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Preface 

Electrodynamics is one of the pillars of physics with arms reaching through 
classical and atomic physics far into high energy particle physics and present 
day string theory. With its unification of electric and magnetic phenomena 
and subsequently with classical mechanics in Special Relativity it pointed 
towards a unification of all physical theories in a future theory of “every- 
thing”. 

Classical electrodynamics is the electrodynamics of macroscopic phenom- 
ena and is summarised essentially in the four Maxwell equations which, how- 
ever, permeate in one way or another into microscopic phenomena. Although 
beset with tantalising divergence problems, the quantised form of Maxwell’s 
electrodynamics, that is quantum electrodynamics, has so far defied all math- 
ematical purists by yielding highly precise values of such vital physical quan- 
tities as the Lamb shift and magnetic moments. In its nonabelian extension 
this quantised electrodynamics led to quantum chromodynamics and beyond, 
thereby permitting its unification with strong and weak interactions. It is 
expected that the ultimate theory, possibly a form of higher dimensional 
string theory, will one day permit its unification also with quantum gravity. 
This theoretical endeavour, starting with Maxwell’s unification of electric 
and magnetic phenomena and now reaching as far as cosmology, is one of 
the most amazing intellectual achievements of mankind. 

A countless number of treatises has been written on electrodynamics, 
including applications in all directions. These cover the entire range from 
elementary introductions to authoritative reference tomes. The present text 
is but one more, and like any other is imprinted with the author’s likes and 
preferences. In repeatedly teaching electrodynamics the author set himself 
the task of making the presentation as easily comprehensible as possible, 
and to direct the view beyond the traditional domain of pure macroscopic 
Maxwell theory. 

Rightly or not, and irrespective of what others think, the author claims 
that the companion text of a first course in a basic subject must be readable, 
must explain the issues at hand in detail and, not the least, must present 

xiii 
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any nontrivial calculational steps. The author remembers from his time 
a s  a student the relief derived from a book or script which explains what 
others passed over (knowingly or not), if only as a reassurance that one’s 
own understanding is correct. A student’s struggle with a book may flatter 
the vanity of the author, but will more likely result in the book being put 
aside. The present text therefore attempts to avoid as far as possible the “it- 
can-easily-be-shown-jumps” familiar from everyday literature. With more 
than a hundred mostly worked and typical examples interspersed, the text 
might also serve as a “Teach Yourself Course” in electrodynamics. To what 
extent this succeeds only the reader can decide. 

The further attempt pursued in the text (frequently in examples) is to 
open some views to other domains which are usually excluded in traditional 
presentations of electrodynamics. This applies in particular to intimately 
related quantum effects (mostly of Schrodinger equation or harmonic oscil- 
lator type), electric-magnetic duality, reference to higher dimensions and to 
gravity, all of which the student of today encounters elsewhere much earlier 
than in the past, and hence might expect some mention in the text.* 

I thank Dr. K. K. Yim of World Scientific for his untiring help and a 
countless number of suggestions for improving the manuscript. 

H.J.W. Muller-Kirsten 

*Only textbook literature consulted repeatedly at various times in the course of preparation of 
this text is cited in the bibliography. Many other sources have, of course, also been used at various 
points but their specific relevance has been lost track of as the years passed by. Hence no attempt 
is made to even refer to all important and standard works on the subject. An extensive list of 
this literature can be found in the book of Jackson [3]. Literature related to very specific topics or 
sources is cited in footnotes at appropriate points in the text. 

ps"



Chapter 1 

Introduction 

1.1 What is Electrodynamics? 

Electrodynamics as a theory deals with electric charges which move in space 
and with electromagnetic fields that are produced by the charges and again 
interact with charges. Electrodynamics is described by Maxwell’s equations 
whose most important consequences are: (a) the electromagnetic nature of 
light (Maxwell), (b) the emission of electromagnetic waves by an oscillating 
dipole (H. Hertz), and (c) the unification of electric and magnetic forces. 
Unlike in Maxwell’s days one does not refer to an aether anymore - it was 
Einstein who concluded that this does not exist - and instead uses the 
concept of fields in space. Einstein’s Special Theory of Relativity unifies 
electrodynamics with classical mechanics. 

1.2 Presentation of Macroscopic Electrodynamics 

In general a first course in electrodynamics, or electricity and magnetism as 
it is also called, is preceded by a course in classical mechanics which even to- 
day is not always combined with the Special Theory of Relativity (as would 
be desirable), In addition the concept of a field in space and the distinction 
between directly observable field quantities and at best indirectly observable 
field potentials is at that stage still too vague to permit an immediate rela- 
tivistic field theoretic approach to appear plausible. Moreover, in general the 
term electrodynamics is usually restricted to macroscopically observable phe- 
nomena, so that a quantised treatment with operator-valued fields is beyond 
its scope, the latter being dealt with in quantum electrodynamics. Thus the 
classical fields are c-numbers. As a consequence of this restriction, and also 
in order to establish classical electrodynamics as a theory in its own right, 
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2 CHAPTER 1. INTRODUCTION 

the fundamental equations of this theory, Maxwell’s equations, are usually 
not derived from Hamilton’s principle as a prior course in methods of clas- 
sical mechanics might suggest. In addition the law of force between moving 
charges is considerably more complicated than that between pointlike masses 
so that an analogous procedure is not immediately advisable. Nonetheless 
Hamilton’s variational principle is of such basic significance that it permits, 
of course, the derivation of Maxwell’s equations as the Euler-Lagrange equa- 
tions (and their consequences) of an appropriate variational principle. Thus 
here we do not adopt this procedure immediately (i.e. till Chapter 18). 
What are the other methods which suggest themselves? Perusing the liter- 
ature, one observes two main procedures. The approach with emphasis on 
logic starts from an axiomatic presentation of Maxwell’s equations, whereas 
the other more historical and phenomenological approach abstracts these 
from observations. A textbook which adopts the former procedure is that of 
Sommerfeld [l] who follows H. Hertz in this respect, but whereas H. Hertz 
starts from the differential form of Maxwell’s equations, Sommerfeld chooses 
the vector integral form. Another text that follows this procedure is, for in- 
stance, that of Lim [ a ] .  Books which choose the second procedure are those 
of Jackson [3] and Greiner [4]. 

In the axiomatic formulation of classical or macroscopic electrodynamics 
the two principal ax ioms  are Faraday’s law of induction and Ampitre’s flux 
theorem. In integral form and in units of the internationally agreed system 
of units (ISU), these are 

A,,, * dl f B . dF = - 

and 
f D . d F  + j . d F  = h,,, H . dl, 

where for a given fixed surface of integration F ,  

since (by assumption) F does not change with t.* 

*Recall, for instance the analogy, that  as shown in Whittaker and Watson [7], p. 67, 

which shows the a-dependence of boundary values 
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In the first or Faraday’s law, B is the magnetic induction and E the 
electric field strength. The law says that every change of the magnetic flux+ 
with time through an open, double-sided area F (a plane is single-sided) with 
boundary given by the closed curve C ( F )  - this flux being the number of 
lines of force in Faraday’s considerations - generates an equal but oppositely 
directed circuit potential, the electromotive force $ E .dl, along the boundary 
C ( F ) .  An open surface can, for instance, be visualised as a container without 
a lid, and a closed surface as one closed with the lid. In the former case the 
rim of the opening corresponds to the curve C ( F ) .  The word double-sided 
implies that the surface possesses direction normals directed towards inside 
or outside regions. A closed surface has no boundary, but we can imagine 
on it a closed curve C ( F )  which divides the surface into two regions. 

In the second or Ampkre’s law, D is the so-called dielectric displacement 
(D = EOE + P, €0 the dielectric constant of vacuum, P the polarisation vec- 
tor or dipole moment per unit volume of the medium), j is the density of 
the electron current and H the magnetic field strength. The law says that 
analogous to Faraday’s law the time change of an electric flux through an 
area F is equal to a magnetic circuit potential in the boundary curve C ( F )  
in the same direction. The expression a D / &  obviously has the dimension of 
a current density. The expression 

dF 

is called Maxwell’s displacement current. 
The two principal axioms are supplemented by two subsidiary axioms 

which are consequences of the principal axioms with implementation of some 
empirical findings. We arrive at these by considering a boundary curve C ( F )  
enclosing the area F ,  and by permitting C ( F )  to shrink to zero, so that the 
line integrals vanish, i.e. 

C(F)-0 Iim { $ L D . d F + L j . d F }  = O .  (1.4) 

The area F thus loses its boundary and becomes closed. In the case of 
magnetic dipoles (irrespectively of whether one considers magnets or current 
loops) every line of force leaving the area F is accompanied by a correspond- 
ing line of force toward it. The integral extended over the entire closed 

‘Flux is in general the scalar product of a vector field with an area. 
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surface thus yields the value zero, i.e. 

B . d F  = 0. J h o s e d  

1. INTRODUCTION 

(1.5) 

This is a general result in view of the empirical fact that no isolated magnetic 
poles exist and hence no region with only ingoing or only outgoing lines of 
force. With the definition of the divergence 

d i w A ( r )  = lim ' 1  A . d F  
v-tov F ( V )  

we obtain the differential form of Eq. (1.5), i.e. 

d i w B ( r )  = V . B(r)  = 0. 

One says: B(r) is divergenceless. 
Equation (1.4) permits an analogous consideration but with different con- 

sequences. Equation (l.2), or rather (1.4), applies to cases in which the 
electron current 

S , , V ) j  . d F  

leaves the surface F enclosing the volume V(F) .  This implies that the volume 
with total charge q loses charge at the rate 

The minus sign indicates that V ( F )  is losing charge. Put differently, as 

j . d F  = 0 ,  dq 
+ L ( V )  

the equation says that the amount of charge in V ( F )  remains constant (this 
is called charge conservation). Here one has to be careful, because if we write 

then q represents the amount of charge which passes through the area F per 
second with n o  reference to  V .  We can now write Eq. (1.4) as 

(1.10) 
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which implies 

D . d F  = 9. (1.11) J Fclosed 
We could have added a constant of integration on the right side. But for 
charge q = 0 the field D = 0, and thus this constant must be zero. The 
differential form of Eq. (1.11) again follows with (1.6); i.e. 

V . D = p ,  p = - .  4 (1.12) 
V 

Here p is the charge density. Equations (1.11) and (1.12) are known as the 
Gauss law of electrodynamics. We can now write Eq. (1.8): 

d j . d F  (1.13) 

Going to an infinitesimal volume and using the Gauss divergence theorem, 
this implies 

k V . j d V =  (1.14) 

and hence the equation of continuity 

(1.15) 

A method of deriving electrodynamics essentially from this equation and the 
Lorentz force (the force exerted on a charge in an electromagnetic field) - 
as an alternative approach to electrodynamics - can be found in a paper of 
Bopp!: 

Returning to comments at the beginning we mention that attempts have 
repeatedly been made to derive Maxwell’s equations from the Coulomb law 
and the Special Theory of Relativity. Since it is known that the General The- 
ory of Relativity contains the generalisation of Newton’s law of gravitation, 
i.e. a law which has the same form as the Coulomb law for charges, such an 
attempt cannot succeed without additional assumptions. A discussion of this 
topic can be found in the book of Jackson [3]. An entirely different approach 
which sees the only logical foundation of Maxwell’s theory in a relativistic 
treatment of radiation theory is the book of Page and Adams [5]. In the fol- 
lowing we adopt the historical and phenomenological approach starting with 
electrostatics, since this seems to be more suitable for an understanding of 
the physics of electrodynamics, particularly in a first course on the subject. 

‘F. Bopp, 2. Physik 169 (1962) 45. 
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1.3 On the Choice of Units 

In textbooks on electrodynamics nowadays two systems of units are in use: 
The more common internationally used MKSA-system of units with meter 
(m), kilogramme (kg), second (s) and ampere (A), and the still frequently 
used system of Gaussian units which is based on the c.g.s. units, i.e. centime- 
ter (c), gramme (g) and second (s) (the current is then given in statampere, 
1 A = 3x10’ statampere). Either system has its advantages - the former 
has been agreed upon internationally and is therefore used particularly in ap- 
plications, and the latter, the Gaussian system, is somewhat theory-oriented 
and therefore frequently used in considerations of singly charged particles. 
Here we employ the first system but will refer occasionally also to the other 
system. We add the following comments. 

In discussions on units the word “dimension” is frequently referred to. 
The dimension of a physical quantity is nothing absolute. It is possible 
to choose units (like the so-called natural units) in which Planck’s action 
quantum and the velocity of light in vacuum have the value 1 and are di- 
mensionless. Since velocity = distance/time, one can then express lengths in 
units of time, i.e. seconds, or more commonly time intervals in meters. This 
arbitrariness was already pointed out by Planck. Some authors even amuse 
themselves today about dimensional considerations3 The example shows 
that also the number of fundamental units is a matter of choice (in ‘hatu- 
ral units” every quantity can be expressed in a power of length). In earlier 
days the units used in the literature on electrodynamics were the so-called 
electrostatic units (e.s.u.) and electromagnetic units (e.m.u.) which today 
are indirectly contained in the Gaussian system. In essence, in the Gaussian 
system of units electric quantities are expressed in e.s.u. and magnetic quan- 
tities in e.m.u. while the change to Gaussian units requires a factor c or 1/c 
(c the velocity of light in vacuum), which can be determined experimentally 
(cf. Appendix B). For instance 

In particular one has in these units for the dielectric constant of the vacuum 
€0 and for the magnetic permeability of the vacuum po 

1 1 
C2 C2 

Eo(e.s.u.) = 1, EO(e.m.u.) = -, po(e.s.u.) = -, po(e.m.u.) = I .  

§See e.g. A. O’Rahilly, Vol. I [6], p. 65, where the author says: “Maxwell invented a second 
system. .  . But this system i s  never employed, at merely occurs in those pages of textbooks which 
profess to deal with something called ‘dimensions’.” See also p. 68. 
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We do not enter into a deeper discussion of these units here (sometimes it is 
not clear whether a quantity is electric or magnetic). 

The choice of a system of units in electrodynamics depends on the choice 
of the magnitude as well as the dimension of two arbitrary constants, as 
an exhaustive investigation of Maxwell’s equations shows! The appearance 
of one constant k can immediately be seen by looking at the Coulomb law 
in electrostatics, which determines the force F 12 between two point charges 
41, q2, separated by a distance r,  i.e. 

Fl2 = k4142$. r 
For length, mass and time, we choose here as agreed upon internationally 
the ISU (international system of units, internationally abbreviated SI, see 
Appendix B) and thus the units meter (m), kilogramme (kg), second (s) 
(correspondingly in the Gaussian system centimeter (cm), gramme (g), sec- 
ond (s)). Depending on the choice of dimension and magnitude of k we 
obtain different units for the charge q. The electric field strength E(r) at the 
distance r away from the charge q is 

4 
7-3 

E(r) = k-r. 

Thus the field E(r) can be defined as force per unit charge. 
In the consideration of magnetic phenomena we have to deal with cur- 

rents. Currents I are defined with respect to charges 4 ,  I = d q / d t .  The 
connection between electric and magnetic phenomena or between E and B 
introduces another constant for the choice of units of B. This constant can 
be introduced in a number of ways. With the help of the theorem of Stokes 
(see later), Eq. (1.1) can be written as 

l3B 
at V x E + k*- = 0, 

where k* is chosen to be 1 and dimensionless in the MKSA-system (the 
constants k and k* can be chosen arbitrarily in magnitude and dimension). 

In accordance with the ISU, i.e. the MKSA-system of units, the unit of 
current is taken as the ampere (the spelling in English being this, ampere, 
which is not part of SI). One ampere is defined as that amount of current 
which runs through two parallel, straight, infinitely long, thin conductors 
which are one meter apart when the force between these is 2 x newton/m 
(per meter in length) (the expression for this attractive force will be derived 
later). Since current x time is charge, we obtain the definition of the unit of 
charge : 

TSee Jackson [3], p. 811. 
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1 coulomb (C) = 1 ampere-second (A s). 

It remains to determine the dimensions of D and H. For a large number of 
different materials the following “matter” or “material equations” are valid: 

D = E E ,  B = p H .  

E is the dielectric constant of the material and p its magnetic permeability. 
Both have magnitudes and dimensions depending on the chosen system of 
units. The vacuum values € 0 ,  po obey, as we shall see, the important relation 

€ 0 ~ 0  = const. 

In the Gaussian system of units €0, po are taken as 1 and dimensionless. The 
constant is then 1. In the MKSA-system the constant is found to be 1/c2, 
where c is the velocity of light in vacuum, i.e. 

c = 2.998 x lo8 m/s. 

In this case 
farad/meter €0 = - 

107 
4TC2 

with the dimension of current2 time4 mass-’ length-3, or €0 = 8.854 x 
A s/(V m) or C2/(joule-meter), where 1 volt (V) = 1 A-l m2 kg s - ~  and 1 
joule = 1 newton-meter (N m). In addition 

po = 4n x newton-ampere-2 (N A-2), 

or po = 1.257 x with dimension of mass length current-2 time-2. 
In the Gaussian system the constants k, k* are chosen as follows: 

1 k = 1 (dimensionless), k* = - (dimension time/length). 
C 

In the MKSA-system the vacuum constants k, k* are chosen as 

with dimension kg m3 s - ~  A-2 and 

k* = 1 

(dimensionless). We see that in comparison with the Gaussian system the 
MKSA-system requires the use of € 0 ,  PO. 



Chapter 2 

Electrostatics - Basic 
Aspects 

2.1 Introductory Remarks 

In this chapter the Coulomb law is introduced, and various static conse- 
quences are investigated, such as electrical screening and diverse applica- 
tions. The latter require also the introduction of essential mathematics, in 
particular that of the delta distribution. 

2.2 The Coulomb Law 

Electrostatics is the theory of static charges, which means that moving 
charges, i.e. currents, are not considered. The fundamental phenomeno- 
logical law which is the basis of electrostatics is Coulomb’s law, which deter- 
mines the force acting between two point charges q1, q2 and which in vacuum 
is given by 

q1q2 r. 
F12 = k- 

7-3 

Here r = r l  - r2 is the vectorial separation of the charges qi at positions ri. 
k is the constant fixed by the choice of units. In the ISU, as explained in 
Chapter 1, 

1 k=- 

in vacuum. The force is given in newtons (N), the charge in coulombs (C) 
and the separation in meters (m). The electric field strength E(r) at a point 
r as in Fig. 2.1 is defined as the Coulomb force acting on a unit charge (+1C) 

4TEo 

9 
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at this point, i.e. 

In the ISU or MKSA-system of units the electric field strength is given in 
units of N/C or V/m. In the Gaussian system the charge is given in stat- 
coulombs, the distance in cm, the force in dynes, and the electric field strength 
in statvolt/cm (1 C = 3 x l o9  statcoulombs, 1 statcoulomb = 10 e.s.u.; 1 
newton = lo5  dynes). 

Fig. 2.1 Point charges q1 and $1. 

It should be remembered that a charge q can be positive or negative. Con- 
ventionally electric lines of force are drawn as leaving positive charges and 
directed towards negative charges. In this sense positive charges are regarded 
as sources of the electric fields and negative charges as sinks. 

One distinguishes between discrete charge distributions (charges at dis- 
tinct points) and continuous charge distributions (charges spread over spatial 
domains). Correspondingly one defines a charge distribution or charge den- 
sity p(r) as charge per unit volume. Considering an infinitesimal volume 
element, we can use the above expression for the field strength at a point 
r due to a point charge q1 at a point rl to obtain the field strength at a 
point r resulting from superposition, i.e. summation or integration of the 
contributions of point or pointlike charges in a domain V of space, i.e. 

Here V is a volume which does not enclose the observation point at r. The 
lines of force of E, as shown in Fig. 2.2, are continuous for one and the same 
medium (having the same 6 ) .  Since E o( k, this does not apply in the case 
of different media. But if we define D := E l k ,  called dielectric induction or 
displacement, the lines of D are continuous at interfaces between different 
media. The law of force 

41 42 
F12 7 
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for point charges qi was discovered experimentally by Coulomb, who pub- 
lished his observations in 1785. 

Fig. 2.2 Charges and lines of force. 

Later it became known that the law had been observed earlier by Cavendish 
who, however, never published his findings. Coulomb used for his observa- 
tions a so-called torsion balance consisting of a vertical rod or fibre with 
another fibre attached horizontally at its lower end. At one end of this hor- 
izontal fibre a small chargeable sphere was mounted and at the other end 
a piece of paper to stabilise the system in a rotation. If another charge of 
the same magnitude is brought close to the mounted charge, at a distance 
r say, the latter experiences a repulsion evidenced by a rotation of the hori- 
zontal fibre through an angle 0. The corresponding torque is proportional to 
8. By selecting various values of r (nr, n = 1,2,3, .  . . ) Coulomb arrived at 
the law now named after him for the case of repulsive charges. For charges 
which attract each other Coulomb modified his experiment. His experiments 
did not establish the proportionality to the charges themselves. This was 
more or less assumed in analogy to masses in Newton’s law of gravitation. 
It was Gauss who later recognised that Coulomb’s law permits the definition 
of charge. In recent times the Coulomb law has, of course, been subjected 
to much more critical investigations. Thus the power of -2 of r has been 
verified up to deviations of less than 

Cavendish, on the other hand, assumed a law of force of the form 

and then designed his experiment to determine n. His experimental setup 
consisted of two concentric conducting spherical shells connected by a con- 
ducting wire from one to the other. He charged the exterior shell and then 
removed the wire together with the exterior shell. The interior shell then 
provided no evidence of a field in its neighbourhood. From this Cavendish 
concluded that n = 2, because in this case the interior of a charged spherical 
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shell has E = 0 (thus in the case n = 2 the charge covered the exterior shell, 
as we explain later; see also Example 2.2). 

2.3 The Electrostatic Potential 

We now demonstrate that E can be derived from a potential, the electrostatic 
potential. Since 

we have 
dr’ = -V#, E(r) = -k p(r’)V,- J )r - ,‘I 

1 

i.e. 
E = -V4, 

where 4 is the potential 

Since curl grad = 0 ,  it follows that 

V x E = O ,  

i.e. the electric field is curl-free (or whirl- or vortex-free; curl is also often 
written rot for “rotation”) . 

Next we consider the flux E - dF of the vector field E through the surface 
area element dF(r) at r of a surface F surrounding the charges. Then, cf. 
Fin. 2.3, 

Let V be the volume V ( F )  enclosed by F ;  the case of V # V ( F )  has to be 
dealt with separately. It follows that 

But 
(r - r’) - dF(r) 

Ir - r’l 
Ir - r’12dS1 = 
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Fig. 2.3 (a) The surface and (b) the solid angle. 

Hence 
E . dF = k 1 p(r ' )dr 'L dR = 47rk p(r')dr', (2.1) 

V ( F )  

provided the point r' (charge element p(r ' ) )  is within V .  This relation is the 
integral form of the Gauss law V E = 47rkp. If r' is outside of V ,  that is 
if we wish to know the flux through a closed surface F in the case when the 
field is due to charges outside of F ,  we have 

L d R  = 01 - 0 2  = 0, 

as we can see from Fig. 2.4, since the consideration of the solid angles of a 
closed volume such as that of a sphere subtended at a charge q implies: 

01 + (-01) = 0. 

In this consideration the volume V is a purely mathematical volume, so to 
speak. If the material of the volume V ( F )  is such that the lines of force of E 
penetrate into V ,  this result implies that every ingoing line must also leave 
the volume again. If the closed surface F ,  which does not enclose a charge, 
is made of conducting material (see later), then the field E in the interior is 
zero. 

Fig. 2.4 Charge outside of V .  
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With the help of the Gauss divergence theorem (here assumed known) we 
obtain from Eq. (2.1): 

E . dF = V . Edr = 47rk s, p(r)dr = 47rk CiqiG(r - ri)dr, L s ,  
depending on whether the charge distribution is continuous or discrete. It 
follows that 

(V . E - 47rkp(r))dr = 0. s, 
Since this is valid for any volume V ,  i.e. sv = sv, = * .  = 0, it follows that 

V . E = 4nkp. 

Thus, charges in space are sources of the electric field. 

2.4 The Equations of Electrostatics 

We have now obtained the three important equations of electrostatics: 

E = -Vd, 

E * dF = 47rkCiqi, s V.E=47rkp, or 

V x E = O .  

(2.2a) 

Later we shall assume that these equations are also valid when p,E,+ are 
time-dependent (but not leading to currents). From the first two equations 
we obtain the Poisson equation 

Ad = -47rkp. (2.2b) 

The equation for p = 0, i.e. Ad = 0, is known as the Laplace equation. 

various applications, also in this text: 
(a) In Cartesian coordinates 

We recapitulate the following important formulae which are needed in 

aE, aE, aE, 
ax a y  8.2 V . E = -  +-+-, 

(b) in cylindrical coordinates 

1 8  1aEe aE, V .  E = --(rET) + -- + -, 
r ar r 813 8.z 
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l a  1 a2q5 a2q5 A$ = -- ( r g )  + - - + -, 
(c) in spherical polar coordinates (spherical coordinates) 

r ar r2 882 dz2 

1 aE4 
(sin OEe) + - - l a  l a  

rs in8  84 ’ V . E = --(r2Er) + -- 
r2 ar r sin 0 88 

Example 2.1: Discrete and continuous charge distributions 
Let the following potential be given: 

4(r) = kq- e--ar ( 1  + 7). 
Show that there are both discrete and continuous charge distributions with a vanishing total charge. 

Solution: In the case of the given spherically symmetric potential or electric field, the Gauss law 
is l a  

- - (r2 E T )  = 4 ~ k p ( r ) ,  
r 2  ar 

so that 
r2E,  = 4rkp( r ) r2dr  k Q ( r ) ,  

where Q ( r )  is the charge enclosed in a sphere of radius r .  With 

it follows that 

ET = -- 
dr ’ 

r2 d 4 ( r )  Q ( r )  = 
k dr 

For the given potential +(r)  we have 

For r + 0 we obtain the discrete charge 

(2.3a) 

whereas for r + 00 

+ 0. 

The continuous charge distribution is given by p( r ) ,  for which we obtain from the first integral 

i.e. 
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This can be verified by computing the sum of the distribution, i.e. 

p(r)47rr2dr = -4. (2.3b) s," 
The vanishing of the sum of results (2.38) and (2.3b) implies that the total charge in space is zero. 
Applied to the neutral hydrogen atom, we can interpret the discrete charge as that of the proton 
and the continuous charge distribution as that of the electron. 

Example 2.2: Theoretical explanation of Cavendish's experiment 
Assuming that the electric field E of a point charge q is given by the radially symmetric expression 

show that the field E at a point r without or correspondingly within a spherical shell of radius ro 
and with surface charge density u are given by the following expressions: 

67'0 

%or2@ - n)(l - n) 
r < r o :  E =  [(r + r0)2-n{r(2 - n) - r o )  + (r - 7-0)~-~{r(2 - n)  + ro)] .  

What can be deduced from this for n < 2, n = 2, n > 2? 

Solution: Let Q/47rr$ be the charge per unit area of the spherical shell with radius ro. The quan- 
tity to be calculated is the electric field at the point P in Fig. 2.5. The charge on an infinitesimal 
element of area d F  is udF = or$ sinOdOd4. From the formula for the law of force: Field at P 
equals 

Ep = charge/4~eo(distance)~, 

we deduce that here 
or$ sin edOd$ 

47r€o(r2 + r t  - 2rro cos e)nP  
dEp = 

Integrating over the entire sphere we obtain the total field strength at P. From the symmetry of 
the geometry we infer that contributions perpendicular to OP cancel each other so that only the 
component along OP remains. 

Fig. 2.5 Field point P outside the spherical shell. 

We obtain this by multiplying dEp by cosy where (cf. Fig. 2.5): 

r - ro cos 8 cosy = 
r2 + r i  - 2rro cos e 
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We thus obtain for the field at P: 

E p  = J,2T J* 
o r i ( r  - ro cos 0)  sinBdBd+ 

0 47r€o(r2 + rg - 2rro cos e)(n+1)/2 ' 

With z = cose the integral is of the form 

(U - bz)dz J-: ("2 + b2 - 2abz)(n+1)/2 ' 
But 

f d z  2 1 

and 

If Ep is evaluated with the help of these integrals, one obtains the expressions for the field given at  
the beginning. We then see that for n = 2, the field E p  vanishes if r < ro.  This is the theoretical 
explanation of Cavendish's experiment. 

2.5 Dirac's Delta Distribution 

A solution of the Poisson equation Aq5 = -47rkp is the Poisson integral 
(already encountered above): 

Before we show that this expression satisfies the Poisson equation, we intro- 
duce the so-called &distribution (an introduction is given in Appendix A). 
This quantity was introduced by Dirac and was originally called delta func- 
tion. Actually it is an improper function which is today called distribution, 
and is defined as a functional by the property 

00 

f ( 4  = 1, f(.)+ - 4 d z .  

6(x) can be looked at as  the limit of a function which vanishes everywhere 
except at z = 0, where it is singular. Thus, e.g. 

0 : z#O, = c  00 : z = o ,  
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The delta function has the integral representation 

1 "  
S(z) = 1, dkeikx.  

Important properties of S(z) are: 

S(z) = S ( - X ) ,  

S'(z) = -S'(-z), 

zS(z) = 0, 
zS'(z) = -S(z), 

&(ax) = -S(z), (a  > 0). 
1 
U 

These relations can be verified by multiplication by a continuous differen- 
tiable function and followed by an integration (as in Appendix A). F'urther- 
more the following relations can be shown to hold: 

z - a )  + S(X + a ) ] ,  (a  > O) ,  S ( 2  - a  ) = - [S (  2 1  
2a  

where the 8-function or Heaviside step funct ion is defined by 

1 : z > o ,  { 0 : z < o .  e ( x )  = 

Equations (2.9) are explicitly verified in Appendix A. We observe that 

S(r) = S(z)S(y)S(z). 

A solution of the inhomogeneous equation 

(2.10) 

AG(r) = b(r) 
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is called Green’s function (we shall consider these in detail later). Once G(r) 
is known, the inhomogeneous solution +(r) of A+ = -4k7rp follows from the 
relation 

+(r) = -k G(r - r’)47rp(r’)dr’ (2.11) J 
apart from a solution of the homogeneous equation A$ = 0 which could be 
added subject to the same boundary conditions as for G. The relation (2.11) 
is readily verified, because if we apply the Laplace operator A to this, we 
obtain 

A$(.) = -k S(r - r’)47rp(r’)dr’ = -4k7rp(r). J 
For +(r) to satisfy the integral relation (2.4) we must have 

i.e. 

1 
4x11- - r’J ’ G(r - r’) = - 

1 A- = -47rS(r). 
Ir l 

This express,m makes sense only for r # 0. Now, 

d2 d2 d2 
r = Jx2+ y2+  22,  A = - + - + - 

ax2 ay2 a z 2  

and 
X 1 3x2 

so that 
1 3 3r2 
r r3 7-5 

A- = -- + - = 0. 

We can see by integration that the factor -47r in (2.13) is correct: 

/ A l d r =  / V . V - d r =  1 /V-.dF 1 
Jv Jv r J F  r 

dF =-s,; - . dF = - J T2 = - J d o  = -4T. 

(2.12) 

(2.13) 

This verifies Eq. (2.13). Equation (2.12) shows that the Green’s function is 
the potential of a negative unit charge at the source point multiplied by €0 
since with 

p(r’) = -q,S(r’) 
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we have 
G(r - r’)4~p(r’)dr’ = G(r). J #(r’) = -k 

We see also that the Green’s function G is the response of a system (here 
represented by the Laplacian, but this could also be some other second or- 
der differential operator, such as that of an equation of motion in classi- 
cal mechanics or of a Schrodinger equation in quantum mechanics) to a 
delta function-like source. One can also refer to output and input. In the 
expression for the potential +(r) as an integral over the Green’s function G 
the values of -4k7rp(r’) at points over which one integrates play the role 
of weight factors. The overall expression thus represents the sum or super- 
position of the responses of the system thus weighted to delta function-like 
sources or inputs. 

Example 2.3: The Planck mass 
Show that in a world with n spatial dimensions Newton’s gravitational constant G raised to the 
power 1/(2 - n) has in natural units the dimension of mass, which defines the so-called Planck 
mass M p ,  i.e. 

M p  := G-1/(2-“) 

for h = 1. c = 1 and is dimensionless. 

Solution: In n spatial dimensions 
a2 n=C- 

ax; ’ 
i=l 

and Newton’s gravitational potential $ is just like the Coulomb potential given by the solution of 
A$ = 0 with r = JCy=, x; # 0. For $ = l/rm we have 

For A$ to be zero, we must have m = n - 2. The gravitational constant G is now defined by 
the potential V = -G . mass/rn-2. In natural units this potential has the dimension of mass M 
(recall that in Einstein’s formula energy = mass times c2), if G has the dimension of LV-(“-~). 

Example 2.4: The delta function in various coordinates 
What is S(r) in three dimensional cylindrical and spherical polar coordinates? 

Solution: Since J dr’S(r - r‘) = 1 and in cylindrical coordinates p, +, z and spherical polar 
coordinates r,O,rp the volume element dr = pdpdzd+ and dr = r2drsinOdedrp respectively, we 
have 

S(r - r’)lCyl = -S(p - p’)S($ - +’)b(z - 2’) 
1 

P’ 

and 

1 
S(r - r’)lSpher = -;26(r - r’)S(cos e - cos e’)qrp - rp’) 

r 
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Example 2.5: Representations of delta functions 
By appropriate evaluation of the integral 

6(x) = lim - dnke-tlkleik.x 
c-0  (2T)" ' J  

for n = 1 and 2 determine representations of the 1- and 2-dimensional delta functions. 

Solution: The case n = 1 is simple: 

We thus obtain the following representation for the delta function in one dimension: 

Higher dimensional cases are not quite so easy. In two dimensions we have 

The integral 

can be evaluated with the help of Tables of Integrals and with caution in the two cases e 2  5 xz. 
In both cases one obtains 2 7 r / d m .  Hence the representation that follows is 

Representations of the type discussed here are frequently useful in applications. 

Example 2.6: Further representations of the delta function 
Show that * 

~ ( x )  = lim K(x) ,  K(x )  = c x; 
20-0 [x: + c,"=, $1" 

is a delta function with coefficient 1 if the constant c is chosen suitably. 

Solution: In order to  establish the result, one has to  show that (a) K(x)  = 0 for x j  # 0, and 
(b) dxK(x)  = 1 and independent of 20. We limit ourselves here exercise-wise to  a few remarks. 
First of all we convince ourselves that a rescaling of xi  + xi = xi/xo verifies that the integral over 
K is independent of XO: 

xgdx dx' 
= c  J J + ,2]n [l + X ' 2 p  ' 

J K(x)dx = c 

*See also E. Witten, Adv. Theor. Math. Phys. 2 (1998) 253; hepth/9802150. 



22 CHAPTER 2. ELECTROSTATICS - BASIC ASPECTS 

By going to  polar coordinates it is not too difficult to  verify that for example in the case n = 2 : 
c = 1/7r, in the case n = 3 : c = 4/7r2, and so on. Also the following representation can be verified: 

(2h+ - l)!x;2h- 
G lim K(x), with h+ + h- = 1. 

x o - 0  
b(x) = lim 

z0-0 7r(2h+ - 2 ) !  

For example we have for n = 2 (in this case h+ = 1, h- = 0): 

6(x) = lim x; 
x o - 4  T ( X ;  + x2)2 

We shall encounter in particular this case n = 2 in Chapter 21 in the regularisation of the field of 
a magnetic monopole. 

Example 2.7: The Coulomb potential in higher dimensions 
Determine the Coulomb potential 

Solution: One way to  solve this problem is the following. In 3 dimensions 

in N > 3 space dimensions. 

For charge e at  r' = r we have (cf. Example 2.4) 

Thus (since the field is radial), 
E, = [ -dr' P(+ 

and with further integrating out the angles 

i.e. 

For the case of N space dimensions we require the N-dimensional generalisation, in particular 

dr = rN-'(sin81)N-2(sin82)N-3.. . ( s i n 8 ~ - 2 ) ~ d r d 8 1 .  . .d8N-1 rN-'drd0N-1. 

The solid angle  ON-^ can be deduced from the equality of the following integrals 

and so from 

Hence 
N?rN/2 
(N/2)! ' 

ON-1 = - 

For N = 3 with (-1/2)! = J;; (see gamma functions and factorials in Tables of Special Functions), 
we obtain n2 = 47r, as expected. Hence 

e E, = - and 4(r )  = - 
e 

RN-leorN-1 (N - 2 ) R ~ - l e o r ~ - ~  ' 
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Example 2.8: The Coulomb potential in space dimensions 1 and 2 
What is the space dependence of the Coulomb potential in a world with one space dimension? 
What is i t  in the case of 2 space dimensions? 

Solution: We have V . E = 4 n k p  with E = -V4; hence in the case of one space dimension 

With the Green’s function G(z) ,  the solution is 

The Green’s function may be obtained by ‘trial and error’ or, better, by contour integration which 
will be explained later. The result is 

as one can verify by differentiation. Thus it follows that in particular for p ( z ’ )  = eb(z’ - 20): 

Such a linear potential is known as a confinement potential, since particles (like quarks) bound 
together by such a potential cannot be separated with finite energy. (See also Example 18.5). 

In the case of 2 space dimensions one can go to polar coordinates r ,  q, so that 

In a similar way one finds that 4 = const. Inr. 

2.6 Potential Energy of Charges in Electric Fields 

Let a charge q be moved from A to B against the field E. The work done in 
this process is 

B 
W = - L  q E ( r ) . d r = q  

r B  
(2.14) 

The minus sign indicates that the force exerted on the charge q is directed 
opposite to the field E. The final result shows that the work done is in- 
dependent of the path from A to B, that is, qE is a conservative field, i.e. 
V x E = O .  
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2.7 The Electric Field at Charged Surfaces 

We now consider the behaviour of the electric field at charged surfaces or 
films.+ Following Faraday it is very instructive to draw lines of force starting 
from positive charges and aiming at negative charges. Already in drawing 
these lines of force, as in Fig. 2.6, one observes that the electric field suffers a 
discontinuity at the charged surface, because, as the term “surface” implies 
(with the same medium on either side), its charge is the same on both sides, 
so that the vector E on one side is opposite to that on the other side. 

t 

Fig. 2.6 Charged surfaces and lines of force. 

Since we wish to consider charged surfaces, we first define as charge per unit 
area the expression o(r) in the following relation, in which q is the total 
charge of a surface area A F ,  i.e. 

If El and E2 are as in Fig. 2.6 the vectors E at a point on the surface but 
on either sides and directed away as for a positive charge, then we write the 
difference of their components along the surface normals E2, - El, and the 
difference along a surface tangent Eat - Elt. We let n be a unit vector along 
the surface normal on the side with index “2” of the charged surface. In the 
first place we consider a surface of thickness d and volume AV = d A F .  We 
apply the Gauss law to this volume and then allow d to approach zero, i.e. 

+We are not yet considering macroscopic electrostatics and therefore have not yet introduced 
the dielectric displacement D. Nonetheless a comment seems appropriate at this point. Since 
the expression for E contains the factor ~ / E O  or 1 / ~ ,  the displacement D as the product EE is 
independent of the dielectric constant, and this implies the continuity of D at the interface between 
media. One should note the difference between this and the case to be considered here, i.e. that 
of a charged surface in the same medium. 
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we consider 

E * d F  = 4 k ~ q  = 4 k 1 ~  
F(AV),d+O AV,d-0 

= 4 k r ~ A F .  
J 

(2.15) 

For thickness d -+ 0 we have 

E . d F  = (E2 + El) . A F  = (E2 - El) . nAF, s F(AV),d+O 

where n is a unit vector directed along the normal on side “2” of the surface. 
It follows that 

(Ez - El) - n = 4k7ru(r). (2.16) 

Thus in passing through the charged surface of vanishing thickness the nor- 
mal component of the electric field E jumps from one value to another de- 
pending on g(r). 

We consider two particular cases. As the first we consider the case of 
a large charged plate, whose boundary effects (distortions of lines of force) 
may be neglected (hence the specification ‘large’). In this case we have as 
depicted in Fig. 2.7, 

E2 . n  = E ,  El . n  = -E,  

so that - 
Thus the field has the same value 27rku on both sides of the plate, but is in 
each case directed away from the plate; the difference is 47rku. 

Fig. 2.7 Large charged plate. 
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These results, in particular formula (2.16), are of considerable importance 
and will be used in many examples. In the second particular case which we 
consider, we assume that the plate is made of an ideal conducting material! 
i.e. a material in which the electrons can move about freely without doing 
any work. We let the thickness of the plate be d # 0. In this case the 
electrostatic potential q5 = const., so that inside the plate the electric field 
vanishes, i.e. El = 0, and the field above the plate is E = 47rIca. 

The discontinuity formula is valid at every surface. If E has the same 
value on both sides of the surface, then CT = 0 on this surface. Conversely if 
El . n, E2 . n are different on both sides, the surface carries a charge. This is 
generally valid for the refraction of light at an interface. 

In the preceding we considered the fields El, E2 as originating solely from 
the one and only charged surface considered. We can drop this restriction 
now and allow charges and surfaces anywhere in space. These have the effect 
of distorting the lines of force of El and E2, and to change their magnitudes. 
This does not change anything in the previous considerations since these 
involve only the difference 

Finally we consider the tangential components. Since E is a conservative 
E . dr = 0 (along a closed path). If we choose a path field, it follows that 

along just above the surface to just below as in Fig. 2.8, then 

(E2t - Eit) . Ar = 0, 

i.e. 
changed: 

the tangential components along an arbitrary direction remain un- 

E2t = Elt. (2.17) 

Fig. 2.8 The closed path above and below the surface. 

Comment  

The basis of our considerations so far was the experimentally determined 
Coulomb law. If one recalls that the Coulomb law has the same form as 

$Conductors will be treated in detail later. 
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Newton’s gravitationaI Iaw, one may enquire about further analogies between 
electrostatics and gravitation theory. Indeed a relation analogous to that for 
the electric field at a charged surface applies also for the gravitational field 
at a surface of mass. For applications we refer to the literature> 

2.8 Examples 

The following examples are needed later. We therefore treat them in some 
detail. Most of these examples consider condensers which are combinations of 
conductors separated by an insulating material (i.e. a dielectric). However, 
the second conductor is not always apparent as such, e.g. the walls of a room 
in which an insulated conductor is placed (see e.g. Example 3.13). 

Example 2.9: The parallel plate condenser 
Two parallel plates made of conductor material and separated by a distance d are given, one 
with charge +q, the other with charge -q, as depicted in Fig. 2.9. Determine the capacity of the 
condenser. 

Solution: Let o be the charge per unit area, i.e. o = q / F .  We use the coordinate system O(z,y) 
with origin at the centre of the condenser and the y-axis perpendicular to the plates. The lines of 
force (in the direction of E) proceed from $4 to -4. We apply the Gauss law to the cylindrical 
volume with cross sectional area AF, i.e. 

E . dF = 4 ~ k 4 .  f 
Since the total charge contained in the cylindrical volume is zero, i.e. OAF + (-a)AF = 0, and 
since the tangential components of the field 

Fig. 2.9 The parallel plate condenser. 

(parallel to the condenser plates) vanish, we obtain 

E(y) - E(-y) = 0. 

IS. K. Blau, E. I. Guendelman and A. H. Guth, Phys. Rev. D35 (1987) 1747; see in particular 
Eqs. (3.3) to (3.4), (4.11) and (4.27). 
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This relation expresses the symmetry of the field on both sides above and below the condenser 
plates. In the case of a finite condenser it is difficult to  compute the field in the external domains. 
The reason is the deformation of the lines of force at the open ends as indicated in Fig. 2.9. 
However, we can approximate this finite condenser by a segment of a large spherical condenser 
consisting of two concentric shells. As we shall see in Example 2.10 the field outside is zero. In 
some books it is simply assumed that the field outside is zero. We see that this is an approximation. 
We now apply Gauss' law to a single plate and make use of the approximations just explained (i.e. 
that  the field outside is zero); then in Eq. (2.16) we have to  put El = 0. Then it follows with 
E2 E E that 

(E - 0 )  . n A F  = 4nkoAF, 

i.e. the field in the condenser is given by 

E = 4nk0, k = 1/4nco. 

The difference V of the potentials betwen the two plates is defined as 

The capacity (American usage: capacitance) C of a condenser is defined as 

(2.18) 

(2.19) 

Capacity is a measure of the ability of a system to store electric energy. We saw previously that 
in MKSA units the constant k has a complicated dimension. The unit of capacity in this system 
is the farad (F), i.e. 1 farad = 1 coulomb per volt. In the Gaussian system the capacity C is given 
in cm with 1 farad ($ 9 x 10l1 cm. Since a farad is a huge quantity, it is customary to employ 
micro-farads with 1 pF = l op6  F. 

Example 2.10: The spherical condenser 
The condenser consists of two conducting, concentric, spherical surfaces with internal radius 7-1 
and external radius 7-2 and charge $4 on the inner shell and -q on the outer shell. Determine the 
capacity of the condenser. 

Solution: In view of the spherical symmetry of the condenser, the field components Eo, E+ = 0. 

Fig. 2.10 The spherical condenser. 
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We consider a spherical surface of radius rl - E ,  E > 0. Then, according to the Gauss law, 

JF E . d F  = 4nk p ( d ) d d  = 0,  
J V ( F )  

since the volume V ( T ~  - E )  does not enclose a charge. Hence 

This means that the field in the interior of a charged closed surface is zero, i.e. this is field-free? 
Thus the field of the condenser originates from the inner shell. We now consider a sphere of radius 
r > r1: 

E . dF = 4nr2  Er = 4nk4, 

4 E r = E = k -  

/ 
so that 

r2 

as for a point charge +q at the origin. Outside of r2, i.e. for T > ~ 2 ,  the field again vanishes, 
because there the field contributions of the two equal and opposite charge distributions cancel each 
other (one could say, the field there corresponds to the sum of the fields of point charges $4 and 
-q at the origin), With this we obtain for the potential V of the condenser 

and for the capacity 

With reference to  a single spherical shell we can define its capacity as 

C = charge/potential, 

so that in the case of the inner sphere 

Example 2.11: The van de Graaff generator 
A van de Graaff generator has a spherically shaped dome made of conducting material which 
receives charges at the rate of a current of 1 PA. The dome has a radius of 1 m. At a critical 
electric field strength of 3 x lo6 V/m the surrounding air produces sparks. How many seconds 
after the beginning of the charge transfer to the dome does this effect appear? ( 4 ~ ~ 0  = 107/c2). 

Solution: In the van de Graaff generator charge is sprayed on a transmission belt made of insulator 
material. The belt transports the charge to  the conducting dome of radius R as depicted in 
Fig. 2.11. For a single spherical shell the capacity C is defined by the ratio of charge to  potential, 
as we saw previously, so that with potential 4 = kq /R  the capacity is given by 

C = 2 = @ = 4.rr~oR 
4 k4  

7This was the observation of Cavendish in his experiment which we discussed earlier. 
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Fig. 2.11 The van de Graaff generator. 

for a charge q. If charge is continuously added, the potential 4 changes accordingly, i.e. 

d 4  dq C - = - = I  
dt  dt  ' 

where I is the current. We thus have the relation 

with 4 = 0 at time t = 0. The potential or voltage increases until the corresponding field E around 
the sphere is strong enough to knock electrons out of the surrounding air - the corresponding 
atomic transitions then become visible in the form of sparks. In air this stage is attained when 
Ecrit = 3 x lo6 V/m. The field E in the neighbourhood of the dome is given by 

P E = k - - ,  r > R .  
r 2  

For r N R: 
E = k Q = ?  

R2 R '  

or 4 = ER, so that q5crit = Ec,,tR. For = 3 x lo6 V, we have R = l m  and 

This implies that 
1 

C = -  nF 
9 

Thus the appropriate current I is: I = 4,,itC/t, i.e 

3 x 106v 1 0.3 x 10-3 
I=-- A =  A.  

9 x 1 0 9 ~  t t 

For I = 1 x A: 
A 

0.3 x 1 0 - ~  
1 x A = 

t 
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we obtain t = 0.3 x lo3 seconds. 
micro-ampere, it takes about 300 seconds for the potential to reach its maximal value. 

Thus if the dome is charged at the rate of a current of 1 

Example 2.12: The cylindrical condenser 
This condenser consists of two coaxial cylinders of height h and radii r1, ~ 2 ~ 7 - 2  > 7-1. The inner 
cylinder carries charge q, the outer cylinder charge -4 .  What is the capacity of the condenser? 

Solution: Clearly one uses cylindrical coordinates 0, p, z in order to exploit the cylindrical sym- 
metry. 

Fig. 2.12 The cylindrical condenser. 

We consider a cylindrical surface of radius p where r2 > p > r1. In view of the cylindrical symmetry 
Ee = E,  = 0, E ,  = E.  The Gauss law implies 

so that 

We thus obtain for the potential V: 

and for the capacity 

The finite cylindrical condenser can be approximated by a segment of a toroidal condenser, like 
the parallel plate condenser can be approximated by a segment of the spherical condenser. 

Example 2.13: The dipole 
A dipole is generally defined as a system of two spatially separated charges +q, -4. Obviously 
an infinitesimally imagined parallel plate condenser is of this form. We now want to obtain the 
potential of such an arrangement of charges, and we shall define in this context the important 
concept of a dipole moment. 

Solution: We consider first two infinitesimal parallel plates with surface areas dF’, dF”, and 
charge densities +u(r’), -u(r’), which are elements of surfaces S’, S” with charges +a, -0 as 
depicted in Fig. 2.13. The potential at the point P is given by 

u(r’)dF’ u(r’)dF’ 
+(r) = k /  ___ - k /  

Ir - r’I Ir - r’ + dr’l ’ 
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In the following one should not confuse the line element dr with the volume element dr (the 
distinction should be clear from the context). We have 

1 
{(r - r f ) 2  + 2dr‘ . (r - r’) + (dr’)2}1/2 

- - 1 
Ir - r’ + dr’l 

(r - r’) . dr’ +. . . )  1 
(r - r’)2 

0 

It follows that 

-r P 

Fig. 2.13 The dipole as an infinitesimal condenser. 

dF‘ 
u(r’)(r - r’) . dr’ 

We put 

D(r’) = lim u(r’)ldr’l. 
dr’+O 

The quantity D is called dipole dens i t y  (i.e. we consider a case in which the potential between 
the surface elements dF’, dF“ remains constant, when dr’ + 0 and u(r’) -+ a). An inf ini tes imal  
dipole surface (area A F )  in the limit -+ 0 is sometimes also described as a po in t  dipole. Then (in 
the limit dr’ -+ 0) 

dF‘ 
D(r’)n. (r - r’) 

Let dR be the solid angle subtended by the area dF‘ at P. Let n be a unit vector perpendicular to 
dF‘ and directed to  the outside (i.e. n parallel to  dr’). It then follows from Fig. 2.13 that 

n . (r’ - r)dF’ 
(r - 1-03 

= dR 

and hence 

4(r) = - J, D(r’)dn 

(the minus sign appears because d R  involves the vector (r’ - r) and not (r - r’) like 4 ) .  Replacing 
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F by A F  we obtain the potential of a point dipole: 

u(r’)ldr’ldF’n (r’ - r) 
= I A F  (r - r’)3 

(2.20) 

where 

Q = 1 a(r’)dF’. 
A F  

The expression p is called dapole moment of the point dipole; this is a vector quantity with direction 
from the negative charge to the positive charge. Q is the charge. 

2.9 Conductors and Electrical Screening 

A conductor is a macroscopic object in which charges are contained which 
can move about freely (i.e. without doing work). Inside the conductor the 
electric field E therefore vanishes, because only then a charge can move about 
freely in the conductor. It follows that if the conductor is given a charge, 
this charge must be located in a thin layer at its surface. This must be so 
because if we consider an arbitrary closed Gaussian surface wholly within 
the conductor material, this cannot contain charge since everywhere on the 
surface E = 0. Thus inside the conductor the charge is zero at  every point 
(the charges of the conductor material itself averaging out to zero). It follows 
that the surface of the conductor is an equipotential surface. 

Example 2.14: The charged sphere 
Let a spherically shaped conductor be given with charge q. Explain with the help of potential 
considerations that the charge accumulates on the outer surface of the conductor. 

So lu t ion :  We consider a sphere with external radius b and an internal hollow space of radius 
TO = a < b. We subdivide the intermediate region into concentric spherical shells of radii T I ,  7 - 2 , .  . . , 
Each shell initially has charge zero. Since the sphere is a conductor, each of its parts has the same 
constant potential. If we give, e.g. the sphere with radius r2 the charge q, the potential changes 
for all shells with radius ri, i > 3. Thus the gradient of a potential arises. Obviously the energy of 
the system becomes minimal when the charge q is located on the outermost shell (recall that the 
modulus of the Coulomb potential decreases with increase of the distance from the charge). 

The electric field inside arbitrarily shaped conducting bodies whose sur- 
faces are charged but which do not contain any enclosed charges is always 
zero. This is so, because if we apply to the interior the integral form of the 
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law of Gauss, we obtain L, E . d F  = 0. 

The right hand side is zero, since the surface F’ does not enclose charges. If 
there were inside the given positively charged, closed surface a field E # 0 
then the field would be directed from the surface towards the interior. All 
contributions to the integral would then be positive. The integral would be 
a sum of positive contributions. All these would therefore have to vanish, 
implying that the field inside is zero. This result is apparently also valid for 
homogeneous charge distributions on the surface. Such closed bodies which 
do not contain charges are called Faraday cages because Faraday crept into 
such a container in an attempt to measure the field therein!l Containers of 
this type are used when field-free regions are needed. That the field inside 
closed charged bodies has to be zero can also be seen by the impossibility 
to sketch lines of force in the interior which travel from positive charges to 
negative charges. 

A conductor is said to be earthed if its potential is the same as at infinity, 
i.e. zero. This effect is achieved in practice by connection with the ground, 
i.e. the “Earth”. 

If a body, e.g. a solid sphere, is made of a nonconducting material, that is 
a dielectric medium, which is polarised in an applied electric field, then one 
part of the body can be positively charged and another negatively. These 
cases will be treated later. 

Finally we consider some systems of conductors and their electric screen- 
ing. Above we obtained the Poisson equation for the electric potential 4. 
Assuming also the superposition principle, we can treat the case of n con- 
ductors with potentials q5i and charges qi ,  i = 1,2 ,  . . . , n, in vacuum or air by 
writing 

n 

$i = C pijqj 
j=1 

or inversely 

j=1 

The coefficients Cij are described as capacities, and the coefficients p i j  as 
induction coeficients. Obviously these coefficients depend on the geometry 
of the conductors and their arrangement in space. In the special case of two 

“See e.g. Zahn [8], pp. 77-78. 
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conductors with charges q and -q (as in preceding examples), we obtain 

41 = (Pll - P12)ql 4 2  = (P2l - P22)Q, 

or 
41 - 4 2  = (Pll - P12 - pa1 + p22)q. 

Hence 
Q 
C 

v = 41 - 4 2  = -, 
where 

1 
C =  

(Pll - Pl2 - P2l + P22). 
Expressed in terms of the coefficients Cij, one obtains 

c11 + c12 + c21 + c 2 2  

CllC22 - c12c21 . 
C =  

It can be shown that** 

Electrical screening results if one conductor is completely surrounded 
by another conductor. Instead of considering the most general case, we 
consider here the example of 3 concentric spherical shells which provide such 
enclosures. We will find that, as illustrated in Fig. 2.14, conductor 1 is 
screened off by conductor 3 and other external conductors in the sense that 
the coefficient c13 = 0. 

We consider the three concentric spherical conductor shells with charges 
qi and radii ri, i = 1,2 ,3  and r1 < 7-2 < 7-3. We know that in the case of a 
single sphere with charge q and radius r g :  

4 4 =  k- for r < T O  (there E=O),  
TO 

9 4 = k- r > r o  (there E # 0). 
r 

for 

It follows that 

(2.21) 

** See e . g .  B. H. Chirgwin, C. Plumpton and C. M. Kilmister [9], pp. 82-84. 
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From these relations we deduce that if 

4i = c PijQj , 
j 

we have 

The matrix (Cij) is the inverse of the matrix (pij) (and one can show that 
the inverse exists, i.e. det(pij) # 0). According to the rule for establishing 
the elements of an inverse matrix we have for example in the case of the 
(3 x 3)-matrix 

a1 bl c1 

Fig. 2.14 Conducting shells screening the inner ones. 

++See e.g. A. C. Aitken [lo], p. 52, or any other book on determinants and matrices. 

the inverse

where

and so on. Applied to the matrix
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according to the above relations. This means that the charge 41 remains 
unaffected by the field $3,  or external conductors. This is what one calls 
electrical screening. In practice the conductor which is used for screening 
purposes is frequently “earthed”, i.e. in the previous example one would 
have put 4 2  = 0. 

Example 2.15: The two hemispherical shells 
A conductor has the shape of a spherical shell with radius a .  The shell is divided diametrically 
into two hemispherical parts. Calculate the force which is needed to keep the hemispheres together 
if the sphere carried originally the total charge q ( q  = 47ra2a). 

Solution: The hemispheres are separated. Thus each has on both sides a field E # 0. In this case 
(as we saw above) the electric field at the surface is given by 

E = - = L  U 

2to eo87ra2‘ 

We now calculate the force acting in the direction of z (see Fig. 2.15) .  To this end we compute 
the force acting on the surface charge u in the general direction 0, take the component along z of 
this, (multiplication by cos 8 ) ,  and add all force components in the direction of z (integration over 
0 for one hemisphere). We thus obtain for the force in the direction of z 

27ra sin B ad%u - cose F, = LT” 
eo87ra2 

I -  P ad0 

(2 .22 )  

Fig. 2.15 The sphere divided into hemispheres. 

If one considers a spherical condenser consisting of two concentric spherical shells with radii a and 
b ( a  > b) and one divides this diametrically into two parts, and if q and -q are the charges on the 
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spheres originally, then the following force is required to  keep the two parts together* 

(difference of two forces so that the electric field remains between the two spheres). 

Example 2.16: Two connected spherical shells 
Two spherically shaped conductors with radii a and b and respectively charges q1 and q2 are 
separated from one another by a distance r >> a ,  b. The conductors are connected by a thin 
conducting wire as indicated in Fig. 2.16. Calculate by what amount the energy of the system is 
thereby lowered. 

Solution: Connecting the spheres by a wire alters the equipotential surfaces of the system. The 
charges rearrange themselves such that the energy is minimised. We first calculate the energy of the 
conductors when not connected. For this we calculate the potential of each of the conductors. These 
are in general determined by both charge distributions. The potential of the first conductor follows 
from a contribution ql /4neoa,  originating from the charge of this conductor, and an additional 
contribution due to the charge 4 2 .  Since r >> a ,  b, we can approximate the latter by q z / 4 m o r .  
Hence the potential of the first conductor is 

1 41 42 & = -  - + - .  
4T€o [ a  r ] 

Analogously we obtain for the potential of the other conductor 

4 2  = 1 [ y  + 9. 

r 

Fig. 2.16 Two spherical shells connected by a wire. 

The energy of the system of separated conductors is therefore 

*See problem 1, p. 54, of L. G. Chambers [ll] 
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When the conductors are connected by a conducting wire they form an equipotential surface. 
The charges redistribute themselves to  minimise the potential. Let qi’, 42’ be the charges of the 
conductors in the new state of equilibrium. Since no charge is lost, we must have 

( a )  41’ + 42’ = 41 + 4 2 .  

Since both spheres now have the same potential we have 

This implies that 
41’ 42’ 42’ 41’ -+-=-+-- - ,  
a r b r  

i.e. 
1 1  

4; 4; = q;R, 4; = x, where R = 
a r  

With (a) we have 
91’ = (41 + 42 - 41’)R 

and so 

Similarly 

I (41 + 4 2 w  
1 + R  

41 = 

/ ( 4 1 + 4 2 ) &  
1 42 = 1 + x  

With these expressions we obtain the new energy of the system as 

w‘ = 4;41/ + 4;42/, 

i.e. 

The amount by which the energy is lowered is therefore W - W’; for a = b, this is 

This is the resultj 

Example 2.17: The charges of connected spherical shells 
Two conducting spherical shells have radii R1 and Rz. Their centres are a distance D ,  D >> R1 +R2 
apart. The sphere with radius R1 is given a charge Q1 and the sphere with radius R2 the charge 
Q2. A thin conducting wire is now added to connect the two spheres. Calculate the resulting 
surface charge densities on both spheres, as well as the electric field strengths. Without further 
calculations discuss the effect that appears when the system with very small radius Rz is subjected 
to a high voltage (i.e. why high voltage systems avoid sharp points like that of the small sphere). 

Solution: It is easiest to obtain the potential of the spheres from the Gauss law, 

E . dF = 47rk p(r’)dr’ = 4nkQ, J J 
‘See also LI. G. Chambers [ll], problem 8, p. 55 
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i.e. for r > R : 
Q E ,  = k -  
r2 ‘ 

47rrzEr = 47rkQ, (2.23) 

In general the charge of the distant sphere contributes to the potential of the other sphere (ignoring 
the former is not always a good approximation). We can assume for simplicity here that at the 
other sphere the potential of the distant sphere does not vary much with the radius of the sphere 
considered, so that 

(2.24) 

The wire connecting the spheres ensures that both spheres together form an equipotential surface 
with potential 

(2.25) 

where Q1’ and Q2’ are the new charges, in other words the charges rearrange themselves on the 
spheres in such a way that both spheres have the same potential 40. Since in this process charge 
is neither created nor annihilated, we must have 

Qi + Q z  = Qi’ + Qz’ 

From this and Eq. (2.25) we can calculate Q1’ and Qz’: 

Qi’ = ~ Q z ’  [ 1 + o (31 
for D large. By neglecting contributions of the order of 1/D we obtain 

i.e. 

The potential 40 is therefore 

Ri + Rz 
Now, surface charge density = charge/area, so that 

and 
Q; - Q i  + Qz 

U 2 N - -  
4xR; 4 i ~ R z ( R i  + R z ) ’  

According to Eq. (2.23) the corresponding field strengths are given by 

i.e. 

When Rz is very small, E2 becomes very large. If a high voltage is applied, for Ez > E2,critical 
this electric field is so large that it can eject electrons from atoms of the surrounding air. The 
resulting reordering of atomic states leads to the emission of light which can be observed in the 
form of sparks. 

Ei N 47rkUi,  Ez N 47rkuz. 
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2.10 Energy of Charge Distributions 

The potential energy of a point charge qi at the point ri in the electric field 
E = -V$J of a point charge q k  at point rk is the Coulomb potential 

The potential energy of N charges 41, q 2 ,  . . . , q N  is correspondingly 

W = SkEC 1 qiqk 
lri - rkl ’ i k f i  

since Ci Ckfi sums over i and k, i.e. twice. For continuous charge distribu- 
tions p(r) we have analogously 

This expression for W does not explicitly 

Fig. 2.17 Parts of a single surface. 

exclude the point where r - r’ = 0, so that it is possible that the expres- 
sion involves divergent contributions. This is a problem connected with the 
Coulomb potential and requires a correction which we cannot enter into here 
(it is concerned with the problem dealt with under the term “self-energy”), 
which, however, is to be understood as a screening effect and replaces effec- 
tively the Coulomb potential N 1,” by a type of Yukawa potential - e-P’/r. 
In the case of surface charges we have correspondingly 
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For example, F can consist of two condenser plates with areas F1 and F2 as 
illustrated in Fig. 2.17. 

We can also express W in terms of E: We saw that p(r) is the source 
function of the potential 4, i.e. 

v24 = A4 = -4 r b ( r ) *  

However, 
v. (4V4) = 4A4 + (V4K 

so that 
W = - -  J ~ V [ V  . ww - ( ~ 4 ) ~ i .  

87rk 
But 

d v v  . ( 4 ~ 4 )  = 1 d F .  ( 4 ~ 4 ) .  

Now, 4 - l/r,V4 N l / r2 .  If we integrate over an infinitely large surface 
(i.e. with T -+ m), the integral vanishes, since d F  cx r2dR which implies 

for T -+ 00. It follows that 

(2.26) 

Thus the expression E2/87rk represents the energy density of the  electric 
field. One should observe: For large values of T the integrand of W behaves 
as dr / r2 ,  but from this we cannot conclude that it vanishes, since the integral 
is the sum of many nonvanishing positive contributions. On the contrary, 
inserting the Coulomb potential for a single charge at T = 0 one obtains 
w = 00. 

Example 2.18: The gravitational potential 
Consider a static particle with charge Q. With the help of Einstein’s formula energy = massc2 
calculate the mass density which is equivalent to the energy density of the electric field of the 
charge, and then insert this together with the contribution of a “bare” (i.e. fieldless) mass mo of 
the particle into the equation for Newton’s gravitational potential 4, i.e. 

A4 = 4.rrGPtotal. 

$See M. Visser, Phys. Lett. A139 (1989) 99. 
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Taking into account an additional contribution to p, which makes 4 its own source (similar to the 
case in electrostatics), solve the equation with the help of the ansatz 

and the substitution 

Solution: At a distance r from the charge Q the electric field is (k = 1/4m0): 

= 1/r. Then calculate mo. What is the significance of the result? 

The corresponding electromagnetic energy density is (here only the electric part): 

According to Einstein’s energy-mass relation the electric energy density corresponds to a mass 
density 

1 
p =  ---lE(2. 

87rkc2 

Let rno  be the so-called bare mass of the particle (like the electron) with charge (say) Q (i.e. not 
taking into account the radiation field of the particle). Then the total mass density is (Jdrd(r) = 1) 

1 
87rkc2 

p = rnod(r) + ---lE12. 

This mass density contributes to the gravitational potential in space (like any other mass). New- 
ton’s gravitational potential 4 is the solution of the equation 

(here G is the gravitational constant). The density ptotal is the total mass density contributing 
to the gravitational potential which now includes the electromagnetic energy density (in this way 
gravity couples to any kind of energy density). One contribution is apparently the contribution p. 
Another contribution has its origin in the gravitational field itself. Like the electromagnetic energy 
density pelrn the (Newtonian) gravitational field also possesses an energy density which is given 
by the analogous expression (with minus sign in view of the attractive nature of the gravitational 
field) 

Adding this contribution also to p we obtain a nonlinear self-interaction of the gravitational field 
which could be looked at  as a neo-Newtonian version which incorporates model-like the nonlinear 
contributions in Einstein’s theory. We obtain therefore 

(2.27) 

In solving the equation we set

so that
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(2.28) 

Replacing here AdJ by the above expression, we have 

The right side is spherically symmetric. 
coordinates r ,  8, dJ. Then setting u = l/r, one obtains 

This suggests the separation of A in spherical polar 

i.e. 

with Q = K Q , K  = &?/-c2. It should be noted that because r46(r) = 0, the other source 
term has disappeared (but will be regained by consideration of r -+ 0, which is here excluded). 
The resulting equation can now be solved easily provided we know the boundary condition that 
+(dJ) ought to satisfy. Since dJ is to vanish for r + 00, we require 

r + co: +(+) + 1, 

and hence 
cosh(A - +=-- 'I, A=const. 

cosh A 
However, for T -+ 00, 

cosh(A - g) 
{ coshA 

= 2c2 In+ = 2c2 In 

1 -  = --Q c2tanh(A)+. . .  . 
T 

Since this expression represents the gravitational potential (for T + 00) the quantity Qc2 tanh(A) 
has to be interpreted as gravitational mass. With the above expression for + we obtain in addition 

= 2c2 In (cosh(A - 2)) 
coshA ' 

and with this 

V+= Qc2 tanh A -  - - ( 3 r 3  
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and (see below) 

(2.29) 

The first contribution on the right of Eq. (2.29) is obtained as follows. For r # 0 we have 

For r -+ 0 we have 

= tanh(-co) = -1. 

Then, for r -+ 0: V4 21 -Qc2r/r3 and 

V.V+dr= -Qc’ V .  - dr J Jv G 3 )  

Hence A4 acquires the contribution -4nQc26(r). Comparison of Eqs. (2.27) and (2.29) then yields 
mo = -% = -Q/m. 

The second contribution on the right side of Eq. (2.29) follows from the sum of the other two 
contributions on the right side of Eq. (2.27) with I /  cosh2 x = 1 - tanh2 x. 

Example 2.19: The spherical condenser 
Show that for the spherical condenser (radii a and b, a < b, with charges q,  -9) the electrostatic 
energy is W = q2/2C.  Calculate the electrostatic pressure on the outer spherical shell and compare 
the result with the product of chargelarea of the outer shell with the electric field strength at  the 
latter. 

Solution: The charge on the inner sphere (radius a, charge +q) acts like concentrated at the 
centre. Therefore the field E, at a distance r away from 0 is 

4 
r2 

E r = k - ,  a < r < b .  

Hence the total electrostatic energy is 

Since according to Example 2.10 the capacity C is 

1 

a b  

c=- , q L -  L ) ’  

we obtain W = q2/2C.  The force acting on the external spherical shell is 

aW kq2 - 
ab 2bz ’  

so that the pressure on this shell, forcelarea, is 

kq2 kq2 --=-__ 
2b247rb2 8nb4 
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(toward the centre). On the other hand, the charge density u of the outer shell is = -q/4nb2. 
Thus 

This is not the pressure, which acts on the outer shell, since the surface charge on the rest of the 
outer shell exerts a force in the opposite direction and thus compensates partially the force due to 
the charge on the inner sphere. 

Example 2.20: A charged particle inside a charge density 
A spherically shaped volume is uniformly charged with charge density per unit volume q v .  A 
particle with mass m and charge -q is placed into this spherical volume. Show that the mass 
executes harmonic oscillations and calculate their frequency. 

Solution: We have here 

E .  dF = 4 n k x  p i ,  i.e. E,47rr2 = 47rk-nr3qV, 4 s 1 3 

and hence 
4 

E, = j R T q v k ,  

so that the equation of motion of the particle is 

4 
3 

mT = - -7rrqqvk or mf + w2r = 0 

with 

Example 2.21: A multivalued potential 
Determine the equipotential surfaces of the potential 

-1 2 q5= tan . 
X 

What is the value of a contour integral V4. dl along a closed path A, which does not encircle 
the z-axis, and what is the value of a contour integral along a closed path B, which does encircle 
the z-axis? (Remark: The function 4 will be discussed further, in particular in Sec. 8.4). 

Solution: Since 4 = tan-l f = 6' f TIT, n a positive integer or zero, the equipotential surfaces are 
the radial planes with 6' = const. These intersect along the z-axis. These planes therefore violate 
the physically expected single valuedness of the potential and the z-axis is the seat of singularities. 

The gradient is 

xdy - y d ~  
ey, so that V + . d l =  0 4 = - -  Y e , + -  x2 + y2 X2+Y2 . 5 2  + y2 

For a circle around the origin in the plane of x and y, and a = const., one has x = acos0, y = 
a sin 8, xdy - ydx = a2d6' and thus J V4 . dl = J do. This expression is independent of a and is 
therefore valid for an arbitrary contour. Since the direction of V4 is that of eg ,  contour components 
along e,  and e, do not contribute. In the case of contour A we clearly have J d6' = [O - 01 = 0. 
Also curl grad 4 = 0. In the case of contour B, however, the value of the integral depends on the 
endpoint. The potential is multivalued, i.e. each time 0 is encircled its value changes by *2n. 
Such a contour cannot be shrunk to zero without cutting the singularity at 0. 
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Applications of Electrostatics 

3.1 Introductory Remarks 

In the following we investigate further extensions of electrostatics as well 
as more complicated applications, thereby also emphasising the methodical 
differences. Green’s theorems and Fourier transforms are introduced, and 
finally the multipole expansion of the potential of a charge distribution is 
derived. 

3.2 Method I: The Gauss Law 

The problems we considered thus far were mostly treated with the help of 
the integral form of the Gauss law, and so with 

We now investigate other methods. 

3.3 Method 11: Poisson and Laplace Equations 

In the preceding we encountered the Poisson equation as the equation 

V2q5 = -4rkp. 

In solving this equation we require boundary conditions. These are: 
(1) q5 = const. o n  conducting surfaces (in an ideal conductor the electrons 
do not perform work) with the discontinuity for the derivatives as for the 

47 
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electric field strength, i.e. (cf. Eq. (2.16)) 

- ( g ) 2  + ( g ) l  = 4Tk0, 

( 2 )  otherwise q5 continuous (this is no contradiction with the difference of 
the potential on both sides of a dipole layer; * the potential of a dipole p is, 
as we shall see later, p . r/r3, and this is continuous in r (no step function 
Q(x)). If q5 were discontinuous anywhere, i.e. if q5 contained a step-function 
Q(z - ZO), then at this point E = -Vq5 would be proportional to S(Z - ZO), 
i.e. infinite, which would be meaningless and unphysical. 

Example 3.1: The cylindrical condenser 
Calculate the potential difference V of a cylindrical condenser. 

Solution: We consider again the cylindrical condenser without boundary effects and charges 
q and -q on the surfaces of radii r1 and r2 > r1 and height h.  In the region between the 
cylindrical surfaces we have no charge, so that there V2+ = 0. In view of the cylindrical symmetry 
&$/a0 = 0 = &$/az, so that separation of the Laplace operator yields 

i.e. a4/ar = a/r,a = const. Hence E = -ad/& = -a/r. At r = r1 we have (see Eq. (2.18)) 
E = 47rka = 4nlca/F = 47rqk/2shrl, so that a = -2qk/h, and for E and the potential difference 
V we obtain as before 

The result is positive 
direction of E. 

as a consequence of its physical interpretation as the work done in the 

As a more advanced application we consider a proportional c0unter.f 

Example 3.2: The proportional counter 
Calculate the potential of a proportional counter. An important part of a proportional counter 
is its circular cylindrically shaped anode of radius a made of wire and a corresponding circular 
cylindrical cathode with radius b > a. The intermediate space is filled with an ionisable mixture 
of gases. In practice one frequently has the situation that the volume charge density p differs 
significantly from zero only along a length L (with Izl 5 L/2) of the cylinders. Show that the 
potential 4(r ,  z )  in this intermediate space obtained with the following boundary conditions 

is given by 

*See also for instance Greiner [4] ,  p. 29. 
+H. Sipila, V. Vanha-Honko and J. Bergqvist, Nucl. Znstr. Methods 176 (1980) 381. 
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where p, satisfies the following relation involving the special functions J and Y known as Bessel 
and Neumann functions: 

Jo(pna)Yo(pnb) - Jo(pnb)Yo(pLna) = 0. 

Which condition determines the coefficients K,, and which the coefficients B,? 

Solution: For the detailed solution we refer this time to  the literature cited above. 

3.4 Method 111: Direct Integration 

In this case one integrates either vectorially, as in 

~ = k  JF,  d q = p d V ,  

or scalar-wise as in 
4 = k dqr.  

We illustrate the method again by application to some important examples. 
J 

Example 3.3: The finite, charged, thin rod 
Calculate the field surrounding a charged, thin rod of finite length. 

Solution: The word “thin” implies that the rod is to  be considered as a line. Let q be its charge 
per unit length. We choose the coordinates as in Fig. 3.1. 

Y 

Fig. 3.1 The charged rod. 

The potential energy at  the point (z, 0) in Fig. 3.1 is 
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Hence the electric field at  the point (I, 0) is 

In the limit y2,-y1 + 00: t91,02 -+ n/2, i.e. Ex 4 2qk/x as for a point charge at  the origin. 
One can show that the equipotential surfaces are ellipses with foci at the ends of the rod. In 
Example 3.3 we calculated as a matter of simplicity only the x-component of the field. We can 
deduce from Eq. (3.2) what the potential is outside the wire. To obtain this, we use the expansions 

sinh-’x = ln(2x) + 

s i n h - ’ ~  = -In 12x1 

Inserting the dominant contributions into Eq. (3.2) we obtain 

Replacing x by r leads to  the expression 

4 d( r )  = -- l n r  + const., r > 0, 
2n60 

in which the constant can be infinite. In the computation of the field strength, however, the 
contribution of the constant drops out. With the help of the last relation and the product formula 

m 

one can calculate the potential of a system of parallel wires, a distance b apart, and each carrying 
the same charge. One finds 

+( r )  = -4 1 n sinh (7) + const. 
2 K € 0  

Systems of this or a similar kind are used in particle detectors) 

3.5 Method IV: Kelvin’s Method of Image Charges 

In an electrostatic problem the potential determines in a unique way quan- 
tities like E and c. It is therefore possible to imagine certain potential 
distributions replaced by fictitious charges called “image charges” and to 
calculate the field of these. An example is shown in Fig. 3.2. The effect of 
the earthed conductor (i.e. with potential r$ = 0, this alone is our definition 
of “earthed”) can also be achieved by a fictitious charge. 

$See e.g. T.J. Killian, Nucl. Instr. Methods 176 (1980) 355. 
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0 

-9 

Fig. 3.2 (a) The earthed conductor, and (b) its fictitious replacement. 

The earthed conductor implies a boundary condition: q5 = 0 = q5(r = GO). 

The field E then results as the effect of both charges, +q and -q, in the 
region above the conductor. A similar example is illustrated in Fig. 3.3; 
again the field of case (a) can be calculated from the situation of case (b). 

Fig. 3.3 (a) An earthed conductor, and (b) its fictitious replacement. 

In the case of two earthed conducting plates and a single charge between 
them we have to  introduce a large number of image charges as shown in 
Fig. 3.4. 

- - - - - - - 
more- 

_ _ _ _ _  - more q=-1 q=+l 

- - 

Fig. 3.4 Charge q between earthed conductor plates. 

The potential at an arbitrary point between the plates enclosing the charge 
(in Fig. 3.4 with charge +1), is then the same as that of the given charge 
together with the image charges. An analogous situation is obtained for the 
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earthed conductor plates arranged as in Fig. 3.5. 
Although the method of image charges is used in applications, it is not 

always treated in relevant texts. Some texts which include it are those of 
Stiefel [15] and Zahn [8]. The method of image charges finds application for 
instance in the calculation of the electric field in particle detectors§ 

+1 

Fig. 3.5 Conductors with angular orientation. 

Fig. 3.6 The oscillating charge. 

§See e.g. W. Weihs and G. Zech, Numerical Computation of Electrostatic Fields in Multiwire 
Chambers, Report Univ. Siegen, May 1989. 
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Example 3.4: The oscillating charge 
A pointlike mass m with charge q at the end of a string of length a oscillates in the gravitational 
field of the Earth above an earthed horizontal metal plate. The mass oscillates like a pendulum 
in a plane. Determine the equation of motion of the pendulum expressed in terms of the angular 
deflection 6’. What is the period in the case of small oscillations? 

Solution: Using the method of image charges as sketched in Fig. 3.6, we place a charge -q in 
the position of a mirror image of the charge +q, so that in the plane of the earthed conductor 
the potential 4 is zero. In this way we can ignore the plate (or its boundary condition) in the 
evaluation of the electric field. It is easiest to use the principle of conservation of energy E. The 
total energy of the charge +q is 

1 q2 E = -m(a8l2  + m g a ( 1 -  cOs e) - 
2 ( 2 d +  2a - 2acosB)’ 

where d is the distance shown in Fig. 3.6. With 

it follows that 
q2a sine 

( d  + a - acosO)2 
ma2$ + mga sin e + = 0. 

For 0 small we have 

I+ R28 N 0, 

Thus the desired period is T = 27r/R 

3.6 Theoretical Aspects of Image Charges 

3.6.1 The Induced Charge 

Before we investigate general theoretical aspects of the method, we consider 
an example: A charge q placed outside an earthed spherical shell of radius 
a. Different from the cases discussed above, in which we considered either 
point charges or charge distributions, we now have the example of a mixed 
case. “Earthed” means potential 4 as on the ground, and this means as at 
r = m. Everywhere on the spherical surface the potential is to be $I = 0. 
Apart from this, 4 is a continuous function (so that E = -V4 is nowhere 
infinite). 

The first question is therefore: Where do I have to put which charge so 
that at any point on the sphere one has $I = O? Inside the conductor, i.e. 
on the sphere, the charges (electrons) can move about freely (performing no 
work, since 4 = 0, also E = 0). As indicated in Fig. 3.7 we put a fictitious 
charge -pq into the interior of the sphere. In order that 4 = 0 at a point P 
on the shell, we must have 

o = - - -  4 PL4 
T1 7-2 
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i.e. 7-2 = p7-1. From the geometry of Fig. 3.7 we obtain 

7-12 = d2 + a2 - 2adcosB = d2 1 + - - 2- cos8 ( f: f 
and 

r; = a2 + v2 - 2avcose = a 

It follows that 7-2 is proportional to 7-1 if 

a2 
d 

v =  -. 

Then 7-2 = a r l / d ,  i.e. p = a / d .  In other words, a fictitious charge -aq/d 
has to be placed at a point, called the 9rnuge point”,  a distance a2 /d  away 
from 0, so that 4 = 0 at all points on the sphere. 

Fig. 3.7 The earthed spherical shell. 

The second question: What is the potential 4(r) at an arbitrary point 
P(r) outside the earthed sphere, where r > a? Outside the sphere 

E s E 2  = -V# # 0. 

At an arbitrary point r outside the sphere 
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and this vanishes for r = a. Hence inside the sphere E = 0, i.e. q5 constant. 
This constant is zero since on the sphere 4 = 0. (If the entire sphere is filled 
with conductor material, the potential is everywhere constant or zero as on 
the boundary surface). The relation we derived earlier for the passage of the 
electric field through a charged surface (now with El = 0) is 

(E2 - El) . n = 47rk0, or - (g)2+ =47rka 

where &$/an = (a$/&) . n. This allows us to compute the surface charge 
density a. The corresponding charge on the sphere is called induced charge. 
This charge follows from the fact that the charge outside repels charges of 
the same polarity in the conductor and attracts those of opposite polarity. 

The third question: What is the induced charge? The induced charge is 
a real charge which we can calculate. This charge is given by 

Q = J a(y)a2dR, dR = 27rd(cosy) 
S 

(a circular annulus about the horizontal axis in Fig. 3.7 at angular height y 
and of infinitesimal width ady has area (ady)27r(a sin 7); hence the element 
of area under the integral). 

We compute first (T. Since E = -Vq5 = E2, we obtain from the above 
formula 

E2 . n = -'i7q5. n = 47rka, 

i.e. 

Since S = sphere, it follows that 

84 2q(r - dcosy) 2aq(r - vcosy) 
47rEo- = - 

ar 2(r2 + d2 - 2 r d ~ o s y ) ~ / ~  -I- 2d(r2 + v2 - 2 r v c 0 s y ) ~ j ~  * 

For v = a2/d and r = a we obtain 
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We note that ( c j ) u  = 0, (acj/ar)u # 0. Hence 

The total charge on the sphere is therefore 

Q = 1 a(y)a2 - 27rd(cosy) 

a2 d (cos y ) = --(1- 4a $)I 
2d -1 (1 + $ - f C O S Y ) ~ / ~  

a 

This is precisely the fictitious or image charge. Thus the fictitious charge en- 
sures that c j  = 0 on the surface of the spherical conductor, but the conductor 
itself, that is the sphere, has total charge -qa/d. If we want to achieve that 
the (earthed or unearthed, insulated) sphere carries the total charge zero, 
we have to supply the sphere with extra charge +qa/d. Summarising, we 
can say: The charge induced on the sphere has the same effect as the charge 
-qa/d at u. 

I X 

Fig. 3.8 The hanging spherical shell. 
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Example 3.5: The spherical shell hanging in the gravitational field 
A conductor in the form of a homogeneous spherical shell of radius R, is attached to one end of 
an elastic string. With the other end, at which a charge +q is placed, the sphere is hanging in the 
gravitational field of the Earth. Establish the equation from which the extension of the string can 
be calculated. 

Solution: We let Q be the charge of the sphere (if not zero) and z o  the unextended length of 
the string. The conductor with the constant potential can effectively be replaced by an image 
charge -q’, whereby q’ and the position d, see Fig. 3.8, of the image charge assume the values we 
calculated previously. We then obtain for the equation of motion of the spherical shell of mass m 
(observe that the rigid body “spherical shell” can be treated like a pointlike particle) 

dQ + 4 0  
( z o + d + ( z - z 0 ) ) 2  lz+R12 . 

+- 4 d  mx = m g  - k(z - 10) - 

As we explained previously: The unearthed sphere carries the total charge Q. 

3.6.2 Green’s Theorems 

The previous example illustrates the point in the following formulation of a 
problem. We had the relation 

i.e. if p(r’) is given, then this relation yields the potential 4(r). In electrostat- 
ics one frequently encounters a different type of problem: +(r) is known on 
certain surfaces, i.e. boundary conditions supplementing the Poisson equa- 
tion are given, but not p(r), and it is required to determine for instance E. 
The solution of such boundary problems is simplified with the help of Green’s 
Theorems: 

Theorem (1) 

Theorem (2) 

We verify these theorems: Set 

Then 
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But with Gauss’ divergence theorem 

V AdV = L A .  d F  = S, A .  ndF. s, 
Moreover 

a$ 
an 

A . n  = cp(V$) . n  E p-, 

where n is a unit vector pointing vertically out of the surface F .  We then 

which is the first theorem. If we interchange in this cp and $, we obtain 

Subtracting this equation from that of the first theorem, we obtain the second 
theorem, i.e. 

An application which will be needed later is the case of 

so that 

1 
Ir - r‘l A$ = A- = -47r6(r - r’), Acp = &(r) = -4nkp(r). 

The second of Green’s theorems then implies 

In particular, for r inside V :  

have
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Allowing here the area of integration to become infinite, we have 

dF‘ dR T ~ , ~ ~ - + C O  
- N -  --+ 0.  
rt3 r1 

We thus obtain the result familiar from Chapter 2, i.e. 

On the other hand, i f  the volume of integration V does not enclose charges, 
we have p = 0 and 

Consequently the potential 4 at r is determined by values and derivatives of 
4 on the boundary. 

One describes as Dirichlet boundary conditions those that specify the 
potential on the boundary (not necessarily as zero!). One describes its Neu- 
munn boundary conditions those which specify the normal derivative on the 
boundary, i.e. a&/an. By a specification of Dirichlet or Neumann boundary 
conditions the potential is uniquely determined. This can be seen as follows. 
Setting u = 41 - 4 2 ,  with 41,42 assumed to be two different solutions (but 
single-valued on the boundary, i.e. we do not assume multi-valued boundary 
conditions), then 

Au = 0 ,  since Acjl,z = -47rkp. 

Setting in the first of Green’s theorems p = 1c, = u,  we have 

(UAU + V U  . Vu)dV = UVU . dF. 
IV  I F  

In the case of Dirichlet boundary conditions u vanishes on the boundary of 
F (given uniquely), in the case of Neumann boundary conditions V u .  Thus, 
in either of the two cases JF = 0 and hence 

(Vu)2dV = 0 ,  i.e. V u  = 0, Jv 
implying u inside V = const. In the case of Dirichlet boundary conditions u 
is zero on the boundary; hence the constant is zero, i.e. u = 0. In the case 
of Neumann boundary conditions the constant can be # 0, and so 41 and 4 2  

differ at most by an insignificant constant. 
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3.6.3 

We saw earlier that 

Green’s Function and Image Potential 

- -47rd(r - r’). (3.7) v:-- - 
1 

Ir - r’l 

(The expression 1/1r - r’l is at r the potential of a point charge at r’.) 
The function 1/1r - r’J, however, is only one class of functions G, for which 
Eq. (3.7) is valid, i.e. we can have 

AG = V2G(r, r’) = -47rd(r - r’) 

(for the moment we call G Green’s function in spite of the factor -475 here 
this is only a matter of names!) with 

1 
Ir - r‘l G(r,r’) = ~ + F(r, r’), where AF(r,  r’) = 0. 

The function F is called image potential. Solutions of the equation AF = 0 
are known as harmonic functions. Previously we obtained the expression 
(3.5) as a general integral representation of the electrostatic potential. In 
order to obtain an expression which takes also the image potential into ac- 
count, we proceed as follows. In the second of Green’s theorems we replace 
cp by 4 and $ by G(r,r’): 

J (4AG(r, r‘) - G(r, .‘)A4 
V 

and hence we obtain 

4(r) = Ic p(r’)G(r, r’)dV’ 

(since AG(r, r’) = -47rd(r - r’), r E V, A4 = -4Ic7rp). This expression still 
involves both 4 ( F )  and (@/dn)F  (i.e. the potential on the boundary and 
its normal derivative on the boundary). With a suitable choice of G(r,r’), 
i.e. F(r,r’), one or the other surface integral can be eliminated, so that 
an expression for 4(r) results with either Dirichlet or Neumann  boundary 
conditions. In the case of a Dirichlet boundary condition we choose 

GD(r,r’) = G(r,r’) I = o .  
r ‘onF 
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Then 

p(r‘)GD(r,r’)dV’, if 4(F) = 0. (3.10) 

In Eq. (3.10) we make the following substitution for G (this is explained in 
more detail in Sec. 3.6.4): 

1 
Ir - r’) G + GD(r,r’) = ____ + F(r, r’). 

Substituting this into Eq. (3.9), we obtain 

and using Eq. (3.5), 

This equation represents a relation between the image potential F(r, r’) and 
the boundary conditions. If #(r) = 0 on the boundary of V (Dirichlet con- 
dition), then the following relation 

0 = k s, p(r’)F(r, r’)dV’ + - 
47r 

(3.12) 

is the equation from which, in principle, the image potential F(r,r’) is to 
be determined. The validity of this relation can be verified in the case of 
the spherically shaped conductor treated above, although such a check is 
nontrivial. In the case of Neumann boundary conditions, which we shaIl not 
pursue further here, one has to choose (see e.g. Greiner [4]) 

aGN(r, r‘)/an‘ = -4n/F. 
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3.6.4 The Image Potential in an Example 

We ask ourselves now: What do the preceding considerations imply in the 
concrete case of the earlier problem of a charge q outside an earthed sphere? 
We refer to Fig. 3.9. The Dirichlet boundary condition is 

The charge density (in V )  is 

The function GD(r)r’) as solution of AG = -47r6(r - r’) with boundary 
condition G = 0 on the boundary, where r‘ = a, is given by the following 
expression, as we verify below: 

where q’ = -qa/r’. In Eq. (3.13), the first term is the inhomogeneous solution 
of the equation for G. We see immediately, that GD vanishes for r’ = a, since 

- 

Fig. 3.9 The sphere as boundary surface. 
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One can easily verify that the expression GD satisfies its differential equation. 
Assume r‘ # r“. Then 

a b a 

= -47raS(r - r’). 

The following expression (with p(r’) = qS(r’ - y)) arises from F ,  i.e. this is 
the contribution to the potential at r arising from the image charge in our 
example above: 

p(r‘)F(r, r‘)dV‘ = k q6(r’ - y)F(r, r‘)dV‘ 

q’(r’ = Y )  
I r -4  ’ 

= k  

where q’(r’ = y) = -aq/y. The expression (see Eq. (3.12)): 

represents the same, but calculated as the potential of the equivalent induced 
charge distribution on the sphere. In order to verify this, we would have to 
show that (with F(r, r’)lTt=a = -l/lr - r’lrl=,) 

1 

2 ,  7r 27ra sin y‘ady‘ k q % ( l -  > 2 

47r Jr2 + a2 - 2ra cos(y’ - y) (Ja2 + y2 - 2ay cos y’)3 

is equal to 
h a  - kqa - 

y J r2  + Y - 2* Y cosy 

For a point charge q at r’ = y, we obtain from +(r) (see Eq. (3.10)) 

i.e. as obtained from the charge and the image charge. 
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We do not investigate further examples here. We only remind that in the 
case of a conducting sphere in a homogeneous electric field we replace the 
homogeneous field by two opposite but equal charges, initially with the same 
separations from the sphere, but finally removed to infinity. 

Example 3.6: The image charge potential 
Point charges qi at (ri,OZ,&) produce at point ( T , O , ~ )  the potential @ ( T , O , + ) .  Show that the 
image charges qi = “qi  of a conducting sphere of radius a at the points (2,  Bi ,  4%) generate at 

T .  T ,  

(T,  O , + )  the potential 

Solution: The solution follows immediately from the preceding considerations (compare with the 
image potential contribution in “The second question” above; $ corresponds to Y there). 

Example 3.7: A point charge below a spherical shell 
A charge q with mass m is placed at a point distance z below the centre of a fixed, conducting and 
earthed spherical shell of radius a. Verify that the charge induced on the sphere can be replaced by 
an image charge -qa/z at a distance a2/z  below the centre of the sphere (this part of the Example 
has been dealt with above). Taking into account also the gravitational field of the Earth calculate 
the potential energy of the charge. Finally assume that the charge q is allowed to fall (from rest) 
and obtain its velocity at a depth 22 below the centre of the sphere (at z = 21 = 0). 

Solution: The attractive force between the charge q and the image charge -qa/z is 

The electrostatic potential energy is 

The gravitational potential energy is = -mgz (‘minus’, since measured downward). Hence energy 
conservation implies (energy at z = energy at 2 2 )  

i.e. 

Example 3.8: A point charge in front of a conducting plate 
A point charge +q is placed in front of an infinitely large conducting plane at shortest separation 
d. The plane is earthed. The perpendicular from the charge to the plane meets the latter at a 
point 0 which is the centre of a circle in the plane of the conductor with radius Ro. Calculate the 
ratio Qo/q ,  where Qo is the charge induced on the area of the circle with radius Ro. 

Solution: The plane is a conductor which means that the electrons can move about freely without 
doing work. The potential 4 on the entire conductor is therefore constant, i.e. zero. We therefore 
put 4 = 0 on the plane (earthed). We can achieve the same condition on the potential by placing a 
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charge -q  at a distance d o n  the other side of the plane, as depicted in Fig. 3.10. We now consider 
an arbitrary point P(R) on the same side as charge +q.  We use 0 as origin of coordinates and 
the line connecting the charges as z-axis. Let R = (X, Y, 2). The potential at P is then (with 
k = 1/4~60) 

1 - 1 d(R) = k - - - = qk [ R", l-] [ J ( X  - d ) 2  + Y 2  + Z2 J(X + d ) 2  + Y2 + Z2 
We have 

- 84 = q k [  - ( X  - d )  - ax [ ( X  - d)2 + Y2 + Z 2 ] 3 / 2  [ ( X  + 
For X -+ 0, it follows that 

2qdk 
( % ) x + o =  ( d 2 + Y 2 + 2 2 ) 3 / 2 '  

P 

Fig. 3.10 Charge q in front of a conducting plane. 

We apply the Gauss law to the volume V enclosed by the plane to the left, where E -+ El ,  and 
obtain: / E . dF = 47rk (charges) = 0, 

since no real charge is enclosed to the left. This means El,  = 0, i.e. Ex = -ad/8x = 0 to the left 
of the infinitely large conducting plane, as well as inside. We obtain the charge density per unit 
area, u,  from the relation 

(E2 - E l ) .  n = 47rku, 

i.e. in the present case 

Hence 
ad 
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The desired ratio is therefore (with T~ = Y 2  + Z 2 )  

3.7 Method V: Conjugate Functions 

This method is applicable only in 2-dimensional problems and depends on 5 
main points which we therefore consider first. 

Let W = U + iV be a function of the complex variable z = x + i y  with 
U ( x ,  y ) ,  V ( x ,  y) real functions of the variables 1c and y .  Assume also that 
limsz+,oGW/Sz = d W / d z .  Then one verifies readily one after the other the 
following relations: 

a .  a a a a z  a 
a y  ax a y  a z a y ,  ax a z a x  

(1). 
- - - 2 -  (from -=--  -=-- 

av au av au - - - - - 
a y  a x ,  ax dY 

(From (1) applied to U + iV; the equations are called Cauchy-Riemann 
equations). 

(3). At points where they intersect, the lines U = const. are perpendicular 
to lines V = const. With the help of the previous relations, one can verify 
that 

V V  . V U  = 0, i.e. V V  I VU. 

It follows that lines of constant U are always perpendicular to lines of con- 
stant V. In other words, lines of constant force are perpendicular to lines of 
constant potential (i.e. the equipotentials). 

(4). U and V satisfy the 2-dimensional Laplace equation, i.e. 

v2u = 0, v2v = 0, 

as follows from (2). One of the reasons for the importance of the Cauchy- 
Riemann equations in physics lies in the fact that any of their solutions are 
automatically harmonic functions, i.e. solutions of Laplace’s equation. 

(2).
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( 5 ) .  Since (VU) . (VU) = (VV) . (VV),  we have 

We now calculate the capacity of a 2-plate condenser in two dimensions 
with charge q on plate A .  To do this, we assume the two plates A,A’ ,  of 
the condenser have unit length in the additional third dimension. The plates 
therefore lie along lines of constant potential V as in Fig. 3.11. One may 
note that the plates are not necessarily parallel (see examples below). Let 
6r be an element of length of plate A.  

Fig. 3.11 The 2-plate condenser with plates A, A’. 

Then, (always of unit length in the (here) irrelevant third dimension) 

q = J udr, 

where 0 is again the charge per unit area. Since the electric field strength 
E is again approximately zero on the backside of a plate, E is given by 
E = 47rku (cf. Eq. (2.16)). Hence 

It follows that 

where [ .  . . ]  stands for the corresponding difference. For the capacity of the 
condenser we then obtain the formula: 
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Example 3.9: The simple parallel plate condenser 
Calculate the capacity of the parallel plate condenser with the help of the preceding considerations. 

Solution: We put the plates along the 2-direction and assume they are a distance y = d apart. 
We set W = z ,  so that U = 2, V = y. Then the capacity is 

c= --= 1 PI Lk !  =1 
47rk [V] 47rk [y] 4Tkd 

per unit area (again with unit length in the third direction which is normally called z ,  but here 
z = 2 + iy). 

0 

Fig. 3.12 Condenser plates A ,  A' 

Example 3.10: The condenser with radially assembled plates 
Calculate the capacity of the condenser with angle A8 between the plates. 

Solution: In this case we choose W = Inz = Inr  + i8, so that U = Inr, V = 8. Let the angle 
between the plates with radial lengths b - a be the polar angle A8 as in Fig. 3.12. In this case we 
have 

Example 3.11: The cylindrical condenser 
Calculate its capacity. 

Solution: In the preceding example we reverse the roles of U and V, so that U = 8, V = In r. We 
then obtain the condenser consisting of two coaxial cylinders of radii a and b > a. The capacity is 

With this method we can consider very different cases - e.g. the case 
of non-coaxial cylinders. To do this, we consider a new function W ( z ) .  We 

then ontained as
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let this be W ( z )  = V + iU (V is later identified with the potential) and 
z = z + iy. Let P ( z , y )  be the point in the complex plane as indicated in 
Fig. 3.13, and let r+,r-  be the distances from P ( z , y )  to two points, which 
are along the z-axis a distance 2d apart. We choose the following function 
W :  

z+ r+ 
2- r- 

W = In - = In - + i(0+ - 0-) = V + iU. 

We have therefore 
V = l n - ,  r + U = 0 + - 0 - .  

r- 

I 
- X  

0 e- 

d--t-d- - 
Fig. 3.13 Point P in the complex plane. 

We can rewrite the first equation with the help of Fig. 3.13 as 

,2v - T+ - ( z + d ) 2 + y 2  
r2 (z - d)2 + y2' 

With further algebraic manipulation of this equation we have 

z2(1 - e2v) + d2(1 - eZv)  + y2(1 - e2v) + 2zd(1- eZv) = 0,  

from which the following equation of a circle results 

y2 + (X - dcothV)2 = (&)2* 
(3.14) 

The equipotentials f V  = const. are circles (with change of sign of V also 
cothV and sinhV change signs). Let V = V+ be the potential on one (cylin- 
drical) plate of the condenser with radius a ,  = d /  sinh V+ and with its centre 
at b+ = dcoth V+ on the z-axis. Then b+/a, = cosh V+ and so 

1 b+ V+ = cash- -. 
a+ 
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Let V = -V- on the other plate of the condenser. In this case we have 

1 b- V- = cash- -, 
a- 

where b- = dcoth V- and a- = d/sinhV-. The capacity between the cylin- 
ders is now 

4 1 [u] - 1 [e, - 0 - 1  
[V] 47rk [V] 47rk [V, + v-] - c=-=-- - 

The entire domain of (e+ - 0-) is 27r. It therefore follows that 

(3.15) 

We now consider some applications. 

Example 3.12: Parallel wires a distance D apart and with radii a 
Again the problem is to calculate the capacity. 

Solution: In this case a+ = a- = a and b+ = b- = 0 1 2 ,  so that the capacity is given by 

1 
C =  

4kcosh-' 

, , 
I I 
I I 

, 
I , II b, 

$ = O  

Fig. 3.14 The fictitious cylinder in Kelvin's method. 

Example 3.13: The wire in air (equivalent to a cylinder and a plane) 
Calculate its capacity. 

Solution: In this case one of the cylinders is the surface of the Earth with a-  = b- and b- 4 00 

(the circle with centre to -co and radius to f w ,  becomes a straight line representing the surface 
of the Earth). This means V- = 0. It then follows from Eq. (3.15) that 

1 

2k cosh-I (2)  ' 

C =  
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This result can also be obtained with Kelvin’s method of image charges; cf. Fig. 3.14. The capacity 
of the system consisting of one cylinder and the parallel image cylinder with opposite charge is 
given by the expression (3.15) as 

1 

4k cosh-’ (2)  ’ 
Cparallel cylinders = 

where b+ is the height of the actual cylinder above the ground (the Earth’s surface where V = 0) 
and a+ its radius. The difference of potentials of the two parallel cylinders is [V] = V+ - (-V+) = 
2V+. Since C cc l /[V],  and in the case of one cylinder above the surface at which V = 0, we have 
in the latter case [V] = V+ - 0 = V+, so that 

1 

2k cosh-’ (2)  ’ 

Ccylinder to Earth = 2Cparallel cylinders = 

Example 3.14: Electrolytic determination of the capacity 
Use the cylindrical condenser to  suggest an experiment for the electrolytic determination of its 
capacity with the help of Eq. (2.16), i.e. the relation E . n = 47rkuCharge, where Ocharge is the 
charge per unit area on one cylindrical electrode, and E = 0 inside the conducting material of the 
electrode. (Note: This Example assumes familiarity with Secs. 5.2 and 6.1). 

Solution: As a simple application of the cylindrical condenser one can imagine - as indicated 
in Fig. 3.15 - two cylindrical electrodes in a container with a salt solution (cf. Sec. 6.1  where 
Ohm’s law V = IR, current I = J j . dF, is written j = aE with conductivity u = l /p,  where p is 
the resistivity; this is unfortunately standard notation, so that this p must not be confused with 
the charge density, nor conductivity u with charge per unit area). 

Fig. 3.15 The electrolytic tank containing two electrodes. 

Consider the salt solution with resistivity p.  Macroscopically positive and negative (ion) charges 
in this solution neutralise each other so that the macroscopic charge density pcharge in the solution 
is nought (hence the solution can be looked at  as a dielectric medium). Thus the potential 4 
and hence the voltage V between the electrodes is given by the Laplace equation 0’4 = 0, i.e. 
with source term zero. One can use a probe connected to a voltmeter to  determine the potential 
distribution which would have existed with the same conducting plates in a homogeneous dielectric. 
Let j be the current density in the solution (cf. Sec. 5.2) and dF an element of area of one of the 
electrodes. Since (cf. Sec. 6.1)  j = E/p, the resistance R of the solution is given by Ohm’s law as 
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R = V / I  with the current I entering each electrode given by I = J” j . dF, so that 

- PV - 
4ak J” gchargedF 

The capacity between the electrodes is therefore, if Ucharge denotes the charge q of an electrode 
per unit area, 

as one would have written in the case of a dielectric. Thus the capacity of the system of cylinders 
can be determined experimentally from the known resistivity p of the solution into which the 
cylinders are immersed. R is the resistance of the electrolyte. 

3.8 Orthogonal Functions 

3.8.1 Orthogonal Functions in General 

We begin with the expansion of arbitrary functions in terms of a complete 
set of basis functions. 

Functions Ui(z), i = 1 , 2 , .  . . , n (with n finite or infinite), are said to be 
orthogonal in [a, b] ,  if 

u;(z)um(x)dz = snbnm. I” 
The nonnegative number 

is called n o r m  of U ( x ) .  U is said to be norrnalised, if 

U*(z)U(z)dz = 1. 

The analogy with orthogonal vectors is obvious. The expansion of a n  arbitrary 
funct ion f(z) in terms o f { U n ( z ) }  is given by the sum 

N 

n=l 

It is necessary to establish whether the sum converges for N -+ 00 towards 
f(z), in the sense of convergence in the mean, i.e. (definition) one demands 
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00 
so that 

n=l 

(implying uniform convergence), and what the coefficients are. We construct 
the mean squared error 

J a  n=l 

and determine an such that MN is minimal. MN is minimised for 

i.e. 

and the complex conjugate. This implies for normalised Un(z )  the relations 

Since 

I n n 

n J a  

it follows immediately from MN 2 0 that 

N J d b  1f(x)12dz 2 c 1an12, 

This relation is known as Parseval relation. When the equality applies, the 
an describe functions f(x) completely - the Parseval relation is then called 
completeness relation. Analogous considerations apply to functions in higher 
dimensions. 

n= 1 
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3.8.2 Fourier Series, Fourier Expansions 

The functions 
1 sinx cosx sin2x cos2z 

pn(z) : - - - - - 6' f i '  f i '  f i '  f i ' " '  
constitute in the interval -7r 5 x 5 7r a complete orthonormal system. This 
follows from the integrals 

1 Jn cos mx cos nxdx = s,, , 

1 Jn sin mx sin nxdx = d,,, 

[I cos mx sin nxdz = 0. 

7r -7r 

--A 

Then in the interval -7r 5 z 5 7r 

00 

In addition f ( x  + 27r) = f (x) ,  i.e. the function is periodic. 

Complex Fourier Series 
The functions 

pn(x) = - 1 einnx/l , n = O , f l , f 2  ,... 
fi 

constitute in the interval -1 5 x 5 1 a complete orthonormal system with 
1 1, d x ~ n ( x ) ~ ~ ( x )  1 ~ n i  

so that the periodic function f (x )  = f ( x  + 21) can be expanded as 

Fourier Integrals 
We now want to explore the expansion of nonperiodic functions by consid- 
ering in the last relations the limit 1 +. 00. For 1 +. 00 the interval i7rz/l 
between the exponents of terms in 

00 
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becomes increasingly smaller; in the limit, one has the continuum. With 

(3.16) n7r lcn 
so that kn+l - k,  = 7 r / l ) ,  - = g(kn ) ,  k n = G  ( 7r 

we have 

,=-a n=--00 

which in the limit 1 t oo yields the representation 

J--00 

(k,+l - k,  N dk = r/1, and for 1 very large: 7 r / l  N 7re = Sk; for n finite 
we have k ,  = nr/l N n7rE, and for n t f o o  : k ,  t k*" = h~). Using 
Eq. (3.16), we have 

and so obtain correspondingly 
1 "  

27r -a 
g(kn)  = - J f (x)e-iknxdz,  

i.e. 
1 "  

27r -" g ( k )  = - J f (x )e- ikxdz .  (3.17) 

This expression is called Fourier transform or spectral function of f (z). We 
can easily obtain the inverse of Eq. (3.17) using 

~ ( x )  = _f_ J" eikxdk, 
27r -" 

because then 

f(z)S(y - z)dz = f (51). 

A necessary condition for the possibility to represent a function f (z) as a 
Fourier integral is the convergence of the integral 

P c o  

lf(z)ldz, i.e. lim f(z) = 0. 
X+k" 
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3.8.3 Spherical Functions (Legendre, Associated Legendre, 
Hyperspherical Functions) 

We encountered the following factor earlier (in the integral representation 
of the solution of Poisson’s equation), and now consider it in more detail. 
Written as an expansion the factor is 

1 - - 1 
Ir - rll Jr2 + r’2 + 27-7-1 cos a 

(3.18) 

where with x = cosa 

1 
2 Po(.) = 1, Pl(X) = z, PZ(X) = -(3x2 - l), . . . . 

These polynomials are called Legendre polynomials. These are in general 
given by 

1 dl 

2l1! dx 
9(z) = -+z2 - 1)l 

and define a complete orthonormal system in the interval x E [l, -11, a E 

[O,  ..I: 
2 J: fi(x>Prn(x)dz = - 21 + 161m* 

A complete orthonormal system of functions which is defined on the unit 
sphere with 9 E [0, 7r ] ,  ‘p E [0127r] is given by the hyperspherical functions Yim 
which are defined as 

where -1 5 m 5 1 and integral, and 

are the associated Legendre polynomials. For instance 
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The associated Legendre polynomials with negative indices m are defined by 

( 1  - m)! 
( 1  + m)! PLrn(z) = (-l)m Plm (4. 

General relations of these are 

2 (1 +m)! 
21 + 1 (1 - m)! PF(z)qm(z)dz = - J l P  

or 12= dcp q:ml (e, cp)xm(e, c p )  sin ede = d ~ ~ l d m m l .  

The completeness relation follows in analogy to the basis change of vectors, 
{ei}  + {Ek}, from ei . ej = Sij to Ck(ei . Ek)(Ek . Ej) = dij, as the relation 

(in the above analogy k corresponds to m,Z, and i , j  correspond to 8 ,  c p ) .  In 
books on Special Functions also the following relation called addition theorem 
can be found: 

(3.20) 

where (see below) 

cos Q = sin e sin 8’ cos(cp - 9’) + cOs 8 cos 8’ = cos(e - el),  if cp = cpl 

(hence its name “addition theorem”), where 8 and cp are the spherical coor- 
dinates of a vector r,  i.e. 

r = (r  sin 8 cos c p ,  r sin 8 sin cp, r cos e),  

r‘ = (r’ sin 8‘ cos cp’, r’ sin 6’ sin cp’, r’ cos S’), 

r . r‘ = rr’(sin e sin e/ cos(9 - cp’)  + cos e cos el). 

so that 
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We use the addition theorem in order to rewrite Eq. (3.18) 

+ ( r  tt r’). (3.21) 

The hyperspherical functions are also obtained as the solutions of Laplace’s 
equation in spherical polar coordinates. 

3.9 The Multipole Expansion 

We consider a charge distribution (density p) in a domain Irl < a. Then the 
potential is for 

(3.22) 

(the origin of coordinates for instance in the charge centre of mass), provided 
the volume of integration extended to infinity does not contain conducting 
surfaces (equipotentials specified by boundary conditions). Thus, only the 
expression (3.22) remains of the general relation (3.5). This remaining part 
(3.22) collects contributions only from points r’ in space at which p(r ’ )  # 0. 
Since r’ < a < r ,  this means, that we can expand 1/1r - r’l in powers of r’/r. 
This allows us to substitute the expression (3.21) in Eq. (3.22): 

The expressions 

qrm = k Y,*,(Q’, cp’)r’’p(r’)dV’ (3.24) 

are called multipole moments of the charge distribution p(r‘): Specifically 
the case 1 = 0 is called monopole moment, the case 1 = 1 dipole moment, 
the case 1 = 2 quadrupole moment, and so on. Since 1 = 0,1,2, .  . . , and 
m = -I, - 2  + I , .  . . , Z ,  the 21 + 1 components of qlm form a quantity known 
as a spherical tensor of the l-th ran.lc. With 

I 

q-m = (-l)”Vm 
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it follows that 
4;-m = (-1)m41,m. 

The multipole moments describe how the charge is distributed: 

Here px,py,p, are the Cartesian components of the dipole moment. 

sion (we leave the verification of the quadrupole term as an exercise): 
We thus obtain (to be verified below) for +(r) the following series expan- 

This expansion is obtained since: 

()1.

(2).

or, with

(3).

()4.
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which reduces to 

k sin 8 
21-2 

+- sin 8e-Zv(px + ip,) + . . . , 

and so to 

k Q  kr cos 8 kr sin 8 cos cp r sin 8 sin cp 
r r3 

k Q  k p - r  
r r3 

py + ... r3 Px + 1-3 
4(r) = - + ~ P Z  + 

= -+++... . 

The first term kQ/r is the potential of a point charge Q at the origin, seen 
at r. The potential of a dipole p at the origin and observed at r is kp . r/r3, 
and so on. For the electric field strength we then obtain 

E=-V4( r )= -V (3.26) 

This expression will be needed later. The potential of a dipole p at the 
origin, but observed at r is therefore 

Its field strength Ed is 

P - 3n(n . PI 
r3 

E d  = -V4d(r) = -k , (3.28) 

where n = r/r. The expansion (3.26) tells us that, as we approach the 
individual charges by going to smaller values of T ,  we see more and more of 
the structure of the charge distribution. 

We close this consideration with a remark on the interaction of 2 dipoles. 
What we mean by this interaction is the energy of one dipole in the field of 
the other. This interaction is defined by the expression 
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n p2 

Fig. 3.16 Relative orientations of dipole pairs. 

(3.29) 

We see that this energy and hence force depends also on the orientation of 
the dipoles to the straight line connecting them. We set 

PIP2 
r3 

WEk-. 

In the case of the orientations depicted in Fig. 3.16 we then have the fol- 
lowing energy: (a) W12 = 2W, (b) W12 = W, (c) W12 = -W, (d) W12 = 
-2W (minimum of W12). We make an important and fundamental obser- 
vation: The minimum of the energy ensues for the same orientation of the 
dipoles. This is a fundamental phenomenon, which is also seen to hold for 
instance for atomic spin orientations. In quantum statistics it is shown that 
this behaviour is reached at the zero point of the absolute temperature scale. 

Example 3.15: Dipole and quadrupole distributions 
For the dipole and quadrupole distributions shown in Fig. 3.17 calculate the electric field at the 
point P. 

Solution: In the first case the electric field at the point P in Fig. 3.17 is the sum of a repulsive 
contribution and an attractive contribution with the resultant as shown antiparallel to the dipole: 

( -4) cos B 
- ($4) cos E p  = 

47r€o[r2 + d2/4] 4mo[r2  + d2/4] ’ 

where cos B = (d/2)/Jr2 + d2/4, so that 
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Fig. 3.17 Dipole and quadrupole distributions. 

for r >> d, where p = qd is the dipole moment. 
In the second case the resultant field is directed along r and away from the dipole: 

N- - 3pd for r >> d. 
4 r e o r 4  

Example 3.16: Dipole-dipole interaction 
Consider two atoms as harmonic oscillators (spring constant k = w i )  and add to these the dipole- 
dipole interaction (separation of the atoms: R). What is then the energy of the system? In a 
similar way one can consider two electric LC circuits (a distance R apart) with eigenfrequency 
wo = 1/m, in which the condensers are treated like dipoles. 

Solution: Without the dipole-dipole interaction the energy of the system is 

and quantum mechanically 

where N1, N2 = 0,  1 , 2 , .  . . . With attractive dipole-dipole interaction 

1 
- a x 1 x 2 ,  a K - 

R3 

and
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We set 
y1 = 21 + 2 2 ,  

21 = -(Y1 + Y d ,  2 2  = -(Y1 - YZ), 

y2 = 2 1  - 2 2 ,  

so that 
1 1 
2 2 

and E is then diagonalised, i.e. 

Quantum mechanically this is 

For the difference with Eo, i.e. with no dipole-dipole interacion, we obtain for the ground state of 
the system (N1 = 0, N2 = 0 )  

= ; h o ( / G + / - - 2 )  

N - h o (  1 - $) K -. 1 
2 R6 

This is an energy similar to that of a van der Waals force. One can look at this calculation as a 
rough physical model of the Casimir effect in producing the potential K l /R6,  at least this was 
suggested in the 1iterature.q Actually the Casimir effect is a boundary effect, as we shall see in 
Chapter 20. 

qSee D. Kleppner, Physics Today (Oct. 1990) 9; cf. also the Casimir effect in Chapter 20. 
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Chapter 4 

Macroscopic Electrostatics 

4.1 Introductory Remarks 

In this chapter we extend the previous considerations to dielectric media 
(generally with negligible conductivity). This leads to the consideration of 
the polarisation of these media and their macroscopic effects, the most promi- 
nent concept introduced here being that of the dielectric displacement D. 

4.2 Dielectrics and Dielectric Displacement 

So far we considered point charges, for which the following equations hold: 

V * E = 4 k ~ p ,  V x E = 0. ( 4 4  

Here, as in our previous considerations, E and p are constant in time. 
In macroscopic dimensions, yet in a small volume, the number of charge- 
carrying particles is of the order of (say) lo’’, most of which are in mi- 
croscopic motion. In the context of macroscopic electrostatics we consider 
only such cases which are macroscopically static, i.e. without an observable 
change in time. This means we assume that all fluctuations in space and 
time taking place microscopically average out such that they leave no effect 
macroscopically. Thus we again assume the charge distributions and fields 
to be time independent. Later it will be a decisive step to assume that the 
equations of electrostatics hold also for time dependent cases. We define the 
mean values 

85 
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Here V’ is as shown in Fig. 4.1 the volume containing the molecules. 

Fig. 4.1 The macroscopic volume V’. 

We imagine the field E with definite direction directed from a charge +q to a 
charge -4. If we place charges or charged particles into this field the positive 
charges will be attracted by -q and repelled by q,  and corresponding effects 
apply to the negative charges. In this way a separation of the charges, con- 
tained in the medium or material arises and is described as its polarisation. 
This is indicated in Fig. 4.2. 

- I - +  - + I  - 
Fig. 4.2 Polarisation of a dielectric in an external field. 

Thus, in an externally applied electric field the dielectric substance is po- 
larised with the face at one end exhibiting a positive induced charge, and 
that at the other the equal and opposite charge. The object can then be 
considered as an arrangement with alternately positively charged and neg- 
atively charged cross sections resulting from a corresponding alignment of 
its constituent atoms or molecules as dipoles. Thus every such constituent 
particle behaves like an oriented dipole. The induced charges are described 
as polarisation charges. The quadrupole moments of molecules are usually 
negligibly small. We define as (charge) centre of muss of a molecule j with 
charge q j  = s pj (r’)dV’ the expression 

J r’ pj (r’) dV’ - J r’ pj (r’) dV’ rj = - 
J P j  (r‘)dV‘ q j  
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(integration over the volume of the molecule). Then the electric field strength 
E at a point r outside the volume containing n molecules is, with 

given by 

There are two ways to interpret this equation: 

(a) Given the charge distribution with corresponding dipole moments (e.g. 
polar molecules), then E(r) is the electric field strength produced by these. 

(b) Given electrically neutral atoms, which are placed in an externally applied 
field E (this is frequently the case, since dipole moments can average out as 
a result of their motion), then this external field produces the polarisation 
with induced charges and dipole moments pj of the molecules. 

rewrite the last expression as 
With the help of delta distributions which are integrated over we can 

It follows that (V = V‘ being the volume containing the molecules) 

1 
(E(r)) = p kt E(r + r’)dV’ 

Integrating over s reproduces the first part of the earlier expression (where 
the integrand is the expression (4.3) with r ---f r + r’); the variables s and 
r’ must therefore be considered as independent variables of integration, and 
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we obtain 

1 
(E(r)) = -V ds [ / dV’ c qjkb(rj  - s - r’) 

r - s l V  v 
j 

+ (V, t) S, dV’ p j S ( r j  - s - r’)] (4.5) r - s l  
j 

(interchanging averaging and taking of gradient). We now set 

where we define as 

N ( s ) :  
(qmol(S)): 

p(s) :  
P(s): 

(Pmol(s)):  

the number of molecules per unit volume at s ,  
average charge per molecule at s ,  
macroscopic charge density at s ,  
polarisation vector (= dipole moment  per unit volume) at s ,  
average dipole moment  per molecule at s.  

We then have (with s replaced by r’) 

S, [ + kP(r’) . v’- 
Ir - r‘l 

dV’ - E*(r) = (E(r)) = -V 

E -V& - vq5p. 
In view of continuity for r # r‘ it is permissible to write the divergence (see 
explanations below) 

1 
Ir - r’l 

kp(r’)V2- 

1 kp(r‘)b(r - r‘) + kP(r‘) . V‘6(r - r‘) 

= 47rkp(r) - 47rkV P(r) 

(4.7) 

where in the step from the first line to the second we used the replacement 

--+ -47r6(r - r’), 
1 

V2 - 
Ir - r‘l 
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and in the step from the second line to the third 

v' + -v, 
and then V was put in front of the integral. We now set 

The vector D is called dielectric displacement. As a consequence we have 
the important relation 

Here, we observe that the polarisation charges (cf. pp  below) are not sources 
of D. Since E* = -V of something, but always curl grad = 0,  it follows 
that 

V x E" = 0. (4.10) 

Equations (4.9) and (4.10) are the macroscopic equivalents of the microscopic 
equations V . E = 47rkp and V x E = 0. 

We observed at the beginning, that in the MKSA-system of units the 
factor k = 1/47r~o is not dimensionless. As a consequence D has a dimen- 
sion different from that of E. In the MKSA-system the unit of dielectric 
displacement D is one coulomb (C) per square meter;  in Gaussian units 

V * D = p .  (4.9) 

1 C m-2 = 127r x lo5  statvolt cm-I (statcoulomb cm-2). 

We deduce from the above relation 

D = EOE* + P 

that the polarisation P is measured in the MKSA-system in the same units 
as D. 

We distinguish between the two ways to see this: 

(a) Given a charge distribution in space (like, for example, of molecules, 
also polar molecules) whose electrostatic potential contains contributions of 
dipole moments (higher multipole moments being negligible), then E(r) is 
the strength of the electric field of this charge distribution. 

(b) Given electrically neutral atoms which macroscopically form a neutral 
dielectric, and that these are placed in an externally applied electric field 
E(r). Then this external field generates the polarisation of the dielectric 
with induced charges or induced dipole moments which are then defined by 
the contributions in the above expression for E(r). (In the case of a neutral 
atom, which is considered classically, we can have a dipole moment; quantum 
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mechanically, however, where, for instance, the electron of the hydrogen atom 
would be found only with a certain probability somewhere near the proton, 
hence also its charge, the dipole moment of such an atom averages out). 

Consider an element of length I of a dielectric as illustrated in Fig. 4.3. 
Here A F  is the cross sectional area with charge Q or charge per unit area 
u = Q/AF. The dipole moment is charge x distance between the charges, 
i.e. if P is the density of dipole moments, 

It follows that 

A F  

[PI = up = P . n. 

+ - + -  + -  

(4.11) 

I 

Fig. 4.3 An element of a dielectric. 

We now look in more detail at the expression 4' introduced above and 
contained in E*(r). We have 

(4.12) 

We let up be the induced charge density per unit area (induced through 
polarisation by the external field) defined by 

ap = P(r) . n, (4.13) 
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and we let pp be the similarly induced charge density per unit volume defined 

v * P = -pp .  (4.14) 

Without the external field E, the polarisation P would be zero (because the 
dipoles would average out). For \El not too large (and not for ferroelectric 
substances, i.e. not universally) we have - from here on we replace E* by 
E - the linear relation 

p = XeEOE, (4.15) 

in which the constant xe is the so-called electric susceptibility. For isotropic 
dielectrics P c( E: 

by 

Pi(E) = Pi(0) + C ~ i j E j  + . . .  , Pi(0) = 0, ~ i j  O: 6i j .  

j 

Since D = EOE + P, it follows that 

1 
€0 

D = (€0 + €oxe)E E EE, E E EO + €oxe, xe = - ( E  - €0) 2 1. (4.16) 

The quantity E is called dielectric constant. The ratio E / E O  for the case of the 
vacuum is 1 and for example for air 1.0005, for glass 5 up to 8 and for water 
81. Above we had V D = p, so that, if E is constant, 

P V * E =  -. 
E 

One defines as relative permittivity the expression 

We imagine the formation of polarisation charges as explained above: 
The electrically neutral atom when placed in an electric field assumes the 
shape of a dipole as a result of the deformation polarisation (classically the 
shifting of positive charge to one side, and negative charge to the other). 
Polar molecules are those which possess their own dipole moment. In many 
other cases rotation, vibration etc. average the dipole moments out to zero 
in the laboratory frame of reference. 

It remains to consider the modification of the Gauss law. We had 

D = EOE + P. 

It follows that 
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i.e. 

or 
Q = €0 E . dF - Q p  

e0 1 E .  dF = Q + QP.  (4.17) 

This is the modified Gauss law, in which Q is the true macroscopic charge 
and Q p  the induced charge. One should note that Q p  does not have to be 
zero; in the case of unpolarised dielectrics the sum of the charges vanishes 
for every volume element, i.e. p = 0. In the case of polarisation in general 
p p d V  # 0, in view of a different distribution (cf. a volume element of the 
box in Fig. 4.2). See, however, Sec. 4.5, where p p  = 0. 

and hence 

Example 4.1: Relative permittivity* 
An insulating medium fills the space between two parallel plates with charge densities u and -u 
coulomb/meter2. Determine the relative permittivity of the dielectric, i.e. K (with E = D/KEo), 
expressed in terms of the induced charges (*up coulomb/meter2) at the end-faces. 

Solution: We start from the standard equations, i.e. 

E o E = D - P ,  with V . D = p ,  V . P = -  PP . 
Polarisation charges are not sources of D. The decisive point here is to distinguish clearly between 
the real applied charges on the plates at either end (0, -u per unit area), and the charges induced 
by them in the medium, i.e. -up at the medium end next to +u and +up at  the medium end 
next to -u. Hence we have 

V . D d V =  D . d F =  p d V = Q ,  .I J J  
so that for an element A F  of area of a plate 

with D parallel to A F .  However, in 

V . P d V =  P .dF=-  J J 
P is parallel to -D and hence 

Thus 

where 

‘See also The Electromagnetic Problem Solver [21], p. 213. 
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4.3 The Behaviour of D at an Interface 

We are now interested in the behaviour of D on both sides of a macroscop- 
ically thin, charged surface, in much the same way as in the case of E. We 
have 

V - D = p  

(the polarisation charges are not sources of D). Thus 

and hence for an infinitesimal surface element as indicated in Fig. 4.4 we 
have 

Fig. 4.4 Element of a charged boundary surface. 

- g, D ~ . n l + D z . n z = - -  Q 
A F  

or with n as a unit vector in the direction of nl: 

(Di - D2). n = (T. (4.18) 

But since 
E o J ~ . d ~ = ( ~ + ~ p ) ,  

we obtain for E instead of D: 

E O ( E ~  - E2) . n = ((T + ( ~ p ) .  (4.19) 

On the other hand, since V x E = 0, one obtains for a closed contour from 
just above to just below the interface that 
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Fig. 4.5 Lines of constant E for (a) €1 > €2 and (b) €2 > €1. 

so that the tangential components of E, i.e. those in the plane of the interface 
surface, are equal, i.e. 

Elt - E2t = 0. (4.20) 

Since V x D # 0 for P # 0, there is no corresponding relation for D. 

4.4 Examples 

Example 4.2: Lines of E at interfaces 
A charge q is placed at  z = 1 along the z-axis in a medium with dielectric constant € 1  in the region 
z > 0. The medium in the region z < 0 has dielectric constant € 2 .  Sketch the paths of lines of E 
in the cases €1 > €2 and €2 > €1. 

Solution: With p = Jz2 + y2 the potential in the first medium is given by 

so that 
pep + ( z  - l)e, for z > o : ~ ( 1 )  = -v4 = 4 

At the interface to the second medium along the interface normals we have (‘k!=O” meaning f t ,  e > 0 
and small) 

(€lE!l)),=+O = (QEz (2) )z=-o 

(no charge given on the interface). Moreover tangentially 

Hence 

and 
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The trajectories of lines of E are shown in Figs. 4.5 (a) and (b). For €2 >> € 1 ,  i.e. € 2  -+ 03, the 
second medium behaves approximately like a conductor (no field). 

Example 4.3: The spherical condenser 
A condenser consists of two concentric, conducting spherical shells with inner charge q and radii a 
and b, a < b. The space between the spheres from a to  ro is filled with a dielectric with dielectric 
constant €1, and from ro to  b with a different medium of dielectric constant € 2  (both linear). The 
outer sphere is earthed. Calculate the capacity of the condenser. 

Solution: We have spherical symmetry with 

P 
D ,  = 4nr2 D . dF = D,  . 4nr2 = q, s 

for all r .  Moreover, E,  = -ad/& for potential 4. We assume the linearity D = EE. Then: 
for a 5 r < ro: E, = Dr/E1 = q / 4 m l r 2 ,  so that 4 = - s E,dr = q / 4 m l r  + C1; 
€or ro < r 5 b: E, = Dr/c2 = q/47rc2r2, so that 4 = q /4mar  + C2. 

At r = a:  4(r = a )  = q / 4 m l a  + C2. 
Continuity of 4 at r = r g :  

+c1=- +c2. 
4T€lro 4 n ~ r g  

Earthing at r = b: 
+(r = b)  = 0, - +c,=o. 

4 n q b  

Thus 

Hence the capacity C is 

4ir 

Example 4.4: The coaxial cable 
A coaxial cable consists of a conducting wire with circular cross section of radius a and charge 
e per unit length, which is surrounded by an insulating layer of thickness d and a thin, hollow, 
conducting and earthed cylinder of radius c >> a + d as indicated in Fig. 4.6. Determine the 
capacity of the cable per unit length. 

Solution: We have cylindrical symmetry. 
assumed to  be linear, i.e. D c( E ,  D = EE.  We use 

The outer cylinder is earthed, and the dielectric is 

IF D . dF = charge enclosed 

(i.e. e per unit length with the integral over the cylindrical surface). We then have 

0 < r < a : E = 0 (conductor). 

According to  our earlier treatment of the cylindrical condenser we have for 

a < r < a + d :  E = L ,  
2 m r  

and for 
a + d < r < c :  E = L  

2ntor 
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Integrating with the help of E = -d4/dr: 

a < r < a + d :  4 = - e l  n r  + Ci, 

a + d < r < c :  4 = - 5 1  n r  + C2. 

2 X €  

2 X € O  

The boundary conditions are 

r = a :  + = 4 1  = - L ~ n a + ~ l ,  
2x€ 

r = a + d and 4 continuous : - 5 ln(a + d)  + Ci = -e In(a + d) + Cz, 
2xe 2Xeo 

r = c :  42 = 0 (earthed), -e l n c + C 2 = 0 .  
2x€0 

Inserting the latter two expressions into the 

Fig. 4.6 The coaxial cable. 

first for the constants, we obtain 

41 = -e h a  + C1 = -5 lna  - 5 ln(a + d) + e 1nC + 5 ln(a + d) 
2X.5 2x€ 2 X € 0  2 m 0  2x€ 

Thus, for the capacity C follows 
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4.5 Polarisation of a Sphere in an Electric Field Eo 

The spheret is electrically neutral (i.e. originally uncharged, p = 0) and is 
assumed to be made of a material with dielectric constant € 2 .  The externally 
applied electric field Eo is taken to be homogeneous and parallel to the unit 
vector e, in a medium with dielectric constant €1. We take the centre of the 
sphere as the origin of the frame of coordinates as shown in Fig. 4.7. 

f 

I 
Fig. 4.7 A spherical dielectric in the field Eo. 

The polarisation charges on the surface give the sphere the appearance of a 
dipole placed at the origin and pointing in the direction of z (we shall see 
that the induced volume charge density in the sphere, i.e. p p ,  vanishes). Let 
Ei be the field E inside the sphere and E, the field outside. 

We begin by writing down the equations of (now macroscopic) electro- 
statics for inside and outside the sphere and homogeneous, linearly isotropic 
dielectrics ( p  = 0 implies no “true” charges): 

V - D = 0 ,  D = Q E + P = E E ,  
(4.21) 

P . n = a p ,  V . P = - p p  

and 
V x E = O ,  E = - V p .  

From these equations we obtain 

(4.22) 

+The following considerations correspond to those of a sphere. In the case of a cylinder some 
differences arise as can be seen e.g. in the steps from Eq. (4.24) to Eq. (4.25). The case of the 
cylinder is treated in Example 4.5. 
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and so 
EoAp = -pp. 

On the other hand 

Hence, (for E # 0) Acp = 0 and so pp = 0 for the assumed linear dielectric, 
i.e. for P parallel to E (not for other cases). 

At the interface the boundary conditions derived in Sec. 4.3 have to be 
satisfied. This means, 

(1). Elt = Ezt, and so 

Ir=a Ir=a 
or 

(D1- D2) . n = u = 0, 

or 
(D1. n) = (D2 * n), 

(where D, the “true” surface charge density, is zero). Thus (since D = EE = 

- E l - l  ava =-E2??5/ . 
- E V 4  

ar r=a ar r=a 

In order to be able to solve these two equations, we make a plausible 
ansatz for Ei, taking into account V x E = 0. We make the ansatz of 
a homogeneous field Eiez in the interior of the sphere (and demonstrate 
that this ansatz together with pa satisfies the above equations or boundary 
conditions). The ansatz Ei implies 

pi = -Eiz, z = r cos 13. (4.23) 

From outside the sphere appears as a dipole along e,  with appropriate dipole 
potential, i.e. (taking into account, that p, r = p,r cos 8 = p z z )  

(4.24) 

(so that E, = -dpa/dz  = Eo). The second term on the right really results 
from solution of the Poisson equation Apa = 0 with Kelvin’s theorem, which 

(2).
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says that if p a  0: rn is a solution, then there is another solution 0: l/r"+' 
for the same angular dependence. In the present case of a sphere 

r = (x2 + y 2  + z 2 ) 112 , dr/dy = Y / T ,  

so that 
3Pz Z Y  Euy = k-. 3PdY * = -k- 

dY r5 ' r5 

Analogously, we obtain 

Pz 3 P Z Z 2  Ea, = Eo - k- + k-. r3 r5 

(4.25) 

(4.26) 

Thus outside the sphere and for r near a the field components Euy,  Eaz, E z ,  
are different from zero and lead to a curving of the lines of constant E or D 
(see below). The condition (I), in which we can replace 8/86' by a/8cos6', 
yields 

(4.27) 

We note in passing, that this equation follows also from the continuity of 
the potential at the boundary of the sphere, i.e. at r = a. Analogously, 
condition (2) yields the equation 

P Z  

a3 
Ei = Eo - k-. 

From Eqs. (4.27) and (4.28) we obtain 

i.e. 

(4.28) 

Fig. 4.8 Bending of lines of E. 
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In Example 4.5 the corresponding result is derived for a cylinder. F'rom 
Eq. (4.28) we also obtain 

and hence 
(4.29) 

It follows, that p ,  > (or <) 0, if €2 > (or <) €1. Substituting the expression 
(4.29) into Eay for p ,  allows us to determine the distortion of the field lines 
in the neighbourhood of the sphere. Let tan8 be the gradient of the E field 
line of force at a point. Then, we have 

The correspondingly distorted lines of E are shown in Fig. 4.8. Figure 4.8(a) 
shows tan0 > 0 for z > 0 and (b) tan0 < 0 for z > 0. The next figure, 
Fig. 4.9, shows the paths of lines of D for (a) €2 > €1 and (b) €2 < €1. 

Fig. 4.9 Lines of D. 

The limiting case of €2 -+ 00: This is the case of the conducting sphere: 
Ei = 0 (i.e. potential cp = const.) in the interior. This case is depicted in 
Fig. 4.10. 

1 

Fig. 4.10 Lines of D. 
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One should note that in Fig. 4.9(a) the behaviour of the D-lines in the 
interior: E + 00, Ei + 0, but D = E E ~  = finite. 

The limiting case €2 <<< €1: In this case we have 

3 
Ei = 3E1 Eo -Eo, 

€2 + 2 E 1  2 

but D = EE,  so that D2 = ~2E2 = &Eo N is small for €2 -+ 0. In this case 
the D-field is expelled from the sphere, as indicated in Fig. 4.11. This is the 
electric analogy to a superconductor in magnetism. 

Finally we ask: How do  lines of E differ f r o m  lines of D? D-lines 
cannot be created at the boundary since V . D = 0 (no external charges). In 
the interior as 

Fig. 4.11 Expulsion of lines of D for €2 -+ 0. 

well as the exterior of the sphere, P is parallel to E, if the dielectric is 
isotropic, i.e. P = xE. In the nonisotropic case this does not apply. Then 
the polarisation charges pp are additional sources for lines of E as indicated 
in Fig. 4.12, because then 

i.e. 

\E 

Fig. 4.12 Additional lines of E in the presence of polarisation charges. 

Example 4.5: Polarisation of a cylinder in a homogeneous field Eo 
Determine the field inside a cylinder of radius r = a and with axis along the z-axis in analogy to 
the case of the sphere above. 
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Solution: The potential 'p outside and far away ( r  >> a )  is 

'pa = -E~z, z = rcose, 

and we have A'p = 0, except where there are charges. For the potentials outside and inside we set 
respectively (see the comment on Kelvin's theorem after Eq. (4.24)) 

'pa = - (Eor + :) cos 0, 

and 

At T = a we must have 'pa = ' p i ,  i.e. 

'p. - -E .  z - 22. 

B 
&a + - = Eia, 

a 
and continuity of D . n = r E ,  = -EaV/ar. Hence 

The two equations can be solved for B and Ei giving 

An application of this result for Ei can be found in Example 4.6. 

4.6 Energy of the Electric Field 

4.6.1 The Energy Density Formula 

In accordance with the definition of the potential, the potential energy of a 
charge q in the potential q5 is W = qq5. In the case of a number of charges 
the energy is, as we saw earlier, 

In the case of continuous charge distributions we have 

Since V . D = p, we have 

W = - q5(r)V Ddr 
2 's 

= - 1 { 1 V . (4D)dr - 1 D . VQdr } 
2 

= A{ 2 
q5D. d F  + I D .  Edr} 

(4.30) 
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(-7 5nf  - q n  
dielectric 

To obtain the total energy, and in view of the concept of a field, we have 
to integrate over all space. Then the surface integral yields a contribution 
which tends to zero (as we explained earlier). 

We now want to show that the total energy of the electrostatic field is 

- 

even zf the space encloses conductors, provided the volume of integration 
is only that of the dielectric. This result can be deduced as follows. The 
potential energy of a dielectric with enclosed conductors of potentials d n  
enclosing charges qn is, with 

and 
dF*,  = -dFn,  

as can be seen from Fig. 4.13, given by 

This can now be rewritten as (note in the second step the contributions 

Finf 

of 

Fig. 4.13 A dielectric with conductor cavities. 
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&el from inside and outside boundaries of the dielectric) 

= 1 J D . E ~ V .  
Vdiel 

(4.31) 

4.6.2 Polarisat ion Energy 

Finally we consider the change in energy when a vacuum is replaced by a 
medium. Let now be this change from vacuum values Do = EOEO and Eo 
to medium values D = EOE + P and E. Then 

A0 W = 1 / dr [D . E - Do . Eo] . 
2 

We set D = Do + SD, so that 

now = 1 / dr[Do . E - D . Eo] + - dr(E + Eo) . SD. 
2 2 ‘s 

Here (E + Eo) = -V#, where 4’ is a potential. Using the relation 

“div(sca1ar x vector) = grad(sca1ar)- (vector) + (scalar) div(vector)” , 

we have 
-V4’. SD = -V . (4’SD) + 4’ V . SD . - 

6(V,D=p) 

With Gauss’ divergence theorem the first term integrated over the volume 
becomes a surface integral which vanishes. The second contribution vanishes 
if no new charge Sp is introduced. Hence 

AoW = 1 /dr[Do. E - D .Eo] 
2 

2 
= 1 / dr[EOEO . E - (EOE + P) . Eo] 

- - -1 / dr[P . Eo]. 
2 

(4.32) 
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This result is used in the following example. 

Example 4.6: Measurement of electric susceptibility 
Consider a cylindrical U-tube filled with some liquid ( I )  to the same level in both arms in the original 
equilibrium position with vapour ( v )  above. A homogeneous electric field Eo is applied to one arm 
of the U-tube. In the presence of the field the liquid rises to a height h above the equilibrium 
position. Considering this arrangement as a cylindrical dielectric exposed to an external field Eo, 
find an expression from which the electric susceptibility of the liquid (xi  = E ~ / E O  - 1) can be 
obtained if that of the vapour ( x w )  is known. 

_ _ - _  
. . . . . . , I 

I 
I 

: . Eo - ;------ 
..____. .. El)-- ; h l  I 

I 

Eo - L _ _ _ _ _ _ _  

Fig. 4.14 The U-tube with one arm in field Eo. 

Solution: Let F be the constant cross section of the tube and p the density of the liquid, and g 
the acceleration due to gravity. The hydrostatic force producing the rise of the liquid to height h 
above the original equilibrium position against the vapour is 

pF(2h)g, 

and the corresponding energy is 

lh pF(2h)gdh = pgFh2. 

The change in electrostatic energy is - using Eq. (4.32) - the change in polarisation energy 

now, - AoWv = -- J d r ( P l -  P,)EO 
2 

h 
= -: 1 (Fdh)(Pl - PV)Eo 

1 
2 

= --Fh(Pl- PV)Eo. 

The total change in energy is therefore 

1 
2 

Wtotal = pgFh2 - - F h ( q  - Pv)Eo. 

The condition for equilibrium is dWt,t,l/dh = 0, i.e. 

~ (9 - Pw)Eo 
4PLl 



106 CHAPTER 4 .  MACROSCOPIC ELECTROSTATICS 

Now, for i = I ,  v we have Pi = E O X ~ E , ,  xi = c i / e o  - 1, where E ,  is the field in the medium i = 1, v. 
From Example 4.5 we obtain for the cylindrical media I ,  w 

2EO 
€0 + €21 El = *E,, E,  = - Eo . 

€0 + € 1  

Then 

which can be reexpressed as 
h =  E O ( X 1  - x u )  E,2,  

P d X 1  + % X V  + 2 )  

E O E ~ X V  + 2hpg(xv + 2) 
~ O E :  - hpg(xu + 2 )  

From this we obtain 

x1 = ' 

Hence by measuring h, and since the other quantities appearing on the right are assumed to be 
known, the susceptibility x1 of the liquid can be determined. 

4.7 Summary of Formulae of Electrostatics 

We summarise here the most important formulae of electrostatics. 

(1). Multipole expansion: 

but (note the signs of the dipole contributions) 

since 

and 

(2). Macroscopic electrostatics: 

Thus
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Note: We have to distinguish between p p , a p  and p,a.  For homogeneous, 
linearly isotropic dielectrics the following dielectric material equations 
can be used: 

D = EE, P = EOXE. 

(3). The behaviour at boundary surfaces: 

(El - E2) . n = 47rrk(a + ap), (D1 - D2) . n = a. 

But always for tangential components of E: 

For P # 0 there is no corresponding relation for D. 

(4). Energy of the electric field: 

The total energy of the electrostatic field is 
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Chapter 5 

Magnetostatics 

5.1 Introductory Remarks 

Magnetostatics deals with stationary currents. So far we considered only 
static charges. A current, however, consists of moving charges. The funda- 
mental observation, that magnetic fields exist in the neighbourhood of cur- 
rents, and hence of moving charges, was made by Oersted in 1819. Oersted 
had observed that a magnetic needle aligns itself in the vicinity of a current 
carrying wire perpendicular to this wire. Within a very short time after this 
discovery (i.e. within a few years) Amphe published his results of a series of 
experiments which established the law of the force today named after him, 
and Biot and Savart observed the corresponding law (for a current element) 
that carries their names today. We are concerned with these laws in this 
chapter . 

5.2 Continuity Equation and Stationary Current 

Here by current density we mean only that of the conduction electrons; we do 
not mean the current density of (classically considered) circular currents of 
molecular electrons (which, by the way, are not even sufficiently well known). 
First we consider the case without matter effects. A precisely known current 
density j is defined by the charge density of positive charges multiplied by 
their velocity, i.e. 

ds 
j=p, 

in ampere/m2 or C/m2 s. We use ds for an element of the trajectory or path 
as indicated in Fig. 5.1, in order not to confuse this with the element of 

109 
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some distance, d r ,  or the volume element dr .  As usual t represents the time 
variable. 

dF 
_ _ _ _ - - - _ _ _ _ _  _ - - - -  

---_____.__--- 
- _  

Fig. 5.1 The current element. 

The current I is defined as that amount of positive* charge which passes 
through an area F per unit time, i.e. 

d s  * d F  

d s  
d t  

= p - - F  

d V  dq 
- p - = -  d t  d t '  
- 

(A = C/S) 

( 5 4  

if 

(the latter is, in fact, the integrated form of the equation of continuity to be 
discussed below). With the help of the previous equation we also have 

d V  
I d s  = p-ds = j d V  

d t  
d s  d s  
d t  d t  

= ( p d V ) -  = dq-. (5.4) 

'For an explanation see for instance also Jackson [3], p. 169. 
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In the following we also write s = d s / d t .  In addition we have - these 
manipulations serve the purpose of making the definition of a surface current 
plausible - 

(5.5) 
I(27rrds) I 

= -dFc,1, dq- ds - dq/dt 2.rrrds = 
d t  27rr 2 r r  27rr 

where 

is a surface current,  also called layer of current, and o charge per unit area. 
Hence we can write 

I d s  = j d V  = K d F ,  (5-7) 

where I represents the l ine or  linear current,  j the  volume current density 
and K the surface current density. We now construct the divergence: 

V . j = V . (ps)  = p V  . s + ( V p )  . s. 

But 

This condition, the vanishing of the divergence of a velocity, is known as 
condition of incompressibility (as in hydrodynamics). We obtain with this 

V . j = ( V p )  . s. 

In general one has 

Since (see above) d p / d t  = 0, it follows that 

aP O=-+v.j at (5.9) 

This important equation is known as equation of continuity.  The equation 
plays an important role in many branches of physics, including quantum 
mechanics and statistical mechanics. The condition d p / d t  = 0 implies, that 
in every time interval the number of charges in every unit volume remains 
constant. This again implies, since charges move in and out, that  n o  charges 
are created or  annihilated. The significance of the equation of continuity is 
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therefore that as much charge as flows into a volume element per unit time, 
also flows out of this volume element again per unit time. Thus the amount 
of charge in every volume element remains constant, or - as one says - is 
conserved. Assume now that in addition ap/& = 0. This condition says, that 
the density does not change explicitly with time. This condition is described 
as the condition of stationarity or (specifically in statistical mechanics) of 
equilibrium. We thus have as condition for a stationary or steady current 

V . j = O .  (5.10) 

Stationarity is attained only after some time interval, e.g. after a condenser 
has been charged. Thus ap/at = 0 does not apply immediately at the time 
of charging or discharging of a condenser. 

Example 5.1: The relaxation time of a dielectric 
The homogeneous dielectric of a condenser has a weak conductivity u. Calculate with the help of 
the equation of continuity and Ohm's law in the form j = uE (cf. Sec. 6.1) the relaxation time of 
the dielectric (dielectric constant E ) ,  that is, the time interval in the course of a discharging of the 
condenser, in which the charge density drops to the fraction 1/e of its original value. 

Solution: We have 
V . j + - = O ,  aP j = u E ,  

at 
from which we obtain 

Since the dielectric is homogeneous, i.e. isotropic, we have D = EE, E = const., and so the equation 
implies V . D = p, V . E = P / E .  With this and the preceding equation we obtain 

i.e. 
p = pOe-ut /e,  

where at time t = 0 we have p = PO.  The relaxation time is therefore e/u. This expression is large 
for small u. We observe here incidentally that in the Gaussian system of units with E O  = 1 the 
conductivity is given in seconds-'. 

In much the same way as one can produce a steady flow of water with 
the help of a pump, one can use a battery in a closed circuit to produce a 
steady or stationary current. The area enclosed by this circuit is of particular 
significance for its magnetic properties. We can imagine the addition of 
further conducting wires as illustrated in Fig. 5.2 until the entire area is 
filled with a net of these covering the entire area of the original circuit which 
then appears as the boundary of the net. The stationary current is flowing 
in this boundary whereas currents in the net segments inside all cancel each 
other. It is because the internal currents all cancel each other (no matter 
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what the size of an element of the net may be), that the net has the same 
magnetic properties as the original circuit. 

Fig. 5.2 The net of conducting wires. 

5.3 Amphe’s Experiments and the Law of Biot 
and Savart 

In electrostatics we saw that Coulomb and Cavendish had discovered the law 
of force 0: l / r 2  experimentally, but that the proportionality of the force to 
the charges was more or less guessed. In the case of magnetostatics Ampkre 
discovered that the force acting between current carrying circuits which had 
been arranged in a particularly symmetric fashion, is similarly proportional 
to l / r 2 ,  where r is the distance between the circuits, and he deduced from 
this that this behaviour is of a general kind. 

P 
QB 

Fig. 5.3 The first experiment of Ampkre. 

Amphre was largely concerned with the study of forces due to current carry- 
ing wires. In one experiment he demonstrated that two wires close to each 
other and carrying equal but opposite currents do not exert a force on some 
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distant conducting wire. Today we know that the magnetic fields annul each 
other in this case, as illustrated in Fig. 5.3. In a second experiment Ampbre 
demonstrated, as far as the effect on other current carrying conductors was 
concerned, that arrangements of conductors as in Fig. 5.4 have the same 
effect (i.e. the same field). In a third experiment Ampbre showed, that the 
forces stemming from magnets or currents which act on a wire having the 
shape of a circular arc carrying the current I do not move this wire and hence 
must be vertical to this wire (F = Ids  x B(r)). In this experiment Ampkre 
used the subtle arrangement illustrated schematically in Fig. 5.5. The two 
mercury columns provided the necessary electric contact with the element of 
wire, which could move freely in its plane around a vertical. 

Fig. 5.4 The second experiment of Ampkre. 

Finally in a fourth experiment Ampkre showed, that the force acting between 
current carrying loops is again proportional to l/r2, r their separation. 

Fig. 5.5 The third experiment of Ampkre. 
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To this end he constructed a symmetric arrangement of three circular coils 
carrying current I ,  whose radii were in the ratio no(= 1) : n1 : n2. Let the 
distances of the first and the last coils from the second coil be a and b as 
indicated in Fig. 5.6. The central coil was then adjusted in such a way, that 
the forces due to the currents balance each other out. If, as stated, the radii 
of the coils are respectively 1, n ,  n2,  then equilibrium (no motion) is obtained 
for (this was Ampkre’s experimental observation) 

b = nu. 

If the forces are proportional to the circumferences or equi-angular arcs, then 
this means (with f(x) for the dependence on the distance) for equilibrium 
at b = nu: 

27r a2nn . f(u) = 27rn . 27rn2 f ( b )  1 
b=na 

(ignoring the effects of the outer coils on each other), i.e. 

i.e. 
const. f(4 = -p- 

(so that const./u2 = n2const./n2u2). This is the l/r2 law for currents. 
The fundamental formula for the field outside a current carrying wire is 

today named after Biot and Savart, who had also discovered the law 0; l/r2 
shortly before Amphe (1820). 

l + a + b - l  
Fig. 5.6 The fourth experiment of Ampkre. 
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The experiments of Ampkre (1820-1825), however, were considerably more 
rigorous and were praised by Maxwellt as “one of the most brilliant achieve- 
ments  in science”. 

The actual postulate or the law of magnetostatics derived from observa- 
tion is Amp2re’s law, which (like that of the Coulomb force between charges 
in electrostatics) gives the force F between two current carrying string-like 
conductors as illustrated in Fig. 5.7, and can be written 

Using 

0 

= {dsl . (rl - r2) )dsa  - (dsl . dsz)(rl - 1-2) 

and Stokes’ theorem, with which 

the force F is also given by 

(5.11) 

(5.12) 

+See e.g. Harnwell [14], p. 298. 

Two conductor elements.ts.
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The law of Biot-Savart thus abstracts the observations of Biot, Savart 
and Ampkre by specifying an expression for the magnetic field B, called 
magnetic induction or magnetic flux density,i but frequently also simply 
magnetic field, which a conductor with current I ,  or the conductor element 
of length ds - see Fig. 5.8 - generates at a point r outside the conductor, 
and is defined by 

, k’=F (5.13) 
I(r’)ds(r’) x (r - r’) 

3 47r ’ lr1 - r21 
dB(r) := k‘ 

or 
I(r’)ds(r’) x (r - r’) 

conductor Ir - r’13 

/j(r’) x (r -r’) 
Ir - r‘13 

J B(r) = k‘ 

= k ’ J  dr 
conductor 

(5.14) 

In MKSA-units the constant k’ is given by 

PO = 47r x = 12.566 x low7 N AP2. I PO k = -  
47r ’ 

The magnetic induction B is then given in units called tesla (T) (named 
after the engineer of this name); 1 tesla = lo4 gauss. In Gaussian units the 
constant is k‘ = l / c .  

I 

Fig. 5.8 The conductor element. 

As mentioned above, Ampkre was mainly concerned with the investiga- 
tion of the force that one current exerts on another current carrying con- 
ductor. Consequently it became customary to describe as Ampire’s law the 

‘We begin here with the induction, although we have not yet considered media. Some authors 
therefore start with the magnetic field strength H ,  which we introduce later. 
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expression for the force, that a field B exerts on a conductor with current 
I .  This means the expression obtained by inserting the above expression for 
d B  into that for F, i.e. 

F = I(r’)ds(r’) x B(r’). J (5.15) 

In the MKSA-system of units the proportionality constant appearing in this 
expression is 1. This constant follows by demanding that force equals time 
derivative of momentum; indeed the logical derivation of this expression is to 
go to the relativistic theory, obtain there the four-momentum of a charge in 
the gauge field, and then to differentiate the latter’s space-like components 
with respect to time. Some authors, e.g. Greiner [4], say simply, the constant 
k’ “is obtained experimentally as l /c” in the Gaussian system.§ 

With the relation Ids  = j d V  it follows that 

F = J j ( d )  x B(r’)dr’. 
conductor 

For a point charge q moving with velocity v, we can write 

j = qvb(r - r’) 

(5.16) 

(5.17) 

(a precisely known current density), so that 

F = qv(r) x B(r) .  (5.18) 

This expression is known as Lorentz force (cf. Jackson [3], p. 238, where this 
expression is initially written down with little justification). A version of this 
equation which is of practical importance, and is also described as Ampkre’s 
law, is obtained by writing it, e.g. in the simple perpendicular case, as 

dF = IBds ,  I = d q / d t .  

In the case of a coil with N turns in the field B,  the torque (moment) of this 
force is then dFdl = I N B d A ,  where dA is the area dsdl.  

The expression for B should be compared with that for E, i.e. the formula 

1 
47lQ 

, k = - .  

The field B follows for moving charges (current density j )  in a similar way 
as the field E for static charges (charge density p). 

§One way of determining experimentally the constant relating electric units to magnetic units 
(which turns out to be c) is discussed briefly in Appendix B in relation to the experiment of Rosa 
and Dorsey. 
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5.4 Examples 

In the following we consider examples which are important in later contexts, 
and therefore do not simply serve the purpose of illustration or exercise. 

Example 5.2: The field B of a long, straight conducting wire 
Calculate the field B of an infinitely long, straight conductor carrying current I (see Fig. 5.9). 

Solution: From the Biot-Savart law we obtain (with k’ = p0/47r): 

ds x (r - r’) 
B(r) = Ik’ 

With the geometry of Fig. 5.9 this can be written 

t 

P 

Fig. 5.9 The long, straight conducting wire. 

so that 

(5.19) 
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Example 5.3: The force between two long, thin, parallel conducting wires 
Calculate the force which two infinitely long, parallel conductors exert on each other. 

Solution: We consider the case as depicted in Fig. 5.10. Conductor 2 generates the field B2 at 
conductor 1 which follows from Eq. (5.19): 

where d is the distance between the conductors. The field B2 is perpendicular to  the currents 
11,Iz. Hence the force, that Bz exerts on conductor 1, is (cf. Eq. (5.16)) 

A 

(5.20) 

Fig. 5.10 Two long, thin conductors. 

The force per unit length of the conductors is therefore: 

k’- 2 1 1 4  - I l I Z  
-PO--- 27rd 

For I1,Iz parallel we have the situation illustrated in Fig. 5.10. 

Example 5.4: The circular or ring conductor 
As another important example for the calculation of the field we consider the circular or ring-shaped 
conductor shown in Fig. 5.11 with current I and radius a. 

Solution: The components of the field B perpendicular to  the z-axis cancel each other along this 
axis. The field dB at r along the axis due to  the element ds of the conductor is according to  the 
Biot-Savart law given bv: - 

ds(r’) x (r - r’) 
dB(r) = Ik‘ 

Ir - 4 3  ‘ 
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Along the z-axis d B  is 
d B ( r ) a  
Ir - r’I 

d B ( r )  cos 0 = -, 

Hence the magnetic induction B at point P along the z-axis is: 

i.e. for T >> a:  

P 

r 

Z 

Fig. 5.11 The ring-shaped conductor. 

a d B ( r )  

conductor Ir - r’l 
B = /  - 

k’ po Ia2 B 21ra2-  = 
T 3  2 T 3  

(5.21) 

(5.22) 

We will deal with this problem again later (see Example 5.7), because one expects the field B at 
a point r to be related to the solid angle which the ring-shaped conductor subtends at this point. 

Example 5.5: The magnetic moment 
The magnetic moment of a circuit is defined as 1/2 the volume integral of the moment of the 
current density, i.e. as 

1 1 
2 2 

where, see Fig. 5.12 (a), dF = 4. x ds is an element of area. Calculate the field. 

Solution: In the special case of the ring-shaped conductor considered above we have 

m := - / d r [ r  x j(r)] = - r x Ids(r)  = I J d F ,  

m = I r a 2 ,  

(5.23) 
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a relation which is also known as Ampkre's dipole law. By definition the current I has the direction 
of positive charge; hence m is opposite to the direction of negative charge. In terms of the expression 
for m we can rewrite B of Eq. (5.22) as 

It is instructive to compare this result with the field of an electric dipole with moment p as 
illustrated in Fig. 5.12(b). The electric field at point P follows, as we saw, from 

so that 

+e 

0 
-e 

(4 (b) 

Fig. 5.12 (a) Circuit element, (b) dipole. 

Fig. 5.13 Analogy between the fields of a circular current and a magnet. 

The general expression for E, i.e. at a point P in the direction of the polar angle 0 as seen from 
the origin, can immediately be written down (or see e.g. [4], p. 36) 

(5.24) 2p cos e p sin 0 1 
E = k -  e, + k-ee l  k = -, 

T 3  r3 4AEo 
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in agreement with the above expression for polar angle 6’ = 0. Taking into account that (see 
Chapter 1 or later) 

k 2 m  E m  
c2 r3 p c2’ 

k’lk = 1/c2, B = -- = -- 

we obtain the correspondence 
1 B u  -E, m-cp .  

This means, the magnetic moment m generates the field B in complete analogy to the generation 
of the field E by an electric dipole, and 

C 

2m cos 0 
r3 

m sin 0 
B(r) = k’- e, + k ’ T e g  

m . r  = -k‘V-. 
7-3 

(5.25) 

We see therefore that a circular current generates an induction field B, which sufficiently far away 
looks like that of a dipole, as indicated in Fig. 5.13. 

5.5 The Electromagnetic Vector Potential A 

We return to the law of Biot-Savart. With 

we have 

1 
dr‘j(r’) x Vr- 

Ir - r‘) 

(5.26) 

(where k‘ = po/47r). But “div curl ” is always zero. Hence 

V . B(r) = 0. (5.27) 

This equation has no source term on the right hand side. This means in 
physical terms: There are no single magnetic poles, i.e. monopoles. How did 
we arrive at this result: The empirically obtained law of Biot-Savart gives 
the field B which surrounds a conductor with current I ;  we saw that this field 
corresponds to that of a magnetic moment, a magnetic moment, however, 
corresponds to a pairing of magnetic poles - hence no single magnetic poles 
enter the consideration. It should be noted that we are (apparently) dealing 
with macroscopic considerations (the Biot-Savart law applies to macroscopic 
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conductors); these can, however, also be interpreted microscopically (the 
classically considered electron encircling a nucleus represents a current). The 
effect of the magnetic induction B on magnetisable matter will later be 
considered separately, in analogy with macroscopic electrostatics. 

We now define the electromagnetic vector potential A by 

so that 
B = V X A  

(5.28) 

(5.29) 

(A is not unique, since A + V4, for 4 a scalar function, is also possible; see 
gauge transformations below). We next evaluate the expression V x B, in 
which we use first the formula 

V x (V x A) = V(V . A) - AA (5.30) 

(“curl curl = grad div - div grad ”), then 

1 
Ir - r’l 

A,---- - - -47rS(r - r’) 

(and integrating over the delta function), and finally use Gauss’ divergence 
theorem. We then have 

= k‘V 1 (Vr . p) r - r l  dr‘ + 47rk‘j(r). 

Since V, acts only on the denominator this can be rewritten as 

+k’V v’ * j“’) dr’ + 47rk’j (r). 
Ir - r‘l 

(5.31) 
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Here the first term vanishes, if we extend the area of integration F to infinity 
and remember, that j = 0 at r = 00, since the conductor and hence j are 
located in a finite part of space. The second term also vanishes, since in 
magnetostatics V . j = 0, which is the condition for stationary currents. 
Thus there remains an magnetostatics 

V x B = poj(r). (5.32) 

As a subsidiary result we obtain: 

= o  (5.33) 

for reasons explained above. Thus 

V . A(r) = 0. (5.34) 

This relation is known as Coulomb gauge. It can be shown,l that this con- 
dition has the physical meaning that only two components of the vector 
potential A are independent, and that the vector A is orthogonal to the 
propagation vector k of the free electromagnetic wave, and hence implies 
the transversality of the wave (fields E,H perpendicular to the direction of 
propagation). 

One should note: Here we arrived at the relation V . A = 0 only as a 
consequence of V - j = 0, i.e. in the case of stationary currents. A condition 
of this kind, however, is always required for the vector potential, as a con- 
sequence of the so-called gauge invariance of the theory. By this one means 
(put simply) the invariance of the field equations or equations of motion, 
here the Maxwell equations, under transformations (here for magnetostat- 
ics) called gauge transformations, i.e. 

Chapter 18. See
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(more generally q5’ = q5 - ax/at) ,  where Ax = 0. The invariance of the 
equations obtained so far follows immediately: 

E t E’= -Vq5’= -Vq5 = E, 

B t B’ = v x A‘ = v x (A + O X )  = v x A = B, 

V A = 0 t V . A’ = V . (A + V x )  = V . A = 0 (since Ax = 0). 

Again one should note: The invariant fields E and B are macroscopically 
observable quantities, the nonunique gauge potential, of course, is not. 

5.6 Integral Form of Amphre’s Law 

We return to our earlier considerations. We know that 

1 
Ir - r’l 

A- = -47rS(r - r’). 

Hence we have with Eq. (5.28): 

AA(r) = -47rk‘ S(r - r’)j(r’)dr’, J 
i.e. 

AA(r) = -poj(r). (5.35) 

Thus the current density j is the source of the vector potential A. This 
equation should be compared with the Poisson equation Aq5 = -47rkp = p / ~ o  
in electrostatics, in which the charge density p appears as the source function 
of the potential 4. 

dF 

Fig. 5.14 Currents through a surface. 

We now take a closer look at Eq. (5.32). This equation is also described 
as Ampkre’s law; in fact it is the differential form of the Biot-Savart law. 



5.7 Further Examples 127 

(Since for a gauge transformation V x B = V x B’, the invariance of this 
equation requires that j = j’). We apply to Eq.(5.32) the theorem of Stokes 
and obtain 

L(,)j * d F ,  
/ V x B . dF= h B . ds  = po (5.36) 

where d s  is an element of the path C enclosing the area F ( C ) .  Let us assume 
that n conductors are enclosed by C as indicated in Fig. 5.14 (or one with 
several turns or wiggles passing through the area enclosed by C ,  some also 
in opposite directions). Let I be the current flowing n times through the 
surface enclosed by C in one direction (or the net number, if currents are 
also going in the opposite direction). Then 

j . d F  = p o n l ,  s,,,) 
and hence 

B . ds  = p o d .  (5.37) 

This important formula is the integral form of Ampire’s law. In view of 
Eqs. (5.32) and (5.35) we have 

V x B + AA = 0. 

But 
V x (V x A) = V ( V . A )  - AA = 0 - AA 

and always V x V = 0. Hence 

B = V x A + V#o. 

Since, as we saw, V . B = 0 and always “div curl = O ” ,  it follows that $0 is 
solution of A#o = 0. If A = 0, then it follows that B can always be expressed 
as a gradient (the so-called Coulomb law of magnetostatics for hypothetical 
monopoles). 

5.7 Further Examples 

Example 5.6: The magnetic field of a long solenoid with current I 
Since the solenoid is stated to be long, the magnetic field in its interior is practically homogeneous 
and outside practically zero, as we can see immediately by drawing lines of constant B into the 
diagram as in Fig. 5.15. One observes that the lines crowd together in the inside region and thin 
out outside. The field inside is to be calculated. 
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0 0 

Solution: In Fig. 5.15 a path C is shown, which encloses N turns of the solenoid. Hence 

I 
0 0 0 . I 0 0  

jc B . ds = I N p o ,  

0 0 

where I N  is the current flowing through the surface 

I 
0 0 0 . I 0 0  

+ C 
r - - - - - - - - - I  

j Ic  T 
1 
d 

L I - I  
Fig. 5.15 Longitudinal cross section of the solenoid. 

enclosed by C.  Since the field B outside the solenoid is practically zero, and B along the two 
transverse sections of length d in Fig. 5.15 is also practically zero, and inside the solenoid the field 
is practically homogeneous, it follows that 

B1 = INpo ,  i.e. B = Inpo,  (5.38) 

where n = N/1 is the number of turns per unit length of the solenoid. 

r - - - - - - - - - i  

Fig. 5.16 A different closed path C 

For a better understanding we choose another closed path C as indicated 
in Fig. 5.16. In this case the field along the path is everywhere zero, i.e. 
&, B . ds = 0. On the other hand (since the path this time encloses ingoing 
as well as outgoing currents) 

kj . d F  = 2 1  - 2 1  = 0. 



5.7 Further Examples 129 

Thus here the path was selected in such a way that one is unabIe to determine 
the field B.  

Example 5.7: Significance of solid angle subtended by a current loop 
(a) Show that the field B(r) at point r due to a closed current carrying loop (current I )  is given 
bY 

B(r) = --V(IO), PO 
47r 

where R is the solid angle subtended by the current loop at the point r.  
(b) With the help of the expression obtained under (a) for the field B(r) calculate the field B ( z )  
of a ring-shaped conductor of radius a at a point P ( z ) ,  distance z above the centre 0 of the 
ring-shaped conductor. 
(c) A solenoid of radius a, length 1 ,  with current I ,  consists of n uniform turns per unit length. 
Determine the component of the field B in axial direction at a point a distance I away from one 
end of the solenoid (e.g. from the origin 0 there on the left side of the axis). 

Solution: 
(a) We consider, as indicated in Fig. 5.17(a), a displacement of the point P by dr, which is 
equivalent to a displacement -dr’ of the element of area dF’ = dr’ x ds(r’), i.e. dr = -dr’. 
(d(r - r’) = --d(r’ - r)).  

Fig. 5.17 (a) The element of area. 

Startine: from the formula 
Y 

POI j ds(r’) x (r - r’) 
47r )r - 4 3  ’ B(r) = - 

we then have 

B(r) .  dr = -e j d r ’ .  ds(r’) x (r - r’) dr’ x ds(r’) . (r - r’) 
47r Ir - r’l3 47r Ir - r’13 

where dw’ is the solid angle subtended at P by the entire ring-shaped area, that arises in the shift 
of the loop. Thus 

B(r) . dr = -k’ldw’ = -k’d(IR), 
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where R is the change of the solid angle of the conductor loop at P. The solution of the last 
equation is therefore 

B(r) = -k'V(IR). (5.39) 

(b) We now consider a circular conductor of radius a. The problem is to determine the solid 
angle subtended by the circular conductor at the point P in Fig. 5.17(b). We determine this by 
calculating the area FS of the spherical shell (centre P ,  radius d w ) ,  which has the conductor 
as boundary. We obtain this area from the corresponding part of the area of the corresponding 
cylindrical envelope dashed in Fig. 5.17(b). It can be shown that these two areas are equal) 

Fig. 5.17 (b) The spherical shell and its cylindrical envelope (dashed). 

i.e. 
Fs = (2n x cylindrical radius) x cylinder height, 

implies ~- 
FS = 2nJz2 + az(Jz2 + a2 - 2). 

It follows that 
- Fs - area R =  ~ - 

(radius)2 ( d w . ) 2  - 2n 

Hence 

in agreement with Eq. (5.21). 
(c) Next we consider a cylindrical solenoid of radius a and length 1 as indicated in Fig. 5.17(c). 
The problem is to determine B in axial direction at point P ,  distance x from 0. First we consider 
only one turn at y and so ndy turns in the immediate neighbourhood. Hence we calculate the solid 
angle subtended by the turns at y at the point P. This solid angle is, again calculated as above 

llTo this end one considers the ring-shaped area of the spherical shell of radius a (in Fig. 5.17(b) 
this radius is d m )  with ring radius 2na sin0 and ring width ds. This radius multiplied by the 
arc length ds gives the area 2nasinQ. ds = 2nadx; the latter expression is the area of an element 
of the enveloping cylinder. This relation can also be found in the literature, e.g. in K.E. Bullen, 
An Introduction to the Theory of Mechanics (Science Press, Sydney, 1951), p. 171. 
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with the help of the enveloping cylinder (observe J a 2  + ( x  - Y ) ~  is the radius of the sphere which 
is equal to the radius of the enveloping cylinder): 

area 
(radius)2 

- 2.irJa2 + ( x  - y)2{ Ja2 + ( x  - y)2 - ( x  - 9 ) )  n=- - 
(Ja’ + ( x  - Y W  

Fig. 5.17 (c) The solenoid. 

Hence B, : 

We have to sum over the field contributions due to all turns. The interval dy at y contains ndy 
turns, so that its field contribution is 

and altogether 

B, = - k ’ I - 2 . i r n l d y ( l +  a 
8 X  J a 2  + ( y  - z)2 

Hence 

l - im 
+ 4.irk’In = p o l n  

in agreement with Eq. (5.38). 
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Example 5.8: The quadratic current loop 
A current I flows in a planar, quadratic loop of wire with sides of length 1 .  Determine the field B 
at the centre of the square. 

Solution: We consider first the field at a point P, originating from one side of the quadratic loop. 
According to the Biot-Savart law we have, see Fig. 5.18 (a), 

PO Ids(r’) x (r - r’) 
47r Ir - r q 3  ’ d B  = - 

i.e. (see Fig. 5.18) 

We have 

so that 

and hence 

PO Idxs inaPQ 
47r PQ3 ‘ 

dB = - 

r d a  
PQ = A, t a n a  = - T I  -x = r c o t a ,  dx = - 

sin a X sin2 a ’ 

- - - _  ” I sin crda, po I rda(s ina)3 
47r (sina)2r2 4x1- 

d B  = - 

P 
A 

- I -  

Fig. 5.18 (a) The field point P ,  and (b) the quadratic loop. 

The requested field at P is therefore 

PO I PO 41 ‘ 2  2 PO 8 f i I  B = 4- -(COS 45’ - cos 135’) = - - - - - -. 
47r 112 47r 1 f i - 4 7 r  1 

Example 5.9: An electron in a vector potential 
An electron at rest (initial velocity zero!) is exposed to electromagnetic radiation given by 

A = (0, A(. - ct) ,  0). 

Formulate the (nonrelativistic) equation of motion of the electron and derive, one after the other, 
the z - ,  y-, x-components ( i ,  y, i) of the velocity of the electron. Assume that A(u) tends to zero 
for u 4 00. 
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Solution: The force acting on the electron is the Lorentz force. Hence the equation of motion is 

p = e ( E  + v x B), (5.40) 

where v = (k, y, i )  (with the electron initially at the origin). Here E = -dA/at (the contribution 
-V4 drops out with the given condition), and B = V x A. Hence in our case 

= - (O ,  -cA’(z - c t ) ,  0), (5.41) 
~ A ( z  - ct) 

where A’ = dA(z - c t ) / d x .  Moreover, 

B = V x A =  

i.e. B = ( O , O ,  A’). Hence 

v x B = (5 ,  y, z) x ( O , O ,  A’) = (yA’, -XA’, 0). 

The expressions (5.41) and (5.42) now have to  be inserted into (5.40) and yield 

p = e(yA’, (c - ?)A’,  0). 

Thus p ,  = 0, i.e. i- = 0. For the y-component we have 

d d 
dt dt 

my=e(c -x )A’ ,  ~ - k = - - ( ~ - ~ t ) ,  . . . ( c - - ) A ‘ = - A ‘ - ( ~ - ~ ~ ) = - A ,  

. ‘ .my=-eA,  : .y=--eA+const . ,  const.=O with y = O , A = O  at t = 0 .  
m 

Finally the z-component is given by 

(5.42) 

(5.43) 

Thus 
e2 d 
m2 dt 

22(; - c) = - - -A2, 

so that 
e2 

k2 - 2c5 = - - A ~  + const. 
m2 +’ j. = 

0 

i.e. 
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Chapter 6 

Macroscopic Magnetostatics 

6.1 Introductory Remarks 

Up to this point we have only considered currents I or precisely known 
current densities j which describe a stationary microscopic flow of charge. 
In macroscopic problems the total current density is not known precisely. 
The atomic or molecular ring-like currents (and spins) of the electrons in 
matter determine the latter’s magnetic properties, whose effective magnetic 
moments contribute to the vector potential A(r), as also the conduction 
electrons of the macroscopic transport of charge. For macroscopic effects 
again only an averaging over a macroscopic volume is meaningful. We can 
keep the microscopic current density j considered thus far as the density of 
macroscopic charge transport; this has to be supplemented, however, by the 
contributions of microscopic molecular currents. Hence we write 

total current density = j + jmol .  

We are interested here in currents in conductors. We defined the ideal 
conductor electrostatically a s  an equipotential domain in which the electrons 
can move about without doing work. If a potential difference V is applied, 
and hence a field E, 

+ = V =  E.ds, I 
e.g. V = V, - V, = EL ( L  = length of the conductor), then the conduction 
electrons move in the direction determined by E. One thus has a current I 
and a current density j. However, in general these conduction electrons can 
not move about completely freely. The nuclei of the atoms of the conductor 
occupy points in the lattice of the rigid body structure of the metal, and this 
lattice interacts with the conduction electrons, although relatively weakly. 

135 
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Something similar applies in the case of an externally applied magnetic field. 
The resistance of the lattice is evident in Ohm’s law, i.e. in the relation 

j = a E ,  (6.1) 

where u = l / p  is the conductivity (gases, for instance, are not linear conduc- 
tors, i.e. in their case Eq. (6.1) does not apply, instead j = f (E)). Hence, 
with F the appropriate cross sectional area ( I  = J j . d F ) ,  

I = F j  = FuE,  

and so (see above) 
L V E L  L 

I F O E  F a  F 
1 p- R. - _ 

Here p is the resistivity, also called specific resistance, and R the resistance, 
and we see that this depends on the geometry of the conductor. Here we 
usually avoid the use of p for resistivity since this can be confused with p 
for charge density. Thus the charge density appears in the product E . j = 
p E . d s / d t  which (since it represents work per volume and time) is the energy 
transferred per unit volume and per unit time from the conduction electrons 
to the lattice. 

6.2 Macroscopic Magnetisat ion 

We return to our original considerations. In keeping with the subdivision of 
the entire current density we write the total vector potential correspondingly 

or 

where j is the conduction current density, jmol  the contribution of the molecu- 
lar ring currents and k’ = p0/47r. On the other hand, we saw in the preceding 
chapter that the field B of a magnetic dipole moment m is given by 

,3n (n .  m) - m r 
r3 r 

B = k  with n =  - and B = V x A. 

We verify first that the vector potential of this expression for B is given by 

‘rn x r 
A = k -  

r3 ’ 
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and our intention is to express Amol in this form. 

Example 6.1: Vector potential A of a magnetic dipole moment m 
Verify Eq. (6.4). 

Solution: We use the formula 

V X  ( a x  b) = a ( V . b ) - b ( V . a ) + ( b . V ) a - ( a . V ) b ,  

which implies 

since m = const. Moreover, since, 

and 

so that 

it follows that 

However 

It follows that 

r 
7-3 

:(>)+ . . .  =m. - -  -r-) 3 x  + . .  (m.V)-  = m2- (:; 7 - 4 7 -  

- mr2 3r(m.r) 
- 

r5 r5 ’ 

V x  ( T ) k ’ =  m x r  3r(m. r) - mr2 
7-5 

k’ 

in agreement with the above claim. 

Thus we can write for the vector potential at the point r, which is due 
to molecule ‘5’’ (mi the latter’s total magnetic moment) 

Hence
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We now define as 

N(r):  the average number of molecules per unit volume at r, 
(m(r)):  the average molecular magnetic m o m e n t  at r, 

M:=N (m): the macroscopic magnetisation, i.e. magnetic dipole density. 

Hence we can write 

Ci (contribution)i = (density of contributions)dr’, s 
and thus Eq. (6.5) 

For the curl of the product of a scalar function 4 multiplied by a vector 
function M the following formula can be found in Appendix C or in Tables 
of Formulae: 

V X ( ~ ~ M ) = ( V ~ ) X M + ~ V X M ,  (6.7) 

or for the first term on the right side of this equation 

M x (V4) = -V x (4M) + 4V x M. 

With 4 = 1/1r - r’I we obtain for the second term on the right side of 
Eq. (6.6): 

1 
dr’M(r’) x Vr,- s Ir - r’l 

But, as we shall verify in a moment, 

J d r v  x B = dF x B. J 
Example 6.2: Verification of Eq. (6.9) 
Verify Eq. (6.9) by scalar multiplication by a constant vector C. 

Solution: For the verification we multiply the right hand side by an arbitrary vector C = const. 
and consider 

d F x B =  C . ( n x  B)dF. s 
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For the scalar triple product we have 

(C  x n) .B = B. (C x n) = ( B  x C )  ‘ n .  

Hence 
d F x B =  ( B x C ) . d F  J 

Gzss 1 d r V ,  (B x C )  see !?.?low - 1 drC . (V x B ) ,  

where in the last step we used for u = B and v = C and C = const. the formula (see Appendix 
C )  : 

V’(U x v) = v .  (V x u) - u .  (V x v). 

Hence Eq. (6.9) applied to the first integral on the right hand side of 
Eq. (6.8) yields 

-/dr‘V‘ x (&) = -/dF’ x m. M 

Here (see above) M(r’) = N(r’) (m). The integration extends over the entire 
volume of the macroscopic body. Assuming localisation, there is no molecule 
outside and hence the surface integral there vanishes. Then 

and with Eqs. (6.6) and (6.8) we are left with 

/ ,j(r’) + V‘ x M(r’) A(r) = k’ dr 
Ir - r’l 

for the vector potential at a point r outside the matter 
body. Thus the macroscopic magnetisation M implies a 
rent 

j, = V x M. 

(6.10) 

of the macroscopic 
magnetisation cur- 

(6.11) 

We therefore obtain according to our earlier considerations 

V x B = po(j(r) +j,(r)) = pojtotai ,  (6.12) 

where jtotal is the total current density. With Eq. (6.11) we then have 

v x B = po(j + V x M), (6.13) 

or
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or, introducing the vector H, 

V x H = j  (6.14) 

with 
1 

PO 
H =  -B - M, B == PO(H +M). (6.15) 

The vector H is called magnetic field strength. H does not depend on the 
molecular magnetic moments. (Note the analogy with electrostatics: There, 
since V . D = p,  the polarisation charges with density p p  are not sources of 
D). This is the reason why in many texts H is introduced first, and not B, 
since the current is first considered without the effect of magnetisation. This 
means the B we introduced originally is poH. In vacuum B = poH. 

The integral form of Eq. (6.14) is very important in applications, that is 

(6.16) 

On the right hand side we do not write I ,  because in general (i.e. depending 
on the problem) the current can cross the area F several times and in different 
directions, and then the right hand side is an integral multiple of I .  The 
formula (6.16) will be an important starting point in problems to be discussed 
later. 

For many cases, i.e. types of matter, one observes the linearity 

M = KH, K = const. (6.17) 

In these linear cases 

B = PH, P = PO(1 + K ) .  (6.18) 

Today the unit of magnetic field strength is ampere/meter, written A/m, 
and sometimes ampere-revolutions/meter (the obsolete unit is oersted (Oe)). 
Thus here in magnetostatics we have 

/jtotai (r') A(r) = k' dr J Ir - r'( ' 

where 

jtotal = j + j, = j + V x M 
= j  + V x (KH) = j + KV x H 

P .  = j + ~ j = - j ,  
PO 
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and p = po( l+ K ) .  Thus we have 

where 

(6.19) 

Thus one has almost the same formula (in these linear cases) as in the mi- 
croscopic case, except that PO --+ p, with p incorporating matter effects. 

6.3 Magnetic Properties of Matter 

We saw above that 
- = l + K .  

PO 
Here p/po is the relative permeability of the medium and K the magnetic sus- 
ceptibility. One distinguishes between diamagnetic, paramagnetic and ferro- 
magnetic materials. Diamagnetic materials are those consisting of atoms, for 
which the sum of the individual orbital angular momenta of the electrons is 
zero. Such atoms therefore do not possess a permanent total magnetic mo- 
ment. However, when placed in an external field B, they develop an induced 
magnetic moment on account of their motion in this field B (in accordance 
with the law of induction to be discussed later which implies an induced 
electromotive force which accelerates the electrons). According to the law of 
induction (cf. later: the Lenz rule) the induced magnetic moment or rather 
its field has the direction opposite to that of the applied field B, so that 

K < O ,  p < l .  

The effect is independent of temperature (as the explanation implies). 
Paramagnetic materials are those whose atoms possess permanent mag- 

netic moments (in fact, their electrons outside closed electronic shells), which 
favour alignment with the applied field, so that for these materials 

K > O ]  p > 1 .  

(In the case of these the effect of induced magnetic moments is much smaller). 
Ferromagnetic materials are those, for which 

K > 0, and p = p(H)  >> 1 

(see discussion of hysteresis curves ( B  versus H )  in appropriate literature). 
In the case of these materials the connection between B and H depends 
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on the past of the system; the connection is therefore not unique. In addi- 
tion the connection depends on the temperature (above the so-called Curie- 
temperature ferromagnetic materials become paramagnetic). 

6.4 Energy of the Magnetic Field 

For the magnetic energy one obtains, as we shall show later, an expression 
very similar to that for electric energy. We cite the result at this point for 
reasons of completeness: 

W = -  d r B - H .  
2 's (6.20) 

6.5 Behaviour of B and H at Boundary Surfaces 

In the case of the field E we saw that without considerations of properties of 
matter  at a thin charged surface 

1 
(Ez - El) n = 47rka, k = - 

47rQ ' 

or in the case of macroscopic electrostatics, which takes the polarisation of 
the dielectric into account, 

(E2 - El) . n = 47rk(a + u p ) ,  

and 
(Dz - D1) . n = 47rka. 

In the case of the field B we have V . B = 0, i.e. 

so that 
(B2 - B1). nOF = 0. 

The zero on the right side implies that no single magnetic poles exist. Hence 
the normal component of the field at the surface is continuous, i.e. 

B2n = Bin. (6.21) 

In the case of the field E we obtained from V x E = 0 the relation 

E2t = Elt. 
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In the case of H we have 
V x H = j ,  

i.e. 
(6.22) 

We now consider the contribution on the right side in relation to an element 
of area dF perpendicular to the interface between two media as in Fig. 6.1. 
Then dF is a vector in the plane of the interface. Applied to this element of 
area we can write Eq. (6.22): 

L, j . d F  = j . A F  = jld, 

I 

d 
P.2 I / / t 

Fig. 6.1 Element of area A F .  

where 1 is the length and d the height of the element of area. For conductors 
we have Ohm’s law j = aE or j = aE. In ideal conductors a = 00 with 
E = -Vq5 = 0. It is then possible that 

j ld  = aEld # 0 and finite, 

and one defines 

lim aEd := K ,  j . dF = KZ, 
cT+w,d--tO s 

where K is a surface current density,* j is the volume current density. K 
is also called linear current density! If the conductivity a is finite, we have 
K = 0; i.e. in this case there is actually no surface current? 

*See Jackson [3], p. 19. 
+See Lim [2], p. 42. 
$See Jackson [3], p. 336. Nonetheless an effective surface current will be defined later in the 

treatment of wave guides, in fact with the help of j. 
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The continuity condition for H can now be written (using &, H . ds as in 

(6.23) 
the case of E) 

Hzt - HIt = K (= 0 for a finite), 

i.e. 
n x ( ~ ( ~ 1  - ~ ( ~ 1 )  = K. (6.24) 

The surface current introduced here is the same as the surface current K 
referred to earlier. The name “linear current density” has its origin in the 
fact that in Eq. (6.22), 

I 
H2t - Hlt = z, 

the current appears linearly. This result is of considerable importance and, 
like its counterpart (2.16) in electrostatics, will be used in examples, as in 
Example 14.4. 

6.6 Current Circuits Compared with Flux Circuits 

It is interesting and instructive to enquire about analogies between electric 
and magnetic properties. In an electric circuit, i.e. current carrying circuit, 
with stationary current I = j F  defined by the condition V j = 0, the 
current I is the constant quantity. The potential V, or the corresponding 
electromotive force of the circuit, is with j = aE, I = jF (see Eq. (5.2)) given 
by 

= I f  dl = IR ,  
CJF 

where R is the electric resistance of the circuit. 
The magnetic analogy is (see Eq. (6.16)) the mugnetornotiwe force 

P P 

f €3 . dl = jF j . d F  = I N ,  

(6.25) 

where now V . B = 0 with constant magnetic flux CP = s B - dFo. N is the 
effective number of currents I passing through the surface C ( F )  (i.e. the 
number of currents I coming out minus the number going in, i.e. in the 
opposite direction). The relation B1, = Bzn = . . tells us that the magnetic 
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flux is conserved, i.e. the lines of flux are continuous at a boundary surface 
FO (note the difference between the areas F(C)  and PO). It follows that 

If the magnetic flux 
the expression 

corresponds in the electric case to the current I ,  then 

may be interpreted as magnetic resistance. It follows that we can calculate 
the magnetic flux with the relation (6.26), i.e. with 

(6.27) 

This result will be used in Example 6.4 below. 

6.7 Examples 

Example 6.3: The electromagnet 
Determine the magnetic field strength H2 in the gap of the circular electromagnet shown in Fig. 6.2 
(assuming constant and homogeneous fields). 

C 

a 

Fig. 6.2 The electromagnet. 

Solution: The ring-shaped magnetic material with circular cross-sectional area Fo, permeability 
p and mean circumference L -  1 ,  where 1 is the length of the gap (of air or vacuum), has N turns of 
a wirelike conductor carrying current Z wound around it. We use the integral form of Eq. (6.14), 
i.e. & H . dl = I,,,, .i . m, (6.28) 
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where C is the path shown in Fig. 6.2 and F ( C )  the area enclosed by it. Now B = p H ,  and at 
a boundary surface, which means at the two transverse areas, where the gap begins, as we saw, 
B1, = Bzn. We set B = B1 in the magnetic material. Then 

H1p = Hzpo.  (6.29) 

On the other hand, from Eq.(6.16) (since the wire crosses the area F ( C )  a total of N times in the 
same direction) 

H1L + H z l =  I N .  

From Eqs. (6.29) and (6.30) we eliminate H i  and obtain 

(6.30) 

(6.31) 

in ampere-turns/meter. The same result follows immediately from application of the flux formula 
(6.27), i.e. with 

j.dF "=J--pz P FO 

Inserting the appropriate quantities, we obtain 

poH2Fo = 
I N  

&(f + k) ' 
in agreement with the result above. 

Example 6.4: The electromagnet with tapered poles towards the gap 
We consider a toroidal electromagnet with circular cross section and radius R (of the cross-sectional 
area) along the torus part of length L (as in Example 6.3). Towards the gap (of length h) ,  at both 
ends along a length I (always along the circle which coincides with the axis of the torus), the radius 
decreases from R to T at the poles. Determine the magnetic field strength H z  in the gap. 

Fig. 6.3 The electromagnet with tapered poles. 

Solution: We use Eq. (6.27). For this we have to evaluate 

I N  H2ponr2 = - - f & '  
flux in the gap 
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Here the line integrals along the gap and the main part of the torus follow as in Example 6.3, the 
respective cross-sectional areas being s r 2  and 7rR2. Along each of the two tapered ends the radius 
y of the cross section of the electromagnet at a distance x measured from the small end is given 
by - as one can calculate with the method of congruent triangles (see Fig. 6.3) - 

- y - r  i.e. y = r + C ( R - r )  
1 R - r '  I 

(verification: for x = 0 this is r and for z = 1 this is R), so that for each of the two pole pieces 

- - - 

1 
T ~ I T R '  

- - 

Altogether we have 
I N  

H2fi07rr2 = h L 21 ' 
s + - + x l l l r R  

i.e. 

We see that for 1 + 0 , r  + R the result reduces to that of Example 6.3. 

Example 6.5: The vector potential along a thin, circular wires 
Calculate the vector potential along a current carrying wire of tiny cross section and circular shape. 

Solution: We use Eq. (6.19). With ds = rd4, where r is the radius formed by the wire, we have 

47r 

P 
47r 

N I- ln(Ar), (6.32) 

where we used a not so familiar expansion from a Table of Formu1ae.T The divergence that we 
encounter here (for A + 0) appears because we assumed that the wire has (effectively) vanishing 
cross section ( r  = r'). For small thickness 1/A the dominant contribution is proportional to  ln(Ar), 

'See also E. Witten, Nucl. Phys. B249 (1985) 557. 
TI. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Academic, 1965), 

formula 1.518(3), p. 46. 
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A having the dimension of a reciprocal length. Since the current is constant along the string, the 
same is true for A(r). 

Example 6.6: Vector potential of a long, straight wire with current I 
Determine the vector potential of the wire. 

Solution: We start with the same relation for the vector potential as in Example 6.5, i.e. 

We take the wire as lying along the y-direction. Then the formula implies that the components 
A,, A, are zero, and for the y-component we obtain for the field at a point x along the x-axis 

The last expression follows in a similar way as in the case of the electrostatic potential we encoun- 
tered in Example 3.3. 

Example 6.7: Energy of the magnetic moment m in the field B 
Determine the energy of the magnetic moment m. 

Solution: We consider first the case of an electric dipole p in an applied field E. The energy U 
of the dipole is the sum of the energies of the two charges q and -q at points r+ and r- ,  a small 
distance d apart, i.e. 

U = qd(r+) - q4(r-) = q +(r- + d) - 4(r-) = qd . V4 = -p . E, 1 
with p = qd. We define the force F by the expression 

Then 
F = - V U  = V(p . E). 

In the magnetic case we have to remember first of all that B = V x A, i.e. B is in general not 
expressible as a gradient. However, we now consider an ezternal field, i.e. a field B, where the 
current density is zero. Then V x B = 0, and B can be written as a gradient, i.e. derivable from 
a potential 4. It follows that we can use the relations of above and we can write 

U = -m.  B, F = V(m.  B). (6.33) 

Example 6.8: Vector potential of a solid cylinder 
An infinitely long solid cylinder of radius R (made of material with relative permeability p / p o  > 1) 
carries the constant current density j o  in the direction of its axis. Calculate (a) the vector potential 
and (b) the magnetic field strength within and without the conductor by solving the Poisson 
equation for the vector potential. 
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Solution: 
(a) Since 

the vector A is parallel to j and parallel to e,. The Poisson equation is AA = -p j , j  = joe,B(R - 
p), j o  = Z/rR2, with cylindrical coordinates p, p, z .  In view of the cylindrical symmetry we have 
A = A,(p) and the Poisson equation is 

In case (i) we have 
A,(p) =cInR+A,o .  

In case (ii) we have 

and hence 

~ , ( p )  = - @ p 2 + c l l n p + c z .  
4 

We choose c 2  = 0. Regularity at p = 0 requires c1 = 0. Continuity at p = R implies: 

1 . 2  cInR+A,o = --pjoR . 
4 

We obtain therefore: 
-+pjoR2 for p 5 R, 

- c l n $ - $ p j 0 R 2 f o r p L R .  

(b) Considering the magnetic field strength, we have 

pH = V x A = pH,(p)e, = 

l a  kjop for p 5 R, 
P aP PP for p R. 

:. H,(p) = ---A,(p) = { -_ 

Continuity at p = R implies: 

j0p for P 5 R, + for p 2 R. 
:. H,(p) = 
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6.8 Summary of Formulae of Magnetostatics 

We collect here for reference purposes the most important results of magne- 
tostatics: 
(1). Current, equation of continuity and stationarity: 

dq  a P  
d t  ’ at 

(2 ) .  Magnetic field strength: 

1 = - dq = p d V ,  - + V . j = 0, stationarity V . j = 0. 

(3). Macroscopic magnetostatics:ll 

j totai  = j + j M ,  

Magnetisation current density j, = V x M, 

B = po(H + M). 
(4). Magnetic material equations: 

= 1 + r ; .  P M = K H ,  B = p H ,  - 
PO 

(5). Biot-Savart law: 
I(r’)ds(r’) x (r - r’) 

B(r) = LL J 
4n Ir - r1l3 

(6). Ampkre’s law and Lorentz-force: 

F = I(r’)ds(r’) x B(r’), F = qv(r) x B(r). J 
(7). No magnetic monopoles: 

V . B = O .  

(8). Behaviour at boundary surfaces: 

Ban = Bin, H2t - Hlt = K 
(Surface current K = 0 for finite conductivity a). 

(9). B-field energy: 

“Some authors relate B to H by B = poH+M’, in which case M’ has units of B (weber/meter2) 
instead of H (ampere/meter). See e.g. The Electromagnetic Problem Solver [21], Sec. 11, p. 1-1. 



Chapter 7 

The Maxwell Equations 

7.1 Preliminary Remarks 

Now that we have dealt with electrostatics and magnetostatics also for macro- 
scopic objects, the next step is to introduce time dependence. Proceeding 
in our phenomenological and historical approach we are led to consider next 
Faraday’s law of induction. With this we can complete the equations of 
macroscopic electrodynamics with the addition of Maxwell’s displacement 
current. The result is the full set of Maxwell’s equations. 

7.2 Time-Dependent Fields and Faraday’s Law of 
Induction 

Faraday discovered in 1831 that an electric current arises in a closed wire loop 
i f  the wire is moved through a magnetic field, in other words when the position 
or orientation of the wire with respect to the magnetic field is changed, or 
if the magnetic field varies with time. We consider two situations in which 
Faraday’s observation applies. In the first case the field B is maintained 
constant in time. 

(a) In an electric field E the charge q experiences the force 

= E. F=qE,  - 
dF 
dq 

This force F results from a nonvanishing potential difference in the conductor. 
On the other hand (cf. Lorentz-force), the field B acting on a charge dq 
moving with velocity v = dl/dt  implies that the latter experiences the force 

151 
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d F  given by 
dl 
d t  

d F  = dq- x B ,  

so that 
d F  dl 
dq d t  
- = - x B .  

Identifying the forces of Eqs. (7.1) and (7.2) in order to arrive at an expla- 
nation of Faraday’s observation, we obtain 

dl 
d t  

d q E  = - x d q B ,  

i.e. 

Fig. 7.1 (a), (b) The moving current loop. 

dl 
d t  

provided the right side (or one component) is parallel to E .  This means, the 
electric force acting on the charge dq is equal to the force which the field B 
exerts on the charge dq moving with velocity v. Put differently: The right 
side of Eq. (7.3), i.e. the force that B exerts on dq,  induces the electric 
force E d q ,  i.e. the Lorentz-force, acts on the electrons in the conductor, and 
hence a current in the conductor is observed, and so a potential difference 
or induced voltage. We assume this here as an empirical finding.* 

We let C1 be the initial position of the conducting loop and Cz = Cl + 
SC1 its position a time interval S t  later (as indicated in Fig. 7.1(b)). SC1 

E z - x B ,  

(7.3) 

- ds  x dl 

*The induced voltage or potential difference V is also called induced electromotive force. V has 
the dimension of energy. The term “foTce” has a historical origin; in the 18th century, as also at 
the beginning of the 19th century, various quantities which today represent energy were described 
as “force”, e.g. also in writings of Kant. 
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represents the displacement of the coordinates of the loop or, alternatively, 
the deformation of the loop. The potential difference V induced in the loop 
C1 is according to its definition and after inserting the expression for E from 
above given by 

V = hl E ds = hl (2  X B) .ds  

(7-4) 
d F * B  

= kl (ds x 2)  . B = - / displacement area dt ’ 

where the integration is over the area swept out by C1 in its displacement 
to Cz. However, we always have V B = 0, i.e. integrating over the 
displacement-volume between C1 and C2 

o = ]  d r V . B  
V(disp1acement) 

- 
- s,,,, * dF 

Here F(C1) is the area enclosed by C1, and correspondingly F(C2) the area 
enclosed by C2, and F(disp1acement) is as before the area swept out by the 
boundary. Then 

B . dF2 
s,,Cl) . dF1 + s,(C1+6Cl) 

=-[/ F(Cl+dCl) B . d F 1 -  L,C1) . dF1l 
B . d F =  

- 6 o u n d a r y  

= -6L(c1) B . dF1. 

It then follows with Eq. (7.4) that 

V = i l E - d s  = s,,,,, Stokes d V x E * d F  = -- 
dt s,(cl) * dF1’ 

Thus in this case with the field B constant in time: 

(7.5) 
d 

V x E . dF = -- 
L(C, dt L)) . dF1. 

In the next case we consider C1 as fixed and B as varying with time. 
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(b) We have seen that at a sufficient distance away from a current carrying 
loop the magnetic properties of the loop can be considered as those of a 
magnetic dipole with moment m given by 

m = I J  d F .  
C1 fixed 

The energy of this dipole in an external field B is (see Eq. (6.30)) 

We now assume: In the time interval bt the field B changes by an amount b B  
in such a way, that the amount of magnetic energy thereby gained per second 
is exactly compensated by the loss of a corresponding amount of energy as 
heat whilst the current I is  kept constant. Then the energy lost as heat per 
second is 

On the other hand, the magnetic energy gained per second is 

+-- = -1 
at 

Hence the sum “loss + gain = 0” yields the relation 

Let d, be the magnetic flux defined by 

The MKSA-unit of magnetic flux is the weber (Wb) (for conventions of 
notation see Appendix B). Equation (7.6) can then be written 

dd, 
d t  

IV = -I-. (7.7) 

In this formulation Faraday’s law is also known as Neurnann’s law. The 
minus sign in Eq. (7.7) expresses effectively what the so-called Lenz rule says 
(see below). 
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Recalling - as an instructive analogy - the following result from calcu- 
lus t 

we see that the results (7.4), (7.5) can be combined in the following form 
(where instead of boundary values we have the path of integration Cl( t ) ) :  

d 
V x E . d F  1 -- dt k(,,,,,, B(r, t> ‘ dF’ (7.8) 

k ( C l , t ) ,  
E . d l =  

4;,,,t) 

Here we are at present not so much interested in the variation of the positions 
of current circuits with time (but see Example 7.3)’  as in time-dependent 
fields B. We assume therefore, that the form of C1 remains unchanged and 
that C1 is fixed in space. Then we have the case of Eq. (7.7)’ i.e. 

Since C1 is arbitrary, we can equate the integrands and obtain 

dB V x E = - - .  
at 

This is the differential form of Faraday’s law. 

B 

(7.9) 

Fig. 7.2 The Lenz rule. 

Finally we comment briefly on the so-called Lenz rule. This rule is useful 
in practical applications. In other respects there is no necessity to use it. 

+See e.g. Whittaker and Watson [7], p. 67 
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What the Lenz rule says is contained in Maxwell’s equations. In the literature 
the Lenz rule is frequently - at least on a first reading - difficult to follow, 
e.g. with a statement like: “The Lenz rule says that the induced current and 
the associated magnetic flux have directions such that they act against the 
change of the external flux.” Let us consider a conducting ring which falls 
in a field B as depicted in Fig. 7.2 (i.e. the ring maintains its shape but the 
flux through it changes). The change of flux d@ or change in the number of 
lines of force cut by the falling ring in time dt is given by d@/dt. According 
to Eq. (7.7) the magnitude of this rate gives the voltage V induced in the 
ring. Lenz’s rule determines the sign in Eq. (7.7) by calling Vdt now induced 
flux (i.e. magnetic flux associated with the induced current) and saying, its 
sign is such that it cancels the corresponding external flux d@. 

At this point the natural question arises: Is there also a magnetic field 
strength H which is induced by time-variation of E? The answer is yes, and 
is provided by Maxwell’s displacement current (see Example 7.1). Faraday 
had asked himself this question and performed experiments, but with no 
success. 

7.3 Energy of the Magnetic Field 

Starting from the expression 
m = IF 

for the magnetic moment of a circuit or network with current I and area F ,  
and also from the expression for the potential energy U of the moment m in 
the field B, i.e. 

U = -ma B = -IB . F  = -I B . d F  I ’  
we have for the variation of the energy of the field (where we have to reexpress 
the current I in terms of the field) 

-su EE 6W = I6 1 B . d F = I  
F fixed 

I / 6A ds = J dr6A . j ,  

i.e. 

6W = dr6A.j. I (7.10) 
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This expression has to be compared with the corresponding expression in 
electrostatics, i.e. 

SW = drS#(r)p(r) 

(observe that one can define an expression SW’ = J drSp(r)#(r)). Inserting 
into Eq. (7.10) the expression for j which we obtain from V x H = j, and 
using 

V . ( a x  b ) = b . ( V  x a ) - a . ( V x  b), 
it follows that 

J 

= 1 dr[V + ( H  x SA) + H . (V x SA)] 

= 0 +  drH.SB,  J 
where the first term was converted into a surface integral at infinity with the 
help of Gauss’ divergence theorem and therefore vanishes. For B = pH we 
have S(H - B) = 2H 6B and hence 

W = -  d r H . B .  2 ‘s (7.11) 

This result should be compared with the corresponding energy in electro- 
statics. 

7.4 The Generalised Ohm’s Law 

In the case of a simple circuit with resistance R, generator voltage V e ,  Ohm’s 
law is V, = IR ,  where I is the conduction current. Next we consider the case 
of a coil with n turns per unit length. In this case one has a magnetic field 
along the axis of the coil (as we saw), and so 

H = n I ,  B = p H .  

If H is changed by changing I ,  also the flux Qi = n x  area of one turn x B  
changes and this induces in the conductor of the circuit an induced potential 

Hence the generalised Ohm’s law is 

(7.12) 

where V, is the potential provided by an external source. 
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7.5 E and B with Time-Dependent Potentials 

We saw: Since V . B = 0 and “div curl = 0 ”, the field B can always be 
written as B = V x A. According to Faraday’s law we then have 

aB V x E = - -  at 
aA 

= -v x -, 
at 

so that E = -aA/at + something, whose curl is zero, i.e. 

aA E = -- - V$. 
at 

(7.13) 

This equation differs in the first term from the equation obtained in electro- 
statics. 

7.6 Displacement Current and Maxwell Equations 

We obtained above the following equation 

V x H = j .  

Taking the divergence of both sides, we have 

V . ( V x H ) = V . j .  

(7.14) 

The left side is always zero, since always “diw curl ” equals zero. But V j is 
not zero except in magnetostatics. Hence, here (this means not in magneto- 
statics, where dpldt  = 0) we have 

V . j + - = O ,  a P  
at 

or with 
V * D = p ,  

where D is the dielectric displacement, 

aD 
at 

V . j + V . -  = 0. 

Thus, Eq. (7.14) would have to be 

8D 
V x H = j +  -. 

at 
(7.15) 
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The expression on the right of this equation is called Maxwell current density 
and the term proportional to aD/at is called the density of Maxwell’s dis- 
placement current. This displacement current puzzled people considerably 
in the early days of Maxwell theory. A detailed discussion can be found in 
the book of O’Rahilly.$ On p. 89, O’Rahilly remarks: “In a f lash of mathe- 
matical insight he (Maxwell) saw, that the addition of an extra t e rm to  one 
of the electromagnetic equations would make a n  immense difference”. What 
irritated people at that time was that j can be clearly visualised as a current 
(density), but d D / a t ?  Pohl (cf. O’Rahilly, p. 100) writes in his book: “ B y  
the t e rm ‘displacement current’ we denote a n  alteration of the electric field 
in time, i.e. the appearance and disappearance of lines of force. The  t e rm 
‘current’ has n o  doubt been historically adopted f rom the analogy with water. 
I n  the conduction current atoms of electricity really do move or  flow. In the 
term ‘displacement current’ there remains n o  trace of the original meaning of 
the word ‘current’ . . . . W e  shall see later, however, that the idea of the dis- 
placement current reveals unsuspected relationships to  us and vastly extends 
our physical conceptions of the world. Here we shall content ourselves with 
mentioning that the light which reaches our eyes f rom any source is,  f rom 
the point of view of physics, nothing but a displacement current.” Citing 
J. J. Thomson, O’Rahilly (p. 101) says: “ W e  may cheerfully confess that it 
(i.e. the displacement current) was his (Maxwell’s) ‘greatest contribution to  
physics’, i. e. as an  analytical formula.” 

Today we are accustomed to the concept of fields already intuitively, so 
that the puzzles of long-ago lose their significance. In the book of Som- 
merfelds one reads correspondingly: “The vector field strength E i s  associ- 
ated with a second electric vector D. W e  call this electric ‘excitation’, but 
will frequently . . . adhere to  the c u s t o m a y  t e rm of ‘dielectric displacement’ 
(Maxwell’s ‘displacement 7 . . . . W e  assumed here the difference between con- 
ductor and nonconductor (dielectric) as being self-evident. I n  reality there i s  
no  perfect dielectric, since even the best nonconducting material can become 
weakly conducting as e.g. under the influence of cosmic radiation. Maxwell 
therefore augments the displacement current to  the total current C = D + j 
, . , . This  step of attributing equal importance to  D and j was a fundamentally 
new idea of Maxwell’s and was a crucial prerequisite in enabling a complete 
formulation of electrodynamical phenomena. Similarly f o r  a metallic conduc- 
tor he supplements the conduction current j by the addition of a hypothetical 
displacement current D, although the first i s  much more important than the 
second except in the case of rapidly changing fields.” 

$O’Rahilly [ 6 ] ,  Vol. 1, see pp. 95-101 and pp. 81-101, see also p. 232 
§Sommerfeld [l], pp. 8-9. 
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The displacement current aD/at is in general of importance only, 

dielectric, or 

of propagation of light through a metal. 

We have thus completed Maxwell’s equations. We summarise these now. 

(a) if j = 0, thus, for instance, in the case of propagation of light through a 

(b) in the case of high frequencies, when dD/dt cx frequency, e.g. in the case 

First in difjerential form. 

Maxwell’s equations in differential form are: 

V * D = p ,  
dB 
at 

V x E =  --, 

dD 
V x H = j +  -. 

at 
These are supplemented by the equation of continuity: 

a P  V - j  + - = 0, 
at 

and the generalised Lorentz-force per unit volume: 

F = pE + j x B. 

Maxwell’s equations are completed by the connecting relations: 

D = EOE + P, 
B = po(H + M). 

The matter equations apply to special cases 

D = E E ,  B = p H .  

The generalised Ohm’s law is the relation 

j = aE. 

Maxwell’s equations in integral form are: 

f D . dF = Q, 

L B - d F = O ,  

j . d F + z  / D.dF. f . dl = s, fixed F fixed 

(7.16) 

(7.17) 

(7.18) 

(7.19) 

(7.20) 

(7.21) 

(7.22) 
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The equation of continuity follows from 

(7.23) 

The main assumptions, we made in our historical and phenomenologi- 
cal approach in order to arrive at Maxwell's equations were the empirically 
discovered laws of Coulomb, Amp&re/Biot-Savart and Faraday (Coulomb in 
the case of electric charges, Amphe and Biot and Savart for magnetic fields 
of currents, and Faraday for the induced electromotive force). We also as- 
sumed, without saying so, that the equations obtained originally for static 
systems are also valid in the case of dynamic (i.e. time-dependent) systems. 

B R  

C 

B 

R 

Fig. 7.3 Variation of the induced B with radius T .  

Example 7.1: The displacement current in a condenser 
A parallel plate condenser consists of two circularly shaped parallel plates of radius R = 0.1 meter. 
The plates are charged such that the electric field E between them is subjected to a constant time 
variation d E / d t  = 1013 volt meter-'second-'. The following relations apply: B = p H ,  D = E E .  
(a) Calculate the displacement current between the plates of the condenser. 
(b) Determine the induced magnetic field B between the plates as a function of the distance from 
the centre of the cylindrically symmetric condenser in a direction parallel to  the plates. What is 
the value of B at  T = R? (Note: €0 = 8.9 x 
volt second/(ampere meter)). 

Solution: 
(a) The current I is given by I = 
the displacement current is dD/at ,  so that the displacement current itself is given by 

ampere second/(volt meter), po = 4n x 

j d F  ampere, where j is the current density. The density of 

O D  d E  - . dF = E O - T R ~  = 8.9 x lo-'' x 1013 x 3.14 x (0.1)* ampere = 2.8 ampere. 
I D = /  F=rrR2 at dt  

(b) We start with the AmpBre-Maxwell-law V x H = j + aD/& with conduction current density 
j = 0. Multiplying by po we obtain 

3E ~ o V  x H = V x B =poco- .  
at 
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We integrate this equation over a cross-sectional area and use Stokes’ theorem. Then 

For r 5 R, and C a circular path with radius r we obtain 

dE 1 dE 
B(27rr) = p o c o - ~ r ’ ,  dt or B = -poeor- 2 dt 

For r 2 R, on the other hand, we obtain, since the electric field is nonvanishing only between the 
plates (ignoring boundary effects), 

dE 1 R2dE 
dt 2 r dt 

B(27rr) = poeo-~R’, i.e. B = -poco- - .  

The variation of this induced magnetic field with r is shown in Fig. 7.3. 

1 dE 1 
2 dt 2 

BR = -poeoR- = - x 47r x lop7 x 8.9 x lo-’’ x 0.1 x 1013 = 5.6 x lop6 weber meter-’ 

Although the displacement current is comparatively large, the magnetic field is rather small. 

7.7 Poynting Vector and Conservation of Energy 

The work WO done by charges per unit time in the presence of an electro- 
magnetic field is the power 

dWo - d work 
dt - dt 

_ _ - ~  

= x ( f o r c e  acting on charge i) - (velocity of charge i) 
i 

= / v - ( p E + j x B ) d V .  (7.24) 

Since j = pv, we have v . j x B = 0. This implies (using D = EE, B = pH in 
the second-last step) 

= / d V ( E . V  x H - H . V  x E) 

- / ’ d V ( E . - - H . V x E )  aD 
at + 

Y 
8B 
at _ _  

= J d V V .  (E x H) - dV(E - D  + H . B) 
2 at 

= - / ( E x H ) . d F - -  a W  
at ’ (7.25) 
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where we assumed that D 0: E and B 0: H in time dependence. The vector 

s = E x H watt meterP2 (7.26) 

is called Poynting vector. The expression for W is the electromagnetic energy, 

W = L d V ( E . D  + H . B ) .  (7.27) 

We have therefore: 

(7.28) 
aW 

-- d V j . E = -  S * d F  -- 
dt at . - 

dF directed to outside 

work - I - 
Ohmic Power 

Thus the work done per unit  t ime is equal to  the loss of electromagnetic 
energy per unit t ime (aW/at) plus gain or  loss of energy through the walls 
of the system (J S . dF). It should be noted that only the integral over 
the Poynting vector is a measurable quantity, i.e. the integral over a closed 
surface, not the transport of energy through some part of the volume, since 
only the total energy is a conserved quantity. Furthermore one should note 
that the definition of the Poynting vector involves some arbitrariness because 
we can always add to S a vector T, whose divergence is zero, so that 

L T . d F = L ( F )  dVV . T = 0.  

In the case of the “ideal conductor” the conduction electrons do no work, 
i.e. 0 = 00 and so R = 0, and E = -Vq5 = 0, so that j = aE = finite, but 
J j 1 EdV = 0. (This is the reverse case to that of dielectrics, for which in 
the ideal case a = 0). 

In the case with resistance dWo/dt  # 0. In the “ideal conductor”, we 
have J j . EdV = 0, since there E = 0, i.e. 

which implies: energy transmitted through the walls per unit time = loss 
of electromagnetic energy per unit time. The (somewhat paradox) example 
usually given to the above is that of transport of energy in a conduction wire. 
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7.7.1 Application: The Conduction Wire 

The conduction wire we consider now is not made of ideal conductor material, 
since otherwise we would have to have V = I R  = 0. Thus the conduction 
electrons suffer resistance and hence perform work # 0. The diagram in 
Fig. 7.4 shows, that the electric field E here points in the direction of the 
current and the vector H to its right into the paper. 

9 $2 
I 

___c 
a 

$1 

-E 
H 

Fig. 7.4 The conduction wire. 

We can obtain the direction of the Poynting vector with the “thumb rule” 
(E along the index finger, H along the middle finger and so E x H parallel 
to the thumb), as indicated in the figure. We have in the wire: 

E = -V#, Etang continuous, 

and 

But Etangential  is continuous, a~ we saw. 
outside: E = V/d. On the other hand, from 

Hence also on the surface from 

dD 
at V x H =  j +  -, 

follows or (neglecting aD/dt) from 

H . d l =  j . d F = I ,  f J  
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that 
I H = - .  

27ra 

Since E I H ,  
V I  V I  
d 27ra 27rad‘ 

E x H = -- = - 

Thus the amount of energy transported into the wire per unit time is: 

27rad = IV - / ( E x H ) - d F = -  IV 
2 ~ a d  

= the amount of energy, that the wire loses per unit time in the form of heat. 
We see therefore: Energy is radiated away, but at the same time absorbed, 
in such a way that the current is  kept constant (this latter point is not always 
given sufficient emphasis, and then makes the problem appear paradoxical). 

The fields E and H are a consequence of the current I or the potential 
difference V ;  it is not  possible to have I and V without E and H ,  or the 
converse. It is thus a question of one’s point of view whether one says, the 
power -IV or the energy transported per unit time IV are a consequence 
of I and V or a consequence of the fields E and H. The easiest way to 
understand this problem is probably as an example of the conservation of 
energy. For a fixed current I and thus in a static case (awlat = 0) the loss 
of energy as a result of the resistance R is compensated by radiation into the 
conductor, i.e. 

S . ( -dF) = IV = I (4l  - 4 2 ) .  s 
We can see this equivalence as follows: 

l2 E .  jdV = - j . V4dV = - 1 2 j .  ( e .g . ; i . )  s d V  

7.7.2 The Field Momentum Density 

Let a volume V be given with charge distribution (i.e. density) p. The force 
that the field exerts on the charges, is the external force in Newton’s equation 



166 CHAPTER 7. THE MAXWELL EQUATIONS 

for the charged particle, i.e. 

d (mechanical momentum) 
d t  

= external force 

= / [ E V . D + ( V x H - -  ”> at x B  1 dV 

+ [EV D + H v  +(V x H) x B + (V x E) x D]dV. + 
8B _ _  0 
at 

J 
It can be shown that the remaining terms can be combined in the following 
way: 

d(mechanica1 momentum) } = -: /(D x B)jdv + J KZjW a 
d t  

j 

where 
1 
2 

Tij = (DiEj + BiHj)  - Sij-(D * E + B . H). 

This expression is equal to Tji for D = E E , B  = p H .  The expression Tij is 
called Maxwell stress tensor. In a self-evident way we have (on application 
of Gauss’ divergence theorem) 

(7.29) d 
-(pmech + pfield ) j  - J T,j(dF)i = 0. 
dt  F 

The term on the right represents the flow of momentum through the surface 
F .  If this surface is shifted to infinity, so that the term on the right is zero, 
we have 

P + pfield = constant, 

where Pfield = J d V p f i e l d ,  pfield = D x B = volume density of the field 
momentum Pfield. This is the law of conservation of momen tum in elec- 
trodynamics. Note that the field momentum density is not given by the 
Poynting vector! The expression 

Kj = T,j(dF)i 
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is the j-component of a force acting on the area dF. 
force/area, we see that 

Since pressure = 

K . n .  
dF 
-33 = - Tij ni nj 

(ni: i-component of the unit vector) is the pressure of the radiation, i.e. 
the radiation pressure. The tails of comets are observed to point away from 
the sun; this is a consequence of the pressure of the radiation from the 
sun. We have here really been considering the microscopic field momentum. 
Considerations of the macroscopic bulk field momentum lead to difficulties 
which are pointed out in Jackson [3] and discussed in more detail in literature 
cited there. 

Example 7.2: Separating a charge-anticharge pair 
A charge q, originally together with a charge -q  at rest at  some point, is moved away from the 
charge -4. Show that the mechanical momentum pmech of the charge q is exactly cancelled by the 
field momentum. 

Solution: The Lorentz force acting on a charge q in a flux density B (due to some current or 
moving charge) is F, = qv x B. We give the charge q a mechanical momentum pmech by pulling it 
away from -q with a force equal and opposite to  that of the Lorentz force. The charge -9, moving 
relatively in the opposite direction, provides the flux density B. In fact from the Biot-Savart law 
we see that the fields B generated by the motion of the two opposite charges moving in opposite 
directions are opposite, i.e. B ,  = -B-,. In moving the charge it generates field momentum which 
has to  be such that the total momentum is conserved, i.e. equal to that initially, i.e. zero. Thus 
from F, and Newton’s equation (v = d x / d t )  

pmech = d x  x B-,. 
-q J 

From the Gauss law we obtain, now with only the one charge q to  be considered, q = s D . d a  = 
J Q d a l ,  so that with dx,dal = b,ldV for element of area d a ,  we have 

Hence pmech +Pfield = 0. The components of the field momentum perpendicular to  the line joining 
the charges cancel and leave only the component along that line. 

7.8 Further Examples 

Example 7.3: The variable conductor loop 
A rectangular current loop with constant width y = b consists of three fixed conducting rods and 
one movable conducting rod which allows to  change the length 2 of the loop. This movable rod 
is moved with constant velocity v in the direction of length of the rectangular loop (i.e. in the 
direction of positive x ) .  The time-dependent field of induction B = e,Bo coswt acts in the overall 
space perpendicular to  the plane of the loop. 
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(a) Calculate the total induced electromotive force V in the loop. 
(b) What is obtained for V, if the movable conducting rod is held fixed at a distance z from the 
opposite side of the rectangle, but the entire current loop moves with velocity v = ve,? 

Solution: 
(a) We have here a case, in which the area of the loop, as well as the field B vary with time. The 
variations of both contribute to the induced potential V. We use Faraday's law 

i.e. 
V = i E . d l =  -- B . d F .  

If the area F to be integrated over varies with time, we have to differentiate with respect to time 
here. We assume first that B is constant with respect to time. (Here only so that we do not have 
to drag its time derivative all the way along!). We then have 

1 .fF(t+6t) ' dF - JF(t) ' dF 
6t 

B .  dF = lim 
d 

6t-0 

= lim -6 t - - - -  B.dF  
6t-0 " bt dF dt d F  J 1F(t,] 

(7.30) 
d F  

= x. 

V 

t 

Fig. 7.5 The conducting loop with movable rod. 

Including now also the time dependence of B, we have 

In the case of our example we have 
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We choose the area F to point in the direction of z, as indicated in Fig. 7.5 (F 11 e t ) .  The voltage 
V is given by: 

P I  

V = - B h  . (eY x e,) + 
d F  

and hence by 

V = -Bovbcoswt +wBobxsinwt 

= Bob{xwsinwt - vcoswt} 

= B o b d w s i n ( w t  - 6), (7.31) 

where 6 = tan-l(v/xw), i.e. cos6 = 
(b) We now assume, that the movable part of the rectangular loop is fixed to the other part of the 
loop (at position x) so that the area of the loop remains constant in time but the entire current 
loop moves with velocity v in the direction of e,. Then 

+ x2wz and correspondingly for sin6. 

(7.32) 

where v represents the velocity of the charges in B. But now (for v constant with V . B = 0) 

V x (B X V)  = (V V)B - (B . V)V + B(V . V) - V( V . B) = (V . V)B 

For given B = Be,, we have V B ,  = 0. Although we know that this contribution vanishes, we 
drag it along, so that: 

- dB (V x B) . dl. _ -  J’F(C) at ‘ dF + h ( F )  
(7.33) 

In our case 

v x B = vBe, x e, = vBey,  

(v x B) . dl = vB e y .  dl = vB(b - b) = 0 
fC(W f 

(since the field B is constant, it has the same value along b as along -b; for this reason these 
contributions cancel). As expected, also the contribution of v x B is zero, and 

This means, the induced potential is independent of the velocity. This is, what one expects, because 
in the rest frame of the conductor one observes - in the case of the constant field B - at every 
instant of time the same situation. 
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Fig. 7.6 The wire pendulum. 

Example 7.4: The wire pendulum 
A wire pendulum (of length R) oscillates with velocity x = wdcoswt, where d is the largest 
horizontal deflection of the pendulum as shown in Fig. 7.6. The constant magnetic field of B 
weber/meter2 points out of the plane of the pendulum. Determine the induced voltage V. 

Solution: We start with Faraday’s law 

d 
dt 

B .  d F  = -[B x area(t)] 

d 
dt 

= -[B(constant area + varying area)]. 

Set sin6 = x/R, sin62 = d/R, so that 

sin6 x dsin6 dsinwt - 
d ,  

4 4  = - = - 
sin62 sine2 

The variable part of the area is then 21 iRx(t) .  It follows that the requested voltage V is 

Example 7.5: The revolving coil 
In Example 6.3 the field in the gap of a circularly shaped electromagnet was calculated. A small 
circularly shaped coil of radius b and n turns revolves fully within the gap of the electromagnet 
with angular velocity w about a diameter perpendicular to  the magnetic field which is assumed to 
be homogeneous. R is the resistance and L the self-inductance of the coil. Formulate an equation 
from which the current induced in the coil can be calculated. 

Solution: We begin with Faraday’s law, 

bB 
at V x E = 

The induced voltage Vi is 
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Fig. 7.7 The revolving coil. 

The induced flux is q5 = s B d F ,  i.e. V, = -dd/d t .  The inductances Lk. of the circuit are defined 
by I#Jk = c, Lk.,IJ (cf. Chapter 8 ) .  Here we have two circuits - the one of the coil, as well as 
another one which is responsible for the varying flux through the area of the coil, i.e. 

4 =  - L I  + 4 .  
v 

sclf-induction part the varying flux 

Here 4 = nB x projection of area F of one turn of the coil perpendicular to the magnetic field. 
Since 

0 

we have 

In other words, 

I R = - L I - - .  
dt 

d 4  I R  + LI = - -, 
dt 

where 4 = nBFsinwt,  with B the field through area F and F = n b 2 ,  as indicated in Fig. 7.7.  

Example 7.6: The rectangular conductor loop 
A magnetic field varying with time is given by the following expression: B = eyBo cos wt ,  with Bo 
constant. Determine the voltage induced in a rectangular conductor loop in the (z, 2)-plane with 
side lengths a in the direction of x, and b in the direction of 2. 

Solution: Let the unit vector ey point into the paper. Then the magnetic flux into the paper is 

9= B . d F =  B o  cos w t e y  . d x d z e y ,  
b s LOLO 

i.e. 9 = abBo cos wt.  The induced voltage is therefore 

V = f c E . d l =  --9 d 
dt 
d 
dt 

= - - [ B o ~ b  cos wt]  

= abB,w sin wt.  
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q o A  A A A A 

L 

Fig. 7.8 The rails of the trolley with induced circuit. 

Example 7.7: The metal trolley1 
A metal trolley (mass m) is placed on two parallel, circular, conducting rails (a distance of L 
meters apart), as indicated in Fig. 7.8. A uniform magnetic field Bo points vertically out of the 
plane. With a rocket engine the trolley is given a constant thrust (i.e. force) Fo. The resistance 
between the rails is R. Determine the voltage V induced in the circuit linking the trolley with the 
resistance, and discuss its time dependence (Hint: It is advisable to start from Ampkre’s law of 
force). 

Solution: AmpBre’s law of force is 

F = I ds x B(r). J 
In the present case we need to know the forces on the right side of Newton’s equation which are 
responsible for the motion of the trolley, i.e. in 

We obtain the force Fapplied from Am+re’s law (see discussion after Eq. (5.18)) as BOIL, by 
considering the current element with resistance R between the rails and identifying ds with L. 
We obtain the current I from Faraday’s law or correspondingly from the formula for the induced 
potential difference, 

V BovL V =  f (ds x g) . B  = BoLv, i.e. I = - = - 
R R ’  

so that 
dv B; L~~ dv B;L2v 
dt R dt R 

or m- + - = Fo. m- = Fo - - 

This is an inhomogeneous differential equation of the first order which is readily solved (cf. 
Eq. (8.17)) with the initial condition v = 0 at time t = 0. One obtains after simple integra- 
tions the physically plausible result 

We see that in the course of time (t -+ 00) the velocity becomes constant. 

TSee also The Electromagnetic Problem Solver [21], Example 11-36, p. 621. 



Chapter 8 

Applications to Coils and 
Circuits 

8.1 Introductory Remarks 

In the following we consider circuits of currents, we define inductances L and 
consider coils and solenoids, and return to gauge transformations. Again 
examples are given. An important result will be that the product of self- 
inductance L and capacity C of a transmission line is equal to the product of 
dielectric constant and magnetic permeability of the surrounding medium. 
In Chapter 9 it will be shown that the latter product is, in fact, l / c2 ,  where 
c is the velocity of light. Thus the quantity 1 / m  represents the velocity 
of the electromagnetic wave travelling along the transmission line. 

8.2 Inductances Lij 

We assume that several current-carrying circuits are given. For each, say the 
k-th circuit, we have 

Here @ k  = JFk B . dF is the magnetic flux through the k-th conductor with 
enclosed area p k ,  and external or generator voltage V,. Equation (8.1) rep- 
resents a combination of the usual Ohm's law with Faraday's law. If now the 
current Ij in circuit j is varied with time, then the magnetic flux through cir- 
cuit k varies and hence according to the relation ( v n d u c d ) k  = - d @ k / a t  also 
the induced voltage ( T / n d u c e d ) k ,  and we can write (using the superposition 

173 
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principle, i.e. the summability of contributions of all circuits) 

where the coefficients of inductance, Lkj, are constants. Hence we can write 

or 
@ k ( t )  = x L k j I j ( t ) .  (8.3) 

j 

Thus we have, for instance, @a(Il)  = L2111. If the current I = I ( t )  varies 
with time t ,  also j and p must vary with t ,  i.e. 

ds  % dF(r) 
d t  

I ( t )  = j(r, t )  . dF(r) = / p(r, t )  J 
The equation of continuity must be preserved (in view of charge conserva- 
tion), i.e. 

We can obtain the relation (8.3) also as follows, thereby determining the 
coefficients Lkj. We have 

But, as we saw previously, the vector potential at a point r resulting from 
current densities j(r, t )  is given by the following expression: 

with j(r’, t)dr’ = I(t)ds(r’) = I(t)ds(r’), and dsi is the length of the current 
element at ri. Inserting this into the preceding expression, we obtain 

Obviously Lki = Lik. The coefficient L k k  is called the self-inductance of 
conductor Ic .  In its case, one has to take into account its cross section, since 
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otherwise the expression l/lrk - ril becomes problematic. Inserting Eq. (8.4) 
into Eq. (8.1), we obtain a relation of great importance for circuits: 

The coefficients L i k  for i # k are called mutual inductances. In the following 
examples we calculate inductances of both types, self-inductances and mutual 
inductances. 

8.3 Examples 

I 

Fig. 8.1 The coaxial cable: (a) transverse cross section, 
(b) longitudinal cross section, (c) view to direction of flux. 

Example 8.1: The solenoid 
Determine the self-inductance of a long solenoid 

Solution: We let the length of the solenoid be 1 and assume it has n turns per unit length, and 
cross-sectional area S. The current in the solenoid is taken to  be Z. The magnetic flwc through nl 
turns is nl times the flux through one turn and is = B . dF = poHSnl .  The magnetic field 
strength H is according to Example 5.6 H = nZ. Thus the self-inductance ,511 is given by 
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where H stands for henry, the unit in the MKSA-system of units, in which magnetic flux is given 
in weber (Wb). Evidently the condition for the existence of a nonvanishing inductance L is the 
existence of a nonvanishing flux cP. If the current carrying conductors are “thin”, i.e. of practically 
vanishing cross-sectional area, only the flux cP resulting from the turns of the conductor is of 
practical significance. On the other hand, if the conductor is not “thin”, i.e. “thick”, the flux 
through its cross-sectional area also has to be taken into account. This, of course, complicates the 
considerations. We therefore consider an example of this case. 

Example 8.2: Self-inductance of a coaxial cable 
Figure 8.1 shows the cross section through the cable with total current zero whose self-inductance 
is to be calculated (see also Example 8.5). 

Solution: (Important aspects of coaxial cables will be treated under the topic of Wave Guides and 
Resonators). We consider an element of the cable of unit length. The inner conductor carrying 
current Z is taken to have radius 7-1 and magnetic permeability p1. The outer conductor carrying 
current Z in the opposite direction is taken to be shell-like, i.e. thin, and of radius 7-2. The space 
in-between is filled with a substance of magnetic permeability p2. We have 

j . dF,  I = irrfj. 

We consider a circular path of radius r ,  r 5 r1, and apply the integral form of Ampbe’s law. Then 

i.e. the field is determined by this inner fraction of the current Z and is given by 

The lines of force of B ,  are circles around the axis of the cable, as indicated in Fig. 8.1 (recall that 
according to the Biot-Savart law d B  0; Ids x r).  The magnetic flux through the area of breadth 
dr and of unit length is 

6cP = B .  dF = p lHrdr  x 1 = -. 

We recall that in the case of a solenoid with (say) n turns per unit length, we calculate the flux 
through one turn carrying current Z and multiply by n to obtain the flux through n turns. In the 
present case we do not have multiples of I ,  but rather a fraction of I .  Thus instead of multiplying 
6cP by a number n representing a number of turns, we have to multiply 6 9  by the fraction 7rr2/7rrf, 

since the flux results only from this fraction of current. In order to understand this point better 
it may help to visualise the inner part of the cable as a section of a torus-like structure and to 
compare this with our treatment of the solenoid. The self-inductance of the inner part of the cable 
is therefore given by L1 = @ / I ,  where 

p1 Irdr  
27rrf 

We now consider a circle of radius r > 7-1: 

2irrHr = f H .  dl = / j .  dF = I ,  

i.e. 
Z 

2irr 
H r =  -. 
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The magnetic flux through an area of width dr and length 1 in the intermediate space (with no 
current) is therefore 

Hence 

and the total self-inductance per unit length is 

This result is derived by a different method in Example 8.5.  

Example 8.3: Self-inductance of a parallel wire cable of radius a 
Calculate the self-inductance of a pair of parallel wires of radius a and a distance d apart. Figure 8.2 
shows transverse and longitudinal cross sections through such a cable. 

Solution: The space between the two parallel wires is taken to have magnetic permeability p. 
The self-inductance is to be calculated. 

1 
0 

B 
A 

- r  

1 2 

m d  -r m d  

Fig. 8.2 The parallel wire cable. 

We imagine the two wires connected at infinity to form a closed circuit. We first calculate the 
field H, in a radial domain dr as indicated in Fig. 8.2. This field receives contributions from both 
wires. We saw above that the field H at a distance T from the centre of a wire is given by I/27rr. 
Thus the field pointing outward from the region between r and r + dr is 

Hr=-+- I I 
27rT 2 1 r ( d - r ) '  

Hence we have 
d--a 

B . dF = p l  



178 CHAPTER 8. APPLICATIONS 

The self-inductance L = @/Z is therefore given by 

d - a  L = In 
7r 

TO COILS AND CIRCUITS 

(8.6) 

per unit length. This result neglects the flux through the cross sections of the wires (assumed to 
be small). In Example 8.10 the result (8.6) is obtained by a different method. 

Example 8.4: Mutual inductance of one coil around another 
A coil having 722 turns per unit length and length 12 is wound around a long solenoid with nl turns 
per unit length, cross-sectional area 5’1 and current ZI. What is the mutual inductance LIZ?  

Solution: According to  Eq. (8.4) the flux @~(11) through circuit 2 as a consequence of the current 
11 in circuit 1 is given by 

It follows that 
Lzi = n i n z ~ o S i l z .  

This mutual inductance can be calculated from its definition and as such is independent of whether 
an induced current actually flows in the other circuit. See also discussion below. 

Consider, as in the preceding example, a coil of finite length wound 
around an infinitely long solenoid. In this case of the infinitely long in- 
ner solenoid, the field B is zero at all points of the coil wound around it. 
Can an observable current be induced in the outer coil? Since the field B 
is everywhere zero along the outer coil, there is no Lorentz force to produce 
the current. However, the vector potential A resulting from the current in 
the long solenoid does not vanish everywhere outside this solenoid (as will 
be shown below). The problem therefore requires a more detailed treatment 
and leads eventually to the so-called Aharonov-Bohm effect (see Chapter 19). 
We shall see that the effect of the vector potential around the long solenoid 
is a quantum mechanical phase effect which is observable only in appropriate 
interference experiments. We therefore investigate first the vector potential 
of a long solenoid. 

8.4 The Vector Potential of a Long Solenoid 

We consider a coil with coordinates as indicated in 
solenoid the field is B = (O,O,Bo), i.e. homogeneous 
obtain this expression with B = V x A for the vector 

Fig. 8.3. Inside the 
along the z-axis. We 
potential 

BO 1 
A = -(-y,s,O) = -B x r. 2 2 
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The vector potential A is therefore (a) proportional to T ,  and (b) perpen- 
dicular to the z-axis and to  r. In the case of the infinitely long solenoid the 
field B outside is zero. Does this mean that A is also zero? No! 

Z 

t 

Fig. 8.3 The long solenoid with fields Bo and A. 

We consider the path r of radius p > a in Fig. 8.3. The flux through the 
area with the circle r as boundary is 

so that 
@ = A-rEI = Bona2. 

Thus the field A along the path I? can be nonzero! We know the direction 
of A is that of the tangent to the path I’. This suggests taking for Aoutside 
the following ansatz: 

X 

because we know 
1 
2 Ainside = -BO(-Y, x ,o )*  

First we have to verify that Boutside = v x Aoutside = 0: 
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For instance for the x-component: 

a a X 
-(O) - - (-+ = 0. 
aY az 2 + y  

Similarly we obtain zero for the y-component. In the case of the z-component 
we require 

"(->+"(L) a y  x2+ y2 ax x2+ y2 

1 2x2 1 2Y2 
x2 + y2 (x2 + y2)2 2 2  + y2 ( 2 2  + y2)2 

2(x2 + y2) - 2x2 - 2y2 
(x2 + y2)2 

+------ ~- - - 

= 0, - - 

hence Boutside = 0. We determine the constant k such that Aoutside yields 
the correct magnetic flux, i.e. 

But now 

i.e. 

k 
p = (x2 + y2)1/2 and IAl = - 

P '  

Y 

t 

Fig. 8.4 The (5 ,  y)-plane with discontinuity along the negative x-axis. 
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is a unit vector parallel to A. Hence 

so that 

and 

k = -Boa 1 2  
2 

It should be noted that at r = a the field Ainside passes continuously over 
into Aoutside. We thus have a potential Aoutside # 0, where €3 = 0. Is this 
strange? Why is it that Aoutside does not vanish? Can we gauge it away, i.e. 
can we perform a gauge transformation so that the resulting vector potential 
vanishes? A suitable gauge transformation 

A -+ A' = A + V x  

seems to be one with the following function x:  

with 
4(x,y> = tan-' (5>, - Y = tan4.  

X 

The quantity 4 is the polar angle shown in Fig. 8.4. At x < 0, y > 0 we 
have t a n 4  < O , +  -, T. At x < 0, y < 0 we have t a n 4  > 0 , 4  + -T. The 
values of 4 on both sides of y = 0 , x  < 0 therefore differ by 2n. We put the 
cut as indicated in Fig. 8.4. The singularity at x = 0 with the cut along the 
negative semi-axis is described as a Dirac string. 

We now demonstrate that A' = 0, except along y = 0, x < 0. We have 

Y -~ 84- a -Y/X2 - 
ax ax 
84 a 1/x - 2 

aY aY 

- tan-' (s> = 1 + (y/x)2 - x2 + y2 ' 

- - tan-1 ( 5 )  = 1 + (y/x)2 - ,2 + y 2 '  

-- 

These expressions are very similar to A,, A,. The gauge transformation with 

1 2  X ( t , X , Y , 4  = --Boa 4(X,Y) 2 
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therefore leads to 

-2% 
A ’ = A + v x = -  

2 

Thus A has been “gauged away”, except where x is singular: In the half- 
plane y = 0,x < 0. This means that at y = 0 the function x possesses a 
discontinuity as indicated in Fig. 8.5. We recall that in the case of the 
function 8: dO(y)/dy = 6(y), so that for x < 0: 

x = f(x, Y)O(-Y) + d x ,  Y)O(Y)> f(x, 0) # s(x, 0). 

A 

Fig. 8.5 The discontinuity of x at y = 0. 

Hence 

v x =  (- ax - ax -) ax 
ax7 ay’  a2 

Thus the new gauge potential A’ = A + Vx has a singularity of the 

step 

type 
of a delta function in the y-component, and step function behaviour in the 
other components. It should be noted, however, that there is no necessity to 
resort to a singular gauge transformation! 

The observation of this effect, called the Aharonov-Bohm efSect, i.e. that 
an electron moving in a part of space where the field B is zero but the 
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vector potential is not, was achieved in quantum mechanical experiments. 
Older books do not cover this topic. For additional information we refer to 
Chapter 19 and to literature cited there. 

8.5 Energy of a Self-Inductance 

In many cases the self-inductance L can also be derived from the magnetic 
energy Wmag ,  in fact even more easily than otherwise. We have 

- loss of magnetic energy per unit time 
a W m a g  

at 
= energy in form of Joule heat per unit time 
= I v n  (vn = induced voltage) 

a@ = -I- 
at 
a 
at 

= -I-(LI) 

provided the conductor was not deformed. The following relation therefore 
follows: 

(8-8) 
1 
2 

w m a g  = - L I ~ .  

In the case of several circuits the magnetic energy is correspondingly 

1 1 
2 2 

= -L& + - L ~ I ;  + L ~ ~ I ~ I ~ ,  (8.9). 

if Ll2 = L21, L11 s L1, L22 = L2, etc. 

is given by 

Here dl is the virtual displacement* of a circuit for a fixed current or fixed 
magnetic flux. Correspondingly large mechanical forces Fmech are needed, in 
order to prevent an actual displacement (so that for the virtual displacement 

The magnetic force F, which gives rise to a change of magnetic energy, 

dWmag = -F * dl = V W  . dl. 

in statics -bW = F .61+ Fmech . 61mech = 0). 

*Discussions of  this can be found for example in Cheng [12] ,  p. 252. 
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Example 8.5: Self-inductance of the coaxial cable 
Derive the self-inductance of the coaxial cable defined in Example 8.2 from its magnetic energy. 

Solution: The expression for the magnetic energy is 

where (in the present case) dr = rdrdexunit length. We calculate separately the magnetic energy 
of the inner and outer parts of the cable. Using the notation of Example 8.2 and the fields calculated 
there, we have for the inner part from r = 0 to r = r1: 

Similarly we obtain for the part from r1 to  ‘ 2 :  

Comparing the sum of W1 and W2 with Eq. (8.9), i.e. 

1 
2 

w = - L P ,  

we obtain the result of Example 8.2, i.e. 

Example 8.6: Coaxial coils 
Two coaxial coils with respectively N1 and N2 turns and radii a1 and a2 carry currents I1 and 
I2 .  The distance separating their centres is z >> a l ,  a2. Determine the magnetic force between the 
coils. Reexpress the result in terms of the magnetic moments of the coils. 

Solution: We calculate first the vector potential A(r). We can calculate this in several ways. The 
quickest way is to  use Eq.(6.4), i.e. 

k’ = !!? m x r  
A(r) = k’- 

r3 ’ 4n’  

(where the moment m is located at  the origin, which has to be modified in our application here!) 
together with the expression for the magnetic moment as the product of current times area of the 
conducting loop. 

It is instructive to derive the expression from first principles, i.e. from the Biot-Savart law or 
correspondingly from the expression for the vector potential derived therefrom, i.e. 

We distinguish between the planes of the two coils or rather first between the plane of the coil 
with current I1 and a point P with position vector r on the circle with radius a2 = RsinB in 
the plane of conductor “2”, where R is the distance between the point P and the centre of the 
circular conductor “1” with radius a l ,  and B is the angle between R and the axis of the two circular 
conductors. The point P’(r’) at element ds of the circular conductor “1” has coordinates in the 
latter’s plane given by 

r” = e,rral cos +‘ + eY”al sin+’. 
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4 

185 

Then 

Fig. 8.6 Two coaxial coils. 

1 dr” 

d4’ 
ds = r”(#’ + d#’)  - r”(#‘) = d4‘-  = d# - e,,,al sin#‘ + eY“al cos#’ 

Using the cosine-theorem we have 

and (as may be deduced from the geometry) 

RcosG = RsinOcos(# - 4’). 

Observe that when # = 4’ the point P’ has the same angular position on the upper circle as the 
point P on the lower, and angle 4 is in that case the complement of 8, i.e. 6’ = 7r/2 - G. When 
4 # #’, the factor cos(# - 4’) provides the appropriate projection. Hence 

d4’(-ezt,u1 sin@ + e y / , a l  c o s v )  

J J R2 + a: - 2alRsin6’cos(d - 4’) 
A(r) = - 

With polar coordinates 4, p in the plane of conductor “1” and 

and choosing the angle 4 = 0, this becomes 

2rr d#‘(-al sin#’ep + a1 cos @e+) 
A ( r ) =  % 1 JR2 - 2a1 R sin 6’ cos #’ 
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Replacing 4’ by 4’ + 7r we obtain 

dq5’(al sin +’ep - a1 cos #e+) 

J R ~  +a: + 2alRsin8cosqh’ 
A(r) = - 

POI 2n dd’al cos &e+ - 
- -4.rr .I, JR2 + a: + 2al Rsin8cos 4’’  

For R2 >> a: this is 

1 a: + 2a1 R sin8 cos 4’ 
2R2 

A(r) N -- 
:TI~ R 

Since s,”“ cos2 8d8 = 7r, we have 

A(r) N -- ” I  7ra’ sinBe+ + O(l/R4).  
47r R2 

With a different expansion of the denominator (for R2 + a? >> a l R )  we can write 

1 PO I 2n a1 cos +’e+d4’ A(r) 2( -- 
4.n 1 (R2 +a:)l l2  

PO I 7ra: R sin Be+ 
47r (R2 + a:)3/2 

N -  - 

(8.10) 

(8.11) 

with p now in the plane of conductor “2” as in Fig. 8.7. 
We now return to our original problem. We assume the two coils to be arranged as depicted 

in Fig. 8.6. The electromagnetic vector potential A(r) at point P(r) due to the current I1 in the 
N1 turns of the first coil is given by N1 superpositions of the field of one turn, i.e. from Eq. (8.10) 

poll  Ta: . A(r) = N1- - sln Be+ 
47r R2 

The magnetic flux +2 through one turn of the second coil is given by 

(8.12) 

(8.13) 

where dl2 = azd42 and we used sin8 = a2 /R  and R2 = z2 + a;. 
The mutual inductance L12 is given by 

Nz+z = LziIi ,  
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i.e. 

The interaction energy of the coils is given by 

w = - Ll2 I1 I2  + L2l I1 I2  N Ll2 I1 I2 .  
2 " 1 

/ 

Fig. 8.7 Obtaining A at r. 

Hence the magnetic force in the direction z is 

(8.14) 

where 
ml = N l I l n a : ,  m 2  = N z I z n a $  

are the magnetic moments of the coi1s.t 

Example 8.7:$ The solenoid of finite length 
Determine for a solenoid of finite length the radial component of the magnetic induction near the 
centre of the solenoid and near the axis. 

Solution: In solving this problem we use the result of Eq. (8 .11)  obtained above for the vector 
potential A(r) at a point with position vector r due to current I in a circular conductor of radius 
a ,  as indicated in Fig. 8.7, i.e. (apart from a sign) 

PO I na2pe+ 
4n [ ( z  - z')2 + a2 + p2I3l2 

A(r) = - 

This is an approximation for large ( z  - z ' ) ~  + a 2 .  

(8.15) 

+Similar considerations can be found in P. C. Clemmow [13],  p. 154. 
tSee also Jackson [ 3 ] ,  problem 5.1, p. 205. 
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We consider a coil with N turns per unit length and of length L.  We imagine the current I 
as circling around the cylindrical surface of the coil. Per unit length of the coil the current is then 
NI .  The current in one slice of the solenoid of thickness dz' is Nldz ' .  This expression is to  be 
identified with I in Eq. (8.15), if we compare the circular conductor with an infinitesimal ring of 
the solenoid. We then sum (i.e. integrate) over all ring-like elements of the solenoid, in order to  
obtain the expression for the total vector potential at  the point r. Then 

dz'e4 

4.rr[(z - z ' ) ~  + a2 + p 2 I 3 l 2 .  
pONi!:azp A(r) = I"" poNIdz 'na2pe4 - - 

- ~ p  4n[(z - z ' ) ~  + a2 + p2I3/2 

From Tables of Integrals we have 

i.e 

This can be expanded as 

so that 

Thus 

or
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However, 
l a A ,  aA+ 

B(r) = V x A(r), B, = -- - x. 
P 84 

Hence in our case 

1 aA+ - a poNI7ra’p L ( L 2 / 4 + p 2  + a 2 )  + 3 L ( L ~ ) ~  
- -= - -% 47r(p2 + a 2 )  (22 + L2/4 + a2 + p 2 ) 3 / 2  8 ( z 2  + L2/4  + a2 + p 2 ) 5 / 2  

B -  

- - po _ _  3 2zN17ra2pL(L2/4 + p 2  + a 2 )  - -  po NIna2pg3zL3 

4 7 ~  2 ( p 2  + a2)(z2 + ~ 2 / 4  + a2 + p 2 ) 5 / 2  47r ( p 2  + a2)(z2 + L2/4 + a2 + p 2 ) 5 / *  

For p << a,  IzI << L this becomes 

po 96zNInp(L2/4 + a 2 )  
47r 

po 24NI7rpz - -~ 
L4 4n L2 

B, N - 

96zN17rpa2 24NI7rpz 
+ 

L4 

This result agrees with that stated by Jackson (see above). 

8.6 Simple Current Circuits 
8.6.1 Current Circuits with R and L 

In the case of a single circuit with resistance R and self-inductance L we 
obtain from the general equation established earlier, 

the relation 
d I  
d t  

RI+ L- = V. (8.16) 

We consider two possibilities: 
(1). V = Vo = const. In this case the solution of Eq. (8.16) is 

so that after a longer period of time the current I assumes the value of 
Ohm’s law. 

(2). V = Vo cos wt .  Here w = 27ru is the alternating voltage frequency. The 
current is the real part of the solution f of the equation 

df 
d t  

R I+  L- = VOeiWt. 
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so that 
RF + L(F  + iwt )  = Vo, 

i.e. 
L F  + ( R  + L i w ) F  = Vo. 

The general solution of the first order equation 

dY - + J ' y = Q  d x  

is 
y = e-SXPdx J d x Q e . f ' P d ~ .  

This can be verified by simple differentiation. Hence 

Consequently 
- Vo(R - i w L )  eiWt I =  

(w2L2 + R2) 

and 

I 

I = % ( I )  = vo 
w2L2 + R2 

[R cos wt  + W L  sin wt] 

cos(wt - S ) ,  - VO 
- 

dR2 + w2 L2 

with 
W L  

dR2 + w 2 L 2 '  
sin6 = 

R 
dR2 + w2L2 '  

cos 6 = 

(8.17) 

The effective "resistance " dR2 + w2L2 is called impedance, and W L  is called 
inductance or inductive resistance. 

We set
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8.6.2 Circuits with L , C  and R 

In this case the equation is 

I R  + LI = v + (VI - V,), 

where (Vl - V2) is the potential difference of the condenser in the circuit. 
(Note that the “current” from one condenser plate to the other is the dis- 
placement current). We saw earlier that 

4 d4 v, - v, = -, I = -. 
C d t  

Hence 

or 

I 
C 

Li‘ + RI = v - -, 

1 
C 

L I + R I + - I = V .  

We set V = VOeiWt. Then 

1 LI  + RI + -I = iwVoeiWt. 
C 

We also set I = Ioeiwt. Then 

I,( - w 2 ~ + i w ~ + -  = i w v 0 ,  
C ’> 

i.e. 
h e i W t  

1 , I =  R + i ( w L  - &). 
VO 

R + i (wL  - x) I ,  = 

For V = VO cos wt the real solution is similar to that in the previous case 

v, cos(wt - 6 )  

I =  @qzqp7 
where now 

1 1 
R w c  

tan6 = - (wL  - -) 

The expression l / w C  is called capacitive resistance. 
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8.7 Self-Inductances: Conjugate Function Method 

In Sec. 3.7 we saw how the capacities of essentially 2-dimensional systems 
can be calculated by the method of conjugate functions. Here we consider 
the corresponding steps to obtain self-inductances. We start from Eq. (5.28), 

and choose A along the z-direction with A ,  = 0, A,  = 0, A ,  = V. Then 

Then the magnetic energy in vacuum can be written 

W =  - d r H . B = - -  drlVVI2 
2 ‘I 2PO ‘s 

However 
v . (VVV) = (VV)2 + vv2v, 

and so with Gauss’ divergence theorem and neglecting the surface integral 
at infinity we obtain 

W = - -  drVV2V. 
2PO ‘s 

Using Eq. ( 5 . 3 5 ) ,  i.e. 

AA(r)  = -poj(r), and so A V  = -poj(r), 

we obtain 
W = - drj(r)V(r) .  

Assuming the wires are thin, so that the flux through them is negligible and 
hence V constant across them, we can write 

2 ‘s 

1 W = -V drj(r) = -VI 
2 ‘s 2 

and



8.7 Self-Inductances: Conjugate Function Method 193 

per wire and per unit length in z-direction. 
antiparallel currents I1 , I2, we have 

1 
2 

w = -I[V1 - VZ] = 

In the case of two wires with 

1 
2 
- I [ V ] .  

But, by definition of the inductance L ,  

1 
2 

w = - L I ~ .  

Hence 
L = - .  [Vl 

I 
Our next aim is to express I in terms of the conjugate function U defined as 
in Sec. 3.7. We recall Eq. (6.22): 

PO 

- - jg 
PO 

The direction of V U  is that of constant V .  Since for both wires 1111 = lI2l G 

I ,  [U] is also the same for both wires. Hence we obtain 

(8.18) 

per unit length in the z-direction. We now apply this result in some examples. 

Example 8.8: The parallel plate condenser 
Calculate the self-inductance by the method of conjugate functions. 

Solution: We let the plates be a distance d apart, i.e. d = [y]. We choose (cf. Sec. 3.7) 

W := U +- i V  = x + iy, i.e. U = x, V = y. 

Thus we obtain for the self-inductance 

per unit area perpendicular to this paper. Using the result of Example 3.9 for the capacity C, 
where k = 1/47rco, we observe that 
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Example 8.9: Coaxial cylinders 
Calculate the self-inductance of coaxial cylinders with radii a ,  b, a < b. 

Solution: As in Example 3.11 we choose 

w := v + i~ = In(reae), u = e, v = Inr. 

Then 

per unit length. The result should be compared with that of Example 8.2. Multiplying L by C of 
Example 3.11 we again obtain L C  = E O ~ O .  

Example 8.10: Parallel wires, a distance D apart 
Calculate the self-inductance of two parallel wires of radius a and a distance D apart. 

Solution: We can use the result of Example 3.12, 

1 
4k  cosh-'( g )  C =  

together with 

Thus 

L=po- ,  PI c=--. 1 [UI 
[UI 4 x k  [V] 

with L C  = POEO. Using cosh-' z = *[In(2z) + 0 ( l / z 2 ) ]  for z > 1, the self-inductance may be 
approximated as 

x 

This result should be compared with the result of Example 8.3. 



Chapter 9 

Electromagnetic Waves 

9.1 Introductory Remarks 

In the following we consider electromagnetic waves in vacuum and in media. 
This means, we first obtain the wave equations from Maxwell’s equations 
and then obtain the very important vacuum relation already referred to in 
Chapter 1, 

1 

which determines the velocity of the electromagnetic wave in the vacuum 
(or more generally in a medium) as the reciprocal of the square root of the 
product of dielectric constant and magnetic permeability. One should note 
the difference to the case of Chapter 8, where the velocity was that of the 
wave in a transmission cable. We then investigate solutions in vacuum and 
in conducting media, and in the latter case we encounter the important skin 
effect. 

9.2 Electromagnetic Waves in Vacuum 

In this case we have D = EOE, B = poH, j = 0, p = 0, since we consider first 
the case of electromagnetic waves without charges and currents (simply as a 
matter of simplicity we leave out the source terms here, considered to be far 
away). With these provisions we write down Maxwell’s equations: 

aE aB 
at at 

V X B = POCO-, V x E = --, V * E = 0, V * B = 0. (9.2) 

It is a general procedure to apply to the first two equations, which are L1curZ)) 
equations, the curl operator once again in order to reduce them to Laplace 

195 
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form. This is achieved with the help of the formula 

V x (V x B) = V(V . B) - AB.  (9.3) 

Applying this to the first equation and using the second, we obtain 

V x (V x B) = V(V . B) - AB 
a 

= I”o€o-&(V x E) 

a2 B 
at2 

- - -I-l0€0 -, 

i.e. 

or 

In the wave equation the parameter c obviously has the significance and 
dimension of the velocity of a wave of the field B.  In an analogous way we 
obtain from Eqs. (9.2) also OE = 0. Thus the fields E,B appear as waves 
propagating with the velocity c in vacuum. This velocity is independent of 
the source and depends only on E O , ~ , ,  whose product connects electric and 
magnetic properties to the velocity of light (here in vacuum). We write* 

3 

0 = Cawp = C aC”gpvau 
p=O p,v=0,1,2,3 

with 
-1 0 0 
0 1 0  
0 0 1  
0 0 0  

a a. , zo = ct ,  gpv = - 
8% 

One can also write 
4 

0 = Ca’”ap,  x4 = ict .  
p= 1 

The differential operator 0 is called D’Alembert operator; this operator is 
the spacetime generalisation of the Laplace operator A. 

*The justification will be seen later in the context of the Special Theory of Relativity. 
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Solutions @ of equations El* = 0 are of the form e*i(k'rFwt) with k2 = 
w2/c2, since 

A wave for which 
f ( r ,  t)  = k . r - wt = const. 

is called a plane wave. In its case 

V f ( r , t )  = k, 

i.e. the wave vector k is orthogonal to the plane defined by f ( r , t )  = const. 
From k2 = w2/c2 we deduce that k = w / c  = 27r/X, X the wavelength. How- 
ever, for an arbitrary curve r = r ( t )  in the plane f ( r , t )  = const. one has 
k . r = w, i.e. k . v = w , v  = w/k for r 1 1  k, as we can choose. The vector 
k points in the direction of propagation of the wave. For electromagnetic 
waves in vacuum v = c. 

We now consider a general solution of the equation O E  = 0. We can 
write this 

E = Eolei(k.r-wt) + EoZe-i(k'r+wt) (9.5) 
("one time, several space directions"). We can restrict ourselves first to 

E = Eoei(k.r-wt) 

(or to E = Eo cos(k.r-wt), since only the real part has physical significance). 
We let the vector Eo be constant in space and time. Then 

i.e. we have the replacements 

--+ -iw. 
a V + ik, - 
a t  

We consider B in a similar way. Maxwell's equations then become 

k k x E =  x B = -%E, wB, } : . E L B , k  and B L E , k ,  

} :. E,B I k. 
k . E  = 0, 
k * B  = 0, 
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It follows that the electromagnetic waves in vacuum are transverse waves, 
i.e. that the fields E and B are perpendicular to the propagation vector, and 
in addition the fields are orthogonal to each other, as illustrated in Fig. 9.1. 
We infer from the first two of the four relations (9.6) by scalar multiplication 
by E and B the important (but not universally valid) consequence that 

1 -/El2 = /BI2 
C2 

E 

Fig. 9.1 The phase plane I vector of propagation. 

The vector Eo in the expression E = Eoei(k'r--wt) defines the direction of 
oscillation. If Eo is constant in time one says, the wave is linearly polarised. 
The transport of energy per unit area (cf. the Poynting vector) takes place 
in the direction of the propagation vector k cx E x B. 

We let €1 and €2 be unit vectors, called polarisation vectors, which span 
the plane orthogonal to k. Then, in a general case, 

with (i = 1,2) 

Since E I B, it suffices and is convenient, to consider the vector E as a 
representative of the entire wave. El, Ez have different phases, if we permit 
El ,  E2 to be complex, i.e. 
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Since only the relative phase is of interest, we can choose 81 = 0. If 82 = 0, 
the wave is said to be linearly polarised. In this case we have 

If 82 = cp # 0, one says the wave is elliptically polarised, 

E(r, t )  = E I E l e i ( k ' r - w t )  + E2E2ei(k.r-wt+~) 

A circularly polarised wave is obtained, if \Ell = lE21 and cp = f7r /2 ,  i.e. 

E(r,t) = I E l I ( E 1  f i ~ 2 ) e 2 ( ~ ' ~ - ~ ~ )  

tE2 fE2 

Fig. 9.2 Linear, circular and elliptic polarisation. 

(left and right polarised) or 

%E(r, t )  = IEl I E ~  cos(k . r - ~ t )  f I E ~ I E ~  sin(k . r - w t ) .  

For example, when k is parallel to the z-axis, €1 parallel to x, and €2 parallel 
to y, we have: 

In the case of the elliptically polarised wave IE1J # IEzl. These cases are 
illustrated in Fig. 9.2. 
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9.3 Electromagnetic Waves in Media 

We now consider the case of a homogeneous, infinitely extended, uncharged 
but conducting medium with medium parameters E ,  p and a current density 
j as source. In this case we have 

D = EE, B = pH, j = CJE, p = 0. 

The Maxwell equations in this case are 

dH aE 
at at 

V . E = O ,  V . H = O ,  V x E = - p - ,  V X H = E - + + E .  

It follows that: a V X ( V X E )  = - , u - V X H .  at v - 
V (V  . E) -V2E t3E C=+UE - 

0 

We thus obtain the following equation for E and analogously the correspond- 
ing equation for H, i.e. 

(9.7) 

These equations are also known as telegraph equations. In the case of di- 
electrics (0 = 0) they become: 

where 

We can see that c' is the phase velocity, i.e. w/@,  by setting E,H oc 
ei(k'r--wt), so that (A + k2)E,H = 0 with @' = w/c' = w e ,  and the 
phase velocity is w / k  = l/@. 

The refractive index n known from optics, is defined by 
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9.4 Frequency Dependence of E and cr 

At high frequencies of electromagnetic radiation the parameters ~ , p  and a 
become frequency dependent. When we introduced these parameters we were 
concerned with static fields. We therefore face the problem of determining 
their frequency dependence. We consider here only the two more important 
cases, i.e. those of E and 0, and take in most cases simply p - constant. 

9.4.1 The Generalised Dielectric Constant 

aE 
at 

V x H = E -  + a E  

implies 
V x H = -iEwE + aE = -iwqE. 

The quantity 
0 

W 
q = ~ + i -  

(9.10) 

(9.11) 

is called the generalised (complex) dielectric constant. Substituting now the 
Eqs. (9.10), (9.11) into the Maxwell equations, we obtain 

aE 
at 

V x H = E -  + a E  -+ k x H = -wvE, 

8H 
at 

V x E = -p- -+ k x E = w ~ H ,  

V . H = O - +  k * H = O ,  
V . E  = 0 -+ k * E = 0. 

Thus again we have H,E I k, and no longer /El = IHI. But 

It follows that 
2 k2H = w qpH = PEW 

We set

Then the Maxwell equation



202 CHAPTER 9. ELECTROMAGNETIC WAVES 

Provided H # 0 everywhere (hence the reference to infinitely extended media 
at the beginning) we have therefore 

k 2 = pew2(1+ i;) (9.12) 

This relation is called the dispersion relation of the conducting medium. We 
can solve it for k = Q + i p ,  where for conductivity CJ = 0: 

W 

C 
k = w & i = - n ,  

where n is the refractive index introduced earlier. As a generalised refractive 
index p one defines (instead of n = fi) the quantity 

A wave moving in the direction of IC contains the factor 

ei(lcz-wt) - ei(az-wt) -pz - e .  

Fig. 9.3 Damping of a wave in a conducting medium. 

Here p is of the order of CJ for small CJ. We see therefore that the wave in the 
conductor is damped, as indicated in Fig. 9.3. The distance Il/pI is termed 
the penetration depth or skin depth. 

In the next subsection we determine the frequency dependence of the 
conductivity CJ. The result will be inserted into Eq. (9.11) for the generalised 
dielectric constant. 

9.4.2 Frequency Dependence of CT 

The conductivity of metals has its explanation in the existence of free elec- 
trons. We assume we have n such electrons in a volume V, N = n/V. Then 
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Newton’s equation of motion for one such electron, say electron “k” with 
velocity v k ,  is ( e  = charge) 

where Ek is the field of the other electrons and [ is the frictional resistance 
of the lattice atoms. Hence 

(9.13) 
1 d 1 1 
- c m z ( e V k )  = - c e2Ek - -6 
‘ k  ‘ k  ‘ k  

e v k .  

so that 

We now define a mean current density by the expression (note the averaging 
over space, and the time dependence of the mean value!) 

(j(t))V := j ( r ,  t ) d V  

We also define a mean field strength E by 

1 

‘ k  

N E  := - C E k ,  

and obtain with Eq. (9.14), 

d 
d t  

m - ( j ( t ) )  = NEe2 - [ ( j ( t ) ) .  

In the following we write 
( j ( r , t ) )  - 4 t ) .  

4 2 

Then the equation is 

m- = NEe  - [ j .  
d t  

For j = const. we have 

(9.14) 

Ne2 j = a o E ,  i.e. a0 = -. t 

ButBtt
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The quantity a0 is called direct current conductivity. It follows that 
N e 2 / a o .  Setting 

= 

1 E  *- - .- - 
r m’ 

we see that r has the dimension of time and is interpreted as a mean time 
interval between successive collisions of the electron with the lattice, called 
the relaxation time. We thus obtain the equation 

dj 1. N e 2  
dt r m 
- + -J = -E. (9.15) 

Assuming E oc e-iwt, j oc e-iwt, we have 

1, N e 2  
r m 

- iw j  + -J = -E, 

i.e. 

with 

j = a ( w ) E  

N e 2 / m  - a(0) 
-iw+ 4 - 1 - i w r ’  

a ( w )  = 

where a(0) = U O .  For small frequencies w ,  we have a(0) = constant. U ( W )  is 
real also for w r  << 1, and almost purely imaginary for w r  >> 1 (this implies 
a phase difference of 7r/2 between j and d j l d t ,  or between j and E). 

We can now insert the expression for a ( w )  into Eq. (9.11) in order to 
obtain the complete frequency dependence of the generalised dielectric con- 
stant, i.e. 

r ] = E + z - .  . a ( 4  (9.16) 

Fields which are called “high frequency fields” in practice are those for which 
W 

w r  << 1, w << 117, 
where 1/r is large in the case of strong damping. Thus the term “high 
frequency” used in practice does not correspond to the limiting case of w + 
00. In the case w r  << 1 we have a real, so that damping occurs. This is the 
reason why these so-called “high frequency fields” hardly penetrate into a 
conductor. In general, however, E and a are frequency dependent. 

We consider now the ratio of displacement current to  conduction current, 
i.e. that of their densities 

- aD/at  - d E / a t  - - 
j U E  aE ’ 
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For E = EOeiWt one has u N 5.8 x lo7 0-l per meter (or older: mhos per 
meter). This is such a high value that for all frequencies in ordinary circuits 
l j d / j l  < 1%. We look at this relationship more closely. We define the plasma 
frequency wp by 

Ne2 
Em 

w; = -. 

Then 

44 Ne2 1 
1 q(w) = € + z -  = E +  i- 

W mw -iw + 
= €[l+ iW$ 

w(-iw + $) 

W e  consider the case wr >> 1. 
In this case 

We distinguish between two subsidiary cases: 

(a) w << wp: 
q(w) N - E z .  4 

The index of refraction 
WP p = c f i  N i c m -  

is in this case pure imaginary. In order to obtain the penetration depth we 
have to calculate 

W 

i.e. the penetration depth 

is independent of the frequency. 
The conductivity is 

Ne2 / m  - N e 2 r / m  
a(w) = -iw + + - -~WT + 1 

so that
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In the case under consideration ( w r  >> l ) ,  we have 

N e 2 / m  N e 2  
-2wr m w  

a ( w )  N = i-. 

The factor “2’ implies, that j and E of 

j = a ( w ) E  

have a phase difference of 7r/2. Since r does not appear here, we would have 
obtained this case also without the friction term in the equation for j ,  i.e. 
from 

Ne2 - _  dj - -E. 
dt  m 

Thus this case is normally not applicable to rigid bodies or metals (these 
possess an atomic lattice which gives rise to the friction term). The case 
finds application, however, for instance in the case of ions (charge e )  in the 
stratosphere. 

(b) w >> u p :  
In this case 

and 

is positive, so that 

is real. With &i = 1 / d 2  this relation can be written 

2 12 2 2 k c  = W  - w p .  

This means, there is no damping. On the other hand, again 

.Ne2 .ew$ 1 
a ( w )  = 2- = 2- ;’ m w  W 

so that 

(9.17) 

j = a ( w ) E  N 0 for w > > u p .  

is real. Hence
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Then there is practically no conduction current. Since the resistance of the 
lattice is practically zero (no damping) (1/r << w, hence 1/r negligible), the 
explanation has to be found in the conduction electrons - one can say, at 
high frequencies w they acquire “inertia”, so that j -+ O . t  Thus fields called 
“high frequency fields” in practice are not those with w >> w p  and w r  >> 1, 
but those for which w r  << 1. In the latter case u - is real, and damping 
occurs. We see therefore: For w r  << 1 there is little dissipation of energy in 
the metal (the wave is almost completely reflected), and only for w > w p  one 
has transmission and little reflection. 

9.5 The (Normal) Skin Effect 

Let electromagnetic radiation with frequency w/2n fall in the direction of z 
on an uncharged metal of conductivity u and magnetic permeability p. We 
assume the time dependence of the fields to be given by E ,H 0: eiwt. The 
relevant Maxwell equations together with 

j = uE 

are then (neglecting the displacement current), 

aH 
(2) V x E = -p- at (1) V x H = j, 

(3) V * H = 0, (4) V . E  = 0. 

Taking the curl of Eq. (2) we obtain 

a 
at - V x (V x E) = V(V . E) - AE = -p- (V x H), 

.i 

i.e. 
aj Aj = pu-. at 

Since j 0: eiwt, it follows that 

2. 2 Aj = y  J, y = i w p u  

with - - 
(9.18) 

+See the discussion in Greiner [4], p. 300: For w -+ 03 metals become “transparent”, i.e. the 
metal behaves like a dielectric permitting the transmission of radiation. 
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For 
j(x,  t )  = eiUtj(x) 

we therefore have ( j o  = j ( 0 ) ) :  

For obvious physical reasons we have to choose the damped solution. The 
expression l / X  is called penetration or skin depth. 



Chapter 10 

Moving Charges in Vacuum 

10.1 Introductory Remarks 

In the following we study moving charges in a vacuum, i.e. we consider the 
Maxwell equations with nonvanishing charge density (hence also with nonva- 
nishing current density). We investigate the solutions of the wave equations 
and thus obtain potentials and fields. Finally we consider the radiation of an 
oscillating dipole (consisting of two charges). In particular we shall see that 
accelerations of charges produce the dominant field contributions at large 
distances (called “radiation fields”) and that these are mutually orthogonal. 
These considerations are of eminent importance for an understanding of elec- 
trodynamical phenomena, also because the dipole is often referred to as a 
kind of idealised classical model of an atom and thus offers the explanation 
why this picture is wrong - the dipole radiates off energy and exhausts itself 
therewith. 

10.2 Maxwell’s Equations for Moving Charges 

Here D = EOE, B = poH, so that Maxwell’s equations become 

1 
€0 

V.E=--p(r , t ) ,  V . H = O  

and 

and 

aH a 
at at V x E = - P O -  = --(PoH) 

dE 
V x H = j(r , t)  + €0-. 

at 

(10.1) 

(10.2) 

209 
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Expressing B in terms of the vector potential A, we have 

poH = V x A 

and from Eq. (10.1) we have 

aA 
at 

V x E =  -V x -, 

i.e. 

as already familiar. With V . E = P / E O  we obtain 

and with Eq. (10.2) we obtain 

V( V. A) - AA 

Equation (10.3) reduces to 

(10.3) 

(10.4) 

(10.5) 

and Eq. (10.4) to 

where poco = l/c2. 
We have seen earlier that the observable fields E and H are independent 

of the particular choice or gauge of the vector potential. Previously, however, 
we encountered the transformation from one gauge potential to another only 
in the context of electrostatics and magnetostatics (see, however, Sec. 7.5). 
If the fields depend also on time, the gauge transformations are given by 

ax A = A ’ + V x ,  +=+’--  
at 

(10.7) 

for arbitrary functions x. We apply these transformations to Eqs. (10.5) and 
(10.6) and obtain 

ax a 1 
at at €0 

-A(+’ - -) - -V . (A’ + OX) = -p, 

1 a2 
-A(A’ + VX) + s s ( A ’  + OX) 

+V 
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i.e. 
- 

and 

(10.8) 

We observe: The terms in x cancel out, i.e. the equations are invariant 
under the gauge transformation. We also observe: For a special gauge, which 
means if we consider potentials (A’, 4‘) which satisfy the additionally chosen 
condition 

1 a# 
c2 at 

V. A’ + -- = 0, 

called Lorentz gauge, the equations simplify to 

‘ 1  0 4  = --p, CIA’= -poj. 
€0 

( 10.10) 

(10.11) 

In fact, that it is even necessary to demand a condition like the Lorentz 
gauge* can be seen by a more detailed investigation of the solutions of 
Eqs. (10.8), (10.9) and (10.11). In order to see that the gauge condition 
implies the transversality of the electromagnetic field, and instead of the 
four components of the potentials (A’, 4’) the independence of only two mu- 
tually orthogonal field components E and H, also requires further detailed 
considerati0n.t In the following we write (A’,#) again as (A,q5). Thus we 
have 

(10.12) 

1 a2 called Lorentz condition, and we have with 0 = A - 7w the equations 

1 
€0 

04 = --p, OA = -poj. (10.13) 

Example 10.1: Coulomb gauge 
Starting from Maxwell’s equations for moving charges in vacuum, derive the wave equations of the 
potentials 4, A in Coulomb gauge (V A = 0) and show that a transverse current is the source of 
the potential A. 

Solution: From the above we have the Eqs. (10.8) and (10.9), i.e. 
a 1 
at €0 

A4 +- -V. A = - - p ,  

*A different gauge, called Coulomb gauge, V. A = 0, is treated, for example, in Schwabl [16], 

‘See Chapter 18. 
p. 127. 
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and 
1 a2 

AA-- -A-V 
c2 at2 

With Coulomb gauge V . A = 0 and 0 = A - $((a2/at2), it  follows that 

1 
€0 

A4= - - p  , OA = -pojt, 

where (with D = coE) 

Together with Ampkre’s law V x B + AA = 0, we also have 

(this defines jtt). Hence 
@A 

jt = jtt + €0-. at2 

We construct the divergence of this with Coulomb gauge. The operator -iV applied to A 0: eik’= 
yields k, the propagation vector. Since 

V.jtt = V . ( V x  H) = 0 ,  

we have jtt I k, i.e. V .  jt = 0, which means jt is transverse. 

In order to be able to solve Eqs. (10.13) we need the appropriate Green’s 
function G(r, t ;  r’, t’), which is an inhomogeneous solution of 

OG(r, t ;  r’, t’) = S(r - r’)6(t - t’). ( 10.14) 

In the following Example 10.2 we calculate that particular Green’s function, 
which represents the propagation of a light signal or disturbance of some 
kind as a spherical wave spreading out with velocity c from r’ at time t’ to 
r at time t > t‘. This Green’s function which takes into account causality 
is called the retarded Green’s function, and the corresponding potentials are 
called the retarded potentials. According to the following Example 10.2 this 
retarded Green’s function is given by 

lr-r’l S ( t  - t‘ - 7) 
G(r, t ;  r’, t’) = - 

4rlr - r’l 

Hence 
G(r, t ;  r’, t’)p(r’, t’)dr’dt’, 

(10.15) 

(10.16) 
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implies 
Ir-r’I 

1 /P(r? - ,-I +(r, t )  = - / dr 
4lT€o Ir - rll 

Similarly one obtains 

(10.17) 

(10.18) 

Example 10.2: The retarded Green’s function 
Calculate the Green’s function G which takes into account causality, i.e. that  a cause must precede 
its effect. 

Solution: We have 
1 32 U = A - - -  
c2 at2 

and the Fourier representation of the 4-dimensional delta function, i.e. 

m 
S(r - r’)S(t - t’) = - 1 ,  h e i k . ( r - r ’ ) e - i w ( t - t ‘ )  

( z K ) 4  I-, ‘’I-, (10.19) 

The Fourier representation of the timedependent Green’s function can be written 

m h g ( k ,  w)e ik . ( r - r ’ ) e - iw( t - t ’ )  I-: dk I-, G(r, t ;  r’, t‘) = 

where the spectral function g(k,w) is still to be determined. First we have 

UG(r, t ;  r’, t’) = Im dk /-- h g ( k ,  w )  ($ - k2) e ik ’ ( r - r~)e - iw( t - t ’ ) .  (10.20) 
-W 

Inserting (10.19) and (10.20) into the equation for G, Eq. (10.14), and comparing coefficients, we 
obtain 

1 1 
(2X)4 k2 - 7 W 2  

g(k,w) = (10.21) 

and therefore 

m 
c2 e i [k . ( r - r ’ ) -w( t - t ’ ) ]  (10.22) 

1 -  
G(r, t ;  r’, t’) = - - 

(2x)4 /-, dk/-m &c2k2 - w2 

The integrand has simple poles at w = f c k .  The integration is performed with the help of Cauchy’s 
residue theorem, i.e. 

n 

f f(2)dz = 2Ri c R e S k f ( 2 ) .  

k=l 

The Green’s function represents an instantaneous and local disturbance or event or something 
similar which occurs at radius r’ at time t = t’ and propagates as a spherical wave with velocity 
c. A causality-preserving wave propagating forward in time must be such that 

G(r, t ;  r‘, t’) = 0 for t < t’. 

Thus for t > t‘ the function G represents a wave which spreads into the future. The singularities 
of g(k,w) are at w = f c k .  We now consider the plane of complex w with w = w1 + iwg, and try to  
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define the causal waves by a suitable choice of the integration contour in this plane. To ensure that 
G = 0 for t < t’, we have to circumvent the poles at w = f c k .  This can be achieved by displacing 
them by an infinitesimal amount ( -k ) ,  which means replacing in the above equation w by w + %, 
so that we write 

1 -  co e i [ k . ( r - r ’ ) - w ( t - t ’ ) ]  
G(r, t ;  r’, t’) = - - (10.23) 

(2T)4 lmdk./-,.lw k2 - (w+2c)2  . 

We consider first the integration with respect to  w ,  i.e. the integral 

The idea is, to  add to  the integral from -w to  +w the integral along the infinite semi-circle either 
in the upper or in the lower half-plane so that as a consequence of the displacement of the poles by 
-ZE, E > 0, the integral along this semi-circle falls off exponentially towards infinity and hence does 
not contribute. This means, for t - t’ > 0 we have to choose the semi-circle in the lower half-plane, 
and for t - t’ > 0 in the upper half-plane. Since we have two poles of the first order, we obtain two 
residues. We let the poles be w1 = ck - ic and wg = -ck - a€ ,  both in the lower half-plane. Their 
residues are the coefficients of the factors l / ( w  - w1) and l / ( w  - w g )  in the integrand. These are 
easily obtained as 

We thus obtain with Cauchy’s theorem 

+ ?, ick( t - t ‘ )  - ) - sin(ck(t - t’)) 
2k 

Hence we have thus far 

: t < t’, 
(10.24) -& JTw dkezk.(’-“)k-lsin(ck(t - t ’ ) )  : t > t’. G(r, t ;  r’, t’) = 

We still have to  perform the integration with respect t o  k. To this end we introduce spherical 
coordinates. Let 8 be the polar angle to  the vector r - r’ as z-axis. We then have 

dk = k2 sin8dkd8d4, k . (r - r’) = klr - r’I cos8. 

Inserting this into the expression for G we obtain 

G(r, t ;  r’, t’) = -- ./ d@Odkksin8sin(ck(t - t ’ ) )e ikcosBlr-r ’I .  
(27rI3 

Integration with respect to  q5 yields the factor 27r, and we have 

G(r, t ;  r’, t ’ )  = - cos 6 

The integral over 8 yields -2sin(klr - r‘l)/klr - r’l, so that 

G(r, t ;  r’, t’) = sin(k1r - r’l) sin(ck(t - t’))dk. 
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Now we use the relation 

K W 

c l  dksinAkcsinBkc= - - [ 6 ( A +  B )  -6(A - B ) ] ,  
2 

which can be verified by replacing the sines by exponentials and using the integral representation 
of the one-dimensional delta function. Thus G can be expressed as the sum of two delta function 
contributions, i.e. we obtain 

Since the argument of the second delta function is nowhere zero for t > t’ this cannot contribute 
to  G. We thus obtain 

(10.25) 

This Green’s function describes the effect at time t > t’ and at radius T > T’ of a delta function-like 
cause at  time t = t‘ and radius T = T’ propagating from the source with the velocity of light. 

10.3 The Lihnard-Wiechert Potentials of a Moving 
Point Charge 

Our aim is now to calculate the potentials $(r,t),A(r,t) for the case of 
a point charge moving with velocity v(t). The very important results we 
obtain are the so-called Liknard- Wiechert potentials. We expect, of course, 
to regain in the limit of vanishing velocity the well known static expressions 
we had before. 

We let ro(t) be the vector representing the path or trajectory of the point 
charge e and set 

v(t) = ro(t) 

for its velocity. The charge density can then be written 

and the current density 

j(r, t )  = p(r, t)v(t) = ev(t)6(r - ro(t)). (10.27) 

We consider first the scalar potential 4. Inserting into Eq. (10.17) the 
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expression for p, we obtain 

We define a time difference u by 

(10.28) 

so that 
n(t’) - v(t’) 

= I -  , n= 
r - ro(t‘) d u  - 

dt‘ C Ir - ro(t’)l 
and 

d u  
n(t’).v(t’) * dt’ = 

l -  c 

It follows that 

In a similar way we obtain 

(10.30) ev(t’)po/47r A ( r , t )  = 

i.e.

where
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These expressions, called Libnard- Wiechert potentials, are exact solutions of 
the above wave equations for a pointlike, charged particle moving along the 
trajectory ro(t’). For 

r - ro(t’) = r(t’) ( 10.31) 

the potential 4 is 

(10.32) 

i.e. 
considered as fixed and r = ro(t’) + r(t’). The expression 

Ir(t’)l = c(t - t’). One should note, that the vector r is here to be 

is called retarded time and is defined implicitly by this equation (eg. when 
r(t’) = vt’ + a we have t’ = t - (vt’ + a) /c ,  t - t’ = (a/. + v t / c ) / ( l  + v /c ) ) .  
If c were infinite (which is not  possible according to the theory of relativity), 
we would have t’ = t for r(t’) = finite. This means the radiation emitted 
by the charge would reach any other point in space instantaneously (which 
is nonsense). However, for c = finite, the radiation emitted by the charge 
reaches other points only with delay, or, as one says, with retarded time. 
This means the radiation (i.e. the fields) observed at the point r at time t 
was emitted by the charge at its earlier position t - t‘ seconds before. 

Analogously to Eq. (10.32) we obtain 

(10.33) 

These are the potentials at position r (or r(t’) away from ro(t’)) and at time 
t in the case of a point charge e .  One should observe our notation, in order 
not to confuse r and r(t’). In the following we apply these potentials to the 
oscillating electric dipole, called Hertz dipole, with dipole moment p(t). 

Example 10.3: Lorentz 4-form of the LiBnard-Wiechert potentials 
(This example assumes familiarity with Chapter 17). Let the components of ro(t’) be the coordi- 
nates of the charge e and the components of r those of an observation point with light vector (i.e. 
one with c2 = (distance)2/(time)2) U P  = (c(t - t’), r - ro(t’)) given by UPUP = 0. Verify that the 
LiBnard-Wiechert potentials can be combined into the 4-form 

e U P  A P  = -- 
4nQc ~ u u y  

where up is the 4-velocity defined (later) by Eq. (17.64), i.e. with components u o  = c / d m p 2 ,  ui = 
- v i / J 1  - p2, p2 = v2/c2. 
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Solution: Thelight vector is given by c2(t-t’)2-(r-ro(t’))2 = 0, i.e. c(t-t’)/d(r - ro(t’))2 = 1. 
Hence Eqs. (10.29) and (10.30) with (17.31) and eopoc2 = 1 yield the expression 

10.4 The Fields E ,B of a Moving Point Charge 

We obtain the fields E and B from the equations 

( 10.34) 
dA 
a t  ’ E = - V d - -  B = V x A .  

Thus we have to perform complicated differentiations. We start with E:  

Here t‘ = t - Ir - ro(t’)l/c, so that 

-, 

a a 
-1r at1 - ro(t’)l = 7 d w  a t  

= -v(t’) . n(t’), 

and hence 
1 - - atr 

n( t’) .v( t’) at (1 - 

(10.36) 

( 10.37) 
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Similarly (since Vlrl = r/r) 

- 
-v(t’).n(t’) 

and hence 

Moreover, with Eq. (10.36), 

(10.38) 

(10.39) 

Hence, with a(t’) = dv(t’)/dt’ and Eqs. (10.36) and (10.39), we obtain 

Now, 4 = +(r,t’(r)), so that 

(10.40) 
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Thus we obtain with (10.29) and (10.38) (as well as V(l / l r l )  = -n/r2) 
(skipping here two steps with rearrangements of terms): 

and with Eq. (10.40) 

(e/47’rto)[n(l - s) - n ( Y ) ( l  - y)] 
-Vd = n 

(10.41) 

Next we have to calculate dA/at. We have first with Eq. (10.30): 

and then with Eq. (10.40): 

(10.43) 
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Using Eq. (10.37), we have 

and hence 

I 2 1 - v ( t 0 4 t ’ )  

(epo/47r){ a(t’) - n(tl> x (a(t’) x T)} 
at 

Ir - ro(t > I  ( c 

+ . (10.44) 
Ir - ro(t’)l(l - 

With this we can calculate the electric field strength E, using also the relation 
c €()/Lo = 1: 2 

For later considerations we observe here, that n . E  = O(l/lr-ro12) and that 
because n x n = 0 

a(t’) - n(t’) x 1 n x E = - -  

(10.46) 
Our next step is to evaluate V x A for the calculation of B. First we 

observe that 
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Here 

In the following vector product the gradient acts on the expression in the 
denominator; writing out the components and performing the simple differ- 
entiation one obtains 

1 1 
Ir l r3 r2 

- --(r x v(t’)) = --(n x v(t’)). v x - -  v(t‘> 

Hence we obtain 

(10.48) 

We also require in Eq. (10.47) the differentiation of A with respect to t’, i.e. 

which we already have with Eq. (10.43), i.e. 

and finally (again skipping one intermediate rearrangement step) 

(10.50) 
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Using Eq. (10.47) we can now obtain the field B. With a rearrangement of 
terms we obtain 

(10.52) 

We now have at our disposal the desired expressions for the field strengths 
E and B at a point r for the case when the charge e moves with velocity v 
along its trajectory ro .  We see that for velocities considerably smaller than 
c the above expressions yield the nonrelativistic approximations 

which we recognise as the Coulomb and Biot-Savart laws. 
We also see, that both field strengths consist of two contributions - one 

decreasing like l/lrl with T + 00 and another decreasing like l/(rI2 with 
r -+ 00. Thus the dominant contributions are those of the first type. These 
contributions contain the acceleration a and are therefore referred to as radi- 
ation fields. Hence accelerated charges emit  electromagnetic radiation. Fur- 
thermore, one can convince oneself, that E and B are mutually orthogonal 
and that their moduli are equal. In the case of motion with vanishing accel- 
eration, the velocity is constant. This is the case of a charge in an inertial 
frame; in this case the fields transform in accordance with the transforma- 
tion from one inertial frame to another, these transformations being those of 
Lorentz transformations (see Chapter 17). 

Obviously the next quantity to evaluate is the Poynting vector S .  Taking 
into account Eq. (10.46) and the preceding remarks, we obtain 

(10.46) S = E X H  = E X  

E2 (E.n)E 
CPO CPO 

n -  - - - 

E2 
= --n + O(l/lr - rot3>. 

W O  
(10.54) 



224 CHAPTER 10. MOVING CHARGES IN VACUUM 

We deduce from the equation for E, i.e. Eq. (10.45), that for r large and 
velocities small compared to c 

We see that 

since a* a n  = 0 is the acceleration perpendicular to n, i.e. to the vector of the 
“direction of observation”, i.e. the direction to the point P, at which we want 
to know the value of the fields. These directions are indicated in Fig. 10.1. 
The modulus of the electric field strength at the point P is therefore given 
by the projection of a in the direction of observation, i.e. 

which is zero along n (i.e. for 6 = 0). 

0 

Fig. 10.1 The directions of a and S .  

For the modulus of the Poynting vector we obtain (using copoc2 = 1) 

(1 0.56) 

( 10.57) 

The total energy W radiated off per unit time at time t’, dW/d t ,  is obtained 
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by integrating over all angles at radius Ir - ro(t)l, i.e. the rate is 

2 e2a2 
3 4 7 ~ ~ 0 ~ ~  

watt , -~ - - 

where we put cos6 = z and evaluated the integral as 

(10.58) 

The final result, Eq. (10.58), is called Larmor formula in the case of radiation 
of a single charged particle.$ Since the main quantity appearing in this 
Larmor formula is the acceleration a ,  exercises or applications based on this 
formula generally require some acceleration. 

Example 10.4: Radiation emitted by a proton 
A proton (charge q)  is given a constant acceleration in a van de Graaff accelerator by a potential 
difference of 700 kilovolt. The acceleration region has a length of 3 meters. Calculate the ratio of 
the energy emitted by the proton to  its final kinetic energy, and derive with the help of the Larmor 
formula a relation between the emitted energy per unit time and the kinetic energy. 

Solution: The energy emitted by a charge q in time t is according to  Eq. (10.58) the energy 

Since w = at,  the length of the proton's runway to  achieve its constant acceleration a is s = a t2 /2  = 
wt/2, so that t = 2s/w, a = w/t = w2/2s, and a2 = (w2 /2s ) ( v / t ) ,  a2t = w3/2s, and hence 

qZw3 
47r€03C3S ' Uradiation = ~ 

The kinetic energy at  the end is (with M= mass of the proton, V the potential): 

Hence 

In MKSA-units: 
q = 1.6 x lo-'' coulomb, V = 7 x lo5 volt, 

c = 3 x 10' meter per second, M = 1.67 x 10-27C/(V m). 

Below another Larmor formula is obtained, but for dipole radiation. 
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It follows that 
Uradiation - 1,31 10-20, -- 

u k  

Thus this ratio is extremely small! 
Second part: uk = Mw2/2. Hence 

dv dw dt 
dx dx dt dx 

= Mu-  = M u - -  = M a .  

1 dUk ' a = - - .  
' '  M dx 

We insert this into the Larmor formula and find: 

This is trivial for a constant acceleration; otherwise of general significance. 

Example 10.5:s Model of bremsstrahlung 
As a simplified model of bremsstrahlung we consider the following scattering process. Electrons 
having velocity v are scattered off ions with charge Q. With the help of the Coulomb law (which 
supplies the acceleration!) and the Larmor formula derive an expression for the energy W per unit 
time emitted as bremsstrahlung (let N,  be the density of the electrons). 

Solution: Let m be the mass of the electrons. The acceleration a then follows from the Coulomb 
law as 

1 sQ a=---. 
4mo mr2 ' 

where r is the distance between the electron and the ion. 

I I 

Fig. 10.2 The impact parameter b. 

The Larmor formula for the radiation power P of a single charged particle is 

§See also G. Bekefi and A. H. Barrett, Electromagnetic Vibrations (Cambridge Mass., MIT 
Press, 1977), pp. 278-283. 



10.4 The Fields E,B of a Moving Point Charge 227 

2 4  With r2 = z2 + b 2 ,  z = vt the formula yields the expression P = (4*ro)3 3 r n 2 c 3 ( 4 y 2 2 + b 2 ) 2 .  Here 
is, as indicated in Fig.10.2, the so-called impact parameter  of the scattering process. In order to 
obtain the total energy emitted by one electron, we integrate over the time t of this electron and 
obtain 

1 2 q 4 ~ 2  m d t  w=-- 
( 4 ~ ~ 0 ) ~  3m2c3 I-, (v2t2 + b2)2  

(10.59) 

If Ne is the number of electrons per unit volume as given, their current is New. The entire energy 
emitted per unit time in the form of bremsstrahlung is therefore 

W 

2.rrbdb , 
0 + 

cylindrical element of area 

Pbrerns = 1 W N e U  

where bo is the smallest impact parameter. This result is incorrect only in the region of small 
impact parameters b, since for these the path of the electrons is not linear (in view of strong 
deflection close to the ion). With this approximation the result is 

1 2Neq4Q2n2 O0 db - 1 2 N e q 4 Q 2 . r r 2 1  
Pbrerns = - ( 4 ~ ~ 0 ) ~  3m2c3 - 3m2c3 bo' 

Example 10.6: Cyclotron radiation 
Derive an expression for the energy per unit time emitted by an electron which is circling in a 
homogeneous magnetic field (cyclotron radiation). 

Solution: An electron (charge q )  injected horizontally into a vertical magnetic field Bo performs 
circular orbits around the lines of force of this field. Even with constant circular velocity the 
electron experiences a centripetal acceleration and hence emits electromagnetic radiation. In the 
case of low energy electrons, one refers to this as cyclotron radiation, in the case of relativistic 
electrons as synchrotron radiation. Let v be the velocity of the electron on its circular orbit. The 
magnetic field subjects the electron to the Lorentz force q(v x Bo) resulting in an acceleration 
v2/R, where R is the radius of its circular orbit. Thus qvBo = mu2/R and hence R = mu/qBo. 
The acceleration is therefore 

qBo a = u-. 
m 

= wcR, so that The cyclotron frequency wc is defined by 

4BO 
wc = - rad/s 

m 

The acceleration is therefore a = VW,. Inserting this expression into the single particle Larmor 
formula (10.58), we obtain for the power (i.e. energy per unit time) emitted by the electron the 
result 

&;"2 
P, = - watt per electron. 

6ne0c3 

If the emitting substance contains Ne electrons per meter3, the power per meter3 is P = NePc, 
i.e. P = 6.21 x 10-20NeB~u W/m3, where u is the energy of the electron expressed in electron 
volts. 
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10.5 The Hertz Dipole 

We assume an arrangement of charges as depicted in Fig. 10.3. Our notation 
corresponds to that used earlier in this Chapter. 

P 

Fig. 10.3 The Hertz dipole. 

We assume that 
V 

C 
- << 1, r(t') = r - ro(t') N r; 

for T N large the latter seems a plausible approximation. We consider first 
the potentials and subsequently the field strengths. 

10.5.1 The Potentials 

By superposition of the potentials of the two charges +e, -e of the dipole at 
the points ro/2, -ro/2 we obtain from Eq. (10.33) for the vector potential 
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For large values of r one would naturally approximate this by 

(10.60) 

Here we content ourselves first with only this contribution, because - as we 
shall see - we then obtain H of the same order as E. In a similar manner we 
calculate with the help of Eq. (10.32) the scalar potential Cp of the dipo1e:T 

(10.61) 

Thus in this case the dominant contributions cancel out - which is different 
from the case of A(r, t) .  It is therefore necessary to examine the approxima- 
tions made in the denominator more carefully. 

On the other hand, for smaller values o f r  (2.e. o f O ( l / r 2 ) )  we expect the 
familiar expression for the potential of the static dipole, i.e. 

1 k=-. d . r  4=k- 
r3 ’ 4T€o 

We observe, however, that Cp does not supply this expression! This is due to 
the fact, that in deriving this expression, we replaced the factor 1/1r -ro(t’)l 
by 1/1r1 = 1 / r ,  i,e. )r - ro(t’)l N r. We therefore return to Eq. (10.32), i.e. 
to 

( 10.62) 

or 

the second step we also neglect contributions of O(lio/cln) for n 2 2. In
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Now 

But from the definition 
r - ro(t’) 

n =  
Ir - ro(t‘)l’ 

we obtain 

r = nlr - ro(t’)l + ro(t’) N n 

and hence 

Thus 

Ir - ro(t’)l N r - ro(t’) n + O ( I / r ) .  

Here the second term on the right (with the scalar product) was missing in 
the first approximation. We insert this expression now in 4, keeping in mind, 
that v(t’) = ro(t’). Then 

. (10.64) 
e 1 

N- - 

4 . 1 r E ~  [r - a 
not in first approx. 

Applying this general formula to the special charges of the dipole we have to 
take into account that the coordinates of the charges, i.e. ro(t’), have to be 

so that for
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replaced by &ro(t’)/2. With these changes we obtain instead of Eq. (10.61): 

(10.65) 

We therefore have the situation, that for r -+ 00 the second term (.: l/r) 
dominates, but for smaller r the first term (a 1/r2). One should note that 
on the whole the expansion corresponds to the multi-pole expansion, i.e. 
Coulomb contribution + dipole contribution +.  . . . 

10.5.2 The Field Strengths 

We obtain the field strengths E and H from the equations 

aA 
at 

(10.66) E = - - - V $ J ,  p o H = V x A .  

We evaluate first -V$J. For this we need 

r 
- ( r>= (- - - )J r 22 + y2 + 22 = -, a a a a  
dr a x ’  a y ’  az  

2 ar 3 dr 3r 
r5 ‘ 

Then 
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and 
dr(t’)  r - ro(t’) r 

N -  - - 
dr Ir -ro(t’)I - r ’  

Hence 

p . r  r 
c2r2 r 

P - p .  r (  - $) + -. - 

1 3 ( p .  r)r + (p . r)r p 
r5 $7-3 cr2 

This together with Eq. (10.60) and Eq. (10.66) yields 

3(p . r)r (p . r)r 3(r p)r 
c27-3 

- ‘1 (10.67) 
+ 7-5 r3 +- 

and 

p o H = V x A  
PO P(t -  f )  - por P(t - 5 )  = -v x - 
47r r 47r r dr  r 

so that 

In the so-called near field region, (i.e. for r - small), we have 

1 p x r  E -  [3(p*r)r  -’] H =  --. 
4T€o r5 r3 ’ 47r cr3 

( 10.68) 

(10.69) 

(10.70) 

However, in the so-called fur field region, (i.e. for r N large), we obtain 

(10.71) pop 1 ( p . r ) r  - 1 (p x r) x r 
41r r 47rq c2r3 47r€o 3 7 - 3  

E ?  _ _ _  +---- 

and 
1 p x r  H?-- 

41r cr2 ’ (10.72) 
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where 
P = P(t')lt,=t-ru,t-f' C 

Since EO = l/p0c2, we deduce from Eqs. (10.71) and (10.72), that in the far 
field region 

E I r,H.  

We see that in this region 

r . E  0; [(p x r) x r] . r  = (p x r) (r x r) = 0 

and 
r . H  cc (p x r) - r  = p . ( r  x r) = 0. 

It follows that r I E, H. Since also E I r, H, the vectors r, E, H define at 
large distances an orthogonal system. At large distances 

(10.73) 

Thus 

10.6 Current Element I d s  and Dipole Radiation 

We now consider the following. An element of current Ids of a conducting 
wire with alternating current I can be looked at as an electric dipole of length 
ds with charges f q  = fqoeiwt at its endpoints. Since 

P = qds, Po = qods, 

we can put formally (here dp = dqds) 

Then 
iwt p = qds = i w p  = iwpoe 

Only the real part is physically meaningful, so that 
, p = i w p  = iwIds. 

p + -wposinwt. 
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Thus in the far-away region11 (cf. Eq. (10.71)) 

(p x r) x r - iw( Ids  x r) x r E =  - 

Using the relations c = vX, w = 2nu, w = 27rc/X, we obtain 

E = 2  

4moc2r3 4 n ~ o  c2 r 

.2n( Ids  x r) x r 
4neoXcr3 

and similarly (cf. Eq. (10.72)) 

(10.74) 

(10.75) p x r iwIds x r 2nIds  x r 
4ncr2 47rCr2 X47~7-2 . 

H=-- - = i  

10.6.1 

The radiation emitted by Ids or p is therefore called dipole radiation. In 
propagating radially away from the dipole, the wave transports energy away. 
The power, i.e. the loss of energy per unit time, can be calculated with the 
help of the Poynting vector S. With Eq. (10.73) we obtain 

The Power of an Oscillating Dipole 

S = E x H watt/rneter2 
far region ( :> 
- - H x -  X H  

CEO 

- - 
CEO r CEO 

and hence 

- (p)'sin28 r 
( 4 ~ ) ~ ~ o c ~ r ~  F' - (10.76) 

We see that S points in the direction of r. The oscillating dipole does not emit 
radiation in the direction of its axis, but perpendicular to this maximally, i.e. 
in the equatorial plane, as indicated in Fig. 10.4. We now put, along the lines 
given above, 

2 p = -wpo sinwt, p = -w po cos wt 

[[Like previously p = p(t'), where t' = t - T/C,  but for reasons of simplicity we write simply 
p ( t ) ,  where t -+ t - T/C. 
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(actually here t + t - r / c ,  retarded time, but this is irrelevant here) and 
insert this in S. Then 

piw4 cos2 wt  sin2 0. "I = ~ o ( 4 n ) ~ c ~ r ~  
(10.77) 

Fig. 10.4 The radiating dipole. 

The average energy emitted per unit  t ime and unit area is obtained by 
calculating the average of cos2 wt  over one complete period of oscillation 
T = 2n /w ,  i.e. by considering on the one hand 

$ L T o s  2 wtdt  = cos 2 xdx = - 7 T 1  = -, 
21T 2 

but also (for a little later) 

1 
T 2 

On the other hand, we have to integrate IS1 over all directions of a sphere with 
radius r .  Hence the average energy emitted per unit time is (do  = d p  sin Ode) 

L = - ISlr2dR 
2 's 

(10.78) 
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Here we put z = COSO, so that dz = -sinOdO, (1 - z2 )dz  = -sin30d0. 
Moreover, J-,(l - z2)dz = [z - z3/3]L1 = 4/3, so that 1 

(10.79) 

This result is also known as a Larmor formula; we can call it the Larmor 
dipole formula, in order to distinguish it from the Larmor formula (10.58) 
which we obtained for a single charged particle. It implies that L oc p i ,  
i.e. proportional to the square of the amplitude PO, but also that L 0: w4, 
the fourth power of the frequency. Expression (10.79) should be compared 
with the Rayleigh-Jeans law in statistical mechanics, which gives the clas- 
sical limit of black body radiation.** The radiation emitted by atoms is of 
dipole-type; however, the classical picture of an atom as a dipole like the 
one discussed here, is - as we know - wrong (and in any case would not 
explain the stability of atoms). 

10.6.2 Radiation Resistance 

We saw that 
Ids = p = -wpo sin wt. 

lpowl = I I ~ ~ S I ,  or piw2 = ( 1 0 d s ) ~  
We now put 

We can say 

1 2 2 -  1 
w2p;sin2wtdt = -w po  - -Ii(ds)2, 

2 2 

i.e. I0 N f i x  mean current 1. Then 

(10.80) 

This is a body with absorption coefficient a(w) = 1 in the case of thermal equilibrium with 
its surroundings so that because of the densely lying levels, at every frequency per unit area and 
per unit time and per direction of polarisation the amount of energy absorbed is equal to the 
amount of energy emitted (1 - a(w) is the fraction of reflected energy). Note: The number n of 
photonic states in the wave number interval (n, n+dn) is (since there are 2 polarisation directions) 
n = 2V4.rrn2dtc. Since IE IX 1/X, it follows that n IX dX/X4. In the case of monochromatic radiation 
j” S(X - Xo)dX/X4 = I/$ cc wd. 

* *  
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This is to be compared with (see below) the Ohmic power of a resistance R, 
i.e. with 

L = I ~ R .  (10.81) 

This expression is obtained as follows. We saw earlier that (see Sec. 7.7): 
Loss of energy per unit volume and per unit time 

- ( E . D + H . B )  = V . ( E  x H ) + j . E .  

Integrating this over the volume and using Gauss' divergence theorem, 
we obtain 

Loss of energy per unit time 
= Transport of energy through the surface + Ohmic power. 

Hence the Ohmic power is (with j = a E ,  jdV  = I d s )  the volume integral of 
j . E, i.e. 

where R = ps /F .  We thus have the above expression for L. The quantity 
L/12 in Eq. (10.80) is therefore (by comparison with L = 12R) referred to 
as radiation resistance. The radiation resistance is a quantity which depends 
on the spatial dimensions of the radiator. 

10.7 Further Examples 

Example 10.7: Comparison of powers of rod and loop antennas 
With a very approximate calculation compare the power of a rod antenna with that of a loop 
antenna. 

Solution: We return to the far-field result for E given by Eq. (10.74), i.e. 

2.rr(Zldsl x r) x r E = i  
4 T € O X C T 3  ' 

(10.82) 

This expression gives the electric field strength at a distance r far from the current element I l d s l .  
The electromotive force and hence voltage induced in a conductor element ds2 at the point r is 
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,27r(lldsl x r) x r .  ds2 

27rZl(dsl x r) . (r x ds2) 
47reoXcr3 

v2 = 2 

= i  

47rcoxcr3 

(10.83) 

This expression is completely symmetric in dsl  and dsg; thus if ds2 were carrying current 11, then 
V2 would be the voltage induced in dsl .  

a closed 
antenna (in general with several turns). The induced electromotive force or voltage is 

The simplest way to  receive radio waves is with the help of a loop antenna, i.e. 

V = f  v E . d s = / V x E . d F =  J ( - g ) . d F .  
E of wave 

Let us assume B o( eiwt with angular frequency w ,  i.e. 

- = iwB. 
aB 
a t  

Then, if the area A of the loop is small, A N 12, so that B is approximately uniform over A (we 
assume: 1 << X << r )  and 

V = - '  t w B .  A. 

We attempt a very rough comparison of the power of the loop antenna with that of a rod antenna 
of length 1. In the case of the loop voop = -iwBA, 

if B 11 A (then maximal - we assume an optimal orientation of the antenna). In the case of the 
rod-antenna (see Eq. (10.73)) we have 

Thus the ratio is 
v o o p  wBA 

Since c = uX, u = w/27r, and so c = wX/27r, w = 27rc/X, it follows that 

v o o p  BA27rc 2 2 ~ A  27rA 
1x 1x 

for optimal reception. Now if A - 0(l2), the ratio is - 1 / X .  Since we assumed that the dimensions 
of the loop are very small compared with A, i.e. 1 << A, the rod is the better receiver in these 
considerations. In view of our earlier treatment of ring-shaped conductors we can say, that the 
loop with oscillating current can also be looked at  as a magnetic dipole. 

Example 10.8: The Thomson scattering cross sectiontt 
A plane, monochromatic wave with electric vector 

E = e,Eo cos(wt - kz) 

++A cross section is a quantity with dimension of (length)2. The obvious possibility to  define 
this here can be seen from the definition of the Poynting vector as a quantity with dimension of 
(energy)( time) -1 (length)-'. 
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(where ex is a unit vector in the direction of x) falls on a free electron (charge q, mass m) at the 
origin of coordinates. Calculate: 
(a) the radiation power P of a single electron, 
(b) the mean radiation power ( P )  of such an electron (averaged over one period of oscillation), 
(c) the rate of incoming radiation S, 
(d) the mean rate of incoming radiation (S,), and 
(e) show that in vacuum ( P )  = a(S,), where 

is the so-called Thomson scattering cross section 

Solution: We have Ex = Eocos(wt - kz). An electron with charge p at the origin z = 0 is 
therefore given an acceleration (in Newton's nonrelativistic treatment) given by the applied force 
divided by m,  

a, = - Eo cos wt 9 
m 

with solution x cx cos wt. so that 

The power radiated by a single electron is given by the single particle Larmor formula of Eq. (10.58) 
(see above, here still without the averaging) 

2q4 "g{ cos (ut - :)}'. 
Averaging over one period of oscillation T = 2 r / w  we obtain the mean value 

where 

i.e. 

( cos2 (,t - :) ) = ; lT cos2 (& - :) d t  = - 1 
2 '  

The rate at  which radiation (this is the given electric field) falls on the electron is obtained with 
the help of the Poynting vector, S = E x H. Since E + Exex = Eo cos(wt - Icz)e,, the Maxwell 
equations imply 

k x E  
Ic B = a-, k = ke , ,  

so that with B = p H  

B + B, = JEO/IEo cos(wt - kz), H ,  = @o cos(wt - kz). 

It follows that 

S -+ S, = -E;cos2(wt - kz). c 
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The time-averaged rate of incoming radiation is (with T = 2n/w) 

Hence 

so that 

where 

= 2 (x) JFL meter'. 
3 mc2 €0 4n€o 

This cross section is seen to be independent of the frequency w of the incident radiation. General- 
isations are considered in Examples 10.9 and 10.10. 

Example 10.9: The electron bound in an atom 
In Example 10.8 we considered the free electron. We now consider an electron bound in an atom 
subject to a binding force proportional to I but neglecting damping effects. The problem is to 
derive the new expression for the Thomson cross section. 

Solution: The equation of motion of the electron of Example 10.8 now has an additional term 
w;z representing the binding of the electron to an atom (harmonic oscillator models are always 
the easiest to construct!), 

d 2 x  
- +W;I = xEocos(wt). :.I = ___ ' I m  Eocoswt. dt2 m w; - w2 

Thus we obtain ( P )  = o(S,) with 

We see that (T is now a function of w. In the case of scattering of light off atoms and molecules in 
air wo >> w, and hence 

Blue light with xblue = 3900a << Xred = 7600A is therefore scattered much more than red light, 
because: 

1 
x c = ux, w = 2xu, :. w 0: -. 

The scattering off fwe electrons is (see Example 10.8) independent of the frequency. As a conse- 
quence the light scattered by the corona of the sun is white. 

Example 10.10: Line broadening 
(a) Calculate (Wo), the work done by the force Ex of Example 10.8 applied to an electron averaged 
over one period of oscillation T .  What is the meaning of the result? 
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(b) Add acoswt to the velocity of the electron, calculate the power (Wo)/T, which is the power 
of radiated energy. What is the corrected equation of motion of the electron? 
(c )  How does the loss of radiated energy become evident? 

Solution: 
(a) We have 

nEo 
mx = qE0 coswt = Fapplied, x = - sinwt. 

w 
(10.84) 

Hence the work done is Wo: 

and 

q2E02 JT qEo . T 
(wo) Fapplied- sin(wt)dt = - cos(wt) sin(wt)dt = 0. 

T =$l 7m.d w T  o 

Thus the work done by the applied force is not equal to the radiated energy. Where does the 
radiated energy come from? Equation (10.84) must contain a term, i.e. a force, whose work does 
not average out to zero. 

,0 
0 1  0 2  

Fig. 10.5 Line broadening by radiation damping. 

(b) With addition of the extra term we have 

qEo . x = - sin wt + a cos wt,  
7m.d 

so that 

In Example 10.8 we calculated the mean power of the radiated energy: 

Hence 

2q3E0 cos(wt), 4Eo x = - sin(&) + 
mw 3m2c34mo 

(10.85) 

(10.86) 
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2q3 E ~ W  
m% = qEo cos(wt) - sin(wt), 

\---/ 3mc34neo 
papplied 

Fradiation 

where Fradiation is the radiative reaction. This equation is known as the Abraham-Lorentz equation 
of motion.  The ratio 

tan(wt) Fradiation 2q2w -- - 
Fapplied 3mc34X€o 

is in general very small. 
(c) The loss of radiated energy is due to a damping or “line broadening” (speaking spectroscopi- 
cally). Let us write the radiation reaction as a “friction force” proportional to velocity, i.e. we put 
the friction force = Fradiation, i.e. 

d x  2q3Eow 
dt  3mc34neo 

mp- sin(wt) (10.87) 

From Eq. (10.85) we obtain 

- d x  - @ sin(wt) + (something negligible) 
dt mu 

Inserting the latter into Eq. (10.87) we obtain 

Solving the equation 
m? + mpk + mu: = ~ E O  cos(wt), 

we find that the term mpk produces a damping factor exp(-Pt) (“radiation damping”) with the 
so-called line width p = A w  as indicated in Fig. 10.5, where 



Chapter 11 

The Laws of Optics 

11.1 Introductory Remarks 

With the realisation that light is nothing but electromagnetic radiation which 
reaches our eyes, it is clear that basic optical phenomena must also find 
their explanation in electrodynamics and hence in Maxwell’s equations. The 
subject of this chapter is therefore the derivation of the well known laws of 
reflection and refraction of optics from Maxwell’s equations. In subsequent 
chapters these will then be applied to metals, radio waves and wave guides.* 

11.2 Continuity Conditions and Definition of the 
Surface Current 

Our procedure will be to arrive at the laws of optics from a consideration of 
the behaviour of an electromagnetic wave at the interface between two me- 
dia. First, however, we recapitulate and summarise the essential continuity 
conditions and those of their validity for normal and tangential components 
of the fields, with indices (1) and (2) referring to two different media. 

(a) V . D = p. Here p is the density of the “true” charges. With this equation 
we have: 

k V . D d V =  D - d F =  pdV=Q.  (11.1) i“ s, 
In the case of the infinitesimal volume element of thickness d -+ 0 as shown 
in Fig. 11.1 we obtain from jFV D . dF (observe that in the limit d + 0 the 

*A recommendable text to supplement this chapter, particularly with regard to more practical 
aspects, is R. Guenther, Modern Optics (Wiley, 1990). 

243 
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quantity A F  is an element of area in the boundary surface) 

so that (see Fig. 11.1), 

In the case of the electric field strength E we now obtain ( Q p  being the 
polarisation charge with density p p )  with the equations (see Chapter 4) 

D = EEO + P, V . P = -pp, (11.4) 

the integrated expressions 

E . d F = -  ( D - P ) . d F  
€0 'f Fv 

= L / ( V - D - V . P ) d V  €0 v 

1 
€0 v €0 = / ( P  + pp)dV = -(Q + Q p ) .  (11.5) 

Hence at the interface 

Here a p  is the induced surface charge density. 

(b) V x E = -% (Faraday). Here we have in the case of a cross-sectional 
area F' with AF'  = 1 x d as in Fig. 11.1: 

Fig. 11.1 Elements of area and volume. 
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a a (V x E) d F  = B . d F  = --IBnlAF' at + 0, 

since AF' = Id + 0 with d --+ 0. Using the Stokes theorem we obtain 

L / ( V  x E) . dF = E . ds f 
= (E 1 s)(~) + (E . s ) ( ~ )  
- - (E(I) . 1) - (E(2) . 1) 

= ( E p  - Ei2))Z, (11.7) 

and with the preceding result 

d 

I + - 1 4  

Fig. 11.2 The element of area I to the interface. 

(c) V . B = 0. From this we obtain immediately 

V BdV = B * dF = 0, f (11.9) 

(11.10) 

(d) V x H = + j. If there are no surface currents K (see below), i.e. if 
j . dF = 0, then as under (b): 

Hi1) - Hi2) = 0, ( K  = 0). (11.1 1) 

so that
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The definition of the above surface current is given as follows. We con- 
sider the element of area d F  perpendicular to the interface between the two 
media as illustrated in Fig. 11.2. Then d F  is a vector in the plane of the 
interface. We now consider equation (d) integrated over this area, i.e. 

(V x H) . d F  = LF d F  . [ dt aD + j] . 
L F  

The first contribution on the right is 

a a 
-1DlAF = -1Dlld + 0 with d + 0. at at 

We rewrite the second contribution as 

d F  . j = j . A F  = j d l  
L F  

(1 1.12) 

(11.13) 

For conductors we have Ohm’s law 

j =oE, i.e. j = a E .  (1 1.14) 

For perfect conductors 0 = 00 and E = -Vq5 = 0. Then it is possible that 

j d l  = 0 E d l  # 0 and finite, (11.15) 

and one defines 
lime+.+ d+o o E d  := K ,  (11.16) 

i.e. j d  - K ,  where K is a surface current density (see Jackson [3], p. 336); 
K is also called “linear current density” (see Lim [2], p. 42). 

n 

Fig. 11.3 Normal and tangential directions. 

If the conductivity 0 is finite, K = 0, i.e. in this case there is really no 
surface current (see Jackson [3], p. 336). The continuity condition for H is 
therefore, treating J(V x H) . d F  as for E, i.e. from (d), 

H . dl = l j d  = Kl,  
L F  
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and it follows that 

- H,(~) = K (= o for 0 finite). (11.17) 

For later purposes we can write this also 

where n is a unit vector perpendicular to the interface, and K is a vector in 
the plane of the interface. One should note that as indicated in Fig. 11.3: 

Ht = H . et = IHI cos 0 

2 
(11.19) 

7T 
= IHJsin(- - 0) = ]H x nJ.  

The limits d 4 0,a --t 00 apply to an idealised case, and therefore the 
question arises whether a surface current does actually exist or not. We shall 
see later, in Chapter 14 on wave guides, that a current density j which is 
restricted to a very thin region corresponds to an eflective surface current 
Keff (see also Jackson [3], p. 339). 

Example 11.1: Change of direction of E at an interface 
The electric field E in medium (1) with dielectric constant €1 = 7 falls at an angle of 60' to  the 
surface normal on the interface to a medium (2) with dielectric constant €2 = 2. What is the angle 
between E and the surface normal in medium (2)? 

Solution: We have 

Eti = Et2, Dn1 - Dn2 = 0 (charge), :. qEni = e2En2. 

We are also given : Etl = tan60°En1, Et2 = tan82En2. The quantity requested is 02:  

so that 82 = 26.4'. 

11.3 Electromagnetic Waves in Media 

In the following we consider a plane, electromagnetic wave, which falls at 
an angle from medium (1) on the interface to medium (2), as indicated in 
Fig. 11.4. 

We recapitulate first some of our earlier considerations for the case of 
electromagnetic waves in a medium with dielectric constant E, magnetic per- 
meability p and conductivity Q. We had the equations 

D = E E ,  B = p H ,  j = a E .  (11.20) 
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In the case of charge density p = 0, the equations are 

dE 
at 

V . H = O ,  V x H = E -  +aE, 

aH V x E = -p-. at V * E = O ,  

From the first two equations we obtain after forming 

V x (V x H) = V(V * H) - (V * V)H 

with V 1 H = 0: 
a2 H aH AH = E P -  +/LO-. 
at2 at 

With V x (V x E), one obtains analogously 

a2E aE 
at2 at AE = €/I,- +pa-. 

Z 

Fig. 11.4 An electromagnetic wave falling at an inclination 
on the interface between two media. 

For cr = 0 and propagation velocity 

this is 

(1 1.21) 

(1 1.22a) 

( 1 1.22 b) 

(11.23) 

(11.24) 
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In the case of high frequency radiation, the parameters E , ~ , I T  become 
frequency-dependent. Considering plane waves, we write for E and H: 

Inserting these into Eq. (11.21) we obtain 

V x H = ik x H = - - ~ i w E +  aE E - iwqE,  

where 
. u  

W 
q = E + z - ,  (1 1.26) 

which is the generalised dielectric constant, in the case IT # 0 for a conducting 
medium. It follows that we can write Maxwell’s equations: 

k x H = -wqE,  
k x E = w p H ,  
k . E = O ,  
k * H = O .  

(11.27) 
(11.28) 
(11.29) 
(11.30) 

The last two equations show that here also we have transversality of the 
electromagnetic field (but not IEl = [HI) .  From these equations we determine 
Ikl: 

k x (k  x H) = - w q k  x E - *’ 
( k .H)k -k2H WPH 

where k . H = 0. Hence for H # 0: 

( .:) 2 2  k = w q p = w p  € + a -  , 

i.e. 
(11.31) 

This relation is called the dispersion relation of a conducting medium. Set- 
ting k = a + i p ,  we obtain 
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For IS = 0 we have k real; i.e. the wave is not damped, and the medium is 
said to be “transparent” (allows radiation to pass through). 

We now put 
k = Ikleip, 

and find 

The (generalised) refractive index is defined as the quantity 

Hence for the vacuum we have (0 = 0): 

W 

C 
p =  fit, i.e. p =  1 and k =  -. 

(1 1.33) 

(1 1.34) 

(11.35) 

11.4 Kinematical Aspects of Reflection and 
Refraction: Snell’s Law 

11.4.1 Preliminary Remarks 

We now consider reflection and refraction of a wave at a boundary surface 
between two media (1) and (2) as indicated in Fig. 11.5 which are not metals. 

For the our kinematical considerations here we make the following as- 
sumptions: 

(a) there are no surface charges or surface currents, 

(b) both media have conductivity 0 = 0,t (i.e. are transparent), 

(c) in order that B = p H  be valid, the media are assumed not to be 
ferromagnetic ( B  = p H  is not valid for these!), 

(d) the incident wave is a plane wave with 

E = Eoei(k.r-wt)  (11.36) 

(in the case of a plane wave f (r, t )  := k . r  - wt = const., k = V f (r, t ) ) .  

+Metals will be treated in Chapter 12. Most of the considerations here for u = 0 are also valid 
for u # 0 and finite. Then also the surface current density K = 0. 
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The equations 

then imply for the magnetic induction 

k x E = wpH = wB, k = wJECL 

k x E  
k B=&i-. (11.37) 

We assume that there are waves in both media, reflected waves in one 

Z 

1 refracted 

X 

incident I reflected 

Fig. 11.5 Directions of incident, refracted and reflected waves 
with angular inclinations to the normal. 

medium and refracted waves in the other. For these we take the ansatze 

(1) in the case of reflection: 

( 2 )  in the case of refraction: 

(11.38) 

(11.39) 

In the case of normal incidence of the wave and in view of the transversal- 
ity (see equations preceding Eq. (11.30)) we can write in self-evident notation 
using Eqs. (11.37), (11.38) and (11.39): 

= E i n ,  (11.40) 
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11.4.2 

The kinematical aspects of reflection and refraction which we consider now 
are consequences of the general boundary condition, that the conditions of 
continuity summarised above (whatever they express in detail) must be valid 
at every t ime t and at every point of the interface. Consider the conditions 

Kinematical Aspects of Reflection and Refraction 

at z = 0. (11.41) 

If these conditions hold at every time t and at all points of the interface plane 
(x,y),  then we must have for (e.g.) E:  

i.e. 

EOteZ(k~X+kyy-Wt) + Eote / I  i(kgX+kgy-W”t) - - E/ O t  ei(kLX+kjy-W’t) . (11.42) 

If this is to hold at all times t ,  we must have 

i.e. 
I‘ w = w I = w  

(possibly for wt  = w”t+2m7r, m = 0,  f l ,  . . . , but demanding validity for all t ,  
hence also for t = 0, implies m = 0). Similarly we must have for projections 
onto the (x,y) plane 

k . r  = k ’ . r  = k ” .  r at z = 0. (11.43) 

Thus the projections of k,k’,k” on any arbitrarily chosen vector r in the 
interface plane must be equal. However, this is possible only if (see below) 
k, k’, k” lie in one and the same plane, the so-called plane of incidence. This 
can be seen as follows. On the one hand, if we replace r by a unit vector 
along the x-axis, the x-components have to be equal, and analogously the 
y-components have to be equal. On the other hand, if two of the three 
vectors k, k’, k” lie in the (x, 2)-plane, and so have zero y-components, (also 
at z = 0), also the y-component of the third vector is zero, implying that 
this vector must also lie in the (x, z)-plane, i.e. 

If k, k” span the (x, 2)-plane, i.e. if k ,  = 0 = kf, then 

I I ‘I 
k,X = k,x + kyy = kxx; 
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but because k, = k; = k:, it follows that kh = 0. Furthermore we deduce 
from Eq. (11.43) for the z-components (as we can see from Fig. 11.5) 

k sin a = k' sin p = k" sin y. (11.44) 

Since w = wl' and in general for c = 0 : k = Fji, it follows that4 k = k" in 
the same medium, and hence 

a = 7,  
which implies that the incident angle i s  equal to  the reflection angle. 
addition Snell's law must hold, i.e. 

In 

(1 1.45) 

where c i ,A i  are velocity of light and wavelength in medium ' i ' ,  and the re- 
fractive index is 

11.5 Dynamical Aspects of Reflection and 
Refraction: The F'resnel Formulae 

11.5.1 The Conditions 

The dynamical aspects of reflection and refraction follow from the specific 
boundary conditions for D, E, B, H. We assume that the media are isotropic 
(i.e. D = E E )  and that there are neither surface charges nor surface currents. 
We use the relations found above 

(11.47) 

We begin with the relation Eil) - = 0. We let n be the unit vector 
parallel to e,  in the direction of the z-axis. Then 

A , = A . e , = J A J c o s O = J A J s i n  - - 0  = ] A x n J .  G ) 
With this we can rewrite the above tangential condition as 

(a> (Eo+E;-Eb)xn=O. (11.48) 

$In the case of different media the w's are equal, but the k's, Fp, are different. 
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The next condition we consider is Bi1)-Bi2) = 0. With the relations (11.37), 
(11.38) and (11.39) for B,B’ and B”, as well as 

E = ~ ~ ~ i ( k . r - w t )  EI = Ebei(k’.r-w’t) E// = Eb/ei(k”.r-w/’t) 
I 7 , 

we have 

gfi 
With (11.47) and k = k” (reflection) we obtain from this 

( b )  (k x Eo + k” x E; - k’ x Eb) . n = 0. (1 1.49) 

The scalar product with n gives us the normal component of the vector in 
the bracket. 

Next we consider the condition Hi1) = H j 2 ) .  From this we obtain as in 
case (b)  with B = pH 

(11.50) 

The vector product with n gives us the tangential component of the vector 
in the bracket. 

3 [ l ( k ~ E o + k ” x E : ) - ~ ( k ’ x E b )  1 x n = 0 .  
P P 

(4 

Finally we obtain from the condition D c )  = Di2) the relation 

(4 (11.51) 

In the next section we consider two cases of linear polarisation (linearly 
polarised implies: E, B constant in direction and modulus). 

[E(Eo + E:) - E’E~]  . n = 0. 

11.5.2 Two Cases of Linear Polarisation 

Case 1: Eo perpendicular to the plane of incidence 

The plane of incidence is the plane spanned by the propagation vectors 
k, k’, k”. The field vectors are, as we saw, orthogonal to these (cf. transver- 
sality). According to the given condition the incident field vector Eo is 
perpendicular to this plane and therefore lies in the tangential plane. Since 
EL1) - Ej2) = 0, there is no change of direction of the field E at the interface 
of the media for either reflection or refraction, i.e. with Eos = 0 = EoZ we 
also have E& = 0 = E& and Etl, = 0 = E&. The relation (a )  implies 

(Eo + E:)t = (E’)t. 



11.5 Dynamical Aspects: l?resnel Formulae 255 

The tangential plane is the plane of the interface, i.e. the (x,y)-plane. A 
general vector in this plane would be rt = zez + ye,. Since in the case of 
the E-fields here, only the y-components are not zero, we can rewrite the 
tangential relation also as 

EO, + E& = Ek,, 

or 

B A 

B' k' 

\ 
y \  B" 

Fig. 11.6 Case 1: The directions of the field components at incidence, 
refraction and reflection. 

(4 Eo + El = EA. (1 1.52) 

One should note that Eo, Eli, EA are amplitudes, which can be complex. We 
thus have the situation depicted in Fig. 11.6. The orientation of the B- 
vectors has been chosen in Fig. 11.6 such that the transport of energy E x H 
is positive in the direction of the wave vectors. 

We can rewrite the relation ( b ) ,  i.e. Eq. (11.49), using the property of 
scalar triple products 

Thus Eq. (11.49) can be written as 
(A x B) . C 1 (C x A ) .  B. 

(n x k) . E: + (n x k") + E: - (n x k') + Eb = 0, 

i.e. 
k sin ae, ' Eo + k" sin ye, . Eg - k' sin ,Bey . Eb = 0. 
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However, according to Snell’s law 

so that 
ksincyey. (EO + E; - EL) = 0. 

Since the sum of the vectors E (as above) lies in the tangential plane, we 
conclude as we concluded from (u) that Eo + E: - EA = 0. Hence this case 
yields no new relation. 

Consider now relation ( c ) .  We handle Eq. (11.50) as follows. We have 

1 1 
-(k x Eo) x n = -[(n. k)Eo - k (n Eo)]. 
P P - 

0 

Hence for the incident wave 

1 1 
P 
-(k x Eo) x n = - k Eocoscy = w 

P- 
W d G i  

Similarly we obtain for the reflected and refracted waves 

1 
P 
-(,‘I x Eg) x n = -w 

The minus sign on the right follows from the fact that the projection of 
k” x Eb/ is antiparallel to n. Hence also 

- 1 (k’ x Eb) x n = w’/;E; cos p. 
PI 

But w = w’ = w” and cy = y. Thus Eq. (11.50) yields the relation 

i.e. (since - see above - the direction of the field E does not change), 

(11.53) 

This is a new relation. 

(B)
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Finally we consider relation (d). The relation (11.51) yields nothing, since 
we have 

(E0, E:, EL) n = 0. 

We have thus obtained the results ( A )  and (B) .  

Eliminating EA from ( A )  and ( B ) ,  we obtain 

Using the following relation obtained earlier 

we can rewrite the ratio as 

p s ina  cosp ][l+?-- p sina cosp 
EO p1 sin p cos a p sin/? cos a 

p1 t a n p  p1 tan p 
= [ I--- p t a n a ]  [ 1+-- p t ana l - '  

Eliminating El  from ( A )  and (a), we obtain 

=2[1+;=&] -1 . 
(11.54) 

For the so-called optical frequencies (i.e. those in the visible range of fre- 
quencies) we have p(w)  N pl(w).  In this case we obtain the Fresnel formulae 
for light polarised vertically to the plane of incidence: 

E: sin(/? - a )  EA 2sin/?cosa 
EO sin(a+/?) '  Eo sin(a+/?)  ' 

- -  - (11.55) _ -  - 

or
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Case 2: Eo in the plane of incidence 

In this case the directions of the fields are as indicated in Fig. 11.7. The 
relation (u )  implies at z = 0 

Eocosa - Eicosy  - E;cosp = 0, 

or, since a = y, 

(4 (Eo - E;) cos a - E; cos p = 0. (1 1.56) 

The relation (b)  gives nothing, since k x E I n. Relation ( d )  yields 

E(EO + E:) sin a - E ' E ~  sin p = o,, 
or since 

we have 

t 

Fig. 11.7 Case 2: The directions of the field components a t  incidence, 
refraction and reflection. 
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so that 

(11.57) 

The relation (c)  also yields (B’). 

mulae, using again the relation 
Erom both of the relations found we obtain the next pair of Fresnel for-  

Eliminating EA we obtain 

and eliminating E: we obtain 

Eo 
-1 

For p = p1 we obtain (as can be verified by replacing the tangent by sine 
and cosine) 

For the discussion 
set @ = 7r/2 in Eqs. 
formula) we obtain 

1 of “total reflection” below we observe here that if we 
(11.55) and (11.58) (or alternatively in a preceding 
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11.5.3 The Brewster Angle and the Case without Reflection 

We observe that when a + /? = 7r/2 in the case of the vector Eo lying in the 
plane of incidence, we have (cf. (11.58)) tan(a + /?) = 00 and E: = 0, but 
also sin /? = cos a. Snell's law then implies 

n' sina 
n sin/? 

= tanaB.  - (11.59) 

Fig. 11.8 Polarisation at angle of incidence =CYB. 

The angle a~ is known as Brewster's angle. In particular when a = 7r/4, also 
/? = 7r/4, i.e. one has straight passage. On the other hand, if the refractive 
indices n, nl are equal, we have a = /? and hence 

and there is no reflection - as expected. Thus at Brewster's angle with Eo in 
the plane of incidence there is no reflected ray whose electric vector oscillates 
in the plane of incidence. If arbitrary (i.e. unpolarised) light is incident at 
Brewster's angle, the reflected ray is thus linearly polarised perpendicular to 
the plane of incidence, as indicated in Fig. 11.8. 

11.5.4 The General Case 

The general case of an elliptically polarised wave can be dealt with by su- 
perposition of the cases 1 and 2, i.e. with 
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where q , i  = 1,2 are polarisation vectors (i.e. unit vectors along the respec- 
tive direction of polarisation) and 

(11.61) 

we have for the most general homogeneous wave in the direction of k = knk: 

(1 1.62) 

Here El,  E2 are complex numbers, which also permit a phase difference be- 
tween waves of different polarisation. If El and E2 have the same phase, E 
describes a linearly polarised wave with a polarisation vector which makes 
with €1 an angle 0 = tan-'(Ez/El) and has modulus E = d m .  If 
El,  E2 have different phases, E is elliptically polarised. If (El I = lE2l and if 
their phases differ by n/2, i.e. if E can be written 

i(k.r-wt) E ( r , t )  = (qE1 + ~ 2 E 2 ) e  

E = Eo(E~  f i ~ 2 ) e ~ ( ~ ' ~ - ~ ~ ) ,  

then E is circularly polarised. 

11.5.5 Tot a1 Reflect ion 

It remains to consider the case of total reflection. Let n, n' be the refractive 
indices of the media on either side of an interface and n' < n. Then, see 
Fig. 11.9, there is a cm'tical angle QO, at which ,B + PO = 5712 (reflected and 
refracted fields in the same direction x). 

Z 

po = ni2 

n' 

Fig. 11.9 The case of total reflection. 

Also (as we deduce from the above formulae) independent of the direction 
of polarisation of the electric field (cf. Eq. (11.56)) 

Eo = E:, but Eh # 0. 



262 CHAPTER 11. THE LAWS OF OPTICS 

This case is described as total reflection. Since 

sina’ n’ 
sinp n ’ - 

it follows that sinao = nl/n. 
We can consider this case also from another point of view, by demon- 

strating that there is no transport of energy into the other medium. For 
real angles ,O the maximal value of s inp is, of course, 1 (for ,B = 7r/2). The 
maximal value of a, which satisfies the condition 

s ina n1 
- = - - 1  
sinp n 

for real values of p, is therefore given by 

n1 
sinao = - 

n 

(sinPo = 1). For a > ao, hence for n‘/n = sinao, we write the “angle of 
refraction” p which is then complex as 

7r 
/? = - + i d .  

2 

Then sin p = cosh S and 

6 = cosh-l(sinp) = cosh-’ - s ina  
(:I ) 

Moreover 

cosp = \/1= = +id= = isinhb 

and 
+ O  for z + 0 0 .  eik’.r - eik’z cos ,!3 - -k’z sinh 6 - - e  

It follows that the field of the refracted radiation, i.e. El, goes to 0 for 
z -+ 00, but for z finite, as we can show, n . (El x HI) = 0. This means, 
there is no transport of energy into the other medium. We see this as follows. 
Recalling the transversality condition and Eq. (11.61), we have 

S . n = R[n . (El x HI)] - Jzgk 
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the latter because of “i” in 

n . k’ = k’ cos p = ik’ sinh 6. 

We have total reflection. This total reflection is also evident from the fact 
that EO = E:, i.e. Ei = Eg2. 

We return once again to the general case: 

For a < a0 we have cosp real and hence p. For a > ao, however, cosp is 
purely imaginary, i.e. p complex: 

1 

COS p = * i [ (-) sin (Y - 11 . 
sin a0 

The phase of the refracted wave is therefore (k’ in the (x, 2)-plane) 

eik’.r = exp{i(kLx + ~ 2 ) )  

= exp{i(k’xsinP + k’zcosp)} 

= exp { ik’z: sin a }  exp { i.’z/-} sin a0 

oc exp( -z/zo). (11.63) 

Thus the wave is damped in the direction of z if we make the physically 
plausible choice of selecting the exponentially decreasing function. In general 

1 
k f  (4!!EX)2 - 1 7 sin 010 

20 E 

is of the order of several wavelengths, i.e. the refractive wave is damped so 
strongly, that in general there is no refractive wave, unless the thickness of the 
weaker medium is less than one wavelength. In such a case light can tunnel 
through the film, and one has to take a combination of both exponential 
functions. We see that when a = ao, there is no damping. One has the 
scattering of light at the interface, which can also be observed, e.g. in an 
experiment with a sphere immersed in a medium, the sphere containing a 
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lamp and permitting light to escape through some windows, as indicated in 
Fig. 11.10. 

I 
i 
\ I 

I 

I \ 
\ I 

- - _ _ - -  

Fig. 11.10 Scattering of light at an interface. 

11.6 Useful Formulation of the Fresnel Formulae 

- We set 

(11.64) 

Then in both cases of above we can rewrite the results as follows: 

Case (1): Eo I plane of incidence 

(A)  1 + R - T =  0, ( B )  (1 - R)COSQ - NTcosP = 0, 

so that (1 - R)cosa  = N(1+ R)cosp. Hence 

(1 1.65) 

The expressions R and T are respectively called reflection coeficient and 
transmission coeficient. 

Case (2): Eo in the plane of incidence 

cos Q - N cos /3 2 cos Q 
R =  T =  

COSQ + Ncosp’  c o s ~ + N c o s p ‘  

(A’) (1 - R)cosa = T c o s p ,  (B’) (1 + R) = NT, 

U+R) so that (1 - R) cos Q = cos p, and 

(11.66) N cos Q - cos p 2 cos Q 
R =  T =  

Ncosa  + cosp’ N c o s a + c o s p ’  
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Here we have defined R and T as ratios of amplitudes; this is not the most 
common formulation. Some authors such as Lim [2] define R and T as 
ratios of the energy of the reflected ray, and that of the transmitted ray, 
to the energy of the incident ray. In the book of Jackson [3] (Chapter 7) 
the coefficients are not introduced. Since, as we emphasised, Eo, EL, E: are 
amplitudes, which can still be complex, also R and T can be complex. We 
introduce the coefficients R and T here in analogy to their counterparts 
in quantum mechanics or quantum mechanical scattering problems, which 
seems to suggest itself. 

Example 11.2 Light falling on glass 
(a) The refractive index of glass is n' = 1.5. Calculate what fraction of light intensity vertically 
incident on a surface of clean glass is reflected. 
(b) What are the phases of the vectors E, H at the interface between air (n) and glass (n', n' > n) 
in the case of vertical incidence? 

Solution: 
(a) We have (with p = p', N = n'/n) for vertical incidence and irrespective of whether Eo lies in 
the plane of incidence or is perpendicular to this 

(b) For Eo I plane of incidence: a: = p = 0. Hence 

1 - N  - n-n' E;: 
< 0 ,  R = -  R=--- 

l + N  n+n' Eo 
It follows that 

E l  = eirIRIEo, 

i.e. E: points in a direction opposite to that of Eo. For the direction of transport of energy (given 
by (E x H)) of the reflected wave to be opposite to that of the incident wave, the phase of H must 
remain unchanged. 

Example 11.3:s Calculation of the angle of refraction 
Polysterene has a relative permittivity of 2.7. An electromagnetic wave in air is incident at an 
angle of 30 O to the normal on a surface of polysterene. Calculate the angle of refraction and repeat 
the calculation for the reverse case. 

Solution: For the passage from air to polysterene we set: 

€1  := €0, € 2  := 2.7~0,  pi := po, p2 := po. 

From sin 02 = 111 sin 81 it follows that 
n2 

sin& = -(0.5) = 0.304, 82 = 17.7 O. Jz: 
From polysterene to air: 

€1 := 2.7~0,  €2 := €0, pi = P O ,  p2 = po, 

and 
sine2 = m ( 0 . 5 )  = 0.822, e2 = 5 5 , 2  O. 

§See also The Electromagnet ic  Prob lem So lver  [21], p. 649. 
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Chapter 12 

Metals 

12.1 Introductory Remarks 

Our considerations in the preceding chapter were restricted to media with 
conductivity a = 0. We now proceed to corresponding considerations for 
metals.* 

12.2 Reflection and Absorption of Plane Waves by 
Metals 

In the case now under consideration we have 

8D 
at V x H = - +j .  (12.1) 

With 
D = E E ,  j = aE, EcxeeiWt (12.2) 

we have 
V x H = i w ~ E + a E = i w E  E + -  , (12.3) 

i.e. in the case of conducting media we have the generalised dielectric con- 
stant 

q = E + - .  (12.4) 

Thus, although now j # 0, J j  . dF # 0, we can again proceed as before 
except that E has to be replaced by q, because we saw earlier, that for finite 

( 3 
CT 

ZW 

*Although now old, the most important monograph on this subject was for a long time that of 
A. H. Wilson, The Theory of Metals, 2nd ed. (Cambridge University Press, 1953). 

267 
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conductivity cr the “linear current density” K = 0. Hence we have the case 
with no surface currents. 

We consider now reflection in the case of vertical incidence of the elec- 
tromagnetic wave, as indicated in Fig. 12.1. 

E 

Fig. 12.1 Vertical incidence on a metal. 

In this case we have incident angle Q = 0 and (from sin Q = ( ~ ’ p ’ / e p ) ’ / ~  sinp) 

p = 0. 

Hence the reflected intensity is in both cases (1) and (2) considered in 
Sec. 11.5.2: 

- where with E’ + 77’ 

(12.5) 

(12.6) 

For typical metals IN1 >> 1, so that we can approximate IRI2 as follows: 

2 

2 

= { 1 - 2%( $)}2 + { 2.( ;) } 
(12.7) 
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The absorptivity A is a quantity defined by 

A ~ l - l R l ,  2 (12.8) 

so that for IN1 >> 1 

AN"%($).  (12.9) 

But now - note that the source of E' is the displacement current, whereas 
the source of d / i w  is the electron current - 

Hence with 

we have 

(12.10) 

(12.11) 

(12.12) 
w EP' (1 + i )  -4 -- - d  20' P d-' 

For low frequencies we have 

o = const. = real, i.e. O ( W )  N a(O), (1 2.13) 

so that 

(1 2.14) 

where p' = l/a' is the resistivity. This is the so-called Hagen-Rubens approx- 
imation of the absorptivity at low frequencies (experimentally investigated 
by Hagen and Rubens).+ 

+E. Hagen and H. Rubens, Ann. Physik 11 (1903) 873. A discussion of the Hagen-Rubens 
formula can be found e.g. in J. A. Stratton [15], p. 508. 
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12.3 The Theory of Drude 

At low frequencies (w + 0 )  the equation of motion of a free electron subjected 
to an applied electric field E can be taken to be approximately given by 

mx + bk = eE. (12.15) 

Here m is the mass of the electron, and b = m/r,  where T has the dimension 
of time and is called relaxation time. Here r has the physical meaning of an 
average scattering or collision time, i.e. the average time interval between 
successive collisions of an electron with atoms of the metal lattice. In the 
case of a bound electron, one would add a term wgx to bx representing a 
binding of the electron to an atom like that of an oscillator potential (this is 
a purely classical model at this stage!). 

At high frequencies the field E alternates its direction so rapidly, that 
the electron has only a small chance to get sufficiently far away in order to 
be able to collide with an ion, as indicated in Fig. 12.2. This means, in this 
case the equation of motion can be approximated by 

mx = eEoeiwt = eE. (12.16) 

In the intermediate domain the equation of motion is therefore approximately 

with solution$ 

m .  mx + -x = eEOeiWt = eE 
7 

eE 
m ( i w  + +) 

X =  

(1 2.17) 

(12.18) 

0 0 0 0 0 0 0  

e 
0 57-y 
0 . 0 0 0 . 0  

Fig. 12.2 A conduction electron in a metal lattice. 

But now3 current density j = charge of one electron x number of electrons 
per unit volume x velocity = nex ,  i.e. 

ne2E j =  = aE, 
m( iw  + +) 

(12.19) 

$x = iwx ,  :. mx + Ex = m(iw  + +)k  = eE. 
§Initially the free el&rons wander around arbitrarily and in any direction. After application 

of the field E, however, they are forced to  move antiparallel to the direction of E. 
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so that 
ne2r 

m( 1 + i w r )  * 
a =  (12.20) 

We see therefore: The expression for a is in general complex and hence the 
Hagen-Rubens formula an unsatisfactory approximation. 

We can write a also 
n 

neLr 1 a d c  = - (ohm meter)- . a d c  a=-  
1 + i w r '  m 

(12.21) 

Here 
the ratio of an average length of the mean free path, t, divided by an average 
velocity, ij. 

We return now to the calculation of the absorptivity and replace a' in 
the first of expressions (12.12) by 

is called the direct current conductivity and r could be taken as 

I 4 C  a =- 
1 + i w r '  

so that from the middle expression in Eq. (12.12), 

so that for E'wla:, << 1, 

= Hagen-Rubens expression x dd-2 - w r ,  (12.22) 

and hence for w r  >> 1 

+- 8wqd w r  
a& 2 W V  

(12.23) 

But
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The result (12.22) is known as Drude-Kronig formula. We infer from these 
results, that at low frequencies, i.e. w r  << 1, 

A 0; fi ( in the extreme infrared region), 

whereas at high frequencies (infrared region as compared to the extreme 
infrared region) A behaves like (12.23), i.e. is approximately constant. This 
behaviour of the absorptivity is depicted in Fig. 12.3. 

A 

t 
const. 

o > > o p  

b w  

-Hagen-Rubens - 
-Drude-Kronig - 

Fig. 12.3 Absorptivity A as a function of frequency w. 

The ultraviolet region is characterised by high frequencies. In this case the 
displacement current dominates over the electron current as we can see from 
Eq. (12.11). This means, in this case the metal behaves like a dielectric with 
reduced dielectric constant (see below). We saw that the effective dielectric 
constant of a metal is given by Eq. (12.4), and that at high frequencies w 

ne2 
N- 

ne2r 
U =  - 

m(1 + i w r )  i m w  ’ (12.24) 

(12.25) 

so that 
ne2 

mw2 
€ - -  - r l =  

reduced dielectric const. 
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In general the above Drude-Kronig formula cannot be correct. We know 
that due to the skin effect the electric field E varies considerably with pene- 
tration depth into the metal. This implies that the relation 

j = aE 

must be modified, if the length of the mean free path of the electrons is - v/w and larger or of the order of the skin depth 20,  or if the relaxation 
time is very large. The above current density formula will then have to be 
replaced by a relation of the form 

r 

in order to take into account the rapid change of the field over the region of 
the mean path of an electron. In the course of motion of the electrons towards 
or away from the surface, electromagnetic energy is directly transferred to 
the conduction electrons. If one averages over all possible directions of these 
electrons, and if one takes into account, that the electrons are fermions - 
their maximum velocity vo at absolute temperature T = 0 being that of the 
Fermi boundary - one obtains a correction contribution. The velocity vo is 
determined as follows. Number of states = number of particles (according 
to the Pauli principle) = N = 2 V ~ ~ / ( 2 7 r ) ~ , p  = h ~ , h  = h/2n (the factor 
‘2’ takes into account the two possible spin directions of the electron as a 
fermion). This means 

v 4 p387r3 N=2- -r- 
( 2 ~ ) ~  (3 h3 )’ (12.26) 

or, if p = mvo, n = N/V, 

(as for the Fermi distribution at the absolute zero point of temperature). 
Taking these effects into account a further modification of the formula for 
the absorptivity of electromagnetic radiation in a metal results and is known 
as Dingle-Holstein formula.7 This formula can be written as 

3 vo ADH = Drude - Kronig expression + - - , 
4 c  

( 12.27) 

where c is the velocity of light in vacuum. The additional term dominates at 
low temperatures. At higher temperatures and for good conductors like Cu 
and Ag both contributions of the formula are of comparable magnitude. 

TR. B. Dingle [lS], R. B. Dingle, Physica 19 (1953) 311 (see in particular p. 342) and T. 
Holstein, Phys. Rev. 82 (1951) 1427. 
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Example 12.1: Absorptivity of silver 
Calculate the absorptivity of silver with direct current conductivity of 3 x lo7 mhos/meter at a 
radiation frequency of Y = 1O’O second-’ (microwave region, X _N 3 cm). 

Solution: We use the Hagen-Rubens relation 

where we insert 

p = p’, w = 2.rr x 10” per second, E = €0 = 8.854 x u’ = 3 x lo7. 

The result is A = 3.9 x 10-4. 

Example 12.2: Skin effect and Drude theory 
Electromagnetic radiation with 

E = E ( z ) e i w t e x ,  H = H ( z ) e i w t e y  

(ez ,  ey being unit vectors) falls vertically on a plate of metal. Show that the electric field in the 
plate at a distance z from the surface and at  low frequencies w is given by the following expression: 

where 6 ,  the penetration depth for small w ,  is given by 

Here Udc is the direct current conductivity and T the relaxation time. Finally evaluate E(0)  with 
the help of F’resnel’s formulae. 

Solution: We start from the equation 

aD 
at 

V x  H =  j +  -, 

where in the present case 

0 

or 

Similarly with 

(12.28) 

since
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we obtain 
(12.29) 

From (12.28) and (12.29) we eliminate H and obtain: 

i.e. 
+ w2~pE(z )  = iwpj3.. (12.30) d2 E ( z )  

dz2 

Thus we have one equation in E ( z )  and j,. We obtain a second relation from j = oE, where 
j = o e i  and with the simple Drude theory 

so that 

and hence 

ne2rE  
m( 1 + iwr )  

j =  e E r  
m (  1 + iwr )  ' r =  

ne2 i rE  
mi(1+ iwr )  ' 

j =  

where 1 is the length of a mean free path and v = i/r a mean velocity. It follows that 

With (Tdc G ne2i/mG we can write j = udcE/(l  +iwr) .  With this we obtain as our second equation 

Equations (12.30) and (12.31) now imply: 

dz2 + E W 2 - -  2WUdc) E ( z )  = 0. % (  1 + iwr  

(12.31) 

(12.32) 

We neglect the displacement current contribution qu2 and consider low frequencies. Moreover, 
i = = [(l  + i)/fiI2. Hence the physically sensible, i.e. decreasing, solution is 

E = E(z)eiwtes, with E ( z )  = E(0) exp 

where 

(this is the penetration depth of the refracted wave at low frequencies in agreement with Eq. (9.17)). 
We have here the case of the vector E lying in the plane of incidence. The appropriate Fresnel 
formulae of Sec. 11.6 are 
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where Eo, E:, EI, are the amplitudes of the incident, reflected and refracted waves. We are inter- 
ested in T with Eo = 1, i.e. T = EI, = E(0). Vertical incidence (a = 0 -+ @ = 0) implies T = 1-  R. 
R follows from the above relations as R = ( N  - 1 ) / ( N  + l ) ,  so that T = 1 - R = 2 / ( N  + 1) N 2 /N 
for IN( >> 1 .  Neglecting the contribution of the displacement current, we have 

or (with 6 = €0, p' = p,  0' N c d c )  
~ 

so that 



Chapter 13 

Propagation of Radio Waves 
in the Ionosphere 

13.1 Introductory Remarks 

The phenomenon we consider here,* takes place several hundred kilometers 
above the surface of the Earth. The gaseous atoms in the upper atmosphere 
are ionised by extraterrestrial radiation (e.g. by cosmic rays, ultraviolet radi- 
ation from the sun etc.). The ionosphere consists of several layers of electrons 
and ions with first increasing and then decreasing densities. Consider first 
only one layer. We let the dielectric constant near the surface of the Earth 
be €0 and in the ionised region (WT >> 1, see Chapter 9) 

(13.1) 

Here 
n is the number of electrons per unit volume, 
m the mass of an electron, 
w p  the plasma frequency, wg = ne2/meo.  

The effect of the positively charged ions (i.e. their contribution to the 
conductivity and hence to the effective dielectric constant) can be neglected, 
since the mass of the ions is approximately 2000 times larger than that of 
an electron. We also ignore at the beginning (see later) the effect of the 
terrestrial magnetic field which in general cannot be neglected (see Jackson 
[3], pp. 292-294). 

*A brief description - different from that here - can be found in Stratton [17]. A more 
complete account is given in H.R. Mimno, Rev. Mod. Phys. 9 (1937) 1-43 and in Ergebnisse der 
ezakten Wissenschafien, Vol. 17 (Springer, 1938). 
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For the ray of a radio wave to return from the ionosphere back to Earth, 
the density of electrons cannot increase indefinitely, since otherwise the ray 
would be bent more and more towards the vertical and hence would even- 
tually escape. Thus beyond a certain maximum value, the refractive index 
must decrease again, and this means the density of electrons, enabling the 
ray to be bent away from the vertical. In any case the wave has a reflected 
part and a refracted part with coefficients R and T in the case of E I to the 
plane of incidence given by (cf. Chapter 11) 

cos Q - N cos f? 
R =  T =  

cos a + N cos P'  

where Q and ,B are incident and refractive 
Eq. (11.64)) now with generalised dielectric 

2 cos a 
c o s ~ + N c o s / 3 '  

(13.2) 

angles as before, and N is (cf. 
constants 

Fig. 13.1 Refraction of a ray. Fig. 13.2 Reflection after refraction. 

13.2 Condition for Return of Waves 

Along its ascent into the ionosphere the ray is refracted, as also on its way 
back. However, the highest point of the ray's path must be a point of reflec- 
tion. Naturally this situation is somewhat idealised. For example some waves 
wander even directly from the emitter to the receiver. There are also waves 
which circle around the Earth (with reflection from the ionosphere), and thus 
give rise to radio echos, which have been observed. Since the electron density 
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increases with increasing height above the Earth only very slowly, one has 
initially almost exclusively refraction. Since 

this means that for a ray starting vertically upwards R = 0 (since with 
Snell's law also p = 0). After attaining its maximum value, the electron 
density decreases rapidly with further increase in height. In the plasma the 
dielectric constant is given by Eq. (13.1). We recall that we had defined the 
generalised refractive index as 

p = c f i  = Pl + iP2, (13.3) 

k = -p , e  i(kz-Ut) - - e  iZ(pz- -c t )  (13.4) 

We observe that for < 0, i.e. p complex, the wave is strongly damped. For 
large masses m (of the ions) 7 21 €0. For 7 < 0 the wave transmitted beyond 
the reflection point is strongly damped (i.e. practically no transmitted wave), 
and one has effectively only reflection. For this to occur the density must at 
least be large enough so that q = 0, i.e. 

W 

C 

and that 

n mw2 
- > -. 
€0 e2 

(13.5) 

We now apply Snell's law to different layers of the atmosphere/ionosphere. 
For the case of three layers as illustrated in Fig. 13.3 we have (beginning 
with an angle of incidence whose angle of refraction is equal to the angle of 
incidence at the next layer and so on) 

(13.6) 

In the present case the electron density depends on the height y above the 
ground, i.e. we have to write 

n = n(y). 

Let t9b be the angle of incidence at ground level and 19 the angle of refraction 
at height y. Then we can write 

(13.7) 
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Fig. 13.3 Refraction of the ray on its way upwards. 

and for E = €0 

so that 
(1 - s) sin2 6 = sin 2 6 b  = 1 - cos 2 6 b ,  

2 n(y)e2 2 2 2 cos 6 b -  -(1 -cos 6 )  = 1 -sin 6 = cos 6 EOmw2 

or 

From Eqs. (13.8) and (13.9), we obtain 

(13.8) 

(13.9) 

(13.10) 

We let x and y be horizontal and vertical coordinates. The highest point of 
the trajectory of the ray is a point of reflection; reflection of the ray therefore 
requires, as shown, a maximal height ymW. Near the ground practically no 
reflection takes place, but only around ymW. We have 

dx 
tan6 = -, 

dY 

or

or
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so that with (13.10) 

t 

(13.11) 

R 
Fig. 13.4 The trajectory of the ray. 

With this we obtain for the range R indicated in Fig. 13.4 

dY Jdymar J I - n(y)e2/Eomw2 cos2 &, * 

R = 2tanOb 

At ymax we have 8 = ~ / 2 ,  i.e. tan0 = 00, i.e. at this point 

(13.12) 

( 1 3.1 3a) 

This equation may not always have solutions for any value of e b .  If for all y 

there is no ymax. In this case n(y) cannot grow indefinitely, and there must 
be a value nmax with " 

(this expression defines 0 0 )  , at which 

(13.13b) 
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i.e. 
C O S ~  eb > C O S ~  eo, eb < eo. 

This means, with this condition the rays cannot return to Earth. For return 
to be possible, we must have 

(13.14) 

This means, rays satisfying this condition, can be reflected back to Earth. 
One can express this in another way by saying, that 

for a fixed angle e b .  Thus for a fixed angle Bb the frequency 

is the maximal frequency possible for a return to Earth of the ray of radio 
waves. 

13.3 Effect of Terrestrial Magnetic Field 

We now want to take into account the effect of the magnetic field of the Earth 
on the propagation of radio waves. In our treatment here we again consider 
only the electric component of the electromagnetic field of the waves. This 
suffices since the magnetic field component is much weaker, as we can see 
from the fact that B = O(E/c) .  We also simplify the terrestrial magnetic 
field to one along the z-direction parallel to the normal to the surface of 
the Earth (the latter being assumed more or less flat for our purposes here). 
Hence we write for the terrestrial field 

We can consider a more general case, i.e. that of the terrestrial field at some 
angle, by replacing in the following the z-component Be by Be cos 8,. The 
equation of motion of a free particle with charge q (i.e. an electron in the 
ionosphere) is then with r‘ = (z’, y’, z’) given by 

(1 3.15) 
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where 7 is the relaxation time, i.e. the mean time interval between successive 
collisions of the particle with other particles. We put 

< = x' + iy', so that (r' x Be)x = y'Be (13.16) 

and 
E = Ex + iEy 

and define the Larmor f r e q u e n c y  WL by 

(13.17) 

qB, = mwL (or mwL cos 0,). (13.18) 

The equation of motion then leads to 

or 

Setting 

(13.19) 

(13.20) 
1 1 

" - 2  2 
E - -Eo cos(wt - kz), E9 = f-Eosin(wt - k z ) ,  

where the latter are the x, y-components of the real part of ( e x ,  ey again unit 
vectors) 

7 (13.21) 1 i(kJt-lc2) 
ER(Z ,  t )  = 5E0(ex 7 iey)e 

L 
i.e. 

1 1 EE,(z, t )  = -230 cos(wt - k z ) e x  f -Eo sin(wt - kz)ey 
L 2 2 

= Exex f Eyey. 

These waves are described as right polarised and left polarised respectively. 
The sum 

E~ + E~ = Eoe'(wt-'z) e x ,  
or its real part 

E(ER + EL) = Eo cos(wt - Icz)e, 

represents a linearly polarised wave in the direction of z. With 
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we make the following ansatz for the solution of Eq. (13.19): 

and obtain 

Recalling the current density 

we define the complex quantity 

.. nq2 E 
J = -  . .  

m w w  f w~ j 

(13.22) 

( 13.23) 

(13.24) 

Now, we know from Maxwell's equations (cf. e.g. Eq. (9.7)) that every 
component of the electric vector satisfies the equation 

V2Ei - ~ p E i  - pji = 0, 

so that for the complex quantities 

E = Ex + iEy,  j = jz + ijY 

the following equation results: 

or 

where 

( 13.25) 

Here w p  is the plasma frequency of the ionosphere. The definition of the 
generalised refractive index implies therefore for the refractive index of the 
ionosphere 

( 13.26) 
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For 
1 

p = p l  +ip2 and w >> - 
7- 

it follows that 

1 4 , P 2 " -  2 w r  (w f 

For right circularly polarised electromagnetic waves and left circularly po- 
larised electromagnetic waves, i.e. 

the refractive index p therefore differs. A linearly polarised wave with 

E = (Ez ,  O , O ) ,  Ex = Eo C O S ( W ~  - k ~ )  

can be considered as a superposition of two oppositely circularly polarised 
waves. We see therefore, that in the case of an originally linearly polarised 
wave, one of its circularly polarised components is absorbed more strongly 
(i.e. damped) than the other, so that the original wave becomes partially 
circularly polarised. 

Here the origin of p2 is different from that in the case of metals with 
CT # 0. In the present case p2 oc 1/r, and pa --+ 0 for r --f 00. r is the 
relaxation time and thus originates from a term (like friction) which implies 
a loss of energy in the form of heat. 

Example 13.1: The pulsar 
A pulsar emits a pulse with frequencies w1, w2 (i.e. emitted simultaneously), which are considerably 
larger than the plasma frequency u p  of the interstellar medium. The times of arrival of the pulses 
with frequencies q r w 2  are measured. Show that this permits the determination of the electron 
density of the medium integrated over a distance L,  i.e. s," n ( l ) d l .  

Solution: Since w >> u p ,  we have (cf. Eq. (9.17)) the dispersion relation 

~ = w2 - w;, or k2c2 = w2 - I&. 
k2 

fi 

( t , p  N t o , p o ) .  Moreover 
nez  

u p  = - , n = n(Z). 
m c o  

The group velocity vg is given by 

2 d&J 
v g  = z, so that vg 

- (!%) , 
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The time of flight T of a pulse (or wave packet which travels with the group velocity, see Chapter 15) 
from its source to the observer is 

Let T + T, for w + wi, i = 1 , 2 .  Then 

This means 

Example 13.2: Scattering of radio waves 
Radio waves with frequency w = 3 x lo7 per second are emitted from a point on the surface of 
the Earth (radius 6.37 x lo6 m) and are reflected back from the ionosphere approximately 3 x lo5 
m above the surface of the Earth. Calculate the largest angle of reflection 8, at which the wave 
is reflected back to the surface of the Earth. Also calculate the maximal density of the electrons 
determined by this angle. 

Solution: Since the angle of reflection is equal to the angle of incidence, it is also the largest angle 
of incidence at layers in the stratosphere which is asked for, i.e. the extreme to vertical incidence. 
Hence we draw a tangent to the surface of the Earth and extend it to the point of reflection. 

\ 

\ \ '  6 . 3 7 ~ 1 0 ~  m /  

Fig. 13.5 The requested angle 8. 

We therefore have the geometry shown in Fig. 13.5. Hence 

6.37 
6.37 + 0.3 

- - = 0.9550, e N 730. 6.37 x lo6 
6.37 x lo6 + 3 x lo5 

sine = 

We use the following relation obtained above in the text (cf. Eq. (13.13b)) 
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With 
E O  = 8.854 x A s/(V m), 

this yields for w = 3 x lo' per second the density 

n N 8.5 x lo1' 

of free electrons per meter3. 
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Chapter 14 

Wave Guides and Resonators 

14.1 What are Wave Guides? 

Wave guides are cylindrically shaped objects of metal (almost ideal conduc- 
tors) which are open at both ends. Resonators, also called resonant cavities, 
differ from these in being closed at both ends. The interior of such objects is 
filled with some homogeneous material with electromagnetic constants E ,  p; 
alternatively the interior can be composed of layers of different materials. 
We have seen before, that the larger the conductivity a of a medium or the 
frequency of the incident electromagnetic wave, the smaller the skin depth, 
i.e. the depth of penetration of the radiation into the conducting medium. 
This follows from the dispersion relation that we encountered several times 
earlier, i.e. 

together with the plane wave ansatz 

The square root of k2 is 

(14.1) 

(14.2) 

(14.3) 

Here we have to choose the physically relevant sign. For instance for the wave 
exp(ikz) and a medium extended indefinitely in the direction of z ,  the sign 
has to be chosen such that the wave is damped, so that the current density 
j = aE cannot grow arbitrarily (which would be nonsensical). It is because 
of this skin effect that it is possible to confine radiation in hollow bodies or 
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to use them for the propagation of waves (ideal conductors with 0 = 00 do 
not permit any penetration of radiation into the walls). The radiation is fed 
into the wave guide or resonator with a sender or emitter. We assume here 
that sender and receiver of electromagnetic waves or signals are effectively 
at infinity, so that there are no charge or current sources in any finite part 
of space which would have to be taken into account in our considerations. A 
signal is a wave packet propagating with group velocity, and will be discussed 
in more detail later. Such a signal given at (say) time t = 0 and at a particular 
point of the conductor characterises the external charges and currents which 
generate the corresponding fields E and B (charges for E and currents for 
B). Correspondingly one can investigate the properties of wave guides and 
resonators in terms of current I along the wave guide and the potential 
difference or voltage V across it instead of the fields E and B. We will 
derive later the corresponding equations for the important case of the coaxial 
transmission cable, for which we calculated earlier the capacity and the self- 
inductance per unit length. The consideration of wave guides is therefore 
very instructive because this involves the full interplay between radiation 
and boundaries. 

We now consider electromagnetic waves in the hollow space enclosed by a 
wave guide (we consider resonators separately at the end). For E, H c( e-Zwt, 
and (as explained above) j = 0 = p, D = EE we have 

V x E = ZwB, 
V x B = -ipEwE, 
V . E = O ,  
V . B = O .  (14.4) 

We observe here the symmetry of the equations in exchanges E tf B with 
w t+ - w ~ E ,  which we will exploit later. We have seen in earlier chapters that 
by performing the “curl-curl” operation, i.e. V x V, on Maxwell’s equations, 
the following equations result 

V2E + pw2E = 0, 
V2B + pw2B = 0. (14.5) 

In view of the cylindrical symmetry of the problem (cylinder axis along 
the z-axis) we expect waves, which travel along the z-direction, i.e. we set 



14.2 Transverse Fields Derived from Longitudinal Fields 291 

One should note that the directions of E and B are still arbitrary. In general 
it is also possible that E(x, y)  and B(x,y) can depend on z .  We now set for 
convenience 

a2 a2 

ax a y  V2 = Vi + 02, where 0; = + -, (14.7) 

and I means “transverse”, so that 

and hence we obtain 

(0: + pew2 - k2)E(x, y)  = 0, 
(0: + pew2 - k2)B(x,y) = 0, (14.8) 

with the second equation for B resulting from the symmetry pointed out 
above (see Eq. (14.5)). We set in addition 

B = B, + BI. (14.9) E = E , + E l ,  

14.2 Transverse Fields Derived from Longitudinal 
Fields 

We now show that it suffices to know the z-components E,, B,; the transverse 
fields E l , B l  can then be obtained from these. We consider the two curl- 
equations of Eq. (14.4): 

Case (1). We have 
V x E = i w B  

or with (14.9) and 

a a  a v,= (- -), ~ , = e , - ,  az 
ax’  a y  

the following equation 

In the direction of z 
01 x E l  = iwB, 

(14.10) 

(14.11) 
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and in the (x,y)-plane 

V x E l  + Vl x E, = iwB1. (14.12) 

We multiply Eq. (14.12) from the left by V,x and obtain (see comments at 
the end) 

iwV, x BI = V, x (V, x E l )  + V, x ( V l  x E,) (14.13) 

(14.14) 

In the case of the first two expressions on the right of Eq.(14.14) we used 
the relation “curZ curl = grad div - dzv grad ”, in the case of the remaining 
terms the relation 

= V,(V, . El) - (V,. V,)EI 
+VI(V, . E,) - (V, . Vl)E,. 

A x (B x C) = (A C)B - (A * B)C, (14.15) 

taking care of the ordering. The first and the last contributions on the right 
of Eq. (14.14) are scalar products of orthogonal vectors and therefore vanish. 
Hence we are left with 

-V;El+ VI (2) = iwV, x B l .  

Case (2). In a corresponding way we deal with 

V x B = -iwpcE, 

i.e. 
(01 + 0,) x (BI + B,) = --i~pc(El + E,), 

where the left hand side is the following sum 

0 

so that in the direction of z :  

V l  x B l  = -iwpcE, 

(14.16) 

(14.17) 

(14.18) 

But

so that
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and transversally 

V l  x B, + V, x B l =  - i ~ p ~ E l ,  

i.e. 
V, x B l  = - V l  x Bz - iwpEEl. 

We insert this in Eq. (14.16) and obtain 

k2EI + VI (z) = iw[-Vl x B, - iwp~El],  

i.e. arranging the contributions in a different way, 

Hence 
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(14.19) 

(14.20) 

Owing to the symmetry of the Maxwell equations (14.4) in E and B we have 
also 

(pew2 - k 2 ) ~ I  = vI- + iwpe(e, x v ~ ) E ,  . (14.21) 

We see therefore: The transverse components of the fields can be obtained 
from the longitudinal components, in fact in each case from both longitudinal 
components. The relations (14.20) and (14.21) can also be derived in a 
different way, i.e. by immediate substitution from 

( 2  ) 

and 
dB aD V x E = - - ,  V x H = - .  
at at 

in the interior of the wave guide (i.e. not in the wall).* 

*In these equations the derivatives with respect to t and z are replaced by -iw and ik, and the 
equations are then solved for the transverse components of the fields. 
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14.3 Boundary Conditions 

We now come to the important aspect of boundary conditions. We recall 
for this reason the continuity conditions at a boundary surface. We had in 
particular 

Bil) = Bi2), EL1) = Et(2), with k x E = wpH = wB, (14.22) 

where “n” stands for “normal component” and “t” for “tangential compo- 
nent”. The two conditions in Eq. (14.22) are exact. The other two conditions 
which we obtained and used previously are not needed in the present case 
since surface charge and surface current are here zero (for 0 = co). The two 
conditions above can also be written (en . e, = 0) 

n - B = O ,  n x E = O  (14.23) 

with B(’) = B,  E( l )  = E in the interior of the wave guide and 
outside (again for CJ = 00, i.e. ideal conductors). We assume here that the 
wave guides are infinitely long in order to avoid finite end effects. 

= 0 = 

We can write the two boundary conditions: 

n (B l  + B,) = 0 and n x ( E l  + E,) = 0, 

i.e. (since n I B,): 
n . B l  = O  

and 
n x E l  = 0, - 
vector lie, 

n x E, = 0, i.e. E, = 0. - 
vector l e ,  

(14.24) 

( 14.25) 

(14.26) 

These conditions hold at the boundary surface (i.e. not anywhere else). Since 
we saw that the fields E l , B l  follow from E,,B,, we are interested in the 
boundary conditions and the differential equations of E,, B,. Thus we have 
to find the boundary condition of B,. This is our next step. 

Vector multiplication of the Maxwell equation (14.19) by e, gives 

Using Eq. (14.15) it follows that 

0 - (e ,  V,)Bl  = -VIBz  + 0 - iwpe(e, x E l ) ,  
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i.e. 
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( 14.27) 

Scalar multiplication of this equation by n yields 

a 
-n . B l  = n . VlB, + iwpm. (e ,  x El) .  
a2 

i.e. 

we obtain 

f ik (n .  B l )  = - - iwpe(n x E l )  . e,. (14.28) 

Thus at the surface of the wave guide we have with Eqs. (14.24) and (14.28) 

an 

(14.29) 

Above we reduced the Maxwell equations to the following two equations 
which apply to each of the three components of the fields, i.e. 

(0; + pew2 - k2)E(zl y) = 0, ('7; + pew2 - k2)B(., y) = 0. (14.30) 

Moreover, we saw that the transverse components E l , B l  can be derived 
from a knowledge of the longitudinal components E,, B,. Thus there remains 
the investigation of the equations 

(0; + p€w2 - k2)Ez(z ,  y) = 0 , (Vt + pew2 - k2)B , (a : , y )  = 0 (14.31) 

with the boundary conditions 

= o ,  -1 = 0, 
~2 I surface an surface 

(14.32) 

where the surfaces here are two-dimensional. Equations (14.30) with these 
conditions define an eigenvahe problem. In general the boundary conditions 
cannot be satisfied simultaneously. 

Since
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14.4 Wave Guides and their TEM Fields 

We consider wave guides. The frequency w is given; the eigenvalue problem 
then determines the permissible (axial) wave numbers k.  Depending on the 
boundary conditions one distinguishes between fields of different types: 

TM, transverse magnetic: B, = 0 everywhere (hence the terminology) 

and Glsurface = 0, 
TE, transverse electric: E, = 0 everywhere 
(hence the terminology) and l3B,/dnlsUrf,, = 0, 

TEM, transverse electric-magnetic: B, = 0 = E, everywhere. 

We consider first the case of TEM fields. 

14.4.1 TEM Fields 

In these cases we obtain from Eqs. (14.20) and (14.21) the equations 

(pew2 - k2)E, = 0, (pew2 - k2)Bi = 0. (14.33) 

These equations have the trivial solution 

E l  = 0 = B l  for pew2 - k2 # 0. (14.34) 

Hence for a nontrivial solution we have in general 

(14.35) 2 2  PEW - k  = O ,  k =  @W. 

Equations (14.20) and (14.21) imply 0 x El,B,  = 0, i.e. E l , B l  remain 
undetermined. For this reason we now write the TEM fields 

According to Eqs. (14.31) we now have (with V; E A,): 

A l E l =  0, A l B l =  0, (14.37) 

i.e. ETEM, BTEM are solutions of the two-dimensional Laplace equation. 
Before we investigate these equations we show that 

ETEM 1 BTEM- (14.38) 

This is not trivial, because so far we established the transversality of elec- 
tromagnetic radiation only for the case of an unlimited medium. 
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From 
aB 
at V x E = -- with B 0: e-Zwt 

we get 

i w B  = V  x E = ( V i + V , )  x E 
a 

az 
= Vi x E + -(e,  x E). 

For E,B + ETEM,BTEM, i.e. B, = 0 = E, the fields E,B are vectors in 
the (x, y)-plane so that 

i.e. parallel to the z-axis, i.e. 

(14.39) 
a 

~ ~ B T E M  = z ( e ,  x ETEM) 

VL x ETEM = 0 (+ E T E M  = vl+>. 
and 

(14.40) 

From Eq. (14.39) we deduce that 

With 
i (k2-wt)  

ETEM = EOTEM(x, Y>e 

we obtain 
lc 

BTEM -(% x ETEM), 
W 

i.e. 
BTEM = @(e,  x ETEM). (14.41) 

Thus ETEM and BTEM obey the same transversality connection as in the 
case of the unlimited medium. 

However, TEA4 waves do not propagate in hollow wave guides, which are 
made of ideal conductor material (i.e. have = m and hence represent 
equipotential surfaces). This can be seen as follows. Inside the wave guide 

V * E  = 0, V * B 0, 

i.e. for E, = 0 = B,: 

(14.42) 



298 CHAPTER 14. WAVE GUIDES 

On the other hand, from Eq. (14.40) or from the r-component of 

V x E = i w B ,  V x B = - i p w E  for E, = 0 = B,, 

we obtain 
aE, aE, 

= iwB, = 0, 
a x  a y  

aBy aB, 
- - - = -ipewE, = 0. ax a y  

(14.43) 

We write the solutions of these equations with potentials q5 = $(x, y), = 

$(X, Y> 

Then Eqs. (14.42) and (14.43) become 

a2q5 a24 a2$ a2$ - + - = o ,  - ax2 ay2 ax2 + ay2 = O, 

a24 - a24 
a x a y  a y a x ,  axay  a y a x ,  

a2$ - a2$ - -  - 

i.e. q5 and $ are solutions of the 2-dimensional Laplace equations 

Alq5 = 0, A,$ = 0. (14.45) 

Since, however, the conducting surface of the wave guide is an equipotential 
surface, on which the potential of E is constant, we deduce from Gauss’ 
theorem and the fact that the interior of the wave guide does not contain 
any charges, that inside the wave guide 

E l = V i d = O  

(from sF(v) E . d F  = sv V . E d V  = sv pdV/E = 0) .  The argument here is 
analogous to that which we used in considerations of spherical condensers and 
cylindrical condensers in electrostatics. Since the components of B are linked 
with components of E via the transversality condition (14.41), it follows that 
also B, = 0 = By. Thus TEM waves do n o t  propagate in hollow and empty 
pipes. 

However, this is different if the wave guide contains inside another sym- 
metric surface, like a concentric metal cylinder of circular cross section; a 
construction of this type which is no longer simply connected is known as a 
coaxial cable. In this case according to Fig. 14.1 $2 # 41. In this case the 
Laplace equation has a solution for the fields E, B which does not vanish. 
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14.4.2 The Coaxial Transmission Cable 

We have for the TEM wave of the coaxial cable 

Also 
i (wt -kz )  

ETEM = (vl4)e-  , 

A14 = 0. 
and we have to solve 

Y 

t 

Fig. 14.1 Cross section of a coaxial cable. 

We choose a cable with circular cross section and radii R1,R2 (with R2 < 
R1). The cylindrical symmetry of the cable suggests separation of the equa- 
tion in cylindrical coordinates, here in polar coordinates, so that we have 

This equation has to be solved with the boundary conditions 

(14.47) 

+ ( p  = R1, 'p) = $1 = const., 

4 ( p  = R2,'p) = 4 2  = const. (R2 < R1). (14.48) 

Because of the symmetry of the cylinder 
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i.e. @/a(p = 0, so that 
- - ( P $ )  1 8  = 0, 
P aP 

and hence 
4 ( p )  = A In P + B,  

and so 

41 = ~ ( R I )  = AlnR1+ B,  4 2  = 4(&) = AlnR2 + B,  

(14.49) 

(14.50) 

(14.51) 

Thus we have 

i.e. 

Expressed in terms of Cartesian coordinates the relations are 

(14.53) 

One should note that, for Rz + 0 (removal of the inner cylinder) A -+ 0 and 
B --+ 41, i.e. in this limiting case 4 = const., and there is no TEM wave in 
the wave guide, as we observed earlier. 

14.5 Fundamental Equations for the Coaxial Cable 

We mentioned already previously that the investigation of properties of wave 
guides can also be carried out by focusing on the induced charges and cur- 
rents, i.e. we infer from the fields E and H the presence of charge q and 
current I ,  described as induced, which are the same as those which give rise 
to the fields E and H. We now derive the corresponding equations. These 

i.e.



14.5 Fundamental Equations for the Coaxial Transmission Cable 301 

describe the propagation of the potential difference or voltage V = V ( t ,  z )  
and the current I = I ( t ,  z )  along the cable. The equations that we obtain, 
are more general than our derivation here, and retain their validity for many 
other types of wave guides. Thus we consider a coaxial cable with radii a,  b 
(with a < b) .  We let V ( t ,  z )  be the voltage between the outer and the inner 
cylinders at z-coordinate z ,  and we let I ( t ,  2) be the current induced in the 
inner cylinder (or the current corresponding to an appropriate surface cur- 
rent). Then we know that at distance r with r > a ,  from the axis of this 
cylinder, as indicated in Fig. 14.2, the magnetic field strength H is given by 

(14.54) 

as may be verified, for instance, by referring back to Example 8.2. We now 
apply Faraday’s law 

i E . d l =  -- sat s,,,, . dF 

to the area (1234) in the interior of the cable as shown in Fig. 14.2. 

4 3 

(14.55) 

Z 

I 
Z 

Fig. 14.2 The coaxial transmission cable. 

We obtain 

We set l1 E . dl f -V(t, z ) .  (14.56) 
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Then, since the field E is radial and inside the conductor zero, 

a l b  W I  4 drdz  
P3F V ( t ,  z + d z )  - V(t, z )  = - - at 

implying 

or 
av(tv4 = -Lo a w ,  4 

a z  at (14.57) 

with self-inductance (see Example 8.2): 

Lo = - P ln(b/a) per unit length. (14.58) 
27r 

This result is independent of our choice of directions in Fig. 14.3. 

his displacement current, i.e. 
A second equation is obtained from Amphe’s law to which Maxwell added 

( 14.59) 

Fig. 14.3 Surface piece oof the Ccoaxial transm

We apply this to asection of the cylindriccal surface of the cable at ra
r,a<r <b, b, as indicated inFig. 14.3. The magnetic field B is entirely d
to the current on the internal cylinder (as we observed earlier)is given

by
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We thus have along the path C indicated in Fig. 14.4, where dF = -rdpe, x 
dzez 1 

P P = 0 + rdp-I(t,  z + dz)  + 0 - -I(t ,  z ) ( rdp )  2x7- 27rr 
P 8% 4 = -dzrdp-----. 

27rr d z  
(14.60a) 

Evaluating the other side of the Ampkre-Maxwell equation (14.59) we obtain, 
since j = 0 in the intermediate space and in the case of the cylinder E = 
q/27rer7 q the induced charge per unit length, 

= - - tpdzdpc  at (A) 27re 

(14.60b) 

since V = qln(b/a)/27re per unit length, as may be checked by consulting 
Example 2.12. From the results (14.60a) and (14.60b) we obtain 

and so 

or 

where 

(14.61) 

(14.62) 

is the capacity of the cable per unit length obtained in Example 2.12. One 
should note again the relation 

(14.63) 
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(in vacuum c‘ = c). Differentiation of the fundamental equations (14.57) and 
(14.61) with respect to t and z yields 

a2V(t, 2 )  @I(t ,  z )  d2V(t, 2) a2I(t, 2) 

@I(t ,  z )  @V(t ,  2 )  a q t ,  2 )  aW( t ,  2 )  

= -Lo 

= -co 
at2 ’ a22 ataz ’ 

at2 ’ (3.22 azat ’ 

= -Lo 

= -co 
ataz 

azat 
and hence the equations 

a V ( t ,  z )  
= 0, 

m ( t ,  z )  
--LOCO at2 

a22 

= 0. 
a2I(t, z )  @I( t ,  z )  

-Loco 
822 

(14.64) 

These equations show that current and voltage propagate wavelike along the 
cable with the phase velocity c’ = l / d m  because 

, k =LOCOW 2 = -. w2 (14.65) 
d2 

I ( t ,  z ) ,  V ( t ,  z )  oc ei(kz-wt) 

14.6 TM and TE Waves in Wave Guides 

14.6.1 General Considerations 

We first demonstrate that TM and TE waves are not transversal, i.e. they 
do possess longitudinal components. In the cases of TE and TM waves the 
expressions for E l  and B l  in Eqs. (14.20) and (14.21) also simplify. Setting 

2 = pew2 - k2 ,  E, B 0: e ikz ,  k2 > 0, (14.66) 

we obtain from Eqs. (14.20) and (14.21) for y2 # 0: 

TM: B, = 0 everywhere, 

(14.67) 1 1 
Y Y 

E l  = , ikVlE, ,  Bl = 3 i p E w ( e z  x V l ) E Z ;  

TE: E, = 0 everywhere, 

iW ik 
Y Y 

E l  = -7(ez x Vl)B,, BI = ,VlB,. (14.68) 

TM: Inserting in the second of Eqs. (14.67) the expression for V I E ,  from 
the first of Eqs. (14.67), we obtain 

(14.69) 
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TE: Inserting similarly in Eqs. (14.68) the expression of the equation for 
V l B ,  into the other, we obtain 

(14.70) 
W 

E l  = --e,  x Bl .  
k 

We conclude: E,, B, # 0 ,  because from Eqs. (14.67) for TM 

VIE, = -El Y2 
ak 

and from Eqs. (14.68) for TE 

Y2 V l B ,  = -Bl. ik 

Thus the components E, (TM), B, (TE) are not both zero; i.e. the T M  and 
TE waves are not transversal waves, they possess longitudinal components 
E, and B,. 

We saw previously (see Eqs. (14.30)), that E(z,y), B(z,y) satisfy the 
equations 

(14.71) 

(i.e. for each of the three components of E and B). We have therefore in 
particular for the z-components 

T M :  

+ r2)% Y) = 0, cv; + r2>B(., Y) = 0 

(0: + r2)E,(z,y) = 0, E,Isurface = 0, (B, = 0 everywhere), (14.72) 

TE: 

(V? + r2)Bz(z, Y) = 0, = 0, (E ,  = 0 everywhere). (14.73) 

Equations (14.72) and (14.73) together with their boundary conditions define 
an eigenvalue problem for the determination of E, and B,; we observed 
earlier that once both of these are known, one can derive from them the 
transverse field components. For the solution of Eqs. (14.72) and (14.73) one 
requires precise information about the geometry of the wave guide. 

14.6.2 Wave Guides with Rectangular Cross Section 

As an example we consider a wave guide with rectangular cross section as 
illustrated in Fig. 14.4. We show in particular, how the waves propagate 
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through the wave guide by continuous reflection from the walls. We begin 
with TM modes. 

The hollow inside of the wave guide is bounded by the planes 

x = O ,  z=a, y = O ,  y = b .  

These are the surfaces on which the boundary condition Ezlsurface = 0 has to 
be imposed. In Eq. (14.72) for E, the variables z and y can be separated. 
We therefore make for EZ(z ,  y) the ansatz 

so that 

or for x # 0, a and y # 0, b: 

or 

and 

a2g(y) + ( 7 2  - p2)g(y) = 0, 
aY 

where p2 = const. 

Y 
X 

(14.75) 

(14.76) 

Z 

Fig. 14.4 Wave guide with rectangular cross section. 
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In order to solve the first equation, Eq. (14.75), we write 

f ( ~ )  = A C O S ~ ( X  + ZO), A # 0. 

A and xo are the two integration constants. These are determined with the 
help of the boundary conditions. Thus E,l,,,f,,, = 0 implies 

f(0) = 0, f(4 = 0, 

so that 
cospzo = 0, cosp(a + zco) = 0, 

and hence 
n- 371 7T 371 
2 2  2 2  px0 = f-,f-, . . . , p(a  + zo) = f-, f--, . . . , 

(14.77) p = - ,  n = O , f l , f 2  , . . . .  

(If we had instead of p2 + -p2 and hence f 0: coshp(z+zo) or sinhp(z+xo), 
the boundary conditions could not be satisfied in a nontrivial way). We 
conclude that 

nx  
a 

and 

f(z) = A cos p(x + zo) 

= A(cos pz cos pzo - sin p z sin pzo) 
v 

nr 
- 

0 - 
a 

n r x  
= A’sin (T), n = O , f l , f 2 , f 3 , .  . . . (14.78) 

We now consider the second equation, Eq. (14.76). Proceeding as in the 
above case we obtain 

S(Y) = Bcos + Yo),  B # 0, (14.79) 

and 
EzIsurface = 0 implies g(0) = 0, g(b) = 0, 

i.e. 

so that
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and 
g(y) = B'sin ( F), m = O , f l , .  . . . (14.80) 

Summarising we find: TM modes have the eigensolutions of Eq. (14.72) 
given by 

with 

From this we obtain the eigenvalue relation 

2 2 n2r2 
X f {m,n} 2 2 2 - m r  Y =Yx, Y x = F + -  

a2 ' 

( 14.8 1 a) 

( 14.8 1 b) 

(14.82) 

The z- and y-components of E can now be obtained from E, with the help of 
Eq. (14.20), or one can obtain these in some other way. Similar considerations 
apply in the case of the components of B. 

We saw that the following conditions hold at the boundary: 

i.e. for the fields from inside the wave guide 

We thus obtain 
(a) for planes z = O,a, n parallel and antiparallel to e,: 

B, = O,E, = 0 = E,, i.e. E, # 0; 

(b) for planes y = O,b, n parallel and antiparallel to ey: 

By = 0, E, = 0 = E,, i.e. Ey # 0. 

We assume 

E(z, Y, 2, t )  = E(z, 
qlcz-wt) , 

The equations to be solved are (for p = po, E = €0, cop0 = 1/c2) 

B(z, y, z ,  t )  = B(z, y)ei(""-wt). 

(14.83) 
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As an example we consider E, (other components can be dealt with 
similarly). We therefore select the equation 

(14.84) 

The variables z, y can be separated, i.e. we put 

E, cx (sinps or cospz)(y-part), 

so that 

(a,.- 
Since E, is nonzero for z = 0,a (see boundary conditions), we choose E,  cx 
cos pz, p = mr/a .  Since, however, E, has to vanish for y = 0, b (see boundary 
conditions), we choose for the y-part 

sin(?), n = 0 , 1 , 2  , . . . ,  

so that 
(14.85) 

We obtain the same expression with Eq. (14.20) from E,. For E, to satisfy 
Eq. (14.84), we must have 

E, = a cos ( T) m r x  sin ( T). nrY 

For the wave E(z, y,  z ,  t )  cx eikz to propagate in the direction of z ,  we must 
have k2 > 0, i.e. E must be periodic in z.  This means 

(14.86) 

We see: w must be larger than some limiting frequency W O .  Proceeding 
similarly with all components E,, Ey , E, , B,, By, B,, we obtain the following 
expressions 

E, = Q: cos( y) sin( y) 
Ey = ,O sin( 7) cos( y) 
E, = y sin( y) sin( y) 

B, = &sin( y) cos( Y) 
By = ,f3’ cos( y) sin( Y) 
B, = y’ cos( y) cos( y ) 

, ei(kz-wt)  (14.87) 
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We refer to these expressions again 1ater.t 
TM waves have everywhere B, = 0, i.e. y’ = 0. We deduce from 

Eq. (14.87) that these waves are different from zero if (to be shown) m # 
0, n # 0. In order to see this, we recall: The expressions for E, B must satisfy 
Maxwell’s equations. Hence we consider these: 

(a) V E = 0 yields (apart from the factor sin(nrz/a) sin(nry/b)) 

mn nn 
a b 

-a- - p- + i k y  = 0; 

(b) V . B = 0 yields 

/mn ‘n r  
a b - + /3 - + iky‘ = 0; 

(c) V x E = i w B  yieldst 

nr 
b 

a’iw = y- - i k p ,  

(d) pV x H = - Z W E ~ E  yields 

n r  lmr 0 = iw+y - p - +a‘-. 
a b 

(14.88) 

(14.89) 

(14.90) 

(14.91) 

For TM waves y’ = 0. We show: For m = 0, n # 0 the entire field is zero. 
From (b) we have 

mr n r  
a b 

a’- +PI- = 0. 

For m = 0 ,n  # 0 + p’ = 0. It then follows from (14.91), since y’ = 0,p’ = 
0 + a = 0. Then E, = 0 (since a = 0), E,,E,,B, = 0 (since m = 0), 
B, = 0 (since p’ = 0), B, = 0 (since y’ = 0). Hence the entire field = 0 (can 

so that according to Eq. (14.87), 

used in Example 14.2. 

cx sin. . . sin. . . and n 0: cos . . . cos . . . . 
$Observe that for m = 1 , n  = 0 one obtains a’ = -5,~’ = g. These expressions will be 

Later we write
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also be obtained faster from Eq. (14.69)). Thus there is only one limiting 
frequency w11 which is such, that TM waves are possible only if 

(14.92) 

TE waves have everywhere E, = 0, i.e. y = 0. In this case a solution 
exists also in the case when either m is zero 07- n is zero. The lowest limiting 
frequency for a > b,m = 1,n = 0 is (for m = 0 , n  = 0, according to (b) 
y' = 0, implies E, = 0, Ey = 0, hence no field): 

71 
w10 = c- < w11. 

a 

With this the fundamental wave is given by 

(14.93) 

which is a superposition of two waves with k, = 7r/a. 

Previously we had defined a plane wave by the expression 

r k . r - w t  = const. ei(k.r--wt) fo 

The wave vector k is perpendicular to the plane with constant phase and 
points in the direction of propagation of the wave. The equations 

7r 
y = 0, kz f -x - w t  = const. = a 

a 

describe wave-fronts of plane waves. The gradients of the wave-fronts are 
therefore, see Fig. 14.5, according to the waves of these wave-fronts and at 
t = 0, i.e. 

a 7rx z = - - - -  
k a k '  

given by the derivative 
dz 7r 
- = T- = F t a n 8  
dx U k  

as indicated in Fig. 14.5. One should note here the angles E of both wave- 
fronts with respect to the z-axis, and the angles I7r/2 - € 1  with respect to the 
x-axis. One wave-front can be looked at as the reflection of the other at the 
wall of the wave guide. The direction of propagation (i.e. of the normal to 
the wave front) is in both cases given by 

a l k  
COSE = f 

J ( a / k ) 2  + (ua/..)2 = d m '  
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Z 

z = d k  - 
,/; 

tan(.n - 0) 
= -tan 0 
= -dak 

/ 
/ 

wave-front ,’ 

wave-f ront 

/ 
*\ 
walls of 

wave guide 

z = d k  + d k  

tan0 = d a k  

3 X 

Fig. 14.5 Reflection at the walls of the wave guide. 

However 
W 2  m2x2 n2n2 
C2 = k 2 + T  + 7. 

- W 2  = k 2 + - - ? = k  x 2  2 +- w102 

- 

In the case of the fundamental TE wave with m = 1,n = 0, we have 

2 T2 2 w10 
w10= y c  , - = -, 

C2 a c2 ’ a a C 

or 
kc = J;J2-wlo2. (14.94) 

It follows that 
W O / C  - w10 

w / c  W 
COSE = 7- - F-. 

(Later we shall need 1 - cos2 E = 1 - (w lo /w)2) .  This means 

w10 we have COSE = 7-. for e i (kz f+wt)  
W 
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We see therefore: We can imagine the field E as arising from a continuous 
reflection of two superposed plane waves at the walls 2 = 0,a  which are 
incident on the walls at the angle E ,  one wave permitting interpretation as 
the reflection of the other (with the correct phase difference). We note that 
at the critical frequency w10 we have k = 0. In this case COSE = f l ,  i.e. 
E = 0, fn, f 2 n ,  . . . . 

In our further exploration of wave guides with rectangular cross section 
we restrict ourselves to  some general remarks. 

1 
I 

Fig. 14.6 At a given frequency w only modes with eigenfrequency 
wx < w are transmitted. 

We let the eigenvalues of the eigenvalue problem of Ezx or Bzx be 

y2 = 7; > 0,  x = 1 , 2 , . .  . . 

Since y2 = pew2 - k2, it follows that 7: = pew2 - k2, or 

With 

we have 
k = & Z d w 2  - w?. (14.95) 

In order for the waves to  propagate in-the wave guide proportional to ei(kz-wt) 
k must be real, i.e. w2 > w;. Thus wx is a critical or limiting frequency. This 
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is indicated in Fig. 14.6. This means that if w2 < w, then A2 > A, i.e. the 
wavelength must be less than the appropriate X2, if it is to propagate in the 
wave guide. 

14.6.3 Wave Guides with Circular Cross Section 

As another example we consider a wave guide with a circular cross section 
of radius p = a,  as illustrated in Fig. 14.7, and made of ideal conductor 
material. 

Fig. 14.7 Wave guide with circular cross section. 

The boundary condition on E, is E,I = 0 for p = a,  the angle cp being 
arbitrary. In planar polar coordinates Eq. (14.72) is 

so that 

The variables p and cp can be separated by setting 

and 

(14.96) 

( 14.97) 

(14.98) 

We write
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The solution of the first equation is 

h('p) = e f i P p ,  p = const. 

Clearly we must demand that E,('p) = E,(p + 27r), i.e. h('p) = h('p + 27r), 
and therefore we must have 

&C12T = 1 , i.e. p = r n = O , f l , f 2  , . . .  

The second equation is then 

The equation 

+ 1-- Z ( z ) = O  a 2 z ( x )  1 az(x) 
ax2 + -- x ax ( :22) (14.99) 

is the differential equation of the cylinder functions Jm(x),Ym(x), so that 
the general solution is 

d P )  = AJmhP) + BYm(7P). 

The solution Ym(x) is given by 

2 Ym(x) = -Jm(x) 1n(ecx/2) + O(x), C = Euler constant, 
77- 

the Bessel function Jm(x) by 

The field Ez(x, y) or E,(p, 'p) must be finite for p -+ 0. Since Ym(yp)  becomes 
infinite for p + 0, we are compelled to impose the finiteness condition 

We thus obtain for the TM modes 

The boundary condition E,  = 0 for p = a implies the eigenvalue equation 

Jm(ya)  = 0. 
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This is a transcendental equation with infinitely many roots. For the s-th 
positive root ya  with s >> m, an expansion is given in books on Special 
Functions, i.e. 

where 

In order to understand the reflection of the wave at the walls, we can argue in 
a way analogous to our treatment of the previous case (cf. after Eq. (14.93)), 
where we expressed the trigonometric function in terms of exponentials. This 
means in the present case, we have to re-express the Bessel function J ,  
in terms of Hankel functions H(2j , i.e. we have to  use the following 
formulae from books on Special Functions 

I J,(R) = - H2'(R)  + H E ) ( R )  
2 " 

with 

for R # 0, i.e. away from the axis of the wave guide. We do not enter into 
further details. 

14.7 Alternative Treatment using Scalar and 
Vector Potentials 

Our first step is to search for equations for El B in terms of the scalar poten- 
tial q5 and the vector potential A. Again we assume that the interior of the 
wave guide is filled with some homogeneous material with electromagnetic 
constants ~ , p  (e.g. those of the vacuum). Then inside the wave guide the 
following equations apply 

H
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But, we also have 
E = -A - Vq5, 

and 
v x B = v x (V x A) = V ( V . A )  - V ~ A  

v x B = p~ x H = PEE. 
and 

Hence we can write 

 LEE = V(V * A) - V2A = p e [ - A  - Vd]. (14.101) 

Now that we are using the vector potential A, we still have the freedom to 
choose some gauge fixing condition. We choose again (as in our treatment of 
the Lihard-Wiechert potentials) the Lorentz gauge, i.e. we set 

V . A = - p ~ d .  

Then 

With the ansatz A 0: e-iwt (as above for E, H) the following equation results 

(02 + pew2)A = 0. (14.102) 

Hence from Eq. (14.101): 

- ip~wE = V(V . A) + pw2A (14.103) 

with 
B = p H = V x A .  (14.104) 

Equations (14.103) and (14.104) show: E,B can be derived from A, which 
is a solution of Eq. (14.102). 

We consider now the T M  and TE cases separately. 

(a) TM B, = 0 everywhere. 

w e  set 

Then 

B = V x A =  

A = (0,0, Q). 
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and from Eq. (14.103), 

as 
-@EWE = V (z)  + pew2(0,  0 ,  Q), 

i.e. 
a2* a2* a2* 
axaz ayaz’ a22 

- + 
However, we still have the equation V . E = 0, i.e. from Eq. (14.103) 

+ pEu2s) = 0 ,  
a2* a2s 

and this is satisfied in view of Eq. (14.102), for A = ( O , O , s ) ,  i.e. 

v2s + p w 2 @  = 0. (14.105) 

All fields can now be derived from the one scalar function a, which is a solu- 
tion of this equation. The function s is frequently called “stream function”. 
The associated boundary condition is, as we saw, 

E z  [surface = 0 (also = 0, since B, = 0 
surface 

i.e. on the surface Etang = 0. For the rectangular wave guide we have (see 
above) 

(b) T E  E, = 0 everywhere. 

The relevant Maxwell equations are symmetric under the interchange 

E tt H with - w p  t-t W E ,  

i.e. E t--f -p. Thus in this case we have a scalar potential II with 

v2n + pcw2rI = 0 ,  (14.106) 

where this time 

and 
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Again all fields can be derived from the one scalar function ll which is a 
solution of the above equation with the boundary condition 

= 0 and E, = 0 everywhere. 31 an surface 

For the rectangular wave guide this means 

n r x  n c( cos ( e) cos (7) eikze-iwt. 

14.8 Wave Velocities 

We return to our considerations of rectangular wave guides. The wave or 
phase velocity of the TE fundamental mode with m = l , n  = 0 is (cf. 
Eq. (14.94) and thereafter) 

W wc C 

( 14.107) 
C > c. - C - - 

J m - Z  
The wavelength is X = 2 r c / w .  

Next we consider the phase velocity in the general case, this means for 

, i.e. - - k 2 + T .  - wo2 (14.108) W2 

C2 C 

In this general case the phase velocity is 
W W 

Thus the phase velocity is always larger than the velocity of light! In fact it 
becomes infinite at the critical frequency wo. 

The velocity of energy transport is here in the case without attenuation, 
i.e. without loss of energy, the so-called group velocity. This group velocity 
vg is defined by 

c w 2 -  v g = d i c = o i k J ~ = d ~ 2 -  dw d k c2 
< c. (14.109) - 

W k2c2 + wo 

We see that the group velocity of the wave in the wave guide is always less 
than the velocity of light and vanishes at the critical frequency. Finally we 
observe that 

2 (14.110) 

This is again a relation which is of wider generality than our derivation here. 
vphasevg = c * 
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14.9 Energy Transport in Wave Guides 

14.9.1 The Complex Poynting Vector 

In our earlier treatment of the Poynting vector we always assumed real quan- 
tities. We now wish to allow for complex fields, and complex 6,p .  

For the calculation of the transport of energy in wave guides we consider 
as  a first step time averaged products of real vectors, which result from com- 
plex vectors and lead to the definition of the complex Poynting vector. This 
complex Poynting vector takes into account loss of energy due to complex 
E and p.  Consider the real product,§ in which we again separate the time 
dependence with the factor e--iwt: 

1 
4 

= -[j(z) . E(z)e-2iwt + j*(z) * E*(z)e2iwt + j(z) * E*(x) +j*(z) . E(z)] 

1 
2 

= -X[j(z) + E(z)e-2i"t +j*(z) * E(z)]. (14.111) 

The time average of this is (averaged over one oscillation period T = 2 n / w )  

$ iT j(x,t) . E(z, t)dt = - dt-X[j(z) . E(z)e-2i"t +j*(z) . E(z)] ;iT ; 
T 

1 
2 

= -X[j*(z) . E(z)] + 

Therefore 
1 
2 

j(z,t) .E(z,t)dt = -%[j*(z). E(z)]. 

Next we consider this expression integrated over a spatial volume V ,  i.e. 

j(x, t )  . E(x, t)dt = 

§The Ohmic power is dV+ s,'j Edt where jdV = Ids  = (dq/dt)ds.  

However
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1 
dV-R[{V x H*(x) - LJD*(X)) * E(x)]. 

In this foregoing step we replaced j by the Maxwell equation 

3D 
V x H = j + - at with D(x,t)  = ePiwtD(x) ,  

and to go to the next line we use 

div( u x v ) = v . c u r l u - u . c u r l v ,  v v  
E H* 

so that we obtain 

1 
j(z,t) + E(z, t ) d t  = dV28[{-V. (E(x) x H*(z)) s, 

+ H*(x) . (V x E ( x ) ) }  - iwD*(x) . E(z)]. 

Here we use the Maxwell equation 

aB(z't) = iwB(x , t ) ,  V x E ( x )  = iwB(x )  at V x E(z,t) = - 

and obtain the expression 

j(z,t) * E(x , t )d t  = (E(x) x H*(x)) 

- iw(D*(z)  . E ( x )  - H* . B(x))]. 

One now defines the complex Poynting vector 

(14.112) 
1 
2 

S := - ( E ( z )  x H*(z)) 

and the complex energy densities 

1 1 
2 2 

W E  = - E .  D*(x), W M  = -B(z) . H*(x). (14.113) 

Hence we obtain 

S, d V k  lT j (x ,  t )  . E ( x ,  t)dt 

= -%[ S , d V V  . s + +(wE - W M ) ] ,  
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(14.114) 

This result is to be compared with the expression we had earlier. The minus 
sign in the second contribution originates from the appearance of j* (instead 
of j )  in the preceding line. In the case of lossless conductors (i.e. with no 
damping) or dielectric media we have 

B(z) = pH(x), D(z) = eE(z), e,p  real, 

and the energy densities W E ,  W M  are real. In these cases we obtain 

d V i  lT j ( z ,  t )  E(z, t ) d t  = - L,,, XS ndF. 
\ / " 

(14.1 15) 

Ohmic power 

The left side of the equation represents the work (averaged over one pe- 
riod) done by the field E on the source current density j in the volume 
V .  The expression + J RS . n d F  represents the corresponding transport of 
energy through the boundary surface to outside, so that - J RS . ndF is 
the corresponding flow into the volume V .  In other words, the energy flow 
- J XS . ndF into the volume V ,  corresponds to the work done by the field 
E on a corresponding current density in V .  If E and p are complex, there 
are losses of energy which appear in the energy equivalence relation through 
X [ i w  J d V ( w E  - W M ) ] .  

14.9.2 Application of the Complex Poynting Vector 

Our first considerations of energy transport assume that the wave guide 
is made of ideal conductor material. The primary step is to evaluate the 
complex Poynting vector for TM and TE waves. In the case of TM waves 
we had 

ipEW 

Y2 
B, = 0 everywhere, B i  = -(ez x V l ) E , ,  

(14.11 6) 
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where 
( 14.1 16) i€W 

2 S l  = E,(z)e, x H;(z) = -(E,(z)e,) x T ( e ,  x Vi)E, 
Y 

This contribution is, in general, purely imaginary, i.e. when E ,  y2, E, are real. 
The real part of S yields - as we have seen - the flow of energy averaged 
over one period of oscillation; in general S i  therefore does not contribute to 
this. 

We restrict ourselves in the first place to wave guides made of perfect con- 
ductor material and calculate the flow of energy in the longitudinal direction, 
i.e. along the axis of the wave guide. In this case 

(14.117) 

The flow of energy through the cross section A of the wave guide is therefore 

!J? Sze, . d F  = X7 ( V I E z )  (VlE, )*dF.  (14.118) 

Ewk 
= -(VIE,) + (VlE,)*e,. 

Y4 

s, EWk 2Y J A 

In Chapter 3 we used two Green’s theorems of which the first was 

[4O21C, + (V4) . (VNldV = 4;, 4(VN * dF* J, 
Reducing the space dimension by one and making the replacement 4 t 4* 
we obtainq 

qAn analogous reduction of the space dimension by one can also be applied for instance to 
Gauss’ divergence theorem, and yields Vl . A d F  = A .  dl. 

with With this, we obtain
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Hence 

where the path is to be taken along the surface. In view of the boundary 
condition Ezlsurface = 0 the first integral vanishes. The second integral can 
be rewritten with the help of Eq. (14.31), i.e. 

CO: + r2)EZ(z7 Y) = '7 

so that the energy transmitted by the wave guide per unit time is the power 

The integral on the right is a normalisation 

k = & Z 4 w 2  - w:, y2 

it follows that 

(14.120) 

integral of E,. Since, as we saw, 

2 (14.121) = Yx = w w x ,  
2 

L S , e ,  . d F  = E,*(z,y)E,(x,y)dF. (14.122) 

For TE waves one obtains an analogous expression; in this case, however, 
the boundary condition which enters is aB,/dnl,u,~a,e = 0. 

14.9.3 Attenuation of Wave Guides (a # 0) 

Our next step is to consider the attenuation of wave guides, i.e. the loss 
of energy along the wave guide when the walls are made of a metal with 
finite conductivity. In the case of finite conductivity we observed earlier, the 
surface current density K does not exist. However, we then have the current 
density j in the non-ideal conductor, and we can define an effective surface 
current density Keff by 

~ , f f  = Sj (p )dp ,  (14.123) 

where p is the depth of the current j(p) below the surface. We derived 
earlier the following expression for the Ohmic power of a conductor with 
conductivity CT: 

L =  j . E d V .  (14.124) .I 



14.9 Energy Transport in Wave Guides 325 

Averaging this over one period of oscillation for real E and p of the interior of 
the wave guide, and independent of the frequency, we obtain with (14.112) 

( L ) = - /  Rn.ExH*dF,  
F ( V )  

(14.125) 

so that 
- d(L) = --R[n. 1 E x H*]. (14.126) 
d F  2 

For E we have to substitute here the field beyond the (hollow) interior of 
the wave guide. We calculate this as follows. Neglecting the displacement 
current we obtain from Maxwell’s two “curl” equations (for inside the metal) 

al3 V x H = j ,  V x E = - -  at 
with 

E ,H c( e-iwt, B = pH, j = aE 

the relations 
(14.127) 

1 1 
0 w w  

Inserting one equation into the other we obtain 

E Z - V X H ,  H = - V x E .  

1 V x (V x H) = -[V (V . H) -V2H], 1 H = -  
iwpu .Iwpu v 

0 

so that 
V2H + iwpaH = 0. (14.128) 

We let -pn be the coordinate pointing into the conductor or wall, and we 
make the assumption that the variation of H in the plane perpendicular to 
n is so slow that we have in good approximation 

2 a2 
ap2 

v N -  (assumption). 

We then have for the field inside the conductor 

a2 -yjH + iwpuH = 0 
aP 

and (with a = const. and & = (1 + i)/&!) 
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where Hn = const. and " 

Jz 
vG= PO = ~ 

(14.130) 

is the skin depth. For E we have to the same approximation 

We note that Ht = Hoe-iwteikr is the tangential field at (just outside) the 
surface of the conductor with p = u as indicated in Fig. 14.8. Now, 

a a V --n--e-.  
aP P -  

Here n is the unit vector pointing vertically out of the conductor. Then in 
the conductor (and just outside for p = u)  

1 (2 - 1) 1 
E =--(nxH)- 
v Is Po 7 F  11 e, for TM 

and 

(14.132) 

e~ into paper \__i 
Fig. 14.8 The directions of vectors. 

where in the last step one integrates over the two exponentials in Eq. (14.129) 
with respect to p leaving exponentials and hence again HI so that with 
Po = a,  

--id i k z  
KeE = (n x Ht), Ht = Hoe e Ht = H(p  = u , z , t ) .  (14.133) 
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One may observe that this relation has the same form as that for the surface 
current density K in the case of conductivity 0 = 00. We now have 

IK,*I2 = (n x Ht) . (n x Ht) = n [Ht x (n x H:)] 
= n [ (Ht.  H;)n - (Ht . n)H,*] 
N IHtI2, 

1 
Ht = -V x Et 

ZWP 

since from 

in the conductor, it follows that 

We now calculate ( L )  by inserting in Eq. (14.126) the expression (14.132) 
for E in the conductor. We have 

- d(L)  = --%[n. 1 (E x H*)], dF 2 
and so 

d(L)  (14.132) 1 
- -  - -%[ n .  {(n x H) x H*} ( i  - l)] 
dF 2 0 ~ n  d / 

I -  

- n . { H * x ( n x H ) }  

and hence 

v 

-n.{(H* .H)n-(HI .n)H} 

(14.134) 

Here, as indicated in Fig. 14.9, dF = d z d l ,  where dl is an element of the path 
around the surface of the wave guide, so that (with the minus sign indicating 
that the expression represents a rate of loss) 

(14.135) 
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This is the loss of energy per unit time and per unit length of the wave guide 
as a consequence of the finite conductivity u of its walls. For u + cc the 
right hand side of the attenuation rate (14.135) vanishes, as expected. 

Fig. 14.9 The surface element dF = dzdl .  

The integral is a line integral in the surface around the wave guide as indi- 
cated in Fig. 14.9. The expression for d(L)/dz involves only the value of the 
field H at the surface of the conductor. 

We have seen earlier that the dispersion relation for conductors is 

(14.136) 

We now have to distinguish between the material of the walls and that of 
the dielectric inside the wave guide. The walls have a high conductivity so 
that the skin depth is as small as possible and the wave guide is comparable 
to one made of ideal conductor material. On the other hand one wants the 
dielectric of the interior to have a conductivity as small as possible. Our 
earlier investigation of the behaviour of the conductivity (T was based on a 
simple model consideration for the calculation of the frequency dependence 
of u. These considerations do not take into account for instance a possible 
dependence on boundary conditions or on the geometry of the conductor. In 
the following we shall argue that if u is finite and large, and (as we assume) 
independent of the frequency, the propagation vector k of the electromagnetic 
wave develops an imaginary part due to the fact that - in this case of finite 
conductivity u - the resistivity is finite so that damping is present and hence 
attenuation takes place. Thus we write 

k = V@ = kR + ikI 
in the case of penetration into the walls of the wave guide. The propagation 
of the fields E,H 0: eikz is therefore damped. The field H enters the power 
(L )  quadratically. Hence we can write 
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or 

i.e. 
( 14.137) 

The quantity k~ is the so-called attenuation constant. The intention is, of 
course, to achieve k~ as small as possible for an optimal use of the wave guide. 
If the interior of the wave guide is filled with a dielectric which has a small 
conductivity 00, this naturally also contributes to some damping, which we 
can take into account in the above dispersion relation. In this case we have 
inside the wave guide (“combining” (14.136) and k2 = pew2(1 - w!/w2)) 

( 14.138) 

In the next section we investigate an evaluation of the attenuation constant, 
and how this can be minimised for an optimal use of the wave guide. 

14.9.4 

Our next objective is a model evaluation of k I  given by Eq. (14.137) for 
the case of a wave guide with circular cross section and filled with an ideal 
dielectric (00 = 0 in Eq. (14.138)). This requires the calculation of d(L)/dz. 
Assuming the conductivity of the walls of the wave guide is close to that of 
a perfect conductor, we can take (14.120) for the power (L). As an example 
we consider the case of TM waves. In this case we have (see Eqs. (14.69) 
and (14.67)) 

Optimal Use of a Wave Guide 

ipEW 
p H l =  B l  = T ( e z  x Vl)E,, B, = 0. 

Y 
Here E, is to be obtained as solution of the equation 

(Vi + Y2)Ez(z,9) = 0 

with boundary condition E,Isurface N O ( l / f i )  (see Eq. (14.22)).11 Thus our 
calculations will be concerned with E, and its derivatives. In the case of the 
wave guide with circular cross section of radius a we had (cf. Eq. (14.100)) 

~ z ( p ,  ‘PI = EzIsurface 0~ ~ m ( y a )  N 0. 

“The condition Ejl) - E,(2) = 0 implies when D # 00, I?;’) = O(l/&). For very good 
conductors we can replace the right side by zero. For inclusion of such corrections see Jackson [3], 
Sec. 8.6, Perturbation of Boundary Conditions. 
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Hence we have in this case (TM: with H, = 0) 

icw 
Y 

-n x HI = -n x T ( e ,  x V l ) E ,  

iew 
- - --e,(n. V I E , ) .  

Y2 
(14.139) 

Here 
a 1 8  VI = ep-  + eV-- 

a P  Pay 
and 

icw aE, 
-n x HI = -e,- 

Y2 a P  ' 
which is a vector along e,  derived from E, (recall we have H ,  = 0 here). We 
can call this Heff and insert this into Eq. (14.135) to obtain the loss of power 
which this gives rise to along the wave guide. Thus 

= A.  (14.140) 

For the power ( L )  we derived the expression given by Eq. (14.120). We use 
this here with dF = pdydp for the calculation of the main part of power 
arising from E,: 

L = X  S,e,.dF s, 

I 

5E ( L )  = B,  (14.141) 
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where (see Eq. (14.138)) Rk 21 @dw2 - wi, if we neglect a (generally 
small) boundary-dependent contribution to Rk. We obtain therefore 

(14.142) 

In order to keep the attenuation, i.e. the loss of energy, as small as pos- 
sible, one wants to minimise this expression or, put differently, one wants 
to determine those modes for which kI is minimal. We are therefore inter- 
ested in the behaviour of this expression as a function of the frequency w 
(r2 = pew2 - k 2 ) .  Thus we obtain with the substitution of 

- Ewa (aJm(z)/az)2,,, 
2aPoRk s; PdP[Jm('P)12 . 

- 

(since the skin depth po IX 1/Jw, as we saw in Eq. (14.130)) and 

7 + 'A, = {m,n), 

the expression 
Ea w 1 

where 

( 14.143) 

(14.144) 

Thus 

The best use is made of the wave guide if it is used for those modes whose 
eigenfrequencies are closest to the frequency at the minimum of kI. The 
frequency at the minimum of the curve in Fig. 14.10 is easily determined by 
equating the derivative of kI to zero, 
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i.e. 

I * O/Oh 

0 1 ( d O h ) o  =p 

Fig. 14.10 The behaviour of kI for T M  modes. 

( 1 - 3 = w ( 2 3  -=h. W 

WA 

The behaviour of the attenuation constant near this minimum is shown in 
Fig. 14.10. 

14.10 Resonators (Closed Wave Guides) 

In the case of resonators or cavities we have additional boundary conditions 
at values of 2, where the two ends of the resonator have their closures, and 
the boundary conditions there supply a third integer (recall that our con- 
siderations in Sec. 14.6 with the enforcement of boundary conditions, led to 
wave guide modes characterised by two integers). All these integers arise 
in analogy to quantum numbers in quantum mechanics, there each corre- 
sponding to quantisation of one degree of freedom. Here, of course, we are 
dealing with macroscopic physics, and the analogy is restricted to that of the 
mathematical eigenvalue problem. We assume that the cylindrical resonator 
is closed at both ends by plates made of the same conductor material as the 
body of the resonator. The electromagnetic waves can now also be reflected 
at the two ends. 

We begin with TM modes, with time-dependence ePiwt (as before). In 
this case we have B, = 0 (everywhere), and we make the ansatz 

E, = $(z,y)(Asinkz+ B ~ o s t c z ) e - ~ ~ ~ e , .  (14.145) 

As before we obtain the transverse components from the relations derived 
earlier, i.e. Eqs. (14.20) and (14.21), and hence here, with y2 = epuw2 - k 2 ,  
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from 

k 

Y 
1 

Y 

E l  = 3Vl$(z, y)(A cos Icz - B sin kz)e-iwt, 

B l  = 3ipewe, x Vl$(z,  y)(Asin kz + B cos kz)e-iwt. (14.146) 

In view of the general boundary condition 

(1) - (2) Et - Et 

we have at the ends: Inside E l  = 0 for ideal conductors. 

L 

X 

Fig. 14.11 The resonator. 

Hence we have, with the geometry of the resonator as shown in Fig. 14.11, 

and hence 

17l 

d 
A = O  and s inkd=O, i.e. k = - ,  Z = O , f l , f 2  , . . . ,  

With this we have for the electric field 

(14.147a) 
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and for the magnetic field 

B, = 0, 

B l  = B T  'pew cos (F) e, x vlg(x, y)e-iwt. (14.147b) 

For TE modes we have E, = 0 (everywhere), and we make the ansatz 

Y 

B, = $(x, y)(A sin kz + B cos kz)e,e-iwt. (14.148) 

At the ends B, is continuous (this condition Bill = BL2' is again of general 
validity), but outside the field is zero (as a consequence of the skin effect the 
fields do not penetrate into the metal except at extremely high frequencies). 
Hence we have B,(z = 0) = O,B,(z = d) = 0 implying 

ZT 

d '  
B = 0 ,  k = -  Z = O , f l , f 2  , . . . .  

We thus obtain for the electric field with Eq. (14.20) 

E, = 0, 

E l  = -Axsin iw ( F)e, x vlg(x, y)e-iwt, (14.149a) 
Y 

and for the magnetic field with Eq. (14.21) 

(14.149b) 

Since E, (TM) and B, (TE) satisfy the equation 

with boundary conditions EzJsurface = 0, (dB,/an)lsurface = 0, it follows, that 
the scalar function $(x, y) is in these cases solution of 

(A, + T2)$(., Y) = 0 

with the boundary condition 
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where in both cases 

y 2 = €pw2 - k2  = €pw2 - (;)2. 

The equation for $ is 

(14.150) 

(14.151) 

We now choose a resonator of rectangular cross section as illustrated in 
Fig. 14.12. The condition = 0 implies that 

0 $ = 0 on planes x = O,a, y E [O,b], and 
0 $ = 0 on planes y = 0, b, x E [0, a] .  

We choose the solution such that these conditions are satisfied, i.e. 

$ 0: sin ( T) mrx sin ( b), n*Y 

Y 
t 

Fig. 14.12 Cross section of a rectangular resonator. 

where m, n are integers. Inserting this into the equation for $, we obtain 
2 - (y)2-(y)  +y 2 = o ,  

or 

(14.152) 

We infer from this relation that the eigenfrequencies w = wlmn can be 
changed by changing the lengths a,  b. 

In the case of a cylindrical 
R a s  illustrated in Fig. 14.13, 
dimensional Laplace equation 

resonator with circular cross section of radius 
the function $ = $ ( p , p )  is given by the two- 

(14.153) 
a2 1 a 1 a2 A, = - + -- + --. 

ap2 P a p  P28 'P2 
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Using again the method of separation of variables and demand ing ,  that 

we obtain 
$(p,cp) = $ ( p ) e i m P ,  m = 0,1,2,. . . 

with 

m2> P 

a2 1 a 
-+--+y -2 $ ( p ) = O ,  

( a P 2  P aP 
(14.154) 

which is the Bessel differential equation. We thus have 

and with Eq. (14.147a): 

TM : E, = B J m ( y p ) e Z m P c o s  ( 14.156) 

The boundary condition 

G(yp)I,=R = 0 implies Jm(yR)  = 0. 

We let z,, be the n-th zero # 0 (n = 1,2,3,. . . ) of J,(x). Then yR = xmn, 
i.e. 

X / 
Fig. 14.13 The resonator with circular cross section. 
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For w we obtain, since y2 = +w2 - (Z7r/d)2, 

w2 = ++ ECL (%)"I = $[(2=)2+ (3". ( 14.157) 

The lowest frequency is W O :  

We note, that wo is independent of d. We obtain therefore for the corre- 
sponding TM mode: 

E, = BJ~(R> 2.4P e-iwt e,, B~ = - ZPEWO Be, x vdo(R) 2.4P e-iwt . 
7021 

In cylindrical coordinates 

d l a  V, = ep- + -eV-. 
8P P 89 

Hence 

so that 

However (see Tables of Special Functions) 

d 1 
dx 2 - J m ( 4  = -(Jm-&) - Jm+l(Z)> 

and J-m(x) = (-l)"Jm(x), so that 

d 1 
dx 2 -Jo(x) = -(J-1(x) - J1(x)> = -J1(.). 

B --i- BTOlJ1 ("lolp)e-Zwte,, 
"lo21 

YO1 = W O ,  

Hence 
PEW0 

' p -  

where 

where
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and therefore 
B, = -i&ZBJ1(yolp)e-iwte,. 

For TE modes we had Eqs. (14.149a) and (14.14913). These yield in the 
present case 

B, = AJ,(ym,p)eim’p sin (14.158) 

= o  

implies 

We thus obtain the quantities -ymn from the zeros of the derivative of the 
Bessel function. For the lowest frequency** we need the lowest root; this is 
(I # 0 from Eq. (14.158), so that B, # 0) 

Ji(z11) = 0 with 211 = 1.841, 

so that m = 1 , n  = 1. Since 

with -ymn = z,,/R it follows that 

w;l l  = L[(g)2+ EP (34 
(I = 1; B, = 0 for I = 0). We see that the fundamental frequency will of 
the TE mode can be changed by changing d, the height of the cylindrical 
resonator (contrary to the fundamental frequency of the TM mode). Finally 
from Eq. (14.149b) we have 

(for the factor in cp see Eq. (14.155)). The resonator modes we investigated 
here find application for instance in accelerator technology. tt 

**The roots of JA(z) = 0 are z = 3.8,7.0,10.1,. . . . 
++See e.g. L. Palumbo and V. G. Vaccaro, Wake field measurements, Frascati-Report LNF- 

89/035(P)(1989). See also J. Slater, Microwave Electronics (D. Van Nostrand, 1950), L. C. Maier 
and J. C. Slater, “Field Strength Measurements in Resonance Cavities”, J.  Appl .  Phys. 23 (1952) 
68. 

The condition
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14.11 Examples 

Example 14.1: Vector potentials and wave guides 
Define in the charge-free interior of a wave guide the electric vector potential G by E = V x G. 
Similarly we have B = V x A. Find the wave equations of the vector potentials and sketch 
qualitatively the moduli of T E  and TM modes of the two-dimensional fields. 

Solution: In the charge-free space ( p  = 0, j = 0) we can define an electric vector potential G by 
E = V x G, so that V . E = 0. Maxwell’s curl equations are here 

OG aA 
at at 

From these we deduce 
E = - - ,  B = ~ L E - .  

a a 
at at 

Moreover 
V x (V x G) = --(V x A), V x (V x A) = pc-(V X G) 

and with “curl curl = grad diu - diu grad ” we obtain 

a2G V ( V . G ) - A G = -  

and 

We choose the gauge fixing conditions 

Then 

and a similar equation holds for A. T E  modes are defined by E, = 0. With G = ( O , O , I I ) ,  i t  
follows that 

E = V x G =  ($$-,,,O). an 

It may be noted that the potential G has in this case only a z-component (compare with B in 
Sec. 8.4.). As an example we take, with m, n = 0,1,. . . , as in Eq. (14.87), 

aII mn . mnx nny 
- - - -- sin - cos -eZkze- iWt .  
ax a a b 

Lines of constant electric field strength are given by IEI2 = const., i.e. 

mnx . nny mnx nxy 
sin2 a cos2 - = const. 

b 
cos2 -sin - + ( Y )  a b 

The curves given by this equation are ellipses in the ( x ,  y)-plane, as one can see by selecting specific 
modes. One can also see this simply by considering small values of x and y, so that the sine can 
be approximated by its argument. Then the Cartesian equation of an ellipse is obtained, and 
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TE modes 
2 

t 

\ X  

TM modes 

E,, Az 

L X  

Fig. 14.14 T E  and T M  modes. 

since lines of different [El2 cannot cut, ellipses result also for other values of x and y. Analogous 
considerations apply to T M  modes. In their case B, = 0 and A = (0, 0, Q) with 

The curves are sketched schematically in Fig. 14.14. 

Example 14.2: Induced charges and currents 
Consider the fundamental T E  mode of a rectangular wave guide and calculate all charges and 
currents induced in its surfaces (the wave guide is made of ideal conductor material). 

Solution: We have the equations (see summaries of formulae in Secs. 4.7 and 6.8) 

(1). D:) - Di2’ = u, physical + R(E~EL’) - ~2Ei’)) = u, 

(2). n x (H@) - ~ ( ‘ 1 )  = K, 

from which u and K are to  be calculated (definition of surface current density K in Sec. 11.2). 
In Sec. 14.6 we obtained the fundamental T E  wave for m = 1 and n = 0. We have therefore (cf. 
Eq. (14.87)): 

E = eyp sin ??e i (kz -wt ) ,  
a 

Since E ( 1  ey, it follows that (see Fig. 14.15 for explanation of subscripts) ua = 0 = ua, u~ = -ug. 

Calculation of ua: Analogous to  the case of the parallel plate condenser we have D?) = 0. Hence 
the surface charge density on surface Q is (with E the dielectric constant of the inside of the wave 
guide and the surface normal pointing in the direction of -ey) 

X X  XX 
ua = R(-Di2)) = %(-)(-)@sin - e r (kz -w t )  = @sin - cos(kz - w t ) ,  

a a 

P . ‘tTx 
c a  

:. ua = - sin - cos(kz - w t ) .  

For the field B we have (see (14.87) and (14.90) for m = l,n = 0) 
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and we have to evaluate 
n x ( H ( ~ )  - ~ ( ~ 1 ) .  

Since for the T E  wave (cf. Eq. (14.70)) 

W 
E l  = - - (ez  x B l ) ,  with e ,  H B l ,  

k 

we have B l  = 0 for E l  = 0, i.e. outside of the wave guide B = 0, i.e. H(l)  = 0. It remains to 

a @ 
z into paper 

Fig. 14.15 Cross section through the rectangular wave guide. 

calculate n x H for the respective surfaces as shown in Fig. 14.15 (therewith obtaining the surface 
current densities K). 
Surface 0: n = ey, y = b. 

azw a 

1 T I  T T X  , 

= -f [ sin cos(kz - wt)e, + - cos - sin(kz - wt)e,  . 
a w a  

Surface Q: n = ex ,  x = a. 

ei(kz-wt) 
azw "I a >Ix=. 

= sin(kz - w t ) e y .  
P a w  

Example 14.3: Determination of modes 
Consider two parallel, infinitely extended, perfectly conducting walls in the planes y = 0, b, as 
indicated in Fig. 14.16. The electric vector of the incident T E  wave is polarised in the direction 
of x, i.e. 

Eo = ex E: exp(-i(wt - ko . r)] 

with r = (0, y, 2). Show that only waves with frequency 

nnc 
w* = - n = 0 , 1 , 2 , .  . . 

b cos 00 ' 

are propagated between the planes, where 00 is the angle of incidence between ko and r.  

Solution: According to the geometry depicted in Fig. 14.16 the vector ko is perpendicular to the 
plane of equal phases ko . r = const. This means 
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X 

Fig. 14.16 Reflection between planes. 

koycos( ko,y ) + kozcos( ko,z ) = const., 
v v 

ao=r-eo  Po=q-eo 

i.e. 
-koycosOo + kozsineo = const., 

so that 
E~ = e z ~ 1 3 e - i d e i k o ( - y  cos Bo+z sin 00) 

Since Eo has to satisfy the wave equation, and there is no propagation of the wave in I, we see 
that its dispersion relation is 

In vacuum w = koc. (Here we have total reflection since the wall is a perfect conductor with 
o = 03, i.e. no radiation or energy penetrates into the wall). The E wave totally reflected from 
the wall, can also be written with the help of Fig. 14.16 as 

E; = e , ~ / / e - i ~ t e i k o ( y c o s B o + z s i n B o )  

The continuity condition of the field E, i.e. 

(total Etang)lwau = 0 

(J3$tig = Et(:ig = 0 in the perfect conductor, see skin effect in Sec. 9.5) implies, as shown in 
Sec. 11.4.2 (cf. Eq. (11.52)), 

E// = -E:, (EA = 0). 

Hence 
E; = - e 5 ~ l l e - i w t e i k o ( y  cos Oo+z sin 6’0) 



14.11 Examples 343 

The entire field E at (2, y, z, t )  is then: 

1 E = E~ +E; = ex~~e-iwteikOzsinBo[e-ikoycosBo - etkoycosOo 

- - -2ieXpe-iwt ikozsinBo sln(koy cos 80) .  

The boundary condition at the wall referred to above implies at  y = 0, b: 

sin(kobcos80) = 0, :. kobcoseo = nn,  n = 1,2, .  . . . - 
mode numbers 

The dispersion relation is now seen to  be 

W 2  - = kg C O S ~  eo + k: sin2 eo 
C2 

= k i  sin2 00 + (7) 2 

= (">z, b cos 80 

For wavelength X -+ A0 = 2x/ko we have 

2nbc0seo - 2bcoseo 
A0 = ~ - 

n r  n 

and frequency 
nxc 

b cos 90 . = koc = - 

For a given angle of incidence 00 only waves with frequencies 

nxc 
won = - n = 1 ,2 , .  . . 

b cos eo ' 

are propagated between the walls. In the text we considered cylindrical wave guides with modes 
characterised by two integers, and closed resonators (or cavities) with modes characterised by three 
integers. In the above case the waves are confined only in one dimension, and hence its modes are 
characterised by only one integer. 



This page intentionally left blank



Chapter 15 

Propagation of Waves in 
Media 

15.1 Introductory Remarks 

In this chapter we introduce the concepts of signals and wave packets and 
demonstrate the intricate connection between the analytic properties of the 
Fourier transform of the wave packet (also called its spectral function) and 
the limitation of its velocity by the velocity of light. 

15.2 Dispersion Relation: Normal and Anomalous 
Dispersion 

In preceding chapters we derived and became familiar with the dispersion 
relation of a conducting medium, i.e. 

2 2  Ic = w q p = p e w  (15.1) 

which also defines the generalised dielectric constant q (one should note that 
in general the relation is more complicated, in particular, as we saw in Chap- 
ter 9, if the frequency dependence of the conductivity cr is taken into account). 
We arrived at the expression (15.1) by assuming 

H o: eTiwt 2k.r j = aE, e >  

together with the two Maxwell curl equations, and we obtained 

4na k2H = pew2 (1 + i-> H. 

345 
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The relation (15.1) is a general consequence if we assume that H does not 
vanish anywhere in space. We now want to study the dispersion relations as 
functions of the frequency w.  

We had also defined previously the generalised refractive index 

so that 
ck ck ck 

W n ( k )  i i (w)’  
n ( k )  = - = n ( w )  or w ( k )  = - = - (15.3) 

The phase velocity up and the group velocity VG defined previously for real 
n ( k )  or i i (w)  are given by 

C - W C 
vp = - = - - - 

k n ( k )  f i (w)’  
dw c c k ( d n ( k ) / d k )  

V G  = - = - - 
dk n ( k )  [n (k ) l2  

Solving the latter for dw/dk we obtain 

dw C 

dk n ( w )  + w(di i (w) /dw)  ’ 
v G = - =  

One says, there is no dispersion if dn(w) /dw  = 0. 
We now distinguish between two cases: 

(1). The case of normal dispersion defined by 

dii(w) 
dw > 0, so that UG < up < c ,  i i (w)  > 1, 

(in general E / E O  2 l), and 

(2). The case of anomalous dispersion defined by 

dii(w) 
dw < 0, for which V G  > up, 

(15.4) 

(15.5) 

(15.6) 

(15.7) 

which would imply UG > c. This really means that the relation (15.5) then 
breaks down (see below), i.e. one has to take the real part when 6 is complex! 

The amplitude of a wave group moves (as one deduces from a superpo- 
sition of plane waves) with the group velocity. Since the energy of a wave 
is determined by its amplitude, this implies that the energy of the wave is 
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transmitted with the group velocity. However, we shall see in the following 
that no energy can be transported with a velocity > c.  In the following we 
consider frequency superpositions of waves with phases 

6(w) = k(w)z - wt. 

A stationary phase is given by S’(w) = 0, i.e. 

dw(lc) - x 
dw dk  t ‘  

The ratio x / t  is described as signal velocity. In the present case this is 
equal to the group velocity. In general the group velocity of the dominant 
frequency can be treated as the signal velocity and hence as the velocity of 
the transport of energy. The Theory of Relativity teaches, that no physical 
velocity can exceed the velocity of light c (often cited as phenomenological 
input of the Special Theory of Relativity, but could also be considered as a 
consequence of the principle of relativity). In cases where 

dlc(w) x - t = 0 ,  or 

C - dw 
dk 
- _  

n(k)  + w ( d n ( k ) / d w )  > ” 

the signal velocity cannot be identified with dwldk .  The wave packet then 
has a more complicated structure, so that the expansion about a stationary 
phase is not possible. The aim of this expansion is to use the value ko, for 
which 6’(w) = 0 as a point around which w ( k )  is to be expanded: 

w ( k )  = w(k0)  + (k - ko)w’(ko) + * .  . . 

If ii is complex, we equate 

dw C 

dk i i (w)  + w(di i (w) /dw)  
V G  := R- = $? 

C = R  
{Rii(w) + w(dRi i (w) /dw)}  + i{S:lz(w) + w ( d S i i ( w ) / d w ) }  

{Rii(w) + w(dRin(w)/dw)} 
{Rii(w) + w(dRi i (w) /dw)}2  + {Sin(w) + w(dS:lz(w)/dw)}2 

= c  

- < c. (15.8) 

Since absorption effects are related to imaginary parts, we see that the va- 
lidity of the relation has its explanation in the damping effects resulting 
from these imaginary parts. In the following we investigate the behaviour 
of in(w) in more detail. At the end of the chapter we shall see that when 
dRf i (w) /dw  < 0, the imaginary part %(w) is particularly large. 
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15.3 Absorption, Causality and Analyticity 

We return to the consideration of a plane wave which is vertically incident 
on a dispersive medium as indicated in Fig. 15.1. A superposition of such 
waves represents a wave train or wave packet. We write this superposition 
in vacuum (n = 1) 

W 

uv(x,  t )  = A(w)ei(k"-"t)dw 
J-00 

(15.9) 

(we shall see later that the Fourier representation of a real quantity depends 
only on positive frequencies). 

0 
vacuum 

(n=l )  
x<o 

Fig. 15.1 Direction of a vertically incident wave. 

As before we deduce from Maxwell's curl equations: 
0 In vacuum (x < 0 )  we have k = w/c.  
0 In the medium (x > 0 )  we have k(w) = wii(w)/c .  

At the boundary plane but on the side of the vacuum 

A(w)e-i"tdw, i.e. A ( w )  = - 1- uv(0, t)eiwtdt. (15.10) 
27r -W 

Every single wave is subjected to absorption and reflection at the interface 
as discussed in Chapter 11. The transmission coefficient defined there for 
Eo I plane of incidence, i.e. 

2 cos Q 

c o s ~ + N c o s p '  
T =  

is in the present case of a wave vertically incident 

r) 
L 

T =  (P  = PO)' 1 + n(w) ' (15.11) 
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and hence for the wave packet in the dispersive medium (z > 0) we have 

For a further consideration of this integral we require information about the 
analytical properties of A(w) and k ( w ) .  

15.3.1 Properties of A ( w )  

We consider a wave packet u(z , t )  having a bell-shaped form, and starting 
from the origin z = 0, as indicated in Fig. 15.2. Then u(0,t) has approxi- 
mately the shape of 

atm 
m! 

u(O,t) N -e(t)e--tt, E > o 

(rn integral and larger than zero). 

(15.13) 

Fig. 15.2 The wave packet. 

Thus the wave packet appears at the point z = 0 at time t = 0, grows to a 
maximum strength and ultimately disappears from z = 0. We have added 
the factor 8( t ) ,  in order to avoid the sector with e--6(tnegatjve) in view of the 
integration we have to perform. Of course, one could achieve this also for 
example with 

Jtlme-Eltl, E > o 
or other means. On the other hand, one can argue that (15.13) has a well 
defined boundary with z = 0 at t = 0. 

The property u(0,t) = 0 for t < 0 is described as a causality condition. 
We then obtain, from (15.12) with z = 0 and Fourier transformation, the 
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following relation 

where we used the integral 

(15.14) 

Hence 

It is a matter of experience that the transmission of light through trans- 
parent media (i.e. those for which IJ = 0) does not lead to resonance effects. 
We saw earlier that in the case of such media n(w)  is real. Hence in these 
cases n(w)  is an analytic function without poles. However, if there are reso- 
nance effects, n ( w )  will not be everywhere an analytic function of w ,  as we 
shall see. We infer from the above result that in that case A ( w )  is, in general, 
an analytic function of w with poles, i.e. a meromorphic function. The poles 
at 

w + i € = o  

lie in the lower half of the w-plane. We infer this from the above result. But 
we can see this also more generally. Consider the vacuum wave packet 

J-00 

In vacuum k = w / c  (this is why we can write the integral also as J d k ) .  
Thus in vacuum all waves (the partial waves as well as the group) propagate 
with the velocity of light. According to the Special Theory of Relativity (see 
later) a signal or wave packet is propagated only into the future light cone 
(see Fig. 15.3), which means that for J: > ct the integral must vanish, i.e. we 
must have 

0 = [uv(x,t)],>,t = A(w)ei:(z-Ct)dwB(z - ct) .  (15.18) 
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We investigate this equation with the help of a contour integral in the plane 
of complex w. If we choose the contour of integration C as indicated in 
Fig. 15.4, the infinite semicircle with Sw > 0, and thus the factor 

, iZ(z-ct)~ J: ( - Ct> 

with exponentially decreasing behaviour, does not contribute to the integral 
and we have o,Sm . . .+I ... , 

--oo 4 7  

i.e. 
A(w)ei?(z-Ct)dwQ(J: - ct). 

ct 

t 

(15.19) 

Fig. 15.3 The future light cone. 

The Cauchy residue theorem now implies that A ( w )  cannot possess poles in 
the plane Sw > 0 (i.e. their residues would be zero). Thus A ( w )  is analytic in 
that part of the complex plane. This means the poles of the amplitude A ( w )  
can only be in the lower half of the w-plane. We obtained this result from 
the condition that propagation takes place only into the future light cone 
or time-like domain, where z / t  5 c (in the following we use this result that 
A ( w )  is a meromorphic function with poles in the lower half of the complex 
plane). This property of no propagation into the space-like domain depends 
on the other property of poles located in the lower half-plane. 

We saw at the beginning that in regions of anomalous dispersion it is 
possible that VG > c. We recall that VG is quite generally (except when 
VG > c) the velocity with which energy is transported, and hence a signal 
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with velocity x / t .  As such it cannot be larger than c (according to the Special 
Theory of Relativity). 

We return to the expression of Eq. (15.12), i.e. to 

In order to be able to perform the integration we have to know the analytic 
properties of i i (w) .  

Im 03 

t 

Re 03 

Fig. 15.4 The integration contour C. 

15.3.2 Properties of n(w) 
In the discussion of the Drude theory we used the classical nonrelativistic 
equation of motion of a free electron 

(15.20) 

(earlier we used E r x  e+Zwt; hence comparisons may require some changes 
of signs). If the electron is not free, but bound to some atom with eigen- 
frequency W k ,  then the equation is in the case of a simple one-dimensional 
oscillator model 

(15.21) m, + -x + mwiz = eE. 

This equation takes into account that the (almost free conduction) electron 
does not follow the applied field without inertia. One should note that here 
we consider the electron as bound to the atom by an oscillator potential. 
Fkom quantum mechanics we know that the Schrodinger equation with an 

m .  mx + -x = eE, E = EoePiwt 
7- 

m .  
7 
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oscillator potential VR = a x 2 , a  > 0, allows only discrete bound states (i.e. 
states with infinite lifetime). The additional friction term we have introduced 
here has its counterpart in quantum mechanics as an imaginary part of the 
potential 

VI = i S v  Of v = VR + iSv.  

For SV < 0 the potential V is absorptive, and vioIates unitarity (absorp- 
tion of particles, energy into the target). A Tesonance is a state of finite 
Ziifetime T = l/y. It is not necessary to have SV # 0 in order to obtain 
resonances. Resonances are obtained, for instance, for screened Coulomb 
potentials or with potentials which permit the escape of particles to infinity 
through quantum tunneling. Such cases are, however, much more difficult to 
handle analytically, so that we restrict ourselves here for reasons of simplic- 
ity to a simple semi-classical model. Semi-classical means here, we start off 
classically, and then replace the frequency by discrete quantum mechanical 
frequencies. 

Setting in Eq. (15.21): 
-iwt x = x o e  , 

we have (on the right side of the following equation we should strictly have 
the complete Lorentz force, but we assume that v x B is negligible) 

- m w  
7 

i.e. with E ( z ,  t )  = Eo(x)eciwt 

e E  
m(w,Z - w2 - i yw)  ' X =  (7 = w. 

(15.22) 

( 1  5.23) 

For y to represent a damping of x or E ,  we must have S w  < 0, i.e. at the 
resonance 

w="- iy*&q,  2 4w,Z>y2, 

and for x o( e-iwt and y > 0. We thus have 

ne2iwE 
m(w,Z - w2 - i yw)  

J = n e x  = - = aE,  

so that 
ne2iw 

m(w;  - w2 - i yw)  
a = -  

(1 5.24) 

( 15.25) 
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and the generalised dielectric constant is 

.u ne2 
W 

7 = € +  2-  = € +  
m(w2 - w2 - i yw)  * 

(15.26) 

In general the electron may occupy one of many possible quantum mechanical 
states k .  It is then necessary to replace the last equation by 

7 = E + ) -  m w 2 - w 2 - '  f k  
ne2 

k k 
(1 5.27) 

where the sum extends over the states of the electrons involved in the polar- 
isation of the medium. The factor 

zyw ' 

n 

eL 
m ( w i  - w2 - i yw)  

is a measure of the polarisability of the medium. For strongly bound electrons 
W k  >> w and j is correspondingly small. We obtain therefore for the refractive 
index p the result 

The coefficients f k  are called oscillator strengths; they specify the probability 
of an electron with energy b k  to be in state k .  For atoms in vacuum E is 
equal to € 0 ,  and the refractive index is 

= q w ) .  (15.29) 

For our purposes here it suffices to consider a dielectric, which permits only 
one resonance energy b k  = LO, so that 

f k  
w i  - w2 - ZYW . 

2 p=f$l+-) n e  
2 m ~  

k 

(15.30) 

We set 

Then it is easy to calculate 
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.-a 

b d 
co 0 

We observe by looking at Eq. (15.31)1 that the poles of p2((w),  like those of 
A(w), are located in the lower half of the w-plane, as indicated in Fig. 15.5. 
We see that along 

Re w 

.-• 
w w 

C a 

the refractive index p(w) is pure imaginary. We also see that 

lim E(w) = 1. 
W’CC 

Im w 
4 

The denominator is 

Hence 
(. . .)(. . . )  - (. . .)(. . .)(. . .)(. . . )  

- - 1 

1 + G(w) w; 
1 

Fig.15.5 The poles of 

Next we consider the factor
being the wave packet in the dispersive medium. we have

.
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i.e. 1/(1+ ii(w)) has no pole in the w-plane. This example verifies that in the 
given case, and more generally (here without proof), the factor 2/(1+ h(w)) 
has no poles, i.e. is regular. 

15.4 No Wave Packet with a Velocity > c 

We are now in a position to prove that no wave packet in a dispersive medium 
with refractive index ii(w) can propagate with a velocity larger than the 
velocity of light. We consider the integral (see u(x, t )  of Eq. (15.12)) 

( 15.32) 

(physically the refractive index ii(w) can never be -1 for any value of w), 
in which the contour of integration C =I= is to be taken as indicated in 
Fig. 15.4. We have 

- .  . = wave packet u(z ,  t )  + 

We know: The integrand is a meromorphic function of w with poles only in 
the lower half of the w-plane. Applying Cauchy's residue theorem we obtain 

I = 2ni residues = 0. 

We have therefore 

We consider now the contour integral along the infinite semicircle, i.e. for 
IwI N 00. Since 

W W 

C C 
k(w) = -h(w)  --f - for IwI -+ 00, 

i.e. 
dw 
- 3 c, 
dk h(w) ---f 1, 

we have 

This integral vanishes exponentially in the upper half of the w-plane, i.e. for 
S w  > 0, provided 

X X 
- - t > 0, i.e. 
c t v,ignal = - > C .  
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This result implies that the propagation or spreading of waves into regions 
beyond the future light cone are excluded, or, phrased differently, in regions 
x > ct the wave packet u ( x , t )  vanishes. 

In the next step we demonstrate, that for signal velocities 

Vsignal = - < C, t 
the wave packet has a definite value. This time we integrate in the lower half 
plane and consider the integral 

We consider s ...*I - ~ ( w )  eiw( Z - t )  dw. 
2 

2/ v 
For x < ct, i.e. v,ignal = x / t  < c, and S w  < 0 we see that 

eiw( “-t) 

is exponentially decreasing for w + 00. This means 

. . .  = o .  s u 

03 
Hence 

u(x, t )  = . . . = I = 27ri residues. 1, 
In order to be able to perform the integration explicitly, we require, of course, 
a knowledge of the function A(w) .  

15.5 Explanat ion of the Anomalous Dispersion 

We return to our approximate expression for the refractive index, i.e. to the 
square root of expression (15.30), i.e. 

( 15.34) 

taking into account only one pole at 8 w  = W O .  With a real denominator we 
have 

w; wg - w2 + iyw 
- = I +  T(w,“ - ,2)2 +y2w2  (15.35) 
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and 
w; ( W i - W 2 )  

2 (w," - w2)2 + y2w2 
X i i = l + -  (15.36) 

and (after 3 lines of calculations) 

- (15.38) 
dw [(w; - w2)2 + y2w2]2 

* 
dXii - w;w[(w; - w2)2 - r2w,"] 

- 

Now (for w # 0), 

dXii 2 2 -  2 2 - = 0, where (w; - w  ) - 7  wo, 
dw 

i.e. 
w2 = w; TWO, 

1 
2 

and hence 
w N wo =F -7. 

It follows that 9% has extrema at these points. Using Eq. (15.35) and setting 
w N- wo ? / a ,  the refractive index ii at these points is: 

or 

and 

Thus 

(15.40) 

(15.41) 

186 - 11 = (ST?( at w = wo f Y -. (15.42) 
2 

We see therefore that 

d%ii Y Y 
- < 0, wo - - < w L: wo + - dw 2 -  2 where 

In this region, see Fig. 15.6, Sii is particularly large (this is also the region 
of the maximum). 

and
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I 

/ /  \ I 

I 
I 
I 
I 
I 

Fig. 15.6 5fi large where d%fi/dw is negative. 

We shall see in Chapter 16, that a large imaginary part (of e.g. h) is con- 
nected with strong absorption effects. That physical velocities 

C 
VG = > C  

ii + w(d i i / dw)  

do not occur, i.e. when d i i /dw is negative, is now qualitatively explained 
by arguing that these mathematically arising velocities are removed by the 
absorptive effects. 

Example 15.1: Method of stationary phase 
Consider the integral 

I = / F(w)e+(w)dw,  

where F ( w )  is a slowly varying function of w ,  whereas 4 ( w )  is a rapidly varying phase with only 
one stationary point at  wo. Show that approximately 

Solution: In the neighbourhood of wo we can write 

1 
4(w) = 4(wo) + f ( W 0 )  + ‘ 
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Since F ( w )  varies in the neighbourhood of wo only slowly, we have 

m 
I F(wo)ei+'((wO) e ~ + ' " ( W o ) ( W - W o ) 2 ~ ,  J i  

The remaining integral is a nesnel integral' (or can be evaluated with appropriate assumptions 
like an integral over a Gauss function) and leads to the above result. 

*See e.g. W. Magnus and F. Oberhettinger, Formulas and Theorems for the Functions of 
Mathematical Physics (Chelsea Publ. Co., 1954) p. 96. 



Chapter 16 

Causality and Dispersion 
Relations 

16.1 Introductory Remarks 

In this chapter we continue the study of analytic properties of spectral func- 
tions, but concentrate on Green’s functions and causality. In this connection 
important integral relations between real and imaginary parts of spectral 
functions are introduced, which are also known as dispersion relations or (in 
more mathematical contexts) as Hilbert transforms, and were first applied 
by Kramers to the dielectric susceptibility. 

16.2 Cause U and Effect E 

We let U ( t )  represent a cause, e.g. a charge distribution which varies with 
time, and E(t )  an eflect, e.g. an electromagnetic field. Since both are real 
physical quantities, we assume them to be real. 

The Fourier transforms of the two quantities define other representations 
of U ( t )  and E(t ) :  

U ( t )  = - dwe-Zwtu(w), U ( W )  = - 1 Sm dteiwtU(t), 

&e-Zwte(w), e (w)  = - Sm dteiWtE(t). (16.1) 

6 -03 

6 -03 

Jz;; Sm -ca 

E ( t )  = - 

Since we demand that U and E are real, i.e. 

U ( t )  = U * ( t ) ,  E ( t )  = E*(t) ,  

361 
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it follows that 
00 

dwe-iwtu(w) = / dweiWt u * ( w )  = 
J -00 

DISPERSION RELATIONS 

dwle-iW't u * (-w')  
J-00 J-00 

00 

= [, dwe-iwtu* (-w), 

i.e. 
U ( W )  = u*(-w) ,  e (w)  = e*(-w).  (16.2) 

These relations between the integrands of the Fourier transforms or spectral 
functions are referred to as "crossing relations". One should note that w is 
assumed to be real. For U ( t ) ,  for instance, it follows that 

We set 
u ( w )  = - r (w)e  1 i e ( w )  , 

2 
(16.3) 

where ~ ( w ) ,  O(w) are real. Then 

i.e. the Fourier representation of U ( t )  depends only on positive frequencies 
( w  > 0). A corresponding result can be obtained for E(t) .  

16.3 (U, E)-Linearity and Green's Functions 

We let Ui be the cause of the effect Ei. Then we assume that 

aui + puj 

is cause of the effect 
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or more generally 

E(t)  = dt’G(t, t’)U(t’) (16.5) 

(superposition principle). Here G(t ,  t’) is a weight or Green’s function. We 
also assume that 

1: 
G(t,t’) = G(t - t’), 

i.e. the process connecting U and E is independent of absolute times. Then 
E is the inhomogeneous solution of a differential equation 

DE( t )  = U ( t )  (16.6) 

with 
DG(t - t’) = d(t - t’) = d(t’ - t ) .  (16.7) 

We write G(t,  t’) as G(t - t’) and not as G(t’ - t )  for reasons of causality 
which lead us to 

This is precisely 
also be real. Let 

the so-called retarded Green’s function. Then 
W 

E( t )  = dt’G(t, t’)U(t’). 1, 
the relation given above. Since U and E are real, G must 
g(w)  be the Fourier 

W 

G(t )  = J dwe-iwtg(w), 
271 -W 

transform of G: 
W 

g ( w )  = [, G(t)eiWtdt. (16.8) 

Then 

e(w) = - Jm dteiwtE(t) 
fi -W 

and, inserting (16.8) for G(t - t’), this becomes 

Y 

6 (w - w ’ ) 
and hence 

J dt’U( t’)g (w ) eimt’ e(w) = - 1 

fi -W 

(16.9) 
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i.e. 
e(w) = g(w)u(w), e*(-w) = g*(-w)u*(-w). (16.10) 

These relations are called convolution theorems. 
Since 

u(w)  = u*(-w),  e(w) = e*(-w), 

it follows that 

e(w) = g*( -w)u(u) ,  i.e. g ( u )  = g*(-w).  (16.11) 

The latter of these implies again that G(t)  is real (see remarks at the begin- 
ning). 

A mono-frequent cause Uoe-iwt leads to a mono-frequent effect: 

00 

dt‘G(t - t‘)U(t‘) = dt‘G(t - t‘)Uoe-iwt’ 
-m 

and hence 

(16.12) 

where Eo = Uog(w). 

16.4 Causality 

The concept of causality expresses the fundamental idea that an effect E( t )  
at time t can only have and depend on causes U ( t )  prior to time t .  Since 

00 

dt’G(t - t‘)U(t’), 

(G real for U and E real), this means E( t )  can only depend on such U(t’) ,  
for which t’ < t .  More concretely 

G(t - t’) = 0 for t - t’ < 0, 
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i.e. G(t - t’) 0: O(t - t’), i.e. only such values of the cause U enter the effect 
E(t )  at time t ,  which appeared before the instant of time t ,  at which we are 
interested in the effect E(t) .  This time ordering is described as causality. 
This causality is also described as macrocausality in contrast to microcausal- 
i t y  or locality, which is a quantum theoretical concept concerning operators 
representing observables and implies that such observables commute if their 
separation is spacelike (because then they cannot exchange signals since no 
signal can travel with a velocity greater than that of light). The Green’s 
function obeying macrocausality is the retarded Green’s function. Consider 
once again a typical classical equation of motion 

x + 2yx  + w;x = f ( t ) .  

The friction term violates the time-reversal invariance of the simple Newton 
equation 

(which is plausible, because a process involving friction, in which therefore 
energy is dissipated as heat, is irreversible). For y > 0, the direction of the 
friction force 272 is opposite to that of the motion since 

2 x + wgx = 0 

x + w& = -2yx + f ( t ) .  

The Green’s function of this problem is, however, uniquely defined by  the 
friction term, because with 

($ + 2 y z  + w0 G(t ,  t’) = d ( t  - t’) 
2> 

we obtain 
e-iw(t-t‘)  

(16.13) 

The poles of the integrand are located in the domain 3 w  < 0, and are given 

G ( t - t )  I = ‘sm dw 
2.rr --oo w i  - w2 - 2iyw‘ 

by 
w = -iy f d G ,  y > 0. 

In this way the integral with y # 0 and the condition G = finite is uniquely 
defined. Since there are no poles in the upper half-plane 

= 2x2 residues = 0,  
J3 

and it follows that l:.. . = - S,. . . = o for t -t‘ < 0, 
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i.e. 
G(t  - t’) = 0 for t - t’ < 0 

G(t  - t’) # 0 for t - t‘ > 0. 
and 

This finite Green’s function is the retarded Green’s function. If 

G(t  - t‘) = 0 for t - t‘ < 0, 

we have 
03 

G(t  - t’)f(t‘)dt‘ 

t 
- G(t  - t’)f(t’)dt’. 
- L ( 16.14) 

The solution of the homogeneous equation which could be added to give the 
complete solution (with z t 0 for t -+ co), i.e. the solution of 

2 2 + 2yk + woz  = 0,  

is 

This diverges for t + -co. To ensure that z ( t )  is finite for all times t ,  we 
have to choose a = 0 = b, i.e. a contribution of the homogeneous equation 
to the solution is excluded by boundary conditions. In the case y # 0 the 
integration contour is automatically fixed by the requirement of G , z  to be 
finite. In the case y = 0, however, the contour must be specified separately, 
because then the poles w = f w o  lie on the real axis (in the above simplified 
model). We consider this case by selecting a pole at  w = wo - k, E > 0, with 
E ---f 0. 

16.5 Causality and Analyticity 

We return to our original consideration and now permit complex values of w. 

03 
Since 

g(w) = lm dtG(t)eiWt, G( t )  c( O ( t ) ,  (16.15) 

roo 
it follows that 

g(w) = lo dtG(t)eiWt, 
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or (since G(t)  is real, see above) 

g*(w) = lm dtG(t)e-iWt # g*(w*) 

We now set 
w = w~ + i w I .  

Then 

g(w) = g(WR + iw~) = dtG(t)eiWRte-wlt im 
and 

g*(w) = g*(WR + i w ~ )  = dtG(t)e-iWRteW1t = g(-w). Im 
We assume that 

G(t)  N finite for t + m. 

Then there exists a g(w) for W I  > 0 and g*(w) for W I  < 0. The derivatives 

-g(w) d and -g*(w) d 
dw dw 

also exist at every point with respectively WI > 0 and W I  < 0. Hence g(w) 
is analytic in the half-plane WI > 0, and g*(w) is analytic in the half-plane 
WI < 0. We see therefore that we can infer from the causality condition 

G(t - t') = 0 for t - t' < 0 

the analyticity of the Fourier transforms g(w) and g*(w) in the domains 
W I  > 0 and w < 0 respectively. 

Example 16.1: The Cauchy-Riemann equations 
Starting from the integral 

g(w) = Sorn d t G ( t ) e i W t ,  w = W R  + i w ~ ,  

examine whether 
g ( w ) = S R ( W R , W I ) + i S I ( W R , W I )  = u $ i U  

satisfies the Cauchy-Riemann equations, i.e. 

or ux = uyruy = -ux .  

Solution: The solution is trivial. See also Sec. 3.7. 
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16.6 Principal Value Integrals and Dispersion 
Relations 

From the fact that the spectral functions g(w) and g*(w) possess simple 
poles in one half of the w-plane and are analytic in the other, one can derive 
relations between their real and imaginary parts called dispersion relations. 

We consider the following integral taken along the infinite semicircle in 
the domain Sw’  > 0, 

, E > 0, w real. d w ’ )  
w’ - w + i€ (16.16) 

With E > 0, which displaces the pole underneath the real axis, we could 
exclude it from within a contour along the real axis and then back along 
the semicircle at infinity. We can achieve the same effect, however, with a 
small semicircular distortion of the contour around the pole on the real axis 
as indicated in Fig. 16.1. 

Im o’ 
4 

Fig. 16.1 The contour around the point w in the complex w’-plane. 

In the upper half-plane Sw‘ > 0, as we saw, g(w’) is analytic. Thus if 
g(w’) decreases sufficiently fast towards zero for Iw’I -+ 00,Sw’ > 0, so that 
J,... = 0, then 

dw’. . - = 27ri residues = 0 

and 

where the integration is meant to be taken along the contour shown in 
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Fig. 16.1 from --oo to +oo, i.e. 

369 

(16.17) 

infinitesimal 
semicircle around W'=W 

where 

means "principal vahe" of the integral (which will be explained in detail 
below, see Eq. (16.32)). We note here that 

and we shall return to this expression later. With 

we have 

lim ( J o  e"9pdp)  
d w ' x  = p + 0 ig(w)  Jn w I - w  +iT Pezv v 

infinitesimal 
semicircle around W'=W 

0 
= ig (w)  J d p  = - ig(w)n.  

7r 

Hence 

or 
-W &/g( -W' )  

WI - w 

Comparison with 

(16.18) 
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verifies the relation obtained previously 

d - 4  = g*(w>- (16.19) 

The right side of the integral relations we thus obtained contains the factor 
"i". Taking real and imaginary parts of Eq. (16.18) we obtain: 

We also have 

(16.20) 

1 " Rg*(w')  1 " - *  sg ( w ' ) ,  S g * ( w )  = ;PS_,dw' w I - w  * 

Rg*(w)  = -;Ps_"dw' w' - w 

These relations are the promised dispersion relations. They are also called 
Hilbert transforms. 

We can rewrite the dispersion relations in a form involving only positive 
frequencies. To achieve this, we write 

l o  WW') '.I O0 S g ( w ' )  
n- 1" W ' - W  7r 

1 O3 W - W ' )  +IpJd &I-, = - P I  7l dw' - w ' - w  7r w' - w 

R g ( w )  = --P dw'- - 

" S g ( w ' )  

(of course, the pole is contained only in one integral; in the other the principal 
value integral is an ordinary integral). Since 

g ( w )  = g*(-w),  d - 4  = g * ( w ) ,  

we have 

i.e. 

Hence 

%g(w) = R g ( - w ) ,  %g(w) = -%l(-w).  (16.21) 

( 16.22) 
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Similarly 

and using Eq. (16.21), this becomes 

(1 6.23) 

Dispersion relations of this kind were first formulated by Kramers and Kronig 
(1926),* and, in fact, in application to  the dielectric susceptibility x e ( w ) ,  
which we introduced in Chapter 4, i.e. 

We obtained the dispersion relations for g ( w )  from the assumption that this 
function is analytic (i.e. free of poles) in the upper half of the complex 
w-plane. We saw earlier that the refractive index or rather its square or 
the dielectric constant have the same property. For this reason one can 
write down dispersion relations for this quantity. Thus, from the dispersion 
relation in terms of positive frequencies (by identifying g ( w )  with E ( W )  - E O ) ,  

we obtain 

( 16.25) 

We consider these relations in some applications in the next section. 
*H. A. Kramers: Collected Scientific Papers, p. 333; R. Kronig, J .  Opt. SOC. Am. 12 (1926) 

547. See also J. Hilgevoord: Dispersion Relations and Causal Description (North-Holland Publ. 
Co., Amsterdam, 1962). 
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16.7 Absorption: Special Cases 

We consider three cases. 

(a) The case SE(W) = 0 for all frequencies w is the case without absorption. 
Recall: E,H oc ei(k(w)z--wt) , k( w )  = (w/c ) f i (w>, f i (w)  = &/&Fo. If E(W) 

contains an imaginary part, then also f i (w) and k ( w ) ,  and hence E,H have 
exponentially decreasing amplitudes, i.e. there is damping. If S:E(W) = 0, 
then X:E(W) = €0, and 

Thus there is no dispersi0n.t Effectively the dispersion relations say: If there 
is dispersion in some frequency region, then (in general) there is absorption 
in some other region. 

absorption 

Fig. 16.2 Typical behaviour of %e for resonance absorption. 

(b) The case Se(w) = d ( w  - wn) ,  K > 0,O < w, < 00. This case is called 
the case of the "zero width resonance" and corresponds to that of absorption 

+There is no dispersion when 

- = - ( - ) = o .  d+) d ck 
dw d w w  
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in a very narrow frequency region around w = wn. Then for w # w,: 

This behaviour is illustrated in Fig. 16.2. 

(16.26) 

Fig. 16.3 Absorption in a finite frequency domain. 

(c) The third case we consider is that with %(z) = ~ ( z ) B ( z  - R)B(R' - z), 
i.e. absorption in the domain 0 < R < z < R' with T(X) regular in this 
domain. Here 

We consider two cases here: 

(i) If w >> R', R, we have approximately 

If R', R are close together (a narrow band), we can write R' = R + AR << w 
and 

i.e.
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The left side represents the area under the curve SE(X) .  The right side, which 
is valid for w >> Rt ,R,  i.e. for 

represents the limiting value at high frequencies. Relations of this type are 
called sum rules. For instance, in our model consideration (see Eq. (15.27) 
for only one resonance): 

ne2 wz - w2 W-00  ne2 fo 
m (w," - w2)2 + y w R€(W) - €0 = - 2 2 f O  N 

m w2' 

Hence 

7r ne2 lw dx%(z )  = - Ln+An d n ( z )  M 2R m fo. (16.27) 

(ii) If, on the other hand, we have w << R, = R + AR, then 

S € ( X ) .  
2 1  O0 

d x T ( x )  M ---s2 Jd 
This relation relates the area under the curve of &(z) to ?%(w) - €0 for 
w << R,R', i.e. for w + 0. In the above example 

so that 

ne2 1 
lim %(w)  - €0 N -- 

W+O { } m wife' 

- lm d X S € ( X )  M fo. 
7r R ne2 
2w; m 

( 16.28) 

Thus one can infer from the behaviour of E(X) the frequency W O .  Since wo N R 
(see Fig. 15.6), the expressions (16.27) and (16.28) agree with each other. 

16.8 Comments on Principal Values 

The principal value of an integral can also be defined by 4 

$See Eq. (16.17). 
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Here f ( w )  must be a function which is analytic in the region of integra- 
tion. The relation (16.29) is based on an identity, which is of considerable 
usefulness in many applications. This identity is formally written 

(16.30) 

The €-prescription on the left side is to be understood as saying that with 
E > 0 the pole is to be excluded from the region enclosed by the contour. It 
is with this E prescription that the expression on the left is to be understood 
as equal to the expression on the right. The identity implies the relation 

in which f ( w )  is an analytic function in the domain of integration. In order 
to prove the identity, we recall the original definition of the principal value 
integral, i.e. 

Consider the term on the left side of the identity Eq. (16.30): 

W i€ 
7- w f i e  w2 + €2 w2 + € 2  w2 + € 2 '  

- - w i c  
- - _ _ _  - - 1 

In the limit E --t 0 we obtain with the help of a definition of the delta function 
(cf. Eq. (2.5)), i.e. 

1 E  b(x) = lirri - 
E'O IT ( € 2  + 3 9 )  

the relations 
W 

= lim - =F iITS(W). 
1 

lim - 
E+O w f a€ E+O w2 + €2 

The first term on the right of this identity is 1/w for w # 0. Multiplying this 
relation by f ( w )  and integrating with respect to w ,  we obtain 
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The integral from --E to E vanishes, since 

since the integrand is an odd function of w.  We have thus verified the formal 
relation (16.30). Equation (16.29) now follows from the addition of both 
cases, provided the contributions of the integrals around the infinite semicir- 
cles vanish. 

The relation with the upper sign is more commonly used than the other 
because it is applicable when the function f ( w )  is analytic in the upper half- 
plane, i.e. the relation 

If 
. . . = 2ni residues = 0, 

-W 

00 
it follows that 

P L w  fodw = i 7 r f ( O ) .  
W 

it follows that 

P /.m fodw . .  = i 7 r f ( O ) .  
J - w  W 

in agreement with f ( w )  = g(w) in Eq. (16.18). 

Example 16.2: Evaluation of a principal value integral 
Evaluate with the help of the original definition of the principal value integral the following integral 

sin x’dx’ 

Solution: We separate the sine into its exponentials, so that 

dx’ -- 

We consider the following integral along the contour C+ in the complex x’-plane shown in Fig. 16.4. 
The contour C+ excludes the pole at x. Hence sc, = 0. Moreover s, = 0 (along the infinite 
semicircle), so that 

P Jm +J_ = o ,  
- W  

where the second contribution represents the integral along the small semicircle around the point 
x of x - E to x + 6 .  It follows therefore that 

1 w eiz‘dx/ 1 z + c  eiz’dx/  
- p  
22 Lw 5’ - x  - 2i .I-, x’-x. 

With 
dx‘ 

x’ - x 
x’ - = - - - id8 
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we obtain 
- ii .I'p id6eZx = -. r e a x  

2 

Similarly we obtain for the contour C- in Fig. 16.4 the result 

Imx' 

C- 

Fig. 16.4 The integration contours C+ and C-. 

It follows that 

Hence we obtain the result 

Example 16.3: Principal value integrals 
Evaluate similar to the above integral 

O0 sinf idx '  .s, X I - x  

Solution (with no derivation): For a = 0, x > 0 : ncos  &; for a = 0, x > O(x - -2) : e - f i ,  

377 

Re x' 

~ 

§ A  table of principal value integrals of a similar kind was distributed by H. Carprasse, A n  
elementary method to calculate certain principal value integrals, Universite de Liege, Belgium 
(1973), unpublished. 
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16.9 Subtracted Dispersion Relations 

We obtained the dispersion relation 

In the derivation we had assumed that 

for w‘ = Reie, R -+ 00. It is possible, however, that this condition is not 
satisfied, e.g. it might happen that g(w’) approaches a nonzero constant go 
for Iw’I -+ 00. In the latter case, the integral implies 

We then write 

so that 
lim G ( w )  = 0, 

I+- 
and the dispersion relations derived previously now apply to G ( w ) .  If 

we set 
G ( w )  = g ( 4  - (91w +go) 

and so on. The constants go, 91, . . . are called subtraction constants and the 
dispersion relations are called subtracted dispersion relations. 

Dispersion relations find important application in theories of the scatter- 
ing of particles. Starting from known facts of quantum theory that bound 
states and resonances appear as poles of scattering amplitudes in definite 
variables, and that scattering states appear with branch cuts of the scatter- 
ing amplitude, it is possible to construct expressions for such amplitudes in 
the form of dispersion relations. For instance, in the case of scattering of a 
particle of mass m by a Coulomb potential: The entire energy spectrum in 
E = ii2k2/2m consists of 
(a) discrete bound states with En 0: -k:, n = 0,1 , .  . . , in the domain E < 0, 
and 
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(b) continuous (scattering) states in the domain E > 0 starting from E = 
0 (as one finds, for instance, by solving the Schrodinger equation for the 
Coulomb potential). 

The Coulomb problem possesses a branch point of the square-root type 
(2 Riemann sheets) at k 2  = 0, as one can infer from the quantum mechanical 
treatment (e.g. of the Coulomb phase). The discontinuity of the function at 
the cut from k2  = 0 to 00 is defined by (f(k2*) = f * ( k 2 ) ) :  

1 
2 i  
- [ f ( k 2  + i € )  - f ( k 2  - i€ ) ]  = 3 f ( k 2 )  (16.33) 

For instance, f (z )  = z1l2 has a cut along the real axis from z = 0 to 00. On 
the upper Riemann sheet 

and on the lower 
112 ie/2 f (z )  = -12 le . 

The discontinuity on the upper sheet (6 = XO) is 

1 ,ie/2 - e-ie/2 

2 i  2i 
= -{f(z + i € )  - f ( 2  - i € ) }  = ]PI 
= lz1/21 sin(O/2) = S f ( z )  = discontinuity. 

Im k 2  

A 

cut 

Fig. 16.5 Integration contour around the cut. 
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A scattering amplitude does not only depend on E 0: k2,  but also on 
Thus, e.g. the scattering angle 0, or some other corresponding variable. 

f = f ( k 2 , 0 ) .  Then (for k t2  an arbitrary point in the k2-plane) 

oc, s f ( k 2 ,  e )dk2  - 1 lm dk2 f ( k 2  + ic, e )  - f ( k 2  - iE, e )  
n- @ - k t 2  2n-i k2 - k12 

This is an integral which circumvents the cut as indicated in Fig. 16.4. Con- 
sider the integral 

(16.34) 

along the contour extended to infinity as in Fig. 16.4. Let us assume 

so that the contribution of the circle at infinity is zero. Let us also assume 
that f ( k 2 , e )  has simple poles at k2 = -k&n = 1 ,2 , .  . . . Then, Cauchy’s 
residue theorem tells us that 

where 

(residue of the simple pole of f at k:). Hence we obtain 

( 16.35) 

We have thus constructed an integral representation of the scattering am- 
plitude with no explicit use of the potential; instead we have made use of 
knowledge of the spectrum obtained by solving the Schrodinger equation for 
the potential. The integral representation is also a dispersion relation, since 
for k2 real the function f ( k 2 , e )  on the left is also real, i.e. the real part. 
One may note that here the integral was written down with our knowledge 
of one branch point, which characterises the onset of scattering states. The 
integral itself has the meaning of a principal value integral. 



Chapter 17 

Covariant Formulation of 
Electrodynamics 

17.1 Introductory Remarks 

In the following we consider first transformations from one frame of reference 
to another which moves with uniform velocity relative to the first; this is the 
topic of the Special Theory of Relativity. The significance and necessity 
of such considerations is immediately apparent if one recalls the field of an 
electric charge in its rest frame and then visualises this from a moving frame: 
In the first case one has only the static electric field, but in the second - 
in view of the motion of the charge - one observes also a magnetic field. 
It therefore becomes necessary to formulate Maxwell’s equations, and more 
generally all laws of physics, independent of the respective reference frame, 
and this means in covariant formulation. 

17.2 The Special Theory of Relativity 

17.2.1 Introduction 

We recapitulate first some aspects of the Special Theory of Relativity, which 
unifies Maxwell’s electrodynamics with mechanics. The Special Theory of 
Relativity is based on the following two important principles or postulates 
of Einstein: 

(1) Einstein’s principle of relativity (1905). This principle says: The laws 
which describe the change of the state of a physical system are not affected 
by choosing one or another frame of reference which are related to each other 
by uniform translational motion (i.e. with constant relative velocity; systems 

38 1 
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which are accelerated to each other are treated in the General Theory of 
Relativity). 

Reference frames in uniform translational motion to each other (uni- 
form motion meaning moving with constant velocity) are also called inertial 
frames. These are local reference frames in which free motion (meaning po- 
tential or applied force equal to zero) is weightless (i.e. without gravitation, 
i.e. no planets or other massive bodies nearby, hence the Special Theory of 
Relativity), and for which Newton’s equation therefore implies* 

. const. mx= 0, :. mi = const., x = -, 

(2) The velocity of light c is  independent of the source and is in vacuum and 
in the presence of electromagnetic fields the constant c in vacuum for all ob- 
servers in inertial frames, as one would expect on the basis of the connection 
c = l/m. (This means that light is a field with the characteristics of 
waves and thus does not conform with classical corpuscular ideas). 

We recapitulate briefly the development which led to these postulates. 
The first postulate can also be formulated as saying: It is not possible to 
determine a so-called “absolute velocity” (neither with electromagnetic nor 
with optical methods). What initiated these considerations? We recall that 
Newton’s laws are based on the idea of an inertial frame, i.e. an unacceler- 
ated, not rotating frame referred to an absolute space. This absolute space 
was assumed to be immovable of its own nature and with no reference to 
anything “exterior” (meaning that in the case of an acceleration in space, 
the apparent acceleration of this space - viewed from the accelerated object 
- is not a consequence of Newton’s laws but a consequence of our accelera- 
tion relative to the absolute space, the so-called absolute acceleration). The 
concept of an absolute space thus offers a criterion for an absolute accelera- 
tion (2  = const.), but not for the concept of an absolute velocity or a state of 
absolute rest. In fact, an absolute velocity cannot be determined, as the first 
of the above postulates of Einstein implies (see also the Michelson-Morley 
experiment below). 

In preceding chapters we had introduced c as a constant which represents 
effectively the ratio between electric and magnetic units. Later we observed, 
that Maxwell’s equations are wave equations for the fields E,H with the 
phase velocity c in vacuum. More than a century ago numerous observations 
had led to the conclusion that c is the velocity of light. One then had to 
face the problem of understanding the propagation of electromagnetic waves 
in space, and it seemed suggestive to imagine their propagation similar to 

m 

*The rest frame of the particle is the frame with x = 0; a particle with mass zero thus has no 
rest frame. 
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that of sound waves. Sound waves are vibrations in a medium like air. It 
was postulated therefore, that electromagnetic waves are propagated in a so- 
called “aether”,  which was assumed to be a space-filling medium introduced 
solely for the purpose of explaining the propagation of electromagnetic waves. 
c would then be the velocity of light with respect to this “aether”,  which was 
assumed to be stationary. Referred to a frame which moves with velocity u 
through the (stationary) aether, the velocity of light would - according to 
Galilean arguments - be c’ = c - u with respect to the moving frame. Then 
Maxwell’s equations would have to be different in different reference frames 
in order to yield different velocities of light. One particular reference frame, 
that of the aether, would play a special role. This consideration is analogous 
to that of the velocity of sound waves relative to a train with velocity u, i.e. 

Vrelative train = Vin air - %rains 

It became necessary therefore to verify the possible existence of the aether,  
e.g. by measuring the absolute velocity v of the Earth in this aether. If the 
Earth moves through this aether, which was assumed to be stationary, there 
would have to be an observable “aether wind” in the opposite direction. The 
experiment of Michelson and Morleyt was expected to allow the observation 
of this wind, i.e. its (absolute) velocity. Instead of considering the setup 
of this optical experiment, we consider the analogous case of a swimmer 
(velocity c in stationary water) in a river with current velocity v # 0. This 
consideration is simple and makes the issues solved by Einstein evident.$ The 
geometry is depicted in Fig. 17.1. The distances SR,ST in Fig. 17.1 are 
taken to be equal, i.e. 

RS = ST = a. 

Then the time the swimmer needs in order to swim from S to T and from T 
back to S (in the following we use the subscript “1” for “longitudinal”) is 

tl = - +--- 
c - v  c + v  c2-212‘ 

In order to reach R from S ,  the swimmer must swim in the direction of R’. 
The time he needs in order to swim from S to R is the same as the time he 
needs in order to swim from R to S ,  i.e. 

2ac - U U 

+A.  A. Michelson and E. W. Morley, Am. J .  Sci. 34 (1887) 333; reprinted in Relativity Theory: 
Its Origin and Impact on Modern Thought, ed. L. P. Williams (Wiley, 1968). See also their paper 
in Phil. Mag. 24 (1887). 

$The swimmer analogy is also considered in L. R. Lieber, The Einstein Theory of Relativity 
(Dobson, 1949). 
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R R' 
I , , 
I V , 4 , I , I 

I 

a 
I 

I ,' I 

1 ,  I 
I /  I 

I ,/ + 
S+-  a - - - -bT  

current, v - 
Fig. 17.1 The swimmer analogy to  the experiment 

of Michelson and Morley. 

In the case of the swimmer (see below) 

tl > t l  for v < c, 

since 

a 
2 tz- t1=--  2ac 

c2 - v2 d2=77 

= 2  d A d -  - ll 

= 2  a [ -11 - JS 
> 0. (17.1) 

In the Michelson-Morley experiment c is the velocity of light referred to the 
aether, and v the velocity of the Earth relative to the aether. The idea was, to 
measure tl, t l ,  and to determine v from t l - t l .  The experiments of Michelson 
and Morley used light and mirrors and for the measurements interferometers 
of a high degree of precision. The results showed no difference between tl 
and t l ,  i.e. one had to conclude from the experiments that t i  = tl(v # 0), 
i.e. 

a ? 2ac -- - tl. tL=c2 - 2 c2 - v 2  

Since it was required that v # 0, the next problem was to explain this result. 
Lorentz observed that both expressions can be made to agree for v # 0, if 
one assumes that the quantity a in tl had to be replaced by 



17.2 The Special Theory of Relativity 385 

i.e. that parallel to v matter shrinks (as a consequence of its electric prop- 
erties). This was the so-called “Lorentz-contraction” hypothesis. Since all 
measuring rods would also shrink in the same way, the effect would not be 
observable. This kind of adjustment of explanations was, however, rejected 
in particular by Poincarb. Lorentz (1904) therefore undertook a deeper inves- 
tigation which led him to the transformation which today carries his name, 
however, without the appropriate explanation which was due to Einstein. 
The transformation is written 

XI = r(x - v t ) ,  yl = y, ZI = 2 ,  

(17.2) 

Here x is the position coordinate measured in a frame fixed in the aether, 
and XI that in a frame fixed on Earth at a time t ,  i.e. instead of 

U t = -  , (C-v) t  = a = x’ 
C--21 w 

Earth 

one has 
XI t = -  

(in the frame fixed on Earth light travels in time t the distance u 3 d ) ,  so 
that 

c - v  

XI = ct - vt = & -vt. 
aether 

This expression assumes that the velocity of light c is independent of the 
motion of the source. Consider again the case of the train T (with velocity 
v with respect to the Earth), from which a whistle sends out a sound wave 
with velocity u as indicated in Fig. 17.2. Here 

I x = (u  - v) t  = x - v t ,  

i.e. u plays the role of c and is independent of the motion of the source. One 
might think that by measuring x, x’, t the velocity v could be determined as 
an absolute velocity in contradiction to the result of the Michelson-Morley 
experiment. Hence a contradiction? This apparent contradiction was re- 
solved by Einstein: Every observer has his own clock, and in order to compare 
times, light signals have to be exchanged. In the above x = ct is the distance 
travelled by light in time t (in the aether). The contraction hypothesis now 
says that X I  is to be replaced by 
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T T' 
I I sound I - - - - -  - - - I  

I I 
L - - - - - - -  a 

- v  - u-v 
velocity of sound 
relative to train 

- u  c 

Fig. 17.2 Velocities of sound and the train. 

so that 

Lorentz found that with 

X I  = y ( x  - v t )  

also a time t' given by 

had to be introduced. 

( :;) t ' = y  t - -  

But what is t'? Lorentz looked at t' as an artificial 
time, which had to be introduced for mathematical reasons. It became clear, 
therefore, that the fundamental concepts of length and time (also mass) had 
to be reexamined. This was done and achieved by Einstein in 1905. The 
statement of relativity, that for instance a material bullet fired with velocity 
u from a train, which is moving with velocity v, has the velocity u whether 
the train is moving or not, since 

was known before Einstein. Einstein's original intention was to extend this 
statement of classical mechanics to emitted light signals and hence to elec- 
trodynamics. In this Einstein realised that the laws of physics always have 
the same form, but are expressed in different reference frames (i.e. those of 
the respective observers). One consequence was a correction of Newtonian 
mechanics. 
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17.2.2 

The Lorentz transformations from (z, y, z ,  t )  to (d, yl, zl, t’) thus describes 
the transformation from reference frame K of one observer to the frame K’ 
of another observer, i.e. 

Einstein’s Interpretation of Lorentz Transformations 

( ::) I I I I x =y(x -v t ) ,  y = y ,  z = z ,  t =y t - -  (17.3) 

The Lorentz contraction therefore is not a real contraction (as Lorentz had 
suspected), but only an apparent shrinkage, which results from the difference 
of measurements made by observers in uniform relative motion to each other. 
Moreover, t1 is simply the time measured in frame K’. 

The reference to electrodynamics becomes particularly evident if we con- 
sider the propagation of light signals. If a bullet with velocity u is fired from 
a train moving with velocity w in the same direction, the velocity of the bul- 
let with respect to a frame fixed on Earth is u + w, because the bullet as a 
travelling object had the velocity w before it was fired. If in a similar way 
a sound signal is sent out from a whistle on the train, i.e. with velocity u, 
then its velocity relative to the frame on Earth is u, i.e. less than u + v (the 
reason being the different nature of the bullet and sound). The velocity of 
the sound wave depends only on the medium (i.e. the air), but not on the 
velocity of the source. Applied to light, this is the contents of the second 
postulate of above, as follows also from c = 1/-. We deduce from these 
postulates now that for light observed in frame K :  

2 = ct (17.4) 

is the distance travelled by the signal in time t .  But then we must have (if 
the velocity of light is independent of the motion of the source) that 

x I = c t  I (17.5) 

with the same c. We can infer from the Lorentz transformation that both 
equations, (17.4) and (17.5), are compatible with each other, since with 
x = ct we have 

5’ = y(c - w ) t ,  

§The transformations today known as Lorentz transformations had already been formulated 
and published in 1887 by W. Voigt (Gott. Nachr. 1887, p. 45), however in relation to sound 
waves. In 1909 Lorentz wrote: “which to m y  regret has escaped m y  notice all these years” - see 
e.g. O’Rahilly [ S ] ,  Vol. I, p. 325. In the chapter with title ‘‘Voigt” O’Rahilly attempts a critical 
analysis of these transformations. 
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so that 
I ( ;t) y (c - t , J ) t  - _ -  XI t = y  t - -  = 

C C 

and hence 
I XI = ct , 

i.e. light has the same velocity in every frame of reference, i.e. the observed 
velocity of light is independent of the motion of the observer (contrary to 
the claim of the aether theory, in which c would be the velocity of light with 
respect to the aether and hence the velocity of light observed by an observer 
travelling with velocity v in aether c - w, in which case the observed velocity 
of light would depend on the velocity of the observer). 

Finally we make the following observation. Solving the equations 

for x and t ,  we obtain 

completely in agreement with the expectation that the frame with unprimed 
coordinates moves with velocity -t,~ away from the frame with primed co- 
ordinates if the frame with primed coordinates moves with velocity t , ~  away 
from the frame with unprimed coordinates. Einstein’s principle of relativity 
says that the laws of physics must transform “covariantly” with respect to 
Lorentz transformations, i.e. independent of the respective reference frame 
in uniform translational moti0n.T 

17.3 Minkowski Space 

We now consider Lorentz transformations in general. If one adds to the 
Lorentz transformations the simple translations in space and time, one ob- 
tains the inhomogeneous Lorentz transformations, which are also called trans- 
formations of the Poincare‘ group P. A vector in four-dimensional spacetime 
is written in the so-called covariant form,  which is characterised by lower 
indices, as 

xP ,  p = 0 , 1 , 2 , 3 .  

a “Covariant” means “co-varying” , i.e. ‘transforming in the same way”. “Covariance” can also 
mean independent of a specific coordinate frame, i.e. applicable to one as for any other. 



1 7.3 Minkowski Space 389 

The path element ds in this four-dimensional so-called Minkowski space M4 

is with 
xo := ct, 2 1  := -x,  x2 := -y, ;x3 := --z 

given by 
3 

(ds)2 ds2 = (dxo)2 - C ( d x i ) 2 .  (17.6) 

We are therefore using the metric (or so-called metric tensor) of this space 
bl4 given by: 

i=l 

On the other hand, the unit matrix is defined by 

so that 
bp p q p u  = qpu,  7purlUP = bp p .  (17.9) 

The so-called contravariant vector xp with upper indices is then defined by 

so that in contravariant form 

or (in self-evident notation) 

and 

dxpdzfi = (dxo, -dzz) (2;) = ( d z ~ ) ~  - ( d ~ i ) ~  = (ds)2.  

With q p U  we can “raise” or “lower” indices, and indices of the same type 
(one upper, one lower) are summed over (if not explicitly stated, this is 
understood, and called Einstein’s summation convention). We shall become 
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familiar in the following with manipulations of this type. A quantity which 
is such that all indices are summed over is a Lorentz invariant, e.g. 

dxl”dx, = ( d q  

(the disappearance of the indices on the right side is described as their “con- 
traction”). 

For later purposes we deviate a little and devote the remainder of this 
section to the transformation from Cartesian t o  spherical polar coordinates 
(x,) := (ct ,  r, 8,cp). The square of the distance between two neighbour- 
ing spacetime points P(ct, r) and P(ct + cdt, r + dr) with 

xo = ct, x = rsin8coscp1 y = rsinesincp, z = rcos8, 

is, as we can also see geometrically, 

ds2 = ( ~ d t ) ~  - (dr)2 - (rd8)2 - r2 sin2 B(dy)2 = ( ~ d t ) ~  - dr2 - r2dRi. 

This means the metric i j  is given by 

1 0  0 0 
0 -1 0 0 

0 
o o o -r2sin28 

since then 

(17.10) 

1 0  0 0 cdt 

0 0  -r2 sin2 8 

and so 

We can obtain the metric ( i j )  also as follows. We start from the transforma- 
tion 

dx; = ApKdxK 
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and set 

(x',) := ( xo ,  x ,  y, 2 )  

( x p )  := ( x o ,  T ,  8, 'p) 

(Cartesian spatial coordinates), 

(spherical spatial coordinates), 

(17.12) 

(1 7.13) 

1 0  0 0 
0 -1 0 0 
0 0 -r2 0 
o o o -r2sin20 

so thaat

Then

where

and explicitly
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17.4 The 10-Parametric Poincarh Group 

The 10-parametric Poincark group consists of the following transformations: 

(1) Translations (4 independent parameters u,) 

T4 : x; = x, + up,  up real. 

The infinitesimal transformations are given by 

dx, = x; - x, = a, infinitesimal. 

(2) 
rameters) 11 

The proper homogeneous Lorentz transformations (6 independent pa- 

LG+ : x; = lCLVx,, 

= q y v p x p  = p x p  

with the orthogonality condition 

(17.14) T‘C. I lnP = bPP, det(I,”) = +1, 1,” real - 
therefore L+ 

from the condition of invariance of xpx, under Lorentz transformations, i.e. 
from 

5 IP  x , = x ~ x , .  I 

The transpose index T is defined by 

(1 7.15) 

The matrices ( I )  define a 4 x 4 representation of the non-compact Lorentz 
group SO(3, l ) ;  the number “3” refers to the three rotation angles with com- 
pact domains of validity, and the number “1” to the non-compact parameter 
of a Lorentz transformation. Strictly speaking the vectors xp ,x ,  belong to 
different spaces T ,  T*.  But since a metric is defined on the 4-dimensional 
manifold R4 (the Minkowski metric q, which together with R4 defines the 
Minkowski space H4), it suffices to focus on only one space. The covariant 

IIThe real matrix 1 consists of 4 x 4 = 16 real elements or parameters, which are restricted by the 
orthogonality condition in Minkowski space, ZT1 = 1 4 x 4 ,  i.e. by 4 (diagonal-) + 6 (off-diagonal-) 
= 10 conditions. Thus there remain 16 minus 10 = 6 independent parameters corresponding to 3 
spatial rotations and 3 Lorentz transformations (and hence velocities) in these directions. 
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components of a contravariant vector xu  E T then follow from x p  = qpuxu. 
Verifying in detail: 

2 I p  x p - q  I - p’l,pl /I , X p X ,  = (q~’lpr;)( lu~qpE)xEx,  

= lV“1,,xEx, = lT~uluExExK 
= q 1 luWqWExEx, = q SXWqWExExK 
= SnExExK ( f E  = S K E )  

rcX T K X  

K - - x  x,. 

A special case is the case of motion of the reference frame system K ’ ( X ’ ~ )  
with constant velocity v along the x-axis of K .  We set 

(17.16) 

The Lorentz transformation given earlier is now in contravariant and covari- 
ant forms respectively (with x 1  e x , x o  = ct): 

0 

1 

X I 0  = y ( x  - Pxl) ,  

X I 1  = y ( x  - P X O ) ,  

x / 2  - 2 

213 = 2 3 ,  

- x  7 

and 

In this special case ( l p U )  is given by (since x: = lpUx,) 

axi 
8x2 

rP 
Y 
0 
0 

( 1 7.1 7a) 

(17.17b) 

(17.18) 

Then, as expected, 

det(1,”) = y2 - y2P2 = y2(1 - P 2 )  = +1. 
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Moreover from 
I 

2 p = l P U X U ,  

i.e. the matrix relation we assumed above, i.e. 

we obtain 

and 
x - vt 

-XI = ypct - yx, I 

= JiIp. 
We now compute, also for later reference purposes, 

Moreover 

=(+ rP -0’ 0 1)  
0 0 0 - 1  

and 
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We defined above** 
IT,” := I”, # I,”, 

since (this verifies the orthogonality) 

( ~ T , u ) ( L q  = ( l ” , ) ( V )  

= (I). 1 0  
0 1  

Y2 - Y2P2 0 
0 
0 0 
0 0 

395 

(17.19) 

In applications it is sometimes useful to use yet another formulation of 
the Lorentz transformation. We set 

Since 
1 - P2 

1 --p2 1 - P 2 ’  
sinh2 4 = cosh2 4 - 1 = -1 + - - ~ 

we have 
P sinh4 = JCp. 

Then the equations 

, z -v t  ’ t - (vz/c2) 
t =  

= JW’ 4-7 
can be written 

x’ = x cosh 4 - ct sinh 4, ct’ = ct cosh 4 - x sinh 4, 

i.e. 
(P) = (A)(x”) 

(17.20) 

(17.21) 

** This - perhaps not very appealing - definition of indices (because of their skew positioning) 
agrees with (Z”P)T = (P”), since 

(l”P)T = ( p Z , P ) T  = ( I T P P ) ( p + )  = lPP7711“ = ( I P ” )  

(also on multiplying out). 
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cosh4 0 0 -s inh4 
1 0  

-sinh4 0 0 cosh4 
0 

with 
det(A) = cosh2 4 - sinh2 4 = 1. 

This form of the transformation reminds one of rotations, however, with 
imaginary angles, which make 1/ d m  noncompact. 

17.4.1 Covariant and Contravariant Derivatives 

The (homogeneous) Lorentz transformations describe “rotations” in four- 
dimensional Minkowski space ( “rotations” in the sense mentioned earlier). 
We now define contravariant and covariant derivatives as follows: * 

With these definitions we have 

The chain rule applies: 

so that a, = a;l“,. 

(1 7.22) 

(17.23) 

(17.24) 

(17.25) 
~ 

*Note the reason: P ( x 2 )  e 8’(zPxP) = 2xp. 

Hence

and
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We can show that this relation is identically satisfied, if 8; transforms like 
the vector x:, because then 

(17.19) T P (17.14) ayf, = l"a; = lf,lf'Ea, = 1 , y a ,  = s,,a, = a,. 
This means the derivatives transform like the corresponding vectors. 

17.5 Construction of the Field Tensor Fp, 

One can show that for instance the four-divergence a,AP and the d'Alembert 
operator 0 13.8, are Lorentz scalars, Lorentz invariants. Since det(lpU) = 
1, it follows that the transformation of the volume element in Minkowski 
space is (cf. Eq. (17.18) and thereafter) 

% % & %  
axo axl ax2 ax3 

dxbdxidxhdx& = 

ax; ax; 
ax0 G ax2 az3 

= d ~ o d ~ l d ~ 2 d x 3 ,  

i.e. the volume element is invariant. 

d ~ g d ~ l d ~ 2 d ~ 3  

( 17.26) 

In order to achieve the covariant formulation of Maxwell's equations, we 
consider first the continuity equation, i.e. 

aP V . j + - - 0 .  at 
We can write this now (with (a,) = (&,&)) 

(17.27) 

(17.28) 

Here 
J p  = (cp,j) (17.29) 

is a four-vector (whether here +j or -j, is a question of the direction of the 
current density j = p d x / d t ) .  The equations of the potentials 

(17.30) 
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together with the Lorentz gauge 

and 

can be written in the form 
1 a2 - -- - A, 

- c2 a t 2  
aft$A’ = ~ o J ’ ,  -0 G ac”d 

with 
8,Ac” = 0. 

The field strengths E and B are given by 

E : = (El,E2,E3) = -V4 - at 
B : = (B1, B2, B3) = V x A, (17.33) 

and so, recalling Eqs. (17.22) and (17.31), by 

-El 1 = -- - - = -8OAl + alAO, 
C ax1 ax0 

C ax2 ax0 

1 aAo aA3 0 3  3 0  

C ax3 ax0 

1 aAo aA2 -E2 = -- - - = -aoA2 + a2Ao, 

- E 3 = - - - - = - a A  + a A ,  

aA3 aA2 
ax2 ax3 
aA1 aA3 
ax3 ax1 
aA2 dA1 
ax1 ax2 

B1 = - - - = -(a2A3 - a3A2), 

- -(a3A1 - a1A3), 

= -(a1A2 - a2A1). (17.34) 

The similar form of the expressions for Ei/c and Bj suggests the introduction 
of the field tensor F,,, i.e. an antisymmetric tensor of the second rank with 
6 independent components, i.e. 

B2=----  

B 3 = - - -  

F P ” ”  __ - __ - aPAV - a”AP 
ax, ax ,  

(17.31) 

(17.32) 

(17.35) 
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One should note that here E/c  and B appear, and not E/c and H. The 
corresponding tensor with lower indices is obtained as 

(17.36) 

F,, is also an antisymmetric tensor. Furthermore we observe: Fpu follows 
from FP’ by the substitution E --t -E. Another quantity which is needed is 
the so-called dual field tensor F’ defined by+ 

(17.37) 

where 

P ‘ ~  = +I for pupa an even permutation of 0,1,2,3, 
= -1 for pupa an odd permutation of 0,1 ,2 ,3 ,  
= 0, if two indices are equal. (17.38) 

(Note: “Self-duality” means *FP’ = FP’, anti-self-duality *FPy = -FP”, 
neither of which apply here.) The dual field tensor Fp’ is obtained from 
Fp”” by the substitution 

1 1 - E + B ,  B-+- -E .  
C C 

We see: In four-form notation the electromagnetic field is no longer described 
by two separate vectors, but by one antisymmetric tensor of the second rank. 
In a Lorentz transformation, i.e. transformation from the reference frame of 

+Note that in 3 dimensions (with z , j , k  = 1 ,2 ,3 ,  g = det(gij) = 1) the dual of the 2-form Fij 
is the 1-form Bk, i.e. 

and so B1 = F23, B2 = F31 and B3 = F12. 
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one observer to that of another observer moving relative to the first with 
uniform velocity, the components Ei, Bi are mixed. Thus, e.g. the pure field 
E/c of a static charge in one frame becomes a mixture of E'/c and B' in the 
other frame. 

Fig. 17.3 Reference frames K ,  K' in uniform translational 
motion with respect to each other. 

The Lorentz transformation of the field tensor Fpv is given by the trans- 
formation of a second rank tensor (see also below): 

FLU = ~palvPFup = lp"Fup(lTPv) v 
= l " p  

(17.39) 

with the special Lorentz transformation 

(17.40) 

called a "boost" along the x1-axis with velocity cP from reference frame 
K ( E ,  B )  to reference frame K'(E', B') indicated in Fig. 17.3. 

The relation (17.39) defines a tensor of the second rank. That the quan- 
tity defined by the expression 

is a covariant tensor of the second rank, can be shown by starting from the re- 
lation which defines a covariant vector (i.e. tensor of the first rank), and that 
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means the way this transforms under the appropriate transformations, in the 
present case of Lorentz transformations. Thus we recall the transformation 
of a covariant vector AP(x):  

In order to verify Eq. (17.39), we have to show that with 

X I p  = l p U X u  

the relation (17.41) implies 

AP(x’) = l,”A,(x). 

Since lTp“ZnP = hpP, we deduce from (17.42): 

so that 
8 X P  n 

dXfU 
-- - r]wp qnu = PUT = l U P  

and hence 

i.e. Eq. (17.41) implies 

Au(xCI) = L K & ( x ) ,  

(17.41) 

(17.42) 

(17.43) 

(17.44) 

which had to be shown. 

or
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We now consider the covariant field strength tensor 

(17.45) 

in agreement with Eq. (17.39). 

disappear through contraction. Consider first 
In multiplying matrices we have to keep in mind that Lorentz indices 
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Next we consider 

This expression, the right hand side of Eq. (17.39), is to be identified with 
the left hand side of Eq. (17.39), i.e. 

Ei 

B; 
-B; 

C 

0 

0 

so that we obtain the following transformation equations: 

E’1 = El,  
E’2 = y(E2 - cPB3)i 

E‘3 = y(E3 + c P B ~ ) ,  

cB’1 = c B ~ ,  
cB’2 = y(cB2 + P E 3 ) ,  
cB’3 = y(cB3 - PE2). 

(17.48) 

It can be shown,$ that in the general case (i.e. for the constant velocity v 
with arbitrary orientation) these equations are: 

n 

For instance for E’1 with v parallel to X I ,  and 

P = v / c  and P2 = (y2 - l ) /y2,  

(17.49) 

$See e.g. also Jackson [3]. 
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one obtains the relations: 

El = - +YEl = El El1 = r ( E l +  0) - -P2E1 Y2 = Y2 + Y - Y2P2 
Y+l Y+l Y+l 

We observe again: E and B do not exist independently of each other. A 
purely electric or purely magnetic field in the reference frame of one observer 
appears as a mixture of both types of fields in the reference frame of another 
observer moving relative to the first with uniform velocity v. Thus the sub- 
division of the electromagnetic field into electric and magnetic components 
has no fundamental meaning. Which field components appear depends on 
the choice of reference frame of the observer. We also see that E and B are 
the fundamental quantities and not E and H. 

17.6 Transformation from Rest Frame to Inertial 
Frame 

As an example we consider the fields observed by an observer in reference 
frame K ,  when a point charge q passes him in rectilinear motion with uniform 
velocity v. This example is always impressive, because one starts from the 
simple Coulomb potential in the rest frame of the charge, then transforms to 
the other frame and ends up with the law of Biot-Savart in the nonrelativistic 
limit! 

We let K‘ be the rest frame of the charge. In this case the transforma- 
tion equations of the fields are inverse to those given above. We obtain the 
equations we need by making in the above the substitutions 

E’,B’t ,E,B and v-+-v .  

We obtain (since K moves away from K‘ with velocity -v) 

Of course, these equations also follow from the ones given earlier by solving 
for Ei, Bi. We let b be the shortest distance of the charge q from the observer 
at point P in K as indicated in Fig. 17.4. At time t = t‘ = 0 we let the origin 
0’ be at 0 and charge q at the shortest distance from P. The coordinates 
of P as seen from K’ are therefore according to Fig. 17.4: 
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where 
r’ = Jm = J-, 

We ask: What is r’, containing t‘, expressed in terms of the coordinates of 
K(z l , z2 , z3 , t )?  Thus we require t‘ = t ’ ( q , q , z 3 ,  t ) .  This follows from the 
Lorentz transformation in the direction of z1: 

( Y )  t = y  I t - -  or t = y ( t + $ ) .  

P 

b 

x3 / 

t 

Fig. 17.4 Reference frames K ,  K’ with charge q at the origin 0’ in K‘. 

Since we consider P fixed in K ,  we have z1 = 0. This means 

I I t1 = y t  (and z 1 = -yvt = -vt ). 

In the rest frame K’ of the charge q the fields at the point P are: 

where E’1 = El - e,, and (cf. Fig. 17.4) -vt’/r’ = cosg. Similarly we have 

the latter would be the tangential component of a radial field. Since the 
charge is at rest in K’, we also have 

l?; = o ,  Bh=O, l?;=0. 
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We now express these quantities in terms of the coordinates of K ,  i.e. with 

r’ = Jm = Jm, t’ = y t ,  

we obtain 
97vt - 1 E i = -  

( b  + y2v2t2)3/2 4n€o ’ 
(17.51) 

and the others vanish. Substituting these expressions into the transformation 
equations (17.50), we obtain 

El = Ei = - q y ~ t / 4 ~ ~ o ( b ~  + y 2 ~ 2 t 2 ) 3 / 2  ,}+- vt 
E2 = YE; = q y b / 4 ~ ~ o ( b ~  + y 2 ~ 2 t 2 ) 3 / 2 ,  
E3 = 0,  
B1 = B{ = 0,  
B2 = 0,  

b ’  

(17.52) 

cB3 = y,BE; = pE2. 

Thus the observer in K observes a magnetic field. The relativistic eflects 
become particularly evident, if 2, -+ c. First we see that in the nonrelativistic 
limit y -+ 1 (y = l/di=-p): 

which can be rewritten as 
q v b  1 - qvrsin(T-$) 1 cB3 = - - 
c r 3 4 m o  c r3 4n€o 

c r3 ~ T E O  

q vr sin(v, r )  1 
C r3 4T€o’ 

- qvrsin$ 1 
- 

- - - 

v x r cpo 
r3 41r 

CB = q-- (17.53) 

* 
with c2 = 1/~0po. Here, -r is the vector PO‘ described earlier as r. We 
recognise the result (when divided by c )  as the law of Biot-Savart for the 
magnetic field of a moving charge, i.e. 

d9 d s  
d t  ’ d t  

, I = -  v = - .  poIds(r’) x (r - r’) 
4 ~ ( r  - r’I3 dB = 
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Thus the transformation laws of the Special Theory of Relativity supply not 
only relativistic corrections, but also the Biot-Savart law. However, it is 
not correct to conclude, it would be possible to derive the magnetic field and 
magnetic force, as well as the full set of Maxwell equations from the Coulomb 
law and Special Relativity. We referred to this already in Chapter 1.3 

Next we have a closer look at the longitudinal field El. Considered as a 
function of vt this has the form shown in Fig. 17.5 for v very small (p 2: 0) 
and very large (/3 5 1). The expression is 

P -0  

El  

t 

Fig. 17.5 El for limiting cases of p. 

The maxima and/or minima are given by 

i.e. 

or 

or 

3 2y2v2t2 
(b2 + y2v2t2)3/2 2 (b2 + y2v2t2)5/2 

= 0, _ _  1 

b2 + y2v2t2 - 3y2v2t2 = 0, 

1 b  1 (vt)o = f-- y2 = ___ Jz 7’ 1 - p2 

(17.54) 

§See e.g. Jackson [3], Sec. 12.2, p. 578. 
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For ,O 5 1, we see that (vt)o is small; for ,O M 0, we see (vt)o - f b / f i  - is 
large, as shown in Fig. 17.5. The value of El at (vt)o - fb/(&) is 

vt 

Fig. 17.6 E2 in limits of ,B small and large. 

This expression is independent of v; hence the maxima have the same height 
in Fig. 17.5. We see, that El of Eq. (17.54) is an odd function of vt. In an 
observation in the time interval At = ( - t o ,  t o )  the effects average out and El 
is not observed at P. The observer at P therefore observes practically only 
the transverse field of the components E2, cB3 = pE2, which for ,O x 1 are 
not only mutually transverse but also almost equal in modulus. If we look 
at the field E2 as a function of vt, we see that this has the following form: 

( 17.55) 

For the limiting cases the behaviour is sketched in Fig. 17.6. We see that 
Ez has the shape of a “pulse”. Thus the field of a charged particle moving 
at relativistic speed is equivalent to that of an electromagnetic pulse. This 
principle is exploited in attempts to observe heavy magnetic poles. In such 
experiments an atom is used to feel the effect of a passing magnetic pole (see 
also Chapter 21). 

Finally we consider the spatial distribution of the fields with reference to 
the instantaneous position of the charge. With E = ( E l ,  E2) we have the 
ratio 

El vt 
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From this and the force diagram we infer that the electric field has the 
direction of the vector n along r ,  with E 1 1  n and (see Fig. 17.7), 

t 
E2 pp- Y w 

Fig. 17.7 The direction of the electric field. 

But now 
b 

sin$ = - 
r 

and (vt)2 + b2 = r2 ,  so that 

and hence 

b2(1 - p2) + (v t )2  
r2 1 - p2 sin2 $ = 

- b2/y2 + (vt)2 - 
r2 

- b2 + y2(vt)2 
- 

y2r2 

Thus 

(1 7.56) 

(1 7.57) 
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Fig. 17.8 The isotropic field for /? - 0. 

Thus the radial field has an isotropic distribution only for p - 0, i.e. as 
illustrated in Fig. 17.8. At II, = 0 and 7r, the field E is 

E large 

E small 

E large 

Fig. 17.9 The electric field for w - c. 

At II, = &-$, the field E is 

We see therefore: Whereas the electric field is isotropic in the case of the 
static (or almost static) charge, this is no longer the case for the field of a 
charge moving with velocity v; in the latter case the longitudinal component 
of the electric field (i.e. along the direction of motion of the particle) is 
smaller than the transverse component, and this effect becomes more and 
more pronounced as the velocity approaches that of light. This is illustrated 
in Fig. 17.9. 
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17.7 Covariant Form of Maxwell’s Equations 

Our next step is to reexpress Maxwell’s equations in terms of the field 
strength tensor Fpv. Later we shall derive these equations from an action 
integral. Maxwell’s equations as we obtained them are 

P V . E = - (Gauss), 
€0 

1 aE 
c2 at 
V . B = 0 

aB 
at 

V x B - -- = poj (Ampbre-Maxwell), 

(no magnetic poles), 

(17.58) 

We now demonstrate that we obtain these equations by forming a,Fap and 
aa3ffp, where Fap is the dual tensor defined by Eq. (17.37). In fact, we 
obtain (to be verified below): 

V x E + - = 0 (Faraday). 

(17.59) 

for J p  defined below. We now verify these equations. Considering the left 
hand side of the first equation, we have 

and hence 

= (:V.E,----+V 1 aE x B  
C c ax0 

Setting this equal to 

and identifying components, we obtain (with p0eoc2 = 1) 
P O J ~  = Po(cp,j), 
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in agreement with the first two of the above Maxwell equations. 
Similarly 

and hence 

aB 1 
V . B , - - - - V x E  

= ( ax0 c 

Equating this to zero, we obtain the other two Maxwell equations. The 
second of Eqs. (17.59) can also be written: 

da~ffPPuFpo = 0. 

Using the total antisymmetry of the Levi-Civita symbol the left side can be 
written: 

@“Pa 
- - -- [aaapAO - affa,Ap + apauAff - a p & A U  + auaffAp - audpAff] = 0. 

3 
Solely from the antisymmetry 

Fpv = -Pup  

we obtain 
&FpY + apFYff + aYFap = 0. (17.60) 

This equation is automatically valid for the antisymmetric tensor F,, and 
represents an identity which is called Jacobi ident i ty  or Bianchi  identity.  
The equations a,.?-‘@ = 0 follow from this, and are therefore sometimes 
referred to as examples of equations of motion which are not derived as Euler- 
Lagrange equations. Equations (17.59) are Maxwell’s equations in covariant 
form, i.e. in form-invariant formulation, which means they transform under 
Lorentz transformations like Lorentz or Minkowski 4-vectors. 
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17.8 Covariantised Newton Equation of a Charged 
Particle 

Our objective now is to reexpress the equation of motion of a Newtonian 
particle with charge q in the presence of an electromagnetic field (i.e. the 
Lorentz force) in covariant form, i.e. the equation we encountered several 
times earlier, 

(17.61) 

One should note that the left side of this equation consists of the vector p 
and the O-component or d/dt of the 4-vector 19,. It is therefore necessary to 
change something in order to achieve the same transformation property on 
the left of the equation as on the right. This is done by replacing t by an 
invariant quantity. In order to generalise the Newton equation 

relativistically, one introduces therefore the so-called eigentime r, defined by 

(ds)2 = c2(dt)2 - (dx)2 

= c2(dt)2 [ 1 - - :2(:)2] - 

= c2(dr)2. (17.62) 

r is the time, measured by a clock fixed in the particle, i.e. in its rest frame. 
This is the reason that r is called the eigentime of the particle. With 

dx 
dt 

v = -  

(which is constant for inertial frames), this is the important relation which 
describes the so-called “clock paradox-” , i.e. * 

(17.63) 

This relationship expresses, so to speak, that a stationary clock runs faster 
than a moving clock, a phenomenon known as “time dilation” (cf. the 

*For curvilinear coordinate systems the corresponding equation is d r  = ,/gPKdxpdxn/c. 
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discussion in Jackson [3] with detailed explanation of experimental verifica- 
tions). Since ( d s ) 2  is Lorentz invariant, then also ( d ~ ) ~  or d m  = d r .  
This suggests one to generalise the Newton equation as (a = 0,1,2,3) 

d 
-(mu,) = K, E Minkowski 
d r  

(definition). Here u, is the 4-velocity (also to be 
vector with respect to the Minkowski manifold) 

d x a  uf f  = - 
d r  

with (cf. (17.63)) 

and 

force 

understood as tangential 

The 4-form equation can now be written 

The spatial part implies 

Momentum conservation for Ki = 0 implies the identification 

mv; 
momentum : 

p i =  d+* 
Hence also 

(17.64) 

(17.65) 

(17.66) 

(17.67) 

(17.68) 

Fi := -dl - p2Ki. (17.69) 

The significance of the time component of the 4-form equation (17.67) can 
be seen as follows. We multiply the equation by ua:  

u 01 -(mu,) d r  d = u"K, = d d r  ( Jmuau,) 2 . 
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However 
2 2  

2 ( 17.70) 
c - v  - 2 C2 v2 uffu,  = (ug) - (ui)2 = - - - - ~ = c . 

1-p2 1-p2 1-p2 

Hence 
0 = uffKa, i.e. ugKg = uiKi, 

or 

i.e. 

Thus the fourth component of Eq. (17.67) becomes: 

d ( m c / d m )  - - - 1 v . F  
d m d t  c d r p '  

i.e. 

i.e. 
2 dT mc 

dt 
- = v * F ,  

(17.71) 

(17.72) 

Since v . F = work per unit time (or power), T is the total energy, i.e. 

(17.73) 

mc2 = m c  2 1 2  +-mu + O  
T =  &-p 2 

Then 
p a  = muff 

with 
T mc - - pg = mug = JGp- C 

For v << c, Eq. (17.73) reproduces Newton's equation of motion: 

( 17.74) 

( 17.75) 

(17.76) 

or 
d -(mv) = F 
dt 
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From Eqs. (17.75) and (17.70), we obtain in addition 

(17.77) 01 2 "  2 2  p p a = m u u , = m c ,  

and so 
2 2  2 2  Po-P = m c ,  

or 

(17.78) (:)2 = p 2 + m2c2. 

For p = 0, T = E this entails the well known Einstein formula E = mc2. 
Finally we consider the Minkowskian generalisation of the Lorentz force: 

and so 

(17.79) 

The equation 

- = K" dp" - d(mu") 
d r  d r  

- 

together with 

dP" 1 d  1 mv d r  - dmz(pO'p) = Ji+(PO~ d W )  

on the left hand side and (17.79) on the right, yields 

- - - = A (  dP mv ) = q ( E + v x B ) ,  
dt dt d w  
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and so 

dpo E . v  E - v  
- - 4 c  d t  - , i.e. d(T)=qT, dt  c 

(17.80) 

We see that the 4-form 
K" = qFap,p 

is the Lorentz force supplemented by the power as the additional fourth 
component. 

In the case of the macroscopic Maxwell equations we have to distinguish 
between (E, B) and (D, H). Evidently we need only to make the following 
substitutions in the above equations: E -+ D,B -+ H. The equations then 
describe macroscopic averages of the atomic properties. In this reformulation, 
the polarisation P and magnetisation -M can be combined like (E, €3) and 
(D, H) to form an antisymmetric tensor of the second rank, and acquire their 
physical significance as macroscopic averages of atomic properties in the rest 
frame of the medium. 

C o m m e n t  
In the force-free case 

du" d2x" 
- = 0 ,  i.e. - = 0 
d r  d r 2  

in agreement with d2x" /dr2  = 0 for constant velocity of a particle in an 
inertial frame. In curvilinear coordinate systems we have (also for K = 0) 
d2u"/dT2 # 0,  and one says, the coefficients of the metric act as potentials 
of fictitious forces. 

17.9 Examples 

Example 17.1: Gauge invariance 
Is the theory defined by the Lagrangian 

1 
2 

L = -munu" + euuAa 

gauge invariant? 

Solution: The gauge transformation is 

A" + A" - sax, x = x(&) arbitrary. 
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Hence the variation of the Lagrangian is with (see above) ua = dxa/dr 

The answer is therefore : Yes, because (with x = 0 at rl, 7 2 )  

Example 17.2: Addition of velocities 
Let K ,  K’, K” denote reference frames with parallel axes. K’ moves with velocity 21 away from 
K ,  and K“ moves parallel to these with velocity u away from K’. What is the relativistic law of 
addition of velocities (i.e. obtain the velocity w of K” with respect to that of K)? 

Solution: We use the Lorentz transformation in the form X’ = A X ,  where X = ( x ,  y,  z ,  ict) and 
(cf. Eq. (17.21)) 

(17.81) 

0 
0 

0 0 cosh4 
0 0 -isinh+ cosh4 

A = A , =  

with 
coshq5 = 1/J1 - p2 ,  sinh4 = p/J1 - p2 ,  p = v/c. (17.82) 

Performing two consecutive Lorentz transformations we obtain 

0 0 1 0  0 
0 0 0 1  0 

0 0 -i sinh(q5 + 4’) cosh(4 + 4’) ( 0 0 -isinh$ coshq 
0 0 cosh(q5++’) zs inh(++@)) 0 0 coshq A ,  = A,A, = 

where 4, #, 5 correspond to the velocities v, u, w .  We obtain therefore 5 = 4 + +‘, where 

With the relation 
cosh$=cosh(q5++’) = cosh4cosh+’+sinh4sinhd’ 

and the relations (17.82) it follows that 

1+y 

J1 - $41 - $ 
~ -. - - 

Squaring and taking the reciprocal and later the square root, we obtain 

W 2  (1 - $ ) ( I  - $1 -=I- 
C2 (1 + yY 



1 7.9 Examples 419 

(17.83) and hence u + u  w = -  
l + % .  

We see: For uu << c2 the result is simply the sum as in the familiar nonrelativistic considerations. 

Example 17.3: The twin problem, or clock paradox 
A and B are twin brothers. On their 21st birthday A leaves his twin brother B on Earth and flies 
for 7 years in the direction of z (7 years measured on his own watch). The velocity ‘u of A relative 
to that of the Earth is ;Uc, the fraction ;U of the velocity of light c. After 7 years A reverses his 
direction and returns to  Earth with the same speed. How old are A and B then? 

Solution: A is evidently 21 + 7 + 7 = 35 years old according to  his watch. We calculate the 
age of B (as measured by B on his watch) as follows. Reversing the Lorentz transformation of 
Eq. (17.21), i.e. 

(17.84) z .  

C 
z ‘ = x  , y ’ = y ,  z‘=rcoshqi-cts inhd,  t ‘=--s inhqi+tcosh+,  

we obtain 
Z’ 

x = XI, y = y‘, z = z’coshb - ct’sinhb, t = - sinhqi + t’coshqi, (17.85) 

where with = u / c  we have coshd = l / d m  = 1/J- > 1. We now use the last of 
Eqs. (17.85): t = < sinhqi + t’ coshqi. Since A is at  rest in his frame K’ with primed coordinates, 
we have Z’ = 0. Then t ,  the time measured by B on Earth in frame K ,  is for t’ = 7 years: 
t = 7coshqi years, i.e. 

C 

(17.86) 

The age of B is therefore at  the time of return of A 

2 x 7  = 2 1 + -  
d- years’ 

If ;V = 415, the age of B follows as: 

2 x 7  =21+3- 2 x 7 ~ 5  70 
3 

- 21 + - N 44 years. 

Thus 35 years and 44 years are the time intervals which A and B measure on their respective 
watches. Hence in this way, as remarked above, the stationary clock appears to  run faster than a 
moving clock. 

Example 17.4: Lifetimes of particles 
Establish the lifetime of a particle in the laboratory frame for the cases: 
(a) a particle with constant velocity u, and 
(b) a particle with arbitrary velocity u. 
(c) Is the photon a stable particle? 

Solution: 
(a) and (b) The spacetime distance ds between the spacetime point 1 of creation of the particle 
and the spacetime point 2 of its decay is given by 

ds2 = c2dt2 - dx2 = c2dt2 { 1 - (2) I } .  



420 CHAPTER 17. COVARIANT FORMULATION 

The invariant eigentime or proper time of the particle is the time T given by ds2 = c2dT2. Thus 
in case (a) the lifetime of the particle measured in the laboratory frame is ( t z  - t l )  given by 

and in case (b) 

(c) Suppose the photon were unstable. Then the only invariant way to define its lifetime would 
be as that in its rest frame. However, since the velocity of the photon is constant and unequal to 
zero, it has no rest frame. This can also be seen as follows: 

“Lifetime in rest frame’? = TZ - TI  = ( t z  - t i )  - - 
00 observed in lab. frame 

Jw = O ( w )  = indeterminate. 

0 

Thus the question is meaningless. This applies to all particles with mass zero. (See also the 
remarks at the beginning of this chapter). 

Example 17.5: The dipole in a magnetic field* 
The charge +q of two charges +q, -q, both initially at point a, is moved in the ( x ,  y)-plane through 
the field Fi3 to the point b. 
(a) With the gauge choice &,(&,A) = 0 determine the mechanical momentum p 3  of the system 
in the direction 3. 
(b) Is this momentum independent of the path from a to b? 
(c) Show that the momentum p3 is cancelled by a corresponding momentum of the electromagnetic 
field. 

Solution: 
(a) Starting from the Lorentz force F = = qg x B, d p  = qdx x B, we have 

b 
p3 = +q F3idxi = - q l  Fi3dxi. lb 

Now, 

With the condition to be assumed, & ( A o , A )  = 0, we obtain 

dA3 = - q ( A s ( b )  - A3(a) )  

and hence 
P3 = q(A3(a)  - A 3 ( b ) ) ,  

depending only on the endpoints a and b. 
(b) We consider the curl of dp:  

V X d p  = V X {qdx x B} = q u ( d x )  - ( V . d x  )B] = 0,  v 
0 d ( V  .x)=O 

*See also W. Taylor, JHEP 0007 (2000) 039. 
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since dF = &F23 + &F31 + a3F12 = 0 ,  i.e. here V . B = 0. As a result of this condition p 3  

is independent of the path from a to  b (compare with the definition of a conservative force in 
mechanics). 
(c) The field momentum of the electromagnetic field has been defined in Sec. 7.7 as 

Pfield = dV(D x B). 

Thus we have in the present case for this 

In the last step the integral over a total divergence is zero. In the next step we use Eq. (17.59), 
i.e. the Maxwell equation V. D = p in the form &Poi = qpOc{b(x - b) - b(x - a)} together with 
copoc2 = 1, so that 

which had to be shown. Thus, the mechanical momentum determined by the Lorentz force, is 
cancelled by a corresponding negative momentum of the field. 

Example 17.6: Orthogonality expressed invariantly 
Show that when E . B = 0, also F p y 3 ~ y  = 0. 

Solution: Using Eq. (17.36) for F,, and Eq. (17.37) for P y  and multiplying one finds 
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Chapter 18 

The Lagrange Formalism for 
the Electromagnetic Field 

18.1 Introductory Remarks 

In this chapter we derive Maxwell’s equations as the equations of motion of 
the electromagnetic field in spacetime in the customary way as the Euler- 
Lagrange equations derived from an action integral. We discuss gauge invari- 
ance, transversality and masslessness of the electromagnetic field and touch 
briefly (restricted by our predominantly classical topic here) its spin. Finally 
examples are given to illustrate the diversity of some recent explorations 
motivated by the Lagrangian of Maxwell electrodynamics. 

18.2 Euler-Lagrange Equation 

We define as Lagrangian density the functional 

We note that L is not L(AP(x) ,dPAv(s) , t ) .  Here AP(z )  is the electromag- 
netic 4-potential describing the local electromagnetic field. We define as 
Lagrangian the volume integral 

L(t)  = 1 d 3 W A , ( 4 ,  qA44) 
and as action or action integral 

S = 1: dtL(t). 

423 
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We demand that S or rather the Lagrangian density be a Lorentz invariant 
(recall we had verified previously the invariance of the spacetime (Minkowski 
space) volume element). The time dependence of L is implicitly contained 
in the fields. Our aim is, to derive the Maxwell equations in analogy to 
equations of motion in classical mechanics. Hence we construct an action 
to which we apply a Hamilton's principle. This means we demand that in 
varying the action by varying the fields A,(z) and their derivatives a,A,(z) 
at fixed endpoints, this action is  to  remain stationary. Thus we demand 

0 = SS = S dtd3z,C(A,(~), dpAv(z))  Lt2 
with 

Hence 

SAP = 0 at t = t l , t 2  and A,(z) -+ 0 for 1x1 -+ 00. 

As in classical mechanics one varies with respect to a parameter a ,  whose 
values label the various paths in configuration space, so that 

After a partial integration the variation of S is seen to be 

S, is a %dimensional pseudo-plane orthogonal to z,. If the surface S, is 
time-like, i.e. an area orthogonal to the time-axis, the second integral van- 
ishes, because SA, is zero at the integration limits t = t l , t 2 .  But also the 
non-timelike surface-area contributions vanish by extending the volume of 
integration far enough so that all field components and their derivatives van- 
ish on the boundary. (This is a plausible and in field theory frequently made 
assumption on the basis of the localisability of the fields, i.e. finiteness of 
the velocity of light, c) .  Since the components A,, or rather their variations, 
are independent of one another, we obtain the Euler-Lagrange equations 

(18.1) 

These equations are Lorentz covariant, provided C is a Lorentz invariant. 
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18.3 Symmetries and Energy-Momentum Tensor 

In classical mechanics a very generally valid theorem known as Noether’s the- 
orem is well known. This theorem says: Every continuous symmetry (group) 
of C (i.e. invariance of C under the transformations of the group) has as its 
consequence a conservation law. With the help of the Euler-Lagrange equa- 
tions we can immediately derive one conservation law or conserved current. 
We have 

Using the above Euler-Lagrange equations, we have 

Consider now a transformation depending on some parameters, with an in- 
finitesimal ‘tform transformation” bp of the field, i.e. in the present case of 
A,, defined by 

(note the argument 2 is the same in both quantities on the right). Then, if in 
the corresponding variation of C without the use of the equations of motion 
one has 

bpA, := A’,(z) - A,(z) 

SpC = a , V p ,  Vp some 4-vector, 

one says the transformation represents a continuous symmetry of the theory. 
Setting 6A, = 6pAp and 6C = SpC,  one has 

8,j” = 0 (18.2) 

with 
(18.3) 

Then j p  is called a conserved current or Noether current.* There are cases for 
which V p  # 0 (e.g. in the case of translations, rotations) and cases for which 
V p  = 0 (in the case of gauge transformations). A simple example for the 
latter is C = d*+, the star meaning complex conjugation. The infinitesimal 
transformation Sq5 = ~ E $ J  ( E  real) implies 6pC = 0, i,e. V p  = 0. One says, 
the transformation is an “internal symmetry”. Equation (18.2) expresses 
the conservation of the current j p .  In Example 18.1 the derivation of the 
conservation law associated with translations is demonstrated in the case of 

‘This procedure, attributed to R. Jackiw, was ernphasised in H. Fleming, Noether theorems, 
Univ. of Sao Paulo Report IFUSP/P-517( 1985), unpublished. 
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the simpler theory of a scalar field +(x). Instead of deriving the currents we 
are interested in with lengthy calculations from the above expression,+ we 
simply define certain quantities here and then verify that they are currents. 
We define as the so-called energy-momentum tensor the quantity 

(18.4) 

The constant in front is introduced to ensure agreement of the field momen- 
tum with our earlier definition in Sec. 7.7. It follows that 

= -a’c + 8°C 
= 0, (18.5) 

where we used in an intermediate step the Euler-Lagrange equations. The 
result represents a conservation law or equation of continuity. If we integrate 
the equation with respect to space coordinates at a fixed time, we obtain 

d3zaPTP”” = 0 ,  J 
and hence 

80 J d3xTou + J d3z&Tiu = 0. 

The second contribution is the volume integral of a total divergence, which 
with Gauss’ divergence theorem can be converted into a surface integral, and 
this vanishes on account of a localisation of the fields in a finite part 
(i.e. the fields decrease to zero on the boundary). Thus we obtain 

For a further evaluation of this expression in electrodynamics, we 
know the components TO”, which therefore have to be determined. 

of space 

(18.6) 

need to 

+See e.g. Schweber 1191, pp. 207-211. 
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We define as 4-momentum density p P  the 4-vector 

and as 4-momentum PP the spatial integral of the density 

In this expression, +' is the density of the conjugate momentum 

ac 
.rrp = 

W o  AP) 

(18.7) 

(18.8) 

(defined in analogy to the conjugate momentum in classical mechanics i.e. 
to p = aL/aQ). The time component of p p  is 

1 
po = -[-L + .rrpaoAp]. 

CPO 

This expression represents a Legendre transform and we set 

1 
PO 

'FI = 'FI(A,, rP)  = cpo = - [+'a0Ap - L ] ,  

(18.9) 

( 18.10) 

and we shall see that this is the energy density or Hamilton density in agree- 
ment with our earlier expression. We observe that contrary to C, 'FI is not a 
Lorentz invariant, but the 0-component of a 4-vector! For the further evalua- 
tion of these expressions we require an explicit expression for the Lagrangian 
density. We then expect that we obtain for the momentum density the field 
density and for the Hamilton density the energy density of the electromag- 
netic field - both of which we encountered in earlier chapters. 

Example 18.1: Translations as continuous symmetry of a Lagrangian 
Show that the translations ztP = IP +d' (P a constant 4-vector) represent a continuous symmetry 
of the Lagrangian of a scalar field 4(z) with density 

Solution: According to the above we have to show that 

b p L  = a,vp 
and have to determine V p .  Since 4(z) is a scalar, we have #(z') = +(z) (recall that scalars, 
vectors, tensors in some space are defined by the way they transform under the transformations of 
this space). But also for infinitesimal E P  
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(It suffices to consider the infinitesimal transformation, since the finite transformation can be 
generated from a sequence of infinitesimal transformations). 
#(z) - d(z) is with #?(z') = +(z) in the case of translations given by 

Hence the f o r m  variation 6 p d  

With this we obtain 

or 

Hence in the present case of translations 

v p  = -€ILL. 

This was obtained without recourse to an equation of motion. Applying Eq. (18.3) in the present 
case, we have 

6pd-vv11=-ev 

and so apjp = 0 can be written a,Tp" = 0, where 

which is the corresponding energy-momentum tensor. For the transformations of the full Poincark 
group the corresponding considerations are somewhat more involved. 

18.4 The Lagrangian of the Electromagnetic Field 

We have seen previously that two of the four Maxwell equations can be 
combined in the following covariant form 

8, FP"" = po J v .  (18.11) 

We saw that the other two Maxwell equations follow from the Jacobi identity 
or are trivial consequences of the antisymmetry of the field strength tensor 
F p v .  We now search for an expression of C, from which the upper equa- 
tion can be derived as Euler-Lagrange equation. We consider the following 
expression and we shall see that this yields the desired equations: 

(18.12) 

We see immediately that the expression is Lorentz invariant. With some 
thought one will realise that (apart from a possible additional term) there 
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is hardly any possibility to construct some other expression under the con- 
ditions it has to satisfy (only first derivatives, Lorentz invariance, gauge 
invariance). Consider 

Hence the equation of motion 

-=av( ac ac ) 
W U A P )  

-/LoJ’ = -d V ( F V P ) ,  

implies the relation 

i.e. 
8, F”C” = ,LLO J P  

in agreement with the desired equation. 
Next we calculate the density of the canonical momentum,  i.e. 

According to the expression for FP” in Eq. (17.35), 

Ei Fi0 = _ .  
c 

(18.13) 

( 18.14) 

(18.15) 

(18.16) 

The product FPVFPV in the Lagrangian density can also be reexpressed in 
terms of the field strengths with the help of the matrices (17.35) and (17.36). 
Thus (“Tr” meaning “trace”) 

- c FP”FPV = Tr(F””F,,) 
P3” 
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Hence the Lagrangian density is also 

(18.17) 

We note the analogy with the simple Lagrangian in classical mechanics: L = 
kinetic energy - potential energy, and compare also with the energy density 
(see below).$ 

We consider now the case of the free electromagnetic field, i.e. J" = 0. 
Then 

T ~ a O ~ p  = T O a o ~ o  + n i a O ~ i  = 0 - T i a O ~ i  = -piOaO~i 

where we used Eq. (17.33) in the last step. Thus in vector form 

where the last term vanishes on account of J" = 0. We obtain therefore for 
the energy density 'Id 

(18.18) 

(Compare the first contribution with C above). For the energy of the 

~ ~ 

'Observe also that, with c2c0,uo = 1, one can define D as 

1 ar. 1 ar. 
PO aE ILO aB 

D = -- and similarly H = 
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electromagnetic field we obtain by integrating over all space 

1 =-J d3x(~opoE2 + B2) 
2PO 

= I 2 J d 3 x ( ~ .  D + H .  B), (18.19) 

where with the help of Gauss’ divergence theorem the contribution of the 
divergence again vanishes for localised fields (as here assumed).§ 

In an analogous way we can calculate the field momentum Pi ,  i.e. 

(18.20) 

or with arguments as before 

d3x(E x B) = d32(D x B). ( 18.21) &J  J P (Pi,P2’P3) = 

For PO, Pi we obtain therefore the expected expressions, although those for 
the densities differ from the earlier expressions by divergence contributions. 

§We can always add a divergence to the Lagrangian so that the Lagrangian density is not 
uniquely defined. 

where, as above, we have

with

We obtain therefore

is element “i” ofBut
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18.5 Gauge Invariance and Charge Conservation 

We know from Noether’s theorem that every continuous symmetry of the 
Lagrangian implies a conservation law. Thus invariance under spatial trans- 
lations implies conservation of momentum and so on, as is familiar from 
classical mechanics. An additional aspect of electrodynamics is its invari- 
ance under gauge transformations. The associated conserved quantity is the 
electric charge. This is the aspect we investigate next. 

In general one distinguishes between global gauge invariance - corre- 
sponding to x-independent transformations - and local gauge invariance 
- corresponding to x-dependent transformations. In the context of our 
considerations here only the electromagnetic potential A, and the current 
J,  = (cp, -j) appear, not however single electrons and positrons other than 
classical pointlike charges. In order to take electrons and positrons properly 
into account we would have to construct the complete Lagrangian for charged 
objects, or rather fields, in interaction with the electromagnetic fields, and 
that would mean the Lagrangian of quantum electrodynamics. The corre- 
sponding Lagrangian density has the form 

(18.22) 

where $ is the field of the electron, the so-called Dirac field, a 4-component 
column matrix called spinor, and y,,p = 0 , 1 , 2 , 3 ,  are corresponding 4 x 4 
matrices called Dirac matrices, which obey a Clifford algebra. We do not 
enter into a discussion of specific properties of the electron field here, as this 
belongs into the realm of quantum electrodynamics. However, we want to 
consider the gauge invariance of the Lagrangian. To this end we observe that 
C is invariant under the following local gauge transformation 

1 
4 

C(A,, &A,, $, a,$) = $(irpa, - e’ypA, - m)$ - -Fp”FPu, 

1~, --f $1 = , p ( z ) e ’ $ ,  --f $/ = e--iO(z)e’- 
$ 7  

A, + A: = A, - ~ , O ( X ) .  ( 18.23) 

The invariance depends crucially on the fact, that dP8(x)-contributions of 
the free Dirac field (A,  = 0) are cancelled by contributions derived from the 
interaction with the electromagnetic field (physically this implies that it is 
not possible to separate the electromagnetic field from the electron). This 
means 

1 
4 

C = --F’”FPV - poJ”A, 

is gauge invariant only if we add to C the free Lagrangian of those particles 
that give rise to the current J” or if J” is a conserved current, a,J” = 0, 
and we ignore a divergence term which, integrated over the spatial volume, 
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gives zero: a , ( J p O )  = Jp8,O + ( a , J p ) O .  The invariance of FPVFpV is easily 
verified: 

F P “  ---t FP” = aPA”’ - a”AC”‘ 

= P(A” - a y X ) )  - ~ ” ( A P  - = FY 

The invariance of the Lorentz gauge condition d , A p ( x )  = 0 requires 

a w , e ( x )  = 0. 

We assume therefore that the Lagrangian density is gauge invariant, and 
return to Noether’s theorem. The simplest way to obtain the corresponding 
conservation law is by differentiating the equation of motion (here a kind of 
trick), i.e. 

Since (with 8’8, = -0) 

av(apF’”” - p o J ” )  = 0. 

ava,Fpu = av(a,6’c”A” - a,a”Ap) 
= -Oa,A” + OapA’ = 0, 

it follows that 
a,J” = 0 (current conservation). (18.24) 

(18.25) 

i.e. (recall Eq. (17.29), where J p  = (cp,j)) 

if we assume (as frequently explained above) that the fields are localised 
(having a finite velocity of propagation). This result, aoq = 0, is described 
as charge conservation, since q = const. 

18.6 Lorentz Transformations and Associated 
Conservation Laws 

The conservation laws which result from the invariance of the Lagrangian 
under translations and spatial rotations (i.e. conservation of energy, mo- 
mentum and angular momentum) are familiar from mechanics (with the 

The chargeq is
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difference that here (e.g.) the mechanical momentum has its counterpart in 
the field momentum, and that one has to distinguish between momentum 
and momentum density). A natural question is therefore now: What are 
the conserved quantities resulting from invariance with respect to the special 
Lorentz transformations? We do not enter into detailed field calculations 
here, and instead resort to a plausibility argument. 

The x-component of the conserved angular momentum L is 

In the case of a special Lorentz transformation along the x-axis the corre- 
spondingly conserved quantity is evidently 

or more generally 
1 = rpo - xop. 

Since we have here field densities, the corresponding conservation law is 

d o = - d x[rpo - xopl, J d3xp = - J d3xrpo 
dX0 J 3  dX0 

with e.g. p the field momentum density. With this we construct 

1 d Sr’Fld3x d s Pd3X - - -d Jrpod x =  -( 
J pod3x J pod3x ~ X O  dxo S’Fld3x dX0 

) E-R. 

The vector R is (for obvious reasons) called “centre of mass of the field”. 
Thus if we visualise the localised field like a cloud travelling in space, this 
vector would be that of its centre of mass; this is usually not of much interest 
and explains why this is rarely mentioned. 

18.7 Masslessness of the Electromagnetic Field 

Our next aim is to demonstrate that the electromagnetic field (and so the 
photon) is massless. In principle this is already evident by looking at the La- 
grangian and observing that this does not contain a mass term, i.e. m2A,AP. 
A term of this type would violate the gauge invariance of the Lagrangian. We 
can also argue as follows without reference to the Lagrangian. We consider 
the Maxwell equations rewritten in the form of equations of motion of the 
free electromagnetic field ( J ,  = 0), i.e. 

WF,, = 0, (18.26) 
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or (important: we do not yet choose a gauge fixing condition!) 

(8,P)A, - a , (PA, )  = 0. ( 18.27) 

For the solution we make the ansatz 

A,(z) = e,eipuxu. (18.28) 

The vector E, is the polarisation vector. Inserting this into Eq. (18.27), we 
obtain 

o = [-p,p,~, + p , ( p ~ e , ) ] e i ~ ~ x u .  

Since the solution A,  is not to be zero, we have 

In case (a) we have 

6, = ( z ) p , ,  i.e. 6 ,  oc p,. (18.31) 

Hence the solution is 

A,  = ap,eiPpx”, a = const. (18.32) 

Such solutions are considered to be trivial: They can be “gauged away” (see 
below) and are therefore not observable. 

“Gauging away” : The gauge transformation is 

A,, + A; = A,  + %x. 
Since x is arbitrary, we can set 

x = iaeiPpXp. 

Then 
i p p x p  

and so, since from Eq. (18.32) A,  = ap,,eiPpxp, 

a,x = -ap,e 

A: = apyeiPPxp - ap,eiPPxp = 0. 

Thus, these solutions do not yield anything. Hence we have case (b), i.e. 
pppp = 0 and so 

0 = (@ep)pV, i.e. ppe, = 0, (18.33) 

Either
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since in general p ,  # 0. 
We conclude therefore: The solutions are 

A u -  - E u eippxp with p,pl" = 0 and p , ~ ,  = 0. ( 18.34) 

The condition p,p, = 0 says: The mass of the field is zero (compare with 
(17.78): The condition is also described as muss 
shell condition, implying that the momentum is physical (in field theory 
intermediate states may have unphysical momenta). 

We recognise in the condition p , ~ ,  = 0 our earlier condition 8,AP = 
0, which we called Lorentz gauge (fixing condition). We shall see below, 
that with the help of these two conditions we can eliminate the unphysical 
components of the vector potential. 

( T / c ) ~  = p2 + m2c2) .  

18.8 Transversality of the Electromagnetic Field 

We now demonstrate explicitly that two of the four components of the 4- 
potential A, can be gauged away, i.e. that the free electromagnetic field is 
transverse (to the direction of propagation). We choose again 

(a will be chosen suitably later). Then 

with 
I 

E,  + E,  = E,  - ap,. 

This means, with the gauge transformation we also change the polarisation 
vector. We select a wave travelling in the direction of z:  

P p  = (W/C,O,O,k), (P = ( P i ) ,  x = (4>, 
where the above mass shell condition implies 

p,pl" = 0 j w2 - c 2 k 2  = 0 ,  w = ck.  

Since p , ~ ,  = 0, we have 

W 

C 
- E O  -keg = 0 ,  so that EO = €3. 
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It follows that 
A u - - u e  ~ P P X ’  = ( € 3 ,  €1, € 2 ,  E3)e i: (ct -2)  (18.36) 

However, we can still perform a gauge transformation, i.e. we can replace E ,  

by E L ,  EL = E, - ap,, i.e. 

) W 

c 
E, = €3  - a ! - , € 1 , € 2 , € 3  - ak . 

Choosing now 

we have 
I 

E ,  = (0, €1,  € 2 ,  O), 

i.e. the components € 0 , ~  have completely disappeared and have no physi- 
cal significance. The part €0 of A, is described as the scalar part (“scalar 
photon”), the other €3  part as the longitudinal part. We see that only the 
two transverse parts 0: € 1 ,  €2 have physical significance. This result is a 
consequence of the mass shell condition and the gauge fixing condition. 

18.9 The Spin of the Photon 

We now have a closer look at the polarisation vector. We put 

( € 0 ,  €1, € 2 ,  €3)  = go(I,O, 0,o) -I- z3(0, o,o, 1) -I- g+(O, 1, -i, 0) +z-(O,  1,i, o), - 
(a) 

(18.37) 
where 

1 -  
2 

z& = - ( E l  f i E 2 ) .  

(Since E = -dA/dt - V4, i.e. E 1 1  -A, the waves ~ e x p [ i ( c t  - z)/c] are 
circularly polarised). Actually C, = E,, but we want to distinguish between 
the two more clearly. We want to examine the solution of a wave travelling 
in the direction of z:  

Naturally this can be decomposed exactly like E , .  Consider an ordinary ro- 
tation about the z-axis, i.e. a special case of a homogeneous Lorentz trans- 
formation, 

= p u x v  
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with rotation operator Ro for rotation 8 about the z-axis: 

Here 8 is the angle of the rotation in the (z,y)-plane. Then 

A’, = l,PA, = A,lTfj. 
= E ,  exp(ip,,zP)P, 
= E‘ ,  exp(ip,zP), (18.38) 

where 
E l ,  = EPlTPV. 

Thus the rotation affects only the polarisation vector: 

Similarly 
E3(0,0,0,1) + E3(O,O,  0 , l ) .  

However 

If we consider Re as rotation operator, we have the “eigenvalue equation”: 

RoA, = eigenvalue x A,. 

The rotation operator is given by 
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where I ,  is the z-component of the (eigen)-angular momentum operator 
(“spin operator”). Then in a rotation about the z-axis 

RoAo = 1 x A0 
eiezzAo with eigenvalue of I ,  = 0, 

G eierzA3 with eigenvalue of I ,  = 0, 

F eiezzA* with eigenvalue of I ,  = 71.  

ReA3 = 1 x A3 

RQAA = eFisA* 

We go through the last step in detail. We have for instance 

(18.39) 

&A+ = Ree+exp z-(ct - 2 )  1.: 1 
0 0 0  

(ff) 

and hence 

as in the last line of Eq. (18.39). It follows therefore that for a scalar or 
longitudinal field or photon the spin projection on the z-axis (i.e. the direc- 
tion of propagation) is zero, whereas the field of the transverse photon has 
the spin projections S,  = f l f i .  Since only the transverse components are 
physical, i.e. observable, it is evident that the photon has spin l(h), s = lfi 
(S2 has eigenvalue s(s + l), s = rnazirnal s,, S, = I=).  The photon never 
has spin projection 0 in the direction of the momentum vector, i.e. in the 
direction of propagation. One says therefore, the photon has helicity fl.  
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18.10 Examples 

The following examples are motivated by the Lagrangian of electrodynamics, 
but they also lead somewhat beyond the considerations of primary interest 
here and, maybe, illustrate the fascinating use of electrodynamics for the 
exploration of a plethora of other issues. 

Example 18.2: The Chern-Simons term and Rydberg atoms 
Verify the gauge invariance of the following term, called Chern-Simons term, which one could add 
to a Maxwell Lagrangian density: 

T~~ := E X ~ ~ ~ A X a , ~ p  
(up to a divergence). Explore the simple choice Ai = xi  with i = I, 2 and A0 = 0. 

Solution: With A, -+ A, + a,x and using the antisymmetry of the Levi-Civita tensor, the term 
Tcs becomes 

T&s = tXPP (Ax + axx)ap(Ap + apx) = Tcs + A, 

where 

which had to be shown. 

of the atom, we have 
In the special case of A, p,  p = 0 , 1 , 2  with gauge choice A0 = 0 and i , j  = 1 , 2  and m the mass 

TCS = -~i jAidoAj.  

Selecting the simple case of Ai = azi ,a  = const., so that aoAj = a x j / c  = apj/mc,  which relates 
the electric field to momentum, we have 

This type of term appears in studies of atomic physics where the Hamiltonian of a Rydberg atom 
of mass m in the presence of electric and magnetic fields (the latter along “3) is written as 

1 2  1 - p i  + - g E i j p i x j  + - - 
2m 2m 

where g and n are constants. The central term in the last expression is seen to be of Chern-Simons 
type. (Observe the difference between the Hamiltonian here and that of Eq. (19.7) to be discussed 
later. The minimal coupling to Ai discussed there (cf. the end of Sec. 19.2.1) corresponds here 
effectively to the coupling to the dual of Ai) .  The so-called Rydberg atom is an atom regarded as 
one with a permanent dipole moment resulting from a single electron in a shell far away from the 
filled electron shells enclosing the nucleus, so that the structure of the latter can be ignored. 
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Example 18.3: 6-dimensional gauge field theory 
In a (1+5)-dimensional gauge field theory the gauge field is the tensor field A,, = -A,,, p,  v = 
0 , 1 , 2 , .  . . ,5, and the field tensor is 

F p u ~  = a p A u ,  + 8 u A ~ p  + a ~ A p u .  

(a) Verify the invariance of the field strength F,,A with respect to gauge transformations 

JA,, = A ~ , ,  - A,, = aPXu - auX,. 
(b) What are the Maxwell equations derived from the action integral 

S = -- d6zF,,AF’uX. 
3! ‘S 

Solution: (a) Trivial. (b) Set 

1 Ei, := Foij, Bij := - 6 . .  3! y k l m  Fklm . 

The equations of motion are 

( a )  arF,,x = 0,  ( b )  PuXPu6a~Fpa6 = 0. 

Consider (a): 

a”Fpi0 = 0, a0Foio + a3Fji0 = 0, Fooi = a o ~ o i  + a i ~ o o  + a o ~ i o  = 0, 

so that 
8,Eij = 0 and a°Fojk + diFijk = 0, 

i.e. 
aoEjk = - a i F . .  see gelow --a’€ijklmBlm. ’ 

2 ‘3 k 

Verification: 

‘ 1  
3! 

= a’-2!3!F,jk = 2!aiFijk 

The other equations follow similarly from (b). (For the e contractions and related topics, see e.g. 
Felsager (201, p. 354). 

Example 18.4: Born-Infeld theory 
The static, nonlinear BI Lagrangian, here simplified to that involving only the electric field E = 
-V4 in a flat space, and with c = 1, hence E O ~ O  = 1, is given by 

L B I  = 1 drcBI ,  C B I ( ~ ,  v4) = 1 - f i i  - 47re46(r). 

Show that the energy of the charge e at the origin is given by 

HBI  = 47rc0(3.09112)e~/~, 
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i.e. is finite, and not infinite like the energy of a point-charge, i.e. 

in Maxwell electrodynamics. 

Solution: In an attempt to avoid the infinite self-energy of a point charge in Maxwell theory, 
Born and Infeldq arrived at the above Lagrangian which is now named after them and plays an 
important role in String Theory. In fact, L B I ~ ~ = o  = & = I r  where 

and LM is the Maxwell Lagrangian density, in the present case for B = 0 and c = 1 simply 

The Euler-Lagrange equation (18.1) gives the equation corresponding to the Gauss equation: 
L M  = E2/2. 

Integrating over a sphere of radius T and using the Gauss divergence theorem, this becomes 

i.e. 
-_  4'(r) - e - 

J1- ( + ' ( r ) ) 2  r2 ' 

The solution is then seen to be 
dx 

With the help of Tables of Integrals one finds that + B I ( O )  = 1.85407e1/2 (this was the intention 
of Born and Infeld, to obtain this finite in a covariant theory). 

Defining 
1 ~ L B I  - 1 E D = - - - - -  

po aE po m' 
we have (cf. Eq.(18.4), here with c = 1) 

The energy of the charge is then found to be (after some nontrivial integration) 

HBI = &Too = 47r~o(3.09112)e~/~.  .I 
qM. Born and L. Infeld, Proc. Roy. SOC. A144 (1934) 425; see also Jackson [3], p. 10 and 

G. W. Gibbons and D. A. Rasheed, Nucl. Phys. B454 (1995) 185. 
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Example 18.5: Non-gauge invariant solutions of Maxwell’s equations11 
A type of nonlinear, non-gauge invariant solutions G,, of Maxwell’s equations has been found and 
investigated by Schiff. These are given by (cf. Eq. (17.31)) 

G,, := F,, i xhg-’A,A,, ( g  = const.). 

Show that G,, satisfies everywhere the conditions 

*GpuGpV = 0, G,,GP” = 0, 

which define it as a “null field”. Show that static, radially symmetric solutions of the homogeneous 
part of the non-gauge invariant equation 8,GP” = p0jy are given by 

ko = const., ko A, = 7, 
and 

c2 
and 42 = --, 

What is the total charge Q = 
solution 41 and determine the charges b. 

Solution: The original starting argument of Schiff is simple. Since for a point charge q at rest the 
Coulomb potential 4 and electric field strength E are given by 

where y = h g - l k o ,  b,c2 = const. 
b 41 = - 

drp? Finally solve the null condition with B = 0 for the Coulombic 

one has E2 = d 4 / k 2 q 2 ,  or (cf. Eqs. (17.31), (17.35)) 

The covariant generalisation is seen to be 

as one can verify by reduction to the case above. For B = 0 (i.e. Fij = 0 in the quantity on the 
left) this null field condition is 

Writing the relation as 
2 

9 
F , , , F ~ ~  + ?(A,A,)~ = 0, 

we see that -due to opposite symmetries of F,, and A,A, -we can write it as G,,GP” = 0 with 
G,, as defined above. Multiplying G,, by the four-dimensional Levi-Civita tensor, we see that 
its dual satisfies *G,, = ‘F,,, so that with *F,yF”u = 0 (E I B), we obtain *GP’Gpu = 0. 
Thus G,, satisfies the conditions of a null field. 

The static, radially symmetric part of the homogeneous equation 8,GPLY = 0 with A = Ar(r )  
and so B = 0 is 

V . (AA) = 0, 

“H. Schiff, Can. J. Phys. 47 (1969) 2387 and H. Schiff, Quark-lake potentials in a n  extended 
M a w e l l  theory, hepth/0308091. 
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which is solved by A = ko / r ,  since 

kor kor ko 1 a 2k0 - 
1-3 r2 r r2 8~ r 

V .  ( A A )  = V A .  A + A V .  A = -- . - + ---(r -) - . 

The zero component of 8,GP” = poj” is (with Goi = Foi - f i ( A ) i A o / g )  the Gauss law 

which with 

can be written (as shown by Schiff) 

1 d2(r4) 1 d(r4) 2 - y-- = poc p ( r ) ,  
r dr2 r2 dr 

where y = f i k o / g .  Irrespective of the value of y the homogeneous part has solutions for r+ = 
const., i.e. 41 = b / r ,  but for y # 1 also solutions 4 2  = c2r-7, which are “confinement potentials” 
for y 5 -1. 

Integrating the Gauss law, one obtains in the usual way the total charge 

(the index referring to  solution 41), i.e. 

Inserting the Coulombic solution 41 into the null field condition, i.e. 

one obtains 

with solutions 

This determines the charge b in the potential 41. In the paper of Schiff (cited above) these 
conditions are further extended to the confinement potentials 4 2 ,  and it is shown that fractional 
charges such as those attributed to  quarks can be obtained. This is an interesting observation, 
although, of course, this is not the acceptable overall theory. 

Example 18.6: Quantum Hall effect 

energy U ( E ,  B), 
Starting from the Lagrangian density of the electromagnetic field in a dielectric with polarisation 

- U(E, B), with U := - g ( E .  B), 
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show that if the induced surface charge is ne, i.e. an integral multiple n of the elementary charge 
e, and the magnetic flux is a = m@o, i.e. an integral multiple of the magnetic flux quantum 

= h/e (in MKSA units), that then the surface Hall conductivity,** C H ,  defined by 

j M  = CHE, 

is given by 
e n  e‘ n _ _  (length)-’ = --(length)-’. 

Qo m h m  

The Hall conductivity plays an important role in the quantum Hall effecttt (this Example does 
not claim to explain this, instead is only an exercise in considerations around it). 

Solution: We had the equations (cf. Eqs. (4.8), (6.15)) 

B 
PO 

D = E o E + P ,  H = - - M .  

1 a13 , 1 au P = - - - 
PO dE PO aE’ 

.’. D = - - Implies 

and 

For the given expression of U these imply 

9 9 
PO PO 

P = - B ,  M=-E.  

Since we had for induced charge and current densities 

p p  = - V . P ,  j M  = V x M, 

we have pp  = 0 (since V . B  = 0), but (cf. Eq. (4.13)) the surface charge density and the magnetic 
current density resulting from polarisation are 

where n is a unit vector pointing out of the surface or interface area F with, say, F = L2 and 
circumference Lo. Then, using the theorem of Stokes, 

Hence 

For a recent discussion with references to earlier literature see J. E. Avron, D. Osadchy and 
R. Seiler, “A Topological Look at the Quantum Hall Effect”, Physics Today, August 2003, p. 38. 
The standard definition of the magnetic flux quantum in SI units is Qo = h/2e (as in Appendix 
B). In c.g.s. units it is hcl2e. This is for superconductors where the charge carriers are Cooper 
pairs of charge 2e (ignoring the sign of the charge). The above article considers single electrons, 
thus the elementary quantum of magnetic flux there is defined as QO = hc/e in c.g.s. units. The 
author is indebted to Dr. 8. Taylor, National Institute of Standards and Technology, USA, for 
clarifying correspondence. 

** 

++See K. von Klitzing, G. Dorda and M. Pepper, Phys. Rev. Lett. 45 (1980) 494. 
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The quantity U H  is the interface Hall conductivity. Considering the surface charge density u p ,  we 
have 

surface charge = Q = 1 u p d F  = 
PO PO 

where @ is the magnetic flux through the surface. Setting Q = ne and -9 = m@a, we have 

In strong magnetic fields B the Hall conductivity is actually observed to  be quantised. 



Chapter 19 

The Gauge Covariant 
Schrodinger Equation and 
the Aharonov-Bohm Effect 

19.1 Introductory Remarks 

In this chapter we first establish the Schrodinger equation for a charged par- 
ticle moving in an unspecified electromagnetic field. We demonstrate the 
covariance of this equation under gauge transformations which ensures that 
the probability density is independent of the choice of a particular vector 
potential. We then consider the special case of a homogeneous solenoidal 
magnetic field restricted to a small domain behind a diaphragm with a dou- 
ble slit and with an electron source on the other side. It is then explained 
why the resulting interference pattern observed on a screen (on the solenoid 
side of the slits and some distance away from it) is displaced when the cur- 
rent in the solenoid is switched on or off. This Aharonov-Bohm effect is a 
quantum mechanical effect resulting from the phase of the Schrodinger wave 
function, and may be looked at as experimental evidence of the vector po- 
tential. The considerations here supplement our considerations of solenoidal 
fields in Chapters 5 and 8, where, in particular, we investigated the electro- 
magnetic vector potential A in the neighbourhood of a long solenoid. The 
Aharonov-Bohm effect is clearly a fundamentally significant phenomenon. 

447 
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19.2 Schrodinger Equation of a Charged Particle 
in an Electromagnetic Field 

19.2.1 Hamiltonian of a Charge in an Electromagnetic Field 

We return once again to the nonrelativistic equation of motion of a particle 
with mass m and charge e in an electromagnetic field - this time, however, 
with a view to the formulation of the corresponding Schrodinger equation. 
Previously we wrote the former equation as a Newton equation with the 
Lorentz force as external force, i.e. 

d 
-(mi.) = e ( E  + r x B), 1r1 G IvI << c.  d t  

(19.1) 

This equation can also be derived as in ordinary classical mechanics from the 
following Lagrangian (with r = ( q l , q 2 , q S ) ) :  

(19.2) 

as we verify now. With the Lagrangian we can then (via a Legendre trans- 
form) construct the Hamiltonian as a prerequisite for the transition to the 
quantum mechanical Schrodinger equation. From L we obtain 

(19.3) aL - . a4 
- = m q i + e A i ,  
d L  
aqi aqj %j aqj 

- - eqi- - e-, 

and the Euler-Lagrange equation of motion 

d L  = o  

yields 
d . aAi a+ 

mqj + - ( e A j )  = eqi- - e-, 
d t  %j %j 

where d / d t  is the total time derivative, i.e. 

d d  a -- - - + qi-, 
d t  d t  dqi 

so that 

and hence 

(19.4) 
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However, we know that 

aA 
a t  

E = - - - V +  and B = V x A ,  

and thus 

v x B = V  x (V x A) = V ( V . A )  - ( v * V ) A  
a 
dr 

= - ( v * A )  - 

i.e. 

where 

and hence 
m4;j = e E j  + e ( v  x B) j ,  

as had to be shown, i.e. that the Euler-Lagrange equation is identical with 
Newton’s equation. 

One should note: The conjugate momentum is pi = a L / a q i ;  this is 
also the canonical momentum in the Hamilton formalism. We have (cf. 
Eq. (19.3)) 

(19.5) 

However, the so-called mechanical momentum is mv or 

p = mv + e A .  

mv = p - e A  G mq. (19.6) 

This distinction is very important. 

transform, i.e. by defining 
We obtain the Hamiltonian H ( q , p )  as in mechanics with a Legendre 

H ( 4 ,  P )  := Pi& - L(q, 6) 
1 
2 

= p i ~ i  - -mi? 2 - e(iiAi - 4) 

Pi l m  2 eAi  
m 2 m2 m = -(pi - 4) - --(pi - e A i )  + e 4  - -(pi - e A i ) ,  

or 

1 mv+p-eA 
(19.7) 
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The contribution - e A  is seen to be the effect of the Lorentz force expressed 
in terms of the vector potential. The substitution 

Pmech = mv + p - e A  

for the ordinary momentum in mechanics is frequently described as minimal 
electromagnetic coupling. 

19.2.2 The Gauge Covariant Schrodinger Equation 

We now construct the time-independent Schrodinger equation and explain, 
what is meant by “gauge covariance”. We saw above: For a particle with 
charge e the relation between mechanical momentum and conjugate momen- 
tum is changed by the effect of the Lorentz force, i.e. the momentum p 
becomes p - e A .  Correspondingly we have in nonrelativistic quantum me- 
chanics the substitution 

Pme& --t -ihV - e A  = -ih V - -A ( ; )  
and (V - %A) is called gauge covariant derivative. 

The canonical variables required for quantisation are the spatial Carte- 
sian coordinates xi and the appropriate canonical momenta p i .  In the present 
case quantisation requires the replacement of p by the operators V ,  and to 
consider all quantities as operators in the space of states $. The correspond- 
ing Schrodinger equation in position space and with eigenvalue E is then (cf. 
Hamiltonian (19.7)) 

2 -- h2 (v  - ;A) $ = ( E  - ed>$. 
2m 

(19.8) 

One expects a sensible formulation of the theory to be such that Schrodinger 
equations with different potentials A are “equivalent” in the sense that they 
yield the same observable results, which depend only on the probability den- 
sity [ $ I 2 .  To achieve this, the wave function $J has to be transformed along 
with the potential in the gauge transformation from one potential A to a 
different one. Thus, with the gauge transformation of the vector potential, 

A -+ A’ = A + vx 
(where our time-independent considerations leave 4 unchanged), we also 
transform the phase of the wave function by writing 
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This equivalence (to be verified below) is described as gauge covariance. We 
now verify that these transformations convert a Schrodinger equation in $' 
and A' into one in $ and A or vice versa. We start from the Schrodinger 
equation in primed quantities: 

Now 

i.e. ( V--A'  ; ) 2  $ ' = e h  "( V - - A  ; ) 2  $. 

This implies the equation in A, $: 

2 h2 
2m 

-- (V - ;A) .~ct = ( E  - e+>+. 

(19.9) 

(1 9.10) 

Since the only physically observable quantity in $ is the probability den- 
sity l$I2, and this remains unchanged under the gauge transformation, we 
see that all gauge potentials, which are related by gauge transformations, 
describe the same physical state. (A wave function is a probability ampli- 
tude; the phases of wave functions have a relative significance, not an abso- 
lute significance, as quantum mechanical interference experiments show). In 
quantum mechanics the wave function of a free particle of mass m, energy 
E = p2/2m and momentum p is given by 

Recall briefly how quantum mechanics enters here. Canonical quantisation 
implies, that the Cartesian quantities xi and pi (as operators in the space of 
states) obey the following commutator algebra: 
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These operator relations are satisfied by the position space representation 
p j  = -itia/axj of the momentum operator. Now assume E = p2/2m+V(x). 
Then, classically in the non-free case (i.e. potential V ( x )  # 0) p2/2m = 
E - V ( x )  and quantum mechanically 

PV2 
dJ = ( E  - V(.>>dJ, -- 

2m 

where $(x) is a wave function. In general one can separate the angles 
and one obtains a one-dimensional differential equation analogous to the 
Schrodinger equation in one dimension (with centrifugal term). An approx- 
imation $0 (for V # 0, exact for V = 0) of $ is obtained from the classical 
p = J 2 m ( ~  - ~ ( x ) )  as solution of 

i.e. 

or 

Fig. 19.1 The two paths rl, r2 of the electron wave 
and their interference spectrum. 

Considering now the case of a particle travelling in the Maxwell field A, 
then according to the above prescription of minimal coupling, we have to 
replace the free particle momentum p by p - eA, so that the wave function 
has the form
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The contribution 
- 

is the effect of the Lorentz force in the quantum mechanical case. We can 
consider it as the corresponding quantum mechanical law. It plays an impor- 
tant role in the interpretation of the Aharonov-Bohm effect. One should note 
that the expression $ A . dr and hence the wave function $ (for integration 
around a closed path) is invariant under nonsingular gauge transformations, 
since 

because 

19.3 The Aharonov-Bohm Effect 

We restrict ourselves here largely to a qualitative treatment. * Electrons 
with momentum p = h/X are sent through a diaphragm or partition with 
two slits. If the difference in the lengths of the two possible paths, a,  is 
of the order of the wavelength X of the waves one expects and observes an 
interference pattern on the screen behind the slits (due to constructive or 
destructive interference). We write the difference between the phases of the 
wave function of the electrons due to the different paths 

A(; J p . d r )  = k a = ~ .  (19.11) 
p=i% 

At a maximum P as indicated in Fig. 19.1 we have the effect of the super- 
position of two waves which have a phase difference ka. If we arrange the 
experiment such that electrons can only pass through one slit, then 6 = 0, 
because a = 0 (as well as $ = 0). In this case we observe no interference and 
the conditions of quantum mechanics are not provided. 

The present problem with (as we shall see) a homogeneous magnetic 
field vertically out of the plane of the diagram of Fig. 19.1 in a small domain 
behind the slits is seen to have cylindrical symmetry. This suggests one to use 
cylindrical coordinates r, 0, z . In these coordinates, with field components 

A = eeA, B = V x A ( 1  e,, 

'For detailed literature see e.g. M. Peshkin and A. Tonomura, The Aharonow-Bohm Eflect, 
Lecture Notes in Physics, Vol. 340 (Springer, 1989). 
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the gradient is given by 

and the divergence by 

1 8  lace ac, V . C = --(rCr) + -- + -. 
r dr  r ad 6’2 

Hence 

(19.12) 

(19.13) 

( 19.14) 

For the chosen vector potential A in the direction of eg (in the outside region 
around the solenoid as we saw in Chapter 8) we have 

ie a l a  ie (V- ;A)’= (V- --Aeg). [- d r ’ r d d  -- - -A, ti 21 az  

But now 

A + dl = A27rr = /(V x A) . d F  = B . dF G @, (19.16) 

where Q, is the magnetic flux through the surface F .  Hence with 

the expression (19.15) becomes 
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The corresponding Schrodinger equation for scattering in 2 dimensions is 

or with $(r, 0, z )  --t $(r, 0) 

Setting $(r, 0) cc eime = eim(e+2.rr), m = 0, f l ,  f 2 , .  . . , we obtain 

Comparison with the Bessel equation 

-+---+ d2Z, ldZ,  
dz2 z dz 

(19.17) 

(19.18) 

( 19.19) 

(19.20) 

shows that the general solution of the Schrodinger equation has the form 

(19.21) 
m=-w L J 

where a,, b, are arbitrary constants and J,, J-, are Bessel functions. Since 
the wave function has to be regular at r = 0, all coefficients b,  must be zero, 
i.e. 

+ ( T , Q )  = c ameimeJIm+,,(kT). (19.22) 

This is the small-r expansion. The Bessel functions can also be expressed as 
the sum of two Hankel functions valid at large T ,  i.e. 

00 

m=-m 

1 
J,(z) = p p ( z )  + HL2'(z)), 

where for IzI --t 00 (see books on Special Functions) 
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i 

Fig. 19.2 The angle 8 of cylindrical coordinates. 

Hence for r t 00 the wave function can be written 

+e-i(kr-lm+al$- 2) ( 19.23) 

The wave function $(r, 0) can now be subdivided for large values of r into an 
incident or ingoing wave (let's say from the right) and a scattered or outgoing 
wave whose asymptotic behaviour defines the scattering amplitude f (Q), i.e. 

$(r,  0) = (e- ikr  " cos (3 ,) + $out (19.24) 

(the braces (. . . ) are meant to indicate that the enclosed expression is not 
the strictly correct free wave, as is explained below) with (for r + 00 we 
deduce from the differential equation or the above Hankel functions that 
$ - e i k r / f i )  

(19.25) $out = - ezkrj(Q)( l  + o(I /~)) .  

We expand the ingoing wave in terms of Bessel functions. We take this 
expansion from the literature,t i.e. 

1 '  
+ I2  

w 
e-ikrcos9 - - (-i)"Jn(kr)eine 

co - - C (-i)neine (2)' 7rkr cos ( k r  - 
n=-m 

+I. S. Gradshteyn and I. M .  Ryzhik, Table of Integrals, 
p. 973. 

Series and Products (Academic, 1965), 
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Fig. 19.3 Displacement of the interference spectrum 
when a current flows in the solenoid. 

We substitute (19.26) and (19.25) into (19.24). Comparison of the coefficients 
of e-ikr in this expression and in (19.23) then yields the expression for a,, 
i.e. 

( 19.27) 

Comparison of the coefficients of e+ikr yields the scattering amplitude, scat- 
tering amplitude, 

‘ K  a ,  = e-tylm+al 

( 19.28) 

with the scattering phase 

(19.29) 
n- n- 6, = --lm + a1 + -1ml. 
2 2 

We see therefore, that for (u # 0 the scattering phase 6, # 0 . Actually the 
ingoing wave in (19.24) is in the present case wrong. In the usual case of the 
scattering off a potential like the Coulomb potential (as in the familiar case 
of 3-dimensional scattering theory), one assumes that the potential vanishes 
for r + 03. Here we consider the scattering of electrons (or the electron 
wave) in the field of an infinitely long solenoid, i.e. off magnetic flux lines 
which do not return. Aharonov and Bohm showed in their work,$ that the 
ingoing wave therefore carries a phase factor, i.e. that Eq. (19.24) must be 
written 

$+-,@) = e e + Gout. (19.30) --iae(z,y) - ikr  cos e 

$The original papers are: D. Bohm and Y. Aharonov: “Significance of electromagnetic po- 
tentials in the quantum theory”, Phys. Rev. 115 (1959) 485 and “Further considerations on 
electromagnetic potentials in the quantum theory”, Phys. Rev. 123 (1961) 1511. 
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This change is by no means self-evident. Indeed the calculation of the scat- 
tering amplitude f(0) here depends on the order in which the sum Em and 
the limit limTdm are taken. Aharonov and Bohm used in their complicated 
calculation the order limrdm Em, whereas in the above partial wave expan- 
sion these steps are taken in the opposite order. It is found that the summed 
expressions for f(0) differ in forward direction by a contribution proportional 
to S(O - 7 r ) .  We do not enter into a deeper analysis of these mathematical 
details here .§ 

We now consider the experimental setup shown schematically in Fig. 19.3 
and proposed by Aharonov and Bohm with a solenoid (infinitely long, so that 
the field outside is zero) immediately behind the double slit and perpendicu- 
lar to the diagram. In practice, in real experiments, the solenoid is replaced 
by microscopically thin magnetised iron crystals. One can see that with the 
current in the solenoid switched on, i.e. the magnetic flux, the phase of the 
electron wave function changes by an amount given by7 

7r 7 r e  
-a = ( - &) = 
2 2 27rh 

f A .  dl, 

which may be rewritten 

(19.31) 

Here rl and are the two paths from the electron source through the 
two slits to the interference point on the screen. The interference spectrum 
suffers a corresponding shift as indicated in Fig. 19.3. This effect is known 
as Aharonow-Bohm efSeect.11 The effect has been confirmed experimentally** 
and plays an important role in numerous theoretical considerations. 

What makes the Aharonov-Bohm effect so remarkable is: 

§The partial wave treatment can be found in particular in S. N. M. Ruijsenhaars, Ann. Phys. 
(N.Y.) 146 (1983) 1. The discussion on the order of C, and limr-+m can be found in C.R. Hagen, 
The Aharonov-Bohm Scattering Amplitude, Univ. of Rochester Report UR-1103 (1989). Further 
discussions are given in the book cited above, of Peshkin and Tonomura. 

some considerations the wave function with phase factor exp{ie sr A . dl/h} is not unique, 
since several revolutions around the field B are possible. This problem can be circumvented by 
summing over arbitrarily many revolutions or by using only uniquely defined wave functions (see 
e.g. the discussion in the last paragraph of M. V. Berry, Pmc. Roy. SOC. Lond. A392 (1984) 45). 

“The original papers have been cited above. A readable account of the Aharonov-Bohm effect 
can be found in Felsager [20], pp. 49-55. 

An early experimental verification can be found in G. Mollenstaedt and W. Bayh:“The con- 
tinuous variation of the phase of electron waves in field free space by means of the magnetic vector 
potential of a solenoid”, Phys. Bliitter 18 (1962) 299. A more recent confirmation has been re- 
ported in A. Tonomura, 0 Noboyuki, T.  Matsuda, T. Kawasaki, J. Endo, S. Yano and H. Yamada: 
“Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave”, 
Phys. Rev. Lett. 56 (1986) 729. 

** 

In
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Y 

t A  

Fig. 19.4 The direction of A with respect to the angle 8. 

(1) that it is a purely quantum mechanical (wave function) effect, 
(2) that the electrons travel only in such domains in which E and B are zero, 
and 
(3) (as we saw in Chapter 8) that also the vector potential A can be almost 
everywhere zero, i.e. where the singular gauge transformation is defined. 
However, there is no need to perform a singular gauge transformation. Thus, 
in quantum mechanics the vector potential has physical significance and be- 
comes effectively observable in the shift of the interference spectrum, i.e. in 
an indirect way. 

Example 19.1: Eigenvalues of mv 
For the case that LY is proportional to the magnetic flux in the direction of z as in the above, and 
for propagation of electrons in the direction of x, so that the wave function $ of the electrons is 

$ = e -  e , c o t e =  z ,  iaO(z,y) - i k z  

Y 

verify that 
mv,$ = -U$, mvy$ = muz$ = 0. 

Solution: We have the operator relation 

mv = -ihV f eA, 

and 

so that 

Hence 

with, cf. Fig. 19.4, 
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It follows that 

This equation, i.e. 

may now be rewritten as 

sin 0 
P 

- kh+ ah- f eA, 

sin -9 

P 
= ( - k h f  eA(p)p- f 

= ( - k h f  eA(p) sine f eA,)e-iaee-ikz 
= -k f i e - iae , - ik z  - - -khll,, 

where in an intermediate step we replaced A ,  by -A(p) cos(~/2-8) = -A(p) sine. In an analogous 
way one can verify that 

mvy = 0, and mv, = 0. 



Chapter 20 

Quantisation of the 
Electromagnetic Field and 
the Casimir Effect 

20.1 Introductory Remarks 

The crux of the Casimir effect* can already be explained with the help of 
the simple harmonic oscillator. In the case of the one-dimensional oscillator 
defined on z E [-oo,co] one obtains the ground state energy Eo = $“J, 
also called zero point energy, where w is the frequency of the oscillator. If 
the oscillator is restricted to a domain 2 E [ -a ,a] ,  a large but finite, i.e. if 
the wave function $ is subjected to the boundary condition $(&a) = 0, the 
eigenvalues naturally change and become 

tiw 
Eo = -(1+ 2 O ( l / a ) ) ,  

so that for a --+ 00 the zero point energy Eo = it.. is regained. Thus with 
the boundary condition one obtains a contribution cx 1/a (or similar) to the 
energy, and hence a 

a 1 
force = --(energy) oc - 

8 U  U 2  

Thus as a consequence of the boundary conditions, quantum mechanics im- 
plies a force proportional to l/a2. The additional force derived from such 
a boundary-dependence in the case of quantised electrodynamics (in which 

*The first book on this topic is that of K. A. Milton, The Casimir Effect: Physical Manifestation 
of Zero-Point Energy (World Scientific, 2002). 

46 1 
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conductors play the role of the walls at z = f a  in the above) is referred to 
as Casimir-effect. 

In the following we introduce first the simple canonical quantisation of 
the n-dimensional harmonic oscillator. This method is then used to perform 
an analogous quantisation of the electromagnetic field which naturally im- 
plies divergences if the field is visualised as providing harmonic oscillators at 
every point in space. Thus the calculation requires the definition of an arti- 
ficial but sensible regularisation procedure which leaves a physically sensible 
result. The method is first applied to the academic example of electrody- 
namics in one space dimension but with boundary conditions. Thereafter the 
three-dimensional case is treated along similar lines, and it is shown how the 
Casimir force arises. Our considerations here can be regarded as a natural 
supplement to those of Chapter 14 on wave guides and resonators. 

20.2 Quant isat ion of the n-Dimensional Harmonic 
Oscillator 

In the canonical quantisation of the n-dimensional harmonic oscillator one 
usually proceeds as follows. The Hamiltonian of the problem to be quantised 
can be taken as (with a suitable choice of coefficients which are irrelevant 
here) 

Canonical quantisation implies, that we associate with every dynamical vari- 
able qi,  pi (hermitian) operators @i, Iji, which obey the following algebra: 

(20.1) 

(in the following we usually set ti = l), where the generalised coordinates qi 
have to be Cartesian coordinates (i.e. q1 = z, q 2  = y, q 3  = z ) .  The momen- 
tum operator $i has in position space the differential operator representation 
-iha/aqi. Next one defines the “annihilation operators” iii and ‘(creation 
operators” hi t by the relations 

(20.2) 

and it is readily verified that in view of the relations (20.1) these satisfy the 
following commutator relations 

(20.3) 
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With a little algebra one can verify that H ( q , p )  becomes the Hamilton op- 
erator given by 

The operator 

is called particle number operator. In the case of the harmonic oscillator we 
do not have real particles and therefore one uses instead the terms “quasi- 
particles” and “quasi-particle operators”. The “vacuum state” or “ground 
state” 10) with wave function 

in position space representation is defined by the condition of “all annihila- 
tion operators applied to the vacuum give zero”, i.e. 

h i l o )  = 0 for all i = 1 , 2 , .  . . ,n. 

In this state the system has an energy given by 

(20.5) 

called “zero point energy”. It is an amusing exercise to find a way to 
Maxwell’s equations with the help of the commutator relations (20.1), as 
in the following example. 

Example 20.1: Feynman’s “proof” of Maxwell’s equations 
Assume a particle has mass m and coordinates z j ( j  = 1 , 2 , 3 )  and velocity xj. Also assume the 
velocity satisfies Newton’s equation mxj = Fj (z, k, t ) ,  and the coordinates and velocity components 
satisfy the commutator relations 

[ z j r z k ]  = 0, m[zj,xk] = i p o m j k .  

Then show that there are fields Ei(z,t) and H j ( z , t ) ,  which satisfy the Lorentz-force equation 
Fj = Ej + 6 j k l k k H l  and the Maxwell equations V H = 0,  ~ 0 %  + V x E = 0. The remaining 
two Maxwell equations (with eopoc2 = 1) V. E = p / e o ,  - c o g  + V x H = j, then simply define 
the external charge and current densities p and j. 

Solution: The solution can be found in the paper of Dysont and is therefore not reproduced here. 
This publication gave rise to  further discussion in the literature.$ 

+F. J. Dyson, Am. J .  Phys. 58 (1990) 209. 
$See e.g. I.E. Farquhar, Phys. Lett. A151 (1990) 203 and A. Vaidya and C. Farina, Phys. 

Lett. A153 (1991) 265. 
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20.3 Hamiltonian of the Gauge Field 

Our next objective is to derive the Hamiltonian density of the free electro- 
magnetic field in analogy to the Hamiltonian of the n-dimensional harmonic 
oscillator as a necessary step towards its quantisation. For reasons of simplic- 
ity we use from now on again the same symbols q , p  for c-number quantities 
as well as for operators G,$, since it is clear from the context which case is 
meant. Indeed, in the case of the free electromagnetic field we can proceed 
parallel to the case of the harmonic oscillator. The Lagrangian density L 
and the Lagrangian L are, as we saw in Chapter 18, given by 

(20.6) 

We have four dynamical (i.e. time-dependent) variables A,, p = 0,1,2,3.  
The Euler-Lagrange equations are, as we saw, 

1 
4 L = --F,vF,,, and L = / d 3 z L .  

i.e. 
(20.7) 

These equations separate into (for v = i ,  0): 

(1) aoFOi = -ajFji (E=o) 
(because of the time derivative this is an equation 

(2) &Fk0 = 0 Foo = 0 ,  = 

(this is a constraint). 

013 

of motion), and 

We note that (2) results from the variation with respect to A’. If one 
would impose from the very beginning the gauge fixing condition A’ = 0, 
then (2), and hence (see below) the Gauss law would be lost! 

The momenta canonically conjugate to the components A, are given by 
(again as  we saw earlier) 

(20.8) 

The result 
TO := Foo = 0 

is an additional constraint. From (2), and the definition of the momentum 
density components given by Eq. (20.8), we obtain 

a k T k  = 0. 
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This is the condition V - E = 0, which is the Gauss law. We observed earlier 
(see Eq. (18.17)), that the Lagrangian density can be expressed as 

The quantities entering here do not involve Ao. This suggests that we proceed 
as follows. We add the Gauss law with a Lagrangian multiplier A’ to L,  so 
that (with - as we saw - aC/aAo = 0 = V . E / c )  

(20.9) 

The canonical Hamiltonian density ‘Ft is as usual given by a Legendre trans- 
form for which (cf. Eq. (18.10)) 

Hence if we integrate over all space 

(20.11) 

We now choose the gauge A0 = 0 and V . A = 0, so that (see Eq. (10.11)) 

OA = 0. (20.12) 

The condition A0 = 0 suggests itself, since T O  = 0; i.e. the 0-degree of free- 
dom is completely eliminated. The other constraint V . A = 0 together with 
Eq. (20.12) then ensures that only two components of A are independent. 

20.4 Quantisation of the Electromagnetic Field 

Equation (20.12) allows us to write the solutions 

A cx ---EkXe i(k.x--wt) (or sin, cos) . (20.13) n 
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For these we have the dispersion relation 

The solutions of UA = 0 are therefore periodic and we can write them as 
Fourier expansions (with qk,X(t) = qk,X(0)eciwt) 

(20.14) 

where V is the space volume and X = 1 , 2  label the two possible, mutually 
orthogonal directions of polarisation with 

Ek,X * €:,XI = 6X,X‘. (20.15) 

The symbol C s  is meant to indicate summation over discrete parameters 
(A) and integration over continuous parameters (the components of k ) .  The 
condition V A = 0 implies 

Then with 6 Jd3xeik’x  = 6 ( k )  in the second step we have 

(20.17) 

We demand that A and 7r are real and as operators hermitian (since they rep- 
resent quantum mechanical observables). It follows that for ~ ( x ,  t )  (observe 
that Ck contains the summation over positive as well as negative compo- 
nents of k ,  which is used in the last step in the following) 

(20.18) 
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i.e. (comparison of the first line with the third) 

or 
E ~ , x P ~ , x ( ~ )  = E-k,XP-lc,X(t), 

so that with Eq. (20.15) 

(20.19) 

(20.20) 

(20.21) 

In order to be able to handle the other terms in H in an analogous 
manner, we first have to rewrite these. It can be shown, as we do below, 
that 

Jd31(V x A) . (V x A) = - d3zA. (AA). J (20.22) 

We use Gauss’ divergence theorem 

J d 3 x V - D =  D - d F .  (20.23) J 
Here we set 

D := A x (V x A). 

Then 
V * D  = V *  {A x (V x A)}. 

We use 
V .  (A x B) = B * ( V  x A) - A - ( V  x B), 

so that 

V - { A  x (V x A)} = (V x A ) - ( V  x A) - A . ( V  x {V x A}). 

Recalling the relation “curl curl = grad div - div grad ”, we have 

V x (V x A) = V ( V * A )  - AA. 

Hence 

V * {A x (V x A)} = (V x A) * (V x A) - (A * V)(V * A) + A .  (AA). 
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We insert this in Eq. (20.23) and obtain: 

[ d3z(V x A) . (V x A) - [ d3z(As V)(V . A) + d3zA. (AA) 

x ( V x A ) } - d F  - 
D 

dF . {AiVAi - ( A .  V)A}. (20.24) 

The right side is an integral over the surface area of the volume V on which 
A -+ 0. With the gauge fixing condition 
V . A = 0 another contribution drops out, and we obtain the result (20.22), 

= J  
Hence this integral vanishes. 

i.e. / d3z(V x A) . (V x A) = - d3zA. (AA). s 
Hence 

s$..: = /d3x(V x A) . (V x A) = - d3zA. (AA) s 
= k 2 /  d3xA-A (20.2 5) 

since AA = -k2A. Repeating the procedure of above we obtain evidently 

Thus the expression for the Hamiltonian becomes 
,. 

(20.26) 

( 20.27) 

The next step is quantisation. We demand as quantisation conditions at 
equal times t (with transition from c-number valued Ai,  7rj to operators, and 
in analogy with the harmonic oscillator) 

[Ai (Xl t ) ,Aj (X’ , t ) ]  = 0 ,  [..i(X,t),~j(X’,t)] = 0, 

( 20.28) +Oh [T~(x,  t ) ,  A~(x’,  t )]  = -----Sij-S(x - x’), 
C 

or 
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We now define annihilation and creation operators 

with 

[aA,k, ax!,k’] t = POfidA,X’dk,k’, 

so that in analogy with the case of the harmonic oscillator 

(20.31) 

(20.32) 

The vucuum state 10) or ground state of the quantised electromagnetic 

U x , k l O )  = 0, all k , X .  (20.33) 
field is defined by 

The energy of the system in this state is the zero point energy 

(20.34) 

Since we have to sum here over infinitely many values of k, the sum is 
(different from the case of the n-dimensional harmonic oscillator) infinite. 
This result seems very natural because in field theory we have effectively at 
every point in space one or more oscillators, each of which contributes to the 
zero point energy. If the physical field is to satisfy boundary conditions at 
boundaries, these change the spectrum, i.e. the values of W k  and hence the 
zero point energy. For this reason it is plausible to define the finite physical 
vacuum energy as a difference in zero point energies, i.e. as 

Eva, = E0,with boundary - E0,without boundary - (20.35) 

If Evx # 0, this effect or the corresponding force has to be attributed to 
the presence of boundaries. The first investigation of this effect was pub- 
lished by Casimir in 1948.5 Casimir considered the zero point energy of the 
electromagnetic field between two infinitely extended parallel metal plates a 
distance d apart, and showed that as a result of the quantum nature of the 
field an attractive force oc -l /d4 acts between the plates. 

§H. B. G. Casimir, Proc. Kon. Ned. Akad. Wet. 51 (1948) 793. A very readable review paper 
is that  of G. Plunien, B. Miiller and W. Greiner, Physics Reports 134 (1986) 87. 
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E l  Ell 

a -- L-a - 

20.5 One-dimensional Illustration of the Casimir 
Effect 

In his original work (see above) Casimir considered two uncharged, parallel, 
perfectly conducting metal plates, and showed that an attractive force pro- 
portional to - l id4  acts between the plates, where d is the distance between 
the plates. We now want to consider explicitly the analogous calculation for 
the academic, though simpler, 1-dimensional case. We shall see that it is not 
enough to define the vacuum energy as a difference. In order to obtain well 
defined, i.e. finite expressions, one must also carry out a regularisation of 
the expressions. In order to justify this regularisation physically, we recall 
that at high frequencies of the radiation, w > w, (w, a critical or so-called 
cutoff frequency) the metal behaves like a dielectric and hence is practically 
transparent to the radiation.* This means that the eigenfrequencies of very 
high modes (wn > wc) remain unaffected by the boundaries and hence do 
not contribute to the vacuum energy. 

We consider a “one-dimensional box” of length a,  i.e. a box with cross 
section practically zero (cf. the rectangular resonator we discuss later), be- 
tween two conductor planes, and we let the one-dimensional separation of 
these be between x = 0 and x = a. Moreover, we imagine a third and par- 
allel conductor plane at a farther distance L - a as indicated in Fig. 20.1. 
This additional plate serves the purpose of permitting the construction of the 
difference of energies referred to above. At the metal boundaries the electro- 
magnetic field in the intermediate space must satisfy boundary conditions. 

Fig. 20.1 The three conducting plates. 

In the present idealised one-dimensional case this means, we have to select 
conditions that correspond to the boundary conditions we discussed at length 

*See the discussion at the end of Sec. 9.4. 
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earlier, i.e. 
n .B=O,  n x E = O .  (20.36) 

Since the radiation is confined to the one-dimensional space between the 
“walls” (i.e. endpoints), this implies, that we have to demand periodicity, so 
that we obtain stationary waves. 

This means we have instead of the vector potential A(x,t) only a scalar 
field A ( z ,  t )  (i.e. we have the case of only E = -Vd, = A )  with A ( z ,  t )  = 0 
at x = 0 and z = a. Since 

OA(z,t)  = 0, 

we have 
A ( z ,  t )  0: eiWt sin kx 

with 
ka = nr, n = O , f l , f 2 , .  . . . 

Thus the momentum is discretised. This is why we considered immediately 
discretised momenta above. It follows that w = kc leads to the eigenfrequen- 
cies 

(20.37) wn = -c. 

The vacuum energy in the domain I in Fig. 20.1 is therefore (since the Hamil- 
ton operator is positive, semidefinite, only values n 2 0 make sense) 

nr 
a 

1 1 nr EI(u)  = - C W ~  = - C - 
U 

n>O 
2 k,X 

(20.38) 

with ti = c = 1. The summation over X yields in general the factor 2, in view 
of the two possible directions of polarisation, here in the one-dimensional 
case, of course, not. This means we obtain EI(u)  = nr/u,  an ab- 
solutely divergent series! We assume, as argued at the beginning, that high 
eigenfrequencies, i.e. modes, do not contribute significantly. This implies 
that the sum does not have to be extended up to n = 00. For this reason we 
introduce a parameter a as a cutoff factor, and write 

1 



472 C H A P T E R  20. T H E  CASIMIR  EFFECT 

The sum is now a geometric progression which is found to give 

Expanding the exponentials we have 

E&,a)= U + ; a 2 ( 3 2 - . . . 3  

x =[I a 2 ( y  + .(;) +d( - + ;) (;)2 - ...I, 
and hence 

Thus the result becomes 

E&, a )  = If [ ( 2 )  - 12 1 7 r  (--) + 0 4 .  
2 7.r a2 

(20.39) 

For the domain I1 in Fig. 20.1, the corresponding expression is (replacing in 
Eq. (20.39) u by L - U) 

Hence for L >> a 

We see that this sum removed the contribution a/27ra2 in Eq. (20.39), but 
produced the contribution L/27ra2. We now construct the procedure which 
allows the removal of the wall at z = L to infinity without, however, pro- 
ducing a new contribution 0: l /a2.  This is achieved by another pair of walls 
as depicted in Fig. 20.2 with L thereafter taken to infinity. In other words, 
we single out the finite boundary effect by subtracting the corresponding ex- 
pression with a replaced by L/q ,  q > 1 as indicated in Fig. 20.2 (we demand 
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77 > 1, so that L - L/q  # 0) .  The additional "walls" (endpoints) are then 
removed by taking the limit L t m. This means we consider the difference 

[&(a, a )  + &z(L - a, 41 - [EIII(L/77,4 + EIV(L - L h  41. 
Here, according to Eq. (20.39), 

and 

Hence for L t 00 

(20.42) 

(20.43) 

(20.44) 

Fig. 20.2 The subtraction procedure. 

Hence there remains a finite energy or potential 

'I I 
V ( a )  = -- 

24a 

with the repulsive force 

(20.45) 

(20.46) 

(20.47) 

This quantum mechanical effect which yields a force between the walls, is 
called Casimir- eflect. 

Thus finally
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20.6 The Three-Dimensional Case 

In the original 3-dimensional problem considered by Casimir the geometry 
is analogous to that of the previous case, but now areas in the (x,y)-plane 
represent metal plates. This geometry reminds us immediately of that of 
resonators, which we discussed in Chapter 14, where boundary conditions 
resulted from the plates at both ends of an otherwise open, cylindrical wave 
guide. 

JY 
Fig. 20.3 The subtraction procedure in the 3-dimensional case. 

From there we obtain (see Eq. (14.152)) for the case when the interior is the 
vacuum, and for -L/2 5 z, y 5 L/2 as in Figs. 20.3 and 20.4 (instead of 
0 5 z,y < L), so that with L cm these walls can be removed, 

2 
W 2  -=(:) + k i ,  n = O , f l , f 2  , . . . ,  
C2 

or (see Sec. 14.10) c=(2.T)2+(x)2+(?$), 2 

C2 

(20.48) 

(20.49) 

considering a resonator of volume L2a. In the present case nx, ny are not fixed 
as integers, since we allow the corresponding areas to extend to infinity (with 
L). The summations over n,, ny must therefore be replaced by integrations. 
Because 

nXn k --- 
- L/2’ 

(20.50) 
we have
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I 
L12 

'Y 

X 
4 

Fig. 20.4 The cross section. 

and the sum 

yields 

h 
EI(u)  = 5 x c J dn,dny 

We can write this 

Separating the n = 0 part and introducing the cutoff exponential, this be- 
comes 

n = O  part 

(20.5 1) 

Here Ex is the sum over the two possible directions of polarisation. Since the 
integral is in any case divergent, we have again introduced a frequency cutoff 
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a,  which will be sent to zero at the end of the calculation. The arguments 
now run parallel to those of the previous case. Finally, one obtains the energy 

- L2T2 tic 
- 

720 a3’ 
(20.52) 

with the attractive force per unit area (vacuum pressure) (i.e. divided by 
the area L2)t 

1.30 x 
- - - dyne/cm2. 

a:m 
(20.53) 

The earliest experimental investigation of the Casimir effect was carried 
out by M. J. Sparnaay.4 Sparnaay investigated the effect in the domain 

0.5p 5 a 5 2 p  (lp = 10-6cm) 

and observed a force, which did not contradict Casimir’s original theoretical 
findings. By now the Casimir effect has been investigated in a large number 
of field theoretical models and has been verified experimentally. The latest 
experiment on the verification of the Casimir effect is that of Lamoreux,§ 
who achieved agreement with theoretical prediction to an error of at most 
5%. In recent years the Casimir effect has become a very active area of 
highly specialised research and therefore will not be treated in more detail 
in the present context.1 The case in which the metal plates of the above 
example are replaced by concentric spherical shells has also been treated 
in the literature.11 We add, that external boundary conditions like those we 
considered here, play a role analogous to that of external fields, which supply 
observable effects via quantum fluctuations. 

+See e.g. Plunien, B. Miiller and W. Greiner, Physics Reports 134 (1986) 87, or M. Fierz, 

$M. J. Sparnaay, Physica XXIV (1958) 751. 
IS. K. Lamoreux, Phys. Rev. Lett. 78 (1997) 5. 
llSome references from which also earlier literature can be traced back are G. Barton and 

C. Eberlein, Ann. Phys. (N.Y.) 227 (1993) 222, and J. B. Pendry, J .  Phys. Cond. Matt. 9 (1997) 
10301. These also treat the case with motion, which is the reason that the second of these pa- 
pers also discusses the concept of “quantum friction”. A critical evaluation of various aspects of 
calculations of the Casimir effect can be found in an article by C. R. Hagen, Casimir energy for 
spherical boundaries, hepth/9902057. 

Helw. Phys. Acta 33 (1960) 855. 

‘IT. H. Boyer, Phys. Rev. 174 (1968) 1764. 
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Example 20.2: The fine-structure constant 
For a perfectly conducting sphere of radius a the attractive Casimir energy has been calculated* 
to be 

1 
8na 

&(a) = 

Assuming that the charge of the electron were uniformly distributed over the surface of a sphere of 
radius a, calculate the energy of this electron’s repulsive Coulomb force as that of a spherical shell. 
Assuming that these energies cancel each other, calculate the value of the fine-structure constant 
a = e2/4neok. 

Solution: We obtain the Coulomb energy from the formula for the energy of charge distributions, 
i.e. 

W = - dVp(r)+(r), with p ( r )  = eb(r - a), +(r) = 
2 ‘ J  4n€or ’ 

so that 

The corresponding force is 
e2 

= +- repulsive. 
aW 
aa 8x€0a2’ 

-- 

We set 
e2 e2 

8na 8aaco’ €0 
i.e. - = 1 - -- 1 

&(a) +W = 0, - 

Then (with tL = c = 1) 
e2 1 1 a = - = - = -  

4T€o 4n 12.56‘ 

Hence the value obtained here for the fine-structure constant is too large by a factor of 10 (the 
correct value being N 1/137). 

*K. A. Milton, Ann. Phys. (N.Y.) 127 (1980) 49. 
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Chapter 2 1 

Duality and Magnetic 
Monopoles 

21.1 Symmetrisation of the Maxwell Equations 

A conspicuous and eye-catching aspect of the four Maxwell equations is a 
certain symmetry they exhibit between electric and magnetic fields. But it is 
also obvious that this symmetry is violated if one looks at charge and current 
densities. This symmetry is described as duality. In this chapter we consider 
attempts to gain some understanding of these observations. 

In our treatment of the Aharonov-Bohm effect we also encountered sin- 
gular fields. A deeper investigation into such fields leads to the topic of 
magnetic monopoles, i.e. to that of single magnetic poles. The full sym- 
metrisation of the Maxwell equations also requires the introduction of these 
monopoles. 

We first recapitulate the Maxwell equations with new notation for charge 
and current densities to which we affix an index “e” for “electric”: 

aB aD V x H = j e +  - 
at ’ at 

V x E = - - ,  

and the equation of continuity is 

(21.1) 

(21.2) 

Thus, as far as these Maxwell equations are concerned, there are electric 
charges as sources of the electric field, but no magnetic charges or poles as 
sources of the magnetic field, which are here provided by electric currents. 

479 
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The equation V . B  = 0 has no source term. This asymmetry of the equations 
is not appealing. It is therefore a natural step to introduce magnetic poles 
and to completely symmetrise the Maxwell equations and to explore the 
consequences which result from this. For symmetry reasons it is helpful 
in this case to use the formulation in terms of the MKSA-units as we do 
here, and not Gaussian units (but, of course, this is not essential). Thus we 
symmetrise the equations by adding magnetic charge and current densities 
with an index “m” . The equations are then 

(21.3) 

Here po is the magnetic permeability of the vacuum. 

symmetric: 
(a) Energy density 

Previously we encountered the following quantities which were already 

(E . D  + H * B ) ,  (21.4) 
1 
2 

S = E x H ,  (21.5) 

u = -  

(b) Poynting vector 

(c) Maxwell stress tensor and field momentum density 

pfield = D x B. (21.6) 

However, the Lorentz force F, must be supplemented by a force F, to yield 
the pair of symmetrised forces. 
(d) Symmetrised forces 

F e  = e(E + v x B), F, = gpoc(H - v x D) (21.7) 

with magnetic charge density p, defined by 

(21.8) 

This system of equations is now completely symmetric. The symmetry can 
be expressed in terms of a transformation called duality transformation of 
the fields and charge or pole densities, i.e. the relations (with e0poc2 = 1) 

E-+E’=Ecosq5+cBsinq5, 
cB+cB’= -Esinq5+cBcosq5 (21.9) 
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and 

48 1 

Setting q5 = 0, one has p’, = pe, i.e. charges q; = qe = e and the magnetic 
charges or pole strengths are correspondingly q; = qm = 0. Setting q5 = 7r/2, 
one has q; = qm 3 0 and q; = -qe = -e. The question is: Is a certain 
angle q5 for all particles a universal entity? Within the limits of present-day 
experiments q5 = 0 is the correct choice and in agreement with experiment. 
From this point of view the symmetry of classical electrodynamics is no 
argument for or against the existence of single magnetic poles. The question 
is not, do all particles in Nature have the same ratio pm/pe = t a n 4  (in this 
case p k  = 0 and we could choose units suitably, so that the usual Maxwell 
equations remain valid). The decisive question is really: Are there particles 
with different ratios qm/qe? 

Example 21.1: Magnetic pole and electric charge at rest 
Show that a system consisting of a magnetic pole g and a charge e, at rest at  time t = 0, is always 
at rest. 

Solution: We consider the expressions (21.7) for the forces acting on the pole and the charge. In 
F, the vectors E and B are fields of the monopole, which act on the charge. Since the monopole 
is at rest the field E, which would be generated by the monopole’s motion (cf. Eq. (21.3)), is zero. 
Also since v = 0, we have v x B = 0. Hence F, = 0. Similarly we have F, = 0. 

Example 21.2: Separating the charge-pole pair 
The magnetic pole g of a dyon, i.e. charge-pole pair, with negligible binding energy is moved away 
from the charge e to  a point x’. Show that the mechanical momentum pmech of the pole g is 
exactly cancelled by the field momentum. (Compare with Examples 7.2 and 17.5). 

Solution: The Lorentz force acting on a pole g is given by Eq. (21.7), F, = -gpocv x D. Suppose 
we give the pole mechanical momentum pmech by pulling it away from the charge with a force 
equal and opposite to that of the Lorentz force. Then Newton’s equation of motion for the pole is 

In moving the pole it generates field momentum which has to  be such that the total momentum is 
conserved, i.e. here equal to that initially, i.e. zero. Thus 

Since V . B = pocg6(r), we have pocg = s B . d a  = s B l d a l ,  where dal is an element of area with 
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normal in the direction 1, and dxjdal = 6jldV. Hence 

It follows that the total momentum vanishes, 

as in the original state of the system. 

Example 21.3: Angular momentum of separated charge-pole pair at rest* 
Consider a magnetic pole g at the origin r = 0 and a charge q at r = roe, at rest and the distance 
TO apart along the z-axis. Show that the system has a nonvanishing angular momentum only along 
the line drawn from the pole to the charge and determine this angular momentum. 

Solution: The angular momentum L is given by 

L = drl, 1 = r x pfield, pfield = D x B. J 
In the present case we have explicitly 

The vector D x B is perpendicular to the z-axis which points from the pole to the charge at z = T O ,  

as shown in Fig. 21.1. At fixed angle (3 between r and ro = roe, but varying azimuthal angle 'p in 
the (2, y)-plane the point r traces a circle with D x B 0: (r - ro)  x r along its tangential direction 
e,. Thus the geometry is analogous to that of a circular current with the Biot-Savart field to be 
determined at the origin. The components perpendicular to the z-axis cancel each other, so that 
only a z-component remains, in the present case L,. We obtain this as follows. 

We have 
I ,  = [r x ( D  x B)] .e ,  = ( r . B ) D ,  - ( r . D ) B , .  

Inserting the explicit expression for B we obtain 

L,  = drl, = - dr-[r2(D.ez)  - ( r . D ) ( r . e , ) ] .  J 4 r  J Tt 
With the help of the formula 

V(u. v) = ( v .  V)u+ (u .  V)v+v  x (V x u) + u  x (V x v), 

we have (setting u = r / T ,  v = e,) 

~ (7)  =(e,.v)(:) + e ,  x ( v X  r> 
*See also Felsager [20],  p. 487. 
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implying 

Hence 

and so 

But 

Fig. 21.1 Field momentum density D x B in the (x, y)-plane. 

D . V ( Y )  = 7 [ r 2 ( D . e , ) - ( D . r ) ( r . e , ) ] ,  1 

Ignoring again the total derivative with the usual reasoning we obtain therefore 

L,  = -- dr-V. D. 
47r J ’:” 

Here V . D = q6(r - ro), so that 

This expression is seen to involve already the product qgp0/2n, which will appear later in Dirac’s 
charge quantisation condition. In fact, the latter follows from the present result with the half- 
integral quantisation condition 1L.l = nh/2, n an integer. 

21.2 Quantisation of Electric Charge 

The question Dirac asked himself in 1931 was: Is the existence of magnetic 
‘‘monopoles’’ compatible with the principles of quantum mechanics? His 
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answer was: Yes, provided the elementary electric charge e and the magnetic 
charge g satisfy the condition 

eg - 2 l ~ n  
- -  - , ( n  an integer) 

poc 
(21.11) 

The basic idea of this connection can be explained in the following elementary 
way (easiest possibility to make the quantisation condition (21.11) plausible). 
We let g be the magnetic charge located at the origin of coordinates which, 
similar to the Coulomb potential, generates at a point r the magnetic flux 
density 

(21.12) 

We now allow a particle with electric charge e - as illustrated in Fig. 21.2 
- to travel along a straight line with shortest distance b from the origin 
and with velocity v = ve, past the pole charge g .  On its flight this particle 
experiences the Lorentz force (pointing out of the paper in Fig. 21.2) 

(2 1.13) 

Thereby the particle receives an impulse with momentum transfer 

- - egpoc.  (21.14) 
00 egvbpoc d t  

47r 1, (b2 + v2t2)3/2 27rb 
AP, = 100 Fydt = 

J P 
d P Y  =FY 2/ub2 

This momentum transfer leads to a change in angular momentum L ,  along 
the direction of flight given by 

egpoc AL, = bAPy = -. 
21T 

(21.15) 

According to quantum mechanics orbital angular momentum is always quan- 
tised, so that 

L,=nh, n = 0 , & 1 , & 2 , & 3  , . . . .  (21.16) 

It follows that 

i.e. 

This implies that 
e 

(21.17) 

(21.18) 

(21.19) 
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must be quantised, i.e. the electric charge can appear only in positive or 
negative integral multiples of the unit 4~fi/2gpo. The charge is therefore 
quantised as a consequence of the quantisation of angular momentum. 

b 

- 
0 

B x  B 

/ 
- v  

Fig. 21.2 Velocity v of the electric charge 
in passing the magnetic pole at the origin 0. 

One should note: For this result to be physical, it suffices that a single 
magnetic pole exists somewhere in the universe, i.e. one we can use for the 
above argument. 

A presumably more respectable derivation of the result (21.18) is based 
like Dirac’s original derivation on the uniqueness of the Schrodinger wave 
function $, which we encountered already in Chapter 19. To be able to 
proceed to this, however, we first need to take a closer look at the field of 
the monopole. 

The coupling constant of electromagnetic fields is given by the so-called 
fine-structure constant 

1 - - ~- e2 
4ThCEo 137’ 

With the above result the corresponding “magnetic fine-structure constant” 
is 

/I.o 2 P O ( P 0 ~ O C 2 )  2 PO(P0~OC2) 
47rticg = 47rtic 4ThC 9 =  

- - 

for n = 1. Thus, instead of 

1 - - ~- e2 
47rtic~o 137 
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one has - 
9’%0 - = 34.25 
4Irhc 

as coupling of the electromagnetic field to the magnetic pole, which is seen 
to have a much larger value. One can say, a unit magnetic charge exerts a 
force equivalent to that of an electrically charged nucleus with 2 = 137/4 
protons. 

21.3 The Field of the Monopole 

If we want to take magnetic poles in a Lagrangian formalism into account, 
we immediately face problems. If we insist, that the field strengths Fpv are 
defined by gauge potentials, we can do this only at the price of admitting 
singularities in the gauge potentials, i.e. the “Diruc strings”. Consider once 
again the pure monopole fieldt (21.12), i.e. 

This field is singular at the origin (like the Coulomb field). The field B = 
V x A can be obtained from the vector potential (Cartesian components 
written as column elements) 

(sin (p, cos (p, 0) (21.20) gpoc (1 + cos 8) A = E (  yYlr(r - 4 ) 
- x / r ( r  - z )  = -- 

41r 41r r s in8  

(one expression in Cartesian coordinates, the other in spherical polar coor- 
dinates). For instance 

a ” (  ) = -  x g  - x ( g  -1) 
B, oc -(O) + - aY az  T ( T  - 2 )  r2(r - 2 )  r (r  - z)2 

24 - x 
- - X ;  x ( ;  - 1) - - - - - 

r2(r - z )  T ( T  - z)2 r2(r - z )  
X - _  - 
1-3 ’ Q.E.D. 

We observe that A is singular at the origin r = 0 (like B), but also along 
the positive z-axis, z = T 2 0 (different from B), or for 8 = 0. This sec- 
ond singularity from r = 0 along the positive z-axis is described as Diruc 

+The topic we discuss here has also been treated in H. Fraas, “Magnetische Monopole”, Physik 
in unserer Zeit 15 (1984) 173. 
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string (this is a singularity and is not to be confused with the strings of 
String Theory!). One may note: At 8 = 7r we have 

sin8 = sin((8 - 7 r )  + 7 r )  N -(8 - 7 r ) ,  

1 
2 

case = cos((e - + T )  N -I + -(e - T ) ~ ,  

so that at 8 = 7r the factor in Eq. (21.20) 

1 +cost? 
sin 8 

0: (8 - n) = finite. 

Thus the vector potential is singular at the “north pole” where 8 = 0, but 
regular at the “south pole” where 8 = 7r.  With a gauge transformation one 
can find another and different vector potential which is regular at the north 
pole, but singular at the south pole; in the overlap region around the equator 
the potentials are proportional to one another. In this way, i.e. by patching 
together different vector potentials, as in Sec. 21.4, one can avoid the Dirac 
string (singularity). The price one has to pay is this patching together of 
different potentials. 

21.4 Uniqueness of the Wave Function 

We now use two vector potentials, A1, A2, on a sphere S2 surrounding the 
magnetic charge g at the centre. We choose the vector potentials such that 
one can be continued smoothly into the other in the equatorial region. We 
choose the potential A1 to be regular on the northern hemisphere S t  (with 
Dirac string along the negative z-axis through the south pole), and A2 corre- 
spondingly regular on the southern hemisphere S?. We thus have for one and 
the same system two Schrodinger equations with different gauge potentials 
A l ,  A2 and 41,42, and so with Hamilton operators 

2 m  

2 ti2 i e  
2 m  f i 1  = -- (V - x A l )  + e41, f i 2  = 

The two gauge potentials are related by the gauge transformation 

IThe well known reference for this is: T.  T.  Wu and C. N. Yang, Phys. Rev. D12 (1975) 3845. 
The Dirac string is also discussed in the book of Felsager [20], p. 476. The same book, p. 486, 
also discusses the angular momentum as a consequence of the monopole field. See also E. Witten, 
Nucl. Phys. B223 (1983) 422, pp. 424 to 425. 
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however, the function x is then singular along the z-axis (i.e. along the 
Dirac strings) (otherwise the left side would possess the singularity but not 
the right side). The necessary associated transformation of the wave function 
T,LJ for the gauge covariance of the Schrodinger equation, fi$J = E$J, is (as we 
saw in Chapter 19), 

i.e. in the present case 

The uniqueness of the wave function in the nonsingular domain requires 
therefore, that after one closed orbit about the string this wave function has 
the same value, i.e. 

(21.22) 

The left hand side is really the discontinuity across the singularity of the 
function x. We compute this as follows. We have 

21rnh 
e 

Hence 
eg - 21rn 

= gPoc, - -* 

e POC 
- 

21rhn 

We see here that the magnetic charge provides the discontinuity across the 
Dirac string singularity. The Dirac string itself, however, has only a virtual, 
not a real significance. 

There is another, more complicated argument, which leads to the same 
result.§ This argument is closely related to the arguments involved in the 

§A detailed treatment can be found in the book of Felsager [20], p. 501. 
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explanation of the Aharonov-Bohm effect. There we saw that when the 
current in the solenoid is switched on, the interference pattern observed on 
the screen undergoes a displacement depending on the magnetic flux through 
the solenoid. The interference pattern results from interference of electron 
waves along the paths r l , r 2  passing through the two slits, i.e. from the 
phase factors 

exp (F S,, A .  dl) exp (-: S,, A .  dl) = exp (E A .  dl) . (21.23) 

Here 
A * d l =  B * d F  f S  

is the magnetic flux through the solenoid. Thus the entire system consists 
of the charged particle (electron) and the magnetic field. Consider again the 
case of an electron and a magnetic pole. These generate the electromagnetic 
field F,,, which, as we saw, has to be singular and cannot be derived from 
a single global vector potential. However, one can imagine an additional 
tensor field S,, and can construct it such that the sum of both, F + S with ssz F = gpoc, ss2 S = -gpo is generated by a still singular A. We take ss2 S 
to be the magnetic flux through S2 due to the Dirac string. Then we have 

i A  -dl = 1, F + 1, S. 

This separation is now inserted into the phase factor (21.23). However, the 
string-part S may not contribute to this, since otherwise the interference 
would depend on its position in space. It follows therefore that we must 
have 

and this implies 
eg - 27rn 
f i  poc' 

Finally we add yet another derivation of the Dirac charge quantisation 
condition which, in view of its brevity or even the associated geometry of 
Fig. 21.3, may be described as a "nutshell proof ".q We saw in Chapter 19 
that for a particle with charge e moving in a magnetic field (here that of a 
pole g ) ,  the Lorentz force appears in the quantum mechanical wave function 
as the phase factor 

exp ( ; i A . d l )  

'J. Polchinski, String Theory, Vol. I1 (Cambridge University Press, 1998), p. 148. 
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I 

Fig. 21.3 The Dirac string emanating from the magnetic pole g, and 
the orbit r as boundary of area D. 

We also saw that the vector potential cannot be gauged away in view of 
its Dirac string singularity extending, as shown in Fig. 21.3, from the pole 
through the north pole to infinity. However, we can proceed as follows. The 
closed path r is the boundary of the part D of the surface of a sphere around 
the south pole. Pulling the path I? across the equator and contracting it to 
a small circle around the Dirac string through the north pole, the area of D 
becomes that of the sphere and we can write the phase factor 

Since there may not be any trace of the Dirac string, this factor must be 1 
giving again 

e 
-gpoc = 2~72,  n integral. h 

21.5 Regularisation of the Monopole Field 

Finally we have a closer look at the vector potential (21.20) in order to gain 
some physical understanding of the Dirac string, i.e. what we would have to 
do in order to remove its singular behaviour. We shall see that a thin solenoid 
along the position of the string will achieve this. To this end we regularise 
the vector potential (21.20), by replacing in it T by d m ,  where E is 
small. We rename the correspondingly modified fields A, B, E respectively 
A,, B,, E,. With this modification the field A, is well defined in the whole 
of space. Since this regularisation does not affect the time dependence, we 
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have E, = 0. We maintain, of course, B, = V x A, and see, that changes 
ensue. First we replace in A of Eq. (21.20) r by d m  and expand the 
expressions up to the leading contributions in powers of e 2 .  With this we 
obtain 

r (r -z )  

(21.24) 

These expressions seem to be singular at r = z .  But consider once again the 
starting expressions, by taking for instance, the 2-component of A,: 

This expression is regular at r = z .  We avoid these problems in the fol- 
lowing by replacing the factor ( r  - z )  where it seems to be problematic, by 
( d r v  - 2). With this we calculate the components of B, = V x A, and 
obtain 

4n  r3 
EX - 

POCQ Y 
4n r3 

(21.25) 

We now see that the z-component displays an additional contribution of the 
order of c2, i.e. a B-field along the string. We have a closer look at this 
expression, i.e. at 

4 2 r  - z )  
r3(J;."ts" - 2)2' 

w, := 

in which we replaced ( r  - z )  as explained above. We choose a point zo > 0 
along the z-axis and explore the behaviour of w, in its neighbourhood, i.e. 
around r - zo. First we have with p2 = x2  + y2 
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Z 

t 
B E  

Fig. 21.4 The regularised field B of a monopole. 

With these expressions we obtain 

2{ g + T)(220)2 T N Z O  - 4c2{ 1 + w} 
- 

r3 (p2  + c2)2 (p2 + € 2 ) 2  

and hence with Eq. (21.25) 

(21.26) 

We now use a 2-dimensional representation of the delta function which we 
found in Example 2.6, i.e. 

(2 1.27) 
and obtain
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Here we have multiplied the second contribution by the step function since 
the string runs along the positive z-axis. The magnetic field concentrated in 
the Dirac string can therefore be written 

The divergence of this expression is 

V * Bstring = -POCSS(~)S(Y>S(~). (21.29) 

On the other hand, the divergence of the monopole part of the field B, 
i.e. the first part on the right of (21.27) and the corresponding components 
contained in Eq. (21.25), is 

V * Bmonopole 1 pocg6(x)S(y)6(z)- (21.30) 

We see that the sum of the two sources cancels exactly as a consequence of 
our regularisation of the originally singular vector potential. 

Finally we calculate the curl of the string field. We obtain evidently 

S(X) 6' (Y) 
V x Bstring = -pocg - 6 ' ( x ) 6 ( ~ )  e ( z )  pojstring (21.31) 

( 0 )  

with a singular current density. We can visualise the current associated with 
this current density in the (z,y)-plane as a current in a very narrow, semi- 
infinite solenoid which supplies the magnetic field concentrated along the 
z-axis. This situation together with the appropriate field B of (21.25) are 
illustrated in Fig. 21.4. The regularisation we explored above is therefore 
equivalent to introducing this solenoidal flux along the z-axis, so that the 
effect of the original singularity is cancelled. 

21.6 Concluding Remarks 

In the above we investigated a few important elementary aspects related to 
the introduction of classical magnetic monopoles, and other consequences 
of the symmetrisation of Maxwell's equations. The experimental search for 
evidence of magnetic monopoles received considerable impetus in 1982 with 
the possibility that an appropriate event had been observed, at  least it was 
not easy to propose some other explanation for the observations of Cabrera.11 
A review of the experimental situation thereafter, which has hardly changed 

"B. Cabrera, Phys. Rev. Lett. 48 (1982) 1378. 
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since then, and which also recapitulates the historical development and cites 
extensive literature can be found in the paper of l?ryberger.** The principle 
which is used in experimental attempts to observe a monopole, is similar 
to that discussed in Sec. 17.6, i.e. that a monopole passing an atom at 
some distance generates a pulse of magnetic flux which can be observed. A 
complicated MACRO-detector search for magnetic monopoles was carried 
out throughout the 1990s. It found none but set stringent limits. The final 
results have recently been published.tt Monopoles which play an important 
role in field theories as topologically nontrivial field configurations are of a 
completely different nature. However, seen from far away, they assume the 
structure of the Dirac monopole discussed above.** The question of whether 
magnetic monopoles really exist is therefore the remaining bigg puzzle of 
electrodynamics. 

**D. Fryberger, Magnetic Monopoles, Stanford Linear Accelerator Center Report, SLAC- 
PUB-3535 (1984), Invited paper at 1984 Applied Superconductivity Conf., San Diego, Calif., 
unpublished. 

++M. Ambrosio et al. Eur. Phys. J. C25 (2002) 511 and C26 (2002) 163; see also CERN Courier 
43 (2003), No. 4, 23. 

$$See, for instance, P. Goddard and D. Olive, Rep. Progr. Phys. 41 (1978) 1357. 



Appendix A 

The Delta Distribution 

The delta-distribution* or delta function, as it was originally called, is a 
singular function beyond the realm of classical analysis. As we observed in 
the text, in physical contexts the delta distribution arises in the consideration 
of point charges, and similarly in that of mass points. The density of a unit 
charge or unit 
except at z = 
over all space, 

mass at (say) z = 0 which is written b(z)  is everywhere zero 
0, where it is so large that the total charge, i.e. its integral 
becomes 1, i.e. 

03 

S(z) = 0 for z # 0, d(z)dz = 1. ( A 4  

No function of classical analysis has such properties since for any function 
which is everywhere zero except at one point, the integral must vanish (irre- 
spective of the concept of the integral). As a further example, which leads 
to a singular function, we consider the case of two charges of opposite signs 
with intensities f l / ~  and located at the points z = 0,z = E .  The density 
distributions of the charges are b ( z ) / ~ ,  -6(z - E ) / E .  In the limit E t 0 the 
charges approach each other, with the product of intensity 1 / ~  and mutual 
separation E ,  i.e. the dipole moment, remaining constant. One thus obtains 
a dipole with density 

This limiting value is undefined and does not exist in the context of classical 
analysis. However, in the theory of distributions developed by L. Schwartz, 
the delta function, its derivative S’(z) and similar quantities, find exact defi- 
nitions which, moreover, permit application of customary operations of clas- 
sical analysis. Physical considerations point the way to how best to proceed 

*We follow here W. Giittinger, Fortschr. Physik 14 (1966) 483. 
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in developing such a theory. In order to localise an object with a certain 
density distribution, one observes its reaction to some action of a test object. 
If there is no reaction, one concludes that the object was not present in the 
tested domain. We can characterise the density distribution of the object 
by f(z), and that of the test object by cp(z). Then the product f(z)cp(z) 
represents the result of the test for the spatial point z, because f(z)p(z) = 
0 if not simultaneously f(z) # 0,cp # 0, i.e. if there is no encounter of 
the object with the test object. The integral Jf(z)p(z)dz then describes 
the result of the testing or scanning procedure over the entire space. If we 
perform this procedure with different test objects, i.e. with different test 
functions pi(z), i = 1 ,2 ,  . . . , we obtain as the result over the whole of space 
different numbers corresponding to the individual pi. These cp-dependent 
numbers are written 

If f(p) = 0 for all continuous differentiable functions cp(z), then f(z) = 0. 
In general one expects that a knowledge of the numbers f(p) and the test 
functions p(z) characterises the function f(z) itself provided the set of test 
functions is complete. In this way one arrives at a new concept of functions: 
Instead by its values y = f(z), the function f is now determined by its 
action on all test functions p(z). One calls f a functional: The functional f 
assigns every test function p a number f(cp) .  The functional is therefore the 
mapping of a space of functions onto a space of numbers. f(p) is the value 
of the functional at the “point” p. The concept of a functional permits us 
to define objects which are not functions in the sense of classical analysis. 
Consider e.g. the delta function. This is now defined as the functional S(p) 
which assigns every test function p(z) a number, in this case the value of 
the test function at z = 0, i.e. 

where with (A.3) 

The result of the action of the delta function on 
is the number p(0). Writing this ,fS(z)p(z)dz is 

the test function p(x) 
to be understood only 

symbolically. The example of the delta function demonstrates that a function 
does not have to be given in order to be able to define a functional. 

To ensure that in the transition from a function f(z) defined in the clas- 
sical sense to its corresponding functional f(p) no information about f is 
lost, i.e. so that f (cp )  is equivalent to f(z), the class of test functions has 
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to be sufficiently large. This means: If the integral J f(z)cp(z)dz is to exist 
even for a function f(z), which increases with z beyond all bounds, then the 
test functions must decrease to zero sufficiently rapidly for large values of z 
(how, depends of course on the given physical situation). However, it is clear 
that the space of test functions must contain those functions c p ,  which vanish 
beyond a bounded and closed domain, because these correspond to the pos- 
sibility, to measure mass distributions that are restricted to a finite domain. 
The functions cp must also have a sufficiently regular behaviour so that the 
integral of Eq. (A.3) exists. One demands continuous differentiability of any 
high order. Thus we define D as the space of all infinitely often differentiable 
functions cp(z), which like all their derivatives ~ ( ~ ) ( z ) ,  n = 0 ,1 ,2 , .  . . , vanish 
at z = foo. The functionals f(cp)  defined on D are called distributions. 

We expect also that certain continuity properties of the function f (z) are 
reflected in the associated functional. The reaction of a mass distribution 
f(z) to a test object ~ ( z )  is the weaker, the weaker cp(z) is. It makes sense, 
therefore, that if a sequence of test functions cpv(z) as well as the sequences 
of their derivatives of arbitrary order cp?) (z) converge uniformly towards 
zero, then also the sequence of numbers f ( cpv)  converges towards zero. 

The linearity 
f(cpl+ 9 2 )  = f(cp1) + f(cp2) (A.6) 

follows from the superposition principle. The derivative of a distribution 
f(cp) is defined by the following equation: 

f ’ b )  = -f(cp’)* (A.7) 

This definition is natural. Because if we associate with the function f(z) the 
distribution 

f(cp) = Jm dzf(z)cp(z), 

f ‘ ( c p )  = Jm dxf‘(x)cp(x). 

-m 

then the derivative f’(x) is assigned the functional 

--03 

Partial integration of this integral yields, since cp(foo) = 0, 
03 03 

f’(cp) = If(z)cp(z)Il - 1 dzf(z)cp’(z) = -f(cp’> 
-@J -m 

as in Eq. (A.7). Equation (A.7) defines the derivative of the functional f ( c p ) ,  
even if no function f(z) exists, which defines the functional. For instance, 
we have in the case of the delta function with (A.4) 

S’(cp) = -6((p’) = -cp’(O). (-4.8) 
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Formally one writes 

For an infinitely often differentiable function g(x) we have evidently 

so that 
(zS)(cp) = qv) = [zcp],=o = 0 * cp(0) = 0, 

or 
zb(z)cp(z)dz = 0, z:s(z) = 0. J ( A . l l )  

Thus formally one can operate with the delta function like with a function 
of classical analysis. As another example we consider the relation 

According to Eq. (A.lO) we have: 

as claimed with (A.12). Formal differentiation of the relation (A.12) gives 

It is easy to convince oneself that this formal relation also follows from the 
defining equation (A.3). In the special case f(x) = x we obtain the useful 
result 

z6/(z) = -6(z). (A.13) 

A function which is important in applications is the Heaviside or step 
function, which is defined as follows: 

1 for x > 0, 
0 for z < 0. qX) = (A.14) 
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From (A.14) we derive the important relation 

= q2). (A.15) 

In order to prove this relation, we associate with the step function the func- 
tional 

W 

-W 

For the derivative we have according to (A.7): 

or symbolically 
= qx), (A.16) 

which is Eq. (A.15). 
Fourier integrals were formally introduced in Chapter 3.  We abstain 

here from delving into rigorous proofs. We recall that the function repre- 
sented by the Fourier series is piece-wise smooth. The Fourier integrals of 
Chapter 3 therefore supply us an integral representation of such a piece-wise 
smooth function. The Fourier theorem says: If f(x) is a piece-wise continu- 
ous function and if the integral J-", I f (x) ldz  exists, and if f(x) is defined at 
a discontinuity zo by the relation 

then the following representation of the function f(x) exists: 

In order to verify (A.17), we consider first the function 

(A.17) 

(A.18) 
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The behaviour of this function for K > 0 but not too large is illustrated in 
Fig. A.l. We observe that as the central maximum 6/71 grows with K t m, 
the zeros at n r / K  converge toward the origin and we have 

S(z) = lim 6,(z), 
K+oo 

(A.19) 

Fig. A . l  The function 6,(z). 

because S(z) is defined by the properties 6(z) = 0 for z # 0,6(z) = 00 for z = 
0. From (A.18) and (A.19) we obtain the important integral representation 
of the delta function 

S(z) = - Jm dkeikx. (A.20) 
27r -m 

From (A.18) and (A.19) we also obtain 

S(z) = S(-z). (A.21) 

The representation (A.20) also proves the relation (A.17) claimed by Fourier's 
theorem. Because if we perform the integration with respect to k on the right 
hand side, we obtain 

r 

as claimed. 
In the following example we use yet another representation of the delta 

function which is very similar to the representation (A.19) (effectively the 
square of the latter). However, in this example our interest is focussed on 
the explicit use of a test function and the consequent necessity to evaluate 
the integral defining the distribution. 
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Example A.1: Explicit application of test functions 
The delta function can be represented by the limit 

where 

b ( z )  = lim bt(x), 
t+m 

t 
- for x -+ 0, 1 sin2xt 

A x2t 
bt (z) := - - = 

(A.22a) 

(A. 22b) 

Use the method of test functions to verify the above result in the sense of distribution theory. 

Solution: For test functions 4(z) the delta distribution is defined by the functional 

In the case of the representation given by Eqs. (A.22a) and (A.22b), this is the relation 

Thus we have to verify that the right hand side of this equation is obtained with a suitable choice 
of test functions 4(x) .  We choose the test function 

This is a test function 4(x )  E S(IR), which is the set of those test functions which together with 
all of their derivatives fall off at infinity faster than any inverse power of 1x1 (the symbol S being 
derived from the name of Schwartz referred to above). We therefore have to evaluate the integral 

sin2xt 
2 2  

I = l  dx- e-”. 

We do this with the help of Tables of 1ntegrals.t We have 

so that for a =  b =  t , p =  1 
1 
4 

I = -- In( l+  4t2) + ttan-’(2t). 

Then 

Hence the result is d(0) = 1 as expected. 

+See I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Academic 
Press, 1965), formula 3.947, p. 491. 
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Finally we consider the following two examples. The first of these deals 
with the Fourier transform, but contains in addition a further useful repre- 
sentation of the delta function. In the second example we consider the first 
of the relations (2.9), which remains to be verified. 

Example A.2: Determine the Fourier transformation of e--az2 for a > 0 
The function required is 

W 

g ( k )  = J d x e - a x 2 e z k x .  (A.23) 
--Do 

Solution: In general one uses for the evaluation of such an integral the method of contour inte- 
gration. In the present case, however, a simpler method suffices. Differentiation of (A.23) with 
respect to  k yields the same as 

g ' (k )  == -- i w  1 dx- (e -a"2)e ik"  d 
2a -w  d x  

Partial integration of the right hand side implies 

Thus g ( k )  satisfies the differential equation 

Simple integration yields g ( k )  = C e - k 2 / 4 a  with the constant C = g(0). Since 

g(0) = JW dxe-""' = E, 
- W  

we obtain 

From (A.23) and (A.24) we obtain a representation of the delta function: 

- k 2 / 4 a  = lim - e  
a-0 2 6  

, - k 2 / c 2  
= lim -. 

c-0  €fi 

Example A.3: Another important property of the delta function 
Verify the relation 

1 
b [ ( x  - a)(. - b)]  = - [ d ( x  - a )  + d ( x  - b)]  

la - bl 

for a # b. The formula can also be written 

(A.24) 

(A.25) 

(A.26) 
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where g(xn )  = 0, g'(xn) # 0. 

Solution: We start with the integral (for E > 0) 

From this we obtain as representation of the delta function: 

With the help of this representation of the delta function one can show by partial fraction decom- 
position that the above relation (A.26) holds for a # b. Thus consider the sum 

E € 

(x - + t2 + (x - b)2 + c2 

l l  
1 +--- 

2i X - U - ~ E  X - U + ~ E  x - b - i ~  ~ - b + i ~  
1 

= "  

(U - b + 2ie) 
2i [(x - U )  - ~ E ] [ ( x  - b) + it] 

- ="  1 

(U - b - 2%) 
[(x - U) + ~ E ] [ ( z  - b) - it] 

- 

For E small and a # b this is 

1 1 - 1 [ (x - a)(. - b)  + i c ( b  - a)  (x - a)(. - b)  - i c ( b  - a )  
- € ( a  - b)2 - 

(X - a)'(. - b)2 + e2(a  - b)2 

3 E' 

(x - U ) ~ ( X  - b ) 2  + d 2  
= ( a  - bl[  ' 

where we set d = la - blc. Hence 

€ E 
= -la - b l [  " 7~ (z - a)2 + e 2  (x - b)2 + e2 l 1  7~ (x - - b)2 + + 

Again using Eq. (A.27) and taking the limit E + 0 on both sides, we obtain the result (A.26). 
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Appendix B 

Units and Physical Constants 

The units used in the text are those internationally agreed on and called 
SI units or SIU, Systeme International d’Unite‘, or often as earlier also the 
MKSA system of units, depending on meter, kilogramme, second and am- 
pere. The international abbreviation is SI (cf. references below). One dis- 
tinguishes between two types of units, those of the first type being the fun- 
damental units, of which the relevant ones for our purposes here are meter 
(m), kilogramme (kg), second (s), ampere (A) and kelvin (K), the last for 
thermodynamical temperature. All other units, like newton, hertz, etc. are 
derived SI units. The most important derived units for our purposes here, 
and possibly related uses, are summarised in Table 1, especially as a reference 
of internationally agreed symbols for the various units.* According to inter- 
national agreement, symbols for units which are proper names, as in Table 
1, are written with a first capital letter, their special names are written with 
small letters (e.g. hertz); plurals of unit names are formed according to the 
usual rules of grammar with irregular exceptions (hertz, siemens). Symbols 
for physical quantities are set in italic (sloping) type, while symbols for units 
are set in roman (upright) type.+ Multiplication of units is indicated by a 
raised dot (Table 1) or a space between the units (in text) (cf. again R.A. 
Nelson, above). Note that in the past 0-l was occasionally described as mho 
with the MKSA unit of conductivity 1 mho m-l. Also note that capacitance 
is American usage for capacity. 

Table 2 summarises important fundamental constants * (for frequent use- 

*Extracted (with permission gratefully granted by the author and with notification to  the 
Rights Office, AIP) from R. A. Nelson, I‘ Guide for Metric Practice”, Physics Today 56, August 
2003, BG 15. 

+For all of these conventions see in particular R. A. Nelson, above. 
*Extracted (with permission gratefully granted by the authors and with notification to  the 

Rights Office, AIP) from P. J. Mohr and B. N. Taylor, “The Fundamental Physical Constants”, 
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fulness with inclusion of the standard value of the gravitational acceleration 
gn). 

Table 1: Some derived SI units and their symbols 
~ ~~ 

Quantity Unit 
Special name Symbol Equivalent 

plane angle 
solid angle 
speed, velocity 
acceleration 
angular velocity 
angular acceleration 
frequency 
force 
pressure, stress 
work, energy, heat 
impulse, momentum 
power 
electric charge 
electric potential, emf 
resistance 
conductance 
magnetic flux 
inductance 
capacitance 
electric field strength 
magnetic flux density 
electric displacement 
magnetic field strength 
radioactivity 

radian rad 
steradian sr 

hertz 
newton 
pascal 
joule 

watt 
coulomb 
volt 
ohm 
siemens 
weber 
henry 
farad 

tesla 

Hz 
N 
Pa 
J 

W 
C 
V 
s2 
S 
Wb 
H 
F 

T 

becquerel Bq 

m/m = 1 
m2/m2 = 1 

m/s 
m/s2 
rad/s 
rad/s2 
S-1  

kg . m/s2 
N/m2 
N . m, kg . m2/s2 
N . s, kg . m/s 
J/s 

J/C, W/A 
VIA 

A . s  

A/V, 0-l 
v.s 
Wb/A 
c/v 
v/m,  N/C 
Wb/m2, N/(A. m) 
C/m2 

A/" 
S-1 

In many cases the Gauss units mentioned in Chapter 1 are still in use. 
In Table 3 the factors for the appropriate conversions to Gaussian units of 
equations given in the text in MKSA units are summarised (Jackson [3] uses 
Gaussian units and therefore gives a Table in the reverse direction). Units 
for force and other non-electromagnetic quantities remain unaffected. 

Physics Today 56, August 2003, BG6. Note that in our brief extract, for instance, some names of 
quantities have been shortened and precise values have been reduced to fewer decimal places. 
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Table 2: Fundamental Physical Constants 
(relevant for electrodynamics and related areas) 

Quantity Symbol Value Unit 

speed of light in vacuum 
magnetic constant 

electric constant l/poc2 
vacuum impedance && 
Newton grav. constant 
Planck constant 
Planck constant 
h / 2 ~  
Planck mass 
Planck length t i lmpc 
Planck time l p l c  
elementary charge 
magnetic flux quantum h/2e 
Bohr magneton eti/2me 
Bohr magneton eh/2me 
fine-structure constant 
e2/4motic 
l/a 
electron mass 
me equivalent energy 
me equivalent energy 
electron charge/mass 
grav. acceleration 

C 

PO 

€0 

2 0  

G 
h 
h 
ti 
mP 

lP 

t P  

GO 
e 

PB 
P B  
a 

a-1 

me c2 
m,c2 

me 

- e l m e  
Sn 

299 792 458 

= 12.566 370 614 ... ~ 1 0 ~ ~  
4T x 10-7 

8.854 187 817 ... x10-l2 
376.730.. . 
6.673.. . x lo-'' 
6.626 0 6 8 . . . ~ 1 0 - ~ ~  
4.135 667 ... ~ 1 0 - l ~  
1.054 5 7 1 . . . ~ 1 0 - ~ ~  
2.176 7 ~ 1 0 - ~  

5.390 6 x  
1.602 1 7 6 ~ 1 0 - ~ '  
2.067 833x 
927.400 899x 
5.788 381 7 ~ 1 0 - ~  
7.297 352x 

1.616 ox 10-35 

137.035 999 76 ... 
9.109 381 8 8 ~ 1 0 - ~ '  
8.187 1 0 4 ~ 1 0 - ~ ~  
0.510 998 9 
-1.758 8 2 0 ~ 1 0 ~ '  
9.806 65 

m s-' 
N A - ~  
N A-2 
F m-l 
R 
m3 kg-' sP2 
J s  
eV s 
J s  
kg 
m 

C 
Wb 

eV T-' 

S 

J T-' 

kg 
J 
MeV 
C kg-' 
m s-2 

Examples: 
(1). MKSA: V - D = p, 

i.e. 
V * D = 4 ~ p .  

8B 
(2). MKSA: V x E = -- at ) 

E a :. Gauss: V x ~ - --@, 6 - at 47r 
1.e. 
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Table 3: Conversion from MKSA to Gaussian units 

Quantity in MKSA units 4 Quantity in Gaussian units 

D 

4 

4 

+ 

4 

4 

4 

+ 

4 

4 

a 
at 

(3). MKSA: V x H = j + -D, 
a 

:. Gauss: V x ~ & =  e j  + z / ~ . :  
i.e. a 47r 1dD 

at c c at V X H = 47r-j + -&D = -j + --. 

- (4). MKSA: F = pE + j x B, 
+ &j x / E B  = pE + -j 1 x B, 

4T C 
.-. Gauss: F = &p- & 
i.e. 

F = p (E + 9). 
These equations show that the factor c always appears whenever a magnetic 
(or electric) quantity is related to an electric (magnetic) quantity respectively, 
as we observe this also in the field tensor F,, (see e.g. Eq. (17.35)). Thus 
the factor c = 1/- appears in the transition from purely electric units 

p,q,j,I,P

B

H

M

(R,Z)

L

C
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(long ago called e.s.u.), to purely magnetic units (long ago called e.m.u.). In 
the Gaussian (c.g.s. = cm gm sec) system of units (see Appendix in Jackson 
[ 3 ] ) ,  as in the original e.s.u. ('s' for 'static') the quantities charge, current, 
potential (voltage) and capacity are given in statcoulomb, statampere, statvolt 
and statfarad. With c = 3 x 10" cm sec-' ('3' as good approximation for 
2.997 924 58 ...) one defines 

1 C = 3 x lo9 e.s.u. = 3 x lo9 statcoulombs, 1 A = 3 x 10' statamperes. 

Then, using the equivalents of Table 1, 

lo7 erg 
3 x lo9 e.s.u. 

- - 1 J(jou1e) 
1 C(cou1omb) 

1 V(vo1t) = 

1 erg 1 
300 e.s.u. 300 

----- - statvolt, - 

1 C(cou1omb) - 3 x lo9 statcoulombs 

3 x lo9 statcoulombs 

- 1v 1 F(farad) = 
1 V(vo1t) 

= 9 x 10'' statfarads - 
1 

- - 3oo statvolt 

with 
1 statfarad = 1 statcoulomb/l statvolt. 

For the electric field strength E one has therefore 

1 E :  
3 

From V . D = p, Gaussian V . D = 47rp, one obtains for D: 

D :  

1 v m-' = - x 1 0 - ~  statvolt cm-'. 

3 x lo9 statcoulombs 
104 cm2 

= 127r x lo5  statcoulombs cm-2 

I c m-2 = 4n 

(or statvolt cm-'1. 

For resistance R: 

R :  statvolt 
300 x 3 x lo9 statamperes 

1 L! = 1 V/1 A = 

1 
= - x lO-l'statvolt sec/statcoulomb 

9 
(or sec/statfarad or sec cm-'), 

and in the case of the conductivity n: 

0 :  1 R-' m-' = 9 x lo9 statamperes cm-'/statvolt (or sec-'). 
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The old e.m.u. (electromagnetic units) are still occasionally mentioned, 
e.g. also in Jackson [3], and one finds these in older texts. We therefore 
mention these briefly, since some aspects of their definition are not without 
interest, even today. These units were introduced via the formula for the 
field strength H at the centre of a single circular conductor with radius r 
and current I ,  i.e. the expression H 0: 2nI / r ,  in which the proportionality 
constant is chosen as 1, i.e. with 

2lTI H = - .  
r 

For r = 1 cm, I = unit of current in e.m.u. (in old literature also called 
'abampere') one has H = 27r oersted, with the unit oersted given in dyne per 
magnetic pole. (Thus in the case of the e.m.u. the unit of current is defined 
first, whereas in the case of the e.s.u. the unit of charge is defined first). 
Using the expressions I = d q / d t , d q  = Idt ,  current 1 is given in abampere 
and d t  in seconds, and charge dq in abcoulomb, where 1 abcoulomb is defined 
as that amount of charge which is transported in one second by a current of 
one abampere. 

The relation between e.m.u. and e.s.u. can be determined experimentally. 
The easiest way is with the help of a parallel plate condenser of known mass. 
Let qs be the charge in e.s.u. and qm its value in e.m.u. What one is looking 
for is the constant c in the relation qm = cq,. The capacity of the condenser 
in vacuum is (let us say) 

9 s  Qm C - - e.s.u. or C, = - e.m.u. 
, - V ,  Vm 

Since in the case of both kinds of units the energy is measured in ergs, one 
can equate them, i.e. 

If we replace here the ratio of the potentials by that of the capacities from 
the preceding relation, we obtain 

and hence 

c = @. 
The value of C, can now be given directly in centimeters for the parallel plate 
condenser (cf. Example 2.9), and Cm can be determined experimentally, 
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e.g. with the help of a ballistic galvanometer. This interesting experiment 
was performed in 1907 by Rosa and DorseyS and yielded to a high degree 
of precision for the constant c the numerical value of the velocity of light. 
Hence 

10 q e.m.u. = 3 x 10 q e.s.u., 

or 
9 1 1 C = 3 x 10 e.s.u. = 10- e.m.u. 

In this way we obtain the relationships between the systems of units given 
in Table 4 (here only for a few typical examples). The derivation of such 
relations can, for instance, also be found in electrodynamics exercises in the 
literature.1 

Table 4: Relations between e.s.u. and e.m.u. 

Quantity e.s.u. e.m.u. MKSA 

charge 3 x 109= 10-1 c 
current 3 x 109= 10-1 A 
potential 1/300 = 108 v 
electric field strength 1/300 = lo6 V m-l 

1 10-11 = 10-9 0 resistance 9 
capacity 9 x 1011 = 10-9 F 
inductance 9 

1 x 10-11 = lo9 H 

Finally we collect in Table 5 some useful values of energy-equivalences 
for conversion from one unit to another.” 

§See e.g. H. B. Lemon and M. Ference, Analytical Eqerimental Physics (University of Chicago 
Press, 1943), p. 385. 

’See e.g. E. H. Booth and P. M. Nicol, Physics, Fundamental Laws and Principles with 
Problems and Worked Solutions, 12th ed. (Australasian Medical Publ. Co., 1952), pp. 179, 506- 
507. 

“Extracted (with permission gratefully granted by the authors and with notification to the 
Rights Office, AIP) from P. J. Mohr and B. N. Taylor, “The Fundamental Physical Constants”, 
Physics Today 56, August 2003, BG6. Note that in our brief extract some precise values have been 
reduced to fewer decimal places. 



Table 5: Energy equivalences 

J 
Relevant unit 

kg m-l Hz 

1 J  (1 J) = 

1 
1 kg (1 kg)c2 = 

8.987 551 787x 10l6 
1 m-l (1 m-')hc = 

1.986 445 x 
1 HZ (1 Hz)h= 

6.626 068 76 x 

1.380 650 3 x  

1.602 176 x ~ O - ~ '  

1 K  (1 K)k=  

l e v  ( l e v )  = 

(1 J)/c2 = 

1.112 6 5 0 ~ 1 0 - ~ ~  

(1 kg) = 
1 
(1 m-l)h/c = 

2.210 218 6 ~ 1 0 - ~ '  
(1 Hz)h/c2 = 

7.372 495 7 8 ~ 1 0 - ~ l  
(1 K)k/c2 = 

1.536 180 ~ x ~ O - ~ O  

(1 eV)/c2 = 

1.782 661 7 x ~ O - ~ ~  

(1 J)/hc = 

5.034 117 6x  loz4 
(1 kg)c/h = 

4.524 439x 1041 
(1 m-l) = 

1 m-l 
(1 Hz)/c = 

3.335 640 95x 10-9 
(1 K)k/hc = 

69.503 56 
(1 eV)/hc = 

8.065 544 77x105 

(1 J ) / h =  
1.509 190 5x1033 
(1 kg)c2/h = 

1.356 392 77x lo5' 
(1 m-')c = 

299 792 458 
(1 Hz) = 

1 
(1 K)k/h = 

2.083 664 4x1O1O 
(1 eV)/h = 

2.417 989 49x 1014 
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Formulae 

C.l  Vector Products 

The following relations are frequently used in the text and are therefore 
summaxised here: 

A .  (B x C )  = (A x B) . C, 

(P x Q) x R = (R * P)Q - (R . Q)P, 

P x (Q x R) = (P . R)Q - (P . Q)R. 

For vectorial derivatives one has in particular: curl curl = g r a d  d i v  - 
d i v  g r a d ,  i.e. 

V x (V x A) = V(V . A) - (V V)A. 
In addition: 

v x (u x v) = u(V * v) - v(V * u) + (v * V)u - (u * V)v, 
V(u . v) = (v . V)u + (u * V)v + v x (V x u) + u x (V x v), 

V(uv) = v u  . v -k u v  . v, 

v x (UV) = v u  x v + u v  x v, 

v. (u x v) = v. (V x u) - u. (V x v). 

The following relations hold 

curl grad V = 0 and div curl F = 0, 

i.e. 
V x VV = 0 and V . (V x F) = 0. 
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C.2 Integral Theorems 

Gauss’ divergence theorem: 

L V . E d V =  L,,, E .  dF’ 

and 
Stokes’ circulation theorem: 

V x E . d F  = E . ds .  J, 



Bibliography 

[l] A. Sommerfeld, Elelctrodynamilc, 3rd ed., revised and supplemented by 
F. Bopp and J. Meixner (Akad. Verlagsgesellschaft, 1961). 

[2] Y.K. Lim, Introduction to  Classical Electrodynamics (World Scientific, 
1986). 

[3] J.D. Jackson, Classical Electrodynamics, Second Edition (Wiley, 1975). 

[4] W. Greiner, Theoretische Physilc, Vol. 3: Klassische Elelctrodynamilc, 3. 
Auflage (H. Deutsch, 1982). 

[5] L. Page and N. I. Adams, Electrodynamics (Dover Publications, 1965); 
see pp. 154-155. 

[6] A. O’Rahilly, Electromagnetic Theory, Vols. I, I1 (Dover Publications, 
1965). 

[7] E.T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th 
ed. (Cambridge, 1958). 

[8] M. Zahn, Electromagnetic Field Theory (Wiley, 1979). 

[9] B.H. Chirgwin, C. Plumpton and C. M. Kilmister, Elementary Electro- 
magnetic Theory, VoZ. I (Pergamon Press, 1971). 

[lo] A.C. Aitken, Determinants and Matrices (Oliver and Boyd, 1954). 

[Ill LI. G. Chambers, An Introduction to  the Mathematics of Electricity and 
Magnetism (Chapman and Hall, 1973). 

[12] D.K. Cheng, Field and Wave Electromagnetics (Reading, Addison- 
Wesley, 1983). 

[13] P. C. Clemmow, An Introduction to Electromagnetic Theory (Cambridge 
University Press, 1973). 

515 



516 BIBLIOGRAPHY 

[14] G. P. Harnwell, Principles of Electricity and Magnetism (McGraw-Hill, 
1949). 

[15] E. Stiefel, Methoden der Mathematischen Physik 11 (Verlag der Fachvere- 
ine, Zurich, 1980). 

[16] F.  Schwabl, Quantenmechanik (Springer, 1998). 

[17] J.A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941). 

[18] R.B. Dingle, Electricity and Magnetism, Mimeographed Lecture Notes, 
University of Western Australia (1956). 

[19] S. Schweber, An Introduction to Relativistic Quantum Field Theory 
(Harper and Row, 1961). 

[20] B. Felsager, Geometry, Particles and Fields (Odense University Press, 
1981). 

[21] Staff of Research and Education Association, The Electromagnetic Prob- 
lem Solver (SREA, revised 1988). 



Index 

Abraham-Lorentz equation, 242 
absorption, 348, 372 
absorption by metals, 267 
absorptivity, 269 
Aharonov-Bohm effect, 178, 183, 

Aitken, 36 
Ambrosio et al., MACRO-detector 

Ampkre, see reference throughout 
Ampkre’s law, 3 
Ampkre’s dipole law, 122 
Amphe’s law, 118, 126, 172 
Ampbre, experiments of, 113 
ampere, 505 
analogy, electric and magnetic cir- 

cuits, 144 
analyticity, 348, 366 
anomalous dispersion, 357 
antennas, 237 
anti-self-duality, 399 
attenuation constant, 329 
attenuation of wave guides, 324 
Avron, Osadchy and Seiler, 445 

448, 453, 458 

group, 494 

Barton and Eberlein, 476 
Bayh, 458 
Bekefi and Barrett, 226 
Berry, 458 
Bianchi identity, 412 
Biot-Savart law, 113, 404 
Blau, Guendelman and Guth, 27 
Booth and Nicol, 511 

BOPP, 5 
Born and Infeld, 441 
Born-Infeld theory, 441 
Boyer, 476 
bremsstrahlung, 226 
Brewster angle, 260 
Bullen, 130 

cable, coaxial, 95, 298 
cable, transmission, 300 
Cabrera, 493 
Cabrera experiment, 493 
capacitance, see capacity, 28 
capacitive resistance, 19 1 
capacity, 28 
capacity, electrolytic determi- 

Carpasse, 377 
Casimir, 469 
Casimir effect, 462 
Cauchy theorem, 351 
Cauchy-Riemann 

causality, 348, 364 
Cavendish, 11, 16 
cavities, 332 
centre of mass of field, 434 
Chambers, 38, 39 
charge conservation, 112 
charge, induced, 340, 446 
charges, discrete, continuous, 10 
Cheng, 183 
Chern-Simons term, 440 

nation of, 71 

equations, 66, 367 

517 



518 INDEX 

Chirgwin, Plumpton 

circuits, 189 
Clemmow, 187 
Clifford algebra, 432 
clock paradox, 413 
coil, finite length, 187 
coils, coaxial, 184 
condensers, 27 
conductor, circular, 120 
conductors, 33 
confinement potential, 23, 444 
conjugate functions, 

method of, 66, 192 
constants, fundamental, 506 
continuity, equation of, 110, 111 
convolution theorems, 364 
coordinates, Cartesian, 

Coulomb gauge, 125, 211 
Coulomb law, 9 
Coulomb law of magneto- 

statics, 127 
Coulomb potential in higher 

dimensions, 22 
crossing relations, 362 
current, 110 
current density, 110, 327 
current loop, its solid angle, 129 
current loop, quadratic, 132 
current, effective 

surface, 247, 324, 326 
current, stationary, 112 
current, surface, 111, 245, 327 
cyclotron radiation, 227 
cylinders, coaxial, 194 

and Kilmister, 35 

cylindrical, spherical, 14 

D’Alembert operator, 196 
delta distribution, 495 
delta function, delta distribution, 

17 

derivatives, covariant and 
contravariant, 396 

diamagnetic material, 141 
dielectric constant, 

generalised, 201 
dielectric displacement, 89 
dielectric, cylindrical, 10 1 
dielectric, spherical, 98 
dielectrics, 85 
differential equation, 

dilation, 413 
Dingle, 273 
Dingle-Holstein formula, 273 
dipole, 31, 80 
dipole radiation, 233 
dipole, electric, 123 
Dirac delta function, 17 
Dirac field, 432 
Dirac formula, quantisation of 

electric charge, 485 
Dirac string, 181, 486, 490 
direct current conductivity, 271 
Dirichlet boundary condition, 59 
dispersion, 345 
dispersion relations, 

subtracted, 377 
dispersion, anomalous, 346 
dispersion, normal, 346 
displacement current, 161 
Drude theory, 270 
Drude-Kronig formula, 272 
duality, electric-magnetic, 479 
dyon, 481 
Dyson, 463 

first order, 190 

earthing, 50 
eigentime, 413 
Einstein, see reference throughout 
Einstein formula, 43, 416 
electric resistance, 144 



Index 519 

electromagnet, 145 
electromagnet with tapered poles, 

146 
Electromagnetic Problem 

Solver, 172, 265 
electromotive force, 152 
electrostatics, formulae, 106 
Endo, 458 
energy equivalences, 511 
energy of charges, 41 
energy of magnetic moment, 148 
energy, electric, 102 
energy, magnetic, 142, 156 
energy, of polarisation, 104 
energy-momentum tensor, 426 

Faraday, see reference throughout 
Faraday cage, 34 
Faraday’s law, 3, 151, 170 
Farquhar, Vaidya, 463 
Felsager, 440, 487, 488 
ferromagnetic material, 141 
Feynman, 463 
field tensor, 397 
field tensor, dual of, 399 
Fierz, 476 
fine-structure constant, 477, 485 
fine-structure constant, 

magnetic, 485 
Fleming, 425 
flux, magnetic, 154 
flux, quantum, 446 
form variation, 428 
Fourier series, expansions, 

transforms, 74 
Fraas, 486 
Fresnel formulae, 259, 264, 274 
Fresnel integral, 360 
friction, 242, 365 
Fryberger, 494 
fundamental equations, 304 

Guttinger, 495 
gauge covariance, 450 
gauge covariant derivative, 450 
gauge invariance, 432 
gauge transformations, 125 
gauging away, 435 
Gauss law, 5, 34, 47 
Gibbons, 441 
Goddard, 494 
Gradshteyn and Ryzhik, 148, 456, 

gravitation, 27, 42, 52, 64 
Green’s function, 19, 60 
Green’s function, 

Green’s theorems, 57 
Greiner, 2, 48, 118, 122, 207 
group velocity, 319, 346 
Guenther, 243 

50 1 

retarded, 213, 366 

Hagen and Rubens, 269 
Hagen, C.R., 458, 476 
Hagen-Rubens formula, 271 
Hall conductivity, 446 
Hall effect, quantum, 444 
Hamilton density, 427 
Harnwell, 116 
Heaviside function, 18 
helicity, 439 
henry, 176 
hertz, 505 
Hertz dipole, 228 
Hertz, H., 2 
Hilbert transforms, 370 
Hilgevoord, 371 
Holstein, 273 
hyperspherical functions, 78 

image charge, 53 
impact parameter, 227 
impedance, 190 



520 INDEX 

induced charge, 53 
inductance, 173 
inductance, mutual, 178 
inductance, self, 177 
induction, 151 
inductive resistance, 190 
inertial frames, 223, 382 

Jackiw, 425 
Jackson, xiv, 2, 7, 110, 118, 143, 

187, 246, 329,407, 441, 506, 
508 

Jacobi identity, 412 

Kawasaki, 458 
kelvin, 505 
Kelvin’s method, 50, 70 
Kelvin’s theorem, 99, 102 
Killian, 50 
Kleppner, 83 
Kramers, 361, 371 
Kramers and Kronig, 371 
Kronig, 371 

Lagrangian of electromagnetic 

Lamoreux, 476 
Laplace equation, 47 
Larmor dipole formula, 236 
Larmor frequency, 283 
Larmor single particle 

formula, 225 
Legendre functions, 76 
Lemon and Ference, 511 
Lenz rule, 141 
Levi-Civita symbol, 412, 440 
Lidnard-Wiechert potentials, 215 
Lidnard-Wiechert potentials, 

Lieber, 383 
lifetimes, 419 
Lim, 2, 143, 246 

field, 428 

4-form, 217 

line broadening, 241 
linear current, 111 
lines of force, 24 
Lorentz force, 118, 132, 413 
Lorentz gauge, 211, 398 
Lorentz transformations , 387 

Mollenstedt, 458 
macrocausality, 365 
magnetic field of Earth, 282 
magnetic field strength, 140 
magnetic flux circuits, 144 
magnetic induction, 117 
magnetic moment, 121 
magnetic monopoles, 123 
magnetic poles, 486 
magnetic resistance, 145 
magnetic susceptibility, 141 
magnetisation current, 139 
magnetisation, macroscopic, 139 
magnetomotive force, 144 
magnetostatics, formulae, 150 
Magnus and Oberhettinger, 360 
Maier and Slater, 338 
mass shell condition, 436 
matrix, inverse, 36 
Matsuda, 458 
Maxwell, see reference throughout 
Maxwell equations, differential 

and integral forms, 158 
Maxwell stress tensor, 166 
Michelson and Morley, 383 
Michelson-Morley experi- 

ment, 384 
microcausality, 365 
Milton, 461 
Mimno, 277 
minimal electromagnetic 

coupling, 450 
Minkowski space, 388 
Mohr and Taylor, 505, 511 



Index 521 

momentum density, 165 
momentum, conjugate and 

mechanical, 449 
monopoles, 486 
multipole expansion, 78 

Nelson, 505 
Neumann boundary condition, 59 
newton, 505 
Noboyuki, 458 
Noether current, 425 
Noether’s theorem, 432 

polarisation vector, 198, 261, 435 
Polchinski, 489 
potential energy, 23 
power of dipole, 234 
Poynting vector, 162, 163, 198, 320, 

322 
principal value integrals, 367 
principal values, 367 
proportional counter, 48 
pulsar, 285 
pulse, 408 

null field conditions, 443 quadrupole, 81 

O’Rahilly, 6, 159, 387 
observables, 126 
Oersted, 109 
Ohm’s law, 136, 157 
Ohmic power, 237 
Olive, 494 
orthogonal functions, 72 
oscillator strengths, 354 

Page and Adams, 5 
Palumbo and Vaccaro, 338 
paramagnetic material, 141 
Parseval relation, 73 
Pendry, 476 
penetration depth, see also skin ef- 

permittivity, 92 
Peshkin and Tonomura, 458 
phase velocity, 319, 346 
phase, stationary, 347 
photon, 419, 434, 437 
plasma frequency, 205 
Plunien, Muller and Greiner, 469, 

476 
Poincar6 group, 392 
Poisson equation, 14, 47, 148 
polarisation, 86, 199 
polarisation energy, 104 

fect, 275 

quantisation of electromagnetic 

quantisation of harmonic 

quantum electrodynamics, 432 
quarks, 444 

field, 465 

oscillator, 462 

radiation damping, 241 
radiation field, 209 
radiation resistance, 236, 237 
radio waves, 277 
Rasheed, 441 
Rayleigh-Jeans law, 236 
Relativity, Special Theory of, 381 
relaxation time, 112, 270, 283 
resonators, 332, 474 
Rosa and Dorsey, 118, 511 
rotation operator, 438 
Ruijsenhaars, 458 
Rydberg atom, 440 

Schiff, 443 
Schrodinger equation, 451, 488 
Schwabl, 211 
Schwartz, L., 495, 501 
Schweber, 426 
screening, electrical, 33, 35 
self-duality, 399 
self-inductances, 



522 INDEX 

calculation of, 192 
shells, spherical, 36 
signal velocity, 347 
Sipila, Vanha-Honko and 

Bergqvist, 48 
skin depth, see also penetration 

depth, 326 
skin effect, 207 
Slater, 338 
Snell’s law, 253, 279 
solenoid, 127, 175, 178, 493 
Sommerfeld, 2, 159 
Sparnaay, 476 
spectral function, 75 
Stiefel, 52 
Stratton, 269, 277 
stream function, 318 
sum rules, 374 
superconductor, electric 

surface charge, 250, 294, 340 
surface current, 111, 245, 246, 250, 

294, 324, 327, 340 
surfaces, charged, 24 
susceptibility, electric, 91, 105 
susceptibility, U-tube measure- 

ment of electric, 105 
symmetry, internal, 425 

analogy, 101 

Taylor and Mohr, 505, 511 
Taylor, W., 420 
telegraph equations, 200 
TEM fields, 295 
tesla, 117 
Thomson scattering cross 

section, 238 
Tonomura, 458 
total reflection, 261 
transversality, 436 
twin problem, 419 

units, 6 
units, conversion, 506 
units, derived, 505 
units, e.s.u. and e.m.u., 511 
units, Gauss, 506 
units, natural, 6 
units, SIU, 505 

van de Graaff generator, 29, 225 
van der Waals force, 83 
variation of form, 428 
vector potential, 123, 148 
velocities, addition of, 418 
virtual and actual displacements 

Visser, 42 
Voigt, 387 
von Klitzing, Dorda and 

of circuits, 183 

Pepper, 444 

wave guides, 289 
wave packet, 347, 349 
weber, 176 
Weihs and Zech, 52 
Whittaker and Watson, 2, 155 
Wilson, 267 
wire in air, 70 
wire, conduction, 164 
wires, parallel, 70, 119, 194 
Witten, 21, 147, 487 
Wu and Yang, 487 

Yamada, 458 
Yano, 458 

Zahn, 34, 52 
zero width resonance, 372 




