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Preface

Electrodynamics is one of the pillars of physics with arms reaching through
classical and atomic physics far into high energy particle physics and present
day string theory. With its unification of electric and magnetic phenomena
and subsequently with classical mechanics in Special Relativity it pointed
towards a unification of all physical theories in a future theory of “every-
thing”.

Classical electrodynamics is the electrodynamics of macroscopic phenom-
ena and is summarised essentially in the four Maxwell equations which, how-
ever, permeate in one way or another into microscopic phenomena. Although
beset with tantalising divergence problems, the quantised form of Maxwell’s
electrodynamics, that is quantum electrodynamics, has so far defied all math-
ematical purists by yielding highly precise values of such vital physical quan-
tities as the Lamb shift and magnetic moments. In its nonabelian extension
this quantised electrodynamics led to quantum chromodynamics and beyond,
thereby permitting its unification with strong and weak interactions. It is
expected that the ultimate theory, possibly a form of higher dimensional
string theory, will one day permit its unification also with quantum gravity.
This theoretical endeavour, starting with Maxwell’s unification of electric
and magnetic phenomena and now reaching as far as cosmology, is one of
the most amazing intellectual achievements of mankind.

A countless number of treatises has been written on electrodynamics,
including applications in all directions. These cover the entire range from
elementary introductions to authoritative reference tomes. The present text
is but one more, and like any other is imprinted with the author’s likes and
preferences. In repeatedly teaching electrodynamics the author set himself
the task of making the presentation as easily comprehensible as possible,
and to direct the view beyond the traditional domain of pure macroscopic
Maxwell theory.

Rightly or not, and irrespective of what others think, the author claims
that the companion text of a first course in a basic subject must be readable,
must explain the issues at hand in detail and, not the least, must present

xiii
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any nontrivial calculational steps. The author remembers from his time
as a student the relief derived from a book or script which explains what
others passed over (knowingly or not), if only as a reassurance that one’s
own understanding is correct. A student’s struggle with a book may flatter
the vanity of the author, but will more likely result in the book being put
aside. The present text therefore attempts to avoid as far as possible the “it-
can—easily-be-shown—jumps’ familiar from everyday literature. With more
than a hundred mostly worked and typical examples interspersed, the text
might also serve as a “Teach Yourself Course” in electrodynamics. To what
extent this succeeds only the reader can decide.

The further attempt pursued in the text (frequently in examples) is to
open some views to other domains which are usually excluded in traditional
presentations of electrodynamics. This applies in particular to intimately
related quantum effects (mostly of Schrédinger equation or harmonic oscil-
lator type), electric-magnetic duality, reference to higher dimensions and to
gravity, all of which the student of today encounters elsewhere much earlier
than in the past, and hence might expect some mention in the text.*

I thank Dr. K. K. Yim of World Scientific for his untiring help and a
countless number of suggestions for improving the manuscript.

H.J.W. Miller—Kirsten

*Only textbook literature consulted repeatedly at various times in the course of preparation of
this text is cited in the bibliography. Many other sources have, of course, also been used at various
points but their specific relevance has been lost track of as the years passed by. Hence no attempt
is made to even refer to all important and standard works on the subject. An extensive list of
this literature can be found in the book of Jackson [3]. Literature related to very specific topics or
sources is cited in footnotes at appropriate points in the text.



Chapter 1

Introduction

1.1 What is Electrodynamics?

Electrodynamics as a theory deals with electric charges which move in space
and with electromagnetic fields that are produced by the charges and again
interact with charges. Electrodynamics is described by Maxwell’s equations
whose most important consequences are: (a) the electromagnetic nature of
light (Maxwell), (b) the emission of electromagnetic waves by an oscillating
dipole (H. Hertz), and (c) the unification of electric and magnetic forces.
Unlike in Maxwell’s days one does not refer to an aether anymore — it was
Einstein who concluded that this does not exist — and instead uses the
concept of fields in space. Einstein’s Special Theory of Relativity unifies
electrodynamics with classical mechanics.

1.2 Presentation of Macroscopic Electrodynamics

In general a first course in electrodynamics, or electricity and magnetism as
it is also called, is preceded by a course in classical mechanics which even to-
day is not always combined with the Special Theory of Relativity (as would
be desirable). In addition the concept of a field in space and the distinction
between directly observable field quantities and at best indirectly observable
field potentials is at that stage still too vague to permit an immediate rela-
tivistic field theoretic approach to appear plausible. Moreover, in general the
term electrodynamics is usually restricted to macroscopically observable phe-
nomena, so that a quantised treatment with operator-valued fields is beyond
its scope, the latter being dealt with in quantum electrodynamics. Thus the
classical fields are c-numbers. As a consequence of this restriction, and also
in order to establish classical electrodynamics as a theory in its own right,

1



2 CHAPTER 1. INTRODUCTION

the fundamental equations of this theory, Maxwell’s equations, are usually
not derived from Hamilton’s principle as a prior course in methods of clas-
sical mechanics might suggest. In addition the law of force between moving
charges is considerably more complicated than that between pointlike masses
so that an analogous procedure is not immediately advisable. Nonetheless
Hamilton’s variational principle is of such basic significance that it permits,
of course, the derivation of Maxwell’s equations as the Euler-Lagrange equa-
tions (and their consequences) of an appropriate variational principle. Thus
here we do not adopt this procedure immediately (i.e. till Chapter 18).
What are the other methods which suggest themselves? Perusing the liter-
ature, one observes two main procedures. The approach with emphasis on
logic starts from an axiomatic presentation of Maxwell’s equations, whereas
the other more historical and phenomenological approach abstracts these
from observations. A textbook which adopts the former procedure is that of
Sommerfeld [1] who follows H. Hertz in this respect, but whereas H. Hertz
starts from the differential form of Maxwell’s equations, Sommerfeld chooses
the vector integral form. Another text that follows this procedure is, for in-
stance, that of Lim [2]. Books which choose the second procedure are those
of Jackson [3] and Greiner [4].

In the axiomatic formulation of classical or macroscopic electrodynamics
the two principal azioms are Faraday'’s law of induction and Ampeére’s flux
theorem. In integral form and in units of the internationally agreed system
of units (ISU), these are

i/B-dF:—j{ E-dl (1.1)
dt Jp C(F)

d
—/D-dF-l—/j-dF: H-dl, (1.2)
dt /g F C(F)

and

where for a given fixed surface of integration F,

oD
dF = - dF
dt / b i ’

since (by assumption) F' does not change with ¢.*

*Recall, for instance the analogy, that as shown in Whittaker and Watson (7], p. 67,

d [b db d b of(z,
[t oo = 10,005 — o) gt + [,

which shows the a-dependence of boundary values.




1.2 Presentation of Macroscopic Electrodynamics 3

In the first or Faraday’s law, B is the magnetic induction and E the
electric field strength. The law says that every change of the magnetic fluxt
with time through an open, double-sided area F' (a plane is single-sided) with
boundary given by the closed curve C(F') — this flux being the number of
lines of force in Faraday’s considerations — generates an equal but oppositely
directed circuit potential, the electromotive force ¢ E-dl, along the boundary
C(F). An open surface can, for instance, be visualised as a container without
a lid, and a closed surface as one closed with the lid. In the former case the
rim of the opening corresponds to the curve C(F). The word double-sided
implies that the surface possesses direction normals directed towards inside
or outside regions. A closed surface has no boundary, but we can imagine
on it a closed curve C'(F) which divides the surface into two regions.

In the second or Ampeére’s law, D is the so-called dielectric displacement
(D = egE + P, ¢g the dielectric constant of vacuum, P the polarisation vec-
tor or dipole moment per unit volume of the medium), j is the density of
the electron current and H the magnetic field strength. The law says that
analogous to Faraday’s law the time change of an electric flux through an
area F is equal to a magnetic circuit potential in the boundary curve C(F)
in the same direction. The expression 0D /0t obviously has the dimension of
a current density. The expression

d
—/D-dF
dt Jp

is called Mazwell’s displacement current.

The two principal axioms are supplemented by two subsidiary azioms
which are consequences of the principal axioms with implementation of some
empirical findings. We arrive at these by considering a boundary curve C(F)
enclosing the area F, and by permitting C'(F') to shrink to zero, so that the
line integrals vanish, i.e.

d
li — | B-dF=0 .
C(ll?r)nqo dt/F ’ (13)
lim -CE/D dF-{—/'dF =0 14
Cc(Fy—o | dt Jp = e (14)

The area F' thus loses its boundary and becomes closed. In the case of
magnetic dipoles (irrespectively of whether one considers magnets or current
loops) every line of force leaving the area F' is accompanied by a correspond-
ing line of force toward it. The integral extended over the entire closed

tFlux is in general the scalar product of a vector field with an area.
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surface thus yields the value zero, i.e.

/ B-dF =0. (1.5)
Fclosed

This is a general result in view of the empirical fact that no isolated magnetic
poles exist and hence no region with only ingoing or only outgoing lines of
force. With the definition of the divergence

1
divA(r) = lim = A - dF (1.6)
we obtain the differential form of Eq. (1.5), i.e.
divB(r) =V -B(r) = 0. (1.7)
One says: B(r) is divergenceless.

Equation (1.4) permits an analogous consideration but with different con-
sequences. Equation (1.2), or rather (1.4), applies to cases in which the

electron current
/ j-dF
F(V)

leaves the surface F' enclosing the volume V (F'). This implies that the volume
with total charge ¢ loses charge at the rate

/ joap = -4 (1.8)

The minus sign indicates that V(F) is losing charge. Put differently, as

d—q+/ j-dF =0, (1.9)
dt F(V)

the equation says that the amount of charge in V(F') remains constant (this
is called charge conservation). Here one has to be careful, because if we write

dq
k. i.d
dt +/FJ F,

then g represents the amount of charge which passes through the area F' per
second with no reference to V. We can now write Eq. (1.4) as

. d dg
el dF -2V =0 1.10
c<lﬁlﬁr)n—?o{dt /FD dt} ’ (110



1.2 Presentation of Macroscopic Electrodynamics 5

which implies
/ D dF =gq. (1.11)
Fclosed

We could have added a constant of integration on the right side. But for
charge ¢ = 0 the field D = 0, and thus this constant must be zero. The
differential form of Eq. (1.11) again follows with (1.6); i.e.

q
D= ==, 1.12

V:-D=p, p=y; (1.12)
Here p is the charge density. Equations (1.11) and (1.12) are known as the
Gauss law of electrodynamics. We can now write Eq. (1.8):

d

d pdV:—/ j-dF. (1.13)
dt Jy F(V)

Going to an infinitesimal volume and using the Gauss divergence theorem,

this implies
/ V-jdV:/ j-dF (1.14)
1 F(V)

and hence the equation of continuity

Ip(r, t) ,

T-&-V-]—O. (1.15)
A method of deriving electrodynamics essentially from this equation and the
Lorentz force (the force exerted on a charge in an electromagnetic field) —
as an alternative approach to electrodynamics — can be found in a paper of
Bopp!

Returning to comments at the beginning we mention that attempts have
repeatedly been made to derive Maxwell’s equations from the Coulomb law
and the Special Theory of Relativity. Since it is known that the General The-
ory of Relativity contains the generalisation of Newton’s law of gravitation,
i.e. a law which has the same form as the Coulomb law for charges, such an
attempt cannot succeed without additional assumptions. A discussion of this
topic can be found in the book of Jackson [3]. An entirely different approach
which sees the only logical foundation of Maxwell’s theory in a relativistic
treatment of radiation theory is the book of Page and Adams {5]. In the fol-
lowing we adopt the historical and phenomenological approach starting with
electrostatics, since this seems to be more suitable for an understanding of
the physics of electrodynamics, particularly in a first course on the subject.

'F. Bopp, Z. Physik 169 (1962) 45.



6 CHAPTER 1. INTRODUCTION

1.3 On the Choice of Units

In textbooks on electrodynamics nowadays two systems of units are in use:
The more common internationally used MKSA-system of units with meter
(m), kilogramme (kg), second (s) and ampere (A), and the still frequently
used system of Gaussian units which is based on the c¢.g.s. units, i.e. centime-
ter (c), gramme (g) and second (s) (the current is then given in statampere,
1 A = 3x10° statampere). Either system has its advantages — the former
has been agreed upon internationally and is therefore used particularly in ap-
plications, and the latter, the Gaussian system, is somewhat theory-oriented
and therefore frequently used in considerations of singly charged particles.
Here we employ the first system but will refer occasionally also to the other
system. We add the following comments.

In discussions on units the word “dimension” is frequently referred to.
The dimension of a physical quantity is nothing absolute. It is possible
to choose units (like the so-called natural units) in which Planck’s action
quantum and the velocity of light in vacuum have the value 1 and are di-
mensionless. Since velocity = distance/time, one can then express lengths in
units of time, i.e. seconds, or more commonly time intervals in meters. This
arbitrariness was already pointed out by Planck. Some authors even amuse
themselves today about dimensional considerations$ The example shows
that also the number of fundamental units is a matter of choice (in “natu-
ral units” every quantity can be expressed in a power of length). In earlier
days the units used in the literature on electrodynamics were the so-called
electrostatic units (e.s.u.) and electromagnetic units (e.m.u.) which today
are indirectly contained in the Gaussian system. In essence, in the Gaussian
system of units electric quantities are expressed in e.s.u. and magnetic quan-
tities in e.m.u. while the change to Gaussian units requires a factor ¢ or 1/c
(c the velocity of light in vacuum), which can be determined experimentally
(cf. Appendix B). For instance

1
Be.s.u. = "Be.m.u. .
C

In particular one has in these units for the dielectric constant of the vacuum
€o and for the magnetic permeability of the vacuum g

1 1
eo(esu) =1, elemu.) = = po(e.s.u.) = = po(emu.) = 1.

§See e.g. A. O'Rahilly, Vol. 1 [6], p. 65, where the author says: “Mazwell invented a second
system. .. But this system is never employed, it merely occurs in those pages of textbooks which
profess to deal with something called ‘dimensions’” See also p. 68.
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We do not enter into a deeper discussion of these units here (sometimes it is
not clear whether a quantity is electric or magnetic).

The choice of a system of units in electrodynamics depends on the choice
of the magnitude as well as the dimension of two arbitrary constants, as
an exhaustive investigation of Maxwell’s equations shows.¥ The appearance
of one constant k can immediately be seen by looking at the Coulomb law
in electrostatics, which determines the force F15 between two point charges
q1, g2, separated by a distance r, i.e.

r
Fip = k(h(h;?

For length, mass and time, we choose here as agreed upon internationally
the ISU (international system of units, internationally abbreviated SI, see
Appendix B) and thus the units meter (m), kilogramme (kg), second (s)
(correspondingly in the Gaussian system centimeter (cm), gramme (g), sec-
ond (s)). Depending on the choice of dimension and magnitude of k we
obtain different units for the charge q. The electric field strength E(r) at the
distance r away from the charge q is
E(r) = k%r.

Thus the field E(r) can be defined as force per unit charge.

In the consideration of magnetic phenomena we have to deal with cur-
rents. Currents I are defined with respect to charges ¢, I = dg/dt. The
connection between electric and magnetic phenomena or between E and B
introduces another constant for the choice of units of B. This constant can
be introduced in a number of ways. With the help of the theorem of Stokes
(see later), Eq. (1.1) can be written as

oB
ot

where k* is chosen to be 1 and dimensionless in the MKSA-system (the
constants k and k* can be chosen arbitrarily in magnitude and dimension).

In accordance with the ISU, i.e. the MKSA-system of units, the unit of
current is taken as the ampere (the spelling in English being this, ampere,
which is not part of SI). One ampere is defined as that amount of current
which runs through two parallel, straight, infinitely long, thin conductors
which are one meter apart when the force between these is 2x 107 newton/m
(per meter in length) (the expression for this attractive force will be derived
later). Since current x time is charge, we obtain the definition of the unit of
charge:

VxE+k* 0,

YSee Jackson [3], p. 811.



8 CHAPTER 1. INTRODUCTION

1 coulomb (C) = 1 ampere-second (A s).

It remains to determine the dimensions of D and H. For a large number of
different materials the following “matter” or “material equations’ are valid:

D =¢E, B=yuH.

€ is the dielectric constant of the material and p its magnetic permeability.
Both have magnitudes and dimensions depending on the chosen system of
units. The vacuum values €q, 19 obey, as we shall see, the important relation

€ofto = const.

In the Gaussian system of units g, uo are taken as 1 and dimensionless. The
constant is then 1. In the MKSA-system the constant is found to be 1/c2,
where c is the velocity of light in vacuum, i.e.

c=2.998 x 10* m/s.

In this case .

10
€= farad /meter

with the dimension of current? time? mass™! length=3, or ¢y = 8.854 x 1
A s/(V m) or C?/(joule-meter), where 1 volt (V) =1 A~! m? kg s™2 and 1
joule = 1 newton-meter (N m). In addition

0—12

o =47 x 1077 newton-ampere™2 (N A~2),
u

or po = 1.257 x 1078 with dimension of mass length current 2 time=2.

In the Gaussian system the constants k, k* are chosen as follows:
1
k=1 (dimensionless), k* = - (dimension time/length).
c

In the MKSA-system the vacuum constants k, k* are chosen as

with dimension kg m® s~* A=2 and
k*=1

(dimensionless). We see that in comparison with the Gaussian system the
MKSA-system requires the use of €g, .



Chapter 2

Electrostatics — Basic
Aspects

2.1 Introductory Remarks

In this chapter the Coulomb law is introduced, and various static conse-
quences are investigated, such as electrical screening and diverse applica-
tions. The latter require also the introduction of essential mathematics, in
particular that of the delta distribution.

2.2 The Coulomb Law

Electrostatics is the theory of static charges, which means that moving
charges, i.e. currents, are not considered. The fundamental phenomeno-
logical law which is the basis of electrostatics is Coulomb’s law, which deter-
mines the force acting between two point charges q1, g2 and which in vacuum
is given by
Flg = kql#r
T

Here r = r; — ry is the vectorial separation of the charges g; at positions r;.
k is the constant fixed by the choice of units. In the ISU, as explained in
Chapter 1,

1

- A €0

in vacuum. The force is given in newtons (N), the charge in coulombs (C)
and the separation in meters (m). The electric field strength E(r) at a point
r as in Fig. 2.1 is defined as the Coulomb force acting on a unit charge (+1C)

9
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at this point, i.e.
q(r—ry)
E(r) =k—~.
() v —rq|?

In the ISU or MKSA-system of units the electric field strength is given in
units of N/C or V/m. In the Gaussian system the charge is given in stat-
coulombs, the distance in cm, the force in dynes, and the electric field strength
in statvolt/cm (1 C = 3 x 10% statcoulombs, 1 statcoulomb = 10 e.s.u.; 1
newton = 10° dynes).

+1

+C]1

O r

Fig. 2.1 Point charges q; and -+1.

It should be remembered that a charge q can be positive or negative. Con-
ventionally electric lines of force are drawn as leaving positive charges and
directed towards negative charges. In this sense positive charges are regarded
as sources of the electric fields and negative charges as sinks.

One distinguishes between discrete charge distributions (charges at dis-
tinct points) and continuous charge distributions (charges spread over spatial
domains). Correspondingly one defines a charge distribution or charge den-
sity p(r) as charge per unit volume. Considering an infinitesimal volume
element, we can use the above expression for the field strength at a point
r due to a point charge ¢; at a point r; to obtain the field strength at a
point r resulting from superposition, i.e. summation or integration of the
contributions of point or pointlike charges in a domain V of space, i.e.

r—r
E(r) =k /V p(r')l(r—_TlZ}dr', dv' = dr'.
Here V is a volume which does not enclose the observation point at r. The
lines of force of E, as shown in Fig. 2.2, are continuous for one and the same
medium (having the same €). Since E o k, this does not apply in the case
of different media. But if we define D := E/k, called dielectric induction or
displacement, the lines of D are continuous at interfaces between different

media. The law of force
F q192
12 X 5~
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for point charges g; was discovered experimentally by Coulomb, who pub-
lished his observations in 1785.

NSNS
SN N

Fig. 2.2 Charges and lines of force.

Later it became known that the law had been observed earlier by Cavendish
who, however, never published his findings. Coulomb used for his observa-
tions a so-called torsion balance consisting of a vertical rod or fibre with
another fibre attached horizontally at its lower end. At one end of this hor-
izontal fibre a small chargeable sphere was mounted and at the other end
a piece of paper to stabilise the system in a rotation. If another charge of
the same magnitude is brought close to the mounted charge, at a distance
r say, the latter experiences a repulsion evidenced by a rotation of the hori-
zontal fibre through an angle §. The corresponding torque is proportional to
. By selecting various values of r (nr,n = 1,2,3,...) Coulomb arrived at
the law now named after him for the case of repulsive charges. For charges
which attract each other Coulomb modified his experiment. His experiments
did not establish the proportionality to the charges themselves. This was
more or less assumed in analogy to masses in Newton’s law of gravitation.
It was Gauss who later recognised that Coulomb’s law permits the definition
of charge. In recent times the Coulomb law has, of course, been subjected
to much more critical investigations. Thus the power of —2 of r has been
verified up to deviations of less than 1079,
Cavendish, on the other hand, assumed a law of force of the form

1 q
Fjy = Ezkr—n,

and then designed his experiment to determine n. His experimental setup
consisted of two concentric conducting spherical shells connected by a con-
ducting wire from one to the other. He charged the exterior shell and then
removed the wire together with the exterior shell. The interior shell then
provided no evidence of a field in its neighbourhood. From this Cavendish
concluded that n = 2, because in this case the interior of a charged spherical
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shell has E = 0 (thus in the case n = 2 the charge covered the exterior shell,
as we explain later; see also Example 2.2).

2.3 The Electrostatic Potential

We now demonstrate that E can be derived from a potential, the electrostatic
potential. Since

1 (r—r') (0 0 0
VT|r—r’|___-{r—r’|3’ V_(ax’ﬁy’6z>’

we have )
— _ / - / — _
E(r) = k/p(r Vo ro r’|dr = -V9¢,

ie.

E = -V,
where ¢ is the potential

pI) L1
= ————dr
¢(I‘) k 'I‘ _ I‘ll

Since curl grad = 0, it follows that
V xE=0,

i.e. the electric field is curl-free (or whirl- or vortex-free; curl is also often
written rot for “rotation”) .

Next we consider the fluz E - dF of the vector field E through the surface
area element dF(r) at r of a surface F' surrounding the charges. Then, cf.

Fig. 2.3,
E - dF(r _k/ (r_r r—r)-dF(r)

|r —r/|3
Let V be the volume V(F) enclosed by F; the case of V # V(F) has to be
dealt with separately. It follows that

/E-dF:k/ p(r))dr’ (r—r') dFr)
P V(F) Fjr—rp

r—r')-dF(r)
e—r]

But
r—r/2dQ = (
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r-r dF

Vol /r do :T'H

dF

(@) (b)

Fig. 2.3 (a) The surface and (b) the solid angle.

/E-szk/ p(r')dr’/ dQ=47rk/ p(r')dr’', (2.1)
F V(F) F v

provided the point r’ (charge element p(r')) is within V. This relation is the
integral form of the Gauss law V - E = 4nkp. If r’ is outside of V, that is
if we wish to know the flux through a closed surface F' in the case when the
field is due to charges outside of F', we have

Hence

/szQl—ngo,
F

as we can see from Fig. 2.4, since the consideration of the solid angles of a
closed volume such as that of a sphere subtended at a charge g implies:

O + (—Ql) = 0.

In this consideration the volume V is a purely mathematical volume, so to
speak. If the material of the volume V(F') is such that the lines of force of E
penetrate into V, this result implies that every ingoing line must also leave
the volume again. If the closed surface F', which does not enclose a charge,
is made of conducting material (see later), then the field E in the interior is
Z€ero.

Fig. 2.4 Charge outside of V.
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With the help of the Gauss divergence theorem (here assumed known) we
obtain from Eq. (2.1):

/ E.-dF = / V -Edr = 47rk/ p(r)dr = 47rk/ Y,q:0(r - r;)dr,
F |4 |4 |4

depending on whether the charge distribution is continuous or discrete. It
follows that

/ (V -E —4rkp(r))dr = 0.

1%

Since this is valid for any volume V, ie. [, = [, =--- =0, it follows that
V -E = 4nkp.

Thus, charges in space are sources of the electric field.

2.4 The Equations of Electrostatics

We have now obtained the three important equations of electrostatics:

E= _Vd)a
V -E=4nkp, or /E -dF = 4rkX;q;, (2.2a)
V xE=0.

Later we shall assume that these equations are also valid when p,E, ¢ are
time-dependent (but not leading to currents). From the first two equations
we obtain the Poisson equation

A¢ = —dnkp. (2.2b)

The equation for p =0, i.e. A¢ =0, is known as the Laplace equation.
We recapitulate the following important formulae which are needed in
various applications, also in this text:
(a) In Cartesian coordinates
0E, OE, + OF,

V-E= 8x+8y 8z’

o2¢ 0% 0%
A¢—VV¢—@‘*‘8—?J2+@7

(b) in cylindrical coordinates

10 10Ey OF,
VoB= 5B T T e
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2 2
po=12(,00) 128 28

rOr\ Or r2 902 = 922’
(c) in spherical polar coordinates (spherical coordinates)
10 1 0 1 O0Ey
V-E= r2 87“( ET) + rsinf 00 5 5 0F0) +

rsind 8¢
1[0 400 1 ¢ 1 9%
A= (87" 8r)+r2sin689<5m086’ Yy

Example 2.1: Discrete and continuous charge distributions
Let the following potential be given:

o(r) = kg~ T<1+7)

Show that there are both discrete and continuous charge distributions with a vanishing total charge.

Solution: In the case of the given spherically symmetric potential or electric field, the Gauss law
is

22 (2B = amkolr),
so that

r2E. = / amkp(r)ridr = kQ(r),
0

where Q(r) is the charge enclosed in a sphere of radius r. With

B = — d¢(T)’
dr
it follows that
ré do(r)
Q(r) T

For the given potential ¢(r) we have

Q(r) = —4meor? d‘g(:) = —ge—oT {%’l —(1+ ar)(l + %)]

For r — 0 we obtain the discrete charge

Q(r) — g, (2.3a)
whereas for r — oo
Q(r) — 0.
The continuous charge distribution is given by p(r), for which we obtain from the first integral
amp(ryr? = 2940
dr
i.e.
1 dQ(r 1 —ar
p(r) = ) _ ——gadeo,

Axr2 dr 8w
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This can be verified by computing the sum of the distribution, i.e.
oc
/ p(r)amrdr = —q. (2.3b)
V]

The vanishing of the sum of results (2.3a) and (2.3b) implies that the total charge in space is zero.
Applied to the neutral hydrogen atom, we can interpret the discrete charge as that of the proton
and the continuous charge distribution as that of the electron.

Example 2.2: Theoretical explanation of Cavendish’s experiment
Assuming that the electric field E of a point charge g is given by the radially symmetric expression

__1 g
T dmeg T’

show that the field E at a point r without or correspondingly within a spherical shell of radius rg
and with surface charge density o are given by the following expressions:

r>ro E=g i’z)(l = [(r +70)2 ™ {r(2 — n) — o} — (r — 10)2"™{r(2 — n) + ro}],
r<ro: aro [ +70)2 ™ {r(2 = n) — ro} + (r — 10)>""{r(2 — n) + ro}].

E=
2¢0m2(3 — n)(1 — n)
What can be deduced from this for n < 2,n = 2,n > 27

Solution: Let Q /41rr(2) be the charge per unit area of the spherical shell with radius r¢. The quan-
tity to be calculated is the electric field at the point P in Fig. 2.5. The charge on an infinitesimal
element of area dF is odF = ar% sin@dfdsp. From the formula for the law of force: Field at P
equals

Ep = charge/4meo(distance)™,

we deduce that here
or? sin 8dfdy

dEp = .
il dmeo(r2 + v2 — 2rro cos §)n/2

Integrating over the entire sphere we obtain the total field strength at P. From the symmetry of
the geometry we infer that contributions perpendicular to OP cancel each other so that only the

component along OP remains.
i (r2 + 12 - 2rr,c0s6)1/2

0 P

de

Fig. 2.5 Field point P outside the spherical shell.
We obtain this by multiplying dEp by cos~y where (cf. Fig. 2.5):

T —TgCosf

\/7'2 + 12 — 2rrg cosé

cosy =
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We thus obtain for the field at P:
/ 2m / or3(r — 7o cos 0) sin 8dBdy

4meg(r? + 73 — 2rro cos §)(n+1)/2”

With z = cos 8 the integral is of the form

/1 (a — bz)dz

—1 (a2 + b2 — 2abz)(n+1)/2°

But
dz _ 2 1
(A+ Bz)(n+1)/2 = B(n— 1) (A + Bz)(n—1)/2
and
zdz _ 1 [ (A+Bz— A)dz
(A+ Bz)(»+1)/2 7 B J (A+ Bz)(n+1)/2

L / dz n 1 dz
BJ (A+Bz)"t)/2 * B J (A+ Bz)(n-1)/2"

If Ep is evaluated with the help of these integrals, one obtains the expressions for the field given at
the beginning. We then see that for n = 2, the field Ep vanishes if r < rg. This is the theoretical
explanation of Cavendish’s experiment.

2.5 Dirac’s Delta Distribution

A solution of the Poisson equation A¢ = —4nkp is the Poisson integral
(already encountered above):
p(r')dr’
=k . .
o) = [ BT (24)

Before we show that this expression satisfies the Poisson equation, we intro-
duce the so-called §-distribution (an introduction is given in Appendix A).
This quantity was introduced by Dirac and was originally called delta func-
tion. Actually it is an improper function which is today called distribution,
and is defined as a functional by the property

_ /_ Z f(@)b(z — a)de.

d(z) can be looked at as the limit of a function which vanishes everywhere
except at £ = 0, where it is singular. Thus, e.g.

5(x) = hm— / dke<lkl gike

:{ 0+ 220, 25
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or

= lim —/ dke "¢
a—0 27

- i—»O 2\/71'(1 4 (26)
The delta function has the integral representation
§(x) = / dke’*=, (2.7)
Important properties of §(z) are:
6(z) = 6(-x),
§'(z) = =8 (~x)
zé(z) =0,
zd8' (z) = —6(x),
1
d(az) = 55(:10), (a > 0). (2.8)

These relations can be verified by multiplication by a continuous differen-
tiable function and followed by an integration (as in Appendix A). Further-
more the following relations can be shown to hold:

5@~ a%) = o [0z — a) + 6z + )], (a>0),

f(2)(z) = f(0)d(=),
0'(z) = §(z), (2.9)

where the —function or Heaviside step function is defined by

= {3 225 a

Equations (2.9) are explicitly verified in Appendix A. We observe that
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is called Green’s function (we shall consider these in detail later). Once G(r)
is known, the inhomogeneous solution ¢(r) of A¢ = —4kmp follows from the
relation

é(r) = —k/G(r —1")4mp(r')dr’ (2.11)

apart from a solution of the homogeneous equation A¢ = 0 which could be
added subject to the same boundary conditions as for G. The relation (2.11)
is readily verified, because if we apply the Laplace operator A to this, we
obtain

Ag(r) = —k:/d(r —rYanp(r')dr' = —4kmp(r).
For ¢(r) to satisfy the integral relation (2.4) we must have

1

Gir-r')= —m, (2.12)
i.e.
1
Am = —4md(r). (2.13)

This expression makes sense only for r # 0. Now,

o2 H? o2
’I"Z\/m, A=a—xz-+a—y2+5z'—2

and
o /1 R 9% /1 _ l_i_3:1c2
dz\r) ¥ 8z2\r) 37 5
so that )
1 3  3r

We can see by integration that the factor —4x in (2.13) is correct:

/Aldr=/V-Vldr=/Vl-dF
v T \% r F T

—— [ S .dF=- §=—/dn=—47r.
FT r

This verifies Eq. (2.13). Equation (2.12) shows that the Green’s function is

the potential of a negative unit charge at the source point multiplied by €g

since with

plr') = —cod(x)
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we have
o) = - /G(r — ' )rp(r')dr’ = G(r).

We see also that the Green’s function G is the response of a system (here
represented by the Laplacian, but this could alsc be some other second or-
der differential operator, such as that of an equation of motion in classi-
cal mechanics or of a Schrodinger equation in quantum mechanics) to a
delta function-like source. One can also refer to output and input. In the
expression for the potential ¢(r) as an integral over the Green’s function G
the values of —4kmwp(r’) at points over which one integrates play the role
of weight factors. The overall expression thus represents the sum or super-
position of the responses of the system thus weighted to delta function-like
sources or inputs.

Example 2.3: The Planck mass
Show that in a world with n spatial dimensions Newton’s gravitational constant G raised to the
power 1/(2 — n) has in natural units the dimension of mass, which defines the so-called Planck

mass Mp, i.e.
Mp = G—l/(2—"),

for h=1,c =1 and is dimensionless.

Solution: In n spatial dimensions
n
o2
A= Z 8z2’
i=1 i

and Newton’s gravitational potential v is just like the Coulomb potential given by the solution of
Ay =0 with r = \/Z?:l z? # 0. For ¢ = 1/r™ we have

n

oY _ may Z 0%y mn m(m + 2)

dz; rmt2’ ox? T pme2 rm+2

i=1

For A1 to be zero, we must have m = n — 2. The gravitational constant G is now defined by
the potential V = —G - mass/r™~2. In natural units this potential has the dimension of mass M
(recall that in Einstein's formula energy = mass times c?), if G has the dimension of M-(n=2)

Example 2.4: The delta function in various coordinates
What is §(r) in three dimensional cylindrical and spherical polar coordinates?

Solution: Since [dr'§(r — r’) = 1 and in cylindrical coordinates p,+,z and spherical polar
coordinates r,8,p the volume element dr = pdpdzdy and dr = r2drsinfdfdy respectively, we
have

5(r — 1')leyt = ﬁa(p — P)5( = ¥)8(z ~ 2)
and

5(r = **)lspher = —5 8(r — ')8(c0s 8 — cos 8')3(p — ')
™

oL s — 806 — 0)8(0 — &)

/2 sin ¢’
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Example 2.5: Representations of delta functions
By appropriate evaluation of the integral

6(x) = lim ! /d"ke_eikleik'x
=0 (2m)n

for n =1 and 2 determine representations of the 1- and 2-dimensional delta functions.

Solution: The case n =1 is simple:

1 had k| ik 1 [ & 1
— dke~<lFlgihe — —/ dke™ " coskr = ————,
27 J_ oo 7w Jo 7 e2 4+ 22

(e > 0).
We thus obtain the following representation for the delta function in one dimension:

8(z) = lim i/ dke—elklgike — Jim ~

e—0 27 e—0 7 €2 4+ 22

Higher dimensional cases are not quite so easy. In two dimensions we have

1 /dkxdkye—e\/kg'Hﬁz;ei(kzm+kyy) _ 1 ; /wkdk/" dfe—ckgiklx| coso
(2m)? (27)2 Jo _r

1 " d 1
= -—— | -—=) —
(2m)? /—n— ( dE) € — i|x| cos 8
/” df
_nx €— 1z COSH
2

can be evaluated with the help of Tables of Integrals and with caution in the two cases €2 < x2.
In both cases one obtains 2m/v/€2 + x2. Hence the representation that follows is

The integral

g 1 2, —elk] ikx _ 3 €
8(x) = Eh_r% R /d ke e = ell_l;% W

Representations of the type discussed here are frequently useful in applications.

Example 2.6: Further representations of the delta function
Show that™*

i RGO, K0 en D
HEI= 2o K00 )= ey o

is a delta function with coefficient 1 if the constant c is chosen suitably.

Solution: In order to establish the result, one has to show that (a) K(x) = 0 for z; # 0, and
{(b) [dxK(x) =1 and independent of zg. We limit ourselves here exercise-wise to a few remarks.
First of all we convince ourselves that a rescaling of ; — «} = z;/xo verifies that the integral over

K is independent of zg:
- nd d !
/K(x)dx:c/ ;Ox =c/ x2 .
22 + x2| 1+x<"

*See also E. Witten, Adv. Theor. Math. Phys. 2 (1998) 253; hep-th/9802150.
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By going to polar coordinates it is not too difficult to verify that for example in the case n = 2 :
c¢=1/x, in the case n = 3 : ¢ = 4/7?, and so on. Also the following representation can be verified:

—2h_ 2h

2hy — 1) +

5(x) = lim 2+ )'2o S0 = lim K(x), with Ay +h_ =1.
z9—0  w(2hy — 2)! x5+ x2 z0—0

For example we have for n = 2 (in this case h4 =1,h_- =0):
2
T
lim ——fs 20—,
200 m(z + x2)?

§(x) =

We shall encounter in particular this case n = 2 in Chapter 21 in the regularisation of the field of
a magnetic monopole.

Example 2.7: The Coulomb potential in higher dimensions
Determine the Coulomb potential ¢ in N > 3 space dimensions.

Solution: One way to solve this problem is the following. In 3 dimensions

P 8 1 8 1 6>
V'EZ——, V= T o) . a ~an
€0 (e or e<Prsm9 Oy e6'7' o0

For charge e at r’ = r we have (cf. Example 2.4)

olr —r'y=ed(r —1r') = %5(7‘ ~1")8(cos § — cos 0")6(p — ).
r

Thus (since the field is radial),
T !
B, = / PrY)

€0
and with further integrating out the angles

27 -1
/ dy’ / dcos§’'E, = / dr' £ 8(r —7")8(p — ¢’)6(cos @ — cos 8')dp'd cos &',
0 0

607"2
i.e. e e
—AnE, = ot ¢ =— .
€or dmwegr

For the case of N space dimensions we require the N-dimensional generalisation, in particular
dr = V" (sin6:)V "2 (sin02)V =3 . .. (sinOn_2)%drdb; - - - dfn_1 = vV " 1drdQn_;.

The solid angle 25 _1 can be deduced from the equality of the following integrals
o0
/sze_% Tili=l = / drrN‘ldQN—le‘%Tz,
0

and so from

N/2
(2m)NV/2 = 2—]\7(%)' Qn_1.

Hence
Nﬂ‘N /2

T w2

For N = 3 with (—1/2)! = /7 (see gamma functions and factorials in Tables of Special Functions),
we obtain Q2 = 4, as expected. Hence

QN1

€ €

Er = and ¢(r) = - (N —2)Qn_1e0rN -2 :

QN_leng—l
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Example 2.8: The Coulomb potential in space dimensions 1 and 2
What is the space dependence of the Coulomb potential in a world with one space dimension?
What is it in the case of 2 space dimensions?

Solution: We have V - E = 47kp with E = —V¢; hence in the case of one space dimension
d?¢ P
— = —4nkp= — .
dx? e €0

With the Green’s function G(z), the solution is

#(z) = / de' Gz — :c/)( - L’”')), PLE@) _ s

€ dx?

The Green’s function may be obtained by ‘trial and error’ or, better, by contour integration which
will be explained later. The result is

eikz 1

as one can verify by differentiation. Thus it follows that in particular for p(z’) = ed(z’ — xo):

() =—$ / do'p(e)z = 2’|, or #(z) ===l —zol.

Such a linear potential is known as a confinement potential, since particles (like quarks) bound
together by such a potential cannot be separated with finite energy. (See also Example 18.5).
In the case of 2 space dimensions one can go to polar coordinates 7, ¢, so that

(Z+12)omt

or2  r or €0

In a similar way one finds that ¢ = const.Inr.

2.6 Potential Energy of Charges in Electric Fields

Let a charge q be moved from A to B against the field E. The work done in
this process is

W:—/BqE( r—q/ Vé-dr
- / dp = g(#(B) — $(4)). (2.14)

The minus sign indicates that the force exerted on the charge g is directed
opposite to the field E. The final result shows that the work done is in-
dependent of the path from A to B, that is, ¢E is a conservative field, i.e.
VxE=0.
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2.7 The Electric Field at Charged Surfaces

We now consider the behaviour of the electric field at charged surfaces or
films." Following Faraday it is very instructive to draw lines of force starting
from positive charges and aiming at negative charges. Already in drawing
these lines of force, as in Fig. 2.6, one observes that the electric field suffers a
discontinuity at the charged surface, because, as the term “surface” implies
(with the same medium on either side), its charge is the same on both sides,
so that the vector E on one side is opposite to that on the other side.

-+

Fig. 2.6 Charged surfaces and lines of force.

Since we wish to consider charged surfaces, we first define as charge per unit
area the expression o(r) in the following relation, in which ¢ is the total
charge of a surface area AF, i.e.

q=/AFa(r)dF.

If E; and E, are as in Fig. 2.6 the vectors E at a point on the surface but
on either sides and directed away as for a positive charge, then we write the
difference of their components along the surface normals Fq, — E1, and the
difference along a surface tangent Ey; — Eq;. We let n be a unit vector along
the surface normal on the side with index “2” of the charged surface. In the
first place we consider a surface of thickness d and volume AV = dAF. We
apply the Gauss law to this volume and then allow d to approach zero, i.e.

TWe are not yet considering macroscopic electrostatics and therefore have not yet introduced
the dielectric displacement D. Nonetheless a comment seems appropriate at this point. Since
the expression for E contains the factor 1/eg or 1/e, the displacement D as the product €¢E is
independent of the dielectric constant, and this implies the continuity of D at the interface between
media. One should note the difference between this and the case to be considered here, i.e. that
of a charged surface in the same medium.
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we consider

/ E - dF = 4kmq = 4k7r/ o(r)dF
F(AV),d—0 AV,d—0
= 4kno A F. (2.15)

For thickness d — 0 we have

/ E-dF=(E2+E1)-AF=(EQ-—El)-nAF,
F(AV),d—0

where n is a unit vector directed along the normal on side “2” of the surface.

It follows that
(Eg — Ey) - n = 4kmo(r). (2.16)

Thus in passing through the charged surface of vanishing thickness the nor-
mal component of the electric field E jumps from one value to another de-
pending on o(r).

We consider two particular cases. As the first we consider the case of
a large charged plate, whose boundary effects (distortions of lines of force)
may be neglected (hence the specification ‘large’). In this case we have as
depicted in Fig. 2.7,

E; n=F, E; -n=-E,

so that

9E = dnko, E= .
260

Thus the field has the same value 2wko on both sides of the plate, but is in
each case directed away from the plate; the difference is 4nko.

E,=E
|

._,:

Fig. 2.7 Large charged plate.
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These results, in particular formula (2.16), are of considerable importance
and will be used in many examples. In the second particular case which we
consider, we assume that the plate is made of an ideal conducting material}
i.e. a material in which the electrons can move about freely without doing
any work. We let the thickness of the plate be d # 0. In this case the
electrostatic potential ¢ = const., so that inside the plate the electric field
vanishes, i.e. E; = 0, and the field above the plate is E = 4rnko.

The discontinuity formula is valid at every surface. If E has the same
value on both sides of the surface, then o = 0 on this surface. Conversely if
E1-n,Eq - n are different on both sides, the surface carries a charge. This is
generally valid for the refraction of light at an interface.

In the preceding we considered the fields E;, E; as originating solely from
the one and only charged surface considered. We can drop this restriction
now and allow charges and surfaces anywhere in space. These have the effect
of distorting the lines of force of E; and Ej, and to change their magnitudes.
This does not change anything in the previous considerations since these
involve only the difference

E; -n; +Ey-ny = By, — Ey,.

Finally we consider the tangential components. Since E is a conservative
field, it follows that § E - dr = 0 (along a closed path). If we choose a path
along just above the surface to just below as in Fig. 2.8, then

(Egt — Eyg) - Or = 0,

i.e. the tangential components along an arbitrary direction remain un-
changed:
E2t = Elt' (217)

Fig. 2.8 The closed path above and below the surface.

Comment

The basis of our considerations so far was the experimentally determined
Coulomb law. If one recalls that the Coulomb law has the same form as

fConductors will be treated in detail later.
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Newton’s gravitational law, one may enquire about further analogies between
electrostatics and gravitation theory. Indeed a relation analogous to that for
the electric field at a charged surface applies also for the gravitational field
at a surface of mass. For applications we refer to the literature$

2.8 Examples

The following examples are needed later. We therefore treat them in some
detail. Most of these examples consider condensers which are combinations of
conductors separated by an insulating material (i.e. a dielectric). However,
the second conductor is not always apparent as such, e.g. the walls of a room
in which an insulated conductor is placed (see e.g. Example 3.13).

Example 2.9: The parallel plate condenser

Two parallel plates made of conductor material and separated by a distance d are given, one
with charge +¢, the other with charge —g, as depicted in Fig. 2.9. Determine the capacity of the
condenser.

Solution: Let o be the charge per unit area, i.e. ¢ = q/F. We use the coordinate system O(z,y)
with origin at the centre of the condenser and the y-axis perpendicular to the plates. The lines of
force (in the direction of E) proceed from +q to —g. We apply the Gauss law to the cylindrical
volume with cross sectional area AF, i.e.

fEAdF = 4rmkq.

Since the total charge contained in the cylindrical volume is zero, i.e. ¢AF + (—o)AF =0, and
since the tangential components of the field

N
RN
RPN

Fig. 2.9 The parallel plate condenser.
(parallel to the condenser plates) vanish, we obtain

E(y) - E(-y) =0.

§3. K. Blau, E. I. Guendelman and A. H. Guth, Phys. Rev. D35 (1987) 1747; see in particular
Egs. (3.3) to (3.4), (4.11) and (4.27).
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This relation expresses the symmetry of the field on both sides above and below the condenser
plates. In the case of a finite condenser it is difficult to compute the field in the external domains.
The reason is the deformation of the lines of force at the open ends as indicated in Fig. 2.9.
However, we can approximate this finite condenser by a segment of a large spherical condenser
consisting of two concentric shells. As we shall see in Example 2.10 the field outside is zero. In
some books it is simply assumed that the field outside is zero. We see that this is an approximation.
We now apply Gauss’ law to a single plate and make use of the approximations just explained (i.e.
that the field outside is zero); then in Eq. (2.16) we have to put E; = 0. Then it follows with
E; = E that
(E — 0) - nAF = 4nko AF,

i.e. the field in the condenser is given by
E =4nko, k=1/4meo. (2.18)

The difference V of the potentials betwen the two plates is defined as
d
V=¢2—¢1 =/ E - dr = Ed = 4rkod.
0

The capacity (American usage: capacitance) C of a condenser is defined as

coft__9 _ F_ (2.19)
V  4mkod 4ndk

Capacity is a measure of the ability of a system to store electric energy. We saw previously that
in MKSA units the constant k has a complicated dimension. The unit of capacity in this system
is the farad (F'), i.e. 1 farad = 1 coulomb per volt. In the Gaussian system the capacity C is given
in cm with 1 farad & 9 x 101! cm. Since a farad is a huge quantity, it is customary to employ
micro-farads with 1 uF = 106 F,

Example 2.10: The spherical condenser

The condenser consists of two conducting, concentric, spherical surfaces with internal radius r1
and external radius r2 and charge +g on the inner shell and —gq on the outer shell. Determine the
capacity of the condenser.

Solution: In view of the spherical symmetry of the condenser, the field components Eg, E4 = 0.

Fig. 2.10 The spherical condenser.
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We consider a spherical surface of radius 71 — €,e > 0. Then, according to the Gauss law,

/ E.-dF = 41rk/ o(r’)dr’ =0,
F V(F)

since the volume V(r1 — €) does not enclose a charge. Hence
/ E.dF =4nriE, =0, E, =0.
F

This means that the field in the interior of a charged closed surface is zero, i.e. this is field-free ¥
Thus the field of the condenser originates from the inner shell. We now consider a sphere of radius
T>T1

/ E. dF = 4rr2E, = 4k,

so that
Er=E=k2
T

as for a point charge +q at the origin. Outside of ra, i.e. for r > ra, the field again vanishes,
because there the field contributions of the two equal and opposite charge distributions cancel each
other (one could say, the field there corresponds to the sum of the fields of point charges +¢ and
—q at the origin). With this we obtain for the potential V of the condenser

T2 dr
V=¢2—¢>1=qk/ -
r T
1 1
n(t-3).
re T2
and for the capacity
c=21_-_""
14 k(ra —r1)

With reference to a single spherical shell we can define its capacity as
C = charge/potential,

so that in the case of the inner sphere

C=—= ie. C = 471'607‘1.

Example 2.11: The van de Graaff generator

A van de Graaff generator has a spherically shaped dome made of conducting material which
receives charges at the rate of a current of 1 uA. The dome has a radius of 1 m. At a critical
electric field strength of 3 x 106 V/m the surrounding air produces sparks. How many seconds
after the beginning of the charge transfer to the dome does this effect appear? (4wep = 107/c?).

Solution: In the van de Graaff generator charge is sprayed on a transmission belt made of insulator
material. The belt transports the charge to the conducting dome of radius R as depicted in
Fig. 2.11. For a single spherical shell the capacity C is defined by the ratio of charge to potential,
as we saw previously, so that with potential ¢ = kq/R the capacity is given by

qR
C===+— =4megR
¢ kg

YThis was the observation of Cavendish in his experiment which we discussed earlier.
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Fig. 2.11 The van de Graaff generator.

for a charge ¢. If charge is continuously added, the potential ¢ changes accordingly, i.e.

c®_ 4 _;

dt ~ dt = '
where [ is the current. We thus have the relation

d¢

I I
—_—= = = —t¢
dt C’¢ C

with ¢ = 0 at time ¢t = 0. The potential or voltage increases until the corresponding field E around
the sphere is strong enough to knock electrons out of the surrounding air — the corresponding
atomic transitions then become visible in the form of sparks. In air this stage is attained when
E s = 3 x 108 V/m. The field E in the neighbourhood of the dome is given by

r>R.

For r ~ R: s
q

E:k—:—

R2 R’

or ¢ = ER, so that ¢cpis = Ecrig R. For ¢eriy = 3 x 10 V, we have R = 1m and

108 107
C= 47['60R= 0_2 x 1= m farad.
This implies that
1
C=— nF.
9

Thus the appropriate current I is: I = ¢¢itC/t, i.e.

_3x10V1 . 03x1078
TOx109F ¢t t
For I =1x10~% A: .
0.3 x 10~

1x 1076 A= 23X1077 4

t
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we obtain t = 0.3 x 103 seconds. Thus if the dome is charged at the rate of a current of 1
micro-ampere, it takes about 300 seconds for the potential to reach its maximal value.

Example 2.12: The cylindrical condenser
This condenser consists of two coaxial cylinders of height h and radii r1,72,72 > r1. The inner
cylinder carries charge g, the outer cylinder charge —g. What is the capacity of the condenser?

Solution: Clearly one uses cylindrical coordinates 6, p, z in order to exploit the cylindrical sym-
metry.

Fig. 2.12 The cylindrical condenser.

We consider a cylindrical surface of radius p where 72 > p > r1. In view of the cylindrical symmetry
Ey=E, =0,E, = E. The Gauss law implies

fE«dF = E, - 2nph = 4nkq,

so that
2qk g
p =

—pf 2mephp

We thus obtain for the potential V:
2¢k (T2 dp _ 2gk In 2
nop o m

V= / Eydp =

and for the capacity
q h/k

=~ = — 1
1% 21In(rg/r1)

The finite cylindrical condenser can be approximated by a segment of a toroidal condenser, like
the parallel plate condenser can be approximated by a segment of the spherical condenser.

Example 2.13: The dipole

A dipole is generally defined as a system of two spatially separated charges +q,—q. Obviously
an infinitesimally imagined parallel plate condenser is of this form. We now want to obtain the
potential of such an arrangement of charges, and we shall define in this context the important
concept of a dipole moment.

Solution: We consider first two infinitesimal parallel plates with surface areas dF’,dF’/, and
charge densities +o(r’), —o(r’), which are elements of surfaces §',S"” with charges +o0,—0 as
depicted in Fig. 2.13. The potential at the point P is given by

a(r')dF’ o(r)dF'
¢(l‘)—k/ /|r—l"+dl"|.
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In the following one should not confuse the line element dr with the volume element dr (the
distinction should be clear from the context). We have

1 1
It —r/+dr'| ~ {(r —r)2+2dr' - (r — /) + (dr')2}1/2

~ |r_1r,| (1_ (r(:’i,‘)‘jr' +)

dr' = nldr'|

\ r'-r

Fig. 2.13 The dipole as an infinitesimal condenser.

It follows that

r)~k/ (r—',)s & .

We put
D(x'Y= 1 Ndr'|.
(") drx}moa(r )dr’|

The quantity D is called dipole density (i.e. we consider a case in which the potential between
the surface elements dF’, dF’' remains constant, when dr’ — 0 and o(r’) — 00). An infinitesimal
dipole surface (area AF) in the limit — 0 is sometimes also described as a point dipole. Then (in
the limit dr’ — 0)

b(r) ~ k/ Hn—;)dlp

Let df2 be the solid angle subtended by the area dF’ at P. Let n be a unit vector perpendicular to
dF’ and directed to the outside (i.e. n parallel to dr’). It then follows from Fig. 2.13 that

n-(r' —r)dF’ — 4O
(r—r’)3
and hence
—/ D(r")dQ
F

(the minus sign appears because d2 involves the vector (r’ —r) and not (r —r’) like ¢). Replacing
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F by AF we obtain the potential of a point dipole:

o(r') = -k D(r")dQ

AF
_ o(r)|dr'|[dF'n (r' —r)
, /AF (r—1)3
_ n-(r'-r) , ’ ’
= ~kW|dr I/AF a(r')dF
= —kp ((:’_—r,r))s (2.20)

where

p = nldr’|Q, Q:/Apa(r’)dF'.

The expression p is called dipole moment of the point dipole; this is a vector quantity with direction
from the negative charge to the positive charge. Q is the charge.

2.9 Conductors and Electrical Screening

A conductor is a macroscopic object in which charges are contained which
can move about freely (i.e. without doing work). Inside the conductor the
electric field E therefore vanishes, because only then a charge can move about
freely in the conductor. It follows that if the conductor is given a charge,
this charge must be located in a thin layer at its surface. This must be so
because if we consider an arbitrary closed Gaussian surface wholly within
the conductor material, this cannot contain charge since everywhere on the
surface E = 0. Thus inside the conductor the charge is zero at every point
(the charges of the conductor material itself averaging out to zero). It follows
that the surface of the conductor is an equipotential surface.

Example 2.14: The charged sphere
Let a spherically shaped conductor be given with charge q. Explain with the help of potential
considerations that the charge accumulates on the outer surface of the conductor.

Solution: We consider a sphere with external radius b and an internal hollow space of radius
ro = a < b. We subdivide the intermediate region into concentric spherical shells of radii ry,72,....
Each shell initially has charge zero. Since the sphere is a conductor, each of its parts has the same
constant potential. If we give, e.g. the sphere with radius r2 the charge g, the potential changes
for all shells with radius r;,% > 3. Thus the gradient of a potential arises. Obviously the energy of
the system becomes minimal when the charge ¢ is located on the outermost shell (recall that the
modulus of the Coulomb potential decreases with increase of the distance from the charge).

The electric field inside arbitrarily shaped conducting bodies whose sur-
faces are charged but which do not contain any enclosed charges is always
zero. This is so, because if we apply to the interior the integral form of the
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/ E-dF =0.

The right hand side is zero, since the surface F’ does not enclose charges. If
there were inside the given positively charged, closed surface a field F # 0
then the field would be directed from the surface towards the interior. All
contributions to the integral would then be positive. The integral would be
a sum of positive contributions. All these would therefore have to vanish,
implying that the field inside is zero. This result is apparently also valid for
homogeneous charge distributions on the surface. Such closed bodies which
do not contain charges are called Faraday cages because Faraday crept into
such a container in an attempt to measure the field therein!| Containers of
this type are used when field-free regions are needed. That the field inside
closed charged bodies has to be zero can also be seen by the impossibility
to sketch lines of force in the interior which travel from positive charges to
negative charges.

A conductor is said to be earthed if its potential is the same as at infinity,
i.e. zero. This effect is achieved in practice by connection with the ground,
i.e. the “Earth”.

If a body, e.g. a solid sphere, is made of a nonconducting material, that is
a dielectric medium, which is polarised in an applied electric field, then one
part of the body can be positively charged and another negatively. These
cases will be treated later.

Finally we consider some systems of conductors and their electric screen-
tng. Above we obtained the Poisson equation for the electric potential ¢.
Assuming also the superposition principle, we can treat the case of n con-
ductors with potentials ¢; and charges ¢;,¢ = 1,2,...,n, in vacuum or air by

writing
n
¢ = Zpij%'
J=1

law of Gauss, we obtain

or inversely
n
g =Y Cijb;.
j=1

The coefficients C;; are described as capacities, and the coefficients p;; as
induction coefficients. Obviously these coefficients depend on the geometry
of the conductors and their arrangement in space. In the special case of two

ISee e.g. Zahn (8], pp. T7-78.
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conductors with charges g and —q (as in preceding examples), we obtain

é1 = (p11 —P12)q, o2 = (P21 — P22)4,

or
$1 — ¢2 = (p11 — p12 — P21 + P22)q.
Hence q
V= d)l - ¢2 = 67
where

1
(P11 — P12 — P21 + p22)
Expressed in terms of the coefficients C;;, one obtains

C= Ci1 + Ci2 4+ Ca1 + Cyo
C11Cy — C12Cn

C =

It can be shown that**

Cij = Cji, pij = pji-

Electrical screening results if one conductor is completely surrounded
by another conductor. Instead of considering the most general case, we
consider here the example of 3 concentric spherical shells which provide such
enclosures. We will find that, as illustrated in Fig. 2.14, conductor 1 is
screened off by conductor 3 and other external conductors in the sense that
the coefficient Ci3 = 0.

We consider the three concentric spherical conductor shells with charges
g; and radii r;,4 = 1,2,3 and r; < r9 < r3. We know that in the case of a
single sphere with charge ¢ and radius rg:

b= kL for r< ro (there E = 0),
To

¢ = k% for 7> ro (there E #0).
It follows that

T2 T2 T3]

¢3=k[q—1+5’3+@ . (2.21)

**See e.g. B. H. Chirgwin, C. Plumpton and C. M. Kilmister [9], pp. 82-84.
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From these relations we deduce that if

$i = Pijdj,
J

we have
k
— = P12 = P21 = P22, P13 = P31 = P23 =P33 =pP32 = —.
79 T3

The matrix (Cy;) is the inverse of the matrix (p;;) (and one can show that
the inverse exists, i.e. det(p;;) # 0). According to the rule for establishing
the elements of an inverse matrix we have for example in the case of the
(3 x 3)-matrix

ap b
A=1{ay by ¢
a3 by c3

Fig. 2.14 Conducting shells screening the inner ones.

the inverse!?

1 1 lbacs|  —|bic3| |bica]
= —lages| ares]  —laico| |,
det A
2\ lagbs|  Jarbs|  agbol

where
|b263| = b203 - 6302
and so on. Applied to the matrix (Cj;), this implies (corresponding to |b;ca|)

C13 « |p1opas], ie.
C13  p12pa3 — paap13 =0

tSee e.g. A. C. Aitken [10], p. 52, or any other book on determinants and matrices.
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according to the above relations. This means that the charge ¢; remains
unaffected by the field ¢3, or external conductors. This is what one calls
electrical screening. In practice the conductor which is used for screening
purposes is frequently “earthed”, i.e. in the previous example one would
have put ¢9 = 0.

Example 2.15: The two hemispherical shells

A conductor has the shape of a spherical shell with radius a. The shell is divided diametrically
into two hemispherical parts. Calculate the force which is needed to keep the hemispheres together
if the sphere carried originally the total charge ¢ (g = 4wa20).

Solution: The hemispheres are separated. Thus each has on both sides a field E # 0. In this case
(as we saw above) the electric field at the surface is given by

20  eo8ma?’

We now calculate the force acting in the direction of z (see Fig. 2.15). To this end we compute
the force acting on the surface charge o in the general direction 6, take the component along z of
this, (multiplication by cos #), and add all force components in the direction of z (integration over
@ for one hemisphere). We thus obtain for the force in the direction of z

cos 6

/2
F, = / 2masinf adfo
0

eo8ma

/2
o2 4 q e
= 27a Tra? cogna? /0 sin 8 cos 6d6

q2 /2
= —/ sin 8d(sin 6)
0

16ma2eq
2 2
T 32ma?eg k8a2. (2.22)
- - -—
ado
a
0
- Z
O
.—/

Fig. 2.15 The sphere divided into hemispheres.

If one considers a spherical condenser consisting of two concentric spherical shells with radii a and
b (a > b) and one divides this diametrically into two parts, and if ¢ and —g are the charges on the
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spheres originally, then the following force is required to keep the two parts together™*

2
kL (L L
8\ a2
(difference of two forces so that the electric field remains between the two spheres).

Example 2.16: Two connected spherical shells

Two spherically shaped conductors with radii @ and b and respectively charges g1 and g are
separated from one another by a distance r > a,b. The conductors are connected by a thin
conducting wire as indicated in Fig. 2.16. Calculate by what amount the energy of the system is
thereby lowered.

Solution: Connecting the spheres by a wire alters the equipotential surfaces of the system. The
charges rearrange themselves such that the energy is minimised. We first calculate the energy of the
conductors when not connected. For this we calculate the potential of each of the conductors. These
are in general determined by both charge distributions. The potential of the first conductor follows
from a contribution qi1/4mepa, originating from the charge of this conductor, and an additional
contribution due to the charge g2. Since r 3> a,b, we can approximate the latter by ga2/4meqr.
Hence the potential of the first conductor is

¢1__1_[q_1+q_2]_

47eg | a r

Analogously we obtain for the potential of the other conductor

é2 : [q—2+q—1].

= dmeg | b r

4,
44

A b

Fig. 2.16 Two spherical shells connected by a wire.

The energy of the system of separated conductors is therefore

W = qi1é1 + q2¢2
- {q_1+q_2]+ i [93;1_1}

dmeg | a T 4meg | b T
1 [ ¢ 2
- %, w]
4mep | a b T

*See problem 1, p. 54, of L. G. Chambers [11].
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When the conductors are connected by a conducting wire they form an equipotential surface.
The charges redistribute themselves to minimise the potential. Let g1’, g2’ be the charges of the
conductors in the new state of equilibrium. Since no charge is lost, we must have

(a) g1’ + g2’ =q1+qa.

Since both spheres now have the same potential we have

(b) ¢1'__1_.[q_1l+22_:] _L[‘I_’/jL?l_’] = ¢o’.

T Ameg | a r | dmeo | b r

This implies that

ie.

With (a) we have
g’ =(m+e-n')R

and so
' _ (g1 + @2)R

T 1+R
Similarly
, (@m+ao)g
=9y i % .
With these expressions we obtain the new energy of the system as

W' =qié1’ + gheo’,

ie.

2 2

W’ = 1 [q_ll_+i+m:t
dmeg | a b T

The amount by which the energy is lowered is therefore W — W/; for a = b, this is

(a1 — a2)? [1 _ 1]

a T

W -w)

a=b 87760

This is the result.t

Example 2.17: The charges of connected spherical shells

Two conducting spherical shells have radii R; and Ry. Their centres are a distance D, D >» R1+ R
apart. The sphere with radius R; is given a charge Q1 and the sphere with radius Rs the charge
Q2. A thin conducting wire is now added to connect the two spheres. Calculate the resulting
surface charge densities on both spheres, as well as the electric field strengths. Without further
calculations discuss the effect that appears when the system with very small radius R; is subjected
to a high voltage (i.e. why high voltage systems avoid sharp points like that of the small sphere).

Solution: It is easiest to obtain the potential of the spheres from the Gauss law,

/E -dF = 47rk/p(r')dr' = 47kQ,

fSee also LI. G. Chambers [11], problem 8, p. 55.
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ie. forr > R:
Q

4772 E, = 4wkQ, E,= k= (2.23)
T

In general the charge of the distant sphere contributes to the potential of the other sphere (ignoring
the former is not always a good approximation). We can assume for simplicity here that at the
other sphere the potential of the distant sphere does not vary much with the radius of the sphere

considered, so that
Q1 , Q2 Q2 , &1
S &2 d = k|22 4 2L 2.24
# [3*9] and ¢z {RﬁD] @29

The wire connecting the spheres ensures that both spheres together form an equipotential surface

with potential
Q' | QY } _ k[Q2 Q' ]

¢0 = k[— + == a D (2.25)

R D

where @1’ and @2’ are the new charges, in other words the charges rearrange themselves on the
spheres in such a way that both spheres have the same potential ¢g. Since in this process charge
is neither created nor annihilated, we must have

Qi+Q2=Q1 +Q7.

From this and Eq. (2.25) we can calculate Q' and Q2’:

Ry, 1
QU= R, [HO(D”

for D large. By neglecting contributions of the order of 1/D we obtain
Ry
Q1+ Q2= R—le +Q5,
2

Ry

Qp R +R = (Q1+Q2), Qi ik ———(Q1+ Q2).

The potential ¢¢ is therefore
Q1+ Q2 1
= —_-——— 1 O e .
¢ R1+R2[ * (D)]

Now, surface charge density = charge/area, so that

Qr __ Qi1+Q2
47TR% 4nR1(R1 + Ra)

(o a-d

and

Q __ Qi1+Q2
47R3 ~ 4mRz(R1 + Rp)’

o9 ™~
According to Eq. (2.23) the corresponding field strengths are given by

Q1 o
By~ kXl Ep~kX2,
R? R2

Ey ~ 4nko, Fo ~ 4mkos.

When Rs is very small, E2 becomes very large. If a high voltage is applied, for E2 > Ej critical
this electric field is so large that it can eject electrons from atoms of the surrounding air. The
resulting reordering of atomic states leads to the emission of light which can be observed in the
form of sparks.
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2.10 Energy of Charge Distributions

The potential energy of a point charge ¢; at the point r; in the electric field
E = —V¢ of a point charge g at point ry is the Coulomb potential

q:4qk .
k———— k.
oo 7

The potential energy of N charges q1,qs,...,qn is correspondingly
49k
k
R M)

since » ;> 4 ; sums over ¢ and k, i.e. twice. For continuous charge distribu-
tions p(r) we have analogously

—k / v / v”’|r_r,| ; / 4V p(x)$(x),

dV'p(r')

e~

¢(r) =k

This expression for W does not explicitly

o)

Fig. 2.17 Parts of a single surface.

exclude the point where r — r’ = 0, so that it is possible that the expres-
sion involves divergent contributions. This is a problem connected with the
Coulomb potential and requires a correction which we cannot enter into here
(it is concerned with the problem dealt with under the term “self-energy”),
which, however, is to be understood as a screening effect and replaces effec-
tively the Coulomb potential ~ 1/r by a type of Yukawa potential ~ e™#" /7.
In the case of surface charges we have correspondingly

L[ [ ol)el)
W_2k/FdF()/FdF() .

r —r’|
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For example, F' can consist of two condenser plates with areas F; and Fy as
illustrated in Fig. 2.17.

We can also express W in terms of E: We saw that p(r) is the source
function of the potential ¢, i.e.

V29 = A = —4rmkp(r).

Hence 1 )
—— 2 -
W= 87rk/¢v ¢pdV = 87rk/¢A¢dV'
However,
V- ($V) = p0¢ + (V)?,
so that )
_— . — 2
W= g [ VIV {6V} - (V4]
But

[avv-@ve)= [ar-@ve).

Now, ¢ ~ 1/7,V¢$ ~ 1/r?. If we integrate over an infinitely large surface
(i.e. with r — o), the integral vanishes, since dF' o< 72d§) which implies

/dF-(d)ng)N%/dQ—»O

for r — oo. It follows that

1

- VEZ. 2.26
87Tk Vood E ( )

Thus the expression E?/87k represents the energy density of the electric
field. One should observe: For large values of r the integrand of W behaves
as dr/ r2, but from this we cannot conclude that it vanishes, since the integral
is the sum of many nonvanishing positive contributions. On the contrary,
inserting the Coulomb potential for a single charge at » = 0 one obtains
W = .

Example 2.18: The gravitational potential

Consider a static particle with charge . With the help of Einstein’s formula energy = mass-c
calculate the mass density which is equivalent to the energy density of the electric field of the
charge, and then insert this together with the contribution of a “bare” (i.e. fieldless) mass mo of
the particle into the equation for Newton’s gravitational potential ¢, i.e.

2

L¢ = 4nGpiotal-

See M. Visser, Phys. Lett. A139 (1989) 99.
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Taking into account an additional contribution to p, which makes ¢ its own source (similar to the
case in electrostatics), solve the equation with the help of the ansatz

P
Y(@) = €37
and the substitution » = 1/r. Then calculate mo. What is the significance of the result?

Solution: At a distance r from the charge Q the electric field is (k = 1/4weo):

Q r

T dmep r3°

The corresponding electromagnetic energy density is (here only the electric part):

1 B[ = 11 Q2
Pelm = 8wk T 8mdmeg T4

According to Einstein’s energy-mass relation the electric energy density corresponds to a mass
g 3

density
1

8mwkc?

p= 2.

Let mq be the so-called bare mass of the particle (like the electron) with charge (say) Q (i.e. not
taking into account the radiation field of the particle). Then the total mass density is (fdré(r) = 1)

p =mod(r) + 2.

1
8mwkc2

This mass density contributes to the gravitational potential in space (like any other mass). New-
ton’s gravitational potential ¢ is the solution of the equation

Ad = 47ertotal

(here G is the gravitational constant). The density peotat is the total mass density contributing
to the gravitational potential which now includes the electromagnetic energy density (in this way
gravity couples to any kind of energy density). One contribution is apparently the contribution p.
Another contribution has its origin in the gravitational field itself. Like the electromagnetic energy
density pe|m the (Newtonian) gravitational field also possesses an energy density which is given
by the analogous expression (with minus sign in view of the attractive nature of the gravitational
field)
1 2

PGrav = —mlvdﬂ .
Adding this contribution also to p we obtain a nonlinear self-interaction of the gravitational field
which could be looked at as a neo-Newtonian version which incorporates model-like the nonlinear
contributions in Einstein’s theory. We obtain therefore

1 Q2 1 2
A¢p = 4nG & — | - —=|V¢|°. 2.27
¢ G mod(r) + 8mc? 4meg 74 2c2| 9l ( )
In solving the equation we set
1/)(¢) = 6202 N

so that 1
Vib(4) = 55 (Vyb(s)
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and

A =V - V()

- 5z V-{(vone |

2c2

- %{Vw Vot ¢(¢)A¢}
C

= o2 { 52 (V87 + 26 bu(e). (228)

262

Replacing here A¢ by the above expression, we have

2nGmg G Q?
A = b X
v [ c? (r) + 4c?4megc? r4

The right side is spherically symmetric. This suggests the separation of A in spherical polar
coordinates 7,0, ¢. Then setting v = 1/r, one obtains

4 02
A=t 2
p=uloy,
ie. ) ) ) 5
14} GQ 0%y Q
G = Y S u=0
6u2w 4c?4megc? ¥, Ou? 4 v

with @ = kQ,x = VG/v3Ameoc?. It should be noted that because r4§(r) = 0, the other source
term has disappeared (but will be regained by consideration of 7 — 0, which is here excluded).
The resulting equation can now be solved easily provided we know the boundary condition that
1(¢) ought to satisfy. Since ¢ is to vanish for r — oo, we require

r—oo: Y(4) — 1,
and hence .
cosh(A — %)
coshA ' const

However, for r — oo,

cosh(A — 2%) }

=221 =221{
¢ <*lny ¢ cosh A

=2c%In (1 - —I-Q.tanh(A) +)
2r
= -—ch2 tanh(A) + -+ .
r

Since this expression represents the gravitational potential (for r — co) the quantity Qc? tanh(A)
has to be interpreted as gravitational mass. With the above expression for ¢ we obtain in addition

cosh(A — 2%) )
cosh A ’

¢=2021n(

and with this .
V¢ = c? tanh (A - Q) L
2r

r3
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and (see below)
§2c2

— (2.29)
2r4 cosh?(A — 291;)

Ap = —4nQc28(r) +

The first contribution on the right of Eq. (2.29) is obtained as follows. For r # 0 we have

2 _ 42
v(’):u:()

73 5

For r — 0 we have

lim tanh ( - 9—) = tanh(—o0) = —1.
2r

r—0

Then, for r — 0: V¢ ~ —Qc2r/r3 and

/V-V¢dr=—Q02/VV- (;%)dr

= —Qc? /F I F= —QCQ/ %(dﬂrz)g = —4wQc? = —4nQc? / &(r)dr.

vy
Hence A¢ acquires the contribution —4rQc?8(r). Comparison of Egs. (2.27) and (2.29) then yields

mo = —Qg- = —Q/V4meoG.
The second contribution on the right side of Eq. (2.29) follows from the sum of the other two
contributions on the right side of Eq. (2.27) with 1/ cosh?x = 1 — tanh® z.

Example 2.19: The spherical condenser

Show that for the spherical condenser (radii a and b,a < b, with charges g, —q) the electrostatic
energy is W = ¢2/2C. Calculate the electrostatic pressure on the outer spherical shell and compare
the result with the product of charge/area of the outer shell with the electric field strength at the
latter.

Solution: The charge on the inner sphere (radius a, charge +q) acts like concentrated at the
centre. Therefore the field E, at a distance r away from O is

Er:k;%, a<r<b.

Hence the total electrostatic energy is

kq? [P dr kq2<1 1
a b))’

1 1
W:—/drE‘f:——/47rr2drE;?= — =
8mk 8rk 2 Jo 72 2

Since according to Example 2.10 the capacity C is

1

C=—1—r
k(3 —3)

we obtain W = ¢2/2C. The force acting on the external spherical shell is
ow kq?
8~ 2p2’

so that the pressure on this shell, force/area, is

kq? kq?

T 9b247b? | 8nbt
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(toward the centre). On the other hand, the charge density o of the outer shell is = —q/47b2.
Thus
__9 kg _ ke’

4wb2 b2 T Ambt’
This is not the pressure, which acts on the outer shell, since the surface charge on the rest of the
outer shell exerts a force in the opposite direction and thus compensates partially the force due to
the charge on the inner sphere.

oE,—p =

Example 2.20: A charged particle inside a charge density

A spherically shaped volume is uniformly charged with charge density per unit volume ¢,. A
particle with mass m and charge —q is placed into this spherical volume. Show that the mass
executes harmonic oscillations and calculate their frequency.

Solution: We have here

4
/E -dF = 47rkzi: g;, i.e. Epdnr? = 47rk§7rr3qu,

and hence 4
E, = g‘m‘qvk‘,

so that the equation of motion of the particle is
mr = —gququk or mit + w?r =0

with

W= 4rkqqgy T= 2_7r P 3m
3m w

Example 2.21: A multivalued potential

Determine the equipotential surfaces of the potential

¢ = tan~!

8 |w

What is the value of a contour integral [ V¢ - dl along a closed path A, which does not encircle
the z-axis, and what is the value of a contour integral along a closed path B, which does encircle
the z-axis? (Remark: The function ¢ will be discussed further, in particular in Sec. 8.4).

Solution: Since ¢ =tan~! £ = 9+ nm, n a positive integer or zero, the equipotential surfaces are

the radial planes with § = const. These intersect along the z-axis. These planes therefore violate

the physically expected single valuedness of the potential and the z-axis is the seat of singularities.
The gradient is

zdy — ydz

K K
V¢ = s that V¢ dl =
[ e, + ey, so thal ¢ 22 1 42

—12+y2 T g2 4 y2

For a circle around the origin in the plane of z and y, and a = const., one has x = acosf,y =
asin@, ¢dy — yde = a%df and thus [ V¢ -dl = [ df. This expression is independent of a and is
therefore valid for an arbitrary contour. Since the direction of V¢ is that of eg, contour components
along e, and e, do not contribute. In the case of contour A we clearly have df = {6 — 6] = 0.
Also curl grad ¢ = 0. In the case of contour B, however, the value of the integral depends on the
endpoint. The potential is multivalued, i.e. each time O is encircled its value changes by £2.
Such a contour cannot be shrunk to zero without cutting the singularity at O.



Chapter 3

Applications of Electrostatics

3.1 Introductory Remarks

In the following we investigate further extensions of electrostatics as well
as more complicated applications, thereby also emphasising the methodical
differences. Green’s theorems and Fourier transforms are introduced, and
finally the multipole expansion of the potential of a charge distribution is
derived.

3.2 Method I: The Gauss Law

The problems we considered thus far were mostly treated with the help of
the integral form of the Gauss law, and so with

/E-dF=47rqui.

We now investigate other methods.

3.3 Method II: Poisson and Laplace Equations
In the preceding we encountered the Poisson equation as the equation
V24 = —drnkp.

In solving this equation we require boundary conditions. These are:
(1) ¢ = const. on conducting surfaces (in an ideal conductor the electrons
do not perform work) with the discontinuity for the derivatives as for the

47
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electric field strength, i.e. (cf. Eq. (2.16))

o¢ o
- (8_n>2 + (%> = 4rko, (3.1)
(2) otherwise ¢ continuous (this is no contradiction with the difference of
the potential on both sides of a dipole layer;* the potential of a dipole p is,
as we shall see later, p - r/r3, and this is continuous in r (no step function
6(x)). If ¢ were discontinuous anywhere, i.e. if ¢ contained a step-function

8(x — o), then at this point E = ~V¢ would be proportional to 6(z — o),
i.e. infinite, which would be meaningless and unphysical.

Example 3.1: The cylindrical condenser
Calculate the potential difference V of a cylindrical condenser.

Solution: We consider again the cylindrical condenser without boundary effects and charges
g and —q on the surfaces of radii r1 and 72 > 71 and height h. In the region between the
cylindrical surfaces we have no charge, so that there V2¢ = 0. In view of the cylindrical symmetry
0¢/80 = 0 = 8¢/0z, so that separation of the Laplace operator yields

10.(,2)
ror\ or)

i.e. 8¢/8r = a/r,a = const. Hence E = —08¢/0r = —a/r. At r = r1 we have (see Eq. (2.18))
E = 4nko = 4nkq/F = 4nqk/2whry, so that o = —2gk/h, and for E and the potential difference
V we obtain as before

T2

1

r2
E=—- V=/ Edr=%ln
r h

The result is positive as a consequence of its physical interpretation as the work done in the
direction of E.

As a more advanced application we consider a proportional counter f

Example 3.2: The proportional counter

Calculate the potential of a proportional counter. An important part of a proportional counter
is its circular cylindrically shaped anode of radius a made of wire and a corresponding circular
cylindrical cathode with radius b > a. The intermediate space is filled with an ionisable mixture
of gases. In practice one frequently has the situation that the volume charge density p differs
significantly from zero only along a length L (with |z} < L/2) of the cylinders. Show that the
potential ¢(r, z) in this intermediate space obtained with the following boundary conditions

£ f < L/2,
saa=v, s0,=0, p={F O 51
is given by
\4
o2 = Tty
1 —e~#nLl/2 cosh(pn, L) for |[z]| < L/2,
+PZ BalJo(pnr) + KnYo(unr)] { sinh(pn L/2)e#n izl for |z| > L/2,
n

*See also for instance Greiner [4], p. 29.
tH. Sipila, V. Vanha-Honko and J. Bergqvist, Nucl. Instr. Methods 176 (1980) 381.
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where pn, satisfies the following relation involving the special functions J and Y known as Bessel
and Neumann functions:

Jo(pna)Yo(unb) — Jo(unb)Yo(una) = 0.
Which condition determines the coefficients K, and which the coefficients B,?

Solution: For the detailed solution we refer this time to the literature cited above.

3.4 Method I1I: Direct Integration

In this case one integrates either vectorially, as in
S5

¢=k/dqr.

We illustrate the method again by application to some important examples.

E=k/rdq dq = pdV,

or scalar-wise as in

Example 3.3: The finite, charged, thin rod
Calculate the field surrounding a charged, thin rod of finite length.

Solution: The word “thin” implies that the rod is to be considered as a line. Let ¢q be its charge
per unit length. We choose the coordinates as in Fig. 3.1.

Y
f (0’ Y2)

\
N

91 '/,'(X’O)

/
s
s
/
s

(0, yq)

Fig. 3.1 The charged rod.

The potential energy at the point (z,0) in Fig. 3.1 is

v2 y2
¢ = kq Ay = qlisinh"1 2] = qk{ sinh~1 ¥2 _sinh—! y_1} (3.2)
Y1 \/12 +y? Ty z z
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Hence the electric field at the point (z,0) is

0 _ ok LI } = ﬁ{sineg -~ (—sinGl)}. (3.3)
xT

51—_;{\/y§+z2 \/y?+zz

In the limit yp, —y1 — oo: 61,02 — 7/2, i.e. Ey — 2gk/x as for a point charge at the origin.
One can show that the equipotential surfaces are ellipses with foci at the ends of the rod. In
Example 3.3 we calculated as a matter of simplicity only the z-component of the field. We can
deduce from Eq. (3.2) what the potential is outside the wire. To obtain this, we use the expansions

Ez=-—

1 1
sinh~ 'z = In(2¢) + — + O(—) for x > 1,
4z? z4

1 1
—In|2z| — ool +O(;Z) for © < —1.

sinh~ 1z

Inserting the dominant contributions into Eq. (3.2) we obtain

#() :qk{ In (2y2) +1n |2y1

Replacing z by r leads to the expression

} = —2¢kInz + gk ln{dyay1], (22 >1, n . 1).
z z

¢(r) = ———Inr +const., T >0,
TEQ

in which the constant can be infinite. In the computation of the field strength, however, the
contribution of the constant drops out. With the help of the last relation and the product formula

smhz-z}]( z? )

one can calculate the potential of a system of parallel wires, a distance b apart, and each carrying
the same charge. One finds

o(r) = ——2 insinh (K) + const.
27en b

Systems of this or a similar kind are used in particle detectorst

3.5 Method IV: Kelvin’s Method of Image Charges

In an electrostatic problem the potential determines in a unique way quan-
tities like E and o. It is therefore possible to imagine certain potential
distributions replaced by fictitious charges called “image charges” and to
calculate the field of these. An example is shown in Fig. 3.2. The effect of
the earthed conductor (i.e. with potential ¢ = 0, this alone is our definition
of “earthed”) can also be achieved by a fictitious charge.

See e.g. T.J. Killian, Nucl. Instr. Methods 176 (1980) 355.
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(@) (b)

Fig. 3.2 (a) The earthed conductor, and (b) its fictitious replacement.

The earthed conductor implies a boundary condition: ¢ = 0 = ¢(r = oo).
The field E then results as the effect of both charges, +q and —q, in the
region above the conductor. A similar example is illustrated in Fig. 3.3;
again the field of case (a) can be calculated from the situation of case (b).

(a) (b)
Fig. 3.3 (a) An earthed conductor, and (b) its fictitious replacement.

In the case of two earthed conducting plates and a single charge between
them we have to introduce a large number of image charges as shown in
Fig. 3.4.

- more q=—1‘[l g=+1 H g=-1 more—

Fig. 3.4 Charge g between earthed conductor plates.

The potential at an arbitrary point between the plates enclosing the charge
(in Fig. 3.4 with charge +1), is then the same as that of the given charge
together with the image charges. An analogous situation is obtained for the
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earthed conductor plates arranged as in Fig. 3.5.

Although the method of image charges is used in applications, it is not
always treated in relevant texts. Some texts which include it are those of
Stiefel [15] and Zahn [8]. The method of image charges finds application for
instance in the calculation of the electric field in particle detectors$

Fig. 3.5 Conductors with angular orientation.

6| a
+q o
2d
0=0
_q ,/
a

Fig. 3.6 The oscillating charge.

$See e.g. W. Weihs and G. Zech, Numerical Computation of Electrostatic Fields in Multiwire
Chambers, Report Univ. Siegen, May 1989.
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Example 3.4: The oscillating charge

A pointlike mass m with charge g at the end of a string of length @ oscillates in the gravitational
field of the Earth above an earthed horizontal metal plate. The mass oscillates like a pendulum
in a plane. Determine the equation of motion of the pendulum expressed in terms of the angular
deflection §. What is the period in the case of small oscillations?

Solution: Using the method of image charges as sketched in Fig. 3.6, we place a charge —q in
the position of a mirror image of the charge +q, so that in the plane of the earthed conductor
the potential ¢ is zero. In this way we can ignore the plate (or its boundary condition) in the
evaluation of the electric field. It is easiest to use the principle of conservation of energy E. The
total energy of the charge +q is

q2

(2d + 2a - 2acosf)’

E= —;-m(aé)2 + mga(l — cos 8) —

where d is the distance shown in Fig. 3.6. With

d 1. . dE
— (265 =9, — =0,
dé ( 2 ) " de
it follows that
q%asinf

ma2é + mgasing + 0.

(d+ a —acos9)? =
For 6 small we have
ma

. 2 /42
6+92%~0, Qz:(me_ti/i)

Thus the desired period is T = 27/Q.

3.6 Theoretical Aspects of Image Charges

3.6.1 The Induced Charge

Before we investigate general theoretical aspects of the method, we consider
an example: A charge ¢ placed outside an earthed spherical shell of radius
a. Different from the cases discussed above, in which we considered either
point charges or charge distributions, we now have the example of a mixed
case. “Farthed” means potential ¢ as on the ground, and this means as at
r = oco. Everywhere on the spherical surface the potential is to be ¢ = 0.
Apart from this, ¢ is a continuous function (so that E = —V ¢ is nowhere
infinite).

The first question is therefore: Where do I have to put which charge so
that at any point on the sphere one has ¢ = 07 Inside the conductor, i.e.
on the sphere, the charges (electrons) can move about freely (performing no
work, since ¢ = 0, also E = 0). As indicated in Fig. 3.7 we put a fictitious
charge —ugq into the interior of the sphere. In order that ¢ = 0 at a point P

on the shell, we must have

0= 9 _H

1 T2
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i.e. 79 = pr1. From the geometry of Fig. 3.7 we obtain

2
7 :d2+a2—2adc036=d2<1+—35—2%%50),

and

2 2 2 2 v v
5 =a°+v° —2avcosf =a (1+ — —2—c050).
a a
It follows that ro is proportional to ry if

a
v=—.
d
Then ry = ary/d, i.e. p = a/d. In other words, a fictitious charge —aq/d
has to be placed at a point, called the “image point”, a distance a?/d away
from O, so that ¢ = 0 at all points on the sphere.

P(r)

Fig. 3.7 The earthed spherical shell.

The second question: What is the potential ¢(r) at an arbitrary point
P(r) outside the earthed sphere, where r > a? Outside the sphere

E=E;=-V¢#0.

At an arbitrary point r outside the sphere

dmegp(r) = <|r E dl dqui V[)

r20 q _ aq
(r2 + d2 — 2rdcosy)' /2 d(r? 4+ v? — 2rvcos y)/2’
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and this vanishes for r = a. Hence inside the sphere E = 0, i.e. ¢ constant.
This constant is zero since on the sphere ¢ = 0. (If the entire sphere is filled
with conductor material, the potential is everywhere constant or zero as on
the boundary surface). The relation we derived earlier for the passage of the
electric field through a charged surface (now with E; = 0) is

_ o¢ 09\ _
(Es — E;) -n=4nko, or - (%)2-1- (512)1 = drko

where 0¢/0n = (0¢/0r) - n. This allows us to compute the surface charge
density o. The corresponding charge on the sphere is called induced charge.
This charge follows from the fact that the charge outside repels charges of
the same polarity in the conductor and attracts those of opposite polarity.

The third question: What is the induced charge? The induced charge is
a real charge which we can calculate. This charge is given by

Q= / o(7)a2dQ, dQ = 2nd(cos )
N

(a circular annulus about the horizontal axis in Fig. 3.7 at angular height ~
and of infinitesimal width ad~y has area (ady)27(asin-y); hence the element
of area under the integral).

We compute first 0. Since E = —V¢ = Es, we obtain from the above
formula

E; -n=-V¢-n=4nko,

ie.
108 _ 108 _
dmon|._,  4mor|_,
Since S = sphere, it follows that
09 2¢(r — dcosy) 2aq(r — vcosy)

4 = .
TS, 2(r? 4+ d? — 2rdcosv)3/2 * 2d(r2 + v? — 2rv cosy)3/2

For v = a?/d and r = a we obtain

e ¢ _ g(a — dcosv) aq(a — % cos+y)
~\/,-9 or|,_, (a4 d%—2adcos~y)3/? d(a? + %; - 2”73 eosy)3/2
1/k

2 2
__ ag(-%)
(a? + d2? — 2ad cos y)3/2’
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We note that (¢), = 0,(8¢/0r), # 0. Hence

a2
ko’('y)z__}__.a_(ﬁ. = — id_z (1_—32—)
4m Or|,._, 47 a (a2 + d? — 2ad cosv)3/2
2
q (1 o))

-k .
drad (1 + 2 _T — .a_ Cos,y)s/z
The total charge on the sphere is therefore

Q= [ o(y)a® - 2nd(cos )
a a?, [1 cos
_ 8 / d(cos )

2d d?’ Jy (1+-g — 22 cosy)3/2
_ 9 _ﬁ)[ (=2)(=d/2a) ]1
2d d? (1+%§—27“cos7)1/2 1

_qa, an[l 1] a

This is precisely the fictitious or image charge. Thus the fictitious charge en-
sures that ¢ = 0 on the surface of the spherical conductor, but the conductor
itself, that is the sphere, has total charge —qga/d. If we want to achieve that
the (earthed or unearthed, insulated) sphere carries the total charge zero,
we have to supply the sphere with extra charge +qa/d. Summarising, we
can say: The charge induced on the sphere has the same effect as the charge
—qa/d at v.

Fig. 3.8 The hanging spherical shell.
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Example 3.5: The spherical shell hanging in the gravitational field

A conductor in the form of a homogeneous spherical shell of radius R, is attached to one end of
an elastic string. With the other end, at which a charge +q is placed, the sphere is hanging in the
gravitational field of the Earth. Establish the equation from which the extension of the string can
be calculated.

Solution: We let @ be the charge of the sphere (if not zero) and zo the unextended length of
the string. The conductor with the constant potential can effectively be replaced by an image
charge —q’, whereby ¢’ and the position d, see Fig. 3.8, of the image charge assume the values we
calculated previously. We then obtain for the equation of motion of the spherical shell of mass m
(observe that the rigid body “spherical shell” can be treated like a pointlike particle)

qq’ 9(Q+4q)
(o+d+(z-20))2  |z+RI?2’

mi = mg — k{x — z9) —

As we explained previously: The unearthed sphere carries the total charge Q.

3.6.2 Green’s Theorems

The previous example illustrates the point in the following formulation of a
problem. We had the relation

() :k/VLrl)dr',

v —r'|

i.e. if p(r’) is given, then this relation yields the potential ¢(r). In electrostat-
ics one frequently encounters a different type of problem: ¢(r) is known on
certain surfaces, i.e. boundary conditions supplementing the Poisson equa-
tion are given, but not p(r), and it is required to determine for instance E.
The solution of such boundary problems is simplified with the help of Green’s
Theorems:

Theorem (1)

[ v+ o) wi|av = [ owv)-am,
|4 F
Theorem (2)
/ [@Adz — wAgo} av = / [chz/) - ¢V<p] -dF.
1% F
We verify these theorems: Set

A = Vi

Then
V- A=V (¢VY) =L+ (Vy)- (V).
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But with Gauss’ divergence theorem

/V-AdV:/A-dF:/A~ndF.
\4 F F

8
A-n=w(V¢)-nE<ﬁ%,

Moreover

where n is a unit vector pointing vertically out of the surface F'. We then
have

[ [poe+ o) vn)|av = [ o(vv)-dr
v L i F

which is the first theorem. If we interchange in this ¢ and ¢, we obtain

/ -¢A<p+(V¢)-(V<p)_ dV:/w(Vgo).dF
vi | F

Subtracting this equation from that of the first theorem, we obtain the second
theorem, i.e.

/ [cpAzL — 1/)&(,0] dVv = / [¢V¢ — 1/)V<p:| -dF.
\% F

An application which will be needed later is the case of

1

W, » =9,

Y=

so that

Aw—A;

v -l

—4rd(r —1'), Dp = Ad(r) = —drkp(r).

The second of Green’s theorems then implies

—47r/¢ 5(c —r')dV’ + 4kr / PE) gy

v —r'|

/ [(b@n (Ir : 1) B |r—1r’|%]dpl' (3.4)

In particular, for r inside V:

_ p(t') o, 1
o0 =k [ P g,

1 9 o 1
—¢8_n’]r—r’|

]dF’. (3.5)

Ir—r'|dn/
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Allowing here the area of integration to become infinite, we have

/ 12 1 3¢ 1 1 8¢(I") 1
~ r'd - - - R
dF ‘s Q) ¢O< ’I", 87‘[, X 7"2’ 'r_r,‘ an/ 7'/3,
dF' dQ v P oo
— AN e _— 0
7,13 !

We thus obtain the result familiar from Chapter 2, i.e.

(x) = k / ) gy,

e — |

On the other hand, if the volume of integration V does not enclose charges,
we have p = 0 and

#(r) dF’. (3.6)

1 [1a¢(r') o 1

(reV):E Fllc=t] o Ton/|r -1

Consequently the potential ¢ at r is determined by values and derivatives of
¢ on the boundary.

One describes as Dirichlet boundary conditions those that specify the
potential on the boundary (not necessarily as zero!). One describes as Neu-
mann boundary conditions those which specify the normal derivative on the
boundary, i.e. 8¢/On. By a specification of Dirichlet or Neumann boundary
conditions the potential is uniquely determined. This can be seen as follows.
Setting u = ¢1 — ¢, with ¢, ¢2 assumed to be two different solutions (but
single-valued on the boundary, i.e. we do not assume multi-valued boundary
conditions), then

Au =0, since Agyo= —4rkp.

Setting in the first of Green’s theorems ¢ = 1 = u, we have
/ (uAu+ Vu - Vu)dV = / uVu - dF.
v F

In the case of Dirichlet boundary conditions u vanishes on the boundary of
F' (given uniquely), in the case of Neumann boundary conditions Vu. Thus,
in either of the two cases [ = 0 and hence

/ (Vu)?dV =0, ie. Vu=0,
1%

implying u inside V' = const. In the case of Dirichlet boundary conditions u
is zero on the boundary; hence the constant is zero, i.e. u = 0. In the case
of Neumann boundary conditions the constant can be # 0, and so ¢1 and ¢
differ at most by an insignificant constant.
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3.6.3 Green’s Function and Image Potential
We saw earlier that 1
2
S = —4ré(r — r'). (3.7)
(The expression 1/|r — r'| is at r the potential of a point charge at r’.)
The function 1/|r — r'|, however, is only one class of functions G, for which
Eq. (3.7) is valid, i.e. we can have

AG = V2G(r,x') = —4mé(r — 1)

(for the moment we call G Green’s function in spite of the factor —4m; here
this is only a matter of names!) with

G(r,r') = ﬁ + F(r,r'), where AF(r,r') =0. (3.8)
The function F' is called image potential. Solutions of the equation AF = 0
are known as harmonic functions. Previously we obtained the expression
(3.5) as a general integral representation of the electrostatic potential. In
order to obtain an expression which takes also the image potential into ac-
count, we proceed as follows. In the second of Green’s theorems we replace

¢ by ¢ and ¢ by G(r,r'):
/ (d)AG(r, r') - G(r, r’)A¢) v (')
1

and hence we obtain

o(r) = /V ()G (x, )V

1 n99(r') n9G(r, )

+ e ) [G(r, r )W - ¢(r )8—11’} dF (3.9)
(since AG(r,r’) = —4né(r —1'), r € V, A¢ = —4kmp). This expression still
involves both ¢(F') and (0¢/0n)F (i.e. the potential on the boundary and
its normal derivative on the boundary). With a suitable choice of G(r,r’),
i.e. F(r,r'), one or the other surface integral can be eliminated, so that
an expression for ¢(r) results with either Dirichlet or Neumann boundary
conditions. In the case of a Dirichlet boundary condition we choose

Gp(r,r') = G(r,r) =0.

r'onF
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Then

_k/ GDrrdV—47T/¢ 8G{§;r)dp'
- /V ()Gp(r,r)dV, it $(F) =0. (3.10)

In Eq. (3.10) we make the following substitution for G (this is explained in
more detail in Sec. 3.6.4):

G — Gp(r,r') = + F(r,r').

fr —r’|

Substituting this into Eq. (3.9), we obtain

R i R L
1 1 | 98(’)
& L[t ren) o

- ¢(r/)£—’{|_r-—lr—’| + F(r,r’)H dF’, (3.11)

¢(r)

and using Eq. (3.5),
: T NG LOF(e,e)]
0=k/vp(r)F(r,r)dV +47F/F[F(r7r) gg)—ﬂr) ;:;,r)}dF'

This equation represents a relation between the image potential F(r,r’) and
the boundary conditions. If ¢(r) = 0 on the boundary of V' (Dirichlet con-
dition), then the following relation

Ozk/v p(t')F(r, ')V + /F

is the equation from which, in principle, the image potential F(r,r’) is to
be determined. The validity of this relation can be verified in the case of
the spherically shaped conductor treated above, although such a check is
nontrivial. In the case of Neumann boundary conditions, which we shall not
pursue further here, one has to choose (see e.g. Greiner [4]) =

(3.12)

OGN(r,r')/On' = —4x/F.
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3.6.4 The Image Potential in an Example

We ask ourselves now: What do the preceding considerations imply in the
concrete case of the earlier problem of a charge ¢ outside an earthed sphere?
We refer to Fig. 3.9. The Dirichlet boundary condition is

The charge density (in V) is

p(r') = ¢d(x' — y).

The function Gp(r,r’) as solution of AG = —4nd(r — r’) with boundary
condition G = 0 on the boundary, where ' = a, is given by the following
expression, as we verify below:

1 q q
Gp(r,r') = 4 ie. F(r,r)= ———— (3.13
o) = ot o) = oy @19
where ¢ = —ga/r’. In Eq. (3.13), the first term is the inhomogeneous solution

of the equation for G. We see immediately, that G p vanishes for 7’ = a, since

Gp(r,r)

1 /
= [ 7t qa2 /] = 0.
v=a LIE=T] " glr — S| ],

Fig. 3.9 The sphere as boundary surface.
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One can easily verify that the expression G p satisfies its differential equation.
Assume r’ # r”. Then

A a n b . 9?2 a + b
"\Jr~r| jr~r"/ O-r)2\|r—r| |r—r' +r -1

= —4rad(r — r').

The following expression (with p(r’) = ¢d(r’ —y)) arises from F, i.e. this is
the contribution to the potential at r arising from the image charge in our
example above:

k/vp(r’)F(r, r')dV' = k/qu(r' ~y)F(r,c)dV’

/ ! __
= kF(r,y) = kLS Y
v — gﬂ’|
=y
v =]

where ¢'(r' = y) = —aq/y. The expression (see Eq. (3.12)):

1 99(r")
= F / /
T Je (r,r") 57 dF
represents the same, but calculated as the potential of the equivalent induced

charge distribution on the sphere. In order to verify this, we would have to
show that (with F(r,r’)|,=q = ~1/]r — /[, _,)

1 1 O¢(r
L 92c)

AT Ju—g |t =1 Or

2 2
_ 1 /7’ 2na sinvy ady’ . kqis (1 - %7)

4 Jo 7+ a? = Zracos(y =) (va? +y2 ~2ay cosy')?

is equal to
kqa _ kqa

For a point charge g at r' =y, we obtain from &(r) (see Eq. (3.10))

1 q
P(r) = k[ + 7 }a
(r)=¢ F—y T - 2y

l.e. as obtained from the charge and the image charge.
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We do not investigate further examples here. We only remind that in the
case of a conducting sphere in a homogeneous electric field we replace the
homogeneous field by two opposite but equal charges, initially with the same
separations from the sphere, but finally removed to infinity.

Example 3.6: The image charge potential
Point charges g; at (ri,6;,¢;) produce at point (r,6,¢) the potential ®(r,8,$). Show that the

image charges g; = £¢; of a conducting sphere of radius a at the points (%, 0;, ¢:) generate at
(r, 0, ¢) the potential

2
(r,0,4) = gé(%,e,¢).

Solution: The solution follows immediately from the preceding considerations (compare with the

a
T

image potential contribution in “The second question” above; corresponds to v there).

Example 3.7: A point charge below a spherical shell

A charge ¢ with mass m is placed at a point distance z below the centre of a fixed, conducting and
earthed spherical shell of radius a. Verify that the charge induced on the sphere can be replaced by
an image charge —qa/z at a distance a?/z below the centre of the sphere (this part of the Example
has been dealt with above). Taking into account also the gravitational field of the Earth calculate
the potential energy of the charge. Finally assume that the charge ¢ is allowed to fall (from rest)
and obtain its velocity at a depth zp below the centre of the sphere (at z = z; = 0).

Solution: The attractive force between the charge ¢ and the image charge —qa/z is

qa 1 q2az

9— = ‘
z (z—22)2 (22 -a?)?

The electrostatic potential energy is

2
2 dz 1 z d(=?) 1 4%
fi -d=2/——z——=—-2/ =—= .
/ T e @2 T2 et T T2 -

The gravitational potential energy is = —mgz (‘minus’, since measured downward). Hence energy
conservation implies (energy at z = energy at z2)

1, 1 g% #2 0
— -_mgz — — ————— = ’
2™ TTE T R —a |,

B a q2a(zz + 2)
v = \/29(22 - Z){l ng(zg —a2)(2? — a?) }

Example 3.8: A point charge in front of a conducting plate

A point charge +q is placed in front of an infinitely large conducting plane at shortest separation
d. The plane is earthed. The perpendicular from the charge to the plane meets the latter at a
point O which is the centre of a circle in the plane of the conductor with radius Rp. Calculate the
ratio Qo/q, where Qo is the charge induced on the area of the circle with radius Ro.

Solution: The plane is a conductor which means that the electrons can move about freely without
doing work. The potential ¢ on the entire conductor is therefore constant, i.e. zero. We therefore
put ¢ = 0 on the plane (earthed). We can achieve the same condition on the potential by placing a
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charge —q at a distance d on the other side of the plane, as depicted in Fig. 3.10. We now consider
an arbitrary point P(R) on the same side as charge +q. We use O as origin of coordinates and
the line connecting the charges as z-axis. Let R = (X,Y, Z). The potential at P is then (with
k =1/4mep)

kL _ 2 1 _ 1
¢(R)—k{R+ R_] qk[\/(x_d)2+y2+z2 \/(X+d)2+Y2+Z2}.
‘We have
99 _ [ -(X-4d N —(X +d) ]
oxX ~ V(X ~dr + YT+ 72 T (X +d)? 1 Y2+ B2

For X — 0, it follows that

(a_¢>) _ 2qdk
80X /x_o (2 +Y24 Z2)3/2°

© g -q o +q

B |

Fig. 3.10 Charge ¢ in front of a conducting plane.

We apply the Gauss law to the volume V enclosed by the plane to the left, where E — Ej, and
obtain:

/E -dF = 4nk Z(charges) =0,

since no real charge is enclosed to the left. This means E1; =0, i.e. E; = ~8¢/8z = 0 to the left
of the infinitely large conducting plane, as well as inside. We obtain the charge density per unit
area, g, from the relation

(E2 - El) ‘n= 47rlca,
i.e. in the present case

By — (_) _ 2qdk
= \oz) oy (@ +YZyZ2p2

Hence
qd

T 2m(d2 + Y2 4 22)3/2°

o =
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The desired ratio is therefore (with r2 = Y2 4 Z2)

Qo _ _d/ dr -4 2"/ rddr

q 2m(d2 + Y2+ 2232 T Jomg Jroo 2n(dR + r2)372
_ d/RO rdr —d 1
- o (d2472)3/2 7 T (#2442)1/2],

:d[_l____l}
JRE+a d

3.7 Method V: Conjugate Functions

This method is applicable only in 2-dimensional problems and depends on 5
main points which we therefore consider first.

Let W = U + iV be a function of the complex variable z = x + iy with
U(z,y),V(z,y) real functions of the variables z and y. Assume also that
lims, .0 0W/6z = dW/dz. Then one verifies readily one after the other the
following relations:

1).

from —

.0 0 00z 0 00z
Oy 0z8_y’%—8z8x

(2).
v _oU 9V _ aU

oy 9z’ Bz oy
(From (1) applied to U + iV; the equations are called Cauchy-Riemann
equations).
(3). At points where they intersect, the lines U = const. are perpendicular
to lines V' = const. With the help of the previous relations, one can verify
that
VV.VU =0, ie. VV L VU

It follows that lines of constant U are always perpendicular to lines of con-
stant V. In other words, lines of constant force are perpendicular to lines of
constant potential (i.e. the equipotentials).

(4). U and V satisfy the 2-dimensional Laplace equation, i.e.
VU =0, VV=

as follows from (2). One of the reasons for the importance of the Cauchy-
Riemann equations in physics lies in the fact that any of their solutions are
automatically harmonic functions, i.e. solutions of Laplace’s equation.
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(5). Since (VU) - (VU) = (VV)-(VV), we have
|VV|=|VU|.

We now calculate the capacity of a 2-plate condenser in two dimensions
with charge ¢ on plate A. To do this, we assume the two plates A, A’, of
the condenser have unit length in the additional third dimension. The plates
therefore lie along lines of constant potential V' as in Fig. 3.11. One may
note that the plates are not necessarily parallel (see examples below). Let
dr be an element of length of plate A.

Fig. 3.11 The 2-plate condenser with plates A4, A’.

Then, (always of unit length in the (here) irrelevant third dimension)

qg= /adr,

where o is again the charge per unit area. Since the electric field strength
E is again approximately zero on the backside of a plate, E is given by
E = 4rko (cf. Eq. (2.16)). Hence

1 1 1 1 ou
— — [ |Bldr = 1 - - [
q 47Tk/| |dr 4ﬂ_k/|VV|dr 47rk/|VU|dT 47Tk/ 5 dr.

It follows that

T Ankt
where [-- -] stands for the corresponding difference. For the capacity of the
condenser we then obtain the formula:

g _ 1 [U]

VI dmk VT
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Example 3.9: The simple parallel plate condenser
Calculate the capacity of the parallel plate condenser with the help of the preceding considerations.

Solution: We put the plates along the z-direction and assume they are a distance y = d apart.
We set W = z, so that U = 2,V = y. Then the capacity is

1 U 1 [z _ 1

T ank V] 4nk[y]  dnkd

per unit area (again with unit length in the third direction which is normally called z, but here
z =1z +1y).

Fig. 3.12 Condenser plates 4, A’.

Example 3.10: The condenser with radially assembled plates
Calculate the capacity of the condenser with angle A8 between the plates.

Solution: In this case we choose W = Inz = Inr + 16, so that U = Inr,V = 6. Let the angle
between the plates with radial lengths b — a be the polar angle A# as in Fig. 3.12. In this case we
have

_ 1 U] 1 [Inr] In(b/a)

T 4nk [V] T 4mk (8] T 4mkA6’

Example 3.11: The cylindrical condenser
Calculate its capacity.

Solution: In the preceding example we reverse the roles of U and V, so that U =6,V =Inr. We
then obtain the condenser consisting of two coaxial cylinders of radii @ and b > a. The capacity is
then obtained as

1 U] _ 1 |6 2 1

T 4nk [V]  4nk[lnr]  4nkln(b/a)  2kIn(b/a)’

With this method we can consider very different cases — e.g. the case
of non-coaxial cylinders. To do this, we consider a new function W(z). We
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let this be W(z) = V + iU (V is later identified with the potential) and
z = = 4 iy. Let P(z,y) be the point in the complex plane as indicated in
Fig. 3.13, and let 7 ,7_ be the distances from P(z,y) to two points, which
are along the z-axis a distance 2d apart. We choose the following function
w: z r
W=mf=mﬁ+my445VHu

We have therefore r
V=ln—=, U=6,-0_.

T_

(9_——9+)

P(xy)

Fig. 3.13 Point P in the complex plane.

We can rewrite the first equation with the help of Fig. 3.13 as

2V_ﬁ_ (z+d)* +4°
RS ET

With further algebraic manipulation of this equation we have

21— e?V) +d*(1 — V) + 421 — e?V) + 2zd(1 — €*) = 0,

r

from which the following equation of a circle results

d \?

2 2

—dcothV)* = . 3.14
Y+ (z—deoth V) (sinhV) (3:14)
The equipotentials £V = const. are circles (with change of sign of V also
cothV and sinhV change signs). Let V = V. be the potential on one (cylin-
drical) plate of the condenser with radius a, = d/sinh V; and with its centre
at by = dcoth V. on the z-axis. Then b, /a, = cosh V, and so

V, = cosh™! b—+
a4
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Let V = —V_ on the other plate of the condenser. In this case we have
b_
V_ =cosh™! —,
a-—

where b_ = dcothV_ and a_ = d/sinh V_. The capacity between the cylin-
ders is now

g _ 1 [U_ 1 [64—06]

TVl 4nk[V] T 4Ark[Ve+ V]
The entire domain of (64 — 6_) is 2. It therefore follows that

1 2w

= . 3.15
drk (cosh_1 Z—: + cosh™! Z—:—) ( )

We now consider some applications.

Example 3.12: Parallel wires a distance D apart and with radii a
Again the problem is to calculate the capacity.

Solution: In this case a4 = a—- =a and by = b_ = D/2, so that the capacity is given by

1
" 4k cosh™! 22'
a

=0

' ! a, o=V,

Fig. 3.14 The fictitious cylinder in Kelvin’s method.

Example 3.13: The wire in air (equivalent to a cylinder and a plane)
Calculate its capacity.

Solution: In this case one of the cylinders is the surface of the Earth with a_ = b_ and b_ — oo
(the circle with centre to —oo and radius to +00, becomes a straight line representing the surface
of the Earth). This means V_ = 0. It then follows from Eq. (3.15) that

1

C= —mmm—.
2k cosh™1 (Zi)
+
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This result can also be obtained with Kelvin’s method of image charges; cf. Fig. 3.14. The capacity
of the system consisting of one cylinder and the parallel image cylinder with opposite charge is
given by the expression (3.15) as

1

4k cosh™1! (Z—‘t>
+

Cparallel cylinders =

where by is the height of the actual cylinder above the ground (the Earth’s surface where V = 0)
and ay its radius. The difference of potentials of the two parallel cylinders is [V] = V4 — (—=V4) =
2V;. Since C « 1/[V], and in the case of one cylinder above the surface at which V = 0, we have
in the latter case [V] =V — 0=V, so that

1

Ccylinder to Earth = 2C’parallel cylinders = ———_b—
2k cosh™1 (—'1'—>
at

Example 3.14: Electrolytic determination of the capacity
Use the cylindrical condenser to suggest an experiment for the electrolytic determination of its
capacity with the help of Eq. (2.16), i.e. the relation E - n = 47k charge, Where ocharge is the
charge per unit area on one cylindrical electrode, and E = 0 inside the conducting material of the
electrode. (Note: This Example assumes familiarity with Secs. 5.2 and 6.1).

Solution: As a simple application of the cylindrical condenser one can imagine — as indicated
in Fig. 3.15 — two cylindrical electrodes in a container with a salt solution (cf. Sec. 6.1 where
Ohm’s law V = IR, current I = [ j-dF, is written j = o £ with conductivity ¢ = 1/p, where p is
the resistivity; this is unfortunately standard notation, so that this p must not be confused with
the charge density, nor conductivity o with charge per unit area).

Fig. 3.15 The electrolytic tank containing two electrodes.

Consider the salt solution with resistivity p. Macroscopically positive and negative (ion) charges
in this solution neutralise each other so that the macroscopic charge density pcharge in the solution
is nought (hence the solution can be looked at as a dielectric medium). Thus the potential ¢
and hence the voltage V between the electrodes is given by the Laplace equation V2¢ = 0, i.e.
with source term zero. One can use a probe connected to a voltmeter to determine the potential
distribution which would have existed with the same conducting plates in a homogeneous dielectric.
Let j be the current density in the solution (cf. Sec. 5.2) and dF an element of area of one of the
electrodes. Since (cf. Sec. 6.1) j = E/p, the resistance R of the solution is given by Ohm’s law as
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R = V/I with the current I entering each electrode given by I = [ j - dF, so that

R=_Y . _PV_
Tj dF  JE.dF
- 4
- 471'kfocha,gedF‘

The capacity between the electrodes is therefore, if 0charge denotes the charge g of an electrode
per unit area,

a _ fachargedF _ P

vV v "~ 4nkR’

as one would have written in the case of a dielectric. Thus the capacity of the system of cylinders
can be determined experimentally from the known resistivity p of the solution into which the
cylinders are immersed. R is the resistance of the electrolyte.

C =

3.8 Orthogonal Functions

3.8.1 Orthogonal Functions in General

We begin with the expansion of arbitrary functions in terms of a complete
set of basis functions.

Functions U;(z),t = 1,2,...,n (with n finite or infinite), are said to be
orthogonal in [a,b], if

b
/ Ui (z)Up(z)dx = $p0nm.

The nonnegative number

b
= \/ | v@vas

is called norm of U(z). U is said to be normalised, if

/b U*(z)U(z)dx = 1.

a
The analogy with orthogonal vectors is obvious. The expansion of an arbitrary
function f(z) in terms of {Un(x)} is given by the sum
N

> anUn(z).

n=1
It is necessary to establish whether the sum converges for N — oo towards
f(z), in the sense of convergence in the mean, i.e. (definition) one demands

2
dx =0,

b
lim
N-oo J,

N
f(@) = anlUn(2)
n=1
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so that

£@) =Y aul(@)
n=1

(implying uniform convergence), and what the coefficients are. We construct
the mean squared error

b N
My = / @) = 3 anUn()Pda

and determine a, such that My is minimal. My is minimised for

My OMy

. *
Ja; BaJ

=0,
i.e.
b N
/ U; (f*(z) - Z@;U;) dz =0

a n=1

and the complex conjugate. This implies for normalised U,(z) the relations
b b
aj = / [ (x)Ujdz, a; = / f(z)Usdz.

Since

= [{r@sw)+ i)

n,n’

—f*(x)ZanUn(m)—f(w)ZaZUﬁ(“*"’}d””
b
:/a dof @) f(z) = 3 lanl?,

it follows immediately from My > 0 that

b N
[ 1@pds 2 > lanl
a n=1

This relation is known as Parseval relation. When the equality applies, the
a, describe functions f(z) completely — the Parseval relation is then called
completeness relation. Analogous considerations apply to functions in higher
dimensions.



74 CHAPTER 3. APPLICATIONS OF ELECTROSTATICS

3.8.2 Fourier Series, Fourier Expansions

The functions

on(z) : 1 sinz cosz sin2z cos2zx
constitute in the interval —m < z < 7 a complete orthonormal system. This
follows from the integrals

v
— / cosmx cos nrdr = oy,
-7

™
- sinmz sin nzdz = 6,1,
T -

m
/ cosmzsinnxdz = 0.
-7

Then in the interval — v <z <
oo s
flz) = ch%(w), Cn = f(z)on(z)dz.
n=0 -7

In addition f(z + 27) = f(x), i.e. the function is periodic.

Complex Fourier Series
The functions

1
on(T) = ﬁ

constitute in the interval —I < z <[ a complete orthonormal system with

mmefl g =0,41,42,...

i
/ldl'son(x)(ﬁ:n(z) = Simn,

so that the periodic function f(z) = f(z + 2l) can be expanded as

00 ; |
f(m) = \/ﬂ Z Cn(pn(x), Cn = :Ql—l/_l f(il?)e_mﬁx/ldx,

n=—uoo

Fourier Integrals
We now want to explore the expansion of nonperiodic functions by consid-
ering in the last relations the limit { — oo. For [ — oo the interval irz/I
between the exponents of terms in

o0

f(l‘)z Z Cneinﬂz/l

n=—oo
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becomes increasingly smaller; in the limit, one has the continuum. With

len
k, = ? (s0 that knr1 — ke = 7/1), —2 = g(kn), (3.16)
we have
f(il?) — ﬂ,n;_.oo: ezknzg(l ) — n:E_Oo: e kn g(kn)(kn-f-l _ kn),

which in the limit | — oo yields the representation

f@%=/md@wkm

—o0
(kny1 — kn ~ dk = w/l, and for | very large: m/l ~ me = 0k; for n finite
we have k, = nn/l ~ nme, and for n — £00 : kp — koo = 00). Using
Eq. (3.16), we have

—innx/l Tg\Kn
Cp = 5 /l f(z)e dr = —

and so obtain correspondingly

_ 1 o —iknx
—2W[mf@k dz,

= % [ Z f(x)e~*2dz, (3.17)

l.e.

This expression is called Fourier transform or spectral function of f(x). We
can easily obtain the inverse of Eq. (3.17) using

1 [ &
. ikx
i(z) = 5 /_ooe dk,
because then

° 1
/ g(k)e™Vdk = o— / e*vdk / f(z)e *2dg
—00
/ dzf(z / k=) gk
27r

_ /_ F(2)b(y — )dz = f(y).

A necessary condition for the possibility to represent a function f(z) as a
Fourier integral is the convergence of the integral

/oo |f(z)|dz, ie. Hm f(z)=

—oo r—+o00
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3.8.3 Spherical Functions (Legendre, Associated Legendre,
Hyperspherical Functions)

We encountered the following factor earlier (in the integral representation
of the solution of Poisson’s equation), and now consider it in more detail.
Written as an expansion the factor is

1 1

[r —r| B \/r2 + 7% 4 2rr' cosa

_ 1{1 +R@T P2<x)(’”;'>2 . -}e(r —r) 4 (r )

oo N
= % Z P(z) (T;) (r —7'")+ (r & 7', (3.18)
=0

where with £ = cos«

1

Py(z) =1, Pi(z)=1z, Py(z) 5

(322 -1), ....
These polynomials are called Legendre polynomials. These are in general
given by

1 d
2! dal
and define a complete orthonormal system in the interval z € [1,—1],a €
[0,7]:

@) = sy (a® — 1)

1 - 9
/—1 Py(z) Py (z)dx = GTp 151m.

A complete orthonormal system of functions which is defined on the unit
sphere with 6 € [0, 7], € [0,2n] is given by the hyperspherical functions Y,
which are defined as

—m) /2 ;

are the associated Legendre polynomials. For instance

3 3 ,
Yoo = \/%, Yio =4/ -cost, Yn = —\/ g sinfe*’. (3.19)
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The associated Legendre polynomials with negative indices m are defined by

(—)

General relations of these are
iy CD™ o dT
‘Pl (.’L‘) = 2[“ (1 - mQ) /del—i-m (1'2 - 1)l’

m ({+m)!
/P" VP (@)de = 2l+1(l )!5”’

or
2n T
/ d(p/ Yy (0, 0) Y1 (0, @) sin 0d0 = 61/ 6,y -
0 0

The completeness relation follows in analogy to the basis change of vectors,
{e;} — {Ek}, from e;-e; = &;; to Y (e; - Ex)(Ex - Ej) = 45, as the relation

o0 l
> Z 1o (0', 60 ) Yim (8, 0) = 6(p — ¢")d(cos 6 — cos ')

=0 m=—1

(in the above analogy k corresponds to m,!, and 4, j correspond to 8,¢). In
books on Special Functions also the following relation called addition theorem
can be found:

l

47
Peos@) = 50 37 Yin(8,0)Yim(0,), (3.20)

m—
where (see below)
cos o = sinfsin 6’ cos(p — ') + cosfcos 8’ =cos(6 — ¢'), f p=¢

(hence its name “addition theorem”), where 6 and ¢ are the spherical coor-
dinates of a vector r, i.e.

r = (rsinf cos ¢, rsinfsin p, 7 cos §),
!l / . .
= (r'sin# cos ¢’, 7’ sin @’ sin¢’, 1’ cos '),

so that
r-r’ = rr'(sinfsin § cos(p — ¢’) + cos @ cos §’).
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We use the addition theorem in order to rewrite Eq. (3.18):

r—r’] TZPl ()le(T—T)+(T<—>r)

5 Z 2l+lrl+mm< @) Yim (8, 0)(r ')

[=0 m=-1
+(r 7). (3.21)

The hyperspherical functions are also obtained as the solutions of Laplace’s
equation in spherical polar coordinates.

3.9 The Multipole Expansion

We consider a charge distribution (density p) in a domain |r| < a. Then the
potential is for

r>a: o(r)=k / [?p‘(—r,_zqdvl (3.22)

(the origin of coordinates for instance in the charge centre of mass), provided
the volume of integration extended to infinity does not contain conducting
surfaces (equipotentials specified by boundary conditions). Thus, only the
expression (3.22) remains of the general relation (3.5). This remaining part
(3.22) collects contributions only from points r’ in space at which p(r’) # 0.
Since r’ < a < r, this means, that we can expand 1/|r —r'| in powers of 7//r.
This allows us to substitute the expression (3.21) in Eq. (3.22):

oo !
¢(r) = Z Z 1 z+1 Yim(0,¢) / p( ) Y (0, YAV . (3.23)
=0 m=—1

The expressions
qlm - k/}/lm ' ¥ T p(r )dV’ (324)

are called multipole moments of the charge distribution p(r’): Specifically
the case | = 0 is called monopole moment, the case [ = 1 dipole moment,
the case | = 2 quadrupole moment, and so on. Since [ = 0,1,2,..., and
m=—l,-l+1,...,1, the 2] + 1 components of ¢, form a quantlty known
as a spherical tensor of the l-th rank. With

Yiom = (=1)"Yim,
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it follows that
@—m = (=1)"qtm-
The multipole moments describe how the charge is distributed:

(D).

k
qoo = k/YoB(ely‘P')P(r/)dVI = \/—% /P(I‘I)dvl = %,
).

a1 = k/P(r/)TlYﬁ(gl,Sol)dV’ = —ky/ §3— /p(r')r' sin@'e”"¥ dV’
T
= —k\/ / smH cos<p —isin®’ sin @ )dV’,
8
a1 = —ky/ 87r/ (z' —iy/)dV’,

or, with p,, = [ p(r')(z',y)dV’,

(3).

q1-1= —qj; = k\/g(pz — ipy),
(4)-
g PR 3 ~ et 3
q10 = k/p(r r'Y10(0', ¢ )dV' = k\/;/p(r )r' cos@'dV’ = k\/4j7r 2

Here p;, py, p. are the Cartesian components of the dipole moment.
We thus obtain (to be verified below) for ¢(r) the following series expan-
sion (we leave the verification of the quadrupole term as an exercise):

¢(r) @ ~p - 1 Z Ql] 3lej 7'261‘:,‘) o

r

(3.25)

This expansion is obtained since:

4k
p(r) = _WYOO 8, /Yoo ¢ )p(x")dV’

4km
-+§7nua¢y/Yﬁwc¢wwuwMW
4k7r
52 Y10(0, /Ym " @) p(x)dv!

k
3 Yi1(0,9) [ Y@ )rp)av +
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which reduces to
o) = 24 (= [ smoee) (- [ i)
()
27 (Vazsinae) (| et i)+

_ g 2k2 sin 6e = (p, — ip,) + k cos sz
ks;r;@ sin fe =" (p, + ipy) + -,
and so to
b(r) = kQ kr :;)s sz + kr sinri cos <ppz n T sin 7¢'9gsin gopy
kQ n kp r L.,

The first term kQ/r is the potential of a point charge Q at the origin, seen
at r. The potential of a dipole p at the origin and observed at r is kp - r/r3,
and so on. For the electric field strength we then obtain

E=-V¢(r)=-V kl%——kp'Vﬁ-iﬂ--]. (3.26)
This expression will be needed later. The potential of a dipole p at the
origin, but observed at r is therefore

T
¢a(r) = k—prg : (3.27)
Its field strength E, is

Eq= —Vy(r) = -k%ﬁ"p), (3.28)
where n = r/r. The expansion (3.26) tells us that, as we approach the
individual charges by going to smaller values of r, we see more and more of
the structure of the charge distribution.

We close this consideration with a remark on the interaction of 2 dipoles.
What we mean by this interaction is the energy of one dipole in the field of
the other. This interaction is defined by the expression



3.9 The Multipole Expansion 81

P, n P,
1 n {
Pt 1P
1 " |
i - P
& n P

Fig. 3.16 Relative orientations of dipole pairs.

p1 —3n(n-p1)
3

Wig = -p2-E1 = _PQk[_

= -Tlcg [pl ‘p2 —3(n-p1)(n- P2)J- (3.29)

We see that this energy and hence force depends also on the orientation of
the dipoles to the straight line connecting them. We set
W= kp—l?.
r

In the case of the orientations depicted in Fig. 3.16 we then have the fol-
lowing energy: (a) Wiy = 2W, (b) Wis = W, (c) Wi = =W, (d) Wi =
—2W (minimum of Wj3). We make an important and fundamental obser-
vation: The minimum of the energy ensues for the same orientation of the
dipoles. This is a fundamental phenomenon, which is also seen to hold for
instance for atomic spin orientations. In quantum statistics it is shown that
this behaviour is reached at the zero point of the absolute temperature scale.

Example 3.15: Dipole and quadrupole distributions
For the dipole and quadrupole distributions shown in Fig. 3.17 calculate the electric field at the
point P.

Solution: In the first case the electric field at the point P in Fig. 3.17 is the sum of a repulsive
contribution and an attractive contribution with the resultant as shown antiparallel to the dipole:

(+q) cosb (—gq)cos@

Ep = —
P~ Ureo [r2 +d2/4] d4meg[r? +d2/4]’

where cos@ = (d/2)/\/rZ + d2/4, so that

b= qd ~_P
dmeg[r2 +d2/4]3/2 T dmeprd’

E
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Fig. 3.17 Dipole and quadrupole distributions.

for r > d, where p = g¢d is the dipole moment.
In the second case the resultant field is directed along r and away from the dipole:

2q qr
Ep = -2
P 4meqr? dmeo(r? + d2)3/2

_2q 1 _ T

" dmeo | r2 (r2 4 d2)3/2
3pd

~ fi d.

4Ameqrd or >

Example 3.16: Dipole-dipole interaction

Consider two atoms as harmonic oscillators (spring constant k = w2) and add to these the dipole-
dipole interaction (separation of the atoms: R). What is then the energy of the system? In a
similar way one can consider two electric LC circuits (a distance R apart) with eigenfrequency
wo = 1/vV/LC, in which the condensers are treated like dipoles.

Solution: Without the dipole-dipole interaction the energy of the system is
1 2. .o 1 o o 2
Eo = 5m(d1 +432) + Swl1 + 22),
and quantum mechanically

1 1
Eo= (N1 + 5) Fuwo + (N2 + 5)&»0,

where N1, N2 =0,1,2,.... With attractive dipole-dipole interaction

1
R

—ariTy, a
and k = wi, the energy becomes

1 1
E = Em(z% +i2) + Ek(z% +23) — az122

1 1
(k — a)(z? + 23) + 5a(ml — xz9)%.

1. .
= om@} +33) + 3
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We set
y1 =21+ 2, Y2 =1 — T2,

so that
1 1
x = 5(1/1 +y2), T2 = §(y1 - y2),

and F is then diagonalised, i.e.
1 (31?1 m)z 1 1 <y1)2 1 1 (y2>2
E=-m{ 2} +om( ) v tk—a)om( L) +-(k+a)-m|[ 22 .
Qm(ﬂ) +2m(\/§ Tt ) TRl
Quantum mechanically this is
E:<N1+—;-)hvk—a+(N2+%>h\/k+a.

For the difference with Ey, i.e. with no dipole-dipole interacion, we obtain for the ground state of
the system (N1 = 0, N2 = 0)

AE

E-Eg =%h(\/kT—\/E)+%h(\/k+—a—\/l€)

Nip,Np=0

1
=—m0< 1- 5+ 1+i2—2>
2 wp wg
lm( a2) 1
27N T 1t ) T RS

This is an energy similar to that of a van der Waals force. One can look at this calculation as a
rough physical model of the Casimir effect in producing the potential o< 1/RS, at least this was
suggested in the literature.Y Actually the Casimir effect is a boundary effect, as we shall see in

Chapter 20.

12

%See D. Kleppner, Physics Today (Oct. 1990) 9; cf. also the Casimir effect in Chapter 20.
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Chapter 4

Macroscopic Electrostatics

4.1 Introductory Remarks

In this chapter we extend the previous considerations to dielectric media
(generally with negligible conductivity). This leads to the consideration of
the polarisation of these media and their macroscopic effects, the most promi-
nent concept introduced here being that of the dielectric displacement D.

4.2 Dielectrics and Dielectric Displacement

So far we considered point charges, for which the following equations hold:
V -E=4kmp, VxE=0. (4.1)

Here, as in our previous considerations, E and p are constant in time.
In macroscopic dimensions, yet in a small volume, the number of charge-
carrying particles is of the order of (say) 10'®, most of which are in mi-
croscopic motion. In the context of macroscopic electrostatics we consider
only such cases which are macroscopically static, i.e. without an observable
change in time. This means we assume that all fluctuations in space and
time taking place microscopically average out such that they leave no effect
macroscopically. Thus we again assume the charge distributions and fields
to be time independent. Later it will be a decisive step to assume that the
equations of electrostatics hold also for time dependent cases. We define the
mean values

rg V' :(E(r)) = % /V/ E(r+r')dV’,

v gV (px")) = %/V' p(r” +1")dV'. (4.2)

85
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Here V' is as shown in Fig. 4.1 the volume containing the molecules.

Vl

/

P

Fig. 4.1 The macroscopic volume V.

We imagine the field E with definite direction directed from a charge +q to a
charge —q. If we place charges or charged particles into this field the positive
charges will be attracted by —q and repelled by ¢, and corresponding effects
apply to the negative charges. In this way a separation of the charges, con-

tained in the medium or material arises and is described as its polarisation.
This is indicated in Fig. 4.2.

— -+ -+ —
+q — - + -+| — —q
— -+ -+ —

Fig. 4.2 Polarisation of a dielectric in an external field.

Thus, in an externally applied electric field the dielectric substance is po-
larised with the face at one end exhibiting a positive induced charge, and
that at the other the equal and opposite charge. The object can then be
considered as an arrangement with alternately positively charged and neg-
atively charged cross sections resulting from a corresponding alignment of
its constituent atoms or molecules as dipoles. Thus every such constituent
particle behaves like an oriented dipole. The induced charges are described
as polarisation charges. The quadrupole moments of molecules are usually
negligibly small. We define as (charge) centre of mass of a molecule j with
charge ¢; = [ p;(r')dV’ the expression

f vp;()dV’ [ p;(x))dV’
Jpi@)av’ — 95
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(integration over the volume of the molecule). Then the electric field strength

E at a point r outside the volume containing n molecules is, with

r—r 1 1
gt i o o,
PR AT

given by

[ kg 1
E(r) = -V Z |: qul + kp; - Vj-——lr — (4.3)
J

;|
There are two ways to interpret this equation:

(a) Given the charge distribution with corresponding dipole moments (e.g.
polar molecules), then E(r) is the electric field strength produced by these.

(b) Given electrically neutral atoms, which are placed in an externally applied
field E (this is frequently the case, since dipole moments can average out as
a result of their motion), then this external field produces the polarisation
with induced charges and dipole moments p; of the molecules.

With the help of delta distributions which are integrated over we can
rewrite the last expression as

kq;é(r; —r") 1
I°=_V2;/dwi_ﬁtﬁw—ﬁ*ﬂ”‘*””‘V”Et7ﬂ'
It follows that (V = V' being the volume containing the molecules)
1 ! /
(Br)) = —,/ E(r +1')dV
— = Z/ dvlv/ dV” kq] r.7 r )
o+ 1! — x|

+ ké(r; —r'")p; - V”;}

|r+rl__rlll
s —_Z/dV’V/ds Fi0(r; =5 ~ 1)
|r—S|
+ ké(r; —s—r') '-VL 4.4
J P;j Tr—s|]| (4.4)

Integrating over s reproduces the first part of the earlier expression (where
the integrand is the expression (4.3) with r — r + r'); the variables s and
r’ must therefore be considered as independent variables of integration, and
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we obtain

r)):—VAds[lriSI%/‘/dV’quké(rj—s—r’)
+(v |I'is|) /dV’ZpJ s—r)] (4.5)

(interchanging averaging and taking of gradient). We now set
7/, V'S0l =5 =) = Vo)) = (5,
7 v ijém —s—1) = N(s)(pmat(s)) = P(s),  (46)
J

where we define as

N(s): the number of molecules per unit volume at s,
(gmol(8)): average charge per molecule at s,

p(s): macroscopic charge density at s,

P(s): polarisation vector (= dipole moment per unit volume) at s,
(Pmoi(s)): average dipole moment per molecule at s.

We then have (with s replaced by r’)

E'() = (B0) = -V | dv'[’;f’(r’) L RPE) v ]

& — x| | — x|
= -V¢, — VL.

In view of continuity for r # r' it is permissible to write the divergence (see
explanations below)

V.E*(r):—/VdV'[kp(r')Vzﬁ‘i'kP(rl)'V/{V2 : /}]

F—7]

=4 '/V dv’ [kp(r')&(r —r')+kP(r') - V'6(r — r')]
= 4nkp(r) — 47kV - P(r)

= 2ot -v-Pe), @)

where in the step from the first line to the second we used the replacement

9 1

’
l?——r’| — —4né(r —1'),
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and in the step from the second line to the third
V' = -V,
and then V was put in front of the integral. We now set
D =¢E* +P. (4.8)

The vector D is called dielectric displacement. As a consequence we have

the important relation

Here, we observe that the polarisation charges (cf. pp below) are not sources
of D. Since E* = —V of something, but always curl grad = 0, it follows
that

V xE* =0. (4.10)

Equations (4.9) and (4.10) are the macroscopic equivalents of the microscopic
equations V- E =4nkp and V x E = 0.

We observed at the beginning, that in the MKSA-system of units the
factor k = 1/4mep is not dimensionless. As a consequence D has a dimen-
sion different from that of E. In the MKSA-system the unit of dielectric
displacement D is one coulomb (C) per square meter; in Gaussian units

1 C m~2 = 127 x 10° statvolt cm™! (statcoulomb cm™?2).
We deduce from the above relation
D= EoE* +P

that the polarisation P is measured in the MKSA-system in the same units
as D.
We distinguish between the two ways to see this:

(a) Given a charge distribution in space (like, for example, of molecules,
also polar molecules) whose electrostatic potential contains contributions of
dipole moments (higher multipole moments being negligible), then E(r) is
the strength of the electric field of this charge distribution.

(b) Given electrically neutral atoms which macroscopically form a neutral
dielectric, and that these are placed in an externally applied electric field
E(r). Then this external field generates the polarisation of the dielectric
with induced charges or induced dipole moments which are then defined by
the contributions in the above expression for E(r). (In the case of a neutral
atom, which is considered classically, we can have a dipole moment; quantum
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mechanically, however, where, for instance, the electron of the hydrogen atom
would be found only with a certain probability somewhere near the proton,
hence also its charge, the dipole moment of such an atom averages out).

Consider an element of length [ of a dielectric as illustrated in Fig. 4.3.
Here AF is the cross sectional area with charge @ or charge per unit area
o = Q/AF. The dipole moment is charge x distance between the charges,
i.e. if P is the density of dipole moments,

VIP| = Ql = opAFl = opV.

It follows that
|P|=0p=P-n. (4.11)

+-+- + -

AF

Fig. 4.3 An element of a dielectric.

We now look in more detail at the expression ¢F introduced above and
contained in E*(r). We have

] / ! 1
¢P(r):k/VdVP(r)-Vlr_r

:k/VdV’[V’-<P(r’) ! >— L _v.p)

r—r'|/ |r—r
I‘P /
=k/ dF-P(r’)—l——,——k/dV’w
F(V) v —1'| e — 1|
= ¢l + ¢F. (4.12)

We let op be the induced charge density per unit area (induced through
polarisation by the external field) defined by

op=P(r) n, (4.13)
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and we let pp be the similarly induced charge density per unit volume defined
by
V.-P=—pp. (4.14)

Without the external field E, the polarisation P would be zero (because the
dipoles would average out). For |E| not too large (and not for ferroelectric
substances, i.e. not universally) we have — from here on we replace E* by

E — the linear relation
P = x.aE, (4.15)

in which the constant x. is the so-called electric susceptibility. For isotropic
dielectrics P oc E:

P(E)=P{0)+ > ajEj+---, P(0)=0, a; <3y
J
Since D = ¢E + P, it follows that

1
D=(ep+eoxe) E=€E, €e€=€p+e€oXxe, Xe= ;—(e —€)>1. (4.16)
0

The quantity e is called dielectric constant. The ratio €/eg for the case of the
vacuum is 1 and for example for air 1.0005, for glass 5 up to 8 and for water
81. Above we had V - D = p, so that, if € is constant,

v.E="~
€

One defines as relative permittivity the expression

H:£=1+Xe7 EZ—D—
€0 K€g
We imagine the formation of polarisation charges as explained above:
The electrically neutral atom when placed in an electric field assumes the
shape of a dipole as a result of the deformation polarisation (classically the
shifting of positive charge to one side, and negative charge to the other).
Polar molecules are those which possess their own dipole moment. In many
other cases rotation, vibration etc. average the dipole moments out to zero
in the laboratory frame of reference.
It remains to consider the modification of the Gauss law. We had

D =¢E+ P.

It follows that

/dV’V-D=60/dV’V-E+/dV’V-P,
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i.e.
/dV’p= eo/E-dF+/dV'(-pp),
or
Q=< [B-aF-Qr
and hence

eO/E-dF:Q—l—Qp. (4.17)

This is the modified Gauss law, in which Q is the true macroscopic charge
and @Qp the induced charge. One should note that Qp does not have to be
zero; in the case of unpolarised dielectrics the sum of the charges vanishes
for every volume element, i.e. p = 0. In the case of polarisation in general
ppdV # 0, in view of a different distribution (cf. a volume element of the
box in Fig. 4.2). See, however, Sec. 4.5, where pp = 0.

Example 4.1: Relative permittivity*
An insulating medium fills the space between two parallel plates with charge densities o and —¢
coulomb/meter2. Determine the relative permittivity of the dielectric, i.e. k (with E = D/keo),
expressed in terms of the induced charges (o p coulomb/ meter2) at the end-faces.
Solution: We start from the standard equations, i.e.

eE=D-P, with V-D=p, V. .-P=-pp.

Polarisation charges are not sources of D. The decisive point here is to distinguish clearly between
the real applied charges on the plates at either end (o, —o per unit area), and the charges induced
by them in the medium, i.e. —op at the medium end next to +o and +op at the medium end
next to —o. Hence we have

/V‘de=/D~dF=/pdV=Q’

so that for an element AF of area of a plate

D - AF —_(;2 D=-—"“"-=g¢
1 AF )

with D parallel to AF. However, in

/V-PdV:/P~dF:—/ppdV=—Qp,

P is parallel to —D and hence

-P-AF=-Qp, P= %:ma.
Thus
= D-P o-op olo~-op) D(oc—op)_ D
T e e €00 " o o ~ eor’
where

*See also The Electromagnetic Problem Solver [21], p. 213.
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4.3 The Behaviour of D at an Interface

We are now interested in the behaviour of D on both sides of a macroscop-
ically thin, charged surface, in much the same way as in the case of E. We

have
V-D=p

(the polarisation charges are not sources of D). Thus

/V.Dz/D.szdep=Q,

and hence for an infinitesimal surface element as indicated in Fig. 4.4 we
have

Fig. 4.4 Element of a charged boundary surface.

. D . = —-—=
D; -n; +Dy-ny N
or with n as a unit vector in the direction of nj:
(Dl b D2) ‘n=a. (4.18)
But since
EO/E-sz (Q+Qp),
we obtain for E instead of D:
Eo(El - Ez) ‘n= (0’ + O'P). (419)

On the other hand, since V x E = 0, one obtains for a closed contour from
just above to just below the interface that

fE-ds=/V><E-dF=o,
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TITTIW 7 T

(@ e4>¢y (b) e, > g4

Fig. 4.5 Lines of constant E for (a) €; > ez and (b) €2 > €;.

so that the tangential components of E, i.e. those in the plane of the interface

surface, are equal, i.e.
Elt - Egt = 0. (420)

Since V x D # 0 for P # 0, there is no corresponding relation for D.

4.4 Examples

Example 4.2: Lines of E at interfaces

A charge q is placed at 2 = 1 along the 2-axis in a medium with dielectric constant ¢; in the region
z > 0. The medium in the region z < 0 has dielectric constant e3. Sketch the paths of lines of E
in the cases €1 > €2 and €3 > €1.

Solution: With p = /22 4 y2 the potential in the first medium is given by

q
471'61\/2 z—li

so that

—1e,
for z>0: E(1)=—V¢= a <[pep+(z )e )

dmer \ [p2 + (z — 1)2]3/2

At the interface to the second medium along the interface normals we have (“+0” meaning +¢,¢ > 0
and small)

(EIEEI))zz-f—O = (€2E£2))z=—0

(no charge given on the interface). Moreover tangentially
(B e=t0 = [B)e= 0.

H
ence q

@y _ gy 4
(Ez )z_—O 52( z )z——+0 47r€2[p2+1]3/2

and ap

@y _ (gD
(Bp™)z=-0 = (Bp)amrtr 47!‘61[p + 13727
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The trajectories of lines of E are shown in Figs. 4.5 (a) and (b). For €2 > €1, i.e. €2 — oo, the
second medium behaves approximately like a conductor (no field).

Example 4.3: The spherical condenser

A condenser consists of two concentric, conducting spherical shells with inner charge g and radii a
and b, a < b. The space between the spheres from a to ro is filled with a dielectric with dielectric
constant €1, and from ¢ to b with a different medium of dielectric constant €2 (both linear). The
outer sphere is earthed. Calculate the capacity of the condenser.

Solution: We have spherical symmetry with

47y

for all . Moreover, E,. = —8¢/8r for potential ¢. We assume the linearity D = ¢E. Then:
o for a <r < ro: Er = Dy/e1 = q/4me1r?, so that ¢ = — [ Erdr = q/4me1r + Cy;

o forro < r < b: Er = Dy/e2 = q/4mear?, so that ¢ = g/dmear + Ca.

At r =a: ¢(r =a) = q/dwera + Ca.

Continuity of ¢ at » = rp:

1 t0=—21to,
4merro 4mearo

Earthing at r = b:
q
=b) =0 —— +Cy=0.
o ) ' 4megb 2

Thus

9 ,_9 __3 __4
dmera  4mearg  4meyrg  4mesb

B(r=a)=

Hence the capacity C is

C = q _ 4
¢(r = a) _1__L+L(L_L>]
€1a €3b 7o \ €2 €1

Example 4.4: The coaxial cable

A coaxial cable consists of a conducting wire with circular cross section of radius a and charge
e per unit length, which is surrounded by an insulating layer of thickness d and a thin, hollow,
conducting and earthed cylinder of radius ¢ > a + d as indicated in Fig. 4.6. Determine the
capacity of the cable per unit length.

Solution: We have cylindrical symmetry. The outer cylinder is earthed, and the dielectric is
assumed to be linear, i.e. D < E, D = ¢E. We use

/ D - dF = charge enclosed
F

(i.e. e per unit length with the integral over the cylindrical surface). We then have
O0<r<a: E=0 (conductor).
According to our earlier treatment of the cylindrical condenser we have for

a<r<a+d: E= i

b}
2mer

and for e

at+d<r<c: E= .
2meqr
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Integrating with the help of E = —d¢/dr:

O0<r<a: ¢=d¢1 =const.,

a<r<a+d: ¢>=——e—-lnr+C'1,
2me

at+d<r<ec: ¢>=—2e Inr + Cs.

TEQ

The boundary conditions are

r=a: ¢:¢1=——e—lna+Cl,
27e

r=a+d and ¢ continuous : - Inla+d)+C1 = - In{a + d) + Co,
2me 2meg

e

r=c: ¢2 =0 (earthed), ~3 lne+ Co = 0.

TEQ

Inserting the latter two expressions into the

Fig. 4.6 The coaxial cable.

first for the constants, we obtain

€

$p1=-—Ina+C1 = ——Ilna— —— In(a+d)+ InC + —— In(a + d)
2me 2me 2meg 2Te

2men

=° [6—Oln<a+d>+ln( ¢ )j‘
2meq | € a a+d

Thus, for the capacity C follows

e 2me,

C= = .
T ) ()
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4.5 Polarisation of a Sphere in an Electric Field Eg

The sphere! is electrically neutral (i.e. originally uncharged, p = 0) and is
assumed to be made of a material with dielectric constant €5. The externally
applied electric field Eg is taken to be homogeneous and parallel to the unit
vector e, in a medium with dielectric constant €;. We take the centre of the
sphere as the origin of the frame of coordinates as shown in Fig. 4.7.

\
\

\

Fig. 4.7 A spherical dielectric in the field Eq.

The polarisation charges on the surface give the sphere the appearance of a
dipole placed at the origin and pointing in the direction of z (we shall see
that the induced volume charge density in the sphere, i.e. pp, vanishes). Let
E; be the field E inside the sphere and E, the field outside.

We begin by writing down the equations of (now macroscopic) electro-
statics for inside and outside the sphere and homogeneous, linearly isotropic
dielectrics (p = 0 implies no “true” charges):

V.-D=0, D =E+P =¢E,
€0 ‘ (4.21)
P-n=op, V.-P=—pp

and
VxE=0, E=-Vo. (4.22)

From these equations we obtain

eV -E+V -P=0,

tThe following considerations correspond to those of a sphere. In the case of a cylinder some
differences arise as can be seen e.g. in the steps from Eq. (4.24) to Eq. (4.25). The case of the
cylinder is treated in Example 4.5.
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and so
€lp = —pp.

On the other hand
0=V -D=€eV: -E=—-eAp.

Hence, (for € # 0) Ay = 0 and so pp = 0 for the assumed linear dielectric,
i.e. for P parallel to E (not for other cases).

At the interface the boundary conditions derived in Sec. 4.3 have to be
satisfied. This means,

(1). Ey = Fy, and so

Eip = Ey ,
rT=a r=a
or
a‘pi _ 890(1
80 Tr=a B 69 rT=a ,

(Dl—D2)~n=0':0,
or

(D1 -n) = (D; - n),

(where o, the “true” surface charge density, is zero). Thus (since D = ¢E =
—eVo)
e Opi

r=a

In order to be able to solve these two equations, we make a plausible
ansatz for E;, taking into account V x E = 0. We make the ansatz of
a homogeneous field Eje, in the interior of the sphere (and demonstrate
that this ansatz together with ¢, satisfies the above equations or boundary
conditions). The ansatz E; implies

wi =—FE;z, z=rcosé. (4.23)

From outside the sphere appears as a dipole along e, with appropriate dipole
potential, i.e. (taking into account, that p,-r =p,rcosd = p,2)

p:T
Yo = —FEoz+ k 3 (4.24)

(so that Fo, = —8p,/0z = Ep). The second term on the right really results
from solution of the Poisson equation Ay, = 0 with Kelvin’s theorem, which
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says that if ¢, o 7 is a solution, then there is another solution oc 1/r™+!
for the same angular dependence. In the present case of a sphere

r= (22 +y*+ 22, dr/dy=y/r,

so that

dq 3p-2y 3ps2y
= -k E,, =k—=. 4.25
dy ,',,5 I Y 7‘5 ( )
Analogously, we obtain
Y&~ 3pzz2
e=FEo—k=+k ) 4.26
E Ey kr3 + 5 (4.26)

Thus outside the sphere and for 7 near a the field components Ky, E,z, E-,
are different from zero and lead to a curving of the lines of constant E or D
(see below). The condition (1), in which we can replace 8/06 by 9/0 cos 6,
yields
Pz
E, = FEy—k=. 4.27
0 CL3 ( )

We note in passing, that this equation follows also from the continuity of
the potential at the boundary of the sphere, i.e. at r = a. Analogously,
condition (2) yields the equation

2p.
€1 (Eo + k I; ) = e F;. (428)

a

From Eqgs. (4.27) and (4.28) we obtain
Ei—Eo=—k£Z—=M,

a3 26y

i.e. 5
2 F
1+ 2 € + 2¢1
261
y y

(a) (b)

Fig. 4.8 Bending of lines of E.
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In Example 4.5 the corresponding result is derived for a cylinder. From
Eq. (4.28) we also obtain

kp, = (Eo — Ey)a® = Ey (1 I )a3,
€3 1+ €€

and hence
€2 —€1 3

€9 + 261

kp, = Ey. (4.29)
It follows, that p, > (or <) 0, if €3 > (or <) €;. Substituting the expression
(4.29) into E,, for p, allows us to determine the distortion of the field lines
in the neighbourhood of the sphere. Let tan @ be the gradient of the E field
line of force at a point. Then, we have

tanf =

an an >0 for ey > e,

E,. Eo <0 for €9 <e.

The correspondingly distorted lines of E are shown in Fig. 4.8. Figure 4.8(a)
shows tanf > 0 for z > 0 and (b) tanf < 0 for z > 0. The next figure,
Fig. 4.9, shows the paths of lines of D for (a) €3 > €; and (b) €3 < €.

81 /8_2\ —___’{17 82 m—.
o
€, > € €4 > €y

(@) (b)

Fig. 4.9 Lines of D.

The limiting case of e — oo: This is the case of the conducting sphere:
E; = 0 (i.e. potential ¢ = const.) in the interior. This case is depicted in
Fig. 4.10.

Fig. 4.10 Lines of D.
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One should note that in Fig. 4.9(a) the behaviour of the D-lines in the
interior: € — oo, E; — 0, but D = ¢E; = finite.
The limiting case €3 <K €1: In this case we have
361 3

_EOa

E,=—Fy~
€9 + 2¢1 0 2

but D = €FE, so that Dy = eaFs = g—eon ~ is small for e — 0. In this case
the D-field is expelled from the sphere, as indicated in Fig. 4.11. This is the
electric analogy to a superconductor in magnetism.

Finally we ask: How do lines of E differ from lines of D? D-lines
cannot be created at the boundary since V -D = 0 (no external charges). In
the interior as

g, —0

—

Fig. 4.11 Expulsion of lines of D for e; — 0.

well as the exterior of the sphere, P is parallel to E, if the dielectric is
isotropic, i.e. P = xE. In the nonisotropic case this does not apply. Then
the polarisation charges pp are additional sources for lines of E as indicated
in Fig. 4.12, because then

0=V .D=¢V . E4+V -P=¢V -E-pp,

ile.

E

Fig. 4.12 Additional lines of E in the presence of polarisation charges.

Example 4.5: Polarisation of a cylinder in a homogeneous field Eq
Determine the field inside a cylinder of radius 7 = a and with axis along the z-axis in analogy to
the case of the sphere above.
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Solution: The potential ¢ outside and far away (r >> a) is
wa = —Egz, z=r1c0s0,

and we have Ay = 0, except where there are charges. For the potentials outside and inside we set
respectively (see the comment on Kelvin's theorem after Eq. (4.24))

B
Pa = -(Eor + —) cos 8,
T

and
pi = —E;z.

At r = a we must have p, = ¢, i.e.
B
Ega + — = E;a,
a
and continuity of D - n = eE, = —edV/dr. Hence

€1 (Eo — %) = e E;.

The two equations can be solved for B and E; giving

B= (—61 — ee)a2Eo, E; = (—261 )Eo-
€1 + €2 €1 + €2

An application of this result for E; can be found in Example 4.6.

4.6 Energy of the Electric Field

4.6.1 The Energy Density Formula

In accordance with the definition of the potential, the potential energy of a
charge ¢ in the potential ¢ is W = q¢. In the case of a number of charges
the energy is, as we saw earlier,

1 k
W=D qdi, ¢i= ) k——-
2 & | — ]
? qki‘éfh
In the case of continuous charge distributions we have

1
W =3 [ ewetcyar.
Since V - D = p, we have

W = %/q&(r)V-Ddr

=%{/V-(¢D)dr—/D~V¢dr}
=%{/F¢D-dF+/D-Edr}

= -;. / D - Edr. (4.30)
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To obtain the total energy, and in view of the concept of a field, we have
to integrate over all space. Then the surface integral yields a contribution
which tends to zero (as we explained earlier).

We now want to show that the total energy of the electrostatic field is

1
§/DEdr,

even if the space encloses conductors, provided the volume of integration
is only that of the dielectric. This result can be deduced as follows. The
potential energy of a dielectric with enclosed conductors of potentials ¢,
enclosing charges ¢, is, with

qn:/ V:-D= D,, - dF*
Vi Fx

and
dF*,, = —dF,,

as can be seen from Fig. 4.13, given by

1 1
W=- ¢PdV + 5 bnqn

2 Vdiel 2 zn:
1 1

== -DdV + = " D,, - dF:
2 Vel oV * 2 ;¢ Fx " "

=1[ V-(¢D)dV—/ D V¢dV + ) ¢, Dn-dF*n}.
2 Vdiel Vdiel n F7,

This can now be rewritten as (note in the second step the contributions of

’ Finf

= 0,

inf

dielectric

Fig. 4.13 A dielectric with conductor cavities.
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Fyje) from inside and outside boundaries of the dielectric)
D-EdV — qun/ Dn-an]

Vd)el n Fn

1
= D - dF D, -dF,

- { /F LEDY /F 4D

+/ D-EdV - ¢n Dn.an]
Vdiel n Fn

- D . EdV. (4.31)
Vdiel

W=1[ éD - dF +
2 Fd)el

4.6.2 Polarisation Energy

Finally we consider the change in energy when a vacuum is replaced by a
medium. Let Ag¢W be this change from vacuum values Dg = ¢gE¢p and Eg
to medium values D = ¢gE + P and E. Then

A0W=%/dr[D-E—D0-EO].

We set D = Dg + D, so that

Aowz-;-/dr[Do-E—D-EO]+%/dr(E+EO)-5D.

Here (E + Eg) = —V ¢/, where ¢’ is a potential. Using the relation
“div(scalar x wvector) = grad(scalar)-(vector)+ (scalar) div(vector)”,

we have
/ T (A / .
-V¢' -6D=-V-(¢'éD)+¢ V-4D .
§(V-D=p)

With Gauss’ divergence theorem the first term integrated over the volume
becomes a surface integral which vanishes. The second contribution vanishes
if no new charge ép is introduced. Hence

AoWI 1/dr[D()'E—--D-E()]
/dr[€0E0 - (GoE + P) . E()]

- / dr[P - Eo). (4.32)
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This result is used in the following example.

Example 4.6: Measurement of electric susceptibility

Consider a cylindrical U-tube filled with some liquid (I) to the same level in both arms in the original
equilibrium position with vapour (v) above. A homogeneous electric field Eq is applied to one arm
of the U-tube. In the presence of the field the liquid rises to a height h above the equilibrium
position. Considering this arrangement as a cylindrical dielectric exposed to an external field Eo,
find an expression from which the electric susceptibility of the liquid (x; = €;/eo ~ 1) can be
obtained if that of the vapour (x.) is known.

levels

Fig. 4.14 The U-tube with one arm in field Ey.

Solution: Let F' be the constant cross section of the tube and p the density of the liquid, and ¢
the acceleration due to gravity. The hydrostatic force producing the rise of the liquid to height i
above the original equilibrium position against the vapour is

pF(2h)g,
and the corresponding energy is
h
/ pF(2h)gdh = pgFh?.
0
The change in electrostatic energy is — using Eq. (4.32) — the change in polarisation energy

DoW, — AoWy, = —%/dr(Pl — P,))Eg

h
—% /0 (Fdh)(P; - P,)Eo

l

1
_§Fh(Pl — P,)Eg.
The total change in energy is therefore
1
Wiotal = Pth2 - §Fh(Pl — Py)Ey.

The condition for equilibrium is 8W, .1 /0h =0, i.e.

_(P—P)Bs
4pg

h
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Now, for i = I,v we have P; = eox:Ei, x: = €i/e0 — 1, where E; is the field in the medium i = [, v.
From Example 4.5 we obtain for the cylindrical media I, v

2 2
E=-2F E=-—2F,.
€0+ € €0+ €y
Then 9 9
P, = MEO — 260<1 — L)Eo.
€0 + €; €0+ €;
Thus
h— 2€0Eg _ 2¢0 2¢0 ] _ (60E0)2 € — €y
4pg €ote  co+ew pg (o +e)(eo + €)’

which can be reexpressed as
el — xw) E2
—_————— . 0 .
pa(xi +2)(xv + 2)
From this we obtain
€0EZxv + 2hpg(xv + 2)
€0 E§ — hpg(xv + 2)

Hence by measuring h, and since the other quantities appearing on the right are assumed to be
known, the susceptibility x; of the liquid can be determined.

Xt =

4.7 Summary of Formulae of Electrostatics

We summarise here the most important formulae of electrostatics.

(1). Multipole expansion:

_,Q ,pr
E=——V¢=—kV[9—p-V—1———+---],
r |r —r;|

but (note the signs of the dipole contributions)

q; 1
E(r)=—kVZ[-—j—~+pj'ij+---],
j

Ir —rj]
since ) , )
r—r r
= — =V
AT R A ™
and
I r—r _ 1
"=t T e-rP T ko

(2). Macroscopic electrostatics:

V-D=p, D=¢E+P,
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P-n=op, V-P=-—pp,
VxE=0, (E=-Vg).

Note: We have to distinguish between pp,op and p,o. For homogeneous,
linearly isotropic dielectrics the following dielectric material equations
can be used:

D =¢E, P =¢xE.
(3). The behaviour at boundary surfaces:
(E; —Eo) n=dnk(c +0p), (D;—Ds)-n=o.
But always for tangential components of E:
Eyt — Ey =0.

For P # 0 there is no corresponding relation for D.
(4). Energy of the electric field:

The total energy of the electrostatic field is

W=%/D-EdV.
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Chapter 5

Magnetostatics

5.1 Introductory Remarks

Magnetostatics deals with stationary currents. So far we considered only
static charges. A current, however, consists of moving charges. The funda-
mental observation, that magnetic fields exist in the neighbourhood of cur-
rents, and hence of moving charges, was made by Oersted in 1819. Oersted
had observed that a magnetic needle aligns itself in the vicinity of a current
carrying wire perpendicular to this wire. Within a very short time after this
discovery (i.e. within a few years) Ampere published his results of a series of
experiments which established the law of the force today named after him,
and Biot and Savart observed the corresponding law (for a current element)
that carries their names today. We are concerned with these laws in this
chapter.

5.2 Continuity Equation and Stationary Current

Here by current density we mean only that of the conduction electrons; we do
not mean the current density of (classically considered) circular currents of
molecular electrons (which, by the way, are not even sufficiently well known).
First we consider the case without matter effects. A precisely known current
density j is defined by the charge density of positive charges multiplied by
their velocity, i.e.

. ds
i=r (5.1)

in ampere/ m? or C /m? s. We use ds for an element of the trajectory or path
as indicated in Fig. 5.1, in order not to confuse this with the element of

109
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some distance, dr, or the volume element dr. As usual ¢ represents the time
variable.

Fig. 5.1 The current element.

The current I is defined as that amount of positive* charge which passes
through an area F' per unit time, i.e.

I:/Fj-dF:jF (A =C/s)

_/pds'dF
F dt
_ ds
~Par
dV  dq
if p
0
-9 = 3
5 , and g = pV (5.3)

(the latter is, in fact, the integrated form of the equation of continuity to be
discussed below). With the help of the previous equation we also have

Ids = p%ds =jdV
ds ds

= (pdV)— = dg—. (5.4)

*For an explanation see for instance also Jackson (3], p. 169.
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In the following we also write § = ds/dt. In addition we have — these
manipulations serve the purpose of making the definition of a surface current
plausible —

ds dq/dt _ 1(2mrds) I
2 M Y orrds = ~—L = —_dF,,, 5.5
dq dt 2rr rds 2rr omr Y ! (5:5)
where I J
q .
=__ - = 5.6
2rr chyls v (5.6)

is a surface current, also called layer of current, and o charge per unit area.

Hence we can write
Ids = jdV = KdF, (5.7)

where I represents the line or linear current, j the volume current density
and K the surface current density. We now construct the divergence:

V.j=V-(ps)=pV-5+(Vp)-s

But p
V-s =V. r—EV r-—a3-0

This condition, the vanishing of the divergence of a velocity, is known as
condition of incompressibility (as in hydrodynamics). We obtain with this

s=r

V-j=(Vp)-s
In general one has
dp(s,t) _ Op .
_Op
=5 +V-j (5.8)

Since (see above) dp/dt = 0, it follows that

0= gt +V-j. (5.9)
This important equation is known as equation of continuity. The equation
plays an important role in many branches of physics, including quantum
mechanics and statistical mechanics. The condition dp/dt = 0 implies, that
in every time interval the number of charges in every unit volume remains
constant. This again implies, since charges move in and out, that no charges
are created or annihilated. The significance of the equation of continuity is
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therefore that as much charge as flows into a volume element per unit time,
also flows out of this volume element again per unit time. Thus the amount
of charge in every volume element remains constant, or — as one says — is
conserved. Assume now that in addition dp/8t = 0. This condition says, that
the density does not change explicitly with time. This condition is described
as the condition of stationarity or (specifically in statistical mechanics) of
equilibrium. We thus have as condition for a stationary or steady current

v.j=0. (5.10)

Stationarity is attained only after some time interval, e.g. after a condenser
has been charged. Thus 9p/0t = 0 does not apply immediately at the time
of charging or discharging of a condenser.

Example 5.1: The relaxation time of a dielectric

The homogeneous dielectric of a condenser has a weak conductivity o. Calculate with the help of
the equation of continuity and Ohm’s law in the form j = oE (cf. Sec. 6.1) the relaxation time of
the dielectric (dielectric constant €), that is, the time interval in the course of a discharging of the
condenser, in which the charge density drops to the fraction 1/e of its original value.

Solution: We have

Op
V.j+-—-=0, j=oE,
"+8t J=0o

from which we obtain 5
oV -E+ il =0.
ot

Since the dielectric is homogeneous, i.e. isotropic, we have D = €E, € = const., and so the equation
implies V-D = p, V- E = p/e. With this and the preceding equation we obtain

% _ _or
ot e’
i.e.
p=poe 7t/

where at time ¢ = 0 we have p = pg. The relaxation time is therefore €¢/o. This expression is large
for small 0. We observe here incidentally that in the Gaussian system of units with ¢g = 1 the
conductivity is given in seconds—1.

In much the same way as one can produce a steady flow of water with
the help of a pump, one can use a battery in a closed circuit to produce a
steady or stationary current. The area enclosed by this circuit is of particular
significance for its magnetic properties. We can imagine the addition of
further conducting wires as illustrated in Fig. 5.2 until the entire area is
filled with a net of these covering the entire area of the original circuit which
then appears as the boundary of the net. The stationary current is flowing
in this boundary whereas currents in the net segments inside all cancel each
other. It is because the internal currents all cancel each other (no matter
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what the size of an element of the net may be), that the net has the same
magnetic properties as the original circuit.

Fig. 5.2 The net of conducting wires.

5.3 Ampére’s Experiments and the Law of Biot
and Savart

In electrostatics we saw that Coulomb and Cavendish had discovered the law
of force o« 1/72 experimentally, but that the proportionality of the force to
the charges was more or less guessed. In the case of magnetostatics Ampere
discovered that the force acting between current carrying circuits which had
been arranged in a particularly symmetric fashion, is similarly proportional
to 1/r2, where r is the distance between the circuits, and he deduced from
this that this behaviour is of a general kind.

Fig. 5.3 The first experiment of Ampere.

Ampeére was largely concerned with the study of forces due to current carry-
ing wires. In one erperiment he demonstrated that two wires close to each
other and carrying equal but opposite currents do not exert a force on some
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distant conducting wire. Today we know that the magnetic fields annul each
other in this case, as illustrated in Fig. 5.3. In a second experiment Ampere
demonstrated, as far as the effect on other current carrying conductors was
concerned, that arrangements of conductors as in Fig. 5.4 have the same
effect (i.e. the same field). In a third ezperiment Ampere showed, that the
forces stemming from magnets or currents which act on a wire having the
shape of a circular arc carrying the current I do not move this wire and hence
must be vertical to this wire (F = [ Ids x B(r)). In this experiment Ampére
used the subtle arrangement illustrated schematically in Fig. 5.5. The two
mercury columns provided the necessary electric contact with the element of
wire, which could move freely in its plane around a vertical.

T~ T~

Fig. 5.4 The second experiment of Ampere.

Finally in a fourth experiment Ampére showed, that the force acting between
current carrying loops is again proportional to 1/r2, r their separation.

wire \
_—

Hg
!

Fig. 5.5 The third experiment of Ampere.
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To this end he constructed a symmetric arrangement of three circular coils
carrying current I, whose radii were in the ratio n%(= 1) : n! : n?. Let the
distances of the first and the last coils from the second coil be a and b as
indicated in Fig. 5.6. The central coil was then adjusted in such a way, that
the forces due to the currents balance each other out. If, as stated, the radii
of the coils are respectively 1,n,n2, then equilibrium (no motion) is obtained
for (this was Ampére’s experimental observation)

b = na.

If the forces are proportional to the circumferences or equi-angular arcs, then
this means (with f(z) for the dependence on the distance) for equilibrium
at b = na:

21 - 2mn - f(a) = 2mwn - 2mn? - £(b)

b=na

(ignoring the effects of the outer coils on each other), i.e.

f(a) = n*f(na),

l.e.
const.
2

fla) =

a

(so that const./a? = n%const./n2a?). This is the 1/r2 law for currents.

The fundamental formula for the field outside a current carrying wire is
today named after Biot and Savart, who had also discovered the law o< 1/r2
shortly before Ampére (1820).

. fixed

\ /U
et

Fig. 5.6 The fourth experiment of Ampére.
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The experiments of Ampeére (1820-1825), however, were considerably more
rigorous and were praised by Maxwell! as “one of the most brilliant achieve-
ments in science’.

The actual postulate or the law of magnetostatics derived from observa-
tion is Ampére’s law, which (like that of the Coulomb force between charges
in electrostatics) gives the force F between two current carrying string-like
conductors as illustrated in Fig. 5.7, and can be written

C, C,

ra

/

0]

Fig. 5.7 Two conductor elements.

F= H.Q_% f Ildsl X {IzdSz X grl - rg)}. (5.11)
dr Jo, Je, |r1 — rof

Using
dsy x {dsg x (r; —r3)}

= {dS] . (I‘l — rz)}dSQ — (d51 . dSQ)(I‘] — rz)

and Stokes’ theorem, with which

r{ —ro 1
ds -——=—}4 dsy - Vp ———
fél - a ey —rof

1
=—/ dF - VXxV—mF,
Fe r1 — rof

1
=0,

the force F is also given by

F= _@}{ ?f Iids; -IzdSQ(rl—_-I:?%. (5.12)
47 ¢y Joy |1‘1 —I‘2|

See e.g. Harnwell [14], p. 298.
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The law of Biot-Savart thus abstracts the observations of Biot, Savart
and Ampere by specifying an expression for the magnetic field B, called
magnetic induction or magnetic fluz density,} but frequently also simply
magnetic field, which a conductor with current I, or the conductor element
of length ds — see Fig. 5.8 — generates at a point r outside the conductor,
and is defined by

I(x")ds(r') x (r — ') Ko
1 r_ KO
aB(r) =K W=k (5.13)
or
I(r")ds(r") x (r — 1)
=k
B(r) ~/conductor |I‘ - r/IB
st ’
o i) % (e = 7). |
/conductor dar |I‘ - rll3 (5 14)

In MKSA-units the constant k' is given by

K = Z—i, po = 4m x 1077 = 12.566 x 107 N A2,
The magnetic induction B is then given in units called tesla (T) (named
after the engineer of this name); 1 tesla = 10? gauss. In Gaussian units the
constant is k' = 1/c.

—_—

ds

ﬂ
— O

O

Fig. 5.8 The conductor element.

As mentioned above, Ampeére was mainly concerned with the investiga-
tion of the force that one current exerts on another current carrying con-
ductor. Consequently it became customary to describe as Ampére’s law the

e begin here with the induction, although we have not yet considered media. Some authors
therefore start with the magnetic field strength H, which we introduce later.
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expression for the force, that a field B exerts on a conductor with current
I. This means the expression obtained by inserting the above expression for
dB into that for F, i.e.

F= /I(r')ds(r') x B(r'). (5.15)

In the MKSA-system of units the proportionality constant appearing in this
expression is 1. This constant follows by demanding that force equals time
derivative of momentum; indeed the logical derivation of this expression is to
go to the relativistic theory, obtain there the four-momentum of a charge in
the gauge field, and then to differentiate the latter’s space-like components
with respect to time. Some authors, e.g. Greiner [4], say simply, the constant
k' “is obtained experimentally as 1/¢” in the Gaussian system.
With the relation Ids = jdV it follows that

F= / i) x B(r')dr'. (5.16)
conductor
For a point charge ¢ moving with velocity v, we can write
j=qvé(r—1) (5.17)
(a precisely known current density), so that
F = qv(r) x B(r). (5.18)

This expression is known as Lorentz force (cf. Jackson [3], p. 238, where this
expression is initially written down with little justification). A version of this
equation which is of practical importance, and is also described as Ampére’s
law, is obtained by writing it, e.g. in the simple perpendicular case, as

dF =1Bds, I =dq/dt.
In the case of a coil with N turns in the field B, the torque (moment) of this

force is then dFdl = INBdA, where dA is the area dsdl.
The expression for B should be compared with that for E, i.e. the formula

E(r)=k/dr'-p(r,)(r——r,), k= L

[r—r/|3 " d4mey’

The field B follows for moving charges (current density j) in a similar way
as the field E for static charges (charge density p).

$0ne way of determining experimentally the constant relating electric units to magnetic units
(which turns out to be ¢) is discussed briefly in Appendix B in relation to the experiment of Rosa
and Dorsey.
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5.4 Examples

In the following we consider examples which are important in later contexts,
and therefore do not simply serve the purpose of illustration or exercise.

Example 5.2: The field B of a long, straight conducting wire
Calculate the field B of an infinitely long, straight conductor carrying current I (see Fig. 5.9).
Solution: From the Biot—Savart law we obtain (with k/ = po/47):
oo B
B(r):Ik’/ ds x (r—r')
oo r—1']3
With the geometry of Fig. 5.9 this can be written

> ds|r — r'|siné
- . 712

B(r) = Ik’/

o P

Fig. 5.9 The long, straight conducting wire.

so that

[e =) oo d
B(r) = Ik’/ _rds Irk'/ s

—oo [r—1/[? —oo(r2ﬁ)—3/—2
Irk’ s e 2Irk’
- 7"_2{ 2+ s ]_ooz 2
po 1

= . 5.19
27 r ( )
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Example 5.3: The force between two long, thin, parallel conducting wires
Calculate the force which two infinitely long, parallel conductors exert on each other.

Solution: We consider the case as depicted in Fig. 5.10. Conductor 2 generates the field Bo at
conductor 1 which follows from Eq. (5.19):

_ 2

By p

kl

where d is the distance between the conductors. The field B2 is perpendicular to the currents
I;,I>. Hence the force, that By exerts on conductor 1, is (cf. Eq. (5.16))

F=y/hawﬁ§=y§¥?/awy (5.20)
l4 , ds
T 4 T P force
A B
force
ke

A
@

L A 7 7 T 77,
T T 77

Fig. 5.10 Two long, thin conductors.
The force per unit length of the conductors is therefore:

w2hl _ LD

d  Mora

For 11,15 parallel we have the situation illustrated in Fig. 5.10.

Example 5.4: The circular or ring conductor
As another important example for the calculation of the field we consider the circular or ring-shaped
conductor shown in Fig. 5.11 with current I and radius a.

Solution: The components of the field B perpendicular to the z-axis cancel each other along this
axis. The field dB at r along the axis due to the element ds of the conductor is according to the
Biot—Savart law given by:

ds(r’) x (r — r’)

dB(r):Ikl Ir =13
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Along the z-axis dB is
dB(r)a

Ir—r|’

dB(r)cosf =

Hence the magnetic induction B at point P along the z-axis is:

Fig. 5.11 The ring-shaped conductor.

adB(r)
conductor ll‘ - rll

_k,/Ildsx (r—r)] a
r—r?  fr-r

B =

d6’
= Iak’/la—ng (since ds L r—r’', ds = adf’)
r—r
2

= Iak/(—1”_2T7;aT)375 (Since r L I')y (5.21)

i.e. for r > a:

k' po Ia?
B~2Ima®~ =222, 5.22
ra r3 2 3 ( )

We will deal with this problem again later (see Example 5.7), because one expects the field B at
a point r to be related to the solid angle which the ring-shaped conductor subtends at this point.

Example 5.5: The magnetic moment
The magnetic moment of a circuit is defined as 1/2 the volume integral of the moment of the

current density, i.e. as
1 . 1
m = §/dr[r x j(r)] = 5/1‘ x Ids(r) = I/dF, (5.23)

where, see Fig. 5.12 (a), dF = %r X ds is an element of area. Calculate the field.

Solution: In the special case of the ring-shaped conductor considered above we have

m= I7ra2,
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a relation which is also known as Ampére’s dipole law. By definition the current I has the direction
of positive charge; hence m is opposite to the direction of negative charge. In terms of the expression

for m we can rewrite B of Eq. (5.22) as
2m
B=k—.
r3

It is instructive to compare this result with the field of an electric dipole with moment p as
illustrated in Fig. 5.12(b). The electric field at point P follows, as we saw, from

P'r'h pr P
E= _Vqsdipole» ¢dipole = kj‘ =° kr_3 = kr—2,

so that
E= kgg.
ds (n) |P(r)
+e
0]
-e

(a) (b)

Fig. 5.12 (a) Circuit element, (b) dipole.

—

+

—

Fig. 5.13 Analogy between the fields of a circular current and a magnet.

The general expression for E, i.e. at a point P in the direction of the polar angle 6 as seen from
the origin, can immediately be written down {or see e.g. [4], p. 36)

2 6
p cos o+

ing 1
o er + k2 ey, k= (5.24)
T

k =
3 o 4dmen’

E=k
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in agreement with the above expression for polar angle § = 0. Taking into account that (see

Chapter 1 or later)

k2m Em
! e = 2 = 2 =
k/k—-l/c, B—02 73 02,

we obtain the correspondence

1
B~ -E, me cp.
c

This means, the magnetic moment m generates the field B in complete analogy to the generation
of the field E by an electric dipole, and

2m cos 6 msinf@
— kl " kl
B(r) 5 e 3 e
K 3r(m-r) —r’m
5
k’Vn:: (5.25)

We see therefore that a circular current generates an induction field B, which sufficiently far away
looks like that of a dipole, as indicated in Fig. 5.13.

5.5 The Electromagnetic Vector Potential A

We return to the law of Biot—Savart. With

r—r 1 o 1
r—rP " Tle-r] -]
we have
) 1
B(I‘) = —k//dr’J(r’) X VTTIT——IJ'
st d !
— v, x k(3T (5.26)

v —r'|
(where k' = po/4m). But “div curl” is always zero. Hence
V - B(r) = 0. (5.27)

This equation has no source term on the right hand side. This means in
physical terms: There are no single magnetic poles, i.e. monopoles. How did
we arrive at this result: The empirically obtained law of Biot—Savart gives
the field B which surrounds a conductor with current I; we saw that this field
corresponds to that of a magnetic moment, a magnetic moment, however,
corresponds to a pairing of magnetic poles — hence no single magnetic poles
enter the consideration. It should be noted that we are (apparently) dealing
with macroscopic considerations (the Biot—-Savart law applies to macroscopic
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conductors); these can, however, also be interpreted microscopically (the
classically considered electron encircling a nucleus represents a current). The
effect of the magnetic induction B on magnetisable matter will later be
considered separately, in analogy with macroscopic electrostatics.

We now define the electromagnetic vector potential A by

Ly drl
— k}l J(r) .
A(r) / m— (5.28)
so that
B=VxA (5.29)

(A is not unique, since A + V¢, for ¢ a scalar function, is also possible; see
gauge transformations below). We next evaluate the expression V x B, in
which we use first the formula

Vx(VxA)=V(V-A)-AA (5.30)
(“curl curl = grad div — div grad ), then

1
Aol =

(and integrating over the delta function), and finally use Gauss’ divergence
theorem. We then have

—47é(r — 1)

VxB=V x (Vr x k' j(r')dr')

e —r'|

LYW /

_k’V/V ’ —k /ArM
oo o= o]
_k’V/( _r,l>dr'+47rk'j(r).

Since V., acts only on the denominator this can be rewritten as

VxB=-k'V / j(x') - (xmﬁ) dr’ + 4nk'j(r)
- _k'v/dr'[v'- (lj(r/) >— | 1 V’-j(r’)] + 4rki(x)

r—r| r —r'|

— _k/V dF . j(rl)
Foo v —r/|

VI 'j I,I X
Ir—_(rll—)dr' + 4rk'j(r). (5.31)

+k'V
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Here the first term vanishes, if we extend the area of integration #' to infinity
and remember, that j = 0 at » = oo, since the conductor and hence j are
located in a finite part of space. The second term also vanishes, since in
magnetostatics V - j = 0, which is the condition for stationary currents.
Thus there remains in magnetostatics

V x B = poj(r). (5.32)

As a subsidiary result we obtain:

vV A(r) =k'vr-/(i(-rl,])dr'

L

. 1
= —k'/J(r/) . (Vr,m>dr/

-t [l () a0

k[ ap. 30y [ ¥ E)
Fo  [r—r| v —r'|

=0 (5.33)

for reasons explained above. Thus
V-A(r)=0. (5.34)

This relation is known as Coulomb gauge. It can be shown,¥ that this con-
dition has the physical meaning that only two components of the vector
potential A are independent, and that the vector A is orthogonal to the
propagation vector k of the free electromagnetic wave, and hence implies
the transversality of the wave (fields E, H perpendicular to the direction of
propagation).

One should note: Here we arrived at the relation V- A = 0 only as a
consequence of V -j =0, i.e. in the case of stationary currents. A condition
of this kind, however, is always required for the vector potential, as a con-
sequence of the so-called gauge invariance of the theory. By this one means
(put simply) the invariance of the field equations or equations of motion,
here the Maxwell equations, under transformations (here for magnetostat-
ics) called gauge transformations, i.e.

A—-A'=A4Vy, ¢—¢ =0,

T5ee Chapter 18.
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(more generally ¢' = ¢ — 9x/0t), where Ax = 0. The invariance of the
equations obtained so far follows immediately:
E—-E=-V¢ =-V¢=E,
BoB =VxA'=Vx(A+Vyx)=VxA=B,
V- A=0-V-A'=V.-(A+Vyx)=V-A=0 (since Ay =0).

Again one should note: The invariant fields E and B are macroscopically
observable quantities, the nonunique gauge potential, of course, is not.

5.6 Integral Form of Ampeére’s Law
We return to our earlier considerations. We know that

1. —4mé(r — 1').

e—r|

Hence we have with Eq. (5.28):
AA(r) = —47rk'/6(r —r)j(x")dr,
ie.

Thus the current density j is the source of the vector potential A. This
equation should be compared with the Poisson equation A¢ = —4nkp = p/eg
in electrostatics, in which the charge density p appears as the source function
of the potential ¢.

dF

N

Fig. 5.14 Currents through a surface.

We now take a closer look at Eq. (5.32). This equation is also described
as Ampére’s law; in fact it is the differential form of the Biot-Savart law.
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(Since for a gauge transformation V x B = V x B/, the invariance of this
equation requires that j = j'). We apply to Eq.(5.32) the theorem of Stokes

and obtain
/VxB-sz%B-ds:uo/ j-dF, (5.36)
c F(C)

where ds is an element of the path C enclosing the area F'(C). Let us assume
that n conductors are enclosed by C as indicated in Fig. 5.14 (or one with
several turns or wiggles passing through the area enclosed by C, some also
in opposite directions). Let I be the current flowing n times through the
surface enclosed by C in one direction (or the net number, if currents are
also going in the opposite direction). Then

#0/ §-dF = ponl,
F(C)

and hence
f B - ds = ponl. (5.37)
C

This important formula is the integral form of Ampére’s law. In view of
Egs. (5.32) and (5.35) we have

VxB+ AA=0.

But
Vx(VxA)=V(V-A)-AA=0-AA

and always V x V = (. Hence
B=V xA+ Vg

Since, as we saw, V - B = 0 and always “div curl = 07, it follows that ¢¢ is
solution of A¢g = 0. If A = 0, then it follows that B can always be expressed
as a gradient (the so-called Coulomb law of magnetostatics for hypothetical
monopoles).

5.7 Further Examples

Example 5.6: The magnetic field of a long solenoid with current [

Since the solenoid is stated to be long, the magnetic field in its interior is practically homogeneous
and outside practically zero, as we can see immediately by drawing lines of constant B into the
diagram as in Fig. 5.15. One observes that the lines crowd together in the inside region and thin
out outside. The field inside is to be calculated.
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Solution: In Fig. 5.15 a path C is shown, which encloses N turns of the solenoid. Hence

f B.ds = INpo,
C

where IN is the current flowing through the surface

A} AlA

Fig. 5.15 Longitudinal cross section of the solenoid.

enclosed by C. Since the field B outside the solenoid is practically zero, and B along the two
transverse sections of length d in Fig. 5.15 is also practically zero, and inside the solenoid the field
is practically homogeneous, it follows that

Bl =1INup, ie. B=Inpug, (5.38)

where n = N/[ is the number of turns per unit length of the solenoid.

Fig. 5.16 A different closed path C.

For a better understanding we choose another closed path C as indicated
in Fig. 5.16. In this case the field along the path is everywhere zero, i.e.
fo B - ds = 0. On the other hand (since the path this time encloses ingoing
as well as outgoing currents)

/j-dF:QI—QI:O.
C
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Thus here the path was selected in such a way that one is unable to determine
the field B.

Example 5.7: Significance of solid angle subtended by a current loop
(a) Show that the field B(r) at point r due to a closed current carrying loop (current I) is given
by
B(r) = -2 v(19),
4m

where 2 is the solid angle subtended by the current loop at the point r.

(b) With the help of the expression obtained under (a) for the field B(r) calculate the field B(z)
of a ring-shaped conductor of radius a at a point P(z), distance z above the centre O of the
ring-shaped conductor.

(c) A solenoid of radius a, length I, with current I, consists of n uniform turns per unit length.
Determine the component of the field B in axial direction at a point a distance z away from one
end of the solenoid (e.g. from the origin O there on the left side of the axis).

Solution:
(a) We consider, as indicated in Fig. 5.17(a), a displacement of the point P by dr, which is
equivalent to a displacement —dr’ of the element of area dF’ = dr’ x ds(r'), i.e. dr = —dr’.

(d(r —r') = —-d(r' —r)).

P dF'

Fig. 5.17 (a) The element of area,

Starting from the formula
pol [ ds(r') x (r —r')
Bry=—¢ ————~,

4 r—r'}3

we then have

uol , ds(r'yx (r—vr')  pol [dr' xds(r’) (r—r')
dp = HoL [ d8() x (r—x')  pol
B(r) - dr ™ f r fr—r’|3 an |r —r/|3

_pol [dF-(r—1')

4 Ir —r'[3

= KIdo', k=%
—_— b 471_ k)
where dw'’ is the solid angle subtended at P by the entire ring-shaped area, that arises in the shift
of the loop. Thus
B(r) - dr = —k'Idw’ = —k'd(I),
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where 2 is the change of the solid angle of the conductor loop at P. The solution of the last
equation is therefore

B(r) = —k'V(IQ). (5.39)

(b) We now consider a circular conductor of radius a. The problem is to determine the solid
angle subtended by the circular conductor at the point P in Fig. 5.17(b). We determine this by
calculating the area Fg of the spherical shell (centre P, radius vaZ + z2), which has the conductor
as boundary. We obtain this area from the corresponding part of the area of the corresponding
cylindrical envelope dashed in Fig. 5.17(b). It can be shown that these two areas are equal,

Fig. 5.17 (b) The spherical shell and its cylindrical envelope (dashed).

Fs = (27 X cylindrical radius) x cylinder height,

implies
Fs=2mV/22 + a2(\/22 +a? - 2).

0= area Fs —27|—<1_ z )
(radius)2 ~ (vVZZ ¥ a2)2 VeZtazt)

It follows that

Hence
1] 1 22
B, =—-k'I—Q=Fk1I2 -
0z 7T{,/;2_24_,1 (22+a2)3/2}
2wk/ Ta?

T 2 1a2)32

in agreement with Eq. (5.21).

(c) Next we consider a cylindrical solenoid of radius a and length ! as indicated in Fig. 5.17(c).
The problem is to determine B in axial direction at point P, distance x from O. First we consider
only one turn at y and so ndy turns in the immediate neighbourhood. Hence we calculate the solid
angle subtended by the turns at y at the point P. This solid angle is, again calculated as above

IT6 this end one considers the ring-shaped area of the spherical shell of radius a (in Fig. 5.17(b)
this radius is v/aZ + 22) with ring radius 2ma sin 6 and ring width ds. This radius multiplied by the
arc length ds gives the area 2masiné - ds = 2mwadz; the latter expression is the area of an element
of the enveloping cylinder. This relation can also be found in the literature, e.g. in K.E. Bullen,
An Introduction to the Theory of Mechanics (Science Press, Sydney, 1951), p. 171.
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with the help of the enveloping cylinder (observe /a2 + (z — y)? is the radius of the sphere which
is equal to the radius of the enveloping cylinder):

_ _area _ 27r\/a2+(z—y)2{\/a2+(:c—y)2—(:1:—y)}
(radius)? (VaZ + (z — y)2)?

= 27r{1— ?/G—Qi—;zy—— _y)z}

v

Fig. 5.17 (c¢) The solenoid.

B = -k’13{2w(1 - _ﬂ——> }
5z Fr -9

We have to sum over the field contributions due to all turns. The interval dy at y contains ndy
turns, so that its field contribution is

7] y—x
N az " Va2 + (z —y)? e

Hence By:

and altogether

o ¢ y—z
B = —k'I———27rn/ d (1+:)
® Oz 0 4 VaZ+(y—z)?
F;) PU——
—k' _ 2 — )2
kIQﬂ'naw{l—l- [\/a + (y - x) ]0}
—k'12wn6£{l + \/a2 + (I —2)2 - Va2 + z2}.
z

l—z T
k’InZﬂ{ + ]
VaZ+(1-2)2 Va2+x2

Hence

B, = k'1n27r|:cos 02 + cos 91}

l—o0

2 4rk’'In = poln

in agreement with Eq. (5.38).
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Example 5.8: The quadratic current loop
A current [ flows in a planar, quadratic loop of wire with sides of length I. Determine the field B
at the centre of the square.

Solution: We consider first the field at a point P, originating from one side of the quadratic loop.
According to the Biot—Savart law we have, see Fig. 5.18 (a),

’ "
dB:QIds(r)x(r r’)

4 fr—r’|3 ’
i.e. (see Fig. 5.18)
dB — ﬁg[dxsinaPQ
4am PQ? ’
We have d
PQ = ,T s tana:—i, —z =rcota, dz:%,
sina x sin® a
so that . 3
dB =10 717‘(1_01(511“ ) = #—O£ sin ada,
4m (sina)?r? 4r
and hence I
B = ﬂ—(cos o] — cos ag).
i T

/
Olp
72
L
o
- | —_—

Fig. 5.18 (a) The field point P, and (b) the quadratic loop.
The requested field at P is therefore

wo I o o Ho4I-2 2 po 8v21
B=4"2 — (cos45° —cos135%) = 222212 2 LAV
an 172 cos135) = o T VB dr

Example 5.9: An electron in a vector potential
An electron at rest (initial velocity zero!) is exposed to electromagnetic radiation given by
A = (0, A(z — ct),0).

Formulate the (nonrelativistic) equation of motion of the electron and derive, one after the other,
the z-, y-, z-components (2, %, &) of the velocity of the electron. Assume that A(u) tends to zero
for u — oo.
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Solution: The force acting on the electron is the Lorentz force. Hence the equation of motion is
p=e(E+vxB), (5.40)

where v = (z, 3, 2) (with the electron initially at the origin). Here E = —0A /0t (the contribution
—V¢ drops out with the given condition), and B = V x A. Hence in our case

E=- (0, %——Ct—),o) = —(0, —cA'(z — ct), 0), (5.41)

where A’ = 8A(z — ct)/8z. Moreover,

€r ey e,
B=VxA=|2Z 3% 2 1=1(0,0,4",
0 A(x—ct) O
i.e. B=(0,0,4’). Hence
v x B =(2,9,2) x (0,0,A") = (yA’, -z A’,0). (5.42)

The expressions (5.41) and (5.42) now have to be inserted into (5.40) and yield
P = e(§A, (c - #)A',0). (5.43)

Thus p, = 0, i.e. z=0. For the y-component we have
.. At . d Y ,d .
mj=elc—z)A', c—2 = —t—i—t-(z —ct), J(c—z)A'=-A E(z —ct) = —A,

.‘.mg’j:—e/l, ,',yz—iA—i—const., const. =0 with y=0,A=0 at t=0.
m

Finally the z-component is given by

2 2
mi = egA’, _-,i:_e_zAA/=_f_.;i 2
m m2 2(z — c) dt
Thus )
e d
2%l5 — :___A2
E(z — c) pne Rl
so that
2 2
dr:2—2ca':=—e—2A2+const., :izczt\/cz—e—A2,
m S—— m?2
0
ie.
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Chapter 6

Macroscopic Magnetostatics

6.1 Introductory Remarks

Up to this point we have only considered currents I or precisely known
current densities j which describe a stationary microscopic flow of charge.
In macroscopic problems the total current density is not known precisely.
The atomic or molecular ring-like currents (and spins) of the electrons in
matter determine the latter’s magnetic properties, whose effective magnetic
moments contribute to the vector potential A(r), as also the conduction
electrons of the macroscopic transport of charge. For macroscopic effects
again only an averaging over a macroscopic volume is meaningful. We can
keep the microscopic current density j considered thus far as the density of
macroscopic charge transport; this has to be supplemented, however, by the
contributions of microscopic molecular currents. Hence we write

total current density = j + jmol-

We are interested here in currents in conductors. We defined the ideal
conductor electrostatically as an equipotential domain in which the electrons
can move about without doing work. If a potential difference V is applied,
and hence a field E,

¢EV:/E-ds,

eg. V=V, -V, =FEL (L = length of the conductor), then the conduction
electrons move in the direction determined by E. One thus has a current
and a current density j. However, in general these conduction electrons can
not move about completely freely. The nuclei of the atoms of the conductor
occupy points in the lattice of the rigid body structure of the metal, and this
lattice interacts with the conduction electrons, although relatively weakly.

135
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Something similar applies in the case of an externally applied magnetic field.
The resistance of the lattice is evident in Ohm’s law, i.e. in the relation

j=0oE, (6.1)

where o = 1/p is the conductivity (gases, for instance, are not linear conduc-
tors, i.e. in their case Eq. (6.1) does not apply, instead j = f(E)). Hence,
with F' the appropriate cross sectional area (I = [ j- dF),

I=Fj=FoF,

and so (see above)

v_&L _L_L_p

I FoE Fo "F 77
Here p is the resistivity, also called specific resistance, and R the resistance,
and we see that this depends on the geometry of the conductor. Here we
usually avoid the use of p for resistivity since this can be confused with p
for charge density. Thus the charge density appears in the product E - j =
pE -ds/dt which (since it represents work per volume and time) is the energy
transferred per unit volume and per unit time from the conduction electrons

to the lattice.

6.2 Macroscopic Magnetisation

We return to our original considerations. In keeping with the subdivision of
the entire current density we write the total vector potential correspondingly

A =Apaer + Aol (6.2)

or

A=FK dr,_j(_r_'_)__ + k’/dr/‘w (6.3)
v — 1| v —r'|’

where j is the conduction current density, jmol the contribution of the molecu-

lar ring currents and k¥’ = po/4m. On the other hand, we saw in the preceding

chapter that the field B of a magnetic dipole moment m is given by

,3n(n-m)—m

B=k with n=- and B=VxA.
r

r3
We verify first that the vector potential of this expression for B is given by

,mxr

A=k—p—, (6.4)

r
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and our intention is to express A in this form.

Example 6.1: Vector potential A of a magnetic dipole moment m
Verify Eq. (6.4).

Solution: We use the formula
Vx(axb)y=a(V-b)~b(V-a)+(b-V)a—(a- V)b,

which implies

||
/—\
wl = ﬁml o
SN—’

<l

g

+

l

qq
S’

]
E)
4

|

since m = const. Moreover, since,

and

so that

it follows that

However

r 8 /r €x 3
m V) = meg () = me (55 - ) 4

mr?  3r(m-r)
T s T T 5
It follows that 2
V)((m)(r),c 3r(m r)—
3 5

in agreement with the above claim.

Thus we can write for the vector potential at the point r, which is due

to molecule “” (m; the latter’s total magnetic moment)

k,mi X (r —r;)

Amol,i(r) = lr _ r|3

Hence

Alr) =¥ /d IIJ( r) T HE Y —m"l:_(’;i_';"). (6.5)
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We now define as

N(r): the average number of molecules per unit volume at r
(m(r)): the average molecular magnetic moment at r,
M:=N(m): the macroscopic magnetisation, i.e. magnetic dipole density.

Hence we can write
¥ (contribution); = / (density of contributions)dr’,
and thus Eq. (6.5)

ot /J ’ ’ I‘—I")
A(r)—k/d r— +k/d |r—r’|3

=K /d’ i) +k’/dr'M(r’) XV, (6.6)

v —r'| v —r'|

For the curl of the product of a scalar function ¢ multiplied by a vector
function M the following formula can be found in Appendix C or in Tables
of Formulae:

V x (¢M) = (V@) x M + ¢V x M, (6.7)

or for the first term on the right side of this equation
M x (V¢) = =V X (¢M) + ¢V x M.

With ¢ = 1/|r — 1’| we obtain for the second term on the right side of
Eq. (6.6):

/dr’M(r)erfl 1 7

_ /dr’V’ X (%) +/dr'|r_1r/'V' x M. (6.8)

But, as we shall verify in a moment,

/derB:/deB. (6.9)

Example 6.2: Verification of Eq. (6.9)
Verify Eq. (6.9) by scalar multiplication by a constant vector C.

Solution: For the verification we multiply the right hand side by an arbitrary vector C = const.
and consider

C-/dFXBE/(}(nXB)dF‘
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For the scalar triple product we have
(Cxn)-B=B-(Cxn)=(BxC) -n.

Hence

C-/deB:/(BxC)‘dF

Gayss / drv.(BxC) & / drC - (V x B),
where in the last step we used for u = B and v = C and C = const. the formula (see Appendix

C):
V-fuxv)=v-(Vxu)—u:(Vxv).

Hence Eq. (6.9) applied to the first integral on the right hand side of
Eq. (6.8) yields

—/dr’V'x M =—/dF'>< M.
|r — /| v —r/|

Here (see above) M(r’) = N(r')(m). The integration extends over the entire
volume of the macroscopic body. Assuming localisation, there is no molecule
outside and hence the surface integral there vanishes. Then

7
/dF’x M) _,
F v —r'|

and with Eqgs. (6.6) and (6.8) we are left with

(r') + V' x M(r’)
v — x|

AR) =¥ / ') (6.10)

for the vector potential at a point r outside the matter of the macroscopic
body. Thus the macroscopic magnetisation M implies a magnetisation cur-
rent

M=V x M. (6.11)

We therefore obtain according to our earlier considerations
V x B = po(j(r) + jum(r)) = pojeotal, (6.12)
where jiotal is the total current density. With Eq. (6.11) we then have
V xB=p(j+V xM), (6.13)

or
V x (B — poM) = poj,
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or, introducing the vector H,
VxH=j (6.14)

with 1
H= %B -M, B=pH+M). (6.15)
The vector H is called magnetic field strength. H does not depend on the
molecular magnetic moments. (Note the analogy with electrostatics: There,
since V - D = p, the polarisation charges with density pp are not sources of
D). This is the reason why in many texts H is introduced first, and not B,
since the current is first considered without the effect of magnetisation. This
means the B we introduced originally is poH. In vacuum B = pyoH.
The integral form of Eq. (6.14) is very important in applications, that is

/ (V x H) - dF ' H-dl= / j-dF. (6.16)
F F

C(F)

On the right hand side we do not write I, because in general (i.e. depending
on the problem) the current can cross the area F several times and in different
directions, and then the right hand side is an integral multiple of I. The
formula (6.16) will be an important starting point in problems to be discussed
later.

For many cases, i.e. types of matter, one observes the linearity

M =xH, k= const. (6.17)
In these linear cases
B=pH, p=upo(l+ck). (6.18)

Today the unit of magnetic field strength is ampere/meter, written A/m,
and sometimes ampere-revolutions/meter (the obsolete unit is oersted (Oe)).
Thus here in magnetostatics we have

s ’
Afr) =K' / gy o)
e —r|

where
Jtotal =i +iM =j+V xM
=j+V x(kH)=j+kV xH
. . M,
=]+ K= —),
ko
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and g = po(1l + ). Thus we have

[ g 30
Alr)=k #O/d =t (6.19)

where
g R _ B
po Ampe 4w
Thus one has almost the same formula (in these linear cases) as in the mi-
croscopic case, except that pp — p, with p incorporating matter effects.

6.3 Magnetic Properties of Matter

We saw above that i

— =14k

Ho
Here p/uo is the relative permeability of the medium and k the magnetic sus-
ceptibility. One distinguishes between diamagnetic, paramagnetic and ferro-
magnetic materials. Diamagnetic materials are those consisting of atoms, for
which the sum of the individual orbital angular momenta of the electrons is
zero. Such atoms therefore do not possess a permanent total magnetic mo-
ment. However, when placed in an external field B, they develop an induced
magnetic moment on account of their motion in this field B (in accordance
with the law of induction to be discussed later which implies an induced
electromotive force which accelerates the electrons). According to the law of
induction (cf. later: the Lenz rule) the induced magnetic moment or rather
its field has the direction opposite to that of the applied field B, so that

k<0, p<l.

The effect is independent of temperature (as the explanation implies).

Paramagnetic materials are those whose atoms possess permanent mag-
netic moments (in fact, their electrons outside closed electronic shells), which
favour alignment with the applied field, so that for these materials

£>0, p>1.

(In the case of these the effect of induced magnetic moments is much smaller).
Ferromagnetic materials are those, for which

k>0, and p= u(H) > 1

(see discussion of hysteresis curves (B versus H) in appropriate literature).
In the case of these materials the connection between B and H depends
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on the past of the system; the connection is therefore not unique. In addi-
tion the connection depends on the temperature (above the so-called Curie-
temperature ferromagnetic materials become paramagnetic).

6.4 Energy of the Magnetic Field

For the magnetic energy one obtains, as we shall show later, an expression
very similar to that for electric energy. We cite the result at this point for
reasons of completeness:

W:%/drB~H. (6.20)

6.5 Behaviour of B and H at Boundary Surfaces

In the case of the field E we saw that without considerations of properties of
matter at a thin charged surface

1
- -n = 4nk k=
(Eg El) n TKO, 47(60,

or in the case of macroscopic electrostatics, which takes the polarisation of
the dielectric into account,

(Eq — E1) -n=4nk(c + op),

and
(D2 - D]) -n = 4nko.

In the case of the field B we have V. B =0, i.e.
Oz/dVV-Bz/ B -dF,
v F(V)

(B2 - Bl) -nAF = 0.

so that

The zero on the right side implies that no single magnetic poles exist. Hence
the normal component of the field at the surface is continuous, i.e.

Bon = Bin- (6.21)
In the case of the field E we obtained from V x E = 0 the relation

Ey = Eys.
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In the case of H we have
V xH =j,

/VxH-dF:fH-ds:/j-dF:I. (6.22)
F c F

We now consider the contribution on the right side in relation to an element
of area dF perpendicular to the interface between two media as in Fig. 6.1.
Then dF is a vector in the plane of the interface. Applied to this element of
area we can write Eq. (6.22):

1.e.

/ j - dF =j-AF = jld,
AF

M1| ;
| |

Ko
<————/——- l ——————————— -

AF
Fig. 6.1 Element of area AF.

-—--0 --»

where [ is the length and d the height of the element of area. For conductors
we have Ohm’s law j = oE or j = oF. In ideal conductors o = oo with
E=-V¢=0. It is then possible that

jld=0cFEld#0 and finite,

and one defines

0—00,d—0

lim oEd:=K, /j~dF:Kl,

where K is a surface current density,* j is the volume current density. K
is also called linear current density! If the conductivity o is finite, we have
K = 0; i.e. in this case there is actually no surface current}

*See Jackson [3], p. 19.
tSee Lim [2], p. 42.

*See Jackson [3], p. 336. Nonetheless an effective surface current will be defined later in the
treatment of wave guides, in fact with the help of j.
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The continuity condition for H can now be written (using fc H-ds asin
the case of E)
Hy— H;; =K (=0 for o finite), (6.23)

1.e.

n x (H® - HY) =K. (6.24)

The surface current introduced here is the same as the surface current K
referred to earlier. The name “linear current density” has its origin in the

fact that in Eq. (6.22),

I
Hy — Hy = R

the current appears linearly. This result is of considerable importance and,

like its counterpart (2.16) in electrostatics, will be used in examples, as in
Example 14.4.

6.6 Current Circuits Compared with Flux Circuits

It is interesting and instructive to enquire about analogies between electric
and magnetic properties. In an electric circuit, i.e. current carrying circuit,
with stationary current I = jF defined by the condition V - j = 0, the
current [ is the constant quantity. The potential V, or the corresponding
electromotive force of the circuit, is with j = oE,I = jF (see Eq. (5.2)) given
by

V=}{E~d1= j-d
g

~ }[ 1-dl
o oF

dl
_1 ]{ Z=IR (6.25)

where R is the electric resistance of the circuit.
The magnetic analogy is (see Eq. (6.16)) the magnetomotive force

‘?{H-dlz/j-dF:IN,
F

where now V - B = 0 with constant magnetic flur & = [B-dFqo. N is the
effective number of currents I passing through the surface C(F) (i.e. the
number of currents I coming out minus the number going in, i.e. in the
opposite direction). The relation By, = By, = - -- tells us that the magnetic
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flux is conserved, i.e. the lines of flux are continuous at a boundary surface
Fy (note the difference between the areas F(C) and Fp). It follows that

, B.dl FyB -dl (B, Fp)dl dl
.dF=]{ :j[ :}{ —od L. (626
/FJ p Fou Fop pEo (6.26)

If the magnetic flux ® corresponds in the electric case to the current I, then
the expression
]{ dl
rFy

may be interpreted as magnetic resistance. It follows that we can calculate
the magnetic flux with the relation (6.26), i.e. with

fFj -dF IN
b = o = ; o (6.27)
uko KFo

This result will be used in Example 6.4 below.

6.7 Examples

Example 6.3: The electromagnet
Determine the magnetic field strength Hs in the gap of the circular electromagnet shown in Fig. 6.2
(assuming constant and homogeneous fields).

Fig. 6.2 The electromagnet.
Solution: The ring-shaped magnetic material with circular cross-sectional area Fo, permeability

# and mean circumference L ~ 1, where [ is the length of the gap (of air or vacuum), has N turns of
a wire-like conductor carrying current I wound around it. We use the integral form of Eq. (6.14),

ie.
fH.an:/ j-dF, (6.28)
c F(C)
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where C is the path shown in Fig. 6.2 and F(C) the area enclosed by it. Now B = pH, and at
a boundary surface, which means at the two transverse areas, where the gap begins, as we saw,
By, = B3,. We set B = Bj in the magnetic material. Then

Hyp = Hapo. (6.29)

On the other hand, from Eq.(6.16) (since the wire crosses the area F(C) a total of N times in the
same direction)

HiL+ Hol =1IN. (6.30)

From Egs. (6.29) and (6.30) we eliminate H; and obtain

IN

2

in ampere-turns/meter. The same result follows immediately from application of the flux formula

(6.27), i.e. with
j-dF
= ¢ 4l
F¥ur

Inserting the appropriate quantities, we obtain

IN
poHaFo =

in agreement with the result above.

Example 6.4: The electromagnet with tapered poles towards the gap

We consider a toroidal electromagnet with circular cross section and radius R (of the cross-sectional
area) along the torus part of length L (as in Example 6.3). Towards the gap (of length h), at both
ends along a length ! (always along the circle which coincides with the axis of the torus), the radius
decreases from R to r at the poles. Determine the magnetic field strength Hz in the gap.

Fig. 6.3 The electromagnet with tapered poles.

Solution: We use Eq. (6.27). For this we have to evaluate

IN
H2,U-07I'T2 = < d
Y »Fo

flux in the gap
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Here the line integrals along the gap and the main part of the torus follow as in Example 6.3, the
respective cross-sectional areas being 772 and mR2. Along each of the two tapered ends the radius
y of the cross section of the electromagnet at a distance z measured from the small end is given
by — as one can calculate with the method of congruent triangles (see Fig. 6.3) —

z y—-r

TZETT., ie. y:T+§(R—T)

(verification: for z = 0 this is r and for z = [ this is R), so that for each of the two pole pieces

di 1t 1
#iFo  p1Jo w(r+§(R—r)>

“wm(ll%—r) {r+%(lR—r>};
1

7T}L1’I‘R.
Altogether we have
IN
Haporr? = R L 20 )
+ +
pomre pymR2 TuirR
i.e. IN
H2 = Lr2 po2lr :
h+ ke +O0E

We see that for [ — 0,7 — R the result reduces to that of Example 6.3.

Example 6.5: The vector potential along a thin, circular wire$
Calculate the vector potential along a current carrying wire of tiny cross section and circular shape.

Solution: We use Eq. (6.19). With ds = rd¢, where r is the radius formed by the wire, we have

Afr) = u [ Ids(r")
Tar ) -1/
w7 1(dg)
4m Jp=o0 /2= 2cos
_a [ ds BT
T T4nv2 Jo  V2sin(¢/2) 4w Jo sinz
T
=If—|:ln tanfjl
4w 210
2 T—8¢
:Iﬁ[ln z +l(£) +]
4 2] 3\2 54=2/Ar—0
©
~ I-— In(A 6.3
o n(Ar), (6.32)

where we used a not so familiar expansion from a Table of Formulae.Y The divergence that we
encounter here (for A — 0) appears because we assumed that the wire has (effectively) vanishing
cross section (r = r’). For small thickness 1/A the dominant contribution is proportional to In(Ar),

$See also E. Witten, Nucl. Phys. B249 (1985) 557.
1. 8. Gradshteyn and 1. M. Ryzhik, Table of Integrals, Series and Products (Academic, 1965),
formula 1.518(3), p. 46.



148 CHAPTER 6. MACROSCOPIC MAGNETOSTATICS

A having the dimension of a reciprocal length. Since the current is constant along the string, the
same is true for A(r).

Example 6.6: Vector potential of a long, straight wire with current /
Determine the vector potential of the wire.

Solution: We start with the same relation for the vector potential as in Example 6.5, i.e.

p f Ids(r')
ar | |r—r'|’

Ar) =

We take the wire as lying along the y-direction. Then the formula implies that the components
Ag, A, are zero, and for the y-component we obtain for the field at a point = along the z-axis

HI/ dy
Ayl = — _
@ =i [ o

= I—li{ sinh~1 2 _ sinh~! y—l}
4 T T

The last expression follows in a similar way as in the case of the electrostatic potential we encoun-
tered in Example 3.3.

Example 6.7: Energy of the magnetic moment m in the field B

Determine the energy of the magnetic moment m.

Solution: We consider first the case of an electric dipole p in an applied field E. The energy U
of the dipole is the sum of the energies of the two charges ¢ and —q at points r4 and r_, a small
distance d apart, i.e.

U=gqé(ry) —qo(r-) = q[¢(r— +d) ~ ¢(r-)] =qd - Vé=-p E,
with p = qd. We define the force F by the expression
U:—/F-ds:——p-E.

Then
F=-VU=V(p-E).

In the magnetic case we have to remember first of all that B = V x A, i.e. B is in general not
expressible as a gradient. However, we now consider an ezternal field, i.e. a field B, where the
current density is zero. Then V x B = 0, and B can be written as a gradient, i.e. derivable from
a potential ¢. It follows that we can use the relations of above and we can write

U=-m-B, F=V(m-:B). (6.33)

Example 6.8: Vector potential of a solid cylinder

An infinitely long solid cylinder of radius R (made of material with relative permeability p/po > 1)
carries the constant current density jo in the direction of its axis. Calculate (a) the vector potential
and (b) the magnetic fleld strength within and without the conductor by solving the Poisson
equation for the vector potential.
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Solution:
(a) Since

A(r):i/dr’ j(rl)

[r—r|’

the vector A is parallel to j and parallel to e,. The Poisson equation is AA = —puj,j = joe:0(R —
p),jo = I/wR?, with cylindrical coordinates p, p,z. In view of the cylindrical symmetry we have
A = A;(p) and the Poisson equation is

10

g )
3p <p5—pAz(p)> = —pjod(R - p).

. 1] . 10 a )
() p>R: pAu(p) =clconst); (i6) p<R: ——(p—Az(m) = —po.
dp pOp\ 9p

In case (i) we have
Az(p) =cInR+ Ao.

In case (ii) we have

o 0
b _Az = — y
By (p o (p)) Kiop

and hence
Ax(p) = =20 +erlnp 2.

We choose cz = 0. Regularity at p = 0 requires ¢; = 0. Continuity at p = R implies:
1 9
clnR+ Az = —Z/J._]()R R

We obtain therefore:
—fuioR?*  for p<R,

Az(p) = {

cln& - %,ujoR? for p > R.
(b) Considering the magnetic field strength, we have

7] o a
A, — —Az)e¢ = —a—pAzeq,.

pH =V x A = uHy(ple, = (Ez‘ > Bp

Ljop for p< R,

10
SH =—-——A:(p) =
o) =~ 5o Asp) {_ﬁwaR_

Continuity at p = R implies:
c 1 1
—— = ZjoR,—c = —jopR2.
pR 270 TCT gtk

jop for p< R,

S Ho(p) = {

o2
&%forpZR.
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6.8 Summary of Formulae of Magnetostatics

We collect here for reference purposes the most important results of magne-
tostatics:
(1). Current, equation of continuity and stationarity:

d 0
Iza%’ dq = pdV, a—i‘*'V'J':O, stationarity 'V -j=0.

(2). Magnetic field strength:

VxH=j, or %H-dl:/ j-dF,
c F(C)
ds

j=p—, I= (] dF.

J Pd /J
(3). Macroscopic magnetostatics:/

jtotal = j +jM,
Magnetisation current density jar = V x M,
B = ,uo(H + M)

(4). Magnetic material equations:

M=«H, B=uH L -1+
Ho

(5). Biot—Savart law:

B(r) = i/](r’)ds(r') X (r—r').

4 |r —r'|3

(6). Ampere’s law and Lorentz-force:

F= /I(r’)ds(r') x B(r'), F =qv(r) x B(r).

(7). No magnetic monopoles:
V-B=0.
(8). Behaviour at boundary surfaces:
Bon =By, Hy~Hp=K
(Surface current K = 0 for finite conductivity o).
(9). B-field energy:

W:%/B-HdV.

ISome authors relate B to Hby B = poH-+M' | in which case M’ has units of B (weber/meter?)
instead of H (ampere/meter). See e.g. The Electromagnetic Problem Solver [21], Sec. II, p. 1-1.



Chapter 7

The Maxwell Equations

7.1 Preliminary Remarks

Now that we have dealt with electrostatics and magnetostatics also for macro-
scopic objects, the next step is to introduce time dependence. Proceeding
in our phenomenological and historical approach we are led to consider next
Faraday’s law of induction. With this we can complete the equations of
macroscopic electrodynamics with the addition of Mazwell’s displacement
current. The result is the full set of Maxwell’s equations.

7.2 Time-Dependent Fields and Faraday’s Law of
Induction

Faraday discovered in 1831 that an electric current arises in a closed wire loop
if the wire is moved through a magnetic field, in other words when the position
or orientation of the wire with respect to the magnetic field is changed, or
if the magnetic field varies with time. We consider two situations in which
Faraday’s observation applies. In the first case the field B is maintained
constant in time.

(a) In an electric field E the charge g experiences the force

F=¢qE, — =E. 7.1

This force F results from a nonvanishing potential difference in the conductor.
On the other hand (cf. Lorentz-force), the field B acting on a charge dq
moving with velocity v = dl/d¢ implies that the latter experiences the force

151
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dF' given by
dl
dF = dqa x B,
so that F o d

Identifying the forces of Eqgs. (7.1) and (7.2) in order to arrive at an expla-
nation of Faraday’s observation, we obtain

dl
dgE = — x d 7.

ie.

— v=di/dt
\Bqu
/_ — dF= — ds x dI
C, =C, + dC
(a) (b)

Fig. 7.1 (a), (b) The moving current loop.

dl
E= 5 x B,

provided the right side (or one component) is parallel to E. This means, the
electric force acting on the charge dq is equal to the force which the field B
exerts on the charge dg moving with velocity v. Put differently: The right
side of Eq. (7.3), i.e. the force that B exerts on dq, induces the electric
force Edg, i.e. the Lorentz-force, acts on the electrons in the conductor, and
hence a current in the conductor is observed, and so a potential difference
or induced voltage. We assume this here as an empirical finding.*

We let C; be the initial position of the conducting loop and Cy = C; +
0C its position a time interval 0t later (as indicated in Fig. 7.1(b)). 6C;

*The induced voltage or potential difference V is also called induced electromotive force. V has
the dimension of energy. The term “force” has a historical origin; in the 18th century, as also at
the beginning of the 19th century, various quantities which today represent energy were described
as “force”, e.g. also in writings of Kant.
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represents the displacement of the coordinates of the loop or, alternatively,
the deformation of the loop. The potential difference V' induced in the loop
C| is according to its definition and after inserting the expression for E from
above given by

V=]£ E-ds=j{ (ﬂXB>-ds
Cy C dt

d .
(o) dt displacement area dt

where the integration is over the area swept out by C; in its displacement
to Cy. However, we always have V - B = 0, i.e. integrating over the
displacement-volume between C; and Cy

V (displacement)

=/ B.dF
F(V)

Lo
displacement F(Cy) F(C1+6Cy)

Here F(C}) is the area enclosed by Ci, and correspondingly F'(C2) the area
enclosed by Cy, and F(displacement) is as before the area swept out by the
boundary. Then

—/ B-sz/ B-dF1+/ B - dF,
boundary F(Cy) F(C1+44C1)
=—[/ B~dF1—/ B-dFl]
F(C1+501) F(Cl)

= —5/ B -dF;.
F(C1)

It then follows with Eq. (7.4) that

V=f‘Edggm/ VxEdF:—i/ B - dF,.
a F(Cy) dt Jrcy)

Thus in this case with the field B constant in time:

/ VxE.dF=_ 2% B - dF;. (7.5)
F(CY) dt Jr(ci(t)

In the next case we consider C; as fixed and B as varying with time.
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(b) We have seen that at a sufficient distance away from a current carrying
loop the magnetic properties of the loop can be considered as those of a
magnetic dipole with moment m given by

m=1 dF.
C1 fixed

The energy of this dipole in an external field B is (see Eq. (6.30))

U:—m-B:—I/ B . dF.
C1 fixed

We now assume: In the time interval é¢ the field B changes by an amount /B
in such a way, that the amount of magnetic energy thereby gained per second
is exactly compensated by the loss of a corresponding amount of energy as
heat whilst the current I is kept constant. Then the energy lost as heat per
second is

_@—_—~IV=—I?{E-dl.
di

On the other hand, the magnetic energy gained per second is

oU oB
+ & / 9B F.
ot Cy fixed Ot

Hence the sum “loss + gain = 0” yields the relation

E-d=- [ 2B g (7.6)
peea--/5

Let ® be the magnetic flur defined by

= /FB(t)«dF.

The MKSA-unit of magnetic flux is the weber (Wb) (for conventions of
notation see Appendix B). Equation (7.6) can then be written

dd
IV =-1—. 7.7
o (7.7)
In this formulation Faraday’s law is also known as Neumann’s law. The
minus sign in Eq. (7.7) expresses effectively what the so-called Lenz rule says

(see below).
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Recalling — as an instructive analogy — the following result from calcu-
lus f

d ['® db da  [*® 8f(b(t),1)
i, fen= 1000 - sew0g + [ G,

we see that the results (7.4), (7.5) can be combined in the following form
(where instead of boundary values we have the path of integration Cy(t)):

f E-dl:/ VAE.dF = -2 B(r,t)-dF.  (7.8)
X0) F(C1(2) dt Jr(cy ()

Here we are at present not so much interested in the variation of the positions
of current circuits with time (but see Example 7.3), as in time-dependent
fields B. We assume therefore, that the form of C7 remains unchanged and
that Cy is fixed in space. Then we have the case of Eq. (7.7), i.e.

/ VxE-dF:—/ 9B F.
F(Cy) (cy) Ot

Since (1 is arbitrary, we can equate the integrands and obtain

0B

This is the differential form of Faraday’s law.

B
/

Fig. 7.2 The Lenz rule.

Finally we comment briefly on the so-called Lenz rule. This rule is useful
in practical applications. In other respects there is no necessity to use it.

tSee e.g. Whittaker and Watson [7), p. 67.
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What the Lenz rule says is contained in Maxwell’s equations. In the literature
the Lenz rule is frequently — at least on a first reading — difficult to follow,
e.g. with a statement like: “The Lenz rule says that the induced current and
the associated magnetic flux have directions such that they act against the
change of the external flux.” Let us consider a conducting ring which falls
in a field B as depicted in Fig. 7.2 (i.e. the ring maintains its shape but the
flux through it changes). The change of flux d® or change in the number of
lines of force cut by the falling ring in time dt is given by d®/dt. According
to Eq. (7.7) the magnitude of this rate gives the voltage V' induced in the
ring. Lenz’s rule determines the sign in Eq. (7.7) by calling Vdt now induced
flux (i.e. magnetic flux associated with the induced current) and saying, its
sign is such that it cancels the corresponding external flux d®.

At this point the natural question arises: Is there also a magnetic field
strength H which is induced by time-variation of E? The answer is yes, and
is provided by Maxwell’s displacement current (see Example 7.1). Faraday
had asked himself this question and performed experiments, but with no
success.

7.3 Energy of the Magnetic Field

Starting from the expression
m=IF

for the magnetic moment of a circuit or network with current I and area F,
and also from the expression for the potential energy U of the moment m in
the field B, i.e.

U=-—m-B=—IB~FE—I/B-dF,

we have for the variation of the energy of the field (where we have to reexpress
the current I in terms of the field)

U =6W =15 B-dF:I/(deA)-dF
F fixed F

St%‘esffm-ds: /dréA-j,

ie.

§W = / dréA -j. (7.10)
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This expression has to be compared with the corresponding expression in
electrostatics, i.e.

oW = /drcfgb(r)p(r)

(observe that one can define an expression éW' = [ drép(r)¢(r)). Inserting
into Eq. (7.10) the expression for j which we obtain from V x H = j, and

using
V.-(axb)=b-(Vxa)—a:(V xb),

it follows that
6W:/ dréA - (V x H)
Voo

.—_/dr[V~(H><5A)+H-(V><6A)]

=0+/drH-5B,

where the first term was converted into a surface integral at infinity with the
help of Gauss’ divergence theorem and therefore vanishes. For B = pH we
have 6(H - B) = 2H - 4B and hence

W:%/drH.B. (7.11)

This result should be compared with the corresponding energy in electro-
statics.

7.4 The Generalised Ohm’s Law

In the case of a simple circuit with resistance R, generator voltage V., Ohm’s
law is V, = I R, where I is the conduction current. Next we consider the case
of a coil with n turns per unit length. In this case one has a magnetic field
along the axis of the coil (as we saw), and so

H=nl, B=uH.

If H is changed by changing I, also the flux & = nx area of one turn xB
changes and this induces in the conductor of the circuit an induced potential

__d
Yodt’
Hence the generalised Ohm’s law is
IR:V:Ve-{—V,-:Ve—-g, (7.12)

where V, is the potential provided by an external source.
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7.5 E and B with Time-Dependent Potentials

We saw: Since V - B = 0 and “div curl = 07, the field B can always be
written as B = V x A. According to Faraday’s law we then have

oB
VxE= —Et—

- W x ot
aRrT

so that E = —0A /0t + something, whose curl is zero, i.e.

OA
E=-— -V¢ (7.13)

This equation differs in the first term from the equation obtained in electro-
statics.

7.6 Displacement Current and Maxwell Equations
We obtained above the following equation
VxH=j. (7.14)
Taking the divergence of both sides, we have
V- (VxH)=V_.j.

The left side is always zero, since always “div curl” equals zero. But V-j is
not zero except in magnetostatics. Hence, here (this means not in magneto-
statics, where 0p/0t = 0) we have

dp
V.j+ = =0,

ot
or with

V-D=p,
where D is the dielectric displacement,

oD
= 0.
V.-j+V. v

Thus, Eq. (7.14) would have to be

oD

— (7.15)

VxH=j4+—
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The expression on the right of this equation is called Mazwell current density
and the term proportional to 0D/t is called the density of Mazwell’s dis-
placement current. This displacement current puzzled people considerably
in the early days of Maxwell theory. A detailed discussion can be found in
the book of O’Rahilly. On p. 89, O’Rahilly remarks: “In a flash of mathe-
matical insight he (Mazwell) saw, that the addition of an extra term to one
of the electromagnetic equations would make an immense difference”. What
irritated people at that time was that j can be clearly visualised as a current
(density), but 0D/dt? Pohl (cf. O’Rahilly, p. 100) writes in his book: “By
the term ‘displacement current’ we denote an alteration of the electric field
in time, i.e. the appearance and disappearance of lines of force. The term
‘current’ has no doubt been historically adopted from the analogy with water.
In the conduction current atoms of electricity really do move or flow. In the
term ‘displacement current’ there remains no trace of the original meaning of
the word ‘current’ .... We shall see later, however, that the idea of the dis-
placement current reveals unsuspected relationships to us and vastly extends
our physical conceptions of the world. Here we shall content ourselves with
mentioning that the light which reaches our eyes from any source is, from
the point of view of physics, nothing but a displacement current.” Citing
J. J. Thomson, O’Rahilly (p. 101) says: “We may cheerfully confess that it
(i.e. the displacement current) was his (Mazwell’s) ‘greatest contribution to
physics’, i.e. as an analytical formula.”

Today we are accustomed to the concept of fields already intuitively, so
that the puzzles of long-ago lose their significance. In the book of Som-
merfeld® one reads correspondingly: “The vector field strength E is associ-
ated with a second electric vector D. We call this electric ‘excitation’, but
will frequently ... adhere to the customary term of ‘dielectric displacement’
(Mazwell’s ‘displacement’) .... We assumed here the difference between con-
ductor and nonconductor (dielectric) as being self-evident. In reality there is
no perfect dielectric, since even the best nonconducting material can become
weakly conducting as e.g. under the influence of cosmic radiation. Mazwell
therefore augments the displacement current to the total current C = D +j
... This step of attributing equal importance to D and j was a fundamentally
new idea of Mazwell’s and was a crucial prerequisite in enabling a complete
formulation of electrodynamical phenomena. Similarly for a metallic conduc-
tor he supplements the conduction current j by the addition of a hypothetical
displacement current D, although the first is much more important than the
second except in the case of rapidly changing fields.”

YO'Rahilly [6], Vol. 1, see pp. 95-101 and pp. 81-101, see also p. 232.
§Sommerfeld (1], pp. 8-9.
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The displacement current 8D/8t is in general of importance only,

(a) if j = 0, thus, for instance, in the case of propagation of light through a
dielectric, or

(b) in the case of high frequencies, when 8D/0t  frequency, e.g. in the case
of propagation of light through a metal.

We have thus completed Mazwell’s equations. We summarise these now.
First in differential form.

Maxwell’s equations in differential form are:

VD:p’

0B

VxE=-"—+

X ot’
V-B=0,

oD
=j+ ——. 7.16
VxH=j+— (7.16)

These are supplemented by the equation of continuity:

v-j+%=0, (7.17)
and the generalised Lorentz-force per unit volume:
F = pE + j x B. (7.18)
Maxwell’s equations are completed by the connecting relations:
D =E + P,
B = uo(H + M). (7.19)
The matter equations apply to special cases
D =¢E, B=pH. (7.20)
The generalised Ohm’s law is the relation
j=0oE. (7.21)

Maxwell’s equations in integral form are:

}{D-szQ,

V:j{E-m:—a—‘}i, <I>=/B-dF,
Bt p

/B~dF=O,
F

j{H-dlz/ j.dF+i/ D . dF. (7.22)
F fixed dt F fixed
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The equation of continuity follows from

D iy = / j-dF. (7.23)
dat Jy F

The main assumptions, we made in our historical and phenomenologi-
cal approach in order to arrive at Maxwell’s equations were the empirically
discovered laws of Coulomb, Ampére/Biot-Savart and Faraday (Coulomb in
the case of electric charges, Ampeére and Biot and Savart for magnetic fields
of currents, and Faraday for the induced electromotive force). We also as-
sumed, without saying so, that the equations obtained originally for static
systems are also valid in the case of dynamic (i.e. time-dependent) systems.

t
)
]
1
]
'
|
1
1
1
'
'
1
'
]
|
4

=  meter
© R

Fig. 7.3 Variation of the induced B with radius r.

Example 7.1: The displacement current in a condenser

A parallel plate condenser consists of two circularly shaped parallel plates of radius R = 0.1 meter.
The plates are charged such that the electric field E between them is subjected to a constant time
variation dE/dt = 1013 volt meter~!second™!. The following relations apply: B = uH, D = €E.
(a) Calculate the displacement current between the plates of the condenser.

(b) Determine the induced magnetic field B between the plates as a function of the distance from
the centre of the cylindrically symmetric condenser in a direction parallel to the plates. What is
the value of B at r = R? (Note: eg = 8.9 x 10~12 ampere second/(volt meter), po = 47 x 10~7
volt second/(ampere meter)).

Solution:
(a) The current I is given by I = f j - dF ampere, where j is the current density. The density of
the displacement current is 8D /8¢, so that the displacement current itself is given by

oD dE
Ip = / —— dF = ¢g—mR? =89 x 10712 x 10 x 3.14 x (0.1)2 ampere = 2.8 ampere.
F=nR2 ot dt

(b) We start with the Ampére-Maxwell-law V x H = j + 8D /8t with conduction current density
j = 0. Multiplying by po we obtain

roXH:VXB:uer%—]?.
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We integrate this equation over a cross-sectional area and use Stokes’ theorem. Then
OE
/ VxB.dF = B-dl-——yoeo/ — . dF.
F(C) C(F) F(c) Ot
For r < R, and C a circular path with radius r we obtain

dE 1 d
B(2rnr) = ,uoeo-gmj, or B= E,uoeor-d—?.

For » > R, on the other hand, we obtain, since the electric field is nonvanishing only between the
plates (ignoring boundary effects),

dE 1 R2 4E
B(2nr) = —7R2?, ie. B==poeo— —.
(277} = poeo 5 TR, e B Hoc0— —
The variation of this induced magnetic field with r is shown in Fig. 7.3.

1 dE 1
Bp = E“OGORE =5 x4mx 1077 x 8.9 x 1072 x 0.1 x 10'3 = 5.6 x 10~ weber meter 2.

Although the displacement current is comparatively large, the magnetic field is rather small.

7.7 Poynting Vector and Conservation of Energy

The work Wy done by charges per unit time in the presence of an electro-
magnetic field is the power
dWy _ d work
dt —  dt
= Z(force acting on charge i) - (velocity of charge 7)

1

= / v (pE +j x B)dV. (7.24)

Since j = pv, we have v - j x B = 0. This implies (using D = ¢E,B = uH in
the second-last step)

AWy T, B oD

=/dV(E-VxH—H-VxE)

—/dV(E-a—D—H-VxE)
ot N’

-5
18
:/dVV-(ExH)—iéz/dV(E-D+H-B)
:—/(ExH)«dF—aa—V:, (7.25)
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where we assumed that D « E and B o« H in time dependence. The vector
S = E x H watt meter > (7.26)

is called Poynting vector. The expression for W is the electromagnetic energy,

W:%/dV(E-D+H-B). (7.27)
14
We have therefore:
dwork:/deE:- / s.ap -V (7.28)
dt PV ot
—_—

Ohmic power dF directed to outside

Thus the work done per unit time is equal to the loss of electromagnetic
energy per unit time (OW/0t) plus gain or loss of energy through the walls
of the system ([ S - dF). It should be noted that only the integral over
the Poynting vector is a measurable quantity, i.e. the integral over a closed
surface, not the transport of energy through some part of the volume, since
only the total energy is a conserved quantity. Furthermore one should note
that the definition of the Poynting vector involves some arbitrariness because
we can always add to S a vector T, whose divergence is zero, so that

/T-dF=/ dVV -T =0.
F V(F)

In the case of the “ideal conductor” the conduction electrons do no work,
ie. o =00 and so R=0, and E = -V¢ = 0, so that j = ¢E = finite, but
[j-EdV = 0. (This is the reverse case to that of dielectrics, for which in
the ideal case o0 = 0).

In the case with resistance dWy/dt # 0. In the “ideal conductor”, we
have [j-EdV =0, since there E = 0, i.e.

/ s.ap= -2
F(V) ot

which implies: energy transmitted through the walls per unit time = loss
of electromagnetic energy per unit time. The (somewhat paradox) example
usually given to the above is that of transport of energy in a conduction wire.
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7.7.1 Application: The Conduction Wire

The conduction wire we consider now is not made of ideal conductor material,
since otherwise we would have to have V = IR = 0. Thus the conduction
electrons suffer resistance and hence perform work # 0. The diagram in
Fig. 7.4 shows, that the electric field E here points in the direction of the
current and the vector H to its right into the paper.

y
q)l a —I—-> - X ¢2
e—FL ExH
H E
H

Fig. 7.4 The conduction wire.

We can obtain the direction of the Poynting vector with the “thumb rule”
(E along the index finger, H along the middle finger and so E x H parallel
to the thumb), as indicated in the figure. We have in the wire:

E = -V¢, FEiang continuous,

2 2
/ E-dl:—/ Vé-dl
1 1

2
2—/1 do = —(p2 — ¢1) = ¢1 — P2
=V.

and

But Etangential is continuous, as we saw. Hence also on the surface from
outside: E = V/d. On the other hand, from

. 0D
VxH=j+ 55

follows or (neglecting 0D/dt) from

j{H-dI:/j.dF:I,
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that
I
H = -
Since E L H,
vV I VI
ExH= e ™ 9rad

Thus the amount of energy transported into the wire per unit time is:

IV
—/(E x H) - dF = ——27md27rad—IV

= the amount of energy, that the wire loses per unit time in the form of heat.
We see therefore: Energy is radiated away, but at the same time absorbed,
in such a way that the current is kept constant (this latter point is not always
given sufficient emphasis, and then makes the problem appear paradoxical).

The fields E and H are a consequence of the current I or the potential
difference V'; it is not possible to have I and V without E and H, or the
converse. It is thus a question of one’s point of view whether one says, the
power —IV or the energy transported per unit time IV are a consequence
of I and V or a consequence of the fields E and H. The easiest way to
understand this problem is probably as an example of the conservation of
energy. For a fixed current I and thus in a static case (0W/0t = 0) the loss
of energy as a result of the resistance R is compensated by radiation into the
conductor, i.e.

[ 8+ (=ar) =1V =161 - ).

We can see this equivalence as follows:
2 2 d¢
/ E. JdV———/j qudV——/ j (ez;l——da:dF)
/ J6-mas =~ [ 146 =162~ 30

—¢g) =1V.

7.7.2 The Field Momentum Density

Let a volume V be given with charge distribution (i.e. density) p. The force
that the field exerts on the charges, is the external force in Newton'’s equation
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for the charged particle, i.e.

d (mechanical momentum)
dt

=/(E+v><B>pdV=/( p E+  j xB)dV
~— ~~

VD VxH- 2D

J[pvos (o) cnar

oD 0
= /[Bt xB+Dx 8]dV

= external force

+/[EV-D+HV'B+(V><H)><B+(V><E)><D]dV.

0 _9oB
Bt

It can be shown that the remaining terms can be combined in the following
way:

{d(mechamcal momentum) } __9 /(D x B);dV + / 8?1: Ti;dV,
] 1

dt

where .
T%j = (DiEj + BiHj) — 5z]§(D "E+B- H)

This expression is equal to Tj; for D = €¢E, B = pH. The expression Tj; is
called Mazwell stress tensor. In a self-evident way we have (on application
of Gauss’ divergence theorem)

d
— (pmech 4 pleldy / T;; (dF); = 0. (7.29)
dt P

The term on the right represents the flow of momentum through the surface
F. If this surface is shifted to infinity, so that the term on the right is zero,
we have

mech + Pﬁeld

P = constant,

where Pfield — [gypfeld pfidd — D » B = volume density of the field
momentum Pield, This is the law of conservation of momentum in elec-
trodynamics. Note that the field momentum density is not given by the
Poynting vector! The expression

K; = Ti;(dF);
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is the j-component of a force acting on the area dF. Since pressure =
force/area, we see that

_Kimy

dF

(n;: i-component of the unit vector) is the pressure of the radiation, i.e.
the radiation pressure. The tails of comets are observed to point away from
the sun; this is a consequence of the pressure of the radiation from the
sun. We have here really been considering the microscopic field momentum.
Considerations of the macroscopic bulk field momentum lead to difficulties
which are pointed out in Jackson [3] and discussed in more detail in literature
cited there.

= —Tijniny

Example 7.2: Separating a charge-anticharge pair

A charge q, originally together with a charge —gq at rest at some point, is moved away from the
charge —q. Show that the mechanical momentumn p™ech of the charge g is exactly cancelled by the
field momentum.

Solution: The Lorentz force acting on a charge q in a flux density B (due to some current or
moving charge) is Fy = gv x B. We give the charge ¢ a mechanical momentum p™" by pulling it
away from —q with a force equal and opposite to that of the Lorentz force. The charge —g, moving
relatively in the opposite direction, provides the flux density B. In fact from the Biot-Savart law
we see that the fields B generated by the motion of the two opposite charges moving in opposite
directions are opposite, i.e. By = —B_4. In moving the charge it generates field momentum which
has to be such that the total momentum is conserved, i.e. equal to that initially, i.e. zero. Thus
from Fy and Newton's equation (v = dx/dt)

h
pret = —q/dx x B_gq.

From the Gauss law we obtain, now with only the one charge g to be considered, ¢ = [D - da =
J Diday, so that with dz;da; = 514V for element of area da, we have

pech — —q/eijkdszk = —/eijkdszledal

—/eijkBleéﬂde —-/éijkBijdV

—/dV(D x B);.

Hence p™ech 4 Pfield — 0. The components of the field momentum perpendicular to the line joining

the charges cancel and leave only the component along that line.

7.8 Further Examples

Example 7.3: The variable conductor loop

A rectangular current loop with constant width y = b consists of three fixed conducting rods and
one movable conducting rod which allows to change the length z of the loop. This movable rod
is moved with constant velocity v in the direction of length of the rectangular loop (i.e. in the
direction of positive z). The time-dependent field of induction B = e, Bg cos wt acts in the overall
space perpendicular to the plane of the loop.
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(a) Calculate the total induced electromotive force V' in the loop.
(b) What is obtained for V, if the movable conducting rod is held fixed at a distance = from the
opposite side of the rectangle, but the entire current loop moves with velocity v = ve,?

Solution:
(a) We have here a case, in which the area of the loop, as well as the field B vary with time. The
variations of both contribute to the induced potential V. We use Faraday’s law

/ VXE-dF:—i/ B . dF,
F(C) dt Jr(c)

V:fE-dl:——d—/ B -dF.
c dt Jr(c)

If the area F' to be integrated over varies with time, we have to differentiate with respect to time
here. We assume first that B is constant with respect to time. (Here only so that we do not have
to drag its time derivative all the way along!). We then have

B.dF - B.dF
d / B.dF = lim I:fF(t+6t) fF(t) ]
dt F(t) §t—0

ot
_—_lim—[/ B dF — B'dF]
8t—0 8t | JF(t)46¢LE F(t)
1 _dF d
= i ——(St—"'—' N
alfino[at dt dF dF‘F(t)]
dF
_ dF 7.30
®r- = (7:30)
v

5

°® 0 —~
v y
<—.b——>

z
Fig. 7.5 The conducting loop with movable rod.

Including now also the time dependence of B, we have

d OB(t) dF
— B.-dF = ——= -dF + (B C—
dt F(t) F Ot + ( )F(t) dt
In the case of our example we have
dF(C oB
V= E.dlz—i/ B.aF=-B. FC) _ [B g
C(F) dt F(C) dt ot
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We choose the area F to point in the direction of z, as indicated in Fig. 7.5 (F || e;). The voltage
V is given by: .

V=-Bbv-(ey X ez) +/0 wBp sinwt bdx
dF

and hence by

V = —Bgvbcoswt + wBobx sinwt

= Bob{zwsinwt — vcoswt}

= Bgbv/v? + z2w? sin{wt — 6), (7.31)

where § = tan~1(v/xw), i.e. cos§ = zw/vv? + 22w? and correspondingly for sin 4.

(b) We now assume, that the movable part of the rectangular loop is fixed to the other part of the
loop (at position z) so that the area of the loop remains constant in time but the entire current
loop moves with velocity v in the direction of e;. Then

V:-i/ B-dF:—/ B
dt F(C) F(C) dt
= ~/ [-‘95’. + (v V)B] . dF, (7.32)
F(cy | Ot

where v represents the velocity of the charges in B. But now (for v constant with ¥V -B = 0)
Vx(Bxv)=(v-VIB-(B - V)v+B(V.v)-v(V.-B)= (v V)B.

For given B = Be,, we have VB, = 0. Although we know that this contribution vanishes, we
drag it along, so that:

V=—/ [a—B+Vx(va)J~dF
F(C)

ot
=—/ B—B.dF—]{ (B xv)-d
F(c) 0t C(F)
=—/ 6—BAdF+f (v x B) - dL. (7.33)
F(c) Ot C(F)

In our case

v x B = vBe; X e; = vBey,

}{ (v><B)~dl=vae,,-dl:vB(b—b)=0
o(Fy

(since the field B is constant, it has the same value along b as along —b; for this reason these
contributions cancel). As expected, also the contribution of v x B is zero, and

oB

V=-| —
ot

- dF = wBpbz sinwt = Bob(wz) sinwt.

This means, the induced potential is independent of the velocity. This is, what one expects, because
in the rest frame of the conductor one observes — in the case of the constant field B — at every
instant of time the same situation.
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oB

Fig. 7.6 The wire pendulum.

Example 7.4: The wire pendulum

A wire pendulum (of length R) oscillates with velocity ¢ = wdcoswt, where d is the largest
horizontal deflection of the pendulum as shown in Fig. 7.6. The constant magnetic field of B
weber /meter? points out of the plane of the pendulum. Determine the induced voltage V.

Solution: We start with Faraday’s law
d d
V= _E/B -dF = d—t[B x area(t)]
d .
== [B(constant area + varying area)].

Set sinf = z/R, sinf3 = d/R, so that

sin @ T _ dsinf _ dsinwt

= - z(t) = =

sin 6o d’ sin 62 sinfy

The variable part of the area is then ~ %—Rw(t). It follows that the requested voltage V is

V= d [ BR dsinwt
T dt] 2 sinés

} = %BwR? cos wt.

Example 7.5: The revolving coil

In Example 6.3 the field in the gap of a circularly shaped electromagnet was calculated. A small
circularly shaped coil of radius b and n turns revolves fully within the gap of the electromagnet
with angular velocity w about a diameter perpendicular to the magnetic field which is assumed to
be homogeneous. R is the resistance and L the self-inductance of the coil. Formulate an equation
from which the current induced in the coil can be calculated.

Solution: We begin with Faraday’s law,

oB
VxE=-22.
% Bt

The induced voltage V; is

Viz/E-dI:/VxE-sz—dit/B-dF.
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an

Fig. 7.7 The revolving coil.

The induced flux is ¢ = [ B-dF, i.e. V; = —d¢/dt. The inductances Ly of the circuit are defined
by ¢x = Zj Ly;1; (cf. Chapter 8). Here we have two circuits — the one of the coil, as well as
another one which is responsible for the varying flux through the area of the coil, i.e.

= LI + b
¢ ¢
self-induction part  the varying flux
Here ¢ = nB x projection of area F' of one turn of the coil perpendicular to the magnetic field.

Since
dé

IR = Vgenerator 0
———— dt

0
we have ~
IR=-LI- @
dt
In other words, )
IR+ LI= —d—¢,
dt

where q~5 = nBF sinwt, with B the field through area F and F = b2, as indicated in Fig. 7.7.

Example 7.6: The rectangular conductor loop
A magnetic field varying with time is given by the following expression: B = ey, Bg coswt, with Bp
constant. Determine the voltage induced in a rectangular conductor loop in the (z, z)-plane with
side lengths a in the direction of z, and b in the direction of z.

Solution: Let the unit vector e, point into the paper. Then the magnetic flux into the paper is

a b
$ = /B -dF = / / By coswtey - dedzey,
z=0J2z=0

i.e. & = abBp coswt. The induced voltage is therefore

V:% E~dl=—i¢
c dt

= - ;—t [Boab cos wt]

= abB,w sin wt.
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'
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Fig. 7.8 The rails of the trolley with induced circuit.

Example 7.7: The metal trolleyT

A metal trolley (mass m) is placed on two parallel, circular, conducting rails (a distance of L
meters apart), as indicated in Fig. 7.8. A uniform magnetic field Bo points vertically out of the
plane. With a rocket engine the trolley is given a constant thrust (i.e. force) Fp. The resistance
between the rails is R. Determine the voltage V induced in the circuit linking the trolley with the
resistance, and discuss its time dependence (Hint: It is advisable to start from Ampeére’s law of
force).

Solution: Ampére’s law of force is
F:I/dst(r).

In the present case we need to know the forces on the right side of Newton’s equation which are
responsible for the motion of the trolley, i.e. in

m— = Fp - Fapp]ied‘

We obtain the force F,pplied from Ampére’s law (see discussion after Eq. (5.18)) as BolL, by
considering the current element with resistance R between the rails and identifying ds with L.
We obtain the current I from Faraday’s law or correspondingly from the formula for the induced
potential difference,

dl V  Bovl
V= d — ) -B=ByL ie,. I=—=
f(sxdt> B oLv, ie [ R 7
so that B2L2 22
dv Lév dv  BiL*v
o Fy- =20 —_ 0 = Fp.
mE- T TR " "% TR 0

This is an inhomogeneous differential equation of the first order which is readily solved (cf.
Eq. (8.17)) with the initial condition v = 0 at time ¢ = 0. One obtains after simple integra-
tions the physically plausible result

oo B0 l_e—t/(mR/Lng)J.

T I°B}

We see that in the course of time (¢ — o) the velocity becomes constant.

YSee also The Electromagnetic Problem Solver [21}, Example 11-36, p. 621.



Chapter 8

Applications to Coils and
Circuits

8.1 Introductory Remarks

In the following we consider circuits of currents, we define inductances L and
consider coils and solenoids, and return to gauge transformations. Again
examples are given. An important result will be that the product of self-
inductance L and capacity C of a transmission line is equal to the product of
dielectric constant and magnetic permeability of the surrounding medium.
In Chapter 9 it will be shown that the latter product is, in fact, 1/c?, where
c is the velocity of light. Thus the quantity 1/+/LC represents the velocity
of the electromagnetic wave travelling along the transmission line.

8.2 Inductances L;;

We assume that several current-carrying circuits are given. For each, say the
k-th circuit, we have

IkR = (Ve)i — %{)t—k (8.1)
Here & = |, P B - dF is the magnetic flux through the k-th conductor with
enclosed area Fj, and external or generator voltage V.. Equation (8.1) rep-
resents a combination of the usual Ohm’s law with Faraday’s law. If now the
current I; in circuit j is varied with time, then the magnetic flux through cir-
cuit k varies and hence according to the relation (Vipduced)x = —0®«/0t also

the induced voltage (Vinduced)k, and we can write (using the superposition

173
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principle, i.e. the summability of contributions of all circuits)
( mduced Z Lk:] at (8.2)

where the coefficients of inductance, L, are constants. Hence we can write

a<I>
k Z L’“J 8t

or

ut) = Y Lis Ly ). (8.3)

Thus we have, for instance, ®3(J1) = LojI;. If the current I = I(t) varies
with time ¢, also j and p must vary with ¢, i.e.

16) = [3) - ar(e) = [ oty =,

The equation of continuity must be preserved (in view of charge conserva-
tion), i.e.
Op
V. = 0.
It

We can obtain the relation (8.3) also as follows, thereby determining the
coefficients Ly;. We have

Be(t) = /F B(r,?) - dF — /F V x A(r, ) - dF(r) S j{ Alr,?) - ds.

But, as we saw previously, the vector potential at a point r resulting from
current densities j(r,t) is given by the following expression:

po i, tde  u ds;
SN LN o AT
A(r,1) 471-/ |r —r/| Ar - ®) |r — r;

with j(r',t)dr’ = I(t)ds(r’) = I(t)ds(r’), and ds; is the length of the current
element at r;. Inserting this into the preceding expression, we obtain

t) = ZLkiIi(t)7 ki = // ﬁ:: _d:j (8.4)

Obviously Ly; = L. The coefficient Ly is called the self-inductance of
conductor k. In its case, one has to take into account its cross section, since
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otherwise the expression 1/|ry —r;| becomes problematic. Inserting Eq. (8.4)
into Eq. (8.1), we obtain a relation of great importance for circuits:

LRk + Y Liiki = (Ve (8.5)

The coefficients L;; for i # k are called mutual inductances. In the following
examples we calculate inductances of both types, self-inductances and mutual
inductances.

8.3 Examples

Fig. 8.1 The coaxial cable: (a) transverse cross section,
(b) longitudinal cross section, (c) view to direction of flux.

Example 8.1: The solenoid

Determine the self-inductance of a long solenoid.

Solution: We let the length of the solenoid be ! and assume it has n turns per unit length, and
cross-sectional area S. The current in the solenoid is taken to be I. The magnetic flux through nl
turns is nl times the flux through one turn and is & = [ B - dF = ugHSnl. The magnetic field
strength H is according to Example 5.6 H = nl. Thus the self-inductance L1; is given by

&3
Ly = 7= n?upSl  H,
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where H stands for henry, the unit in the MKSA-system of units, in which magnetic flux is given
in weber (Wb). Evidently the condition for the existence of a nonvanishing inductance L is the
existence of a nonvanishing flux ®. If the current carrying conductors are “thin”, i.e. of practically
vanishing cross-sectional area, only the flux ® resulting from the turns of the conductor is of
practical significance. On the other hand, if the conductor is not “thin”, i.e. “thick”, the flux
through its cross-sectional area also has to be taken into account. This, of course, complicates the
considerations. We therefore consider an example of this case.

Example 8.2: Self-inductance of a coaxial cable
Figure 8.1 shows the cross section through the cable with total current zero whose self-inductance
is to be calculated (see also Example 8.5).

Solution: (Important aspects of coaxial cables will be treated under the topic of Wave Guides and
Resonators). We consider an element of the cable of unit length. The inner conductor carrying
current I is taken to have radius r; and magnetic permeability 1. The outer conductor carrying
current [ in the opposite direction is taken to be shell-like, i.e. thin, and of radius r2. The space
in-between is filled with a substance of magnetic permeability pg. We have

r=7r1
I=/ j-dF, I =mxr?j.
r=0

We consider a circular path of radius r,r < r1, and apply the integral form of Ampere’s law. Then

r2

f H-dl:/ j-dF, e 21rrHr-—_1rr2j=zr_71,
rad r F=nr? nry

i.e. the field is determined by this inner fraction of the current I and is given by

Ir
Hy = —.
27rrf
The lines of force of B, are circles around the axis of the cable, as indicated in Fig. 8.1 (recall that
according to the Biot—Savart law dB oc Ids X r). The magnetic flux through the area of breadth

dr and of unit length is

Ird
68 =B.dF = p Hydr x 1= 22277

2
27ry

We recall that in the case of a solenoid with (say) n turns per unit length, we calculate the flux
through one turn carrying current I and multiply by n to obtain the flux through » turns. In the
present case we do not have multiples of I, but rather a fraction of I. Thus instead of multiplying
8® by a number n representing a number of turns, we have to multiply §& by the fraction wr2/7r?,
since the flux results only from this fraction of current. In order to understand this point better
it may help to visualise the inner part of the cable as a section of a torus-like structure and to
compare this with our treatment of the solenoid. The self-inductance of the inner part of the cable
is therefore given by L1 = ®/I, where

™ 3d 4 71
&= / r ulrdr=1/ #1T4r:I #17‘4 :Iﬂ, fe. Ly= M
2 oqp2 0 27r] 2mdr] 8 8w

We now consider a circle of radius r > r1:

27rrHr=]{H~dl=/j-dF=I,
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The magnetic flux through an area of width dr and length 1 in the intermediate space (with no
current) is therefore

2 I ("2 d I
<1>=/B~dF=/ mHTdrx1=“i/ ok a2
I 27 J,

. 2 1

Hence -
Lo = K2 In —2,
2r

and the total self-inductance per unit length is

1 /1
L=1IL +L2=—(—M1+2#21nr—2>~
4\ 2 1

This result is derived by a different method in Example 8.5.

Example 8.3: Self-inductance of a parallel wire cable of radius a
Calculate the self-inductance of a pair of parallel wires of radius e and a distance d apart. Figure 8.2
shows transverse and longitudinal cross sections through such a cable.

Solution: The space between the two parallel wires is taken to have magnetic permeability pu.
The self-inductance is to be calculated.

/

//////////////////////;ﬂ’//////// \V]

LTI

- -k

Fig. 8.2 The parallel wire cable.

We imagine the two wires connected at infinity to form a closed circuit. We first calculate the
field H, in a radial domain dr as indicated in Fig. 8.2. This field receives contributions from both
wires. We saw above that the field H at a distance r from the centre of a wire is given by I/2nr.
Thus the field pointing outward from the region between r and r + dr is

I I
Ho=—+ ———.
27r + 2n(d—r)
Hence we have
d-a I I
&= B-dF = drx 1 =— + ———
dx1 a 2rr  2w(d—7)

d—a
=H——I-[lnr—ln(d—r)] =2H—Ilnd 2.
27 2w

a

a
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The self-inductance L = &/I is therefore given by
d—
L=%n [—“] (8.6)

per unit length. This result neglects the flux through the cross sections of the wires (assumed to
be small). In Example 8.10 the result (8.6) is obtained by a different method.

Example 8.4: Mutual inductance of one coil around another
A coil having ng turns per unit length and length l2 is wound around a long solenoid with n; turns
per unit length, cross-sectional area S; and current I;. What is the mutual inductance Li?

Solution: According to Eq. (8.4) the flux ®2(I1) through circuit 2 as a consequence of the current
Iy in circuit 1 is given by

$o(1) = Lol = n212/ B - dF = po(I1n1)S1in2ls
Sy

= ninguoSilal.

It follows that
La; = ningpoSils.

This mutual inductance can be calculated from its definition and as such is independent of whether
an induced current actually flows in the other circuit. See also discussion below.

Consider, as in the preceding example, a coil of finite length wound
around an infinitely long solenoid. In this case of the infinitely long in-
ner solenoid, the field B is zero at all points of the coil wound around it.
Can an observable current be induced in the outer coil? Since the field B
is everywhere zero along the outer coil, there is no Lorentz force to produce
the current. However, the vector potential A resulting from the current in
the long solenoid does not vanish everywhere outside this solenoid (as will
be shown below). The problem therefore requires a more detailed treatment
and leads eventually to the so-called Aharonov-Bohm effect (see Chapter 19).
We shall see that the effect of the vector potential around the long solenoid
is a quantum mechanical phase effect which is observable only in appropriate
interference experiments. We therefore investigate first the vector potential
of a long solenoid.

8.4 The Vector Potential of a Long Solenoid

We consider a coil with coordinates as indicated in Fig. 8.3. Inside the
solenoid the field is B = (0,0, By), i.e. homogeneous along the z-axis. We
obtain this expression with B = ¥V x A for the vector potential

A= E9(—3/,310,0) =-Bxr.

2

Do =
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The vector potential A is therefore (a) proportional to r, and (b) perpen-
dicular to the z-axis and to r. In the case of the infinitely long solenoid the
field B outside is zero. Does this mean that A is also zero? No!

Fig. 8.3 The long solenoid with fields By and A.

We consider the path T" of radius p > a in Fig. 8.3. The flux through the
area with the circle I' as boundary is

d = / B.dF = B07ra2 + Bout:side"'r(p2 - a2) = BO"TaQ,
F(T)

so that
@:j{A-dlzeraQ.
r

Thus the field A along the path T" can be nonzero! We know the direction
of A is that of the tangent to the path I". This suggests taking for A ,ytside
the following ansatz:

_ y z _
Aoutside—k<_ :L‘2+y2’9:2+y2’0)’ k = const.,

because we know

1
Ainside = §BO(“y; z, O)

First we have to verify that Boutside = V X Agutside = 0

e ey e,

X
el 2] 2]
V X Aqutside = k oz dy 0z
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For instance for the z-component:

0 0 T
705 (7i) o

Similarly we obtain zero for the y-component. In the case of the z-component

we require
0 x 4 0 Yy
Oz \ z2 + y2 Ay \ z2 + 32

. 1 212 n 1 _ 2y2

- x? + y2 (12 + y2)2 1‘2 + y2 (1;2 + y2)2

2(x? +y?) — 222 — 2%
(1‘2 + y2)2 -

0,

hence Boutsidte = 0. We determine the constant k& such that A ysige yields
the correct magnetic flux, i.e.

/ Aoutsde - dl = Boma®.
T

But now

1/2

k
p=("+y")"" and |A|=7,

i.e.

(-7 )
\/x2+y2’\/x2+y2’

/ (x,y)

Fig. 8.4 The (z,y)-plane with discontinuity along the negative z-axis.
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is a unit vector parallel to A. Hence
k 2
Autside - dl = =2mp = 2wk = Byma®,
r p

so that .
k = §Boa2

and )
1 a
Aoutside = §BOW(~Z/, z, 0)

It should be noted that at » = a the field Ajyside passes continuously over
into Agutside- We thus have a potential Agutsige Z 0, where B = 0. Is this
strange? Why is it that Agutside does not vanish? Can we gauge it away, i.e.
can we perform a gauge transformation so that the resulting vector potential
vanishes? A suitable gauge transformation

A—A=A+Vy

seems to be one with the following function x:

1
X(t’ z,Y, Z) = —§Boa2¢($, y)
with

T T

o(z,y) = tan™! (Q), Y — tan ¢.

The quantity ¢ is the polar angle shown in Fig. 84. At z < 0,y > 0 we
have tan¢ < 0,¢ — m. At 2 < 0,y < 0 we have tan¢ > 0,¢ — —m. The
values of ¢ on both sides of y = 0,z < 0 therefore differ by 2x. We put the
cut as indicated in Fig. 8.4. The singularity at = 0 with the cut along the
negative semi-axis is described as a Dirac string.

We now demonstrate that A’ = 0, except along y = 0,z < 0. We have

09 _ 9 ton—1 (y) __—y/e? y

dr  Ox z) 1+ (y/z)? 22 +y2

%—Etan“l y\_ Yz oz
oy Oy r) 14 (y/z)?  z24y2

These expressions are very similar to A;, A,. The gauge transformation with

1
x(t,z,y,2) = —§Boa2¢(fc,y)
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therefore leads to

Boa? | =%ty Boa? | #2Hv 0
! 0 0
A=A+Vx=—"F| 22 | -——| == | =10
- X = 9 zZ4y 9 224y o 0
0

Thus A has been “gauged away”, except where x is singular: In the half-
plane y = 0,z < 0. This means that at ¥y = 0 the function x possesses a
discontinuity as indicated in Fig. 8.5. We recall that in the case of the step
function 6: df(y)/dy = é(y), so that for x < 0:

x = f(z,9)0(~y) + 9(z,9)0(y), f(z,0) # g(z,0).

X
[
X,
g
fxy)
0 ~Y
Fig. 8.5 The discontinuity of x at y = 0.
Hence
[ 0x Ox 9x
vx= (a—m’a—m)
_ [0f(z,y) 9g(z,y)
—{ 5 9(~y)+T9(y),
of(x, dg(z.
e g + 22D g14) 4 81 olers) - £ -

Thus the new gauge potential A’ = A + Vx has a singularity of the type
of a delta function in the y-component, and step function behaviour in the
other components. It should be noted, however, that there is no necessity to
resort to a singular gauge transformation!

The observation of this effect, called the Aharonov—Bohm effect, i.e. that
an electron moving in a part of space where the field B is zero but the



8.5 Energy of a Self-Inductance 183

vector potential is not, was achieved in quantum mechanical experiments.
Older books do not cover this topic. For additional information we refer to
Chapter 19 and to literature cited there.

8.5 Energy of a Self-Inductance

In many cases the self-inductance L can also be derived from the magnetic
energy W™2 in fact even more easily than otherwise. We have

anag
T ot

= loss of magnetic energy per unit time

= energy in form of Joule heat per unit time
= [Vin (Viy = induced voltage)
od

=I5

0]
=—-1—(L
51 L1
1._0I?
== :
2 0Ot (87)
provided the conductor was not deformed. The following relation therefore

follows:
|

wmas — §LI . (8.8)
In the case of several circuits the magnetic energy is correspondingly
1 g 1
W =5 Z Lili + 5 ; ; Li;1i1;
1o 1. 0
= §L1]1 + §LQIQ + Lioli 1o, (8.9)‘

if ng = L21,L11 = Ll,LQQ = Lg, etc.
The magnetic force F, which gives rise to a change of magnetic energy,

is given by
dW™% = _F.dl = VW - dl

Here dl is the virtual displacement* of a circuit for a fixed current or fixed
magnetic flux. Correspondingly large mechanical forces Fmech gre needed, in

order to prevent an actual displacement (so that for the virtual displacement
in statics —6W = F - §1 4+ Fmech | symech 0).

*Discussions of this can be found for example in Cheng [12], p. 252.
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Example 8.5: Self-inductance of the coaxial cable
Derive the self-inductance of the coaxial cable defined in Example 8.2 from its magnetic energy.

Solution: The expression for the magnetic energy is
1
W = 3 / drH - B,

where (in the present case) dr = rdrdf X unit length. We calculate separately the magnetic energy
of the inner and outer parts of the cable. Using the notation of Example 8.2 and the fields calculated
there, we have for the inner part fromr =0 tor =ry:

1 Ir \?  2mpI?2 [n 1?
W1=—/drm<—rz :__W1_2/ r3dr:H1—i.
2 277} 2(27r$)2 Jo 2 8nw

Similarly we obtain for the part from r; to ra:

2 2 o 2
Wa = l/d”ﬂ(L) = S / ror - el lla/m)
2 2nr 2(2m)2 J,., 12 2 2w

Comparing the sum of Wy and W with Eq. (8.9), i.e.
w=1lrp,
2
we obtain the result of Example 8.2, i.e.

1 /1 9
L=—|- 2uzIn —= .
471'(2”1_'— HQnm)

Example 8.6: Coaxial coils

Two coaxial coils with respectively N1 and Ns turns and radii @1 and a2 carry currents [; and
Is. The distance separating their centres is z 3> a1, az. Determine the magnetic force between the
coils. Reexpress the result in terms of the magnetic moments of the coils.

Solution: We calculate first the vector potential A(r). We can calculate this in several ways. The
quickest way is to use Eq.(6.4), i.e.
_pmXxr o, Ho

A
(r) o i

)
(where the moment m is located at the origin, which has to be modified in our application here!)
together with the expression for the magnetic moment as the product of current times area of the
conducting loop.

It is instructive to derive the expression from first principles, i.e. from the Biot-Savart law or
correspondingly from the expression for the vector potential derived therefrom, i.e.

Ar) = £ / Ids(r')

T an e —r|

We distinguish between the planes of the two coils or rather first between the plane of the coil
with current [y and a point P with position vector r on the circle with radius a2 = Rsin6 in
the plane of conductor “2”, where R is the distance between the point P and the centre of the
circular conductor “1” with radius a1, and 8 is the angle between R and the axis of the two circular
conductors. The point P’(r') at element ds of the circular conductor “1" has coordinates in the
latter’s plane given by

" =eynacosd’ + eyalsin @
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Fig. 8.6 Two coaxial coils.

Then

ds =r"(¢/ +d¢') — 1" (¢') = d¢’ Fr =d¢'| — eyrarsing’ + eyrag cos @’

Using the cosine-theorem we have
[r -1’12 = (PP)? = R% + a — 2a; Rcos ¥
and (as may be deduced from the geometry)
Rcosy = Rsinfcos(¢ — ¢').

Observe that when ¢ = ¢’ the point P’ has the same angular position on the upper circle as the
point P on the lower, and angle 1 is in that case the complement of 8, i.e. § = 7/2 — . When
¢ # ¢, the factor cos(¢ — ¢’) provides the appropriate projection. Hence

—egrarsing’ 4 eyray cos ¢')

HOI/
\/Rz-i—a — 2a1 Rsinf cos(¢ — ¢’)

A(r) =

With polar coordinates ¢, p in the plane of conductor “1” and
ez = —eysing + e, cosd, ey = eycos¢ + epsing,

and choosing the angle ¢ = 0, this becomes

A@r) = uoI /2"' d¢’(—a1sing’e, + ay cos ¢’e¢)
0 \/R2+a1—2a1Rsm9cos¢’
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Replacing ¢’ by ¢’ + 7 we obtain

T le ’
Afr) = ;LOI / d¢’ (a1 sind'e, — ay cosd'ey)
\/R2+a + 2a1 Rsin 6 cos ¢’

[L()I /2" d'ay cos dey
\/R2 + a? + 2a; Rsinf cos qS’

For R? > a% this is

A(r) ~ _P'LI /21r aj cos ¢/e¢d¢/ 1— a% + 2a1 Rsinf cos ¢’
dm R 2R?
I 27
o~ Z(;_ ;12 ® de’ sinb cos? ¢'.
Since fo cos? 0df = w, we have
A wol 7ra§ . 4
(r) = 5— 25 sinfey, + O(1/RY). (8.10)

With a different expansion of the denominator (for R + a? 3> a1 R) we can write

Al ~ pol 27 aycos¢’esdd’ a1 Rsinf cos ¢’
(r) = == iz |l T T (RRia?
T Jo (R? + af) (R? + af)

/,LoI ﬂale1nOe¢

= Ir (B2 +ad)ee
_ M 7ra1pe¢

4m (R? 4 a2)3/2

O[1/(R? + a2)%/? (8.11)

with p now in the plane of conductor “2” as in Fig. 8.7.

We now return to our original problem. We assume the two coils to be arranged as depicted
in Fig. 8.6. The electromagnetic vector potential A(r) at point P(r) due to the current J; in the
Ni turns of the first coil is given by N7 superpositions of the field of one turn, i.e. from Eq. (8.10)

I 2
Alr) = Nl‘%%} sinfey,. (8.12)

The magnetic flux ®2 through one turn of the second coil is given by

(132: B -dF = V x A -dF
Fy Fp

= A(r)-dlo
Ce
-4 Nipolimaies
Cy 4m(2% + a3)3/?
2.2
_ 2mohilimainay (8.13)
4m(22 + a%)s/z

azded?

where dly = asd¢2 and we used sin® = a2/R and R? =224 a%.
The mutual inductance Li2 is given by

Nady = Lo 11,
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_ N1N22,u07ra%7m% N 2/10N1N27m§7rag

= ~ ~L for z>>ai,as.
Lo 4n (2 + a2 o 12 1,a2

The interaction energy of the coils is given by

W = = |Liol1I2 + Lot I1I2§ =~ L1211 1o,

N | =

0

Fig. 8.7 Obtaining A at r.

Hence the magnetic force in the direction z is

Ima}Iomal 6
F= _VW:e26H0N1N2__17m1—27mZ. =ezﬂm1m27 (8.14)
4mz4 4n 24

where
my = N1117T(1%, my = Nglzwa%

are the magnetic moments of the coils.t

Example 8.7:f The solenoid of finite length
Determine for a solenoid of finite length the radial component of the magnetic induction near the
centre of the solenoid and near the axis.

Solution: In solving this problem we use the result of Eq. (8.11) obtained above for the vector
potential A(r) at a point with position vector r due to current I in a circular conductor of radius
a, as indicated in Fig. 8.7, i.e. (apart from a sign)

ﬁq{ 7ra2pe¢
ar [(z— 2)2 + a2 + p2|3/2°

Ar) = (8.15)

This is an approximation for large (z — 2')? + a2.

tSimilar considerations can be found in P. C. Clemmow {13], p. 154.
tSee also Jackson [3], problem 5.1, p. 205.
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We consider a coil with N turns per unit length and of length L. We imagine the current |
as circling around the cylindrical surface of the coil. Per unit length of the coil the current is then
NI. The current in one slice of the solenoid of thickness dz’ is NIdz’. This expression is to be
identified with I in Eq. (8.15), if we compare the circular conductor with an infinitesimal ring of
the solenoid. We then sum (i.e. integrate) over all ring-like elements of the solenoid, in order to
obtain the expression for the total vector potential at the point r. Then

Ar) = /L/'2 /J,oNIdZ’ﬂazpqu _ uoNImap /L/2 dz'eq -
_Ly2 4n[(z — 2')2 + a? + p2]3/2 an —Ly2 4n[(z — 2)% + a2 + p?]3/2

From Tables of Integrals we have

/ dz’ _ z
[z’2+p2]3/2 Pg\/z,i +_p2’

me: = [ Sk dlz’ — 2)

2=-L/2 [(z = 2")2 + a2 + p?]3/2
_[_1 (2 - 2) =Lr2
-l v o2
_ (-2 N (5+2)

P+ G-I + a2+ (2 +ad) G+ L2 +al 42

(% —2) [ Lz ] -1/2
(e +a)/EF LAt a1 P2 22+ LZ/4 + p? + a2
(% +z) [ N Lz ]_1/2
(p2+a2)\/z2+L2/4+a2+p2\_ 224 L2/44 p2 + a?

This can be expanded as

(5-2) [1 Lz L3 (Lz)? +]
(P2 +a2)/22 + L2/4 + a2 + p? 2022 + L2/4 4+ p2 +a2) ' 8 (22 + L2/4 + p? 4 a2)?
(5 +2) [1 Lz L3 (Lz)? +]
(0?2 +a2)/22 + L2/4 4+ a2 + p? 2(22 + L2/4+ p2 +a2) 8 (224 L2/4 + p? + a2)? !
so that
Int L Lz?
ni = —_
(,02 + 0,2)\/22 + L2/4 + a2 + p2 (P2 + 0,2)(22 + L2/4 + a? + p2)3/2
+3 L(Lz)?
8 (p2 + a2)(22 + L2/4 + a? + p2)5/2’
or 2
Int — L(z%> + L?/4 + a® + p?) ~ L2? +§ L(Lz)
o= (p? +a2)(22 + L2/4 + a2 + p2)3/2 ' 8 (p2 + a2)(22 + L2/4 + a2 + p2)5/2
Thus
Alr) = poNIma?p L(L%/4 + p? + a?) 3 L(Lz)? :le .
N P+ |2+ L%/a+ a2+ p2)32 | 8(22+ L2/A+a? 4 p2)5/2) ¢
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However,
184, O0Ay
= A B, = —- — .
B()= VX A(), By=>r —
Hence in our case
B - 04y 08 uoNImap L(L?/4 + p% 4 a?) n 3 L(Lz)?
P78z T Bzam(p? +a?) [ (22 + L2/4+a? +p2)3/2 | 8 (22 + L2/4 4 a2 + p2)5/2

pwo 3  2zNIwa?pL(L?/4 + p? + a?) 1o NIﬂazp%3zL3

T ar2(p2 +a2)(22+ L2/4 +a? + p2)5/2 4w (p2 + a2)(22 + L2/4 + a2 + p?)3/2
+O[1/(* + L /4 +a® + p*)"/?].
For p < a,|z| < L this becomes

po 96z NInp(L? /4 + a?) po 24NImpz

Be~ & 4 ar L2
_ pof24zNImp 96zNImpa? 24NlImpz
=i [ iz YT T }
o | 96zNT wpa?
™ [ 4 ] :

This result agrees with that stated by Jackson (see above).

8.6 Simple Current Circuits
8.6.1 Current Circuits with R and L

In the case of a single circuit with resistance R and self-inductance L we
obtain from the general equation established earlier,

IRy + Z ijIj =V
J
the relation
RI + Li{ =V (8.16)
o i .
We consider two possibilities:

(1). V.=V = const. In this case the solution of Eq. (8.16) is

VQ R
I=—(1-e1Y,
(1 - e By
so that after a longer period of time the current I assumes the value of

Ohm’s law.
(2). V = Vo coswt. Here w = 2w is the alternating voltage frequency. The
current is the real part of the solution I of the equation

dI

— = Vpet.
dat~ °

RI+L
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We set
I = F(t)e™t,
so that
RF + L(F + iwt) = Vp,
i.e.

LF + (R+ Liw)F = V.

The general solution of the first order equation

dy

18

y = e—szdz/deemed:zz‘
This can be verified by simple differentiation. Hence

o e——f(iw-{—%)dt/%ef(iw—i-%)dtdt

Vo 1 Vo(—iw + B)

_—Eiw—i-%— L(w2+%;)‘

Consequently
j _ ‘/O(R - ZWL) eiwt
- (uﬂLz + R2)
and

_ Vo

- w22 +R2
\%

=—2 __ cos(wt—6),

VRZ + 212

I =%() [R coswt + wL sinwt]

with
cos5:—R——— sind = wL

VT VT A

The effective “resistance ” v R? + w?L? is called impedance, and wL is called
inductance or inductive resistance.
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8.6.2 Circuits with L,C and R
In this case the equation is

IR+ LI =V + (Vi - V),

where (Vi — V) is the potential difference of the condenser in the circuit.
(Note that the “current” from one condenser plate to the other is the dis-
placement current). We saw earlier that

w-m:%,z:%.
Hence ;
LI+RI=V - oL
or
LI+ RI+ é]: V.

We set V = Vpet. Then

Lf+Rf+éI=uwwwﬁ

We also set I = Ipe™t. Then

1
IQ( — WL +iwR+ 5) = wly,
i.e. )
VO ‘/Oezwt

Io= , I= :
T Rti(wLl - L) R+i(wLl — =)

For V = Vjycoswt the real solution is similar to that in the previous case

7= Vo cos(wt — 0)
VB (WL =

( )
R UJC

The expression 1/wC is called capacitive resistance.
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8.7 Self-Inductances: Conjugate Function Method

In Sec. 3.7 we saw how the capacities of essentially 2-dimensional systems
can be calculated by the method of conjugate functions. Here we consider
the corresponding steps to obtain self-inductances. We start from Eq. (5.28),

;[ 3@)dr’

A(I‘) =k m,

and choose A along the z-direction with A, =0, Ay, =0, A, =V. Then
_(oV oV 0
- 8y b a$ ) bl

av\? [av\?
LR ) =|vv? =|VV].
B ((%) +(3y> Vv B=IvY]

B=VxA=

o Yo
o Jow
< Yo

and

Then the magnetic energy in vacuum can be written

W= 1/drH.B= L/drwvrz.
2 240

However
V- (VVV) = (VV)2 4+ VVY,

and so with Gauss’ divergence theorem and neglecting the surface integral

at infinity we obtain

W = —-23— drVV2V.

1o
Using Eq. (5.35), i.e.
AA(r) = —poj(r), andso AV = —puoj(r),

we obtain

W = %/drj(r)V(r).

Assuming the wires are thin, so that the flux through them is negligible and
hence V constant across them, we can write

1 . 1
W= §V/dr3(r) = §VI
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per wire and per unit length in z-direction. In the case of two wires with
antiparallel currents Iy, I, we have

W= IV - V] = %I[V].

But, by definition of the inductance L,

1
= -LI°.
%74 5 I
Hence V]

Our next aim is to express [ in terms of the conjugate function U defined as
in Sec. 3.7. We recall Eq. (6.22):

I:%H-ds:i B-ds
C

Ho
1 1
- —j{|VV|ds - —7{|VU|ds
Ho Ho
]
10

The direction of VU is that of constant V. Since for both wires |I1]| = |I| =
I, [U] is also the same for both wires. Hence we obtain

LV W

7 = Mo (8.18)

per unit length in the z-direction. We now apply this result in some examples.

Example 8.8: The parallel plate condenser

Calculate the self-inductance by the method of conjugate functions.

Solution: We let the plates be a distance d apart, i.e. d = [y]. We choose (cf. Sec. 3.7)
W=U+iV=a++iy, ie. U=z V=uy.
Thus we obtain for the self-inductance

V1 wed
L_#Om—TmT—HOd

per unit area perpendicular to this paper. Using the result of Example 3.9 for the capacity C,
where k = 1/4weg, we observe that
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Example 8.9: Coaxial cylinders
Calculate the self-inductance of coaxial cylinders with radii a,b, @ < b.

Solution: As in Example 3.11 we choose
W =V +iU =In(re?), U=6, V=lar

Then

pollnr) _ Ko In(b/a)

L= 2

per unit length. The result should be compared with that of Example 8.2. Multiplying L by C of
Example 3.11 we again obtain LC = egpuo.

Example 8.10: Parallel wires, a distance D apart
Calculate the self-inductance of two parallel wires of radius a and a distance D apart.

Solution: We can use the result of Example 3.12,
1

T ik cosh_l(z%)

together with

Vi 1 [U
L=py—, C=—_—.
Kooy 4nk [V]
Thus 5
HO HO -1
= = 0 osh e
L d7kC T o8 ( Qa)

with LC = pgeo. Using cosh™!z = +[In(2z) + O(1/z?)] for = > 1, the self-inductance may be

approximated as
L:“—Oln(2>, D>a.
T a

This result should be compared with the result of Example 8.3.



Chapter 9

Electromagnetic Waves

9.1 Introductory Remarks

In the following we consider electromagnetic waves in vacuum and in media.
This means, we first obtain the wave equations from Maxwell’s equations
and then obtain the very important vacuum relation already referred to in

Chapter 1,
1

? = , (9.1)
€ollo

which determines the velocity of the electromagnetic wave in the vacuum
(or more generally in a medium) as the reciprocal of the square root of the
product of dielectric constant and magnetic permeability. One should note
the difference to the case of Chapter 8, where the velocity was that of the
wave in a transmission cable. We then investigate solutions in vacuum and
in conducting media, and in the latter case we encounter the important skin

effect.

9.2 Electromagnetic Waves in Vacuum

In this case we have D = ¢gE,B = poH,j = 0, p = 0, since we consider first
the case of electromagnetic waves without charges and currents (simply as a
matter of simplicity we leave out the source terms here, considered to be far
away). With these provisions we write down Maxwell’s equations:

OE
VXB:MOEOE, VXE:—E', VEZO, VB:() (92)

It is a general procedure to apply to the first two equations, which are “curl”
equations, the curl operator once again in order to reduce them to Laplace

195
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form. This is achieved with the help of the formula

V x (V x B) = V(V-B) — AB.

Applying this to the first equation and using the second, we obtain

V x (V xB)=V(V.-B)- AB

0
= ,U,()G()a—t(v X E)

_ 9’B
= —Ho¢€o 8t2 )
1e. )
o“B
—AB = _“06"—5157
or

1 062 5 1

OB=0, O=A-—— = .
’ c28t2’ ¢ Ho€0

(9.4)

In the wave equation the parameter ¢ obviously has the significance and
dimension of the velocity of a wave of the field B. In an analogous way we
obtain from Eqgs. (9.2) also OE = 0. Thus the fields E, B appear as waves
propagating with the velocity ¢ in vacuum. This velocity is independent of
the source and depends only on €g, 4o, whose product connects electric and
magnetic properties to the velocity of light (here in vacuum). We write*

3
O=> "8, = >  08"gu0"
p=0

wn,v=0,1,23
with
-1 0 0 0
0 0 1 00
F"__"_ g =
F =gy W= gw=1 9 o1 0
0 0 0 1

One can also write

4
O=) oro*, z4=ict.
pn=1

The differential operator [ is called D’Alembert operator; this operator is

the spacetime generalisation of the Laplace operator A.

*The justification will be seen later in the context of the Special Theory of Relativity.
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Solutions ¥ of equations 0¥ = 0 are of the form eFillerFwt) with k2 =
w?/c?, since
De:i:i(k-r;wt) — |:_ k2 _ l(—iw)Q] e:ti(k-r?wt)
2
_ [_ K2+ fi] itk rFwl)
A wave for which
f(r,t) =k -r —wt = const.

is called a plane wave. In its case
Vf(r,t) =k,

i.e. the wave vector k is orthogonal to the plane defined by f(r,t) = const.
From k? = w?/c? we deduce that k = w/c = 2r/X, X the wavelength. How-
ever, for an arbitrary curve r = r(t) in the plane f(r,t) = const. one has
k-r=uw, ie k-v=wv=uwlkforr| k, as we can choose. The vector
k points in the direction of propagation of the wave. For electromagnetic
waves in vacuum v = c.
We now consider a general solution of the equation OE = 0. We can
write this
E= E01ei(k~r—wt) + EOQe—i(kT-}-wt) (9.5)

(“one time, several space directions”). We can restrict ourselves first to
E= Eoei(k-r—wt)

(or to E = Eq cos(k-r—wt), since only the real part has physical significance).
We let the vector Eg be constant in space and time. Then

V- E= Eo(ik)ei(k“"’“’t), 88_12:‘ — Eo(—iw)ei(k'r—“’t),

i.e. we have the replacements
V — ik, 5 —iw.

We consider B in a similar way. Maxwell’s equations then become

kxB=-%E,| |

kx E = wB,}"EJ‘B’k and B L E Kk,

k-E = 0, _

k-B= 0, }..E,BJ.k. (9.6)
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It follows that the electromagnetic waves in vacuum are transverse waves,
i.e. that the fields E and B are perpendicular to the propagation vector, and
in addition the fields are orthogonal to each other, as illustrated in Fig. 9.1.
We infer from the first two of the four relations (9.6) by scalar multiplication
by E and B the important (but not universally valid) consequence that

1
C—ZIEIQ = BJ.

A < phase plane

7

Y
=

T

Fig. 9.1 The phase plane | vector of propagation.

The vector Eq in the expression E = Bkt~ defines the direction of

oscillation. If Eg is constant in time one says, the wave is linearly polarised.
The transport of energy per unit area (cf. the Poynting vector) takes place
in the direction of the propagation vector k oc E x B.

We let €; and €9 be unit vectors, called polarisation vectors, which span
the plane orthogonal to k. Then, in a general case,

E=E; +E,, |E|=|E¢], B=B;+B;
with (i = 1,2)
Ei(r,t) = € Ejetlkr—ot) B;(r,t) = €; B;etler—wt),
Since E 1 B, it suffices and is convenient, to consider the vector E as a
representative of the entire wave. E;, Eo have different phases, if we permit

Ei, FE» to be complex, i.e.

E1 = |E1|e"t, Ey = |Esle™.
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Since only the relative phase is of interest, we can choose §; = 0. If 82 = 0,
the wave is said to be linearly polarised. In this case we have

E = (|Er|e1 + |E2|62)ei(k'r“"t), or RE = (|E1|e1 + |Ezle2) cos(k - r — wt).
If 5 = ¢ # 0, one says the wave is elliptically polarised,
E(r,t) = ey Byetkr—vt) 4 €9 EqpeikT—wite)
A circularly polarised wave is obtained, if |E1] = |Fg| and ¢ = £7/2, i.e.

E(r,t) = |E1|(€; + iey)elr—t)

)
9%

Fig. 9.2 Linear, circular and elliptic polarisation.

(left and right polarised) or
RE(r,t) = |E1]er cos(k - r — wt) £ |Eq|egsin(k - r — wt).

For example, when k is parallel to the z-axis, €; parallel to x, and €4 parallel
to y, we have:

RE,(r,t) = |Eq|cos(kz — wt), RE,(r,t) = £|E;|sin(wt — kz).

In the case of the elliptically polarised wave |E1| # |E2|. These cases are
illustrated in Fig. 9.2.
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9.3 Electromagnetic Waves in Media

We now consider the case of a homogeneous, infinitely extended, uncharged
but conducting medium with medium parameters ¢, 4 and a current density
Jj as source. In this case we have

D=cE, B=uH, j=0E, p=0.

The Maxwell equations in this case are

OoH oE
V-E=0 "H=0 = —pu-—— =e— .
, V , VxXE el V xH 68t+0E
It follows that: 5
Vx(VXE) =—-u—V xH.
x (V x E) o ¥ %
v(V -E)-V’E Se+oE

——
0

We thus obtain the following equation for E and analogously the correspond-
ing equation for H, i.e.

O’E OE
AE = EM—B'tT + ,UIO'E,
0’H OH
= €—0r —. 7
AH =e€p 572 + po 5 (9.7)

These equations are also known as telegraph equations. In the case of di-
electrics (o = 0) they become:

1 62 1 62
<A_c’—2@)E:0, (A—pw>H=0a (9.8)
where
CI = 1 = MC
Ve ew

We can see that ¢’ is the phase velocity, i.e. w/vk?2, by setting EH
etlkr=wt) 5o that (A + k?)E,H = 0 with vk? = w/c = w,/éi, and the

phase velocity is w/k = 1/ /€p.
The refractive index n known from optics, is defined by

nzgz—@—c\/e_u. (9.9
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9.4 Frequency Dependence of € and o

At high frequencies of electromagnetic radiation the parameters €, 4 and o
become frequency dependent. When we introduced these parameters we were
concerned with static fields. We therefore face the problem of determining
their frequency dependence. We consider here only the two more important
cases, i.e. those of € and o, and take in most cases simply p ~ constant.

9.4.1 The Generalised Dielectric Constant

We set
E= Eoei(k.r—wt), H= Hoei(k-r—wt). (910)

Then the Maxwell equation

OE
VxH=¢e—
X eat +oE

implies
V x H = —iewE 4 cE = —iwnkE.
The quantity
n=etis (9.11)
w

is called the generalised (complez) dielectric constant. Substituting now the
Eqgs. (9.10), (9.11) into the Maxwell equations, we obtain

OE
VxH=e—a—t+aE—>k><H=—wnE,

H
VXE:“ﬂEﬁkXEZWﬂH,

V.-H=0—-k-H=0,
V-E=0—-k-E=0.

Thus again we have H,E L k, and no longer |E| = |H|. But

kx(kxH)=-wnkxE.
S e’ S——
k - Hx-k2H wiH
0

It follows that
o

k*H = w?nuH = pew? (1 + z—)H

€w
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Provided H # 0 everywhere (hence the reference to infinitely extended media
at the beginning) we have therefore

k2 = pew? (1 + zi) (9.12)
€w

This relation is called the dispersion relation of the conducting medium. We
can solve it for k = « + ¢, where for conductivity o = 0O:

w
k= wy/ep = —n,
c

where n is the refractive index introduced earlier. As a generalised refractive
index p one defines (instead of n = ,/eu) the quantity

p = /nuc = p1 +ips.
A wave moving in the direction of 2 contains the factor

ei(ka:—ut) — ei(az—wt)e—ﬁz‘

Fig. 9.3 Damping of a wave in a conducting medium.

Here 3 is of the order of ¢ for small c. We see therefore that the wave in the
conductor is damped, as indicated in Fig. 9.3. The distance |1/3| is termed
the penetration depth or skin depth.

In the next subsection we determine the frequency dependence of the
conductivity o. The result will be inserted into Eq. (9.11) for the generalised
dielectric constant.

9.4.2 Frequency Dependence of o

The conductivity of metals has its explanation in the existence of free elec-
trons. We assume we have n such electrons in a volume V, N = n/V. Then
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Newton’s equation of motion for one such electron, say electron “k” with
velocity vy, is (e = charge)

m%(evk) = ’Ey, — Levy,

where Ey is the field of the other electrons and ¢ is the frictional resistance
of the lattice atoms. Hence

1 d 1 1
72 mr(evi) = 57 Y By - vaevk. (9.13)
k k k

But
i(r,8) =Y ek (t)d(r — ri(?)),
k

so that

/ j(r,t)dr = Zei‘k(t).
4 k

We now define a mean current density by the expression (note the averaging
over space, and the time dependence of the mean value!)

GV = /V 3, )V, (9.14)

We also define a mean field strength E by

1
NE = V;Ek,

and obtain with Eq. (9.14),

d . .
m—(j(t)) = NEe? - £(j(t)).

In the following we write

((r,)) = j(®).
Then the equation is

dJ _ 2 .

i NEe® — &j.

For j = const. we have

j = 0'0E, i.e. oy = —(—.
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The quantity og is called direct current conductivity. It follows that £ =
Ne?/oy. Setting
1 ¢

T T

T m
we see that 7 has the dimension of time and is interpreted as a mean time
interval between successive collisions of the electron with the lattice, called
the relazation time. We thus obtain the equation

dj 1, Née?
Assuming E o< e™™? j oc e”™? we have
1, Neé?
—iwj+ —j = ——F,
T m
ie.
j=ocwE
with N2
0
o(w) = e‘/m  o(0)

—iw + % 1w’

where 0(0) = g¢. For small frequencies w, we have o(0) = constant. o(w) is
real also for wr < 1, and almost purely imaginary for wr > 1 (this implies
a phase difference of 7/2 between j and dj/dt, or between j and E).

We can now insert the expression for o(w) into Eq. (9.11) in order to
obtain the complete frequency dependence of the generalised dielectric con-
stant, i.e.

g(w)

n=€+i—-. (9.16)
w
Fields which are called “high frequency fields” in practice are those for which
wrKl, w<kl/T,

where 1/7 is large in the case of strong damping. Thus the term “high
frequency” used in practice does not correspond to the limiting case of w —
0o. In the case wr <« 1 we have o real, so that damping occurs. This is the
reason why these so-called “high frequency fields” hardly penetrate into a
conductor. In general, however, € and ¢ are frequency dependent.

We consider now the ratio of displacement current to conduction current,
i.e. that of their densities
ja _ 0D/ot eOE/Ot

j oF oF
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For E = Fye™! one has o ~ 5.8 x 107 Q™! per meter (or older: mhos per
meter). This is such a high value that for all frequencies in ordinary circuits
lja/7] < 1%. We look at this relationship more closely. We define the plasma
frequency wp by

w2_N62
P= em
Then
() 6_I_,acu) +_N62 1
w) = 1 =e+i—
" w mw —iw+l

We consider the case wt > 1.
In this case )
o) =e1-25).

We distinguish between two subsidiary cases:

(a) w KL wp:

The index of refraction
. wp
p= C\/nﬂ ~ ’LCWé/.LT

is in this case pure imaginary. In order to obtain the penetration depth we
have to calculate

2
2 2 2 w 2
k* =wnu ~w —6—}; U= —€euwp,
w
so that
eikz — ei\/—e,uw%,z — e:l:,/e/,uupz = e:l:z/zo,
i.e. the penetration depth

_ 1 m
0T Jepwp Ne?p

is independent of the frequency.
The conductivity is

Ne?/m _ Ne’r/m
C—dwr+ 17
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In the case under consideration (wr > 1), we have

2 2
o(w) ~ Ne. /m _ Z,Ne

—wT mw

The factor “” implies, that j and E of
j=oWw)E

have a phase difference of 7/2. Since 7 does not appear here, we would have
obtained this case also without the friction term in the equation for j, i.e.
from

dj N e?

a - m
Thus this case is normally not applicable to rigid bodies or metals (these
possess an atomic lattice which gives rise to the friction term). The case
finds application, however, for instance in the case of ions (charge e) in the
stratosphere.

(b) w > wp:
In this case
A
o) =e(1- %)
and

is real. Hence

is positive, so that
=wy/fepyf1 — — (9.17)
is real. With \/eg=1/c 2 this relation can be written

k202 = W2 — wp?.

This means, there is no damping. On the other hand, again

Ne? ew? 1
ow) =i— =i—L2 « =,
mw w w
so that

j=0(W)E ~0 for w>» wp.
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Then there is practically no conduction current. Since the resistance of the
lattice is practically zero (no damping) (1/7 < w, hence 1/7 negligible), the
explanation has to be found in the conduction electrons — one can say, at
high frequencies w they acquire “inertia”, so that j — 0.f Thus fields called
“high frequency fields” in practice are not those with w > wp and wr > 1,
but those for which w7 <« 1. In the latter case o ~ is real, and damping
occurs. We see therefore: For wr <« 1 there is little dissipation of energy in
the metal (the wave is almost completely reflected), and only for w > wp one
has transmission and little reflection.

9.5 The (Normal) Skin Effect

Let electromagnetic radiation with frequency w/27 fall in the direction of =
on an uncharged metal of conductivity ¢ and magnetic permeability p. We
assume the time dependence of the fields to be given by E,H  e*!. The
relevant Maxwell equations together with

j=oE
are then (neglecting the displacement current),

(1) VxH=j (2 VxE:—paa—I;I,

3) V.-H=0, (4 V-E=0.
Taking the curl of Eq. (2) we obtain
V x (VX E) = V(V-E) - AE = —u2- (V x H),
Ot e —

J

i.e.

. )
Aj= v
Since j o« e*?, it follows that
Aj=7%, 7 =iwpo
with
v =(1474) WTwE(l—f—i))\, A= %>0. (9.18)

tSee the discussion in Greiner [4], p. 300: For w — oo metals become “transparent”, i.e. the
metal behaves like a dielectric permitting the transmission of radiation.
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For _
j(z,t) = e“*j(x)

we therefore have (jo = j(0)):

d2 . . —yz .- —iAx

(@) = jol()e ™ = joe e,

For obvious physical reasons we have to choose the damped solution. The
expression 1/ is called penetration or skin depth.



Chapter 10

Moving Charges in Vacuum

10.1 Introductory Remarks

In the following we study moving charges in a vacuum, i.e. we consider the
Maxwell equations with nonvanishing charge density (hence also with nonva-
nishing current density). We investigate the solutions of the wave equations
and thus obtain potentials and fields. Finally we consider the radiation of an
oscillating dipole (consisting of two charges). In particular we shall see that
accelerations of charges produce the dominant field contributions at large
distances (called “radiation fields’) and that these are mutually orthogonal.
These considerations are of eminent importance for an understanding of elec-
trodynamical phenomena, also because the dipole is often referred to as a
kind of idealised classical model of an atom and thus offers the explanation
why this picture is wrong — the dipole radiates off energy and exhausts itself
therewith.

10.2 Maxwell’s Equations for Moving Charges

Here D = ¢E, B = pgH, so that Maxwell’s equations become

1
V-E:E—p(r,t), V-H=0
0
and 5 5
H
V X E = —po—- = -5 (koH) (10.1)
and 5
V x H=j(r,t)+ an_lf' (10.2)

209
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Expressing B in terms of the vector potential A, we have

,u()H =V xA
and from Eq. (10.1) we have
VXE=-V x 8—A,
ot
ie. 9A
E=_——=
5 Vo
as already familiar. With V - E = p/ey we obtain
1 0
and with Eq. (10.2) we obtain
1 0 0A
H=— = - — = . .
V x #OVx(VxA) J+608t( 5 qu) (10.4)
V(V-A)-AA

Equation (10.3) reduces to

7} 1
and Eq. (10.4) to
0%2A o
—AA + poeo—5- ETY +Vv (V A + poeo a(i)) = oj, (10.6)

where poeg = 1/¢2.

We have seen earlier that the observable fields E and H are independent
of the particular choice or gauge of the vector potential. Previously, however,
we encountered the transformation from one gauge potential to another only
in the context of electrostatics and magnetostatics (see, however, Sec. 7.5).
If the fields depend also on time, the gauge transformations are given by
Ox
Bt
for arbitrary functions y. We apply these transformations to Egs. (10.5) and
(10.6) and obtain

A=A +Vy, ¢=4¢ — (10.7)

1
A )——V (A'+VX)=gp,

3
Zo0 — (A" + V)

1 3¢’ 1 8%y
( A X 2 6t c2 Ot? Hol,

~A(A"+Vx)+
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1.e.
0 1
A ——YV. A= - 0.8
A 8tV A 6Op (1 )
and 52 o6/
Al L O7 Cary 1O
AA + 0—26t2A +V|IV A"+ el B oj- (10'92

We observe: The terms in x cancel out, i.e. the equations are invariant
under the gauge transformation. We also observe: For a special gauge, which
means if we consider potentials (A’, ¢') which satisfy the additionally chosen
condition

104
2ot

called Lorentz gauge, the equations simplify to

VA + 0, (10.10)

O¢ = —%p, OA’ = —pgj. (10.11)

In fact, that it is even necessary to demand a condition like the Lorentz
gauge® can be seen by a more detailed investigation of the solutions of
Egs. (10.8), (10.9) and (10.11). In order to see that the gauge condition
implies the transversality of the electromagnetic field, and instead of the
four components of the potentials (A’, ') the independence of only two mu-
tually orthogonal field components E and H, also requires further detailed
consideration.! In the following we write (A’,#') again as (A, ¢). Thus we

have
104 _
2ot

called Lorentz condition, and we have with 0 = A — 5176%27 the equations

V-A+ 0, (10.12)

O¢ = —-1—-,0, OA = —pugj. (10.13)

Example 10.1: Coulomb gauge

Starting from Maxwell’s equations for moving charges in vacuum, derive the wave equations of the
potentials ¢, A in Coulomb gauge (V - A = 0) and show that a transverse current is the source of
the potential A.

Solution: From the above we have the Eqs. (10.8) and (10.9), i.e.
7] 1

A —V- - A=--—
¢+6t €0p’

* A different gauge, called Coulomb gauge, V- A = 0, is treated, for example, in Schwab] [16],
p. 127.
fSee Chapter 18.
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and

1 82
AA A—V(V-A—{-iéé):—,uoj.

Yl c? Bt
With Coulomb gauge V-A =0and (= A — :15(82/8152), it follows that

1
Ap=——p, DA =—pojs,
€0

where (with D = ¢E)

o4 . 1 9

oo v _._ 1 9.
Je=d- Vg =i y0c28t( @)
. oD 82A . SA
_J+§-+6o——at2 (with E———é-t——v¢)
62
=V>(H+eoat2.

Together with Ampére’s law V x B+ AA = 0, we also have
AA = —,ro xH= —“Ojtt

(this defines j;¢). Hence

.. 92A

Je =Jeae + Eoy-
We construct the divergence of this with Coulomb gauge. The operator —iV applied to A o« e
yields k, the propagation vector. Since

ik-r

V-jn = V(VXH) =0,
we have ji: L k, i.e. V- ji =0, which means j; is transverse.

In order to be able to solve Egs. (10.13) we need the appropriate Green’s
function G(r,t;r',t'), which is an inhomogeneous solution of

OG(r,t;x',t') = 6(r — r')o(t - t). (10.14)

In the following Example 10.2 we calculate that particular Green’s function,
which represents the propagation of a light signal or disturbance of some
kind as a spherical wave spreading out with velocity ¢ from r’ at time t’ to
r at time ¢ > t/. This Green’s function which takes into account causality
is called the retarded Green’s function, and the corresponding potentials are
called the retarded potentials. According to the following Example 10.2 this
retarded Green’s function is given by

5t — ¢/ — lr=rl)

[

G(r,t;r' ) t') = - (10.15)

4r|r — 1’|

Hence )
P(r,t) = —— /G’(r,t;r’,t’)p(r’,t’)dr’dt’, (10.16)
€0
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implies
1 p(r',t — ———lr_r,l)
t) = dr’ e -, 0.17
o0 = o [ (10.17)

Similarly one obtains

. |[r—r/|
Ho J(I‘I,t - )

Example 10.2: The retarded Green’s function
Calculate the Green's function G which takes into account causality, i.e. that a cause must precede
its effect.

Solution: We have
1 02

c? a2

and the Fourier representation of the 4-dimensional delta function, i.e.

O=4a-—

o0 o0 . ’ . ’
S(r—r)é(t —t') = (2%)4/ dk/ dwetk (r—r") g=iw(t=t) (10.19)
—00 —o0

The Fourier representation of the time-dependent Green’s function can be written

o oo . ’ . ,

G(r, v, t) :/ dk/ dwg(k, w)elk (F—r)g—iw(t=t")

—o00 —o0

where the spectral function g(k,w) is still to be determined. First we have
oo ) w? . , . ’
OG(r, ;' ,t') = / dk / dwg(k,w)(—2 - k2> gl (r=r') gmiw(t-t)) (10.20)
—o0 oo c

Inserting (10.19) and (10.20) into the equation for G, Eq. (10.14), and comparing coefficients, we

obtain
1 1

glk,w) = "G i (10.21)
and therefore
1 e o0 c? Tk ’ ’
G(r, t, r',t') = —W/ dk/ dw—i—k2—26'[ ‘(r_r )_w<t_t )]. (1022)
T oo —oo € —w

The integrand has simple poles at w = +ck. The integration is performed with the help of Cauchy’s
residue theorem, i.e.

f f(2)dz =270 3 Resi f(2).
k=1

The Green’s function represents an instantaneous and local disturbance or event or something
similar which occurs at radius r’ at time t = t’ and propagates as a spherical wave with velocity
¢. A causality-preserving wave propagating forward in time must be such that

Gr, ;¢ t)y=0 for t<t.

Thus for t > ¢’ the function G represents a wave which spreads into the future. The singularities
of g(k,w) are at w = *ck. We now consider the plane of complex w with w = w1 + w3, and try to
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define the causal waves by a suitable choice of the integration contour in this plane. To ensure that
G =0 for t < t/, we have to circumvent the poles at w = Zck. This can be achieved by displacing
them by an infinitesimal amount (—ie), which means replacing in the above equation w by w + i€,

so that we write
, oo oo 1[k (r-r’)—w(t—t")]
G(r, t;r, t)——2)4/ / —2—W (10.23)
- C2
We consider first the integration with respect to w, i.e. the integral
e—iw(t— t’)
Ik) = / ot oy

The idea is, to add to the integral from —oo to 400 the integral along the infinite semi-circle either
in the upper or in the lower half-plane so that as a consequence of the displacement of the poles by
—i€,€ > 0, the integral along this semi-circle falls off exponentially towards infinity and hence does
not contribute. This means, for t —t’ > 0 we have to choose the semi-circle in the lower half-plane,
and for t — ¢’ > 0 in the upper half-plane. Since we have two poles of the first order, we obtain two
residues. We let the poles be wi = ck — i€ and wy = —ck — i¢, both in the lower half-plane. Their
residues are the coefficients of the factors 1/(w — w1) and 1/(w — w2) in the integrand. These are
easily obtained as

—ick(t—t") ick(t—t’)
—e N .

residue at w1 = — residue at wo = —¢

We thus obtain with Cauchy’s theorem
. 7 : 7 2
I(k) = —27ri( - ie_”k(t“t )4 ieww—t >) = % sin(ck(t — t')).

Hence we have thus far

t<t,

I ) ,
G(r’t”’t)—{-—w;) 22 deit =t k= Tsin(ck(t — ') : t>¢. (10.24)

We still have to perform the integration with respect to k. To this end we introduce spherical
coordinates. Let 6 be the polar angle to the vector r — r’ as z-axis. We then have
dk = k? sin 8dkdédg, k-(r—r') = klr — r'| cosé.

Inserting this into the expression for G we obtain

G(r,t;r' ') = /d¢d0dkk sin @sin(ck(t — t'))e’* cos Olr=r'l,

CL )3
Integration with respect to ¢ yields the factor 27, and we have

[

G(r,t;r' t) =
(r’ 7r I ) (27r)2

/ ksin(ck(t — t'))dk e“c cos Olr—r'l g cos 9.
=0

The integral over 0 yields —2sin(k{r — r’|)/k|r — r’|, so that

- oo
G(r,t;r',t') = —2——5|——C——,I / sin(k|r — r'|) sin(ck(t — t'))dk.
w2|r —r'| Jo
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Now we use the relation
c/w dk sin Akesin Bke = — ~[§(A + B) ~ (A ~ B)],
a 2

which can be verified by replacing the sines by exponentials and using the integral representation
of the one-dimensional delta function. Thus G can be expressed as the sum of two delta function
contributions, i.e. we obtain

—r -
G(rytﬂ‘lyt’):——l— 5(t—t'+|—l-'-—rl> —5<t_t’_|i—r| )
4xjr ~ /| ¢ c

Since the argument of the second delta function is nowhere zero for t > t/ this cannot contribute
to G. We thus obtain

§(t - ¢ — =l

10.25
4r|r —r/| ( )

G(r, ;' t') = —

This Green'’s function describes the effect at time ¢ > t’ and at radius r > r’ of a delta function-like
cause at time ¢t = t’ and radius r = r’ propagating from the source with the velocity of light.

10.3 The Liénard—Wiechert Potentials of a Moving
Point Charge

Our aim is now to calculate the potentials ¢(r,t), A(r,t) for the case of
a point charge moving with velocity v(t). The very important results we
obtain are the so-called Liénard—Wiechert potentials. We expect, of course,
to regain in the limit of vanishing velocity the well known static expressions
we had before.

We let ro(t) be the vector representing the path or trajectory of the point
charge e and set

v(t) = To(t)

for its velocity. The charge density can then be written
p(r,t) = ed(r — ro(t)) (10.26)
and the current density
j(r,t) = p(r,t)v(t) = ev(t)d(r — ro(t)). (10.27)

We consider first the scalar potential ¢. Inserting into Eq. (10.17) the
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(5(r’ —ro(t — |r—cr’|)>
7

expression for p, we obtain

Pnt) = 4710 /dr o —r|
o(t) )5(t' t+ Lj')
47reo/dt /dr’ |r — /|
6(t’ —t+ w)
- e / A (O TR

We define a time difference u by

— / — )2
u=t — +|}‘_M:t1_t+w, (10.28)
c c

so that
du n(t') - v(t) r —ro(t)
o . o n= r —ra(d)
c v —ro(t)|

and
d = du

1— n(t')-v(t’) "

c

It follows that

e du 5(“)
¢(r,t) = 4reg / 1— n(t’)'CV(t/) v —ro(t)|’

ie.

o(r,t) = c/4reo —, (10.29)

v — ro(t))| (1 — n(t) - M)

where )

t'=1t- E|r —ro(t)], v(t') =ro(t).
In a similar way we obtain

/
A(r,t) = ev(t)po/4m . (10.30)

Ir —ro(t')] (1 —n(t') - V(ct’))
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These expressions, called Liénard—Wiechert potentials, are exact solutions of
the above wave equations for a pointlike, charged particle moving along the
trajectory ro(t’). For

r—ro(t') =r(t) (10.31)
the potential ¢ is
B e/4meg
¢(I‘,t) - (’r(t’) _ r(t') v(t') )tl:t_w’ (1032)

ie. |r(t')| = ¢(t —t'). One should note, that the vector r is here to be
considered as fixed and r = rg(t') + r(¢'). The expression

is called retarded time and is defined implicitly by this equation (e.g. when
r(t') = vt' + a we have t' =t — (vt' + a)/c,t —t' = (a/c + vt/c)/(1 + v/c)).
If ¢ were infinite (which is not possible according to the theory of relativity),
we would have t’ = ¢ for r(t') = finite. This means the radiation emitted
by the charge would reach any other point in space instantaneously (which
is nonsense). However, for ¢ = finite, the radiation emitted by the charge
reaches other points only with delay, or, as one says, with retarded time.
This means the radiation (i.e. the fields) observed at the point r at time ¢
was emitted by the charge at its earlier position t — t’ seconds before.
Analogously to Eq. (10.32) we obtain

Afr,t) = ﬂ(T( v(t)

4 \ (1) - M)H_Lﬂ'
4 c

These are the potentials at position r (or r(t') away from ro(t')) and at time
t in the case of a point charge e. One should observe our notation, in order
not to confuse r and r(¢'). In the following we apply these potentials to the
oscillating electric dipole, called Hertz dipole, with dipole moment p(t).

(10.33)

Example 10.3: Lorentz 4-form of the Liénard—Wiechert potentials

(This example assumes familiarity with Chapter 17). Let the components of ro(t’) be the coordi-
nates of the charge e and the components of r those of an observation point with light vector (i.e.
one with ¢ = (distance)?/(time)?) U# = (¢(t —t'), r — ro(t')) given by U#U, = 0. Verify that the
Liénard-Wiechert potentials can be combined into the 4-form

A e ut
- 4mege Uypu?

where u# is the 4-velocity defined (later) by Eq. (17.64), i.e. with components uo = ¢/y/1 — 82, u; =
—u;/\/1 =52, B2 = v2/c2.
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Solution: The light vector is given by c2(t—~t')2—(r—ro(t'))2 = 0, i.e. c(t~t')/+/(r —ro(t))? = 1.
Hence Eqgs. (10.29) and (10.30) with (17.31) and epuoc? = 1 yield the expression

on

e c v )
" 4meoc? \Jr —ro)(1 — 2BV r — po)(1 — ¥

c

AH

Il

_ € (C,V)
Ameoc? | _ rd(Ti:Z? - ¥>
_ e (e, V)/\/1 -8
~ dmeoc (c2(¢ — ') — v - (r —ro))//1— B2
e ut

dmege Uyuv’

10.4 The Fields E, B of a Moving Point Charge

We obtain the fields E and B from the equations

8
E=-V¢-— 3—?, B=VxA. (10.34)

Thus we have to perform complicated differentiations. We start with E:

Ee_v e/Ameg
v — ro(#)] (1 — 2E2)
!
_9 v(po/n____| (10.35)
ot It —ro(t)] (1 _n(t );V(t ))
Here t' =t — |r — ro(t')|/c, so that
ot’ 1/ 8 ot’
5 =1 (v~ 3p
5, d
Dl = ro(t)] = oo /T T2
= —v(t) - n(t), (10.36)
and hence
at' 1

ot (1 ~ n(t/).v(t,)) : (10.37)

o]
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Similarly (since V|r| =r/7)

and hence
—n(t')

Vﬂ:c@_nw?w»'

(10.38)

Moreover, with Eq. (10.36),

8_11. _ 3 r— I'()(tl)
ot ot (lr - ro(t’)l>
(v(t) () (r—ro(t)) _ v({t)
v — ro(t')]? | —ro(t)]
_ n(t') x (n(t) x v(t))
r — ro(t')]

(10.39)

Hence, with a(t') = dv(t')/d¢t' and Egs. (10.36) and (10.39), we obtain

)

Wﬂ;ﬂﬂ) @mdﬂ-Mﬂ

—[I‘—I‘()
C

= —v(t') -n(t) (1 —

v(t)

:—ww-cmq-“”)—”’””mqm.mw. (10.40)

-[n(t) x (n(t) x v(t))]

c c
Now, ¢ = ¢(r,t'(r)), so that

0
V‘»b = (V¢)t’=const‘ + b’?,“Vt,'
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Thus we obtain with (10.29) and (10.38) (as well as V(1/|r|) = —n/r?)
(skipping here two steps with rearrangements of terms):

e/4meo

|I‘ — I'O(t,)l (1 - Mc—lm) :l t=const.

—Vé=-V [

0 e/dmegy —n(t)
ot II‘ _ I‘()(t’)| (1 _ V(tl):’l(tl)) C(l _ v(t’);n(t’))

and with Eq. (10.40)

2

(e/4meo)in(1 - %) — n(22)(1 - )
v~ rof2(1 - LCV)3
(e/4meo)n(t)[a(t) - n(t)]
" c2(1 — %)3|r —ro|

(10.41)

Next we have to calculate A /0t. We have first with Eq. (10.30):

oA _ 2 (epo/Am)v (t)
ot Ot | |p _ po(t)] (1 _ v(t')(-jn(t’))
(epo/4m)a(t’)

- ro(t’)l(l _ M)

) (euo/47T)V(t')3%{|r — ro(t')] (1 — V(t—)n@)} (10.42)

' "N\ 2
Ir _ ro(t')|2(1 _ v()n(t ))

c

and then with Eq. (10.40):

oA (emo/amv(t){ —v() - (n() - ¥2) - =la) )}
o o~ ro(t)2(1 - Lm0

c

(epo/4m)a(t’)
Ir — ro(t)] (1 _ v(t’)‘n(t’)) ' (10.43)

c
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Using Eq. (10.37), we have

OA  OA ot
T

and hence

Qé (eu0/47r)v(t’){ (t ).( () - )}
3 p— ro()p (1 — Y20

c

(eu0/47r){a(t’) —n(t) x (a(tl) y v_(ct/_l)}
r—ro()](1 - 20)T

With this we can calculate the electric field strength E, using also the relation
2
CTeEQLo = 1:

+ (10.44)

vy oA
e [n(i-8)-ne (o) XA (n) - )]
4mep lr—r0|2(1—%—)3

.*.

(10.45)
c2<1 - M) [r — ro|

For later considerations we observe here, that n-E = O(1/|r ~ro[?) and that
because n x n =0

e n(t’)x{a(t’)—n(t’)x(<t')x@)}+o( L)

— 2
4meg 02(1—"—) It — ro| |r — ro|

nxkE=-—

(10.46)
Our next step is to evaluate V X A for the calculation of B. First we
observe that

V X A Vt"—const X A -+ (Vt )—é? X A

= (V X A)t’:const. — %tA—/- x Vit (1047)
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Here

(10.30)

!
(V X A)t’:const_ = V x ev(t )#0/477

It — ro(t')] (1 —n(#)- ¥ )

t'=const.

In the following vector product the gradient acts on the expression in the
denominator; writing out the components and performing the simple differ-
entiation one obtains

v x v|(rt|,) _ —:—3(r x v(t') = —T%(n X V().
Hence we obtain
(V % A)ycons, = ——H/AT)@(E) x v(t) (10.48)

£ —ro()P(1 - n(t) - X2)

We also require in Eq. (10.47) the differentiation of A with respect to t/, i.e

oA _ & (epo/Am)v(t')
O O | e~ ro()l(1 - n() - ¥2) |

(10.49)

Cc

which we already have with Eq. (10.43), i.e

oA (eno/amv(t) {v(t) - (n(t) - Y1) 4 Ierella(y) n(e) |

o e = ro(t) (1 - n(r) - 12’

(epo/4m)a(t’)
’ (10.50)
v = ro(t)](1 - n(e) - X2)

+

and finally (again skipping one intermediate rearrangement step)
oA (emo/amv(t){v(t) - (a(t) - Y1)}
i i
7 (e )
(6#0/47T){a(t’) —n(t') x (a(tl) y @)}
t 2 :
v = ro(#)|(1 - n(¥) - X2)

(10.51)

+
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Using Eq. (10.47) we can now obtain the field B. With a rearrangement of
terms we obtain

e () x (@) [(1 - ne) - H2) 4 2O () - )|
4 |r—r0(t’)|2(1-—n(t’) ) X%I_))S

epo {a(#) — n(#) x (a(t') x X2)} x n(r)
+Z7r— ! N v(t) 3 ’
clr —ro(t )|(1 —n(t) - T)

B

(10.52)

We now have at our disposal the desired expressions for the field strengths
E and B at a point r for the case when the charge e moves with velocity v
along its trajectory ro. We see that for velocities considerably smaller than
¢ the above expressions yield the nonrelativistic approximations

e n epo (v xn)
B 0 _\* 2
T Irelr—ro)2 4n r—ro(t)2

(10.53)

which we recognise as the Coulomb and Biot—Savart laws.

We also see, that both field strengths consist of two contributions — one
decreasing like 1/|r| with 7 — oo and another decreasing like 1/|r|? with
r — oo. Thus the dominant contributions are those of the first type. These
contributions contain the acceleration a and are therefore referred to as radi-
ation fields. Hence accelerated charges emit electromagnetic radiation. Fur-
thermore, one can convince oneself, that E and B are mutually orthogonal
and that their moduli are equal. In the case of motion with vanishing accel-
eration, the velocity is constant. This is the case of a charge in an inertial
frame; in this case the fields transform in accordance with the transforma-
tion from one inertial frame to another, these transformations being those of
Lorentz transformations (see Chapter 17).

Obviously the next quantity to evaluate is the Poynting vector S. Taking
into account Eq. (10.46) and the preceding remarks, we obtain

s=E><H“°'=“6)Ex(“XE)

Hoc
2 .
_ £, (EnE
cpio cpio
E? 3
=-—n+ O(1/[r —ro|°). (10.54)

CHho :
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We deduce from the equation for E, i.e. Eq. (10.45), that for r large and
velocities small compared to ¢

o e a®{a®) n@)} -aw)

" Adreg Alr — ro(t)] (1055)

We see that
a* = n(t'){a(t’) ' n(t’)} ~a{t)=nx (nx a),

since a*-n = 0 is the acceleration perpendicular to n, i.e. to the vector of the
“direction of observation”, i.e. the direction to the point P, at which we want
to know the value of the fields. These directions are indicated in Fig. 10.1.
The modulus of the electric field strength at the point P is therefore given
by the projection of a in the direction of observation, i.e.

e asin@
"~ dmeg c2lr — ro(t)]’

|E| (10.56)

which is zero along n (i.e. for § = 0).

Fig. 10.1 The directions of a and S.

For the modulus of the Poynting vector we obtain (using eouoc® = 1)

S| = e2a®sin? 4
"~ dmepdn3|r —ro(t)|?

(10.57)

The total energy W radiated off per unit time at time t’, 0W/0t, is obtained
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by integrating over all angles at radius |r — ro(t)|, i.e. the rate is

W ™
P= w _ / om sin Bdfr — ro(t)|?|S|
dt 0
62(1,2 kg 5
=—— in” 0d
8megc? /0 sin” 6df
2 e2a?
=—— tt 10.58
3dred ( )

where we put cosf = z and evaluated the integral as

T 1
/ sin® 0do = / dz(1 — 2%) = 4/3.
0 -1

The final result, Eq. (10.58), is called Larmor formula in the case of radiation
of a single charged particle.! Since the main quantity appearing in this
Larmor formula is the acceleration a, exercises or applications based on this
formula generally require some acceleration.

Example 10.4: Radiation emitted by a proton

A proton (charge q) is given a constant acceleration in a van de Graaff accelerator by a potential
difference of 700 kilovolt. The acceleration region has a length of 3 meters. Calculate the ratio of
the energy emitted by the proton to its final kinetic energy, and derive with the help of the Larmor
formula a relation between the emitted energy per unit time and the kinetic energy.

Solution: The energy emitted by a charge ¢ in time ¢ is according to Eq. (10.58) the energy

dUu 2¢%a%t
Uradiation =Pt= Et = 47T€03C3 -

Since v = at, the length of the proton’s runway to achieve its constant acceleration a is s = at?/2 =
vt/2, so that ¢ = 2s/v,a = v/t = v2/2s, and a? = (v2/2s)(v/t), a®t = v3/2s, and hence

q2v3

Uvadiation = .
18800 T Arre03c3s

The kinetic energy at the end is (with M= mass of the proton, V the potential):

1 2V 1/2
Uk=§Mv2=qV, v = (%) X
Hence
Uradiation _ 2(]211 - ‘2q2 <2qV) 1/2
Uy " 4meg3Mc3s  4dmep3Mc3s\ M ’

In MKSA-units:
g=16x10"1 coulomb, V=7x 10° volt,

¢ =3 x 108 meter per second, M = 1.67 x 10727C/(V m).

{Below another Larmor formula is obtained, but for dipole radiation.
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It follows that

U i
radiation =1.31 x 10~20°,
Ug
Thus this ratio is extremely small!
Second part: Uy = Mv?/2. Hence
dUy dv dv dt
— =Mv— = Mv—— = Ma.
dzx Y dz v dt dz N
1 dU
Ja= = —,
M dz
We insert this into the Larmor formula and find:
dUradiation - 2q2 ( dUk ) 2
dt dmeo3M2c3 \ dz )

This is trivial for a constant acceleration; otherwise of general significance.

Example 10.5:5 Model of bremsstrahlung

As a simplified model of bremsstrahlung we consider the following scattering process. Electrons
having velocity v are scattered off jons with charge Q. With the help of the Coulomb law (which
supplies the acceleration!) and the Larmor formula derive an expression for the energy W per unit
time emitted as bremsstrahlung (let N be the density of the electrons).

Solution: Let m be the mass of the electrons. The acceleration a then follows from the Coulomb
law as
1 ¢Q

" 4meq mr2’

where 7 is the distance between the electron and the ion.

Fig. 10.2 The impact parameter b.

The Larmor formula for the radiation power P of a single charged particle is

_ 2¢%a® _ dW
" 4mep3cd T dt

8See also G. Bekefi and A. H. Barrett, Electromagnetic Vibrations (Cambridge Mass., MIT
Press, 1977), pp. 278-283.
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1052
With 72 = 22 4 b2,z = vt the formula yields the expression P = mﬁgg&%—m. Here b
is, as indicated in Fig.10.2, the so-called impact parameter of the scattering process. In order to
obtain the total energy emitted by one electron, we integrate over the time t of this electron and
obtain

W =

1 2¢%Q? /°° dt
(4me0)d 3m2c3 J_ o (v2t2 + b2)2

1 2¢Q% =
= 10.59
(4meg)3 3m2c3 2ubd ( )

If N is the number of electrons per unit volume as given, their current is Nev. The entire energy
emitted per unit time in the form of bremsstrahlung is therefore

oo
Phroms = 5 W Now 2mbdb ,

cylindrical element of area

where by is the smallest impact parameter. This result is incorrect only in the region of small
impact parameters b, since for these the path of the electrons is not linear (in view of strong
deflection close to the ion). With this approximation the result is

1 2N.q%Q2%n2 /°° db 1 2N.¢*Q2%n% 1
Pbrems = = '
b,

(4mep)®  3m?2c3 (" (4mep)®  3m2c3  bg

Example 10.6: Cyclotron radiation
Derive an expression for the energy per unit time emitted by an electron which is circling in a
homogeneous magnetic field (cyclotron radiation).

Solution: An electron (charge ¢) injected horizontally into a vertical magnetic field Bo performs
circular orbits around the lines of force of this field. Even with constant circular velocity the
electron experiences a centripetal acceleration and hence emits electromagnetic radiation. In the
case of low energy electrons, one refers to this as cyclotron radiation, in the case of relativistic
electrons as synchrotron radiation. Let v be the velocity of the electron on its circular orbit. The
magnetic field subjects the electron to the Lorentz force g{v x Bg) resulting in an acceleration
v2/R, where R is the radius of its circular orbit. Thus quBg = mv?/R and hence R = mv/qBo.
The acceleration is therefore

a=v—.
m

The cyclotron frequency w. is defined by v = w.R, so that

The acceleration is therefore a = vw.. Inserting this expression into the single particle Larmor
formula (10.58), we obtain for the power (i.e. energy per unit time) emitted by the electron the

result 5 2
q-we

,U2
6mepcd

P =

watt per electron.

If the emitting substance contains N, electrons per meter®, the power per meter® is P = NP.,
ie. P =6.21x IO'QONeBgu W/m3, where u is the energy of the electron expressed in electron
volts.
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10.5 The Hertz Dipole

We assume an arrangement of charges as depicted in Fig. 10.3. Our notation
corresponds to that used earlier in this Chapter.

| P
:r0/2
L

-e r

4oV -ro/2

Fig. 10.3 The Hertz dipole.
We assume that

Y«i, r(t)=r—ro(t') ~r;
c

for r ~ large the latter seems a plausible approximation. We consider first
the potentials and subsequently the field strengths.

10.5.1 The Potentials

By superposition of the potentials of the two charges +e, —e of the dipole at
the points ro/2, —rg/2 we obtain from Eq. (10.33) for the vector potential

1 .
A(r,t) = -6—“—0[ 270 ]
4m r— SR oty
@[_ 3o }
4 T+ r—ng‘Q t’=t—ﬁ?zt—£.
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For large values of r one would naturally approximate this by

H eI"o 4
A= Lo (o)
t'=t—L

_pop(t-3)
4 T
Here we content ourselves first with only this contribution, because — as we

shall see — we then obtain H of the same order as E. In a similar manner we
calculate with the help of Eq. (10.32) the scalar potential ¢ of the dipole:¥

e 1 e 1
wnt) = g ( —&) 1 ( )
r large e r-rg
f:‘ —_— 1 LAY
4megr ( + 2re + )t,:t_;
n e 1— r-ro ...
4dmegr 2rc H=p_T

~ (9'—‘?>tl=t_£=0(1/r). (10.61)

+O(|Fo/c]). (10.60)

4meg \ cr?

Thus in this case the dominant contributions cancel out — which is different
from the case of A(r,t). It is therefore necessary to examine the approxima-
tions made in the denominator more carefully.
On the other hand, for smaller values of r (i.e. of O(1/r?)) we expect the
familiar expression for the potential of the static dipole, i.e.
d-r 1
o= k_f3_’ k

We observe, however, that ¢ does not supply this expression! This is due to
the fact, that in deriving this expression, we replaced the factor 1/|r —rq(t')]
by 1/[r] = 1/r, i.e. |r —ro(t')] = r. We therefore return to Eq. (10.32), i.e.

- 47!'60.

to /4
_ e/dmeg
¢ - (r(t/) _ r(t/),cv(t/) )t/:t_ﬂ;ﬁ, (1062)
or
1
o(r,t) . (10.63)
t=t— |r_r!!(t )

410 e (1)~ (e~ ro(t)) - *2]

¥In the second step we also neglect contributions of O(|fo/c|™) for n > 2.
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Now

v = xo(t)] = y/x = 2r - ro() + ro(t))%,

so that for 72 > r?)

. /
lr—roa'n:wz—zr—-row‘)w(l——" i%(”>
etk
=T I‘()(t ) .
But from the definition
no b~ ro(t) ’
|r — ro(t)]

we obtain

r = n|r — ro(t))| + ro(t') ~ n(r —ro(t)) - -:;) + ro(t))

and hence
t')?
ro(t) ; ~ ro(t') - n(l —ro(t) - -T‘-;-) + ”O(T ) ro(t') - n + O(1)r).
Thus

v —ro(t)| =7 —ro(t") - n+ O(1/7).

Here the second term on the right (with the scalar product) was missing in

the first approximation. We insert this expression now in ¢, keeping in mind,
that v(t’) = ro(t'). Then

e 1
o(r, ) = dreg | fo(t!
O lr —ro(t) -m — (r —ro(t))) - r—"%t—)} tr=p— Ty 1
~ S L (10.64)
dmeo r— ro(t)-n —J—M‘; ¢ ] tr=t— Tz
——

not in first approx.

Applying this general formula to the special charges of the dipole we have to
take into account that the coordinates of the charges, i.e. ro(t'), have to be
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replaced by £ro(t')/2. With these changes we obtain instead of Eq. (10.61):

e 1 e 1
d)(l‘,t) - - 47re ron _ rifp + 47re rgm 4 ray
ONT— "9 ~ % ONT+ 75+ e S =it
1 e rg'n r-r
rge__e (j,rom rifo,
dmeor 2r 2rc =t T
e ro'n r-r
+ 1-— 0 — 0 + ..
4megr 2r 2rc PmtT
1 ‘n D - T
= £ 7+ P 2
dmeg \ T ere Ju_p_r

1 /fpr p-r
= . 10.65
471'60( r3 + cr? >t/=t__1: ( )

We therefore have the situation, that for r — oo the second term (o< 1/7)
dominates, but for smaller = the first term (o< 1/72). One should note that
on the whole the expansion corresponds to the multi-pole expansion, i.e.
Coulomb contribution + dipole contribution + - --.

10.5.2 The Field Strengths
We obtain the field strengths E and H from the equations

=-22_Ve, pH=VxA, (10.66)

We evaluate first —V¢. For this we need

0 g 8 & r
_ N2 I R R
ar(r) ( ) Ty r’

3z’ 9y’ bz

o1\ _ 20r _2r o1y _ 3 or _3r
or\r2)  dr & or\r3) rtor ¥
Then

1 0f([pr p-r
VU= — it bt
4 4meg 31‘{ [ r3 + cr? ]t,=t_g<_t'_)}
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where
r(t') = |r = ro(t')] = /(r = ro(t'))*
and
Or(t) _r—ro(t) r
or [r —ro(t)] — 7
Hence
1 [p-r 3r ‘r r
—Ve= 4reg _%.;_ﬁ—p r(—}—g) +I;)2r2 T

dmeg | crt 3 T3 c2r3 cr?

M ALEL I )

This together with Eq. (10.60) and Eq. (10.66) yields

Ho p 1 p 3(p . I‘)I‘ (p . r)r 3(,_- . p)r p
E=-2Z2 4 — |2 P .
drr 4meg [ T Tt Tas T 3 (10.67)
and
peH =V x A
oo PE-F) _ pord  pE-3)
_47TVX T _471'7.“87' T
__Mor B _por P
dmer v Amwr  r2
_HoPXr popXxr
T 4r o2 4xm 3 (10.68)
so that s '
pxr pxr
~ ir 3 |- 10.69
4 [ cr? r3 ] ( )
In the so-called near field region, (i.e. for r ~ small), we have
1 [3(p-r)r p 1 pxr
E= -5 H= : 10.70
4Teg [ 75 r3|’ A ord ( )

However, in the so-called far field region, (i.e. for r ~ large), we obtain

EN_@E 1 (13~r)r: 1 (PxXr)xr
T dmr  4dmey c2rd 4dmeg  c2rd

(10.71)

and 1%
HN_pxr

~ 10.72
4 cr?’ ( )
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where
p= p(tl) lt’:t—ﬁﬁ'zt— re

Since g = 1/poc?, we deduce from Egs. (10.71) and (10.72), that in the far
field region
ELlLr H.

We see that in this region
r-Ex[pxr)xr-r=Pxr): (rxr)=0

and
rHx(pxr)-r=p-(rxr)=0.

It follows that r L E,H. Since also E L r, H, the vectors r, E, H define at
large distances an orthogonal system. At large distances

E— LHxE (10.73)
CeQ r
Thus
r 1 r r
—Ex—=——(Hx—> X —
T ce€p r T
_ _L({H.E}E_QH) _ly
Ce r)r T CEQ
=0

10.6 Current Element Ids and Dipole Radiation

We now consider the following. An element of current Ids of a conducting
wire with alternating current I can be looked at as an electric dipole of length
ds with charges +q = +qge™? at its endpoints. Since
p = gds, po = qods,
we can put formally (here dp = dgds)
dq
Ids = —ds = p.
s=_ds=p

Then

P = qds = iwp = iwpoei“’t, p = iwp = iwlds.
Only the real part is physically meaningful, so that

P — —wposinwt.



234 CHAPTER 10. MOVING CHARGES IN VACUUM

Thus in the far-away regionll (cf. Eq. (10.71))

(Pxr)xr dw(ldsxr)xr
dmegc®rd Amepcrd

Using the relations ¢ = vA,w = 27v,w = 27c/ A, we obtain

_ i27r([ds XT)XTr

4meghers (10.74)

and similarly (cf. Eq. (10.72))

_ pPXxXr _iwIdSXr_ 2rlds X r
T dmer? . dmer? U Mar? (10.75)

10.6.1 The Power of an Oscillating Dipole

The radiation emitted by Ids or p is therefore called dipole radiation. In
propagating radially away from the dipole, the wave transports energy away.
The power, i.e. the loss of energy per unit time, can be calculated with the
help of the Poynting vector S. With Eq. (10.73) we obtain

S = ExH watt/meter?
far région _1_ <H N E) <« H
r

CEp
— _L(H.H)E_L<H.E)H’
cep T ceg T
0

and hence
g Lypr_ 1 (Pxr\’r
cepg  r ce\dmer?) r
_ (P)*sin®f r

_ in“f r 10.76
(4m)2egc3rer ( )

We see that S points in the direction of r. The oscillating dipole does not emit
radiation in the direction of its azis, but perpendicular to this mazimally, i.e.
in the equatorial plane, as indicated in Fig. 10.4. We now put, along the lines
given above,

p = —wposinwt, p = —w?pg coswt

Like previously p = p(¢’), where t' =t — 7/c, but for reasons of simplicity we write simply
p(t), where t — t —r/ec.
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(actually here t — t — r/c, retarded time, but this is irrelevant here) and
insert this in S. Then

S| = —2 __ cos?wisin® 4. (10.77)
cer

r|| S

Fig. 10.4 The radiating dipole.

The average energy emitted per unit time and unit area is obtained by
calculating the average of cos?wt over one complete period of oscillation
T = 2w /w, i.e. by considering on the one hand

1 /7 1 (T S omt 1 2 1
T/o cos2wtdt=T/O cos2—%—dt=g/0 cos2xdx=%=§,

but also (for a little later)
1 (T 1 1 T, 1
T/(; {cos2 wt + sin? wt}dt = TT =1 and T/o sin” wtdt = 3"

On the other hand, we have to integrate |S| over all directions of a sphere with
radius r. Hence the average energy emitted per unit time is (d©2 = dysin 8d9)

L= %/|S|r2dﬂ

27 T
= 1/ d¢/ IS|r? sin §d6
2 0 0

1 2mpdut* [T .,
= - 0do
2 eo(4m)2c3 /0 s
P’

= /1 (1 —2%)dz. (10.78)

4c34meq 4
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Here we put z = cosf, so that dz = —sinfdf, (1 — z%)dz = —sin®0df.
Moreover, f_ll(l —2%)dz = [z — 2%/3]L | = 4/3, so that
2 4
_ _bgw
= g Vit (10.79)

This result is also known as a Larmor formula; we can call it the Larmor
dipole formula, in order to distinguish it from the Larmor formula (10.58)
which we obtained for a single charged particle. It implies that L o pg,
i.e. proportional to the square of the amplitude pg, but also that L o w?,
the fourth power of the frequency. Expression (10.79) should be compared
with the Rayleigh—Jeans law in statistical mechanics, which gives the clas-
sical limit of black body radiation.** The radiation emitted by atoms is of
dipole-type; however, the classical picture of an atom as a dipole like the
one discussed here, is — as we know — wrong (and in any case would not
explain the stability of atoms).

10.6.2 Radiation Resistance

We saw that
Ids = p = —wpgsinwt.
We now put
Ipow| = |Iods|, or piw? = (Iods)2.
We can say

1 T(Ids)2dt . /Tw2p2 sin? wtdt = lcu2p2 = lIz(a’s)2
22 (T om
T Jo

i.e. Iy ~ v/2x mean current I. Then

_ (Iods)?w? _ (V2Ids)?w?

= 10.80
3c34meg 3c34meq ( )

**This is a body with absorption coefficient a(w) = 1 in the case of thermal equilibrium with
its surroundings so that because of the densely lying levels, at every frequency per unit area and
per unit time and per direction of polarisation the amount of energy absorbed is equal to the
amount of energy emitted (1 — a(w) is the fraction of reflected energy). Note: The number n of
photonic states in the wave number interval (x, x+ dk) is (since there are 2 polarisation directions)
n = 2V4nk2dk. Since k o 1/], it follows that n < dA/A%. In the case of monochromatic radiation
(= 20)dA/A% = 1/28 ox .
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This is to be compared with (see below) the Ohmic power of a resistance R,

i.e. with
L=1IR. (10.81)

This expression is obtained as follows. We saw earlier that (see Sec. 7.7):

Loss of energy per unit volume and per unit time

ot |2

Integrating this over the volume and using Gauss’ divergence theorem,
we obtain

- a{l(E.D+H.B)}~_—v-(E><H)+j-E.

Loss of energy per unit time
= Transport of energy through the surface + Ohmic power.

Hence the Ohmic power is (with j = oE, jdV = Ids) the volume integral of

j-E, ie.
. 1 [ 1 [,
J-Edeg jdVv == [j-Ids
o

_1 I2ds~ds _I_2/dsds
T o Vv o av

I? ds ds
= | Z=7° —

s | F- P F
= I’R,

where R = ps/F. We thus have the above expression for L. The quantity
L/I? in Eq. (10.80) is therefore (by comparison with L = I2R) referred to
as radiation resistance. The radiation resistance is a quantity which depends
on the spatial dimensions of the radiator.

10.7 Further Examples

Example 10.7: Comparison of powers of rod and loop antennas
With a very approximate calculation compare the power of a rod antenna with that of a loop
antenna.

Solution: We return to the far-field result for E given by Eq. (10.74), i.e.

2n(Iidsy Xr) xr

E=i (10.82)

4mwegAerd

This expression gives the electric field strength at a distance r far from the current element I1ds;.
The electromotive force and hence voltage induced in a conductor element ds, at the point r is

E-dsy = Vs,
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2m{{1ds1 X r} X r-dsg
2

V =
2 4megicrs

_ i27r11(dsl xr)-(r xdsg)
- 4meger3d ’

(10.83)

This expression is completely symmetric in ds1 and dsp; thus if dsa were carrying current I, then
V2 would be the voltage induced in ds;.

The simplest way to receive radio waves is with the help of a loop antenna, i.e. a closed
antenna (in general with several turns). The induced electromotive force or voltage is

sz E -ds=/V><E-dF=/<_.6§).dF_
S~ ot

E of wave
Let us assume B « e™t with angular frequency w, i.e.
q y w,

a—B = iwB.
ot

Then, if the area A of the loop is small, A ~ [2, so that B is approximately uniform over A (we
assume: [ € A < r) and
V =—-iwB- A.

We attempt a very rough comparison of the power of the loop antenna with that of a rod antenna
of length [. In the case of the loop
‘/loop = —iwDBA,

if B || A (then maximal — we assume an optimal orientation of the antenna). In the case of the
rod-antenna (see Eq. {10.73)) we have

1 Hl Bl
V,od=E-l:<H><£>-—=—or .
r cep  ceg co€o
Thus the ratio is
Vioop | _ 1peqc B4
‘/rod Bl ’

Since ¢ = v\, v = w/2m, and so ¢ = wA/27,w = 2mc/A, it follows that

Vloop

A2mc 22TA  2mA
= pupe€oc = pge€pcs —— =
Vrod

ABI 0€0% TN I

for optimal reception. Now if A ~ O(12), the ratio is ~ I/\. Since we assumed that the dimensions
of the loop are very small compared with A, i.e. | « A, the rod is the better receiver in these
considerations. In view of our earlier treatment of ring-shaped conductors we can say, that the
loop with oscillating current can also be looked at as a magnetic dipole.

Example 10.8: The Thomson scattering cross section't
A plane, monochromatic wave with electric vector

E = ey Eg cos(wt — kz)

1A cross section is a quantity with dimension of (length)2. The obvious possibility to define
this here can be seen from the definition of the Poynting vector as a quantity with dimension of
(energy)(time) =1 (length) 2.



10.7 Further Examples 239

(where e is a unit vector in the direction of z) falls on a free electron (charge g, mass m) at the
origin of coordinates. Calculate:

(a) the radiation power P of a single electron,

(b) the mean radiation power {P) of such an electron (averaged over one period of oscillation),
(¢) the rate of incoming radiation S,

(d) the mean rate of incoming radiation (S.), and

(e) show that in vacuum (P) = ¢(S;), where

g == - ]
3\me2/ V e 4nep

is the so-called Thomson scattering cross section.

Solution: We have E; = Egpcos(wt — kz). An electron with charge g at the origin 2 = 0 is
therefore given an acceleration (in Newton’s nonrelativistic treatment) given by the applied force
divided by m,
ay = iEo cos wt
m
with solution = o cos wt, so that
2

azy = —w x, qag = —qwzz = —w2p, p = qx.

The power radiated by a single electron is given by the single particle Larmor formula of Eq. (10.58)
(see above, here still without the averaging)

2q* rw) 12
= ———F2% ¢ t— — .
=tz 3m2c34meg 0{ o8 (w c ) }

Averaging over one period of oscillation T' = 27 /w we obtain the mean value

2¢4E2 Tw
pPy=_"2"0 2 (ot — —
(P) 4meg3m?2ce3 < o8 (w c ’

T
<cos2 (wt— E>> = l/ cos? (wt— E)dt: 1,
c T 0 c 2

7*E3
3m2¢c34meq

() = 2% )

4meg3c3

where

(P) = watt.
The rate at which radiation (this is the given electric field) falls on the electron is obtained with
the help of the Poynting vector, S = E x H. Since E — Eze; = Egcos(wt — kz)e,, the Maxwell
equations imply
kxE

k

B = \/eop , k=keg,

so that with B = uH
B — By = /feopFEo cos(wt — kz), Hy = 6—OEQ cos(wt — kz).
V n

It follows that e
§—- 5., = \/EQECZ, cos? (wt — kz).
I
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The time-averaged rate of incoming radiation is (with 7" = 2x/w)

T 2m/w
(Sz) = *1—/ dtS, = 1/6—01’331/ dt cos® (wt — kz)
no2m o
21 1 /e
Ol 1 /9 wm,
u °2 2V
Hence -
B =2 /250,
€0
so that .
2q B (Sz) _
P) = S,
(P) 3m2c3 \ g dmeg o (Sz),
where

2 2N\? /i e
o= —( g ) Ll meterz.
3\ mc? €o Amep

This cross section is seen to be independent of the frequency w of the incident radiation. General-
isations are considered in Examples 10.9 and 10.10.

Example 10.9: The electron bound in an atom

In Example 10.8 we considered the free electron. We now consider an electron bound in an atom
subject to a binding force proportional to = but neglecting damping effects. The problem is to
derive the new expression for the Thomson cross section.

Solution: The equation of motion of the electron of Example 10.8 now has an additional term

w3z representing the binding of the electron to an atom (harmonic oscillator models are always

the easiest to construct!),

d2
) +wiz= —Eo cos(wt). .z= “—JZL{_m—‘Eo cos wt.
w2
ez =%=— (q2/m) Ep coswt.
wé —

Thus we obtain (P) = o(S;) with

o= 2( LN () JE
3\ mc? w(z) —w? €0 dmeo

We see that o is now a function of w. In the case of scattering of light off atoms and molecules in

air wp > w, and hence
o= (L) (£ JE 2
~ 3\ me? wo €0 dmeo

Blue light with Apjye = 3900A < Areq = 7600A is therefore scattered much more than red light,
because: 1

c=vA w=21r, . wxX 3

The scattering off free electrons is (see Example 10.8) independent of the frequency. As a conse-
quence the light scattered by the corona of the sun is white.

Example 10.10: Line broadening
(a) Calculate (Wp), the work done by the force E; of Example 10.8 applied to an electron averaged
over one period of oscillation T. What is the meaning of the result?
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(b) Add acoswt to the velocity of the electron, calculate the power (Wy)/T, which is the power
of radiated energy. What is the corrected equation of motion of the electron?
(c) How does the loss of radiated energy become evident?

Solution:
(a) We have

Eo .
mi = gEpcoswt = Fypplied, &= 920 Sinwt. (10.84)
mw

Hence the work done is Wy:
Wo = /‘F‘apl:)liedd'T = /Fapp]iedidt

and

T 2E2 T
{Wo) = 1 / Fapplied@ sin(wt)dt = >0 / cos(wt) sin(wt)dt = 0.
T 0 mw mwT Jo

Thus the work done by the applied force is not equal to the radiated energy. Where does the
radiated energy come from? Equation (10.84) must contain a term, i.e. a force, whose work does
not average out to zero.

[V
Fig. 10.5 Line broadening by radiation damping.
(b) With addition of the extra term we have
E
b= 0 gin g + acoswt, (10.85)
mw
so that r
(Wa 1 1
T ) = -,1—_'/0 Fappnedacos(ut)dt = Equot.
In Example 10.8 we calculated the mean power of the radiated energy:
452 3
q*E 1 29° Eo
Py=_————-0 = "gF a=m 0
(P) 3m2c34meq g 150 * 3m2c34neq
Hence 5
. _qFo 2¢°Eo
T = m sm(wt) + m COS(wt), (1086)
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so that 3
2q° Egw
mi = qEg cos(wt) — 29 20w sin(wt),
————r  3mci4mep
F,
applied Fradiation

where Fadiation is the radiative reaction. This equation is known as the Abraham~Lorentz equation
of motion. The ratio
Fradiation _ 2q2w
Fopplied T 3mc34meg

tan(wt)

is in general very small.

(c) The loss of radiated energy is due to a damping or “line broadening” (speaking spectroscopi-
cally). Let us write the radiation reaction as a “friction force” proportional to velocity, i.e. we put
the friction force = F.giation, i-€-

mﬁiﬂi _ 2¢° Eow

= ——si t). 10.87
dt = 3mc34meg sin(wt) ( )

From Eq. (10.85) we obtain

E,
de 2B sin(wt) + (something negligible).
dt  mw

Inserting the latter into Eq. (10.87) we obtain
8= 2¢%w?
" 3mc3dmeg’

Solving the equation
mi + mBi + mwd = qEp cos(wt),

we find that the term mBz produces a damping factor exp(—3t) (“radiation demping”) with the
so-called line width 8 = Aw as indicated in Fig. 10.5, where

w1,2 = \/w?) +(8/2)2 ¥ B/2.



Chapter 11

The Laws of Optics

11.1 Introductory Remarks

With the realisation that light is nothing but electromagnetic radiation which
reaches our eyes, it is clear that basic optical phenomena must also find
their explanation in electrodynamics and hence in Maxwell’s equations. The
subject of this chapter is therefore the derivation of the well known laws of
reflection and refraction of optics from Maxwell’s equations. In subsequent
chapters these will then be applied to metals, radio waves and wave guides.*

11.2 Continuity Conditions and Definition of the
Surface Current

Our procedure will be to arrive at the laws of optics from a consideration of
the behaviour of an electromagnetic wave at the interface between two me-
dia. First, however, we recapitulate and summarise the essential continuity
conditions and those of their validity for normal and tangential components
of the fields, with indices (1) and (2) referring to two different media.

(a) V-D = p. Here p is the density of the “true” charges. With this equation
we have:

/V-DdV: D-dF=/pdV=Q. (11.1)
|4 Fy v

In the case of the infinitesimal volume element of thickness d — 0 as shown
in Fig. 11.1 we obtain from §, D -dF (observe that in the limit d — 0 the

* A recommendable text to supplement this chapter, particularly with regard to more practical
aspects, is R. Guenther, Modern Optics (Wiley, 1990).

243
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quantity AF is an element of area in the boundary surface)
DY D). AF = (DY) — DOYAF = AQ, (11.2)
so that (see Fig. 11.1),

W) _ p@ — _4aQ
D -DP =0, 0= £ (11.3)

In the case of the electric field strength E we now obtain (Qp being the
polarisation charge with density pp) with the equations (see Chapter 4)

D=E¢+P, V-P=—pp, (11.4)

the integrated expressions

j{ E-dF=l (D-P) - dF
Fy

€0 Fy

=l (V-D-V . -P)dV
€ Jv
1 1

== [ o+ pr)dV = Z(@+Qp) (11.5)
€ Jv €0

Hence at the interface
EW _E® = 21—(0 +op). (11.6)
0

Here op is the induced surface charge density.

(b) VxE = —%}% (Faraday). Here we have in the case of a cross-sectional
area F' with AF’ =1 x d as in Fig. 11.1:

pW AF
\
N 1 X
d 7=
/ I
D®

Fig. 11.1 Elements of area and volume.
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) 9
dF = —— .dF = —=|Bn|AF — 0,
/I(VxE) dF (%/F’B 5 [Ba AF —

since AF' = ld — 0 with d — 0. Using the Stokes theorem we obtain

/I(VXE)-dF:j[E-ds

=(E- S)(l) +(E- s)(2)
=EY.1)—(ED .1
= (B - EP), (11.7)

and with the preceding result

EM - E® =, (11.8)

Fig. 11.2 The element of area L to the interface.

(c) V -B = 0. From this we obtain immediately

/V-BdV:fB-szo, (11.9)
so that
BW — B® — . (11.10)

(d) VxH= %L? + j. If there are no surface currents K (see below), i.e. if
Jj-dF =0, then as under (b):

HY - H® =0, (K=0). (11.11)
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The definition of the above surface current is given as follows. We con-
sider the element of area dF' perpendicular to the interface between the two
media as illustrated in Fig. 11.2. Then dF is a vector in the plane of the
interface. We now consider equation (d) integrated over this area, i.e.

/(VxH)-dF:/ ar - |2 4l
AF AF ot

The first contribution on the right is
o |D|AF o IDjld - 0 with d—0 (11.12)
—_ - — —_ —_ . .
ot ot

We rewrite the second contribution as

/ dF -j=j-AF = jdl. (11.13)
AF

For conductors we have Ohm’s law
j=ocE, ie. j=0FE. (11.14)
For perfect conductors ¢ = co and E = —V¢ = 0. Then it is possible that

jdl = oEdl #0 and finite, (11.15)

and one defines
lim, 00, d—0 0Fd := K, (11.16)

ie. jd ~ K, where K is a surface current density (see Jackson [3], p. 336);
K is also called “linear current density” (see Lim [2], p. 42).

0 t

Fig. 11.3 Normal and tangential directions.

If the conductivity o is finite, K = 0, i.e. in this case there is really no
surface current (see Jackson [3], p. 336). The continuity condition for H is
therefore, treating [(V x H) - dF as for E, i.e. from (d),

H.dl = ljd = K,
AF
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and it follows that
HY -HP =K (=0 for o finite). (11.17)
For later purposes we can write this also
nx (HY -H®) =K, (11.18)

where n is a unit vector perpendicular to the interface, and K is a vector in
the plane of the interface. One should note that as indicated in Fig. 11.3:

H;,=H-e; = |H|cosf
= ]Hlsin(g- —9)=|H xn|. (11.19)

The limits d — 0,0 — oo apply to an idealised case, and therefore the
question arises whether a surface current does actually exist or not. We shall
see later, in Chapter 14 on wave guides, that a current density j which is
restricted to a very thin region corresponds to an effective surface current
K (see also Jackson [3], p. 339).

Example 11.1: Change of direction of E at an interface

The electric field E in medium (1) with dielectric constant e1 = 7 falls at an angle of 60° to the
surface normal on the interface to a medium (2) with dielectric constant €3 = 2. What is the angle
between E and the surface normal in medium (2)?

Solution: We have
Eiy = Et2, Dni — Dp2 =0 (charge), .. €1En1 = €e2En2.
We are also given : Eyy = tan60°Ey,1, FEi2 = tan6FEyn2. The quantity requested is 62:

E, E, tan 60° E, t °
tanfy = —2 = t1 = Bn 7 _ 22 {an60° = an 60
E.» e1Eni/e2 €1Fn1/e2 €1

= 0.495,

so that 8, = 26.4°.

11.3 Electromagnetic Waves in Media

In the following we consider a plane, electromagnetic wave, which falls at
an angle from medium (1) on the interface to medium (2), as indicated in
Fig. 11.4.

We recapitulate first some of our earlier considerations for the case of
electromagnetic waves in a medium with dielectric constant €, magnetic per-
meability ¢ and conductivity o. We had the equations

D=¢E, B=yH, j=oE. (11.20)
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In the case of charge density p = 0, the equations are

V.H=0, VxH:e%—}f+aE,
H
V-E=0, VxE:—,u%t—. (11.21)

From the first two equations we obtain after forming
Vx(VxH)=V(V-H)-(V-V)H

with V.- H = 0: I o
AH = Mg + po (11.22a)

With V x (V x E), one obtains analogously

O’E OE
AE = S + po o (11.22b)

kl

®
@

kll

Fig. 11.4 An electromagnetic wave falling at an inclination
on the interface between two media.

For ¢ = 0 and propagation velocity

1
c'=\/—6_#: f-z—g‘-’c (11.23)
this is 52
N (11.24)

T2 ee
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In the case of high frequency radiation, the parameters €, u,o become
frequency-dependent. Considering plane waves, we write for E and H:

E = Ege!kTt) H = Hyeltkr—wt), (11.25)
Inserting these into Eq. (11.21) we obtain
VxH=1tk xH= —ciwE + 0cE = —iwnE,

where o
n=¢€+i—, (11.26)
w

which is the generalised dielectric constant, in the case o # 0 for a conducting
medium. It follows that we can write Maxwell’s equations:

k x H=-wnE, (11.27)
k x E = wuH, (11.28)
k-E=0, (11.29)
k-H=0. (11.30)

The last two equations show that here also we have transversality of the
electromagnetic field (but not |E| = |H|). From these equations we determine
LSk

k x (k xH) = -wnk x E,

S —— S——r

(k- H)k—k2H wpH
where k- H = 0. Hence for H # 0:

k= wnu = w?u (e + ig>,
w

i.e.
2 2 . 0

This relation is called the dispersion relation of a conducting medium. Set-
ting k = a + i3, we obtain

[ () )
G- e

m
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For ¢ = 0 we have k real; i.e. the wave is not damped, and the medium is
said to be “transparent” (allows radiation to pass through).
We now put
k= |kle**,
and find

e = i (2]

B 1, (0
=tan"1Z = ¢ . .
p=tan" — = stan (11.33)

we
The (generalised) refractive indez is defined as the quantity

p = c\/un = p1 + 1pa. (11.34)

Hence for the vacuum we have (o = 0):

p = /io€oc, i.e. p=1 and k= (11.35)

&

11.4 Kinematical Aspects of Reflection and
Refraction: Snell’s Law
11.4.1 Preliminary Remarks

We now consider reflection and refraction of a wave at a boundary surface
between two media (1) and (2) as indicated in Fig. 11.5 which are not metals.

For the our kinematical considerations here we make the following as-
sumptions:

(a) there are no surface charges or surface currents,
(b) both media have conductivity o = 0,7 (i.e. are transparent),

(c) in order that B = pH be valid, the media are assumed not to be
ferromagnetic (B = pH is not valid for these!),

(d) the incident wave is a plane wave with
E = Ege!k ) (11.36)

(in the case of a plane wave f(r,t) := k-r —wt = const.,k = V f(r,1)).

tMetals will be treated in Chapter 12. Most of the considerations here for ¢ = 0 are also valid
for o # 0 and finite. Then also the surface current density K = 0.
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The equations

kX E=wuH =wB, k =w\/en

then imply for the magnetic induction
B = /en

We assume that there are waves in both media, reflected waves in one

kxE

(11.37)

Z
)
refracted
kl
B
EI , IJ,I - X
g U
a Y n
/k( k
incident reflected

Fig. 11.5 Directions of incident, refracted and reflected waves
with angular inclinations to the normal.

medium and refracted waves in the other. For these we take the ansatze

(1) in the case of reflection:

. 1 1 kll E,/
E' = Egez(k T—w t), B = r—eu__%_, (1138)
(2) in the case of refraction:
(T’ k' x E
= e, B = o= (11.39)

In the case of normal incidence of the wave and in view of the transversal-
ity (see equations preceding Eq. (11.30)) we can write in self-evident notation
using Eqgs. (11.37), (11.38) and (11.39):

\/»Hm—Em, \/’Hreﬂ— refly \/ Hrefr— refr- (11-40)
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11.4.2 Kinematical Aspects of Reflection and Refraction

The kinematical aspects of reflection and refraction which we consider now
are consequences of the general boundary condition, that the conditions of
continuity summarised above (whatever they express in detail) must be valid
at every time t and at every point of the interface. Consider the conditions

Ht(l) _ Ht(2) _0, Et(l) _ Et<2) =0 at z=0. (11.41)

If these conditions hold at every time ¢ and at all points of the interface plane
(z,y), then we must have for (e.g.) E:

[(Eo)tei(k-r—wt)]z=0 + [(Eg)tei(k//_r_w//t)]zzo _ [(E6)tei(kl.r—w/t)]z=o,
ie.

EOtei(kzx-f—kyy—wt) + E(/)/tei(k;’z—f-kgy—wl/t) _ E(,)tei(ka’rz+k;y_w/t)' (11.42)

If this is to hold at all times ¢, we must have

! S
ez(w wit _ 1= 61(0.: w )t,

i.e.
7

(possibly for wt = w"t+2mm,m = 0,+£1,. .., but demanding validity for all ¢,
hence also for ¢ = 0, implies . = 0). Similarly we must have for projections
onto the (x,y) plane

k-r=K -r=k"-r at 2=0. (11.43)

Thus the projections of k,k’,k” on any arbitrarily chosen vector r in the
interface plane must be equal. However, this is possible only if (see below)
k,k’, k" lie in one and the same plane, the so-called plane of incidence. This
can be seen as follows. On the one hand, if we replace r by a unit vector
along the z-axis, the z-components have to be equal, and analogously the
y-components have to be equal. On the other hand, if two of the three
vectors k,k’, k” lie in the (z, 2)-plane, and so have zero y-components, (also
at z = 0), also the y-component of the third vector is zero, implying that
this vector must also lie in the (z, z)-plane, i.e.

{k-r=k -r=k"-r},0=0.
If k,k” span the (=, 2)-plane, ie. if k, =0 =k, then

kyx = kix + k;y =kllz;
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but because k; = k;, = kj, it follows that kj, = 0. Furthermore we deduce
from Eq. (11.43) for the z-components (as we can see from Fig. 11.5)

ksina = k'sin 8 = k" sin~. (11.44)

Since w = w" and in general for 0 = 0 : k = /e, it follows thatt k = k” in
the same medium, and hence

a=v,
which implies that the incident angle is equal to the reflection angle. In
addition Snell’s law must hold, i.e.

sima _ K Jew _w'_a_ A (11.45)
sing  k € mooc A

where ¢;, A; are velocity of light and wavelength in medium ‘7’, and the re-
fractive index is

1,0
c € c €
n="S= /"t and n=S5-= H

1 €oH0 2 €00

(11.46)

11.5 Dynamical Aspects of Reflection and
Refraction: The Fresnel Formulae

11.5.1 The Conditions

The dynamical aspects of reflection and refraction follow from the specific
boundary conditions for D, E, B, H. We assume that the media are isotropic
(i.e. D = €¢E) and that there are neither surface charges nor surface currents.
We use the relations found above

1,7
ver _1_1_vew (11.47)

k w WK
We begin with the relation Et(l) - Et(Q) = 0. We let n be the unit vector

parallel to e, in the direction of the z-axis. Then

Ay, = A -e; = |A|cosf = |Alsin (g——é) =|A x n|.

With this we can rewrite the above tangential condition as

(a) (Eo+Eg—Ej) xn=0. (11.48)

n the case of different media the w's are equal, but the k’s, \/efiw, are different.
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The next condition we consider is BS" — B? = 0. With the relations (11.37),
(11.38) and (11.39) for B, B’ and B”, as well as

(e e ] SN e
E:Eoez(kr wt), E =E661(k r wt)’ E' = Egez(k//r o t)’

we have

kxE; k'xE] k' x E!
Veu 0+ ,, 0) — e - 9 .n=0.
k k NALSa
K Ve
With (11.47) and k = k" (reflection) we obtain from this
(b) (k x Eo+k" xEj—k' x Ej) -n=0. (11.49)

The scalar product with n gives us the normal component of the vector in
the bracket.

Next we consider the condition Ht(l) = Ht(z). From this we obtain as in
case (b) with B = pH

/

1 1
(o) (kX Bo K" x Bo) — 75 (k' x Ep) | x = 0. (11.50)

The vector product with n gives us the tangential component of the vector
in the bracket.
Finally we obtain from the condition D,(Ll) = D,(?) the relation

(d) [e(Eo +Ef) — €Ef] n=0. (11.51)

In the next section we consider two cases of linear polarisation (linearly
polarised implies: E, B constant in direction and modulus).

11.5.2 Two Cases of Linear Polarisation
Case 1: Eg perpendicular to the plane of incidence

The plane of incidence is the plane spanned by the propagation vectors
k,k’,k”. The field vectors are, as we saw, orthogonal to these (cf. transver-
sality). According to the given condition the incident field vector Egq is
perpendicular to this plane and therefore lies in the tangential plane. Since
Et(l) — Et(Q) = 0, there is no change of direction of the field E at the interface
of the media for either reflection or refraction, i.e. with Eg, = 0 = Fy, we
also have Ej, = 0= E|, and Ej, = 0 = E{j,. The relation (a) implies

(Eo + Eg)t = (E/)t.
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The tangential plane is the plane of the interface, i.e. the (z,y)-plane. A
general vector in this plane would be r; = ze, + yey. Since in the case of
the E-fields here, only the y-components are not zero, we can rewrite the
tangential relation also as

or
n, e,
ul’ 8| A
B' k'
B E (into paper)
- eX
B oy Bn
k E (E‘t ku
. Into
paper)
Fig. 11.6 Case 1: The directions of the field components at incidence,
refraction and reflection.
(A) Ey+ E] = Ej. (11.52)

One should note that Ey, EJ, E{, are amplitudes, which can be complex. We
thus have the situation depicted in Fig. 11.6. The orientation of the B-
vectors has been chosen in Fig. 11.6 such that the transport of energy E x H
is positive in the direction of the wave vectors.

We can rewrite the relation (b), i.e. Eq. (11.49), using the property of
scalar triple products

(AxB)-C=(CxA)-B.

Thus Eq. (11.49) can be written as

nxk)-Ej+(nxk') Ej—(nxk) E,=0,
0 0 0

i.e.
ksin aey - Eqg + k" sin yey - Eg — k' sin Bey - E6 =0.
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However, according to Snell’s law
ksina=k'sin8, a=-~, k=K',

so that
ksinae, - (Eg + Eq — Eg) = 0.

Since the sum of the vectors E (as above) lies in the tangential plane, we
conclude as we concluded from (a) that Eo + E{ — Ej = 0. Hence this case

yields no new relation.
Consider now relation (¢). We handle Eq. (11.50) as follows. We have

(0 Bo) xn = [(n- 1B ~k(n Eo)

Hence for the incident wave

1
l( xEg)xn=—_k Eocosazw\/EEocosa.
K Nw"e_“ M

Similarly we obtain for the reflected and refracted waves

1
(kK" x Ej) xn=—w" ; 0 cos 7.
L V

The minus sign on the right follows from the fact that the projection of
k” x Ef is antiparallel to n. Hence also

1 !/
ﬁ(k/ x Ef) xn = w”/;TE{)cosﬁ.

But w = w’ = w” and a = 7. Thus Eq. (11.50) yields the relation

€ € €
wy/—Epcosa—w,/~Egcosa —wy/—Eqcos =0,
1 p 7

i.e. (since — see above — the direction of the field E does not change),

(B) (Eo — Ep) \/jcosa - EO\/:cos,B = 0. (11.53)

This is a new relation.
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Finally we consider relation (d). The relation (11.51) yields nothing, since
we have

(Eo, ()I’Eé)) -n=20.
We have thus obtained the results (A4) and (B).
Eliminating Ej from (A) and (B), we obtain

/
(EO—ES)\/—Ecosa—(Eo-{—E(’)') 6—,cosﬁ=0,
7 \ «
E{ €'pcosf €'pcosf3 -1
Eo 1- el cos ol 1+ e cosa|

Using the following relation obtained earlier
sina  [€y
sin3  \ eu’

we can rewrite the ratio as

Ej u sina cos 3 4 sina cos 871
= = |1-—== 1+ ==
Ey W sin § cos o (' sin B cos

_ 1_ﬂtana 1+_;itana _1_
o tan 3 W tan

or

Eliminating E{ from (A) and (B), we obtain

/ ! -1
0 €' cos 8
=091 4,/2E
Ey [ * e’ cosa}
-1
M tan o
=21+ = . .
l: + 7 tanﬂ] (11.54)

For the so-called optical frequencies (i.e. those in the visible range of fre-
quencies) we have p{w) ~ p/(w). In this case we obtain the Fresnel formulae
for light polarised vertically to the plane of incidence:

Ey _sin(8- o) Ey  2sinfcosa

Eo sin(a+p) Ey sin(a+f)’ (11.55)



258 CHAPTER 11. THE LAWS OF OPTICS

Case 2: Eg in the plane of incidence

In this case the directions of the fields are as indicated in Fig. 11.7. The
relation (a) implies at z = 0

Egcosa — Ej cosy — Eycos 3 = 0,
or, since o = v,
(A" (Eg — E{)cosa — Ejcos 3 = 0. (11.56)
The relation (b) gives nothing, since k x E L n. Relation (d) yields

¢(Ep+ E)sina — € Ejsin3 =0,

or since
sinae [y 1’
sin  \ e n’
we have
€ Jeu
(Eo + E§) ﬁ — Ey=0,
n,e,
u', e !
E' k'
B
B B'(into paper)
- eX
E |« oY E'
k B B” kll
u, € (into (into
paper) paper)

Fig. 11.7 Case 2: The directions of the field components at incidence,
refraction and reflection.
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so that

(B (Eo + Eg)\/g - E()\/g =0. (11.57)

The relation (c) also yields (B’).
From both of the relations found we obtain the next pair of Fresnel for-
mulae, using again the relation

¢ [esina
g\ ésing’
Eliminating Ej we obtain
E{ e’ cos 3 eu cos B
20 _ |1,/ 14,/ 2228
Ey €11 cos o €1 cosa

-1
€ tan o € tana
=|1—-— 14— ,
¢ tan G ¢ tan 3
and eliminating E{ we obtain

E / ’ -1
By _, o[, [arcss
Ey €u €1 cos o

_2n'e L+ etana] !
B € tan 8

n €

For p = p' we obtain (as can be verified by replacing the tangent by sine
and cosine)

Ey _ tan(a— ) Ey _ 2sin B cosa
Ey  tan(a+pB3)’ Eg sin(a+ B)cos(a— )’

(11.58)

For the discussion of “total reflection” below we observe here that if we
set § = 7/2 in Eqgs. (11.55) and (11.58) (or alternatively in a preceding
formula) we obtain

E§ E} €
— =1, = =2/= )
Ey T Ey 6,#0
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11.5.3 The Brewster Angle and the Case without Reflection

We observe that when a + 8 = 7/2 in the case of the vector Eg lying in the
plane of incidence, we have (cf. (11.58)) tan(o + 8) = oo and E{ = 0, but
also sin # = cos . Snell’s law then implies

n'  sina

= e = tanap. (11.59)

Fig. 11.8 Polarisation at angle of incidence =ap.

The angle ap is known as Brewster’s angle. In particular when o = 7 /4, also
B = m/4, i.e. one has straight passage. On the other hand, if the refractive
indices n,n’ are equal, we have o = 3 and hence

E(/)IZO’ E(,) = Ey,

and there is no reflection — as expected. Thus at Brewster’s angle with E¢ in
the plane of incidence there is no reflected ray whose electric vector oscillates
in the plane of incidence. If arbitrary (i.e. unpolarised) light is incident at
Brewster’s angle, the reflected ray is thus linearly polarised perpendicular to
the plane of incidence, as indicated in Fig. 11.8.

11.5.4 The General Case

The general case of an elliptically polarised wave can be dealt with by su-
perposition of the cases 1 and 2, i.e. with

El = 61E1€i(k.r_Wt), Eg = €2E2€i(k‘r_wt), €] - €3 = 0, (1160)
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where €;,7 = 1,2 are polarisation vectors (i.e. unit vectors along the respec-
tive direction of polarisation) and

By = Vi, j=12, (11.61)
we have for the most general homogeneous wave in the direction of k = kny:
E(r,t) = (e1E) + exFp)e’kT—v1), (11.62)

Here Ey, F5 are complex numbers, which also permit a phase difference be-
tween waves of different polarisation. If Fq and E2 have the same phase, E
describes a linearly polarised wave with a polarisation vector which makes
with €; an angle § = tan™!(Ey/E1) and has modulus E = \/El7 + Eg. If
E4, E3 have different phases, E is elliptically polarised. If |E1| = |E| and if
their phases differ by 7/2, i.e. if E can be written

E = FEy(e; = i€2)ei(k'r_wt),

then E is circularly polarised.

11.5.5 Total Reflection

It remains to consider the case of total reflection. Let n,n’ be the refractive
indices of the media on either side of an interface and n’ < n. Then, see
Fig. 11.9, there is a critical angle ag, at which § — Gy = 7/2 (reflected and
refracted fields in the same direction z).

z
4

~— B = w2

B

o

Fig. 11.9 The case of total reflection.

Also (as we deduce from the above formulae) independent of the direction
of polarisation of the electric field (cf. Eq. (11.56))

Eo=EY, but Ej+#0.
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This case is described as total reflection. Since

sine/ n’

sin8 n

3

it follows that sin ag = n’/n.

We can consider this case also from another point of view, by demon-
strating that there is no transport of energy into the other medium. For
real angles 3 the maximal value of sin 3 is, of course, 1 (for 8 = 7/2). The
maximal value of «, which satisfies the condition

sina n’

sinﬂzg<1

for real values of (3, is therefore given by

) n'
sinag = —
n

(sinfBp = 1). For @ > ay, hence for n'/n = sinag, we write the “angle of
refraction” (3 which is then complex as

B=7+id.
Then sin 8 = cosh é and
1y . (" .
d = cosh™ " (sin ) = cosh (ﬁ sin a).

Moreover
cosB=1/1—sin?B = +iVcosh?§ — 1 =isinhé

and

ik/-r ik'zcos B _ e—k’z sinh &

e =e — 0 for z — oc.

It follows that the field of the refracted radiation, i.e. E’, goes to 0 for
z — oo, but for z finite, as we can show, n- (E’ x H') = 0. This means,
there is no transport of energy into the other medium. We see this as follows.
Recalling the transversality condition and Eq. (11.61), we have
S n=Rn-(E xH)
N—_——

12
_E_k

o )
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the latter because of “” in
n-k' = k' cos 8 = ik’ sinh 6.

We have total reflection. This total reflection is also evident from the fact
that By = EYf, i.e. E2 = EJ*.
We return once again to the general case:

cos 3 = +(1 — sin® ﬁ)1/2

2
( sin? o
sin a
— )1 ( ) .
sin ag
For a < ap we have cos 8 real and hence 3. For a > ag, however, cos 3 is
purely imaginary, i.e. 8 complex:

sina \ 2 2
cosﬂ:ii[(, ) —1] .
sin oo

The phase of the refracted wave is therefore (k' in the (z, z)-plane)

e*'T = exp{i(klz + k.z)}
= exp{i(k'zsin B + k'z cos 3)}
= exp{ ik xﬁ slna} exp{ Fkzy/( Sma )2 — 1}

sin
x exp(—2z/zp). (11.63)

Thus the wave is damped in the direction of z if we make the physically
plausible choice of selecting the exponentially decreasing function. In general

1
k! ( sino )2 -1

sin ag

zZp =

is of the order of several wavelengths, i.e. the refractive wave is damped so
strongly, that in general there is no refractive wave, unless the thickness of the
weaker medium is less than one wavelength. In such a case light can tunnel
through the film, and one has to take a combination of both exponential
functions. We see that when a = «g, there is no damping. One has the
scattering of light at the interface, which can also be observed, e.g. in an
experiment with a sphere immersed in a medium, the sphere containing a
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lamp and permitting light to escape through some windows, as indicated in
Fig. 11.10.

' / eye

Fig. 11.10 Scattering of light at an interface.

11.6 Useful Formulation of the Fresnel Formulae

e EY E)
N=,/—=, R==2, T=22 11.64
G;LI, R Eo’ T E() ( )

Then in both cases of above we can rewrite the results as follows:

We set

Case (1): Eqo L plane of incidence
(A) 1+4R-T=0, (B) (1-R)cosa—NTcosB=0,
so that (1 — R)cosa = N(1 + R)cos 3. Hence

cosa — N cos 3 2cos
St St = . 11.65
cosa + Ncosf3’ T cosa + N cos 3 ( )

The expressions R and T are respectively called reflection coefficient and
transmission coefficient.

Case (2): E¢ in the plane of incidence
(4 (1-R)cosa=TcosB, (B') (1+R)=NT,

so that (1 — R)cosa = (—li'N&cosﬂ, and
_ Ncosa—cosf3 2cos

= - vF = . 11.66
Ncosa +cos 8’ N cosa + cos 3 ( )
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Here we have defined R and T as ratios of amplitudes; this is not the most
common formulation. Some authors such as Lim [2] define R and T as
ratios of the energy of the reflected ray, and that of the transmitted ray,
to the energy of the incident ray. In the book of Jackson [3] (Chapter 7)
the coefficients are not introduced. Since, as we emphasised, Eq, Ej, Ej are
amplitudes, which can still be complex, also R and T' can be complex. We
introduce the coefficients R and T here in analogy to their counterparts
in quantum mechanics or quantum mechanical scattering problems, which
seems to suggest itself.

Example 11.2 Light falling on glass

(a) The refractive index of glass is n’/ = 1.5. Calculate what fraction of light intensity vertically
incident on a surface of clean glass is reflected.

(b) What are the phases of the vectors E, H at the interface between air (n) and glass (n’,n’ > n)
in the case of vertical incidence?

Solution:
(a) We have (with u = p/, N = n’/n) for vertical incidence and irrespective of whether Eg lies in
the plane of incidence or is perpendicular to this

2 1\2 2
JOROEY
3 5 25

(b) For Eg L plane of incidence: & = = 0. Hence

n-—n'

n+n'

EY
Bo

2

IRj? =

1-N n-n/ EY
= = 0, R= =0
1+N n+nf < Ey
It follows that .
E{ = ™| R|Ey,

i.e. Ej points in a direction opposite to that of Eo. For the direction of transport of energy (given
by (E x H)) of the reflected wave to be opposite to that of the incident wave, the phase of H must
remain unchanged.

Example 11.3:3 Calculation of the angle of refraction

Polysterene has a relative permittivity of 2.7. An electromagnetic wave in air is incident at an
angle of 30 ° to the normal on a surface of polysterene. Calculate the angle of refraction and repeat
the calculation for the reverse case.

Solution: For the passage from air to polysterene we set:

€1 :=€p, €2:=2.Tco, M1 = po, M2 = Ko.

From sinfy = %21 sin 8 it follows that

1
sinfy = \/2—7(05) =0.304, 6;=17.7°.
From polysterene to air:

€1 1= 2.7Teg, €2 :=¢€9, M1 = Uo, M2 = lO,

and
sinfo = v2.7(0.5) = 0.822, 62 =55,2°.

$See also The Electromagnetic Problem Solver [21], p. 649.
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Chapter 12

Metals

12.1 Introductory Remarks

Our considerations in the preceding chapter were restricted to media with
conductivity ¢ = 0. We now proceed to corresponding considerations for
metals.*

12.2 Reflection and Absorption of Plane Waves by

Metals
In the case now under consideration we have
oD
= — +]. 12.1
VxH=—-+] (12.1)
With ‘
D=¢E, j=oE, Exe*t (12.2)
we have
V x H = iweE + oE = iwE <€ + iw) (12.3)
7

i.e. in the case of conducting media we have the generalised dielectric con-
stant
o
n=e¢+—. (12.4)

w

Thus, although now j # 0, [j - dF # 0, we can again proceed as before
except that € has to be replaced by 7, because we saw earlier, that for finite

* Although now old, the most important monograph on this subject was for a long time that of
A. H. Wilson, The Theory of Metals, 2nd ed. (Cambridge University Press, 1953).

267



268 CHAPTER 12. METALS

conductivity o the “linear current density” K = 0. Hence we have the case
with no surface currents.

We consider now reflection in the case of vertical incidence of the elec-
tromagnetic wave, as indicated in Fig. 12.1.

! i

metal

Fig. 12.1 Vertical incidence on a metal.

In this case we have incident angle o = 0 and (from sin o = (€'’ /eps)'/? sin B)
5 =0.

Hence the reflected intensity is in both cases (1) and (2) considered in

Sec. 11.5.2: )

N-1 : (12.5)

N+1

/
N = */Z_;f' (12.6)

For typical metals |N| > 1, so that we can approximate |R|? as follows:

IRP? =

where with ¢ — 7/

21_4%(? +0<-—2 . (12.7)
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The absorptivity A is a quantity defined by
A=1-|Rj (12.8)

so that for |N| > 1
1
A~AR — }. .
4 (N) (12.9)

But now — note that the source of ¢’ is the displacement current, whereas
the source of ¢/ /iw is the electron current —

!
N=[E e+ Z (12.10)
€l w
! ; 4
= JE 1y (12.11)
ep Voiw o

12— gim/4

Hence with
1
1+14
\/Q( )

we have

’ 1/2
4_1_ g, wEH 1

N o' /1 +iwe o

w ey (14+1)

12.12
20" V1+iwe ol ( )

For low frequencies we have
o = const. =real, ie. o(w)=~o(0), (12.13)

so that

A:,/8—“’6—Io<\/'\/_, (12.14)

where p’ = 1/0’ is the resistivity. This is the so-called Hagen—Rubens approz-
imation of the absorptivity at low frequencies (experimentally investigated
by Hagen and Rubens).

g Hagen and H. Rubens, Ann. Physik 11 (1903) 873. A discussion of the Hagen—-Rubens
formula can be found e.g. in J. A. Stratton [15], p. 508.
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12.3 The Theory of Drude

At low frequencies (w — 0) the equation of motion of a free electron subjected
to an applied electric field E can be taken to be approximately given by

mi + b = eE. (12.15)

Here m is the mass of the electron, and b = m/7, where 7 has the dimension
of time and is called relazation time. Here T has the physical meaning of an
average scattering or collision time, i.e. the average time interval between
successive collisions of an electron with atoms of the metal lattice. In the
case of a bound electron, one would add a term w3z to bi representing a
binding of the electron to an atom like that of an oscillator potential (this is
a purely classical model at this stage!).

At high frequencies the field E alternates its direction so rapidly, that
the electron has only a small chance to get sufficiently far away in order to
be able to collide with an ion, as indicated in Fig. 12.2. This means, in this
case the equation of motion can be approximated by

mi = eFEoe™" = eE. (12.16)
In the intermediate domain the equation of motion is therefore approximately
mi + ?z = eEge! = eE (12.17)

with solution? oE
T = w1 1) (12.18)

Fig. 12.2 A conduction electron in a metal lattice.

But now$ current density j = charge of one electron x number of electrons
per unit volume x velocity = nex, i.e.

2
j= ﬂE—l — 0B, (12.19)
m(iw + =)
% = iws, ..mi+ 2 =m(iw + —})z =ekE.

§Initially the free electrons wander around arbitrarily and in any direction. After application
of the field E, however, they are forced to move antiparallel to the direction of E.
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so that
nexr

m(l + iwT)’
We see therefore: The expression for ¢ is in general complex and hence the

Hagen-Rubens formula an unsatisfactory approximation.
We can write o also

ag =

(12.20)

Ode ne?

= - . =
1+ iwr = de

T

(ohm meter) ™. (12.21)

Here o4 is called the direct current conductivity and T could be taken as /7,
the ratio of an average length of the mean free path, [, divided by an average
velocity, U

We return now to the calculation of the absorptivity and replace ¢’ in
the first of expressions (12.12) by

o
1+ iwr’
so that from the middle expression in Eq. (12.12),
16we,u’>1/ 2 { 1 }
A=<— RS V(1 +dwT
U(lic'“ ( ) 1+ 1€’ w(1+1wT

9dc

. . V4 w?r? —wr V1t wir?4wr
Vi(l +iwT) = +1 ,
2 2
so that for €w/o)}, <« 1,

l
A~ 8ul)ep \/\/1+w2'r2—w7'

Odc

= Hagen—Rubens expression x \/\/ 1+w?r? —wr, (12.22)

and hence for wr > 1

Bwe
\/wu 1+ +---)—wT
. [Bwer wr
—\ dhp 2wir?

4ep’ 1
= (wr> ). (12.23)

1 TO'dc
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The result (12.22) is known as Drude-Kronig formula. We infer from these
results, that at low frequencies, i.e. wr < 1,

Ao w (in the extreme infrared region),
whereas at high frequencies (infrared region as compared to the extreme

infrared region) A behaves like (12.23), i.e. is approximately constant. This
behaviour of the absorptivity is depicted in Fig. 12.3.

A
A

const.

extreme
infrared ®

-<~——Hagen—Rubens —

~——Drude—Kronig

Fig. 12.3 Absorptivity A as a function of frequency w.

The ultraviolet region is characterised by high frequencies. In this case the
displacement current dominates over the electron current as we can see from
Eq. (12.11). This means, in this case the metal behaves like a dielectric with
reduced dielectric constant (see below). We saw that the effective dielectric
constant of a metal is given by Eq. (12.4), and that at high frequencies w

2 2
o= —1T I (12.24)
m(l+iwr)  imw
so that
2
ne
= — 12.25
n €= (12.25)

reduced dielectric const.
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In general the above Drude-Kronig formula cannot be correct. We know
that due to the skin effect the electric field E varies considerably with pene-
tration depth into the metal. This implies that the relation

j=oE

must be modified, if the length of the mean free path of the electrons is
~ v/w and larger or of the order of the skin depth 2o, or if the relaxation
time is very large. The above current density formula will then have to be
replaced by a relation of the form

j(xr) = /dr’g(r,r’)E(r’)

in order to take into account the rapid change of the field over the region of
the mean path of an electron. In the course of motion of the electrons towards
or away from the surface, electromagnetic energy is directly transferred to
the conduction electrons. If one averages over all possible directions of these
electrons, and if one takes into account, that the electrons are fermions —
their maximum velocity vg at absolute temperature 7' = 0 being that of the
Fermi boundary — one obtains a correction contribution. The velocity vg is
determined as follows. Number of states = number of particles (according
to the Pauli principle) = N = 2V&3/(2m)3,p = Ak, h = h/27 (the factor
‘2’ takes into account the two possible spin directions of the electron as a
fermion). This means

V (4 p*8nd
N = 2(27r)3 (§7r 73 ), (12.26)

h (311)1/3
vo=—|—
m\ 8r

(as for the Fermi distribution at the absolute zero point of temperature).
Taking these effects into account a further modification of the formula for
the absorptivity of electromagnetic radiation in a metal results and is known
as Dingle-Holstein formula.Y This formula can be written as

or, if p = mvg,n = N/V,

3
Apn = Drude—Kronig expression + ZU—O, (12.27)
c
where c¢ is the velocity of light in vacuum. The additional term dominates at
low temperatures. At higher temperatures and for good conductors like Cu
and Ag both contributions of the formula are of comparable magnitude.

ir. B. Dingle [18], R. B. Dingle, Physica 19 (1953) 311 (see in particular p. 342) and T.
Holstein, Phys. Rev. 82 (1951) 1427.
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Example 12.1: Absorptivity of silver
Calculate the absorptivity of silver with direct current conductivity of 3 x 107 mhos/meter at a
radiation frequency of v = 1010 second ~! (microwave region, A ~ 3 cm).

Solution: We use the Hagen—Rubens relation

A~ \/Swep’ ,
o'p

where we insert
pw=y, w=2rx109 persecond, e=¢y=8.854x10"2, o =3x10".
The result is A = 3.9 x 10—4,

Example 12.2: Skin effect and Drude theory

Electromagnetic radiation with
E = E(z)e*%e,, H = H(z)e™te,

(ex, ey, being unit vectors) falls vertically on a plate of metal. Show that the electric field in the
plate at a distance z from the surface and at low frequencies w is given by the following expression:

_ (Q+d)ez }
VT +iwr |’

where &, the penetration depth for small w, is given by

2
5= .
WHOde

Here 04. is the direct current conductivity and 7 the relaxation time. Finally evaluate E(0) with
the help of Fresnel’s formulae.

E(z) = E(0) exp {

Solution: We start from the equation

oD
VxH=j+ —,
X J+ ot

where in the present case

vt =e - F0) ve(G2),

0z Oz
N
0
since Hy = H(z). Therefore,
0H, . _}_66EI
8z T e
or dH
‘—d(ﬂ = jz + iweE(z). (12.28)
z

Similarly with

oB . OF; OFE;
VXE:—Ez—prH—ey—a—z—"’ez( By >
N

0
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we obtain

dE(z)
dz
From (12.28) and (12.29) we eliminate H and obtain:

—twpH. (12.29)

2
d dIigZ) = —iwyi—f— = iwp(jz + iweE),
ie. LE
7 gz) + w2epE(z) = iwpje. (12.30)
z

Thus we have one equation in E(z) and j;. We obtain a second relation from j = oE, where
j = ner and with the simple Drude theory

mf + —r = eE = eEge’*?,
T

so that
. eET . ne?rE
r= m(l + iwt)’ 1= m(l + iwT)
and hence ~
_ ne?lTE
T ml(l 4 iwr)’

where [ is the length of a mean free path and 7 = I/7 a mean velocity. It follows that
ne?l
o= —.
mo(1 + iwT)

With 04. = ne?l/m@ we can write j = 04.E/(1+4iwr). With this we obtain as our second equation

, = JacB(2) (12.31)
1+ iwTr
Equations (12.30) and (12.31) now imply:
d’E(z) 9  ipwoge
— —— JE(2) =0. 12.32
dz? + <€W 1+iw‘r) ) (12.32)

We neglect the displacement current contribution euw? and consider low frequencies. Moreover,
i= (V%)? = [(1 +1)/v2])?. Hence the physically sensible, i.e. decreasing, solution is

E = E(2)e“*e,, with E(z) = E(0) exp{ - %}’
§ = 2
Hwaqc

(this is the penetration depth of the refracted wave at low frequencies in agreement with Eq. (9.17)).
We have here the case of the vector E lying in the plane of incidence. The appropriate Fresnel
formulae of Sec. 11.6 are

where

1! ! —I—
(1-R)cosa=TcosB, {1+ R)=NT, where R:&,T:E, N=,%£
Ep Ey
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where Ep, Efj, E{ are the amplitudes of the incident, reflected and refracted waves. We are inter-
ested in T with Eg = 1, i.e. T = E| = E(0). Vertical incidence (@ =0 — 3 = 0) implies T = 1—-R.
R follows from the above relations as R= (N —1)/(N +1),sothat T=1-R=2/(N+1) ~2/N
for |N| > 1. Neglecting the contribution of the displacement current, we have

o
N [ED
e’ Voiw

1
— = ‘f’ﬂil/?’
N o’

or (with e =€, p' =p, o ~ogc)

so that

2 wEp .1 /2
E(0) =T~ = ~29,[¥2%;1/2,
(0) ~ \/adJ



Chapter 13

Propagation of Radio Waves
in the Ionosphere

13.1 Introductory Remarks

The phenomenon we consider here,* takes place several hundred kilometers
above the surface of the Earth. The gaseous atoms in the upper atmosphere
are jonised by extraterrestrial radiation (e.g. by cosmic rays, ultraviolet radi-
ation from the sun etc.). The ionosphere consists of several layers of electrons
and ions with first increasing and then decreasing densities. Consider first
only one layer. We let the dielectric constant near the surface of the Earth
be €o and in the ionised region (w7 > 1, see Chapter 9)

=€y — =€y — —=€g. 13.1
N=€— —— =€~ —5€ (13.1)

Here
n is the number of electrons per unit volume,
m the mass of an electron,
wp the plasma frequency, w? = ne?/meo.

The effect of the positively charged ions (i.e. their contribution to the
conductivity and hence to the effective dielectric constant) can be neglected,
since the mass of the ions is approximately 2000 times larger than that of
an electron. We also ignore at the beginning (see later) the effect of the
terrestrial magnetic field which in general cannot be neglected (see Jackson
(3], pp- 292-294).

A brief description — different from that here — can be found in Stratton [17). A more
complete account is given in H.R. Mimno, Rev. Mod. Phys. 9 (1937) 1-43 and in Ergebnisse der
ezakten Wissenschaften, Vol. 17 (Springer, 1938).

277
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For the ray of a radio wave to return from the ionosphere back to Earth,
the density of electrons cannot increase indefinitely, since otherwise the ray
would be bent more and more towards the vertical and hence would even-
tually escape. Thus beyond a certain maximum value, the refractive index
must decrease again, and this means the density of electrons, enabling the
ray to be bent away from the vertical. In any case the wave has a reflected
part and a refracted part with coefficients R and 7" in the case of E L to the
plane of incidence given by (cf. Chapter 11)

__cosa— Ncosf 2 cos «

= T = 3.
cosa + N cos 3’ cosa + N cosf3’ (13.2)

where o and 3 are incident and refractive angles as before, and N is (cf.
Eq. (11.64)) now with generalised dielectric constants

Fig. 13.1 Refraction of a ray. Fig. 13.2 Reflection after refraction.

13.2 Condition for Return of Waves

Along its ascent into the ionosphere the ray is refracted, as also on its way
back. However, the highest point of the ray’s path must be a point of reflec-
tion. Naturally this situation is somewhat idealised. For example some waves
wander even directly from the emitter to the receiver. There are also waves
which circle around the Earth (with reflection from the ionosphere), and thus
give rise to radio echos, which have been observed. Since the electron density
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increases with increasing height above the Earth only very slowly, one has
initially almost exclusively refraction. Since

/
N=,/TE o1,
N

this means that for a ray starting vertically upwards R = 0 (since with
Snell's law also 8 = 0). After attaining its maximum value, the electron
density decreases rapidly with further increase in height. In the plasma the
dielectric constant is given by Eq. (13.1). We recall that we had defined the
generalised refractive index as

p = c\/np = p1 + ipa, (13.3)
and that w _ '
k= Zp, ez(kz—wt) — ei%(px—ct). (134)
C

We observe that for < 0, i.e. p complex, the wave is strongly damped. For
large masses m (of the ions) 7 ~ €p. For 7 < 0 the wave transmitted beyond
the reflection point is strongly damped (i.e. practically no transmitted wave),
and one has effectively only reflection. For this to occur the density must at
least be large enough so that n =0, i.e.

n mw 2

2 .
~ 62

(13.5)

€

[}

We now apply Snell’s law to different layers of the atmosphere/ionosphere.
For the case of three layers as illustrated in Fig. 13.3 we have (beginning
with an angle of incidence whose angle of refraction is equal to the angle of
incidence at the next layer and so on)

Vepsina = /€y'sin = /€'y siny=---. (13.6)

In the present case the electron density depends on the height y above the
ground, i.e. we have to write

n = n(y).

Let 6, be the angle of incidence at ground level and 8 the angle of refraction
at height y. Then we can write

n(y)e’]'?
{e - ——2—] sinf = /esin O, (13.7)
mw
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Fig. 13.3 Refraction of the ray on its way upwards.

and for € = ¢g

- n(y)e’ v sinf = \/egsin @ (13.8)
EO mw2 - 4] b -
so that )
<1 — Q(_y)_ez) sin?@ = sin® 6, = 1 — cos? B,
epmw
or )
cos® O — n—(y)%(l —c0s?6) = 1 — sin® 0 = cos? 4
€omw
or ) ,
cos? B — n_(yle_i = 00520(1 - M),
egmw €pmw
or 1/2 1/2
n(y)e’ n(y)e’
1- = 1l . 13.
cos @ [ eomaﬂ] cos 6y [ P p—yy (13.9)

From Egs. (13.8) and (13.9), we obtain

tan 8y

n(y)e’
1o — "
eomw? cos? 6,
We let x and y be horizontal and vertical coordinates. The highest point of
the trajectory of the ray is a point of reflection; reflection of the ray therefore
requires, as shown, a maximal height ymax. Near the ground practically no
reflection takes place, but only around yma,. We have

dx
t = —
anf @’

tan§ = (13.10)




13.2 Condition for Return of Waves 281

so that with (13.10)

) =
T = tan 6 .
0 V1 —n(y)e?/egmw? cos? G,

(13.11)

N,

- R -
Fig. 13.4 The trajectory of the ray.

With this we obtain for the range R indicated in Fig. 13.4
Ymax dy
0 V1 = n(y)e?/egmw? cos? 6,

At ymax We have § = /2, i.e. tanf = oo, i.e. at this point

/ 2
n(Ymax)€?  wp
cos O, = —(6(;;:1;&:)5— =— (13.13a)

This equation may not always have solutions for any value of 8. If for all y

R =2tané, (13.12)

n(y)e?

1 A HE
egmw? cos? 6,

> 0,

there is no ymax. In this case n(y) cannot grow indefinitely, and there must
be a value 1, with

2
Dmax® - cos2 6 (13.13b)

eomw2 -

(this expression defines 6p), at which

cos? 6,

cos? G, ’
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i.e.
cos? 8, > cos? by, B, < bo.

This means, with this condition the rays cannot return to Earth. For return
to be possible, we must have

2
Nmnax€
6 - —— < 0 ). 13.14
O > o (also 1 emw? cos? By < ) ( )

This means, rays satisfying this condition, can be reflected back to Earth.
One can express this in another way by saying, that

2
2 “p
w 2
cos? 6,

for a fixed angle 6,. Thus for a fixed angle 8, the frequency

wp
cos 8,

Wmax =

is the mazimal frequency possible for a return to Earth of the ray of radio
waves.

13.3 Effect of Terrestrial Magnetic Field

We now want to take into account the effect of the magnetic field of the Earth
on the propagation of radio waves. In our treatment here we again consider
only the electric component of the electromagnetic field of the waves. This
suffices since the magnetic field component is much weaker, as we can see
from the fact that B = O(F/c). We also simplify the terrestrial magnetic
field to one along the z-direction parallel to the normal to the surface of
the Earth (the latter being assumed more or less flat for our purposes here).
Hence we write for the terrestrial field

B. = (0,0, B,).

We can consider a more general case, i.e. that of the terrestrial field at some
angle, by replacing in the following the z-component B, by B.cosf.. The
equation of motion of a free particle with charge ¢ (i.e. an electron in the
ionosphere) is then with r' = (2/,¢/, 2') given by

o L. :
m(r' + ;r') =q[E +i' x B ], (13.15)
ray Earth
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where 7 is the relaxation time, i.e. the mean time interval between successive
collisions of the particle with other particles. We put

E=12 +iy, so that (&' xB.), =7Be. (13.16)

and
E=E, +iE, (13.17)

and define the Larmor frequency wr, by
qBe = mwp (or mwy, cosB). (13.18)
The equation of motion then leads to
.1 . .
m(s i ;s) = qE - imwé,
or
£+ | = +iwg |€==E. (13.19)
T m
Setting
E = lEoei(wt—kz)
2 ¥
E, = %Eg cos(wt — kz), E,= :}:%Eo sin(wt — kz), (13.20)

where the latter are the z,y-components of the real part of (e,, e, again unit
vectors)

1 .
Eg(z,t) = §E0(ez T e, )elWtk2), (13.21)
L
ie. 1 1
RER(2,t) = §E0 cos(wt — kz)e, £ EEO sin(wt — kz)e,
L
= E,e; > Eye,.

These waves are described as right polarised and left polarised respectively.
The sum

Eg + EL = Epe'“ e,

or its real part
R(Eg + E1) = Eycos(wt — kz)e,

represents a linearly polarised wave in the direction of . With

E = %Eoeii(wt—kz)
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we make the following ansatz for the solution of Eq. (13.19):
¢ = goetilvi=k2) (13.22)

and obtain
g E(zt)

- (13.23)
mwwtwr F

E=-—
Recalling the current density
i = (usJy>32)
we define the complex quantity

L . ng® E
J=Jztijy=ng§=———""—F,

mwwtwr F 7
ng? E

mwwiwa{:%.

(13.24)

Now, we know from Maxwell’s equations (cf. e.g. Eq. (9.7)) that every
component of the electric vector satisfies the equation

V2E; — epE; - ,U,ji =0,
so that for the complex quantities
E=E, +iE, j=j.+1ij,
the following equation results:

V2E — eopo B — poj = 0,

or o 2
E—eopo|l - —2P __|E=o, 13.25
0“"[ O ) —
where
ng? 1
wp = 4] — = = .
P=Amer PV M=

Here wp is the plasma frequency of the ionosphere. The definition of the
generalised refractive index implies therefore for the refractive index of the
ionosphere

— [1 _ ~—“’%’——] 1/2. | (13.26)
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For
. 1
p=pit+ipp and w> -

it follows that

SN PRSI N RN S S
- wwxwr)| 2wt (Wt wp)?

For right circularly polarised electromagnetic waves and left circularly po-
larised electromagnetic waves, i.e.

_ 1 +i(wt—kz) _ w . w .
E = 5Eoe , k=-p= C(Pl‘sz)
the refractive index p therefore differs. A linearly polarised wave with
E = (E,,0,0), E,= Egcos(wt— kz)

can be considered as a superposition of two oppositely circularly polarised
waves. We see therefore, that in the case of an originally linearly polarised
wave, one of its circularly polarised components is absorbed more strongly
(i.e. damped) than the other, so that the original wave becomes partially
circularly polarised.

Here the origin of pg is different from that in the case of metals with
o # 0. In the present case ps o< 1/7, and ps — 0 for 7 — oo. 7 is the
relaxation time and thus originates from a term (like friction) which implies
a loss of energy in the form of heat.

Example 13.1: The pulsar

A pulsar emits a pulse with frequencies w;,ws (i.e. emitted simultaneously), which are considerably
larger than the plasma frequency wp of the interstellar medium. The times of arrival of the pulses
with frequencies w;,w2 are measured. Show that this permits the determination of the electron

density of the medium integrated over a distance L, i.e. fOL n(l)dl.

Solution: Since w > wp, we have (cf. Eq. (9.17)) the dispersion relation

k2
=w? —w%,, or k%2c? =uw?— w%.
NG
(e, 4 ~ €0, uo). Moreover
ne
w?’ = , n=r()
meg

The group velocity vy is given by

dw 2
—, sothat vg =c¢ 1—(wP) .

Y9 = Uk o
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The time of flight T of a pulse (or wave packet which travels with the group velocity, see Chapter 15)
from its source to the observer is

T= /T‘” /m /( )dz.

Let T — T; for w — w;, i = 1,2, Then
T /.2 2 2 L
AT =Ty~ T; = = / (‘”—g’_“’_g)dz— = (- [ noa
% w3 wy 2mceep \ wj w% 0

L 2 2 2
/ n()dl = 770 (#’%) AT.
o] € wl — w3

This means

Example 13.2: Scattering of radio waves

Radio waves with frequency w = 3 x 107 per second are emitted from a point on the surface of
the Earth (radius 6.37 x 108 m) and are reflected back from the ionosphere approximately 3 x 105
m above the surface of the Earth. Calculate the largest angle of reflection 8, at which the wave
is reflected back to the surface of the Earth. Also calculate the maximal density of the electrons
determined by this angle.

Solution: Since the angle of reflection is equal to the angle of incidence, it is also the largest angle

of incidence at layers in the stratosphere which is asked for, i.e. the extreme to vertical incidence.
Hence we draw a tangent to the surface of the Earth and extend it to the point of reflection.

3x10° m

637x108 m

Fig. 13.5 The requested angle 6.
We therefore have the geometry shown in Fig. 13.5. Hence

6
sinf = 6.37 x 10 =83 ooss0, 0~ 73°,
6.37 x 106 +3 x 105  6.374+0.3

We use the following relation obtained above in the text (cf. Eq. (13.13b))

ne2
0 =200:cosf = 5
megw
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With
€0 = 8.854 x 10712 A s/(V m),

this yields for w = 3 x 107 per second the density
n ~ 8.5 x 10!

of free electrons per meter3,

287



This page intentionally left blank



Chapter 14

Wave Guides and Resonators

14.1 What are Wave Guides?

Wave guides are cylindrically shaped objects of metal (almost ideal conduc-
tors) which are open at both ends. Resonators, also called resonant cavities,
differ from these in being closed at both ends. The interior of such objects is
filled with some homogeneous material with electromagnetic constants e, y;
alternatively the interior can be composed of layers of different materials.
We have seen before, that the larger the conductivity ¢ of a medium or the
frequency of the incident electromagnetic wave, the smaller the skin depth,
i.e. the depth of penetration of the radiation into the conducting medium.
This follows from the dispersion relation that we encountered several times
earlier, i.e.

2
95 W LT
together with the plane wave ansatz
E = Egellkr—vt), (14.2)
The square root of k? is
w g
=+ pue— /1 4+i—. 14.3
k Heg + boe (14.3)

Here we have to choose the physically relevant sign. For instance for the wave
exp(ikz) and a medium extended indefinitely in the direction of z, the sign
has to be chosen such that the wave is damped, so that the current density
j = oF cannot grow arbitrarily (which would be nonsensical). It is because
of this skin effect that it is possible to confine radiation in hollow bodies or

289
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to use them for the propagation of waves (ideal conductors with o = co do
not permit any penetration of radiation into the walls). The radiation is fed
into the wave guide or resonator with a sender or emitter. We assume here
that sender and receiver of electromagnetic waves or signals are effectively
at infinity, so that there are no charge or current sources in any finite part
of space which would have to be taken into account in our considerations. A
signal is a wave packet propagating with group velocity, and will be discussed
in more detail later. Such a signal given at (say) time ¢t = 0 and at a particular
point of the conductor characterises the external charges and currents which
generate the corresponding fields E and B (charges for E and currents for
B). Correspondingly one can investigate the properties of wave guides and
resonators in terms of current I along the wave guide and the potential
difference or voltage V across it instead of the fields E and B. We will
derive later the corresponding equations for the important case of the coaxial
transmission cable, for which we calculated earlier the capacity and the self-
inductance per unit length. The consideration of wave guides is therefore
very instructive because this involves the full interplay between radiation
and boundaries.

We now consider electromagnetic waves in the hollow space enclosed by a
wave guide (we consider resonators separately at the end). For E,H o e =%,
and (as explained above) j = 0 = p,D = ¢E we have

V x E = iwB,
V x B = —iuewE,
V- -E=0,
v.-B=0. (14.4)

We observe here the symmetry of the equations in exchanges E « B with
w « —wpe, which we will exploit later. We have seen in earlier chapters that
by performing the “curl-curl” operation, i.e. V xV, on Maxwell’s equations,
the following equations result

V2E + pew’®E = 0,
V2B + pew’B = 0. (14.5)

In view of the cylindrical symmetry of the problem (cylinder axis along
the z-axis) we expect waves, which travel along the z-direction, i.e. we set

E(.’I), Y, Z,t) —_ E(x,y)eiikz—iwt’
B(z,y,2,t) = B(z,y)e™* ", (14.6)
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One should note that the directions of E and B are still arbitrary. In general
it is also possible that E(z,y) and B(z,y) can depend on z. We now set for
convenience

2 2 2 2 8? 02
= here V2 = 2+ 2 14.7
V*=V7i 4V, where 52+ 372 (14.7)
and L means “transverse”, so that
(V2 + paP)B = (V3 + pew? — B)B(z, y)e ¢ = 0,
and hence we obtain
(V2 + pew?® — K*)E(z,y) = 0,
(V2 + pew? — k*)B(z,y) = 0, (14.8)

with the second equation for B resulting from the symmetry pointed out
above (see Eq. (14.5)). We set in addition

E=E,+E,, B=B,+B,. (14.9)

14.2 Transverse Fields Derived from Longitudinal
Fields

We now show that it suffices to know the z-components E,, B,; the transverse
fields E;,B) can then be obtained from these. We consider the two curl-
equations of Eq. (14.4):

Case (1). We have
V x E = iwB (14.10)

or with (14.9) and

0 0 0
o= () oo

the following equation
(VJ_+VZ) X (EJ_+EZ) =iw(BJ_+BZ).

In the direction of z

V. xE| =iwB, _ (14.11)
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and in the (z, y)-plane
VxE; +V, xE, =iwB. (14.12)

We multiply Eq. (14.12) from the left by V,x and obtain (see comments at
the end)

WV, xB] =V, x(V,xE])+V,x (VL XE,) (14.13)

= Vz(vz ' EL) - (Vz : VZ)E_L
+Vi(V,-E,)—-(V,-VL)E,. (14.14)
In the case of the first two expressions on the right of Eq.(14.14) we used

the relation “curl curl = grad div — div grad ”, in the case of the remaining
terms the relation

Ax(BxC)=(A-C)B-(A-B)C, (14.15)

taking care of the ordering. The first and the last contributions on the right
of Eq. (14.14) are scalar products of orthogonal vectors and therefore vanish.
Hence we are left with

OF,
—VEEL+VL( ) =iwV, xBj.
Oz
But
2 82 +ikz—iwt 2
—VzEJ_ = _822 (EJ_(way)e ) =k‘E],
so that
9 OF, .
kKE; +V b =wV,xB]. (14.16)

Case (2). In a corresponding way we deal with
V x B = —iwpeE, (14.17)

i.e.
(VL + Vz) X (B_]_ + Bz) = —iw,ue(El + Ez),
where the left hand side is the following sum
(VixB1)+(VixB.)+ (V. xBL)+ (V. xB,),
0

so that in the direction of z:

VL X BL = —iquEz (14.18)
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and transversally
Vi xB,+V,xB) = —iwueE |,

ie.
Vz X B_L = —-V_L X Bz - inGE_L. (14.19)

We insert this in Eq. (14.16) and obtain

OF,
Oz

k2E_L+V_J_< ) :’L'w[—VJ_XBZ’—iW[LGEL],

i.e. arranging the contributions in a different way,

VJ_(%@;) +iw(Vy x B,) = (wlue — k)E].

Hence

OE, .
(pew?® —kHE) = (VJ_E —iw(e, X V_L)Bz>. (14.20)

Owing to the symmetry of the Maxwell equations (14.4) in E and B we have
also
2 2 8Bz .

(pew” —k*)B) = (VJ_W + iwpe(e, x VJ_)EZ>. (14.21)
We see therefore: The transverse components of the fields can be obtained
from the longitudinal components, in fact in each case from both longitudinal
components. The relations (14.20) and (14.21) can also be derived in a
different way, i.e. by immediate substitution from

V.-E=0, V-B=0

and

oB oD
VXE——E, VXH—E

in the interior of the wave guide (i.e. not in the wall).*

*In these equations the derivatives with respect to t and z are replaced by —iw and ik, and the
equations are then solved for the transverse components of the fields.
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14.3 Boundary Conditions

We now come to the important aspect of boundary conditions. We recall
for this reason the continuity conditions at a boundary surface. We had in
particular

BY =B® EY=E? «with kxE=wuH=wB,  (14.22)

where “n” stands for “normal component” and “¢” for “tangential compo-
nent”. The two conditions in Eq. (14.22) are exact. The other two conditions
which we obtained and used previously are not needed in the present case
since surface charge and surface current are here zero (for ¢ = 00). The two
conditions above can also be written (e, - e, = 0)

n-B=0, nxE=0 (14.23)

with B = B, E() = F in the interior of the wave guide and B® = 0= E®
outside (again for o = oo, i.e. ideal conductors). We assume here that the
wave guides are infinitely long in order to avoid finite end effects.

We can write the two boundary conditions:

n-(B,+B;)=0 and nx(E; +E,) =0,

ie. (sincen 1 B,):

n-B, =0 (14.24)
and
nxE; =0, (14.25)
N —
vector||le;
nxE, =0, ie. E,=0. (14.26)
—_——
vector Le,

These conditions hold at the boundary surface (i.e. not anywhere else). Since
we saw that the fields E | ,B | follow from F,, B,, we are interested in the
boundary conditions and the differential equations of E,, B,. Thus we have
to find the boundary condition of B,. This is our next step.

Vector multiplication of the Maxwell equation (14.19) by e, gives

e, X (V,xB))=—e, x (VL xB,)—iwue(e, x E}).
Using Eq. (14.15) it follows that

0—(e, V,) B, =-V,B,+0—iwpe(e, xE] ),
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i.e.
% =V,B, +iwue(e, x E1). (14.27)
z

Scalar multiplication of this equation by n yields

g—n-BL=n-VlBZ+iw,u,en'(ez xE]).
2z
Since
B= B(IE, y)eiikz——iwt,

1.e.

9B, = +ikB ],

Oz
we obtain

. 0B, .
tik(n-B,) = " iwpe(n x E) - e,. (14.28)

Thus at the surface of the wave guide we have with Eqgs. (14.24) and (14.28)

d
=0, (— =n- Vl>. (14.29)
surface on

Above we reduced the Maxwell equations to the following two equations
which apply to each of the three components of the fields, i.e.

dB,
on

(V2 + pew? —kDE(z,y) =0, (V2 + pew?® - k*)B(z,y) =0. (14.30)

Moreover, we saw that the transverse components E; ,B; can be derived
from a knowledge of the longitudinal components E,, B,. Thus there remains
the investigation of the equations

(V3 +pew? — KB, (x,9) =0, (V3 +pew? — k*)B.(e,y) =0 (14.31)
with the boundary conditions

8B,
E, =0, —- =0, (14.32)

surface surface

where the surfaces here are two-dimensional. Equations (14.30) with these
conditions define an eigenvalue problem. In general the boundary conditions
cannot be satisfied simultaneously.
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14.4 Wave Guides and their TEM Fields

We consider wave guides. The frequency w is given; the eigenvalue problem
then determines the permissible (axial) wave numbers k. Depending on the
boundary conditions one distinguishes between fields of different types:

TM, transverse magnetic: B, = 0 everywhere (hence the terminology)
and Ezlsurface = 07

TE, transverse electric: E, = 0 everywhere
(hence the terminology) and 0B, /0n|surface = 0,

TEM, transverse electric-magnetic.: B, =0 = E, everywhere.

We consider first the case of TEM fields.
14.4.1 TEM Fields
In these cases we obtain from Egs. (14.20) and (14.21) the equations
(pew?® —kHEL =0, (pew? —k*)B) = 0. (14.33)
These equations have the trivial solution
E; =0=B,; for pew?—k?2#0. (14.34)
Hence for a nontrivial solution we have in general
pew? —k? =0, k= /new. (14.35)

Equations (14.20) and (14.21) imply 0 x E;,B; = 0, i.e. E|,B remain
undetermined. For this reason we now write the TEM fields

Ergy=(E,E, =0), Brpy=(B.,B,=0). (14.36)
According to Egs. (14.31) we now have (with V3 = A} ):
AE; =0, A;B) =0, (14.37)

i.e. Epgpym,Brey are solutions of the two-dimensional Laplace equation.
Before we investigate these equations we show that

Erem L Breu. (14.38)

This is not trivial, because so far we established the transversality of elec-
tromagnetic radiation only for the case of an unlimited medium.
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From 9B
V xE=-— with B x e ™t
we get
wB=VxE=(V;+V,)xE
ZVLXE_!_%(esz)‘

For E,B — Ererm,Breym, ie. B, = 0= F, the fields E,B are vectors in
the (z,y)-plane so that

Vi xErgym L (z,y)—plane,

i.e. parallel to the z-axis, i.e.

0
iwBrEy = %(ez x Ergum) (14.39)
and
Vi xErgym=0 (- Ergy =V_¢). (14.40)

From Eq. (14.39) we deduce that

1 8
Brem = E@(ez X ETem)-

With
Erem = Eorgm(z, y)et=")
we obtain
Brem = g(ez x ETEm),
ie.

Brem = pe(e, x Ereuy). (14.41)

Thus Ergar and Brgas obey the same transversality connection as in the
case of the unlimited medium.

However, TEM waves do not propagate in hollow wave guides, which are
made of ideal conductor material (i.e. have ¢ = oo and hence represent
equipotential surfaces). This can be seen as follows. Inside the wave guide

V-E=0, V.B=0,
ie for E, =0= B,:

OF, , 0B, _,  0B. 0B,
Oz oy Oz Ay

=0. (14.42)
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On the other hand, from Eq. (14.40) or from the z-component of
VxE=iwB, VxB=-—-iuewE for E,=0=B8,,

we obtain
0E, OE, .
vyl 5y wB, =0,
0B, 0B, .
5 By = —jpewk, = 0. (14.43)

We write the solutions of these equations with potentials ¢ = ¢(z,y),¢ =
P(z,y)

E,=0¢/0z, E,=0¢/dy
B, =dy/0z, B, =0y/dy

Then Eqgs. (14.42) and (14.43) become

0? 0? 0? o?
20,89 0 29,09
ox? Oy Oz Oy
&% 9% &% _ 8%
0x0y  OyOx’  OzOy Oydz’
i.e. ¢ and % are solutions of the 2-dimensional Laplace equations

} , E} =V¢, By =Vy.  (14.44)

0,

AL¢p=0, Ap=0. (14.45)

Since, however, the conducting surface of the wave guide is an equipotential
surface, on which the potential of E is constant, we deduce from Gauss’
theorem and the fact that the interior of the wave guide does not contain
any charges, that inside the wave guide

E, =V, ,6=0

(from fF(V) E-dF = [,V -EdV = [, pdV/e = 0). The argument here is
analogous to that which we used in considerations of spherical condensers and
cylindrical condensers in electrostatics. Since the components of B are linked
with components of E via the transversality condition (14.41), it follows that
also By = 0 = By. Thus TEM waves do not propagate in hollow and empty
pipes.

However, this is different if the wave guide contains inside another sym-
metric surface, like a concentric metal cylinder of circular cross section; a
construction of this type which is no longer simply connected is known as a
coazial cable. In this case according to Fig. 14.1 ¢ # ¢;. In this case the
Laplace equation has a solution for the fields E, B which does not vanish.
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14.4.2 The Coaxial Transmission Cable

We have for the TEM wave of the coaxial cable
k=\pew, A Ergm =0, Brepm= Vie(e, x Erpm). (14.46)

Also .
Erpy = (V1 ¢)e @t k)

and we have to solve
AL p=0.

Fig. 14.1 Cross section of a coaxial cable.

We choose a cable with circular cross section and radii Rj, Ry (with Ry <
Ry). The cylindrical symmetry of the cable suggests separation of the equa-
tion in cylindrical coordinates, here in polar coordinates, so that we have

10 [ 8¢ 18%
;5;(%—,,) TRae Tl (1447)

This equation has to be solved with the boundary conditions

#(p = Ry1,p) = ¢1 = const,.,
¢(p = Ra, ) = ¢ = const. (Ry < Ry). (14.48)

Because of the symmetry of the cylinder

P(p,p1) = d(p,p2) = -+ - = &(p),
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i.e. 0¢/0¢p = 0, so that

o¢
; ap( ap) 0, (14.49)

¢(p) = Alnp+ B, (14.50)

and hence

and so

¢1=¢(R1)=AlnR1+B, ¢2=¢(R2)=AIHR2+B,

ie.
¢1 — P2 $2In Ry — ¢11In Ry
A= B= ' .
In(R1/Ry)’ mR; —In R, (14.51)
Thus we have o
V.L¢ = a—pep,
i.e.
ETEM(p7 Py 2, t) = éepe_i(“)t_kz),
p
A )
Brem(p, ¢, 2,t) = \/lTe;e(Pe—z(wt—kz). (1452)
Expressed in terms of Cartesian coordinates the relations are
ETEM(:L‘ Y,z t) 2 + .2 (melL' + yey)e_i(Wt_kZ)’
VA v
B t) = —ye, i(wt kz).
TEM(%,Y,2,1) = 5 y2( yer + zey)e
(14.53)

One should note that, for Ry — 0 (removal of the inner cylinder) A — 0 and
B — ¢y, i.e. in this limiting case ¢ = const., and there is no TEM wave in
the wave guide, as we observed earlier.

14.5 Fundamental Equations for the Coaxial Cable

We mentioned already previously that the investigation of properties of wave
guides can also be carried out by focusing on the induced charges and cur-
rents, i.e. we infer from the fields E and H the presence of charge ¢ and
current I, described as induced, which are the same as those which give rise
to the fields E and H. We now derive the corresponding equations. These
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describe the propagation of the potential difference or voltage V = V(t, z)
and the current I = I(t,2) along the cable. The equations that we obtain,
are more general than our derivation here, and retain their validity for many
other types of wave guides. Thus we consider a coaxial cable with radii a,b
(with a < b). We let V (¢, 2) be the voltage between the outer and the inner
cylinders at z-coordinate z, and we let I(¢, z) be the current induced in the
inner cylinder (or the current corresponding to an appropriate surface cur-
rent). Then we know that at distance » with r > a, from the axis of this
cylinder, as indicated in Fig. 14.2, the magnetic field strength H is given by

PRIV (14.54)

as may be verified, for instance, by referring back to Example 8.2. We now
apply Faraday’s law

E.dl= _ﬁ/ B.dF (14.55)
to the area (1234) in the interior of the cable as shown in Fig. 14.2.

4 3

z z+dz

Fig. 14.2 The coaxial transmission cable.

We obtain

2 3 4 1 b
/E-dH—/ E-dl-l—/ E~dl+/ E-dl:——‘z/ PRAGEI N
1 2 3 4 8t a 27r7‘

We set
1
/ E.dl=-V(tz). (14.56)
4
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Then, since the field E is radial and inside the conductor zero,

b
V(t,z+dz) - V(t,z) = —E/ #I(t, ?) drdz

ot 27r
implying
oV(t,z)  p OI(t,z)
2 = an /T
o oV (t,z) oI(t,z)
t,z t,z
L =-L ’ 57
8z ot (14.57)
with self-inductance (see Example 8.2):
Ly = £ In(b/a) per unit length. (14.58)

2

This result is independent of our choice of directions in Fig. 14.3.
A second equation is obtained from Ampére’s law to which Maxwell added

his displacement current, i.e.

}{B'dIZﬂ/(j-i—a—]z) -dF. (14.59)
ot

dF
C L / 3

Y
Y
I A B
. AN
\
\

1l
i
i

dz |
z+dz

Fig. 14.3 Surface piece of the coaxial transmission cable.

We apply this to a section of the cylindrical surface of the cable at radius
r,a < r < b, as indicated in Fig. 14.3. The magnetic field B is entirely due
to the current on the internal cylinder (as we observed earlier), and is given
by

I(t,2)

2mr

B(t,z) =p €.
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We thus have along the path C indicated in Fig. 14.4, where dF = —rdpe, x

dze,,
2 3 4 1
fB-dl=</+/+/+/)B dl
C 1 2 3 4

=0+ rdcpéﬂ—f(t, z+dz)+0- Q—f;—rf(t, z)(rdy)

_F g, rdp 3I(t,z)'

i 5 (14.60a)

Evaluating the other side of the Ampeére-Maxwell equation (14.59) we obtain,
since j = 0 in the intermediate space and in the case of the cylinder £ =
q/2mer, q the induced charge per unit length,

oD 0 0/( q
v -dF = o E -dF = R (27rer dZT‘d(p)
8
= —epdzdog, ot (‘23&1)
_ 0 (V(t,z)
= —eydzdcpa (1n(b/a) ) , (14.60b)

since V = qln(b/a)/2me per unit length, as may be checked by consulting
Example 2.12. From the results (14.60a) and (14.60b) we obtain

oI(t,z) _ o [(V(tz)
éw_rd e = E“dZd“’é?(ln(b/a) ’
and so
OI(t,z) _  2me 0OV(t2)
9z  In(b/a) Ot
or
ol(t,z) oV (t,z)
5 =—-Cp TR (14.61)
where
2me
Co =y (14.62)

is the capacity of the cable per unit length obtained in Example 2.12. One
should note again the relation

2
LoCo = % In(b/a) m%:;a) = pe = G) (14.63)
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(in vacuum ¢’ = ¢). Differentiation of the fundamental equations (14.57) and
(14.61) with respect to t and z yields

OV (t,z) I O%I(t,z)  0%V(t,2) . 0?1 (t, 2)
atoz 0 o 922 " otor
8%I(t,z) c V(t,z) (2, 8*V(t2)
820t % 62 ' 822 " ozot
and hence the equations
%V (t,2) O*V(t, z)
822 LOC"T =9
d2I(t, 2) %1(t, z)
622 t LOCOT = 0 (1464)

These equations show that current and voltage propagate wavelike along the
cable with the phase velocity ¢/ = 1/4/LyCj because

[

W

I(t,2),V(t,z) < e®z=eD k2 = [Cow? = =. 14.65
2

]

14.6 TM and TE Waves in Wave Guides

14.6.1 General Considerations

We first demonstrate that TM and TE waves are not transversal, i.e. they
do possess longitudinal components. In the cases of TE and TM waves the
expressions for E| and B in Eqgs. (14.20) and (14.21) also simplify. Setting

v = pew? —k?, E, Bx ek k>0, (14.66)
we obtain from Egs. (14.20) and (14.21) for 42 # 0:
TM: B, = 0 everywhere,

1
E_L = %ikV_LEz, B_L = ?i,uew(ez X VJ_)EZ; (14.67)
v

TE: E, = 0 everywhere,

. N
B, = _;_c;(ez xV1)B:, BL= ;—QVLBZ- (14.68)

TM: Inserting in the second of Egs. (14.67) the expression for V | E, from
the first of Eqgs. (14.67), we obtain

_ pew

B_L = Tez X E_L. (1469)
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TE: Inserting similarly in Eqgs. (14.68) the expression of the equation for
V | B, into the other, we obtain

E, = -——‘;Ciez x By. (14.70)

We conclude: E,, B, # 0, because from Egs. (14.67) for TM

2

V.E,=LE,
ik
and from Eqgs. (14.68) for TE
2
V.B,=L1B,.
ik

Thus the components E, (TM), B, (TE) are not both zero; i.e. the TM and
TE waves are not transversal waves, they possess longitudinal components
FE, and B,.
We saw previously (see Egs. (14.30)), that E(z,y), B(z,y) satisfy the
equations
(VI+7)E(@,y) =0, (Vi++")B(z,y)=0 (14.71)

(i.e. for each of the three components of E and B). We have therefore in
particular for the z-components

TM:
(V2 +)E.(2,9) =0, E.|surface =0, (B, =0 everywhere), (14.72)

TE:

(Vi + 72)32(2’, y) =0, % =0, (E,=0everywhere). (14.73)

surface

Equations (14.72) and (14.73) together with their boundary conditions define
an eigenvalue problem for the determination of F, and B,; we observed
earlier that once both of these are known, one can derive from them the
transverse field components. For the solution of Egs. (14.72) and (14.73) one
requires precise information about the geometry of the wave guide.

14.6.2 Wave Guides with Rectangular Cross Section

As an example we consider a wave guide with rectangular cross section as
illustrated in Fig. 14.4. We show in particular, how the waves propagate
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through the wave guide by continuous reflection from the walls. We begin

with TM modes.

The hollow inside of the wave guide is bounded by the planes

These are the surfaces on which the boundary condition E,|gyrface = 0 has to
be imposed. In Eq. (14.72) for E, the variables z and y can be separated.

We therefore make for F,(z,y) the ansatz

E.(z,y) = f(z)a(y), (14.74)

so that \ \
o} 3} 9 B
(25 + 2+ ) 1@t =0,
or for  # 0,a and y # 0, b:
1 &fx), 1 P(y) , o
+42 =0,
f@ 0% " gly) oy

or 2 fe)

0“f(x 9

5g2 TP flz)=0 (14.75)
and )

9
8g(2y) + (7" = p)9(y) =0, (14.76)

Y

where p? = const.
y
A X
b a
7 - Z
O

Fig. 14.4 Wave guide with rectangular cross section.
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In order to solve the first equation, Eq. (14.75), we write
f(z) = Acos p(z + zg), A#0.

A and zg are the two integration constants. These are determined with the
help of the boundary conditions. Thus E, |surface = 0 implies

f(0)=0, f(a) =0,

so that
cosprg =0, cospla+z,) =0,
and hence
T 3r T 37
=4— +—,... =4— +— ...
PTo 2’:t27 ) P(a+-'1’50) 27 2a 3
and o
p=—, n=0,+1,£2,.... (14.77)
a

(If we had instead of p? — —p? and hence f o cosh p(z+zo) or sinh p(z+zo),
the boundary conditions could not be satisfied in a nontrivial way). We
conclude that

f(z) = Acos p(z + x0)
= A(cos px cos pzo —sin p xsin pxg)
N e’ S~~~

0 nm
a

nnx

= A'sin (T) n=0+1,+2,43,.... (14.78)

We now consider the second equation, Eq. (14.76). Proceeding as in the
above case we obtain

9(y) = Beos V42— p*(y +y0), B#0, (14.79)
and
E.|surface =0 implies g¢(0) =0, g(b) =0,
ie.
cos V72 — pPyo = 0 = cos V72 — p2(b+ yo)
= —sin /42 — p2bsin /2 — p2yo,
so that

w 3T
V=P =g, - 72 — p*b=mm,

?," 3
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and
g(y) = B'sin (m—;r"i> m=0,4+1,.... (14.80)
Summarising we find: TM modes have the eigensolutions of Eq. (14.72)
given by
E.(z,y) = C’sin (w) sin (_77%) (14.81a)
a
with
2_p_mem (14.81b
8 p = p2 p= a . . )
From this we obtain the eigenvalue relation
2,2 2.2
9 _ m-m nem _
Y= ’Yiv '7?\ - b2 + a? A= {m’n} (14'82)

The z- and y-components of E can now be obtained from E, with the help of
Eq. (14.20), or one can obtain these in some other way. Similar considerations
apply in the case of the components of B.

We saw that the following conditions hold at the boundary:

B{ =BP, B =E?,

n

i.e. for the fields from inside the wave guide

(n : B)surface = 0, (n X E)surfa,ce =0.

We thus obtain
(a) for planes ¢ = 0, a, n parallel and antiparallel to e;:

B,=0,E,=0=FE,, ie. E;#0;
(b) for planes y = 0,b, n parallel and antiparallel to e,:
By,=0,E,=0=EFE,, ie. E, #0.
We assume
E(z,y,2,t) = B(z,y)e**™Y,  B(z,y,z1t) = B(z,y)e'®=1.

The equations to be solved are (for p = o, € = €o, €opto = 1/¢?)

2
9 W 9 E(z,y) =0, _. 0B,
Yok th E,leuface = 0, =2 = 0.
(V-L + c? ) {B(Z),y) = 0: W Z| urface on surface

(14.83)
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As an example we consider F, (other components can be dealt with
similarly). We therefore select the equation

2
(V?L + t’—z - k2> E.(z,y) = 0. (14.84)

The variables z,y can be separated, i.e. we put

E, « (sin pz or cos pz){y—part),
so that

82 2 9

( - p? +—-——k )(y—part):O.
9y?

Since E, is nonzero for z = 0,a (see boundary conditions), we choose E,
cos px, p = mn/a. Since, however, F, has to vanish for y = 0, b (see boundary
conditions), we choose for the y-part

sin<-3”b—”>, n=012...,

E, = acos (mmv) sin (%ﬂ) (14.85)
a

We obtain the same expression with Eq. (14.20) from E,. For E, to satisfy
Eq. (14.84), we must have

—(_Tr_ﬂ_;r3+n2772)+(_‘uj_k2_o

so that

a b2

For the wave E(z,y, z,t)  e** to propagate in the direction of z, we must
have k2 > 0, i.e. E must be periodic in z. This means

2 2 2.2 2.2
2 w (UO mem nem
k“>0: c2 2 C2 s wyp==¢ —aT T (1486)

We see: w must be larger than some limiting frequency wg. Proceeding

similarly with all components E;, E,, E,, B, By, B, we obtain the following
expressions

E, = acos(™

Ey = Bsin(TE

= 7 sin(

B, = o'sin(

By — ﬁl cos(mﬂ'z

a
( mnzT

b gitke—wt), (14.87)
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We refer to these expressions again later.t
TM waves have everywhere B, = 0, i.e. 74 = 0. We deduce from
Eq. (14.87) that these waves are different from zero if (to be shown) m
0,n # 0. In order to see this, we recall: The expressions for E, B must satisfy
Maxwell’s equations. Hence we consider these:
(a) V-E =0 yields (apart from the factor sin(n7z/a)sin(nmy/b))
—a@- — B+ iky = 0; (14.88)
(b) V-B =0 yields
o254 ﬁ " 4 iky = 0; (14.89)
(¢) VXE=1iwB yieldsi

oiw = 'y% — kS,

Bliw = tka — 'ym
~iw = 'BT - a%; (14.90)

(d) pV x H= —iwepE yields

0 = twepo — 'y'% — Alik,
0 = iwepP + ika’ + 'y'm
,n7r

b

For TM waves v/ = 0. We show: For m = 0,n # 0 the entire field is zero.
From (b) we have

0 = dwepy — ﬁ ™ ta (14.91)

mm nm
o —+p5'— =0.
a

b
For m = 0,n # 0 — @’ = 0. It then follows from (14.91), since v = 0,3 =
0 - a =0. Then E;, = 0 (since « = 0), By, E,,B; = 0 (since m = 0),
B, = 0 (since § = 0), B, = 0 (since 4’ = 0). Hence the entire field = 0 (can

S(2 2, e (0,
oy Oz dy Oz

so that according to Eq. (14.87), ¥ o sin...sin... and IT oc cos...cos.
{Observe that for m = 1,7 = 0 one obtains o’ = f,'y = .'9" . These expressions will be
used in Example 14.2.

tLater we write
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also be obtained faster from Eq. (14.69)). Thus there is only one limiting
frequency wqp which is such, that TM waves are possible only if

2 g2

w>wip, Wil =¢ ;2— -+ ﬁ- (1492)

TE waves have everywhere E, = 0, i.e. v = 0. In this case a solution
exists also in the case when either m is zero or n is zero. The lowest limiting
frequency for @ > b,m = 1,n = 0 is (for m = 0,n = 0, according to (b)
7' =0, implies E; = 0, E, = 0, hence no field):

w1p = Cz < Wi1- (1493)
a
With this the fundamental wave is given by

E,=0,E =0 E, = Gsin Eei(kz—wt) — E ei(kz-}—%z——-wt) _ ei(kz—%z—wt)
’ T a 21 ’

which is a superposition of two waves with k, = 7/a.
Previously we had defined a plane wave by the expression

keT=wl)  for k.r — wt = const.

The wave vector k is perpendicular to the plane with constant phase and
points in the direction of propagation of the wave. The equations

y =0, kz:&:zm—wt:const.=a
a

describe wave-fronts of plane waves. The gradients of the wave-fronts are
therefore, see Fig. 14.5, according to the waves of these wave-fronts and at
t=0,ie.

_a_ 7z
TET Ak
given by the derivative
dz T
Pl DA Ftan g

as indicated in Fig. 14.5. One should note here the angles € of both wave-
fronts with respect to the z-axis, and the angles |7/2 — €| with respect to the
z-axis. One wave-front can be looked at as the reflection of the other at the
wall of the wave guide. The direction of propagation (i.e. of the normal to
the wave front) is in both cases given by

k
cose = = o/ =+ 7r/a

V(a/k)? + (aa/m)?  \/(rja)? + k2
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z
J z=o/k + w/k
wave-front ,’/
€ - ’propagat‘ibn,\
7 = o/k - ’ E: €
.~ E|E propagation”
. 9'7 o® | teno-wak
—o.a/n / o) - a X
aa/n
tan(t - 0) /
=-tan 6 wave—front
= '—TC/ak ~_
walls of —
wave guide

Fig. 14.5 Reflection at the walls of the wave guide.

However

2 m2r2 n2gr2

@ TTE

w 2
a =k
In the case of the fundamental TE wave with m = 1,n = 0, we have

2 2 2 2

w_2 71'_2 w10 2_7!'271'_&)10
R E R W= e o=
or
ke = \/w? — w2 (14.94)
It follows that
w
cose=TF 10/¢ — 410
w/c w

(Later we shall need 1 — cos? e = 1 — (w19/w)?). This means

w10

1 Ty
etkz232=wt)  we have  cose = F—.
w

for
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We see therefore: We can imagine the field E as arising from a continuous
reflection of two superposed plane waves at the walls z = 0,a which are
incident on the walls at the angle ¢, one wave permitting interpretation as
the reflection of the other (with the correct phase difference). We note that
at the critical frequency wjgp we have k = 0. In this case cose = +1, i.e.
e=0,&m, 4+27,....

In our further exploration of wave guides with rectangular cross section
we restrict ourselves to some general remarks.

I
|
|
t
t
)
]
'
[
]
)
|
|
i
|
'
‘
¢
'
[
|
|
L

O ®, Wy 4 O
Fig. 14.6 At a given frequency w only modes with eigenfrequency
wy < w are transmitted.

We let the eigenvalues of the eigenvalue problem of E,, or B, be

2=4%>0, A=12,....

2

Since 2 = pew? — k2, it follows that 7/% = pew? — k2, or
2
K = ,ue(wg - b)
[L€
With )
22
L€
we have
k= \/uey/w? ~ Wi (14.95)

In order for the waves to propagate inthe wave guide proportional to e?(kz—wt)
k must be real, i.e. w? > wg\. Thus wy, is a critical or limiting frequency. This
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is indicated in Fig. 14.6. This means that if wy < w, then Ay > A, i.e. the
wavelength must be less than the appropriate Aq, if it is to propagate in the
wave guide.

14.6.3 Wave Guides with Circular Cross Section

As another example we consider a wave guide with a circular cross section
of radius p = a, as illustrated in Fig. 14.7, and made of ideal conductor
material.

Fig. 14.7 Wave guide with circular cross section.

The boundary condition on E, is E,| = 0 for p = a, the angle ¢ being
arbitrary. In planar polar coordinates Eq. (14.72) is

2 16 18
St i e L(p, ) = 0. 14.96
(2224 S +7°) Belor) (14.96)
We write
E.(p,¥) = 9(p)h(¥),
so that
1 (329(p) 139(p)> 1.1 &) 2y
gle)\ 0> p Op P2 h(p) O
The variables p and ¢ can be separated by setting
1 8%h(p) 2
— = - (14.97)
h(p) 0¢? :
. P9(p) . 109(p) :
9\p) 299 2B = 0. 14.98
5 o +(7 pg)g(p) (14.98)



14.6 TM and TE Waves in Wave Guides 315

The solution of the first equation is
h(p) = eT#¥, 1 = const.

Clearly we must demand that E,(¢) = E,(¢ + 2m), i.e. h(p) = h(p + 2m),
and therefore we must have

e =1 je. p=m=0,+1,+2,....

The second equation is then

2 m?
e G

The equation

27 (x x m?
o), 1026) (1_x_2)z(z)=o (14.99)

is the differential equation of the cylinder functions Jp,(z), Y (z), so that
the general solution is

9(p) = AJm(7p) + BYm(7p).
The solution Y,(z) is given by
Yi(z) = %Jm(a:) In(e“2/2) + O(z), C = Euler constant,
the Bessel function J,,(z) by
m oo iz \2l
The field E,(z,y) or E,(p, ) must be finite for p — 0. Since Y;,,(yp) becomes
infinite for p — 0, we are compelled to impose the finiteness condition
B=0, m>0.

We thus obtain for the TM modes

E.(p,¢) = AJm(yp)e™. (14.100)
The boundary condition E, = 0 for p = a implies the eigenvalue equation

Jm(ya) = 0.
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This is a transcendental equation with infinitely many roots. For the s-th
positive root ya with s > m, an expansion is given in books on Special
Functions, i.e.

p—1  4(p=1)(Tp - 31)
86 3(88)°

Yo~ B - +0(1/8°),

where
1 1 2
B = (3+§m—§)7r, 1 =4m*.
In order to understand the reflection of the wave at the walls, we can argue in
a way analogous to our treatment of the previous case (cf. after Eq. (14.93)),
where we expressed the trigonometric function in terms of exponentials. This
means in the present case, we have to re-express the Bessel function J,,
in terms of Hankel functions HM H®  je. we have to use the following

formulae from books on Special Functions

In(R) = 3[R + HO ()

HY(R) = \/%eim"“’?—%’ [1 +0(]%)},
O)(R) = 1| 2emilR-mm~1 1
H,/(R) ~e 2 71 [l-i—O(R)],

for R # 0, i.e. away from the axis of the wave guide. We do not enter into
further details.

with

14.7 Alternative Treatment using Scalar and
Vector Potentials

Our first step is to search for equations for EE, B in terms of the scalar poten-
tial ¢ and the vector potential A. Again we assume that the interior of the
wave guide is filled with some homogeneous material with electromagnetic
constants €, u (e.g. those of the vacuum). Then inside the wave guide the
following equations apply

0B oD

V xE 5 VxH=—" =

B=uH, D=¢E, V-E=0, V.-B=0.
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But, we also have .
E=-A-V¢,

and
VxB=Vx(VxA)=V(V-A)-V3A

and '
V x B =uV x H = pueE.

Hence we can write
1k = V(V - A) — V2A = pe[-A — V). (14.101)

Now that we are using the vector potential A, we still have the freedom to
choose some gauge fizing condition. We choose again (as in our treatment of
the Liénard-Wiechert potentials) the Lorentz gauge, i.e. we set

VA= —ped.
Then
2 a A=0

With the ansatz A o e™™! (as above for E, H) the following equation results

(V2 + pew?)A = 0. (14.102)
Hence from Eq. (14.101):
—ipewE = V(V - A) + pew’A (14.103)
with
B=pH=V xA. (14.104)

Equations (14.103) and (14.104) show: E,B can be derived from A, which
is a solution of Eq. (14.102).

We consider now the TM and TE cases separately.
(a) TM: B, = 0 everywhere.

We set
A =(0,0,¥).

_(ov _ov
“\ oy’ oz’

Then

B=VxA-=

S Yo d
Oglmﬁm
e Yo P
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and from Eq. (14.103),

—ipewE =V (%E) + pew?(0,0,7),
z

ie.

oL\ S L G A
—ipewE = 2y ).
thew (8x3z’ Oydz’ 822 +pew \Il)

However, we still have the equation V - E = 0, i.e. from Eq. (14.103)

LG T s SR A N
92\ 022 " 92 " a2 THW T )T

and this is satisfied in view of Eq. (14.102), for A = (0,0, V), i.e.
V20 4 pew?¥ = 0. (14.105)

All fields can now be derived from the one scalar function ¥, which is a solu-
tion of this equation. The function ¥ is frequently called “stream function”.
The associated boundary condition is, as we saw,

0B,

7

Ezlsurface =0 (also = 0, since BZ — 0),

surface

i.e. on the surface Fiang = 0. For the rectangular wave guide we have (see
above)
. [(nmx\ . (mnm ‘ .
¥ « sin ( ) sin ( 5 y)e’kze_""t.
a

(b) TE: E, = 0 everywhere.

The relevant Maxwell equations are symmetric under the interchange

E - H with —wp & we,
i.e. € «» —u. Thus in this case we have a scalar potential II with

V2 + pew?Il = 0, (14.106)

ol oll
= (a—yé“°>

oo (2O 9l 91
ppewt = 0z0z’ Oydz’ Oz2

where this time

and

+ uerH) .
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Again all fields can be derived from the one scalar function II which is a
solution of the above equation with the boundary condition

0B,
on

For the rectangular wave guide this means

nwx m L
IT o cos (—) cos (—bq>e””e wt,
a

14.8 Wave Velocities

=0 and E,=0 everywhere.
surface

We return to our considerations of rectangular wave guides. The wave or
phase velocity of the TE fundamental mode with m = 1,n = 0 is (cf.
Eq. (14.94) and thereafter)

w wce C
v = — = =
TR T V=i V1 (wio/w)?
=% s (14.107)

V1—cosle sine
The wavelength is A = 27c/w.
Next we consider the phase velocity in the general case, this means for

2.2 2.2 2 2
_ mem new . w9 Wwh
W10 —WwWg ==¢ T + b_z, 1.e. -‘07 = k + c—2 (14108)
In this general case the phase velocity is
w w
Uphase =73 = ¢ > c.

kT

Thus the phase velocity is always larger than the velocity of light! In fact it
becomes infinite at the critical frequency wg.

The velocity of energy transport is here in the case without attenuation,
i.e. without loss of energy, the so-called group velocity. This group velocity
vy 15 defined by

_dw _d [ o kc? :CV‘UQ‘WO
Vg k?c? + wg <ec  (14.109)
dk dk A /kQCQ -+ wg w

We see that the group velocity of the wave in the wave guide is always less
than the velocity of light and vanishes at the critical frequency. Finally we
observe that

UphaseVg = C2. (14.110)

This is again a relation which is of wider generality than our derivation here.
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14.9 Energy Transport in Wave Guides

14.9.1 The Complex Poynting Vector

In our earlier treatment of the Poynting vector we always assumed real quan-
tities. We now wish to allow for complex fields, and complex ¢, .

For the calculation of the transport of energy in wave guides we consider
as a first step time averaged products of real vectors, which result from com-
plex vectors and lead to the definition of the complex Poynting vector. This
complex Poynting vector takes into account loss of energy due to complex
¢ and pu. Consider the real product,’ in which we again separate the time
dependence with the factor e™*?:

i@1) Bz, ) |
= Rlj(z)e""] - R[B(z)e!
= SH@)e 45 ()] J[B()e™ + B (@)e™]

1) B@)e 2 +§*(z) - B (@) + j(z) - B*(2) +§"(a) - B(a)
= %éR[j(x) ‘E(z)e™ % 4 j*(z) - E(z)]. (14.111)

The time average of this is (averaged over one oscillation period T = 27 /w)

T T
% /0 i(@,8) - Bz, t)dt = % /0 dt%é}e[j(x)-E(x)e—2iwt+j*(x)-E(x)]

= SR @) B+ 3R{ie) B [ e ar).
However

1 (7 —2iwt g, _ 1 —iwtyt=2
T/O € dt = —inT[e Jo =0
Therefore
1 (T, Lo
7 [ i@t B = 3R @) B
0

Next we consider this expression integrated over a spatial volume V/, i.e.

T
/V dV% /0 §(2,1) - Bz, £)dt = /V dV%éR[j*(m).E(x)]

$The Ohmic power is de% foTj - Edt where jdV = Ids = (dg/dt)ds.
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1
- / 4V RV x H'(¢) - D" (z)} - B(a)].
14
In this foregoing step we replaced j by the Maxwell equation

0 ‘
VxH=j+ ~£ with D(z,t) = e 'D(x),

and to go to the next line we use

div( u x_v )=v-curlu—u-curly,
| N’
E H*

so that we obtain
T
/Vdv%/o i(@,1) - Bz, t)dt = /VdV%éR[{—V (B(z) x H*())
+ H'(2) - (V x B(z))} — iwD" () - E(z)).

Here we use the Maxwell equation

0B(z,t)
ot

V x E(z,t) = — = iwB(z,t), V x E(z) = iwB(x)

and obtain the expression

T
/Vdv%/o i(@,8) - Bz, t)dt = /VdV—;—&%[—V . (E(z) x H'(z))
—iw(D*(z) - E(z) — H* - B(z))].

One now defines the complex Poynting vector

S = %(E(m) « H* (2)) (14.112)

and the complex energy densities

wg = %E -D*(z), wy = %B(x) -H*(z). (14.113)

Hence we obtain

/VdV% /OTj(a:,t) CE(z, t)dt

:—%[/VdVV-S-}—iw/VdV(wE—WM)},
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or

T
/V dV—% /0 §(@,1) - Bz, t)dt = /V 4V R (x) - B(a)]

- _m[/F(V)s.dFHw/VdV(wE —wM)]. (14.114)

This result is to be compared with the expression we had earlier. The minus
sign in the second contribution originates from the appearance of j* (instead
of j) in the preceding line. In the case of lossless conductors (i.e. with no
damping) or dielectric media we have

B(z) = pH(z), D(z) =€E(x), €,p real,

and the energy densities wg,wps are real. In these cases we obtain

1 T
/ dV—/ j(z,t) - E(z, t)dt = —/ RS - ndF. (14.115)
v TJo . F(V)

~~

Ohmic power

The left side of the equation represents the work (averaged over one pe-
riod) done by the field E on the source current density j in the volume
V. The expression + [ RS - ndF represents the corresponding transport of
energy through the boundary surface to outside, so that — [ RS - ndF is
the corresponding flow into the volume V. In other words, the energy flow
— [ RS - ndF into the volume V, corresponds to the work done by the field
E on a corresponding current density in V. If ¢ and p are complex, there
are losses of energy which appear in the energy equivalence relation through
Rliw [ dV (wg — wm)].

14.9.2 Application of the Complex Poynting Vector

Our first considerations of energy transport assume that the wave guide
is made of ideal conductor material. The primary step is to evaluate the
complex Poynting vector for TM and TE waves. In the case of TM waves
we had

TLEW
,-)/2

B, =0 everywhere, B, = (e, x V1)E,,

E, = ;—];VLEZ, (14.116)
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with k% = pew?~7%,9% — ¥2 = pew?. With this, we obtain (E(z) := E(z,y))

28 = E(z) x H*(2)
= (EL(z), Ez(z)e.) x (H](2),0)
= (Ex(z)e. x H] (z), EL(z) x H(z))
= (QSJ_,QSzez),

where

28| = E,(a)e, x H (z) M2 -

1EW

= E,(z)——=V | E,.
()7 1

This contribution is, in general, purely imaginary, i.e. when €,v2, E, are real.
The real part of S yields — as we have seen — the flow of energy averaged
over one period of oscillation; in general S therefore does not contribute to
this.

We restrict ourselves in the first place to wave guides made of perfect con-
ductor material and calculate the flow of energy in the longitudinal direction,
i.e. along the axis of the wave guide. In this case

| k
95,e, = B, () x H (z) 2" E;’ (VLE,) x (e, x V1)E?

ewk

—(VLE.) (VLE,)"e,. (14.117)

The flow of energy through the cross section A of the wave guide is therefore

ewk

/ See.dF =R / (VLE.) - (VL E.)"dF. (14.118)

In Chapter 3 we used two Green’s theorems of which the first was
[ #vR 0+ (99)- (Vo)av = § o(vv) - d

Reducing the space dimension by one and making the replacement ¢ — ¢*
we obtain¥

/ 6"V39 + (V18)* - (VL )ldF = 7{ (V1) -

9TAn analogous reduction of the space dimension by one can also be applied for instance to

Gauss’ divergence theorem, and yields [ V - AdF = fpath A . dl
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Hence

k
/szez.dF=E“’—4[]§ E: (VLEZ)-dl—/E;‘ViEzdF], (14.119)
A 27 L o=~ A

where the path is to be taken along the surface. In view of the boundary
condition E,|syface = O the first integral vanishes. The second integral can
be rewritten with the help of Eq. (14.31), i.e

(Vi +7%)E.(z,y) =0,
so that the energy transmitted by the wave guide per unit time is the power
§R/ S,e, - dF = &ee“’k / E:(z,y)E.(z,y)dF. (14.120)
The integral on the right is a normalisation integral of E,. Since, as we saw,

k= /peyf/w? — w3, 4% =19}=pew?, (14.121)

it follows that

/S’e dF 1\/?(“’)2 1 W’Q\/E*( VE.(z,y)dF.  (14.122)
z€z = T4/ —\— - — 2\ L 2T, . .
A 2V powy w? Ja Y Y

For TE waves one obtains an analogous expression; in this case, however,
the boundary condition which enters is 0B, /9n|surface = O-

14.9.3 Attenuation of Wave Guides (o # 0)

Our next step is to consider the attenuation of wave guides, i.e. the loss
of energy along the wave guide when the walls are made of a metal with
finite conductivity. In the case of finite conductivity we observed earlier, the
surface current density K does not exist. However, we then have the current
density j in the non-ideal conductor, and we can define an effective surface
current density Kqg by

Ka = [ i()dp, (14.123)

where p is the depth of the current j(p) below the surface. We derived
earlier the following expression for the Ohmic power of a conductor with
conductivity o:

L= /j-EdV. (14.124)
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Averaging this over one period of oscillation for real e and p of the interior of
the wave guide, and independent of the frequency, we obtain with (14.112)

(L) = —/ RS - ndF = —l/ﬂ?n -E x H*dF, (14.125)
F(V) 2
so that 4Ly )
ok St . *1. 1
= SR B x H'] (14.126)

For E we have to substitute here the field beyond the (hollow) interior of
the wave guide. We calculate this as follows. Neglecting the displacement
current we obtain from Maxwell’s two “curl” equations (for inside the metal)
0B
H=j E=—-——
V X j, Vx 5
with _
EHxe ™, B=uH, j=ocE
the relations i )
E=-VxH, H=-—VxE (14.127)
o

Tpw

Inserting one equation into the other we obtain

1
H=—Vx(VxH)=——[V (V- H) -V*H],
wuo WWUT ™ e’
0
so that
V2H + iwpoH = 0. (14.128)

We let —pn be the coordinate pointing into the conductor or wall, and we
make the assumption that the variation of H in the plane perpendicular to
n is so slow that we have in good approximation

2
V2~ 557 (assumption).

We then have for the field inside the conductor
2
5;51‘1 + iw,uaH =0
and (with a = const. and Vi = (1 +1)/v/2)
H(I, v, 2, t) — Hoe—iwteikze:l:i\/m(p—a)
— Hoe—iwteikze“(ﬁ’—a)/ﬂoei(P—a)/Po’ (14‘129)
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where Hy = const. and

V2
= 4.130
Po N (14.130)
is the skin depth. For E we have to the same approximation
1
E= %V xHx~-V,xH | e, for TM. (14.131)
g

We note that H, = Hoe ™% is the tangential field at (just outside) the
surface of the conductor with p = a as indicated in Fig. 14.8. Now,

0 0

— =e,—.

dp ~ "op

Here n is the unit vector pointing vertically out of the conductor. Then in
the conductor (and just outside for p = a)

V,=-n

1 . —1
E =-—(nxH) (i=1) x
“ o
|| ez for TM po

(14.132)

4

and

NI

p:

/
€2 into paper

Fig. 14.8 The directions of vectors.

K= [ ddo= [ oBdp== [ Znxmii-1dp

where in the last step one integrates over the two exponentials in Eq. (14.129)
with respect to p leaving exponentials and hence again H, so that with

po = a,

Keg = (n x Hy), H;=Hpe ™ H,=H(p=a,z1t). (14.133)
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One may observe that this relation has the same form as that for the surface
current density K in the case of conductivity o = co. We now have

|Keﬂ‘|2 =(nx Hy) - (nx Hy) =n- [H; x (n x H)]
=n-[(H; - H})n — (H; - n)H{]
~ |Ht|2,
since from 1
H;=—VxE;
wh
in the conductor, it follows that

Ht-n:,i{<—ng—) xEt}-n-:O.
iwp dp

We now calculate (L) by inserting in Eq. (14.126) the expression (14.132)

for E in the conductor. We have
d(L) 1 «
Sl = —SRin - (B < HY),
and so

d(L) (14.132) I
Do 20p —R[n{(n x H) x H} (i - 1)]

'

_n.{(H*.H)‘;—(H*-n)H}
— Lm[_(i ~-DHA = —1—|H|2
 20pp a

)

20p0

and hence oLy )
—_ ————|H|2

dF' — 20p
Here, as indicated in Fig. 14.9, dF = dzdl, where dl is an element of the path
around the surface of the wave guide, so that (with the minus sign indicating
that the expression represents a rate of loss)

2
= 20/)0?{ |2l

= H,|%d]
20[’0%' od

= Keg|?d
2(7/)l et “dl

_ 2
_ ?{ gt H iz . (14.135)
ade

(14.134)
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This is the loss of energy per unit time and per unit length of the wave guide
as a consequence of the finite conductivity ¢ of its walls. For ¢ — oo the
right hand side of the attenuation rate (14.135) vanishes, as expected.

N ’ \

‘\ // ’ \
\ ’/ dz I/ C \‘
Pl ; z
o
AY

Fig. 14.9 The surface element dF = dzdl.

The integral is a line integral in the surface around the wave guide as indi-
cated in Fig. 14.9. The expression for d(L)/dz involves only the value of the
field H at the surface of the conductor.

We have seen earlier that the dispersion relation for conductors is

k? = pew? (1 + ii). (14.136)
WEe

We now have to distinguish between the material of the walls and that of
the dielectric inside the wave guide. The walls have a high conductivity so
that the skin depth is as small as possible and the wave guide is comparable
to one made of ideal conductor material. On the other hand one wants the
dielectric of the interior to have a conductivity as small as possible. Our
earlier investigation of the behaviour of the conductivity o was based on a
simple model consideration for the calculation of the frequency dependence
of 0. These considerations do not take into account for instance a possible
dependence on boundary conditions or on the geometry of the conductor. In
the following we shall argue that if o is finite and large, and (as we assume)
independent of the frequency, the propagation vector k of the electromagnetic
wave develops an imaginary part due to the fact that — in this case of finite
conductivity o — the resistivity is finite so that damping is present and hence
attenuation takes place. Thus we write

k= Vk? = kg + ik;

in the case of penetration into the walls of the wave guide. The propagation
of the fields E,H  e*** is therefore damped. The field H enters the power
(L) quadratically. Hence we can write

(L) = e~ 1%(L),
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)
1.e.
kr = —ﬁ%’;—). (14.137)

The quantity kj is the so-called attenuation constant. The intention is, of
course, to achieve ky as small as possible for an optimal use of the wave guide.
If the interior of the wave guide is filled with a dielectric which has a small
conductivity og, this naturally also contributes to some damping, which we
can take into account in the above dispersion relation. In this case we have
inside the wave guide (“combining” (14.136) and k2 = pew?(1 — w}/w?))
2 2 w3

k* = pew [1 - ;—2] (1 + O(o0)). (14.138)
In the next section we investigate an evaluation of the attenuation constant,
and how this can be minimised for an optimal use of the wave guide.

14.9.4 Optimal Use of a Wave Guide

Our next objective is a model evaluation of kr given by Eq. (14.137) for
the case of a wave guide with circular cross section and filled with an ideal
dielectric (o9 = 0 in Eq. (14.138)). This requires the calculation of d(L)/dz.
Assuming the conductivity of the walls of the wave guide is close to that of
a perfect conductor, we can take (14.120) for the power (L). As an example
we consider the case of TM waves. In this case we have (see Eqgs. (14.69)
and (14.67))

,LI,H_]_:B_]_=%“—)(QZXV_L)EZ, Bz=0.

Here E, is to be obtained as solution of the equation
(Vi +7")E (z,y) =0

with boundary condition E,|surface = O(1/+/7) (see Eq. (14.22)).I Thus our
calculations will be concerned with E, and its derivatives. In the case of the
wave guide with circular cross section of radius a we had (cf. Eq. (14.100))

E.(p,¢) = AJm(¥p)e™*,  E.|surtace X Jin(va) = 0.

IThe condition Et(l) — E§2) = 0 implies when o # oo, Et(l) = 0O(1/+/o). For very good
conductors we can replace the right side by zero. For inclusion of such corrections see Jackson [3],
Sec. 8.6, Perturbation of Boundary Conditions.
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Hence we have in this case (TM: with H, = 0)

—-nxH,; = —nx “—L;(ez x V,)E,
v
1€w
= ——’y—2ez(n -V.E,). (14.139)
Here
17} 10
VJ_—epa +e¢pago
and
OF,
-nxH, = Ze;)ez—,
¢ " Op

which is a vector along e, derived from E, (recall we have H, = 0 here). We
can call this H® and insert this into Eq. (14.135) to obtain the loss of power
which this gives rise to along the wave guide. Thus

d(L) (14.135) 1 [ew\?|0E,|? 4
i o () [ Lo
_ a(ew)? | OF, |
= et | O |,
_ _Wa(ew)zlAl2<8Jm(z))2
opoy? 0z ) 1era
= A (14.140)

For the power (L) we derived the expression given by Eq. (14.120). We use
this here with dF' = pdpdp for the calculation of the main part of power
arising from F,:
L=*% / S.e, - dF
k
R / E.*(z,y)E,(z,y)dF
3?2 5 / pdpdpE."(p, ) E.(p, )

= 7%//: pdp| Al [T (v0))?

= (L) = B, (14.141)
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where (see Eq. (14.138)) Rk ~ ,/p€\/w? — w?, if we neglect a (generally
small) boundary-dependent contribution to k. We obtain therefore

1 4Ly 14
2(L)y dz ~— 2B
_ lﬂ'a(fw)z '72 ( ( )/az)z =yq
2 opoy? mewRk [ pdplJm(vp)]?
_awa (0In(2)/09)
20p0Rk 5 pdp[Jm(vp)]?

In order to keep the attenuation, i.e. the loss of energy, as small as pos-
sible, one wants to minimise this expression or, put differently, one wants
to determine those modes for which k; is minimal. We are therefore inter-
ested in the behaviour of this expression as a function of the frequency w
(72 = pew? — k?). Thus we obtain with the substitution of

wx
PO = Porxy/ —
w

(since the skin depth pg x 1/y/w, as we saw in Eq. (14.130)) and

(14.142)

Y=Y A= {m’n}v

the expression

€a w 1
m:QWm¢?¢E%§?gﬂwx (14.143)
where
(0Jn(2)/02)3—ya
Jn) = [fo pdp[Jm(vp))? } ' (14.144)
Thus

2\{0: w\/: =f(1) [ \/sz(v =0

The best use is made of the wave guide if it is used for those modes whose
eigenfrequencies are closest to the frequency at the minimum of k;. The
frequency at the minimum of the curve in Fig. 14.10 is easily determined by
equating the derivative of k; to zero,

£y -

-4

w
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™

kI,min ------

W/,

0 1 (o, =A3
Fig. 14.10 The behaviour of k; for TM modes.

2 2
w w w
(1——;‘)=w( —3‘), — =+3.
w w WX

The behaviour of the attenuation constant near this minimum is shown in
Fig. 14.10.

l.e.

14.10  Resonators (Closed Wave Guides)

In the case of resonators or cavities we have additional boundary conditions
at values of z, where the two ends of the resonator have their closures, and
the boundary conditions there supply a third integer (recall that our con-
siderations in Sec. 14.6 with the enforcement of boundary conditions, led to
wave guide modes characterised by two integers). All these integers arise
in analogy to quantum numbers in quantum mechanics, there each corre-
sponding to quantisation of one degree of freedom. Here, of course, we are
dealing with macroscopic physics, and the analogy is restricted to that of the
mathematical eigenvalue problem. We assume that the cylindrical resonator
is closed at both ends by plates made of the same conductor material as the
body of the resonator. The electromagnetic waves can now also be reflected
at the two ends.

We begin with TM modes, with time-dependence e~** (as before). In
this case we have B, = 0 (everywhere), and we make the ansatz

E, = ¢(z,y)(Asin kz + Bcoskz)e *“'e,. (14.145)

As before we obtain the transverse components from the relations derived
carlier, i.e. Eqs. (14.20) and (14.21), and hence here, with y% = euw? — k2,
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from

E = %Vﬂb(m,y)(A cos kz — Bsinkz)e™™",
Y

B, = %i,uewez x V 1 9(z,y)(Asinkz + Bcoskz)e™™*. (14.146)
Y

In view of the general boundary condition
Et(l) _ Et(z)

we have at the ends: Inside E| = 0 for ideal conductors.

)
A

Fig. 14.11 The resonator.

Hence we have, with the geometry of the resonator as shown in Fig. 14.11,

and hence

A=0 and sinkd =0, ie. k:%r—,l=0,:i:1,:t2,....

With this we have for the electric field
I .
E, = Bcos (%)zﬁ(m,y)e‘lmez,

Im . [lnz —iw
E, = _Bd_'yQ sin (—d—) Vi(z,y)e ™, (14.147a)
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and for the magnetic field
B, = 0,
. ] .
B, = B“j;“’ cos <ﬂ>ez X V1 9(z,y)e . (14.147b)

d

For TE modes we have E, = 0 (everywhere), and we make the ansatz
B, = ¥(z,y)(Asinkz + Bcoskz)e,e ™. (14.148)

At the ends B,, is continuous (this condition B,(,l) = B,(,2) is again of general
validity), but outside the field is zero (as a consequence of the skin effect the
fields do not penetrate into the metal except at extremely high frequencies).
Hence we have B,(z = 0) = 0,B,(2 = d) = 0 implying

_m
==
We thus obtain for the electric field with Eq. (14.20)

B=0, k 1=0,+1,42,....

E,=0,
E| = ——A% sin (ZWTZ) e, x V_¢(z,y)e ™1, (14.149a)
Y

and for the magnetic field with Eq. (14.21)
l .
B, = AY(z,y)sin (%) e e,

I .
B, = 4" cos (v Lz, y)e . (14.149b)
dy? d

Since E, (TM) and B, (TE) satisfy the equation

E.
(A_L+72){B =0a

z

with boundary conditions E |surface = 0, (0B, /0n)|surface = 0, it follows, that
the scalar function ¥ (z,y) is in these cases solution of

(AL +7%)%(e,y) =0
with the boundary condition

oY
"l"surface =0 or (9_ =0,
n surface



14.10 Resonators (Closed Wave Guides) 335

where in both cases

2
72 = euw?® — k? = epw? — (%r) . (14.150)
The equation for 1 is
d? d? 9
— + — =0. 14.151
(55 + 507+ )oten) (14151)

We now choose a resonator of rectangular cross section as illustrated in
Fig. 14.12. The condition 9|syface = 0 implies that

e =0 onplanes z=0,q, y €[0,b], and
e 1y =0 onplanes y=0,b z € [0,a].

We choose the solution such that these conditions are satisfied, i.e.

1 « sin (_mm:) sin (n_wy)’
a b

o) a X

Fig. 14.12 Cross section of a rectangular resonator.

where m,n are integers. Inserting this into the equation for 1, we obtain

mnr\ 2 na\ 2
a b
9 I\ 2 mm\ 2 nm\?
EUW = E + T + T . (14152)

We infer from this relation that the eigenfrequencies w = wy,, can be
changed by changing the lengths a, b.
In the case of a cylindrical resonator with circular cross section of radius

R as illustrated in Fig. 14.13, the function ¢ = 1(p, ) is given by the two-
dimensional Laplace equation

or

% 10 1 82

(AL+)d(pp) =0, AL = 32 pop  Rogt (14.153)
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Using again the method of separation of variables and demanding, that

Y(p, ) = Y(p,p + 2mm),

we obtain .
¢(P,(P) :w(p)ezmcp, m=0,1,2,...

with o2 5 )
1 2 _Mm —
(5;§+;8_p+7 —;Q-)MP)—O,
which is the Bessel differential equation. We thus have
imeyp

Y(p, p) < IJm(vp)e

and with Eq. (14.147a):
. ! ‘
TM : E, = BJ,,(yp)e"™? cos (%) e e,

The boundary condition

P(vp)lp=r =0 implies Jn(yR)=0.

(14.154)

(14.155)

(14.156)

We let Z,mn be the n-th zero # 0 (n =1,2,3,...) of J,(z). Then YR = s,

i.e.
xmn

'VE'Ymn:T-

Fig. 14.13 The resonator with circular cross section.
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For w we obtain, since 2 = euw? — (Ir/d)?,
1 I 2 1i(z 2 N
2 2 mn
- = = — {2z — ) |. 14.157
N 6#% +(d>} ﬂi<13> +(d>} ( )
The lowest frequency is wy:
2 1 (7" (m=0,n=1,1 =0), where 2.4048
wpn = —| — m = n = = T ~ L. .
0 L R ) ) ) ) 01

We note, that wg is independent of d. We obtain therefore for the corre-
sponding TM mode:

24p\ _i TEwWq 24p\
E, = w B, = e, x V_1Ji wi
BJ ( R > €y, 1 731 Be, x 1 0( R e

In cylindrical coordinates

0 1 0
Vi=e,-—+—-e,—.
9 p P9y
Hence o4 5 04
p p
VLJO( 7 ) F Jo( R ),
so that

tLEw 0 2.4
BL = B<p = l’;OlOBa JO(’YO]P) e<p y (701 ~ _R—)

ez Xep
However (see Tables of Special Functions)

d 1
%Jm(x) = 5(

and J_p,(z) = (-1)™Jp(x), so that

Im-1(z) = Jm11(z))

d 1
= Jo(®) = 3(J1(@) ~ h(@)) =~ (@)
Hence cw
Bcp = —'L"u 3 OB’Y()lJl (fymp)e_“”tecp,
Y01
where

Y01 = /€0,
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and therefore
B<p = —i\//TEBJI('yOlp)e_“"tesa.
For TE modes we had Egs. (14.149a) and (14.149b). These yield in the
present case

. l ,
B, = AJp(Ymnp)e™ sin (fd—z) e~wt, (14.158)

The condition

0B, _ 0B, —0

on |,_.p Op|,_p
implies

0
90 JIm(Ymnp) =0.
P =R

We thus obtain the quantities 7,,, from the zeros of the derivative of the
Bessel function. For the lowest frequency** we need the lowest root; this is
(I # 0 from Eq. (14.158), so that B, # 0)

.]{ (:1:11) =0 with =; =1.841,

so that m = 1,n = 1. Since

1 I\ 2
9 _ 11 o tm
“ -6#[7 +(d>]

with yYmn = Tmn/R it follows that

d=2[(3) +(3)]

(l =1; B, =0 for [ = 0). We see that the fundamental frequency wiy; of
the TE mode can be changed by changing d, the height of the cylindrical
resonator (contrary to the fundamental frequency of the TM mode). Finally
from Eq. (14.149b) we have

B, = AJi(711p) sin (%Z_) e~ Wiete

(for the factor in ¢ see Eq. (14.155)). The resonator modes we investigated
here find application for instance in accelerator technology. 't

**The roots of J{(z) =0 are z = 3.8,7.0,10.1, ....

HGee e.g. L. Palumbo and V. G. Vaccaro, Wake field measurements, Frascati-Report LNF-
89/035(P)(1989). See also J. Slater, Microwave Electronics (D. Van Nostrand, 1950), L. C. Maier
and J. C. Slater, “Field Strength Measurements in Resonance Cavities”, J. Appl. Phys. 28 (1952)
68.
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14.11 Examples

Example 14.1: Vector potentials and wave guides

Define in the charge-free interior of a wave guide the electric vector potential G by E = V x G.
Similarly we have B = V x A. Find the wave equations of the vector potentials and sketch
qualitatively the moduli of TE and TM modes of the two-dimensional fields.

Solution: In the charge-free space (p = 0,j = 0) we can define an electric vector potential G by
E = V X G, so that V- E = 0. Maxwell’s curl equations are here

B oD
=—— VxB=p—.
VxE , X by
From these we deduce
_oA G
T a8’ =R

Moreover 5 5
Vx(VxG):—a(VxA), Vx(VxA):uea(VXG).

and with “curl curl = grad div — div grad ” we obtain

A oB el
V(V-G)-AG=—(VX —|=—-—F7—=—pe—3
(V-6 ( ™ ) ot - Hoa
and oG OE %A
V(V-A)-AA= V X — | = pe— = —pre——.
(V-A) “6( X6t> Heor = TH o2
We choose the gauge fixing conditions
V-A=0, V-G=0.
Then o2
G
-AG + “6W =0,
and a similar equation holds for A. TE modes are defined by E. = 0. With G = (0,0,II), it
follows that P
E=VxG=|—,-—,0]).
(3y Oz )

It may be noted that the potential G has in this case only a z-component (compare with B in
Sec. 8.4.). As an example we take, with m,n =0,1,..., as in Eq. (14.87),

mnx nwY 0, _: o1l nmw MAT . MY 0, _s
1T = cos cos —=etkzemiwt T — __ cos sin —= e*kze Wt
Oy b a b
oIl mmw mnz nwy ;
— = ——sin cos ——= gtkzg—iwt
oz a a

Lines of constant electric field strength are given by |E{? = const., i.e.

2 2
nmw MAT | o AT mm . 9 MTAT nmw
—_ cos? —= sin? nry +{ — sin? —— cos? oy = const.
b a b a a b

The curves given by this equation are ellipses in the (z, y)-plane, as one can see by selecting specific
modes. One can also see this simply by considering small values of  and y, so that the sine can
be approximated by its argument. Then the Cartesian equation of an ellipse is obtained, and
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TE modes TM modes
Bz, Gz Ez, Az

Fig. 14.14 TFE and TM modes.

since lines of different [E|? cannot cut, ellipses result also for other values of = and y. Analogous
considerations apply to TM modes. In their case B, = 0 and A = (0, 0, ) with

ovr ov
= (22, -2 o).
B (ay’ 6z’)

The curves are sketched schematically in Fig. 14.14.

Example 14.2: Induced charges and currents
Consider the fundamental TE mode of a rectangular wave guide and calculate all charges and
currents induced in its surfaces (the wave guide is made of ideal conductor material).

Solution: We have the equations (see summaries of formulae in Secs. 4.7 and 6.8)
(1). D,(ll) — D;z) = o, physical = ER(elE,(Il) - ezE,(f)) =0,

(2). nx (H® —HD) =K,

from which o and K are to be calculated (definition of surface current density K in Sec. 11.2).
In Sec. 14.6 we obtained the fundamental TE wave for m = 1 and n = 0. We have therefore (cf.
Eq. (14.87)):

L T (pp—
E=ey[3$m~a—e’(’” wit),

Since E || ey, it follows that (see Fig. 14.15 for explanation of subscripts) og = 0 = 09,09 = —0g.

Calculation of og: Analogous to the case of the parallel plate condenser we have D,(ll) = 0. Hence
the surface charge density on surface @ is (with € the dielectric constant of the inside of the wave
guide and the surface normal pointing in the direction of —ey)

op = W(—Dg)) = R(-)(—)eBsin zra—zei(kz_“’t) = ¢fsin %z— cos(kz — wt),
SO = g sin -2 cos(kz — wt).
€ a

For the field B we have (see (14.87) and (14.90) for m = 1,n = 0)

k
B=g —ex—sinﬁ+ez -

s T ;
cos — | ei(k= “’t),
w a aiw a
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and we have to evaluate
n x (H® —H®),

Since for the TE wave (cf. Eq. (14.70))

E,; =—%(ez x B1), with e B,

we have B, =0 for E| =0, i.e. outside of the wave guide B = 0, i.e. H(1) = 0. It remains to

y E=0
b ® 4

® E ®

A @ 2
z into paper
Fig. 14.15 Cross section through the rectangular wave guide.
calculate n x H for the respective surfaces as shown in Fig. 14.15 (therewith obtaining the surface

current densities K).
Surface @: n = ey, y =b.

1 k ,
K=nXH:%{—eyxﬁ[—ez-—sin—ﬂ—r+ez 7r cosE]e’(’”_“’t)}
n w a aiw a

k
= _8 [— sin = cos(kz — wt)e; + T ocos = sin(kz — wt)ex] .
ulw a aw a

Surface ®: n = ez, = a.

amw a

K=nxH= §R{-1—ex Xﬁ[—ezﬁsinﬂ+ez Ll COSE]e‘i(kz—ut)}
m w a

Tr=a

= s sin(kz — wt)ey.
#aw

Example 14.3: Determination of modes
Consider two parallel, infinitely extended, perfectly conducting walls in the planes y = 0,b, as
indicated in Fig. 14.16. The electric vector of the incident TE wave is polarised in the direction
of x, i.e

Eo = e; EJ exp[—i(wt — ko - r)]

with r = (0, y, z). Show that only waves with frequency

nme

=—— n=012,...
™" beos fo n e
are propagated between the planes, where 6 is the angle of incidence between ko and r.

Solution: According to the geometry depicted in Fig. 14.16 the vector ko is perpendicular to the
plane of equal phases ko - r = const. This means
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Fig. 14.16 Reflection between planes.

koycos( ko,y )+ kozcos( ko,z ) = const.,
——’ ——

ag=m—0g Bo=75 ~bo

—koy cos 8o + kozsinfp = const.,

so that
Eo = ezE(())e—iwteiko(—y cos 8g+z sin 00).

Since Eg has to satisfy the wave equation, and there is no propagation of the wave in z, we see
that its dispersion relation is

2
w .
== kz + k2 = k cos? 8o + k2 sin? 6p = k2.

In vacuum w = kpe. (Here we have total reflection since the wall is a perfect conductor with
o = 00, i.e. no radiation or energy penetrates into the wall). The E wave totally reflected from
the wall, can also be written with the help of Fig. 14.16 as

Eg - ezE(l)le—iwteiko (y cos 8g+z sin 8p) .

The continuity condition of the field E, i.e.

(tOtal Etang)lwall =0

(E,;(;[)lg = Et(:x)lg = 0 in the perfect conductor, see skin effect in Sec. 9.5) implies, as shown in
Sec. 11.4.2 (cf. Eq. (11.52)),

E{ = -E3, (E§=0).

Hence
EY = _enge—iuteikg (y cos 8g+2zsin fp) .
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The entire field E at (z,y, 2,t) is then:

ezE(())e—iwteikoz sin 6 [e~1k0y cos 8g _ ezkoy cos 00]

= —2iey EJe~"wtetk075in 60 gin(koy cos fp).

E=Eo +Ej

The boundary condition at the wall referred to above implies at y = 0, b:

sin(kobcosfg) =0, .. kobcosbp =nw, n=1,2,....
[

mode numbers
The dispersion relation is now seen to be

2
w .
C—2— = k% cos? g + kg sin? fg

2
= k(z) sin? 6o + (T—)

b
_ nr > 2
~ \ bcos /)

For wavelength A — Ag = 2w /ko we have

2mb cos fg 2bcos Og
Ao = =

nmw n

and frequency
nre

won = koc = .
™ bcos By

For a given angle of incidence 8y only waves with frequencies

o a=1,2,...

Wonp = ———, N
beosfg’

are propagated between the walls. In the text we considered cylindrical wave guides with modes
characterised by two integers, and closed resonators (or cavities) with modes characterised by three
integers. In the above case the waves are confined only in one dimension, and hence its modes are
characterised by only one integer.
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Chapter 15

Propagation of Waves in
Media

15.1 Introductory Remarks

In this chapter we introduce the concepts of signals and wave packets and
demonstrate the intricate connection between the analytic properties of the
Fourier transform of the wave packet (also called its spectral function) and
the limitation of its velocity by the velocity of light.

15.2 Dispersion Relation: Normal and Anomalous
Dispersion

In preceding chapters we derived and became familiar with the dispersion
relation of a conducting medium, i.e.

k% = wnp = pew? (1 + ii), (15.1)

which also defines the generalised dielectric constant 7 (one should note that
in general the relation is more complicated, in particular, as we saw in Chap-
ter 9, if the frequency dependence of the conductivity o is taken into account).
We arrived at the expression (15.1) by assuming

j =oE, H x e:Fiwte'ik-r’

together with the two Maxwell curl equations, and we obtained

K2H = pew? (1 + iﬂ)H.

Wwe

345
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The relation (15.1) is a general consequence if we assume that H does not
vanish anywhere in space. We now want to study the dispersion relations as
functions of the frequency w.

We had also defined previously the generalised refractive index

VAT

=p= —— € = l = — _°
Mm=p—¢%%,\MOO = T P (15.2)
so that " 5 "

The phase velocity vp and the group velocity vg defined previously for real
n(k) or n{w) are given by

_dw ¢ ck(dn(k)/dk)
n(k) [n(k)]?

_ _ ck(di(w)/dw)(dw/dk)
(w) [A(w))? '

Solving the latter for dw/dk we obtain

|
(@) ??‘

(15.4)

dw c
YOS Tk T ) + wldn(w)jdw) (15.5)

One says, there is no dispersion if di(w)/dw = 0.
We now distinguish between two cases:

(1). The case of normal dispersion defined by

(—1{;&@ >0, so that vg <vp <c¢, (w) > 1, (15.6)
w

(in general €/eg > 1), and
(2). The case of anomalous dispersion defined by

dn(w)

W

< 0, for which vg > vp, (15.7)

which would imply vg > c. This really means that the relation (15.5) then
breaks down (see below), i.e. one has to take the real part when 7 is complex!

The amplitude of a wave group moves (as one deduces from a superpo-
sition of plane waves) with the group velocity. Since the energy of a wave
is determined by its amplitude, this implies that the energy of the wave is
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transmitted with the group velocity. However, we shall see in the following
that no energy can be transported with a velocity > c. In the following we
consider frequency superpositions of waves with phases

§(w) = k(w)z — wt.
A stationary phase is given by §'(w) =0, i.e.

dk(w)x =0, or dw(k) _z

dw dk t

The ratio z/t is described as signal velocity. In the present case this is
equal to the group velocity. In general the group velocity of the dominant
frequency can be treated as the signal velocity and hence as the velocity of
the transport of energy. The Theory of Relativity teaches, that no physical
velocity can exceed the velocity of light ¢ (often cited as phenomenological
input of the Special Theory of Relativity, but could also be considered as a
consequence of the principle of relativity). In cases where

dw c

dk " n(k) fwldn(k)yjde) <

the signal velocity cannot be identified with dw/dk. The wave packet then
has a more complicated structure, so that the expansion about a stationary
phase is not possible. The aim of this expansion is to use the value kg, for
which §’(w) = 0 as a point around which w(k) is to be expanded:

w(k) = w(ko) + (k — ko)w'(ko) + -+ .
If n is complex, we equate

dw c
Y0 =Rk = V) T () /)
gce{E]‘Eﬁ(w) + w(dRn(w)/dw)} + {SA(w) + w(dSn(w)/dw)}
. {R(w) + w(dRn(w)/dw)}
{RA(w) + w(dRi(w)/dw)}? + {SA(w) + w(dS7(w)/dw)}?
<ec (15.8)

Since absorption effects are related to imaginary parts, we see that the va-
lidity of the relation has its explanation in the damping effects resulting
from these imaginary parts. In the following we investigate the behaviour
of n(w) in more detail. At the end of the chapter we shall see that when
dRn(w)/dw < 0, the imaginary part S7n(w) is particularly large.
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15.3 Absorption, Causality and Analyticity

We return to the consideration of a plane wave which is vertically incident
on a dispersive medium as indicated in Fig. 15.1. A superposition of such
waves represents a wave train or wave packet. We write this superposition
in vacuum (n = 1)

x
uy(z,t) = / A(w)e*z=) gy, (15.9)
—00

(we shall see later that the Fourier representation of a real quantity depends

only on positive frequencies).
)
x>0 /
/ (o)

AL/

@)

vacuum
(n=1)

x<0

Fig. 15.1 Direction of a vertically incident wave.

As before we deduce from Maxwell’s curl equations:

e In vacuum (z < 0) we have k = w/c.

e In the medium (z > 0) we have k(w) = wi(w)/c.
At the boundary plane but on the side of the vacuum

wy(0,4) = / A(w)e™tdw, ie. Aw)= % / uy (0, £)e“dt. (15.10)

Every single wave is subjected to absorption and reflection at the interface
as discussed in Chapter 11. The transmission coefficient defined there for

Eg L plane of incidence, i.e.

2 cos
cosa + N cos 3’

is in the present case of a wave vertically incident

2

= T3a@) (1= po), (15.11)

T
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and hence for the wave packet in the dispersive medium (z > 0) we have
* 2 i(k(w)z—wt)
= — dw. 15.12
u(z,t) /_oo (1 T ﬁ(w))A(w)e w ( )

For a further consideration of this integral we require information about the

analytical properties of A(w) and k(w).

15.3.1 Properties of A(w)

We consider a wave packet u(z,t) having a bell-shaped form, and starting
from the origin z = 0, as indicated in Fig. 15.2. Then u(0,t) has approxi-

mately the shape of

tm
w(0,t) ~ "7’?2—!9(15)6‘“, €>0 (15.13)

(m integral and larger than zero).

u(o,t)

g -t

,
‘ e
’ /
.
P
P

Fig. 15.2 The wave packet.

Thus the wave packet appears at the point x = 0 at time £ = 0, grows to a
maximum strength and ultimately disappears from z = 0. We have added
the factor 6(t), in order to avoid the sector with e~¢(t "egative) in view of the
integration we have to perform. Of course, one could achieve this also for

example with
[tmeet, € >0

or other means. On the other hand, one can argue that (15.13) has a well

defined boundary with z = 0 at ¢t = 0.
The property u(0,t) = 0 for ¢t < 0 is described as a causality condition.

We then obtain, from (15.12) with z = 0 and Fourier transformation, the
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following relation

2 1 > twt
———Aw) = %/ u(0,t)e* dt

1+ 7(w) oo
— ii /oo tme—(e—iw)tdt
2rm! Jy
_la_m
— 2 m! (e — dw)mt]
ai™t1
where we used the integral
o0
(z—11=TI(z) = / e 't " 1dt. (15.15)
0
Hence 1 )
5(1+ ﬁ(w in vacuum 1
A 2 = —_—. 15.16
(W) o« (w + 1e)m+1 (w+ie)m+l ( )

It is a matter of experience that the transmission of light through trans-
parent media (i.e. those for which o = 0) does not lead to resonance effects.
We saw earlier that in the case of such media f(w) is real. Hence in these
cases 1(w) is an analytic function without poles. However, if there are reso-
nance effects, 7(w) will not be everywhere an analytic function of w, as we
shall see. We infer from the above result that in that case A(w) is, in general,
an analytic function of w with poles, i.e. a meromorphic function. The poles
at

w+1e=0

lie in the lower half of the w-plane. We infer this from the above result. But
we can see this also more generally. Consider the vacuum wave packet

o0
uy(z,t) = / Aw)etkz=wt gy, (15.17)
—0oC

In vacuum k = w/c (this is why we can write the integral also as [ dk).
Thus in vacuum all waves (the partial waves as well as the group) propagate
with the velocity of light. According to the Special Theory of Relativity (see
later) a signal or wave packet is propagated only into the future light cone
(see Fig. 15.3), which means that for z > ¢t the integral must vanish, i.e. we
must have

0= [uv(z,t)]zsct = /°° A(w)etc @D dub(z — ct). (15.18)

-0
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We investigate this equation with the help of a contour integral in the plane
of complex w. If we choose the contour of integration C' as indicated in
Fig. 15.4, the infinite semicircle with Sw > 0, and thus the factor

et g(z — ct)

with exponentially decreasing behaviour, does not contribute to the integral

and we have o
Sy gy
— 00 )

i.e.
0= / A(w)et e @D dub(z — ct). (15.19)
C

ct

\

future
light cone

X

x>ct

Fig. 15.3 The future light cone.

The Cauchy residue theorem now implies that A(w) cannot possess poles in
the plane Sw > 0 (i.e. their residues would be zero). Thus A(w) is analytic in
that part of the complex plane. This means the poles of the amplitude A(w)
can only be in the lower half of the w-plane. We obtained this result from
the condition that propagation takes place only into the future light cone
or time-like domain, where z/t < ¢ (in the following we use this result that
A(w) is a meromorphic function with poles in the lower half of the complex
plane). This property of no propagation into the space-like domain depends
on the other property of poles located in the lower half-plane.

We saw at the beginning that in regions of anomalous dispersion it is
possible that vg > c¢. We recall that vg is quite generally (except when
ve > c) the velocity with which energy is transported, and hence a signal
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with velocity z/t. As such it cannot be larger than ¢ (according to the Special
Theory of Relativity).
We return to the expression of Eq. (15.12), i.e. to

u(z,t) = /_ : (rJFLﬁ(M—))A(w)ei(k(w)%wt)dw.

In order to be able to perform the integration we have to know the analytic
properties of 7(w).

Fig. 15.4 The integration contour C.

15.3.2 Properties of ni(w)

In the discussion of the Drude theory we used the classical nonrelativistic
equation of motion of a free electron

mi + ?m = eE, E = Ege it (15.20)

(earlier we used E o< e**?; hence comparisons may require some changes
of signs). If the electron is not free, but bound to some atom with eigen-
frequency wy, then the equation is in the case of a simple one-dimensional
oscillator model m

m& + 7:15 +mwic =eE. (15.21)

This equation takes into account that the (almost free conduction) electron
does not follow the applied field without inertia. One should note that here
we consider the electron as bound to the atom by an oscillator potential.
From quantum mechanics we know that the Schrodinger equation with an
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oscillator potential Vg = az?,a > 0, allows only discrete bound states (i.e.
states with infinite lifetime). The additional friction term we have introduced
here has its counterpart in quantum mechanics as an imaginary part of the
potential

VI=iQV of V =Vg+iSV.

For SV < 0 the potential V is absorptive, and violates unitarity (absorp-
tion of particles, energy into the target). A resonance is a state of finite
lifetime T = 1/~. It is not necessary to have SV # 0 in order to obtain
resonances. Resonances are obtained, for instance, for screened Coulomb
potentials or with potentials which permit the escape of particles to infinity
through quantum tunneling. Such cases are, however, much more difficult to
handle analytically, so that we restrict ourselves here for reasons of simplic-
ity to a simple semi-classical model. Semi-classical means here, we start off
classically, and then replace the frequency by discrete quantum mechanical
frequencies.
Setting in Eq. (15.21):
T = zge ™t

we have (on the right side of the following equation we should strictly have
the complete Lorentz force, but we assume that v x B is negligible)

( — mw? — ?z’w + mw%)x =ek, (15.22)

i.e. with E(z,t) = Eg(z)e™ "

eF

= ey YT (15.23)

xr =

For v to represent a damping of z or F, we must have Sw < 0, i.e. at the

resonance
1
o=g| i), ws

and for z oc e7™? and v > 0. We thus have

neliwk
i = X — — = E 5
j=nex e —a? —i70) oE, (15.24)
so that
neiw
o= (15.25)

_m(wz —w? — iw)
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and the generalised dielectric constant is

ne

(15.26)

o
=€+i— =€+ . .
1 w m(wg — w? — iyw)
In general the electron may occupy one of many possible quantum mechanical
states k. It is then necessary to replace the last equation by

= —_— 15.27
= €+me—w2—ww ( )

where the sum extends over the states of the electrons involved in the polar-

isation of the medium. The factor

62

m(w? — w? — iyw)

is a measure of the polarisability of the medium. For strongly bound electrons
wr > w and j is correspondingly small. We obtain therefore for the refractive
index p the result

\/ Z ” —w2 s (15.28)

The coefficients fi are called oscillator strengths; they specify the probability
of an electron with energy hwy to be in state k. For atoms in vacuum e¢ is
equal to €g, and the refractive index is

ne?
/n J .
=,/—~1 = . 15.29
P = + 2m€0 zk: P iy n(w) ( )

For our purposes here it suffices to consider a dielectric, which permits only
one resonance energy fiwy, = fiwg, so that

2 2
=14 5—— = . 15.30
p (w) +w8—w2—i’yw’ wp meo ( )
We set
2 _ 2 2
Wi —w —ityw+w (w—we)(w—wp) .

Pw="25——"L= 2 =nl(w).  (15.31)

wg —w? —iyw (W — we)(w —wy)

Then it is easy to calculate

2
Wa Y 2 v
o = g EVB TR

= —7—

Wy 2
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We observe by looking at Eq. (15.31), that the poles of p?(w), like those of
A(w), are located in the lower half of the w-plane, as indicated in Fig. 15.5.
We see that along

Ruwg < Rw < Rwp, Rwe < Rw < Rw,
the refractive index p(w) is pure imaginary. We also see that

lim a(w) = 1.

w—00
Im o
Re o
[ ] ] [ [ ]
w 0 0] )
b d c a

Fig. 15.5 The poles of p(w) in the w-plane.
Next we consider the factor 1/(1+7(w)) in the function u(z,t), the latter
being the wave packet in the dispersive medium. We have
1 _ 1
1+7(w) 14 (w—we)(w—wp)/(w— we)(w — wy)
(W~ we)(w — wa) — V(W — wa)(w — wp) (W — we) (W — wa)
(W — wel(w — wg) = (W — wa)(w — wp)

The denominator is

(W= we)(w —wg) — (W — wa)(w — wp)
= w? — (We + wg)w + wewg — W + (Wa + wh)w — wWawp
= W(we + wp — wWe — W) + (Wewq — Wawp)
7 2v° Yo

— 2 2 2
——Z—WO+T+UJ0+U)P—Z=(J.}P.

Hence

1+n(w) % ’
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i.e. 1/(1 + n(w)) has no pole in the w-plane. This example verifies that in the
given case, and more generally (here without proof), the factor 2/(1 + n(w))
has no poles, i.e. is regular.

15.4 No Wave Packet with a Velocity > ¢

We are now in a position to prove that no wave packet in a dispersive medium
with refractive index n(w) can propagate with a velocity larger than the
velocity of light. We consider the integral (see u(z,t) of Eq. (15.12))

2 .
— i(k(w)r—wt)
I /2 770 A(w)e dw (15.32)

(physically the refractive index 7(w) can never be —1 for any value of w),
in which the contour of integration C' =3 is to be taken as indicated in
Fig. 15.4. We have

o0
I:/ +/ ---=Wavepacketu(a;,t)+/
—0o0 ) N\

We know: The integrand is a meromorphic function of w with poles only in
the lower half of the w-plane. Applying Cauchy’s residue theorem we obtain

I =2m Z residues = 0.

u(z,t) = —/ﬁ---

We consider now the contour integral along the infinite semicircle, i.e. for
|w| ~ co. Since

We have therefore

k(w) = L—uﬁ(w) -2 for |w| — o0,
c c
ie. J
% — ¢, n(w)—1,
we have

/ - / 2 AW)EE .
' )

This integral vanishes exponentially in the upper half of the w-plane, i.e. for
Sw > 0, provided

x . T
——t>0, 1le Usignal = 7 > c.
c
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This result implies that the propagation or spreading of waves into regions
beyond the future light cone are excluded, or, phrased differently, in regions
x > ct the wave packet u(z,t) vanishes.

In the next step we demonstrate, that for signal velocities

T
Usignal = 7 <g,

the wave packet has a definite value. This time we integrate in the lower half
plane and consider the integral

2 . o0
- ilk(w)z—wt) g, — cee 15.33
d /ﬁ 1+ ﬁ(w)A(w)e d /—oo - / ( )
/' AU
We consider
2 w(Z—t)
RN 5A((,u)e < Ydw.
A A

For z < ct, i.e. vgignal = 2/t < ¢, and Sw < 0 we see that
eiw(-‘z——t)

is exponentially decreasing for w — oo. This means

/ =0,

A

Hence o
u(z,t) = / o= 1 = 2mi Zresidues.
—00
In order to be able to perform the integration explicitly, we require, of course,
a knowledge of the function A(w).

15.5 Explanation of the Anomalous Dispersion

We return to our approximate expression for the refractive index, i.e. to the
square root of expression (15.30), i.e.

. n 1 ""123
=,/ —~14-FF 15.34
" V €0 +2w(2)—w2—i’yw’ ( )

taking into account only one pole at Rw = wg. With a real denominator we

have ) s o
- Ui wp  wj —we A+ iyw
=,/ =1422 15.35
" €0 3 (wg — w?)? + y2w? ( )
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and ) (2 — o)
w wp — W
Ri=1+-L 0 15.36
T (1580
and .
Q= “P yw
Sn= - R =) T 72 (15.37)
and (after 3 lines of calculations)
dw (W —w?)? +42?)? '

Now (for w # 0),

% =0, where (W3 —w?? =123,
i.e.
w2 = wg + YW,
and hence 1
w~wyF 57.

It follows that R7 has extrema at these points. Using Eq. (15.35) and setting
w ~ wp F 7/2, the refractive index n at these points is:

wh (Fywo) + ivv/wd F 1wo (15.30)

Ai=1+-2
2 (tywo)? +¥3(w§ F ywo)
o 2 2
15.37 Vw2
gi (0 YEIVEL _ b (15.40)
2 272w} 4ywo
and ) )
15.39 +
pr 15391 4 @ 7“’3) =1+ P (15.41)
2 2y 4rywo
Thus
RA— 1] = 37| at w=wo+ % (15.42)
We see therefore that
dR
d—:<0, where wo—%§w§w0+%.

In this region, see Fig. 15.6, 7 is particularly large (this is also the region
of the maximum).
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Fig. 15.6 Q7 large where dR7i/dw is negative.

We shall see in Chapter 16, that a large imaginary part (of e.g. 7) is con-
nected with strong absorption effects. That physical velocities
¢ >
Vg =———77< > C
T AT w(dn/dw)

do not occur, i.e. when dn/dw is negative, is now qualitatively explained
by arguing that these mathematically arising velocities are removed by the
absorptive effects.

Example 15.1: Method of stationary phase

Consider the integral

I:/F(w)eid’(“)dw,

where F(w) is a slowly varying function of w, whereas ¢(w) is a rapidly varying phase with only
one stationary point at wg. Show that approximately

24w .
I~/ ——F idlwo),
\/¢”(w0) (wo)e

Solution: In the neighbourhood of wg we can write

d)(w) = ¢(w0) + %(ﬁl/(wo) 4+
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Since F(w) varies in the neighbourhood of wg only slowly, we have
I~ F(wo)ei‘i’(“’O) /‘oo es?” (WQ)(“’—“’O)Zdw.
—o0

The remaining integral is a Fresnel integral* (or can be evaluated with appropriate assumptions
like an integral over a Gauss function) and leads to the above result.

*See e.g. W. Magnus and F. Oberhettinger, Formulas and Theorems for the Functions of
Mathematical Physics (Chelsea Publ. Co., 1954) p. 96.



Chapter 16

Causality and Dispersion
Relations

16.1 Introductory Remarks

In this chapter we continue the study of analytic properties of spectral func-
tions, but concentrate on Green’s functions and causality. In this connection
important integral relations between real and imaginary parts of spectral
functions are introduced, which are also known as dispersion relations or (in
more mathematical contexts) as Hilbert transforms, and were first applied
by Kramers to the dielectric susceptibility.

16.2 Cause U and Effect FE

We let U(t) represent a cause, e.g. a charge distribution which varies with
time, and E(t) an effect, e.g. an electromagnetic field. Since both are real
physical quantities, we assume them to be real.

The Fourier transforms of the two quantities define other representations

of U(t) and E(t):

Ut) = \/% /_Oo dwe™“ty(w), u(w) = \/% /_oo dte™'U (t),
1 o0 X oo .
B() = <= /_ e o), efw) = \/—12_—#_ /_ B, (16.1)
Since we demand that U and F are real, i.e.
Ut)=U*(t), E(t)=E*t),

361
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it follows that

00 ) oo ) 00 .,
/ dwe_“"tu(w)z/ dwe""tu*(w)z/ dw' ety (—w')

= /_00 dwe™ ™y, *(—w),
- uw) =u*(—w), elw)=e"(—w). (16.2)

These relations between the integrands of the Fourier transforms or spectral
functions are referred to as “crossing relations”. One should note that w is
assumed to be real. For U(t), for instance, it follows that

—zwt —zwt

U(t) dwe dwe

Sl gk

\/ﬂ/ dw[u —iwt _,r_u*(w)eiwt].
We set .
w(w) = 57~(w)ei9(w>, (16.3)

where r(w), 0(w) are real. Then

Ut) = __1__ > dw lr(w)eif)(w)e—iwt + lr(w)e—w(w)eiwt
Vv 27 0 2 2
_ % [ dor(e) coslot — 0(w), (16.4)

i.e. the Fourier representation of U(t) depends only on positive frequencies
(w > 0). A corresponding result can be obtained for E(t).

16.3 (U, E)-Linearity and Green’s Functions
We let U; be the cause of the effect F;. Then we assume that
aU; + BU;

is cause of the effect
aF; + BE;,
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or more generally

E(t) = /_ ” d'G(t, ¢ U(t) (16.5)

(superposition principle). Here G(¢,t') is a weight or Green’s function. We
also assume that
G(t,t") =Gt ~t),

i.e. the process connecting U and E is independent of absolute times. Then
E is the inhomogeneous solution of a differential equation

DE(t) = U(t) (16.6)
with
DG —t)y=48(t—1t)=4d(t —¢). (16.7)

We write G(t,t') as G(t — t') and not as G(#' — t) for reasons of causality
which lead us to the so-called retarded Green’s function. Then

E(t) = /oo dt'G(t, U(t).

-0

This is precisely the relation given above. Since U and E are real, G must
also be real. Let g(w) be the Fourier transform of G:

Gt) = = / T doe (), glw) = /_oo Glt)etdt. (16.8)

:-2-—7—1: .

Then

ew) = —— [ dte“tB(2)

VoT /o
1 o0 i o
=7 / dte™* / dt'G(t - tU(t),
T J—oo —00

and, inserting (16.8) for G(t — t’), this becomes

1 o0 ; R o0 L 7
e(w) = / dte“"t/ dt'U(t’)/ du e~ (t=t )g(w’)
—00

(\/27‘()3 —00 —00
- / " AU / du g( ) o / " e
Vor Jo g 2r J_
§(w—w)

and hence

e(w) = \/% /_ T U )gw)e !
= g(w)u(w), (16.9)
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- elw) = gw)u(w), e*(—w)=g*"(—w)u*(-w). (16.10)

These relations are called convolution theorems.
Since
u(w) =u'(-w), ew)=e"(-w),

it follows that
e(w) = g*(~wu(w), ie gw)=g"(-w). (16.11)
The latter of these implies again that G(t) is real (see remarks at the begin-

ning).
A mono-frequent cause Upe™** leads to a mono-frequent effect:

E@t) = /_Z d'G(t — " \U() = /°° AWt — t,)er__iwt/

—0o0

oo
— UOe—iwt / dt/G(t _ tl)eiw(t—t')
—00

oo
= Upe™ ™t / d(t' = t) G(t — t")e™ 1)
g N——

—d(t—t")

and hence
oo ) ,
=U, e~ twt / t _ t G( tl)ezw(t—t )
= e_""tg(w) = F, e‘“"t, (16.12)

where Ey = Upg(w).

16.4 Causality

The concept of causality expresses the fundamental idea that an effect E(t)
at time ¢ can only have and depend on causes U(t) prior to time t. Since

B(t) = /_ : Gt — U (),

(G real for U and E real), this means E(t) can only depend on such U(t'),
for which ¢’ < t. More concretely

Git—t)=0 for t—t <0,
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ie. G(t—1t') x 6(t —t'), i.e. only such values of the cause U enter the effect
E(t) at time ¢, which appeared before the instant of time ¢, at which we are
interested in the effect E(t). This time ordering is described as causality.
This causality is also described as macrocausality in contrast to microcausal-
ity or locality, which is a quantum theoretical concept concerning operators
representing observables and implies that such observables commute if their
separation is spacelike (because then they cannot exchange signals since no
signal can travel with a velocity greater than that of light). The Green’s
function obeying macrocausality is the retarded Green’s function. Consider
once again a typical classical equation of motion

i+ 2vE + wiz = f(t).

The friction term violates the time-reversal invariance of the simple Newton
equation

E+wiz=0
(which is plausible, because a process involving friction, in which therefore

energy is dissipated as heat, is irreversible). For v > 0, the direction of the
friction force 2z is opposite to that of the motion since

&4 wiz = —2vi + f(2).

The Green’s function of this problem is, however, uniquely defined by the
friction term, because with

d2 d 2 ! /

we obtain

1 o —iw(t—t')
G(t—t) = — / dw— (16.13)

2 2

oo WE—w? = 2yw’
The poles of the integrand are located in the domain Sw < 0, and are given

by
w=—iyt/wi-72, >0

In this way the integral with v # 0 and the condition G = finite is uniquely
defined. Since there are no poles in the upper half-plane

L R Zresidues =0,

and it follows that

xO
/ ...=_/...=0for t—-t <0,
—0 P
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i.e.
Git—t)=0for t-t' <0

and
G(it—t)#0 for t—t > 0.

This finite Green’s function is the retarded Green’s function. If
Git—t)=0 for t -t <0,

we have
z(t) = /jo Gt —t)f(t)dt

t

:/ Gt —t)f(t)dt'. (16.14)
—00

The solution of the homogeneous equation which could be added to give the

complete solution (with z — 0 for ¢ — co), i.e. the solution of

:'i+2'ya':+w(2)x=0,

is

zo(t) = (aei\/ wWo=7*t 4 pe~tV ‘”3"72t) e,

This diverges for t — —oo. To ensure that z(t) is finite for all times ¢, we
have to choose a = 0 = b, i.e. a contribution of the homogeneous equation
to the solution is excluded by boundary conditions. In the case v # 0 the
integration contour is automatically fixed by the requirement of G,z to be
finite. In the case v = 0, however, the contour must be specified separately,
because then the poles w = fwyq lie on the real axis (in the above simplified
model). We consider this case by selecting a pole at w = wqg — i€, € > 0, with
e — 0.

16.5 Causality and Analyticity

We return to our original consideration and now permit complez values of w.
Since -
g{w) = / dtG(t)e™, G(t) x 0(t), (16.15)
-0

it follows that

o) = [~ aGe,
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or (since G(t) is real, see above)

g (w) = /Ooo dtG(t)e ™t # g* (w*).

We now set
w = wpg + wy.
Then o .
g(w) = g(wp + iwy) = / dtG(t)eRte™ 1t
0
and

oo .
9" (w) = ¢"(wp +iwr) = / dtG(t)e “RteIt = g(—w).
0

We assume that
G(t) ~ finite for t — oo.

Then there exists a g(w) for wy > 0 and g*(w) for wy < 0. The derivatives

d d
Zgw) and —g"()

also exist at every point with respectively wy > 0 and wy < 0. Hence g(w)
is analytic in the half-plane wy > 0, and g*(w) is analytic in the half-plane
wr < 0. We see therefore that we can infer from the causality condition

Gt—t)=0 for t—t <0

the analyticity of the Fourier transforms g(w) and ¢*(w) in the domains
wy > 0 and w < 0 respectively.

Example 16.1: The Cauchy—Riemann equations
Starting from the integral

oo
glw) = / dtG(t)e™?t, w=wpg +iwy,
0
examine whether

9(w) = gr(wr,wr) +ig1{wr,wy) = u+iv

satisfies the Cauchy-Riemann equations, i.e.

a 0 0 a

“o9R = 591, gl:_a_y

oz Sy Bz IRy

Or Uy = Uy, Uy = —Vg.

Solution: The solution is trivial. See also Sec. 3.7.
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16.6 Principal Value Integrals and Dispersion
Relations

From the fact that the spectral functions g(w) and g*(w) possess simple
poles in one half of the w-plane and are analytic in the other, one can derive
relations between their real and imaginary parts called dispersion relations.

We consider the following integral taken along the infinite semicircle in
the domain Sw’ > 0,

/
I=/ dw’&,—, € >0, wreal (16.16)
o w —w + 1€

With € > 0, which displaces the pole underneath the real axis, we could
exclude it from within a contour along the real axis and then back along
the semicircle at infinity. We can achieve the same effect, however, with a
small semicircular distortion of the contour around the pole on the real axis
as indicated in Fig. 16.1.

7

Fig. 16.1 The contour around the point w in the complex w’-plane.

In the upper half-plane Sw’ > 0, as we saw, g(w') is analytic. Thus if
g(w') decreases sufficiently fast towards zero for |w’| — 00, 3w’ > 0, so that

f---=0, then

/ do' - = 2mi Zresidues =0

o0
/ ' - =0,
—0o0

where the integration is meant to be taken along the contour shown in

and
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Fig. 16.1 from —oo to 400, i.e.

0=/_ dw'f(_l
=P / PREICON /m dut 9. (16.17)

w —w W —w

infinitesimal
semicircle around W’ =w

g

means “principal value” of the integral (which will be explained in detail
below, see Eq. (16.32)). We note here that

/ wW—E€ oo
w —w e—0 —oo we

and we shall return to this expression later. With

where

W —w=pe®,  du =ipe¥dy,

we have
/ 1i 0 _ip d
/ o W) _ (ig(w)/ e ’Zf)
~ W —w +r  P€
~~
infinitesimal
semicircle around W/ =w
0
—ig(w) [ dp = —ig(w)r
Hence . - )
_ - ; g\
g(w) i7rP - dw A (16.18)
or

9(-w) = .iP/oo d 2 _ lp/_‘” g9

w’—i—w M Joo w

P/ g 39
’Lﬂ' w—w

Comparison with
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verifies the relation obtained previously

g(-w) = g*(w). (16.19)
The right side of the integral relations we thus obtained contains the factor
“”. Taking real and imaginary parts of Eq. (16.18) we obtain:

§Rg( )—_P/ood /"g(w)

w——w

/ a2 (16.20)

w——w

We also have

Rg*(w) = —~P dw"’g( ) s P/ dw'w_w.

T J_eo W —w

These relations are the promised dispersion relations. They are also called
Hilbert transforms.

We can rewrite the dispersion relations in a form involving only positive
frequencies. To achieve this, we write

w—w w—w

=—P/ dw’ + P/ dw’
—w—-w w—w

(of course, the pole is contained only in one integral; in the other the principal
value integral is an ordinary integral). Since

gw) = g"(—w), g(~w)=g"(w),

we have
Rg(w) +1i3g(w) = Rg(-w) — iSg(-w),
ie.
Rg(w) = Rg(-w), Sg(w) = —-Sg(-w). (16.21)
Hence
/ \’g /
Rg(w) = ——P/ dw — ——w+ P/ dw e

=—P/ dw'Ss { + ]
W+ w w —w
P [ sglua 2
= — ¥ _—
7 Jo g w'? — w2

oo o ’
= %P / dw’w'—\;g(—w). (16.22)
0

W' — w?
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Similarly
1 Rg(w')
Cx — _ /
Sg(w) = WP/_wd L)
0
W —w w W —w

=——P/d’ P/d’
—w—w W -w’

and using Eq. (16.21), this becomes

=——P/ do ———— ——P/ dw'
- —w W —w

__—P/ dw'ﬁg(w)[ /+w+w —w]

——P/ w'Rg(w (w 4_(;)2:(52)— <)

_ /%g( )
- P/O du (16.23)

T w/? _ w2

Dispersion relations of this kind were first formulated by Kramers and Kronig
(1926),* and, in fact, in application to the dielectric susceptibility xe(w),
which we introduced in Chapter 4, i.e.

e—e  Re(w)+1Se(w) — €0

16.24
= = (16.24)

Xe(w) =

We obtained the dispersion relations for g(w) from the assumption that this
function is analytic (i.e. free of poles) in the upper half of the complex
w-plane. We saw earlier that the refractive index or rather its square or
the dielectric constant have the same property. For this reason one can
write down dispersion relations for this quantity. Thus, from the dispersion
relation in terms of positive frequencies (by identifying g(w) with e(w) — €o),
we obtain

2 *  zSQe(x)
§R€(UJ) — €)= ;PA dl‘m,
2w | Re(z) — €

We consider these relations in some applications in the next section.

*H. A. Kramers: Collected Scientific Papers, p. 333; R. Kronig, J. Opt. Soc. Am. 12 (1926)
547. See also J. Hilgevoord: Dispersion Relations and Causal Description (North-Holland Publ.
Co., Amsterdam, 1962).
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16.7 Absorption: Special Cases

We consider three cases.

(a) The case Se(w) = 0 for all frequencies w is the case without absorption.
Recall: E,H o e!k@z=w) k(w) = (w/e)i(w), i(w) = e/ /eomo. If €(w)
contains an imaginary part, then also n(w) and k(w), and hence E, H have
exponentially decreasing amplitudes, i.e. there is damping. If Se(w) = 0,
then Re(w) = €p, and

w ¢/ o€ 1 ,
'Uphase = — = == = C.
k € €
Thus there is no dispersion.! Effectively the dispersion relations say: If there

is dispersion in some frequency region, then (in general) there is absorption
in some other region.

FLe e(w) — €,
. -
© 1 Wn
dispersion dispersion
g
absorption

Fig. 16.2 Typical behaviour of Re for resonance absorption.

(b) The case Se(w) = k6(w — wy), &k > 0,0 < w, < co. This case is called
the case of the “zero width resonance” and corresponds to that of absorption

" There is no dispersion when
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in a very narrow frequency region around w = w,. Then for w # wy,:

() Cx
Re(w) — €0 = %P/o zdz Je(z)

72 — o2
2 o 0(zr — wn
= ——P/ xdx%
™ 0 e —w
2 kw
~ 16.26
Twl ~w? ( )

This behaviour is illustrated in Fig. 16.2.

Im g(w)

0] Q Q=Q+AQ
Fig. 16.3 Absorption in a finite frequency domain.

(c) The third case we consider is that with Se(z) = 7(2)8(z — Q)6(Q’ — z),
i.e. absorption in the domain 0 < Q < z < Q' with 7(z) regular in this

domain. Here
Re(w) — g = / dzz 'r(:v)

2 — w2’

We consider two cases here:

(i) If w > Q/,Q, we have approximately

Q/
Re(w) — ep ~ %/ dxm@.

Q —w?

If €, Q are close together (a narrow band), we can write Q' = Q4+ AQ € w

and
20 Q+AQ

Re(w) — g~ ——— dz7(z),

Tw? Jq

/O°° dzSe(z) = — /Q+AQ drr(z) = %{wQ(%e(W) - 60)}.

Q

i.e.
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The left side represents the area under the curve Se(x). The right side, which
is valid for w > Q/, Q, i.e. for

7'l'(4)2

1_{30{ T (Relw) - eo>},

represents the limiting value at high frequencies. Relations of this type are
called sum rules. For instance, in our model consideration (see Eq. (15.27)
for only one resonance):

ne? wi — w? w—00 ne? fo
R — €= — 0 ~
€(w) — € m (Wi — w?)? + y2w? fo m w?
Hence
00 Q+AQ T ne2
dzS = - d ~ ———fo. 16.27
| dsete) == [ derto) ~ 55" (16.27)

(ii) If, on the other hand, we have w < ©,Q' = Q + AQ, then
Re(w) — €9 =~ %/Q dze—5~ 3(32) ;5 d:z:’r(x) A —%% A Se(z).

This relation relates the area under the curve of Se(z) to Re(w) — € for
w <K, ie. for w— 0. In the above example

2
lim {?Re(w) - 60} ne 12 fo,

w—0 m

so that Q
/ deSe(z) ~ = ne’ " fo. (16.28)

2w0m

Thus one can infer from the behaviour of €(z) the frequency wg. Since wp ~ 2
(see Fig. 15.6), the expressions (16.27) and (16.28) agree with each other.

16.8 Comments on Principal Values

The principal value of an integral can also be defined by *

P/_Zf(w)‘f:"—'OQ[/ s+ [ s WHJ. (16.29

¥See Eq. (16.17).
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Here f(w) must be a function which is analytic in the region of integra-
tion. The relation (16.29) is based on an identity, which is of considerable
usefulness in many applications. This identity is formally written

lim (w i ie) _ P(%) T+ imd(w). (16.30)

The e-prescription on the left side is to be understood as saying that with
€ > 0 the pole is to be excluded from the region enclosed by the contour. It
is with this € prescription that the expression on the left is to be understood
as equal to the expression on the right. The identity implies the relation

o0
: _ f Jdw .
ll_r}(l) . wize / Fin f(0), (16.31)

in which f(w) is an analytic function in the domain of integration. In order
to prove the identity, we recall the original definition of the principal value
integral, i.e.

Pt ] [ wf(w)%] (16.32)

Consider the term on the left side of the identity Eq. (16.30):

1 w F 1€ w 1€

— = = ¥ :
wtie w24 W24 T w24e

In the limit € — 0 we obtain with the help of a definition of the delta function
(cf. Eq. (2.5)), i.e
1 €
6(z) = ll—I»I(lJ 7 (€2 + z2)

the relations

. . w
ll—r»r(l)w:l:ie_lqowQ 2:Fz7r5( w)-
The first term on the right of this identity is 1/w for w # 0. Multiplying this
relation by f(w) and integrating with respect to w, we obtain

OOMZH /waz(+)2 + i f(0)

SN

+1im/_ jz(—ﬂz ¥ inf(0)

e—0

- P/Oo —f(‘:)d“’ F in £(0).
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The integral from —e to € vanishes, since

: Cwf(w)ydw € wdw
ll—r{(l) —e w2+ €2 _ll—r}(l)f(o)/_ew2+62_0’

since the integrand is an odd function of w. We have thus verified the formal
relation (16.30). Equation (16.29) now follows from the addition of both
cases, provided the contributions of the integrals around the infinite semicir-
cles vanish.

The relation with the upper sign is more commonly used than the other
because it is applicable when the function f(w) is analytic in the upper half-
plane, i.e. the relation

lim oof%:})/_mf(itjd—“’—mf(oy

e—0 J_ w+1€

oo
/ ...=L~"=2wi2residues=0,
—o0 a

/ f(“’ = in f(0).

in agreement with f(w) = g(w) in Eq (16.18).

If

it follows that

Example 16.2: Evaluation of a principal value integral
Evaluate with the help of the original definition of the principal value integral the following integral

P / sinz’dz’
o T —x
Solution: We separate the sine into its exponentials, so that
.7 P
sinz’d; 1 ® ey 1 ® e dyf
p [T 1y (< el 1y [ e
0o -z 2 oo ' —x 21 oo I —I

We consider the following integral along the contour C4 in the complex z’-plane shown in Fig. 16.4.
The contour C4 excludes the pole at z. Hence fc+ = 0. Moreover [ . = 0 (along the infinite

semicircle), so that
o0
ff o
oo Ja

where the second contribution represents the integral along the small semicircle around the point
z of £ — € to = + €. It follows therefore that

1 P/oo eiz'dxl _ 1 /z+e e-i:z’dzl
% Jow =z 2y o —z

'
’ i6 dz

With

= 1df
' -z
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we obtain

oo iz’ g0 0 . iz
lp/ e dz =-l./ idae”::%.

21 oo T — 2t S

Similarly we obtain for the contour C_ in Fig. 16.4 the result
1 e~ gz

2t Jo. -z

= 0.

+ Imx

NS
>\§

| . ReXx'

/_ X
C-

Fig. 16.4 The integration contours C and C_.

It follows that

) ot 0 s
lp/oo e—iT dp! _ _l T+e e~ dy! _ __l/ idee—iz _ —ﬂ,e u:.
2i oo I -z 2t foe T —2Z 2t Jn 2

Hence we obtain the result

P/°° sinz’dx’ _

T -
n —[e* +e ] =mcosz.
o T —x 2

Example 16.3: Principal value integral§
Evaluate similar to the above integral

' -z

P/°° sin \/a7dm’.
a

Solution (with no derivation): For a = 0,2 > 0 : wcos /z; for a = 0,z > 0(z — —z) : e~ V=,

A table of principal value integrals of a similar kind was distributed by H. Carprasse, An
elementary method to calculate certain principal value integrals, Universite de Liege, Belgium
(1973), unpublished.
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16.9 Subtracted Dispersion Relations

We obtained the dispersion relation

T

e W —w

In the derivation we had assumed that

/ddg(“’ =0

W —w

for ' = Re®¥, R — oo. It is possible, however, that this condition is not
satisfied, e.g. it might happen that g(w’) approaches a nonzero constant gg
for |w'| — oo. In the latter case, the integral implies

' dw’ m
w39 _ / '\ _ / o |
/n w —w go Rl_r,%o ~ g0 A idf = imgg # 0

We then write

so that
lim G(w) =0,
|w|—00

and the dispersion relations derived previously now apply to G(w). If

|w|—o0

9(w) — qiw + go,

we set
G(w) = g(w) — (q1w + 90)

and so on. The constants gg, g1,... are called subtraction constants and the
dispersion relations are called subtracted dispersion relations.

Dispersion relations find important application in theories of the scatter-
ing of particles. Starting from known facts of quantum theory that bound
states and resonances appear as poles of scattering amplitudes in definite
variables, and that scattering states appear with branch cuts of the scatter-
ing amplitude, it is possible to construct expressions for such amplitudes in
the form of dispersion relations. For instance, in the case of scattering of a
particle of mass m by a Coulomb potential: The entire energy spectrum in
E = h?k?/2m consists of:

(a) discrete bound states with E,, < —k2,n =0,1,..., in the domain E < 0,
and
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(b) continuous (scattering) states in the domain E > 0 starting from E =
0 (as one finds, for instance, by solving the Schrédinger equation for the
Coulomb potential).

The Coulomb problem possesses a branch point of the square-root type
(2 Riemann sheets) at k2 = 0, as one can infer from the quantum mechanical
treatment (e.g. of the Coulomb phase). The discontinuity of the function at
the cut from k2 = 0 to oo is defined by (f(k%") = f*(k?)):

1

Al F(k? +ie) — f(k% - ie)] = SF(KD). (16.33)

For instance, f(z) = z'/2 has a cut along the real axis from z = 0 to co. On
the upper Riemann sheet

f(2) = |12

and on the lower
£(2) =~
The discontinuity on the upper sheet (¢ = z6) is

i0/2 _ ,—i0/2
= 2 {f(e+i) ~ flz — i) = |22

2
= |2/2|sin(6/2) = Sf(z) = discontinuity.
Im k'?2
4
c |
R I O & SECIrrrrir A > Re k'2

cut
bound states

Fig. 16.5 Integration contour around the cut.
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A scattering amplitude does not only depend on E o k2, but also on
the scattering angle 8, or some other corresponding variable. Thus, e.g.
f = f(k2,6). Then (for ¥'* an arbitrary point in the k2-plane)

l/°° Sf(k2,0)dk> L e B2+ i6,0) = (8 — i, 0)
7 Jo k2 — k% 2mi k2 — k2

This is an integral which circumvents the cut as indicated in Fig. 16.4. Con-
sider the integral
1 [ f(K*,06)
2m ck?—k?

along the contour extended to infinity as in Fig. 16.4. Let us assume

S s dk? (16.34)

lim f(k%,0) =

k2| =0

so that the contribution of the circle at infinity is zero. Let us also assume
that f(k2,0) has simple poles at k2 = —k2,n = 1,2,.... Then, Cauchy’s
residue theorem tells us that
© f(k2,0 1 k2.0
L[ 1.6 ldk2:—~, 7k, gdié
7 Jo kZ2-—K 2mi Jo k2 — K

= f(k*,0 Z k,Q,

where

glkn,6) = fim, (K* = k) f(k*,6)

(residue of the simple pole of f at k2). Hence we obtain

/2
/ a2 ST, 6) ) (16.35)

f(k279) = - k,2

We have thus constructed an integral representation of the scattering am-
plitude with no explicit use of the potential; instead we have made use of
knowledge of the spectrum obtained by solving the Schrédinger equation for
the potential. The integral representation is also a dispersion relation, since
for k2 real the function f(k2,8) on the left is also real, i.e. the real part.
One may note that here the integral was written down with our knowledge
of one branch point, which characterises the onset of scattering states. The
integral itself has the meaning of a principal value integral.



Chapter 17

Covariant Formulation of
Electrodynamics

17.1 Introductory Remarks

In the following we consider first transformations from one frame of reference
to another which moves with uniform velocity relative to the first; this is the
topic of the Special Theory of Relativity. The significance and necessity
of such considerations is immediately apparent if one recalls the field of an
electric charge in its rest frame and then visualises this from a moving frame:
In the first case one has only the static electric field, but in the second —
in view of the motion of the charge — one observes also a magnetic field.
It therefore becomes necessary to formulate Maxwell’s equations, and more
generally all laws of physics, independent of the respective reference frame,
and this means in covariant formulation.

17.2 The Special Theory of Relativity

17.2.1 Introduction

We recapitulate first some aspects of the Special Theory of Relativity, which
unifies Maxwell’s electrodynamics with mechanics. The Special Theory of
Relativity is based on the following two important principles or postulates
of Einstein:

(1) Finstein’s principle of relativity (1905). This principle says: The laws
which describe the change of the state of a physical system are not affected
by choosing one or another frame of reference which are related to each other
by uniform translational motion (i.e. with constant relative velocity; systems

381
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which are accelerated to each other are treated in the General Theory of
Relativity).

Reference frames in uniform translational motion to each other (uni-
form motion meaning moving with constant velocity) are also called inertial
frames. These are local reference frames in which free motion (meaning po-
tential or applied force equal to zero) is weightless (i.e. without gravitation,
i.e. no planets or other massive bodies nearby, hence the Special Theory of
Relativity), and for which Newton’s equation therefore implies*

const.

m& =0, .. mzg=const., =

m

(2) The velocity of light c is independent of the source and is in vacuum and

in the presence of electromagnetic fields the constant ¢ in vacuum for all ob-

servers in inertial frames, as one would expect on the basis of the connection

¢ = 1/\/éopo. (This means that light is a field with the characteristics of
waves and thus does not conform with classical corpuscular ideas).

We recapitulate briefly the development which led to these postulates.
The first postulate can also be formulated as saying: It is not possible to
determine a so-called “absolute velocity” (neither with electromagnetic nor
with optical methods). What initiated these considerations? We recall that
Newton’s laws are based on the idea of an inertial frame, i.e. an unacceler-
ated, not rotating frame referred to an absolute space. This absolute space
was assumed to be immovable of its own nature and with no reference to
anything “exterior” (meaning that in the case of an acceleration in space,
the apparent acceleration of this space — viewed from the accelerated object
— is not a consequence of Newton’s laws but a consequence of our accelera-
tion relative to the absolute space, the so-called absolute acceleration). The
concept of an absolute space thus offers a criterion for an absolute accelera-
tion (£ = const.), but not for the concept of an absolute velocity or a state of
absolute rest. In fact, an absolute velocity cannot be determined, as the first
of the above postulates of Einstein implies (see also the Michelson-Morley
experiment below).

In preceding chapters we had introduced ¢ as a constant which represents
effectively the ratio between electric and magnetic units. Later we observed,
that Maxwell’s equations are wave equations for the fields E,H with the
phase velocity ¢ in vacuum. More than a century ago numerous observations
had led to the conclusion that c is the velocity of light. One then had to
face the problem of understanding the propagation of electromagnetic waves
in space, and it seemed suggestive to imagine their propagation similar to

*The rest frame of the particle is the frame with & = 0; a particle with mass zero thus has no
rest frame.
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that of sound waves. Sound waves are vibrations in a medium like air. It
was postulated therefore, that electromagnetic waves are propagated in a so-
called “aether”, which was assumed to be a space-filling medium introduced
solely for the purpose of explaining the propagation of electromagnetic waves.
c would then be the velocity of light with respect to this “aether”, which was
assumed to be stationary. Referred to a frame which moves with velocity u
through the (stationary) aether, the velocity of light would — according to
Galilean arguments — be ¢’ = ¢ —u with respect to the moving frame. Then
Maxwell’s equations would have to be different in different reference frames
in order to yield different velocities of light. One particular reference frame,
that of the aether, would play a special role. This consideration is analogous
to that of the velocity of sound waves relative to a train with velocity w, i.e.

VUrelative train = Vin air — Utrain-

It became necessary therefore to verify the possible existence of the aether,
e.g. by measuring the absolute velocity v of the Earth in this aether. If the
Earth moves through this aether, which was assumed to be stationary, there
would have to be an observable “aether wind” in the opposite direction. The
experiment of Michelson and Morley! was expected to allow the observation
of this wind, i.e. its (absolute) velocity. Instead of considering the setup
of this optical experiment, we consider the analogous case of a swimmer
(velocity c in stationary water) in a river with current velocity v # 0. This
consideration is simple and makes the issues solved by Einstein evident.* The
geometry is depicted in Fig. 17.1. The distances SR, ST in Fig. 17.1 are
taken to be equal, i.e.

RS = ST =a.
Then the time the swimmer needs in order to swim from S to T and from T
back to S (in the following we use the subscript “/” for “longitudinal”) is

a a 2ac

i = + = .
c~v cH+v ¢2—12

In order to reach R from S, the swimmer must swim in the direction of R’.
The time he needs in order to swim from S to R is the same as the time he
needs in order to swim from R to S, i.e.

a

V2 — 2

t, =2

TA. A. Michelson and E. W. Morley, Am. J. Sci. 34 (1887) 333; reprinted in Relativity Theory:
Its Origin and Impact on Modern Thought, ed. L. P. Williams (Wiley, 1968). See also their paper
in Phil. Mag. 24 (1887).

iThe swimmer analogy is also considered in L. R. Lieber, The Einstein Theory of Relativity
(Dobson, 1949).
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Fig. 17.1 The swimmer analogy to the experiment
of Michelson and Morley.

In the case of the swimmer (see below)
tr>t, for wvw<e,

since

> 0. (17.1)

In the Michelson—Morley experiment ¢ is the velocity of light referred to the
aether, and v the velocity of the Earth relative to the aether. The idea was, to
measure t;,t |, and to determine v from t; —¢, . The experiments of Michelson
and Morley used light and mirrors and for the measurements interferometers
of a high degree of precision. The results showed no difference between ¢
and t,, i.e. one had to conclude from the experiments that t; = ¢t (v # 0),
ie.
a 7  2ac
tL=2 22 2 — 2 = 1.

Since it was required that v # 0, the next problem was to explain this result.
Lorentz observed that both expressions can be made to agree for v # 0, if

one assumes that the quantity a in ¢; had to be replaced by

avc? — v?
=T T <,
c
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i.e. that parallel to v matter shrinks (as a consequence of its electric prop-
erties). This was the so-called “Lorentz-contraction” hypothesis. Since all
measuring rods would also shrink in the same way, the effect would not be
observable. This kind of adjustment of explanations was, however, rejected
in particular by Poincaré. Lorentz (1904) therefore undertook a deeper inves-
tigation which led him to the transformation which today carries his name,
however, without the appropriate explanation which was due to Einstein.
The transformation is written

o =yz-vt), ¥=y, 2=z

VT 1
t'='y(t—c—2), V= . (17.2)

2
v
1-=

Here z is the position coordinate measured in a frame fixed in the aether,
and z’ that in a frame fixed on Earth at a time ¢, i.e. instead of

a /
t= , (c=v)t=a=x
Earth
one has
xl
t=
c—v

(in the frame fixed on Earth light travels in time ¢ the distance a = z’), so
that
T =ct—vt=_1x —vt.

S~

aether
This expression assumes that the velocity of light ¢ is independent of the
motion of the source. Consider again the case of the train T (with velocity
v with respect to the Earth), from which a whistle sends out a sound wave
with velocity u as indicated in Fig. 17.2. Here

' = (u—v)t =2z — i,

i.e. u plays the role of ¢ and is independent of the motion of the source. One
might think that by measuring z,z’,t the velocity v could be determined as
an absolute velocity in contradiction to the result of the Michelson-Morley
experiment. Hence a contradiction? This apparent contradiction was re-
solved by Einstein: Every observer has his own clock, and in order to compare
times, light signals have to be exchanged. In the above z = ct is the distance
travelled by light in time ¢ (in the aether). The contraction hypothesis now
says that z’ is to be replaced by
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T T'
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Fig. 17.2 Velocities of sound and the train.

so that
o T — vt
"z
Lorentz found that with
T’ = y(z — vt)

also a time t’ given by

had to be introduced. But what is ¢? Lorentz looked at ¢’ as an artificial
time, which had to be introduced for mathematical reasons. It became clear,
therefore, that the fundamental concepts of length and time (also mass) had
to be reexamined. This was done and achieved by Einstein in 1905. The
statement of relativity, that for instance a material bullet fired with velocity
u from a train, which is moving with velocity v, has the velocity u whether
the train is moving or not, since

Urel. train = (U + u) —v=u

was known before Einstein. Einstein’s original intention was to extend this
statement of classical mechanics to emitted light signals and hence to elec-
trodynamics. In this Einstein realised that the laws of physics always have
the same form, but are expressed in different reference frames (i.e. those of
the respective observers). One consequence was a correction of Newtonian
mechanics.
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17.2.2 Einstein’s Interpretation of Lorentz Transformations

The Lorentz transformation$ from (z,y,z,t) to (z/,v/,2',t') thus describes
the transformation from reference frame K of one observer to the frame K’
of another observer, i.e.

d=xyz-ot), Y=y =2 = fy(t - %;) (17.3)

The Lorentz contraction therefore is not a real contraction (as Lorentz had
suspected), but only an apparent shrinkage, which results from the difference
of measurements made by observers in uniform relative motion to each other.
Moreover, t’ is simply the time measured in frame K’.

The reference to electrodynamics becomes particularly evident if we con-
sider the propagation of light signals. If a bullet with velocity w is fired from
a train moving with velocity v in the same direction, the velocity of the bul-
let with respect to a frame fixed on Earth is u 4 v, because the bullet as a
travelling object had the velocity v before it was fired. If in a similar way
a sound signal is sent out from a whistle on the train, i.e. with velocity u,
then its velocity relative to the frame on Earth is u, i.e. less than u + v (the
reason being the different nature of the bullet and sound). The velocity of
the sound wave depends only on the medium (i.e. the air), but not on the
velocity of the source. Applied to light, this is the contents of the second
postulate of above, as follows also from ¢ = 1/,/€ofzg. We deduce from these
postulates now that for light observed in frame K:

x=ct (17.4)

is the distance travelled by the signal in time ¢. But then we must have (if
the velocity of light is independent of the motion of the source) that

z = ct’ (17.5)

with the same ¢. We can infer from the Lorentz transformation that both
equations, (17.4) and (17.5), are compatible with each other, since with
T = ct we have

!

z' = v(c—v)t,

$The transformations today known as Lorentz transformations had already been formulated
and published in 1887 by W. Voigt (Gott. Nachr. 1887, p. 45), however in relation to sound
waves. In 1909 Lorentz wrote: “which to my regret has escaped my notice all these years’ — see
e.g. O'Rahilly [6], Vol. 1, p. 325. In the chapter with title “Voigt” O’Rahilly attempts a critical
analysis of these transformations.
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so that

oo ) - Aoz
2
[

and hence
' =ct,

i.e. light has the same velocity in every frame of reference, i.e. the observed
velocity of light is independent of the motion of the observer (contrary to
the claim of the aether theory, in which ¢ would be the velocity of light with
respect to the aether and hence the velocity of light observed by an observer
travelling with velocity v in aether ¢ — v, in which case the observed velocity
of light would depend on the velocity of the observer).

Finally we make the following observation. Solving the equations

VT
' = y(z — vt), t'='y(t—c—2)
for z and t, we obtain
’ / , , v
z=7( +ut’), t=v b+ )

completely in agreement with the expectation that the frame with unprimed
coordinates moves with velocity —v away from the frame with primed co-
ordinates if the frame with primed coordinates moves with velocity v away
from the frame with unprimed coordinates. Einstein’s principle of relativity
says that the laws of physics must transform “covariantly” with respect to
Lorentz transformations, i.e. independent of the respective reference frame
in uniform translational motion.¥

17.3 Minkowski Space

We now consider Lorentz transformations in general. If one adds to the
Lorentz transformations the simple translations in space and time, one ob-
tains the inhomogeneous Lorentz transformations, which are also called trans-
formations of the Poincaré group P. A vector in four-dimensional spacetime
is written in the so-called covariant form, which is characterised by lower
indices, as

z,, p©=0,1,23.

Y«Covariant” means “co-varying”, i.e. “transforming in the same way”. “Covariance” can also
mean independent of a specific coordinate frame, i.e. applicable to one as for any other.
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The path element ds in this four-dimensional so-called Minkowski space My
is with

Tg:=ct, T1:=—I, To:=-—Y, ;T3 :=—Z%
given by
3
(ds)? = ds? = (dzo)? — Z(dmi)2. (17.6)
i=1

We are therefore using the metric (or so-called metric tensor) of this space
M4 given by:

1 0 0 O
0 -1 0 O v

(nuu) =10 0 -1 0 = ("), det(nuv) # 0. (17.7)
0O 0 0 -1

On the other hand, the unit matrix is defined by

W) = (8.7 = ") M Mov = Mo (17.8)

so that
5/1 Pnpu = Nuws nuunup = 5;/, L. (179)

The so-called contravariant vector z# with upper indices is then defined by
ot ="z,
so that in contravariant form
dzt = n¥dz,,

or (in self-evident notation)

1 0 0 0 d:l:()
0 -1 0 0 —dxy dxg
By — =
(dz*) 0 0 -1 0 —dzs (dmi)
0 0 0 -1/ \—dzs

and

et = (dan, ) (420 ) = (dao)? = (@) = (d)”

With 7 we can “raise” or “lower” indices, and indices of the same type
(one upper, one lower) are summed over (if not explicitly stated, this is
understood, and called Einstein’s summation convention). We shall become
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familiar in the following with manipulations of this type. A quantity which
is such that all indices are summed over is a Lorentz invariant, e.g.

dztdz, = (ds)?

(the disappearance of the indices on the right side is described as their “con-
traction”).

For later purposes we deviate a little and devote the remainder of this
section to the transformation from Cartesian to spherical polar coordinates
(z,) := (ct,7,8,¢). The square of the distance (ds)? between two neighbour-
ing spacetime points P(ct,r) and P(ct + cdt,r + dr) with

zg=ct, z=rsinfcosy, y=rsinfsinp, z = rcosé,
is, as we can also see geometrically,
ds? = (cdt)? — (dr)? — (rd6)? — r?sin® 8(dp)? = (cdt)? — dr? — r2dQ3.

This means the metric 7 is given by

1 0 0 0
- 0 -1 0 0
M=10 o0 2 0 , (17.10)
0 0 0 —r2sin%@
since then
1 0 0 0 cdt
0 -1 0 0 dr
(ds)? = (cdt dr d6 dy) 0 0 2 0 w0 |
0 0 0 —r2sin?6 de
and so
cdt
—dr
2
(ds)* = (cdt dr db dp) 240
—r2sin? Odyp
= (cdt)? — (dr)? — (rd6)? — r*sin® 0(dy)?. (17.11)

We can obtain the metric (7) also as follows. We start from the transforma-
tion
! K
dz,, = Au dzx,
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and set
(:c’“) := (2%,z,y,2) (Cartesian spatial coordinates),
(z,) = (z°r,0,0) (spherical spatial coordinates),
so that
820  9z0 920 0a°
820  Or o0 Op
KY oz r 0 »
(A ) = ﬁ% oy oy oy |- (17.12)
Oz or o0 Op
9z 9z 0z 0Oz
529  Or o0 Jo
Then
1H e 73 7 ! /
dz’"dz), = n"dz,dz,
=nALdr, A Fdzy
= (ATP TV A ) da da,
= 7P dz e, (17.13)
where

ﬁpn — ATPVUTV“A“K

and explicitly

oz0 Oz dy Oz
820  8z0 920 B2V 1 0 0 0
oz° el 5] [5)
= | T T % s |[o -1 0 o
" 820 9z By oz 0 0 -1 0
o6 00 o0 o0
azo Ox ay 8z O 0 0 ——1
Do Dy By Fp
8z% 6z° 9z° 92°
5z0 Or 08  Jp 1 0 0 0
Oz Oz oz oz 0 o y z
320 Br 99 e | _ T r T
% 1] 15 - Tz yz _ 2 __ .2
0%y 2|\ v VP
Oz r g o
1 0 0
1 0 0 0 0 o B
0 -1 0 0 e y
6 0 -1 0 _yz _
0 0 0 -1 ’ i *
0 —Vr2—2z22 0

OO O e
| o
—
o o
=
Se— 7 i v R O
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17.4 The 10-Parametric Poincaré Group

The 10-parametric Poincaré group consists of the following transformations:
(1) Translations (4 independent parameters a,)
Ty: z,=zu+a,, areal

The infinitesimal transformations are given by

dx, = :c:l — 1, = o, infinitesimal.
(2) The proper homogeneous Lorentz transformations (6 independent pa-
rameters)!

/
Lf: z, =1z,

't =l Pz, = Mz,

with the orthogonality condition

T K — 173 _ v
oL =6, det(lY)=+1, 17 real (17.14)
—_———

therefore L+t

from the condition of invariance of z#z, under Lorentz transformations, i.e.
from

) S A 7
r T,=I T,

The transpose index T is defined by

T =em T =0, £ LS (17.15)
The matrices (I) define a 4 x 4 representation of the non-compact Lorentz
group SO(3,1); the number “3” refers to the three rotation angles with com-
pact domains of validity, and the number “1” to the non-compact parameter
of a Lorentz transformation. Strictly speaking the vectors z#,z, belong to
different spaces T,T*. But since a metric is defined on the 4-dimensional
manifold R* (the Minkowski metric 7, which together with R* defines the
Minkowski space My), it suffices to focus on only one space. The covariant

I'The real matrix [ consists of 4 x 4 = 16 real elements or parameters, which are restricted by the
orthogonality condition in Minkowski space, T = 14x4, i.e. by 4 (diagonal-) + 6 (off-diagonal-)
= 10 conditions. Thus there remain 16 minus 10 = 6 independent parameters corresponding to 3
spatial rotations and 3 Lorentz transformations (and hence velocities) in these directions.
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components of a contravariant vector ¥ € T then follow from z, = n,z".
Verifying in detail:

x'“x’u = 7;“"ll,"l#":cl¢,33N = (M"Y, npe)x 2k

T
=",z

="l 2z,
— ’I']K)‘ZT)‘VI
= 6KEmEin (77,{6 = 6Ke)

=x"z,..

A
uwnwewexn = ,’,’n 6,\wnwezemn

A special case is the case of motion of the reference frame system K’(z’,,)
with constant velocity v along the z-axis of K. We set

v _ 1
/8—277— /—__].—,82

The Lorentz transformation given earlier is now in contravariant and covari-
ant forms respectively (with 2! = z,2% = ct):

(17.16)

2 = y(a® - ga"),
xll = 7(1:1 - /3‘7:0))
$/2 = CL‘2,

o =2, (17.17a)
and

z'o = y(zo + Bz1),
z'1 = y(z1 + Bo),
$I2 = I,

z's = z3. (17.17b)

In this special case (I,") is given by (since zj, = [,"x,)

Ozg Or; Jdz9 Oz3 0 0

o' oz, 8 O v B

=1 -1 =1 =1 O
(l 1/) — dzg Ory Oxg Oz3 - ’)/,B Y 0 (17 18)
g Oay Bah Oz Gzy [T 1 0O 0 1 0 '

dry Oy Oxzo Ox3 0 0 0 1

Ory Ozy Oz Ozy

dzg Ory Oz Oz

Then, as expected,

det(l,") =v* =82 =+*(1 - %) = +1.
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Moreover from
I v
T, = l“ z,,

i.e. the matrix relation we assumed above, i.e.

ct’ Yy 98 0 0 ct
iy _ -] _ |8 v 00 -z
Ea=1_s1=10o o0 10]||=y|
-z 0 0 01 —z
we obtain ;o um
ct' = yct —yBz, t = —
e V-
and .
T—v
—x/ = ct — z, xl = — —.
We now compute, also for later reference purposes,
v 8 0 0 1 0 0 0
e _ [ v 00 0 -1 0 O
() = (l"1p0) o 0 10]}l0 0 -1 0
0 0 01 0 0 0 -1

vy -8 0 0
w - 0 0

Moreover
1 0 0 O 0 0
0 -1 0 0 8 4 0 0
14 — vy py —
EPy=0"L)=19 o _1 o 0 0 10
0 0 0 -1 0 0 01
v 8 0 0
_| - - 0 0
0 0 -1 0
0 0 0 -1
and
vy -8

O = OO
—_ o O O
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We defined above**
T =, £, (17.19)

since (this verifies the orthogonality)

(T)WP) = (") 0P)

vy -8 00 vy 8 00
(=8 v 0 0f{¥8 + 00
0 0 10 0 0 10
0 0 01 0 0 01
72—72,32 0 00
_ 0 62+ 0 0|
- 0 0 o=@
0 0 0 1

In applications it is sometimes useful to use yet another formulation of
the Lorentz transformation. We set

1 v
cosh ¢ := ———, =-. 17.20
Since
sinh®¢ = cosh?p— 1= -1+ 1 = p?
1-62 1-p%
we have
sinh ¢ = —'—8——
V1-p32
Then the equations
y_ Tt t,:t—(vx/cz)
Viep T ioE
can be written
' = zcosh¢ — ctsinhp, ct’ = ctcosh¢ — zsinh ¢, (17.21)

i.e.

(&) = (A (")

**This — perhaps not very appealing — definition of indices (because of their skew positioning)
agrees with (1*?)T = (1#¥), since

@A) = @177 = (") ™H) = 1t = (1)

(also on multiplying out).
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and
z! cosh¢g 0 0 —sinh¢ T
y _ 0 1 0 0 Y
2 | 0 01 0 z
ct —sinh¢ 0 0 cosh¢ ct
with

det(A4) = cosh? ¢ — sinh? ¢ = 1.

This form of the transformation reminds one of rotations, however, with
imaginary angles, which make 1/+/1 — 3% noncompact.

17.4.1 Covariant and Contravariant Derivatives

The (homogeneous) Lorentz transformations describe “rotations” in four-
dimensional Minkowski space (“rotations” in the sense mentioned earlier).
We now define contravariant and covariant derivatives as follows:*

= () (& )

T oz
0 0
ai=a_<’:{
With these definitions we have
0? 9
h, = — — = -[O. 17.23
Oy 8z v ( )
The chain rule applies:
0 or'? 9 0
HYy = = = PRl P =[Py, 17.24
() (8:5“) oz, 0x'f s ox'? 1o, ( )
z/P:npnzl':zl’c:lnl’zu
Hence
J
M = lP#(‘)p
and
ﬁuuf’“ = nu,ulpua,,n
so that -
8y = Ol (17.25)

*Note the reason: 6*(z2) = 9 (zx,) = 2z#.
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We can show that this relation is identically satisfied, if 0}, transforms like
the vector :1:;,, because then

e, = 10,8, = 19,179, =V, Re, (Y 5,00, = 9,

This means the derivatives transform like the corresponding vectors.

17.5 Construction of the Field Tensor F},

One can show that for instance the four-divergence 8, A* and the d’Alembert
operator O = 09, are Lorentz scalars, Lorentz invariants. Since det(l,”) =
1, it follows that the transformation of the volume element in Minkowski
space is (cf. Eq. (17.18) and thereafter)

dzg Ox1 Oxg O3
o o o orf
/ ! / ! T T T T
dzodridrydrs = am? az,l az? 62,3 drodzidrodrs
s s Qs R |
Ozo Oxy Oz T3
ozt Ozf Oz O
=3 3 Y3 3
Oxg Oxiy Ozg Oxa
= dzodxdzodz3, (17.26)

i.e. the volume element is invariant.
In order to achieve the covariant formulation of Maxwell’s equations, we
consider first the continuity equation, i.e.

. O _
Vit g =0 (17.27)

We can write this now (with (8,) = (o, 8;))

oJH
f L — —
o JH = i 0, (17.28)
Here
JE = (cp,j) (17.29)

is a four-vector (whether here +j or —j, is a question of the direction of the
current density j = pdx/dt). The equations of the potentials

1 0%A .
DA — o = ~Ho,
1% 1

_ 2
VAN c_2_3t—2 = _‘E;P = —HoC P, (17'30)
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together with the Lorentz gauge

and

can be written in the form

1 02
8P8PAI'L=M0J“, —D58u8u= c—25t3—A,
with
0, AF = 0.
The field strengths E and B are given by
0A OA
1= Ey E3) = — -——_— = 0y —
E:=(Ey, By E3) = -V¢ 5 C(VA + 33:0)’
B:= (BI,BQ,B3) =V x A,
and so, recalling Eqgs. (17.22) and (17.31), by

1 8140 8A2 0 12 2 410

Ry = T 0°A
cE2 0z2  Oxg gA+ ’

1 aAO 8A3 0 43 3 40
cE3 0x3  Oxg rA+ ’
Bl—w—w——(afl — 0°A%),

oAl  0A3 3 41

_ T _ al 3
By 523 Bl (0°A A%),

0A%  9Al 142 9 A1
=2 = — 9°A%).

By =G0 gz =04 )

(17.31)

(17.32)

(17.33)

(17.34)

The similar form of the expressions for F;/c and B; suggests the introduction
of the field tensor F,,, i.e. an antisymmetric tensor of the second rank with

6 independent components, i.e.

_E _E _E
c c c

0
L0 -Bs B
2 B 0 -B
B B, B 0

(17.35)
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One should note that here E/c and B appear, and not E/c and H. The
corresponding tensor with lower indices is obtained as

Fuw = 1upF

) I (17.36)
-2 B 0 -B | '
-8 _p B 0

Fl,, is also an antisymmetric tensor. Furthermore we observe: F,, follows
from F* by the substitution E — —E. Another quantity which is needed is
the so-called dual field tensor F* defined by'

B0 Bk
= E =1, (17.37)
By, - B,
c c
B3 £ —& o
c C
where
€"’P? = 41 for puvpo an even permutation of 0,1,2,3,
= —1 for pvpo an odd permutation of 0,1,2,3,
= 0, if two indices are equal. (17.38)

(Note: “Self-duality” means *FH = FM  anti-self-duality *FF = —FH/
neither of which apply here.) The dual field tensor F#¥ is obtained from
F# by the substitution

1
-E—-B, B-—- —lE.
c c
We see: In four-form notation the electromagnetic field is no longer described

by two separate vectors, but by one antisymmetric tensor of the second rank.
In a Lorentz transformation, i.e. transformation from the reference frame of

tNote that in 3 dimensions (with 4,5,k = 1,2,3, g = det(gi;) = 1) the dual of the 2-form Fj;
is the 1-form B¥, i.e.
Bt 1 eIk E.L,
2,/9 7

and so B! = Fy3, B2 = F31 and B3 = Fia.
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one observer to that of another observer moving relative to the first with
uniform velocity, the components E;, B; are mixed. Thus, e.g. the pure field
E/c of a static charge in one frame becomes a mixture of E//c and B’ in the
other frame.

X4

Fig. 17.3 Reference frames K, K’ in uniform translational
motion with respect to each other.

The Lorentz transformation of the field tensor F,, is given by the trans-
formation of a second rank tensor (see also below):

F, =1L Fyp =1, Fpp (1) (17.39)

=l,°

with the special Lorentz transformation

vy 8 00

v (1718 [ y8 vy 0 0
(1.") = 0 0 10 (17.40)

0 0 01

called a “boost” along the zi-axis with velocity ¢8 from reference frame
K(E, B) to reference frame K'(E’, B') indicated in Fig. 17.3.

The relation (17.39) defines a tensor of the second rank. That the quan-
tity defined by the expression

Fu(z) = 0,A,(z) — 8,Au(x)

is a covariant tensor of the second rank, can be shown by starting from the re-
lation which defines a covariant vector (i.e. tensor of the first rank), and that
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means the way this transforms under the appropriate transformations, in the
present case of Lorentz transformations. Thus we recall the transformation
of a covariant vector A,(z):

A7) = 2% A (). (17.41)

= 57
In order to verify Eq. (17.39), we have to show that with
oy =1"z, (17.42)
the relation (17.41) implies
A2 =1,"Au(2). (17.43)

Since IT,"1." = §,”, we deduce from (17.42):

_qT K
z, =1, o,

or
o = n#PlT p"m/K — ﬂ”plTpn’r}m, Z",
so that
oz
3277 = nuplTPnThw — Z#UT — lu“ (17.44)
and hence
ot
5w An(@) = 117 "0 Ay ()
= AP ()T e
= n,,nlnpAp(x)

=L, Ag(z) = L Ac(z),

i.e. Eq. (17.41) implies
A, (z') = 1,7 A (z),

which had to be shown.
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We now consider the covariant field strength tensor

FIW(.’El) = 8[uAV](.’E,)
8 8
= @) - A
(17.41) 8 oz b} ozP
= axm[ o2)3 }‘ B [Aﬂ(“')é‘ﬁ]
_ (0Ag(x) Oz 6:3[3 0?zP
= o7 oz ) oz T A8 g

_(0Ap(=) Oz ozP _ Ay(z) 02zP
oz oxv ) oz P\ 5pngpn

oz 8z
Bzt OV [’YA/B](:E)

UL 111,80, Ag () (17.45)

in agreement with Eq. (17.39).
In multiplying matrices we have to keep in mind that Lorentz indices
disappear through contraction. Consider first

v 8 00 5 ¢ ©
(1,0F,,) e [ 18 v 00 -2t 0 =By By
w top 0 0 10||-£2 B 0 -B
0 0 01

-Z _B, B 0

1B 2B 3B _pp, 25 4 6B,

c C [
E: E;
_ | 2 B B oam, Eam,
-& 0 -B
-& B, B 0

= (D) (17.46)



17.5 Construction of the Field Tensor F,, 403

Next we consider

DTV,
~288 2B 2% BBy B +a8B2\ /oy 48 0 0
| - B BB gy B4 4By | [ 48 4 0 0
B _ECZ Bs 0 —B 0 oY
-8 _p By 0 .
0 B 12 98By X2 4965
_& 0 1E2 _ 4By 15 4 4B,
| 2 ++8B; -2 1 4B; 0 B
~3R =8B, ¥R 9B B ’

(17.47)

This expression, the right hand side of Eq. (17.39), is to be identified with
the left hand side of Eq. (17.39), i.e.

o B OB B
[+ [ C

El
|2 o -B B
“1-Z B, o -B
¢ 3 1

E/

“Bo_poB o

C
so that we obtain the following transformation equations:
E'y = By, cB'y = c¢By,
EIQ = ’y(EQ - CﬂBg), CBI2 = ’y(cBg + ﬂE:;), (1748)
Ey = ’Y(E3 + CﬂBg), cBy = ’y(CBg - ,8E2)
It can be shown,! that in the general case (i.e. for the constant velocity v
with arbitrary orientation) these equations are:

2

E’=7(E+va)—mv(v-E),
, vxE 72
cB' = 'y(cB - ) e 1)v(v -B). (17.49)

For instance for E’; with v parallel to x;, and

B=v/c and B2=(v*—-1)/9%

¥See e.g. also Jackson [3].
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one obtains the relations:

2 2 212
=78 1+7

F\= E+0—7—2E=1——-——E=

1=7(E1+0) fy+1ﬂ 1 P 1=

E,=E

We observe again: E and B do not exist independently of each other. A
purely electric or purely magnetic field in the reference frame of one observer
appears as a mixture of both types of fields in the reference frame of another
observer moving relative to the first with uniform velocity v. Thus the sub-
division of the electromagnetic field into electric and magnetic components
has no fundamental meaning. Which field components appear depends on
the choice of reference frame of the observer. We also see that E and B are
the fundamental quantities and not E and H.

17.6 Transformation from Rest Frame to Inertial
Frame

As an example we consider the fields observed by an observer in reference
frame K, when a point charge ¢ passes him in rectilinear motion with uniform
velocity v. This example is always impressive, because one starts from the
simple Coulomb potential in the rest frame of the charge, then transforms to
the other frame and ends up with the law of Biot—Savart in the nonrelativistic
limit!

We let K’ be the rest frame of the charge. In this case the transforma-
tion equations of the fields are inverse to those given above. We obtain the
equations we need by making in the above the substitutions

E,B' - E,B and vV — —V.
We obtain (since K moves away from K’ with velocity —v)

E1 = i, CBl = CBi,
Ey =(Ey+cBB;),  cBy=~(cBy — BE3), (17.50)
E3 = v(E5 — ¢8By5), cB3 = v(cB§ + BE}).

Of course, these equations also follow from the ones given earlier by solving
for E;, B;. We let b be the shortest distance of the charge ¢ from the observer
at point P in K as indicated in Fig. 17.4. At time ¢ = ¢t/ = 0 we let the origin
O’ be at O and charge q at the shortest distance from P. The coordinates
of P as seen from K’ are therefore according to Fig. 17.4:

' = —ot, z'y=b, z'3=0,
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where

M= /a1 + 29 + 2'3% = /02 + (vt')2.

We ask: What is 7/, containing ¢/, expressed in terms of the coordinates of
K(z1,29,3,t)? Thus we require t' = t'(z1, 2, z3,t). This follows from the
Lorentz transformation in the direction of zi:

X3 X3
Fig. 17.4 Reference frames K, K’ with charge g at the origin O’ in K.

Since we consider P fixed in K, we have x; = 0. This means
t' =t (and z'y = —yvt = —ot’).

In the rest frame K’ of the charge q the fields at the point P are:
t/ t/
By = “LQ(U__) S CL
4dmegr’= \ 7’ 4megr’
where E'y = E; - e;, and (cf. Fig. 17.4) —vt'/r’ = cos4. Similarly we have

) COS(%_W_¢)_ qb 1 ;o 1'/3
E2_;7§ dreg T 3 dweg’ Es=0 )

the latter would be the tangential component of a radial field. Since the
charge is at rest in K’, we also have
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We now express these quantities in terms of the coordinates of K, i.e. with

v = /b2 + (vt')2 = /b2 + v2y2t2, ¢ = At,

we obtain
/ gyvt 1
El = — 3
(b2 + y202¢2)3/2 4mreg
b
E, = 7 L (17.51)

(b2 + y2022)3/2 47y’

and the others vanish. Substituting these expressions into the transformation
equations (17.50), we obtain

E\ = E| = —qyvt/4meo(b? + v20%2)3/2 ) E; vt
1 Y

By = vE) = qyb/dmeo(b? + v2022)¥2, [ By b
E3 =0,
B; =0,

¢Bs = v8FE4, = BE;.

Thus the observer in K observes a magnetic field. The relativistic effects
become particularly evident, if v — c. First we see that in the nonrelativistic

imit v —1(y=1/y/1-72):

qvBb 1
=fBFE, =
cBs = BBy (b2+,y2v2t2)3/247r60’
21 qBb 1

(b2 + v2t2)3/2 e’
which can be rewritten as

CB3:qv_b 1 gursin(r—1) 1

crd3dmey ¢ r3 4meg
qursiny 1

c 1 dme
__qursin(v,r) 1

c r3 4meg’
V X ¥ Clo
r3 4rm

cB =q (17.53)
—

with ¢ = 1/eopo. Here, —r is the vector PO’ described earlier as r. We

recognise the result (when divided by c¢) as the law of Biot-Savart for the

magnetic field of a moving charge, i.e.

polds(r’) x (r —r') dq ds
B 4rjr — r'|3 ’ a’ "\ dt
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Thus the transformation laws of the Special Theory of Relativity supply not
only relativistic corrections, but also the Biot-Savart law. However, it is
not correct to conclude, it would be possible to derive the magnetic field and
magnetic force, as well as the full set of Maxwell equations from the Coulomb
law and Special Relativity. We referred to this already in Chapter 1.5

Next we have a closer look at the longitudinal field F,. Considered as a
function of vt this has the form shown in Fig. 17.5 for v very small (3 ~ 0)
and very large (3 S 1). The expression is

gyvt

E)=—- . 17.54
! dmeg(b? + y20242)3/2 ( )

. Vi

B~1
Fig. 17.5 E3 for limiting cases of 5.

The maxima and/or minima are given by

d E, = d gryvt —0
dvt YT dut Areq(b? + y202t2)3/2 =Y,
ie.
1 3 242022 .y
(6% + y202t2)3/2 2 (B2 + y20212)5/2
or
b2 + 42022 — 3420212 = 0,
or L, 1
vy = F—— 2 _ )
(vt)o Sy VTR

$See e.g. Jackson [3], Sec. 12.2, p. 578.
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For 8 < 1, we see that (vt)o is small; for 3 & 0, we see (vt)g ~ £b/V2 ~ is
large, as shown in Fig. 17.5. The value of E; at (vt)o ~ £b/(v/27) is

_ 4 q 1
(B1)o = F\ 57 2 Treg”

0

Fig. 17.6 FE; in limits of 5 small and large.

This expression is independent of v; hence the maxima have the same height
in Fig. 17.5. We see, that F; of Eq. (17.54) is an odd function of vt. In an
observation in the time interval At = (—tg, tp) the effects average out and E;
is not observed at P. The observer at P therefore observes practically only
the transverse field of the components Ey,cBs = BE,, which for 5 ~ 1 are
not only mutually transverse but also almost equal in modulus. If we look
at the field Ey as a function of vt, we see that this has the following form:

B qvb
2 = .
Aren (b2 + v2022)3/2
For the limiting cases the behaviour is sketched in Fig. 17.6. We see that
E, has the shape of a “pulse”. Thus the field of a charged particle moving
at relativistic speed is equivalent to that of an electromagnetic pulse. This
principle is exploited in attempts to observe heavy magnetic poles. In such
experiments an atom is used to feel the effect of a passing magnetic pole (see
also Chapter 21).
Finally we consider the spatial distribution of the fields with reference to
the instantaneous position of the charge. With E = (F;, E3) we have the
ratio

(17.55)

E1 vt

E; b’
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From this and the force diagram we infer that the electric field has the
direction of the vector n along r, with E || n and (see Fig. 17.7),

n-v vt

cosy = =——.
v r

O E, q

Fig. 17.7 The direction of the electric field.
But now b
siny = —
T
and (vt)? + b% = 2, so that

. b2 r2— 3252 B2+ (vt)2 — 522
1—ﬁ251n21/;:1—,32r—2: r2ﬁ = (v22 p ,

and hence

1-p%sin?y =
b2/ + (vt)?
=
. b2 + 42 (vt)?
- Ner?

b2(1 - %) + (vt)?
r2

(17.56)

Thus

_ _ gy(-vt,b)
E= (E17E2) - 47T60(b2 +’)’2(’Ut)2)3/2

_ qr
Amen(~2r2)3/2(1 — B2 sin? )3/2

_ qr

" dmeg(y2r3)(1 — B2 sin? 4))3/2"

(17.57)
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N
/TN

Fig. 17.8 The isotropic field for 8 ~ 0.

Thus the radial field has an isotropic distribution only for 8 ~ 0, i.e. as
illustrated in Fig. 17.8. At ¢» = 0 and m, the field E is

E large

E small E small

VvV —=C

E large

Fig. 17.9 The electric field for v ~ c.

_ B2
E = qr23=(1 ﬂ)qr_)o for v—oe
Amegy?r dmegr3

At ¢ = +7, the field E is

3 1
E= wr gE—»oo for v—oec

 Ameoy?r3 T dmegy/1- B2 T

We see therefore: Whereas the electric field is isotropic in the case of the
static (or almost static) charge, this is no longer the case for the field of a
charge moving with velocity v; in the latter case the longitudinal component
of the electric field (i.e. along the direction of motion of the particle) is
smaller than the transverse component, and this effect becomes more and
more pronounced as the velocity approaches that of light. This is illustrated
in Fig. 17.9.
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17.7 Covariant Form of Maxwell’s Equations

Our next step is to reexpress Maxwell’s equations in terms of the field
strength tensor Fj,,. Later we shall derive these equations from an action
integral. Maxwell’s equations as we obtained them are

veE=L (Gauss),

€0
1 0E ) .
V xB- S = Mo (Ampeére-Maxwell),
V-B =0 (no magnetic poles),
V xE + %—1? =0 (Faraday). (17.58)

We now demonstrate that we obtain these equations by forming 0, F*? and
0o FB, where F# is the dual tensor defined by Eq. (17.37). In fact, we
obtain (to be verified below):

O FB = 1o JB,
0 FP =0, (17.59)

for J? defined below. We now verify these equations. Considering the left
hand side of the first equation, we have

_E _E _Es
0 c

o (L) |2 O B m
(a3 - axo) )

and hence
1 18E, 0Bs 8By
0 Ff = [V .E, -~ -
(cv E, coa0 T Jy 0z’
—lﬂ B 0Bj3 + 0By _15E3 + 0B, B 0B,
coz® Oz 9z’ c02%  Ox Oy

1 1 0E
)

Setting this equal to
/‘1‘0*]5 = /Lo(Cp,j),
and identifying components, we obtain (with poegc? = 1)

0 1 0E
E=1X,
v e’ caw0+VXB Hod,
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in agreement with the first two of the above Maxwell equations.
Similarly

o By 0 Es _E
8_7:'Qﬂ: I v 4 c c
S b P
E _E

Bs
and hence
0B 10E; 10F,
0,F* = (V.-B, - - -
( 9z c Oy ¢ 8z’

_8B2 lc')Eg B l@El _833 3 10Ey 10E;
0z0 ¢ Oz c 0z’ Oz c

¢ Oz c Oy

B 1 )
Equating this to zero, we obtain the other two Maxwell equations. The
second of Eqs. (17.59) can also be written:

Ba€e™PP7F,y = 0.

Using the total antisymmetry of the Levi—Civita symbol the left side can be
written:

6ﬁapa
PPy Fpy = —€P2P7 9, F,p = —T[aan[, + 0y Fyo + 05 Fap)

Bapo
= —GT[aaa,,Aa — 0B Ay + 8y05 Aa — 0p00As + 0,05 A, — 8,0,A0] = 0.

Solely from the antisymmetry
Fon=-F,

we obtain
O0uFpy + 03Fyo + 0, Fop = 0. (17.60)

This equation is automatically valid for the antisymmetric tensor F,, and
represents an identity which is called Jacobi identity or Bianchi identity.
The equations 8, F*? = 0 follow from this, and are therefore sometimes
referred to as examples of equations of motion which are not derived as Euler—
Lagrange equations. Equations (17.59) are Maxwell’s equations in covariant
form, i.e. in form-invariant formulation, which means they transform under
Lorentz transformations like Lorentz or Minkowski 4-vectors.
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17.8 Covariantised Newton Equation of a Charged
Particle

Our objective now is to reexpress the equation of motion of a Newtonian
particle with charge g in the presence of an electromagnetic field (i.e. the
Lorentz force) in covariant form, i.e. the equation we encountered several
times earlier,

—(?B =q(E+v x B). (17.61)
dt

One should note that the left side of this equation consists of the vector p
and the 0-component or d/dt of the 4-vector d,. It is therefore necessary to
change something in order to achieve the same transformation property on
the left of the equation as on the right. This is done by replacing ¢t by an
invariant quantity. In order to generalise the Newton equation

d d .
= 2=
P=F

relativistically, one introduces therefore the so-called eigentime 7, defined by

(ds)? = cA(dt)? — (dx)?

= ?(dt)? [1 - (}1—2(‘2—’:)2]

= ?(dr)2. (17.62)

fi

T is the time, measured by a clock fixed in the particle, i.e. in its rest frame.
This is the reason that 7 is called the eigentime of the particle. With

v_dx
T dt

(which is constant for inertial frames), this is the important relation which
describes the so-called “clock paradox”, i.e.*

ar === VI=Fdt, ¥ =125 (17.63)
: .

This relationship expresses, so to speak, that a stationary clock runs faster
than a moving clock, a phenomenon known as “time dilation” (cf. the

*For curvilinear coordinate systems the corresponding equation is dr = |/ gPrdz dre/c.
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discussion in Jackson [3] with detailed explanation of experimental verifica-
tions). Since (ds)? is Lorentz invariant, then also (dr)? or /(d7)? = dr.
This suggests one to generalise the Newton equation as (o =0,1,2,3)

%(mua) = K, = Minkowski force

(definition). Here u, is the 4-velocity (also to be understood as tangential
vector with respect to the Minkowski manifold)

dx®
= — 17.64
ut = (17.64)
with (cf. (17.63))
d:l)i Uy
i = — - 17.65
V1 — B2t V1-p32 ( )
and p p
To cdt c
Uy = — = = . 17.66
T T Topd 1B (17.66)
The 4-form equation can now be written
d(muy)
— = K,. 17.67
V1 - 3%t ( )
The spatial part implies
d v
—— | = _ R2K.
dt(’”m) Viz o
Momentum conservation for K; = 0 implies the identification
momentum : p; = I (17.68)

V1i-p2
Hence also

F, = —/1- B2K;. (17.69)

The significance of the time component of the 4-form equation (17.67) can
be seen as follows. We multiply the equation by u®:

u E(mua) =u*K, = E<§mu ua).
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However

2 2 2,2
o c v v _ 2

U ua:(U‘O)Z_(ui)2=1_[82_1_132: ]__ﬂQ

Hence
0=u*K,, ie upKo=ukKj,
or c v; F
VIZE D VISRV
ie.

_1 v-F
e 2
Thus the fourth component of Eq. (17.67) becomes:
dime//1-4%) 1 v-F
V1 - B2t cy/1-p62

i.e. .
d mc?
| ——)=v-F,
dt\ /1 -2

ar T mc?

@ vE T=0p

Vi

i.e.

415

(17.70)

(17.71)

(17.72)

(17.73)

Since v - F = work per unit time (or power), T is the total energy, i.e.

2 1
T = _me =mc? + —mvz-l-O(lQ).
V1-p82 2 c

Then

Pa = MUy
with

me T
Po = Mmug =

VIi-BE

For v < ¢, Eq. (17.73) reproduces Newton’s equation of motion:

E<§mv)—v-F,

%(mv) =F.

or

(17.74)

(17.75)

(17.76)
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From Egs. (17.75) and (17.70), we obtain in addition

PPe = mPuug = m2c?, (17.77)
and so
Po — p2 = m202,
or
T\ 2
(E) = p? + m2c. (17.78)

For p =0, T = FE this entails the well known FEinstein formula E = mc?.
Finally we consider the Minkowskian generalisation of the Lorentz force:

Ka EqFaﬂ’u,ﬁ

B _E _E 132
c c [

0
E 0o -Bs B V1-52
2 B 0 -B || -7
B

—B2 Bl 0 —Vz

and so

Es+v.By — ’UyBl

(17.79)

Ev
Ko — _a E + UyBg — v, By
V1 —ﬂ2 E> +v,By —-v,B3

1..52 E+va>

The equation
dp* _ d(mu®)

A = K@
dr dr

together with
dp® 1 d( ) = 1 i( mv )
i ga™P T mma\P Ao

on the left hand side and (17.79) on the right, yields

@Ei(__mv )=q(E+VXB),

dt ~ dt\ /132
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dpp  E-v e d I _E.v
a "o Y ow\e) T T
and so T 5. d
- dx
— = 17.80
a " a (17.80)
power  work/time
We see that the 4-form
K& = qF°# ug
is the Lorentz force supplemented by the power as the additional fourth

component.

In the case of the macroscopic Maxwell equations we have to distinguish
between (E,B) and (D, H). Evidently we need only to make the following
substitutions in the above equations: E — D,B — H. The equations then
describe macroscopic averages of the atomic properties. In this reformulation,
the polarisation P and magnetisation —M can be combined like (E,B) and
(D, H) to form an antisymmetric tensor of the second rank, and acquire their
physical significance as macroscopic averages of atomic properties in the rest
frame of the medium.

Comment
In the force-free case

du® d?z®
— =0, ie. —s =0
P

in agreement with d?2%/dr? = 0 for constant velocity of a particle in an
inertial frame. In curvilinear coordinate systems we have (also for K = 0)
d?*u®/dr? # 0, and one says, the coefficients of the metric act as potentials
of fictitious forces.

17.9 Examples

Example 17.1: Gauge invariance
Is the theory defined by the Lagrangian

1
L= Emuo’uu + euaAa

gauge invariant?
Solution: The gauge transformation is

A% — A® - 0%, x = x(z®) arbitrary.
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Hence the variation of the Lagrangian is with (see above) u® = dz®/dr

&)
6L = —eunad8%x = _eai_ai — _ed_X‘
ar oxP &t

The answer is therefore : Yes, because (with x = 0 at 71, 72)

T2 T2 6X
action S=/ Ldr and &S = —e/ dr

= —0.
- T

Example 17.2: Addition of velocities

Let K,K’, K denote reference frames with parallel axes. K’ moves with velocity v away from
K, and K" moves parallel to these with velocity u away from K’. What is the relativistic law of
addition of velocities (i.e. obtain the velocity w of K’ with respect to that of K)?

Solution: We use the Lorentz transformation in the form X’ = AX, where X = (z,y, z, ict) and
(cf. Eq. (17.21))

1 0 0 0
_ 0 1 0 0
A=Ay = 0 0 cosh¢ isinhg |’ (17.81)
0 0 —isinh¢ cosho
with
cosh¢ = 1/v/1— B2, sinh¢=8/V1-082, B=uv/c (17.82)

Performing two consecutive Lorentz transformations we obtain

0 0 0

1 0 0

0 cosh @ isinh |’
0 —isinhé coshg

0 0
0 0
cosh(¢ + ¢’)  isinh(p+¢') | =
—isinh(é + ¢’)  cosh(¢ + ¢')

Aw = AuvAy =

OO O
o~ O
OO O

where ¢, ¢, ¢ correspond to the velocities v, u, w. We obtain therefore ¢ = ¢ + ¢’, where

1 1 1
Ji-= Ji-g Ji-%

cosh @ = cosh(¢ + ¢') = cosh ¢ cosh ¢’ + sinh ¢ sinh ¢’

cosh¢ = , cosh¢= cosh ¢/ =

With the relation

and the relations (17.82) it follows that

u% ol
«nl:
qn

1 1 1
J1-% _\/1—§§\/1—§7 V1-

142
VEiE

Squaring and taking the reciprocal and later the square root, we obtain

w (-0 -t
2 (1+%€_)2
(u v)?

TR
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and hence utv

w= . (17.83)
1+ %.}

We see: For uv < ¢? the result is simply the sum as in the familiar nonrelativistic considerations.

Example 17.3: The twin problem, or clock paradox

A and B are twin brothers. On their 21st birthday A leaves his twin brother B on Earth and flies
for 7 years in the direction of z (7 years measured on his own watch). The velocity v of A relative
to that of the Earth is Jc, the fraction 7 of the velocity of light c¢. After 7 years A reverses his
direction and returns to Earth with the same speed. How old are A and B then?

Solution: A is evidently 21 + 7 + 7 = 35 years old according to his watch. We calculate the
age of B (as measured by B on his watch) as follows. Reversing the Lorentz transformation of
Eq. (17.21), i.e.

2 =z, y' =y, 2z’ =zcosh¢—ctsinhg, t' = _Z sinh ¢ + ¢ cosh ¢, (17.84)
c

we obtain
'
z=2a', y=1vy', z=2coshe—ct'sinhg, t= z sinh ¢ + t’ cosh ¢, (17.85)
c

where with 8 = v/c we have cosh¢ = 1//1— %2 = 1/y/1—32 > 1. We now use the last of

Egs. (17.85): t = 561— sinh ¢ + ¢/ cosh ¢. Since A is at rest in his frame K’ with primed coordinates,
we have z/ = 0. Then ¢, the time measured by B on Earth in frame K, is for # = 7 years:

t = 7cosh ¢ years, i.e.

7
t = ———— years. (17.86)

V1-72

The age of B is therefore at the time of return of A

21 + 2x 7
= ——  years.
V172
If 4 = 4/5, the age of B follows as:
2x7 2xT7x5 70
21+ =21+ :21+?:44 years.

1-($)? ’

Thus 35 years and 44 years are the time intervals which A and B measure on their respective
watches. Hence in this way, as remarked above, the stationary clock appears to run faster than a
moving clock.

Example 17.4: Lifetimes of particles

Establish the lifetime of a particle in the laboratory frame for the cases:
(a) a particle with constant velocity v, and

(b) a particle with arbitrary velocity v.

(¢) Is the photon a stable particle?

Solution:

(a) and (b) The spacetime distance ds between the spacetime point 1 of creation of the particle
and the spacetime point 2 of its decay is given by

2
ds? = 2di? ~ dx? = c2dt2{1 - (d—x) }
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The invariant eigentime or proper time of the particle is the time 7 given by ds? = ¢2dr2. Thus
in case (a) the lifetime of the particle measured in the laboratory frame is (t2 — t1) given by

-T= (2 —t)V1- 8%, =52,
and in case (b)

-1 = /:2 dt\[1 - B(1)2.
1

(c) Suppose the photon were unstable. Then the only invariant way to define its lifetime would
be as that in its rest frame. However, since the velocity of the photon is constant and unequal to
zero, it has no rest frame. This can also be seen as follows:

“Lifetime in rest frame'” = 75 — 11 = (t2 — t1) \/1 ~ 32 = 0(o0) = indeterminate.
N — N’
oo observed in lab. frame 0

Thus the question is meaningless. This applies to all particles with mass zero. (See also the
remarks at the beginning of this chapter).

Example 17.5: The dipole in a magnetic field*

The charge +¢ of two charges +q, —q, both initially at point a, is moved in the (z, y)-plane through
the field F;3 to the point b.

(a) With the gauge choice 93(Aq, A) = 0 determine the mechanical momentum p3 of the system
in the direction 3.

(b) Is this momentum independent of the path from a to b?

(c) Show that the momentum p3 is cancelled by a corresponding momentum of the electromagnetic
field.

Solution:
(a) Starting from the Lorentz force F = ‘i—f = q% x B, dp = gdx x B, we have

p3 = +q/ Fidzt = ——q/ Fiadx®.
a a

Now,

b ) b

/ Fizda =/ (Fiadz® + Fpada?)

a a
b b
= / (8143 — B3 A1 )da? +/ (B2 A3 — 83 A3)dx?.
a a

With the condition to be assumed, 83(Ag, A) = 0, we obtain

b b
pa= —q/ VA -dx = —q/ dA3 = —q(Aa(b) — As(a))
and hence
p3 = q(As(a) — As(b)),

depending only on the endpoints a and b.
(b) We consider the curl of dp:

V x dp =V x {gdx x B} = q[V - B(dx) — ( V-dx )B] =0,
0 d(V -x)=0

*See also W. Taylor, JHEP 0007 (2000) 039.
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since dF = 81 Fy3 + 03 F31 + 33F12 = 0, i.e. here V.B = 0. As a result of this condition p3
is independent of the path from a to b (compare with the definition of a conservative force in
mechanics).

(c) The field momentum of the electromagnetic field has been defined in Sec. 7.7 as

pfield — / dV(D x B).
Thus we have in the present case for this
Pfield — ¢5¢ / dV Fy; Fa; = —eoc / dV Fp;8; A3 = eoc / dV A368; Fo;.

In the last step the integral over a total divergence is zero. In the next step we use Eq. (17.59),
i.e. the Maxwell equation V- D = p in the form 9;Fy; = quoc{é(x — b) — §(x — a)} together with
50y0c2 =1, so that

Pfeld = ocpgcq / dV A3{6(x — b) — 6(x — a)} = q(A3(b) — As(a)),

which had to be shown. Thus, the mechanical momentum determined by the Lorentz force, is
cancelled by a corresponding negative momentum of the field.

Example 17.6: Orthogonality expressed invariantly
Show that when E - B =0, also F,,, F#¥ = 0.

Solution: Using Eq. (17.36) for F,, and Eq. (17.37) for 7** and multiplying one finds

E-B
—1.
c

FuyFH =
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Chapter 18

The Lagrange Formalism for
the Electromagnetic Field

18.1 Introductory Remarks

In this chapter we derive Maxwell’s equations as the equations of motion of
the electromagnetic field in spacetime in the customary way as the Euler—
Lagrange equations derived from an action integral. We discuss gauge invari-
ance, transversality and masslessness of the electromagnetic field and touch
briefly (restricted by our predominantly classical topic here) its spin. Finally
examples are given to illustrate the diversity of some recent explorations
motivated by the Lagrangian of Maxwell electrodynamics.

18.2 Euler—Lagrange Equation

We define as Lagrangian density the functional
L(Au(z),0,A,(2)).

We note that £ is not L(Au(z),0,A,(x),t). Here A,(x) is the electromag-
netic 4-potential describing the local electromagnetic field. We define as
Lagrangtan the volume integral

L(t) = / d*xL(A,(z),0,4,(z))

and as action or action integral
L2

S= [ datL(t).

t1

423
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We demand that S or rather the Lagrangian density be a Lorentz invariant
(recall we had verified previously the invariance of the spacetime (Minkowski
space) volume element). The time dependence of L is implicitly contained
in the fields. Our aim is, to derive the Maxwell equations in analogy to
equations of motion in classical mechanics. Hence we construct an action
to which we apply a Hamilton’s principle. This means we demand that in
varying the action by varying the fields A,(x) and their derivatives 9,4, ()
at fixed endpoints, this action is to remain stationary. Thus we demand

(2]
0=0S=06 [ dtd*zL(A(z),d,A4,(z))
t1
with
0A, =0 at t=t1,t3 and Au(z) -0 for |x| — co.

Hence

t2
0= / dtd3z [8—‘6&1,1 + a—ca(auAu)]
i

X 94, 8(9,A,)
t2 oL oL

= dtd%[—aA + =9 6Al,].
" 84, " 8(8,4,) k(040)

As in classical mechanics one varies with respect to a parameter o, whose
values label the various paths in configuration space, so that

6(0,A)) = a—i—(auA,,(a:,a))da =0,(0A,).

After a partial integration the variation of S is seen to be

B s [OL oL oL
o= [ |7 -0 (g ) o4+ [ 54 gy
S, is a 3-dimensional pseudo-plane orthogonal to x,. If the surface S, is
time-like, i.e. an area orthogonal to the time-axis, the second integral van-
ishes, because §A, is zero at the integration limits £ = ¢;,¢,. But also the
non-timelike surface-area contributions vanish by extending the volume of
integration far enough so that all field components and their derivatives van-
ish on the boundary. (This is a plausible and in field theory frequently made
assumption on the basis of the localisability of the fields, i.e. finiteness of
the velocity of light, c). Since the components A, or rather their variations,
are independent of one another, we obtain the Fuler-Lagrange equations

These equations are Lorentz covariant, provided L is a Lorentz invariant.
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18.3 Symmetries and Energy-Momentum Tensor

In classical mechanics a very generally valid theorem known as Noether’s the-
orem is well known. This theorem says: Every continuous symmetry (group)
of L (i.e. invariance of £ under the transformations of the group) has as its
consequence a conservation law. With the help of the Euler-Lagrange equa-
tions we can immediately derive one conservation law or conserved current.

We have o ar
=— —0(9,A,).
oL BA#(SA"JF 8(8uA,,)6( LWAy)
Using the above Euler-Lagrange equations, we have
oL oL oL
0L = —_— — v) = ——04, ).
(S )4+ sy O = (50

Consider now a transformation depending on some parameters, with an in-
finitesimal “form transformation” dp of the field, i.e. in the present case of
A,, defined by
opAy = Ay (z) — Au(z)

(note the argument z is the same in both quantities on the right). Then, if in
the corresponding variation of £ without the use of the equations of motion
one has

épL =0,V*, V¥ some 4-vector,
one says the transformation represents a continuous symmetry of the theory.
Setting 64, = 6pA, and 6L = 6pL, one has

8,* =0 (18.2)
with ar
= 2 _6pA, — VE .

Then j* is called a conserved current or Noether current.* There are cases for
which V# # 0 (e.g. in the case of translations, rotations) and cases for which
V# = 0 (in the case of gauge transformations). A simple example for the
latter is £ = ¢*¢, the star meaning complex conjugation. The infinitesimal
transformation d¢ = ie¢ (e real) implies 6pL = 0, i.e. V¥ = 0. One says,
the transformation is an “internal symmetry’. Equation (18.2) expresses
the conservation of the current j#. In Example 18.1 the derivation of the
conservation law associated with translations is demonstrated in the case of

*This procedure, attributed to R. Jackiw, was emphasised in H. Fleming, Noether theorems,
Univ. of Sao Paulo Report IFUSP/P-517(1985), unpublished.
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the simpler theory of a scalar field ¢(z). Instead of deriving the currents we
are interested in with lengthy calculations from the above expression,! we
simply define certain quantities here and then verify that they are currents.
We define as the so-called energy-momentum tensor the quantity

1 oL
T '= — | =L+ ———-FA ] 18.4
CHo [ 7 a(auAp) ? ( )
The constant in front is introduced to ensure agreement of the field momen-
tum with our earlier definition in Sec. 7.7. It follows that

oL
C,U,()alu‘TIJ‘V = —-9"L + 8/»‘ (mauAp>

oL oL
=-0"L+0 (—)GVA + (—)8 o¥A
g 8(8;“4;7) g 8(8“14[,) g g
oL oL
=-0L+ ——3"A —07(0,A
o +3Ap P+a(8HAp) ( 24 P)
==L+ 0L
=0, (18.5)

where we used in an intermediate step the Euler-Lagrange equations. The
result represents a conservation law or equation of continuity. If we integrate
the equation with respect to space coordinates at a fixed time, we obtain

/ 4320, T* =0,

and hence

Ao / BxT% + / d3zd,T" = 0.

The second contribution is the volume integral of a total divergence, which
with Gauss’ divergence theorem can be converted into a surface integral, and
this vanishes on account of a localisation of the fields in a finite part of space
(i.e. the fields decrease to zero on the boundary). Thus we obtain

d

OZE

dzT%, v =0,1,2,3. (18.6)

For a further evaluation of this expression in electrodynamics, we need to
know the components 7%, which therefore have to be determined.

tSee e.g. Schweber [19], pp. 207-211.
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We define as 4-momentum density p* the 4-vector

1 oL
p=T0 = —[— Ohp 4 2 _9HA }
P cpo | 8(30A,)” )’
and as 4-momentum P* the spatial integral of the density
“— 3t = i 3] —_py0u P K
Pt = [ d°zp = o (-t L+ nPOFA,). (18.7)
0
In this expression, 7° is the density of the conjugate momentum
oL
= — 18.8
3(80Ap) ( )

(defined in analogy to the conjugate momentum in classical mechanics i.e.
to p = 8L/0¢). The time component of p* is

1
p’ = —[-L+7P°A,). (18.9)
CHo
This expression represents a Legendre transform and we set
1
H=H(A,7,) =cp’ = L—[WPBOA,, - L], (18.10)
0

and we shall see that this is the energy density or Hamilton density in agree-
ment with our earlier expression. We observe that contrary to £, H is not a
Lorentz invariant, but the O-component of a 4-vector! For the further evalua-
tion of these expressions we require an explicit expression for the Lagrangian
density. We then expect that we obtain for the momentum density the field
density and for the Hamilton density the energy density of the electromag-
netic field — both of which we encountered in earlier chapters.

Example 18.1: Translations as continuous symmetry of a Lagrangian
Show that the translations z/# = z#+¢* (e* a constant 4-vector) represent a continuous symmetry
of the Lagrangian of a scalar field ¢(z) with density

1
£(8,0u8) = 50" 0,8 — S,

Solution: According to the above we have to show that
épl =08, VH

and have to determine V#. Since ¢(z) is a scalar, we have ¢/(z’) = ¢(z) (recall that scalars,
vectors, tensors in some space are defined by the way they transform under the transformations of
this space). But also for infinitesimal e#

¢ (2') = ¢'(z) + (2'* — 2*)8ué()
= ¢/(z) + 0, 4(x).
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(It suffices to consider the infinitesimal transformation, since the finite transformation can be
generated from a sequence of infinitesimal transformations). Hence the form variation ép¢ =
¢'(z) — ¢(z) is with ¢’(z’) = ¢(z) in the case of translations given by

Spd(z) = ¢'(z) — ¢(z) = —eH 9, o(x).
With this we obtain
SpL = (8498, — m2$)dpd = (8" ¢80, — m2P)(—€PBp)

or
SpL = —ePd, %aﬂ¢a,,¢ - %m2¢2 .

Hence in the present case of translations
V# = —etL.
This was obtained without recourse to an equation of motion. Applying Eq. (18.3) in the present

case, we have

_ e
" 9(8u9)

and so 9,j* = 0 can be written 8,T#” = 0, where

Spd— VH = —e"{ 9L o4 n*;z:}

s
¢ 8(8,9)

ac
T“":const.{———a" - ‘“’L},
5o 0"

which is the corresponding energy-momentum tensor. For the transformations of the full Poincaré
group the corresponding considerations are somewhat more involved.

18.4 The Lagrangian of the Electromagnetic Field

We have seen previously that two of the four Maxwell equations can be
combined in the following covariant form

8, F* = poJ”. (18.11)

We saw that the other two Maxwell equations follow from the Jacobi identity
or are trivial consequences of the antisymmetry of the field strength tensor
FH#, We now search for an expression of £, from which the upper equa-
tion can be derived as Euler-Lagrange equation. We consider the following
expression and we shall see that this yields the desired equations:

L(A,,0,4,) = —%F“"F,W — 1o J A, (18.12)

We see immediately that the expression is Lorentz invariant. With some
thought one will realise that (apart from a possible additional term) there



18.4 The Lagrangian of the Electromagnetic Field 429

is hardly any possibility to construct some other expression under the con-
ditions it has to satisfy (only first derivatives, Lorentz invariance, gauge
invariance). Consider

o (1
- - 1Y K _ K AP _— A
8(8VA#){4(5 AR — 55 AP)(D, A, — B ,,)}

1 v 1 v K VK
= JFPN(858% — 628) + (676" — 6"6%) F
AR

1

_—a (18.13)

Hence the equation of motion
oL oc
0A, o (0, A,)

—poJ* = —8,(F“M),

implies the relation

i.e.
O, F"H = poJ# (18.14)
in agreement with the desired equation.
Next we calculate the density of the canonical momentum, i.e.

oL . ,
= ——— = FW =0 09 gt=FD0 18.15
8(‘90Au) ( )
According to the expression for F'#¥ in Eq. (17.35),
. E
FO = — (18.16)

The product F¥F,, in the Lagrangian density can also be reexpressed in
terms of the field strengths with the help of the matrices (17.35) and (17.36).
Thus (“I¥” meaning “trace”)

SRR, — TER,
jRY

olgjnlglnl_tfj o
&
[em)
|
&
o
olEofEofm ©
&
[en}
!
&
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2
=2(E—2—B2>.
C

Hence the Lagrangian density is also

L=L(E;B;) = 1(-1:3 - Bz). (18.17)
T 2
We note the analogy with the simple Lagrangian in classical mechanics: L =
kinetic energy — potential energy, and compare also with the energy density
(see below).t
We consider now the case of the free electromagnetic field, i.e. J¥ = 0.

Then
1P A, = m°0%Ag + m°A; = 0 — 7100 AT = —F0904°

(18.16)

1 o1 104¢ 1 .
—=E;0°A' = -E;{ - - = 5 Ei(E; — V'¢),
“Ei0°A CE( c8t> SE(E:i - V')

where we used Eq. (17.33) in the last step. Thus in vector form

2
1
A, = f—2 - 3B V¢
E2 1
=;§‘—C—Q[V‘(E¢>)—¢V'EL

where the last term vanishes on account of J¥ = 0. We obtain therefore for
the energy density H

H=cp’ =cT? = #i[ PP A, - L)
0

1[E2 1 1/E?
oz —avm -5 (5 )]
CLJ1/E* E¢
~ulp(F ) v ()] .

(Compare the first contribution with £ above). For the energy of the

$Observe also that, with c2epuo = 1, one can define D as

D= i% and similarly H=——}—-QL—:

o OF o OB’
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electromagnetic field we obtain by integrating over all space
1 E?
Efield = /d%H =— [ dz ( +B2)
240

3z E? + B?
2# (eopoE* 4+ B?)

=5 /d%(E -D+H-B), (18.19)

where with the help of Gauss’ divergence theorem the contribution of the
divergence again vanishes for localised fields (as here assumed).’
In an analogous way we can calculate the field momentum P?, i.e

cuoP = c,uo/d?’xpi = /dgx[—n0i£+7rp8iAp] = /d%wpaiA,,
= / Pr(FP0)o' A, = / a3z F09" A;
= / d*zF0(0'A; — 8;A") + / Pz F99; A
- / B AT — & AY) - / BrFIO0 Al
/ oL 2 (043~ 0 AT) - / P ool (FI0 A1),
where, as above, we have
& (FOAY) = (¢ A FIO 4 ALY 90
with 07 F3% = V- E/c = p/(eoc) = 0. But E;(0° A7 — 89 A?) is element “” of
0 —-Bs B
(E1 E; E3) | Bs 0 -B
-B, B 0

= (E2B3 el EgBQ, E3Bl - ElBg, ElBg — EQB]) =K x B.
We obtain therefore

Pi=—

) 1 )
/ d*z(E x B)* — o / d*zV . (EAY), (18.20)

c?uo

or with arguments as before
1
P=(PLPP) = 5 /d3a:(E < B) = /d3x(D «B).  (18.21)
0

For Py, P; we obtain therefore the expected expressions, although those for
the densities differ from the earlier expressions by divergence contributions.

$We can always add a divergence to the Lagrangian so that the Lagrangian density is not
uniquely defined.
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18.5 Gauge Invariance and Charge Conservation

We know from Noether’s theorem that every continuous symmetry of the
Lagrangian implies a conservation law. Thus invariance under spatial trans-
lations implies conservation of momentum and so on, as is familiar from
classical mechanics. An additional aspect of electrodynamics is its invari-
ance under gauge transformations. The associated conserved quantity is the
electric charge. This is the aspect we investigate next.

In general one distinguishes between global gauge invariance — corre-
sponding to z-independent transformations — and local gauge invariance
- corresponding to z-dependent transformations. In the context of our
considerations here only the electromagnetic potential A, and the current
J. = (cp, —j) appear, not however single electrons and positrons other than
classical pointlike charges. In order to take electrons and positrons properly
into account we would have to construct the complete Lagrangian for charged
objects, or rather fields, in interaction with the electromagnetic fields, and
that would mean the Lagrangian of quantum electrodynamics. The corre-
sponding Lagrangian density has the form

_ 1. .,
L(A,,00Au Y, 0u) = Y(ivh 0, — eyA, —m)yp — ZF“ Fu, (18.22)

where 7 is the field of the electron, the so-called Dirac field, a 4-component
column matrix called spinor, and y*,u = 0,1,2,3, are corresponding 4 x 4
matrices called Dirac matrices, which obey a Clifford algebra. We do not
enter into a discussion of specific properties of the electron field here, as this
belongs into the realm of quantum electrodynamics. However, we want to
consider the gauge invariance of the Lagrangian. To this end we observe that
L is invariant under the following local gauge transformation

b — wl — eiG(z)e'¢, J N ',(Z’ — e-'iG(:t)e'E,
Ay — A, = A, - 0,0(x) (18.23)

The invariance depends crucially on the fact, that 9,6(zx)-contributions of
the free Dirac field (4, = 0) are cancelled by contributions derived from the
interaction with the electromagnetic field (physically this implies that it is
not possible to separate the electromagnetic field from the electron). This
means 1
L= _ZFWFW — poJY Ay

is gauge invariant only if we add to L the free Lagrangian of those particles
that give rise to the current J¥ or if J¥ is a conserved current, 8,J” = 0,
and we ignore a divergence term which, integrated over the spatial volume,
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gives zero: 9,(J*0) = J#8,0 + (9,J*)8. The invariance of FWE,, is easily
verified:
FHv — P = gt AV — 0¥ AW
= OH(AY — 8¥0(x)) — 0¥ (A* — 0"0(x)) = FH.
The invariance of the Lorentz gauge condition 8, A*(z) = 0 requires
o#9,0(x) = 0.

We assume therefore that the Lagrangian density is gauge invariant, and
return to Noether’s theorem. The simplest way to obtain the corresponding
conservation law is by differentiating the equation of motion (here a kind of
trick), i.e.

0, (0, F* — poJ¥) = 0.

Since (with 0#9, = —0)
0,0, F" = 0,(0,0" A" - §,0" A*)
= -00,A” + 00,4 =0,
it follows that
d,J” =0 (current conservation). (18.24)
The charge ¢ is
q= / dBzp = % / d3zJ°, (18.25)

i.e. (recall Eq. (17.29), where J* = (cp,j))

Qg = %/d3$80J0 = —%/d3$0jjj = ——i—/d:;IBVj

_—.—l/dF-jzo,
C

if we assume (as frequently explained above) that the fields are localised
(having a finite velocity of propagation). This result, 8og = 0, is described
as charge conservation, since ¢ = const.

18.6 Lorentz Transformations and Associated
Conservation Laws
The conservation laws which result from the invariance of the Lagrangian

under translations and spatial rotations (i.e. conservation of energy, mo-
mentum and angular momentum) are familiar from mechanics (with the
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difference that here (e.g.) the mechanical momentum has its counterpart in
the field momentum, and that one has to distinguish between momentum
and momentum density). A natural question is therefore now: What are
the conserved quantities resulting from invariance with respect to the special
Lorentz transformations? We do not enter into detailed field calculations
here, and instead resort to a plausibility argument.

The z-component of the conserved angular momentum L is

Lo = yp. — zpy.
In the case of a special Lorentz transformation along the z-axis the corre-
spondingly conserved quantity is evidently
ly = xpo — Topz, To=ct, po=H/e,
or more generally
1 =rpg — zop.

Since we have here field densities, the corresponding conservation law is

_ d 3 3 _ d 3
O—dxo/div[rpo—xop], /dwp—a}-a/d:vrpo

with e.g. p the field momentum density. With this we construct

fpdsx_ 1 d 3 d fr'Hdsx . d
TpoBs — T podPz dzo / pod’s = G\ TH®z ) = dao~

The vector R is (for obvious reasons) called “centre of mass of the field”.
Thus if we visualise the localised field like a cloud travelling in space, this
vector would be that of its centre of mass; this is usually not of much interest
and explains why this is rarely mentioned.

18.7 Masslessness of the Electromagnetic Field

Our next aim is to demonstrate that the electromagnetic field (and so the
photon) is massless. In principle this is already evident by looking at the La-
grangian and observing that this does not contain a mass term, i.e. m?A, A*.
A term of this type would violate the gauge invariance of the Lagrangian. We
can also argue as follows without reference to the Lagrangian. We consider
the Maxwell equations rewritten in the form of equations of motion of the
free electromagnetic field (J, = 0), i.e.

O F,, =0, (18.26)
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or (important: we do not yet choose a gauge fixing condition!)
(0,0MA, —0,(0"A,) = 0. (18.27)
For the solution we make the ansatz
A,(z) = €, (18.28)

The vector ¢, is the polarisation vector. Inserting this into Eq. (18.27), we
obtain
ipy ¥ .

0= [_pup'ufu + p,,(p“eﬂ)]e

Since the solution A, is not to be zero, we have

(pup)er = (P"€u)p0. (18.29)
Either
(a) pup #0, or (b) pup*=0. (18.30)
In case (a) we have
- (2 i 18.31
€, = D Dy, le. €, xp,. (18.31)
Hence the solution is
A, = ap, e o = const. (18.32)

Such solutions are considered to be trivial: They can be “gauged away” (see
below) and are therefore not observable.
“Gauging away’: The gauge transformation is

A, - A, =A,+08,x.
Since x is arbitrary, we can set
X = iae’Pre,

Then

i "
Oyx = —ap,ePre

and so, since from Eq. (18.32) A, = ap, =",
Al = ap, e — ap,ePrt = (.

Thus, these solutions do not yield anything. Hence we have case (b), i.e.
pup” =0 and so
0 - (pﬂeu)pua le pue,u = O, (1833)
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since in general p, # 0.
We conclude therefore: The solutions are

A, = €, with pup” =0 and pte, =0. (18.34)

The condition p,p* = 0 says: The mass of the field is zero (compare with
(17.78): (T/c)? = p? + m?c?). The condition is also described as mass
shell condition, implying that the momentum is physical (in field theory
intermediate states may have unphysical momenta).

We recognise in the condition p*e, = 0 our earlier condition 9,A* =
0, which we called Lorentz gauge (fixing condition). We shall see below,
that with the help of these two conditions we can eliminate the unphysical
components of the vector potential.

18.8 Transversality of the Electromagnetic Field

We now demonstrate explicitly that two of the four components of the 4-
potential A, can be gauged away, i.e. that the free electromagnetic field is
transverse (to the direction of propagation). We choose again

x = ioePr”
(o will be chosen suitably later). Then
A:/ = A, +0,x

ip, zH D, TH
e, e’Pr* — ap, ePr®
ipuTH
= (e, — ap,)e'’P*
— I _ippxH
=€ et (18.35)

with

]
€, — €, = €, — QPy.

This means, with the gauge transformation we also change the polarisation
vector. We select a wave travelling in the direction of z:

pu = (@/¢,0,0,k), (p=(p'), x=(2%)),
where the above mass shell condition implies
pupt =0 = Ww2—2k?2=0, w=ck.
Since p*e, = 0, we have

w
—eg — keg =0, so that ey =e3.
c
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It follows that . .
A, = g, P = (63,61,62,63)e'?(°t_z). (18.36)

However, we can still perform a gauge transformation, i.e. we can replace ¢,
/ / :
by €, €, = €, —ap,, i.e.

!/ w k
€, = eg—az,el,q,eg—a .

Choosing now

we have
/
€, = (01 €1, €2, 0)7

i.e. the components €g, €3 have completely disappeared and have no physi-
cal significance. The part ey of A, is described as the scalar part (“scalar
photon”), the other e3 part as the longitudinal part. We see that only the
two transverse parts o €;,ez have physical significance. This result is a
consequence of the mass shell condition and the gauge fixing condition.

18.9 The Spin of the Photon

We now have a closer look at the polarisation vector. We put

(€0, €1, €2, €3) = €0(1,0,0,0) + (0,0,0,1) + &,(0,1,—4,0) +£_(0, 1,4,0),
| —

(@)
(18.37)
where

1
&= 5@ Lid).

(Since E = —0A /0t — V¢, i.e. E || —A, the waves e exp[i(ct — z)/c] are
circularly polarised). Actually €, = ¢€,, but we want to distinguish between
the two more clearly. We want to examine the solution of a wave travelling
in the direction of z:

fw _ g« —_
A#:e“elc(“ 2 or A;:epe i (et—z)

Naturally this can be decomposed exactly like €,. Consider an ordinary ro-
tation about the z-axis, i.e. a special case of a homogeneous Lorentz trans-
formation,

/
=",z
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with rotation operator Ry for rotation 8 about the z-axis:

1 0 0 0
0 cos@® sing@ O

Lo —
Ro: Iy = 0 —sind cosd O
0 0 0 1

Here 6 is the angle of the rotation in the (z,y)-plane. Then
A, =114, = AT
=€, exp(ippz”)lTu,,

= €, exp(ip,z*), (18.38)

where

I
€, = eMlT v

Thus the rotation affects only the polarisation vector:

€0(1,0,0,0) — & = £,1T"g

1 0 0 0
=& | (1,0,0,0) 8 ‘;’jg _Czlnge 8 = &(1,0,0,0).
o o o 1)/,
Similarly
€3(0,0,0,1) — €3(0,0,0,1).
However

1 0 0

0 cosf —sinf
0 sinf coséd
0 0 0

= €4(0,cos 0 F isinf, ~sinf Ficosh,0)
= &.eT9(0,1,7F4,0).

g:t(Oa 17 :FZ70) - gi:(ov 17 :Fla 0)

= o O O

If we consider Ry as rotation operator, we have the “eigenvalue equation”:
RgA, = eigenvalue X A,.
The rotation operator is given by

R9 — eie[;
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where I, is the z-component of the (eigen)-angular momentum operator
(“spin operator”). Then in a rotation about the z-axis

Rng =1x Ao

= el Ay with eigenvalue of I, = 0,
R9A3 =1x A3

= ¢!z A5 with eigenvalue of I, = 0,

RoAy = TP Ay
= = A, with eigenvalue of I, = F1. (18.39)

We go through the last step in detail. We have for instance

RyA, = Rgeypexp [i%(Ct_z)]
1 0 0 0 0
(1837 . [ 0 cosf sinf O 1 ex iu—)(ct—Z)
= 4|0 —sing cosf 0 —1 Pl%e
0 0 0 1/ N0/l
0
- ¢ - 'w( t — z)
= €+ _ie_ia eXp /LC &
0
and hence
0
RoAL =&, _11 e ¥ exp [i%(ct—z)] =e YA,
0

as in the last line of Eq. (18.39). It follows therefore that for a scalar or
longitudinal field or photon the spin projection on the z-axis (i.e. the direc-
tion of propagation) is zero, whereas the field of the transverse photon has
the spin projections S, = £1A. Since only the transverse components are
physical, i.e. observable, it is evident that the photon has spin 1(%),s = 1k
(S? has eigenvalue s(s + 1),s = mazimal s,,S, = I,). The photon never
has spin projection 0 in the direction of the momentum vector, i.e. in the
direction of propagation. One says therefore, the photon has helicity +1.
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18.10 Examples

The following examples are motivated by the Lagrangian of electrodynamics,
but they also lead somewhat beyond the considerations of primary interest
here and, maybe, illustrate the fascinating use of electrodynamics for the
exploration of a plethora of other issues.

Example 18.2: The Chern—-Simons term and Rydberg atoms
Verify the gauge invariance of the following term, called Chern-Simons term, which one could add
to a Maxwell Lagrangian density:

Tos = P A8, Ap

(up to a divergence). Explore the simple choice A; = z; with ¢ =1,2 and Ap = 0.

Solution: With A, — A, + 8. and using the antisymmetry of the Levi-Civita tensor, the term

Tcs becomes
Té‘s = e’\“/’(A,\ +0xx)0u(Ap + Opx) = Tcs + 4,

where

>
|

= P ALBLBpx + PO XBu(Ap + BpX)

=0+ e)‘“pa)\xc')#AP + e)‘“”c%\xapapx
—_—

AP (07 (XOuAp) — xOruAp)

MPA (xBuAp) = Ox(xeMPOLAp)

=0 (xV?), V*=eMPa,A,,

Il

which had to be shown.
In the special case of A, p, p = 0,1, 2 with gauge choice Ao =0 and 4,j = 1,2 and m the mass
of the atom, we have
Tes = —eiinaoAj.

Selecting the simple case of A; = ax;,a = const., so that JpA; = a;/c = ap;/mc, which relates
the electric field to momentum, we have

o?
Tcs = —¢ijpiz;.
mc

This type of term appears in studies of atomic physics where the Hamiltonian of a Rydberg atom
of mass m in the presence of electric and magnetic fields (the latter along z3) is written as

1 1 LD
H= Zn‘(m + 59&';‘%‘) + 5'%;'2

— 1 ,2+ 1 €54 .’E—I—l ,{+_gi)z.2
T oamP T opIPitiT g am )7

where g and x are constants. The central term in the last expression is seen to be of Chern-Simons
type. (Observe the difference between the Hamiltonian here and that of Eq. (19.7) to be discussed
later. The minimal coupling to A; discussed there (cf. the end of Sec. 19.2.1) corresponds here
effectively to the coupling to the dual of A;). The so-called Rydberg atom is an atom regarded as
one with a permanent dipole moment resulting from a single electron in a shell far away from the
filled electron shells enclosing the nucleus, so that the structure of the latter can be ignored.
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Example 18.3: 6-dimensional gauge field theory
In a (1+5)-dimensional gauge field theory the gauge field is the tensor field Ay, = —App, p,v =
0,1,2,...,5, and the field tensor is
Fuuxn =0uAux + 00 Az, + 06 Apw.
(a) Verify the invariance of the field strength Fy,, » with respect to gauge transformations

dAuy = Alp.u — Apv = Ouxv — OuXp-

(b) What are the Maxwell equations derived from the action integral

1
S= —i/dGzFWAF“”)‘.

Solution: (a) Trivial. (b) Set

E;; :== Foij, Bij:= %Eijklkalm-
The equations of motion are

(@) 8*Fuy =0, (b) e P78, F, 5 =0.
Consider (a):

O F:0 =0, 8°Fgio + 8 Fjig = 0, Foo; = BoAgi + 8;Aco + BpAi0 =0,

so that ]
8;E;; =0 and 8°Fo i + 0 Fiyp = 0,
ie. 1
BoEj, = —9'Fyjp *° below _Eaifi]’klmBlm
Verification:

i i 1 1
aieijklmBlm = aleijklm gl_elmachabc = a < Cijklmelmabc )Fabc
! ! e ——
‘2!Sgn[ ; i ’z}

= ai%z>!311~;j,c = 210" Fyjy.

The other equations follow similarly from (b). (For the e contractions and related topics, see e.g.
Felsager (20], p. 354).

Example 18.4: Born—Infeld theory
The static, nonlinear BI Lagrangian, here simplified to that involving only the electric field E =
—V¢ in a flat space, and with ¢ = 1, hence egug = 1, is given by

Lp; = / drlpr, Lpi1(¢, Vo) =1—4/1-(V¢)? — dmegd(r).

Show that the energy of the charge e at the origin is given by

Hpy = 4me0(3.09112)e%/2,
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i.e. is finite, and not infinite like the energy of a point-charge, i.e.
1 2
3 [ (s,
2
in Maxwell electrodynamics.
Solution: In an attempt to avoid the infinite self-energy of a point charge in Maxwell theory,

Born and InfeldY arrived at the above Lagrangian which is now named after them and plays an
important role in String Theory. In fact, Lp1|e=0 = Lp=1, where

D) 2,
.c,,=b2{1—,/1— b—zz:M] 2% L

and Ljps is the Maxwell Lagrangian density, in the present case for B = 0 and ¢ = 1 simply
Ly =E?/2.
The Euler-Lagrange equation (18.1) gives the equation corresponding to the Gauss equation:

0;¢

61(\/1—”—’(7?@) = —4med(r).

Integrating over a sphere of radius » and using the Gauss divergence theorem, this becomes

vé ¢'(r) 2
————— - dF = —47we, or ———————4dnr‘ = —A4re,
| 7= Vo !
ie.
¢'(r) __ €

VI-(@mez 2

sm1) = [~ =
BI(r) = —_——
r /1+ f;_
With the help of Tables of Integrals one finds that ¢g;(0) = 1.85407e1/2 (this was the intention

of Born and Infeld, to obtain this finite in a covariant theory).
Defining

The solution is then seen to be

16[,3[_ 1 E

" OE  wVI-E
we have (cf. Eq.(18.4), here with ¢ = 1)

]

;0L
oT® = FO =50 — L1 = woE D ~ Lp;
1
= ———= — 1 + 4medd(r).
— medb(r)

The energy of the charge is then found to be (after some nontrivial integration)

Hpr = /drTOO = 47eg(3.09112)€3/2.

M. Born and L. Infeld, Proc. Roy. Soc. Al144 (1934) 425; see also Jackson [3], p. 10 and
G. W. Gibbons and D. A. Rasheed, Nucl. Phys. B454 (1995) 185.
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Example 18.5: Non-gauge invariant solutions of Maxwell’s equations”
A type of nonlinear, non-gauge invariant solutions G, of Maxwell’s equations has been found and
investigated by Schiff. These are given by (cf. Eq. (17.31))

Guv = Fu +V2¢7 14, 4., (g = const.).
Show that G, satisfies everywhere the conditions
*GuG* =0, Gu,GH =0,

which define it as a “null field”. Show that static, radially symmetric solutions of the homogeneous
part of the non-gauge invariant equation 8,,G*¥ = ugj¥ are given by

k
A, = —0, ko = const.,
r

and 5
¢1 = - and ¢9 = C—:, where v =v2g"'ko, b,c3 = const.
r

What is the total charge Q = [ drp? Finally solve the null condition with B = 0 for the Coulombic
solution ¢1 and determine the charges b.

Solution: The original starting argument of Schiff is simple. Since for a point charge g at rest the
Coulomb potential ¢ and electric field strength E are given by

¢=kI, E=kI,
r r
one has E? = ¢*/k2¢?, or (cf. Egs. (17.31), (17.35))
E2 A04 é k2q2
F,'2=—:——-, Ap = &, 2_Z 2
0 c? g2 0= 9 c2
The covariant generalisation is seen to be
v 2 I 2 H" ¢2 2
F,F =—g—2-(A An), A A“:c—Q-A’

as one can verify by reduction to the case above. For B = 0 (i.e. F;; = 0 in the quantity on the

left) this null field condition is
E_2 1 A? — ¢_2 ?
2 g2 2/

Writing the relation as
2
Fuy FH° + g—2(A“A#)"’ =0,
we see that — due to opposite symmetries of Fj., and Ay A, — we can write it as G, G*¥ = 0 with
Gy as defined above. Multiplying G, by the four-dimensional Levi-Civita tensor, we see that
its dual satisfies *Gpu, = *FLu, so that with *F,, F* =0 (E L B), we obtain *G**G, = 0.
Thus G, satisfies the conditions of a null field.
The static, radially symmetric part of the homogeneous equation 8,G*¥ = 0 with A = A,(r)

and so B=0is
V- (AA) =0,

IH. Schiff, Can. J. Phys. 47 (1969) 2387 and H. Schiff, Quark-like potentials in an extended
Mazwell theory, hep-th/0308091.
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which is solved by A = ko /7, since

V-(AA):VA-A+AV.A=-'-“935-1“07’+’°—°l23(r259)=0.
T r r 2 9r T

The zero component of 8,G* = ppj¥ is (with Go; = Fo; — ﬂ(A)iAo/g) the Gauss law

v. (E - ﬁAqﬁ) = poc?p(r), or — izﬂ (ngf) — \/ikOV- (i¢) = poc?p(r),
g r2 or or g r2

which with

can be written (as shown by Schiff)

1) 1 d(rg)

r dr? r2 dr

= poc®p(r),

where v = v/2ko/g. Irrespective of the value of  the homogeneous part has solutions for r¢ =
const., i.e. ¢1 = b/r, but for v # 1 also solutions ¢2 = cor~7, which are “confinement potentials”
for v < —1.

Integrating the Gauss law, one obtains in the usual way the total charge

2
Q :/drp(r) = eo/dF- (El — £A¢v1)
g
(the index referring to solution ¢1), i.e.

Qzeo/rﬁdﬂriz( - ?%b) = codmb(1 — ).

Inserting the Coulombic solution ¢1 into the null field condition, i.e.

2
Ezil(fﬁ_d’_),
¢

g c?

one obtains

b2 b 72g2
hal R A—]
c? c 2

with solutions

b :tg[l + T+ 272
c

This determines the charge b in the potential ¢1. In the paper of Schiff (cited above) these
conditions are further extended to the confinement potentials ¢2, and it is shown that fractional
charges such as those attributed to quarks can be obtained. This is an interesting observation,
although, of course, this is not the acceptable overall theory.

Example 18.6: Quantum Hall effect
Starting from the Lagrangian density of the electromagnetic field in a dielectric with polarisation
energy U(E, B),

L(E,B) = %(c— - B2) - U(E,B), with U:=—g(E-B),
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show that if the induced surface charge is ne, i.e. an integral multiple n of the elementary charge
e, and the magnetic flux is & = mdo, i.e. an integral multiple of the magnetic flux quantum
®p = h/e (in MKSA units), that then the surface Hall conductivity,** op, defined by

M =oHE,
is given by \
e n e’n
— —(length)~! = =~ — (length) 1.
F» -~ (length) T length)
The Hall conductivity plays an important role in the quantum Hall effect!? (this Example does
not claim to explain this, instead is only an exercise in considerations around it).

Solution: We had the equations (cf. Egs. (4.8), (6.15))

B
D =¢E+P, H= —-M.

Ko
1 0L 16U
1o OE implies o OE
and oL 19U
1
=—-—_—— impli M=—-——.
7o OB implies o OB

For the given expression of U these imply

Pp=2B ™M=21E
o o

Since we had for induced charge and current densities
pp=-V P, juy=VxM,

we have pp = 0 (since V- B = 0), but (cf. Eq. (4.13)) the surface charge density and the magnetic
current density resulting from polarisation are

op=P-n=2B.n, ju=VxM=LVxE,
HO Ho

where n is a unit vector pointing out of the surface or interface area F with, say, F = L? and
circumference Lo. Then, using the theorem of Stokes,

L
jMF=i/ VxE-dF =L [(E.d= ZLEL,.
Ho JF

Ho Jo HO
Hence
ju=LE g i ey=dlo
po F ’ po F

**For a recent discussion with references to earlier literature see J. E. Avron, D. Osadchy and
R. Seiler, “A Topological Look at the Quantum Hall Effect”, Physics Today, August 2003, p. 38.
The standard definition of the magnetic flux quantum in SI units is ¢ = h/2e (as in Appendix
B). In c.g.s. units it is hc/2e. This is for superconductors where the charge carriers are Cooper
pairs of charge 2e (ignoring the sign of the charge). The above article considers single electrons,
thus the elementary quantum of magnetic flux there is defined as ®¢ = hc/e in c.g.s. units. The
author is indebted to Dr. B. Taylor, National Institute of Standards and Technology, USA, for
clarifying correspondence.

HSee K. von Klitzing, G. Dorda and M. Pepper, Phys. Rev. Lett. 45 (1980) 494.
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The quantity oy is the interface Hall conductivity. Considering the surface charge density op, we
have

surface charge =@ = /ade = _g-/B .dF = i(b,
£o Ho
where ¢ is the magnetic flux through the surface. Setting Q = ne and & = mdg, we have

poe n e n Lo
g=—— and s0 og=———.
o m dom F

In strong magnetic fields B the Hall conductivity is actually observed to be quantised.



Chapter 19

The Gauge Covariant

Schrodinger Equation and
the Aharonov—Bohm Effect

19.1 Introductory Remarks

In this chapter we first establish the Schrodinger equation for a charged par-
ticle moving in an unspecified electromagnetic field. We demonstrate the
covariance of this equation under gauge transformations which ensures that
the probability density is independent of the choice of a particular vector
potential. We then consider the special case of a homogeneous solenoidal
magnetic field restricted to a small domain behind a diaphragm with a dou-
ble slit and with an electron source on the other side. It is then explained
why the resulting interference pattern observed on a screen (on the solenoid
side of the slits and some distance away from it) is displaced when the cur-
rent in the solenoid is switched on or off. This Aharonov-Bohm effect is a
quantum mechanical effect resulting from the phase of the Schrédinger wave
function, and may be looked at as experimental evidence of the vector po-
tential. The considerations here supplement our considerations of solenoidal
fields in Chapters 5 and 8, where, in particular, we investigated the electro-
magnetic vector potential A in the neighbourhood of a long solenoid. The
Aharonov-Bohm effect is clearly a fundamentally significant phenomenon.

447
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19.2 Schrodinger Equation of a Charged Particle
in an Electromagnetic Field

19.2.1 Hamiltonian of a Charge in an Electromagnetic Field

We return once again to the nonrelativistic equation of motion of a particle
with mass m and charge e in an electromagnetic field — this time, however,
with a view to the formulation of the corresponding Schrédinger equation.
Previously we wrote the former equation as a Newton equation with the
Lorentz force as external force, i.e.

d
dt

This equation can also be derived as in ordinary classical mechanics from the
following Lagrangian (with r = (g1, g2, ¢3)):

—(mi) =e(E+rt xB), |[f|=|v|]<ec (19.1)

La,d) = md? +e(didi(a,1) - $(0)) (19.2)

as we verify now. With the Lagrangian we can then (via a Legendre trans-
form) construct the Hamiltonian as a prerequisite for the transition to the

quantum mechanical Schrodinger equation. From L we obtain
oL oL 0A; 0¢
— =mg; +ed;, — =e¢;— —e—, 19.3
94 dg;  TBg; 0y (19:)

and the Euler-Lagrange equation of motion

d (0L _(9L_0
dt \ 0q; 8qj_

yields
d . OA; 0¢
—e— 94
mis + g5(eAy) = eii gt —e5E (19.4)
where d/dt is the total time derivative, i.e.
i_0, .0
dt = ot " Tigg
so that
I ot dg; * dq; 0q;
and hence

T " B T ?ﬁ-._%-.)
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However, we know that

E=—8—A—V¢ and B=V x A,
ot
and thus
vxB=vx(VXxA)=V(v-A)—-(v-V)A
0 0
= 5;(V-A)— (V-E>A,
i.e.
0 15]
(V X B)j = —81:—](1)2142) — ’U,‘gz—iAj,
where ) 0A P A
i vi _ 044
E(UZAZ) = vi%; + Az-a-m—.j = 81,']'
and hence

mg; = eEj +e(v x B)j,

as had to be shown, i.e. that the Euler-Lagrange equation is identical with
Newton’s equation.

One should note: The conjugate momentum is p; = OL/8q;; this is
also the canonical momentum in the Hamilton formalism. We have (cf.
Eq. (19.3))

p = mv + eA. (19.5)

However, the so-called mechanical momentum is mv or
mv=p—eA=mq. (19.6)

This distinction is very important.
We obtain the Hamiltonian H(q,p) as in mechanics with a Legendre
transform, i.e. by defining
H(q,p) = pi¢; — L(q,4q)
A .
= pigi = 5md} — e(didi — ¢)
; 1m eA;
= Bpi—ed) - 5 o (pi— A + ep— Zhipi - ),
or

1 1
H(q,p) = 2—7;;(:01' —eA)? +ep= §T—n—(P —eA) + e

= {2%71(771\:)2 + eq&} (19.7)

mv—p—eA
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The contribution —eA is seen to be the effect of the Lorentz force expressed
in terms of the vector potential. The substitution

Pmech = MV — P — €A

for the ordinary momentum in mechanics is frequently described as minimal
electromagnetic coupling.

19.2.2 The Gauge Covariant Schrodinger Equation

We now construct the time-independent Schrédinger equation and explain,
what is meant by “gauge covariance”. We saw above: For a particle with
charge e the relation between mechanical momentum and conjugate momen-
tum is changed by the effect of the Lorentz force, i.e. the momentum p
becomes p — eA. Correspondingly we have in nonrelativistic quantum me-
chanics the substitution

Pmech — —thV —eA = —ih (V — %A)

and (V — % A) is called gauge covariant derivative.

The canonical variables required for quantisation are the spatial Carte-
sian coordinates x; and the appropriate canonical momenta p;. In the present
case quantisation requires the replacement of p by the operators V, and to
consider all quantities as operators in the space of states 1. The correspond-
ing Schrodinger equation in position space and with eigenvalue E is then (cf.
Hamiltonian (19.7))

B (v - —A) b= (B ety (198)

One expects a sensible formulation of the theory to be such that Schrédinger
equations with different potentials A are “equivalent” in the sense that they
yield the same observable results, which depend only on the probability den-
sity |7,b|2. To achieve this, the wave function ¢ has to be transformed along
with the potential in the gauge transformation from one potential A to a
different one. Thus, with the gauge transformation of the vector potential,

A—-A'=A+Vy

(where our time-independent considerations leave ¢ unchanged), we also
transform the phase of the wave function by writing

b= = e | Xy,
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This equivalence (to be verified below) is described as gauge covariance. We
now verify that these transformations convert a Schrédinger equation in 1’
and A’ into one in ¥ and A or vice versa. We start from the Schrodinger
equation in primed quantities:

2 e 2 / /
Now
(V - %A')W = (V _ %B(A + vx)>ei‘?‘¢
— (V+ Evx - z;(A+V><))¢
=% (V — %A)w,
l.e.

. 2 . . 2
(V - %A') W = e (V - %A) 0.

This implies the equation in A,1:

_h_; (v _ _A)2¢ — (E — ed)p. (19.10)

Since the only physically observable quantity in v is the probability den-
sity |4|2, and this remains unchanged under the gauge transformation, we
see that all gauge potentials, which are related by gauge transformations,
describe the same physical state. (A wave function is a probability ampli-
tude; the phases of wave functions have a relative significance, not an abso-
lute significance, as quantum mechanical interference experiments show). In
quantum mechanics the wave function of a free particle of mass m, energy
E = p?/2m and momentum p is given by

W(z,t) = exp [%(px _ Et)] .

Recall briefly how quantum mechanics enters here. Canonical quantisation
implies, that the Cartesian quantities z; and p; (as operators in the space of
states) obey the following commutator algebra:

[Zzam]] = O) [Pj,l'k] = —ihéjka [pjapk] =0.
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These operator relations are satisfied by the position space representation
p;j = —ihd/dz; of the momentum operator. Now assume E = p?/2m+V (z).
Then, classically in the non-free case (i.e. potential V(x) # 0) p?/2m =
E — V(z) and quantum mechanically

h2v2
T om

¥ = (E - V(z)),

where (z) is a wave function. In general one can separate the angles
and one obtains a one-dimensional differential equation analogous to the
Schrodinger equation in one dimension (with centrifugal term). An approx-
imation ¥y (for V' # 0, exact for V' = 0) of 9 is obtained from the classical
p = +/2m(E — V{(z)) as solution of

i.e. o [
- /  /am(E ~ V(@)d

or

o = exp [% / \/de] = exp {% / p(x)dm].

(w2

-~

i
I double-slit LI screen

Fig. 19.1 The two paths I'1,I'; of the electron wave
and their interference spectrum.

Considering now the case of a particle travelling in the Maxwell field A,
then according to the above prescription of minimal coupling, we have to
replace the free particle momentum p by p — eA, so that the wave function

has the form ' _
1 = exp [%/p-dr—%/A-dr].
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The contribution

is the effect of the Lorentz force in the quantum mechanical case. We can
consider it as the corresponding quantum mechanical law. It plays an impor-
tant role in the interpretation of the Aharonov—-Bohm effect. One should note
that the expression ¢ A - dr and hence the wave function v (for integration
around a closed path) is invariant under nonsingular gauge transformations,

since
fA'~dr=fA-dr+fo~dr=}{A-dr,
}{Vx'drr-jgd)(:().

19.3 The Aharonov—Bohm Effect

because

We restrict ourselves here largely to a qualitative treatment.* Electrons
with momentum p = h/X are sent through a diaphragm or partition with
two slits. If the difference in the lengths of the two possible paths, a, is
of the order of the wavelength A of the waves one expects and observes an
interference pattern on the screen behind the slits (due to constructive or
destructive interference). We write the difference between the phases of the
wave function of the electrons due to the different paths

A(l/p : dr) = ka = 0. (19.11)
h o=tk

At a maximum P as indicated in Fig. 19.1 we have the effect of the super-
position of two waves which have a phase difference ka. If we arrange the
experiment such that electrons can only pass through one slit, then § = 0,
because a = 0 (as well as ¢ = 0). In this case we observe no interference and
the conditions of quantum mechanics are not provided.

The present problem with (as we shall see) a homogeneous magnetic
field vertically out of the plane of the diagram of Fig. 19.1 in a small domain
behind the slits is seen to have cylindrical symmetry. This suggests one to use
cylindrical coordinates r, 6,z . In these coordinates, with field components

A=ed, B=VxA]|e,,

*For detailed literature see e.g. M. Peshkin and A. Tonomura, The Aharonov-Bohm Effect,
Lecture Notes in Physics, Vol. 340 (Springer, 1989).
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the gradient is given by

V &e 3 +e 12 +e 3
" 87‘ o r 06 = 82 ’ (1912)

and the divergence by

10 10Cy, 0C,
V-C= ;E(TCT) + 50 + P (19.13)
Hence
108 0 10 (10 o (9
vov= m{"a}*w{w%a{a} (19-14)

For the chosen vector potential A in the direction of ey (in the outside region
around the solenoid as we saw in Chapter 8) we have

. 2 . .
e ie 0 190 ie d
(V“ EA) = (V‘ EAe*’) | ['a?’?% R a_]
_12 0 18(10 e,
rof k
o /[0 ie (10 e
+a—(a—) B ?“(;% - EA)

_P 10 (10 ieA2+62
o2 ror  \rod & 922

“roror Troe B

92 10 1[0 ie2nr \?> 02
et et nlm ) tam (019
But now
A~dl=A27rr:/(V><A)-dF=/ B-dF=®, (19.16)
C(F) F(C)

where ® is the magnetic flux through the surface F'. Hence with

e2nrA _ ed ed

h —  h  2rnh

the expression (19.15) becomes

. 2 2 2 2
ie 0 10 1/0 . 15}
(V_EA> “W*?@?*;ﬁ(@“a) * oz
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The corresponding Schrédinger equation for scattering in 2 dimensions is

, 2
ie 2mE 9
- = =" =— 19.17
(V hA)w = k%, (19.17)
or with ¥(r,8,z) — ¥(r,0)
2 106 1/0 2,
S T Il I = 0. 19.18
[6r2+rar+r2<89+m) +k]¢(r,9) 0 ( )

Setting 1(r, 8) o< e = im0+27) 4y =0, +1, 42, ..., we obtain

9 19 (a+m)>
4y T = 0. 19.19
[07‘2 T Er 2T K2 $(r,6) = 0 ( )

Comparison with the Bessel equation

d?Z, 1dZ V2
e -—14,=0 19.20
R (1 22) ( )

shows that the general solution of the Schrodinger equation has the form

b= D ool )+ b)) (19.21)

m=—0oQ

where a,,, by, are arbitrary constants and J,,, J_, are Bessel functions. Since
the wave function has to be regular at r = 0, all coefficients b,, must be zero,
i.e.

D(r,0) = > ame™ Sy (kr). (19.22)

m=—00

This is the small-r expansion. The Bessel functions can also be expressed as
the sum of two Hankel functions valid at large r, i.e.

Te) = 5(HY ) + HP (),

where for |z| — oo (see books on Special Functions)

H(z) = f 2t F- Dy o),

HP(z2) = \/%e‘i‘z'%""ﬁa +0(z71)).
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y

Fig. 19.2 The angle 8 of cylindrical coordinates.

Hence for r — oo the wave function can be written

kr—|m+al3—7)
¥(r,0) = Z ame’ wkr{e( l 1

m——oo

L emilkr—|m+al] ———)}(1 +O(1/7)). (19.23)

The wave function ¢(r, ) can now be subdivided for large values of r into an
incident or ingoing wave (let’s say from the right) and a scattered or outgoing
wave whose asymptotic behaviour defines the scattering amplitude f(8), i.e.

»(r,0) = (7% %) + Yhous (19.24)

e—ikzx

(the braces (...) are meant to indicate that the enclosed expression is not
the strictly correct free wave, as is explained below) with (for r — oo we
deduce from the differential equation or the above Hankel functions that

¥~ /YD +
out = €™ FO)(1+ O(L/)). (19.25)

We expand the ingoing wave in terms of Bessel functions. We take this
expansion from the literature,! i.e.

o0

e—tkrcos6 _ Z (_i)an(kr)einO

n=—oo

> ; 2 \? T
o~ Z (—i)"eme(%) cos (kr—ni - Z) (19.26)

n=-—00

1. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Academic, 1965),
p. 973.
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-

solenoid

Fig. 19.3 Displacement of the interference spectrum
when a current flows in the solenoid.

We substitute (19.26) and (19.25) into (19.24). Comparison of the coefficients
of e~%T in this expression and in (19.23) then yields the expression for a,
ie.

G = e"i3ImFal, (19.27)
Comparison of the coefficients of et yields the scattering amplitude, scat-
tering amplitude,

_ 1 o= im(6—m) [ 2i6m
f(9)_——~———\/m Y ooe (e 1) (19.28)

with the scattering phase

m=—0oQ

B = —glm +af+ g|m|. (19.29)

We see therefore, that for a # 0 the scattering phase d,, # 0 . Actually the
ingoing wave in (19.24) is in the present case wrong. In the usual case of the
scattering off a potential like the Coulomb potential (as in the familiar case
of 3-dimensional scattering theory), one assumes that the potential vanishes
for r — oco. Here we consider the scattering of electrons (or the electron
wave) in the field of an infinitely long solenoid, i.e. off magnetic flux lines
which do not return. Aharonov and Bohm showed in their work,? that the
ingoing wave therefore carries a phase factor, i.e. that Eq. (19.24) must be
written

w(r, 9) — e——ia@(w,y)e—ikTCOSG + Yout.- (1930)

tThe original papers are: D. Bohm and Y. Aharonov: “Significance of electromagnetic po-
tentials in the quantum theory”, Phys. Rev. 115 (1959) 485 and “Further considerations on
electromagnetic potentials in the quantum theory”, Phys. Rev. 123 (1961) 1511.
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This change is by no means self-evident. Indeed the calculation of the scat-
tering amplitude f(#) here depends on the order in which the sum >, and
the limit lim,_,o, are taken. Aharonov and Bohm used in their complicated
calculation the order lim, . Y ,,, whereas in the above partial wave expan-
sion these steps are taken in the opposite order. It is found that the summed
expressions for f(6) differ in forward direction by a contribution proportional
to §(8 — m). We do not enter into a deeper analysis of these mathematical
details here.$

We now consider the experimental setup shown schematically in Fig. 19.3
and proposed by Aharonov and Bohm with a solenoid (infinitely long, so that
the field outside is zero) immediately behind the double slit and perpendicu-
lar to the diagram. In practice, in real experiments, the solenoid is replaced
by microscopically thin magnetised iron crystals. One can see that with the
current in the solenoid switched on, i.e. the magnetic flux, the phase of the
electron wave function changes by an amount given byY

T T ed
5“‘5(‘%) 53 th dl,

which may be rewritten

™ T e
Here 'y and I'y are the two paths from the electron source through the
two slits to the interference point on the screen. The interference spectrum
suffers a corresponding shift as indicated in Fig. 19.3. This effect is known
as Aharonov-Bohm effect.! The effect has been confirmed experimentally**
and plays an important role in numerous theoretical considerations.

What makes the Aharonov—Bohm effect so remarkable is:

8The partial wave treatment can be found in particular in S. N. M. Ruijsenhaars, Ann. Phys.
(N.Y.) 146 (1983) 1. The discussion on the order of }_ . and lim, .o can be found in C.R. Hagen,
The Aharonov-Bohm Scattering Amplitude, Univ. of Rochester Report UR-1103 (1989). Further
discussions are given in the book cited above, of Peshkin and Tonomura.

YIn some considerations the wave function with phase factor exp{ie Jr A - dI/A} is not unique,
since several revolutions around the field B are possible. This problem can be circumvented by
summing over arbitrarily many revolutions or by using only uniquely defined wave functions (see
e.g. the discussion in the last paragraph of M. V. Berry, Proc. Roy. Soc. Lond. A392 (1984) 45).

IThe original papers have been cited above. A readable account of the Aharonov-Bohm effect
can be found in Felsager [20], pp. 49-55.

**An early experimental verification can be found in G. Méllenstaedt and W. Bayh: “The con-
tinuous variation of the phase of electron waves in field free space by means of the magnetic vector
potential of a solenoid”, Phys. Blitter 18 (1962) 299. A more recent confirmation has been re-
ported in A. Tonomura, O Noboyuki, T. Matsuda, T. Kawasaki, J. Endo, S. Yano and H. Yamada:
“Evidence for Aharonov-Bohm effect with magnetic field complet