by a constant during the course of
the operation being examined. Since s > εn the error is in fact O(1/n).

Note that Phase 1 of the algorithm is unique in the sense that it is the only
phase in which all operations are certain to be of the same type. We therefore
treat this phase separately and then go on to treat the later phases in general.

216 William Duckworth and Bernard Mans

In Phase 1 we select a vertex, u, u.a.r. from V1 and expose an incident edge
to a vertex v (say). The decision whether to add u to C depends on the degree
of v and further edges may then be exposed. The expected change in Yi when
performing an operation in Phase 1 (at time t) is E∆Yi + o(1) where

E∆Yi = E∆Yi(t) = −δi1 + ρi + P0(d− 2)ρi + (1−P0)δi2, 0 ≤ i ≤ d− 1, (1)

in which δij denotes the Kronecker delta function.
The expected change in the size of the connected dominating set when per-

forming an operation in Phase 1 (at time t) is E∆C + o(1) where

E∆C = E∆C(t) = P0, (2)

as we only add u to C if v had degree zero at the start of the operation.
In Phase k, 2 ≤ k ≤ d−1, there are two types of operation. For simplicity, we

treat operations of Type 1 first and then combine the equations given by these
operations with those for operations of Type k. This enables us to calculate the
necessary equations for a clutch of operations.

When performing an operation of Type 1 in Phase k we select a vertex, u,
u.a.r. from V1 and expose k − 1 incident edges. The probability that we hit a
vertex of degree zero when these edges are exposed is given by

1− (1− P0)k−1 + o(1).

The expected change in Yi when performing an operation of Type 1 in Phase
k, 2 ≤ k ≤ d− 1, (at time t) is ψ1 + o(1) = ψ1(t) + o(1) where

ψ1 = −δi1+(k−1)ρi+(1−(1−P0)k−1)(d−k)ρi+(1−P0)k−1δik, 0 ≤ i ≤ d−1.

For an operation of Type k in Phase k, we first select a vertex, u, u.a.r.
from Vk and expose one of its remaining incident edges to a vertex v (say). The
decision whether to add u to C depends upon the degree of v. The expected
change in Yi when performing an operation of Type k in Phase k (at time t) is
ψk + o(1) where

ψk = ψk(t) = −δik + ρi + P0(d− k − 1)ρi + (1− P0)δik+1, 0 ≤ i ≤ d− 1.

The expected change in the size of the connected dominating set when per-
forming an operation of Type k in Phase k is the probability that we hit a vertex
of degree zero when the first edge is exposed and this is

P0 + o(1).

We say that a birth denotes the generation of a vertex in V1 by performing
an operation in Phase k, 2 ≤ k ≤ d − 1. The expected number of births from
performing an operation of Type k (at time t) is νk + o(1) where

νk = νk(t) = P0(1 + (d− k − 1)P0).

On the Connected Domination Number of Random Regular Graphs 217

With probability that the first edge is exposed to a vertex of degree zero we have
one birth and, should this happen, we add the probability that other vertices of
degree zero are hit when the remaining edges are exposed.

Similarly, the expected number of births from performing an operation of
Type 1 (at time t) is ν1 + o(1) where

ν1 = ν1(t) = (k − 1)P0 + (1− (1− P0)k−1)(d− k)P0.

Consider the Type k operation at the start of the clutch to be the first
generation of a birth-death process in which the individuals are the vertices in V1,
each giving birth to a number of children (essentially independent of the others)
with expected number ν1. Then, the expected number in the jth generation is
νkν1

j−1 and the expected number of births in the clutch is νk/(1− ν1) + o(1).
For a clutch of operations in Phase k, 2 ≤ k ≤ d − 1, we have one Type k

operation and for each birth we have a Type 1 operation (a.a.s.). The expected
change in Yi for a clutch in Phase k (at time t) is E∆Yi + o(1) where

E∆Yi = E∆Yi(t) = ψk +
νk

1− ν1ψ1, 0 ≤ i ≤ d− 1. (3)

The expected change in the size of the connected dominating set for a clutch
in Phase k (at time t) is E∆C + o(1) where

E∆C = E∆C(t) = P0 +
νk

1− ν1 (1− (1− P0)k−1). (4)

The Type k operation at the start of the clutch contributes an increase in the
size of C if a vertex of degree zero is hit when the first edge is exposed. For each
birth, the accompanying Type 1 operation contributes an increase in the size of
C if a vertex of degree zero is hit when the first k − 1 edges are exposed.

The combined algorithm and pairing process is analysed using differential
equations and in this way we prove the following theorem.

Theorem 1. For each d ≥ 3, where d remains constant, there exists a constant,
c, such that for a random d-regular graph on n vertices, the size of a minimum
connected dominating set is a.a.s. at most cn+ o(n).

Proof. For Phase 1, Equation (1) representing the expected change in the vari-
ables Yi, 0 ≤ i ≤ d − 1, for an operation in Phase 1 (since a clutch consists of
just one operation in this phase) forms the basis of a differential equation. Write
Yi(t) = nzi(t/n), s(t) = nξ(t/n), Pj(t) = nP̄j(t/n) and ρi(t) = nρ̄i(t/n). The
differential equation suggested is

dzi

dx
= −δi1 + ρ̄i + P̄0(d− 2)ρ̄i + (1− P̄0)δi2, 0 ≤ i ≤ d− 1 (5)

where xn represents the number, t, of operations.
Using Equation (2) representing the expected increase in C for an operation

in Phase 1 and writing C(t) = nz(t/n) suggests the differential equation for z as

dz

dx
= P̄0. (6)

218 William Duckworth and Bernard Mans

For Phase k, 2 ≤ k ≤ d−1, Equation (3) representing the expected change in
the variables Yi for a clutch of operations forms the basis of a differential equa-
tion. Write ψk(t) = ψ̄k(t/n), ψ1(t) = ψ̄1(t/n), νk(t) = ν̄k(t/n), ν1(t) = ν̄1(t/n),
Pj(t) = nP̄j(t/n) and ρi(t) = nρ̄i(t/n). The differential equation suggested is

dzi

dx
= ψ̄k +

ν̄k

1− ν̄1 ψ̄1, 0 ≤ i ≤ d− 1, (7)

where xn represents the number, t, of clutches.
Using Equation (4) representing the expected increase in C for a clutch in

Phase k and writing C(t) = nz(t/n) suggests the differential equation for z as

dz

dx
= P̄0 +

ν̄k

1− ν̄1 (1− (1− P̄0)k−1). (8)

The solution to these systems of differential equations represent the cardi-
nalities of the sets Vi and C (scaled by 1/n) for given t. The initial conditions
for Phase 1 are z0(0) = 1, z(0) = 0 and zi(0) = 0 where 1 ≤ i ≤ d− 1.

Wormald [14, Theorem 6.1] describes a general result that we may use to
show that the functions representing the solutions to the differential equations
almost surely approximate the variables Yi/n and C/n with error o(1).

For Phase 1 and for arbitrary small ε, define R to be the set of all (t, zi, z)
for which t > −ε, ξ > ε, z1 > ε, z > −ε and zi < 1+ε where 0 ≤ i ≤ d−1. Then,
R defines a domain for the process so that [14, Theorem 6.1] may be applied.

It is simple to verify that parts (i), (ii) and (iii) of [14, Theorem 6.1] hold,
however, note in particular that since ξ > ε inside R, the assumption that s > εn
used in deriving these equations is justified. The conclusion of [14, Theorem 6.1]
therefore holds. This implies that, until a point arbitrarily close to where they
leave R, the random variables Yi/n and C/n a.a.s. remain within o(1) of the
corresponding deterministic solutions to the differential equations.

We compute the ratio dzi/dz and we have

dzi

dz
=
−δi1 + ρ̄i + P̄0(d− 2)ρ̄i + (1− P̄0)δi2

P̄0
, 0 ≤ i ≤ d− 1

where differentiation is with respect to z and all functions may be taken as
functions of z.

By solving this we find that the solution hits a boundary of the domain at
z1 = ε. At this point, we formally define Phase 1 as the period of time from time
t=0 to the time t1 such that z = t1/n is the solution of z1 = ε.

From the point in Phase 1 after which [14, Theorem 6.1] does not apply
until the start of Phase 2, the change in each variable per step is bounded by a
constant, hence in o(n) steps, the change in the variables is o(n).

The initial conditions for Phase k, 2 ≤ k ≤ d − 1, are given by the final
conditions for Phase k− 1 and the equations are given by (7) and (8). We apply
Theorem 6.1 from [14] to the process within Phase k. For arbitrary small ε,
define R to be the set of all (t, zi, z) for which t > −ε, ξ > ε, zk > ε, z > −ε and
zi < 1 + ε where 0 ≤ i ≤ d− 1.

On the Connected Domination Number of Random Regular Graphs 219

We compute the ratio dzi/dz and we have

dzi

dz
=

ψ̄k + ν̄k

1−ν̄1
ψ̄1

P̄0 + ν̄k

1−ν̄1
(1− (1− P̄0)k−1)

, 0 ≤ i ≤ d− 1.

By solving these differential equations, for each phase, we find that the solu-
tion hits a boundary of the domain at zk = ε. At this point, we formally define
Phase k as the period of time from time tk−1 to the time tk such that z = tk−1/n
is the solution of zk−1 = ε and z = tk/n is the solution of zk = ε.

From the point in Phase d− 1 after which [14, Theorem 6.1] does not apply
until the end of the algorithm, the change in each variable per step is bounded
by a constant, hence in o(n) steps, the change in the variables is o(n).

The equations were solved (numerically) using a Runge-Kutta method. The
solution of zd−1 = ε in Phase d−1 corresponds to the size of the connected dom-
inating set (scaled by 1/n) when no vertices remain, thus proving the theorem.

References

1. Alon, N.: Transversal Numbers of Uniform Hypergraphs. Graphs and Combina-
torics 6(1) (1990) 1–4

2. Bollobás, B.: Random Graphs. Academic Press (1985)
3. Caro, T., West, D.B. and Yuster, R.: Connected Domination and Spanning Trees

with Many Leaves. SIAM Journal on Discrete Mathematics 13(2) (2000) 202–211
4. Duckworth, W.: Greedy Algorithms and Cubic Graphs. PhD Thesis, Department

of Mathematics and Statistics, The University of Melbourne (2001)
5. Duckworth, W.: Minimum Connected Dominating Sets of Random Cubic Graphs.

The Electronic Journal of Combinatorics, 9(1) (2002) #R7
6. Duckworth, W. and Wormald, N.C.: Linear Programming and the Worst-Case

Analysis of Greedy Algorithms on Cubic Graphs. Submitted
7. Galbiati, G., Maffioli, F. and Morzenti, A.: A Short Note on the Approximability

of the Maximum Leaves Spanning Tree Problem. Information Processing Letters
52(1) (1994) 45–49

8. Griggs, J.R., Kleitman, D.J. and Shastri, A.: Spanning Trees with Many Leaves in
Cubic Graphs. Journal of Graph Theory 13(6) (1989) 669–695

9. Griggs, J.R. and Wu, M.: Spanning Trees in Graphs of Minimum Degree 4 or 5.
Discrete Mathematics 104(2) (1992) 167–183

10. Haynes, T.W., Hedetniemi, S.T. and Slater, P.J.: Domination in Graphs: Advanced
Topics. Marcel Dekker Inc., New York (1998)

11. Solis-Oba, R.: 2-Approximation Algorithm for Finding a Spanning Tree with Max-
imum Number of leaves. In: Proceedings of the 17th European Symposium on
Algorithms, Springer (1998) 441–452

12. Storer, J.A.: Constructing Full Spanning Trees for Cubic Graphs. Information Pro-
cessing Letters 13(1) (1981) 8–11

13. Wormald, N.C.: Models of Random Regular Graphs. In: Surveys in Combinatorics,
Cambridge University Press (1999) 239–298

14. Wormald, N.C.: The Differential Equation Method for Random Graph Processes
and Greedy Algorithms. In: Lectures on Approximation and Randomized Algo-
rithms, PWN (1999) 73–155

On the Number of Minimum Cuts in a Graph

L. Sunil Chandran� and L. Shankar Ram

Department of Computer Science and Automation, Indian Institute of Science,
Bangalore, 560012, India

{sunil,shankar}@csa.iisc.ernet.in

Abstract. We relate the number of minimum cuts in a weighted undi-
rected graph with various structural parameters of the graph. In par-
ticular, we upper–bound the number of minimum cuts in terms of the
radius, diameter, minimum degree, maximum degree, chordality, expan-
sion, girth etc. of the graph.

1 Introduction

Let G = (V,E) be a graph or a multi-graph with positive weights on its edges.
We denote |V | by n and |E| by m. By an unweighted graph, we mean that all
the edges have unit weight. Let (A,A) denote a cut of G, defined by the subsets
A ⊂ V and A = V −A. We denote by E(A,A), the set of edges in the cut, i.e.,
E(A,A) = {(u, v) ∈ E : u ∈ A and v ∈ A}. The weight of the cut (A,A) is
defined as the sum of weights on all the edges in E(A,A), and will be denoted
by w(A,A). A minimum cut (S, S) is one with the minimum weight over all cuts
in G. (Some authors use the words global minimum cuts or connectivity cuts
instead of minimum cuts). We will denote the weight of the minimum cut in G
by λ(G). Note that if G is unweighted, λ(G) is same as the edge connectivity
of the graph, i.e., the minimum number of edges whose removal disconnects the
graph.

Note that the minimum cut in a graph may not be unique. We use Λ(G) to
denote the number of minimum cuts in G. The problem of counting the number
of minimum cuts in a weighted undirected graph arises in various aspects of
network reliability, like testing the super–λ–ness of a graph [2], estimating the
probabilistic connectedness of a stochastic graph in which edges are subject
to failure with probability p [4,5,6,16] and other areas [17]. For example, for a
sufficiently small p, the probabilistic connectedness of G can be approximated as
P (G, p) ≈ 1− Λ(G)pλ(G)(1− p)|E|−λ(G), suggesting the importance of counting
and bounding Λ(G).

It is well known that for any weighted graph G, Λ(G) ≤ (n2) and this upper
bound is achieved if G is a cycle Cn of n nodes with each edge having weight
λ(G)

2 [7,1,11]. It is interesting to explore whether there exist tighter bounds for
Λ(G) when the graph satisfies various properties. For example, Bixby [1] studies
Λ(G) in terms of the weight of the minimum cuts λ(G), in the special case where
� This research is supported in part by the Infosys Fellowship.

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 220–229, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

On the Number of Minimum Cuts in a Graph 221

all the edge weights are positive integers and λ(G) is an odd integer. For this
case, Bixby [1] shows that Λ(G) ≤ ⌊ 3n

2

⌋ − 2. In the case of unweighted simple
graphs it is shown by Lehel, Maffray and Priessmann [12] that if λ(G) = k where
k ≥ 4 is an even positive integer, then Λ(G) ≤ 2n2

(k+1)2 + (k−1)n
k+1 . When k > 5

is an odd integer, they show that Λ(G) ≤ (1 + 4
k+5)n. The inherent structural

difference between graphs with odd and even edge connectivity was pointed out
by Kanevsky [13] also.

In this paper, we provide upper bounds for Λ(G) in terms of many other
important parameters of graphs. We assume weighted graphs. Multi-graphs, as
far as the results here are concerned, can be considered as a special case of
weighted graphs, since the multi-edges can be replaced by a single edge of ap-
propriate weight without affecting the value of Λ(G). Our only assumption about
the weights is that they are positive. Note that, for the purposes of this paper,
this assumption is equivalent to the assumption that the weights are at least
1, since multiplying the weights on every edge by the same constant will not
change Λ(G). While our upper bounds are valid for weighted undirected graphs
and multi graphs, in most cases, the properties in terms of which the upper
bounds are stated depend only on the structure of those graphs. In other words,
the radius or minimum degree in terms of which we describe the upper bounds
are those of the underlying unweighted simple graph and do not depend on the
weights of the edges.

There is an abundance of literature regarding the determination of λ(G) and
finding a minimum cut in G. The problem of enumerating all the minimum cuts
is considered by many authors [7,15,10,8], and various structures (for example,
the cactus structure) are invented to efficiently represent all the minimum cuts
in a graph. The fact that the performance of some of these algorithms depends
on the number of minimum cuts in the graph also makes it interesting to look for
tighter upper bounds for Λ(G) when G satisfies certain properties. (For example
a randomized algorithm due to Karger builds a data structure that represents all
minimum cuts in O(Λ(G) + n log n) space). See [10] for a brief survey of results
regarding the enumeration of all minimum cuts.

The slightly different question of upper–bounding the number of approximate
minimum cuts– i.e., those cuts having weight at most fλ(G), where f > 1 is
a constant, is considered in [18,11,14,19] etc. For example, Karger [11], using
probabilistic analysis shows that there are at most O(n2f) cuts of the above
kind in a graph of n nodes. Nagamochi et.al. [14] show that the number of cuts
of weight at most 4

3λ(G) is upper–bounded by
(
n
2

)
. Williamson and Henzinger

[19] show an upper bound of O(n2) for the number of cuts of weight at most
3
2λ(G), extending the arguments of [14].

1.1 Our Results

Radius and Diameter: If G = (V,E) is a connected graph, the eccentricity of
a node v ∈ V is defined as e(v) = max distance(v, u) over all the nodes u ∈ V .
The radius of the graph G, r(G) = minv∈V e(v). A vertex v is a central node

222 L. Sunil Chandran and L. Shankar Ram

if e(v) = r(G). Diameter of G, d(G) = maxv∈V e(v). (Note that, in this paper,
by “distance”, we mean only the distances in the underlying unweighted graph.
Thus radius, eccentricity, diameter etc. have nothing to do with the weights).
We show that Λ(G) ≤ (r + 1)n − (2r + 1) ≤ (d + 1)n − (2d + 1), where G is a
weighted graph and r, d are the radius and diameter of G. As a special case, we
observe that if there is a node which is a neighbour of every other node in the
graph, i.e., if r(G) = 1, then Λ(G) ≤ 2n − 3. We illustrate the tightness of this
bound by constructing a weighted clique Kn for which Λ(Kn) = 2n− 3.

Minimum and Maximum Degree: Let the minimum degree and maximum
degree of G be δ and ∆ respectively. (Note that minimum and maximum de-
grees have nothing to do with the weights, i.e., δ = minu∈V |N(u)| and ∆ =
maxu∈V |N(u)|, N(u) being the set of neighbours of the node u). We show that
Λ(G) ≤ (3n

2(δ+1) + 1.5)n− (3n
δ+1 + 2) and Λ(G) ≤ (n−∆+3)n

2 − (n−∆+ 2). Note
that these bounds become significant when the concerned parameters are rea-
sonably large. Also it is easy to get an upper bound involving both δ and ∆, by
extending the techniques discussed in the paper.

Chordality: Let C be a simple cycle of a weighted undirected graph G. Any edge
in the induced subgraph on the nodes of C, G(C), other than the cycle edges
themselves is called a chord of C. C is called an induced cycle (or chordless
cycle), iff C does not have any chords. The length of the largest induced cycle
in a graph G is called chordality of G. A graph G is called k–chordal iff the
chordality of G is at most k. Λ(G) ≤ (k+1)n

2 −k, where k is the chordality of the
underlying unweighted (simple) graph, corresponding to G. We also show the
tightness of the bound by exhibiting a k-chordal graph G for arbitrarily large n,
such that Λ(G) = (k+1)n

2 − k.
The word “chordality” originates from the well known subclass of perfect

graphs, the chordal graphs. A graph G is chordal iff there is no induced cycle
of length 4 or more in G. We define the chordality of a chordal graph to be 3.
All graphs other than chordal graphs have chordality ≥ 4. Some other impor-
tant classes of graphs with low chordality value are the cocomparability graphs,
chordal bipartite graphs and weakly chordal graphs, all of which are known to
be 4–chordal.

Note that Cn (the cycle on n nodes) is the graph with maximum chordality
amongst all graphs on n nodes. Also, it is a graph which contains the maximum
number of minimum cuts possible, namely

(
n
2

)
. (In fact our bound given above,

shows that Cn with each edge having weight λ
2 is the only graph which contains(

n
2

)
minimum cuts, the weight of the minimum cut being λ). The fact that the

maximum value of Λ(G) is achieved by the graph of largest chordality motivates
a study of the influence of chordality on Λ(G).

Edge Expansion: Let E(X,X) be the set of edges in the cut (X,X). Then the
edge expansion βe(G) is defined as βe(G) = min |E(X,X)|

|X| , over all subsets X of V

with |X| ≤ n
2 . We define the weighted edge expansion, βw(G) = min w(X,X)

|X| over
all subsets X of V , such that |X| ≤ n

2 . A related concept is that of vertex expan-

On the Number of Minimum Cuts in a Graph 223

sion (or simply the expansion), βv(G), which is defined as βv(G) = min |N(X)|
|X|

over all subsets X of V , such that |X| ≤ n
2 where N(X) denotes the set of

neighbours of X, namely the set {u ∈ V −X : (u, v) ∈ E for some v ∈ X}.
We show that Λ(G) ≤ (λ

β +3)
2 n− (λ

β + 2) where β = βw(G). It is easy to note
that (since we can assume without any loss of generality that all weights are at
least 1) βw(G) ≥ βe(G) ≥ βv(G). Thus we can substitute βv(G) or βe(G) in the
place of β in the above formula.

Expansion is a concept which has found application in areas ranging from
complexity theory to coding theory. A further motivation for looking for a bound
in terms of the expansion properties of the graph is the well known fact that
almost all graphs are good expanders, i.e., if we randomly construct a graph by
selecting each edge with certain probability p (greater than a threshold value),
the probability that the expansion of the resulting graph being bounded below
by a constant tends to 1 as n→∞.
Girth: Girth is the length of the smallest (induced) cycle in G. The intuition
that expansion properties can control the number of minimum cuts in a graph,
leads us to a bound in terms of girth also. We show that if G is an unweighted
graph with girth g and minimum degree δ, the Λ(G) < (n

x+1 + 1)n− (2n
x+1 + 1),

where x =
(

δ−3
2

) g−3
2 . Note that this is in contrast with the bound in terms of

chordality, the length of the largest induced cycle.

2 Preliminaries

Consider an undirected graph G = (V,E) with a weight function w : E → �+.
Let U and W be disjoint subsets of V . Let E(U,W) = {(u, v) ∈ E : u ∈ U, v ∈
W}, be the set of edges between the vertices in U and the vertices in W . Also,
let w(U,W) be the sum of the weights on the edges in E(U,W). We denote the
induced subgraph on the set of nodes U by G(U). The set of neighbours of a
node u ∈ V , will be denoted by N(u), i.e., N(u) = {v ∈ V : (u, v) ∈ E}. Also
N(U) =

⋃
u∈U N(u) − U . As mentioned in the introduction, λ(G) denotes the

weight of a minimum cut and Λ(G) denotes the number of minimum cuts in G.
(The omitted proofs will be available in the full paper).

Lemma 1. If (S, S) is a minimum cut of a connected undirected graph G, then
G(S) and G(S) are connected.

Definition 1. Let (X,X) and (Y, Y) be two cuts in a weighted undirected graph.
(X,X) and (Y, Y) are said to cross each other iff all the four sets X ∩Y , X ∩Y ,
X ∩ Y and X ∩ Y are non empty. Then (X,X) and (Y, Y) are called a crossing
pair of cuts.

Lemma 2. A pair of cuts (S, S) and (P, P) does not cross if and only if S(or
S) is a subset of P or P . (i.e., S ⊆ P , S ⊆ P , S ⊆ P or S ⊆ P)

Proof. Follows from the definition of a crossing pair of cuts.

224 L. Sunil Chandran and L. Shankar Ram

Lemma 3 (Bixby [1], Dinitz, Karzanov and Lomosonov [7]). Let (X,X)
and (Y, Y) be a crossing pair of minimum cuts in a weighted undirected graph
G. Let A = X ∩ Y , B = X ∩ Y , C = X ∩ Y and D = X ∩ Y . Then,

1. w(A,B) = w(B,D) = w(D,C) = w(C,A) = λ(G)
2

2. w(A,D) = w(B,C) = 0. That is, E(A,D) ∩ E(B,C) = ∅
Lemma 4. If (P, P) and (S, S) are a crossing pair of minimum cuts, then
E(P, P) ∩ E(S, S) = ∅.
Definition 2. A circular partition C = (U0, U1, U2, · · · , Uk−1) of the vertices of
a graph G is a partition of the set of vertices V of G into disjoint non–empty
subsets U0, U1, · · · , Uk−1 such that

1. w(Ui, Ui+1 mod k) = λ(G)
2 , for 0 ≤ i ≤ k − 1.

2. w(Ui, Uj) = 0, if i �= j + 1 mod k or i �= j − 1 mod k, i.e., E(Ui, Uj) = ∅.
3. For 0 ≤ i ≤ k − 1, the cut (Ui, U i) – which is a minimum cut by conditions

1 and 2 – does not cross with any other minimum cut (A,A) in G.

Definition 3. A cut (A,A) is called a union cut with respect to a circular parti-
tion C = (U0, U1, · · · , Uk−1) iff A =

⋃i+b−1 mod k
j=i Uj where 2 ≤ b ≤ k− 2. (Note

that both A and A contain at least 2 subsets in C).
The cut (A,A) is called a subset cut with respect to C iff A ⊆ Ui or A ⊆ Ui

for some i.

Lemma 5. Let C = (U0, U1, · · · , Uk−1) be a circular partition of G. Then any
minimum cut (S, S) of G is either a union cut or a subset cut with respect to C.
Moreover, every union cut with respect to C is a minimum cut in G.

Lemma 6. Let G be a weighted undirected graph. Then G has a circular parti-
tion C = (U0, U1, · · · , Uk−1), where k ≥ 4, if and only if there exists a crossing
pair of minimum cuts in G.

For a circular partition C of G, let the partition number p(C) be defined as
the number of subsets in C. We define the partition number of the graph G as
follows.
Definition 4. The partition number p(G) of a graph G is defined as p(G) = 3,
if there is no circular partition for G. Otherwise, p(G) = max p(C), over all
circular partitions C of G.

Note that if there is a crossing pair of minimum cuts in G, then p(G) ≥ 4,
by Lemma 6. Otherwise, p(G) = 3.
Definition 5. By contraction of a subset of vertices X ⊂ V , we mean replacing
all the vertices in X by a single vertex x and adding the edges (y, x) for each
y ∈ N(X). The weight of the edge (y, x) (where y ∈ N(X)) is assigned to
be w(y, x) =

∑
z∈X w(y, z), where (y, z) ∈ E(G). We denote the graph obtained

after the contraction operation by G/X. We will refer to the operation of undoing
the effect of a contraction (i.e., restoring G from G/X) by putting back X in the
place of x as expanding the node x.

On the Number of Minimum Cuts in a Graph 225

Lemma 7. If (S, S) is a minimum cut in a weighted undirected graph G such
that no other minimum cut (A,A) crosses with (S, S), then Λ(G) = Λ(G/S) +
Λ(G/S)− 1.

Lemma 8. If there are no crossing pairs of minimum cuts in G, then Λ(G) ≤
2n− 3. Moreover, there exists a graph on n nodes, Gn, (for every n ≥ 2), such
that Λ(Gn) = 2n− 3.

3 The Partition Number and the Structural Parameters

3.1 Partition Number, p(G)

Lemma 9. Let G be a weighted undirected graph. If (X,X) is a minimum cut
of G such that no other minimum cut crosses with (X,X), then p(G/X) ≤ p(G).

In the following Lemma, we upper–bound Λ(G) in terms of the partition
number. The tightness of the Lemma will be established in Theorem 8.

Lemma 10. Let G = (V,E) be a weighted undirected graph, where |V | = n ≥ 2
and let the partition number p(G) ≤ p. Then, Λ(G) ≤ (p+1)n

2 − p.

In the rest of the paper, we show that various structural parameters of a
graph can influence the partition number p(G). Thus by means of Lemma 10,
we relate the number of minimum cuts, Λ(G), with many seemingly unrelated
properties of the graph.

Remark: Please note that if n ≥ 2 and x ≥ p, then (x+1)n
2 − x ≥ (p+1)n

2 − p. In
most of the theorems below, we show that p is upper–bounded by a function f(y)
of y where y is some parameter of G, thereby showing that Λ(G) ≤ (f(y)+1)n

2 −
f(y).

3.2 Radius and Diameter

If G = (V,E) is a connected graph, the eccentricity of a node v ∈ V is defined
as e(v) = max distance(v, u) over all the nodes u ∈ V . The radius of the graph
G, r(G) = minv∈V e(v). A vertex v is a central node if e(v) = r(G). Diameter
of G, d(G) = maxv∈V e(v). (Note that, in this paper, by “distance”, we mean
only the distances in the underlying unweighted graph. Thus radius, eccentricity,
diameter etc. have nothing to do with the weights).

Theorem 1. If r is the radius of a weighted undirected graph G, then Λ(G) ≤
(r + 1)n− (2r + 1) (where n ≥ 2).

Proof. Suppose there are no crossing pairs of minimum cuts in G. If follows by
Lemma 8 that Λ(G) ≤ 2n− 3. Since the radius is at least 1, it is easy to verify
that Λ(G) ≤ (r+1)n−(2r+1) in this case. Otherwise, by Lemma 6, there exists a
circular partition C = (U0, U1, · · · , Up−1) for G, where p = p(G) ≥ 4. Let x ∈ Ui

226 L. Sunil Chandran and L. Shankar Ram

be a central node ofG. Let y ∈ Ui+ p
2 � mod p. Clearly, distance(x, y) ≥ ⌊p

2

⌋
. That

is, r ≥ ⌊p
2

⌋
or p ≤ 2r+1. Now, by Lemma 10, we get Λ(G) ≤ (r+1)n− (2r+1).

We note that the bound given by the above Theorem can be tight. For
example, consider C2n+1, the cycle on 2n+1 nodes. Clearly, the radius of C2n+1
is n and the number of minimum cuts =

(2n+1
2

)
= (n+ 1)(2n+ 1)− (2n+ 1).

Observe that similar arguments as given for the case of radius hold good for
the diameter also. Thus,

Λ(G) ≤ (d+ 1)n− (2d+ 1)

This can also be verified from Λ(G) ≤ (r + 1)n− (2r + 1) ≤ (d+ 1)n− (2d+ 1)
by noting that d ≥ r and n ≥ 2.

3.3 Politician Node

An interesting special case of Theorem 1 is when radius(G) = 1. Then, there
exists a node which is adjacent to every other node of the graph. (Such a node
is called a politician node). Thus, if there is a politician node in the graph, then
Λ(G) ≤ 2n− 3, by Theorem 1. In fact more is true.

Theorem 2. If there is a politician node u in G, then there cannot be any
crossing pairs of minimum cuts in G.

Proof. If there is a crossing pair of minimum cuts, then by Lemma 6, there is a
circular partition C = (U0, U1, · · · , Uk−1) (k ≥ 4). Without loss of generality let
u ∈ U0. Clearly, u cannot be adjacent to any node in U2, by the definition of
circular partition, contradicting the assumption that u is a politician node.

Note that in a complete graph, Kn, every node is a politician node. Thus,
there are no crossing pairs of minimum cuts in a clique. Below, we show that the
number of minimum cuts Λ(Kn) = 2n − 3, thus illustrating that the bound of
Lemma 8 is tight. Moreover, since radius of a clique is 1, this is a tight example
for Theorem 1 too. Since a complete graph is a chordal graph, the example below
illustrates the tightness of Theorem 7 also.

Theorem 3. For any n ≥ 2 and λ > 0, there exists a weighted complete graph
Kn such that λ(Kn) = λ and Λ(Kn) = 2n − 3. Moreover every node x of Kn

defines a minimum cut ({x}, {x}) of Kn.

3.4 Maximum and Minimum Degree

The maximum degree ∆(G) (when it is reasonably high) can also constrain the
number of minimum cuts Λ(G).

Theorem 4. If ∆ is the maximum degree of a weighted undirected graph G,
then Λ(G) ≤ (n−∆+3)n

2 − (n−∆+ 2), where n ≥ 2.

On the Number of Minimum Cuts in a Graph 227

Proof. Suppose there is no crossing pairs of minimum cuts in G, then by Lemma
8, Λ(G) ≤ 2n−3 ≤ (n−∆+3)n

2 −(n−∆+2), which will be true if 0 ≤ n2−(∆+3)n+
(2∆+2) or 0 ≤ (n−∆−1)(n−2) which is true since n ≥ 2 and ∆ ≤ n−1. Now, if
there is a crossing pair of minimum cuts inG, then by Lemma 6, there is a circular
partition C = (U0, U1, · · · , Up−1) (p = p(G) ≥ 4). Without loss of generality , let
the maximum degree node u ∈ U1. Then, |U0 ∪ U1 ∪ U2| ≥ ∆ + 1 since every
neighbour of u must be in U0, U1 or U2. Thus, p ≤ 3 + (n−∆− 1) = n−∆+ 2
since each Ui of the circular partition must contain at least 1 node. By Lemma
10, Λ(G) ≤ (n−∆+3)n

2 − (n−∆+ 2).
Interestingly, the minimum degree of the graph can also control the number

of minimum cuts.

Theorem 5. If δ is the minimum degree of a weighted undirected graph G, then
Λ(G) ≤ (3n

2(δ+1) + 1.5)n− (3n
δ+1 + 2) , where n ≥ 2.

Proof. If there are no crossing pairs of minimum cuts in G, it can be easily
verified that Λ(G) ≤ 2n− 3 ≤ (3n

2(δ+1) + 1.5)n− (3n
δ+1 + 2) for n ≥ 2. Otherwise

consider a circular partition C = (U0, U1, · · · , Up−1) (p = p(G) ≥ 4). Group the
subsets in C into

⌊
p
3

⌋
triplets (U3i, U3i+1, U3i+2) for 0 ≤ i ≤ ⌊p

3

⌋ − 1. |U3i| +
|U3i+1| + |U3i+2| ≥ δ + 1 since each neighbour of a node u ∈ U3i+1 must be in
one of the three sets in the corresponding triplet. Thus,

⌊
p
3

⌋
(δ+ 1) ≤ n and the

result follows by Lemma 10.

3.5 Chordality

Recall that the chordality of a graph is the length of the longest induced cycle
in the graph. We upper–bound Λ(G) in terms of chordality in the following
Theorem. Its tightness is established in Theorem 8.

Theorem 6. If G is a weighted undirected graph with chordality k, then Λ(G) ≤
(k+1)n

2 − k, where n ≥ 2.

Proof. If there are no crossing pairs of minimum cuts in G, then by Lemma 8,
Λ(G) ≤ 2n − 3 ≤ (k+1)n

2 − k, since k is at least 3 by definition and n ≥ 2.
Otherwise, consider a circular partition C for G such that p(C) = p(G). If p(C) >
k, clearly there is an induced cycle in G with length > k, contradicting the
k-chordality of G. It follows that p(G) ≤ k. Therefore, by Lemma 10, Λ(G) ≤
(k+1)n

2 − k.

Theorem 7. If G is a weighted chordal graph, then Λ(G) ≤ 2n−3, where n ≥ 2.
Moreover there are no crossing pairs of minimum cuts in G. Also, there exists
a weighted chordal graph G, for every n ≥ 2, such that Λ(G) = 2n− 3.

Proof. Since for chordal graphs k = 3 (by definition), Λ(G) ≤ 2n − 3 follows
from Theorem 6. If there is a crossing pair of minimum cuts in G, then there
is a circular partition C for G with p(C) ≥ 4 by Lemma 6. This immediately
implies an induced cycle of length ≥ 4, contradicting the fact that G is chordal.
Finally since complete graphs are chordal graphs, the construction of Theorem
3, establishes the tightness of this bound.

228 L. Sunil Chandran and L. Shankar Ram

3.6 A Tight Construction

We establish the tightness of Theorem 6 and Lemma 10, by the following con-
struction.

Theorem 8. For k ≥ 3 and λ > 0, there exists a family G of weighted undi-
rected k-chordal graphs such that for each graph Gn ∈ G with n nodes, Λ(Gn) =
(k+1)n

2 − k, weight of the minimum cut = λ and p(Gn) = k. Moreover, every
node u of Gn defines a minimum cut ({u}, {u}).

4 Edge Expansion and Girth

In this section we upper–bound Λ(G) in terms of the ratio λ
β , where λ = λ(G)

and β = βw(G) is the weighted edge expansion of G. It can be easily verified
that 1 ≤ λ

β ≤ n
2 . Our bound works for λ

β ∈ [1, n
3).

Lemma 11. If G is a weighted undirected graph with weighted edge expansion
βw(G) = β, then for any minimum cut (S, S), |S| > n

2 or |S| ≤
⌊

λ
β

⌋
.

Proof. Suppose |S| ≤ n
2 . Then, w(S, S) = λ ≥ β|S| by definition of weighted

edge expansion. Since, |S| is an integer, we have |S| ≤
⌊

λ
β

⌋
.

Theorem 9. Let G be a weighted undirected graph with λ(G) = λ and the

weighted edge expansion βw(G) = β. If 1 ≤
⌊

λ
β

⌋
< n

3 , then Λ(G) ≤ (λ
β �+3)
2 n−

(
⌊

λ
β

⌋
+ 2).

The observation that the edge expansion can control the number of minimum
cuts allows us to obtain a upper bound for Λ(G) in terms of the girth in the
case of unweighted graphs. The following classical results are not very difficult
to prove.

Lemma 12. If (S, S) is a minimum cut of an unweighted undirected graph G,
then |S| = 1 or |S| ≥ δ, where δ is the minimum degree of G.

Lemma 13 (See Bollabas [3], page 126.). Let g be the girth of an unweighted
undirected graph G, with m ≥ 2n. Then, g ≤ 2

⌈
logσ

2 � n
⌉

+ 1, where σ = 2m
n ,

is the average degree. (m is the number of edges of G).

Lemma 14 (See Harary [9]). If δ is the minimum degree and λ(G) = λ be
the size of a minimum cut (i.e., edge connectivity) in an undirected unweighted
graph G, then δ ≥ λ.

Theorem 10. If G is an undirected unweighted graph with minimum degree δ
(at least 6) and girth g (at least 4), then Λ(G) < (n

x+1 + 1)n− (2n
x+1 + 1), where

x =
(

δ−3
2

) g−3
2 .

On the Number of Minimum Cuts in a Graph 229

Acknowledgements

We thank Dr. Ramesh Hariharan for reading the manuscript and for useful
suggestions.

References

1. R.E. Bixby, The Minimum Number of Edges and Vertices in a Graph with Edge
Connectivity n and m n-bonds. Networks, Vol.5,(1975) 253-298.

2. F.T. Boesch, Synthesis Of Reliable Networks – A Survey. IEEE Transactions On
Reliability, vol R–35, (1986) 240-246.

3. B. Bollabos, Extremal Graph Theory. Academic Press, London, 1978.
4. M.O. Ball, J.S. Provan, Calculating bounds on reachability and connectedness in

stochastic networks. Networks, vol 5, (1975) 253-298.
5. M.O. Ball, J.S. Provan, The Complexity Of Counting Cuts And Of Computing The

Probability That A Graph Is Connected. SIAM Journal of Computing, 12, (1983)
777-788.

6. M.O. Ball, J.S. Provan, Computing Network Reliability In Time Polynomial In The
Number Of Cuts. Operations Research, 32, (1984) 516-521.

7. E.A. Dinits, A.V. Karzanov, M.V. Lomosonov, On the Structure of a Family of
Minimal Weighted Cuts in a Graph. Studies in Discrete Optimization [In Russian],
A.A. Friedman (Ed), Nauka, Moscow (1976) 290-306.

8. H.N. Gabow, A Matroid Approach To Finding Edge Connectivity And Packing
Arborescences. Proceedings Of 23rd Annual ACM-SIAM Symposium On Theory
Of Computing, (1991) 112-122.

9. F. Harary, Graph Theory. Addison-Wesley Reading, MA, 1969.
10. Lisa Fleischer, Building Chain And Cactus Representations Of All Minimum Cuts

From Hao–Orlin In The Same Asymptotic Run Time. Journal Of Algorithms, 33,
(1999) 51-72.

11. D.R. Karger, Random Sampling In Cut, Flow and Network Design Problems.
In Proceedings Of 6th Annual ACM-SIAM Symposium On Discrete Algorithms,
(1995), 648-657.

12. Jeno Lehel, Frederic Maffray, Myriam Preissmann, Graphs With Largest Number
Of Minimum Cuts. Discrete Applied Mathematics, 65, (1996) 387-407.

13. A. Kanevsky, Graphs With Odd And Even Edge Connectivity Are Inherently Dif-
ferent. Tech. report, TAMU-89-10, June 1989.

14. H. Nagamochi, K. Nishimura, T. Ibaraki, Computing All Small Cuts In An Undi-
rected Network. SIAM Journal Of Discrete Math, 10(3), (1997) 469-481.

15. D. Naor, Vijay. V. Vazirani, Representing and Enumerating Edge Connectivity Cuts
in RNC Workshop On Algorithms and Data structures (1991) LNCS 519 273-285.

16. J.S. Provan, Bounds On The Reliability Of Networks. IEEE Transactions On Re-
liability, R-35, (1986) 26-268.

17. J.C. Picard, M. Queyranne, On The Structure Of All Minimum Cuts In A Network
And Applications. Mathematical programming Study, 13, (1980) 8-16.

18. V.V. Vazirani and M. Yannakakis, Suboptimal Cuts: Their Enumeration, Weight,
And Number. Lecture Notes in Computer Science, 623, Springer-Verlag, (1992)
366-377.

19. M.R. Henzinger, D.P. Williamson, On The Number Of Small Cuts. Information
Processing Letters, 59, (1996), 41-44.

On Crossing Numbers of 5-Regular Graphs

G.L. Chia1 and C.S. Gan2

1 Institute of Mathematical Sciences, University of Malaya,
50603 Kuala Lumpur, Malaysia

2 Faculty of Engineering and Technology, Multimedia University,
75450 Malacca, Malaysia

Abstract. The paper attempts to classify 5-regular graphs according to
their crossing numbers and with given number of vertices. In particular, it
is shown that there exist no 5-regular graphs on 12 vertices with crossing
number one. This together with a result in [2] imply that the minimum
number of vertices in a 5-regular graph with girth three and crossing
number one is 14.

Let G be a graph. The crossing number of G, denoted cr(G), is the minimum
number of pairwise intersections of its edges when G is drawn in the plane.
Throughout this paper, we adopt the following notations. Let Kn and Cn denote
the complete graph and the cycle respectively each on n vertices. Let Km,n

denote the complete bipartite graph whose bipartite sets V1 and V2 are such
that |V1| = m and |V2| = n. Also, let G denote the complement of the graph G.

Let G(r, n, c) denote the set of all r-regular connected graphs on n vertices
having crossing number c. Then n is even if r is odd. Obviously G(5, n, c) is
empty if n ≤ 4. Also, it is easy to see that G(5, 6, c) is empty if and only if c �= 3.
In fact, if G ∈ G(5, 6, c), then G is the complete graph on 6 vertices so that
cr(G) = 3. Hence we see that G(5, 6, 3) = {K6}.

Let G ∈ G(5, 8, c). Then G is either C8, C3 ∪ C5 or C4 ∪ C4. In [2], it is
shown that cr(C8) = 2. Since Cr ∪ Cs contains Kr,s as a subgraph, it follows
that cr(C3 ∪ C5) ≥ 4 and cr(C4 ∪ C4) ≥ 4. Now Fig. 1 depicts a drawing of
C3 ∪ C5 and C4 ∪ C4 each with 4 crossings. Hence we have cr(C3 ∪ C5) = 4 and
cr(C4 ∪ C4) = 4.

We summarize these observations in the following proposition.

Proposition 1. G(5, 8, c) is empty unless c ∈ {2, 4}. Moreover G(5, 8, 2) = {C8}
and G(5, 8, 4) = {C3 ∪ C5, C4 ∪ C4}.

Let G ∈ G(5, 10, c). Then evidently G is non-planar. In [2], we have shown
that cr(G) ≥ 2.

Proposition 2. G(5, 10, c) is empty unless c ≥ 2.

Question 1. Is it true that G(5, 10, 2) is an empty set?
We have not come across any 5-regular graphs on 10 vertices having crossing

number 2.
Let G ∈ G(5, 12, c). Then it is well-known that c = 0 if and only if G is the

icosahedron (see for example [1]).

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 230–237, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

On Crossing Numbers of 5-Regular Graphs 231

Fig. 1. Graphs with 4 crossings

Proposition 3. G(5, 12, 0) consists of just the icosahedron.

In this paper, we show that if G is a non-planar 5-regular graph on 12 vertices,
then cr(G) ≥ 2.

Proposition 4. G(5, 12, c) is empty if c = 1.

The girth of a graph is the length of a smallest cycle in it. Let f(r, g, c)
denote the minimum number of vertices in an r-regular graph with girth g and
crossing number c. In [2], we have shown that 12 ≤ f(5, 3, 1) ≤ 14. Combining
Proposition 4 and this result, we have the following theorem.
Theorem 1. The minimum number of vertices in a 5-regular graph with girth
3 and crossing number 1 is given by f(5, 3, 1) = 14.

The rest of the paper is to prove Proposition 4.
Lemma 1. Let G ∈ G(5, 12, 1). Then there exists an edge e such that G− e is
a planar graph with only one quadrilateral.

Proof. It is clear that there exists an edge e such that G− e is planar.
Suppose X is a connected planar graph on n vertices and m edges. Let f and

fi denote the number of faces and i-faces in X respectively. Then

2m =
∑
i≥3

ifi

= 3
∑
i≥3

fi +
∑
i≥4

(i− 3)fi

= 3f +
∑
i≥4

(i− 3)fi

Since f = m+ 2− n, we have

m = 3(n− 2)−
∑
i≥4

(i− 3)fi (1)

As G − e has 12 vertices and 29 edges, it follows from Equation (1) that
f4 = 1 and fi = 0 for all i ≥ 5. �

232 G.L. Chia and C.S. Gan

Let x be a vertex in a graph G. Let Ax denote the subgraph of G induced
by the vertices adjacent to x. Also, let Bx denote the subgraph of G obtained
by deleting the vertex x and the subgraph Ax.

Lemma 2. Suppose G is an r-regular graph on 2r + s vertices. Then for any
vertex x ∈ G, |E(Bx)| = |E(Ax)|+ rs

2 .

Proof. Note that Ax and Bx have r and r + s − 1 vertices respectively. Let
(a1, . . . , ar) and (b1, . . . , br+s−1) denote the degree sequences of Ax and Bx re-
spectively.

Note that the number of edges in the subgraph G− x is r(2r+s−2)
2 and that

it is also equal to |E(Ax)|+ |E(Bx)| + number of edges from Ax to Bx.
Therefore,

∑r
i=1 ai

2
+
∑r+s−1

i=1 bi
2

+
r∑

i=1

(r − 1− ai) =
r(2r + s− 2)

2

which, on simplification, leads to
∑r+s−1

i=1
bi

2 =
∑r

i=1
ai

2 + rs
2 . �

Let G be a graph. The removal number of G, denote rem(G), is defined to
be the minimum number of edges in G whose removal results in a planar graph.
Obviously cr(G) ≥ rem(G). In the event that rem(G) = 1, then G contains an
edge e such that G− e is planar. Such an edge is called a p-critical edge of G.

Lemma 3.([2]) Let G be a graph with a unique p-critical edge. Then cr(G) ≥ 2.

Let U be a proper subgraph of G. Assume that U is connected. Let G(U)
denote the graph obtained from G by contracting all edges in the subgraph U .

Suppose W is the subgraph G − U . Let E(U,W) = {(u,w) ∈ E(G) : u ∈
U,w ∈W}.
Remark 1. Let U be a connected proper induced subgraph of a graph G with
cr(G) = 1. Let W be the subgraph G− U and assume that W is connected.

(a) Suppose U and W are both planar while G(U) and G(W) are both non-
planar. Then clearly, any p-critical edge of G must come from E(U,W).

(b) Suppose W is 2-edge connected and G(W) is non-planar. Then W is
planar.

To see that Remark 1(b) is true, assume that W is non-planar. Then any
p-critical edge e of G must come from E(W). Since W is 2-edge connected, W−e
is connected. This implies that G(W −e) is non-planar since G(W −e) ∼= G(W).
But this is a contradiction since G− e is a planar graph.

Let G be a graph. If G is not a null graph, let G− denote any graph obtained
by deleting an edge from G. If G is not a complete graph, let G+ denote any
graph obtained by adding a new edge to G. Let Wn denote the graph obtained
by joining a new vertex to every vertex of the cycle Cn−1, n ≥ 4.

On Crossing Numbers of 5-Regular Graphs 233

Lemma 4. Suppose G ∈ G(5, 12, 1). Then K−
5 , K3,3, K2,4 and W+

6 are forbidden
subgraphs of G.

Proof. Suppose H ∈ {K−
5 , K3,3, K2,4,W

+
6 } is a subgraph of G. Let U be the

subgraph of G induced by the vertices of H. Let W be the subgraph G− U .
(a) Suppose H is K−

5 .
Then U is either K−

5 or K5. Hence U (respectively W) has 9+α (respectively
14 + α) edges for some α such that 0 ≤ α ≤ 1.

If W is disconnected, then W has an isolated vertex x (since W has 7 ver-
tices). In this case, x is adjacent to all the vertices of U giving a K−

6 or K6 in
G. But then rem(G) ≥ 2, a contradiction.

If W is connected, then G(W) is K−
6 or K6. But then rem(G) ≥ 2, a con-

tradiction.
(b) Suppose H is K3−r,3+r where r ∈ {0, 1}.
Then U (and so is W) has 9 − r + α edges for some α ≥ 0. As such if W is

disconnected, then W has an isolated vertex x.
(i) Suppose r = 0.
If U has two or more vertices of degree 5, then U contains K−

5 as a subgraph.
But this contradicts (a) and hence U has at most one vertex of degree 5.

If W is connected, then G(W) contains K3,4 as a subgraph. If W is discon-
nected, then the vertex x (which is isolated) in W is adjacent to 5 vertices of U
giving K3,4 as a subgraph in G. In either case, cr(G) ≥ 2, a contradiction.

(ii) Suppose r = 1.
Let S be the partite set of K2,4 having 4 vertices. If S contains a vertex of

degree 5 in U , then there is a K3,3 in U . But this is impossible by (i). Therefore
every vertex in S is of degree at most 4 and hence is adjacent to some vertices
in W .

Hence if W is connected, then G(W) contains K3,4 as a subgraph implying
that rem(G) ≥ 2, a contradiction. If W is disconnected, then the vertex x
(which is isolated) in W is adjacent to at least three vertices of S giving K3,3 as
a subgraph in G, a contradiction to (i).

(c) Suppose H is W+
6

Then U is also W+
6 otherwise U contains K−

5 as a subgraph (which is im-
possible by (a)). It follows that W is a connected graph on 6 vertices and 11
edges.

Now, among all the nine graphs on 6 vertices and 11 edges, only the graph
W+

6 contains no forbidden subgraphs mentioned in (a) and (b). Hence W is also
the graph W+

6 .
Now both U and W are planar while G(U) and G(W) are both non-planar.

Since G ∈ G(5, 12, 1), there is an edge e in G such that G − e is planar. By
Remark 1(a), e ∈ E(U,W). However, it is routine to check that for any edge
f ∈ E(U,W), the subgraph G∗ = G−f is such that G∗(U) and G∗(W) are both
non-planar which means that G∗ is non-planar, a contradiction and the proof is
finished. �

Lemma 5. Suppose G ∈ G(5, 12, 1). Then G does not contain a subgraph H
such that |V (H)| = 5 and |E(H)| = 8.

234 G.L. Chia and C.S. Gan

Fig. 2.

Proof. Suppose H is a subgraph of G on 5 vertices and 8 edges. Let U be the
subgraph induced by the vertices of H. Then U is also H because otherwise U
contains K−

5 or K5 as subgraph and is impossible by Lemma 4.
It is easy to see that H is either W5 or else the graph H1 shown in Fig. 2.
Let W be the subgraph G−U . Then W has precisely 7 vertices and 13 edges.
If W contains a vertex v of degree ≤ 2, then v is adjacent to 3 or more vertices

in U giving rise to some forbidden subgraph described in Lemma 4. Hence each
vertex of W is of degree ≥ 3 and so W is connected. In fact, for any edge e in
W , W − e is connected. That is W is 2-edge connected.

Evidently, G(W) is non-planar. As such, by Remark 1(b), W is a planar
graph.

If W contains no vertices of degree 5, then G(U) is a graph on 8 ver-
tices having 20 edges so that rem(G(U)) ≥ 2 implying cr(G) ≥ 2, a con-
tradiction. Hence there are only two possible degree sequences for W , namely
D1 = (3, 3, 3, 4, 4, 4, 5) and D2 = (3, 3, 3, 3, 4, 5, 5).

If D1 is the degree sequence of W , then G(U) is a graph on 8 vertices having
19 edges. If D2 is the degree sequence of W , then G(U) contains K3,3 as a
subgraph because W contains K2,3 as a subgraph. In either case, G(U) is non-
planar.

By Remark 1(a), any p-critical edge of G is contained in E(U,W).
Let e ∈ E(U,W). If U is the graph H1, then G∗ = G − e is a non-planar

graph because G∗(W) contains K3,3 as a subgraph (since the degree of the
vertices x, y, z are ≤ 3). Hence U is the graph W5. If e is not incident to the
vertex w of W5, then G∗ = G − e is non-planar becuase G∗(W) contains K3,3
as a subgraph. Hence e is incident to the vertex w and e is the unique p-critical
edge of G. By Lemma 3, cr(G) ≥ 2, a contradiction.

This completes the proof of the lemma. �

Lemma 6. Suppose G ∈ G(5, 12, 1). Then K4 is not a subgraph of G.

Proof. Suppose K4 is a subgraph of G.
Let U be the subgraph K4. Then W = G− U is the subgraph on 8 vertices

having 16 edges.

On Crossing Numbers of 5-Regular Graphs 235

Let v be a vertex in W . If dW (v) ≤ 3, then v is adjacent to at least two
vertices of U giving a subgraph H1 in G. This is impossible by Lemma 5. Hence
W is a 4-regular graph. Consequently G(U) is a graph on 9 vertices having 24
edges so that rem(G(U)) ≥ 3 implying that cr(G) ≥ 3, a contradiction. �

Definition 1. A 4-cycle a1a2a3a4 is called a C∗ cycle if it is chordless and
there exists no vertex v such that v is adjacent to ai for all i = 1, . . . , 4.
Lemma 7. Suppose G ∈ G(5, 12, 1). Then for any vertex x in G, Ax does not
contain an independent set Φ of three vertices such that

∑
v∈Φ dAx

(v) ≤ 3.

Proof. Let Φ be an independent set of three vertices in Ax. We observe that
(O1) if there is a vertex y in Bx having two neighbors u and v in Φ, then

xuyv is a C∗ cycle in G.
If xuyv is not a C∗ cycle, then there exists a vertex w in G such that w is

adjacent to x, u, y and v giving W5 as a subgraph in G. But this is impossible
by Lemma 5.

Assume that
∑

v∈Φ dAx(v) ≤ 3. Then there are at least 9 edges from Φ to Bx.
We shall obtain a contradiction to Lemma 1 by showing that for any e ∈ E(G),
G− e contains at least two C∗ cycles.

Suppose Bx contains a vertex with 3 neighbors in Φ and another vertex with
2 (or more) neighbors in Φ. Then by observation (O1), this means that, for any
edge e in G, G− e has two or more C∗ cycles.

Hence Bx contains 3 vertices each having 2 neighbors in Φ. But again, by
observation (O1), this means that, for any edge e in G, G − e has two or more
C∗ cycles.

This completes the proof. �

Let G ∈ G(5, 12, 1) and let x be a vertex in G. We shall now use the above
lemmas to draw some conclusions that would narrow down the number of pos-
sibilities for the subgraph Ax of G.

(C1) 4 ≤ |E(Ax)| ≤ 7.
If |E(Ax)| ≤ 3, then Ax contains an independent set Φ of three vertices such

that
∑

v∈Φ dAx(v) ≤ 3, a contradiction to Lemma 7. By Lemma 5, |E(Ax)| ≤ 7.
(C2) It is not possible that |E(Ax)| = 6 + k, k ∈ {0, 1}.
Suppose |E(Ax)| = 6+k, k ∈ {0, 1}. Then Bx is a graph on 6 vertices having

11 + k edges according to Lemma 2.
If every vertex of Bx has degree ≥ 4 + k, then |E(Bx)| ≥ 12 + 3k. Hence Bx

contains a vertex z such that dBx(z) ≤ 3 + k. But then Bx − z is a subgraph on
5 vertices and having at least 8 edges. But this is a contradiction to Lemma 5.

(C3) Ax has no cycles of length 3 or 4.
This follows from Lemmas 5 and 6.
(C4) If |E(Ax)| = 5, then Ax is a cycle on 5 vertices.
If Ax is not a cycle on 5 vertices, then it contains either a triangle or a cycle

of length 4. But this is impossible by (C3).
(C5) If |E(Ax)| = 4, then Ax is a path on 5 vertices.

236 G.L. Chia and C.S. Gan

If Ax is not a path on 5 vertices, then either Ax contains a 3-cycle or a 4-
cycle (which is impossible by (C3)) or else Ax is a tree with a vertex of degree
at least 3 and contains three vertices of degree 1. But this means that there is a
forbidden independent set of three vertices satisfying the conditions of Lemma 7.

Hence we see that there are only two remaining cases to be considered for
Ax.

(C6) Ax is either a path or a cycle on 5 vertices.
In the next two lemmas, we shall get rid of these two possibilities thereby

proving Proposition 4.
Lemma 8. Suppose G ∈ G(5, 12, 1). Then for any vertex x in G, Ax is not a
path on 5 vertices.

Proof. Suppose Ax is a path v1v2 . . . v5 on 5 vertices.
By Lemma 2, Bx is a graph on 6 vertices having 9 edges. If Bx contains a

vertex y such that dBx
(y) ≤ 1, then Bx − y is a graph on 5 vertices having at

least 8 edges, a contradiction to Lemma 5. Hence each vertex of Bx has degree
at least 2.

(O2) Let z be a vertex of degree 2 in Bx. Then z gives rise to at least two
C∗ cycles in G.

This is because z is adjacent to three vertices of Ax which do not form a
subpath on 3 vertices in Ax (otherwise we have a W5 in G which is impossible
by Lemma 5).

We assert that there is at most one vertex of degree 2 in Bx.
Suppose y1 and y2 are two vertices of degree 2 in Bx. Then by observation

(O2), each yi gives rise to at least two C∗ cycles in G. This in turn implies that
G − e contains at least two C∗ cycles for any edge e in G. However this is a
contradiction to Lemma 1. This proves the assertion.

Therefore there are only two possible degree sequences for Bx, namely D1 =
(3, 3, . . . , 3) and D2 = (2, 3, . . . , 3, 4).

If Bx has D1 as its degree sequence, then Bx is the graph K3×K2 since K3,3
is a forbidden subgraph by Lemma 4. Clearly in this case, Bx contains three C∗

cycles.
If Bx has D2 as its degree sequence, then Bx is one of the three graphs J1, J2,

and J3 shown in Fig. 3. The graphs J2 and J3 each has two or more C∗ cycles
while J1 has only one C∗ cycle.

Notice that Φ = {v1, v3, v5} is an independent set in Ax and that there are 8
edges joining Φ to Bx. Hence either (i) there is a vertex in Bx which has three
neighbors in Φ giving rise to three C∗ cycles in G or else (ii) there are two vertices
in Bx each having at least 2 neighbors in Φ giving rise to at least two C∗ cycles
in G.

By Lemma 1, there is an edge e in G such that G − e is planar. Let U be
the subgraph induced by the vertices in Ax ∪ {x}. Then evidently G(U) is a
non-planar graph. This implies that the edge e must come either from Bx or else
from those that joins a vertex in Ax to a vertex in Bx. But then in either case,
we see that G− e contains two or more C∗ cycles, a contradiction to Lemma 1.

This completes the proof of the lemma. �

On Crossing Numbers of 5-Regular Graphs 237

Fig. 3.

Lemma 9. Suppose G ∈ G(5, 12, 1). Then for any vertex x in G, Ax is not a
cycle on 5 vertices.

Proof. Suppose Ax is a cycle v0v1 . . . v4 on 5 vertices.
In view of conclusion (C6) and Lemma 8, we see that
(O3) for any vertex u in G, Au is a cycle on 5 vertices.
Hence it follows that Bx is a wheel W6 on 6 vertices. Let the vertices of

Bx be denoted z, u0, u1, . . . , u4 where dBx(z) = 5 and ui is adjacent to ui+1,
i = 0, 1, . . . , 4 (the operation on the subscripts is reduced modulo 5).

Now each vertex vi, i = 0, 1, . . . , 4 is adjacent to two vertices ofBx which must
be adjacent in view of observation (O3). Likewise each vertex ui, i = 0, 1, . . . , 4
is adjacent to two adjacent vertices of Ax.

Without loss of generality, assume that vi is adjacent to ui and ui+1 for some
i. Since Avi

is a cycle, we may assume without loss of generality that vi−1 is
adjacent to ui for some i. This forces vi+1 to be adjacent to ui+1 by observation
(O3). Applying (O3) to the vertex ui+1, we see that vi+1 must be adjacent to
ui+2. Continue with same argument, eventually we have G isomorphic to the
icosahedron. However this is a contradiction and the proof is finished. �

References

1. Chartrand, G., Lesniak, L.: Graphs & Digraphs. 3rd edn. Chapman & Hall, New
York (1996)

2. Chia, G.L., Gan, C.S.: Minimal regular graphs with given girths and crossing num-
bers, (submitted)

3. Guy, R.K., Hill, A.: The crossing number of the complement of a circuit. Discrete
Math. 5 (1973) 335–344

4. Kleitman, D.J.: The crossing number of K5,n. J. Combinat. Theory. 9 (1970) 315–
323

5. McQuillan, D., Richter, R.B.: On 3-regular graphs having crossing number at least
2. J. Graph Theory. 18 (1994) 831–839

6. Richter, B.: Cubic graphs with crossing number two. J. Graph Theory. 12 (1988)
363–374

Maximum Flows and Critical Vertices
in AND/OR Graphs�

(Extended Abstract)

Yvo Desmedt1,2 and Yongge Wang3

1 Computer Science, Florida State University, Tallahassee
Florida FL 32306-4530, USA

desmedt@cs.fsu.edu
2 Department of Mathematics, Royal Holloway, University of London, UK

3 Department of Software and Information Systems,
University of North Carolina at Charlotte,

9201 University City Blvd, Charlotte, NC 28223
ywang@uncc.edu

Abstract. We will study this problem and present an algorithm for
finding the minimum-time-cost solution graph in an AND/OR graph.
We will also study the following problems which often appear in indus-
try when using AND/OR graphs to model manufacturing processes or to
model problem solving processes: finding maximum (additive and non-
additive) flows and critical vertices in an AND/OR graph. Though there
are well known polynomial time algorithms for the corresponding prob-
lems in the traditional graph theory, we will show that generally it is
NP-hard to find a non-additive maximum flow in an AND/OR graph,
and it is both NP-hard and coNP-hard to find a set of critical vertices
in an AND/OR graph. We will also present a polynomial time algorithm
for finding a maximum additive flow in an AND/OR graph, and discuss
the relative complexity of these problems.

1 Introduction

Structures called AND/OR graphs are useful for depicting the activity of pro-
duction systems (see, e.g., Nilsson [8]). Wang, Desmedt, and Burmester [10]
used AND/OR graphs to make a critical analysis of the use of redundancy to
achieve network survivability in the presence of malicious attacks. That is, they
used AND/OR graphs to model redundant computation systems consisting of
components which are based on computations with multiple inputs. Roughly
speaking, an AND/OR graph is a directed graph with two types of vertices, la-
beled ∧-vertices and ∨-vertices. The graph must have at least one input (source)
vertex and one output (sink) vertex. In this case, processors which need all their
inputs in order to operate could be represented by ∧-vertices, whereas processors
which can choose (using some kind of voting procedure) one of their “redundant”
� Research supported by DARPA F30602-97-1-0205.

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 238–248, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Maximum Flows and Critical Vertices in AND/OR Graphs 239

inputs could be represented by ∨-vertices. It should be noted that our following
definition is different from the standard definitions in artificial intelligence (see,
e.g., [8]). That is, the directions of the edges are opposite. The reason is that we
want to use the AND/OR graphs to model redundant computation systems too.

Definition 1. An AND/OR graph G(V∧, V∨, INPUT, output;E) is a graph
with a set V∧ of ∧-vertices, a set V∨ of ∨-vertices, a set INPUT ⊂ V∧ of input
vertices, an output vertex output ∈ V∨, and a set of directed edges E. The input
vertices have no incoming edges and the output vertex has no outgoing edges.

Assume that an AND/OR graph is used to model a redundant computation
system or a problem solving process. Then, information (for example, mobile
codes) must flow from the input vertices to the output vertex. And a valid
computation in an AND/OR graph can be described by a solution graph.

Definition 2. Let G(V∧, V∨, INPUT, output;E) be an AND/OR graph. A so-
lution graph P = (VP , EP) is a minimum subgraph of G satisfying the following
conditions: (1). output ∈ VP . (2). For ∧-vertex v ∈ VP , all incoming edges of
v in E belong to EP . (3). For ∨-vertex v ∈ VP , there is exactly one incoming
edge of v in EP . (4). There is a sequence of vertices v1, . . . , vn ∈ VP such that
v1 ∈ INPUT, vn = output, and (vi→vi+1) ∈ EP for each i < n.

Wang, Desmedt, and Burmester [10] have studied the problem of finding ver-
tex disjoint solution graphs in an AND/OR graph. Specifically, they have showed
that it is NP-hard to find vertex disjoint solution graphs in an AND/OR graph.
These problems are mainly related to that of achieving dependable computation
using redundancy. Minimum-cost solution graphs have been studied extensively
in artificial intelligence and many heuristic algorithms for finding minimum-cost
solution graphs have been presented (see, e.g., [2,6,7,8]). When a problem solving
process is modeled by an AND/OR graph, the minimum-cost solution graph can
be used to attack the problem with the least resource. However, in many cases we
want to solve the problem within the shortest time period and we assume that
we have as many concurrent resources as we need to run all concurrent processes.
Maximum-flow minimum-cut theorem (see, e.g., [3,5]) has played an important
role in the study of networks. For example, it is used to direct the traffic in net-
works such as the Internet. However, this theorem is only for networks that have
one kind of vertices: ∨-vertices (that is, directed graphs). And it is not applicable
for networks which can only be modeled by AND/OR graphs. Indeed, in arti-
ficial intelligence and distributed computation systems, the realization of many
important projects (such as the construction of a dam, of a shopping center, of a
housing estate or of an aircraft; the carrying out of a sequence of manufacturing
steps; the programming of a test flight of an aircraft; etc.) are dependent on
the computations with multiple inputs and many problems in the realization are
that of finding maximum flows in AND/OR graphs.

In this paper, we will consider the following problem: is there an equivalent
theorem of maximum-flow minimum-cut theorem for AND/OR graphs? That is,
does there exist a polynomial time heuristic algorithm for finding maximum flows

240 Yvo Desmedt and Yongge Wang

in AND/OR graphs? We will show that this problem is NP-hard. We will also
consider the problems of finding critical vertices in AND/OR graphs and show
these problems are even “harder”, that is, they lie in the second level of the
polynomial time hierarchy, which is believed to be harder than NP-complete
problems. However, if we modify the flow structure and make it additive, as
Martelli and Montanari [7] did for cost structures, then we will have a polyno-
mial time (heuristic) algorithm for finding maximum additive flows in ADN/OR
graphs.

The organization of the paper is as follows. We first present in Section 2 a
polynomial time algorithm for finding a minimum-time-cost solution graph in an
AND/OR graph. In Section 3 we discuss the problem of finding maximum flows
in AND/OR graphs and prove the NP-hardness of several problems. Section 4 is
devoted to the problem of finding critical vertices in an AND/OR graph. Several
problems related to critical vertices are shown to be “harder”, that is, they lie
in the second level of the polynomial time hierarchy. In Section 5 we present
a polynomial time algorithm for finding maximum additive flows in AND/OR
graphs.

We will use (fairly standard) notions of complexity theory. We refer the reader
to [4] for definitions of these. Here we only give an informal description of a few
notions. A polynomial time many one reduction (denoted by ≤p

m) from a problem
A to another problem B is a polynomial time computable function f with the
property that f(x) ∈ B if and only if x ∈ A for all inputs x. A polynomial time
Turing reduction (denoted by ≤p

T) from a problem A to another problem B is a
polynomial time oracle Turing machine M with the property that, for any input
x, the Turing machine M with access to the oracle B will decide in polynomial
time whether x ∈ A. For a complexity class C and a problem A ∈ C, by saying
that A is C-complete we mean that every problem in C can be reduced to A by
a polynomial time many one reduction.

Due to the space limit, we will not give proofs for our results, the details are
referred to the full version of this paper.

2 Minimum-Time-Cost Solution Graphs
and PERT Graphs

The shortest path problem and maximum flow problem are among the oldest
problems in graph theory (see, e.g., [5]). They appear either directly, or as sub-
sidiary problems, in many applications. Amongst others, we can mention the
following: vehicle routing problems, some problems of investment and of stock
control, many problems of dynamic programming with discrete states and dis-
crete time, network optimization problems, and the problem of a continuous
electrical current through a network of dipoles. However, as showed in [10], tra-
ditional graphs do not present a model for all problems in practice, e.g., it is
always the case that a processor needs more than one type of inputs. AND/OR
graphs seem to be a possible candidate for modeling these problems with mul-
tiple inputs. For a given AND/OR graph G(V∧, V∨, INPUT, output;E), if we

Maximum Flows and Critical Vertices in AND/OR Graphs 241

associate with each edge e ∈ E a rational number l(e) called the length of the
edge, then we can define a minimum-cost solution graph of G to be a solution
graph P (VP , EP) in G whose total length

l(P) =
∑

e∈EP

l(e)

is a minimum. In addition to its important applications in artificial intelligence
(see, e.g., [8]), minimum-cost solution graphs have many practical applications
in distributed computation systems with multiple inputs, because length l(e)
may equally well be interpreted as being a cost of transportation along e, the
time through e, and so on. Chang and Slagle [2] have proposed a heuristic search
algorithm for finding minimum-cost solutions in an AND/OR graph, but it was
subsequently shown by Sahni [9] that with above definition of the cost, this
problem is NP-hard. Thus their algorithm cannot be implemented efficiently
in practice. By modifying the cost structure and making it additive, Martelli
and Montanari [7] were able to formulate a polynomial time “marking” (with
or without heuristic functions) algorithm AO∗ for AND/OR graphs (see also [6]
for more discussions on the heuristic algorithm AO∗). Roughly speaking, in the
new cost structure, the cost of one edge may be counted as many times as it will
be used in the unfolded AND/OR tree of the solution graph.

In the practice of distributed computation systems, many systems can be
modeled by AND/OR graphs with only one ∨-vertex, that is, the output vertex is
the only ∨-vertex. For such kind of AND/OR graphs, it is easy to find minimum-
cost solutions in them with respect to the above “non-additive” cost definition.

Theorem 1. There is a polynomial time algorithm to find a minimum-cost so-
lution graph in an AND/OR graph with only one ∨-vertex.

Proof. Given an AND/OR graph G with only one ∨-vertex, it is straightforward
that there are at most k solution graphs in it, where k is the number of incoming
edges of the ∨-vertex output. Whence it is easy to find a minimum-cost solution
graph in it by an exhaustive search. Q.E.D.

For a problem solving process modeled by an AND/OR graph, the minimum-
cost solution graph can be used to attack the problem with the least resource.
However, in many cases we want to solve the problem within the shortest time
period and we assume that we have as many concurrent resources as we need
to run all concurrent processes. In the following, we present an algorithm for
finding minimum-time-cost solution graphs in acyclic AND/OR graphs.

First we present the definition of PERT digraphs (Program Evaluation
and Review Technique). A PERT digraph is an AND/OR graph G(V∧, V∨,
INPUT, output;E) with the following properties: (1). INPUT = {in} has only
one element. (2). G has no directed circuits. (3). G has only one ∨-vertex output
which has only one incoming edge. (4). Every vertex v ∈ V∧ is on some directed
path from in to output.

PERT digraphs have been used to model the central scheduling problems
(see, e.g., [5]). A PERT digraph has the following interpretation. Every edge

242 Yvo Desmedt and Yongge Wang

represents a process. All the processes which are represented by edges of in+, can
be started right away. For every vertex v, the processes represented by edges of v+

can be started when all the processes represented by edges of v− are completed.
Note that we use v− and v+ to denote the incoming and outgoing edges of v
respectively. For a given PERT digraph, we want to know how soon the whole
project can be completed; that is, what is the shortest time, from the moment
the processes represented by in+ are started, until the process represented by
output− is completed. We assume that the resources for running the processes are
unlimited. For this problem to be well defined let us assume that each e ∈ E has
an assigned length l(e), which specifies the time it takes to execute the process
represented by e. The minimum completion time can be found by the following
algorithm:

1. Assign in the label O(λ(in)← 0). All other vertices are “unlabeled”.
2. Find a vertex, v, such that v is unlabeled and all edges of v− emanate from

labeled vertices. Assign

λ(v)← max
e=(u→v)

{λ(u) + l(e)}.

3. If v = output, halt; λ(output) is the minimum completion time. Otherwise,
go to Step 2.

For more discussions on the above algorithm it is referred to [5].
We define a redundant PERT digraph to be an AND/OR graph with the

following properties: (1). INPUT = {in} has only one element. (2). G has no
directed circuits. (3). Every vertex v ∈ V∧ ∪ V∨ is on some directed path from
in to output.

As in a PERT digraph, every edge in a redundant PERT digraph represents a
process. All the processes which are represented by edges of in+, can be started
right away. For every ∨-vertex v, the processes represented by edges of v+ can be
started when any one of the processes represented by edges of v− is completed.
And for every ∧-vertex v, the processes represented by edges of v+ can be started
when all the processes represented by edges of v− are completed.

Our problem deals with the question of finding a solution graph in a redun-
dant PERT digraph such that the minimum completion time of the solution
graph is a minimum. That is, if we have enough resources to run these processes
concurrently, then we can solve the problem within the shortest time period.
Such kind of minimum-time-cost solution graphs can be found by the following
algorithm.

1. Assign in the label O(λ(in)← 0). All other vertices are “unlabeled”.
2. Find a vertex, v, such that v is unlabeled and all edges of v− emanate from

labeled vertices. If v is an ∧-vertex, then assign

λ(v)← max
e=(u→v)

{λ(u) + l(e)};

Otherwise assign
λ(v)← min

e=(u→v)
{λ(u) + l(e)};

Maximum Flows and Critical Vertices in AND/OR Graphs 243

3. If v = output, halt; λ(output) is the minimum completion time of the
minimum-time-cost solution graph. Otherwise, go to Step 2.

In Step 2, the existence of a vertex v, such that all the edges of v− emanate
from labeled vertices is guaranteed by Condition (2) and (3) of the definition for
a redundant PERT digraph: If no unlabeled vertex satisfies the condition then
for every unlabeled vertex, v, there is an incoming edge which emanates from
another unlabeled vertex. By repeatedly tracing back these edges, one finds a
directed circuits. Thus if such vertex is not found then we conclude that either
Condition (2) or (3) does not hold.

It is easy to prove, by induction on the order of the labeling, that λ(output)
is the minimum completion time of the minimum-time-cost solution graph.

Once the algorithm terminates, by going back from output to in, via the edge
which determined the label of the vertex, we can trace the minimum-time-cost
solution graph. Clearly, they may be more than one minimum-time-cost solution
graph.

3 The Maximum Flow Problem in an AND/OR Graph

Given an AND/OR graph G(V∧, V∨, INPUT, output;E), a capacity function c
associated with G is a positive integral function defined on edges of G. A flow f
in G is a positive integral function defined on edges of G with the property that
for all e ∈ E, 0 ≤ f(e) ≤ c(e), and

∑
e∈v−

f(e) =
∑
e∈v+

f(e) (1)

for all v ∈ V∨, where v− is the set of incoming edges of v and v+ is the set of
the outgoing edges of v, and for all v ∈ V∧,

∀e1, e2 ∈ v−(f(e1) = f(e2)) and ∀e1 ∈ v−∀e2 ∈ v+(f(e2) ≤ f(e1)). (2)

For a vertex v ∈ V∨ ∪ V∧, the amount of flow into v is defined to be the value∑
e∈v− f(e). For a flow f in the AND/OR graph G, the total flow Ff (G) is

defined to be the amount of flow into the output vertex output. And we will use
Fc(G) to denote the maximum of Ff (G) for all flows f in G, that is, Fc(G) =
max{Ff (G) : f is a flow in G}.

Applications of the theory of flows in AND/OR graphs are extremely numer-
ous and varied. For example, the optimal design and expansion of computation
systems with multiple inputs, and the optimal design of a production man-
ufacturing process. Though there are polynomial time algorithms for finding
maximum flows in traditional graphs, we will show that the equivalent problem
for AND/OR graphs is NP-hard. Specifically, we will show that the following
problem MFAO (Maximum Flows for AND/OR Graphs) is NP-hard.

Instance: An AND/OR graph G, a capacity function c associated with G, and
a positive integer k.

244 Yvo Desmedt and Yongge Wang

Question: Does there exist a flow f in G such that the total flow Ff (G) is at
least k?

Theorem 2. MFAO is NP-complete for k = 1 (i.e., k is not a part of the
input).

Proof. It is clear that MFAO ∈ NP. In order to prove that MFAO is NP-hard for
k = 1, we can reduce the NP-complete problem 3SAT to MFAO. The reduction
is similar to the reductions in [10]. The details of the proof could be found in
the full version of this paper. Q.E.D.

In traditional graph theory, the problem of finding maximum flows in a graph
is closely related to the problem of deciding the connectivity of the graph. How-
ever, Theorem 2 shows that there is a big difference between these two corre-
sponding problems in AND/OR graphs. AND/OR graphs could have solution
graphs but have no nonzero flow in them. AND/OR graphs could also have
nonzero flows but do not have solution graphs in them. Such kind of examples
could be found in the full version of this paper.

4 The Problem of Finding Critical Vertices
in an AND/OR Graph

In this section, we assume the familiarity with the complexity classes within the
Polynomial time Hierarchy like Σp

n and Πp
n. For more details, it is referred to

[4].
Let us consider the following scenarios: A redundant computation system (or

a problem solving process) with multiple inputs (e.g., the electrical power distri-
bution systems, the air traffic control system, etc.) is modeled by an AND/OR
graph G with a capacity function c associated with it. And an adversary has the
power to destroy k processors (that is, k vertices of the graph G) of the system.
Then the adversary wants to know how to choose k vertices in the graph such
that the destruction of these vertices results in the largest damage to the sys-
tem. In another words, he wants to remove k vertices from the AND/OR graph
such that the maximum flows of the resulting AND/OR graphs (in this case, the
flows coming from the corrupted vertices are all 0) is a minimum. The designer
of the system is also concerned with this scenario because he wants to know how
robust his system is.

In order to state our problem more precisely, we first give two definitions.
Given an AND/OR graph G(V∧, V∨, INPUT, output;E) with a capacity func-
tion c and a vertex set U ⊆ (V∧ ∪ V∨) \ (INPUT ∪ {output}), the capacity
function cU is defined by

cU (e) =
{

0 if e is an outgoing edge of some vertex in U,
c(e) otherwise.

And for a number k > 0, a set of critical vertices with respect to both c and k is
a vertex set U ⊆ (V∧ ∪ V∨) \ (INPUT ∪ {output}) with |U | ≤ k we have

Maximum Flows and Critical Vertices in AND/OR Graphs 245

– If FcU
(G) is the maximum (for the definition see the previous section) of

all total flows in G with respect to the capacity function cU then, for any
other vertex set U ′ ⊆ (V∧ ∪ V∨) \ (INPUT ∪ {output}) with |U ′| = k,
FcU

(G) ≤ FcU′ (G), where FcU′ (G) is the maximum of all total flows in G
with respect to the capacity function cU ′ .

Whence the concise statement of our problem is the following: Given an AND/
OR graph G with a capacity function c and a positive integer k, how can one
find a set of critical vertices with respect to both c and k? We can show that this
problem is NP-hard. Indeed, we can prove that the problem of deciding whether
a given set of vertices is critical is in Πp

2 and is both NP-hard and coNP-hard.
The CV (Critical Vertices) problem is defined as follows:

Instance: An AND/OR graph G(V∧, V∨, INPUT, output;E) with a capacity
function c, and a vertex set U ⊆ (V∧ ∪ V∨) \ (INPUT ∪ {output}).
Question: Is U a set of critical vertices with respect to both c and |U |?

It is clear that U is a set of critical vertices if and only if for all flows fU in G
(with respect to the capacity function cU) and for all U ′ ⊆ (V∧∪V∨)\(INPUT ∪
{output}) of size |U |, there is a flow fU ′ in G (with respect to the capacity
function cU ′) such that FfU

(G) ≤ FfU′ (G). Whence CV is in Πp
2 = coΣp

2 , that
is, the second level of the polynomial time hierarchy.

Theorem 3. CV is both NP-hard and coNP-hard. Thus if NP �=coNP, then
CV belongs neither to NP nor to coNP.

Applications of critical vertices are varied. For example, in order to attack
a computation system modeled by an AND/OR graph with the least resource,
an adversary wants to choose a minimal set of critical vertices to corrupt (e.g.,
to bomb). And in order for a system designer to make the computation system
dependable, he should pay more attention to the processors corresponding to
the critical vertices.

It is often the case that a system designer wants to know how many faults
a system can tolerate, that is, he is interested in the following problem CVB
(Critical Vertices with a given Bound).

Instance: An AND/OR graph G(V∧, V∨, INPUT, output;E) with a capacity
function c, two positive integers k and p.
Question: Does there exist a vertex set U ⊆ (V∧ ∪V∨) \ (INPUT ∪{output}) in
G such that |U | ≤ k and FcU

(G) ≤ p?
It is clear that FcU

(G) ≤ p if and only if for all flow fU with respect to
the capacity function cU we have FfU

(G) ≤ p. Whence CVB belongs to the
complexity class Σp

2 . In the following we will show that CVB is both NP-
hard and coNP-hard. We first introduce a restricted version SCV of CVB
and show that the problem SCV is NP-complete. Given an AND/OR graph
G(V∧, V∨, INPUT, output;E), a set U ⊆ (V∧ ∪ V∨) \ (INPUT ∪ {output}) is
called a set of strictly critical vertices of G if, for any solution graph P in G,
P passes through at least one vertex of U . Note that a set of strictly critical

246 Yvo Desmedt and Yongge Wang

vertices is different from a vertex separator (though related) defined in [1]. The
SCV (Strictly Critical Vertices) problem is defined as follows:

Instance: An AND/OR graph G(V∧, V∨, INPUT, output;E) and a positive in-
teger k ≤ |(V∧ ∪ V∨) \ (INPUT ∪ {output})|.
Question: Does there exist a size k set of strictly critical vertices?

Theorem 4. 1. SCV is NP-complete.
2. CVB is NP-hard.
3. CVB is coNP-hard.
4. If NP �=coNP, then CVB belongs neither to NP nor to coNP.
5. CV ≤p

T CVB.

5 Maximum Additive Flows in an AND/OR Graph

We have mentioned in Section 2 that after Sahni [9] proved the NP-hardness of
finding minimum-cost solution graphs in AND/OR graphs, Martelli and Monta-
nari [7] modified the cost structure to be additive and got a (heuristic) polyno-
mial time algorithm AO∗. Based on the similar idea, we can make our definition
of flows in an AND/OR graph “additive” and then get a polynomial time algo-
rithm for finding maximum additive flows in AND/OR graphs. Like the definition
of the additive cost of edges by Martelli and Montanari [7], we can unfold each
∨-vertex. That is, let the ∨-vertex have the copy function. More precisely, an
additive flow f in an ADN/OR graph G is a flow function f defined on edges of
G with the equation (1) replaced by the following equation (3):

f(e′) ≤
∑

e∈v−
f(e) (3)

for all v ∈ V∨ and e′ ∈ v+. For an additive flow f in the AND/OR graph G, the
total additive flow F ′

f (G) is defined to be the amount of additive flow into the
output vertex output. And we will use F ′

c(G) to denote the maximum of F ′
f (G)

for all additive flow f in G, that is, F ′
c(G) = max{F ′

f (G) : f is an additive flow
in G}.

Applications of the theory of additive flows in AND/OR graphs are varied.
For example, data in computer systems are easy to copy. The additive flow may
be interpreted that ∨-vertices in an AND/OR graph can “copy” data (note that
in some production process, “hardwares” can not be easily “copied”, whence can
only be modeled by non-additive flows).

Theorem 5. There is an efficient algorithm to compute the maximum additive
flows in AND/OR graphs.

Corollary 1. For an AND/OR graph G with only one ∨-vertex and a capacity
function c, there is a polynomial time algorithm for finding the maximum (non-
additive) flow in it.

Maximum Flows and Critical Vertices in AND/OR Graphs 247

As in Section 4, we can also define the set of critical vertices for additive flows
and we denote by A-CV, A-SCV and A-CVB the corresponding versions of CV,
SCV and CVB respectively. Since SCV = A-SCV and there is a polynomial
time algorithm to compute the maximum additive flow in an AND/OR graph,
we have the following theorem.

Theorem 6. 1. Both A-SCV and A-CVB are NP-complete.
2. A-CV ∈ coNP and A-CV is ≤p

T -complete for NP.

Note that we still do not know whether A-CV is NP-complete, that is,
whether A-CV is polynomial time many one complete for NP.

6 Comments and Open Problems

In this paper, we have discussed the problem of finding maximum flows and the
problem of finding critical vertices in an AND/OR graph. As a summary, we list
our main results in the following.

1. MFAO, SCV, A-SCV, A-CVB are NP-complete problems.
2. A-CV could be reduced to 3SAT though we do not know whether A-CV is

coNP-complete.
3. CVB lies between NP-complete and Σp

2 -complete problems.
4. CV lies between coNP-complete and Πp

2 -complete problems.

The following interesting problems remain open yet.

1. Is CVB Σp
2 -complete?

2. Can CVB be polynomial time Turing reduced to CV?
3. Is CV Πp

2 -complete?
4. Is A-CV coNP-complete?
5. Can CVB be polynomial time Turing reduced to 3SAT?

We conjecture that the answers to the above questions are all negative unless
the polynomial time hierarchy collapses. In addition, it is interesting to show the
exact relationship between CV and CVB?

References

1. M. Burmester, Y. Desmedt, and Y. Wang. Using approximation hardness to achieve
dependable computation. In: Proc. RANDOM ’98, pages 172–186. LNCS 1518,
Springer Verlag, 1998.

2. C. L. Chang and J. R. Slagle. An admissible and optimal algorithm for searching
AND/OR graphs. Artificial Intelligence, 2:117–128, 1971.

3. L.R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press,
Princeton, NJ, 1962.

4. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, San Francisco, 1979.

248 Yvo Desmedt and Yongge Wang

5. M. Gondran and M. Minoux. Graphs and Algorithms. John Wiley & Sons Ltd.,
New York, 1984.

6. D. Hvalica. Best first search algorithm in AND/OR graphs with cycles. J. of Al-
gorithms, 21:102–110, 1996.

7. A. Martelli and U. Montanari. Additive AND/OR graphs. In Proceedings of the
Third International Joint Conference on Artificial Intelligence, pages 1–11, Morgan
Kaufmann Publishers, Inc., 1973.

8. N. J. Nilsson. Principles of Artificial Intelligence. Tioga, 1980.
9. S. Sahni. Computationally related problems. SIAM J. Comput., 3:262–279, 1974.

10. Y. Wang, Y. Desmedt, and M. Burmester. NP-Hardness of dependable computa-
tion with multiple inputs. Fundamenta Informaticae, 42(1):61–73, 2000.

New Energy-Efficient Permutation Routing
Protocol for Single-Hop Radio Networks

Amitava Datta1,� and Albert Y. Zomaya2

1 Department of Computer Science & Software Engineering
University of Western Australia

Perth, WA 6009, Australia
datta@cs.uwa.edu.au

2 School of Information Technologies
University of Sydney
NSW 2006, Australia

zomaya@it.usyd.edu.au

Abstract. A radio network (RN) is a distributed system where each
node is a small hand-held commodity device called a station, running on
batteries. In a single-hop RN, every station is within the transmission
range of every other station. Each station spends power while transmit-
ting or receiving a message, even when it receives a message that is not
destined for it. Since it is not possible to recharge batteries when the
stations are on a mission, it is extremely important that the stations
spend power only when it is necessary. In this paper, we are interested
in designing an energy-efficient protocol for permutation routing which
is one of the most fundamental problems in any distributed system. An
instance of the permutation routing problem involves p stations of an RN,
each storing n

p
items. Each item has a unique destination address which

is the identity of the destination station to which the item should be sent.
The goal is to route all the items to their destinations while spending as
little energy as possible. We show that the permutation routing problem
of n packets on an RN(p, k) can be solved in 2n

k
+ (p

k
)2 + p + 2k2 slots

and each station needs to be awake for at most 6n
p

+ 2p
k

+ 8k slots. When
k � p� n, our protocol is more efficient both in terms of total number
of slots and the number of slots each station is awake compared to the
protocol by Nakano et al. [8].

1 Introduction

Wireless and mobile communication technologies have grown explosively in re-
cent years. New demands for enhanced capabilities for these technologies will
continue to grow in future. The communication in most cellular systems is based
on robust infrastructures. However, radio networks should be rapidly deploy-
able and self-organizing. Radio networks are useful for disaster relief, search-
and-rescue, collaborative computing and interactive mission planning [5]. The
� This author’s research is partially supported by Interactive Virtual Environments

Centre (IVEC) and Australian Partnership in Advanced Computing (APAC).

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 249–258, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

250 Amitava Datta and Albert Y. Zomaya

first radio network was the PRNET, a packet radio network, developed in the
1970s [2,5].

A radio network (RN) is a distributed system with no central arbiter, con-
sisting of p radio transceivers called stations. The stations are usually small
hand-held devices running on batteries and the batteries cannot be recharged
while on a mission [3]. Hence, it is important that any protocol designed for
an RN is power efficient, i.e., the stations spend as little power as possible. We
assume that each of the p stations in the RN has a unique integer ID in the
range [1, p]. Assigning unique IDs to the stations in an RN is a separate problem
and has been solved by Nakano and Olariu [6]. They have shown that even if
the stations do not have ID numbers initially, it is possible to devise a protocol
which assigns a unique ID to each station and terminates in O(p

k) time slots
with high probability, where k is the number of available channels.

In this paper, we are interested in low-mobility, single-hop RNs where every
station is within the transmission range of every other station and the mobility
of the stations is low or, at least much smaller compared to the time taken by a
protocol to complete. An example of such a network is a collection of researchers
in a conference room when they wish to exchange information among them-
selves without any preexisting infrastructure [8]. Designing routing protocols for
single-hop RNs is important since routing in a multi-hop RN is often done by
decomposing it into multiple single-hop RNs [2]. While the computational power
of small hand-held devices is increasing at a rapid rate, the lifetime of batter-
ies is not expected to improve significantly in the near future [3]. Moreover,
recharging batteries may not be possible while on a mission. It is known that a
significant amount of energy is spent by a station while transmitting or receiving
packets. For example, the DEC Roamabout portable radio consumes about 5.76
watts during transmission, 2.88 watts during reception and 0.35 watts when it is
idle [8,9]. A station spends power when it receives a packet which is not destined
for it [3]. Hence, a station should not receive packets that are not meant for it if
we want to make a protocol energy-efficient. However, for a single-hop RN, this
is a nontrivial problem to solve as all stations are within the transmission range
of each other.

Conflict resolution is one of the main issues in designing protocols for RNs.
Carrier Sense Multiple Access (CSMA) is a simple and robust random access
method for media access suitable for RNs [1]. However, a fraction of the avail-
able bandwidth is wasted for resolving random conflicts of messages [2]. Several
conflict-free multiple access schemes have been proposed recently for radio net-
works. The most popular of these schemes is the Demand Assignment Multiple
Access (DAMA) schemes proposed for transmission networks [4]. In the DAMA
scheme, all the stations that want to transmit a message on a given channel are
ordered in a logical ring according to which they are given transmission access to
the channel [4]. From the viewpoint of designing energy-efficient protocols, the
DAMA scheme is better since transmission contention resolution results in high
energy consumption [10]. In a DAMA or reservation based protocol, collisions
are avoided by reserving channels. Hence, there is no need for retransmission of

New Energy-Efficient Permutation Routing Protocol 251

packets lost due to collision. As in the paper by Nakano et al. [8], we are inter-
ested in designing a reservation based DAMA protocol for permutation routing
on a radio network. To make such a protocol energy efficient, we need to mea-
sure its performance against two conflicting criteria, i. the overall number of time
slots required for the protocol to terminate should be minimized and ii. the total
number of slots for which an individual station is awake should be minimized.

The permutation routing problem is a useful abstraction for most routing
problems in distributed systems. In the permutation routing problem, each sta-
tion of a p-station RN stores n

p packets and each packet has a unique destination.
The task is to send the packets to their destination stations. The permutation
routing problem has been explored for RNs recently in several papers. Nakano
et al. [7] have designed a protocol that runs in 2n

k + k − 1 time slots subject
to k, the number of channels satisfying k ≤ √p

2 . The protocol by Nakano et
al. [7] run extremely fast at the expense of high energy consumption, since every
station must be awake for 2n

k + k − 1 time slots. Note that since each station
initially stores n

p packets and receives n
p packets, in the best case it is sufficient

if a station is awake only for 2n
p slots.

Nakano et al. [8] have recently published a protocol for energy-efficient per-
mutation routing in an RN. Their protocol routes n packets in a k-channel,
p-station RN in at most (2d + 2b + 1)n

k + k time slots with no station being

awake for more than (4d+ 7b− 1)n
p time slots, where d =

⌈
log p

k

log n
p

⌉
, b =

⌈
log k
log n

p

⌉
,

and k ≤ p
2 . Nakano et al. [8] argue that for most practical systems, the number

of channels is much less than the number of stations and in turn, the number of
stations is much less than the number of packets, i.e., k � p� n.

We show that the permutation routing problem of n packets on an RN(p, k)
can be solved in 2n

k + (p
k)2 +p+ 2k2 slots and each station needs to be awake for

at most 6n
p + 2p

k + 8k slots. Our protocol is more efficient both in terms of total
number of slots and the number of slots each station is awake compared to the
protocol by Nakano et al. [8] when k � p� n.

The rest of the paper is organized as follows. In Section 2, we present some
preliminaries and give a brief overview of our protocol. We present our permu-
tation routing protocol in Section 3.

2 Preliminaries

We consider a radio network RN(p, k) with p stations and k channels. The i-th
station is denoted by S(i), 1 ≤ i ≤ p. As mentioned before, we assume that the
stations have been initialized by running an initializing protocol as in [6]. Hence,
each station has a unique ID in the range [1, p]. Each station holds n

p packets
to be routed. Also, each station is the recipient of n

p packets. Each packet has a
unique destination address which is the address of one of the p stations. Station
S(i) knows the destinations of all the n

p packets that it holds, however, S(i)
does not know which stations will send it packets. As in [6,8], we assume that
each station has a local clock which keeps synchronous time by interfacing with

252 Amitava Datta and Albert Y. Zomaya

a Global Positioning System (GPS). Time is divided into slots and all packet
transmissions take place at slot boundaries. Each station has the computing
capabilities of a laptop computer.

There are k transmission channels in the RN(p, k). These k channels are
denoted by C(1), C(2), . . . , C(k). One data packet can be transmitted in a time
slot. In each time slot, a station can tune to one of the k channels and/or
transmit a packet on one of the channels. These two channels may or may not
be distinct. As in the paper by Nakano et al. [8], we assume that k ≤ √

p
2 .

This is a reasonable assumption, since in most real life situations, the number
of channels is much less than the number of stations, i.e., k � p. If we want
to design a protocol without collision, we need to ensure that only one station
transmits a packet over a given channel in a time slot.

It is easy to design a simple protocol for permutation routing if energy effi-
ciency is not an issue. Assume that there is only one channel, i.e., k = 1. Each
station transmits its n

p packets one by one by taking turn. Every other station
receives a packet in every time slot and either accepts or rejects it depending on
whether the packet is destined for it. It is easy to see that this protocol termi-
nates in n slots, but every station should be awake for all of these n time slots.
Hence, this protocol is not efficient in terms of power usage by each station.

Nakano et al. [8] have presented several protocols which are more energy
efficient compared to the above protocol. The basic protocol in [8] runs in p
rounds, in the j-th round all the packets destined for station S(j) are routed to
S(j). In the j-th round, first a reservation protocol is run, when each station
reserves the slots it requires for transmitting its packets destined for S(j). Once
the reservation protocol is complete, each station S(i) knows exactly when it
should wake up to send the packets destined for S(j) among its n

p packets. Hence,
during the packet routing stage, each station needs to be awake for n

p time slots
for sending all of its n

p packets and an additional n
p time slots for receiving all

the n
p packets destined for it. Nakano et al. [8] have presented several efficient

variations of this basic protocol.
The basic reservation protocol in [8] is the following. Consider for the time

being that we have an RN(p, 1), i.e., a single channel RN populated by p sta-
tions. Station S(i) has ni items to transmit to station S(j) for 1 ≤ i ≤ p,∑p

i=1 ni = n
p , as station S(j) receives n

p items. The reservation protocol takes
p− 1 slots. In the first slot S(1) sends n1 to S(2), in the second slot S(2) sends
n1 + n2 to S(3) and in general in the i-th time slot, 1 ≤ i ≤ p − 1 station S(i)
sends n1 +n2 + . . .+ni to station S(i+ 1). Note that each station is awake only
for two time slots, one slot for receiving a packet from the station just before it
and one slot for sending a packet to the next station. At the end of the protocol,
each station S(i) knows n1 + n2 + . . .+ ni−1. Hence, during the packet routing
stage station S(i) will wake up at time slot n1 + n2 + . . . + ni−1 + 1 and start
transmitting its ni packets to station S(j). After n1 + n2 + . . . + ni time slots
station S(i) will go to sleep again. Note that this is a prefix sum computation
over the integers ni.

New Energy-Efficient Permutation Routing Protocol 253

2.1 An Overview of Our Protocol

The key idea behind our protocol is the following. We divide the p stations
S(i), 1 ≤ i ≤ p into k groups G(1), G(2), . . . , G(k) with p

k stations in each group.
Note that initially each group G(j) holds n

p × p
k = n

k packets and also each group
G(j) is the recipient of n

k packets.
Our protocol consists of two stages. In the first stage, stations in each group

G(j), 1 ≤ j ≤ k, receive all the n
k packets that have destination addresses in

G(j). We perform this packet transmission by utilizing all the k channels in the
following way. We assign channel c(m), 1 ≤ m ≤ k exclusively to the stations
in group G(m). Note that the stations in G(m) potentially hold packets whose
destinations are in all the groups G(1), G(2), . . . , G(k). The p

k stations in G(m)
use the channel C(m) to transfer all these packets to their respective destination
groups. However, at this point the packets are only sent to some station in their
destination group, not necessarily to the correct destination station.

Once the first stage is complete, each group G(m), 1 ≤ m ≤ k has received
all the n

k packets whose destinations are stations in G(m). In the second stage,
we again assign channel C(m) to G(m) and route the packets to their correct
destination stations.

3 Permutation Routing on an RN(p, k)

3.1 First Stage

We first explain some notations. The packets in station S(i) with destination
address in group G(j) are denoted by S(i, j), 1 ≤ i ≤ p, 1 ≤ j ≤ k. Consider
group G(m) and its p

k stations S((m − 1) p
k + 1), S((m − 1) p

k + 2), . . . , S(m p
k).

We use the notation SUM(m, j) = S((m − 1) p
k + 1, j) + S((m − 1) p

k + 2, j) +
. . . + S(m p

k , j) and the notation sum(m, j, r) = S((m − 1) p
k + 1, j) + S((m −

1) p
k + 2, j) + . . .+ S((m− 1) p

k + r, j), 1 ≤ r ≤ p
k . In other words, SUM(m, j) is

the number of packets in the stations in G(m) with destinations in group G(j)
and sum(m, j, r) is the prefix sum of the number of packets in stations S((m−
1) p

k + 1), . . . , S((m − 1) p
k + r) with destinations in group G(j). In particular,

SUM(m, j) and sum(m, j, p
k) are the same integer. Note that we can compute

SUM(m, j) as well as sum(m, j, r), 1 ≤ r ≤ p
k in G(m) by running the basic

reservation protocol by Nakano et al. [8] as described in Section 2. We will
henceforth refer to the computations of SUM(m, j) and sum(m, j, r) as prefix
sum computations. We need the following lemma for the computation in this
phase.

Consider a group G(j) and its p
k stations. The p

k stations are destinations
for n

k packets overall. In the first stage, we want to send all the packets with
destinations in G(j) to the stations in G(j). Moreover, for each group G(m), we
want to send the SUM(m, j) packets to a distinct set of stations in G(j). In
other words, each station in G(j) will receive packets from stations in only one
group G(m), 1 ≤ m ≤ k.

254 Amitava Datta and Albert Y. Zomaya

Lemma 1. We can send all the n
k packets which are destined for G(j) to the

stations in G(j), with the restriction that each station in G(j) receives packets
from only one group, if the following conditions are satisfied :

– Each station in G(j) will receive at most 2n
p packets, and

– k ≤√p
2

Proof. In the worst case, k−1 groups will have one packet each with destination
in G(j) and the remaining n

k − k+ 1 packets with destination in G(j) will come
from a single group, say, G(s), s ≤ k. Since each station in G(j) receives packets
from only one group, k − 1 distinct stations will receive one packet each from
the k− 1 groups. Hence, the remaining p

k − k+ 1 stations in G(j) should receive
the remaining n

k − k + 1 packets. In other words, each of the p
k − k + 1 stations

will receive
n
k −k+1
p
k −k+1 = n−k2+k

p−k2+k packets. For the lemma to hold, n−k2+k
p−k2+k ≤ 2n

p .
Simplifying, we get the inequality,

k2 ≤ np

2n− p + k

If we replace the maximum value
√

p
2 for k, this inequality reduces to

p

2
≤ np

2n− p +
√
p

2

Now, np
2n−p >

np
2n = p

2 , and hence p
2 <

np
2n−p +

√
p
2 . Since this inequality is correct,

the statement of the lemma holds.

Step 1.
In the first step, we assign channel C(m) to group G(m), 1 ≤ m ≤ k and do the
following computations in parallel in all the groups. First in k rounds of prefix
sum computations, we compute SUM(m, j) and sum(m, j, r), for 1 ≤ j ≤ k and
1 ≤ r ≤ p

k . Each round of this computation requires (p
k − 1) slots and hence

overall (p−k) slots. Since in each round each station is awake for 2 slots, overall
each station is awake for 2k slots.

After this computation, the last station in G(m) i.e., S(m p
k) will hold the k

integers SUM(m, j), 1 ≤ j ≤ k. The station S(m p
k) now computes the k indices

index(m, j) = �SUM(m, j)/ 2n
p �, for 1 ≤ j ≤ k. The purpose of computing

index(m, j) is to determine how many stations in G(j) will receive packets from
G(m). Recall that from Lemma 1, we need to send upto 2n

p packets to each
station. This is clearly a local computation step and does not require any slot.

Step 2.
Since the stations in group G(j), 1 ≤ j ≤ k will receive packets from different
groups over different channels, we need to inform each station in G(j) at which
time slot and over which channel its packets will arrive. We use the integers
index(m, j) computed in Step 1 for this computation.

We use a single channel for the computation in this step. The computa-
tion is done in k rounds. Consider the s-th round, 1 ≤ s ≤ k. We do a

New Energy-Efficient Permutation Routing Protocol 255

prefix sum computation of the integers index(1, s), index(2, s), . . . , index(k, s)
for the k groups. This prefix sum computation is again done by the basic
protocol of Nakano et al. [8], as discussed in Section 2 and the last stations
from each group participate in this computation. We denote pre index(r, s) =
index(1, s) + index(2, s) + . . . , index(r− 1, s). pre index(r, s) + 1 is the index of
the first station in G(s) that will receive packets from stations in G(r), 1 ≤ r ≤ k.
The computation in each round requires k − 1 slots and hence the overall slot
requirement is k2 − k. Further, the last station from each group needs to be
awake for 2 slots in each round and hence overall 2k slots over k rounds.

Note that the last station in each group now can inform all the stations in
the group the integer pre index(r, s). We can now use a different channel in each
group and broadcast these k integers within the group in k slots. Each station
needs to be awake for k slots for recieving these k integers. Hence, the overall
slot requirement for this step is k2− k+ k = k2 and each station remains awake
for 2k + k = 3k slots.

Step 3.
When we send the n

k packets from group G(m) to stations in all the other
groups, we plan to use only n

k slots. Hence, we need to inform each station in
G(m) when it should transmit its packets. Recall that the stations in G(m) will
use the channel C(m) for transmitting the packets. We plan to transmit the
packets from stations in G(m) in the following way. First, the stations in G(m)
will transmit packets with destinations in G(1) one by one, starting from the first
station in G(m) and until the last station. Then the packets with destinations in
G(2) will be transmitted and so on until the packets for G(k) are transmitted.
Hence, each station in G(m) should know when it should start transmitting
its packets to the k different groups. To simplify notations, we denote the j-
th station in group G(m) by G(m, j), 1 ≤ j ≤ p

k . Each station G(m, j) will
wake up k times to transmit its share of k batches of packets to the k groups.
By start time(m, j, q), 1 ≤ m, q ≤ k, we denote the slot number when station
G(m, j) will start transmitting to a station in group G(q). Our aim in this step is
to compute all these starting slots. We use a different channel for each group and
the computation is done in parallel in each group. We discuss the computation
in G(m).

Recall that the last station G(m, p
k) holds the k integers SUM(m, j), 1 ≤

m ≤ q at the end of the computation in Step 1. Also, each station G(m, j) holds
the k prefix sums sum(m, j, r), 1 ≤ m, r ≤ k. Station G(m, j) should send the
packets to station G(s) only after all the packets with destinations in stations
G(1), G(2), . . . , G(s−1) as well as packets with destinations in G(s) from all the
stations G(m, 1), G(m, 2), . . . , G(m, j − 1) have been sent. Note that the prefix
sums sum(m, j, s) computed in Step 1 already holds the latter integer. We need
only to compute the quantity SUM(m, 1) +SUM(m, 2) + . . .+SUM(m, s− 1).
This is again a prefix sum computation of k quantities. The last station G(m, p

k)
can compute this and in k slots broadcast the k prefix sums to all the stations
in G(m). Each station needs to be awake for k slots. After this each station in
G(m) can compute start time(m, j, q) for 1 ≤ j ≤ p

k and 1 ≤ q ≤ k.

256 Amitava Datta and Albert Y. Zomaya

Step 4.
After Step 3, each station knows the slot when it should start transmitting its
packets. Each station also knows the address of the station where its packets
will go. However, each station still does not know when to wake up to receive
the packets. In other words, we need to inform each station when it will start
receiving the packets and over which channel.

Recall that in Step 2, we have computed the integers pre index(r, s) in the
last stations of each group. In particular, pre index(r, s) + 1, 1 ≤ s ≤ k is
the index of the first station in G(s) that will receive packets from stations in
G(r), 1 ≤ r ≤ k. Consider the last station G(r, p

k) in group G(r). After Step
2, G(r, p

k) has k such integers pre index(r, s), 1 ≤ s ≤ k. Also, in Step 1 we
have computed k integers SUM(r, s), 1 ≤ s ≤ k in G(r, p

k). If we broadcast
both SUM(r, s) and pre index(r, s) to all the stations in G(s), each station
G(s, t), 1 ≤ t ≤ p

k in G(s) can identify the following :

– whether the index t of G(s, t) within G(s) is the same as the integer
pre index(r, s) + 1,

– whether G(s, t) will receive any packet from the stations in G(r). Recall that
each station will receive at most 2n

p packets. If t �= pre index(r, s)+1, G(s, t)

will receive a packet if and only if (pre index(r, s) + 1) +
⌈

SUM(r,s)
2n
p

⌉
= t.

In other words, G(s, t) may not be the first station to receive packets from
G(r), but still it may receive some packets from G(r).

Assume that G(s, t1) is the first station in G(s) to receive packets from G(r)
and G(s, t2), t2 > t1, is another station that receives packets from G(r). Then
G(s, t2) starts receiving its packets at time slot 2n

p × (t2− t1) + 1 as the stations
starting from G(s, t1) and until G(s, t2 − 1) each receives 2n

p packets due to
Lemma 1. Hence, each station can decide exactly at which time slot it will start
receiving packets.

The computation in this step is done in k rounds with k slots in each round.
In the r-th slot of the i-th round, 1 ≤ i, r ≤ k, the last station from G(r)
broadcasts the integers pre index(r, i), 1 ≤ r ≤ k and SUM(r, i) to all the
stations in G(i). Note that all the stations in G(i) need to be awake for receiving
these k broadcasts in the i-th round. Hence, overall this step takes k2 slots. The
last station in each group has to broadcast k items and has to receive k items.
Hence, each station needs to be awake for at most 2k time slots.

Step 5.
Finally, in this step each group G(i), 1 ≤ i ≤ k transmits its n

k packets to all the
other groups in n

k slots. Since each station has to transmit n
p packets and receive

at most 2n
p packets, each station should be awake for at most 3n

p slots.
The total number of slots required for completion of Stage 1 is n

k + p + 2k2

and each station needs to be awake for at most 3n
p + 8k slots. This is calculated

by adding the slot requirements and awake times for Steps 1-5 in Stage 1.

New Energy-Efficient Permutation Routing Protocol 257

3.2 Second Stage

At the end of Stage 1, stations in G(i), 1 ≤ i ≤ k hold all the n
k packets with

destination in G(i). Our task in this stage is to route all these n
k packets within

each group to their correct destinations. This routing is done in parallel in all
the groups using channel C(i), 1 ≤ i ≤ k for G(i) and we discuss the routing
only in G(i).

First, each station sorts all its packets according to their destination indices
and there are p

k destination stations in G(i). Note that, this sorting can be done
locally in each station and does not require any slot. We denote the j-th station
in G(i) by G(i, j), 1 ≤ j ≤ p

k . Further, the number of packets in G(i, j) with their
destination station G(i,m) is denoted by l(m, j), 1 ≤ m ≤ p

k . For example, the
integer l(2, 3) denotes the number of packets in station G(i, 3) with destination
station G(i, 2). All the l(m, j) values can be computed locally in each station
after the sorting.

Now the routing proceeds in p
k stages. In the m-th stage, the stations in

G(i) route all the packets with destination station G(i,m). First, a prefix sum
of the integers l(m, j), 1 ≤ j ≤ p

k is computed by the basic protocol of Nakano
et al. [8] in p

k slots. Each station needs to be awake for 2 slots during this prefix
computation. Next, station G(i,m) keeps awake for n

p slots and all the other
stations transmit their packets one after another. The slot when a station will
transmit its packets is determined by the prefix sum that it has got.

Hence, after p
k rounds of the above routing, all the stations receive their

packets. The total slot requirement for computing the prefix sums in p
k rounds is

(p
k)2. The total slot requirement for routing the packets is n

k as this is the total
number of packets routed. Each station needs to be awake for 2p

k slots during
the prefix sum computations and at most 2n

p slots for transmitting its packets.
Also, each station needs to be awake for n

p slots for receiving its packets. Hence,
each station needs to be awake for 3n

p + 2p
k slots overall in this stage.

Theorem 1. The permutation routing problem of n packets on an RN(p, k) can
be solved in 2n

k + (p
k)2 + p+ 2k2 slots and each station needs to be awake for at

most 6n
p + 2p

k + 8k slots.

In Figure 1, we compare our protocol and the protocol by Nakano et al. [8].
It is clear that our protocol is more efficient both for Tt and Ta when k �
p � n. Our protocol is worse than the protocol in [8] when n is not very large
compared to p, or the number of channels k is relatively smaller. However, the
improvements in both Tt and Ta are noticeable when n is much larger than p.
For example, for p = 100, n = 100, 000 and k = 16, our protocol terminates
in 13, 148 slots compared to the 71, 432 slots required by the protocol in [8].
For the same case, in our protocol each station remains awake for 6, 140 slots
compared to 10, 000 slots in [8]. In most real-life situations the number of packets
n is usually much larger than the number of stations and we expect that our
protocol is more suitable for such situations.

258 Amitava Datta and Albert Y. Zomaya

Tt
Ta
Tt
Ta
Tt

Tt

Tt

Tt

Tt

Tt

Ta

Ta

Ta

Ta

Ta

Ta

p =

n =
100 1,000

1,000 10,000 100,000 10,000 100,000 1,000,000

k=2

k=4

k=8

k=16

[13]

our

[13]

our

[13]

our

[13]

our

140
25,002
1,000

12,608

250,002
10,000

102,608

3,502

3,608

45,002
180

350,002
1,400

351,008

2,500,002
10,000

1,251,008

1,754

140

1,257

12,504
1,000

5,757

125,004
10,000

50,757

22,504

180

68,532

175,004
1,400

113,532

1,250,004

10,000

563,532

1,001

140
7,147

1,000

71,432

10,000
11,258

180

19,253

87,508
1,400

41,753

625,008

10,000

266,753

1,001

140

7,147

1,000

71,432

10,000

5,641

210

31,266

1,000

312,516

10,000

176 716 6,116

142 682 6,082

622

149

2,872

689

25,372

6,089

773

200

1,898

740

13,148

6,140

261,008

1,076 1,616 7,016

592 1,132 6,532

374 914 6,314

6,606

313

17,856

853

130,356

6,253

Fig. 1. A comparison between our protocol and that by Nakano et al. [8]. Tt and Ta

respectively denote the number of slots for completion and the maximum number of
slots each station needs to be awake.

References

1. N. Abramson, “Multiple access in wireless digital networks”, Proc. IEEE, Vol. 82,
pp. 1360-1370, 1994.

2. D. Bertzekas and R. Gallager, Data Networks, 2nd Edition, Prentice Hall, 1992.
3. N. Bambos and J. M. Rulnick, “Mobile power management for wireless communi-

cation networks”, Wireless Networks, Vol. 3, pp. 3-14, 1997.
4. M. Fine and F. A. Tobagi, “Demand assignment multiple access schemes in broad-

cast bus local area networks”, IEEE Trans. Computers, Vol. 33, pp. 1130-1159,
1984.

5. M. Gerla and T. C. Tsai, “Multicaster, mobile, multimedia radio network”, Wire-
less Networks, Vol. 1, pp. 255-265, 1995.

6. K. Nakano and S. Olariu, “Randomized initialization protocols for radio networks”,
IEEE Trans. Parallel and Distributed Systems, Vol. 11, pp. 749-759, 2000.

7. K. Nakano, S. Olariu and J. L. Schwing, “Broadcast-efficient protocols for mobile
radio networks”, IEEE Trans. Parallel and Distributed Systems, Vol. 10, pp. 1276-
1289, 1999.

8. K. Nakano, S. Olariu and A. Y. Zomaya, “Energy-efficient permutation routing in
radio networks”, IEEE Trans. Parallel and Distributed Systems, vol. 12, No. 6, pp.
544-557, 2001.

9. S. Singh and C. S. Raghavendra, “PAMAS – Power aware multi-access protocol
with signalling for ad-hoc networks”, ACM Computer Comm. Review, Vol. 28, pp.
5-26, 1998.

10. K. Sivalingam, M. B. Srivastava and P. Agarwal, “Low power link and access pro-
tocols for wireless multimedia networks”, Proc. IEEE Vehicular Technology Con-
ference (VTC ’97), 1997.

Simple Mutual Exclusion Algorithms
Based on Bounded Tickets

on the Asynchronous Shared Memory Model

Masataka Takamura and Yoshihide Igarashi

Department of Computer Science, Gunma University, Kiryu, Japan 376-8515
{takamura,igarashi}@comp.cs.gunma-u.ac.jp

Abstract. We propose two simple algorithms based on bounded tick-
ets for the mutual exclusion problem. These are modifications of the
Bakery algorithm. An unattractive property of the Bakery algorithm is
that the shared memory size is unbounded. The first algorithm based on
bounded tickets uses one extra process that does not correspond to any
user. It is lockout-free and mutual exclusion on the asynchronous single-
writer/multi-reader shared memory model. We then modify it to reduce
the shared memory size with the cost of another extra process. The max-
imum waiting time using each of them is bounded by (n− 1)c + O(nl),
where n is the number of users, l is an upper bound on the time between
two successive atomic steps, and c is an upper bound on the time that
any user spends using the resource. The shared memory size needed by
the first algorithm and the second algorithm are (n+1)(1+�log(2n+1)�)
bits and n(2 + �log n�) + 2 bits, respectively.

1 Introduction

Mutual exclusion is a problem of managing access to a single indivisible re-
source that can only support one user at a time. An early algorithm for the
mutual exclusion problem proposed by Dijkstra [8] guarantees mutual exclu-
sion, but it does not guarantee lockout-freedom. Subsequent algorithms are
improvements on Dijkstra’s algorithm by guaranteeing fairness to the differ-
ent users [2,11,12,14,15,16,18,19] and by weakening the type of shared memory
[4,5,6,7,10,14,15,16].

The Bakery algorithm for the mutual exclusion problem is due to Lamport
[14]. It works in a way like a queue of customers in a bakery, where customers
draw tickets. It only uses single-writer/multi-reader shared variables, and satis-
fies the first-in first-served property. These are attractive features. An unattrac-
tive property of the Bakery algorithm is that it uses unbounded size shared
variables. The problem of bounding the size of shared variables is important and
has been much studied [1,2,9,13,20]. One of the solutions to this problem is an
algorithm using a general technique, bounded time-stamping [9]. The algorithms
given in [1,13] are also solutions to this problem. The shared memory size of the
bounded Bakery algorithm given in [1] is O(n2), where n is the number of the

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 259–268, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

260 Masataka Takamura and Yoshihide Igarashi

users in the system. The algorithm given in [13] uses single-writer shared mem-
ory of size O(n log n) bits together with a multi-writer shared variable although
any concurrency does not occur concerning the multi-writer shared variable.

In this paper we also propose simple algorithms based on bounded tickets for
the mutual exclusion problem on the asynchronous single-writer/multi-reader
shared memory model. Initially we modify the Bakery algorithm so that it re-
quires only bounded size single-writer/multi-reader shared variables. This pro-
visional version guarantees mutual exclusion under the condition that there is
always a user trying to use the resource. In order to remove this condition we use
an extra process in our first algorithm called n-bmexcl1. The algorithm using the
extra process guarantees lockout-freedom and mutual exclusion. The existence
of an extra process may be unattractive feature, but the shared memory size
for our algorithm is smaller than that of the algorithm given in [1]. We modify
our algorithm to make a further reduction of the shared memory size with the
penalty of the number of extra processes. For each of the algorithms proposed in
this paper, the time from when a particular user tries to use the resource until it
is actually granted to use the resource is bounded by (n−1)c+O(nl), where n is
the number of the users, l is an upper bound on the time between two successive
atomic steps, and c is an upper bound on the time that any user is granted to use
the resource. The waiting time for obtaining the grant to use the resource by the
algorithms given in [1,13] is also (c−1)c+O(nl). The waiting time by the original
Bakery algorithm is bounded by (n− 1)c+O(n2l) [17]. The shared memory size
needed by our first algorithm and second algorithm are (n+1)(1+�log(2n+1)�)
bits and n(2 + �log n�) + 2 bits, respectively. The algorithms proposed in this
paper is an improvement of the size of shared variables on the original Bakery
algorithm and the algorithm given in [1].

2 Preliminaries

The computation model used here is the asynchronous single-writer/multi-reader
shared memory model. It is a collection of processes and shared variables. The
mutual exclusion problem is to devise a protocol of how to allocate a single
indivisible and nonsharable resource among n users U1, . . . , Un. Interactions be-
tween a process and its corresponding user are by input actions from the user
to the process and by output actions from the process to the user. Each process
is considered to be a state machine with signals entering and leaving the pro-
cess, representing its input and output actions. All communication among the
processes is via the shared memory. Such a state machine is called an I/O au-
tomaton [17]. We assume that the order of actions by processes can be serialized
so that the serialization is consistent with the behavior of the whole system.

A user with access to the resource is modeled as being in the critical region.
When a user is not involved in the resource, it is said to be in the remainder
region. In order to gain admittance to the critical region, a process executes a
trying protocol. The duration from the start of executing the trying protocol
to the entrance of the critical region is called the trying region. After the end

Simple Mutual Exclusion Algorithms 261

of the use of the resource by a user, the corresponding process executes an exit
protocol. The duration of executing the exit protocol is called the exit region.
These procedures can be repeated in cyclic order, from the remainder region to
the trying region, to the critical region, to the exit region, and then back again
to the remainder region.

We assume that the n processes are numbered 1, . . . , n. Each process i cor-
responds to user Ui (1 ≤ i ≤ n). An extra process is introduced in our first
algorithm named n-bmexcl1, and two extra processes are introduced in our sec-
ond algorithm named n-bmexcl2. The extra process used in n-bmexcl1, does not
correspond to any user, but each extra process used in n-bmexcl2 corresponds
to a user. For n-bmexcl1 the inputs to process i from user Ui are tryi, which
means a request by user Ui for access to the resource, and exiti, which means
an announcement of the end of the use of the resource by Ui. For n-bmexcl1
the outputs from process i to user Ui are criti, which means the grant of the
resource to Ui, and remi, which tells Ui that it can continue with the rest of its
work. For users Un−1 and Un of n-bmexcl2, input and output correspondence
between these users and processes are modified. A system solving the mutual
exclusion problem should satisfy the following conditions.

(1) There is no reachable system state in which more than one user is in the
critical region.

(2) If at least one user is in the trying region and no user is in the critical region,
then at some later point some user enters the critical region.

(3) If a user is in the exit region, then at some later point the user enters the
remainder region.

(4) If all users always return the resource, then any user wishing to enter the
critical region eventually does so.

Conditions (1), (2), (3) and (4) above are called mutual exclusion, progress for
the trying region, progress for the exit region, and lockout-freedom, respectively.

The following procedure n-Bakery is the Bakery algorithm quoted from
[3,17], (a, b) < (a′, b′) at line 07 means that a < a′, or a = a′ and b < b′.
The entry section of the Bakery algorithm begins with a part called the doorway
(from line 02 to line 04) where processes in the trying region obtain their tick-
ets. Then processes with their tickets proceed to execute the major part of the
algorithm. If process i completes executing the doorway before process j begins
the doorway, process i enters the critical region before process j does so. Hence,
the Bakery algorithm satisfies the first-in first-served property.

procedure n-Bakery
shared variables

for every i ∈ {1, . . . , n}:
choosing(i) ∈ {0, 1}, initially 0, writable by i and readable by all
j �= i;

ticket(i) ∈ N , initially 0, writable by i and readable by all j �= i;

process i
input actions {inputs to process i from user Ui}: tryi, exiti;

262 Masataka Takamura and Yoshihide Igarashi

output actions {outputs from process i to user Ui}: criti, remi;
** Remainder region **

01: tryi:
02: choosing(i) := 1;
03: ticket(i) := 1 +maxj �=iticket(j);
04: choosing(i) := 0;
05: for each j �= i do begin
06: waitfor choosing(j) = 0;
07: waitfor ticket(j) = 0 or (ticket(i), i) < (ticket(j), j) end;
08: criti;

** Critical region **
09: exiti:
10: ticket(i) := 0;
11: remi;

The Bakery algorithm uses only single-writer/multi-reader shared variables,
but for each i (1 ≤ i ≤ n), the size of ticket(i) is unbounded. The running
time for the trying region by n-Bakery is bounded by (n − 1)c + O(n2l). The
computation of the for statement at line 05 takes O(n2l) time. The running time
of this part can also be reduced to O(nl) time by replacing the statements from
line 05 to line 07 in n-Bakery with the statements from line 05 to line 10 in
procedure n-provision in Section 3.

3 A Provisional Algorithm

The algorithm given in this section is a provisional one. It is a simple modi-
fication of the Bakery algorithm. For a technical reason, the domain of ticket
numbers used by the algorithm is {−1, 0, . . . , 2n− 2}. A ticket with any number
of {0, . . . , 2n − 2} is called a regular ticket and the ticket with −1 is called the
invalid ticket. The algorithm works correctly as a lockout-free mutual exclusion
protocol under the condition that there always exists a process with a regular
ticket after a process first gets a regular ticket. The order of the regular tick-
ets is cyclic in modulo 2n − 1. It is not necessarily that regular ticket numbers
appearing in the trying region at a time point in an execution are cyclically
consecutive. We will show such a scenario in Example 1. Here a gap means a
cyclically non-consecutive part in the set of regular tickets. For example, if n = 5
and the set of regular tickets appearing at a time point is {8, 0, 1, 4}, then from
2 to 3 and from 5 to 7 are gaps. Furthermore, there may be some processes with
the same ticket number in the trying region. We define the order among the
tickets in the trying region as follows: The first number just after the end of the
largest gap is the smallest one. Starting from this number, the order is decided
cyclically in modulo 2n− 1. For the set of regular tickets, {8, 0, 1, 4}, ticket 8 is
the smallest one, and the order of these tickets are 8,0,1,4, since gap from 5 to
7 is larger than gap from 2 to 3. If two or more processes have the same ticket
number, the order of these processes is the order of process identifiers.

We first define our terminology. Function scanticket() scans all shared vari-
ables ticket(j) (1 ≤ j ≤ n) and returns the set of pairs of regular tickets and

Simple Mutual Exclusion Algorithms 263

process identifiers holding the regular tickets. Function rmax(S) returns the
largest ticket number in set S, if S is not the empty set, and returns −1 oth-
erwise. Function previ(S) returns the identifier of the largest process that is
smaller than process i in the order of pairs of ticket numbers and process identi-
fiers if process i is not the smallest one in S, and otherwise it returns an arbitrary
process identifier except i itself.

procedure n-provision
shared variables

for every i ∈ {1, . . . , n}:
choosing(i) ∈ {0, 1}, initially 0, writable by i and readable by all
j �= i;

ticket(i) ∈ {−1, 0, . . . , 2n− 2}, initially −1, writable by i and
readable by all j �= i;

process i
input/output actions: the same as in n-Bakery
** Remainder region **

01: tryi:
02: choosing(i) := 1;
03: ticket(i) := (1 + rmax(scanticket())) modulo 2n− 1;
04: choosing(i) := 0;
05: index := {1, 2, . . . , n};
06: while index �= ∅ do
07: for each j ∈ index do
08: if choosing(j) = 0 then index := index− {j};
09: j := previ(scanticket());
10: waitfor ticket(j) = −1 or (ticket(i), i) < (ticket(j), j);
11: criti;

** Critical region **
12: exiti:
13: ticket(i) := −1;
14: remi;

Example 1. Let n = 5. The following scenario is possible in a fair execution of n-
provision. Assume ticket(1) = 0, ticket(2) = 1, ticket(3) = 2, ticket(4) = 3, and
ticket(5) = −1 at a time point. Then process 5 enters the trying region. During
the execution of scanticket() by process 5, it observes ticket(1) = 0 but before
observing ticket(2) and ticket(3), process 2 and process 3 quickly move to the
critical region and exit the critical region in this order. Then process 5 observes
ticket(2) = −1, ticket(3) = −1 and ticket(4) = 3, and obtains ticket(5) = 4
since the gaps observed by process 5 are from 1 to 2 and from 4 to 8 (in this case
the largest gap is observed to be from 4 to 8). This example shows that process
may observe more than one gap in a certain situation.

Observation 1. If after a process first gets a regular ticket, scanticket() never
becomes empty at any time when it is called by any process, then the latest ticket
number in the trying region is the first number of the largest gap in the set

264 Masataka Takamura and Yoshihide Igarashi

scanticket() called by the latest process. Note that this observation is not always
correct if the size of the domain of regular tickets is less than 2n− 1. This is the
reason why we take {−1, 0, . . . , 2n− 2} as the domain of regular tickets.

Theorem 1. For an execution by procedure n-provision, if scanticket() never
becomes empty after a process first gets a regular ticket then both mutual exclu-
sion and lockout-freedom are satisfied in the execution.

Proof Sketch. Assume that after a process first gets a regular ticket, scanticket()
is always a non-empty set. From Observation 1, a new ticket number added at
line 03 is cyclically larger by one than the largest ticket number among the ticket
numbers in scanticket(). Hence, regular ticket numbers held by processes in the
trying region are well ordered. Thus the order of ticket numbers in scanticket()
can be correctly decided. Then the process, say process i, with the smallest ticket
can send output signal criti at line 11 to tell the corresponding user that the
resource is now available. The smallest ticket is reset after the end of use of the
resource at line 13 in the exit region. Therefore, mutual exclusion is satisfied
in any fair execution by n-provision under the condition given in the theorem.
Every step in any fair execution by n-provision is progressive if the condition
given in the theorem is satisfied. Hence, the theorem holds. ��
Theorem 2. For any execution by n-provision such that scanticket() never
becomes empty after a process first gets a regular ticket, the time from when
a particular process enters its trying region until the process enters its critical
region is bounded by (n − 1)c + O(nl). The total size of shared memory for n-
provision is n(2 + �log n�) bits.

Proof. The part from line 02 to line 04 of the program is called the doorway. The
running time of the doorway is O(nl) since each statement at lines 01, 02 and
04 can be executed in O(l) time and the statement at line 03 can be executed
in O(nl) time. The while statement at lines 06 to 08 can be executed in O(nl)
time, since for any j such that choosing(j) = 1 in the doorway, choosing(j) is
set to 0 in O(nl) time. The statement at line 09 can be executed in O(nl) time.
The statement at line 10 is completed in (n− 1)c+O(l) time, since the number
of processes with smaller tickets at the beginning of executing the waitfor state-
ment is at most n− 1. The statement at line 11 is executed in O(l) time. Hence,
the running time in the trying region is (n− 1)c+O(nl). The algorithm needs n
1-bit shared variables, choosing(i), 1 ≤ i ≤ n, and n shared variables, ticket(i)
(1 ≤ i ≤ n), each of which stores one of 2n distinct values, −1, 0, 1, . . . , 2n − 2.
Hence, the total size of the shared memory is n(2 + �log n�) bits. ��

In the case where scanticket() becomes empty at a time point during an
execution of n-provision, it may not run properly as suggested in the next
example.

Example 2. Let n = 5. The following scenario is possible in a fair execution of
n-provision. Assume that ticket(1) = 4 and all other tickets are invalid at a time

Simple Mutual Exclusion Algorithms 265

point. Then process 2 enters the trying region and observes scanticket() = {4}.
Just after that observation by process 2, process 1 enters the critical region and
quickly exits the critical region. Before process 2 sets ticket(2) = 5, process
3 enters the trying region and observes scanticket() = ∅. Then process 3 sets
ticket(3) = 0. Immediately after that, process 4 enters the trying region and
observes the two gaps, and then it sets its ticket to be 1. Consequently two gaps,
{2, 3, 4}, {6, 7, 8} are created. In this situation, a new comer to the trying region
cannot decide which is the largest gap. That is, the new comer cannot decide
which is the largest ticket, 0 or 5.

4 Mutual Exclusion Algorithms

We give two mutual exclusion algorithms that are modifications of n-provision.
The first algorithm, called n-bmexcl1, uses an extra process that does not cor-
respond to any user. It is first-in first-served as the Bakery algorithm. The extra
process prevents the set of regular tickets from being empty. The order of tickets
is defined as the order used in n-provision, but we take modulo 2n instead of
modulo 2n−1. The second algorithm, n-bmexcl2, is a marginal improvement on
the first algorithm in the shared memory size.

procedure n-bmexcl1
shared variables

for every i ∈ {1, 2, . . . , n+ 1}:
choosing(i) ∈ {0, 1}, initially 0, writable by i and readable by all
j �= i;

ticket(i) ∈ {−1, 0, . . . , 2n− 1}, initially −1 for 1 ≤ i ≤ n and
0 for i = n+ 1, writable by i and readable by all j �= i;

process i for 1 ≤ i ≤ n
input/output actions: the same as in n-Bakery;
** Remainder region **

01: tryi:
02: choosing(i) := 1;
03: ticket(i) := (1 + rmax(scanticket())) modulo 2n;
04: choosing(i) := 0;
05: index := {1, 2, . . . , n+ 1};
06: while index �= ∅ do
07: for each j ∈ index do
08: if choosing(j) = 0 then index := index− {j};
09: j := previ(scanticket());
10: waitfor ticket(j) = −1 or (ticket(i), i) < (ticket(j), j);
11: criti;

** Critical region **
12: exiti:
13: ticket(i) := −1;
14: remi;

process n+ 1
input/output actions: none

266 Masataka Takamura and Yoshihide Igarashi

01: repeat
02: choosing(n+ 1) := 1;
03: ticket(n+ 1) := (1 + rmax(scanticket()− {ticket(n+ 1)}))

modulo 2n;
04: choosing(n+ 1) := 0;
05: index := {1, 2, . . . , n, n+ 1};
06: while index �= ∅ do
07: for each j ∈ index do
08: if choosing(j) = 0 then index := index− {j};
09: j := prevn+1(scanticket());
10: waitfor ticket(j) = −1 or (ticket(n+ 1), n+ 1) < (ticket(j), j);
11: waitfor |scanticket()| ≥ 2;
12: forever;

A ticket controlled by process n+1 always exists in the trying region. Hence,
for scanticket() called by any process at any time point in a fair execution by
n-bmexcl1, there is a unique largest gap in scanticket(). Any behavior of this
extra process does not cause any harm. The mechanism of granting a process
to enter the critical region in an execution by n-bmexcl1 is the same as in an
execution by n-provision. The existence of the extra process affects the running
time in the trying region of any other process by O(nl) time. The next theorem
is straightforward.

Theorem 3. For any execution by n-bmexcl1, it satisfies lockout-freedom and
mutual exclusion, and the time from when any user requests to use the resource
until it is allowed to use the resource is bounded by (n− 1)c+ O(nl). The total
size of shared memory needed by n-bmexcl1 is (n+ 1)(1 + �log(2n+ 1)�) bits.

The next algorithm, n-bmexcl2, is a variation of n-bmexcl1. For n−1 ≤ i ≤ n,
the i-th user corresponds to process i and process i + 2 in the next procedure,
where inputs tryi and exiti are sent to process i + 2, output criti is sent from
process i, and output remi is sent from process i+ 2.

procedure n-bmexcl2
shared variables
flag(n− 1) ∈ {0, 1}, initially 0, writable by n+ 1 and readable by
n− 1;

flag(n) ∈ {0, 1}, initially 0, writable by n+ 2 and readable by n;
for every i ∈ {1, 2, . . . , n}:
choosing(i) ∈ {0, 1}, initially 0, writable by i and readable by all
j �= i;

ticket(i) ∈ {−1, 0, 1, . . . , 2n− 2}, initially −1 for 1 ≤ i ≤ n− 2 and
0 for n− 1 ≤ i ≤ n, writable by i and readable by all j �= i;

process i for 1 ≤ i ≤ n− 2
input/output actions: the same as in n-Bakery;
** Remainder region **

01: tryi:
02: choosing(i) := 1;
03: ticket(i) := (1 + rmax(scanticket())) modulo 2n− 1;

Simple Mutual Exclusion Algorithms 267

04: choosing(i) := 0;
05: index := {1, 2, . . . , n};
06 to 11: the same as lines 06 to 11 in n-bmexcl1;

** Critical region **
12 to 14: the same as lines 12 to 14 in n-bmexcl1;

process i for n− 1 ≤ i ≤ n
input actions: none;
output action: criti;

01: repeat
02: choosing(i) := 1;
03: ticket(i) := (1+rmax(scanticket()−{ticket(i)})) modulo 2n−1;
04: choosing(i) := 0;
05 to 10: the same as lines 05 to 10 for process i (1 ≤ i ≤ n− 2);
11: flagi := flag(i);
12: if flagi = 1 then criti;
13: waitfor |scanticket()| ≥ 2;
14: forever;

process i for n+ 1 ≤ i ≤ n+ 2
input actions: tryi−2, exiti−2;
output action: remi−2;
** Remainder region **

01: tryi−2:
02: flag(i− 2) := 1;

** Critical region **
03: exiti−2:
04: flag(i− 2) := 0;
05: remi−2;

The running time for the trying region of n-bmexcl2 is the same as the
running time for the trying region of n-bmexcl1 within a constant factor. In n-
bmexcl2, there are n one-bit shared variables, choosing(i), 1 ≤ i ≤ n, n shared
variables ticket(i), 1 ≤ i ≤ n of �log 2n� bits, and two one-bit shared variables,
flag(n− 1) and flag(n). We, therefore, have the next theorem.

Theorem 4. For any execution by n-bmexcl2, it satisfies lockout-freedom and
mutual exclusion, and the time from when any user requests to use the resource
until it is allowed to use the resource is bounded by (n− 1)c+ O(nl). The total
size of shared memory for n-bmexcl2 is n(2 + �log n�) + 2 bits.

5 Concluding Remarks

The algorithms proposed in this paper are improvements on the Bakery algo-
rithm, but we use an extra process in n-bmexcl1 and two extra processes in
n-bmexcl2. The shared memory size of each of our algorithms is smaller than
the shared memory size of the algorithm given in [1], the latter does not use
any extra process. We are interested in a problem whether further modifications
are possible to remove the extra process(es) either in n-bmexcl1 or in n-bmexcl2
without any penalty.

268 Masataka Takamura and Yoshihide Igarashi

References

1. U.Abraham, “Bakery Algorithms”, Technical Report, Dept. of Mathematics, Ben
Gurion University, Beer-Sheva, Israel, May 2001.

2. J.H.Anderson, “Lamport on mutual exclusion: 27 years of planting seeds”, Proceed-
ings of the 27th Annual ACM Symposium on Principles of Distributed Computing,
Newport, Rhode Island, pp.3–12, 2001.

3. H.Attiya and J.Welch, “Distributed Computing: Fundamentals, Simulations and
Advanced Topics”, McGraw-Hill, New York, 1998.

4. J.E.Burns, “Mutual exclusion with linear waiting using binary shared variables”,
ACM SIGACT News, vol.10, pp.42–47, 1978.

5. J.E.Burns, P.Jackson, N.A.Lynch, M.J.Fischer, and G.L.Peterson, “Data require-
ments for implementation of N-process mutual exclusion using a single shared
variable”, J. of the ACM, vol.29, pp.183–205, 1982.

6. J.E.Burns, and N.A.Lynch, “Bounds on shared memory for mutual exclusion”,
Information and Computation, vol.107, pp.171-184, 1993.

7. A.B.Cremers and T.N.Hibbard, “Mutual exclusion of N processors using an
O(N)-valued message variable”, 5th International Colloquium on Automata, Lan-
guages and Programming, Udine, Italy, Lecture Notes in Computer Science, vol.62,
pp.165–176, 1978.

8. E.W.Dijkstra, “Solution of a problem in concurrent programming control”, Com-
munications of the ACM, vol.8, p.569, 1965.

9. D.Dolev and N.Shavit, “Bounded concurrent time-stamping”, SIAM J. on Com-
puting, vol.26, pp.418–455, 1997.

10. M.J.Fischer, N.A.Lynch, J.E.Burns, and A.Borodin, “Distributed FIFO allocation
of identical resources using small shared space”, ACM Transactions on Program-
ming Languages and Systems, vol.11, pp.90–114, 1989.

11. Y.Igarashi, H.Kurumazaki, and Y.Nishitani, “Some modifications of the tourna-
ment algorithm for the mutual exclusion problem”, IEICE Transactions on Infor-
mation and Systems, vol.E.82-D, pp.368–375, 1999.

12. Y.Igarashi and Y.Nishitani, “Speedup of the n-process mutual exclusion algo-
rithm”, Parallel Processing Letters, vol.9, pp.475–485, 1999.

13. P.Jayanti, K.Tan, G.Friedland, and A.Katz, “Bounded Lamport’s bakery algo-
rithm”, Proceedings of SOFTSEM’2001, Lecture Notes in Computer Science,
vol.2234, Springer-Verlag, Berlin, pp.261–270, November 2001.

14. L.Lamport, “A new solution of Dijkstra’s concurrent programming problem”, Com-
munications of ACM, vol.17, pp.453–455, 1974.

15. L.Lamport, “The mutual exclusion problem. Part II : Statement and solutions”,
J. of the ACM, vol.33, pp.327–348, 1986.

16. L.Lamport, “A fast mutual exclusion algorithm”, ACM Transactions on Computer
Systems, vol.5, pp.1-11, 1987.

17. N.A.Lynch, “Distributed Algorithms”, Morgan Kaufmann, San Francisco, Califor-
nia, 1996.

18. G.L.Peterson, “Myths about the mutual exclusion problem”, Information Process-
ing Letters, vol.12, pp.115–116, 1981.

19. G.L.Peterson and M.J.Fischer, “Economical solutions for the critical section prob-
lem in a distributed system”, Proceedings of the 9th Annual ACM Symposium on
Theory of Computing, Boulder, Colorado, pp.91–97, 1977.

20. M.Takamura and Y.Igarashi, “A simplification of the Bakery algorithm based on
bounded tickets for the mutual exclusion problem”, Technical Report of IEICE,
vol.101, no.376, COMP2001-45, pp.61–68, October 2001.

Time and Energy Optimal List Ranking
Algorithms on the k-Channel Broadcast

Communication Model

Koji Nakano

School of Information Science
Japan Advanced Insitute of Science and Technology

Tatsunokuchi, Ishikawa 923-1292, Japan
knakano@jaist.ac.jp

Abstract. A Broadcast Communication Model (BCM, for short) is a
distributed system with no central arbiter populated by n processing
units referred to as stations. The stations can communicate by broad-
casting/receiving a data packet to one of k distinct communication chan-
nels. The main contribution of this paper is to present time and energy
optimal list ranking algorithms on the BCM. We first show that the rank
of every node in an n-node linked list can be determined in O(n) time
slots with no station being awake for more than O(1) time slots on the
single-channel n-station BCM. We then extend this algorithm to run on
the k-channel BCM. For any small fixed ε > 0, our list ranking algorithm
runs in O(n

k
) time slots with no station being awake for more than O(1)

time slots, provided that k ≤ n1−ε. Clearly, Ω(n
k

) time is necessary to
solve the list ranking problem for an n-node linked list on the k-channel
BCM. Therefore, our list ranking algorithm on the k-channel BCM is
time and energy optimal.

1 Introduction

A Broadcast Communication Model (BCM, for short) is a distributed system
with no central arbiter populated by n processing units referred to as stations
S(1), S(2), . . . , S(n). The fundamental characteristic of the model is the broad-
cast nature of communications. A data packet broadcast on a channel can be
received by every station that have tuned to the channel. The nature of end
units is immaterial: they can be processors in a parallel computing environment
or radio transceivers in a wireless network. Likewise, the nature of the transmis-
sion channel is immaterial: it could be a global bus in a multiprocessor system
or a radio frequency channel in a radio network. It is important to note that the
BCM model provides a common generalization of bus-based parallel architec-
tures, cluster computing environment, local area networks, and single-hop radio
networks. Although the BCM is assumed to be operate in synchronous mode,
we do not prescribe a particular synchronization mechanism. We feel that this
is best left to the particular application. For example, in radio networks, syn-
chronization may be provided by an interface to a commercially-available Global
Positioning System [9].

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 269–278, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

270 Koji Nakano

For simplicity, we assume that the BCM has the following collision detection
capability [11]: In the BCM, the status of a channel is: NULL: if no station
broadcasts on the channel in the current time slot; SINGLE: if exactly one
station broadcasts on the channel in the current time slot; and COLLISION:
if two or more stations broadcast on the channel in the current time slot. The
status of a channel can be detected by stations that tune to it. Although our
algorithms presented in this paper use the collision detection capability, it is not
difficult to modify them such that they do not use this capability.

We assume that broadcasting/receiving data packets in the BCM is very
costly. If the stations run on batteries and, therefore, saving battery power is
exceedingly important, as recharging batteries may not be possible while on mis-
sion. It is well known that a station in the radio network expends power while
its transceiver is active that is, while transmitting or receiving a packet [5,12].
Consequently, we are interested in developing algorithms that allow stations to
power their transceiver off (i.e. go to sleep) to the largest extent possible. Ac-
cordingly, we judge the goodness of a algorithm by the following two yardsticks:
running time slots: the overall number of time slots required by the algorithm to
terminate awake time slots: for each individual station the total number of time
slots when it has to be awake in order to broadcast/receive a data packet. As we
are going to show later, the goals of optimizing these parameters are, of course,
conflicting. It is relatively straightforward to minimize overall completion time
at the expense of energy consumption.

A linked list is a basic data structure frequently used in many processing
tasks. A linked list L of n nodes is specified by an array p such that p(i) contains
a pointer to the node following node i in the list of L. Figure 1 illustrates an
example of a linked list. A node i is the end of the list if p(i) = i. Further, if
there exists no node j such that p(i) = j, then node i is the top of the list. The
list ranking problem asks to determine the rank of every node i (1 ≤ i ≤ n),
which is the distance to the end of the list. Nodes 2 and 8 in Figure 1 are the
top and the end nodes of the list, respectively.

1

2

3

4

5

6

7

8

9

Fig. 1. An example of a linked list

The list ranking problem has been solved in several contexts [4,7,13]. It is
well known that the list ranking problem can be solved in O(log n) time using
n processors on the (EREW) PRAM [6,8]. This parallel list ranking algorithm
uses the pointer jumping technique [1,8], which repeats changing each pointer
such that a new pointer is the successor of the successor. The pointer jumping
is repeated until all pointer points at the end of nodes. Further, it is known that
the number of processors can be reduced to n

log n [4,8].

Time and Energy Optimal List Ranking Algorithms 271

One of the straightforward strategies to design an energy-efficient algorithm
on the BCM is to simulate a known PRAM algorithm. We are going to show
that an energy-efficient list raking algorithm on the BCM can be obtained by
simulating a known PRAM list ranking algorithm. First, it should be clear that
any single step communication performed on the n-processor O(n)-memory-cell
PRAM can be simulated by the n-station n-channel BCM inO(1) time slots. This
can be done by assigning O(1) memory cells to each station. Then, read/write
operations on the PRAM can be simulated using communication channels on
the BCM in obvious way. Hence, any algorithm running in O(log n) time using
n processors and O(n) memory cells on the PRAM can be simulated by the
n-station n-channel BCM in O(log n) time. Further, communication using n
channels can be simulated on the k-channel BCM (k ≤ n) in O(n

k) time slots.
It is known that the list ranking problem can be solved in O(log n) time using
n processors on the PRAM [6,8]. Thus, the list ranking problem can be solved
in O(n log n

k) time slots with each station being awake for at most O(log n) time
slots. However this algorithm is not time and energy optimal.

The main contribution of this paper is to present time and energy optimal
ranking algorithms on the BCM. Surprisingly, stations are awake for only O(1)
time slots in our list ranking algorithms. We first show that the rank of every
node in an n-node linked list can be done in O(n) time slots with no station
being awake for more than O(1) time slots on the single-channel n-station BCM.
We then extend this algorithm to run on the k-channel BCM. For every small
fixed ε > 0, our algorithm runs in O(n

k) time slots with no station being awake
for more than O(1) time slots, provided that k ≤ n1−ε. Clearly, every p(i)
must be broadcast at least once. Hence, Ω(n

k) time is necessary to solve the list
ranking problem for an n-node linked list on the k-channel BCM. Therefore, our
algorithm is time and energy optimal.

2 List Ranking Using List Shrink

The main purpose of this section is to show fundamental techniques used in our
time and energy-optimal list ranking algorithm.

We use a fundamental technique for solving the list ranking problem as
follows: This technique uses two arrays of variables q[i] and r[i] for every i
(1 ≤ i ≤ n). Initially, q[i] is storing pointer p(i) for every i, and r[i] = 0 if
node i is the end of the list, and r[i] = 1 otherwise. During the execution of
list ranking algorithms, r[i] is always storing the distance from node i to q[i].
When the list ranking algorithm terminates, q[i] is storing the pointer to the end
of the list for every i. Thus, each r[i] is storing the rank of node i. This tech-
nique used in the pointer jumping [8], which repeats operations q[i] ← q[q[i]]
and r[i]← r[i] + r[q[i]] for every i (1 ≤ i ≤ n) in parallel. After log n iterations,
every q[i] is storing the pointer to the end of the list, thus, r[i] is storing the
rank of node i. The reader should have no difficulty to confirm the correctness
of the pointer jumping.

272 Koji Nakano

Our list ranking algorithm also uses the two arrays q and r. For a current
linked list stored in array q, a left sublist is a sequence 〈i1, i2, . . . , im〉 of nodes
such that i1 > i2 > · · · > im and ij+1 = q[ij] for every j (1 ≤ j ≤ m − 1).
A left sublist is a maximal left sublist if no other left sublist contains it. We
say that nodes i1 and im are the head and the tail of the maximal left sublist
〈i1, i2, . . . , im〉. Similarly, we can define a right sublist, a maximal right sublist,
and their head and tail nodes. In Figure 1, 〈9, 7, 3, 1〉 is a maximal left sublist,
and both 〈1, 4, 6, 8〉 and 〈2, 5, 9〉 are maximal right sublists. Further, node 1 is
the tail node of 〈9, 7, 3, 1〉 as well as the head of 〈1, 4, 6, 8〉.

Our list ranking algorithm repeats shrinking maximal left and right sublists.
Further, every leaf node that has no predecessor is eliminated. More precisely,
our algorithm repeats list-shrink described as follows:

list-shrink
Step 1: shrink left sublists by procedure left-shrink.
Step 2: eliminate leaf nodes by procedure leaf-elimination.
Step 3: shrink right sublists by procedure right-shrink.
Step 4: eliminate leaf nodes by procedure leaf-elimination.

Figure 2 illustrates each step of list-shrink executed for the linked list in
Figure 1. Somewhat surprisingly, list-shrink can be done in O(n) time slots
with no station being awake for more thanO(1) time slots. Further, list-shrink
eliminates at least half of the nodes.

1

2

3

4

5

6

7

8

9

4

5

6 8

9

left-shrink leaf-elimination

4

5

6 8

9

4 8

leaf-eliminationright-shrink

Fig. 2. Each step of list-shrink

We will show the details of each step of list-shrink. Let q and r be arrays
storing pointers of a linked list and the distance as explained above. Procedure
left-shrink is described as follows.

left-shrink
for i← 1 to n do

S(i) broadcasts q[i] and r[i] on the channel.
S(j) satisfying q[j] = i < j receives them and

sets q[j]← q[i] and r[j]← r[j] + r[i].

Clearly, left-shrink takes n time slots. Further, each S(i) is awake at time
slots i and p[i] and is asleep for the other time slots. Suppose that left-shrink
is executed on the linked list in Figure 1. Note that r[8] = 0, and r[i] = 1 for all i

Time and Energy Optimal List Ranking Algorithms 273

Table 1. The values of local variables for the list in Figure 1

node 1 2 3 4 5 6 7 8 9
q r q r q r q r q r q r q r q r q r

initial input 4 1 5 1 1 1 6 1 9 1 8 1 3 1 8 0 7 1
left-shrink 4 1 5 1 4 2 6 1 9 1 8 1 4 3 8 0 4 4

leaf-elimination 4 1 5 1 4 2 6 1 9 1 8 1 4 3 8 0 4 4
right-shrink 8 2 4 5 8 1 8 0 4 4

leaf-elimination 8 2 4 5 8 1 8 0 4 4
left-shrink 8 2 8 0

leaf elimination 8 2 8 0
right-shrink 8 0

leaf-elimination 8 0
rewind (T = 4) 8 0
rewind (T = 3) 8 2 8 0
rewind (T = 2) 8 2 8 7 8 1 8 0 8 6
rewind (T = 1) 8 3 8 8 8 4 8 2 8 7 8 1 8 5 8 0 8 6

(i �= 8). It is easy to see that, after executing left-shrink, q[i1] = q[i2] = · · · =
q[im] holds for each left sublist 〈i1, i2, . . . , im〉, Table 1 illustrates for the values
of q and r after each step of list-shrink. In the figure, the values of q and r
are with underlines when the corresponding nodes are eliminated. Further, they
are blank if the corresponding station is asleep.

After left-shrink, the graph may have several leaves, which are nodes hav-
ing no predecessor. Clearly, we obtain a new shrunk list by removing the leaves.
The following procedure leaf-elimination finds all leaves.

leaf-elimination
for i← 1 to n do

S(j) broadcasts j if j = p[i].
S(i) monitors the channel.

If the status of the channel is NULL then node i is a leaf.

In leaf-elimination, station S(i) is awake at time slots i and p[i]. Hence,
no station is awake for more than two time slots.

Procedure right-shrink performs the same operation in the opposite order
as left-shrink. Since each step of list-shrink can be done in n time slots
with every station being awake for two time slots, we have,

Lemma 1. Procedure list-shrink takes 4n time slots with no station being
awake for more than 8 time slots.

We are going to prove that no more than half nodes are in the list af-
ter executing list-shrink. Suppose that a list has s maximal right sublists
L1, L2, . . . , Ls in this order. For example, in Figure 1, s = 2 and L1 = 〈1, 4, 6, 8〉
and L2 = 〈2, 5, 9〉. For simplicity, we assume that L1 and Ls contain the top and
the end nodes of the whole list, respectively. We can show the proof similarly
when this is not the case. From the definition, each maximal right sublist Li

274 Koji Nakano

has at least two nodes. Further, no node is contained in two or more maximal
right sublists. Hence, we have 2s ≤ n. After Step 2, every node that are not in
maximal right sublists are removed. For example, in Figure 2, nodes 3 and 7 are
removed. Further, the head node (nodes 1 and 2 in Figure 2) of each maximal
right sublist are removed. Clearly, the list obtained after Step 2 has at most s
maximal right sublists. Note that the lists may have less than s maximal right
sublists, because two adjacent sublists may be merged into one. Since every left
sublist has two nodes, every node is in one of the maximal right sublists. Let
L′

1, L
′
2, . . . , L

′
s′ (s′ ≤ s) denote the maximal sublists after Step 2. We can evalu-

ate the number of nodes in the list obtained after Step 4 as follows. The obtained
list contains at most two nodes in L′

s′ . The two nodes are the end of the whole
list and the head of L′

s′ . The list also contains the tail of each L′
i (2 ≤ i ≤ s′).

All nodes in L′
1 are eliminated in Step 4. Thus, the list thus obtained has at

most s′ (≤ s ≤ n
2) nodes. Therefore, we have the following lemma.

Lemma 2. After executing list-shrink on a list of n nodes, the resulting list
has no more than n

2 nodes.

Lemma 2 implies that all nodes but the end of the list are eliminated by
repeating list-shrink for logn times. After that, the rank of every node can
be computed by rewinding 2 logn iterations of leaf-elimination as follows.
For each node i but the end of the list, let t(i) denote an integer such that node
i has eliminated in t(i)-th (1 ≤ i ≤ 2 log n) leaf-elimination. For convenience,
let t(j) = 2 logn for the end node j of the whole list. Suppose that node q[i] is
the end of the list and r[i] is storing the rank of node i. Then, for every node j
satisfying q[j] = i, its rank is the sum of r[j] and r[i]. Using this fact, the rank
of node i is stored in r[i] by the following procedure.

rewind
for T ← 2 log n downto 1 do

for i← 1 to n do
if t(i) ≤ T then S(i) broadcasts q[i] and r[i]
every S(j) satisfying t(j) = T and q[j] = i receives q[i] and r[i] and

sets q[i]← q[j] and r[j]← r[j] + r[i].

Table 1 also shows the values of q and r during the execution of rewind. They
have underlines, when the corresponding station is awake and change its q and r.
Clearly, station i is awake for O(t(i)) time slots for list ranking. From Lemma 2,
the number of nodes i satisfying t(i) ≥ 2A is at most n

2A for every 1 ≤ A ≤ log n.
Therefore, we have,

Lemma 3. The list ranking problem can be solved in O(n log n) time slots with
at most n

2A (1 ≤ A ≤ log n) station being awake for O(A) time slots.

3 Time and Energy Optimal List Ranking

Recall that, in each list-shrink, at most half of the nodes remain in the list. By
renumbering the remaining nodes after each leaf-elimination, we can reduce

Time and Energy Optimal List Ranking Algorithms 275

the running time slots. More precisely, we give a unique number in the range
[1, n′] to each remaining node, where n′ is the number of remaining nodes.

For this purpose, we use an energy-optimal prefix-sums algorithm described
next. Suppose that we have an array a of n numbers. Each a(i) (1 ≤ i ≤ n)
is stored in S(i). The prefix-sums problem asks to compute the i-th prefix-sum
prefix (i) = a(1) + a(2) + · · ·+ a(i) for every i. The prefix sums problem can be
solved in n − 1 time slots with every station being awake for at most two time
slots. The details of the algorithm are spelled out as follows.

prefix-sums
S(1) sets prefix (1)← a(1).
for i← 1 to n− 1 do

S(i) broadcasts prefix (i)
S(i+ 1) receives prefix (i) and sets prefix (i+ 1)← prefix (i) + a(i).

It is easy to see that every S(i) leans prefix (i) when prefix-sums terminates.
Further each station S(i) is awake for at time slots i and i− 1 and is asleep for
the other time slots.

The remaining nodes can be renumbered using prefix-sums. Suppose that
list-shrink is executed on a list of n nodes. Let a(i) = 1, if node i is remaining,
and a(i) = 0 if node i is eliminated. By computing the prefix-sums of a, each
remaining node i is assigned new ID prefix (i). Then, every remaining node has
a unique ID in the range [1, n1], where n1 is the number of remaining nodes.

After assigning new IDs to the remaining nodes, we arrange them in stations
S(1), S(2), . . . S(n1) such that each S(i) (1 ≤ i ≤ n1) is storing remaining node
with new ID i. After that, pointers are changed according to the new ID using
node-transfer as follows:

node-transfer
for i← 1 to n

2 do
if node j is remaining and prefix (j) = i then S(j) broadcasts q[j] and r[j].
S(i) receives them. Let q′(i) denote the value of q[j].

for i← 1 to n do
S(i) broadcasts prefix (i).
S(j) such that q′(j) = i receives and store it in q[j].

After executing list-shrink on the list in Figure 1, two nodes 4 and 8 are
remaining. By prefix-sums, nodes 4 and 8 receives new IDs prefix (4) = 1 and
prefix (8) = 2, respectively.

From Lemma 2, n1 ≤ n
2 holds. Thus, node-transfer correctly moves node

i to S(prefix (i)) and runs in 3
2n time slots. If S(i) has remaining node i, it is

awake at time slots prefix (i) and n
2 + i. Further, for every S(i) (1 ≤ i ≤ n1), it is

awake at time slots n
2 + i and n

2 + q′(i). Thus no station is awake for more than
four time slots.

After node-transfer, we execute list-shrink on the new list with n1
nodes. Suppose that we have n2 nodes after executing the second list-shrink.
We use prefix-sums and node-transfer to move the n2 nodes to n2 stations

276 Koji Nakano

S(n
2 +1), S(n

2 +2), . . . , S(n
2 +n2). Continuing similarly, the list ranking problem

can be solved. After i-th list-shrink (1 ≤ i ≤ log n−1), the ni remaining nodes
are moved to ni stations S(n− n

2i−1 +1), S(n− n
2i−1 +2), . . . S(n− n

2i−1 +ni). Using
the ni stations, list-shrink is executed on the new list of ni nodes. This takes
O(n

2i) time slots and stations storing remaining nodes are awake for O(1) time
slots. From Lemma 2, ni ≤ n

2i holds for every i (1 ≤ i ≤ log n). Hence, no station
is working for more than two iterations after the first iteration of list-shrink.
Thus, the log n iterations of list-shrink, prefix-sums, and node-transfer
can be done in O(n+ n

2 + n
4 + · · ·+ 1) = O(n) time slots with each station being

awake for O(1) time slots. We can modify rewind according to new position of
nodes. Finally, we have the following important theorem.

Theorem 1. The list ranking of an n-node linked list given to n stations can
be done in O(n) time slots with no station being awake for more than O(1) time
slots on the single-channel BCM.

4 List Ranking on the k-Channel BCM

This section is devoted to show that the list ranking can be done in O(n
k) time

slots on the k-channel BCM with no station being awake for O(1) time slots.
Our idea is to simulate the single-channel list ranking algorithm on the k-channel
BCM. We first show a list ranking algorithm on the BCM which has exactly

√
n

channels. We then go on to generalize this algorithm to run on the k-channel
BCM. Due to the stringent page limitation, we only demonstrate how we simu-
late left-shrink and leaf-elimination on the

√
n-channel BCM. The other

procedures can be simulated similarly.
Imagine that nodes are partitioned into

√
n groups such that i-th (1 ≤ i ≤√

n) group consists of nodes in the range [(i − 1)
√
n + 1, i

√
n]. Each maxi-

mal sublist is partitioned into segments so that a segment consists of nodes
in the same group. Procedure left-shrink is simulated by two subprocedures
left-shrink1 and left-shrink2 that we describe next. In left-shrink1, each
segment is shrunk. After removing leaf nodes, left-shrink2 shrinks each max-
imal left sublist.

In list-shrink1, segments consist of nodes in the range [(i−1)
√
n+1, i

√
n]

are shrunk using channel i (1 ≤ i ≤ √n). For any pair i, j (1 ≤ i, j ≤ √n),
let |i, j| denote (i − 1)

√
n + j. The details of left-shrink1 are spelled out as

follows:

left-shrink1
for i← 1 to

√
n do in parallel

for j ← 1 to
√
n do

S(|i, j|) broadcasts q[|i, j|] and r[|i, j|] on channel i.
S(|i, j′|) satisfying q[|i, j′|] = |i, j| < |i, j′| receives them from channel i

and sets q[|i, j′|]← q[|i, j|] and r[|i, j′|]← r[|i, j′|] + r[|i, j|].
Clearly, left-shrink1 runs in

√
n time slots with each station being awake for

at most two time slots. After executing left-shrink1, q[|i, j|] is storing a new

Time and Energy Optimal List Ranking Algorithms 277

pointer, which is the successor of the tail node of the segment. After that, leaves
are eliminated using the

√
n channel similarly as follows:

leaf-elimination
for i← 1 to

√
n in parallel

for j ← 1 to
√
n do

S(|i′, j′|) broadcasts |i′, j′| on channel i if |i, j| = p[|i′, j′|].
S(|i, j|) monitors channel i.

If the status of the channel is NULL then node |i, j| is a leaf.

Clearly, all nodes in the maximal left sublists but the tails of the segments are
removed by leaf-elimination. Note that the remaining tails in the same max-
imal left sublist are in distinctive groups. Using this fact, left-shrink2 shrinks
maximal left sublists. Recall that, in left-shrink1, nodes |i, 1|, |i, 2|, . . . , |i,√n|
are broadcast on channel i in this order. On the other hand, in left-shrink2,
nodes |1, j|, |2, j|, . . . , |√n, j| are broadcast on channel j. This broadcast enables
us to shrink maximal left sublists. The details are spelled out as follows:

left-shrink2
for j ← 1 to

√
n in parallel

for i← 1 to
√
n do

S(|i, j|) broadcasts q[|i, j|] and r[|i, j|] on channel j.
S(|i′, j|) satisfying q[|i′, j|] = |i, j| < |i′, j| receives them from channel j

and sets q[i′, j]← q[i, j] and r[i′, j]← r[i′, j] + r[i, j].

Again, left-shrink2 runs in
√
n time slots with each station being awake for

at most two time slots. It is easy to see that, after executing left-elimination
again, all nodes but one in each maximal sublist are removed. Similarly, we
can simulate right-shrink and rewind, prefix-sums, node-transfer on the
k-channel BCM.

After executing list-shrink, prefix-sums, and node-transfer on an n-
node list, we obtain the shrunk list with less than n nodes. Let n1, n2, . . . , nlog n

be the number of nodes such that ni is the number of remaining n nodes after
i-th iteration of list-shrink and prefix-sums on the k-channel BCM. We use
n
2i (≥ ni) processors and

√
n
2i channels to perform i-th iteration, which takes

O(
√

n
2i) time slots. It follows that log n iterations take at most O(

√
n+

√
n
21 +√

n
22 +· · ·+√1) = O(

√
n) time slots. Thus, the list ranking can be done in O(

√
n)

time slots with no station being awake for O(1) time slots on the
√
n-channel

BCM.
Next, let us consider the case when the BCM has less than

√
n channels. Let k

(≤ √n) be the number of available channels. Communication using
√
n channels

can be simulated in
√

n
k time slots in obvious way. Hence, the list ranking problem

can be solved in
√

n
k ×O(

√
n) = O(n

k) time slots. Thus, we have,

Lemma 4. The list ranking of an n-node linked list given to n stations can be
done in O(n

k) time slots with no station being awake for more than O(1) time
slots on the k-channel BCM provided that k ≤ √n.

278 Koji Nakano

It is not difficult to generalize our list ranking algorithm on the
√
n-channel

BCM to run on the n1− 1
c -channel BCM for any fixed c ≥ 2. For example, pro-

cedure left-shrink can be simulated by executing the n1− 1
c -channel version of

left-shrink for c times, each of which runs in O(nc) time slots. Consequently,
we have the following theorem:

Theorem 2. For every c ≥ 2, the list ranking of an n-node linked list given to n
stations can be done in O(cn

1
c) time slots with no station being awake for more

than O(c) time slots on the n1− 1
c -channel BCM.

Let ε = 1
c be a small fixed real number. From above theorem, we have the

following important corollary.

Corollary 1. For any small fixed ε > 0, the list ranking of an n-node linked list
can be done in O(n

k) time slots with no station being awake for more than O(1)
time slots on the k-channel n-station BCM provided that k ≤ n1−ε.

References

1. S. G. Akl, Parallel Computation: Models and Methods Prentice Hall, 1997.
2. J. L. Bordim, J. Cui, T. Hayashi, K. Nakano, and S. Olariu, Energy-efficient ini-

tialization protocols for ad-hoc radio network, IEICE Trans. on Fundamentals,
E83-A, 9, pp.1796-1803, 2000.

3. T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to algorithms, MIT Press,
1994.

4. R. Cole and U. Vishkin, Approximate parallel scheduling. Part I: The basic tech-
nique with applications to optimal parallel list ranking in logarithmic time, SIAM
J. Computing, 17, 1, 128–142, 1988

5. K. Feher, Wireless Digital Communications, Prentice-Hall, Upper Saddle River,
NJ, 1995.

6. A. Gibbons and W. Rytter, Efficient parallel algorithms, Cambridge University
Press, 1988.

7. T. Hayashi, K. Nakano, and S. Olariu, Efficient List Ranking on the Reconfigurable
Mesh, with Applications, Theory of Computing Systems, 31, 593–611, 1998.

8. J. JáJá, An introduction to parallel algorithms, Addison-Wesley, 1992.
9. E. D. Kaplan, Understanding GPS: principles and applications, Artech House,

Boston, 1996.
10. F. T. Leighton, Introduction to parallel algorithms and architectures, Morgan Kauf-

mann, 1992.
11. K. Nakano and S. Olariu, Randomized initialization protocols for ad-hoc networks,

IEEE Trans. on Parallel and Distributed Systems, 11, 7, 749–759, 2000.
12. R.A. Powers, Batteries for low-power electronics, Proc. IEEE, 83, pp.687–693, 1995.
13. M. Reid-Miller, List Ranking and List Scan on the CRAY C-90, Journal of Com-

puter and System Sciences”, (1996), 53, 3.

Energy-Efficient Size Approximation
of Radio Networks with No Collision Detection�

Tomasz Jurdziński1,2, Miros�law Kuty�lowski3, and Jan Zatopiański2

1 Institute of Computer Science, Technical University Chemnitz
2 Institute of Computer Science, Wroc�law University

3 Institute of Mathematics, Wroc�law University of Technology

Abstract. Algorithms for radio networks are studied in two scenarios:
(a) the number of active stations is known (or approximately known) (b)
the number of active stations is unknown. In the second (more realistic)
case it is much harder to design efficient algorithms. For this reason,
we design an efficient randomized algorithm for a single-hop radio net-
work that approximately counts the number of its active stations. With
probability higher than 1 − 1

n
, this approximation is within a constant

factor, the algorithm runs in poly-logarithmic time and its energy cost
is o(log log n). This improves the previous O(log n) bound for energy.
In particular, our algorithm can be applied to improve energy cost of
known leader election and initialization protocols (without loss of time
efficiency).

1 Introduction

Background. In recent years mobile and wireless communication focuses a lot
of attention. New technologies provide communication means, quite exact posi-
tioning and global time via GPS systems, and finally, quite reasonable computing
resources in mobile devices. This provides grounds for new applications such as
law enforcement, logistics, disaster-relief, and so on.

This development redefines the demands on communication algorithms. Com-
munication through radio channels enables easy broadcasting and delivery of
messages in a distributed system. However, new problems arise: collision of mes-
sages sent simultaneously produces noise, sending and receiving periods have to
be minimized due to energy consumption (pocket radio devices run on batter-
ies). Moreover, we cannot control which stations are in use, even cannot say how
many of them are switched on. This chaotic behavior has also one advantage:
once we are able to run an algorithm on such a network, then it is very robust.

The model. A radio network considered in this paper (see e.g. [1,3,4,9,16,19]),
or RN for short, consists of an unknown number of computing devices called here
stations communicating through a shared channel. This model corresponds to
� partially supported by KBN, grant 8T11C 04419 and DFG, grant GO 493/1-1, and

AXIT Polska

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 279–289, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

280 Tomasz Jurdziński, Miros�law Kuty�lowski, and Jan Zatopiański

hand-held devices running on batteries using a radio channel for communication.
The devices are bulk-produced so we assume, as many authors, that the stations
of a RN have no ID’s or serial numbers.

We assume that the RN stations have local clocks synchronized to global
time (this is realistic due to GPS technology). Communication is possible in
time slots determined by global time, called steps. During a single step any sta-
tion may send and/or receive a message. If exactly one station sends a message,
then it is available to all stations listening at this moment. Thus, we consider
here single-hop RN’s. Many authors consider also the case in which several inde-
pendent communication channels are available. Other important generalization
considered is that a network is defined by a graph, where nodes denote stations
and a station v is reachable from the station u if and only if there is an edge
(u, v) in the graph (so-called multi-hop RN, [1,4,5,8]).

If more than one station sends during a step, then a collision occurs, the
messages are scrambled so that the stations receive noise. We consider here a
weak no-collision-detection model, no-CD for short, in which the stations cannot
even recognize that a collision has occurred. It is quite often assumed that the
station sending a message may simultaneously hear and thereby recognize that
a collision has occurred [2,3,7,10,15,16,17,19]. This feature is quite strong algo-
rithmically, but unavailable in some technologies (see [11] for results concerning
the weaker model). Let us remark that the algorithm presented in this paper
can be adopted to such a weak model.

The stations of a RN that are switched on are called active. An active station
is awake, when it is sending a message or listening, otherwise it is asleep.

Complexity measures. Most important complexity measures for RN’s are
time and energy cost [15,16,17]: time is the number of steps required for executing
an algorithm, energy cost is the maximal number of steps at which a station of a
RN is awake. This is motivated by the fact that sending and receiving messages
are main sources of energy consumption ([6,18]). For the sake of simplicity we
neglect here differences between energy consumption of sending and listening.

RN’s intensively use randomization. This is absolutely necessary, for instance,
for symmetry breaking. In the case of a randomized algorithm energy cost e
means that with high probability no station is awake for more than e steps. This
is motivated by the fact that an accidental burst of energy consumption at a
single station may exhaust its batteries and prevent the station to follow the
algorithm. For this reason, a lot of recent research is focused on energy efficient
RN algorithms (see e.g. [2,5,15,16,17]).

Known versus unknown number of stations. The algorithms for RN’s are
designed under the following assumptions:

scenario I: the number of active stations is known;
scenario II: the number of active stations is unknown, but can be approxi-

mated within a constant factor;
scenario III: there is no information on the number of active stations.

Energy-Efficient Size Approximation of Radio Networks 281

Since many algorithms for RN are designed for known number of active sta-
tions, it is desirable to design an efficient procedure for converting scenario III
into scenario I or at least II. Therefore we consider the following size approxi-
mation problem:

given a RN with unknown number n of active stations, find a number
n′ such that 1

cn ≤ n′ ≤ c · n for a certain constant c. At the end of the
protocol each active station should be aware of n′.

In [2], a solution with logarithmic energy cost and O(log2 n) time is given.
It is much harder to design algorithms in scenario I than in scenario III. For

instance, an energy efficient solution to initialization problem in scenario I is
proposed in in [16]: with probability at least 1− 1

n its energy cost is O(log log n)
and execution time is O(n). It can be easily generalized to the case of scenario
II; finding an energy efficient solution for scenario III was left as open problem.

For another important problem of leader election, energy efficient algorithms
have been designed in [15]. The authors present a randomized algorithm that for
n stations elects a leader in scenario I in time O(log f) and energy O(log log f +
log f
log n) with probability 1− 1/f for any f ≥ 1. Moreover, they present algorithms
that work in scenario III and elect a leader within O(log n) energy cost and
O(log2 n) time with probability 1− 1

n .
A deterministic RN algorithm determining the number of active stations (for

stations with distinct ID’s from the set {1, . . . , n}) is presented in [12, Theorem
2] (formulated as a solution for leader election):

Lemma 1 ([12]). Consider a RN with at most n active stations with labels
in the range [1, n], each t < n assigned to at most one active station. There
is a deterministic protocol finding the station with the largest label and count-
ing the number of active stations which runs in time O(n) and has energy cost
O((log n)ε) for any ε > 0.

2 New Results

Our main result is an energy efficient solution to size approximation problem:

Theorem 1. There is a randomized algorithm for weak no-CD RN such that
with probability at least 1− 1

n a number n0 is found such that 1
cn0 ≤ n ≤ cn0 (for

some constant c ≥ 1) within time O(log2+ε n) with energy cost O((log log n)ε)
for any constant ε > 0.

An example for application of this result is that together with [16, Theorem
6.1] it solves an open problem from [16]:

Corollary 1. There is an initialization protocol for a no-CD RN with n stations
in scenario III that runs in time O(n) and has energy cost O(log log n) with
probability at least 1− 1

n .

282 Tomasz Jurdziński, Miros�law Kuty�lowski, and Jan Zatopiański

Corollary 1 also yields an algorithm for leader election in scenario III with
poly-logarithmic time and energy cost O(log log n) (with probability 1− 1

n). This
improves exponentially energy cost upon the algorithms from [15], without loss
of time efficiency, when time achieved with high probability (that is, 1− 1/n) is
considered.

3 Size Approximation Algorithm

3.1 Basic Algorithm

Let us consider the following experiment. During a step each of n active stations
sends a message with probability p. If exactly one station chooses to send, then
we say that the step is successful and that the station that have sent a message
succeeds. Note that the probability pS that a step is successful, equals np(1 −
p)n−1. The largest value of this expression is obtained for p = 1/n; then pS ≈ 1/e.
If we repeat the experiment independently l times, then the expected number of
successful steps is approximately l/e. By Chernoff Bounds [14] we may bound
the probability that the number of successes is far from its expectation.

Using these observations we construct the first, energy inefficient, algorithm.
Let d be a sufficiently large constant.

Basic Algorithm
for k = 1, 2, . . . run phase k:
repeat d · k times:

each station sends with probability 1/2k and
listens all the time counting the number of successful

steps
if the number of successful steps is close to d · k/e then n0 ← 2k, halt

Using Chernoff Bounds one can show that the value of n0 found by the
algorithm is not far from the number of active stations. However, this simple
algorithm has large energy cost: about logn phases are to be executed, during
each phase every active station is listening all the time. So each station is awake
for Θ(log2 n) steps.

3.2 Improvements Idea

The first change is that a station listens only when it sends a message. This
reduces the energy cost of each station to the number of steps in which it sends.
However, then no station knows the number of successful steps, but only the
number of the successful steps during which it has been sending. To solve this
problem we apply the algorithm from Lemma 1. For this algorithm each station
has a “temporary” ID – the first i such that it has succeeded in step i during this
phase. In this way, all successful stations learn the total number of successful
steps (a slight adjustment is necessary since the same station may succeed more

Energy-Efficient Size Approximation of Radio Networks 283

than once). In an extra step the station with the smallest “temporary” ID informs
all stations about this number.

Still, every station has to listen at the end of each phase, and about logn
phases are to be executed making energy cost Ω(log n). A relatively simple rem-
edy is to make such a step “all have to listen” only for the phases l such that
l = g(j) for j ∈ N where g is a function satisfying g(j + 1) ≥ �g(j)1+ε� for
some ε > 0 (again, we apply Lemma 1, for determining the first successful phase
among g(j − 1) + 1, . . . , g(j)). This does not postpone getting the final result
very much: we may expect that the number of phases is at most m1+ε, where
m is such that Basic Algorithm finishes its work at phase m, i.e. m = Θ(log n).
Now the number of the “obligatory listening steps” is reduced to the minimal l
such that g(l) ≥ log n.

Even with these changes, we are unable to guarantee with high probability
that every station is awake for o(log log n) steps. Namely, we have to guarantee
low energy cost due to sending messages. For technical reasons, we split the
protocol in two parts. During the first part, we execute the simple algorithm
described above for k = 1, 2, . . . , k0, where k0 is some constant. For the second
part, we make a crucial change that every station sends at most once in the
loop taken from Basic Algorithm. (However, some additional activities will be
necessary for informing all stations about the number n found.) Then, it becomes
“passive” and only listens to the results. The idea is that this modification does
not change the number of successful steps at each phase substantially, because
the number of stations “eliminated” in this way is very small with respect to n.
However, we are faced with nasty technical details due to the fact that the steps
are stochastically dependent. So, a careful argument is required to estimate the
number of successes.

3.3 Description of the Algorithm

Let g(1) = 2, g(i + 1) = �(g(i))1+ε� for a constant ε > 0; let d and k0 be large
enough constants.
Algorithm ApproxSize(ε):

(01) run k0 phases of Basic Algorithm
(02) each station sets status← fresh and temp2ID← 0
(03) for k = k0 + 1, k0 + 2 . . . do
(04) each station sets tempID← 0
(05) for j = 1 to d · k do
(06) each fresh station sends and listens with probability 1/2k

(07) each fresh station that sends a message sets status← used
(08) if a station have sent successfully then it sets tempID← j
(09) using Lemma 1 for n = dk and ε the stations with tempID �= 0:
(10) compute N , the number of stations with tempID �= 0 and
(11) find a station with the smallest tempID
(12) if N ≥ dk/20 then
(13) the station with the smallest tempID sets its temp2ID← k

284 Tomasz Jurdziński, Miros�law Kuty�lowski, and Jan Zatopiański

(14) if k = g(l) for an l ∈ N then
(15) all stations with temp2ID �= 0 elect a leader (with the smallest

temp2ID) using Lemma 1 for n = k and ε
(16) a leader (if elected) sends its temp2ID and all other stations listen
(17) if not(noise/silence) then
(18) every station sets n0 ← 2p after receiving p and halts

Let the loop consisting of lines (05)-(08) for k = i be called phase i. Let trial
j of phase i denote the jth execution of line (06) during phase i.

The following properties follow directly from the construction: if ApproxSize
halts with k = k′′, then the first value k′ of k, for which the condition from
line (12) has been satisfied, fulfills �(k′)1+ε� ≥ k′′. Also, after halting all active
stations hold the same number n0 = 2k′

assigned in line (18).

4 Analysis of the Algorithm

4.1 Complexity Analysis

Let n be the number of active stations. We say that the protocol succeeds for a
number k′, if the condition in (12) is satisfied for k = k′. Let ks be the smallest
number k for which the condition in (12) is satisfied.

Lemma 2 (Main Lemma). For a k such that k ≤ log n−6 algorithm Approx-
Size succeeds with probability O(1

n2). For k = �log n� it does not succeed with
probability O(1

n2).

We postpone the proof of this result and yield corollaries which establish Theo-
rem 1.

Corollary 2. ApproxSize running on n active stations halts and outputs n0 such
that n0 = Θ(n) with probability 1− q, where q = O(log n/n2).

Proof. It follows from the fact that with high probability logn−6 ≤ ks ≤ log n+1
and n0 = 2ks . 	

Corollary 3. ApproxSize(ε) running on n active stations halts within O(log2+2ε

n) steps for any ε ≥ 0 with probability 1− q, where q = O(1/n2).

Proof. Assume that log n > k0. Our algorithm needs a constant time for steps
(01)-(02) and with high probability it finishes the loop (03)-(18) for k = kf

for some kf ≤ (log n)1+ε (by Lemma 2). One execution of (05)-(08) takes time
O((log n)1+ε). By Lemma 1, steps (09)-(11) take time O((log n)1+ε). The same
applies to the line (15). So the loop (05)-(18) takes O(log1+ε n) steps, and the
whole protocol O(log2+2ε n) steps. 	

Energy-Efficient Size Approximation of Radio Networks 285

Corollary 4. ApproxSize(ε) running on n active stations has energy cost O((log
log n)ε) with probability 1− q, where q = O(1/n2).

Proof. Assume that log n > k0. Every station needs a constant energy for lines
(01)-(02) and with high probability it finishes the loop (03)-(18) for k = kf

for some kf ≤ (log n)1+ε. In lines (05)-(08) each station sends (and listens)
at most once (after the step in which the station was awake for sending and
listening, it becomes used). Every station takes part in lines (09)-(13) at most
once (in iteration in which it becomes used) and is awake O((log log n)ε) times.
Similarly, every station executes line (15) at most once (also O((log log n)ε)
energy). Finally, each station listens in line (16), but with high probability, this
line is executed O(log−1(1 + ε) · log log(log1+ε n)) times. 	

Remark. If we put g(l+ 1) = 2 · g(l), then we obtain energy bound O(log log n)
and time O(log2 n) with probability bigger than 1−1/n (the same time bound as
in the algorithm for leader election from [15], which requires logarithmic energy).

4.2 Proof of Main Lemma

Probability that a station becomes used is upper bounded by the expression

∑∞
k=k0+1 dk/2

k ≤ c ,

for some small constant c. Hence the expected number of used stations does not
exceed cn. By choosing k0 sufficiently large we get c ≤ 1

4e . If we imagine that
stations continue the lines (03)-(08) infinitely,, then the probabilities of being
used are independent. Using Chernoff Bound on sums of independent random
variables [14] we get:

Corollary 5. Probability that the number of used stations exceeds n/2 is at most
2−n/2.

One may be tempted to apply the results on Poisson trials in order to esti-
mate the expected value of N in line (10) of ApproxSize and deviations from the
expected value. The main technical problem that arises here is that our mod-
ification (making the station used after sending) makes different iterations of
the loop in the lines (06)-(08) stochastically dependent. Moreover, one success
may improve success probabilities in subsequent steps, even if the increase is
not substantial. Note that nice properties of sums of Poisson random variables
are based on the fact that success probabilities do not depend on the history of
computation!

This section is organized as follows: First we analyze success probabilities in
line (06) provided that less than n/2 stations are used. We analyze separately
the stages for k ≤ log n− 6 and for k = �log n�. The core of the proof is showing
a relationship between the number of successes in a line (06) during a phase and
the sum of independent random variables.

286 Tomasz Jurdziński, Miros�law Kuty�lowski, and Jan Zatopiański

Success probabilities. A simple calculation shows the following properties:

Proposition 1. Assume that the number of unused stations before a step is at
least n/2. Then for k = �log n�, the probability that exactly one station sends at
line (06) is at least 0.1 .

Proposition 2. Assume that the number of unused stations before a step is at
least n/2. Then for k ≤ log n− 6 and some constant c′, the probability that line
(06) is successful is not greater than pk = n

2k−1

(
1− 1

2k

)n/2.

Sums of independent random variables. Let P [A] denote probability of
an event A. Let pk = n

2k−1

(
1− 1

2k

)n/2 for k ≤ log n − 6, and pk = 0.1 for
k = �log n�. We consider independent random variables x1, . . . , xdk, where xi ∈
{0, 1}, P [xi = 1] = pk for i ≤ dk (from the context it will be clear which k do
we mean.)

Lemma 3. Let X =
∑dk

i=1 xi. Then for sufficiently large n:

(a) P
[
X > dk

20

]
< 1

n2 for k ≤ log n− 6,
(b) P

[
X > dk

20

] ≥ 1− 1
n2 for k = �log n�.

The proof of this lemma, based on Chernoff Bounds, is tedious, but straight-
forward so we omit it here.

Estimating the number of successes. Let Sj
i denote the event “the number

of used stations is less than n/2 immediately before trial j of phase i”. Recall that
by Corollary 5, P

[
Sj

i

]
≥ 1− 2−n/2. First, we examine the number of successes

during phase k, for a k such that k ≤ log n− 6, under assumption that event S1
k

holds. Let wi be a random variable, such that wi = 1 if the trial i at phase k is
successful, and wi = 0 otherwise. Let xi be random variables defined as above.
Note that, for every U ⊆ Si

k, P [wi = 1 |U] ≤ P [xi = 1] if k ≤ log n − 6 (by
Proposition 2) and P [wi = 1 |U] ≥ P [xi = 1] if k = �log n� (by Proposition 1).

Lemma 4. Let M = 2n/2, k ≤ log n− 6. For each c > 0 holds:

P
[∑dk

i=1 wi > c | S1
k

]
≤ P

[∑dk
i=1 xi > c

]
+ 2dk−1

M ·P[S1
k] .

Proof. We prove the lemma in a slightly more general form by inverse induction
on j: let U be any event such that U ⊆ Sj

k, then

P
[∑dk

i=j wi > c |U
]
≤ P

[∑dk
i=j xi > c

]
+ 2(dk−j)−1

M ·P[U] . (1)

The case j = dk is given by Proposition 2. Now, for j < dk we have

P
[∑dk

i=j wi > c |U
]

= P
[∑dk

i=j wi > c ∧ Sj+1
k |U

]

+P
[∑dk

i=j wi > c ∧ ¬Sj+1
k |U

]
.

Energy-Efficient Size Approximation of Radio Networks 287

Since the second term is bounded from above by

P
[
¬Sj+1

k |U
]
≤ P[¬Sj+1

k]
P[U] ≤ 1

M ·P[U] ,

we get

P
[∑dk

i=j wi > c |U
]
≤ P

[∑dk
i=j wi > c ∧ Sj+1

k |U
]

+ 1
M ·P[U] .

The first term on the left hand side of the last inequality equals

P
[∑dk

i=j+1 wi > c ∧ wj = 0 ∧ Sj+1
k |U

]

+P
[∑dk

i=j+1 wi > c− 1 ∧ wj = 1 ∧ Sj+1
k |U

]
.

Let the probabilities above be denoted by H0 and H1, respectively. We estimate
H0. Let W0 denote the event Sj+1

k ∧wj = 0∧U . Then , by induction hypothesis:

H0 = P
[∑dk

i=j+1 wi > c |W0

]
·P [W0 |U] ≤(

P
[∑dk

i=j+1 xi > c
]

+ 2dk−j−1−1
M ·P[W0]

)
· P[W0]

P[U] =(
P
[∑dk

i=j+1 xi > c
]
· P[W0]

P[U]

)
+ 2dk−j−1−1

M ·P[U] =(
P
[∑dk

i=j+1 xi > c
]
·P
[
Sj+1

k ∧ wj = 0 |U
])

+ 2dk−j−1−1
M ·P[U] ≤(

P
[∑dk

i=j+1 xi > c
]
·P [wj = 0 |U]

)
+ 2dk−j−1−1

M ·P[U] .

Similarly we obtain

H1 ≤
(
P
[∑dk

i=j+1 xi > c− 1
]
·P [wj = 1 |U]

)
+ 2dk−j−1−1

M ·P[U] .

So we get

P
[∑dk

i=j wi > c|U
]
≤
(
P
[∑dk

i=j+1 xi > c
]
·P [wj = 0|U]

)
+(

P
[∑dk

i=j+1 xi > c− 1
]
·P [wj = 1|U]

)
+ 2(2dk−j−1−1)+1

M ·P[U] .

The last term equals 2dk−j−1
M ·P[U] . In order to estimate the sum of the first two

terms note that by replacing P [wj = 1|U] by any number p ≥ P [wj = 1|U] and
P [wj = 0|U] by 1 − p we do not decrease the sum. Indeed, it follows from the
fact that

P
[∑dk

i=j+1 xi > c− 1
]
≥ P

[∑dk
i=j+1 xi > c

]
.

By taking p = P [x1 = 1], we get

P
[∑dk

i=j wi > c|U
]
≤
(
P
[∑dk

i=j+1 xi > c
]
·P [x1 = 0]

)
+(

P
[∑dk

i=j+1 xi > c− 1
]
·P [x1 = 1]

)
+ 2dk−j−1

M ·P[U] =

P
[∑dk

i=j xi > c
]

+ 2dk−j−1
M ·P[U] .

288 Tomasz Jurdziński, Miros�law Kuty�lowski, and Jan Zatopiański

This concludes the proof of inductive step for inequality (1). 	

It follows from Lemma 4 that if there are at least n/2 unused stations at the

beginning of phase k, k ≤ log n − 6, then the probability that
∑dk

i=1 wi > c is
bounded by

P
[∑dk

i=1 xi > c
]

+ 2dk−1
M ·P[S1

k] ≤ P
[∑dk

i=1 xi > c
]

+ 2dk−1
M−1

(we have used the fact that P
[S1

k

] ≥ 1 − 1/M). For c = dk/20, we have

P
[∑dk

i=1 xi > c
]
≤ n−2, so

P
[∑dk

i=1 wi >
dk
20

]
= P

[∑dk
i=1 wi >

dk
20 ∧ S1

k

]
+ P

[∑dk
i=1 wi >

dk
20 ∧ ¬S1

k

]
≤

P
[∑dk

i=1 wi >
dk
20 | S1

k

]
·P [S1

k

]
+ 2−n/2 ≤ 1

n2 + 2d(log n−6)−1
2n/2 + 2−n/2 = O

(1
n2

)
.

For κ = �log n�, a similar estimation from below of P [
∑κ

i=1 wi ≤ c] can be
obtained by considering the variables vi = 1 − wi and yi = 1 − xi. Exactly as
before we show that

P [
∑κ

i=1 wi ≤ c] = P [
∑κ

i=1 vi > dκ− c] ≤
P [
∑κ

i=1 yi > dκ− c] + 2dκ−1
M−1 = P [

∑κ
i=1 xi ≤ c] + 2dκ−1

M−1 .

Since P
[∑dk

i=1 xi ≤ dκ/20
]
≤ n−2, so we get in a similar way that P

[∑dk
i=1 wi <

dκ/20
]

= O
(1

n2

)
.

Notes and Comments. Our complexity analysis of the algorithm ApproxSize
convince that it has desirable asymptotic behavior. Although we did not care
about values of constants a more detailed probabilistic analysis and fine tuning
for small n should show that the algorithm is quite practical.

References

1. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the Time-Complexity of Broadcast
in Multi-hop Radio Networks: An Exponential Gap Between Determinism and
Randomization. Journal of Computer Systems Sciences 45(1) (1992), 104-126

2. Bordim, J.L., Cui, J., Hayashi, T., Nakano, K., Olariu, S.: Energy-Efficient Initial-
ization Protocols for Ad-hoc Radio Networks. ISAAC’99, LNCS 1741, Springer-
Verlag, 1999, 215–224

3. Chlebus, B.S.: Randomized Communication in Radio Networks. A chapter
in ,,Handbook on Randomized Computing” P. M. Pardalos, S. Rajasekaran,
J. H. Reif, J. D. P. Rolim, (Eds.), Kluwer Academic Publishers, to appear

4. Chlamtac, I., Kutten, S.: On Broadcasting in Radio Networks – Problem Analysis
and Protocol Design. IEEE Trans. on Commun. 33 (1985), 1240–1246

Energy-Efficient Size Approximation of Radio Networks 289

5. Dessmark, A., Pelc, A.: Deterministic Radio Broadcasting at Low Cost.
STACS’2001, LNCS 2010, Springer-Verlag, 158–169

6. Fifer, W.C., Bruno, F.J.: Low Cost Packet Radio. Proc. of the IEEE 75 (1987),
33–42

7. Ga̧sieniec, L., Pelc, A., Peleg, D.: The Wakeup Problem in Synchronous Broadcast
Systems. SIAM Journal on Discrete Math. 14(2) (2001), 207–222

8. Ga̧sieniec, L., Lingas, A.: On Adaptive Deterministic Gossiping in Ad Hoc Radio
Networks. ACM-SIAM SODA ’2002

9. Gitman, I., Van Slyke, R.M., Frank, H.: Routing in Packet-Switching Broadcast
Radio Networks. IEEE Trans. on Commun. COM-24 (1976), 926–930

10. Hayashi, T., Nakano, K., Olariu, S.: Randomized Initialization Protocols for Packet
Radio Networks. IPPS’1999, IEEE 1999, 544–548

11. Jurdziński, T., Kuty�lowski, M., Zatopiański, J.: Weak Communication in Radio
Networks. Euro-Par’2002, LNCS , Springer-Verlag (accepted paper)

12. Jurdziński, T., Kuty�lowski, M., Zatopiański, J.: Efficient Algorithms for Leader
Election in Radio Networks. ACM PODC’2002, (accepted paper)

13. Jurdziński, T., Kuty�lowski, M., Zatopiański, J.: Energy-Efficient Size Ap-
proximation for Radio Networks with no Collision Detection. Technical Re-
port CSR-02-02, Technische Universität Chemnitz, Fakultät für Informatik,
http://www.tu-chemnitz.de/informatik/

14. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
1995

15. Nakano, K., Olariu, S.: Randomized Leader Election Protocols in Radio Networks
with No Collision Detection. ISAAC’2000, LNCS 1969, Springer-Verlag, 362–373

16. Nakano, K., Olariu, S.: Energy Efficient Initialization Protocols for Radio Networks
with no Collision Detection. ICPP’2000, IEEE 2000, 263–270

17. Nakano, K., Olariu, S.: Energy-Efficient Randomized Routing in Radio Networks.
Proc. of 4th Workshop on Discrete Algorithms and Methods for Mobile Computing
and Communications (DIALM), 35–44

18. Salkintzis, A.K., Chamzas, C.: An In-band Power-saving Protocol for Mobile Data
Networks. IEEE Trans. on Communication, COM-46 (1998), 1194–1205

19. Willard, D.E.: Log-logarithmic Selection Resolution Protocols in Multiple Access
Channel. SIAM Journal on Computing 15 (1986), 468-477

A New Class of Symbolic Abstract Neural Nets:
Tissue P Systems

C. Mart́ın-Vide1, J. Pazos2, G. Păun1, and A. Rodŕıguez-Patón2

1 Research Group on Mathematical Linguistics, Rovira i Virgili University
Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain

{cmv,gp}@astor.urv.es
2 Faculty of Computer Science, Polytechnical University of Madrid

Campus de Montegancedo, Boadilla del Monte 28660, Madrid, Spain
{jpazos,arpaton}@fi.upm.es

Abstract. Starting from the way the inter-cellular communication takes
place by means of protein channels and also from the standard knowl-
edge about neuron functioning, we propose a computing model called a
tissue P system, which processes symbols in a multiset rewriting sense, in
a net of cells similar to a neural net. Each cell has a finite state memory,
processes multisets of symbol-impulses, and can send impulses (“excita-
tions”) to the neighboring cells. Such cell nets are shown to be rather
powerful: they can simulate a Turing machine even when using a small
number of cells, each of them having a small number of states. Moreover,
in the case when each cell works in the maximal manner and it can excite
all the cells to which it can send impulses, then one can easily solve the
Hamiltonian Path Problem in linear time. A new characterization of the
Parikh images of ET0L languages are also obtained in this framework.

1 Introduction

This paper can be seen at the same time as a contribution to neural networks
(of a symbolic type), to membrane computing (with cells arranged in “tissues”),
to finite automata networks (working not with strings, but with multisets of
symbols), to multiset processing, to (distributed) automata and language the-
ory. The motivation is two-fold: the inter-cellular communication (of chemicals,
energy, information) by means of complex networks of protein channels (see,
e.g., [1], [11]), and the way the neurons co-operate, processing impulses in the
complex net established by synapses (see, e.g., [1], [2]).

The common mathematical model of these two kinds of symbol-processing
mechanisms is the net of finite state devices, and this is the type of computing
mechanisms we are going to consider: networks of finite-automata-like processors,
dealing with symbols, according to local states (available in a finite number for
each “cell”), communicating through these symbols, along channels (“axons”)
specified in advance. Note that the neuron modelling was the starting point of
the theory of finite automata ([13], [10]), that symbol processing neural networks
have a rich (and controversial) history (see [5] and its references), and that

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 290–299, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

A New Class of Symbolic Abstract Neural Nets: Tissue P Systems 291

networks of string-processing finite automata have appeared in many contexts
([6], [9], [12], etc), but our models are different in many respects from all these
previous models.

Having in mind the bio-chemical reality we refer to, a basic problem concerns
the organization of the bunch of symbols available in each node, and the easiest
and most natural answer is: no organization. Formally, this means that we have
to consider multisets of symbols, sets with multiplicities associated with their
elements. In this way, we need a kind of finite automata dealing with multisets
of symbols, a topic which falls into an area of (theoretical) computer science not
very much developed, although some recent (see, e.g., [7]), or not so recent (see,
e.g., [4]) approaches can be found in the literature. Actually, most of the vivid
area of membrane computing (P systems) [15] is devoted to multiset processing
(details at http://bioinformatics.bio.disco.unimib.it/psystems).

The computing models we propose here, under the name of tissue P systems,
in short, tP systems, consist of several cells, related by protein channels. In order
to preserve also the neural intuition, we will use the suggestive name of synapses
for these channels. Each cell has a state from a given finite set and can process
multisets of objects, represented by symbols from a given alphabet. The standard
rules are of the form sM → s′M ′, where s, s′ are states and M,M ′ are multisets
of symbols. Some of the elements of M ′ may be marked with the indication “go”,
and this means that they have to immediately leave the cell and pass to the cells
to which we have direct links through synapses. This communication (transfer
of symbol-objects) can be done in a replicative manner (the same symbol is sent
to all adjacent cells), or in a non-replicative manner; in the second case we can
send all the symbols to only one adjacent cell, or we can distribute them, non-
deterministically. One more choice appears in using the rules sM → s′M ′: we can
apply such a rule only to one occurrence of M (that is, in a sequential, minimal
way), or to all possible occurrences of M (a parallel way), or, moreover, we can
apply a maximal package of rules of the form sMi → s′M ′

i , 1 ≤ i ≤ k, that is,
involving the same states s, s′, which can be applied to the current multiset (the
maximal mode). By the combination of the three modes of processing objects and
the three modes of communication among cells, we get nine possible behaviors
of our machinery.

A way to use such a computing device is to start from a given initial con-
figuration (that is, initial states of cells and initial multisets of symbol-objects
placed in them) and to let the system proceed until reaching a halting config-
uration, where no further rule can be applied, and to associate a result with
this configuration. Because of the nondeterminism, starting from one given ini-
tial configuration we can reach arbitrarily many different halting configurations,
hence we can get arbitrarily many outputs. Another possibility is to also provide
inputs, at various times of a computation, and to look for the outputs related to
them. Here we will consider only the first possibility, of generative tP systems,
and the output will be defined by sending symbols out of the system. To this
aim, one cell will be designated as the output one, and in its rules sM → s′M ′

we will also allow that symbols from M ′ are marked with the indication “out”;

292 C. Mart́ın-Vide et al.

such a symbol will immediately leave the system, contributing to the result of
the computation.

At the first sight, such a machinery (a finite net of finite state devices) seems
not to be very powerful, e.g., as compared with Turing machines. Thus, it is
rather surprising to find that tP systems with a small number of cells (two or
four), each of them using a small number of states (resp., at most five or four)
can simulate any Turing machine, even in the non-cooperative case, that is, only
using rules of the form sM → s′M ′ with M being a singleton multiset; moreover,
this is true for all modes of communication for the minimal mode of using the
rules, and, in the cooperative case, also when using the parallel or the maximal
mode of processing objects. When the rules are non-cooperative and we use them
in the maximal mode, a characterization of Parikh images of ET0L languages
is obtained, which completes the study of the computing power of our devices
(showing that in the parallel and maximal cases we dot not get computational
universality).

The above mentioned results indicate that our cells are “very powerful”; as
their power lies in using states, hence in remembering their previous work, a
natural idea is to consider tP systems with a low bound on the number of states
in each cell. In view of the previously mentioned results, tP systems with at
most 1, 2, 3, or 4 states per cell are of interest. We only briefly consider this
question here, and we show that even reduced tP systems as those which use
only one state in each cell can be useful: using such a net we can solve the
Hamiltonian Path Problem in linear time (this is a direct consequence of the
structure of a tP system, of the maximal mode of processing objects, and of the
power of replicating the objects sent to all adjacent cells); remember that HPP
is an NP-complete problem.

The power of tP systems with a reduced number of states per component
remains to be further investigated. Actually, many other natural research topics
can be considered, with motivations from automata and language theory (vari-
ants, power, normal forms), neural networks (learning, dynamic sets of neurons,
dynamic synapses), computability (other NP-complete problems treated in this
framework), dynamic systems (reachable configurations), etc.

2 Some Mathematical Prerequisites

The computability notions we use here are standard and can be found in many
books, so we specify only some notations.

A multiset over a set X is a mapping M : X −→ N; for a ∈ X, we say
that M(a) is the multiplicity of a in M . Here we work only with multisets over
finite sets X. For two multisets M1,M2 over some set X we write M1 ⊆ M2
if and only if M1(a) ≤ M2(a) for all a ∈ X (we say that M1 is included in
M2). The union of M1,M2 is the multiset M1 ∪ M2 : X −→ N defined by
(M1 ∪M2)(a) = M1(a) +M2(a), for all a ∈ X. If M1 ⊆M2, then we also define
the difference multiset M2−M1 : X −→ N by (M2−M1)(a) = M2(a)−M1(a),

A New Class of Symbolic Abstract Neural Nets: Tissue P Systems 293

for all a ∈ X. For Y ⊆ X and M a multiset over X, we define the projection on

Y by prY (M)(a) =
{
M(a), if a ∈ Y ,
0, otherwise

.

For a given alphabet V , V ∗ is the language of all strings over V , including the
empty string, denoted by λ. The Parikh mapping associated with V is denoted
by ΨV . A multiset M over an alphabet V can be represented by a string w ∈ V ∗

such that ΨV (w) gives the multiplicities in M of the symbols from V ; obviously,
all permutations of w are representations of the same multiset. For a family FA
of languages, we denote by PsFA the family of Parikh images of languages in
FA. By CF,CS,RE we denote the families of context-free, context-sensitive,
and recursively enumerable languages, respectively.

3 Tissue P Systems

We now pass to the definition of our variant of membrane (P) systems, which
can also be considered as a model of a symbolic neural net. We introduce it in
the general form, then we will consider variants of a restricted type.

A tissue P system, in short, a tP system, of degree m ≥ 1, is a construct

Π = (E, σ1, . . . , σm, syn, iout), where

1. E is a finite non-empty alphabet (of chemical objects, but we also call them
excitations/impulses);

2. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} (synapses among cells);
3. iout ∈ {1, 2, . . . ,m} indicates the output cell;
4. σ1, . . . , σm are cells, of the form σi = (Qi, si,0, wi,0, Pi), 1 ≤ i ≤ m, where:

(a) Qi is a finite set (of states);
(b) si,0 ∈ Qi is the initial state;
(c) wi,0 ∈ E∗ is the initial multiset of impulses;
(d) Pi is a finite set of rules of the form sw → s′xygozout, where s, s′ ∈ Qi,

w, x ∈ E∗, ygo ∈ (E×{go})∗ and zout ∈ (E×{out})∗, with the restriction
that zout = λ for all i ∈ {1, 2, . . . ,m} different from iout.

A tP system as above is said to be cooperative if it contains at least a rule
sw → s′w′ such that |w| > 1, and non-cooperative in the opposite case.

Any m-tuple of the form (s1w1, . . . , smwm), with si ∈ Qi and wi ∈ E∗, for all
1 ≤ i ≤ m, is called a configuration of Π; (s1,0w1,0, . . . , sm,0wm,0) is the initial
configuration of Π.

Using the rules from the sets Pi, 1 ≤ i ≤ m, we can define transitions among
configurations. To this aim, we first consider three modes of processing the stimuli
and three modes of transmitting excitations from a cell to another one. Let
us denote Ego = {(a, go) | a ∈ E}, Eout = {(a, out) | a ∈ E}, and Etot =
E ∪ Ego ∪ Eout. For s, s′ ∈ Qi, x ∈ E∗, y ∈ E∗

tot, we write

sx =⇒min s
′y iff sw → s′w′ ∈ Pi, w ⊆ x, and y = (x− w) ∪ w′,

sx =⇒par s
′y iff sw → s′w′ ∈ Pi, w

k ⊆ x,wk+1 �⊆ x,

294 C. Mart́ın-Vide et al.

for some k ≥ 1, and y = (x− wk) ∪ w′k,
sx =⇒max s

′y iff sw1 → s′w′
1, . . . , swk → s′w′

k ∈ Pi, k ≥ 1,
such that w1 . . . wk ⊆ x, y = (x− w1 . . . wk) ∪ w′

1 . . . w
′
k,

and there is no sw → s′w′ ∈ Pi such that w1 . . . wkw ⊆ x.

In the first case, only one occurrence of the multiset from the left hand side
of a rule is processed (replaced by the multiset from the right hand of the rule,
at the same time changing the state of the cell), in the second case a maximal
change is performed with respect to a chosen rule, in the sense that as many as
possible copies of the multiset from the left hand side of the rule are replaced
by the corresponding number of copies of the multiset from the right hand side,
while in the third case a maximal change is performed with respect to all rules
which use the current state of the cell and introduce the same new state after
processing the impulses.

We also write sx →α sx, for s ∈ Qi, x ∈ E∗, and α ∈ {min, par,max}, if
there is no rule sw → s′w′ in Pi such that w ⊆ x. This encodes the case when a
cell cannot process the current impulses in a given state (it can be “unblocked”
after receiving new impulses from its ancestors).

The multiset w′ from a rule sw → s′w′ contains symbols from E, but also
symbols of the form (a, go) (or, in the case of cell iout, of the form (a, out)). Such
symbols will be sent to the cells related by synapses to cell σi where the rule
sw → s′w′ is applied, according to the following modes:

– repl: each symbol a, for (a, go) appearing in w′, is sent to each of the cells
σj such that (i, j) ∈ syn;

– one: all symbols a appearing in w′ in the form (a, go) are sent to one of
the cells σj such that (i, j) ∈ syn, nondeterministically chosen; more ex-
actly, in the case of modes par and max of using the rules, we first perform
all applications of rules, and after that we send all obtained symbols to a
unique descendant of the cell (that is, we do not treat separately the impulses
introduced by each rule, but all of them in a package);

– spread: the symbols a appearing in w′ in the form (a, go) are non-determi-
nistically distributed among the cells σj such that (i, j) ∈ syn.

In order to formally define the transition among the configurations of Π we
need some further notations. For a multiset w over Etot, we denote by go(w) the
multiset of symbols a ∈ E appearing in w in the form (a, go), and by out(w)
the multiset of symbols a ∈ E, appearing in w in the form (a, out). Clearly,
go(w)(a) = w((a, go)) and out(w)(a) = w((a, out)), a ∈ E. Moreover, for a node
i in the graph defined by syn we denote ant(i) = {j | (j, i) ∈ syn} and succ(i) =
{j | (i, j) ∈ syn} (the ancestors and the successors of node i, respectively).

Now, for two configurations C1 = (s1w1, . . . , smwm), C2 = (s′
1w

′′
1 , . . . , s

′
mw

′′
m)

we write C1 =⇒α,β C2, for α ∈ {min, par,max}, β ∈ {repl, one, spread}, if there
are w′

1, . . . , w
′
m in E∗

tot such that siwi =⇒α s
′
iw

′
i, 1 ≤ i ≤ m, and

– for β = repl we have w′′
i = prE(w′

i) ∪
⋃

j∈ant(i) go(w
′
j);

A New Class of Symbolic Abstract Neural Nets: Tissue P Systems 295

– for β = one we have w′′
i = prE(w′

i) ∪
⋃

j∈Ii
go(w′

j), where Ii is a subset
of ant(i) such that the set ant(i) was partitioned into I1, . . . , Im; at this
transition, all non-empty sets of impulses of the form

⋃
j∈Ik

go(w′
j), 1 ≤ k ≤

m, should be sent to receiving cells (added to multisets w′′
l , 1 ≤ l ≤ m);

– for β = spread we have w′′
i = prE(w′

i)−go(w′
i)∪zi, where zi is a submultiset

of the multiset
⋃

j∈ant(i) go(w
′
j) such that z1, . . . , zm are multisets with the

property
⋃m

j=1 zj =
⋃

j∈ant(i) go(w
′
j), and such that all z1, . . . , zm are sent to

receiving cells (added to multisets w′′
l , 1 ≤ l ≤ m).

Note that in the case of the cell σiout we also remove all symbols a ∈ E appearing
in w′

iout
in the form (a, out).

During any transition, some cells can do nothing: if no rule is applicable to
the available multiset of impulses in the current state, then a cell waits until new
impulses are sent to it from its ancestor cells.

A sequence of transitions among configurations of the tP system Π is called
a computation of Π. A computation which ends in a configuration where no
rule in no cell can be used, is called a halting computation. Assume that dur-
ing a halting computation the tP system Π sends out, through the cell σiout ,
the multiset z. We say that the vector ΨE(z), representing the multiplicities of
impulses from z, is computed (or generated) by Π. We denote by Nα,β(Π), α ∈
{min, par,max}, β ∈ {repl, one, spread}, the set of all vectors of natural num-
bers generated by a tP system Π, in the mode (α, β). The family of all sets
Nα,β(Π), generated by all cooperative tP systems with at most m ≥ 1 cells,
each of them using at most r ≥ 1 states, is denoted by NtPm,r(Coo, α, β); when
non-cooperative tP systems are used, we write NtPm,r(nCoo, α, β) for the cor-
responding family of vector sets. When one (or both) of the parameters m, r are
not bounded, then we replace it (them) with ∗, thus obtaining families of the
form NtPm,∗(γ, α, β), NtP∗,r(γ, α, β), etc.

We have 18 families of the form NtP∗,∗(γ, α, β), but, as we will see below,
not all of them are different.

4 An Example

Before investigating the power and the properties of tP systems, let us examine
an example, in order to clarify and illustrate the previous definitions. Consider
the rather simple tP system:

Π1 = ({a}, σ1, σ2, σ3, syn, 1),
σ1 = ({s}, s, a, {sa→ s(a, go), sa→ s(a, out)}),
σ2 = ({s}, s, λ, {sa→ s(a, go)}),
σ3 = ({s}, s, λ, {sa→ s(a, go)}),
syn = {(1, 2), (1, 3), (2, 1), (3, 1)}.

The reader can easily check that we have:

Nα,repl(Π1) = {(n) | n ≥ 1}, for α ∈ {min,max},

296 C. Mart́ın-Vide et al.

Npar,repl(Π1) = {(2n) | n ≥ 0},
Nα,β(Π1) = {(1)}, for α ∈ {min, par,max}, β ∈ {one, spread}.

Indeed, in the non-replicative mode of communication, no further symbol is
produced, hence we only generate the vector (1). In the replicative case, the
symbols produced by the rule sa → s(a, go) from cell 1 are doubled by com-
munication. When the rules are used in the parallel mode, then all symbols are
processed at the same time by the same rule, which means that all symbols
present in the system are doubled from a step to the next one, therefore, the
powers of 2 are obtained. When the rules are used in the minimal mode, the
symbols are processed or sent out one by one, hence all natural numbers can be
obtained. In the maximal mode, we can send copies of a at the same time to
cells 2 and 3, and outside the system, hence again any number of symbols can
be sent out.

5 The Power of tP systems

The following relations are direct consequences of the definitions.

Lemma 1. (i) For all 1 ≤ m ≤ m′, 1 ≤ r ≤ r′, γ ∈ {Coo, nCoo}, α ∈ {min, par,
max}, and β ∈ {repl, one, spread}, we have:

NtPm,r(γ, α, β) ⊆ NtPm′,r′(γ, α, β) ⊆ NtP∗,∗(γ, α, β) ⊆ PsRE,
NtPm,r(nCoo, α, β) ⊆ NtPm,r(Coo, α, β).

(ii) For all tP systems Π, cooperating or not, where each cell has at most one
successor, and for all α ∈ {min, par,max} we have

Nα,repl(Π) = Nα,one(Π) = Nα,spread(Π).

As it is standard when considering a new computing device, we compare the
power of tP systems with that of Turing machines and restricted variants of
them. Refined classifications of the power of such machines are provided by the
Chomsky and the Lindenmayer hierarchies. We start by considering the minimal
mode of using the rules in a tP system, and this turns out to be computationally
universal, a fact which makes natural the comparison with (Parikh images of)
Chomsky families, in particular, PsRE. In a subsequent section we will con-
sider the parallel and the maximal modes of using the rules, and this will make
necessary the comparison with (Parikh images of) Lindenmayer families.

5.1 Comparison with Chomsky Families

Rather surprising, if we take into consideration the apparently weak ingredients
of our models, when using the mode min of applying the rules, even the non-
cooperative tP systems turn out to be computationally universal. (As expected,
the same result holds true also when using cooperative rules, in all modes min,
par, max.) In proving such results we try to keep as reduced as possible both
the number of cells and the maximal number of states used by the cells.

A New Class of Symbolic Abstract Neural Nets: Tissue P Systems 297

Theorem 1. PsRE = NtP2,5(γ,min, β) for all γ ∈ {Coo, nCoo}, β ∈ {repl,
one, spread}.

At the price of using two more cells, we can decrease the number of used
states (the proof is omitted).

Theorem 2. PsRE = NtP4,4(γ,min, β) for all γ ∈ {Coo, nCoo}, β ∈ {one,
spread}.

If we use cooperative rules, then we can further decrease both the number
of cells and of states. Moreover, we can characterize PsRE for all modes min,
par,max of processing the impulses, and this completes the study of the cooper-
ative case.

Theorem 3. PsRE = NtP2,2(Coo, α, β) for all α ∈ {min, par}, β ∈ {repl,
one, spread}.

We do not know whether or not the results in Theorems 1, 2, and 3 are
optimal in the number of cells and of states.

5.2 Comparison with Lindenmayer Families

The maximal mode of using the rules in a tP system resembles the parallel mode
of rewriting the strings in an L system, and this makes the following results
expected.

Theorem 4. (i) PsE0L ⊆ NtP1,2(nCoo,max, β) for all β ∈ {repl, one,
spread}. (ii) PsET0L ⊆ NtP1,3(nCoo,max, β) for all β ∈ {repl, one, spread}.

For tP systems working in the min mode, we need further additional cells
(and states) in order to simulate E0L and ET0L systems.

Theorem 5. PsE0L ⊆ NtP2,3(nCoo,min, β) for all β ∈ {repl, one, spread}.
In the case of ET0L systems we needed one more cell and one more state

(but we do not know whether or not this result can be improved).

Theorem 6. PsET0L ⊆ NtP3,4(nCoo,min, β) for all β ∈ {repl, one, spread}.
Interestingly enough, the converse of assertion (ii) from Theorem 4 is also

true, even in the following more general form (and this settles the study of modes
par and max: they do not lead to computational universality).

Theorem 7. NtP∗,∗(nCoo, α, β) ⊆ PsET0L, for all α ∈ {par,max} and β ∈
{repl, one, spread}.

Together with assertion (ii) from Theorem 4 we get the following characteri-
zation of PsET0L, which precisely describes the power of the mode max in the
non-cooperative case.

298 C. Mart́ın-Vide et al.

Theorem 8. NtP1,1(nCoo,max, β) ⊆ NtP1,2(nCoo,max, β) ⊆ NtP1,3(nCoo,
max, β) = NtPm,r(nCoo,max, β) = NtP∗,∗(nCoo,max, β) = PsET0L, for all
m ≥ 1, r ≥ 3.

A more precise characterization of families NtPm,r(nCoo, par, β), β ∈ {repl,
one, spread}, remains to be found (but we already know that such systems only
generate Parikh images of ET0L languages).

6 Solving HPP in Linear Time

The architecture of tP systems and their way of working (especially the fact that
in the maximal mode of using the rules we can process all impulses which may
be processed in such a way that the same next state is obtained, irrespective
which rules are used, and the fact that in the replicative mode one can send
the same impulses to all successors of a cell) have an intrinsic computational
power. More precisely, problems related to paths in a (directed) graph can be
easily solved by a tP system, just by constructing a net with the synapses graph
identical to the graph we deal with, constructing all paths in the graph with
certain properties by making use of the maximal mode of applicating the rules
and of the replicative communication, and checking the existence of a path with
a desired property.

We illustrate this power of tP systems with the Hamiltonian Path Problem
(HPP), which asks whether or not in a given directed graph G = (V,U) (where
V = {a1, . . . , am} is the set of vertices, and U ⊆ V ×V is the set of edges) there
is a path starting in some vertex ain, ending in some vertex aout, and visiting
all vertices exactly once. For simplicity, in what follows we assume that ain = a1
and aout = am. It is know that the HPP is a NP-complete problem, hence it is
one of the problems considered as intractable for the sequential computers (for
the Turing machines).

Having a graph G = (V,U) as above, we construct the tP system Π =
(E, σ1, . . . , σm, U,m), with

E = {[z; k] | z ∈ V ∗, 0 ≤ |z| ≤ m, 0 ≤ k ≤ m},
σ1 = ({s}, s, [λ; 0], {s[λ; 0]→ s([1; 1], go)}),
σi = ({s}, s, λ, {s[z; k]→ s([zi; k + 1], go) | z ∈ V ∗, 1 ≤ |z| ≤ m− 2,

|z|i = 0, 1 ≤ k ≤ m− 2}), for each i = 2, 3, . . . ,m− 1, and
σm = ({s}, s, λ, {s[z;m− 1]→ s([zm;m], out) | z ∈ V ∗, |z| = m− 1}).

It is easy to see that Nmax,repl(Π) �= ∅ if and only if HPP has a solution for
the graph G: the paths in G grow simultaneously in all cells of Π, because of the
max mode of using the rules (each cell has only one state, hence all rules can be
used at the same time). Moreover, the cell σm can work only after m− 1 steps
and a symbol is sent out of the net at the step m. Thus, it is enough to watch
the tP system at step m and if any symbol is sent out, then HPP has a solution,
otherwise we know that such a solution does not exist. (Note that the symbol
sent out describes a Hamiltonian path in G.)

A New Class of Symbolic Abstract Neural Nets: Tissue P Systems 299

References

1. B. Alberts et al., Essential Cell Biology. An Introduction to the Molecular Biology
of the Cell, Garland Publ. Inc., New York, London, 1998.

2. M.A. Arbib, Brains, Machines, and Mathematics, second ed., Springer-Verlag,
Berlin, 1987.

3. M.A. Arbib, The Methaphorical Brain: An Introduction to Schemes and Brain
Theory, Wiley Interscience, 1988.

4. J.P. Banatre, D. LeMetayer, Gamma and chemical reaction model: ten years af-
ter, in vol. Coordination Programming: Mechanisms, Models, and Semantics (C.
Hankin, ed.), Imperial College Press, 1996, 3–41.

5. D.S. Blank et al (24 co-authors), Connectionist symbol processing: Dead or alive?,
Neural Computing Surveys, 2 (1999), 1–40.

6. C. Choffrut, ed., Automata Networks, Lecture Notes in Computer Science, 316,
Springer-Verlag, Berlin, 1988.

7. E. Csuhaj-Varju, C. Martin-Vide, V. Mitrana, Multiset automata, Multiset Pro-
cessing (C.S. Calude, Gh. Paun, G. Rozenberg, A. Salomaa, eds), Lecture Notes in
Computer Science, 2235, Springer-Verlag, 2001.

8. A. Dovier, A. Policriti, G. Rossi, A uniform axiomatic view of lists, multisets, and
sets, and the relevant unification algorithms, Fundamenta Informaticae, 36, 2-3
(1998), 201–234.

9. F. Gecseg, Products of Automata, Springer-Verlag, Berlin, 1986.
10. S.C. Kleene, Representation of events in nerve nets and finite automata, Automata

Studies, Princeton Univ. Press, Princeton, N.J., 1956, 2–42.
11. W.R. Loewenstein, The Touchstone of Life. Molecular Information, Cell Commu-

nication, and the Foundations of Life, Oxford Univ. Press, 1999.
12. A. Mateescu, V. Mitrana, Parallel finite automata systems communicating by

states, Intern. J. Found. Computer Sci., to appear.
13. W.S. McCulloch, W.H. Pitts, A logical calculus of the ideas immanent in nervous

activity, Bull. Math. Biophys., 5 (1943), 115–133.
14. M. Minsky, Computation: Finite and Infinite Machines, Prentice-Hall, 1967.
15. Gh. Păun, Computing with membranes, Journal of Computer and System Sciences,

61, 1 (2000), 108–143.

Transducers with Set Output

Jurek Czyzowicz1, Wojciech Fraczak2, and Andrzej Pelc1

1 Dept. d’informatique, UQAH, CP 1250, succ. B, Hull PQ J8X 3X7, Canada
2 Solidum Systems Corp, 1575 Carling Av., Ottawa ON K1Z 7M3, Canada

Abstract. We consider transducers with set output, i.e., finite state
machines which produce a set of output symbols upon reading any input
symbol. When a word consisting of input symbols is read, the union of
corresponding output sets is produced. Such transducers are instrumen-
tal in some important data classification tasks, such as multi-field packet
classification. Two transducers are called equivalent if they produce equal
output upon reading any input word. In practical data classification ap-
plications, it is important to store in memory only one transducer of
every equivalence class, in order to save memory space. This yields the
need of finding, in any equivalence class, one transducer, called canonical
which is easy to compute, given any transducer from this class. One of
the results of this paper is the construction of an algorithm which com-
pletes this task. Assuming that the input and output alphabets are of
bounded size, for a given n-state transducer T , our algorithm finds the
canonical transducer Ψ(T) equivalent to T in time O(n log n).

1 Introduction

Data classification is among crucial problems in network information processing.
Packets arriving from a communication channel have to be divided into several
classes, based on their content. Among different ways of classifying data, used
in modern technology, the following approaches are the most significant: the
network processor approach, used by such companies as Intel, Motorola, and
Vitesse, the content addressable memory (CAM) approach [1], used, e.g., by
Netlogic, IDT and Kawasaki, and the dedicated chip approach based on finite
state automata, used, e.g., by Agere, Raqia, and Solidum Systems Corp. [2].
Among the three, the approach using a dedicated chip is by far the fastest: it
enables classifying data packets at wire speed, i.e., it permits to complete the
classification as soon as the last bit of the packet is read.

In particular, the mechanism of data classification used by Solidum Systems
Corp. (see http://www.solidum.com) uses the concept of a transducer which
is, roughly speaking, a finite state machine producing some output after reading
every input symbol. The entire output produced after reading an input string,
called the tag of this string, can be considered as the name of the class to which
the processed packet is assigned.

Classic transducers [3,4,5,6,7] output strings of symbols after reading every
input symbol, and concatenate these strings as the input word is read. How-
ever, for some important tasks, such as multi-field packet classification [8], also

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 300–309, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Transducers with Set Output 301

called multi-dimensional range matching [9], transducers producing strings of
symbols are not a good tool. Indeed, in this context, the order in which output
symbols are produced, is not important, and once a symbol has been produced
during the classification process, producing this symbol again at a later stage
does not change the result. Hence, in this important application of multi-field
packet classification, it appears more natural to define tags as sets of output
symbols, rather than strings of such symbols. More precisely, upon reading an
input symbol, a (possibly empty) set of output symbols is produced, and the
union of such consecutive sets is produced on every classification path. Trans-
ducers of this new type are called set transducers and are used as a theoretical
tool forming the base of data classification technology in the above mentioned
context. It turns out that classic transducers would be, indeed, entirely inappro-
priate to solve the multi-field packet classification problem: it can be shown that
using classic transducers instead of set transducers in this context may result in
an exponential growth of the number of states.

Transducers used in practical applications are very large: they are composed
of hundreds of thousands of states. Hence it is necessary to decompose them into
smaller building blocks, and store these blocks, reusing the same blocks for the
construction of many different complex transducers. From the point of view of
efficient memory use, it is of crucial importance to store in the memory only one
such building block of given functionality, avoiding simultaneous storage of many
equivalent transducers. (Two transducers are called equivalent if they produce
equal output upon reading any input word: intuitively, they classify all packets
in the same way.) To this end we need to choose, in every class of equivalent
transducers, one representative, called the canonical transducer of this class.
The choice of the canonical transducer must satisfy the property that, given any
transducer, the canonical transducer equivalent to it can be produced efficiently.
If this is the case, it becomes easy to avoid duplication of equivalent transducers
stored in the memory: if a given transducer is needed as a building block, it is
enough to compute the canonical transducer of its class and check if it is already
stored in the memory. We add it to the memory only if it is not yet there.

Hence the problem of efficient finding of the canonical transducer equivalent
to a given one is of significant practical importance. One of the results of this pa-
per is the construction of an algorithm which completes this task. Assuming that
we are given an n-state transducer T and that the alphabets are of bounded size,
our algorithm finds the canonical transducer equivalent to T in time O(n log n).

Related work. Classic transducers (those with string output) have been exten-
sively studied in the literature [3,4,5,6,7]. In this context, the particular problem
of efficient finding of the canonical transducer equivalent to a given one has been
considered in [7]. In our case this problem seems to be different because the idea
from [7] directly using minimization cannot work: minimal set transducers are
not unique.

As for the multi-field packet classification problem, which was our main rea-
son for introducing and studying the concept of set transducers, its solutions in
[8,9] were based on a combination of hardware and software tools, as opposed

302 Jurek Czyzowicz, Wojciech Fraczak, and Andrzej Pelc

to our approach which uses a general purpose transducer entirely implemented
in hardware, and thus permitting much faster classification.

2 Set Transducers

We consider transducers which output sets. They differ from usual sequential
transducers in that they define partial mappings from words over an input al-
phabet into subsets of an output alphabet.

Let Σ and ∆ be two disjoint finite sets of input and output symbols, respec-
tively. A deterministic finite automaton (dfa) A = (Q, s, δ, F) consists of a finite
set Q of states, a partial transition function δ : Q × Σ �→ Q, an initial state
s ∈ Q, and a set of final states F ⊆ Q. We call transition of A any pair (x, a) of
state and input symbol for which transition function δ(x, a) is defined.

A labeling L of an dfa A = (Q, s, δ, F) is a pair (I, λ) consisting of an initial
output I ⊆ ∆ and a partial labeling function λ : Q × Σ �→ 2∆ with the same
domain as δ.

A set transducer T = (A,L) is a pair consisting of a dfa A and labeling L
of A. The transition function δ and labeling function λ naturally extend into
δ̂ : Q×Σ∗ �→ Q and λ̂ : Q×Σ∗ �→ 2∆ by:

δ̂(x, ε) def= x, δ̂(x, aw) def= δ̂(δ(x, a), w)
λ̂(x, ε) def= ∅, λ̂(x, aw) def= λ(x, a) ∪ λ̂(δ(x, a), w)

for a ∈ Σ, w ∈ Σ∗, and x ∈ Q, where ε ∈ Σ∗ denotes the empty word. Note
that δ̂ and λ̂ are partial functions: δ̂(x,w) is defined if and only if λ̂(x,w) is.

From now on, we will use δ and λ instead of δ̂ and λ̂, respectively. We will
also assume that the underlying dfa A is always trimmed by eliminating non-
essential states, i.e., for every state x ∈ Q there exist w,w′ ∈ Σ∗ such that
δ(s, w) = x and δ(x,w′) ∈ F .

Every set transducer T defines a partial mapping |T | : Σ∗ �→ 2∆, from the
set of words over input symbols into sets of output symbols. The mapping |T |
is defined for an input word w if the word leads from the initial state to a final
state. The value of |T |(w) is the union of all output sets produced on the path
including the initial output:

|T |(w) def=
{

I ∪ λ(s, w) if δ(s, w) ∈ F
not defined otherwise (1)

Transducers T1 and T2 are called equivalent if |T1| = |T2|.
Consider transducers in Fig. 1. They define the same partial mapping, T ,

from words over alphabet {a, b} into subsets of {α, β}:

T = {aa �→ {α}, ab �→ {α, β}, ba �→ {α, β}, bb �→ {β}} .

In the sequel, we will define a canonical transducer in every equivalence
class. More precisely, we will describe a transformation Ψ on the class of all

Transducers with Set Output 303

a/{α} a/{α}

a/{α}

b/{β} b/{β}

b/{β}

∅ ∅

a/{α}

a/∅ b/∅

b/{β}

Fig. 1. Two equivalent set transducers

transducers such that Ψ(T) is equivalent to T ; and if T1 is equivalent to T2 then
Ψ(T1) = Ψ(T2). Our main goal will then be efficient computation of Ψ(T), given
a transducer T .

For any state x of a finite deterministic automaton A = (Q, s, δ, F) and any
labeling L = (I, λ) of A we define:

D(x, L) def= {α ∈ ∆ | ∀w ∈ Σ∗ ((δ(x,w) ∈ F)⇒ (α ∈ λ(x,w)))} (2)

U(x, L) def= I ∪ {α ∈ ∆ | ∀w ∈ Σ∗ ((δ(s, w) = x)⇒ (α ∈ λ(s, w)))} (3)

Intuitively, D(x, L) and U(x, L) denote the intersection of output sets generated
on all paths starting at, respectively ending in, state x.

We define the following transformation Φ on the class of all labelings of an
automaton. It will be used later in the construction of transformation Ψ .

Definition 1. Let A = (Q, s, δ, F) be an automaton with labeling L = (I, λ).
The labeling Φ(L) = (I ′, λ′) of A is defined as follows:

– I ′ def= I ∪D(s, L);
– λ′(x, a) def= (λ(x, a) ∪ D(δ(x, a), L)) \ (U(x, L) ∪ D(x, L)), for every state
x ∈ Q and input symbol a ∈ Σ.

We extend Φ on transducers, i.e., if T = (A,L) then Φ(T) def= (A,Φ(L)).
Output symbols in labels of transducers can be sometimes moved along directed
paths keeping the resulting transducer equivalent. Intuitively Φ(T) is the result
of moving those symbols as close to the initial state as possible.

We will prove below that transformation Φ preserves the semantics of the
transducer.

Theorem 1. For any transducer T we have |T | = |Φ(T)|.

Proof. Let T = (A,L), A = (Q, s, δ, F), L = (I, λ), and Φ(L) = (I ′, λ′).
We prove that ∀w ∈ Σ∗∀α ∈ ∆(α ∈ |T |(w)⇔ α ∈ |Φ(T)|(w)).

304 Jurek Czyzowicz, Wojciech Fraczak, and Andrzej Pelc

a/{γ}

∅

b/{αγ}

∅

a/{β}
a/{β}

a/{α}

b/{αγ}

a/{αβ}

a/{βγ}

c/{β}
c/{β}

a/{γ}

c/{β}

∅

a/{β}

b/{αγ}

a/{γ}

c/{β}

∅

a/{β}

a/{β}

a/{α}

c) d)b)a)

a/{αβ}

b/{αγ}

a/{αβγ}

Fig. 2. Equivalent transducers

1. ∀w ∈ Σ∗∀α ∈ ∆(α ∈ |Φ(T)|(w)⇒ α ∈ |T |(w))
Let us take the shortest prefix w′ of w, such that α ∈ I ′ ∪ λ′(s, w′).
If w′ is the empty word then α ∈ I ∪D(s, L) and thus α ∈ |T |(w).
If w′ is not the empty word, i.e., w′ = w′′a for some input word w′′ and
an input symbol a, then α ∈ λ′(δ(s, w′′), a), i.e., α ∈ λ(δ(s, w′′), a) or α ∈
D(δ(s, w′), L). In both cases this implies α ∈ λ(s, w) and thus α ∈ |T |(w).

2. ∀w ∈ Σ∗∀α ∈ ∆(α ∈ |T |(w)⇒ α ∈ |Φ(T)|(w))
Let us take the shortest prefix w′ of w, such that α ∈ I ∪ λ(s, w′).
If w′ is the empty word then α ∈ I. Since I ⊆ I ′ we have α ∈ |Φ(T)|(w).
If w′ is not the empty word, i.e., w′ = w′′a for some input word w′′ and an
input symbol a, then α ∈ λ(δ(s, w′′), a) and α �∈ U(δ(s, w′′), L).
Two cases are possible:
(a) α ∈ λ′(δ(s, w′′), a)

In this case α is obviously present in λ′(s, w), i.e., α ∈ |Φ(T)|(w).
(b) α �∈ λ′(δ(s, w′′), a)

By definition of Φ(L) we have α ∈ D(δ(s, w′′), L) ∪ U(δ(s, w′′), L), thus
α ∈ D(δ(s, w′′), L).
If for all prefixes z of w′′ we have α ∈ D(δ(s, z), L) then α will be in I ′.
Otherwise, we find a non-empty prefix vb (v ∈ Σ∗, b ∈ Σ) of w′′ such
that α �∈ D(δ(s, v), L) and α ∈ D(δ(s, vb), L) (notice that such a prefix
vb must exist). By definition λ′(δ(s, v), b) = λ(δ(s, v), b))∪D(δ(s, vb), L)\
(D(δ(s, v), L) ∪ U(δ(s, v), L)). Thus α ∈ λ′(δ(s, v), b) which implies α ∈
λ′(s, w), i.e., α ∈ |Φ(T)|(w). �

A naive idea of finding the canonical transducer equivalent to a given trans-
ducer T , would be to minimize Φ(T), hoping that such a minimal transducer is
unique. However, it turns out that this is not the case.

In Fig. 2 transducer (b) is the result of applying transformation Φ to trans-
ducer (a). Transducer (a) can be further minimized by collapsing states δ(s, a)
and δ(s, b) yielding transducer (c), or by collapsing states δ(s, b) and δ(s, c) yield-
ing transducer (d). This example shows that minimization of Φ(T) may, in case

Transducers with Set Output 305

of an arbitrary transducer T , lead to many different transducers. Hence we have
to proceed in a more subtle way. In the sequel, we define a class of transducers
called simple. For any transducer T we construct a simple transducer T ′ equiv-
alent to it. Then we show that Φ(T ′) is also a simple transducer, and finally
we prove that there exists exactly one minimal simple transducer equivalent to
Φ(T ′). This unique transducer will then be taken as the canonical transducer
Ψ(T).

3 Simple Transducers

In this section we introduce a class of transducers which, on one input word,
never produce the same output symbol twice. This will enable us to produce
efficiently a canonical (unique) representative of each equivalence class.

Definition 2. A labeling L = (I, λ) of a dfa A = (Q, s, δ, F) is simple if
for any word ww′ accepted by A, i.e., δ(s, ww′) ∈ F , we have (I ∪ λ(s, w)) ∩
λ(δ(s, w), w′) = ∅. A transducer is simple if its labeling is simple.

In Fig. 2 transducer (b) is simple however (a), (c), and (d) are not.
We now describe a transformation Ξ which, given a transducer T = (A,L),

produces a transducer Ξ(T) which is simple and equivalent to T .

Definition 3. Let T = (A,L) be a transducer with A = (Q, s, δ, F) and L =
(I, λ). We define Ξ(T) = (A′, L′) with A′ = (Q′, s′, δ′, F ′) and L′ = (I, λ′) in
the following way:

– Q′ ⊆ Q × 2∆, i.e., states are pairs of original states with subsets of output
symbols;

– s′ = (s, I);
– δ′((x,O), a) = (δ(x, a), O ∪ λ(x, a));
– (x,O) ∈ F ′ whenever x ∈ F ;
– I ′ = I;
– λ′((x,O), a) = λ(x, a) \O.

The following lemma shows that Ξ transformation of the transducer preserves
its semantics. The next lemma will prove that the resulting transducer is simple.

Lemma 1. For every input word w ∈ Σ∗ we have:

1. δ′(s′, w) = (δ(s, w), λ(s, w) ∪ I);
2. I ∪ λ(s, w) = I ′ ∪ λ′(s′, w).

Proof. The property can be proved by induction on the length of w. It holds for
w being empty word. Let suppose that the property holds for any w of length
k. Consider a word w′ of length k + 1, w′ = wa.

1. δ′(s′, wa) = δ′(δ′(s′, w), a). By the induction hypothesis we have, δ′(s′, wa) =
δ′((δ(s, w), O), a) = (δ(δ(s, w), a), O′), for O = I ∪ λ(s, w) and O′ = (O ∪
λ(δ(s, w), a)). Finally, O′ = O ∪ λ(δ(s, w), a) = I ∪ λ(s, w) ∪ λ(δ(s, w), a) =
I ∪ λ(s, wa). I.e., δ′(s′, wa) = (δ(s, wa), I ∪ λ(s, wa)).

306 Jurek Czyzowicz, Wojciech Fraczak, and Andrzej Pelc

2. λ′(s′, wa) = λ′(s′, w) ∪ λ′(δ′(s′, w), a) and δ′(s′, w) = (δ(s, w), I ∪ λ(s, w)).
By the induction hypothesis and the definition of λ′, λ′(s′, wa) = λ(s, w) ∪
(λ(δ(s, w), a)\I∪λ(s, w)). Finally, I ′∪λ′(s′, wa) = I∪λ(s, w)∪λ(δ(s, w), a) =
I ∪ λ(s, wa). �

Lemma 2. Transducer Ξ(T) is simple.

Proof. Let T = (A,L), A = (Q, s, δ, F), L = (I, λ), Ξ(T) = (A′, L′), A′ =
(Q′, s′, δ′, F ′), and L′ = (I ′, λ′). For every word ww′ accepted by A (and thus,
by Lemma 1, also by A′) we have (I ′∪λ′(s′, w))∩λ′(δ′(s′, w), w′) = (I∪λ(s, w))∩
(λ(δ(s, w), w′) \ (I ∪ λ(s, w)) = ∅. �
Lemmas 1 and 2 imply the following theorem.

Theorem 2. For any transducer T there exists a simple transducer T ′ such that
|T | = |T ′|.

The next lemma shows that the transformation Φ preserves simplicity.

Lemma 3. If L is a simple labeling then so is Φ(L).

Proof. Let L = (I, λ), Φ(L) = (I ′, λ′) be labelings of dfa A = (Q, s, δ, F).
Suppose that Φ(L) is not simple. Then there is a word ww′ accepted by A

such that (I ′∪λ′(s, w))∩λ′(δ(s, w), w′) �= ∅. Since I ′ ⊆ U(x, L)∪D(x, L) for every
state x ∈ Q, we have I ′∩λ′(δ(s, w), w′) = ∅ and thus λ′(s, w)∩λ′(δ(s, w), w′) �= ∅.

Without loss of generality we suppose that w = w1aw2, w′ = bw3, and there
exists an input symbol α such that α ∈ λ′(δ(s, w1), a)∩λ′(δ(s, w1aw2), b). Hence

α ∈ λ(δ(s, w1), a) ∪D(δ(s, w1a), L) (4)
α �∈ D(δ(s, w1aw2), L) (5)
α ∈ λ(δ(s, w1aw2), b) ∪D(δ(s, w1aw2b), L) (6)

(4) and (5) imply α ∈ λ(δ(s, w1), aw2), and (6) implies α ∈ λ(δ(s, w1aw2), bw3).
Hence α ∈ λ(s, w) ∩ λ(δ(s, w), w′), which contradicts L being simple. �

A transducer may be viewed as a finite state automaton accepting words over
both (input and output) alphabets. The canonical form of the transducer will
be obtained as the minimization of such automaton.

Definition 4. Let A = (Q, s, δ, F) be a dfa and L = (I, λ) its labeling. We
call in-out word of the transducer T = (A,L) any finite list of pairs ω =
(a1, o1) . . . (ak, ok) with ai ∈ Σ, oi = λ(δ(s, a1 . . . ai−1), ai), for i ∈ [1, k], and
such that δ(s, w) ∈ F , for w = a1a2 . . . ak.

Theorem 3. Let T1 = (A1, Φ(L1)), T2 = (A2, Φ(L2)) be equivalent simple trans-
ducers with labelings Φ(L1) = (I1, λ1) and Φ(L2) = (I2, λ2), respectively. Then
I1 = I2 and the sets of in-out words of T1 and T2 are equal.

Transducers with Set Output 307

Proof. I1 = I2 because this is the intersection of all possible results which for
both transducers are the same if they are equivalent.

Let A1 = (Q1, s1, δ1, F1) and A2 = (Q2, s2, δ2, F2).
Take an input word w accepted by the transducers. By equivalence of T1

and T2 we have |T1|(w) = |T2|(w), i.e., I1 ∪ λ1(s1, w) = I2 ∪ λ2(s2, w). Since
I1 = I2 and the labelings are simple thus Ii ∩ λi(si, w) = ∅, for i ∈ {1, 2}, we
have λ1(s1, w) = λ2(s2, w).

Take a letter α ∈ λ1(s1, w). Let w1a1, w2a2 be unique prefixes of w, with wi ∈
Σ∗ and ai ∈ Σ, for i ∈ {1, 2}, such that α ∈ λ1(δ1(s1, w1), a1)∩λ2(δ2(s2, w2), a2).

We prove that in-out words in T1 and T2 are equal by showing that w1 and
w2 must be equal.

Suppose not. Without loss of generality, let w1 be a proper prefix of w2. By
simplicity and definition of Φ(L2), α �∈ λ2(s2, w1a) and α �∈ D(δ2(s2, w1a), L2).
Thus there is a word w′ such that α �∈ λ2(δ2(s2, w1a), w′) and δ2(s2, w1w

′) ∈ F2.
Hence α �∈ |T2|(w1w

′) whereas α ∈ |T1|(w1w
′), which contradicts the equivalence

of T1 and T2. �

4 The Algorithm for Finding the Canonical Transducer

In this section we present an algorithm which, given a transducer T of size n,
finds the canonical transducer Ψ(T) equivalent to T , in time O(n log n).

Algorithm Canonical (T).

1. Compute T ′ = Ξ(T) (a simple transducer equivalent to T).
2. Compute Φ(T ′).
3. Compute Ψ(T), i.e., the transducer which is the result of minimization of
Φ(T ′) treated as a dfa on in-out words.

The following result shows that, given any transducer T , Algorithm Canonical
(T) correctly computes the canonical transducer equivalent to T .

Theorem 4. For any equivalent transducers T1, T2, we have Ψ(T1) = Ψ(T2).

Proof. Let T1 and T2 be equivalent transducers. By Theorem 2 and transitivity of
transducer equivalence, transducers Ξ(T1) and Ξ(T2) are equivalent. By Lemma
3 and Theorem 1, transducers Φ(Ξ(T1)) and Φ(Ξ(T2)) are simple equivalent
transducers. By Theorem 3, these transducers, viewed as automata, accept the
same sets of in-out words. Hence their minimization (as automata over in-out
words) yields the same result. �

It remains to estimate the complexity of Algorithm Canonical. To this end,
we need the following results.

Definition 5. Let A = (Q, s, δ, F) be a dfa. A transition (x, a), where x ∈ Q and
a ∈ Σ is called cyclic transition if there is a word w ∈ Σ∗ such that δ(x, aw) = x.
A labeling L = (I, λ) of A is called acyclic labeling if every cyclic transition (x, a)
in A is labeled by the empty set, λ(x, a) = ∅.

308 Jurek Czyzowicz, Wojciech Fraczak, and Andrzej Pelc

Lemma 4. Let L = (I, λ) be a labeling of dfa A = (Q, s, δ, F), x ∈ Q a state,
and w ∈ Σ∗ an input word. If λ(x,w) = ∅ then D(x, L) ⊆ D(δ(x,w), L).

Proof. From the definition of D(x, L) we have:

D(x, L) ⊆ {α ∈ ∆ | ∀v ∈ wΣ∗ ((δ(x, v) ∈ F)⇒ (α ∈ λ(x, v)))}

where wΣ∗ (⊆ Σ∗) denotes all input words starting by w. Thus D(x, L) ⊆
λ(x,w) ∪D(δ(x,w), L), i.e., D(x, L) ⊆ D(δ(x,w), L) while λ(x,w) = ∅. �

Corollary 1. If x and y are in an empty-labeled cycle, i.e., there is a word ww′

such that δ(x,w) = y, δ(y, w′) = x, and λ(x,ww′) = ∅, then D(x, L) = D(y, L).

Lemma 5. Given a simple transducer T of size n, the transducer Φ(T) can be
computed in time O(n).

Proof. It follows from Definition 1 that it is enough to compute the values of
D(x, L) and U(x, L), for all nodes x of T , in linear time. To this end, we construct
the following multi-graph G∗ (with labeled arcs), called the component graph of
the graph G underlying T [10]. Nodes of G∗ are strongly connected components
of G, and arcs are defined as follows. If there is a transition in T from v to w
with label a, then there is an arc from the component of v to the component of
w, with the same label a.

Let F be the set of nodes X of G∗, such that at least one element of X is
a finite state of T . For any node X of G∗, let Πd(X) be the set of all directed
paths from X to a node in F . For any path π, let L(π) be the union of labels
on π. Define D∗(X) =

⋂{L(π) | π ∈ Πd(X)}. Similarly, let J be the node of G∗

containing the initial node of T . For any node X of G∗, let Πu(X) be the set
of all directed paths from J to X. Define U∗(X) =

⋂{L(π) | π ∈ Πu(X)} ∪ I,
where I is the initial output of T .

By simplicity of T , all self-loops in G∗ have empty labels. This implies that
D(x, L) = D∗(X) and U(x, L) = U∗(X), where X is the strongly connected
component of x. On the other hand, observe that, since all self-loops in G∗

have empty labels, removing them from G∗ does not affect the values of D∗(X)
and U∗(X). Denote by G the multi-graph resulting from G∗ after removing all
self-loops. This is a directed acyclic multi-graph.

Given transducer T , the multigraph G can be computed in linear time, be-
cause strongly connected components of a graph can be obtained in time linear
in its size [11]. On the other hand, all sets D∗(X) and U∗(X) can be computed
in linear time, using topological sorting. Given those sets, and hence all sets
D(x, L) and U(x, L), the value of Φ(T) can be computed in linear time, using
Definition 1. �

Theorem 5. Let T be an arbitrary transducer of size n, over bounded size al-
phabets. Algorithm Canonical (T) computes Ψ(T) in time O(n log n).

Transducers with Set Output 309

Proof. Since alphabets are of bounded size, the size of Ξ(T) has the same order
of magnitude as that of T , i.e., O(n). By the construction from Definition 3,
step 1 of Algorithm Canonical (T) (computing transducer Ξ(T)) takes time
O(n). By Lemma 5, step 2 of Algorithm Canonical (T) takes time O(n). Finally,
minimization of Φ(Ξ(T)) takes time O(n log n) [3]. �

Remark. Notice that steps 1 and 2 of Algorithm Canonical (T) are executed
in linear time. Time O(n log n) is needed only because of the minimization pro-
cedure in step 3, [3]. However, if the underlying graph of the transducer is a
directed acyclic graph, then minimization can be carried out in linear time [12].
This implies that, in the case of such transducers, Algorithm Canonical (T)
computes Ψ(T) in linear time.

References

1. Azgani, S.: Using content-addressable memory for networking applications. Com-
munications Systems Design 5 (1999)

2. Jenkins, C.: Speed and throughput of programable state machines for classification
of OC192 data. In: Network Processors Conference, San Jose, California (2000)
6–24

3. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley (1979)

4. Eilenberg, S.: Automata, Languages, and Machines. Volume A. Academic Press
(1974)

5. Berstel, J.: Transductions and Context-Free Languages. Teubner (1979)
6. Mohri, M.: Finite-state transducers in language and speech processing. Computa-

tional Linguistics 23 (1997) 269–311
7. Mohri, M.: Minimization algorithms for sequential transducers. Theoretical Com-

puter Science 234 (2000) 177–201
8. Gupta, P., McKeown, N.: Packet classification on multiple fields. In: SIGCOMM.

(1999) 147–160
9. Lakshman, T.V., Stiliadis, D.: High-speed policy-based packet forwarding using

efficient multi-dimensional range matching. In: SIGCOMM. (1998) 203–214
10. Tarjan, R.E.: Depth first search and linear graph algorithms. SIAM Journal on

Computing 1 (1972) 146–160
11. Tarjan, R.E.: Finding dominators in directed graphs. SIAM Journal on Computing

3 (1974) 62–89
12. Revuz, D.: Dictionnaires et lexiques: méthodes et algorithmes. PhD thesis, Institut

Blaise Pascal, Paris, France (1991) LITP 91.44.

Self-assembling Finite Automata

Andreas Klein1 and Martin Kutrib2

1 Institut für Mathematik, Universität Kassel
Heinrich Plett Straße 40, D-34132 Kassel, Germany

klein@mathematik.uni-kassel.de
2 Institut für Informatik, Universität Giessen

Arndtstraße 2, D-35392 Giessen, Germany
kutrib@informatik.uni-giessen.de

Abstract. We investigate a model of self-assembling finite automata.
An automaton is assembled on demand during its computation from
copies out of a finite set of items. The items are pieces of a finite automa-
ton which are connected to the already existing automaton by overlaying
states. Depending on the allowed number of such interface states, the de-
gree, infinite hierarchies of properly included language families are shown.
The presented model is a natural and unified generalization of regular
and context-free languages since degrees one and two are characterizing
the finite and pushdown automata, respectively. Moreover, by means of
different closure properties nondeterministic and deterministic language
families are separated.

1 Introduction

Self-assembly appears in nature in several ways. One of the simplest mecha-
nisms is the merging of drops of water when placed close together. The process
is directed by minimization of potential energy and, thus, an example for un-
coded self-assembly. On the other extreme in complexity protein molecules inside
biological cells self-assemble to reproduce cells each time they divide. In this ex-
ample the assembly instructions are built in the components and, therefore, it
is coded self-assembly [4]. Originally, the study of self-assembly was motivated
by biologists. A well-studied example is the assembly of bacteriophages, a type
of virus which infects bacterial cells [1]. Formal investigations in this field are
accompanied by the development of corresponding computational models which
are also of great interest from an engineering point of view. An introduction
can be found in [8] where an automaton model of self-assembling systems is
presented.

Here, in some sense, we adapt self-assembly to the theory of automata and
formal languages. Basically, the idea is to assemble an automaton during its
computation. Therefore, we provide a finite set of items, the so-called modules.
The automata are assembled from module copies on demand. The assembling
rules are encoded by the state transition function. Starting with one piece of
a finite automaton during the computation so-called assembling transitions are

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 310–319, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Self-assembling Finite Automata 311

traversed that direct the assembling of another copy of some item in a well-
specified manner.

Each of the modules has a set of entry and a set of return states which
together are called interface states. An assembling transition specifies how the
new copy of the module fits to the already existing part of the automaton. The
connection is made by overlaying the interface states by existing states. So the
result of the self-assembly is a finite automaton, but the number of its states may
depend on the input. It will turn out that the generative capacity of such models
depend on their degree, i.e. the number of interface states of the modules.

Related to the work of the present paper are the so-called self-modifying
finite automata [5,6,7,9]. In this model modifications of the automaton are al-
lowed during transitions. The modifications include adding and deleting states
and transitions. A weak form of self-modifying automata has been shown to ac-
cept the metalinear languages as well as some other families of context-free and
non-context-free languages. Less restricted variants can accept arbitrarily hard
languages, even non-recursive ones.

Since assembling modules sounds like calling subroutines another related
paper is [3], where finite automata are considered that have a stack for storing
return addresses (states). Every time a final state is entered the computation
continues in the state at the top of the stack. Depending on the number of states
which may be stored during one transition an infinite hierarchy in between the
regular and context-free languages is shown.

Here by means of self-assembling finite automata of degree k we obtain a
natural and unified generalization of finite automata and pushdown automata. In
particular, infinite hierarchies depending on the degree are shown. For degree one
and two the regular and context-free languages are characterized, respectively.
Moreover, some closure properties are proved which lead to a separation result
between nondeterministic and deterministic computations.

2 Self-Assembling Finite Automata

In order to introduce the model under consideration in more detail at first we
define the basic items, the modules, which are used in the assembling process
more formally:

Definition 1. Let u, v ∈ N0 be constants. A (nondeterministic) module with u
entries and v exits (u:v-module) is a system 〈Q, I,O,A, δ, F 〉, where

1. Q is the finite set of inner states,
2. I = {r1, . . . , ru} is the ordered set of u entry states such that I ∩Q = ∅,
3. O = {ru+1, . . . , ru+v} is the ordered set of v return states such that

O ∩ (Q ∪ I) = ∅,
4. A is the finite set of input symbols,
5. The module transition function δ maps Q×A to the finite subsets of

Q ∪O ∪ (N×Q+ × (Q ∪O)+) and I ×A to the subsets of Q,
6. F ⊆ Q ∪ I ∪O is the set of accepting (or final) states.

312 Andreas Klein and Martin Kutrib

So, the nondeterministic transition function may map states to states in
which case we have state changes without assembling new items as usual.

In the second case δ requires to assemble a new copy of a module which is
identified by an index from N. The interface states I ′ and O′ of the new module
are overlayed by the states specified by Q+× (Q∪O)+. From this point of view
the restrictions of δ are convenient and natural: A return state is for exit purposes
and, therefore, δ is not defined for states in O. Otherwise, a return state would
at the same time be an entry state. Conversely, an entry state cannot be reached
from inside the module. Otherwise it also would be a return state. Finally, after
assembling a new module the computation should enter the module for at least
one time step without assembling further modules, i.e., I × A is mapped to
subsets of Q only.

Since modules are the basic items from which k-self-assembling finite au-
tomata are assembled, for their definition we need to ensure that only pieces are
connected that fit together.

Definition 2. Let k ∈ N0 be a constant. A nondeterministic self-assembling
finite automaton M of degree k (k-NFA) is an ordered set 〈M0, . . . ,Mm〉 of
modules over a common input alphabet A, where for all 0 ≤ i ≤ m the module
Mi = 〈Q, I,O,A, δ, F 〉
1. has at most k interface states, i.e. |I|+ |O| ≤ k,
2. for all (s, a) ∈ (Q×A) the assembling transition(

j, (p1, . . . , pu), (pu+1, . . . , pu+v)
) ∈ δ(s, a) implies

(a) j ≤ m and Mj is a u:v-module,
(b) {p1, . . . , pu+v} are different and s ∈ {p1, . . . , pu},

3. M0 is a 0:0-module with a designated starting state s0.

Condition 2b ensures that at most two states are overlayed and, moreover,
an assembling transition transfers the computation into the new module.

The general behavior of a k-NFA is best described by configurations and
their successor configurations.

A configuration ct ofM at some time t ≥ 0 is a description of its global state
which is a set of existing states St, transition and assembling rules given by a
mapping δt from St×A to the finite subsets of St∪

(
N×S+

t ×S+
t

)
, the currently

active state st, the current set of final states Ft and the remaining input word
wt. Thus, a configuration is a 5-tuple ct = (St, δt, st, Ft, wt).

The initial configuration c0 = (Q0, δ0, s0, F0, w) at time 0 is defined by
the input word w = a0 · · · an−1 ∈ A∗ and the components of module M0 =
〈Q0, ∅, ∅, A, δ0, F0〉, where s0 is the designated starting state from Q0.

Let ct = (St, δt, st, Ft, at · · · an−1) be a configuration, then for each element
from δt(st, at) successor configurations (St+1, δt+1, st+1, Ft+1, at+1 · · · an−1) are
defined as follows.

During an ordinary state transition, as usual for finite automata, only the
active state changes.

During an assembling transition a copy of the new module Mj has to be
created, the active state has to be computed and the interface states have to be
overlayed, what includes the appropriate update of the rules.

Self-assembling Finite Automata 313

q� q�

q� q�

s� q� q�
a� a� a������q��q�	��q�		

a�

a������q��q�	��q�		

a� a�

r� q�

r� q�

r� q�
a�

a������q��q�	��q�		

a������q��q�	��q�		

a�

a�
r� q�

r�

q�

r�

a�

a�

a�

M� M� M�

Fig. 1. Modules of a 3-DFA accepting L3.

Let
(
j, (p1, . . . , pu), (pu+1, . . . , pu+v)

) ∈ (N × S+
t × S+

t) be an element from
δt(st, at).

The copy M̄j is created by renaming all states and correspondingly the tran-
sition rules such that they are different from the states in St. Set St+1 = St ∪ Q̄
and identify the entry states of M̄j by p1, . . . , pu and the return states by
pu+1, . . . , pu+v. Accordingly, Ft+1 is the union of all present final states.

In order to define st+1 we first observe that by definition state st has to
belong to {p1, . . . , pu}, say st = pl. Next st+1 is chosen from the set of possible
successor states (under input at) of the unique state which is overlayed by pl,
i.e., the computation enters the newly assembled module.

It remains to join the mappings δt and δ̄ to δt+1. This is done by taking the
mapping δ̄ of M̄j and textually rename each occurrence of interface states by
their overlaying states. Finally, the traversed assembling transition is replaced
by an ordinary state transition.

An input word a0 · · · an−1 is accepted by a k-NFA iff the set of possible
configurations at time n (i.e., after processing the whole input) is not empty and
contains at least one configuration whose active state sn belongs to the set of
accepting states Fn.

A k-NFA is deterministic (k-DFA) iff for any input all configurations have
deterministic mappings, i.e., δt : St × A → St ∪ (N × S+

t × S+
t) is a partial

function.
The family of all languages that are acceptable by some k-NFA (k-DFA) is

denoted by L(k-NFA) (L(k-DFA)).
The following example illustrates self-assembling finite automata more figu-

rative. It becomes important for proving hierarchies in later sections.

Example 3. For any constant k ≥ 1 let Ak = {a1, . . . , ak} be an alphabet and
Lk = {an

1 · · · an
k | n ∈ N}.

In order to show that Lk is accepted by a k-DFA we present constructions
for k = 3 which can easily be generalized to arbitrary k.

Figure 1 shows the graphical representation of a 3-DFA M = 〈M0,M1,M2〉
that accepts L3. Assembling transitions are indicated by double arrows. The
assembled 3-DFA after accepting the input a4

1a
4
2a

4
3 is depicted in Figure 2.

314 Andreas Klein and Martin Kutrib

q� q� q�

� q��

� q���

�

q� q� q�

� q��

�

q���

�

s� q� q� q�

� q��

�

M� M� M� M�

a�

a�

a� a� a�

a������q��q�	��q�		 a������q
�

�
�q

�

�
	��q�

�
		

a������q
��

�
�q

��

�
	��q��

�
		

a�

a� a�

a� a�

a�

a� a� a�

Fig. 2. Structure of a 3-DFA accepting L3 after processing a4
1a

4
2a

4
3.

The self-assembling finite automata in Example 3 have an important and in-
teresting property, they are loop-free. Exactly this restriction of the model yields
a natural and unified generalization of finite and pushdown automata. In partic-
ular, the generative capacity of self-assembling finite automata depends on their
degree. Later on we are going to show infinite hierarchies of properly included
language families for loop-free and unrestricted variants. Here we present the re-
sults concerning degrees 1 and 2. We prove that loop-free 1-DFAs accept exactly
the regular and loop-free 2-NFAs exactly the context-free languages.

Definition 4. Let k ≥ 1 be a constant. A computation of a self-assembling
finite automaton M of degree k is loop-free if M enters each of its existing
states at most once. An automaton M is loop-free if all of its computations are
loop-free.

In order to distinguish loop-free languages we denote the family of all lan-
guages that are acceptable by some loop-free k-NFA (k-DFA) by Llf (k-NFA)
(Llf (k-DFA)).

Theorem 5. Every context-free language is accepted by some loop-free 2-NFA.

Proof. It is well known that for every context-free language not containing λ
there exists a grammar in Greibach normal form. I.e., every production is of the
form X → aγ, where X is a variable, a a terminal and γ a possibly empty word
of variables. In the following a loop-free 2-NFA is constructed that computes
leftmost derivations of such a grammar G. Subsequently, the empty word can be
included simply by making the starting state final.

For each production X → aY1 · · ·Yn in G whose right-hand side has at least
one variable a module MY1···Yn is constructed as follows: Q = {Y1, . . . , Yn},
I = {r1}, O = {r2}, F = ∅, δ(r1, a) = {Y1}. For all x ∈ A:

Yi+1 ∈ δ(Yi, x) iff there exists the production Yi → x in G,
r2 ∈ δ(Yn, x) iff there exists the production Yn → x in G,

(j, (Yi), (Yi+1)) ∈ δ(Yi, x) iff there exists a production Yi → xZ1 · · ·Zl in G
and Mj = MZ1···Zl

(j, (Yn), (r2)) ∈ δ(Yn, x) iff there exists a production Yn → xZ1 · · ·Zl in G
and Mj = MZ1···Zl

Self-assembling Finite Automata 315

q�

s� q�a

b

a�����q����q���

M�

r� q�

r� q�

q�

a

c

a�����q����q���

b

b

M�

Fig. 3. Modules of a 2-DFA accepting L of Example 10.

Therefore, with input symbol x, the computation process assembles a module
Mγ iff a leftmost derivation step of G generates xγ. The process returns from
Mγ iff the variables γ have been completely replaced by terminals.

In order to complete the construction module M0 is defined as the others,
with the exception that r1 is omitted, r2 is now an inner state, the axiom of G
is the second inner state, F = {r2} and the starting state is the axiom.

Altogether, the 2-NFA starts in a state that corresponds to the axiom of G,
simulates leftmost derivations and returns to the unique final state only if all
variables that appear during the derivation of the input could be replaced. ��

In order to complete the characterization we need also the converse of The-
orem 5. A proof can be found in [2].

Theorem 6. The family Llf (2-NFA) is equivalent to the context-free languages.

Now we climb down the Chomsky-hierarchy and consider regular languages.

Theorem 7. [2] Every 1-NFA language is regular.

Theorem 8. [2] Every regular language is accepted by some loop-free 1-DFA.

Corollary 9. The nondeterministic families L(1-NFA), Llf (1-NFA) and the
deterministic families L(1-DFA), Llf (1-DFA) are equivalent to the regular lan-
guages.

These results immediately raise the question for the power and limitations
of loop-freeness in connection with self-assembling finite automata. Are all loop-
free automata with a given degree equivalent to unrestricted automata with the
same degree? Quite the contrary, there is a difference for all k ≥ 2. The next
example proves the claim for k = 2. In the next section it is extended to arbitrary
degrees.

Example 10. The 2-DFA whose modules are depicted in Figure 3 accepts the
language L =

{
an1bn1 · · · anj bnjamc | j ∈ N, ni ≥ 2 for 1 ≤ i ≤ j and m <

max{n1, . . . , nj}
}

. Since L is not context-free it does not belong to Llf (2-NFA).

In order to determine where the generative power of k-NFAs ends up here
we state that for any k ∈ N the family L(k-NFA) is a proper subfamily of the
context-sensitive languages.

316 Andreas Klein and Martin Kutrib

3 Hierarchies

Now we are going to explore the relative computation power of self-assembling
finite automata. In particular, we compare nondeterministic and deterministic
computations and investigate the relationships between degrees k and (k + 1).

The following pumping lemma is in some sense weaker than others, since it
contains no statement about the usual ordering in which the repeated subwords
appear.

Lemma 11. Let k ∈ N be a constant and M be a loop-free k-NFA accepting
a language L. Then there exists a constant n ∈ N such that every w ∈ L with
|w| ≥ n may be written as x0y1x1y2 · · · ykxk, where |y1| + |y2| + · · · + |yk| ≥ 1,
and for all i ∈ N there exists a word w′ ∈ L such that w′ is in some order a
concatenation of the (sub)words x0, x1, . . . , xk and i times yj for each 1 ≤ j ≤ k.

Proof. M consists of finitely many modules each having finitely many interface
states. For long enough words from L there exists an accepting computation
such that a module is assembled at least twice whereby the ordering of passed
through interface states is identical. Obviously, the necessary input length can
be calculated. It depends on M only and defines the constant n.

Now let w be an accepted input with |w| ≥ n. We denote the first instance of
the module by M̂ and the second one by M̃ . The input symbols consumed until
M̂ is assembled define the subword x0. Thus, after processing x0 an interface
state of M̂ and M̃ appears for the first time. Next we consider the sequence of
input symbols until the next interface state (of M̂ or M̃) is entered and define
it to be y1. We continue as follows (cf. Figure 4): Input sequences connecting
return states of M̂ with entry states of M̂ , or entry states of M̃ with return
states of M̃ form the subwords xj . Input sequences connecting each other pair
of interface states from M̂ or M̃ form the subwords yj . The input sequence after
entering an interface state for the last time forms the subword xk.

Since there must exist at least one path from an entry state of M̂ to an entry
state of M̃ , at least one subword yi is not empty. On the other hand, since M
is loop-free and its modules have at most k interface states, there exist at most
k paths defining subwords yj .

From the given accepting computation we derive another one by using a third
copy M̄ of the module and placing it in between the paths connecting M̂ and
M̃ . The idea is as follows:

Since the interface states appearing in the same ordering M̄ behaves like
M̂ when the computation enters one of its entry states. Thus, the connections
between M̄ and M̃ are identical to the connections between M̂ and M̃ . On
the other hand, M̄ behaves like M̃ when the computation enters one of its
return states. Thus, the connections between M̂ and M̄ are identical to the
connections between M̂ and M̃ . But the connections are exactly the subwords
yj . We conclude that the new accepting computation is for an input that is a
concatenation of x0, . . . , xk and 2 times yj for each 1 ≤ j ≤ k. Trivially, we can
insert i copies of M̄ . ��

Self-assembling Finite Automata 317

�M

x�
�

y��

x� �

�

x� �

�M�

x��

�

x��

y� �

x�

y�

y�

y�

�M

x�
�

y��

x� �

�

x� �

�M

�

y��

�

�

y� �

�M�

x��

�

x��

y� �

x�

y�

y�

y�

y�

y�

y�

Fig. 4. Accepting computations for x0y1x1y2x2y3x3y4x4y5x5 (left) and
x0y1x1y2y1y3x3y4y2x2y3y5y4x4y5x5 (right).

We apply the pumping lemma to the language Lk = {an
1 · · · an

k | n ∈ N} of
Example 3.

Lemma 12. Let k ∈ N be a constant, then Lk+1 does not belong to Llf (k-NFA).

Since the constructions in Example 3 are deterministic and loop-free, as an
immediate corollary we obtain hierarchies of loop-free self-assembling automata.

Corollary 13. Let k ∈ N be a constant, then Llf (k-DFA) ⊂ Llf ((k + 1)-DFA)
and Llf (k-NFA) ⊂ Llf ((k + 1)-NFA).

Now we return to the question concerning the limitations of loop-freeness.
The answer has been given for the cases k = 1, 2. For k > 2 the question is
answered by the next result. It proves also that the pumping lemma does not
hold for unrestricted self-assembling finite automata.

Lemma 14. Let k ∈ N be a constant. There exists a language L ∈ L(3-DFA)
which does not belong to Llf (k-NFA).

Proof. The witness for the assertion is the language L = {an
1 (an

2a
n
3)+ | n ∈ N}.

A 3-DFA accepting L is a simple modification of the 3-DFA accepting the
language L3 given in Example 3. Simply insert a transition δ(q5, a2) = q3 in
module M0 and a transition δ(q2, a2) = q1 in module M2.

By the pumping lemma it is easy to see that L cannot be accepted by any
loop-free k-NFA for any k ∈ N. ��

Corollary 15. Let k ≥ 2 be a constant, then Llf (k-DFA) ⊂ L(k-DFA) and
Llf (k-NFA) ⊂ L(k-NFA).

The hierarchy result for loop-free self-assembling finite automata can be
adapted to the unrestricted case. Though the pumping argument requires loop-
freeness, the acceptors for the languages Lk may not contain any useful loop
even in the unrestricted case.

Lemma 16. Let k, k′ ∈ N be two constants and M be a k′-NFA accepting the
language Lk. Then during all accepting computations M does not enter any
existing state more than once.

318 Andreas Klein and Martin Kutrib

This observation suffices to apply the proof of the pumping lemma in order
to show that Lk cannot be accepted by any k-NFA.

Corollary 17. Let k ∈ N be a constant, then Lk+1 /∈ L(k-NFA) and, therefore,
L(k-NFA) ⊂ L((k + 1)-NFA) and L(k-DFA) ⊂ L((k + 1)-DFA).

4 Closure Properties under Boolean Operations

It turns out that the loop-free k-DFA languages are properly contained in the
loop-free k-NFA languages. Thus, nondeterministic and deterministic language
families are separated by different closure properties.

We start the investigation by showing that none of the families is closed
under intersection.

Theorem 18. Let k ≥ 2 be a constant. Then there exist languages L,L′ ∈
Llf (k-DFA) such that L ∩ L′ /∈ L(k-NFA). In particular, none of the families
Llf (k-DFA), Llf (k-NFA), L(k-DFA) and L(k-NFA) is closed under intersec-
tion.

Proof. Let L = {an
1 · · · an

ka
m
k+1 | m,n ∈ N} and L′ = {am

1 a
n
2 · · · an

k+1 | m,n ∈ N}.
In order to construct a loop-free k-DFA for L and L′ we only need minor mod-

ifications of the loop-free k-DFAs given in Example 3. But L∩L′ = {an
1 · · · an

k+1 |
n ∈ N} = Lk+1 which by Corollary 17 cannot be accepted by any k-NFA. ��

In order to disprove the nondeterministic closure under complement we prove
the closure under union. The following technical lemma prepares for the con-
struction. A proof can be found in [2].

Lemma 19. Let k ∈ N be a constant. For any (loop-free) k-NFAM there exists
an equivalent (loop-free) k-NFA M′ such that there is no assembling transition
from the starting state.

Theorem 20. Let k ≥ 2 be a constant, then Llf (k-NFA) and L(k-NFA) are
closed under union.

Proof. Let L and L′ be two k-NFA-languages. As usual for nondeterministic
devices the construction for L∪L′ relies on the idea that an acceptor can initially
guess whether the input belongs to L or L′. Technical problems are solved by
applying Lemma 19. The details are presented in [2]. ��

Corollary 21. Let k ≥ 2 be a constant, then Llf (k-NFA) and L(k-NFA) are
not closed under complement.

The corollary follows from the closure under union by de Morgan’s law: The
closure under complement would imply the closure under intersection. Now we
consider deterministic devices. One might expect their closure under complement

Self-assembling Finite Automata 319

by exchanging final and non-final states. But to this end the transition functions
need to be total mappings.

In order to make them total we have to cope with the situation that states
will eventually be overlayed by entry states of successor modules. Therefore, in
general more than one transition function must be considered. On the other
hand, some computations may enter these states without assembling the succes-
sor modules which implies that only one transition function must be total. The
problem can be solved for loop-free k-DFAs [2].

Lemma 22. Let k ∈ N be a constant and M be a loop-free k-DFA. Then there
exists an equivalent loop-free k-DFAM′ such that for any state in any reachable
configuration the local transition function is totally defined.

Theorem 23. Let k ∈ N be a constant, then Llf (k-DFA) is closed under com-
plement.

Since Llf (k-DFA) has been shown not to be closed under intersection but to
be closed under complement we obtain immediately:

Corollary 24. Let k ≥ 2 be a constant, then Llf (k-DFA) is not closed under
union.

From the different closure properties and for structural reasons the separation
of nondeterministic and deterministic loop-free languages follows.

Theorem 25. Let k ≥ 2 be a constant, then Llf (k-DFA) ⊂ Llf (k-NFA).

References

1. Casjens, S. and King, J. Virus assembly . Annual Review of Biochemistry 44 (1975),
555–604.

2. Klein, A. and Kutrib, M. Self-assembling finite automata. IFIG Research Report
0201, Institute of Informatics, University of Giessen, 2002.
http://www.informatik.uni-giessen.de/staff/kutrib/papers.html

3. Nebel, M. E. On the power of subroutines for finite state machines. J. Aut., Lang.
and Comb. 6 (2001), 51–74.

4. Penrose, L. S. Self-reproducing machines. Scientific American 200 (1959), 105–113.
5. Rubinstein, R. S. and Shutt, J. N. Self-modifying finite automata. Proc. of the

IFIP 13th World Computer Congress. Vol. 1 : Technology and Foundations, 1994,
pp. 493–498.

6. Rubinstein, R. S. and Shutt, J. N. Self-modifying finite automata – power and
limitations. Technical Report WPI-CS-TR-95-4, Computer Science Department,
Worcester Polytechnic Institute, 1995.

7. Rubinstein, R. S. and Shutt, J. N. Self-modifying finite automata: An introduction.
Inform. Process. Lett. 56 (1995), 185–190.

8. Saitou, K. and Jakiela, M. J. On classes of one-dimensional self-assembling au-
tomata. Complex Systems 10 (1996), 391–416.

9. Wang, Y., Inoue, K., Ito, A., and Okazaki, T. A note on self-modifying finite
automata. Inform. Process. Lett. 72 (1999), 19–24.

Repetition Complexity of Words

Lucian Ilie�,��, Sheng Yu���, and Kaizhong Zhang†

Department of Computer Science, University of Western Ontario
N6A 5B7, London, Ontario, Canada
{ilie,syu,kzhang}@csd.uwo.ca

Abstract. With ideas from data compression and combinatorics on
words, we introduce a complexity measure for words, called repetition
complexity, which quantifies the amount of repetition in a word. The
repetition complexity of w, r(w), is defined as the smallest amount of
space needed to store w when reduced by repeatedly applying the follow-
ing procedure: n consecutive occurrences uu . . . u of the same subword u
of w are stored as (u, n). The repetition complexity has interesting rela-
tions with well-known complexity measures, such as subword complexity,
sub, and Lempel-Ziv complexity, lz. We have always r(w) ≥ lz(w) and
could even be that the former is linear while the latter is only loga-
rithmic; e.g., this happens for prefixes of certain infinite words obtained
by iterated morphisms. An infinite word α being ultimately periodic is
equivalent to: (i) sub(prefn(α)) = O(n), (ii) lz(prefn(α)) = O(1), and
(iii) r(prefn(α)) = lg n + O(1). De Bruijn words, well known for their
high subword complexity are shown to have almost highest repetition
complexity; the precise complexity remains open. r(w) can be computed
in time O(n3(log n)2) and it is open, and probably very difficult, to find
very fast algorithms.

Keywords: words, repetition complexity, Lempel-Ziv complexity, sub-
word complexity, infinite words, iterated morphisms, ultimate periodic-
ity, de Bruijn words, algorithms

1 Introduction

The repetitions in words constitute one of the oldest and most important prop-
erties of words. The study of repetitions dates back to the pioneering work of
Thue [Th06,Th12] at the beginning of the last century. He was concerned with
infinite repetition-free words. Ever since, various aspects of repetitions in words
were quite extensively investigated, see, e.g., [Lo83], [ChKa97], [Lo02] and the
references therein.

� corresponding author
�� Research partially supported by NSERC grant R3143A01.

��� Research partially supported by NSERC grant OGP0041630.
† Research partially supported by NSERC grant OGP0046373.

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 320–329, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Repetition Complexity of Words 321

In the present paper we investigate repetition in words from a new perspec-
tive: word complexity. Several measures of the complexity of words were proposed
in the literature. The complexity of a word can be considered from different
points of view: the shortest program to generate it (Kolmogorov [Ko65], see also
[Ma66,Ch74]), the shortest compressed form (Lempel and Ziv [LeZi76]), the num-
ber of subwords ([Lo83,dB46]), the number of maximal repetitions ([KoKu99]),
the highest order of repetitions ([De72]). The new complexity measure we intro-
duce concerns the amount of repetition in a word; we call it repetition complexity.
The basic idea is that the more the repetitions, the less the complexity. How-
ever, measures related with classical properties of words, such as the number of
repetitions or highest order of repetitions, seem to be less appropriate.

Our complexity measure takes ideas from both data compression theory and
combinatorics on words. Essentially, from a repetition of a word we remember
only the base and the exponent; that is, we replace n consecutive occurrences of
the same word uu · · ·u by (u, n). The complexity is the minimum size to which
a word is reduced by iteratively applying this procedure. As we shall see, the
problem of doing optimally such reductions can be very intricate.

We investigate the repetition complexity from several points of view. It turns
out that, aside from introducing challenging combinatorial problems, it is closely
connected with well-known complexity measures, such as Lempel-Ziv complexity
and subword complexity.

Due to the optimal compression it produces, [ZiLe77,HPS92], the Lempel-Ziv
complexity turns out to be always lower than the repetition complexity. More-
over, there are arbitrarily long words for which Lempel-Ziv complexity is much
smaller. To prove this, we use prefixes of infinite words obtained by iterating
exponential prolongable morphisms. The general result we use here, interesting
in its own, says that prefixes of such infinite words have logarithmic Lempel-Ziv
complexity.

Next, we give a result which relates all three complexities: subword, Lempel-
Ziv, and repetition. Certain orders of these complexities for prefixies of infinite
words turn out to be equivalent with ultimate periodicity. Precisely, an infi-
nite word being ultimately periodic is equivalent to any of the following three
properties, where n states for the length of the prefixes:

(i) the subword complexity of its prefixes is linear in n,
(ii) the Lempel-Ziv complexity of prefixes is constant, and

(iii) the repetition complexity of prefixes is lg n plus a constant.

In particular, these provide new characterizations of ultimate periodicity of
infinite words.

Another connection with the subword complexity is done via de Bruijn words.
These are well known as having very high repetition complexity. We give a lower
bound on their repetition complexity which is close to linear, that is, highest. We
believe they have actually linear repetition complexity. However, this remains
open.

Finally, we present an algorithm for computing the repetition complexity in
time O(n3(log n)2). Although this might seem slow, we give clear insight on why

322 Lucian Ilie, Sheng Yu, and Kaizhong Zhang

it seems a very difficult problem to find very fast algorithms to compute the
repetition complexity. Other open questions are proposed at the end.

Due to limited space, all proofs are omitted.

2 Repetition Complexity
We give here the basic definitions and notations we need in the paper. For basic
results in combinatorics on words we refer to [Lo83,ChKa97,Lo02].

Let A be a finite alphabet and A∗ the free monoid generated by A with the
identity ε; A+ = A∗ − {ε}. For u, v ∈ A∗, we say that v is a subword of u if
u = u′vu′′, for some u′, u′′ ∈ A∗; v is a prefix (resp., suffix) of u if u′ = ε (resp.,
u′′ = ε). The prefix relation is denoted ≤pref and the prefix of length n of w is
denoted prefn(w).

For any word w ∈ A∗, the length of w will be denoted by |w|. If w =
w1w2 · · ·w|w|, where wi ∈ A, then any integer i, 1 ≤ i ≤ |w| is called a posi-
tion in w; for 1 ≤ i ≤ |w|, i ≤ j ≤ |w|, w[i, j] denotes the subword wiwi+1 · · ·wj

of w; it has length j−i+1. For n ≥ 0, the nth power of w, denoted wn, is defined
inductively by w0 = ε, wn = wn−1w. w is primitive if there is no n ≥ 2 such that
w = un, for some word u. The primitive root of w, denoted ρ(w), is the unique
primitive word u such that w ∈ u+. The order of w is ord(w) = |w|

|ρ(w)| ; we have
w = ρ(w)ord(w). A period of w is p such that wi = wi+p, for any 1 ≤ i ≤ |w| − p.

A repetition in w is a subword of w of the form un for some nonempty word
u and integer n ≥ 2; n is the order and |u| is the period of the repetition. For
technical reasons, we formally define a repetition in w as a triple of positive
integers (i, p, e) such that the word (w[i, i + p − 1])e is a subword of w starting
at position i; that is, we have at position i a repetition of order e and period p.

We use repetitions to reduce the representation of a word, that is, we iter-
atively replace n consecutive occurrences of the same word uu · · ·u by u and
n. While the former takes n|u| units of space to represent, we assume that the
latter needs only |u| + �lg(n + 1)�. We shall assume decimal representation for
exponents but the results hold essentially unchanged for any base greater than
two. Notice that, if n is in decimal then un is shorter than n consecutive u’s, for
any word u, as soon as n ≥ 2; this helps avoiding special irrelevant cases in our
reasoning.

We shall call this procedure a reduction; un is a reduced form of uu · · ·u.
A word w can be iteratively reduced using the above procedure for repetitions
inside w. However, some repetitions cannot be reduced simultaneously (because
of overlapping), while further reductions can be applied inside already reduced
repetitions. We formally define the repetition complexity below.

Let D = {0, 1, . . . , 9} be the set of decimal digits, D∩A = ∅, and let 〈, 〉, ∧ be
three new letters; put T = A∪D∪{〈, 〉, ∧}. For a positive integer n, dec(n) ∈ D∗

is the decimal representation of n. (For a word w, |dec(|w|)| = �lg(|w| + 1)� is
the length of the decimal representation of the length of w.) Define the binary
relation ⇒⊆ T ∗ × T ∗

u⇒ v iff u = u1x
nu2, v = u1〈x〉∧〈dec(n)〉u2,

for some u1, u2 ∈ T ∗, x ∈ A+, n ≥ 2.

Repetition Complexity of Words 323

Let ⇒∗ be the reflexive and transitive closure of ⇒; if u ⇒∗ v, then v is a
reduced form of u. Define also a morphism h : T ∗ → (A ∪ D)∗ which simply
erases all letters from {〈, 〉, ∧} and keeps those in A∪D unchanged. The repetition
complexity of a word w ∈ A∗, denoted r(w), is formally defined as

r(w) = min
w⇒∗u

|h(u)|.

Such an u with r(w) = |h(u)| is called a shortest reduced form of w and w ⇒∗ u
is an optimal reduction of w.

We notice that our reduction relation ⇒ is not confluent. For instance, if
w = ababcbc, then we have two reductions which cannot be continued any
further: w ⇒ 〈ab〉∧〈2〉cbc and w ⇒ aba〈bc〉∧〈2〉. Actually, both are optimal
reductions.

Example 1 Consider the word w = ababaabababbbabb. Several possible reduc-
tions for w are shown below (the first is optimal and so r(w) = 10):

w ⇒〈ababa〉∧〈2〉bbbabb⇒〈ababa〉∧〈2〉〈b〉∧〈3〉abb⇒〈〈ab〉∧〈2〉a〉∧〈2〉〈b〉∧〈3〉abb
w ⇒∗ 〈ab〉∧〈2〉aaba〈babb〉∧〈2〉
w ⇒∗ a〈ba〉∧〈2〉〈ab〉∧〈2〉a〈b〉∧〈3〉a〈b〉∧〈2〉

The next lemma gives the bounds for the r-complexity.

Lemma 2 For any w ∈ A∗ with |w| ≥ 2, 1 + |dec(|w|)| ≤ r(w) ≤ |w|.

The next result concerns words with highest repetition complexity. Using
results from combinatorics of words we show that there are many of such words.

Theorem 3 The number of words over three (or more) letters of maximum
repetition complexity is exponential in terms of the length.

A property expected from a complexity measure is subadditivity. The com-
plexity we introduced has it.

Lemma 4 For any u, v, r(uv) ≤ r(u) + r(v).

3 The Definition of Repetition Complexity

We discuss here our choice of defining the repetition complexity. Another choice
could have been the highest order of a repetition. This is a local property which
does not necessarily affect the whole word. If the highest order is very low, then
it becomes more relevant. For instance, if it is less than 2, then we obtain our
highest complexity, but for higher values we can have totally different words.
For instance, the word ((· · · (a2

1a2)2 · · · an)2 has highest order of repetition 2
but it clearly contains a lot more repetition than a prefix of a 2−-free word
(see [ChKa97]). The difference with respect to the highest order of repetition is

324 Lucian Ilie, Sheng Yu, and Kaizhong Zhang

smallest but the repetition complexities are quite different: logarithmic for the
former and linear for the latter.

The number of repetitions is another candidate. A good example here is the
Fibonacci word defined by f = limn→∞ fn(a), where f(a) = ab, f(b) = a.
By [Cr81], any prefix of length n of f has Θ(n lg n) maximal repetitions (i.e.,
repetitions which cannot be extended). A much less complex word, an has only
one maximal repetition. For further results concerning the number of repetitions
in words, see [KoKu99] and the references therein.

Of course, the repetition in an is very long. We should therefore take into ac-
count both the number of repetitions and their lengths. But our complexity does
it. Moreover, it takes implicitly into account overlappings among the repetitions
by the fact that overlapping repetitions cannot be reduced simultaneously.

Finally, one could argue that the exponents should be counted as one unit
of space each, as in a RAM model. But then, an infinite word like aaa . . . would
have all prefixes reduced to size two which is unreasonable.

4 Subword and Lempel-Ziv Complexities

We recall two basic complexity measures of words to which we compare the
repetition complexity. These are the subword complexity and Lempel-Ziv com-
plexity.

For a word w, the subwords complexity of w is the number of subwords of w,
denoted by sub(w). The next lemma gives the optimal range for the subword
complexity.

Lemma 5 For any w, we have |w|+ 1 ≤ sub(w) ≤ 1 + 1
2 (|w|2 + |w|).

Essential for us in the above lemma is the fact that, on fixed alphabets,
sub(w) is at least linear and at most quadratic; e.g., for w = anbn, sub(w) =
Θ(|w|2).

One of the most famous complexity measure is the one introduced by Lempel
and Ziv [LeZi76] in connection with their algorithm for data compression, see
[ZiLe77,ZiLe78,CrRy94].

For a word w, we define the e-decomposition1 of w as the (unique) decompo-
sition w = w1w2 · · ·wk such that, for any 1 ≤ i ≤ k (with the possible exception
of i = k), wi is the shortest prefix of wiwi+1 · · ·wk which does not occur be-
fore in w; that is, wi does not occur as a subword of π(w1w2 · · ·wi), where the
application π removes the last letter of its argument.

The complexity measure introduced by Lempel and Ziv represents the number
of subwords in the e-decomposition of w; we denote it by lz(w).

Example 6 Consider the word w = aababbabbabb. The e-decomposition of w
is w = a.ab.abb.abbabb, where the subwords are marked by dots. Therefore,
lz(w) = 4.
1 ‘e’ comes from ‘exhaustive’; Lempel and Ziv [LeZi76] called this decomposition the

exhaustive production history of w; it is called f-factorization by [CrRy94] and s-
factorization by [Ma89].

Repetition Complexity of Words 325

We notice that the e-decomposition can be defined in the same way for right-
infinite words; at each step we take the longest prefix of the remaining infinite
suffix which does not appear before; this prefix may be the remaining suffix of
the infinite word, in which case it is the last element of the decomposition.

The next lemma is a weak form of a result of [LeZi76] which states the bounds
for the lz-complexity.

Lemma 7 lz(w) = O
(|w|

lg |w|
)
.

5 Relation with Lempel-Ziv Complexity

We shall compare in this section our complexity with the Lempel-Ziv complexity.
We start by investigating closer the r-complexity. As defined above, r(w) is the
size of h(v) for an optimal reduction u ⇒∗ v. At each step in this reduction,
we use a repetition (i, p, e) in w to decrease the size; denote the space saved by
reducing w according to this repetition by red(w, i, p, e) = (e − 1)p − |dec(e)|.
When w is understood, we write simply red(i, p, e). Of course, the saving in space
does not depend on the position of the repetition in w, but we still keep i as an
argument in order to be able to identify precisely what repetition we are talking
about.

The next lemma shows how an optimal reduction is obtained.

Lemma 8 For any word w, there is an ordered sequence of m ≥ 0 repetitions
in w

(i1, p1, e1), (i2, p2, e2), . . . , (im, pm, em) (1)

such that

r(w) = |w| −
m∑

k=1

red(ik, pk, ek), (2)

and any two repetitions (ik, pk, ek) and (il, pl, el), 1 ≤ k < l ≤ m, are
(i) either disjoint, i.e., [ik, ik + pkek − 1] ∩ [il, il + plel − 1] = ∅,
(ii) or the one appearing later in (1) is contained in the first period of the

other, i.e., ik ≤ il and il + plel ≤ ik + pk.

We give next an example of an application of Lemma 8.

Example 9 For the word

w = aabbbabbbbaaababbbabbbbaaabbababab,

an ordered sequence (1) can be (2, 13, 2), (2, 4, 2), (3, 1, 3), (11, 1, 3), (29, 2, 3). The
space saved by each of them is, in order, 12, 3, 1, 1, 3. Finally, r(w) = |w|−(12+
3 + 1 + 1 + 3) = 34− 20 = 14; w can be written as w = a((ab3)2ba3b)2b(ab)3.

We establish next the connection in one direction with the Lempel-Ziv com-
plexity and give some non-trivial examples showing the optimality of the result.

326 Lucian Ilie, Sheng Yu, and Kaizhong Zhang

Theorem 10 For any word w, r(w) ≥ lz(w).

Example 11 Consider n ≥ 1 and n different letters ai, 1 ≤ i ≤ n, and construct
the word

wn = ((. . . (a9
1a2)9a3)9 · · · an−1)9an.

We have |wn| = 9n−1
8 and r(wn) = 2n− 1 = Θ(lg |wn|). Denoting xn = w8

n−1an,
we have wn = wn−1xn. The e-decomposition of wn is wn = a1.x2.x3.x4. · · · .xn

and so lz(wn) = n = Θ(lg |wn|). Therefore the result in Theorem 10 cannot be
improved by more than a constant.

We now consider the relation in the opposite direction. We show that we have
the opposite case: there are words of high r-complexity but low lz-complexity.
We shall need a result about infinite words which is interesting in itself. We
denote by Aω the set of right-infinite words over A. For w ∈ A∗, we denote
wω = www · · · .

A morphism ϕ : A∗ → A∗ is called prolongable on a ∈ A if ϕ(a) ∈ aA+. If ϕ
is prolongable on a, then limn→∞ ϕn(a) ∈ Aω exists and we denote it by ϕ∞(a).
ϕ is called exponential if there are an integer n ≥ 1 and a real c > 1 such that,
for any w ∈ A∗, |ϕn(w)| ≥ cn|w|.
Lemma 12 Let ϕ : A∗ → A∗ be an exponential morphism prolongable on a ∈ A
and denote α = ϕ∞(a). Then, lz(prefn(α)) = O(lg n).

Remark 13 We notice that the condition on ϕ being exponential in Lemma 12
is essential as shown by the following example. Take ϕ : {a, b, c}∗ → {a, b, c}∗,
given by ϕ(a) = a, ϕ(b) = ba, ϕ(c) = cba. ϕ is prolongable on c and we have the
e-decomposition of ϕ∞(c)

ϕ∞(c) = c.b.a.baa.baaa.baaaa.baaaaa.baaaaaa · · ·
Hence lz(prefn(ϕ∞(c))) = Θ(

√
n).

Lemma 12 gives a relation in the other direction between r and lz.
Theorem 14 There are arbitrarily long words w for which r(w) = |w| and
lz(w) = O(lg |w|).

6 Periodic Infinite Words and Complexity of Prefixes
We show in this section a strong connection between all low r-, lz-, and sub-
complexities for prefixes of infinite words. This gives us also new characteriza-
tions of ultimately periodic infinite words. (The characterization (ii) resembles
the famous one by Coven and Hedlund [CoHe73].)
Theorem 15 For any infinite word α, the following assertions are equivalent:

(i) α is ultimately periodic,
(ii) sub(prefn(α)) = O(n),
(iii) lz(prefn(α)) = O(1),
(iv) r(prefn(α)) = lg n+ O(1).

Repetition Complexity of Words 327

Remark 16 We notice that in Theorem 15 we have at (ii) and (iii) the order
of the lower bound for the respective complexity from Lemmas 5 and 7 while at
(iv) we have a stronger condition: the lower bound in Lemma 2 plus a constant
instead of O(lg n). In fact, O(lg n) is not good as shown by the following exam-
ple. Consider the word wk = ((· · · (bab)10)ba2b)10

2
ba3b)10

3 · · · bakb)10
k

. We have
wk ≤pref wk+1, so we can construct the infinite word w = limk→∞ wk. It can be
shown that r(prefn(w)) = O(lg n). But w is not ultimately periodic. Therefore,
we have from the r-complexity a slightly finer characterization of ultimately
periodic words.

7 De Bruijn Words and Subword Complexity

We next investigate the case of words with high subword complexity. We consider
de Bruijn words bk (see [dB46]) which have very high sub-complexity. For k ≥ 1,
a de Bruijn word bk ∈ A∗ has the properties |bk| = card(A)k + k − 1 and
sub(bk) ∩ Ak = Ak; that is, bk has as subwords all words of length k and any
two subwords of length k of bk starting from different positions are different.
(There are many such words but our result holds for all of them.)

If card(A) = l, then the number of all subwords of bk is sub(bk) = lk−1
l−1 +

lk(lk+1)
2 . So, not only that sub(bk) is of the order of maximal subword complexity

in Lemma 5, but also the difference between the upper bound in Lemma 5 and
sub(bk) is of strictly lower order: O(|bk| lg |bk|). We show that de Bruijn words
have also high repetition complexity.

Theorem 17 r(bk) = Ω
(

|bk| lg lg |bk|
lg |bk|

)
.

8 Computing the Repetition Complexity

We show in this section that the repetition complexity can be computed in time
O(n3(log n)2). Due to the very intricate nature of repetitions, this problem is by
no means trivial. (A good example of how complex can be the repetitions in a
word are the Fibonacci words.) In fact, it can be seen as a restricted case of the
optimal data compression which is NP-complete; see [StSz78,GaJo79].

We give next another example which, although simple from algorithmic point
of view, shows that a word can have exponentially many optimal reductions;
which again makes the problem hard. Consider the Morse-Hedlund infinite word
m, [MoHe44], defined as m = m∞(a), where m : {a, b, c}∗ → {a, b, c}∗, m(a) =
abc, m(b) = ac, m(c) = b. For the morphism ϕ given by ϕ(a) = ababa, ϕ(b) =
a′b′a′b′a′, ϕ(c) = a′′b′′a′′b′′a′′, we have that ϕ(prefn(m)) has length 5n and 2n

optimal reductions.
We present next our method to compute r(w). The following observation is

the basis of our algorithm. For any non-empty word w, we have

r(w) = min
(

min
w=uv

(
r(u) + r(v)

)
, min
k|ord(w)

(
r(ρ(w)

ord(w)
k) + |dec(k)|

))
. (3)

328 Lucian Ilie, Sheng Yu, and Kaizhong Zhang

Based on (3), we use then dynamic programming to compute the repetition
complexities of all subwords of w.

Theorem 18 The repetition complexity of w, for |w| = n, can be computed in
time O(n3(log n)2).

Here is where O(n3(log n)2) comes from. We compute the repetition com-
plexity for all subwords, which are n2. For each, we investigate linearly many
possiblities and therefore we get n3. The logarithms come from arithmetic op-
erations and comparisons. The preprocessing for computing the primitive roots
and the orders for all subwords of w can be done in time O(n2(log n)2).

9 Conclusions and Further Research

We invetigate the repetitions in words from the point of view of complexity of
words. Our work is related to the study of repetitions in words in general, see,
e.g., [KoKu99], but our goals are different. We want to measure the complexity
of words from this perspective. We introduce the notion of repetition complexity
of a word and discuss its appropriateness by comparison with other potential
candidates.

We give results which relate our complexity to well-known complexity mea-
sures like subword or Lempel-Ziv complexity. These turn out to give interesting
results about infinite words. We mention here several problems which deserve
further investigation.

The algorithm we gave for computing the repetition complexity is, of course,
not very fast (compared to usual algorithms dealing with repetitions in words,
e.g., [Cr81,ApPr83,MaLo84,KoKu99]), but it seems very difficult to give very
fast algorithms. Notice that we used dynamic programming so, using this idea
we cannot find algorithms with sub-quadratic time. Completely new ideas and
properties of words are needed for fast algorithms.

Another problem is that the algorithm is not of much use if we try to compute
(or only approximate) the repetition complexity of some families of words, say
all prefixes of the Fibonacci infinite word. Some different tools for lower bounds
are needed.

We showed in Theorem 17 that de Bruijn words have high repetition com-
plexity. We believe they have in fact linear complexity, that is, r(bk) = Θ(|bk|).

A related complexity which we did not discuss here can be naturally defined
using rational repetitions. For instance, consider the words abcdabc and abcdefg.
Both have r-complexity 7 as none contains any integer repetitions, although the
former contains clearly more repetition than the latter. Using rational powers,
we may write abcdabc = (abcd)3/4 which takes only 6 units of space.

Finally, a problem which we have not approached concerns the connection
between our complexity and randomness. It should be investigated how much
random are the words with high repetition complexity, in particular the square-
free words.

Repetition Complexity of Words 329

References

ApPr83. Apostolico, A., and Preparata, F., Optimal off-line detection of repetitions
in a string, Theoret. Comput. Sci. 22 (1983) 297 – 315.

dB46. de Bruijn, N.G., A combinatorial problem, Proc. Kon. Ned. Akad. Wetensch.
49 (1946) 758–764.

Ch74. Chaitin, G.J, Information-theoretic limitations of formal systems, J. Assoc.
Comput. Mach. 21 (1974) 403 – 424.

ChKa97. Choffrut, C., and Karhumäki, J., Combinatorics of Words, in: G. Rozenberg,
A. Salomaa, eds., Handbook of Formal Languages, Vol. I, Springer-Verlag,
Berlin, 1997, 329 – 438.

CoHe73. Coven, E.M., and Hedlund, G., Sequences with minimal block growth, Math.
Sytems Theory 7 (1973) 138 – 153.

Cr81. Crochemore, M., An optimal algorithm for computing the repetitions in a
word, Inform. Proc. Lett. 12 (5) (1981) 244 – 250.

CrRy94. Crochemore, M., and Rytter, W., Text Algorithms, Oxford Univ. Press, 1994.
CrRy95. Crochemore, M., and Rytter, W., Squares, cubes, and time-space efficient

string matching, Algorithmica 13 (1995) 405 – 425. Oxford Univ. Press,
1994.

De72. Dejean, F., Sur un théorème de Thue, J. Combin. Theory, Ser. A 13 (1972)
90–99.

GaJo79. Garey, M.R., Johnson, D.S., Computers and Intractability. A Guide to the
Theory of NP-completeness, W.H. Freeman and Co., San Francisco, 1979.

HPS92. Hansel, G., Perrin, D., and Simon, I., Compression and entropy, Proc. of
STACS’92, LNCS 577, Springer-Verlag, 1992, 515 – 528.

Ko65. Kolmogorov, A.N., Three approaches to the quantitative definition of infor-
mation, Probl. Inform. Transmission 1 (1965) 1 – 7.

KoKu99. Kolpakov, R., and Kucherov, G., Finding maximal repetitions in a word in
linear time, Proc. of FOCS’99, 596 – 604.

LeZi76. Lempel, A., and Ziv, J., On the complexity of finite sequences IEEE Trans.
Information Theory 22(1) (1976) 75–81.

Lo83. Lothaire, M., Combinatorics on Words, Addison-Wesley, Reading, MA, 1983.
Lo02. Lothaire, M., Algebraic Combinatorics on Words, Cambridge Univ. Press,

2002.
MaLo84. Main, M., and Lorentz, R., An O(n lg n) algorithm for finding all repetitions

in a string, J. Algorithms 5 (1984) 422 – 432.
Ma89. Main, M., Detecting leftmost maximal periodicities, Discrete Appl. Math.

25 (1989) 145 – 153.
Ma66. Martin-Löf, P., The definition of random sequences, Inform. and Control 9

(1966) 602 – 619.
MoHe44. Morse, M., and Hedlund, G., Unending chess, symbolic dynamics and a prob-

lem in semigroups, Duke Math. J. 11 (1944) 1 – 7.
StSz78. Storer, J.A., Szymanski, T.G., The macro model for data compression, Proc.

of 10th STOC, 1978, 30 – 39.
Th06. Thue, A., Uber unendliche Zeichenreihen, Norske Vid. Selsk. Skr. Mat.-Nat.

Kl. (Kristiania) 7 (1906) 1 – 22.
Th12. Thue, A., Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen,

Norske Vid. Selsk. Skr. Mat.-Nat. Kl. (Kristiania) 5 (1912) 1 – 67.
ZiLe77. Ziv, J., and Lempel, A., A universal algorithm for sequential data compres-

sion, IEEE Trans. Information Theory 23 (3) (1977) 337 – 343.
ZiLe78. Ziv, J., and Lempel, A., Compression of individual sequences via variable

length encoding, IEEE Trans. Information Theory 24 (5) (1978) 530 – 536.

Using PageRank to Characterize Web Structure

Gopal Pandurangan1, Prabhakar Raghavan2, and Eli Upfal1

1 Computer Science Department, Brown University
Box 1910, Providence, RI 02912-1910, USA

{gopal,eli}@cs.brown.edu�

2 Verity Inc., 892 Ross Drive, Sunnyvale, CA 94089, USA
pragh@verity.com

Abstract. Recent work on modeling the Web graph has dwelt on cap-
turing the degree distributions observed on the Web. Pointing out that
this represents a heavy reliance on “local” properties of the Web graph,
we study the distribution of PageRank values (used in the Google search
engine) on the Web. This distribution is of independent interest in op-
timizing search indices and storage. We show that PageRank values on
the Web follow a power law. We then develop detailed models for the
Web graph that explain this observation, and moreover remain faith-
ful to previously studied degree distributions. We analyze these models,
and compare the analyses to both snapshots from the Web and to graphs
generated by simulations on the new models. To our knowledge this rep-
resents the first modeling of the Web that goes beyond fitting degree
distributions on the Web.

1 Introduction

There has been considerable recent work on developing increasingly sophisti-
cated models of the structure of the Web [1, 3, 4, 9, 13, 14]. The primary drivers
for such modeling include developing an understanding of the evolution of the
Web, better tools for optimizing Web-scale algorithms, mining communities and
other structures on the Web, and studying the behavior of content creators on
the Web. Prior modeling has dwelt on fitting models to the observed degree dis-
tribution of the Web. While this represents a significant step (both empirically
and analytically), a weakness of this approach is the heavy reliance on a single
set of parameters – the degree distribution. Moreover, the degree distribution is
a very “local” property of graphs, something that is well recognized from at least
two distinct viewpoints: (1) as a ranking mechanism, ordering the Web pages in
search results by in-degree (popularity of linkage) is very easy to spam and thus
not reliable; (2) from a graph-theoretic standpoint, it is easy to exhibit “very
different” graphs that conform to the same degree distribution. Indeed, the first
of these reasons led to the PageRank function [8] used in the Google engine.

In this paper we present a more detailed approach to modeling, to explain
the distributions of PageRank values on the Web. Our model augments the de-

� Supported in part by NSF grant CCR-9731477 and NSF ITR grant CCR-0121154.

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 330–339, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Using PageRank to Characterize Web Structure 331

gree distribution approach, so that as a by-product we achieve previous models’
success in explaining degree distributions.

Our study of PageRank distributions is also of independent interest for Web
search and ranking pages. For search engines employing PageRank and associ-
ated ranking schemes, it is important to understand whether, for instance, 99%
of the total PageRank is concentrated in (say) 10% of the pages. This (especially
in conjunction with query distribution logs) has implications for compressing in-
verted indices and optimizing the available storage.

2 Background and Related Work

The Web as a graph. View the Web as a directed graph whose nodes are html
pages. Each hyperlink is a directed edge in the natural manner. The in-degree of
a node is the number of edges (hyperlinks) into it; a simplistic interpretation of
the in-degree of a page is as a popularity count. The out-degree of a node is the
number of links out of it; this is simply the number of href tags on the page.
The degree distribution of a graph is the function of the non-negative integers
that specifies, for each k ≥ 0, what fraction of the pages have degree k; there are
naturally two degree distributions for a directed graph, the in-degree distribution
and the out-degree distribution.

These distributions have been the objects of considerable prior study [1, 3,
4, 9, 13, 14], on various snapshots of the Web ranging from the Web pages at a
particular university to various commercial crawls of the Web. Despite the vary-
ing natures of these studies, the in-degree distribution appears to be very well
approximated by the function c/k2.1 where c is the appropriate normalization
constant (so that the fractions add to one). Likewise, the out-degree distributions
seem to be very well approximated by the function co/k

2.7. Such distributions
are known as power law distributions.

Recent work of Dill et al. [10] provides some explanation for this “self-similar”
behavior: that many properties of the Web graph are reflected in sub-domains
and other smaller snapshots of the Web. Indeed, this will provide the basis
for some of our experiments, in which we derive an understanding of certain
properties of the Web by studying a crawl of the brown.edu domain. (This
methodology was pioneered by Barabasi et al. [3, 4], who extrapolated from
the nd.edu domain of Notre Dame University. They made a prediction on the
diameter of the undirected version of the Web graph, in which one ignores link
directions.)

Other properties of the Web graph that have been studied (analytically or
empirically) include connectivity [9], clique distributions [13] and diameter [7].

PageRank. The PageRank function was presented in [8, 17] and is reportedly
used as a ranking mechanism in the commercial search engine Google [12]. It
assigns to each Web page a positive real value called its PageRank. In the sim-
plest use of the PageRank values, the documents matching a search query are
presented in decreasing order of PageRank.

332 Gopal Pandurangan, Prabhakar Raghavan, and Eli Upfal

The original intuition underlying PageRank was to visualize a random surfer
who browsed the Web from page to page. Given the current location (page) q
of the surfer, the successor location is a page reached by following a hyperlink
out of page q uniformly at random. Thus each hyperlink is followed with proba-
bility proportional to the out-degree of q. In this setting, the PageRank of each
page is the frequency with which, in the steady state, the page q is visited by
such a surfer. Intuitively, the surfer frequently visits “important” pages such
as yahoo.com because many pages hyperlink to it. Moreover, by calculations
from elementary probability theory, the PageRank of a page q is increased if
those pages that hyperlink to q have high PageRank themselves. An immediate
difficulty with this notion: some pages, or an (internally) connected cluster of
pages may have no hyperlinks out of them, so that the random surfer may get
stuck. To address this, Brin and Page [8] introduced a decay parameter p: at
each step, with probability p the surfer proceeds with the random walk, and
with probability 1− p, the surfer “teleports” to a completely random Web page,
independent of the hyperlinks out of the current page. We refer to [8, 17] for
details on the mathematics of PageRank and its practical implementation using
the decay parameter.

3 Web Graph Models

The classical random graph models of Erdös-Renyi [5] do not explain the power
law properties of the degree distribution nor the the superabundance of clique-
like structures [14] in the Web graph. Thus, it is clear that the Web graph does
not conform to the Erdös-Renyi model. One of the first models to explain the
power law property was proposed by Barabasi et al. which has two key features:
(1) nodes and edges are added to the graph one at a time (uniform growth) and
(2) each incoming node chooses to connect to a node node q in proportion to the
current in-degree of q (preferential attachment). This model yields Web graphs
whose in-degree distributions have been shown to converge to the distribution
≈ 1/k2 [3, 4].

However, as noted earlier, empirical studies have shown that in-degrees are
in fact distributed as ≈ 1/k2.1 (rather than 1/k2). To help explain the exponent
of 2.1, Kumar et al. [15] introduced the following more detailed process by which
each edge chooses the node to point to. Some fraction of the time (a parameter
they call α ∈ [0, 1]) the edge points to a node chosen uniformly at random. The
rest of the time (a fraction 1 − α), the edge picks an intermediate node v at
random, and copies the destination of a random edge out of v. In other words,
the new edge points to the destination of an edge e, chosen at random from the
outgoing edges of a random node v. Kumar et al. offer the following behavioral
explanation for this process: some fraction of the time a content creator creating
a page refers to a random new topic and thus creates a link (edge) to a random
destination. The remainder of the time, the content creator copies a hyperlink off
an existing page (in this case v), having decided that this is an interesting link.
They then explain a number of empirical observations on the Web graph includ-

Using PageRank to Characterize Web Structure 333

ing the in-degree exponent of 2.1 and the large number of clique-like structures
observed by [14]. Their model can be viewed as a generalization of the models
of Barabasi and others, parameterized by α. We will henceforth refer to this
model as the degree-based selection model. Could it be that this model would
also explain the PageRank distributions we observe on the Web?

Before we address this question, we next introduce a new model inspired by
the α model above. Suppose that each edge chose its destination at random a
fraction β ∈ [0, 1] of the time, and the rest of the time chose a destination in
proportion to its PageRank. Following the behavioral motivation of Kumar et al.,
this can be thought of as a content-creator who chooses to link to random pages
some fraction of the time, and to pages highly rated by a PageRank-based engine
such as Google the remainder of the time. In other words, content creators are
more likely to link to pages that score high on PageRank-based search results,
because these pages are easy to discover and link to. This is not implausible from
the behavioral standpoint, and could help capture the PageRank distributions
we observe (just as in-degree based linking helped explain in-degree distributions
in prior work). We will call this the PageRank-based selection model.

However, this now raises the question: if we could develop a model that
explained observed PageRank distributions, could it be that we lose the ability
to capture observed degree distributions? To address this, we now present the
most general model we will study. There are two parameters a, b ∈ [0, 1] such
that a+ b ≤ 1. With probability a an edge points to a page in proportion to its
in-degree. With probability b it points to a page in proportion to its PageRank.
With the remaining probability 1− a − b, it points to a page chosen uniformly
at random from all pages. We thus have a family of models; using these 2-
parameter models we can hope to simultaneously capture the two distributions
we investigate – the PageRank distribution (representing global properties of
the graph), and the in-degree distribution (representing local properties of the
graph). We will call this the hybrid selection model.

4 Experiments

To set the context for exploring the models in Section 3, we study the distribution
of PageRanks (as well as of the in- and out-degrees) on several snapshots of the
Web.

Brown University domain. Our first set of experiments was on the Web
graph underlying the Brown University domain (*.brown.edu). Our approach
is motivated by recent results on the “self-similar” nature of the Web (e.g.,
[10]): a thematically unified region (like a large subdomain) displays the same
characteristics as the Web at large. The Brown Web consisted of a little over
100,000 pages (and nearly 700,000 hyperlinks) with an average in-degree (and
thus out-degree) of around 7. This is very close to the average in-degree reported
in large crawls of the Web [14]. Our crawl started at the Brown University home-
page (www.brown.edu – “root” page) and proceeded in breadth-first fashion; any

334 Gopal Pandurangan, Prabhakar Raghavan, and Eli Upfal

URL outside the *.brown.edu domain was ignored. We did prune our crawl –
for example, URL’s with /cgi-bin/ were not explored.

Our experiments show that the in-degree and out-degree distribution follows
a power law with exponent 2.1 and 2.7 respectively. The plots are strikingly
similar to the ones reported on far larger crawls of the Web (see [9, 14]). For
example [9] report exactly the same power law exponents on a crawl of over 200
million pages and 1.5 billion hyperlinks.

However, the most interesting result of our study was that of the PageRank
distribution. We first describe our PageRank computation. As in [17], we first
pre-process pages which do not have any hyperlinks out of them (i.e., pages with
out-degree 0): we assume that these have links back to the pages that point
to them [2]. This is intuitively more justifiable than just dropping these pages:
we expect surfers to trace back their trail when they reach a dead end. In our
PageRank computation we set the decay parameter to 0.9; this is a typical value
reportedly used in practice (e.g., [8] uses 0.85), and the convergence is fast (under
20 iterations). Similar fast convergence is reported in [8, 17]. However, varying
the decay parameter does not significantly change our results, as long as the
parameter is fairly close to 1. In particular, we get essentially the same results
for decay parameter values down to 0.8.

The main result of our PageRank distribution plot (Figure 1) is that a large
majority of pages (except those with very small PageRank) follow a power law
with an exponent close to 2.1. That is, the fraction of nodes having PageRank r
is proportional to 1/r2.1. This appears to be the same as the in-degree exponent;
more on this later. In Section 5 we will give an analysis suggesting this PageRank
distribution, based on various models from Section 3.
WT10g data. We repeated our experiments on the WT10g corpus [18], a re-
cently released, 1.69 million document testbed for conducting Web experiments.
The results are almost identical to those on the Brown Web; the in-degree, out-
degree, and PageRank distributions follow power laws with exponent close to
2.1, 2.7 and 2.1 respectively. Figure 1 shows the plot of PageRank distribution
of the wt10g corpus. The power law here appears much sharper than in the
Brown Web. Also, unlike the Brown Web, the plot has slope 2.1 across almost
the entire spectrum of PageRank values, except for those with very low PageR-
ank values; a possible explanation is that unlike the Brown domain, the WT10g
corpus is constructed by a careful selection of Web pages so as to characterize
the whole Web [18].

5 Fitting the Models: Analysis and Simulations

In this section we address some of the modeling questions raised in Section 3.
Having obtained the empirical distributions in Section 4, we first give analytical
predictions of the shape of the PageRank distributions for the degree-based and
PageRank-based selection models of Section 3. The intent is to infer what choices
of these model parameters would give rise to the distributions observed in our
experiments. Finally, in Section 5.3 we generate random graphs according to

Using PageRank to Characterize Web Structure 335

1e-05

0.0001

0.001

0.01

0.1

1e-06 1e-05 0.0001 0.001

fr
ac

tio
n

of
 v

er
tic

es

pagerank

pr(x) = 8e-14/x**2.1

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e-07 1e-06 1e-05 0.0001 0.001

fr
ac

tio
n

of
 v

er
tic

es

pagerank

pr(x) = 3e-15/x**2.1

Fig. 1. Log-log plot of the PageRank distribution of the Brown domain (left) and the
WT10g (right). A vast majority of the pages (except those with very low PageRank)
follow a power law with exponent close to 2.1.

these fitted models, to see if in fact they give rise to graphs that match the
distributions observed on the Web.

5.1 Degree-Based Selection

Consider a graph evolving in a sequence of time steps – as noted in Section 3
such evolution is not only realistic in the context of the Web, it is also a feature
of all Web graph models. A single node with r outgoing edges is added at every
time step. (We assume that we start with a single node with a self-loop at time
0 [6]).) Each edge chooses its destination node independently with probability
proportional to 1+in-degree1 of each possible destination node. This model is
essentially the one analyzed by Barabasi et al. and is a special case of the α
model (where α = 0) of Kumar et al.

Let πt(v) represent the PageRank of v at time step t. We can interpret the
PageRank as the stationary probability of a random walk on the underlying
graph, with the teleport operation (Section 2) being modeled by a “central”
node c. At each step, the surfer either decides to continue his random walk with
probability p or chooses to return to the central node with probability 1−p; from
the central node he jumps to a random node in the graph. To write an expression
for πt(v) it is useful to define f t(v), the “span” of v at time t: the sum of the
in-degrees of all nodes in the network (including v itself) that have a path to
v that does not use the central node (we also refer to the nodes contributing
to the span as “span nodes”). Since each edge contributes a 1/r fraction of the
stationary probability of its source node (using the standard stationary equations
(see [16])), we can bound πt(v) for the above random walk as follows:

f t(v)π(c)pD

rt
≤ πt(v) ≤ f t(v)π(c)

rt
(1)

1 We assume that each incoming node has “weight” 1, otherwise there won’t be any
non-trivial growth.

336 Gopal Pandurangan, Prabhakar Raghavan, and Eli Upfal

where π(c) is the stationary probability of the central node and D is the diameter
of the network (ignoring link directions). We note two facts here. First, a simple
observation shows that π(c) is a constant, independent of t; second, it can be
shown that when t is sufficiently large, the diameter of the graph at time t is
logarithmic in the size of the graph (which is t) [7]. Thus if the decay factor p is
sufficiently close to 1, we can approximate πt(v) as

πt(v) ≈ f t(v)π(c)
rt

. (2)

We can estimate f t(v), using the “mean-field” approach of Barabasi et al. [4].
Treating f t(v) as continuous, we can write the differential equation for the rate
of change of f t(v) with time: d(ft(v))

dt = ft(v)
t , where the right hand side denotes

the probability that an incoming edge connects to one of the span nodes of v.
The solution to the above equation with the initial condition that node v was
added at time tv is f t(v) = t/tv. Using this in equation (2), and assuming that
nodes are added at equal time intervals, we can show that the probability density
function F for πt(v) is: F (φ) ≈ π(c)/rtφ2, implying that the PageRank follows
a power law with exponent 2, independent of r and t. Simulations of this model
(shown in Figure 2) agree well with this prediction.

As already mentioned in Section 3, the in-degree distribution of this model
follows a power law with exponent 2, the same as the PageRank distribution
derived above. However, the empirically observed power laws of both PageRank
and in-degree have exponents of 2.1; thus the degree-based selection model does
not quite match the in-degree and PageRank exponents observed in practice.
Now a natural question is whether we can make it match both the distributions
by changing α, i.e., by incorporating a random selection component in choosing
nodes. The answer is surprisingly2 yes; more on this in Section 5.3.

5.2 PageRank-Based Selection

We show that power law emerges for the PageRank and degree distributions in
this model (we assume β = 0, i.e, the node selection is based only on Pagerank),
but the exponents are different from the degree-based model.

Using the same argument as before, we can show that Equation (2) holds.
However, f t(v) here follows a different differential equation than the one in the
previous analysis: d(ft(v))

dt ≈ ft(v)r
2rt . The reasoning is as follows. The probability

that f t(v) increases by one is the probability that the incoming node chooses
any one of the nodes in the span to connect to, which is proportional to the sum
of the PageRanks of all the span nodes of v. To calculate this probability, we see
that each directed edge contributes nearly twice to the sum (if p is sufficiently
2 Surprising because, it is not the case that PageRank and in-degree distributions are

related – as suggested by the the similarity of the power law exponents of the two
distributions. It follows from our analysis above, that even when nodes are selected
uniformly at random (i.e., α = 1), a power law (with a small exponent) emerges for
the PageRank; but the degree distribution is Poisson.

Using PageRank to Characterize Web Structure 337

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e-07 1e-06 1e-05 0.0001 0.001

fr
ac

tio
n

of
 v

er
tic

es

pagerank

pr(x) = 3e-13/x**2

Fig. 2. Log-log plot of degree-based selection with α = 0. The number of nodes shown is
300,000 (+), 200,000 (*) and 100,000 (x). It clearly shows that the slope is 2, confirming
the power law predicted by analysis.

large) and the total PageRank is thus proportional to the sum of the degrees
which is 2rt.

Plugging the solution of the above differential equation in Equation (2), we
can show that the probability density function F for πt(v) in this model is:
F (φ) ≈ (π(c))2/r2t2φ3, i.e., predicting that the PageRank follows a power law
with exponent 3. Analogously, we can show that the degree also a follows a power
law with exponent 3. Simulations also agree quite well with this prediction.

Thus, the PageRank-based selection model with β = 0 does not match the
empirically observed in-degree and PageRank exponents. Can we hope to match
the observations by varying β? Unlike the degree-based selection model, the
answer is no; increasing β will only increase the power law exponent (above 3)
for the in-degree distribution. This can be verified by experiments. We are thus
left with the degree-based selection model and the hybrid selection model of
Section 3 as candidates for explaining the observations.

5.3 Simulations of the Generative Models

An accurate model of the Web graph must conform with the experimentally
observed in-degree, out-degree, and PageRank distributions. We simulated the
degree-based and hybrid selection models defined in section 3 under various pa-
rameters to find settings that generate the observed empirical distributions. We
simulated graphs of size up to 300,000 nodes, and we varied the average number
of new edges generated per new node generation (time step). In particular, to
be “close” to the real Web’s average out-degree (and in-degree), we focused on
the range in which the average number of edges added per new node is around
7. We obtained essentially the same results for the power laws, irrespective of
the size (from 10,000 nodes onwards) or the number of outgoing edges.

Our first step was fitting the out-degree distribution. Following Kumar et
al., we use the degree-based copying model with a suitable value of β to fit
the out-degree distribution to a power law with exponent 2.7. At each time

338 Gopal Pandurangan, Prabhakar Raghavan, and Eli Upfal

step, the incoming node receives edges from existing nodes. With probability
β a node is chosen uniformly at random, with probability 1 − β the node is
chosen proportional to the current out-degree distribution. Note that the out-
degree distribution is fixed independently of the in-degree distribution. We use
β = 0.45 to get a power law exponent equal to 2.7.

We turn now to the problem of fitting the in-degree distribution. We first
simulated the degree-based selection model. Setting α = 0, both the in-degree
and PageRank distributions followed a power law with exponent 2. We observed
that increasing α increases the exponents in the in-degree and PageRank distri-
butions. In particular, setting α ≈ 0.2 brings both exponents to the empirical
value of 2.1. This value is unique; by increasing or decreasing α we lose the fit.
Thus, we found a setting of the parameters for which the degree-based selection
model simultaneously fits all the three distributions.

Since degree-based selection model fits the empirical data, a natural question
is whether PageRank-based selection is irrelevant in modeling the Web graph.
To answer this, we experimented with the 2-parameter hybrid selection model
proposed in Section 3. Surprisingly when a = b ≈ 0.33, we could again simul-
taneously fit all three distributions. Thus we have an alternative model, with
a substantial PageRank-based selection component, that fits the Web empirical
data. As mentioned in Section 3, this model is plausible from the behavioral
standpoint.

6 Conclusion

We present experimental and analytical studies of PageRank distribution on
the Web graph, and use it to develop more accurate generative models for the
evolution of the Web graph. We consider three possible models: degree-based
selection, PageRank-based selection, and a hybrid model. Our analysis shows
that the PageRank-based selection model cannot fit the empirical data. For the
two other models we found settings of parameters under which the model fits
simultaneously the in-degree and out-degree distributions and the PageRank dis-
tribution. A natural question for further study is whether one of these models
describes the Web better than the other. Another interesting question is inves-
tigating the relationship between PageRank and in-degree which may shed new
insight into Web structure.

Acknowledgments

We are very grateful to Joel Young for providing us with his Web crawler and
for many hours of help.

References

1. L. Adamic and B. Huberman. Power Law distribution of the World Wide Web,
Technical Comment on [3], Science, 287, 2000, 2115a.

Using PageRank to Characterize Web Structure 339

2. Arvind Arasu, Junghoo Cho, Hector Garcia-Molina, Andreas Paepcke, Sriram
Raghavan. Searching the Web. ACM Transactions on Internet Technology, 1(1),
2001, 2-43.

3. A. Barabasi and R. Albert. Emergence of Scaling in Random Networks. Science ,
286(509), 1999.

4. A. Barabasi, R.Albert and H. Jeong. Mean-field theory for scale-free random
graphs. Physica A, 272, 1999, 173-187.

5. B. Bollobas. Random Graphs. Academic Press, 1990.
6. B. Bollobas, O. Riordan, J. Spencer, and G. Tusnady. The degree sequence of a

scale-free random graph process. Random Structures and Algorithms, 18(3), 2001,
279-290.

7. B.Bollobas and O. Riordan. The diameter of a scale-free random graph. preprint,
2001.

8. S. Brin and L. Page. The anatomy of a large-scale hypertexual Web search engine.
In Proceedings of the 7th WWW conference, 1998.

9. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, Andrew
Tomkins, J. Weiner. Graph Structure in the Web. In Proceedings of the 9th WWW
Conference, 2000.

10. S. Dill, R. Kumar, K. McCurley, S. Rajagopalan, D. Sivakumar, and A. Tomkins.
Self-Similarity in the Web. In Proceedings of the 27th International Conference on
Very Large Databases (VLDB), 2001.

11. D. Gibson, J.M. Kleinberg and P. Raghavan. Inferring Web communities from link
topology. In Proceedings of the ACM Symposium on Hypertext and Hypermedia,
1998.

12. Google Inc. http://www.google.com
13. J. Kleinberg, S. Ravi Kumar, P. Raghavan, S. Rajagopalan and A. Tomkins. The

Web as a graph: measurements, models and methods. In Proceedings of the 5th An-
nual International Computing and Combinatorics Conference (COCOON), 1999.

14. R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the Web for
Emerging Cyber-Communities. In Proceedings of the 8th WWW Conference, 1999,
403-416.

15. R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and E. Upfal.
Stochastic Models for the Web. In Proceedings of the 41st Annual Symposium on
the Foundations of Computer Science (FOCS), 2000.

16. R. Motwani and P. Raghavan. Randomized Algorithms, Cambridge University
Press, 1995.

17. L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Rank-
ing: Bringing order to the Web, Technical Report, Computer Science Department,
Stanford University, 1998.

18. WT10g collection draft paper.
http://www.ted.cmis.csiro.au/TRECWeb/wt10ginfo.ps.gz

On Randomized Broadcasting and Gossiping
in Radio Networks

Ding Liu and Manoj Prabhakaran

Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
{dingliu,mp}@cs.princeton.edu

Abstract. This paper has two parts. In the first part we give an al-
ternative (and much simpler) proof for the best known lower bound of
Ω(D log (N/D)) time-steps for randomized broadcasting in radio net-
works with unknown topology. In the second part we give an O(N log3N)-
time randomized algorithm for gossiping in such radio networks. This is
an improvement over the fastest previously known algorithm that works
in time O(N log4 N).

1 Introduction

We consider two classical problems of distributing information in radio networks:
broadcasting and gossiping. In broadcasting, the goal is to distribute a message
from a distinguished source node to all other nodes in the network. In gossiping
each node in the network holds a message, and the goal is to distribute each
message to all nodes in the network. In both problems we want to use as less
time as possible to finish the task. The radio network is an abstraction of com-
munication networks with minimal assumptions and features and it can model
many situations. Communication in radio networks and variants thereof have
been widely studied for a long time [1, 4, 7–11, 15–18].

A radio network [4, 8] is modeled as a directed graph G(V,E) where |V | = N .
The nodes of the graph represent processors in the network and they are assigned
different identifiers from the set {1, 2, . . . , N}. A directed edge from node u to
node v means that u can send messages to v, and we say that v is an out-neighbor
of u and u is an in-neighbor of v. Time is divided into discrete time steps. All
nodes have access to a global clock and work synchronously. Two prominent
features of the radio network model are: (1) Processors have no knowledge of
the network topology. They only know the size of the network N 1. (2) A node v
receives the message from its in-neighbor u in a step if and only if u is the only in-
neighbor of v that is transmitting in that time step. If two or more in-neighbors
of v transmit then a collision occurs and none of the messages is received by v.
Furthermore v cannot distinguish such collisions from the situation where none
of its neighbors is transmitting. See [3, 4, 8, 14, 19] for discussions on this and
related models.
1 In our lower bound we let them know the diameter of the network D also.

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 340–349, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

On Randomized Broadcasting and Gossiping in Radio Networks 341

This model is suited for channels with high noise and unreliable collision
detection. Further the topology of the network is considered unknown to the
processors, which makes it suitable to model mobile networks or networks with
dynamically configured topology or unreliable links2. Thus algorithms for radio
networks have potentially wide applications.

On the other hand one is also interested in lower bounds in this model, be-
cause along with efficient algorithms in less stricter models (for instance see [12,
13]) it demonstrates the importance of the various components in the communi-
cation model. Our model allows unlimited computational power and unbounded
message size. This makes the lower bounds strong, whereas the algorithms typ-
ically do not exploit such unreasonable assumptions.

Previous results. Chlebus [6] surveys the state of the art in randomized pro-
tocols for radio networks. For deterministic broadcasting in unknown radio net-
works, the best currently known upper bound is due to Chrobak, Ga̧sieniec
and Rytter [9]. Their algorithm runs in time O(N log2N) in a network with
N nodes. Their algorithm is non-constructive in the sense that they show the
existence of such algorithms without explicitly constructing one. Recently In-
dyk [16] gave a constructive solution with similar bounds. The best known lower
bound is Ω(N logN) [5, 7]. Bar-Yehuda, Goldreich and Itai [4] gave a random-
ized algorithm that achieves broadcast in expected time O(D logN + log2N).
For lower bounds we let the algorithm know the diameter of the network, D also.
Kushilevitz and Mansour [17] established a lower bound of Ω(D log (N/D)). For
deterministic gossiping Chrobak, Ga̧sieniec and Rytter [9] presented the first
sub-quadratic algorithm whose running time is O(N3/2 log2N). Again their al-
gorithm is non-constructive and a constructive solution with similar time bound
was recently provided by Indyk [16]. Chrobak, Ga̧sieniec and Rytter also gave
a randomized O(N log4N)-time algorithm for gossiping in radio networks with
unknown topology [10].

Our results. In section 3 we give an alternative proof for the Ω(D log (N/D))
lower bound on randomized broadcasting algorithms. Our proof is essentially
different from, and much simpler than the previous one [17], which is complicated
and involves a reduction from the general case to a special “uniform” case. We
hope that our proof will give a fresh view of the lower bounds for the problem,
and may help in bridging the gap between the known upper and lower bounds. In
section 4 we give a randomized O(N log3N)-time algorithm for gossiping in radio
networks with unknown topology. Our basic algorithm is Monte Carlo type and it
easily yields a Las Vegas algorithm with expected running timeO(N log3N). Our
algorithm follows the one in [10], and the essential difference is that we replace
a deterministic procedure in that algorithm by a new randomized procedure.
Finally in section 5 we note that a linear time deterministic gossiping algorithm
exists for symmetric networks, which is asymptotically optimal.

2 For gossiping to be feasible, we require that the underlying network is strongly
connected. For broadcasting to be feasible, we require that all nodes are reachable
from the source. These are the only assumptions on the network topology.

342 Ding Liu and Manoj Prabhakaran

Destination

Intermediate

Source

Fig. 1. The graph family Dm.

2 Preliminaries

An algorithm in the radio network is a distributed protocol that for each node
v and each time step t, specifies the action (either Transmit or Receive) of v
at step t, possibly based on all past messages received by v. The model allows
unlimited computational power and all computations are carried out between
time steps. If v transmits at time step t the algorithm also specifies the message,
which could be arbitrarily long. The running time of a Monte Carlo broadcasting
algorithm is the smallest t such that for any connected network topology3, and
for any assignment of identifiers to the nodes, the probability of completing
the broadcast no later than at step t is Ω(1). For a Las Vegas algorithm, the
running time is defined as the expected time of completion. The running time
for a gossiping algorithm is defined similar to that of broadcasting algorithm.
Both of our upper and lower bounds are based on some observations about a
special family of networks denoted by Dm which we define next.

Definition 1. The network family Dm is the set of all 2m − 1 networks of the
following type. There are totally m+2 nodes: one source, one destination and m
intermediate nodes (Fig. 1). There are edges from the source to all intermediate
nodes, and edges from some intermediate nodes (at least one) to the destination.

We consider broadcasting on family Dm. Initially only the source holds the
message and it transmits first. After that every intermediate node gets the mes-
sage. Now the goal is to send the message to the destination. It is easy to show
that any deterministic algorithm for Dm must use m steps in the worst case. On
the other hand, there exists a randomized broadcasting algorithm that runs in
O(logm) time. We give one below; a similar algorithm appears in [4]. Note that
the algorithm is executed in parallel by all the nodes.

Procedure DecayingBroadcast (m)
for i← 1 to logm+ 1 do

with probability 1/2i−1 Transmit

DecayingBroadcast runs inO(logm) time and achieves a constant success
probability4. To see this, note that if there are k edges connecting intermedi-
ate nodes to the destination, then in the i-th round the success probability is
3 By connected we mean each node is reachable from the source.
4 “success” means the destination receives the message.

On Randomized Broadcasting and Gossiping in Radio Networks 343

k/2i−1(1 − 1/2i−1)k−1. So in round i = �log k� + 1 this probability is lower
bounded by a constant, at least 1/8. In the next section we shall see that the
running time of this algorithm is asymptotically optimal.

3 The Ω(D log (N/D)) Lower Bound
for Randomized Radio Broadcast: A Simple Proof

In [17] an Ω(D log (N/D)) lower bound for randomized (Las Vegas type) broad-
casting algorithm was established. Here we give an alternative proof of the same
result. We think our proof is interesting not only because it is much simpler
than the previous one, but also it uses a completely different approach. We hope
that our proof will open a new line of attack for proving lower bounds on similar
problems.

Theorem 1. For any Monte Carlo broadcasting algorithm (i.e., randomized
broadcasting algorithm that succeeds with probability Ω(1)) there is a network
with N nodes and diameter D, in which the algorithm takes Ω(D log (N/D))
expected time.

The proof of Theorem 1 is based on the well-known Yao’s minimax principle
(see [20], Theorem 3). This principle reduces the task of proving randomized
lower bound to that of proving deterministic lower bound. In order to prove
Theorem 1, we pick a probability distribution over a suitable family of net-
works with N nodes and diameter D, such that any deterministic algorithm that
succeeds with probability Ω(1) for this distribution has expected running time
Ω(D log (N/D)). In view of the minimax principle this will prove Theorem 1.
On the other hand, the proof of [17] is based on direct analysis of randomized
algorithms. We first prove two preliminary lemmas.

Lemma 1. There exists a probability distribution P over Dm such that the prob-
ability for the destination to get the message in any one deterministic step is
O(1/ logm).

Proof. We partition Dm into m subfamilies
⋃m

k=1Dk
m, where Dk

m is the set of
networks with exactly k intermediate nodes connected to the destination. We
pick P in two steps. First for each k (1 ≤ k ≤ m) we assign weight c/(k logm)
to subfamily Dk

m, where c is a normalization factor such that the weights add up
to 1. When m is large c is close to ln 2. Then for each Dk

m we evenly distribute
its total weight to all

(
m
k

)
networks belonging to it. In other words, each network

with exactly k intermediate nodes connected to the destination is assigned weight
c/(k

(
m
k

)
logm).

Now look at any deterministic step and suppose that j (1 ≤ j ≤ m) inter-
mediate nodes are transmitting in that step. Over the distribution P we picked,
the success probability is easily seen to be

c ·
m∑

k=1

j
(
m−j
k−1

)
k
(
m
k

)
logm

=
c

logm
· j
m
·

m−j+1∑
k=1

(
m−j
k−1

)
(
m−1
k−1

)

344 Ding Liu and Manoj Prabhakaran

1 G2 GG D

S0 1S 2S SD

Fig. 2. Structure of the network family FN,D.

Note that we have used the fact k
(
m
k

)
= m

(
m−1
k−1

)
. In order to show that this prob-

ability is O(1/ logm) we only need to show that for any j,
∑m−j+1

k=1

(
m−j
k−1

)
/
(
m−1
k−1

)
is O(m/j). When j = 1 this is obvious. So we assume that j > 1. Let Ak =(
m−j
k−1

)
/
(
m−1
k−1

)
; then for k ≥ 1, Ak+1/Ak = (m−j−k+1)/(m−k) < (m−j+1)/m.

Also A1 = 1, so
∑m−j+1

k=1

(
m−j
k−1

)
/
(
m−1
k−1

)
is bounded by the sum of an infinite geo-

metric series with initial value 1 and decreasing ratio (m− j+ 1)/m. This series
sums to m/(j − 1) ≤ 2m/j. �

We define the running time of a deterministic algorithm as the time taken
till the broadcast succeeds or till the algorithm terminates, whichever is earlier.
Note that the algorithm may succeed before it terminates (as the nodes may not
realize that all nodes received the message). In the following lemma it is this
definition of running time that is used5.

Lemma 2. Over the probability distribution P in Lemma 1, the expected run-
ning time of any deterministic broadcasting algorithm for Dm that succeeds with
probability Ω(1) is Ω(logm).

Proof. Let p = Ω(1) be the success probability of the algorithm over P. Let t be
the smallest number such that the algorithm succeeds for p/2 fraction (according
to P) of the inputs in at most t steps. Thus for at least p/2 fraction, the algorithm
runs for at least t steps. So the expected running time is at least tp/2. But by
Lemma 1, succeeding in p/2 fraction of P requires t = Ω(log(m)p/2) = Ω(logm)
steps. �

By Yao’s minimax principle Lemma 2 implies a Ω(logm) lower bound for
Monte Carlo algorithms for Dm, and thus DecayingBroadcast given in sec-
tion 2 (with an initial transmission by the source) is asymptotically optimal.

To prove the general lower bound of Ω(D log (N/D)) we construct a family
FN,D of networks, pick a probability distribution P∗ over FN,D, and prove the
same lower bound on the expected running time (over P∗) of any deterministic
algorithm that succeeds with probability Ω(1). Theorem 1 then follows from
Yao’s minimax principle.

Figure 2 illustrates the structure of FN,D. It consists of D layers G1 through
GD and each Gi is a network in Dm where m = �N/D�. Note that the graph
5 which makes the lower bound stronger.

On Randomized Broadcasting and Gossiping in Radio Networks 345

is directed from left to right, and there are no edges within each layer. Every
network in FN,D has Θ(N) nodes and diameter Θ(D). The probability distribu-
tion P∗ is picked by letting each Gi (1 ≤ i ≤ D) independently comply to the
probability distribution P specified in the proof of Lemma 1. The intuition is
that on each layer the algorithm is expected to run Ω(log (N/D)) steps and so
the total time is Ω(D log (N/D)). Following is the proof of Theorem 1.

Proof. Let ti (1 ≤ i ≤ D) be the number of steps a deterministic algorithm A
spends on layer Gi (i.e., the duration for which the message does not reach Si

after reaching Si−1). They are random variables. If the message never reaches
Si−1 then ti is 0. The expected running time of A is E(

∑D
i=1 ti) =

∑D
i=1 E(ti).

We would like to use Lemma 2 to prove that E(ti) = Ω(log (N/D)). But there
are a few subtleties. (i) E(ti) is over P∗ but Lemma 2 is about P; (ii) we should
take into account the possibility that the algorithm can “learn” from history
and behave differently on networks with identical Gi; in other words, ti not only
depends on the topology of Gi but also those of G1 through Gi−1. Below we
take care of both these subtleties.

Fix a layer i and consider the success probability on this layer: this is no
less than the overall success probability and hence is Ω(1). Now we partition
the input space of A into finer subspaces such that: (i) within each subspace
layers G1 through Gi−1 are all fixed; (ii) each subspace has equal weight (for
this we may subdivide some instances having the same layers G1 through Gi−1
into finer subspaces). Since in P∗, Gi is independent of the earlier layers, for
each subspace restricted to Gi, the distribution is P. Within each subspace the
algorithm behaves identically on Gi. For each subspace consider the probability
of success at the layer Gi, conditional to that subspace (i.e., for fixed G1 through
Gi−1). Then, in at least Ω(1) fraction of the subspaces the algorithm must have
Ω(1) success probability. These subspaces are called good. We apply Lemma 2 to
each good subspace to get a Ω(log (N/D)) lower bound on EP(ti) 6, where the
expectation is over the subspace (with distribution P in Gi). Taking the expec-
tation over distribution P∗ amounts to averaging over all subspaces. Since there
are Ω(1) fraction good subspaces the expectation EP∗(ti) is also Ω(log (N/D)).

We do this for each i. Linearity of expectation gives the lower bound. �

4 The O(N log3 N) Randomized Algorithm for Gossiping

In this section we give an O(N log3N)-time randomized algorithm for gossiping.
The algorithm is an improvement over the recent work in [10], which gives an
O(N log4N)-time randomized algorithm.

[10] describes their algorithm in terms of Distributed Coupon Collection.
There a simple randomized and distributed procedure DistCouponColl is
6 W.l.o.g we assume that the nodes do not start the algorithm until they receive the

first message (because we may let each node know the topology of the previous
layers; it can then simulate messages it should have received, until it receives the
actual message). Thus ti is indeed the running time of the algorithm in that layer.

346 Ding Liu and Manoj Prabhakaran

described, in which each node is a bin and each message a coupon. In a time
step, each bin can be opened or left closed; if at some time step exactly one bin
is opened all the coupons in that bin are collected. There may be many copies
of a coupon in the network. The aim of DistCouponColl(s) is to collect all
coupons (i.e., at least one copy of each message), and for that each node repeats
for s times the following: with probability 1/N open itself. Lemma 3 proved
in [10], tells us how large an s we need for a good probability of collecting all
coupons.

Lemma 3. [10] If we have N bins and N coupons and each coupon has at
least K copies (each copy belonging to a different bin), then for any constant
ε, 0 < ε < 1, if we run DistCouponColl(s) with s = (4N/K) ln(N/ε), with
probability at least 1− ε all coupons will be collected.

The overall algorithm in [10] is as follows: there are logN stages, and in
each stage (with high probability) the number of copies of each message in the
network is doubled; when stage i begins K = 2i copies of each message should
be present in the network. For this, in stage i the DistCouponColl is per-
formed (4N/K) ln(N/ε) times so that at the end of the stage each message
would have got collected. When a node is opened, it does a limited broadcast to
double the number of copies of its coupons. Using a deterministic procedure
called LtdBroadcast, this takes time O(K log2N). Thus each stage takes
O(N log2N log(N/ε)) time and has an error probability of ε. Since there are
logN stages, with ε = ε/ logN , the overall error probability is bounded by ε
and the total time is O(N log3N log(N/ε)).

The New Algorithm

Our new algorithm runs in two phases: in the first phase it does logN round-
robins. After this each message has at least logN copies in the network. The
second phase is identical to the old algorithm, except that the LtdBroadcast
is replaced by a new procedure RandLtdBroadcast given here. As we shall
see, this allows us to save an asymptotic factor of logN in the running time.

Recall that in section 2 we give a randomized procedure DecayingBroad-
cast that finishes broadcasting in Dm with constant probability. Here we use it
to send a broadcast message to a new node with constant probability. In other
words, if some nodes have not got the message yet, then there exists one such
node v such that at least one in-neighbor of v has the message. Regarding v
as the destination node (Fig. 1), one round of DecayingBroadcast gives a
constant probability of sending the message to v. In RandLtdBroadcast we
use repeated DecayingBroadcast for carrying out limited broadcast. In fact,
if we repeat it O(N) times we get a simple O(N logN) algorithm for broadcast
whose error probability can be easily bounded by a constant by using Markov
inequality. But in order to use this as a module in our final algorithm we will
need tighter Chernoff-type bounds.

RandLtdBroadcastv is executed in parallel by all the nodes. Each node
has a local Boolean flag activev; initially this variable is set to True for some

On Randomized Broadcasting and Gossiping in Radio Networks 347

nodes (the “open” bins) and set to False for all other nodes. Note that if dur-
ing some round of RandLtdBroadcastv node v receives a message, activev

becomes True in the next round.

Procedure RandLtdBroadcastv (N,K)
for i← 1 to cK do { c is an absolute constant to be determined later}

Round i:
if activev then

DecayingBroadcastv (N)
else

Receive for logN + 1 steps
if received a new message then
activev ← True

Analysis of RandLtdBroadcast Time taken is clearly O(K logN). We
define Boolean random variables Xi, for 1 ≤ i ≤ cK, as follows. Xi = 1 if a new
node receives the message or all nodes have already received the message at round
i. Otherwise Xi = 0. It is clear that if

∑cK
i=1Xi ≥ K then the limited broad-

cast has succeeded in getting the message to at least K new nodes. Since Xi’s
are not independent of each other, we cannot directly use the Chernoff Bounds.
But they have the following property: For all 2i−1 settings of (x1, . . . , xi−1),
Pr(Xi = 1|X1 = x1, . . . , Xi−1 = xi−1) ≥ 1/8, as guaranteed by Decaying-
Broadcast. This allows us to use Chernoff-Bound-like argument to bound the
error probability as summarized in the following lemma. The proof, omitted
here, follows essentially along the same line as that of the Chernoff bound.

Lemma 4. When the network is initialized with a single node as active, in
O(K logN) time, RandLtdBroadcast(N,K) succeeds in broadcasting the
messages in that node to at least K nodes with probability at least 1−exp(−αK),
where α can be made arbitrarily large by choosing a sufficiently large c.

Now we are ready to analyze our final algorithm. The first phase takes time
O(N logN). The second phase consists of O(logN) stages. In the i-th stage
there are O(N/K ln(N/ε)) calls to RandLtdBroadcast, with each call takes
O(K logN) time. Hence each stage takes O(N logN ln(N/ε)) time and the whole
phase takes O(N log2N log(N/ε)) time. The second phase dominates the overall
running time.

The first phase is deterministic. In the second phase, there are two sources of
error: the RandLtdBroadcast and the DistCouponColl. First we analyze
the error probability due to RandLtdBroadcast in the i-th stage. Recall that
K ≥ logN . Error probability for each invocation of RandLtdBroadcast(N,
K) is ≤ exp(−αK) ≤ 1/N2, by choosing a sufficiently large c, and for si =
O(N

K log N
ε) invocations it is O(log(N/ε)/N). Thus (as long as ε is not exponen-

tially small in N) the error probability due to RandLtdBroadcast is com-
fortably o(1). In fact, by choosing c sufficiently large this error probability can
be driven down to any inverse polynomial in N . Note that for K = o(logN),

348 Ding Liu and Manoj Prabhakaran

(N/K) exp(−αK) is not O(1). This is the reason for having a separate first
phase, so that before the second phase starts, the number of copies per message
is large enough.

For DistCouponColl in each stage, by Lemma 3 we bound the error prob-
ability by ε. Since we have ε = ε/ logN , and there are less than logN stages,
the error probability due to DistCouponColl is bounded by ε. This dominates
the error probability of the overall algorithm.

Theorem 2. For any given constant ε, 0 < ε < 1, RandGossip(N, ε) run on
an N node radio network completes gossiping in time O(N log2N log(N/ε)) with
probability at least 1− ε.

Finally like in [10], this Monte Carlo algorithm can be converted into a Las
Vegas algorithm with expected running time O(N log3N).

5 Gossiping in Symmetric Radio Networks

A radio network is symmetric if for any two nodes u and v, whenever there is
an edge from u to v, there is also an edge from v to u. For symmetric networks
broadcasting can be done deterministically in linear time [7]. Here we note that
the same is true for gossiping.

Theorem 3. There exists a deterministic algorithm that finishes gossiping in
5N − 4 rounds in any unknown symmetric radio networks with N nodes.

The algorithm has three phases and it is an extension of the broadcast algo-
rithm in [7]. The first phase is a round-robin, after which each node knows all
its neighbors. The second and the third phases are Depth-First-Search (DFS)
initiated by a pre-determined root node. Though the nodes have no knowledge
on the topology of the network, they can carry out DFS in a distributed way in
linear time [2]. At the end of the second phase the root has all the messages. In
the third phase this message is sent to all the nodes in the network using DFS.
We omit the details.

Acknowledgements

We would like to thank Andy Yao for introducing us to radio networks. Also we
thank Amit Chakrabarti for useful discussions.

References

1. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast,
Journal of Computer and System Sciences 43 (1991), 290–298.

2. Awerbuch, B.: A New Distributed Depth-First-Search Algorithm, Information Pro-
cessing Letters, 20, (1985), 147–150.

On Randomized Broadcasting and Gossiping in Radio Networks 349

3. Bar-Yehuda, R., Goldreich, O., Itai, A.: Efficient emulation of single-hop radio
network with collision detection on multi-hop radio network with no collision de-
tection, Distributed Computing 5 (1991), 67–71.

4. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in
multi-hop radio networks: An exponential gap between determinism and random-
ization, Journal of Computer and System Sciences 45 (1992), 104–126.

5. Bruschi, D., Del Pinto, M.: Lower bounds for the broadcast problem in mobile
radio networks, Distributed Computing 10 (1997), 129–135.

6. Chlebus, B.S.: Randomized communication in radio networks, A chapter in Hand-
book on Randomized Computing, eds. Pardalos, P.M., Rajasekaran, S., Reif, J.,
Rolim, J.D.P., Kluwer Academic Publishers, to be published.

7. Chlebus, B.S., Ga̧sieniec, L., Gibbons, A.M., Pelc, A., Rytter, W.: Deterministic
broadcasting in unknown radio networks, Proc. 11th Annual ACM-SIAM Symp.
on Discrete Algorithms, SODA (2000), 861–870.

8. Chlebus, B.S., Ga̧sieniec, L., Östlin, A., Robson, J.M.: Deterministic radio broad-
casting, Proc. 27th International Colloquium on Automata, Languages and Pro-
gramming, ICALP (2000).

9. Chrobak, M., Ga̧sieniec, L., Rytter, W.: Fast broadcasting and gossiping in ra-
dio networks, Proc. 41st Annual IEEE Conference on Foundations of Computer
Science, FOCS (2000), 575–581.

10. Chrobak, M., Ga̧sieniec, L., Rytter, W.: A randomized algorithm for gossiping in
radio networks, Proceedings of 7th Annual International Computing and Combi-
natorics Conference, COCOON (2001), 483-492.

11. Clementi, A.E.F., Monti, A., Silvestri, R.: Selective families, superimposed codes,
and broadcasting in unknown radio networks, Proc. 12th Annual ACM-SIAM
Symp. on Discrete Algorithms, SODA (2001), 709–718.

12. Diks, K., Kranakis, E., Krizanc, D., Pelc, A.: The impact of knowledge on broad-
casting time in radio networks, Proc. 7th European Symp. on Algorithms, ESA
(1999), 41–52.

13. Gaber, I., Mansour, Y.: Broadcast in radio networks, Proc. 6th Annual ACM-SIAM
Symp. on Discrete Algorithms, SODA (1995), 577–585.

14. Gallager, R.: A perspective on multiaccess channels, IEEE Transactions on Infor-
mation Theory, 31 (1985), 124–142.

15. Hedetniemi, S.M., Hedetniemi, S.T., Liestman, A.L.: A survey of gossiping and
broadcasting in communication networks, Networks 18(1988), 319-359.

16. Indyk, P.: Explicit constructions of selectors with applications, Proc. 13th Annual
ACM-SIAM Symp. on Discrete Algorithms, SODA (2002), 697–704.

17. Kushilevitz, E., Mansour, Y.: An Ω(D log (N/D)) lower bound for broadcast in
radio networks, SIAM Journal on Computing 27 (1998), 702–712.

18. Kushilevitz, E., Mansour, Y.: Computation in noisy radio networks, Proc. 9th
Annual ACM-SIAM Symp. on Discrete Algorithms, SODA (1998), 236–243.

19. Tanenbaum, A.S.: Computer Networks, Prentice-Hall, Englewood Cliffs, NJ, 1981.
20. Yao, A. C-C.: Probabilistic computations: Towards a unified measure of complexity,

Proc. 18th Annual IEEE Conference on Foundations of Computer Science, FOCS
(1977), 222–227.

Fast and Dependable Communication
in Hyper-rings

Tom Altman1, Yoshihide Igarashi2, and Kazuhiro Motegi2

1 Department of Computer Science, University of Colorado at Denver,
Denver, CO 80217, USA

taltman@carbon.cudenver.edu
2 Department of Computer Science, Gunma University, Kiryu, Japan 376-8515

igarashi@comp.cs.gunma-u.ac.jp

Abstract. A graph G = (V, E) is called a hyper-ring with N nodes
(N -HR for short) if V = {0, ..., N − 1} and E = {{u, v}|v − u modulo
N is a power of 2}. The following results are shown. We prove that
the node-connectivity κ of an N -HR is equal to its degree, say δ, by
presenting an algorithm for the explicit construction of δ node-disjoint
paths connecting nodes s and t. The length of these paths is bounded by
�log D�+ 3, where D is the positional distance between s and t. Finally,
we show a node-to-node communication scheme for HRs that requires
only �log D�+3 rounds, even in the presence of up to δ−1 node failures.

Keywords: Hyper-ring, connectivity, broadcasting, network, reliability

1 Introduction

Various topologies have been proposed for interconnecting processors in large
scaled parallel and/or distributed systems. Hyper-rings (HRs) [2] and their vari-
ations have appeared in the literature under several names, including optimal
broadcasting scheme [1] and binary jumping networks [8]. Detailed discussions
on the structure, properties, and advantages of this family of networks and their
fault tolerance were presented in [2,7,8].

Node-connectivity of a network is fundamental in the analysis of network
reliability and/or security. Menger’s Theorem relates the connectivity of a graph
G, denoted by κ(G), to the size of the smallest set (among the maximal sets)
of pair-wise internally node-disjoint paths between any pair of nodes s and t
[12]. Note that in any G, κ ≤ δ, where δ denotes the minimal nodal degree of G.
Hence, in a network, multiple copies of a message may be sent through a number
of disjoint paths and fault tolerance can be achieved in this manner [10].

In addition to increased reliability, disjoint paths provide an excellent mecha-
nism for transmitting secret messages through a network. Using Rabin’s Informa-
tion Dispersal Algorithm [11], or partitioning a secret message into submessages,
where every i-th packet is transmitted via the i-th mod κ path, may prevent (or
at least make it more difficult) for adversaries to intercept and decipher it.

Han et al. [8], have extended the results obtained in [7] addressing the prob-
lem of broadcasting in faulty binary jumping networks, a directed version of

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 350–359, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Fast and Dependable Communication in Hyper-rings 351

HRs with roughly half the number of edges. However, their work was limited to
the general broadcasting problem (one source sending the same message to all
nodes in the network), and not to the more interesting problem of an explicit
construction of the κ node-to-node disjoint paths, investigated here.

It is relatively easy to show that for any N -HR, δ−2 ≤ κ ≤ δ, by applying the
results of [4] to a reduced HR in which the maximal positional distance between
any connected nodes is 2�log N�−1 and not the standard 2�log N�. The reduced
HR would be a circulant with the property of convexity, which is sufficient (but
not a necessary) condition for κ = δ [4,5].

The major contribution of this paper is showing that HRs’ connectivity is
maximal by presenting an algorithm that generates the δ node-disjoint paths
between any source node s and destination node t. Moreover, the length of all
of these paths is bounded from above by �logD� + 3, where D ≤ �N/2� is the
positional distance between s and t.

The rest of the paper is organized as follows. In Section 2, we present two
fundamental methods of HR construction. There, we also introduce Semi Hyper-
rings (SHRs) and enriched SHRs, discuss their connectivities, and node-disjoint
path construction for SHRs. These will play a fundamental role in our node-to-
node disjoint-path construction and communication schemes of Section 3.

2 Preliminaries

2.1 HR Construction

Let us begin with a formal definition of a hyper-ring.

Definition 1. A graph G = (V,E) is called a hyper-ring with N nodes (N -HR
for short) if V = {0, ..., N −1} and E = {{u, v}|[v−u]N is a power of 2 }, where
[m]r is m modulo r.

Definition 2. The positional distance between node s and node t of N -HR is
defined to be min{[t− s]N , [s− t]N}.

The number of edges between nodes in an HR is roughly twice that of a
hypercube (HC) with the same number of nodes, but the proposed organization
possesses a number of advantages over the HC. In particular, for any N we can
construct an N node HR, whereas a hypercube must contain exactly 2k nodes
for some k. An example of an 11-HR is shown in Figure 1. Note that what
appears to be a connection of positional distance 3 is really a (counterclockwise)
connection of positional distance 8. This class of edges, connecting nodes 2�log N�

away from each other, will be addressed in more detail in the path construction
procedures of this section.

The HCs have a natural and an elegant recursive structure that does not seem
to extend to HRs in an obvious way. In particular, the number of edges in HRs
does not grow monotonically with the number of nodes [2]. It turns out, however,
that HRs do possess an interesting recursive construction that encompasses HCs

352 Tom Altman, Yoshihide Igarashi, and Kazuhiro Motegi

0

1

2

10

9

8 3

4

5

7

6

Fig. 1. An example of an 11-HR.

in a sense as a special case. examine First, let us observe a simple (nonrecursive)
construction of N -HRs. The following procedure is straightforward and needs no
further explanation.

for i := 0 to N − 1 do
for k := 0 to �logN� do

if there is no edge between i and [i+ 2k]N
then connect node i to nodes labeled [i± 2k]N

Observe that in HRs, the two edges usually connecting nodes that are either
2�log N� or 2�log N�−1 positional distance away from each other either do not exist
as such (examine the (2i + 2j)-HR family), may merge into one (2k-HR family),
or crisscross (all of the remaining HRs). Again, see edges (0,8) and (0,[−8]11 = 3)
in Figure 1.

Assume that an N -HR has already been constructed. Suppose we wish to
construct a 2N -HR from it. The following procedure [2], takes as input an N -
HR0 and returns a 2N -HR.

make a duplicate copy of N -HR0, call it N -HR1
for i := 0 to N − 1 do

relabel node i in N -HR0 to 2i
relabel node i in N -HR1 to 2i+ 1

for i := 0 to 2N − 1 do
connect node i and node [i+ 1]2N

Figure 2 shows the connections for one node of the HR constructed using the
doubling construction procedure. It shows that if δ is the degree of an N -HR,
N > 1, then the degree of 2N -HR is δ + 2. Previously, it was shown that the
doubling of an HR increases its connectivity from κ to κ+ 2 [3]. The essence of
the proof is captured by the two paths containing nodes α and β in Figure 2,
however, it will not be discussed here.

Fast and Dependable Communication in Hyper-rings 353

α

β t

s

Fig. 2. An HR constructed using the doubling procedure and the two additional node-
disjoint paths via α and β.

2.2 Semi Hyper-rings

Before we can proceed with the node-disjoint path construction algorithm for
HRs, let us introduce a related structure and examine its connectivity and path
algorithms.

Definition 3. A Semi Hyper-ring is a graph corresponding to any segment of
P consecutive integers, (P -SHR for short) in which any two nodes (integers) are
connected iff they are a power of 2 positional distance away from each other.

Lemma 1. The node-connectivity of a P -SHR is equal to �logP �, which is also
the degree of its first and last nodes.

Proof. It is obvious that the degree of the first and last nodes of any P -SHR is
�logP �. Observe that for all r > 0, the SHRs of size 2r + 1 through 2r+1 will
have the same connectivity. This is due to the Expansion Lemma (see, e.g., [12])
which states that if G is a k-connected graph, and G′ is obtained from G by
adding a new vertex y with at least k neighbors in G, then G′ is k-connected.
This allows us to focus on SHRs of size P = 2q + 1, e.g., the integers 0, 1, ..., 2q.

We show, by induction on q, that P -SHRs have connectivity of �logP �. For
q = 1, the 3-SHR is obviously 2-connected.

Inductive Hypothesis: Assume that any (2q + 1)-SHR is q + 1-connected, i.e.,
between any two nodes s and t, there exist q+1 node-disjoint paths. Equivalently,
if S1 and S2 are two disjoint sets of q+1 nodes each, all located within the same
(2q + 1)-SHR, then there exist q + 1 node-disjoint paths within it that pairwise
connect the nodes of both sets.

354 Tom Altman, Yoshihide Igarashi, and Kazuhiro Motegi

Let us now examine a (2q+1 + 1)-SHR. Observe that the degrees of all nodes
in the (2q+1 + 1)-SHR have increased by 1, e.g., the degree of node 0 is now
q + 2, etc. We must show that for any 0 ≤ s < t ≤ 2q+1 there are now q + 2
node-disjoint paths between s and t. There are two cases to consider:

1. If t−s ≤ 2q, then by the Inductive Hypothesis there exist q+1 node-disjoint
paths between s and t such that the internal nodes of these paths will be
totally contained within a (2q + 1)-SHR whose one endpoint is either node
s, or t, or an SHR whose endpoints are t− 2q + 1 and s+ 2q − 1.
The (q+ 2nd) path will have one of three possible forms, which will depend
on the relative placement of s and t:
{s, s− 1, s− 2, ..., 0, 2q+1, 2q+1 − 1, 2q+1 − 2, ..., t+ 2q, t}, if s, t ≤ 2q;
{s, s−2q, s−2q−1, s−2q−2, ..., 0, 2q+1, 2q+1−1, 2q+1−2, ..., t}, if s, t ≥ 2q;
{s, s+ 2q, s+ 2q + 1, s+ 2q + 2, ..., 2q+1, 0, 1, 2, ..., t− 2q, t}, if s < 2q < t.

2. If t − s > 2q, then by the Inductive Hypothesis and the Expansion Lemma
there already exist q+1 node-disjoint paths between s and t. Furthermore, all
of the internal nodes of these q+1 paths have indices greater than s and less
than t. The (q+2nd) path will have the form: {s, s−1, s−2, ..., 0, 2q+1, 2q+1−
1, 2q+1 − 2, ..., t}. ��

2.3 Path Construction for SHRs

For ease of presentation and clarity, let us visualize the problem of SHR/HR
node-disjoint path construction as a simple (one player) blue/green pebble game,
which has only three rules:

1. The only pebble movements (hops) allowed are via the existing edges.
2. A pebble may not be placed on a node previously visited by any other pebble.
3. If node i is occupied by a pebble, the player may capture it by hopping a

different color pebble to i and removing both pebbles from the game.

The object of the game is to maximize the number of captured pebbles, given
some initial pebble configuration. It should be clear that the traces of the pebble
hops uniquely define a set of node-disjoint paths and that a capture indicates
a completion of a path between the nodes where the pebbles were originally
placed.

Let us now present procedure CompressSHR that given t as input generates
the �log t� node-disjoint paths between 0 and t within the (t+ 1)-SHR. We will
describe the steps of this procedure in terms of pebble movements.

procedure CompressSHR(t)
Initialize: place �log t� blue and �log t� green pebbles in locations
{20, 21, ..., 2�log t�} and {t− 20, t− 21, ..., t− 2�log t�}, respectively.

0. Check for any green and blue pebbles placed on the same node,
(including blue on t and green on 0) and if found, capture them.

Fast and Dependable Communication in Hyper-rings 355

while any pebbles are left do
1. Identify the green pebble g that is closest and to the right of the

rightmost blue pebble b.
2. For all of the remaining green pebbles to the right of b use an

appropriate single-hop to move them to the left of b.
If any land on another blue pebble, consider it a capture.

3. Construct the appropriate sequence of hops for g to capture b.

It is clear that the green pebble movements represent the node t to node s
paths and that they are node-disjoint (see Figure 3). Observe that at each loop
iteration at least one capture is made, limiting the number of loops to �log t�,
making the maximal number of hops made by any pebble to be no more than
�log t�. Furthermore, if for some reason (e.g., an incorrect initial placement of
one of the blue pebbles) step 1 fails, then let g be the green pebble closest to the
rightmost blue pebble and continue with step 3, for that particular while-loop
iteration. Later, we will see how that may become necessary during the HR path
construction.

t
s

2
q

2
q-1

210

b
g

Fig. 3. Compression of an SHR and node-disjoint path construction.

Definition 4. A P -SHR is said to be enriched if it is extended by allowing
additional connections between all pairs of nodes that are of k positional distance
away from each other, for a fixed k, 3 ≤ k < P , which is not a power of 2.

Hence, the degree of the first and last nodes in any enriched P -SHR is equal to
�logP �+1. Observe that procedure CompressSHR(t) can be naturally extended
to include enriched SHRs by initially placing additional blue and green pebbles
in locations k and t− k, respectively.

Observation 1 Procedure CompressSHR will capture all of the pebbles in any
(enriched) P -SHR.

Let s < t be two nodes in an N -HR that are D ≤ �N/2� positions away from
each other. We may construct a (possibly enriched) D-SHR(s,t) that spans s and
t by removing from the N -HR all of the nodes (and their edges) outside the line
segment (s, t), (i.e., outside {s, s+ 1, ..., t− 1, t}).

Let us focus on the family of N -HRs that possess the crisscrossing edges
connecting nodes of 2�log N� positional distance.

356 Tom Altman, Yoshihide Igarashi, and Kazuhiro Motegi

Observation 2 If D ≥ N − 2�log N� then the degree of nodes s and t as well as
the number of node-disjoint paths between s and t in the D-SHR(s,t) is equal to
�logD�+ 1, otherwise it is �logD�.

The next result will allow us to obtain the disjoint-path length bounds for
not only SHRs, but eventually, HRs.

Lemma 2. For any (enriched) D-SHR, the length of the node-disjoint paths
constructed by procedure CompressSHR is bounded by �logD�+ 2.

3 Path Construction for HRs

We now present our algorithm for the construction of node-disjoint paths in HRs.
First, given N, s, and t we will make the initial pebble placement by putting the
blue (and green) pebbles on nodes which are exactly ±2i, i = 0, ..., �logN�,
positions away from s (and t), respectively (making any immediate capture(s),
if any blue/green pair of pebbles has been found on the same node). Observe
that a placement of a blue pebble on t and a green one on s indicates that s and
t are directly connected by an edge and calls for an immediate capture of the
two pebbles.

Let D be the minimal (clockwise, counterclockwise) positional distance be-
tween s and t and d = �logD�. Denote by Ms and Mt the nodes [s + �N/2�]N
and [t− �N/2�]N , respectively.

Next, as shown in Figure 4, the following six SHRs will be identified. Note
that, in certain extreme cases, (e.g., 2K-HRs and D = K), SHRB , SHRB′ ,
SHRC , and SHRC′ may contain no nodes, and s and t may serve as end nodes
for both SHRA and SHRE .

1. SHRA is the segment (s, t) of size 2 ≤ D ≤ �N/2�.
2. SHRB is bounded by s− 1 and the closer of two nodes (s− 2d, Mt + 1).

SHRB′ is bounded by t+ 1 and the closer of two nodes (t+ 2d, Ms − 1).
3. SHRC is bounded by closer of two nodes (s− 2d − 1, Mt + 1), and Mt + 1.

SHRC′ is bounded by closer of two nodes (t+ 2d + 1, Ms − 1), and Ms − 1.
4. SHRE is bounded by Mt and Ms.

We can easily capture all of the pebbles in SHRA by CompressSHR.
Next, we will capture the pebbles from the nodes of SHRB and SHRB′ .

We single-hop the blue pebbles from SHRB to SHRB′ by taking their 2d+1

(clockwise) connections. While it is clear that all of the blue pebbles would wind
up in SHRB′ , there are two potential problems.

1. One blue pebble may already be in SHRB′ via the 2d-connection. To address
this problem, one of the blue pebbles should be left behind in SHRB , the
question of which one is answered below.

2. One blue pebble may already be in SHRB′ via the 2�log N�-connection. If so,
a second blue pebble would have to be left behind in SHRB .

Fast and Dependable Communication in Hyper-rings 357

s t

SHRE

SHRA

SH
R

B

SH
R

C
SH

R
B

'
SH

R
C

'

Mt Ms

Fig. 4. Partitioning of an N -HR.

A quick check would determine if any of the SHRB blue pebbles could land on
the above-mentioned (blue) problem pebbles in SHRB′ (and those would be the
ones that would stay behind in SHRB . If no such pebble(s) exist in SHRB , then
we pick them randomly. In any case, at most d+ 1 blue (and the same number
of green) pebbles would be present in SHRB′ after this 2d+1 cross-over. Observe
that the one/two blue pebble(s) left behind will now be used within SHRB to
join the one/two green pebbles that (by symmetry) would have been in SHRB

from the beginning. At this time CompressSHR would be used on SHRB′ .
We now turn our attention to SHRC and SHRC′ . Observe that if D 	= 2d,

the pebbles in SHRC are in locations (blue) 2d+1, 2d+2, ... and (green) 2d+1 −
D, 2d+2 − D, ..., positions away from s. The blue/green pebble pairs in SHRC

from locations (2d+j , 2d+j − D) away from s will be appropriately moved and
captured. The positional distance between the blue and green pebbles within
these pairs is bounded by D. The possible presence of the pebbles (via the
2�log N�-connection) is not a significant problem here, since we are joining at
most two pairs of pebbles within at least a 2D-sized subsegments of SHRC . The
blue/green pebble pairs in SHRC′ would be captured in a symmetrical fashion.

If D = 2d, then we would proceed as above, except there could be two lonely
pebbles left: a blue pebble, b, located 2d+1 positions away from s in SHRC and
a green pebble, g, located 2d+1 positions away from t in SHRC′ . These will be
paired-up by allowing b to cross-over into SHRC′ via a 2d+2 connection. Of course
a direct hop from b’s original position is not possible since it would collide with
another blue pebble’s location (the 2d+1 edge of s). Therefore, b could take a
mini-hop of distance 2d−1 toward s and then take the cross-over edge 2d+2. The

358 Tom Altman, Yoshihide Igarashi, and Kazuhiro Motegi

(potential) problem in the case when the mini-hop would land b on a location
of blue pebble corresponding to the 2�log N� connection from s can be resolved
easily by making the mini-hop of distance 2d−2 instead. Once in SHRC′ , b and
g would be less than D distance away from each other and would be captured.
Alternatively, b and g may be moved into SHRE and captured there.

Finally, the pebbles from SHRE would be captured using CompressSHR.
Observe that as D approaches �N/2�, SHRE will have more and more pebbles.
In fact, for 2K-HRs and D = K, SHRA and SHRE are both K-SHRs with
identical pebble distribution.

The above steps, summarized below, form procedure Hop-a-log that will con-
struct the node-disjoint (s, t)-paths in a given HR.

procedure Hop-a-log(N,s,t)
Make the initial pebble placement and an immediate capture check
Partition the HR into the six SHRs
Compress SHRA

Identify which and cross-over the blue pebbles from SHRB to SHRB′

Compress SHRB′

Capture the one/two remaining pebble pairs in SHRB

Capture the (2d+j , 2d+j −D) pairs in SHRC and SHRC′

If they exist, capture the two lonely pebbles using the 2d+2 hop
Compress SHRE .

Lemma 3. For any HR the Hop-a-log procedure will generate κ = δ node-
disjoint paths between any source node s and destination node t. Moreover, the
length of each such path is bounded by �logD�+ 3.

Proof. Follows from proof of Lemma 1, Observation 2, and Lemma 2, and the
fact that the sizes of all of the SHRs on which CompressSHR was used, were
bounded by D. ��

Theorem 1. A node-to-node communication scheme using procedure Hop-a-log
will send a message from s to t within �logD�+ 3 rounds, even in the presence
of κ− 1 node failures.

4 Concluding Remarks

Besides facilitating a fast and reliable node-to-node communication, HRs provide
an excellent means for network broadcasting. Assuming a multi-port broadcast-
ing model in which a node can send a message to all of its immediate neighbors
in one round, broadcasting in HRs may be carried out in only �logN� rounds
to send information from any source to all destination nodes, if no nodes have
failed. The bound on the path lengths in Lemma 3, however, guarantees that
an HR broadcasting scheme using this procedure will send a message from any

Fast and Dependable Communication in Hyper-rings 359

source to all destinations within �logN�+2 rounds, even in the presence of κ−1
node failures.

Hyper-rings appear to be the first log-sparse connection architecture that
allows for dependable communication in time of �logD�+ 3, where D is the po-
sitional distance between the source and destination nodes. This speed of locality
is especially important for fast and dependable none-to-node communication pro-
tocols and distributed computing. Examples of such applications would include
distributed pattern recognition algorithms, battlefield communication manage-
ment, monitoring systems, etc. HRs are certainly worthy of further studies.

References

1. N. Alon, A. Barak, and U. Mauber, On disseminating information reliably without
broadcasting, 7th Int. Conference on Distributed Computer Systems (1987) 74-81.

2. T. Altman, Y. Igarashi, and K. Obokata, Hyper-ring connection machines, Parallel
Computing 21 (1995) 1327-1338.

3. T. Altman, Reliable communication schemes for hyper-rings, 28th Int. Southeastern
Conference on Combinatorics, Graph Theory, and Computing (1997).

4. F. Boesch and A. Felzer, A general class of invulnerable graphs, Networks 2 (1972)
261-283.

5. F. Boesch and R. Tindell, Circulants and their connectivities, J. of Graph Theory
8 (1984) 487-499.

6. E. van Doorn, Connectivity of circulant digraphs, J. of Graph Theory 10 (1986)
9-14.

7. Y. Han, R. Finkel, An optimal scheme for disseminating information, The 22nd
Int. Conference on Parallel Processing (1988) 198-203.

8. Y. Han, Y. Igarashi, K. Kanai, and K. Miura, Broadcasting in faulty binary jump-
ing networks, J. of Parallel and Distributed Computing 23 (1994) 462-467.

9. W. Knödel, New gossips and telephones, Discrete Mathematics 13 (1975) 95.
10. A. Pelc, Fault-tolerant broadcasting and gossiping in communication networks,

Networks 28 (1996) 143-156.
11. M. O. Rabin, Efficient dispersal of information for security, load balancing, and

fault tolerance, J. of ACM 36 (1989) 335-348.
12. D. West, Introduction to Graph Theory, Prentice Hall (1996).

The On-Line Heilbronn’s Triangle Problem
in Three and Four Dimensions

Gill Barequet

The Technion–Israel Institute of Technology, Haifa 32000, Israel
barequet@cs.technion.ac.il

http://www.cs.technion.ac.il/˜barequet

Abstract. In this paper we show lower bounds for the on-line version
of Heilbronn’s triangle problem in three and four dimensions. Specif-
ically, we provide incremental constructions for positioning n points in
the 3-dimensional (resp., 4-dimensional) unit cube, for which every tetra-
hedron (resp., pentahedron) defined by four (resp., five) of these points
has volume Ω(1

n3.333...) (resp., Ω(1
n5.292...)).

1 Introduction

Heilbronn posed his famous (off-line) triangle problem [5] about 50 years ago:

Given n points in the unit square, what is H2(n), the maximum possible
area of the smallest triangle defined by some three of these points?

There is a large gap between the best currently-known lower and upper
bounds for H2(n), Ω(log n/n2) [3] and O(1/n8/7−ε) (for any ε > 0) [2]. A com-
prehensive survey of the history of this problem (excluding the results of Komlós
et al.) is given by Roth in [6].

In [1] we presented a generalization of the triangle problem to d dimensions:

Given n points in the d-dimensional unit cube, what is Hd(n), the max-
imum possible volume of the smallest simplex defined by some d+ 1 of
these points?

It was shown in [1] that Hd(n) = Ω(1
nd). This lower bound was achieved by a

specific example and by a probabilistic argument. Lefmann [4] slightly improved
this bound, showing by using uncrowded hypergraphs that Hd(n) = Ω(log n

nd). In
particular, H3(n) = Ω(log n

n3) and H4(n) = Ω(log n
n4).

The on-line variant of the triangle problem is harder than the off-line variant
because the value of n is not specified in advance. In other words, the points
are positioned one after the other in a d-dimensional unit cube, while n is incre-
mented by one after every point-positioning step. The procedure can be stopped
at any time, and the already-positioned points must have the property that every
subset of d+ 1 points define a polytope whose volume is at least some quantity,
where the goal is to maximize it. It was shown in [1] that this quantity is Ω(1

n4)
in three dimensions.

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 360–369, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

The On-Line Heilbronn’s Triangle Problem in Three and Four Dimensions 361

In this paper we use nested packing arguments of balls to provide a sharper
lower bound in three dimensions, and use a much more complex version of this
method to give a lower bound in four dimensions. Specifically, we provide incre-
mental procedures for positioning n points (one by one) in a 3-dimensional (resp.,
4-dimensional) unit cube so that all the tetrahedra (resp., pentahedra) defined
by quadruples (resp., 5-tuples) of the points have volume Ω(1

n10/3) = Ω(1
n3.333...)

(resp., Ω(1
n127/24) = Ω(1

n5.292...)). Obviously, these results do not match the
known lower bounds for the off-line variant of the problem.

In a sense our method is a nontrivial generalization of Schmidt’s incremental
construction [7] that shows that H2(n) = Ω(1

n2). The planar construction of
Schmidt does not use, however, nested packing arguments as do we in the current
work.

2 The Construction in Three Dimensions

We first develop the construction in three dimensions.

2.1 Notation and Plan

We use the following notation: Let p1, p2, p3, p4 be any four points in �3. Then,
|p1, p2| denotes the distance between two points p1, p2; |p1, p2, p3| denotes the
area of the triangle p1p2p3; and |p1, p2, p3, p4| denotes the volume of the tetra-
hedron p1p2p3p4. We denote by C3 the unit cube. The line defined by the pair
of points pi, pj is denoted by �ij .

We want to construct a set S of n points in C3 such that

(i) |pipj | ≥ a
n1/3 , for any pair of distinct points pi, pj ∈ S and for some

constant a > 0.
(ii) |pipjpk| ≥ b

n , for any triple of distinct points pi, pj , pk ∈ S and for some
constant b > 0.

(iii) |pipjpkpl| ≥ c
n10/3 , for any quadruple of distinct points pi, pj , pk, pl ∈ S

and for some constant c > 0.

The goal is to construct S incrementally. That is, assume that we have already
constructed a subset Sv of v points, for v < n, that satisfies conditions (i)–(iii)
above. We want to show that there exists a new point p ∈ C3 that satisfies

(i’) |ppi| ≥ a
n1/3 , for each point pi ∈ Sv.

(ii’) |ppipj | ≥ b
n , for any pair of distinct points pi, pj ∈ Sv.

(iii’) |ppipjpk| ≥ c
n10/3 , for any triple of distinct points pi, pj , pk ∈ Sv.

We will show this by summing up the volumes of the ‘forbidden’ portions of
C3 where one of the inequalities (i’)–(iii’) is violated, and by showing that the
sum of these volumes is less than 1, implying the existence of the desired point
p, which we then add to Sv to form Sv+1, and continue in this manner until the
entire set S is constructed.

362 Gill Barequet

2.2 The Construction

The forbidden regions where one of the inequalities (i’) is violated are v balls of
radius a/n1/3. Their overall volume (within C3) is at most v · 4πa3

3n = O(a3v
n) =

O(a3).
The forbidden regions where one of the inequalities (ii’) is violated are

(
v
2

)
cylinders Qij , for 1 ≤ i < j ≤ v, where the cylinder Qij has radius 2b/(n|pipj |).
Their overall volume (within C3) is at most

∑
1≤i<j≤v

4
√

3πb2

n2|pipj |2 . To bound this
sum, we fix pi and sum over pj . We use a spherical packing argument that
exploits the fact that Sv satisfies (i). Specifically, we have

∑
j �=i

1
|pipj |2 ≤

O(n1/3/a)∑
t=1

Mtn
2/3

a2t2
,

where Mt is the number of points of Sv that lie in the spherical shell centered at
pi with inner radius at/n1/3 and outer radius a(t+1)/n1/3. There are O(n1/3/a)
such spherical shells. (Further shells would be outside C3). Because of (i), the
number of such points is Mt = O(t2). This follows by an argument of packing
spheres of volume a3/n within a shell whose volume is a3t2/n. Hence the above
sum is O(n/a3). Repeating this for each pi ∈ Sv, we see that the total volume
of the forbidden cylinders is O(b2v/(a3n)) = O(b2/a3).

Finally, the forbidden regions where one of the inequalities (iii’) is violated
are

(
v
3

)
slabs σijk, for 1 ≤ i < j < k ≤ v, where the slab σijk has width

12c/(n10/3|pipjpk|). Their overall volume (within C3) is at most
∑

1≤i<j<k≤v

36c
n10/3|pipjpk| . (1)

To bound this sum, we fix pi, pj and sum over pk. We use a cylindrical packing
argument that exploits the fact that Sv satisfies (i) and (ii). Specifically, we have

∑
k �=i,j

1
|pipjpk| ≤

N0n

b
+

O(n1/3/a)∑
t=1

2Ntn
1/3

at|pipj | , (2)

where N0 is the number of points of Sv that lie in the inner-most cylinder of
the packing, and Nt is the number of points of Sv that lie in the cylindrical
shell centered at �ij with inner radius at/n1/3 and outer radius a(t + 1)/n1/3.
There are O(n1/3/a) such cylindrical shells. ObviouslyN0 = O(n1/3/a), since the
volume of the inner-most cylinder is a2/n2/3 and because of (i). Also, because
of (i), Nt = O(tn1/3/a). This follows by an argument of packing spheres of
volume a3/n within a shell whose volume is a2t/n2/3. Hence the above sum is
O(n4/3/(ab) + n/(a3|pipj |)). We now substitute this bound in (1) and sum over
all pi, pj to obtain the upper bound

O

 ∑

1≤i<j≤v

c(
1

abn2 +
1

a3n7/3|pipj |)

 .

The On-Line Heilbronn’s Triangle Problem in Three and Four Dimensions 363

The sum of the first summand is O(cv2/(abn2)) = O(c/(ab)). We bound the
sum of the second summand as above, fixing pi and using a spherical packing
argument within spherical shells centered at pi. Arguing as above, we obtain

∑
j �=i

c

a3n7/3|pipj | ≤
c

a3n7/3

O(n1/3/a)∑
t=1

Mtn
1/3

a4t
=

c

n2

O(n1/3/a)∑
t=1

O(t2)
at4

= O(
c

a6n4/3).

And summing this over all pi, we obtain a final bound of O(cv/(a6n4/3)) = o(1).
In summary, the overall total volume of the forbidden regions is O(1), which

can be made smaller than 1 by an appropriate choice of the constants a, b, c.
More precisely, the forbidden volume is at most C1a

3+C2b
2/a3+C3c/(ab), where

C1, C2, C3 are real constants that do not depend on a, b, c. It is easy to make this
term at most 1 by first choosing any value for a such that 0 < a ≤ 3

√
1/(3C1),

then choosing any value for b such that 0 < b ≤√a3/(3C2), and finally choosing
any value for c such that 0 < c ≤ ab/(3C3). This completes the construction.

3 The Construction in Four Dimensions

We are now ready to use the same ideas for the more-involved four-dimensional
construction. For clarity of exposition we omit the tuning constants from the
O(·) and Ω(·) notations.

3.1 Notation and Plan

Our current notation and plan are similar to those of the 3-dimensional construc-
tion. Let p1, p2, p3, p4, p5 be any five points in �4. As in the previous section,
|p1, p2| denotes the distance between two points p1, p2; |p1, p2, p3| denotes the
area of the triangle p1p2p3; |p1, p2, p3, p4| denotes the (3-dimensional) volume
of the tetrahedron p1p2p3p4; and |p1, p2, p3, p4, p5| denotes the (4-dimensional)
volume of the pentahedron p1p2p3p4p5. We denote by C4 the 4-dimensional unit
cube. Again, the line defined by the pair of points pi, pj is denoted by �ij .

We want to construct a set S of n points in C4 such that

(i) |pipj | ≥ a
n1/4 , for any pair of distinct points pi, pj ∈ S and for some

constant a > 0.
(ii) |pipjpk| ≥ b

n2/3 , for any triple of distinct points pi, pj , pk ∈ S and for some
constant b > 0.

(iii) |pipjpkpl| ≥ c
n43/24 , for any quadruple of distinct points pi, pj , pk, pl ∈ S

and for some constant c > 0.
(iv) |pipjpkplpm| ≥ d

n127/24 , for any 5-tuple of distinct points pi, pj , pk, pl,
pm ∈ S and for some constant d > 0.

The goal is again to construct S incrementally. That is, assume that we have
already constructed a subset Sv of v points, for v < n, that satisfies conditions
(i)–(iv) above. We want to show that there exists a new point p ∈ C4 that
satisfies

364 Gill Barequet

pi

pj

�ij

2b
n2/3|pipj |

Qij

2b
n2/3|pipj |

Fig. 1. A cylinder in �4

(i’) |ppi| ≥ a
n1/4 , for each point pi ∈ Sv.

(ii’) |ppipj | ≥ b
n2/3 , for any pair of distinct points pi, pj ∈ Sv.

(iii’) |ppipjpk| ≥ c
n43/24 , for any triple of distinct points pi, pj , pk ∈ Sv.

(iv’) |ppipjpkpl| ≥ d
n127/24 , for any quadruple of distinct points pi, pj , pk, pl ∈

Sv.

We will show this by summing up the volumes of the ‘forbidden’ portions of
C4 where one of the inequalities (i’)–(iv’) is violated, and by showing that the
sum of these volumes is less than 1, implying the existence of the desired point
p, which we then add to Sv to form Sv+1, and continue in this manner until the
entire set S is constructed.

3.2 Forbidden Balls

The forbidden regions where one of the inequalities (i’) is violated are v 4-
dimensional balls of radius a/n1/4. Their overall volume (within C4) is at most
v ·O(1

n) = O(v
n) = O(1).

3.3 Forbidden Cylinders

The forbidden regions where one of the inequalities (ii’) is violated are
(
v
2

)
4-

dimensional “cylinders” Qij , for 1 ≤ i < j ≤ v. The cylinder Qij is centered at
�ij , its length is at most

√
4 = 2, and its cross-section perpendicular to �ij is a

3-dimensional sphere of radius 2b/(n2/3|pipj |) (see Figure 1). The overall volume
of the cylinders (within C4) is at most

The On-Line Heilbronn’s Triangle Problem in Three and Four Dimensions 365

2
1

3

a
n1/4

pi

O(n1/4)

Fig. 2. A spherical packing of balls in �4

∑
1≤i<j≤v

64πb3

3n2|pipj |3 . (3)

To bound this sum, we fix pi and sum over pj . We use a 4-dimensional
spherical packing argument that exploits the fact that Sv satisfies (i). Specifically,
we have

∑
j �=i

1
|pipj |3 ≤

O(n1/4)∑
t=1

Mtn
3/4

a3t3
, (4)

where Mt is the number of points of Sv that lie in the 4-dimensional spherical
shell centered at pi with inner radius at/n1/4 and outer radius a(t+ 1)/n1/4; see
Figure 2. There are O(n1/4) such spherical shells. Because of (i), the number of
such points is Mt = O(t3). This follows by an argument of packing spheres of
volume Ω(1/n) within a shell whose volume is O(t3/n).

Hence the sum in Equation (4) is O(n). Summing this over all pi, we obtain
a final bound of O(vn). Substituting this in Equation (3), we see that the total
volume of the forbidden cylinders is O(v/n) = O(1).

3.4 Forbidden Prisms

The forbidden regions where one of the inequalities (iii’) is violated are
(
v
3

)
4-

dimensional “prisms” φijk, for 1 ≤ i < j < k ≤ v. The base area of φijk is at
most 4, and its “height” (in the 3rd and 4th dimensions) is a 2-dimensional circle

366 Gill Barequet

2
1

3

a
n1/4

pi

pj

O(n1/4)

�ij

Fig. 3. A 4-D cylindrical packing (an extruded 3-D spherical packing) of balls in �4

of radius O(1/(n43/24|pipjpk|)). The overall volume of the prisms (within C4) is
at most ∑

1≤i<j<k≤v

O(
1

n43/12|pipjpk|2). (5)

To bound this sum, we fix pi, pj and sum over pk. We use a 4-dimensional
cylindrical packing argument that exploits the fact that Sv satisfies (i) and (ii).
The cylinders are centered at �ij . (See Figure 3; the line �ij is emanating from
pi toward pj through the 4th dimension.) Specifically, we have

∑
k �=i,j

1
|pipjpk|2 ≤

N0n
4/3

b2
+

O(n1/4)∑
t=1

4Ntn
1/2

a2t2|pipj |2 , (6)

where N0 is the number of points of Sv that lie in the inner-most 4-dimensional
cylinder of the packing (centered at �ij and of radius a/n1/4), and Nt is the
number of points of Sv that lie in the cylindrical shell centered at �ij with inner
radius at/n1/4 and outer radius a(t+ 1)/n1/4.

Obviously N0 = O(n1/4), since the volume of the 3-dimensional cross-sec-
tional sphere of the inner-most cylinder is O(1/n3/4) and because of (i). Also,
we have Nt = O(t2n1/4). This follows by an argument of packing spheres of
volume Ω(1/n) within a shell whose volume is O(t2/n3/4).

The On-Line Heilbronn’s Triangle Problem in Three and Four Dimensions 367

Hence the sum in Equation (6) is O(n19/12 + n
|pipj |2). Substituting this in

Eq. (5), we obtain the upper bound on the total volume of the forbidden prisms

O

 ∑

1≤i<j≤v

(
1
n2 +

1
n31/12|pipj |2)

 = O

 v2

n2 +
1

n31/12

∑
1≤i<j≤v

1
|pipj |2

 . (7)

We bound the sum in the second summand similarly to our bounding of the
term in Equation (4) (in Section 3.3). We fix pi and use a 4-dimensional spherical
packing argument within spherical shells centered at pi. Arguing as above, we
obtain

∑
j �=i

1
|pipj |2 ≤

O(n1/4)∑
t=1

Mtn
1/2

a2t2
=

O(n1/4)∑
t=1

O(t3)n1/2

a2t2
= O(n).

Summing this over all pi, we obtain a final bound of O(vn). Substituting this in
Equation (7), we see that the total volume of the forbidden prisms is O(v2

n2 +
v

n19/12) = O(1).

3.5 Forbidden Slabs

The forbidden regions where one of the inequalities (iv’) is violated are
(
v
4

)
4-dimensional slabs σijkl, for 1 ≤ i < j < k < l ≤ v, whose “base” is a
3-dimensional tetrahedron with volume at most 8. The height (in the 4th di-
mension) of the slab σijkl is O(1/(n127/24|pipjpkpl|)). The overall volume of the
slabs (within C4) is at most

∑
1≤i<j<k<l≤v

O(
1

n127/24|pipjpkpl|). (8)

To bound this sum, we fix pi, pj , pk and sum over pl. We use a 2-dimensional
quasi-circular packing argument that exploits the fact that Sv satisfies (i), (ii),
and (iii). The packing consists of the Cartesian products of the plane πijk ∈ �4

that passes through pi, pj , and pk, and circles that lie in the 2-space orthogonal
to πijk and whose centers belong to πijk (see Figure 4). Specifically, we have

∑
l �=i,j,k

1
|pipjpkpl| ≤

L0n
43/24

c
+

O(n1/4)∑
t=1

Ltn
1/4

at|pipjpk| , (9)

where L0 is the number of points of Sv that lie in the inner-most shape of the
packing (centered at πijk) and of radius a/n1/4, and Lt is the number of points
of Sv that lie in the shell centered at πijk with inner radius at/n1/4 and outer
radius a(t+ 1)/n1/4.

Obviously L0 = O(n1/2), since the volume of the inner-most shape is O(1/
n1/2) and because of (i). Also, we have Lt = O(tn1/2). This follows by an ar-
gument of packing spheres of volume Ω(1/n) within a shell whose volume is
O(t/n1/2).

368 Gill Barequet

a
n1/41 2 3

pj

pi

pk

πijk

O(n1/4)

Fig. 4. A 2-D quasi-circular packing of balls in �4

Hence the sum in Equation (9) is O(n55/24 + n
|pipjpk|). Substituting this in

Eq. (8), we obtain the upper bound on the total volume of the forbidden slabs

O

 ∑

1≤i<j<k≤v

(
1
n3 +

1
n103/24|pipjpk|)

= O

 v3

n3 +
1

n103/24

∑
1≤i<j<k≤v

1
|pipjpk|

 . (10)

We bound the sum in the second summand similarly to our bounding of
the term in Equation (6) (in Section 3.4). We fix pi, pj and use a 4-dimensional
cylindrical packing argument within cylindrical shells centered at �ij . Arguing
as above, we obtain

∑
k �=i,j

1
|pipjpk| ≤

N0n
2/3

b
+

O(n1/4)∑
t=1

2Ntn
1/4

at|pipj | = O(n11/12 +
n

|pipj |).

Summing this over all pi, pj , we obtain a bound of

O

v2n11/12 + n

∑
1≤i<j≤v

1
|pipj |

 .

Substituting this in Equation (10), we see that the total volume of the forbidden
slabs is

O

 v3

n3 +
v2

n27/8 +
1

n79/24

∑
1≤i<j≤v

1
|pipj |

 . (11)

We bound the sum in the third summand similarly to our bounding of the
term in Equation (4) (in Section 3.3). We fix pi and use a 4-dimensional spherical

The On-Line Heilbronn’s Triangle Problem in Three and Four Dimensions 369

packing argument within spherical shells centered at pi. Arguing as above, we
obtain

∑
j �=i

1
|pipj | ≤

O(n1/4)∑
t=1

Mtn
1/4

at
=

O(n1/4)∑
t=1

O(t3)n1/4

at
= O(n).

Summing this over all pi, we obtain a final bound of O(vn).
Substituting this in Equation (11), we see that the total volume of the for-

bidden slabs is O(v3

n3 + v2

n27/8 + v
n55/24) = O(1).

3.6 Epilogue

In summary, the total volume of the forbidden regions is O(1), which can be
made smaller than 1 by an appropriate choice of the constants a, b, c, d. Care-
ful calculation shows that the forbidden volume is at most C1a

4 + C2Pb(a, b) +
C3Pc(a, b, c) + C4Pd(a, b, c, d), where C1, C2, C3, C4 are real constants indepen-
dent of a, b, c, d, and Pb(a, b), Pc(a, b, c), Pd(a, b, c, d) are rational polynomials.
We simply set a so that C1a

4 ≤ 1/4. Then, given a value of a, is it easy to choose
b so as to make C2Pb(a, b) ≤ 1/4. Similarly, the values of c and d are chosen so
that the third and fourth summands, respectively, are at most 1/4.

4 Conclusion

We have presented constructions that solve the on-line version of Heilbronn’s tri-
angle problem in three and four dimensions. The same technique can be applied
in higher dimensions (with increasing complexity of computations).

Acknowledgment

The author wishes to thank Micha Sharir for helpful discussions on the triangle
problem and on nested packing arguments.

References

1. G. Barequet, A lower bound for Heilbronn’s triangle problem in d dimensions,
SIAM J. on Discrete Mathematics, 14 (2001), 230–236.

2. J. Komlós, J. Pintz, and E. Szemerédi, On Heilbronn’s triangle problem, J.
London Mathematical Society (2), 24 (1981), 385–396.

3. J. Komlós, J. Pintz, and E. Szemerédi, A lower bound for Heilbronn’s problem,
J. London Mathematical Society (2), 25 (1982), 13–24.

4. H. Lefmann, On Heilbronn’s problem in higher dimension, Proc. 11th Ann. ACM-
SIAM Symp. on Discrete Algorithms, San Francisco, CA, 60–64, 2000.

5. K.F. Roth, On a problem of Heilbronn, Proc. London Mathematical Society,
26 (1951), 198–204.

6. K.F. Roth, Developments in Heilbronn’s triangle problem, Advances in Mathemat-
ics, 22 (1976), 364–385.

7. W.M. Schmidt, On a problem of Heilbronn, J. London Mathematical Society (2),
4 (1971), 545–550.

Algorithms for Normal Curves and Surfaces

Marcus Schaefer1, Eric Sedgwick2, and Daniel Štefankovič3

1 DePaul University (mschaefer@cs.depaul.edu)
2 DePaul University (esedgwick@cs.depaul.edu)

3 University of Chicago (stefanko@cs.uchicago.edu)

Abstract. We derive several algorithms for curves and surfaces rep-
resented using normal coordinates. The normal coordinate representa-
tion is a very succinct representation of curves and surfaces. For em-
bedded curves, for example, its size is logarithmically smaller than a
representation by edge intersections in a triangulation. Consequently,
fast algorithms for normal representations can be exponentially faster
than algorithms working on the edge intersection representation. Normal
representations have been essential in establishing bounds on the com-
plexity of recognizing the unknot [Hak61, HLP99, AHT02], and string
graphs [SSŠ02]. In this paper we present efficient algorithms for count-
ing the number of connected components of curves and surfaces, deciding
whether two curves are isotopic, and computing the algebraic intersec-
tion numbers of two curves. Our main tool are equations over monoids,
also known as word equations.

1 Introduction

Computational topology is a recent area in computational geometry that inves-
tigates the complexity of determining properties of topological objects such as
curves and surfaces [BE+99, DEG99]. For example, it is known that we can de-
cide whether two curves on a surface are homotopic in linear time if the surface
is represented by a triangulation, and the curves as sequences of intersections
with the triangulation [DG99].

In 1930 Kneser [Kne30] introduced a representation for curves and surfaces
in which these objects are described by their normal coordinates. This led to the
theory of normal surfaces which was used by Haken in 1961 to show that the un-
knot could be recognized by an algorithm (which, much later, was shown to run
in exponential time). Haken’s approach was pushed further by Hass, Lagarias,
and Pippenger who showed that the unknot could be recognized in NP [HLP99].
To this end they had to verify in polynomial time that a special type of normal
surface was an essential disk. The result of [HLP99] was recently extended by
Agol, Hass, and Thurston [AHT02]. The main contribution of [AHT02] was a
polynomial time algorithm for computing the number of connected components
of a normal surface. This immediately implies polynomial time algorithms for
checking whether a normal surface is connected, and whether it is orientable.

The theory of normal curves is much simpler than the theory of normal
surfaces. Nevertheless, it was one of three essential ingredients in the proof that

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 370–380, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Algorithms for Normal Curves and Surfaces 371

string graphs can be recognized in NP, a problem that had only recently been
shown to be decidable at all [SSŠ02].

With this paper we attempt to initiate a more systematic study of algorithms
for normal curves and surfaces. We believe that the examples mentioned earlier
show that this is a worthwhile attempt. There is also a more theoretical justifi-
cation of this approach: we get a clearer picture of the computational complexity
of a problem if we ensure that the object representations are succinct, meaning
that they are not compressible. It is easy to show that the representation of
an embedded curve as a sequence of intersections with a triangulation is never
succinct: if we consider it as a word over an alphabet made up of the edges
of the triangulation, it can always be compressed to polylogarithmic size (see
Section 4.1). For embedded curves this means that the normal coordinates are
a more succinct and natural way of representation.

Among other things we will give efficient algorithms to count components of
curves and surfaces, decide whether two curves are isotopic, and compute the
algebraic intersection number of a pair of curves.

A final word about technique. We extend the ideas from [SSŠ02] where we
based our algorithms on word equations. We believe the connection between
word equations and normal curves and surfaces is a very strong one, and, as
far as we can tell, has not been observed before. There have, of course, been
algorithms based on words in the fundamental group of a manifold, but words in
this context are always words in a group. The original observation here is that
the recent, and powerful, results about computational aspects of monoids can be
applied to embeddings and immersions of curves and surfaces [PR98, GKPR96,
Ryt99, DM01]. For example, the algorithm for counting components suggested
by Agol, Hass, and Thurston is quite involved, whereas our algorithm follows
quite naturally from the decidability of word equations with prescribed lengths
by using some topology. A second example is the recognition problem for string
graphs. Currently this problem can only be solved with the help of algorithms
for trace monoids [DM01, SSŠ02].

2 Normal Coordinates

In the followingM will always be a compact orientable 2-manifold with boundary
∂M , unless stated otherwise. Let b be the number of the boundary components
of M and g the genus of M . The Euler characteristic of M is χ = 2− 2g − b.

A simple arc is a homeomorphic image of the interval [0, 1]. A simple arc
γ : [0, 1]→ M such that both its endpoints γ(0), γ(1) are on the boundary ∂M
and the internal points γ(x), 0 < x < 1 are in the interior of M is called a
properly embedded arc. A simple closed arc γ : [0, 1] → M , γ(0) = γ(1) such
that all the points γ(x), 0 ≤ x ≤ 1 are in the interior of M is called a properly
embedded circle. A curve is an embedded collection of properly embedded arcs
and properly embedded circles. Note that a curve cannot be self intersecting,
since it is embedded.

372 Marcus Schaefer, Eric Sedgwick, and Daniel Štefankovič

Two curves γ1, γ2 are isotopic rel boundary (γ1 ∼ γ2) if there is a continuous
deformation of γ1 to γ2 which does not move the points on the boundary ∂M
and during the deformation the curve stays embedded. From now on by isotopy
we mean isotopy rel boundary.

Let T = (VT , ET) where VT is a set of points in M and ET is a embedded
set of embedded arcs in M with both endpoints in VT . T is a triangulation of M
if every connected component C of M − ET is homeomorphic to an open disc
and in a closed walk along the boundary of C we meet 3 points from VT (not
necessarily distinct). If the manifold M has non-empty boundary and VT ⊆ ∂M
then we call the triangulation T minimal.

Let T be a triangulation of M . Let γ be a curve. We say that γ is normal
w.r.t. T if all the intersections with T are transversal and if γ enters a triangle
t ∈ T via an edge e then it leaves t via an edge different from e (i.e no two
consecutive intersections of γ with T belong to the same edge e ∈ T).

Let γ be a curve in M . Let c ∼ γ minimize the number of intersections with
T . If c enters and leaves some t ∈ T through the same edge e then the number of
intersections of c with T can be reduced by pulling the curve c, a contradiction.
Hence for each non-trivial curve γ in M there is c ∼ γ which is normal w.r.t.
T . If γ is an arc we can fix one of its endpoints as the initial point of γ, and
number the intersection points of γ with T in order (starting with 0). We call
this number the index of an intersection point along γ.

An isotopy which for each edge e ∈ T maps points in e to points in e is
called a normal isotopy. If the triangulation T is minimal then every isotopy is
a normal isotopy.

Given a curve γ in normal position w.r.t. T we can write on each edge of the
triangulation how many times γ intersects it. Such a representation is called a
representation using normal coordinates. In each triangle the numbers written
on its sides determine the behavior of the curve inside the triangle up to isotopy
(for this we need that the curve is properly embedded and in normal position
w.r.t. T). Two curves which have the same numbering are normally isotopic
(assuming that the positions of the points on the boundary agree).

The size of the representation using normal coordinates is the total bitlength
of the labels. The number of intersections of γ with e ∈ T will be denoted γ(e).

The segments into which an edge e ∈ T is cut by γ are called ports. The ports
are representatives of points in M − γ. A port is given by (u, v) ∈ T on which it
occurs and a number from {0, . . . , γ(e)} encoding its order on (u, v). Similarly
an intersection point of γ with T is given by (u, v) ∈ T on which it occurs and
a number from {0, . . . , γ(e)− 1}.

3 Results

The goal of this paper is to prove the following results.

Theorem 1. Let M be a compact 2-manifold. Let T be a triangulation of M .
Let γ, δ be curves in M given by normal coordinates w.r.t. T . Let p, q be ports of
γ in T . Let r be an intersection point of γ with T . The following problems can
be solved in polynomial time.

Algorithms for Normal Curves and Surfaces 373

(a) Find the normal coordinates of the connected component γ containing r.
(b) Count the number of connected components of γ.
(c) List all the non-isotopic connected curves γ1, . . . , γn which occur in γ. For

each γi find the number of occurrences of γi in γ.
(d) Decide whether γ and δ are isotopic (assuming γ, δ are normal isotopy dis-

joint).
(e) Decide whether ports p, q are in the same connected component of M − γ.

If they are in the same connected component find an embedded arc in M − γ
connecting them.

(f) Compute the algebraic intersection number of γ, δ.
(g) If γ is a properly embedded arc, we can for each intersection point with T

compute its index along γ (arbitrarily declaring one of γ’s endpoints the first
intersection).

Theorem 2. Let M be a compact 2-manifold. Let T be a triangulation of M . Let
γ, δ be curves in M given by normal coordinates w.r.t. T . The following problems
can be solved by a Las Vegas algorithm (an algorithm solving the problem in
expected polynomial time with zero probability of error).

(a) Decide whether γ and δ are isotopic (assuming ∂M �= ∅).
(b) Locate the intersection point with index n of γ with T .

Problem (b), and therefore (a) (by reduction), can be solved in polynomial
time, but the proof is more complicated, and we do not include it here. Part
(b) of Theorem 1 can be extended to normal surfaces; that is, we can count the
number of connected components of a surface given in normal coordinates in
polynomial time. This result was first shown in [AHT02], however, our proof is
simpler, and is based on ideas developed independently in [SSŠ02]. For lack of
space, we do not include the proof in this version.

4 Word Equations

Let Σ be an alphabet. Words in Σ∗ are represented by straight line programs
(SLP), a special type of context free grammar. A straight line program P of
length n is a sequence of assignments xi = expr for 1 ≤ i ≤ n where expr is
either a symbol from Σ or xjxk, 1 ≤ j, k < i. For a word w given by SLP we
denote the length n of the program by |SLP (w)|. Note that there are strings
(e.g. am) for which |SLP (w)| is exponentially smaller than |w|.
Lemma 1 ([GKPR96]). Let p, t be words represented by SLP’s. The following
two problems can be solved in time polynomial in |SLP (p)| and |SLP (t)|. How
many times does p occur in t? What is the position of the first occurrence of p
in t?

Lemma 2. Let t be a word given by an SLP. The following problem can be
solved in time polynomial in |SLP (t)|. Given two positions i ≤ j in t find an
SLP for the substring t[i . . . j] of t.

374 Marcus Schaefer, Eric Sedgwick, and Daniel Štefankovič

Let Θ be an alphabet of variables disjoint from Σ. A word equation u = v is
a pair of words (u, v) ∈ (Σ ∪ Θ)∗ × (Σ ∪ Θ)∗. The size of the equation u = v is
|u|+ |v|. A solution of the word equation u = v is a morphism h : (Σ∪Θ)∗ → Σ∗

such that h(a) = a for all a ∈ Σ and h(u) = h(v) (h being a morphism means
that h(wz) = h(w)h(z) for any w, z ∈ (Σ ∪ Θ)∗). The length of the solution h
is
∑

x∈Θ |h(x)|. A word equation with specified lengths is a word equation u = v
and a function f : Θ → N. The solution h has to respect the lengths, i.e. we
require |h(x)| = f(x) for all x ∈ Θ. Let h : (Σ ∪ Θ)∗ → Σ∗ be a solution of
an equation u = v. The SLP encoding of h is the sequence of SLP encodings of
h(x) for all x ∈ Θ. The size of the encoding is |SPL(h)| = ∑

x∈Θ |SLP (h(x))|.
The usefulness of SLP encoding for word equations is demonstrated by following
result.

Theorem 3 ([PR98]). Let u = v be a word equation with lengths specified by
a function f . Assume that u = v has a solution respecting f . The SLP (h) of the
lexicographically least solution h can be found in polynomial time in the size of
the equation and the size of the binary encoding of f .

4.1 Curve Coloring Equations

In this section we construct a system of word equations with given lengths which
will allow us to color connected components of a curve γ on M normal w.r.t. a
triangulation T . The alphabet used in the word equations encodes the colors. Let
t ∈ T be a triangle with vertices u, v, w. We add the following twelve variables
to the system.

xt,(u,v), xt,(v,u), xt,(u,w), xt,(w,u), xt,(v,w), xt,(w,v), yt,u, yt,v, yt,w, yu,t, yv,t, yw,t

(1)
The variable xt,(u,v) encodes the order in which the colors occur on (u, v). We
specify |xt,(u,v)| = γ(u, v). The variable yt,u encodes the colors of the (directed)
segment of xt,(u,v) whose edges pass from (w, u) to (v, u). See Figure 1.

t,u

y

y

w

t,v
yv,t

xt,(v,w)

u,t y

v

x

u

t,(u,v)

Fig. 1. Some of the variables for triangle t.

The following equations are called triangle constraints.

xt,(u,v) = yu,tyt,v xt,(v,u) = yv,tyt,u xt,(v,w) = yv,tyt,w

xt,(w,v) = yw,tyt,v xt,(u,w) = yu,tyy,w xt,(w,u) = yw,tyt,u
(2)

Note that the lengths of the x variables determine the lengths of the y variables,
for example |yu,t| = (|xt,(u,v)|+|xt,(u,w)|−|xt,(v,w)|)/2. For each edge (u, v) which
is contained in two triangles s, t ∈ T we add the following edge constraint.

xs,(u,v) = xt,(u,v) (3)

Algorithms for Normal Curves and Surfaces 375

Without additional equations the system has a solution in which all words
consist of a’s only. We can add additional equations specifying colors of some
intersection points of γ with T . If the constraints are consistent, the components
of γ in the resulting coloring will be monochromatic, otherwise there will not be
a solution. (This will be useful when counting connected components later.)

Now we can prove part (a) of Theorem 1. Find the lexicographically smallest
solution of the curve coloring equation with r colored by color b over alphabet
Σ = {a, b}. Assigning to each edge (u, v) ∈ t ∈ T the number of b’s in xt,(u,v)
yields a normal coordinate representation of γr.

Let γ be a properly embedded arc. There is a triangulation T ′ such that
γ is an edge of T and T ′ is in normal position w.r.t. T . Set up curve coloring
equations for the edges of T in the triangulation T ′ and color each edge of T with
different color. In the solution the word xγ written on γ is the edge intersection
representation of γ in T . By Lemma 3 xγ can be compressed to size polynomial
in log |γ| and size of the triangulations T ′ and T . Hence the edge intersection
representation is compressible.

4.2 Region Coloring Equations

We can modify the curve coloring equations (1), (2), (3) to color the connected
components of M − γ. The variable xt,(u,v) will now encode the colors of the
ports of γ on (u, v), hence we specify |xt,(u,v)| = γ(u, v) + 1. The variable yt,u

will encode colors of regions extending from (w, u) to (v, u). For each t ∈ T we
add a variable zt which encodes the color of the center region (the region which
has ports on all edges of t). The triangle constraints become

xt,(u,v) = yu,tztyt,v xt,(v,u) = yv,tztyt,u xt(v,w) = yv,tztyt,w

xt,(w,v) = yw,tztyt,v xt(u,w) = yu,tztyy,w xt,(w,u) = yw,tztyt,u
(4)

The edge constraints remain unchanged. Without additional constraints the sys-
tem has a solution with all regions colored by the same color a. We can add
additional equations specifying colors of some ports. In the resulting coloring (if
it exists) each region will be monochromatic.

Let p ∈ (u, v) be a port of γ in T , where (u, v) belongs to triangles s, t ∈ T .
We would like to modify the equations to color the connected components of
M − γ − p. It is enough to modify the edge constraints of (u, v) and (v, u). We
replace the equation xs,(u,v) = xt,(u,v) by the equations

xs,(u,v) = w1w2w3, w1w4w3 = xt,(u,v)

|w1| = p, |w2| = |w4| = 1, |w3| = γ(u, v)− p.
Similarly we can set up equations for coloring components of M − γ with poly-
nomially many ports of γ in T removed.

4.3 Intersection Counting Equations

If we are given an edge e, and a number that specifies an intersection of γ along
e, we want to compute the index of that intersection.

376 Marcus Schaefer, Eric Sedgwick, and Daniel Štefankovič

Again, this problem can be used solving word equations. In a first step we
need to determine for each edge (u, v) belonging to a triangle t how many of
the intersections of γ along (u, v) enter t, and how many leave t (we think of
traversing γ starting at the starting point we fixed). Call these two numbers
γi(u, v, t) and γo(u, v, t). We know that γi(u, v, t)+γo(u, v, t) = γ(u, v) for edges
(u, v) belonging to t.

We can determine the numbers γi(u, v, t) and γo(u, v, t) by setting up the
triangle and edge constraints shown in (2) and (3), and specifying that |xt,(u,v)| =
4γ(u, v). We then force the starting point of γ to be equal to the string cabc. The
solution for each edge will be a concatenation of cabc’s and cbac’s, depending
on whether the edge enters or leaves the triangle. Because of Lemma 1 we can
count the occurrence of these substrings in polynomial time, and therefore we
can compute γi(u, v, t) and γo(u, v, t) in polynomial time.

With this information we set up a new set of equations. Let m = |γ|+ 1. For
each triangle t we take two copies of the variables in (1), one for intersections
coming into t, and one for outgoing intersections. Distinguish the two set of
variables by superindexing them by i or o. For every edge (u, v) that belongs to
triangles s and t we set up the following equations:

xo
s,(u,v)a = axi

t,(u,v) ax
o
s,(v,u) = xi

t,(v,u)a x
i
t,(u,v) = yi

u,ty
i
t,v

xi
t,(v,u) = yi

v,ty
i
t,u xo

t,(u,v) = yo
u,ty

o
t,v xi

t,(v,u) = yo
v,ty

o
t,u

(5)

We also specify that |xi
t,(u,v)| = |xi

t,(u,v)| = m · γi(u, v, t), and |xo
t,(u,v)| =

|xo
t,(u,v)| = m · γo(u, v, t), and set the startpoint of γ to be bam−1. Equations (5)

ensure that at every intersection point the b is moved by one position.
Suppose now we are given a coordinate k along an edge (u, v) of the tri-

angulation. Since we can determine the direction of the intersection, we know
the triangle t that γ enters along that point. Using a set of equations like the
one we used earlier to count the number of intersections in each direction, we
can determine the coordinate k′ of the intersection crossing into t. We can then
retrieve the string xi

t,(u,v)[k
′ ∗m. . . (k′ ∗m+m− 1)], and determine the position

of the single b in that string which immediately gives us the index we sought.
This proves part (g) of Theorem 1.

5 The Algorithms

5.1 Counting Connected Components

Let T be a triangulation of M , where τ is the number of triangles in T . Let γ be a
curve in M given by normal coordinates w.r.t. T . The number of components k of
γ can be exponential in the input size. However it is known that the components
fall into few normal isotopy classes [Kne30].

Lemma 3. The components of γ fall into at most 6τ normal isotopy classes.

We omit the proof. We can now prove parts (b) and (c) of Theorem 1. The
algorithm for computing the number of components of γ works as follows. Pick

Algorithms for Normal Curves and Surfaces 377

an edge (u, v) in T which is intersected by γ. Let r be the intersection of γ and
(u, v) closest to u. Compute the normal coordinates of the connected component
γr of γ which contains r. Using binary search find the intersection point � of
γ with (u, v) whose connected component γ� is normally isotopic to γr. The
components of points between r and � are exactly the components of γ which
are normally isotopic to γr. Hence we can increase the component count by
(�−r+1) and run the algorithm for the curve γ−(�−r+1)γr. Lemma 3 implies
that the number of repetitions of the algorithm is bounded by 6τ .

The described algorithm also finds non-normally-isotopic γ1, . . . , γn which
occur in γ and their counts. Using part (d) of Theorem 1 we can merge the
counts for isotopic γi.

5.2 Deciding Isotopy I

Let R be a union of connected components of M − γ given as a solution of the
region coloring equations, where R is colored with color b and M −R is colored
with color a. We want to compute the Euler characteristic of R. We will cut
R by γ and T into regions and use the formula χ = V − E + F . To compute
V,E, F we just need to compute these quantities for each triangle t ∈ T with
appropriate weights and then sum them together. The edges in ∂t − ∂M get
weight 1/2 and the vertices which are also vertices of T get weight one over the
number of triangles they occur in.We will only need to compute the numbers of
occurrences of b, ab, bb, ba in each xt,(u,v) which can be done using Lemma 1.

Now we can prove part (d) of Theorem 1. Because of part (c) it is enough
to consider the case when γ is connected. It is known (see [FM97]) that two
disjoint properly embedded arcs are isotopic iff they bound a disc in M . Let
α = γ + δ, the curve whose normal coordinates is the sum of the coordinates of
γ and δ. Since γ and δ are normal isotopy disjoint the curve α contains both γ, δ
as components. We color the port between starting points of γ and δ with b and
check that the resulting region has Euler characteristic 1. The case where γ and
δ are properly embedded circles is similar, we only have to check whether they
co-bound an annulus.

5.3 Connecting Two Points

In this section we prove part (e) of Theorem 1. First we want to decide whether
ports p and q are in the same connected component of M − γ. Add an equation
coloring p with b to the region coloring equations. The ports p, q are in the same
connected component of M − γ iff port q has color b in the lexicographically
smallest solution of the equations.

Suppose that p and q are in the same connected component. We want to
find a curve connecting them. Let t ∈ T and let rt,1, rt,2, rt,3 be the ports of the
center region of t. A shortest path connecting p and q does not enter the center
region of t twice and hence one of the ports rt,1, rt,2, rt,3 can be removed while
keeping p, q in the same component. We find the port which can be removed,
remove it, and move on to another triangle which does not have a port removed.
After removing a port of the center region of each triangle the components of

378 Marcus Schaefer, Eric Sedgwick, and Daniel Štefankovič

M − γ − {rt,?; t ∈ T} are either discs or annuli. Finally we remove both p, q
and color just one side of p with color b. For one of the sides of p the coloring
will reach q. Let x? be the solution of this system of equations. The colored
component which reached from p to q is is a sequence of rectangular regions.
The curve connecting p, q which runs in the middle of the colored component
intersects edge (u, v) ∈ T , #bxt,(u,v) times.

5.4 Deciding Isotopy II

Let T be a triangulation of M and let γ be a curve in M given by normal
coordinates w.r.t. T . We will show how to compute normal coordinates of γ′ ∼ γ
w.r.t. a triangulation T ′ which is a modification of T . The modifications we will
consider are called bistellar moves (flip, add, drop) shown on the Figure 2. The
moves can be applied only when all the triangles shown in Figure 2 are distinct.

3

1

2

1

2

4 4

3 3

4

2 2

1 13

Fig. 2. The bistellar moves.

The new coordinates after the add move can be chosen to be γ(14) =
0, γ(24) = γ(12), γ(34) = γ(13). For the flip move γ(23) = (γ(12) + γ(24) +
γ(13) + γ(34))/2 + |γ(12)− γ(24) + γ(34)− γ(13)|/2− γ(14).

For the drop move we can w.l.o.g. assume that the curve γ inside the triangle
123 looks as the one at the Figure 3. The e curves around the point 4 can be
removed because they are homotopic to a point. We also need to pull the f
curves since they are not in normal position w.r.t. T ′.

1 b

e

c

f
a

d
c

f
a

d

b1 33

2 2

Fig. 3. The drop move.

h-g

c

a
b1 33

2 2

1

c

a
b

g

h

g

Fig. 4. Pulling the curve to a normal po-
sition (w.l.o.g. h ≥ g).

The pulling might propagate to neighboring triangle as shown in Figure 4.
We cannot follow the propagation directly because it can happen exponentially
many times.

When both g and h from Figure 4 are non-zero we say that the pulled curves
split. For each triangle t ∈ T at most once split occurs in t (otherwise the curve
γ would have to self-intersect).

The algorithm for pulling the curves will work as follows. Using word equa-
tions we will find the segment of the pulled curves until the first split. We pull the
curves, perform the split and repeat. The number of splits and hence repetitions
is bounded by the number of triangles in T .

Algorithms for Normal Curves and Surfaces 379

To find the first split we extract the outermost of the f pulled curves, call it
δ. Then we cut δ in t. If δ is still connected we cut it once more at its midpoint
(using part (b) of Theorem 2). We obtain two embedded arcs α, β starting in t.
The first split occurs when α, β choose different route inside a triangle t. The
split can be easily found using binary search.

Lemma 4. Let M be a 2-manifold with non-empty boundary. Let T be a tri-
angulation of M . Let γ be a curve in M given by normal coordinates w.r.t. T .
We can find a minimal triangulation T ′ of M and normal coordinates of γ′ ∼ γ
w.r.t. T ′

Proof. Using bistellar moves and by possibly adding new triangles we can remove
vertices of T which are not on the boundary ∂M of M . Let v ∈ T be a vertex in
the interior of M . If deg v = 3 then there are three distinct triangles neighboring
v and we can apply the drop move to eliminate v. If deg v > 3 then we can apply
a sequence of flip moves to decrease the degree of v to 3 and then eliminate it
with a drop. If deg v = 2, then we have two triangles t1, t2 glued together along
two adjacent edges. If either t1 or t2 is glued to another triangle, we can apply a
flip to increase the degree to 3 and then flip. If not, then M is a disk consisting
of two triangles, and we will need to add another triangle to the boundary, and
proceed as in the following case. The last case is when deg v = 1. This implies
that a single triangle is glued to itself. If it is also attached to another triangle,
then we can apply a flip to increase the degree of v to 2. If it is not, then M is
a disk consisting of a single triangle and we must attach an additional triangle,
and then apply the flip.

Two curves given by normal coordinates w.r.t. a minimal triangulation are
isotopic iff the coordinates are equal (and the points on ∂M agree). Hence as a
corollary of Lemma 4 we obtained a proof of part (a) of Theorem 2.

5.5 Finding the n-th Intersection Point

There is a simple randomized (Las Vegas) algorithm to find the n-th intersection
point of an oriented embedded arc γ with the triangulation T . The intersection
points are numbered by 0, . . . , |γ|.

Pick a random intersection point r of γ with T . Using the curve coloring
equations color one side with b’s and the other side with a’s. We obtain two
embedded curves γ1, γ2 which when glued together at r yield γ. If |γ1| < n then
find the n−|γ1|th intersection point of γ2 with T , otherwise find nth intersection
point of γ1 with T . The expected number of repetitions is O(log |γ|).

5.6 Computing the Algebraic Intersection Number

The algebraic intersection number of two oriented curves γ, δ in an orientable
surface is defined as follows. For each intersection of γ and δ in which δ crosses
from left to right add +1, if it crosses from right to left add −1. The algebraic
intersection number is invariant under isotopy.

380 Marcus Schaefer, Eric Sedgwick, and Daniel Štefankovič

Since the algebraic intersection number of γ and δ is invariant under isotopy,
we can fix a drawing of the curves. For each edge (u, v) of the triangulation we
choose which of the curves will intersect (u, v) in the half closer to u, the other
one will intersect (u, v) in the half closer to v. Now we draw the curves so that
the segments of γ, δ in each triangle are geodesics.

For a triangle t ∈ T with vertices u, v, w we need to compute the number of
segments of γ oriented from (u, v) to (u,w). Take the curve coloring equations for
the curve 4γ. Using the same idea we saw earlier, color the copies cabc (in that
order) at one endpoint. The occurrences of cabc, and cbac show the orientation
of γ along an edge. Counting the number of occurrences of cabc, and cbac then
gives us the result.

References

AHT02. I. Agol, J. Hass, and W. Thurston. 3-manifold knot genus is NP-complete. In
Proceedings of the 33th Annual ACM Symposium on Theory of Computing
(STOC-2002), 2002.

BE+99. M. Bern, D. Eppstein, et al. Emerging challenges in computational topology.
ACM Computing Research Repository, September 1999.

DEG99. T. Dey, H. Edelsbrunner, and S. Guha. Computational topology. In
B. Chazelle, J.E. Goodman, and R. Pollack, editors, Advances in Discrete
and Computational Geometry, volume 223 of Contemporary Mathematics.
American Mathematical Society, 1999.

DG99. T. Dey and S. Guha. Transforming curves on surfaces. JCSS: Journal of
Computer and System Sciences, 58(2):297–325, 1999.

DM01. V. Diekert and A. Muscholl. Solvability of equations in free partially com-
mutative groups is decidable. In ICALP 2001, pages 543–554, 2001.

FM97. A. Fomenko and S. Matveev. Algorithmic and computer methods for three-
manifolds. Kluwer, 1997.

GKPR96. L. Ga̧sieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficient algo-
rithms for Lempel-Ziv encoding. in Proceedings of SWAT’96, LNCS 1097,
pages 392–403, 1996.

Hak61. W. Haken. Theorie der Normalflächen. Acta Mathematica, 105:245–375,
1961.

HLP99. J. Hass, J. Lagarias, and N. Pippenger. The computational complexity of
knot and link problems. Journal of ACM, 46(2):185–211, 1999.

Kne30. H. Kneser. Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten.
Jahresbericht der Deutschen Mathematikver-Vereinigung, pages 248–260,
1930.

PR98. W. Plandowski and W. Rytter. Application of Lempel-Ziv encodings to the
solution of words equations. In Automata, Languages and Programming,
pages 731–742, 1998.

Ryt99. W. Rytter. Algorithms on compressed strings and arrays. In Proceedings
of 26th Annual Conference on Current Trends in Theory and Practice of
Infomatics., 1999.

SSŠ02. M. Schaefer, E. Sedgwick, and D. Štefankovič. Recognizing string graphs
in np. In Proceedings of the 33th Annual ACM Symposium on Theory of
Computing (STOC-2002), 2002.

Terrain Polygon Decomposition,
with Application to Layered Manufacturing�

Ivaylo Ilinkin1, Ravi Janardan1, and Michiel Smid2

1 Dept. of Computer Science & Engineering and Army High Performance Computing
Research Center, University of Minnesota, Minneapolis, MN 55455, USA

{ilinkin,janardan}@cs.umn.edu
2 School of Computer Science, Carleton University, Ottawa, Canada, K1S 5B6

michiel@scs.carleton.ca

Abstract. Efficient algorithms are given for decomposing a simple poly-
gon into two special polygons, each with the property that every bound-
ary and interior point can be connected to a single edge by a perpendicu-
lar line segment interior to the polygon. This allows efficient construction
of certain classes of 3D parts via Layered Manufacturing.

1 Introduction

Let P be a simple, n-vertex polygon [12]. P is a terrain polygon (terrain, for
short) if it has an edge, e, called a base, to which every point in P can be joined
by a perpendicular line segment interior to P [3] (Fig. 1(a)). We consider two
problems:

1. Decide if P is a terrain and, if it is, then find a base. We give a simple
algorithm that runs in O(n) time.

2. If P is not a terrain, then decide if it can be decomposed by a line into two
terrains. If so, then compute a decomposing line and a base for each terrain.
We give an algorithm which runs in O(n log n) time, if the terrains have a
common base (on the decomposing line), and in O(n2 log n) time, otherwise.
(Fig. 1(b) and 1(c))

This problem arises in Layered Manufacturing (LM), where physical proto-
types of 3D solids are created directly from their digital models ([8]). The 3D
digital model (a polyhedron) is oriented suitably and sliced by a plane into par-
allel 2D layers. The layers (polygons) are “printed” successively on a fabrication
device, each layer on top of the previous one, so that the 3D model is realized
as a stack of 2D layers.
� Research of II and RJ supported, in part, by NSF grant CCR–9712226. This ef-

fort is also sponsored, in part, by the Army High Performance Computing Research
Center under the auspices of the Department of the Army, Army Research Labora-
tory cooperative agreement number DAAD19-01-2-0014, the content of which does
not necessarily reflect the position or the policy of the government, and no official
endorsement should be inferred. Research of MS supported by NSERC.

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 381–390, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

382 Ivaylo Ilinkin, Ravi Janardan, and Michiel Smid

(a) (b) (c)

P
P

P+

P−

e

e+

e−

l

Fig. 1. (a) a terrain polygon; (b) a polygon which is not a terrain; (c) decomposition
into terrains, with bases e+ and e−

(a) (b) (c)

Fig. 2. (a) a long, slender generic object of uniform cross-section; (b) decomposition
with a common base; (c) an object whose cross-sections are scaled versions of each
other

A key process-planning step in LM is the analysis of the model to determine
the need for supports. These are temporary structures, generated as the model is
built, to prop-up portions of the model that do not have previously-built layers
under them. Supports affect adversely the efficiency of LM and can be reduced
by orienting the model suitably [1,9,10,11].

The terrain decomposition problem comes up quite naturally in this setting.
Consider building a long and slender part of uniform cross-section, e.g. a piston
rod, a drive shaft, or a gun barrel (Fig. 2(a)). No supports are needed if it is built
along the long axis, but the process will be slow owing to the large number of
layers (a foot-long part could have a thousand layers). Furthermore, the stacking
of so many layers and the high height-to-width ratio will lead to instabilities and
inaccuracies in the part.

However, if the cross-section of the part is decomposable into two terrains,
then the part can be built without supports, while avoiding the disadvantages
mentioned above. We divide the 3D model into two pieces using a plane which
contains the decomposing line and the long axis of the model, build each piece
on the facet containing the base edge, and then glue the pieces back together. No
supports are needed, since the cross-section of each piece is a terrain (Fig. 2(b)).
This approach also works if the cross-sections are not uniform but are scaled
versions of one another (Fig. 2(c)).

1.1 Related Work

We are aware of three closely related results. Asberg et. al. [1] identify the class
of objects that can be built without supports using Stereolithography, and give
a result similar to ours for problem 1. In the context of casting, Rosenbloom
and Rappaport [13] give an efficient algorithm to decompose a simple polygon

Terrain Polygon Decomposition, with Application to Layered Manufacturing 383

into two terrains with a common base and give a somewhat different solution
from ours, with the same bounds. Also for casting, Bose et. al. [2] show how to
decompose a polyhedron by a plane into two 3D terrains with a common base.
This algorithm could be used to solve the 2D problem, but not as efficiently as
in [13] or here. We describe our results for these problems in some detail, since
our solutions for the general problem, where the bases are different, relies on
these results. (We are not aware of any prior results for the general problem.)

In [3], Fekéte and Mitchell have proven that it is NP-complete to decide if a
polygon with holes or a polyhedron of genus zero can be decomposed into k > 1
terrains. In related work, [6], we have shown how to decompose a polyhedron
into two connected components by a plane normal to a fixed direction d, so that
the supports are minimized when the components are built in directions ±d.

Due to space constraints, we omit several proofs and details; these can be
found in [7].

2 Recognizing Terrains

The following lemma characterizes a terrain polygon. We assume that all edge
normals of the polygon P have been translated to the origin. Furthermore, by
“P(e) is a terrain” we mean that P is a terrain with base e.

Lemma 1. A simple polygon P is a terrain if and only if there is an edge e ∈ P
such that, for any other edge e′ ∈ P, ne · ne′ ≤ 0, where ne and ne′ are the
outward-directed unit-normals of e and e′, respectively.

2.1 The Recognition Algorithm

Let S1 be the unit-circle. Each edge normal ne yields a normal-point ne on S1.
(Equal normals are represented by different normal-points.) Let N be the set of
normal-points.

Lemma 2. W.l.o.g. assume that no normal-point of N coincides with (−1, 0)
or (1, 0); otherwise, rotate N suitably. Let na (resp. nb) be the first (resp. last)
clockwise point of N on the upper half of S1. Let nc (resp. nd) be the first (resp.
last) clockwise point of N on the lower half of S1. Then P is a terrain if and
only if at least one of the edges a, b, c, or d is a base.

Proof. The “if” part is obvious. For the “only if” part, assume that none of a,
b, c, or d is a base. Let e be any other edge of P. Then ne lies between na and
nb or between nc and nd, w.l.o.g. na and nb. Since the angle between na and nb

is less than π, the angle between at least one of ne and na or ne and nb is less
than π/2. Thus, by Lemma 1, e is not a base, so P is not a terrain. ��

We can identify na, nb, nc, and nd in O(n) time and use Lemma 1 to test if
any is a base in O(n) time.

384 Ivaylo Ilinkin, Ravi Janardan, and Michiel Smid

Theorem 1. It is possible to decide in O(n) time and O(n) space whether an
n-vertex simple polygon is a terrain. If it is, then a base can be identified within
these bounds.

The following lemma and corollary will be used in Section 3.

Lemma 3. Let P be a simple polygon and let Q be its convex hull. If P(e) is a
terrain, then e is an edge of Q and Q(e) is a terrain.

Corollary 1. If P(e) is a terrain, then the interior angles at e are at most π/2.

3 Decomposition into Two Terrains with a Common Base

We assume that successive collinear edges of P have been merged into a single
edge. Let l be a line such that l ∩ P is a connected segment uv. Let C+ (resp.
C−) be the boundary of P from u to v (resp. v to u) in counter-clockwise order.
Let P+ (resp. P−) be the polygon bounded by C+ ∪ uv (resp. C− ∪ uv).

Lemma 4. Let l be a line decomposing P into simple polygons P+ and P−, as
above, such that P+(uv) and P−(uv) are terrains. Then (i) u and v are both
vertices of P; or (ii) u is a vertex of P and v is the point where l intersects
perpendicularly the interior of an edge, e, of P; or (iii) u and v are points
where l intersects perpendicularly the interiors of edges, say eu and ev, of P,
respectively.

Proof. If u and v are both vertices of P, then case (i) holds. If u is a vertex and
v is in the interior of an edge e, then by Corollary 1, the interior angle at v in
P+ is at most π/2. Similarly, the interior angle at v in P− is also at most π/2.
Since the sum of these angles is π, the two interior angles at v are both π/2.
Thus, case (ii) holds. Case (iii) is similar. ��

Lemma 5. If P+(uv) and P−(uv) are terrains, then the element-pair (u, v) or
(u, e) or (eu, ev) in Lemma 4 determining the decomposing line l is an antipodal
pair of the convex hull, Q, of P.

Proof. Let (x, y) be the element-pair in question and let Vuv be the strip erected
perpendicularly to uv. Clearly, P is contained in Vuv. Since x is either a vertex
or an edge of P perpendicular to l, x lies on a bounding line of Vuv. Since P is
completely on one side of this bounding line, x ∈ Q. Similarly, y ∈ Q. Since P
is contained between the parallel bounding lines of Vuv, it follows that (x, y) is
an antipodal pair of Q. ��

Thus, it suffices to consider only the antipodal pairs of Q in computing l.
There are three types of antipodal pairs: (vertex, vertex)-pair, (vertex, edge)-
pair, and (edge, edge)-pair. Since the first two types are handled similarly, we
discuss only the first and third types, abbreviated as V V -pair and EE-pair,
respectively. The following theorem summarizes the result.

Terrain Polygon Decomposition, with Application to Layered Manufacturing 385

Theorem 2. It is possible to determine in O(n log n) time and O(n) space
whether an n-vertex simple polygon P can be decomposed by a line l into two
terrain polygons, P+(e) and P−(e), where e = l ∩ P. If l exists, then it can be
computed within the same bounds.

3.1 Handling Antipodal V V -Pairs

Let p1, p2, . . . , pn and q1, q2, . . . , qm be the vertices of P and Q, respectively,
in counter-clockwise order. Consider the set, L, of all lines, lij , defined by the
antipodal V V -pairs (qi, qj). For each lij we can test in O(n) time whether it
decomposes P into two simple polygons, P+

ij and P−
ij and whether P+

ij (eij) and
P−

ij (eij) are terrains, where eij = lij∩P. Since there are O(n) antipodal V V -pairs
the running time is O(n2). We show how to improve this to O(n log n).

Let qi be a vertex of Q. The vertices antipodal to qi form a chain, C(qi), on
Q. Furthermore, if q′

i and q′′
i are the first and last vertices of C(qi) in counter-

clockwise order, then q′
i is the last vertex of C(qi−1), and q′′

i is the first vertex
of C(qi+1) [12, page 173]. C(qi+1) comes immediately after C(qi) and the two
share q′′

i (see Fig. 3(a)).
The antipodal pairs of Q can be enumerated in O(n) time using the rotat-

ing calipers approach [12,14]. The decomposition lines determined by antipodal
V V -pairs can be computed during the enumeration, as follows: We use data
structures that can answer the following types of query given a polygon P: (1)
determine whether a line, l, through two vertices of P decomposes P into two
simple polygons; and (2) determine whether P(e) is a terrain, where e is an edge
of P.

For the first type of query we use the ray-shooting data structure of [5]. If
the ray directed from u to v meets the boundary of P at v, then luv decomposes
P into two simple polygons.

The second type of query can be answered efficiently using a leaf-oriented,
balanced, binary-search tree, T , whose leaves store the normal-points of the
edges of P in the order in which they appear around the unit-circle S1. Given
an edge e of P, by Lemma 1 it suffices to locate the neighbors of ne in T and
check that they are each at distance at least π/2 from ne.

We use separate trees for P+ and P−, denoted T + and T −, respectively,
which maintain the invariant that whenever a line l from L decomposes P into
two simple polygons, T + and T − contain the normal-points of the edges of P+

and P−, respectively, except for e = l ∩ P. What remains to be shown is how
to maintain T + and T − efficiently as we consider different antipodal V V -pairs
(u, v).

Let Q+ be the polygon defined by the chain of edges along the boundary
of Q in counter-clockwise order from u to v, together with the edge uv. Define
Q− similarly. Since Q is a convex polygon, the line luv containing uv will always
decompose Q into two simple polygons. Whenever luv also decomposes P into
two simple polygons, we let P+ be the polygon defined by the chain of edges
along the boundary of P in counter-clockwise order from u to v, together with
the edge uv. P− is defined similarly.

386 Ivaylo Ilinkin, Ravi Janardan, and Michiel Smid

(a) (b)

qi−1

qi

qi+1

q′
i

q′′
i

P

Q

C(qi)

uu−

vv+

r

s

lr
l−r l+r

d

H(u, v)H(v+, u−)

Fig. 3. Illustrating (a) the algorithm of Section 3.1 for antipodal V V -pairs; and (b)
the algorithm of Section 3.2 for antipodal EE-pairs

Let qkqk+1 be an edge of Q and let H(qk, qk+1) denote the chain of edges
along the boundary of P from qk to qk+1 in counter-clockwise order. Clearly,
if a line l from L decomposes P into two simple polygons, then qkqk+1 is an
edge of Q+ if and only if H(qk, qk+1) belongs to P+. Therefore, it is sufficient
to keep track of the edges of H(qk, qk+1) only when qkqk+1 changes from Q+

to Q− and vice versa. This offers an efficient way to maintain T + and T −.
Each edge qkqk+1 of Q changes exactly twice between Q+ and Q−, and this
happens precisely when either u or v is advanced from qk to qk+1. Whenever
qkqk+1 changes from Q+ to Q−, the normal-points of the edges of H(qk, qk+1)
are deleted from T + and inserted in T −. Since, for any two edges, qkqk+1 and
qjqj+1, H(qk, qk+1) and H(qj , qj+1) have no edges in common, each edge of P
will be inserted and deleted exactly twice from T + and T −.

As shown in [7], this algorithm runs in O(n log n) time and O(n) space.

3.2 Handling Antipodal EE-Pairs

The antipodal EE-pairs present new challenges, since unlike the V V -pairs (and
V E-pairs), where the decomposition line is determined uniquely, here only the
direction of the decomposition line is known. However, it is still possible to
determine efficiently a suitable decomposition line (if it exists), as we show below.

We would like to identify all lines, l, determined by EE-pairs, (e′, e′′), of P
that satisfy case (iii) of Lemma 4. By Lemma 5, it follows that (e′, e′′) is an
antipodal EE-pair of Q, and e′ and e′′ are edges of both P and Q.

The antipodal EE-pairs can be enumerated using the following observation:
Let (u, v) be an antipodal V V -pair, let u− be the clockwise neighbor of u, and let
v+ be the counter-clockwise neighbor of v. If both u and u− are antipodal to vv+,
then (u−u, vv+) is an antipodal EE-pair. Therefore, the antipodal EE-pairs can
be enumerated while enumerating the antipodal V V -pairs.

The antipodal EE-pair (u−u, vv+) determines a family of parallel lines per-
pendicular to the lines through u−u and vv+. Let d be the unit-normal that
is directed from u− to u. Let H(u, v) and H(v+, u−) be the counter-clockwise
chains of vertices from u to v and v+ to u−, respectively. Let r be the extreme

Terrain Polygon Decomposition, with Application to Layered Manufacturing 387

vertex of H(u, v) in direction −d and let s be the extreme vertex of H(v+, u−)
in direction d. Let lr be the line through r that is perpendicular to d. Clearly,
the vertices of H(u, v) are all in exactly one of the closed half-planes of lr, which
we denote as l+r . Then lr decomposes P into two simple polygons if and only
if s is not in l+r (see Fig. 3(b)). If ls is the line through s that is perpendicular
to d, then any line, l, in the open strip determined by lr and ls is a candidate
decomposition line.

To find the extreme vertex of the simple path H(u, v) in a given direction
it is sufficient to consider its convex hull. To answer an extreme-vertex query
efficiently, we need a data structure for dynamic maintenance of the convex hull
of H(u, v). Since the changes to H(u, v) occur only at its ends, we can use the
data structure of [4], which has amortized query and update time of O(log n) for
a sequence of n operations. Denote this structure by H+. Similarly, let H− be
the data structure for maintaining the convex hull of H(v+, u−).

Suppose that l decomposes P into two simple polygons, P+ and P−, as
determined by querying H+ and H−. We need to test whether P+(er) and
P−(er) are terrains, where er = lr∩P. We update T + and T − to reflect the fact
that portions of u−u and vv+ are in P+ and P− by inserting the corresponding
normal-points. We query T + with the normal-point of −d to determine if P+(er)
is a terrain. Similarly, we query T − with the normal-point for d to determine if
P−(er) is a terrain.

The overall algorithm takes O(n log n) time and O(n) space (see [7]).

4 Decomposition into Two Terrains
without a Common Base

We first define the notion of a cusp. A vertex v of P is a cusp w.r.t. a line l
containing v if both of v’s neighbors in P are in the same closed half-plane of l
and the interior angle at v is strictly greater than π. An edge e of P is a cusp
w.r.t. a line l containing e if both of e’s endpoints are cusps. Note that if a line
l contains a vertex or an edge of P that is a cusp w.r.t. l, then l decomposes P
into more than two simple polygons.

Lemma 6. Let L be a non-empty family of lines that decompose P into two
non-empty terrains that do not have a common base. Then there is a line, l, in
L which intersects the boundary of P at points u and v, such that (i) u and v are
vertices of P and neither u nor v is a cusp w.r.t. l; or (ii) the segment joining u
and v contains an edge of P that is not a cusp w.r.t. l; or (iii) u is a vertex of
P that is not a cusp with respect to l, v is in the interior of an edge of P, and l
is perpendicular to the line containing some edge of P.

Proof. Let l be a line in L. Since l decomposes P into two non-empty simple
polygons, l ∩P contains exactly one line segment, whose endpoints are denoted
u and v. If u and v are vertices of P, then neither can be a cusp with respect
to l, since otherwise l would decompose P into more than two simple polygons.

388 Ivaylo Ilinkin, Ravi Janardan, and Michiel Smid

Similarly, if uv contains an edge of P, that edge cannot be a cusp. Therefore,
case (i) or case (ii) holds.

If u and v are not vertices of P, let P+
uv be the terrain for which uv is not

a base. Let r be the vertex of P+
uv that is closest to l, and let lr be the line l

translated to r. We first show that r is not a cusp with respect to lr. Assume for
a contradiction that r is a cusp. Let f and g be the edges of P+

uv incident to r
and let φ and ψ be the portions of the interior angle at r between lr and each of
f and g, respectively (note that φ+ψ < π). Consider the outward unit-normals
of uv, f , and g translated to r. The normal-points nuv, nf , and ng, partition the
unit-circle into three disjoint arcs of lengths φ + ψ, π − φ, and π − ψ (Fig. 4).
Since each arc is of length less than π, no point on the unit-circle is at distance
at least π/2 from each of nuv, nf , and ng. However, P+

uv(e) is a terrain, for some
edge e of P+

uv, and, furthermore, e is distinct from uv, f , and g (the interior
angle at r is greater than π, and, therefore, neither f nor g can be a base for
P+

uv). Therefore, ne must be at distance at least π/2 from each of nuv, nf , and
ng, a contradiction. (This proof can also be adapted to show that lr does not go
through an edge of P which is a cusp [7].)

f
g

u v

r

l

lr
φ ψ

φ + ψ

π − φπ − ψ

nf nfng
ng

nuv

nuv

P+
uv

Fig. 4. Illustrating, by contradiction, that vertex r cannot be a cusp

Since r is not a cusp w.r.t. lr and since no vertex is strictly crossed during
the translation of l to r, lr also decomposes P into two simple polygons. Fur-
thermore, since the sets of normal-points associated with the two polygons in
the decomposition remains the same during the translation, lr also decomposes
P into two terrains; thus lr ∈ L.

If lr goes through an edge of P, then case (ii) holds. Otherwise, let qr =
lr ∩ int(P) and w.l.o.g. let P+

qr be the terrain for which qr is not a base. Let l′r
be the line lr rotated by an angle β about r in the half-plane containing P+

qr,
where β is the smallest angle such that l′r either goes through a vertex r′ of P or
becomes perpendicular to the line containing an edge of P; note that l′r is in L.
If the latter case applies, then case (iii) holds. Otherwise, similar to the earlier
discussion, we can show that l′r does not go through a vertex or an edge that is a
cusp of P with respect to l′r, and therefore, either case (i) or case (ii) holds. ��

Using Lemma 6, we can decide if P can be decomposed into two terrains:
Enumerate all lines that go through two vertices of P (cases (i) and (ii)), or

Terrain Polygon Decomposition, with Application to Layered Manufacturing 389

go through a vertex of P and are perpendicular to the line containing an edge
of P (case (iii)). For each line test whether it decomposes P into two polygons
P+ and P−, and whether P+ and P− are terrains. Clearly, the problem can be
solved in time O(n3). We present an improved algorithm, whose performance is
summarized below.

Theorem 3. It is possible to determine in O(n2 log n) time and O(n) space if
there is a line which decomposes a polygon P into two terrains. If it exists, it
can be computed within these bounds.

4.1 The Algorithm

Case (a): Handling the lines determined by two vertices of P.
For each vertex u of P we enumerate the lines through u by visiting the

vertices of P from u+ to u− in counter-clockwise order. Let v be a vertex of P
and let C+ and C− be the boundary of P from u to v, and v to u, respectively,
taken in counter-clockwise order. During the walk from u+ to u− we maintain
two leaf-oriented, balanced, binary-search trees, T + and T −, whose leaves store
the normal-points of the edges of C+ ∪ uv and C− ∪ uv, respectively, in the
order in which they appear around S1. Whenever the line luv through u and v
decomposes P into two simple polygons, P+ and P−, the normal-points of their
edges are stored in T + and T −, respectively.

Initially T + contains only the normal-point of uu+, T − contains the normal-
points of the edges of P, and v is the vertex u+. During the transition from v to
v+ we perform the following steps:

First, we update T + and T −, to reflect the fact that the edge vv+ switches
from C− to C+, and that the edge uv is replaced by uv+. The normal-point of
vv+ is removed from T − and inserted in T +, and the normal-points of uv in T +

and T − are replaced by the appropriate normal-points of uv+.
Next, we test whether luv decomposes P into two simple polygons. We do

this by using the algorithm in [5] to test if the ray originating from a point at
infinity along luv and directed towards u intersects the boundary of P exactly
twice.

Finally, if luv decomposes P into two simple polygons, P+ and P−, we test
whether each polygon is a terrain. To test P+ we find in T + the neighbors, na

and nd, of the normal-point (−1, 0), and the neighbors, nb and nc, of the normal-
point (1, 0). As shown in the proof of Lemma 2, these are the only candidates
for bases of P+. For each candidate normal-point it is sufficient to test whether
its neighbors in T + are at distance at least π/2. Similarly, we use T − to test
P−.

Case (b): Handling the lines that go through a vertex of P and are perpendicular
to the line containing an edge of P.

Let e be any edge of P and let le be the line containing e. We sweep a line, l,
perpendicular to le which visits the vertices of P in sorted order. We define l+ to
be the closed half-plane in the direction of the sweep, and l− be the closed half-
plane in the opposite direction. During the sweep we maintain data structures

390 Ivaylo Ilinkin, Ravi Janardan, and Michiel Smid

T + and T − similar to part (a). Here T + and T − contain the normal-points
of the edges of P (or portions thereof) that are in l+ and l−, respectively, and
the normal-points of the directions normal to l and pointing into l− and l+,
respectively. Whenever l decomposes P into two simple polygons, P+ and P−,
the normal-points of their edges are stored in T + and T −, respectively.

Initially T − is empty and T + contains the normal-points of the edges of P.
At each vertex we consider the incident edges. The normal-points of the edges
that lie in l− are removed from T +. Next, we test whether l decomposes P into
two terrains as described in part (a). Finally, the normal-points of the edges that
lie in l+ are inserted in T −.

The overall algorithm takes O(n2 log n) time and O(n) space (see [7]).

References

1. B. Asberg, G. Blanco, P. Bose, J. Garcia-Lopez, M. Overmars, G. Toussaint,
G. Wilfong, and B. Zhu. Feasibility of design in stereolithography. Algorithmica,
19:61–83, 1997.

2. P. Bose, D. Bremner, and M. van Kreveld. Determining the castability of simple
polyhedra. Algorithmica, 19(1–2):84–113, Sept. 1997.

3. S. P. Fekéte and J. S. B. Mitchell. Terrain decomposition and layered manufactur-
ing. Intl. J. Comput. Geom. & Appl., 11:647–668, 2001.

4. J. Friedman, J. Hershberger, and J. Snoeyink. Efficiently planning compliant mo-
tion in the plane. SIAM J. Comput., 25:562–599, 1996.

5. J. Hershberger and S. Suri. A pedestrian approach to ray shooting: Shoot a ray,
take a walk. J. Algorithms, 18:403–431, 1995.

6. I. Ilinkin, R. Janardan, J. Majhi, J. Schwerdt, M. Smid, and R. Sriram. A
decomposition-based approach to layered manufacturing. In Proc. 7th WADS, vol-
ume 2125 of LNCS, pages 389–400. Springer-Verlag, 2001. To appear in Comput.
Geom. Theory Appl.

7. I. Ilinkin, R. Janardan, and M. Smid. Terrain polygon decomposition, with appli-
cation to Layered Manufacturing.
http://www.cs.umn.edu/∼janardan/terrain.pdf.

8. C. C. Kai and L. K. Fai. Rapid Prototyping: Principles and Applications in Man-
ufacturing. Wiley and Sons, Inc., 1998.

9. J. Majhi, R. Janardan, J. Schwerdt, and M. Smid. Multi-criteria optimization
algorithms for layered manufacturing. In Proc. 14th Ann. ACM Symp. Comput.
Geometry, pages 19–28, 1998. To appear in Intl. J. Math. Algorithms.

10. J. Majhi, R. Janardan, J. Schwerdt, M. Smid, and P. Gupta. Minimizing support
structures and trapped area in two-dimensional layered manufacturing. Comput.
Geom. Theory Appl., 12:241–267, 1999.

11. J. Majhi, R. Janardan, M. Smid, and P. Gupta. On some geometric optimization
problems in layered manufacturing. Comput. Geom. Theory Appl., 12:219–239,
1999.

12. F. Preparata and M. Shamos. Computational Geometry: An Introduction. Springer-
Verlag, New York, NY, 1985.

13. D. Rappaport and A. Rosenbloom. Moldable and castable polygons. Comput.
Geom. Theory Appl., 4:219–233, 1994.

14. G. Toussaint. Solving geometric problems with the rotating calipers. In Proc.
IEEE MELECON ’83, pages A10.02/1–4, 1983.

Supertrees by Flipping�

D. Chen1, O. Eulenstein1, David Fernández-Baca1, and M. Sanderson2

1 Department of Computer Science, Iowa State University, Ames, IA 50011, USA
{jackie,oeulenst,fernande}@cs.iastate.edu

2 Section of Evolution and Ecology, University of California, Davis, CA 95616, USA
mjsanderson@ucdavis.edu

Abstract. The input to a supertree problem is a collection of phyloge-
netic trees that intersect pairwise in their leaf sets; the goal is to construct
a single tree that retains as much as possible of the information in the
input. This task is complicated by inconsistencies due to errors. We con-
sider the case where the source trees are rooted and are represented by
the clusters they exhibit. The problem is to find the minimum number
of flips needed to resolve all inconsistencies, where each flip moves a
taxon into or out of a cluster. We prove that the minimum flip problem
is NP-complete, but show that it is fixed-parameter tractable and give
an approximation algorithm for a special case.

1 Introduction

All species of living organisms are thought to be related to each other by a largely
tree-like pattern of ancestry and descent — a phylogeny. The tree of life contains
millions of species, but phylogenetic analyses typically include on the order of
only 10 − 100 species at a time. This stems partly from limitations of data,
such as the small number of sequences typically available for homologous genes,
and partly from limitations associated with the computational complexity of
optimization-based tree-building methods. Thus, it is unlikely that conventional
tree-building methods that use comparative data, such as sequences, as their
inputs will scale well to data sets involving very large collections of species.

An alternative strategy for combining phylogenetic information is to use a
collection of smaller source trees as the input and construct directly a larger
tree. Such a supertree includes all or most of the taxa (labels) from the collec-
tion of source trees while preserving the phylogenetic information from those
trees [26]. Ideally supertrees also make statements about relationships that were
not possible from any single source tree alone. Biologists have been constructing
such supertrees informally for some time [8, 22], but the development of formal
algorithms to solve problems associated with supertree construction has permit-
ted unprecedented analyses of large phylogenetic groups in the last few years
[3, 20, 24, 29].
� Research of D. Chen, O. Eulenstein, and M. Sanderson supported in part by the

National Science Foundation (NSF) under grant no. 0075319. D. Fernández-Baca
was supported in part by NSF under grant CCR-9520946.

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 391–400, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

392 D. Chen et al.

Previous Results: All supertree methods have as their input a collection of
phylogenies and as output a supertree or collection of supertrees [13, 27, 28]. Most
versions of the supertree problem apply only to phylogenies with the same taxa
set; in this context, they are called consensus tree methods [5, 16, 18, 19]. One
of the few supertree methods that consider phylogenies that do not necessarily
share all taxa is matrix representation using parsimony (MRP). This approach
seeks the most parsimonious (MP) tree(s) [11] from a data set of incomplete
binary characters in which each character represents a cluster (clade) from one
of the source trees [2, 4, 24, 25]. Taxa present in the cluster are scored 1, those
absent in cluster are scored 0, and those not sampled on that source tree are
scored by a ?. The wide availability of algorithms for MP [12] have made this
approach for building supertrees the choice of phylogeneticists working with real
data sets. However, MP is NP-complete [14].

Other supertree problems have algorithms with polynomial running times.
Aho et al. [1, 17] devised an efficient algorithm for building a supertree when
the input trees are compatible. Semple and Steel [27] modified this procedure to
handle incompatibility. Their approach, called the MinCutSupertree algorithm
(MC), is guided by a local optimization criterion, although some global prop-
erties can be shown for the output tree. In any event, the notion of supertree
is sufficiently broad and ill-defined that it is not obvious which problem should
be solved. Hence, much work remains in deciding which method can best be
justified on biological and computational grounds.

Contributions of This Paper: All empirical studies attempting to construct
supertrees have found that source trees conflict with one another — errors are
present. This paper describes a new way to construct supertrees motivated by a
notion of error correction. Any tree can be represented by set of clusters, each
cluster comprising a set of taxa (labels). One notion of error in such a cluster
system is the presence of an incorrect label in a cluster or the absence of one that
should be present. In a matrix representation of a tree, such errors correspond to
flips from 0→ 1 or 1→ 0. When the matrix representations of conflicting source
trees are combined in a single matrix, the matrix no longer represents perfectly
any phylogenetic tree. A natural optimization problem is to find the minimum
number of flips that converts the matrix into one that represents a phylogenetic
tree; we call this the flip problem.

We show that the flip problem and simplified versions of it are NP-complete.
For input trees with a same taxa set, we prove that the flip-problem is fixed
parameter tractable and fixed ratio approximable. In a computational study [7]
that is omitted for brevity, we show that the flip problem outperforms MRP and
MC, if solved exactly. The supertree web page [6] provides an exact (exponential
time) algorithm to solve the flip problem.

The flip problem is related to fractional character compatibility (FCC) [19].
While FCC is not intended as a supertree method, it can be viewed as a flip
problem for unrooted phylogenies over the same taxa set.

Supertrees by Flipping 393

2 Definitions and Notation

Throughout the paper M is a finite set, ℘(N) denotes the power set of a set N ,
and A∆B denotes the symmetric difference between the sets A and B.

Depending on the proof, we use either set-theoretic or graph-theoretic repre-
sentations of characters; each leads to corresponding representations of flipping.

2.1 Set-Theoretic Definitions and Notations

Definition 1 (characters). A binary character over M is a bipartition C =
{C◦, C•} of M ′ ⊆ M . C◦ and C• are, respectively, the 0-state and the 1-state
of C. The ordered pair (C◦, C•) is a directed binary character over M . The set
of all directed binary characters over M is denoted PM . Unless stated otherwise
a directed binary character over M is said to be a character. If C ∈ PM is a
bipartition of M , it is called complete. CM denotes the subset of all complete
characters in PM . A completion of P ∈ PM is a complete character C ∈ CM ,
where P◦ ⊆ C◦ and P• ⊆ C•.

Definition 2 (compatibility and phylogenetic trees). A phylogenetic tree
T over M ′ ⊆ M is a rooted tree with leaf set M ′. The set of all leaves that
descend from the same non-root node of T is a cluster in T . Given A ⊆ M the
minimal subtree in T connecting A is denoted by T|A. Character C has convex
states in T , iff T|C◦ and T|C• do not intersect in their sets of internal nodes. A
set C of characters is compatible iff there exists a phylogenetic tree TC in which
every character C ′ ∈ C has convex states. In this case TC and C are said to be
consistent.

Theorem 1 ([10, 15]). A set C ⊆ CM of complete characters is compatible iff
for every pair {C,C ′} ⊆ C, C• ∩ C ′

• ∈ {∅, C•, C ′
•}.

The compatibility of a set of complete or incomplete characters can be tested
in polynomial time [23].

Definition 3 (flips). For C ∈ PM and a set F ∈ ℘(M), called a flip set for C,
we define the flip-operation � as follows,

C ′ = C �F :⇐⇒ C ′
◦ = C◦∆F ′ ∧ C ′

• = C•∆F ′

where F ′ = F ∩ (C◦ ∪ C•). We call F simply a flip when C is obvious. F is
a d-flip if F ⊆ C•, and an i-flip if F ⊆ C◦. Flip operations are generalized to
character tuples C = (Ci)r

i=1 ∈ Pr
M and flip tuples F = (Fi)r

i=1 ∈ ℘(M)r by
C �F := (Ci �Fi)r

i=1. s(F) := Σr
i=1 |Fi| is the size of F .

Each cluster in a phylogenetic tree T over M ′ ⊆M can be represented by a
character C where C• contains all taxa in the cluster and C◦ = M ′−C•. A tuple
T = (T1, . . . , Tl) of input trees for the supertree problem is represented by a tu-
ple C = (C11, . . . , C1m1 , . . . , Cl1, . . . , Clml

) of characters, where (Cj1, . . . , Cjmj
)

represents all clusters of Tj , for each j ∈ {1, . . . , l}.

394 D. Chen et al.

Definition 4. The flip problem (FP) is defined as follows.

Given A character tuple C ∈ Pr
M (representing the clusters in a tuple of phylo-

genetic trees), r ∈ N, and a number k ∈ N.
Question Does there exist a flip tuple F ∈ ℘(M)r where s(F) ≤ k, such that

C �F is compatible?

When F is required to be a d-flip (i-flip) tuple the problem is called the D-Flip
Problem (DFP) (I-Flip Problem (IFP)).

2.2 Graph-Theoretic Definitions

Definition 5 (Character graph). Let C = (C1, . . . , Cr) ∈ Cr
M . The character

graph for C is the bipartite graph G = (X,Y,E), where X = {1, . . . , r}, Y = M ,
and E = {{x, y} | x ∈ X, y ∈M,y ∈ Cx•}.

The flip operation on sets (Definition 3) corresponds to editing the character
graph. In particular, flipping a taxon in a character is equivalent to deleting or
inserting an edge in the character graph.

Definition 6. The Π Edit Problem (EP(π)) is defined as follows.

Given A graph property Π, a bipartite graph G = (X,Y,E), and k ∈ N.
Question Does there exist a set F ⊆ X×Y , where |F | ≤ k, such that the graph

G′ = (V,E∆F) is a Π graph?

When we place the restriction that F ⊆ E (F ⊆ (A − E)) the problem is called
the Π Deletion Problem (DP(π)) (Π Insertion Problem (IP(π))).

Definition 7 (M-free graph property). An M-graph is a cycle-free path of
length 4. The property M-free is the set of all bipartite graphs G = (X,Y,E) that
do not have an induced M-graph whose degree-1 nodes are in Y .

The following proposition, whose proof is omitted, relates the set-theoretic
and graph-theoretic definitions of flipping. Its first part expresses Theorem 1 in
graph-theoretic terms.

Proposition 1.

1. C ∈ Cr
M is compatible iff its character graph is M-free.

2. Problems (i) EP(M-free) and FP, (ii) DP(M-free) and DFP, and (iii) IP(M-
free) and IFP, are polynomially equivalent.

3 NP-Completeness Results

We now show that FP, DFP, and IFP areNP-complete when the input characters
are complete. The NP-completeness for (partial) characters follows directly.

For brevity the proofs of Lemmas 1 and 2 are omitted, but can be found in
[7].

Supertrees by Flipping 395

Lemma 1. Let C = (C1, C2) ∈ C2
M , such that |C1• | = |C2• | = 3 and |C1• ∩

C2• | ≤ 1. If F = (F1, F2) ∈ ℘(M)2 is a flip-tuple, such that |F1| = 0, |F2| = 1,
and C �F = (C ′

1, C
′
2) is compatible, then C ′

1• ∩ C ′
2• = ∅.

Lemma 2. Let C = (Ci)r
i=1 ∈ Cr

M such that |Ci• | = 3, and |Ci• ∩ Cj• | ≤ 1 for
i �= j. If there exists a flip tuple F = (Fi)r

i=1 ∈ ℘(M)r, such that |Fi| = 1 for
each i and (C ′

1, . . . , C
′
r) = C �F is compatible, then 2r ≤ |⋃i∈{1, ...,r} C

′
i• |.

The version of exact 3-cover defined below is known to be NP-complete [19].

Definition 8 (Constrained Exact 3-Cover (CX3C)).
Given A set X with |X| = 3q for some q ∈ N, and a collection S of 3-element

subsets of X, such that for any set {S, S′} ⊆ S, |S ∩ S′| ≤ 1.
Question Does there exist a set S ′ ⊆ S that covers X? (S ′ covers X, iff X =⋃

S∈S′ S and for any {S, S′} ⊆ S ′, S ∩ S′ = ∅.)
Theorem 2. FP is NP-complete.

Proof. Clearly, FP ∈ NP. The reduction CX3C ≤m
p FP is shown by a modifica-

tion of a proof given in [19].

Construction: Let a possible instance for CX3C be a set X, where |X| = 3bq
for some q ∈ N, and S = {S1, . . . , Sr} be a collection of 3-element subsets of
X. From this instance a possible instance for FP is constructed as follows: For
every i ∈ {1, . . . , r} a character Ci is constructed, such that Ci• = Si and Ci◦ =
X − Si. From the resulting characters the character r-tuple C = (C1, . . . , Cr) is
constructed and the number k = 2(r − q) is calculated.

Obviously, C and k can be calculated in polynomial time. Thus, the NP-
completeness of FP derives from the following statement.

Claim: S contains a 3-cover for X iff there exists a flip-tuple F where s(F) ≤ k
and C �F is compatible.

Proof of claim:
“=⇒”: Let S ′ = {S1, . . . , Sq} be a subset of S that is a 3-cover for X. Let
F = (F1, . . . , Fq, Fq+1, . . . Fr) be a flip tuple where Fi = ∅ for any i ∈ {1, . . . , q}
and Fi ⊂ Ci• , such that |Fi| = 2 for any i ∈ {q+ 1, . . . , r}. Thus, s(F) = k. Now
we show in two steps that C �F is compatible.
First we argue that Ci − Fi is compatible with any character in CM for any
i ∈ {q + 1, . . . , r}. We have Ci �Fi = Ci − Fi where Fi ⊂ Ci, since Fi is a
d-flip for Ci. Hence, |Ci �Fi| = |Ci − Fi| = 1, since |Fi| = 2 and |Ci| = 3.
By Theorem 1, a character C ∈ CM where |C•| = 1, is compatible with any
character in CM . Thus, Ci �Fi is compatible with any character in CM .
Second we argue that C ′

i = Ci �Fi and C ′
j = Cj �Fj are compatible for different

i, j ∈ {1, . . . , q}. It is C ′
i = Ci and C ′

j = Cj , since Fi = Fj = ∅. Next we have
Ci• ∩ Cj• = ∅, since by our construction Ci• = Si, Cj• = Sj , and Si, Sj are
elements of the 3-cover for X. Thus, C ′

i• ∩C ′
j• = ∅. From this and Theorem 1 it

follows that C ′
i and C ′

j are compatible.
From the first and second part above, it follows directly that C �F is compatible.

396 D. Chen et al.

“⇐=”: Suppose that there exists a flip-tuple F such that s(F) ≤ k and C �F =
(C ′

1, . . . , C
′
r) is compatible. W.l.o.g. let F = (F0, . . . , Fi, Fi+1, . . . , Fj , Fj+1,

. . . Fr) such that |Fk| = 0 for k ∈ {1, . . . , i}, |Fk| = 1 for k ∈ {i + 1, . . . , j},
and |Fk| > 1 for k ∈ {j + 1, . . . , r}. Let f0 = i, f1 = j − i, and f2≤ = r − j. We
show 3/2(f0 − q) ≥ f1 ≥ 2(f0 − q). Hence, q = f0 and {S1, . . . , Sq} is a 3-cover
for X.

It holds that k = 2(n − q) ≥ f1 + 2f2≤ and replacing n by f0 + f1 + f2≤

yields f1 ≥ 2(f0 − q). By construction, we have that 3q ≥ |⋃l∈{1,...j} C
′
l |. By

Lemma 1 we have |⋃l∈{1,...j} C
′
l | = 3f0 + |⋃l∈{i+1,...j} C

′
l |. Lemma 2 states

|⋃l∈{i+1,...j} C
′
l | ≥ 2f1. Thus 3q ≥ 3f0 + 2f1; that is, 3/2(f0 − q) ≥ f1. ��

The proof of the next theorem is similar to that of Theorem 2.

Theorem 3. DFP is NP-complete.

The following theorem can be proved by a reduction from the NP-complete
chaingraph insertion problem [30], using Proposition 1 .

Theorem 4. IP(M-free) is NP-complete.

4 Fixed Ratio Approximation Algorithm

Theorem 5. Let G = (X,Y,E) be a character graph such that the nodes in
X have an upper degree bound d. The optimization versions of EP(M-free) and
DP(M-free) can be approximated within a factor of 2d.

Proof. Our argument is based on a general result for node deletion and editing
problems [21]. Define M(G) to be the set of induced M–graphs on a bipartite
graph G, and Inc(v) to be the set of edges that are incident on a node v.

Approx(G)
1 FA = ∅
2 while A = (X,Y,E − FA) contains an induced M-graph
3 do let path 〈a, b, c, d, e〉 be an induced M-graph in A
4 FA = FA ∪ Inc(b) ∪ Inc(d)
5 return FA

Let FA0 = FA, A0 = A, and n ∈ N0 be the number of executions of line 4 for
some input. At the ith execution of line 4, let Ai denote the graph A, FAi

the
edge deletion set FA, and Mi the induced M-graph M.

Correctness: From Claim 1 it follows that ∅ ⊆ M(Ai) ⊂ M(Ai−1) ⊆ M(G) for
any i ∈ {1, . . . , n}. Thus the algorithm terminates and M(An) = ∅.
Approximation ratio: Let FO be an optimal solution for either EP(M-free) or
DP(M-free). We show that any Mi is deleted by an edge ei ∈ FO (existence)
that does not delete Mj for j > i (uniqueness). The algorithm deletes any Mi

by at most 2d edge deletions. It follows that |FA| ≤ |FO| 2d.

Supertrees by Flipping 397

Existence: From Claim 1 below, it follows that M(Ai) ⊂ M(G), i ∈ {0, . . . , n}.
Thus Mi must be deleted by some ei ∈ FO that is incident on the nodes of
Mi. Uniqueness: From Claim 2 below, it follows that M(Ai+1) ⊆ M(O) for
O = (X,Y, (E −Ai)∆{ei}). Thus there exists no induced M-graph in Ai+1 that
is deleted by ei, but not by the algorithm.

Claim 1: Let B = (X,Y,E) and A = (X,Y,E − Inc(x)) for some x ∈ X, then
M(A) ⊆M(B).

Proof: Suppose that there exists M ∈ M(B) −M(A). Thus the cycle-free path
M in B is created from A by removing some edge in Inc(x). Hence x must be
a node on the path M in M(B). As a contradiction x is not connected to any
other node in B and thus can not be on the path M. ��
Claim 2: Let B = (X,Y,E), andM∈M(B), described by the path 〈a, b, c, d, e〉.
Further let A = (X,Y,E−FA) for FA = Inc(b)∪Inc(d), and O = (X,Y,E∆FO),
for some FO ⊆ {{x, y} | x ∈ {b, d}, y ∈ {a, c, d}}. Then M(A) ⊆M(O).

Proof of claim : Suppose that there existsM′ ∈M(A)−M(O). FromM′ ∈M(A)
we have that (i)M′ does not contain the nodes b, c, since their edge degree in B is
0; (ii)M′ ∈M(G), follows from Claim 1. From (i) and (ii) follows that the path
M′ in G does not contain the nodes b and d. We now show as a contradiction
that M′ in G contains either b or d. From M′ ∈M(G) and M′ /∈M(O) follows
that some edge modifications in FO removedM′ in O. Since these edges remove
M′ from G, they are incident on nodes that are on the path M′ in G. Edges in
FO are incident on b or d. It follows b or d is on the path M′ in G. ��

5 Fixed Parameter Tractability

Definition 9. Let k ∈ N. The Mk-free edit problem (EP(Mk-free)) is defined as
follows.

Given A bipartite graph G = (X,Y,E), a partition {E•, E◦, E?}.
Question Does there exist a set F ⊆ X × Y where |F | ≤ k, such that G′ =

(V,E∆F) is M-free?

When we place the restriction that F ⊆ E (F ⊆ (A − E)), the problem is
called the Mk-free deletion problem (DP(Mk-free)) (Mk-free insertion problem
(IP(Mk-free))).

A decision problem parameterized by k is fixed parameter tractable (FPT),
if there is an algorithm that correctly decides the problem in O(f(k)p(n)), for
an input of size n. p(n) is a polynomial function and f an arbitrary function [9].

Theorem 6. Let k ∈ N, then EP(Mk-free)) is in FPT .

Proof. Let G = (X,Y,E) be the given character graph. We construct a search
tree T for G of height at most k + 1, where each node v in the tree T is labeled
by a set of edge modifications m(v), and g(v) = (V,E∆m(v)). For any internal

398 D. Chen et al.

node v in T it holds that the graph g(v) is not M-free, and v has exactly 6
children that represent all possible edge modifications to eliminate a particular
induced M-graph in g(v).

Construction: Create the root r of the search tree T with labels g(r) = G and
m(r) = ∅. For any leaf l in the search tree of height less then k + 1, search for
an induced M-graph in g(l). If an induced M-graph M exists, then there are
exactly 6 different single edge modifications to eliminate M (4 edge deletions
and 2 edge insertions). For each edge modification e create a new node v. Label
v with m(n) = m(l) ∪ {e} and g(v) = (V,E∆m(v)). Make v a child of l. Note:
g(v) is M-free, if v is a leaf of depth smaller then k+1. Also the character graph
g(v) is not M-free, if v is an internal node of T .

Let F be a minimal set such that GF = (X,Y,E∆F) is M-free.

Claim 1: There exists a leaf l in the search tree T , such that m(l) ⊆ F .

Proof: For the root r of T it holds that m(r) = ∅. Thus, if r is a leaf the claim
holds. Otherwise r is an internal node in T such that m(v) ⊆ F . In general, let
v be an internal node in T such that m(v) ⊆ F . The character graph g(v) is not
M-free, since it is an internal node in T . Hence there exists an induced M -graph
M in g(v). Since m(v) ⊆ F and GF is M-free, there exists an edge e ∈ F −m(v)
that eliminates M . By the construction of T there exists a child u of v, such that
m(u) = m(v) ∪ {e}. Hence m(u) ⊆ F . Since T is of finite height, there exists a
leaf l in T such that m(l) ⊆ F . ��
Claim 2: T is a complete tree of height k + 1, iff |F | > k.

Proof: Case |F | ≤ k: From Claim 1 it follows that there exists a leaf l in T such
that m(l) ⊆ F . Thus, |m(l)| ≤ k and further the depth of l is smaller or equal k.
It follows that T is not a complete tree of height k + 1. Case |F | > k: T has no
leaf at a depth smaller then k + 1. Otherwise F would not be a minimal set of
edge modifications. By the construction of T , its height is at most k + 1. Thus,
T is a complete tree of height k + 1. ��

Clearly, the search tree can be constructed and tested for a possible comple-
tion of height k + 1 in O(6kn5) time. Thus, M-free (k) EP is in FPT . ��
Corollary 1. Let k ∈ N. DP(Mk-free) and IP(Mk-free) are in FPT .

6 Discussion and Open Problems

Experimental results [6, 7] suggest that solving the minimum-flip problem exactly
reconstructs supertrees more accurately than Semple and Steel’s MC algorithm
or MRP. Since the minimum-flip problem is NP-complete, our studies were lim-
ited to relatively small trees (≤ 16 taxa)[6, 7]. We have developed a heuristic
algorithm for the minimal flip problem that allows us to handle larger trees; ex-
periments to be reported elsewhere indicate that the results are close to solutions
provided by MRP heuristics, but outperform MC.

Supertrees by Flipping 399

An important task is to determine if there exists a polynomial time approx-
imation scheme for the minimum flip problem. In fact no positive results for
solving the minimum flip problem for (partial) characters are known.

References

1. A. V. Aho, Y. Sagiv, T. G. Szymanski, and J. D. Ullman, Inferring a tree from
lowest common ancestors with an application to the optimization of relational ex-
pressions, SIAM Journal on Computing 10 (1981), no. 3, 405–421.

2. B. R. Baum, Combining trees as a way of combining data sets for phylogenetic
inference, and the desirability of combining gene trees, Taxon 41 (1992), 3–10.

3. O. R. P. Bininda-Emonds, J. L. Gittleman, and A. Purvis, Building large trees by
combining phylogenetic information: a complete phylogeny of the extant Carnivora
(Mammalia), Biol. Rev. 74 (1999), 143–175.

4. D. R. Brooks, Hennig’s parasitological method: a proposed solution, Syst. Zool. 30
(1981), 325,331.

5. David Bryant, John Tsang, Paul E. Kearney, and Ming Li, Computing the quar-
tet distance between evolutionary trees, Symposium on Discrete Algorithms, 2000,
pp. 285–286.

6. D. Chen, O. Eulenstein, D.Fernández-Baca, and M. Sanderson,
http://genome.cs.iastate.edu/supertree.

7. , Supertrees by flipping, Tech. Report TR02-01, Iowa State University, Dept.
of Computer Science, Iowa State University, Department of Computer Science, 226
Atanasoff Hall, Ames, IA 50011-1040 USA, January 2002.

8. M. J. Donoghue, Phylogenies and the analysis of evolutionary sequences, with ex-
amples from seed plants, Evolution 43 (1989), 1137–1156.

9. R. G. Downey and M. R. Fellows, Parameterized compllexity, Springer, 1997.
10. G. F. Estabrook, C. Johnson, and F. R. McMorris, An idealized concept of the true

cladistic character?, Mathematical Bioscience 23 (1975), 263–272.
11. J. S. Farris, On comparing the shapes of taxonomic trees, Systematic Zoology 22

(1976), 50–54.
12. J. Felsenstein, PHYLIP homepage, http://evolution.genetics.washington.edu

/phylip.html.
13. A. D. Gordon, Consensus supertrees: the synthesis of rooted trees containing over-

lapping sets of labelled leaves, J. Classif. 9 (1986), 335–348.
14. R. L. Graham and L. R. Foulds, Unlikelihood that minimal phylogenies for a re-

alistic biological study can be constructed in reasonable computation time, Math.
Biosci. 60 (1982), 133–142.

15. D. Gusfield, Algorithms on strings, trees, and sequences, Cambridge University
Press, 1979.

16. Henzinger, King, and Warnow, Constructing a tree from homeomorphic subtrees,
with applications to computational evolutionary biology, SODA: ACM-SIAM Sym-
posium on Discrete Algorithms (A Conference on Theoretical and Experimental
Analysis of Discrete Algorithms), 1996.

17. M. R. Henzinger, V. King, and T. Warnow, Constructing a tree from homeomorphic
subtrees, with applications to computational evolutionary biology, Algorithmica 24
(1999), 1–13.

18. Sampath Kannan, Tandy Warnow, and Shibu Yooseph, Computing the local con-
sensus of trees, Symposium on Discrete Algorithms, 1995, pp. 68–77.

400 D. Chen et al.

19. P. Kearney, M. Li, J. Tsang, and T. Jiang, Recovering branches on the tree of life:
An approximation algorithm, SODA, 1999, pp. 537–5465.

20. F. G. R. Liu, M. M. Miyamoto, N. P. Freire, P. Q. Ong, M. R. Tennant, T. S.
Young, and K. F. Gugel, Molecular and morphological supertrees for eutherian
(placental) mammals, Science 291 (2001), 1786–1789.

21. A. Natanzon, R. Shamir, and R. Sharan, Complexity classification of some edge
modification problems, Discrete Applied Mathematics 113 (2001), no. 1, 109–128.

22. A. Ortolani, Spots, stripes, tail tips and dark eyes: predicting the function of car-
nivore colour patterns using the comparative method, Biol. J. Linn. Soc. 67 (1999),
433–476.

23. I Pe’er, R. Shamir, and R. Sharan, Incomplete directed perfect phylogeny., Proc.
CPM 2000, 2000, pp. 143–153.

24. A. Purvis, A modification to Baum and Ragan’s method for combining phylogenetic
trees, Systematic Biology 44 (1995), 251–255.

25. M. A. Ragan, Phylogenetic inference based on matrix representation of trees, Molec-
ular Phylogenetics and Evolution 1 (1992), 53–58.

26. M. J. Sanderson, A. Purvis, and C. Henze, Phylogenetic supertrees: assembling the
trees of life, Trends Ecol. Evol. 13 (1998), 105–109.

27. C. Semple and M. Steel, A supertree method for rooted trees, Discrete Applied
Mathematics 105 (2000), 147–158.

28. M. A. Steel, The complexity of reconstructing trees from qualitative characters and
subtrees, Journal of Classification 9 (1992), 91–116.

29. M. F. Wojciechowski, M. J. Sanderson, K. P. Steele, and A. Liston, Molecular
phylogeny of the “temperate herbaceous tribes” of papilionoid legumes: a supertree
approach, Adv. Legume Syst., in press.

30. M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM Journal on
Algebraic and Discrete Methods 2 (1981), no. 1, 77–79.

A Space and Time Efficient Algorithm
for Constructing Compressed Suffix Arrays

Tak-Wah Lam1, Kunihiko Sadakane2, Wing-Kin Sung3,�, and Siu-Ming Yiu1

1 Department of Computer Science, University of Hong Kong
Hong Kong

{twlam,smyiu}@csis.hku.hk
2 Department of System Information Sciences

Graduate School of Information Sciences, Tohoku University
Sendai, Japan

sada@dais.is.tohoku.ac.jp
3 Department of Computer Science, National University of Singapore

Singapore
ksung@comp.nus.edu.sg

Abstract. With the first Human DNA being decoded into a sequence of
about 2.8 billion base pairs, many biological research has been centered
on analyzing this sequence. Theoretically speaking, it is now feasible to
accommodate an index for human DNA in main memory so that any
pattern can be located efficiently. This is due to the recent breakthrough
on compressed suffix arrays, which reduces the space requirement from
O(n log n) bits to O(n) bits. However, constructing compressed suffix
arrays is still not an easy task because we still have to compute suffix
arrays first and need a working memory of O(n log n) bits (i.e., more
than 13 Gigabytes for human DNA). This paper initiates the study of
constructing compressed suffix arrays directly from text. The main con-
tribution is a new construction algorithm that uses only O(n) bits of
working memory, and more importantly, the time complexity remains
the same as before, i.e., O(n log n).

1 Introduction

DNA sequences, which hold the code of life for living organisms, can be rep-
resented by strings over four characters A, C, G, and T. With the advance in
bio-technology, the complete DNA sequences for a number of living organisms
have been known. Even for human DNA, a draft which comprises about 2.8
billion characters, has been finished recently. This is, however, not the end, the
next step is to analyse these sequences.

This paper is concerned with data structures for indexing a sequence over
a fixed alphabet so that searching for an arbitrary pattern can be performed
efficiently. Such tools are very useful in many areas. In particular, they find
� This research was supported in part by NUS Academic Research Grant R-252-000-

119-112

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 401–410, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

402 Tak-Wah Lam et al.

applications to many biological research activities on DNA, such as gene hunting,
promoter consensus identification, and motif finding. Unlike English text, DNA
sequences do not have word boundaries; suffix trees [9] and suffix arrays [8]
are the most appropriate solutions in the literature for indexing DNA. For a
DNA sequence with n characters, building a suffix tree takes O(n) time, then
a pattern P can be located in O(|P | + occ) time, where occ is the number of
occurrences. For suffix arrays, construction and searching takes O(n log n) time
and O(|P | log n+occ) time, respectively. Both data structures requires O(n log n)
bits; suffix arrays is associated with a smaller constant, though. For human
DNA, the best known implementation of suffix tree and suffix array requires
40 Gigabytes and 13 Gigabytes, respectively [7]. Such memory requirement far
exceeds the capacity of ordinary computers. Existing approaches for indexing
human DNA include (1) using supercomputers with large main memory; and
(2) storing the indexing data structure in the secondary storage [1, 6]. The first
approach is expensive and inflexible, while the second one is slow. As more
and more DNA are decoded, it is vital that individual biologists can eventually
analyze different DNA sequences efficiently with their ordinary PCs.

Recent breakthrough results in compressed suffix arrays shed light on this
direction [4, 5, 10]. It is now feasible to store a compressed suffix array in the
main memory, which occupies only O(n) bits, yet still supporting search effi-
ciently. Precisely, the searching time increases only by a factor of at most log n.
For human DNA, such a compressed suffix array occupies about 2 Gigabytes.
Nowadays a PC can have up to 4 Gigabytes of main memory and can easily
accommodate such a data structure.

Theoretically speaking, a compressed suffix array can be constructed in
O(n log n) time; however, the construction process requires much more than
O(n) bits of working memory. Among others, the original suffix array has to
be built first, taking up at least n log n bits. In the context of human DNA,
the working memory for constructing a compressed suffix array is at least 25
Gigabytes [11], far exceeding the capacity of ordinary PCs. This motivates us
to investigate whether we can construct a certain kind of compressed suffix ar-
ray in O(n log n) time while using O(n) bits of memory. The latter requirement
means construction directly from DNA sequences. This paper provides the first
algorithm of such a kind, showing that the compressed suffix array proposed in
[5, 10] can be built in a space and time efficient manner.

Experiments show that for human DNA, our space-efficient algorithm can
run on a PC with 3 Gigabytes of memory and takes about 21 hours, i.e., about
three times slower than the original algorithm implemented on a supercomputer
with 64 Gigabytes of main memory [11] to accommodate the suffix array.

Technically speaking, our algorithm does not require much space other than
for storing the compressed suffix array. This is based on an observation that the
compressed suffix arrays of two consecutive suffixes are very similar. Thus, we
can build the entire compressed suffix array directly from the DNA sequence in
an incremental manner. The efficiency of our algorithm benefits from an elegant
solution to an interesting data structure problem, which extends a balanced

A Space and Time Efficient Algorithm 403

search tree to support selective increment over an arbitrary interval of up to n
values in O(log n) time.

The rest of this paper is organized as follows. Section 2 gives a review of suffix
arrays and compressed suffix arrays. Section 3 gives the technical background
and a simple framework for computing the compressed suffix array incremen-
tally. Sections 4 and 5 respectively detail the new data structure to support the
incremental construction and the constructing algorithm.

2 Compressed Suffix Arrays in a Nutshell

Let Σ be an alphabet, and let $ be a special character not in Σ. We assume that
$ is lexicographically smaller than any character in Σ. Intuitively, $ is used to
mark the end of a text. Consider a length-n text T , which is represented by an
array T [1..n+1] = T [1]T [2] . . . T [n+1], where T [n+1] = $. For i = 1, 2, . . . , n+1,
Ti = T [i..n+ 1] = T [i]T [i+ 1] . . . T [n+ 1] denotes a suffix of T starting from the
i-th position.

i T [i] Ti

1 a acaaccg$
2 g caaccg$
3 a aaccg$
4 a accg$
5 g ccg$
6 g cg$
7 c g$
8 $ $

i SA[i] TSA[i]

0 8 $
1 3 aaccg$
2 1 acaaccg$
3 4 accg$
4 2 caaccg$
5 5 ccg$
6 6 cg$
7 7 g$

i Ψ [i] T [SA[i]]
1 3 a
2 4 a
3 5 a
4 1 c
5 6 c
6 7 c
7 0 g

Fig. 1. Array, suffix array, and compressed suffix array of acaaccg$

Suffix Arrays [8]: A suffix array is a sorted sequence of n + 1 suffixes of
T , denoted by SA[0..n]. Formally, SA[0..n] is a permutation of the set of inte-
gers {1, 2, . . . , n + 1} such that, according to the lexicographic order, TSA[0] <
TSA[1] < . . . < TSA[n]. See Figure 1 for an example. Note that SA[0] = n + 1.
As each integer takes log n bits, the suffix array can be stored using (n+ 1) logn
bits1. Given a text T together with the suffix array SA[1..n], the occurrences of
any pattern P in T can be found without scanning T again. Precisely, it takes
O(|P | log n+ occ) time, where occ is the number of occurrences.

Compressed Suffix Arrays [5, 10]: For every i = 0, 1, 2, . . . , n + 1, define
SA−1[i] to be the integer j such that SA[j] = i. The major component of a com-
pressed suffix array for a text T is an array Ψ [1..n] where Ψ [i] = SA−1[SA[i]+1]
for i = 1, 2, . . . , n. See Figure 1 for an example.

Note that Ψ [1..n] contains n integers. The trivial way to store it requires
n log n bits. Nevertheless, Ψ [1..n] can always be partitioned into |Σ| strictly
1 Throughout this paper, we assume that logarithm has a base of 2.

404 Tak-Wah Lam et al.

increasing sequences. This special property allows us to store it succinctly. This
property is illustrated in the rightmost table in Figure 1 and its correctness is
proved formally based on the following two lemmas.

Lemma 1. For every i < j, if T [SA[i]] = T [SA[j]], then Ψ [i] < Ψ [j].

Proof. Note that i < j if TSA[i] < TSA[j]. If i < j and T [SA[i]] = T [SA[j]],
then TSA[i]+1 < TSA[j]+1. Let p = Ψ [i] and q = Ψ [j]. Then TSA[p] = TSA[i]+1 <
TSA[j]+1 = TSA[q]. Therefore, we have p < q. The lemma follows. ��

Lemma 2. Ψ [1..n] can be partitioned into at most |Σ| strictly increasing se-
quences Sc for all c ∈ Σ. For every integer Ψ [i] ∈ Sc, T [SA[i]] = c.

Proof. Note that [1..n] can be partitioned into at most |Σ| intervals [1 = i1..j1],
[i2..j2] , . . . , [i|Σ|..j|Σ| = n] so that for every i, j in a particular interval, T [SA[i]]
= T [SA[j]].

Based on Lemma 1, for every i < j within a particular interval [ik..jk],
Ψ [i] < Ψ [j]. Thus, Ψ [ik..jk] is a strictly increasing sequence. The lemma follows.

��

For DNA sequences, Σ has only four characters. Based on Lemma 2, Ψ is
partitioned into four strictly increasing sequences. To represent an increasing se-
quence, we can store the difference between consecutive values instead of storing
the actual values. Precisely, a sequence (v1, . . . , vl) of increasing values can be
represented as v1, v2 − v1, v3 − v2, . . . , vl − vl−1. Furthermore, each individual
difference is encoded using δ-coding [3], which is for representing integers with
variable length. In summary, it is shown that Ψ can be represented using O(n)
bits. More importantly, with Ψ and some other auxiliary data structures, the
occurrences of any pattern P in the text T can be found in O(|P | log n) time.
See [10] for the algorithmic details.

3 Basic Properties and Incremental Construction

The existing approach to constructing the array Ψ is as follows: First, the suffix
array SA is built. Next, the values of the array Ψ [1..n] are computed one by one.
Finally, based on δ-coding, a succinct representation of Ψ is generated. Since
suffix array requires n log n bits to store, the working space for constructing a
suffix array is at least n log n bits.

To reduce the working space required, we try to avoid creating the suffix
array. Our construction algorithm works directly with the DNA sequence and is
based on an incremental approach. Initially, we construct the compressed suffix
array for only the last character of the text. Then, we repeatedly expand the text
character by character and build a bigger and bigger compressed suffix array.

Let us give the mathematical background behind such an incremental ap-
proach. Suppose we are given the compressed suffix array for the text T [1..n+1]
where T [n+ 1] = $. Let SAT [0..n] be the suffix array of T . Note that SAT [0] =

A Space and Time Efficient Algorithm 405

i ΨT [i] SAT [i] TSAT [i]

0 8 $
1 3 3 aaccg$
2 4 1 acaaccg$
3 5 4 accg$
4 1 2 caaccg$
5 6 5 ccg$
6 7 6 cg$
7 0 7 g$

i ΨT ′ [i] SAT ′ [i] T ′
SAT ′ [i]

0 8⇒ 9 $
1 3 3⇒ 4 aaccg$
2 4 1⇒ 2 acaaccg$
3 5⇒ 6 4⇒ 5 accg$
4 1 2⇒ 3 caaccg$
5 SA−1

T [1] = 2 1 cacaaccg$
5 6⇒ 7 5⇒ 6 ccg$
6 7⇒ 8 6⇒ 7 cg$
7 0 7⇒ 8 g$

Fig. 2. Suffix array and compressed suffix array of T = acaaccg$ and T ′ = cT . Note
that x = 4, that is, TSAT [x] < T ′ < TSAT [x+1].

n+1. Let ΨT [1..n] be the compressed suffix array where ΨT [i] = SA−1
T [SAT [i]+1]

for i = 1, 2, . . . , n.
Suppose a character c is added to the beginning of T [1..n + 1], giving us a

longer text T ′[1..n + 2], which is equal to c T [1..n + 1]. Let SAT ′ [0..n + 1] be
the suffix array of T ′. Let ΨT ′ [1..n + 1] be the compressed suffix array where
ΨT ′ [i] = SA−1

T ′ [SAT ′ [i] + 1] for i = 1, 2, . . . , n+ 1.
Let us have a close look of the relationship between T [1..n+1] and T ′[1..n+2].

Suppose we search T ′ against the suffixes of T according to the order speci-
fied by SAT . Let x ∈ {0, · · · , n} be the integer such that T [SAT [x]..n + 1] <
T ′ < T [SAT [x + 1]..n + 1]. The following lemma states the relationship be-
tween SAT [0..n] and SAT ′ [0..n+ 1]. Figure 2 shows an example to illustrate the
relationship between SAT and SAT ′ .
Lemma 3.

SAT ′ [i] =

SAT [i] + 1 if 0 ≤ i ≤ x
1 if i = x+ 1
SAT [i− 1] + 1 if x+ 2 ≤ i ≤ n+ 1

The above lemma states that SAT ′ [x + 1] = 1. Thus, x = SA−1
T ′ [1] − 1.

The next lemma states the relationship between ΨT [1..n] and ΨT ′ [1..n+ 1]. See
Figure 2 for an example.

Lemma 4. For i ≤ x,

ΨT ′ [i] =
{
ΨT [i] if ΨT [i] ≤ x
ΨT [i] + 1 if ΨT [i] > x

For i = x+ 1,

ΨT ′ [i] =
{
SA−1

T [1] if SA−1
T [1] ≤ x

SA−1
T [1] + 1 if SA−1

T [1] > x

For i ≥ x+ 2,

ΨT ′ [i] =
{
ΨT [i− 1] if ΨT [i− 1] ≤ x
ΨT [i− 1] + 1 if ΨT [i− 1] > x

406 Tak-Wah Lam et al.

Lemma 4 suggests the following algorithm to compute ΨT ′ from ΨT .

Incremental Construction Algorithm:

Input: ΨT [1..n] for T [1..n+ 1], SA−1
T [1], and T ′ = cT for some c ∈ Σ.

Output: ΨT ′ for T ′ and SA−1
T ′ [1].

1. Locate the index x such that T ′ should be inserted between the suffices
represented by SAT [x] and SAT [x+ 1].

2. Construct ΨT ′ from ΨT by inserting the new suffix cT into Ψ and in-
cremeting those values that are greater x as follows.

• set ΨT ′ [j] =

ΨT [j] if j ≤ x
SA−1

T [1] if j = x+ 1
ΨT [j − 1] if j > x+ 1

• for each ΨT ′ [j], if ΨT ′ [j] > x, increment ΨT ′ [j] by 1.
3. Set SA−1

T ′ [1] = x+ 1.

The correctness of the above algorithm follows directly from Lemma 4. By ex-
ecuting the incremental construction algorithm for n times, the compressed suffix
array for a length-n text can be built. Observe that each incremental construc-
tion step can be implemented in O(n) time. Therefore, based on the compressed
suffix array data structure in Section 2, we can construct the compressed suffix
array ΨT for T [1..n+ 1] using O(n2) time in O(n) bits working space. This time
complexity seems to be tight as each step may be required to increment ΨT ′ for
Ω(n) entries. Yet we show in the following section that the time complexity can
be improved to O(n log n) without increasing the space complexity.

4 New Data Structure for Compressed Suffix Arrays

This section proposes a new data structure D for representing the compressed
suffix array, which allows us to construct it in O(n) bits working space while
the time required remains O(n log n). The basic idea is to store the compressed
suffix array in a balanced search tree like red-black tree. Furthermore, to save
space, every node in the tree represents more than one value (standard trick). To
support the selective increment operation efficiently as required in the previous
section (see Lemma 6), each node stores relative search key instead of abslute
search key. The details will be discussed in the rest of this section.

Recall from Lemma 2, Ψ [1..n] can be partitioned into |Σ| strictly increasing
sequences {Sc|c ∈ Σ}. Note that T [SA[i]] = c for all Ψ [i] ∈ Sc. Let |Sc| be the
number of integers in sequence Sc.

For a particular value x ∈ Sc, denote rank(x) be its rank when the number
in Sc is ordered in increasing order. The next lemma shows the relationship
between the rank of Sc and the index of the Ψ function.

Lemma 5. For x ∈ Sc, Ψ−1[x] =
∑

d∈Σ,d<c |Sd|+ rank(x).

A Space and Time Efficient Algorithm 407

Proof. Let S′ = {y ∈ Sc | rank(y) < rank(x)}. We have Ψ−1[y] < Ψ−1[x] if and
only if y ∈ S′ ∪⋃d∈Σ,d<c Sd. Therefore, Ψ−1[x] = 1 + |S′|+ |⋃d∈Σ,d<c Sd|. The
lemma follows. ��

Now, we describe the modified data structure D for the compressed suffix
array. For each c ∈ Σ, the increasing sequence Sc is partitioned into segments
of length 5 logn up to 10 logn. Let the smallest value in each segment be the
representative of the segment. To save space, for each segment, instead of storing
the value of every integer, only their differences will be stored. More precisely,
consider a segment with integers v1, . . . , v� where v1 < v2 < . . . < v�. v1 is
denoted as the representative of the segment and the data structure D stores
only the differences v2 − v1, v3 − v2, . . . , and v� − v�−1.

For the space required, all segments can be stored using 5n-bits. For the
representatives, we store them in a modified red-black tree Rc. For every node w
in Rc, v(w) is denoted as the value of the representative represent by this node.
lp(w) is the first parent on the left when we go up the tree Rc starting from w;
if such a parent does not exist, let it be the node u such that v(u) is minimized.

Every node w in the modified red-black tree Rc has the following 6 fields:

– a color bit (red or black)
– a pointer to the left subtree.
– a pointer to the right subtree.
– a pointer to the segment represented by w.
– size(w), that is the total number of values represented by the subtree rooted

at w.
– dw = v(w)− v(lp(w)).

Although we do not store the value v(w) for every node w ∈ Rc, its value can
be recovered when we traverse down the tree Rc starting from the root. More
precisely, when we traverse down the tree Rc, for every node w we met on the
path, we can compute two information: lp(w) and v(w) in constant time.

Consider any node w of Rc. Suppose that for every node w′ on the path from
the root to w, we have already figured out the values of lp(w′) and v(w′). Let
wl and wr be the left and right children of w, respectively. Note that the values
of lp(wl), lp(wr), v(wl), v(wr) can be computed as follows: When we go down to
the node wl, lp(wl) = lp(w) and v(wl) = dwl

+ v(lp(wl)). When we go down to
the node wr, lp(wr) = w and v(wr) = dwr + v(lp(wr)).

Observe that Rc looks very similar to a red-black tree. Thus, it has all the
advantages of balanced binary search tree. In addition, it has the following prop-
erty.

Lemma 6. For any value x, let X be {w ∈ Rc | v(w) > x}. We can increase
the value v(w) for all w ∈ X by some constant k using O(log n) time.

Proof. Note that the absolute value of v(w) is not stored for every node w in Rc.
Instead, we store dw = v(w)− v(lp(w)). This means that if the value of lp(w) is
increased by k, the value of w increases by k automatically.

Consider any node w ∈ X. There are two cases.

408 Tak-Wah Lam et al.

– Case 1. v(lp(w)) > x: In this case, since lp(w) ∈ X and its value will be
increased by k, the value of w will increase by k automatically.

– Case 2. v(lp(w)) ≤ x: In this case, the value of lp(w) will not be changed.
The algorithm should increase dw by k.

Let Y be {w ∈ X | v(lp(w)) ≤ x}. Based on the above case analysis, we know
that once dw is increased for every w ∈ Y , the values of w for all w ∈ X will
increase by k automatically.

Let u be the node in Rc whose value is just larger than x. It can easily check
that Y is in fact equal to {w | w is on the path of Rc from the root to u and
v(w) > x}. Since any path in Rc is of length O(log n), we can increase dw by k
for all w ∈ Y in O(log n) time. ��

For space complexity, note that the color (red or black) can be stored in 1 bit,
the pointers to the left subtree or the right subtree can be stored in log(n

5 log n)-
bits. Thus, each node can be stored using 5 log(n

5 log n + 1)-bits, which is smaller
than 5 logn. Since there are at most n

5 log n representatives in all Sc for c ∈ Σ,
the total space required by all modified red-black trees Rc is n.

In summary, the total space required by D to store the segments and the
red-black trees is 5n+ n = 6n.

Lemma 7. The total space required by the data structure D is 6n bits.

5 An Efficient Incremental Construction

This section shows that, if the compressed suffix array is represented by data
structure D, the time required by the incremental construction algorithm (de-
scribed in Section 3) is O(log n). Recall that the incremental construction step
contains three sub-steps. This section discusses them one by one.

Step 1: This step tries to locate the index x such that T ′ should be inserted
between the suffices represented by SAT [x] and SAT [x + 1]. Based on data
structure D, this step can be completed as follows.

1. We traverse the modified red-black tree Rc for Sc, return (a) a node p with
value just smaller than SA−1

T [1]; (b) rank(p). (Note the special case that
SA−1

T [1] is smaller than the smallest value in red-black tree).
2. Sequential search the segment s corresponding to p and locate the value just

greater than SA−1
T [1]. Let q and r be the location and the rank of this value

in the segment.
3. x =

∑
b<c,b∈Σ |Sb|+ rank(p) + r − 1. (Note: SA−1

T ′ [1] = x+ 1).

Note that step 1.1 just performs a search in the modified red-black tree Rc. Since
Rc is a balanced tree, it requires O(log n) time. Note that during the traverse,
rank(p) can be computed by means of size(). For step 1.2, since a segment
contains at most 10 log n integers, a sequential search in this segment requires
O(log n) time. Step 1.3 can be computed in O(1) time. In total, step 1 requires
O(log n) time.

A Space and Time Efficient Algorithm 409

Step 2: This step can be completed as follows.

1. Insert value SA−1
T [1] at location q of segment s.

2. Increment the total number of entries represented by the subtree at node p.
3. If the segment contains ≥ 10 log n values, split the segment into two seg-

ments.
4. For every Sb where b ∈ Σ,

(a) Increase all representatives in red-black tree whose values are greater
than x by one. Finally, return the node p which is just smaller than or
equal to x.

(b) Sequential search the segment corresponding to p to find the value just
greater than x. Increment this value (if exists) by one.

For Step 2.1, we need to insert the value SA−1
T [1] at location q of segment

s. Assume that the segment s contains � values v1, . . . , v�. Also, recall that we
only store the differences, that is, we store v2 − v1, v3 − v2, . . . , v� − v�−1. To
insert SA−1

T [1] into location q, Step 2.2 can be computed in O(1) time. In Step
2.3, we need to split the segment, the algorithm is required to allocate a new
segment and move 5 log n values to the new segment. Such operation can be
done in O(log n) as we need to move 5 log n entries. Step 2.4(a) can be solved in
O(log n) time based on Lemma 6 and the modified red-black tree data structure.
Step 2.4(b) again can be solved in O(log n) time since a segment has less than
10 log n values. In total, Step 2 requires O(log n) time.

Step 3: This step is simple. It takes O(1) time.
In conclusion, the time required for each incremental construction is O(log n).

References

1. D. R. Clark and J. I. Munro. Efficient suffix trees on secondary storage. In
Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 383–391. 1996.

2. Altschul S. F., Gish W., Miller W., Myers E. W., and Lipman D. J. Basic locol
alignment search tool. Journal of Molecular Biology, pages 403–410, 1990.

3. P. Elias. Universal codeword sets and representation of the integers. IEEE Trans-
actions on Information Theory, 21(2):194–203, 1975.

4. P. Ferragine and G. Manzini. Opportunistic data structures with applications. In
Proceedings of the 41st Annual Symposium on Foundations of Computer Science
(FOCS), pages 390–398. 2000.

5. R. Grossi and J.S. Vitter. Compressed suffix arrays and suffix trees with appli-
cations to text indexing and string matching. In Proceedings of the 32nd ACM
Symposium on Theory of Computing, pages 397-406, 2000.

6. E. Hunt, M. P. Atkinson, and R. W. Irving. A database index to large biological
sequences. In Proceedings of the 27th VLDB Conference, pages 410–421. 2000.

7. S. Kurtz. Reducing the space requirement of suffix trees. Software Practice and
Experiences, 29:1149–1171, 1999.

8. U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
SIAM Journal on Computing, 22(5):935–948, 1993.

410 Tak-Wah Lam et al.

9. E. M. MCreight. A space-economical suffix tree construction algorithm. Journal
of the ACM, 23(2):262–272, 1976.

10. K. Sadakane. Compressed text databases with efficient query algorithms based on
compressed suffix array. In Proceedings of the 11th International Conference on
Algorithms and Computation (ISAAC), pages 410–421. 2000.

11. K. Sadakane and T. Shibyya. Indexing huge genome sequences for solving various
porblems. In Genome Informatics, pages 175–183. 2001.

Sharpening Occam’s Razor
(Extended Abstract)

Ming Li1,�, John Tromp2,��, and Paul Vitányi2,���

1 Department of Computer Science, Univ. California Santa Barbara, CA 93106, USA
mli@cs.ucsb.edu

2 CWI, Kruislaan 413, 1098 SJ, Amsterdam, Netherlands
{tromp,paulv}@cwi.nl

Abstract. We provide a new representation-independent formulation
of Occam’s razor theorem, based on Kolmogorov complexity. This new
formulation allows us to:
– Obtain better sample complexity than both length-based [4] and VC-

based [3] versions of Occam’s razor theorem, in many applications.
– Achieve a sharper reverse of Occam’s razor theorem than that of [5].

Specifically, we weaken the assumptions made in [5] and extend the
reverse to superpolynomial running times.

1 Introduction

Occam’s razor theorem as formulated by [3,4] is arguably the substance of ef-
ficient pac learning. Roughly speaking, it says that in order to learn, it suffices
to compress. A partial reverse, showing the necessity of compression, has been
proved by Board and Pitt [5]. Since the theorem is about the relation between
effective compression and pac learning, it is natural to assume that a sharper ver-
sion ensues by couching it in terms of the ultimate limit to effective compression
which is the Kolmogorov complexity. We present results in that direction.

Despite abundant research generated by its importance, several aspects of
Occam’s razor theorem remain unclear. There are basically two versions. The
VC dimension-based version (Theorem 3.1.1 of [3]) gives the following upper
bound on sample complexity: For a hypothesis space H with V Cdim(H) = d,
1 ≤ d <∞,

m(H, δ, ε) ≤ 4
ε

(
d log

12
ε

+ log
2
δ

)
. (1)

� Supported in part by the NSERC Operating Grant OGP0046506, ITRC, and NSF-
ITR Grant 0085801 at UCSB.

�� Partially supported by an NSERC International Fellowship and ITRC.
��� Partially supported by the European Community through NeuroCOLT ESPRIT

Working Group Nr. 8556. Affiliated with CWI and the University of Amsterdam.

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 411–419, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

412 Ming Li, John Tromp, and Paul Vitányi

The following lower bound was proved by Ehrenfeucht et al [6].

m(H, δ, ε) > max
(
d− 1
32ε

,
1
ε

ln
1
δ

)
. (2)

The upper bound in Equation 1 and the lower bound in Equation 2 differ by a
factor Θ(log 1

ε). It was show in [8] that this factor is, in a sense, unavoidable.
When H is finite, one can directly obtain the following bound on sample

complexity for any consistent algorithm:

m(H, δ, ε) ≤ 1
ε

ln
|H|
δ
. (3)

For a graded boolean space Hn, we have the following relationship between the
VC dimension d of Hn and the cardinality of Hn,

d ≤ log |Hn| ≤ nd. (4)

When log |Hn| = O(d) holds, then the sample complexity upper bound given
by Equation 3 can be seen to match the lower bound of Equation 2 up to a
constant factor, and thus any consistent algorithm achieves optimal sample com-
plexity for such hypothesis spaces.

The length based version of Occam’s razor gives the sample complexity, for
given ε and δ:

m = max

(
2
ε

ln
1
δ
,

(
(2 ln 2)sβ

ε

)1/(1−α)
)
, (5)

when the deterministic occam algorithm returns a consistent hypothesis of length
at most mαsβ with α < 1 and s is the length of the target concept.

In summary, the VC dimension based occam’s razor theorem may be hard
to use and it sometimes does not give the best sample complexity. The length-
based Occam’s razor is more convenient to use and often gives better sample
complexity in the discrete case.

However, as we will demonstrate in this paper, the fact that the length-based
Occam’s razor theorem sometimes gives inferior sample complexity, can be due
to the redundant representation format of the concept.

We believe Occam’s razor theorem should be “representation-independent”.
That is, it should not be dependent on accidents of “representation format”. (See
[13] for other representation-independence issues.) In fact, the sample complexi-
ties given in Equations 1 and 3 are indeed representation-independent. However
they are not easy to use and do not give optimal sample complexity.

In this paper, we give a Kolmogorov complexity-based Occam’s razor theo-
rem. We will demonstrate that our KC-based Occam’s razor theorem is conve-
nient to use (as convenient as the length based version), gives a better sample
complexity than the length based version, and is representation-independent.
In fact, the length based version can be considered as a specific computable
approximation to the KC-based Occam’s razor.

Sharpening Occam’s Razor 413

As one of the examples, we will demonstrate that the standard trivial learning
algorithm for monomials actually often has a better sample complexity than the
more sophisticated Haussler’s greedy algorithm [7], using our KC-based Occam’s
razor theorem. This is contrary to the common belief that Haussler’s algorithm
is better.

Another issue related to Occam’s razor theorem is the status of the reverse
assertion. Although a partial reverse of Occam’s razor theorem has been proved
by [5], it applied only to the case of polynomial running time and sample com-
plexity. They also required a property of closure under exception list. This latter
requirement, although quite general, excludes some reasonable concept classes.
Our new formulation of Occam’s razor theorem allows us to prove a more gen-
eral reverse of Occam’s razor theorem, allowing the arbitrary running time and
weakening the requirement of exception list of [5].

2 Occam’s Razor

Let us assume the usual definitions, say Anthony and Biggs [1]. Also assume
the notation of Board and Pitt [5]. For Kolmogorov complexity we assume the
basics of [11].

In the following Σ is a finite alphabet. i.e. we consider only discrete learning
problems in this paper.

First we define a pac-algorithm and a generalized notion of Occam-algorithm.

Definition 1. A pac-algorithm for a class of representations R = (R,Γ, c,Σ)
is a randomized algorithm L such that, for any s, n ≥ 1, 0 < ε, δ < 1, r ∈ R≤s,
and any probability distribution D on Σ≤n, if L is given s, n, ε, δ as input and
has access to an oracle providing examples of c(r) according to D, then L, with
probability at least 1 − δ, outputs a representation r′ such that D(r′ ⊕ r) ≤ ε.
The running time and sample complexity of the pac-algorithm are expressed as
functions t(n, s, ε, δ) and m(n, s, ε, δ).

Definition 2. An Occam-algorithm for a class of representations R = (R,Γ, c,
Σ) is a randomized algorithm which on input of a sample of length m of r ∈ R,
and any γ > 0, with probability at least 1−γ outputs a representation r′ consistent
with the sample, such that K(r′|r, n, s) = m/f(m,n, s, γ), with f(m,n, s, γ), the
compression achieved, being an increasing function of m. The running time of the
Occam-algorithm is expressed as a function t(m,n, s, γ), where n is the maximum
length of the input examples.

Our first theorem is a Kolmogorov complexity based Occam’s Razor. We
denote the minimum m such that f(m,n, s, γ) ≥ x by f−1(x, n, s, γ).

Theorem 1. Suppose we have an Occam-algorithm for R = (R,Γ, c,Σ) with
compression f(m,n, s, γ). Write f as f(m, γ) with the other parameters implicit.
Then there is a pac-learning algorithm for R with sample complexity

414 Ming Li, John Tromp, and Paul Vitányi

m(n, s, ε, δ) = max
(

2
ε

ln
2
δ
, f−1

(
2 ln 2
ε

, δ/2
))

,

and running time t(n, s, ε, δ) = t(m(n, s, ε, δ), n, s, δ/2).

Proof. On input of ε, δ, s, n, the learning algorithm will take a sample of length
m = m(n, s, ε, δ) from the oracle, then use the Occam algorithm with γ = δ/2 to
find a hypothesis (with probability at least 1− δ/2) consistent with the sample
and with low Kolmogorov complexity. In the proof we further abbreviate f to
f(m) with the other parameters implicit. Learnability follows in the standard
manner from bounding (by the remaining δ/2) the probability that all m ex-
amples of the target concept fall within the, probability ε or greater, symmetric
difference with a bad hypothesis. Let m ≥ m(n, s, ε, δ). Then m ≥ f−1(2 ln 2

ε , δ
2)

gives

ε− ln 2
f(m)

≥ ε

2
.

Bounding (1− ε)m by e−εm and taking negative logarithms,

2m/f(m)(1− ε)m ≤ δ/2⇔

m

(
ε− ln 2

f(m)

)
≥ ln

2
δ
,

which follows from the above and the first lower bound on m. ��

Corollary 1. When the compression is of the form

f(m,n, s, γ) =
m1−α

p(n, s, γ)
,

one can achieve a sample complexity of

max

(
2
ε

ln
2
δ
,

(
(2 ln 2)p(n, s, δ/2)

ε

)1/(1−α)
)
.

In the special case of total compression, where α = 0, this further reduces to

2
ε

(
max

(
ln

2
δ
, (ln 2)p(n, s, δ/2)

))
. (6)

For deterministic Occam-algorithms, we can furthermore replace 2/δ and δ/2 in
Theorem 1 by 1/δ and δ respectively.

Remark. Essentially, our new Kolmogorov complexity condition is a computa-
tionally universal generalization of the length condition in the original Occam’s
razor theorem of [4]. Here, in Theorem 1, we consider the shortest description
length over all effective representations. This is representation-independent in
the very strong sense of being an absolute and objective notion, which is re-
cursively invariant by Church’s thesis and the ability of universal machines to
simulate each another.

Sharpening Occam’s Razor 415

Definition 3. An exception handler for a class of representations R = (R,Γ, c,
Σ) is an algorithm which on input of a representation r ∈ R of length s, and an
x ∈ Σ∗ of length n, outputs a representation r′ of the concept c(r)⊕{x}, of length
at most e(s, n), where e is the exception expansion function. The running time
of the exception-handler is expressed as a function t(n, s) of the representation
and exception lengths. If t(n, s) is polynomial in n, s and e(s, n) is of the form
s + p(n) for some polynomial p() then we say R is polynomially closed under
exceptions.

Theorem 2. Let L be a pac-algorithm and E be an exception handler for R =
(R,Γ, c,Σ). Then there is an Occam algorithm for R with compression 1

2εn ,
where ε, depending on m,n, s, γ, is such that m(n, s, ε, γ) = εm holds.

Proof. The proof is obtained in a fashion similar to Board and Pitt. Suppose we
are given a sample of length m and confidence parameter γ. Assume without loss
of generality that the sample contains m different examples. Define a uniform
distribution on these examples with µ(x) = 1/m for each x in the sample.
Let ε be as described. E.g. when m(n, s, ε, γ) = (1

ε)b for some constant b, then
ε = m−1/(b+1). Apply L with δ = γ and above ε. It produces a concept which
is correct with error ε, giving up to εm exceptions. We can just add these one
by one using the exception handler. This will expand the concept size, but not
the Kolmogorov complexity. The resulting representation can be described by
the examples used plus the exceptions found, each taking n bits. This gives the
claimed compression. ��

Definition 4. A majority-of-3 algorithm for a class of representations R =
(R,Γ, c,Σ) is an algorithm which on input of 3 representation r1, r2, r3 ∈ R≤s,
outputs a representation r′ of the concept MAJ(r1, r2, r3) of length at most e(s),
where e is the majority expansion function. The running time of the algorithm
is expressed as a function t(s) of the maximum representation length. If t(s) and
e(s) are polynomial in s then we say R is polynomially closed under majority-
of-3.

Theorem 3. Let L be a pac-algorithm with sample complexity m(n, s, ε, δ) sub-
quadratic in 1

ε , and let M be a majority-of-3 algorithm for R = (R,Γ, c,Σ). Then
there is an Occam algorithm for R with compression m/3nm(n, s, 1

2
√

m
, γ/3).

Proof. Let us be given a sample of length m. Take δ = γ/3 and ε = 1/
√
m.

Stage 1: Define a uniform distribution on the m examples with µ(x) = 1/m for
each x in the sample. Apply the learning algorithm. It produces (with probability
at least 1 − γ/3) a hypothesis r1 which has error less than ε, giving up to
εm =

√
m exceptions. Denote this set of exceptions by E1.

Stage 2: Define a new distribution on the m examples with µ(x) = ε2 = 1/(2
√
m)

for each x in E1, and µ(x) = (1 − |E1|/2
√
m)/(m − |E1|) for each x not in E1.

Apply the learning algorithm with error bound ε2. It produces (with probability
at least 1 − γ/3) a hypothesis r2 which is correct on all of E1 and with error
less than ε2 on the remaining examples. This gives up to ε2(m − |E1|)/(1 −

416 Ming Li, John Tromp, and Paul Vitányi

|E1|/2
√
m) <

√
m exceptions. Denote this set E2. We have that E2 is disjoint

from E1.
Stage 3: Define a new distribution on the m examples with µ(x) = 1/|E1 ∪ E2|
for each x in E1 ∪ E2, and µ(x) = 0 elsewhere. Apply the learning algorithm
with error bound ε3 = 1/2

√
m. Note that |E1| ≤

√
m and E2 <

√
m gives that

for x in E1 ∪ E2, µ(x) > ε3. Thus the algorithm produces (with probability at
least 1 − γ/3) a hypothesis r3 which is correct on all of E1 and E2 and which
might be totally wrong elsewhere (we don’t care).

In total the number of examples consumed by the pac-algorithm is at most
3m(n, s, 1

2
√

m
, γ/3) each requiring n bits to describe. The three representations

are combined into one representing the majority of the 3 concepts. This is nec-
essarily correct on all of the m examples, since the 3 exception-sets are all dis-
joint. Furthermore, it can be described in terms of the examples fed to the pac-
algorithm and thus achieves compression f(m,n, s, γ) = m/3nm(n, s, 1

2
√

m
, γ/3).

This is seen to be an increasing function of m given the assumed subquadratic
sample complexity. ��

The following corollaries use the fact that if a class is learnable, it must have
finite VC-dimension and hence, according to Equation 1, they are learnable with
sample complexity subquadratic in 1

ε .

Corollary 2. Let a class R = (R,Γ, c,Σ) be closed under either exceptions or
majority-of-3. Then R is pac-learnable iff there is an Occam algorithm for R.

Corollary 3. Let a class R = (R,Γ, c,Σ) be polynomially closed under either
exceptions or majority-of-3. Then R is polynomially pac-learnable iff there is a
polynomial time Occam algorithm for R.

Example. Consider threshold circuits, acyclic circuits whose nodes compute
threshold functions of the form a1x1+a2x2+· · ·+anxn ≥ δ, xi ∈ {0, 1}, ai, δ ∈ N
(note that no expressive power is gained by allowing rational weights and thresh-
old). A simple way of representing circuits over the binary alphabet is to number
each node and use prefix-free encodings of these numbers. For instance, encode i
as 1|bin(i)|0bin(i), the binary representation of i preceded by its length in unary.
A complete node encoding then consists of the encoded index, encoded weights,
threshold, encoded degree, and encoded indices of the nodes corresponding to
its inputs. A complete circuit can be encoded with a node-count followed by a
sequence of node-encodings. For this representation, a majority-of-3 algorithm
is easily constructed that renumbers two of its three input representations, and
combines the three by adding a 3-input node computing the majority function
x1 +x2 +x3 ≥ 2. It is clear that under this representation, the class of threshold
circuits are polynomially closed under majority-of-3. On the other hand they are
not closed under exceptions, or under the exception lists of Board and Pitt [5].
Example. Let h1, h2, h3 be 3 k-DNF formulas. Then MAJ{h1, h2, h3} = (h1 ∧
h2)∨ (h2∧h3)∨ (h3∧h1) which can be expanded into a 2k-DNF formula. This is
not good enough for Theorem 3, but it allows us to conclude that pac-learnability
of k-DNF implies compression of k-DNF into 2k-DNF.

Sharpening Occam’s Razor 417

3 Applications

We demonstrate how our KC-based Occam’s razor theorem might be conve-
niently used, providing better sample complexity than the length-based version.
In addition to giving better sample complexity, our new KC-based Occam’s ra-
zor theorem, Theorem 1, is easy to use, as easy as the length based version, as
demonstrated by the following two examples.

While it is easy to construct an artificial concept class with extremely bad
representations such that our Theorem 1 gives arbitrarily better sample com-
plexity than the length-based sample complexity given in Equation 5, we prefer
to give real examples.
Application 1: Learning a String.
The DNA sequencing process can be modeled as the problem of learning a super-
long string in the pac model [9,10]. We are interested in learning a target string
t of length say 3× 109 (length of a human DNA sequence). At each step, we can
obtain as an example a substring of this sequence of length n, from a random
location of t (Sanger’s Procedure). In current practice, n ≈ 500, and sampling
is very expensive. Formally, the concepts we are learning are sets of possible
length n substrings of a superstring, and these are naturally represented by the
superstrings. We assume a minimal target representation (which may not hold in
practice). Suppose we obtain a sample of m substrings (all positive examples). In
biological labs, a Greedy algorithm which repeatedly merges a pair of substrings
with maximum overlap is routinely used. It is conjectured that Greedy produces
a common superstring t′ of length at most 2s, where s is the optimal length (NP-
hard to find). In [2], we have shown that s ≤ |t′| ≤ 4s. Assume that |t′| ≈ 2s.1

Using the length-based Occam’s razor theorem, this length of 2s would determine
the sample complexity, as in Equation 6, with p(n, s, δ/2) = 2·2s (the extra factor
2 is the 2-logarithm of the size of the alphabet {A,C,G, T}). Is this the best we
can do? It is well-known that the sampling process in DNA sequencing is a very
costly and slow process.

Let’s now improve the sample complexity using our KC-based Occam’s razor
theorem.

Lemma 1. Let t be the target string of length s and t′ be the superstring returned
by Greedy of length at most 2s. Then

K(t′|t, s, n) ≤ 2s(2 log s+ log n)/n.

Proof. We will try to give t′ a short description using some information from t.
Let S = {s1, . . . , sm} be the set of m examples (substrings of t of length n). Align
these substrings with the common superstring t′, from left to right. Divide them
into groups such that each group’s leftmost string overlaps with every string in
the group but does not overlap with the leftmost string of the previous group.
Thus there are at most 2s/n such groups.
1 Although only the 4s upper bound was proved in [2], it is widely believed that 2s

holds.

418 Ming Li, John Tromp, and Paul Vitányi

To specify t′, we only need to specify these 2s/n groups. After we obtain the
superstring for each group, we re-construct t′ by optimally merge the superstrings
of the neighboring groups. To specify each group, we only need to specify the first
and the last string of the group and how they are merged. This is because every
other string in the group is a substring of the string obtained by properly merging
the first and last strings. Specifying the first and the last strings requires 2 log s
bits of information to indicate their locations in t and we need another logn bits
to indicate how they are merged. Thus K(t′|t, n) ≤ 2s(2 log s+ log n)/n. ��

This lemma shows that Equation 6 can also be applied with p(n, s, δ/2) =
2 ·2s(2 log s+logn)/n, giving a factor n/(2 log s+logn) improvement in sample-
complexity. Note that in DNA practice, we have n = 500 and s = 3× 109. The
sample complexity is reduced over “length based” Occam’s razor by a multi-
plicative factor of n/(2 log s+ log n) ≈ 500

2×31+9 ≈ 7.
Application 2: Learning a Monomial.
Consider boolean space of {0, 1}n. There are two well-known algorithms for
learning monomials. One is the standard algorithm.
Standard Algorithm.

1. Initial Concept: m = x1x1 . . . xnxn.
2. For each positive example, delete from m the variables that would make the

example false.
3. Return the resulting monomial m.

Haussler [7] proposed a more sophisticated algorithm based on set-cover ap-
proximation as follows.
Haussler’s Algorithm.

1. Use only negative examples. For each literal x, define Sx to be the set of
negative examples such that x falsifies these negative examples. The sets
associated with the literals in the target monomial form a minimum set
cover of negative examples.

2. Run the approximation algorithm of set cover, this will use at most k logm
sets or, equivalently, literals in our approximating monomial. Here k is the
number of variables in the target monomial.

It is commonly believed that Haussler’s algorithm has better sample complex-
ity than the standard algorithm. We demonstrate that the opposite is sometimes
true (in fact for most cases), using our KC-based Occam’s razor theorem, Theo-
rem 1. Let’s assume that our target monomial M is of length n−√n. Then the
length-based Occam’s razor theorem gives sample complexity n/ε for both algo-
rithms, by Formula 6. However, K(M ′|M) ≤ log 3

√
n + O(1), where M ′ is the

monomial returned by the standard algorithm. This is true since the standard
algorithm always produces a monomial M ′ that contains all literals of the target
monomial M . Also, we only need log 3

√
n + O(1) bits to specify whether other

literals are in or not in M ′. Thus our Equation 6 gives the sample complexity
of O(

√
n/ε). In fact, as long as |M | > n/ log n (which is most likely to be the

case if every monomial has equal probability), it makes sense to use the standard
algorithm.

Sharpening Occam’s Razor 419

4 Conclusions

Several new problems are suggested by this research. If we have an algorithm
that, given a length-m sample of a concept in Euclidean space, produces a consis-
tent hypothesis that can be described with only mα, α < 1 symbols (including a
symbol for every real number; we’re using uncountable representation alphabet),
then it seems intuitively appealing that this implies some form of learning. How-
ever, as Board and Pitt noted in their paper [5], the standard proof of Occam’s
Razor does not apply, since we cannot enumerate these representations. The
main open question is under what conditions (specifically on the real number
computation model) such an implication would nevertheless hold.

Can we replace the exception element or majority of 3 requirement by some
weaker requirement? Or can we even eliminate such closure requirement and
obtain a complete reverse of Occam’s razor theorem? Our current requirements
do not even include things like k-DNF and some other reasonable classes.

Acknowledgements

We wish to thank Tao Jiang for many stimulating discussions.

References

1. M. Anthony and N. Biggs, Computational Learning Theory, Cambridge University
Press, 1992.

2. A. Blum, T. Jiang, M. Li, J. Tromp, M. Yannakakis, Linear approximation of
shortest common superstrings. Journal ACM, 41:4 (1994), 630-647.

3. A. Blumer and A. Ehrenfeucht and D. Haussler and M. Warmuth, Learnability and
the Vapnik-Chervonenkis Dimension. J. Assoc. Comput. Mach., 35(1989), 929-965.

4. A. Blumer and A. Ehrenfeucht and D. Haussler and M. Warmuth, Occam’s Razor.
Inform. Process. Lett., 24(1987), 377-380.

5. R. Board and L. Pitt, On the necessity of Occam Algorithms. 1990 STOC, pp.
54-63.

6. A. Ehrenfeucht, D. Haussler, M. Kearns, L. Valiant. A general lower bound on the
number of examples needed for learning. Inform. Computation, 82(1989), 247-261.

7. D. Haussler. Quantifying inductive bias: AI learning algorithms and Valiant’s learn-
ing framework. Artificial Intelligence, 36:2(1988), 177-222.

8. D. Haussler, N. Littlestone, and, M. Warmuth. Predicting {0, 1}-functions on ran-
domly drawn points. Information and Computation, 115:2(1994), 248–292.

9. T. Jiang and M. Li, DNA sequencing and string learning, Math. Syst. Theory,
29(1996), 387-405.

10. M. Li. Towards a DNA sequencing theory. 31st IEEE Symp. on Foundations of
Comp. Sci., 125-134, 1990.

11. M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and Its Applica-
tions. 2nd Edition, Springer-Verlag, 1997.

12. L. G. Valiant. A Theory of the Learnable. Comm. ACM, 27(11), 1134-1142, 1984.
13. M.K. Warmuth. Towards representation independence in PAC-learning. In AII-89,

pp. 78-103, 1989.

Approximating 3D Points
with Cylindrical Segments�

Binhai Zhu

Department of Computer Science, Montana State University,
Bozeman, MT 59717-3880, USA

bhz@cs.montana.edu

Abstract. In this paper, we study a 3D geometric problem originated
from computing neural maps in the computational biology community:
Given a set S of n points in 3D, compute k cylindrical segments (with
different radii, orientations, lengths and no segment penetrates another)
enclosing S such that the sum of their radii is minimized. There is no
known result in this direction except when k = 1. The general problem
is strongly NP-hard and we obtain a polynomial time approximation
scheme (PTAS) for any fixed k > 1 in O(n3k−2/δ4k−3) time by returning
k cylindrical segments with sum of radii at most (1 + δ) of the cor-
responding optimal value. Our PTAS is built upon a simple (though
slower) approximation algorithm for the case when k = 1.

1 Introduction

Computing and simulating the behavior of a neuron is of particular interest to
many researchers in computational biology and medical sciences. To do that,
one needs to first study the functional characteristics of neural maps which is
again based on the modeling of a neuron. In practice, what researchers in those
areas do is to use electronic devices to obtain a dense sample of 3D points of
a neuron and then try to approximate them using segments of cylinders (with
different radii, orientations and lengths). Different segments with varying radii
have different functional characteristics [JT96,PDJ99,JT00].

However, the problem seems to be difficult. In reality, researchers in those
areas usually use available commercial software to reconstruct an approximate
3D polyhedron from the sample points. Then, from the polyhedron, people can
manually compute the segments of cylinders which ‘seems’ to fit the polyhedron
the best (Figure 1). In practice, this is a time-consuming process. In this paper,
we try to study the problem from a computer scientist’s point of view. We are
especially interested in designing efficient approximation algorithms for solving
the problem.

Theoretically, the problem is to compute k cylindrical segments which enclose
a given set of 3D points P such that the sum of radii of the segments is minimized.
� This research is partially supported by Hong Kong RGC CERG grant CityU1103/

99E, NSF CARGO grant DMS-0138065 and a MONTS grant.

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 420–429, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Approximating 3D Points with Cylindrical Segments 421

Fig. 1. Approximating a reconstructed polyhedron with cylindrical segments.

To the best of our knowledge, the only known related work uses m-flats (strips
in 2D, cylinders in 3D) to cover a set of points in d-dimensions [AP00,HV02];
moreover, in our problem a cylindrical segment cannot penetrate another one
by some small amount (to be defined later). Therefore, when k > 1, given same
input the algorithms of [AP00,HV02] might generate completely different out-
put compared with ours. (Of coures, when k = 1, using cylindrical segment or
cylinder does not make much difference.) For k = 1, Schömer et al. presented an
O(n4polylog n) time algorithm [SSTY00] and Agarwal et al. obtained anO(n3+ε)
time algorithm [AAS97]. When n is sufficiently large, both of the algorithms are
not practical. Agarwal et al. also obtained a (1+δ)−approximation which runs in
O(n/δ2) time [AAS97]. However, their algorithm used several subroutines (like
computing the transversal of a set of 3D cubes and computing the smallest en-
closing disks of a set of 2D points) which also make it hardly practical in terms
of implementations. Recently, Chan [Ch00] obtained a (1 + δ)−approximation
which runs in O(n/δ) time [Ch00] using fixed dimensional convex programming.

In this paper, we show that it is possible to modify the proof in [MT82]
to prove that the general problem when k is not part of the input is strongly
NP-hard. We present a polynomial time approximation scheme (PTAS) for the
problem for arbitrary fixed k. First, for k = 1 we present a factor-2 approx-
imation which runs in O(n log n) time. Based on it, we then obtain a simple
(1 + δ)−approximation which runs in O(n log n+n/δ4) time. Although the run-
ning time is higher than those in [AAS97,Ch00], this algorithm is much simpler,
it does not use any of those subroutines used in [AAS97] and it does use convex
programming as in [Ch00], is hence practical. (The only complex subroutine is
computing the diameter of a set of 3D points, which it calls only once.) Moreover,
this algorithm can be used as the subroutine in the innermost loop of our PTAS

422 Binhai Zhu

for the general problem and in that case the O(n log n) term can be withdrawn
as there is no need to compute the diameter of a subset of points explicitly.

2 Preliminaries

In this section we make some necessary definitions regarding geometry and ap-
proximation algorithms which are related to the problem to be studied. Through-
out this paper, the distance metric is Euclidean unless otherwise specified.

An approximation algorithm for a minimization optimization problem Π
provides a performance guarantee of λ if for every instance I of Π, the solu-
tion value returned by the approximation algorithm is at most λ of the optimal
value for I. (Notice that following the above definitions, λ is at least 1.) For the
simplicity of description, we simply say that this is a factor λ approximation
algorithm for Π. A polynomial time approximation scheme (PTAS) for a mini-
mization optimization problem Π is an approximation algorithm which achieves
an approximation factor of 1 + δ (for any δ > 0) and runs in time which is a
polynomial of the input size n and 1/δ.

A cylinder C is an infinite set of points which have at most a distance R to
a given line l in 3D. The line l is called the center of C. The sectional area of C
which is vertical to l corresponds to a disk with radius R.

Given a line segment s1s2 in 3D, let the distance from a point q to the line
through s1s2 be d(q, r). The distance from q to s1s2 is d(q, r) if r is on the line
segment s1s2, otherwise the distance from q to s1s2 is infinite. A cylindrical
segment S is an infinite set of points which have at most distance R to a given
line segment s1s2 in 3D. Similarly, the line segment s1s2 is called the center of
S. The two sectional areas through s1, s2 are called the bases of S. The length of
s1s2, d(s1, s2), is called the length of S and 2R is called the width of S. We denote
them as length(S) and width(S) respectively and we assume that length(S) ≥
width(S). The ratio length(S)/width(S) is called the aspect ratio of S, denoted
by α(S). It is easy to see that α(S) ≥ 1.

Two cylindrical segments S1, S2 intersects each other if S1 ∩ S2 �= ∅. Let
the width of S1, S2 be w1, w2 (w1 ≥ w2) and let the center of S1, S2 be l1, l2
respectively. S1 penetrates S2 if either the distance between l1, l2 is less than
(w1 − w2)/2 or both of S1 − S1 ∩ S2 and S2 − S1 ∩ S2 are disconnected. This
penetration constraint comes from the corresponding biological application as
a branch of a neuron cannot penetrate another one. In practice, we simulate
a neuron with approximate cylindrical segments so we allow one segment to
penetrate another one by a small amount. (This makes sense as in practice even
the sample points obtained contain small errors.) S1 penetrates S2 by an amount
of δ if either the distance between l1, l2 is less than |(w1 − w2)/2 − δ| or both
of S1 − S1 ∩ S2 and S2 − S1 ∩ S2 are disconnected. Clearly, it is easy to check
whether one cylindrical segment penetrates another one by an amount of δ.

Given a set P of n points in 3D, the diameter of P is the maximum distance
d(p1, p2), p1, p2 ∈ P , over all points in P . We denote it as D(P). The CSC
(Cylinder Segments Cover) problem is defined as follows:

Approximating 3D Points with Cylindrical Segments 423

Instance: A set P of points p1, p2, ..., pn in the 3D space, integer k and real
numbers K,σ.
Question: Does there exist a set of k cylindrical segments with radii r1, ..., rk
respectively, such that r1 + r2 + ...+ rk ≤ K, no segment penetrates another by
an amount of σ and each point in P is contained in at least one of the cylinder
segments?

For the optimization version of the problem, we would like to minimize k and
r1 + r2 + ... + rk−1 + rk. Notice that the lengths of the segments do not quite
matter as long as no one penetrates another one by an amount of σ — this latter
condition naturally limits the lengths of some segments.

3 The Case when k = 1

In this section we present an efficient approximation algorithm for the case when
k = 1. Our algorithm is elementary in the sense that it does not use any complex
subroutines. The algorithm can also approximate the smallest enclosing cylinder
of P by returning its length as infinity.

Given a set P of n points, let C∗ be the smallest enclosing cylindrical seg-
ment of P (i.e., P is completely contained in C∗). We have the following simple
approximation algorithm:

Algorithm 1.

Step 1 Compute the diameter D(P) of P . Let D(P) be d(p1, p2).
Step 2 Use p1p2 as the center of the approximating cylindrical segment A.

The maximum distance between point q ∈ P and p1p2 is the radius of
A. Also, return the length of A, d(p1, p2).

Lemma 1. Algorithm 1 presents a factor 2 approximation for the smallest en-
closing cylindrical segment problem in O(n log n) time.

q

1p p2

p1

p2

Fig. 2. Approximating a cylindrical segment along the diameter.

Proof: We refer to Figure 2. Let q be the furthest point from p1p2. The maximum
value of d(q; p1p2) is achieved when either p1p2 is on the surface of C∗, q is on

424 Binhai Zhu

the other side of C∗ and the plane through �p1p2q contains the center of C∗,
or, when p1p2 has the maximum angle to the center of C∗, the plane through
�p1p2q contains the center of C∗ and the height on p1p2 in�p1p2q is maximized.
In both cases, this maximum distance is width(C∗) (Figure 2 shows one of the
worst-case situation in 2D, exchanging p2 with q shows the other worst case).
The width of the approximating cylindrical segment is hence 2d(q; p1p2), which
is bounded by 2·width(C∗). �	

In practice, especially in biology related applications, a factor-2 approxima-
tion is hardly useful. So we must have better approximations if we do not want
to use the exact solution (which is too expensive). In [AAS97,Ch00], two (1+δ)-
approximation algorithms for the smallest enclosing cylinder problem, were pro-
posed. The running time are O(n/δ2) and O(n/δ) respectively. We present below
an approximation algorithm which achieves the same approximation factor but
much easier. We do not need any complex subroutines used in [AAS97,Ch00].

Lemma 2. Let u∗v∗ be the center of the smallest enclosing cylindrical segment
C∗ of P . Then the smaller of the angles between p1p2 and u∗v∗, θ, is at most
π/4.

Proof: We have width(C∗)≤length(C∗)· sin θ. If θ > π/4 then C∗ would have a
width greater than width(C∗). A contradiction to the optimality of C∗. �	

The above two lemmas make the following simple factor-(1+δ) approximation
possible.

Algorithm 2.

Step 1 Compute the approximate cylindrical segment A of P using Algorithm
1.

Step 2 Increase the radius of the two (circular) bases of A by a factor of
√

2,
generate a grid of 2/δ× 2/δ points on the enlarged bases of A. Let the
sets of these grid points be G1 and G2 respectively.

Step 3 For each line g1g2 determined by two grid points g1 ∈ G1, g2 ∈ G2 find
the point w ∈ P which maximizes d(w; g1g2). Over all g1, g2, w, let
d(w∗; g∗

1g
∗
2) be the minimum. Return the cylindrical segment A∗ with

g∗
1g

∗
2 as the center and 2d(w∗; g∗

1g
∗
2) as the width. The length of A∗ can

be returned in an extra of O(n) time by finding the two points furthest
along g∗

1g
∗
2 .

Theorem 1. Algorithm 2 obtains an enclosing cylindrical segment of P with
width at most (1 + δ)·width(C∗).

Proof: Let the bases of A which contains p1, p2 be B1, B2 respectively. By
Lemma 1, we know that width(C∗) ≤ width(A) ≤ 2×width(C∗). By Lemma 2, we
know that u∗v∗ and p1p2 have an angle of at most π/4. Therefore, the intersection
of line u∗v∗ and B1, B2 must be at most 1

cos θ (width(C∗)/2) ≤ √2(width(C∗)/2)

Approximating 3D Points with Cylindrical Segments 425

distance away from p1, p2, which is bounded by
√

2(width(A)/2). So if we in-
crease the radius of A by a factor of

√
2 and let the resulting bases be B′

1, B
′
2

then the intersection of line u∗v∗ and B1, B2 must be on or inside B′
1, B

′
2. As the

distance between two adjacent grid points is
√

2
2 δ·width(A) ≤ √2δ·width(C∗),

clearly, these intersection points must be at most 1
2δ·width(A) ≤ δ·width(C∗)

distance away from the closest grid points. Following Algorithm 2, the returned
width of A∗, 2d(w∗; g∗

1g
∗
2), is at most (1 + δ)·width(C∗). �	

The running time of the above algorithm is O(n log n+n/δ4), which is slower
than those algorithms in [AAS97,Ch00]. However, our algorithm does not use
any complex subroutines like computing the transversal of a set of cubes in 3D
and computing the smallest enclosing disk of a set of points in 2D1 as in [AAS97]
or convex programming as in [Ch00]; therefore, algorithm is completely practical.
The O(n log n) component is due to the computation of diameter of a set of 3D
points [Ra00], which is not an easy task in terms of implementations. Fortunately,
we can use any O(n)-time factor-c approximation for the diameter of P which
only increases the running time of the corresponding algorithm by a constant
factor (related to c). (Similar ideas are used in [AP00,Ch00] in which they use
a factor-2 approximation for the diameter of P .) For the CSC problem, in each
segment of a neuron (which can be approximated with a cylindrical segment)
the number of points sampled is not too huge (usually a couple of thousand)2;
therefore, we can even use the brute-force O(n2) algorithm in practice.

In the next section, we show how to use this algorithm as a subroutine in the
innermost loop of our PTAS for any fixed k > 1.

4 The Case for Any Fixed k > 1

In this section, we shall proceed with the problem of covering P with k cylindrical
segments such that no one penetrates another by an amount of δ and the sum
of their radii is to be minimized. We present a PTAS for the problem, using the
results in the previous section as an efficient subroutine.

Let A∗
i , i = 1, ..., k, be the k optimal approximating cylindrical segments of

P . Let S∗
i , i = 1, ..., k be the points of P which is contained in A∗

i . We have the
following lemma.

Lemma 3. For at least one i, the diameter of S∗
i contains at least one extreme

point of P .

Note that when k = 2 we can have a stronger version of the above lemma.
In that case, the diameter of at least one of S∗

1 , S
∗
2 is an antipodal pair of P .

We present the following PTAS for the general problem and the objective is to
return k approximating cylindrical segments A1, ..., Ak.
1 Computing the smallest enclosing disk might not be considered as complex now due

to the package of Gärtner.
2 The number of points sampled over a whole neuron is much larger, as it is composed

of hundreds of segments.

426 Binhai Zhu

Algorithm kCSC.

Step 1 Compute the convex hull of P , CH(P).
Step 2 i← 1.
Step 3 For each point p ∈ CH(P), do the following.

3.1 For each point q ∈ P, q �= p, let the points of P contained in the
intersection of two balls centered at p, q and with radius d(p, q),
B(p; d(p, q)) ∩B(q; d(p, q)), be S′

i.
3.2 Use a slightly modified Algorithm 2 to compute an approximate

cylindrical segment Ai as follows.
3.2.1 Compute the approximate cylindrical segment A′

i of S′
i using

Algorithm 1.
3.2.2 Increase the radius of the two bases of A′

i by a factor of
√

2,
generate a grid of 2/δ × 2/δ points on the enlarged bases of A′

i.
Let the sets of these grid points be G′

1 and G′
2 respectively.

3.2.3 For each line g1g2 determined by two grid points g1 ∈ G′
1, g2 ∈

G′
2 and each point r ∈ S′

i compute an approximate cylindrical
segment Ai with radius d(r; g1g2) which encloses a subset of
points in S′

i. The length of Ai can be returned in an extra O(n)
time by finding the two points enclosed in A′

i which are the
furthest along g1g2. Let the points of S′

i contained in Ai be Si.
3.2.4 Update P ← P − Si, i← i+ 1. Repeat Step (3) until i = k + 1.

Step 4 Identify all valid solutions by checking in each set of solution
whether there exists a cylindrical segment which penetrates an-
other one by δ. Among all valid solutions, compute the sum of
the radii of the k cylindrical segments. Return the set of cylin-
drical segments with the minimum sum of radii.

From Lemma 3, for at least one i, the diameter of S∗
i contains at least one

extreme point of P . The algorithm is basically to try all possible extreme point p
and all possible point q such that pq is the diameter of S∗

i . By appling a slightly
modified Algorithm 2 (i.e., to try all possible approximate cylindrical segments
with radii d(r; g1g2), over all r ∈ S′

i and all grid points g1, g2 on different bases
of A′

i), we can obtain an (1+ δ) approximation Ai for A∗
i in O(n3

δ4) time. Lemma
3 still holds after updating P ← P − Si. Therefore, this recursive algorithm
certainly can find a set of approximate cylindrical segments Ai for A∗

i , i = 1, ..., k
such that the sum of their radii is at most (1 + δ) that of A∗

i , i = 1, ..., k.
Let T (n, k) be the running time from step (2) to step (4) in the above algo-

rithm, we have

T (n, k) = O(
n3

δ4
)T (n, k − 1), k > 1,

T (n, 1) = O(
n

δ4
),

which is O(n3k−2

δ4k). Therefore the running time of the whole algorithm is O(n log
n+ n3k−2

δ4k). The O(n log n) term is the cost of step (1) for constructing 3D convex

Approximating 3D Points with Cylindrical Segments 427

hull [PS85]. When k > 1, the running time is simply O(n3k−2

δ4k). Note that at Step
3.2.4 if we stop at i = k and simply use the algorithm in [Ch00] to compute the
last approximate cylindrical segment containing all the remaining points then
we can improve the running time of the above PTAS to O(n3k−2

δ4k−3). (However, we
cannot use Chan’s algorithm at other steps in our algorithm.) We thus have the
following theorem for CSC when k > 1 is fixed.

Theorem 2. There is a polynomial time approximation scheme for the CSC
problem when k > 1 is fixed: for any small δ > 0, it runs in O(n3k−2

δ4k−3) time and
returns k minimum cylindrical segments whose sum of width are at most (1 + δ)
of the corresponding optimum.

We remark that with simple modification, our PTAS for any fixed k would
work for any function f over the k radii r1, ..., rk as long as the function is
monotone and f(0, ..., 0) = 0 (in our current setting f(r1, ..., rk) = r1 + ...+ rk).
For instance, our PTAS also works when the objective is to minimize the sum
of volume of the cylindrical segments.

5 Hardness Result

In this section, we sketch how to modify the proof of Megiddo and Tamir [MT82]
to show that the general problem of covering a set of 3D points with the minimum
number of line segments (cylindrical segments with radii zero) in 3D is strongly
NP-hard [GJ79]. Like in [MT82], we reduce the 3SAT problem to our problem.
To simplify the presentation, we first sketch the proof of [MT82] and we then
show how to modify the proof for our problem.

Given an instance of 3SAT E1 ∧ E2 ∧ · · · ∧ Em, where Ej = aj ∨ bj ∨
cj , {aj , bj , cj} ⊂ {v1, v̄1, ..., vn, v̄n}, j = 1, ...,m, Megiddo and Tamir construct
m points in 2D such that each Ej is represented by a point pj . For each pair of
variable vi, v̄i, they construct m2 points. So in total m + n ×m2 points (for m
clauses and n variable pairs) are constructed. The reduction of [MT82] takes a
pseudo-polynomial time to construct the n ×m2 points which correspond to n
variables. Each group of m2 points (which corresponds to a variable) needs at
least m lines to cover and there are only two sets of m lines to cover these m2

points (which correspond to the true and false assignment of that variable). If a
variable vi(v̄i) appears in Ej , then one line in the m lines corresponding to the
true (false) assignment of vi covers pj . Therefore, E1∧E2∧· · ·∧Em is satisfiable
if and only if the whole m+ n×m2 points can be covered by mn lines.

In our problem, we need to use cylindrical segments in 3D to cover the points
such that no segment penetrates another one by some amount σ. From now on
we set σ = 0; moreover, each cylindrical segment is a line segment (i.e., with
radius zero) and two segments can only intersect at a common endpoint. In the
previous 2D construction, any covering line penetrates another one. To make
the proof work for our problem, we first fix p1, ...pm on a line L and then rotate
each of the n groups of points around L such that the following property still
holds. (Each group, which contains m2 points, corresponds to a variable and

428 Binhai Zhu

1

variable v

p

p

p

3

2

Fig. 3. v appears in E1 and v̄ appears in E3.

each group of points always lie on the same plane after rotation.) Each group
of m2 points needs at least m 3D line segments to cover and there are only two
sets of m 3D line segments to cover these m2 points (which correspond to the
true and false assignment of that variable). Also, none of the 3D line segments
covers a point which belongs to different variable. If a variable vi(v̄i) appears in
Ej , then one segment of the m segments which are corresponding to the true
(false) assignment of vi touches pj . We show a brief example of the construction
in Figure 3.

Therefore, E1∧E2∧· · ·∧Em is satisfiable if and only if the whole m+n×m2

3D points can be covered by mn 3D line segments (cylindrical segments whose
sum of radii is zero). The reduction, as in [MT82], takes a pseudo-polynomial
time on determining the coordinates of the n×m2 points corresponding to the
variables. Therefore, we have the following result.

Corollary 1. It is strongly NP-hard to decide whether a set of 3D points can be
covered by the minimum number of 3D cylindrical segments with the minimum
sum of radii such that no segment penetrates another one.

6 Concluding Remarks

In this paper, we investigate the problem of approximating a set P of n 3D points
with k minimum cylindrical segments. We present a very simple algorithm for
the case when k = 1. For the case when k > 1, we obtain a PTAS which runs
in O(n3k−2

δ4k−3) time. Here, we mention briefly our early empirical testing of the
algorithms presented in this paper. Unfortunately, when k ≥ 2 the algorithm is
already impractical for n = 10, 000 points. This probably explains in practice
why practitioners first use commercial software to reconstruct a polyhedron from
the input points — this will provide useful topological information for computing
the approximating cylindrical segments. This implies, from another angle, that
this PTAS is completely theoretical.

Approximating 3D Points with Cylindrical Segments 429

A lot of questions remain to be answered regarding this problem, both the-
oretically and practically. An immediate theoretical question is whether we can
obtain a PTAS when k is not part of the input. Another problem is whether the
objective of minimizing the sum of radii of a set of cylindrical segments is truely
what the biologists want (they just want that the radius of each approximat-
ing segment is minimized). This question might not be able to be answered in
satisfactory without practical simulations. Our feeling is that the true objective
function should be minimizing the volume of the union of the cylindrical seg-
ments, which is not very easy to compute as the union has at least a quadratic
combinatorial complexity.

References

AAS97. P. Agarwal, B. Aronov and M. Sharir. Line transversals of balls and smallest
enclosing cylinders in three dimensions. In Proc. 8th ACM-SIAM Symp on
Discrete Algorithms (SODA’97), New Orleans, LA, pages 483-492, Jan,
1997.

AP00. P. Agarwal and C. Procopiuc. Approximation algorithms for projective clus-
tering. In Proc. 11th ACM-SIAM Symp on Discrete Algorithms (SODA’00),
pages 538-547, 2000.

Ch00. T. Chan. Approximating the diameter, width, smallest enclosing cylinder,
and minimum-width annulus. In Proc. 16th ACM Symp on Computational
Geometry (SCG’00), Hong Kong, pages 300-309, June, 2000.

GJ79. M. Garey and D. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. Freeman, San Francisco, CA, 1979.

HV02. S. Har-Peled and K. Varadarajan. Projective clustering in high dimensions
using core-sets. In Proc. 18th ACM Symp on Computational Geometry
(SCG’02), to appear, 2002.

JT96. G. Jacobs and F. Theunissen. Functional organization of a neural map in
the cricket cercal sensory system. J. of Neuroscience, 16(2):769-784, 1996.

JT00. G. Jacobs and F. Theunissen. Extraction of sensory parameters from a neu-
ral map by primary sensory interneurons. J. of Neuroscience, 20(8):2934-
2943, 2000.

MSW92. J. Matoušek, M. Sharir and E. Welzl. A subexponential bound for linear
programming. Algorithmica, 16:498-516, 1992.

MT82. N. Megiddo and A. Tamir. On the complexity of locating linear facilities
in the plane. Operation Research Letters, 1(5):194-197, 1982.

PDJ99. S. Paydar, C. Doan and G. Jacobs. Neural mapping of direction and fre-
quency in the cricket cercal sensory system. J. of Neuroscience, 19(5):1771-
1781, 1999.

PS85. F.P. Preparata and M.I. Shamos. Computational Geometry: An Introduc-
tion. Springer-Verlag, 1985.

Ra00. E. Ramos. Deterministic algorithms for 3-D diameter and some 2-D
lower envelopes. In Proc. 16th ACM Symp on Computational Geometry
(SoCG’00), pages 290-299, June, 2000.

SSTY00. E. Schömer, J. Sellen, M. Teichmann and C.K. Yap. Smallest enclosing
cylinders. Algorithmica, 27:170-186, 2000.

We91. E. Welzl. Smallest enclosing disks (balls and ellipsoids). In New results and
new trends in computer science, LNCS 555, pages 359-370, 1991.

Algorithms for the Multicolorings
of Partial k-Trees

Takehiro Ito, Takao Nishizeki, and Xiao Zhou

Graduate School of Information Sciences, Tohoku University
Aoba-yama 05, Sendai, 980-8579, Japan

take@nishizeki.ecei.tohoku.ac.jp, {nishi,zhou}@ecei.tohoku.ac.jp

Abstract. Let each vertex v of a graph G have a positive integer weight
ω(v). Then a multicoloring of G is to assign each vertex v a set of ω(v)
colors so that any pair of adjacent vertices receive disjoint sets of colors.
A partial k-tree is a graph with tree-width bounded by a fixed constant k.
This paper presents an algorithm which finds a multicoloring of any given
partial k-tree G with the minimum number of colors. The computation
time of the algorithm is bounded by a polynomial in the number of
vertices and the maximum weight of vertices in G.

1 Introduction

Let G = (V,E) be a graph with vertex set V and edge set E. A vertex-coloring of
a graph G is to color all vertices so that any pair of adjacent vertices are colored
with different colors. Let each vertex v of G have a positive integer weight ω(v).
Let C be a set of colors, and let 2C be the power set of C. Then a multicoloring
Γ of G is a mapping from V to 2C which assigns each vertex u ∈ V a set Γ (u) of
ω(u) colors in C in a way that Γ (v)∩Γ (w) = ∅ for any pair of adjacent vertices
v, w ∈ V . Thus the ordinary vertex-coloring is merely a multicoloring for the
special case where ω(v) = 1 for every vertex v. The multichromatic number
χω(G) of G is the minimum number of colors required for a multicoloring of G,
that is,

χω(G) = min{|C| : G has a multicoloring Γ : V → 2C}.
The multicoloring problem is to compute the multichromatic number χω(G) of a
given graph G. Consider a graph G in Fig. 1(a) where ω(v) is attached to each
vertex v. Since v1, v2 and v5 are adjacent with each other, χω(G) ≥ ω(v1) +
ω(v2) + ω(v5) = 5. Since G has a multicoloring with five colors c1, c2, · · · , c5 as
illustrated in Fig. 1(b), χω(G) ≤ 5. Thus χω(G) = 5.

The multicoloring problem has a natural application in scheduling theory [9].
Consider a set V of jobs such that each job v ∈ V needs a total of ω(v) units of
time to be finished and there are several pairs of jobs which cannot be executed
simultaneously. We wish to find a schedule of the minimum completion time. This
problem can be modeled by a graph G in which a vertex corresponds to a job and
an edge corresponds to a pair of jobs which cannot be executed simultaneously.
A multicoloring of G with α colors corresponds to a preemptive schedule of

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 430–439, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Algorithms for the Multicolorings of Partial k-Trees 431

(a) (b)

2

1

3

v2

v1

v3

v5

v4

v6

v7

2

2

2

2

c1 , c2

v2

v1

v3

v5

v4

v6

v7

c3 , c4 , c5

c3 , c4

c4 , c5

c1 , c2

c1 , c2

c5

Fig. 1. (a) A partial 3-tree G and (b) a multicoloring Γ of G with five colors.

completion time α; if vertex v receives ω(v) colors, say ci1 , ci2 , · · · , ciω(v) , then
job v is executed in the i1th, i2th, · · ·, and iω(v)th time slots, total in ω(v) time
slots. The goal is to find a preemptive schedule of the minimum completion time
of all jobs. Clearly, the minimum completion time is equal to the multichromatic
number χω(G) of G.

Since the vertex-coloring problem is NP-hard, the multicoloring problem is
of course NP-hard and hence it is very unlikely that the multicoloring problem
can be efficiently solved for general graphs. However, there may exist an efficient
algorithm to solve the multicoloring problem for a restricted class of graphs.
Indeed, the problem can be solved for trees in time O(n) [2,8], for triangulated
graphs in time O(n2) [2,8], for perfect graphs in time O(mn) [8], and for series-
parallel graphs in time O(nW) [12], where m is the number of edges, n is the
number of vertices of a given graph G, and W is the maximum vertex weight,
that is, W = maxv∈V ω(v).

In this paper we consider another class of graphs, called “partial k-trees.”
A partial k-tree is a graph of “tree-width” bounded by a fixed constant k. The
class of partial k-trees is fairly large; for example, trees, forests, outerplanar
graphs and series-parallel graphs are all partial k-trees. A formal definition of
a partial k-tree will be given in Section 2. It is thus desired to obtain an ef-
ficient algorithm to solve the multicoloring problem for partial k-trees. There
are general methods to design algorithms for solving many problems on par-
tial k-trees, including the vertex-coloring problem, the Hamiltonian cycle prob-
lem, the maximum independent vertex set problem, etc. [1,5,6,10]. However, a
straightforward algorithm directly derived from the general methods takes time
O(n(2χω(G))2(k+1)) = O(n22(k+1)2W) to solve the multicoloring problem for par-
tial k-trees G. Note that χω(G) ≤ (k + 1)W since any partial k-tree G has a
vertex-coloring with at most k+1 colors and hence G has a multicoloring with at
most (k+1)W colors. The computation time of the algorithm is not bounded by
a polynomial in n and W . Thus it is desired to obtain a “parametric algorithm”
of computation time bounded by a polynomial in both n and W [7].

In this paper we give an algorithm to solve the multicoloring problem for
partial k-trees in time O(nW 22k+3

log2W). Thus the algorithm is much faster
than the straightforward algorithm above, and is the first one whose time com-

432 Takehiro Ito, Takao Nishizeki, and Xiao Zhou

v
2

v
1

v
3

v
4

v
2

v
1

v
3

v
5

v
4

v
6

v
7

v
2

v
1

v
3

v
5

v4

v
6

v
2

v
1

v
3

v
5

v
4

Fig. 2. A process of generating 3-trees.

plexity is bounded by a polynomial in both n and W . The algorithm takes linear
time if W is bounded. It should be noted that an ordinary representation of a
multicoloring of G requires space of size at least

∑
v∈V ω(v) = O(nW). Our

algorithm is based on a clever and detailed formation of dynamic programming.
The rest of the paper is organized as follows. Section 2 includes basic def-

initions and notations. Section 3 gives an algorithm to solve the multicoloring
problem for partial k-trees. Finally, Section 4 is a conclusion.

2 Terminology and Definitions

In this section we give some definitions. We deal with a simple undirected graph
without multiple edges or self-loops. An edge joining vertices u and v is denoted
by (u, v). We denote by n the number of vertices in G, and assume that k is a
bounded positive integer.

A k-tree is defined recursively as follows [4]:

(1) A complete graphs with k + 1 vertices is a k-tree.
(2) If G is a k-tree and k vertices induce a complete subgraph of G, then a

graph obtained from G by adding a new vertex and joining it with each
of the k vertices is a k-tree,

Any subgraph of a k-tree is called a partial k-tree. Thus a partial k-tree G =
(V,E) is a simple graph, and |E| < kn. Figure 2 illustrates a process of generating
3-trees. The graph in Fig. 1 is a partial 3-tree since it is a subgraph of the last
3-tree in Fig. 2.

A binary tree T = (VT , ET) is called a tree-decomposition of a partial k-tree
G = (V,E) if T satisfies the following conditions (a) – (f):

(a) every node X ∈ VT of T is a subset of V , and |X| ≤ k + 1;
(b)

⋃
X∈VT

X = V ;
(c) for each edge e = (u, v) of G, T has a leaf X ∈ VT such that u, v ∈ X;
(d) if node Xp lies on the path in T from node Xq to node Xr, then Xq∩Xr ⊆

Xp;
(e) the number of nodes in T is O(n); and
(f) each internal node Xi of T has exactly two children, say Xl and Xr, and

either Xi = Xl or Xi = Xr.

We will use notions as: leaf, node, child, and root in their usual meaning. Figure 3
illustrates a tree-decomposition T of the partial 3-tree in Fig. 1. We denote by
X0 the root of a tree-decomposition.

Algorithms for the Multicolorings of Partial k-Trees 433

X0 = {v1, v2, v3, v4}

X1 = X0

X3 = X0 X4 = {v1, v2, v3, v5}

X2 = {v1, v3, v4, v6}

X5 = X2 X6 = {v3, v4, v6, v7}

Fig. 3. Tree-decomposition of the partial 3-tree in Fig. 1.

Since a tree-decomposition of a partial k-tree can be found in linear time [3],
we may assume that a partial k-tree G and its tree-decomposition T are given.

A multicoloring of a graph G = (V,E) is an ordinary vertex-coloring of a
new graph Gω, constructed from G as follows: replace each vertex u ∈ V with a
complete graph Kω(u) of ω(u) vertices, and join all vertices of Kω(v) to all vertices
in Kω(w) for each edge (v, w) ∈ E, as illustrated in Fig. 4; the resulting graph is
Gω. Then a multicoloring of G induces an ordinary vertex-coloring of Gω, and
vice versa. Thus the multicoloring problem for G can be reduced to the vertex-
coloring problem for Gω. Since Gω has n′ =

∑
v∈V ω(v) (≤ nW) vertices and

O((n+m)W 2) edges, the reduction takes time O((n+m)W 2), where m = |E|.
Unfortunately, Gω is not always a partial k-tree even if G is a partial k-tree. One
cannot thus solve the multicoloring problem for a partial k-tree G by applying
to Gω the linear-time algorithm for finding a vertex-coloring of a partial k-tree
in [1,5]. However, if G is a partial k-tree, then Gω is a partial k′-tree for an
integer k′ = (k + 1)W . The vertex-coloring problem can be solved for a partial
k′-tree Gω in time O(n′(k′ + 1)2(k

′+1)) [1,5]. Thus the multicoloring problem for
a partial k-tree G can be solved in time O(nW ((k+ 1)W + 1)2((k+1)W+1)). The
computation time is not bounded by a polynomial in n and W . On the other
hand, the computation time O(nW 22k+3

log2W) of our algorithm is bounded by
a polynomial in both n and W .

3 Algorithm

The main result of the paper is the following theorem.

Theorem 1. Let k be a bounded positive integer, let G be any partial k-tree,
and let α be any positive integer. Then one can know in time O(n(α + 1)2

2k+3
)

whether G has a multicoloring with α colors.

Using a binary search technique, one can compute the multichromatic number
χω(G) of G by applying Theorem 1 for at most log2((k + 1)W) values of α,
1 ≤ α ≤ (k + 1)W , since χω(G) ≤ (k + 1)W . We thus have the following
corollary.

Corollary 1. The multichromatic number χω(G) of a partial k-tree G can be
computed in time O(nW 22k+3

log2W).

434 Takehiro Ito, Takao Nishizeki, and Xiao Zhou

(a) (b)

2

2

1

3

v2

v1

v3

v5

v4

v6

v7

2

2

2

2

1

3

v2

v1

v3

v5

v4

v6

v7

2

2

2

Fig. 4. Transformation of G to Gω.

G
V Vi

Xi

Gi

Vi Xi

Xl = Xi Xr

Gl Gr

Al Ar

(b)

Fig. 5. (a) Graph Gi = Gl ∪Gr (b) Graphs G and Gi.

In the remainder of this section we give a proof of Theorem 1. From now on
we call a multicoloring simply a coloring. Let C be a set of α colors. Although we
give an algorithm to examine whether a partial k-tree G = (V,E) has a coloring
Γ : V → 2C , it can be easily modified so that it actually finds a coloring Γ of
G with α colors in C. Our idea is to extend a technique developed for the edge-
coloring problem [4,11] to the multicoloring problem and to reduce the size of a
Dynamic Programming (DP) table to O((α + 1)2

2k+3
) by considering “counts”

and “pair-counts.”
Let G = (V,E) be a partial k-tree, and let T = (VT , ET) be a

tree-decomposition of G. Each node Xi of T corresponds to a subgraph Gi =
(Vi, Ei) of G. The vertex set Vi and edge set Ei of Gi are recursively defined as
follows: if Xi is a leaf of T , then Vi = Xi and Ei = {(u, v) ∈ E : u, v ∈ Xi}; if
Xi is an internal node of T , the left child Xl of Xi corresponds to a subgraph
Gl = (Vl, El) of G, and the right child Xr corresponds to Gr = (Vr, Er), then
Vi = Vl ∪ Vr and Ei = El ∪ Er, and hence Gi is a union of two graphs Gl and
Gr as illustrated in Fig. 5 (a), where Xi = Xl and Xr are indicated by ovals
drawn by thick lines. Clearly G = G0 for the root X0 of T . One can easily ob-
serve that, for each node Xi of T , Xi ⊆ Vi and any edge of G with both ends
in Xi is contained in Ei. The condition (d) of a tree-decomposition implies that
Vl∩Vr = Xl∩Xr ⊆ Xi and El∩Er = {(u, v) ∈ Ei : u, v ∈ Xl∩Xr} as illustrated
in Fig. 5 (a), and that no edge of G joins a vertex in Vi − Xi and a vertex in
V − Vi for each node Xi of T . (See Fig. 5 (b).) Figure 6(a) depicts the partial
3-tree G = G0 in Fig. 1(a); G0 corresponds to the root X0 = {v1, v2, v3, v4}
of a tree-decomposition T in Fig. 3. Figure 6(b) depicts G1 corresponding to

Algorithms for the Multicolorings of Partial k-Trees 435

v2

v1

v3

v5

v4

v6

v7

v2

v1

v3

v5

v4 v1

v3

v4

v6

v7

c1 , c2

(a) G

c3 , c4 , c5

c3 , c4

c4 , c5

c1 , c2

c1 , c2

c5

X0

c1 , c2

(b)

c3 , c4 , c5

c3 , c4

c1 , c2

c5

X1=X0 c1 , c2

(c)

c3 , c4 , c5

c4 , c5

c1 , c2

c1 , c2

X2

 G G

Fig. 6. (a) Colorings Γ0 of G = G0, (b) Γ1 of G1, and (c) Γ2 of G2.

the left child X1 = {v1, v2, v3, v4} of the root X0, while Fig. 6(c) depicts G2
corresponding to the right child X2 = {v1, v3, v4, v6}. G0 is the union of G1 and
G2.

For a node Xi ∈ VT of T , a coloring Γ of Gi, and a color c ∈ C, we define a
set Y (Xi;Γ, c) ⊆ Xi as follows:

Y (Xi;Γ, c) = {v ∈ Xi : c ∈ Γ (v)}.

That is, Y (Xi;Γ, c) consists of all vertices v in Xi that are assigned a color c by
Γ . On the other hand, for a coloring Γ of Gi and a set A ⊆ Xi, we define a set
CΓ (A) ⊆ C as follows:

CΓ (A) = {c ∈ C : A = Y (Xi;Γ, c)}.

That is, CΓ (A) consists of all colors c in C such that {v ∈ Xi : c ∈ Γ (v)} = A.
Probably CΓ (A) = ∅ for many sets A ⊆ Xi. We call the mapping CΓ : 2Xi → 2C

the color function of Γ on Xi. Clearly, FΓ = {CΓ (A) : A ∈ 2Xi} is a partition
of set C.

We say that a coloring of Gi is extensible if it can be extended to a coloring of
the whole graph G = G0 without changing the coloring of Gi. Both the coloring
Γ1 of G1 in Fig. 6(b) and the coloring Γ2 of G2 in Fig. 6(c) are extensible because
both can be extended to the coloring Γ0 of G0 in Fig. 6(a).

Any mapping γ : 2Xi → {0, 1, 2, · · · , α} is called a count on a node Xi. A
count γ on Xi is defined to be active if Gi has a coloring Γ such that γ(A) =
|CΓ (A)| for each set A ∈ 2Xi . Such a count γ is called the count of the coloring
Γ . Since |C| = α and FΓ = {CΓ (A) : A ∈ 2Xi} is a partition of set C, any active
count γ satisfies

∑
A∈2Xi γ(A) = α.

436 Takehiro Ito, Takao Nishizeki, and Xiao Zhou

Example Let Γ0 be the coloring of G0 in Fig. 6(a), then the color function CΓ0

on X0 satisfies

CΓ0({v1, v3}) = {c1, c2},
CΓ0({v2, v4}) = {c3, c4},

CΓ0({v4}) = {c5},
and

CΓ0(A) = ∅
for any other set A ⊆ X0. Therefore the count γ0 of Γ0 satisfies

γ0({v1, v3}) = 2,
γ0({v2, v4}) = 2,

γ0({v4}) = 1,
and

γ0(A) = 0

for any other set A ⊆ X0. Similarly, the coloring Γ1 of G1 for X1 = {v1, v2, v3, v4}
in Fig. 6(b) has a count γ1 such that

γ1({v1, v3}) = 2,
γ1({v2, v4}) = 2,

γ1({v4}) = 1,
and

γ1(A) = 0

for any other set A ⊆ X1. On the other hand, the coloring Γ2 of G2 for X2 =
{v1, v3, v4, v6} in Fig. 6(c) has a count γ2 such that

γ2({v1, v3, v6}) = 2,
γ2({v4}) = 3,

and
γ2(A) = 0

for any other set A ⊆ X2.
One can easily observe that the following lemma holds.

Lemma 1. Let Γ and Γ ′ be colorings of Gi for a node Xi of T , and assume
that Γ and Γ ′ have the same count. Then Γ is extensible if and only if Γ ′ is
extensible.

Define an equivalence relation ∼= on the set of all colorings of Gi, as follows:
Γ ∼= Γ ′ if the colorings Γ and Γ ′ of Gi have the same (active) count. Then each
active count on Xi characterizes an equivalence class of colorings of Gi. Lemma 1
implies that either all the colorings in an equivalence class are extensible or none
of them is extensible. Since |Xi| ≤ k + 1, there are (α + 1)2

|Xi|
(≤ (α + 1)2

k+1
)

Algorithms for the Multicolorings of Partial k-Trees 437

distinct counts γ : 2Xi → {0, 1, 2, · · · , α} on Xi. The main step of our algorithm
is to compute a table of all active counts on each node of T from leaves to the
root X0 of T by means of dynamic programming. From the table on the root
X0 one can easily know whether G has a coloring with α colors, as follows.

Lemma 2. A partial k-tree G has a coloring with α colors if and only if the
table on root X0 has at least one active count.

We first compute the table of all active counts on each leaf Xi of T as follows:

(1) enumerate all counts γ of Xi; and
(2) find all active ones from them.

There are at most (α + 1)2
k+1

distinct counts γ on Xi. Since Gi = (Vi, Ei) and
Vi = Xi, one can easily know that a count γ is active if and only if γ satisfies
the following conditions (a), (b) and (c):

(a)
∑{γ(A) : A ∈ 2Xi} = α;

(b)
∑{γ(A) : A ∈ 2Xi , v ∈ A} = ω(v) for each vertex v ∈ Xi; and

(c) γ(A) = 0 if A ∈ 2Xi and u, v ∈ A for some edge (u, v) of Gi.

Since |Xi| ≤ k + 1, one can know in time O(2k+1) = O(1) whether a count γ
satisfies Condition (a) above. Similarly, one can know in time O(k2k+1) = O(1)
whether γ satisfies Condition (b). Since |Ei| ≤ k(k + 1)/2 = O(k2), one can
know in time O(k22k+1) = O(1) whether γ satisfies Condition (c). Thus, for
each count γ, one can know in time O(1) whether γ is active or not. Hence steps
(1) and (2) above can be done for a leaf in time O((α + 1)2

k+1
). Since T has

O(n) leaves, the tables on all leaves can be computed in time O(n(α+ 1)2
k+1

).
We next compute all active counts on each internal node Xi of T from all

active counts on its children Xl and Xr. Either Xi = Xl or Xi = Xr by the
condition (f) of a tree-decomposition. Therefore, one may assume without loss
of generality that Xi = Xl. Any mapping ρ : 2Xl×2Xr → {0, 1, 2, · · · , α} is called
a pair-count on Xi. Then there are (α + 1)2

|Xl|+|Xr|
(≤ (α + 1)2

2(k+1)
) distinct

pair-counts. For any coloring Γ of Gi, we denote by Γl = Γ |Gl the restriction of
Γ to Gl: Γl(v) = Γ (v) for each vertex v of Gl. Similarly, we denote by Γr = Γ |Gr

the restriction of Γ to Gr. We denote by CΓl
the color function of Γl on Xl, and

by CΓr the color function of Γr on Xr. Then we define a pair-count ρ to be
active if Gi has a coloring Γ such that, for each pair (Al, Ar) of sets Al ⊆ Xl

and Ar ⊆ Xr (see Fig. 5),

ρ(Al, Ar) = |CΓl
(Al) ∩ CΓr (Ar)|.

Such a pair-count ρ is called the pair-count of the coloring Γ of Gi. We now
have the following lemma, whose proof is omitted in this extended abstract due
to the page limitation.

Lemma 3. Let Xi be any internal node Xi of T , let Xl and Xr be the children
of Xi, and let ρ be any pair-count on Xi. Then ρ is active if and only if ρ satisfies
the following Conditions (a) and (b):

438 Takehiro Ito, Takao Nishizeki, and Xiao Zhou

(a) if ρ(Al, Ar) ≥ 1, then Al ∩Xr = Ar ∩Xl; and
(b) there is an active count γl on Xl such that for each set Al ⊆ Xl

γl(Al) =
∑
{ρ(Al, A) : A ⊆ Xr}, (1)

and there is an active count γr on Xr such that for each set Ar ⊆ Xr

γr(Ar) =
∑
{ρ(A,Ar) : A ⊆ Xl}. (2)

Using Lemma 3, we compute all active pair-counts ρ on Xi from all pairs of
active counts γl on Xl and γr on Xr, as follows. There are at most (α+ 1)2

2(k+1)

pair-counts ρ on Xi. For each pair-count ρ of them, we examine whether ρ
satisfies Conditions (a) and (b) in Lemma 3. For each pair-count ρ, one can
know in O(1) time whether ρ satisfies Condition (a), because there are at most
22(k+1) = O(1) distinct pairs (Al, Ar). On the other hand, for each pair-count ρ,
one can know in time O

(
(α+ 1)2

k+2
)

whether ρ satisfies Condition (b), because

there are at most ((α+1)2
k+1

)2 = (α+1)2
k+2

pairs of active counts γl and γr, and
one can know in time O(1) for each of them whether it satisfies Eqs. (1) and (2).
Thus all active pair-counts ρ on Xi can be found in time O((α+ 1)2

2k+3
), since

there are at most (α+1)2
2(k+1)

pair-counts ρ on Xi and (α+1)2
2(k+1)

(α+1)2
k+2 ≤

(α+ 1)2
2k+3

.
We then compute all active counts on an internal node Xi from all active

pair-counts on Xi, as in the following Lemma 4, the proof of which is omitted
due to the page limitation.

Lemma 4. Let Xi be an internal node of T , let Xl and Xr be the two children
of Xi, and let Xi = Xl. Then a count γ on Xi is active if and only if there exists
an active pair-count ρ on Xi such that, for each set A ⊆ Xi,

γ(A) =
∑
{ρ(A,A′) : A′ ⊆ Xr}. (3)

Using Lemma 4, we compute all active counts γ on Xi from all active pair-
counts ρ on Xi. There are at most (α + 1)2

2(k+1)
distinct active pair-counts ρ.

From each ρ of them we compute an active count γ by Eq. (3). This can be done
in O(1) time since |A|, |A′|, |Xi|, |Xl|, |Xr| ≤ k + 1 = O(1). We have thus shown
that all active counts γ on Xi can be computed in time O((α + 1)2

2(k+1)
) from

all active pair-counts ρ on Xi.
One can thus compute the DP table for an internal node Xi from the tables

for the children Xl and Xr in time

O
(

(α+ 1)2
2k+3

+ (α+ 1)2
2(k+1)

)
= O

(
(α+ 1)2

2k+3
)
.

Since T has O(n) internal nodes, one can compute the DP tables for all internal
nodes in time O(n(α+ 1)2

2k+3
).

From the DP table for root X0 one can know in time O(1) by Lemma 2
whether G has a coloring with α colors.

This completes a proof of Theorem 1.

Algorithms for the Multicolorings of Partial k-Trees 439

4 Conclusion

In this paper we obtained an algorithm to compute the multichromatic number
χω(G) of a given partial k-tree G in time O(nW 22k+3

log2W), where n is the
number of vertices in G and W is the maximum weight of vertices in G. This is
the first algorithm whose computation time is bounded by a polynomial in both
n and W . If W = O(1), the algorithm takes time O(n). It is easy to modify
the algorithm so that it actually finds a multicoloring of G with χω(G) colors.
It is remaining as a future problem to obtain an algorithm which takes time
polynomial in both n and logW , and to obtain an algorithm for other classes of
graphs.

References

1. S. Arnborg and J. Lagergren. Easy problems for tree-decomposable graphs. Journal
of Algorithms, 12(2):308–340, 1991.

2. E. Balas and J. Xue. Minimum weighted colouring of triangulated graphs, with
application to maximum weight vertex packing and clique finding in arbitrary
graphs. SIAM. J. Comput., 20:209–221, 1991.

3. H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25:1305–1317, 1996.

4. H. L. Bodlaender. Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees. Journal of Algorithms, 11(4):631–643, 1990.

5. R. B. Borie, R. G. Parker and C. A. Tovey. Automatic generation of linear-time
algorithms from predicate calculus descriptions of problems on recursively con-
structed graph families. Algorithmica, 7:555–581, 1992.

6. B. Courcelle and M. Mosbath. Monadic second-order evaluations on tree-
decomposable graphs. Theoretical Computer Science, 109:49–82, 1993.

7. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag,
New York, 1998.

8. C. T. Hoáng. Efficient algorithms for minimum weighted colouring of some classes
of perfect graphs. Discrete Applied Mathematics, 55:133–143, 1994.

9. D. Karger, C. Stein and J. Wein. Scheduling algorithms, in “Algorithms and
Theory of Computation, Handbook” (Editor M. J. Atallah), CRC Press, 1998.

10. K. Takamizawa, T. Nishizeki and N. Saito. Linear-time computability of combina-
torial problems on series-parallel graphs. Journal of ACM, 29(3):623–641, 1982.

11. X. Zhou, S. Nakano and T. Nishizeki. Edge-coloring partial k-trees. Journal of
Algorithms, 21:598–617, 1996.

12. X. Zhou and T. Nishizeki. Efficient algorithms for weighted colorings of series-
parallel graphs, In Proc. of the 12th International Symposium on Algorithms and
Computation, Lect. Notes in Computer Science, Springer, 2223, 514-524, 2001.

A Fault-Tolerant Merge Sorting Algorithm

B. Ravikumar

Department of Computer Science
Sonoma State University
Rohnert Park, CA 94128
ravi@cs.sonoma.edu

Abstract. Sorting based on pairwise key comparisons is one of the most
widely studied problems. We consider the problem of comparison based
sorting in which some of the outcomes of comparisons can be faulty.
We show how to modify merge-sorting to (nearly optimally) sort in the
presence of faults. More specifically, we show that there is a variation of
merge-sort that can sort n records with O(n log n) comparisons when
upto e = Θ(log n

log log n
) comparisons are faulty.

1 Introduction

The version of sorting problem studied here is the following: n keys stored in an
array are to be sorted using pairwise comparisons. For convenience, we assume
that all the keys are distinct. Among the responses to the comparison queries,
some of them can be wrong. If the number of erroneous responses is a constant
e, independent of n, then the standard query repetition strategy (repeat until
one of yes/no answer is favored e + 1 times). The number of key comparisons
performed by this algorithm is upper-bounded by (2e+1)Tsort(n) where Tsort(n)
is the number of comparisons performed by an error-free sorting algorithm. Thus
O(e n log n) key comparisons are sufficient to sort n keys by query repetition
as long as e is a constant. How large can e grow as a function of n so that it
is still possible to sort n keys in O(n log n) time while there are e errors in
comparisons? The main result of this paper is a modification of Merge-Sorting
that sorts an array of n keys in O(n log n) time so long as e is Θ(log n

log log n).
This problem and its variations have received a lot of attention in the past ten

years, see for example [1], [2], [4], [7], [6], etc. It was shown in [6] that O(n log n)
comparisons are sufficient to sort so long as e = Θ(log n). This result is tight
within a constant factor in the sense that Ω(n log n + e n) comparisons are
necessary for any comparison based sorting algorithm to sort n keys if upto e
of the pairwise comparisons can be erroneous. The algorithm presented in [6] is
based on binary insertion sort and hence would require Ω(n2) data movements
to implement. Two improvements were proposed by [7] and [1], but both are
modifications of the insertion sort presented in [6] and hence they do not improve
the total number of operations significantly. It would be interesting to know if
algorithms like heap sort or merge sort (which perform a total of O(n log n)
operations including data movements) can be modified to work in the presence

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 440–447, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

A Fault-Tolerant Merge Sorting Algorithm 441

of errors. In this paper, we show how to modify Merge-Sorting in the presence
of faults. Martin Farach-Colten in a recent talk (Alenex 2002) made a reference
to the problem of sorting in the presence of faults as a real-world whose solution
is required by the Google search engine and stated that (error-free version of)
Merge-Sorting is not a good algorithm to use. As can be seen from this paper, a
modified version of Merge Sorting solves the sorting problem in the presence of
faults in a way that is significantly faster than query repetition.

It should be noted that for some comparison-based problems, when there are
faults in comparisons, the best strategy is query repetition. Selection is one such
problem. It is easy to see that merging of two equal length lists also falls into this
category. This fact may explain why we could not get an adaptation of Merge-
sorting with an upper-bound matching the number of comparisons performed
by the asymptotic optimal algorithm of [6]. Our algorithm is off by a factor of
Θ(log log n).

There are several reasons for interest in designing fault-tolerant Merge-Sorting
or other sorting algorithms. The obvious one (e.g. mentioned in the above ref-
erenced talk) is that the hardware that implements the algorithm may generate
erroneous outcomes occasionally. But there are more subtle applications as well.
For example, given the outcomes of matches between various teams, we may
want to rank the teams. Such ranking problems can be modeled as sorting with
faulty comparisons. Another problem that can be modeled as fault-tolerant sort-
ing is the problem of sorting (slowly) time-varying data. Here, the outcomes of
some older comparisons correspond to errors. The problem of sorting in the pres-
ence of faults is also related to measures of pre-sortedness, an extensively studied
topic. These connections and applications will be discussed in the final version of
the paper. There, we will also describe a fault-tolerant adaptation of Heap-sort
with a comparable upper-bound.

Although the complexity bounds in this paper can be presented in terms of n
the number of keys and e the number of errors, we express our results in terms of
the largest asymptotic growth on e that allows sorting to be done in O(n log n)
time.

2 A Simple Fault-Tolerant Merge Sorting

In this section, we present a simpler verion of fault-tolarant merge-sorting al-
gorithm that can tolarate upto O(

√
log n) errors. We start with a fault-free

version of merge-sort algorithm that takes as input a list of lists (each of which
is known to be sorted) and merges them to form a sorted sequence provided
there are no errors in comparisons. The algorithm is simply the ”bottom-up”
(or the non-resursive) version of merge-sort that merges lists 1 and 2, 3 and 4
etc., reducing the number of lists to half its original number, and repeats the
process until a single list is created. We start with the array of n keys to be
sorted, and make a list of n lists, each containing one item. We run the error-
free merge-sort algorithm. Let L be the output produced. Now we check if every
adjacent pair of keys in L is in the correct order by query repetition. Whenever a

442 B. Ravikumar

pair is found to be out of order, L is split. Thus after the checking phase, L gets
split into potentially many lists. We repreat the cycle of sorting and checking
again, until during the checking phase, the output passes as a sorted list. At
each stage, we also maintain rest, the maximum number of errors allowable in
future comparisons. This can save comparisons during the checking stage: it is
enough to repeat queries sufficiently many times so that rest flavorable votes
are received for an yes or no outcome. We show that this algorithm has a total
complexity of Θ(n log n) so long as e is O(

√
log n).

Consider the “bottom-up” (iterative) version of merge sorting which is the
standard way to implement Merge-Sorting nonrecursively. The input is stored in
an array A of size n. The algorithm proceeds in phases. During the first phase,
sorted lists of length 2 are created by comparing A[1] with A[2], A[3] with A[4]
etc. In the second phase, sorted lists of length 4 are created by merging A[1], A[2]
with A[3], A[4] and so on until the whole list is sorted. In each of the merging
steps, sequential merging algorithm (which performs p + q − 1 comparisons to
merge two sorted lists of length p and q) [3] is used. We adapt this algorithm
in the case of up to e errors as follows: The above algorithm will be run for
a certain number of phases, without concren for possible errors that may have
been introduced. Now the array is examined to determine if the sublists which
would have been sorted if there were no errors are indeed sorted. This checking
phase results in (correctly) partitioning some of these lists into shorter lists so
that each of these shorter lists is sorted. We will now repeat the process by doing
some more merging, followed by checking etc.

For a sequence Z = < z1, z2, ..., zn > define runs(Z) as the minimum number
of sorted segments into which Z can be divided.

Observation 1. Let X and Y be two sequences such that runs(X) ≤ p and
runs(Y) ≤ q. Suppose the standard sequential merging is used to merge the two
lists and that during merging up to t errors can occur. If Z is the output, then
runs(Z) ≤ p+ q + t− 1.

Proof. The proof is by induction on t. Let X = < X1, X2, ..., Xp > which denotes
the fact that the list X is the concatenation of p lists each of which is sorted.
(When the list has a single item x, we may denote it by x, instead of < x >.
Similarly, let Y = < y1, y2, ..., yq >. Of course, when we run the standard merging
algorithm on the list X, there will be no special markers that separate the Xi’s.
It will be a single list of length Σp

i=1|Xi|, and the same is true of the list Y .
Induction base t = 0. This case is shown again by induction on p. The base

case of p = 1 is easy to show and is left as exercise. For the induction step, we
can assume that both p and q are greater than 1. Suppose that when the pointer
on X list moves for the first time past X1 (to the first element of list X2), the
pointer on the Y -list is on some element of list Yi for some i. The output list
created thus far is due to the merging of X1 and < Y1, ..., Yi−1, Pi > where Pi is
a prefix of Yi which includes the keys to the left of the Y -pointer. (Let Si denote
the rest of Yi.) By induction hypothesis, the runs on the output list produced
thus far is at most 1 + i − 1 = i. The remainder of the output list consists
of merging the lists < X2, ..., Xp > with < Si, Yi+1, ..., Yq > and by induction

A Fault-Tolerant Merge Sorting Algorithm 443

hypothesis, the number of runs of this list is at most (p− 1) + (q − i+ 1)− 1 =
p+ q− i− 1. Thus the total runs of the output list is at most i+ (p+ q− i− 1)
= p+ q − 1 and this completes the proof for t= 0.

The induction on t follows a similar line and we omit the details. •
Observation 2. If the standard Merging algorithm is used to merge two sorted
lists of combined length n, and if at most e errors occurred in comparisons, then
runs(Output) is at most e + 1.

Proof. This result is a direct consequence of from Observation 1 by taking p =
q = 1. •
Observation 3. If the standard merge-sorting algorithm produces a list Out on
an input of length n and if at most e errors occurred in pairwise comparisons,
then runs(Out) ≤ e+ 1.

Proof. We can view the standard merge-sorting as the recursive (top-down) ver-
sion. Suppose e1 and e2 are the errors occurring in the recursive calls, and e3 is
the number of errors occurring in the merging step. Suppose O1 and O2 are the
outputs of the recursive calls. Then, Out is the result of merging O1 and O2. By
induction hypothesis, runs(O1) ≤ e1 + 1,runs(O2) ≤ e2 + 1 and by Observation
1, runs(Out) ≤ e1 + 1 + e2 + 1 + e3 − 1 = e+ 1, and this completes the proof. •
Observation 4. Let X = < X1, X2, ..., Xk > be such that each Xi is a sorted list
and let Σi|Xi| = n. Suppose Xi’s are merged by applying standard merging to
merge X1 with X2, X3 with X4 etc. and repeating the process recursively until
a sequence of m sorted lists are produced. Suppose there are no errors in com-
parisons. The total number of comparisons performed is at most n�log2(k/m)�.

The proof of the above claim is obvious. We will now show the main result
of this section.

Let STANDARD MERGE(X) be a procedure which takes as input a list
X of lists X1, X2, ..., Xk and merges them pairwise and recursively repeats the
process until a single sorted list is generated. This procedure proceeds as if there
are no errors in comparisons. CHECK(L, rest) is a procedure which takes as
input a list L and an integer rest. The lists L is not necessarily sorted; the goal
of CHECK is to split L into a collection of (provably) sorted lists. CHECK
returns two entities. The first one is a collection of lists Y1, Y2, ..., Ym where
each Yi is sorted. The other is an integer current which is the number of errors
encountered during the comparisons performed by CHECK. CHECK will work
under the assumption that there can be up to rest errors in comparisons when
it starts. CHECK will repeat the comparison between two adjacent elements of
the same list by repeating the query “Is x < y?” until one of the outcomes YES
or NO is answered rest + 1 times. At this point, the outcome becomes certain.
If two adjacent elements are found to be out of place, the list is split at this
point; otherwise the algorithm proceeds to the next comparison. In both cases,
the value of current is updated by adding the number of erroneous responses.
The process is repeated for all pairs of adjacent elements in each list Yi and the
split sequence of lists is output, along with rest. We now formally present the
algorithm:

444 B. Ravikumar

Input: A set of n keys x1, ..., xn and e the error bound.
Step 1: rest← e;
Step 2: X = < x1, x2, ..., xn >
Step 3: L = STANDARD MERGE(X);
Step 4: < Y, current > = CHECK(L, rest);

while (Y is not a single list) do
begin
rest = rest− current;
L = STANDARD MERGE(Y);
< Y, current > = CHECK(L, rest);

end while;
The correctness of this algorithm is obvious. The next theroem presents the

time complexity of this algorithm.

Theorem 1. The algorithm presented above has a total time complexity of
Θ(n log n) if there are up to e = O(

√
log n) errors in comparisons.

Proof. Suppose STANDARD MERGE is called by the algorithm t times.
Then, clearly t ≤ e since the at least one error occurs during STANDARD
MERGE for the algorithm to proceed to the next iteration. Suppose the num-
ber of erroneous comparisons occurring during various calls to STANDARD
MERGE are e2, ..., et. Then clearly, e1 + e2 + ...+ et ≤ e. The number of key
comparisons performed by the t calls to STANDARD MERGE is n log n +
n log(e1 + 1) +n log(e2 + 1) + ...+n log(et + 1). The number of key comparisons
performed by CHECK is

en+ (e− e1)n+ (e− e1− e2)n+ ...+ (e− e1− ...− et)n. From the arithmetic
mean - geometric mean inequality, and from the inequality e1 + e2 + ...+ et ≤ e
it follows that {(e1 + 1)(e2 + 1)...(et + 1)} 1

t ≤ (1 + e
t). Thus the total number

of comparisons performed by the algorithm is upper-bounded by n log n +
(2t− 1)ne+ n t log(1 + e

t). If e ≤ √log n, this expression is upper-bounded by
O(n log n).

3 A More Efficient Fault-Tolerant Merge Sorting

In this section, we present a more complex variation of standard merge-sort that
can tolerate upto O(log n

log log n) errors. This algorithm is similar to the simpler
algorithm in the sense that it also repeats a standard merging followed by check
and split, until the array is provably sorted. But instead of merging all the way
to a single list, this algorithm stops the standard merging after a partial merging.
The time to stop is chosen carefully so that an improved bound can be obtained.
The algorithm and its analysis are presented below.

Theorem 2. We can adapt Merge sorting to sort n keys in time Θ(n log n) in
the worst-case so long as e is O(logn

log log n).

Proof. We will first informally describe the algorithm. Let STANDARD
MERGE(X, t) be a procedure which takes as input a listX of listsX1, X2, ..., Xk

A Fault-Tolerant Merge Sorting Algorithm 445

and merges them pairwise and them recursively repeats the process until it is
reduced to a list of t lists. Thus the final list X ′ is X ′

1, X
′
2, ..., X

′
t where X ′

1 is
the merge of X1, X2, ..., Xk, X ′

2 is the merge of Xk+1, ..., X2k etc. where k =
2log (t/m). CHECK(< X1, ..., Xk >, rest) is a procedure which takes as input a
list X of lists X1, X2, ..., Xk and an integer rest. The lists X1, X2, ... , Xk are not
necessarily sorted and the goal of CHECK is to split Xi’s if necessary so that
if the final output of CHECK is X ′

1, X
′
2, ..., X

′
r then each of the lists is sorted.

CHECK will work under the assumption that there may be up to rest errors
in comparisons when it starts. CHECK will repeat the comparison between two
adjacent elements of the same list by repeating the query “Is x < y?” until one of
the outcomes YES or NO is returned rest+ 1 times. At this point, the outcome
becomes certain. If two adjacent elements are found to be out of place, the list
is split; otherwise the algorithm proceeds to the next comparison. In both cases,
the value of rest is updated by subtracting the number of faulty outcomes. The
process is repeated for all pairs of adjacent elements in all the lists and the split
sequence of lists is output. Finally, let SIMPLE MERGE(A,B, e) denote the
standard merging algorithm to merge lists A and B, but it handles upto e errors
in comparisons by query repetition. It performs each comparison required by
the error-free simple merging algorithm (no fancy algorithm like Hwang and Lin
[5]) but repeats each comparison sufficiently many times so that the outcome
is determined with certainty. Thus the number of comparisons it performs is
at most O((|A| + |B|)e). The main algorithm, which is presented below uses
the three algorithms described above as follows. It starts with the original se-
quence of n keys and merges them using STANDARD MERGE until

√
n lists

are created. Then it uses CHECK. It repeats the process each time stopping
with

√
t lists if it started with t lists and then performs a CHECK. This phase

concludes when CHECK returns a list with at most e lists. Now it switches
to SIMPLE MERGE to repeatedly merge adjacent pairs until a single list is
created.

Input: A set of n keys x1, ..., xn and e the error bound.
Step 1: for i← 1 to n do Xi = xi.
Step 2: m← n ; rest← e;
Step 3: X = < X1, X2, ..., Xm >
Step 4: while (m ≥ e) do

begin t← �√m�;
STANDARD MERGE(X, t);
(< Y1, Y2, ..., Ym >, current)← CHECK(X, rest);
rest = rest− current;
X = < Y1, Y2, ..., Ym >;

end while;
Step 5: Merge the lists Y1, Y2, ..., Ym into a single list using SIMPLE

MERGE.

Correctness of the algorithm: First observe that the following invariant ”each Xi

is sorted” holds for the output < Y1, Y2, ..., Ym > of CHECK. Partial correctness
of the algorithm readily follows from this since when the while loop of Step 4

446 B. Ravikumar

terminates, each Yi is sorted. In Step 5, we use SIMPLE-MERGE to sort a set
of sorted lists using an algorithm whose correctness is obvious. It is also easy
to show that the while loop of Step 4 terminates. (In fact, there are at most e
iterations of the while loop during which runs of X may increase. But in any
case, the length can never increase beyond n. During the rest of the iterations,
value of m decreases. From this it follows that the while loop terminates.
Analysis: From the observations presented in Section 2, it follows that there
are at most n

1
2i−1 +e sorted lists just prior to the i-th iteration of the while loop

in Step 4. First we will show that the number of iterations of Step 4 performed
by the algorithm is at most O(lg lg n). The reason is as follows: If the number
of lists at the beginning of an iteration is k, it is at most

√
k + e at the end.

Thus the number of iterations i(n) is given by the recurrence inequality i(n) ≤
1 + i(

√
n + e). Since e is O(logn

log log n), i(n) is upper-bounded by j(n) given by
the recurrence inequality j(n) ≤ 1 + j(2

√
n). The latter function j(n) is easily

seen to be upper-bounded by O(log log n) and so is i(n).
The number of comparisons performed by the call to STANDARD

MERGE(X, t) during the i-th iteration is given by:

nlog

(
n

1
2i−1 + e

n
1
2i

)
≤ n log n

2i
+ 1

Thus the total number of comparisons performed by all the calls to STAN-
DARD-MERGE in Step 4 is upper-bounded by n log n(1 + 1/2 + 1/22 + ...) + i
(where i is the number of iterations) = O(n log n).

The total number of comparisons performed by CHECK is easily seen as
(e+ 1) n log log n) = O(n log n) since e is O(logn

log log n).
Finally, consider Step 5. Suppose we use SIMPLE-MERGE to merge k sorted

lists with a total of n keys into a single sorted list during which e errors can occur,
the total number of comparisons performed by the algorithm is O(enlog k). In
our case, k = e = O(logn

log log n), and so O(enlog k) is O(n log n). Thus the total
number of key comparisons performed by the algorithm is O(n log n).

4 Conclusions and Open Problems

The main problem that remains open is whether there is a natural adaptation
of Merge-Sorting that can sort in O(n log n) in the presence of O(log n) faults.
It would also be of interest to implement the two algorithms and compare them
experimentally. Designing fault-tolerant versions of other comparison-based al-
gorithms may also be a general area of interest. Finally, we would like to find
applications for fault-tolerant algorithms for sorting besides the ones listed in
the introduction.

A Fault-Tolerant Merge Sorting Algorithm 447

References

1. A. Bagchi. On sorting in the presence of erroneous information. Information Pro-
cessing Letters, 43(4):213-215, 28 September 1992.

2. R.S.Borgstrom and S.R. Kosaraju, Comparison-based search in the presence of
errors, Proc. of ACM Symposium on Theory of Computing (1993), pp. 130-136.

3. T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to Algorithms, 2nd
Edition, MIT Press 2001.

4. U.Feige, P.Raghavan, D.Peleg and E.Upfal, Computing with noisy information,
Proc. IEEE Symposium on Theoretical Computer Science (1994), pp. 1001-1008.

5. D. Knuth, Art of Computer Programming, Volume 3. Sorting and Searching, 2nd
Edition, Addison-Wesley, 1998.

6. K.B.Lakshmanan, B. Ravikumar and K. Ganesan, Coping with errors while sorting.
IEEE Transactions on Computers 40 (9), (1991), pp. 1081-1084.

7. P.M.Long, Sorting and searching with a faulty comparison oracle. UCSC-CRL-92-
15 (available electronically as ucsc-crl-92-15.ps.Z)

2-Compromise Usability
in 1-Dimensional Statistical Databases

Ljiljana Branković1 and Jozef Širáň2

1 School of Electrical Engineering and Computer Science
The University of Newcastle

NSW 2308, Australia
lbrankov@cs.newcastle.edu.au

2 Department of Mathematics, SvF
Slovak University of Technology

Radlinského 11
813 68 Bratislava, Slovakia
siran@lux.svf.stuba.sk

Abstract. Many believe that data mining poses the biggest privacy
challenge in the next decade. In this paper we concentrate on threats
to privacy arising from the possibility of combining aggregate data to
deduce the confidential individual values. We determine the maximum
number of sum totals that can be disclosed without leading to a 2-
compromise in a 1-dimensional database for range queries.

Keywords: privacy in data mining, statistical database security, com-
binatorics, discrete mathematics.

1 Introduction

Ontario Privacy Commissioner Ann Cavoukian said in her report “Data mining:
Staking a claim on your privacy” that data mining may be the most fundamental
privacy challenge in the next decade.

Vast amounts of personal information are collected in the process of bank
transactions, credit card payments in supermarkets, making phone calls, using
reward cards, visiting doctors, renting videos and cars, to mention just a few.
All this data is typically used for data mining and statistical analysis and is very
often sold to other companies and organisations.

A breach of privacy occurs when individuals are not aware that the data has
been collected in the first place, has been passed onto the other companies or
has been used for the purposes other that the one for which it was originally
collected.

Even when individuals approve of using their personal records for data min-
ing and statistical analysis, for example for medical research on their diseases, it
is still assumed that only aggregate values will be made available to researchers
and that no individual values will be disclosed. To ensure this, it is not enough
to disable access to individual records, as it is very often possible to compute

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 448–455, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

2-Compromise Usability in 1-Dimensional Statistical Databases 449

individual values from a suitable combination of aggregate values. Possible so-
lutions to this problem include adding noise to original data, so that disclosing
a perturbed individual value does not imply a compromise. Another solution is
to reject some statistical queries and disclose only those that, even when com-
bined, do not lead to a compromise. By a compromise we mean a disclosure of
a confidential individual value; more generally, by a k-compromise we mean a
disclosure of an aggregate value based on k or less confidential individual values.

We present a new result regarding 2-compromise in 1-dimensional databases.
We consider sum range queries, as they are the most common queries. Range
queries are based on records with attribute values in a specified range. An ex-
ample is a sum of salaries of all employees between 25 and 35 years of age. A
1-dimensional database of order n may be represented by a set {1, . . . , n} and
range queries by subsets of the form {b, b + 1, . . . , e}, 1 ≤ b ≤ e ≤ n. In what
follows we shall refer to range queries as intervals.

In this paper we answer the following question: To ensure that a 1-dimensional
database is 2-compromise free, what percentage of range sum queries can we
safely answer? Similar questions has been answered for k-compromise, where k is
odd in [2]; for general queries in [4,3]; and for 1-compromise and multidimensional
databases in [5,1].

2 Intervals and Threads

For any positive integer n let [n] denote the set {1, 2, . . . , n}. Any subset of [n]
of the form {b, b + 1, . . . , e}, b ≤ e, will be called an interval and denoted by
[b, e]. The integers b and e are the beginning and the ending of the interval and
e− b+ 1 is its length.

To each interval I = [b, e] ⊂ [n] we now associate the n-dimensional vector
ωI = (ω1, ω2, . . . , ωn) such that ωi = 1 for b ≤ i ≤ e and ωi = 0 otherwise.
A family I of intervals in [n] is said to be k-compromise free if each linear
combination of the vectors ωI , I ∈ I, is either a zero vector or contains more
than k nonzero coordinates. In other words, the family I is k-compromise free if
the only linear combination of the vectors ωI (I ∈ I) containing no more than
k non-zero entries is the zero vector.

If I1 = [b1, e1] and I2 = [b2, e2] are intervals such that b2 = e1 + 1 then we
say that I1 and I2 are consecutive. In such a case I = I1 ∪ I2 is the sum of I1
and I2, denoted by I = I1 + I2. (Note that a union of two intervals is an interval
also in the case when the two intervals overlap, but we will refer to a sum only
in the sense defined above.) The definition of consecutiveness and sum can be
extended in a natural way to more than two intervals. If I = I1 +I2 then we also
write I2 = I − I1 and I1 = I − I2; these are the only instances when difference
symbol for intervals will be used.

A family I of intervals in [n] is closed if for any two intervals I, J ∈ I for
which the sum (or the difference) is defined, we also have I+J ∈ I (or, I−J ∈ I).
For any such closed family I there exists a unique subfamily Io of I with the
following two properties:

450 Ljiljana Branković and Jozef Širáň

(1) each interval in I \ Io can be obtained as a sum of intervals in Io ; and
(2) no interval in Io is a sum of two or more members of Io.

Indeed, for each positive integer b ≤ n that is a beginning of some interval
in I let I(b) be such an interval of the smallest length. Then Io must contain
all the intervals I(b). On the other hand, it is easy to see that the set of such
intervals satisfies (1) and is thus the entire Io. We will call Io the generating set
of I.

Let I be a closed family of intervals in [n]. We will say that a subset T of Io

forms a thread if T consists of consecutive intervals (equivalently, if the disjoint
union of all intervals in T is an interval again). We say that S = {T1, T2, . . . , Tr}
is a thread decomposition of Io if the set Io is a disjoint union of the threads
Ti ∈ S and if no thread is a union of two or more threads in S. (We note that a
thread decomposition is uniquely determined up to the numbering of threads.)

From now on let I be a closed, 2-compromise free family of intervals in [n].
Let us fix a thread decomposition S = {T1, T2, . . . , Tr} of the generating set Io.
Note that the assumption that I is 2-compromise free implies that the length of
each interval in Io is at least three and thus no interval in Io can end with the
element 1 or 2. For each thread Ti, 1 ≤ i ≤ r, let Bi = {bi1, bi2, . . . , biti

} denote the
set of beginnings of intervals in Ti, and let Ei = {ei

1, e
i
2, . . . , e

i
ti
} denote the set of

endings of intervals in Ti, where ti denotes the number of intervals in Ti; we will
call ti the length of the thread Ti. Let E∗

i = {bi1 − 1} ∪Ei and let E∗ = ∪r
i=1E

∗
i .

Similarly, let B∗
i = Bi ∪ {ei

ti
+ 1}.

For each thread Ti, 1 ≤ i ≤ r, we define a set Ci as follows. For each j,
1 ≤ j ≤ ti, Ci contains ei

j if every integer greater than ei
j and less than or equal

to n is in E∗; otherwise Ci contains ei
j + 1. Additionally, if every integer greater

than bi1 − 1 and less than or equal to n is in E∗, then bi1 − 1 is in Ci, otherwise
bi1 is in Ci. The reader is invited to check that for each i, 1 ≤ i ≤ r, Ci ⊂ [n]
and |Ci| = ti + 1.

Lemma 1. For each i, j ≤ n, i �= j, the sets Ci and Cj are disjoint.

Proof. As the intervals in Ti and Tj are all members of the generating set Io,
no two of them can begin or end with the same element. Additionally, the first
interval in Ti cannot start with ej

tj
+ 1 because then Ti ∪ Tj would be a thread

itself, contrary to the definition of a thread decomposition. Similarly, the last
interval in Ti cannot end with bi1− 1. Thus, if the sets Ci and Cj intersect in an
element c then, without loss of generality, c ∈ B∗

i , that is, c is either ei
ti

+ 1 or
a beginning of an interval in the thread Ti and, at the same time, c ∈ E∗

j , that
is, c is either bj1 − 1 or an ending of an interval in the thread Tj . This implies
that each integer greater than c (and less or equal to n) is an ending of some
interval in Io. But then, by the definition of Ci, c is not in Ci, which contradicts
our initial assumption that if the sets Ci and Cj intersect in an element c. ��

Let s be the smallest integer with the property that every integer greater then
or equal to s and less then or equal to n is in E∗. If such integer does not exist,
let s = n+1. Note that every element u < s in Ci, 1 ≤ i ≤ r is a beginning of an

2-Compromise Usability in 1-Dimensional Statistical Databases 451

interval in Io, or u = ej
tj

+ 1 for some j, 1 ≤ j ≤ r. Similarly, every element v,
v ≥ s in Ci, 1 ≤ i ≤ r is an ending of some interval in Io, or v = bj1−1 for some j,
1 ≤ j ≤ r. For 1 ≤ i ≤ r let B+

i = {b+ 1; b ∈ Bi} and let E−
i = {e− 1; e ∈ EI}.

Since the length of each interval in Io is at least three, the sets Bi, B+
i and Ei are

mutually disjoint, and so are the sets Bi, E−
i and Ei. For any j such that 1 ≤ j ≤

r let Fj = Bj∪(B+
j ∩{1, . . . , s−1})∪(E−

j ∩{s, . . . , n})∪Ej∪({bj1−1, ej
tj

+1}∩[n]).

Lemma 2. For each i ≤ r, i �= j, we have |Ci ∩ Fj | ≤ 1.

Proof. Let b < b′ be two elements in Ci ∩ Fj .
Assume first that b, b′ < s, that is, both b and b′ are beginnings of intervals

in Ti, or b ∈ Bi and b′ = ei
ti

+ 1. As Ti is a thread, it follows in both cases
that the interval I = [b, b′ − 1] is a sum of intervals in Ti. But at the same time
we have b, b′ ∈ Fj , which means that there exists an interval J that is a sum
of intervals in Tj and has the form J = [c, d] where c ∈ {b − 1, b, b + 1} and
d ∈ {b′ − 2, b′ − 1, b′}. It follows that the symmetric difference of the intervals
I and J contains at most two elements, which contradicts the assumption that
I is a 2-compromise free family (as the vector ωI − ωJ would have at most two
non-zero coordinates).

We now assume that b, b′ ≥ s, that is, both b and b′ are in Ei, or b′ ∈ Ei and
b = bi1 − 1. It follows that there are intervals I and J in I, where I = [b+ 1, b′]
and J = [c, d], c ∈ {b, b+ 1, b+ 2} and d ∈ {b′− 1, b′, b+ 1′}, and we again arrive
at the contradiction.

It remains to consider the case when b < s and b′ ≥ s. We arrive at the
same contradiction with considering the intervals I = [b, b′] and J = [c, d], where
c ∈ {b− 1, b, b+ 1} and d ∈ {b′ − 1, b′, b′ + 1}. ��

In our thread decomposition S = {T1, T2, . . . , Tr} of the generating set Io ⊂ I
of intervals in [n] we may assume without loss of generality that T1 contains an
interval beginning with 1. Moreover, if n does not appear in an interval in T1 we
may assume that the numbering is chosen in such a way that n appears as end
of an interval in the thread T2. For the ease of formulation of the next result let
ε1 = 2 and ε2 = 0 if the element n appears in the thread T1, and ε1 = ε2 = 1 if
n appears in T2; let εi = 0 for 3 ≤ i ≤ r.
Lemma 3. Let the generating set Io have a thread decomposition into r ≥ 2
threads with the properties listed above. Then, for 1 ≤ j ≤ r, the thread lengths
ti satisfy the following system of linear inequalities:

3tj +
∑
i �=j

ti ≤ n− 2 + εj .

Proof. Consider first the sets Fj introduced before Lemma 2 and observe that
|Fj | = 3tj + 2 − εj for each j, 1 ≤ j ≤ r. Recalling Lemma 1, we know that
for 1 ≤ i ≤ r, i �= j, the sets Ci are pairwise disjoint. Moreover, by Lemma 2
we have |Fj ∩ Ci| ≤ 1 for any i �= j. Using a routine set-theoretic estimate we
obtain:

452 Ljiljana Branković and Jozef Širáň

n ≥ |Fj ∪ (∪i �=jCi)| ≥ |Fj |+
∑

i �=j |Ci| −
∑

i �=j |Fj ∩ Ci|
≥ |Fj |+

∑
i �=j(ti + 1)−∑i �=j 1

= 3tj + 2− εj +
∑

i �=j ti

which is equivalent with the inequality in the statement of the result. ��

3 Main Result

Our goal is to find the largest cardinality µ2(n) of a closed 2-compromise free
family I of intervals in [n]. If S = {T1, T2, . . . , Tr} is a thread decomposition of
the generating set Io with properties as above, then clearly |I| =

∑r
i=1

(
ti+1

2

)
where ti is the length of the thread Ti. Let τ2(n) = max

∑r
i=1

(
ti+1

2

)
where the

maximum is taken over all r and over all r-tuples (t1, t2, . . . , tr) of non-negative
integers satisfying the inequalities in Lemma 3 either for ε1 = 2 or for ε1 = 1. (In
fact, the numbers ti appearing in Lemma 3 are all positive, but allowing them
to be equal to zero - which is equivalent to allowing “empty threads” - will not
affect our computations.) Clearly, µ2(n) ≤ τ2(n); in what follows we determine
τ2(n) and show that τ2(n) = µ2(n) for each odd n ≥ 1 and each even n ≥ 52.

Before we do so let us reformulate the problem of finding τ2(n) in a more
uniform way. Letting si = ti − εi/2 for 1 ≤ i ≤ r, the inequalities of Lemma 3
transform to

3sj +
∑
i �=j

si ≤ n− 3 . (1)

Let ε = ε1 ∈ {1, 2}; then ε2 = 2− ε. Further, let

fε = fε(s1, s2, . . . , sr) =
∑
i≤r

si(si + 1) + εs1 + (2− ε)s2 + ε/2 + 1 . (2)

An easy computation shows that 2τ2(n) is determined by

2τ2(n) = max
r

max
ε

max fε (3)

where the third maximum is taken for ε = 2 over all r-tuples si ≥ 0 which are
integral solutions of (1), and for ε = 1 over all solutions of (1) such that 2s1 and
2s2 are odd integers and the remaining si are integers. We emphasize that the
value of fε is an even integer for all such admissible r-tuples (s1, s2, . . . , sr).

Theorem 1. We have τ2(n) =
(n + 1)2/16� for each odd n ≥ 1 and τ2(n) =
�n2/16 for each even n ≥ 52.

Proof. To outline our strategy, we first solve the following rational relaxation
problem: Determine the maximum 2θ2(n) of the function f2 from (2) over all r
and over a region R consisting of all r-tuples (s1, s2, . . . , sr) of rational numbers
si ≥ 0 that satisfy the inequalities (1). The function f2 is convex, and as we
know from the general theory, for any fixed r the maximum of f2 taken over

2-Compromise Usability in 1-Dimensional Statistical Databases 453

our (convex) region R occurs in one of the corners of R. Once we know θ2(n),
it is easy to see that we have an upper bound of the form τ2(n) ≤
θ2(n)�. We
then show that equality holds there for all odd n, and finally take care about
the more complicated case when n is even.

The form of the function f2 suggests that for the purpose of determining θ2(n)
by means of computing corner coordinates and the corresponding values of f , we
may without loss of generality assume that s1 ≥ s2 ≥ . . . ≥ sr. Corners of the
region R correspond to solutions of linear systems obtained from the 2r defining
inequalities of R by choosing r of them and turning them into equations. Thus,
if a corner (s1, s2, . . . , sr) of R has exactly q nonzero coordinates (0 ≤ k ≤ r)
then sq+1 = . . . sr = 0 and 3sj +

∑
i �=j si = n − 3 where 1 ≤ j ≤ q. It follows

that s1 = . . . = sq = (n− 3)/(q + 2), and then

f2(s1, s2, . . . , sr) = (n− 3)2q/(q + 2)2 + n− 1 . (4)

The function g(n, q) = (n − 3)2q/(q + 2)2 + n − 1 is maximised (for any fixed
n) at q = 2, and g(n, 2) = (n − 3)2/8 + n − 1 = (n + 1)2/8. We therefore have
2θ2(n) = (n+ 1)2/8, and so

τ2(n) ≤
θ2(n)� =
(n+ 1)2/16� . (5)

To show that, in fact, τ2(n) =
(n+1)2/16� for all odd n we first consider the
case when n = 4m+ 3, m ≥ 0. Then for r = 2 the pair s1 = s2 = m is an integer
solution of the inequalities (1), and we have f2(m,m)/2 = (m+1)2 = (n+1)2/16.
If n = 4m+ 1 then, for r = 2 again, s1 = s2 = m− 1/2 is an admissible solution
of (1) but this time for ε = 1, with f1(s1, s2) = m(m+ 1) =
(n+ 1)2/16�.

The case when n is even requires a further analysis. It can be verified that
both values g(n, 1)/2 and g(n, 3)/2 are strictly smaller than �n2/16+ 1 for all
n = 4m, where m ≥ 13 and all n = 4m+ 2 where m ≥ 10. As g(n, q) is for each
fixed n a decreasing function of q when q > 2, to show that τ2(n) = �n2/16 for
even n ≥ 52 it is sufficient (by (4) and the preceding fact) to restrict to r = 2
and to admissible pairs (s1, s2) with s1 ≥ s2 > 0. We will now have a more close
look at the set of admissible pairs for the maximisation problem (3) when r = 2.

If n = 4m, the admissible pairs (s1, s2) are determined by inequalities 3s1 +
s2 ≤ 4m−3 and s1 +3s2 ≤ 4m−3, from which we have s1 +s2 ≤ 2m−3/2. But
note that for an admissible pair the sum s1+s2 is always an integer, and therefore
s1 + s2 ≤ 2m−2. Assuming s1 ≥ s2 we may replace the two original inequalities
with a new set, namely, 3s1+s2 ≤ 4m−3 and s1+s2 ≤ 2m−2 where s1 ≥ s2 ≥ 0.
The admissible set for maximisation problem (3) for r = 2 now consists of all
pairs (s1, s2) defined by this new set of inequalities (all other conditions are as
described before the formulation of Theorem 1). Considering the corresponding
rational relaxation problem for f2 again, we may restrict to corners whose both
coordinates are positive. With s1 ≥ s2 there is just one such corner, namely,
(m− 1/2,m− 3/2), and it gives the value of f2 = 2m2 + 3/2. (Note that for the
problem (3) this corner is admissible for f1 but not for f2; however, now we are
dealing with the relaxation problem for f2 where there is no guarantee that the

454 Ljiljana Branković and Jozef Širáň

values of f2 are even integers.) Recalling the analysis in the previous paragraph,
for n = 4m ≥ 52 it now follows that τ2(4m) ≤
f2/2� = m2 = �n2/16. In fact,
we have τ2(n) = �n2/16 for n = 4m ≥ 52, as is shown by evaluating f1 at the
above corner: f1(m− 1/2,m− 3/2) = 2m2 = �n2/16.

Similarly, if n = 4m + 2 and r = 2 then the set of admissible pairs (s1, s2)
for the problem (3) is determined by 3s1 + s2 ≤ 4m − 1 and s1 + s2 ≤ 2m − 1
where s1 ≥ s2 ≥ 0. The rational relaxation problem for maximising f2 over that
region has solution at the corner (m,m − 1) with f2 = 2m2 + 2m + 2. Again,
taking into account the analysis done before, for m ≥ 10 we obtain τ2(4m+2) ≤
f2/2 = �n2/16. The pair (m,m − 1) shows that, in fact, τ2(n) = �n2/16 for
n = 4m+ 2 ≥ 42. ��

Recall that our goal is to find the largest cardinality µ2(n) of a closed 2-
compromise free family I of intervals in [n]. We saw earlier that µ2(n) ≤ τ2(n)
for all n; now we prove that we have equality here in most cases.

Theorem 2. We have µ2(n) =
(n + 1)2/16� for each odd n ≥ 1 and µ2(n) =
�n2/16 for each even n ≥ 52.

Proof. By Theorem 1 it is sufficient to find instances of closed 2-compromise
free families of cardinality τ2(n) for the corresponding values of n. We will do so
by describing thread decompositions of the generating sets Io; in all cases there
will be just two threads T1 and T2.

If n = 4m + 1 then we set T1 = {[1, 4], [5, 8], . . . , [4m − 3, 4m]} and T2 =
{[3, 6], . . . , [4m − 5, 4m − 2], [4m − 1, 4m + 1]}. For n = 4m + 3 we define T1 =
{[1, 4], [5, 8], . . . , [4m−3, 4m], [4m+1, 4m+3]} and T2 will be the same as before.
If n = 4m + 2 then we let T1 = {[1, 4], . . . , [4m − 7, 4m − 4], [4m − 3, 4m −
1], [4m, 4m + 2]} and let T2 be as above. Finally, for n = 4m we will have
T1 = {[1, 4], . . . , [4m − 7, 4m − 4], [4m − 3, 4m − 1]} and T2 = {[3, 6], . . . , [4m −
9, 4m− 6], [4m− 5, 4m]}.

The reader is invited to check that the cardinalities of the (closed) families of
intervals generated by the threads described above are equal to τ2(n) and, more
importantly, that all these families are 2-compromise free. ��

We note that the above extremal families are by no means unique.
We define a usability for a range database as a ratio of the maximum number

of range queries that can be answered without a compromise and a total number
of range queries. Then, the usability for 2-compromise is U(n) = 2�(n+1)2/16�

n(n+1) for

each odd n ≥ 1 and U(n) = 2�n2/16	
n(n+1) for each even n ≥ 52.

4 Conclusion

In this paper we determined the usability for 2-compromise in 1-dimensional
range databases of order n for each odd n and each even n ≥ 52. We note that
the result is asymptotically equal to the one for 3-compromise. The question
remains whether the usability for each k = 2l, l ≥ 1 is asymptotically equal to
the usability for k = 2l + 1.

2-Compromise Usability in 1-Dimensional Statistical Databases 455

Acknowledgements

The authors would like to thank an anonymous referee for pointing out a few
inaccuracies in an earlier version of the paper.

References

1. L. Branković, P. Horak and M. Miller. An optimization problem in statistical
database security. SIAM Journal on Discrete Mathematics, Volume 13, Number 3,
pages 346–353, 2000.

2. L. Branković, M. Miller and J. Širáň. Range query usability of statistical databases.
To appear in International Journal of Computer Mathematics.

3. J. R. Griggs. Database security and the distribution of subset sums in Rm. Graph
Theory and Combinatorial Biology, (Balatonlelle, 1996).

4. J. R. Griggs. Concentrating subset sums at k points. Bulletin of the ICA, Volume 20,
pages 65–74, 1997.

5. P. Horak, L. Branković and M. Miller. A combinatorial problem in database security.
Discrete Applied Mathematics, Volume 91, Number 1-3, pages 119–126, 1999.

An Experimental Study and Comparison
of Topological Peeling and Topological Walk

Danny Z. Chen1,�, Shuang Luan1,�, and Jinhui Xu2,��

1 Department of Computer Science and Engineering, University of Notre Dame,
Notre Dame, IN 46556, USA
{chen,sluan}@cse.nd.edu

2 Department of Computer Science and Engineering, State University of New York
at Buffalo, 201 Bell Hall Box 602000, Buffalo, NY, 14260, USA

jinhui@cse.buffalo.edu

Abstract. In this paper, we present an experimental study comparing
two algorithms, topological peeling and topological walk, for traversing ar-
rangements of planar lines. Given a set H of n lines and a convex region
R on a plane, both topological peeling and topological walk sweep the
portion AR of the arrangement of H inside R in O(K +n log(n+r)) time
and O(n + r) space, where K is the number of cells of AR and r is the
number of boundary vertices of R. In our study, we robustly implemented
these two algorithms using the LEDA library. Based on the implemen-
tation, we carried out experiments to conduct several comparisons, such
as the arrangement traversal fashions, memory consumption, and exe-
cution time. In general, topological peeling exhibits a better control on
the propagation of its sweeping curve (called the wavefront). For mem-
ory consumption, two types of measures, logical and physical memory,
were examined. Our experiments showed that although both algorithms
use nearly the same amount of logical memory, topological peeling could
use twice as much physical memory as topological walk. For execution
time, experiments revealed an interesting phenomenon that topological
peeling has a 10% to 25% faster execution time than topological walk in
most cases. Our analysis of this phenomenon indicates that the execu-
tion times of topological peeling and topological walk are both sensitive
to the ratio of the lower input lines to all input lines. When the ratio of
the lower lines to all input lines is around 85%, the two algorithms have
roughly the same amount of execution time. Under this ratio, topologi-
cal peeling considerably outperforms topological walk; above this ratio,
topological walk slightly outperforms topological peeling.

1 Introduction

The focus of this paper is on traversing arrangements of lines on the plane. Com-
puting or sweeping the arrangement of a set of n planar lines is a fundamental
� The research was supported in part by the National Science Foundation under Grant

CCR-9988468.
�� The research was supported in part by a faculty start-up fund from the CSE dept.,

SUNY at Buffalo, and an IBM faculty partnership award.

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 456–466, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Topological Peeling and Topological Walk 457

problem in computational geometry [11], and finds applications in solving many
problems [3,4,9,10,11,12,21,23]. Extensive research has been done on sweeping
the arrangement of planar lines, and quite a few interesting algorithms and tech-
niques have been proposed [3,4,6,9,11,12,13,15,23]. A common feature of these
techniques is to use a geometric curve (e.g., a polygonal line) to guide the sweep
of the arrangement, and enumerate the faces of the arrangement (i.e., vertices,
edges, or cells) based on the order of their intersections with the sweeping curve.

Edelsbrunner and Guibas [12] used a y-monotone curve to sweep the ar-
rangement, resulting in a powerful topological sweep algorithm for computing
the arrangement on the whole plane; their algorithm takes O(n2) time and O(n)
space for sweeping an arrangement A of n planar lines, which is optimal in both
the time and space complexity. To efficiently traverse a portion of an arrange-
ment inside a convex region on the plane, Asano, Guibas, and Tokuyama [3]
presented an interesting output-sensitive topological walk algorithm, which com-
putes the portion AR of a planar arrangement A inside a convex region R in
O(K + n log(n+ r)) time and O(n+ r) space, where K is the number of cells of
AR and r is the number of boundary vertices of R.

One unfavorable feature of topological walk [3] is that its traversal can visit
the exterior of the region R; hence during the execution of the algorithm, if
one removes the elements of the traversal associated with the outside of R, the
traversed portion inside R can be disconnected (e.g., the swept cells may form
multiple connected components). This feature can cause undesirable difficulty
for solving certain optimization problems, such as the shortest path problem,
on planar arrangements [8,9]. Another unfavorable feature is that topological
walk reports only the lower chain of each cell (or the set of bounding lines
below the cell) to identify the cell. In solving some CAD problems [22] and
geometric optimization problems [2,7,20], the entire boundary of each cell in an
arrangement is needed (e.g., used as the constraints for certain special non-linear
optimization problem instance). Thus, such a “weak” representation of cells may
not provide sufficient information for some applications.

Chen, Luan, and Xu recently presented another algorithm [9], called topolog-
ical peeling, for sweeping the portion of an arrangement inside a convex region.
Their algorithm achieves the same optimal time and space bounds as topological
walk, and avoids the two drawbacks of topological walk mentioned above. More
interestingly, topological peeling sweeps the arrangement in a wave-propagation
fashion, i.e., the swept cells always form a single connected component, with a
double-wriggle curve as the wavefront. This nice property enables them to define
a convex region (called anchor region) in the traversed portion for each swept
vertex, which allows the shortest path problem on the arrangement of n lines to
be solved in O(n2) time and O(n) space [8,9].

Since both topological peeling and topological walk can sweep a portion of an
arrangement optimally, it will be interesting to determine which algorithm actu-
ally performs better in different scenarios. It is likely that such an understanding
can be used to guide the applications of the two algorithms. In this paper, we
report an experimental study on these two algorithms and compare their per-

458 Danny Z. Chen, Shuang Luan, and Jinhui Xu

formance. We implemented the two algorithms by using the LEDA 4.1 Library,
and conducted the comparison based on a large set of randomly generated ar-
rangements (with up to 5000 lines for an arrangement). Our experiments mainly
compare four aspects of the two algorithms: various coding issues, arrangement
traversal fashions, execution time, and memory consumption. We also analyze
the main reasons causing the difference in their performance.

Our experiments show that the executable files of both algorithms have
roughly the same size, and their implementations need comparable efforts. A
major difficulty encountered in our implementation is to make the programs
numerically stable. After applying some interesting numerical methods to im-
plicitly represent the arrangement vertices (i.e., intersection points of the input
lines), we are able to make both programs numerically robust.

Based on our experiments, the execution time and memory consumption
of both algorithms very much observe the bounds predicted by the theoretical
analysis. That is, the execution time is roughly a linear function of the number
of cells inside the convex region R and the memory consumption is linearly
proportional to the number of lines and the size |R| of R.

We measure two types of memory usage, namely the logical and physical
memory used, in our experiments. By logical memory, we mean the sum of the
basic space units (such as the number of tree nodes, pointers, the size of stacks,
etc.) used by the algorithms. Experiments show that the maximum consumptions
of the logical memory by the two algorithms during their executions are nearly
the same as predicted by the theoretical analysis, while the physical memory
used by topological peeling could be twice as much as that in topological walk
due to the use of more pointers in the implementation.

For the execution time comparison, an interesting phenomenon observed in
our experimentation is that although the topological peeling algorithm appears
to be more sophisticated than the topological walk algorithm, the execution
time of topological peeling is actually 10% to 25% faster than that of topological
walk in most cases. We attribute the better execution time of topological peeling
over topological walk to the ability of topological peeling to focus its search
and exploration on relatively local structures of an arrangement. In topological
peeling, two types of input lines, called upper lines and lower lines (see Section
2.1 for their definitions), are distinguished, and the induced arrangement of the
upper (resp., lower) lines is swept by using a lower (resp., upper) horizon tree.
Topological peeling repeatedly chops or “peels” a lower cell (i.e., a cell in the
arrangement of the lower lines), called the current cell, and builds a local lower
horizon tree for those upper lines intersecting the current cell. The sweep of the
arrangement portion inside the current cell is thus restricted to searching a much
smaller local tree, rather than a more complicated global tree as in topological
walk. This difference, along with several other major differences (to be shown
later), makes the execution time of topological peeling sensitive to the ratio of
the number of lower lines over the number of all input lines in the arrangement.
Our experimentation shows that when this ratio is around 85% (i.e., the number
of lower lines is 85% of the total input lines), topological peeling has roughly the

Topological Peeling and Topological Walk 459

same execution time as topological walk. When the ratio is < 85%, topological
peeling in general considerably outperforms topological walk. When this ratio is
> 85%, topological walk often has a slightly better performance.

2 Overview of Topological Walk and Topological Peeling

In this section, we first give some preliminaries, and then outline the main steps
of topological walk [3] and topological peeling [9]. For detailed discussions of
these two algorithms, we recommend readers their original papers.

2.1 Preliminaries

Let H be a set of n planar lines, and A(H) be the arrangement of H. Let R be
a polygonal convex region, and AR denote the portion of A(H) inside R. The
boundary B(R) of R has r vertices. A line l ∈ H is called an upper (resp., lower)
line if the left intersection of l with B(R) is on the upper (resp., lower) chain
of B(R). Let HU (resp., HL) denote the set of upper (resp., lower) lines in H.
The arrangement of HU (resp., HL) inside R is called the upper (resp., lower)
arrangement, denoted by AU

R (resp., AL
R).

A cut C of AR induced by H [3,9], roughly speaking, is a list of edges on
B(R) or H such that (1) each line l ∈ H contributes exactly one edge to C,
(2) any two consecutive edges in C are incident to a cell of A(H) with one edge
above the other, and (3) the removal of C disconnects AR. For any arrangement
AR, there always exists an initial cut C0 such that each edge e of C contributed
by a line l ∈ H contains the left intersection of l with B(R).

For a given cut C, one can construct a horizon tree by extending each edge
in C to the right along its supporting line or the boundary B(R). When two
extending edges meet, one of the two edges stops, and this process results in a
tree. The tree obtained by always stopping the extending edge with a smaller
(resp., larger) slope is called an upper (resp., lower) horizon tree of C denoted
by TU (C) (resp., TL(C)). The horizon tree corresponding to the initial cut C0
partitions the convex region R into a set of connected subregions, called gulfs.
For a given AR containing both the upper and lower lines, the upper horizon
tree TU (C0) contains some dummy edges, each of which is an edge outside and
above R and connected to TU (C0) at the left intersection of an upper line with
B(R). A twig in a horizon tree T (C) is either the root of T (C) or a branch node
in T (C) at which two cut edges of C meet.

In a horizon tree T (C), given a twig w formed by two cut edges ei and ei+1
of C with ei stopping ei+1, an elementary step on w is to replace ei and ei+1 by
two other edges e′

i+1 and e′
i, where e′

i+1 and e′
i are the right neighboring edges

of ei and ei+1 on their corresponding supporting lines. Also, the stopped edge
ei+1 is extended to the right of w along its supporting line until it hits T (C).

2.2 Main Steps of Topological Walk and Topological Peeling

To sweep AR, topological walk [3] performs the following main steps.

460 Danny Z. Chen, Shuang Luan, and Jinhui Xu

1. Compute the initial cut C.
2. Construct the upper horizon tree T (C).
3. Starting at the root of T (C), use a dynamic depth-first search on T (C) to

find the leftmost twig w.
4. Perform an elementary step on w, and update C and T (C).
5. Repeat Steps 3 and 4 until the cut C becomes empty.

Topological peeling [9] uses topological walk as a subroutine and performs the
following main steps.

1. Partition H into two subsets: HU of upper lines and HL of lower lines.
2. Construct a global lower horizon tree TL for the upper lines in HU and a

global upper horizon tree TU for the lower lines in HL.
3. Maintain a curve Lfront to bound the swept cells of AL

R.
4. Perform a topological walk on TU , and for each (current) cell G in AL

R thus
visited for the first time, do the following:
(a) extract the boundary B(G) of G using Lfront and TU ;
(b) use B(G) and TL to build a local lower horizon tree TL(G) for those

upper lines intersecting G;
(c) simulate a topological walk on TL(G) to sweep AU

R∩G, and generate the
intersections between upper and lower lines in an efficient way;

3 Implementation and Comparison Results

To further explore the behavior of the topological peeling and topological walk
algorithms, we implemented these two algorithms and conducted a comparative
study on them. The comparison results are presented in this section.

3.1 Experimental Environment

Our implementation is based on the C++ library LEDA 4.1. The source code
of LEDA was obtained from Algorithmic Solutions Software GmbH. After the
implementation, the two algorithms were tested and compared on a Sun Blade
1000 workstation with a 600 MHz UltraSPARC III Processor and 512 MB mem-
ory. The operating system is SunOS 5.8. Both programs were compiled by g++
(GNU C++ version 2.7.2.1) with the same optimization options. The execution
times were collected using UNIX user application Top (version 3.5 beta12), and
the memory usage information was obtained by using special memory measuring
procedures. To further reduce the machine variants, all data shown in this paper
are based on the average of multiple runs, and all execution times were collected
when memory measuring procedures were fully disabled.

3.2 Input Data Generation

The two algorithms have two kinds of input data: the straight lines for the
arrangement and the convex region specifying the target portion of the arrange-
ment. Every straight line is generated by randomly choosing two points inside

Topological Peeling and Topological Walk 461

a square. The convex regions are generated by computing the convex hull of
m randomly chosen points. To reduce unnecessary overhead, all input data are
generated off-line and fed to the algorithms during their executions.

3.3 Handling Numerical Errors

Numerical errors abound in geometric computing, and our implementation of the
topological peeling and topological walk algorithms is no exception. A key here is
how to handle properly the intersection points of the arrangements. Our solution
for this numerical problem is to avoid using explicit coordinates of the intersec-
tion points since they can be easily corrupted by numerical errors. Instead, in
our implementations, for each intersection point p, we use the two corresponding
straight lines that give rise to that intersection at p to represent p. It appears
that the programs based on this implicit representation of intersection points
effectively prevented the propagation of numerical errors. Based on this implicit
representation scheme, the mixed search procedure has accurate information to
locate the starting intersection points, and the comparisons between intersection
points are carried out by comparisons on their respective generating lines. Our
experiments showed that this approach is very effective, and eliminate most of
the abnormality caused by numerical errors.

3.4 Coding Issues

Overall, the efforts we made in implementing these two algorithms are compa-
rable. The size of the final executable for topological peeling is 34.32MB, while
that for topological walk is 33.52MB. This is because topological peeling and
topological walk share many data structures and procedures (e.g. horizon tree
and mixed search). Some differences come from the lockstep search for topolog-
ical peeling and the handling of dummy edges for topological walk. The most
difficult part of the implementation arose from the handling of a large number of
pointers. These pointers are put into the programs to achieve fast execution time.
For future implementations and applications, we would caution programmers to
pay special attention to the maintenance and manipulation of these pointers.

3.5 Arrangement Traversal Fashions

A key difference between topological peeling and topological walk is the way
they explore an arrangement. Figure 1 shows the traversal fashions of the two
algorithms on the same arrangement within a convex polygon. The labels in
Figures 1(b) and 1(c) denote the order in which each cell is traversed by each of
the two algorithms. The cells to the above and left of the heavy polygonal lines
(wavefront) form the regions that have been explored by the two algorithms
after cell No. 7 is traversed. As seen from the figures, the region explored by
topological walk can consist of different connected components, while the region
traversed by topological peeling is always a single connected component bounded

462 Danny Z. Chen, Shuang Luan, and Jinhui Xu

s s

1
2

3

4

5

67
8 9

10

11

13

14

12

15
16

17

18

20

21

19 s
5

161

2
3

4

6

7

8

9

10
11

12

13

14

15

17

18

19

20 21

(a) (b) (c)

Fig. 1. (a) Arrangement in a convex region. (b) Topological walk traversal fashion.
(c) Topological peeling traversal fashion.

by a wavefront whose shape is a double wriggle curve [9]. This is why topological
peeling can be used to solve several problems (e.g., computing shortest paths)
on planar arrangements, while topological walk is not directly applicable [9].

3.6 Execution Time Comparison

For the execution time comparison, we experimented with the programs for the
two algorithms on randomly generated lines and convex polygons, and collected
data on the execution times, the number of intersection points, and the number
of cells reported. The results shown in Figure 2(a) and (b) are based on the
data collected on arrangements of 2000 lines each, within a series of 10 convex
polygons. The convex polygons are generated by computing the convex hull
of 20 randomly generated points. Figure 2(a) shows the relation between the
execution time and the total number of intersection points inside the convex
polygon, and Figure 2(b) shows the relation between the execution time and
the number of cells reported. Our experimental results demonstrate that the
execution times of these two algorithms very much observe the time bounds
predicted by the theoretical analysis, and the execution time increases almost
linearly as the total number of intersection points or the total number of cells
increases. More interestingly, these experimental results suggest that on average,
topological peeling runs 10% to 25% faster than topological walk.

3.7 Memory Consumption Comparison

For the memory usage comparison, we collected two types of data: the actual
physical size of the additional memory used, and the logical units of the addi-
tional memory used. The first type of memory usage is clear from its name; a
discussion of the second type will be given later. The data on memory usage is
obtained by putting a special memory measuring procedure in our codes. Each
reported value represents the maximum amount of additional memory ever allo-
cated during any time of a program execution. Now, we explain what we mean
by logical units of memory. Precisely, it means the following. For topological
peeling, it is the sum of: (1) the total number of nodes in the upper and lower
horizon trees, (2) the total number of items in the stacks for traversing the upper

Topological Peeling and Topological Walk 463

0 50 100 150
0

50

100

150

200

250

300

350

400

450

500

Number of Intersections in the Convex Region(104)

E
xe

cu
tio

n
T

im
e(

se
co

nd
)

Performance Comparison for Intersections Reporting

0 50 100 150
0

100

200

300

400

500

600

700

Number of Cells in the Convex Region(104)

E
xe

cu
tio

n
T

im
e(

se
co

nd
)

Performance Comparison for Cells Reporting

(a) (b)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5
x 10

4

Number of Lines in the Arrangement

M
em

or
y

C
on

su
m

pt
io

n(
lo

gi
ca

l u
ni

t)

Performance Comparison for Memory Comsumption

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

1500

2000

2500

3000

Number of Lines in the Arrangement

M
em

or
y

C
on

su
m

pt
io

n(
K

B
)

Performance Comparison for Memory Comsumption

(c) (d)

Fig. 2. Comparisons between topological peeling and topological walk. The solid line
stands for topological walk and the dashed line stands for topological peeling.

and lower horizon trees, (3) the total number of nodes in the linked list repre-
senting the current lower cell, and (4) the total number of nodes in the linked
list representing the wavefront. For topological walk, it is the sum of: (1) the
total number of nodes in the upper horizon tree, and (2) the total number of
items in the stack for traversing the upper horizon tree. We consider data on the
logical memory usage because its value is closely related to the theoretical space
bound and depends less on the choices made by specific programmers.

The experimental results shown in Figure 2(c) and (d) are based on ran-
domly generated arrangements of up to 5000 lines each. Precisely, we considered
arrangements of 500 ∗ i lines, for every i = 1, 2, . . . , 10 (i.e., from 500 lines to
5000 lines, with an interval size of 500). For every group size of lines, we ran
10 randomly generated examples on randomly generated convex polygons, and
took the average. Figure 2(c) shows the relation between the physical size of
additional memory used and the total number of lines in the arrangement, and
Figure 2(d) shows the relation between the logical units of additional memory
used and the total number of lines in the arrangement. Our experimental results
suggest that both algorithms observe the space bound of the theoretical anal-
ysis, and the memory usage increases linearly with the number of lines in the
arrangements. Although the two algorithms use nearly the same amount of logi-
cal memory, the topological peeling program uses over twice as much additional
physical memory as topological walk. This is because more pointers are used in
the topological peeling program, as suggested by the theoretical algorithm.

464 Danny Z. Chen, Shuang Luan, and Jinhui Xu

3.8 Execution Time Analysis

We attribute the better execution time of topological peeling over topological
walk to the ability of topological peeling to focus its search and exploration on
relatively local structures of an arrangement. Note that a significant portion of
the total execution time of each of the two algorithms comes from the follow-
ing computations: (1) the intersections among lower lines, (2) the intersections
among upper lines, and (3) the intersections between lower lines and upper lines.
We call the intersections of types (1) and (2) the same-type intersections, and
intersections of type (3) the different-type intersections.

The methods for computing the same-type intersections in the two algorithms
are similar to each other, i.e., finding twig nodes and mixed search. A key factor
that makes a difference in this portion of the execution time is the sizes of
the horizon trees. Recall that in topological walk, the exploration of type (1)
and type (2) intersections is achieved through the exploration of a single upper
horizon tree, based on all lines of the arrangement. But in topological peeling,
the exploration of type (1) and type (2) intersections is conducted separately
on the upper horizon tree and lower horizon tree, each based on a subset of the
input lines. The smaller size each horizon tree has, the fewer steps topological
peeling must take to carry out a mixed search, and hence on average less time
for topological peeling to report each same-type intersection point.

Another difference-making factor lies in the way in which the two algorithms
compute the different-type intersections. In topological walk, the methods for
computing the different-type intersections are the same as for the same-type in-
tersections. However, in topological peeling, things are somewhat different. Note
that in topological peeling, arrangements AL

R and AU
R are swept by using their

respective horizon trees TU and TL, in an interweaving manner. More precisely,
topological peeling first performs topological walk on TU to obtain a current
lower cell G, then builds a partial lower horizon tree TL(G), and finally sweeps
the portion of AU

R inside the boundary B(G) of G. Thus, topological peeling
focuses its search on a local structure, i.e., the boundary B(G) of the current
upper cell G; furthermore, this local structure is very stable in the sense that it
does not incur dynamic changes as occurred in topological walk. A key advan-
tage of this stable local structure is to allow topological peeling to use an array
(instead of a linked list) as data structure, which speeds up the search on this
structure considerably. Consequently, instead of having to do mixed search on
linked lists as in topological walk, topological peeling is able to do exponential
search on arrays, yielding a faster execution time.

In a sense, we can view topological peeling as a “divide and conquer” version
of topological walk. The “divide” stage is for separating the computation of type
(1) and type (2) intersections onto upper horizon trees and lower horizon trees
respectively; the “conquer” stage is for computing type (3) intersections in the
partial lower horizon trees. To support our argument, we conducted the following
experiments. We modified the arrangement generation procedure, so that we
can control the ratio of the lower lines over all input lines in arrangements. The
results in Figure 3 are based on the executions of both algorithms on randomly

Topological Peeling and Topological Walk 465

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
70

80

90

100

110

120

130

140

150

Ratio of lower lines

E
xe

cu
tio

n
T

im
e(

S
ec

on
d)

Fig. 3. The relation between the execution time and ratio of the lower lines over all
input lines. The solid line stands for topological walk and the dashed line stands for
topological peeling.

generated arrangements of 2000 lines each, within the same convex polygons.
As shown in Figure 3, when the arrangements consist of mostly lower lines (i.e.,
the ratio of the lower lines over all input lines is close to 100%), topological
walk outperforms topological peeling in execution time. This corresponds to
the theoretical analysis, for in this special case, topological peeling is simply
reduced to topological walk, except that topological peeling still needs to handle
lockstep search. Hence it is natural that for this special case, topological peeling
is slower. When the arrangements consist of mostly upper lines (i.e., the ratio
of the lower lines over all input lines is close to 0%), topological peeling is also
reduced to topological walk. However, unlike the previous case, in this special
case topological peeling outperforms topological walk in execution time, because
topological peeling need not handle dummy edges. The biggest advantage of
topological peeling occurs in the more balanced situations in which the numbers
of upper lines and lower lines are somewhat comparable. This is the case in which
the “divide and conquer” version shows its power in execution time. As shown in
Figure 3, for this more general case, topological peeling outperforms topological
walk in execution time, by as much as 35%! The balance point at which both
algorithms consume roughly the same amount of execution time appears when
the ratio of the lower lines over all input lines is around 85%.

References

1. E.G. Anagnostou, L.J. Guibas, and V.G. Polimenis, “Topological sweeping in three
dimensions,” Lecture Notes in Computer Science, Vol. 450, Proc. Int’l Symp. on
Algorithms, Springer-Verlag, 1990, pp. 310-317.

2. E.M. Arkin, Y.-J. Chiang, M. Held, J.S.B. Mitchell, V. Sacristan, S.S. Skiena, and
T.-C. Yang, “On minimum-area hulls,” Algorithmica, Vol. 21, 1998, pp. 119-136.

3. T. Asano, L.J. Guibas, and T. Tokuyama, “Walking in an arrangement topologi-
cally,” International Journal of Computational Geometry and Applications, Vol. 4,
No. 2, 1994, pp. 123-151.

4. T. Asano and T. Tokuyama, “Topological walk revisited,” Proc. 6th Canadian
Conf. on Computational Geometry, 1994, pp. 1-6.

466 Danny Z. Chen, Shuang Luan, and Jinhui Xu

5. P. Bose, W. Evans, D. Kirkpatrick, M. McAllister, and J. Snoeyink, “Approx-
imating shortest paths in arrangements of lines,” Proc. 8th Canadian Conf. on
Computational Geometry, 1996, pp. 143-148.

6. B. Chazelle, L.J. Guibas, and D.T. Lee, “The power of geometric duality,” BIT,
Vol. 25, 1985, pp. 76-90.

7. D.Z. Chen, O. Daescu, X.S. Hu, X. Wu, and J. Xu, “Determining an optimal pen-
etration among weighted regions in two and three dimensions,”Proc. 15th Annual
ACM Symp. on Computational Geometry, 1999, pp. 322-331.

8. D.Z. Chen, O. Daescu, X.S. Hu, and J. Xu, “Finding an optimal path without
growing the tree,” Proc. 6th Annual European Symp. on Algorithms, 1998, pp. 356-
367.

9. D.Z. Chen, S. Luan, and J. Xu, “Topological peeling and implementation,” 12th
Annual Int. Symp. on Algorithms and Computation, 2001, pp. 454-466.

10. D. Dobkin and A. Tal, “Efficient and Small Representation of Line Arrangements
with Applications,” Proc. 17th Annual ACM symposium on Computational Geom-
etry, 2001, pp. 293-301.

11. H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, New
York, 1987.

12. H. Edelsbrunner and L.J. Guibas, “Topologically sweeping an arrangement,” Jour-
nal of Computer and System Sciences, Vol. 38, 1989, pp. 165-194.

13. H. Edelsbrunner, J. O’Rourke, and R. Seidel, “Constructing arrangements of lines
and hyperplanes with applications,” SIAM J. Computing, Vol. 15, 1986, pp. 341-
363.

14. H. Edelsbrunner and D. Souvaine, “Computing median-of-squares regression lines
and guided topological sweep,” Journal of the American Statistical Association,
Vol. 85, 1990, pp. 115-119.

15. H. Edelsbrunner and E. Welzl, “Constructing belts in two-dimensional arrange-
ments with applications,” SIAM J. Computing, Vol. 15, 1986, pp. 271-284.

16. D. Eppstein and D. Hart, “An efficient algorithm for shortest paths in vertical and
horizontal segments,” Proc. 5th Int. Workshop on Algorithms and Data Structures,
1997, pp. 234-247.

17. D. Eppstein and D. Hart, “Shortest paths in an arrangement with k line orienta-
tions,” Proc. 10th ACM-SIAM Symp. on Discrete Algorithms, 1999, pp. 310-316.

18. K. Hoffman, K. Mehlhorn, R. Rosenstiehl, and R. Tarjan, “Sorting Jordan se-
quences in linear time using level-linked search trees,” Information and Control,
Vol. 68, 1986, pp. 170-184.

19. P.N. Klein, S. Rao, M.H. Rauch, and S. Subramanian, “Faster shortest-path algo-
rithms for planar graphs,” Proc. 26th Annual ACM Symp. Theory of Computing,
1994, pp. 27-37.

20. J. Majhi, R. Janardan, M. Smid, and P. Gupta, “On some geometric optimization
problems in layered manufacturing,” Proc. 5th Int. Workshop on Algorithms and
Data Structures, 1997, pp. 136-149.

21. K. Miller, S. Ramaswami, P. Rousseeuw, T. Sellares, D. Souvaine, I. Streinu, and
A. Struyf, “Fast implementation of depth contours using topological sweep,” Proc.
12th ACM-SIAM Symp. on Discrete Algorithms, 2001, pp. 690-699.

22. J. Nievergelt and F.P. Preparata, “Plane-sweep algorithms for intersecting geo-
metric figures,” Comm. of the ACM, Vol. 25, No. 10, 1982, pp. 739-747.

23. F.P. Preparata and M.I. Shamos, Computational Geometry: An Introduction,
Springer-Verlag, New York, 1985.

On-Line Maximizing the Number
of Items Packed in Variable-Sized Bins

Leah Epstein1,� and Lene M. Favrholdt2,��

1 School of Computer Science, The Interdisciplinary Center, Herzliya, Israel
lea@idc.ac.il

2 Department of Mathematics and Computer Science, University of Southern
Denmark

lenem@imada.sdu.dk

Abstract. We study an on-line bin packing problem. A fixed number
n of bins, possibly of different sizes, are given. The items arrive on-line,
and the goal is to pack as many items as possible. It is known that there
exists a legal packing of the whole sequence in the n bins. We consider fair
algorithms that reject an item, only if it does not fit in the empty space
of any bin. We show that the competitive ratio of any fair, deterministic
algorithm lies between 1

2 and 2
3 , and that a class of algorithms including

Best-Fit has a competitive ratio of exactly n
2n−1 .

1 Introduction

The Problem. We consider the following bin packing problem. The input consists
of n bins, possibly of different sizes, and a sequence of positively sized items. The
bins as well as the sizes of the bins are denoted by B1, B2, . . . , Bn. The items
arrive on-line, i.e., each item must be packed before the next item is seen, and
packed items cannot be moved between bins. The goal is to pack as many items
as possible into the n bins. A bin is legally packed if the total size of the items
assigned to it is at most the size of the bin. This problem of maximizing the
number of items packed in a fixed number of bins is sometimes called dual bin
packing, to distinguish it from the classical bin packing problem which is to pack
all items in as few bins as possible. In [8] the problem is reported to have been
named dual bin packing in [18]. Note that this name is also sometimes used for
bin covering [2, 12, 13]. For a survey on classical bin packing in identical bins,
see [14, 11].

Throughout the paper, we restrict the input sequences to be accommodating
[6, 7], i.e., sequences that an optimal off-line algorithm, which knows all items in
advance, can pack completely. The reason for this restriction is that, for general
sequences, no on-line algorithm can pack a constant fraction of the number of
items that can be packed by an optimal off-line algorithm.
� Research supported in part by the Israel Science Foundation, (grant No. 250/01-1)

�� Supported in part by the Danish Natural Science Research Council (SNF) and in
part by the Future and Emerging Technologies program of the EU under contract
number IST-1999-14186 (ALCOM-FT).

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 467–475, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

468 Leah Epstein and Lene M. Favrholdt

The problem can also be seen as a scheduling problem with n uniformly
related machines. In the basic scheduling problem, each job is to be assigned
to one of the machines so as to minimize the makespan. This problem was first
studied for the case of identical machines by Graham [15], and for uniformly
related machines by [1, 10, 4]. For a survey on on-line scheduling problems, see
[20]. Consider a scheduling problem with a deadline and assume that the aim is
to schedule as many jobs as possible before this deadline. If an optimal off-line
algorithm can schedule all jobs of any input sequence before the deadline, this
problem is equivalent to our problem. Our problem can also be seen as a special
case of the multiple knapsack problem (see [19, 9]), where all items have unit
profit. (This problem was mainly studied in the off-line environment.)

The Algorithms. In this paper we study fair algorithms [3]. A fair algorithm
rejects an item, only if the item does not fit in the empty space of any bin.

Some of the algorithms that are classical for the classical bin packing problem
(where the whole sequence of items is to be packed in as few bins as possible) can
be adapted to our problem. Such an adaptation for identical bins was already
done in [7]: the n bins are all considered open from the beginning, and no new
bin can be opened. We also use this adaptation. Since there is no unique way to
define First-Fit for variable sized bins, we discuss this in Section 3.

The Quality Measure. The competitive ratio of an on-line algorithm A for the
dual bin packing problem is the worst case ratio, over all possible input se-
quences, of the number of items packed by A to the number of items packed by
an optimal off-line algorithm. Often an additive constant is allowed, yielding the
following definition of the competitive ratio.

Definition 1. For any algorithm A and any sequence I of items, let A(I) be the
number of items packed by A and let OPT(I) be the number of items packed by
an optimal off-line algorithm. Furthermore, let 0 ≤ c ≤ 1. An on-line algorithm
A is c-competitive if there exists a constant b such that

A(I) ≥ c ·OPT(I)− b, for any sequence I of items.
The competitive ratio of A is

CA = sup{c | A is c-competitive}.
Note that since dual bin packing is a maximization problem, the competitive

ratio lies between 0 and 1.
If the additive constant b is zero or negative, the algorithm is called strictly

c-competitive. The bounds given in this paper are valid for the strict competitive
ratio as well as for the competitive ratio in general.

For randomized algorithms, the competitive ratio is defined similarly, but
A(I) is replaced by the expected value of A(I), E(A(I)).

The Results. We show the following results for fair algorithms on accommodating
sequences.

– Any fair algorithm has a competitive ratio of at least 1
2 , and the competitive

ratio of Worst-Fit is exactly 1
2 .

On-Line Maximizing the Number of Items Packed in Variable-Sized Bins 469

– A class of algorithms that give preference to smaller bins has a competitive
ratio of exactly n

2n−1 . This class contains Best-Fit as well as the variant of
First-Fit that sorts the bins in order of non-decreasing sizes.

– Any fair, deterministic algorithm has a competitive ratio of at most 2
3 , and

any fair, randomized algorithm has a competitive ratio of at most 4
5 .

Previous Work. Dual bin packing in identical bins has been studied both in the
off-line version [17, 16] and in the on-line version for accommodating sequences
[6, 7, 3]. Even for identical bins, a restriction on the input sequences is needed
in order to be able to achieve a constant competitive ratio [7]. In [7], fair algo-
rithms are considered and it is shown that First-Fit has a competitive ratio of at
least 5

8 on accommodating sequences. An upper bound of 6
7 for any fair or unfair

randomized algorithm is also given. In [3], a (2
3 − 2

4n+1)-competitive unfair algo-
rithm is given, the negative result for fair deterministic algorithms is improved
to 0.809, and the bound of 5

8 for First-Fit is shown to be asymptotically tight
(the upper bound approaches 5

8 as n approaches infinity).

2 General Results on Fair Algorithms

In this section we show that, on accommodating sequences, the competitive ratio
of any fair, deterministic algorithm lies between 1

2 and 2
3 , and the competitive

ratio of any randomized algorithm is at most 4
5 .

2.1 Positive Results

The main result of this section is that any fair algorithm is 1
2 -competitive on

accommodating sequences. We need the following lemma which is adapted from
a similar lemma for identical bins in [7].

Lemma 1. For any fair algorithm, the number of rejected items is no larger
than the number of accepted items, if the input sequence is accommodating.

Proof. Given an instance of the dual bin packing problem with an accommodat-
ing sequence I, we define a sequence I ′ as follows. Each accepted item of size x is
replaced by �x

s � items of size s, where s is the minimum size of any rejected item.
Each rejected item is decreased to have size s. Clearly, a packing of all items of
I defines a legal packing of all items of I ′, hence I ′ is also an accommodating
sequence.

Let P be the on-line packing of I and let P ′ be the packing of I ′ induced
by P . Note that all items of I ′ have the same size. Thus, to calculate an upper
bound on the number of items rejected we just need to find an upper bound on
the number of items of size s that fit in the bins after doing the packing P ′.

For each bin Bi, let ki denote the number of items in bin Bi in the packing
P . The empty space in Bi in the packing P ′ consists of the empty space in Bi

in the packing P and the space freed by the rounding down of the items packed
in Bi. The empty space in Bi in P is less than s, since the algorithm is fair, and

470 Leah Epstein and Lene M. Favrholdt

the total size of each original item was decreased by less than s. Thus, the empty
space in Bi in P ′ is strictly less than s(ki + 1). We conclude that the number of
rejected items is at most

∑n
i=1 ki which is the number of accepted items. ��

Corollary 1. Any fair algorithm has a competitive ratio on accommodating se-
quences of at least 1

2 .

We close this section with an easy lemma that will be needed in Section 2.2
and Section 3. Let C be the set of non-empty bins in the optimal off-line packing.
Let N = |C|.
Lemma 2. Given an accommodating input sequence, any fair algorithm rejects
at most N − 1 items.

Proof. If the on-line algorithm does not reject any items, its packing is optimal.
Assume now, that at least one item is rejected. Let s be the minimum size of
any rejected item. Since the algorithm is fair, the empty space in each bin is less
than s. Another trivial upper bound on the empty space in any bin B is the size
B of the bin. Thus, the total empty space in the on-line packing is strictly less
than Ns+

∑
B /∈C B. The total empty space of OPT is at least

∑
B /∈C B. Hence,

since OPT accepts all items, the total size of all rejected items is strictly less
than Ns. Since all rejected items are of size at least s, there are at most N − 1
rejected items. ��

2.2 Negative Results

In this section we show an upper bound of 2
3 for deterministic, fair algorithms

and an upper bound of 4
5 for randomized, fair algorithms.

We first prove the upper bound of 2
3 for the strict competitive ratio. This is

relatively easy for any n ≥ 2. Consider for example the following instance with
n − 2 bins of size ε, 0 < ε < 1, one bin of size 2, and one bin of size 3. The
input sequence consists of two or three items that are all too large for the bins
of size ε. The first item has size 1. If this first item is assigned to the bin of size
3, an item of size 3 arrives next. Otherwise, two items of size 2 will arrive. In
the first case, only the first item is packed, since the second does not fit, and in
the second case only two items are accepted, the third does not fit. It is easy
to see that both sequences are accommodating. This gives an upper bound of
2
3 on the strict competitive ratio, for n ≥ 2. Applying Yao’s inequality [21] as
described in [5] on these two sequences gives an upper bound of 4

5 on the strict
competitive ratio for randomized algorithms. This can be seen in the following
way. Consider the sequence where the first item of size 1 is followed by one item
of size 3 with probability p1 = 2

5 and by two items of size 2 with probability
p2 = 3

5 . An algorithm that packs the first item in the bin of size 3 will have an
expected performance ratio of at most p1 · 12 + p2 · 1 = 4

5 . Similarly, an algorithm
that packs the first item in the bin of size 2 will have an expected performance
ratio of at most p1 · 1 + p2 · 2

3 = 4
5 . Thus, no deterministic algorithm can have

an expected performance ratio larger than 4
5 on this sequence.

On-Line Maximizing the Number of Items Packed in Variable-Sized Bins 471

However, we are interested in negative results that hold for the competitive
ratio in general, and not only for the strict competitive ratio. By Lemma 2, the
number of rejected items is at most n − 1. As long as there is only a constant
number of bins, we can view the number of rejected items as just an additive
constant, and hence any fair algorithm has competitive ratio 1. Thus, to prove
the following theorem, we need to find arbitrarily long accommodating sequences
with the property that only 2

3 of the items are accepted.

Theorem 1. Any fair, deterministic on-line algorithm for the dual bin packing
problem has a competitive ratio of at most 2

3 on accommodating sequences.

Proof. For � = 1, . . . , �n
2 �, we give the pair of bins

B2�−1 = 2�+ 4�ε and B2� = 2�+ 2 · 4�ε,

where ε < 1
4n is a positive constant. Thus, 4�ε < 1, 1 ≤ � ≤ �n

2 �. If n is odd, the
last bin is of size ε

2 (so that no items are packed in that bin for the sequence we
define). The sequence contains 3 · �n

2 � items and is constructed so that exactly
2 · �n

2 � of them are accepted.
The sequence is defined inductively in steps �n

2 �, �n
2 � − 1, . . . , 1. In step k,

two large items are given and one small item is defined. The small items are
given after all large items and are defined such that they will be rejected by the
on-line algorithm. The sizes of the two large items are defined such that

– the on-line algorithm will pack them in B2k and B2k−1, one in each bin, and
– after packing the two items, the empty space in the two bins have the same

size denoted Ek.

For convenience we define E� n
2 �+1 = 0. As will be seen later, Ek+1 < Ek, 1 ≤

k ≤ �n
2 �. Furthermore, we will prove that E1 < 1.

The first large item given in step k has size 2k − Ek+1. Thus, the very first
item has size 2 · �n

2 �, and the size of the first large item of each of the later steps
depends on the empty space created in the previous step. Since 2k−Ek+1 > 2k−1
and all previous bins Bn, . . . , B2k+1 have less than one unit of empty space, this
item fits only in B2k and B2k−1. What happens next depends on which of these
two bins the algorithm chooses.

Case 1: The first large item is packed in B2k−1. In this case, the next large item
has size 2k−Ek+1 +4kε. This item will be packed in B2k. Now, the empty space
in each of the bins B2k and B2k−1 is Ek = Ek+1 + 4kε. The small item defined
in this step has size Sk = Ek + 4kε. Note that this item does not fit in B2k or
B2k−1, but the off-line algorithm can pack the first large item in B2k together
with the small item and put the second large item in B2k−1.

Case 2: The first large item is packed in B2k. In this case, the next large item
has size 2k − Ek+1 − 4kε. For k ≥ 2, this item does not fit in B2k−2, since
2k − Ek+1 − 4kε > 2k − 1 − 4kε ≥ 2k − 2 + 3 · 4kε, for n ≥ 2, and B2k−2 =

472 Leah Epstein and Lene M. Favrholdt

2k − 2 + 2 · 4k−2ε. Hence, this item must be packed in B2k−1. Now, the empty
space in each of the bins B2k and B2k−1 is Ek = Ek+1 + 2 · 4kε. The small item
defined in this step has size Sk = Ek + 4kε. This item does not fit in B2k or
B2k−1, but the off-line algorithm can pack the first large item in B2k−1 and put
the second large item in B2k−1 together with the small item.

Note that Ek+1+4kε ≤ Ek ≤ Ek+1+2·4kε, 1 ≤ k ≤ �n
2 �. The first inequality

tells us that, to prove that none of the small items will be accepted, it suffices to
prove that Sk > E1, 2 ≤ k ≤ �n

2 �. This is easily done using the second inequality.
For 2 ≤ k ≤ �n

2 �,

E1 ≤ Ek + 2 ·
k−1∑
i=1

4iε < Ek + 4kε = Sk.

Finally,

E1 ≤ E� n
2 �+1 + 2 ·

� n
2 �∑

i=1

4iε < 4� n
2 �+1ε < 4� n

2 �+1−n ≤ 1.

��
We move on to randomized algorithms. Since the previous sequence was built

step by step, we need to give a simpler sequence in order to prove the following
theorem.

Theorem 2. Any fair randomized algorithm has a competitive ratio on accom-
modating sequences of at most 4

5 .

Proof. We use �n
2 � bins of size 1 + ε and �n

2 � bins of size 2− ε, where 0 < ε < 1
2 .

If n is odd, the last bin is of size ε. The sequence starts with �n
2 � items of size

1. We describe a proof for deterministic algorithms first. Since the algorithm is
fair, all �n

2 � items are accepted. Let x be the number of bins of size 1 + ε that
received an item (no bin can receive more than one item). Then, exactly x bins
of size 2− ε are empty. What happens next depends on the size of x.

Case x ≤ 3
5 · �n

2 �. In this case, the sequence continues with �n
2 � items of size

2− ε, and the on-line algorithm accepts �n
2 �+ x items in total out of the 2�n

2 �.
This gives a fraction of � n

2 �+x

2� n
2 � ≤

1+ 3
5

2 = 4
5 .

Case x > 3
5 · �n

2 �. In this case, the sequence continues with �n
2 � items of size

1+ε followed by �n
2 � items of size 1−ε. After the arrival of items of size 1, there

are �n
2 � empty bins. Thus, all items of size 1 + ε are accepted and now each bin

has exactly one item. Items of size 1−ε can only be assigned to bins of size 2−ε
that contain an item of size 1, hence �n

2 � − x of them are accepted. Thus, the

fraction 3� n
2 �−x

3� n
2 � <

3− 3
5

3 = 4
5 of the items is accepted.

To get a randomized result, let x be the expectation of the number of bins
of size 1 + ε that got an item. The bound follows by linearity of expectation. ��

On-Line Maximizing the Number of Items Packed in Variable-Sized Bins 473

3 Results on Specific Fair Algorithms

We now analyze specific algorithms. Some natural fair algorithms are First-Fit,
Best-Fit, and Worst-Fit. The algorithm First-Fit is not a single algorithm, but
a class of algorithms that give an order to the bins, and use the algorithm
according to this order, i.e., assign an item to the first bin (in the ordered set
of bins) that the item fits in. Among the various versions of First-Fit, two are
most natural; Smallest-Fit assigns an item to the smallest bin it fits into, and
Largest-Fit assigns an item to the largest bin it fits into. The other algorithms
are used in their classical version, i.e., Best-Fit packs each item in a bin where
it will leave the smallest possible empty space, and Worst-Fit packs it in the bin
where it leaves the largest empty space. We refer to these four algorithms as SF,
LF, BF, and WF.

We start the analysis by showing that 1
2 is indeed the exact competitive ratio

of WF and LF.

Theorem 3. The competitive ratio of Worst-Fit and Largest-Fit on accommo-
dating sequences is 1

2 .

Proof. Let ε > 0 be a constant such that ε ≤ 1
n . Consider the following set of

bins. One large bin of size n and n−1 small bins of size 1. The sequence consists
of n − 1 items of size 1 followed by n − 1 items of size 1 + ε. Both algorithms
LF and WF assign all items of size 1 to the large bin. As a result, all bins have
a free space of size 1, hence none of the items of size 1 + ε can be accepted. The
optimal algorithm assigns each small item to a small bin, and all other items to
the large bin; they all fit since

(1 + ε)(n− 1) ≤ (n+ 1)(n− 1)
n

< n .

This example in combination with Corollary 1 proves the theorem. ��
We further analyze a class of fair algorithms called Smallest-Bins-First to

which SF and BF belong. This is the class of fair algorithms that whenever an
item is assigned to an empty bin, this is the smallest bin in which the item fits.
There are no additional rules, and the algorithm may use an empty bin even if
the item fits in a non-empty bin, as long as it uses the smallest empty bin for
that. SF belongs to this class according to its definition. BF belongs to this class
since, among the empty bins that an item fits into, it fits better into the smaller
bins than the larger bins. We give a tight analysis of this class as a function of
n. Specifically we prove the following.

Theorem 4. The competitive ratio of any Smallest-Bins-First algorithm on ac-
commodating sequences is n

2n−1 .

Proof. If, after running the algorithm, all bins of the on-line algorithm are non-
empty, then there are at least n accepted items and at most n−1 rejected items
(by Lemma 2). Thus, in this case, the competitive ratio is at least n

2n−1 .

474 Leah Epstein and Lene M. Favrholdt

Otherwise, consider the largest (last) bin b that remained empty after running
the on-line algorithm. We consider items of size smaller than or equal to b, and
items larger than b separately. Since a bin of size b is empty and no bin larger
than b is empty, according to the definition of the class of algorithms, each bin
of size more than b contains at least one item larger than b, namely the first
item packed in the bin. Moreover, all items of size at most b are accepted. Let
xs be the number of items in bins of size at most b and let n� be the number of
bins larger than b. Let Ns be the number of non-empty bins of OPT of size at
most b and N� its number of non-empty bins larger than b. Clearly, xs ≥ Ns (all
those bins are of size at most b and contain at least one item). We get that the
number of accepted items is at least xs + n� ≥ Ns +N� = N . Thus, by Lemma
2, the competitive ratio is at least N

2N−1 ≥ n
2n−1 .

To show that the result is tight for this class of algorithms, let ε < 1
n be a

positive constant. Consider the set of bins Bi = 1+εi, i = 1, . . . , n. The sequence
consists of n items, one of size 1+ε(i−1) for each i = 1, . . . , n, followed by n−1
items of size nε

n−1 . All algorithms in the class assign the item of size 1 + ε(i− 1)
to Bi. All other items are rejected. The optimal off-line algorithm assigns each
large item except the first one to a bin of its size. The first item and the n − 1
small items are assigned to Bn. ��

Note that when n = 2, the lower bound of n
2n−1 matches the general upper

bound of 2
3 .

4 Conclusion

We have proven an upper bound of 2
3 for all fair algorithms. We have also

shown that any fair algorithm accepts at least half of the items, and that some
algorithms do significantly better for very small n. It is left as an open problem
to design a fair algorithm with a competitive ratio significantly larger than 1

2
for any n, or prove that this is not possible. It is also unknown how much unfair
algorithms can be better; the best negative result for those is 6

7 , which holds
even for identical bins [7].

Acknowledgments

We would like to thank Joan Boyar for reading and commenting on the paper.
We also thank Gerhard Woeginger for suggesting the title.

References

1. J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-Line Routing of Virtual
Circuits with Applications to Load Balancing and Machine Scheduling. Journal of
the ACM, 44(3):486–504, 1997. Also in Proc. 25th ACM STOC, 1993, pp. 623-631.

On-Line Maximizing the Number of Items Packed in Variable-Sized Bins 475

2. S. F. Assmann, D. S. Johnson, D. J. Kleitman, and J. Y. Leung. On a Dual Version
of the One-Dimensional Bin Packing Problem. Journal of Algorithms, 5:502–525,
1984.

3. Y. Azar, J. Boyar, L. Epstein, L. M. Favrholdt, K. S. Larsen, and M. N. Nielsen.
Fair versus Unrestricted Bin Packing. Algorithmica (to appear). Preliminary ver-
sion at SWAT 2000, volume 1851 of LNCS: 200-213, Springer-Verlag, 2000.

4. P. Berman, M. Charikar, and M. Karpinski. On-Line Load Balancing for Related
Machines. Journal of Algorithms, 35:108–121, 2000.

5. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

6. J. Boyar and K. S. Larsen. The Seat Reservation Problem. Algorithmica, 25:403–
417, 1999.

7. J. Boyar, K. S. Larsen, and M. N. Nielsen. The Accommodating Function: A
Generalization of the Competitive Ratio. SIAM Journal on Computing, 31(1):233–
258, 2001.

8. J. L. Bruno and P. J. Downey. Probabilistic Bounds for Dual Bin-Packing. Acta
Informatica, 22:333–345, 1985.

9. C. Chekuri and S. Khanna. A PTAS for the Multiple Knapsack Problem. In Proc.
11th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 213–222, 2000.

10. Y. Cho and S. Sahni. Bounds for List Schedules on Uniform Processors. SIAM
Journal on Computing, 9:91–103, 1988.

11. E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation Algorithms for
Bin Packing: A Survey. In Dorit S. Hochbaum, editor, Approximation Algorithms
for NP-Hard Problems, chapter 2, pages 46–93. PWS Publishing Company, 1997.

12. J. Csirik and J. B. G. Frenk. A Dual Version of Bin Packing. Algorithms Review,
1:87–95, 1990.

13. J. Csirik and V. Totik. On-Line Algorithms for a Dual Version of Bin Packing.
Discr. Appl. Math., 21:163–167, 1988.

14. J. Csirik and G. Woeginger. On-Line Packing and Covering Problems. In Amos
Fiat and Gerhard J. Woeginger, editors, Online Algorithms, volume 1442 of LNCS,
chapter 7, pages 147–177. Springer-Verlag, 1998.

15. R. L. Graham. Bounds for Certain Multiprocessing Anomalies. Bell Systems
Technical Journal, 45:1563–1581, 1966.

16. E. G. Coffman Jr. and J. Y. Leung. Combinatorial Analysis of an Efficient Al-
gorithm for Processor and Storage Allocation. SIAM Journal on Computing,
8(2):202–217, 1979.

17. E. G. Coffman Jr. J. Y. Leung, and D. W. Ting. Bin Packing: Maximizing the
Number of Pieces Packed. Acta Informatica, 9:263–271, 1978.

18. J. Y. Leung. Fast Algorithms for Packing Problems. PhD thesis, Pennsylvania
State University, 1977.

19. S. Martello and P. Toth. Knapsack Problems. John Wiley and Sons, Chichester,
1990.

20. J. Sgall. On-Line Scheduling. In A. Fiat and G. J. Woeginger, editors, Online
Algorithms: The State of the Art, volume 1442 of LNCS, pages 196–231. Springer-
Verlag, 1998.

21. A. C. Yao. Towards a Unified Measure of Complexity. Proc. 12th ACM Symposium
on Theory of Computing, pages 222–227, 1980.

On-Line Grid-Packing with a Single Active Grid

Satoshi Fujita

Department of Information Engineering
Graduate School of Engineering, Hiroshima University

Higashi-Hiroshima, 739-8527, Japan

Abstract. In this paper, we study the problem of packing rectangular
items into a minimum number of square grids in an on-line manner with
a single active grid, where the size of each grid is m ×m for some pos-
itive integer m, and the height and the width of each item are positive
integers smaller than or equal to m, respectively. We first prove that the
asymptotic competitive ratio of an optimal on-line algorithm is at least
23/11. We then propose an on-line algorithm that achieves a competitive
ratio O((log log m)2).

1 Introduction

In this paper, we study the problem of packing rectangular items into a minimum
number of square grids in an on-line manner. The size of each grid is m×m for
some positive integer m, and the height and the width of each item are positive
integers smaller than or equal to m, respectively. The term “on-line” implies that
items are consecutively input and the packing of an item must be determined
before the arrival of the next item. In the following, we refer to the above on-
line packing problem as the grid-packing problem (GPP, for short). It is worth
noting that GPP is a discrete version of the normal two-dimensional bin packing
problem; i.e., in GPP, the size of each item can take discrete values instead of
reals as in the normal bin-packing problem.

So far, the two-dimensional bin packing problem has been investigated ex-
tensively by many researchers, and several interesting results have been obtained
during the past two decades [3,5,6,8,10]; e.g., it is shown that the asymptotic
competitive ratio1 of an optimal on-line algorithm is at least 1.907 [2] and at
most 2.661 [9], and there is an off-line algorithm with approximation ratio 1.25
[1]. Although those bounds are based on several important and interesting tech-
niques such as HARMONIC by Lee and Lee [7], at least in practice, it is not very
realistic in the sense that it assumes each item can have any size in (0, 1]× (0, 1]
and the difference to a particular value (e.g., (1/2, 1/2)) can be arbitrary small.
In many real-world applications, however, the size of each item can take merely
discrete values drawn from a given (finite) set, as in the packing of furniture into
a room, packing of building blocks into a given area of VLSI chip, and so on. In
addition, it is very common that an on-line packing problem should be solved
1 A formal definition will be given in Section 2.

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 476–483, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

On-Line Grid-Packing with a Single Active Grid 477

by using a small working space, and in many cases, the opening of a new bin
implies the closing of the current bin.

In this paper, we consider GPP with only one active grid for the packing.
We measure the goodness of on-line algorithms in terms of the competitive ratio,
that is typically represented as a function of the size of each grid. In the following,
we first point out that the rotation of items is necessary for achieving a good
competitive ratio by on-line algorithms (more precisely, we show that the ratio
could not be smaller than m/2 if rotation of items is not allowed). We then
prove that even when each item is rotatable, the competitive ratio of an optimal
algorithm cannot be smaller than 23/11. Finally, we propose an on-line algorithm
with competitive ratio O((log logm)2), that is the main result of this paper.

The remainder of this paper is organized as follows. Section 2 introduces some
basic definitions. Section 3 describes several elementary bounds and Section 4
describes our proposed algorithm with competitive ratio O((log logm)2). Section
5 concludes the paper with some future directions of research.

2 Preliminaries

Let L = (a1, a2, . . . , am) denote a sequence of input items. An item with width x
and height y is denoted as (x, y) or x×y. The competitive ratio of an on-line grid-
packing algorithm A is defined as follows: Let OPT denote an optimal off-line
algorithm and A(L) the number of grids used by algorithm A for input sequence
L. Then, the asymptotic worst case ratio (or competitive ratio) of algorithm A,
denoted as R∞

A , is defined as follows:

R∞
A

def= lim sup
n→∞

Rn
A

where Rn
A

def= max
{

A(L)
OPT (L)

| OPT (L) = n

}
.

In this paper, we will focus our attention to the following restricted class
of on-line grid-packing algorithms; i.e., an unused grid becomes active when it
receives the first item, and once an active grid is declared to be closed, it never
becomes active again. Note that the above restriction plays an important role
when we want to measure the space complexity of the algorithm in addition to
the competitive ratio; i.e., the space complexity can be measured in terms of the
number of active grids used by the algorithm. In the following, we say that an
on-line grid-packing algorithm A is k-space bounded if the number of active
grids used by the algorithm is bounded by k.

Note that the competitive ratio of k-space bounded on-line algorithms is de-
fined as the ratio to an optimal off-line algorithm that can use an unbounded
number of active bins, in this paper. It is a natural extension of the one-
dimensional case, in which k-space bounded algorithms are compared with an
off-line algorithm that can use any number of active bins (note that if k = 1,
there is a unique way to use a single active bin efficiently in the one-dimensional
bin-packing problem).

478 Satoshi Fujita

3 Bounds for 1-Space Bounded Algorithms

In this section, we derive several elementary bounds for 1-space bounded grid-
packing algorithms. The following proposition claims that the competitive ratio
of any 1-space bounded algorithm is provably bad, if the rotation of items is
not allowed; i.e., the rotation of items is an essential factor to achieve a good
competitive ratio by 1-space bounded algorithms.

Proposition 1. Let GPP’ denote a restricted version of GPP in which no ro-
tation of items is allowed. Under GPP’, the competitive ratio of any 1-space
bounded algorithm is at least m/2, and there is a 1-space bounded algorithm with
a competitive ratio 2m.

Proof. Let L1 be a sequence of 2m2 items in which items A = (m, 1) and B =
(1,m− 1) are alternate m2 times; i.e.,

L1 = (A,B, . . . , A,B︸ ︷︷ ︸
2m2

).

Given list L1, any 1-space bounded on-line algorithm packs the (2i − 1)st and
the (2i)th items into the same grid, for 1 ≤ i ≤ m2; i.e., it consumes m2 grids
for L1. On the other hand, an optimal off-line algorithm can pack L1 into 2m−1
grids as follows: 1) each of the first m grids accommodates m copies of B and
one copy of A, and 2) each of the next m − 1 grids accommodates m copies of
A. A similar claim holds for any list L∗ that is obtained by concatenating x L1’s
for x ≥ 1. Hence the competitive ratio of any 1-space bounded algorithm is at
least

m2

2m− 1
=
(m

2

)
×
(

1
1− 1/2m

)
>

m

2
,

which completes the former half of the proof.
The latter half can be proved by focusing on the occupation of the first

row under a simple “bottom-left” algorithm, that proceeds as follows: When an
input item is given, it is placed at the bottom of the current bin and is slided
to the left-most position as much as possible. If there is no such space at the
bottom of the bin, then it opens a new bin, and places the item at its bottom-
left position. Under this “bottom-left” algorithm, the packing into the first row
could be regarded as a greedy one-dimensional bin packing algorithm, that is
known to have a competitive ratio 2. Q.E.D.

In the following, we consider cases in which the rotation of items is allowed.
As the following proposition claims, the competitive ratio of 1-space bounded
algorithms cannot be smaller than some constant value greater than two, even
when we allow rotation of items.

Proposition 2. The competitive ratio of any 1-space bounded algorithm is at
least 23/11 (> 2.0909).

On-Line Grid-Packing with a Single Active Grid 479

(b)

A

B

A

C

B
C

(a)

Fig. 1. Behavior of an on-line algorithm for L2.

Proof. For simplicity, assume m is a multiple of 3 greater than or equal to 9. Let
A,B,C,D be items defined as follows: A = (2m/3+1,m/3+1), B = (m/3,m/3),
C = (2m/3 + 1,m/3− 2), and D = (m/3− 1,m/3− 1). Let L2 be a sequence of
63 items defined as follows:

L2 = (A,B, . . . , A,B︸ ︷︷ ︸
36

, C, . . . , C︸ ︷︷ ︸
18

, D, . . . ,D︸ ︷︷ ︸
9

).

Given list L2, any 1-space bounded algorithm packs items in L2 as follows:

– the (2i − 1)st and the (2i)th items are packed into the same grid, for 1 ≤
i ≤ 18, i.e., it spends at least 18 grids for the first 36 items (Figure 1 (a)),

– the first two copies of C are packed into the 18th grid (recall that we allow
rotation of items; see Figure 1 (b)),

– the remaining 16 copies of C are packed into 4 new grids, in such a way that
each grid accommodates 4 copies, i.e., it spends 4 more grids, where the last
grid can accommodate at most one copy of D, and

– 8 copies of D are packed into the 23rd grid.

As a result, any 1-space bounded on-line algorithm uses 23 grids for input L2.
On the other hand, an optimal off-line algorithm can pack L2 into 11 grids as
follows:

– each of the first 9 grids accommodates two copies of A, two copies of C, and
one copy of D, and

– each of the next 2 grids accommodates 9 copies of B.

Since the 23rd grid cannot accommodate a new copy of A, by considering a
sequence obtained by concatenating L2 several times, we can conclude that the
competitive ratio of any scheme is at least 23/11. Q.E.D.

It is worth noting that the above result is in contrast to the one-dimensional
case, in which the competitive ratio is trivially at most two.

4 Proposed 1-Space Bounded Algorithm
In this section, we propose a 1-space bounded algorithm with competitive ratio
O((log logm)2), for sufficiently large m’s that is a power of two greater than or

480 Satoshi Fujita

C

m

m/K

m

m/2

A

B

Fig. 2. Partition of a grid used in the proposed algorithm.

equal to 256. In the following, we assume that each item (x, y) satisfies x ≥ y,
without loss of generality. The algorithm consists of three procedures that are
called separately depending on the width of the input item, i.e., it is packed
by procedure A if m/2 < x ≤ m; packed by procedure B if m/ log2m <
x ≤ m/2; and packed by procedure C if 0 < x ≤ m/ log2m. Note that the
difficulty in designing on-line algorithms with a small competitive ratio resides
in the treatment of medium sized items, that should be packed into the (current)
active bin with several larger and/or smaller items, in a mixed manner. In the
proposed algorithm, we overcome the difficulty by separating each bin into three
parts, each of which is dedicated to large, medium, and small items, respectively.

Before describing each procedure in detail, we should define three subgrids
used by those procedures. Let K def= �log2 log2m�. At first, each grid is divided
into two subgrids of heights �m/K� and m−�m/K�, respectively, and the second
one is further divided into two subgrids of width m/2 each. In the proposed
algorithm, the first subgrid (of height �m/K� and width m) is dedicated to
procedure A, and the last two subgrids are dedicated to procedures B and C,
respectively. See Figure 2 for illustration.

4.1 Procedure A

Procedure A is called when the input item (x, y) satisfies m/2 < x ≤ m. Recall
that each grid is divided into three subgrids, and a subgrid of height �m/K�
and width m is dedicated for the packing by this procedure. More concretely,
the packing of item (x, y) proceeds as follows:

Case 1: If y > �m/K�, then after closing the current grid G1, it packs the
input item into a new grid G2. It then closes G2, and opens a new grid G3
as an active grid.

Case 2: If y ≤ �m/K�, then the item is packed in a similar manner to the
greedy one-dimensional bin packing algorithm; i.e., items are packed into
the current subgrid in a bottom-left manner if the total height y′ of the

On-Line Grid-Packing with a Single Active Grid 481

m-m/K

m/K

m/K

m/K

m/K

m/2

Fig. 3. Partition of the subgrid used by procedure B.

items in the current subgrid satisfies y′ +y ≤ �m/K�, but if not, it is packed
into a new grid after closing the current grid.

Note that in both cases, two consecutive closed grids are filled with items with
a total size at least m2/2K.

4.2 Procedure B

Procedure B is called when the input item (x, y) satisfies m/ log2m < x ≤ m/2.
In procedure B, the dedicated subgrid of height m− �m/K� and width m/2 is
divided into K−1 strips of an (almost) equal height, and for each 1 ≤ i ≤ K−1,
the ith strip is further divided into 2i−1 substrips of width m/2i each; e.g., the
second strip is split into two substrips of width m/4 each, the third strip is split
into four substrips of width m/8 each, and so on (see Figure 3 for illustration).
Note that the height of each strip is at least �m/K� and the smallest width of
the resultant substrips is at most 2m/ log2m, since

m/2K−1 ≤ m/2log2 log2 m−1 = 2m/ log2m.

The packing of item (x, y) proceeds as follows:

Case 1: If y > �m/K�, then the item is packed into a new grid as in Case 1
of procedure A.

Case 2: If y ≤ �m/K� and m/2i+1 < x ≤ m/2i, then the item is packed into
a substrip of the ith row
in a similar way to Case 2 of procedure A.

Note that in both cases, two consecutive closed grids are filled with items with
a total size at least min{m2/K2,m2/4K}.

482 Satoshi Fujita

m-m/K

m/2

H

H

Fig. 4. Partition of the subgrid used by procedure C.

4.3 Procedure C

Procedure C is called when the input item (x, y) satisfies 0 < x ≤ m/ log2m. Let
H

def= �m/ log2m�. In procedure C, the dedicated subgrid of height m− �m/K�
and width m/2 is divided into smaller subgrids of size H ×H each. Note that
when m ≥ 16, we have m − �m/K� ≥ m/2 since log2 log2m ≥ 2. Hence we
can embed at least (log2m)2/4 such subgrids (of size H ×H) into the dedicated
space, that is at least 2 log2m for m ≥ 256 (see Figure 4 for illustration).

The basic idea of the procedure is to use the following �log2H�-space bounded
algorithm for the packing into (sub)grids of size H ×H, in a repetitive manner;
i.e., the current grid is closed and a new grid is opened when a half of (log2

2m)/4
subgrids are (imaginary) closed by the algorithm.

The �log2H�-space bounded algorithm uses �log2H� active (sub)grids num-
bered from 1 to �log2H�. Let b(i) denote the active (sub)grid with number i.
(Sub)grid b(1) is dedicated to the packing of items of width satisfying 2�log2 H� <
x ≤ H, and the other (sub)grids are used for the packing of items of width sat-
isfying 0 < x ≤ 2�log2 H�. In addition, (sub)grid b(i) for 2 ≤ i ≤ �log2H� is
divided into a square grid of size 2�log2 H� × 2�log2 H� and the remaining part,
and the algorithm merely uses the first part for the packing (note that the size
of the first part is at least one fourth of the given (sub)grid of size H × H).
Let H ′ def= 2�log2 H� for brevity. During the execution of the algorithm, an active
grid with number i (2 ≤ i ≤ �log2H�) is partitioned into 2i−2 vertical strips of
width H ′/2i−2 and height H ′, and they are dedicated for the packing of items
with height x satisfying H ′/2i−1 < x ≤ H ′/2i−2. Note that the width of strips
generated from the (�log2H�)th (sub)grid is H ′/2�log2 H	−2, that is either two
or four.

For input item (x, y), the procedure proceeds as follows:

On-Line Grid-Packing with a Single Active Grid 483

Case 1: If 2�log2 H� < x ≤ H, then it packs the item into the current b(1) and
it opens a new b(1) after (imaginary) closing the current b(1).

Case 2: If H ′/2i−1 < x ≤ H ′/2i−2 for some 2 ≤ i < �log2H�, then it packs
the item into a strip of b(i) in a similar way to Case 2 of procedure A.

Case 3: If 1 ≤ x ≤ H ′/2�log2 H	−2, then it packs the item into a strip of
b(�log2H�) in a similar way to Case 2 of procedure A.

By using a similar argument to the previous procedures, we can show that
when a new grid is opened by procedure C after closing the current grid, the
closed grid is filled with items with a total size m2/c for some constant c, that
is approximately eight for sufficiently large m.

As a result, we have the following proposition on the competitive ratio of the
proposed algorithm.

Proposition 3. The competitive ratio of the proposed 1-space bounded algo-
rithm is O((log logm)2).

5 Concluding Remarks

In this paper, we studied GPP with a single active grid, and proposed an on-line
algorithm that achieves a competitive ratio O((log logm)2). An open problem is
to find better upper and lower bounds for GPP. In particular, we are interested
in finding an upper bound that is O(log logm), or a constant. It is also an
important open problem to find a good k-space bounded on-line algorithms for
general 2 ≤ k < log2m.

References

1. B. S. Baker, D. J. Brown, and H. P. Katseff. A 5/4 Algorithm for Two-Dimensional
Packing. J. of Algorithms, 2:348–368, 1981.

2. D. Blitz, A. van Vliet, and G. J. Woeginger. Lower bounds on the asymptotic
worst-case ratio of on-line bin packing algorithms. unpublished manuscript, 1996.

3. D. Coppersmith and P. Raghavan. Multidimensional on-line bin packing: Algo-
rithms and worst case analysis. Oper. Res. Lett., 8:17–20, 1989.

4. J. Csirik and A. van Vliet. An on-line algorithm for multidimensional bin packing.
Oper. Res. Lett., 13:149–158, 1993.

5. S. Fujita and T. Hada. Two-Dimensional On-Line Bin Packing Problem with
Rotatable Items. Proc. of COCOON, LNCS 1858, 210–220, 2000.

6. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide for the
Theory of NP-Completeness. Freeman, San Francisco, CA, 1979.

7. C. C. Lee and D. T. Lee. A simple on-line bin packing algorithm. J. Assoc.
Comput. Mach., 32:562–572, 1985.

8. M. B. Richey. Improved bounds for harmonic-based bin packing algorithms. Dis-
crete Appl. Math., 34:203–227, 1991.

9. S. Seiden and R. van Stee. New bounds for multi-dimensional packing. Proc. of
SODA, pp.486–495, 2002.

10. A. van Vliet. An improved lower bound for on-line bin packing algorithms. Infor-
mation Processing Letters, 43:277–284, 1992.

Bend Minimization in Orthogonal Drawings
Using Integer Programming

Petra Mutzel and René Weiskircher

Vienna University of Technology
Favoritenstraße 9-11 E186, A-1040 Vienna, Austria
{mutzel,weiskircher}@ads.tuwien.ac.at

Abstract. We consider the problem of minimizing the number of bends
in an orthogonal planar graph drawing. While the problem can be solved
via network flow for a given planar embedding of a graph G, it is NP-
hard if we consider the set of all planar embeddings of G. Our approach
combines an integer linear programming (ILP) formulation for the set of
all embeddings of a planar graph with the network flow formulation for
fixed embeddings. We report on computational experiments on a bench-
mark set containing hard problem instances that was already used for
testing the performance of a previously published branch & bound algo-
rithm for solving the same problem. Our new algorithm is about twice as
fast as the branch & bound approach for the graphs of the benchmark set.

1 Introduction

Drawing graphs is important in many scientific and economic areas. Applica-
tions include the drawing of UML diagrams in software engineering and busi-
ness process modeling as well as in the visualization of databases. A popular
way of drawing graphs is representing the vertices as boxes and the edges as
sequences of horizontal and vertical line segments connecting the boxes. This
drawing style is called orthogonal drawing. A point where two segments of an
edge meet is called a bend.

A well known approach for drawing general graphs is the topology-shape-
metrics method. In the first step, the topology of the drawing is computed. The
objective in this phase is to minimize the number of edge crossings. In the second
step, the shape of the drawing is calculated. In the case of orthogonal drawings,
the angles and the bends of the edges are computed. The objective is to minimize
the number of bends for the given topology. Finally, the metrics of the drawing
is computed while trying to achieve short edge lengths and small area for the
given shape. In this paper, we focus on the bend minimization step (the seconds
step). Given a planar graph, the task is to compute an orthogonal representation
with the minimum number of bends.

The infinite set of different planar drawings of a graph can be partitioned into
a finite set of equivalence classes called embeddings of a graph. An embedding de-
fines the topology of a planar drawing without assigning lengths or shapes to the

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 484–493, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Bend Minimization in Orthogonal Drawings Using Integer Programming 485

edges or fixing the shapes and positions of vertices. A combinatorial embedding
fixes the sequence of incident edges around each vertex in clockwise order. This
also fixes the list of faces of a drawing. The faces are the connected regions of
the plane defined by a planar drawing. A planar embedding additionally defines
the outer (unbounded) face of a planar drawing. Orthogonal representations are
equivalence classes of orthogonal drawings, that fix the planar embedding and
the bends and angles in an orthogonal drawing.

There are some results in the literature on the topic of optimizing certain
functions over the set of all embeddings of a graph. Bienstock and Monma have
studied the complexity of covering vertices by faces [BM88] and minimizing
certain distance measures on the faces of a graph with respect to the outer
face [BM89,BM90]. Garg and Tamassia have shown that optimizing the number
of bends in an orthogonal drawing over the set of all embeddings of a planar
graph is NP-hard [GT94].

Bertolazzi et al. [BBD00] have devised a branch & bound algorithm for solv-
ing the bend minimization problem over the set of all embeddings of a pla-
nar graph using SPQR-trees. In this paper, we attack the same problem us-
ing integer linear programming. To do this, we combine our integer linear pro-
gram describing the set of all combinatorial embeddings of a planar biconnected
graph [MW99,MW00] with a linear program that describes the set of all orthog-
onal representations of a planar graph with a fixed embedding. The result is a
mixed integer linear program that represents the set of all orthogonal represen-
tations for a planar biconnected graph over the set of all embeddings. We use
this new mixed integer linear program to optimize the number of bends in an
orthogonal drawing over the set of all embeddings of a planar graph. Solving
this program using a commercial solver (CPLEX) is significantly faster for large
and difficult graphs than the branch & bound approach of Bertolazzi et al . as
our computational results show.

Section 2 introduces SPQR-trees and summarizes the recursive construction
of the integer linear program that describes the combinatorial embeddings of a
graph. The linear program describing the orthogonal representations of a graph
for a fixed embedding is the topic of Section 3. This is basically the formula-
tion as a linear program of a minimum cost flow problem in a special network
constructed from the graph and the embedding. In Section 4, we present the
new mixed integer linear program that is the result of merging the integer linear
program describing the embeddings of a graph with the linear program that de-
scribes the orthogonal representations for a graph where the embedding is fixed.
The topic of Section 5, is the algorithm that we use to compute an orthogonal
representation of a graph with the minimum number of bends over the set of all
embeddings. The computational results we obtained by applying the algorithm
to a set of hard benchmark graphs are given in Section 6. We compare the al-
gorithm with a well known heuristic and with the branch & bound algorithm
of Bertolazzi et al. The conclusion (Section 7) summarizes the main results and
contains possible starting points for future work.

486 Petra Mutzel and René Weiskircher

2 The ILP-Formulation Describing the Set
of All Embeddings

The integer linear program (ILP) suggested in [MW99] describing the set of all
combinatorial embeddings of a planar graph is constructed recursively using the
SPQR-tree data structure. Because SPQR-trees are only defined for biconnected
graphs, the same is true for the ILP. A graph is biconnected, if the number of
its connected components can not be increased by deleting a vertex.

SPQR-trees have been defined by Di Battista and Tamassia [BT96]. They
represent a decomposition of a biconnected graph into its triconnected compo-
nents. A connected graph is triconnected, if there is no pair of vertices in the
graph whose removal splits the graph into two or more components. An SPQR-
tree has four types of nodes (Q-nodes, S-nodes, R-nodes and P -nodes) and with
each node we associate a biconnected graph which is called the skeleton of that
node. This graph can be seen as a simplified version of the original graph and
its vertices are vertices of the original graph. The edges in a skeleton represent
subgraphs of the original graph.

All leaves of the SPQR-tree are Q-nodes and all inner nodes S-, P or R-
nodes. When we see the SPQR-tree as an unrooted tree, then it is unique for
every biconnected planar graph. Another important property of these trees is
that their size (including the skeletons) is linear in the size of the original graph
and that they can be constructed in linear time [HT73,GM01]. As described
in [BT96], SPQR-trees can be used to represent the set of all combinatorial
embeddings of a biconnected planar graph. Every combinatorial embedding of
the original graph defines a unique combinatorial embedding for each skeleton
of a node in the SPQR-tree. Conversely, when we define an embedding for each
skeleton of a node in the SPQR-tree, we define a unique embedding for the
original graph.

The variables of the ILP correspond to directed cycles of the graph. Our
recursive construction of the ILP guarantees that we only compute variables for
cycles that form the boundary of a face in at least one embedding of the graph.
So we generate the minimum set of variables needed to describe all embeddings.
While the number of directed cycles in a graph grows exponentially with the size
of the graph, our computational experiments in Section 6 show that the number
of variables in our ILP grows only linearly.

We construct the program by splitting the SPQR-tree into smaller SPQR-
trees, recursively constructing ILPs for these smaller trees, and then merging
them into an ILP for the original graph. The basis of the recursive construction
are SPQR-trees that have only one inner node. These graphs have a very sim-
ple structure and ILPs that describe their combinatorial embeddings are easy
to construct. One type of constraints, similar to the subtour elimination con-
straints used in ILPs for the asymmetric travelings salesman problem (ATSP),
are not explicitly added to the ILP because the number of these constraints is
exponential. Instead we separate them in the optimization procedure using the
same methods used for solving ATSP-problems with integer programming. We
construct the ILPs of more complex graphs by merging the ILPs of the graphs

Bend Minimization in Orthogonal Drawings Using Integer Programming 487

generated by the splitting procedure and adding additional glue constraints. Us-
ing structural induction, we can show that the resulting ILP is correct and that
the variables correspond exactly to the set of cycles that are face cycles in at
least one embedding of the graph.

3 The Linear Program Describing Orthogonal
Representations for a Fixed Embedding

Orthogonal representations not only fix the embedding of a graph but also the
number, type and sequence of the bends on each edge in an orthogonal draw-
ing. They do not fix the lengths of the edge segments in the drawing. The first
efficient algorithm for computing an orthogonal representation of a graph with
the minimum number of bends for a fixed planar embedding was presented by
Tamassia [Tam87]. This algorithm constructs a flow network using the planar
embedding and then computes a minimum cost flow in this network. This flow
can be translated into an orthogonal representation of the graph with the mini-
mum number of bends for the fixed embedding.

The drawback of the original method of Tamassia is that it can not deal
with vertices of degree greater than four. Some modifications of the algorithm
have been published that get over this constraint. The approach that we use
implements the podevsnef drawing convention (planar orthogonal drawings with
equal vertex size and non-empty faces) first mentioned in [FK96]. According to
this convention, the vertices are drawn as boxes of the same size and the edges
are positioned on a finer grid then the vertices. Because of this modification,
more than one edge can be incident to each of the four sides of a vertex (see
Fig. 1 for an example).

Bertolazzi et al. describe a minimum cost flow network N that can be used
to compute an orthogonal representation in a simplified podevsnef model with
the minimum number of bends for a fixed embedding [BBD00]. The network for
G contains one node for every vertex of G (called v-nodes) and one vertex for
every face cycle of the given embedding (called c-nodes).

Let f be the bijection that maps the vertices of G to the v-nodes of N and
the face cycles of the planar embedding to the c-nodes. Then there is an arc
between the v-node v1 and the c-node v2 if the vertex f−1(v1) is on the cycle
f−1(v2). This arc is directed towards v2 if the degree of f−1(v1) is at most four
and towards v1 otherwise. There is an arc from the c-node v3 to the c-node v4 if
the two cycles f−1(v3) and f−1(v4) share an edge.

The flow on arcs connecting v-nodes with c-nodes determines the angles
between edges incident to the same vertex while the flow on arcs connecting two
c-nodes determines the bends. Flow on an arc from a c-node to a v-node implies
a zero-degree angle at the corresponding vertex between two incident edges and
causes a bend on one of the edges. The amount of flow that each vertex in N
produces or consumes together with the capacities for the edges guarantee that
every feasible flow corresponds to an orthogonal representation. The cost per
unit of flow on the arcs of the network are defined in such a way, that the cost of

488 Petra Mutzel and René Weiskircher

0

1

2

3

4

5

6 7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26 27

28

29

30

31

32 33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48 49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

9899

100

101102

103

104

105106107

108

109

110

111

112113

114 115

116

117118

119

120

121 122

123124125126127

128 129

Fig. 1. A podevsnef drawing of a graph.

each feasible flow is equal to the number of bends in the represented orthogonal
representation.

We used this network and transformed it into a linear program. There is one
variable for each arc in the network that represents the amount of flow routed
via this arc. One constraint for each vertex in the network makes sure that the
number of incoming amount of flow minus the number of outgoing amount is
equal to the demand of the node (some nodes have negative demand). We have
one constraint for each arc that sets upper and lower bounds for the flow on the
arc. The objective function minimizes the sum of the amount of flow over each
arc multiplied by the cost of the arc. An optimal solution represents a minimum
cost flow in N and thus an orthogonal representation with the minimum number
of bends. Because of space constraints, we do not present the LP here, but the
constraints are all contained in the mixed integer linear program of Section 4,
that is used to compute an orthogonal representation with the minimum number
of bends over all embeddings.

4 The Mixed Integer Linear Program Describing the Set
of All Orthogonal Representations of a Graph

The flow network N of the last section describing the set of orthogonal repre-
sentations of a graph with a fixed embedding contains one c-node for every face
of the embedding. When we want to optimize over the set of all embeddings of
a graph, we do not know which cycles will be face cycles in an optimal solution.

Bend Minimization in Orthogonal Drawings Using Integer Programming 489

Therefore, we construct a new network N ′, where we have one c-node for every
cycle in the graph, that is a face cycle in at least one embedding. The set of
these cycles corresponds to the set of variables in our ILP from Section 2 that
describes the set of all embeddings of a graph.

In a solution of the embedding ILP, the variables of the cycles that are face
cycles in the represented embedding have value one while all other variables have
value zero. Let A be the set of edges incident to the c-node for cycle c in N ′ and
the variable for c in the embedding ILP be zero. Then all arcs in A must have
flow zero. Therefore, the flow on the arcs of the network N ′ incident to c-nodes
corresponding to cycles in G whose variable in the ILP is zero must also be zero.

To achieve this, we take the variables of the ILP into account when we com-
pute the capacities of the edges and the amount of flow that each c-node con-
sumes or produces. We first compute the capacities of the arcs and the demand
of each c-node analogously to the corresponding values in the network N . Then
we multiply the amount of flow produced or consumed by a c-node with the value
of the corresponding variable in the ILP. This ensures that vertices in N ′ that
correspond to cycles in G that are not face cycles do not produce or consume
flow, because the corresponding variable in the ILP is zero.

Any arc that starts or ends at a c-node has capacity zero if the c-node corre-
sponds to a cycle whose ILP-value is zero. If the capacity of the edge is limited
even if the corresponding cycle is a face cycle, we can just multiply this limit with
the ILP-value of the cycle. The arcs in the network N that connect two c-nodes
have unlimited capacity. But we can easily compute an upper bound fmax for
the flow produced in N ′ (we get a trivial upper bound by adding the supply of
all nodes). This value can be used as the upper bound for the flow on any arc.
For each arc a in N ′ connecting two c-nodes v1 and v2, we set the capacity to
the minimum of the two products fmaxxi where xi is the the binary variable in
the embedding ILP for the cycle corresponding to node vi. This guarantees that
the flow on a is zero if at least one of the cycles represented by the nodes vi is
not a face cycle in the chosen embedding.

The result is the network N ′, where the capacities of the edges and the
amount of flow produced and consumed by the vertices depend on the values of
the cycle variables in the ILP. We transform this network into a linear program
and merge it with the ILP that represents the embeddings of the graph. The
result is a mixed integer linear program (MILP), where an optimal solution
corresponds to an orthogonal representation with the minimum number of bends
over the set of all embeddings of the input graph.

MILP 1 is the resulting mixed integer linear program. We omitted the con-
straints that define the embedding because they are defined recursively and are
not the main topic of this paper. The set C is the set of cycles in G that are
face cycles in at least one embedding. The variable xc is one if cycle c is a face
cycle and variable oc is one if it is the outer face cycle. The set Ecc is the set of
arcs that connect two c-nodes. Arcs in Evc start in a v-node and end in a c-node
while the arcs in Ecv have the opposite direction. The expression len(c) denotes
the number of edges in cycle c.

490 Petra Mutzel and René Weiskircher

MILP 1
min

∑
e∈EN

cost(e) · fe

subject to
∑
c∈C

oc = 1

xc − oc ≥ 0 ∀c ∈ C∑
e=(v,w)∈EN

fe −
∑

e=(w,v)∈EN

fe = 4− deg(v) ∀v ∈ V
∑

e=(c,w)∈EN

fe −
∑

e=(w,c)∈EN

fe = xc(4− len(c))− 8oc ∀c ∈ C

fe ≤ xc(4− deg(v)) ∀e = (v, c) ∈ Evc

fe ≤ xc ∀e = (c, v) ∈ Ecv

fe ≤ xc1fmax ∀e = (c1, c2) ∈ Ecc

fe ≤ xc2fmax ∀e = (c1, c2) ∈ Ecc

fe ≥ 0 ∀e ∈ EN

xc, oc ∈ {0, 1} ∀c ∈ C

5 The Algorithm for Minimizing the Number of Bends

The algorithm first computes the recursive ILP describing the set of all combina-
torial embeddings of the graph. This also gives us the set of cycles of the graph
that are face cycles in at least one embedding. This information is then used
for computing the network N ′ and the corresponding MILP. We use CPLEX
(version 6.5) to compute a solution and then separate subtour elimination con-
straints from the embedding ILP and re-optimize if necessary. When we have
found a feasible solution, we transform it into an orthogonal representation of
the graph.

To improve the performance of the algorithm, we modified the MILP slightly.
For example, we only need outer face variables for half of the cycles. The orthogo-
nal representations we exclude in this way are mirror images of other orthogonal
representations that can still be represented. We also hard-coded a complete
description of the set of embeddings for P -node skeletons with less than five
vertices into our program to reduce the need for separating constraints.

6 Computational Results

Since we wanted to compare the performance of our approach with the branch &
bound method for bend minimization by Bertolazzi [BBD00], we used the same
set of graphs that they used for testing the performance of their algorithm.

Bend Minimization in Orthogonal Drawings Using Integer Programming 491

0

50

100

150

200

10 20 30 40 50 60 70 80 90 100
1

10

100

1000

10000

100000

1e+06

1e+07

S
ec

on
ds

E
m

be
dd

in
gs

Number of vertices

B&B
Milp

Embeddings

Fig. 2. Run time comparison with the branch & bound algorithm (linear scale) together
with the average number of embeddings (logscale)

This set consists of 500 randomly generated graphs, 50 different graphs for each
number of vertices from 10 to 100 in steps of 10.

Our algorithm and the branch & bound algorithm have the same limitations:
They can only be applied to planar biconnected graphs, because they both use
SPQR-trees. All the graphs in the benchmark set have these properties.

First, we compared the optimal results produced by our algorithm with the
results computed by a popular heuristic. This heuristic chooses an arbitrary
embedding for the graph and then computes a minimum cost flow in the network
of section 3.

Let h be the number of bends in the orthogonal representation computed by
the heuristic and o the number of bends in an orthogonal representation with the
minimum number of bends. For each graph in the benchmark set, we computed
the following value: h−o

h 100%. This is the percentage of the improvement we get
using an optimal algorithm. Almost half of all graphs (246 out of 500) show a
significant improvement (greater than 10%). The greatest absolute difference in
the number of bends that we observed from the heuristic solution to the optimal
solution was 12 bends. The average number of saved bends per graph using
the optimal algorithm was 2.26. The average improvement over all graphs was
17.43%.

We compared the average running time for graphs with the same number of
vertices of our new algorithm (MILP) and the branch & bound algorithm (B&B)
from [BBD00]. Both algorithms were tested on a Sun Enterprise 450 Model 4400
with 4GB main memory. The running time of MILP includes the time needed for
the recursive construction of the ILP that describes the embeddings of a graph.

Figure 2 shows the average running time of both algorithms. The x-axis
shows the number of vertices in the graphs and the y-axis on the left the average
running time in seconds for all graphs in the benchmark set with that number
of vertices. The plot shows that our new algorithm needs on average only half
the time needed by the branch & bound algorithm to compute the drawing with

492 Petra Mutzel and René Weiskircher

0

500

1000

1500

2000

2500

3000

10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

V
ar

ia
bl

es

C
on

st
ra

in
ts

Number of vertices

Total constraints
Total variables

Fig. 3. The average number of constraints and variables grows only linearly with the
size of the graphs

the minimum number of bends. The same plot contains the curve showing the
average number of embeddings for graphs with the same number of vertices. As
expected, the average number of embeddings grows exponentially with the size
of the graphs (note that the y-axis on the right is logarithmic). However, the
average number of constraints and variables in our mixed integer linear program
grows only linearly with the size of the graphs (see Figure 3).

We also applied the branch & bound algorithm and our new algorithm to a set
of 11529 graphs derived from graphs used in industrial applications. We created
these graphs by planarizing the graphs in the benchmark set used in [BGL+97]
and then adding edges to make them planar and biconnected. Because of space
considerations, we can only mention a few statistics. The branch & bound al-
gorithm failed to provide an optimal solution in one hour of computation time
for 197 of the graphs, while our new algorithm exceeded this time limit for only
25 graphs. While the branch & bound algorithm is slightly faster on average
for the graphs in the set with less than about 120 vertices, our algorithm has a
significant speed advantage for the graphs with more than 150 vertices.

7 Conclusion

Using methods of integer linear programming to minimize the number of bends
in an orthogonal drawing seems to be a promising approach. The main drawback
is that at the moment, the algorithm only works for biconnected graphs. The
reason is that SPQR-trees are only defined for biconnected graphs. A possible
approach to get rid of this limitation is to work with the block tree of biconnected
components of the graph. If it can be used to describe the set of all embeddings
of a connected graph as an ILP, our approach can be easily extended to deal
with any planar graph.

Bend Minimization in Orthogonal Drawings Using Integer Programming 493

Acknowledgment

We thank Walter Didimo for providing the code of the branch & bound algorithm
and the benchmark graphs.

References

BBD00. P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal draw-
ings with the minimum number of bends. IEEE Transactions on Computers,
49(8):826–840, 2000.

BGL+97. G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu.
An experimental comparison of four graph drawing algorithms. Comput.
Geom. Theory Appl., 7:303–326, 1997.

BM88. D. Bienstock and C. L. Monma. On the complexity of covering vertices by
faces in a planar graph. SIAM Journal on Computing, 17(1):53–76, 1988.

BM89. D. Bienstock and C. L. Monma. Optimal enclosing regions in planar graphs.
Networks, 19(1):79–94, 1989.

BM90. D. Bienstock and C. L. Monma. On the complexity of embedding planar
graphs to minimize certain distance measures. Algorithmica, 5(1):93–109,
1990.

BT96. G. Di Battista and R. Tamassia. On-line planarity testing. SIAM Journal
on Computing, 25(5):956–997, 1996.

FK96. U. Fößmeier and M. Kaufmann. Drawing high degree graphs with low bend
numbers. In F. J. Brandenburg, editor, Graph Drawing (Proc. GD ’95),
volume 1027 of LNCS, pages 254–266. Springer-Verlag, 1996.

GM01. C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-trees.
In J. Marks, editor, Graph Drawing (Proc. 2000), volume 1984 of LNCS,
pages 77–90. Springer-Verlag, 2001.

GT94. A. Garg and R. Tamassia. On the computational complexity of upward and
rectilinear planarity testing. In R. Tamassia and I. G. Tollis, editors, Pro-
ceedings Graph Drawing ’94, volume 894 of LNCS, pages 286–297. Springer-
Verlag, 1994.

HT73. J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected com-
ponents. SIAM Journal on Computing, 2(3):135–158, 1973.

MW99. P. Mutzel and R. Weiskircher. Optimizing over all combinatorial embeddings
of a planar graph. In G. Cornuéjols, R. Burkard, and G. Wöginger, editors,
Proceedings IPCO ’99, volume 1610 of LNCS, pages 361–376. Springer Ver-
lag, 1999.

MW00. P. Mutzel and R. Weiskircher. Computing optimal embeddings for planar
graphs. In Proceedings COCOON ’00, volume 1858 of LNCS, pages 95–104.
Springer Verlag, 2000.

Tam87. R. Tamassia. On embedding a graph in the grid with the minimum number
of bends. SIAM Journal on Computing, 16(3):421–444, 1987.

The Conditional Location of a Median Path

Biing-Feng Wang1, Shan-Chyun Ku2, and Yong-Hsian Hsieh1

1 National Tsing Hua University, Taiwan, ROC
bfwang@cs.nthu.edu.tw, eric@venus.cs.nthu.edu.tw

2 Faraday Technology Corporation, Taiwan, ROC
scku@faraday.com.tw

Abstract. In this paper, we study the problem of locating a median
path of limited length on a tree under the condition that some existing
facilities are already located. The existing facilities may be located at
any subset of vertices. Upper and lower bounds are proposed for both
the discrete and continuous models. In the discrete model, a median path
is not allowed to contain partial edges. In the continuous model, a me-
dian path may contain partial edges. The proposed upper bounds for
these two models are O(nlog n) and O(nlog nα(n)), respectively. They
improve the previous ones from O(nlog2 n) and O(n2), respectively. The
proposed lower bounds are both Ω(nlog n). The lower bounds show that
our upper bound for the discrete model is optimal and the margin for
possible improvement on our upper bound for the continuous model is
slim.

1 Introduction

Network location theory has been traditionally concerned with the optimal lo-
cation of points. Let G=(V, E) be a graph. For any pair v, u∈V, let d(v,
u) be their distance. For each node v∈V, let w(v) be its vertex weight. The
well-known p-median problem is to find a subset H of p vertices minimiz-
ing Σv∈V {w(v)×minu∈H d(v,u)}, which is called the distance-sum of H. The
well-known p-center problem is to find a subset H of p vertices minimizing
maxv∈V {w(v)×minu∈H d(v,u)}, which is called the eccentricity of H. Slater [8]
firstly extended the network location theory to include a facility that is not
merely a single-point but a path. He defined a core of a tree as a path of any
length having the minimum distance-sum. Minieka [6] studied the problem of
finding a median path of a specified length in a tree. In the problem, the length
of a median path should be exactly equal to a given number l. Later, Hakimi
et al. [3] studied the problem of locating a median path of limited length in a
tree. In the problem, a median path should have length not larger than a given
number l. Two models were discussed. If a median path is not allowed to con-
tain partial edges, it is referred as the discrete model. Otherwise, it is referred
as the continuous model. Recently, Alstrup et al. [2] gave an O(nlog n) time
algorithm for the discrete model and an O(nlog nα(n)) time algorithm for the

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 494–503, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

The Conditional Location of a Median Path 495

continuous model, where α is the inverse of Ackermann’s function. With a little
modification, their algorithm for the continuous model can be used to find a
median path of a specified length as well. In [6], Minieka extended the location
theory to include tree-shaped facilities. Results on locating tree-shaped facilities
can be found in [6,9,10,12]. Path-shaped and tree-shaped facilities are also called
extensive facilities. Parallel algorithms for locating different kinds of extensive
facilities have also been examined in the literature [11,12].

Consider the situation that we are going to locate new facilities on a network
in which some existing facilities are already located so that customers can be
served by the closest facility whether exising or new. For example, consider a
graph G=(V, E) in which there are existing facilities located at the vertices of a
subset S⊆V. The conditional p-median problem is to find a subset H of p vertices
minimizing the distance-sum of H∪S and the conditional p-center problem is to
find a subset H of p vertices minimizing the eccentricity of H∪S. Minieka [5]
coined the term conditional location problem. Since then many papers dealing
with conditional location problems have appeared. Very recently, Tamir et al. [10]
launched the study on finding the conditional location of an extensive facility
of limited length on trees. They discussed both path-shaped and tree-shaped
facilities, both eccentricity and distance-sum criteria, and both continuous and
discrete models. Therefore, in total eight problems were examined. For most of
the problems, sub-quadratic algorithms were presented.

In this paper, we study the problem of finding the conditional location a me-
dian path of limited length on a tree. Upper and lower bounds are proposed for
both the discrete and continuous models. For the discrete model, the proposed
upper bound is O(nlog n). Tamir et al. [10] had proposed an O(nlog2 n) time
algorithm for this model and conjectured that the time complexity of their algo-
rithm can be improved to O(nlog n) by using a more efficient implementation.
Our upper bound is obtained by such an implementation. For the continuous
model, the proposed upper bound is O(nlog nα(n)), improving the previous one
in [10] from O(n2). For the discrete model, the proposed lower bound is Ω(nlog
n). It also holds for the unconditional case. Thus, for the discrete model, the
upper bound proposed in this paper and the upper bound proposed in [2] for
the unconditional case are both optimal. For the continuous model, the proposed
lower bound is also Ω(nlog n). It shows that the margin for possible improvement
on our upper bound for the continuous model is slim.

The remainder of this paper is organized as follows. In the next section, nota-
tion and preliminaries are presented. In Section 3, Alstrup et al.’s algorithms for
the unconditional case are described. Then, in Sections 4 and 5, our algorithms
for the conditional case are presented. Finally, in Section 6, lower bounds are
proposed.

2 Notation and Preliminaries

Let T = (V, E) be free tree. Let n = |V |. Each vertex v∈V has a nonnegative
weight w(v) and each edge e∈E has a nonnegative length d(e). In this paper,

496 Biing-Feng Wang, Shan-Chyun Ku, and Yong-Hsian Hsieh

we assume that T is drawn in the Euclidean plane so that each e∈E is a line
segment of length d(e) and T is regarded as a closed and connected subset of
points in the Euclidean plane. For any two points a, b of T, let P(a, b) be the
unique path from a to b, which is a collection of edges and at most two partial
edges, and let d(a, b) be the length of P(a, b). A path P(a, b) is discrete if both
a, b∈V, and is almost discrete if at least one of a and b is a vertex. If two vertices
i, j∈V are neighbors, then by removing the edge (i, j) two subtrees are induced.
We denote by T i

j the subtree containing j. For convenience, for any i∈V, we call
each T i

j , (i, j)∈E, a subtree of i. For any subtree X of T, the vertex set and edge
set of X are denoted, respectively, by V (X) and E (X). For easy description of
algorithms, sometimes we will orient T into a rooted tree. In such a case, we
denote by p(i) the parent of a vertex i∈V.

For any vertex i∈V and any subset Y of points of T, the distance from i
to Y is the shortest distance from i to any point of Y. If Y =φ, d(i, Y)=∞. In
this paper, we assume that there is a subset S⊆V representing some existing
facilities. For any subtree X and any subset Y of points of T, the conditional
weighted distance-sum from X to Y is D(X, Y)=Σi∈V (X)w(i)×min{d(i, Y),
d(i, S)}. If X =T, we simply write D(Y) in place of D(T, Y). Let λi=D(i) for
each i∈V and let λe=D(e) for each e∈E. For each (i, j)∈E, define a function
δ(i,j) as δ(i,j)(x)=D(P(i, q)), where 0≤x≤d(i, j) and q is the point on (i, j)
with d(i, q)=x. Note that δ is defined on ordered pairs of neighboring vertices
and thus δ(i,j) �= δ(j ,i). By definition, δ(i,j)(0)=λi and δ(i,j)(d(i, j))=λ(i,j).

The median path problem is to determine a path H of length≤l in T minimiz-
ing D(H), where l≥0 is a real number. The determined path is called a median
path. The problem is unconditional if S=φ, and is conditional otherwise. When
a median path is allowed to contain partial edges, we refer to the model as the
continuous model, and otherwise we refer to it as the discrete model.

For any piece-wise linear function f, let ||f || be the number of linear segments
of f. For a set F of functions, the lower envelope of F is the function Φ defined as
Φ(x)=min{∞, minf ∈F defined on x{f (x)}} for all number x≥0. Hart and Sharir
gave the following result.

Theorem 1 [4]: The lower envelope of n linear functions, each defining a line or
a line segment, is a piece-wise linear function having O(nα(n)) linear segments.

A decomposition of T by using a vertex i∈V as a decomposer is a pair of two
subtrees T 1=(V 1, E 1) and T 2=(V 2, E 2) such that V 1∪V 2=V, V 1∩V 2={i},
and E 1∪E 2=E. For any subtree X of T, we call a vertex in X having a neighbor
in T outside X a boundary vertex. A cluster of T is a subtree having at most two
boundary vertices. For any cluster C, β(C) denotes the set of boundary vertices
and π(C) denotes the path between the boundary vertices. If C has only one
boundary vertex, π(C) denotes the vertex. Two clusters A and B can be merged
if they intersect in a single vertex and A∪B is still a cluster. A top tree τ of T
is a binary tree with the following properties [1,2].

The Conditional Location of a Median Path 497

1. Each node of τ represents a cluster of T.
2. The leaves of τ represent the edges of T.
3. Each internal node of τ represents the cluster merged from the two clusters

represented by its children.
4. The root of τ represents T.
5. The height of τ is O(log n).

A top tree of T describes a way to recursively decompose T into subtrees
having at most two boundary vertices, until each of the subtrees contains only
a single edge [1,2].

3 Alstrup et al .’s Algorithms
for the Unconditional Median Path Problem

3.1 The Continuous Model

For any subtree C of T, let Cost(C) be the distance-sum of the best path of
length≤l contained in C. That is, Cost(C)=min{D(H)| H is a path of length≤l
in C}. Alstrup et al.’s algorithm firstly constructs a top tree τ of T in O(n)
time. Then, in a bottom-up fashion, it computes Cost(C) for all clusters C
represented by the nodes of τ . The computation for the root gets the distance-
sum of a median path.

Besides Cost(C), during the computation, for each cluster C, the value
D(π(C)) and a function Φb ,C for every b∈β(C) are computed, where

Φb ,C (x)=min{D(P(b, q))| P(b, q) is contained in C, d(b, q)≤x}
(i.e., Φb ,C (x) is the distance-sum of the best path of length≤x that extends from
b into C). Define for each (i, j)∈E a function f (i,j) as

(1) f(i,j)(x) =

∞ if x < 0,
δ(i,j)(x) if 0 ≤ x < d(i, j), and
δ(i,j)(d(i, j)) if x ≥ d(i, j)

which is the distance-sum of the best path of length≤x that extends from i and
is contained in the edge (i, j). Then, we can express

Φb ,C (x) = min(i,j)∈E(C) and i is on P (b,j){D(P (b, i)) + f(i,j)(x− d(b, i))− λi}.

Clearly, since S=φ, we have δ(i,j)(x)=λi -x×|V (T i
j)| for 0≤x≤d(i, j). Thus, the

function Φb ,C is the lower envelope of |E (C)| piece-wise linear functions. Since
Σ(i,j)∈E (C) and i is on P (b ,j)||f (i,j)||=O(|E (C)|), we obtain the following.

Lemma 1 [2]: In the unconditional case, for any cluster C and b∈β(C), Φb ,C is
a piece-wise linear function having O(kα(k)) linear segments, where k=|E (C)|.

498 Biing-Feng Wang, Shan-Chyun Ku, and Yong-Hsian Hsieh

Alstrup et al.’s algorithm is as follows.

Algorithm 1. Median Path(T, l)
Input: a tree T=(V, E) and a length l≥0
Output: the distance-sum of a median path having length≤l
begin
01 preprocess T to obtain λi , λ(i,j), and f (i,j) for all i∈V and (i, j)∈E
02 τ ← a top tree of T
03 for each leaf cluster e=(i, j)∈E do
04 Cost(e) ← min{f (i,j)(l), f (j ,i)(l)}

05 D(π(e))←

λi if β(e) = {i}
λj if β(e) = {j}
λe if β(e) = {i, j}

06 for each b ∈ β(e) do Φb,e ←
{
f(i,j) if b = i
f(j,i) if b = j

07 for each cluster C represented by an internal node of τ do (in a
bottom-up fashion)

08 (A, B) ← the two clusters represented by the children of the internal
node

09 c ← the intersection vertex of A and B
10 H c ← min0≤x ≤l{Φc ,A(x)+Φc ,B (l -x)-λc} // The distance-sum of

the best path passing c in C //
11 Cost(C) ← min{Cost(A), Cost(B), H c}
12 D(π(C))←

{
λb if |β(C)| = 1 and β(C) = {b}
D(π(A)) + D(π(B))− λc otherwise

13 for each b∈β(C) do
14 ΦbC (x) ←

min{Φb,A(x), Φb,B(x)} if b = c
min{Φb,A(x), Φb,B(x− d(b, c)) +D(π(A))− λc} if b ∈ β(A)\{c}
min{Φb,A(x− d(b, c)) +D(π(B))− λc, Φb,B(x)} if b ∈ β(B)\{c}

15 return(Cost(T))
end

Since S=φ, by using dynamic programming, it is easy to compute λi , λ(i,j),
and |V (T i

j)| for all i∈V and (i, j)∈E in O(n) time. Using the computed valuse,
each δ(i,j) and f (i,j) can be computed in O(1) time. The computation for a
leaf cluster takes O(1) time. Since Φc ,A and Φc ,B are piece-wise linear, Step
10 determines min0≤x ≤l{Φc ,A(x)+Φc ,B (l -x)-λc} in O(||Φc ,A||+||Φc ,B ||) time.
In Step 14, we obtain Φb ,C from Φb ,A and Φb ,B in O(||Φb ,A||+||Φb ,B ||) time.
From Lemma 1, we conclude that the computation for a merged cluster C in
Steps 8-14 requires O(kα(k)) time, where k=|E (C)|. In each layer of τ , no two
clusters C contain the same edge. Thus, the computation for a layer of τ takes
O(nα(n)) time. Since there are O(log n) layers, Algorithm 1 performs in O(nlog
nα(n)) time.

The Conditional Location of a Median Path 499

3.2 The Discrete Model

Algorithm 1 can be applied to the discrete model by using a different definition
of f (i,j). Since only vertices can be the ends of a median path, we re-define f (i,j)
as follows:

(2) f(i,j)(x) =

∞ if x < 0,
λi if 0 ≤ x < d(i, j), and
λ(i,j) if x ≥ d(i, j)

With the new definition, each f (i,j) is a step function and thus ||Φb ,C || =
O(|E (C)|) for any cluster C and b∈β(C). Therefore, the computation in Al-
gorithm 1 for a cluster C takes O(|E (C)|) time. We conclude that the problem
of finding an unconditional discrete median path can be solved in O(nlog n)
time.

4 The Conditional Discrete Median Path Problem

It is easy to see that using the definition of f (i,j) in (2), Algorithm 1 solves the
conditional discrete median path problem as well. By a careful check, it can be
found that except Step 1, all steps in the algorithm are irrelevant to S. Thus, in
the conditional case, those steps also takes O(nlog n) time. In the remainder of
this section, we show that Step 1 can be implemented in the same time.

Step 1 is to compute λi , λ(i,j), and f (i,j) for all i∈V and (i, j)∈E. For
each (i, j)∈E, let mi,j =D(T i

j , i), which by definition is
∑

v∈V (T i
j
) w(v)×min{d(v, S), d(v, i)}.

Using mi,j , we can compute λi=Σ(i,j)∈E{mi,j} for all i∈V and then compute
λ(i,j) = λi + λj - mi,j - mj ,i for all (i, j)∈E in O(n) time. Using λi and λ(i,j),
the functions f (i,j) for all (i, j)∈E can be computed in O(n) time according to
the definition in (2). Thus, our problem becomes the computation of all mi,j , (i,
j)∈E

We do the computaion of mi,j by using the divide-and-conquer strategy.
For convenience, we also describe it on a top tree τ of T. For each cluster C
represented by a node of τ , we will compute mi,j (C)=D(Ci

j , i) for each (i,
j)∈E (C), and we will compute two arrays X b ,C and Y b ,C for each b∈β(C),
where X b ,C stores the ordering of the vertices v∈V (C) by the distances d(v, b)
and Y b ,C stores the ordering of the vertices v∈V (C) by d(v, S)-d(v, b). After
the computation, we have mi,j (T)=mi,j for every (i, j)∈E. The computation is
as follows.

Procedure Computing m(T)
begin
01 preprocess T to obtain d(v, S) for all v∈V
02 τ ← a top tree of T
03 for each leaf cluster e=(i, j)∈E do

500 Biing-Feng Wang, Shan-Chyun Ku, and Yong-Hsian Hsieh

04 mi,j (e) ← w(j)×min{d(j, S), d(j, i)}
05 mj ,i(e) ← w(i)×min{d(i, S), d(i, j)}
06 for each b∈β(e) do

07 Xb,e ←
{

(i, j) if b = i
(j, i) if b = j

08 Yb,e ←
{

(i, j) if d(i, S)− d(i, b) ≤ d(j, S)− d(j, b)
(j, i) otherwise

09 for each cluster C represented by an internal node of τ do
(in a bottom-up fashion)

10 (A, B) ← the two clusters represented by the children of
the internal node

11 c ← the intersection vertex of A and B
12 for each (i, j)∈E (C) do compute mi,j (C) and mj ,i(C)
13 for each b∈β(C) do
14 compute X b ,C and Y b ,C
end

The computation of d(v, S) for all v∈V in Step 1 takes O(nlog n) time [10].
The computation for a leaf cluster takes O(1) time. Thus, Steps 3-8 takes O(n)
time. Consider a fixed merged cluster C. Step 12 computes mi,j (C) and mj ,i(C)
for all (i, j)∈E (C). Due to the symmetry between A and B, we only present the
computation for (i, j)∈E (A). For easy discussion, we assume that C is rooted at
c. For each (i, p(i))∈E (A), we have Cp(i)

i =Ap(i)
i and Ci

p(i)=A
i
p(i) ∪B. Thus, for

all (i, j)=(i, p(i))∈E (A), we simply compute mj ,i(C)=mj ,i(A) in O(|V (C)|)
time. Next, we describe the computation of mi,j (C) for all (i, j)=(i, p(i))∈E (A).
Assume that X c ,A=(x 1, x 2,..., x s) and Y c ,B=(y1, y2,..., y t}. For any vertex
x∈V (A), the ordering of the vertices y∈V (B) by d(y, S)-d(y, x) is the same with
the ordering by d(y, S)-d(y, c). Thus, for any vertex x k in X c ,A, there exists an
index z k such that d(yq , S)-d(yq , x k)≤0 for q<z k and d(yq , S)-d(yq , x k)>0 for
q≥z k . By applying a process similar to merge, we compute all z k in O(|V (C)|)
time from X c ,A and Y c ,B . Then, since the indices z k are nondecreasing, it is
easy to compute mi,j (C) for all (i, j)=(i, p(i))∈E (A) in O(|V (C)|) time by
using the following equation:

mxk,p(xk)(C) = mxk,p(xk)(A)+
∑

q<zk

w(yq)×d(yq, S)+
∑

q≥zk

w(yq)×d(yq, xk).

Therefore, Step 12 takes O(|V (C)|) time. Now, consider the computation in
Step 14. By symmetry, we may assume b∈V (A). Clearly, we can obtain X b ,C
by merging X b ,A and X c ,B in linear time. Similarly, Y b ,C can be obtained by
merging Y b ,A and Y c ,B in linear time. Therefore, the computation in Steps
10-14 takes O(|V (C)|) time in total, from which we conclude that the whole
computation on τ takes O(nlog n) time. We have the following theorem.

Theorem 2 : The problem of finding a conditional discrete median path of length
≤ l in a tree can be solved in O(nlog n) time.

The Conditional Location of a Median Path 501

5 The Conditional Continuous Median Path Problem

By using the following important property, Tamir et al. presented an O(n2) time
algorithm without applying the divide-and-conquer strategy.

Lemma 2 [10]: There is a conditional continuous median path that is almost
discrete.

From now on, only almost discrete paths are considered. For easy description,
in the remainder of this section, we assume that T is rooted at an arbitrary
vertex r∈V. Let P(v, q) be an almost discrete path, where v is a vertex and q
is a point. The point q is possibly a vertex. For convenience, we say that P(v,
q) is of type 1 if q is on the path from v to r, and is of type 2 otherwise. For
easy description, a discrete path between two vertices v1, v2∈V is regarded as
two different almost discrete paths, one extending from v1 to v2 and the other
extending from v2 to v1, such that any almost discrete path is either of type 1
or of type 2. Our strartegy for determining a median path is as follows. Firstly,
we compute a best path among all paths of type 1. Then, we compute a best
path among all paths of type 2. Finally, we determine a median path by simply
comparing the two computed paths.

5.1 The Computation of a Best Path among All Paths of Type 1

Let R={P(v, r)| v∈V, d(v, r)≤l} and Q={P(v, q)| v∈V, d(v, r)>l, q is the
point on P(v, r) with d(v, q)=l}. Our problem in this section is to compute the
best path in R∪Q. Since |R∪Q |=O(n), it is not difficult to derive an O(nlog
n) time algorithm for the computation. For easy analyzing, insteads of giving
a new algorithm, we do the computation by performing an algorithm for the
conditional discrete median path problem as follows. Firstly, we compute all the
points q with P(v, q)∈Q, which requires O(nlog n) time [9]. Then, repeatedly,
for each computed point q, letting (i, j) be the edge containing q, we introduce a
new vertex vq at q. Finally, we perfom an algorithm for the conditional discrete
median path problem. Note that the above computation may produce a path
not in R∪Q, which is of type 2.

5.2 The Computation of a Best Path among All Paths of Type 2

In Algorithm 1, the function δ(i ,p(i)) is used to determine the distance-sum of
a path having a partial edge extending form i to p(i). Conversely, the func-
tion δ(p(i),i) is used to determine the distance-sum of a path having a partial
edge extending form p(i) to i. Now, we are only interested in paths of type 2.
Therefore, we obtain an algorithm by slightly modifying Algorithm 1 as follows.
Firstly, for each (i, p(i))∈E, we redefine f (i , p(i))(x) = ∞ for all x, and

f(p(i),i)(x) =

∞ if x < 0,
δ(p(i),i)(x) if 0 ≤ x < d(p(i), i), and
λ(p(i),i) if x ≥ d(p(i), i)

502 Biing-Feng Wang, Shan-Chyun Ku, and Yong-Hsian Hsieh

Next, we modify Steps 10-11 of Algorithm 1 for the computation of Cost(C).
Since only almost discrete paths are considered, we compute

Cost(C) = min{Cost(A), Cost(B), HA,B , HB,A},

where

H A,B=minv∈V (A),d (c ,v)≤l {D(P(c, v))+Φc ,B (l -d(c, v))-λc}
is the distance-sum of the best path of type 2 extending from a vertex in A to
a point in B, and H B ,A=minv∈V (B),d (c ,v)≤l {D(P(c, v))+Φc ,A(l -d(c, v))-λc}
is the distance-sum of the best path of type 2 extending from a vertex in B
to a point in A. It is not difficult to see that after the above modification, the
computation for a cluster C can be implemented in O(|V (C)|+k’α(k’)) time,
where k’=Σ(p(i),i)∈E (C)||δ(p(i),i)||.
Lemma 3 : The total number of linear segments of all δ(p(i),i), (p(i), i)∈E, is
O(n).

Lemma 4 : All δ(p(i), i), (p(i), i)∈E, can be computed in O(nlog n) time.

Due to the page limitation, the proofs of Lemmas 3 and 4 are omitted. From
the lemmas, it is not difficult to obtain the following theorem.

Theorem 3 : The conditional continuous medina path problem can be solved in
O(nlog nα(n)) time.

6 Lower Bounds

Lemma 5 [7]: Solving the element uniqueness problem, which is to decide if
any two of n given positive numbers are equal, requires Ω(nlog n) time in the
comparison model.

Theorem 4 : Finding an unconditional discrete median path of length≤l in a tree
requires Ω(nlog n) time in the comparison model, even for a tree with all vertex
weights being equal to 1.

Proof : Given an instance A=(a1, a2,... , an) of the element uniqueness problem,
we construct in linear time a tree T=(V, E) with V ={r, x 1, y1, z 1, x 2, y2, z 2,...,
xn , yn , zn} and E={(r, x 1), (x 1, y1), (x 1, z 1), (r, x 2), (x 2, y2), (x 2, z 2),..., (r,
xn), (xn , yn), (xn , zn)}. All vertex weights are 1. Let t=3×max{a1, a2,... , an}.
The length of (r, x i) is t. The lengths of (x i , y i) and (x i , z i) are ai and t-ai ,
respectively. Finally, let l=3t. With some efforts, we can show that there are two
equal elements in A iff a discrete median path of T has distance-sum≤t(4n-7).
Therefore the theorem holds. Q.E.D.

Theorem 5 : Finding a conditional continuous median path of length≤l in a tree
requires Ω(nlog n) time in the comparison model, even for a tree with all vertex
weights being equal to 1.

The Conditional Location of a Median Path 503

Proof : Given an instance A=(a1, a2,... , an) of the element uniqueness problem,
we construct in linear time a tree T=(V, E) with V ={r, x 1, y’ 1, y1, z’ 1, z 1, x 2,
y’ 2, y2, z’ 2, z 2,..., xn , y’n , yn , z’n , zn} and E={(r, x 1), (x 1, y’ 1), (y’ 1, y1), (x 1,
z’ 1), (z’ 1, z 1), (r, x 2), (x 2, y’ 2), (y’ 2, y2), (x 2, z’ 2), (z’ 2, z 2),..., (r, xn), (xn ,
y’n), (y’n , yn), (xn , z’n), (z’n , zn)}. All vertex weights are 1. Let t=3×max{a1,
a2, ..., an}. The length of (r, x i) is t. The lengths of (x i , y’ i), (y’ i , y i), (x i , z’ i),
and (z’ i , z i) are ai/2, ai/2, (t-ai)/2, and (t-ai)/2, respectively. The existing
facility S includes all x i , y’ i , and z’ i , i=1, 2,..., n. Let l=3t. With some efforts,
we can show that there are two equal elements in A iff a conditional continuous
median path of T has distance-sum≤t(n-1)/2. Q.E.D.

References

1. S. Alstrup, J. Holm, and M. Thorup, Maintaining median and center in dynamic
trees, in Proceedings of the SWAT 2000, Lecture Notes in Computer Science, vol.
1851, Springer-Verlag, pp. 46-56, 2000.

2. S. Alstrup, P.W. Lauridsen, P. Sommerlund, and M. Throup, Finding cores of
limited length, Technical Report, The IT University of Copenhagen, a preliminary
version of this paper appeared in Proceedings of the 5th International Workshop
on Algorithms and Data Structures, Lecture Notes in Computer Science, vol. 1272,
Springer-Verlag, pp. 45-54, 1997.

3. S. L. Hakimi, E. F. Schmeichel and M. Labbé, On locating path- or tree- shaped
facilities on networks, Networks, vol. 23, pp. 543-555, 1993.

4. S. Hart and M. Sharir, Nonlinearity of Davenport-Schinzel sequences and of general
path compression schemes, Combinatorica, vol. 6, pp. 151-177, 1986.

5. E. Minieka, Conditional centers and medians on a graph, Networks, vol. 10, pp.265-
272, 1980.

6. E. Minieka, The optimal location of a path or tree in a tree network, Networks,
vol. 15, pp. 309-321, 1985.

7. F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction,
Springer-Verlag, 1985.

8. P. J. Slater, Locating central paths in a network, Transportation Science, vol. 16,
No. 1, pp. 1-18, 1982.

9. A. Tamir, Fully polynomial approximation schemes for locating a tree-shaped facil-
ity: a generalization of the knapsack problem, Discrete Applied Mathematics, vol.
87, pp. 229-243, 1998.

10. A. Tamir, J. Puerto, J.A. Mesa, and A.M. Rodriguez-Chia, Conditional location
of path and tree shaped facilities on trees, manuscript, 2001.

11. B.-F. Wang, Finding a two-core of a tree in linear time, SIAM Journal on Discrete
Mathematics, accepted.

12. B.-F. Wang, Efficient parallel algorithms for optimally locating a path and a tree
of a specified length in a weighted tree network, Journal of Algorithms, vol. 34, pp.
90-108, 2000.

New Results on the k-Truck Problem�

Weimin Ma1,2, Yinfeng Xu1, Jane You2, James Liu2, and Kanliang Wang1

1 School of Management, Xi’an Jiaotong University, Shaanxi 710049, PRC
2 Dept. of Computing, Hong Kong Polytechnic Uinversity, Hung Hom,

Kowloon, Hong Kong
cswmma@comp.polyu.edu.hk

Abstract. In this paper, some results concerning the k-truck problem
are produced. First, the algorithms and their complexity concerning the
off-line k-truck problem are discussed. Following that, a lower bound of
competitive ratio for the on-line k-truck problem is given. Based on the
Position Maintaining Strategy (PMS), we get some new results which
are slightly better than those of [1] for general cases. We also use the
Partial-Greedy Algorithm (PG) to solve this problem on a special line.
Finally, we extend the concepts of the on-line k-truck problem to obtain
a new variant: Deeper On-line k-Truck Problem (DTP).

1 Introduction

On-line problem and their competitive analysis have received considerable in-
terest for about twenty years. S. Albers and S. Leonardi [2] coined out a com-
prehensive survey of this domain. On-line problems had been systematically
investigated only when Sleator and Tarjian [3] suggested comparing an on-line
algorithm to an optimal off-line algorithm and Karlin, Manasse, Rudolph and
Sleator [4] coined the term competitive analysis. The task system, the k-server
problem, and on-line/off-line games ([5], [6] and [7]) all attempt to model on-line
problems and algorithms. In this paper, we first discussed the algorithms and
its complexity concerning the off-line k-truck problem. Following that, a lower
bound of competitive ratio for the on-line k-truck problem is given. Especially,
based on the PMS, we get some new results for the general cases. In addition,
we also use the PG to solve this problem on a special line and prove that PG
is a (1 + (n− k)/θ) -competitive algorithm for this case. Finally, we extend the
concepts of the on-line k-truck problem to obtain a new variant: DTP.

2 Preliminaries

The k-truck problem can be stated as follows. We are given a metric space M,
and k trucks which move among the points of M, each occupying one point of M.
� The authors would like to acknowledge the support of Central Research Grant GV-

975 of the Hong Kong Polytechnic University and Research Grant from NSF of
China. No.19731001

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 504–513, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

New Results on the k-Truck Problem 505

Repeatedly, a request (a pair of points x, y ∈ M) appears. To serve a request,
an empty truck must first move to x and then move to y with goods from x.
How to minimize the total cost of all trucks? Obviously, the k-truck problem
aims at minimizing the cost of all trucks. Because the cost of trucks with goods
is different from that of trucks without goods on the same distance, the total
distance cannot be considered as the objective to be optimized. For simplicity,
we assume that the cost of a truck with goods is θ times that of one without
goods on the same distance. We can then take (1 + θ) times of the empty loaded
distant as the objective of optimization.
The Model. Let G = (V,E) denote an edge weighted graph with n vertices and
the weights of edges satisfying the triangle inequality, where V is a metric space
consisting of n vertices, and E is the set of all weighted edges. We assume that
the weight of edge (x, y) is denoted by d(x, y) and the weights are symmetric,
i.e., for all x, y, d(x, y) = d(y, x). We assume that k trucks occupy a k-vertexes
which is a subset of V. A service request r = (a, b), a, b ∈ V implies that there
are some goods on vertex a that must be moved to vertex b (for simplicity, we
assume that the weight of the goods is same all the time). A service request
sequence R consists of some service request in turn, namely R = (r1, ..., rm),
where ri = (ai, bi), ai, bi ∈ V . All discussion is based on the following essential
assumptions: (1) Graph G is connected; (2) When a new service request occurs,
k trucks are all free; (3) All trucks have the same load weight and the cost of
a truck with goods is θ times that of one without goods on the same distance,
and θ ≥ 1. For a known sequence R = (r1, ..., rm), let COPT(R) be the optimal
total cost after finishing it. For a new service request ri, if scheduling algorithm
A can schedule without information regarding the sequence next to ri, we call
A an on-line algorithm. For on-line algorithm A, if there are constants α and β
satisfying

CA(R) ≤ α · COPT(R) + β,

then for any possible R, A is called a competitive algorithm, where CA(R) is the
total cost with algorithm A to satisfy sequence R.

If there is no limit for the R and θ, the on-line truck problem is called P. In
problem P, if for any ri = (ai, bi), ai, bi and θ > 1 holds, the problem is called
P1. In problem P, if there is no limit for any ri = (ai, bi), but if θ = 1, the
problem is P2. In P2, if d(ai, bi) > 0, namely ai = bi, the problem is called P3.
In problem P, if d(ai, bi) = 0, namely ai = bi, it is called P4.
Lemma 1. [9] There exists an on-line algorithm for the k-server problem with
the competitive ratio 2k − 1.

Lemma 2. [1] Letting OPT be an optimal algorithm for an request sequence
R = (r1, ..., rm), then we have COPT(R) ≥ COPT(σ) +

∑m
i=1 (θ − 1) · d(ai, bi),

where σ = ((a1, a1), ..., (am, am)) and ri = (ai, bi).

Lemma 3. [1] For any algorithm A for a request sequence R = (r1, ..., rm), we
have CA(R) ≥∑m

i=1 θ · d(ai, bi), and COPT(R) ≥∑m
i=1 θ · d(ai, bi).

Lemma 4. [10] There exists an on-line algorithm for the k-server problem on
a real line with the competitive ratio k.

506 Weimin Ma et al.

Position Maintaining Strategy (PMS) [8]

For the present request ri = (ai, bi), after ai is reached, the truck reaching ai

must move from ai to bi with the goods to complete ri. When the service for ri
is finished, the PMS moves the truck at bi back to ai (empty) before the next
request arrives.

3 Off-Line Problem

In this section, two solutions for the off-line k-truck problem are discussed.

Definition (Configuration) On the metric space M, a possible position of k
trucks is called a configuration. That is, a configuration is a special k-multiset
whose elements consist of at least one and at most k points of space M. Here,
the special means that in the multiset the same node can be repeated from one to
k times.

3.1 Dynamic Programming (DP) Solution

In [6], a DP solution was given for the famous k-server problem. Similarly, we
can develop a DP solution for the k-truck problem.

Lemma 5. On a given graph G with n nodes, the number of possible configura-
tions of all k trucks is

(
n+k−1

n−1

)
, where k ≤ n.

Proof. Assume that all k trucks and all n nodes line up along a line from left
to right, thus there are n + k locations on which there is either a truck or a
node. Following that, we move all trucks between two nodes i and j (assuming
that node i is right to node j and that there are not any other nodes between
them) to node i. If there are not trucks between the two nodes, the meaning of
this operation is that no truck is moved on to node i. In addition, in order to
move all trucks on some nodes according to the above rules, we need to let the
extreme right location be a node. The final task is to choose n− 1 locations, on
which we will arrange the remaining n− 1 nodes, from the n+ k − 1 locations.
Obviously, we have

(
n+k−1

n−1

)
choices. ��

Let function COPT(R,S) denote the cost of the minimum cost algorithm that
handles request sequence R and ends up in configuration S. As in paper [6], we
can compute this function recursively as follows, assuming that the trucks are
initially in configuration S0

COPT(ε, S) =
{

0 if S = S0
undefine otherwise

COPT(Rri, S) =
{

minT (COPT(R, T) + d(T, θ · (ai, bi), S)) if S = S0
undefine otherwise

where d(T, θ · (ai, bi), S) is the cost of transition from configuration T to config-
uration S and the last operation of transition is ai → bi (satisfying the request
ri at cost θ · (ai, bi)), T and S denote the configurations at time i− 1 and time
i, respectively, and ε denotes the empty request sequence.

New Results on the k-Truck Problem 507

Theorem 1. The above optimal off-line algorithm for the k-truck problem can
give an optimal solution with time proportional to m · (n+k−1

n−1

)2
, where m is the

length of the request sequence (the number of requests).

Proof. Let |R| = m, we can develop a table-building method according to the
above discussion. Build a table with |R| + 1 rows, each of which implies a sub-
sequence of request sequence R, and

(
n+k−1

n−1

)
columns each of which denote a

possible configuration of trucks. Namely, the entry in row i and column j is
COPT(Ri, Sj), where Ri is the subsequence of R of length i. Each row of the
table can be built from the previous one within time

(
n+k−1

n−1

)2
. Furthermore,

only |R| = m rows need these computations. The proof is completed. ��

3.2 Minimum Cost Maximum Flow (MCMF) Solution

In [11], MCMF was used to resolve the off-line k-server problem. Our objective
is to find an optimal strategy to serve a sequence of m requests with k trucks,
if the request sequence is given in advance. Assume that the k-trucks initially
occupy one point, the origin. And denote the i-th request by the binary-tuple
(ai, bi). If there are m requests, the inputs to our problem are the superdiagonal
entries of an (m+ 1)× (m+ 1) matrix, whose (0, j) entry is the sum of cost from
the original to the location of j-request start aj (empty) and then to the request
destination bj (with the goods), j = 1, 2, ...,m, and whose (i, j) entry is the sum
of cost from the location of i-request destination to the location of j-request start
and then to the relevant destination with goods, j, 1 ≤ i < j ≤ m.

Theorem 2. There is an O(km2)-time off-line algorithm to find an optimal
schedule for k trucks to serve a sequence of m requests (whether or not the
triangle inequality holds).

Proof. We can resolve the off-line the k-truck problem (with or without tri-
angle inequality) by reducing it to the problem of finding a minimum cost
flow of maximum value in an acyclic network. Suppose that there are k trucks
t1, ..., tk and m requests r1, ..., rm, where ri = (ai, bi), and i = 1, ...,m, we
can build the following (2 + k + 3m)-node acyclic network: the vertex set is
V = {s, s1, ..., sk, a1, b1, b

′
1, ..., am, bm, b

′
m, t}. In that vertex set, nodes s and t are

the source and sink, respectively. Each arc of our network has a capacity one.
There is an arc of cost 0 from s to each si, an arc of cost 0 form each b′i to t, as
well as an arc to t from each si, of cost 0. ¿From each si, there is an arc to aj

of cost equal to the distance from the origin to the location of aj . ¿From each
aj , there is only an arc to bj of cost equal to θ · d(ai, bi). For i < j, there is an
arc from b′i to aj of cost equal to the distance between bi to aj . Moreover, form
bi to b′i there is an arc of cost −K, where K is an extremely large positive real.
The constructing of the network is completed.

It is easy to know that the value of the maximum flow in this network is k.
Using minimum-cost augmentation [12], we can find an integral min-cost flow of
value k in time O(km2), because all capacities are integral and the network is

508 Weimin Ma et al.

acyclic. An integral s→ t flow of value k can be decomposed into k arc-disjoint
s → t paths, the ith one passing through si. Obviously, this flow saturates all
of the (bi, b′i) arcs, and hence corresponds to an optimal schedule for serving the
requests, the ith server serving exactly those requests contained in the s → t
path that passes through si, because −K is so small. ��

4 A Lower Bound

In this section we will give a lower bound of competitive ratio for the k-truck
problem on a symmetric metric space. In other words, any general on-line algo-
rithm for this problem, either a deterministic or a randomized algorithm, must
have a competitive factor of at least (θ + 1) · k/(θ · k + 2). In fact, we have
actually proven a slightly more general lower bound on the competitive ratio.
Suppose we wish to compare an on-line algorithm with k servers to an off-line
one with h ≤ k servers. Naturally, the factor decreases when the on-line algo-
rithm gets more servers than the off-line algorithm. We get the lower bound as
(θ + 1) · k/((θ + 2) · k − 2h+ 2). A similar approach was taken in [6], where the
lower bound and matching upper bound are given for the traditional k-server
problem.

Theorem 3. Let A be an on-line algorithm for the symmetric k-truck problem
on a graph G with at least k nodes. Then, for any 1 ≤ h ≤ k, there exist request
sequences R1, R2, ... such that: (1) For all i, Ri is an initial subsequence of Ri+1,
and CA(Ri) < CA(Ri+1); (2) There exists an h-truck algorithm B (which may
start with its trucks anywhere) such that for all i,CA(Ri) > (θ+1)·k·CB(Ri)/((θ+
2) · k − 2h+ 2).

Proof. Without loss of generality, assume A is an on-line algorithm and that the
k trucks start out at different nodes. Let H be a subgraph of G of size k + 2,
induced by the k initial positions of A’s trucks and two other vertexes. Define
R, A’s nemesis sequence on H, such that R(i) and R(i − 1) are the two unique
vertexes in H not covered by A and a request ri = d(R(i), R(i − 1)) occurs at
time i, for all i ≥ 1. Then

CA(Rt) =
t∑

i=1
(d(R(i+ 1), R(i)) + θ · d(R(i), R(i− 1))) =

(1 + θ) ·
t−1∑
i=1

d(R(i+ 1), R(i)) + d(R(i+ 1), R(i)) + θ · d(R(1), R(0)),

because at each step R requests the node just vacated by A.
Let S be any h-element subset of H containing R(1) but not R(0). We can

define an off-line h -truck algorithm A(S) as follows: the trucks finally occupy
the vertices in set S. To process a request ri = d(R(i), R(i − 1)), the following
rule is applied: If Scontains R(i), move the truck at node R(i) to R(i− 1) with
goods to satisfy the request, and update the S to reflect this change. Otherwise
move the truck at node R(i − 2) to R(i) without goods and then to R(i − 1)
with goods, also to satisfy the request, and update S to reflect this change.

New Results on the k-Truck Problem 509

It is easy to see that for all i > 1, the set S contains R(i − 2) and does not
contain R(i− 1) when step i begins. The following observation is the key to the
rest of the proof: if we run the above algorithm starting with distinct equal-sized
sets S and T, then S and T never become equal, for the reason described in the
following paragraph.

Suppose that S and T differ before R(i) is processed. We shall show that
the versions of S and T created by processing R(i), as described above, also
differ. If both S and T contain R(i), they both move the truck on node R(i) to
node R(i − 1), on which there is exactly not any truck. The other nodes have
no changes, so S and T are still different and both S and T contain R(i− 1). If
exactly one of S or T contains R(i), then after the request exactly one of them
contains R(i− 1), so they still differ. If neither of them contains R(i), then both
change by dropping R(i − 2) and adding R(i − 1), so the symmetric difference
of S and T remains the same (non-empty).

Let us consider simultaneously running an ensemble of algorithms A(S),
starting from each h-element subset S of H containing R(1) but not R(0). There
are

(
k

h−1

)
such sets. Since no two sets ever become equal, the number of sets

remains constant. After processing R(i), the collection of subsets consists of all
the h element subsets of H which contain R(i− 1).

By our choice of starting configuration, step 1 just costs θ · d(R(1), R(0)). At
step i (for i ≥ 2), each of these algorithms either moves the truck at node R(i)
to R(i−1) (if S contains R(i)), at cost θ ·d(R(i), R(i−1)), or moves the truck at
node R(i− 2) to R(i) and then to R(i− 1) (if S does not contain R(i)), at cost
d(R(i−2), R(i)) + θ ·d(R(i), R(i−1)). Of the

(
k

h−1

)
algorithms being run,

(
k−1
h−1

)
of them (the ones which contain R(i− 2) but not contain either R(i)) incur the
cost of d(R(i−2), R(i))+θ ·d(R(i), R(i−1)). The remaining

(
k−1
h−2

)
of algorithms

incur the cost of θ · d(R(i), R(i− 1)). Thus, for step i, the total cost incurred by
all of the algorithms is(

k
h−1

) · θ · d(R(i), R(i− 1)) +
(

k−1
h−1

) · d(R(i− 2), R(i)).
The total cost of running all of these algorithms up to and including R(t) is

t∑
i=1

(
k

h−1

) · θ · d(R(i), R(i− 1)) +
t∑

i=2

(
k−1
h−1

) · d(R(i− 2), R(i)).

Thus the expected cost of one of these algorithms chosen at random is

CEXP(Rt) = θ ·
t∑

i=1
d(R(i), R(i− 1)) + (k−1

h−1)
(k

h−1)
·

t∑
i=2

d(R(i− 2), R(i)) ≤ (θ+2)k−2h+2
k ·

t−1∑
i=1

d(R(i), R(i+ 1)) + (θ+1)k−h+1
k · d(R(1), R(0))− k−h+1

k · d(R(t− 1), R(t))

This inequality holds for the triangle inequality and expending of the binomial
coefficients. Recall that the cost to A for the same steps was

CA(Rt) = (1 + θ) ·
t−1∑
i=1

d(R(i+ 1), R(i)) + d(R(i+ 1), R(i)) + θ · d(R(1), R(0)),

Because the distances are symmetric, the two summations of the CEXP(Rt) and
CA(Rt) are identical, except that both of the costs include some extra terms,

510 Weimin Ma et al.

which are bounded as a constant. Therefore, after some mathematical manipu-
lation (e.g., let t→∞), we obtain

CA(Rt)
CEPT(Rt)

≥ (θ+1)·k
(θ+2)·k−2h+2 .

Finally, there must be some initial set whose performance is often no worse
than the average of the costs. Let S be this set, and A(S) be the algorithm
starting from this set. Let Ri be an initial subsequence of R, for which A(S)
does no worse than average. ��

Corollary 1. For any symmetric k-truck problem, there is no c-competitive al-
gorithm for c < (θ + 1) · k/(θ · k + 2).

Corollary 2. For any symmetric k-taxi problem, there is no c-competitive al-
gorithm for c < 2k/(k + 2).

5 Competitve Ratios

5.1 Position Maintaining Strategy Solution

In [1], with the PMS, the case under which θ > (c+ 1)/(c− 1) was studied, and
a c-competitive algorithm was found to exist for the k-truck problem. In fact,
we can get a somewhat better result for general cases.

Theorem 4. For the on-line k-truck problem and a given graph G, if there is
a c-competitive on-line algorithm for the k-server problem on G, then: (1) If
θ > (c + 1)/(c − 1), then PMS is a c-competitivealgorithm; (2) If 1 ≤ θ ≤
(c+ 1)/(c− 1), then PMS is a (c/θ + 1/θ + 1)-competitive algorithm.

Proof. For any R = (r1, ..., rm), where ri = (ai, bi), considering the k-server
problem’s request sequence σ = (a1, ..., am), let Aσ be a c-competitive algorithm
for the on-line k-server problem on graph G to satisfy the sequence. We design
algorithm A as follows. For current service request ri = (ai, bi), first schedule a
truck to ai using algorithm Aσ, then complete the ri with PMS. Thus total cost
of A is

CA(R) =
m∑

i=1
CA(ri) =

m∑
i=1

[CA(ai) + (θ + 1) · d(ai, bi)] =

CAσ (σ) + (1 + 1/θ) ·
m∑

i=1
θ · d(ai, bi)

where θ is defined above and θ ≥ 1. From lemma 2 and algorithm Aσ, we have

CAσ (σ) ≤ c · COPT(σ) + β ≤ c · [COPT(R)−
m∑

i=1
(θ + 1) · d(ai, bi)] + β

Then we get

CA(R) ≤ c · COPT(R) + [1 + 1/θ − c · (θ − 1)/θ] ·
m∑

i=1
θ · d(ai, bi)] + β

If θ > (c+ 1)/(c− 1), we get CA(R) ≤ c ·COPT(R) +β; if 1 ≤ θ ≤ (c+ 1)/(c− 1),
and with lemma 3, COPT(R) ≥∑m

i=1 θ · d(ai, bi),we have CA(R) ≤ (c/θ + 1/θ +
1) · COPT(R) + β, where c and β are some constants. ��

New Results on the k-Truck Problem 511

Combining Theorem 4 and Lemma 1, the following corollary holds.

Corollary 3. For the on-line k-truck problem on a given graph G, if θ > (c +
1)/(c− 1), holds, then there exists a (2k − 1)-competitive algorithm; if 1 ≤ θ ≤
(c+ 1)/(c− 1), then there exists a (2k/θ + 1)-competitive algorithm.

5.2 Comparison of Two Algorithms

In [1], an algorithm B, here we called it the PG, is given for the problem
P1. The competitive ratio of algorithm B is 1 + λ/θ, where λ = dmax/dmin,
dmax = maxd(vi, vj), and dmin = mind(vi, vj),i �= j,vi, vj ∈ V . We denote
the PMS algorithm of subsection 5.1 by algorithm A. We may be confronted
with the problem of choosing one algorithm from A’ and B in different con-
texts. Respectively the competitive ratios of algorithms A and B are cA ={

2k − 1 if θ > (c+ 1)/(c− 1)
2k/θ + 1 if 1 ≤ θ ≤ (c+ 1)/(c− 1) and cB = 1 + λ/θ. Letting cA = cB, we

can get a k that makes the algorithm A and B equal as follows

k =
{

1 + λ/(2θ) if θ > (c+ 1)/(c− 1)
λ/2 if 1 ≤ θ ≤ (c+ 1)/(c− 1)

Theorem 5. For on-line k-truck problem P1, denoting the PMS and PG al-
gorithms by A and B, respectively, at the aspect of the competitive ratio: if
θ > (c + 1)/(c − 1) holds, if k ≤ 1 + λ/(2θ) then A is better than B, and
contrarily if k > 1 + λ/(2θ) then B is better than A; if 1 ≤ θ ≤ (c + 1)/(c − 1)
holds, if k ≤ λ/2 then A is better than B, and contrarily if k > λ/2 then B is
better than A.

5.3 Partial-Greedy Algorithm on a Special Line

Let G = (V,E) for the instance of an on-line k-truck problem consisting of a line
of n vertices with n − 1 edges whose lengths are equal to one. More formally,
we have that V = {vi|i = 1, ..., n} and E = {vivi+1|i = 1, ..., n − 1}. All edge-
weights are equal to one. It is natural to assume that no vertex has more than
one truck (otherwise, we can get at this situation at most cost of k · (k + 1)/2).
In addition, we assume that n ≥ k + 2 holds (otherwise the fourth case of the
following algorithm does not exist).

Partial-Greedy Algorithm. For the current request ri = (ai, bi) from the
request sequence R = (r1, ..., rm), schedule the k-truck problem P1 on the above
special line with the following rules:

(1) If there is a truck at ai and also one at bi, then PG moves the truck at ai

to bi complete the request, and at the same time PG moves the truck at bi
to ai with an empty load. The cost of PG for the ri is (1 + θ) · d(ai, bi) and
at present no vertex has more than one truck.

(2) If there is a truck at ai and no truck at bi, then PG moves the truck at ai

to bi to complete the request. The cost of PG for the ri is θ · d(ai, bi), and
at present no vertex has more than one truck.

512 Weimin Ma et al.

(3) If there is no truck at ai and there is a truck at bi, then PG moves the
truck at bi to ai first without a load, and after that moves it from ai to bi
to complete the request. The cost of PG for the ri is (1 + θ) · d(ai, bi) and at
present no vertex has more than one truck.

(4) If there is no truck at ai and bi, then PG moves the truck which is the
closest to ai (suppose that the truck is located at ci) with an empty load
and then moves to bi to complete the request. The cost of PG for the ri is
d(ci, ai) + θ · d(ai, bi), and again no vertex has more than one truck.

Theorem 6. PG is a (1+(n−k)/θ)-competitive algorithm for the k-truck prob-
lem P1 on the above special line.

Proof. For cases (1), (2) and (3), the cost of it PG is at most (1 + θ) times the
optimal cost for any request. For case (4), the extra cost is d(ci, ai). Since ci
is the closest occupied vertex to ai, we have d(ci, ai) ≤ (n − k) · d(ai, bi). Let
CPG(R) denote the cost of algorithm PG for request sequence R = (r1, ..., rm),
then we have

CPG(R) =
m∑

i=1
{max[d(bi, ai), d(ci, ai)] + θ ·d(ai, bi)}+β ≤

m∑
i=1
{(n−k) ·d(ai, bi) +

θ · d(ai, bi)}+β = (1 + (n− k)/θ) ·
m∑

i=1
θ · d(ai, bi) +β ≤ (1 + (n− k)/θ) ·COPT(R)

where β is the cost for preconditioning the truck such that each vertex has
at most one truck and it is bounded by a constant related with G. The last
inequality holds for the lemma 3. ��

Similar to subsection 5.2, combining the lemma 4 and the above theorem 6,
we have the following theorem.

Theorem 7. For on-line k-truck problem P1 on the special line, denoting the
PMS and PG algorithms by A and B, respectively, at the aspect of the competitive
ratio: if θ > (c+1)/(c−1) holds, if k ≤ (n+θ)/(θ+1) then A is better than B, and
contrarily if k > (n+θ)/(θ+1) then B is better than A; if 1 ≤ θ ≤ (c+1)/(c−1)
holds, if k ≤ (n− 1)/2 then A is better than B, and contrarily if k > (n− 1)/2
then B is better than A.

6 Deeper On-Line k-Truck Problem

We call the on-line k-truck problem studied in previous sections, the Standard
On-line k-truck problem (STP). Here we will discuss another variant of it, the
Deeper On-line k-truck problem (DTP). We formulate DTP as follows:
Given a metric space M, and k trucks which move among the points of M, each
occupying one point of M, repeatedly, a request (a pair of points x, y ∈ M)
appears. However, only the node x of request occurring is known when the infor-
mation of the request is received, and the destination node y will not be known

New Results on the k-Truck Problem 513

until a truck has already been on the node of request occurring. To serve a re-
quest, an empty truck must first move to x and then move to y with goods from
x. How to minimize the total cost of all trucks?

We easily know that the results of the competitive ratio of the PMS still hold
for the DTP but these of the PG algorithm do not hold for the DTP.

Theorem 8. For the DTP on a given graph G, if there is a c-competitive on-
line algorithm for the k-server problem on G, then: (1) If θ > (c + 1)/(c − 1),
then PMS is a c-competitive algorithm; (2) If 1 ≤ θ ≤ (c+ 1)/(c− 1), then PMS
is a (c/θ + 1/θ + 1)-competitive algorithm.

7 Concluding Remarks

Most of the results of this paper can be extended to the relevant cases of the
k-taxi problem [8]. Although we get a lower bound of competitive ratio for the
k-truck problem, the optimal lower bound of the competitive ratio for it is still
open. Furthermore, whether there are some better on-line algorithms than PMS
or PG needs further investigation.

References

1. W.M.Ma, Y.F.Xu, and K.L.Wang, On-line k-truck problem and its competitive
algorithm. Journal of Global Optimization 21 (1): 15-25, September 2001.

2. S. Albers and S. Leonardi. Online algorithms. ACM Computing Surveys Vol.31.
Issue 3 Sept. 1999.

3. D.D.Sleator, R.E.Tarjan, Amortized efficiency of list update and paging rules,
Communication of the ACM, 28 (1985) 202-208.

4. A.Karlin, M.Manasse, L.Rudlph and D.D.Sleator. Competitive snoopy caching,
Algorithmica, 3:79-119,1988.

5. M.S.Manasse, L.A.McGeoch, and D.D.Sleator, Competitive algorithms for on-line
problems. In Proc. 20th Annual ACM Symp. on Theory of Computing, 322-33,
1988.

6. M.S.Manasse, L.A.McGeoch, and D.D.Sleator, Competitive algorithms for server
problems, Journal of Algorithms,1990(11),208-230.

7. S.Ben-David, S.Borodin, R.M.Karp, G.Tardos, and A. Wigderson. On the power if
randomization in on-line algorithms. In Proc. 22nd Annual ACM Symp. on Theory
of Computing, 379-386, 1990.

8. Y.F.Xu, K.L.Wang, and B. Zhu, On the k-taxi problem, Information, Vol.2, No.4,
1999.

9. E.Koutsoupias, C.Papadimitriou, On the k-server conjecture, STOC.,507-511,1994.
10. M.Chrobak, L.Larmore, An optimal algorithm for the server problem on trees,

SIAM Journal of Computing 20 (1991)144-148.
11. M.Chrobak, H.Karloff, T.Payne, S.Vishwanathan, New results on the server prob-

lem, SIAM Journal on Discrete Mathematics 4 (1991) 172-181.
12. R.Tarjan, Data Structures and Network Algorithms, SIAM, Philadelphia, 1983,

109-111.

Theory of Equal-Flows in Networks

K. Srinathan�, Pranava R. Goundan, M.V.N. Ashwin Kumar,
R. Nandakumar��, and C. Pandu Rangan

Department of Computer Science and Engineering, Indian Institute of Technology,
Madras, Chennai - 600036, India

{ksrinath,prg,mvnak}@cs.iitm.ernet.in,rangan@iitm.ernet.in

Abstract. The Maximum-Flow problem is a classical problem in com-
binatorial optimization and has many practical applications. We intro-
duce a new variant of this well known Maximum-Flow problem, viz., the
Maximum-Equal-Flow problem,wherein, for each vertex (other than
the source) in the network, the actual flows along the arcs emanating
from that vertex are constrained to be equal and integral. Surprisingly,
unlike the Maximum-Flow problem that is known to admit a polyno-
mial time solution, we prove that the Maximum-Equal-Flow problem is
NP-Hard. Nevertheless, we provide an approximation algorithm for the
Maximum-Equal-Flow problem. We develop a new (analogous) theory
for Equal-Flows in networks and also illustrate the Maximum-Equal-
Flow equivalents of the fundamental results in flow theory.

1 Introduction

Consider the problem of a company manufacturing a product P using certain
resources R1, R2, . . . , Rn. Each resource is in turn produced by other companies
using other resources. Hence, for every product, it is possible to obtain a directed
graph (network), wherein each node represents a product and a dircted arc (i, j)
represents that the product i requires j as a resource in it’s manufacture. Hence,
in each such network, the source will be the final product P to be made and
nature will be th e sink, providing all the required basic raw materials. But
there may also be supply constraints on the availibility of resources for each of
the products, which can be captured as capacity constraints on the flow in each of
the corresponding arcs of the network. Such a graph is called a “Bill of Demand”
in operations management terminology. The problem of finding the maximum
number of units of the product P that a company can produce subject to these
supply constraints, given the input requirements for each of the products, can be
modeled mathematically as a problem similar to that of the Maximum-Flow
in the “Bill of Demand” network, wherein each node distributes it’s integral in-
flow among it’s out-neighbours as per a fixed pre-specified ratio. Evidently, this
problem cannot be solved using the algorithms for Maximum-flow as they do
not guarantee that the out-flows will be distributed as per the ratio. Interestingly,
� Financial support from Infosys Technologies Limited, India, is acknowledged.

�� Currently at University of Chicago. E-mail: nanda@cs.uchicago.edu

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 514–524, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Theory of Equal-Flows in Networks 515

the above ratio-bound flow problem can be abstracted to the Maxi mum-Equal-
Flow problem1 in an analogous network. This could be done by applying the
“conservation of units” principle to each node. Equivalently, we can use different
measurement units to capture the required ratio for each of the out-arcs. Hence,
the solution to the Maximum-Equal-Flow problem in the resulting network
with capacity constraints in the modified units would give the optimal number
of units of the final product P the company can make, subject to the supply
constraints of other companies.

Informally, the Equal-Flow problem in a network is a “uniform” view of
the classical flows problem in a network, in the sense that in the former, each
node distributes its in-flow equally and in integral quantities to all its neigh-
bours unlike the latter, wherein each node is “random” and could distribute its
in-flow in any manner that it wished. Hence, in situations like in the above prob-
lem of product maximization, where the maintenance of “equanimity” among
the neighbours and the integrality constraint is of a higher priority than just
a maximization of the overall flow, the “maximum-flow” sought for is in fact
the maximum-equal-flow. In this work, we systematically study the problem of
Equal-Flows in networks. We show that the Maximum-Equal-Flow prob-
lem is NP-hard, unlike the Maximum-Flow problem. We give the combinatorial
and linear programming structure of this problem and design approximate al-
gorithms for it. Furthermore, we illustrate the maximum-equal-flow equivalents
of the fundamental results in flow theory viz., the decomposition theorem, the
augmenting path theorem, and the max-flow min-cut theorem.

2 The Maximum-Equal-Flow Problem

We begin by introducing the well-known Max-Flow problem. Consider a net-
work N = (V,A, s, t, c) where (V,A) is a digraph with two specified nodes s
(the source) and t (the sink). For each arc (i, j) the capacity c(i, j), a positive
integer, is given. A flow in N is an assignment of nonnegative integer value
f(i, j) ≤ c(i, j) to each arc (i, j) such that for each node other than s and t,
the sum of the flows of the incoming arcs is equal to the sum of flows along
the outgoing arcs. The value of flow f is the sum of flows in the arcs leaving s.
The problem of determining the maximum possible flow for s to t, subject to
these constraints, is well known as the Max-Flow problem. A polynomial time
algorithm can be obtained by building upon a fundamental fact about networks,
known as the max-flow min-cut theorem [2,1]. Now consider the following vari-
ation of the Max-Flow problem. The flow function is integral and such that
for all i ∈ V and (i, j1), (i, j2) ∈ A, j1 �= j2, we have f(i, j1) = f(i, j2). In other
words, the flow emanating out of a vertex is same in all the outgoing arcs (from
that vertex, other than the source) and of an integral amount. Surprisingly, this
problem is NP-hard (see Section 4) even though a polynomial time algorithm
exists for the Max-Flow problem.
1 By Equal-flow, we mean that each node distributes its in-flow equally to all its

neighbours, without violating the integrality constraint of the actual flows.

516 K. Srinathan et al.

Definition 1 (Maximum-Equal-Flow).
Instance: A network N = (V,A, s, t, c), positive integer K.
Question: Does there exist an equal-flow of value at least K in the network N?

The algorithm for the Max-Flow problem would not work here. To see why
the Max-Flow algorithm would not work in our case, let us have a brief look at
the algorithm in [4]. If we want to find out if a given flow f is optimal, we have
to check if a flow f ′ of value greater then f exists. If such a flow f ′ exists, then
∆f = f ′− f is itself a positive flow. But ∆f may have arcs with negative flows.
This can be viewed as a positive flow in the reverse direction. This is equivalent
to saying that ∆f is a flow in a derived network N(f) = (V,A′, s, t, c′), where
A′ = {A − {(i, j) : f(i, j) = c(i, j)}} ∪ {(i, j) : (j, i) ∈ A, f(j, i) > 0}. So,
finding if f is optimum is same as deciding if N(f) has a positive flow, very
similar to determining if a path exists between s and t. Hence, this can be
done in polynomial time. Thus, starting with a network N of zero flow, we can
repeatedly augment the flow. When no positive flow exists, we have arrived at
the optimal. This algorithm seems to work even for the Max-Eq-Flow. But
finding just a positive flow ∆f is not enough; in fact we need a positive equal
path. That is, the positive path should be such that all its “branches” have
positive paths as well. Hence in the worst case, an analogous algorithm may end
up potentially examining a super-polynomial number of paths. An even more
grave problem is the fact that the non-existence of a positive flow path in the
derived network implies that the current flow is the maximum (see Theorem 10).
An analogous sufficiency condition may not always hold for positive equal flows
(see Theorem 11). In the sequel (see Section 4), we show that the Max-Eq-
Flow problem is in fact NP-hard. Nevertheless, in line with the efforts of [2],
we develop a theory for equal-flows in networks that helps design approximation
algorithms for the Max-Eq-Flow problem.

3 Equal Flow Theory

In this section, we state and prove the equal-flow equivalents of the classic flow
decomposition, augmenting path and the max-flow min-cut theorems.

Observation 1 For any (arbitrary) given network N = (V,A, s, t, c), there ex-
ists a network N ′ = (V,A, s, t, c′) (i.e, a renaming of the capacities of the arcs in
N) where c′(x) = c′(y) for any two arcs x and y emanating from the same vertex
(that is, ∃α, β ∈ V such that x = (v, α), y = (v, β)), such that every maximum
equal-flow through N is a maximum equal-flow through N ′.

Definition 2. A network N = (V,A, s, t, c) is said to be an Eq-Network if
the capacity function c : A→ Z+, is such that for each vertex v ∈ V , all the arcs
emanating from v have equal capacities.

Observation 2 Any Eq-Network N = (V,A, s, t, c) can be more succinctly
represented as N = (V,A, s, t, c′) where c′ : V → Z+, that is, each vertex can be

Theory of Equal-Flows in Networks 517

assigned a capacity instead of all its out-going arcs assigned the same capacity.
Hereafter (due to Observation 1), we will use Networks to mean Eq-Networks.

3.1 Feasibility of Equal-Flows

This section involves the determination of answer to the following very basic
question: Does there exist any feasible (non-zero) equal-flow in the given net-
work? We initially assume the edge capacities to be infinity and answer the
question and later study the effects of bounding the edge flows.

Observation 3 Given a network N , there exists an ordering of the vertices such
that (vi, vj) ∈ A⇒ i < j iff N contains no cycles.

Observation 4 For any network N without cycles, with infinite edge capacities,
there exists a non-zero equal-flow iff there exists a non-zero (classical) flow.

Proof: Obviously if an equal-flow exists, then a classical flow exists. We provide
an incremental construction of an equal-flow if a classical flow exists. From Ob-
servation 3, we know that the vertices can be ordered such that no back edges
occur. Since classical flow exists, there exists a positive path from the source
to the sink. Consider one such positive path, say P. Now construct an equal-
fractional-flow as follows. Assign a flow of 1 through the first edge of the path P
and 0 to all the other edges from the source. We give below the transition from
ith vertex in the ordering to the (i + 1)th. Since there are no back edges from
the (i + 1)th vertex vi+1, if vi+1 has a non-zero in-flow, then divide it equally
among all its successors and proceed to the next vertex in the ordering. By this
procedure, we have a valid equal-fractional-flow, which can be converted to an
equal-flow by multiplying the individual flows by a suitable integer. �	

Definition 3 (Splits). We define a split P ⊆ A of a network N = (V,A, s, t, c)
to be the set of arcs of the form (V1, V \V1) or (V \V1, V1) for some V1 ⊆ V .

Definition 4 (Forbidden Splits). A split P ⊆ A with arcs of the form (X,V \
X) or (V \X,X), X ⊆ V , is said to be p-forbidden if the following properties
hold, for any path p from s to t in N : (1) X or V \X contains both s and t.
(2) All the arcs of P are similarly oriented from the set containing both s and t
to its complement set of vertices. (3) For the path p from s to t, there exists a
vertex v in the other set (complement to the one containing both s and t), such
that there is a path q from s to v, with the first arc of p and q being the same.

Theorem 5. For an arbitrary network N with infinite edge capacities, there
exists a non-zero equal-flow only if there exists a path p from s to t in N such
that N contains no p-forbidden splits.

518 K. Srinathan et al.

Proof: Let there exist a non-zero equal-flow in N . On the contrary, assume
that every path p from s to t in N contains a p-forbidden split P such that every
arc in P is of the form (Y, V \Y) or (V \Y, Y). Without loss of generality, we can
assume that both s and t are in Y . Since P is a forbidden split, by definition
there exists a path q from s to v ∈ V \Y such that first arc of p and q is the
same. Let u be the last common vertex between p and q. Since there is a positive
all-equal-flow through u, a non-zero flow enters V \Y but cannot reach the sink
(condition 2 of Definition 4), contradicting the flow conservation property. �	
The existence of an equal-flow through networks with bounded capacities re-
quires the satisfaction of a few more conditions (in addition to the one mentioned
in Theorem 5) that will be elaborated in the sequel.

Definition 5. Given a network N = (V,A, s, t, c), define the set S ⊆ A to be
the set of all arcs that are emanating from the source, that is S = {a | a ∈ A, a =
(s, v) for some v ∈ V }. We call the set S as the set of source arcs in N .

Definition 6. The Crossing-Index and the Thickness-Index of an arc a ∈
A with respect to a source arc as ∈ S in a network N = (V,A, s, t, c) is defined
to be the values of the numerator and the denominator respectively, of the frac-
tional flow (expressed as an irreducible fraction) through the arc a generated (see
Subsection 3.2) by an unit flow across as, all the arc capacities being infinity.
We denote the crossing-index (and the thickness-index) of an arc a ∈ A with
respect to a source arc as ∈ S by C(a, as) (and T (a, as) respectively).

Observation 6 [Feasibility Condition] For an arbitrary network N with
infinite edge capacities, there exists a non-zero all-equal-flow iff there exist a
source arc as and a terminating arc2 at such that C(at, as) > 0.

3.2 Feasible Values of Equal-Flows

In this section, we seek to answer to the following: (1)Does there exist a feasible
equal-flow in the given network of a stated magnitude (less than the value of the
maximum-equal-flow)? (2)What are the characteristics of feasible equal-flows?

Definition 7. Basic-Equal-Fractional flow for a given network (if it exists) is
the flow generated by assigning a flow of 1 to exactly one of the source arcs.

Observation 7 Any network contains at most |S| Basic-Equal-Fractional flows.

We now give an algorithm to generate a Basic-Equal-Fractional flow w.r.t a
source arc as, if it exists. Let V = {s, v1, v2, . . . , vn, t} be the vertices of the
network. Without loss of generality, we can assume that as = (s, v1). Assign
variables fi to denote the fractional flow in each of the outgoing arcs from the
2 Terminating arcs are those that are in-coming arcs to the sink in the network.

Theory of Equal-Flows in Networks 519

vertex vi, 1 ≤ i ≤ n. Note that f1 is a known linear function3 of the variables
f1, f2, . . . , fn and hence by applying the flow conservation equation at the node
v1, we can eliminate the variable f1. Similarly at node vi we can eliminate fi.
Hence if a flow exists, all the variables will be eliminated at vn, leading to the
values of the fractional flows through each of the arcs. Note that the fractional
flow (expressed as an irreducible fraction na

da
) through an arc a is such that

na = C(a, as) and da = T (a, as). We denote by B(as) the Basic-Equal-Fractional
Flow generated by as ∈ S.

Definition 8. An Atomic-Equal-Flow is an integer valued equal-flow that can-
not be expressed as a sum of smaller integer valued equal-flows.

Lemma 1. Any Atomic-Equal-Flow is the sum of an integral number of Basic-
Equal-Fractional Flows. �	

Definition 9. The Thickness of a source arc as, J (as), is the least integer
such that the flow J (as) · B(as) is integral. Furthermore, the flow J (as) · B(as)
is an Atomic-Equal-Flow. And, J (as) = LCM(T (a, as)),∀a ∈ A, T (a, as) �= 0.

3.3 Decomposition

Since any Equal-flow through N is (trivially) a flow through N , the classical
decomposition theorem holds for Equal-flows too. In the sequel, we present a
more tailor-made decomposition theorem for Equal-flows in networks.

Theorem 8 (Equal-Flow Decomposition). Any integral equal-flow in a net-
work N = (V,A, s, t, c) can be expressed as a sum of atomic-equal-flows. �	

Theorem 9. Given m irreducible fractions n1
d1
, n2

d2
, . . . , nm

dm
, and an expression

E =
∑m

i=1 λi
ni

di
, (λi’s are integers), E is an integer only if λi is an integral

multiple of LCM

[
di,

(∏m

i=1
di

di

)]/(∏m

i=1
di

di

)
.

Proof: Note that E =
∑m

i=1 λi
ni

di
=
∑m

j=1

(
njλj

∏m

i=1
di

dj

)
/
∏m

i=1 di . We require

E to be an integer. We denote
∏m

i=1 di by M . Let M
di
· ni · λi ≡ bi (mod M).

Now, ni · λi is an integer =⇒ M
di

∣∣∣ bi ,
(
bi is an integral multiple of M

di

)
. E is an

integer implies that the sum of bi’s (“remainders”) is an integral multiple of M .
Let us denote ri =

∑m
i=1 bi−bi. =⇒M |(ri+bi)⇒ di|(ri+bi). It can be seen that

di|ri (since each bj , j �= i is a multiple of di) =⇒ di|bi. Since bi is a multiple of

di and M
di

, it is also a multiple of LCM
(
di,

M
di

)
. It follows that λi is a multiple

of LCM
(
di,

M
di

)/
M
di

. Hence the theorem. �	
3 δout(vi) · fi =

∑
(j,i)∈A

fj where δout denotes the outdegree.

520 K. Srinathan et al.

Corollary 1. Let S = {as1 , as2 , . . . , ast
} be the set of source arcs in the network.

The actual equal-flow through any source arc asi
is an integral multiple of

G(asi
) =

LCM
∀a ∈ A

{
LCM

(
T (a, asj

),

∏t
j=1 T (a, asj)
T (a, asj)

)/∏t
j=1 T (a, asj)
T (a, asj)

}
�	

3.4 Augmenting

Theorem 10 (Classical). A flow is maximum iff there is no augmenting path.

Since the non-existence of an augmenting path is both necessary and sufficient for
the flow to be maximum, we have an algorithm to find the maximum flow through
networks. Unfortunately, the corresponding theorem for equal-flows holds for
maximal flows and not maximum flows (for which only the sufficiency holds).
Hence an analogous algorithm would not always work.

Definition 10 (Augmenting Atomic-Equal-Flow). An atomic-equal-flow
A is said to be augmenting for a given equal-flow F if the equal-flow A + F
does not exceed the capacity in any of the arcs in the network.

Observation 11 (Equal-Flow Augmenting) Any equal-flow F is maximum
only if there is no augmenting atomic-equal-flow.

3.5 Max-Equal-Flow Min-Equal-Cut

In this section, we provide a theorem similar to the max-flow min-cut theorem for
classical flows through networks. The results of this section, though not as elegant
as their classical flow counterparts, help us design approximate algorithms for
the maximum-equal-flow problem which is shown to be NP-hard in the sequel
(Section 4). From Lemma 1 and Observation 8, we know that every arc a ∈ A
in N with the set of source arcs {as1 , . . . , ast}, is associated with a t − tuple,
n1
d1
, n2

d2
, . . . , nt

dt
, of fractions4 such that if λ1, . . . , λt are the flows in each of the t

source arcs respectively, then the flow through the arc a is
∑t

i=1 λi · ni

di
. We use

this fact to define the capacity of an equal-cut in the network.

Definition 11 (Equal-Cut). An equal-cut is a split C where the arcs in C are
of the form V1, V \V1 or V \V1, V1 and s ∈ V1 and t ∈ V \V1.

Definition 12 (Capability of an Equal-Cut). The flow La through an arc
a ∈ A is a linear combination of the flows (λi’s) through the source arcs. The
flow is negative if the arc is into V1, else it is positive. The flow through the equal-
cut is the sum of the flows through all the arcs in the equal-cut, which is also a
linear combination Lc of the λi’s. The capability of an equal-cut is defined as the
maximum value that Lc can take subject to each La being less than its capacity
c(a). Surprisingly, we will prove that any equal-cut has the same capability.
4 In fact, ni = C(a, asi) and di = T (a, asi).

Theory of Equal-Flows in Networks 521

Theorem 12. The Maximum-equal-flow through the network is equal to the ca-
pability of any equal-cut.

Proof: The max-equal-flow is less than or equal to any equal-cut. Since, other-
wise the actual flow of at least one arc is greater than its capacity. Furthermore,
the max-equal-flow is greater than or equal to the capability of any equal-cut,
because the flow through any equal-cut defines a valid equal-flow in the sense
that it does not violate the capacity constraints of any arc in the network. �	
Corollary 2. All equal-cuts have the same capability and this is equal to the
maximum-equal-flow through the network.

4 Max-Eq-Flow is NP-Hard

We give a polynomial reduction of the known NP-complete problem, viz. Exact
Cover By 3-Sets [3] to that of the Max-Eq-Flow problem.

Definition 13. Exact Cover By 3-Sets (X3C)
Instance : Set X with |X| = 3q and a collection C of 3-element subsets of X.
Question : Does C contain an exact cover for X, i.e., a subcollection C ′ ⊆ C
such that every element of X occurs in exactly one member of C ′?

Theorem 13. Max-Eq-Flow is NP-Hard.

Proof : We construct an instance of the Max-Eq-Flow problem from the given
instance X (such that |X| = 3q) and C of the Exact Cover by 3-Sets problem as
follows. Consider the network N = (V,A, s, t, c), where V = L∪R∪{s, t}, where
|L| = |C|, |R| = |X| and there exist bijective mappings hl : L→ C and hr : R→
X. The set of arcs is defined as A = {(�, r) | � ∈ L, r ∈ R, hr(r) ∈ h�(�)}∪{(s, �) |
∀� ∈ L} ∪ {(r, t) | ∀r ∈ R}. The capacity function c : A→ Z, where Z is the set

of positive integers, is defined as c(a) =
{

3 if a = (s, �) ∈ A, for some � ∈ L.
1 otherwise. .

Now the instance of the Max-Eq-Flow problem is: N = (V,A, s, t, c), |X|, that
is: Is there an equal-flow of value ≥ |X| in N?
Claim: If there exists an equal-flow of size |X| in N , then there exists a C ′ ⊆ C
such that every element of X occurs in exactly one member of C ′.
Proof: From the construction of the network N , since each vertex in R has an
out-flow capacity of at most 1 (to the sink t), it is evident that exactly 3q vertices
in R should be involved with non-zero actual equal-flows to produce an overall
equal-flow of 3q. Let r1, r2, . . . , r3q be 3q vertices in R such that each of the arcs
(ri, t), 1 ≤ i ≤ 3q has a flow of 1 through it. Moreover, since the out-flow from
each of the above 3q vertices is 1, it is essential that their in-flow was 1 too.
Therefore, for each vertex ri,1 ≤ i ≤ 3q, we have exactly one vertex �i ∈ L such
that the actual flow in the arc (�i, ri) is equal to 1. Also, there are exactly5 q such
vertices �1, �2, . . . , �q. We will now show that the sets h�(�1), h�(�2), . . . , h�(�q) are
5 Due to the equal-flow constraint at �i ∀i

522 K. Srinathan et al.

mutually disjoint sets in C and hence a solution to the given X3C problem. On
the contrary, assume that there exists an element r ∈ R, such that hr(r) ∈ h�(�i)
and hr(r) ∈ h�(�j), for some i, j, 1 ≤ i, j ≤ 3q, i �= j. This means that A contains
the two arcs ai and aj , namely, ai = (�i, r) ∈ A and aj = (�j , r) ∈ A. Since
the actual flow is constrained to be an equal-flow of value 3q, and it is already
known that there exist arcs (�i, ri) and (�j , rj) with actual flows of 1 in them,
it is necessary that the actual flows in the arcs ai and aj are respectively equal
to 1 too (otherwise, it violates the equal-flow property at the nodes �i and �j
respectively). But then the actual in-flow into the vertex r now stands at least
2 which contradicts the fact that the actual in-flow of any node r ∈ R is ≤ 1.
Claim: If there exists no equal-flow of size 3q in N , then there exists no C ′ ⊆ C
such that every element of X occurs in exactly one member of C ′.
Proof: On the contrary, let there exist q mutually disjoint sets, c1, c2, . . . , cq in C.
Then, in the network N = (V,A, s, t, c) constructed as illustrated earlier, there
exist q vertices S = {�1, �2, . . . , �q}, S ⊆ L such that h�(�i) = ci, 1 ≤ i ≤ q. Let
the actual flows f : A→ Z, where Z is the set of positive integers, to be:

f(a) =

3 if a = (s, �i) ∈ A, �i ∈ S, 1 ≤ i ≤ q.
1 if a = (�i, r), �i ∈ S for some r ∈ R.
1 if a = (r, t), r ∈ R, such that f((�, r)) = 1 for some � ∈ S.
0 otherwise.

Since for any r ∈ R, there can exist at most one � ∈ S such that f((�, r)) = 1
(otherwise c1, c2, . . . , cq cannot be mutually disjoint sets), it is clear that the
above assignment gives an actual equal-flow of value 3q. �	

5 Approximating the Max-Eq-Flow

We know that every flow can be expressed as the sum of atomic-equal-flows
which themselves can be expressed as the sum of basic-equal-fractional-flows.
In other words, any equal-flow through the network can be generated with the
knowledge of the flows in the source arcs. We provide an elegant methodology
to arrive at the flows in the source arcs that almost maximize the flow through
the network, using certain combinatorial observations and linear programming.

5.1 Integer Linear Programming Formulation

From Theorem 1, it is clear that the flow through a source arc asi can be ex-
pressed as a integral multiple of G(asi). So, let the flow through asi be xi · ki.
Moreover, the flow through each arc aj ∈ A is expressible as a linear combina-
tion of the xi’s (see Subsection 3.5), say,

∑
asi

∈S kji.xi. Therefore, the maximum
equal-flow problem is to: Maximize

∑
asi

∈S kixi Subject to
∑

asi
∈S kji.xi ≤

c(aj)∀aj ∈ A where the xi’s are integers and the ki’s and kji’s are known pre-
computable constants.

Theory of Equal-Flows in Networks 523

5.2 Algorithm

Since in the worst case, solving the above ILP is computationally hard, we relax
the condition of the xi’s being integers, and solve the resulting LP. We proceed
to construct an all-integer based solution set by studying a sufficient condition
on the actual flows through the source arcs in N to be integers.

Theorem 14. It is sufficient to use

ki = K(asi) =
LCM
∀a ∈ A

LCM

(
T (a, asj),

∏t

j=1
T (a,asj

)

T (a,asj
)

)
∏t

j=1
T (a,asj

)

T (a,asj
)

× (1 + Ψ(a, i))

in the integer linear programming formulation above, so that the solution to the
ILP gives the maximum equal-flow in the corresponding network, where Ψ(a, i)
is as defined in the proof below.

Proof: From Theorem 9 we know that given m irreducible fractions n1
d1
, . . . , nm

dm
,

and an expression E =
∑m

i=1 λi
ni

di
, (λi’s are integers), E is an integer only if

λi is an integral multiple of gi = LCM

[
di,

(∏m

i=1
di

di

)]/(∏m

i=1
di

di

)
. But the

above condition is not sufficient for E to be an integer. We give a procedure to
find a sufficient condition for E to be an integer. First compute the gi’s for all
1 ≤ i ≤ m. Get a modified set of fractions, viz. n1g1

d1
, n2g2

d2
, . . . , nmgm

dm
and express

them as irreducible fractions6, say, n1
r1
, n2

r2
, . . . , nm

rm
. Note that in general, not all

the ri’s need to be 1 (in which case E is an integer). Let I(i) = {i1, i2, . . . , iq}
be the set of all the indices such that ri1 = ri2 = · · · = riq

= ri. Hence, it is
necessary that Ni =

∑q
j=1 nij be a multiple of ri. Let Ni = wri + s for some

non-negative integers w, s < ri. Let g be the least positive integer such that g
can be expressed as a linear combination of the nij

’s with non-negative integer
coefficients αi1 , . . . , αiq

such that s + g is a multiple of ri. Therefore, setting
λi = gi(1 + αi) guarantees that E is an integer. In the case of the max-equal-
flow in networks, define Ψ(a, i) = αi when using for each arc in A, ni = C(a, asi)
and di = T (a, asi

). The theorem follows. �	
Note that the value of mlp (the maximum equal-fractional-flow) is unaltered

by the changing of the ki’s. Using Theorem 14 results in the solution set for the

flow through each source arcs to be xsuf
i =

⌊
xlp

i

K(asi
)

⌋
K(asi). The total flow in

this case is msuf =
(∑t

i=1

⌊
xlp

i

K(asi
)

⌋
K(asi)

)
≤ mlp. From Theorem 14, it is clear

that the feasible solution set of xsuf
i s (certainly) results in an integer equal-flow.

Theorem 15. Given n positive integers λ1, . . . , λn and n real numbers r1, . . . , rn
such that (minn

i=1 ri) > 0 and (maxn
i=1 ri) ≥ 1,

∑n

i=1
λi�ri�∑n

i=1
λiri

> λmin

(n+1)λmax
, where

λmax = maxn
i=1 λi and λmin = minn

i=1 λi.
6 Note that the numerator remains the same.

524 K. Srinathan et al.

Proof: Left Hand Side =∑n
i=1 λi�ri�∑n
i=1 λiri

≥
∑n

i=1 λmin�ri�∑n
i=1 λmaxri

≥ λmin

λmax

∑n
i=1�ri�∑n
i=1 ri

≥ λmin

λmax

(
1−

∑n
i=1 frac(ri)∑n

i=1 ri

)

where frac(ri) = ri − �ri�. Now, let
∑n

i=1 frac(ri) = q. This, along with
the fact that (maxn

i=1 ri) ≥ 1 would imply that
∑n

i=1 ri ≥ q + 1. Therefore,
λmin

λmax

(
1−

∑n

i=1
frac(ri)∑n

i=1
ri

)
≥ λmin

λmax

(
1− q

q+1

)
≥ λmin

(q+1)λmax
. Since q < n, the the-

orem follows.

Corollary 3. The above algorithm outputs a flow msuf such that m∗
msuf < (t +

1)maxt
i=1 K(asi

)
mint

i=1 K(asi
) , where m∗ is the maximum-equal-flow, since mlp ≥ m∗.

6 Conclusion

The problem of Equal-Flow in a network is of immense theoretical and prac-
tical importance. In the absence of integrality constraints, this problem can be
solved efficiently. However, there are practical problems (like the “Bill of De-
mand” problem discussed earlier) where the integrality constraint cannot be
dispensed with. Surprisingly, integral Maximum-Equal-Flow, unlike integral
Maximum-flow turns out to be NP-Hard. Nevertheless, we provide an approxi-
mation algorithm, whose quality is proportional to the degree of the source node,
to solve the problem.

References

1. P. Elias, A. Feinstein, and C. E. Shannon. Note on maximum flow through a network.
IRE Trans. Information Theory, IT-2, 1956.

2. L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press,
Princeton, N. J., 1962.

3. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, 1979.

4. C. H. Papadimitriou. Computational Complexity. Addison-Wesley Publiction Com-
pany, 1994.

Minimum Back-Walk-Free Latency Problem
(Extended Abstract)

Yaw-Ling Lin�

Department of Comput. Sci. and Info Management, Providence University,
200 Chung Chi Road, Shalu, Taichung County, Taiwan 433, R.O.C.

yllin@pu.edu.tw

Abstract. Consider a graph with n nodes V = {1, 2, . . . , n} and let
d(i, j) denote the distance between nodes i, j. Given a permutation π on
{1, 2, . . . , n} such that π(1) = 1, the back-walk-free latency from node
1 to node j is defined by �π(j) = �π(j − 1) + min{d(π(k), π(j)) | 1 ≤
k ≤ j − 1}. Note that �π(1) = d(1, 1) = 0. Each vertex i is associated
with a nonnegative weight w(i). The (weighted) minimum back-walk-free
latency problem (MBLP) is to find a permutation π such that the total
back-walk-free latency

∑n
i=1 w(i)�π(i) is minimized.

In this paper, we show an O(n log n) time algorithm when the given graph
is a tree. For a k-path trees, we derive an O(n log k) time algorithm;
the algorithm is shown to be optimal in term of time complexity on
any comparison based computational model. Further, we show that the
optimal tour on weighted paths can be found in O(n) time.
No previous hardness results were known for MBLP on general graphs.
Here we settle the problem by showing that MBLP is NP-complete even
when the given graph is a direct acyclic graph whose vertex weights are
either 0 or 1.

1 Introduction

The minimum latency problem (MLP) [3], also known as the traveling repairman
problem [2], or the deliveryman problem [10], is to find a minimum latency tour
on a graph. Usually, the starting node of the tour is given and the goal is to
minimize the sum of the arrival times at the other nodes. The arrival time is the
distance traversed before reaching that node. Consider a distance matrix of a
graph with n nodes, where d(i, j) indicates the distance between nodes i, j. The
minimum latency tour is a permutation π of vertices such that π(1) = 1, and
the term

n∑
i=2

i−1∑
j=1

d(π(j), π(j + 1))

is minimized. Note that �π(i) =
∑i−1

j=1 d(π(j), π(j + 1)) = �π(i − 1) + d(π(i −
1), π(i)) is the traveling latency from node 1 to node i. In other words, the
� The work is supported in part by the National Science Council, Taiwan, R.O.C,

grant NSC-89-2218-E-126-004.

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 525–534, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

526 Yaw-Ling Lin

BA

C D

E

GF

2. Distances of charted edges are 1's.

3. Distances of uncharted edges are 100's.

Optimal tour: <A,C,E,G,F,B,D> with latency:

0*30+1*45+2*42+3*101+4*65+5*0+6*50
= 992

1. A is the starting vertex. Weights of vertices:

A B C D E F G

w(v) 30 0 45 50 42 65 101

Fig. 1. The minimum back-walk-free latency tour of a graph.

minimum latency tour is the permutation π that minimizes the total latency∑n
i=2 �π(i). The problem arises in a number of applications in the operations

research literatures, on-line search problems, and disk-head scheduling [2,10,12].
Despite its apparent similarity with the traveling salesperson problem (TSP),

the MLP possesses a variety of aspects very different from the TSP. Small
changes in the structure of a metric space can cause highly non-local changes
in the structure of MLP. In fact, the problem is conjectured by D. West [8] to
be NP-hard for edge-weighted trees, and even caterpillars, i.e., paths with edges
sticking out. By contrast, the TSP can be optimally solved on a tree. However,
both problems are known to be NP-hard when the points lie in a general metric
space or even the (Euclidean) plane. Polynomial time algorithms for the opti-
mal solutions are only known for the cases when the graph is a path [2,13], an
edge-unweighted tree [10], a tree with diameter 3 [3], or a tree with a constant
number of leaves [8].

The minimum latency problem can be generalized to the vertex-weighted
case. The goal is to minimize the sum of latencies of each vertex multiplied by
its weight. In other words, when each node i is given a real weight w(i), the goal
is to find a permutation π such that the term

∑n
i=2 �π(i)w(π(i)) is minimized.

To find an optimal tour that minimizes the vertex-weighted latency on a path,
an O(n2) time algorithm can be easily deduced from the results in [2,3]. Wu [13]
shows that finding the best starting vertex so as the minimum vertex-weighted
latencies is minimized can also be done in O(n2) time.

In this paper, we discuss a variant of the vertex-weighted MLP problem
that ignores the back-walking costs. Given a starting node 1 and a permutation
π, the back-walk-free travelling latency from node 1 to node j is now defined by
�π(j) = �π(j−1)+min{d(π(k), π(j)) | 1 ≤ k ≤ j−1}. Given the distance matrix
of a graph with n nodes, where d(i, j) indicates the distance between nodes i, j,
the (weighted) minimum back-walk-free latency problem (MBLP) is to find a
permutation π that minimizes the total back-walk-free latency

∑n
i=1 w(i)�π(i).

Figure 1 gives an instance of MBLP and its minimum latency tour.

Minimum Back-Walk-Free Latency Problem 527

Several variations of this problem focused on index and data allocation in a
single broadcast channel using conventional techniques [6,7]. The issue of multi-
ple broadcast channels using prune strategies and heuristic answers from single
broadcast channel is addressed in [11,9].

When the given graph is a tree, Adolphson and Hu [1] gave anO(n log n) time
algorithm; however, the technique used is difficult to be used for special cases
of trees, where more efficient algorithms are possible. Thus, in this paper, we
propose another O(n log n) time algorithm for the tree case. And, by exploiting
the techniques we used on the algorithm, we derive an O(n log k) time algorithm
for k-path trees. Further, we show that the optimal tour on weighted paths can
be found in O(n) time.

No previous hardness results were known for MBLP on general graphs. Here
we settle the problem by showing that MBLP is NP-complete even when the
given graph is a direct acyclic graph whose vertex weights are either 0 or 1,
while each dag edge is associated with an unit distance, and each non-dag edge
with a large distance.

2 Basic Notations and Properties

In this paper, we consider a rooted tree T = (V,E) such that the vertex set V =
{1, 2, . . . , n} and the root is node 1. Associate each vertex i with a nonnegative
weight w(i) and a nonnegative distance d(i). Intuitively, d(i, j) = d(j) if i is the
parent node of j; otherwise, d(i, j) =∞.

A permutation of nodes on subset of V is called a subtour of T . That is,
a sequence A = 〈a1, a2, . . . , ak〉 is a subtour of T if {a1, a2, . . . , ak} ⊂ V and
ai �= aj whenever i �= j. Denote w(A) =

∑k
i=1 w(ai); d(A) =

∑k
i=1 d(ai). The

cost ratio of A is defined by ρ(A) = w(A)/d(A).

Definition 1. The weighted latency of a subtour A = 〈a1, a2, . . . , ak〉 is defined
by L(A) =

∑k
i=1(w(ai) ·

∑i
j=1 d(aj)).

A subtour spanning every vertex of V , which defines a permutation on V , is
called a tour on T . A tour π is feasible if the corresponding (weighted) latency
�(π) =

∑n
i=1 w(i)�π(i) < ∞. By assigning zero to d(1), we have the following

observation.

Proposition 1. Let d(1) = 0. Given a feasible tour A with the corresponding
permutation π, it follows that �(π) =

∑n
i=1 w(i)�π(i) = L(A).

Let A = 〈a1, a2, . . . , ai〉 and B = 〈b1, b2, . . . , bj〉 be two disjoint subtour of T .
The concatenation of A and B, denoted by AB = 〈a1, a2, . . . , ai, b1, b2, . . . , bj〉 is
also a subtour of T .

Lemma 1 (Recursion formula of L(·)). Let A,B be two disjoint subtours of
T . We have: L(AB) = L(A)+L(B)+d(A)w(B) = L(A)+L(B)+d(A)d(B)ρ(B).

Proof. The proof appears in the complete paper. �
We immediately have the following observation:

528 Yaw-Ling Lin

Proposition 2. Let A,B be two disjoint subtours of T . It follows that L(AB) ≤
L(BA) if and only if ρ(A) ≥ ρ(B).

Intuitively, it suggests us to place the heaviest vertex at the front of visited
tour as early as possible.

Definition 2. We say a subtour A of T is atomic if there exists a minimum
(back-walk-free) latency tour P on T containing A contiguously. That is, P =
BAC, such that B,C are two (possibly empty) subtours.

Note that each vertex i defines an atomic subtour 〈i〉 with cost ratio ρ(i) =
w(i)/d(i).

3 Algorithm for General Trees

In this section we discuss properties of MBLP on general trees. Using these
properties, an O(n log n) time algorithm for tree can be naturally deduced.

The idea here is to repeatedly identify the atomic parent-child pairs in the
tree T , and glue them together until the final minimum latency tour is found.
Initially, each node is, by definition, an atomic subtour of T ; however, during
the process, the original tree node is generalized to a super node, which contains
atomic subtour of the T . Note that the topologically transformed tree structure
reflects several interesting properties of T . For example, the subtour resides
within each super node induces a (connected) subtree of T .

Consider two atomic subtours of T , namely A and B, and let TA (TB) denote
the subtree of T induced by A (B). If there exists a node a of A and a node b of
B such that a is a parent of b, then A is thus called a parent of B; conversely, B
is a child of A.

First we show when to glue two atomic subtours into one:

Lemma 2. Let A be an atomic subtour of T . The descendants of A consists of
k mutually disjoint atomic subtours of T , namely, A1, A2, . . . , Ak. Let ρ(Ac) =
max{ρ(Aj) | 1 ≤ i ≤ k}. If Ac is a child of A, and ρ(Ac) ≥ ρ(A), then AAc is
an atomic subtour of T .

Proof. The proof appears in the complete paper. �

Corollary 1. If A is an atomic subtour of T with largest ratio cost comparing to
every other atomic subtours of T . Either it can be glued with its parent; otherwise,
A can be appended to the output queue if A is a root.

Theorem 1. The minimum back-walk-free latency tour can be found in O(n log
n) time for vertex-weighted trees.

Proof. We propose an O(n log n) time algorithm, MBLP-Tree(T), shown in
Figure 2. The algorithm essentially keeps clustering two atomic subtours into
one. Each time the number of vertices is reduced by one. The correctness of the
algorithm is easily verified by Lemma 2 and Corollary 1.

Minimum Back-Walk-Free Latency Problem 529

MBLP-Tree(T)
Input: A rooted tree T with weighted vertices V = {1, 2, . . . , n}; node 1 is root.

Each vertex i has a nonnegative weight w(i) and a nonnegative distance d(i).
Output: A tour with minimum weighted back-walk-free latency.
1 for i← 2 to n do � Initializes the Fibonacci Queue Q
2 new v; w[v]← w(i); d[v]← d(i); key[v] = w[v]/d[v]; list[v]← 〈i〉
3 EnQueue(Q, key[v]) ; Make-Set(v)
4 for each uv ∈ E(T) do p[v]← u � u is a parent of v
5 while Q �= ∅ do
6 key[v]← Extract-Max(Q); � Pick the maximal cost ratio.
7 u← p[Find-Set(v)]; w[u]← w[u] + w[v]; d[u]← d[u] + d[v]
8 Union(u, v); p[v]← p[u] � Efficient clustering
9 key[u] = w[u]/d[u]; list[u] = list[u] ◦ list[v]; Increase-Key(Q, key[u])
10 return the output list of the root contains the minimum latency tour.

Fig. 2. Algorithm for finding minimum back-walk-free latency tour in tree.

Note that Step 1 to Step 4 of the algorithm takes O(n) time to build a
Fibonacci heap Q. Note that Q is a maximum-finding queue instead of the
regular minimum-finding queue. Step 5 to Step 9 of MBLP-Tree(T) is to pick
the maximum cost ratio node and glue it to its parent. The while loop executes
exactly n − 2 times. The Extract-Max operation of Step 6 takes amortized
O(log n) time. Thus totally O(n log n) time will be spent on Step 6. On the other
hand, the Increase-Key operations performed in Step 9 takes amortized O(1)
time; thus totally O(n) time is spent on Step 9.

What is interesting in the algorithm is that we use the disjoint set data
structure [4] in clustering the nodes contained within each subtour. A naive
approach will need to locate all the pointers of the children of v, and let their
parent pointer changed to the new parent u in Step 8 of the algorithm. Totally
there are potentially O(n2) changes. Now with the help of the disjoint set data
structure, Step 7 and Step 8 of the algorithm totally spends nα(n) time, where
α(n) is the inverse of Ackermann’s function. We thus conclude that the algorithm
totally spends O(n log n) time. �

4 Algorithm for k-Path Trees

In this section, we discuss properties of MBLP on the k-path tree and propose an
O(n log k) time algorithm. If k is a constant, the problem is linear time solvable.

A tree T is called a k-path tree if there is one vertex of T with degree k and
all other vertices have degrees either 1 or 2. Note that a simple path is a 2-path.
A rooted k-path, is the k-path rooted at the degree k vertex.

Let P = 〈a1, a2 . . . , am〉 be a path of T , where vertices are listed from root to
the leaf. It follows that any feasible subtour on P consists of consecutive vertices
on P . Let A1, A2, . . . , Ak be disjoint subtours of P such that ∪k

i=1Ak = P ;

530 Yaw-Ling Lin

further, P = A1A2 · · ·Ak. These Ai’s is called a path partition of P ; Ai is the
ith path partition of P . Recall the definition in Section 2, the cost ratio of Aiis
defined by ρ(Ai) = w(Ai)/d(Ai).
Definition 3. We call a subtour A = 〈a1, a2 . . . , am〉 right-skew if and only
if the cost ratio of any prefix 〈a1, a2 . . . , aj〉 is always smaller than or equal to
the cost ratio of the remaining subpath 〈aj+1, a2 . . . , am〉. A path partition P =
A1A2 · · ·Ak is decreasingly right-skew if each Ai is right-skew and ρ(Ai) > ρ(Aj)
whenever i < j .

Proposition 3. Let A,B be two subtour of T with ρ(A) ≥ ρ(B). It follows that
ρ(A) ≥ ρ(AB) ≥ ρ(B).

Lemma 3. Let A,B be two right-skew subtour of T with ρ(A) ≤ ρ(B). It follows
that AB is also right-skew.
Proof. The proof appears in the complete paper. �

Here we first show that all single path P can be partition into decreasingly
right-skew.

Lemma 4. Any path can be uniquely partitioned into a decreasingly right-skew
partition.

Proof. Let P = 〈v1, v2 . . . vn〉. The argument obviously follows if n = 1. By
induction, assume that a path Q = A1A2 · · ·Ak, |Q| = n is decreasingly right-
skew partitioned. Now consider a path P = 〈Q, a〉.

The Lemma is proven if ρ(a) < ρ(Ak). Otherwise, we find the largest i such
that ρ(AiAi+1 · · ·Aka) < ρ(Ai−1); let i = 1 if such i can not be found. It suffices
to show that 〈AiAi+1 · · ·Aka〉 is right-skew, and this can be done by observing
that the single segment 〈a〉 is right-skew and by applying Lemma 3 repeatedly to
the segments Ai, Ai+1, . . . , Ak, 〈a〉 from right to left. That is, 〈Aka〉 is right-skew
because ρ(Ak) ≤ ρ(a), 〈Ak−1Aka〉 is right-skew because ρ(Ak−1) ≤ ρ(Aka), etc.
Clearly, the partition is unique because other choices of i would not result in a
decreasingly right-skew partition of A. �

Lemma 5. Partitioning a path into a decreasingly right-skew partition can be
done in O(n).

Proof. Consider the algorithm Path-Parti that produces a list of right-skew
sequences in Figure 3. Note that i is the current working pointer scanning the
vertices of P from right to left. Further, the pair (i, p[i]) represents a subsequence
of P that is always right-skew throughout the entire algorithm. The observation
is justified by Lemma 3, that two increasingly right-skew subtours can be grouped
into one. Note that the condition checking and grouping is done by Step 3 to
Step 6 of the algorithm.

The correctness of the algorithm follows from the fact that, after the exe-
cution of Step 1 to Step 6, each subsequence is right-skew, and the partition is
increasing. Further, by Lemma 4, the partition must be unique.

Minimum Back-Walk-Free Latency Problem 531

Path-Parti(P)
Input: A path P = 〈a1, a2, . . . , an〉
Output: A decreasingly right-skew partition of P .
1 for i← n downto 1 do
2 p[i]← i; w[i]← w(ai); d[i]← d(ai); � Each ai alone is right-skew.
3 while (p[i] < n) and (w[i]/d[i] ≤ w[p[i] + 1]/d[p[i] + 1]) do
4 p[i]← p[p[i] + 1]
5 w[i]← w[i] + w[p[i] + 1]
6 d[i]← d[i] + d[p[i] + 1]
7 i← 1
8 while i ≤ n do � Reports (i, i) as a right-skew subtour 〈ai, . . . , aj〉.
9 Output (i, p[i]); i← p[i] + 1

Fig. 3. Partitioning a path into decreasingly right-skew in O(n) time.

The O(n) time complexity is justified by the amortized analysis. Note that
total operations of the algorithm is clearly bounded by O(n) except for the while
loop body of Step 3 to Step 6. We define the potential of P to be ki, the number
of right-skew subsequences in P after the ith iteration of the for loop (Step 1
to Step 6.). Let us compute the amortized cost of operations done by Step 3 to
Step 6. Let the actual cost of the operation is ci + 1 in advancing ci times of the
p[i] pointer. It follows that the potential difference is

Φ(Pi)− Φ(Pi−1) = (1 + ki−1 − ci)− ki−1;

The amortized cost is therefore ĉi = ci + Φ(Pi)− Φ(Pi−1) = 1 �
Let T be a rooted k-path. After deleting the root, T is decomposed into k
paths: P1, . . . , Pn. For each Pi, we perform the Path-Parti(Pi) resulting Pi =
〈A1 · · ·Aj〉 such that the partition 〈A1 · · ·Aj〉 is decreasingly right-skew. It fol-
lows that each Ai is an atomic subtour in T .

Lemma 6. A feasible right-skew subtour of a k-path, T , containing only vertices
of one of its descendant path, is atomic in T .

Proof. The proof appears in the complete paper. �

Theorem 2. Finding the minimum back-walk-free latency tour in k-path can be
done in O(n log k) time.

Proof. We propose an O(n log k) time algorithm, MBLP-k-Tree(T), shown in
Figure 4. The correctness of the algorithm follows from the fact that, The right-
skew subsequence of each k-path is atomic in T as show by Lemma 6. Further,
the algorithm reflects the spirit of MBLP-Tree(T) in extracting the maximal
cost ratio and output.

The time complexity of the algorithm is easily shown to be O(n log k) by the
fact that the size of the priority queue Q is at most k while there are totally
O(n) operations performed on Q. �

532 Yaw-Ling Lin

MBLP-k-Path(T)
Input: A rooted k-path T .
Output: A tour with minimum weighted back-walk-free latency.
1 Decompose T into k paths: P1, . . . , Pk.
2 for i← 1 to k do
3 list[i]← Path-Parti(Pi) � Right-skew partition
4 EnQueue(Q,Extract(list[i])) � Put the first element into priority queue Q.
5 while Q �= ∅ do
6 seq[i]← Extract-Max(Q); � Pick the maximal cost ratio.
7 EnQueue(Q,Extract(list[i]))
8 Append seq[i] to the output list.
9 return the output list.

Fig. 4. Algorithm for finding minimum back-walk-free latency tour in k-path.

Note that the output of the MBLP-Tree(T) can be viewed as a length O(n)
(multiple) permutation of the set {1, 2, . . . , k}. Each output number represents
the currently top vertex of one of the k paths being visited. Thus the number
of all different possible output orderings can be as large as kn. It follows that
the solution space of the algorithm is therefore of the order O(kn). Since a
comparison-based algorithm essentially searches the solution space in a binary
(or ternary) manner, the underlying decision tree must have a depth of Ω(n log k)
by using simple counting arguments. It follows that

Proposition 4. Any comparison-based algorithm for solving the MBLP on k-
path spends Ω(n log k) time in average.

Corollary 2. The algorithm MBLP-k-Path spends Θ(n log k) time, in aver-
age, in finding the minimum back-walk-free latency tour.

Corollary 3. Finding the minimum back-walk-free latency tour in a path (with
any arbitrary starting vertex) can be done in O(n) time.

5 MBLP is NP-Complete

Despite its apparent simplicity comparing to the original MLP, here we show
that MBLP is NP-complete even for a directed acyclic graph (usually briefed as
dag) by reducing the 3-SAT problem to MBLP on a dag.

Theorem 3. The decision version of MBLP for directed acyclic graphs is NP-
complete.

Proof. The decision version of MBLP is clearly in NP. Here we show that it is
NP-hard by a reduction from 3-SAT [5] to MBLP.

Minimum Back-Walk-Free Latency Problem 533

x x x x x x x x

1

0 0 0 0 0 0 k clauses

s

x x x x x x x x

1 1 1

1

0 0 0

1

0 0 0

literals2n1 1 2 2 3 3 4 41 1 2 2 3 3 4 4

Fig. 5. Reducing the 3-SAT instance (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) into a dag.

Given an instance of 3-SAT, S, with literals L = {x1, x1, . . . , xn, xn} and
clauses C = {c1, . . . , ck}, we will construct a directed acyclic graph G = (V,E)
such that G has a back-walk-free tour with latency (n+k)(n+k+1) if and only
if S is satisfiable. The reduction is illustrated at Figure 5.

The constructed dag consists of one starting vertex s, and other three kinds
of vertices: 2n literal vertices VL = {x1, x1, . . . , xn, xn}, 3k clause vertices VC =
∪k

i=1{ci1, ci2, ci3}, and n+k sink vertices Vt = {t1, . . . , tn, t′1, . . . , t′k}. The weights
of vertices is defined by w(v) = 1 if v ∈ Vt; otherwise, w(v) = 0. The edge set of G
consists of 4n literal edges, EL = {(s, a) | a ∈ VL}∪{(xi, ti), (xi, ti) | 1 ≤ i ≤ n},
k clause edges, EC = ∪k

i=1{(ci1, t′i), (ci2, t′i), (ci3, t′i)}, and finally the k cross
edges, EX = ∪k

i=1{(ai1, ci1), (ai2, ci2), (ai3, ci3)} where ai1, ai2, ai3 ∈ VL are 3
vertices of the ith clause ci. At last, we say that the distance of each (directed)
edge is 1, and the distance of each unstated edge is +∞.

The idea is that a low latency tour attempts to reach as many sink vertices
as possible in the earliest manner, which constitutes the truth assignment of
the given 3-SAT instance if it is satisfiable. The rest of the detailed arguments
appears in the complete paper. �

6 Concluding Remarks

In this paper, a variation of the minimum latency problem, so called the mini-
mum back-walk-free latency problem (MBLP) is considered. Several interesting
properties of MBLP on trees are discussed, and we propose a simple and efficient
O(n log n) time algorithm for general weighted tree, as well as an O(n log k) time
algorithm for k-path trees. Further, we show that the optimal tour on weighted
paths can be found in O(n) time.

No previous hardness results were known for MBLP on general graphs. Here
we settle the problem by showing that MBLP is NP-complete even when the

534 Yaw-Ling Lin

given graph is a direct acyclic graph whose vertex weights are either 0 or 1,
while each dag edge is associate with the same distance.

An interesting future work concerning about MBLP is to find a good starting
point. In the original problem setting, the starting point is given. How fast can
we find the best origin that minimizes the MBLP tour? What happens if the
starting point is online changed? Can we get the new tour in a more efficient
way?

References

1. D. Adolphson and T. C. Hu. Optimal linear ordering. SIAM J. Appl. Math.,
25:403–423, 1973.

2. F. Afrati, S. Cosmadakis, C. Papadimitriou, G. Papageorgiou, and N. Pa-
pakostantino. The complexity of the traveling repairman problem. Informatique
Theorique et Applications (Theoretical Informatics and Applications), 20(1):79–87,
1986.

3. A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, and M. Su-
dan. The minimum latency problem. In Proceedings of the Twenty-Sixth Annual
ACM Symposium on the Theory of Computing, pages 163–171, Montréal, Québec,
Canada, 23–25 May 1994.

4. T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press,
1990.

5. M.R. Garey and D.S. Johnson. Computers and Intractability – A Guide to the
Theory of NP-Completeness. Freeman, New York, 1979.

6. T. Imielinski, S. Viswanathan, and B.R. Badrinath. Power efficient filtering of
data on air. 4th International Conference on Extending Database Technoloy, pages
245–258, March 1994.

7. T. Imielinski, S. Viswanathan, and B.R. Badrinath. Data on air: Organization
and access. IEEE Trans. on Knowledge and Data Engineering, 9(3):353–372, May
1997.

8. E. Koutsoupias, C. Papadimitriou, and M. Yannakakis. Searching a fixed graph.
In Proc. 23rd Colloquium on Automata, Languages and Programming, LNCS 1099,
pages 280–289. Springer-Verlag, 1996.

9. Shou-Chih Lo and Arbee L.P. Chen. Index and data allocation in multiple broad-
cast channels. IEEE Interantion Conference on Data Engineering 2000, pages
293–302, 2000.

10. E. Minieka. The delivery man problem on a tree network. Annals of Operations
Research, 18(1–4):261–266, February 1989.

11. N. Shivakumar and S. Venkatasubramanian. Energy-efficient indexing for informa-
tion dissemination in wireless systems. ACM, Journal of Wireless and Nomadic
Application, 1996.

12. Tsitsiklis. Special cases of traveling salesman and repairman problems with time
windows. NETWORKS: Networks: An International Journal, 22, 1992.

13. Bang-Ye Wu. Polynomial time algorithms for some minimum latency problems.
Information Processing Letters, 75(5):225–229, October 2000.

Counting Satisfying Assignments
in 2-SAT and 3-SAT

Vilhelm Dahllöf�, Peter Jonsson��, and Magnus Wahlström���

Department of Computer and Information Science
Linköping University

SE-581 83 Linköping, Sweden
{vilda,petej,magwa}@ida.liu.se

Abstract. We present an O(1.3247n) algorithm for counting the num-
ber of satisfying assignments for instances of 2-SAT and an O(1.6894n)
algorithm for instances of 3-SAT. This is an improvement compared
to the previously best known algorithms running in O(1.381n) and
O(1.739n) time, respectively.

1 Introduction

A number of recent papers, including [2,5,7,8,14], have studied various counting
problems from different perspectives. This growing interest is probably due to
the fact that decision problems – “is there a solution?” – have been thoroughly
studied whereas our knowledge about counting problems – “how many solu-
tions?” – is in comparison much more modest. Counting problems are not only
mathematically interesting, they arise naturally when asking questions such as
“what is the probability that a formula in the propositional calculus is true?” [11]
or “what is the probability that a graph remains connected, given a probability
of failure on each edge?” [12].

The subject of this paper is the #2-SAT and #3-SAT problems, i.e. counting
the number of satisfying assignments to instances of 2-SAT and 3-SAT. These
problems are known to be #P-complete [9,13]. Exact algorithms (with worst-
case complexity analyses) have been studied earlier by Dubois [4], Zhang [14] and
Littman et al. [10]. The algorithms by Dubois and Zhang run in O(1.6180n) time
for #2-SAT and O(1.8393n) time for #3-SAT while the algorithms by Littman et
al. run in O(1.381n) and O(1.739n) time, respectively.

We will here present an O(1.3247n) algorithm for the #2-SAT problem and
an O(1.6894n) algorithm for the #3-SAT problem. Both algorithms run in poly-
nomial space. These algorithms are (as the algorithms by Littman et al.) based

� The research is supported by CUGS – National Graduate School in Computer
Science, Sweden.

�� The research is partially supported by the Swedish Research Council (VR) under
grant 221-2000-361.

��� The research is supported by CUGS – National Graduate School in Computer
Science, Sweden.

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 535–543, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

536 Vilhelm Dahllöf, Peter Jonsson, and Magnus Wahlström

on the Davis-Putnam-Logemann-Loveland algorithm for satisfiability modified
to count all satisfying assignments [2] and using a connected-components ap-
proach [1]. The basic idea is to choose a variable x and recursively count the
number of satisfying assignments where x is true and where x is false. The main
difference between our algorithms and those by Littman et al. lies in the choice
of variable; our algorithms make a more elaborate analysis of the formula and are
able to choose a “better” variable. The #2-SAT algorithm is also improved by
using certain ideas from an algorithm for counting independent sets in graphs [3].

In the next section some definitions will be given and the notation used will
be explained. Then the paper will use two sections to focus on the #2-SAT and
#3-SAT algorithms, respectively.

2 Preliminaries

A propositional variable can have the values true and false and a literal is
either a propositional variable x or its negation ¬x. A propositional formula on
conjunctive normal form (CNF) is a conjunction of disjunctions of literals. A
k-SAT formula (k > 0) is a propositional formula in CNF such that each clause
contains at most k literals. A satisfying assignment is an assignment to every
propositional variable of a formula making the entire formula true. #2-SAT is the
problem of computing the number of satisfying assignments of 2-SAT formulae
and #3-SAT is the corresponding problem for 3-SAT formulae. We note that an
empty formula (i.e. a formula containing no clauses) has 1 model while a formula
containing an empty clause (i.e. a clause containing no literals) is not satisfiable
and has 0 models. We define the size of a formula |F | as the number of variables
F contains.

Given a formula F over the variables V , we define the constraint graph as an
undirected graph (V,E) where E = {(x, y) | x, y appear in the same clause of
F}. We say that x and y are constrained iff (x, y) ∈ E and the constraints of F
are E. The neighbourhood of x (NF (x)) is the set {y | (x, y) ∈ E}, the degree of
x (δF (x)) is |NF (x)| and the degree of F is δ(F) = max{δF (x) | x ∈ V ar(F)}.
Note that if δ(F) = k, then |E| ≤ k · |F |/2. We say that a formula is a cycle or a
path whenever the constraint graph is a cycle or a path. A connected component
of such a graph is a maximal subgraph such that for every pair of vertices x, y in
the subgraph, there is a path from x to y. We say that the connected components
of a formula are the subformulas corresponding to the connected components of
the constraint graph.

Given a formula F and a literal l, we denote by F |l the result of making literal
l true in F and simplifying the result by (1) removing any clause that contains
l; (2) removing ¬l whenever it appears; and (3) performing unit propagation as
far as possible. By unit propagation, we mean to repeatedly apply rules of the
following two types:

1. (p ∨ q ∨ r) ∧ (p) −→ true; and
2. (p ∨ q ∨ r) ∧ (¬p) −→ (q ∨ r).

Counting Satisfying Assignments in 2-SAT and 3-SAT 537

We extend this notation to F |Γ , where Γ is a set of literals.
Consider the following example: F = (p∨q∨r) and note that #3-SAT(F) = 7.

It seems reasonable that #3-SAT(F |q)+#3-SAT(F |¬q) =#3-SAT(F) but this
is not the case. We see that (p ∨ q ∨ r)|q is simplified to the empty formula
(which has 1 model by definition) and #3-SAT(F |q)+#3-SAT(F |¬q) = 4. The
problem is that the variables q and r (which can be given arbitrary values)
are “eliminated” in the simplification process. Thus, we introduce a function
Ψ(F,R, Γ), where F is the formula to be simplified, R the set of eliminated
variables and Γ is the literals to be assigned true, it returns (F ′, R′), where F ′

is the simplified formula and R′ is the new set of eliminated variables; R′ is
computed as R ∪ (V ar(F) − (V ar(F ′) ∪ Γ)), where V ar(F) denotes the set of
variables of F .

The algorithms we present are based on the Davis-Putnam-Logemann-
Loveland algorithm for satisfiability modified for counting satisfying assignments
and they build on two straightforward principles: assume F is an arbitrary SAT
formula, R a set of eliminated variables and let #SAT(F,R) denote the number
of satisfying assignments of F modulo the eliminated variables in R.

Principle 1. Arbitrarily choose x ∈ V ar(F). Then,

#SAT(F,R) =#SAT(Ψ(F,R, {x}))+#SAT(Ψ(F,R, {¬x})).

Principle 2. Let F1, F2 be disjoint components of F . Then,

#SAT(F,R) = 2|R| · #SAT(F1, ∅) · #SAT(F2, ∅).
Note that these disjoint components can be found in polynomial time. The cor-
rectness proofs of the algorithms are omitted since they can trivially be inferred
from these two principles.

3 Algorithm for #2-SAT

Before presenting the algorithm for #2-SAT, we need one more definition: given
a formula F and a variable x, we define

LF (x) = |{u | (∼ u,∼ v) ∈ F ∧ u ∈ NF (x) ∧ v 	∈ NF (x) ∪ {x}}|
where ∼ u denotes either u or ¬u. Informally, one can say that LF (x), x ∈ V ,
tells how many of the neighbours of x that appear in a constraint together with
some variables not in NF (x) ∪ {x}. If LF (x) = 1, then B(x) denotes the unique
variable in NF (x) that is adjacent to one or more vertices outside NF (x) ∪ {x}.
In Figure 1 there is an example where LF (x) = 1.

Our algorithm for #2-SAT is presented in Figures 2 and 3. The function CE

computes #2-SAT by exhaustive search. It will be applied only to formulas of
size ≤ 4 and can thus be safely assumed to run in O(1) time. The correctness of
the algorithm follows from the discussion in the previous section. When analysing
the algorithm we will often encounter recurrences of the form

538 Vilhelm Dahllöf, Peter Jonsson, and Magnus Wahlström

y

��
��

��
��

©...

x B(x)

��������

z

�������� ©...

Fig. 1. A constraint graph where LF (x) = 1; the filled lines indicate where there is a
constraint by necessity, whereas a pointed line indicates a possible constraint

T (n) ≤
k∑

i=1

T (n− ri) + poly(n).

They satisfy T (n) ∈ O(λ(r1, . . . , rk)n) where λ(r1, . . . , rk) is the largest, real-
valued root of the function f(x) = 1−∑k

i=1 x
−ri . Note that we can ignore the

polynomial factor so we will assume that all polynomial time computations take
O(1) time.

When inspecting C and C3 one can see that every connected component of
the input will be recursively solved by the algorithm. However, this will not
increase the time required, since

∑k
i=1 T (ni) ≤ T (n) when n =

∑k
i=1 ni.

Given a 2-SAT formula F and a literal l, we define Unit(F, l) to be the set
of variables that appears in a clause of length 1 after having made literal l true
in F and simplifying the result by (1) removing any clause that contains l; and
(2) removing ¬l whenever it appears (in other words, the usual simplification
process employed by Ψ but without performing unit propagation). To illustrate
Unit, consider the formula F = (x ∨ y) ∧ (x ∨ z) ∧ (¬x ∨ w). It can easily be
verified that Unit(F, x) = {w} and Unit(F,¬x) = {y, z}. In fact, if δ(x) = k in
a 2-SAT formula F , then |Unit(F, x)|+ |Unit(F,¬x)| ≥ k. This observation will
be used several times in the complexity analysis.

Lemma 1. Algorithm C3 runs in O(1.3045n) time.

Proof. In this lemma, we will measure the size of a formula G by the number m
of constraints it contains. We will ultimately show that C3 runs in O(1.1939m)
time; by noting that a degree-3 formula with n vertices can contain at most 3n/2
constraints, we get that the algorithm runs in O(1.19393n/2) = O(1.3045n) time.

We assume that the input formula F is connected and contains m constraints.
Cases 0–2 are trivial and case 3 does not increase the running time.

Case 4: If F is a cycle, then F is immediately transformed into a path in both
recursive calls. So, the interesting case is when the input is a path – then the
time is bounded by the recurrence T (m) ≤ 4T (�m/2� − 2) and straightforward
calculations show that T (m) ∈ O(4log2 m) = O(m2).

Case 5.1: LF (x) = 1. We study the formula F ′ = F |B(x). First note that
δ(B(x)) ≥ 2 since, otherwise, |F | = 4 and Case 2 would have applied. Now,

Counting Satisfying Assignments in 2-SAT and 3-SAT 539

Algorithm C3(F, R)
Case 0: F has an empty clause. Return 0.
Case 1: F is empty. Return 2|R|.
Case 2: |F | ≤ 4. Return CE(F).
Case 3: F consists of two disjoint components F1, F2.
Return 2|R| · C3(F1, ∅) · C3(F2, ∅).

Case 4: δ(F) ≤ 2. Pick a variable x in the following way:

1. If F is a path, choose x to be a variable that splits F into two paths of lengths
�|F |/2� and �|F |/2�.

2. If F is a cycle, choose x arbitrarily.

Return C3(Ψ(F, R, {x})) + C3(Ψ(F, R, {¬x})).

Case 5: δ(F) = 3. Pick a variable x such that δ(x) = 3 and do the following:

1. If LF (x) = 1, then return C3(Ψ(F, R, {B(x)})) + C3(Ψ(F, R, {¬B(x)})).

2. If LF (x) > 1, then return C3(Ψ(F, R, {x})) + C3(Ψ(F, R, {¬x})).

Fig. 2. Help function for computing #2-SAT

Algorithm C(F, R)
Case 0: F has an empty clause. Return 0.
Case 1: F is empty. Return 2|R|.
Case 2: F consists of two disjoint components F1, F2.
Return 2|R| · C(F1, ∅) · C(F2, ∅).
Case 3: δ(F) ≤ 3. Return C3(F, R).
Case 4: Pick a variable x s.t. δ(x) ≥ 4 and return C(Ψ(F, R, {x})) +
C(Ψ(F, R, {¬x})).

Fig. 3. Function for computing #2-SAT

B(x) is given a fixed value and δ(B(x)) ≥ 2 implies that F ′ contains at least two
constraints less than F . Furthermore, the neighbourhood of x forms a component
F ′′ that is not connected to the rest of the formula. This component contains
three variables and at least two constraints. Consequently, F ′′ will be taken
care of in O(1) time in the next recursive step of the algorithm (by component
analysis and using CE). The time needed in this case is thus bounded by T (m) ≤
2T (m− 4) since exactly the same situation arises when B(x) is given the value
false. It follows that T (m) ∈ O(1.1892m).

Case 5.2: LF (x) > 1 – that is, of the variables {v, y, z} = NF (x), at least two
are related to variables not in {v, x, y, z}. In this worst-case analysis, we assume
that only v and y are related to variables not in {v, x, y, z}.

Let S = Unit(F, x)∩{v, y} and S′ = Unit(F,¬x)∩{v, y}. The running time
T (m) of the algorithm satisfies the recursive relation

540 Vilhelm Dahllöf, Peter Jonsson, and Magnus Wahlström

T (m) ≤ T (m− 3− |S|) + T (m− 3− |S′|)
Here, three constraints are removed due to giving x a fixed value and at least one
more constraint is removed for each variable v, y that appear in a unit clause. It
is easy to see that |S|+ |S′| = 2 and that the worst case occurs when |S| or |S′|
equals 0. The time needed in this case is bounded by T (m) ≤ T (m−3)+T (m−5)
and T (m) ∈ O(1.1939m).

Theorem 1. Algorithm C runs in O(1.3247n) time.

Proof. The result follows from Lemma 1 if δ(F) ≤ 3. Otherwise, let S =
Unit(F, x) and S′ = Unit(F,¬x). The running time T (n) of the algorithm sat-
isfies the recursive relation

T (n) ≤ T (n− 1− |S|) + T (n− 1− |S′|)

Since δ(x) ≥ 4, we know that |S| + |S′| ≥ 4. Obviously, λ(a, b) = λ(b, a) and
λ(a, b) ≥ λ(a+ 1, b) so λ(a, b) ≤ λ(1, 5) ≈ 1.3247 whenever a, b ≥ 5. It can easily
be checked that the small number of remaining cases also satisfy λ(a, b) ≤ λ(1, 5)
and T (n) ∈ O(1.3247n).

4 Algorithm for #3-SAT

In this section we present an algorithm D for #3-SAT and provide an upper
bound on its running time.

To find this upper time bound, we will use a different method than the one
described in Section 3. We will need to solve systems of recurrences like this:

f(n) = f(n− 1) + g(n− 1) (1)
g(n) = f(n− 1) + g(n− 2) (2)

To do this, we rewrite (2) so that the right hand side is only dependent upon
n− 1, by adding a new equation to the system:

f(n) = f(n− 1) + g(n− 1) (3)
g(n) = f(n− 1) + h(n− 1) (4)
h(n) = g(n− 1) (5)

We then write the equations into a matrix T , where each row represents a line
in the system. An upper bound for the solution to the system is f(n) ∈ O(λn),
where λ is the largest eigenvalue of T . This can be seen by using generating
functions for solving recurrence equations [6]. In this example:

T =

1 1 0

1 0 1
0 1 0

and λ = 1.8019.

Counting Satisfying Assignments in 2-SAT and 3-SAT 541

Algorithm D(F, R)
Case 0: F has an empty clause. Return 0.
Case 1: F is empty. Return 2|R|.
Case 2: F consists of disjoint components F1, F2.
Return 2|R| ·D(F1, ∅) ·D(F2, ∅).
Case 3: There exists some 1-clause (x) ∈ F . Return D(Ψ(F, R, {x})).
Case 4: There exists some 2-clause in F . Pick a variable x in the following way:

1. If some variable v is a member of a 2-clause (v ∨ w) and d(v) = 1, pick w as x.
2. If some variable v is a member of a 2-clause (v ∨ w) and d(v) = 2, pick w as x.
3. Otherwise, pick as x a variable which is a member of as many 2-clauses as

possible.

Return D(Ψ(F, R, {x})) + D(Ψ(F, R, {¬x})).

Case 5: Pick a variable x in the following way:

1. If d(v) = 1 for some variable v, pick a neighbour of maximum degree as x.
2. If d(v) = 2 for some variable v, pick a neighbour of maximum degree as x.
3. Otherwise, pick as x a variable of maximum degree.

Return D(Ψ(F, R, {x})) + D(Ψ(F, R, {¬x}).

Fig. 4. Function for computing #3-SAT

Some terminology is needed. A k-clause is a clause that contains k literals.
The degree of x in F (dF (x)), for a variable x, denotes the number of clauses
in F that x appears in. Usually, we will use d(x) when the formula F is clear
from the context. Note that this is different from δF (x) as defined in Section
2. A formula where every variable has degree k is k-regular. d2(x) denotes the
number of 2-clauses that x is a member of.

The algorithm is presented in Figure 4. The idea behind it is that if some
variable v has a low degree (d(v) = 1 or 2), then we can pick its neighbours as
branching variables to reach a situation where d(v) = 0 and eliminate v in this
way. If no such variable exists, we simply pick a variable of high degree.
Lemma 2. If F is a connected k-regular formula with only 3-clauses, then no
k-regular formula F ′ 	= F with only 3-clauses can be reached by assigning truth
values to variables in F .

Proof. Let F be a connected, k-regular formula which only contains 3-clauses.
Assume that Γ is a set of assignments such that F |Γ is k-regular and only
contains 3-clauses, and that F |Γ 	= F . Note that since F |Γ only contains 3-
clauses, F |Γ ⊆ F . Let F1 = F |Γ and F2 = F − F |Γ .

Since F is connected, there is some variable x which occurs in both F1 and
F2. Since x occurs in F1, it is not assigned a value by Γ . However, since dF1(x) =
dF (x)− dF2(x) < k, F1 cannot be k-regular.

Theorem 2. Algorithm D runs in O(1.6894n) time.

542 Vilhelm Dahllöf, Peter Jonsson, and Magnus Wahlström

Proof. We will analyze the time complexity of D case by case.
Cases 0, 1 and 3: These cases take O(1) time.
Case 2: This case does not increase the time needed.
Case 4.1: When w = true, d(v) = 0 and v is removed from F ; when w = false,
v = true. T (n) = 2T (n− 2) so T (n) ∈ O(1.4142n).
Case 4.2: When w = true, 5.1 is met (or case 4.1, or some earlier case); when
w = false, v = true. T (n) = T (n−2)+T (n−3)+2T (n−4) so T (n) ∈ O(1.5664n).
Case 4.3: Even if the chosen variabel is only a member of one 2-clause, we have
T (n) = T (n− 1) + T (n− 2) with solution T (n) ∈ O(1.6180n). If it is a member
of several 2-clauses, then the limit will be lower.
Case 5.1: This case takes O(1.5214n) time. Suppose d(v) = 1, (u ∨ v ∨ w) ∈ F
and that u is the chosen variable. When u = true, d(v) = 0 and v is removed
from F ; when u = false, case 4.1 is met. In total, the recurrence is T (n) =
T (n− 2) + 2T (n− 3) with solution O(1.5214n).
Case 5.2: This case takes O(1.6560n) time. Suppose d(v) = 2, (u ∨ v ∨ w) ∈ F
and that u is the chosen variable. When u = true, case 5.1 is met (or some
earlier case); when u = false, case 4.2 is met (or some earlier case). The worst
case is when no earlier case is met, and the recurrence for this case is T (n) =
2T (n− 3) + 3T (n− 4) + 2T (n− 5) with solution O(1.6560n).
Case 5.3: This case requires a more careful analysis. We shall formulate a set of
recurrence equations that describes the behaviour of the algorithm in this case.
Let x be the chosen variable. When we reach this case, F contains no 2-clauses.
Setting x = true creates k1 2-clauses, and setting x = false creates k2 2-clauses,
where k1 + k2 = d(x). For the moment, assume that d(x) = 4.

Let T (n, k) represent a situation where F contains n variables and k 2-
clauses. The initial situation is T (n, 0). Now, we enumerate a number of possible
recurrences where x is the chosen variable, and the 2-clauses it appears in are
(x ∨ vi) or (¬x ∨ vi). Some cases that are clearly dominated by some listed case
are ignored.

T (n, 0) = T (n− 1, k1) + T (n− 1, k2) (6)
T (n, k) = T (n− 1, k − 1) + T (n− 2, k) if d2(x) = 1 (7)
T (n, k) = T (n− 2, k − 1) + T (n− 1, k) if d2(x) = 1 (8)
T (n, k) = T (n− 1, k − 2) +

T (n− 3, k − d2(v1)− d2(v2)) if d2(x) = 2 (9)
T (n, k) = T (n− 2, k − 1− d2(v1)) +

T (n− 2, k − 1− d2(v2)) if d2(x) = 2 (10)

The recurrences for d2(x) > 2 are similar to (9)–(10).
The idea behind these recurrences is that when x = true then every 2-

clause (x ∨ vi) is removed and for every 2-clause (¬x ∨ vi), vi = true and d2(vi)
2-clauses are removed. In (7)–(8), we know that d2(v1) = 1; in (9)–(10) and
similar recurrences, we know that 1 ≤ d2(vi) ≤ d2(x) for all vi involved.

Counting Satisfying Assignments in 2-SAT and 3-SAT 543

In (7)–(8), d(x) ≥ 2 is assumed, so that one new 2-clause will be created,
either when x = true or x = false. d(x) = 1 only occurs when (x∨v1) is disjoint
from the rest of F , so this assumption is allowed.

If we go through all possible combinations of rules like these, we find that
the worst case is when only recurrences (6) and (7) are used, and k1 = 4, k2 = 0.
The solution to this system is T (n, 0) ∈ O(1.6894n).

If d(x) > 4 then more 2-clauses are created and either more recurrences with
low d2(x) or recurrences with a higher d2(x) are used. These cases are both easier
than d(x) = 4.

The remaining case is when F is 3-regular. Then, as Lemma 2 shows, for
the rest of the recursive calculations no 3-regular formula will appear, so there
will always exist variables of degree 1 or 2. If T (n) is the time required for a
3-regular formula and T ′(n) is the time required if variables of degree 1 or 2 are
guaranteed to exist, we have T (n) = 2T ′(n − 1) where T ′(n) ∈ O(1.6560n), so
T (n) ∈ O(2 · 1.6560n−1) = O(1.6560n).

In total, this shows that algorithm D runs in O(1.6894n) time.

References

1. R. J. Bayardo, Jr. and J. Pehoushek. Counting models using connected compo-
nents. In Proceedings of the Seventeenth National Conference on Artificial Intelli-
gence (AAAI-2000), pages 157–162. AAAI Press, 2000.

2. E. Birnbaum and E. L. Lozinskii. The good old Davis-Putnam procedure helps
counting models. Journal of Artificial Intelligence Research, 10:457–477, 1999.

3. V. Dahllöf and P. Jonsson. An algorithm for counting maximum weighted indepen-
dent sets and its applications. In Proceedings of the Thirteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA-2002), pages 292–298, 2002.

4. O. Dubois. Counting the number of solutions for instances of satisfiability. Theo-
retical Computer Science, 81(1):49–64, 1991.

5. L. Goldberg and M. Jerrum. Counting unlabelled subtrees of a tree is #P-complete.
LMS Journal of Computation and Mathematics, 3:117–124, 2000.

6. R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-
Wesley, Reading, MA, USA, second edition, 1994.

7. C. S. Greenhill. The complexity of counting colourings and independent sets in
sparse graphs and hypergraphs. Computational Complexity, 9(1):52–72, 2000.

8. H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, and R. E. Stearns. The complex-
ity of planar counting problems. SIAM Journal on Computing, 27(4):1142–1167,
1998.

9. D. Kozen. The design and analysis of algorithms. Springer-Verlag, 1992.
10. M. L. Littman, T. Pitassi, and R. Impagliazzo. On the complexity of counting

satisfying assignments. Unpublished manuscript.
11. D. Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1–

2):273–302, 1996.
12. S. P. Vadhan. The complexity of counting in sparse, regular, and planar graphs.

SIAM Journal on Computing, 31(2):398–427, 2001.
13. L. Valiant. The complexity of enumeration and reliability problems. SIAM Journal

on Computing, 8(3):410–421, 1979.
14. W. Zhang. Number of models and satisfiability of sets of clauses. Theoretical

Computer Science, 155(1):277–288, 1996.

On the Maximum Number of Irreducible
Coverings of an n-Vertex Graph by n − 3 Cliques

Ioan Tomescu

Faculty of Mathematics, University of Bucharest, Bucharest, Romania
ioan@math.math.unibuc.ro

Abstract. In this paper the structure of the irreducible coverings by
n−3 cliques of the vertices of a graph of order n is described. As a conse-
quence, the number of such coverings for complete multipartite graphs is
deduced. Also, it is proved that for sufficiently large n the maximum num-
ber of irreducible coverings by n− 3 cliques of an n-vertex graph equals
3n−3−3 ·2n−3 +3 and the extremal graph coincides (up to isomorphism)
to K3,n−3. This asymptotically solves a problem raised in a previous pa-
per by the author (J. Combinatorial Theory B28, 2(1980), 127-141). The
second extremal graph is shown to be isomorphic to K3,n−3 − e.

1 Definitions and Preliminary Results

For a graph G having vertex set V (G) and edge set E(G) a clique is a complete
subgraph of G which is maximal relatively to set inclusion. The maximum num-
ber of vertices in a clique of G is the clique number of G and it is denoted ω(G)
[1]. A k-clique is a clique containing k vertices. We say that a family of differ-
ent cliques c1, c2, . . . , cs of G is a covering of G by cliques if

⋃s
i=1 ci = V (G).

A covering C of G consisting of s cliques c1, . . . , cs of G will be called an ir-
reducible covering of G if the union of any s − 1 cliques from C is a proper
subset of V (G). This means that there exist s vertices x1, . . . , xs ∈ V (G) that
are uniquely covered by cliques of C, i.e., xi /∈

⋃s
k=1
k �=i

ck for every 1 ≤ i ≤ s. The

number of irreducible coverings by s cliques of G will be denoted ics(G). Kp,q

will denote the complete bipartite graph whose parts contain p and q vertices,
respectively and Kn1,...,nr the complete r-multipartite graph whose parts con-
tain n1, . . . , nr vertices, respectively. A star is a graph K1,k where k ≥ 1. N(x)
denotes the neighborhood of x, i.e., the set of vertices that are adjacent to x.
The closed neighborhood of x, denoted N∗(x) is N(x)∪{x}. If graphs G and H
are isomorphic we shall denote this by G ∼= H.

The problem of determining the greatest number α(n), of cliques a graph
with n vertices can have was solved by Miller and Muller [3] and independently
by Moon and Moser [4] (see [2]): For every n ≥ 2, α(n) = 3n/3 if n ≡ 0 (mod 3),
α(n) = 4 · 3(n−4)/3 if n ≡ 1 (mod 3), and α(n) = 2 · 3(n−2)/3 if n ≡ 2 (mod 3).
For each n ≥ 2 and n �≡ 1 (mod 3) the extremal graph (which will be denoted
MMG(n)) is unique (up to isomorphism) and it consists of n isolated vertices for

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 544–553, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

On the Maximum Number of Irreducible Coverings 545

n = 2 or 3 and for n ≥ 5 it is a complete multipartite graph, whose parts contain
3 vertices (n/3 times) if n ≡ 0 (mod 3) and 3 vertices ((n − 2)/3 times) and 2
vertices if n ≡ 2 (mod 3), respectively. If n ≡ 1 (mod 3) there exist two extremal
graphs: either it consists of one quadruple and (n − 4)/3 triples of vertices or
it consists of two pairs and (n − 4)/3 triples. In this case we shall denote by
MMG(n) the multipartite complete graph whose parts are one quadruple and
(n− 4)/3 triples.

If I(n, n−k) denotes the maximum number of irreducible coverings of the ver-
tices of an n-vertex graph by n−k cliques, in [8] it was shown that limn→∞ I(n,
n−k)1/n = α(k). Furthermore, I(n, n−2) = 2n−2−2 and icn−2(G) = 2n−2−2,
where |V (G)| = n ≥ 4 implies G ∼= K2,n−2.

There is a class of algorithms which yield all irreducible coverings for the
set-covering problem, an example of an algorithm in this class being Petrick’s
algorithm [6]. Since every minimum covering is an irreducible one, this algorithm
was intensively used for obtaining the minimal disjunctive forms of a Boolean
function by using prime implicants of the function or for minimizing the num-
ber of states of an incompletely specified Mealy type automaton A by finding
a minimum closed irreducible covering of the set of states of A by ”maximal
compatible sets of states”, which are cliques in the graph of compatible states of
A [5, 7]. Also, the chromatic number χ(G) of G equals the minimum number of
cliques from an irreducible covering by cliques of the complementary graph G.
Hence an evaluation of the numbers like I(n, n − k) may have implications on
the worst-case complexity of these algorithms.

If G = Kp,q, every clique of G is an edge and an irreducible covering by
edges of Kp,q consists of a set of vertex-disjoint stars, centered in the part with
p vertices or in the part with q vertices of Kp,q, which cover together all vertices
of Kp,q. Some properties of the numbers N(p, q) of all irreducible coverings by
edges of Kp,q were deduced in [8]; the exponential generating function of these
numbers was obtained in [9]. The following lemma summarizes some properties
observed in [8]:

Lemma 1. A covering by edges C of Kp,q is irreducible if and only if it does
not contain three edges ab, bc and cd of a path P4. If 1 ≤ p ≤ q, the number
of edges in an irreducible covering by edges of Kp,q equals q if p = 1 and it lies
between q and p+ q − 2 if p ≥ 2 .

If p ≥ 2 this number of edges is equal to q if all stars are centered in the part
with p vertices and it is equal to p + q − 2 if C consists of exactly two stars
centered in different parts of Kp,q.

Lemma 2. For every n ≥ 6, icn−3(K3,n−3) = 3n−3 − 3 · 2n−3 + 3.

Proof. If a star is an edge xy we can consider that its center is either x or
y. It follows that all irreducible coverings by n − 3 edges of K3,n−3 consist of
three stars centered in the part with three vertices of K3,n−3, which implies that
icn−3(K3,n−3) = sn−3,3 = 3!S(n−3, 3) = 3n−3−3 ·2n−3 + 3, where sn,k denotes
the number of all surjections from a set having n elements onto a set having k

546 Ioan Tomescu

elements and S(n, k) is the Stirling’s number of the second kind with parameters
n and k, counting the number of all partitions of an n-element set into k classes.

In [8, p. 138] it was conjectured that for n ≥ 6, I(n, n− 3) = icn−3(K3,n−3) and
the extremal graph is unique up to isomorphism, possibly for n ≥ 7. In the last
section it is shown that this property holds asymptotically, i.e., for every n ≥ n0
(n0 fixed, n0 ≥ 7).

2 The Structure of the Irreducible Coverings
by n − 3 Cliques

From the definition of an irreducible covering we deduce that for any graph G
of order n possessing an irreducible covering C by n − 3 cliques there exists a
set of n − 3 vertices, X = {x1, . . . , xn−3}, that are uniquely covered by cliques
of C. Let Y = V (G)\X = {y, z, t} denote the remaining vertices of G. For every
A ⊂ Y , A �= ∅ let NA = {x : x ∈ X and N(x)∩ {y, z, t} = A}. For example, Ny

is the set of vertices in X which are adjacent only to y, Ny,z,t is the set of vertices
in X which are adjacent to all y, z and t. It follows that all subsets NA do not
contain adjacent vertices, i.e., they induce independent subsets of vertices; also
if ∅ �= A ⊂ B ⊂ Y then NA ∪NB induces an independent subset of vertices. To
prove this property suppose that two distinct vertices xi and xj in the same NA

are adjacent. But xi belongs to a clique ci consisting of xi and a subset Z ⊂ A.
In this case Z ∪ {xi, xj} also is a clique, which contradicts the maximality of ci
relatively to set inclusion. The same argument applies whenever xi ∈ A, xj ∈ B,
∅ �= A ⊂ B ⊂ Y and xi and xj are adjacent. If G does not contain triangles
(3-complete subgraphs) then also Ny,z ∪Ny,t ∪Nz,t induces an independent set
of vertices. Indeed, if for example ij ∈ E(G), where i ∈ Ny,z and j ∈ Ny,t then
G would contain a triangle {y, i, j}, which contradicts the hypothesis.

We shall describe the structure of irreducible coverings by n − 3 cliques
of a graph of order n ≥ 4 without isolated vertices by introducing five types
α, β, γ, δ, ε of such coverings:

α) Three vertex disjoint stars having centers denoted by u, v and w covering
all vertices of G (N∗(u) ∪N∗(v) ∪N∗(w) = V (G)); all edges of these stars are
2-cliques.

β) r 3-cliques (r ≥ 1) having an edge uv in common; p 2-cliques having an ex-
tremity in u; q 2-cliques having an extremity in v (p, q ≥ 0) and a star whose
edges are 2-cliques, centered in a vertex denoted w, vertex-disjoint from r trian-
gles and p+ q edges, and covering together all vertices of G.

γ) r 3-cliques having a common edge uv; s 3-cliques having a common edge vw
(r, s ≥ 1); p 2-cliques having an extremity in u; q 2-cliques having an extremity
in v and m 2-cliques having an extremity in w (p, q,m ≥ 0), such that N∗(u) ∪
N∗(v) ∪N∗(w) = V (G).

δ) r 3-cliques, s 3-cliques and l 3-cliques having a common edge uv, vw and
uw, respectively (r, s, l ≥ 1); p 2-cliques, q 2-cliques and m 2-cliques with an

On the Maximum Number of Irreducible Coverings 547

extremity in u, v and w, respectively (p, q,m ≥ 0) such that they cover together
all vertices ofG. It is important to note that the 3-clique {u, v, w} does not belong
to the covering (this would contradict the irreducibility and would increase the
number of cliques to n− 2).
ε) i 4-cliques having a triangle, denoted by {u, v, w} in common (i ≥ 1); r
3-cliques, s 3-cliques and l 3-cliques having in common the edge uv, vw and
uw, respectively (r, s, l ≥ 0); p 2-cliques, q 2-cliques and m 2-cliques with an
extremity in u, v and w, respectively (p, q,m ≥ 0) and covering together all
vertices of G.

Lemma 3. Every irreducible covering by n − 3 cliques of a graph G of order
n ≥ 4 without isolated vertices is of one of the types α, β, γ, δ, ε.

Proof. Let C be an irreducible covering by n − 3 cliques of G. Since G has no
isolated vertex it follows that

Ny ∪Nz ∪Nt ∪Ny,z ∪Ny,t ∪Nz,t ∪Ny,z,t = X,

the set of vertices that are uniquely covered by cliques of C. Every clique in C
consists of a vertex of X and a nonempty subset of Y = {y, z, t}. If vertices
y, z, t induce a subgraph isomorphic to K3 we obtain type α; if they induce a
subgraph consisting of an edge and an isolated vertex we have type β; if they
induce a subgraph isomorphic to K1,2 we get type γ; if they induce a subgraph
isomorphic to K3 we obtain type δ or ε (depending upon the property that Ny,z,t

is empty or not).

If G of order n has an irreducible covering by n − 3 cliques and possesses j
isolated vertices z1, . . . , zj , then by deleting these vertices we get another graph
G1 of order n − j without isolated vertices, having an irreducible covering by
n− j− 3 cliques, since each of z1, . . . , zj is uniquely covered by a clique reduced
to itself. It follows that any irreducible covering by n − 3 cliques of G is of one
of the types α, β, γ, δ, ε, where j isolated vertices were added in each case.
From Lemma 3 it also follows that if a graph G of order n has an irreducible
covering by n−3 cliques, then ω(G) ≤ 4. This characterization of the irreducible
coverings by n− 3 cliques of an n-vertex graph allows us to find the number of
such coverings for all complete multipartite graphs.

Lemma 4. Let 1 ≤ a ≤ b and a+ b = n ≥ 2. Then

icn−3(Ka,b) =

0 if a = 1 or 2 ;
3b − 3 · 2b + 3 if a = 3 ;
a
(

b
2

)
(2a−1 − 2) + b

(
a
2

)
(2b−1 − 2) if a ≥ 4 .

Proof. Since every clique of Ka,b is an edge it follows that every irreducible
covering by n− 3 cliques has type α and Ka,b cannot be covered by three vertex
disjoint stars if a = 1 or 2. The case a = 3 was settled by Lemma 2. If a ≥ 4
the covering condition implies that two centers belong to a part of Ka,b and one
center belongs to another part of Ka,b. If two centers u, v belong to the part with

548 Ioan Tomescu

a vertices and one center w belongs to another part (this can be done in b
(
a
2

)
ways), then the stars centered in u and v can be chosen in 2S(b−1, 2) = 2b−1−2
ways and the star centered in w can be uniquely chosen. A similar situation holds
by permuting a and b and the formula in this case is justified.

The number of irreducible coverings by n − 3 cliques of a complete tripartite
graph Ka,b,c (a+ b+ c = n) is given by the following lemma.

Lemma 5. Let 1 ≤ a ≤ b ≤ c and a+ b+ c = n ≥ 3. Then

icn−3(Ka,b,c) =

0 if a = b = 1 ;
2c − 2 if a = 1 and b = 2 ;
abc otherwise .

Proof. Ka,b,c has every clique isomorphic to K3. Hence do not exist coverings of
types α, β and ε. If a = b = 1 also do not exist irreducible coverings of types γ
and δ, thus implying icn−3(K1,1,c) = 0. If there exists an irreducible covering of
type γ then u and v being nonadjacent, they belong to a same class of Ka,b,c.
Covering condition implies that the class of v consists only of v and the class
of u and w is precisely {u,w}, thus implying a = 1 and b = 2. In this case
icn−3(K1,2,c) = icn−3(K2,c) = 2S(c, 2) = 2c − 2 since c = n− 3 and by Lemma
1 every irreducible covering of K2,n−3 has exactly n− 3 edges. Otherwise (a = 1
and b ≥ 3 or a ≥ 2) every irreducible covering by n−3 cliques of Ka,b,c is of type
δ. For every choice of u, v, w in different parts of Ka,b,c, there exists a unique
irreducible covering C of type δ, where {u, v, w} /∈ C. Since the number of choices
of {u, v, w} equals abc, it follows that in this case one has icn−3(Ka,b,c) = abc.

Lemma 6. Let 1 ≤ a ≤ b ≤ c ≤ d and a+ b+ c+ d = n ≥ 4. Then

icn−3(Ka,b,c,d) =
{

1 if a = b = c = 1 ;
0 otherwise (c ≥ 2) .

Proof. Since Ka,b,c,d has every clique isomorphic to K4, every irreducible cov-
ering by n − 3 cliques is of type ε, whenever r = s = l = p = q = m = 0. If
a = b = c = 1 then we can choose uniquely {u, v, w} to be the set of vertices in
parts having a, b and c vertices, respectively and there exists a unique irreducible
covering by n−3 cliques consisting of d 4-cliques having {u, v, w} in common. If
c ≥ 2 then at least one vertex from {u, v, w}, let u, belongs to a part of Ka,b,c,d

together with another vertex x. In this case {x, u, v, w} cannot be a 4-clique
since ux is not an edge, hence icn−3(Ka,b,c,d) = 0.

Also note that icn−3(G) = 0 for any complete t-multipartite graph G of order n
for every t ≥ 5, since otherwise ω(G) ≤ 4 , a contradiction. In the last section
we also need the following result.

Lemma 7. For every n ≥ 6,

icn−3(K3,n−3 − e) = 2 · 3n−4 − 2n−2 + 2,

where K3,n−3 − e is the graph obtained from K3,n−3 by deleting any edge e.

On the Maximum Number of Irreducible Coverings 549

Proof. Let u, v, w be the vertices in the part having three vertices of K3,n−3 and
the edge e which is deleted be xv. Every irreducible covering by n − 3 edges of
K3,n−3− e has type α. It is not posible that x be covered by a star consisting of
edges xu and xw, since the remaining vertices, inducing a subgraph isomorphic
to K1,n−4 cannot be covered by two vertex disjoint stars. It follows that x is
covered either by edge xu or by edge xw. In the first case, other two subcases
hold: a) u is not covered by other edges of K3,n−4. In this case the number of
irreducible coverings by n− 3 edges equals icn−4(K2,n−4) = 2n−4 − 2;
b) u is also covered by other edges of K3,n−4. Now the number of irreducible
coverings by n− 3 edges equals icn−4(K3,n−4) = 3n−4 − 3 · 2n−4 + 3. A similar
situation occurs if x is covered by edge xw. Hence icn−3(K3,n−3−e) = 2(3n−4−
2n−3 + 1).

Note that icn−3(K3,n−3 − e) < icn−3(K3,n−3) for every n ≥ 6.

3 Maximum Number of Irreducible Coverings
by n − 3 Cliques

Theorem 1. There exists a fixed n0(n0 ≥ 7) such that for every n ≥ n0 the
following properties hold:
i) I(n, n− 3) = 3n−3 − 3 · 2n−3 + 3;
ii) If a graph G of order n verifies icn−3(G) = I(n, n− 3) then G ∼= K3,n−3;
iii) If G reaches the maximum number of irreducible coverings by n − 3 cliques
in the class of graphs of order n that are not isomorphic to K3,n−3, then G ∼=
K3,n−3 − e.

Proof. By Lemma 3 every irreducible covering by n− 3 cliques of a graph G of
order n ≥ 4 is of one of types α, . . . , ε, eventually with some isolated vertices
added. The idea of proof is the following: we will prove that if G �∼= K3,n−3
then either G ∼= K3,n−3 − e or icn−3(G) is bounded above by α3n−4 + P (n)2n,
where 0 < α < 2 and P (n) is a polynomial in n of a fixed degree, which is
asymptotically smaller than icn−3(K3,n−3 − e) = 2 · 3n−4 − 2n−2 + 2.

First the numbers of irreducible coverings C of types β, γ, δ and ε will be
bounded above as follows: the number of irreducible coverings of types β or γ is
less than or equal to 3

(
n
3

)
2n−3 and the number of irreducible coverings of types δ

and ε is less than or equal to
(
n
3

)
. Indeed, suppose that C is of type β. Vertices u, v

and w can be chosen in at most 3
(
n
3

)
ways. Covering condition implies that every

vertex x /∈ {u, v, w} is adjacent to u, v or w. If x is adjacent to only one vertex of
the set {u, v, w}, then x can be uniquely covered. The same situation holds if x is
adjacent only to u and v; otherwise x can be covered in two ways by 2-cliques or
3-cliques. A similar situation holds for type γ: every x /∈ {u, v, w} can be covered
uniquely or in two ways (whenever x is adjacent only to u and w or it is adjacent
to all u, v and w). For types δ and ε vertices u, v and w induce K3 and can be
chosen in at most

(
n
3

)
ways and any other vertex x can be uniquely covered since

ω(G) ≤ 4. It follows that the number of irreducible coverings by n−3 cliques of G

550 Ioan Tomescu

of types β, γ, δ and ε is bounded above by Q(n)2n, where Q(n) is a polynomial in
n of the third degree. Let icαn−3(G) denote the number of irreducible coverings by
n−3 cliques, of type α of G. It remains to show that if G �∼= K3,n−3 or K3,n−3−e
then icαn−3(G) ≤ α3n−4 + R(n)2n, where 0 < α < 2 and R(n) is a polynomial
in n of a fixed degree. If G contains a triangle {a, b, c} then by suppressing any
edge of this subgraph the number of irreducible coverings by n − 3 cliques, of
type α is not decreasing. By repeating this procedure we finally get a triangle-
free graph G′ of order n such that icαn−3(G′) ≥ icαn−3(G). So we shall suppose
that G �∼= K3,n−3 or K3,n−3 − e and G does not contain triangles, hence each
clique is an edge. It is necessary to find a suitable upper bound of the number
of irreducible coverings by n − 3 edges of G of type α for all possible choices
of the centers u, v, w of stars in the sets Ny, Nz, Nt, Ny,z, Ny,t, Nz,t and Ny,z,t

such that the covering condition N∗(u) ∪ N∗(v) ∪ N∗(w) = V (G) is satisfied.
For example, if u ∈ Ny,z, v ∈ Nz,t and w ∈ Ny,t there is no vertex x adjacent to
all u, v, w, hence the number of irreducible coverings by n − 3 edges, of type α
is bounded above in this case by

(
n
3

)
2n−3; if u ∈ Ny,z, v ∈ Nz,t, w ∈ Nz, then z

is the only vertex which is adjacent to all u, v, w and the upper bound is similar
as above; if u ∈ Ny,z, v ∈ Ny, w ∈ Nz then t cannot be covered, and so on.

Let a = |Ny|, b = |Nz|, c = |Nt|, d = |Ny,z|, e = |Ny,t|, f = |Nz,t|, g = |Ny,z,t|
and the functions: ϕ(z, t) = 1 if zt /∈ E(G) and ϕ(z, t) = 2 otherwise; ψ(z, t) = 2
if zt /∈ E(G) and ψ(z, t) = 3 if zt ∈ E(G); η(y, z, t) = 1 if y, z, t induce K3 and
η(y, z, t) = 0 otherwise; µ(y, z, t) = 1 if y is not adjacent to z and t; µ(y, z, t) = 2
if y is adjacent to exactly one vertex from the set {z, t}; µ(y, z, t) = 3 if y is
adjacent to both z and t. Note that a + b + c + d + e + f + g ≤ n − 3 and the
inequality is strict when G contains isolated vertices.

By enumerating all possible cases (the verification of this procedure is left to
the reader) one finds that only in the following five cases can exist more than
one vertex which is adjacent to all centers u, v and w:
i) u, v ∈ Ny,z and w = t, and other two cases deduced by circular permutations
of y, z, t. Covering condition implies Ny,z = {u, v}, Ny = Nz = ∅ since u and v
cannot be adjacent to any vertex in Ny or Nz, hence centers u, v, w can be chosen
in a single way. Hence in this case d = 2, a = b = 0 and the upper bound has
the form ψ(y, t)ψ(z, t)3c + ψ(t, z)ψ(y, z)3b + ψ(t, y)ψ(z, y)3a since for example
for Ny,z = {u, v} and w = t only the c vertices of Nt can be covered in three
ways. Other vertices can be uniquely covered, except y and z: if yt /∈ E(G) then
y can be covered in two ways and if yt ∈ E(G) we get three ways etc.
ii) u ∈ Ny, v ∈ Nz, w = t and other two cases deduced by permutations. Covering
condition implies Ny,z = ∅ (or d = 0) since u, v and w cannot be adjacent
to any vertex in Ny,z. For any choice of u ∈ Ny and v ∈ Nz only vertices
in Nt can be covered in at most three ways and vertices in Ny,t and Nz,t in
at most two ways. Suppose that Ny = {u = u0, u1, . . . , up} and Nz = {v =
v0, v1, . . . , vq}, where p, q ≥ 0. Covering condition implies that uv1, . . . , uvq ∈
E(G) and vu1, . . . , vup ∈ E(G). If a vertex x ∈ Nt is adjacent to both u and
v (and hence can be covered in three ways), the inexistence of triangles in G
implies that uv, xu1, . . . , xup, xv1, . . . , xvq /∈ E(G), hence x can be covered in a

On the Maximum Number of Irreducible Coverings 551

unique way for all other choices of u and v. Hence by neglecting the terms of the
form S(n)2n, the upper bound in this case has the form ϕ(y, t)ϕ(z, t)3c2e+f +
ϕ(y, t)ϕ(y, z)3a2e+d + ϕ(y, z)ϕ(t, z)3b2d+f .
iii) u ∈ Ny, v = z, w = t and other two cases deduced by permutations. Cov-
ering condition implies Ny = {u}, hence a = 1 and centers u, v, w can be cho-
sen in a single way. Only vertices of Nz,t can be covered in three ways and
vertices of Nt, Nz and Ny,z,t in two ways. The upper bound is in this case
µ(y, z, t)3f 2g+b+c + µ(z, y, t)3e2g+a+c + µ(t, y, z)3d2g+a+b.
iv) u = y, v = z, w = t. Since G does not contain triangles it follows that the
upper bound is η(y, z, t)3g2d+e+f .
v) u ∈ Ny,z, v ∈ Ny, w = t and other two cases deduced by permutations, or
u ∈ Ny,z, v ∈ Nz, w = t and other two cases deduced by permutations.
In the first case the covering condition implies Ny,z = {u}, Ny = {v}, hence
a = d = 1 and centers u, v, w can be chosen in a single way. The vertices of Nt

can be covered in three ways and the vertices of Nz,t in two ways, hence the
upper bound is

ϕ(z, t)ψ(y, t)3c2f + ϕ(z, y)ψ(t, y)3a2e + ϕ(y, z)ψ(t, z)3b2d

+ϕ(y, t)ψ(z, t)3c2e + ϕ(t, y)ψ(z, y)3a2d + ϕ(t, z)ψ(y, z)3b2f .

We will analyze two subcases: The centers are in the case i) (subcase I) or not
(subcase II).
I. Note that if two cases occur at i) then the upper bound is not exponential
since this implies Ny = Nz = Nt = ∅, hence a = b = c = 0. Suppose that
u, v ∈ Ny,z and w = t, which imply |Ny,z| = 2 and Ny = Nz = ∅. It follows
that case ii) cannot hold since in this case at least two sets from Ny, Nz and
Nt must be nonempty. Case iii) can hold only when u ∈ Nt. We have seen
that only vertices of Ny,z can be covered in three ways, but |Ny,z| = 2 and the
upper bound produced in the case iii) is less than P1(n)2n for large n. Case v)
can also hold when u ∈ Ny,t, v ∈ Nt, w = z or u ∈ Nz,t, v ∈ Nt, w = y. Since
Ny = Nz = ∅ there is no vertex which can be covered in three ways and the upper
bound corresponding to v) is less than P2(n)2n for large n. It follows that by
deleting terms less than P3(n)2n the upper bound for icαn−3(G) is equal to S1 =
ψ(y, t)ψ(z, t)3c+η(y, z, t)3g2d+e+f . We have d = |Ny,z| = 2, a = b = 0, c, e, f, g ≥
0 and c+e+f+g ≤ n−5. The global maximum of S1 can be found by comparing
local maxima of each term T1 = ψ(y, t)ψ(z, t)3c and T2 = η(y, z, t)3g22+e+f . T1
has a maximum for c = n−5, d = 2, a = b = e = f = g = 0;ψ(y, t) = ψ(z, t) = 3,
hence yt ∈ E(G), zt ∈ E(G) and all n− 5 vertices of Nt are adjacent to u, v and
t. In this case G ∼= K3,n−3 which contradicts the hypothesis. T2 has a maximum
for η(y, z, t) = 1, d = 2, g = n− 5, a = b = c = e = f = 0 and in this case S1 has
the dominant term equal to 4 · 3n−5 < 2 · 3n−4. The second greatest value of T1
occurs for c = n− 6, ψ(y, t) = ψ(z, t) = 3 and in this case S1 has the dominant
term equal to 3n−4 < 2 · 3n−4. The situation is similar if other two remaining
cases occur at i).
II. If centers u, v and w are not in the case i), we have an upper bound deduced by
adding the upper bounds obtained in the cases ii)–v): S2 = ϕ(y, t)ϕ(z, t)3c2e+f +

552 Ioan Tomescu

ϕ(y, t)ϕ(y, z)3a2e+d + ϕ(y, z)ϕ(t, z)3b2d+f + µ(y, z, t)3f 2g+b+c + µ(z, y, t)3e

2g+a+c + µ(t, y, z)3d2g+a+b + η(y, z, t)3g2d+e+f + (ϕ(z, t)ψ(y, t)2f + ϕ(y, t)
ψ(z, t)2e)3c + (ϕ(z, y)ψ(t, y)2e + ϕ(t, y)ψ(z, y)2d)3a + (ϕ(y, z)ψ(t, z)2d + ϕ(t, z)
ψ(y, z)2f)3b.
In fact there are some incompatibilities between some terms in S2 and they
cannot appear simultaneously. T3 = ϕ(y, t)ϕ(z, t)3c2e+f is incompatible with
T4 = (ϕ(z, t)ψ(y, t)2f + ϕ(y, t)ψ(z, t)2e)3c since the first appeared in the case
ii) when Ny,z = ∅ and the second in the case v) when |Ny,z| = 1. A similar
situation holds for terms containing factors 3a and 3b. By taking into account
these incompatibilities and the conditions upon a, b, . . . , f ≥ 0 deduced from the
properties of the sets Ny, . . . , Ny,z,t in the cases ii)-v), the local maxima of S2
can occur for:

– a = b = 1, c = n − 5, d = e = f = g = 0 and S2 contains T3, when the
dominant term of S2 is bounded above by 4 · 3n−5 < 2 · 3n−4, and other two
similar cases are proved in the same way.

– a = d = 1, c = n − 5, b = e = f = g = 0 and S2 contains T4. In this
case G may have icαn−3(G) maximum only if all n − 5 vertices of Nt are
adjacent to u, v and w = t, y is adjacent to u, v and w and z is adjacent
only to u and w. It follows that G ∼= K3,n−3 − e, a contradiction. The
second greatest value of T4 occurs e.g. for a = d = f = 1, c = n − 6,
b = e = g = 0. Since f = |Nz,t| ≥ 1 and G does not contain triangles,
it follows that zt /∈ E(G), which implies ϕ(z, t) = 1, ψ(z, t) = 2. We get
T4 ≤ (2 · 2 + 2 · 3)3n−6 = 10 · 3n−6 < 2 · 3n−4. Other two cases when a and
b, respectively are maximized are proved similarly.

– a = 1, f = n− 4, b = c = d = e = g = 0. In this case the dominant term of
S2 is equal to 3n−3 only if µ(y, z, t) = 3, i.e., y is adjacent to t and z, and
all n − 4 vertices of Nz,t are adjacent to u, v = z and w = t. In this case
G ∼= K3,n−3, which contradicts the hypothesis. The second greatest value of
µ(y, z, t)3f 2g+b+c may be reached for a = b = 1, f = n−5, c = d = e = g = 0
or a = c = 1, f = n − 5, b = d = e = g = 0 (this case is similar to the
previous one), or a = g = 1, f = n− 5, b = c = d = e = 0. In the first case
µ(y, z, t) = 3 if yz, yt ∈ E(G) and n− 5 vertices are adjacent to u, v = z and
w = t, y is adjacent to u, v, w and the unique vertex from Nz is adjacent
only to z = v and u. Hence in this case G ∼= K3,n−3 − e, a contradiction. In
the third case g = |Ny,z,t| = 1, hence yz, yt /∈ E(G) since G does not contain
triangles. This implies µ(y, z, t) = 1 and µ(y, z, t)3f 2g+b+c = 2 · 3n−5.The
third greatest value equals 4 · 3n−5 < 2 · 3n−4.

– g = n − 3, a = b = c = d = e = f = 0 and η(y, z, t) = 1 (i.e., y, z, t
induce K3) maximizes η(y, z, t)3g2d+e+f . But in this case G ∼= K3,n−3, which
contradicts the hypothesis. The second greatest value of this term is reached
for η(y, z, t) = 1 and g = n− 4, d or e or f are equal to 1 and other variables
are equal to 0. In this case n − 5 vertices are adjacent to y, z and t, one
vertex is adjacent to exactly two vertices from y, z and t and y, z, t induce
K3. Hence G ∼= K3,n−3 − e, a contradiction. The third greatest value equals
4 · 3n−5 < 2 · 3n−4.

On the Maximum Number of Irreducible Coverings 553

Consequently, by neglecting terms of the form S(n)2n, where S(n) is a polyno-
mial in n of a fixed degree, if G is not isomorphic to K3,n−3 or K3,n−3 − e, the
dominant term of the upper bound of icαn−3(G) is at most 4 ·3n−5 in both cases I
and II. This completes the proof. Since ic3(K3,3) = ic3(K1,2,3) = ic3(K3,3 +e) =
6 [8], where K3,3 +e denotes K3,3 plus one edge joining two nonadjacent vertices
of K3,3, it follows that n0 ≥ 7.

Let G(k, n − k) be the graph of order n consisting of a set of n − k pairwise
nonadjacent vertices joined in all ways by edges to the vertices of MMG(k), the
extremal graph of order k having α(k) cliques. Since limn→∞(icn−k(G(k, n −
k)))1/n = α(k) [8], the following conjecture seems to be plausible:

Conjecture 1. For every k ≥ 2 there exists a fixed n0(k) such that for every
n ≥ n0(k) one has I(n, n− k) = icn−k(G(k, n− k)) and every graph G of order
n such that icn−k(G) = I(n, n− k) is isomorphic to G(k, n− k).

This is true at least for k = 2 and 3.

References

1. Bollobás, B.: Modern graph theory. Springer-Verlag, New York (1998)
2. Even, S: Algorithmic combinatorics. Macmillan, New York (1973)
3. Miller, R. E., Muller, D. E.: A problem of maximum consistent subsets. IBM Re-

search Report RC-240. J. T. Watson Research Center, Yorktown Heights, New York
(1960)

4. Moon, J. W., Moser, L.: On cliques in graphs. Israel J. Math., 3(1965) 23-28.
5. Paull, M. C., Unger, S. H.: Minimizing the number of states in incompletely speci-

fied sequential functions. IRE Trans. Electronic Computers, Vol. EC-8 (1959) 356-
367

6. Petrick, S. R.: A direct determination of the irredundant forms of a Boolean func-
tion from the set of prime implicants. AFCRC-TR-56-110, Air Force Cambridge
Research Center (1956)

7. Tomescu, I.: Combinatorial methods in the theory of finite automata (in French).
In: Logique, Automatique, Informatique, Ed. Acad. R.S.R., Bucharest (1971) 269-
423

8. Tomescu, I.: Some properties of irreducible coverings by cliques of complete mul-
tipartite graphs. J. of Combinatorial Theory B28, 2(1980) 127-141

9. Tomescu, I.: On the number of irreducible coverings by edges of complete bipartite
graphs. Discrete Mathematics 150(1996) 453-456

On Reachability in Graphs
with Bounded Independence Number

Arfst Nickelsen and Till Tantau�

Technische Universität Berlin
Fakultät für Elektrotechnik und Informatik

10623 Berlin, Germany
{nicke,tantau}@cs.tu-berlin.de

Abstract. We study the reachability problem for finite directed graphs
whose independence number is bounded by some constant k. This prob-
lem is a generalisation of the reachability problem for tournaments. We
show that the problem is first-order definable for all k. In contrast, the
reachability problems for many other types of finite graphs, including
dags and trees, are not first-order definable. Also in contrast, first-order
definability does not carry over to the infinite version of the problem. We
prove that the number of strongly connected components in a graph with
bounded independence number can be computed using TC0-circuits, but
cannot be computed using AC0-circuits. We also study the succinct ver-
sion of the problem and show that it is ΠP

2 -complete for all k.

1 Introduction

One of the most fundamental problems in graph theory is the reachability prob-
lem. For this problem we are asked to decide whether there exists a path from
a given source vertex s to a given target vertex t in some graph G. For finite
directed graphs this problem, which will be denoted reach in the following,
is well-known to be NL-complete [12,13]. It is thus easy from a computational
point of view and efficient parallel algorithms are known for it. The complexity
of the reachability problem drops if we restrict the type of graphs for which we
try to solve it. The reachability problem reachu for finite undirected graphs is
SL-complete [15] and thus presumably easier to solve. The even more restricted
problem reachforest for undirected forests and the problem reachout≤1 for di-
rected graphs in which all vertices have out-degree at most 1 are L-complete [2].

In this paper we study the reachability problem for finite directed graphs
whose independence number is bounded by some constant k. The independence
number α(G) of a graph G is the maximum number of vertices that can be
picked from G such that there is no edge between any two of these vertices.
Thus we study the languages reachα≤k := reach ∩ {〈G, s, t〉 | α(G) ≤ k

}
for constant k, where 〈 〉 denotes a standard binary encoding. We show that,
somewhat surprisingly, reachα≤k is first-order definable for all k.
� Work done in part while visiting the University of Rochester, New York. Supported

by a TU Berlin Erwin-Stephan-Prize grant.

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 554–563, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

On Reachability in Graphs with Bounded Independence Number 555

First-order definability means the following. Let τ =
(
E2, s, t

)
be the sig-

nature of directed graphs with two distinguished vertices. The binary relation
symbol E represents an edge relation and the constant symbols s and t represent
a source and a target vertex. We show that for each k there exists a first-order
formula φreach,α≤k over the signature τ for which the following holds: for all
finite directed graphs G = (V,E) and all s, t ∈ V the τ -structure (V,E, s, t) is a
model of φreach,α≤k iff α(G) ≤ k and there is path from s to t in G. The formulas
will neither require an ordering on the universe nor the bit predicate [11].

The most prominent examples of graphs with bounded independence num-
ber are tournaments [18,20], which are directed graphs with exactly one edge
between any two vertices. Their independence number is 1. Conditions for strong
connectedness of tournaments (and thus, implicitly, for reachability) were proven
in [9], but these conditions yield weaker bounds on the complexity of the reacha-
bility problem for tournaments than those shown in the present paper. A different
example of graphs with bounded independence number, studied in [4], are di-
rected graphs G = (V,E) whose underlying undirected graph is claw-free, i. e.,
does not contain the K1,m for some constant m, and whose minimum degree is
at least |V |/3. Their independence number is at most 3m− 3.

Languages whose descriptive complexity is first-order are known to be very
simple from a computational point of view. They can be decided by a family
of AC0-circuits (constant depth circuits) and also in constant parallel time on
concurrent-read, concurrent-write parallel random access machines [16]. Since
it is known that L-hard sets cannot be first-order definable [1,6], reachα≤k is
(unconditionally) easier to solve than reach, reachu, and reachforest.

A problem closely related to the reachability problem is the problem of iden-
tifying the strongly connected components of a graph. We show that TC0-circuits
(constant depth circuits with threshold gates) can count the strongly connected
components in graphs with bounded independence number, but AC0-circuits
cannot—not even in tournaments.

In hardware design one is often concerned with succinctly represented graphs,
which are given implicitly via a program or a circuit that decides the edge relation
of the graph. Papadimitriou, Yannakakis, and Wagner [19,23,24] have shown that
the problems succinct-reach, succinct-reachu, succinct-reachforest, and
succinct-reachout≤1 are PSPACE-complete. Opposed to this, we show that
succinct-reachα≤k is ΠP

2 -complete for all k.
Our results apply only to finite graphs. Let reach∞

α≤k be the class of all
triples (G, s, t) such that G is a (possibly infinite) directed graph with α(G) ≤ k
in which there is a path from s to t. We show that there does not exist a set
of first-order formulas (not even an uncountable one) whose class of models is
exactly reach∞

α≤k for some k.
This paper is organised as follows. In Section 2 we study graph-theoretic

definitions and results and prove a general theorem that shows how the indepen-
dence number of a graph is connected to its different domination numbers. We
believe this theorem to be of independent interest. In Section 3 we show that
the problem reachα≤k is first-order definable, by explicitly giving a defining

556 Arfst Nickelsen and Till Tantau

formula. In Section 4 we study the circuit complexity of counting the number of
strongly connected components in a graph. In Sections 5 we study the infinite
version of our problem and in Section 6 the succinct version.

2 Graph-Theoretic Definitions and Results

In this section we first give definitions of basic graph-theoretic concepts. Then
we prove a generalisation of the so-called lion king lemma, see Theorem 2.2. At
the end of the section we prove Theorem 2.3, which will be the crucial building
block of our first-order definition of reachα≤k.

A graph is a nonempty set V of vertices together with a set E ⊆ V × V of
directed edges. Instead of (x, y) ∈ E we will often write x → y. The out-degree
of a vertex u is the number of vertices v with u → v. A path of length � in a
graph G = (V,E) is a sequence v0, . . . , v� of vertices with v0 → v1 → · · · → v�.
A vertex t is reachable from a vertex s if there is a path from s to t. A strongly
connected component is a maximal vertex set U ⊆ V such that every vertex in U
is reachable from every other vertex in U . A set U ⊆ V is an independent set if
there is no edge in E connecting vertices in U . The maximal size of independent
sets in G is its independence number α(G). For i ∈ N, a vertex u ∈ V is said to i-
dominate a vertex v ∈ V if there is a directed path from u to v of length at most i.
Let domi(U) denote the set of vertices that are i-dominated by vertices in U .
A set U ⊆ V is an i-dominating set for G if domi(U) = V . The i-domination
number βi(G) is the minimal size of an i-dominating set for G. A tournament is
a graph with exactly one edge between any two different vertices and (v, v) /∈ E
for all v ∈ V . Note that tournaments have independence number 1.

Lemma 2.1. Let G = (V,E) be a finite graph, n := |V |, α := α(G). Then G
has at least

(
n
2

) / (
α+1

2

)
edges and there exists a vertex with out-degree at least

(n− 1)
/

2
(
α+1

2

)
.

Proof. The number of (α + 1)-element subsets of V is
(

n
α+1

)
. Every such set

contains two vertices linked by an edge. Every such edge is in
(

n−2
α−1

)
different

(α+ 1)-element subsets of V . Therefore there are at least
(

n
α+1

) / (
n−2
α−1

)
=
(
n
2

) /
(
α+1

2

)
edges in G. This also shows that the average out-degree in G is at least(

n
2

) /
n
(
α+1

2

)
= (n− 1)

/
2
(
α+1

2

)
and one vertex has at least this out-degree. �	

Turán [21], referenced in [22], gives an exact formula for the minimal number of
edges in a graph as a function of the graph’s independence number. However, the
simple bound from the above lemma will be more appropriate for our purposes.

Theorem 2.2. Let G = (V,E) be a finite graph, n := |V |, α := α(G). Then
β1(G) ≤
logc n� and β2(G) ≤ α, where c = (α2 + α)/(α2 + α− 1).

Proof. We iteratively construct a 1-dominating set D1 for G of size at most

logc n�. In each step we put a vertex vi into D1 that dominates as many vertices
as possible of the subset Vi ⊆ V not dominated so far. Formally, set V0 := V

On Reachability in Graphs with Bounded Independence Number 557

and for i ≥ 1, as long as Vi−1 is not empty, choose a vertex vi ∈ Vi−1 such that
Vi := Vi−1 \ dom1

({vi}
)

is as small as possible. Let imax be the first i such that
Vi is empty. By Lemma 2.1 the out-degree of vi is at least

(|Vi−1| − 1
) /

2
(
α+1

2

)
and thus

|Vi| ≤ |Vi−1| − 1− |Vi−1| − 1
2
(
α+1

2

) < |Vi−1| − |Vi−1|
2
(
α+1

2

)

= |Vi−1|
(

1− 1
2
(
α+1

2

)
)

= |Vi−1|
(
α2 + α− 1
α2 + α

)
=
|Vi−1|
c

.

This shows that the size of Vi decreases by at least the factor c in each step. Thus
after at most
logc n� iterations the set Vi is empty and D1 := {v1, . . . , vimax} is
the desired 1-dominating set.

We next construct a 2-dominating set D2 of size at most α by removing
superfluous vertices from D1. Formally, let Wimax := {vimax} and let Wi−1 := Wi

if vi ∈ dom1(Wi), and Wi−1 := Wi ∪ {vi} otherwise. Clearly, D2 := W1 is a
2-dominating set. To prove |D2| ≤ α, assume that D2 contains at least α + 1
vertices vi1 , . . . , viα+1 ∈ D1. Since these vertices cannot be independent, there
must exist indices ir and is such that (vir , vis) ∈ E. By construction of the
set D1, this can only be the case if is > ir. But then vir

/∈ D2 by construction
of Wir

, a contradiction. �	
For tournaments G, Theorem 2.2 yields β1(G) ≤ log2(n) and β2(G) = 1. The
first result was first proved by Megiddo and Vishkin in [17], where it was used
to show that the dominating set problem for tournaments is not NP-complete,
unless NP ⊆ DTIME

(
nO(log n)

)
. The second result is also known as the lion

king lemma, which was first noticed by Landau in [14] in the study of animal
societies, where the dominance relations on prides of lions form tournaments. It
has applications in the study of P-selective sets [10] and many other fields.

Theorem 2.3. Let G = (V,E) be a finite graph, n := |V |, α := α(G), c :=
(α2+α)/(α2+α−1), and s, t ∈ V . Then the following statements are equivalent:

1. There is no path from s to t in G.
2. There is a subset D1 ⊆ V with |D1| ≤
logc n� such that dom1(D1) is closed

under reachability, s ∈ dom1(D1) and t �∈ dom1(D1).
3. There is a subset D2 ⊆ V with |D2| ≤ α such that dom2(D2) is closed

under reachability, s ∈ dom2(D2) and t �∈ dom2(D2).

Proof. Both 2 and 3 imply 1, since no path starting at a vertex s inside a set
that closed is under reachability can ‘leave’ this set to arrive at a vertex t outside
this set. To show that 1 implies 2, consider the set S of vertices reachable from s
in G. Then S is closed under reachability, s ∈ S and t �∈ S. The induced graph
G′ :=

(
S,E ∩ (S × S)

)
also has independence number at most α. Therefore, by

Theorem 2.2, the graph G′ has a 1-dominating set D1 of size at most
logc n�. To
show that 1 implies 3, consider the same graph G′ once more. By Theorem 2.2
it also has a 2-dominating set D2 of size at most α. �	

558 Arfst Nickelsen and Till Tantau

3 First-Order Definability of the Problem

In this section we show that reachability in graphs with bounded independence
number is first-order definable. We start with a review of some basic notions
from descriptive complexity theory.

We use the signature or vocabulary τ =
(
E2, s, t

)
. It consists of a binary

relation symbol E, representing an edge relation, and constant symbols s and t,
representing a source and a target vertex. A τ -structure is a tuple (V,E, s, t)
such that E ⊆ V × V and s, t ∈ V . We do not distinguish notationally between
the symbols in the signature and their interpretation in a structure, because it is
always clear from the context which of the two meanings is intended. The stan-
dardised binary code of a finite τ -structure (V,E, s, t) will be denoted 〈V,E, s, t〉.
A set A of codes of finite τ -structures is first-order definable if there exists a
first-order formula φ over the signature τ such that for all finite τ -structures
(V,E, s, t) we have (V,E, s, t) |= φ iff 〈V,E, s, t〉 ∈ A.

Theorem 3.1. For each k, reachα≤k is first-order definable.

Proof. Let k ≥ 1 be fixed. We give a stepwise construction of a formula φreach,α≤k

such that (V,E, s, t) |= φreach,α≤k iff 〈V,E, s, t〉 ∈ reachα≤k. Roughly spoken,
the formula φreach,α≤k will say ‘α(G) ≤ k and it is not the case that condition 3
of Theorem 2.3 holds for s and t’.

Let φdistinct(v1, . . . , vk) ≡ ∧i �=j [vi �= vj]. This formula expresses that vertices
are distinct. The property ‘α(G) ≤ k’ can be expressed as follows:

φα≤k ≡ (∀v1, . . . , vk+1)
[
φdistinct(v1, . . . , vk+1)→

∨
i �=j

E(vi, vj)
]
.

The next two formulas express that a vertex v, respectively a set {v1, . . . , vm}
of vertices, 2-dominates a vertex u:

φ2-dom(v, u) ≡ v = u ∨ E(v, u) ∨ (∃z)[E(v, z) ∧ E(z, u)
]
,

φ2-dom(v1, . . . , vm, u) ≡ φ2-dom(v1, u) ∨ · · · ∨ φ2-dom(vm, u).

Since β2(G) ≤ α(G) ≤ k, condition 3 of Theorem 2.3 can be expressed as
follows:

φcondition ≡ (∃v1, . . . , vk)[
φ2-dom(v1, . . . , vk, s) ∧ ¬φ2-dom(v1, . . . , vk, t)∧
(∀u, v)

[(
φ2-dom(v1, . . . , vk, u) ∧ ¬φ2-dom(v1, . . . , vk, v)

)→ ¬E(u, v)
]]
.

The desired formula φreach,α≤k is given by φα≤k ∧ ¬φcondition . �	
Note that the formula φreach,α≤k constructed in the proof has quantifier

alternation depth three, beginning with a universal quantifier.
Theorem 3.1 be easily extended to the following larger class of graphs: define

the r-independence number αr(G) of a graph G as the maximal size of an r-
independent set in G, which is a vertex subset such that there is no path of length
at most r between any two different vertices in this subset. Then reachability in
graphs with αr(G) ≤ k is first-order definable for all k, r ∈ N.

On Reachability in Graphs with Bounded Independence Number 559

4 Circuit Complexity of the Problem

In this section we study the circuit complexity of the problem reachα≤k, as well
as the complexity of counting the number of strongly connected components in
a graph with bounded independence number. We show that this number can be
computed using TC0-circuits, but cannot be computed using AC0-circuits.

A family C = (Cn)n∈N of circuits is a family of AC0-circuits if each Cn has
n input gates, their size is bounded by a polynomial in n, their depth is bounded
by a constant, and each Cn consist of unbounded fan-in/fan-out and-, or-, and
not-gates. For TC0-circuits we also allow threshold gates, whose output is 1 if the
number of 1’s at the input exceeds some threshold. For x ∈ {0, 1}n we write C(x)
for the output produced by Cn on input x. The output may be a bitstring since
we allow multiple output gates. A circuit family C decides a set A ⊆ {0, 1}∗,
respectively computes a function f : {0, 1}∗ → {0, 1}∗, if for all x ∈ {0, 1}∗ we
have x ∈ A iff C(x) = 1, respectively f(x) = C(x).

As shown by Lindell [16], every first-order definable set can be decided by
AC0-circuits. In particular, by Theorem 3.1 there exists, for each k, an AC0-
circuit family Ck that decides reachα≤k. We now sketch how these families can
be used to decrease the average case complexity of reach, which is L-hard and
thus does not have AC0-circuits [1,6]. Suppose there exists a constant k for which
we expect α(G) ≤ k to hold with high probability for input graphs G. Then
whenever α(G) ≤ k holds, we can use Ck to decide in constant depth whether
there is a path from s to t. For graphs with α(G) > k we use a slow standard
reachability circuit to decide whether such a path exists. If the probability of
α(G) ≤ k is sufficiently large, the preprocessing will decrease the average time
taken by the circuit to produce its output.

A problem closely related to the reachability problem is the problem of
counting strongly connected components. The following theorem pinpoints the
exact circuit complexity of this counting problem for graphs with bounded in-
dependence number. Let ζα≤k : {0, 1}∗ → {0, 1}∗ be the function that maps the
code 〈G〉 of a graph G to the binary representation of the number of strongly
connected components in G if α(G) ≤ k, and that maps 〈G〉 to 0 if α(G) > k.

Theorem 4.1. For each k, ζα≤k can be computed by TC0-circuits, but not by
AC0-circuits.

Proof. Let k be fixed. Let φreach,α≤k(u, v) be the formula with two free vari-
ables expressing that v is reachable from u and that the underlying graph has
independence number at most k. It is obtained from φreach,α≤k from the proof
of Theorem 3.1 by replacing the constant symbols s and t by variables u and v.
Consider the formula

φrep(v) ≡ (∀u)
[
u < v → (¬φreach,α≤k(u, v) ∨ ¬φreach,α≤k(v, u)

)]
,

where ‘<’ is a relation that is interpreted as a total ordering of the set of vertices.
For a graph G with α(G) ≤ k, the formula φrep(v) will be true exactly for the

smallest members (with respect to the ordering <) of each strongly connected

560 Arfst Nickelsen and Till Tantau

component. Thus, the number of vertices v for which φrep(v) holds is exactly
the number of strongly connected components in G. Since φrep is a first-order
formula, there exists a family of AC0-circuits that maps

〈{v1, . . . , vn}, E
〉

to a
bitstring in which the i-th position is 1 iff

({v1, . . . , vn}, E
) |= φrep(vi). Since

the number of 1’s in this bitstring can be computed in constant depth using
threshold gates, ζα≤k can be computed by TC0-circuits.

Next, for the sake of contradiction, assume that there exists an AC0-circuit
family C that computes ζα≤k. We construct an AC0-circuit for the parity func-
tion, contradicting the results of Ajtai et al. [1,6]. Let a bitstring b = b1 . . . bn
be given as input. Define a tournament G =

({1, . . . , n + 1}, E) as follows: for
i + 1 < j there is an edge from j to i; for i + 1 = j there is an edge from j
to i if bi = 1; otherwise there is an edge from i to j. If b contains no 1’s, the
tournament will form one big circle, thus having just one strongly connected
component. Every additional 1 in b adds one strongly connected component.
The parity of b is thus given by the toggled least-significant bit of C(〈G〉). �	

5 Infinite Version of the Problem

In this section we study the class reach∞
α≤k and show that the results of Sec-

tion 3 on the first-order definability of reachα≤k do not carry over to reach∞
α≤k.

This class contains all triples (G, s, t) such that G is a (possibly infinite) graph
with α(G) ≤ k in which there is a path from s to t. We start with a review of
the relevant notions from model theory.

Let τ be a signature. A class K of τ -structures is called elementary (over
finite structures) if there exists a first-order formula φ over τ such that for
every (finite) τ -structure A we have A |= φ iff A ∈ K. (Some authors use
‘finitely axiomatisable’ instead of ‘elementary’.) A class K of τ -structures is ∆-
elementary if there exists a set Φ of first-order formulas over τ such that for
every τ -structure A we have A |= Φ iff A ∈ K.

Fact 5.1 (Compactness Theorem). Let Φ be a set of first-order formulas
such that every finite Φ0 ⊆ Φ has a model. Then Φ has a model.

With these definitions, Theorem 3.1 simply states that reach∞
α≤k is elementary

over finite structures for all k. The below proof that reach∞
α≤k is not even

∆-elementary follows the standard pattern of proofs applying the compactness
theorem. The only essential part is the construction of appropriate model graphs
for finite subsets of a hypothetical axiomatisation of reach∞

α≤k.

Theorem 5.2. reach∞
α≤k is not ∆-elementary for any k.

Proof. Assume that there exists a set Φ of first-order formulas with (V,E, s, t) |=
Φ iff (V,E, s, t) ∈ reach∞

α≤k. For each n ∈ N define the following formula ψn,
which is fulfilled by a graph iff there is a path of length n from s to t.

ψn ≡ (∃v1, . . . , vn−1)
[
E(s, v1) ∧ E(v1, v2) ∧ · · · ∧ E(vn−2, vn−1) ∧ E(vn−1, t)

]
.

On Reachability in Graphs with Bounded Independence Number 561

Consider the set Ψ := Φ ∪ {¬ψ1,¬ψ2,¬ψ3, . . .}. We claim that every finite
Ψ0 ⊆ Ψ has a model (V,E, s, t). To see this, let n be large enough such that for
all i ≥ n we have ¬ψi �∈ Ψ0 and define a graph G = (V,E) by V := {1, . . . , n+1}
and (i, j) ∈ E iff j ≤ i + 1. Then α(G) = 1 ≤ k and the shortest path from
s := 1 to t := n+ 1 has length n. Thus (V,E, s, t) is a model of Ψ0.

Since every finite subset of Ψ has a model, Ψ has a model (V,E, s, t) by the
compactness theorem. Since this model fulfills ¬ψn for all n, there can be no
path of finite length from s to t in G = (V,E). Thus Φ has a model that is not
an element of reach∞

α≤k. �	

6 Succinct Version of the Problem
In this section we study succinctly represented graphs. Such graphs are given
implicitly via a description in some description language. Since succinct represen-
tations allow one to encode large graphs into small codes, checking properties
is (provably) harder for succinctly represented graphs than for graphs coded
in the usual way. Papadimitriou et al. [19,24] have shown that most interesting
problems for succinctly represented graphs are PSPACE-complete or even NEXP-
complete. The following formalisation of succinct graph representations is due
to Galperin and Wigderson [7], but others are also possible [24,8].

Definition 6.1. A succinct representation of a graph G =
({0, 1}n, E) is a 2n-

input circuit C such that for all u, v ∈ {0, 1}n we have (u, v) ∈ E iff C(uv) = 1.
The circuit tells us for any two vertices of the graph whether there is a directed
edge between them or not. Note that there is no need to bound the size of C.

Definition 6.2. Let A ⊆ {〈G, s, t〉 | G = (V,E) is a finite graph, s, t ∈ V }.
Then succinct-A is the set of all codes 〈C, s, t〉 such that C is a succinct rep-
resentation of a graph G with 〈G, s, t〉 ∈ A.

Theorem 6.3. For each k, succinct-reachα≤k is ΠP
2 -complete.

Proof. We first show succinct-reachα≤k ∈ ΠP
2 . Let 〈C, s, t〉 be an input and

let C represent a graph G = (V,E) with V = {0, 1}n. Note that log2 |V | = n. We
first check whether α(G) ≤ k, which can easily be done using a coNP-machine.
We then check whether there is path from s to t in G. By Theorem 2.3 this is
case iff for all sets D1 ⊆ {0, 1}n of size at most β1(G) either s �∈ dom1(D1)
or t ∈ dom1(D1) or dom1(D1) is not closed under reachability, i.e., there exist
vertices u ∈ dom1(D1) and v ∈ {0, 1}n \ dom1(D1) such that C(uv) = 1. Since
β1(G) ≤
logc 2n� ≤
n/ log2 c�, the size of the D1’s that need to be checked
is linear in n. Thus the ‘for all . . . exists . . .’ test is a ΠP

2 -algorithm, since a
membership test for the set dom1(D1) can be performed in polynomial time.

We now prove that even the reachability problem succinct-reachtourn
for tournaments is ΠP

2 -hard. Let L ∈ ΠP
2 be any language. By the quantifier

characterisation of the polynomial hierarchy [25] there exists a polynomial time
decidable ternary relation R and a constant c such that

L =
{
x | (∀y, |y| = |x|c)(∃z, |z| = |x|c)

[
R(x, y, z)

]}
.

562 Arfst Nickelsen and Till Tantau

We construct a reduction from L to succinct-reachtourn. On input x we
construct, in polynomial time, a circuit C and two bitstrings s, t such that x ∈ L
iff 〈C, s, t〉 ∈ succinct-reachtourn. Let n denote the length of x and let � := nc.

The circuit C will represent a highly structured tournament G of exponential
size. The vertex set of G is V = {0, 1}2�+1. Each vertex v ∈ V can be split into
a ‘y-component’ y ∈ {0, 1}�+1 and a ‘z-component’ z ∈ {0, 1}� with yz = v. All
vertices that have the same y-component form a level. All vertices on the same
level are connected such that they form a strongly connected subtournament
of G. We say a level is above another level if its y-component is lexicographically
larger than the other level’s y-component.

Edges between different levels generally point ‘downwards’, i. e., from higher
levels to lower levels. The only exception are edges between a vertex with y-
component 0ỹ with ỹ ∈ {0, 1}� and the vertex with the same z-component on
the level directly above. Such an edge points ‘upwards’ iff R(x, ỹ, z). The source
is any vertex on the bottom level, the target is any vertex on level 10�.

The graph G is a tournament and the representing circuit C can be con-
structed in polynomial time. From each level y one can go (at best) only one
level higher to the next level y′, since all edges between non-neighbouring levels
point downwards. Since all vertices on the same level are connected, if one can
reach a vertex v on level 0ỹ, one can reach a vertex on the level directly above iff
R(x, y′, z) holds for some z ∈ {0, 1}�. So in order to get from the source to the
target, for all ỹ ∈ {0, 1}� there must exist a z ∈ {0, 1}� such that R(x, ỹ, z). �	

7 Conclusion and Open Problems

We showed that the complexity of the reachability problem for graphs with
bounded independence number is lower than the complexity of the corresponding
problem for, say, forests. However, we did not claim that is also easier to actually
find a path in a tournament. While it is easily seen that there is a function in FL
that maps every forest to a path from the first to the last vertex, provided such
a path exists, we do not know whether such a function exists for tournaments.
We recommend this problem for further research.

We do not know whether the three levels of quantifier alternation in the first-
order formula for reachα≤k are necessary, but conjecture that this is the case.
Since we do not refer to an ordering relation in our first-order formula, it seems
promising to use an Ehrenfeucht-Fräıssé game [3,5] to prove this.

In the succinct setting, we proved that the problem succinct-reachα≤k is
ΠP

2 -complete for all k. Opposed to this, for r > 1 our arguments only show
succinct-reachαr≤k ∈ ΠP

3 . In particular, we would like to know the exact
complexity of succinct-reachα2≤1.

Acknowledgments

We would like to thank Mitsu Ogihara, Ken Regan, Alan Selman and Leen
Torenvliet for helpful discussions.

On Reachability in Graphs with Bounded Independence Number 563

References

1. M. Ajtai. Σ1
1 formulae on finite structures. Annals of Pure and Applied Logic,

24:1–48, 1983.
2. S. Cook and P. McKenzie. Problems complete for deterministic logarithmic space.

J. Algorithms, 8(3):385–394, 1987.
3. A. Ehrenfeucht. An application of games to the completeness problem for formal-

ized theories. Fundamenta Mathematicae, 49:129–141, 1961.
4. R. Faudree, R. Gould, L. Lesniak, and T. Lindquester. Generalized degree condi-

tions for graphs with bounded independence number. J. Graph Theory, 19(3):397–
409, 1995.

5. R. Fräıssé. Sur quelques classifications des systèmes de relations. Publ. Sci. Univ.
Alger. Sér. A, 1:35–182, 1954.

6. M. Furst, J. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time hierar-
chy. Math. Systems Theory, 17(1):13–27, 1984.

7. H. Galperin and A. Wigderson. Succinct representations of graphs. Inform. Con-
trol, 56(3):183–198, 1983.

8. G. Gottlob, N. Leone, and H. Veith. Succinctness as a source of complexity in
logical formalisms. Annals of Pure and Applied Logic, 97(1–3):231–260, 1999.

9. F. Harary and L. Moser. The theory of round robin tournaments. Amer. Math.
Monthly, 73:231–246, 1966.

10. L. Hemaspaandra and L. Torenvliet. Optimal advice. Theoretical Comput. Sci.,
154(2):367–377, 1996.

11. N. Immerman. Descriptive Complexity. Springer-Verlag, 1998.
12. N. Jones. Space-bounded reducibility among combinatorial problems. J. Comput.

Syst. Sci., 11(1):68–85, 1975.
13. N. Jones, Y. Lien, and W. Laaser. New problems complete for nondeterministic

log space. Math. Systems Theory, 10:1–17, 1976.
14. H. Landau. On dominance relations and the structure of animal societies, III: The

condition for secure structure. Bull. Mathematical Biophysics, 15(2):143–148, 1953.
15. H. Lewis and C. Papadimitriou. Symmetric space-bounded computation. Theoret-

ical Comput. Sci., 19(2):161–187, 1982.
16. S. Lindell. A purely logical characterization of circuit uniformity. In Proc. 7th

Struc. in Complexity Theory Conf., pages 185–192. IEEE Computer Society, 1992.
17. N. Megiddo and U. Vishkin. On finding a minimum dominating set in a tourna-

ment. Theoretical Comput. Sci., 61(2–3):307–316, 1988.
18. J. Moon. Topics on Tournaments. Holt, Rinehart, and Winston, 1968.
19. C. Papadimitriou and M. Yannakakis. A note on succinct representations of graphs.

Inform. Control, 71(3):181–185, 1986.
20. K. Reid and L. Beineke. Tournaments. In Selected Topics in Graph Theory, pages

169–204. Academic Press, 1978.
21. P. Turán. Eine Extremalaufgabe aus der Graphentheorie (in Hunga̋rian). Matem.

és Physikai Lapok, 48:436–452, 1941.
22. P. Turán. On the theory of graphs. Colloquium Math., 3:19–30, 1954.
23. K. Wagner. The complexity of problems concerning graphs with regularities. In

Proc. 7th Symposium on Math. Foundations of Comp. Sci., volume 176 of Lecture
Notes in Computer Science, pages 544–552. Springer-Verlag, 1984.

24. K. Wagner. The complexity of combinatorial problems with succinct input repre-
sentation. Acta Informatica, 23(3):325–356, 1986.

25. C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical Com-
put. Sci., 3(1):23–33, 1976.

On Parameterized Enumeration

Henning Fernau�

University of Newcastle, School of CS and EE
University Drive, NSW 2308 Callaghan, Australia

fernau@cs.newcastle.edu.au

Abstract. We study several versions of parameterized enumeration.
The idea is always to have an algorithm which outputs all solutions
(in a certain sense) to a given problem instance. Such an algorithm will
be analysed from the viewpoint of parameterized complexity. We show
how to apply enumeration techniques in a number of examples. In par-
ticular, we give a fixed parameter algorithm for the reconfiguration of
faulty chips when providing so-called shared and linked spares.

1 Introduction

In classical complexity theory, there are three main ways to build complex-
ity classes or classify computational problems, respectively: decision problems,
functional problems, and counting problems.

As a running example, let us consider the vertex cover problem (VC) for
undirected graphs. This yields the following decision problem (already formu-
lated with a glimpse on parameterized complexity):

Instance: A graph G = (V,E)
Parameter: positive integer k
Question: Is there a vertex cover C ⊆ V with |C| ≤ k, i.e., each edge from E is
incident to at least one vertex from C?

A vertex cover with k vertices will also be called k-vertex cover. Alternatively,
one could ask for an algorithm that in fact yields a vertex cover C ⊆ V with
|C| ≤ k instead of merely stating its existence. This would be the functional
version of the problem. One might also like to know how many different vertex
covers C ⊆ V with |C| ≤ k exist. This would be the counting version of VC.

Obviously, there is a fourth natural problem type, namely the functional ver-
sion of the counting problem (which we will call enumeration problem): Output
all k-vertex covers of a given graph. A variant would be to output all minimum
k-vertex covers of a given graph, yielding the optima enumeration problem.

In classical complexity theory, it does not make much sense to ask for such an
algorithm for vertex cover, since only the size of the graph is measured within
complexity considerations. This means that, generally speaking, for NP-hard
� Most of the work was done while the author was with Wilhelm-Schickard-Institut

für Informatik, Universität Tübingen, Sand 13, D-72076 Tübingen, Germany.

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 564–573, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

On Parameterized Enumeration 565

problems, an exponential number of outputs is to be generated in the worst case.
Even the counting problem is considerably hard. Notably, Goldberg, Spencer and
Berque [9] published a low-exponential algorithm for counting vertex covers.

In contrast, the main idea of developing fixed parameter algorithms is to
explicitly declare a part of the problem instance as a so-called parameter, ex-
pecting that this parameter tends to be small in practice, whereas the overall
size of the instance might be huge. This means that one can afford (mildly)
exponential behaviour of algorithms in terms of the parameter, as long as the
overall running time is polynomial when considering the parameter as a fixed
constant. More formally, a decision problem is called fixed parameter tractable if
its running time is bounded by f(k) · nO(1), where f is some arbitrary function,
k is the parameter, and n is the size of the problem instance. In the case of VC,
O(ck + kn) time algorithms have been developed, where c < 1.3, see [15].

We focus on the following forms of parameterized enumeration: generate all
solutions, generate all optimal solutions, and generate representative solutions.

We will discuss all above-mentioned variants by means of examples in the
following. This paper is intended to be a start-up of a theory of parameterized
enumeration. The results obtained up to now are promising.

Why do we think that parameterized enumeration is important? There are a
number of possible applications of such a theory, mainly dealing with the further
processing of data. For example, Gramm and Niedermeier [10] developed a fixed
parameter algorithm for the so-called minimum quartet inconsistency problem
(MQI) which is important for constructing evolutionary trees in biology. An
evolutionary tree is a rooted binary tree whose leaves are bijectively labelled by
taxa from a set S. A quartet is an evolutionary tree with four leaves. A problem

instance of MQI consists of an n-element set of taxa S and
(
n
4

)
quartets such

that, to each four-element subset S′ of S, there is exactly one quartet whose
leaves are labelled with taxa from S′. The aim is to construct an evolutionary
tree T whose leaves are bijectively labelled by taxa from S such that the number
of sub-trees of T with four leaves which are different from the input quartet
with the same leaf labels is bounded by a given error bound, the parameter k
of the problem. In this application, it is interesting for the human expert to
see and check all reconstructed evolutionary trees (satisfying the given error
bound) in order to choose the tree variants which appear to him to be the most
reasonable choice, given his additional background knowledge on the subject.
In fact, Gramm and Niedermeier already showed how to enumerate all such
minimum solutions in time O(4kp(n)).

The enumerated solutions could also be the basis of further computations,
even as a kind of heuristic estimate. For example, some researchers interested
in computing a k-dominating set of a graph heuristically assume that such a
dominating set is included within a 2k-vertex cover and use the known (compar-
atively fast) vertex cover algorithm (computing some 2k-cover) in a preprocessing
phase1. Similarly, one could start from all (minimum) vertex covers.

1 U. Stege, personal communication about a Swedish bioinformatics group

566 Henning Fernau

Below, we will discuss an example from VLSI reconfiguration that shows the
practical importance of knowing some representative of all kinds of uncomparable
minimal solutions as a basis of further computations. Moreover, it is shown
how these enumeration algorithms can be employed to solve practically relevant
variants of decision problems in relation with VLSI reconfiguration.

More details are contained in the report version of this paper [6].

2 Generating All Solutions

Let L ⊆ Σ∗ × N be a parameterized language. In the vertex cover example, L
would consist of pairs (c(G), k), where G is some graph having a k-vertex cover
and c is some natural coding function.

Let Lf ⊆ Σ∗ ×Σ∗ ×N be the “corresponding” functional language. A tuple
(σ, x, k) is in Lf iff (x, k) ∈ L and σ is a “solution witness” for (x, k). In the
vertex cover example, Lf consists of triples (c′(V ′), c(G), k), where G is a graph
having the k-vertex cover V ′, and c′ and c are some coding functions.

Let us assume in the following that the parameterized problem we are consid-
ering is related to an optimization problem such that the parameter bounds the
entity to be optimized. Then, we say that k is optimal for the given optimization
problem instance x if the size of the optimal solution to x matches k.

Lf is [optimally] fixed parameter enumerable iff there is an algorithm which,
given (x, k) ∈ L [where k is optimal for x] generates all σ ∈ Σ∗ with (σ, x, k) ∈ Lf

in time f(k) · |x|O(1).
Lf is of [optimal] fixed parameter size iff

|{(σ, x, k) | σ ∈ Σ∗[, k optimal for x]}| ≤ f(k) · |x|O(1).

From the discussion in the introduction, we get a first example:

Example 1. MQI is minimally fixed parameter enumerable.

Lemma 1. Let Lf be a functional parameterized language. If Lf is [optimally]
fixed parameter enumerable, then Lf is of optimal fixed parameter size.

Theorem 1. VC is optimally fixed parameter enumerable in time O(2kk2+kn),
where n is the number of vertices of the input graph and k is the parameter.

Proof. (Sketch) This can be shown by using Buss’ kernelization (see [5]) and
a search-tree technique. More precisely, we use the following two kernelization
rules as long as possible:

– If v is a vertex with no neighbours, v can be removed from the graph, since
v will not be part of any minimum vertex cover.

– If v is a vertex of degree greater than k, v must be in any vertex cover,
since otherwise all neighbours would be in the cover, which is not feasible,
because we are looking for vertex covers with at most k vertices. Hence, we
can remove v from the graph.

On Parameterized Enumeration 567

After having applied these kernelization rules exhaustively, we are left with a
graph with at most k2 vertices. Now, we can basically use the simple search-tree
algorithm which already appeared in [13] before the advent of parameterized
complexity to show the result. ��

Remark 1. Essentially, there is no better minimum vertex cover enumeration
algorithm than the one given in Theorem 1, since the graph

({1, . . . , k} × {1, 2}, {{(i, 1), (i, 2)} | 1 ≤ i ≤ k})
has 2k many different minimum vertex covers.

Note that lower bounds are usually hard to obtain. This simple example is
interesting, since it shows that there is no minimum vertex cover enumeration
algorithm for planar vertex cover having running time of the form c

√
kn, as it

has been found for the decision problem [2].

Remark 2. On the contrary, vertex cover is not of fixed parameter size, since the

n-vertex graph with no edges has
(
n
k

)
many different k-vertex covers. Lemma 1

shows that VC is hence not fixed parameter enumerable.

The previous considerations show that the two notions of parameterized enu-
merability defined above are really different. On the other hand, we can prove
the following general relationship between both notions:

Lemma 2. If a minimization problem is fixed parameter enumerable, then it is
optimally fixed parameter enumerable.

If a maximization problem (where the size of the parameter is naturally
bounded by a polynomial of the size of the problem instance) is fixed parame-
ter enumerable, then it is optimally fixed parameter enumerable.

Proof. We consider the case of minimization problems. Maximization problems
are treated similarly. One simply starts the enumeration algorithm with param-
eter 1, 2 through k and checks, for each output solution, whether it is minimal;
the minimality is checked by going through all solutions generated by invocations
of the enumeration algorithm with smaller parameter values. If the enumeration
problem can be solved in time f(k) · |x|O(1) on a problem instance (x, k), then
the minima enumeration problem is solvable in time

f(k) · |x|O(1) ·

k−1∑

j=0

f(j) · |x|O(1)

 ≤ k(f(k))2 · |x|O(1). ��

The next remark shows that not all parameterized problems are optimally
fixed parameter enumerable. Moreover, the given example proves again that the
dominating set problem2 appears to be harder than the vertex cover problem
from a parameterized point of view, also see [5].
2 A dominating set of a graph is a subset of vertices such that every vertex is either

a member of the dominating set or a neighbour of a member of the dominating set.

568 Henning Fernau

Remark 3. Dominating set is even not of optimal fixed parameter size, as the
k-fold disjoint graph union of Kn shows. By Lemma 1, this problem is not
optimally fixed parameter enumerable.

Up to now, we only considered minimization problems. Let us briefly consider
one maximization problem in the parameterized setting, namely, the problem of
finding a maximum independent set, i.e., a set of vertices I of a given graph such
that no vertex in I is neighbour of another vertex in I, of size (at least) k.

Remark 4. We first consider the independent set problem restricted to planar
graphs. It is quite easy to see that this problem is optimally fixed parameter
enumerable. Namely, construct a 4-colouring of the given planar graph G (which
exists due to the famous four-colour theorem for planar graphs); each of the four
such-obtained monochromatic vertex sets is independent and the largest one
contains at least n/4 vertices. Hence, if k < n/4, we can always answer “no”;

otherwise, we know that n ≤ 4k and, hence, there are at most f(k) =
(

4k
k

)

many different independent sets of size k. Hence, enumerating all maximum
independent sets would amount checking for at most 3kf(k) many vertex sets
whether they are independent or not (the additional factor of 3k comes from the
necessity of checking all possible extensions of a candidate set of size k).

As in Remark 2, one can see that planar independent set is not of fixed pa-
rameter size. As can be seen similarly to Remark 3, the independent set problem
on general graphs is not of optimal fixed parameter size.

Finally, we observe that Theorem 1 can be used in order to show fixed pa-
rameter tractability of the decision problem mentioned in the introduction:

Remark 5. The following decision problem is fixed parameter tractable: Given a
graph G and parameters k and �, is there a k-dominating set included in some
minimum � · k-vertex cover of G? This can be seen by generating all minimum
� · k-vertex covers and then testing, for each k-element subset of such a cover,
whether it forms a dominating set.

3 Generating All Representative Solutions

In the course of this section, we will mainly focus on parameterized minimization
problems with two parameters, although the main ideas can be easily general-
ized to an arbitrary number of parameters. Similar notions can be coined for
maximization problems, as well.

Let L ⊆ Σ∗ × N2 be a parameterized language with two parameters k1, k2
(stemming from a minimization problem). If (σ, x, k1, k2) ∈ Lf , where Lf is the
functional problem corresponding to L as in the previous section, then (k1, k2)
is called the signature of (σ, x) if (σ, x, k′

1, k
′
2) ∈ Lf and (k′

1, k
′
2) ≤ (k1, k2) imply

(k′
1, k

′
2) = (k1, k2), where we consider the partial order (k′

1, k
′
2) ≤ (k1, k2) iff

k′
1 ≤ k1 and k′

2 ≤ k2.

On Parameterized Enumeration 569

Table 1. Repairing chip arrays

1 2 3 4 5 6 7 8 9
1 ? ? ?
2
3 ?
4 ? ? ?
5
6
7 ? ?

1 2 3 4 5 6 7 8 9
1 ? ?
2
3 ?
4 ?
5 ? ? ?
6 ? ?

Lemma 3. If we consider k1 and k2 as fixed, then there are at most min{k1, k2}
+1 pairwise uncomparable (minimal) signatures.

Hence, given a (codified) problem instance x ∈ Σ∗ and parameters k1 and k2,
there are at most min{k1, k2}+ 1 elements in

{(σ, x, k′
1, k

′
2) ∈ Lf | (k′

1, k
′
2) ≤ (k1, k2) ∧ (k′

1, k
′
2) is the signature of (σ, x)}

having different minimal signatures (k′
1, k

′
2). In some applications (as explained

below), it is interesting to generate one representative solution for each minimal
signature, given some problem instance. Due to the above lemma, there are at
most min{k1, k2}+ 1 such representative solutions.

Detailed Example: Chip Reconfiguration

Kuo and Fuchs [12] provide a fundamental study of the spare allocation problem.
Put concisely, this “most widely used approach to reconfigurable VLSI” uses
spare rows and columns to tolerate failures in rectangular arrays of identical
computational elements, which may be as simple as memory cells or as complex
as processor units. If a faulty cell is detected, the corresponding entire row or
column is replaced by a spare one.

The array on the left-hand side of Tab. 1 sketches a concrete small example
of a 7 × 9 array, where faults are indicated by question marks. This array can
be repaired, e.g., by using three spare rows (replacing rows number 1,4 and 7)
and one spare column (replacing column number 1).

Equivalently, this reconfiguration problem can be formulated graph-theoret-
ically as Constraint Bipartite Vertex Cover (CBVC) problem as follows: given a
bipartite graph G = (V1, V2, E) and two positive integers k1 and k2, are there
two subsets C1 ⊆ V1 and C2 ⊆ V2 of sizes |C1| ≤ k1 and |C2| ≤ k2 such that
each edge in E has at least one endpoint in C1 ∪ C2?

In [8], a fixed parameter algorithm running in time less than O(1.4k1+k2n)
was developed for this decision problem3. In fact, by analyzing the decision
procedure developed in that paper one easily derives:
3 A simpler algorithm for the CBVC problem with the additional restriction that only

those bipartite covers are considered which also form a minimum vertex cover of the
graph was established in [4].

570 Henning Fernau

Corollary 1. For the CBVC problem, generating one representative solution
for each minimal signature can be done in time

O(1.3999k1+k2k1k2 + (k1 + k2)n),

where n is the number of vertices of the input graph and k1 and k2 are the two
parameters.

Remark 6. As in the case of VC, CBVC is not fixed parameter enumerable.

A more realistic scenario

As pointed out in, e.g., [11], there are several points due to which the problem
formulated above is not a completely adequate model:

1. In the manufacturing process, the cost of repairing a chip by using verti-
cal movements of the repair laser may be different from that of horizontal
movements. This leads to a sort of weighted variant of CBVC.

2. As indicated in the middle figure of Tab. 1, a huge memory chip may be
split into smaller blocks, each of them possibly having its own spare rows
and columns. For reasons of economy, other designs are preferred in this
case, e.g., each spare row depicted inbetween two memory blocks can be
individually used to reconfigure either the block above or the block below it.
In other words, in such complex designs, spares may be shared. Moreover,
there may be spare rows or columns which are linked, which means that such
a spare can only be used to reconfigure one certain row or column in several
blocks. Obviously, the idea is here to reduce the costs of chip repair.

Combining Cor. 1 and Lemma 3, we conclude:

Theorem 2. The weighted CBVC problem mentioned in point 1. above can be
solved in time O(1.3999k1+k2k1k2+(k1+k2)n), where n is the number of vertices
of the input graph and k1 and k2 are the two parameters. ��

Let us now consider the chip reconfiguration problem with memory blocks
and shared spares.

Theorem 3. Given a chip board with n elementary cells which is split into k3
blocks each of which has at most k1 neighbouring spare rows and k2 neighbouring
spare columns, then a reconfiguration strategy can be found in time

O(k3(1.3999k1+k2k1k2 + (k1 + k2)n) + k3(min{k1, k2}+ 1)
√

k3+1)

if it exists.

Proof. (Sketch) At first, we run the representative enumeration procedure from
Cor. 1 for each block. Then, all possible combinations of signatures for all blocks
are examined to see whether the decision problem is solvable. This second step
can be implemented more efficiently by using dynamic programming techniques
in a sweep-line fashion. From a graph-theoretic point of view, we exploit the fact
that a grid graph (representing the local dependencies between the blocks on
the chip) with k vertices has treewidth of at most

√
k + 1, see [3]. ��

On Parameterized Enumeration 571

In other words, the parameterized enumeration of representative solutions
can be used in order to show that another (related) decision problem is fixed
parameter tractable, considering k1, k2 and k3 as parameters of the problem.

The third mentioned variation which is also incorporating linked spares seems
to be harder, since knowing only one representative solution per signature is of
not much help here. Even worse, also the generation of all minimum solutions
(which can be done as in the case of vertex cover elaborated above) would not
help, since possibly non-optimal solutions (considered “locally” for each block)
would be a better choice. For example, consider the chip depicted at the right-
hand side of Tab. 1 with two blocks each containing three rows: For each of the
two blocks, we have one spare row and, furthermore, there are two linked spare
columns. If we use the linked spare columns in order to repair columns number 1
and 4, the array can be repaired by using the remaining two spare rows for row
number 3 and row number 5. Only considering the first block, this solution is not
minimal, since its signature (1, 2) is outperformed by taking, e.g., a spare row
for row number 1 and one of the two linked spare columns for column number 2.
However, then the second block would be not repairable with the remaining
spares (one spare row and one spare column).

Only at the expense of a considerable exponential blow-up, we can show the
following fixed parameter tractability result:

Theorem 4. Given a chip board with n elementary cells which is split into k3
blocks each of which has at most k1 neighbouring spare rows and k2 neighbouring
spare columns and assuming that there are, furthermore, at most k4 linked spare
rows and k5 linked spare columns on the whole board, then a reconfiguration
strategy can be found in time

O

(
k3

(
(k1 + k2 + k4 + k5)n+

(
k3(k1 + k4)

k4

)(
k3(k2 + k5)

k5

)
[1.3999k1+k2k1k2 + (min{k1, k2}+ 1)

√
k3+1]

))

if it exists.

Proof. Such a board can be reconfigured as follows: (1) Kernelize each block
assuming that there are at most k1 + k4 spare rows and at most k2 + k5 spare
columns per block. The size of the problem kernel such obtained is k3(k1 +
k4)(k2 +k5). (2) Consider all possible assignments of the k4 linked spare rows to
one of the k3(k1 + k4) possibly faulty rows and all assignments of linked spare
columns to possibly faulty columns and apply the algorithm sketched in the
proof of the preceding theorem to each of the remaining “boards”. ��

Of course, the algorithm obtained in the previous theorem is only manageable
for very small values of k3, k4 and k5. A weighted variant of the last considered
problem can be similarly tackled.

Remark 7. The example shown in this section proves that, from the point of
view of applications, it might make perfect sense to consider problems with a

572 Henning Fernau

certain number of parameters. The philosophy behind the development of fixed
parameter algorithms is that the involved parameters should be small in practice,
and this is exactly what we expect for all five parameters occurring in Theorem 4.

4 Conclusions

We considered the problem of enumerating all solutions of a given problem from
the parameterized point of view. We coined different notions of parameterized
enumeration and gave several examples, mainly from graph theory, with motiva-
tions from chip fabrication. We have shown that kernelizations as well as search
trees (which are the most prominent ways to devise fixed parameter decision
algorithms) are very useful techniques also for parameterized enumeration.

Remarkably, lower bounds and non-membership can be shown for several
examples of enumeration problems and enumeration classes, whereas, in the
classical area of decision problems, mostly relativized assertions of this kind
are obtainable. We showed that answers to enumeration problems can be used
in solutions of decision problems. In particular, we proved several more realistic
scenarios of the chip reconfiguration problem [8] to be fixed parameter tractable.

Note that we deliberately focussed on considering the complexity of enumera-
tion problems to include the time to output the solutions. Another variant where
the size of the output solutions was considered as an extra sort of parameter (in
the sense of providing output sensitive algorithms) was discussed by Grohe4. In
this spirit, several papers on graph algorithms appeared, too, see, e.g., [14] and
the references therein. When thinking about enumeration as some sort of prepro-
cessing step for another algorithm which investigates all the obtained solutions,
considering the size or number of output solutions as additional parameter does
not seem to be reasonable.

It would be also interesting to consider the parameterized complexity of
enumerating all (optimal) solutions without repetitions, as discussed in [14]. Of
course, one could avoid repetitions by either examining all pairs of output so-
lutions in a postprocessing phase (which would square the already exponential
running time) or by additional bookkeeping (with tables of exponential size),
but possibly better solutions can be found for concrete problems.

In [7], we showed that parameterized enumeration can be also used for prov-
ing parameterized tractability for maximization problems (in the sense elabo-
rated in [7]), thus providing another sort of application of enumeration problems.

Finally, it would be interesting to see whether problems related to vertex
cover are also fixed parameter enumerable. Here, the setting established in [16]
might be helpful in order to prove enumerability results. More generally speaking,
it would be interesting to develop enumeration techniques which are applicable
not only to special situations. Such considerations might help answer the question
whether or not the optima dominating set problem restricted to planar graphs
is feasible or not, see [1] for the corresponding decision problem.
4 in a talk on parameterized complexity and databases given at the Dagstuhl Workshop

on Parameterized Complexity in August, 2001

On Parameterized Enumeration 573

Acknowledgments: We thank M. R. Fellows, R. Niedermeier, and U. Stege for
some discussions. We are grateful to L. Brankovic for giving the conference talk.

References

1. J. Alber, H. L. Bodlaender, H. Fernau, and R. Niedermeier. Fixed parameter
algorithms for planar dominating set and related problems. In M. M. Halldórsson,
editor, 7th Scandinavian Workshop on Algorithm Theory SWAT 2000, volume 1851
of LNCS, pages 97–110, 2000. Long version to appear in Algorithmica.

2. J. Alber, H. Fernau, and R. Niedermeier. Parameterized complexity: exponen-
tial speedup for planar graph problems. In F. Orejas, P. G. Spirakis, and
J. v. Leeuwen, editors, International Colloquium on Automata, Languages and
Programming ICALP’01, volume 2076 of LNCS, pages 261–272. Springer, 2001.

3. H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. The-
oretical Computer Science, 209:1–45, 1998.

4. J. Chen and I. A. Kanj. On constrained minimum vertex covers of bipartite
graphs: Improved algorithms. In A. Brandstädt and V. B. Le, editors, Graph-
Theoretic Concepts in Computer Science WG’01, volume 2204 of LNCS, pages
55–65. Springer, 2001.

5. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
6. H. Fernau. On parameterized enumeration. Technical Report WSI–2001–21, Uni-

versität Tübingen (Germany), Wilhelm-Schickard-Institut für Informatik, 2001.
7. H. Fernau. Parameterized maximization. Technical Report WSI–2001–22, Univer-

sität Tübingen (Germany), Wilhelm-Schickard-Institut für Informatik, 2001.
8. H. Fernau and R. Niedermeier. An efficient exact algorithm for constraint bipartite

vertex cover. Journal of Algorithms, 38(2):374–410, 2001.
9. M. K. Goldberg, T. H. Spencer, and D. A. Berque. A low-exponential algorithm

for counting vertex covers. Graph Theory, Combinatorics, Algorithms, and Appli-
cations, 1:431–444, 1995.

10. J. Gramm and R. Niedermeier. Quartet inconsistency is fixed parameter tractable.
In A. Amir and G. M. Landau, editors, Proceedings of the 12th Annual Symposium
on Combinatorial Pattern Matching (CPM 2001), volume 2089 of LNCS, pages
241–256. Springer, 2001.

11. R. W. Haddad, A. T. Dahbura, and A. B. Sharma. Increased throughput for the
testing and repair of RAMs with redundancy. IEEE Transactions on Computers,
40(2):154–166, Feb. 1991.

12. S.-Y. Kuo and W. Fuchs. Efficient spare allocation for reconfigurable arrays. IEEE
Design and Test, 4:24–31, Feb. 1987.

13. K. Mehlhorn. Graph algorithms and NP-completeness. Heidelberg: Springer, 1984.
14. S. Nakano. Efficient generation of triconnected plane triangulations. In J. Wang,

editor, Computing and Combinatorics, Proceedings COCOON 2001, volume 2108
of LNCS, pages 131–141. Springer, 2001.

15. R. Niedermeier and P. Rossmanith. Upper bounds for vertex cover further im-
proved. In C. Meinel and S. Tison, editors, Proceedings of the 16th Symposium
on Theoretical Aspects of Computer Science (STACS’99), volume 1563 of LNCS,
pages 561–570. Springer, 1999.

16. N. Nishimura, P. Ragde, and D. M. Thilikos. Fast fixed-parameter tractable algo-
rithms for nontrivial generalizations of vertex cover. In F. Dehne, J.-R. Sack, and
R. Tamassia, editors, Proc. 7th Workshop Algorithms and Data Structures WADS,
volume 2125 of LNCS, pages 75–86. Springer, 2001.

Probabilistic Reversible Automata
and Quantum Automata

Marats Golovkins� and Maksim Kravtsev��

Institute of Mathematics and Computer Science, University of Latvia
Raiņa bulv. 29, Riga, Latvia

marats@latnet.lv, maksims@batsoft.lv

Abstract. To study relationship between quantum finite automata and
probabilistic finite automata, we introduce a notion of probabilistic re-
versible automata (PRA, or doubly stochastic automata). We find that
there is a strong relationship between different possible models of PRA
and corresponding models of quantum finite automata. We also propose
a classification of reversible finite 1-way automata.

1 Introduction

Here we introduce common notions used throughout the paper as well as sum-
marize its contents.

We analyze two models of probabilistic reversible automata in this paper,
namely, 1-way PRA and 1.5-way PRA.

If not specified otherwise, we denote by Σ an input alphabet of an automaton.
Every input word is enclosed into end-marker symbols # and $. Therefore we
introduce a working alphabet as Γ = Σ ∪ {#, $}. By Q we normally understand
the set of states of an automaton. By L we understand complement of a language
L. Given an input word ω, by |ω| we understand the number of symbols in ω and
with [ω]i we denote i-th symbol of ω, counting from the beginning (excluding
end-markers). By q S−→ q′, S ⊂ Σ∗, we denote that there is a positive probability
to get to a state q′ by reading some word ξ ∈ S, starting in q.

Let us consider A. Nayak’s model of quantum automata with mixed states
(QFA-N, [N 99]). (Evolution is characterized by a unitary matrix and subse-
quent measurements are performed after each step, POVM measurements not
being allowed.) If a result of every measurement is a single configuration, not
a superposition, and measurements are performed after each step, we actually
get a probabilistic automaton. However, the following property applies to such
probabilistic automata - their evolution matrices are doubly stochastic. This en-
courages us to give the following definition for probabilistic reversible automata:
� Research partially supported by the Latvian Council of Science, grant No. 01.0354

and grant for Ph.D. students; University of Latvia, K. Morbergs grant; European
Commission, contract IST-1999-11234

�� Research partially supported by the Latvian Council of Science, grant No. 01.0354
and European Commission, contract IST-1999-11234

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 574–583, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Probabilistic Reversible Automata and Quantum Automata 575

Definition 1.1. A probabilistic automaton is called reversible if its linear oper-
ator can be described by a doubly stochastic matrix.

At least two definitions exist, how to interpret word acceptance, and hence,
language recognition, for reversible automata.

Definition 1.2. Classical acceptance. (C-automata) We say that an automaton
accepts (rejects) a word classically, if its set of states consists of two disjoint
subsets: accepting states and rejecting states, and the following conditions hold:
-the automaton accepts the word, if it is in accepting state after having read the
last symbol of the word;
-the automaton rejects the word, if it is in rejecting state after having read the
last symbol of the word.

Definition 1.3. “Decide and halt” acceptance. (DH-automata) We say that
an automaton accepts (rejects) a word in a decide-and-halt manner, if its set
of states consists of three disjoint subsets: accepting states, rejecting states and
non-halting states, and the following conditions hold:
-the computation is continued only if the automaton enters a non-halting state;
-if the automaton enters an accepting state, the word is accepted;
-if the automaton enters a rejecting state, the word is rejected.

Having defined word acceptance, we define language recognition in an equiv-
alent way as in [R 63]. We consider only bounded error language recognition in
this paper. By Px,A we denote the probability that a word x is accepted by an
automaton A.

Definition 1.4. We say that a language L is recognized with bounded error by
an automaton A with interval (p1, p2) if p1 < p2 and p1 = sup{Px,A | x /∈ L},
p2 = inf{Px,A | x ∈ L}.
We say that a language is recognized with a probability p if the language is
recognized with interval (1 − p, p). We say that a language is recognized with
probability 1− ε, if for every ε > 0 there exists an automaton which recognizes
the language with interval (ε1, 1− ε2), where ε1, ε2 ≤ ε.

In Section 2, we discuss properties of PRA C-automata (PRA-C). We prove
that PRA-C recognize the class of languages a∗

1a
∗
2 . . . a

∗
n with probability 1− ε.

This class can be recognized by measure-many quantum finite automata [KW 97]
(QFA-KW), with worse acceptance probabilities, however [ABFK 99]. This also
implies that QFA-N recognize this class of languages with probability 1 − ε.
Further, we show general class of regular languages, not recognizable by PRA-C.
In particular, such languages as (a,b)*a and a(a,b)* are in this class. This class
has strong similarities with the class of languages, not recognizable by QFA-KW
[AKV 00]. We also show that the class of languages recognized by PRA-C is
closed under boolean operations. In Section 3 we prove, that PRA DH-automata
do not recognize the language (a,b)*a. In Section 4 we discuss some properties of
1.5-way PRA. We also present an alternative notion of probabilistic reversibility,
not connected with quantum automata. In Section 5 we propose a classification
of reversible automata (deterministic, probabilistic and quantum).

576 Marats Golovkins and Maksim Kravtsev

2 1-Way Probabilistic Reversible C-Automata

Definition 2.1. 1-way probabilistic reversible C-automaton (PRA-C)
A = (Q,Σ, q0, QF , δ) is specified by a finite set of states Q, a finite input alpha-
bet Σ, an initial state q0 ∈ Q, a set of accepting states QF ⊆ Q, and a transition
function δ : Q×Γ ×Q −→ IR[0,1], where Γ = Σ ∪{#, $} is the input tape alpha-
bet of A and #, $ are end-markers not in Σ. Furthermore, transition function
satisfies the following requirements:

∀(q1, σ1) ∈ Q× Γ
∑
q∈Q

δ(q1, σ1, q) = 1 (1)

∀(q1, σ1) ∈ Q× Γ
∑
q∈Q

δ(q, σ1, q1) = 1 (2)

For every input symbol σ ∈ Γ , the transition function may be determined
by a |Q| × |Q| matrix Vσ, where (Vσ)i,j = δ(qj , σ, qi).

We define word acceptance as specified in Definition 1.2. The set of rejecting
states is Q \QF . We define language recognition as in Definition 1.4.

Now we present several results on the class of languages recognizable by
PRA-C.

Lemma 2.2. If a language is recognized by a PRA-C A with interval (p1, p2),
exists a PRA-C which recognizes the language with probability p, where

p =

{
p2

p1+p2
, if p1 + p2 ≥ 1

1−p1
2−p1−p2

, if p1 + p2 < 1.

Theorem 2.3. If a language is recognized by a PRA-C, it is recognized by
PRA-C with probability 1− ε.
Proof. Idea of the proof. Assume that a language L is recognized by a PRA-C
A. The language L is recognized with probability 1 − ε, using a system of n
identical copies of A. A system of n PRA-C automata may be simulated by a
single PRA-C automaton. 	

Lemma 2.4. If a language L1 is recognizable with probability greater than 2

3
and a language L2 is recognizable with probability greater than 2

3 then languages
L1 ∩ L2 and L1 ∪ L2 are recognizable with probability greater than 1

2 .

Theorem 2.5. The class of languages recognized by PRA-C is closed under
intersection, union and complement.

Proof. Let us consider languages L1, L2 recognized by some PRA-C automata.
By Theorem 2.3, these languages is recognizable with probability 1 − ε, and
therefore by Lemmas 2.2 and 2.4, union and intersection of these languages are
also recognizable. If a language L is recognizable by a PRA-C A, we can construct
an automaton which recognizes a language L just by making accepting states of
A to be rejecting, and vice versa. 	

Probabilistic Reversible Automata and Quantum Automata 577

Lemma 2.6. If A is a doubly stochastic matrix and X - a vector, then
max(X) ≥ max(AX) and min(X) ≤ min(AX).

Theorem 2.7. For every natural positive n, a language Ln = a∗
1a

∗
2 . . . a

∗
n is

recognizable by some PRA-C with alphabet {a1, a2, . . . , an}.
Proof. We construct a PRA-C with n+1 states, q0 being the initial state, corre-
sponding to probability distribution vector

(
1 0 . . . 0

)T . The transition function
is determined by (n+ 1)× (n+ 1) matrices

Va1 =

1 0 . . . 0
0 1

n . . . 1
n

...
...

. . .
...

0 1
n . . . 1

n

 , Va2 =

1
2

1
2 0 . . . 0

1
2

1
2 0 . . . 0

0 0 1
n−1 . . .

1
n−1

...
...

...
. . .

...
0 0 1

n−1 . . .
1

n−1

, . . . , Van

=

1
n . . . 1

n 0
...

. . .
...

...
1
n . . . 1

n 0
0 . . . 0 1

 .

The accepting states are q0 . . . qn−1, the only rejecting state is qn. We prove, that
the automaton recognizes the language Ln.

Case ω ∈ Ln. All ω ∈ Ln are accepted with probability 1.
Case ω /∈ Ln. Consider k such that ω = ω1σω2, |ω1| = k, ω1 ∈ Ln and

ω1σ /∈ Ln. Since all one-letter words are in Ln, k > 0. Let at = [ω]k and as = σ.
So we have s < t, 1 ≤ s ≤ n − 1, 2 ≤ t ≤ n. The word ω1as is accepted
with probability 1 − t−s

t(n−s+1) . By Lemma 2.6, since t−s
t(n−s+1) <

1
t , reading the

symbols succeeding ω1as will not increase accepting probability. Therefore, to
find maximum accepting probability for words not in Ln, we have to maximize
1− t−s

t(n−s+1) , where s < t, 1 ≤ s ≤ n− 1, 2 ≤ t ≤ n. We get that the automaton

recognizes the language with interval
(

1− 1
�(n

2)2+n+1
, 1

)
. (By Theorem 2.3,

Ln can be recognized with probability 1− ε). 	

Corollary 2.8. Quantum finite automata with mixed states (model of Nayak,
[N 99]) recognize Ln = a∗

1a
∗
2 . . . a

∗
n with probability 1− ε.

Proof. This comes from the fact, that matrices Va1 , Va2 , . . . , Van
from the proof

of Theorem 2.7 (as well as tensor powers of those matrices) all have unitary
prototypes (see Definition 5.1). 	

Now we introduce a general class of regular languages not recognizable by
PRA-C.

Definition 2.9. We say that a regular language is of type (∗) if the following
is true for the minimal deterministic automaton recognizing this language: Exist
three states q, q1, q2, exist words x, y such that q1 �= q2; qx = q1, qy = q2;
∀t ∈ (x, y)∗ ∃t1 ∈ (x, y)∗ q1tt1 = q1; ∀t ∈ (x, y)∗ ∃t2 ∈ (x, y)∗ q2tt2 = q2.

We say that a regular language is of type (∗′) if the following is true for the
minimal deterministic automaton recognizing this language: Exist three states q,

578 Marats Golovkins and Maksim Kravtsev

q1, q2, exist words x, y such that q1 �= q2; qx = q1, qy = q2; q1x = q1, q1y = q1;
q2x = q2, q2y = q2.
We say that a regular language is of type (∗′′) if the following is true for the
minimal deterministic automaton recognizing this language: Exist two states q1,
q2, exist words x, y such that q1 �= q2; q1x = q2, q2x = q2; q2y = q1.

Type (∗′′) languages are exactly those languages that violate the partial order
condition of [BP 99].

Lemma 2.10. If A is a deterministic finite automaton with a set of states Q
and alphabet Σ, then ∀q ∈ Q ∀x ∈ Σ∗ ∃k > 0 qxk = qx2k.

Lemma 2.11. A regular language is of type (∗) iff it is of type (∗′) or type (∗′′).

Proof. 1) If a language is of type (∗′), it is of type (∗). Obvious.
2) If a language is of type (∗′′), it is of type (∗). Consider a language of type
(∗′′) with states q′′

1 , q
′′
2 and words x′′, y′′. To build construction of type (∗), we

take q = q1 = q′′
1 , q2 = q′′

2 , x = x′′y′′, y = x′′. That forms transitions qx = q1,
qy = q2, q1x = q1, q1y = q2, q2x = q1, q2y = q2. We have satisfied all the rules
of (∗).
3) If a language is of type (∗), it is of type (∗′) or (∗′′). Consider a language
whose minimal deterministic automaton has construction (∗). By Lemma 2.10,
∃s∃a q1xa = qs and qsx

a = qs; ∃t∃b q1yb = qt and qty
b = qt; ∃u∃c q2xc = qu

and qux
c = qu; ∃v∃d q2yd = qv and qvy

d = qv. If q1 �= qs, by the rules of (∗),
∃z qsz = q1. Therefore the language is of type (∗′′). If q2 �= qu, by the rules of
(∗), ∃z quz = q2, and the language is of type (∗′′). Likewise, if q1 �= qt or q2 �= qv,
the language is of type (∗′′). If q1 = qs = qt and q2 = qu = qv, we have qxa = q1,
qyd = q2, q1xa = q1y

b = q1, q2xc = q2y
d = q2. We get the construction (∗′) if we

take x′ = xac, y′ = ybd. 	

We are going to prove that every language of type (∗) is not recognizable by
any PRA-C. For this purpose, we use several definitions from the theory of finite
Markov chains ([KS 76]).

Definition 2.12. A state qj is accessible from qi (denoted qi → qj) if there is
a positive probability to get from qi to qj (possibly in several steps).

Definition 2.13. States qi and qj communicate (denoted qi ↔ qj) if qi → qj
and qj → qi.

Definition 2.14. A Markov chain is called doubly stochastic, if its transition
matrix is a doubly stochastic matrix.

We recall the following theorem from the theory of finite Markov chains:

Theorem 2.15. If a Markov chain with a matrix A is irreducible and aperiodic,
a) it has a unique stationary distribution Z;
b) lim

n→∞An = (Z, . . . , Z);

c) ∀X lim
n→∞AnX = Z.

Probabilistic Reversible Automata and Quantum Automata 579

Several facts about doubly stochastic matrices follow from this theorem.

Corollary 2.16. If a doubly stochastic Markov chain with an m×m matrix A
is irreducible and aperiodic,

a) lim
n→∞An =

1
m . . . 1

m
.
1
m . . . 1

m

; b) ∀X lim

n→∞AnX =

1
m
. . .
1
m

.

Lemma 2.17. If M is a doubly stochastic Markov chain with a matrix A, then
∀q q → q.

Corollary 2.18. Suppose A is a doubly stochastic matrix. Then exists k > 0,
such that ∀i (Ak)i,i > 0.

Lemma 2.19. If M is a doubly stochastic Markov chain and qa → qb, then
qa ↔ qb.

Now, using the facts above, we can prove that any language of type (∗) is
not recognizable by PRA-C.

Lemma 2.20. If a regular language is of type (∗′), it is not recognizable by any
PRA-C.

Proof. Assume from the contrary, that A is a PRA-C automaton which recog-
nizes a language L ⊂ Σ∗ of type (∗′).

Since L is of type (∗′), it is recognized by a deterministic automaton D which
has three states q, q1, q2 such that q1 �= q2, qx = q1, qy = q2, q1x = q1, q1y = q1,
q2x = q2, q2y = q2, where x, y ∈ Σ∗. Furthermore, exists ω ∈ Σ∗ such that
q0ω = q, where q0 is an initial state of D, and exists a word z ∈ Σ∗, such that
q1z = qacc if and only if q2z = qrej , where qacc is an accepting state and qrej is
a rejecting state of D. Without loss of generality we assume that q1z = qacc and
q2z = qrej .

The transition function of the automaton A is determined by doubly stochas-
tic matrices Vσ1 , . . . , Vσn

. The words from the construction (∗′) are x = σi1 . . . σik

and y = σj1 . . . σjs
. The transitions induced by words x and y are determined

by doubly stochastic matrices X = Vσik
. . . Vσi1

and Y = Vσjs
. . . Vσj1

. Similarly,
the transitions induced by words ω and z are determined by doubly stochastic
matrices W and Z. By Corollary 2.18, exists K > 0, such that

∀i (XK)i,i > 0 and (Y K)i,i > 0. (3)

Consider a relation between the states of the automaton defined as R =

{(qi, qj) | qi (xK ,yK)*−→ qj}. By (3), this relation is reflexive. By Lemma 2.19, the
relation R is symmetric.

Surely R is transitive. Therefore all states of A may be partitioned into
equivalence classes [q0], [qi1], . . . , [qin]. Let us renumber the states of A in such
a way, that states from one equivalence class have consecutive numbers. First
come the states in [q0], then in [qi1], etc.

580 Marats Golovkins and Maksim Kravtsev

Consider the word xKyK . The transition induced by this word is determined
by a doubly stochastic matrix C = Y KXK . We prove the following proposition.
States qa and qb are in one equivalence class if and only if qa → qb with matrix
C. Suppose qa → qb. Then (qa, qb) ∈ R, and qa, qb are in one equivalence class.
Suppose qa, qb are in one equivalence class. Then

qa
ξ1−→ qi1 , qi1

ξ2−→ qi2 , . . . , qik−1

ξk−→ qb, where ξs ∈ {xK , yK}. (4)

By (3), qi
xK

−→ qi and qj
yK

−→ qj . Therefore, if qi
xK

−→ qj , then qi
xKyK

−→ qj ,

and again, if qi
yK

−→ qj , then qi
xKyK

−→ qj . That transforms (4) to qa
(xKyK)t

−→
qb, where t > 0. We have proved the proposition.

By the proved proposition, due to the renumbering of states, matrix C
is a block diagonal matrix, where each block corresponds to an equivalence
class of the relation R. Let us identify these blocks as C0, C1, . . . , Cn. By (3),
a Markov chain with matrix C is aperiodic. Therefore each block Cr corre-
sponds to an aperiodic irreducible doubly stochastic Markov chain with states
[qir]. By Corollary 2.16, lim

m→∞Cm = J , J is a block diagonal matrix, where

for each (p × p) block Cr (Cr)i,j = 1
p . Relation qi

(yK)∗
−→ qj is a subrelation

of R, therefore Y K is a block diagonal matrix with the same block ordering
and sizes as C and J . (This does not eliminate possibility that some block
of Y K is constituted of smaller blocks, however.) Therefore JY K = J , and
lim

m→∞Z(Y KXK)mW = lim
m→∞Z(Y KXK)mY KW = ZJW . So

∀ε > 0 ∃m ∥∥(Z(Y KXK)mW − Z(Y KXK)mY KW
)
Q0
∥∥ < ε. However, by con-

struction (∗′), ∀k ∀m ω(xkyk)mz ∈ L and ωyk(xkyk)mz /∈ L. This requires exis-
tence of ε > 0, such that ∀m ∥∥(Z(Y KXK)mW − Z(Y KXK)mY KW

)
Q0
∥∥ > ε.

This is a contradiction. 	

Lemma 2.21. If a regular language is of type (∗′′), it is not recognizable by any
PRA-C.

Proof. Proof is nearly identical to that of Lemma 2.20. 	

Theorem 2.22. If a regular language is of type (∗), it is not recognizable by any
PRA-C.

Proof. By Lemmas 2.11, 2.20, 2.21. 	

We proved (Lemma 2.11) that the construction of type (∗) is a generalization

the construction proposed by [BP 99]. Also it can be easily noticed, that the
type (∗) construction is a generalization of construction proposed by [AKV 00].
(Constructions of [BP 99] and [AKV 00] characterize languages, not recognized
by measure-many quantum finite automata of [KW 97].)

Corollary 2.23. Languages (a,b)*a and a(a,b)* are not recognized by PRA-C.

Proof. Both languages are of type (∗). 	

Probabilistic Reversible Automata and Quantum Automata 581

3 1-Way Probabilistic Reversible DH-Automata

Definition 3.1. The definition differs from one for PRA-C (Definition 2.1) by
the following: languages are recognized according to Definition 1.3.

It is easy to see that the class of languages recognized by PRA-C is a proper
subclass of languages recognized by PRA-DH. For example, the language a(a,b)*
is recognizable by PRA-DH. However, the following theorem holds:

Theorem 3.2. Language (a,b)*a is not recognized by PRA-DH.

Proof. Assume from the contrary that such automaton exists. While reading
any sequence of a and b, this automaton can halt only with some probability p
strictly less then 1, so accepting and rejecting probabilities may differ only by
1-p, because any word belonging to the language is not dependent on any prefix.
Therefore for each ε > 0 we can find that after reading a prefix of certain length,
the total probability to halt while continue reading the word is less then ε. In
this case we can apply similar techniques as in the proof of Lemma 2.20. 	

4 Alternative Approach to Finite Reversible Automata
and 1.5-Way Probabilistic Reversible Automata

Let us consider an automaton A′ = (Q,Σ, q0, QF , δ
′) that can be obtained

from a probabilistic automaton A = (Q,Σ, q0, QF , δ) by specifying δ′(q, σ, q′) =
δ(q′, σ, q) for all q′, σ and q. If A′ is valid probabilistic automaton then we can
call A and A′ probabilistic reversible automata.

Definition 4.1. An automaton of some type is called weakly reversible if the
reverse of its transition function corresponds to the transition function of a valid
automaton of the same type.

Note: in case of deterministic automaton where δ : Q × Γ × Q −→ {0, 1} this
property means that A’ is still deterministic automaton, not nondeterministic. In
case of one-way automata it is easy to check that this definition is equivalent to
the one in Section 2. We give an example that illustrates that in case of 1.5-way
automata these definitions are different.

Definition 4.2. 1.5-way probabilistic weakly reversible C-automaton
A = (Q,Σ, q0, QF , δ) is specified by Q, Σ, q0, QF defined as in 1-way PRA-
C Definition 2.1, and a transition function δ : Q × Γ × Q × D −→ IR[0,1],
where Γ defined as in 1-way PRA-C definition and D = {0, 1} denotes whether
automaton stays on the same position or moves one letter ahead on the input
tape. Furthermore, transition function satisfies the following requirements:

∀(q1, σ1) ∈ Q× Γ
∑

q∈Q,d∈D

δ(q1, σ1, q, d) = 1;

∀(q1, σ1) ∈ Q× Γ
∑

q∈Q,d∈D

δ(q, σ1, q1, d) = 1

582 Marats Golovkins and Maksim Kravtsev

Definition 4.3. 1.5-way probabilistic reversible C-automaton
A = (Q,Σ, q0, QF , δ) is specified by Q, Σ, q0, QF defined as in 1-way PRA-
C Definition 2.1, and a transition function δ : Q × Γ × Q × D −→ IR[0,1],
where Γ defined as in 1-way PRA-C definition and D = {0, 1} denotes whether
automaton stays on the same position or moves one letter ahead on the input
tape. Furthermore, transition function satisfies the following requirements:

∀(q1, σ1) ∈ Q× Γ
∑

q∈Q,d∈D

δ(q1, σ1, q, d) = 1;

∀(q1, σ1, σ2) ∈ Q× Γ 2
∑
q∈Q

δ(q, σ1, q1, 0) +
∑

q∈Q,σ∈Γ

δ(q, σ2, q1, 1) = 1

Theorem 4.4. Language (a,b)*a is recognizable by 1.5-way weakly reversible
PRA-C.

Proof. The Q = {q0, q1}, QF = {q1}, δ is defined as follows; δ(q0, a, q0, 0) =
1
2 , δ(q0, a, q1, 1) = 1

2 , δ(q1, a, q0, 0) = 1
2 , δ(q1, a, q1, 1) = 1

2 , δ(q0, b, q0, 1) =
1
2 , δ(q0, b, q1, 0) = 1

2 , δ(q1, b, q0, 1) = 1
2 , δ(q1, b, q1, 0) = 1

2 , δ(q0, $, q0, 1) = 1,
δ(q1, $, q1, 1) = 1. It easy to check that such automaton moves ahead accord-
ing to the transition of the following deterministic automaton; δ(q0, a, q1, 1) =
1, δ(q1, a, q1, 1) = 1, δ(q0, b, q0, 1) = 1, δ(q1, b, q0, 1) = 1, δ(q0, $, q0, 1) = 1,
δ(q1, $, q1, 1) = 1. So the probability of wrong answer is 0. The probability to be
at the m-th position of the input tape after n steps of calculation for m ≤ n is
Cm

n . Therefore it is necessary no more then O(n ∗ log(p)) steps to reach the end
of the word of length n (and so obtain correct answer) with probability 1− 1

p . 	

5 A Classification of Reversible Automata

We propose the following classification for finite 1-way reversible automata:

C-Automata DH-Automata
Deterministic
Automata

Permutation Automata
[HS 66,T 68] (DRA-C)

Reversible Finite Automata
[AF 98] (DRA-DH)

Quantum
Automata with
Pure States

Measure-Once Quantum
Finite Automata [MC 97]
(QRA-P-C)

Measure-Many Quantum
Finite Automata [KW 97]
(QRA-P-DH)

Probabilistic
Automata

Probabilistic Reversible
C-Automata (PRA-C)

Probabilistic Reversible
DH-Automata (PRA-DH)

Quantum Finite
Automata with
Mixed States

not considered yet
(QRA-M-C)

Enhanced Quantum
Finite Automata [N 99]
(QRA-M-DH)

Language class problems are solved for DRA-C, DRA-DH, QRA-P-C, for
the rest types they are still open. Every type of DH-automata may simulate the
corresponding type of C-automata.

Probabilistic Reversible Automata and Quantum Automata 583

In general, language classes recognized by C-automata are closed under boolean
operations (though this is open for QRA-M-C), while DH-automata are not
(though this is open for QRA-M-DH and possibly for PRA-DH).
Definition 5.1. We say that a unitary matrix U is a prototype for a doubly
stochastic matrix S, if ∀i, j |Ui,j |2 = Si,j.
Not every doubly stochastic matrix has a unitary prototype. Such matrix is, for

example,

1
2

1
2 0

1
2 0 1

2
0 1

2
1
2

. In Introduction, we demonstrated some relation between

PRA-C and QRA-M-DH (and hence, QRA-M-C). However, due to the example
above, we do not know exactly, whether every PRA-C can be simulated by
QRA-M-C, or whether every PRA-DH can be simulated by QRA-M-DH.
Theorem 5.2. If all matrices of a PRA-C have unitary prototypes, then the
PRA-C may be simulated by a QRA-M-C and by a QRA-M-DH.
If all matrices of a PRA-DH have unitary prototypes, then the PRA-DH may be
simulated by a QRA-M-DH.

References

[ABFK 99] A. Ambainis, R. Bonner, R. Freivalds, A. Ķikusts. Probabilities to
Accept Languages by Quantum Finite Automata. COCOON 1999,
Lecture Notes in Computer Science, 1999, Vol. 1627, pp. 174-183.
http://arxiv.org/abs/quant-ph/9904066

[AF 98] A. Ambainis, R. Freivalds. 1-Way Quantum Finite Automata: Strengths,
Weaknesses and Generalizations. Proc. 39th FOCS, 1998, pp. 332-341.
http://arxiv.org/abs/quant-ph/9802062

[AKV 00] A. Ambainis, A. Ķikusts, M. Valdats. On the Class of Languages Recogniz-
able by 1-Way Quantum Finite Automata. STACS 2001, Lecture Notes in
Computer Science, 2001, Vol. 2010, pp. 75-86. http://arxiv.org/abs/quant-
ph/0009004

[BP 99] A. Brodsky, N. Pippenger. Characterizations of 1-Way Quantum Finite
Automata. http://arxiv.org/abs/quant-ph/9903014

[HS 66] J. Hartmanis, R. E. Stearns. Algebraic Structure Theory of Sequential
Machines. Prentice Hall, 1966.

[KS 76] J. G. Kemeny and J. L. Snell. Finite Markov Chains. Springer Verlag,
1976.

[KW 97] A. Kondacs, J. Watrous. On The Power of Quantum Finite State Au-
tomata. Proc. 38th FOCS, 1997, pp. 66-75.

[MC 97] C. Moore, J. P. Crutchfield. Quantum Automata and Quantum Gram-
mars. Theoretical Computer Science, 2000, Vol. 237(1-2), pp. 275-306.
http://arxiv.org/abs/quant-ph/9707031

[N 99] A. Nayak. Optimal Lower Bounds for Quantum Automata and
Random Access Codes. Proc. 40th FOCS, 1999, pp. 369-377.
http://arxiv.org/abs/quant-ph/9904093

[R 63] M. O. Rabin. Probabilistic Automata. Information and Control, 1963, Vol.
6(3), pp. 230-245.

[T 68] G. Thierrin. Permutation Automata. Mathematical Systems Theory, Vol.
2(1), pp. 83-90

Quantum versus Deterministic Counter Automata

Tomohiro Yamasaki1, Hirotada Kobayashi1,2, and Hiroshi Imai1,2

1 Department of Information Science, The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
{yamasaki,hirotada,imai}@is.s.u-tokyo.ac.jp

2 Quantum Computation and Information Project, ERATO, JST,
5-28-3 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Abstract. This paper focuses on quantum analogues of various models
of counter automata, and almost completely proves the relation between
the classes of languages recognizable by bounded error quantum ones
and classical deterministic ones in every model of counter automata. It is
proved that (i) under some practically reasonable assumption, quantum
ones are strictly stronger than deterministic ones in two-way one-counter
automata, and (ii) for any fixed k, quantum ones and deterministic ones
are incomparable in one-way k-counter automata.

1 Introduction

Quantum finite state automata were introduced by Moore and Crutchfield [8]
and Kondacs and Watrous [4] independently. The latter showed that bounded
error one-way quantum finite state automata (1QFAs) can recognize languages
only in a proper subset of the class of regular languages, while the class of
languages recognized by bounded error two-way quantum finite state automata
(2QFAs) properly contains the class of regular languages.

One thing to be mentioned on 2QFAs is that, with respect to input length,
they need logarithmically (not constantly) many qubits to be implemented. This
is because the tape head on the input tape of a 2QFA is allowed in quantum
superposition, and thus logarithmically many qubits are necessary to store the
position of the tape head. In this context, quantum analogues of one-way counter
automata and polynomial-time two-way counter automata need only logarith-
mically many qubits as well as their classical versions need logarithmically many
bits (note that pushdown automata need polynomially many bits or qubits).

Another interesting property of counter automata was shown by Minsky [7]
that two-way deterministic two-counter automata (2D2CAs) can simulate de-
terministic Turing machines, that is, 2D2CAs are universal. Morita [9] extended
this to the universality of two-way reversible two-counter automata (2R2CAs).
Hence, from the viewpoint of quantum computation, quantum analogues of two-
way one-counter automata and one-way k-counter automata are of interest.

One-way quantum one-counter automata (1Q1CAs) were introduced by
Kravtsev [5], and studied by Yamasaki, Kobayashi, Tokunaga, and Imai [11] and
Bonner, Freivalds, and Kravtsev [1] in comparison with their various classical

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 584–594, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Quantum versus Deterministic Counter Automata 585

counterparts. In particular, it is known that 1Q1CAs can recognize several non-
context-free languages [5,11] while there are regular languages that cannot be
recognized by 1Q1CAs [11]. This implies the incomparability between 1Q1CAs
and one-way deterministic one-counter automata (1D1CAs).

This paper gives the first formal treatments of two-way quantum one-counter
automata (2Q1CAs) and one-way quantum k-counter automata (1QkCAs).

For two-way one-counter automata, it is proved that 2Q1CAs are at least
as powerful as two-way deterministic one-counter automata (2D1CAs) in the
following practical sense. That is, as far as we consider models with a counter
tape of length bounded by some function with respect to input length (and this
function is unknown to the finite control part of the automaton), we have a
method of reversible simulation of 2D1CAs. Further it is proved that the non-
context-free languages Lsquare = {ambm

2 | m ≥ 1} and Lprod = {am1bm2cm1m2 |
m1,m2 ≥ 1}, which cannot be recognized by 2D1CAs [3], can be recognized by
polynomial-time 2Q1CAs with arbitrary small constant one-sided error. Other
non-context-free languages such as Lpower = {amb2

m | m ≥ 1} are also shown
recognizable by one-sided error 2Q1CAs in polynomial time. These results of
recognizability hold both in the usual model with a counter tape of unbounded
length and in the restricted model with a counter tape of bounded length.

For one-way k-counter automata, this paper proves the existence of the family
of languages {Lk+1

0 }, where Lk+1
0 = {am1bam2b · · · amkbamk+1cam0 | mi ≥ 0,

m0 = mj for some 1 ≤ j ≤ k + 1} is known unrecognizable by 1DkCAs [2],
can be recognized by 1QkCAs (actually by 1Q1CAs) with bounded error. It is
also proved that, for any fixed integer k, the regular language Llast = {{a, b}∗a}
cannot be recognized by bounded error 1QkCAs.

2 Definitions

Here we give formal definitions of two-way one-counter automata and one-way
k-counter automata both in classical and quantum cases. It is assumed that
every input x is written of the form cx$ on the input tape, started by the left
end-marker c and terminated by the right end-marker $. It is also assumed that
each of c and $ does not appear in x. For convenience, let Z[a,b] denote the set
of integers in the interval of [a, b].

2.1 Two-Way One-Counter Automata

In general, each two-way one-counter automaton is specified by M = (Q,Σ, δ, q0,
Qacc, Qrej). Here Q is a finite set of states, Σ is the finite input alphabet, q0 ∈ Q
is the initial state, Qacc ⊆ Q is a set of accepting states, Qrej ⊆ Q is a set of
rejecting states, and δ is a transition function of the form

δ : Q× Γ × S ×Q× {−1, 0,+1} × {←, ↓,→} → C, (1)

where Γ = Σ ∪ {c, $} is the tape alphabet and S = {0, 1}. It is assumed that
each two-way one-counter automaton has a tape served as a counter and the
counter value is zero at the beginning of computation.

586 Tomohiro Yamasaki, Hirotada Kobayashi, and Hiroshi Imai

For the sake of reversible simulation discussed in Subsection 3.1, here we
define two-way one-counter automata with a counter tape of bounded length.
That is, for every input of length n, a counter tape is of length 2ξ(n)+1 for some
function ξ : Z+ → N so that counter values are in the interval of [−ξ(n), ξ(n)],
and this function ξ is unknown to the finite control part of the automaton.
Furthermore, it is assumed that the left-most and the right-most cells of the
counter tape are indicated by symbols c and $ written on them, respectively, in
order to prevent overflow and underflow of the counter. Thus the set S in (1)
is redefined as S = {0, 1, c, $}. Note that we have the usual model of two-way
one-counter automata if we take ξ to be infinity independent of input length.

First we define two-way deterministic one-counter automata.

Definition 1. A two-way deterministic one-counter automaton (2D1CA) M =
(Q,Σ, δ, q0, Qacc, Qrej) is a two-way one-counter automaton whose transition
function δ takes values in {0, 1} and satisfies that, for any q ∈ Q, σ ∈ Γ ,
and s ∈ {0, 1, c, $}, there is a unique triplet of q′ ∈ Q, c ∈ {−1, 0,+1}, and
d ∈ {←, ↓,→} such that δ(q, σ, s, q′, c, d) = 1.

Assume that the input x is of length n and the counter tape is of length
2ξ(n) + 1. For each counter value z ∈ Z[−ξ(n),ξ(n)], let s = sign(z) ∈ {0, 1, c, $},
where sign(0) = 0, sign(−ξ(n)) = c, sign(ξ(n)) = $, and sign(z) = 1 otherwise.
At the beginning of computation, the automaton is in the initial state q0 with
its tape head scanning the left-most symbol c of wx = cx$. At each step, it reads
a symbol σ of wx in a state q, checks s = sign(z) of a counter value z, and finds
an appropriate transition δ(q, σ, s, q′, c, d) = 1 for some q′ ∈ Q, c ∈ {−1, 0,+1},
and d ∈ {←, ↓,→}. Then it updates its state to q′, changes the counter value
z to z + c, and moves its tape head in direction d by a square (the tape head
remains stationary if d =↓). The automaton accepts x if it enters one of the final
states in Qacc and rejects x if it enters one of the final states in Qrej.

Next we define two-way quantum one-counter automata (2Q1CAs). Assume
that the counter tape is of length 2ξ(n) + 1 for every input of length n. Then
the number of configurations of a 2Q1CA M is precisely (n+ 2)(2ξ(n) + 1)|Q|.
For fixed M and ξ, let Cn denote this set of configurations. A computation
on an input x of length n corresponds to a unitary evolution in the Hilbert
space Hn = l2(Cn). For each (q, z, k) ∈ Cn, where q ∈ Q, z ∈ Z[−ξ(n),ξ(n)],
and k ∈ Z[0,n+1], let |q, z, k〉 denote the corresponding basis vector in Hn. A
transition operator Uδ

x for an input x on Hn is given by

Uδ
x |q, z, k〉 =

∑
q′,c,d

δ(q, wx(k), sign(z), q′, c, d)|q′, z + c, k + µ(d)〉,

where wx(k) denotes the kth symbol of wx = cx$ and µ(d) = −1(0)[+1] if
d =← (↓)[→]. It is assumed that Uδ

x is unitary, that is,
(
Uδ

x

)†
Uδ

x = Uδ
x

(
Uδ

x

)† = I.
After each transition, a state of a 2Q1CA is observed with the computational ob-
servable O, which is the orthogonal decomposition of Hn into Eacc⊕Erej⊕Enon,
where Eacc = span{|q, z, k〉 | q ∈ Qacc}, Erej = span{|q, z, k〉 | q ∈ Qrej}, and
Enon = span{|q, z, k〉 | q ∈ Q \ (Qacc ∪ Qrej)}. The outcome of any observation

Quantum versus Deterministic Counter Automata 587

will be either “accepting” (Eacc) or “rejecting” (Erej) or “non-halting” (Enon).
The probability of acceptance, rejection, and non-halting at each step is equal
to the sum of the squared amplitude of each basis state in the new state for the
corresponding subspace. In order to have Uδ

x be unitary, we have

〈q1, z1, k1|q2, z2, k2〉 =∑
q′

z1+c1=z2+c2
k1+µ(d1)=k2+µ(d2)

δ†(q1, wx(k1), sign(z1), q′, c1, d1)δ(q2, wx(k2), sign(z2), q′, c2, d2). (2)

The well-formedness conditions of 2Q1CAs are ones derived from (2).

Definition 2. A two-way quantum one-counter automaton (2Q1CA) M = (Q,
Σ, δ, q0, Qacc, Qrej) is a two-way one-counter automaton whose transition func-
tion δ satisfies the well-formedness conditions.

Finally, two-way reversible one-counter automata (2R1CAs) are simply de-
fined as 2Q1CAs whose transition function δ only takes values in {0, 1}.

Now we give a definition of languages recognized by 2D1CAs and 2Q1CAs
with a counter tape of bounded length.

Definition 3. A language L is recognized by a 2D1CA M (resp. recognized by
a 2Q1CA M with probability p > 1/2) if there exists a function ξ0 : Z+ → N

such that, for any function ξ : Z+ → N satisfying ξ ≥ ξ0 and any integer n ≥ 0,
M equipped with its counter tape of length 2ξ(n) + 1 accepts any input x ∈ L of
length n (resp. accepts any input x ∈ L of length n with probability at least p)
and rejects any input x �∈ L of length n (resp. rejects any input x �∈ L of length
n with probability at least p).

To describe automata easily, we introduce the concept of simple 2Q1CAs.
Consider the Hilbert space l2(Q) for the set Q of internal states of a 2Q1CA M .

Definition 4. A 2Q1CA M = (Q,Σ, δ, q0, Qacc, Qrej) is simple, if there are
unitary operators Vσ,s on l2(Q) for each σ ∈ Γ and s ∈ {0, 1, c, $}, a counter
function C : Q× Γ → {−1, 0,+1}, and a tape-head function D : Q→ {←, ↓,→}
such that, for any q, q′ ∈ Q, c ∈ {−1, 0,+1}, and d ∈ {←, ↓,→},

δ(q, σ, s, q′, c, d) =
{ 〈q′|Vσ,s|q〉 if C(q′, σ) = c and D(q′) = d,

0 otherwise.

If a 2Q1CA is simple, increase or decrease of a counter value is determined only
by a symbol the automaton reads and a state it enters, while a move of the tape
head is determined only by a state it enters. Thus it is easy to see that a simple
2Q1CA M satisfies the well-formedness conditions if there is a unitary operator
Vσ,s for each σ ∈ Γ and s ∈ {0, 1, c, $} such that

∑
q′∈Q (〈q′|Vσ,s|q1〉)† 〈q′|Vσ,s|q2〉

equals 1 if q1 = q2 and 0 otherwise.
For the case of 2D1CAs, simple 2D1CAs can be defined in a similar manner.

588 Tomohiro Yamasaki, Hirotada Kobayashi, and Hiroshi Imai

2.2 One-Way k-Counter Automata

Here we only deal with one-way two-counter automata. It is straightforward to
extend our definitions to the k-counter cases.

In general, each one-way two-counter automaton is specified by M = (Q,Σ, δ,
q0, Qacc, Qrej), whose transition function δ is of the form

δ : Q× Γ × S × S ×Q× {−1, 0,+1} × {−1, 0,+1} → C,

where Γ = Σ ∪ {c, $} and S = {0, 1}. It is assumed that each one-way two-
counter automaton has two counters, each of which initially contains zero.

First we define one-way deterministic two-counter automata.

Definition 5. A one-way deterministic two-counter automaton (1D2CA) M =
(Q,Σ, δ, q0, Qacc, Qrej) is a one-way two-counter automaton whose transition
function δ takes values in {0, 1} and satisfies that, for any q ∈ Q, σ ∈ Γ ,
and s1, s2 ∈ {0, 1}, there is a unique triplet of q′ ∈ Q and c1, c2 ∈ {−1, 0,+1}
such that δ(q, σ, s1, s2, q′, c1, c2) = 1.

Transitions of a 1D2CA are almost same as those of a 2D1CA except that at
every step the input tape head always moves right by a square and the automaton
treats not only one but two counters.

Next we define one-way quantum two-counter automata. Given an input x of
length n, the number of configurations of a 1Q2CA M is precisely (2n+ 5)2|Q|.
For fixed M , let Cn denote this set of configurations. A computation on x cor-
responds to a unitary evolution in the Hilbert space Hn = l2(Cn). For each
(q, z1, z2) ∈ Cn, where q ∈ Q and z1, z2 ∈ Z[−n−2,n+2], let |q, z1, z2〉 denote the
corresponding basis vector in Hn. For every σ ∈ Γ , a transition operator Uδ

σ on
Hn is given by

Uδ
σ |q, z1, z2〉 =

∑
q′,c1,c2

δ(q, σ, sign(z1), sign(z2), q′, c1, c2)|q′, z1 + c1, z2 + c2〉.

It is assumed that Uδ
σ is unitary. Similar to the case of a 2Q1CA, after each

transition, a state of a 1Q2CA is observed with the computational observable O,
which is the orthogonal decomposition of Hn into Eacc ⊕ Erej ⊕ Enon. In order
to have the transition matrices Uδ

σ be unitary, we have

〈q1, z11, z12|q2, z21, z22〉 =
∑

q′

z1j+c1j
=z2j+c2j

δ†(q1, σ, sign(z11), sign(z12), q′, c11, c12)δ(q2, σ, sign(z21), sign(z22), q′, c21, c22). (3)

The well-formedness conditions of 1Q2CAs are ones derived from (3).

Definition 6. A one-way quantum two-counter automaton (1Q2CA) M = (Q,
Σ, δ, q0, Qacc, Qrej) is a one-way two-counter automaton whose transition func-
tion δ satisfies the well-formedness conditions.

Quantum versus Deterministic Counter Automata 589

3 2Q1CAs versus 2D1CAs

3.1 Reversible Simulation of 2D1CAs

First we show that an arbitrary 2D1CA is simulated by a 2R1CA as far as we
consider the models with the counter tape of bounded length. Since 2R1CAs are
special cases of 2Q1CAs, this implies that 2Q1CAs are practically at least as
powerful as their classical deterministic counterpart.

We start with a useful property of 2D1CAs. The proof is easy and left to the
reader.

Lemma 7. Let L be a language that can be recognized by a 2D1CA. Then there
exists a simple 2D1CA that recognizes L, whose counter function does not depend
on a symbol it reads.

Now we show the method of reversible simulation. Kondacs and Watrous [4]
showed that any one-way deterministic finite state automaton can be simulated
by a two-way reversible finite state automaton by using a technique due to Lange,
McKenzie, and Tapp [6]. Our method is an extension of them.

Theorem 8. Let L be a language that can be recognized by a 2D1CA. Then
there exists a simple 2R1CA that recognizes L.

Proof. Let M = (Q,Σ, δ, q0, Qacc, Qrej) be a 2D1CA for L that halts in at most
t(n) steps on a given input of length n. Then, for every function ξ ≥ t and
every input x of length n, M equipped with its counter tape of length 2ξ(n) + 1
accepts x ∈ L and rejects x �∈ L. ¿From Lemma 7 we may assume that M is
simple and its counter function does not depend on a symbol it reads. Without
loss of generality, we assume that each Qacc and Qrej consists of only one state.
We construct a simple 2R1CA M ′ = (Q′, Σ, δ′, q′

0, Q
′
acc, Q

′
rej) for L such that for

any function ξ ≥ t and every input x of length n, M ′ equipped with its counter
tape of length 2ξ(n) + 1 accepts x ∈ L and rejects x �∈ L.

First, for each q, σ, s, and the transition matrix Vσ,s of M , define Iq,σ,s =
{q′ ∈ Q | Vσ,s|q′〉 = Vσ,s|q〉} and Jq,σ,s = {q′ ∈ Q | Vσ,s|q′〉 = |q〉}, and fix an or-
dering of the set Q. Let max(·) and min(·) denote the maximum and minimum
functions relative to this ordering. For any subset R ⊆ Q′, let succ(q,R) be the
least element in R larger than q (assuming there is such an element).

Now we define M ′. Let the state sets Q′ = Q×{−,+}, Q′
acc = Qacc×{−,+},

Q′
rej = Qrej × {−,+}, and let the initial state q′

0 = (q0,+).
Define the transition matrices V ′

σ,s as, for each (q,+), (q,−) ∈ Q′, q ∈ Q,

V ′
σ,s|(q,+)〉 =

{ |(succ(q, Iq,σ,s),−)〉 if q �= max(Iq,σ,s),
|(rq,σ,s,+)〉 if q = max(Iq,σ,s),

V ′
σ,s|(q,−)〉 =

{ |(q,+)〉 if Jq,σ,s = ∅,
|(min(Jq,σ,s),−)〉 if Jq,σ,s �= ∅.

Here rq,σ,s ∈ Q is the state satisfying Vσ,s|q〉 = |rq,σ,s〉.

590 Tomohiro Yamasaki, Hirotada Kobayashi, and Hiroshi Imai

For d =← (↓)[→] let −d =→ (↓)[←]. For each (q,+), (q,−) ∈ Q′, q ∈ Q,
and σ ∈ Γ , define the counter function C ′ and the tape-head function D′ as
C ′ ((q,±), σ) = ±C(q, σ) and D′ ((q,±)) = ±D(q), where C and D are the
counter function and tape-head function of M , respectively.

Let the transition function δ′ of M ′ be defined from given V ′
σ,s, C ′, and D′.

For a given M and every input x of length n, let G be an undirected graph
with a set of vertices Q × Z[−ξ(n),ξ(n)] × Z[0,n+1] and an edge between vertices
(q1, z, k) and

(
q2, z+C(q2, σ), k+µ(D(q2))

)
if and only if Vwx(k),sign(z)|q1〉 = |q2〉,

where wx(k) denotes the kth symbol of wx = cx$, and µ(d) = −1(0)[+1] if
d =← (↓)[→]. Let G0 be the connected component of G that contains the initial
configuration (q0, 0, 0). Since M halts, there can be no cycles in G0, and G0 must
contain exactly one vertex corresponding to a halting state ∈ Qacc ∪Qrej. Thus
G0 can be viewed as a tree with the single halting configuration vertex as the
root. M ′ simulates M by traversing G0 in a reversible manner.

Each configuration (q, z, k) of M corresponds to two configurations ((q,+), z,
k) and

(
(q,−), z − C(q, σ), k − µ(D(q))

)
of M ′, which are to be interpreted as

follows (recall that C does not depend on σ). The configuration ((q,+), z, k)
indicates that the subtree of G0 rooted at the vertex (q, z, k) has just been
traversed, and the configuration

(
(q,−), z−C(q, σ), k−µ(D(q))

)
indicates that

the subtree of G0 rooted at (q, z, k) is now about to be traversed.
Consider the set Jq,σ,s = Iq′

i,σ,s = {q′
1, . . . , q

′
l} for each i = 1, . . . , l, where σ =

wx(k) and s = sign(z). Assume that q′
1 < q′

2 < · · · < q′
l according to our ordering

of Q. Suppose that M ′ is in a configuration ((q′
i,+), z, k) for i < l. Since q′

i �=
max(Iq′

i,σ,s), the next configuration is
(
(q′

i+1,−), z−C(q′
i+1, σ), k−µ(D(q′

i+1))
)
,

and now the tree rooted at (q′
i+1, z, k) is about to be traversed. Now suppose that

M ′ is in a configuration ((q′
l,+), z, k). Since q′

l = max(Iq′
l,σ,s), the next configura-

tion is
(
(q,+), z + C(q, σ), k + µ(D(q))

)
. Hence, for each q ∈ Q, z ∈ Z[−ξ(n),ξ(n)],

and k ∈ Z[0,n+1], M ′ enters the configuration
(
(q,+), z + C(q, σ), k + µ(D(q))

)
only after each of the subtrees rooted at its children has been traversed. Next,
suppose that M ′ is in a configuration ((q,−), z, k). The next configuration is(
(q′

1,−), z − C(q′
1, σ), k − µ(D(q′

1))
)
, and thus the subtree rooted at the vertex

(q′
1, z, k) is now to be traversed. Finally, if

(
q, z + C(q, σ), k + µ(D(q))

)
has no

predecessors, we have Jq,σ,s = ∅, and thus the configuration which immediately
follows ((q,−), z, k) is

(
(q,+), z + C(q, σ), k + µ(D(q))

)
.

By traversing G0 in this manner, M ′ eventually enters one of the configura-
tions in Q′

acc×Z[−ξ(n),ξ(n)]×Z[0,n+1] or Q′
rej×Z[−ξ(n),ξ(n)]×Z[0,n+1], and clearly

M ′ recognizes L. ��

3.2 Recognizability by 2Q1CAs

Next we show that the non-context-free languages Lsquare = {ambm
2 | m ≥ 1}

and Lprod = {am1bm2cm1m2 | m1,m2 ≥ 1}, which cannot be recognized by
2D1CAs [3], can be recognized by polynomial-time 2Q1CAs with arbitrary small
constant one-sided error. Other non-context-free languages Lm,m2,...,mk =
{am

1 a
m2

2 · · · amk

k | m ≥ 1} and Lpower = {amb2
m | m ≥ 1} are also shown rec-

ognizable by polynomial-time 2Q1CAs with arbitrary small constant one-sided

Quantum versus Deterministic Counter Automata 591

error. The recognizability results shown in this subsection hold both in the usual
model with a counter tape of unbounded length and in the restricted model with
a counter tape of bounded length.
Proposition 9. For a language L ∈ {Lsquare, Lprod, Lm,m2,...,mk} and for an
arbitrary fixed integer N ≥ 2, there exists a 2Q1CA M such that (i) for x ∈ L,
M halts after O(N |x|) steps and accepts x with certainty, and (ii) for x �∈ L, M
halts after at most O(N |x|2) steps and rejects x with probability at least 1−1/N .

Proof. We only show the case of Lsquare. The recognizability of Lprod can be
shown in a similar manner, while that of Lm,m2,...,mk is shown by combining
2Q1CAs for Lsquare and Lprod.

We construct a 2Q1CA Msquare = (Q,Σ, δ, q0, Qacc, Qrej) such that for every
input x of length n and any function ξ, ξ(n) ≥ n, Msquare equipped with its
counter tape of length 2ξ(n) + 1 recognizes Lsquare. For Msquare, let the state set
Q = {q0, q1, q2, q3, q4, qi

5,j1
, qi

6,j2
, qi

7 | 1 ≤ i ≤ N, 1 ≤ j1 ≤ i, 1 ≤ j2 ≤ N − i+ 1},
the accepting state set Qacc = {qN

7 }, and the rejecting state set Qrej = {qj
7 | 1 ≤

j ≤ N − 1}. Define the transition matrices Vσ,s, the counter function C, and the
tape-head function D as follows:

Vc,0|q0〉 = |q0〉,
Vc,0|qi

5,0〉 = |qi
6,N−i+1〉,

Va,0|q0〉 = |q0〉,
Va,0|q1〉 = |q2〉,
Va,0|q3〉 = |q4〉,
Va,s|qi

5,j+1〉 = |qi
5,j〉

for j �= 0, i,
Va,0|qi

5,i+1〉 = |qi
5,i〉,

Va,1|qi
5,i+1〉 = |qi

5,2i〉,
Va,1|qi

5,1〉 = |qi
5,i〉,

Va,0|qi
6,j+1〉 = |qi

6,j〉
for 1 ≤ j ≤ N − i,

Va,0|qi
6,1〉 = |qi

6,N−i+1〉,

V$,0|q2〉 = |q3〉,
V$,0|qi

6,N−i+1〉
= 1√

N

∑N
k=1 e

2πik
N

√−1|qk
7 〉,

Vb,0|q0〉 = |q1〉,
Vb,0|q2〉 = |q2〉,
Vb,0|q3〉 = |q3〉,
Vb,0|q4〉 = 1√

N

∑N
i=1 |qi

5,0〉,
Vb,1|qi

5,i〉 = |qi
5,0〉,

Vb,1|qi
5,0〉 = |qi

5,2i〉,
Vb,0|qi

6,j+1〉 = |qi
6,j〉,

Vb,0|qi
6,1〉 = |qi

6,N−i+1〉,

C(qi
5,2i, a) = −1,

C(qi
5,i, a) = +1,

C(qi
5,2i, b) = −1,

C(qi
5,0, a) = +1,

C(q, σ) = 0 otherwise,

D(qj) =→ for j = 0, 2, 4,
D(qj) =← for j = 1, 3,
D(qi

5,2i) =←,
D(qi

5,i) =→,
D(qı6,N−i+1) =→,
D(q) =↓ otherwise.

One can see that the computation of Msquare consists of three phases. The
first phase rejects any input not of the form a+b+. This phase is straightforward,
similar to the case of a two-way reversible finite state automaton (without a
counter) that recognizes every input of the form a+b+. For the input not of this
form, the computation terminates with rejection. Otherwise, the second phase
begins with the state q4 with the tape head reading the left-most b.

At the start of the second phase, the computation branches into N paths,
indicated by the states q15,0, . . . , q

N
5,0, each with amplitude 1/

√
N . For each of

these paths, Msquare moves the tape head to left and right deterministically
in the following way. Along the ith path, while the counter value is not zero,
the automaton decreases the counter value by one and moves the tape head
to left. In addition, every time the tape head reads the symbol a, it remains

592 Tomohiro Yamasaki, Hirotada Kobayashi, and Hiroshi Imai

stationary for i steps. Upon the counter value being zero, it repeats the following
until the tape head reads the left-most b: it increases the counter value by one
and moves the tape head to right. If the tape head reads the symbol c, the
computation enters the third phase with the state qi

5,0. Thus, while Msquare
is scanning a’s in the input during the second phase, the tape head requires
precisely (i + 1)(

∑m1−1
c=0 (2c + 1) + m1) = (i + 1)(m2

1 + m1) steps along the ith
path, where m1 is the number of a’s.

Along the ith path on the third phase, every time the tape head reads the
symbol a or b, it remains stationary for N − i+ 1 steps and then moves to right.
Upon reading the symbol $, each computation path again splits according to the
quantum Fourier transformation, yielding the single accepting state qN

7 and the
other rejecting states q17 , . . . , q

N−1
7 . Thus, while Msquare is scanning a’s and b’s in

the input during this phase, the tape head requires precisely (N−i+1)(m1+m2)
steps along the ith path, where m2 is the number of b’s. Therefore, it is easy to
see that, under the assumption i �= i′, (i+1)(m2

1 +m1)+(N− i+1)(m1 +m2) =
(i′ + 1)(m2

1 +m1) + (N − i′ + 1)(m1 +m2) if and only if m2
1 = m2.

First consider the case that m2
1 = m2. Since each of the N computation

paths reaches the symbol $ at the same time, the superposition immediately after
performing the quantum Fourier transformation is 1

N

∑N
i=1
∑N

k=1 e
2πik

N

√−1|qk
7 〉 =

|qN
7 〉. Hence the accepting state qN

7 is entered with certainty.
Next suppose that m2

1 �= m2. In this case, each of N paths reaches the symbol
$ at a different timing. Thus, there is no cancellation among the rejection states.
For each path, the conditional probability that an observation results in qN

7 at
the time is 1/N . It follows that the total probability that an observation results
in qN

7 is also 1/N . Hence the input is rejected with probability 1− 1/N .
It is clear that each possible computation path has length O(N |x|) for x ∈

Lsquare and at most O(N |x|2) for x �∈ Lsquare. ��
Finally, we state the recognizability of Lpower = {amb2

m | m ≥ 1} without a
proof. Interestingly, Lpower can be recognized by 2Q1CAs in linear-time.

Proposition 10. For the language Lpower and for an arbitrary fixed integer
N ≥ 2, there exists a 2Q1CA Mpower that accepts x ∈ Lpower with certainty and
rejects x �∈ Lpower with probability at least 1− 1/N . In either case, Mpower halts
after O(N |x|) steps with certainty.

4 1QkCAs versus 1DkCAs
First it is shown the strength of 1QkCAs that there exists a language that can
be recognized by 1QkCAs but not by 1DkCAs.

Fischer, Meyer, and Rosenberg [2] proved that the language Lk+1
0 = {am1

bam2b · · · amkbamk+1cam0 | mi ≥ 0,m0 = mj for some 1 ≤ j ≤ k + 1} cannot be
recognized by 1DkCAs. In contrast to this, we prove that, for any fixed k, Lk+1

0
is recognizable by bounded-error 1Q1CAs. Here one may consider a 1Q1CA as
a 1Q2CA whose second counter never changes its value, or a 2Q1CA whose
tape head moves to right by a square at every step. For the formal definition of
1Q1CAs, see [5,11,1].

Quantum versus Deterministic Counter Automata 593

Proposition 11. There exists a 1Q1CA Mk+1
0 that recognizes the language

Lk+1
0 with probability 1/2 + 1/(4k + 2).

Proof. We only show the recognizability of L3
0 = {am1bam2bam3cam0 | mi ≥ 0,

m0 = mj for some 1 ≤ j ≤ 3} for the case of k = 2. It is straightforward to
extend the proof to the case of general k.

Let L3
1 = {amba∗ba∗cam | m ≥ 0}, L3

2 = {a∗bamba∗cam | m ≥ 0}, and
L3

3 = {a∗ba∗bamcam | m ≥ 0}. It is easy to prove that each of L3
1, L3

2, and L3
3 is

recognizable by a one-way reversible one-counter automaton (1R1CA). Let each
M3

1 , M3
2 , and M3

3 be the 1R1CA for L3
1, L3

2, and L3
3, respectively. We construct

a 1Q1CA M3
0 by using M3

1 , M3
2 , and M3

3 . M3
0 behaves as follows.

After reading the left end-marker c, the computation branches into four
paths, path-1, path-2, path-3, and path-4, with amplitudes

√
1/5,

√
1/5,

√
1/5,

and
√

2/5, respectively. In each path-i, 1 ≤ i ≤ 3, M3
0 behaves in the same

manner as M3
i to check whether the input is in L3

i . In the path-4, M3
0 accepts

any input.
Then, for every input x ∈ L3

0, there is at least one path among the path-1,
path-2, and path-3 in which x is accepted. Therefore, M3

0 accepts x ∈ L3
0 with

probability 1/5 + 2/5 = 3/5. On the other hand, every input x �∈ L3
0 is always

rejected in all of the three paths, path-1, path-2, and path-3. Thus M3
0 rejects

x �∈ L3
0 with probability at least 1/5 + 1/5 + 1/5 = 3/5.

Reversibility of this automaton is clear by its construction. ��
Next, in contrast to Proposition 11, it is shown the weakness of 1QkCAs that

there is a regular language that cannot be recognized by bounded-error 1QkCAs.
For the no-counter and one-counter cases, it is known that the language

Llast = {{a, b}∗a} cannot be recognized by 1QFAs and 1Q1CAs. Since Llast is
regular, it is obviously recognizable by one-way deterministic finite state au-
tomata (and hence by 1DkCAs for any fixed k). These unrecognizability results
for Llast are from the fact shown by Nayak [10], which states that, for each fixed
n ≥ 0, any general one-way quantum automaton that recognizes the language
{wa | w ∈ {a, b}∗, |w| ≤ n} must have 2Ω(n) quantum basis states. It is easy to
extend these to the k-counter case.

Proposition 12. For any fixed k ≥ 0, the language Llast cannot be recognized
by 1QkCAs with bounded error.

Proof. By the fact shown by Nayak, a 1QkCA for Llast must have at least 2Ω(n)

quantum basis states for every input of length n. For every input of length n,
however, the number of basis states a 1QkCA can have is at most (2n+ 5)k|Q|,
which is less than 2Ω(n) for sufficiently large n. This completes the proof. ��

References

1. R. J. Bonner, R. Freivalds, and M. Kravtsev. Quantum versus probabilistic one-way
finite automata with counter. In Proceedings of the 28th Conference on Current
Trends in Theory and Practice of Informatics (SOFSEM 2001), volume 2234 of
Lecture Notes in Computer Science, pages 181–190, 2001.

594 Tomohiro Yamasaki, Hirotada Kobayashi, and Hiroshi Imai

2. P. C. Fischer, A. R. Meyer, and A. L. Rosenberg. Counter machines and counter
languages. Mathematical Systems Theory, 2(3):265–283, 1968.

3. E. M. Gurari and O. H. Ibarra. Two-way counter machines and Diophantine
equations. Journal of the ACM, 29(3):863–873, 1982.

4. A. Kondacs and J. Watrous. On the power of quantum finite state automata. In
Proceedings of the 38th Annual Symposium on Foundations of Computer Science,
pages 66–75, 1997.

5. M. Kravtsev. Quantum finite one-counter automata. In Proceedings of the 26th
Conference on Current Trends in Theory and Practice of Informatics (SOFSEM
’99), volume 1725 of Lecture Notes in Computer Science, pages 431–440, 1999.

6. K.-J. Lange, P. McKenzie, and A. Tapp. Reversible space equals deterministic
space. Journal of Computer and System Sciences, 60(2):354–367, 2000.

7. M. L. Minsky. Recursive unsolvability of Post’s problem of ‘tag’ and other topics
in the theory of Turing machines. Annals of Mathematics, 74(3):437–455, 1961.

8. C. Moore and J. P. Crutchfield. Quantum automata and quantum grammars.
Theoretical Computer Science, 237(1–2):275–306, 2000.

9. K. Morita. Universality of a reversible two-counter machine. Theoretical Computer
Science, 168(2):303–320, 1996.

10. A. Nayak. Optimal lower bounds for quantum automata and random access codes.
In Proceedings of the 40th Annual Symposium on Foundations of Computer Science,
pages 369–376, 1999.

11. T. Yamasaki, H. Kobayashi, Y. Tokunaga, and H. Imai. One-way probabilistic
reversible and quantum one-counter automata. Theoretical Computer Science, in
press. Preliminary version appeared in Proceedings of the 6th Annual Interna-
tional Computing and Combinatorics Conference, volume 1858 of Lecture Notes in
Computer Science, pages 436–446, 2000.

Quantum DNF Learnability Revisited

Jeffrey C. Jackson1,∗, Christino Tamon2,∗∗, and Tomoyuki Yamakami3

1 Duquesne University
Pittsburgh, PA 15282-1754, USA

jackson@mathcs.duq.edu
2 Clarkson University

Potsdam, NY 13699-5815, USA
tino@clarkson.edu

3 University of Ottawa
Ottawa, Canada

yamakami@site.uottawa.ca

Abstract. We describe a quantum PAC learning algorithm for DNF
formulae under the uniform distribution with a query complexity of
Õ(s3/ε + s2/ε2), where s is the size of DNF formula and ε is the PAC
error accuracy1. If s and 1/ε are comparable, this gives a modest improve-
ment over a previously known classical query complexity of Õ(ns2/ε2).
We also show a lower bound of Ω(s log n/n) on the query complexity of
any quantum PAC algorithm for learning a DNF of size s with n inputs
under the uniform distribution.

1 Introduction

In this abstract we describe a quantum learning algorithm for DNF formulae
under the uniform distribution using quantum membership queries. Although
Bshouty and Jackson [2] have shown that it is possible to adapt Jackson’s Har-
monic Sieve algorithm [10] to the quantum setting, our goal is different. We
will focus on reducing the number of quantum membership queries used by the
DNF learning algorithm whereas their motivation was in showing that quantum
examples are sufficient for learning DNF.

The Harmonic Sieve HS algorithm combines two crucial independent algo-
rithms. The first algorithm is an inner algorithm for finding parity functions
that weakly approximate the target DNF function. The second algorithm used
in the Harmonic Sieve is an outer algorithm that is a boosting algorithm. A weak
learning algorithm is an algorithm that produces hypotheses whose accuracy are
slightly better than random guessing. Boosting is a method for improving the
accuracy of hypotheses given by a weak learning algorithm.

For the inner algorithm, a Fourier-based algorithm given in [12] (called the
KM algorithm) is used in HS for finding the weak parity approximators. The
KM algorithm is based on a similar method given by Goldreich and Levin [6]
∗ This material is based upon work supported by the NSF Grant No. CCR-9877079.

∗∗ This work is supported by the NSF Grant No. DMR-0121146.
1 The notation Õ(f) hides extra logarithmic factors, i.e., Õ(f) = O(f log f).

O.H. Ibarra and L. Zhang (Eds.): COCOON 2002, LNCS 2387, pp. 595–604, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

596 Jeffrey C. Jackson, Christino Tamon, and Tomoyuki Yamakami

in their seminal work on hardcore bits in cryptography. Subsequently, Levin
[13] and Goldreich [7], independently, gave highly improved methods for solving
this so-called Goldreich-Levin problem. Their ideas were adapted by Bshouty
et al. [3] to obtain a weak learning algorithm for DNF of n inputs with query
and time complexity of Õ(n/γ2), where γ is the weak advantage of the parity
approximator. By a result in [10], γ = O(1/s) for DNF formula of size s.

For the outer algorithm, the original HS used a boosting method of Freund
[5] called F1. Recently, it has been shown by Klivans and Servedio [11] that Fre-
und’s other boosting algorithm called BComb gave superior running times. Let γ
be the weak advantage of the weak learning algorithm and let ε be the target ac-
curacy. Then Freund proved that F1 is a O(1/ε3)-smooth O(γ−2 log(1/ε))-stage
algorithm whereas BComb is a Õ(1/ε)-smooth O(γ−2 log(1/ε))-stage boosting al-
gorithm. The fastest known algorithm for learning DNF is obtained by combining
the two improved independent components that results in a total running time
of Õ(ns4/ε2) and a query complexity of Õ(ns2/ε2) (see [3,11] and the references
therein).

We describe an efficient quantum DNF learning algorithm by combining a
quantum Goldreich-Levin algorithm QGL of Adcock and Cleve [1] with the su-
perior boosting algorithm BComb. The quantum algorithm of Adcock and Cleve
used only O(1/γ) queries (beating a classical lower bound of Ω(n/γ2) proved
also in [1]). After adapting both algorithms for quantum PAC learning, we
obtain a quantum Harmonic Sieve algorithm QHS with a sample complexity
of Õ(s3/ε + s2/ε2). In contrast to the best known classical upper bound of
Õ(ns2/ε2), this gives a modest improvement if s and 1/ε are comparable.

As shown in [1], the quantum Goldreich-Levin algorithm has applications to
quantum cryptography. In this work, we show one of its applications in compu-
tational learning theory.

For the sake of exposition, in this abstract we will describe our quantum
DNF PAC learning algorithm using a conceptually simpler boosting algorithm
SmoothBoost given by Servedio [14]. We describe a boost-by-filtering version
of Servedio’s SmoothBoost that is a O(1/ε)-smooth O(γ−2ε−1)-stage boosting
algorithm. So, we incur an extra 1/ε factor in the sample complexity. We defer
the details of using BComb in QHS to the final version of this paper.

Finally, we prove a query lower bound of Ω(s log n/n) on any quantum PAC
learning algorithm for DNF under the uniform distribution with (quantum)
membership queries.

2 Preliminaries

We are interested in algorithms for learning approximations to an unknown
function that is a member of a particular class of functions. The specific func-
tion class of interest in this paper is that of DNF expressions, that is, Boolean
functions that can be expressed as a disjunction of terms, where each term is a
conjunction of Boolean variables (possibly negated). Given a target DNF expres-
sion f : {0, 1}n → {−1,+1} having s terms along with an accuracy parameter

Quantum DNF Learnability Revisited 597

Input: Parameters 0 < ε < 1/2, 0 ≤ γ < 1/2
Sample S of target f
Weak learning algorithm WL

Output: Hypothesis h

1. US ≡ the uniform distribution over S
2. M1(x) ≡ 1, ∀x ∈ S
3. N0(x) ≡ 0, ∀x ∈ S
4. θ ← γ/(2 + γ)
5. t← 1
6. while Ex∼US [Mt(x)] > ε do
7. Dt(x) ≡Mt(x)/(mEx∼US [Mt(x)]), ∀x ∈ S
8. ht ← WL(S, Dt, δ = Ω(ε−1γ−2))
9. Nt(x) ≡ Nt−1(x) + f(x)ht(x)− θ, ∀x ∈ S

10. Mt+1(x) ≡ [[Nt(x) < 0]] + (1− γ)Nt(x)/2[[Nt(x) ≥ 0]], ∀x ∈ S
11. t← t + 1
12. end while
13. T ← t− 1
14. H ≡ 1

T

∑T
i=1 hi

15. return h ≡ sign(H).

Fig. 1. The SmoothBoost algorithm of Servedio [14].

0 < ε < 1/2 and a confidence parameter δ > 0, the goal is to with probability at
least 1− δ produce a hypothesis h such Prx∼Un

[f(x) �= h(x)] < ε, where Un rep-
resents the uniform distribution over {0, 1}n. We will sometimes refer to such an
h as an ε-approximator to f , or equivalently say that h has 1

2 − ε advantage (this
represents the advantage over the agreement between f and a random function,
which is 1/2). A learning algorithm that can guarantee only γ > 0 advantage
in the hypothesis produced but can do so with arbitrarily small probability of
failure δ is called a weak learning algorithm, and the hypothesis produced is a
weak approximator.

The information our learning algorithm is given about the target function
varies. One form is a sample, that is, a set S of input/output pairs for the
function. We often use x to denote an input and f(x) the associated output, and
x ∈ S to denote that x is one of the inputs of the pairs in S. Another type of
information we sometimes use is a membership oracle for f , MEMf . Such an
oracle is given an input x and returns the function’s output f(x).

3 A Smoother Boost-by-Filtering Algorithm

A modification of Servedio’s SmoothBoost boosting algorithm [14] is described in
this section. A special case (discrete weak hypotheses and fixed margin) version
of SmoothBoost sufficient for our purposes is shown in Figure 1. SmoothBoost
is a boosting-by-sampling method that can be applied to a weak learning algo-

598 Jeffrey C. Jackson, Christino Tamon, and Tomoyuki Yamakami

rithm in order to produce a hypothesis that closely approximates the sample.
Specifically, SmoothBoost receives as input a sample S of size m as well as ac-
curacy parameter ε. It is also given a weak learning algorithm WL. The boosting
algorithm defines a series of distributions Dt over S and successively calls the
weak learning algorithm, providing it with the sample S and with one of the dis-
tributions Dt. In the end, the algorithm combines the weak hypotheses returned
by the calls to the weak learner into a single hypothesis h.

Servedio proves three key properties of SmoothBoost:

Lemma 1 (Servedio). Let f be a target function, and let S, ε, γ, h, and Dt

be as defined in Figure 1. Then

1. If every weak hypothesis ht returned by WL has advantage at least γ with
respect to Dt, then SmoothBoost will terminate after T = O(ε−1γ−2) stages.

2. If SmoothBoost terminates, then Prx∼US
[f(x) �= h(x)] < ε, where US rep-

resents the uniform distribution over S (Servedio actually proves a stronger
margin result that implies this).

3. L∞(mDt) ≤ 1/ε for all t, where m = |S| (this is the smoothness property
of SmoothBoost).

Here we adapt this algorithm to obtain a boosting-by-filtering algorithm
that will be used by the Harmonic Sieve. First, notice that Lemma 1 holds
for the special case S = {0, 1}n. However, there are potential problems with
running the SmoothBoost algorithm directly on such a large S. First, it is not
computationally feasible to exactly compute Ex∼Un

[Mt(x)], where Un represents
the uniform distribution over {0, 1}n. So instead we must estimate this quantity
by sampling. This has a small impact on both the form of the loop condition
for the algorithm (line 6), but also on the “distributions” Dt passed to the weak
learner (line 7). In fact, the Dt that will be passed to the weak learner will
generally not be a true distribution at all, but instead a constant multiplied by
a distribution due to the constant error in our estimate of Ex∼Un [Mt(x)].

We will deal with the weak learner later, so for now let us assume that the
weak learner produces the same hypothesis ht given an approximation to Dt

as it would given the actual distribution. Then notice that the computations
for Nt and Mt+1 are unchanged, so the only impact on the boosting algorithm
has to do with the loop condition at line 6. This is easily addressed: let Et

represent an estimate of Ex∼Un
[Mt(x)] to within additive error ε/3 and change

the loop condition to Et > 2ε/3. Then if the loop terminates it must be that
Ex∼Un [Mt(x)] ≤ ε, as before. It is easily verified that given this condition, Serve-
dio’s proof implies that h is an ε-approximator to f with respect to the uniform
distribution. Furthermore, since Ex∼Un [Mt(x)] ≥ ε/3 if the algorithm termi-
nates, the other statements of Lemma 1 change only by constant factors. In par-
ticular, the smoothness condition of the lemma now becomes L∞(2nDt) ≤ 3/ε
for all t.

Finally, because O ≤ Mt(x) ≤ 1 for all t and x, the Hoeffding bound gives
that taking the sample mean of Mt(x) over a sample of size Ω(ε−2) will, with

Quantum DNF Learnability Revisited 599

Input: Parameters 0 < ε < 1/2, 0 ≤ γ < 1/2
Membership oracle MEMf

Weak learning algorithm WL

Output: Hypothesis h

1. Draw uniform sample R of Ω(log(ε−1γ−1)/ε2) instances and label using MEMf

2. M1(x) ≡ 1, ∀x ∈ {0, 1}n, N0(x) ≡ 0, ∀x ∈ {0, 1}n
3. θ ← γ/(2 + γ)
4. t← 1
5. while Ex∼UR [Mt(x)] > 2ε/3 do
6. Dt(x) ≡Mt(x)/(2nEx∼UR [Mt(x)])
7. ht ← WL(MEMf , Dt, δ = Ω(ε−1γ−2))
8. Nt(x) ≡ Nt−1(x) + f(x)ht(x)− θ, ∀x ∈ {0, 1}n
9. Mt+1(x) ≡ [[Nt(x) < 0]] + (1− γ)Nt(x)/2[[Nt(x) ≥ 0]], ∀x ∈ {0, 1}n

10. t← t + 1
11. end while
12. T ← t− 1
13. H ≡ 1

T

∑T
i=1 hi

14. return h ≡ sign(H).

Fig. 2. The SmoothBoost modified for boost-by-filtering.

constant probability, produce an estimate with additive error at most ε/3. Fur-
thermore, if the algorithm terminates in T steps, then a single uniform random
sample R of size Ω(log(T)/ε2) guarantees, with constant probability, that esti-
mating the expected value of Mt(x) by the sample mean over R at every step t
will produce an ε/3 accurate estimate at every step.

Figure 2 presents the modified SmoothBoost algorithm. Notice that in place
of a sample S representing the target function f , we are assuming that we
are given a membership oracle MEMf . We will subsequently consider quantum
versions of this algorithm and of the membership oracle. For this reason, we show
the definitions of M and N as being over all of {0, 1}n, although for a classical
algorithm the only values that would actually be used are those corresponding
to x ∈ R.

While the SmoothBoost algorithm has been presented for illustration, Kli-
vans and Servedio [11] have shown that one of Freund’s boosting algorithms,
which they call BComb, is actually slightly superior to SmoothBoost for our
purposes. Specifically, they note that BComb has properties similar to those of
SmoothBoost given in Lemma 1, with the change that the number of stages T
improves from O(ε−1γ−2) to O(log(1/ε)/γ2) while the smoothness of each of the
distributions Dt passed to the weak learner satisfies (when learning over all of
{0, 1}n) L∞(2nDt) = O(log(1/ε)/ε). We will continue to use SmoothBoost in
our analysis here, since BComb and its analysis are noticeably more complicated
than SmoothBoost and its analysis. However, our final sample size bounds will
be stated as if BComb is being used, and the final version of this paper will include
details of the BComb analysis.

600 Jeffrey C. Jackson, Christino Tamon, and Tomoyuki Yamakami

Input: Parameters n, γ ∈ (0, 1/2), δ > 0
Quantum membership oracle QMQf for Boolean function f

represented by a unitary tranformation UMQ

Random uniform sample R of size Ω̃(γ−2 log(1/δ)).
Output: A coefficient A with the property that PrD[f = χA] ≥ 1

2 + γ
with probability at least 1− δ.

1. Let C be defined as in Equation 1.
2. Label R using QMQf .
3. Define a sampling-based UEQ as in Equation 2.
4. |ϕ〉 ← C|0n〉I |0m〉A|0〉B
5. for k = 1, . . . , O(1/γ) do
6. |ϕ〉 ← −CU0C

†UEQ|ϕ〉
7. end for
8. Measure and return the contents of register I.

Fig. 3. The quantum weak learning algorithm QWDNF for uniform distribution.

4 A Query-Efficient Quantum WDNF Algorithm

In this section we describe a quantum weak learning algorithm WDNF for finding
parity approximators of non-Boolean functions under smooth distributions. This
algorithm is based on a quantum Goldreich-Levin algorithm given by Adcock and
Cleve [1]. For completeness we describe the quantum Goldreich-Levin algorithm
in the following. This algorithm uses the standard Pauli X (complement) and
Z (controlled phase flip) gates as well as the Hadamard H gate (see [4]). Let
U0(
∑

x αx|x〉) =
∑

x�=0 αx|x〉−α0|0〉 be the unitary transformation that flips the
phase of the all-zero state.

The UMQ transformation that represents a noisy membership oracle with
respect to a parity function χA defined in [1] is given by

UMQ|x〉|0m〉 = αx|x〉|ux, A · x〉+ βx|x〉|vx, A · x〉,
where

∑
x α

2
x ≥ 1/2 + γ and

∑
x β

2
x ≤ 1/2 − γ. By a result of Jackson [10],

for any DNF formula f with s terms, there is a parity function A such that
Pr[f(x) = χA(x)] ≥ 1/2 + γ/2, for γ = 1/(2s+ 1). Thus, a noiseless DNF oracle
QMQf is a noisy oracle UMQ for some parity function χA. Thus, we may assume
that UMQ is a unitary transformation that represents a quantum membership
oracle QMQf for a DNF formula f that maps |x〉|0m〉 to |x〉|ux, f(x)〉, for some
string ux ∈ {0, 1}m−1 that represents the work space of the oracle.

The quantum algorithm QGL of Adcock and Cleve is represented by the fol-
lowing unitary transformation

C = (Hn ⊗ Im+1)(U†
MQ ⊗ I1)(In+m−1 ⊗ Z)(UMQ ⊗ I1)(Hn ⊗ Im ⊗X) (1)

applied to the initial superposition of |0n, 0m, 0〉. In [1] it was proved that the
quantum algorithm QGL prepares a superposition of all n-bit strings such that the

Quantum DNF Learnability Revisited 601

probability of observing the coefficient A is 4γ2. By repeating this for O(1/γ2)
stages, we can recover A with constant probability.

The number of stages can be reduced to O(1/γ) by using a technique called
amplitude amplification. This amplification technique uses an iterate of the form
G = (−CU0C

†UEQ)kC|0n, 0m, 0〉, where k is approximately O(1/γ), and UEQ is
a unitary transformation that represents a quantum equivalence oracle QEQf .
The transformation UEQ is defined as

UEQ|a〉 =
{−|a〉 if |E[fχa]| ≥ θ
|a〉 otherwise (2)

For the purpose of learning DNF, we need to simulate UEQ using a sampling
algorithm that has access to QMQf . A classical application of Hoeffding sam-
pling requires Ω(1/γ2) queries to QMQf

2. To simulate UEQ, we will simply use
a sample R of size Ω(1/γ2 log(1/δ)) to obtain a good estimate with probability
at least 1− δ.

Finally, recall that we will be applying boosting to this weak learning algo-
rithm, which means that QWDNF will be called a number of times. However, it
is not necessary to draw a new random sample R each time QWDNF is called, as
the boosting algorithm merely wants a guarantee that the algorithm succeeds
with high probability and does not require independence. The resulting quan-
tum weak learning algorithm for DNF, which we denote QWDNF, is described in
Figure 3.

4.1 Non-Boolean Functions over Smooth Distributions

Recall that in the Harmonic Sieve algorithm [10], we need to find weak Parity
approximators for non-Boolean functions g that is based on the DNF formula f
and the current boosting distributionD in SmoothBoost, i.e., we need to consider
expressions of the form (we have dropped subscripts for convenience)

ED[fχA] =
∑

x

M(x)
2nE[M(x)]

f(x)χA(x) =
E[MfχA]

E[M]
.

This shows a reduction from finding a coefficient A such that |ED[fχA]| is large
to finding a coefficient A so that |EU [gχA]|, where g(x) = M(x)f(x), is large. As-
suming that E[M(x)] ≥ ε/3, we will use the algorithm QWDNF to find a coefficient
A such that for some constant c2 |E[MfχA]| ≥ c2ε

3(2s+1)
·= Γ.

Note that 0 < M(x) ≤ 1, for all x. Thus we can use a technique of Bshouty
and Jackson [2] that transforms the problem to the individual bits of M(x). Let
d = log(3/Γ), where Γ is as above. Let α(x) = �2dM(x)	/2d, i.e., M(x) trun-
cated to include only d of its most significant bits. Assume that α=

∑d
j=1 αj2−j+

k2−d, where αj ∈ {−1, 1} and k ∈ {−1, 0, 1}. Thus
2 Grover has proposed a quantum algorithm for estimating the mean that requires

O(1
γ

log log 1
γ

) queries. However, in our setting, we will use fewer queries if we esti-
mate this value classically because we can use a single sample for all estimates, as
discussed below.

602 Jeffrey C. Jackson, Christino Tamon, and Tomoyuki Yamakami

|E[MfχA]| − Γ

3
≤ |E[αfχA]| ≤ max

j
|E[αjfχA]|+ Γ

3

and therefore there exists j so that |E[αjfχA]| ≥ Γ/3, assuming |E[MfχA]| ≥ Γ .
Note that to simulate UEQ for verifying that the non-Boolean function g(x) =

M(x)f(x) has a Γ -heavy coefficient at A, i.e., |ĝ(A)| ≥ Γ , we need a sample of
size at least 1/Γ 2 ∼ (s/ε)2.

5 A Quantum Harmonic Sieve Algorithm

In this section, we describe a quantum version of the Harmonic Sieve algo-
rithm obtained by combining the quantum Goldreich-Levin algorithm and the
SmoothBoost boosting algorithm (see Figure 4).

The top level part of this algorithm involves O(s2/ε) boosting rounds3 and
each round requires invoking the algorithm QWDNF that uses Õ(s/ε) queries. The
“oracle” QMQf · Dt represents the procedure that will produce Boolean func-
tions representing the bits of Mtf and simulate quantum membership oracles
to be passed to QWDNF. There is an additional cost of a random sample of size
Õ(s2/ε2) for estimating the expression E[Mt] to within O(ε) and for simulating
the equivalence oracle UEQ used by QWDNF. The latter step requires estimat-
ing the expression E[MtfχA] to within O(ε/s) accuracy. This random sample
is shared among all boosting stages and all calls to QWDNF. The key property
exploited here is the oblivious nature of the sampling steps.

Thus the overall algorithm, if BComb is used as the boosting algorithm, re-
quires Õ(s3/ε + s2/ε2) sample complexity. The best classical algorithm (also
based on BComb) has complexity Õ(ns2/ε2). Thus, for s = Θ(1/ε), the quantum
algorithm is an improvement by a factor of n.

6 Lower Bounds

In this section, we prove a lower bound on the query complexity of any quantum
PAC learning algorithm for DNF formulae.

Theorem 1. Let s ≥ n/ log n. Then any quantum PAC learning algorithm re-
quires Ω(s log n/n) queries to learn a DNF formula of size s over n variables
under the uniform distribution, given ε < 1/4 and any constant δ > 0.

Proof We use a construction given in Bshouty et al. [3]. Let t = log s and u =
n−t. Consider the class of DNF formulae C =

{∨
a∈{0,1}t xaya : 〈ya〉a∈{0,1}t

}
,

over the variable set of V = {x1, . . . , xt} ∪ {y1, . . . , yu}, where xa =
∧t

i=1 x
ai
i ,

with the convention x0
i = xi and x1

i = xi, and for each a ∈ {0, 1}t, ya is a
constant (0 or 1) or one of the variables yi or its negation. Each f ∈ C is specified
uniquely by a word y ∈ Σs over the alphabet Σ = {0, 1, y1, y1, . . . , yu, yu},
i.e., we may denote fy to be the DNF specified by the word y ∈ Σs. By the
3 This could be improved to O(s2 log(1/ε)) rounds if Freund’s BComb algorithm is used.

Quantum DNF Learnability Revisited 603

Input: Parameters 0 < ε, δ < 1, n, a quantum membership oracle QMQf for a DNF
formula f , s (the size of DNF f),
Output: h so that Pr[f �= h] < ε.

1. Draw uniform sample R of Ω(s2/ε2) instances and label using QMQf

2. γ ← 1/(8s + 4) (weak advantage)
3. k ← c1γ

−2ε−1 (number of boosting stages)
4. M1 ≡ 1 (all-one function), N0 ≡ 0 (all-zero function)
5. for t = 1, . . . , k do
6. Et ← Ex∼UR [Mt(x)]
7. if Et ≤ 2ε/3 then break end if
8. Dt ≡Mt/(2nEt)
9. ht ← QWDNF(n, γε, δ/2k, QMQf ·Dt, R) where PrDt [ht(x) �= f(x)] ≤ 1

2 − γ.
10. Nt ≡ Nt−1 + fht − θ
11. Mt+1 ≡ [[Nt < 0]] + (1− γ)Nt/2[[Nt ≥ 0]]
12. end do
13. T = t− 1
14. H(x) ≡ 1

T

∑T
i=1 hi(x)

15. return h(x) = sign(H(x))

Fig. 4. The new QHS algorithm.

Gilbert-Varshamov bound, there is a code L ⊂ Σs with minimum distance αs
of size at least |Σ|s

∑αs
k=0 (s

k)(|Σ|−1)k
≥
(

(2u+2)1−α

2

)s

We focus on CL ⊂ C where

the words y are taken from L. Note that for any distinct y, z ∈ L we have
PrU [fy �= fz] = EU [fy⊕z] ≥ αs/2, where the probability is taken over the
uniform distribution on V . Letting 2ε = αs/2, this implies that any two distinct
DNF functions fy, fz, where y, z ∈ L, are (2ε)-separated. So any (ε, δ)-PAC
algorithm for CL must return exactly the unknown target function.

Now let A be any quantum (ε, δ)-PAC algorithm with access to a quantum
membership oracle QMQf associated with a target DNF function f . Suppose
that A makes T queries for any function f ∈ CL. Following the notation in [8],
let Xf be the truth table of the DNF function f , i.e., Xf is a binary vector
of length N = 2n. Let Ph(Xf) be the probability function of A of returning as
answer a DNF function h when the oracle is QMQf , for h, f ∈ CL. By the PAC
property of A, we have

– Pf (Xf) ≥ 1− δ
–
∑

h:h�=f Ph(Xf) < δ

It is known that Pf is a multivariate polynomial of degree 2T over Xh, for any
f, h. Let N0 =

∑2T
t=0

(
N
t

)
. For X ∈ {0, 1}N , let X̃ ∈ {0, 1}N0 be the vector

obtained by taking all �-subsets of [N], � ≤ 2T . The coefficients of Ph can be
specified by a real vector Vh ∈ RN0 and Ph(Xf) = V T

h X
f . Let M be a matrix

of size |CL| × N0 whose rows are given by the vectors V T
h for all h ∈ CL.

Let N be a matrix of size |CL| × |CL| whose columns are given by the vectors

604 Jeffrey C. Jackson, Christino Tamon, and Tomoyuki Yamakami

MVg for all g ∈ CL. Observe that the (h, f) entry in the matrix N is given by
Ph(Xf). As in [8], we argue that since N is diagonally dominant (from the PAC
conditions on δ above), it has full rank. Thus N0 ≥ |CL|, which implies that

N2T ≥ |CL| ≥
(

(2u+2)1−α

2

)s

. This implies that 4nT ≥ s log(n)(1− o(1)) which
gives T ≥ Ω(s log n/n). ��

Acknowledgments

The second author thanks Richard Cleve for helpful discussions on the quantum
Goldreich-Levin algorithm.

References

1. M. Adcock, R. Cleve. A Quantum Goldreich-Levin Theorem with Cryptographic
Applications. 19th Int. Symp. Theor. Aspects of Comp. Sci., 2002.

2. N.H. Bshouty, J. Jackson. Learning DNF over the Uniform Distribution using a
Quantum Example Oracle. SIAM J. Computing, 28(3):1136-1153, 1999.

3. N.H. Bshouty, J. Jackson, C. Tamon. More Efficient PAC-learning of DNF with
Membership Queries under the Uniform Distribution. 12th Ann. ACM Conf.
Comp. Learning Theory, 286-295, 1999.

4. M. Nielsen, I. Chuang. Quantum Computation and Quantum Information. Cam-
bridge University Press, 2000.

5. Y. Freund. Boosting a Weak Learning Algorithm by Majority. Inf. Comp.,
121(2):256-285, 1995.

6. O. Goldreich, L. Levin. A Hardcore Predicate for all One-Way Functions. 21st
Ann. ACM Symp. Theory of Computing, 25-32, 1989.

7. O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness.
Springer-Verlag, 1999.

8. S. Gortler, R. Servedio. Quantum versus Classical Learnability. 16th Conf. on
Comp. Complexity, 473-489, 2001.

9. R. Impagliazzo. Hard-core distributions for somewhat hard problems. 36th Ann.
Symp. Found. Comp. Sci., 538-545, 1998.

10. J. Jackson. An Efficient Membership-Query Algorithm for Learning DNF with
Respect to the Uniform Distribution. J. Comp. Syst. Sci., 55(3):414-440, 1997.

11. A. Klivans, R. Servedio. Boosting and Hardcore Sets. 40th Ann. Symp. Found.
Comp. Sci., 624-633, 1999.

12. E. Kushilevitz, Y. Mansour. Learning Decision Trees using the Fourier Spectrum.
SIAM J. Computing, 22(6): 1331-1348, 1993.

13. L. Levin. Randomness and Non-determinism. J. Symb. Logic, 58(3):1102-1103,
1993.

14. R. Servedio. Smooth Boosting and Linear Threshold Learning with Malicious
Noise. 14th Ann. Conf. Comp. Learning Theory, 473-489, 2001.

Author Index

Akutsu, Tatsuya 117
Altman, Tom 350
Arslan, Abdullah N. 127

Barequet, Gill 360
Boyar, Joan 87
Branković, Ljiljana 448
Braunmühl, Burchard von 47

Cai, Jin-Yi 18
Carter, Casey 191
Chandran, L. Sunil 220
Charles, Denis 18
Chen, D. 391
Chen, Danny Z. 456
Chia, G.L. 230
Czyzowicz, Jurek 300

Dahllöf, Vilhelm 535
Dantsin, Evgeny 171
Datta, Amitava 249
Deng, Xiaotie 28
Desmedt, Yvo 238
Duckworth, William 210

Eğecioğlu, Ömer 127
Epstein, Leah 467
Eulenstein, O. 391

Favrholdt, Lene M. 87, 467
Fernández-Baca, David 97, 391
Fernau, Henning 564
Fraczak, Wojciech 300
Fujita, Satoshi 476

Gabow, Harold N. 67
Gan, C.S. 230
Golovkins, Marats 574
Goundan, Pranava R. 514
Grolmusz, Vince 144

Ho, Chin-wen 77
Hoang, Thanh Minh 37
Hsieh, Sun-yuan 77
Hsieh, Yong-Hsian 494
Hsu, Tsan-sheng 77

Igarashi, Yoshihide 259, 350
Ilie, Lucian 320
Ilinkin, Ivaylo 381
Imai, Hiroshi 584
Ito, Takehiro 430

Jackson, Jeffrey C. 595
Janardan, Ravi 381
Jigang, Wu 181
Jonsson, Peter 535
Jurdziński, Tomasz 279

Kikuchi, Yosuke 200
Kim, Nam-Yeun 153
Klein, Andreas 310
Ko, Ming-tat 77
Kobayashi, Hirotada 584
Kravtsev, Maksim 574
Ku, Shan-Chyun 494
Kumar, M.V.N. Ashwin 514
Kutrib, Martin 310
Kuty�lowski, Miros�law 279

Lam, Tak-Wah 401
Lange, Tanja 137
Larsen, Kim S. 87
Lee, C.H. 28
Lee, Richard Chia-Tung 107
Lee, Won-Ho 153
Li, Ming 411
Lin, Yaw-Ling 525
Liu, Ding 340
Liu, James 504
Lu, Chin Lung 107
Lu, Hsueh-I 57
Luan, Shuang 456

Ma, Weimin 504
Mans, Bernard 210
Mart́ın-Vide, C. 290
Motegi, Kazuhiro 350
Mutzel, Petra 484
Myers, Gene 1

Nakano, Koji 269
Nandakumar, R. 514

606 Author Index

Nickelsen, Arfst 554
Nielsen, Morten N. 87
Nishizeki, Takao 430

Osawa, Shingo 200
Ott, Sascha 117

Păun, G. 290
Pandurangan, Gopal 330
Pavan, A. 18
Pazos, J. 290
Pelc, Andrzej 300
Pieprzyk, Josef 162
Prabhakaran, Manoj 340

Raghavan, Prabhakar 330
Ram, L. Shankar 220
Rangan, C. Pandu 514
Ravikumar, B. 440
Rettinger, Robert 47
Rodŕıguez-Patón, A. 290

Sadakane, Kunihiko 401
Sahni, Sartaj 2
Salomaa, Arto 3
Sanderson, M. 391
Schaefer, Marcus 370
Schröder, Heiko 181
Sedgwick, Eric 370
Sengupta, Samik 18
Shibata, Yukio 200
Širáň, Jozef 448
Skulrattanakulchai, San 67
Smid, Michiel 381
Srinathan, K. 514
Štefankovič, Daniel 370
Sun, Fangting 97
Sung, Wing-Kin 401

Takamura, Masataka 259
Tamon, Christino 595

Tang, Chuan Yi 107
Tantau, Till 554
Thambipillai, Srikanthan 181
Thierauf, Thomas 37
Tomescu, Ioan 544
Tran, Nicholas 191
Tromp, John 411

Upfal, Eli 330

Vitányi, Paul 411

Wahlström, Magnus 535
Wang, Biing-Feng 494
Wang, Huaxiong 162
Wang, Kanliang 504
Wang, Yongge 238
Weiskircher, René 484
Winterhof, Arne 137
Wolpert, Alexander 171

Xu, Jinhui 456
Xu, Yinfeng 504

Yamakami, Tomoyuki 595
Yamasaki, Tomohiro 584
Yiu, Siu-Ming 401
Yoo, Kee-Young 153
You, Jane 504
Yu, Sheng 320
Yu, Wei 97

Zatopiański, Jan 279
Zhang, Kaizhong 320
Zhao, Yunlei 28
Zheng, Xizhong 47
Zhou, Xiao 430
Zhu, Binhai 420
Zhu, Hong 28
Zomaya, Albert Y. 249

	Computing and Combinatorics
	Preface
	Program Committee
	Table of Contents
	The Assembly of the Human and Mouse Genomes
	Data Structures for One-Dimensional Packet Classification Using Most-Specific-Rule Matching
	DNA Complementarity and Paradigms of Computing
	1 Adleman's Experiment
	2 Complementarity
	3 Déjà vu: Complementarity and Universality
	4 Watson-Crick Finite Automata
	5 Matching Systems
	6 Lindenmayer Systems and Complementarity
	7 Conclusion
	References

	On Higher Arthur-Merlin Classes
	1 Introduction
	2 Preliminaries
	3 On ${rm BP}cdot Sigma _k$
	4 On ${rm BP}cdot Sigma _k cap {rm BP}cdot Pi _k$
	5 Examples of Languages in ${rm BP}cdot Sigma _k$
	6 Conclusions
	References

	(2+f(n))-SAT and Its Properties
	1 Introduction
	2 Properties of $(2+f(n))$-SAT
	3 A Candidate for Natual Problems in ${cal NPI}$ Under ${cal NP}not ={cal P}$
	4 Can the Candidate Be in $cal P$?
	5 Remarks and Conclusion
	References

	On the Minimal Polynomial of a Matrix
	1 Introduction
	2 Preliminaries
	3 The Minimal Polynomial
	3.1 Upper Bounds
	3.2 Lower Bounds

	4 Diagonalizability
	References

	Computable Real Functions of Bounded Variation and Semi-computable Real Numbers (Extended Abstract)
	1 Introduction
	2 Preliminaries
	3 Computable Functions of Bounded Variation
	4 $mathbb {CBV}({bf SC})$ and ${bf WC}$
	5 $mathbb {CBV}^2({bf LC})$ and $mathbb {CTF}({bf LC})$
	6 $mathbb {CMF}({bf WC})$ and $mathbb {CTF}({bf WC})$
	References

	Improved Compact Routing Tables for Planar Networks via Orderly Spanning Trees
	1 Introduction
	2 Preliminaries
	3 The Improved Design of Routing Tables
	4 Determining the Correct Port Efficiently
	5 Concluding Remarks
	References

	 Coloring Algorithms on Subcubic Graphs
	1 Introduction
	2 Decomposition Theorem & List Coloring Lemmas
	3 List Edge Coloring Algorithms
	3.1 Sequential Algorithm
	3.2 Parallel Algorithm

	4 Total Coloring Lemmas
	5 Total Coloring Algorithms
	5.1 Case 2 of the 5-Total-Coloring Algorithm
	5.2 Case 2 of the $lambda $-Total-Coloring Algorithm

	References

	Efficient Algorithms for the Hamiltonian Problem on Distance-Hereditary Graphs
	1 Introduction
	2 Preliminaries
	3 A Sequential Algorithm
	4 A Parallel Algorithm
	4.1 Computing $N(G_{v})$
	4.2 Computing $tar(x)$

	References

	Extending the Accommodating Function
	1 Introduction
	2 The Accommodating Function
	3 Unrestricted Bin Packing
	4 Unit Price Seat Reservation
	5 Comparison with Resource Augmentation
	5.1 Paging
	5.2 Other Problems

	6 Conclusion
	References

	Inverse Parametric Sequence Alignment
	1 Introduction
	2 Global Alignment without Gap Penalty
	3 Global Alignment with Gap Penalty
	4 Further Results and Open Problems
	References

	The Full Steiner Tree Problem in Phylogeny
	1 Introduction
	2 Preliminaries
	3 NP-Completeness Result
	4 MAX SNP-Hardness Result
	5 A $@mathbf {{begingroup 5endgroup over 3}}$-Approximation Algorithm for MIN-FSTP(1,2)
	References

	Inferring a Union of Halfspaces from Examples
	1 Introduction
	2 Hardness Results
	3 A Polynomial Time Algorithm in Two-Dimensions
	4 Approximation Algorithms in d-Dimensions
	5 Concluding Remarks
	References

	Dictionary Look-Up within Small Edit Distance
	1 Introduction
	2 Motivation: Hamming Distance Based Methods
	3 Edit Distance Based d-Queries
	3.1 Algorithm $LOOK-UP _{ed}$
	3.2 Algorithm $DFT-LOOK-UP _{ed}$

	4 Remarks
	5 Conclusion
	References

	Polynomial Interpolation of the Elliptic Curve and XTR Discrete Logarithm
	1 Introduction
	2 Basic Notations and Preliminaries
	3 The Elliptic Curve Discrete Logarithm
	4 The XTR Discrete Logarithm
	5 The Discrete Logarithm in Multiplicative Subgroups of a Finite Field
	References

	Co-orthogonal Codes (Extended Abstract)
	1 Introduction
	1.1 Orthogonal Codes
	1.2 Co-orthogonal Codes

	2 Constructing Co-orthogonal Codes Modulo a Composite Number
	2.1 k-Wise Co-orthogonal Codes

	3 Constructing Code $f(A)$ from f and A
	3.1 Our Main Construction
	3.2 Alternative Constructions
	3.3 Algorithmic Complexity of Computing $f(A)$

	4 Cryptographic Applications
	4.1 Membership Testing
	4.2 Non-binary, Non-self-paired Codes

	References

	Efficient Power-Sum Systolic Architectures for Public-Key Cryptosystems in GF(2m)
	1 Introduction
	2 Algorithm
	3 Systolic Architectures in GF(2m)
	3.1 Parallel-in Parallel-out
	3.2 Serial-in Serial-out

	4 Analysis
	5 Conclusion
	References

	A Combinatorial Approach to Anonymous Membership Broadcast
	1 Introduction
	2 Anonymous Membership Broadcast Schemes
	2.1 The Basic AMB Scheme

	3 Constructions of Cover-Free Set Systems
	3.1 CF Set Systems from Error-Correcting Codes
	3.2 CF Set Systems from Combinatorial Designs

	4 Bounds on CF Set Systems
	5 Generalizations
	References

	Solving Constraint Satisfaction Problems with DNA Computing
	1 Introduction
	2 Constraint Satisfaction Problems
	3 Solving CSPs with Joins
	4 DNA Operations
	5 DNA Implementation of the Join-Based Algorithm
	6 Probabilistic Nature of DNA Operations
	7 Error-Resilient Computation
	7.1 Probabilities of False Negative Error and False Positive Error
	7.2 Bounded Probabilities of Error

	References

	New Architecture and Algorithms for Degradable VLSI/WSI Arrays
	1 Introduction
	2 Definitions and Preliminaries
	3 New Architecture
	4 Algorithms
	4.1 New Column Rerouting
	4.2 New Row-Compensation Strategy
	4.3 Reconfiguration Algorithm

	5 Experimental Results
	6 Conclusions
	References

	Cluster: A Fast Tool to Identify Groups of Similar Programs
	1 Introduction
	2 Alignment Algorithm
	3 Clustering Algorithm
	4 Design and Implementation
	4.1 Input/Output Formats
	4.2 {tt parse()}
	4.3 {tt make_mosaic()}
	4.4 {tt align()}
	4.5 {tt group()}
	4.6 Optional Features

	5 Experimental Setup and Result
	6 Discussion
	References

	Broadcasting in Generalized de Bruijn Digraphs (Extended Abstract)
	1 Introduction
	2 Definition and Terminology
	3 Broadcasting in the Network
	4 Broadcasting in the Generalized de Bruijn Digraphs
	5 Conclusion and Further Studies
	References

	On the Connected Domination Number of Random Regular Graphs
	1 Introduction
	2 Random Graphs and Differential Equations
	3 A Simple Heuristic
	4 Algorithm Analysis
	References

	On the Number of Minimum Cuts in a Graph
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	3 The Partition Number and the Structural Parameters
	3.1 Partition Number, $p(G)$
	3.2 Radius and Diameter
	3.3 Politician Node
	3.4 Maximum and Minimum Degree
	3.5 Chordality
	3.6 A Tight Construction

	4 Edge Expansion and Girth
	References

	On Crossing Numbers of 5-Regular Graphs
	References

	Maximum Flows and Critical Vertices in AND/OR Graphs (Extended Abstract
	1 Introduction
	2 Minimum-Time-Cost Solution Graphs and PERT Graphs
	3 The Maximum Flow Problem in an AND/OR Graph
	4 The Problem of Finding Critical Vertices in an AND/OR Graph
	5 Maximum Additive Flows in an AND/OR Graph
	6 Comments and Open Problems
	References

	New Energy-Efficient Permutation Routing Protocol for Single-Hop Radio Networks
	1 Introduction
	2 Preliminaries
	2.1 An Overview of Our Protocol

	3 Permutation Routing on an $RN(p,k)$
	3.1 First Stage
	3.2 Second Stage

	References

	Simple Mutual Exclusion Algorithms Based on Bounded Tickets on the Asynchronous Shared Memory Model
	1 Introduction
	2 Preliminaries
	3 A Provisional Algorithm
	4 Mutual Exclusion Algorithms
	5 Concluding Remarks
	References

	Time and Energy Optimal List Ranking Algorithms on the k-Channel Broadcast Communication Model
	1 Introduction
	2 List Ranking Using List Shrink
	3 Time and Energy Optimal List Ranking
	4 List Ranking on the k-Channel BCM
	References

	Energy-Efficient Size Approximation of Radio Networks with No Collision Detection
	1 Introduction
	2 New Results
	3 Size Approximation Algorithm
	3.1 Basic Algorithm
	3.2 Improvements Idea
	3.3 Description of the Algorithm

	4 Analysis of the Algorithm
	4.1 Complexity Analysis
	4.2 Proof of Main Lemma

	References

	A New Class of Symbolic Abstract Neural Nets: Tissue P Systems
	1 Introduction
	2 Some Mathematical Prerequisites
	3 Tissue P Systems
	4 An Example
	5 The Power of tP systems
	5.1 Comparison with Chomsky Families
	5.2 Comparison with Lindenmayer Families

	6 Solving HPP in Linear Time
	References

	Transducers with Set Output
	1 Introduction
	2 Set Transducers
	3 Simple Transducers
	4 The Algorithm for Finding the Canonical Transducer
	References

	Self-Assembling Finite Automata
	1 Introduction
	2 Self-Assembling Finite Automata
	3 Hierarchies
	4 Closure Properties under Boolean Operations
	References

	Repetition Complexity of Words
	1 Introduction
	2 Repetition Complexity
	3 The Definition of Repetition Complexity
	4 Subword and Lempel-Ziv Complexities
	5 Relation with Lempel-Ziv Complexity
	6 Periodic Infinite Words and Complexity of Prefixes
	7 De Bruijn Words and Subword Complexity
	8 Computing the Repetition Complexity
	9 Conclusions and Further Research
	References

	Using PageRank to Characterize Web Structure
	1 Introduction
	2 Background and Related Work
	3 Web Graph Models
	4 Experiments
	5 Fitting the Models: Analysis and Simulations
	5.1 Degree-Based Selection
	5.2 PageRank-Based Selection
	5.3 Simulations of the Generative Models

	6 Conclusion
	References

	On Randomized Broadcasting and Gossiping in Radio Networks
	1 Introduction
	2 Preliminaries
	3 The Ω(Dlog (N/D)) Lower Bound for Randomized Radio Broadcast: A Simple Proof
	4 The $O(N log^{3}N)$ Randomized Algorithm for Gossiping
	5 Gossiping in Symmetric Radio Networks
	References

	Fast and Dependable Communication in Hyper-rings
	1 Introduction
	2 Preliminaries
	2.1 HR Construction
	2.2 Semi Hyper-rings
	2.3 Path Construction for SHRs

	3 Path Construction for HRs
	4 Concluding Remarks
	References

	The On-Line Heilbronn's Triangle Problem in Three and Four Dimensions
	1 Introduction
	2 The Construction in Three Dimensions
	2.1 Notation and Plan
	2.2 The Construction

	3 The Construction in Four Dimensions
	3.1 Notation and Plan
	3.2 Forbidden Balls
	3.3 Forbidden Cylinders
	3.4 Forbidden Prisms
	3.5 Forbidden Slabs
	3.6 Epilogue

	4 Conclusion
	References

	Algorithms for Normal Curves and Surfaces
	1 Introduction
	2 Normal Coordinates
	3 Results
	4 Word Equations
	4.1 Curve Coloring Equations
	4.2 Region Coloring Equations
	4.3 Intersection Counting Equations

	5 The Algorithms
	5.1 Counting Connected Components
	5.2 Deciding Isotopy I
	5.3 Connecting Two Points
	5.4 Deciding Isotopy II
	5.5 Finding the n-th Intersection Point
	5.6 Computing the Algebraic Intersection Number

	References

	Terrain Polygon Decomposition, with Application to Layered Manufacturing
	1 Introduction
	1.1 Related Work

	2 Recognizing Terrains
	2.1 The Recognition Algorithm

	3 Decomposition into Two Terrains with a Common Base
	3.1 Handling Antipodal VV-Pairs
	3.2 Handling Antipodal EE-Pairs

	4 Decomposition into Two Terrains without a Common Base
	4.1 The Algorithm

	References

	Supertrees by Flipping
	1 Introduction
	2 Definitions and Notation
	2.1 Set-Theoretic Definitions and Notations
	2.2 Graph-Theoretic De.nitions

	3 $mathcal {NP}$-Completeness Results
	4 Fixed Ratio Approximation Algorithm
	5 Fixed Parameter Tractability
	6 Discussion and Open Problems
	References

	A Space and Time Efficient Algorithm for Constructing Compressed Suffix Arrays
	1 Introduction
	2 Compressed Suffix Arrays in a Nutshell
	3 Basic Properties and Incremental Construction
	4 New Data Structure for Compressed Suffix Arrays
	5 An Efficient Incremental Construction
	References

	Sharpening Occam's Razor (Extended Abstract)
	1 Introduction
	2 Occam's Razor
	3 Applications
	4 Conclusions
	References

	Approximating 3D Points with Cylindrical Segments
	1 Introduction
	2 Preliminaries
	3 The Case when $k=1$
	4 The Case for Any Fixed $k>1$
	5 Hardness Result
	6 Concluding Remarks
	References

	Algorithms for the Multicolorings of Partial k-Trees
	1 Introduction
	2 Terminology and Definitions
	3 Algorithm
	4 Conclusion
	References

	A Fault-Tolerant Merge Sorting Algorithm
	1 Introduction
	2 A Simple Fault-Tolerant Merge Sorting
	3 A More Efficient Fault-Tolerant Merge Sorting
	4 Conclusions and Open Problems
	References

	2-Compromise Usability in 1-Dimensional Statistical Databases
	1 Introduction
	2 Intervals and Threads
	3 Main Result
	4 Conclusion
	References

	An Experimental Study and Comparison of Topological Peeling and Topological Walk
	1 Introduction
	2 Overview of Topological Walk and Topological Peeling
	2.1 Preliminaries
	2.2 Main Steps of Topological Walk and Topological Peeling

	3 Implementation and Comparison Results
	3.1 Experimental Environment
	3.2 Input Data Generation
	3.3 Handling Numerical Errors
	3.4 Coding Issues
	3.5 Arrangement Traversal Fashions
	3.6 Execution Time Comparison
	3.7 Memory Consumption Comparison
	3.8 Execution Time Analysis

	References

	On-Line Maximizing the Number of Items Packed in Variable-Sized Bins
	1 Introduction
	2 General Results on Fair Algorithms
	2.1 Positive Results
	2.2 Negative Results

	3 Results on Specific Fair Algorithms
	4 Conclusion
	References

	On-Line Grid-Packing with a Single Active Grid
	1 Introduction
	2 Preliminaries
	3 Bounds for 1-Space Bounded Algorithms
	4 Proposed 1-Space Bounded Algorithm
	4.1 Procedure A
	4.2 Procedure B
	4.3 Procedure C

	5 Concluding Remarks
	References

	Bend Minimization in Orthogonal Drawings Using Integer Programming
	1 Introduction
	2 The ILP-Formulation Describing the Set of All Embeddings
	3 The Linear Program Describing Orthogonal Representations for a Fixed Embedding
	4 The Mixed Integer Linear Program Describing the Set of All Orthogonal Representations of a Graph
	5 The Algorithm for Minimizing the Number of Bends
	6 Computational Results
	7 Conclusion
	References

	The Conditional Location of a Median Path
	1 Introduction
	2 Notation and Preliminaries
	3 Alstrup textbf {textit {et al}}textbf {.'s Algorithms for the Unconditional Median Path Problem}
	3.1 The Continuous Model
	3.2 The Discrete Model

	4 The Conditional Discrete Median Path Problem
	5 The Conditional Continuous Median Path Problem
	5.1 The Computation of a Best Path among All Paths of Type 1
	5.2 The Computation of a Best Path among All Paths of Type 2

	6 Lower Bounds
	References

	New Results on the k-Truck Problem
	1 Introduction
	2 Preliminaries
	3 Off-Line Problem
	3.1 Dynamic Programming (DP) Solution
	3.2 Minimum Cost Maximum Flow (MCMF) Solution

	4 A Lower Bound
	5 Competitve Ratios
	5.1 Position Maintaining Strategy Solution
	5.2 Comparison of Two Algorithms
	5.3 Partial-Greedy Algorithm on a Special Line

	6 Deeper On-Line textbf {textit {k}}-Truck Problem
	7 Concluding Remarks
	References

	Theory of Equal-Flows in Networks
	1 Introduction
	2 The {sc Maximum-Equal-Flow} Problem
	3 Equal Flow Theory
	3.1 Feasibility of Equal-Flows
	3.2 Feasible Values of Equal-Flows
	3.3 Decomposition
	3.4 Augmenting
	3.5 Max-Equal-Flow Min-Equal-Cut

	4 {sc Max-Eq-Flow} is NP-Hard
	5 Approximating the {sc Max-Eq-Flow}
	5.1 Integer Linear Programming Formulation
	5.2 Algorithm

	6 Conclusion
	References

	Minimum Back-Walk-Free Latency Problem (Extended Abstract)
	1 Introduction
	2 Basic Notations and Properties
	3 Algorithm for General Trees
	4 Algorithm for k-Path Trees
	5 MBLP is NP-Complete
	6 Concluding Remarks
	References

	Counting Satisfying Assignments in 2-SAT and 3-SAT
	1 Introduction
	2 Preliminaries
	3 Algorithm for #2-SAT
	4 Algorithm for #3-SAT
	References

	On the Maximum Number of Irreducible Coverings of an n-Vertex Graph by n-3 Cliques
	1 Definitions and Preliminary Results
	2 The Structure of the Irreducible Coverings by $n-3$ Cliques
	3 Maximum Number of Irreducible Coverings by $n-3$ Cliques
	References

	On Reachability in Graphs with Bounded Independence Number
	1 Introduction
	2 Graph-Theoretic Definitions and Results
	3 First-Order Definability of the Problem
	4 Circuit Complexity of the Problem
	5 Infinite Version of the Problem
	6 Succinct Version of the Problem
	7 Conclusion and Open Problems
	References

	On Parameterized Enumeration
	1 Introduction
	2 Generating All Solutions
	3 Generating All Representative Solutions
	4 Conclusions
	References

	Probabilistic Reversible Automata and Quantum Automata
	1 Introduction
	2 1-Way Probabilistic Reversible C-Automata
	3 1-Way Probabilistic Reversible DH-Automata
	4 Alternative Approach to Finite Reversible Automata and 1.5-Way Probabilistic Reversible Automata
	5 A Classification of Reversible Automata
	References

	Quantum versus Deterministic Counter Automata
	1 Introduction
	2 Definitions
	2.1 Two-Way One-Counter Automata
	2.2 One-Way ${k}$-Counter Automata

	3 2Q1CAs versus 2D1CAs
	3.1 Reversible Simulation of 2D1CAs
	3.2 Recognizability by 2Q1CAs

	4 1Q${k}$CAs versus 1D$boldsymbol {k}$CAs
	References

	Quantum DNF Learnability Revisited
	1 Introduction
	2 Preliminaries
	3 A Smoother Boost-by-Filtering Algorithm
	4 A Query-Efficient Quantum {tt WDNF} Algorithm
	4.1 Non-Boolean Functions over Smooth Distributions

	5 A Quantum Harmonic Sieve Algorithm
	6 Lower Bounds
	References

	Author Index

